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CHAPTER 1
PROPERTIES OF THE TRIANGLE

A pist of the fundamental formulae connecting the elements of a
triangle, proofs of which have been given in Durell and Wright's

T'rigonometry, will be found in Section D of the formulae
at the beginning of that book ; references to these proofs will be indi-
cated by the prefix E.T.

For geometrical proofs of theorems on the triangle, the reader is
referred to some geometrical text-book. When these theorems are
quoted or illustrated in this chapter, references, indicated by the
prefix M.@G., are given to Durell’s Modern Geometry.

Revision. Examples for the revision of ordinary methods of
solving a triangle are given in Exercise I. a, below.

It is sometimes convenient to modify the process of solution. I,
for example, the numerical values of b, ¢, A are given and if the value
of a only is required, we may proceed as follows :

a?=b® +¢* —2bccosA;
& a2 =(b +c)? —2bc(1 +cosA) =(b +¢)* —4bccos®A;

4be cos*A

- 2 _ 2005t 2=~ 2.

S a?=(b+c)? —(b+c)?cos? 8, where cos?f Brep
Soa=((b+e)sind, ..iriiirriiieirieneenns (1)

whera ws&:w"‘cﬁﬁ. PPN ¢}

b+e
@ is first found from (2) and then a is obtained from (1), both equa-
tions being adapted to logarithmic work.
An angle 8, used in this way, is called a subsidiary angle. For
other examples of the use of subsidiary angles, see Ex. 1. a, Nos. 21
to 25.

EXERCISE I a.
[Solution of Triangles)
1. What are the comparative merits of the formulae for cos A,
©os %. sin g. tan %, when finding the angles of a triangle from given
numerical valuesof a, b, ¢ 7

2. Given a =100, =80, ¢ =50, find A.
1



2 ADVANCED TRIGONOMETRY

3. Given a =37, b=61, ¢ =37, find B.

4. Given a =11-42, b=13-75, ¢ =18-43, find A, B, C.

5. Given A=17° 55%, B=32° 50, ¢ =251, find a from the formula

a=csin A cogec C.
6. Given B=86° C=17° 42’, b=23, solve the triangle.
7. Given b=16-9, ¢=24-3, A=154° 18", find }{B —C) from the
formula tan }(B ~C) =g-:_—: cot %’ and complete the solution of the
triangle.
8. Given b =27, ¢ =36, A =62° 35’, find a.
Solve the triangles in Nos. 9-13 :

9. A=39°42’, B=81° 12/, ¢ =47-6.
10. 5=6-32, c =847, B =43°.
11. a=110, 5 =183, c=152.
12. a=6-81, ¢ =906, B=119° 45°.
13. 5=16-9, ¢=12-3, C=51°.

[The Ambiguous Case)

14, Given A=20° 36", ¢ =14-5, find the range of values of a such
that the number of possible triangles is 0, 1, 2. Complete the solu-
tion if @ equals (i) 8-3, (ii) 16-2, (iii) 3-2, (iv) 5-1.

15. Given b, ¢, and B, write down the quadratic for a, and the

sum and product of its roots, @, and a,. Verify the results geo-
metrically.

A

B G, G
If A;, C, and A,, C, are the remaining angles of the two triangles
which satisfy the data, find C, +C, and A, +A,.
16. With the data of No. 15, prove that
() @, ~a; = £2v/(b* - c* sinB); (i) sin §(A; ~A,) =155,
17. With the data of No. 15, prove that
(a; —a,)? +(ay +a,)® tan®B =42
18. (i) With the data of No. 15, if a, =3a,, prove that
2b=c+/(1 +3 sin?B).
(ii) With the data of No. 15, if C, =2C,, prove that
2¢c sin B=b+/3.
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19, If the two triangles derived from given values of ¢, b, B have
areas in the ratio 3 : 2, prove that 25(c* —b%) =24¢* cos?B.

20. With the data of No, 15, if A, =2A,, prove that
4¢%8in®B =b2(b + 3¢).

[Subsidiary Angles)

21. Given b =189, c=24-3, A=154° 18", find a from formulae (1)
and (2), p. 1.

22. Show that the formula ¢=bcosAi+ 4/(a? —b?sin?A) may be
written in the form ¢ =a sin (0 +A) cosec A, where sin =;sin A.

23. Show how to apply the method of the subsidiary angle to
a® =(b ~c)® +2bc(1 —cos A).

24. In any triangle, prove that tan (B —C)=tan (456° — 0) cot }A,
where tan 6 =§'

Hence find (B -C) if =321, ¢ =436, A=119° 15".

21. Express acos@ ~bsinf in a form suitable for logarithmic
work.

[Miscellaneous Relations]

26, If a =4, b=5, ¢ =6, prove that C=2A.

27. Express in a symmetrical form ;:—G+°-%A .

28. Prove that b*(cot A +cot B) =c*(cot A +cot C).

29. Simplify -cosec (A ~B) . (@ cos B —b cos A).

30. Prove that a?sin (B - C)=(b* —¢?) sin A.

31. Prove that bsecB +¢secC_csecC +asecA

) tanB+tanC  tanC +tanA

32. If b cos B =c cos C, prove that either b=c or A=90°

2A%(a? +b? +¢?)
ab’c? -

33. Prove that sin?A +sinB sinC cos A=

1+cos(A-B)cosC__a®+b®
34. Prove that I+cos(A—C)cosB™ a?+¢*”

35. Prove that
acosB cosC +bcosCcosA+ccosAcosB=

2AsinA
a
36. Express cos §(A —B).ooseogintarmsofa, b, e.

37. If b+c¢=2a, prove that 4A =3a’tang.
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38. If a*=b(b +c), prove that A=2B.
39. Prove that ¢?=a®cos 2B +b®cos 2A + 2abcos (A -B).

b-¢ A b+e, A
40. vaet&mtb_'_aoot +5—ctan~—2|:osan(3 C).

41, Prove that

a(l+2cos2A)cos 3B +b(1 +2cos 2B)cos 3A =c(1 +2cos2C).
42, If cos AcosB +sin AsinBsin C=1, prove that A =45°=B.
The Circumcentre, The centre O of the circle through A, B, C is

found by bisecting the sides of the triangle at right angles, and the
radius is given by the formulas

A
‘\ _ nmsximecaox_gma. ......... (3)
“c R TR ML )

Sheain A A" reeeeeesseeaneesnes

The reader should prove that these formulae
¥ia. 1. hold also when £BAC is obtuse.

The in-centre and e-centres. The centres I, I}, 1, I3 of the circles
which touch the sides are found by bisecting the angles of the
triangle, internally and externally.

F16. 2.

The radii of these circles are given by

A A
r"—_;, rl—_"s a. (-] . ﬁopv--vvoo(s}
_A_B.C _ _, A _B G
r=43nn—§sm§ smi, rl—msm-ians-icos-i,etc. renes(B)
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Also in Fig. 3, we have
AR=s-a; AR;=8; BPy=8-¢; .crrerrrnriennana(7)
A A
r:-?[s—a.}tani; T, =stan G reeeesenes ceeens(B)
For proofs of these formulae and further details, see £.7'., pp.
184-186, 277, 278 and M.G., pp. 11, 24, 25.

The Orthocentre and Pedal Triangle. ' The perpendiculars AD, BE,
CF from the vertices of a triangle to the opposite sides meet at a
point H, called the orthocentre ; the triangle DEF is called the pedal
triangle (M.Q., p. 20).

Fio. 4,

If AABC is acute-angled, (Fig. 4), H lies inside the triangle.
Since BFEC is a cyclic quadrilateral, AFE and ACB are similar
triangles ;
. EF_AF
< BE=AC =cosA;
S EBF=acosA. e (9)
Since HECD is a cyclic quadrilateral, LHDE =£HCE=90°-A;
similarly ZHDF=90°~A;

S LEDF=180° —2A. ..coceererrrnnrernnes {1€)

Further, HD bisects LEDF and similarly HE bisects LDEF;
.. His the in-centre of ADEF. Also since BC is perpendicular to AC,
it is the external bisector of « EDF; hence A, B, C are the e-centres

of the pedal triangle.
We have also
AH =AE cosec AHE =¢ cos A cosec C=2R cos 4, ........(11)
and DH=BHcosBHD =2R cos BeosC. ......ccoevvnenennnnnnaa(12)

The reader should work out the corresponding results for Fig. E,
where the triangle is obluse-angled.
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If £BAC is obtuse, £ EDF =2A —180° and other results are modified
by writing —cos A for cos A. [See Ex. I. b, No. 27 and note the
difference of form in No. 36. See also Ezample 3.]

The Nine-Point Circle. The circle which passes through the mid-
points X, Y, Z of the sides BC, CA, AB passes also through D, E, F and

A

AN
A-__ Hlg
—
B X D C
Fia. 6,
through the mid-points of HA, HB, HC ; it is therefore called the nine-
point circle and its centre N is the mid-point of OH (M.G., p. 27).

Since AXYZ is similar to AABC and of half its linear dimensions,
the radius of the nine-point circle is {R.

Since each of the points H, A, B, C is the orthocentre of the triangle
formed by the other three, the circumcircle of ADEF is the common
nine-point circle of the four triangles ABC, BCH, CHA, HAB.

Also, since AABC is the pedal A of Aljl,l; and of Allyl,, ete., the
eircumradius of each of these triangles is 2R.

The Polar Circle. In Fig. 6 and Fig. 7 we have, by cyclic quadri-
laterals, HA . HD =HB . HE =HC . HF.

In Fig. 7, where LBAC is obiuse, A and D are on the same side of H,
and so also are B, E and C, F. In this case, if HA . HD =p?, it follows
that the polars of A, B, C w.r.t. the circle,
centre H, radius p, are BC, CA, AB.
The triangle ABC is therefore self polar w.r.t.
F this circle ; and the circle is called the polar
circle of AABC.
We have

a ) c p*=HA .HD =( -2RcosA)(2RcosBcosC);
Fa. 7. ;. p*= —4R%*cos"A cos BcosC....(13)
An acute-angled triangle in real geometry has no polar circle.

Notation. The lettering already adopted for special points con-
nected with the triangle will be employed throughout the Chapter.
This will shorten the statement of many of the examples.

We add some illustrative examples.
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Ezample 1. Prove s*=A(cot }A +cot 3B +cot 1C).

Since 3(A+B +C)=90°
T cot 3A =cot 3A cot §B cot §C, (see E.T', p. 272, Ex. V.)

. _ 8(s —a) s(s -b) s(s—c)
<+ ZeotdA _‘J{(s ~b)(s—c) (s -c)(s-a) (s—a)(s -b}}

3"
= 5 -
Ezample 2. Expross ©="72) in o symmotrical form.
. ! A2
Since ryTs =m =s(s-¢),

dab ~4dryry, =4ab —(a +b +¢)(a+b —c)
=¢? —(a -b)?
=4(s—a)(s -b);
(ab —ryry) _ (s —a)(s -b)
T3 T3

(s —a)(s-b)(s-¢)
A

=4
=2

Ezxample 3. Ii J is the in-centre of BHC, express the radius of the
eircle BJC in terms of R and A..
By equation (3) the radius is 3BC cosec BJC, but
£BJC =90° + }£BHC =180° - }A, if B and C are acute angles;
a _2RsinA
2sin}A  2sin}A
1f either B or C is obtuse,  BJC=080°+}A, and then the radius
=2R sin}A.

». the radius = =2R cos }A.

EXERCISE L b,
1. If =151, A=24° 36, find R.
2 Ifa=3b=5¢="7 find R and r.
3. If =13, b=14, c =15, find r;, 7y, 75.
4. If a =235, A=62° and b =g, find R and r,
5. Prove that
(6) LBAl=90° -2 =21yl (i) ll, =4R sin &

(iii) I}, =a cosec % =4R cos % «
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6. Verify Equation (6), p. 4, by using the formulae for
sing . cos%, ete., in terms of the sides,
7. Express a(cos A +cosBcosC) in a symmetrical form.
Prove the following relations :

— iReos? cosBeosC —a—4Rcos sinBsinC
8. 3_4Rm2coszeo52. 9. s a-mposﬁsm—sm 5
10. r,r,tan%—aﬂ. 11, rory +1gry +rirg =3

12. ry+ry=4Rcos?}, 13. #—p, 47y + 753 =2 cObA.
14. Al Al, =be. 15. IA.1B=4Rrsin 3.

16. 1A.1B.1C =—‘i—“b‘“. 17. Wy 1l. lly =16R%.

18. AABI: AACI =c:b. 19. AD?(cotB +cot C) =24,

20. AD =2rcosao%m%coa§. 21. AOIlyl,: A0l =(b+¢): (a+c).

22. AH =acotA =20X. 23. AH+BH +CH=2(R +r).
24. If a=14, b=13, ¢ =15, prove that AD =12.
25. Given B =37°, C=46°, BE=9-3, find &,
26. If BP.PC=A, (see Fig. 3), prove that A=90°
27, In Fig. 5, where £BAC is obtuse, prove that
(i) EF= —acosA, FD =bcosB, DE=ccosC;
(ii) .FDE=2A - 180°, LDEF=2B, LEFD=2C;
(iii) AH= - 2RcosA, BH=2RcosB, CH=2RcosC;

(iv) HD =2R cosBcos C, HE = — 2R cos C cosA,
HF = —2RcosAcosB.

28, If a =13, b=9, ¢ =5, find p (see p. 6).

29. Find an expression for the radius of the polar circle of All,l,
in terms of R, ry.

30. Prove that the circumradius of AHBC equals R.

31. Prove that the circumradius of AOBC is > ¢R.

32. Prove that the in-radius of AAEF is rcosA.

33. Prove that the area of ADEF is+ 2AcosAcosBceosC.

34. Given b, ¢, B, prove that the product of the in-radii of the two
possible triangles is ¢ (¢ — b) sin*4B.
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35. Prove that the in-radius of Allyl, is 2R {2 (sin%) -1}

36. If AABC is acute-angled, prove that the perimeter of ADEF is
iRsinAsinBsinC. If 2BAC is obtuse, prove that the perimeter is
4Rsin AcosBcosC.

37. Find in terms of A, B, C, R the in-radius of ADEF (i) if AABC
is acute-angled, (ii) if £BAC is obtuse.

38, Prove that a sin B sin C+b sin C sin A +¢ sinAsinB=3—é§.

39, Express %+rcosA —Rcos? A in a symmetrical form.
40. Prove that
(i) a®cos® A=b*cos?B +c* cos®C +2bccosBeosCcos 2A;
(ii) a® cos? A cos? 2A =b? cos®B cos® 2B +c*cos?Ceos?2C
+2bc cosB cos C cos 2B cos 2C cos 4A ;

A B C
(iii) a* cosec? 3 =b? cosec? 3 +¢? cosec® 3

B C. A
—2be cosec Ecosoe zsing.

Any Line through a Vertex. Suppose any line through A cuts
BC at K. Denote i—g by ;, so that K is the centroid of masses y, z at
B, C respectively. A

Let £BAK =f3, LKAC =y, LAKC=0. A

Draw BB’, CC’ perpendicular to AK.

BE BB’ _csinp
Then ﬁ—a:—’=m. ...........-(14)

This may be written ‘L
f_sincsin(B—B)_sin(B—B) sin Csin @ /
y_sinBsin{ﬂ-!—O}-ainBsinB'ain(a-i-G)’ F10. 8.

. 2_cotB-cotd,

** y cotC+cotf’
& (y+2z)cot@=ycotB—zcotC. ...... cesnerranananss(18)
This relation, which determines 8 for a given triangle and given
position of K, is often useful in three-force problems in staties (cf.
Ex. L ¢, No. 11); an alternative method of proof is indicated in

Ex. I ¢, No. 8. Sometimes (cf. Ex. L. ¢, No. 12) it is convenient to
have an expression for 6 in terms of 3, 7.
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From (14),
z_sin(f+y)sinf sin(f+y) sinfsin B
y sin(0-P)siny sn0siny sm(0-pH)
. 2 _coty+cotf

‘y cotE ;

So(y+z)cotB=zcotB—yeoby. coviirniniiiiiinireriernnenn (16

The Centroid. The centroid of k; at (24, ¥,), ks 8t (Zg, ¥s), Ky &t
(x5, ¥3), ete., is the centre of mass of particles of masses proportional
to ky, ky, k,, etc., at these points. The centroid is also called the
centre of mean position. The point may also be defined geometrically,
and its coordinates are (E—g;”, zg‘f’); thus the idea of mass is
not really involved. The values of the k's need not all be positive,
but 2k must not be zero. (M.G., pp. 58-64.)

LITis any point in AK, we have with the nota-
A tion of Fig. 9

»
ﬂ( = M_ AATB. .7

. K is the centroid of ACTA at B and AATB

B K ¢ atC;
8 . the centroid of ABTC at A, ACTA at B, AATB
¥10. 0. at C lies on AK, that is on AT ; similarly it must

lie on BT, and it is therefore at T.

Hence, if any point T is the centroid of masses A, p, v at A, B, C,
then A: p:v=ATBC: ATCA: ATAB.

If, with the same notation as before, K is the centroid of y at B and
z at C, the length of AK is given by a theorem of Apollonius (M.G.,
p. 61):

y.AB*+z,AC'=(y+2). ARK*+y.KB*+2.KC%, ......(18)
wheeo BK_KC_BC _ a
2y z+y z+y

And more generally (M.G., p. 62) if G is the cenﬁrmd of k, at Py,
ky at P,, ete., and if O is any point,
=(k.O0P?) =(Zk). 0G2 +Z(k.GP?). ...............(19)

Equation (19) is useful in dealing with expressions connected with
AABC of the form A.TA+p.TB*+v.TC%. (Cf. Ex. I. ¢, Nos. 39,
40 and Ex. 1. d, Nos. 22-28.)
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Medians, If y =2, AKis a median; we then have from (15) and (18)
2 cot AXC =cot B —cotC,  ueuve. reerereerenns(20)

B 4ct =2AX2 +1a%  coiiiiriimennenseennesns(21)

The three medians of a triangle are concurrent at a point G, which
is the centroid of equal masses at A, B, C or of equal masses at X, Y, Z.

Further GX =1AX and in addition G is the point on OH such that
0G=}OH. (M.G.,p.28)

A
™~
; \
A8
B X [¢] B Ky C Kg
Fia. 10, Fia. 11

Angle-Bisectors. If AK, is the internal bisector of LBAC, B=y=1A
and 0=B +}A=90°-%(C-B).
Also z:y=c:b; .. from (18), we have

24 chi= 2 ic_)’ (ﬂ)’.
bo® +cb® =(b +¢)AKy +b(b+c +elpae) §
al

. , 5 [
.. on reduction, AK,*=bc {I ® +c)'}

If AK, is the external bisector of LBAC,
B=90°+3A; y=—(90°—3A); 0=B+B=180°-}(C-B).

Also z:y=c¢:-b; .. from (18) as before, we have

—be? +cb? =(c - b)AK,? -b(i)‘w(—“—-b—)’

L) c-b c—-b)"
G‘

or AK,t =bc {W_ l}.

Direct methods of proof are indicated in Ex. 1. ¢, Nos. 15, 16,

Ezample 4. Show that ZcotAXC=0
and 3 cot BAX =Z cot CAX.
Equation (20) gives
2 cot AXC =cotB —cot C,
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and equation (16), with y =z, gives
2 cot AXC =cot BAX — cot CAX,
from which the required results follow.
Ezample 5. Find what masses at the vertices have their centroid
at the circumcentre, and deduce that, if S is on the circle ABC,
SA?sin 2A +SB?sin 2B +SC?sin 2C =8R?sin A sin B sin .
The area BOC =}R?sin 2A ;
.. the ratios of the areas BOC, COA, AOB are
sin 2A : 8in 2B :8in 2C ; ,
.", the masses are proportional to sin 2A, sin 2B, sin 2C (see p. 10).
Hence, by equation (19),
Z[SA? sin 2A] =Z[OA?sin 2A] + [ sin 2A]. 0S?
=R?.[Zsin 2A] +[Zsin 2A] . R?
=2R?. (Zsin 2A)
=8R*sinAsinBsinC. (E.T., p. 271.)

EXERCISE 1. o.

BK sin 20
1. If AO meets BC at K, prove that KC=sinoB"
2. If K is a point on the base BC of an equilateral triangle ABC and

. o BK
if LBAK =15°, calculate kG

3. iB=C=30° and if the perpendicular at A to AC cuts BC at K,
prove that BK =KC.

4. If a=13, b=14, ¢ =15, find cot B, cot C and cot AXC.

6. If a=61, b=11, ¢ =60 and if K divides BC internally as 3: 2,
find cot AKC.

6. If a =85, b=13, ¢ =84 and if K divides BC externally as 3: 2,
find cot AKC. ‘a

7. Prove that tan AXC =a—pr

8. If B, K, D, C are any four collinear points, prove that
KD .BC=BD .KC -BK. DC.
From this relation, deduce equation (15) on p. 9.
9. Prove that abe cot AXB =R(b* —¢c3).
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10. If the trisectors of 2BAC meet BC in K, K’, prove that

BK , BK’ A

— = "".
KGTKG-t5%¢ 3

11. A uniform rod AB, 1 ft. long, is suspended from O by strings
OA, OB of lengths 10 in., 7 in. ; ﬁid the angle between AB and the
vertical,

12. A uniform rod AB rests with its ends on two smooth planes,
as shct;lwn ; XOY is horizontal, find the angle between AB and the
vertical.

o
F16, 12,
13. If a=5, b=4, ¢=6 and if K divides BC internally as 3:2,
find AK.
14, If £ XAC =90°, prove that tan A +2 tan C =0,
15. If the internal bisector of £BAC meets BC at K, prove that

}(b+¢).AKsin A=A, and deduce that AK = ;2. cos 3A, and that
2 b+e

a?
A® =be {1 _W}'
16. If the external bisector of 2BAC meets BC produced at K’,
prove that 3(c —b) . AK’ cosg =A, and deduce that

2
o 1)
17, If the internal bisector of .BAC meets BC at K, prove that
(iYAl: IK=(b+ec):a; (ii)a . PD =(c ~b)(s ~a);

_ 2r
(iii) tan APC =8

18 If the internal bisector of LBAC meets BC at K and the circum-
circle at L, prove that AL =}(b +¢) mg Find AK . AL and show that

AL: KL =(b+¢)*: 0%
19. Find the areas of ABOC, ABHC and deduce the area of ABNC.

If AN meets BC at K, find ﬁ-‘é.

20. Show that I is the centroid of a at A, b at B, ¢ at C.
21. What is the centroid of —a at A, batB,cat C?
22. If H is the centroid of z at A, y at B,z at C, ind z : y : 2.
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28. Find the centroid of )
{(i)latA,1atB,1atC,1atH;
(ii) 3at G, —2 at O.
24. Prove that AX2?+BY? +CZ2=3(a®+b? +c?).
25. If BY is perpendicular to CZ, prove that 5® +¢?=5a2.

1A
26. Prove that tan BGC = g B o

28. If B=55" C =23° 30, AX =40, prove that BY =60,
29. If A=90° and if BC is trisected at Ty, T,, prove that

AT, +AT, =%‘.
30. If A=B =45° and if K is on AB, prove that AK? +BK2?=2CK?1,
31, If AX=m, AD =h, prove that cot A =%3:.

-y b-ec. A

33. If the internal bisectors make angles 8, ¢, {» with the opposite
sides, prove that asin 20 +bsin 2¢ +¢sin 2y =0.

34. Prove that 3 cot BGC =cot A -EA: .
35. If C=2B and if CB is divided externally at Q in theratio 4: 1,
Pprove thet AQ —AC =1QC.
36. If A, B, C, D are collinear and O is any point, prove that
AB.CD _sin AOB.sin COD
AD.CB ™ sinAOD.sinCOB~
37. If AU, BV, CW are concurrent lines cutting BC, CA, AB at
U, V, W, prove that
sin BAU . sin CBV . sin ACW =sin UAC . sin VBA . sin WCB.
38. If three segments AB, BC, CD of a straight line are of lengths
a, 3, y and subtend equal angles 6 at a point P, prove that
day cos?d =(a+B)(B+7)-
39. (i) Use equation (19) and No. 20 to show that
a.TA?+b.TBY+¢.TC?
is least when T coincides with I.
(ii) For what position of T is TA? +TB*+TC? least t
40. What is the locus of T, if
TAZ?.sin 2A +TB*.sin 2B +TC*.sin 2C

is constant ?
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Distances between Special Points. W”ah the usual notation,

A B A
I&—rcomE—-iRmn sm2_’
. A B C,
LA =r, cosec 3 —4Rooa§ cos 53
HA =2Rcos A if A < 90°, 8 c
and = —2RcosA if A >00°.
To find O1* (M.G., p. 35).
Let C be one of the acute angles of the triangle I,
ABC. Fia, 13,
LBOA =2C; s LOAB=90°-C;
- _A o CNB
& LOAL =3 (90° -C) = =g

.~ OI*=0A?2 +1A? - 20A . |A cos OAl

..,B..C . B C B c. .B. C)
=R? 2 - 2> _8R? —~ gin — - = s =
R+16R5m23m2 SRsmzsmg(cos2co§2+mn2mn2

=R? -!v-SR'ﬂinE sin-g(aingain ¢ —oosE cos g)

2 22 2
B c A

= 2

Rt SRsmzsmzm.ng,

S OB =R?T-2Br.  ..cceeeeennnnininnnnnnne(22)
In the same way it can be proved that

OI =R+ 2BI;. .ccvvrvenranninnnns eee-(23)
To find OH%.
For an acufe-angled triangle ABC, £ OAB=90° -C, LHAB=90°-B,
s LOAH=C~B;
=, OH2 =OA? +HA? — 20A . HA cos OAH
=R?® +4R*%cos?A - 4R*cos A cos{C -B)
=R? —4R%cos A [cos(C +B) +cos(C -B)) ;
»~ OH2=R?-8R%cos A cos BcosC=R?+2p% .........(24)
If A>90° LHAB=90°+B; .. cos OAH= -cos(C ~-B); also
HA= -2RcosA;
*, the final result ie the same as before.
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To find 1,H2 _
For an acute-angled triangle ABC, LI;AH =%~ (90° -C) =9-;—"—B;

2 LHP =LA +HA? ~21,A . HA cos —

= Iﬁﬂ'cos’% coa’% +4R?cos?A

B (] B [#] . B, C
—16R? — CO8— - = - bt
16R cosﬁkm:us2(5(3:12(l::n‘.)nazct'.:ﬂs2 + sin 231:12)

=16R’cos'2cos’g(l —cosA) +4R?cos A (cos A — sin B sin C)

=32R’cos’% cos'% sin‘% —4R3cosAcosBceosC;

s LH*=2r2 -4R?cos Acos Beos C=2r2 +p% ...... (25)
In the same way it can be proved that .
IH? =2r* -4R*cos Acos BcosC=2r2 +p. .........(26)

'I‘ihzl renderluhould verify that these results are also true for an obtuse-
e e.
geometrical method of proof of (24) is indicated in Ex. I. d, No, 21,

The reciprocity of the relations [24Leand (26) is explained by the following
argument : since AABC circumscribes its own in-circle and is self-polar
w.r.t. its own polar circle, there exists a triangle afy which is inscribed
in this polar circle, and is self-polar w.r.t. this in-circle (Durell's Projective
Geometry, p. 209). ., H is the circumcentre, p is the circumradius, | is the
orthocentre, r is the polar-radius of AafSy.

.. applying (24) to Aafy, we have HI*=¢" + 2%,

1 To find IN.
The nine-point centre N is the mid-point of OH 3
H S 012 +|H? =2IN? + 20N?;
<N »~ (R*—2Rr) +(2r* +p?) =2IN® + }(R? +2p%)3
S IN2=1R?-Rr+r*=(iR -r)L
Fie. 14,

But O*=R(R-2r); .. R>2r;
S IN=IR =T eeeeceeeeseesnensenennnn (27
In the same way it can be proved that
LN=1B 4T, cecrsrvsraserencernceacsarenna(28)

Since the radius of the nine-point circle is 4R, equations (27) and
(28) prove that the nine-point circle touches the in-circle and the
escribed circles [Feuerbach's Theorem, M.G., p. 117).
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Ezxample 6. If IH is parallel to BC, find a relation between the
cosines of the angles of the triangle. :
| and H will be equidistant from BC, thus r=2R cosB cosC, thus
' 4 sin 3A .sin 4B.sin §C =2cosBcosC,
25sin A [cos §(B —C) ~cos }(B +C)] =2cosBcosC,
cos8B +cosC ~2sin*3}A=2cosBecosC,
ZcosA=1+2cosBeosC.
Ezample 7. Express |G in terms of the radii of the various eircles
connected with the triangle.
By equation (19) we have, since G is the centroid of 2 at O
and 1 at H, (see Fig. 14)
210® +1H? =2GQ0* +GH® + 31G2%;
s 81G* =2108 +IH? - 20H? — $OH?;
L. 91G*=6102 + 3IH? —20H*
=6(R® — 2Rr) +3(2r® +p?) - 2(R* +2p%)
=4R? - 12Rr + 672 —p¥;
o 1G*=1(4R? — 12Rr +6rF —p%).

EXERCISE 1. d.
1. If Ol is parallel to BC, prove that cosB +cosC=1.
2. If IG is parallel to BC, prove that r, =3r,
3. Prove OI*=R?*[3 -2Z(cosA)].
4. Prove 11, =4R (r; —r) and l,1,* =4R (ry +14).
5. Prove l1y2 + 11,2 =112 + ;1,2
. Prove OH®?=9R? —g? - b —c2,
. If A=60°, prove OH?=(3R +2r) (R - 2r).
8. ProvetanIAX =tan’%tanB ;c.
9. If in & scalene triangle IG is perpendicular to BC, prove that
.A_.B.C
sm §=8]n§8m § .
10. If O lies on the in-circle, prove that cosA +cosB +cosC = /2.
11. If OH makes an angle ¢ with BC, prove that
tan ¢ (tan C ~tanB) =3 —tan B tan C.
12, Prove that :
4AN®*=R? +b* +¢? —a?=R?(3 +2cos 2A — 2 cos 2B - 2cos 2C).

-1 &
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13. Prove that p?=(r +2R)? -5

14. If the circumcircle cuts the nine-point circle orthogonally
prove that cosAcosBeosC= -4.

15. If AH =r, prove that the circumcircle cuts one escribed circle
orthogonally.

16. If Ol cuts AD at T, prove OT =0l cos

17. Prove that the area of AOIH is
.B~C . C-A . A-B
2
4+ 2R%sin 5 S —p sin—5—,
18, 1f S is the circumcentre of ABHC, prove that
SA? =R?(1+8cosAsinBsinC).

19. If 10 =IH, prove that either AO =AH or A, O, I, H are concyeclic.
Deduce that an angle of the triangle is 60°.

20. Prove NI+NI, +Niy+Nly=6R.

21. Tf LBAC is obtuse and if HA cuts the circumcircle at T, prove
that (i) HT =2HD ; (ii) HA.HT =2p* Hence show that

HO® =2p* +R%
22, Prove that (i) OI1*+0l,2 +0l4* +0l* =12R?;
(i) NA® +NB®? +NC? +NH?* =3R%.
93, Prove that (i) DA% +DB? +DC®+DH®=4R?;
, (ii) Aly? +Al,® +Al,® +AI* = 16R™.
24, Prove that HA? + HB® + HC? —HO*=3R%
25. Prove that AG?+BG? +CG®=§R*(1 +cosAcosBeosC).

26. Prove that a.lA®+b.IB*+c.IC?=4Rrs; find a similar ex-
pression for a.1;,A*+b.1,B2 —¢.1,C%

B0 omec?
2 2°

27. If T is any point, prove that
TAZ .sin 2A 4+ TB?.sin 28 +TC?.5in 2C =4 (R? +OT?)sin AsinBsinC.
28. If T is a point on the in-circle, prove that
a.TA? +b.TB +¢.TC*=2A (r +2R).
29. Prove that the common chord of the circumcircle and the
escribed circle, centre |, is \f {,.la (4R —r,)}
- v 8 V\R®+2r) J°
30, Ii 4, 8y, t; are the lengths of the tangents from Iy, Iy, I3 to the

eircumeircle, prove that (i) ';1;=;1 : (i) tytyts =abe '\J(ER; .
2 2
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Solution of Triangles from Miscellaneous Data. No general rules
2an be given, but the following typical examples may be useful.
(i) Given a, b -c, A.
In Fig. 15, cut off AK =AB; then KC=b-c.

] c
F16. 15,
Also £BKC=90°+4A and £KBC=}(B-C);
a b-c

.. from ABKC, cos§A=sin§(B ~0)°

This determines 4(B ~C) and therefore B, C.
(ii) Given a, R, A.
o . _a
A is given by the relation R= STnh”
i A
Also, cos{B—C)+cosA=23inBsin0=b—E:;—c=§ﬁ.

This determines (B -~C) and therefore B and C since A has been
found.

(iii) Given the altitudes p,, p,, Ps-
The ratios a: b: c are given by 2A =ap, =bp, =cp;.

A is then given by m%:\/{%ﬁ}; also ¢ =p, cosec A,
(iv) Givenr,, 1y, Iy.
Az
r,r,:m-:?) =g(s -a);

& Tty T =2[s(s —a)] =8(3s — 23} =53;
Sas =8 —ryry =ryry +rry=r1(ra +13);
- = 7y (rs +74) .
- A/(rars +ryry +747)

EXERCISE I, e.
1. Given g -b=19-8, ¢=22-2, C=29° 1¢’, find B.
2. Given b =336, a +¢c=9-28, B=37° 2§, find A,
3. Given AD =6, BE =8, CF =9, find A and a,
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4. Given b=8, ¢=10, AX =T, find A.
. Given A=45°% a=2(b —¢), find B.
. Given r =5, r, =12, r; =20, find a, .
. Given b, B and that a +¢=2b, show how to solve the triangle.
. Express bc and 5* +¢* in terms of a, R, A.
Express sin {A in terms of ry, ry, r3.
10. Express tanB in terms of b, ¢, A.
11. Express ¢ in terms of a, b, A.
12. Given B, b, c® —a?, show how to find C.
13. Given A =53° and BE =2CF, find B.
14. Given A =42°, r=3-5, find the least possible value of a.
" 16. Given a=+/57, A=60°, A=2+/3, find b, B.
16. Given A=60°, b ~c=4, AD =11, find a and sin2>C
17. Given cot (B -C) =7 and BC =5AD, find cotB.
18. Given a, 8, A, show how to find B.
19. Express a in terms of r, A, p where p =AD.

@w e =1 @,

Errors. If u is a known function, f(z), of z, we have, using
differentials : du=f’(z).dz. If the value of u is calculated from a
measured or observed value of x, the resulting error &u in u, due to
an error &z in z is given by

du =f"(z) . 8z.

If u is a known function of several independent variables z, y, z,
etc., then the error in u due to errors in the values of z, y, z, ete.,
is given by

ou ou ou
&_a.&+a.sy+g.&+...-

Ezample 8. The area of AABC is calculated from measurements
of B, C, a; find the error in the calculated value of A due to an error
éB in the measured value of B.

1 . 1 sinBsinC_1 _. sinB
A=gabsinC=ga' —p—=50%inC. o To)’
sin(B +C)cosB —sinB cos(B +C)

sin® (8 + C) 8

1
- o _fal
o 8&...24 sinC.

la*sin®*C 1
_EW.EB =§B‘.sBo
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Here, 6B is measured in radians ; thus an error of 1’ in B causes
an error of approximately it:‘ 1 = in A
2" "60° 180 *

If there are errors 8B, §C, da in B, C, a, the resulting error in A is

given by
__sinBsinC " . .
—maﬁa+§c .BB'['ib .éC;

s 8A =bsinC.8a+}c?. 5B +1b%.8C.

EXERCISE I. f.
1. If A is espressed as a function of a, B, C, prove that %:%.

2. If A is expressed as a function of a, b, ¢, prove that

%%=R005A.

3. Ii A is calculated from measurements of a, b, ¢, prove that the

en'rcar:clulai:vcm.Bn'.ml.le.t‘ri:n.'z.,a‘il.‘tbissabanty—cg-t£

4. If R is calculated from measurements of a, b, ¢, prove that
the error due to a small error  in a is about 4z cosec A cotB cot:C.

5. The base AB of a triangle ABC is fixed and the vertex C moves
along the arc of a circle of which AB is a chord, prove that

cosB.da +cosA.db=0.

6. An observer, on the ground, 50 ft. from a vertical tower,
observes the angles of elevation of two marks on the tower to be 45°
and 30°. Find the approximate error to which the calculated

distance between them is liable if there may be an error of 1’ in each
observed angle.

7. If ¢ is calculated from measurements of a, b, C, prove that the
error due to small errors «, ¥, ¥ in a, b, C is about

zcosB+ycosA+asinB.y.
8. With the data of No. 7, prove that the relative error % in
the calculated area of the triangle is approximately §+% +vyeotC.

9, If C is calculated from measurements of a, b, ¢ in which there
are small errors z, v, z, prove that the error in C is approximately

%cosma —EcotB —%cntA.
10. If ¢ is calculated from measurements of @, b, R and if there is a
small error z in @, prove that the error in ¢ is approximately
zcosC
““cosA "
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11, The area A of a triangle on a given base ¢ is expressed in terms
of ¢, A, B. Prove that el ¢
g%: 2 %—g=§a'; and 53?—%§=2A.cosec'0.

In finding the vertex when the base is accurately known and the
base an%ea are subject to small errors +a, +[, show that the
area of the small region within which the vertex must lie is approxi-

mately
41:,83-',‘—3—873 a

12, The area ABC was calculated from the measured values a, b,
90° of BC, CA, ACB and it was found that the calculated area was too
great by z and that a -z, b~y were the true lengths of BC, CA.

. 180 [72(2z —ay —bx)
Show that the error in C was about ?'J {——T—} degrees,

if z, =, y were small.

MISCELLANEQUS EXAMPLES

EXERCISE L g

1, Ii a +b=2¢, prove that cot.%+cot-B2- =2 cot.gf.
2. Prove that Z(absin®C)=2s.%(acosBcosC).
3. Prove that 2aRsin (B —C) =02 —¢2.

C

A B
4, Prove that A =r2 cut§ cot 5 cot 3

. Prove that (r, —r) cot? g- =ry+7;

6. Prove that a*=(r; =1) (4R -1y +7).
7. Prove that IA.Il, =4Rr.

o

abe
2r "
9, Prove that the circumradius of AIBC is 2R siné and find that

of Al,BC. 2
B Cc B~C

10. Provet.hatPD=4Rsi:1-§sm§sm 5

11, Prove that AOAI =A7 (cosB~cos C).
12. Prove that AD cuts the in-circle at an angle

8. Prove that &Olylyly =

. B-C A
cos-l(sm 3 coaaci).

13. Given §= %JE, prove that the triangle is right-angled.
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14. If B=18%, C=36°, prove that a -=b=R.
15. If cosA +cosB =3, prove that 2r —-R=2RcosC.

16. Given a, b, B, find the difference between the in-radii of the
two triangles.

17. Prove that Z(a%cosA)=abc(1 +4cosAcosBcosC).
18. Provo that 7y, ry, 7y are the roots of
r*x® —r¥{r +4R)z® + A% - A%r =0,
2AABC _acosA +bcosB +ccosC
Alylgly — a+b+e
20. If T is the mid-point of EF, prove that XT =}asinA.

21. If a®cos®A +b*cos?B =c?cos?C, prove that one of the angles
A, B, C is determinate, and find it.

22. If LCAX =00°, prove that 3accosAcosC=2(c?-a?).
23. Iia, b, c are in A.P., prove that
cosA+cosC ~cosAcosC+}sinAsinC=1

24. ABC, ABD are equilateral triangles in perpendicular planes ;
caleulate £ CAD.
2
25. If B=C=2A, prove that IB =g§.
26. If DT, DT’ are perpendicular to AB, AC, prove that TT” =% .

19. Prove that

27. Prove that the tangents at A, B, C to the circumcircle form a
triangle of area ::R?tan AtanB tanC.

28, Prove that the radii of the circles which touch AB, AC and the

cireumecirele are raee“% and r, sec’% . [Use Inversion.]

29, 1 !, m are the directed lengths of the perpendiculars from A, B

to any line through C, prove that
a?l? +b*m? - 2ablm cos C =4A%,

[If A and B are on opposite sides of the line, I and m must be
regarded as opposite in sign.?

30. Prove that, if a>b.~¢, the length of the shortest line which
bisects the area of ABC 3 /{24 tan 1C).

31. If the angles of a triangle aro calculated from measured
values of the sides, show that the small errors satisfy

a .
M:E(m—cosc.ﬁb—cosB.Bc).

32. If r is calculated from measured values of a, b, ¢, show that
the error due to an error xz in a is

x
5(2}? cosA —71).



CHAPTER II
PROPERTIES OF THE QUADRILATERAL

Notation. In dealing with a quadrilateral ABCD, we shall denote
the angles by A, B, C, D, and shall represent the other elements (see
Fig. 16), as follows :

AB=a, BC=b, CD=¢, DA=d;
AC=z, BD=y, AOB=0;

s=4(a+b+c+d); S=area ABCD.
< ¢  We assume the quadrilateral to be convex.

Fi6. 18.

e The Cyclic Quadrilateral. If a quadrilateral is
known to be eyeclie, and if the lengths of the sides, in order, are given,
it is possible to calculate the other elements of the
figure. Formulae for S, z, y, the circumradius R,
and the angles, in terms of a, b, ¢, d may be ob-
tained as follows :

The area of a cyclic quadrilateral is
v{(s-a)(s-b)(s -c)(s-d) }.
We have S=AABC +AACD; Fi6. 17.
S 45 =2absinB+2cdsinD.  ...iccecereeneenn(l)
Also a?+b% -2abcosB=a2=c*+d?®-2cdcosD;
Soa? b —c® —d*=2abcosB —2¢d cos D. ..ovueannnnnnn. (2)
From (1) and (2), by squaring and adding,
1682 +(a? +b® —¢® ~ d?)? =4a?® + 4¢%d? — 8abed cos(B +D) ...(3)
=(2ab +2cd)®?, since B +D =180°;
& 168 =(2ab +2cd)? — (a® + b —c? ~d3)?
={(a +b)® —(c—d)*} {(c +d)* - (a - b)*}
=(a+b+c-d){a+b-c+d)(c+d+a-b)(c+d—-a+b)
=(2s - 2d)(2s — 2¢)(2s — 2b)(28 — 2a) ;
L 8=/ {(58-a)(s-D)(s—e)(S-@)}. .rrrirriirririiriininanennd(4)
This formula was first given by the Hindu mathematician Brahmagupta

(630 A.D.), but he believed, wrongly, that it held good for any quadri-
lateral. The Greek mathematician Hero had, however, pointed out that

24
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the general quadrilateral is not determined by the four sides alone. An
n-sided polygon is determined by 2n — 3 elements—a simple framework with
n jointa is * just stiff * if it contains 2n — 3 rods.

The diagonals of a cyclic quadrilateral are given in terms of the sides
by the formulae
<t _lac +bd)(ad +be) _(ae +bd)(ab +cd)
ab+ecd ’ ad +be -
Since z*=a? +b* - 2ab cosB,
and z® =c? +d? —2cd cos D =c* +d* +2cd cosB;
o (cd +ab)a® =cd(a® +b?) +ab(c? +d?)
=ac(ad +bc) +bd (ad +be)
=(ac +bd)(ad +bc);
_(ac+bd)(ad +be) 5)

The formula for y is proved in the same way.
By multiplication, we have Ptolemy’s Theorem,
xy =aec +bd. ceivriiiiiininicecnennirinenae (8)
- xz ad+be
By division, we hav v rod"
The circumradius, R, is given by

4RS =4/{ (ab +cd)(ac +bd)(ad +be) }.

Using the formula B =€;—b§ for a triangle, we have '

4R.AABC=abz and 4R.AACD =cdz;
.~ adding,
_ _ (ac +bd) (ad +be)
o 4RS = v/{(ab +cd}{ac +bd)(ad +bc) }. .uuunnns (7)
The Angles of a cyclic quadrilateral may be found from formulae
like 28 a? +-b? —c? -2
Brea’ PP g@prag @

which follow from equations (1) and (2), p. 24, in virtue of B + D =180°,
From (8) it is easy to obtain
.B_(s-a)(s-b)
2 (s-¢)(s-d)°
The expressions for z? and y* are easily remembered, if this is desired, by

noting that the sides paired together in the denominator are on the same
side of the required diagonal.

Szt

sin B=
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EXERCISE IL a.
[The results in this Exercise refer to cyclic quadrilaterals.]
1. Find the area of the cyelic quadrilateral whose sides in order
are 4, 5, 6, 7.
2. With the data of No. 1, find the lengths of the diagonals z, y.
. 3. With the data of No. 1, find the length of the diameter of the
circumecirele.
4. With the data of No. 1, find the interior angle between the
sides of lengths 4, 5.
_(e—a)(s-b)

5. Prove that tan® iB_(s—-c)(s- y:

6. Prove that (s —b) tan }A =(s —d) tan }B.

7. Express tan 4C tan 3D in terms of the sides.

8. Prove that S=}ta_n}\(a’ﬂb’ —-c? +d?).

9. Interpret the results obtained from the formulae for S, cosB,
and R by putting d =0.

10. Simplify the expressions for S and tan? 1B when a +c=b+d.

What is the geometrical meaning of this condition ?

11. The sides of a quadrilateral taken in order are 7, 4, 4, 3, and
the angle between the first two is 60° ; prove that the quadrilateral
is eyelic and find its circumradius.

12, From equations like a? =A0* +0B? —~ 2A0 .0B cos 8, prove that
2zy cos 6 =b? +d* - a? ~c?, and deduce that
6 _(s-b)(s-d)

tan* 3 (s-a)(s—c)

. 25
13. Prove that mﬁ:m.

OA_OB_OC_OD _ ac +bd
14. Pm"”“‘”?.&‘ﬁ‘?ﬁ‘a?'\{{{abndnaw i}
156. Express BO.OD in terms of the sides,

16. If AB, DC are produced to meet at P, and DA, CB at Q, prove
_a_ QB .

that a‘BTb-—E——m » and deduce expressions for m, QB, QC, QD
in terms of the sides, Write down similar expressions for PA, PB,
PC, PD.

17. With the data of No. 16, prove that the other point of inter-
section K of the circles QAB, PBC lies on PQ, and deduce that

PQ*=PK.PQ +QK.QP=PB.PA+QB.QC
=(ab +cd) (ad +be) {ac (¢ —a?)~2 +bd (d* - b2)~3).
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The General Quadrilateral. Equation (3), p. 24, is applicable to
any quadrilateral, and it may be used to calculate the area. The
equation may also be written

1652 =4a®b® + 4c%d® — (a® +b* —c® —d®)? — 8abed cos(B +D)
=(2ab +2cd)? — (a® +b* — ¢* —d?)® - 8abed{1 +cos(B +D)}
=16(s —a)(s ~b)(s —c)(s —d) —8abed {1 +cos(B+D)},
ason p. 24;

o B=(s—a)(s—Db)(s—c)(s —d) —abcd cos‘B;D S ) |

If the lengths of the sides of a quadrilateral are given, equation (9)
shows that the area is greatest when cos$(B+D)=0, i.e. when
B +D=180°. Therefore the area is grealest when the quadrilateral
ig cyclic.

An extension of Ptolemy’s Theorem. It was proved in E.T'., pp.
178, 179, that

2rysin 0 =48, ..coiiinirieninnreneineinnen(10)
It may similarly be proved (see Ex. II. a, No. 12), that
2rycos B =b*+d?-a® -, .iciicreniiininen (11)

squaring and adding,
4xty® =168 +(b% +d* —a® - c*)?,
substituting for 1682 from equation (3),
4%y® =4a?b? +4¢2d? - 8abed cos(B +D) — (a? +b? - ¢ —d2)t
+(b* +d? —a? —c?)?;
- 22yt =a®h® + c*d? - 2abed cos (B + D) +(b* - ¢*)(d? -a?);

.. x?y?=a%? 4 b?d® - 2abed cos(B + D). ............ tersearrnrannans ..(12)
Equations (10) and (11) lead to another expression for the area.
By division, tan 6 =4Sj(b2 +d? —a? —c);

s S=}(b*+d*—at—ctanB. ...............(13)

The Circumscribable Quadrilateral. This is a quadrilateral in
which a cirele can be inscribed.
If P, Q, R, T are the points of contact of AB, BE, CD, DA, we have
AP=AT and BP=BQ;
.~ a=AB=AT +BQ,
similarly ¢e=DT +CQ;
o Ba+C=AD+BC=b+d. ..cccevenrieinranrann (14)
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Conversely, it can be proved that, if a +¢=>b+d, a circle can be
inscribed in the quadrilateral, see Ex. II. b, No. 8.
From (14), we have
c a+c=b+d=%(a+b+c+d)=s5;
. 8-a=c, 8~-b=d, s-c=a, s-d=b;
R thus equation (9), p. 27, becomes

S'=abad—abcdcos‘B;D.

A T D We have therefore for the area of a circum-
Fie.18. scribable quadrilateral
S=4/(abed).sin (B +D). ..civiireencrinenan(18)
If the quadrilateral is also cyclic, sin (B +D) =sin 90° =1;
S B=a/(abed). .coiriiiiiininiiininnes..(16)
'.ghe in.radius of a circumscribable quadrilateral or polygon

s

For, if | is the in-centre, AAIB=1ra, ete.;

<. by addition, S=ir(a+b+...)=ra.

For some properties of regular polygons, see E.T., pp. 179, 180.

EXERCISE II b.

1. Find the sum of two opposite angles of the quadrilateral in
which a=13, b=14, ¢=12, d=9, §=138.

2. For the quadrilateral of No. 1, find the angle between the
diagonals.

3. For the quadrilateral of No. 1, find xy.

4, Mfa=17,b=8, ¢=9,d=11, and § =33, find the angle hetween
the diagonals.

