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PREFACE.

THE present work is constructed on the same plan as my treatise on
Plane Trigonometry, to which it is intended as a sequel; it contains all the
propositions usually included under the head of Spherical Trigonometry,
together with a large collection of examples for exercise. In the course of
the work reference i1s made to preceding writers from whom assistance
has been obtained; besides these writers I have consulted the treatises on
Trigonometry by Lardner, Lefebure de Fourcy, and Snowball, and the
treatise on Geometry published in the Library of Useful Knowledge. The
examples have been chiefly selected from the University and College
Examination Papers.

In the account of Napier’s Rules of Circular Parts an explanation has
been given of a method of proof devised by Napier, which seems to have
been overlooked by most modern writers on the subject. I have had the
advantage of access to an unprinted Memoir on this point by the late R.
L. Ellis of Trinity College; Mr Ellis had in fact rediscovered for himself
Napier’s own method. For the use of this Memoir and for some valuable
references on the subject [ am indebted to the Dean of Ely.

Considerable labour has been bestowed on the text in order to render
it comprehensive and accurate, and the examples have all been carefully
verified; and thus I venture to hope that the work will be found useful by
Students and Teachers.

I. TODHUNTER.

ST JOHN’S COLLEGE,
August 15, 1859.



IN the third edition I have made some additions which I hope will be
found valuable. I have considerably enlarged the discussion on the
connexion of Formula in Plane and Spherical Trigonometry; so as to
include an account of the properties in Spherical Trigonometry which are
analogous to those of the Nine Points Circle in Plane Geometry. The
mode of investigation is more elementary than those hitherto employed;
and perhaps some of the results are new. The fourteenth Chapter is
almost entirely original, and may deserve attention from the nature of the
propositions themselves and of the demonstrations which are given.

CAMBRIDGE,
July, 1871.
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SPHERICAL TRIGONOMETRY.

I. GREAT AND SMALL CIRCLES.

1. A SPHERE is a solid bounded by a surface every point of which is
equally distant from a fixed point which is called the centre of the
sphere. The straight line which joins any point of the surface with the
centre 1s called a radius. A straight line drawn through the centre and
terminated both ways by the surface is called a diameter.

2. The section of the surface of a sphere made by any plane is a
circle.

Let AB be the section of the surface of a sphere made by any plane, O
the centre of the sphere. Draw OC perpendicular to the plane; take any
point D in the section and join OD, CD. Since OC is perpendicular to the
plane, the angle OCD is a right angle, therefore

CD= ,J(O,D’ - OC’) Now O and C are fixed points, so that OC is



constant; and OD is constant, being the radius of the sphere; hence CD is
constant. Thus all points in the plane section are equally distant from the
fixed point C; therefore the section is a circle of which C is the centre.

3. The section of the surface of a sphere by a plane is called a great
circle if the plane passes through the centre of the sphere, and a small
circle if the plane does not pass through the centre of the sphere. Thus
the radius of a great circle 1s equal to the radius of the sphere.

4. Through the centre of a sphere and any two points on the surface a
plane can be drawn; and only one plane can be drawn, except when the
two points are the extremities of a diameter of the sphere, and then an
infinite number of such planes can be drawn. Hence only one great circle
can be drawn through two given points on the surface of a sphere, except
when the points are the extremities of a diameter of the sphere. When
only one great circle can be drawn through two given points, the great
circle 1s unequally divided at the two points; we shall for brevity speak of
the shorter of the two arcs as the arc of a great circle joining the two
points.

5. The axis of any circle of a sphere is that diameter of the sphere
which is perpendicular to the plane of the circle; the extremities of the
axis are called the poles of the circle. The poles of a great circle are
equally distant from the plane of the circle. The poles of a small circle
are not equally distant from the plane of the circle; they may be called
respectively the nearer and further pole;, sometimes the nearer pole is for
brevity called the pole.

6. A pole of a circle is equally distant from every point of the
circumference of the circle.

Let O be the centre of the sphere, AB any circle of the sphere, C the
centre of the circle, P and P' the poles of the circle. Take any point D in
the circumference of the circle; join CD, OD, PD. Then
PD= ,J(PG s CD I'); and PC and CD are constant, therefore PD

1s constant. Suppose a great circle to pass through the points P and D;
then the chord PD is constant, and therefore the arc of a great circle
intercepted between P and D is constant for all positions of D on the
circle AB.
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Thus the distance of a pole of a circle from every point of the
circumference of the circle i1s constant, whether that distance be
measured by the straight line joining the points, or by the arc of a great
circle intercepted between the points.

7. The arc of a great circle which, is drawn from a pole of a great
circle to any point in its circumference is a quadrant.

A

Let P be a pole of the great circle ABC, then the arc PA is a quadrant.

For let O be the centre of the sphere, and draw PO. Then PO is at
right angles, to the plane ABC, because P is the pole of ABC, therefore
POA is aright angle, and the arc PA is a quadrant.

8. The angle subtended at the centre of a sphere by the arc of a great



circle which joins the poles of two great circles is equal to the inclination
of the planes of the great circles.

A

p—

L4

Let O be the centre of the sphere, CD, CE the great circles
intersecting at, C, A and B the poles of CD and CE respectively.

Draw a great circle through 4 and B, meeting CD and CE at M and N
respectively. Then AQ is perpendicular to OC, which 1s a straight line in
the plane OCD; and BO is perpendicular to OC, which is a straight line
in the plane OCE; therefore OC is perpendicular to the plane AOB
(Euclid, X1. 4); and therefore OC is perpendicular to the straight lines
OM and ON, which are in the plane AOB. Hence MON is the angle of
inclination of the planes OCD and OCE. And the angle

AOB = AQM — BOM = BON — BOM = MON.

9. By the angle between two great circles is meant the angle of
inclination of the planes of the circles. Thus, in the figure of the
preceding Article, the angle between the great circles CD and CE is the
angle MON.

In the figure to Art. 6, since PO is perpendicular to the plane ACB,
every plane which contains PO is at right angles, to the plane ACB.
Hence the angle between the plane of any circle and the plane of a great
circle which passes through its poles is a right angle.



10. Two great circles bisect each other.

For since the plane of each great circle passes through the centre of
the sphere, the line of intersection of these planes is a diameter of the
sphere, and therefore also a diameter of each great circle; therefore the
great circles are bisected at the points where they meet.

11. If the arcs of great circles joining a point P on the surface of a
sphere with two other points A and C on the surface of the sphere which
are not at opposite extremities of a diameter be each of them equal to a
quadrant, P is a pole of the great circle through A and C. (See the figure
of Art. 7.)

For suppose PA and PC to be quadrants, and O the centre of the
sphere; then since PA and PC are quadrants, the angles POC and POA
are right angles. Hence PO is at right angles to the plane AOC, and P is a
pole of the great circle AC.

12. Great circles which pass through the poles of a great circle are
called secondaries to that circle. Thus, in the figure of Art. 8 the point C
is a pole of ABMN, and therefore CM and CN are parts of secondaries to
ABMN. And the angle between CM and CN is measured by MN;, that is,
the angle between any two great circles is measured by the arc they
intercept on the great circle to which they are secondaries.

13. If from a point on the surface of a sphere there can be drawn two
arcs of great circles, not parts of the same great circle, the planes of
which are at right angles to a given circle, that point is a pole of the
given circle.

For, since the planes of these arcs are at right angles to the plane of
the given circle, the line in which they intersect is perpendicular to the
plane of the given circle, and is therefore the axis of the given circle;
hence the point from which the arcs are drawn is a pole of the circle.

14. To compare the arc of a small circle subtending any angle at the
centre of the circle with the arc of a great circle subtending the same
angle at its centre.



Let ab be the arc of a small circle, C the centre of the circle, P the
pole of the circle, O the centre of the sphere. Through P draw the great
circles PaA and PbB, meeting the great circle of which P is a pole, at 4
and B respectively; draw Ca, Cb, OA, OB. Then Ca, Cb, OA, OB are all
perpendicular to OP, because the planes aCb and AOB are perpendicular
to OP; therefore Ca 1s parallel to OA, and Cb is parallel to OB. Therefore
the angle aCb = the angle AOB (Euclid, XI. 10). Hence,

ab AB .
s G ™ i g (Flane Trigonametry, Art. 18);

weol Lo _Cx
tharebocs, acdB U4 ga R0 IO




II. SPHERICAL TRIANGLES.

15. Spherical Trigonometry investigates the relations which subsist
between the angles of the plane faces which form a solid angle and the
angles at which the plane faces are inclined to each other.

16. Suppose that the angular point of a solid angle is made the centre
of a sphere; then the planes which form the solid angle will cut the
sphere in arcs of great circles. Thus a figure will be formed on the
surface of the sphere which is called a spherical triangle if it 1s bounded
by three arcs of great circles; this will be the case when the solid angle is
formed by the meeting of three plane angles. If the solid angle be formed
by the meeting of more than three plane angles, the corresponding figure
on the surface of the sphere is bounded by more than three arcs of great
circles, and is called a spherical polygon.

17. The three arcs of great circles which form a spherical triangle are
called the sides of the spherical triangle; the angles formed by the arcs at
the points where they meet are called the angles of the spherical triangle.
(See Art. 9.)

18. Thus, let O be the centre of a sphere, and suppose a solid angle
formed at O by the meeting of three plane angles. Let AB, BC, CA be the
arcs of great circles in which the planes cut the sphere; then ABC is a
spherical triangle, and the arcs AB, BC, CA are its sides. Suppose 4b the
tangent at 4 to the arc AB, and Ac the tangent at 4 to the arc AC, the
tangents being drawn from A towards B and C respectively; then the
angle bAc 1s one of the angles of the spherical triangle. Similarly angles
formed in like manner at B and C are the other angles of the spherical
triangle.



19. The principal part of a treatise on spherical trigonometry consists
of theorems relating to spherical triangles; it is therefore necessary to
obtain an accurate conception of a spherical triangle and its parts.

It will be seen that what are called sides of a spherical triangle are
really arcs of great circles, and these arcs are proportional to the three
plane angles which form the solid angle corresponding to the spherical
triangle. Thus, in the figure of the preceding Article, the arc AB forms
one side of the spherical triangle ABC, and the plane angle AOB is

measured by the fraction m—AB_ ; and thus the arc AB 1is

us 04
proportional to the angle AOB so long as we keep to the same sphere.

The angles of a spherical triangle are the inclinations of the plane
faces which form the solid angle; for since Ab and Ac are both
perpendicular to OA, the angle bAc is the angle of inclination of the
planes OAB and OAC.

20. The letters A, B, C are generally used to denote the angles of a
spherical triangle, and the letters a, b, ¢ are used to denote the sides. As
in the case of plane triangles, 4, B, and C may be used to denote the
numerical values of the angles expressed in terms of any unit, provided
we understand distinctly what the unit 1s. Thus, if the angle C be a right

w
angle, we may say that C = 90°, or that C = =, according as we adopt for

2

the unit a degree or the angle subtended at the centre by an arc equal to
the radius. So also, as the sides of a spherical triangle are proportional to



the angles subtended at the centre of the sphere, we may use a, b, ¢ to
denote the numerical values of those angles in terms of any unit. We
shall usually suppose both the angles and sides of a spherical triangle
expressed in circular measure. (Plane Trigonometry, Art. 20.)

21. In future, unless the contrary be distinctly stated, any arc drawn
on the surface of a sphere will be supposed to be an arc of a great circle.

22. In spherical triangles each side is restricted to be less than a
semicircle; this is of course a convention, and it is adopted because it is
found convenient.

Thus, in the figure, the arc ADEB is greater than a
semicircumference, and we might, if we pleased, consider ADEB, AC,
and BC as forming a triangle, having its angular points at 4, B, and C.
But we agree to exclude such triangles from our consideration; and the
triangle having its angular points at 4, B, and C, will be understood to be
that formed by AFB, BC, and CA.

23. From the restriction of the preceding Article it will follow that
any angle of a spherical triangle is less than two right angles.

For suppose a triangle formed by BC, CA, and BEDA, having the
angle BCA greater than two right angles. Then suppose D to denote the
point at which the arc BC, if produced, will meet AE; then BED 1is a



semicircle by Art. 10, and therefore BEA is greater than a semicircle;
thus the proposed triangle is not one of those which we consider.



III. SPHERICAL GEOMETRY.

24. The relations between the sides and angles of a Spherical
Triangle, which are investigated in treatises on Spherical Trigonometry,
are chiefly such as involve the 7rigonometrical Functions of the sides
and angles. Before proceeding to these, however, we shall collect, under
the head of Spherical Geometry, some theorems which involve the sides
and angles themselves, and not their trigonometrical rations.

25. Polar triangle. Let ABC be any spherical triangle, and let the
points A', B', C' be those poles of the arcs BC, CA, AB

-

respectively which lie on the same sides of them as the opposite angles
A, B, C; then the triangle A'B'C’" is said to be the polar triangle of the
triangle ABC.

Since there are two poles for each side of a spherical triangle, eight
triangles can be formed having for their angular points poles of the sides
of the given triangle; but there is only one triangle in which these poles
A', B', C' lie towards the same parts with the corresponding angles A4, B,
C; and this 1s the triangle which is known under the name of the polar
triangle.

The triangle ABC is called the primitive triangle with respect to the
triangle A'B'C".



26. If one triangle be the polar triangle of another, the latter will be
the polar triangle of the former.

Let ABC be any triangle, A'B'C"' the polar triangle: then ABC will be
the polar triangle of A'B'C".

For since B' 1s a pole of AC, the arc AB' is a quadrant, and since C' is
a pole of BA, the arc AC' is a quadrant (Art. 7); therefore 4 is a pole of
B'C" (Art. 11). Also 4 and A' are on the same side of B'C"; for 4 and A’
are by hypothesis on the same side of BC, therefore 4’4 is less than a
quadrant; and since A4 is a pole of B'C’, and AA4' is less than a quadrant, 4
and A4’ are on the same side of B'C".

Similarly it may be shewn that B is a pole of C'4’, and that B and B’
are on the same side of C'A4’; also that C is a pole of 4'B’, and that C and
(" are on the same side of A'B’. Thus ABC 1s the polar triangle of A'B'C".

27. The sides and angles of the polar triangle are respectively the
supplements of the angles and sides of the primitive triangle.

For let the arc B'C’, produced if necessary, meet the arcs AB, AC,
produced if necessary, at the points D and E respectively; then since 4 is
a pole of B'C, the spherical angle 4 is measured by the arc DE (Art. 12).
But B'E and C'D are each quadrants; therefore DE and B'C' are together
equal to a semicircle; that is, the angle subtended by B'C" at the centre of
the sphere is the supplement of the angle 4. This we may express for
shortness thus; B'C' is the supplement of A. Similarly it may be shewn
that C'A' is the supplement of B, and A'B' the supplement of C.



And since ABC is the polar triangle of A'B'C", it follows that BC, CA,
AB are respectively the supplements of 4', B, C’, that is, 4', B', C' are
respectively the supplements of BC, CA, AB.

From these properties a primitive triangle and its polar triangle are
sometimes called supplemental triangles.

Thus, if 4, B, C, a, b, ¢ denote respectively the angles and the sides of
a spherical triangle, all expressed in circular measure, and A, B', C', a',
b', ¢' those of the polar triangle, we have

A'=n—a B'=7n—-bC'=7—c,
a=n—-A b =n—-B c=n—C.

28. The preceding result 1s of great importance; for if any general
theorem be demonstrated with respect to the sides and the angles of any
spherical triangle it holds of course for the polar triangle also. Thus any
such theorem will remain true when the angles are changed into the
supplements of the corresponding sides and the sides into the
supplements of the corresponding angles. We shall see several examples
of this principle in the next Chapter.

29. Any two sides of a spherical triangle are together greater than the
third side. (See the figure of Art. 18.)

For any two of the three plane angles which form the solid angle at O
are together greater than the third (Euclid, XI. 20). Therefore any two of
the arcs AB, BC, CA, are together greater than the third.

From this proposition it is obvious that any side of a spherical triangle
is greater than the difference of the other two.

30. The sum of the three sides of a spherical triangle is less than the
circumference of a great circle. (See the figure of Art. 18.)

For the sum of the three plane angles which form the solid angle at O
1s less than four right angles (Euclid, XI. 21); therefore

AB BC CA .
OA+OA+OAEIE“ than 2w,




therefore, AB + BC + CA 1s less than 27 x OA,;

that 1s, the sum of the arcs is less than the circumference of a great circle.

31. The propositions contained in the preceding two Articles may be
extended. Thus, if there be any polygon which has each of its angles less
than two right angles, any one side is less than the sum of all the others.
This may be proved by repeated use of Art. 29. Suppose, for example,
that the figure has four sides, and let the angular points be denoted by A4,
B, C, D. Then

AB + BC is greater than AC,
therefore, =~ AB + BC + CD 1is greater than AC + CD,

and a fortiori greater than AD.

Again, if there be any polygon which has each of its angles less than
two right angles, the sum of its sides will be less than the circumference
of a great circle. This follows from Euclid, XI. 21, in the manner shewn
in Art. 30.

32. The three angles of a spherical triangle are together greater than
two right angles and less than six right angles.

Let 4, B, C be the angles of a spherical triangle; let a', &', ¢' be the
sides of the polar triangle. Then by Art. 30,

a +b'+ c'1s less than 27,
that 1s, 7#—A+m— B+ m— Cisless than 27;

therefore, A + B + C 1s greater than 7.

And since each of the angles 4, B, C is less than 7, the sum 4 + B +
C 1s less than 3.

33. The angles at the base of an isosceles spherical triangle are
equal.
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Let ABC be a spherical triangle having AC = BC; let O be the centre
of the sphere. Draw tangents at the points A and B to the are AC and BC
respectively; these will meet OC produced at the same point as S, and AS
will be equal to BS.

Draw tangents A7, BT at the points 4, B to the arc AB; then AT = TB,;
join In the two triangles SA7, SBT the sides SA, AT, TS are equal to SB,
BT, TS respectively; therefore the angle SAT 1is equal to the angle SBT;
and these are the angles at the base of the spherical triangle.

The figure supposes AC and BC to be less than quadrants; if they are
greater than quadrants the tangents to AC and BC will meet on CO
produced through O instead of through C, and the demonstration may be
completed as before. If AC and BC are quadrants, the angles at the base
are right angles by Arts. 11 and 9.

34. If two angles of a spherical triangle are equal, the opposite sides
are equal.

Since the primitive triangle has two equal angles, the polar triangle
has two equal sides; therefore in the polar triangle the angles opposite the
equal sides are equal by Art. 33. Hence in the primitive triangle the sides
opposite the equal angles are equal.

35. If one angle of a spherical triangle be greater than another, the
side opposite the greater angle is greater than the side opposite the less
angle.



D

Let ABC be a spherical triangle, and let the angle ABC be greater than
the angle BAC: then the side AC will be greater than the side BC. At B
make the angle ABD equal to the angle BAD; then BD is equal to AD
(Art. 34), and BD + DC is greater than BC (Art. 29); therefore AD + DC
1s greater than BC; that 1s, AC 1s greater than BC.

36. If one side of a spherical triangle be greater than another, the
angle opposite the greater side is greater than the angle opposite the less
side.

This follows from the preceding Article by means of the polar
triangle.

Or thus; suppose the side AC greater than the side BC, then the angle
ABC will be greater than the angle BAC. For the angle ABC cannot be
less than the angle BAC by Art. 35, and the angle ABC cannot be equal to
the angle BAC by Art. 34; therefore the angle ABC must be greater than
the angle BAC.

This Chapter might be extended; but it is unnecessary to do so
because the Trigonometrical formula of the next Chapter supply an easy
method of investigating the theorems of Spherical Geometry. See Arts.
56, 57, and 58.



IV. RELATIONS BETWEEN THE TRIGONOMETRICAL FUNCTIONS OF THE
SIDES AND THE ANGLES OF A SPHERICAL TRIANGLE.

37. To express the cosine of an angle of a triangle in terms of sines and
cosines of the sides.

A

Let ABC be a spherical triangle, O the centre of the sphere. Let the tangent
at A to the arc AC meet OC produced at E, and let the tangent at 4 to the arc AB
meet OB produced at D; join ED. Thus the angle EAD is the angle A of the
spherical triangle, and the angle EFOD measures the side a.

From the triangles ADE and ODE we have

DE2 = AD? + AE?* — 24D . AE cos A,

DE? = OD?* + OE* — 20D . OE cos a;
also the angles OAD and OAE are right angles, so that OD? = OA% + AD?* and
OE? = 0A4% + AE®. Hence by subtraction we have

0=20A4%+24D . AE cos A— 20D . OE cos a;

04 OA AE AD
therefore mﬂd=a—-ﬂ--o—ﬁ+ﬁ.m cos A ;

that 1s cos a =cos b cos ¢+ sin b sin ¢ cos A.



cosa—cosd cose
gind sine

Therefore cosd =

[

38. We have supposed, in the construction of the preceding Article, that the
sides which contain the angle A4 are less than quadrants, for we have assumed
that the tangents at 4 meet OB and OC respectively produced. We must now
shew that the formula obtained is true when these sides are not less than
quadrants. This we shall do by special examination of the cases in which one
side or each side is greater than a quadrant or equal to a quadrant.

(1) Suppose only one of the sides greater than a quadrant, for example, AB.
Produce BA and BC to meet at B'; and put AB' =¢', CB'=a'.

Then we have from the triangle AB'C, by what has been already proved,

cos a' =cos b cos ¢' +sin b sin ¢’ cos B/AC;
buta'=nw—a,c'=n—c, BAC = n — A; thus

cos a =cos b cos ¢+ sin b sin ¢ cos A4.

(2) Suppose both the sides which contain the angle 4 to be greater than
quadrants. Produce AB and AC to meet at A'; put A'B = ¢', A'C = b'; then from
the triangle A'BC, as before,

cos a=cos b' cos ¢’ +sin b' sin ¢’ cos A';
butb'=n—b,c'=n—c, A' = A4, thus

cos a =cos b cos ¢+ sin b sin ¢ cos A4.

(3) Suppose that one of the sides which contain the angle 4 is a quadrant,
for example, AB; on AC, produced if necessary,



L4
take AD equal to a quadrant and draw BD. If BD is a quadrant B is a pole of AC

(Art. 11); in this case a = r and 4 = r as well as ¢ = E Thus the formula to be

verified reduces to the identity O = 0. If BD be not a quadrant, the triangle BDC
gives

cos a = cos CD cos BD + sin CD sin BD cos CDB,

and cos CDB =0, cos CD = ¢08 ("_r b) =sin b, cos BD = cos 4;

2
thus cos a =sin b cos A,

and this is what the formula in Art. 37 becomes when ¢ = E

(4) Suppose that both the sides which contain the angle A are quadrants.
The formula then becomes cos a = cos 4; and this is obviously true, for 4 is
now the pole of BC, and thus 4 =a.

Thus the formula in Art. 37 is proved to be universally true.

39. The formula in Art. 37 may be applied to express the cosine of any
angle of a triangle in terms of sines and cosines of the sides; thus we have the
three formulz,

cos a =cos b cos ¢ +sin b sin ¢ cos A4,

cos b = cos ¢ cos a + sin ¢ sin a cos B,

cos c=cosacos b+sinasin b cos C.
These may be considered as the fundamental equations of Spherical
Trigonometry; we shall proceed to deduce various formule from them.

40. To express the sine of an angle of a spherical triangle in terms of



trigonometrical functions of the sides.

cosa-cosbooac_

We have ecosde=

ginbdgine
therefore gin’d =1- eosa—cqaboosc)‘
. Bin b sin ¢

_ (1 — cos'™®) (1 - coa'c) —(con @ — oo b cos ¢)’
B 8in"} sin'c

1 —cos’a — cos’h — cos’c + 2cosacosbeosc
' 8in’6 sin®c !

din A = (1 ~cos’a—coa*h ~coa’c+ 2 cos @ cos b cos c)
- sin b sin ¢ )

therefore

The radical on the right-hand side must be taken with the positive sign, because
sin b, sin ¢, and sin 4 are all positive.

41. From the value of sin 4 in the preceding Article it follows that

sind _sinB _sinC

— e me— W ——

sing sind sinc’

for each of these is equal to the same expression, namely,

o/ (1 = cos’a — cos™ — cos’c + 2 cosacosbeose)
sinasin bsine

Thus the sines of the angles of a spherical triangle are proportional to the
sines of the opposite sides. We will give an independent proof of this
proposition in the following Article.

42. The sines of the angles of a spherical triangle are proportional to the
sines of the opposite sides.

Let ABC be a spherical triangle, O the centre of the sphere. Take any point
P in OA, draw PD perpendicular to the plane



BOC, and from D draw DE, DF perpendicular to OB, OC respectively; join
PE, PF, OD.

Since PD 1is perpendicular to the plane BOC, it makes right angles with
every straight line meeting it in that plane; hence

PE? = PD? + DE* = PO* - OD? + DE?* = PO? — OF?;
thus PEO is a right angle. Therefore PE = OP sin POE = OP sin ¢; and PD =
PE sin PED = PE sin B = OP sin ¢ sin B.

Similarly, PD = OP sin b sin C; therefore
OP sin ¢ sin B = OP sin b sin C;

theref : sinB_sinb
erclora sin ¢ sine’

The figure supposes b, ¢, B, and C each less than a right angle; it will be
found on examination that the proof will hold when the figure is modified to
meet any case which can occur. If, for instance, B alone is greater than a right
angle, the point D will fill beyond OB instead of between OB and OC; then
PED will be the supplement of B, and thus sin PED is still equal to sin B.

43, To shew that cota sin b = cot A sin C + cos b cos C.

We have cosa=cosbcosc+sindsineccos 4,

o8 ¢=co8a o8 b + sin g sin b cos €,
sin ¢

Bin ¢ =gin g~—.
sind

Substitute the values of cos ¢ and sin c in the first equation; thus



cosa={cosa cosd +sina sinbcusc')coab+ﬂma mﬂ?:;aimai

by transposition

cos a sin®b = sin a sin b cos b cos C + sin a sin b cot 4 sin C; divide by sin
a sin b; thus

cotasinb=cos b cos C+cotAdsinC.

