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Welcome	to	Trigonometry:	A	complete
introduction

Teach	Yourself	Trigonometry	has	been	substantially	revised	and
rewritten	to	take	account	of	modern	needs	and	recent	developments	in
the	subject.

It	is	anticipated	that	every	reader	will	have	access	to	a	scientific
calculator	which	has	sines,	cosines	and	tangents,	and	their	inverses.	It
is	also	important	that	the	calculator	has	a	memory,	so	that	intermediate
results	can	be	stored	accurately.	No	support	has	been	given	about	how
to	use	the	calculator,	except	in	the	most	general	terms.	Calculators
vary	considerably	in	the	keystrokes	which	they	use,	and	what	is
appropriate	for	one	calculator	may	be	inappropriate	for	another.

There	are	many	worked	examples	in	the	book,	with	complete,	detailed
answers	to	all	the	questions.	At	the	end	of	each	worked	example,	you
will	find	the	symbol	 	to	indicate	that	the	example	has	been
completed,	and	what	follows	is	text.

Some	of	the	exercises	from	the	original	Teach	Yourself	Trigonometry
have	been	used	in	this	revised	text,	but	all	the	answers	have	been
reworked	to	take	account	of	the	greater	accuracy	available	with
calculators.

I	would	like	to	thank	Linda	Moore	for	her	help	in	reading	and
correcting	the	text.	But	the	responsibility	for	errors	is	mine.

Hugh	Neill



Introduction

Trigonometry	is	the	study	of	the	relationships	between	the	sides	and
angles	in	a	triangle.	It	is	one	of	the	most	practical	branches	of	pure
mathematics	and	it	has	many	applications	in	the	real	world.
Trigonometry	is	based	on	the	principle	that	the	ratio	between	two
sides	of	any	similar	right-angled	triangle	is	a	constant:	this	enables
you	to	calculate	the	size	of	any	missing	sides	or	angles	in	a	right-
angled	triangle.	The	trigonometric	functions	(sine,	cosine	and	tangent)
are	defined	as	the	ratio	between	two	sides	of	a	right-angled	triangle.
Using	these	functions,	you	can	calculate	the	area	of	any	triangle	or
find	missing	angles	or	sides	–	these	skills	have	obvious	applications	in
surveying	and	civil	engineering.	Trigonometry	enables	surveyors	to
work	out	the	height	of	buildings	or	use	triangulation	to	work	out	the
exact	location	of	a	fixed	point,	which	is	vital	for	map	making.	The
triangle	is	the	strongest	shape	to	use	in	a	structure	and	so	trigonometry
underpins	many	of	the	calculations	needed	in	civil	engineering.	Many
bridges,	roofs	and	other	structures	are	held	up	by	a	system	of
triangular	supports.

Trigonometry	has	many	other	real-life	applications,	for	example	it	is
used	extensively	in	mechanics	to	describe	the	motion	of	objects.	To
work	out	the	trajectory	of	a	bullet	fired	from	a	gun	or	the	motion	of	a
simple	pendulum	requires	trigonometry	–	even	the	way	that	light	or
sound	waves	move	can	be	described	using	trigonometry.

Trigonometry	was	first	used	in	astronomy	and	still	has	many
applications	in	this	field	today.	For	instance,	it	is	used	to	accurately
work	out	the	distance	to	nearer	stars	using	the	phenomenon	of
parallax,	which	is	the	apparent	motion	of	nearby	stars	relative	to	more
distant	stars.	You	can	see	parallax	for	yourself	by	holding	out	a	finger
and	then	looking	at	it	with	first	just	your	right	eye	and	then	just	your



left.	The	position	of	your	finger	will	appear	to	shift,	relative	to	the
more	distant	background.	A	nearby	star	appears	to	move	slightly
against	the	background	of	more	distant	stars	when	viewed	twice,
using	observations	made	six	months	apart	–	once	the	earth	has	made
half	of	its	orbit	around	the	sun.	Using	the	distance	that	the	earth	has
moved	in	this	time	as	a	base	line,	it	is	possible	to	construct	a	right-
angled	triangle	using	the	sun,	the	earth	and	the	star	in	question	as	the
three	vertices.	The	distance	to	the	star	can	then	be	worked	out	using
the	angle	of	parallax	and	the	distance	between	the	sun	and	the	earth.
In	fact,	the	earliest	practical	uses	of	trigonometry	were	in	the	fields	of
astronomy	and	hence	navigation.

However,	it	is	when	you	extend	the	definitions	of	the	trigonometric
functions	so	that	they	apply	to	angles	of	any	size	that	even	more
applications	emerge.	Trigonometry	is	the	mathematics	of	oscillations
and	waves	–	the	graphs	of	sine	and	cosine	are	periodic	(repeating)
waves	and	so	these	functions	can	be	used	to	model	waves	that	occur
in	real-life	situations.	Modern	technology	is	hugely	reliant	on	waves;
electromagnetic	waves	such	as	radio	waves,	x-rays	and	microwaves
can	all	be	modelled	using	sine	and	cosine	functions.	In	optics,	the	sine
function	is	used	in	Snell’s	law	to	work	out	the	angle	of	refraction	of
light	entering	a	different	medium.	Modern	power	lines	use	alternating
current	(where	the	flow	of	electric	charge	periodically	reverses
direction)	to	deliver	power	over	long	distances,	the	voltage	is
described	mathematically	using	the	sine	function.

The	periodic,	wave-like	nature	of	the	trigonometric	functions	means
that	they	are	incredibly	useful	in	mathematical	modelling:	almost	any
oscillating	system	can	be	described	using	a	combination	of	sine	or
cosine	functions.	For	example,	a	musical	note	can	be	modelled	by	a
sine	wave,	and	a	chord	(several	notes	played	together)	can	be
modelled	by	several	sine	functions	added	together.	Combining	sine
and	cosine	functions	allows	us	to	produce	louder	or	quieter	tones,	and



functions	can	even	be	added	to	together	in	order	to	cancel	out
unwanted	sound	completely.	Trigonometry	is	fundamental	to	the
principle	of	sound	compression	used	in	MP3	players.	The	sine
function	also	has	applications	in	climatology	as	it	can	be	used	to
model	the	seasonal	fluctuations	of	carbon	dioxide	in	the	atmosphere.
In	fact,	many	real-life	situations	that	display	seasonal	fluctuations,
including	temperature,	can	be	approximated	by	trigonometric
functions.

There	is	a	seemingly	endless	list	of	uses	for	trigonometry.	It	is	used	in
medicine	(it	forms	the	basis	of	the	mathematics	behind	CT	(computed
tomography)	scanning),	cartography,	astronomy,	engineering,
surveying	–	even	psychology	and	probability	theory	make	use	of
trigonometry.	Trigonometry	is	not	just	to	do	with	triangles,	it	is	the
mathematics	of	waves	and	oscillations	as	well.	Any	problem	to	do
with	angles,	oscillations	or	waves	can	be	modelled	using
trigonometry,	which	must	make	trigonometry	the	most	relevant
branch	of	mathematics	there	is.



1
The	tangent

In	this	chapter	you	will	learn:

•		what	a	tangent	is
•		the	meanings	of	‘opposite’,	‘adjacent’	and	‘hypotenuse’	in	right-
angled	triangles

•		how	to	solve	problems	using	tangents.



1.1		Introduction
The	method	used	by	Thales	to	find	the	height	of	the	pyramid	in
ancient	times	is	essentially	the	same	as	the	method	used	today.	It	is
therefore	worth	examining	more	closely.

Figure	1.1

You	can	assume	that	the	sun’s	rays	are	parallel	because	the	sun	is	a
long	way	from	the	earth.	In	Figure	1.1,	it	follows	that	the	lines	RC	and
PB,	which	represent	the	rays	falling	on	the	tops	of	the	objects,	are
parallel.

Therefore,	angle	PBQ	=	angle	ACB	(they	are	corresponding	angles).
These	angles	each	represent	the	altitude	of	the	sun.

As	angles	PQB	and	ABC	are	right	angles,	triangles	PQB	and	ABC	are
similar,	so

The	height	PQ	of	the	pyramid	is	independent	of	the	length	of	the	stick
AB.	If	you	change	the	length	AB	of	the	stick,	the	length	of	its	shadow
will	be	changed	in	proportion.	You	can	therefore	make	the	following
important	general	deduction.

For	the	given	angle	ACB,	the	ratio	 	stays	constant	whatever	the



length	of	AB.	You	can	calculate	this	ratio	beforehand	for	any	angle
ACB.	If	you	do	this,	you	do	not	need	to	use	the	stick,	because	if	you
know	the	angle	and	the	value	of	the	ratio,	and	you	have	measured	the
length	QB,	you	can	calculate	PQ.

Thus	if	the	angle	of	elevation	is	64°	and	the	value	of	the	ratio	for	this
angle	had	been	previously	found	to	be	2.05,	then	you	have

1.2		The	idea	of	the	tangent	ratio
The	idea	of	a	constant	ratio	for	every	angle	is	the	key	to	the
development	of	trigonometry.

Let	POQ	(Figure	1.2)	be	any	acute	angle	θ°.	From	points	A,	B,	C	on
one	arm,	say	OQ,	draw	perpendiculars	AD,	BE,	CF	to	the	other	arm,
OP.	As	these	perpendiculars	are	parallel,	the	triangles	AOD,	BOE	and
COF	are	similar.

Figure	1.2



Nugget

So	if	OE	is	double	the	length	of	OD	then	BE	will	be	double	the	length	of	AD.

Now	take	any	point	Y,	it	does	not	matter	which,	on	the	arm	OQ.	For
that	angle	θ°	the	ratio	of	the	perpendicular	XY	drawn	from	Y	on	the
arm	OQ	to	the	distance	OX	intercepted	on	the	other	arm	OP	is
constant	(see	Figure	1.3).

Figure	1.3

This	is	true	for	any	angle;	each	angle	θ°	has	its	own	particular	ratio
corresponding	to	it.	This	ratio	is	called	the	tangent	of	the	angle	θ°.	In
practice,	the	name	tangent	is	abbreviated	to	tan.

Thus	for	θ°	in	Figures	1.2	and	1.3	you	can	write

1.3		A	definition	of	tangent
There	was	a	general	discussion	of	the	idea	of	the	tangent	ratio	in
Section	1.2,	but	it	is	important	to	refine	that	discussion	into	a	formal
definition	of	the	tangent	of	an	angle.

In	Figure	1.4,	the	origin	O	is	the	centre	of	a	circle	of	radius	1	unit.



Draw	a	radius	OP	at	an	angle	θ°	to	the	x-axis,	where	0	≤	θ°	<	90.	Let
the	coordinates	of	P	be	(x,	y).

Figure	1.4

Then	the	tangent	of	the	angle	θ°,	written	tan	θ°,	is	defined	by

You	can	see	from	the	definition	that	if	θ	=	0.	the	y-coordinate	of	P	is	0,
so	tan	θ	=	0.	If	θ°	=	45,	then	x	=	y,	so

As	θ	increases,	y	increases	and	x	decreases,	so	the	tangents	of	angles
close	to	90°	are	very	large.	You	will	see	that	when	θ°	=	90,	the	value
of	x	is	0,	so	 	is	not	defined;	it	follows	that	tan	90°	does	not	exist,	and
is	undefined.

1.4		Values	of	the	tangent
You	can	find	the	value	of	the	tangent	of	an	angle	by	using	your
calculator.	Try	using	it.	You	should	find	that	the	tangent	of	45°,
written	tan	45°,	is	1,	and	tan	60°	=	1.732….	If	you	have	difficulty
with	this,	you	should	consult	your	calculator	handbook,	and	make	sure
that	you	can	find	the	tangent	of	any	angle	quickly	and	easily.



Your	calculator	must	be	in	the	correct	mode.	There	are	other	units,
notably	radians	or	rads,	for	measuring	angle,	and	you	must	ensure	that
your	calculator	is	in	degree	mode,	rather	than	radian	or	rad	mode.
Radians	are	widely	used	in	calculus,	and	are	the	subject	of	Chapter	4.

Some	calculators	also	give	tangents	for	grades,	another	unit	for	angle.
There	are	100	grades	in	a	right	angle;	this	book	will	not	use	grades.

Your	calculator	will	also	reverse	this	process	of	finding	the	tangent	of
an	angle.	If	you	need	to	know	which	angle	has	a	tangent	of	0.9,	you
look	up	the	inverse	tangent.	This	is	often	written	as	tan-1	0.9,	or
sometimes	as	arctan	0.9.	Check	that	tan−1	0.9	=	41.987…°.	If	it	does
not,	consult	your	calculator	handbook.

In	the	work	that	follows,	the	degree	sign	will	always	be	included,	but
you	might	wish	to	leave	it	out	in	your	work,	provided	there	is	no
ambiguity.	Thus	you	would	write	tan	45°	=	1	and	tan	60°	=	1.732….

Exercise	1.1

In	questions	1	to	6,	use	your	calculator	to	find	the	values	of	the	tangents	of	the
angles.	Give	your	answers	correct	to	three	decimal	places.

		1	tan	20°
		2	tan	30°
		3	tan	89.99°
		4	tan	40.43°
		5	tan	62°
		6	tan	0.5°

In	questions	7	to	12,	use	your	calculator	to	find	the	angles	with	the	following
tangents.	Give	your	answer	correct	to	the	nearest	one	hundredth	of	a	degree.

		7	0.342
		8	2



		9	6.123
10	0.0001
11	1

1.5		Notation	for	angles	and	sides
Using	notation	such	as	ABC	for	an	angle	is	cumbersome.	It	is	often
more	convenient	to	refer	to	an	angle	by	using	only	the	middle	letter	of
the	three	that	define	it.	Thus,	if	there	is	no	ambiguity,	tan	B	will	be
used	in	preference	for	tan	ABC.

Single	Greek	letters	such	as	α	(alpha),	β	(beta),	θ	(theta)	and	Φ	(phi)
are	often	used	for	angles.

Similarly,	it	is	usually	easier	to	use	a	single	letter	such	as	h	to
represent	a	distance	along	a	line,	rather	than	to	give	the	beginning	and
end	of	the	line	as	in	the	form	AB.

1.6		Using	tangents
Here	are	some	examples	which	illustrate	the	use	of	tangents	and	the
technique	of	solving	problems	with	them.

Example	1.1

A	surveyor	who	is	standing	at	a	point	168	m	horizontally	distant	from	the	foot	of
a	tall	tower	measures	the	angle	of	elevation	of	the	top	of	the	tower	as	38.25°.
Find	the	height	above	the	ground	of	the	top	of	the	tower.

You	should	always	draw	a	figure.	In	Figure	1.5,	P	is	the	top	of	the	tower	and	Q
is	the	bottom.	The	surveyor	is	standing	at	O	which	is	at	the	same	level	as	Q.	Let
the	height	of	the	tower	be	h	metres.



Figure	1.5

Then	angle	POQ	is	the	angle	of	elevation	and	equals	38.25°.

The	height	of	the	tower	is	132	m,	correct	to	three	significant	figures.	

In	practice,	if	you	are	using	a	calculator,	there	is	no	need	to	write
down	all	the	steps	given	above.	You	should	write	down	enough	so	that
you	can	follow	your	own	working,	but	you	do	not	need	to	write	down
the	value	of	the	tangent	as	an	intermediate	step.	It	is	entirely	enough,
and	actually	better	practice,	to	write	the	calculation	above	as

However,	in	this	chapter	and	the	next,	the	extra	line	will	be	inserted	as
a	help	to	the	reader.

Example	1.2

A	person	who	is	168	cm	tall	had	a	shadow	that	was	154	cm	long.	Find	the	angle
of	elevation	of	the	sun.



In	Figure	1.6	let	PQ	be	the	person	and	OQ	be	the	shadow.	Then	PO	is	the	sun’s
ray	and	θ	is	the	angle	of	elevation	of	the	sun.

Figure	1.6

Therefore	the	angle	of	elevation	of	the	sun	is	approximately	47.49°.	

Note	once	again	that	you	can	use	the	calculator	and	leave	out	a
number	of	steps,	provided	that	you	give	enough	explanation	to	show
how	you	obtain	your	result.	Thus	you	could	write

Example	1.3

Figure	1.7	represents	a	cross-section	of	a	symmetrical	roof	in	which	AB	is	the
span,	and	OP	the	rise.	P	is	the	mid-point	of	AB.

The	rise	of	the	roof	is	7	m	and	its	angle	of	slope	is	32°.	Find	the	roof	span.



Figure	1.7

As	the	roof	is	symmetrical,	OAB	is	an	isosceles	triangle,	so	OP	is	perpendicular
to	AB.	Call	the	length	AP	w	metres.

The	roof	span	is	2w	metres,	that	is	approximately	22.4	m.	

Exercise	1.2

1		The	angle	of	elevation	of	the	sun	is	48.4°.	Find	the	height	of	a	flag	staff	whose
shadow	is	7.42	m	long.

2		A	boat	leaving	a	harbour	travels	4	miles	east	and	5	miles	north.	Find	the
bearing	of	the	boat	from	the	harbour.

3		A	boat	that	is	on	a	bearing	of	038°	from	a	harbour	is	6	miles	north	of	the
harbour.	How	far	east	is	the	boat	from	the	harbour?

4		A	ladder	resting	against	a	wall	makes	an	angle	of	69°	with	the	ground.	The
foot	of	the	ladder	is	7.5	m	from	the	wall.	Find	the	height	of	the	top	of	the
ladder.

5		From	the	top	window	of	a	house	that	is	1.5	km	away	from	a	tower,	it	is
observed	that	the	angle	of	elevation	of	the	top	of	the	tower	is	3.6°	and	the
angle	of	depression	of	the	bottom	is	1.2°.	Find	the	height	of	the	tower	in



metres.

6		From	the	top	of	a	cliff	32	m	high,	it	is	noted	that	the	angles	of	depression	of
two	boats	lying	in	the	line	due	east	of	the	cliff	are	21°	and	17°.	How	far	are
the	boats	apart?

7		Two	adjacent	sides	of	a	rectangle	are	15.8	cm	and	11.9	cm.	Find	the	angles
that	a	diagonal	of	the	rectangle	makes	with	the	sides.

8		P	and	Q	are	two	points	directly	opposite	to	one	another	on	the	banks	of	a
river.	A	distance	of	80	m	is	measured	along	one	bank	at	right	angles	to	PQ.
From	the	end	of	this	line,	the	angle	subtended	by	PQ	is	61°.	Find	the	width	of
the	river.

9		A	ladder	that	is	leaning	against	a	wall	makes	an	angle	of	70°	with	the	ground
and	reaches	5	m	up	the	wall.	The	foot	of	the	ladder	is	then	moved	50	cm
closer	to	the	wall.	Find	the	new	angle	that	the	ladder	makes	with	the	ground.

1.7		Opposite	and	adjacent	sides
Sometimes	the	triangle	with	which	you	have	to	work	is	not
conveniently	situated	on	the	page.	Figure	1.8a	shows	an	example	of
this.

In	this	case,	there	is	no	convenient	pair	of	axes	involved.	However,
you	could	rotate	the	figure,	either	actually	or	in	your	imagination,	to
obtain	Figure	1.8b.



You	can	now	see	that	 ,	and	you	can	calculate	β,	but	how
could	you	see	that	 	easily	from	the	diagram	in	Figure
1.8a,	without	going	through	the	process	of	getting	to	Figure	1.8b?

When	you	are	using	a	right-angled	triangle	you	will	always	be
interested	in	one	of	the	angles	other	than	the	right	angle.	For	the
moment,	call	this	angle	the	‘angle	of	focus’.	One	of	the	sides	will	be
opposite	this	angle;	call	this	side	the	opposite.	One	of	the	other	sides
will	join	the	angle	in	which	you	are	interested;	call	this	side	the
adjacent.

This	works	for	all	right-angled	triangles.	In	the	two	cases	in	Figures
1.8a	and	1.8b,	the	opposite	and	adjacent	sides	are	labelled	in	Figures
1.9a	and	1.9b.

As	you	can	see,	in	both	cases

Many	people	find	this	method	the	most	convenient	when	using	the
tangent.



Nugget

The	other	side	of	the	right-angled	triangle,	the	longest	side,	is	called	the
hypotenuse.	The	hypotenuse	will	feature	in	Chapter	2.	It	can	be	confusing	to
determine	which	side	is	the	opposite	and	which	the	adjacent.	Remember	adjacent
means	‘next	to’	–	so	the	adjacent	is	the	side	which	is	next	to	the	angle	of	focus.
The	angle	of	focus	is	between	two	sides:	the	adjacent	and	the	longest	side
(hypotenuse).

Example	1.4

In	a	triangle	ABC,	angle	B	=	90°,	AB	=	5	cm	and	BC	=	7	cm.	Find	the	size	of
angle	A.

Draw	a	diagram	(Figure	1.10).

Figure	1.10

In	triangle	ABC,	focus	on	angle	A.	The	opposite	is	7	cm	and	the	adjacent	is	5	cm.

Note	that	in	this	case	you	could	find	angle	C	first	using	 ,	and
then	use	the	fact	that	the	sum	of	the	angles	of	triangle	ABC	is	180°	to
find	angle	A.

Example	1.5



Find	the	length	a	in	Figure	1.11.

Figure	1.11

Focus	on	the	angle	24°.	The	opposite	side	is	a	and	the	adjacent	side	is	6	cm.

Example	1.6

Find	the	length	x	cm	in	Figure	1.12.

Figure	1.12

Focus	on	the	angle	52°.	The	opposite	side	is	13.3	cm	and	the	adjacent
side	is	x	cm.



Nugget

You	may	find	it	helps	to	rotate	the	page	so	that	the	triangle	looks	like	 	or	 .

Exercise	1.3

In	qustions	1	to	10,	find	the	side	or	angle	indicated	by	the	letter.

		

		

		

		

		

		

		



		

		

Key	ideas

•		Angles	are	normally	denoted	by	the	Greek	letters:	α	(alpha),	β
(beta),	θ	(theta)	and	Φ	(phi).

•		The	sides	of	a	right-angled	triangle	can	be	labelled	like	this:

				The	hypotenuse	is	the	longest	side.
				The	angle	of	focus,	θ,	is	the	angle	between	the	adjacent	and	the
hypotenuse.

•		The	ratio	 	is	called	the	tangent	of	the	angle	θ.
				Tangent	is	abbreviated	to	tan.



•		To	find	the	angle	which	has	a	tangent	of,	say,	0.5,	you	need	to	use
the	inverse	tangent.	Find	tan−1	0.5	or	arctan	0.5	using	your
calculator	and	check	that	you	get	an	answer	of	26.565…°	so	tan
26.565…°	=	0.5.

•		You	can	rearrange	the	formula	for	the	tangent	ratio	in	the	following
ways:

				

•		tan	45°	=	1	and	tan	90°	is	undefined.



2
Sine	and	cosine

In	this	chapter	you	will	learn:

•		what	the	sine	and	cosine	are
•		how	to	use	the	sine	and	cosine	to	find	lengths	and	angles	in	right-
angled	triangles

•		how	to	solve	multistage	problems	using	sines,	cosines	and	tangents.



2.1		Introduction
In	Figure	2.1	a	perpendicular	is	drawn	from	A	to	OB.

You	saw	on	page	4	that	the	ratio	

Now	consider	the	ratios	of	each	of	the	lines	AB	and	OB	to	the
hypotenuse	OA	of	triangle	OAB.

Figure	2.1

Just	as	for	a	fixed	angle	θ°	the	ratio	 	is	constant	(and	equal	to	tan	θ
°),	wherever	A	is,	the	ratio	 ,	that	is	 	is	constant.

This	ratio	is	called	the	sine	of	the	angle	θ°	and	is	written	sin	θ°.

Figure	2.2

Similarly,	the	ratio	 ,	that	is	 ,	is	also	constant	for	the	angle	θ°.

This	ratio	is	called	the	cosine	of	the	angle	θ°	and	is	written	cos	θ°.



2.2		Definition	of	sine	and	cosine
In	Section	2.1	there	is	a	short	discussion	introducing	the	sine	and
cosine	ratios.	In	this	section	there	is	a	more	formal	definition.

Draw	a	circle	with	radius	1	unit,	and	centre	at	the	origin	O.	Draw	the
radius	OP	at	an	angle	θ°	to	the	x-axis	in	an	anticlockwise	direction
(see	Figure	2.3).

Figure	2.3

Then	let	P	have	coordinates	(x,	y).

Then	sin	θ°	=	y	and	cos	θ°	=	x	are	the	definitions	of	sine	and	cosine
which	will	be	used	in	the	remainder	of	the	book.

Note	the	arrow	labelling	the	angle	θ°	in	Figure	2.3;	this	is	to
emphasize	that	angles	are	measured	positively	in	the	anticlockwise
direction.