5. fa=7,b=8,c=9,d=11, and 8 =60°, find S and zy.

6. The sides of a cyelic quadrilateral in order are 2, 4, 3, 6;
calculate the cosine of the angle of intersection of the diagonals.

7. Explain the meaning of equation (12) when B=D =0° and
when B =D =180°,

8. In a quadrilateral for which a +¢=b +d, where a >d, AX is cut
off from AB equal to AD, and CY is cut off from CB equal to CD.
Show that BX=BY and that the circumcentre of DXY is equidistant

from the sides of the guadrilateral. (This proves the converse of
relation (14) on p. 27.)
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9. If B +D =90°, prove that z%y* =a%? 4 b%?*, )

10. Show that the area of a circumscribable quadrilateral is :
${ac-bd)tan® or }(b-a)(a—-d)tan® or 3I+/{x2y®—(ac->bd)?}.

11, If a quadrilateral circumscribes a circle, show that the radius
of the circle is Y(22)-Sn}(A +0),

12, If ABCD is circumscribable, prove that

+/(ab) .sin} B = 4/(cd) . sin }D.

13. If ABCD is circumscribable, prove that

tan 0 _2sin}(A+C). /(abed)
. ac -bd

14, If a +b =c +d, deduce a formula for the area from the general
formula. :

15. If a circle can be drawn to touch the sides of a zuad.n‘lateral
when produced, obtain a relation of the form a +b=c¢ +d.

16. The sides, in order, of a cyclic quadrilateral are 4, 3, 5 and 6.
Show that the quadrilateral is also circumseribable, and find (i) its
area, (ii) its in-radius, (iii) the angle between the sides 4 and 6,
(iv) the lengths of the diagonals, and (v) the circumradius. .

17. The sides, taken in order, of a hexagon circumscribed about
a circle are 13, 12, 8, 11, 9, and z. Find z, and if the area is 60, find
the radius of the circle.

18. How many elements are required, in general, to determine a

entagon ? A cyclic pentagon has sides, in order, of lengths 39, 52,
9, 25, 33 and the longest diagonal is 65, find the area.

EASY MISCELLANEOUS EXAMPLES

EXERCISE I c..

1. The sides of a cyclic quadrilateral taken in order are 1, 3, 4,
6; find the largest angle.

2. Three cyclic quadrilaterals have sides 8, 9, 10, 13, in different
orders. Prove that their areas and circumradii are equal, and find
the lengths of their diagonals.

3. Prove that there is & quadrilateral in which a=b=y=65,
¢ =50, d =78, £ =112, and find its area. s the quadrilateral cyclic ?

4, If a=4, b=1, ¢=7,B=120°=C, find d.

6. Ifa=1, b=+/3, =2, A=60° B=150°, find d and D.

6. When a, b, ¢, A, C are given, is the quadrilateral determined
with or without ambiguity ?

7. Ifa=7 b=12, ¢ =5, A=60° C=90° find d.

8. Ifa=14, b=12, ¢ =5, A=60° C=90°, find d.

9. If A=90°, B=60° C=150° a=2, b=1, find ¢ and d.
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10. If A=120°=B, D =90°, a=+/3, ¢=5, find b and d.
11, If a® + c® =b* +d?, prove that 8 =90°,
12. If A=60° and B =90°=D, prove that 3z =4y,
13. If ABCD is cyclic and AD is a diameter, prove that
d(d® —-a® - b - c*) =2abe.
14. Tt ABCD is_cyclic and a—c=b—d, prove that S=bctan.
Interpret the condition geometrically.
15. If ABCD is circumscribable, prove that
S =absin g eosec% sin E-EB .
16. If ABCD is both cyclic and cireummribable prove that
24/ (abed 6 ad —be
:;‘+ ), {Il) tBll‘ _—'-" H (l.l.l} cOBA—H--—b-‘c
17. Find the ratio of the areas of two regular polygons of n sides
and 2n sides inscribed in the same circle.

18. Find the ratio of the areas of two regular polygons of n sides,
inscribed in and circumscribed about a given circle.

19. The length of a side of a regular n-sided polygon is 2/, and the
areas of the polygon and of the insecribed andpgu{%?msmbed circles
are A, B, C; prove that C —B=xi? and n*l®B =wA%,

20. Prove that the ratio of the areas of two regular polygons of
n sides and 2n sides and of equal perimetars is

kg
003—'008

(i) sin 8 =

2n

21. If r, and R, denote the in-radius and circumradius of a regular
n-sided polygon of given perimeter, prove that
(i) 2ryp=ry +R, and (ii) R*%, =Ry .73

22, If a square and a regular hexagon have equal perimeters,
prove that the ratio of their areas =}3.

HARDER MISCELLANEOUS EXAMPLES

EXERCISE II d.

uations (9) to (13 uire any modification for the
quadrﬂabarﬁ in Fig. 19 (18) roq v
A

Fio. 18
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2. Two quadrilaterals ABCD, A’B’C'D’ of equal area, but not
congruent, have their corresponding sides equal ; also B=D'=90°;
prove that ab=cd.

3. Ifa=24, b="1, ¢=65, d=60, =25, find S, y, D.

4. If a=13, b=14, ¢=12, d=9, $=138, show that

91cosB -54cosD=35 and 91 sinB+54sin D=138.
Hence prove that 138 sin D - 35 cos D =138 and find D. Show also
that =15 or x==18-1.

5. Fig. 20 represents a “ crossed ” cyclic quadrilateral. What

meaning must be given to S and what other conventions should be
introduced to enable equations (1), (2), (3) on p. 24 to remain true ?

Obtain a result corresponding to equation (4).
A
Q c
[
D

Fia. 20.

6. With the data of Fig. 20, find = and y in terms of a, b, ¢, d.
Show that 4 rods of lengths 8, 9, 10, 13 cannot be fitted together
in any order to form a crossed cyclic quadrilateral.

7. If ABCD is cyclic and if AB, DC, when produced, cut at right
angles, prove that (ab +e¢d)? +(ad +be)? =(b® - d*)*,

8. If ABCD is eyclic and if ac=bd, prove that the tangents at A
and C meet on BD. Conversely, if the tangents at A, C meet on BD
(i.e. if ABCD is a harmonic system of points on a circle), prove that

" ac=bd.

9. A quadrilateral is inscribed in a given circle of radius R, and
one side subtends a given angle a at a point of the arc of the circle
on the opposite side to the quadrilateral. Prove that the greatest

possible area of the quadrilateral is 2R?sin® %“

10, If the sides of a cyclic quadrilateral are the roots of
2t~ 2523 4 2* - gz +2p =0,

express S in terms of p, g, s, &.

11. In a cyclic quadrilateral, prove that the productions of AB, DC
meet at an angle 1, given by
¢ _(s=b)(s-d)(b+d)?
3= (ab +cd)(ad +bc) *

12, Discuss the different ways in which a quadrilateral may be
determined by five of the eight elements (4 sidos, 4 angles), showing
in which cases more than one quadrilateral may exist.

cos?
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13. In any quadrilateral, prove that
zhy(z® +y? —a? - b —c® —d?) - .
+a’c*(a? +¢? -~ b2 ~d? —2? —y?) + 5% b2 +d? ~a? - —-2? ~-y?)
+2%a%b? +c3d?) +y*(a%d® +b%?) =0.
14. If ABCD is circumseribable, and a, 8, y, & are the lengths of
the tangents from A, B, C, D, prove that

abed cos* 28— (ay - g,

15. Prove that the distance between the circumcentres of ADC
and BDC is asin (B -+D) cosec C cosec D.

16. If R and r are the circumradius and in-radius of a quadrilateral
and if z is the distance between the centres of the circles, prove that

{R+z),+m—iz),—=%;. State the corresponding result for a triangle.

[If | is the in-centre, let Al, Cl meet the circumecircle in A’, C’; use

Al . IA’=R? —z2=Cl . IC’ to find IA’, IC’, and substitute in
A" +1C"? =2R? + 222.]

17. Prove that the necessary and sufficient condition for the
existence of a crossed cyclic quadrilateral with sides of lengths a, b,
¢, d in that order of magnitude is b +c>a+d. For a=13, b=12,
c¢=11, d =6, find z and y.

18. A hexagon is inscribed in a circle of radius R ; alternate sides
are of lengths I, m ; prove that 3R*=I*+Im +m*.

F1a. 21.

19. In Fig. 21, ABCD is a parallelogram. Prove that
(i) coba —coty=cot 8 ~cot =2 cot(a+p3);
(ii) cota —cot 8 =coty —cot § =2 cot .
20. If P, and P, are the perimeters of regular n-gons inseribed
and circumscribed to the same circle, prove that
P:l __P. n+1
21. The base of a pyramid is a horizontal regular n-gon, and its
vertex is at height b tIr)artica.lly above the centre of the base. Ifais
the circumradius of the base and 26 the angle between two adjacent
sloping faces, prove that

(h® +a?) cot?0 =h® tan? E



CHAPTER IIL
EQUATIONS AND SUB-MULTIPLE ANGLES

A rFirsT discussion of Trigonometrical equations, for solutions from
0° to 360°, has been given in E.T., Ch. XVIII, p. 258. We shall now
obtain the general solutions of such equations, and shall usually work
in radians.

Ezample 1. Solve sin =4,

N

0 X
Fia. 22,

There are two, and only two, solutions between 0 and 2r, (see
Fig. 22), o=g- or r-%.

But any angle differing from these by a multiple of 2 is also a
solution ; therefore the general solution is

0=2mr+% or 2nw+w -%;

™ T
o 0=2mr+§ or (2n+l}=r-a,
where n is any positive or negative integer or zero.

Example 2. Solve cos=4.

Fi1G. 23,
The solutions between 0 and 2r are

™ -
0—§ or 2r-§

(see Fig. 23);
33
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.. the general solution is

- ' kol
0=2rr += ——
2n—+3 or 2ror42x 3

5 0=2nx :;:%',

where n is any positive or negative integer or zero.

Ezample 3. Solve tan 0 =1,

0 R

Fia, 24,

The solutions between 0 and 2x are

T

6=1 or 'rr+,£

(see Fig. 24);
.. the general solution is

ko w
0=2rx +g or 2rr 4w +;.

- 3=n:rr+gy
where n is any positive or negative integer or zero.
These examples illustrate the following general statements :
If sin @=sina, then 6=2nn+a or (2n+1)w—a. .oevneneen.nn(1)
If cosi=cosa, then 0=2nmtta. .ccovvieviinniiireninneneenennnnn{2)
If tan f =tana, then § =D +& .ccoveiricenienirnieninsiccenranneaend(3)

where n is any positive or negative integer or zero.

The solution of sin # =sine may also be written in the form,
8 =mw +( — 1)™a, since, if m is even, this becomes 2nx +a and, if m
is odd, it becomes (2n +1)7 —a.

Note, There are certain specially simple equations which can be
solved at sight by thinking of the figure without recourse to the
general formulae. For example the values of 6 for which cos =0
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are evidently odd numbers of right angles; this gwes the solution in
the form 6= (2n+1}2. which is slightly better than the form

onw s given by the general formula; the two forms are, of course,

2
equivalent.
EXERCISE III a.

Use figures to write down the solutions of Nos. 1-6.
1. sin8=0. 2. cosf=1. 3, tan 0 =0.
4. sinf=1. 5. cosf=-1. 6. sinf=-1.

A ply the general formulae (1), (2), (3) to write down the solutions
of 7-12.

V3

7. ainﬂ:T. 8. cosﬂ-.:/—_. 9. tan §=+/3.

10. sinf= - 3. 11. cusﬂ_—.—i;’:. 12. tan 0= - 1.
Solve the following :

13. cos20=1. 14. sin 30 =0. 15, tan 46 =0.

16. sin360=-1. 17. tan36= -1. 18. cos46=0.

19, sinf =cos @, 20. sin B +cos 8 =0.

21, sec8=2, 22. cosec 0 =coseca.

Some useful methods of solving equations are illustrated in the
following examples :

Ezxample 4. Solve 4sin?6=1.
This may be written
2(1 —cos 20) =
or cos20=4%; .. 29=2n=r:b§=

0 =nr;]:%.

The procedure just adopted is more convenient than using equation
(1) to solve sin 6 = 1+ 4.
Ezample 5. Solve sin 70 =sin 50.
From equation (1),
70 =560 +2nr or T0=w-50+2nmr;
(2n+lm
12

.'5' 0 =n=
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Ezxample 6. Solve tan A= —cot2A,
This may be written ’
tan A =tan (g+2&);
o A:nw-{-%-{-%\;
w w
s A= —m-—-§=mrr—§,
where m is any integer or zero. This result is equivalent to
T
ﬁ—k'n'-!"é.

Example 7. Solve sin 26 =1 +cos 26,
First Method. 2sin 0 cos 6 =2 cos?0.

S cosf=0 or tanf=1;
T T
S 6—(2n+1)§ or k1r+z.
Second Method. This consists in applying the general process
which is applicable to Acosf +Bsin 8 =C. We have
sin 20 —cos 20 =1;
D S 1 _ 1
Py —ﬁsm23——1/—2a0323——~—,~2,
- ko .
s 51!1(28 —Z) =8In
T v
o 29-Z=2mr+z or 2nw
iy ko
e B=mr+z or (2n+1}§.

An alternative method is to express the sine and cosine each in
terms of the tangent of half the angle (see E.T., p. 263). Equations
of this type should not be solved by methods involving the squaring
of both sides; for since this process is not reversible the solutions
obtained need not necessarily satisfy the equation, and testing
becomes necessary.

Ezxample 8. Solve sin 20 =sin 6.
Using the same method a8 in Example 5, we find

8=2nx or (2n+l}§,
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and this result follows also by using
sin 20 -sin § =2 cos §0 sin 46.
We can, however, write the equation in the form 2sin 8 cos 6 =sin 83
S 8nf=0 or cosf=j%;
o B=nx or 2mr;tg.
This illustrates the fact that different methods of solution some-
times give results of different forms; in the present example the
aggregate of values of (2n+1)§ can be separated into two parts,

those for which 2n + 1 is and is not a multiple of 3; the first of these
taken with the values of 2n= just make up the values of nz, and the

second part is the same as the values given by 2n:r;{:%.

EXERCISE IIL b.

Solve:

1 2cos*f=1. 2. cos 70 =cos §6.

3. sin 36 =sin 760. 4, sin 30 =cos 20,

5. sin 60 +sin 6 =0. 6. sin 50 +cos 36 =0,

7. cot 58 =cot 20. 8. tan 30 =cot 40.

9. sin26=1 -cos 20. 10. sec 6 =sec 20.

11, sinf + v3.cos0=1. 12. cosf —sinf=1.

13. sin 360 =3sin 0. 14. 3sin 6 +4 cos 6 =23.
15. 4 cos @ =cosec 0. 16. 13sinf -84 cos O =17.
17. cos O +cos20 +cos30=0. _ 18. sin 76 =sin 6 +sin 36.
19. cos 38 =cos f cos 26. 20. tan 0 +tan 20 =tan 30.
21, 4cosfcos20cos36=1. 22. sec § +cosec 0 =24/2.
23. cos 0 +gin =1 +sin 26. 24. tan f +sec 26 =1.

25. cosz+tanasinxr=}seca 26. cos 9z cos 7z =cos 5z cos 3z.
27. cotx —cosec 2z =1.

28, cos(z —a)cos(z ~ 3) =cosacos 3 +sin?zx.

29. cos®z —coszsinz —sin*xz=1.

30. cosec 4a —cosec 4z =cot 4a — cot 4z,

81. tan (cot ) =cot (tan 0). 32. r.an—t(i;: =}tan-z.
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33. Discuss the solution of sin 8 +cos 8 =k when (i) k=1, (ii) k=2,
(iii) & =3}(1 + V3).
34. Find 0 such that tan 6 = V'3 and sec § = — 2 simultaneously.
35. Find 6 such that sin 0 -+sin 36 =cos § and sin 40 =2’?—§ simul-
taneously.
36. Show that the aggregates of values given by
z nX S
{2n—l)§+{ -1) 3 and by 2""*6
are identical, n being any integer or zero.
37. Are the aggregates of values of nxr +-g and nw+5 identical,
n being any integer or zero ? 2

MISCELLANEOUS EQUATIONS

Ezample 9. Find from graphical considerations the number of
real roots of £=3r(1 ~sinz), = being measured in radians.

The equation may be written, sinz =1~z . Sketch the graphs of

. >
y=sinz and y=I “gn

The graph of y=sinz lies between the lines y=1 and y= -1.

The graph of y=1 _;:-r is the straight line joining (0, 1) to
(67, —1).

It is evident that the two graphs intersect at 7, and only 7,
points.

.". the equation z=3x=(1 —sinz) has 7 real roots.

Approximate values of these roots may be found by plotting the
graphs carefully ; see also Chapter V, Example 4, p. 82.
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Ezxample 10. Solve sinz +siny=sinc; cosz +cosy =cosc.

We have®* 2ain?-;'—ycosx;y=sinc- errerernaeenneernaeran (i)
and 2coax;ycos$%y=cosc; SN 11
.. by division, tan z%’ =tane,
since cos ; 4 # 0, as this would involve sinc=0=cosc¢c;
x—;g=mr: . SOV 1 11 |
- -y
.. from (i), 2 cos(mw +c}cos—2— =coS¢C;

S 2(- l]"‘cosccosié_—yzoosc;

. 2 :_y__'l —1ym f .
S ifcosc#0, cos—= —2( 1) —cos(m-.r-l-s).
- 2oV AN i
e T-—zﬂf:}:(m’-‘+3), sessssssnsbisssasnns sassnanss ....(lv]
. from (iii) and (iv),
z=2(ﬂ+m}r+c+§ or 2mr+c—g,
y=—2mr+c-’—:; or 2(m—n)r+c+g.
These solutions may be written
z=2p=r+ci%, y=2q7r+c:F§;
where p, g are any integers and the upper signs are taken together,
as also the lower signs.

If cosc=0, c-,a:»s"'-s-;—i’r must be zero; .\, z+y=(2n+1)m;

S sinz+sinz=sinc=4+1;

S sinz=44%;
-
E.

* This solution illustrates some points of importance; other methods
would be shorter for this particular example ; e.g. the answers might be
written down by geometrical considerations.

y=2n-m+1)rF
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It happens that these solutions are contained in the previous
general solutions, but as cose¢+# 0 was sssumed in obtaining the
general solutions, it could not be anticipated that this would be
the case.

EXERCISE IHI. c.

1, Solve graphically z?=cos 2.

2. Solve graphically = =cos?z.

3. How many roots has z=10sinz ?

4, How many roots has 22=3x{1 ~cosz) ?

5, Solve graphically 2®=4(1 -sinz).

6. How many roots are there of z +tan 2z =§, which lie between
=0 and z=mw.

7. Find the general expression for the range of values of 0 if
z +£=4cos 0 is satisfied by two values of z.

8. Show that the condition for sin z{cos = +sin z)=c to have
roots is 3 (1+V2) 2 e > 3 (1 - VE).

. 9. Prove that sec x +cosec x =c¢ has two roots between 0 and 27
if ¢® <8, and four roots if ¢2> 8.

10. Solve graphically by a geometrical construction
cos 0 +cos ¢ =a, sin 0 +sin $=>b

where a, b are given positive numbers. What limitation is t-here to
the values of a and b to ensure that solutions exist ?
How can the cases when a or b is negative be dealt with ?

Solve the equations in Nos. 11-20 :

11, sin (z+y)=4%, cos (z -y)= _ﬁ-

12, cos = cos y =}+6, sin x sin g=h/§.

13. tan z=sin 3y, sin z=tan 3y.

14, sin®z - sin z =sin % sin y =sin® +sin y.

15. cosz+ Vv 3siny=2cos(z +y) =V3cosz —-siny.

16. sin 0 +sin ¢ =%; cos 6 +cos ¢ =%, for values of 8, ¢ between
0° and 360°.

17.d5sm°z-2si.ny=l; 5cosx -2 cos y =4, for values bevween
0° and 360°,
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18. cos(z+3y) =sin (2z +2y); sin (3z +y)=cos (2z + 2y) given that
z-y+2mr+§. '

19. tan z=tan 2y; tan y=tan 2z; tan z=tan 2z for values be-
tween 0 and =.

20. sin z +sin 2y =sin y +sin 2z =sin z +5in 22 =0 for values be-
tween 0 and =.

Submultiple Angles. Given the value of cos 8, to find the values of
sin 46 and cos 10.
From the formulae,
(/]
§l
we have oosgz + V}(1 +cos 6), sm; =+ V}(1 -cos 6).

1+cosé =2003'g, 1 —cos 6 =2 sin?

The ambiguous signs are due to the fact that it does not follow
from cos 8 =cose that 6 =a; the correct conclusion is 8 =2nr4-a,
from which

(/] a a
cos§=coa(mr;j;§)=tcos—-,

.6 . a . a
and sm§=sm(ﬂr;};§)=¢sm§.

The ambiguity of sign can, of course, be removed if the actual
value of # is given, and this is done most easily by reference to a

figure.
100*
o] X
F1a. 26.

For example, if 6=400° oos—g ( =cos 200") is negative and
amg( =ain200°) is also negative, thus, in that case, the minus
sign must be taken in both formulae. For the general results,
see Ex. ITI. 4, Nos. 2, 3.

Gliven the value of sin 0, to find the values of sin }0 and cos }6.

. : . 8 ] . @ 6
‘We begin by finding sm§+coe§ and sing —cos 3.
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Since

.0 A . 8 i} .0 .
(s:n-2-+coa§) =sgin’ -§+2sm§¢os§+cos 5—1 +sin 0,
.8 ] .
sing +0052=i1/(l+81n0). FPTRP PRSP (- | |
and similarly
. 6 ] .
mn-2--—co5§=3';\/(1 =8N 0) ciiriiirceriiirniiiicenereeene (5)

On account of the two ambiguous signs, there are four possibilities.
From sin § =sin a, the conclusion is

O petl or nr+X-2

2" 2 2 2

. B . a a

whence sin 3= +4sin 3 or :]:0055.
(/] a . a

and cosé—:l:cosé or :tsmi.

If the actual value of 0 is given, it is possible to remove the

ambiguities. For example if 6=320° then g=160", 80 smg is

(/]
positive and cos is negative; also the cosine is numcrically the

greater ; thus, in that case,

gin g +cos—g= - +/(1+sin®)

2
.8 6 ;
and sin; —cos - =+ 4/(1 —sin 6),
2- 2
whence 2sing-= - 4/(1 +8in 8) + /(1 —sin ),

20082: = 4/(1 +sin 8) — 4/(1 ~sin 8).

For the general results, see Ex. II1. d, Nos. 9, 10.
We can also determine for what values of 8 a particular formula,
such as

2sin§= + /(1 +sin ) = 4/(1 —sin §)
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will hold ; for this requires

sin ) +cos 2 = + y/(1 +5in 0),

2 2
.0 ¢ .
smé—coSE-ﬂ-\/(l—mnﬂ).
. 8 [/} = . /0 =
Now am§+cos§.—‘\/2sm(§-§-z),

which is positive for 0 < g-+g< w; therefore the first result holds

if the angle g(=LXOP) is such that its arm OP lies within the
angle shown in Fig. 27.

P
of-—"
x
. £2. Fio. 28,
imi . 8 6 = . (0 =
Similarly, smé—cosé.—.\msm(é—;);

and so the second result holds if OP lies within the angle shown in
Fig. 28. Thus for both results to be true the arm must lie within
the angle shown in Fig. 29,

i.e. (3n-1)“3'<g< (sn-u)i;.

w i o *
or (8n—l}§<8<(8n+l}§.

Given the value of cos0, to find the values
of mg

There will be three values; for if cos 0 =cosa, 0 =2nr4a,

8 2nx a
353 3

and so cosg ls co a cos(zﬂ--i-u or cos -4—:1-—!-2)
g oquas cosz, 3 3)‘ (3 3)

Hence from the identity cos 6 =4 ooa’g -3 cos g , it follows that the
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values are the roots of the equation 4@03‘5——3(:05;:003 a, which

is a cubic for oosg .

Cubic Equations. The general cubic equation
az® + 3bz® + 3ex +d =0
can be transformed by the substitution
y=oz+b into 3 +3Hy+G=0,

where H=ac - 5% and G=a - 3abc +2b°,

The further substitution y=Zkcos 8 gives

k*cos?0 +3Hkcos 0 = ~ G,

and if & is chosen so that k3: 3Hk =4 : — 3, this becomes

G
4cos*l 36089~2HV—H’
or 00338=—-—-G——
2HV -H
and k= ~4H.

From this, it may be possible to find 36, and three possible values
of cos 0, giving three values of ¥ and hence of z,
The conditions for the possibility are that H should be negative,

and WG_H' numerically less than unity. Both conditions are
included in G2 +4H < 0. cevvrerrsrreennen.. reeereerend(B)

This is precisely the condition for the cubic equation to have three
real roots, and this method of solution is applicable therefore just
to that case in which the usual algebraic solution breaks down.

EXERCISE III. d.
1. Give the signs to be used in the formulae
cos 30 = y/{3(1 +cos6)}, sin}f = +/{4(1 —cos )}
when 8 is (i) 70°; (ii) 110°; (iii) 200° ;
(iv) -50°; (v) 300°; (vi) 3000°,
2. Show that
(i) cos 40 = + +/{3(1 +cos 6)}, if (dn~1)v<O<(dn+1 =}
(ii) cos 46 = ~ v/{ (1 +cos8)}, if (4n+1)r <0< (4n+3) .
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8. Obtain results like those in No. 2 for sin 6.

4. Determine the signs of sin 6 +cos 30 and sin 16 —cos 40 when
6 is (i) 340°, (ii) 480°, (1) 1360°,

5. 1t 0=117, prove 2sin}0= - v/(1+sin6)+ /(1 -sin6), and

obtain the formula for 2sin 0, when 8 is

M s a5 i B

6. Determine the signs in 2cos 40 = % /(1 +sin 8) /(1 —sin8),
when 0 is in the neighbourhood of 280°,
7. Determine the signs in
2sin 0 =+ 4/(1 +sin 20) & /(1 —sin 26),
when § lies between 495° and 585°..
8. Determine the signs in
2cos 8=+ /(1 +5in 26) + /(1 —sin 28),

when 26 lies between ; and 3{

3- By\;riting sing+cosgint.he form vZ.sin (g%), show that
sin§ +eosz =+ v/ (1+sin8), if (4n —3) = < 8 < (4n +3) 7, and that it
==—+/(1+sin ), if (dn+§)r<b<(dn+]) =

10. Obtain results corresponding to those in No. 9 for sing —cos g

Determine the ranges of values of 8 for which the following results
(Nos. 11-14) hold :

1. 2sind = 4 y/(14+5in6) + v(1 -sin o).

12. 2cos] = +v/(1 +sin 6) - /(1 —sin ).

13. 2sin 6 = - 4/(1 +sin 20) — 4/(1 —sin 26).

14. 200860 = — 4/(1 +8in 20) — /(1 —sin 260).

15. Draw figures and use them to obtain the possible values of
sing, when (i) cos 8 =cos120°; (ii) cos @ =cos300°. "

16. Draw figures and use them to obtain the possible values of
cos 3. when (i) sin 8 =sin 60°; (ii) sin 6 =sin 240°.
™

17. Prove that cos3 =}+v/(2 + v/2), and find sin 17
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18. If cos 8=} and (4n - 2) 7 < 8 < 4nw, find sing.

19, I cosf= —y% and (dn-1)r <0< (4n+1) =, find cusg.
20. Expresstmgintarmsofhnﬂ. Determine the ambiguous sign

for the cases when § is between
™
'2‘.
21. Prove tan z +cot v =2 cosec 2z, and use it to express tan-g in
terms of sin 6.

_22. Prove taniﬂ:i/\/} 0080 .1d show how to determine the

() jendw; (i) vand r; (iii) 0and -

sign. +cos @
23. If sin 0 has the given value sina, find the possible values of
sin ‘3- .

24. Draw figures and use them to obtain the possible values of
cos g, when (i) cos 8 =cos 60°, (ii) cos 8 =cos 210°,

L)
[*']mu -cos6)}.

26. Solve (i) 2* - 12z +8=0; (i) 2° - 120 =4,
27. Solve (i) 2* -27z - 27=0; (ii) 2* - 27z +40 =0,
28. Solve z®+32? -9z -3 =0.

29. By putting x =k cos 8, reduce the equation z* - 529 +52+1=0
to the form cos 56 =c and hence solve it.

25.* Prove that amg =(-1)

Inverse Functions. The equation y=sinz, regarded as an equa-
tion for z in terms of a given number y (between —1 and +1) has
an unlimited number of solutions.

EIE
Iy

*[z] denotes the greatest integer that ia not greater than z; thus[i2]=3,
[6]=6,[-4]= -4, a0d [ - §]= -3,
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If z=a is one solution, the others are
z=2mwr+a and z=2%nz+r-—a.

The equation z=sin—ly will be used, at present, to signify that
z is equal to one of these values.

Similarly cos™% will denote any one of the angles whose cosine
is k, and tan—1k any one of the angles whose tangent is k.

Thus sin—1%, cos—1k, tan~'k are many-valued functions of k.

Relations between Inverse Functions. Ordinary trigonometrical
identities can often, with advantage, be expressed in terms of the
inverse functions.” For example, from
' tan 0 —tan 6
) T tanOtan g’ 7

by putting tan 8 =m, tan 6’ =m’, we get

tan(0 -6

n_m-m
tan(6 -6 =
which may be written
-0 =tan1 2T
1 +mm
or tan—'m —tan—'m’ =tan—! m—m_;. ........................ (8)
1+mm

This form happens to be more convenient for certain purposes;
it only implies that when any value of tan—m’ is subtracted
from any value of tan—'m the result is one of the wvalues of

o mom
14mm’”
Similarly from the expansion of tan(f +8’) we deduce the result
- s papmy B FD
tan—lm +tan—'m’ =tan oo [N )|

Bimilarly from
sin(a + ) =sin a cos 8 +cos asin B,
by putting sin a=z, sin 8=y, we get
sin~lz +sin~ly =sin~1{z/(1 -4 +y V(1 -2}, ......(10)
and from cos(a+/8) =cosacos 8 —sin asin 8, we get
cos 1z +cos~ty =cos~{zy - /(1 ~2%). /(1 -3}, ......(11)
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Equations like (7) and (8) are really alternative statements of the
same fact, and the reader should try to pass from one to the other
without going through the process of substitution.

EXERCISE IIL e.
1. (i) Prove that cos 1z = +sin—1 4/(1 —z?).
(ii) If cos~lz =tan~1p =cosec~lq, express p and g in terms of .
2. Iitan—!zx =sin~! p =cos~'g =cot~1r, express p, g, rin terms of z.

3. How can you construct geometrically cosec~11}? TUse the
figure to express this angle in the forms, cos—lp, tan—1gq.

4. Prove that sin(cos~1z) =+ +/(1 —z3).
5. Express in terms of z (i) cos(sin~z); (ii) tan(sin—1z).
6. Prove that the general value of 2coslz equals
2nwtcos2 (222 - 1).
Give two simple values of 2cos™'x +cos™1(2z% —1).
7. Express 2 sin-1z in the form sin—ly.

l-x
- —— Y [
8. Prove that cos-lz=+2tan e

9. Find the simplest value of tan—1} +tan=2},.

10. Find the simplest value of
4 tan~1} — tan~1.%4; + tan=1g4.

e
11. Prove that tan“‘x:i}coa“-l—f—

142%
12. Simplify cos(2 sin—1z).

: -1_T _ 1
13. Find a value of z, such that tan z+l_2m z

- 14, Express 3sin~—1z in the form sin~'y,
15. Find a simple value of cosec™!+/5 +cot=23.
16. Find the general value of tan—!(cotz) +cot~(tan z).
17. Evaluate cos 2{tan—}z +tan~ly).

b+acosx _ 4/ (a-b) z
18, Prove mr‘m—2tan "(mt&ﬂ 2)0
19. Prove

tan (tan—1z +tan—1y +tan—1z) =cot (cot~1z + cot~1y + cot™1z).

20. Express sin~lp=cos—lg as an algebraic relation between
p and g.
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If tan—ip +ta.n“q+t8n*1r=12-, prove gr +rp +pg=1.

If cos™'a+cos™1b +cos~ o =m, prove that
a®+b% +¢® +2abc=1.

Find the simplest solutions of the following equations i

23,
24,

25.
26.
217.

cot~12=cot ™z +cot17.

tan~lz 4+tan—1(1 —:c)-_—tan-lg. )
2z w
-1 -1, =T
tan~1z +tan 1—==3"
6cos™1(2z* - 1) =w.
3z -2
-1 =
2 tan T —3==—""

MISCELLANEOUS EXAMPLES.
EXERCISE IIT. f.

Solve the equations : (Nos. 1-10).

1.
3.
5.
6.
7.

9.
10,
11.
12
13.
14,
15.

16.

tanz +tan 22 =0. 2. sin 3z 4-cos 2z =0,
gin z +sin 32 =2 cos x. 4, sin?zx +cos3zcosz=1.
tanz +tan (v +a) +tan (z + §) =tan z tan (z +a) tan(z + B

tan x cot (z +a) =tan S cot (B +a).

coszcosc+sinasinb =cos(x —~a)cos(z —-b).

sin (36 -%) =2sin (6.457).

70 cos 6 — 24 sin 6 =37.

sin 6 +sin 26 +sin 36 +sin 46 =0,

If secasec§ +tanatan 6 =sec 3, find tan 36.

Find for what values of 6, 2sin 6 —tan 8 > 0.

Solve z +y =2a, cotx +coby =2 cota.

Solve a®cos 0 +b%cosp =c?*cosa; a?sin O +b?sin h=cisina.

Find all values of z, y, such that
cos?zcos?y +sin*z sinfy =1.

Solve

cos  +cos y =cosz, cos 2z +cos 2y =cos 2z,
cos 3z +cos 3y =cos 3z.

49
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17. Show that the roots of
cos 0 cos (0 —a)cos (6 —B)cos(0 -¥)
—sgin Osin (6 ~a)sin (6 ~ B) sin (0 = y) =cosacos Bcosy
are 0=nwr or nw+tan—l}(tana +tan §+tany +tanatan §tany).
I8. Prove that the roots of tan’stm%:l also satisfy

cos 2z =2 — V5.

19. Investigate how many values of sin® (between —1 and +1)
satisfy sin? 6 — 2csin 8 + 5¢ — 8 =0 for various values of ¢.

20. Discuss the solution of cos*z —2mcosz -+4m?®*+2m —1=0 for
various values of m.

21. Show that if bhcos0-+cksin @ =ab has roots for cosf), they
always determine values of 6.

22. Express sing in terms of sin 0, when @ is in the neighbourhood
of 420°. For what precise neighbourhood is the result valid ?

23, Prove that tan 8 is one of the values of }ﬂ____(l—m'n_ﬁ)l and

4 1+ 4/(1 +sin 0)
find the other values.
[ﬂ'l'lr

24. Prove cosg —( 1) +/13(1 +cosB)}. (See footnote, p. 46.)

25. If p is an integer and —1< g < 1, find the number of possible
values of sin x, such that (i) sin 2pz =g, (ii) sin (2p +1)z=g¢.

26. Solve z® — 5k%x® + 5k =2k* cosa, for x in terms of a and k.
27, Simplify tan—2-9 4 tan1 L7,

1+pg 1+gr
1 1 q
28. P that tan—1— =tan-1 +tan1————,
rove Ha P p+g PP +pg+1

29. Use the result of No. 28 to express z

i in the form.tan-‘i +tan—1%.

Also express tan™! § and tan—!{ each in the form tan"1 ! +mn“11

where mn and n are positive integers. "
30. Prove that E:zm‘-l }+tan-11 +2 tant Jg,

31. Prove that L;=2 cot~15 +cot—17 +2 cot—1 8,
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_y cosf-+cosd 2 6. ¢
32. Prove that cos f—_+cosecos¢o_2 tan (taﬂ 3 tan 2).

33. Find z if one value of cos™1z +cos™! 2z equals %

34. Find a value of = between 0 and g. such that

V(3 - 4a?) =sin-1(cos z).

61



CHAPTER IV

HYPERBOLIC, LOGARITHMIC, AND EXPONENTIAL
FUNCTIONS

THE trigonometrical functions are called circular funetions, because
they arise naturally in connection with the geometry of the circle.
There are other functions which are associated with the geometry
of the hyperbola and may therefore be classified as hyperbolic func-
tions; this name is, however, usually restricted to certain special
functions of this group. We use it, in this Chapter, in a general

In develoﬁug the argument, we shall make use of geometrical ideas, and
especially that of an area bounded by a curve. At a first the

reasoning is more easily understood if this method is followed. But it is
important to realise t the functions themselves can be legl;ded as
purely analytical and that their properties can be obtained purely
arithmetical arguments. The more abstract line of approach will be
followed in the companion volume on Analysis.

The Area-function for the Rectangular Hyperbola. Fig. 31
shows part of the graph of the function y:i; this equation repre-

k4 sents a rectangular hyperbola. We ghall con-
fine attention to that part of the curve for
which z > 0.
To every positive value of z there corre-
sponds one, and only one, value of ¥; and, as

A o # increases, y steadily decreases and tends to

zero as x increases indefinitely. Further, if

0o Cc N * =z tends down to zero from above, y increases
¥ia. 31. without limit.

The point (1, 1) lies on the curve, and the curve is symmetrieal
about the line y =z, since, corresponding to any point P, (t, «1—), on
the curve, there is the point P’, G s t), also on the curve.

The curve is therefore shaped as in Fig. 31.

Consider the area bounded by the fixed ordinate CA, z=1, the
variable ordinate NP, x =i, the curve and the z-axis. This area
CNPA, shaded in Fig. 31, is a function of t and will be denoted by the
eymbol hyp (t).

&2
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Expressed as a definite integral,

t tl
area cmr-m:i ydz:i Laz;
1 1%

- hyp (t)=]: ;dx. reeerevesasserecsnensoneseesens(1)

Approximate values of hyp () can be found for given values of ¢
by the ordinary methods of practical geometry, such as counting
squares or Simpson’s rule.

It is best to adopt the usual sign conventions of the Integral
Caleulus for areas, as follows :

If ¢t > 1, that is, if N is to the right of C, the area CNPA is repre-
sented by a positive number.

If 0<t<]1, that is if N lies between O and C, the area CNPA is
represented by a negative number.

S hyp()>0if t>1 and hyp(t)<O0 if O<t<1.......(2)

If t < 0, we shall not discuss or even define hyp (t).
If ¢ =1, the shaded area CNPA vanishes ;

o B (1) =0, eeecieeeeeeeeneeeeee(3)

Behaviour of hyp (t) when t increases indefinitely. If, in Fig. 32,
P,N;, PyN,, ... are the ordinates z=2, z=4,..., z=2% then

hyp (2k) =area ACN:P:;

¥y
but this is the sum of the areas
Achpls P].NlNlP:t weey Pl'_l Ne_y NP, A
and is therefore greater than the sum of the G
areas of the rectangles Ry
CN{PiRy, NiNGPoRs, ...y Ny NiPiR:; O C N Ny ¥
F1a. 32,

& hyp(2H)>(2-1). 3 +(4-2).}
+(3-4).i+...+(2*—2*‘1}.2~13=

& hyp (2 >i+i+i+..to kmng;

s if ¢ 2% hyp () >hyp (2%) >;;

o byp (t)—> +®, when t— +o.
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This fact cannot be assumed without pmof For example, if

a(t) denotes the area under the curve yH— from z=1 to xz=t,
we have
: [ AP Y .
alt)= ”:L. =1-1.
;. a(t) tends to the finite limit 1, when {— .

Behaviour of hyp(t) when t tends to 0 from above. Using the
same method as before, suppose, in Fig. 33, Q,M,, Q,M,, ... are the

. _1 1. i
y ordinates ”—5' a:—z,... ’ z—zb, and con.
Q, struct the rectangles CAS;M;, M,Q,S:M,,
M’Q’S.‘MS, ete.
8 Then by (g5) < -(1-3)1 - (3-3) 2
A YP\gt)< "\ 7z 2-4)"
_(l_}),4_,_,
o MMC x 4 8
1
F1G. 33. "'_(2_[5 21‘ 21-_
k
o hyp(z)-: ——————— .. to k terms -5

. . 1 1
v 1f0<£<§—b. hyp(t)'ﬂhyp(z—k){"i,
*. hyp () = — o, when t tends to 0 from above.

EXERCISE IV. a.

1. Find from the graph of y=%, by some method of practical
geometry, approximate values of hyp (2), hyp (3), hyp (4), byp ().
Draw a rough graph of y =hyp (z) from x =} to x=4.
2. Use Fig. 34 to show that 0-5 <hyp (2) <l.

N
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8. By drawing the ordinate 2 =}, show as in No. 2 that
—1<hyp (3) < =0-5.
4. Use Fig. 35 to show that hyp (2) lies between {5y and §.

T\

o' 132 =

Fi1o, 35.

5. By drawing the ordinates z=1, z=§, v =%, show as in No. 4
that —§ <hyp (}) < — &

6. By taking the ordinates z=1, 1-1, 1-2, ... 19, 2, show that
hyp (2) lies between

0-1(1 "'i%"’%*‘"""%}) and 0-1 (ﬁi*‘i’{_z'*“"*'l_l-g"'%)'
Deduce that 0-66 <hyp (2) <0-72. [Actually, hyp (2) =0-693... .]

7. Show from a figure that hyp (t,) <hyp (ta), if 0 <ty <iy.

8. Prove, as on p. 53, that hyp (2¥) <k, if k is a positive integer.

9. In Fig. 36, PN is the ordinate z=t of any point on the line

y=2x. Ii the area of AONP is denoted by sq(t), prove geometrically
that (i) sq(2¢)=48q(); (ii) sq(¢+¢') —sq(t —¢') =4t",

What does (ii) become if t =¢’, and if t =01
Interpret geometrically sq{ —¢).

10. Use geometrical methods to prove that
(i) $<hyp (1}) <%; (i)  <hyp (1}) <}3
(iii) 3 +1+3<hyp (23) <1; (iv) hyp (3)> 1.
11. In Fig. 37, PN is the ordinate, x=¢, where {>1. Use the
indicated construction to show that 1 -% <hyp () <t-1.
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12. Draw, in Fig. 37, the ordlnate z =3, where s <1, and by the

method of No. 11, show that 1 —= < hyp (s) <s-1.
o=y
ki“_

i

c N x
Fro. 37.

13. In Fig. 38, t.skiPN t-m.(;t Q.hlﬂl Bﬂtthe ordinates z=t, z=t+h
and hence show that M lies between = 2 and --]-5

Is this result true if A is negative, £+% being posmva ? What
result is obtained by making A tend to 0 ?

4
P
Q
o! N M =
Fie. 38.

14. In Fig. 38, PN, QM are the ordinates, & =p, x =q, for the curve
y=z. Prove that the area of the trapezium PNMQ is é(g_g_q’)

If P'N’, @'M’ are the ordinates, z=1!;—,z=é' prove that the area of
AN T 2_2
the trapezium P'N'M'Q’ is (q P)
What relation between the values of hyp (z) and hyp (1) can be
deduced from these results ?

15. If, in Fig. 38, PN and QM are the ordinates, = Ap, z =Ag, for
the curve y =é, prove that the area of the trapezium PNMQ does not
depend on the value of A.

Use this fact to prove that the value of hyp (Az) —hyp ( )«) does not
depend on the value of A, and so obtain its value in terms of ¢,
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16. Draw a rough graph of y=7 -rl-z-” marking the lengths of the

ordinates at the points P, Py, Py, P, whose abscissaeare 0, 1,2, 3. By
considering the area under the curve P,P,P,P,, prove that

4 3
E<§0 1—=§+ dx{m.
17. Bhowthat
1
) oH_z,da:-cl (u)] 1+x,d:::<.l Frlore>1.

. 1 .
-1
Deduce that if tan—1¢ is defined to be L g dz, the function

tan—1# increases with ¢, but remains always less than 2.

18. By considering the area under the parabola y =23, show that
1% 422 +32 +... +n® lies between 4n® and 4{{n+1)* -

19. Prove that
$nVn <vVI+VE+V3+..+ v < #Hn+)v(n+1) -
20. Prove that, if 0 < 8 <o , sin § +8in 20 +... +sin nf lies between

2n
% sin® §n0 and 3 sin " sin (§n+1)0.

Differentiation of hyp(t). In Fig. 39, if ON=t and ON’=t+h,
we have

hyp (¢ + k) —hyp (f) =area CN’P’A —area CNPA ¥
=area NN'P'P. A
But area NN'P'P lies between NN’.NP and P
- NR G h h 0O C N N =
NN’ . NP, i.e. betwaen and — R Fio. %,

. hyp(mm—hypm : 1 1
S S lies between 3 and it
But 1 tends to the value % as h tends to 0;

t+h
. byp(¢+h)-hyp(t) 1 when h—>0;
o 3 ’

L d 1
Lo BRI =g ()

If b is negative, ¢+ A being positive, hyp (t +A) ~hyp (¢} is negative.

. (t+5) ~hyp (&) is positive and still lies betwm L and #-Il-h'

Themforeittendatothehnnt% aahtendst-oﬂmmymm.
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EXERCISE IV. b.
1, Differentiate with respect to z :
@) hyp (22); (i) byp (3)-
(iii) hyp (az) ; (iv) byp (az) —hyp (2).
What inference can be drawn from the last result ?
2. Differentiate with respect to @ :
(i) byp (=%); (ii) hyp (=) ;
Gii) byp (3) (iv) byp (2.
What inference can be drawn from the last result ?
3. Differentiate with respect to = :
(i) hyp (az +B)" (i) byp (233).-
4. Differentiate with respect to = :
(i) hyp (sin=) ; (ii) byp (tanz) ;  (iii) hyp (cot 2).

5. Integrate the following with respect to =z, giving the answera
as hyp functions.

@) 33 (i) g (i) =255 (V) 7o
O grgs (D gags i 1- 2o (i) ;2.

6. Write down an expression for % {hyp [f(z)]}. TUse the result

to integrate with respect to =:
coszx

(i) sz’ (ii) tanz (iii) cot 2z;
. ax+b zn-1 .. COSZT
W) reere’  1ran’ ™) T emz
7. What is Esec‘xdx t Hence find jcosw 22 dz.
tanx

8. What ia%{zhyp (z)}? Hence find shyp (=) dz.
. . d .
9., What is the sign of - (z)}? What inference can be
drawn from the :neemlt:g';n d“"’{hyp )
10. What is the sign of tx{z—1-hyp(@), () if z>1, (i) if

0<z<1, Use the result to prove that hyp(z)<z -1 for >0,
z+l.
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t 1 ‘
—1 = —
11. If tan t_!o g -dz, show by the method of p. 57, that

dtan~1¢_ 1
a1+
1 (%2 1
- =1= =
12. By the substitution :c— ,show that tan =) 1+z,da:. and

deduce that tan—1¢ +t.¢m'"1 ~is mdepandant of t.

Other Properties of hyp(t). The following properties have all
been illustrated in the previous examples.

To prove hyp(%):'—hyp{t)................. ..... reenr(5)

By definition, hyp () E 14z,

Put z=§. so that z=¢ when z:%,a.nd z=1 when z=1; also

1
dz= —;idz;

won(3)=, (- 3) o=, e
& hyp G)= —hyp (¢).

This result may be illustrated geometrically.

In Fig. 40, OC=0C"=1, ON=0N’"=t, NP, N'P’ are perpendiculars
to Oz, Oy and P’K is perpendicular to Oz, so .

l

that OK = P_K

Since the curve is symmetrical about OA,
the areas bounded by ON’P'AC and ONPAC’
are equal. P

But OKP'N’ and OCAC’ are each of unit
area; therefore the remainders, the areas @l KC N
KCAP’ and CNPA, are equal. 18, 40,

But these areas are —hyp G) and hyp (2) respectively.

An alternative geometrical method is indicated in Ex. IV. a,
No. 14.

F

0

xY
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To prove hyp (ab) =hyp (a) +Byp (b), .ececrerirccncrnnee.(6)

hyp (%) <ByP (8) ~BYP (B weererrerrermnene (T

.

d 1 d 1 1
Since a{hyp(t)}:-‘-; s d_t{hyp(“)}=§‘°='i’
where ¢ is a constant ;
d
o g {byp(ct) ~hyp ()} =0;
.~ the value of hyp (ct) ~hyp (t) does not depend on the value
of t and is therefore equal to the value obtained by putting ¢t=1;
- hyp (ct) =hyp (£) =hyp (€). eererereennes cerenes(8)
Putting ¢=a, t=>b, we have hyp (ab) =hyp (a) +hyp (b).
Putting c=3, t=b, we have hyp (56) ~hyp (a) ~byp (b).

It should be noted that the result in (8) really contains those in
(5), (6), and (7).

Relation (6) may be illustrated geomstrically.

If, in Fig. 41, NP, MQ are the ordinates z=p, =g, and if NP,
M’Q’ are the ordinates « =bp, z=bq, then the trapeziums P'N'M'Q’,
PNMQ are equal in area.

¥ For, trapezium P'N'M'Q’
171 1
=§(5+§ (bg ~bp)
- _g-p (1.1
ol NmM N MW 3 T2 '(p+g)

Fia. 41. =trapezium PNMQ.

Now draw a large number of ordinates between z=1 and z=a,
and take, as above, the corresponding ordinates between z=b and
z =ba,(see Fig.42). Wethen obtain corre-
sponding pairs of trapeziums of equal ¥
area.

If we allow the number of ordinates to

increase indefinitely and the width of each A

trapezium to tend to zero, we see that,

in the limit, the area under the curve

from z=1 to z=a is equal to the area © 1;11;. o x
under the curve from z=b to x=ba; e

<. hyp (a) =hyp (ba) - hyp (b).
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This geometrical illustration corresponds to the analytical method
indicated in Ex. IV. ¢, No. 7.