44. By interchanging the letters five other formule may be obtained like
that in the preceding Article; the whole six formula will be as follows:

cotasin b =cotAsin C +cos b cos C,
cotbsina=cotBsinC +cosa cos C,
cotbsinc=cotBsinA+cosccos A,
cotcsin b =cot C sinA + cos b cos A4,
cot ¢ sina = cot C sin B + cos a cos B,
cota sin ¢ =cot A sin B + cos ¢ cos B.

45. To express the sine, cosine, and tangent, of half an angle of a triangle
as functions of the sides.

cusa-—oosﬁooac.

We have, by Art, 37, cosd= YTV

cosa—cosbeosc cos(b—c)—cosa
therefore ain'i‘_“i“%(“"‘b“c)!iinﬁ(a-b-;-e)

2 8ind sin ¢

therefore 1 —cos 4=1~-

Let 2s =a + b + ¢, so that s is half the sum of the sides of the triangle; then
atb—c=2s—2c=2(s—c), a—-b+tc=2s—2b=2(s — b);

. o4 sin(g—)sin(s—c)
. !_ — 2
thus e sinbsine -




ey /RS

Also l+mﬁ=l+ma-coabcosc=cosa.-ma(b-:-c)‘

8in b sine sin b sin ¢ ?

therefore

oos’é= nini(a-;-b-!- c)si:ng(b+c—a) _ sin:eainga—a)
#inbd sin¢ ain b sin ¢

sl VAt o]

A‘ and cos A‘

2 2

4 gin (s — 8) sin (8~ ¢)
ten 3 = { sin g sin (s — a) }

From the expressions for sin we deduce

The positive sign must be given to the radicals which occur in this Article,

4

because < is less than a right angle, and therefore its sine, cosine, and tangent

are all positive.

A A

46. Since sin 4 =2 sin __ cos we obtain

[—)

. 9 . ;
. [ ] b L
8in 4 = ——— {sins sin(s — a) sin (s — d) 8in (s — o)}*.
g8in & Bin c{ (s - ) sin (s - 8) sin (s — o)}

It may be shewn that the expression for sin 4 in Art. 40 agrees with the
present expression by putting the numerator of that expression in factors, as in
Plane Trigonometry, Art. 115. We shall find it convenient to use a symbol for
the radical in the value of sin A: we shall denote it by », so that

n? =sin s sin (s — a) sin (s — b) sin (s — ¢),

2

and 4n? =1 — cos2a — cos2b — cos?c + 2 cos a cos b cos c.

47. To express the cosine of a side of a triangle in terms of sines and
cosines of the angles.



In the formula of Art. 37 we may, by Art. 28, change the sides into the
supplements of the corresponding angles and the angle into the supplement of
the corresponding side; thus

cos (1 —A)=cos (r—B) cos (n— C) +sin (n — B) sin (xr — C) cos (x — a),
that 1s, cos A=—cos B cos C + sin B sin C cos a.
Similarly cos B=—cos C cos A +sin C sin 4 cos b,

and cos C =—cos A cos B +sin A4 sin B cos c.

48. The formula in Art. 44 will of course remain true when the angles and
sides are changed into the supplements of the corresponding sides and angles
respectively; it will be found, however, that no new formula are thus obtained,
but only the same formule over again. This consideration will furnish some
assistance in retaining those formula accurately in the memory.

49. To express the sine, cosine, and tangent, of half a side of a triangle as
functions of the angles.

cos 4 +cos B cos

We have by Art. 47, cosae= Y Y A

therefore

cosd+cosBoosC  cosd +oos{B+O')
snBanC gin Bsin ('

l-cos@=1-

. 4@_ _cosd(4d+B+C)eos}(B+( - A)
therefore g 80 5= B en(

Let2S=A+B+C;thenB+ C —A4=2 (S — A), therefore
&  co8S cos (S —A)

sin® — = —

2 smBsinC ’
anl sing=\/_eos»_5'm€3-a4)}‘

gin B sin ¢/

Al 1+esa=l+—raHr — = —pas

therefore

cosd+cosBcosC cond+cos(B~C).

2



. G m&(A-B+C)eos§(A+|.B—C)_ 008 (S — B) cos (S - ()
wosg= sin % sin C - sin B gin ¢

e ‘eos (S — B) coa (S~ C))
and °°“§'~/ smBenC  J

' e cos § cos(S—4) )
Hence Wz~ =D

The positive sign must be given to the radicals which occur in this Article,

a
because -2— is less than a right angle.

50. The expressions in the preceding Article may also be obtained
immediately from those given in Art. 45 by means of Art. 28.

) a a
It may be remarked that the values of sin -, cos -, and tan -2- are real. For S

72
is greater than one right angle and less than three right angles by Art. 32;
therefore cos S is negative. And in the polar triangle any side is less than the

sum of the other two; thus = — A4 is less than t — B + n — C; therefore B+ C — A

is less than 7; therefore S — A is less than g, and B + C — A is algebraically

. . T
greater than — 7, so that S — A4 is algebraically greater than — —; therefore cos

(S — A) 1s positive. Similarly also cos (S — B) and cos (S — C) are positive.

N
Hence the values of sin -—, cos -, and tan -— are real.
2 2 2

) ) ) @ )
51. Since sin a = 2 sin - cos -, we obtain

2 2
) 2
sina= o er {008 5 008 (§ = 4) cos (S - B) cos (- O)}3.
We shall use N for

{— cos §cos (S — 4) cos (S - B) cos (S - C)}4.
52. To demonstrate Napier’s Analogies.
sind _sin B

We have ’ = —
sin a smbl




then, by a theorem of Algebra,

sin 4 + sin B
= e e (1),

" ging + sin b

and also mBRAZS D 2.
ging -~ sin b

Now cos A+ cos B cos C=sinBsinC cosa=msinC sin b cos a,
and cos B+ cosA cos C=sinAsinC cos b =m sin C sin a cos b, therefore,
by addition,

(cosd +cosB)(1 + cos C)mmsinCsin(a+d).........(3);

therefore by (1) we have

sin 4 +sinB sing+sind 1+c08C
cos d+cosB  sin(a+6) snC

cos d (¢ —b)
i @rh)

H

that is, tan (4 + B)= cotg(-l)

Similarly from (3) and (2) we have
sind—-sinB sina-~sind 1+cos(
= - s T T
cosd+cos B ein(a+b) sin(

sind{a-3)  C
ain,}(a+b),c°t§'

3

that is, tan § (4~ B) = oeevernnen (B).

By writing © — A for a, and so on in (4) and (5) we obtain

tan 3 (a+b)= °°si((j ﬁ;ta veerveeerennsen(B),

tan § (0 —b) = *’mﬂij; AR}

The formule (4), (5), (6), (7) may be put in the form of proportions or
analogies, and are called from their discoverer Napier’s Analogies: the last two
may be demonstrated without recurring to the polar triangle by starting with
the formule in Art. 39.



C

53. In equation (4) of the preceding Article, cos -%(a — b) and cot ¥ are

necessarily positive quantities; hence the equation shews that tan -% (4 + B) and
cos -% (a + b) are of the same sign; thus -%(A +B) and -% (a + b) are either both

less than a right angle or both greater than a right angle. This is expressed by
saying that -é (4 +B)and -% (a + b) are of the same affection.

54. To demonstrate Delambre’s Analogies.
We have cos ¢ = cos a cos b + sin a sin b cos C; therefore,

1+cose=1 +cosgcosd + sin asin & (con" § ¢ —gin'} C)
={l+cos{a—b)}ecos’} C+ {1 +cos(a+b)}sin"} C;
therefore cos'4c=cos’}(a—b)cos"§ C+cos’ 4 {a+d)ein’} C.
Similarly, sin’ § ¢ = sin’ } (3—5) cos* § €'+ sin® 4 (@ + 8) gin’ § C.

Now add unity to the square of each member of Napier’s first two
analogies; hence by the formule just proved

coa’de
cos’ § (a+b)sin*§ O’

sec*} (44 B) =

sin’ § ¢
s g @+ b) s} C

sec’} (4~ B)=

Extract the square roots; thus, since-% (4 +B)and -% (a + b) are of the same
affection, we obtain

o8 4 (4 + B)cos Jc=cosd(a+b)sin C ......... (1),
eos%(A—B)sin&c:ain&(a+b)siniC'. ...... e (2).

Multiply the first two of Napier’s analogies respectively by these results;
thus

sin } (4 + B)cos dc=cos} (a—b)cos L Corvvennee (3),
sin} (4 —B)gin 4 c=sin § (@ —b) cos § Ceenvvnnn (1),

The last four formula are commonly, but very improperly, called Gauss’s



Theorems; they were first given by Delambre in the Connaissance des Tems
for 1809, page 445.

55. The properties of supplemental triangles were proved geometrically in
Art. 27, and by means of these properties the formula in Art. 47 were obtained,
but these formule may be deduced analytically from those in Art. 39, and thus
the whole subject may be made to depend on the formulea of Art. 39.

For from Art. 39 we obtain expressions for cos A4, cos B, cos C; and from
these we find

cos .4 + cos B cos C
(eosa—mboosc)mn’a-t- (con b— cos a cos ¢) (cos ¢ — cos & cos b)

gin® geindeine

In the numerator of this fraction write 1 — cos® a for sin? a; thus the numerator
will be found to reduce to

2

cos a (1 — cos?a — cos?b — cosc + 2 cosa cos b cos c),

and this is equal to cos a sin B sin C sin 2 g sin bsinc, (Art, 41);
therefore cos A + cos B cos C = cos a sin B sin C.
Similarly the other two corresponding formule may be proved.

Thus the formulae in Art. 47 are established; and therefore, without
assuming the existence and properties of the Polar Triangle, we deduce the
following theorem: If the sides and angles of a spherical triangle be changed
respectively into the supplements of the corresponding angles and sides, the
fundamental formule of Art. 39 hold good, and therefore also all results
deducible from them.

56. The formule in the present Chapter may be applied to establish
analytically various propositions respecting spherical triangles which either
have been proved geometrically in the preceding Chapter, or may be so proved.
Thus, for example, the second of Napier’s analogies is

sin § (@ - b) cot

tan 4 (4 - B)= s} (@t z,

this shews that-% (4 — B) is positive, negative, or zero, according as -% (@a—b)is

positive, negative, or zero; thus we obtain all the results included in Arts.
33...36.



57. If two triangles have two sides of the one equal to two sides of the other,
each to each, and likewise the included angles equal, then their other angles
will be equal, each to each, and likewise their bases will be equal.

We may shew that the bases are equal by applying the first formula in Art.
39 to each triangle, supposing b, ¢, and A the same in the two triangles; then
the remaining two formule of Art. 39 will shew that B and C are the same in
the two triangles.

It should be observed that the two triangles in this case are not necessarily
such that one may be made to coincide with the other by superposition. The
sides of one may be equal to those of the other, each to each, but in a reverse
order, as in the following figures.

eto (o

Two triangles which are equal in this manner are said to be symmetrically
equal; when they are equal so as to admit of superposition they are said to be
absolutely equal.

58. If two spherical triangles have two sides of the one equal to two sides of
the other, each to each, but the angle which is contained by the two sides of the
one greater than the angle which is contained by the two sides which are equal
to them of the other, the base of that which has the greater angle will be
greater than the base of the other, and conversely.

Let b and ¢ denote the sides which are equal in the two triangles; let a be
the base and A the opposite angle of one triangle, and a' and A' similar
quantities for the other. Then



cos a =cos b cos ¢ +sin b sin ¢ cos A4,

cosa' =cos b cos ¢+ sin b sin c cos A';
therefore cosa—cosa =sin b sinc (cos A — cos A'),
that is,

sin-%(a +a') sin -%(a —a') = sin b sin ¢ sin -% (4 + A4 sin -% (4 — A"); this
shews that -% (a—a') and-% (A — A" are of the same sign.

59. If on a sphere any point be taken within a circle which is not its pole, of
all the arcs which can be drawn from that point to the circumference, the
greatest is that in which the pole is, and the other part of that produced is the
least; and of any others, that which is nearer to the greatest is always greater
than one more remote; and from the same point to the circumference there can
be drawn only two arcs which are equal to each other, and these make equal
angles with the shortest are on opposite sides of it.

This follows readily from the preceding three Articles.

60. We will give another proof of the fundamental formulae in Art. 39,
which is very simple, requiring only a knowledge of the elements of Co-
ordinate Geometry.

Suppose ABC any spherical triangle, O the centre of the sphere, take O as
the origin of co-ordinates, and let the axis of z pass through C. Let x;, ¥y, z; be

the co-ordinates of 4, and x,, ,, z, those of B; let r be the radius of the sphere.
Then the square on the straight line AB is equal to

(1 —x)* + (1~ 3+ (21 — )%,
and also to P+ 12 =212 cos AOB;

and z'+y'+2'=1, 2'+y}+2'=7 thus
zx,+yy, +22,=7r cos AOB.

Now make the usual substitutions in passing from rectangular to polar co-
ordinates, namely,

z,=rcosl, = =rsinf cos, g =rsinf sing,
z,=rcosf, «,=rsinf,cos¢, y,=rsind,sing,;

thus we obtain



cos 0, cos 01 + sin 0, sin 0 cos (¢ — ¢,) = cos AOB,
that is, in the ordinary notation of Spherical Trigonometry,

cos a cos b +sina sin b cos C = cos c.

This method has the advantage of giving a perfectly general proof, as all the
equations used are universally true.

EXAMPLES.
1. If A = a, shew that B and b are equal or supplemental, as also C and c.

2. If one angle of a triangle be equal to the sum of the other two, the
greatest side is double of the distance of its middle point from the opposite
angle.

3. When does the polar triangle coincide with the primitive triangle?

4. If D be the middle point of AB, shew that
cos AC + cos BC = 2 cos -%AB cos CD.

5. If two angles of a spherical triangle be respectively equal to the sides
opposite to them, shew that the remaining side is the supplement of the
remaining angle; or else that the triangle has two quadrants and two right
angles, and then the remaining side is equal to the remaining angle.

6. In an equilateral triangle, shew that 2 cos -— sm A‘ =1.

2 2
@
7. In an equilateral triangle, shew that tan? —— = 1 — 2 cos 4; hence deduce

the limits between which the sides and the angles of an equilateral triangle are
restricted.

8. In an equilateral triangle, shew that sec A =1 + sec a.

9. If the three sides of a spherical triangle be halved and a new triangle

b

—and E is given by cos 8 =cos 4 +
L)

2

formed, the angle 6 between the new sides

-%tan %tangsin2 0.

10. AB, CD are quadrants on the surface of a sphere intersecting at E, the



extremities being joined by great circles: shew that

cos AEC = cos AC cos BD — cos BC cos AD.
11. If b + ¢ = &, shew that sin 2B + sin 2C = 0.

12. If DE be an arc of a great circle bisecting the sides AB, AC of a
spherical triangle at D and E, P a pole of DE, and PB, PD, PE, PC be joined by
arcs of great circles, shew that the angle BPC = twice the angle DPE.

13. Shew that
sin b sin ¢+ cos b cos ¢ cos A =sin B sin C — cos B cos C cos a.

14. If D be any point in the side BC of a triangle, shew that

cos AD sin BC = cos AB sin DC + cos AC sin BD.

15. Shew that if @, ¢, w be the lengths of arcs of great circles drawn from A4,
B, C perpendicular to the opposite sides,

sin a sin @ =sin b sin ¢ = sin ¢ sin ¥
= /(1 —cos’ a—cos® b—cos’ ¢ + 2 cosacos b cosc).

16. In a spherical triangle, if 8, ¢, w be the arcs bisecting the angles 4, B, C
respectively and terminated by the opposite sides, shew that

cotﬂcos‘;f—+ cot ¢cos-'g-+ootu,!r cos g= cot @ + cot b + cote.

17. Two ports are in the same parallel of latitude, their common latitude
being / and their difference of longitude 2A: shew that the saving of distance in
sailing from one to the other on the great circle, instead of sailing due East or
West, is

2r {A cos ! —sin™ (sin A cos d)},
A being expressed in circular measure, and 7 being the radius of the Earth.

18. If a ship be proceeding uniformly along a great circle and the observed
latitudes be 1, /5, I3, at equal intervals of time, in each of which the distance

traversed is s, shew that



s (G +d)cosd (- 1)

8 =1 ¢08 :
sin £, ’

r denoting the Earth’s radius: and shew that the change of longitude may also
be found in terms of the three latitudes.



V. SOLUTION OF EIGHT-ANGLED TRIANGLES.

61. In every spherical triangle there are six elements, namely, the three
sides and the three angles, besides the radius of the sphere, which is supposed
constant. The solution of spherical triangles is the process by which, when the
values of a sufficient number of the six elements are given, we calculate the
values of the remaining elements. It will appear, as we proceed, that when the
values of three of the elements are given, those of the remaining three can
generally be found. We begin with the right-angled triangle: here two elements,
in addition to the right angle, will be supposed known.

62. The formula requisite for the solution of right-angled triangles may be
obtained from the preceding Chapter by supposing one of the angles a right
angle, as C for example. They may also be obtained very easily in an
independent manner, as we will now shew.

Let ABC be a spherical triangle having a right angle at C; let O be the centre
of the sphere. From any point P in OA4 draw PM perpendicular to OC, and from
M draw MN perpendicular to OB, and join PN. Then PM is perpendicular to
MN, because the plane AOC is perpendicular to the plane BOC; hence

PN? = PM? + MN?* = OP? — OM? + OM? — ON? = OP? — ON?
therefore PNO is a right angle. And



oy ON OM

07)- m. -D—"—l, thatiﬂ,coac=ma0036 ............ (]),
PM PM PN . . .
UI“.=.&V' UP,tha,tls,smb-amBsmc} e 2),
~ Similarly  sin e =sin 4 sin ¢]
MN MN PN . ..
U—N'T= PN’ m,th&tlﬂ, tan(‘:OOSBt&DO L “(3)’
Similarly tanb=cos 4 tan ¢

PM PM MN
OM  MN OM’
Similarly  tane=tan 4sind

that is, tan b = tan Bsina
} )

Multiply together the two formule (4); thus,

tan @ tan b 1 1
tan 4 tan B= sinasinb cosacosb cosc by (1);
therefore cosc=cobt dcot B..enirniniiiiinianinn (8).

Multiply crosswise the second formula in (2) and the first in (3); thus sin a
cos B tan ¢ = tan a sin 4 sin c;

8in 4 cos g

therefore co8 B= —— ~=3sind cosd b} (1)-

- €08 G
thus cos B=gin 4 oosb}" (6)
S. .I Iy cmAgsincha G4 ARt A B FREFElALED FE S -

These six formule comprise ten equations; and thus we can solve every
case of right-angled triangles. For every one of these ten equations is a distinct
combination involving three out of the five quantities a, b, ¢, 4, B; and out of
five quantities only ten combinations of three can be formed. Thus any two of
the five quantities being given and a third required, some one of the preceding
ten equations will serve to determine that third quantity.



63. As we have stated, the above six formula may be obtained from those
given in the preceding Chapter by supposing C a right angle. Thus (1) follows
from Art. 39, (2) from Art. 41, (3) from the fourth and fifth equations of Art.
44, (4) from the first and second equations of Art. (44), (5) from the third
equation of Art. 47, (6) from the first and second equations of Art. 47.

Since the six formulae may be obtained from those given in the preceding
Chapter which have been proved to be universally true, we do not stop to shew
that the demonstration of Art. 62 may be applied to every case which can
occur; the student may for exercise investigate the modifications which will be
necessary when we suppose one or more of the quantities a, b, ¢, A, B equal to
a right angle or greater than a right angle.

64. Certain properties of right-angled triangles are deducible from the
formula of Art. 62.

From (1) it follows that cos ¢ has the same sign as the product cos a cos b;
hence either all the cosines are positive, or else only one is positive. Therefore
in a right-angled triangle either all the three sides are less than quadrants, or
else one side is less than a quadrant and the other two sides are greater than
quadrants.

From (4) it follows that tan a has the same sign as tan 4. Therefore 4 and a

. T T . .
are either both greater than —, or both less than §; this is expressed by saying
that 4 and a are of the same affection. Similarly B and b are of the same
affection.

65. The formule of Art. 62 are comprised in the following enunciations,
which the student will find it useful to remember; the results are distinguished
by the same numbers as have been already applied to them in Art. 62; the side
opposite the right angle is called the hypotenuse:



Cos hyp = product of cosines of sides ...................{1)
Cos hyp = product of cotangents of angles ..........,..(5)
Sine side=gine of opposite angle x sine hyp ............(2),
Tan side =tan hyp x cos included angle ......... .....(3),
Tan side =tan opposite angle x aine of other side......(4),
Cos angle=cos opposite side x sine of other angle......(6).

66. Napier’s Rules. The formula of Art. 62 are comprised in two rules,
which are called, from their inventor, Napier’s Rules of Circular Parts. Napier
was also the inventor of Logarithms, and the Rules of Circular Parts were first
published by him in a work entitled Mirifici Logarithmorum Canonis
Descriptio . . . . .. Edinburgh, 1614. These rules we will now explain.

The right angle is left out of consideration; the two sides which include the
right angle, the complement of the hypotenuse, and the complements of the
other angles are called the circular

. . T T
parts of the triangle. Thus there are five circular parts, namely, a, b, — — A4, 5

2

r . . .
— ¢, — — B; and these are supposed to be ranged round a circle in the order in

which they naturally occur with respect to the triangle.



Any one of the five parts may be selected and called the middle part, then
the two parts next to it are called adjacent parts, and the remaining two parts

are called opposite parts. For example, if % — B is selected as the middle part,

. . T
then the adjacent parts are a and % — ¢, and the opposite parts are b and 5 —A.

Then Napier’s Rules are the following:
sine of the middle part = product of tangents of adjacent parts,
sine of the middle part = product of cosines of opposite parts.

67. Napier’s Rules may be demonstrated by shewing that they agree with
the results already established. The following table shews the required
agreement: in the first column are given the middle parts, in the second column
the results of Napier’s Rules, and in the third column the same results
expressed as in Art. 62, with the number for reference used in that article.



?—c ain z_c)..tan(s A)ta.n B) 08 ¢ = cot 4 cot.B..(5),

sin(i-— )=eoua con b cone mcosa oos b.(1)
TR ?h(%'-ﬂ)=tnnatm;(g- ) 008 B= tan a cot c..(3),
mG_B)=ma m(g-A) cos B=cos b sin 4..(6),

a sina = tan tan ——B) sinutmrm:w..(‘s),

sina:coa(g-al)m(;-c) 8in @ = sin 4 sin ¢..(2),
b sin b = tan ——.A)tana sin b = cot A tan a..(4),

nmbfm(g—ﬂ)&a(g- ) sindmein Bsinc..(2),

g—;{ sin(%—i):tanbtan(g—c) cosA =tan b cote..(3),
mn(;—d)-_-oosacm 1'—:-.B) ‘ cos 4 = cos a sin B..(6),

The last four cases need not have been given, since it is obvious that they
are only repetitions of what had previously been given; the seventh and eighth
are repetitions of the fifth and sixth, and the ninth and tenth are repetitions of
the third and fourth.

68. It has been sometimes stated that the method of the preceding Article is
the only one by which Napier’s Rules can be demonstrated; this statement,
however, is inaccurate, since besides this method Napier himself indicated
another method of proof in his Mirifici Logarithmorum Canonis Descriptio,
pp. 32, 35. This we will now briefly explain.



Let ABC be a spherical triangle right-angled at C; with B as pole describe a
great circle DEFG, and with A as pole describe a great circle HFKL, and
produce the sides of the original triangle ABC to meet these great circles. Then
since B is a pole of DEFG the angles at D and G are right angles, and since 4 is
a pole of HFKL the angles at H and L are right angles. Hence the five triangles
BAC, AED, EFH, FKG, KBL are all right-angled; and moreover it will be
found on examination that, although the elements of these triangles are
different, yet their circular parts are the same. We will consider, for example,
the triangle AED; the angle EAD is equal to the angle BAC; the side AD is the
complement of 4B, as the angles at C and G are right angles E is a pole of GC
(Art. 13), therefore EA is the complement of AC; as B is a pole of DE the angle
BED is a right angle, therefore the angle AED is the complement of the angle
BEC, that is, the angle AED is the complement of the side BC (Art. 12); and
similarly the side DE is equal to the angle DBE, and is therefore the
complement of the angle ABC. Hence, if we denote the elements of the triangle
ABC as usual by a, b, ¢, A, B, we have in the triangle AED the hypotenuse

equal to E — b, the angles equal to 4 and E — a, and the sides respectively

opposite these angles equal to g— B and E — c¢. The circular parts of AED are

therefore the same as those of ABC. Similarly the remaining three of the five
right-angled triangles may be shewn to have the same circular parts as the
triangle ABC has.

Now take two of the theorems in Art. 65, for example (1) and (3); then the
truth of the fen cases comprised in Napier’s Rules will be found to follow from
applying the two theorems in succession to the five triangles formed in the



preceding figure. Thus this method of considering Napier’s Rules regards each
Rule, not as the statement of dissimilar properties of one triangle, but as the
statement of similar properties of five allied triangles.

69. In Napier’s work a figure is given of which that in the preceding Article
is a copy, except that different letters are used; Napier briefly intimates that the
truth of the Rules can be easily seen by means of this figure, as well as by the
method of induction from consideration of all the cases which can occur. The
late T. S. Davies, in his edition of Dr Hutton’s Course of Mathematics, drew
attention to Napier’s own views and expanded the demonstration by a
systematic examination of the figure of the preceding Article.

It is however easy to evade the necessity of examining the whole figure; all
that is wanted is to observe the connexion between, the triangle AED and the
triangle BAC. For let ay, ay, as, ay, as represent the elements of the triangle

BAC taken in order, beginning with the hypotenuse and omitting the right
angle; then the elements of the triangle AED taken in order, beginning with the
hypotenuse and omitting the right angle, are
3 [ o - -

E-—G,: 3 =04 5 By 3=
the former we introduce a new set of quantities py, py, P3, P4, P5, such that a; +

a, and a,. If, therefore, to characterise

pp=ayt+tp,=as+tps= %., and that p; = a3 and p, = ay, then the original

triangle being characterised by pq, py, P3, P, D5, the second triangle will be
similarly characterised by ps3, pa, Ps, P1, P»- As the second triangle can give rise

to a third in like manner, and so on, we see that every right-angled triangle is
one of a system of five such triangles which are all characterised by the
quantities pq, Py, P3, P4, P5, always taken in order, each quantity in its turn

standing first.