Note	also	two	other	properties	of	sin	θ°	and	cos	θ°.

•		In	the	triangle	OPN,	angle	OPN	=	(90	−	θ)°,	and



				

•		Using	Pythagoras’s	theorem	on	triangle	OPN	gives	x2	+	y2	=	1.

				Therefore	sin2	θ°	+	cos2	θ°	=	1,

				where	sin2	θ°	means	(sin	θ°)2	and	means	cos2	θ°	means	(cos	θ°)2.

The	equation	sin2	θ°	+	cos2	θ°	=	1	is	often	called	the	Pythagorean
identity.

Finding	the	values	of	the	sine	and	cosine	of	angles	is	similar	to
finding	the	tangent	of	an	angle.	Use	your	calculator	in	the	way	that
you	would	expect.	You	can	use	the	functions	sin−1	and	cos−1	to	find
the	inverse	sine	and	cosine	in	the	same	way	that	you	used	tan−1	to	find
the	inverse	tangent.

Nugget

sin(90	−	θ)°	=	cos	θ°,	cos(90	−	θ°)	=	sin	θ°	and	cos2	θ°	+	sin2	θ°	=	1	are	identities
which	means	they	are	true	for	any	value	of	θ.	For	example,	sin(90	−	30)°	=	cos
30°	and	cos(90	−	40)°	=	sin	40°.	Also	cos2	60°	+	sin2	60°	=	1.	Use	your
calculator	to	check	these	and	try	some	other	values	of	θ	as	well.

2.3		Using	the	sine	and	cosine
In	the	examples	which	follow	there	is	a	consistent	strategy	for	starting
the	problem.

•		Look	at	the	angle	(other	than	the	right	angle)	involved	in	the
problem.



•		Identify	the	sides,	adjacent,	opposite	and	hypotenuse,	involved	in
the	problem.

•		Decide	which	trigonometric	ratio	is	determined	by	the	two	sides.

•		Make	an	equation	which	starts	with	the	trigonometric	ratio	for	the
angle	concerned,	and	finishes	with	the	division	of	two	lengths.

•		Solve	the	equation	to	find	what	you	need.

Here	are	some	examples	which	use	this	strategy.

Nugget

You	can	use	the	word	‘sohcahtoa’	to	help	you	remember	which	ratio	you	need.
The	middle	letter	of	soh,	cah	and	toa	is	on	the	numerator	(top)	of	each	ratio.	So
soh	gives	 ,	cah	gives	 ,	and	toa	gives	
For	example,	if	you	know	the	adjacent	and	the	hypotenuse	then	you	have	cah	so
use	

Example	2.1

Find	the	length	marked	x	cm	in	the	right-angled	triangle	in	Figure	2.4.

Figure	2.4

The	angle	concerned	is	51°;	relative	to	the	angle	of	51°,	the	side	2.5	cm	is	the
adjacent,	and	the	side	marked	x	cm	is	the	hypotenuse.	The	ratio	concerned	is	the
cosine.



Then	solve	this	equation	for	x.

The	length	of	the	side	is	3.97	cm	approximately.	

Example	2.2

The	length	of	each	leg	of	a	step	ladder	is	2.5	m.	When	the	legs	are	opened	out,
the	distance	between	their	feet	is	2	m.	Find	the	angle	between	the	legs.

In	Figure	2.5,	let	AB	and	AC	be	the	legs	of	the	ladder.	As	there	is	no	right	angle,
you	have	to	make	one	by	dropping	the	perpendicular	AO	from	A	to	the	base	BC.
The	triangle	ABC	is	isosceles,	so	AO	bisects	the	angle	BAC	and	the	base	BC.

Figure	2.5

You	need	to	find	angle	BAC.	Call	it	2α°,	so	angle	BAO	=	α°.

The	sides	of	length	1	m	and	2.5	m	are	the	opposite	and	the	hypotenuse	for	the
angle	α°,	so	you	need	the	sine	ratio.

Therefore	the	angle	between	the	legs	is	47.16°	approximately.	



Example	2.3

A	30	m	ladder	on	a	fire	engine	has	to	reach	a	window	26	m	from	the	ground	that
is	horizontal	and	level.	What	angle,	to	the	nearest	degree,	must	it	make	with	the
ground	and	how	far	from	the	building	must	it	be	placed?

Let	the	ladder	be	AP	(Figure	2.6),	let	θ°	be	the	angle	that	the	ladder	makes	with
the	ground	and	let	d	metres	be	the	distance	of	the	foot	of	the	ladder	from	the
window.

Figure	2.6

As	the	sides	26	m	and	30	m	are	the	opposite	and	the	hypotenuse	for	the	angle	θ°,
you	need	the	sine	ratio.

The	ladder	is	placed	at	an	angle	of	60°	to	the	ground.

To	find	the	distance	d,	it	is	best	to	use	Pythagoras’s	theorem.

The	foot	of	the	ladder	is	14.97	m	from	the	wall.	

Example	2.4

The	height	of	a	cone	is	18	cm,	and	the	angle	at	the	vertex	is	88°.



Find	the	slant	height.

Figure	2.7

In	Figure	2.7,	let	l	cm	be	the	slant	height	of	the	cone.	Since	the	perpendicular	to
the	base	bisects	the	vertical	angle	of	the	cone,	each	part	is	44°.

The	sides	18	cm	and	l	cm	are	the	adjacent	and	hypotenuse	for	the	angle	44°,	so
the	ratio	concerned	is	the	cosine.

The	slant	height	is	approximately	25.0	cm.	

Exercise	2.1

In	questions	1	to	10,	find	the	side	or	angle	indicated	by	the	letter.

		

		

		



		

		

		

		

		

		

	11			A	circle	of	radius	45	mm	has	a	chord	of	length	60	mm.	Find	the	sine	and	the
cosine	of	the	angle	at	the	centre	of	the	circle	subtended	by	this	chord.

	12			In	a	circle	with	radius	4	cm,	a	chord	is	drawn	subtending	an	angle	of	80°	at
the	centre.	Find	the	length	of	this	chord	and	its	distance	from	the	centre.

	13			The	sides	of	a	triangle	are	135	mm,	180	mm	and	225	mm.	Prove	that	the
triangle	is	right-angled,	and	find	its	angles.



	14			In	a	right-angled	triangle,	the	hypotenuse	has	length	7.4	cm,	and	one	of	the
other	sides	has	length	4.6	cm.	Find	the	smallest	angle	of	the	triangle.

	15			A	boat	travels	a	distance	of	14.2	km	on	a	bearing	of	041°.	How	far	east	has
it	travelled?

	16			The	height	of	an	isosceles	triangle	is	3.8	cm,	and	the	equal	angles	are	52°.
Find	the	length	of	the	equal	sides.

	17			A	chord	of	a	circle	is	3	m	long,	and	it	subtends	an	angle	of	63°	at	the	centre
of	the	circle.	Find	the	radius	of	the	circle.

	18			A	person	is	walking	up	a	road	angled	at	8°	to	the	horizontal.	How	far	must
the	person	walk	along	the	road	to	rise	a	height	of	1	km?	;

	19			In	a	right-angled	triangle,	the	sides	creating	the	right	angle	are	4.6	m	and
5.8	m.	Find	the	angles	and	the	length	of	the	hypotenuse.

2.4		Trigonometric	ratios	of	45°,	30°	and	60°
You	can	calculate	the	trigonometric	ratios	exactly	for	some	simple
angles.

SINE,	COSINE	AND	TANGENT	OF	45°
Figure	2.8	shows	an	isosceles	right-angled	triangle	whose	equal	sides
are	each	1	unit.

Figure	2.8

Using	Pythagoras’s	theorem,	the	hypotenuse	has	length	 	units.



Therefore	the	trigonometric	ratios	for	45°	are	given	by

You	can,	if	you	wish,	use	the	equivalent	values

These	values	are	obtained	from	their	previous	values	by	noting	that

SINE,	COSINE	AND	TANGENT	OF	30°	AND	60°
Figure	2.9	shows	an	equilateral	triangle	of	side	2	units.

Figure	2.9

The	perpendicular	from	the	vertex	bisects	the	base,	dividing	the
original	triangle	into	two	triangles	with	angles	of	30°,	60°	and	90°	and
sides	of	length	1	unit,	2	units	and,	using	Pythagoras’s	theorem,	
units.

Therefore	the	trigonometric	ratios	for	30°	are	given	by

The	same	ratios	for	60°	are	given	by



The	same	ratios	for	60°	are	given	by

It	is	useful	either	to	remember	these	results,	or	to	be	able	to	get	them
quickly.

Nugget

Using	these	values	enables	you	to	work	out	exact	values	when	solving	problems.

2.5		Using	the	calculator	accurately
When	you	use	a	calculator	to	solve	an	equation	such	as	 ,	it	is
important	to	be	able	to	get	as	accurate	an	answer	as	you	can.

WRONG	METHOD

CORRECT	METHOD

What	has	happened?	The	problem	is	that	in	the	wrong	method	the
corrected	answer,	0.622,	a	three-significant-figure	approximation,	has
been	used	in	the	second	part	of	the	calculation	to	find	the	angle,	and
has	introduced	an	error.



You	can	avoid	the	error	by	not	writing	down	the	three-significant-
figure	approximation	and	by	using	the	calculator	in	the	following	way.

In	this	version,	the	answer	to	 	was	used	directly	to	calculate	the
angle,	and	therefore	all	the	figures	were	preserved	in	the	process.

Sometimes	it	may	be	necessary	to	use	a	calculator	memory	to	store	an
intermediate	answer	to	as	many	figures	as	you	need.

It	is	not	necessary	in	this	case,	but	you	could	calculate	 	and	put	the
result	into	memory	A.	Then	you	can	calculate	sin−1	A	to	get	an
accurate	answer.

You	need	to	be	aware	of	this	point	for	the	multistage	problems	in
Section	2.8,	and	especially	so	in	Chapter	6.

2.6		Slope	and	gradient
Figure	2.10	represents	a	side	view	of	the	section	of	a	rising	path	AC.
AB	is	horizontal	and	BC	is	the	vertical	rise.

Figure	2.10

Let	the	angle	between	the	path	and	the	horizontal	be	θ°.

Then	θ°	is	called	the	angle	of	slope	or	simply	the	slope	of	the	path.
The	ratio	tan	θ°	is	called	the	gradient	of	the	path.



Sometimes,	especially	by	the	side	of	railways,	the	gradient	is	given	in
the	form	1	in	55.	This	means

When	the	angle	of	slope	θ°	is	very	small,	as	in	the	case	of	a	railway
and	most	roads,	it	makes	little	practical	difference	if	you	take	sin	θ°
instead	of	tan	θ°	as	the	gradient.

Also,	in	practice	it	is	easier	to	measure	sin	θ°	(by	measuring	BC	and
AC),	and	the	difference	between	AC	and	AB	is	relatively	small
provided	that	θ°	is	small.

You	can	use	your	calculator	to	see	just	how	small	the	difference	is
between	sines	and	tangents	for	small	angles.

2.7		Projections
In	Figure	2.11,	let	l	be	a	straight	line,	and	let	AB	be	a	straight	line
segment	which	makes	an	angle	θ°	with	l.

Figure	2.11

Perpendiculars	are	drawn	from	A	and	B	to	l,	meeting	l	at	E	and	F.
Then	EF	is	called	the	projection	of	AB	on	l.

You	can	see	from	Figure	2.11	that	the	lengths	AC	and	EF	are	equal.



Exercise	2.2

This	is	a	miscellaneous	exercise	involving	sines,	cosines	and	tangents.

In	questions	1	to	10,	find	the	marked	angle	or	side.

		

		

		

		

		

		

		



		

		

	

	11			In	a	right-angled	triangle	the	two	sides	creating	the	right	angle	have	lengths
of	2.34	m	and	1.64	m.	Find	the	smallest	angle	and	the	length	of	the
hypotenuse.

	12			In	the	triangle	ABC,	C	is	a	right	angle,	AC	is	122	cm	and	AB	is	175	cm.
Calculate	angle	B.

	13			In	triangle	ABC,	angle	C	=	90°,	and	A	=	37.35°	and	AB	=	91.4	mm.	Find	the
lengths	of	BC	and	CA.

	14			ABC	is	a	triangle.	Angle	C	is	a	right	angle,	AC	is	21.32	m	and	BC	is	12.56
m.	Find	the	angles	A	and	B.

	15			In	a	triangle	ABC,	AD	is	the	perpendicular	from	A	to	BC.	The	lengths	of	AB
and	BC	are	3.25	cm	and	4.68	cm	and	angle	B	is	55°.	Find	the	lengths	of	AD,
BD	and	AC.

	16			ABC	is	a	triangle,	right-angled	at	C.	The	lengths	of	BC	and	AB	are	378	mm
and	543	mm.	Find	angle	A	and	the	length	of	CA.

	17			A	ladder	20	m	long	rests	against	a	vertical	wall.	Find	the	inclination	of	the
ladder	to	the	horizontal	when	the	foot	of	the	ladder	is	7	m	from	the	wall.



	18			A	ship	starting	from	O	travels	18	kmh−1	in	the	direction	35°	north	of	east.
How	far	will	it	be	north	and	east	of	O	after	an	hour?

	19			A	pendulum	of	length	20	cm	swings	on	either	side	of	the	vertical	through	an
angle	of	15°	on	each	side.	Through	what	height	does	the	bob	rise?

	20			The	side	of	an	equilateral	triangle	is	x	metres.	Find	in	terms	of	x	the	altitude
of	the	triangle.	Hence	find	sin	60°	and	sin	30°.

	21			A	straight	line	3.5	cm	long	makes	an	angle	of	42°	with	the	x-axis.	Find	the
lengths	of	its	projections	on	the	x-	and	y-axes.

	22			When	you	walk	1.5	km	up	the	line	of	greatest	slope	of	a	hill	you	rise	94	m.
Find	the	gradient	of	the	hill.

	23			A	ship	starts	from	a	given	point	and	sails	15.5	km	on	a	bearing	of	319°.
How	far	has	it	gone	west	and	north	respectively?

	24			A	point	P	is	14.5	km	north	of	Q	and	Q	is	9	km	west	of	R.	Find	the	bearing
of	P	from	R	and	its	distance	from	R.

2.8		Multistage	problems
This	section	gives	examples	of	multistage	problems	where	you	need
to	think	out	a	strategy	before	you	start.	See	also	the	advice	given	in
Section	2.5	about	the	accurate	use	of	a	calculator.

Nugget

Always	draw	a	diagram	when	solving	problems.	Look	for	any	symmetry	or	ways
to	form	right-angled	triangles.

Example	2.5

ABCD	is	a	kite	in	which	AB	=	AD	=	5	cm	and	BC	=	CD	=	7	cm.	Angle	DAB	=



80°.	Calculate	angle	BCD.

Figure	2.12

The	left-hand	diagram	in	Figure	2.12	shows	the	information.	In	the	right-hand
diagram,	the	diagonals,	which	cut	at	right	angles	at	O,	have	been	drawn,	and	the
line	AC,	which	is	an	axis	of	symmetry,	bisects	the	kite.

Let	DO	be	x	cm,	and	let	angle	DCA	=	θ°.

Angle	BCD	=	2θ°	=	54.66°,	correct	to	two	decimal	places.	

Example	2.6

Figure	2.13	represents	part	of	a	symmetrical	roof	frame.	PA	=	28	m,	AB	=	6	m
and	angle	OPA	=	21°.	Find	the	lengths	of	OP	and	OA.



Figure	2.13

Let	OP	=	l	m,	PB	=	x	m	and	OA	=	h	m.

To	find	l	you	need	to	find	angle	OPB;	to	do	this	you	need	first	to	find	angle	APB.
Let	angle	APB=	α°.

Next	you	must	find	the	length	x.

To	find	x,	use	Pythagoras’s	theorem	in	triangle	APB.

To	find	h,	you	need	to	use	h	=	OB	−	AB	=	OB	−	6.



Therefore	OP	=	32.75	m	and	OA	=	12.02	m	approximately.	

Exercise	2.3

			1			ABCD	is	a	kite	in	which	AB	=	AD	=	5	cm,	BC	=	CD	=	7	cm	and	angle	DAB
=	80°.	Calculate	the	length	of	the	diagonal	AC.

			2			In	the	diagram,	find	the	length	of	AC.

			3			In	the	diagram,	find	the	angle	θ.

			4			PQRS	is	a	rectangle.	A	semicircle	drawn	with	PQ	as	diameter	cuts	RS	at	A
and	B.	The	length	PQ	is	10	cm,	and	angle	BQP	is	30°.	Calculate	the	length
PS.

			5			A	ship	sails	5	km	on	a	bearing	of	45°	and	then	6	km	on	a	bearing	of	60°.
Find	its	distance	and	bearing	from	its	starting	point.

			6			The	lengths	AB	and	AC	of	a	triangle	ABC	are	5	cm	and	6	cm	respectively.
The	length	of	the	perpendicular	from	A	to	BC	is	4	cm.	Calculate	the	angle
BAC.

			7			In	a	triangle	ABC,	the	angles	at	A	and	C	are	20°	and	30°	respectively.	The
length	of	the	perpendicular	from	B	to	AC	is	10	cm.	Calculate	the	length	of
AC.



			8			In	the	isosceles	triangle	ABC,	the	equal	angles	at	B	and	C	are	each	50°.	The
sides	of	the	triangle	each	touch	a	circle	of	radius	2	cm.

							Calculate	the	length	BC.

			9			A	ladder	of	length	5	m	is	leaning	against	a	vertical	wall	at	an	angle	of	60°	to
the	horizontal.	The	foot	of	the	ladder	moves	in	by	50	cm.	By	how	much
does	the	top	of	the	ladder	move	up	the	wall?

	10			PQRS	is	a	trapezium,	with	PQ	parallel	to	RS.	The	angles	at	P	and	Q	are
120°	and	130°	respectively.	The	length	PQ	is	6.23	cm	and	the	distance
between	the	parallel	sides	is	4.92	cm.	Calculate	the	length	of	RS.

Key	ideas

•		cos	θ	is	short	for	the	cosine	of	the	angle	θ.

•		sin	θ	is	short	for	the	sine	of	the	angle	θ.

•		

				

•		You	can	use	the	word	‘sohcahtoa’	to	help	you	remember	the	trigonometric
ratios.



•		sin(90	−	θ)°	=	cos	θ°
cos(90	−	θ)°	=	sin	θ°

•		The	Pythagorean	identity	is	cos2	θ	+sin2	θ	=	1.

			This	identity	is	true	for	all	angles	measured	in	either	degrees	or	radians	(see
Chapter	7).

•

		

•		When	a	path	is	inclined	at	angle	of	θ	to	the	horizontal,	the	gradient	is	given	by
tan	θ.	When	θ	is	small	then	the	gradient	is	approximately	equal	to	sin	θ.



3
In	three	dimensions

In	this	chapter	you	will	learn:

•		the	importance	of	good	diagrams	in	solving	three-dimensional
problems

•		how	to	break	down	three-dimensional	problems	into	two-
dimensional	problems

•		how	to	solve	problems	by	using	pyramids,	boxes	and	wedges.



3.1		Introduction
Working	in	three	dimensions	introduces	no	new	trigonometric	ideas,
but	you	do	need	to	be	able	to	think	in	three	dimensions	and	to	be	able
to	visualize	the	problem	clearly.	To	do	this,	it	is	a	great	help	to	be	able
to	draw	a	good	figure.

You	can	solve	all	the	problems	in	this	chapter	by	picking	out	right-
angled	triangles	from	a	three-dimensional	figure,	drawn,	of	course,	in
two	dimensions.

This	chapter	will	consist	mainly	of	examples,	which	will	include
certain	types	of	diagram	which	you	should	be	able	to	draw	quickly
and	easily.

3.2		Pyramid	problems
The	first	type	of	diagram	is	the	pyramid	diagram.	This	diagram	will
work	for	all	problems	that	involve	pyramids	with	a	square	base.

Example	3.1

ABCD	is	the	square	base	of	side	5	cm	of	a	pyramid	whose	vertex	V	is	6	cm
directly	above	the	centre	O	of	the	square.	Calculate	the	angle	AVC.

The	diagram	is	drawn	in	Figure	3.1.



Figure	3.1

There	are	a	number	of	features	you	should	notice	about	this	diagram:

				•		The	diagram	is	large	enough	to	avoid	points	being	‘on	top	of	one	another’.

				•		The	vertex	V	should	be	above	the	centre	of	the	base.	It	is	best	to	draw	the
base	first,	draw	the	diagonals	intersecting	at	O,	and	then	put	V	vertically
above	O,	siting	V	so	that	the	edge	VC	of	the	pyramid	does	not	appear	to	pass
through	B.

				•		Note	that	the	dimensions	have	not	been	put	on	the	measurements	where,	to
do	so,	would	add	clutter.

				•		To	solve	the	problem,	you	must	develop	a	strategy	that	involves	creating	or
recognizing	right-angled	triangles.

				•		The	angle	AVC	is	the	vertical	angle	of	the	isosceles	triangle	AVC	that	is
bisected	by	VO.	If	you	can	find	the	length	AO,	you	can	find	angle	AVC.	You
can	find	AO	by	using	the	fact	that	ABCD	is	a	square	(see	Figure	3.2).



Figure	3.2

Find	AC	by	using	Pythagoras’s	theorem.

Let	angle	AVO	=	α°.

If	you	find	that	you	can	solve	the	problem	without	drawing	the	subsidiary
diagrams	in	Figure	3.2,	then	do	so.	But	many	people	find	that	it	helps	to	see
what	is	happening.

All	square-based	pyramid	problems	can	be	solved	using	this	diagram.

Example	3.2

PQRSV	is	a	pyramid	with	vertex	V,	which	is	situated	symmetrically	above	the
mid-point	O	of	the	rectangular	base	PQRS.	The	lengths	of	PS	and	RS	are	6	cm
and	5	cm,	and	the	slant	height	VP	is	8	cm.	Find	the	angle	that	the	edge	VP	makes
with	the	ground.

Figure	3.3	shows	the	situation.



Figure	3.3

Let	the	required	angle	VPO	be	α°.	Then	you	can	find	α°	from	triangle	VPO	if
you	can	find	either	PO	or	VO.	You	can	find	PO	from	the	rectangle	PQRS.

Figure	3.4

As	 ,	and	using	Pythagoras’s	theorem	gives

Therefore,	the	edge	VP	makes	an	angle	of	approximately	60.78°	with	the
horizontal.	

3.3		Box	problems
The	second	type	of	problem	involves	drawing	a	box.

Figure	3.5



Nugget

The	usual	way	to	draw	the	box	is	to	draw	two	identical	rectangles,	one	‘behind’
the	other,	and	then	to	join	up	the	corners	appropriately.	It	can	be	useful	to	make
some	of	the	lines	dotted	to	make	it	clear	which	face	is	in	front.

Example	3.3

A	room	has	length	4	m,	width	3	m	and	height	2	m.	Find	the	angle	that	a	diagonal
of	the	room	makes	with	the	floor.

Figure	3.6

Let	the	diagonal	of	the	room	be	AR,	and	let	AC	be	the	diagonal	of	the	floor.	Let
the	required	angle	be	α°.

You	can	use	Pythagoras’s	theorem	to	find	the	diagonal	AC	of	the	floor	and	so
find	the	angle	α°.

Therefore,	the	diagonal	makes	an	angle	of	approximately	21.80°	with	the	floor.	

Sometimes	the	problem	is	a	box	problem,	but	may	not	sound	like	one.



Example	3.4

The	top,	P,	of	a	pylon	standing	on	level	ground	subtends	an	angle	of	10°	at	a
point	S,	which	is	50	m	due	south,	and	5°	at	a	point	W,	lying	west	of	the	pylon.
Calculate	the	distance	SW	correct	to	the	nearest	metre.

Figure	3.7

This	figure	is	part	of	the	box	diagram	in	Figure	3.5,	with	some	lines	removed.	F
is	the	foot	of	the	pylon.

To	calculate	SW,	start	by	finding	the	height	of	the	pylon,	then	the	length	FW,	and
then	use	Pythagoras’s	theorem	to	find	SW.

so				SW	=	112	m,	correct	to	the	nearest	metre.	

3.4		Wedge	problems
The	third	type	of	problem	involves	drawing	a	wedge.	This	wedge	is



really	only	part	of	a	box,	so	you	could	think	of	a	wedge	problem	as	a
special	case	of	a	box	problem,	but	it	is	easier	to	think	of	it	in	a
separate	category.

Figure	3.8

Example	3.5

The	line	of	greatest	slope	of	a	flat	hillside	slopes	at	an	angle	of	20°	to	the
horizontal.	To	reduce	the	angle	of	climb,	a	walker	walks	on	a	path	on	the
hillside,	which	makes	an	angle	of	50°	with	the	line	of	greatest	slope.	At	what
angle	to	the	horizontal	does	the	walker	climb	on	this	path?