To prove hyp(a®) =nhyP(8), weeerercsrersnrrnareanrens (9
where n is any rational number.

If n is any positive integer, we have, by repeated applications
f () hyp (ay) +hyp (@) +... +hyp (a,) =hyp (@105 ... ag).

Putting a, =@, =... =a, =a, this becomes

hyp (") =n hyp (a).

It is now possible to show by a similar argument that this result
is true if nis any rational number; see Ex.IV. ¢,No.9. Relation (9)
may, however, be proved in a different way, as follows:

By definition, hyp (a®) = !: :::dz.
Put z=;1;",ao that y =a when z=a" and y=1 when z=1; also
dz =ny"ldy;
y" 1
- hyp(a® ] d X - dy;
yp (a") = v ke i Mg

.~ hyp (a") =nhyp (a).

EXERCISE IV. c.
1. Given that hyp(2)==0-693 and hyp {3}&1'099, find approxi-
mate values of hyp (z) for z=4, 6, 8, 9, 4, }, 14, 2}, 2%.
Draw on squared paper tha gtaph of hyp(x) from z=1 to =3,
and use it to solva hyp(z)=

2. Use the data of No. 1 to evaluate :

@ [} 1az; G [ 2 zs
of e e
3. Evaluate L zd= by putting z =ay.

What relation can be deduced from ”ld.-c_j L +( Lize

4. Use the method of No. 3 to prove that
hyp (%) =hyp(a) - hyp(b).
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5. Prove that hy'p{ﬂ“):«-g by applying the substitution z=y"
to ! 51: dz. '

6. Use the method of No. 5 to prove that hyp (2") <n,
7. By using a suitable substitution, prove that
ra 1o r 1 1 e,
la®T aZ
What is the geometrical meaning of this relation ? What property
of hyp(t)iso %et:med from the relation 7
8. Prove that hyp (z)>3}+}+}+... +I_’l=]' where £>1 and [z]

denotes the greatest integer not greater than z.
Deduce that hyp (z) tends to +o when z tends to +w .

9. Use the fact that hyp(a®) =nhyp(a) if n is a positive integer,
. 4
to prove that hyp (a' ) =§hyp (a), where p, q are positive integers

?
[put @ =39]. Prove also that hyp (a-’)= —j—;hyp (a).
10. Use the relation

r ld;c rldz+]”dx+] —dz+...+[:__' édx

to prove that 3 3 %< hyp(2*) <n.

11. By considering the area of the trapezium ACNP in Fig. 40,
p- 59, show that hyp(1+&) < & — gy g+ Where k>0,

12, By using the method of No. 11, prove that

&z
v hyp(l-k)> ——k-——zu_ j
where 0<k<1.

The Function hyp (x). We have shown that, as 2 increases from
zero to + w, hyp (z) increases steadily from — o to 4 o and is zero
when x=1. The graph is shown in Fig. 43.

Further, since hyp (z +4) —hyp (z) lies between -~ A and b IR’ (see
p. 57), it follows that hyp(x) is a continuous funchon of z and,
since everywhere it increases with z, we may conclude that it
assumes once, and only once, any given value, as x passes from
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0 to +cw. In particular, there exists a unique value of =z, such
that hyp (z) =1. This value is always denoted by e, so that

hyp(e)=1. .creevrrennnen(10)  ya
The number e is irrational and, moreover, ol
like =, is not algebraic; that is to say, there !
is no algebraic equation of any degree, having o 1 =

rational coefficients, which has e (or =) for a
root. It will be shown later how the value of
e can be calculated to any number of places of
decimals. For the present, we shall merely
point out some limits between which ¢ must
lie. Thus from Ex. IV. a, No. 2, hyp (2)< 1 F1a. 43.
and.hyp (4) =2 hyp(2) > 1; therefore 2<e< 4.

Again, from Ex. IV. a, No. 10, hyp (2}) < 1 < hyp (3), therefore e
lies between 2} and 3. See also Ex. IV. ¢, No. 1. Actually,
e=2-7T1828..,.

The reader has probably solved by this time the mystery of the
function hyp (z).
From equations (9), (10), we have, if ¥ is any rational number,

hyp (e¥) =y hyp (¢) =y.

Therefore, if e¥=x, hyp (z) =y; and so ehVp(2) =z,

In other words, the “hyp” of a number is the power to which e
‘must be raised to make that number.

Therefore the *“ hyp ™ function is the logarithm of the number to
the base e. Logarithms to base ¢ are called natural logarithms or
Napierian logarithms.

In mathematical work (as distinct from mere computation) the
logarithms which occur are nearly always natural logarithms; and
so the symbol logx is generally understood to mean the natural
logarithm and is used as an abbreviation for log, z.

The argument, given above, therefore shows that

hyp=log,

and equations (1)-(10) of this chapter may now be re-written in this
sense. 'The most important of these results are

logx, +logx, =log (X,Xs) ceuvecnnrmrnnnnnnennn(11)
d 1 1
and d—x{logx} =z or I;dx:log:.. ....... cenernennn(12)

It should be noted that the function logz has been defined for
positive values of z only.
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The Exponential Function. If y=logz, not only is ¥ determined
uniquely when = is given, but for any assigned value of y there is
one and only one value of z, and that value of z is positive, since it
has been shown that logz increases steadily from —wto +o0,asz
increases from 0 to + .

Therefore, if ¥y =logx, we may regard = as a function of y and this
function is single-valued and everywhere positive, This function
might be denoted by hyp—2(y) or by antilog (y), but it is in fact
denoted by exp(y), and is called the exponential function of y. We
therefore write

If y=logx, them x=exp(¥) .oreersersssnrase(13)
and equation (11) may be expressed in the form

exp (¥; +¥2) =0XP (¥;1) X€XP (¥a). -ferrornnnniiennnn(14)

The graph of x=exp (y) is of course the same as that of y=logx.
We therefore obtain the graph of ¥ =exp (z) by interchanging the
axes of z and y in Fig. 43, or, equally
4 well, by taking the image of y=logx in
the line y==.
fy=exp(z) This gives the curve in Fig. 44.
If v is any rational number, we have
1) '8 from (9),
log (e¥) =yloge=y;
& eXP(Y) =" .ucrnvrnennnneen(15)
o

Fia. 44. A discussion of the theory of irrational

numbers is beyond the scope of this volume;

we shall not, therefore, at this stage define the function e¥ for irrational

values of y. But it will be found that, when this function has been
defined, equation (15) is true also when y is irrational.

Differentiation and Integration. If y=exp (z), then z=logy;
Lol Ay
s dy—'y’ - E‘-yl

. 3 exp (x) =oxp (@)

Thus a";(e‘}:e‘ or Ie‘dx=e‘. sesveresrssosessenee{ 16)

The function a®, where @ >0, may also be called an exponential
function of z, but it is easily expressed as a power of e.
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If y=a% then logy=log(a®)=zloga, a being supposed positive;
~. y=exp (zloga)=eloga,
It follows that

%(a“) -_-d%(eflﬂl!“): e7loga Joga =a%.loga. ...s...(17)

Applications to the Calculus. The results of (12) and (16) may be
used in conjunction with the ordinary processes of differentiation
and integration; and the scope of the Calculus is thus extended
to include many functions involving logarithms and exponentials,
The most important applications are those of

!z-‘d‘x:logs.
Ezxample 1. Integrate tanz.

d d d 1 .
s [log(cos z)] =d{_cos_x) [log(cosz)]. d—x(oos z)= cm{ —sinz);
therefore it follows that

jtanzdu —log(cos z) +.

Whenever a function can be written in the form A.‘;—'%. where

the numerator ‘is the differential coefficient of the denominator, the
integral can be written down in the form A.log [f(x)].

g

1-22°

h_g_-_-_'!.l%z; S 2[£ =log(1 +z) ~log(l —x) +¢;

Ezample 2. Evaluate j

1
1-2* 14z 1-z*

dx l+z
o !m’=}logi~f—z+c.

A very large class of functions can be integrated by the method of
the last example, which consists in expressing the integrand as the
sum of partial fractions; for the general method of doing this,
see p. 231,

The formula for integration by parts will be required in some of
the examples in the next exercise. It is

!(tw}d.:: uw — Sw %dx, where w =[ud:n.
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EXERCISE IV. d.
1. What is the connection between the graphs of
(i) y=2® and y=+/z; (i) y=smnz and y=sin-1x1?
2. Sketch the graphs of 2% and 2=,
3. Sketch the graphs of
(i) logz; (i) log(2z);  (iii) log(e®);  (iv) Iug(é).
4. What is the value of z, when

(i) logz=1-+loga; (ii) logz=1-1logh;
(iii) log (logxz)=0; (iv) log(logz)=11
5. Simplify (i) etlogz; (ii) ezlog2; (iii) log (e*z).

6. Prove that if 2, <z, then e% <ez,
7. Sketch the graphs of .

(i) e=; (i) e=; (i) e-%; (iv) €.
Show graphically that ¢* =z +a has two roots if > 1 and no roots
ifa<l.
8. Differentiate zlogz —x and write down the value of
[; log z dz.
9. Differentiate (z — 1) 6% and write down the value of rﬂ xexdzx.
Differentiate with respect to z:

logx 1
10. etlogz. 11 B2, 12 1og (5) 13, ez,

14, ez, 15, elogz, 18. log(cosx). 17. log(secz).
18, esing, 19. gtan’s, 20. exp (zsecx). 21, cos (e*).
22. cosec (log z). 23. log (a +bx)". 24, log (e® +e—2).

25. (i) 1og(umi'2’); (ii) log (tang+§); (i) log (& + v/(a® +a%)},

Integrate with respect to z :

1 2r+4 x-1
26. m. 27. 2:—-'_3. 28. 22—+§. 29- e“.
sinz 2z +3 logz
30, ez — g2, 31. 37 3005%" 32.23_'_33_'_4. 33. —
sec* 1
34, 2 35. ze®, 36, cot3z. 3. g
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. . 1
38. (i) secz; (ii) cosecz; (iii) T [See No. 25.]
Use the method of partial fractions to find :
3z +1 3z +7
. |y . |re s mEea
3r+1
1. !:r:(:c gy 4% 2 | gy =
o at
8 (5 “ (e
Use the method of * integration by parts *’ to find :
45. !logzd::. 46. !zlogxd.’c. 47 ii;"logxdz.
48, [za:dz. 9. [ate=da. 50. | tog(va)dz.

51. Differentiate e3=sin bx and e?cos bz, and hence integrate the
same two expressions.

52. Find the value of z for which z*logz is a minimum.

53. Find ti:e maximum value of 1‘% , and discuss the number of

roots of the equation logz =Axz for different values of A.

Useful Inequalities. The results given in Ex. IV. a, Nos. 11, 12
should be noted. They may be deduced directly from the definition

t 1
logc—il ;dx.
First, suppose ¢>1. Then throughout the range of wvalues
1< z< ¢, the integrand ':i:l' is<landis > %:

1 t
ot qae<( Sae<( ass
1t 1z 1

. 1
o l—-z--clogt{t-l.

Noxt, suppose 0 <2< 1 and put t=§—. so that 8 >1;

1
A | “% <logs<ga-1;
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s 1=-t< -logt -c:%_—l;
S t=1>logt>1 —%;
. for all positive values of ¢, except t=1, we have
1 —% <logt<t-1. .riivrirenenenennan(18)

Example 3. Prove that lim 108$

x*l”—l

=1

From equation (18), t—:-l--c logt<t-1, if £>0, t£1;

. 1
Soife>1, 1< 1{1’
j!
and if 0<t< 1, %:»E“_—g“' 1;
nif >0, z£1, IOS:;liesbet.weaniandl:
s, when x—rl.lg:;—b- 1.

Example 4. Prove that
(i) 1083 logs

(ii) zlogz—>- 0, when z—s 0 through positive values.
(i) From equation (18), logt<t—1 if ¢ >0, t+1.
Put t=vz; .. log{vz)<vz-1l<y/z, if 2>0, z£1;
s blogr < 4/z;
logx 21/z 2

— 0, when z— o ;

A if .’5;"‘1. 0 == p vz
But when z_;w,__g_,_*o; X log:s= .
vz Z—rm T

(ii) limzlogz =lim llcngl= —lim 1"_@;’!=0' from (i).
z—+0 y—=ol y y—+w Y
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Ezample 5. Prove that
et -1
(i) - 1 when t— 0;
(ii) n(%/a —1)—loga when n— w, for a> 0.
et -1 d

(i) lim ; is the value of d—g(e’) at =0 and is therefore
t—0

¢%, =1. This result can be obtained directly as follows:
from equation (18), with ef instead of ¢,

l-et<t<et -1, if 03
St<et-l<i.et;
et -1

..- 1 <

<et, if 0<t,

& _
and 1>¢ !

>et, if t<0;
et—1

.. when ¢ tends to 0 in any manner, — 1.

(ii) In (i), put t= %log a, where a is any positive constant.
) }.Inga 1
Then ef=e" =a". Also whent{—+0,n—> w;
1
ar—1

S lim 1 =1;
i~
ﬂlogc;
» lim n(%/a ~1)=loga, for a>0.
fi—+x .
Ezample 6. Prove that the function
u, =l+l+1+ +l—lo n
n=l+g+g+..+--log

decreases when n increases, but that it remains positive.

1
Upyy — Uy ;}% -log(n +1) +logﬂ=;‘--_li_-i —log (1 +;).

but equation (18) with 1 +§‘ instead of ¢, proves that

1 1
log(l +;) > n—-_]_l;
thus wu, 4, <ty
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Equation (18) also gives

1 1 )
" }Iog(l -I-;) =log(n+1) -logn;

n .
A Zéblug(n +1) >logn;
1

.. u, is positive,
Since u, decreases bubt remains positive, it follows that lim u,

=
uxists and is not negative; but the theorem on which this depends
is bound up with the theory of irrational numbers, and the discussion
of it must be left to the companion volume on Analysis. The limit
in the present example is called Euler's Constant, and it is denoted
by v. Since u;=1, it follows that y< 1; from Ex. IV. e, No. 14,
it follows that y > -3; the actual value is -577....

n
Example 7. Prove that hm(coa E) =1

>
. -z x - - “g e
Since cos— =cos 5 We may assume that = is positive; also
n .

. Bx T
itn>—, BBG;}*I.

Thus, from equation (18), putting secg for ¢,

0<log(secf)¢sccf-l=293c§sin’3—.
n n n 2n

T T . T
— < rsec —sin —
2n n

z\" z .,
it 0<]og(sec— < 2n sec — sin?
n n 2n

since sin 0 < 0 (see E.T'., p. 162).

T . X
But when n—-w, sec ——-1, and sin.——0,
n 2n

T n
S lim Iog(sec—) =0;
n—=n n

\" z\"
thus lim ( sec —)-=l, and lim(eos—) =1.
y n i n

M=+

EXAMPLES IV. e,
1. If 1 < ¢, < t,, prove that logt, —logt, <‘—’%.

- b
2. 1f a and b are positive, prove that log(a +b) -loga > a+s
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3. If 142> 0, and =+ 0, prove that

Tz + <log(l+z)<z.

4. Tf 0<z <1, prove that = <log e <72z

5. Prove that e2>1+z.

6. Prove that e* <

._‘_11 if z< 1. What happensifz>11?

7. If p is positive, prove that (E)’ <e.

8. Show that IEE-E steadily decreases as z increases from e
upwards.

9. If n>e, prove that n™ > (n+1)"

10. Prove that lim 2801 +2)_
z—0 z

11, Prove that lim 10; =0, where p is positivo.
T—>+>

12. Prove that lim z?logz =0, where p and x are positive.

z~0

13. Provo that 1+ +} +... + —— ~logn increases with n, and
that it is always less than unity.

14. Assuming log 2 =-69..., deduce from No. 13 that y > -3.

15. Find, in terms of y, the limit of 1+}+§+... 45, ~logn
when n-» o,

16. Evaluate hm( LS 1

aritnea T o)

17. Evaluate lun (1 H+i-1+.. +2ﬂ1_1 2ln

i 1 _
18. Prove: lim (1 R R —ilogﬂ) =log2+17.

19. Prove that 1 +3+4 +fs+... +3.- ~1logn tends to a limit
when n—+ w.
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20. If p and n -1 are positive integers, prove that

n+p 1,1 1 1 n+p+1
log > n+n+1+"+2+...+n—+}’ >log ~—n

and deduce that

. 1 1 1
Jim (G o) =loga
where g is a given positive integer,

EASY MISCELLANEOUS EXAMPLES
EXERCISE IV, f,
1. Differentiate log {z + +/(2? —a?)} with respect to z.
2. Show that ] ‘\/(4;‘ gJo:!:c = }log3.
3. Evaluate [ (——sma +111 dz.

4, Obtain a relation between Sz"e’dx and ]z"“e‘dz.

. i
5. Find the maximum value of 2*.

6. If y=acos(logz) +bsin (log z), prove that
=2 %Y

-I-'.r:—— +y=0.
7. If y=ce satisfies 2 ~ 522 + 6y =0, find k.
8. Prove that ¥ =ae~™%sin (nx +a) satisfies
29 +om % 1 mtmt)y =0,
9. If y =e*sinz, prove that g: —4y.
10. If y ===, prove that g—g-—*xﬂlog (ex)s

11. Evaluate je"ein‘ba: dz.

12. Compare the graphs of logz and log (log z).
13. Prove that log(e*)<<2V? where > 0.
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14. Napier used the approximation log 5 =#o- b)( 1) whera

5 ~1is small, for calculating logarithms. Express this as an approxi-
mate formula for log (1 +z) if * is negligible. [The error ==}23.]
1
15, Prove that lim z*=1,

T=rw@

16. Prove that lim z® =1 if 20 through positive values.
17. What results can be deduced from log¢>1 - by changing ¢

into £ and into ¥z, where ¢>1. Which of the three inequalities
gives most information ?

18, If = > 1, prove that logz<2(1/§ 1).

19. Use the relation log(l+t)= llzdx: [: (l —%)dz
to show that if ¢ is positive, log(1 +t) lies between
e t(2+12)
t-3 and g

20. Prove that, if 2> 1, logz < }(z —:%) .
21. Prove that, if £ >0,
2 s 2
i"§+mﬁ:bg“ +t){l-§+§-
e% +ge—%
22, If p > g, prove that p }%

23. Integrate z%%, and prove that
1
&< !o zredr<e-2,

>gq.

24. If t>0, prove that E: xlog(l +z)dz lies between 3f* and
it (¢t -2).
25. If p and ¢ -1 are positive, use the relation

€1 1
Lzde< izl_,dz

to prove that logt<C. Deduce that if m is positive, "5t 0
when t—+co. P

What result is obtained by putting ¢=e¥? Deduce that yq
when y- , if r>0,

26. Prove that lim (“";;;"‘) =L
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HARDER MISCELLANEOUS EXAMPLES
EXERCISE IV. g.
1. Prove that 1-71 > ﬁ V—ul_'-_?)dz:> 1-15.

2. If p is positive, show that 12 + 27 +3"+ -+. +nP lies between
nPHl and (n+1)P+ —
p+1 p+l

3. Prove that §+}+“Iﬁ+ +ﬂ,+1 lies between those values of

tan—!n and tan~—1 —— +2 which are between 0 and T 5°

4. Prove that, if 2> 1, (z - 1)(z - 3) =2z (x ~ 2)log = is negative.

5. Prove that El-—ﬁ-l-_rg)dx+§: ‘v'{ll+ 7 do is independent of £
6. If 0<a<b and é<d< 0, determine whethar — or g is the
greater,
7. If z and y are positive and less than unity, prove that
z(l-y) _log(l -=) z
vy “lg(T=y) “y(i-2)°

8, If ¢ is positive, prove that log(1 +£) > I a ‘i'lisl'da =%f_‘.,
9. If z > 1, prove that logz}mx_'_ ]1) .

1 1
10. If z > 1, prove that logzc:]li(l+8—,)ds=§(z—5).
2 +1t)
3(1+p)"
z-1

75

11. If ¢ is positive, prove that log(l +¢) <

4(vz-1)
12. If z > 1, prove that -m-l——«.logzﬁ

13. Prove that e*< 252, if 0<z< 2.
14. Prove that Idgt<n(J£ 1) where >0 and ¢+ 1. log
log:

15. Prove that, as ¢t decreases steadily down towards unity, -1

increases steadily. Also state this result as a geometrical property
of the hyperbola zy=1.
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16. By putting 1 +-é fortin ﬂle result of No. 15, show that (l - i)x
steadily increases as x increases through positive values.
x
17. Prove that log {(1+1)} <1t 2> 0.
T

18. Prove that log (1 +x) g if x> =1, for some value of 8
between 0 and 1. .

1
19. Prove that (1 +x)*+e when z— 0 through positive values,
and f.ha.b(l +:%):-+ e when z—+ +ow.

20. Prove that [: h‘{(—_::f—}d:c lies between }log2 and %—ilog 2,
[See also No. 28.]

21. Prove that [: iof:,d:z:zo by taking the range of integration

in two parts, from 0 to 1 and 1 to . What result is given by the
substitution, z =cy 7
22, If T'(n)= E z"~1¢~*dx, where n is positive and the existence
of the integral is assumed, show by integration by parts that
T'(n+1)=nT(n),
and deduce that if (m — 1) is a positive integer I' (m) =(m — 1)1
23. If f(n) = r: ae~=dx, and assuming that this integral exists if
n> -1, prove that f(n+2)=3(n+1).f(n).
1
24. 1B (m, )= || 271(1-z)"1dz, and assuming that this in-
tegral exists if m and n are positive, prove that
(i) B(m,n)=B(n,m); (ii}B(m+1»ﬂ}=%B{m.ﬂ};

i3
(iii) B (m, n) =2 L sin?™-1 6 cost™~1 0 df,
ExpressB (m +1,n +1) in terms of B (m, n).
25, If = > 1, prove that tan-1z <E +4logx,

26. If 0<8<§, prove that cosecﬂ{%—. Also show that the

integrals r log%dﬂ and r log cosec 8d0 tend to limits when ¢ tends
to zero through positive values,
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27. Prove that 5: logsinﬂd&:!: logcos0dd and hence that

oach equals §{ log (sin26)d0 - Tlog2.
Prove also that
S: logsin 2026 =}{" logsiny-dy = ]: log siny-dy-.
Deduce from these results that
i logsin 0df = —-Zlog 2
L ogsin 0d6 = -3 log 2.

28. By using the two transformations, 2 =tan 8 and :==t.tm(E - gb)
and equating the results obtained, prove that 4

log(l+z), =
fo 55 a 2 as =g,



CHAPTER V
EXPANSIONS IN SERIES

Power Series. An expression of the form

By +0,T + 92 +... +32" +.0e

is called a power series in x.
Let ¢,(x) denote the sum of the first n terms,

then b (z)=ay +a,2 +ay2® +... +a, ;2"
If, for some or all values of z, lim ¢,(x) exists and is, say, ¢(z),
n—o

the series is called convergent for those values of z, and ¢(z) is
called the sum to infinity. Also, the series is called the expansion
of ¢(x) in powers of z, and we write
() =0y + 8T + 22 F oo FEAT F eee s cereneraneans(])

The most useful expansions are those which are *rapidly con-
vergent,” i.e. those in which ¢,(x) is a good approximation to $(z)
for reasonably small values of n.

It is most important to distinguish between the meanings of the
following :

Ay + T +857% +... +8,_ 12",

and G+ T +axt + .. e, x4,

The first means the sum of n terms of the given series, and is
obtained by successive addition.

‘The second means lim (@, +a,2 +a,2? +... +G,_; 2" 1), ¢f this limit

n—+x

exisis, and 18 undefined &f this limit does not exist. Sometimes, how-
ever, the second is written down when it is merely proposed to
discuss the existence of the limit.

The Geometric Progression; 1 -x+4+x?-x34...;
$a(z)=1~2 +23—... +( - 1) 11
1-(-2)* 1 (-1)".2"

v eeeeemreeeeen(2)
But, if —1<z< 1, im z"=0, see limit (i) below;

n—+wx

o Plx) inﬂ bal) =Fo
7
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Therefore, if ~1<x< 1, the power series 1 —z+z*-23+... is

convergent and has T_l_:;: for sum to infinity.

Two Important Limits.
(i) I -l<xcl, Im 2P=0. .eceereennnnnnsnnnna(3)

n—+

Consider first 0 <z<1; put z=1-p, sothat 0<p<]1.
Then

2" =(1-pI" < = since (1-p)(1+p)=1-p'<1,

1
(1+p
1 1

< —.
1+np np

s z" can be made less than any given positive number, ¢ by
taking n large enough, (n > é}) ; but 2" is positive;
S 2> 0 when n— .
Also (—=z)"=(-1)".2"%; therefore the result holds also for

-l<xz<0.
xn
(ii) For all valuesof z, lim i =0, e ea e, (4)
n—+e
Consider first = >0; take any fixed integer &k greater than 2.
zn
Then, if Un=sy
uk+t z . Upye T Upes .
“Frish g Eee<h g <bee

o by mult.]phcatmn, g4y < (3)7.ug; but u, is positive;
~ by (3), lim wy,,=0; .. lim u,=0.
) n—sw
Also, as in (i), the result can be extended to all negative values
of x.

The Symbol [x]. It is often convenient to use the symbol |z| to
denote the value of z if x is positive and the value of —x if = is
negative.

Thus, the condition -1<z< 1 is written more shortly in the
form |z|< 1; the statement that z lies in the range of values
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a—¢ to a+¢ is represented by |z— a|<e; the positive square root
of a® maybewnt.tren |a|; ste.
The statement in equation (3) above would therefore often be
given in the form:
if |z]<1, lim 2"=0,

fi—m

Expansions of sinx and cosx. We proceed to expand sinz and
cosz in power series, and for the sake of completeness we include
the fundamental results upon which the proof depends.

If 0 <z <}, and the angles are measured in radians, we assume
that

sinz
cosT< ——< L.

- 1. Since the value of

When z— 0, cosz— 1, thus Ssinx
s:g is unaltered when z is changed to -z, it follows that

hm¥=1 when - 0 in any manner. This result is required for

the differentiation of sinz and cosz.
By the definition of a differential coefficient,

sin(z +A) —sinz= lim 2 cos(x + 4h)sin $h

d . . .
E_:(sm x) = gun

—0 h A—>0 h
=cosz. lim sin §h =CosZT.
a0 1h

Similarly, % (cosx)= —sinz, or this may be deduced from
cos  =sin (— - a:) Also, results like

d d 1
d—x{tan z) =seclz, a-ztan a:..l—?

may be derived by the usual processes of the Calculus.
If f(x) is & one-valued integrable function of = which is positive
for 0 << a, then the function f,(z), defined by

f@=( soa,
where 0 <z<a, is also necessarily positive. Similarly, if f; (z) is
defined by -

FACEIWACE
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this new function is also positive, and by continuing the process we
get a series of functions all positive in the range 0 <z < a.

Now take f(x)=x -sinz, and suppose that z is positive; then
f(z) is one-valued and positive, and therefore

f,(x)ar mn:)ds_f-l+m= -1,

f@)={ A0d=% tsinz-z,

fa{”)ES:fz(‘)di———cosz+1_?:,
T

fulz)= L (i}dt-—-—mnz+z—3l,

are all positive. Thus, ifxis positivs and p is any positive integer,

L2 zt-1

sinz >z — 5l as —m-sa’l say;

and sinz<az :f z = -+ . =g sa

REE T T @ T @) e SO
These inequalities may be written: s, <sinw< 8,3
girl

= g

— 0, when p— .

oo Sgp0 —SINT T S5, —

8w gar AP+
But by' limit (II.J, P 78, m
Also 8,5,y —sinz is positive; .. 835, ~>sinz when p—> .
Similarly, since

0<sing ~8,< 83,1 — a,,, 83, —>8inz when p—~> @ ;

A sm:clstheaumtomﬁmtyufthasenes, lxl z3+:r.5 wse

31 5!

‘When = is changed into -z, every term of the series changes sign,
and so doessin@z. Therefore the result holds also when x is negative;
it is obviously true also if £=0. We have therefore

. x x* xf x7
smx.-l—l—é—l-l-ﬁ—-ﬁ-i-... s casssssssasasarsnsass(D)

for all values of .
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Similarly, from the relations on p. 80,

1 3 xiP-2 _
cosxT > ‘-m'}“;—!... -—m_cn’, say,

and z<1-24% ” b
cosr < 2 4!...—m+@—l— ‘20410 BAY.

Fad
Hence, ¢,,<cosz<cy,,,, where °=;+1“°=9=@!'-

Therefore, by the same argument as before, it follows that
C1pp1—>C08Z and ¢y,->cosz when p—> o,

) 6
We have therefore cosx=1-~ +§ _:Bil S TSRO ( ;) |

2!
for all values of z.

Note. Attention should be called to a crucial point in the argument used
in these proofs. Thefact that lim (33p41 ~ 839) =0 shows that if either sp.,

OF &y t2nds to & limit, the other must tend to the same limit ; but it does
not ensure that either of them actually tends to & limit. It is essential to
prove that the limit exista. This is done by the inequality,
Sap < sinz < ‘Iﬂll
which shows that 0 < (syp4y —8inz) < (%94, —83p), and therefore
im (839, —8inz) =0,
P

Hence 835, ~>8inz, when p—>w. It then follows that 8yp—Binz, or this
can be proved in the same way. Both these results are needed to show
that the sum to n terms tends to sin z when n— .

Ezample 1. Calculate sin 36° to 4 significant figures.

gin36°=ginT=1_ T, T _
T8 b b5°.81 ' Bs.B1 "t

=0-62832 - 0-04134 +0-00082 —...;
Also, with the notation of p. 80,

?
8 ~sinT <8y —g, = < 10755

. 8in 36°=0-5878 to 4 significant figures,
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Ezample 2. Find the first three terms of the expansion of tanz
in powers of z.

Since tan{ -z)= —tanz, tanz is an odd function of z. If then
we assume that tanz can be expanded in powers of z, the expansion
must be of the form tanz=Az +B2® +Ca¥+....

Then (Aa:+Bz‘+C:r.‘+...)(l-;—i-&-i—:-...):tnnz.cosm
=mz_3_£+£_
TR T T

Equating coefficients: A=1; B~}A=~}; C-1B+4A=1ly;
LA=1,B=L, C=y; - tanz=z+lt+Sa5+....

It should be noted that this process does not prove that tanx can
be expanded as a convergent power series in #, This is, however,
true, and, for small values of z, x, @+32%, x+}2®+ o, are
successive approximations to tanz,

Example 3. Show how to expand cos?z and sin® z in powers of z.
Use the formulae: 2cos*z=1+cos 2z, 4sin*z=3sinz —sin 3z,

Erample 4. Solve cos § =0, approximately.

Inspection of a rough graph shows that there is only one root and
that its value is approximately 0-7. For a value of 8 of this size,
we have cos 8 =1-46%; . 1-40%==0;

024202 (04+1)2=3; 04 /3-1; 0==+0T.

Put 6=0-7 +a, then cos(0-7+a)=0-7+a;

2. ¢05(0-7)cos a ~sin (0-7)sin a =0-7 +a, where a is small ;
s cos(0-7) —a.sin(0-7) =0-7 +a, approximately;
__0-765-07

e ea 00 S 0=074

A closer approximation, @ =0-739, could be found by putting
6=0-74 + 3, and repeating the process just used.

EXERCISE V. a.
Find the sums to infinity of the series in Nos. 1-5;
1. 1 1.1 1.1
1!

-"3—1'1-5“---« 2. 1—2—l+ﬁ‘*---.
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2 28 28 2 4 6

3. l_ﬁ*‘ﬂ_ﬁ'*“" 4. ﬁ_ﬁ-'-?_l-.".
5, T it + s _
9.4 2.4.6.872.4.6,.8.10.12 "

6. Show that the positive square root of the sum of
2 23 28 . 4 6 8
1 +l_!_§-f+3-l"“ is the sum of 2 =5it5i— T

7. Caleulate from the series the cosine of 1 radian, correct to
3 significant figures.

8. Calculate from the series the sine of 3°, correct to 3 significant
figures. .

9. Prove that tanz —sin z== }2*, if z is small.

10. Prove that sin0=~ 6% (1 - 933-;-%35") , if 6 is small.

Faene

11, Express zcosecz in powers of z, neglecting z° and higher
powers.

12, Express sm(%' +z) cosz as a power series in x and give the

general term. Also express it as a power series in E +z.

13. Find the general term in the expansion of cos®z in powers of z.

3sinf .. 65 .
14. Show that STcosd differs from 6 by about 180 when 0 is small.

x

15. Find whether tanzx — 24 tan 3

when z is small and positive.

or 4sinz - 15x is the greater

(1
16. Prove that lim (& ~cotz) =3.

sin 0 +sina__ 8
m‘f’_ﬂ-)‘ =1 '§'(lt811§o

18. Find an approximate solution of cos 0 =260.

17. If ais small, prove that

19. Find an approximate solution near to %: of tan 8=0.
20. If tan (6 — ¢) =(1 +A) tan ¢ and A issmall, prove that one value
of tan ¢ is approximately (1 —}A.)t.a.n§.

21. Prove that, for 0<z<m,
(i) 2(1 —cosz) >zsinz; (il) z(2 +coszx)>3sinz,
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22. Prove t-hat

>——qum0¢z<2.
23. From sin 0 =60 _fﬁ"'gfl""" obtain the successive approxi-
mations, 6==sinf, §=-sinf+}sin®l, 0==sinf +sin®§+7sin® 0,
0 being small.

24, If nt=¢ ~esin¢, and & is negligible, prove that

¢ =nt +egin né + e sin 2nt,

25. By the method of p. 80, show thst. if # is positive, e® -1,

ef—1-zx,e-1-2- ;:.-... &% — I-z—ﬁ —g are allposltlwe.

26. By the method of p. 80, show that, if = is positive,

m .e' 3

=1- +ai-gi e

The Logarithmic Series. In equation (1), p. 77, g, is the value
of ¢(z) for =0, and a, +a,r is its approximate value for a small,
positive or negative, value of z. Thus the fact that logz is mean-
ingless when x < 0 suggests that it cannot be expanded as a power
series in z. But the function log(1 +z) is capable of expansion for
& certain range of values of z.

Using the sum of a G.P. given in equation (2) we have

1 s . 3 _ fi—=1pn-1 { z}
l+:r:_1 ztx R i v 1+z "

‘We shall suppose that y is & positive number; then

Iog(1+y}si —dt S l+zdz’ by putting =1 +=z,

=r{l—z+z'-...+( l)ﬂ-la:ﬂ-l+( ”}dx
[1]

ey LY - -5 aald
Yy +3 «e. to n terms +( - 1) °1+xdz. «a(T)
Also Kz_'] —d:r:c :c"dz—_-ynﬂ-
ol+x n+1’

.. 1
sSify<gy, K<tT+_l and — 0 when n— .
r. from (7),
¥

log(1 +y)= lim {yvi-&?-...tontenns} if 0<y<gl. (8)
n—+o
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Again, if 0<y <1,
1~y
~log(l -y)= —-L —dt ‘—dz by putting t=1~=z,

=" {1 +2 42 e +z"—1+—”n—}d.—c
}o 1—1‘

_g+”"+y3°+ +y"+[ T3z e 9)

l-z
Also H=] Tde< ! 1=y
1y 1

i-y ' n+l (1—y}(ﬂ+1}

and H—> 0 when n— o3
s, from (9),

s.osince0<y<l, H< —

~log{l -y)= {y-!- +y3:+...bonterms} if 0<y<1. (10)

The results of (8) and (10) may be combined into the single
statement that log(l+z) is the sum to infinity of the series

—%+%'-... provided that 0<xz<1 or -1<z<0. Also the
result is true for =0. We therefore write

x? x‘ x4
log(l +x)=x- 5+3 4+ M -l<oxg L (11)

Note, Care must be taken about the insertion in (11) of such a value
ag -1 -l-1 for 2. This gives a true result if n i3 positive. If, however, it

wereuaw roposed to make n — o, it could not be assumed that either
side had ai:mz, or that if the limits existed they must be equal. Actually
in this case the limits do not exist.

The proof above that H —» 0 definitely requires y < 1, not merely y < 1.

From  log(l +z)==x= —%’+§—%‘+m (-1l<z<g1)
z* 2 ozt
and log(1-2)= -z -5 ~%~T - (-1<2<)
by subtracting and dividing by 2, we have

1+x x3

x5
Alogl x"‘+3+5+7+" (-l<x<l) .o.u(12)
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An alternative form of this result is obtained by putting
14z y-1

‘iT-x =¥, then =z ~—-—1;

I | _fy-1 lry-1\
o 2]039‘— +l)+§(yj) +E ?) +.ee (y>0)....(13)
Equations (12) and (13) may be used for the numerical com-
putation of logarithms; convenient methods of proceeding are
indicated in Ex. V. b, No. 4 and Ex. V. e, Nos. 17, 18.

Ezample 5. Find the sum to infinity of

2 . 3 4
rz3t3 25569
n+l

th 2 .
The n* term is @n-D)on@En 1)’ and may be expressed in
Partial Fractions (see p. 231) in the form

¥ 1, %
n-1 2n 2n+1’
thesumtont-urmais

1.1 1.1 1
(1+ Fbot i)~ (+ Fontge +4(3+5+"'+2n+l)

1
(1'§+§ 4+“'“2n) 4( 2u+l)

When n— « the limits of the two brackets are log2 and 1;
% the sum to infinity is log 2 - .

EXERCISE V. b.

1, Write down the sums to inﬁnity of the series
. l 1 1 1 1
(i) 1- 3 +..., (ii) §~ﬁ+2—,—3-§;—+---.
(i l+ 1 + 1 1 +
)§ 3.3 3"'.5+3’.7 e

2. Prove the following results, finding the conditions under which

they hold : -
(i) log (x +a)=loga +§—Ez+% ——i
(ii) logz—logy-z y-!—(z%f) +(x32¥)’+m'

ey 101 1 2
(iii) ;+@+ g-{- °"=§B‘Tl +m Foeee
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3. Expand the following functions as power series in z, giving
the coefficients of z" and the conditions. of validity :

(@) log (1-3); (ii) Tog {(1 ~2)(1 +32))3
(iii) log (1 + 5z + 62%) 3 (iv) log(2? +2z +1);
(v) log(z +2); (vi) log(2® + 3z +2);
(vii) log ll“f:'; (viii) log (1+& +2).

4, (i) Use series (13) to calculate log 2 to 4 places of decimals;

(ii) Use series (13) to calculate log g, log £, and log §, each
to 4 places of decimals ;

(iii) Use the results of (i) and (ii) to obtain the logarithms of
3,4,5,6,7,8 9and 10;

(iv) Prove that log,,N =log,N-+log, 10 and use the results of
(iii) to deduce the corresponding logarithms to base 10.

5. What is the coefficient of 2™ in the expansions of the following
functions as power series in z and for what values of = are the
expansions valid ?

(i) (1-2z)log(1-22); (i) (1+32)*log (1 +32);

z?
(iii) {1'—2:) log (l +74—) .
6. Given that |z| < 1, find the sums to infinity of the series whose
nth terms are
o At . . O -
0 o513 (ii) SnEn 1)’ (iii) Azl
7. Express log:;—i'} in powers of i when |z| > 1.

8. Express 2logn ~log(n+1)-log(n~1) as a power series in
;lawhen n>1l
9. Express log (z+2) —2log(z +1) +2log(z —1) ~log(x - 2) as a

series of powers of . , and find for what values of = the expansion
. . z* -3z
is valid.

Sum to infinity the following series :

1 1 1 1 1 1

10. T:—i'{'ﬂ"'m'f'u«v 11. m“m+m-.--'
1 1 1 .

B issessatsas
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1 1 1
12373 4.8t567 . i3
1

1 1
T2.3ve 3 sta a7t

16. Prove that log|cot}A|=cosA +}cos®A+3cos’A+... unless
. . 1 1 .
A=nr; deduce that the sum to infinity of l+ﬁ;+5—.§+... is

log 3.
17. Evaluate lim (2 +4‘-=)10g{1 +z) +(2 —INDg(] -a:)-
z—0 z

1—-z+logz
18. Evaluate :b_i:l; =z 25"

19, If zlogz +2 - 1=¢, whichissmall, prove that 2 == 1 + Je — {4

1 1

13. 1.3 3 g etggte

15.

20. Find approximate solutions of the equation 5logz =27 —g .

Gregory’s Expansion of tan—'x, From the sum of a c.r., equa-
tion (2), p- 77, we have

1 s
=1 -2 - n—1,on—2
Tiae 1 -2+t - +(-1)" 1o +(- l)“l+x=,
S AR ST Hv
S °1+m2da:—y 3+5 — k(1) +{ 1)".K,
v gon
where K=Lm’dz.

1

If -1< y< +1, the numerical value of K{I a;"‘dz—zn_l_l

S K—=0, when n—w;

. s _gf y’_ v 1
. the sum to infinity of y + issnl_l_s’dz.

v 1 T ™
—dx i -1 -z T,
But -‘01 _H:,da: is the value of tan—ly between 3 and +35

2~ tanly= y—§+¥~... cerecrenrenrennnenens(14)

provided that —1 < y < 1, and that the value taken for tan—2y lies

in the range from —; to +Z' inclusive.
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Evaluation of m. By using (14), we can obtain 7 as the sum to
infinity of a series. Putting y=1, we have

Ir=1-3+3=F+ue cmmrrrrnernnnrnnnnn (15)

This series converges so slowly that for practical calculation it is
necessary to employ alternative series (Ex. V. ¢, Nos. 3, 4).
The reader should verify the following results:

1 1 T
-12 _tan—1———
(i) Machin’s formula, 4tan 5 tan 351"
(ii) Rutherford's formula, 4t.an“‘——tan‘1,:0 +tan—? 5‘19 i

These give # as the sum to infinity of rapidly convergent series.

EXERCISE V. c.
1. Find the sums to infinity of

1
(i1- 2,,-1-5 20— ee3

(i) (1 —s-*) -3(1-3"H+3(1-3"H -
2. Give the sum to i.nﬁnity of tanz —}tan®z +} tan®*x —... when

bm Or T T
(1}~—-:z<~4—, (u) <=|:<—4—. (m}nr-—z-\:m{mrJ.-z.

3. Calculate = to five places of decimals by Machin’s or Ruther-
ford’s formula.

4. Calculate 7 to four places of decimals by the formula,
F=2tan~'}+tan}.

5. Bimplify tan—1} +tan} and use the result to express r as the
sum to infinity of a series.

6. Find the sum to infinity of
2. 1y I/2 1y, 172 1
(§+?)—§(?+7—3)+3(§5+1—.5 T |
7. Find, when possible, the sum to infinity of
z+i5+320 +fgald 4.

. —1fcos 8 4sin 6 .
in t'lﬁl;:‘g.‘-.x];mmd, when possible, tan (m) as a power series
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9. I y=2 -2+, and z is so small that o' is negligible, obtain
the successive approximations x ==y, z==y + !?;’ z—y+ys+ 1"’5‘
Interpret this with z =tan 6.

10, If ¢ is small, prove that one root of tan~lz =e —x is given by
== fe + 6%, and find the next approximation.

The Exponential Series.

If we assume that the function exp (x) or e* can be expanded in
the form oo (7) —ef =g, + @2 +Gy2 + ... +a,2" +...
and if we also assume that

d d d d
= (%) =% (a,) +d_z (ayz) +... +d_-.'& (a,z") +...

and that we may continue to differentiate in this way, it is easy to
find the values of a,, a,, a,, ... .

Putting =0 in the first equation, we have 1=a,.

The second equation is

e =a, +2a,7 +3a;2? +4a,5° +... .
The equations obtained by continuing the process are
e*=1.2a,+2.3a,z+3.4a,2% +...,
€£=1.2.3a,+2.3.40,7 +...

oy

Putting =0 in these, we have

l=a,, 1=1.2a, 1=1.2.3a,,...;

Soap=1, (;x,l=],,l a,:.-l, 1

31 a,—sl,etc.
Therefore the expansion is
x x* x?
exp (x) =e*= 1+11 gitate .+ l+"' sernrnsaes(16)

But the assumptions siated above are not easy to justify. A valid
process which sometimes replaces this method is based on Maclaurin’s
Theorem. We shall now, however, proceed to obtain the result by
& different method, based on mtegmuon by parta

To prove that the series 1+“+2[+ -+ !+... is convergent for

all values of x and that its sum to infinity is ¢%,
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2
Put u,=| e~tt"dt, n being a positive integer.
o :

z
If n>1, u,,=|:-s“.t":r+] et ldi= —e~F. .t +n.u, 43
o ‘o

. z" Up_1 Uy,
al {(n—l)' n!}'

If n=1, u1=[-s—'.!]=+i e~tdt=—e%.z+1~-e%;
o ‘o

- = e |
By 1+3H¢‘{l 1!}

.. by adding the results for n=1, 2, 3, ..., m,

T 1 L)
1+]!+2'+ s e {1 g versersrerennns(17)

We shall now prove that lim -—'—0.

m—sx T

Consider first £ > 0; then for 0<t<ux, c—’=-:-‘<1;

’t“‘ M+
* mz: —l_ = .
S O<Th L" mi#< Lml m+¢
»~ by limit (ii) on p. 78, %—H} when m > o,

Next suppose z< 0 and put z= —y so that y >0.

Um - -t " = = m-H.rasm i =
= dt=(-1) Ls = ds, putting s= -1,
But for 0<s<y, ef*<e’;
e s"‘da da v Y y™h

»~ by limit (ii) on p. 78, re’ .gda-—r 0 when m-—» o 3
lo

o Zm_5 0 when m— .
m!
The required result therefore follows from equation (17).
Calculation of e. Putting =1 in (16) we have

1 1, 1
6= 1+1 +2l+3l+-u-
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.~ e is greater than the sum, s,, to n terms of this series; but
1 ) 1

I T R o § R ey 1
1 1 1 1 1 1 1
n(l"‘n"' * oo +nr-1){;!l_l-(n—1).(n-1)!
n

and as this is true for all positive values of p, it follows that

1
Sl .-

For example, taking n=10, we get

&-s,

1 1 1 1
l+1 +2[+...+ qas(l+ +2.+...+§-!)+——-9_0’.

and this is found to give the value of ¢ to 6 places of decimals.
(e=2-7182818....)

Note. If a function f(p), which — a limit { when p— oo, satisfies
the inequality f(p) <K for all values of p, K being independent of
p, the correct conclusion isnot I< K butl < K. Thus in the above

1 P
it can however be proved thus:

work the conclusion & -5, <

1 171 1 1
Gm—8.¢a+m +;'!* ;i+ﬁ+"' +!F
1 1 1 1 1 1
n!(l+ atmtetmh) s it et n
1 1 1
<E-N.Di a.m T meny o ebeve
1 1 1

o8-8, < m-D).m-1) n.n+]) ~@-1).m-D1

Nature of e. It is easy to see that e is not rational. For if
s-.:%, where p, ¢ are integers, am<°_§<8ﬂ‘+q lq and multi-

plication by gq! gives K<p.(g-1)!< K+%, where K is an integer,
but p.(g—-1)! is also an integer, so the inequalites cannot be true.
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The Compound Interest Law. It was proved on p. 64 that g:#.

We shall now show that every function y which has the property

% =y is of the form Ae® where A is constant.

dy dze 1, 1,
If ==Y @—g; o 9:-[§dy_logy+c,

and, if we put C= ~log A, we have
z=logy -logA =Iog%: S y=Aet

The equation g=y means that y is a function whose rate of in-

crease with respect to z is y. This is the rate that occurs if money is
lent at Compound Interest at 100 per cent. per unit time, the interest
being added continuously. Thus if £A is lent under these conditions,
and the unit of time is & year, the amount after 2 years is £(Ae®).

If the interest is compounded at intervals of %th ol; ;0 year, the
amount after kx periods éoreaehof which the interest is — per cent.
would be £{A( 1 +%) } . For continuous addition of interest we
make k& — o ; we may therefore expect that

. 1\*=
lim 1 +—) =e®,
k=—+»ow k

Writing 3 for k, and successively z, —x, for y, we have

. x\®
alﬁ::(l-l-;) =BT L erreenenrrrnrrranaas J(18)
x\n
1 l1—-=-) =e7% ........ [P § |
wad Jim (1-2) = 19)

Formal proofs of these limits will be given in the companion
volume on Analysis; another method of proof is indicated in
Ex. IV, g, Nos. 15, 16, 19.



94 ADVANCED TRIGONOMETRY
Ezxample 6, Find (in terms of e) the sum to infinity of the

series 1 4 7
Il+‘2—!+‘§!+-...
3r-2 3r 2
rthterm——! H—-;—;. ............. T ....(l}
P o . _ 3 2 -
whlc]'l, lff}]’ mm —f_l- ..................(l.l)
Thus, by (i), 1st term=3—%,
e . 3 2
and (ii) gives 2nd term =53
3 2
nth T(n=1) a’

.. the sum to n terms is
1 1 1 1 1 1 1] -

3{l+1+2!+...+(n 1}1} 2{ +21+3!+"'+E}‘

When n — o« the sums within the brackets tend to e and to (e - 1)
respectively, thus the sum to infinity =3¢ ~2{e ~ 1)=e +2.
Ezample 7. Find the sum to infinity of
2.6 3. 7 4.8
5+— Tl + - 21 = +ani

If r > 1, the rth term is

rir+4) (r-1)(r-2)+7(r-1)+5

i = ) ererenessenesenn(d)
o r-2 7 ] .
and this, if r > 2, (r—2]l+(r—2}!+(r—l)!’ reveseraeean veesea(Ii)
d this, if r>3 - LA (i)

and WS R == G T I T |

The 1st term is 5,

the 2nd term =047 +% by (i),

the 3rd term = l+7+2! by (ii),

1 7
the 4thterm=ﬁ+ﬁ+3—! by (iii),

and (iii) gives all the later terms.
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Thus the sum to infinity is found, by the method of Example 6,
to be e+7e+5e=13e. '

Note. In the above example, the exceptional terms at the beginning
of the series could be found by (iii) if conventions were made to the effect

that 0! =1 and :_::_l =0 when zis a negative integer. The reason that they
can be found in this way is shown by (i) and (ii).