The late R. L. Ellis pointed out this connexion between the five triangles,
and thus gave the true significance of Napier’s Rules. The memoir containing
Mr Ellis’s investigations, which was unpublished when the first edition of the
present work appeared, will be found in pages 328 . . . 335 of The
Mathematical and other writings of Robert Leslie Ellis. . . . Cambridge, 1863.

Napier’s own method of considering his Rules was neglected by writers on
the subject until the late T. S. Davies drew attention to it. Hence, as we have
already remarked in Art. 68, an erroneous statement was made respecting the
Rules. For instance, Woodhouse says, in his 7Trigonometry: “There is no
separate and independent proof of these rules; . . .” Airy says, in the treatise on



Trigonometry in the Encyclopeedia Metropolitana: “These rules are proved to
be true only by showing that they comprehend all the equations which we have
just found.”

70. Opinions have differed with respect to the utility of Napier’s Rules in
practice. Thus Woodhouse says, “In the whole compass of mathematical
science there cannot be found, perhaps, rules which more completely attain that
which is the proper object of rules, namely, facility and brevity of
computation.” (Trigonometry, chap. X.) On the other hand may be set the
following sentence from Airy’s Trigonometry (Encyclopeedia Metropolitana):
“In the opinion of Delambre (and no one was better qualified by experience to
give an opinion) these theorems are best recollected by the practical calculator
in their unconnected form.” See Delambre’s Astronomie, vol. 1. p. 205.
Professor De Morgan strongly objects to Napier’s Rules, and says (Spherical
Trigonometry, Art. 17). “There are certain mnemonical formule called
Napier’s Rules of Circular Parts, which are generally explained. We do not
give them, because we are convinced that they only create confusion instead of
assisting the memory.”

71. We shall now proceed to apply the formula of Art. 62 to the solution of
right-angled triangles. We shall assume that the given quantities are subject to
the limitations which are stated in Arts. 22 and 23, that is, a given side must be
less than the semicircumference of a great circle, and a given angle less than
two right angles. There will be six cases to consider.

72. Having given the hypotenuse ¢ and an angle A.

Here we have from (3), (5) and (2) of Art. 62,

tan b = tan ¢ cos 4, cot B=cos ctan A, sina =sin ¢ sin A.

Thus b and B are determined immediately without ambiguity; and as a must
be of the same affection as A (Art. 64), a also is determined without ambiguity.

It is obvious from the formule of solution, that in this case the triangle is
always possible.

If ¢ and A are both right angles, a is a right angle, and b and B are
indeterminate.

73. Having given a side b and the adjacent angle A.
Here we have from (3), (4) and (6) of Art. 62,

¥ tana =tan A sin b, cos B = cos b sin A.

cos A
Here ¢, a, B are determined without ambiguity, and the triangle is always



possible.

74. Having given the two sides a and b.

Here we have from (1) and (4) of Art. 62,

cos ¢ =cos a cos b, cot A =cota sin b, cot B=cot b sin a.

Here ¢, A, B are determined without ambiguity, and the triangle is always
possible.

75. Having given the hypotenuse ¢ and a side a.
Here we have from (1), (3) and (2) of Art. 62,

cos ¢ tan @ ) 8in
cosdb= —, cosB=——, sind=—.
cos g tun ¢ sne

Here b, B, A are determined without ambiguity, since 4 must be of the same
affection as a. It will be seen from these formule that there are limitations of
the data in order to insure a possible triangle; in fact, ¢ must lie between a and
7 — a in order that the values found for cos b, cos B, and sin 4 may be
numerically not greater than unity.

If ¢ and a are right angles, A4 is a right angle, and b and B are indeterminate.

76. Having given the two angles A and B.
Here we have from (5) and (6) of Art. 62,

cos cos B
cos ¢ =cot 4 cot B, Csa=_r—p,  CO8 b=si_n_A .

Here c, a, b are determined without ambiguity. There are limitations of the

data in order to insure a possible triangle. First suppose A less than 1_", then B
. r_ ,, ar
must lie between — — 4 and Z + A; next suppose A greater than §, then B must

k.3
lie between %‘— (u‘ - A) and 3 + (-u- - A), that is, between 4 _g and
ad

"‘I—A

77. Having given a side a and the opposite angle A.
Here we have from (2), (4) and (6) of Art. 62,



na i b-tanacotd, sinB="24
gin 4 08 @

. 8in a
BiN € =

Here there is an ambiguity, as the parts are determined from their sines. If
sin a be less than sin A4, there are two values admissible for ¢; corresponding to
each of these there will be in general only one admissible value of b, since we
must have cos ¢ = cos a cos b, and only one admissible value of B, since we
must have cos ¢ = cot 4 cot B. Thus if one triangle exists with the given parts,
there will be in general two, and only two, triangles with the given parts. We
say in general in the preceding sentences, because if a = A4 there will be only
one triangle, unless a and A are each right angles, and then b and B become
indeterminate.

It is easy to see from a figure that the ambiguity must occur in general.

B

For, suppose BAC to be a triangle which satisfies the given conditions;
produce AB and AC to meet again at A'; then the triangle A'BC also satisfies the
given conditions, for it has a right angle at C, BC the given side, and A’ = 4 the
given angle.

If a = A, then the formula of solution shew that ¢, b, and B are right angles;
in this case A4 is the pole of BC, and the triangle A'BC is symmetrically equal to
the triangle ABC (Art. 57).

If a and A are both right angles, B is the pole of AC; B and b are then equal,
but may have any value whatever.

There are limitations of the data in order to insure a possible triangle. A and
a must have the same affection by Art. 64; hence the formula of solution shew
that @ must be less than A4 if both are acute, and greater than A4 if both are
obtuse.

EXAMPLES.

If ABC be a triangle in which the angle C is a right angle, prove the
following relations contained in Examples 1 to



NPT NPT Y a0 . o0
1. Sin 5 = sin’ 5 cos’ 5 4 cos’ 5 sin 3
2. Ton }(c+a)ten § (c—a)=ten’>.

3. Sin(c—b)=tan"g-sin(c+b).
4. Sinaton}d —sindtan § B=sin (a—b).

5. Sin (¢ — a) = sin b cos a tan § B,
Sin (¢ —~a)=tan b cos c tan § B.

6. If ABC be a spherical triangle, right-angled at C, and cos 4 = cos? a,

shew that if 4 be not a right angle b + ¢ = &n or q w, according as b and c are

both less or both greater than ful

7. If @, p be the arcs drawn from the right angle respectively perpendicular
to and bisecting the hypotenuse ¢, shew that

sin’%(l+sin’a)=sin’ﬂ.

8. In a triangle, if C be a right angle and D the middle point of AB, shew
that

4 coa'% sin? CD = sin® & + in® b.

9. In a right-angled triangle, if & be the length of the arc drawn from C
perpendicular to the hypotenuse AB, shew that

cot 8§ = J(cot® & + cot’ b),

10. OAA, is a spherical triangle right-angled at 4; and acute-angled at 4;
the arc 4,4, of a great circle is drawn perpendicular to OA4, 4,45 is drawn
perpendicular to OA4, and so on: shew that 4,4, vanishes when n becomes
infinite; and find the value of cos A4, cos 414, cos ArA5. .. . .. to infinity.



11. ABC is a right-angled spherical triangle, 4 not being the right angle:
shew that if A = a, then ¢ and b are quadrants.

12. If 8 be the length of the arc drawn from C perpendicular to AB in any
triangle, shew that

cos 0 = cosec ¢ (cos2 a+ cos? b—2 cos a cos b cos c)*.

13. ABC is a great circle of a sphere; AA’, BB', CC’, are arcs of great circles
drawn at right angles to ABC and reckoned positive when, they lie on the same
side of it: shew that the condition of A’, B, C' lying in a great circle is

tan AA' sin BC + tan BB' sin CA + tan CC' sin AB = 0.
14. Perpendiculars are drawn from the angles A, B, C of any triangle
meeting the opposite sides at D, F, F respectively: shew that
tan BD tan CE tan AF = tan DC tan EA tan FB.

15. Ox, Oy are two great circles of a sphere at right angles to each other, P
is any point in AB another great circle. OC = p is the arc perpendicular to AB
from O, making the angle COx = a with Ox. PM, PN are arcs perpendicular to
Ox, Oy respectively: shew that if OM =x and ON =y,

cos atan x + sin a tan y = tan p.

16. The position of a point on a sphere, with reference to two great circles
at right angles to each other as axes, is determined by the portions 8, ¢ of these
circles cut off by great circles through the point, and through two points on the

axes, each T from their point of intersection: shew that if the three points (0,

P), (@, ¢), (8", ") lie on the same great circle

tan ¢ (tan 6’ —tan 0") + tan ¢' (tan 6" — tan 0)
+ tan ¢" (tan 6 — tan ') = 0.

17. If a point on a sphere be referred to two great circles at right angles to
each other as axes, by means of the portions of these axes cut off by great
circles drawn through the point and two points on the axes each 90° from their
intersection, shew that the equation to a great circle is

tan @ cota +tan ¢ cot f= 1.

w k.
18. In a spherical triangle, if A= —, B= =, and C = 1_1" shew thata + b + ¢

5 3
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VI. SOLUTION OF OBLIQUE-ANGLED TRIANGLES.

78. The solution of oblique-angled triangles may be made in some cases to
depend immediately on the solution of right-angled triangles; we will indicate
these cases before considering the subject generally.

(1) Suppose a triangle to have one of its given sides equal to a quadrant. In
this case the polar triangle has its corresponding angle a right angle; the polar
triangle can therefore be solved by the rules of the preceding Chapter, and thus
the elements of the primitive triangle become known.

(2) Suppose among the given elements of a triangle there are two equal
sides or two equal angles. By drawing an arc from the vertex to the middle
point of the base, the triangle is divided into two equal right-angled triangles;
by the solution of one of these right-angled triangles the required elements can
be found.

(3) Suppose among the given elements of a triangle there are two sides, one
of which is the supplement of the other, or two angles, one of which is the
supplement of the other. Suppose, for example, that b + ¢ =z, or else that B +
C = r;, produce B4 and BC to meet at B' (see the first figure to Art. 38); then
the triangle B'AC has two equal sides given, or else two equal angles given,;
and by the preceding case the solution of it can be made to depend on the
solution of a right-angled triangle.

79. We now proceed to the solution of oblique-angled triangles in general.
There will be six cases to consider.

80. Having given the three sides.

Here we have cos 4 = €088 —c08 boos ¢ and similar formula for cos

sin b sin ¢
B and cos C. Or if we wish to use formule suited to logarithms, we may take
the formula for the sine, cosine, or tangent of half an angle given in Art. 45. In
selecting a formula, attention should be paid to the remarks in Plane
Trigonometry, Chap. XII. towards the end.

81. Having given the three angles.



co8.d +cos B cosC

Here we have cos a = gin &2 sin , and similar formula for
cos b and cos c. Or if we wish to use formule suited to logarithms, we may
take the formula for the sine, cosine, or tangent of half a side given in Art. 49.

There is no ambiguity in the two preceding cases; the triangles however
may be impossible with the given elements.

82. Having given two sides and the included angle (a, C, b).

By Napier’s analogies

cos § (a - b)
co8 § (a + b)

sin § (a—5)

sin § (a + )

these determine & (4+B),and & (4 — B), and thence A4 and B.

tan § (4 + B) = cot § C,

tan § (4 - B) = oot} C;

Then ¢ may be found from the formula sin ¢ = 8ln @ 8in C; in this case,

sin A
since c¢ is found from its sine, it may be uncertain which of two values is to be
given to it; the point may be sometimes settled by observing that the greater
side of a triangle is opposite to the greater angle. Or we may determine ¢ from
equation (1) of Art. 54, which is free from ambiguity.

Or we may determine ¢, without previously determining 4 and B, from the
formula cos ¢ = cos a cos b + sin a sin b cos C; this is free from ambiguity.
This formula may be adapted to logarithms thus:

cos ¢ =cos b (cos a + sin a tan b cos C);
assume tan 6 = tan b cos C; then

coa b cos (a— 8)

} cosé g

ooac=cosb(eoeq+ainutan0)=

this 1s adapted to logarithms.



B
D.

Or we may treat this case conveniently by resolving the triangle into the
sum or difference of two right-angled triangles. From A4 draw the arc AD
perpendicular to CB or CB produced; then, by Art. 62, tan CD = tan b cos C,
and this determines CD, and then DB is known. Again, by Art. 62,

cos b
cosCD’

this finds c. It is obvious that CD is what was denoted by @ in the former part
of the Article.

cosc=cos ADcos DB = oos.D.B

By Art. 62,

tan AD = tan C sin CD, and tan AD = tan ABD sin DB;
thus tan ABD sin DB =tan C sin 0,

where DB =a — 0 or 8 — a, according as D is on CB or CB produced, and ABD
is either B or the supplement of B, this formula enables us to find B
independently of 4.

Thus, in the present case, there is no real ambiguity, and the triangle is
always possible.

83. Having given two angles and the included side (A, c, B).

By Napier’s analogies,



mgm+b)=$%m-—+§%m§c,

gin & (4 ~ B)
gin 4 (4 + .B)

these determine & (a+b)and & (a — b), and thence a and b.

tan { (a-0) = tanjc;

Then C may be found from the formula sin C = m_._.?.m_"; in this case,

m
since C is found from its sine, it may be uncertain whigh of‘two values is to be
given to it; the point may be sometimes settled by observing that the greater
angle of a triangle is opposite to the greater side. Or we may determine C from
equation (3) of Art. 54, which is free from ambiguity.

Or we may determine C without previously determining a and b from the
formula, cos C = — cos A cos B + sin 4 sin B cos ¢. This formula may be
adapted to logarithms, thus:

cos C =cos B (— cos 4 + sin A tan B cos ¢);
assume cot ¢ = tan B cos c; then

cos B sin (4 - ¢)

cos C =cos B (—cos A+ cot ¢ sin A) = ~
Bla ¢

this 1s adapted to logarithms.

Or we may treat this case conveniently by resolving the triangle into the
sum or difference of two right-angled triangles. From A4 draw the arc AD
perpendicular to CB (see the right-hand figure of Art. 82); then, by Art. 62, cos
¢ = cot B cot DAB, and this determines DAB, and then CAD is known. Again,
by Art. 62,

c0s AD sin CAD = cos C and cos AD sin BAD = cos B,

cosC  cosB
sin 04D~ am 84D’

It is obvious that DAB is what was denoted by ¢ in the former part of the
Article.

therefore this finds C.

By Art. 62,

tan AD = tan AC cos CAD, and tan AD = tan AB cos BAD,
thus tan b cos CAD =tan ¢ cos ¢,



where CAD = A — ¢; this formula enables us to find b independently of a.

Similarly we may proceed when the perpendicular AD falls on CB
produced; (see the left-hand figure of Art. 82).

Thus, in the present case, there is no real ambiguity; moreover the triangle
is always possible.

84. Having given two sides and the angle opposite one of them (a, b, A).
The angle B may be found from the formula

) sind .
gin 4,

and then C and ¢ from Napier’s analogies,

tn 0~ 22 =D aot 4+ 3,

mgc=xi’gigm4(ﬁby

In this case, since B is found from its sine, there will sometimes be two
solutions; and sometimes there will be no solution at all, namely, when the
value found for sin B is greater than unity. We will presently return to this
point. (See Art. 86.)

We may also determine C and ¢ independently of B by formula adapted to
logarithms. For, by Art. 44,

cot A
cos a sin b = cos b cos C +sin C cot A = cos b (cos C + €08 b sin C);
assume tan ¢ = Ot"i; thus
cos8
H . + 0086 08 0—
cota ginb=cosd(cos C + tan ¢ sin 0) = cosf-p d’);

therefore cos (C — ¢) = cos ¢ cota tan b;
from this equation C — ¢ is to be found, and then C. The ambiguity still exists;
for if the last equation leads to C — ¢ = a, it will be satisfied also by ¢ — C = «;
so that we have two admissible values for C, if ¢ + a is less than 7, and ¢ — «
is positive.

And



cos a =cos b cos ¢ + sin b sin ¢ cos A = cos b (cos ¢ + sin ¢ tan b cos A);
assume tan 6 = tan b cos A4; thus

cos-d cos (¢ — 6)
cos ¢ ?

.eosa=00§b(cohc+siuctan6)=

oosaoosa_

therefore cos (¢c— 0)= ey

from this equation ¢ — 6 is to be found, and then ¢; and there may be an

ambiguity as before.
Or we may treat this case conveniently by resolving the triangle into the

sum or difference of two right-angled triangles.

4

Let CA = b, and let CAE = the given angle A; from C draw CD
perpendicular to AE, and let CB and CB' = a; thus the figure shews that there
may be two triangles which have the given elements. Then, by Art. 62, cos b =
cot A cot ACD; this finds ACD. Again, by Art 62,

tan CD = tan AC cos ACD,

and tan CD = tan CB cos BCD, or tan CB' cos B'CD,
therefore tan AC cos ACD = tan CB cos BCD, or tan CB' cos B'CD; this finds

BCD or B'CD.

It is obvious that ACD is what was denoted by ¢ in the former part of the

Article.
Also, by Art. 62, tan AD = tan AC cos A; this finds AD. Then

cos AC = cos CD cos AD,
cos CB =cos CD cos BD,
or cos CB' = cos CD cos B'D;



cos AC cosCB ooaC'B’
cos 4D coa.BD ooaB’D’

therefore

this finds BD or B'D.

It is obvious that AD is what was denoted by @ in the former part of the
Article.

85. Having given two angles and the side opposite one of them (A, B, a).

This case is analogous to that immediately preceding, and gives rise to the
same ambiguities. The side b may be found from the formula

gin Beina
sind |,

and then C and ¢ from Napier’s analogies,

sin b=

m;@:%ﬁm;(‘“m

cos § (4 + B}
cos § (4 - B)

We may also determine C and ¢ independently of b by formulae adapted to
logarithms. For

tan } ¢ = tan § (a + b).

cos A=—cos B cos C+sin Bsin C cos a
=cos B (—cos C + tan B sin C cos a),

assume cot ¢ = tan B cos a; thus

cos8 4 = co8 B (- cos € +sin C cot ¢)=°23‘B:11:ff‘¢)

cos 4 sin ¢
T eos B

from this equation C — ¢ is to be found and then C. Since C — ¢ is found from
its sine there may be an ambiguity. Again, by Art. 44,

therefore + sin{C-¢)=—vo"

cot Agin B=ootasino—cosccos B=cos B —mc+%§f y



cota
cos B

assume cot 8 =

; then

cotAsinB=msB(—ooac+ainceot0)=MB;:£’_6);

therefore  sin (¢ — 0) = cot A tan B sin 6,

from this equation ¢ — @ is to be found, and then ¢. Since ¢ — 8 is found from its
sine there may be an ambiguity. As before, it may be shewn that these results
agree with those obtained by resolving the triangle into two right-angled
triangles; for if in the triangle ACB' the arc CD be drawn perpendicular to AB',
then B'CD will = ¢, and B'D = 0.

86. We now return to the consideration of the ambiguity which may occur
in the case of Art. 84, when two sides are given and the angle opposite one of
them. The discussion is somewhat tedious from its length, but presents no
difficulty.

Before considering the problem generally, we will take the particular case
in which a = b; then 4 must = B. The first and third of Napier’s analogies give

cot*C=tanA cos a, tan*c=tana cos A;
now cot & C and tan & ¢ must both be positive, so that A and a must be of the

same affection. Hence, when a = b, there will be no solution at all, unless 4
and a are of the same affection, and then there will be only one solution; except
when A and a are both right angles, and then cot & ¢ and tan & C are

indeterminate, and there is an infinite number of solutions.
We now proceed to the general discussion.

If sin b sin A be greater than sin a, there is no triangle which satisfies the
given conditions; if sin b sin A4 is not greater than sin a, the equation sin B =
sin b sin 4

sin a . . .
that f' = = — B; we will suppose that § is the one which is not greater than the
other.

furnishes two values of B, which we will denote by £ and £, so

Now, in order that these values of B may be admissible, it is necessary and
sufficient that the values of cot & C and of tan & ¢ should both be positive, that
is, A — B and a — b must have the same sign by the second and fourth of
Napier’s analogies. We have therefore to compare the sign of 4 — # and the
sign of A — ' with that of @ — b. We will suppose that 4 is less than a right
angle, and separate the corresponding discussion into three cases.



I. Let b be less than E

»
sin §
sin @
than A4, and a fortiori f' greater than A. Hence there are two solutions.

(1) Let a be less than b; the formula sin B = sin A makes f greater

(2) Let a be equal to b; then there is one solution, as previously shewn.

(3) Let a be greater than b; we may have then a + b less than « or equal to 7
or greater than 7. If @ + b is less than 7, then sin a is greater than sin b; thus f is
less than A4 and therefore admissible, and f' is greater than 4 and inadmissible.
Hence there is one solution. If a + b is equal to z, then S is equal to 4, and f'
greater than A4, and both are inadmissible. Hence there is no solution. If a + b is
greater than 7, then sin a is less than sin b, and f and ' are both greater than A4,
and both inadmissible. Hence there is no solution.

II. Let b be equal to g

(1) Let a be less than b; then f and ' are both greater than 4, and both
admissible. Hence there are two solutions.

(2) Let a be equal to b; then there is no solution, as previously shewn.

(3) Let a be greater than b; then sin a is less than sin b, and f' are both
greater than A, and inadmissible. Hence there no solution.

III. Let b be greater than g

(1) Let a be less than b; we may have then a + b less than or equal to 7 or
greater than 7. If @ + b is less than x, then sin a is less than sin b, and £ and f'
are both greater than 4 and both admissible. Hence there are two solutions. If a
+ b is equal to 7, then S is equal to A and inadmissible, and /' is greater than A
and admissible. Hence there is one solution. If a + b is greater than 7, then sin
a is greater than sin b; f is less than 4 and inadmissible, and f' is greater than 4
and admissible. Hence there is one solution.

(2) Let a be equal to b; then there is no solution, as previously shewn.

(3) Let a be greater than b; then sin a is less than sin b, and f and f' are
both greater than 4 and both inadmissible. Hence there is no solution.



We have then the following results when A is less than a right angle.
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It must be remembered, however, that in the cases in which two solutions
are indicated, there will be no solution at all if sin a be less than sin & sin 4.

In the same manner the cases in which A4 is equal to a right angle or greater
than a right angle may be discussed, and the following results obtained.

When A is equal to a right angle,
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a=b or G?b LR L R AR NI N IR Y Y] "‘m m‘““"\o‘n‘.

When A is greater than a right angle,



' a‘b or G.-_-b 0.-‘...--...--‘-..---|crornnco.odlolcno mlllﬁon’
§ G:‘ b and G"‘b-‘l' ﬂr ﬁt oc-n-a-o-aoccc-o-rc-tlom mlﬂtion,
abb md a+b># ‘I‘...Q.f..‘l......l."..""'mo mluﬁons‘

1™ {a«:b OF B =0 .cvvneretnurannsarnsensrsnaesanses..10 SOlUtiON,

B L@ Beceiiiiiiieeniiiiieec e s eeeeeee st eees e o tWO BO}utions,
g<band a+d>m .oooooviii . vesss..008 Bolntion,
P a<band a+b=mor <x .........cenvnieas...00 solution,
>2 a=b l-ll-.llllll.-l.l--lll.llI.C...II..III...DCll‘llone mlutim’

a}b L Y RN E N TN N Ry ] ||ot¢¢rr-|------s-.;two ml“.tlions:

As before in the cases in which two solutions are indicated, there will be no
solution at all if sin a be less than sin b sin 4.

It will be seen from the above investigations that if a lies between b and 7 —
b, there will be one solution; if a does not lie between b and = — b either there
are two solutions or there is no solution; this enunciation is not meant to
include the cases in whicha=b or=x — b.

87. The results of the preceding Article may be illustrated by a figure.

Let ADA'E be a great circle; suppose PA and PA' the projections on the
plane of this circle of arcs which are each equal to b and inclined at an angle 4
to ADA'; let PD and PE be the projections of the least and greatest distances of
P from the great circle (see Art. 59). Thus the figure supposes 4 and b each



less than E

If a be less than the arc which is represented by PD there is no triangle; if a
be between PD and PA in magnitude, there are two triangles, since B will fall
on ADA’, and we have two triangles BPA and BPA'; if a be between PA and PH
there will be only one triangle, as B will fall on A'H or AH', and the triangle
will be either APB with B between A’ and H, or else A'PB with B between A4
and H'; but these two triangles are symmetrically equal (Art. 57); if a be
greater than PH there will be no triangle. The figure will easily serve for all the

cases; thus if 4 is greater than E, we can suppose PAE and PA'E to be equal to

A; if b 1s greater than E, we can take PH and PH' to represent b.

88. The ambiguities which occur in the last case in the solution of oblique-
angled triangles (Art. 85) may be discussed in the same manner as those in Art.
86; or by means of the polar triangle, the last case may be deduced from that of
Art. 86.

EXAMPLES.

1. The sides of a triangle are 105°, 90°, and 75° respectively: find the sines
of all the angles.

2. Shew that tan *A tan & B= sl’}_(flf) Solve a triangle when a side,
811 8
an adjacent angle, and the sum of the other two sides are given.

3. Solve a triangle having given a side, an adjacent angle, and the sum of
the other two angles.

4. A triangle has the sum of two sides equal to a semicircumference: find
the arc joining the vertex with the middle of the base.

5.1f a, b, c are known, ¢ being a quadrant, determine the, angles: shew also
that if 8 be the perpendicular on ¢ from the opposite angle, cos?8 = cos?a +
2
cos“b.