Figure	3.9

Let	AE	be	the	line	of	greatest	slope,	and	AC	be	the	path	of	the	walker.	The	angle
that	you	need	to	find	is	angle	BAC.	Call	this	angle	α°.	As	there	are	no	units	to	the
problem,	let	the	height	BC	be	1	unit.



To	find	α	you	need	to	find	another	length	(apart	from	BC)	in	triangle	BAC.	This
will	come	first	from	the	right-angled	triangle	DAE,	and	then	from	triangle	AEC,
shown	in	Figure	3.10.	Note	that	angle	DAE	=	20°	as	AE	is	a	line	of	greatest
slope.

Figure	3.10

The	walker	walks	at	12.7°	approximately	to	the	line	of	greatest	slope.

You	may	find	it	easier	to	follow	if	you	evaluate	AE	and	AC	as	you	go
along,	but	it	is	better	practice	to	avoid	it	if	you	can.

Exercise	3.1

			1			A	pyramid	has	its	vertex	directly	above	the	centre	of	its	square	base.	The
edges	of	the	base	are	each	8	cm,	and	the	vertical	height	is	10	cm.	Find	the
angle	between	the	slant	face	and	the	base,	and	the	angle	between	a	slant
edge	and	the	base.

			2			A	symmetrical	pyramid	stands	on	a	square	base	of	side	8	cm.	The	slant



height	of	the	pyramid	is	20	cm.	Find	the	angle	between	the	slant	edge	and
the	base,	and	the	angle	between	a	slant	face	and	the	base.

			3			A	square	board	is	suspended	horizontally	by	four	equal	ropes	attached	to	a
point	P	directly	above	the	centre	of	the	board.	Each	rope	has	length	15	m
and	is	inclined	at	an	angle	of	10°	to	the	vertical.	Calculate	the	length	of	the
side	of	the	square	board.

			4			A	pyramid	has	its	vertex	directly	above	the	centre	of	its	square	base.	The
edges	of	the	base	are	each	6	cm,	and	the	vertical	height	is	8	cm.	Find	the
angle	between	two	adjacent	slant	faces.

			5			Find	the	angle	that	a	main	diagonal	of	a	cube	makes	with	the	base.	(Assume
that	the	cube	has	sides	of	length	1	unit.)

			6			A	pylon	is	situated	at	a	corner	of	a	rectangular	field	with	dimensions	100	m
by	80	m.	The	angle	subtended	by	the	pylon	at	the	furthest	corner	of	the	field
is	10°.	Find	the	angles	subtended	by	the	pylon	at	the	other	two	corners	of
the	field.

			7			A	regular	tetrahedron	has	all	its	edges	8	cm	in	length.	Find	the	angles	that
an	edge	makes	with	the	base.

			8			All	the	faces	of	a	square-based	pyramid	of	side	6	cm	slope	at	an	angle	of
60°	to	the	horizontal.	Find	the	height	of	the	pyramid,	and	the	angle	between
a	sloping	edge	and	the	base.

			9			A	vertical	flag	pole	standing	on	horizontal	ground	has	six	ropes	attached	to
it	at	a	point	6	m	from	the	ground.	The	other	ends	of	the	ropes	are	attached
to	points	on	the	ground	that	lie	in	a	regular	hexagon	with	sides	4	m.	Find
the	angle	that	a	rope	makes	with	the	ground.

	10			The	diagram	shows	a	roof	structure.	PQRS	is	a	horizontal	rectangle.	The
faces	ABRQ,	ABSP,	APQ	and	BRS	all	make	an	angle	of	45°	with	the
horizontal.



Find	the	angle	made	by	the	sloping	edges	with	the	horizontal.

Key	ideas

•		To	solve	a	three-dimensional	problem,	you	need	to	pick	out	two-dimensional
right-angled	triangles.	Always	draw	a	diagram.

•		There	are	three	main	types	of	three-dimensional	problem:	pyramids,	boxes	and
wedges.

•		If	the	resulting	triangles	are	not	right-angled	then	look	out	for	any	symmetry
or	for	the	possibility	of	dividing	a	triangle	into	two	right-angled	triangles.

•		In	order	to	avoid	errors	never	round	until	you	reach	the	final	answer	–	always
store	any	intermediate	values	in	the	memory	of	your	calculator.



4
Angles	of	any	magnitude

In	this	chapter	you	will	learn:

•		how	to	extend	the	definitions	of	sine,	cosine	and	tangent	to	angles
greater	than	90°	and	less	than	0°

•		the	shape	of	the	graphs	of	sine,	cosine	and	tangent
•		the	meaning	of	the	terms	‘period’	and	‘periodic’.



4.1		Introduction
If,	either	by	accident	or	by	experimenting	with	your	calculator,	you
have	tried	to	find	sines,	cosines	and	tangents	of	angles	outside	the
range	from	0	to	90°,	you	will	have	found	that	your	calculator	gives
you	a	value.	But	what	does	this	value	mean,	and	how	is	it	used?	This
chapter	gives	some	answers	to	those	questions.

If	you	think	of	sine,	cosine	and	tangent	only	in	terms	of	ratios	of
‘opposite’,	‘adjacent’	and	‘hypotenuse’,	then	it	is	difficult	to	give
meanings	to	trigonometric	ratios	of	angles	outside	the	interval	0	to
180°	–	after	all,	angles	of	triangles	have	to	lie	within	this	interval.
However,	the	definition	of	tangent	given	in	Section	1.3	and	the
definition	of	sine	and	cosine	in	Section	2.2	both	extend	naturally	to
angles	of	any	magnitude.

It	is	convenient	to	start	with	the	sine	and	cosine.

4.2		Sine	and	cosine	for	any	angle
In	Section	2.2,	the	following	construction	was	given	as	the	basis	of	the
definition	of	sine	and	cosine.

Draw	a	circle	with	radius	1	unit,	and	centre	at	the	origin	O.	Draw	the
radius	OP	at	an	angle	θ°	to	the	x-axis	in	an	anticlockwise	direction
(see	Figure	4.1).	Let	P	have	coordinates	(x,	y).



Figure	4.1

Then	sin	θ°	=	y	and	cos	θ°	=	x	are	the	definitions	of	sine	and	cosine
for	any	size	of	the	angle	θ°.

The	arrow	labelling	the	angle	θ°	in	Figure	4.1	emphasizes	that	angles
are	measured	positively	in	the	anti-clockwise	direction,	and	negatively
in	the	clockwise	direction.

It	is	useful	to	divide	the	plane	into	four	quadrants,	called	1,	2,	3	and	4,
as	shown	in	Figure	4.2.

Figure	4.2

Then	for	any	given	angles	such	as	60°,	210°	and	−40°,	you	can
associate	a	quadrant,	namely,	the	quadrant	in	which	the	radius
corresponding	to	the	angle	lies.



Figure	4.3

In	Figure	4.3,	you	can	see	that	60°	is	in	quadrant	1,	and	is	called	a	first
quadrant	angle;	210°	is	a	third	quadrant	angle;	−40°	is	a	fourth
quadrant	angle.

You	can	have	angles	greater	than	360°.	For	example,	you	can	check
that	460°	is	a	second	quadrant	angle,	and	−460°	is	a	third	quadrant
angle.

The	definition	of	sin	θ°,	namely	sin	θ°	=	y,	shows	that	if	θ°	is	a	first	or
second	quadrant	angle,	then	the	y-coordinate	of	P	is	positive	so	sin	θ°
>	0;	if	θ°	is	a	third	or	fourth	quadrant	angle,	sin	θ°	<	0.

You	can	see	from	this	definition,	and	from	Figure	4.3,	that	sin	60°	>	0,
that	sin	210°	<	0	and	that	sin(−40°)	<	0;	you	can	easily	check	these
with	your	calculator.

Similarly,	the	definition	of	cos	θ°,	namely	cos	θ°	=	x,	shows	that	if	0°
is	a	first	or	fourth	quadrant	angle	then	the	x-coordinate	of	P	is	positive
so	cos	θ°	>	0;	if	θ°	is	a	second	or	third	quadrant	angle,	cos	θ°	<	0.

You	can	also	see	that	cos	60°	>	0,	that	cos	210°	<	0	and	that	cos(−40°)
>	0.	Again,	you	can	easily	check	these	with	your	calculator.

SINE	AND	COSINE	FOR	MULTIPLES	OF	90°
The	easiest	way	to	find	the	sine	and	cosine	of	angles	such	as	90°,	540°
and	−90°	is	to	return	to	the	definitions,	that	is	sin	θ°	=	y	and	cos	θ°	=	x
(see	Figure	4.4).



Figure	4.4

Then	you	see	from	the	left-hand	diagram	that	the	radius	for	90°	ends
at	(0,	1),	so	sin	90°	=	1	and	cos	90°	=	0.

Similarly,	the	radius	for	540°	ends	up	at	(−1,	0),	so	sin	540°	=	0	and
cos	540°	=	−1.

Finally,	the	radius	for	−90°	ends	up	at	(0,	−1),	so	sin(−90°)	=	−1	and
cos(−90°)	=	0.

Once	again,	you	can	check	these	results	with	your	calculator.

4.3		Graphs	of	sine	and	cosine	functions
As	the	sine	and	cosine	functions	are	defined	for	all	angles,	you	can
draw	their	graphs.

Figure	4.5	shows	the	graph	of	y	=	sin	θ°	drawn	for	values	of	θ°	from
−90	to	360.

Figure	4.5



You	can	see	that	the	graph	of	y	=	sin	θ°	has	the	form	of	a	wave.	As	it
repeats	itself	every	360°,	it	is	said	to	be	periodic,	with	period	360°.
As	you	would	expect	from	Section	4.2,	the	value	of	sin	θ°	is	positive
for	first	and	second	quadrant	angles	and	negative	for	third	and	fourth
quadrant	angles.

Nugget

So	sin	30°	=	sin(30°	+	360°)	=	sin(30°	+	2	×	360°)	and	so	on.

Also	sin	30°	=	sin(30°	−	360°)	=	sin(30°	−	2	×	360°)	and	so	on.

Figure	4.6	shows	the	graph	of	y	=	cos	θ°	drawn	for	values	of	θ°	from
−90	to	360.

Figure	4.6

As	you	can	see,	the	graph	of	y	=	cos	θ°	also	has	the	form	of	a	wave.	It
is	also	periodic,	with	period	360°.	The	value	of	cos	θ°	is	positive	for
first	and	fourth	quadrant	angles	and	negative	for	second	and	third
quadrant	angles.

It	is	the	wave	form	of	these	graphs	and	their	periodic	properties	that
make	the	sine	and	cosine	so	useful	in	applications.	This	point	is	taken
further	in	physics	and	engineering.



Nugget

Notice	that	the	graph	of	y	=	sin	θ°	has	rotational	symmetry	about	the	origin.	So
sin	θ°	=	−sin(−θ°)	and,	for	example,	sin45°	=−sin(−45°).

The	graph	of	y	=	cos	θ°	is	symmetrical	about	the	y-axis.	So	cos	θ°	=	cos(−θ°),
for	example,	cos45°	=	cos(−45°).

As	the	two	graphs	are	just	translations	of	each	other	it	can	be	hard	to	remember
which	is	which	-	here	is	a	memory	aid	to	help	you:	on	the	graph	of	sin	θ°	there	is
an	elongated	S	shape	at	the	origin.

Exercise	4.1

In	questions	1	to	8,	use	your	calculator	to	find	the	following	sines	and	cosines.

			1			sin	130°
			2			cos	140°
			3			sin	250°
			4			cos	370°
			5			sin(−20)°
			6			cos	1000°
			7			sin	36000°
			8			cos(−90)°

In	questions	9	to	14,	say	in	which	quadrant	the	given	angle	lies.

			9			200°
	10			370°
	11			(−300)°
	12			730°
	13			−600°
	14			1000°

In	questions	15	to	20,	find	the	following	sines	and	cosines	without	using	your
calculator



	15			cos	0°
	16			sin	180°
	17			cos	270°
	18			sin(−90)°
	19			cos(−180)°
	20			sin	450°

4.4		The	tangent	of	any	angle
In	Section	1.3	you	saw	that	the	definition	of	the	tangent	for	an	acute
angle	was	given	by	 .	This	definition	is	extended	to	all	angles,
positive	and	negative	(see	Figure	4.7).

Figure	4.7

If	the	angle	θ°	is	a	first	quadrant	angle,	tan	θ°	is	positive.	For	a	second
quadrant	angle,	y	is	positive	and	x	is	negative,	so	tan	θ°	is	negative.
For	a	third	quadrant	angle,	y	and	x	are	both	negative,	so	tan	θ°	is
positive.	And	for	a	fourth	quadrant	angle,	y	is	negative	and	x	is
positive,	so	tan	θ°	is	negative.

Nugget

To	remember	which	function	is	positive	in	which	quadrant	use	the	memory	aid
‘All	Students	Take	Coffee’



4.5		Graph	of	the	tangent	function
Just	as	you	can	draw	graphs	of	the	sine	and	cosine	functions,	you	can
draw	a	graph	of	the	tangent	function.	Its	graph	is	shown	in	Figure	4.8.

You	can	see	from	Figure	4.8	that,	like	the	sine	and	cosine	functions,
the	tangent	function	is	periodic,	but	with	period	180°,	rather	than
360°.



Figure	4.8

You	can	also	see	that,	for	odd	multiples	of	90°,	the	tangent	function	is
not	defined.	You	cannot	talk	about	tan	90°.	It	does	not	exist.

Nugget

Notice	that	the	graph	of	y	=	tan	θ°	has	rotational	symmetry	about	the	origin.	So
tan	θ°	=	−tan(−θ°)	and,	for	example,	tan	60°	=	−tan(−60°).

4.6		Sine,	cosine	and	tangent
There	is	an	important	relation	between	the	sine,	cosine	and	tangent,
which	you	can	deduce	immediately	from	their	definitions.

From	the	definitions

you	can	see	that

Equation	1	will	be	used	repeatedly	throughout	the	remainder	of	the
book.

Exercise	4.2

In	questions	1	to	4,	use	your	calculator	to	find	the	following	tangents.

			1			tan	120°



			2			tan(−30)°
			3			tan	200°
			4			tan	1000°
			5			Attempt	to	find	tan	90°	on	your	calculator.	You	should	find	that	it	gives

some	kind	of	error	message.
			6			Calculate	the	value	of	 .
			7			Calculate	the	value	of	 .

Key	ideas

•		You	can	find	the	values	of	sin	θ°,	cosθ°,	and	tan	θ°	for	any	value	of	θ°	–	this
includes	negative	values	and	angles	greater	than	90°.

•		The	angle	θ°	is	measured	from	the	x-axis.	Positive	values	of	θ°	are	measured
in	an	anti-clockwise	direction	and	negative	in	a	clockwise	direction	from	the
x-axis.

•		The	graph	of	y	=	sin	θ°	is	a	wave	with	period	360°.	The	graph	of	y	=	sin	θ°	has
a	maximum	value	of	1	and	a	minimum	value	of	−1,	so	−1	≤	sin	θ°	≥	1	(see
Figure	4.5).

•		The	graph	of	y	=	cos	θ°	is	a	wave	with	period	360°.	The	graph	of	y	=	cos	θ°
has	a	maximum	value	of	1	and	a	minimum	value	of	−1,	so	−1	≤	cos	θ°	≤	1
(see	Figure	4.6).

•		The	graph	of	y	=	tan	θ°	has	period	180°.	tan90°	is	undefined	and,	likewise,	the
tangent	of	odd	multiples	of	90	is	undefined	(see	Figure	4.8).

•		



				Note	this	equation	is	true	for	angles	measured	in	radians	–	see	Chapter	7.



5
Solving	simple	equations

In	this	chapter	you	will	learn:

•		how	to	solve	simple	equations	involving	sine,	cosine	and	tangent
•		the	meaning	of	‘principal	angle’
•		how	to	use	the	principal	angle	to	find	all	solutions	of	the	equation.



5.1		Introduction
This	chapter	is	about	solving	equations	of	the	type	sin	θ°	=	0.4,	cos	θ°
=	0.2	and	tan	θ°	=	0.3.

It	is	easy,	using	a	calculator,	to	find	the	sine	of	a	given	angle.	It	is	also
easy,	with	a	calculator,	to	find	one	solution	of	an	equation	such	as	sin
θ°	=	0.4.	You	use	the	sin−1	key	and	find	θ°	=	23.57….	So	far	so	good.

The	problem	is	that	Figure	5.1	shows	there	are	many	angles,	infinitely
many	in	fact,	for	which	sin	θ°	=	0.4.	You	have	found	one	of	them	–
how	do	you	find	the	others	from	the	angle	that	you	have	found?

Figure	5.1

Figure	5.1	shows	that	there	is	another	angle	lying	between	90°	and
180°	satisfying	the	equation	sin	θ°	=	0.4,	and	then	(infinitely)	many
others,	repeating	every	360°.

5.2		Solving	equations	involving	sines
PRINCIPAL	ANGLES
The	angle	given	by	your	calculator	when	you	press	the	sin−1	key	is
called	the	principal	angle.

For	the	sine	function	the	principal	angle	lies	in	the	interval	−90	≤	θ°	≤



90.

If	you	draw	the	graph	of	y	=	sin−1	x	using	your	calculator	values	you
get	the	graph	shown	in	Figure	5.2.

Figure	5.2

So	the	question	posed	in	Section	5.1	is:	‘Given	the	principal	angle	for
which	sin	θ°	=	0.4,	how	do	you	find	all	the	other	angles?’

Look	at	the	sine	graph	in	Figure	5.1.	Notice	that	it	is	symmetrical
about	the	90°	point	on	the	θ-axis.	This	shows	that	for	any	angle	α°

If	you	write	x	=	90	−	α,	then	α	=	90	−	x,	so	90	+	α	=	180	−	x.	Equation
1	then	becomes,	for	any	angle	α°,

Nugget

For	example,	sin30°	=	sin	150°	since	180°	−	30°	=	150°.	This	equation	is	true
when	α°	is	negative.	So	sin	(−20°)	=	sin	200°	since	180°	−	(−20)°	=	200°.

Equation	2	is	the	key	to	solving	equations	which	involve	sines.



Returning	to	the	graph	of	y	=	sin	θ°	in	Figure	5.1,	and	using	Equation
2,	you	can	see	that	the	other	angle	between	0	and	180	with	sin	θ°	=
0.4	is

Now	you	can	add	(or	subtract)	multiples	of	36θ°	to	find	all	the	other
angles	solving	sin	θ°	=	0.4,	and	obtain

correct	to	two	decimal	places.

SUMMARY
To	solve	an	equation	of	the	form	sin	x°	=	c	where	c	is	given:

•		find	the	principal	angle

•		use	Equation	2	to	find	another	angle	for	which	sin	x°	=	c

•		add	or	subtract	any	multiple	of	360.

Example	5.1

Solve	the	equation	sin	x°	=	−0.2,	giving	all	solutions	in	the	interval	from	−180	to
180.

The	principal	angle	is	−11.54°.

From	Equation	2,	180	−(−11.54)	=	191.54°	is	also	a	solution,	but	this	is	outside
the	required	range.	However,	as	you	can	add	and	subtract	any	multiple	of	360,
you	can	find	the	solution	between	−180	and	180	by	subtracting	360.

Therefore	the	required	solution	is

Therefore	the	solutions	are	−168.46°	and	−11.54°.	



Example	5.2

Solve	the	equation	sin	2x°	=	0.5,	giving	all	solutions	from	0	to	360°.

Start	by	letting	y	=	2x.	Then	you	have	first	to	solve	for	y	the	equation	sin	y°	=
0.5.	Note	also	that	if	x	lies	between	0	and	360,	then	y,	which	is	2x,	lies	between	0
and	720.

The	principal	angle	for	the	solution	of	sin	y°	=	0.5	is	sin−1	0.5	=	30°.

From	Equation	2,	180	−	30	=	150°	is	also	a	solution.

Adding	multiples	of	360	shows	that	390°	and	510°	are	also	solutions	for	y.

Thus	y	=	2x	=	30°,	150°,	390°,	510°

so				x	=	15°,	75°,	195°,	255°.	

Example	5.3

Find	the	smallest	positive	root	of	the	equation	sin(2x	+	50)°	=	0.1.

Substitute	y	=	2x	+	50,	so	you	solve	sin	y°	=	0.1.

From	y	=	2x	+	50	you	find	that	

As	x	>	0	for	a	positive	solution	 ,	so	y	>	50.

The	principal	angle	solving	sin	y°	=	0.1	is	5.74°.

From	Equation	2,	180	−	5.74	=	174.26°	is	the	first	solution	greater	than	50.



Exercise	5.1

In	questions	1	to	8,	find	the	solutions	of	the	given	equation	in	the	interval	from	0
to	360.

			1			sin	θ°	=	0.3
			2			sin	θ°	=	0.45
			3			sin	θ°	=	0
			4			sin	θ°	=	1
			5			sin	θ°	=	−1
			6			sin	θ°	=	−0.1
			7			sin	θ°	=	−0.45
			8			sin	θ°	=	−0.5

In	questions	9	to	16,	find	the	solutions	of	the	given	equation	in	the	interval	from
−180	to	180.

			9			sin	θ°	=	−0.15
	10			sin	θ°	=	−0.5
	11			sin	θ°	=	0
	12			sin	θ°	=	1
	13			sin	θ°	=	−1
	14			sin	θ°	=	0.9
	15			sin	θ°	=	−0.9
	16			sin	θ°	=	−0.766

In	questions	17	to	24,	find	the	solutions	of	the	given	equation	in	the	interval
from	0	to	360.

	17			sin	2x°	=	0.5
	18			sin	2θ°	=	0.45
	19			sin	3θ°	=	0
	20			sin	2θ°	=	−1

	

	



	23			sin	3θ°	=	−0.5
	24			3sin	2x°	=	2
	25			The	height	h	in	metres	of	the	water	in	a	harbour	t	hours	after	the	water	is	at

its	mean	level	is	given	by	h	=	6	+	4	sin(30t)°.	Find	the	first	positive	value	of
t	for	which	the	height	of	the	water	first	reaches	9m.

	26			The	length	l	hours	of	a	day	t	days	after	the	beginning	of	the	year	is	given
approximately	by

Find	the	approximate	number	of	days	per	year	that	the	length	of	day	is	longer
than	15	hours.

5.3		Solving	equations	involving	cosines
To	solve	an	equation	of	the	form	cos	θ°	=	0.2	it	is	helpful	to	look	at
the	graph	of	the	cosine	function	in	Figure	5.3.

Figure	5.3

For	the	cosine	the	principal	angle	is	in	the	interval	0	≤	θ°	≤	180.

For	the	equation	cos	θ°	=	0.2,	the	principal	angle	is	78.46…°.

If	you	draw	the	graph	of	y	=	cos−1	x	using	your	calculator	values,	you
get	the	graph	shown	in	Figure	5.4.



The	symmetry	of	the	cosine	graph	in	Figure	5.3	shows	that

Figure	5.4

If	you	use	Equation	3,	you	find	that	cos(−78.46…)°	=	0.2.

If	the	interval	from	which	you	need	the	solution	is	from	−180	to	180,
you	have	two	solutions,	−78.46…°	and	78.46…°.

If	you	need	solutions	between	0	and	360,	you	can	subtract	the	first
solution	from	360	and	obtain	78.46°	and	281.54°,	correct	to	two
decimal	places.

SUMMARY
To	solve	an	equation	of	the	form	cos	θ°	=	c	where	c	is	given:

•		find	the	principal	angle

•		use	Equation	3	to	find	another	angle	for	which	cos	θ°	=	c

•		add	or	subtract	any	multiple	of	360.

Example	5.4

Solve	the	equation	cos	θ°	=	−0.1	giving	all	solutions	in	the	interval	−180	to	180,



correct	to	two	decimal	places.

For	cos	θ°	=	−0.1,	the	principal	angle	is	95.74°.

Using	Equation	3,	the	other	angle	in	the	required	interval	is	−95.74°.

The	solutions,	correct	to	two	decimal	places,	are	−95.74°	and	95.74°.	

Example	5.5

Find	all	the	solutions	of	the	equation	2	cos	3x°	=	1	in	the	interval	0	to	360.

The	equation	2	cos	3x°	=	1	can	be	written	in	the	form	 ,	where	y	=	3x.	If	x
lies	in	the	interval	0	to	360,	then	y,	which	is	3x,	lies	in	the	interval	0	to	1080.

The	principal	angle	for	the	solution	of	

From	Equation	3,	−60	is	also	a	solution	of	

Adding	multiples	of	360	shows	that	300,	420,	660,	780	and	1020	are	also
solutions	for	y.