Ezample 8. TFind, by successive approximations, z in terms of a,
when z +e¢¥=1 +a, and a is small.

z=1+a-e*=a z—ﬁ—-s—!— -
2 23
- 2x=5_§_'3_l-_""

For first approximation, neglect a*; then
2z=a; .. r=ia.

For second approximation, neglect a®; then
1 /a\2 a? a a?
%—a-ﬁ(i) —a—g, s E=g—3qe
For third approximation, neglect a*; then
2\ g 3 2 3
2z=a-1 a a.) l(c_;) a2,

21\27 16/ " 31\2 8 796’
L2 T 2
o 2 16 192
For fourth approximation, neglect a®; then
S0mmn — X E_“_’+i)’_l(2_“_’ '_3(2)‘
21\2 16 192 31\2 16 41\2
a® a® at 1 1 1 1 a®* o at
=°‘*§+a§+i(‘m'm+a-ﬁ§)=“‘i+s—e+ﬁﬁ;
» x=2-£+£+ﬁ_
t 2 16 192 3072’
and so on,

EXERCISE V. d.

Find (in terms of ¢) the sums to infinity of the series in Nos. 1-18.

1.1 1 1 1 1
1. l"'.l—l+§i-ﬁ+.-.- 2. —ﬁ+§i+ﬁ+..n
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814242454 -

5. ;—:+§—:+i—:+.... 6. 1+f—:+%:+....

1. %+531+%+.... 8. 1+§2-l+%+%+....

9, %4-1—;}3+$§+.". 10. %+1—j"ﬁ2;+1~i§:'—2'+....
11. %;+§—1+2—:+.... 12, ;—:+§—:+3—:+----

13. %+%+}8§!+%~?+.... 14, !—2;34-23—';%:’%%...
15 L-Sed - 16. f_:-g—:-p;—:—....

Find the values of the following :
3 3
17. (1+%+al—!+... —(l%%+g—!+... .
J1,1 1 ] 1,11
18. (2_I+ﬁ+ﬁ_!+'")7(l +§l+5_l+ﬂ+"')'
Find the sums to infinity of the series whose rth terms are
r 124204, 412 134284, 41
19. "(';—-l"-__'_‘mp 200 _'r!—'. 21. Wt
zr ' T’ '
(r+1)" 2. (r+2).71" 2. (2r+I1)1° 25 (r+3).r1°
Eﬁnd the following in power series, giving the coefficient of 2"

22,

26. 62(2 +3a). a7, Lifnpds

&% 4 g%
-

(z+1), (z+1)*
i toa

30, *¥(1 422 —4a%).
31. Sum the series (2 —y?) —%{z‘—-y‘) +31—!(z‘ ) = aene

2 3
32. Bum the series I&ﬁ_2_(l_og!2_)+ggg_l2)_ —ane

83. Find the coefficient of 2% in (e= +&~2)",
34. Evaluate 1:'.11}.{3'= +log(l +z) -1 ~ 2z} +2%
&

28. 1+ Foaies 29.
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. logz—2*4+1
35. Evaluate l'l_rfil_og_x—z—«l-_l'

1
36. If  is small, prove that (1 +z)1—-7==] +z+z’+:%:'4

37. Show that (i) e*< 1%3,& O<z<l;

24z
2-x

and examine the results when z is negative.

(ii) e* < yif 0<z<?2;

EASY MISCELLANEOUS EXAMPLES,

EXERCISE V. e.

1. Give the sums to infinity of :
xt

(i) 1_§T+ﬁ_“'= (i) ¥-3+3-3+...3

1,1 1 . 1,1 1 .
@) I4gg+argtas g tes (N 1-gatpm-grmted

1 1 1 41,1 1
(V) ﬁ'f+§_!+m+"" (VI) I—!'i’ﬁ‘i'g‘—‘!_'i'.u.
. 2 23 25 . .
2. Show that the sum to infinity of TR R T the square
1,1
of that of l—m +5 —aae s

3. Prove that 6cot 6==1 —36% — 269, if 6 is small.
4. Show that the error involved in replacing 6 by %(s 6inJ - sin a)
5
is about 488—0 if 6 is small. Hence solve sin 8 =§8 approximately.

N . . in  —sin (0 +2a) +sina
5. Find an approximation to —oo
so Il that o is negligible. cosf —cos (0 +2a) +cosa

when a is

1+3cosh . . .
6. Prove that SFcosd = +/(cos 8), if 8° is negligible.

7. If cos(a+0)=cosacosd —cos Bsinasin ¢, where ¢ is small,
prove that one value of 6 is nearly ¢ cos 8 +}¢?cot asin? 8.

8. If € is small and positive, prove that z —e =7—; sin?z has three
roots.
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9. Show that 6§ =1—1; is an approximate solution of
16sin 8 =126 +1,
and find a better approximation.
10. If z is small, and e*ta.ng=a. prove that

4
et g4 201

11. Tf 0 issmall, and 6 cot 6 =1 — ¢, prove that §==/(3¢). (1 - i%)
12. Prove that the sum to infinity of
1, 171,71 11 1, 1\1
1 +(§+§)Z+(I+§)4_'+(6+7 g5+ 8 log 12
13. If n is positive, prove that the sum to ‘infinity of

1 1
T.2(n+1) 2.3(n+1)F B.4(m+1p

is 1-1log (I +$)ﬂ.

14, Expand as power series in z, giving the general terms:

(i) log(l «I-z—i3); (i) log(1 — 2 +=24).

15, Express Iog(a:-t—y] Iog{z -y) as a series of powers of y
stating when this is possibl

16. Express 2log(z +h) —logz —log (x +2h) as a series of powers
of ;’-‘7‘ and state when this is possible.

11 )
17. Prove that log 10=3log2 +2(j+7gv+5 s+ ) and hencs

evaluate log10, given that log2=+693147. Deduce the wvalue
of log,, 2.

18. If a =log §, b =log1?, and ¢ =log 3§, prove that
log2=3a+b+e¢,
and hence calculate log 2 to 3 places of decimals.

126
19, If 0< 6 < =, prove that Eﬁ =logeot . What hap-

pens if 2<8<=r?
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. e z 3 zF
20. Find the sum to infinity of l+z’+3[l +97')3+5[1 +x’)-"+'“

and the values of = for which it conve;g’ea Expand the sum in
another way and find the coefficient of in the new expansion.
21, Find the sums to infinity of :
1 1 1 1

@ 1 2*3 it et (i) 5= 3“'4 gt
1 1 1
() y33+t5 67 9.0, ¢

(iv) 5 3 . 8 11
1.2.372.3.5 5 3.4.7
and prove that in (iv) the sum to n terms differs from the sum to

infinity by less than .

Fone s

22, Prove that the sum to n terms of the series

1 1 1
1.2.3.473.4.5.675.6.7.8 "

. 2 b dn+5 . £
is 7o, 12+m, where s, is the sum to 2n terms o

1-%+3-1+.... Hence find the sum to infinity.
23. If z is small, prove that

%, b2 23
(l)loglog(l+x)=‘ ~5+31 ~F}

(ii) #log i fg —sinx /(1 +a%) == 2535.
2
24, Prove that logsin 6 =log 0 -8 180 if0<O<m

95. Prove that hm( z __1 )=§.

z—1 logz
26. Find thesumsbomﬁmt.y of
1 1 ::3
() gtpate e ) gt Ry

where |z|< 1.

-1
27. Evaluste lim _tanlz —sinz

-2z +2log (1 +2)"
28. Neglectmg z‘, choose numerical values for @ and &, so that

azsinz +bsin? 3 ~ztanz = — 1z’
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cosa+cos 0
1 +cosacos @

in tan g , and state the conditions of validity.
Find the sums to infinity of the series whose rth terms are

29. Expand when possible icor‘(‘ ) as a power series

r 14+243+... +r 23 4+r-1
30. (2?—_"-1_)'i' 310 "_-'_(rT‘l_‘)"l__'I 321 ""‘_""—:!"'—- .
r+l 5r+1 (2r +1)®
33. (r+2).r!" 2. @r+on” 85, r+D°
36. Express 1 }{a 'i'!bz)-!»(“ ;llm}'-:-... as a power series in z,

ul
proving that the coefficient of z™ is s:bl .

3;171 Prove that e —4e*+6e % —de 3 5% = 16(z*-2%) if z is
small.

38. Prove that (1 +a)'+% =1 +z +2® +}2® if z is small.

39. If z is large, prove that (l +é)zﬁ e (1 - %) .

40. If z is large, prove that (1 +£):ﬂ2 e (l +1—21?).
41, If z"*? =qg", p is small compared to n, and a >0, prove that
-~ P

z:_a( 1’;logcl).

42, Expand 1 -acosu in ascending powers of @ as far as a3, if a
is small and v =k +asinu.

HARDER MISCELLANEQOUS EXAMPLES.

EXERCISE V. f.
. . . 28sin 0 +5in 26 .
1. Find an approximation for 20 - ~—9+6c0s0 "’ when 8 is

small.
2, If a>2b>0 and 0 < z <, prove that z>(—3_'—:_‘~g-l$.
3. Prove the inequalities (due in effect to Archimedes)
. 3 . T
}{2sm0+me)>ﬂ>m. if 0< 3<.§.

4, If z and y are the lengths of the sides of regular polygons of
n sides inseri in a circle and circumscribed about it, prove that

the circumference of the circle is approximately %(2:: +y).
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5. If A and B are the areas of the polygons in No. 4, prove that
the area of the circle is approximately § (2B +A).

6. Two regular polygons of m and n sides have equal perimeters [.
Prove that if m and n are large the areas of the polygons differ by

about -—P( ! 1).

12\m* nd
7. Show that log7 differs from 2log3+2log5-5log2—4—§-§
by less than 2

3.448.449.450°
8. If zissmall, prove that log (secz) =2 tan’g , neglecting x%.
9. If log 1+z+a =3 (a,2") where z* < 1, prove that if n is even
I—-z+2?
a, =0, and that if n is odd and a multiple of 3, a,, = u%, and that ifn
is prime to 6, a,,"—-,—s;.
10. Find the coefficient of z" in the expansion of
log (1 +2x +22* +2%), when 2?< 1.
Consider separately the cases when n=0, 1, 2, 3, 4, 5, (mod 6),
11, If a, b, ¢ are consecutive positive integers, prove that

o -t 1
logh -3 (loga +logc}—2m, where e

12. Assuming that the coefficients of 2" may be equated when the
two sides of the identity log(1l +#*)=log(l +z) +log(l ~z+2*) are
expanded in powers of z, find the sum of the series

_3n -3+(3n ~4)(3n -5) _(3n-5)(3n - 6)(3n -17)
21 31 4!

13. From the identity log (1 —az) (1 - Bz)=log (1 — sz +px?), where
s=a+f3, p=afl, by expanding and equating coefficients of various
powers of z, show that

(i) e+ =a(s* - 55°p + 5p%);
(i) @ + B1® =35(s12 — 1381% + 655°p* — 1565°p® + 1825'p*
—91s%p +13p%).
14. If a+B +y =0, By +ya+aB = —s, affy =p, prove by a method
gimilar to that c?;.' No. 1':-'}, that A By =p» pro v
(i) a®+p*+42=3p;
(ii) of + 35 + 4% =bps;
(iit) o’ +B7 +9" =Ts*p.

1

+iies
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15. Deduce by expansion of log (1 —ax)(1 - fz)(1 - yz)(1 - 8z) that
Za® - 33afy =Za{Za? - Zaf}.
16. Express a" + 3" in terms of p and g, where a, 8 are the roots
of x* —px +g=0.
17. Use the identity (1 +yv’2+y=)(1 ~yVZ+y)=1+1* and the
expansion of log (1 +x) to prove tha
2" _ 21 2n-1 2" (2n —2]{2n—3) _
n" 231" 1 T 2n-2° 2t
2n—2 (2n-3)(2n-4)(2n - 5)
2n-3° 3!
where n is an odd positive integer.

18. If |z| < 1, prove that (1 +z)##(1 22> 1.
b
Deduce that ab® > (a;b)ﬂ-

=0,

if @, b are positive and unequal.

v
19. If £ >y >z>0, prove that (:+:) <(g—t—z) .
20. If xis small, show that the following functions can be arranged
in ascending order of magnitude by expanding in powers of z, as far
as 2® only, and arrange them :

(i) sin (tan1z) ; (ii) tan (sin—1z): (iii) tan-? (tan—z);
(iv) tan (tan z) ; (v) sin (sinz) ; (vi) sin—1(sin~tz).
o 2r2 4+ 3r-1
21. Evaluate Z W.
22. If z > 0, prove that (z—3)e=+32*+2z+3 > 0.
. 1\= 1, 11 7
23. If x is large prove that (l +¢) ﬂe(l —-2—._:-1-2—;-@—]‘?,).

24. If p is small, prove that suecessive approximations to a root of
P =q? are a, a — f;p loga, and a{l —iploga+3p*(2 +loga)loga)l,
where a > 0.

25. Show that the coefficient of z" in ¢ is

1 1n 2n il
i ﬁ+2ﬂ1+...+-;!+...},
and hence find the sum of the series in the bracket for n=4.

26. Prove that {ai-a+ 7 (= “

nl
sitgi— "+ o

}n! dJﬁarsfromT

by]cssthan“_l_l
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27. Apply the inequalities 1’%}‘l<lug (1 +;‘-)<;t. where n is

positive, to show that (1 +,-:—,) (l +n£’) - (1 +£,) is less than
Vv'e.*e, but greater than +/e.

28. If n is a positive integer, by expanding (e* - 1)® in two ways
and comparing the coefficients of various powers of z, prove that

1 - 1]"-1+-’3-{—{‘-_*2J{n —9)nei-... =0,
and find the values of

(i) Pt = (n - 1)" + (ﬂ 2)m — w(ﬂ_g}n,,,___;

1.2.3

(n=1)(n=- 21(
1.2.3

(i) n* —(n - 1"+ 4 1‘ (n—2)nt1 - . ) Lk S

(iii) n*1 —(n - l)"+’+—-(n 2yt (1—”2—5—“"2’(:: k) L

29. If n is a positive integer, prove that

22y 20D g —on .

30. If n is a positive int,eger, prove that

1“—?1.2“1-"—(;.—‘:2—23“—... ton+1 terms=(-1)".nl.

31. By axpandmg (e‘+l)"—(e=—l)" in two ways, prove that
ey (n - 1}’+c,(n 3P+ =n2(n+3).2

where ¢, +¢,% +c,2% +...=(1 +:c}", and n >3,
32. If n is a fixed positive integer and z is positive, prove by

differentiation that E’nl;’“;l,{"“'ir.m with @ Deduce that

x T n+l
(v5) < (i)™
33. If nis a positive integer and 0 < = < n, use the method of No. 32
x\n x Lk o
to find whether (1-2)" or (1--Z1)™" is the greater.




CHAPTER VI
THE SPECIAL HYPERBOLIC FUNCTIONS

From the expansions in Ch. V, we have
z a* 2P

= 1+ + +3,+...
z 22
-
and eZt=] ~ +E'Il 3!+....
Therefore, by addition and subtra.cnon,
22
;{s=+e")—-l+2 . !+ erreerenraanaas ceveeans (1)
3 z8
="' — - BEE B SEAREEANEERTESSFAR SRR
and }(e* ~e~%) =zttt (2)

These results should be compared with the expansions of cosx
and sinz in Ch. V, pp. 80, 81. The precise connection will be
explained after complex numbers and functions of a complex
variable have been defined. But equations (1) and (2) suggest
that the functions }(e®+e~%) and }(e®—-e~%) possess properties
analogous to those of cosz and sinz. We therefore define these
functions as the ‘hyperbolic cosine” and the *hyperbolic sine”
of z and we write

chx=}(e*+e*); shx=}(e*-e™3),

and we speak of these functions as *“coshz” and “shinex” (or
else “sinsh z’): they are sometimes written “ coshz” and “sinh z.”
We therefore have

x x
chx= 1+2!+4!+ g Arasarvedsesititateisnns (4)

h X
SRX=Xbgitgrtors i (5)

We also define the hyperbolic tangent, hyperbolic secant, hyper-
bolic cosecant, hyperbolic cotangent, which are written thx, sechz,
cosech z, coth z, by the relations

shz 1 1
thx_EE’ sechz_a, cosechz—m, =z

Note. thz is pronounced “thanz" or “tanshz,” and is some-

times written * tanh z.”
104
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Formulae for the Hyperbolic Functions. Putting e*=t, we have

1 1 -1 1
ch:c=§(i+—) and th:ﬁ(‘—?)g

2
- ] 2 s ==
S chiz —shiz= (t+s) 4( 7 1;
.. ch*x -sh?x= 1. [P { ;)
Similarly, shx;chz, +chix,shz,

1 1 1
+{(a-2)(e-2) (Do)
=t{2- 5 | =d(ertn-enny
=5h(zl+zl),
» sh(x, +x,)=shx,chx, +echx shx, .......cc.eee(7)
Also chz;chz, +shx shz,

=t{(a+g) (wrg) +(a-0) (5-0)}
=H{2ht 4 | =d{erterenmn)

—'Ch {zl +$” H
~ ch(x; +x;)=chx, chx, +shx; sh xg. sarressransenss(B)

We have also from the definitions the general relations
ch(—x)=chx; sh(-x)=-shX, .....cccivarreene(8)

and the special values
ch0=1; sh0=0. ...cccirriinininnnaa(10)

By comparing formulae (6)-(9) with the corresponding trigono-
metrical formulae, the reader will see that to every (general) trigono-
metrical formula there corresponds an analogous formula for the
hyperbolic functions which may be written down by Osborn’s rule:
In any formula connecting the circular functions of general angles,
replace each circular function by the corresponding hyperbolic fmwmm
and change the sign of every product (or implied product) of two sines.

_ tanA +tanB . :

Thus, from tan(}\+B)———-———l —tanAtanB’ we may infer that
thA +thB . sinAsinB , ..

th(A +B)= “1+thAthB’ ° A BacosAcosB implies  a

product of two sines.
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The rule does not apply to properties depending on the periodicity
of the circular functions or the values of the ratios of special angles;
e.g. the rule must not be used in connection with

sin(2r —z)=sinx or cos z+w)— 1 (cosz ~sin x)
- 4/ /2 -

For the present, this rule should be regarded merely as a
mnemonic. Its justification is best left till circular functions of a
complex variable have been defined, see Chapter X,

EXERCISE VI a.

Prove some of the following formulae in Nos. 1-10, and check the
others by the rule on p. 105.
1. ch(-z) =chz; sh(—2)= —shz; th{—z)= —tha. .
2. sh26=2sh6fché,.
3. ch 260 =ch®f +sh?0 =2¢h®0 —1=1+2sh?.
4. 1+cha=2ch?3; 1-cha=-2sh* 5.
2thz
1+th?z”
6. (i) ch{a—B)=chachB-shashf;
(ii) sh(a — ) =shach 8 —chash 3.

7. (i)sh6-sh¢=2 ch“"’ah_i

5. th2z=

(ii) cho—ch¢=2aha—';¢ah—2—é.
Write down the corresponding formulae for shf+sh¢ and

cho-+ehd. th § —th
8. th(0-d)=1 o g peiy-

9. (i) sh36=38chf +4sh®d; (ii) ch30 =4 ch?@ -3 ché.
‘Write down the formula for th 36in terms of th 8.

10. sech%r=1-th%x. What is the corresponding formula for

cosech®x ?
Write down alternative expressions for the following :
11, 1 -coth’z. 12. shz. 13. sh®x -shiy.
14. sh 6sh . 15. shfch¢. 16. ch6chd.

17. (chz—shz)t.  18. (chz +shaz)m, 19. (chz —shz)",
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20. Expand th(z+y +z).
21. Prove that ch(z +y)ch(z - y) =ch?z -!-ah’y

I'+thf
22. Prove that T=tho

23. Express ch § and th 6 in terms of sh 8.

24, Express chf and shf in terms of th 6.

25, Express sh 6 and th 8 in terms of k, where k=ch 26.

26. Express sh 8 and ch 0 in terms of ¢, where ¢=th }6.

27. If z=sinuchv and y=cosushv, find a relation between
(i) =, 3, us (i) =z, y, v.

28. Prove that cothg —coth 6§ =cosech 6.

=ch 20 +sh 20.

29, If tanf=tanath 8 and tan ¢ =cotath 3, prove that

Y )

30. Prove that ch¥ 0 +¢) —ch?(8 — ¢) =sh 20sh 24.
31. Prove that sin®*@ ch?¢ +cos?8 sh®$ =}(ch 2¢ —cos 26).
32. Simplify i—%.
33. Express sh 2z +sh 2y +sh 2z —sh (2z 4 2y + 2z) in factors,
34. If sinx chy =cos a and cosz shy =sin a, prove that
sh¥y =cos®z = tsina.

35. Simplify sh (logz) and ch (logz).
36. Prove that chz +ch 2z +ch 3z +... +chnz equals

¢ &b (n +3)z cosech iz - 3.

Differential Coefficients and Integrals. Using the definitions, we

have
d d [e®—e” eT+e %
d—:(shx)=—(—-—=)_ L mehx (1)
e +e® e - % :
dx(chz)_-dz —3 =3 =shX .ccerennnana(12)
A [shx.dx:chx; jch::.dx=sh:.
Further,

shz\ ch%z-sh’z
oo =g (52) ="z

- d—x(th x) =sech?xz. ......... cessrsrresessss{13)
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In general, expressions involving the hyperbolic functions are
integrated by methods similar to those used for the circular functions.
It should also be noted that the general solaution of the equation

%:y may be written in the form y=Ashz+Bchz where A, B
are arbitrary constants, just as that of %: -y may be written in
the form y=Asinz+Bcosz. (See Ex. VI. b, No. 27.)

. ar. /.=
Ezample 1. Find d—z[m 1(bh§)].

d 1 zN|_ 1 ?T
| ran (r.hz):l* 1 secht

1+t.h’;

_ 1 1
2T ,5) 2chz

2(.:11 5 +ehz

=}aechz.

Ezample 2. Evaluate !sh’:: dz.

!sh’xd:u:!}{chﬂz—l}dz
=1sh2z -z +c.

EXERCISE VI. b.
Differentiate with respect to z:

1. shz +chz. 2. chz, 3. shiz,

4, shzcha. 5. cosechz. 6. sech z.

7. cothz. 8. log (shz). 9. log(chz).

10. log(thg). 11, tan—1(cothz). 12. log(shz +chz).
Integrate with respect to =:

13. ch2zx. " 14, sh3z. 15. thz,

16. cothz. 17. shiz. 18. cosech®z.

19, th*z. 20, coth®z. 21. sechz.

22, cosechz. 23, shxsh 22, . 24, chiz.
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25, What is di::(Ch zcosx +shzsinz)?
26. Find the value of schz sinz dz.

27. If y=ashnz+bchnzr where a, b, n are constants, prove
that g=n’y.

28. (Behaviour of shx and chz).

(i) Prove that chz is always positive and that shz has the
same gign as z.

(ii) Deduce from (i) that shz steadily increases as z increases,
that chz steadily decreases if z is negative and steadily
increases if = is positive, as z increases.

(iii) What is the minimum value of chz ?

(iv) How does chz behave when 2+ and when z—+ —w ?

(v) How does shz behave when z -« and when z— - ?

(vi) Find the limit of 2% when z— +o and of 2% when
T+ -, e e
shz

ey T .. shz
(vii) Find the limit 0 — when z— +w and of —
z—h—i). e*

(viii) Draw in the margin the phs of shz and echz. Compare
) each with the graphs clgfma* and e*. [The graph of cl-}):v is
called a Catenary, Eecausa it is the curve in which a uniform
flexible chain with fixed ends hangs.]
29. (Behaviour of thx and coth z).
(i) Prove that thz and coth z are both odd funections of z.

(ii) Prove that thz steadily increases as z increases. What
conclusion can be drawn from the fact that

when

c%_cot.h:= —cosech®z ?
(iii) Find the limits of thx when z-—» 4o and when z—+ —w.
‘What are the limits of coth z in these cases ?

(iv) Discuss the behaviour of th 2 when z— 0, (a) through positive
values, (b) through negative values.

(v) What is the slope of y=thz at z=0?

(vi) Prove that [thz| <1 and [cothz| > 1 for all values of =z,
(vii) Draw in the margin the graphs of thz and cothz.
30. Draw the graphs of sech z and cosechz.
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Inverse Hyperbolic Functions. If y=shz, then e —e*=2y;
S e -2yeT =1 +93;
S (e -yt=1+y%;
SoeT=y /(1 +y0).
But e*>0; .. y-+/(1+4? is not a possible value of e}

o m=log[y + /(1 +3%)].

Since sha increases steadily as x increases from —w to 4o, it
is clear that for any value of shz there is only one value of z. If
y=shz, we write z=sh~ly. The function shly is therefore a one-
valued function of y given by the relation

sh=ly =10g[¥ + V(1 +T].  ceererrverererennenni(14)

This inverse function, sh™y, is therefore not really a new function,
but nevertheless the notation is useful.

The reader has seen (Ex. VI. b, No. 28) that, if ¥y =chz, ¥ has no
value less than 1, and that to any value of y greater than 1 there
correspond two values of ;, numerically equal but of opposite sign.

The function xz =ch™1y is therefore only defined for values of y > 1
and is a two-valued function.

The reader should prove, by the same method as that used above
for sh™y, that

ch™y =log[y+ v(y* - 1)]=xlog[y + v/(y* -1)]. .......(15)

Similarly, the reader will see from the results of Ex. VI. b, No. 29,
that, if y =thz, -1 <y< 1, and that to any value of y in this range
there corresponds one value of z.

The function z=th™y is therefore only defined for the range of
values -1<y<1 and is a one-valued function. By the same
method as before, it may be shown that

1+y
—1 = 1 - arames
th-iy=1log (1 —y)' (16)
Applications to Geometry and Integration. The equation
ch®f —sh?6 =1
shows that the coordinates of any point P on the hyperbola
zt y?

al bt

=1
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may be written (ach 8, bsh 0); this is analogous to the use of the
eccentric angle for the ellipse, (cf. Ex. VI. ¢, No. 13). Further, if O
is the centre and if A is the vertex (a, 0), it may be shown that the
area of the sector AOP is } abf (Ex. V1. ¢, No. 14).

Another important application occurs in integration. Just as
integrals involving +/(1 —23) or 4/(a® —z?) can often be evaluated by
the substitution # =sin 0 or z =a sin 6, so integrals involving /(1 +2?)
or+/(a® +2®) can often be evaluated by putting z=sh8orz=ashé,
and those involving +/(z®~1) or 4/(z®~a?) by putting x=ch¥ or
z=ach#.

1
Put z=|al|.sh§; .. dz=|a|.ch0.db;
. . _ lal.ch® _ _
». the integral —!m.dﬂ—gl.dﬂ—ﬂi—c
=sh‘1(—?——)+c
|a
=log[z + /(a* +2%)] +¢,

where ¢ is a constant.
Ezample 4. Evaluate I-;/(a:' —4)dz, where z < —2.

Here it is not possible to put z=2ch 8, because z is negative,
while 2ch 8 is positive. But we can put = -2ch§, and we can
take 8 as positive.

Then +/(z*-4)= +2sh6; also dz=-2sh0.d0;

~ the integral =§(2sh8}.(—2sh6}d8=2]{1—chzﬁ)dﬁ
=20 -sh 20 +c=26 -2shOchf +c

=2 c.h-l(-’—;) +%==v’(==’ -4) +c,

where ¢ is a constant.
The difficulty of sign illustrated in this Example does not arise

in numerical work because, if an integral such as I—s +/(z? —4)dx
occeurs, it is natural to begin by substituting z = - £, a.n:i‘ this reduces
the integral o r V(£ -4)dZ, so that £ is positive throughout the
given range of va?luas.
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EXERCISE VI ¢
1. Prove that, if y > 1, ch™ly = xlog {y + +/(y* — 1)}
1 +Y,
1-y°
3. Draw the graphs of ch~'z and sh1z.
. Draw the graphs of th-'z and coth—1z,

o

Prove that, if |y < 1, th-'y=}log—=

4
5. Prove that, if 0<y< 1, sech“y:*log] + ‘\/;l i
6

. Express cosech-’y in logarithmic form, (1) if y > 0, (ii) if y < 0.

7. Prove that ﬂ(sh 2)= 4 — 11+ =

o

Prove that ;- (ch-1 z)=4 W_} » and explain the ambiguous

sign, showing how to distinguish between the two cases.
. a . .1
9. Prove that, if |z| <1, E(t.h z}_T-:?,

th-1z) = -1

10. Prove that, if |z|>1, -1

d
d-—z[co
11, Eliminate u from the equations:

(i) z=achu, y=bshu;

(ii) z=ach(u+a), y=bsh(u+0).

12. Prove that z=ach(u+a), y=bech(u+B) are parametric
equations of a hyperbola.

13. Prove that the chord of the hyperbola z? — y* =a® joining the
points (ach 8, ash 8)(ach ¢, ash ) is
-

B+d> yahe"'d’

zch =ache

2
14. Prove that the area between the hyperbola ?:.—g,=l, the

z-axis, and the ordinate from P, (ach, bsh#), is }ab(sh26 -26)
and th;;%ghe area of the sector bounded by the curve, the z-axis and
OP is .

15. =athé, and compare the
result with that obtained by expressing the integrand in partial

fractions.

16, Evaluate “7{;}‘2’_—“;) where 2? >a?, (i) for 2> 0, (ii) for z < 0.
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17. Evaluate ! +/ (23 +a?) dz.
Evaluate the following integrals &

18. “* V(2? -4)dz. 19. E“_—‘\/(;+4)d“'
2. [..5 v(zl-m)d“ 21, Sv’(f-:-a)ds.
22, ],/(x' -a%)dz, if z>|al. 23, I‘/(;'“)dx_

24. Prove that lseca:da::Bth-l(tang) if tan?<1, and find

2
the corresponding result when tan’g >1 (ef. Nos. 8, 10).

EASY MISCELLANEOUS EXAMPLES.
EXERCISE VI. d.

1. Prove that (chz +sh z)(chy +shy) =ch (z +y) +sh (z +y).

2, Prove that ch®z —sh®z=1+]sh?2z and express it in terms
of ch 4z,

3. Simplify
{sh (z - y) +sha +sh (z +y)}={ch(z -y) +chz +ch (z +¥)}.

1+th 8\ _
4, Prove that (1 —thd =ch 60 +sh 66.
Differentiate with respect to @ :
5. /1 +z* +sh-lz, 8. zv2? —qa? —a'ch“g-
7. sech—z. 8. cosach—lg .
9, zshz, 10. e3*gh bz,
Integrate with respect to z:
11. ex(thx +sech®x). 12, shzsh 2xsh 3z.
13. eo%shba. 14. shz

(1 +chz)(2+chz)*

15. Find the parabola which most closely approximates to y =chx
near the point (0, 1), and deduce the radius of curvature of the
catenary at that point.

16. Find the angle of intersection of the curves y=1+chz and
y=e",
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17. If 0 > 0, prove that ch@ >sh8 >0 >thé,

shz

18. Evaluate llmu = and lim —— &

z—vl}thx

19, Evaluate lim (; —uoth‘z) .

z—0

20, Prove that lim w:&.
z—>0 =

21. Show that shz —~thz =}a?, if x is small.

22. Express z cosech  in terms of powers of 2 when z is so small
that z* is negligible.

23. Prove that chz < §, if |z] < 1.
24. Prove that shz < %, fo<z<l.

25. Prove that 2(chz —1)<ashz.

26. Show that z=1-9 is an approximate solution of r=2thz,
and find a closer approximation.

27, If tanx =thy, prove that 2 tan—(sin 2z) =tan~(sh 4y).
28. Prove that sh—1(cot 6) =log (cot 0 +]cosec 8 [).
29. (i) Express th-lz +th-1y in the form th-1p;

(ii) Prove that. if x, y are the coordinates of a point P and
th—1z +th—ly =¢, a constant, then P lies on a hyperbola
W1th asymptotes parallel to the axes.

30. If P, Q are the points (ach#, bsh#8), (ach¢, bsh¢) on the
hyperbola o g:—l prove that
(i) the area of the segment cut off by PQ is 4ab {sh (6 — ¢) — 0 + ¢} ;

’2“"’. bghf-i;i) is parallel to PQ.

(ii) the tangent at (a ch 8

. 0 - 0 0
(m)t.hepolaorpam(acha';"‘aech 2¢.bah ;‘Psech—zf’)

31. By expressing ché, sh8 in terms of t.hg(_—.t), find from
z=achf, y=>bsh6, rational algebraic parametric equations to the
hyperbols, g—%:=l. Show that two points of the curve on

opposite branches cannot be represented by one set of parametric
equations in terms of @, but can be represented by one set of para-
metric equations in terms of an arbitrary parameter ¢.
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fofiheU::tiggtf;n;EIzh;—[\l{l+(%)’}dztoshowthat Y -st=1

33. What curve is represented by the parametric equations,

==ash'0,y=2ash 01 Apply the formuls, s=(/{(%)"+(%)"} as,

to show that the length of the arc of this curve, measured from the
origin, is @ (0 +sh 8 ch 6).

HARDER MISCELLANEOUS EXAMPLES.

EXERCISE VI e.

1 LA =22 _ ch 25 +c0s 2y, find th 22 and tan 2y in terms

of a and b.
2. If tanz=tan Athy and tany =cot A thp, prove that
tan (z +y) =sh 2p cosec 2A.

3. Prove that tan (2 tan~%(tan a th 8)} = —S2.2ash 28

1+cos2ach 28"

4. If chu =secf, where —7 < 0 < =, and if uﬂ is positive, prove
that shu=tanf, u= log (sec 6 +tan 6), andt.h tang
the results affected if uf is negative ?

5. Evaluate & th-1%tb(zta)+e o

. dx Y
y=+(ax*+2bx+¢) and y; =+/(ax®+2bz; +¢).

. 1
6. Evaluate ‘(z —Z;) v/ (az® +2bz +¢)

7. If n> 1, prove that j: {V(=*+1) -z}“d¢=§‘r’t’,‘i‘

How are

dx by means of No. &,

8. Prove that 2 (2 +chz) > 3shz, for z > 0.

9. Fmdwhather—orsz is the greater when z is amall.

cosecf +cosechf 2 7
10. If 6 is small, pmvef.hat——ai—— 7= 180"

11. Solve the equation ch (logz) =sh (log 4z) +1.
12. Show that z=log2 +}a is an approximate solution of
2e*sh2=3+a )
where g is small, and find a closer approximation.
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13. Prove that sinz =thmx where m is positive, has an infinity
of roots, and that the large positive ones occur in pairs near(2n + ),
and that closer approximations are

(2n +}) v+a—ma® where a=sech (2n +4%)mmr.
14. Prove that (ch 8 +sh 8)" =chnf +shnf.
15. Prove that 2chna=(cha+sha)? +(cha-sha)®
16. Express ch 5z in terms of cha.
17. Express sh 5z in terms of shz,

18. Express%mtarmsofshz.

19. Prove that 64ch’z=ch7z+7chbs+21ch3z+35chz, and
express sh” z in terms of hyperbolic sines of multiples of .

20. Express sh®z in terms of hyperbolic cosines of multiples of z.

21. Prove that

0 nl
(1+ch0 +sh 60 =27 chn ¥ (ch % +sh %),

N_22élFi.m:l an expression for (chf+sh@—1)" similar to that in
0. 21.

23. Prove that

tan20+th2¢\ ., _ (tanf—thé\ .
tan 20 —th2g) T 1 1(mm‘ 5+t.h_¢)‘m (cot fcoth ¢).

24, Sum the series sh a +sh 2a +sh 3a +... to n terms.
25. Sum the series cha +ch(a+ f8) +ch(a+28) +... to n terms.
26. Sum the series ch 6 +2c¢h 26 +3ch 360 +... to n terms,
27. If n is a positive integer, prove that
chz+nch2z+ P2k 3z 4 ... to (n+1) terms

1.2
(ot

s

28. Prove that the sum to infinity of
1+4ch6+;ch20 +5;ch 30 +... is e ch (sh 0).
9. Find the sum to i.n.ﬁ.nity of
sh8+2lsh28+ ah38+....

80. If 0 < a < @3, show that themmtomﬁmtyof
sha sh2a sh3a _ is 1o e% +ef
2P 3P Beeie
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31, If ~fB<a< f3, show that the sum to infinity of
sha sh3a  shje sha

. - .
T 38 T pep v isdtan (chE)

32, Find the sum to infinity of
sin 6 sin? @
ch8+-—l—!-ch28+ 37

33. If [z|< et prove that if a>0

ch30 +....

< h

117



CHAPTER VII
PROJECTION AND FINITE SERIES

Projection. The projection of a point on a straight line is the foot
of the perpendicular from the point to the line.
If, in Fig. 45, N,, N, are the projections of A;, A, on Oz, then N;N,
is called the projection of A,A; on Oz.
If O is the origin, Oz the z-axis and (z,, ¥;),
A A (23, ¥) the coordinates of A;, A,, then
et Projection of A;A, on Ox=N,N; =X, ;. ......(1)

P This relation is true for all positions of A; and
6__&'__&2_: A,, provided that the usual sign-conventions of
¥IG. 45. coordinate geometry are observed.

The coordinates of a point are directed (i.e.
positive or negative) numbers; N;N; represents the displacement
from N, to N; and is measured by a positive number if N;—N, and
O—« have the same sense, and by & negative number if they have
opposite senses. (See also M.G., p. 37.)

If Ay, Ay, Aq are any three points in a plane and if all the projections
are taken on the same line Oz, then
projection of A A, =projection of AjA, +projection of A,4,. .....(2)
If N;, Ny, N; are the projections, and (xy, 1), (% ¥a)s (%3, ys) are
the coordinates, of A, As, A, then
projection of AjA; =N\Ny =23 ~2; =(23 — %) + (%3 —7,)
=N;N; +NaN,
=sum of projections of A A, and AA,.
A similar argument shows that, for any number of points in a
plane, the projection of AC is the sum of

the projections of AB;, BB, BB, ..., B
B, 4B, B,C. (See M.G.Ch. V.) &1 \
The followmg results are evident irom \ '82
Fig. 46. Az 1
{1]If0’::’mpamllaltoandmthesama o : et
sense as Oz, the projections of AjA; on Ox J gt

and 0%’ are equal. Fie. 46.
(ii) If two lines AA,, B,B, are equal and
parallel and in the same sense, their projections on any line Oz
are equal.
118
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(iii) The projection of AjA, on any line Oz is equal in magnitude
and opposite in sign to that of A,A, on Oz. For, if A, is (z,, ,) and
A, is (zy, y,), the projections are z, —z; and x; -, respectively.

Measurement of Angles. An angle from a directed line Oz to a
directed line A;A, is defined as follows, (see Fig. 47). Through A, draw
Az, parallel to Ox and in tho same sense ; then if a
rotation through an angle 0 in the anti-clockwise a@‘
direction will bring A;x, into the position AA;, the *
angle @ is called an angle from Oz to AjA,. This is Ay
sometimes written

L(AAs OZ) =0. ..ovvrevereneeeenn(3) © x

FIG. 47.
The following facts deserve notice :
(i) If 6 is an angle from Oz to’AA,, then 6 +2n= is also an angle
from Oz to A,A,, n being any positive or negative integer.

(ii) The angles from Oz to A,A, are not the same as those from
Oz to AjA;. 1f one value of £ (A,A;, Oxz) is 6, then one value of
L (AgA;, Oz) is O +7.

(iii) With the notation of (ii), one value of £ (Oz, AjA,;) is -6, and
the general value is 2n= - 6.

The equality sign in equation (3) is in fact the sign of congruence
(mod 27) ; and the order of the elernents in the symbol, £ (A,A,, Oz),
is relovant.

Evaluation of Projections, If the length of A,P is [ units, and if
L (AP, Oz) =0, the projection of A;P on Oz =lcos 0. .........e...(d)
This is a direct consequence of the definition

) of the cosine of the general angle (E.T., Ch. VII,
Ay x, p.99). Tor,if Az, is parallel to and in the same
P sense as Oz, £(A,P, Ajz,) =L (A,P, Ox)=0;
e .. projection of A,P on Oz
o = et
=projection of A;P on Az,
F16. 48, =1 cos 6.

Hoere, I is a signless number and the statement is true for all values
of §; I cos 0 may, of course, be either positive or negative.

Position of a point on a directed line. On a directed line A,A,,
there are two positions of P such that the length of AP is [ units,
see Fig. 49 (a) and Fig. 49 (b).

This ambiguity can be removed by a natural use of a sign-conven-
tion.
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If the sense of A,P is the same as that of A/A,, we write A,P = +1,
and if it is opposite to the sense of A,A, we write A\P = ~I. By means
of this convention, the position of a point P on a directed line is fixed

p
] -]
Ay Xy Ay %
A, Az
—— e
(o] = (o] *
FIG. 49 (a). F1a, 49 (b,

uniquely by the directed (positive or negative) number which is the
measure of A;P. It is often convenient to represent this directed
number by A,P.

‘We can now replace equation (4) by the following :

If the directed line A\A, makes an angle 0 with Oz, and if the position
of P on AA; 18 given by the directed number A,P, then

the projection of A,P on Ox=A,P.cos 0. ............(5)

For, in Fig. 49 (a), (AP, Oz)=L(AA,, Ox) =0 and AP = +I,
where I units is the length of AP ;

-. by (4), projection of A;P on Ox =l cos § =A,P . cos 6.

In Figs. 49 (a), 49 (b), the projections of A;P on Oz are equal in
magnitude and opposite in sign ;

.. in Fig. 49 (b), the projection of A,P on Oz = ~icos 8;
but in Fig. 49 (b), AP = ~1;

.. the projection is A,P cos 8, as before.

Projection on the axis of y. The axis of y is the directed line
through O, which makes +'—2r with Oz, and the y-coordinate of any

point P is the projection of OP on Oy.

It follows, by the same argument as before, from the definition
of the sine of the general angle, that if £(A,A,, Oz) =0, and if P is any
point on the directed line A;A,, given by the directed number AP,

then the projection of A,P on Oy =A,P.5in 0. ............(6)

Ezample 1. Find, with the data of Fig. 50, the projections of
OB on Oz and Oy.

L(OA, Oz) =a; but the directed line AB is 2%‘ ahead of OA;
3

S £(AB, Oz)=a+
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.. the projections of OA, AB on Oz are I cos a, m cos (a + %T-r).

.. projection of OB on Ox =1 cos a +m cos (u + 3?“-)

Fi6. 50.

=l cos a+msin a.

Bimilarly, projection of OB on Oy =Isin a+msin{a +3-§)

=lsin a —m cos a.

Note. It saves time in working examples to adjust the signs of
the terms by inspection of the figure ; a glance at Fig. 50 shows that
the projection of OB on QY is I sin a —m cos a, not I sin a +m cos a.

EXERCISE VIL a.
1. In Fig. 51, ABC is equilateral and .(AB, Oz)=0; find

expressions for (1) L(BC, Oz); (il) L(CA, Ox); (iii) L(BA, Oz);
{w) L(Oz, AC). -

c

0 x
Fra. 51. Fia. 52,

2. In Fig. 52, PQRS is a square and L(PQ, Oz)=¢; find ex-
pressions for (i) 4(PS, Oz); (1) (RS, Ozx); (iii) £(8Q, Ox);
(iv) (RP, Oz).

3. With the data of No. 1, name a directed line such that the
angle from Oz to it equals (i) g+8; (ii) 8-%—5.
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4. With the data of No. 2, name a directed line such that the
anglo from Oz to it equals (i) b~ ; (i) -+

5. With the data of Fig. 53, find the projections of the directed
lines AB, CD, EF, (i) on Oz, (ii) on Oy.

g
D F A
57 13' /r
le
oo o A8
0

F1a. 53.
6. With the data of No. 2, if the length of PQ is ¢ units, find the
projections of the directed lines RQ, QP, @8, (i) on Oz, (ii) on Oy.

7. In Fig. 54, ABCDEF is a regular hexagon; the length of AB is
: Bmétg, find the projections on AK of the directed lines AB, BC, AC,

L

E D
F [+
A B
K
Fi6. 54, Fi1a. 55,

8. With the data of Fig. 55, find the projections of AC, (i) on Oz,
(ii) on Oy.
9. With the data of Fig. 56, find the coordinates of C and D.

y
,c
Dﬂ,_ A
B{od 5
2 a
x 0 =

[+ ] A
F16. 56, Fia. 57.
10. Fig. 57 represents a wheel of radius 1 ft. on an inclined plane;
OA =5 fit. the height of its centre above the horizontal Ox.

11. If from the point (%, k) & line of length r is drawn in a direction
making an angle 6 with Oz, what are the coordinates of its other
extremity !
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12. If the directed line AB is of length g, and if L(AB Oz)=¢, and
if B is the point (h, &), what are the coordinates o

13. If AB, BC are of lengths 7, r, and make angles 6,, 0, with Oz,
what is the length of AC ?

14. In Fig. 58, OD and PR are perpendiculars to AB, the length
of OD is p, and the coordinates of P are (%, k); find the length of RP
by taking the projections of RD, DO, ON, NP on OD.

2
Zpefececizag

F1a. 58,

Addition Theorems. To prove that
(i) cos (A+B)=cos Acos B-sin Asin B3
(ii) sin (A +B)=sin A cos B+cos Asin B;

for angles of any magnitude.
Let the dircoted lines O, OP, Oy malke angles A, A +B, A+ with

Oz ; and let the projections of P on 0§, Oy be N, M. Suppose that
OP contains [ units of length.

The positions of N, M on the directed lines O£, Oy are given by the
directed numbers which measure ON, OM, and these are, by the
definitions of the cosine and sine of the general angle, I cos B, I sin B.

.. by equation (5), p. 120,

F1o, 59, i F1a. 60,

Projection of ON on Oz =IcosB. cos A.
Projection of OM on Oz=IsinB. cos (A +;).
Also the projection of OP on Oz =1 cos (A +B).
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But the projection of OP on Oz is equal to the sum of the pro-
jections of ON, NP, i.e. to the sum of the projections of ON, OM, on Ozx.

. lcos(A+B)=lcosBcosA+lsinB cos (A -!-%)-

But cos (A +g) = —sin A, see E.T., pp. 199, 200 ;
s ©os (A+B)=cos A cos B-sin Asin B, .....coceeneee7)

Further, if the directed line Oy makea +—- with Oz, the projections
of ON, OM, OP on Oy are

lcosBsin A, lsinBsin(A+
~. as before,

Isin (A +B) =1 cos B sinA+zsinasin(A+§).

;), Lsin (A +B).

But sin (A +3'§) —cos A, see E.T., pp. 199, 200;

.. sin (A +B)=sin A cos B +cos Asin B. ............(B)

This proof holds good for values of A and B of any magnitude,
positive or negative. Figs. 59, 60 show two possible cases; the

F10. 59, F10, 60.

mader should draw other figures (e.g. A =100°, B =50° or A=220°,
=160°) and satisfy himself that the proof applies to them, without
zmy modification.
Since the results of this chapter and their proofs hold for negative
angles (see E.T., Ch. XIV, p. 198), we may write —B for B in (7)
and (8). This gives

cos (A -B)=cos A cos (- B) ~sin Agin (- B) ;
o cos{A-B)=cosAcosB+s8in ASiNB ...cccovrvninnnnn (D)

and sin (A -B) =sin A cos (—B) +cos Asin (-B);
o 6in (A-B)=sinAcosB-cosABInB. ..cceenreeen.(10)
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Application of Projection to the Summation of Certain Series.
Sum to n terms the series
(i) cos a+cos (a+3) +cos (a+208) +... 3
(ii) sin a +ain(a + B) +sin (a +2f3) +... .

In Fig. 61, OA,, AA,, ..., A,_,A, are equal chords of a circle of
radius R, forming an open polygon with exterior angles 3.

Fie. 61,

Each chord subtends an angle 33 at the circumference and
o from the formula R=;——, its length is 2R sing; also OA,
subtends an angle ’%). at the circumference, therefore OA, =2R sm’lgg

Draw Oz so that £(0A,, Oz)=a.

Then £(AAy Oz)=a+8; L(AAy Oz)=a+28;...

L(Ay_1Ay Oz)=a+(n—1)B. Also £(OA,, Oz)=a+}(n-1)B.

Now the projection of OA, on Oz is the sum of the projections on
0z of OAy, AAg, ... » Ap_sAn

. . nf n-1
A 2Rsm?cos(a+ 3 ,8)

=2R sin% {cos a +cos (a+ ) +... +cos (a+;r—_fﬁ}};
& 03 a+cos {a+ ) +cos (a+28) +... +cos (a+n—18)
cos (u +";l ,G) . ain’%—aJIE
sing

v eeeerrnreeseneenrsnns(11)



126 ADVANCED TRIGONOMETRY
Similarly, taking the projections on Oy,
sin a +sin (a + 8) +sin (@ +28) +... +sin (e +n -1 8)

sin (a +’3-;—1 B) . sin '%8
= 3 v erereereesesenee(12)
sin E

Relation (12) may be deduced from relation (11) by writing
a —; for a.

EXERCISE VIL b.

1. Examine the proof on pp. 123, 124 for the expansion of
cos (A +B), drawing appropriate figures, in the following cases:

() r<A<3Z, gqs-mr; (ii}%r<A<2r, w<a<3—;';
- ™ . 3
(1:1}0<A<-2—, -E{B{O; {iv) §<:A<7r. —?¢B<—1r.

2. If in Fig. 59 the coordinates of P referred to Oz and the line
Oy which makes +§ with Oz as axes, are = and ¥, what are the co-
ordinates of P referred to Of and Oy ?