6. If one side of a spherical triangle be divided into four equal parts, and 6,
0,, 03, 0, be the angles subtended at the opposite angle by the parts taken in
order, shew that

8in (6, +6,) sin 6, sin 6, = sin (6, + §,) &in 6, sin 4,.
7. In a spherical triangle if 4 = B = 2C, shew that

S8sin{a + c) sin®’ cos © =sin’a
2 9 2 '

8. In a spherical triangle if 4 = B = 2C, shew that

cos -

2
T 1‘
cosa

S,sin’g(cosa+sing)

9. If the equal sides of an isosceles triangle ABC be bisected by an arc DE,
and BC be the base, shew that

o DE_, . BO_ AC

10. If ¢j, ¢, be the two values of the third side when 4, a, b are given and
the triangle is ambiguous, shew that

tain L tan 32 = tan § (5 ) tan § (b + o),



VII. CIRCUMSCRIBED AND INSCRIBED CIRCLES.

89. To find the angular radius of the small circle inscribed in a given
triangle.

A

Let ABC be the triangle; bisect the angles 4 and B by arcs meeting at P,
from P draw PD, PE, PF perpendicular to the sides. Then it may be shewn that
PD, PE, PF are all equal, also that AE = AF, BF = BD, CD = CE. Hence BC +
AF = half the sum of the sides = s; therefore AF = s — a. Let PF = r.

Now tan PF' = tan PAF sin AF (Art. 62);

ithus - ta,nr:tan% sin (8 — a) cveeneernannnserssarcansll)a

The value of tan » may be expressed in various forms; thus from Art. 45, we
obtain

RV Nt

substitute this value in (1), thus

umr=.\/{ain(e—a).sin(s-b).sin(a—c)}=%(m 48).....(2)

Bin §




Again
8in (8 — a} =sin {} (b + ¢) — 34} .
=gind(d+c)cospe—cosi{d+e)sinda

_sindacosda
T singd

{cos § (B—C)—cond (B+ L)}, (Art. 54)
_sinasingBsindC |
sngd

ind Bein i C . '
mfoa:.:i 11X, SRR )

therefore from (1) tans =

hence, by Art. 51,
WJ{~ c09 S cos (S~ 4) co (S — B) cos (5~ C)}
200844 cong Beosdl

N
D YT Y ITEY, S

teny =

It may be shewn by common trigonometrical formule that
4 cosdd cosd B cos 3 C=cos S + cos (S—A)+ cos (§—FB) + coa (S -C);

hence we have from (4)
cobr= 2—11—9.{@3.5% cos (S— A) + o8 (§ = B) + cos (S - 0)}- coeve{B)

90. To find the angular radius of the small circle described so as to touch
one side of a given triangle, and the other sides produced.

Let ABC be the triangle; and suppose we require the radius of the small



circle which touches BC, and AB and AC produced. Produce AB and AC to
meet at A’; then we require the radius of the small circle inscribed in A'BC, and
the sides of A'BC are a, # — b, © — ¢ respectively. Hence if r; be the required

radius, and s denote as usual & (a + b + ¢), we have from Art. 89,

A
ta.nr‘ =tan ;,-sins............................. (1).

-l

From this result we may derive other equivalent forms as in the preceding
Article; or we may make use of those forms immediately, observing that the
angles of the triangle A'BC are A, # — B, = — C respectively. Hence s being % (a

+ b+ ¢) and S being % (4 + B + C) we shall obtain

sin # sin (g ~ b) sin {2 — ¢)
m"t"’,\/{ sin (¢—a) mu(a a)’ (2
tane, = mg?‘:*cama................................(3),
J{-—cosScos(S 4) cos (8- B)cos(S-C)}
2cosddaind Bain U
N RN ¢ )
20084 438ndBgingC
cob =:{-Tr{-ooaé'—coa (5= 4)+con (§- B) + 008 (5= ) }...¢).

These results may also be found independently by bisecting two of the
angles of the triangle A'BC, so as to determine the pole of the small circle, and
proceeding as in Art. 89.

91. A circle which touches one side of a triangle and the other sides
produced is called an escribed circle; thus there are three escribed circles
belonging to a given triangle. We may denote the radii of the escribed circles
which touch CA4 and 4B respectively by r, and r3, and values of tan », and tan

r; may be found from what has been already given with respect to tan r; by
appropriate changes in the letters which denote the sides and angles.

In the preceding Article a triangle A’'BC was formed by producing AB and
AC to meet again at A'; similarly another triangle may be formed by producing
BC and BA to meet again, and another by producing CA and CB to meet again.



The original triangle ABC and the three formed from it have been called
associated triangles, ABC being the fundamental triangle. Thus the inscribed
and escribed circles of a given triangle are the same as the circles inscribed in
the system of associated triangles of which the given triangle is the
fundamental triangle.

92. To find the angular radius of the small circle described about a given
triangle.

Let ABC be the given triangle; bisect the sides CB, CA at D and E
respectively, and draw from D and E arcs at right angles to CB and CA
respectively, and let P be the intersection of these arcs. Then P will be the pole
of the small circle described about ABC. For draw PA, PB, PC; then from the
right-angled triangles PCD and PBD it follows that PB = PC; and from the
right-angled triangles PCE and PAE it follows that PA = PC; hence PA = PB
= PC. Also the angle PAB = the angle PBA, the angle PBC = the angle PCB,
and the angle PCA = the angle PAC; therefore PCB + A = & (4+B+C), and

PCB=S§—-A.

Let PC =R.
Now tan 0'D = tan C'P cos PCD, (Art. 62),
thus tan } a = tan R cos (3 - 4),
tan § a
therefore tanR=mTSi_T) (1).

The value of tan R may be expressed in various forms; thus if we substitute

for tan ; from Art. 49, we obtain



S AN A=y S BT} - @)

Again cos (S—4)=cos {} (B+C)— 4 4)
=cos§(B+G)maiA+ain§(B+G)sini§A

='ilto‘ﬂ;‘:*f {cos 3 (b + ) + con § (B~ €)}, (Art. 54,)

= sin 4 cosdbeonde;

cos fa

therefore from (1)

sin}a cerirenrerennennns (3N
gin A cosd boosdc ‘

tan & =

Substitute in the last expression the value of sin A from Art. 46; thus
2sindasinlbsingde
+/J8in & 8in (¢ — @) 8in (s — b) sin (6 — c)}

- zsinaaﬁn*bﬁn&cuobtlllouill'l|<4)i

tan K =

It may be shewn, by common trigonometrical formula, that 4 sin &a sin &
b sin % c=sin (s —a) + sin (s — b) + sin (s — ¢) — sin s; hence we have from (4)

tan R = ﬂ—i-a{sin(c-a) #8in (5 =) +5in s ~ )= o} ... (5)

93. To find the angular radii of the small circles described round the
triangles associated with a given fundamental triangle.

Let R, denote the radius of the circle described round the triangle formed
by producing AB and AC to meet again at A'; similarly let R, and R3 denote the
radii of the circles described round the other two triangles which are similarly
formed. Then we may deduce expressions for tan R, tan R, and tan R3 from
those found in Art. 92 for tan R. The sides of the triangle A'BC area, # — b, 7 —
¢, and its angles are 4, # — B, # — C; hence if s = %(a +b+c)and S= &(A +B
+ C) we shall obtain from Art. 92



tan ¥o
taan E:ms SepididarmnsabibrssassirennvdntddddvwrenddlrrnPidireninn (l)’

cos {§—.4) cos(S—4) .
tm}z‘_—'»\/{—waSm(ﬂ—.B)cos(b-«C)}: N =G

gind &
tal], R":mﬁ& bm NI I RN I  E R T P LR T RN, ‘(3),
tan B, dsin yacoa }beos § ¢ SO 7'}

* Jisinasin (s —a) sin (s - 6) ain (s~ o)}

m31=.21§{sins—sin(s—a.) +sin(s—-b)+sin(s—c}} vareees (3)

Similarly we may find expressions for tan R, and tan Rj.

94. Many examples may be proposed involving properties of the circles
inscribed in and described about the associated triangles. We will give one that
will be of use hereafter.

To prove that
(oot 7+ tan R)'= 1 (sin a-+ sin b + sin o)* -1

We have

2

4n’ =1 - cos a—coszb—coszc+2005acosbcosc;

therefore

(sina + sin b + sin c)2—4n2
=2 (1 +sinasin b + sin b sin ¢ + sin ¢ sin a — cos a cos b cos ¢).

Also mtr+tmR=%b{dnl+ﬁn(:,—a) +4in (s —8) +sin(c—c)} ;

and by squaring both members of this equation the required result will be

obtained. For it may be shown by reduction that
sin?
and

s+sin2(s—a)+sin2(s—b)+sin2(s—c)=2—2cosacosbcosc,

sin s sin (s —a) + sin s sin (s — b) + sin s sin (s — ¢)



+sin (s —a) sin (s — b) +sin (s — b) sin (s — ¢) + sin (s — ¢) sin (s — a)
=sinasinb +sinbsinc +sincsina,

Similarly we may prove that
1,. . .
{cot r, —tan R)'= m(amb-l-smc—mna)’-l.

95. In the figure to Art. 89, suppose DP produced through P to a point A’
T
such that DA’ is a quadrant, then 4’ is a pole of BC, and PA' = = — r; similarly,

2

suppose EP produced through P to a point B’ such that EB’ is a quadrant, and
FP produced through P to a point C' such that FC' is a quadrant. Then A'B' C'

w
is the polar triangle of ABC, and PA' = PB' = PC' = § —r. Thus P is the pole of

the small circle described round the polar triangle, and the angular radius of
the small circle described round the polar triangle is the complement of the
angular radius of the small circle inscribed in the primitive triangle. And in like
manner the point which is the pole of the small circle inscribed in the polar
triangle is also the pole of the small circle described round the primitive
triangle, and the angular radii of the two circles are complementary.

EXAMPLES.

In the following examples the notation of the Chapter is retained.
Shew that in any triangle the following relations hold contained in
Examples 1 to 7:

l. Tanrjtanrp tanr3 =tan r sin s.

2. TanR+cotr=tan R; +cotr; =tan Ry + cotrp
=tan R3 + cot 13 =-§(cotr+cot r] + cot ry + cot r3).
3. Tan® R + tan® Ry + tan? R, + tan® R,
= cot? r + cot? r+ cot? ry+ cot? r3.
, Tan7 +tanr, +tany, ~tany
- cobr, + cobr, +cotr, — cobr

-;(1+cosa+cosb+cos

0).

5. Cosec?r = cot(s—a)cot(s—b)+cot(s—b)cot(s—c)+cot(s—c)(s—a).



6. Coseczrl = cot(s—b)cot(s—c)—cotscot(s—b)—cotscot(s—c).
7. Tan Ry, tan R, tan R; = tan R sec’ S.

8. Shew that in an equilateral triangle tan R=2tan r.

9. If ABC be an equilateral spherical triangle, P the pole of the circle
circumscribing it, Q any point on the sphere, shew that

cos QA + cos OB + cos QC =3 cos PA cos PQ.

10. If three small circles be inscribed in a spherical triangle having each of
its angles 120°, so that each touches the other two as well as two sides of the
triangle, shew that the radius of each of the small circles = 30°, and that the
centres of the three small circles coincide with the angular points of the polar
triangle.



VIII. AREA OF A SPHERICAL TRIANGLE. SPHERICAL EXCESS.
96. To find the area of a Lune.

A Lune is that portion of the surface of a sphere which is comprised
between two great semicircles.

Let ACBDA, ADBEA be two lunes having equal angles at A; then one of
these lunes may be supposed placed on the other so as to coincide exactly with
it; thus /unes having equal angles are equal. Then by a process similar to that
used in the first proposition of the Sixth Book of Euclid it may be shewn that
lunes are proportional to their angles. Hence since the whole surface of a
sphere may be considered as a lune with an angle equal to four right angles, we
have for a lune with an angle of which the circular measure is A4,

area of lune A

surface of sphere  2x '

Suppose r the radius of the sphere, then the surface is 4m2 (Integral
Calculus, Chap. VIL); thus

4

area of lune = "= 4mr? = 24r2.
2x



97. To find the area of a Spherical Triangle.

Let ABC be a spherical triangle; produce the arcs which form its sides until
they meet again two and two, which will happen when each has become equal
to the semi-circumference. The triangle ABC now forms a part of three lunes,
namely, ABDCA, BCEAB, and CAFBC. Now the triangles CDE and AFB are
subtended by vertically opposite solid angles at O, and we will assume that
their areas are equal; therefore the lune CAFBC is equal to the sum of the two
triangles ABC and CDE. Hence if 4, B, C denote the circular measures of the
angles of the triangle, we have

triangle ABC + BGDC = lune ABDCA = 241,
triangle ABC + AHEC = lune BCEAB = 2Br?,

triangle ABC + triangle CDE = lune CAFBC = 2Cr?;
hence, by addition,

twice triangle ABC + surface of hemisphere = 2(4 + B + C)r?;
therefore triangle ABC = (A + B + C — )12,

The expression 4 + B + C — z is called the spherical excess of the triangle;
and since

A+B+(Q-=
2r

the result obtained may be thus enunciated: the area of a spherical triangle is
the same fraction of half the surface of the sphere as the spherical excess is of
four right angles.

2xr?,

(A+B+C-m)r'=




98. We have assumed, as is usually done, that the areas of the triangles
CDE and AFB in the preceding Article are equal. The triangles are, however,
not absolutely equal, but symmetrically equal (Art. 57), so that one cannot be
made to coincide with the other by superposition. It is, however, easy to
decompose two such triangles into pieces which admit of superposition, and
thus to prove that their areas are equal. For describe a small circle round each,
then the angular radii of these circles will be equal by Art. 92. If the pole of the
circumscribing circle falls inside each triangle, then each triangle is the sum of
three isosceles triangles, and if the pole falls outside each triangle, then each
triangle is the excess of two isosceles triangles over a third; and in each case
the isosceles triangles of one set are respectively absolutely equal to the
corresponding isosceles triangles of the other set.

99. To find the area of a spherical polygon.

Let n be the number of sides of the polygon, £ the sum of all its angles.
Take any point within the polygon and join it with all the angular points; thus
the figure is divided into » triangles. Hence, by Art. 97,

area of polygon = (sum of the angles of the triangles — nz)r?,

and the sum of the angles of the triangles is equal to X together with the four
right angles which are formed round the common vertex; therefore

area of polygon = {E -(n-2) r} %,

This expression is true even when the polygon has some of its angles
greater than two right angles, provided it can be decomposed into triangles, of
which each of the angles is less than two right angles.

100. We shall now give some expressions for certain trigonometrical
functions of the spherical excess of a triangle. We denote the spherical excess
by E,sothatE =4 + B+ C — .

101. Cagnoli’s Theorem. To shew that



. JJ/{gin ¢ gin (s~ @) 8in (s ~ b) sin (a-c}}
sing K= Bcos } aoos d boos § ¢

Sin 3 Z=sin 3 (4 + B+ C~x)=sin{} (4 + B)—} (x— C)}
=gin}{d+B)sing C—coa} (4 +B)oos}C

TR i toon g (a-b)-con} (a4B)), (A 59)
smCsm}aam
cos § ¢
_sin}a b 2 A . .
ios?:& masinb.J{mncm(c—a)mn(s—b)31‘1:1(:;?}*{.
J{sin g sin (8 —a) 8in (#—3) sin (s - c}}

1

2c08jacosjbeonie
102. Lhuilier’s Theorem. To shew that

ta.n{E=-./{tan}stan§(s-a)tan§(s—-b)tan{;(s-c)}.

sin}(d+B+C—n)
cosd(A+ B+ C=n)

am}(A-l-.E)-—nmé_(n-

= oosi(d +B)+oos} (r—C)

_Bin}(4+B)—cos}C

T ooy (d+B)y+einiC

_cos}(a—b)—cospc cosdl

T cos(a+d)+ooshc sin § O’

Tan } £ =

, (Plane Trig. Art. 84),

(Art. 59).

Hence, by Art. 45, we obtain

sin } (c+ a—b)sin} (6+b—a) { sin ¢ sin (2—¢) }
coai(a+d+cjcosi(atb-c) sin (s — &) 8in (s — b)
~Jitan f o tan } (s - a) tan § (e~ B) tan } (o~ 9}

tan } F=

103. We may obtain many other formule involving trigonometrical
functions of the spherical excess. Thus, for example,



cos 3 E=cos{} (4 +B) -} (x-C)}
=cos}(d +B)sin}C+sin} (4 +B)cos} C

- {eoa } (a+B) sin'} € +cos § (a—b) cos"} c} sech c, (Art. 54),

= {con e con } b oos'§ O + s} 0)
+ainiasinib(oos’&ﬂ'--uin’&(f)}mic
={cosfacos}db+sintasin}beonl}secte.......... (1)

Again, it was shewn in Art. 101, that
gint E=gsinCsintasn}dsecte;

. rintasindd sin
therefore m§z=m%am§6+ﬁjﬁmﬁmc ..... (2. v

Again, we have from above
cos} E = {m%a cos}b+ein}asin}b caso}sec;,-c

(1 + cosa){1 + cosb) +zina sin b cos €
4cosdacospbceosge

-—
—

_l4cosa+cosb+cose cos’fa+cos'id+cos’ie-1 @)
“deoslocostbeospe 2cos}acos}beos)e TN

In (3) put 1-2sain*} E for cos§ F; thus

1+3cosfacosiboosye—cos'da—cos"tdb—cos'fe
dcosdacoatdeonto '

sin’} E =

By ordinary development we can shew that the numerator of the above
fraction is equal to

4 sin-%s sin-% (s—a) sin-%(s —b) sin-%(s —0);
therefore
sin}ssin} (s—a)sind (s-b)sin} (2-¢)

sin’} & = costacostbeosdc




Similarly

ot e e aofe L )

Hence by division we obtain Lhuilier’s Theorem.

Again,
mﬁﬁ;%‘m:m’nacohéE-msC
=ain0mséaeos1}b+ain§asin_§b mg-—oos(}', by (2),

sin § @ sind b sinC
=cotdacotdd;
therefore, by Art. 101,

sin ((—} B) = /{8in # &in (s — @) gin (¢ — &) sin (¢ — c)}

2gintarin}bcosdec

Again, co8(0-1E)=cosC o8} E+sinCsind ¥

= (1+°°3“)‘£::;ﬂ:):f;':;‘:;fnb 0osC 1 sinC sin}asinddsecde

_{1+cosa)(1+ cosb) cos C'+kingsin b
4costacostbeoste

={m§amﬁﬁﬁoﬂo+ siniasinib}mi“’

smasmbous0+4sm '}msm é_b
4sinfasindbcosfe

_ooso—cosa cos b + (1 — cosa)(1 - cosd)

dsinjasin}bcos}c

_l+cong—cosz—cosh _cos"}c-oos’ha~— cos’d b+ 1 (6)-
4sm§a.sm§be€lﬂ§0 2sm§usm§beoa§¢ ......

From this result we can deduce two other results, in the same manner as (4)
and (5) were deduced from (3); or we may observe that the right-hand member



of (6) can be obtained from the right-hand member of (3) by writing 7 — a and
7 — b for a and b respectively, and thus we may deduce the results more easily.

We shall have then
cos} ssin 4 (s—a)sin } (s~ B)cos § (s c)

sin’(}C-1£)= smjasin}dooste
eos'(QC'—}E')_sm%sm%(s —a)cos } (3—B)sin (s - )

sintasinibcosic

EXAMPLES.

1. Find the angles and sides of an equilateral triangle whose area is one-
fourth of that of the sphere on which it is described.

2. Find the surface of an equilateral and equiangular spherical polygon of »
sides, and determine the value of each of the angles when the surface equals
half the surface of the sphere.

1 7

T T
3.Ifa=b= < and ¢ = =, shew that E =cos ' _.

3 2
4. If the angle C of a spherical triangle be a right angle, shew that

sin &E=sin&a sin&b sec&c, cos &E=cos &a cos&b sec &c.

5. If the angle C be a right angle, shew that

gine sin*a sin’d
cos B = .
cos ¢ cosa cosd

o in?
6. Ifa=band C = =, shew that tan £ = sin a.
2 Z2cosn

7. The sum of the angles in a right-angled triangle is less than four right
angles.

8. Draw through a given point in the side of a spherical triangle an arc of a
great circle cutting off a given part of the triangle.

b

. . . a
9. In a spherical triangle if cos C = — tan § tan §, then C=A4 + B.

10. If the angles of a spherical triangle be together equal to four right angles



cos? &a+cos2&b+cos2&c= 1.

11. If r, rp, r3 be the radii of three small circles of a sphere of radius r

which touch one another at P, O, R, and 4, B, C be the angles of the spherical
triangle formed by joining their centres,

area POR=(A cosr; + Bcosry+C cosrz— )2,

12. Shew that

. {sin;Esin(A-%E)sin(B_;E)ain(a-;E)}‘
Hae= 2sm} Asin } BeniC '

13. Given two sides of a spherical triangle, determine when the area is a
maximum.

14. Find the area of a regular polygon of a given number of sides formed by
arcs of great circles on the surface of a sphere; and hence deduce that, if a be
the angular radius of a small circle, its area is to that of the whole surface of the
sphere as versin a is to 2.

15. A, B, C are the angular points of a spherical triangle; A', B, C' are the
middle points of the respectively opposite sides. If £ be the spherical excess of
the triangle, shew that

cos A'B coa BC ecos CA
cosfc cosla cosjb’

cos i K =

16. If one of the arcs of great circles which join the middle points of the
sides of a spherical triangle be a quadrant, shew that the other two are also
quadrants.



IX. ON CERTAIN APPROXIMATE FORMULAZ.

104. We shall now investigate certain approximate formula which are often
useful in calculating spherical triangles when the radius of the sphere is large
compared with the lengths of the sides of the triangles.

105. Given two sides and the included angle of a spherical triangle, to find
the angle between the chords of these sides.

Let AB, AC be the two sides of the triangle ABC; let O be the centre of the
sphere. Describe a sphere round 4 as a centre, and suppose it to meet AO, AB,
AC at D, E, F respectively. Then the angle EDF is the inclination of the planes
OAB, OAC, and is therefore equal to A. From the spherical triangle DEF

cos EF = cos DE cos DF + sin DE sin DF cos A;
and DE=%(7T—C), DF=&(71:—b);
therefore cos EF = sin & b sin & ¢+ cos & b cos & ccosA.

If the sides of the triangle are small compared with the radius of the sphere,
EF will not differ much from A4; suppose EF' = A — 6, then approximately

cos EF=cos A + 0sinA;
and sin } bsin } e =sin1 (b + ¢) —sin*1 (3 - ¢),
cosdbeoste=cos’}(h+c)-sin’l(b-c);

therefore



cos A +0sin A =sin" 1 (b+ ¢) —sin" § (5 o)

+{1-ain'{-(b+c)- i '*(b-c)}oosd;

therefore
fuind=(l—cosd)sin’} (B +¢)—-(1+coad)sin'}(d~¢)s
thereforo .@=tan § Asin® } (b +¢)—ocot } 4sin" } (b -o).

This gives the circular measure of 0; the number of seconds in the angle is
found by dividing the circular measure by the circular measure of one second,
or approximately by the sine of one second (Plane Trigonometry, Art. 123). If
the lengths of the arcs corresponding to a and b respectively be a and S, and r

a
the radius of the sphere, we have = and g as the circular measures of a and b
r

[+
respectively; and the lengths of the sides of the chordal triangle are 27 sin —
r
and 2r sin ‘E. respectively. Thus when the sides of the spherical triangle and

the radius of the sphere are known, we can calculate the angles and sides of the
chordal triangle.

106. Legendre’s Theorem. If the sides of a spherical triangle be small
compared with the radius of the sphere, then each angle of the spherical
triangle exceeds by one third of the spherical excess the corresponding angle
of the plane triangle, the sides of which are of the same length as the arcs of
the spherical triangle.

Let A, B, C be the angles of the spherical triangle; a, b, ¢ the sides; r the
radius of the sphere; @, S, y the lengths of the arcs which form the sides, so that

E T I are the circular measures of a, b, ¢ respectively. Then
r* e’ g



ooaa-eosbeosc‘

cos 4 = ginbsine '’
. ﬂ. ﬂ-‘
now cosa:l-gF,+ Zis

8in & 2 ¢’+
T 6

Similar expressions hold for cos & and sin b, and for cos ¢ and sin ¢
respectively. Hence, if we neglect powers of the circular measure above the
fourth, we have

1_%4-%,_ 1- f:' 24r)(1 2;{ 2-::-)
é(l'@)(l‘@)'

2#03'*7' ')+24“‘"5‘ ' - 68%))
187'(1 ‘_f)

- 5B+ n+~—,.(u—ﬁ' y-omy {1+ 5

ﬁ’+y {u + B4+ y' - 20"8'— 28"~ 2y"a’
2By f 24 By )

cosA_:

Now let A', B', C' be the angles of the plane triangle whose sides are a, f, y
respectively; then

———— ﬁc_'_,y: d-
. 00'3 = JBT s
L
thws  cosd=oosd’Byoind

6 °
Suppose 4 = A'+ @, then

cos A =cos A' — 0 sin A’ approximately;



ﬂ'y sin A' S
o 3

where S denotes the area of the plane triangle whose sides are a, f, y. Similarly

therefore 6=

B= B’+£=and0 el s

hence approximately

S

A+B+C=A'+B'+C'+_..é=71:+
T T

therefore - is approximately equal to the spherical excess of the spherical

-
i2

triangle, and thus the theorem is established.

It will be seen that in the above approximation the area of the spherical
triangle is considered equal to the area of the plane triangle which can be
formed with sides of the same length.

107. Legendre’s Theorem may be used for the approximate solution of
spherical triangles in the following manner.

(1) Suppose the three sides of a spherical triangle known; then the values of
a, B, y are known, and by the formule of Plane Trigonometry we can calculate
Sand A', B', C'; then A, B, C are known from the formula

A:A’+£~z, B=B’+3;f;, 0=0'+ 2.,

(2) Suppose two sides and the included angle of a spherical triangle known,
for example 4, b, c. Then

S= % PysinA' = % Py sin A approximately.

Then A' is known from the formula 4' = 4 — — Thus in the plane triangle

two sides and the included angle are known; therefore its remaining parts can
be calculated, and then those of the spherical triangle become known.

(3) Suppose two sides and the angle opposite to one of them in a spherical
triangle known, for example 4, a, b. Then



sin B' = E sinA4' = E sin A approximately;
a a
and C' =7 —A'— B'=7n— A — B' approximately; then S = &aﬂ sin C'. Hence A’

is known and the plane triangle can be solved, since two sides and the angle
opposite to one of them are known.

(4) Suppose two angles and the included side of a spherical triangle known,
for example, 4, B, c.

y'sind'sinB _y'sin4sinB 1
gen(d+B) Ism(d+B) oy

Hence in the plane triangle two angles and the included side are known.