Thus	y	=	3x	=	60,	300,	420,	660,	780,	1020

so					x	=	20,	100,	140,	220,	260,	340.	

5.4		Solving	equations	involving	tangents
To	solve	an	equation	of	the	form	tan	θ°	=	0.3	it	is	helpful	to	look	at	the
graph	of	the	tangent	function,	Figure	4.8.

The	symmetry	of	the	tangent	graph	shows	that

For	the	tangent	the	principal	angle	is	in	the	interval	−90	≤	θ	≤	90.	For
the	equation	tan	θ°	=	0.3,	the	principal	angle	is	16.69….



Using	Equation	4,	you	find	that	the	other	angle	between	0	and	360
satisfying	tan	θ°	=	0.3	is	180	+	16.69…	=	196.69….

SUMMARY
To	solve	an	equation	of	the	form	tan	θ°	=	c	where	c	is	given:

•		find	the	principal	angle

•		use	Equation	4	to	find	another	angle	for	which	tan	θ°	=	c

•		add	or	subtract	any	multiple	of	180.

Nugget

Remember	that	the	graph	of	y	=	tan	θ°	has	a	period	of	18θ°.	In	other	words	it
repeats	every	180°,	so	once	you	have	the	principal	angle	you	can	find	all	the
other	solutions	by	adding	or	subtracting	multiples	of	180°.

Example	5.6

Solve	the	equation	tan	θ°	=	−0.6	giving	all	solutions	in	the	interval	−180	to	180
correct	to	two	decimal	places.

For	tan	θ°	=	−0.6,	the	principal	angle	is	−30.96.

Using	Equation	4,	the	other	angle	in	the	required	interval,	−180	to	180	is	180	+
(−30.96)	=	149.04.

Therefore	the	solutions,	correct	to	two	decimal	places,	are	−30.96	and	149.04.	

Example	5.7

Find	all	the	solutions	of	the	equation	 	in	the	interval	0	to	360.

The	equation	 	can	be	written	in	the	form	tan	y°	=	−1,	where	 .	If	θ
lies	in	the	interval	0	to	360,	then	y,	which	is	 ,	lies	in	the	interval	0	to	540.



The	principal	angle	for	the	solution	of	tan	y°	=	−1	is	tan−1(−1)	=	−45.

From	Equation	4,	135	is	also	a	solution	of	tan	y°	=	−1.

Adding	multiples	of	180	shows	that	315	and	495	are	also	solutions	for	y	in	the
interval	from	0	to	540.

Exercise	5.2

In	questions	1	to	10,	find	all	the	solutions	to	the	given	equation	in	the	interval	0
to	360	inclusive.

			
			2			tan	x°	=	2
			
			4			tanβ°	=	−0.5
			
			6			tan	2θ°	=1
			
			
			9			cos	2θ°	=	−0.766
			10			tan	2x°	=	−0.1

In	questions	11	to	16,	find	all	the	solutions	to	the	given	equation	in	the
interval	−180	to	180	inclusive.

	11			cos	2x°	=	−0.3
	12			tan	2x°	=	−0.5
	13			sin	2θ°	=	0.4
	
	
	
	17			The	height	h	in	metres	of	water	in	a	harbour	above	low	tide	is	given	by	the

equation	h	=	14	−	10	cos(30t)°	where	t	is	measured	in	hours	from	midday.



A	ship	can	enter	the	harbour	when	the	water	is	greater	than	20m.	Between
what	times	can	the	boat	first	enter	the	harbour?

Key	ideas

•		The	principal	angle	is	the	angle	that	your	calculator	gives	you.

•		To	solve	sin	θ°	=	c

•		To	solve	cos	θ°	=	c

•		To	solve	tan	θ°	=	c

•		sin(90	−	θ)°	=	sin(90	+	θ)°

•		sin	θ°	=	sin(180	−	θ)°

•		cos(−θ)	=	cos	θ

				Note	that	the	above	equation	is	also	true	for	angles	measured	in	radians	–	see
Chapter	7.



•		tan	θ°	=	tan(180	+	θ)°



6
The	sine	and	cosine	formulae

In	this	chapter	you	will	learn:

•		how	to	solve	problems	in	triangles	which	are	not	right-angled
•		how	to	use	the	sine	and	cosine	formulae	for	a	triangle,	and	how	to
find	the	area	of	a	triangle

•		some	applications	of	the	sine	and	cosine	formulae	for	a	triangle.



6.1		Notation
This	chapter	is	about	finding	the	lengths	of	sides	and	the	magnitudes
of	angles	of	triangles	that	are	not	right-angled.	It	is	useful	to	have
some	notation	about	sides	and	angles	of	triangles.

Figure	6.1

In	the	triangle	ABC,	the	angles	are	called	A,	B	and	C;	the	sides
opposite	these	angles	are	given	the	corresponding	lower-case	letters,
a,	b	and	c.	In	the	triangle	PQR,	the	sides	opposite	the	angles	P,	Q	and
R	are	p,	q	and	r.

In	this	chapter,	the	angles	will	be	measured	in	degrees:	thus,	in	Figure
6.1,	A	=	95°	approximately.

The	sides	may	be	measured	in	any	units	you	choose,	provided	they	are
all	measured	in	the	same	units.	In	some	of	the	diagrams	that	follow
the	units	of	length	are	omitted.

6.2		Area	of	a	triangle
You	are	familiar	with	the	formula

for	the	area	of	a	triangle,	whether	it	is	acute-angled	or	obtuse-angled.

To	find	a	formula	for	the	area	in	terms	of	the	sides	and	angles	of	a



triangle,	you	need	to	consider	acute-	and	obtuse-angled	triangles
separately.

CASE	1	:	ACUTE-ANGLED	TRIANGLE
Figure	6.2	shows	an	acute-angled	triangle	with	the	perpendicular
drawn	from	A	onto	BC.	Let	the	length	of	this	perpendicular	be	h.

Let	the	area	of	the	triangle	be	Δ,	so	 .

To	find	h	you	can	use	the	left-hand	right-angled	triangle.

Figure	6.2

Alternatively,	you	could	find	h	from	the	other	right-angled	triangle,

So,	using	Equations	1	and	2	for	the	area	of	an	acute-angled	triangle,



Notice	the	symmetry	of	the	two	expressions	in	Equation	3.	Each	of
the	expressions	 	and	 	consists	of	 	the	product	of	two
sides	multiplied	by	the	sine	of	the	angle	between	them.	It	follows
from	this	symmetry	that	there	is	a	third	expression	for	the	area	of	the
triangle,	namely	 .

You	could	have	derived	this	expression	directly	if	in	Figure	6.2	you
had	drawn	the	perpendicular	from	B	to	AC,	or	from	C	to	AB.

Thus	for	an	acute-angled	triangle,

CASE	2:	OBTUSE-ANGLED	TRIANGLE
Figure	6.3	shows	a	triangle,	obtuse-angled	at	C,	with	the
perpendicular	drawn	from	A	onto	BC.	Let	the	length	of	this
perpendicular	be	h.

Let	the	area	of	the	triangle	be	Δ,	so	 .

To	find	h	you	can	use	the	larger	right-angled	triangle.

Figure	6.3



Alternatively,	you	could	find	h	from	the	other	right-angled	triangle,

Equation	5	looks	quite	different	from	Equation	4,	but	if	you	recall
Equation	2	from	Chapter	5,	you	find

Therefore	you	can	write	Equation	5	as

Putting	Equations	4	and	5	together,

Notice	again	the	symmetry	of	the	two	expressions	in	Equation	6.	Each
of	the	expressions	 	and	 	consists	of	 	the	product	of
two	sides	multiplied	by	the	sine	of	the	angle	between	them.	It	follows
from	this	symmetry	that	there	is	a	third	expression	for	the	area	of	the
triangle,	namely	 .

Thus	for	an	obtuse-angled	triangle,

CASE	3:	AREA	OF	ANY	TRIANGLE
Thus,	the	area	Δ	of	any	triangle,	acute-angled	or	obtuse-angled,	is



If	you	think	of	this	formula	as

then	it	is	independent	of	the	lettering	of	the	particular	triangle
involved.	The	units	of	area	will	be	dependent	on	the	unit	of	length	that
is	used.

Example	6.1

Find	the	area	of	the	triangle	with	a	=	12	cm,	b	=	11	cm	and	C	=	53°.

The	area	Δ	cm2	of	the	triangle	is

The	area	of	the	triangle	is	52.7	cm2.	

Example	6.2

Find	the	area	of	the	triangle	with	b	=	6	cm,	c	=	4	cm	and	A	=	123°.

The	area	Δ	cm2	of	the	triangle	is



The	area	of	the	triangle	is	10.1	cm2.	

6.3		The	sine	formula	for	a	triangle
The	formula	for	the	area	of	a	triangle,

leads	to	a	very	important	result.

Leave	out	the	Δ,	and	multiply	the	resulting	equation	by	2,	and	you
find

If	you	now	divide	by	the	product	abc,	you	obtain

This	formula	is	called	the	sine	formula	for	a	triangle,	or	more
briefly,	the	sine	formula.

Example	6.3

In	triangle	ABC	in	Figure	6.4,	angle	A	=	40°,	angle	B	=	80°	and	b	=	5	cm.	Find
the	length	of	the	side	a.

Figure	6.4



Using	the	sine	formula,

The	length	of	side	a	is	3.26	cm,	correct	to	three	significant	figures.	

Nugget

When	you	use	the	sine	formula	to	find	a	missing	side	you	may	find	it	easier	to
invert	it	and	rewrite	it	as:

Sometimes	you	may	need	to	attack	a	problem	indirectly.

Example	6.4

In	triangle	ABC	in	Figure	6.5,	angle	C	=	100°,	b	=	4	cm	and	c	=	5	cm.	Find	the
magnitude	of	the	angle	B.

Figure	6.5

Using	the	sine	formula



This	is	an	equation	in	sin	B°;	the	principal	angle	is	51.98°.

The	two	angles	between	0	and	180°	satisfying	this	equation	are	51.98°	and
128.02°.	However,	as	the	angles	of	the	triangle	add	up	to	180°,	and	one	of	the
angles	is	100°,	the	other	angles	must	be	acute.

Therefore				B	=	51.98°.

Angle	B	is	51.98°	correct	to	two	decimal	places.	

The	situation	that	arose	in	Example	6.4,	where	you	needed	to	think
carefully	about	the	two	angles	that	satisfy	an	equation	of	the	form	sin
θ°	=	…,	occurs	in	other	cases.	You	cannot	always	resolve	which
solution	you	need.

Example	6.5	shows	an	example	of	this	kind.

6.4		The	ambiguous	case

Example	6.5

In	a	triangle	ABC,	angle	B	=	40°,	a	=	5	cm	and	b	=	4	cm.	Find	the	angle	A.

Using	the	sine	formula,

This	is	an	equation	in	sin	A°;	the	principal	angle	is	53.46°.

The	two	angles	between	0	and	180°	satisfying	this	equation	are	53.46°	and
126.54°.	

This	time,	however,	there	is	no	reason	to	rule	out	the	obtuse	case,	so	there	are
two	possible	answers	to	the	question.



Angle	A	is	53.46°	or	126.54°	correct	to	two	decimal	places.

Figure	6.6	shows	what	is	happening.

Figure	6.6

If	you	try	to	draw	the	triangle	with	the	information	given,	you	would
draw	the	side	a	of	length	5	cm,	and	draw	the	40°	angle	at	B.	If	you
then	draw	a	circle	of	radius	4	cm	with	its	centre	at	C,	you	find	that	it
cuts	the	line	which	you	drew	through	B	in	two	places,	A1	and	A2.

One	triangle	is	the	acute-angled	A1BC,	where	angle	A1	=	53.46°.	The
other	triangle	is	the	obtuse-angled	triangle	A2BC	where	A2	=	126.54°.

This	situation	in	which	the	triangle	is	not	defined	uniquely	is	called
the	ambiguous	case.	It	shows	that	when	you	use	the	sine	formula	to
find	an	angle,	it	is	important	to	take	account	of	both	solutions	of	the
equation	sin	θ°	=	….

Nugget

You	can	check	the	ambiguous	case	by	deciding	whether	180°	−	θ°	is	also	a
possible	solution.

Exercise	6.1



In	questions	1	to	5,	find	the	unknown	sides	of	the	triangle	ABC,	and	calculate
the	area	of	the	triangle.

			1			A	=	54°,	B	=	67°	and	a	=	13.9	cm.

			2			A	=	38.25°,	B	=	29.63°	and	b	=	16.2	cm

			3			A	=	70°,	C	=	58.27°	and	b	=	6	mm

			4			A	=	88°,	B	=	36°	and	a	=	9.5	cm

			5			B	=	75°,	C	=	42°	and	b	=	25.0	cm

In	questions	6	to	9,	there	may	be	more	than	one	solution.	Find	all	the	solutions
possible.

			6			b	=	30.4	cm,	c	=	34.8	cm,	B	=	25°.	Find	C,	A	and	a.

			7			b	=	70.25	cm,	c	=	85.3	cm,	B	=	40°.	Find	C,	A	and	a.

			8			a	=	96	cm,	c	=	100	cm,	C	=	66°.	Find	A,	B	and	b.

			9			a	=	91	cm,	c	=	78	cm,	C	=	29.45°.	Find	A,	B	and	b.

6.5		The	cosine	formula	for	a	triangle
The	sine	formula	is	easy	to	remember	and	easy	to	use,	but	it	is	no	help
if	you	know	the	lengths	of	two	sides	and	the	included	angle	and	wish
to	find	the	length	of	the	third	side.

In	Figure	6.7,	suppose	that	you	know	the	lengths	of	the	sides	a	and	b,
and	the	angle	C	between	them,	and	that	you	wish	to	find	the	length	of
the	side	c.



Figure	6.7

There	are	two	cases	to	consider:	when	angle	C	is	acute	and	when
angle	C	is	obtuse.	In	both	cases,	the	perpendicular	from	A	is	drawn,
meeting	BC	at	D.	The	length	of	this	perpendicular	is	h.	Let	the	length
CD	be	x.

CASE	1	:	ACUTE-ANGLED	TRIANGLE
Using	Pythagoras’s	theorem	in	the	triangle	ACD,

Using	Pythagoras’s	theorem	in	the	triangle	ABD,

Equating	these	expressions	for	h2	gives

In	triangle	ACD,	x	=	b	cos	C°,	so	the	expression	for	c2	becomes

CASE	2:	OBTUSE-ANGLED	TRIANGLE
Using	Pythagoras’s	theorem	in	the	triangle	ACD,

Using	Pythagoras’s	theorem	in	the	triangle	ABD,



Equating	these	expressions	for	h2	gives

In	triangle	ACD,	x	=	b	cos(180°	−	C°).	However,	from	the	graph	of	y
=	cos	θ°	in	Section	5.3,	cos(180°	−	C°)	=	−cos	C°.

Thus	when	C°	is	obtuse,	x	=	−b	cos	C°.	The	expression	for	c2
therefore	becomes

This	formula	is	called	the	cosine	formula	for	a	triangle,	or	more
briefly,	the	cosine	formula.

Notice	that	the	formula	c2	=	a2	+	b2	−2ab	cos	C°	is	symmetrical	in	the
letters	a,	b,	c	and	A,	B	and	C.	There	are	two	other	formulae	like	it.
These	three	formulae	are

Nugget

You	can	just	learn	the	formula	a2	=	b2	+	c2	−	2bc	cos	A°.	Just	label	the	side	you
want	to	find	as	a	and	the	angle	opposite	this	side	as	A,	and	then	call	other	two
sides	b	and	c	(it	doesn’t	matter	which	is	which).

Example	6.6



In	a	triangle,	a	=	4	cm,	b	=	7	cm	and	angle	C	=	73°.	Find	the	length	of	the	side	c.

Using	the	cosine	formula,

The	length	of	the	side	c	is	6.97	cm	approximately.	

You	can	also	use	the	cosine	formula	to	find	an	unknown	angle	if	you
know	the	lengths	of	the	three	sides.

Example	6.7

The	three	sides	of	a	triangle	have	lengths	5	cm,	4	cm	and	8	cm.	Find	the	largest
angle	of	the	triangle.

The	largest	angle	is	the	angle	opposite	the	longest	side.	Using	the	cosine	formula
and	calling	the	angle	θ°,	you	find

The	largest	angle	of	the	triangle	is	125.10°	approximately.	

Notice	that	there	is	no	ambiguity	in	using	the	cosine	formula.	If	the
angle	is	obtuse,	the	cosine	will	be	negative.

Exercise	6.2

In	questions	1	to	6,	use	the	cosine	formula	to	find	the	length	of	the	remaining
side.



			1			a	=	17.1	cm,	c	=	28.8	cm,	B	=	108°

			2			a	=	7.86	cm,	b	=	8.54	cm,	C	=	37.42°

			3			c	=	17.5	cm,	b	=	60.2	cm,	A	=	63.67°

			4			a	=	18.5	cm,	b	=	11.1	cm,	C	=	120°

			5			a	=	4.31	cm,	b	=	3.87	cm,	C	=	29.23°

			6			a	=	7.59	cm,	c	=	5.67	cm,	B	=	72.23°

In	questions	7	to	10,	find	the	angles	of	the	triangle.

			7			a	=	2	cm,	b	=	3	cm,	c	=	4	cm

			8			a	=	5.4	cm,	b	=	7.1	cm,	c	=	8.3	cm

			9			a	=	24	cm,	b	=	19	cm,	c	=	26	cm

	10			a	=	2.60	cm,	b	=	2.85	cm,	c	=	4.70	cm

	11			Find	the	largest	angle	of	the	triangle	with	sides	14	cm,	8.5	cm	and	9	cm.

	12			Find	the	smallest	angle	of	the	triangle	with	sides	6.4	cm,	5.7	cm	and	8.2	cm.

	13			Attempt	to	find	the	largest	angle	of	a	triangle	with	sides	5.8	cm,	8.3	cm	and
14.1	cm.	What	happens	and	why?

In	the	remaining	questions	you	may	have	to	use	either	the	sine	formula	or	the
cosine	formula.

	14			The	shortest	side	of	a	triangle	is	3.6	km	long.	Two	of	the	angles	are	37.25°
and	48.4°.	Find	the	length	of	the	longest	side.

	15			The	sides	of	a	triangle	are	123	m,	79	m	and	97	m.	Find	its	angles.

	16			Given	b	=	5.32	cm,	c	=	6.47	cm,	A	=	75.23°,	find	B,	C	and	a.

	17			In	a	triangle	ABC	find	the	angle	ACB	when	c	=	9.2	cm,	a	=	5	cm	and	b	=	11



cm.

	18			The	length	of	the	side	BC	of	a	triangle	ABC	is	14.5	m,	angle	ABC	=	71°,
angle	BAC	=	57°.	Calculate	the	lengths	of	the	sides	AC	and	AB.

	19			In	a	quadrilateral	ABCD,	AB	=	3	m,	BC	=	4	m,	CD	=	7.4	m,	DA	=	4.4	m	and
the	angle	ABC	is	90°.	Determine	the	angle	ADC.

	20			Determine	how	many	triangles	exist	with	a	=	25	cm,	b	=	30	cm,	and	A	=
50°	and	find	the	remaining	sides	and	angles.

	21			The	length	of	the	longest	side	of	a	triangle	is	162	m.	Two	of	the	angles	are
37.25°	and	48.4°.	Find	the	length	of	the	shortest	side.

	22			In	a	quadrilateral	ABCD,	AB	=	4.3	m,	BC	=	3.4	m	and	CD	=	3.8	m.	Angle
ABC	=	95°	and	angle	BCD	=	115°.	Find	the	lengths	of	the	diagonals.

	23			From	a	point	O	on	a	straight	line	OX,	lines	OP	and	OQ	of	lengths	5	mm	and
7	mm	are	drawn	on	the	same	side	of	OX	so	that	angle	XOP	=	32°	and	angle
XOQ	=	55°.	Find	the	length	of	PQ.

	24			Two	hooks	P	and	Q	on	a	horizontal	beam	are	30	cm	apart.	From	P	and	Q
strings	PR	and	QR,	18	cm	and	16	cm	long	respectively,	support	a	weight	at
R.	Find	the	distance	of	R	from	the	beam	and	the	angles	which	PR	and	QR
make	with	the	beam.

	25			In	a	triangle	ABC,	AB	is	5	cm	long,	angle	BAC	=	55°	and	angle	ABC	=	48°.
Calculate	the	lengths	of	the	sides	AC	and	BC	and	the	area	of	the	triangle.

	26			Two	ships	leave	port	at	the	same	time.	The	first	steams	on	a	bearing	135°	at
18	km	h−1	and	the	second	on	a	bearing	205°	at	15	km	h−1.	Calculate	the
time	that	will	have	elapsed	when	the;	are	86	km	apart.

	27			AB	is	a	base	line	of	length	3	km,	and	C,	D	are	points	such	that	angle	BAC	=
32.25°,	angle	ABC	=	119.08°,	DBC	=	60.17°,	and	angle	BCD	=	78.75°.	The
points	A	and	D	are	on	the	same	side	of	BC.	Find	the	length	of	CD.

	28			ABCD	is	a	quadrilateral	in	which	AB	=	0.38	m,	BC	=	0.69	m,	AD	=	0.42	m,
angle	ABC	=	109°	and	angle	BAD	=	123°.	Find	the	area	of	the	quadrilateral.



	29			A	weight	was	hung	from	a	horizontal	beam	by	two	chains	8	m	and	9	m	long
respectively,	the	ends	of	the	chains	being	fastened	to	the	same	point	of	the
weight,	their	other	ends	being	fastened	to	the	beam	at	points	10	m	apart.
Determine	the	angles	that	the	chains	make	with	the	beam.

6.6		Introduction	to	surveying
The	remainder	of	this	chapter	contains	some	examples	of	practical
uses	of	the	sine	and	cosine	rules	in	surveying.	Formulae	for	these	uses
are	not	given,	because	there	may	be	a	temptation	to	learn	them;	their
importance	is	simply	that	they	use	the	sine	and	cosine	rules.

6.7		Finding	the	height	of	a	distant	object
Three	forms	of	this	problem	are	considered.

1		THE	POINT	VERTICALLY	BENEATH	THE	TOP	OF	THE	OBJECT	IS
ACCESSIBLE

In	Figure	6.8,	A	is	the	top	of	a	tall	object	whose	height	h	is	required,
and	B	is	at	its	foot,	on	the	same	horizontal	level	as	O.	As	B	is
accessible,	you	can	measure	the	horizontal	distance	OB.	Call	this
distance	d.	By	using	a	theodolite	you	can	find	θ,	the	angle	of	elevation
of	AB.

Figure	6.8

Nugget

A	theodolite	is	an	instrument	which	is	used	in	surveying	to	measure	angles.



2		THE	POINT	ON	THE	GROUND	VERTICALLY	BENEATH	THE	TOP
OF	THE	OBJECT	IS	NOT	ACCESSIBLE

In	Figure	6.9	AB	is	the	height	to	be	found	and	B	is	not	accessible.	To
find	AB	you	can	proceed	as	follows.

Figure	6.9

From	a	suitable	point	Q,	use	a	theodolite	to	measure	the	angle	θ°.

Then	measure	a	distance	PQ,	call	it	d,	so	that	B,	P	and	Q	are	in	a
straight	line.

Then	measure	the	angle	Φ°.

•		In	triangle	APQ,	you	can	calculate	the	length	AQ.

•		Then,	in	triangle	AQB,	you	can	calculate	h.

3		BY	MEASURING	A	HORIZONTAL	DISTANCE	IN	ANY	DIRECTION
It	may	not	be	easy	to	obtain	a	distance	PQ	as	in	the	previous	example,
where	B,	P	and	Q	are	in	a	straight	line.

You	can	then	use	the	following	method.

In	Figure	6.10	let	AB	be	the	height	you	need	to	find.



Figure	6.10

Take	a	point	P	on	the	same	level	as	B,	and	measure	a	horizontal
distance	PQ	in	any	suitable	direction.	Let	this	distance	be	d.

At	P	measure	angle	Φ°,	the	angle	of	elevation	of	A,	and	angle	ψ.

At	Q	measure	angle	θ°.

•		In	triangle	APQ	you	can	use	the	sine	formula	to	find	AP.

•		In	triangle	APB	you	can	use	the	sine	formula	to	calculate	h.

You	can	also	calculate	the	distances	PB	and	QB	if	you	need	them.

6.8		Distance	of	an	inaccessible	object
Suppose	you	are	at	P	and	that	at	A	there	is	an	inaccessible	object
whose	distance	from	P	you	need	to	find	(see	Figure	6.11).

Figure	6.11

Measure	a	distance	PQ,	call	it	d,	in	a	convenient	direction,	and	angle	θ
°.	Also	measure	angle	Φ°.