3. Answer the same question as in No. 2 for Fig. 60.

4. Write out in full the proof by the method of pp. 123, 124, that

cos (A —B) =cosA cosB +sinA sinB.
A

e é
o x
Fia. 62,

5. In Fig. 62, OA=0B, AM=MB, LzOA =0, Lz0B=d; express
the projections of OA, OB in terms of those of OM, MA, MB, and, by
adding, prove that

0+ 6-¢.

(i) cosﬂ+cos¢=2cos-2—coa 5

(i) sin 8 +sin ¢ =2 sin LEL cos L9




PROJECTION AND FINITE SERIES 127

8. With the data of No. 5, by subtracting, prove the corre.
sponding formulae for cos 8 ~cos ¢ and sin 6 —sin ¢.

7. By projecting the sides of a regular pentagon on suitable lines,
prove that

(i) cos 5° +co8 77° +cos 149° +cos 221° +cos 293° =0;

(ii) sin 5° 4+ sin 77° +sin 149° +sin 221° + sin 293° =0,
8. Prove the results of No. 7 by formulae (11) and (12).
9. Prove by projection that

cos 0 +cos (& +2%)+cos (8 +%r) +... to n terms =0,

Is a similar result true for sines ?
10. Use formulae (11) and (12) to verify the results of No. 9.
11, By means of the identity
2 sin 6 cos k0 =sin (k +1)8 —sin (k - 1)6,
prove that 2 sin 8 {cos 8 +cos 36 +... +cos (2n —1)6} =sin 2nb.
Prove this also by formula (11)
12. By means of the identity
2 sin 6 sin k0 =cos (k - 1)8 —cos (k +1)6,
find the sum of the series sin 6 +sin 38 +sin50 +... to n terms,
Check your result by formula (12).

Series. The formulae (11), (12) give the sums of series of sines
or cosines of angles which are in A.p. Their utility justifies the
addition of an analytical proof, which also illustrates an important
method of summation.

Sum to n terms the series
cos a +cos (a+8) +cos (a +208) +... .
Multiply each term by 2 sin 3.
2 cos a . sin 8 =sin (a +3B) —sin (e -3B),
2 cos (a +f3) . sin §8 =sin (a +2P) —sin (a +1B),

2cos (a+n—1p) . sin}B =sin (a +n —3P) —sin (a+7 - 38).
By addition, .
2 sin §f. (sum of series) =sin (a +7 ~ 38) —sin (a - }8)
=2 cos (a+4n — 1B) sin nf.
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This gives for the sum of the series the same expression as was
obtained in relation (11), p. 125.
The sum can be expressed in words as follows :

cos (average angle), sin (n times semi-difference)
sin (semi-differencs)

and it is best to remember it in this form.
The reader should show that the series

sin @ +sin (@ + B) +sin (@ +28) +... +sin (a+n -1 )
can be summed by multiplying each term by the same factor as
before,2ain—§,andthntthesummaybewﬁttm

3 evenna(13)

sin (average angle) . sin (n times semi-difference)
sin (semi-difference)

The fact that the second series can be deduced from the first by
writing a — 4= for a shows that the multiplier 2 aing required for the

v eeeenn(14)

first must equally suit the second series.
If = + 3 is written for § in the two series, we obtain

(i) cosa —cos (a+pf) +cos(a+20) —....
(ii) sin a —sin (a + B) +sin (a +28) —... .
These could be summed directly by using the multiplier,
T+ B
2 2"
The sums of the sine and cosine series are deducible from one
another by differentiation with respect to a.
The application of differentiation or integration to deduce the sum
of one series from that of another is frequently useful.
It is justified by the identities :

du dv_d(u+v) ([° LA L
St g Ludas+§“vdz—L(u+v)d.z.

But this argument does not apply to an infinite series, because the
sum of an infinite series is not the sum of its terms, and term-by-
term differentiation or integration of an infinite series need not in
fact give the differential coefficient or integral of the sum to infinity,
unless special conditions are satisfied.

2 sin =2 cos
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Example 2. Sum to n terms '
cos?0 +cos?28 -l-cos’i%& s
The series =3 (1 +cos 268) + (1 +cos 46) +... + (1 +cos 2n6)
=}n + §(cos 28 +cos 40 +... +cos 2nb)

cos (n+1) 0 sin nf
=in 2sin 0
1
._.-2'+ o(sin2n+19 amﬂ)
_ sin (2n+1)0
=ten-V+—rgmy

Ezample 3. Sum to n terms:
s:_in‘a+ain’(u+ﬁ}+ain’(u +2B) 4. s
sin 30=3sin 0 -4 sin®0; ., sin®0=}(3 sin 0 —sin 36);
. the series =3{sin a +sin (a + ) +... +sin (a+n -1 8)}
~3{sin 3a +sin 3(a+B) +... +sin 3(a+n—1B)}
Bsin a+”;lﬁ)sin% sin(sa+3”2'3ﬁ)sin3—’;9
B - 3,3

EXERCISE VII e.

1. Sum to n terms: cosg+m3+ms%+...;

2. Prove thatcos T+oos4.;'+cos67’r -

T 3r B T
3. Prove that oSy +cos— +cosﬁ+coa i +¢08 ll"i"

4. If n -1 is a positive integar, prove that

Esmng and Ecos%— for r=1 to n, are both zero.

5. Provat.hat‘z‘.coa 2 1,for:'- =1tomn,is 3.

smﬂ-i—stn29+...+mn(ﬂ 18 nb
6. Prove that cos 0 +cos 20 +.., +cos(n~1)0 =tan5-.
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7. Sum: cosa —cos (a+3) +cos(a-+28) —cos (a +38) +...
(i) to 2n terms; (i) to (2n +1) terms; (iii) to m terms.
Sum to n terms the series in Nos. 8-17.
8. sina —sin(a+ B) +sin(a+28) —....
9. cosf —cos20 +cos36 —....
10. sin?6 +8in2260 +8in?360 +....
11. cos(2n —1)6 +cos(2n ~3)0 +cos(2n —5)0 +...:
12. cos O sin 260 +cos 20sin 30 +cos 30sindf +....
13. cos 6 —sin 20 —cos 30 +sin 40 +cos 560 —sin 66 —....
14. cos?0 +cos?(0 + ¢) +cos*(0 +2¢) +....
15. sin20 sin 20 +8in®20 sin 36 +sin?360 sin 46 +....
16. cos®0 +coe?26 +cos*30 + ... .
17. cos*@ +cos'28 +cos'30 +... .

18. Find the sum to » terms of sinf +sin 20 +sin36 +... and
deduce the sum to n terms of cosf +2 cos20 +3 cos30 +....

19. Prove that sin 6 + 3 sin 36 + 5 sin 56 +... to n terms
cos 0 sin 2n6 —2n sin 8 cos 2nb
2 sin20 -
20, If C=Z rcos(a+7 —1f3), for r =1 to n, prove that
2(1-cosB)C=(n+1)cos(a+n - 18) - cos(a - 3) - ncos(a+nf).

21, If —%{ 8<E,provethat(i}thasumofanynumbaroftermaof

the series cos @ —cos 36 +cos 56 —cos 78 +... is positive or zero and
less than 4/2; and that (ii) the sum of n terms of the series

sin § —}8in 30 +sin 56 —... is K; ¥secx {1 + (- 1)*1cos 2nx}dz.

The Difference Method. The series on p. 127 were summed by
expressing each term as a difference. No rule can be given which
shows exactly when or how to apply the method. Considerable
experience and ingenuity are sometimes required.

The essence of the method consists in expressing the general (rth)
term, u,, in the form f(r+1) —f(r).

Then 1wy +Uy+Uy+... +Uy =2{f(r+1) ~f(r)}, for r=1to n,
=f(n+1)-f(1).
The difficulty disappears if the reader is asked to prove that the

sum to any number of terms, say r terms, is ¢ (r), that is to say, if
he knows what the answer is to be,
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For w=(1 + g F e +2,) = (U F Uy o FUy)
=d(r) —$(r-1), :
and the known form of the answer therefore supplies the form of the

difference which he must obtain. In such cases, the work is sub-
stantially equivalent to the method of induction.

Ezxample 4. Prove that the sum to n terms of
tan 6 +2 tan 20 +4 tan 46 + 8 tan 80 +... is cot 8 — 2 cot (2"8).

If this form for the sum is correct, the 1st term, tan 8, must equal
cot 8 — 2 cot 20 ; we therefore start by proving that this is so.

cosf sin § _cos?f —sin?f

Now wts‘ma:m_cose_ sin 0 cos 6
cos 20
_m—-2 cot 20 ;

S tan 6=cot 6 -2 cot 20 ;
- writing 26 for 6 and multiplying by 2,
2 tan 20 =2 (cot 20 — 2 cot 46) =2 cot 20 — 22 cot 46.
Similarly, 2 tan 40 =22 cot 46 — 2° cot 86.
27-1 tan (27716) =2n-1 cot (27-18) — 2" cot (276) 3
. by addition, the sum to n terms of the given series is
cot 8 — 27 cot (270).

Ezample 5. Sum to n terms:

(i) cosec 26 -+cosec 460 +cosec 80 +... 3

(ii) 2 cosec 20 cot 28 + 4 cosec 40 cot 46 + 8 cosec 80 cot 86 +....

. 1 2 cos?d —cos 20
(i) We have cosec 26 T Y H
¢
o cosec20= 0080 _c0S20_ 0 cot 26,

25in 6 cos 0 sin 20
Similarly, writing 26 for 8,

cosec 40 =cot 20 - cot 40,
cosec 88 =cot 46 —cot 86,

. . L L |

cosec (2"0) =cot (2"10) - cot (276) 3
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. by addition, the sum to n terms of the given series is
cot 6 —cot (278).
(ii) Since diﬂ (cosec ‘ﬂ9)= —n cosec né cot nf, it follows at once

that the sum of the second series ia
- E% [cot 6 ~cot (278)] =cosec?d — 27 cosec? (276).

If a series such as (ii) ocourred apart from the series (i) which has
here served as a guide, the method would become apparent by using
integration. Thus
2 cos 20 db

Smioh = —cosec 20,

[s cosec 26 cot 26 dO .—.!

EXERCISE VIL d.

. 1. Prove that tan 0 sec 20 =tan 26 —tan 6 ; hence find the sum
to n terms of tan 6 sec 20 +tan 20 sec 46 +tan 40 sec 80 + ... .

2. Prove that tan 8 =cot 6 —2 cot 26 ; hence find the sum to
n terms of tan8+*tang+{tang+§tang+....

3. Prove that tan (a+#8)tan (a+r—-1p)
=cot B{tan (a+783) —tan (a+r-18)}-1;
use this result to sum to n terms a certain series,

4, Prove that tan 20 — 2 tan 6 =tan®0 tan 26 ; use this result to
sum to n terms a certain series.

5. Prove that sin'8—2sin‘g=2eosﬂsin’g; use this result to
sum to n terms a certain series. 0
. gin
6. {l} Prove that cot rf —cot (r +1)8 =m-

(ii) Sum to n terms, cosec § cosec 20 +cosec 20 cosec 30 +... .
7. Prove that the sum to n terms of

[/} i} 0 [} 0
tanéswﬂ-i-tan:sec?i-tan ﬁsec-;+...
equa.lsta.nﬂ—-mnéﬂ'—'.

8. Prove that the sum to n terms of
sin%@ _ sin®30 sin? 98
cos 36 " 3 cos 90 9 cos 276"'“'
equals §{3-" tan (3"0) —tan 0},
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Sum to n terms the series in Nos. 9-15.

9 sec 0 sec 20 +sec 20 sec 30 +sec 30 sec 40 +... .
10. tan @ tan 20 +tan 26 tan 36 +tan 30 tan 40 +... .
11. cot 6 cot 20 +cot 20 cot 30 +cot 30 cot 40 +... .

12 1 \ 1 + 1
* cos @ +cos 36 ' cos O +cos 56 ' cos 0 +cos 78
13. sin 6 sec 36 +sin 38 sec 90+sin 90 sec 276 +... .
1 6,1 ]
14, 880’94'-2-‘—8&03 '2'+Z§BBC=1+-...

1 6.1 ]
20+ tan® P> fant 2
15.tan0+2,tan 5+ tan it
16. Prove that tan™!(n+1)-tan—ln=cot™1(1+n+n?). Hence
sum the series, cot™13 +cot—17 +cot113 +... +cot~1 (1 +n +nl),

Sum to n terms the following series :

Foenn

17, tan (y3g) +en7 () +oan () +o o
18, tan—! (% +tan—1 («22;) +tan—1 (%) Foaee s
19, cot™ (ZB:) +cot™? (%2) +cot—1 (%’:) L

20. cot™1(2.1%) +cot™1(2.22) +cot2(2.3%) +.u s

EASY MISCELLANEQOUS EXAMPLES.
EXERCISE VII, e.
1. In Fig. 63, AB, BC are of unit length ; prove by projection that

cosa —gina=+v32 .cos(a-f-g).

What is the maximum value of cosa ~sina ?
C

»
ny

Fia, 63,
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2. Use the method of No. 1 to find the maximum value of
7Tcosa+24sina.

3. AD is an altitude of AABC, and Z is the middle point of AB.
Prove that the projection of ZC on AD is {¢sinB.

4. If a and b are given numbers, express aecos 8 +bsinf in the
form rsin(f+a). Give geometrical interpretations of r and a.
What are the maximum and minimum values of acos8 +bsin 6,
and for what values of 6 do they ocecur ?

5. Prove that = (sin%cosr—:) , for r=1 to n, is zero.

6. Prove that Ecos’(ﬂ +-2-:‘—E), for r=1ton, isg.

7. Find = (cosrfcost +10), for r=1 to n.
8. Find I {sin (a+78)sin (a +r +1 )}, for r=1 to n.
9. Sum to n terms :
sin 20 s8in? @ +sin3ﬂsin’§s—? +sin40sin®20 +....
10. Prove that

n
142 2 (cos racosf3) = cosmcos(nﬁ;élg ‘22221+ l}acosn,G

re=1
11. Prove that Z(rsinr0), for r=1to n, is
{(n+1)sinnb —nsin(n+1)0
2(1 —cos ) *
12, Evaluate Z(r?cosrf), for r=1to n.

13. Prove that sin §-sin 2% =2“cosgcos Eﬂi coséq,; , and deduce
the values of Elogcos o and Ez-“tanza',, forr=1to n.

14. Sum the series log cos 0 +log cos 26 +log cos 46 +log cos 80 +...
to n terms.

15. Evaluate llm M

when s, is equal to the sum to
tl.t.ermsofl—l+l—l+l—l+ -
16. If s, =Zsinrf, for r=1 to n, and if @ + 2rw, prove that
i SLFSa ... 8y

n—w n

Also find the same limit for £ cos (2r — 1) 0, for r =1 to n, when 0 # k.
17. Sum to n terms tan 0 +2tan 26 +4tan46 +....

=4cot 46,
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18, Sum to n terms tan®0 +22tan?26 +4%tan?df +....

19. Prove that 4% {3"—13in3(§,)}, for r=1 to n, is equal to

3"sin§, —-sin . Deduce another result by differentiation.

20. In attempting to draw a regular polygon AA a person
draws the sides A A., AzA,, ... in order each of Iel::gtfh c, Tmt. makes
each interior angle of the figure too great by a. Prove that the final

vertex, A, .., will be at distance csin%ucoscc (E— g) from A,.

21. If O is the circumcentre of the regular polygon AA,...A,,
prove that the sum of the projections of OA,, OA,, ... OA, on any line
1S zero. .

22. In No. 21, if P is any point, and R is the circumradius, prove
that PA;* +PA? +... +PA,*=n(R* +OP?).
23. If P is any point on the minor are AjA,,,; of the circumecirele
of a regular polygon AJA, ... Ay,yy, Prove that
PA, —PA, +PA; —...=0.
24. If O is the centre of the in-circle, radms a, of a regular polygon

AjA, ... A, and if P is any point, prove that the sum of the squares of
the perpendlculars from P to AjAg, AsAy, v s ApaAn, AZA; IS

n (a® +30P%),

HARDER MISCELLANEOUS EXAMPLES

EXERCISE VIL f.

1. ABC is a triangle, whose side BC is divided at K in the ratio
of p:g. If the projections of AB, AC, AK on any given line Oz are

denoted by AB, AC, AK, prove that (p +¢)AK =¢.AB +p.AC.
Obtain a specml result by taking Oz to be the side BC; and deduce
that (p +¢q) cot AKC =gcotB —pcotC.

2. OA, OB, OC are concurrent edges and OD is a diagonal of a

rectangular box. If-OP makes angles a, 8, ¥ and 0 with OA, OB, OC
and OD, prove that

(i) ODcos § =OAcosa +0Bcos 8 +0Ccosy;
(ii) cos®a -+cos®f3 +costy =1.
3. In any quadrilateral ABCD, prove that
a®+b? +¢® —d* =2ab cosB +2bccos C ~2accos (A +D).
4. In any pentagon ABCDE, where AB =a, BC =¥, etc., prove that
a? +b% —¢? - d? —e* =2ab cosB ~2¢d cos D - 2de cos E +2cecos (D +E).
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Sum to n terms the series whose rth terms are :

6. sinrzsin rysinrz, 6. cos?rfsin®0.
7. cosrf. 8. (n—r+1)cos(r-1)0.
9. rcos(n -r)0. 10. (n —r+1)cos®(r -1)6.
11, Prove that
7 +2(n —1)c05 0 +2(n ~2)60520 +... +2cos (n - 1)9 = [0,

12. Evaluate (n ~1)sin 8 +(n —2)sin 26 +... +sin (n - 1)6.
13. What is the product of
1+zcosf+x2cos20 +... +2%cosnl and 1-2rcosh+z®?
14. What is the product of
sin§ +2%sin20 +... +2"sinnfd and 1-2rcosf+z2?
15, Prove that
cos 0 cos 8 +cos%0 cos 20 +... +cos"f cosnf=

16, Prove that

1 +cos ¢ sec ¢ +cos 2 sec?d +.., +cosnpsech=
Sum to n terms the series whose rth terms are:
17, 275in?(27-18) cos (2728). 18, sin (2r -+ 1)0sec 2rf sec (2r +2)0.
19. sin 470 cosec rf. 20, cos(3716) cosec (376).
21, Sum to infinity the series :

sin nf cos™Hf
sin @ *

sin(n+1)
sintﬁcos"q'.t'_

12, 102 1.2
2,t.h 2+4,t.h 4+8,t.h s+....

22, AjA;... A, is a regular polygon, prove that
A +AAZ ... FAAL_; =FAA,? (n cosectZ -4).
23. AjA, ... A, is a regular polygon inscribed in a circle centre O,
radius R; P is a point near O. Prove that
op?

PA; +PAg+... +PA, ﬂm(ﬁ +35 )"

24, A regular polygon of n sides is inscribed in a circle centre O,
radius R; P is & point at distance ¢ from O. Perpendiculars are
drawn from P to the sides of the polygon. Prove that the sum of the
squares of the sides of the new polygon formed by the feet of these

perpendiculars is n (R? +¢?) sin’%::.
25. AB is a diameter of a circle centre O; %I is any point on the

circurnference; Q; Qa Qg ... @, are the middle points of the arcs
AQq, AQy, ... AQ,,_, respectively. Prove that

BQ,.BQ,....BQ, =§§:.0A~.



CHAPTER VIIL
COMPLEX NUMBERS

The Idea of Number. In elementary algebra it is found that
certain equations have solutions, whereas others, almost of the same
form, have none. The idea of number is gradually generalised, and
the possibility of the solution of a particular equation may depend
on the point to which the process of generalisation has been pushed.
Consider the equations :

(i) 2z=4; (i) 22 =5; (iii) 2z +3=03;
(iv) a*=4; (v) z'=2; (vi)2*= -1
In the algebra of natural numbers (i) and (iv) are satisfied by =2

and the others have no solutions. In the algebra of fractions (i)
and (iv) are satisfied by ¢ and (ii) by §. In the algebra of directed

(positive and negative) numbers of the type ig, each of the first

three has a solution and (iv) has the two solutions +3 and -$, but
(v) and (vi) cannot be satisfied.

The most difficult step in the process of generalisation is the
introduction of the real (rational and irrational) numbers ; this will
be discussed in the companion volume on Analysis. In real algebra
4/2 is available for the solution of equation (v). For many purposes
it is enough to have a number which approzimately satisfies an
equation, and this is the reason why the introduction of irrationals
is not urgent.

The rational real numbers have properties exactly analogous to

those of the directed numbers ;f‘g, in much the same way as the

positive directed numbers have properties like the signless fractions.
No real number satisfies the equation 2% = - 1, even approximately.

In the present Chapter, by introducing the complex numbers, we
shall carry out a further generalisation of the notion of number, and
by suitable new definitions of the meanings of addition, multiplica-
tion, ete., shall show that equations like 2* = —1 (in which -1, as
well as z, is a complex number) are satisfied by numbers of the new

type.

Definition of a Complex Number. Consider a plane and in it two
rectangular axes Oz, Oy. The position of & point P in this plane,
or the displacement made in moving from the origin O to the point

137
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P, requires for its determination two real numbers, e.g. the coordi-
nates of P referred to Oz, Oy.

An ordered pair of real numbers is ealled a complex number ; and
if @ and b, in that order, are the real numbers, the complex number
is denoted by the symbol [a, b].

Thus there is 2 unique complex number corresponding to every
point P of the plane, viz. the number [a, ] corresponds to the point
P whose coordinates are (a, ). Conversely, given a complex number
[a, b], there is a unique corresponding point P, with coordinates
(a, b), or a unique corresponding displacement, whose components
along the axes are a and b.

The statement that the pair of numbers which constitute a complex
number is * ordered '’ means that [a, 5] and [b, a] are distinct
complex nurmbers (unless @ =b). But for this, the one-to-one corre-
spondence between complex numbers and points in a plane would
not hold ; just as the points (2, 5) and (5, 2) are distinct, so too
are the complex numbers [2, 5] and [5, 2].

Definitions of Fundamental Operations. In a logical introduction
to the theory of fractions or negative numbers, it is necessary to
begin by defining the meanings of the elementary operations as
applied to these numbers. In the same way, we must start here by
making definitions of equality, addition, etec., for complex numbers.

These definitions simply state what meanings are to be given to
the signs =, +, —, x, and +, in this new kind of algebra, which
might be called the ‘algebra of ordered number-pairs’, but is
actually called the ‘ algebra of complex numbers’.

(i) Equality. The two complex numbers [a, b] and [c, d] are
called equal if and oply if a=c¢ and b=d. In this case, we write
[a, b] =[c, d].

This definition secures that the points (and displacements), which
correspond to two complex numbers, are the same points (and the
same displacements) if and only if the complex numbers are * equal.”

(ii) Addition., The complex number [@+c¢, b+d] is called the
sum of the two complex numbers [a, b] and [¢, d] ; and we write

[a, ] +[c, d]=[a+¢c, D+d]. ccovirivnrmnnninrnsnnnnnans(1)
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If P and Q are the points corresponding to [a, b] and [e, d], see
Fig. 65, and if QOPR is a parallelogram, the point R corresponds to
[a +¢, b +d], for the projection of OR on Oz is
equal to the sum of the projections of OP, PR
or OP, OQ on Oz ; and similarly for projections
on Oy. o

In vector notation, OR =0P +0Q, so the dis-
placement corresponding to the sum of two
complex numbers is the vector sum of the dis-
placements corresponding to the numbers.

(iii) Subtraction is defined by the relation,

[a, b] —[e,d)=[a—c, b=d). ceerrrrerrirrnrnrrennnen (2)
This is chosen because, by equation (1),
(@ —c, b—d] +[c, d] =[a —c+¢, b —d +d] =[a, b].
(iv) Multiplication is defined by the relation,
[2, b] x [c, d] =[ac —bd, ad +be]. ..ccveeerreeennna(3)
The reason for this (at first sight peculiar) definition will become
apparent in the next few pages, see especially Note 2, p. 142 A
complete discussion will be given in the companion volume on
Analysis. Any definition is legitimate, if not self-contradictory, and
this one happens to be the most convenient and useful one to make.
(v) Division. [a, b]=[c, d] is defined as the complex number
[x, ¥] given by [z, y] x[¢, d] =[a, b], provided that such a number
exists

By (3), this gives  [zc —yd, zd +yc] =[a, b] ;
S xe—-yd=a and zd+yc=b;
ac +-bd bc —ad
Tra YT gyge e e
= @, b)=[e, d] = %‘:{z—f, f:‘,’TZf]. ceverreeeneens(4)
This definition of division excludes the divisor [0, 0]. The number
[0, 0] plays a part in the theory of complex numbers, analogous

to that played by 0 in the theory of real numbers. Division by
[0, 0] is not defined.

.'. solving, T=— =d=0;

EXERCISE VIIL a.
[The beginner should work through all the examples in this
Exercise.]

1. What are the values of [1, 5] + [2 3] and [2, 3] +[1,5]?
‘What general law does this illustra:
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2. What the val f [2, 3, 4] and ,

What general Law does this ifactrase's oo L X B 8T
3. Verify by a numerical example, or show algebraically, that
[a +c, b+d] x[e, f]=[a, b] x [e, f] + [, d] x[e, f].

4., What are the values of :
(i) [2, 0] +[3, 0] ; (ii) [a, 0} +[c, 0] ;
(iii) [2, 0] x[3, 0] 5 (iv) [a, 01 x[c, 0] ;
(v) [a, b] + [a, b] + [a, b] +[a, B] +[a, b] and [a, b] %[5, 0] ?
5. What are a, b if [3, 5] +[a, 5] =[7, 8] ?
6. What are the values of :

(iii) [ -6, -4] - [2,-9]; (iv) [-6, -4]+[-2, 9] ;
(v) [6, 1] [3, 0 ; (vi) [6, 1] x [0, 3] ;
(vii) [4, 5] x[-8, 2]; (viii) [3, 11]-=[2, 3].

7. Simplify (i) [a, 0] +[0, 8] ;
(i) [a, 0] = [1, 0] +[b, 0] x [0, 1].
8. Write down the re of [a, b], i.e. [a, b] x[a, b]. What
are the squares of [1, 0], l 0], [0, 1], [0,-1] ? :
9. Simplify [cos 8, sin 6] x [cos ¢, sin ¢].

10. If [a, b] x[¢, d]=[0, 0], prove that (a®-+5%)(c*+d?) =0, and
hence that either [a, b] or else [¢, d] must be [0, 0].

Notation. It appears from results such as those of Ex. VIIL. a,
No. 4, that complex numbers of the special type [a, 0] behave
rather like real numbers. It is therefore convenient to denote [a, 0]
by the symbol a, and in particular [0, 0] by 0. There is & precedent
for this in elementary algebra, where, for example, the symbol 2 is
used with several different meanings: sometimes it means the
natural number 2, sometimes the fraction %, sometimes the directed
number +3%, and later ¢ the real number 2’ ; now it is given a further
possible meaning, the complex number [2, 0]. Complex numbers of
the form [a, 0] correspond to points on the z-axis,

It is also convenient to use an abbreviated notation for complex
numbers which correspond to points on the y-axis. The number
[0, a] is denoted by ia or at, and in particular [0, 1] by +.

Further, since [a, ] =[a, 0] + [0, b] and since [a, 0] and [0, &] are
denoted by a and bi or ib, the general complex number [a, b] is denoted
by a +bi or a +1b.

Just as in real algebra z xz xz x... to n factors is denoted by =®,
80, if z is any complex number a+4b and n is a positive integer,
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: 1.
the product z x2z x2 x... to n factors is denoted by z" Also — is

z"
written z-® and, in particular, % is written z71,

Mechanical Application of Algebraic Processes. If a, 0, ¢, d, 4
stand for ordinary real numbers, we have : :

(i) (@ +b8) +(c +di) =(a +¢) +(b+d)i ;
(ii) (a +bt) x (¢ +di) =(ac +bdi?) + (ad + bei.

If, on the other hand, a+bi and ¢+di stand for the complex
numbers [a, b] and [¢, d]), we have

(i) (@ +bi) +(c +di) =[a, b] + [c, d] =[a +¢, b +d] =(a +¢) + (b +d)i;
(ii) (@ +bi) x (¢ +di) =[a, b] x [¢, d] =[ac - bd, ad +bc]
=(ac —bd) +(ad + be)i.

The two relations (i) are identical in form, as they stand ; the two
relations (ii) become identical in form, if — 1 is written for 42.

Thus, the correci results of both addition and multiplication are
given by a mechanical application of the ordinary processes of algebra
to the symbols in their abbreviated form, provided that —1 is written
Jor %, wherever i occurs,

The reader may have anticipated this fact from the result obtained
in Ex. VIII. a, No. 8, where he found that

[0, 1]*=[0, 1] x [0, 1]=[~1, 0]
or, using the abbreviated notation, *= - 1.

Other operations, subtraction, division, ete., can always be
reduced so as ultimately to depend upon addition and multiplication
[see the definitions on pp. 138, 139]. The statement in italics
therefore holds for all the fundamental processes of algebra.,

Note 1. The equation, *= —1, does not mean that there exists
s number ¢ whose square is the negative number -1. In this
equation, 4 is simply an abbreviation for [0, 1], and ~1 is not the
negative number -1, but an abbreviation for [~ 1, 0].

Nor does the equation imply that [0, 1] is the only complex
number whose square is [— 1, 0], and in fact, as was found in Ex.
VIII &, No. 8, [0, —1] is another complex number whose square is
[-1,0]. The equation, z*= —1, has two roots if it is an equation
in complex algebra, i.e. if z and —1 denote ordered number-pairs.
In real algebra, it has no roots. More generally, it will appear
later that the equation of the nth degree in complex algebra always
has n roots (subject only to the usual conventions of language with
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respect to * equal ” roots). In real algebra it may have n rosts or
fewer.

Note 2. The advantages of the definitions on p. 139 can now be
partly appreciated :

(i) It appears that complex numbers of the form [n, 0] have pro-
perties much like those of the real number n. From the law of
addition, [a, b] + [a, b] +... to n terms, equals [na, nb], and from the
law of multiplication [a, b] x [n, 0] also equals [na, nb].

Therefore, [a, b] + [a, ] +... to n terms =[a, 5] x [n, 0].

This would not be true if multiplication was, for example, defined
by the relation [a, b] x [¢, d] =[ac, bd].

(ii) It is desirable that fundamental lawa should be the same for
complex as for real algebra. The reader who has worked Ex. VIIL. a,
Nos. 1-3, has verified this in some cases and should be able to do so
in general.

(iii) The result of Ex. VIII. a, No. 10, shows that the fundamental
factor theorem, that if the product of two numbers is zero then one
of the numbers is zero, also holds in complex algebra.

We give now some examples of the manipulation of complex
numbers. :

. Example 1. Calculate [z, yJ°
By the principle established on p. 141, we have
(z +yi) =2 + 3zPyi + Boy™i® + 474 ;
.~ writing —1 for #* and -1 for #*( =2 . 1), we have
(z+yi)* =(2* - 321*) + (3% - 4°)3;
S [ yP =00 - 32y, 2%y -4
The reader should show that the same result is obtained by two
applications of the law of multiplication for complex numbers.
Example 2. Divide [a, b] by [c, d] when [c, d]+[0, 0].
a+bi_(a+b)(c—di) (ac+bd)+(be —ad)i
e+di  (c+di)(c—di) c? +d? ’

: . ac+bd be—ad
.. ason p. 139, [a, b]=[c, d] _[m, Fia |

Example 3. Expand [z, y]", where n is a positive integer.
(z +yi)* =27 + () 2" (yi) +(§) 2" H(¥i)? +... +(yi)®
=(z" - (3) =" % +..) + (1) 2y — (5) 2" % +...)4
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Nomenclature. Complex numbers of the form [z, 0] are some-
times called * real,” and those of the form [0, y] are called, in
contrast, “ pure imaginary.” This language, which is a legacy from
the time when the theory of complex numbers was imperfectly
understood, is most unfortunate and should be avoided. In
the same way, when a function of [z, y] has been expressed in
the form [a, b], e.g. [z, y]*=[2® -3xy?, 3x% -#°], in Example 1
above, the expressions @ and b are often called the real and
imaginary parts of the function; this is an equally misleading
form of words. They may be called the * first and second parts”
of the function.

Complex numbers of the form [a, b], [a, —b] or a+bi, a —bi are
called conjugate. This name is due to Cauchy.

If, as in Examples 1-3 above, a function of a complex number
has been reduced to the standard form [a, b] of a complex number,
we have an equation of the form

$ (2 +yi) =X +Yi.
In this case, it also follows that

$(z —yi) =X -Yi,
for the only property of ¢ that is used in the work is *= -1, that is
[0, 1]*=[-1, 0], and this remains true if ¢ is replaced everywhere
by -4, since [0, ~1]2=[-1, 0].

Consequently ¢ (z+yi).p(z—-yi)=[X2+Y2 0]=X2+Y2 ......(5)

Historicar Nore. The idea of the possibility of dealing with the
square root of a negative number is certainly as old as the time of
Diog:autm {c. 245-330) and arose from attempts to solve special equations.
Probably Cardan (1501-1576) was the first to assume the application oi
algebraic processes to symbols of the form, a ++/—=b. He discussed the
problem : divide 10 into two parts whose product is 40, and gave as the
answer 5++ =15 and 5-+/-15, (not however in this form); he then
showed that his answers satisfied the given conditions, if the ordinary rules
of algebra were applied.

Complex numbers were used freely by Euler (1707-1788), to whom the
symbol i for »/ -1 is due, and by many of his contem ies (John
Bernouilli, Cotes, De Moivre, etc.). Their real nature was ﬁ‘::ade clear
by Wessel (1797) and Argand (1808), who introduced the geometrical inter-
pretation. The name * complex number *’ is due to Gauss (1777-1855),
who developed in far greater detail than Wessel or Argand, but on similar
lines, the fundamental prineiples of the theory and also used them in his
investigations of the properties of natural numbers. The work of Gauss
prepared the way for the discoveries of Cauchy, Riemann and many others
which form the foundation of modern Analysis and play a large part in

-modern mathematical Physics.
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EXERCISE VIIIL b.
1. Express the following complex numbers in an alternative form:
(3,6]; [6,0]; [0,7]; [0,0]; [0, ~1]; [a, ~PB].
2. Express the following complex numbers in the bracket form :
14+2i; 55 8-2i; Ti; -2i; —-i-2; ai+f.
3. Simplify the following :

(i) [3, 2] +[1,-5] (ii) [4, 6] -[6, 6]
(ii) [1, 2 x[3, 4] (iv) [2, 0]+[3, 0]
(v) (2 +3i) - (3 - 4d) (vi) (1 +4) +(1 ~1)
(vil) 3ix4i (viii) 334
(ix) [a, 8] +[0, 0] (x) [a, B] %[0, 0]
(xi) [, B] x[1, 0] (xii) (7 -98) (1 +14).
Express the following, Nos. 4-30, in the form X +Yi :
4. (1+24) x3. 5. 5ix(1-1). 6. (1+4) x(1—1).
T. (2 +4)(3 - 2i). 8. (4+3i) 9. (a+bi)s
10. i(a +bi). 11. ai xbi. 12. g+,

13. (cos @ +1 sin 8)(cos ¢ +1 sin ¢).

14, (cos 6 +1 sin 8)(cos 8 —1 sin 8).

15. (cos 8 +14 sin 0)(cos ¢ —¢ sin ).

16. (cos 0 +1 sin 0)2,

17. [r cos 6, r sin 8] x [s cos ¢, & &in $].
18. [cos 0, sin 6]+ [cos ¢, sin ¢].

19. (zx —cos 0 —i sin 6)(z —cos 0 +4 sin 8).
20. (z +sin ¢ +1 cos ¢)(z +sin ¢ —1 cos ¢).

21, (1+i) 22, (1-i)%, 23. %-‘_*—,:
142 23 (1 +i)
U 15 2 T3 i
. 1 z 41y
—_ 2 =,
27, (z —-iy)s. 28. rymrry 29, =3
30. ! +z, where z =[z, ¥].

1-2z
31. Simplify (i) (1 4+4)2+(1 —-4)~2; (ii) (1 +4)~ 5 +(1 -3)~*
32. If (2 +3i)(3 - 4¢) =a +bi, find the value of a? +b%,

33. Show that the cubes of §( ~1:£44/3) are each 1.

34, Simplify (z +yi)(z —yi) and factorise (z — 1) +(y —2)%
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85, If (z +yi)" =a +bi, express a? +b? in terms of z, y.
86. What is the series whose nth term is (1 +4*")(1 +1%) ?
37. Find real numbers z and y such that
(Z2-s)z+(l+3i)y+2=0.
38. Prove that [3, 4] is one root of the equation z* ~ 6z + 25 =0, and
find the other root ?

39. If +/(z+yi)=A +Bi, where A>0, prove that A* -B*=2z and
=y. Hence express 4/(5 +12i) in the form A +Bt,
Similarly express 4/% in the form A +Bi.

40. What is the condition that one root of the equation
22 +2(a +ib)z +¢ +1id =0 is of the form [%, 0] 2

The Argand Diagram. The figure, referred to on pp. 137, 138,
in which the point P, or the displacement OP, corresponding to a
complex number [z, y], =z +yi, is considered, is
called the Argand Diagram.

Modulus and Amplitude. If the length of OP
is r units, and if £ (OP, Oz) =0, then we have

x=rcosB; y=rsinf; ............(6)
also =4 4/(T2 491, cirerririncrnnnnnn(T)
and cos@:5in6:1=x:y: ++/(x* +7). ......(8)

r is called the modulus, or sometimes the absolute value, of the
complex number z +yi, and is denoted by |z +yi| or by mod (z +yi).

8 is called the amplitude of the complex number z +yi, and is
denoted by am (z +y3).

A complex number is expressed in terms of its modulus and
amplitude by the relation

z+yi=rcos 0 +irsin®, or z+yi=r(cosfd+isinb)

or sometimes, if there is no danger of ambiguity, by z +yi =(r, 8).

It is customary to denote the complex number z +yi by z and to
write r=|z|, @=am (z). If this is done, z is called the argumens of
the point P in the Argand Diagram. The symbol |z| for modz is
due to Welerstrass; its use in connection with real numbers has
been explained on p. 78.

The Modulus-Amplitude Form. It is frequently necessary to
express a complex number, given in the form = +yi, in terms of its
modulus and amplitude.

F1a. 66,
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By definition, r is essentially positive and its value is obtained
uniquely from r= + 1/(z* +42).

Equation (8) shows that there is also a unique value of § in the
range —= < 8 < +; but any value of 8 which differs from this value
by a multiple of 27 would lead to the same representative point P
and is therefore a possible value for am (z +yi). The unique value
of 0 in the range -w < 0 < +m is called the principal value of the
amplitude.

Since z=rcos#®, y=rsinB, it follows that tan8=§; but.. this

equation is not sufficient to determine the amplitude, since it gives
two values of 6 between -= and +=. Of these two values, it is

d a

necessary to select that one for which msB:m an

S
+ /(2 4y’
Exzample 4. Find the modulus and amplitude of -2+ 3i.

From Fig. 67, rcosf=z= -2,
’ reinf=gy=+3;

p Sor=4 /(3 1y = + /13,

, And 6 s the anglo (bet\#een Zand ,r) given by
 sinf:cos8:1=8:-2:+13.

Fic, 67, As is pointed out above, it is not sufficient: to

say that 0 is the angle given by tan'6= -,

therefore also sin 6 =

Ezxample 5. Express 1 —cos 0 —¢sinf in the modulus-amplitude
form.

1-cosf—isinf=2 sin’f —2isin gcasg

2 2 2
=2sin e(sin E —-icos E)
- 2 2 2

=2sing{cosa+isin a),

/] 0
where a is chosen so that cosu:sin-g— and sina= —cos-ﬁ.

5
The result now obtained is of the required form only if smg is
positive, i.e. if dnas < 6 < (4n +2) 7.

These conditions are satisfied by a =
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If sm-g is negative, i.e, if (4n - 2)7 < 0 < 4nw, we write

1-cosl-isinf= ~2sing{ -cos a —isin a)

= -2sing(cosa+a-+fsinm),
where a =B—;—v, as before.

It is instructive to consider this example geometrically. We
shall take the special case, 0 < § <7. In Fig. 68, the points Aand P
represent the complex numbers 1 and
cos 8 +isin 0.

To find the point corresponding to
1 —(cos 0 +isinf), we take the displace-
ment OA-OP, and this is PA. Now
LAOP =0, and OA, OP are each of unit

length; .. the length of PA is 2sing, FIc. 68,
and the principal value of the amplitude of PA is measured by the
angle from Ox to PA, which is __11—2;8=£_3;_:r'
.". as before,
- . 8 0-= .. 0-7
1- - = 2 ] —
1-cosf 1sm6-.2sm2(cos 5~ +isin——).

Note. In numerical examples, the modulus and amplitude can
often be written down by reference to a figure.

EXERCISE VIII c.

Draw figures and give the modulus and the principal value of the
amplitude of the complex numbers in Nos, 1-16.

1. 1. 2. -1, 3. 4. 4. -4,
5. 14i4/3. 6. 1-i4/3. T —1+i+/3. 8, —1-i+/3.
9. i—+/3.  10. 1+i. 11. -1+, 12, -1-id.

13. 1 -i. 14. i-1. 15. /3 -3, 16. —i— /3.

Express in the modulus-amplitude form :

17. 3 +4a. 18. v2+1-4. 19, -3+ 44, 20. -3 -4,
21, +/3-2-4, . . 22. cosa—isina.

23. sine -icosa. 24. sina+1cosa.
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25. What are the modulus and the prmclpa.l value of the amplitude
of cos®a +i sin a cos a if

(i) -F<a<0; (i) j<a<w; (ii) ~-r<a<-3?

Express in the modulus-amplitude form :

26. 1+itana. 27. 14+icota.

28. tan 8 —i. - 29. —sin 8 —i cos 3.

30. 1+cos 6 +1sin 0. 31. 14+cos B ~isin b,

32. 14sin 0 +1cos 0. 33. cos a+1sin a+cos B +1sin .

34. cos a -isin 8 +i(sin a+¢ cos B).
35. 1+rcos¢ +irsing.
36. Interpret geometrically the relation

1+( 23 +ssi.n—) (ms—-{-imn%r) =0,

and generalise the result.
37. Interpret geometrically the relation

o o 6 0. .. 0

1+(cos 0 +4sin 9}—2eos§(oos§+nam§).
38. By using geometrical considerations, find ry and r,, if
ry(cos 6, +isin 6,) +ry(cos Oy +i8in 6,) = mnﬂ,-—ﬂl(wa2+i )

where 0< 6,<§< 0y <.

Applications of the Argand Diagram. It wasshown on p. 139 that
if P and Q are the points of the Argand Diagram corresponding to -
the complex numbers, a +bi=2z, and ¢ +di=z,,
then the point R which corresponds to their sum,
2, +2,, is found by completing the parallelo-
gram QOPR.

Since the length of OR is not greater than the
sum of the lengths of OP and 0Q, we have, see

Fig. 69,
1% +23] < |2 ] +122l eererresnnnn(9)

The reader should show in a similar way, or
deduce from (9) (see Ex. VIII. d, No. 5) that

121 +2a] = [2;] —[Za] vereremreriiririirinans (10)
and |2y —2a] = |Z4] = |Bsls seevsrererariennncnnnnniana(11)
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Suppose A and P are the points of the Argand Diagram corre-
sponding to the fixed complex number z, and the variable complex
number z, see Fig. 70. —

Then z —z, corresponds to the displacement AP, " a P
and |z —z| is the length of AP. "3

If |z -z;|=constant =¢, say, then P moves on a “
circle, centre A, radius c.
If am(z —z,) =constant =a, say, then P moves on sm0

the half-line AP, such that (AP, Oz) =a.
If z =kz,, where k is a positive or negative number, P is a point on
P
tho lino OA such that O =E.
Ezample 6. Two points P and Q in the Argand Diagram represent
complex numbers z and 2z +3+4. If P moves round the circle,
centre the origin and radius k, how does @ move ?

If =243 +i,  |¢ -8 -i|=|2|=2|z] =2k;

.. Q moves on the circle of radius 2k whose centre represents the
complex number 3 +1%, i.e. the point whose coordinates are (3, 1).
Otherwise : the point representing 2z is at R

s Q in OP produced so that OR =20P, see Fig. 71, .
[ 1 and the displacement from R to Q consists of
! 3 3 units parallel to Oz and 1 unit parallel to

Oy. AsP describes the given circle, R describes
ie. . *  the concentric cirele of radius 2k, and thus Q
describes the circle found by displacing this

circle a distance 3 units parallel to Oz and 1 unit parallel to Oy.

EXERCISE VIIL d.

1. Given two points A, B in the Argand Diagram, representing the
complex numbers a and S, construct the points which represent
(i) a=f; (ii) Ha+B); (ili) a+283; (iv)a-30.

2. A, B, C are collinear points, such that AB=BC. If A and B
represent complex numbers a and 3, what does C represent ?

3. A, B, C are collinear points, such that AB=28C. If A, B, C
repéesm;t complex numbers a, B, y, what is the relation between
a, 5, Y .

4. A given point P represents the complex number z. Construct
the points which represent (i) 2z; (ii) —3z; (ili) 2+3; (iv)z-7;
(v 4249 ; (vi) 8 —3z.
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§. Show geometrically that _
ﬁ} |21 +22| = |24] =122) 5
(i) |2, — 23] = |#1] —|zal- (Bee Fig. 69 on p. 148.)

6. If P and Q represent the complex numbers z, and z,, stute the
geometrical condition for the equality signs in No. 5.

7. If |z] =1, what is the locus of P, when it represents the complex
numbers (i) 3z; (i) z+3; (iii) 42+917
8. If P represents the complex number z, what facts about the
position of P are expressed by
@) |21 =5; i) [e-1]=2; (i) [z+2]=3;
(iv) [22~1|=3; (v)]|z=-2-3i|=4; (vi)am (z)=0.
9. Use the modulus notation to express that the point P which
represents the complex number z lies

(i) inside the circle, centre (8, 9), radius 7 ;

(ii) on the circle, centre (a, b), radius ¢ ;

(iii) outside the circle, centre { —1, 0), radius 1.
10. What are the greatest and least values of |z ~3| if |2| g1 ?
11. What are the greatest and least values of |z +2| if |z]< 1 ?
12. What are the greatest and least values of |z| if [z -5]<2?
13. What are the greatest and least values of |z +1]if [z -4|<31?
14. What are the greatest and least values of |z ~4|if |z +3i|g 11

15. A variable point P represents z; what can be said about the
position of Pif 1<|z+2-3i|<27

16. If |z L< 1, what can be said about the possible positions of the
point which represents 1 +z 1

17. If |z|< 1, prove that the principal value of am(1+z) lies
between —?—2'- and +a§-.

18. If |z| =4, find the range of principal values of am(1 +z).

19. If P; and P, represent the complex numbers z, and z, and if
m, and m, are any positive or nogative numbers, (m; +mg0),
explain the significance of the point ﬁ%ﬁ%

20. Generalise No. 19.

Products. Let the numbers corresponding to P and Q, expressed
in the modulus-amplitude form, be r(cosf+isinf) and
s(cos ¢ 414 sin ¢) ; then the polar coordinates of P, Q are (r, 6) and
(8 ¢).
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The product of the numbersis [r cos 9, r sin 8] x [8 cos ¢, s sin ¢1.
By definition, this equals
[rs (cos 6 cos ¢ —sin @ sin ¢), rs (sin § cos ¢ +cos O sin ¢)]
=[rs cos (0 + @), rs sin (0 +¢)]
=15 {cos (8 +¢@) +isin (8 +@)}. ceverrrerrerrnrnnnen.(12)
This result may be expressed in the form
121« 2| =12,] . |23]; am(z, . z)=amz, +amz,. ......(13)
But the second result- in (13) is not necessarily true of the principal
values.,
From (12) we see that the product is represented by the point K
whose polar coordinates are (rs, 8 +¢), which is found by taking

the point A (1, 0) and making the triangle QOK
directly similar to the triangle AOP. For,

OK:0Q=0P:0A, .. OK=rs; also ¥y
LzOK=,20Q + L QOK=£2z0Q + LAOP Q
=¢ +6. P
Repeated applications of formula (12) give 4 ”
ry{cos @, +1isin 0,) . ry{cos O, +isin 6,) ... Fi6., 72.
Tq(cos 0, +i sin 8,) =77, ... 7,{cos (20) +4 sin (20) }.
In particular, if r=r,=...=r,=1 and 8,=0,=...=0,=8,,
we ha.lve (cos B +isin @) =cosnB +isinnb, ........ceevveen.(14)

where n is any positive integer.

This is a special caso of an important theorem which will be
discussed in Chapter IX.

Quotients. An expression for the result obtained when one
complex number is divided by another may be deduced from formula
{12) as follows :

—:(cos 0 — +i8in 0 — ) xs(cos ¢ +i sin $)
=£.a(cos 0-¢+d+isinl—¢+p)=r(cos0+isin 8);
~ {r(cos 8 +isin 8)} —{s(cos ¢ +isin¢)}

=:f(cosa—q:+i Sin B — ). .vveennnnns cenrenees(18)
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This result may be expressed in the form
12, +23] =2 | +|2]; am(z,+32)=amz -amz, ....(16)

But the second result in (18) is not necessarily irue of principal
Tn particular, putting 8 =0, r =8 =1, we have

1

Cosprising 00 (- &) +isin (- ¢p)=cos e —isinep....(17)

If P, Q represent the complex numbers
r(cos 0 +isin §), s(cos+isin ),

the point H which represents {r(cos 8 +1 sin 6)}--{s(cos ¢ +4 sin ¢)}
is obtained by making P in Fig. 73 play the part of K in Fig. 72.