Then S=

(5) Suppose two angles and the side opposite to one of them in a spherical
triangle known, for example 4, B, a. Then

C'=n—A'—B' =7 —A— B, approximately, and
a’sin B’ sin O’
2sin(B+0)"'

which can be calculated, since B' and C' are approximately known.

S=

108. The importance of Legendre’s Theorem in the application of Spherical
Trigonometry to the measurement of the Earth’s surface has given rise to some
developments of it which enable us to test the degree of exactness of the
approximation. We shall finish the present Chapter with some of these
developments, which will serve as exercises for the student. We have seen that

approximately the spherical excess is equal to ,_S? and we shall begin with
r

investigating a closer approximate formula for the spherical excess.
109. To find an approximate value of the spherical excess.
Let E denote the spherical excess; then
sindasindbsinC

therefore approximately



sin § & = sm(}‘aﬁ( “')( 241_,)(1 m-)-l
nmnC' (l+§i%§;,:~£;
therefore 'E=sin0§%(l+3f'u_ .](1),

24

and  #nC= ain(G’+§E)=ain0‘-i-§Ecaa0’

, 800’ cos 0’ aff _ ’ a’+ B -y ')
=gn 0’ + — 8 gp= in C (1"' 127 @)
From (1) and (2)
—_ o I“B a'+ﬁ’+y’)
E=sin(C E;;(I-l— 247 .

Hence to this order of approximation the area of the spherical triangle

2 8
exceeds that of the plane triangle by the fraction a 4+ ﬂf T of the latter.

2
gin 4
gin B°
Sind sina

SnB snd’
1 a* _a.‘)
mA ( -'_' 120+*

(l s 1907*)

110. To find an approximate value of

hence approx1mately




oo B _oF_ BB
T 1207 T &7 36 1200 365

'B'-’ S B

67 T 1204 ¥ 364

I

n n-t
F‘

I

we wl e

’ ' oy
+

(1+6r.‘ #}

ﬁ{‘ F ()

111. To express cot B — cot A approximately.

'@IQ

l“l-'l

sin B
Cot B—cot 4 -— (cosB—-mmA),

hence, approximately, by Art. 110,

. _ T - B - Ba -8
OWB—WtA—(OOBB—;GMA—; o OOﬂA).

Now we have shewn in Art. 106, that approximately
Bi+9* =o' o+ B4yt — 20°8° — 28% - 2y’
. + 24 ¥ ’
PRy | By
\ B
ot §

t:herefora GOBBL{— cosd =

cos d =

approximately,

': 3 g 2
ﬁ' d-p B +7’—a

':;;nﬁ;( St 12#

112. The approximations in Arts. 109 and 110 are true so far as terms

involving #*; that in Art. 111 is true so far as terms involving #2, and it will be
seen that we are thus able to carry the approximations in the following Article

so far as terms involving 7*.



113. To find an approximate value of the error in the length of a side of a
spherical triangle when calculated by Legendre’s Theorem.

Suppose the side f known and the side a required; let 3u denote the
spherical excess which is adopted. Then the approximate value

B sin (4 -p)
gin (B - p)
Bsin (4 —p)
sin (B—p)

approximately

is taken for the side of which « is the real value. Let

3 we have then to find x approximately. Now

=a—

L
gind - p cosd -£ sin 4

2
pin 4 o -t
-ﬁnB(I—pootA—z.)(l poot Bk |
'—SE-%{I-I-F(MB eotA)-}-p. eot.B(oot.B—eotA)}
gind paind
-m -m(mtB—ﬁoti)(l'l'Pth)-

Also the following formule are true so far as terms involving 72:
gind a 1+ B —a
xin B B & )’
+
oot B-cot A =—— 2 (1 B4y-d

Y
=+,- g

1+pcot.B=1+ T2s°

Hence, approximately,



224 (oot B - eotA)(l+peotB)=ﬁ7 B'B

S

_a(f—a")} [ 6p 1 3a*-78°
Sl {aysmg S+ } by Art. 110.

If we calculate ¢ from the formula p= M we obtain

_a(B'—a")(3a"-78%)
360+ *

If we calculate ¢ from an equation corresponding to (1) of art. 109, We
have

=ayain.3 (l+3B'—a;'-7
6r" 24

a(ﬁ'—a’) (a*+ B - 57)
herefore 55,8

MISCELLANEOUS EXAMPLES.

1. If the sides of a spherical triangle AB, AC be produced to B’, C', so that
BB', CC' are the semi-supplements of AB, AC respectively, shew that the arc
B'C' will subtend an angle at the centre of the sphere equal to the angle
between the chords of AB and AC.

2. Deduce Legendre’s Theorem from the formula

A _sin}(a+b-c)sin}(c+a-b)

b = i (G ro—a) smi@+b0)"

3. Four points A, B, C, D on the surface of a sphere are joined by arcs of
great circles, and E, F are the middle points of the arcs AC, BD: shew that

cos AB + cos BC + cos CD + cos DA =4 cos AE cos BF cos FE.

4. If a quadrilateral ABCD be inscribed in a small circle on a sphere so that



two opposite angles 4 and C may be at opposite extremities of a diameter, the
sum of the cosines of the sides is constant.

5. In a spherical triangle if 4 = B = 2C, shew that

cona oo g = o0s ¢+ 3)
2 A

6. ABC is a spherical triangle each of whose sides is a quadrant; P is any
point within the triangle: shew that

cos PA cos PB cos PC + cot BPC cot CPA cot APB=0,
and tan ABP tan BCP tan CAP = 1.

7. If O be the middle point of an equilateral triangle ABC, and P any point
on the surface of the sphere, then

1 (tan PO tan OA)" (cos PA + cos PB+cos PC)' =
c0s'PA +c08' P B+cos’ PO—coa PAcos P B—coa P Beos P! —cos PCeoe P A

8. If ABC be a triangle having each side a quadrant, O the pole of the
inscribed circle, P any point on the sphere, then

(cos PA + cos PB + cos PC)2 =3 cos? PO.

9. From each of three points on the surface of a sphere arcs are drawn on
the surface to three other points situated on a great circle of the sphere, and
their cosines are a, b, c; a', b', ¢'; a", b", ¢". Shew that ab"c' + a'bc" + a"b'c =
ab'c" +a'b"c+a"bc'.

10. From Arts. 110 and 111, shew that approximately

log f=1log a + log sin B—log sin A + ..éi_. (cot A — cot B).

11. By continuing the approximation in Art. 106 so as to include the terms
involving #*, shew that approximately

Bysin'd’ _Py(a’— 38'~3y") sin'd’
6r* 180rt '

12. From the preceding result shew that if A = A’ + @ then approximately

0=ﬁy:’i-!‘n{' (1+’TB'+7y'+n').

cos A=cosd’~

120+






X. GEODETICAL OPERATIONS.

114. One of the most important applications of Trigonometry, both Plane
and Spherical, is to the determination of the figure and dimensions of the Earth
itself, and of any portion of its surface. We shall give a brief outline of the
subject, and for further information refer to Woodhouse’s Trigenometry, to the
article Geodesy in the English Cyclopedia, and to Airy’s treatise on the Figure
of the Earth in the Encyclopeedia Metropolitana. For practical knowledge of
the details of the operations it will be necessary to study some of the published
accounts of the great surveys which have been effected in different parts of the
world, as for example, the Account of the measurement of two sections of the
Meridional arc of India, by Lieut.-Colonel Everest, 1847, or the Account of the
Observations and Calculations of the Principal Triangulations in the
Ordnance Survey of Great Britain and Ireland, 1858.

115. An important part of any survey consists in the measurement of a
horizontal line, which is called a base. A level plain of a few miles in length is
selected and a line is measured on it with every precaution to ensure accuracy.
Rods of deal, and of metal, hollow tubes of glass, and steel chains, have been
used in different surveys; the temperature is carefully observed during the
operations, and allowance is made for the varying lengths of the rods or chains,
which arise from variations in the temperature.

116. At various points of the country suitable stations are selected and
signals erected; then by supposing lines to be drawn connecting the signals, the
country is divided into a series of triangles. The angles of these triangles are
observed, that is, the angles which any two signals subtend at a third. For
example, suppose A and B to denote the extremities of the base, and C a signal
at a third point visible from A and B; then in the triangle ABC the angles ABC
and BAC are observed, and then AC and BC can be calculated. Again, let D be
a signal at a fourth point, such that it is visible from C and A; then the angles
ACD and CAD are observed, and as AC is known, CD and AD can be
calculated.

117. Besides the original base other lines are measured in convenient parts
of the country surveyed, and their measured lengths are compared with their
lengths obtained by calculation through a series of triangles from the original



base. The degree of closeness with which the measured length agrees with the
calculated length is a test of the accuracy of the survey. During the progress of
the Ordnance Survey of Great Britain and Ireland, several lines have been
measured; the last two are, one near Lough Foyle in Ireland, which was
measured in 1827 and 1828, and one on Salisbury Plain, which was measured
in 1849. The line near Lough Foyle is nearly 8 miles long, and the line on
Salisbury Plain is nearly 7 miles long; and the difference between the length of
the line on Salisbury Plain as measured and as calculated from the Lough Foyle
base is less than 5 inches (An Account of the Observations . . . page 419).

118. There are different methods of effecting the calculations for
determining the lengths of the sides of all the triangles in the survey. One
method is to use the exact formule of Spherical Trigonometry. The radius of
the Earth may be considered known very approximately; let this radius be
denoted by r, then if a be the length of any arc the circular measure of the

. . @
angle which the are subtends at the centre of the earth is = The formulae of
Spherical Trigonometry give expressions for the trigonometrical functions of ==

a a
, S0 that ; may be found and then a. Since in practice ; is always very small,

it becomes necessary to pay attention to the methods of securing accuracy in
calculations which involve the logarithmic trigonometrical functions of small
angles (Plane Trigonometry, Art. 205).

Instead of the exact calculation of the triangles by Spherical Trigonometry,
various methods of approximation have been proposed; only two of these
methods however have been much used. One method of approximation
consists in deducing from the angles of the spherical triangles the angles of the
chordal triangles, and then computing the latter triangles by Plane
Trigonometry (see Art. 105). The other method of approximation consists in
the use of Legendre’s Theorem (see Art. 106).

119. The three methods which we have indicated were all used by
Delambre in calculating the triangles in the French survey (Base du Systéeme
Métrique, Tome III. page 7). In the earlier operations of the Trigonometrical
survey of Great Britain and Ireland, the triangles were calculated by the chord
method; but this has been for many years discontinued, and in place of it
Legendre’s Theorem has been universally adopted (An Account of the
Observations . . . page 244). The triangles in the Indian Survey are stated by
Lieut.-Colonel Everest to be computed on Legendre’s Theorem. (4An Account
of the Measurement . . . page CLVIIL)



120. If the three angles of a plane triangle be observed, the fact that their
sum ought to be equal to two right angles affords a test of the accuracy with
which the observations are made. We shall proceed to shew how a test of the
accuracy of observations of the angles of a spherical triangle formed on the
Earth’s surface may be obtained by means of the spherical excess.

121. The area of a spherical triangle formed on the Earth’s surface being
known in square feet, it is required to establish a rule for computing the
spherical excess in seconds.

Let n be the number of seconds in the spherical excess, 8 the number of
square feet in the area of the triangle, » the number of feet in the radius of the
Earth. Then if E be the circular measure of the spherical excess,

§= Ev,

nT

and F = 1556060 = 506355 “PProximately
. _ o
therefore ®= 506265 "

Now by actual measurement the mean length of a degree on the Earth’s
surface is found to be 365155 feet; thus

nr

With the value of 7 obtained from this equation it is found by logarithmic
calculation, that

log n =1log 8 —9.326774.
Hence n is known when 8 is known.

This formula is called General Roy’s rule, as it was used by him in the
Trigonometrical survey of Great Britain and Ireland. Mr. Davies, however,
claims it for Mr. Dalby. (See Hutton’s Course of Mathematics, by Davies, Vol.
IL. p. 47.)

122. In order to apply General Roy’s rule, we must know the area of the
spherical triangle. Now the area is not known exactly unless the elements of the
spherical triangle are known exactly; but it is found that in such cases as occur
in practice an approximate value of the area is sufficient. Suppose, for
example, that we use the area of the plane triangle considered in Legendre’s
Theorem, instead of the area of the Spherical Triangle itself; then it appears



from Art. 109, that the error is approximately denoted by the fraction

%
%ﬁ of the former area, and this fraction is less than -0001, if the

sides do not exceed 100 miles in length. Or again, suppose we want to estimate
the influence of errors in the angles on the calculation of the area; let the
circular measure of an error be A, so that instead of G‘B aﬂm C
af sin (C + &)

2 . . .
expressed by 4 cot C. Now in modern observations 2 will not exceed the
circular measure of a few seconds, so that, if C be not very small, # cot C is
practically insensible.

we ought to use

; the error then bears to the area approximately the ratio

123. The following example was selected by Woodhouse from the triangles
of the English survey, and has been adopted by other writers. The observed
angles of a triangle being respectively 42°.2'.32", 67°.55'.39", 70°.1'.48", the
sum of the errors made in the observations is required, supposing the side
opposite to the angle A to be 27404-2 feet. The area is calculated from the

g .= .
expression @’ sin B sin ¢ and by General Roy’s rule it is found that » =
Jsind '
-23. Now the sum of the observed angles is 180° — 1", and as it ought to have
been 180° + -23", it follows that the sum of the errors of the observations is
1"-23. This total error may be distributed among the observed angles in such
proportion as the opinion of the observer may suggest; one way is to increase
each of the observed angles by one-third of 1"-23, and take the angles thus
corrected for the true angles.

124. An investigation has been made with respect to the form of a triangle,
in which errors in the observations of the angles will exercise the least
influence on the lengths of the sides, and although the reasoning is allowed to
be vague it may be deserving of the attention of the student. Suppose the three
angles of a triangle observed, and one side, as a, known, it is required to find
the form of the triangle in order that the other sides may be least affected by
errors in the observations. The spherical excess of the triangle may be
supposed known with sufficient accuracy for practice, and if the sum of the
observed angles does not exceed two right angles by the proper spherical
excess, let these angles be altered by adding the same quantity to each, so as to
make their sum correct. Let 4, B, C be the angles thus furnished by observation
and altered if necessary; and let 04, 0B and 6C denote the respective errors of
A, B and C. Then 84 + 8B + 6C = 0, because by supposition the sum of 4, B
and C is correct. Considering the triangle as approximately plane, the true



asin((f-i- 80) that is asin(O'-i—SG‘)
sin (4 +84) ‘gin {4 - 858 - o)

Now approximately

value of the side ¢ is

sin (C + 8C) = sin C + 8C cos C, (Plane Trig. Chap. XIL),
sin (4 — 8B —8C) =sin 4 — (8B + 8C) cos A.

Hence approximately

amnC

—

{1+8000t0}{1—(33+80)00t4{}—l

-“E;no{l+83mtd+80(oot0+cotd)}

sin(4+0)  sin3B
sin AsinC  snAdenC

Hence the error of ¢ is approximately

and cot C +cot 4 ==

approximately.

amnB a8in C ¢cos 4
3C + A

Similarly the error of b is approximately

8B,

asinCaB a sin B cos 4 50
sin’4d gin‘4 ’

Now it is impossible to assign exactly the signs and magnitudes of the
errors 0B and 8C, so that the reasoning must be vague. It is obvious that to
make the error small sin 4 must not be small. And as the sum of 64, 6B and 6C
is zero, two of them must have the same sign, and the third the opposite sign;
we may therefore consider that it is more probable that any two as 6B and 6C
have different signs, than that they have the same sign.

If 6B and 8C have different signs the errors of b and ¢ will be less when cos
A 1s positive than when cos A4 is negative; A therefore ought to be less than a
right angle. And if 8B and 6C are probably not very different, B and C should
be nearly equal. These conditions will be satisfied by a triangle differing not
much from an equilateral triangle.

If two angles only, 4 and B, be observed, we obtain the same expressions as



before for the errors in b and c¢; but we have no reason for considering that 6B
and 8C are of different signs rather than of the same sign. In this case then the
supposition that 4 is a right angle will probably make the errors smallest.

125. The preceding article is taken from the Treatise on Trigonometry in
the Encyclopeedia Metropolitana. The least satisfactory part is that in which it
is considered that 6B and 8C may be supposed nearly equal; for since 64 + 8B
+ 6C = 0, if we suppose 0B and 6C nearly equal and of opposite signs, we do in
effect suppose 64 = 0 nearly; thus in observing three angles, we suppose that in
one observation a certain error is made, in a second observation the same
numerical error is made but with an opposite sign, and in the remaining
observation no error is made.

126. We have hitherto proceeded on the supposition that the Earth is a
sphere; it is however approximately a spheroid of small eccentricity. For the
small corrections which must in consequence be introduced into the
calculations we must refer to the works named in Art. 114. One of the results
obtained is that the error caused by regarding the Earth as a sphere instead of a
spheroid increases with the departure of the triangle from the well-conditioned
or equilateral form (An Account of the Observations . . . page 243). Under
certain circumstances the spherical excess is the same on a spheroid as on a
sphere (Figure of the Earth in the Encyclopeedia Metropolitana, pages 198 and
215).

127. In geodetical operations it is sometimes required to determine the
horizontal angle between two points, which are at a small angular distance
from the horizon, the angle which the objects subtend being known, and also
the angles of elevation or depression.



Suppose OA4 and OB the directions in which the two points are seen from O;
and let the angle AOB be observed. Let OZ be the direction at right angles to
the observer’s horizon; describe a sphere round O as a centre, and let vertical
planes through OA4 and OB meet the horizon at OC and OD respectively: then
the angle COD is required.

Let AOB =6, COD =60 +x, AOC = h, BOD = k; from the triangle AZB
0—comZA cos ZB o080 —sinksink
gin ZA gin ZB coshecosk
and cos AZB = cos COD = cos (0 + x); thus

cos A ZB="

cos@ —-sinhgink

008 (0 + ) = coshcon o

This formula is exact; by approximation we obtain

conf—-hk
I+
therefore auin g =kk— 3(h' + &*) cos 6, nearly,

24k — (5 + &) (co6* 1 8 —sin’ § 6)
L= s
-2 @
= § (A +K) tan § 6— 1 (5 - &) cot § 6.

cosf—=2xsinf =

and




This process, by which we find the angle COD from the angle AOB, is
called reducing an angle to the horizon.



XI. ON SMALL VARIATIONS IN THE PARTS OF A SPHERICAL TRIANGLE.

128. It is sometimes important to know what amount of error will be
introduced into one of the calculated parts of a triangle by reason of any small
error which may exist in the given parts. We will here consider an example.

129. A side and the opposite angle of a spherical triangle remain constant:
determine the connexion between the small variations of any other pair of
elements.

Suppose C and ¢ to remain constant.

(1) Required the connexion between the small variations of the other sides.
We suppose a and b to denote the sides of one triangle which can be formed
with C and ¢ as fixed elements, and a + da and b + db to denote the sides of
another such triangle; then we require the ratio of da to db when both are
extremely small. We have

cosc=cosacos b+sinasinb cos C,

and cos ¢ = cos (a + da) cos (b + 6b) + sin (a + da) sin (b + 0b) cos C;

also cos (a + da) = cos a — sin a da, nearly,

and sin (a + da) =sin a + cos a da, nearly,

with similar formule for cos (b + 6b) and sin (b + 06b). (See Plane
Trigonometry, Chap. X11.) Thus

cod 0= (008 ¢ — ain & 3a) (cos b — &in b &)
+ (8in & + 008 & 8¢) (ain b + cos b 88) cos C.

Hence by subtraction, if we neglect the product da b,
0 = 3a (5in a cos b = cos a&in b cos )
+ 85 {gin b con & ~ cos b sin a 006 C) ;
this gives the ratio of da to 0b in terms of a, b, C. We may express the ratio

more simply in terms of 4 and B, for, dividing by sin a sin b, we get from Art.
44

2



% _ otBainC+ &bmt.dsin(z%o;

8in & gin
therefore 0a cos B+6bcosA=0.

(2) Required the connexion between the small variations of the other
angles. In this case we may by means of the polar triangle deduce from the
result just found, that

84 cos b+ 8B cos a = 0;

this may also be found independently as before.

(3) Required the connexion between the small variations of a side and the
opposite angle (4, a).

Here sin A sin ¢ = sin C sin a,
and sin (4 + 0A4) sin ¢ = sin C sin (a + da);
hence by subtraction

cos A sin ¢ 84 = sin C cos a da,
and therefore 04 cot A = da cot a.

(4) Required the connexion between the small variations of a side and the
adjacent angle (a, B).

We have cot C sin B = cot ¢ sin a — cos B cos a; proceeding as before
we obtain

cot C cos B 0B = cot ¢ cos a da + cos B sin a da + cos a sin B 0B; therefore

(cot C cos B — cos a sin B) 6B = (cot ¢ cos a + cos B sin a) da,

cos A cos b
therefore ~am 028 = G %3
therefore 88 cos 4 = — 8a oot b sin B,

130. Some more examples are proposed for solution at the end of this
Chapter; as they involve no difficulty they are left for the exercise of the
student.

EXAMPLES.

1. In a spherical triangle, if C and ¢ remain constant while a and b receive
the small increments da and &b respectively, shew that



a + % 0 wheren sin
J(l —nfsin'a) = JA -nT6in’d) “mne’
2. If C and ¢ remain constant, and a small change be made in a, find the
consequent changes in the other parts of the triangle. Find also the change in
the area.

3. Supposing A and ¢ to remain constant, prove the following equations,
connecting the small variations of pairs of the other elements :

sin C 8b =sin a 6B, &b sin C =—8C tan a, da tan C = 6B sin a, da tan C = —
oC tan a, 6b cos C = da, dB cos a =— 6C.

4. Supposing b and ¢ to remain constant, prove the following equations
connecting the small variations of pairs of the other elements :

OB tan C = &8C tan B, da cot C =— 08B sina,
0a = 8A4 sin ¢ sin B, 04 sin B cos C = — 8B sin A.

5. Supposing B and C to remain constant, prove the following equations
connecting the small variations of pairs of the other elements:

ob tan ¢ = 8¢ tan b, 0A cotc=0bsin A,
04 =6a sin bsin C, ba sin B cos ¢ = &b sin A.

6. If A and C are constant, and b be increased by a small quantity, shew that
a will be increased or diminished according as c is less or greater than a
quadrant.



XII. ON THE CONNEXION OF FORMULZ IN PLANE AND SPHERICAL
TRIGONOMETRY.

131. The student must have perceived that many of the results obtained in
Spherical Trigonometry resemble others with which he is familiar in Plane
Trigonometry. We shall now pay some attention to this resemblance. We shall
first shew how we may deduce formule in Plane Trigonometry from formulae
in Spherical Trigonometry; and we shall then investigate some theorems in
Spherical Trigonometry which are interesting principally on account of their
connexion with known results in Plane Geometry and Trigonometry.

132. From any formula in Spherical Trigonometry involving the elements of
a triangle, one of them being a side, it is required to deduce the corresponding
formula in Plane Trigonometry.

Let a, B, y be the lengths of the sides of the triangle, » the radius of the

a . . .
sphere, so that ;, g, g are the circular measures of the sides of the triangle;
r

a
expand the functions of ;, g, g which occur in any proposed formula in
r

a
powers of ;, g, g respectively; then if we suppose 7 to become indefinitely
r
great, the limiting form of the proposed formula will be a relation in Plane
Trigonometry.

For example, in Art. 106, from the formula

A_eosa—mabeosc
A= gnbsne
we deduce
o BT By B2yt

231. 243";{ LTI

now suppose ¥ to become infinite; then ultimately

Bry-a
28y ’

cos d =




and this is the expression for the cosine of the angle of a plane triangle in terms
of the sides.

Again, in Art. 110, from the formula

sind sing
sindl ginbd
sind a L0 e a
we dmlnw l_—-_- (ﬁ +t|-&--l ;
sin8 B 6pr*
now suppose ¥ to become infinite; then ultimately
sind a
sin B~ 8’

that is, in a plane triangle the sides are as the sines of the opposite angles.
133. To find the equation to a small circle of the sphere.
The student can easily draw the required diagram.

Let O be the pole of a small circle, S a fixed point on the sphere, SX a fixed
great circle of the sphere. Let OS=a, OSX =pf; then the position of O is
determined by means of these angular co-ordinates « and . Let P be any point
on the circumference of the small circle, PS =60, PSX = ¢, so that 8 and ¢ are
the angular co-ordinates of P. Let OP = r. Then from the triangle OSP

cos 7 = co8 a co8 0 + gin e gin 0 cos (¢ ~ B)....ccenve.a (1);

this gives a relation between the angular co-ordinates of any point on the
circumference of the circle.

. . ™ .
If the circle be a great circle then r = §; thus the equation becomes

0=cos a cos  + sin a sin & cos (¢ — B).........(2).

It will be observed that the angular co-ordinates here used are analogous to
the latitude and longitude which serve to determine the positions of places on
the Earth’s surface; 0 is the complement of the latitude and ¢ is the longitude.

134. Equation (1) of the preceding Article may be written thus:



6 . .0
msr(cos’§+sm §)

=cosa(coa‘%-sin'g)+2sinusingwﬂgm(¢-ﬂ).

Divide by cog'gand rearrange; hence
+9 8 .
tan §(coar+ooan)— 2 tan 5 sin a cos (p—~B)+cosr—cosa=0,

Let tangl and tan% denote the values of tﬂng found from this

quadratic equation; then by Algebra, Chapter XXIL

tang!tanf’!= cosr—oosaztmej_fma-r.
2 g cosr+cosa 2 )1

Thus the value of the product tgpn g!.. tan% is independent of ¢; this

result corresponds to the well-known property of a circle in Plane Geometry
which is demonstrated in Euclid 111. 36 Corollary.

135. Let three arcs OA, OB, OC meet at a point. From any point P in OB
draw PM perpendicular to OA, and PN perpendicular to OC. The student can
easily draw the required diagram.

Then, by Art. 65,
sin PM = sin OP sin AOB, sin PN = sin OP sin COB;
sin PM #sin A0OB
sin PN~ 8in COB '
Thus the ratio of sin PM to sin PN is independent of the position of P on the
arc OB.

therefore

136. Conversely suppose that from any other point p arcs pm and pn are
drawn perpendicular to OA4 and OC respectively; then if

ginpm _ sin PM
sin pn  sin PN’




it will follow that p is on the same great circle as O and P.