In	triangle	APQ,	you	can	use	the	sine	formula	to	calculate	AP.

6.9		Distance	between	two	inaccessible	but
visible	objects
Let	A	and	B	be	two	distant	inaccessible	objects	at	the	same	level	(see
Figure	6.12).

Figure	6.12

Measure	the	length	d	of	a	convenient	base	line	PQ	at	the	same	level	as
A	and	B.

At	P	measure	angles	θ°	and	Φ°,	and	at	Q	measure	angles	α°	and	β°.

In	triangle	APQ,	you	can	use	the	sine	formula	to	find	AQ.

Similarly	in	triangle	BPQ	you	can	find	QB.

Then	in	triangle	AQB,	you	can	use	the	cosine	formula	to	find	AB.

6.10		Triangulation
The	methods	employed	in	the	last	two	examples	are,	in	principle,
those	used	in	triangulation.	This	is	the	name	given	to	the	method	used
to	survey	a	district,	and	to	calculate	its	area.	In	practice,	you	need
corrections	to	allow	for	sea	level,	and,	over	large	areas,	the	curvature
of	the	earth,	but	over	small	areas,	the	errors	are	small.



The	method	used	is	as	follows.

Figure	6.13

Mark	out	and	measure	the	distance	PQ	(Figure	6.13),	called	a	base
line,	very	accurately	on	suitable	ground.	Then	select	a	point	A	and
measure	angles	α°	and	β°.

You	can	then	calculate	the	length	AP.

Next	select	another	point	B	and	measure	the	angles	θ°	and	Φ°,	and
calculate	the	length	AB.

You	now	have	enough	information	to	calculate	the	area	of	the
quadrilateral	PQBA.

By	joining	BQ	and	by	measuring	the	angles	which	BP	and	BQ	make
with	PQ,	you	can	calculate	the	area	of	quadrilateral	PQBA	in	a
different	way	as	a	check	on	your	results.

You	can	now	select	a	new	point	C	and	continue	by	using	the	same
methods.

By	repeating	this	process	with	other	points,	you	can	create	a	network
of	triangles	to	cover	a	whole	district.

As	all	the	measurements	of	distance	are	calculated	from	the	original
distance	d,	it	is	essential	that	you	measure	the	base	line	with	minute
accuracy.	Similarly	you	need	to	measure	the	angles	extremely



accurately.	You	should	build	in	checks	at	each	stage,	such	as	adding
the	angles	of	a	triangle	to	see	if	their	sum	is	18θ°.

As	a	further	check	at	the	end	of	the	work,	or	at	any	convenient	stage,
one	of	the	lines	whose	length	has	been	found	by	calculation,	founded
on	previous	calculations,	can	be	used	as	a	base	line,	and	the	whole
survey	worked	backwards,	finishing	with	the	calculation	of	the
original	measured	base	line.

Example	6.8

Two	points	lie	due	west	of	a	stationary	balloon	and	are	1000	m	apart.	The	angles
of	elevation	of	the	balloon	at	the	two	points	are	21.25°	and	18°.	Find	the	height
of	the	balloon.

Figure	6.14

In	Figure	6.14,	let	A	be	the	position	of	the	balloon,	and	let	its	height	be	h	metres.

θ	=	21.25°,	Φ	=	18°	and	d	=	1000	m.

Then,	in	triangle	APQ,	the	third	angle	is	3.25°.

In	triangle	APQ,	using	the	sine	formula,



The	height	of	the	balloon	is	approximately	1976m.	

Example	6.9

A	balloon	is	observed	from	two	stations	A	and	B	at	the	same	horizontal	level,	A
being	1000	m	north	of	B.	At	a	given	instant	the	bearing	of	the	balloon	from	A	is
033.2°	and	its	angle	of	elevation	is	53.42°,	while	from	B	its	bearing	is	021.45°.
Calculate	the	height	of	the	balloon.

Figure	6.15

In	Figure	6.15,	the	balloon	is	at	P,	and	Q	is	directly	below	P.

Φ	=	33.2°,	θ	=	21.45°,	α	=	53.42°	and	d	=	1000	m.

Using	the	sine	formula	in	triangle	ABQ	to	find	AQ,	noting	that	angle	BQA	=	Φ	−
θ°	=	33.2°	−	21.45°	=	11.75°,



The	height	of	the	balloon	is	therefore	2420m	approximately.	

Example	6.10

A	surveyor	who	wishes	to	find	the	width	of	a	river	measures	along	a	level	stretch
on	one	bank	a	line	AB,	150	m	long.

From	A	the	surveyor	observes	that	a	post	P	on	the	opposite	bank	is	placed	so	that
angle	PAB	=	51.33°,	and	angle	PBA	=	69.20°.	What	was	the	width	of	the	river?

In	Figure	6.16,	AB	is	the	measured	distance,	150	m.	P	is	the	post	on	the	other
side	of	the	river.	PQ,	which	is	drawn	perpendicular	to	AB,	is	the	width	w	of	the
river.	The	angles	α	and	β	are	51.33°	and	69.20°.

Figure	6.16

To	find	PQ,	first	calculate	AP	from	triangle	APB.

Therefore	the	width	of	the	river	is	127m	approximately.	

Exercise	6.3



			1			A	surveyor,	who	measures	the	angle	of	elevation	of	a	tree	as	32°	and	then
walks	8	m	directly	towards	the	tree,	finds	that	the	new	angle	of	elevation	is
43°.	Calculate	the	height	of	the	tree.

			2			From	a	point	Q	on	a	horizontal	plane,	the	angle	of	elevation	of	the	top	of	a
distant	mountain	is	22.3°.	At	a	point	P,	500	m	further	away	in	a	direct
horizontal	line,	the	angle	of	elevation	of	the	mountain	is	16.6°.	Find	the
height	of	the	mountain.

			3			Two	people,	1.5	km	apart,	stand	on	opposite	sides	of	a	church	steeple	and	in
the	same	straight	line	with	it.	From	one,	the	angle	of	elevation	of	the	top	of
the	tower	is	15.5°	and,	from	the	other,	28.67°.	Calculate	the	height	of	the
steeple	in	metres.

			4			A	surveyor,	who	wishes	to	find	the	width	of	a	river,	stands	on	one	bank	of
the	river	and	measures	the	angle	of	elevation	of	a	high	building	on	the	edge
of	the	other	bank	and	directly	opposite	as	31°.	After	walking	110	m	away
from	the	river	in	the	straight	line	from	the	building	the	surveyor	finds	that
the	angle	of	elevation	of	the	building	is	now	20.92°.	Calculate	the	width	of
the	river.

			5			A	and	B	are	two	points	on	opposite	sides	of	swampy	ground.	From	a	point	P
outside	the	swamp,	it	is	found	that	PA	is	882m	and	PB	is	1008m.	The	angle
subtended	at	P	by	AB	is	55.67°.	Calculate	the	distance	between	A	and	B.

			6			A	and	B	are	two	points	1.8	km	apart	on	a	level	piece	of	ground	along	the
bank	of	a	river.	P	is	a	post	on	the	opposite	bank.	It	is	found	that	angle	PAB
=	62°	and	angle	PBA	=	48°.	Calculate	the	width	of	the	river.

			7			The	angle	of	elevation	of	the	top	of	a	mountain	from	the	bottom	of	a	tower
180	m	high	is	26.42°.	From	the	top	of	the	tower	the	angle	of	elevation	is
25.3°.	Calculate	the	height	of	the	mountain.

			8			Two	observers	5	km	apart	measure	the	bearing	of	the	base	of	the	balloon
and	the	angle	of	elevation	of	the	balloon	at	the	same	instant.	One	finds	that
the	bearing	is	041°,	and	the	elevation	is	24°.	The	other	finds	that	the
bearing	is	032°,	and	the	elevation	is	26.62°.	Calculate	the	height	of	the
balloon.



			9			Two	landmarks	A	and	B	are	observed	from	a	point	P	to	be	in	a	line	due	east.
From	a	point	Q	4.5	km	in	a	direction	060°	from	P,	A	is	observed	to	be	due
south	while	B	is	on	a	bearing	128°.	Find	the	distance	between	A	and	B.

	10			At	a	point	P	in	a	straight	road	PQ,	it	is	observed	that	two	distant	objects	A
and	B	are	in	a	straight	line	making	an	angle	of	35°	at	P	with	PQ.	At	a	point
C	2	km	along	the	road	from	P	it	is	observed	that	angle	ACP	is	50°	and	angle
BCQ	is	64°.	Calculate	the	distance	between	A	and	B.

	11			An	object	P	is	situated	345	m	above	a	level	plane.	Two	people,	A	and	B,	are
standing	on	the	plane,	A	in	a	direction	south-west	of	P	and	B	due	south	of
P.	The	angles	of	elevation	of	P	as	observed	at	A	and	B	are	34°	and	26°
respectively.	Find	the	distance	between	A	and	B.

	12			P	and	Q	are	points	on	a	straight	coast	line,	Q	being	5.3	km	east	of	P.	A	ship
starting	from	P	steams	4	km	in	a	direction	024.5°.	Calculate:	(a)	the
distance	the	ship	is	now	from	the	coastline;	(b)	the	ship’s	bearing	from	Q;
(c)	the	distance	of	the	ship	from	Q.

	13			At	a	point	A	due	south	of	a	chimney	stack,	the	angle	of	elevation	of	the
stack	is	55°.	From	B,	due	west	of	A,	such	that	AB	=	100	m,	the	elevation	of
the	stack	is	33°.	Find	the	height	of	the	stack	and	its	horizontal	distance	from
A.

	14			AB	is	a	base	line	0.5	km	long	and	B	is	due	west	of	A.	At	B	a	point	P	has
bearing	335.7°.	The	bearing	of	P	from	A	is	314.25°.	How	far	is	P	from	A?

	15			A	horizontal	bridge	over	a	river	is	380	m	long.	From	one	end,	A,	it	is
observed	that	the	angle	of	depression	of	an	object,	P,	on	the	surface	of	the
water	vertically	beneath	the	bridge,	is	34°.	From	the	other	end,	B,	the	angle
of	depression	of	the	object	is	62°.	What	is	the	height	of	the	bridge	above	the
water?

	16			A	straight	line	AB,	115	m	long,	lies	in	the	same	horizontal	plane	as	the	foot
Q	of	a	church	tower	PQ.	The	angle	of	elevation	of	the	top	of	the	tower	at	A
is	35°.	Angle	QAB	is	62°	and	angle	QBA	is	48°.	What	is	the	height	of	the
tower?



	17			A	and	B	are	two	points	1500m	apart	on	a	road	running	due	west.	A	soldier
at	A	observes	that	the	bearing	of	an	enemy’s	battery	is	295.8°,	and	at	B,
301.5°.	The	range	of	the	guns	in	the	battery	is	5	km.	How	far	can	the	soldier
go	along	the	road	from	A	before	being	within	range	and	what	length	of	the
road	is	within	range.

Key	ideas

•		See	Figure	6.1.

				

				or

				

•		The	sine	formula	is:

•		When	you	use	the	sine	rule	to	find	an	angle,	θ°,	always	check	whether	180°	−
θ°	is	also	a	possible	solution	(the	ambiguous	case).

•		The	cosine	formula	is:

				which	can	be	written	as	b2	=	c2	+	a2	−	2ca	cos	B	and	c2	=	a2	+	b2	−	2ab	cos	C.

•		The	sine	and	cosine	rules	are	used	in	surveying.	The	main	types	of	problem
that	can	be	solved	using	these	formulae	are:

				»		finding	the	height	of	a	distant	object
				»		finding	the	distance	to	an	inaccessible	object
				»		finding	the	distance	between	two	visible	inaccessible	objects
				»		triangulation.



•		When	solving	a	problem,	always	draw	a	large	and	clearly	labelled	diagram.
Some	problems	will	need	more	than	one	stage	in	the	working;	think	carefully
about	which	angles	and	sides	can	be	worked	out	using	the	given	information
and	whether	any	of	these	can	help	you	determine	the	distance	or	angle
required.



7
Radians

In	this	chapter	you	will	learn:

•		that	you	can	measure	an	angle	in	radians	as	an	alternative	to
degrees

•		the	formulae	for	length	of	a	circular	arc	and	the	area	of	a	circular
sector

•		how	to	convert	from	radians	to	degrees	and	vice	versa.



7.1		Introduction
Who	decided	that	there	should	be	360	degrees	in	a	full	circle,	and
therefore	90	degrees	in	a	right	angle?	It	is	not	the	answer	to	this
question	which	is	important	−	it	was	actually	the	Babylonians	−	it	is
the	fact	that	the	question	exists	at	all.	Someone,	somewhere	did	make
the	decision	that	the	unit	for	angle	should	be	the	degree	as	we	now
know	it.	However,	it	could	just	have	equally	been	80	divisions	which
make	a	right	angle	or	100	divisions.	So	it	seems	worth	asking,	is	there
a	best	unit	for	measuring	angle?	Or	is	there	a	better	choice	for	this	unit
than	the	degree?	It	turns	out	that	the	answer	is	yes.	A	better	unit	is	the
radian.

7.2		Radians
A	radian	is	the	angle	subtended	at	the	centre	of	a	circle	by	a	circular
arc	equal	in	length	to	the	radius	(see	Figure	7.1).

Figure	7.1

The	angle	of	1	radian	is	written	as	1	rad,	but	if	no	units	are	given	for
angles	you	should	assume	that	the	unit	is	radians.

If	you	are	using	radians	with	a	calculator,	you	will	need	to	make	sure
that	the	calculator	is	in	radian	mode.	If	necessary,	look	up	how	to	use
radian	mode	in	the	manual.



7.3		Length	of	a	circular	arc
The	right-hand	diagram	in	Figure	7.2	shows	a	circle	of	radius	r	cm
with	an	angle	of	θ	rad	at	the	centre.	The	left-hand	diagram	shows	a
circle	with	the	same	radius	but	with	an	angle	of	1	rad	at	the	centre.

Figure	7.2

Look	at	the	relationship	between	the	left-	and	right-hand	diagrams.	As
the	angle	at	the	centre	of	the	circle	in	the	left-hand	diagram	has	been
multiplied	by	a	factor	θ	to	get	the	right-hand	diagram,	so	has	the	arc
length.	The	new	arc	length	is	therefore	θ	×	the	original	arc	length	r	cm
and	therefore	rθ	cm.

If	you	call	the	arc	length	s	cm,	then

Nugget

The	equation	s	=	rθ	is	only	true	when	θ	is	in	radians.	Rearranging	this	equation
gives	 .	As	the	units	of	length	for	s	and	r	will	cancel	out	in	this	equation	when
an	angle	is	measured	in	radians	it	is	a	pure	number	and	doesn’t	have	any	units.
However,	sometimes	‘rads’	or	a	superscript	c,	c,	is	used	to	show	that	an	angle	is
in	radians.

Example	7.1



O	is	the	centre	of	a	circle	of	radius	3	cm.	The	points	A	and	B	lie	on	its
circumference	and	angle	AOB	=	2	rad.	Find	the	length	of	the	perimeter	of	the
segment	bounded	by	the	arc	AB	and	the	chord	AB.

Figure	7.3

The	left-hand	diagram	in	Figure	7.3	shows	this	situation.	The	perimeter	must	be
found	in	two	sections,	the	arc	AB	and	the	chord	AB.

The	length	of	the	arc	AB	is	given	by	using	Equation	1,

To	find	the	length	of	the	chord	AB,	drop	the	perpendicular	from	O	to	AB	meeting
AB	at	N,	shown	in	the	right-hand	part	of	Figure	7.3.

The	perimeter	is	then	given	by

7.4		Converting	from	radians	to	degrees
Consider	the	case	when	the	arc	of	a	circle	of	radius	r	cm	is	actually
the	complete	circumference	of	the	circle.	In	this	case,	the	arc	length	is
2πr	cm.

Suppose	that	the	angle	at	the	centre	of	this	arc	is	θ	rad.	Then,	using



Equation	1,	the	length	of	the	arc	is	rθ	cm.

Then	it	follows	that	2πr	=	rθ,	so	that	the	angle	at	the	centre	is	2π	rad.

But,	as	the	angle	at	the	centre	of	the	circle	is	360°,

This	equation,	π	rad	=	180°,	is	the	one	you	should	remember	when
you	need	to	change	from	degrees	to	radians,	and	vice	versa.

In	many	cases,	when	angles	such	as	45°	and	60°	are	given	in	radians
they	are	given	as	multiples	of	π.	That	is

You	can	also	work	out	1	radian	in	degrees	from	the	equation	π	rad	=
180°.	You	find	that

This	equation	is	very	rarely	used	in	practice.	When	you	need	to
convert	radians	to	degrees	or	vice	versa,	use	the	fact	that	π	rad	=	180°
and	use	either	 	or	 	as	a	conversion	factor.

Thus,	for	example,

7.5		Area	of	a	circular	sector
Figure	7.4	shows	a	shaded	sector	of	a	circle	with	radius	r	units	and	an
angle	at	the	centre	of	θ	rad.	Let	the	area	of	the	shaded	region	be	A
units2.



Figure	7.4

The	area	A	units2	is	a	fraction	of	the	area	of	the	whole	circle.	As	the
area	of	the	whole	circle	is	πr2	units2,	and	the	angle	at	the	centre	is	2π
rad,	when	the	angle	at	the	centre	is	θ	rad,	the	shaded	area	is	a	fraction	
	of	the	total	area	of	the	circle.

Therefore	the	area,	in	units2,	of	the	shaded	sector	is

Nugget

If	you	wanted	to	work	out	the	area	of	a	quarter	circle	you	would	find	

Example	7.2

O	is	the	centre	of	a	circle	of	radius	3	cm.	The	points	A	and	B	lie	on	its
circumference	and	angle	AOB	=	2	rad.	Find	the	area	of	the	segment	bounded	by
the	arc	AB	and	the	chord	AB.

Figure	7.5	shows	this	situation.	The	area	of	the	segment	must	be	found	by
finding	the	area	of	the	whole	sector	OAB,	and	then	subtracting	the	area	of	the
triangle	OAB.



Figure	7.5

The	area	A	cm2	of	the	sector	OAB	is	given	by	using	Equation	2,

To	find	the	area	of	triangle	OAB,	use	the	formula	 ,	given	on	page	71.

The	area	of	the	shaded	segment	is	then	given	by

area	of	segment	=	area	of	sector	OAB	−	area	of	triangle	OAB

=	(9	−	4.092)	cm2	=	4.908	cm2.

Exercise	7.1

In	questions	1	to	6,	write	down	the	number	of	degrees	in	each	of	the	angles	that
are	given	in	radians.

			

			

			

			



			

			6			4π

In	questions	7	to	1	2,	find	the	values	of	the	given	ratios.

			

			

			

	

	

	

	13			Give	the	angle	0.234	rad	in	degrees	correct	to	two	decimal	places.

In	questions	14	to	17,	express	the	following	angles	in	radians,	using	fractions	of
π.

	14			15°

	15			72°

	16			66°

	17			105°

	18			Find	in	radians	the	angle	subtended	at	the	centre	of	a	circle	of	radius	2.4	cm
by	a	circular	arc	of	length	11.4	cm.

	19			Find	the	length	of	the	circular	arc	that	subtends	an	angle	of	0.31	rad	at	the
centre	of	a	circle	of	radius	3.6	cm.

	20			Find	the	area	of	the	circular	sector	that	subtends	an	arc	of	2.54	rad	at	the
centre	of	a	circle	of	radius	2.3	cm.



	21			Find	in	radians	the	angle	that	a	circular	sector	of	area	20	cm2	subtends	at	the
centre	of	a	circle	of	radius	5	cm.

	22			A	circular	arc	is	154	cm	long	and	the	radius	of	the	arc	is	252	cm.	Find	the
angle	subtended	at	the	centre	of	the	circle,	in	radians	and	degrees.

	23			The	angles	of	a	triangle	are	in	the	ratio	of	3	:	4	:	5.	Express	them	in	radians.

	24			A	chord	of	length	8	cm	divides	a	circle	of	radius	5	cm	into	two	parts.	Find
the	area	of	each	part.

	25			Two	circles	each	of	radius	4	cm	overlap,	and	the	length	of	their	common
chord	is	also	4	cm.	Find	the	area	of	the	overlapping	region.

	26			A	new	five-sided	coin	is	to	be	made	in	the	shape	of	Figure	7.6.

Figure	7.6

The	point	A	on	the	circumference	of	the	coin	is	the	centre	of	the	arc	CD,	which
has	a	radius	of	2	cm.	Similarly	B	is	the	centre	of	the	arc	DE,	and	so	on.	Find	the
area	of	one	face	of	the	coin.

Key	ideas

•		A	radian	is	the	angle	subtended	at	the	centre	of	a	circle	by	a	circular	arc	equal
in	length	to	the	radius.

•		s	=	rθ	where	s	=	arc	length,	r	=	radius	and	θ	is	the	angle	in	radians.



•		π	radians	=	180°.

•		To	convert	from	degrees	to	radians,	multiply	by	 .

•		To	convert	from	radians	to	degrees,	multiply	by	 .

•		The	area	of	a	sector	is	 .



8
Relations	between	the	ratios

In	this	chapter	you	will	learn:

•		some	relations	between	the	sine	and	cosine	of	an	angle
•		the	trigonometric	form	of	Pythagoras’s	theorem
•		the	meaning	of	secant,	cosecant	and	cotangent.



8.1		Introduction
In	Section	2.2	you	saw	that	for	any	angle	θ°:

The	third	of	these	relations	is	a	form	of	Pythagoras’s	theorem,	and	it
sometimes	goes	by	that	name.

In	Section	4.6	you	saw	that

In	Sections	5.2	to	5.4	you	saw	that

In	this	chapter,	you	will	explore	these	and	other	relations,	as	well	as
meeting	the	new	ratios	secant,	cosecant	and	cotangent.

You	will	also	learn	to	solve	a	wider	variety	of	trigonometric
equations,	using	these	rules	to	help.

Some	of	the	relations	given	above	hold	whatever	units	are	used	for
measuring	angles.	Examples	are	sin2	θ°	+	cos2	θ°	=	1	and	 .
When	this	is	the	case	no	units	for	angle	are	given.

However,	for	some	of	the	relations	the	angles	must	be	measured	in
degrees	for	the	relation	to	be	true.	This	is	the	case	for	sin(90	−	θ)°	=



cos	θ°	and	sin(180	−	θ)°	=	sin	θ°.	In	these	cases,	degree	signs	will	be
used.

8.2		Secant,	cosecant	and	cotangent
The	three	relations	secant,	cosecant	and	cotangent,	usually
abbreviated	to	sec,	cosec	and	cot,	are	defined	by	the	rules

provided	cos	θ,	sin	θ	and	tan	θ	are	not	zero.

Nugget

These	are	sometimes	called	reciprocal	trigonometric	functions.	You	can	use	the
third	letter	of	each	function	to	help	you	remember	them:	

.

In	the	early	part	of	the	twentieth	century,	tables	were	used	to	find
values	of	the	trigonometric	ratios.	There	used	to	be	tables	for	sec,
cosec	and	cot,	but	these	have	now	all	but	disappeared,	and	if	you	want
their	values	from	a	calculator,	you	need	to	use	the	definitions	above.

You	can	write	Pythagoras’s	theorem,	sin2	θ	+	cos2	θ	=	1,	in	terms	of
these	new	ratios.

Divide	every	term	of	sin2	θ	+	cos2	θ	=	1	by	cos2	θ	to	obtain



which	simplifies	to	tan2	θ	+	1	=	sec2	θ.

Similarly,	by	dividing	sin2	θ	+	cos2	θ	=	1	by	sin2	θ	you	can	show	that

Example	8.1

Let	cos	 .	Find	the	possible	values	of	tan	x,	sec	x	and	cosec	x.	Using
Pythagoras’s	theorem,	sin2	x	+	cos2	x	=	1,	the	value	of	sin	x	is

Then,	using	 ,

Example	8.2

Solve	the	equation	3	cos2	θ°	=	1	−	2	sin	θ°	giving	solutions	in	the	interval	−180
to	180.

If	you	substitute	cos2	θ°	=	1	−	sin2	θ°	you	obtain	an	equation	in	which	every
term,	except	the	constant,	is	a	multiple	of	a	power	of	sin	θ°,	that	is,	a	polynomial
equation	in	sin	θ°.	You	can	solve	this	by	the	usual	methods.



This	is	a	quadratic	equation	in	sin	θ.	Using	the	quadratic	equation	formula,

The	first	of	these	is	impossible.	The	principal	angle	corresponding	to	the	second
is	−33.27°.

Then	180°	−	(−33.27°)	=	213.27°	is	also	a	solution	(see	Section	5.2).	But	this	is
outside	the	required	range,	so	subtract	360	to	get

Thus	the	solutions	are	−33.27	and	−146.73.	