Thus, if A is the point (1, 0), construct the tri-
J angle AOH directly similar to the triangle QOP;

P Q  then H represents
T(cos -G +isinT—9).
" 8
o e Notation. The expression cos 6 4% sin 0 is often
F1a, 75, denoted by cis 8, and (cos 8 +4 sin 6)" is denoted

by cis®d. Equation (14) may then be written,
¢is"@ =cisnf. And since, from (17),

cos (~ 0) +isin (- 8) =cos 0 —¢ sin 8 =(cos 6 +1 sin 6)~1,
we may denote cos § —i sin 8 either by cis ( - 8) or by {cis 6)~1.

Ezample 7. The points B, P, Q in the Argand Diagram represent
tho complex numbers 2, z, z8. If P describes the circle on OB as
diameter, find the locus of Q.

In Fig. 74, A is the centre of the given
circle ; the triangles AOP, POQ are. similar;
therefore, if (r, 6) are the polar coordinates
of Q,

OP=+4/(0A.0Q)=+/r and Lz0P=30.

Also OB=2; [ 1/r=2cos%:

S or=4 cos..g. =2 (l +cos 8}-

This is the polar equation of a cardioid. The reader should
gketch the locus.



COMPLEX NUMBERS 153
Ezample 8. The points B, P, R in t}:!e Argand Diagram represent

the complex numbers 2, z, l If P describes the circle on OB as
diameter, find the locus of R. ®

In Fig. 75, A is the centre of the given circle ; the triangles ROA,
AQP are similar, by the construction given above (see Fig. 73). But
OA=AP; .. OR=RA; .. the locus of R is the
perpendicular bisector of OA, namely the line
=}

Otherwise: if K is the image of R in the

P
z-axis, OP . OK=0P .OR=0A%=1; .. P,K are ,l‘
inverse points w.r.t. the circle, [z]=1. .’ the < |

locus of K is the straight line, z=3. ButR O\~ B =
is the image of K in Oz; .. the locus of

R isalso the straight line, z=4. This applica- P10, 75.

tion of inversion is important. ’

It should be noticed that as P moves in an anti-clockwise
direction round the circle from B towards O along the upper semi-
circle, K moves from the z-axis upwards towards + o , and therefore
R moves from the z-axis downwards towards —e. Also when P
continues from O to B along the lower semi-circle, K moves upwards
from —o to the z-axis, and so R moves downwards from +c« to the
z-axis.

r

EXERCISE VIIL e
Simplify the following: (Nos. 1-24).

1, ©os 2a+isin 2a g, 08 B+isin
*cosatismna " cos §-vsin B

1 " cos ¢ —isin ¢

3 sZorieman cos 2¢ +1 8in 2¢
5 'c083c|-§-l'sin3a. 6 cos 40 ~1 sin 46
‘" cosa-isina * cos 28 - sin 20

7 {cos a +1sin a)(cos B +isin ) 8 (cos @ +4 sin §)*
‘ cos y +1s8in y © 7" cosp—tsn g

d. (cos 8 —i sin 0)3, 10. (cos 28 +14 sin 20)2,

1 (cos 6 —isin )3 12 (cos 20 —1 sin 20)3

* {cos @ +4 sin G)% " {cos 3@+ sin 30)*
13. (msgﬁsin‘g)‘. 14. (c0s 3T +isin 3.

15. (sin 6 +3 cos 6)°. 16. (sin 0 —i cos 6",
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17. (1 +00s 6 +1 sin 0)3. 18. (1 +1isin 0 —cos 6)%
19. 1 +cos 26 -fi‘si.n 28' 2'0_ 1 —cos 26 +1Tsi.n28.
cos 20 +1 sin 20 1 +cos 26 —i sin 20
21. (1 +a§n 2B+=:oos 29}‘. 22 1
(1 +sin 20 -4 cos 28)* * (1 —sin 0 —i cos O)°
cis? 50 (cis §)~2 1 —cis 8)3
2. S e % G

. .0 . 0+2r . B+dx
25. Write down the cubes of cis 3 Ci8 —5—, cis 3 . What

inference can be drawn from the results ?
" 26. Write down the values of
cis'a, cist (a +’§’) cist(a+w), cist(a+3T )
What inference can be drawn ?
27. Simplify cis A cis B cis C, if A +B +C =,
28. Simplify (cis 8)" + (cis 8)~".
29, If z =cos @ +1 sin 8, express in terms of 0

. 1 . 1 ... 1 . 1
i)z +3 (ii) z =23 (iii) 2" +mi (iv) 2" -
30. Tfu =cis 0, v =cis ¢, express ‘5+5 in terms of 0, ¢.
31. If n is a positive integer, prove that .
. . _(l+sin 6 +icos \® _ . (mw
(sin 0 +7 cos ”"’—(m) =ois (5 n6)-
32. If the complex number z is represented by the given point P,
and if |z| =1, show how to construct the points which represent
(i) 2%; (i) 2%; (iii) =L
33. Given the point P which represents any complex number z,
construct the points which represent
(i) 2%; (ii) 2 +3; (i) (z+1)*; (iv) —2z7.
34. If the point P which represents the comli)l:x number z moves

along the z-axis from £ = ~1 to £ = +1, describe the corresponding
motions of the points which represent z +a +bi, az, iz, and (a +bi)z.
35. If the point P in No. 34 moves with uniform speed, describe
the corresponding motions of the points representing z* and 1/z.
36. If z,=1fz, zg=1/(1 —2,), z3=1/(1 ~2,), and the point which
represents z moves along the z-axis from z= -1 to = +1, find
the corresponding motions of the points representing z,, z;, ;.
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37. If the point which represents the complex number z moves
round the circle |z| =1 in the anti-clockwise direction starting from
the point (1, 0), describe the motions of the points which represent
the complex numbers

| @25 ()1 G Lgs Gv) -1

38. Answer the same question as in No. 37 for

. Cogp 1 20 L z+]
(@yz-1; (i) ;=5 () =53 (v) ;=
39. Answer the same question as in No. 37 for
. g 8 e 2241 . az+b
(iyz+2; (ii) 733} (i) =12’ (iv) =1d
where a, b, ¢, d are real numbers.
40. Answer the same question as in No. 37 for

@5 ()i+D); Gy () 5

41. If z, =(1 - 4z)/(z —1) and the point representing z moves from
-1 to +1 along the z-axis, how does the point which represents
z; move ?

42, With the notation of No. 41, if
zy=(1—iz))l(z; = %)y 23=(1 —125)(23 —9), etc.,
describe the motions of the points which represent z,, 3, 24 «vs s

43. If P is a given point on the circl_aI]z —1| =1, state a construction
for the point Q, such that the complex number represented by P
is the square of that represented by Q. Find the locus of Q when
P moves round the circle.

Principal Values. When a function, f(z), such as sin~lz, tan™lz,
or am(zx -+ 37) has more than one real value for a given value, x;, of
2, the numerically least of these values is called the princtpal value
of f(z) corresponding to z =z, ; and if there are two numerically equal
least values, the positive one is called the principal value.

" Thus tan~1( - 1) has values §;‘-' %’" r = -%f, ... and of these
we call —E the principal value. Again cos™} has values 2nw £,

3
which include both += and ——; of these, we call + the principal
value. 8 3 S

The aggregate of these selected principal values of f(x) is called
the range of principal values of f(x).

There is no recognised standard notation for distinguishing
principal values from general values. 'We shall henceforward usually
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mean by sin~lz the principal value of the function, and, if we wish
to call special attention to the fact that the general value is intended
we shall write Sin2x ; similarly we shall use Tan™lz, Amz, ete., to
denote general values. But, if the context is such as to remove any
possibility of ambiguity, sin—1z, cos~2z, etc., may be used to represent
general values.

The beginner is advised not to omit any of the examples which
are marked with an asterisk in Ex.VIIL. f. No. 8 is particularly
important,

EXERCISE VIIL £.
Verify the results of Nos. 1-4.

1* -ggsin"‘zgq—;. 2* 0gcoslz g 7

3.* ~“§'¢ tan~lx < g. 4* —r<am(z+iy) <
5.* Draw rough graphs of sin-1z, cos—1z, and tan—1z.
6. Find the values of (i) sin~1z 4 cos—1z; (ii) tan—*z +cot—1z.
7. For what values of z is sin~*z equal to
(i) cos™1/(1 —2%) ; (ii) cos™{ ~ /(1 —%}; (iii) —eos~t/(1 —2%)1?
8.* From the definition —= < am(z +dy) < 7, prove that

(i) if >0, am/(z+dy) =mn—1§_: :
(ii) if r< 0<y, am(z+iy) =7 +tan-1£-:

(iii) if r< 0 and y < 0, am(z+iy)= -= +tan—1§.

9. What are the values of am (z +yi), (i) when y=0, (ii) when
r=0? Draw the graphs of amx and am 1z.
10. Draw the graphs of (i) am(z +iz) ; (ii) am(z —iz).

11. If m is positive, for what values of n is tan—im +tan-in> % ?

Answer the same question when m is negative. 2
Can tan=*m +tan~'n be < —g ?

12.* Prove that the value of % in the formula

tan™'m +tan—ln =kr +tan—? ( m+n
1 -mn
is zero unless mn > 1, and that if mn>1, &k is +1 or ~1, according
as m and n are positive or negative.
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13.* If ), 8, and r,, 6, are the moduli, and principal values of the
ainplitudea, of two complex numbers, and r, 6 of their product, prove
that .

(i) if 6, +0, < =7, 0=0,+0,+27;
(ii)if —w<8;+0,<w, 0=06,+0,;
(iii) if = < 6y +0,, 0=0,+0, ~2x.

14, Draw the graphof 2tan—1z —tan™! -1—‘?’?

15, Draw the graph of 2 cos~lz —cos~1(2z® - 1).

16.* What meanings must be assigned to the many wvalued
functions Sin—, Cos~1z, Tan—z in order that the following relations
may be true ?

() If || <1, %(sm—lzh?{—ll_T,};
-1
Vv(I-2%)"

d PN |
(iii) for all values of =, E[Tm x) T3

(i) i [o] <1, & (Cosiz)=

EASY MISCELLANEOUS EXAMPLES
EXERCISE VIIL g.

1. Express in the modulus-amplitude form (i) 17-'-2! ; (i) (1 +e)n.
2. Evaluate (1 +iv3)% +(1 ~iv3)5

. 2 . .. 0
3. If z =cis 6, prove that 1—+z_1 —ttanﬁ, and that
l+z_. 6
m—acotﬁ.

4, If n is a positive integer, prove that

(L+3)* +(1 -9)® =2'+1.cosr%.

5. If A, B, C are the vertices of a triangle in the Argand Diagram
representin )t.l;{: Eomplex{nu;rzbers a, 8, v, whaia are the points whiclk'l
represent (i +7); (i) Ha+B+7); (iii) ka+(1 —k) B3, where
is & real number ? Y P+

6. ABCD is a quadrilateral in the Argand Diagram ; E, F, G, H,
P, Q are the middle points of AB, BC, CD, DA, AC,BD. IfA,B,C,D
represent the comﬁlex numbers a, 8, v, 8, what numbers are repre-
sented by E, G and the middle points of EG, FH, PQ? What con-
clusion can be drawn from these results ?
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7. Four points represent the complex numbers a, 8, v, 8. Inter-
pret geometrically the condition a +y=8+3.

8. Two fixed points A, B and a variable point P represent the
complex numbers a, 3, z. Find the locus of P if

(@) |z -al=|B]; (ii) [z-a|=]z~B]; (iii) |z-a|=3|z -8

9. Verify that }+/2.(:%1+i) are four fourth roots of —1, and
deduce two quadratic factors of z# 4 1.

10. If a=cis2a, b=cis2f, c=cis2y, and d=cis2§, express in
the modulus-amplitude form

()a+b; (ii)a-b; (iii) (a-c)(b+4d).

ab

12. Interpret geometrically the relation z=a+¢(f8 —a), where a
and [3 are fixed complex numbers and ¢ is a real variable.

13. If {2| =1 and amz =4, find the values of
. . 2
0| 2al 6 am(Z5),
where am w denotes the principal value of the a.mp]it.ude of w,
14. If |2y —zy4| =|2, +2,|, prove that amz, and amz, differ by
oy

Zor
27 27

15. Two fixed points, A and B, and a variable poixit P, represent the
complex numbers a, 8, and z. Find the locus of P if

(i) am(z -a)=am B; (i) am(z -~a) ~am(z - B) =%.

11. Tt a=cis 6 and b =cis , prove that cos (0 +¢) =4 (ab+ %)

—
1-22

16. In No. 15, if 8 becomes variable and P describes a given curve
Z, what is the locus of the point that represents §, if (i) S=a+z,
(ii) B =az, and (iii) 8 =|a|<z.

17. The transformations z.l—:_:';:, z,—::bz‘ give z, in terms
of z. Find a, b, ¢, d so that the resulting single transformation may
boz,=1-1. :

18. The transformation z =}Z+—'-|-z:\ when repeated a second time
leads to i . Do any other transformations of the form z =3 :3§ have

this property ?

19. What is the condition that the equations 3z +4y =p, z* +y* =c?
can only be solved in the algebra of complex numbers ?
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20. If «® =1, but w is not 1, prove that
(i) 1+o0+w?=0; -
(ii) w®isaroot of z*=1 and of 22 +z+1=0;
(iii) a® —ab +b*=(wa + w?b)(v’a + vb).
21. With the notation of No. 20, find the values of
(i) (1 +)®;
(ii) (1 + 2w +3w?){1 + 3w + 2w ;
(iii) 1+ +w?+0® +... to n terms.
22. With the notation of No. 20, expand
(i) (@ ~bw)(a —bw?)(a~b);
(ii) (@ +b +¢)(a + bw +cw?){a +bw? +cw).

HARDER MISCELLANEOUS EXAMPLES.

EXERCISE VIII. h.
1. Simplify
{(cosa —cos B) +i(sina —sin 3)j* +{(cosa ~cos 3) —i(sina —sin 3)}"
(i) for n even; (ii) for n odd.
2. Prove that {cis 260 +cis(~-2¢)} cis¢p =2cisfcos (6 +¢).

in the form z+yi, and prove that

3
3. Express 5 G rising

z? +yt=dx - 3.
4. If p+ig=xcisacisf +ycisBcisf, obtain a relation indepen-
dent of 6.
X . . (b® —a)
5. If cisa=a and cis 8 =b, prove thatsin(a - 8) = Sab "

6. If a=cis2a, b=cis2f, c=cis2y, and d =cis 23, express in the
modulus-amplitude form
() a*~b%; (i) ab—cd; (iii) abed - —L .
7. If (1 +cis 0)(1 +cis 28) =u +1v, prove that
(i) v=utan3—o; (i) u? +v’=16cos’ﬂoos‘g.
8. If (1 +ixy )(1 +1izy)(1 +1ix,;) =A +Bi, prove that
Atan (X tan—1z) =B.

9. The complex numbers a, z, z —a are represented by points
IA, P, QfQ,ITf A 18 fixed and P describes a given curve, what is the
ocus o
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10. If the point P, which represents the complex number z,
deseribes the circle centre (1, 0) and radius 1, what locus is described

by the point representing m. where a, b, c are real ?
11. Tf |2* - 1| =2, prove that the point P, which represents z, moves
so that PA.PB is constant, where A and B are certain fixed points.
12. If the point which represents z moves on the unit circle,
centre O, what curve is described by the point representing 2z +22 ?
13. If z =z +yi, where y is positive, prove that l:—;:] <1l
eTcisy—1 x T
m and -3 {y{'ﬁ, provet.hat[ZI <L
15. The fixed points A, B and the variable point P represent the
complex numharspg, B, 2. What is the locus OFO , if
. 2-B\_7_ . =B\__7. s z-f\__ _2x
(llm(zTﬁ')—gr (ii) m(z_a ==73 (m)m(z_a = ??
16. If z/(a, —a;) +24(a; —a;) +25(a, —a,) =0, and a,, a are real,
prove tha.f: :he cl;‘bintssw it:!.lc;l represent ﬂ:a camplu‘:"llum’l'.’l;‘a Zys Zgr Z3»
are collinear.

17, If A, B, C are points which represent complex numbers a, f3, v,
and if a=|f8 ~vy|, b=|y —ea|, c=|a~B], prove that the in-centre of

ABC represents M:-q-b o " What numbers do the e-centres
represent ? .

18. Interpret the relation H— =cis§ between the complex

numbers a, 3, y, and prove that 117' + B2 +9? =By +ye+af} follows
from it. N

19. Interpret the relation : - =XE§ between the six complex
numbers g, f3, ¥, A, u, v, and show that it can be written

M4 Hez=x+yi, Z=

a B y|=0
A pow
1 11

20. If a and b are real, prove geometrically that

2 .27\, . . 2% 2m\\" _ .
{(acos? —bam?)q-t(asm-’? +bcos?)} =(a +b)".
21. An ellipse in the Argand Diagram has foci (4d, 0) and z,, z,
are complex numbers which correspond to the ends of wxﬁuéat;
semi-diameters, prove that z,*+z,2=d3,
22. Draw the graphs of (i) cosec2z; (ii) sec—lx; (iii) cot™z; for
prinecipal values only.
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23. Draw the graph of secz +secy +2=0.
24. Prove that, unless z=(2n +1)x,

xz —am(cisx)

2 -

25. Prove that the relation z=(1+2Z:)/(Z +1i) transforms the part
of the axis of « between the points z= -1 and z= +1 into a semi-
circle passing through the points Z=1 and Z=-1. Find all the
fi that can be found from the originally selected part of the axis
of z by successive applications of this transformation.

26. If =1, but @+ 1, prove that " +w®*=20r -1, where nis a
positive integer.

27. Prove that 2* +zy +y* is a factor of (x +y)" —z" —y", where n
is odd and not divisible by 3.

28. Prove that 22 +3? +2? —yz —2x —xy is a factor of
(y —2)" +(z —z)" +(x - y)", if n is not divisible by 3.
29. Prove that (2®+%+2?—yz —zz —2y)® i3 a factor of
(y -2} +(z —2)" +(z —y)", if n=1 (mod. 3).
30. Write down the product of z+yw +2w?, z+yw®+ze where
w =cisg;—r; hence express 23 +4* +2° - 3zryz and
(2% - y2)* +(y* —22)° +(2* - 2y)® - 3(a* - y2)(y? - 22)(* ~7v),

each as the product of three factors. Prove that the first expression
is the square root of the second.

31, Tf f,(z) is the sum to n terms of the series whose rth term is
aqz’, what do the expressions,

(1) fn(x) '*‘fn(mz} +fn[“-"x}’ (ii) fn{x) + 0 fpluz) + "’afn(”'x}a
represent when «®=1but w11

n—:é-l;r—?] {See footnote, p. 486.)



CHAPTER IX

DE MOIVRE'S THEOREM AND APPLICATIONS

Definition of a®, where a is complex and n is a rational number. For
integral values of n, the definition has been given on pp. 140, 141. If

n is fractional, it is equal to g, where p and g are integers, and there

is no loss of generality in supposing that g is positive ; and then any
value of z which satisfies the equation, 29=g?, is called a value of
a". We reserve the notation, £/a?, for the principal value of a®,
as defined on p. 165.

De Moivre’s Theorem. If n is any rational number,

cos nl +1 sin n is a value of (cos O +isin B)°.  ............(1}
(i) First, suppose that n is a positive integer.
We have proved on p. 151, by actual multiplication, that

(cos 0, +i sin 6,)(cos B, +1 sin 8,) ... (cos 8, +1 sin 8,)
=cos (Z0) +isin (Z0).
Putting 0, =0, =... =8, =0, we have
(cos 0 +1 sin 0)" =cos né +1 sin nd.
(ii) Next, suppose that n is a negative integer. Put n= -m.
Then (cos 8 +1i sin 8)" =(cos 0 +1 sin §)~™, and this, by definition,
1 .
=(cos 67ism O cosmbimmmo Y G
But (cos m0 +1 sin mf)(cos m0 —isin mb) =cos?mb —*sin*mb=1;
1

yo ———————=cos mbi -4 sin mb
cos mb +1 sin mb

=cos (- mb) +isin (—mb);
>, (cos 0 +4% sin 0)" =cos nd +1 sin nb.
Therefore, if n is a positive or negative integer, there is only one
value of (cos 0 +1 sin 0)", and this value is cos nf +1 sin né.

(iii) Next, suppose that n is a fraction. Put n =2, where P, q are
integers and g is positive. q
In this case (cos @ +4 sin 6)® is many-valued, and we shall prove
presently that it has ¢ values. At the moment, we merely wish to
show that cos nf +1 sin nf is one value of (cos 8 +14 sin 9)".
162
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By (i), ( P8+imnpg6) —cos pB +i sin p0.
Also by (i) or (ii), cos pf +1%sin p0 =(cos 8 +isin 6)7;
(cos’—’q-e- +1 gin pt)) =(cos 6 +%sin 6)P;
. by the definition of a®, given above, it follows that

2
cosg;-i-isinp?e is a value of (cos 0 +1 sin 6)2.

The theorem is therefore proved for all rational values of n.
Writing —6 for 6, we see that cosnf —isinnf is a value of
(cos 8 —1 sin 6)", for all rational values of n.

]
The values of (cos 6 +isin 6)9, where p, q are integers and q is

. . pb
positive. De Moivre's Theorem states that cos p_; +1 8in % is one

2
value of (cos 6 +1 sin 6)?. Suppose that §(cos ¢ +1sin ¢) represents
z
any value of (cos 8 +4 sin 0)%.
Then, by definition,
8%(cos ¢ +1 sin ¢)?=(cos 0 + 7 sin 8)7;
. 8%cos g +1 sin gp) =cos p@ +1 8in plh ;
s 89=1; cosgp=cospl; singdp=sin ph,
But & is positive, since it is the modulus of a complex number ;
*. 89=1requires that s=1; since,if s >1,589>1and if 0L s< 1,
s9<1.
Also the other equations require that g¢ =p8 +2rw, where r is an-

integer or zero.
Taking in succession, =0, 1, 2, ..., (g ~ 1), we obtain the g values,

pB 2:1-) (pﬂ 4 ) ;u& 2(q - 1)1r)
q
These g valw are all distinct, because the angles given by r=r,
r=r, differ by 22" Chich is less than 2r, since |r, ~ 75| < g.
Also, no further values are given by other values of r, because any
other value of  must differ from one of the numbers 0, 1, 2, ... ,{g - 1)
by a multiple of 4.

cm -—, cis
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If p, g are prime to one anothe:, the same results may be written,
but in a different order, as
p_ﬂ’ ciapw +2:r}, cisp(ﬂ +4n-)’ o cis p[0+2(q- 1)1.-]'
q q q q
because the numbers 0, p, 2p, 3p, ... , (g — 1)p are congruent (mod. q)
to 0, 1, 2, ..., (g — 1), in some order.

cis

2
If p is not prime to g, the function (cos 8 +1 sin 0)7 is taken to
1

mean {(cos 8 +1% sin &}9}; and has therefore g distinet values, viz.,

the g values of (cos pf +4sin fp&)“ these may be written,

Pl 2nr)
+—), r=0,1,2,..,(g-1);
(q q (g-1)

p(0 + 28w)

but in this case, the expression cis » where s is any in-

teger, does not assume g distinct values and therefore does not

represent all the values of (cos 6+ sin 9)%. Thus, the function
(cos 0 +i sin 0)F has the 8 values given by (cos 48 +1 sin 46)¥, and is
distinet from the two-valued function (cos 0+ sin 0)} ; its 8 values
are represented by

c:s(‘i—:-{--z;g) r=0, 1, 2, ..., 7; but the expression CIS{M}

where ¢ is any integer, has only 2 distinet values. Cf. Ex.IX. a,
No. 8.
P

Principal Value of (cos®-+isin®)%, The principal value of
P
{cos 8 +1isin 6)? is taken to be cisp—ﬂ, only if —r <O
Otherwise, if k is the (positive or megative) integer such that

2
—m < 0+2kr g w, the principal value of (cos 8 +1 sin 0)? is taken

to be
is {33 (6 -!-214::1'}} —cis (f’ 23""”)
q q q
For any given value of k, this can of course be reduced to the

form, cis (p 7 +2Tﬁ), where r is some integer less than .q.

This definition of principal value holds whether p is prime to ¢

. Or not.
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?
The reader should notice that the principal value of (cos 6 +isin 8)9,
where -7 <0<, i85 not the same as the principal value of

1
(cos pf +1 sin p0)9, unless also -7 < pl < =,
Further, the principal value of the gth root of (cos 8 +4 sin 8)® or
the principal gth root of (cos 6 +isin §)? is taken to mean the
P

principal value of (cos 8 414 sin 6)3, as defined above. Thus the
principal value of the 8th root of (cos 6 +4 sin §)* means the principal
value of (cos 0 +1 sin 6)3, and this is defined above as
cis {$(6 +2km)} =cis {}(6 +2km)},
where k is the integer given by -z < 0+2kw < =. The prineipal
value of (cos 0+ sin 6)* is therefore the same as the principal value
of (cos 0 +i sin 6)}, but it is not the same as the principal value of
(cos 40 +1 sin 46)¥, unless, with the same notation as before,
-r< 4(0+2kx) < w. Cf. Ex. IX. a, No. 10.
4

Values of 29, Definition. If r is any real positive number, and if
p and g are integers, ¢ being positive, the symbol ¥(7?) denotes the
{unique) positive gth root of 77,

Every complex number, z, can be written in the form,

r(cos 8 +1 sin 8),

where r=|z| and -wr<fgm,
P
.. the values of 27 may be written
. (Pl  2sw
I/(r®) cis (—-+—-),
Y(r0) Fa

where s=0, 1, 2, ..., (g-1). ,
Thus there are g values, whether p is prime to g or not; and of
these, since —« < 6 € =, the principal value is

(r?) cis 1’;.

Geometrical Representation of Powers and
Roots. Fig. 76 represents the circle |z|=1 in
the Argand Diagram. The point P, which repre-
sents the complex number (cos 6 +1 sin 0) lies on
the circle, and the arec AP,, measured from the Fie. 76.
point A, (1, 0), is of length 6.
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To apply the geometrical method of construction, given on p. 151,
for the points representing the numbers
(cos 8 414 sin 0)2, (cos 6 +4sin 0)3, ..., (cos O +4 sin 8),
we construet in succession the triangles P,OP,, P,OPy, ... , P,,OP,,
each similar to AAOP,. The points Py, Py, ... , P, being on the circle
at arcual distances 20, 30, ... , nd from A, represent the numbers
(cos 26 +14 sin 26), {cos 36 +4sin 38), ..., (cos nf +1 sin n).
This illustrates part (i) of de Moivre's Theorem.

Suppose now, see Fig. 77, that Q is the point on the circle which
represents cos a +1i sin @, and that we want to represent geometri-
cally an nth root of that number. We shall
have to find a point P on the circle such that
the arc AQ=n.arcAP; but as the arcual
distance of Q from A can be regarded as «
or a+2x or a+4x or ... or a+2rr, where r
is any integer, the arc AP may be taken as
a+2rr

, where r is any integer. This gives n

Fra. 7.

points P, say P;, P,, ... P, representing the n
nth roots of cos a+isina. PP, ... P, is a regular polygon inscribed
in the circle.

b4
Note. The gq values of (cos a +1 sin a)? can also be represented in
a similar way ; similarly the nth roots of ¢(cos a+1 sin a) can be
represented by the corners of a regular n-sided polygon inscribed in
the circle, centre the origin, radius %/e.

Example 1. What is the principal value of (1 —i)t and what are
its other values ?

1—i=1/2(71‘2-7'.2)=¢2{coa(-§)+isin(—§)};

.. the principal value of (1 —i]Fi is

(y2)s {cos ( :; +igin ( - :—;)}

=18 {cos 30 isin gg}

Also any value of (1 --s}i can be expressed in the form,
R/8 co( ?i".,.?f)_,.,-,h(_i"_'_i.?ﬂ)
"\"207 5 2073/

where r=0, 1, 2, 3, 4.
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By means of (2) and the binomial theorem for a positive integral
index, the functions cos™8, sin"f, cos?f sin%f, etc., can be expressed
in terms of z and expanded in powers of z and 1/z.

By means of (3), the expression in powers of z and 1/z can be
replaced by cosines or sines of multiple angles.

Ezample 4. Express cos® 0 in terms of multiple angles,

5 1

1\ 10
5 ~\ = 3 —_——
From (2), (2cos¥) (=+;) 246204102 +— 43+ 5

1 1 1
?(z’ +;) +5 (z' +;) +10 (z +;)
=2cos 56 +5(2 cos 30) + 10(2 cos ), from (3);

» ¢0s® 0 =y (cos 58 +5 cos 30 + 10 cos 6).
Check by putting 8 =0.

Ezample 5. Express sin*6 in terms of multiple angles,

From (2), (2isin Bj'—-(z—--}-) =25 - ﬁz'+10=---1-9 +z—i -zl,

~(o-3)-s(=-3) 1)
=2isin 50 — 5(2i sin 36) + 10(2i sin 0), from (3);
-, sind 6 =gk (sin 58 — 5 sin 36 +10sin 0).

Check by putting 6 =§.

Ezxample 6. Express cos®? sin%f in terms of multiple angles.
From (2),

(2 cos 0)* (2i sin 0)¢ = (z+ ) ( 1 (z’—.l '( _Y

22 z

(o2
=(+3) ~(#+5) -3(2+5 1) +3(=+3)

=2c0870 — 2 cos 50 — 3(2cos30) +3(2 cos B);
. o830 sin*f =} (cos 70 —cos 56 - 3 cos 36 +3 cos 8).

Check by putting & =E.
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17. Prove that 2m-1( )% gin2ng

{ —1)"(2n)!

=¢0s 2n6 — 2n cos (2n =2)6+...+ 2(nlF *

and give the general term.
18. Prove that 22m( —1)n ginantlg
e _ . _ (-1 (2n+1) sin @
=sin (2n +1)0 - (2n +1) sin (2n 1)0+... 4 AlmF 1) .
and give the general term.

19. If cos®# sin*f is expressed in the form
A, cos 0 +A; cos 30 +A; cos 50 +A; cos 70,
deduce by differentiation that A, +9A; +25A; +49A, =0, and find the

value of A, +3'A,+5%;+7%,. Veriiy the result by means of
Example 6, p. 170.

Expansions of cos n@, sin n6, and tan n@, where n is any positive
integer. We have

cosnf +isin nd =(cos 6 +1 sin 0)"=(c +1is)", say,
= +(7) e" iz - (B) 2% + (7) cn-3%s +(3) ettt 4.
= {c" - (3) en-2s2 4 (3) et - } +s'{ (3) et - () em23 + },

and 8o, by equating the first and second parts of the two complex
numbers,

cosnd=c® - (3) c™2s2 4+ (Jevdsd— .., ... weenn(4)
sinn® =(7) c®1s - (§) en-3s2 4 ..., verrernrrieieneannnns(5)

Also  cosnf +isinnf=cos"d (1 +itan )" =cos"d (1 +dt)", say,
which gives the same results as before in the form

cos nfl =cos™@ {I - (g) 28 ("') ... },
8in n6 =cos"( {(':) t- (g) t'+.,.}-
By division,

NHt-3)t2+...
tan no =1—-1(§)—t‘7(m' vernsssieiccasesseenraneses(6)
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Expansion of tan (8, +6, +... +6z).
Similarly, cos(8; +0,+...+0,) +isin(0;+0,+...+0,)
=(cos 0, +isin 6,)(cos B +isin B,) ... (cos 0, +isin 0,)
=cos 0§, cos 0, ... cos 0,(1 +it;)(1 +1t,) ... (1 +it,,), where t,=tan8,
=cos 0, cos 0, ... cos O, (1 +iZ, +425, +P°Z; +...),

where Z, denotes the sum of the products of tan 6,, tan 8,, ... taken r
at a time.

Equating the first and second parts of the complex numbers,
cos (0, +0,+... +0,)=cos0,cos0,...cos 0, (1 -2, +2,-...);
m(8,+8,+...+8,.)—coaﬂlcosﬂ,...cosﬂ Z - E,«E-...].

-2, +5;— -
}”+2 2'3+... PR ) |

Formula (7) is easily remembered ; it includes (6) as the special
case when 8, 0,, ... 8, are equal.

Formula (6) expresses tannf in terms of tanf. Formulae (4),
{5) can be transformed by means of the identity sin?8 +cos?6 =1, so
that, for example, cosnf can be expressed entirely in terms of cos 8

as in the example below. The general results will be discussed
on p. 178.

s, tan (81+0,+... +8,.,}_

Ezample 7. Express cos 60 in terms of cos 8.
We have
c0s 60 =c® — (8) cts? + (§) c%s¢ — s
~15¢8(1 —¢2) +15c3(1 —c2)2 ~ (1 —c?)?
=32 cos®f — 48 cos*f +18 cos?f ~ 1.

EXERCISE IX, e.
From formulae (4) and (5) find expressions for

1. 8in 50 in terms of sin . 2. cos 50 in terms of cos 8.
3. Bﬁgmwrmsofcosﬂ. 4. cos 60 in terms of sin .

b. Give the formulae for tan468 and tan 56 in terms of tan 8.
6. What equation is satisfied by tan 6 if tan 60=01

7. What equation is satisfied by tan 0 if 7a=’§’ ?

8. Give the expansion of tan (8, + 6, - 0,).
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9. Give the relations holding between the tangents if
() 0y +0,+ 0y =m; (ii) 6, +0y +03+0, =2 ; (iii) sl+s,+a,=§;,
10. What results can be deduced from
n
(sin 8 +i 08 6)" = {cos (5 ~0) +isin (T ~6)}" =cis (% -no),
where n is a positive integer ? _
11. Give the last terms in the formulae (4) and (5), (i) if n is even,
(ii) if n is odd.
12. Give the last terms of the numerator and denominator of the
formula for tann8, (i) if n is even, (ii) if n is odd.

13. Show that the coefficient of ¢" in
" —(3) "2 (1 — ) + (1) (1 —c*)—... is 271,

14, Prove that 2;cos'—2-r=l -(3)+(3)-..., and give the last term.

15. Prove that sec 6 cos 56 =1 —12sin?§ + 16 8in*0,

16. In any triangle ABC, prove that
¢*=a3cos 3B + 3a?b cos (A — 2B) + 3ab® cos (2A —B) +b* cos 3A.

17. Find the equation whose roots are :l:tmg, im2_';_-r’ :l:tana—,:'.

18. If tand,, tan 8,, tan @y, tan §; are the roots of the equation
4 +b8® +ct? +et +f=0, find the value of tan (8, + 8, + 6, +0,).

Summation of Series. Sum the series
C=1+zcos 0 +z* cos 20 +... +2" 1 cos (n — 1)0,
S= zsinf+2?sin20+... +2" 1 sin(n-1)0.

Put cos § +i8in § =z.

Then C+iS=1+4zz +a%? +.., +a" 12"

1z (1 ‘”"’"’(1 '9
= a1 —:u)(l -E)

1 —E—:c"z“ 4 antign-1

1 -x(z +!) +a?
z
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But.zl=cosﬂ—isin @ and z+% =2co80;

1 —z(cos 6 — 4 sin 6) —2™(cos nf +1 sin nb)
+x"*(cos n — 16 +4 sin n - 16)

< C+i8= 1 -2x cos 6 +x*

1 -z cos 8 —z" cos nf +z"t1 cosn - 160
+%{z sin 6 —z" sin nd +z"*sinn - 160}
1-2xcos B +z* '

.. by equating the first and second parts, we have

1-zcosb -z"cosn@ +z"tcos(n—-1)8

C= 1 -2 cos 0 +22

veeeveeseens(8)

_zgin § —z" gin nf +2"+ sin (n - 1)6
and S= T =52 cos 0 12° cesersesacnnnes(D)

These results may also be obtained by multiplying the given series
by 1-2xcos 6 +2? and showing that in the product all the terms
disappear except a few at the beginning and end.

Note. If |z| <1, since lim =" =0, we see that
r—»x

l—jz;ﬁzz_x,isthesumtohlﬁnityofl+xcoaﬂ+a:’coa28+... (10)
and
——-—__;$§+x,isthesumto infinity of z sin 6 +2?8in 20 +... . ...(11)

Example 8. Sum the series

cos a+(7) cos (a +B) +(3) cos (a +2B) +... +cos (a +np).

Put cos a +1i sin a=a, cos B8 +isin f=b.
Then the given series is the first part of the complex number

a+(})ab+(3) ab* +... + (1) ab™ =a(1 +b)%;
but l-l»b:l-i-c:-,o.-ss,('1‘+'|'Erixmﬁ=21:&0&1’£;+2¢isinEcmE

2 2
_ B B ... By,
—2coa§ cosE-!-ssm—z).
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n
a{1+b}“=cisa(2cos£cis£) = 2msé‘-)'cisacis'ie

2
(2005—-) cis|a+ ﬁﬁ)

«. the given series= (2 cos 'ﬁ) cos (n +%§)-

EXERCISE IX, 4,

1. Sum to n terms,

cos 0 +3 cos 20 +} cos 30 +3 cos 40 +....

Deduce the sum to infinity.

2. (i) Sum to n terms,

cos 0 cos 0 +cos?d cos 26 +cos30 cos 30 + ...«

(ii) Deduce the sum to infinity if 0 is not a multiple of =.

3. (i) Sum to n terms,

sin @ sin 6 +sin®@ sin 26 +sin®@ sin 30 +... .

(ii) Deduce the sum to infinity if 0 is not an odd multiple of g
4. Ifnis abposmva integer, express AL =8") 31 the form A +Bi,
when a=cis a, cis 3 BREE

What results can be deduced from the identity,
a(l -&7) ab n—=1
o =+ +ab® +... +ab™1?

5. If n is odd, prove that
1-(})cos 26 +(%) cos40 ~ ... —cos2nf =( —l}llsmﬂﬂ (2 sin 8)™.
6. If n is even, sum the series

(%) 5in 26 — (%) sin 40 +... —sin 2n6.
7. Sum to n+1 terms,
(2 cos 6)" — () (2 cos )" cos 6 +(2) (2 cos 6)"~2 cos 20 — ...«
8. Sum to n +1 terms, ’
sin"¢ cos n0 + ('}) sin"3¢p cos (n —1)0 sin (0 ~ )
+ (%) sin® 24 cos (n — 2)8 sin? (8 — ) +... «
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9. Prove that, in any triangle ABC, if b<c, the sum to infinity of
sin A+ sin oA+ sin3 +... is 220C,

10. Use the identity,
sin f(sin ¢ —4 cos ¢)=cos (8 — ) — cos ¢(cos § +isin 0),
to obtain an expansion for sin®f cos (mi, -ﬂ—;).

11. Prove that, in any triangle ABC, c¢"=a" cos nB+
(%) @b cos {(n — 1)B - A} +(3) a™2b2 cos {(n — 2)B — 2A} +...
to n+1 terms.

12, If |z| <1, find the coefficients of 2® in the expansions in powers

of  of cosf -z (i) 122
(1}1 2zcosf+zt’ 1-2zcosf+a*

13. If 0 is not a multiple of =, find the sum to infinity of
mna+cos&sm(a+8) +cos?0 sin (a +20)
+cos%6 sin (a +36) + ...

14, Slmlto n+1 terms,
1 4+nz cos 6+(’§) z? cos 26+(§) 23 cos 30 +....
15. Sum to n +1 terms,
cos n0 +na? cos (n —2)0 +(3) 2* cos (n ~4)6 +... .
16. What results can be deduced by writing cis 8 for z in

1-(n+1)z" +n2"¥t

2 1—
14224322 +... +nz""1= a-2¢

17. Sum to n terms,
(2{') cos 0 +(gsn) cos 360 ‘l"(?) Ccos 59 +osne
18. Prove that, if |z|< 1,

1- ]
1{21::;;;?} = E“"OOS(2n+1}ﬂ.

(n+7)! ( —4 sin*0)"

Deduce that cus(2n+1}8m8=z mon COT

for r=0 to n, where 0! is taken to mean unity.
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@ : a
19. If ac>b* and I:c»\jzl-cl, prove that s —ohr re °an be
expanded in powers of « and that the coefficient of z" is

ghin+l
(;) sin (n+ 1)6 cosec 8,

where cos 0 4/(ac)=b.
sin . 2sin2e n sin nz
20, Prove that (n _]]]{ﬂ'{'l)l ' (ﬂ-—2}1(ﬂ ‘l‘2“+t“+_(_2n)!
2»——8

-m (1 +cos ﬂ?}""" sin .

Expansions of cos nf, sinn in terms of cos @, sin @ separately.
We suppose that n is & positive integer, and we write cos 6=c,
gin § =s.

Forms of the Expansions,
(i) From cos nf =c® —(3) c"%s® + (F)entst—...

putting st=1-¢t, si=(1-c%? ...
we see that cosn@ is a polyncmial in cos 6 of degree n,
viz. €08 N0 =@, 6" + 0, 62+l Fp o FL, .l (12)

the last term being a,c if n is odd, and a, if n is even.
(ii) Differentiation w.r.t. 8 gives (cf. foot of p. 128)
n sin né
=gin 8{na,c" ! +(n—2)a,o"* +... +(n - 2r)a,_a " 4L )

s;?nn: is a polynomial in cos 6 of degree n -1,

sin nf
% I N S i ORI O )

the last term being b, if n is odd, and b, ¢ if n is even.

(iii) Changing 6 to ’E'-e, we geb

n
if n is even, (- 1)% cos n0 =G, 8" + @, o8 2 +.c. +Ggr cecenenni(14)
n_ysin nfd
and (-17! Scm;:o =by 8"t 4 by S 4L +bys s (15)
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n—1

and, if nis odd, ( - 1)—9_8111119 a s"+an_,s““'+...+a,s. veeeenn(16)

=108 n8

“3-
and : (- 1} "cos 0

SO by g8t by y8™ 3 e Abge waa(17)

The forms of the results are easily recalled by means of the special cases
when n=2, 8, ...; thus
sin 20  sin 36

cos 26, cos 30, s’ snd

can be expressed as polynomials in cos ¢ ; and

cos 34 sin 36 sin 28
cosf’ ' coséd
can be expressed as polynomials in sin 4,

cos 26,

Relation between Consecutive Coefficients.
From €08 10 =a,c™ +a, "2 +...=Tac",
by differentiating twice with respect to 0, (cf. foot of p. 128), we get

n? cos nB—— {Zra,cr-2s} =2 {rac ~r(r - 1)a,c™%(1 -c*)} ;

S nZact=3{rla " -r(r - 1)a,c}.
Equate coefficients of er;
Sonta,=ria, ~(r42)(r+1)a,,;
. _ nt-r?
S S )
A similar result to (18) can be found, by the same process, for each
of the expansions. Such results enable us to calculate all the
coefficients, if one coefficient is known. In applying this method we
begin by finding the first or the last coefficient of the expansion
(12-17), according as we wish to have the result arranged in
descending or ascending powers.

When one expansion has been obtained, any other expansion can
be deduced rapidly from it by one of the methods given on p. 178.

Gpe verereenreenesessraneens(18)

The First and Last Coefficients,
(i) From cosnf=c" ~(3)c" %1 -c?) +(}) ™41 -c*)* —...,
it follows that
G, =1+(3) +(3) +-.. ={(Q+ )"+ A - 1"} =271,
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. if n is even,

sinnf . n(n®-22) . .. n(n?-2%)(n?-42) .
m—ﬂEmE— 3! 9 51 0 wen d

EXERCISE IX. e.

Which of the functions in Nos. 1 6 can be expressed as polynomials
insin 6, and which of them as polynomials incos 0 ?

In each case, use the met.hods o p. 179, 180 to obtain (a) the term
of lowest degree, (b) the term of highest degree.

1. sinnd, if n is odd. 2. cosnb, if n is even.

&mc:sﬂ:.xfnmevan. tw;,lfﬂmodd.
an& i sinnf

5. a.ﬁn:sodd. 6. m—nm,xfnmeven.

7. Assuming that conn&-au-i- sin®*f +... +a, s8in"d, where n is
even, find the value of a,. aﬁnd by differentiation the other
coefficients,

8. Assuming that sinnf =a,sin 0 +a,sin?0 +... +a6,5in"0, where

n is odd, find the value of a,. en find by differentiation the other
coefficients.

9. Prove by differentiation that the constants in equation (13),
p- 178, are connected by the relation,

S
T T rsD(r+2) "
10. Prove that 270y 4439y _1, where y=2c0s 2.
sin 98

11. Prove that =nd = =(a? - 1)(2® - 624 + 922 — 1), where x =2cos .
12. 2 cosnd =(20)" ~n(2e)n2 + 20=3) (g5)ne
~ U =0 = D) oyt s

18, 5229 _ gc)o —(n - 2}(2c1“-'+‘————” 30 =4) (goyns

- ‘"" 5"" % (2ey-1+....

n'{n’ 2‘)

4! o
_n¥(n? —2%)(n? -4%)
R R PR

n
14. n even, cosnf =( - 1)§{1 ._%:c-
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95. nodd, sinnf=ns -E[E"T?l’) o
n—1
ORI s

26. What are the coefficients of ¢"~¥ and ¢"° in the expansion of
cosnf in powers of cosf ?

27. What result can be deduced from No. 24 by writing 2p for n

and'i;for o1

28. Prove that
9n — (n—1)2%14 (n- 2;{1; - 3}2“_, _(n- 3){n3— 4)(n —5) on-a 4
! !

n+1
equals 2 2 sinm%.

n® ni(n®-1%) n%(n?-12)(n®-29) .. nr
29, Provethatl—é—ﬁ ] - — 61 +...=cos 5 -

. nt-12 (ﬂs_ls)(nn_gs) 1. nr T
30. Prove that 1 — 31 + 31 =e. =5 8in - cosec 5.

31. By writing x=cos{ +islin3, show how to express xﬂ+$ as a
polynomial of degree n in z +—.

32. Expross &+ in terms of z4a.

33. Express (z’—%,)-%—(a: —-é) as a cubic in ( —i)’.
34, Verify that the coefficient of ¢*"#! in the expansion in No. 15

is the same as the coefficient of ¢*™+! in the expansion of cosnf in
No. 12, if n is odd.

35. Verify that the coefficient of ¢®" in the expansion in No. 14
is the same as the coefficient of ¢* in the expansion of cosnf in
No. 12, if n is even.

36, If y=sinnf and § =sin~'z, show that
2y

ms&%:ncosnﬂ and (l—x’]%—ma+u‘y=0.

Differentiate this & times by Leibnitz’ Theorem and deduce that
Yiya = (k% —n)lyy, where y, is the value for £=0 of ,%“y.- What are

the values of y,, ¥, ¥ ¥x? Obtain the result of No. 25 by assuming
Maclaurin’s Theorem.
37. If y=cosnb and 8 =sin~'z, show that
)Y .
(1 -2%) 75 - =5~ +n*y =0.
Hence obtain the result of No. 22 by the method of No. 36.
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EASY MISCELLANEOUS EXAMPLES

EXERCISE IX. f.
1, Solve 2t +z° +2% +2® +2? +x+1=0.
2. Solve z'? —zf+1=0.
3. Solve (az —b)" =(a - bx)".
4, Solve (1 —zi)*+4(1+=i)"=0.
5. Find which roots of 21°=1 make z* + 2% +a® +zx +1=0.
6. If 25=1, prove that z%+z —2®-22=0 or £+/5.

7. Given that tan ¢=2, find tan 3a. Use the result to find the
cube roots of 88 + 16i.

8. Expand 4 (1 —4){(1 -=i)" +i(1 +=i)"} in powers of z.
9. If m=ci32%_, expand in powers of z:

(i) (1 +2)% +(1 +wz)® +(1 +ulz)*™;

(ii) (1 +2)*" + 0 (1 +wz)®® +o? (1 +oz)*?;

(iii) (1 +2)*" + 0* (1 + wz)*" + o (1 +o?z)®",
10. If 2®=1, z+1, and if y,=z+2®+2% yy=a?+a®+25

Yy =at +210 +21%, y =’ +2* +a, prove that
() ¥ =Ys +2ys; (i) ¥ =¥ +Ya +¥es () ¥ +v2=-1.

11. Solve cisr8 =cis sf where r, g are unequal positive integers.
12. Show that the roots of (1 —z)" =z" are of the form § +Bi.

13, Prove that the points which represent the roots of 2% =(z +1)*
in the Argand Diagram are collinear.

l+z

14. Prove that if |z] =1, 2+ 1, the points representin, he
on an orthogonal line-pair. €

15. Prove that the points representing 1, -1, a+bi, and
are concyeclic. a +b‘

16. If the point which represents z moves on the circle [z| =1,
find the loci of the points which represent

(i) +v/(22-38); (i) (z+ D)%
17. If a, 3 are the roots of t* — 2t +2 =0, prove that
(w_-i—_a]:_:][g_-i-,_ﬂ_)_“ =sin ni¢h cosec™ ¢, where cot =z + 1.

18. Sum to n+1 terms, 1+(%) cos 8 +(3) cos 20 +....
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19. Prove that
cos 4n6 + (%) cos (4n ~4) 6 + () coa(xin 8) 0 + vee
+ (4 ) cos 40 +} (37) =24-2(cos* 6 + sindn 9).
5,—,1,3)-:-(2 -:}:-) can be expressed as a
c 1\2 . . 1\
polynomial in (a': -E) of degree n. Find the coefficient of ( —9-:)
and the constant term.
(ii) Also show that sin®0 is a factor of (2n +1)sin 6 —sin (2n+1) 6.

21. If u, =(n+1)sinnb —nsin (n +1) 6, find the value of u, ~t,_,,
and prove "that 1 -cos @ is a factor of Uy,

22. Prove geumatrmally that, if z=cis§, and -= <6< =, then
n{yz-1}+ilasn»> o

23. If cos® Osin® GaAl cos 8 4+ Ay cos 30 +A; cos 58 +A, cos 76, prove
that ~3A; +3A; ~IA; =7k

20. (i) Prove that (a:"”"-—

24. Use the 1danhty,
1 _ 1 B 1
(z-a))(z—ay) (8;-65)(x—a) (ay—a,)(z—ay)’
to show that
sin (a; —ag) €08 (20 +a, +aj)
=sin (0 - a,) cos (6 +2a; +a,) —sin (6 ~ a;) cos (# +a, +2ay).
25. Use the identity,
abe +(b +c¢)(c+a)(a+b)=(a+b +¢)(bc +ca+ab)
to show that
cos(Za). {1 +8cos§—2:?cosy—;—-c—'cos°-%—’-8}

=Zcosa.Zcos(B+y)-Zsina.Zsin(B +7).