137. From two points P and P, arcs are drawn perpendicular to a fixed arc;
and from a point P on the same great circle as P; and P, a perpendicular is
drawn to the same fixed arc. Let PP; = 6, and PP, = 0,; and let the
perpendiculars drawn from P, Py, and P, be denoted by x, x;, and x;. Then will

) sin 6 . sin 6,

_ % e 1 o3
T (0,+0) T Em (6 +6) "

Let the arc P{P,, produced if necessary, cut the fixed arc at a point O; let a
denote the angle between the arcs. We will suppose that Py is between O and
P,, and that P is between P and P,.

Then, by Art. 65,
gin 2, = gin a sin OP, = sin a sin (OP-0))
= 8in a (sin OP c0s 0, — cos OPsin 6));
aina:,= 8in o 8in OP"'—" sin a ain(OP + 3’)
"~ . =sina (sin OPcos d,+cos OP sin 6,)..
Multiply the former by sin 6,, and the latter by sin 6}, and add; thus

sin §, sin , + sin 6, sin , = sin (§, + 0,) sin a.sin OP
= sin (6, +6,) sina,

The student should convince himself by examination that the result holds
for all relative positions of P, P;, and P,, when due regard is paid to

algebraical signs.

138. The principal use of Art. 137 is to determine whether three given
points are on the same great circle; an illustration will be given in Art. 146.

139. The arcs drawn from the angles of a spherical triangle perpendicular
fo the opposite sides respectively meet at a point.



(4
Let CF be perpendicular to AB. From F suppose arcs drawn perpendicular

to CB and CA respectively; denote the former by & and the latter by #. Then, by
Art. 135,

sin { sin FOB
siny ain FCA'

But, by Art. 65,
cos B =cos CF'sin FCB, cos A = cos CF sin FCA,

smE cos B eos Boos 0

giny ecosd cosdeosC’
And if from any point in CF arcs are drawn perpendicular to CB and CA
respectively, the ratio of the sine of the former perpendicular to the sine of the

therefore

latter perpendicular is equal to ..,._g by Art. 135.
81D

In like manner suppose AD perpendicular to BC; then if from any point in
AD arcs are drawn perpendicular to AC and AB respectively, the ratio of the
sine of the former perpendicular to the sine of the latter perpendicular is equal

0908 4 08 O

coa dcoe B*

Let CF and AD meet at P, and from P let perpendiculars be drawn on the
sides a, b, ¢ of the triangle; and denote these perpendiculars by x, y, z
respectively: then we have shewn that




sinz cos BeosC
siny cosd cos(’

and that siny cosdcos(r
sin 3 cmAcos.B’

hence it follows that
sin # _Sos B cos
sinz  cosBoosd’
and this shews that the point P is on the arc drawn from B perpendicular to AC.

Thus the three perpendiculars meet at a point, and this point is determined
by the relations

ging _ #iny __ Eng
co8Boos( cosCcosd cosdcosB’

140. In the same manner it may be shewn that the arcs drawn from the
angles of a spherical triangle to the middle points of the opposite sides meet at
a point; and if from this point arcs x, y, z are drawn perpendicular to the sides
a, b, c respectively,

gine  siny gin »
sinBsinC sinCaind " sindsinB°
141. It is known in Plane Geometry that a certain circle touches the
inscribed and escribed circles of any triangle; this circle is called the Nine

points circle: see Appendix to Euclid, pages 317, 318, and Plane Trigonometry,
Chapter XXIV.

We shall now shew that a small circle can always be determined on the
sphere to touch the inscribed and escribed circles of any spherical triangle.

142. Let a denote the distance from A of the pole of the small circle
inscribed within a spherical triangle ABC. Suppose that a small circle of
angular radius p touches this inscribed circle internally; let f be the distance
from A of the pole of this touching circle; let y be the angle between arcs drawn
from A to the pole of the inscribed circle and the pole of the touching circle
respectively. Then we must have

oo8 (p—r)=cosacos f+eineginBcosy...........(1).



Suppose that this touching circle also touches externally the escribed circle of
angular radius r;; then if a; denote the distance from A of the pole of this

escribed circle, we must have
coB (p+7)=coza cos B +sina gin Bcosy ......... (2)

Similarly, if a, and a3 denote the distances from A4 of the poles of the other

escribed circles, in order that the touching circle may touch these escribed
circles externally, we must also have

cos (p + r,)-_—cosa.cosﬁ+sinu,'ainﬂoos‘(g-—y).........(ﬁ),

cos {p + ,) = 008 a, cos B + sin a'ainﬁm(g+7)........ (4).

We shall shew that real values of p, f, and y can be found to satisfy these
four equations.

Eliminate cos y from (1) and (2); thus

cos p(cos 7 Bin a, — cos 7, 8in.a) + 8inp (sin r8in e +sin s, sina)
=008 (c0s a 8in a, — €08 a, &in o}......{5)

Suppose that the inscribed circle touches 4B at the distance m from A4, and
that the escribed circle of angular radius r; touches AB at the distance m; from

A. Then, by Art. 65,

A - - 1) A
cot u=ootmooa§, cosa=codrcoSm, #h¢+=8Nha4h;

cosr oota 1 4

sing  cosm  sum 2

therefore

Similarly we may connect a;, and 7, with m;. Thus we obtain from (5)

co8 0054 1 1 ) 9 g1 uinf"-.
P 2(ni.um_ﬁ:imt+ mpany

=pospcos% {cotm — cotm.);




therefore cos p (sin m, — sin m) + 2sin p sin s sin m, tan 5
=m#ﬁn(ml—*m).

But by Arts. 89 and 90 we have m = 8 — a, and m| = &; therefore by the aid
of Art. 45 we obtain

2m3psm§m6; +2nsin p=cos Baind............(6),

where n has the meaning assigned in Art. 46.

In like manner if we eliminate sin y between (3) and (4), putting m, for 8 —
¢, and m3 for 8 — b, we obtain

©o8 p (8in m,, + sin m,) — 2lfsil:;psinm,li:inm.‘ct:ﬂ;;—l
= cos B ein (m, + m,),

therefora 2eoapmn“' eosé-—--ﬂnmnp::coaﬂmna.........(?).

2 2
From (6) and (7) we get
in®enduing |
tanp= - ~gtan K, by Art, 92........«(8)
b e .
and . T R SR .. ).

2]
CO8 —
2

¢
We may suppose that aay 2 is not less than gg g_ , Of £O8 §, so that we

are sure of a possible value of cos f from (9).

It remains to shew that when p and B are thus determined, all the four
fundamental equations are satisfied.

It will be observed that, p and B being considered known, cos ¥ can be
found from (1) or (2), and sin y can be found from (3) or (4): we must therefore



shew that (1) and (2) give the same value for cos y, and that (3) and (4) give the
same value for sin y; and we must also shew that these values satisfy the

condition cos? y+ sin2y =1.

From (1) we have

ﬂ';.ﬁ’_nﬁ(ootr+tanp-mmmtr°l =sin Boosy,
gin - coap
that is,

) A. . 5 [
008 psin . CcoB(e-a)sinscosgeosy
—jgin g+ sinfasinddeinde— = e

» ' m%
nﬁhﬂ“‘}';

this reduces to

. A . 5 .0 !
T e gindte RO gl i Boosys

2 2 P 7
- 2

and it will be found that (2) reduces to the same; so that (1) and (2) give the
same value for cos .

In like manner it will be found that (3) and (4) agree in reducing to

A . B b o

008 p co8 — > a;?._u_m(c- )m§m2
e T,
. 2

=sin 8siny,

It only remains to shew that the condition cos® y + sin? y = 1 is satisfied.

% oel
2

2
PR
3

Put % for zf, that is for



put X for cot ¥ {1 — k cos (8§ —a)}, and Y for cot r1, {1 — k cos 8}.
Then (1) and (2) may be written respectively thus:

(X conp +in p)sin 5 =4in B 008 y vr.........(10),

(¥ con p—sinp) sin  =sin Boosy ........... (11).

From (10) and (11) by addition
(X + F)sin’ conp=2ainBoosy;

therefors 4sin®f oos’y= (X' + ¥*+2XT)sin' % cos'p......(12}

But from (10) and (11) by subtraction
. ~ (X¥-Teosp=—2sinp;
thereforo (X*+ Y)cos®p=4gin®p +2X Y 008 p.

Substitute in (12) and we obtain

4.3

gin* B cos' y = (sin® p + X ¥ cos” p) s;u:n"2

Again, put
Xj, for cot rp, {1 —kcos (8 — ¢)}, and Yy, for cot ) {1 — k cos (8—b)}.
Then (3) and (4) may be written respectively thus:
(X, c08p- ﬂinp)'oosi'- =sin B8iny.......... (14),
2 }
y

(T, 08 p — sin p) oos g = it Bsin y ...... (15).

From (14) and (15) by subtraction

k- . A | ' *
(Xl—-rl)emﬁemP:ﬂﬂmﬁamy,



and from (14) and (15) by addition,

(X3 +Y)cosp=2sinp,

whence
sin’ Bsin®y = sin p — X, ¥, 008" p) c08" £-..... (16).

Hence from (13) and (16) it follows that we have to establish the relation

si® ﬁ:ain’p+(.1'l’sin':;--x‘l’lcos'%) coe’p,

But sin? f=1- cos? b= sin? p+ cos? p— K cos? p, so that the relation
reduces to

1-F=XYsi' 5 - X7 0080

Now

A _cotreotr {1 kooss}{1 — & conle—aj}#in (s — — b)gin (¢ —c)
sindsinc
_{l—kcosg}{l - kcos(a-a}}
mbmw

Bmﬂn.rlyXYeoa’ _{1—%cos (s b)}{l—km(c—c}}‘

gin b gin ¢

XY gin

Subtract the latter from the former; then we obtain

k
sin b sin ¢
i

gin beine

$oon (g — b) + coq (8 — ¢) — cos 4 — con (s — a)}

+ {cos & cos (s — a) — coa (¢ — b) cos (¢ — )},



2k cos _
sinbrin ¢ 2

' b+ec+a bre—-a ayoe-b a+b_e}
+ambsinc{ g W3 co8 —g—— M

.6 b e

4 8in ; nin 08 €06 5
. 2 2’ 2 2 k. (\. .6_—_@_ o-’-‘ib}
that is — gindsine -+smbamcl g IR T

thatis 1 — k2; which was to be shown.

143. Thus the existence of a circle which touches the inscribed and escribed
circles of any spherical triangle has been established.

The distance of the pole of this touching circle from the angles B and C of
the triangle will of course be determined by formule corresponding to (9); and
thus it follows that

i . Oﬂﬂ? = 008
£08.5, 008 5008 p 2130.52 p

must both be less than unity.

144. Since the circle which has been determined touches the inscribed circle
internally and touches the escribed circles externally, it is obvious that it must
meet all the sides of the spherical triangle. We will now determine the position
of the points of meeting.

Suppose the touching circle intersects the side AB at points distant A and u
respectively from A.

Then by Art. 134 we have
cos™ — cos’ cos 2
jan X tap £t = 050 —c08B_ _ 2 2__2 vereene (1),

272 cosp+cosf ma+m2m;

In the same way we must have by symmetry



. & e
QOB - —

c-A, _e=p 2 2 2

I R —eosb-l-ms“ c’ reeenene (2)

3% 3

ta.n

A

From (2), when we substitute the value of ¢gp — g given by (1), we

obtain
12 o062 0o & + cost O sint 2
cos’ 5 905’2005 5 + 008" 5 sin’5

L g a"cos—ooag)
msﬁm-g(om§¢ 5 3

o b e b . ¢
005——005—0082- m§m§

=—ﬂ- + —G—H .........(3).
co8

sin 5 CO8 5+ €08 5 008 5

From (1) and (3) we see that we may put
BOBE Oﬂﬂb Co8 o ¢
2 22 (4).
=T sesssguibndsapantdrrs

CO8 = Bl

tan§+tan;j=

tan

82[ >
o

| bl

00&23111

R S )

Similar formula of course hold for the points of intersection of the touching
circle with the other sides.

Kol o bl

tan

IR

145. Let z denote the perpendicular from the pole of the touching circle on
AB; then



. . . f4
smz-smﬁsm(-§+y)
& » A A. L]
=gin § (sm-—z:-uoa-y-l-ooafgmy
But from (2) and (3) of Art. 142 we have

cos psin o
sin B cony =

. 6. b . ¢
(Z smsalnzmnz)
Where Z = sin (s — a) — cos s sin (s — a) gog g CO8 = mg

4
—Z (7 sinin g )
b ¢ _a

where 7, =sin (s —b) — coa (¢ — ¢) sin (s - b) 08 ; coB 5 36c 5 .

Therefore

. cspf, . . A .. A .a. b. ¢
mna:-—’-‘—{zm E'F«Z'NG"E—MEHIBEME}-

Now Zhin'l.—;-=
8in (a—a)sin(c—b}sin(c-'o){ b ¢ G}

in bein ¢ I-OOGSGNEM§H¢§ '

4
2

sin sain (s - a) sin (s —
= 8in b #in ¢

and Z, cos’

b){l—oos(t—c)gcoe%m g}

Therefore Zaint 5 + 5,008

is equal to the product of



gin (2 - a) sin (s — B)
gin ) sin ¢

into

ain(s—c)-&ai.na-oou-g-ma%m;{lin(l—c)eosl+ooa(c—c)ainc}-

_safe—a)sin(e B {2 ﬁnfﬂmf—mfaoafmgﬂin(%-c)}

gin b gin ¢ 2 2 2 2
_sin(s- o:l-):un(«r—il'){2 -sin(¢+b)ooagsec§}
2smbsm—
Kin (s — a}am(c—b}am-%b I-coaf‘_gfmg
&
Embam§ eos§
m(s—a)mn(a—b)m'ﬂmﬁ- sin(s ~ a)sin (s ~ 3)sind 22
o - . a g*ﬂ - p .
mbsmE €08 3 2m§m§m§
Therefore
. gGFd . .
. cosp . 8 . b . ¢ e’ — m('_“)m('-b‘) ]
Eng=—_teingsnjung e -1
m’ﬂmamnb
cosp . 6 . b . ¢ A-B
=Tpmn§mn§am§{2m' ——2—«-1}; by (2) of Art. 54.
Thus z*%m;ﬁnbm cos (4 - B)
= 8in p oos (4 — B).

Similar expressions hold for the perpendiculars from the pole of the
touching circle on the other sides of the spherical triangle.



146. Let P denote the point determined in Art. 139; G the point determined
in Art. 140, and N the pole of the touching circle. We shall now shew that P, G,
and N are on a great circle.

Let x, y, z denote the perpendiculars from N on the sides a, b, ¢ respectively
of the spherical triangle; let x;, ¥, z; denote the perpendiculars from P; and x,,

V2, 2 the perpendiculars from G, Then by Arts. 145, 139, and 140 we have

ain sin ¥ #in 2
cos (B — 0) m(C-A) cos (4 — B)’
sin @, sin ¥, sin 2,

eoaBmsC cosCoosd cosd eoaB’

ginx, siny, sin z,

sm.BsmC sin Usin 4 Zsmﬁ
Hence it follows that
sin x = £ sin x] + t, sin X,
siny =1¢; siny; + 1, sin y,,

sin z =1 sin z] + ¢, sin z,
where 7] and #, are certain quantities the values of which are not required for
our purpose.

Therefore by Art. 137 a certain point in the same great circle as P and G is
at the perpendicular distances x, y, z from the sides a, b, ¢ respectively of the
spherical triangle: and hence this point must be the point N.

147. The resemblance of the results which have been obtained to those
which are known respecting the Nine points circle in Plane Geometry will be
easily seen.

The result tan p = * tan R corresponds to the fact that the radius of the Nine
points circle is half the radius of the circumscribing circle of the triangle.

From equation (4) of Art. 144 by supposing the radius of the sphere to
'+t —a’
L 2¢ .
the Nine points circle passes through the feet of the perpendiculars from the
angles of a triangle on the opposite sides.

become infinite we obtain )} _ s this corresponds to the fact that




From equation (5) of Art. 144 by supposing the radius of the sphere to

become infinite we obtain m= -2-: this corresponds to the fact that the Nine
points circle passes through the middle points of the sides of a triangle.

From Art. 145 by supposing the radius of the sphere to become infinite we
obtain & — % Rocos ( y - B) + this is a known property of the Nine points
circle.

In Plane Geometry the points which correspond to the P, G, and N of Art.
146 are on a straight line.

148. The results which have been demonstrated with respect to the circle
which touches the inscribed and escribed circles of a spherical triangle are
mainly due to Dr Hart and Dr Salmon. Sea the Quarterly Journal of
Mathematics, Vol. V1. page 67.

EXAMPLES.

1. From the formula aing =J{ — o08 § cos (S-A)} deduce

8in B sin ¢
a®sin Bein ¢
28in A !

when

the formula for the area of a plane triangle, namely
the radius of the sphere is indefinitely increased.

2. Two triangles ABC, abc, spherical or plane, equal in all respects, differ
slightly in position: shew that

cos ABb cos BCc cos CAa + cos ACc cos CBb cos BAa = 0.
3. Deduce formula in Plane Trigonometry from Napier’s Analogies.

4. Deduce formule in Plane Trigonometry from Delambre’s Analogies.

¢ A+B . C a+b

5. From the formula aon — OB ———— = 81N — COS
2 2 2

area of a plane triangle in terms of the sides and one of the angles.

deduce the

6. What result is obtained from Example 7 to Chapter VL., by supposing the
radius of the sphere infinite?

7. From the angle C of a spherical triangle a perpendicular is drawn to the
arc which joins the middle points of the sides a and b: shew that this



perpendicular makes an angle S — B with the side a, and an angle S — 4 with
the side b.

8. From each angle of a spherical triangle a perpendicular is drawn to the
arc which joins the middle points of the adjacent sides. Shew that these
perpendiculars meet at a point; and that if x, y, z are the perpendiculars from
this point on the sides a, b, ¢ respectively,

gin 2in ¥ _ sin 2
(Y- B)sm(S — C) B0 (3~ C)sin(S—4) #n(S-A)anE - 5)

9. Through each angle of a spherical triangle an arc is drawn so as to make
the same angle with one side which the perpendicular on the base makes with
the other side. Shew that these arcs meet at a point; and that if x, y, z are the
perpendiculars from this point on the sides a, b, ¢ respectively,

ginz siny sinz
—— Ll = . — =
cosd cosB coa(’
10. Shew that the points determined in Examples 8 and 9, and the point N
of Art. 146 are on a great circle.

State the corresponding theorem in Plane Geometry.

11. If one angle of a spherical triangle remains constant while the adjacent
sides are increased, shew that the area and the sum of the angles are increased.

12. If the arcs bisecting two angles of a spherical triangle and terminated at
the opposite sides are equal, the bisected angles will be equal provided their
sum be less than 180°.

[Let BOD and COE denote these two arcs which are given equal. If the
angles B and C are not equal suppose B the greater. Then CD is greater than BE
by Art. 58. And as the angle OBC is greater than the angle OCB, therefore OC
is greater than OB, therefore OD is greater than OF. Hence the angle ODC is
greater than the angle OEB, by Example 11. Then construct a spherical triangle
BCF on the other side of BC, equal to CBE. Since the angle ODC is greater
than the angle OEB, the angle FDC is greater than the angle DFC; therefore
CD is less than CF, so that CD is less than BE. See the corresponding problem
in Plane Geometry in the Appendix to Euclid, page 317.]



XIII. POLYHEDRONS.

149. A polyhedron is a solid bounded by any number of plane rectilineal
figures which are called its faces. A polyhedron is said to be regular when its
faces are similar and equal regular polygons, and its solid angles equal to one
another.

150. If' S be the number of solid angles in any polyhedron, F the number of
its faces, E the number of its edges, then S + F =E + 2.

Take any point within the polyhedron as centre, and describe a sphere of
radius 7, and draw straight lines from the centre to each of the angular points of
the polyhedron; let the points at which these straight lines meet the surface of
the sphere be joined by arcs of great circles, so that the surface of the sphere is
divided into as many polygons as the polyhedron has faces.

Let s denote the sum of the angles of any one of these polygons, m the

number of its sides; then the area of the polygon is ¥ {s — (m — 2) 7} by Att.
99. The sum of the areas of all the polygons is the surface of the sphere, that is,

4zr*. Hence since the number of the polygons is F, we obtain

Ar=%s —wxm + 2Fm.

Now Xs denotes the sum of all the angles of the polygons, and is therefore
equal to 27 x the number of solid angles, that is, to 2zS; and Xm is equal to the
number of all the sides of all the polygons, that is, to 2F, since every edge
gives rise to an arc which is common to two polygons. Therefore

4w =2xnS — 2nE + 2FT;
therefore S+F=E+2.

151. There can be only five regular polyhedrons.

Let m be the number of sides in each face of a regular polyhedron, n the
number of plane angles in each solid angle; then the entire number of plane
angles is expressed by mF, or by nS, or by 2F; thus

mE=nS=2E,and S+ F=FE+ 2
from these equations we obtain



_ 4m E= 2mn Fe in
" 3 (m+n)—mn’ Em+n)—-mn’ ° 2(m+n)-mn

These expressions must be positive integers, we must therefore have 2 (m +
n) greater than mn; therefore

1 1 1
;‘-+;muatbegmaterthm—,

but #» cannot be less than 3, so that _1_ cannot be greater than é, and therefore
n

—= must be greater than ..'; and as m must be an integer and cannot be less than

m
3, the only admissible values of m are 3, 4, 5. It will be found on trial that the

only values of m and n which satisfy all the necessary conditions are the
following: each regular polyhedron derives its name from the number of its
plane faces.

m|n | S| F|F Name of regular Polyhedron.
3 13| 4-| 6 [ 4.| Tetrahedron or regular Pyramid.
4 | 3| 8 | 12| 6 | Hexahedron or Cube,
| 3| 4| 6 |12 8 | Octahedron.
51 3 |20 30|12 | Dodecahedron.
3| 5 |12 | 30 | 20 |. Icosahedron.

It will be seen that the demonstration establishes something more than the
enunciation states; for it is not assumed that the faces are equilateral and
equiangular and all equal. It is in fact demonstrated that, there cannot be more
than five solids each of which has all its faces with the same number of sides,
and all its solid angles formed with the same number of plane angles.

152. The sum of all the plane angles which form the solid angles of any
polyhedron is 2 (S —2) m.

For if m denote the number of sides in any face of the polyhedron, the sum
of the interior angles of that face is (m — 2) 7 by Euclid 1. 32, Cor. 1. Hence the
sum of all the interior angles of all the faces is £ (m — 2) =, that is ¥mx — 2Fr,
thatis 2 (£ — F) «, thatis 2 (S —2) «.




153. To find the inclination of two adjacent faces of a regular polyhedron.

Let AB be the edge common to the two adjacent faces, C and D the centres
of the faces; bisect AB at E, and join CE and DE, CE and DE will be
perpendicular to AB and the angle CED is the angle of inclination of the two
adjacent faces; we shall denote it by 1. In the plane containing CE and DE draw
CO and DO at right angles to CE and DE respectively, and meeting at O; about
O as centre describe a sphere meeting OA, OC, OF at a, c, e respectively, so
that cae forms a spherical triangle. Since AB is perpendicular to CE and DE, it
is perpendicular to the plane CED, therefore the plane AOB which contains AB
is perpendicular to the plane CED; hence the angle cea of the spherical triangle
is a right angle. Let m be the number of sides in each face of the polyhedron, »
the number of the plane angles which form each acute angle. Then the angle

br o .
acem ACE = ¥ . and the angle cae is half one of the n equal

. = ?
2m m 9
angles formed on the sphere round a, that is, age = E:= il , From the right-
n n

angled triangle cae

cos cae = cos cOe sin ace,

¢o8 cae = co8 ¢Oe 8in ace,
that is oosf=cos(f--1-)sin£i
n 2 2 m
T
r 8
therefore 8D = = s |
2, L



154. To find the radii of the inscribed and circumscribed spheres of a
regular polyhedron.

Let the edge AB = a, let OC = r and OA4 = R, so that r is the radius of the
inscribed sphere, and R is the radius of the circumscribed sphere. Then

CE=AE oot ACE =5 cot =,
" . m

r=CF8 tan CEQ = C‘Etﬂné ;mt ta.ng,
also . r=.§ma0c=£wﬁmmtm=£¢ot%wt%i
therefore K =+ tan — taﬂ—aﬂtanrtan

155. To find the surface and volume of a regular polyhedron.

.
The area of one face of the polyhedron is —— cut-a-‘ , and therefore the

4

2
surface of the polyhedron is mFa cot r .
m
Also the volume of the pyramid which has one face of the polyhedron for
s
base and O for vertex is T_ . m $ E, and therefore the volume of the
4
. mFra* @
polyhedron is cot —
m

156. To find the volume of a parallelepiped in terms of its edges and their
inclinations to one another.



B

Let the edges be O4 =a, OB = b, OC = c; let the inclinations be BOC = «,
COA = B, AOB = y. Draw CE perpendicular to the plane AOB meeting it at E.
Describe a sphere with O as a centre, meeting OA4, OB, OC, OF ata, b, c, e
respectively.

The volume of the parallelepiped is equal to the product of its base and
altitude = ab sin y. CE = abc sin y sin cOe. The spherical triangle cae is right-
angled at e; thus

sin cOe = sin cOa sin cae = sin B sin cab,
and from the spherical triangle cab

sinmb_J(l—oos’a-cos’B-cos'y-P 208 acos Beosy) |
B sin Sginy ’

therefore the volume of the parallelepiped
=abe /(1 — cos® a— cos® B — cos* v+ 2 cos « co8 8 co8 y).

157. To find the diagonal of a parallelepiped in terms of the three edges
which it meets and their inclinations to one another.