Nugget

You	may	find	solving	the	equation	3	sin2	θ°	−	2	sin	θ°	−	2	=	0	easier	if	you	let	y
=	sin	θ	and	then	solve	3y2	−	2y	−	2	=	0.	If	you	use	this	method	don’t	forget	to
then	solve	sin	θ°	=	1.215…	and	sin	θ°	=	−0.5485…	.

Example	8.3

Solve	the	equation	cos	θ°	=	1	+	sec	θ°	giving	all	the	solutions	in	the	interval
from	0	to	360.

Notice	that	if	you	write	sec	 	all	the	terms	in	the	equation	will	involve	cos
θ°.	Therefore



The	first	of	these	solutions	is	impossible.	The	principal	angle	corresponding	to
the	second	is	128.17.

Then	360	−	128.17	=	231.83	is	also	a	solution	(see	Section	5.4).	Thus	the
solutions	are	128.17	and	231.83.	

Example	8.4

Solve	the	equation	2	sec	θ°	=	2	+	tan2	θ°	giving	all	the	solutions	in	the	interval
from	−180	to	180.

If	you	use	Pythagoras’s	theorem	in	the	form	tan2	θ°	=	sec2	θ°	−	1	to	substitute	for
tan2	θ°	all	the	terms	in	the	equation	will	involve	sec	θ°.

Thus	the	solution	is	0.	

Example	8.5

Solve	the	equation	tan	θ	=	2	sin	θ	giving	all	solutions	between	−π	and	π
inclusive.

It	is	often	useful	to	write	equations	in	terms	of	the	sine	and	cosine	functions,
because	there	are	so	many	more	simplifying	equations	which	you	can	use.

Multiplying	both	sides	of	this	equation	by	cos	θ	gives



Using	the	methods	of	Sections	5.2	and	5.3,	solve	these	two	equations	for	θ.

When	sin	θ	=	0,	θ	=	−π	or	0	or	π;	when	 .

Therefore	

Nugget

The	aim	when	solving	a	trigonometric	equation	is	to	rewrite	it	–	using
relationships	such	as	sin2	θ	+	cos2	θ	=	1	or	 	–	into	a	simpler	equation
(often	one	that	is	just	in	terms	of	sin,	cos	or	tan)	which	you	can	solve	directly.

Exercise	8.1

			1			Find	the	value	of	cos	θ	given	that	sin	θ	=	0.8192,	and	that	θ	is	obtuse.

			2			Find	the	possible	values	of	tan	θ	given	that	cos	θ	=	0.3.

			3			Find	the	possible	values	of	sec	θ	when	tan	θ	=	0.4.

			4			The	angle	α	is	acute,	and	sec	α	=	k.	Find	in	terms	of	k	the	value	of	cosec	α.

			5			Let	tan	θ°	=	t,	where	θ	lies	between	90	and	180.	Calculate,	in	terms	of	t,	the
values	of	sec	θ°,	cos	θ°	and	sin	θ°.

			6			Let	sec	θ	=	s,	where	θ	is	acute.	Find	the	values	of	cot	θ	and	sin	θ	in	terms	of
s.

In	questions	7	to	15,	solve	the	given	equation	for	θ°,	giving	your	answers	in	the
interval	from	−180	to	180.

			



			8			2	sin	θ°	=	cosec	θ°

			9			2	sin2	θ°	−	sin	θ°	=	0

	10			2	cos2	θ°	=	3	sin	θ°	+	2

	11			tan	θ°	=	cos	θ°

	12			sin	θ°	=	2	cos	θ°

	13			2	sec	θ°	=	cosec	θ°

	14			5(1	−	cos	θ°)	=	4	sin2	θ°

	15			4	sin	θ°	cos	θ°	+	1	=	2(sin	θ°	+	cos	θ°)

Key	ideas

•		The	relationships	cos	θ	=	cos(−θ)	and	 	are	true	for	all	angles	in	both
radians	and	degrees.

•		You	can	write	Pythagoras’s	theorem	as:

				These	relationships	are	true	for	all	angles	in	both	radians	and	degrees.

•

		

				These	relationships	are	true	for	all	angles	in	both	radians	and	degrees.

•			To	solve	sin	θ	=	c	for	θ	in	radians:



•			To	solve	cos	θ	=	c	for	θ	in	radians:

•			To	solve	tan	θ	=	c:



9
Ratios	and	compound	angles

In	this	chapter	you	will	learn:

•		how	to	find	the	values	of	sin(A	+	B),	cos	(A	+	B)	and	tan(A	+	B)
knowing	the	values	of	the	sine,	cosine	and	tangent	of	A	and	B

•		how	to	modify	these	formulae	for	sin	(A	−	B),	cos	(A	−	B)	and
tan(A	−	B)

•		how	to	find	the	values	of	sin2A,	cos2A	and	tan2A	knowing	the
values	of	the	sine,	cosine	and	tangent	of	A.



9.1		Compound	angles
A	compound	angle	is	an	angle	of	the	form	A	+	B	or	A	−	B.	This
chapter	is	about	finding	the	sine,	cosine	and	tangent	of	A	+	B	or	A	−	B
in	terms	of	the	sine,	cosine	and	tangent,	as	appropriate,	of	the
individual	angles	A	and	B.

Notice	immediately	that	sin(A	+	B)	is	not	equal	to	sin	A	+	sin	B.	You
can	try	this	for	various	angles,	but	if	it	were	true,	then

which	is	clearly	false.

It	is	difficult	to	give	general	proofs	of	formulae	for	sin(A	+	B)	and
cos(A	+	B),	and	this	is	not	attempted	in	this	book.	Proofs	that	apply
only	to	angles	in	a	restricted	range	are	given.	The	formulae	obtained
will	then	be	assumed	to	be	true	for	all	angles.

9.2		Formulae	for	sin(A	+	B)	and	sin(A	−	B)
Suppose	that	angles	A	and	B	are	both	between	0	and	90°.	In	Figure
9.1,	the	angles	A	and	B	are	drawn	at	the	point	Q,	and	the	line	QN	is
drawn	of	length	h.	PR	is	perpendicular	to	QN,	and	meets	QP	and	QR
at	P	and	R	respectively.

Let	the	lengths	of	PQ,	QR,	PN	and	NR	be	r,	p,	x	and	y	respectively,	as
shown	in	the	diagram.



Figure	9.1

The	strategy	for	deriving	the	formula	for	sin(A	+	B)	is	to	say	that	the
area	of	triangle	PQR	is	the	sum	of	the	areas	of	triangles	PQN	and
RQN.

As	the	formula	for	the	area	of	a	triangle	is	 ,	the	area	of	triangle
PQR	is	 	and	of	triangles	PQN	and	RQN	are	 	and	

	respectively.

Then	area	of	triangle	PQR	=	area	of	triangle	PQN	+	area	of	triangle
RQN	so

Then,	multiplying	both	sides	of	the	equation	by	2,	and	dividing	both
sides	by	rp	gives

Noticing	that	 	and	 	the	formula	becomes

This	equation	is	usually	written	as

Although	Equation	1	has	been	proved	only	for	angles	A	and	B,	which
are	acute,	the	result	is	actually	true	for	all	angles	A	and	B,	positive	and
negative.	From	now	on	you	may	assume	this	result.

You	can	use	a	similar	method	based	on	the	difference	of	two	areas	to
derive	a	formula	for	sin(A	−	B)	from	Figure	9.2.	(You	are	asked	to



derive	this	formula	in	Exercise	9.1,	question	15.)

Figure	9.2

You	would	then	get	the	formula

Nugget

You	can	use	these	formulae	to	work	out	the	exact	value	of	some	other	angles.
For	example,	you	can	find	sin	75°	exactly	by	writing	it	as	sin	(45°	+	30°)	=	sin
45°	cos	30°	+	cos	45°	sin	30°.

9.3		Formulae	for	cos(A	+	B)	and	cos(A	−	B)
Suppose	that	angles	A	and	B	are	both	between	0	and	90°.	In	Figure
9.3,	which	is	the	same	as	Figure	9.1,	the	angles	A	and	B	are	drawn	at
the	point	Q,	and	the	line	QN	is	drawn	of	length	h.	PR	is	perpendicular
to	QN,	and	meets	QP	and	QR	at	P	and	R	respectively.

Let	the	lengths	of	PQ,	QR,	PN	and	NR	be	r,	p,	x	and	y	respectively,	as
shown	in	the	diagram.



Figure	9.3

The	strategy	in	this	case	is	to	use	the	cosine	formula	to	derive	an
expression	for	cos(A	+	B).

In	triangle	PQR

so	simplifying,	and	using	Pythagoras’s	theorem,

After	dividing	both	sides	by	2rp	you	obtain

Noticing	that	 ,	the	formula	becomes

You	can	use	a	similar	method	based	on	Figure	9.2	to	derive	a	formula
for	cos(A	−	B).	(You	are	asked	to	derive	this	formula	in	Exercise	9.1,
question	16.)

You	would	then	get	the	formula

9.4		Formulae	for	tan(A	+	B)	and	tan(A	−	B)
You	can	use	Equations	1	and	3	to	derive	a	formula	for	tan(A	+	B),
starting	from	the	formula



Now	divide	the	numerator	and	denominator	of	this	fraction	by	cos	A
cos	B.	Then

As	with	the	formulae	for	sin(A	−	B)	and	cos(A	−	B),	you	can	use	a
similar	method	to	derive	a	formula	for	tan(A	−	B).	(You	are	asked	to
derive	this	formula	in	Exercise	9.1,	question	17.)

You	would	then	get	the	formula

9.5		Worked	examples

Example	9.1

Using	the	values	of	the	sines	and	cosines	of	30°	and	45°	in	Section	2.4,	find	the
exact	values	of	sin	75°	and	cos	15°.



To	find	cos	15°,	you	could	either	note	that	cos	θ°	=	sin(90	−	θ)°,	and	therefore
cos	15°	=	sin	75°,	or	you	could	say	that

Example	9.2

Let	the	angles	α	and	β	be	acute,	such	that	cos	α	=	0.6	and	cos	β	=	0.8.	Calculate
the	exact	values	of	sin(α	+	β)	and	cos(α	+	β).

First	you	need	the	values	of	sin	α	and	sin	β.	You	can	do	this	by	using
Pythagoras’s	theorem	in	the	form

As	α	is	acute,	sin	α	is	positive,	so	sin	α	=	0.8.

Similarly,	as	β	is	acute,



Then,	using	the	formula	sin(A	+	B)	=	sin	A	cos	B	+	cos	A	sin	B,

So	sin(α	+	β)	=	1	and	cos(α	+	β)	=	0.	

Example	9.3

Use	the	formula	for	cos(A	−	B)	to	show	that	cos(270	−	θ)°	=	−sin	θ°.

Put	A	=	270	and	B	=	θ.

Exercise	9.1

			1			If	cos	A	=	0.2	and	cos	B	=	0.5,	and	angles	A	and	B	are	acute,	find	the	values
of	sin(A	+	B)	and	cos(A	+	B).

			2			Use	the	exact	values	of	sine	and	cosine	of	30°	and	45°	to	find	the	exact
values	of	sin	15°	and	cos	75°.

			3			Use	the	formula	for	sin(A	−	B)	to	show	that

			4			Calculate	the	value	of	sin(A	−	B)	when	cos	A	=	0.309	and	sin	B	=	0.23,
given	that	angle	A	is	acute	and	angle	B	is	obtuse.



			5			Let	sin	A	=	0.71	and	cos	B	=	0.32	where	neither	A	nor	B	is	a	first	quadrant
angle.	Find	sin(A	+	B)	and	tan(A	+	B).

			6			Use	the	formula	for	tan(A	+	B)	to	find	the	exact	value,	in	terms	of	 	and	
,	of	tan	75°.

			7			Find	tan(A	+	B)	and	tan(A	−	B)	given	that	tan	A	=	1.2	and	tan	B	=	0.4.

			8			By	using	the	formula	for	tan(A	−	B),	prove	that

			9			Find	the	value	of	sin	52°	cos	18°	−	cos	52°	sin	18°.

	10			Find	the	value	of	cos	73°	cos	12°	+	sin	73°	sin	12°.

	11			Find	the	value	of	 .

	12			Find	the	value	of	 .

	13			Prove	that	 .

	14			Prove	that	 .

	15			Use	the	method	of	Section	9.2	to	prove	that

	16			Use	the	method	of	Section	9.3	to	prove	that

	17			Use	the	method	of	Section	9.4	to	prove	that



9.6		Multiple	angle	formulae
From	Equations	1,	3	and	5	you	can	deduce	other	important	formulae.

In	the	formula	sin(A	+	B)	=	sin	A	cos	B	+	cos	A	sin	B	put	B	=	A.

You	may	sometimes	need	to	use	this	formula	with	2A	replaced	by	θ.

Then	you	obtain

Equations	7	and	8	are	really	the	same	formula.	Use	whichever	form	is
more	convenient	for	the	problem	in	hand.

Nugget

Equation	7	is	sometimes	called	a	double-angle	formula	and	Equation	8	is	a	half-
angle	formula.	Both	equations	are	so	easily	derived	from	Equation	1	that	you
may	find	it	easier	to	derive	them	than	learn	them.

Again,	if	you	put	B	=	A	in	the	formula

which	simplifies	to

Note	the	way	of	writing	cos	A	×	cos	A	or	(cos	A)2	as	cos2A.	This	is
used	for	positive	powers,	but	is	not	usually	used	for	writing	powers
such	as	(cos	A)−1	because	the	notation	cos−1	x	is	reserved	for	the	angle



whose	cosine	is	x.

You	can	put	Equation	9	into	other	forms	using	Pythagoras’s	theorem,
sin2	A	+	cos2	A	=	1.	Writing	sin2	A	=	1	−	cos2	A	in	Equation	9	you
obtain

On	the	other	hand,	if	you	put	cos2	A	=	1	−	sin2	A	in	Equation	9	you	get

You	can	also	write	Equations	10	and	11	in	the	forms

If	you	write	Equations	9,	10	and	11	in	half-angle	form,	you	get

If	you	put	B	=	A	in	the	formula



In	half-angle	form,	this	is

Exercise	9.2

			1			Given	that	 ,	and	that	A	is	acute,	find	the	values	of	sin	2A,	cos	2A	and
tan	2A.

			2			Given	that	 ,	and	that	A	is	obtuse,	find	the	values	of	sin	2A,	cos	2A
and	tan	2A.

			3			Find	sin2θ,	cos2θ	and	tan2θ	when	sin	θ	=	0.25	and	θ	is	acute.

			4			Given	the	values	of	sin	45°	and	cos	45°,	use	the	formulae	of	the	previous
sections	to	calculate	sin	90°	and	cos	90°.

			5			Given	that	cos	B	=	0.66,	and	that	B	is	acute,	find	the	values	of	sin	2B	and
cos	2B.

			6			Given	that	cos	B	=	0.66,	and	that	B	is	not	acute,	find	the	values	of	sin	2B
and	cos	2B.

			7			Find	the	values	of	2	sin	36°	cos	36°	and	2	cos2	36°	−	1.

			8			Given	that	 ,	find	the	two	possible	values	of	tan	A.

			9			Prove	that	 	and	 .



	10			Given	that	 ,	find	 	and	 .

	11			Given	that	cos	2θ	=	0.28,	find	sin	θ.

	12			Find	the	value	of	 .

9.7		Identities
It	is	often	extremely	useful	to	be	able	to	simplify	a	trigonometric
expression,	or	to	be	able	to	prove	that	two	expressions	are	equal	for	all
possible	values	of	the	angle	or	angles	involved.

An	equation	that	is	true	for	all	possible	values	of	the	angle	or	angles	is
called	an	identity.

For	example,	sin(A	−	B)	=	sin	A	cos	B	−	cos	A	sin	B	is	an	example	of
an	identity,	as	are	all	the	formulae	given	in	Equations	1	to	18.	So	also
is	 	but	the	latter	needs	to	be	proved	to	be	an
identity.

To	prove	that	a	trigonometric	equation	is	an	identity,	you	can	choose
one	of	two	possible	methods.

Method	1	Start	with	the	side	of	the	identity	you	believe	to	be	the
more	complicated,	and	manipulate	it,	using	various	formulae
including	those	in	Equations	1	to	18,	until	you	arrive	at	the	other	side.

Method	2	If	you	do	not	see	how	to	proceed	with	Method	1,	then	it
may	help	to	take	the	right-hand	side	from	the	left-hand	side	and	to
prove	that	the	result	is	zero.

Example	9.4

Prove	the	identity	 .



The	more	complicated	side	is	the	right-hand	side,	so	the	strategy	will	be	to	use
Method	1	and	to	prove	that	this	is	equal	to	the	left-hand	side.

In	the	work	which	follows,	LHS	will	be	used	to	denote	the	left-hand	side	of	an
equation	and	RHS	the	right-hand	side.

Now	use	Pythagoras’s	theorem,	and	Equation	8.	Then

As	RHS	=	LHS,	the	identity	is	true.	

Example	9.5

Prove	the	identity	 .

It	is	not	clear	which	side	is	the	more	complicated,	so	use	Method	2.	The
advantage	with	Method	2	is	that	there	is	then	an	obvious	way	to	proceed,	that	is
change	the	resulting	expression	for	LHS	−	RHS	into	a	single	fraction.

The	last	step	follows	from	Pythagoras’s	theorem,



Since	RHS	=	LHS,	the	identity	is	true.	

Example	9.6

Prove	the	identity	cos4	ϕ	−	sin4	ϕ	=	cos2ϕ.

Starting	from	the	left-hand	side,	and	using	Method	1,

Equation	9	and	Pythagoras’s	theorem	are	used	in	the	second	step	of	the
argument.

As	RHS	=	LHS,	the	identity	is	true.	

You	must	be	careful	not	to	use	an	illogical	argument	when	proving	identities.
Here	is	an	example	of	an	illogical	argument.

Example	9.7

Prove	that	2	=	3.

Adding	the	left-hand	sides	and	right-hand	sides	of	these	equations	gives

As	this	is	true,	the	original	statement	is	true,	so	2	=	3.	

This	is	obviously	absurd,	so	the	argument	itself	must	be	invalid.	Nevertheless,
many	students	use	just	this	argument	when	attempting	to	prove	that	something	is
true.	Beware!	However,	if	you	stick	to	the	arguments	involved	with	Methods	1
and	2,	you	will	be	safe.



Exercise	9.3

In	questions	1	to	7,	prove	the	given	identities.

			1			sin(A	+	B)	+	sin(A	−	B)	=	2	sin	A	cos	B

			2			cos(A	+	B)	+	cos(A	−	B)	=	2	cos	A	cos	B

			

			4			sin	3A	=	3	sin	A	−	4	sin3	A

			

			

			

9.8		More	trigonometric	equations
Sometimes	you	can	use	some	of	the	formulae	on	earlier	pages	to	help
you	to	solve	equations.	Here	are	some	examples.

Example	9.8

Solve	the	equation	cos	2θ°	=	sin	θ°	giving	all	solutions	between	−180	and	180
inclusive.

You	can	replace	the	cos	2θ°	term	by	1	−	2	sin2	θ°	(Equation	11)	and	you	will
then	have	an	equation	in	sin	θ.



Using	the	methods	of	Section	6.2,	you	can	solve	these	equations	for	θ.

When	sin	θ°	=	0.5,	θ	=	30	or	150,	and	when	sin	θ°	=	−1,	θ	=	−90.

Therefore	θ	=	−90,	30	or	150.	

Nugget

Make	sure	that	you	find	all	of	the	solutions	in	the	given	interval	–	it	is	a	very
easy	to	miss	some.	You	can	use	a	graphics	calculator	to	find	how	many	solutions
you	need.	For	example,	to	find	the	number	of	solutions	for	cos	2θ°	=	sin	θ°	cos	θ
°	in	the	interval	−180°	to	180°	you	can	draw	the	graphs	of	y	=	cos	2θ°	and	y	=
sin	θ°	cos	θ°	on	your	calculator	and	then	count	the	number	of	points	of
intersection	in	the	required	interval.

Exercise	9.4

In	questions	1	to	10,	solve	the	given	equation	for	θ,	giving	your	answers	in	the
interval	from	−180	to	180.

			1			sin	2θ°	=	cos	θ°

			

			3			cos	2θ°	=	sin	θ°	cos	θ°

			4			4	sin	θ°	cos	θ°	=	1

			5			1	−	2	sin2	θ°	=	2	sin	θ°	cos	θ°



			

			7			cos	2θ°	=	cos	θ°

			8			3	sin	θ°	=	4	sin3	θ°

			9			4	cos3θ°	=	3	cos	θ°

	10			2	tan	θ°	=	1	−	tan2	θ°

Key	ideas

		

		

		

		

		

		



10
The	forms	a	sin	x	and	b	cos	x

In	this	chapter	you	will	learn:

•		that	the	graph	of	y	=	a	sin	x	+	b	cos	x	is	like	the	graph	of	sine	or
cosine

•		how	to	express	a	sin	x	+	b	cos	x	in	the	form	R	sin(x	+	α),	and	find	R
and	α	in	terms	of	a	and	b

•		how	to	use	the	form	R	sin(x	+	α)	in	applications.



Figure	10.1

10.1		Introduction
If	you	have	a	graphics	calculator	available,	try	drawing	the	graphs	of
functions	of	the	form	y	=	2	sin	x	+	3	cos	x	and	y	=	3	sin	x	−	4	cos	x.
These	two	graphs	are	shown	in	Figure	10.1.

Both	graphs	have	the	characteristic	wave	properties	of	the	sine	and
cosine	functions.	They	have	been	enlarged	in	the	y-direction,	by
different	amounts,	and	translated	in	the	x-direction,	by	different
amounts.

This	suggests	that	you	may	be	able	to	write	both	of	these	functions	in
the	form

for	suitable	values	of	the	constants	R	and	α,	where	the	value	of	R	is
positive.

This	idea	is	pursued	in	the	next	section.



10.2		The	form	y	=	a	sin	x	+	b	cos	x
If	you	try	to	choose	the	values	of	R	and	α	so	that	the	function	y	=	R
sin(x	+	α)	is	identical	with	y	=	a	sin	x	+	b	cos	x,	you	can	start	by
expanding	sin(x	+	α)	so	that

If	this	is	the	same	function	as	y	=	a	sin	x	+	b	cos	x	for	all	values	of	x
then

You	can	interpret	these	two	equations	by	thinking	of	a	and	b	as	the
adjacent	and	opposite	of	a	triangle	which	has	R	as	its	hypotenuse.

Alternatively,	if	you	square	these	equations	and	add	the	two	equations,
you	get

The	value	of	R	is	always	chosen	to	be	positive.

These	three	equations,



enable	you	to	determine	the	values	of	R	and	α.

Example	10.1

Express	2	sin	x°	+	3	cos	x°	in	the	form	R	sin(x	+	α)°,	where	the	angles	are	in
degrees.

For	the	function	2	sin	x°	+	3	cos	x°,	a	=	2	and	b	=	3.	From	Equation	1,	 .
Using	this	value	in	Equation	2,

These	equations,	in	which	cos	α°	and	sin	α°	are	both	positive,	show	that	α°	is	a
first-quadrant	angle,	and	that

Note	that	the	symbol	‘≡’	is	used	to	mean	‘identically	equal	to’.

Nugget

You	can	verify	you	are	right	by	graphing	both	forms	of	the	function	(2sin	x°	+
3cos	x°	and	Rsin(x	+	a)°)	and	checking	that	the	two	curves	coincide.

Example	10.2



Express	3	sin	x	−	4	cos	x	in	the	form	R	sin(x	+	α)	with	α	in	radians.

For	the	function	3	sin	x	−	4	cos	x,	a	=	3	and	b	=	−4.	From	Equation	1,	R	=	5.
Using	this	value	in	Equation	2,

These	equations,	in	which	cos	α	is	positive	and	sin	α	is	negative,	show	that	α	is	a
fourth-quadrant	angle,	and	that:

Example	10.3

Express	sin	x°	−	2	cos	x°	in	the	form	R	cos(x°	+	α°),	where	R	>	0.

This	is	a	different	form	from	the	original,	but	it	is	not	difficult	to	adapt	the
methods	from	the	beginning	of	this	section.

Comparing	the	expanded	form	R	cos	x°	cos	α°	−	R	sin	x°	sin	α°	with	the	form	sin
x°	−	2	cos	x°,	gives

Squaring	and	adding,	as	before,	gives

Thus,	as	cos	α°	and	sin	α°	are	both	negative,	α°	is	a	third-quadrant	angle,	and



Exercise	10.1

In	questions	1	to	6,	write	the	given	function	in	the	form	R	sin(x	+	α)°.