26. Prove that
2sintnd =1 (29)8 - =T (o0 T Gl =2 (g4 -

sen s

where s=sin # and n is a positive integer.

HARDER MISCELLANEOUS EXAMPLES

EXERCISE IX. g.
1. Express 27 +1 as the product of four factors.
2. Express 28 +27 +2%+... +3+1 as the product of four factors.
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3. I a=cis2:r, and if r and p are priina to n, prove that
1+a? +a*® +... +a?" V7 =0.
4, If p, q are real and (z+p)*+g*=(z+a)(z +0), prove that
(@+a)l® —}3 B =g"1sinnf cosec™ 8, where tan&—
1+cos 98
5. If:c—gcosﬂ, prove that m

6. If u, —2u.,,c080+u,;,=0, and also u, =psin 6 +gcos O and
u,-_psm29+qoos26 prove that u, =p sinnf +gcosnf.

7. Deduce trigonometrical identities from the relation
Z(b-c)=2Z{(a -b)*(z -c)?}.
8. If (1 +z)"=a, + Za.z", where n is a positive integer, prove that

Gy +8y +0q +... =202 24" cos T,

+1D
=(z* -2 - 32% + 2z +1)%

8. If rP=a+b%+c? and z=2 +m, prove that
mc+w i(l-2), (i }a-mb 1+_:z
r+b 1+z i r+c l-1z
10. Xf Zcos8,=0==2sinf,, prove that
(i) Tcosdf,=2ZZcos2(0:+0,);
(ii) Tsin48,=22Fs8in2(8,+6,);
where r and s are 1, 2, 3, 4, 5 and are unegual.
11. Prove that, if 2 (ad +be) =(a +d)(b +¢), the four points repre-
senting the complex numbers a, b, ¢, d are concyclic and form a
harmonic range on the circle.

12. If g, b, ¢, A, B, C are real and ac > b?, AC > B2, prove that the
points representing the roots of az‘+2bz+o 0,Az’+2Bz+C =0 are
concyclic with the origin if 5C =c¢B.

13. If w, z are complex numbers such that |z| =1 and $=1 -z +23,

and if they are represented by the points P, Q prove that PQ passes
i&h;’ough othm point (1, 0) and that the z-axis bisects an angle between

14, If ay, a,, ay, @, as are the fifth roots of unity, prove that
Ztan™? for r=1 to B, equals tan~14 +n=, where n is an integer
or zero. )

15. Use the relation

T
1 /1 1

b 2(::+1 z-1 to prove that

() =( -1 nisin (n +1) 6sinn+16,

+1
where #=cot 8.
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For this reason, the function E(z) is usually written exp (z), but it
should be understood that exp (z), so used, acquires its meaning by
definition as a function of complex algebra. In fact, the definition
of equation (4,) is replaced by the following definition:
exp(z}:nlim 07 ¢ 3) PR (. % |
Proofs of the properties of exp (z) must be based on this definition ;
it is not permissible to assume that the properties established for
exp (x) hold also for exp (z).

Functional Law for exp (z). If 2=0+yi, the exponential series is

(iy) |, (y)? | (iy)® (iy)" .
l"'T! T "-3T+---+ ) Fone
< En(yi)={1 "‘y"i‘y‘ ...}+l'{ -—g—:.;.y_l...“},

where the series in brackets are finite.
But, by pp. 80, 81, when n—> o, the expressions in these two
brackets tend to cosy and siny;

S exp (yi)=“lin; Ep(yi) =cosy +isiny;

. exp (%) exp (¥,8)
=(cos y; +isiny,) (cos y, +isiny,) =cos (¥, +¥,) +4sin (y; +¥,)
=exp {i(y; +¥s)}.
If then z,, z, are each of the form 0 + 4y, the exponential function,
exp (z), satisfies the functional law,
exp (z;) exp (2;) =exp (2, +2,).

Woe proceed to prove that this result is true for all complex values
of z.

Let 2, =2y +1Y1, 22 STy iy 8nd |2| =1y, 2] =1,
n
Ea(2) - En(za) = { N . i}{u— LW +...+‘l}

2! 21 n!
z, %"
=1+1! 2!+".+ﬂ1
23, 2% |, 572 51“71
+ll+lll!+2!1‘+." n! 1l
72 | 5%, "z,
+or +1'2!+212l+"+ﬂ'2!
" 2z " z,"2y"
TR TR TP T
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Add up by diagonals ; the terms of order s, where & < n,.give
s_ll z,%1z, z,+2%2,2 z_-.l
ste-in Tttty
1 0.5, 8(6-1) 42,2 ]
sa-.ﬁ{z1 +ﬁ"1 Zg+ 31 2,8z a2y
_(z +z)
st °
by the binomial theorem for a positive integral index.
z,Pz,8
% En(t)Enlea) ~Enley +2) = 3, 2408,
7e P9
where the summation extends to all values of p, gsuch that p +¢ >n,

pEng<n.
In precisely the same way, we have

En(r)Ep(ry) ~E,(ry +13) =z —ar
DT
Now from Ch. V., p. 81, when n— o, E,(r), Ep(rs), Enlry +73)
tend to the limits ™, €™, €*1™*; but ¢le* =¢" 7"
S Eg{n)Ep(r) —Ep(ry +7;) 0 when n— .,

Now each term of the I expression in (6) is the modulus of the
corresponding term of the X expression in (5); also the modulus of
& sum < the sum of the moduli;

& |En(2) En(2a) = Eg(z; +25)| € Ep(n)Ep(ry) ~Ep(ry +13);
5 |Eq(#)Eq(22) —Eg(2, +2,)|—> 0 when n— .
~ But, when n— «, E,(z,), E,(z,), E,(2; +2,) tend respectively to
the limits exp (z,), exp (z,), exp (z; +2,) 3

S, exp(z,) . exp (z,) =exp (Z; +21),  weerereriersennens(T)
whers z,, z, are any two complex numbers.

cenrarnrenns(B)

[
rPr

This proof of the functional law for exp (z) suggests an alternative
method for developing the theory of the exponential function of a real
variable.

‘We start by proving from first principles that, for all real values of =,

1 +¢+§+-§-:+...

is an absolutely convergent scries. Denote its sum to infinity by E ().
Fro.n equation () above, we have, forr, >0, r, > 0,

Ep(ry +72) < E, () Ep(Fade cesessrsncnsvsconsassans(8)
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Similarly, the product set out above shows that
Een(ry +72) ~E, () E; (r)
equals the sum of a number of positive terms ;
S EQ(r)E L (re) <Egn(ry +73) 5 corvessseesnnssniensnena(9)
s, from (8) and (9), E,(r+r)<E,(r)E,(r) <E:lri+n).

But when n— o, E (r), E, (r), Ep(ry +13), ry +1,) tend respectivel
to the limits E (ry), E (::}: E(n +.r,], E[(:, +:3 ,E' les 12 v

S E(r4r)<E(R)E(r) < E(rn+n);
S E(rp ) =E(ry) E(rg).

The properties of the exponential function of a real variable can then be
deduced from this functional law.

Expression of exp(z) in the Modulus-Amplitude Form. By
equation (7), exp (z)=exp (z +iy) =exp (z + 0i) exp (0 +1y).
But exp (z +0i) = 1-:-1 +2I+...+x';+...
=e¢%, gee Ch. V,, p. 90.
Also, by p. 192, exp (0 +iy) =cos y +isiny;
. exp (z) is a complex number, with modulus e* and amplitude
2nw +y, and we write
exp (z)=exp (x +iy) =e*(cos y+isin y). R L)
Thus we see that the function exp (z) is periodic, with period 2mi.
The principal value of the amplitude of exp (x+1y) is obtained by
choice of n such that —= <2nx +y<g +=.
The special relations,
oxp (iy) =cos y +isiny; exp( -iy)=cosy—isiny
give important forms for cos y and sin y:
cos y=}{exp (iy) +exp (—iy)}, .eereererrrenrreneans(11)

siny=2li{exp (iy) —exp (—iy)}s  ceemreereriinninn (12)

These forms, however, are merely alternative ways of writing
equations (6) and (5) in Ch. V. (pp. 80, 81).
Ezample 1. Express exp (ia) exp (zecis 8), (i) in the modulus-
amplitude form, (ii) as a power series in z.
What conclusions can be drawn by comparing the two results ?
(i) exp (ia) exp (x cis §) =exp {ia +z(cos B +i sin B)}
=exp (x cos ) exp {i(a+z sin 8)}
=e%°08 cis (a +2 sin ).
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EXERCISE X, a,
Express the following in the form, a +14b:

1. exp (1 +im). 2. exp (i) +exp( -1).

3. axp(—l+-‘3£). 4. exp (cos 8 +1isin ).

6. exp (a +1b) exp (a —ib). 6. exp (logr +16).

7. exp {secaexp (ia)}. 8. exp(zcis 8) exp (ycis ¢).
Give simplified values of the following :

9. exp (iw). . 10. exp( —4m).

11. exp (cis 8) +exp {cis (- 8)}. 12. exp (cis 8 tan 8).

13. exp(icis ) —exp{=tcis(-0)}. 14. exp {exp (cis B)}.

15. Prove that exp ( — 0 ~i¢) =(ch 8 —sh 8)(cos ¢ — i sin ).

16. If X +4Y =exp(z +1iy), find the relation between X and Y,
(i) if = is constant and equal to ¢ ; (ii) if y is constant and equal to m.

. . z—a+iy

17. Find u, vif exp (:H-a—-ﬂ'y

18. Find u if (1 —a®cos20 —ia?sin 20)~1 exp (10) =u +dv.

19, The complex numbers z, z’ are represented by the points P, P’,
where 2’ =exp (z). Discuss the movement of P, (i) if P’ describes the
unit circle. centre the origin, clockwise, starting from the point
(-1, 0), (ii) if P* describes the negative half of the y’-axis, starting
from the origin.

20. Find real numbers @ and b such that

exp (a +1b) =exp (2b +1a).

21. Show that the equation, expx =z +a, where a is i-eal, has no
solution of the form, x =1v, where v is real.
If it has a solution, £ =u +4v, where v+ 0, prove that u is positive.

22. What results can be obtained by equating the first and second
parts of the complex numbers in the relation,

=u-+iv.

2
exp (z)=1 +_%+%~1+... +§+... 3
(i) if z=cosa+isina; (ii)ifz=1+itanfB?

23. Prove that exp [(a +1b)z] — exp [(a — ib)z] =2i e2*sin bz.

Use this relation to find the coefficient of 2" when &~°®’ sin (zsin 6)
is expanded in powers of z. i

24. Expross 2¢% cos# in the form exp (1 +iv) +exp (1 —iv).

Hence find the coefficient of " in the expansion of ¢’cos@ in
powers of 6. )
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and to the forms,

z2 24 28
cosz=1-—+

21 E"’ﬁ"‘-n, Satsssssssnraannese (IG]
. z z¥ 28 27
smz_-l—l—3—1+g—!--ﬁ+.... .................. (17)

The definitions are of course chosen so that formulae established
for circular functions of a real variable (defined geometrically) hold
also for the generalised functions. 7The reason that they hold is
indicated below :

Results such as cos0=1, sin0=0, cos(~z)=cosz, sin(-z)= -sinz,
are immediately deduced from the definitions, (13), (14) and (4,) above.
Suppose it is required to prove that
€08 (2, +23) =0082; COS2Z, —8in z, sin z,.
Using relations (13), (14) it is necessary to prove that
Hexp[i(z +2,)] +exp[- iz +2)])= )
{exp (izy) +exp (- iz)Hexp (iz) +exp (- )}
+1{exp (iz;) —exp (- iz;)H{exp (iz3) —exp (- iZ2)h -coeeenn(18)
Now we know that, for real values of y,, ¥a,
cos(y; +y;)=cosy, cosy,— siny,; siny,
and ., from relations (11), (12), p. 194,
Hexp[ily, +ya)) +expl— i(y; +yn)])= _
Hexp(iyy) +exp (- iy)Hexp(iya) +exp(- i)}
+1{exp (&) —exp (- iy )H{exp (i¥a) - exp (- Wa)). «ouveee -(19)
Since the result of simplifying the right side of (19) gives the left side, and
since the process of simplhfication of the right side of (18) corresponds
precisely to that of (19), the truth of (19) implies the truth of (18). ence
to every general formula in the trigonometry of the real angle, there corre-

sponds a similar formula for the generalised circular functions of a complex
variable,

The Generalised Hyperbolic Functions, If z is any complex
number, ch z and sh z are defined by the relations :

chz=1} {exp (z) +exp (= 2)}, +rrvermrrruricniann (20)
shz=1 {exp (2) —exp(-2)}. coorerreerennns ceenee(21)
shz

. . 1
Further, we write th E=a cosechz v ete.
These definitions are equivalent to the forms,

LR S |
chz=l4o 4 bl b e (22)

atate
2 3 2
BhZ = e o e e eeeaeeeeeaeraeaens (23)

113t 61 T
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ind in®
7. sinBsin9+m;lﬂsin38:Slglosin58+....

cos 48  cos 86
28. 1+ a TR T

29. If z is any complex number, prove that exp (cosz) sin (sinz)
. PP ginz  sin2z  sin3z
is the sum to infinity of =—— + ——+—5-—+.
11 21 3!
30. If z is any complex number, express in series of powers of z;
(i) coszchz; (ii) sinzchz.

MISCELLANEOUS EXAMPLES

EXERCISE X. c.
Express the following in the form a +14b:
1. exp{(2n+ NF}. 2 ewl@+i)). 3. tand(z+iy)
4. sec(x +1y). 5. cosec (z —1y). 6. cosech (z —1iy).
7. If sin(a +183) =cos 8 +isin 0§, prove that
sin = & cos?a = +sh? 3.

8. If tan } (= +1y) =u +1iv, prove that
u_sinz

(i) 3’%‘ (ii) (1 —u? —v*)chy =(1 +u? +o?) cosz,

9. If thz=sinasech b and tan y=sec a sh b, express ch (z +yi)
in terms of a and b.

10. If a exp (6i) +b exp ( — 367) =¢, where a, b, ¢ are real numbers,
prove that either @ +b=4c or (a —b)(a® —b®) =bc2.

Find the sums to infinity of the following series :
11. zsha +z2sh2a +2%sh3a +... .
12, 1 -zcosa+a*cos({a+f) ~...a

2
13. sina+7sin(a+B) +5;5in (@ +2B) +.... .
2%sin 20 _ 2%sin 36

14. zsm8+—2—!— —3!— Faee »
15. 1+cos28+cos46 16. gin §  sin 30  sin 50

21 41 Foee e

1! 3! 5! e

O z+/3
17. Prove that l+-3-!+ﬁ+9—!+...=§{s"+2e"""oos ) }
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18. Prove that
3 x? 1 1 z . =z x x
m—ﬂ'l'ﬁ! -"..-=:{-—2'{0h ‘\—/—2‘8]'.]172—811 :\7-2—008 7*2'}.
19. Expand e cos bz in a series of powers of z.

20. Hz=x+iY.z=:c+iy,Z=Bxpz-1 and —Z<y<z

expz+1’ 2 2’
prove that X* +¥Y*< 1.

21. Find the value of sin asin 8 where a and J are the roots of
22% - 2z +72=0.

22. Simplify exp {exp(0i)} - exp {— exp (- 6i)}.
23. Expand 6" gin (a +zsin 3) in a series of powers of z.
Find the sums to infinity of
24. 2sin 6 + 3sin @ sin 20 + 4 sin? § sin 30
+58in?Osin40 +..., 04 kv + 3.

25, cosa +§li cos{a+20) +5l!cos (@a+48) +..us

cos & 2cosd

e . e
26. 1 +~l—!-eos{sm 0) + on

cos(2sinf) +...é

. sin 58 | sin 90
27, sinf + 3Tt o1
28 cos36 A cos78  cos 116
R TR T B B ¥
29. Prove that the sum to infinity of
z* 27 . z.a,—,  (TV3 2m
a:+4l+,ﬁ+...m fe= +3e cos( 3 5 )
30 Prove that the sum to infinity of
xt a® 28 .

_iz
m+ﬁ+§i+u.m iez*{'k CO’B(

+ae s

+aan

z4/3 2w
2t



CHAPTER XL
ROOTS OF EQUATIONS

Equations with Assigned Roots. Many trigonometrical results
can be derived from the algebraic properties of symmetrical functions
of the roots of an equation. Examples 1-3 illustrate the construction
of an equation with assigned roots.

Ezample 1. Form the equation whose roots are

2 4r B
€OS =, COS—-, CO8
The equation cos 46 =cos 36 is satisfied by 46 =2m= 430, that is
2nmr . .
by 8= = where n is any integer or zero.
Writing cosf=ec, since cos48=2cos?260-1=2(2c2-1)*-1, we
have
8ct — 8¢ + 1 =4¢? - 3e.
6

The roots of this equation are ¢ =cos 0, cosz—?-r. cosT. 08 -+

But 8c* -4 —8c* 43¢+ 1=(c~1)(8c®*+4c*—4c-1);

A coszTr, coaé;:. coas—:- are the roots of 8¢ +4c* —4¢c ~1=0.

Ezample 2. Form the equ.ation whose roots are

2 3:‘
il =
tan 7° tan' 7 tan® T
™ 2.
- ? 1 -MS'?
* First Method. Since tan’-_i... —
7

= 5= it follows from
ety

l+wsT

Example 1 that the values of z given by z=1—:':, where ¢ satisfies

8c’+4c’—4a—1=0.a;atan’7 tan%w tan’.':r

Since z+zc=1-c; .\ c(l+z)=1~-z; ., c=

204

1-z
l+z
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Bubstituting for ¢ we have
8(1-zP +4(1 -2)*(1+x) -4 (1 -2) (1 +3)* - (1 +2)*=0;
s 8(1-3z+322~2%) +4(1-2®)(l—z—1-2) — (1 + 3z + 3z +2*) =0;

s 7-35x 4212 =23=0; . 2*-212?+352-T=0.
Second Method. The equation tan 70 =0 is satisfied by 6= T"
where n is any integer or zero.
Writing tan §=¢, and using equation (6), p- 172, we have
Tt =351 + 215 -7 =0.
The factor ¢ corresponds to 8 =0; it follows that itan :;;tan2—,;-

:l:tani—w are the roots of % -21t4+3502—7=0. Put z=t*; then

t.an’;, tan? 2", tau=3" are the roots of 2% — 212? + 35z -7 =0.

Ezxample 3. Form the equat.iun whose roots are

8:1'
R

Ii, using Example 1, we eliminate ¢ between z=2+/(1 —c?) and
8cd +4¢? —4¢ —1=0, we shall obtain an equation whose roots are
ﬁrr
7"

Thus, since 4c'=4-—x’, 20(4 —22) +4 —2° —4c ~1=0;

Soc(d-22%)=2*-3; .. (4-2%)(4 2222 =4(2®-3)%

which reduces to z® -7zt + 142 - 7=0.

[Or, using Ex. IX. e, No. 25,

9 8in 70 =T(2s) — 14(2s)® + 7 (28)* — (28)7,

.. we see that 0, :[;2831’127”, 42 sin4—,;:, :[-_-281\‘167’- are the roots of
the equation, 7z — 14z% +72% —27=0. This leads to the same result

as before.]
Now the equation whose roots are

2smg—. 25Ln , 2sin

3:25:11 . :EBS '_' :l:2

:];231112—, +2s l.n R ;|:2mn6-7;-'-

may be written 28=T7(z*-1)* or a¥=4+ +/7(2* -1).
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But 2sin?,—;>l and 2sin4~;->l, also -2sin§;: lies between 0
and -1, so that these three values of = give 2® and z*~1 the
same sign.

s 281.112 ,2sm4r -2am6r(=2mn§f) are the roots of

7 7 7 7
27 . 4
23 = + 4/7(z* - 1) ; it should be noted that — 2m—7—-, 2mn7o

+23in67” are the roots of 28 = — /7 (z® - 1).

Ezample 4. Evaluate (i) :aen::z7 +sec%f+m67’r;
.. 2x 4 B
g = b Rl E Phakid
(ii) sec 7+sec 7+sec 7
(i) From Example 1, 27 +secé,;:+m? is the sum of the

reciprocals of the roots of 8¢® +4¢* — 4¢ ~ 1 =0, that is, the sum of the
roots of y® +4y* -4y -8=0;
2z 4 6

sec— +aec7+seo7= -4,
2=
(ii) Similarly, sec’— «}~sec’-‘-i,’E +sec‘97—- is the sum of the squares

of the roots of y® +4y® — 4y —8 =0 and is therefore equal %o
(-4)2-2(-4)=16+8=24.
‘We can obtain this result also from Exampla 2.

2:-;- 7 +sec=—_3+tan' - +tem.’47“'-z-mn!'a,;r
H3+t.an!2—“'+tan'3r tan';.
But tan®; +tan’27—w+tan‘3: equals the sum of the roots of
x® - 212? + 352 - 7=0, namely 21.
Example 5. Evaluate sec‘g-!-sec‘-%— +sac"-5—9- +sect 7;
Since cos 36 =} is satisfied by 0= = 5; s 7: , it follows that
5# Tr

4c® -3c =4 is satisfied by c=cos§. e0s 5=, o853 and, as these
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Consider the equation tannf=tanna. This is satisfied by
6=a +%, where r is any integer. '

Me-(G)e+...
Q).
(")z"—l Al
zn—(3) 2"t +...
OEa Eal

LB () E ol SO

But tannf= , where t=tan 6

, where xa%nmﬁ 0;

=tan na

is satisfied by 6 =a +%r, and therefore, regarded as an equation in

v, is satisfied by a:=cot(u +%’) But the values of z given by

r=0,1,2,...,(n—1) are all different and are therefore the n roots
of this equation in z, of degree n.
The equation may be written,

zt tan na -nz" 1 - .. =0;

o 2 cot (a +%r) =sum of roots =n cot na.

Ezample 7. (i) Prove that, if n is odd,

T ' 2r 3= n-1r n?-1
cosec? — +cosec? — +cosec® — 4... +cosec? = .
n n n 2n 3]
i) Ded P 1 1 1 1
(ii) Deduce that the sum to infinity, o, of to itmt gt
. 2
is equal t-o-ﬁ-.
(i) Since n is odd, by Ex. IX. e, No. 25, writing sin 6 =3, we have

ﬂ(ﬂ' -

gin nf =ns — 5 1) 8 ... +( — 1)Hn=1)2n-1gn ;

o ksin — .forr 0,1,2,..,¥n-~ lj,m:et.he roots of

nt-1

=%

8+ (— 1D = ! gn-tgn =0,
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- Removing the factor ¢ which coxreaponds to r=0, and putting
x _-l, we see that the values of cosec? - o for r=1 to #(n ~ 1), are the

&
Toots of
2 _
zi(ﬂ-ll—nTlxi(!l—B)+...=0;
#n=1) L .
-~ E cosm‘z=sumofroota=u 1
= n 6
1 1 1 1 1 1 1
(ii) s, =— tmtm T ta <1+l sty gt +—-—-(r__1)’_.

: 1 1,1
. "““’( -2+ (“")‘*'"*(7-1‘:)-2‘;“2-

But s, increases steadily with r. Therefore, since s, is always less
than 2, it follows that, when r—e0 , 8, tends to a definite limit, say o,
and that U'fe 2.

o<d<z 3 thensm¢c¢<tm¢
{cosec’sﬁ 1+cot?p <l 4— :,ﬁ"

(E.T., p. 182.}

o ‘f-"’

nt nt 4n? Hﬂ:l} o
— fe— 2
{r, tggate b 1),#,} < 20 cosect T

n-1 ﬂ' n? 4an?
< H\FteEatemonE)

) =2 n?-1 = n-1 .
Jo Sin—-1< i < pr —2-—+8§(,|._1),

2 2
*. making n—>w, cg-ﬂ-—-so-; u-=%—. See p. 228,

EXERCISE XI. b.
1. Use the equation cos 3z =cos 3a to show that

cos 3a=4oosacos(a+2§) cos(a+44-3§).

2. Prove that sin asin{a +g) (a +?—) =}sin 3a.
3. Use the equation sin 3z =sin 3a to show that
cosec a +cosec | a -!-2%) +cosec(a+%)=3m3a.
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4. Express tan 0 +t.an(0 + ) +tan(l9 +2r) in terms of tan 30.
6. Prove that sec? a +sec? (a +i-_’§) +sec? (a -}-4—31:) =90sec? 3a.
~1
6. Prove that “E cot® (a +L:) =n(ncosec®na - 1).
]
e s n-1 rr
7. Prove that, if n is odd, I sec? (a -I-?) =n?sec? na.
0
2n—1 -
8. Prove that %} tan(a-!-z—n): —2ncot 2na.
n—=1 rT nw
2 —_—=n2 2 — ) =
9. Prove that % tan’ (a+n) n? cosec (na+ 2) n;
<1 rr nd-4

IO.Hnisevmandb&pmvethatiE; sac‘;;= 5 *
1

~1) 2 _
11. Ifnisoddand>1,provsthat*,‘"2 msg "2 1,
1

12. If n is odd and > 1, prove that the sum of the products two
together of tanf-—E forr=1,2, ..., (n—1), is n(1-n).
n—1
. . n-l 2re e
13. Prove that, if n is odd, ¥ sec (a+T)={ —-1) © nsecna.
)

—1
14. Prove that, if n is odd, "E { —1)" cosec (6 +%) =ncosecnb.
0

ek n-1 T
15. Prove that, if niseven, ¥ (—1)7cot (8 +—-ﬂT) =ncosecnf.
0
‘Use the result proved in Example 7 (ii) for Nos. 16-20,

o+ 1 1.1 w2
16. Prove that (i) '2_'+-1—’+§5+' =54
Lo 1 1 1 =3
(if) T§+‘§+‘5—,‘ +aee 3§

1 1,1 1
'ii_§3+§—§+"’ H

. 1,11
18. Sum to infinity: H+5+E+E ! +71,+81,+%,+....

17. SBum to infinity:

1 1 Lo

1
19. Prove that -t gr mtgg pt-=g 3
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20. Prove that 1 g+ g g g g +eve =10 = 7%

21. If n is odd, prove that

= cosect = 5 forr= equals (n*-1)(n*+11)

20

II].

at
Deduce that 1.+2.+3‘+...—90

22. Prove that 3 3 ;,;Fm , if r=2 is excluded.

r=l sm=l

-1
23. Prove that, if n is odd, “E sec? (3 +2%:r ) =n?gecind.
0.

24. Prove that, if n is even, '3 sec? (o +2L"')=.__.“'—.
° | -eosn(% +6)
Equations involving more than one Trigonometric Function. It ia
often convenient to use the phrase * essentially distinct roots of &
trigonometrical equation *” to denote angles, satisfying the equation,
which do not differ from one another by a multiple of . Thus, the

equation sin 8§ =4 has two, and only two, essentially distinct roots,
Eand%r; the equation tan 6 = 4/3 has no root essentially distinct

T
r §.
Ezample 8. If a, B are two essentially distinet roots of
gin (6 +A) =m sin 2A, prove that m = 1 cos }(a - B) cosec (a +f8):
sin (@ +)) =m sin 2X =sin (8 +1).
But' a+A =27 +(B +1) is excluded by the data ;

SoatA=(2r4+1)r~(B+A) or l=(2r+l)%—i{u_+ﬁ);

- sin a+(zr+1);’;—ua+p}]=mﬁn [(2r+1)r —(a+B)] 5

». cos }{a-B)=msin (a+B8);
2~ m=tcos }{a — B) cosec (a+B).
Ezample 9. If a, B, 7, & are essentially distinct values of @ which
satisfy a cos 20 +b sin 28 —¢ cos 8 —d sin 0 +e=0, prove that
a+f +-y+8 b be - ad

@ tan =z EE

; (i) Esina=
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. 8 . 2t 1-g2
(i) Put tEt&nE, t»hensmﬁ—l.i_‘ andcasﬂ—l "v
o 4(1-12) 168+

t.ar12,t.am)23 ta.ny tan-gamtheimotnofthaoq“tion,
a(tt — 662 + 1)+ b(42 — 42%) —e(1 ~14) —d(2¢ +263) +e(1 +2¢* +¢4) =0
or ti(a +c +e) —t3(4b + 2d) +13(2e — 6a) —£(2d - 4b) +a —c+e=0

. Stan 2=22E2 o
2 a+c+e
md+ﬁ+?+s_ (4b +2d) - (2d - 4b) _8_b
2 “{a+c+e)-(%e-6a)+(a-c+e) 8a a

(ii) The given equation may be written
a(l -2sin®0) ~dsin 6 +e= -2bsin f cos @ +ccos O
or 2a sin®*f +d sin 8 —(a +¢) =cos 8(2bsin 6 -¢) ;
S [2a sin®8 +d sin 6 — (@ +€)]* =(1 ~sin?§)(2b sin 0 —¢)® ;
.. sin®0(4a® +4b*) +sin®*6(4ad — 4bc) +... =0.
This equation is satisfied by 0=a, 3, v, 8
d4ad —4be bc —ad

R R ™ Ty

cos(a-l-&) cos (3+6) cos(y+0)
sin®a s sindy
of the angles a, 8, v differ by a multiple of , prove that
(i) a+B +y=nw; (ii) tan 8 =cot a +cot B +cot .

m%;ﬂl=k; then a, B8, y are values of = which satisfy the

cos (z +0)
sin®z

Ezample 10. If , where no two

Put
equation,

Now cos_(x+3) _Ccos x cos @ ~sinzsin® cotzcosf —sin b
sindz sin®z sinz
=(cot x cos 6 —sin 6)(1 +cot®z)
=cot®z cos 0 —cot®z sin 6 +cot z cos @ —sin 0 ;
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10. If 6,, 8,, 6,, 8, are essentially distinet roots of
asin4f +b cos 46 =c,

prove that (i) tan 6, tan 6, tan 8, tan 6, =1; (ii) X cosec20=0.

11. If 6,, 6,, 6,, O, are essentially distinct roots of

acos2(0 —a)+bcos(6-) +c=0,

prove that 4a — 20 is a multiple of 2x.

12, If a,, a,, a,, a, are essentially distinet roots of

8in 260 ~m cos 6 ~n sin 6 +r =0,

prove that (i) Za=(2n+1)r; (ii) Ecosa=n; (iii) Esina=m.

13. Prove that cotnfl=k cot (6 +a) has n+1 solutions for 6, no
two of which differ by rx, and that the sum of their cotangents is
(kn - 1) cot a.

14. If 6,, 8,, ... 6, are five essentially distinct roots of

atan 30 +b tan 20 +ctan 8 -+d =0,
prove that (a+b+c)tan (20) +d =0.

15. If 0,, 6,, 0y, 0, are essentially distinct roots of
a sec § +b cosec 8 =¢,
prove that (i) Seos0=22; (i) Tein0=20; (iii) S0=(2n+ 1.
Interrrat. the last result in terms of the eccentric angles of points
on an ellipse.

16. If (a+cosB)cos(0—vy)=b is satisfied by four values of 6
between 0 and 2=, prove that

(i) Zcos@=—2a; (ii) Esin@=0; (iii) 20 =2y +2nr.

17. If acosxcosy+bsinasiny=e¢, acosycosz+bsinysinz=c,
acoszcosx +bsinzsinzr=¢, and no two of =z, y, z differ by a
multiple of 2=, prove that be +ca +ab=0.

18. If a, B, y are essentially distinct angles such that
acosfBcosy+b{sinf +siny) +¢=0,
acosycosa-+b(siny +sina) +¢=0,

acosacos 3 +b(sina +sin 3) +c¢ =0,
prove that

(i) b*=ac; (ii) Zcosa=cos(Za); (iii) sin(Za) -sin c:::%.
19, If @, y,  are essentially distinct angles such that

COSZ cosy , sinxsiny _ ] =008y cosz sin y sing
cos’a sinfe  ~ ~  cos’a sin*a '

cosz cosz , sinzsinz _ 1
cos®a sin%a =~ "

prove that
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13. Prove that, if “*‘ﬁ'
(i) cosa +cos9a +cos 13a+cos 15a =3{+/17-1);

(ii) cos 3a +cos Sa +cos Ta +cos lla= - 3(+/17 +1).

14, I k-—cmi—l,

k+k‘+k‘+k‘ +&* and k=+k°+k’ +E5 + R,

form the quadratic whose roots are

Deduce that }_ cos =-%.

15. Prove t.hat
tan®a + tan?® (a +%) +tan? (a +2%) =3(3 tan? 3a +2).

16. Prove that 2 sec? (8 -t»(f 2?1) :r) =4n? cosec® 2nb.

17. Evaluate Etan‘(ﬂ Ll 2”")

18. Show that the product of the different values of cos (} sin—z)
Loxt-1

IBT-

n-1 2_
19. If nis odd and >3, prove that X coaee‘%r-——n L
1

3 -

20. Prove that )_ :am.‘-‘rl'r —3"'8+ 4

l)rr

21. Prove that Ect:usef.-.z (2"
29, If n is odd, show that 3 cott %, ’ for values of r from 1 to
#(n-1),is }(n - 1)(“ 2)

23. Prove t.hat E cot‘ r’_‘:_r =g5(n—1)(n —-2)(n* +3n - 13) where
n is odd.

2n
24, If # is an integer less than 2n, prove that El cos%:ﬂ.

m T n (2n)! 1

Deduce that 2,1 cos = gens3 {l + 20"

26 Find the sums to mﬁ.mty of the series whose nth terms are
1 . 1

O wimine O ey
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26. Find the sums to infinity of the series whose nth terms are
P | . 1 321 1
O TR U ey F (i) Tm Iy

27. If a, 3 are essentially distinct roots of a cos 8 +b sin 8 =¢, find
the value of tan 2a +tan 283 in terms of a, b, c.

28, If the cosecants of 0,, 0,, ... 8, are unequal and such that
a cos 30 +b sin 30 =¢, find their sum.

29. If 8,, 0,, 65, 0, have unequal tangents and satisfy
tan (6 —a) +sec (8 — 8) =cot (a +f3),

0y +04+0;+0,=2nm.

a cos (8 —y) +b(cos B +cos y) +¢=0,
a cos (y ~a) +b(cos y +cos a) +¢c=0,
a cos (a—fB) +b(cos a+cos 8) +¢=0,
are satisfied by values of a, 3, ¥, which do not differ from one another

by & multiple of 2=, prove that
(i) a* +b*=2ac; (ii) sin a=0; (iii) Zcosa= -5

prove that
30. If
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and their product
a
=(z—oos& '-(isingk—r =z'—2=m&+l;
n n n

the factors corresponding to r=0, rng arexz~1,z+1. Thus,

. in-1 2k

ifniseven,x®-1=(x-1)(x+1) J] (x’-zxeon—n— +l). ceaesa(1)
1

(ii) n odd. Here we take r=0, +1, +2, ..., —_-I:"—;l, which gives

1+2 (nT-l)’ =n, factors. Thus,

{n—1
if nis odd,xu-lz(x-n'h’(:!-axcua?ﬂ). eeeeneenenne(@)
1

Factors of x2 +1, z"+1=0if

m(2r— 1)x +isin (2r - 1}:'.
n n
If n is even, we take 2r-1=+1, £3,..., &(n—-1); and if nis
odd, we take 2r—-1=41, +3, ..., +(n-2), and n; this last value
gives the factor 2 ~cos # ~i sin # =z +1. Thus,

1
z=(-1)"=

if n is even, x8 +1 =ﬁ x? —2x cos (2:_;:‘1&_'_1)' S -3
] :
#nisodd, x+1=(x+1) T] (x*-2= mw+1). —Y
1

n
It should be remarked that, although the work of this chapter is in
complex algebra, the formulae (1) (2) (3) (4) are true results of real a
If the products on the right were multiplied out we know that they wo
come to 2%+ 1 because we have proved the equality in complex
The results could be obtained, although not so shortly, by nsing
methods of real algebra, see Ex. XII. a, Nos. 13, 14.

§

BPE

EXERCISE XII a.
1. In complex algebra what are the factors of 23 -11¢
2. In real algebra what are the factors of 2* -1 1

3. Obtain from first principles the factors of 2* +1, and deduce
quadratic factors not involving 4. Show that these can also be found
by writing z* + 1 as the difference between two squares.
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4. Find the complex factors of z° - 1 ; deduce the real quadratic
factors of af +23 +at+x+1. Veniy the result by writing

atiadtaltz+1 =:r:'(:r:’+:c +1 TE é). and putting = -r-i-—y.

5. Obtain from first principles the quadratic factors of
(i) z8+1; (i) z*+3°;
(iii) =* ~a®; (iv) 2® —-256.
6. Express z1° ~25 + 1 in quadratic factors.
7. Find the values of cos 8 for which

(i) cosn8=0; (ii) cosnf =1; (iii) cos nf = —1;
(iv) cos nf =cos na# +1; v) s;.‘-T;l—»“BB=0.
8. If n is even, find the values of sin 6 for which
. p ... sinnf
(l) eoaﬂﬂ=0, (u)m—&
9. If n is odd, find the values of sin 6 for which
- _n. ... cos nfl _
(i) sin nf =0; (ii) Y] =0.

10. Solve 2" — 22" cos na+1=0.

11. Write down the factors of z2"+1, and deduce those of
(1 +2)2m 4+ (1 —x)2n.

12. Show that the solutions of (1 +)" +(1 —z)** =0 are

. 2r-1
x=:1;stan{—’-'§-‘—]—fr. for r=1, 2, ..., n.

L (2r-1)=
Deduce that (1 +z) +(1 —z) =2H(:c'+tan’ .
1
Hence prove that %sec’i-z—% =2n
1
13, If u,=2"~ 2z"a" cos nf +a**, prove that
Uy =270 cos 8 u, — a2 u,, + (2" +a*")u,.
Hence prove by induction that z®-2ax cos 0+a® is a factor of
- 279" cos nf +a*, and deduce that z® —2xacos (B +2—~) +a?
is also a factor, where r is any integer.

14, Use No. 13 to factorize, by the methods of real algebra, " -1,
when n is even. [Puta=1, §=0.]

FACTORS OF TRIGONOMETRIC FUNCTIONS

‘We have shown, in Chapter IX., that certain functions, like cos n#,
sin nf, are polynomials in cos f or sin 6. The results are given in
Ex. IX. e, Nos. 12-25. Corresponding to each of these results it is
possible, by the method stated at the beginning of the present
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chapter, to obtain an expression in factors for each of these functions.
An essential step in the process is to find the values of cos 6 or sin 8
for which the function vanishes, and the reader who has worked
Ex. XII. a, Nos. 7, 8, 9 will already have found the values.

We will give the reasoning in full for one example, and the reader
will then be able to supply it for the others. The results are given
in Ex. XII. b, Nos. 3-13.

Factors of sin n6 when n is odd. It is known from Chapter IX.,

that, when n is odd, sin nf is a polynomial,
n—1
nsin @ —...+(=1) £ 2715in"g,
of degree n in sin 6. To find the values of sin 6 for which the poly-
nomial is zero we put sin n =0 ; this gives 0 __'r;:r’ and the n different
n-1

2
The factors corresponding to r =0, r =4k are sin f, sin § ~sin %.

and sin 6 +sin %'-, and the product of the last two issin’&—sin”%r;

thus,

values of sin 6 are si.n’% forr=0, £1, +2,... £+

in—1)
gin n0 =A sin 8 "1'[ (sin’&—ain‘%), rerveeenna(B)
1

n—1
where A =the coefficient of sin8 in the polynomial=(- 1) 2 27-1,
It is convenient, however, to divide each factor by a term

{n=1) in?
-sin? " ; thus, sinnd —Bsin0 ] (1- sin®f ) ceveensnseenaseens(6)

1 gin? =
n
where B =AIl ( —sin? E) =27-1]] gin? L: . It is not, however, neces-

sary to use the value of A; dividing each side of (6) by sin 0 and

making 8—0, we get B= lim s nf =n; thus,
G—+0 sin 0
1n—1) in?
sinnB=nsin® I (1-—20N\, errernn(?)
1 sin’rf

n
and it has been proved incidentally that

-1
n=28-1T] si.n*%. rtevessrerarrennanarans (8)
1
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— $n=1)
From formula (8), Vn=42s-1 ]J sin ™ but all the angles
have positive sines ; 1 n
Hn=1)  gp
o ifnisodd, Va=2i-1[ sin—. e (9)
1

Other results of this kind can be deduced from the factors of
B:::: , when 7 is even, and from the factors of cosnf. See Ex.XII.b,
Nos. 18-25.

Another deduction is often made from equation (7) by putting
nf=¢ and making n—>cw, but, as explained in the Preface, the
consideration of Infinite Products is held over for the companion
volume. It is found that (see Ex. XII. f, Nos. 23, 24)

singp . k=n ‘P’ @ ( :P:)
— = -t = 1=
? e kI;Il (1 k’ﬂ’) le kin?)’

“Ti(1- %
cosq:—IlI(l (21:—1}3::')'
and, by putting ¢=§ in the first,

. 2.4.6..%20 1
VM=l ey Vel

EXERCISE XII. b.

or convenience of reference some results proved in the text are
included.]

1. Obtain from first principles the factors of

() sin 50 (i) ﬁ? ; (iii) sin 56 ~sin 5a;
regarded as functions of sin 6.

2. Obtain from first principles the factors of
(i) cos 58 ; (ii) cos 66 ; (iii) cos 66 ~cos 6a 3
regarded as funetions of cos 0.
Verify some of the following results (Nos. 3-13) :

n
3. cosnf —cosna=2""1[] ( cos 8 —cos fi?—:g—rf)-
1

n
—ogn~i o 2r = 1) .
4, cosnbl=2 Il](cosa cos g )
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=9 o (2r-1)=
5. cos (2n +1)0 =2" cos ]1](1::-0336- ’m)

(2r-1)=

=2 oog @ I;I (sinsm

—sgin? 3).

n
) —oan-1 e (2r=1)r
6. cos 2nf =2 |1| (coa’ﬂ cos — )

Comea e J(2r =17 .
=22 1;_[ (SIII."——K—“- —sm’ﬂ).

n—1
7. si —9n-1 gt _ .
sin nf =2 smﬂIlI(ccmﬂ cos“)

. A _om o d _ rT
8. sin (2n +1)0 =2 amGI;I(coa‘ﬂ cos'ﬁm)

. . n R rr .
=2 sin 0] (sm‘zn_]_ : —sm’&).

. n—1 r
9. sin 2n@ =22"—2gin 28 J] (coa‘& - cos® —-)
1 2n
n—1
=2t25in 26 ] (sin® 7~ - sint0).
1 2n

. cosnf in=1 sin%0

10. Tf nis odd, s 6= II l_":'__{2}"—l¢r .
1 gin® 5
n

, e Zr=1)

in in?
11. If n is even, cos n9=H(l—- LF_)
2n

n gin 0 b . LT
’ by

12, Tt n is odd, 5278 _FF7" (1 - S0 )

. sin nf in—1 5in?0
13. Ifnis even, = ];I (1 _sin’”)-
n

14. Express uia?::)—::a—w as a product of three factors.

15. Find the factors, if any, of sin nf —sin na, regarded as a
funetion of sin 6.

16. Show how to deduce No. 4 from No. 3.
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and, putting z=cos 8 +1 sin 6, we have
n-1 2rr
2cosnfl -2 cosna= H{zmaﬂ—zm at—— }.
0

n-1
ie, co08 nf —cos na =271 J| {cos 8 —cos (a +~2:':)} -« wes(11)
0 n

This is the same as Ex. XII. b, No. 3, and can, of course, be proved
directly in the usual manner.

(iii) Putting z=1, a=2f in (10),
n-1 Orr
2(1-cos2nf3)=1] 2 {l —cos (2,8 +—;)} 3
]
n-1 rr

o sin®nf=22-2 [T sin? (ﬁ +;) ;

[

n-1
S sin =421 J] sin (ﬁ-{-%).

[

Now, if 0< < E, each factor on the right is positive, and so is
sinnf. Also, as 8 increases, sin n8 changes sign whenever 8 passes
through a value r{’ and at the same time one factor on the right
changes sign. Thus the ambiguous sign is always a +, and

n-1
sinnB = +25-1 ] sin (p+%). ceererseennen(12)
v e

Similar results to (12) can be found by the substitutions indicated
in Ex. XII. ¢, Nos. 1-5.

(iv) From (12), by taking logarithms
n-1
e
i =(n~-1)log2 i —_—
log sin nf =(n -1)log +§logm(ﬁ+ .
and, differentiating with respect to 8,

n-1
= -
nootnﬁ—;cot(ﬁ«l-n). ................... (13)

This may also be proved by the methods of Chapter XI.

(v) De Moivre's and Cotes’ Properties of a Circle. Tf AA A, ... A,
is a regular polygon inscribed in a eirele centre O, radius a, and P is
a point such that OP =z, £ (0A, OP) =4, then

L(OA,, OP) =8 +£:—r and PA,?=2*+a® ~2zacos (8 +2:?) ;
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(see pp. 80 and 223). Such a process requires careful justification, and
the product ression is it'.n;e:IF1 obtained, not without difficulty, from
equation (7). It seemed more satisfactory to deduce the sum Z1/n?
directly from = cosec*(rm/n), the infinite product being left for the com-
panion volume.

EXERCISE XII. ec.

By substituting 1 for z, and 23 or 273 + for a, in formula (10),
. prove the following results (Nos. 1-5).

1. cos nf=2n-1 H sin (B+(2r+ l}"-)
2. cos nf=(—1)}n-12n1 H cos (B-i—-r!). if n is odd.
] n
3. sin n@=( - 1)ingn—1 “]:[l cos (,8 +r_1-r)’ if n is even.
4. sinnfB=21( — 1)+ H ws(ﬁ+m) if n is odd.

if n is even.

5. cos nB=27-1( —1)in H eos(ﬁ+m)

6. Show how to deduce Nos. 4 and 5 from No. 1, and Nos. 2 and 3
from formula (12).

7. What result can be deduced from No. 1, by taking logarithms
of each side and then differentiating w.r.t. 8 1
8. Simplify (i) ismﬂsm(8+§) (6+2w H
(i) sin 0.sin (0 +§) sin (6 +3) sin (s +¥).
9. Simplify (cosﬂ—cosa)(cosﬂ—cosa+-23£)(cos&-—cosn+§:)<
en-1 o
10. Prove that E[ tan (¢+-—2;;)—008 ni,
n-1 re . . T
. 7\ _g1n fl
11. Prove that ];[ sm2(¢+ n) 2 mnﬂ¢ﬁmu(2+¢).
n-1
2r+1
12. Prove that Z: cot(¢ +(—f—;;’—}")= -n tan ng.

n-1
13. Prove that ; cosec? (¢ +%) =n?cosec? ng,
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. 2nx(z -1 tan a)
Fhere R e
. 2nz +2n(z —1 tan a)
zsitana 2n(1 +2)1 4 2n(1 )2
ttan a
= +itan )" (1 -4 tan g™
- ¢ tan a cos®™lg
(cis @)1 +(cis ~a)*"?
_{-1)isina cos" g
“Tcis a)* +(cis —a)’

because (cis a)® =cis (rx) =(-1)";

hence A, =(—1)T. {isin a cos*"*q,
Writing —1 for 4, we have B, = —(-1)". }isin @ cos*"%a;
.. the expression

. i £
=2{( -1)". } sin a cos™” sa(:«:—t‘t.am::'_:t=+'£1;za|.rw:)}
- 2|( — 1)1 gin a cos*™*a tan a

x* 4-tan’a
n—1( 1)+ sin%a cos®"4a
z? +tan’a

where a= ™
1 ’ T2
n tan nf

- as the sum of fractions.
sin 6

Ezample 3. Express

n sin nd

ntannd  sin§ _ a polynomial of degree n — 1 in cos 0

sn6  cosn o polynomial of degree nin cos 0
The denominator is zero when

cos § =cos M. forr=1,2,3, ..., 7
2n
, ntannf & A
ae — @ — Dy s
gin 0 ; P (2r-1)7

2n
where A= lim n tan ﬂB(cfos 0 —cos a) and a=(2r—1)=r
fra sin 6 2n

The value of A, may be found in either of the following ways !




234 ADVANCED TRIGONOMETRY

nsinnf cosf-cosa nsinna cos @ —cosa

i = lim — . . lim
() A, gra Sin @ cos nf sina g,, cosnf
n sin na _, —sin § nsinna sina 1
= = =1,

- im . =— -—
sina 4,, -~nsinn® sina nsinna
n tan nb (cos 6 —cos a)

(ii) A,=£i_?; a6
Ensmagﬂsing-g—? -
...:1_:.11‘ Sin 0 %an (na —nb) sinceua—n8={2r—1)§—n9
2:’.Hiir1f
=fﬁm=l' 1
n
" n:;; Zl:cosﬂ—cosu-

2n
Note. This result may also be obtained as follows :

b3 —
From Ex, XII. b, No. 4, cosnf=2"1J]| cos § ~cos (2:-2:]7:-];
1

n -—
- logcosn0=(n-1)log 2 + 2 log [cos 6 —cos (21'2“1}:1'].
1

Now differentiate each side w.r.t. 6.

EXERCISE XII. d.
1. Find the real partial fractions of ;1_—1 .
2. Express z‘t- i in partial fractions with quadratic denominators.
84/5 1 1

3. Prove that 5 —=
(I+z)+(1~x) s+msﬁ 2t + tan? 2

3r"
10

deng.m:iEn?t::": m in partial fractions with quadratio

cos®f .
5. Express cosnd in partial fractions when n > 3.