Let the edges be O4 =a, OB = b, OC = c; let the inclinations be BOC = «,
COA = B, AOB = y. Let OD be the diagonal required, and let OF be the
diagonal of the face OAB. Then

OD*=0FK"+ ED*+20E. ED cos COE
=g+ b’ + 2ad cos y + ¢’ + 260K 008 COE,

Describe a sphere with O as center meeting OA4, OB, OC, OF at a, b, c, e
respectively; then (see Example 14, Chap. 1V.)



cos cOe = 08 ¢0b sin a0¢ + cos cOa sin b0e
¢ sin a0b
cos a sin afe + coa B sin H0e

}

therefore
2 T L | 2GOE - .
OD*=g' + 6" +¢ +2abm7+m(MamaOc+eoaﬁsmbOa),

and 0.-EsinaOe=bsin7, OF sinéQe=asBiny;
therefore  O0D'=a'+ b + ¢’ + 3ab cos y + 2be 008 a + 2ea cos .

158. To find the volume of a tetrahedron.

A tetrahedron is one-sixth of a parallelepiped which has the same altitude
and its base double that of the tetrahedron; thus if the edges and their
inclinations are given we can take one-sixth of the expression for the volume in
Art. 156. The volume of a tetrahedron may also be expressed in terms of its six
edges; for in the figure of Art. 156 let BC =a', CA=b', AB = ¢, then

con _b'+o'~a" ﬁ_c’+a’-—b“ _atebt ="
V=TGR 0 P E T YT

and if these values are substituted for cos @, cos f, and cos y in the expression
obtained in Art. 156, the volume of the tetrahedron will be expressed in terms
of its six edges.

The following result will be obtained, in which 7" denotes the volume of the
tetrahedron,

144 V2 =—a? b2 c?




+ a2 a12 (bl2 + cl2 _al2) + b2 bl2 (cl2 + a12 _ b/2) + 6'2 cl2 (al2 + bl2 _ cl2)
_a/2 (a2 _ b2) (a2 _ 6‘2) _ b'2 (b2 _ 6‘2) (b2 _a2) _ 0'2 (6‘2 _a2) (6‘2 _ b2).
Thus for a regular tetrahedron we have 144 V2 =245

159. If the vertex of a tetrahedron be supposed to be situated at any point in
the plane of its base, the volume vanishes; hence if we equate to zero the
expression on the right-hand side of the equation just given, we obtain a
relation which must hold among the six straight lines which join four points
taken arbitrarily in a plane.

Or we may adopt Carnot’s method, in which this relation is established
independently, and the expression for the volume of a tetrahedron is deduced
from it; this we shall now shew, and we shall add some other investigations
which are also given by Carnot.

It will be convenient to alter the notation hitherto used, by interchanging the
accented and unaccented letters.

160. To find the relation holding among the six straight lines which join
four points taken arbitrarily in a plane.

Let A, B, C, D be the four points. Let AB=c, BC =a, CA=b; also let DA =
a,DB=b',DC ="

If D falls within the triangle ABC, the sum of the angles ADB, BDC, CDA is
equal to four right angles; so that

cos ADB = cos (BDC + CDA).

Hence by ordinary transformations we deduce
1 = cos® ADB + cos? BDC + cos? CDA — 2 cos ADB cos BDC cos CDA.

If D falls without the triangle ABC, one of the three angles at D is equal to
the sum of the other two, and the result just given still holds.

” ——
Now OOSADBI:“ ;2:;. c’,

expressed in a similar manner; substitute these values in the above result, and
we obtain the required relation, which after reduction may be exhibited thus,

0= —a't'd
+a"a" B "+ o' @)+ BB "+ 6" - V) + 07 (0 + B )
—a' (@~ ") (2" - ") - ' (B — ") (3" ~a") - ¢’ (" - a™) (/- B").

and the other cosines may be

161. To express the volume of a tetrahedron in terms of its six edges.



Let a, b, ¢ be the lengths of the sides of a triangle ABC forming one face of
the tetrahedron, which we may call its base; let a’, ', ¢’ be the lengths of the
straight lines which join 4, B, C respectively to the vertex of the tetrahedron.
Let p be the length of the perpendicular from the vertex on the base; then the
lengths of the straight lines drawn from the foot of the perpendicular to 4, B, C

respectively are J(a" - p'} J( - p%) J(c” - '} Hence the relation
given in Art. 160 will hold if ;ze put . /(a™ i P’ instead of &, /(™ — p*)

instead of &', and J(a" -_ p' instead of ¢'. we shall thus obtain

p2 (2a2b2 +2b2c2 4+ 2c2a% — a* — bt - c4) =—a?b2c?

+a? a® (B2 + ¢ — a?) + b'2b? (2 + a? — b%) + ¢'2c? (@ + b2 - )

_ a2 (a12 _ bl2) (a12 _ cl2) _ b2 (bl2 _ cl2) (bl2 _ al2) _ 6‘2 (cl2 _ al2) (cl2 _ blz)‘
The coefficient of p? in this equation is sixteen times the square of the area

of the triangle ABC; so that the left-hand member is 144 V2, where ¥ denotes
the volume of the tetrahedron. Hence the required expression is obtained.

162. To find the relation holding among the six arcs of great circles which
Jjoin four points taken arbitrarily on the surface of a sphere.

Let A, B, C, D be the four points. Let AB =7y, BC=a, CA = f; let DA = &/,
DB=p',DC=y'

As in Art. 160 we have
1 = cos? ADB + cos? BDC + cos? CDA — 2 cos ADB cos BDC cos CDA.

Nowoos ADB = By~ cos e o8 ff
sin o’ sin &’

be expressed in a similar manner; substitute these values in the above result,
and we obtain the required relation, which after reduction may be exhibited
thus,

1 = cos* a + cos® B + cos” y + 008* o’ + cos’ 8’ + cos'
— 08" a cos’ o’ — cos® 8 cos® B’ — cos® y cos® ¥
~ 2 (008 & cos 3 cos v + ¢08 a co8 § cosy’

s and the other cosines may

+ ¢08 3 cos &’ co8 Y + cos y cos a cos 3)
+ 2 (cosacos Bcosa’cos 8 + cos B cosycos 8 cos y

+cosycosacosy cosa). -



163. To find the radius of the sphere circumscribing a tetrahedron.

Denote the edges of the tetrahedron as in Art. 161. Let the sphere be
supposed to be circumscribed about the tetrahedron, and draw on the sphere the
six arcs of great circles joining the angular points of the tetrahedron. Then the
relation given in Art. 162 holds among the cosines of these six arcs.

Let r denote the radius of the sphere. Then

%
. gl a

ooaa=1—-23m§ 5’—‘,;

and the other cosines may be expressed in a similar manner. Substitute these
values in the result of Art. 162, and we obtain, after reduction, with the aid of
Art. 161,

4 %144 V42 =
2a*0'a""b" + 2b%"0"%c" + 26'a"™ — a'a™t - b — c'e’,

The right-hand member may also be put into factors, as we see by recollecting
the mode in which the expression for the area of a triangle is put into factors.
Let aa' + bb' + cc' = 20, then

o 2
=1-2@5 -1-

36 V2r? = o(c — aa') (o — bb') (o — cc').

EXAMPLES.

1. If I denote the inclination of two adjacent faces of a regular polyhedron,
shew that cos 7 = é in the tetrahedron, = 0 in the cube, = — é in the octahedron,

==4 Jﬁ in the dodecahedron, and = — é. A/ B in the icosahedron.

2. With the notation of Art. 153, shew that the radius of the sphere which
touches one face of a regular polyhedron and all the adjacent faces produced is

T
m
3. A sphere touches one face of a regular tetrahedron and the other three

faces produced: find its radius.

4. If a and b are the radii of the spheres inscribed in and described about a
regular tetrahedron, shew that b = 3a.

5. If a is the radius of a sphere inscribed in a regular tetrahedron, and R the



radius of the sphere which touches the edges, shew that R2 = 3a?.

6. If a is the radius of a sphere inscribed in a regular tetrahedron, and R' the
radius of the sphere which touches one face and the others produced, shew that
'=2a.

7. If a cube and an octahedron be described about a given sphere, the sphere
described about these polyhedrons will be the same; and conversely.

8. If a dodecahedron and an icosahedron be described about a given sphere,
the sphere described about these polyhedrons will be the same; and conversely.

9. A regular tetrahedron and a regular octahedron are inscribed in the same
sphere: compare the radii of the spheres which can be inscribed in the two
solids.

10. The sum of the squares of the four diagonals of a parallelepiped is equal
to four times the sum of the squares of the edges.

11. If with all the angular points of any parallelepiped as centres equal
spheres be described, the sum of the intercepted portions of the parallelepiped
will be equal in volume to one of the spheres.

12. A regular octahedron is inscribed in a cube so that the corners of the
octahedron are at the centres of the faces of the cube: shew that the volume of
the cube is six times that of the octahedron.

13. It is not possible to fill any given space with a number of regular
polyhedrons of the same kind, except cubes; but this may be done by means of
tetrahedrons and octahedrons which have equal faces, by using twice as many
of the former as of the latter.

14. A spherical triangle is formed on the surface of a sphere of radius p; its
angular points are joined, forming thus a pyramid with the straight lines joining
them with the centre: shew that the volume of the pyramid is

1 'J(tmrta'nf: tan r,tanrs),'

where 7, r|, 75, r3 are the radii of the inscribed and escribed circles of the
triangle.

15. The angular points of a regular tetrahedron inscribed in a sphere of
radius 7 being taken as poles, four equal small circles of the sphere are
described, so that each circle touches the other three. Shew that the area of the



1
surface bounded by each circle is 2m9® (l -_-—

N3/
16. If O be any point within a spherical triangle ABC, the product of the
sines of any two sides and the sine of the included angle

L

~gin 40 sin BO sin co{m A0 sin BOC
. +cot BO sin (04 + cot ao.;mp}.



XIV. ARCS DRAWN TO FIXED POINTS ON THE SURFACE OF A SPHERE.

164. IN the present Chapter we shall demonstrate various propositions
relating to the arcs drawn from any point on the surface of a sphere to certain
fixed points on the surface.

165. ABC 1is a spherical triangle having all its sides quadrants, and therefore
all its angles right angles; 7 is any point on the surface of the sphere: to shew
that

cos2 TA + cos? TB + cos? TC =1.

.4

&

By Art. 37 we have

cos TA = cos AB cos TB + sin AB sin TB cos TBA
=sin IB cos TBA.

Similarly cos 7C = sin TB cos TBC = sin TB sin TBA.

Square and add; thus
cos? TA + cos? TC = sin® TB = 1 — cos> 1B;
therefore cos? TA + cos? TB + cos® TC = 1.

166. ABC 1is a spherical triangle having all its sides quadrants, and therefore
all its angles right angles; 7" and U are any points on the surface of the sphere:



to shew that
cos TU =cos TA cos UA + cos TB cos UB + cos 1TC cos UC.
.

A
By Art. 37 we have
c08 T =cos T4 cos UA +sin T4 gin Ud con TAT,
and cos P4 T =cos (BAU -~ BAT)
=co8 BAU cos BAT +sin BAUsin BAT'
=08 BAU cos BAT + co8 CAU 00a CAT
therefore cos TU =cos Tdcon UA
+sin T'4 gin U4 (008 BAU cos BAT' + 008 CAU coa CAT) ;
and cos 7B =sin T4 cos BAT' '
co8 UB=nin U4 con BAT,
co& TC = sin T'4 cos CAT,
cos UC =sin Udcoa CAT ;

(24

therefore
cos TU = cos TA cos UA + cos TB cos UB + cos TC cos UC.

167. We leave to the student the exercise of shewing that the formula of the
two preceding Articles are perfectly general for all positions of 7" and U,
outside or inside the triangle ABC: the demonstrations will remain essentially
the same for all modifications of the diagrams. The formule are of constant



application in Analytical Geometry of three dimensions, and are demonstrated
in works on that subject; we have given them here as they may be of service in
Spherical Trigonometry, and will in fact now be used in obtaining some
important results.

168. Let there be any number of fixed points on the surface of a sphere;
denote them by Hy, H,, H3, . . . Let T be any point on the surface of the sphere.

We shall now investigate an expression for the sum of the cosines of the arcs
which join T with the fixed points.

Denote the sum by X; so that
YX=cosTH;+cosTHy +cos TH3 +. ..

Take on the surface of the sphere a fixed spherical triangle ABC, having all
its sides quadrants, and therefore all its angles right angles.

Let A, 1, v be the cosines of the arcs which join 7 with 4, B, C respectively;
let /1, mq, ny be the cosines of the arcs which join H;} with 4, B, C respectively;

and let a similar notation be used with respect to H,, Hs, . . .
Then, by Art. 166,
S=lA+mp+nyv+id+mp+ay+..,
=PA+Qu+ By;

where P stands for /] + 1, + 13 +. . ., with corresponding meanings for Q and
R

169. It will be seen that P is the value which X takes when 7 coincides with
A, that Q is the value which X takes when 7 coincides with B, and that R is the
value which X takes when T coincides with C. Hence the result expresses the
general value of X in terms of the cosines of the arcs which join 7 to the fixed
points A, B, C, and the particular values of £ which correspond to these three
points.

170. We shall now transform the result of Art. 168.

Let Q= JI*+Q@+RY); -

and let o, B, y be three arcs determined by the equations



P Q R
cosa =g, oouﬂ=-G~, 008y =75 ;

then S=G()c;>oaa+poosﬂ'+vcoay).

Since cos® a + cos® B + cos® y = 1, it is obvious that there will be some

point on the surface of the sphere, such that a, f, y are the arcs which join it to
A, B, C respectively; denote this point by U: then, by Art. 166,

cos TU=Acos a + u cos B+ v cos y,
and finally

Y=Gcos TU.

Then, whatever may be the position of 7, the sum of the cosines of the arcs
which join T to the fixed points varies as the cosine of the single arc which
joins T to a certain fixed point U.

We might take G either positive or negative; it will be convenient to
suppose it positive.

171. A sphere is described about a regular polyhedron; from any point on
the surface of the sphere arcs are drawn to the solid angles of the polyhedron:
to shew that the sum of the cosines of these arcs is zero.

From the preceding Article we see that if G is not zero there is one position
of T which gives to X its greatest positive value, namely, when T coincides
with U. But by the symmetry of a regular polyhedron there must always be
more than one position of T which gives the same value to Z. For instance, if
we take a regular tetrahedron, as there are four faces there will at least be three
other positions of 7 symmetrical with any assigned position.

Hence G must be zero; and thus the sum of the cosines of the arcs which
join T to the solid angles of the regular polyhedron is zero for all positions of
T.

172. Since G = 0, it follows that P, Q, R must each be zero; these indeed are
peculiar cases of the general result of Art. 171, See Art. 169.

173. The result obtained in Art. 171 may be shewn to hold also in some
other cases. Suppose, for instance, that a rectangular parallelepiped is inscribed
in a sphere; then the sum of the cosines of the arcs drawn from any point on the
surface of the sphere to the solid angles of the parallelepiped is zero. For here it
is obvious that there must always be at least ome other position of T
symmetrical with any assigned position. Hence by the argument of Art. 171 we



must have G =0.

174. Let there be any number of fixed points on the surface of a sphere;
denote them by H;, H,, H3, . . . Let T be any point on the surface of the sphere.

We shall now investigate a remarkable expression for the sum of the squares of
the cosines of the arcs which join 7" with the fixed points.
Denote the sum by X; so that

¥ = cos? TH, + cos? TH, + cos? TH3+ . ..

Take on the surface of the sphere a fixed spherical triangle ABC, having all
its sides quadrants, and therefore all its angles right angles.

Let 4, 4, v be the cosines of the arcs which join 7" with 4, B, C respectively;
let 7;, my, ny be the cosines of the angles which join H; with 4, B, C

respectively; and let a similar notation be used with respect to H,, H3, . . .
Then, by Art. 166,

%= (A +myp+ ) + (LA + mop + np)2 +
Expand each square, and rearrange the terms; thus

¥ = PA2 + Qu* + RV + 2puv + 2qvi + 2ripu,
where P stands for 112 + 122 + l32+ ce

and p stands for mny + myny + mznz + . . .,
with corresponding meanings for Q and ¢, and for R and 7.

We shall now shew that there is some position of the triangle ABC for
which p, ¢, and » will vanish; so that we shall then, have

T =Pi2+Qu? + RV2.

Since X 1s always a finite positive quantity there must be some position, or
some positions, of 7 for which X has the largest value which it can receive.
Suppose that A has this position, or one of these positions if there are more
than one. When T is at A we have u and v each zero, and A equal to unity, so
that X is then equal to P.

Hence, whatever he the position of 7,

P is never less than PA% + Q,u2 + RV + 2puv + 2qvA + 2riu,
that is, by Art. 165,

P (\* + % + v?) is never less than

Pi*+ Q,u2 + RV + 2puv + 2qvA + 2riu;



therefore
(P-Q) u? +P —R) V2 is never less than 2puv + 2qvi + 2riu.

Now suppose v = 0; then 7' is situated on the great circle of which AB is a
quadrant, and whatever be the position of 7"we have

(P - Q) p? not less than 2riy,

and therefore P — Q not less than — ,.

>

But now — is equal to cos T4
> cos 7'B
may be made numerically as great as we please, positive or negative, by giving

; this is numerically equal to tan 7B, and so

a suitable position to 7. Thus P — Q must in some cases be less than —— if 7

I3

have any value different from zero.

Therefore ¥ must = 0.

In like manner we can shew that ¢ must = 0.

Hence with the specified position for A we arrive at the result that whatever
may be the position of T’

=P\ + Q,u2 +RV + 2puv.

Let us now suppose that the position of B is so taken that when T coincides
with B the value of X is as large as it can be for any point in the great circle of
which A4 is the pole. When T is at B we have A and v each zero, and y equal to
unity, so that X is then equal to Q. For any point in the great circle of which 4
is the pole A is zero; and therefore for any such point

0 is not less than Qu? + Rv* + 2puv,
that is, by Art. 165,

Q(,u2 + v2) is not less than Qu? + RV + 2puv;

therefore Q — R is not less than il
L4

Hence by the same reasoning as before we must have p = 0.

Therefore we see that there must be some position of the triangle ABC, such
that for every position of 7

T =Pi2+Qut + RVA



175. The remarks of Art. 169 are applicable to the result just obtained.

176. In the final result of Art. 174 we may shew that R is the least value
which X can receive. For, by Art. 165,

S=P2+ Qu +R(1 -2 - )
=R+ (P-RM\+(Q-R) %
and by supposition neither P — R nor Q — R is negative, so that ¥ cannot be
less than R.

177. A sphere is described about a regular polyhedron; from any point on
the surface of the sphere arcs are drawn to the solid angles of the polyhedron: it
is required to find the sum of the squares of the cosines of these arcs.

With the notation of Art. 174 we have
T =Pi2+Qut + RVA

We shall shew that in the present case P, Q, and R must all be equal. For if
they are not, one of them must be greater than each of the others, or one of
them must be less than each of the others.

If possible let the former be the case; suppose that P is greater than Q, and
greater than R.

Now =P (1-p"— )+ Qu'+ R
P (P-Qu—(P-B);

this shews that X is always less than P except when 4 =0 and v =0: that is X is
always less than P except when T is at A, or at the point of the surface which is
diametrically opposite to A. But by the symmetry of a regular polyhedron there
must always be more than mwo positions of 7" which give the same value to X.
For instance if we take a regular tetrahedron, as there are four faces there will
be at least three other positions of 7" symmetrical with any assigned position.
Hence P cannot be greater than Q and greater than R.

In the same way we can shew that one of the three P, O, and R, cannot be
less than each of the others.

Therefore P = Q = R; and therefore by Art. 165 for every position of T we
have £ =P.



Since P=Qwm B each ofthem=% (P+Q+R)

=-15 {r+mr+n’+lt+m®+n’+ ...}

-5
3

where S is the number of the solid angles of the regular polyhedron.

, by Art. 169,

Thus the sum of the squares of the cosines of the arcs which join any point
on the surface of the sphere to the solid angles of the regular polyhedron is one
third of the number of the solid angles.

178. Since P = Q = R in the preceding Article, it will follow that when the
fixed points of Art. 174 are the solid angles of a regular polyhedron, then for
any position of the spherical triangle ABC we shall have p =0, ¢ =0, and r = 0.

For taking any position for the spherical triangle ABC we have

T =P+ Qu* + RV + 2puv + 2qvi + 2rip;
then at A we have g = 0 and v = 0, so that P is then the value of Z; similarly Q
and R are the values of X at B and C respectively. But by Art. 177 we have the
same value for £ whatever be the position of 7’ thus

pP=pP (Xz + ,u2 + v2) + 2puv + 2qvA + 2riu;
therefore 0=2puv + 2qvi + 2riu.

This holds then for every position of 7. Suppose 7 is at any point of the
great circle of which A is the pole; then A = 0: thus we get puv = 0, and
therefore p = 0. Similarly ¢ =0, and » = 0.

179. Let there be any number of fixed points on the surface of a sphere;
denote them by H;, H,, H3, . . .; from any two points 7 and U on the surface of
the sphere arcs are drawn to the fixed points: it is required to find the sum of
the products of the corresponding cosines, that is

cos THy cos UH| + cos TH, cos UH, + cos TH3 cos UH3 + . . .

Let the notation be the same as in Art. 174; and let A, ', V' be the cosines of
the arcs which join U with 4, B, C respectively. Then by Art. 166,



co8s TH cos UH, = (M, + pm +wn )Y (X1, +pu'm +v'n)
AN+ pp'm  +/'n f+ (A" +uN) D m 4 (o + o) mann (PN + W) 2,

Similar results hold for cos TH, cos UH,, cos TH3 cos UH3, . . . Hence,
with the notation of Art. 174, the required sum is

MP+up'Q+wWR+ ' +v)p+ (A + V) g+ @Ap' +ul)r.
Now by properly choosing the position of the triangle ABC we have p, q,
and 7 each zero as in Art. 174; and thus the required sum becomes
NP+ uu'Q + wWR.

180. The result obtained in Art. 174 may be considered as a particular case
of that just given; namely the case in which the points 7"and U coincide.

181. A sphere is described about a regular polyhedron; from any two points
on the surface of the sphere arcs are drawn to the solid angles of the

polyhedron: it is required to find the sum of the products of the corresponding
cosines.

With the notation of Art. 179 we see that the sum is
NP+ uu'Q + wWR.

Andhere P=Q=R= g, by Art. 177.

Thus the sum = g(ﬂ' +up' +w')= gcos 1U.

Thus the sum of the products of the cosines is equal to the product of the
cosine of TU into a third of the number of the solid angles of the regular
polyhedron.

182. The result obtained in Art. 177 may be considered as a particular case
of that just given; namely, the case in which the points 7"and U coincide.

183. If TU i1s a quadrant then cos TU is zero, and the sum of the products of
the cosines in Art. 181 is zero. The results p =0, ¢ =0, r = 0, are easily seen to
be all special examples of this particular case.



XV. MISCELLANEOUS PROPOSITIONS.

184. To find the locus of the vertex of a spherical triangle of given base and
area.

Let AB be the given base, = ¢ suppose, AC = 0, BAC = ¢. Since the area is
given the spherical excess is known; denote it by £; then by Art. 103,

cot } E=cot} fecotd ccosecp+coto;
therefore  sin(p—3 F)=cot } fcotdesini ¥;

therefore 2mt§csin§Ecos’%=sinasin ($—-3 E);

therefore

euaﬂeota}asingE+aineem(¢-§E+g)=-oot§csin{E.

Comparing this with equation (1) of Art. 133, we see that the required locus
is a circle. If we call o, B the angular co-ordinates of its pole, we have

1 tan } ¢

tane= Yoo} Z snik’
™
B=1E-T.

It may be presumed from symmetry that the pole of this circle is in the great
circle which bisects 4B at right angles; and this presumption is easily verified.
For the equation to that great circle is

T ¢

. . T [+
0 = cos & cos +mn05m(——-)coa -
d 2 2 2 2 (¢-7)
and the values 8 = a, ¢ = p satisfy this equation.

185. To find the angular distance between the poles of the inscribed and
circumscribed circles of a triangle.



Let P denote the pole of the inscribed circle, and Q the pole of the
circumscribed circle of a triangle ABC; then. PAB = *A, by Art. 89, and QAB
=8-C, by Art. 92; hence

cos PAQ = cos & (B—C);
and cos PQ = cos PA cos QA + sin PA sin Q4 cos 4 (B — C).
Now, by Art. 62 (see the figure of Art. 89),
cos P4 =cos PE cos AE = cos r cos (s — a),
thus
08 P =008 K coa r cos (3 — @) + sin Brin 008 3 (B - C) cosec § 4.
Therefore, by Art. 54

cos PQ = cos B coa 7 cos (¢ — a) + sin Rsin rgin § (b + ¢} cosec § a,

P -
themfma;%amtfm(s~a)+tanﬂmni(b+c)emee§a.
Now ootr:m;’, t‘.a.nR=2“im*‘“ﬁn'}'1‘""ini.‘1=,r

n n

P 1 * * - L

tberefomc%l%.=;{mnwos(a~a)+ﬂam§(b—i-c)amibam}c}

= o (din a-+aind-+aing).
cos PQ \* 1, .. . . i
Hence (ml—i?l-; —l=m(sma+mnb+smc) -1
= (cot r + tan R)* (by Art. 94);
therefore cos® PQ = cos’ R sin"r + cos* (B —7),

and gin® PQ = sin® (R — r) —cos' R sin'r.



186. To find the angular distance between the pole of the circumscribed
circle and the pole of one of the escribed circles of a triangle.

Let Q denote the pole of the circumscribed circle, and Q; the pole of the
escribed circle opposite to the angle 4. Then it may be shewn that QBQ; = & T
+ & (C—-A4), and

08 QQ, = cos K cos #, c08 (s — ¢) — sin R sin#, 8in § (C' — d)sec } B
=08 & cos 7, coa (8 —c) —sin R sin r s8in } (¢ - &) cosec § b.

Therefore

cos Q@

min s, cos B

=cot7, co8 (8 —c)—tan Ksin 3 (¢—-a) cosec} b;

by reducing as in the preceding Article, the right-hand member of the last
equation becomes

'.%(sinb-psinc-sina);

cos QQ: )’_ _ - s .
hence (m I1= (ta.nR cot "'1) 3 (Al't. 94) H
therefore cos’ @@, = cos® Rsin'r, + cos' (R + 1)),
and | sin’ @@, =sin® (B +r,) — cos® R sin" 7,

187. The arc which passes through the middle points of the sides of any
triangle upon a given base will meet the base produced at a fixed point, the
distance of which from the middle point of the base is a quadrant.