			1			sin	x°	+	cos	x°

			2			5	sin	x°	+	12	cos	x°

			3			2	cos	x°	+	5	sin	x°

			4			cos	x°	−	sin	x°

			5			sin	x°	−	3	cos	x°

			6			3	cos	x°	−	sin	x°

In	questions	7	to	9,	give	α	in	radians.

			7			Write	the	function	sin	x	+	cos	x	in	the	form	R	cos(x	+	α).

			8			Write	the	function	sin	x	+	cos	x	in	the	form	R	cos(x	−	α).

			9			Write	the	function	sin	x	+	cos	x	in	the	form	R	sin(x	−	α).

	10			By	writing	the	functions	7	cos	x	+	sin	x	and	5	cos	x	−	5	sin	x	in	the	form	R
sin(x	+	α),	show	that	they	have	the	same	maximum	value.

10.3		Using	the	alternative	form
There	are	two	main	advantages	in	writing	something	like	sin	x	+	cos	x
in	any	one	of	the	four	forms	R	sin(x	+	α),	R	sin(x	−	α),	R	cos(x	+	α)
and	R	cos(x	−	α).

It	enables	you	to	solve	equations	easily,	and	to	find	the	maximum	and
minimum	values	of	the	function	without	further	work.



Nugget

The	sine	and	cosine	functions	oscillate	between	−1	and	1.	Therefore	the	forms	R
sin(x	±	α)	and	R	cos(x	±	α)	oscillate	between	−R	and	R.

Example	10.4

Solve	the	equation	5	sin	x°	+	8	cos	x°	=	3	giving	all	the	solutions	between	0	and
360.

Using	the	method	of	Section	10.2,	you	can	write	5	sin	x°	+	8	cos	x°	as

The	equation	then	becomes

Let	z°	=	x°	+	57.99°.	Then	you	require	the	solutions	of	 	for	values	of	z°
between	57.99	and	417.99.

The	principal	angle	is	18.54°,	and	the	other	angle	between	0	and	360	is	the
second	quadrant	angle	(see	Section	5.2),	180°	−	18.54°	=	161.46°.

You	now	have	to	add	360	to	the	first	of	these	to	find	the	value	of	z°	in	the
required	interval.	Then	the	two	solutions	for	z°	are

You	find	the	solutions	for	x	by	substituting	z°	=	x°	+	57.99,	and	you	find	that

Thus	the	solutions	are	103.47°	and	320.55°.	



Example	10.5

Find	the	maximum	and	minimum	values	of	sin	x	−	3	cos	x	and	the	values	of	x,	in
radians,	for	which	they	occur.

Writing	sin	x	−	3	cos	x	in	the	form	R	sin(x	−	α)	using	the	methods	in	Section	10.2
gives

The	question	now	becomes:	find	the	maximum	and	minimum	values	of	
	and	the	values	of	x	for	which	they	occur.

You	know	that	the	maximum	of	a	sine	function	is	1	and	that	it	occurs	when	the
angle	is	 .

Thus	the	maximum	value	of	 ,	and	this	occurs	when	
,	that	is	when	x	=	2.820.

Similarly	the	minimum	value	of	a	sine	function	is	−1,	and	this	occurs	when	the
angle	is	 .

Thus	the	minimum	value	of	 ,	and	this	occurs	when	
,	that	is,	when	x	=	5.961.	

Example	10.6

Solve	the	equation	3	cos	2x°	−	4	sin	2x°	=	2	giving	all	solutions	in	the	interval
−180	to	180.

Begin	by	writing	y	=	2x:	the	equation	becomes

with	solutions	for	y	needed	in	the	interval	−360	to	360.

Writing	3	cos	y°	−	4	sin	y°	in	the	form	R	cos(y	+	α)°	using	the	methods	in



Section	10.2	gives

Solving	the	equation	5	cos(y	+	53.13)°	=	2	gives

The	principal	angle	is	66.42°.

Using	the	methods	of	Section	5.3,	the	angles	between	−413.13	and	413.13
satisfying	this	equation	are

Finally,	dividing	by	2	as	y°	=	2x°	gives

Note	that	the	decision	about	whether	to	round	up	or	to	round	down	the	final
figure	on	dividing	by	2	was	made	by	keeping	more	significant	figures	on	the
calculator.	

Example	10.7

Show	that	the	equation	2	sin	x	+	3	cos	x	=	4	has	no	solutions.

You	can	write	this	equation	in	the	form

for	a	suitable	value	of	α.

You	can	then	rewrite	the	equation	in	the	form



As	 ,	there	is	no	solution	to	this	equation.	

Exercise	10.2

In	questions	1	to	6,	solve	the	given	equation	for	θ°,	giving	the	value	of	θ°	in	the
interval	0	to	360	inclusive.

			1			sin	θ°	+	cos	θ°	=	1

			

			3			3	cos	θ°	−	2	sin	θ°	=	1

			4			12	sin	θ°	−	5	cos	θ°	=	5

			5			−8	cos	θ°	−	7	sin	θ°	=	5

			6			cos	2θ°	−	sin	2θ°	=	−1

In	questions	7	to	12,	solve	the	given	equation	for	θ°,	giving	the	value	of	θ°	in	the
interval	−180	to	180	inclusive.

			7			cos	θ°	+	sin	θ°	=	−1

			

			9			3	cos	θ°	−	sin	θ°	=	2

	10			−2	cos	θ°	−	3	sin	θ°	=	3

	11			6	sin	θ°	−	7	cos	θ°	=	−8

	

In	questions	13	to	18,	find	the	maximum	and	minimum	values	of	the	function
and	the	values	of	x°	in	the	interval	between	−180	and	180	inclusive,	for	which
they	occur.



	13			y	=	2	sin	x°	−	cos	x°

	14			y	=	3	cos	x°	−	4	sin	x°

	

	16			y	=	cos	2x°	−	sin	2x°

	17			y	=	3	sin	x°	+	4	cos	x°	+	2

	

Key	ideas

		

•		Using	the	forms	R	sin(x	±	α)	or	R	cos(x	±	α)	enables	you	to	solve
equations	in	the	form

•		To	solve	an	equation	in	the	form	a	sinx	+	b	cosx	=	c,	rewrite	a	sinx
+	b	cosx	in	the	form	R	sin(x	±	α)	or	R	cos(x	±	α)	then	solve	the
equation	 	or	

•		The	maximum	value	of	the	function	R	sin(x	±	α)	is	R

				The	minimum	value	of	the	function	R	sin(x	±	α)	is	−R



11
The	factor	formulae

In	this	chapter	you	will	learn:

•		how	to	express	the	sum	and	difference	of	two	sines	or	cosines	in	an
alternative	form	as	a	product

•		how	to	do	this	process	in	reverse
•		how	to	use	both	processes	in	solving	problems.



11.1		The	first	set	of	factor	formulae
In	Exercise	9.3,	question	1,	you	were	asked	to	prove	the	identity

The	proof	of	this	identity	relies	on	starting	with	the	left-hand	side	and
expanding	the	terms	using	Equations	1	and	2	of	Chapter	9	to	get

Adding	the	left-hand	sides	of	these	two	equations	you	obtain	the
required	result

which	will	be	used	in	the	rewritten	form

This	is	the	first	formula	of	its	type.	These	formulae	enable	you	to
move	from	a	product	of	sines	and	cosines	to	a	sum	or	difference	of
sines	and	cosines	equal	to	it.

Example	11.1

Use	Equation	1	to	simplify	2	sin	30°	cos	60°.



In	the	middle	of	the	example,	the	fact	that	sin(−θ)	=	−sin	θ	for	any
angle	θ	was	used	to	change	sin(−30)°	to	−sin	30°.

If	you	subtract	the	equations

If	you	had	used	Equation	2	to	solve	Example	11.1,	you	would	say

Two	other	formulae	come	from	the	equivalent	formulae	for	cos(A	+	B)
and	cos	(A	−	B),

First	adding,	and	then	subtracting,	these	equations	gives

When	you	rewrite	these	equations	you	have

Note	the	form	of	these	four	equations,	which	are	gathered	together	for
convenience.



Nugget

These	formulae	are	often	remembered	as:

Note	the	following	points.

•		In	Equations	1	and	2,	it	is	important	that	the	‘difference’	is	found	by
subtracting	B	from	A.

•		In	Equations	3	and	4,	it	is	not	important	whether	you	take	the
difference	as	A	−	B	or	as	B	−	A;	the	equation	cos(−θ)	=	cos	θ	for	all
angles	θ	ensures	that	cos(B	−	A)	=	cos(A	−	B).

•		The	order	of	the	right-hand	side	in	Equation	4	is	different	from	the
other	formulae.

Example	11.2

Express	sin	5θ	cos	3θ	as	the	sum	of	two	trigonometric	ratios.

Using	Equation	1,	2	sin	A	cos	B	=	sin(A	+	B)	+	sin(A	−	B),	gives



Example	11.3

Change	sin	70°	sin	20°	into	a	sum.

Using	Equation	4,	2	sin	A	sin	B	=	cos(A	−	B)	−	cos(A	+	B),	gives

Exercise	11.1

In	questions	1	to	8,	express	the	given	expression	as	the	sum	or	difference	of	two
trigonometric	ratios.

			1			sin	3θ	cos	θ

			2			sin	35°	cos	45°

			3			cos	50°	cos	30°

			4			cos	5θ	sin	3θ

			5			cos(C	+	2D)	cos(2C	+	D)

			6			cos	60°	sin	30°

			7			2	sin	3A	sin	A

			8			cos(3C	+	5D)	sin(3C	−	5D)

			9			In	Equation	1,	put	A	=	90	−	C	and	B	=	90	−	D	and	simplify	both	sides	of	the
resulting	identity.	What	equation	results?



	10			In	Equation	1,	put	A	=	90	−	C	and	simplify	both	sides	of	the	resulting
identity.	What	equation	results?

11.2		The	second	set	of	factor	formulae
The	second	set	of	factor	formulae	are	really	a	rehash	of	the	first	set
that	enable	you	to	work	the	other	way	round,	that	is	to	write	the	sum
or	difference	of	two	sines	or	two	cosines	as	a	product	of	sines	and
cosines.

Starting	from

write	it	the	other	way	round	as

Put	A	+	B	=	C	and	A	−	B	=	D.

Then	the	identity	becomes

If	you	can	write	A	and	B	in	terms	of	C	and	D	you	will	obtain	a
formula	for	the	sum	of	two	sines.

From	the	equations

you	can	use	simultaneous	equations	to	deduce	that



You	can	deduce	a	second	formula	in	a	similar	way	from	Equation	2,
by	a	similar	method.

Equation	2	then	becomes

Similar	methods	applied	to	Equations	3	and	4	give

Nugget

Equations	5	to	8	are	often	remembered	as:

Example	11.4

Transform	sin	25°	+	sin	18°	into	a	product.

Example	11.5



Change	cos	3θ	−	cos	7θ	into	a	product.

Example	11.6

Solve	the	equation	sin	θ°	−	sin	3θ°	=	0,	giving	solutions	in	the	interval	−180	to
180.

The	solutions	of	cos	2θ°	=	0	are	−135°,	−45°,	45°,	135°	and	the	solutions	of	sin	θ
°	=	0	are	−180°,	0°,	180°.

Therefore	the	solutions	of	the	original	equation	are

You	could	also	have	expanded	sin	3θ	in	the	form	3	sin	θ	−	4	sin3θ	and	then
solved	the	equation	4	sin3θ	−	2	sin	θ	=	0	to	get	the	same	result.

Example	11.7

Prove	that	if	A	+	B	+	C	=	180,	then



As	the	LHS	=	RHS,	the	identity	is	true.	

Notice	how	in	Example	11.7,	the	fact	that	cos(90	−	θ)°	=	sin	θ°	and	sin(90	−	θ)°
=	cos	θ°	was	used	in	the	forms

Exercise	11.2

In	questions	1	to	6,	express	the	given	sum	or	difference	as	the	product	of	two
trigonometric	ratios.

			1			sin	4	A	+	sin	2	A

			2			sin	5	A	−	sin	A

			3			cos	4θ	−	cos	2θ



			4			cos	A	−	cos	5	A

			5			cos	47°	+	cos	35°

			6			sin	49°	−	sin	23°

In	questions	7	to	10,	use	the	factor	formulae	to	simplify	the	given	expressions.

			

			

			

	

In	questions	11	to	14,	use	the	factor	formulae	to	solve	the	following	equations,
giving	all	solutions	in	the	interval	0	to	360.

	11			cos	θ°	−	cos	2θ°	=	0

	12			sin	θ°	+	sin	2θ°	=	0

	13			sin	θ°	+	sin	2θ°	+	sin	3θ°	=	0

	14			cos	θ°	+	2	cos	2θ°	+	cos	3θ°	=	0

In	questions	15	to	17,	you	are	given	that	A	+	B	+	C	=	180°.	Prove	that	each	of
the	following	results	is	true.

	

	

	



Key	ideas

•		You	can	use	the	factor	formulae	to	express	the	sum	or	difference	of	two	sines
or	two	cosines	as	a	product	of	sines	and	cosines	and	vice	versa.

•		To	write	a	product	as	the	sum	or	difference	of	two	sines	or	two	cosines	use	the
relationships:

•		To	write	the	sum	or	difference	of	two	sines	or	two	cosines	as	a	product	use	the
relationships:

•
		



12
Circles	related	to	triangles

In	this	chapter	you	will	learn:

•		that	the	circumcircle	is	the	circle	which	passes	through	the	vertices
of	a	triangle

•		that	the	incircle	and	the	three	ecircles	all	touch	the	three	sides	of	a
triangle

•		how	to	calculate	the	radii	of	these	circles	from	information	about
the	triangle.



12.1		The	circumcircle
The	circumcircle	of	a	triangle	ABC	(see	Figure	12.1)	is	the	circle	that
passes	through	each	of	the	vertices.	The	centre	of	the	circumcircle	will
be	denoted	by	O	and	its	radius	will	be	denoted	by	R.

Figure	12.1

To	calculate	the	radius	R	of	the	circumcircle,	drop	the	perpendicular
from	O	on	to	the	side	BC	to	meet	BC	at	N	(see	below).

Figure	12.2

As	BOC	is	an	isosceles	triangle,	because	two	of	its	sides	are	R,	the
line	ON	bisects	the	base.	Therefore	 .



In	addition,	angle	BOC,	the	angle	at	the	centre	of	the	circle	standing
on	the	arc	BC,	is	twice	the	angle	BAC,	which	stands	on	the	same	arc.
Thus	angle	BOC	=	2A,	so	angle	BON	=	A.

Therefore,	in	triangle	BON,

You	will	recognize	that	the	right-hand	side	of	this	formula	for	R	also
occurs	in	the	sine	formula.

Therefore

Nugget

Equation	1,	which	enables	you	to	calculate	the	radius	R	of	the	circumcircle,	is
what	some	people	understand	by	the	sine	formula	for	a	triangle,	rather	than	the
shorter	version	in	Section	6.3.

Note	that	the	equation	 	would	itself	give	you	a	proof	of	the	sine
formula	for	the	triangle,	for,	by	symmetry,	the	radius	of	the
circumcircle	must	be	a	property	of	the	triangle	as	a	whole,	and	not
‘biased’	towards	one	particular	vertex.	Therefore,	if	you	had	started
with	another	vertex,	you	would	obtain	the	formulae	 .

Example	12.1



Find	the	radius	of	the	circumcircle	of	the	triangle	with	sides	of	length	4	cm,	5	cm
and	6	cm.

Let	a	=	4,	b	=	5	and	c	=	6.	Then	calculate	an	angle	of	the	triangle,	say	the	largest
angle,	C,	using	the	cosine	formula.	From	the	value	of	cos	C,	work	out	the	value
of	sin	C,	and	then	use	Equation	1	to	find	R.

Using	the	cosine	formula,	c2	=	a2	+	b2	−2abcosC,

which	reduces	to	40cosC	=	5

Using	sin2C	=	1−cos2C,

Finally,	using	the	full	version	of	the	sine	formula,	Equation	1,

Thus	the	radius	R	of	the	circumcircle	is	

Example	12.2

The	angles	A,	B	and	C	of	a	triangle	are	50°,	60°	and	70°,	and	the	radius	R	of	its
circumcircle	is	10	cm.	Calculate	the	area	of	the	triangle.

The	standard	formula	for	the	area	Δ	of	a	triangle	is	 .



You	can	find	a	and	b	from	the	full	version	of	the	sine	formula.

Using	these	in	the	formula	 ,

The	area	of	the	triangle	is	opproximately	125	cm2.	

The	full	version	of	the	sine	formula,	 ,	can	often	be
used,	together	with	the	fact	that	the	sum	of	the	angles	of	a	triangle	is
180°,	to	prove	other	formulae	concerned	with	a	triangle.

As	an	example,	here	is	a	proof	of	the	cosine	formula	using	this
method.	This	proof	is	certainly	not	the	recommended	proof	of	the
cosine	formula,	but	it	does	have	the	advantage	that	you	do	not	need	to
consider	the	acute-angled	and	obtuse-angled	triangles	separately.

Example	12.3

Use	the	sine	formula	to	prove	the	cosine	formula

Starting	with	the	more	complicated	right-hand	side,	first	substitute	b	=	2R	sin	B°
and	c	=	2R	sin	C°.	Then	manipulate	the	right-hand	side,	keeping	symmetry	as
much	as	possible	and	using	A	+	B	+	C	=	180°	judiciously,	into	a	form	that	you
can	recognize	as	the	left-hand	side.

You	use	A	+	B	+	C	=	180°	by	substituting	B	+	C	=	180°	−	A	and	then	recognizing
that	sin(B	+	C)°	=	sin(180	−	A)°	=	sin	A°	and	that	cos(B	+	C)°	=	cos(180	−	A)°	=
−cos	A°.



								

Since	RHS	=	LHS,	the	identity	is	true.	

Exercise	12.1

			1			Calculate	the	radius	of	the	circumcircle	of	the	triangle	ABC	given	that	a	=
10	cm	and	that	angle	A	=	30°.

			2			Find	the	exact	radius	of	the	circumcircle	of	a	triangle	with	sides	2	cm,	3	cm
and	4	cm,	leaving	square	roots	in	your	answer.

			3			The	area	of	a	triangle	ABC	is	40	cm2	and	angles	B	and	C	are	50°	and	70°
respectively.	Find	the	radius	of	the	circumcircle.

			4			Prove	that	a	=	b	cos	C	+	c	cos	B.

			5			Let	 .	Prove	that	 .

12.2		The	incircle
The	incircle	of	a	triangle	ABC	(see	Figure	12.3)	is	the	circle	that
touches	each	of	the	sides	and	lies	inside	the	triangle.	The	centre	of	the
incircle	will	be	denoted	by	I	and	its	radius	will	be	denoted	by	r.



Figure	12.3

Nugget

Note	each	side	of	the	triangle	is	a	tangent	to	the	circle.

To	calculate	the	radius	r	of	the	incircle,	let	the	perpendiculars	from	I
drop	on	to	the	sides	of	the	triangle	ABC	to	meet	the	sides	at	L,	M	and
N.	Join	IA,	IB	and	IC	(see	below).

Figure	12.4

Using	the	formula	 	base	×	height,	the	area	of	the	triangle	BIC	is

Similarly,	the	areas	of	the	triangles	CIA	and	AIB	are

Adding	these	you	get	Δ,	the	area	of	the	triangle	ABC.	Therefore



Denoting	the	expression	 	by	s	(for	semi-perimeter),	you	find	that

Equation	2	is	used	to	derive	results	concerning	the	incircle	of	a
triangle.

Example	12.4

The	sides	of	a	triangle	are	4	cm,	5	cm	and	6	cm.	Calculate	the	radius	of	the
incircle.

Let	a	=	4,	b	=	5	and	c	=	6.	Use	the	cosine	formula	to	calculate	the	cosine	of	the
largest	angle,	C.	Then	find	sin	C,	and	use	this	in	the	formula	 	to	find	the
area	of	the	triangle.	Then	use	Equation	2.

Using	the	cosine	formula,	c2	=	a2	+	b2	−	2ab	cos	C,	gives

Using	sin2	C	=	1	−	cos2	C	shows	that

Using	the	formula	 	for	area,	you	obtain

For	this	triangle	 .



Therefore,	using	Equation	2,	rs	=	Δ

The	radius	of	the	incircle	is	

12.3		The	ecircles
The	ecircles	of	a	triangle	ABC	are	the	circles	that	touch	each	of	the
sides	and	lie	outside	the	circle.	There	are	three	such	circles.	Figure
12.5	shows	part	of	the	ecircle	opposite	the	vertex	A.

Figure	12.5

The	centre	of	the	ecircle	opposite	A	will	be	denoted	by	IA	and	its
radius	will	be	denoted	by	rA.

To	calculate	rA,	let	the	points	of	contact	of	the	ecircle	with	BC	and	the
lines	that	extend	from	triangle	ABC	be	P,	Q	and	R.



Let	PB	=	x	and	PC	=	y.	Then	RB	=	x	and	QC	=	y.

Then,	from	Figure	12.5,	x	+	y	=	a	and	as	tangents	from	an	external
point,	in	this	case	A,	are	equal

Solving	the	equations

simultaneously	gives

Notice	also	that	AR	=	c	+	x	=	c	+	(s	−	c)	=	s	and	that	AQ	=	s.

The	area	Δ	of	triangle	ABC	is

There	are	related	formulae	for	rB	and	rC.

12.4		Heron’s	formula:	the	area	of	a	triangle
A	number	of	the	formulae	in	the	previous	section	involved	the	semi-
perimeter	of	a	triangle,	that	is	s.	There	is	a	very	famous	formula,
called	Heron’s	formula,	involving	s	for	the	area	of	a	triangle.	It	is



The	method	of	establishing	Heron’s	formula	comes	from	first	using
the	cosine	formula	to	calculate	cos	A.	The	value	of	sin	A	is	then
calculated	using	sin2	A	=	1	−	cos2	A.	Finally	this	value	is	substituted	in
the	formula	for	area,	 .

Rearranging	the	cosine	formula	a2	=	b2	+	c2	−	2bc	cos	A	gives

Then	using	sin2	A	=	1	−	cos2	A	=	(1	+	cos	A)(1	−	cos	A),	you	obtain

Therefore

Equation	4	is	called	Heron’s	formula.



You	can	use	the	four	equations	established	in	this	chapter,	together
with	the	technique	used	in	Example	12.4,	to	establish	most	of	the
formulae	you	need.

Example	12.5

Find	the	radii	of	the	three	ecircles	of	the	triangle	with	sides	of	4	cm,	5	cm	and	6
cm.

Let	a	=	4,	b	=	5	and	c	=	6.

Then	

In	Equation	3,	Δ	=	rA(s	−	a),	use	Heron’s	formula,	Equation	4,	to	find	the	area	of
the	triangle.

Therefore,	from	Δ	=	rA(s	−	a)

The	radii	of	the	ecircles	are	

Notice	that	the	area	of	this	triangle	was	found	by	an	alternative	method	in
Example	12.4.

Example	12.6



Prove	that	

Use	the	cosine	formula	to	find	cos	A,	and	then	use	Equation	16	in	Chapter	9,	
,	to	find	 .

Rearranging	the	cosine	formula	a2	=	b2	+	c2	−	2bc	cos	A	gives

Exercise	12.2

			1			For	the	triangle	with	sides	of	length	2	cm,	3	cm	and	4	cm,	find	the	area	and
the	radii	of	the	incircle	and	the	three	ecircles.

			2			Find	the	radius	of	the	incircle	of	the	triangle	with	sides	3	cm	and	4	cm	with
an	angle	of	60°	between	them.

			3			Prove	that	rrArBrC	=	Δ2.



			4			Prove	that	

			5			Prove	that	

			6			In	Example	12.6	a	formula	for	 	is	derived.	Use	a	similar	method	to
derive	a	formula	for	 ,	and	then	use	both	of	them	to	find	a	formula	for	

.

			7			Prove	the	formula	

			8			Prove	that	

Key	ideas

•		The	circumcircle	of	a	triangle	is	the	circle	which	passes	through	each	of	the
vertices	of	the	triangle.

•		For	a	triangle	ABC	the	radius,	R,	of	the	circumcircle	is	given	by	the	formula:

•		The	area,	Δ,	of	a	triangle	ABC	is	given	by	the	formula:

•		The	incircle	of	a	triangle	lies	inside	the	triangle	and	touches	each	of	the	sides
of	the	triangle.

•		The	semi-perimeter,	s,	of	a	triangle	ABC	is	the	distance	equal	to	half	of	the
perimeter.

•		The	area,	Δ,	of	a	triangle	is	given	by	the	formula:	Δ	=	rs,	where	r,	is	the	radius
of	the	incircle	and	s	is	the	semi-perimeter	of	the	triangle.



•		The	ecircles	of	a	triangle	are	circles	which	touch	each	side	and	lie	outside	the
triangle.	A	triangle	has	three	ecircles.

•		The	area,	Δ,	of	a	triangle	ABC	is	given	by	the	formula:	Δ	=	rA(s	−	a),	where	rA
is	the	radius	of	the	ecircle	opposite	A	and	s,	is	the	semi-perimeter	of	the
triangle.

•		Heron’s	formula	for	the	area	of	a	triangle	ABC	is:
,	where	s	is	the	semi-perimeter	of	the	triangle.



13
General	solutions	of	equations

In	this	chapter	you	will	learn:

•		how	to	find	all	the	solutions	of	simple	trigonometric	equations
•		general	formulae	for	these	solutions.



13.1		The	equation	sin	θ	=	sin	α
In	earlier	chapters	you	have	always,	when	asked	to	solve	an	equation,
been	given	an	interval	such	as	−180	to	180	or	0	to	360	in	which	to
find	the	solutions.	In	this	chapter,	the	task	will	be	to	find	a	way	of
giving	all	solutions	of	a	trigonometric	equation,	not	just	those
solutions	confined	to	a	given	interval.

For	example,	if	you	are	given	the	equation	sin	θ°	=	0.6427…	you	can
immediately	look	up	the	corresponding	principal	angle,	in	this	case
40°.	You	can	therefore	replace	the	equation	sin	θ°	=	0.6427…	by	the
equation	sin	θ°	=	sin	40°	and	the	problem	of	finding	all	solutions	of
sin	θ°	=	0.6427…	by	finding	all	solutions	of	sin	θ°	=	sin	40°.

In	Section	5.2	you	saw	that,	if	40	is	a	solution,	then	180	−	40	=	140	is
also	a	solution,	and	that	you	can	add	any	whole	number	multiple	of
360	to	give	all	solutions.

Thus	all	solutions	of	sin	θ°	=	sin	40°	are

You	can	write	these	solutions	in	the	form

Notice	that	these	two	formulae	follow	a	pattern.	Starting	from	40	you
can	write	them,	in	ascending	order,	as



The	pattern	works	backwards	also,	so	all	solutions	fall	into	the	pattern

You	can	use	this	pattern	to	write	all	the	solutions	in	one	formula	as

where	(−1)n	takes	the	value	−1	when	n	is	odd	and	+1	when	n	is	even.

You	can	generalize	this	result	further.	If	you	solve	for	θ°	the	equation
sin	θ°	=	sin	α°	to	give	the	solutions	in	terms	of	α	you	would	obtain

Nugget

n	can	be	positive	or	negative.	When	n	=	0	the	formula	gives	the	principal	angle
(the	answer	from	your	calculator).

Notice	that	in	the	formula	180n	+	(−1)nα°	there	is	no	reason	why	α°
should	be	an	acute	angle.

If	the	original	angle	had	been	140,	the	formula

where	n	is	an	integer	gives	the	solutions



Therefore	the	formula	180n	+	(−1)nα°	where	n	is	an	integer	gives	you
all	solutions	of	the	equation	sin	θ°	=	sin	α°	provided	you	have	one
solution	α°.

In	radians,	the	same	formula	gives

as	the	solution	of	the	equation	sin	θ	=	sin	α.

Example	13.1

Find	all	the	solutions	in	degrees	of	the	equation	 .

The	principal	solution	of	the	equation	 	is	−30

Using	Equation	1,	all	solutions	are	180n	+	(−1)n(−30)	or	alternatively,	180n	−
(−1)n30	for	integer	n.	

Example	13.2

Find	all	solutions	in	radians	of	the	equation	 .

Let	 .	Then	the	equation	becomes	 .

The	principal	angle	is	 .	So	the	solution	of	the	equation	is



13.2		The	equation	cos	θ	=	cos	α
It	is	convenient	to	consider	the	equation	cos	θ°	=	0.7660…,	that	is	the
equation	cos	θ°	=	cos	40°.

Using	the	method	of	Section	5.3,	the	solutions	of	this	equation	are

You	can	write	these	solutions	in	the	form

The	pattern	for	these	solutions	is	easier	to	follow	than	that	for	the	sine
function.	It	is

You	can	generalize	this	further,	as	in	the	case	of	the	sine	function.	The
solution	of	the	equation	cos	θ°	=	cos	α°	is

Nugget

When	n	=	0	the	formula	gives	±	the	principal	angle	(the	answer	from	your
calculator).	Once	you	have	these	two	angles	you	just	need	to	add	multiples	of
360°	in	order	to	find	all	the	other	solutions.

In	radians,	the	same	formula	gives

as	the	solution	of	the	equation	cos	θ	=	cos	α.



13.3		The	equation	tan	θ	=	tan	α
Consider	the	equation	tan	θ°	=	tan	40°.

Using	the	method	of	Section	5.4,	the	solutions	of	this	equation	are

An	alternative	form	is

The	solution	of	the	equation	tan	θ°	=	tan	α°	is

Nugget

Remember	the	graph	of	y	=	tan	θ°	has	a	period	of	180°	and	so	once	you	have
found	the	principal	angle	from	your	calculator	you	need	to	add	or	subtract
multiples	of	180°	in	order	to	find	all	the	other	solutions.

In	radians,	the	same	formula	gives

as	the	solution	of	the	equation	tan	θ	=	tan	α.

Example	13.3

Find	the	general	solution	in	degrees	of	the	equation	 .

The	principal	angle	is	150°,	so	the	general	solution	is



Example	13.4

Find	the	general	solution	in	radians	of	the	equation	 .

Let	2x	=	y.	The	principal	angle	for	equation	 ,	so	the	general
solution	for	y	is

This	is	the	same	as	 	(n	is	an	integer).

Therefore,	as	 	(n	is	an	integer).	

Example	13.5

Solve	in	radians	the	equation	cos	2θ	=	cos	θ.

Using	Equation	4,

Taking	the	positive	sign	gives

and	the	negative	sign

Therefore	the	complete	solution	is	 	(n	is	an	integer).	

Notice	that	the	solution	given,	 	(n	is	an	integer),	includes,	when	n	is	a
multiple	of	three,	the	solution	obtained	by	taking	the	positive	sign.

Example	13.6



Solve	in	radians	the	equation	sin	3θ	=	sin	θ.

Using	Equation	1,

Taking	n	even,	and	writing	n	=	2m	gives

Taking	n	odd,	and	writing	n	=	2m	+	1	gives

Thus	the	complete	solution	is

Example	13.7

Solve	the	equation	cos	2θ°	=	sin	θ°	giving	all	solutions	in	degrees.

Use	the	fact	that	sin	θ°	=	cos(90	−	θ)°	to	rewrite	the	equation	as

Using	Equation	3,

Taking	the	positive	sign	gives

and	the	negative	sign

Thus	the	complete	solution	is



Exercise	13.1

In	questions	1	to	10	find	the	general	solution	in	degrees	of	the	given	equation.

			

			

			3			tan	θ°	=	−1

			

			5			cos	3θ°	=	−1

			

			7			tan	2θ°	=	tan	θ°

			8			cos	3θ°	=	cos	2θ°

			9			sin	3θ°	=	sin	θ°

	10			sin	3θ°	=	cos	θ°

In	questions	11	to	20	give	the	general	solution	in	radians	of	the	given	equation.

	

	12			cos	3θ	=	0

	

	



	

	

	17			tan	3θ	=	cot(−θ)

	18			cos	3θ	=	sin	2θ

	

	20			sin	2θ	=	−sin	θ

Key	ideas

•		The	general	solution	in	degrees	of	sin	θ°	=	sin	α°	is	θ°	=	180n	+	(−1)n	α°	(n	is
an	integer).

•		The	general	solution	in	radians	of	sin	θ	=	sin	α	is	θ	=	nπ	+	(−1)n	α	(n	is	an
integer).

•		The	general	solution	in	degrees	of	cos	θ°	=	cos	α°	is	θ°	=	360n	±α°	(n	is	an
integer).

•		The	general	solution	in	radians	of	cos	θ	=	cos	α	is	θ	=	2nπ	±α	(n	is	an	integer).

•		The	general	solution	in	degrees	of	tan	θ°	=	tan	α°	is	θ°	=	180n	+	α°	(n	is	an
integer).

•		The	general	solution	in	radians	of	tan	θ	=	tan	α	is	θ	=	nπ	+	α	(n	is	an	integer).



Glossary

			angle	of	depression	The	angle	of	depression	of	B	from	A,	where	B
is	below	A,	is	the	angle	θ	that	the	line	AB	makes	with	the
horizontal.

			angle	of	elevation	The	angle	of	elevation	of	B	from	A,	where	B	is
above	A,	is	the	angle	θ	that	the	line	AB	makes	with	the
horizontal.

			bearing	The	bearing	θ	of	B	from	A	is	the	angle	in	degrees	between
north	and	the	line	AB,	measured	clockwise	from	the	north.	See
figure	below.

			corresponding	angles	When	two	parallel	lines,	AB	and	CD,	are
traversed	by	a	line	XY,	the	marked	angles	in	the	figure	below	are



called	corresponding	angles,	and	are	equal.

			isosceles	triangle	An	isosceles	triangle	is	a	triangle	with	two	equal
sides.	In	the	figure	below,	AB	=	AC.

			kite	A	kite	is	a	quadrilateral	which	has	one	line	of	reflective
symmetry.	In	the	figure	below,	ABCD	is	a	kite	with	AC	as	its	axis
of	symmetry.

			periodic,	period	A	periodic	function	f(x)	is	a	function	with	the
property	that	there	exists	a	number	c	such	that	f(x)	=	f(x	+	c)	for
all	values	of	x.	The	smallest	such	value	of	c	is	called	the	period
of	the	function.

			Pythagoras’s	theorem	Pythagoras’s	theorem	states	that	in	a	right-
angled	triangle	with	sides	a,	b	and	c,	where	c	is	the	hypotenuse,
c2	=	a2	+	b2.



			rhombus	A	rhombus	is	a	quadrilateral	which	has	all	four	sides	equal
in	length.	In	a	rhombus,	the	diagonals	cut	at	right	angles,	and
bisect	each	other.

			similar	triangles	Two	triangles	which	have	equal	angles	are	similar.
The	sides	of	similar	triangles	are	proportional	to	each	other.
Triangles	ABC	and	XYZ	are	similar,	and	 .

			slant	height,	of	a	cone	The	slant	height	of	the	cone	is	the	length	of
the	sloping	edge	AB.



Summary	of	trigonometric	formulae

Relations	between	the	ratios

Pythagoras’s	equation

Relations	for	solving	equations

Solution	of	triangles

Compound	angles



Multiple	angles

Factor	formulae

General	solutions	of	equations

The	general	solution	in	degrees	of	the	equation	sin	θ°	=	sinα°	is

The	general	solution	in	radians	of	the	equation	sin	θ	=	sinα	is



The	general	solution	in	degrees	of	the	equation	cos	θ°	=	cos	α°	is

The	general	solution	in	radians	of	the	equation	cos	θ	=	cos	α	is

The	general	solution	in	degrees	of	the	equation	tan	θ°	=	tan	α°	is

The	general	solution	in	radians	of	the	equation	tan	θ	=	tan	α	is

Radians

Length	of	arc

Area	of	circular	sector

Radius	of	circumcircle

Radius	of	incircle

where	



Radius	of	ecircle

where	

Heron’s	formula	for	area	of	triangle

where	



Answers

Answers	involving	lengths	are	given	either	correct	to	three	significant
figures	or	to	three	decimal	places,	whichever	seems	more	appropriate.
Answers	for	angles	are	usually	given	correct	to	two	decimal	places.

Exercise	1.1	(Section	1.4)

			1			0.364

			2			0.577

			3			5729.578

			4			0.852

			5			1.881

			6			0.009

			7			18.88°

			8			63.43°

			9			80.72°

	10			0.01°

	11			45.00°

	12			60.00°

Exercise	1.2	(Section	1.6)

			1			8.36	m

			2			038.66°

			3			4.69	miles

			4			19.54	m



			5			126	m

			6			21.3	m

			7			53.01°,	36.99°

			8			144	m

			9			75.21°

Exercise	1.3	(Section	1.7)

			1			68.20°

			2			3.73	cm

			3			2.51	cm

			4			48.81°

			5			11.59	cm

			6			3.46	cm

			7			8.06	cm

			8			24.78°

			9			63.86°

	10			3.60	cm

Exercise	2.1	(Section	2.3)

			1			66.42°

			2			5.47	cm

			3			2.25	cm

			4			28.96°

			5			3.37	cm

			6			1.73	cm



			7			6.85	cm

			8			27.49°

			9			60.61°

	10			2.68	cm

	11			0.994,	0.111

	12			5.14	cm,	3.06	cm

	13			36.87°,	53.13°

	14			38.43°

	15			9.32	km

	16			4.82	cm

	17			2.87	cm

	18			7.19	km

	19			38.42°,	51.58°,	7.40	cm

Exercise	2.2	(Section	2.7)

			1			73.30°

			2			6.66	cm

			3			5.79	cm

			4			48.81°

			5			9.44	cm

			6			2.1	cm

			7			10.03	cm

			8			67.38°

			9			19.02°



	10			5.38	cm

	11			35.02°,	2.86	cm

	12			44.20°

	13			55.5	mm,	72.7	mm

	14			30.50°,	59.50°

	15			2.66	cm,	1.86	cm,	3.88	cm

	16			44.12°,	389.8	mm

	17			69.51°

	18			14.7	km,	10.3	km

	19			0.681	cm

	

	21			2.60	cm,	2.34	cm

	22			3.59°

	23			10.17	km,	11.70	km

	24			328.17°,	17.1	km

Exercise	2.3	(Section	2.8)

			1			10.05	cm

			2			4.61	cm

			3			145.42°

			4			4.33	cm

			5			10.91	km,	053.19°

			6			85.06°

			7			44.80	cm



			8			8.58	cm

			9			25.24	cm

	10			13.20	cm

Exercise	3.1	(Section	3.4)

			1			68.20°,	60.50°

			2			73.57°,	78.22°

			3			3.68	m

			4			97.08°

			5			35.26°

			6			12.72°,	15.76°

			7			54.74°

			8			5.20	cm,	50.77°

			9			56.31°

	10			35.26°

Exercise	4.1	(Section	4.3)

			1			0.766

			2			−0.766

			3			−0.940

			4			0.985

			5			−0.342

			6			0.174

			7			0

			8			0



			9			3

	10			1

	11			1

	12			1

	13			2

	14			4

	15			1

	16			0

	17			0

	18			−1

	19			−1

	20			1

Exercise	4.2	(Section	4.6)

			1			−1.732

			2			−0.577

			3			0.364

			4			−5.671

			6			0.213

			7			−0.176

Exercise	5.1	(Section	5.2)

			1			17.46°,	162.54°

			2			26.74°,	153.26°

			3			0°,	180°,	360°



			4			90°

			5			270°

			6			185.74°,	354.26°

			7			206.74°,	333.26°

			8			210°,	330°

			9			−171.37°,	−8.63°

	10			−150°,	−30°

	11			−180°,	0°,	180°

	12			90°

	13			−90°

	14			64.16°,	115.84°

	15			−115.84°,	−64.16°

	16			−130.00°,	−50.00°

	17			15°,	75°,	195°,	255°

	18			13.37°,	76.63°,	193.37°,	256.63°

	19			0°,	60°,	120°,	180°,	240°,	300°,	360°

	20			135°,	315°

	21			60°,	300°

	22			180°

	23			70°,	110°,	190°,	230°,	310°,	350°

	24			20.91°,	69.09°,	200.91°,	249.09°

	25			1.62	hours

	26			About	122	days



Exercise	5.2	(Section	5.4)

			1			109.47°,	250.53°

			2			63.43°,	243.43°

			3			41.41°,	318.59°

			4			153.43°,	333.43°

			5			30°,	150°,	210°,	330°

			6			22.5°,	112.5°,	202.5°,	292.5°

			7			203.07°

			8			143.18°

			9			70.00°,	110.00°,	250.00°,	290.00°

	10			87.14°,	177.14°,	267.14°,	357.14°

	11			−126.27°,	−53.73°,	53.73°,	126.27°

	12			−103.28°,	−13.28°,	76.72°,	166.72°

	13			−168.21°,	−101.79°,	11.79°,	78.21°

	14			−90°,	90°

	15			−90°,	30°,	150°

	16			−45°

	17			4.14	pm	and	7.46	pm

Exercise	6.1	(Section	6.4)
These	answers	are	given	in	alphabetical	order.

			1			15.82	cm,	14.73	cm,	94.22	cm2

			2			20.29	cm,	30.36	cm,	152.22	cm2

			3			7.18	mm,	6.50	mm,	18.32	mm2



			4			5.59	cm,	7.88	cm,	22.00	cm2

			5			23.06	cm,	17.32	cm,	192.88	cm2

			6			C	=	28.93°,	A	=	126.07°,	a	=	58.15	cm	or	C	=	151.07°,	A	=	3.93°,	a	=	4.93
cm

			7			C	=	51.31°,	A	=	88.69°,	a	=	109.26	cm	or	C	=	128.69°,	A	=	11.31°,	a	=
21.43	cm

			8			A	=	61.28°,	B	=	52.72°,	b	=	87.10	cm

			9			A	=	35.00°,	B	=	115.55°,	b	=	143.13	cm	or	A	=	145.00°,	B	=	5.55°,	b	=
15.35	cm

Exercise	6.2	(Section	6.5)

			1			37.77	cm

			2			5.30	cm

			3			54.73	cm

			4			25.9	cm

			5			2.11	cm

			6			7.97	cm

			7			28.96°,	46.57°,	104.48°

			8			40.11°,	57.90°,	81.99°

			9			62.19°,	44.44°,	73.37°

	10			28.91°,	31.99°,	119.10°

	11			106.23°

	12			43.84°

	13			The	cosine	of	the	largest	angle	is	−1	and	the	largest	angle	is	180°	–	this
triangle	is	impossible	to	draw;	the	longest	side	is	longer	than	the	sum	of	the
other	two	sides.



	14			5.93	km

	15			52.01°,	88.05°,	39.93°

	16			45.17°,	59.60°,	7.25	cm

	17			56.09°

	18			16.35	m,	13.62	m

	19			41.04°

	20			Two	triangles.	66.82°,	63.18°	and	29.13	cm	16.82°,	113.18°	and	9.44°	cm

	21			98.34	m

	22			5.71	m,	6.08	m

	23			3.09	mm

	24			7.98	cm,	26.32°	and	29.93°

	25			3.81	cm,	4.20	cm,	7.81	cm2

	26			4.51	hours

	27			4.41	km

	28			0.305	m2

	29			49.46°,	58.75°

Exercise	6.3	(Section	6.10)

			1			15.2	m

			2			546	m

			3			276	m

			4			192	m

			5			889	m

			6			1.26	km



			7			3700	m

			8			2.23	km

			9			2.88	km

	10			2.17	km

	11			500	m

	12			3.64	km,	315°,	5.15	km

	13			72.9	m,	51.1	m

	14			1.246	km

	15			189	m

	16			63.7	m

	17			3470	m,	7270	m

Exercise	7.1	(Section	7.5)

			1			60°

			2			15°

			3			270°

			4			120°

			5			135°

			6			720°

			7			0.588

			8			0.924

			9			0.309

	10			0.383

	11			0.966



	12			0.5

	13			13.41°

	

	

	

	

	18			4.75	rad

	19			1.12	cm

	20			6.72	cm2

	21			1.6	rad

	22			0.611	rad,	35.01°

	

	24			23.18	cm2	and	55.36	cm2

	25			2.90	cm2

	26			3.03	cm2

Exercise	8.1	(Section	8.2)

			1			−0.5735

			2			±3.180

			3			±1.077

			

			

			



			7			−120°,	−60°,	60°,	120°

			8			−135°,	−45°,	45°,	135°

			9			−180°,	0°,	30°,	150°,	180°

	10			−180°,	0°,	180°

	11			38.17°,	141.83°

	12			−116.57°,	63.43°

	13			−153.43°,	−26.57°,	26.57°,	153.43°

	14			−75.52°,	0°,	75.52°

	15			−60°,	30°,	60°,	150°

Exercise	9.1	(Section	9.5)

			1			0.663,	−0.749

			

			3			Expanding	gives	sin(90	−	θ)°	=	sin	90°	cos	θ°	−	cos	90°	sin	θ°	=	1	×	cos	θ°
−	0	×	sin	θ°	=	cos	θ°

			4			−0.997

			5			0.894,	1.999

			

			

			

			9			sin	34°	=	0.56

	10			cos	61°	=	0.48



	11			tan	68°	=	2.48

	12			tan	39°	=	0.81

Exercise	9.2	(Section	9.6)

			

			

			3			0.484,	0.875,	0.553

			4			1,	0

			5			0.992,	−0.129

			6			−0.992,	−0.129

			7			sin	72°	=	0.951,	cos	72°	=	0.309

			8			0.5,	−0.5

			9			Use	Equation	16,	 ,	to	get	 	and	the	result

follows.	Use	Equation	15,	 ,	to	get	 	and	the
result	follows.

	

	11			±	0.6

	12			tan	20°	=	0.364

Exercise	9.3	(Section	9.7)
In	the	solutions	to	the	identities,	the	reason	for	each	step	is	given	by
placing	an	Equation	number	from	Chapter	9	in	bold-faced	type	in
brackets.	Where	no	reason	is	given,	either	an	algebraic	simplification
or	the	use	of	sin2	A	+	cos2	A	=	1	is	involved.

			



			

			

			

			

			



			

Exercise	9.4	(Section	9.8)

			1			−90°,	30°,	90°,	150°

			2			−150°,	−30°,	30°,	150°

			3			−148.28°,	−58.28°,	31.72°,	121.72°

			4			−165°,	−105°,	15°,	75°

			5			−157.5°,	−67.5°,	22.5°,	112.5°

			6			−150°,	−30°,	30°,	150°

			7			−120°,	0°,	120°

			8			0°,	±60°,	±120°,	±180°

			9			±30°,	±90°,	±150°

	10			−157.5°,	−67.5°,	22.5°,	112.5°

Exercise	10.1	(Section	10.2)

			

			2			13	sin(x	+	67.38)°

			

			

			



			

			

			

			

	10			Both	functions	have	the	form	R	sin(x	+	a)	with	 .	This	means	that	in
both	cases	the	maximum	value	is	 .

Exercise	10.2	(Section	10.3)

			1			0°,	90°,	360°

			2			90°,	330°

			3			40.21°,	252.41°

			4			45.24°,	180°

			5			159.24°,	283.13°

			6			45°,	90°,	225°,	270°

			7			−180°,	−90°,	180°

			8			−180°,	−60°,	180°

			9			−69.20°,	32.33°

	10			−157.38°,	−90°

	11			289.59°,	349.20°

	12			−135°,	−75°,	45°,	105°

	

	14			5	at	x	=	−53.13°,	−5	at	x	=	126.87°

	15			2	at	x	=	−15°	and	165°,	−2	at	x	=	−105°	and	75°

	



	17			7	at	x	=	36.87°,	−3	at	x	=	−143.13°

	18			4.732	at	x	=	−17.63°	and	162.37°,	1.268	at	x	=	−107.63°	and	72.37°

Exercise	11.1	(Section	11.1)

			

			

			

			

			

			

			7			cos2A	−	cos4A

			

			9			2	cosC	sinD	=	sin(C	+	D)	−	sin(C	−	D)

	10			2	cosC	cos	B	=	cos(C	+	B)	+	cos(C	−	B)

Exercise	11.2	(Section	11.2)

			1			2	sin3A	cosA

			2			2	cos3A	sin2A

			3			−2	sin3θ	sin	θ

			4			2	sin3A	sin2A

			5			2	cos41°	cos6°

			6			2	cos36°	sin13°

			7			cot15°

			



			9			tan	θ

	10			tan2θ

	11			0°,	120°,	240°,	360°

	12			0°,	120°,	180°,	240°,	360°

	13			0°,	90°,	120°,	180°,	240°,	270°,	360°

	14			45°,	135°,	180°,	225°,	315°

	

	

	

Exercise	12.1	(Section	12.1)

			1			10	cm



			

			

			

			

Exercise	12.2	(Section	12.4)

			

			

			3			Using	Equations	3	and	4:



			

			



			

			

			

Exercise	13	(Section	13.3)
In	all	the	answers	to	this	exercise,	n	and	m	are	integers.	It	is	possible
that	your	answer	might	take	a	different	form	from	the	one	given	and
still	be	correct.

			1			180n	+	(−1)n60

			2			360n	±	60

			3			180n	−	45

			4			180m	or	180m	+	120



			5			120n	±	60

			6			60n	−	10

			7			180n

			8			72n

			9			180m	or	90m	+	45
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