Let ABC be any triangle, £ the middle point of AC, and F the middle point
of AB; let the arc which joins E and F' when produced meet BC produced at Q.
Then

sin BQ sin BFQ sinAQ=sinAFQ.
sin BF = sin BQF’ sin A¥ sin AQF’
sin BQ sin AQF
sin AQ ~ sin BQF’

therefore




sin CQ sm AQF
sin 4Q  sn CQF’

therefore sin BQ =sin CQ;  therefore BQ + CQ = .

similarly

Hence if D be the middle point of BC
DQ=-§(BQ - CQ)=§7:.

188. If three arcs be drawn from the angles of a spherical triangle through
any point to meet the opposite sides, the products of the sines of the alternate
segments of the sides are equal.

D

a

Let P be any point, and let arcs be drawn from the angles A4, B, C passing
through P and meeting the opposite sides at D, E, F. Then

gin BD _ain BPD gin CD _sin CP.D
sin BP  gin SDP’ sin CP  sin CDP

sin BD gin BP.D sin BP

gin (D sin CPD gin CP°
gin CE dsinAF
smAE sin BF °

therefore

Similar expressions may be found for

and hence it follows obviously that

sm BD gin CE gin AF
sin CD sin AX gin BF
therefore sin BD sin CE sin AF = sin CD sin AE sin BF'.

—=1;




189. Conversely, when the points D, E, F'in the sides of a spherical triangle
are such that the relation given in the preceding Article holds, the arcs which
join these points with the opposite angles respectively pass through a common
point. Hence the following propositions may be established: the perpendiculars
from the angles of a spherical triangle on the opposite sides meet at a point; the
arcs which bisect the angles of a spherical triangle meet at a point; the arcs
which join the angles of a spherical triangle with the middle points of the
opposite sides meet at a point; the arcs which join the angles of a spherical
triangle with the points where the inscribed circle touches the opposite sides
respectively meet at a point.

Another mode of establishing such propositions has been exemplified in
Arts. 139 and 140.

190. If AB and A'B' be any two equal arcs, and the arcs AA' and BB' be
bisected at right angles by arcs meeting at P, then AB and A'B' subtend equal
angles at P.

For PA = PA' and PB = PB'; hence the sides of the triangle PAB are
respectively equal to those of PA'B’; therefore the angle APB = the angle A'PB'.

This simple proposition has an important application to the motion of a rigid body of
which one point is fixed. For conceive a sphere capable of motion round its
centre which is fixed; then it appears from this proposition that any two fixed
points on the sphere, as 4 and B, can be brought into any other positions, as
A" and B’, by rotation round an axis passing through the centre of the sphere
and a certain point P. Hence it may be inferred that any change of position in
a rigid body, of which one point is fixed, may be effected by rotation round
some axis through the fixed point.

(De Morgan’s Differential and Integral Calculus, page 489.)



191. Let P denote any point within any plane angle AOB, and from P draw
perpendiculars on the straight lines OA and OB; then it is evident that these
perpendiculars include an angle which is the supplement of the angle AOB. The
corresponding fact with respect to a solid angle is worthy of notice. Let there
be a solid angle formed by three plane angles, meeting at a point O. From any
point P within the solid angle, draw perpendiculars PL, PM, PN on the three
planes which form the solid angle; then the spherical triangle which
corresponds to the three planes LPM, MPN, NPL is the polar triangle of the
spherical triangle which corresponds to the solid angle at O. This remark is due
to Professor De Morgan.

192. Suppose three straight lines to meet at a point and form a solid angle;
let a, p and y denote the angles contained by these three straight lines taken in
pairs: then it has been proposed to call the expression
(1 — cos’a— cos’B—coa'y + 2 cos a cos B cos y). the sine of
the solid angle. See Baltzer’s Theorie . . . der Determinanten, 2nd edition, page
177. Adopting this definition it is easy to shew that the sine of a solid angle lies
between zero and unity.

We know that the area of a plane triangle is half the product of two sides
into the sine of the included angle: by Art. 156 we have the following
analogous proposition; the volume of a tetrahedron is one sixth of the product
of three edges into the sine of the solid angle which they form.

Again, we know in mechanics that if three forces acting at a point are in
equilibrium, each force is as the sine of the angle between the directions of the
other two: the following proposition is analogous; if four forces acting at a
point are in equilibrium each force is as the sine of the solid angle formed by
the directions of the other three. See Statics, Chapter I1.

193. Let a sphere be described about a regular polyhedron; let
perpendiculars be drawn from the centre of the sphere on the faces of the
polyhedron, and produced to meet the surface of the sphere: then it is obvious
from symmetry that the points of intersection must be the angular points of
another regular polyhedron.

This may be verified. It will be found on examination that if S be the
number of solid angles, and /' the number of faces of one regular polyhedron,
then another regular polyhedron exists which has S faces and F solid angles.
See Art. 151.

194. Polyhedrons. The result in Art. 150 was first obtained by Euler; the
demonstration which is there given is due to Legendre. The demonstration
shews that the result is true in many cases in which the polyhedron has re-



entrant solid angles; for all that is necessary for the demonstration is, that it
shall be possible to take a point within the polyhedron as the centre of a sphere,
so that the polygons, formed as in Art. 150, shall not have any coincident
portions. The result, however, is generally true, even in cases in which the
condition required by the demonstration of Art. 150 is not satisfied. We shall
accordingly give another demonstration, and shall then deduce some important
consequences from the result. We begin with a theorem which is due to
Cauchy.

195. Let there be any network of rectilineal figures, not necessarily in one
plane, but not forming a closed surface; let E be the number of edges, F the
number of figures, and S the number of corner points: then F + S=E + 1.

This theorem is obviously true in the case of a single plane figure; for then
F=1, and S=E. It can be shewn to be generally true by induction. For assume
the theorem to be true for a network of F' figures; and suppose that a rectilineal
figure of n sides is added to this network, so that the network and the additional
figure have m sides coincident, and therefore m + 1 corner points coincident.
And with respect to the new network which is thus formed, let £/, 7, S" denote
the same things as E, F, S with respect to the old network. Then

E=E+n-m F=F+1, S=S+tn-(m+1);
therefore F+§8-E=F+8-E.
But /'+ .8 = E + 1, by hypothesis; therefore " + 8" =E' + 1.

196. To demonstrate Euler’s theorem we suppose one face of a polyhedron
removed, and we thus obtain a network of rectilineal figures to which Cauchy’s
theorem is applicable. Thus

F-1+8=E+1;
therefore F+S8S=E +2,

197. In any polyhedron the number of faces with an odd number of sides is
even, and the number of solid angles formed with an odd number of plane
angles is even.

Leta, b, ¢, d,...... denote respectively the numbers of faces which are
triangles, quadrilaterals, pentagons, hexagons, . . . . . . Let a, B, 7,
O, ..... denote respectively the numbers of the solid angles which are formed
with three, four, five, six, . . . ... plane angles.

Then, each edge belongs to two faces, and terminates at two solid angles;



therefore

2E=3a+4b+5¢c+6d+......
2E=3a+4B+5y+65+.......

From these relations it follows thata + ¢ +e +. . . . .. ,and o +y + €
...... are even numbers.

198. With the notation of the preceding Article we have

F=a+b+c+d+.... ..
S=a+B+y+8+... ...

From these combined with the former relations we obtain

2E-3F=b+2c+3d+......
2E-3S=B+2y+38+... ...

Thus 2E cannot be less than 3F, or less than 3.

199. From the expressions for F, F, and S, given in the two preceding
Articles, combined with the result 2F" + 25 = 4 + 2E, we obtain

2e+b+o+d+..)+2a+B+y+8+..)=4 + 30+ 4b+ Bc+6d+...,
2(a+b+crd+. )+ 2a+B+y+d+..)=4+3a+48+8y+85+...,
therefore  Z2{a+B+y+d+..)—{a+20+Ic+dd+ ..)=4...(1),

2{a+b+ec+d+ .. }-(@+28+3y+484+...)=4...(2).

Therefore, by addition
atoa—(cty)—2d+8)—3(et€—...... =8.

Thus the number of triangular faces together with the number of solid
angles formed with three plane angles cannot be less than eight.

Again, from (1) and (2), by eliminating a, we obtain

3a+2bt+tc—e—2f—... —20—4y— ... ... =12
so that 3a + 2b + ¢ cannot be less than 12. From this result various inferences
can be drawn; thus for example, a solid cannot be formed which shall have no
triangular, quadrilateral, or pentagonal faces.

In like manner, we can shew that 3a + 28 + ¥ cannot be less than 12.

200. Poinsot has shewn that in addition to the five well-known regular
polyhedrons, four other solids exist which are perfectly symmetrical in shape,



and which might therefore also be called regular. We may give an idea of the
nature of Poinsot’s results by referring to the case of a polygon. Suppose five
points A, B, C, D, E, placed in succession at equal distances round the
circumference of a circle. If we draw a straight line from each point to the next
point, we form an ordinary regular pentagon. Suppose however we join the
points by straight lines in the following order, 4to C, C to E, Eto B, Bto D, D
to A; we thus form a star-shaped symmetrical figure, which might be
considered a regular pentagon.

It appears that, in a like manner, four, and only four, new regular solids can
be formed. To such solids, the faces of which intersect and cross, Euler’s
theorem does not apply.

201. Let us return to Art. 195, and suppose e the number of edges in the
bounding contour, and e’ the number of edges within it; also suppose 8 the
number of corners in the bounding contour, and 8' the number within it. Then

-

E=¢+e; S=2+4;

therefore l+e+é=s+4+F
But - e=8;
therefore 14+¢=¢+F.

We can now demonstrate an extension of Euler’s theorem, which has been
given by Cauchy.

202. Let a polyhedron be decomposed into any number of polyhedrons at
pleasure; let P be the number thus formed, S the number of solid angles, F the
number of faces, E the number of edges: then S + F=E +P + 1.

For suppose all the polyhedrons united, by starting with one and adding one
at a time. Let e, f, s be respectively the numbers of edges, faces, and solid
angles in the first; let €', f, s’ be respectively the numbers of edges, faces, and
solid angles in the second which are not common to it and the first; let e”, /", s"
be respectively the numbers of edges, faces, and solid angles in the third which
are not common to it and the first or second; and so on. Then we have the
following results, namely, the first by Art. 196, and the others by Art. 201;
stf =e+2,

S Hf =e'+1,
s"Hf ="+ 1,



By addition, since s +s' +s" +.. . =S, f+f+f'+.. . =F, ande+e' +e"
+...=FE, we obtain

S+F=E+P+1.

203. The following references will be useful to those who study the theory
of polyhedrons. Euler, Novi Commentarii Academice. . . . Petropolitance, Vol.
Iv. 1758; Legendre, Géométrie; Poinsot, Journal de [’Ecole Polytechnique,
Cabhier x; Cauchy, Journal de I’Ecole Polytechnique, Cahier XVI; Poinsot and
Bertrand, Comptes Rendus . . . de ’Académie des Sciences, Vol. XLVI; Catalan,
Théorémes et Probléemes de Géométrie Elémentaire; Kirkman, Philosophical
Transactions for 1856 and subsequent years; Listing, Abhandlungen der
Koniglichen Gesellschaft . . . zu Gottingen, Vol. X.

MISCELLANEOUS EXAMPLES.

1. Find the locus of the vertices of all right-angled spherical triangles
having the same hypotenuse; and from the equation obtained, prove that the
locus is a circle when the radius of the sphere is infinite.

2. AB is an arc of a great circle on the surface of a sphere, C its middle
point; shew that the locus of the point P, such that the angle APC = the angle
BPC, consists of two great circles at right angles to one another. Explain this
when the triangle becomes plane.

3. On a given arc of a sphere, spherical triangles of equal area are
described: shew that the locus of the angular point opposite to the given arc is
defined by the equation

tan™ {E-.(“—"'-?)} +tan™ {~—-—---'jlm (o 'f’)}

sin § gin §

e { e = ) =8

where 2a is the length of the given arc, @ the arc of the great circle drawn from
any point P in the locus perpendicular to the given arc, ¢ the inclination of the
great circle on which @ is measured to the great circle bisecting the given arc at
right angles, and f a constant.

4. In any spherical triangle



_eot Acot a+cot Bootd
= otacotb_ocos Acos B

5.1f 0, ¢, w denote the distances from the angles 4, B, C respectively of the
point of intersection of arcs bisecting the angles of the spherical triangle ABC,
shew that

cos @sin (b —c)+cos ¢ sin (¢ —a)+cos ysin(a—b)=0.
6. If A', B', C' be the poles of the sides BC, CA, AB of a spherical triangle
ABC, shew that the great circles AA', BB', CC' meet at a point P, such that

cos PA cos BC = cos PB cos CA = cos PC cos AB.

7. If O be the point of intersection of arcs AD, BE, CF drawn from the
angles of a triangle perpendicular to the opposite sides and meeting them at D,
E, F respectively, shew that

tan 4D tan BE tan CF
tan 00’ tan QE’ tan OF
are respectively equal to

cos 4 1+ cos B 1e cos
oo8 B cos €’ cos A cos C’ cos A cos B’

8. If p, g, r be the arcs of great circles drawn from the angles of a triangle
perpendicular to the opposite sides, (o, a'), (B, £'), (7, ') the segments into
which these arcs are divided, shew that

tan a tan o’ = tan 8 tan §"=tan y tan y';

1+

cosp COB ¢ CoST

and cosacosa cosBcosf cosycosy

9. In a spherical triangle if arcs be drawn from the angles to the middle
points of the opposite sides, and if a, a' be the two parts of the one which
bisects the side a, shew that

gina a
.—7=2003—.
sina 2

10. The arc of a great circle bisecting the sides AB, AC of a spherical
triangle cuts BC produced at Q: shew that



coaAQsin“ sinc-bsin o+b
2 2 2
11. If ABCD be a spherical quadrilateral, and the opposite sides AB, CD
when produced meet at £, and AD, BC meet at I, the ratio of the sines of the
arcs drawn from F at right angles to the diagonals of the quadrilateral is the
same as the ratio of those from F.

12. If ABCD be a spherical quadrilateral whose sides AB, DC are produced
to meet at P, and AD, BC at Q, and whose diagonals AC, BD intersect at R,
then

sin AB sin CD cos P — sin AD sin BC cos Q = sin AC sin BD cos R.

13. If A’ be the angle of the chordal triangle which corresponds to the angle
A of a spherical triangle, shew that

. &

cos 4’ =sin (§- 4) co8 5 -

14. If the tangent of the radius of the circle described about a spherical
triangle is equal to twice the tangent of the radius of the circle inscribed in the

triangle, the triangle is equilateral.

15. The arc AP of a circle of the same radius as the sphere is equal to the
greater of two sides of a spherical triangle, and the arc AQ taken in the same

direction is equal to the less; the sine PM of AP is divided at E, so that EM _
PM

the natural cosine of the angle included by the two sides, and EZ is drawn
parallel to the tangent to the circle at Q. Shew that the remaining side of the
spherical triangle is equal to the arc QPZ.

16. If through any point P within a spherical triangle ABC great circles be
drawn from the angular points 4, B, C to meet the opposite sides at a, b, ¢
respectively, prove that

gsin Pacos P4 gin Pbeos PB gin Pocos PC
n + - + - =1
gin Aa sin Bb gin Ce

L3

17. A and B are two places on the Earth’s surface on the same side of the
equator, A being further from the equator than B. If the bearing of A from B be
more nearly due East than it is from any other place in the same latitude as B,
what is the bearing of B from A?

18. From the result given in example 18 of Chapter V. infer the possibility



of a regular dodecahedron.

19. 4 and B are fixed points on the surface of a sphere, and P is any point
on the surface. If a and b are given constants, shew that a fixed point S can
always be found, in AB or AB produced, such that

a cos AP + b cos BP = s cos SP,
where s 1s a constant.

20. A4, B, C, . . . are fixed points on the surface of a sphere; a, b, ¢, . . . are
given constants. If P be a point on the surface of the sphere, such that

a cos AP + b cos BP + ¢ cos CP +. . . = constant,

shew that the locus of P is a circle.



XVI. NUMERICAL SOLUTION OF SPHERICAL TRIANGLES.

204. We shall give in this Chapter examples of the numerical solution of
Spherical Triangles.

We shall first take right-angled triangles, and then oblique-angled triangles.

Right-Angled Triangles.
205. Givena =37° 48' 12", b =59° 44' 16", C = 90°.
To find ¢ we have
cos ¢ = co8 & cos B,
Loos 37 48’ 12”= 58976927
L co 59° 44'16” = 97023945
L cos e+ 10 =49-6000872
¢= 66" 33’ 6",

To find 4 we have
cot 4 =cot & sin b, .
Lot 37° 48’ 127 =10-1102655
L 4in 59° 44’ 16” = 99363770

L oot A +10=200466425
4 =41° by 45",

To find B we have



cot B=cotd ain a,

L cot 59°* 44’ 16” = 9-7660175
L sin 37° 48 12”= 9-T874272

L cot B+ 10=10-5534447
B=70"19" 15",
206. Given A = 55°32' 45", C =90°, ¢ =98° 14' 24",
To find a we have
sin ¢ = 8in ¢gin 4,
L 8in 98* 14’ 24" = -9-9954932
L sin 55° 32’ 45" = 9'9162323

L sina+10=19-9117255
a= 54" 41’ 35",
To find B we have

cot B=cos ctan A4.

Here cos c is negative; and therefore cot B will be negative, and B greater
than a right angle. The numerical value of cos ¢ is the same as that of cos 81°
45' 36".

L cos 81° 45’ 36”= 9-1563065
L tan 55° 32’ 457 = 101636102

L cot (180° - B) + 10 = 19-3199167
180°-B= 78" 12 4"
" B=101° 47’ 56",
To find b we have
tan b = tan ¢ cos A.



Here tan c is negative; and therefore tan b will be negative and b greater
than a quadrant.

L tan 81° 45" 36" = 10-8391867
L cos 55° 32’ 45" = 9-7526221

L tan (180° —§) + 10 = 20-5918088
180°— 5= 75° 38’ 32"
b=104° 21’ 28",
207. Given A =46° 15' 25", C =90°, a = 42° 18' 45".
To find ¢ we have

. gin &
amc--——z,

Lsine=10+ Lsina - L sin 4,

10 + L sin 42° 18’ 45" =19-8281272
ZL gin 46° 15° 25" = 9-8588065

Lsine= 99683207
cm=68° 42° 59" or 111° 177 17,

To find b we have
sinb=tana cq!; 4,
L tan 42° 18’ %5"- 9-9591983
L cot 46° 15 25" = 9-9809389

Lginb+10=19-9401372
b =60% 36’ 10” or 119° 28’ 507,

To find B we have



ai:n.B=mA,
coB

LginB=10+Lcosd-L OOSG;

10 + L cos 46° 15 25” = 19-8397454
L cos 42° 18’ 45" = 9-8689289

L sin B= 99708165
B=69" 13 41”7 or 110° 46’ 13",

Oblique-Angled Triangles.

208. Given a =70° 14' 20", b =49° 24" 10", ¢ = 38° 46' 10".
We shall use the formula given in Art. 45,



b= il snteoa)

Here s=79" 12" 20",
2-a=858,
8—-b=29"48" 10",

2 —c=40°26" 10",
L sin 29° 48 10” = 9-6963704
L sin 40° 26’ 10" = 9-8119768
19-5083472
L sin79° 12 207= 99922465
Lisin8 58'= 9-1027342
19:1849807
19-5083472
15-1849807

2) (3233665

Ltan} A-10= 01616832
JA= 5525 387
A=110°51’ 16",

Similarly to find B,



Lsin8 58 = 91927342
L sin 40* 26" 10" = 98119768

19-0047110

L sin79° 12 20”= 9-9922465
L sin 29° 48" 10"= 9:6963704

19-6886169

19:0047110
19-6886169)

2) 1:3160941,
Lten} B-10= T-6580470
Ltan} B= 96580470

3 B=24°28 2"

B =48° 56 4”,

Similarly to find C,



L sin 8° 58’ = 91927343
L gin 29° 48’ 10" = 96963704

18-8891046

L&in79°12 20" = 99922465
L &in 40° 26’ 10" = 98119768
19-8042233

18-8891046
19-8042233

2) 10848813

Ltn}C-10= 15424406

L tan }0'= 95424406
30 =19 13’ 24"

= 38° 26" 48”,
209. Given a = 68° 20' 25", b =52° 18’ 15", C = 117° 12' 20".

By Art. 82,



}{(a-2)=8"1/", ${a+3)=60°1¥ 207, }C=058"36" 10"
Lecoa8 1'53"= 9-9957335
Lot 58° 36" 10"= 9-7855690

19-7813025

L 008 60° 19%20” = 9-6947120
L tan } (4 + B) = 100865905
§(4 +B)=50° 40 28"

Lsin8 1’ 5”= 9-1445280

L cot 58° 3¢’ 10"~ 97855690

- 18-9300970
Lgin 60° 19" 20” = 9-9389316

Ltan}(4— B)= 89911654
}(d - B)= 5" 35" 47",
Therefore A =56°16"15", B=45°4"41".

If we proceed to find ¢ from the formula
gin o = sin @ sin '
~ gind
since sin C is greater than sin A we shall obtain two values for ¢ both greater

than a, and we shall not know which is the value to be taken.

We shall therefore determine ¢ from formula (1) of Art. 54, which is free
from ambiguity,



cos§(a+8)sin § C
cosj(d+B) '

L cos 60° 19" 20"= 9-6947120

L ain 58° 36" 10" = 9-9312422

196259542
L cos 50° 40 28”= 9-8019015

Loos}o= 98240527
} c=48" 10 22"
o= 96° 20’ 44",

Or we may adopt the second method of Art. 82. First, we determine 6 from
the formula tan @ = tan b cos C.

cosle=

Here cos C is negative, and therefore tan 6 will be negative, and 6 greater
than a right angle. The numerical value of cos C is the same as that of cos 62°
47' 40",

L tan 52° 18" 15” = 101119488
L cou 62° 47’ 40"; 9-6600912
L tan (180°-8) + 10 = 19-7720400
180°- 6= 30° 36" 33",
" therefore 0 = 149* 23" 27",

Next, we determine ¢ from the formula

cos b cos (a — 6)
cos § )
Here cos 0 is negative, and therefore cos ¢ will be negative, and ¢ will be
greater than a right angle. The numerical value of cos @ is the same as that of

cos (180° — ), that is, of cos 30° 36' 33"; and the value of cos (« — 0) is the
same as that of cos (6 — a), that is, of cos 81°3' 2",

COB ¢ =



Lecosb2 18 15”7 = 97863748
Leon81°3 27= 91919060

18-9782808
ZL con 30° 36’ 33”= 9:9348319

Lcon (180°-¢c)= 9-0434489
180° - ¢=83° 39" 17"
c=96° 20" 43",

Thus by taking only the nearest number of seconds in the tables the two
methods give values of ¢ which differ by 1”; if, however, we estimate fractions
of a second both methods will agree in giving about 43* as the number of
seconds.

210. Given a = 50° 45' 20", b = 69° 12' 40", 4 = 44° 22' 10".

By Art, 84, amB=s£bsmA
8in @

Lsin 69* 12" 40" = 9-9707626
L ain 44* 22" 10" = 9-8446525

198154151
Lsin 50° 45’ 20” = 9-8889956

Lsin B= 90264105
B =57° 84’ 51"4, or 122° 25’ 8™ 6.

In this case there will be two solutions; see Art. 86. We will calculate C and
¢ by Napier’s analogies,

cos § (b - a)

o}l 1)

cot 4 (B + 4),




First take the smaller value of B; thus
& (B +4)=50°58'30"7, 4 (B-A4)=6"3620"7,
Lcor9° 13 40”= 9-9943430
L cot 50° 58 30”7 = 9-9087536

= 199030366
L con 59° 59'= 9-6991887

L tan } C'=10-2039079

1 C =57 58 55”3

=115 57" 5076,

L cos 50° 58 307 = 97991039
L tan 59° 59’ =10'2382689
200373728
L cos 6° 36" 207-7T= 9-9971072
L tan § ¢=10-0402656

é c= 47' 39' 8”2

c=95" 18 16"4.

Next take the larger value of B; thus



} (B+4)=832339"3, }(B-4)=39"1 29"3.
Lcos 9°1%3 40”7 = 9-9943430
Lot 83 23’ 39”3 = 9:0637297

19-0580727
Lcos 59 50'= 96991887
Ltan} (= 9-3588840

} 0=12° 52/ 1578

C'=25° 44’ 31”6,
L cos 83° 23’ 39”3 = 90608369
L tan 59° 59’ = 102382689

19-2991058
Lcos39°1 2973= 9-8903494

Ltan}eo= 9-4087564
}o=14° 22’ 3276
¢ =28 45° 5”2

The student can obtain more examples, which can be easily verified, from
those here worked out, by interchanging the given and required quantities, or
by making use of the polar triangle.

EXAMPLES.

1. Given b =137°3' 48", 4 =147° 2' 54", C = 90°.
Results. ¢ =47° 57" 15", a=156° 10" 34", B=113° 28'.

2. Given ¢ = 61° 4' 56", a =40° 31' 20", C = 90°.
Results. b=150°30"'29", B=61°50' 28", 4 =47° 54' 21".

3. Given 4 = 36°, B = 60°, C = 90°.
Results. a=20° 54' 18"-5, b =31°43' 3" ¢ =37° 21" 38"-5.

4. Given a = 59°28' 27", 4 = 66° 7' 20", C = 90°.
Results. ¢ =70° 23' 42", b = 48° 39' 16", B = 52° 50" 20",



or,c=109°36" 18", b =131°20' 44", B=127° 9' 40".

5. Givenc = 90°, a = 138° 4", b = 109° 41",
Results. C=113°28' 2", A =142° 11' 38", B = 120° 15' 57"

6. Given ¢ =90°, 4 =131° 30, B=120° 32".
Results. C =109° 40' 20", a =127°17' 51", b =113°49' 31".

7. Given a = 76° 35' 36", b = 50° 10' 30", ¢ =40° 0' 10".
Results. A =121°36' 20", B=42°15'13", C =34°15'3".

8. Given 4 =129° 5' 28", B=142°12' 42", C =105° 8' 10".
Results. a =135° 49' 20", b =144°37' 15", c = 60° 4' 54".