6. If n is odd, prove that
in-1) -1 -1
n _ 1.7y { (=, (=D )}

sinnd sing " 7 sin(6+%r) sin(ﬂ—%
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cosmr -1
9 ¥ — n n
: h nf-:m(n 1)6 — .
7. Prove that sinfcosnd T cosﬂ-—cos{zr; VL
y78
. 2rx
nsinna n-1  Sm (a«}--’—;)
8. Prove that =3 .
cosnf—cosna G ,qp —cos(u +2%r)
innf cosecd "Tl 1
9. Prove that T Coo0”
cosnl —cosna g c0s 8 — cos(a+2"‘)
n 1
10. Prove tha.t. E __T-].Fj;'—:“
1 ]1-cos —_
2n
n
11. Prove that X -—%r—; T equals 0 or n{ — 1)““1,
1 ]1-2¢os—,

according as nis orisnot a mulmpla of 3.
gn-1

12. Express i B oosnf 1 B9 @ sum of n partial fractions.
x (‘-OE”
n-1 ™ 2n—1
13. Prove that 3 I e T
1 22-2rcos— 1

n-1 cos%
and deduce an expression for 3 ——
cos— —cos §
n
14. Prove that
' 6 2r
nx"1(z" —a" cosnf) ﬂil -’v—acos( +o-
2 _22Mgh cos nd +an <

—2::0005(6 +—-—) +a’

15, If n is even and a=21 , prove that

tannd
tan 6

{2”5“(‘*""2)“(@ 0 +tail(2r+ T)a tan0 ~ta:11 Gr+ 1)a)}‘

sin50_, S roe O rT
_.}§(—1] sm—,I-cot(B- 7).

is the sum, for r=1, 2, ..., in-1, of

16. Prove that T



236 ADVANCED TRIGONOMETRY

indf . 8 . drr
17. Prove that ::_':—-—%T-B=+ %} ( -1)"mn-—7-oosao(9—r~.;: .

i ki
18. Prove that z‘%gﬁ S (=1rsin "%”mm (& _"_81') .
19, Prove that
sinz sing ginb

Sin(z -a)sin(z ~b) &0 (z —a)sin(a—b) &z —b)sm(b—a)"

and ress sin*"lp in a similar form

CXPTOSS Gin(w —ay) sin (z —ay) ... 5in (7 —a,) g
20. Prove that

sinzcosx _ 8in @ cos a
Sin(z-a)sin (z ~b)sn (v —¢c) ~ > 5n(z—a)sin (@ ~b)sm(a =3)"
21, Prove that
ginz =3 sinacos(z—a)
sin (z-a)sin(z -b)sin(z —¢) < sin(z -a)sin(a —b)sin (G —0) "
22. AjA,; ... A, is a regular polygon inscribed in & circle, centre O,

radius g ; P i8 a point of its plane such that OP =z, and POA, =0
prove that

n ] _f_l_(x'" —ain)
2 PAA " @ —ah) (@ - 5an cos il +atm)*

EASY MISCELLANEOUS EXAMPLES
EXERCISE XII e.

1. Express 2" —a®" as the product of n quadratic factors.
2. Express 2 —2*+1 in the form II(z - a) and prove that
Z(z —a)d =622,
3. Prove that 9 . 8r
o
z'—31:+1=(z—2 ws—é-)(z—SOm;-o—) (a:-2oosF).
4. Prove that

(1 4-2)241 — (1 —z)anil =9z ﬁ (:c’ +tant 1% )
1

2n+1
L] rr
and deduce that ];[tan'm=2n+l.
b. Express (x+1)* —(z—1)*" in the form
n-1
dnz x4+ t."-E
1;1 ( co 2»)

-t rT
and deduce the value of [] (4 +cot? %) .
i



240 ADVANCED TRIGONOMETRY
21, If ny, Ny, ... ny ave the integers less than 2" which are not powers
of 2 (2° being reckoned as & power of 2), and if “=2'“'+‘+1' prove

t
that J] see npa=2t"-%13,
r=1
22. Prove that
no fn-1 (m-1)z (8- l}r+8 sin nf
nI-Il .Illsml: ]} SgE

and determine the ambiguous sign.
23. Express sinx a8 an infinite product as follows:
(i) Differentiate 0 cosec 6 and 0 cot § ; hence prove, for
0 <6< ¢ < im, that 8cosecd < ¢ cosec ¢, and 8cot 8 > b cot .
Deduce that
sin?f sin® @
1-Sheg <1 —$,<sec 8(1—- : ,¢)'
(ii) If n is an odd integer, and r takes the values 1, 2, ..., #(n-1),
prove that, for0<z <,

sin’:'—i o z si.n’%:
— 1- n--1= 1- .
H(l in’r—:) {H( ;?){sm 1“rl( si.n‘%')

8
(ili} Use equation (7), p. 222, and Example 7, p. 70, to deduce

in-1)
that [;I (1— %} lies between two expressions which tend to

sin z/x when n—w .
This proves that, for 0 <z <,
2 x?
sinz=x 1- e
n(-73)
(iv) If 0 <(0, ¢) < im, prove that
2

‘1~““"9 Il —,|csec=e|1 :“‘,g
and hence establish the result of (iii) for all values of z.

24. Use Ex. XII. b, No. 10, and the method of No. 28 above to
express cos z as an infinite product.




CHAPTER XTI
MANY-VALUED FUNCTIONS OF A COMPLEX VARIABLE
Logarithms of Complex Numbers, Definition. If w=exp (2), then
¢ is called a natural logarithm of w, and we write z =Log w.
Thus, if w+iv=exp (x+iy), then x+iy=Log (a +iv). ....cceci(l)

‘We have seen that to any value of 2z, =z +1y, there corresponds
one and only one value of w, =exp (z)=exp (z +iy), viz. e*cis y;
see p. 194. We shall now show that to a given value of w there
correspond an unlimited number of values of z, =Log w.

Values ‘of Log w, where w=p(cos ¢ +i sin ).
Let z, =z +1y, be a natural logarithm of w.
By definition, p(cos ¢ +1 sin ¢) =exp (z) =exp (z +1y)
=e%(cos y +isiny);
Sop=e®  and ¢=2kr+y;
& z=logp and y=¢+2Inm,
where log p is the unique logarithm of p as defined in Ch. IV
. Log {p(cos ¢ +i sin )} =Logw =z +iy =1og p +i(¢p + 2nm). ...(2)

Thus the natural logarithm of a complex number, as defined above,
is an infinitely many-valued function.
If ¢, is the principal value of the amplitude of w, so that

—-—r<P <7,
we define the principal value, log w, of Log w, by the relation
log W=10g P +1;. wrerererrvnnrarenrncsrosanrans (3)

By using the results of Ex. VIII. f, No. 8, we may express the
relation (3) as follows:

Ifu>0, log (1 +iv) =} log (u* +v?) +i tan~? E
Hu<0<y, log(u+iv)=4%I1og(u®+v%)+i {mn-l E-i-:r}, ...(4)

If u< 0, v< 0, log (v +1v) =1 log (u® +2?) +1 {t.an‘l 5 —a'}.
241
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Functional Law for Log w.
Let w;=p,(cosd,+ising,) and w,=p,(cos P,+4sin ¢y),
then, by equation (2),
Log w; + Log wy ={log py +i(¢, +2pr)} +{log py +i($2 +2¢7)}
=log p; +log py +1i(P; + P, +2n7)
=log (pypg) +1(Py + Py +2nx).
Also Log (wywy) =Log {pyp, cis (¢; +a)}
=log (pypa) +3(py + by +2k7) 5
.. every value of Logw,+Logw, is equal to some value of
Log (w,w,), and conversely.
We therefore write
Log w; +L0og Wy =LOg (W;Wa). veereereennsaescnsn i)

In the same way it may be proved that
Log w; —~Log wy=Log :', PR ( : )|
Wy

and in particular Log '—t= —LOgW, .ieeerercennsncenees{T)

where every value of either side is equal to some value of the other
side.
Further, if n is an integer,

every value of n Log w is equal to some value of Logw2. ...(8)

But, in contrast with (5) and (8) it is not true to say that every
value of Log w™ is one of the values of n Logw; for example,

Log #* =Log (cos # +4 sin ) =i(7 + 2nw) ;

but 2 Log i=2Log (cus;; +isin ;) =2 (g + 2m=r) =i(r +4mr) ;
thus only some of the values of Log #* are values of 2 Log ¢; the rest
are values of 2 Log ( —4).

It should be noted that (5) and (6) are not necessarily true
for principal values, i.e. if Log is replaced by log. Thus, in (5),
am w, -+am w, may be outside the limits, —= to += ; for example,

1 i h) +lo i 3_”)_@ 3wi_ 3mi
og ( cis— gleis— )= +—=733

. 3= 3w\ _ . 37\ . =W\ wi
but log c:s(T+?):|—log (cls-z—)—log c:s-ﬁ--)_ -3
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3. What is the general value of Log (—e) ?
4. Find (i) the general value, (ii) the principal value, of
Log (cos a +isin a), where (2n-1)r<a < (2n+1)m.

5. What are the values of ¢ and b if log(a+ib)-2-—§ﬂ‘!

8. Express log(l+cos 20 +isin 20) in the form a-+ib, given

T 3
that §€ 84—2-

7. Find the geneml values of (i) 4 Log#; (ii) Log (1 +i+/3).

8. Expmsalog(1+1tana)mthafoma+tb when - <a<3—;

9. What are the values of a and b if log {a+|'b)=—[l +1)3?

10. Ifa-:()-:bandtma:g,where -—-§<a{ , find the values of

(i) log (a +1b) ~log (a —ib); (ii) log g +$
11. Express Log (1 —cos 8 —i sin 0) in the form a + b, giving rules

for determining its principal value.
},2f1f (a +bi) log (¢ +di) =f +gi, express ¢ and d in terms of
a, » r g'

13. If w=cis2y, in what seose is Log1=3Logw? Express
some other values of Log 1 in a similar form.
14. If log z =a +bi and z log z=p +¢i, prove that
Ten* 2=Tan—1 3 - .
q 1
15. What is the general value of exp {} Log (a + bi)*} when b=01?
16. What are the values of -
(i) exp {(1+4) Log i} ; (ii) exp {(1+3) Log (1 +¥)} ?
17. What is the value of exp {i Log (cos a4 sin a)} ?
18. Express Log {Log (cos 8 +1 sin 8)} in the form a +ib.
19. If z=z +4y and z+* 1, prove that
log (= - 1) =} log {(z ~1)* +y% +itan—? —Lo 4 ki,
and give the values of k for different positions of the point P which
represents z in the Argand Diagram.

20. Give an expression corresponding to that in No. 19 for
log (z + 1), and answer the same question about k.
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but in general it is difficult to discover how the series behaves when P
lies on the circle itseli. Here, wo know from Ch. V., p. 84, that
(14) holds for w=1, i.e. when P is at the point (1, 0) and that the
series is divergent when w= -1, i.e. when P is at the point ( -1, 0).
It can he proved that (14) holds for all values of w for which |w]|=1,
except w= -1, i.e. for all positions of P on the circle of convergence
except the point ( -1, 0). Although a rigorous proof of this result
is beyond the scope of this book, we shall state here some of the
results which follow when this fact is assumed.

In (14), put w=cos a+1sin ¢, where a(2n + 1), then

log (1+cosa+isina)=cisa—3cis2a+}cis3a—....

But log (1 +cos a+1isina)

sina

= 2 i ' =1
1 log {(1 +cos a)® +sin*a} +4 tan Ticona

. a_ a

2 gin - cos 5

2 2
a

2
2¢as2

=$log (2+2 cos a) +4 tan—!

=} log (4 cos? g) +4 tan—‘(hm %) H
. log|2costal=cosa-%4cos82a+3co83a—... .irerernnna(15)
and  tan~(tan fa) =sina—-}sin 2a+¢sin 3@ ~.ie ) ceierrennnna(16y)
provided that a+(2n +1)=.
The sum to infinity of the series in (18;) is the principal value of
Tan~1 (tan g) ; this may be expressed as follows :

e . a\_a,
if —w<a<w, tan (tang) 33

if r<a<3r, tan-‘(tang)=%—ur. ete.
In general,

if (2n-l)r<a<(@n+l)m, 'I:an“"-(tan%)=§—ﬂf=
hence i;-m=aina-;sin2u+*ain3a~.... weeeneene(165)

Also, in the excluded case, a=(2n+1)w, the sum of the series
(18,) is obviously zero.
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Using these results, the reader should draw the graph of
y=sinz —} sin 2z +} sin 3z - ...,
which, he will find, is discontinuous at the points z=(2n +1)=.
For example, if z—>= from above, y— -3 but, if z—= from below

Y= +;, while at z =7, y=0.

Ezample 4. Find the sum to infinity of
r sin a 44 sin 2a +§° sin 3a +... when || <1,
From equation (14),
log(l-reisa)=—-rcisa—$ricis2a-4rlcis 3a-...,
since |-reisal=r<l.
But log (1 -rcis a)=log (1 -r cos a —irsin a)

- - 2 4 7% gina} 44 tan—d S0
=3 log {(1 -7 cos a)® +r* sina} +1 tan Troons’
since 1 —rcosa>0, (see p. 241);
. . . et —rsina P rsina
S reina+jrten 2a4.. = -tan 1-rcosa o 1-rcosa

Ezample 5. Find a series in powers of z, involving a, whose sum
to infinity is one of the values of 6 satisfying the equation,
tan 6 =z +cot a, where [xsin a|<1.
gin 6 cosa zEna+cosa
= +— = = H
cos gin a sina
. exp(0i) cosf+isin® sina+i(rsina+cosa),
*exp(~0i) cosb-isinf sine-i(zsina+cosa)’
. zsina+cosa-isina _ cis(-a){l+zsinacisa}
- e (200 = s —isma —cisa{l +zsinacis( -a)}
l+ycisa
l+yecis(—a)

=cis (7 —2a)

>, 204 is any value of
Log cis (= —2a) + Log {1 +y cis e} ~Log {1 +y cis (-a)} ;

o 208 =2nmi+ (7 — 2a]a+2{( 1}"-19 [cis na - cis ( - m)}}

, Where y=xsina;

since |y|<1;

. 7 1< ey E" sin"a
- B—nw+§-—a+2‘ {(—1} ~—2asmm:}

& 0=nr-§~§-a+zmasina-a—;-’sm’asm2u+...-
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11. Find the sum to infinity of the series,
cos acos 3 —3% cos 2a cos 203 +% cos 3a cos 33 =~ ..y

where neither a 4 3 nor a — 8 is an odd multiple of .

12, Xf @+ nr, find the sum to infinity of the series,

cos’z — } 8in®*2z +§ cos®3x ~ sin?4z +... .

13. If y =2 sin a + }a? sin 2a +}2° sin 3a +... , where [z] <1, provo
that sin y =2 sin (¥ +a).

14, If y=x ~t sin 2z +}#? sin 4z — #* sin 6z + ... , whero

t=tan*$ <1, prove that tan y=cos 2¢ tanz,
15. If |z| <1, find the sum to infinity of the series,
2 sin 0 +32* sin 30 + }=° sin 50 +... 3
16. £ T > e> -—Z, prove that
(1) tanamnﬂ—it.an'asin 36 +} tan®a sin 56 —...
=1log 1 +sin 2a sinf |
8 —sin 2asin 8’
(ii) tan a cos 6 —} tan®a cos 30 +3 tan’a cos 50 —...
= tan—!(tan 2a cos 8).

17. If (1+z)tan 6=(1 —z)tan ¢, and if |z]|<l, expand & in
ascending powers of z.

18, If tan a=cos 2w tan A, and tan?w <1, expand A in ascending
powers of tan?uw.

19, 1 T<6<3Z, find tho sum to infinity of the series

cos B —% cos 30 +3 cos 50 —... .

20. If |z| <1, expand tan™? 2:;: co;ﬂ in ascending powers of z.

Generalised Indices. If a is positive and n is rational, it has been
proved in Ch. IV, (see p. 65), that
g =enlogs —exp (nloga). .cuceererernrnreneen(17)
If z is complex and equal to r{cos 8 +1 sin 8), where r+ 0, and if n
is rational and equal to g. where p, ¢ are co-prime integers, it has
been proved in Ch. IX, (see p. 165), that

p0 + 2k

B
gﬂsz"-—r‘ ,fork=0,1,2,...,(g-1)
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We shall now show that this is the same as exp (n Log z);

% Log=z --%{log r+4(0 +2sm)} =§ log r+ips;g—-ji

o« exp (n Log z) =exp (% lIog r)(:i.ag-{e—-l.a--—--—fl
=exp (% log r)cispa ';2]“
PO +25pT ¢ s=0,1,2,.

since cis ..(q—l)isthesamaasciam
for k=0, 1, 2, ... (g — 1) when p and g are co-prime.

2
But, by (17), exp (% log ,-) =ri3

PO + 2k

2
. exp (nLog z)=r?cis » £=0,1,2,...,(g-1);

S 2P =exp (NLOgz), .ccinrrrernerniaiiienanes (18)
where n is any rational number, and z+ 0.
Definition. If z is any complex number except 0, and if w is any
complex number, the function z¥ is defined by the relation
Z¥ =0xP (WLOE Z). tenvvrerencenernsansnanes (19)

The relations (17), (18) show that the definitions of Ch. IV and
Ch. IX for a" and z" are consistent with, and in fact suggest, the
definition (19).

Modulus and Amplitude of z¥. If z=r(cos 8 +5 sin 8), r+0, and
w=u+iv, by (19),
2¥ =exp {(u +iv) Log z} =exp {(u +iv)(log r +48 + 2kwi)}
=exp[{u log r —=v(0 +2&kw)} +4{viog r +u(6 + 2kx)}]
=exp (ulogr) exp { —v(0 +2kx)} cis {v logr+u(0 + 2kr)}
=ru ¢~ (04287 cis {v log r+u(6 +2kr)}, by (17);
& |2¥| =1%e-V(0+2kn) . Am(z¥)=v log r+u(0 +2kx) + 2. ...(20)
Thus z¥ is an infinitely many-valued function, unless v=0 and u iz
rational.
If v=0and w=u=%. we have already seen that zV is g-valued.

The principal value of 2% is defined to be exp (wlog z) ; with the
notation just used, this may be written

Me-Weis (vlogr+ul), if ~r<fg .
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One special case of (20) should be noted :
¢fa —exp [ia Log ¢] =exp [ia(1 + 2ki)]
=exp (ia —2kwa) =exp ( —2kwa) cisa;
< writing n for -k,
et —¢n®a (cog @+ 8I0 @), .eevrenanns veneenees(21)

Thus ei* is an infinitely many-valued function, and cos a +1 sin a
is merely its principal value. It is best, therefore, to avoid writing
(m)

ee for the sum of the series 1+(ia)+-—— +...; the sum of this

series is exp (ia) or cis a and is, like t.he.se iunctmns, one-valued.
The Binomial Series. The investigation of the binomial series

¢(m, z)=1 +ﬁ z*m(ﬂ; 1) 22 +m{m ;:(m 2)z3 Foees
lies outside the scope of this book. We shall merely state the facts,
and give some applications of them in Ex. XIII. c.

(i) If m is a positive integer or zero, the number of terms in the
series is finite and the sum is the one-valued function (1 +2)™, for all
values of z.

(ii) If m is not a positive integer or zero, suppose that m =a +1f3.
{(a) If |z| < 1, the series is absolutely convergent, and its sum to
infinity is the principal value of (1 +z)™, that is to say,

¢(m, z) =exp {mlog (1 +2)}.

(b) If |z| =1, 2+ —1, the series is absolutely convergent if a >0,
and is convergent, but not absolutely, if ~1< a< 0, and in either
case its sum to infinity is exp {mlog(l +2)}. If a< -1, the series
is divergent.

(c) If z= -1, the series is absolutely conyergent if a >0, and its
sum to infinity is 0. If @ =0, B0, or if a < 0, the series is divergent.

(d) If |z| > 1, the series is divergent.

Note. Although the complete statement is necessarily elaborate.
there is one simple fact that covers the vast majority of cases that
occur: namely, on the circle of convergence, excluding z= —1, the
series is convergent if @ > —1.

..-(22)

Logarithms to an Arbitrary Base. Definition. If {is any one of
the values given by z¥={, we say that w is a logarithm of { to the
base z, and we write

LOgli=W. .reeceerineireresnranienacanse(23)
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By definition (19), exp {wLogz}=2v=¢;
.. by definition (1), p. 241, wLogz=Log {;

o Logb=w _::gg' R RRUSRRN ¢ -§ |
If {=p(cos ¥ +isin¥) and z=r(cos § +i sin @), then
{log p + (¥ +2km) } {log r ~1(6 + 2mr)}
(log r) +(0 +2n=)?
which shows that Log,{ is a doubly infinitely many-valued function.
The principal value of Log,{ is defined by the relation,

SR verererensrenesnes(25)

logg
lo = *  snsssRsssssssresssssssEssaTens 2
AT (26)
Note. Sometimes a more restricted definition is given for Log,i as

follows : If { is the principal value of 2, then w is called a logarithm of { to
the base z.

In this case, w=Log,{ is equivalent to { =exp (wlogz);
*. by definition (1), p. 241, wlogz=Log{;

S Logf=w =]1:’:gszr.

And, in particular, Log.rzll:':gg:--a]'..og .

‘With this definition, Log,{ is a singly infinilely many-valued function and
becomes identical with Log { when z=e.

EXERCISE XIIL c.

ress the general values of the following in the form a +1b or
in the modulus-amplitude form:

1. 2%, 2. 11, 3. it 4. (1-9).

5. (1+3)-% 6. (-9)~% T e, 8. &imi,

9, en=i, 10. e=-¥, 11, -~ 12, ==,

Write the following in a form which shows their many-valuedness:
13. Log,,2. 14. Log,3. 15. Log.

16. Log,3. 17. Log et tie, 18. (cos § —4 sin0)*.

19. What value does the definition z¥ =exp (w Logz) give for i*?
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20. What is the condition for the prmc:pal value of e**% to be of
the form a +0i ?

pr

21. Prove that the principal value of i 1081+ jg ¢ "B ois G' log 2)

22. Find the modulus and amplitude of the principal value of =%,
if = is a negative number.

23. Find the general value of e®P®) x gexp(~6)

24, If p +0i is the principal value of (z+yi)%+%, where z >0,
prove that 1b log («? +4*) +a tan™! %is a multiple of .

How is this affected if r <0 and y<0?

25. Prove that the ratio of the principal values of (1+4)!-fand
(1 -49)1*+is sin(log2) +7 cos (log 2).

26. Find the values of z for which i =cis ar.

27. (i) Is every value of z%: xz% a value of z¥1+%1 7

(ii) Is every value of z*1+%: g value of z¥1 xz* 7
(iii) Are the principal values of 2% x 2% and 2%¥1+* equal ?

28. Prove that the d;:‘omts in the Argand Diagram which represent
the values of e®0sa+i lie on the equiangular spiral whose polar
equation is r=ce~?%"%, where logc=seca.

29. If |x| < 1, prove that the sum to infinity of the series,

cosa +nzx cos (a + 0) -!-Mx’ cos (a +28) +one

’2 _3 xsinf
is (1 +2z cos 6 +2?)2cos (a +nd), Whm‘# Ay  cos 0

30. If, in the triangle ABC, a < b, prove that (%)n cosnA is the sum
n(n+1)a®
1.2 b2
31. If n is real, state the conditions for convergence of the series:
nin-1)
1.2
n(n 1)

to infinity of 1+ngeosc+ 05 2C +....

(i) 14+ncos20 + cosdf +...;

(ii) » sin 26 +
and find the sums to infinity if
(a) 2h-—§<. 0<2r+2

sin 46 +...;

(8) 2r +5 < 0 < 2 + 7.

2! 2
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Expression of Tan~}(x +iy) in the form & +i@. From the relation,
Tan—}z +1iy) =a +if8, we have ’

tan (a +iB) =2z +4iy; .. tan(a—-if)==z-iy;

. _ .o _8in {(a+if) +(a-iB)}
o 2==tan(a+1,3)+tan(ﬂ-‘ﬁl m(¢+‘f.e) mg(a—iﬁ}'

. = sin 2a
. 2’5—{|coa (a+1, )l}" see p. 143.
Also 21 +y? =(z +4y)(z ~iy) =:$ Ez ::g; zom;({; __:%))
_ch2B-cos2a,
“cos Za+ch 28°
: =_3¢08%a cos 2a .
.s l-x’—y’—mza+ch2ﬂ—'{]¢°s (G-I-I:ﬁ”}l’

~. gin 2a has the same sign as 2z, and cos 2a has the same sign
as 1 -z¥—y3;

* 5in2a:cos2a:1=22:1-2—y: + /{42 +(1 —2* -y*p}. (28)

Unless both z and 1 -z -y* are zero, that is unless z=0 and
y =1, equation (28) gives one, and only one, value of 2a, say 2a,,
such that —= <2a, < 7, and the general value is given by

2a=2nw +2a, Or a=nw-+ay
w T
where —§<a‘, sa-

o= e -9) -

.. _ iy,
. ‘ﬂlﬂﬁ—-—'—-—l.'_r‘_'_yl’

o {exp (48) -1} (1 +2* +¢*) ={exp (48) +1}2y;
. _ 14+t +2y
h “p“’e)_l +2? +y? -2y
which gives a unique (real) value of 3, namely
2 +(1+y),
}lt:ug—-—--—-:':,_i_{l pr
x?+(1 +y)*

s Tan(x +iy)=nm+ay +1 lf:g;,—ml—f}—,,

i weeesa(29)



258 ADVANCED TRIGONOMETRY
where g, is the unique angle satisfying equation (28), such that
-'—; For the principal value, we have

=2 +(1 +y)?
2?4 (1 -yP°

The function Tan—}(z +14y) is not defined for either of the pairs
of values, =0, y=1, or2=0,y=~-1.

< 4”
aﬁ--..2'

tan—(z +iy) =0, +}i log ceensenaeeaa(30)

Note. The reader ehould observe the necessity for determining the sign
of sin 2a anrl cos 2a. It might seem to him quicker to say

B

anrd to deduce that a=}% Tan"Ll-:—if-:—,, but this gives two values of a
between —:2- and +§. and it is evident from the previous work that one
of these is incorrect.

Also equation (28) is written in a proportion form to avoid considering
separately the special cases 1 —z? -y* =0, 2 =0.

EXERCISE XIIL d.
1. Prove that, in equation (29), if #* +y*+ 1, @, may be replaced
by %l«'l-"!‘ * tan—? 'i—;—:'i_—y—’, where

(i) k=0, 2?4 y*<l; (i) k=1,if2z*+y2>1 and >0;
(i) k= -1, if 224y*>1 and z<0.

2. Prove that Ch—'z=2nmit1i cos~lz; find similar expressions
for Sh—'z and Th-'z,

3. Prove that Sh—lz=tinmr +( —-1)"log {z+ +/(1 +2%)}.
4, Prove that Ch—1z =2inx+log {z + 4/(z* - 1)}.
5. If cos™!(a +1if3) =u +1v, prove that
(i) a® sec?u — 3% cosec2u=1; (ii) a* sech® + 3* cosech®v=1;
(iii) cos®*u and ch? are the roots of the equation
A2 —A(1 +a?+ %) +a*=0.

6. If sin—(a +1i83) =u +1iv, prove that sin® and ch? are the roots
of the equation p®~p(1+a2+ %) +a?=0.
Tty

7. Prove that one value of Tan g where 2>y >0, is

T, 1
Z“]‘Elo —



260 . ADVANCED TRIGONOMETRY

EASY MISCELLANEOUS EXAMPLES

EXERCISE XIIL. e.
Express in the form a +bi:

wi
¢ VE (o integral). 2. e=HA®, 8, (sin 8+4 cos O)F.

4. Log (Log (cos 0 +isin 0). 5. tan [0 -ilog (tan g)}
8. Find all the values of (I +#)t+%,
7. Prove that, for O<z<m,

log sin (2 +1y) =} log (ch®y —cos®x) +1 tan~(cot z th y).

Find a similar expression for log sin (z +1y), if r{x{-szzandy:\-o.

8. If log tan (G + 2) =6, prove thot 0.=i Log oot (5 +4ci).

9. Sum to infinity:

4
cos 0 '59%2 —~sin 20 "";’9 —oo8 39°“T"9+ﬁn 4a°i:~g+... .

10, If sin B=t.h% and if cos § >0, prove that one value of

8m
{tan? exp (0i)}™ + {tan—? exp { — 0i))}™ is 21_-2—-:“‘003”%.

1.

11, Iftan%=2t.m§, and if 0<a<m, 0< <, prove that

g 8in B+ g 8in 2B+ 55 8in 38 +... =H(a~B).
12. If (1 —c¢) tan z=(1 +¢) tan (z -y), and |¢|< 1, express y as
a series of powers of ¢, involving z.
13, If 2r < 0 < 4, find the sum to infinity of the series,
sin 0 +4 sin 20 +3 sin 30 +... .
14. If 0 < 6 < 2a, find the sum to infinity of the series,

. 1.3 . 1.3.5 .
}mn8+ﬁsm29+2_4.esm38+....

nf o™ .
15. 1f n<1 and —=< 0 <, prove that cos o (2 eoai) is the

rum to nfinity of 2

n nn+1) n{n+1)(n+2)
1 -ﬁwsB+Tcos28--—-—-——3~l————

co8 30 + e @
Find the sum if = < 0 < 3,
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16. Find the sum to infinity of the series,

cos 8 cos 8 —% cos®0 cos 30 +} cos®0 cos 50 —... .
17. Find all real values of z, ¥, such that log cos (z +iy) =t tan™*1.
18. Find all the values of z, if 15 =¢(cos a +1 sin a).

19, If -—<8< s.ﬁndthemuntomﬁmbyaf

1. 1.4 . 1.4.7
gsin 39+ am68+3.6'9

20. Prove that, if Th"‘{tan z) =a+ib and i Sec(cos 2z) =c +id,
then a=+c.

HARDER MISCELLANEOUS EXAMPLES
EXERCISE XIII f£.
1. If log sin (= -+iy) =a +if, prove that 2¢2¢ =ch 2y —cos 2z.
2. Tf || < 1, expand log (1 +2h cos 6 -+h?) in powers of h.
3. If tan~1(£ +in) =sin~!(z +1y), prove that
£ ant=(a? +)] (@0 + 200y +yt - 220 + 247 + 1)
4, Simplify sin (Log i¥).
5. Prove that, for a >0, one value of (a +bi)**# is of the form vi,
if 43 1og (6*+5%) +a tan=} 2 is an odd multiple of 5.

sin 96 +... =

6. If tan log (a +ib) =2 +4y, where z?+y*+ 1, prove that
2x =(1 —x? —y?) tan log (a* +b?).
7. If ch (z +1y) =sec (u +1v), prove that
. (i) tan®u =sh®*z sec?y ; (ii) thlv =sech®z sin'y.
cos (x -1y}
8. Prove that log o8 @ Tiy)

9. If 3 tan (6 —a) =tan 6, prove that one value of a is the sum
to infinity of

=2i tan~!(tan z th y).

sin20 _sin40  sin 80 _
1.2 2,283,238 *°
10. I —-—-:B-c , find the sum to infinity of the series,

1.3 1.3.5
l+i(‘.0529—--—'—-c0848—.—2 i soosﬁa 516 scosBG-i-....

11, If 0 < @ <, find the sum to infinity of the series,
cos 6 +} cos 30 +3 cos 50 +... e



CHAPTER XIV

MISCELLANEOUS RELATIONS

Numerical, Single-letter, and Two-letter Identities.
Ezample 1. Prove that cos®0 +cos*(a + 6) ~ 2 cos a cos @ cos (a +0)
is independent of 0.
First Method. The expression
=cos0 +cos*(a +0) - {cos (a ~ 8) +cos (a +06)} cos (a +6)
=cos?0 - cos {a — 8) cos (a +0)
=1(1 +cos 28) — }(cos 20 +cos 2a)
=3{1 - cos 2a) =sina.
Second Method.
If f(6)=cos®f +cos?(a+80) -2 cos a cos 0 cos (a +8),

d%f{ﬂ]: —2 cos 0 sin 6 — 2 cos (a +0) sin (a +6)
+2 cos a {sin 0 cos (a+8) +cos 0 sin (a +8)}
= —{sin 20 +sin (2a +26)} + 2 cos asin (a +20) =0 ;
.. f(0) is independent of 0.
Third Method. Take a circle with diameter OD of unit length, and
draw chords OB, OA making angles 0, a+ 6§ with that diameter, as
in Fig. 79; then OB=cosf, OA=cos (a+¥0),

and AB=sin a. The expression A
=0B? +0A? -20B.0A . cos AOB =AB?, 8
which is independent of 8. o o

Fourth Method. Take a triangle ABC having
&=;+8, B=;—6—a, and hence C=a; then

c*=a*+b*-2abcosC;
*. 8in*C =sin?A +sin’B-2sin AsinBcosC;

- sin’a .—.-sin’(g-!-ﬂ) +sin? (-’; -6 —-a)

Fia. 79,

—2si.n(-1-r2-+6) gin (’_;-e -a) cos a
=cos?8 +cos®*(a +8) — 2 cos # cos (6 +a) cos a.
It should be noticed that the ieometrical methods have to be modified,

or indberprehed in accordance with certain conventions for some values of
aand 6.

263
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EXERCISE XIV. a,

Prove the following :

1.
2.
3.

4
5
6.
7
8
9

10.
11,
12.

13.
14,

15.

16.
17.
18.
19,
20.

21,
22.

23

24,
25.

26.

(cos A +sin A)(cot A +tan A) =cosec A +sec A,
(2 —cos®B)(2 +tan?B).=(1 +2 tan®B)(2 —sin?B).
tan®C + cot®C =cosec®C sec?C - 2.

. If sec D +cosee D = 4/2, then cos®D +sin?D = —-;,]—-.
. cos® 221° ~cos? 674° =cos 45°.

2 cos 5° 37 30" = /[2 + V{2 + V(2 + vV2)}).

. 4 cos 24° cos 36° cos 84° =sin 18°.
. tan 9° --tan 27° —tan 63° +tan 81° =4,
. cos 12° +cos 60° +cos 84° =cos 24° +cos 48°.

sin 40° sin 50° =sin 30° sin 80°.

tan 20° tan 40° =tan 10° tan 60°.

If z:y:2:1=sin 40°: sin 60° : sin 80° : sin 20°, then
~1l:y2=-l:zt-1=yraz:yz

cos® 14° —cos 7° cos 21° =sin?® 7°
If tan g—-t, then tan 0 +sec 8 —-1-—-'1'—:.
iz

If cot A —tan A =z, then tanM"—-z—,—_i.
If sec 2A =2 +sec A, then cos 2A +cos 3A=0.

cosec 26 +cot 46 =cot 6 —cosec 40,

4(cos 28 +cos 66)(cos 66 +cos 80) =1 +sin 158 cosec 0,
cot?0 + tan®@ =8 cosec’28 — 6 cosec 20.

sin®0 sin 30 + cos®d cos 360 =cos*20.

sin® (60° + 6) +sin® (60° — 6) =%‘°‘”’.
3tan 6 — 2 cot O =cosec 26 — 5 cot 20.
Ifa+f= then (1+tan2)(l+t&nﬁ)—2.
If tan*A= 1+2 tan®B, then cos 2B =1 +2 cos 2A.
If tan 26 =p cosec 2a —cot 2a, then tan (26 - a)-———-;_—} cot a.
If(1+3 am'¢.}* =sm*§9 +cos§i8, then
(1 +3 tan®¢) tan 0 =+ 2 tan?¢.
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The first of these terms
=Z {sin (26 + 3z +y ~z) —sin (20 - 3z +y —2)}
=Z {sin (20 - 2z +2z) —sin (20 - 2z +2y)}, since z +y+z=0
=(. :
The second term
=12 {sin (20 + +2y) —sin (20 +z — 4y) +sin (20 + 4z —x)
~sin (20 — 2z ~x)}
=33 {sin (20 +y —2) —sin (20 +2 - 4y) +sin (20 + 4z —2)
-sin (20 +y —2)}
=Z{cos (20 -2y +22) sin (2y + 22 -z)}
= ~Z{cos 2(0 ~y +z) sin 3z}, since z+y +z=0,

EXERCISE XIV. b.

In this Exercise, it is to be assumed that A+B+C=m,. or that
A+B+C+D=2nr.

Prove the following :
1. cos?A +cos®B +cos®C +2 cos A cos B ecos C=1.

2. sin®B +sin?C — 2 sin B sin C cos (g— +A) is symmetrical,

3. 1+cos 2A +cos 2B +c0s 2C= —4 cos A cos B cos C.

4. sin 3A +sin 3B +sin 3C = — 4 cos oA cos 5B cos 3C.

2 2 2
1-cosA+ecosB+cosC_
b- l+cosA+c>c:n;B—cosC_lt‘an 1A cot §C.
A B c_ 7+A w4+B 7w -C
6. cos 5 +cos§—ms§-4msTchmsT.

7. sin 2A sin®A +sin 2B sin?B +sin 2C sin?’C
=sin 2A sin 2B sin 2C + 2 sin A sin B sin C.
8. sin‘A +sin'B +sin‘C
=2(sin*B sin®C -+ 8in®C sin®A + sin?A sin?B) ~ 4 sin?A sin?B sin?C.

. . . BA 5B 5C
9. sin 5A +sin 5B +sin 5C =4 aos—z—oos?é-cosT-

10. 4(cos®A +cosB +cos®C)

=4 + 1011 (sin §A) — 5II(sin $A) + I (sin fA).
11, sin 2nA +sin 2nB +sin 2nC = — 4 cos nr sin nA sin nB sin nC.
12. cot A +cot B +cot C =cot A cotB cot C +cosec A cosec B casec G,



MISCELLANEOUS RELATIONS 21

4, asin 6 =b sin 26, ¢ cos 6 =d cos 20.

5. sin 0 +sin 20 =a, cos 0 +cos 26 =b.

6. sin%0 =a, cos®@ =b ; also express the result in a rational form.
7. 3sin 6 +2 cos 0 =a, 2sin 0+3 cos 8 =b.

8. 3 cos 0 +cot 8=a, 4cos 8§ —cot 6=b.

9. x+cos 0 =sec 0, y +sin 6 =cosec 6.

10. asin 6(4 cos®8 —1) ==z, b cos 6(4 sin®@ - 1) =y.

11. 1 +sin®f =a sin 6, 1 +cos?0 =b cos 0.

12, x cos 0 +y sin 6 =a sin 26, -z sin 8 +y cos 6 =2a cos 20.

13. x cos 6 +y sin 8 =a cosec 0, z sin 6 —~y cos 6 =a cosec 8 cot 6.
14. z cos 8 +y sin 6 =c =z cos (0 +a) +y sin (6 +a).

15. a+b cos 8 +c cos 20 =0, 2a cos 6 +b cos 20 +¢ cos 30 =0.
16. ax sec 6 —by cosec 6 =c?, az sec 0 tan 8 +by cosec 6 cot 6 =0.
17. 5 cos 6 +F sin 0=1, 2 sin 0 —y cos 6= va¥ im0 +5* cos0.
18. asin 0 +b cos 6 =c¢, a cosec 8 +b sec 6 =d.

19. tan 0 +tan 20 =¢, cot 0 +cot 20 =d.

20. tan (a - ) =S Sn2a_ mn(E—u) sin (6 - 83)

1+c?cos2a’ =sin 6+06)
21, (a+b) tan (0 —a) =(a - b) tan (0 +a), @ cos 2a +b cos 20 =c.
cos (a —30) sin (a—-360
R s
- 23, r:a:b=cosB@+ecosa:sin 6 :1+ecos (0 +a), where
bt =a?(l —e?).
24, x=tan"1(0 +a) +tan—1(6 - a), y=sin4.

Elimination. Two Variables.
Example 7. Eliminate § and ¢ from the equations,
(r-a)cos@+ysinb=a; (r-a)cosPp+ysind=aj;

given that @ and ¢ are unequal and between 0 and 2=.

l-tan‘g 2tan2
. 2
cosﬂ:—a and smﬁ:-———-—s;

1 +tan®— 1 +tan® —
+tants ttan®s
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S tangand tanf (beingu.naqusl) are the two roots of
(@-a) oy
z-a 1+s* 158 =%
This reduces to zt* - 2yt +2a -2 =0;
6., ¢ 2 0, ¢ 2-z
tan2+ta g=_ and tanﬁtan-i- =
0 . ¢ . .
But m'ﬁ. mé-_zs.
. tan 8 Y, .. $_y
.. tan§_5+e, tani—; €3
y

s z2(1 —e?) +y* =2azx.

EXERCISE XIV, e.
Eliminate 8 and ¢ in Nos. 1 to 12:

1. sin 0 -sin ¢ =2a, cosf ~cosdp=2b, 8- =2y.
2. z=asin(0-¢), y==2acosbcosd, 0 +¢=a.
3. sin 6 +sin¢ =a, cosf +cosp=>b, tan f —tan ¢ =c sec 0 sec P,
4, sin 8 +sin¢ =2, cosf +cosp =y, fgm%tan%:z.
5. sin 0 +sin ¢ =s, tan 0 +tan ¢ =¢, sec 6 +secd=k.
6. cos 9 +cos$=a, cos20+cos2p=b, cos 30 +cos 3 =ec.
7. y tan 6 =x tan®@ +a, y tan ¢ =z tan®¢p +a,tanb tangd=~1.
8. cosp+sinp=1=7cos0+¥sing,
b cos B cos ¢ +a* sin @ sin ¢ =0.

9

by

cos@=cosacosy, cos¢=cos 3 cosy, 1;01.11§tanq'> tany.

2
10. x cos 6 +y sin 6 =z cos ¢ +y sin ¢ =2a, 2magcos%= .
2
11. sin26 cos = +——b, a cos*d +b sin*0 =g,

(a sin*8 +b cos?8) cos®p +-¢csin*p=r,
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Inequalities.
Example 8. 1If 0,, 0,, 8, 0,, 8; are five positive acute angles such
5
that their sum is 5a, find the maximum value of > sin 0,.
1
Suppose that 8, is as large as any of the 5 angles and that 0, is as
small as any of the 5 angles, so that 6;>a> 6,> 0.
Then [sin 6, +sin 6,] - [sin a +sin (0, + 0, —a)]
0,40, 6,-6, e,+8,msﬂ‘+&.—2a

5 08 —g—-2sin—g5 2

o Oy 10, 0; -0, 9,+8,-2a)
=2 sin 3 (cos 0 - C0S 3

_ . 01+03 . 81"(1 . eg—ﬂ .
—4311123111231112{0,

. sin 0, +sin 8, < sin a +sin (0, + 8, —a).

=2sin

5
If then, in > sin 8,, we replace sin 0,, sin 6, by sin a, sin (0, + 6, - a),
1
we have not altered the sum of the angles but we have increased the

sum of their sines.
This process can be repeated until each angle is a and this stage is
reached after 4 steps at most; ., the maximum value is § sin a.

EXERCISE XIV. f.
Discuss the maximum and minimum values of (Nos. 1-5):
1, 4tanz+3 cot . 2. 1-sin x +sin%z.
3. 5 ~4sin x +sin’z. 4. 5sec 0 -3 tan 0.
5. 10 sin®*6 + 15 sin § cos 8 + 18 cos®0,
6. Show that tan 3z cot = is not between 3 and }.

7. Find the least numerical value of 5’-%‘—-"'!?3(g when a >b.

8. Find the maximum and minimum values of tan 3z cot®z.
9. Show that the maximum and minimum values of
a cos?f + 2b sin & cos 6 +c¢ sin?f
are the roots of (z —a)(x —c)=5b%
Find the greatest values of the following (Nos. 10-13):
10. a cos 6 +b cos ¢, subject to 8 +¢=a.
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11. tan 6 tan ¢, subject to 6 +$=a<7, and 0< (6, $)<73-
12..sin83in¢sin\b-,subjectb08+¢ +¥ =3a,and 0 <(6, ¢,\b)c?2-.

13. cos 0cos ¢ cos ¥, subject to 8 + ¢ +y=3a,and 0< (6, ¢, V) <’-,;.
14. Find the minimum value of tan®A +tan®B +tan®C, where A, B,
C are three acute angles whose sum is a right angle.

15. Find the least values of (i) X tan A, (ii) 2 cot A, (iii) £ cosecA,
when A, B, C are positive acute angles with a constant sum 3D.

In a triangle ABC, prove the following results (Nos. 16-22):

16. 1<cosA+cosB+cosC < #.

17. cos 2A +'cos 2B +cos 2C > - 4.

18. BcosAcosBcosC g 1, and only =1 if A=B=C.

19. cos?}(B —C) +co0s?}(C ~A) +cos?{(A -B) > 1.

20. tan A +tan B +tan C > 33, if the angles are acute.

21. 8sin #A sin B sin $C < 1.

22, 2® +y2 +2® —2yz cos A — 222 cos B — 2zy cos C >0, unless

@iy:z=a:b:c.

23. Prove that the least value of %cs‘ﬂ +cos¥¢ +cos?y, subject to
acos@+bcosdp+e cosw{r:d,ism.
24. If 0<(a, B, y)<im, prove that

sin e sin §sin y > sin (B+y —a) sin (y +a—B) sin (a+ B -7y).

MISCELLANEQUS EXAMPLES

EXERCISE XIV. g.

1. Prove that sin 16° +sin 20° +sin 92° =sin 52° +sin 56°,

2. Prove that :

sin (36° +08) —sin (36° — 6) —sin (72° +6) +sin (72° - ) =sin @,
. 3 +cos 40

3. Prove that m

4, Express sin (a + ) and cos (a +3) in terms of sin a +s8in B(=s
mldcosa-i-cosﬁ(sc},gndprovethatﬁ B(=e)
s+t L a B_ 48

g 5 () tang+tan o= e

=3 (cot?6 +tan0).

(i)ssina-+cecosa=
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_mnsin ¢ cos ¢
5. Itan 0= g "
6. If e(sin ¢b —sin ¢') =sin (b — ¢’) and ¢, ¢’ do not differ by 2nx,
prove that e* ?i.n :f:siﬁzﬁ'i(c'f l)‘iga'.i{? -?:’). d
cos®2a —cos 28 cos?*(3 —3a) _ . _
7. Prove that cos (2F —4a) F2 005 2a =sin*(B ~a).
cosa, sina_ cos’f3  sin®f _
8. Hcos ,8+ai"_n_;‘3"' =1, prove that ——=+——~=L
9. If A +B +C 4D =2, prove that
cos 2C +cos 2D —cos 2A -cos 2B
=4(cos A cos B sin C sin D —-sin A 8in B cos C cos D).

10. If ¢, ¢,, ¢4, ¢, aTe the cosines of the angles of a quadrilateral,
prove that

(6r* +e4® +¢5* +03 - 20104050, ~ 2) =4(ey® - 1)(cy? — 1) (g3 = 1)(c,2 = 1).
11. Prove that
Z{sin (B +y —a)} —sin (a+B +y) =4 sin a sin B sin y.
12. If sin (8 +v) +sin (y +a) +sin (a + 8)
=sin (B +y) +sin (y +8) +sin (3+8),
provethat e + 8 +v + 8 =(2n + 1), if the angles are essentially distinct
13. If cos a+cos 8+cosy= —cos a cos 3 cos y, prove that
cosec?a +cosec*f3 +cosecy =1+ 2 cosec a cosec 3 cosec .
14, £ 50 (= ::;}{b s;:)(b +¢)_sin (s:—az)(c il:}(c +G),provathsﬁ each
of them is equal to the third similar expression, unless & —b=nx.
16. If a +b +¢=2s, prove that
" 3{sin 3(s —a)sin (b —c)} =4 sin & sin (b —c) sin (c —a) sin (& —b).
16. Prove that
Z{sin 22 tan (y —z) cos®(y +2)}
2{cos 2z tan (y —z) sin?(y +2z)}
Eliminate 6 in Nos, 17-24.
17. asin 0 +b cos 8 =¢, a cos 6 —b sin 0 =d.
18. 2 cos?@ +sin 0 =a, 2 s8in?@ +cos §=b,
19. x cos 6 +y sin 0 =cos 38, = sin 8 —y cos 8 =3 sin 36,
20. asin (0 +a)+b sin (0 +B) +c sin (6 +y) =0
=a sec (6 ~a) +b sec (0 — §) +esec (6 —y).
21. cos®8 +a cos 0 =b, sin*d +a sin 0 <e¢.

prove that tan (8 —¢)=(n—-1) tan ¢.

=tan 2z tan 2y tan 2z,
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22. 16 5in®0 —sin 560 =5z, 16 cosS6 — cos 50 =5y.
23. sin?f tan a +sin’e tan 6 =p, cos?@ cot a +cos’a cot 6 =q.

cos (30 —a) ___ cos (36 +a)
1. cos (0-P) ~ " cos (0 +8)°

. . cosec? - tan?f

25. Find the greatest possible value of cotif rtan®l —1°
26. Prove that cot 0 —cot 40> 2, if 0<<0<}x.

27. Prove that
© af-2zycosf+92 . 1-~cosf 1+cos@
x* —2zy cos ¢ +4° lita bobween 7 —~cosd ond T+cose

28. In any triangle ABC prove that Ztan®}A > 1.
29. Prove that the area of the pedal triangle DEF < 1A.

30. Ifsin 0 =p sin ¢, whero . > 1, and 0, ¢ lie between O and Z, prove
that & — ¢ increases when ¢ increases.
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39. Prove that 3 sect 2 =17 _gpz,
1

40, If zyz =z +y +2, prove that Z{z(1 -y*)(1 —2?)} =4xyz.

41. A man walking along a straight road notices two objects in line
with him in a direction making an angle a with the road. After
walking a distance ¢ along the road he notices that they subtend an
angle a, and again after walking a further distance d that they
subtend the same angle @. Find the distance between them.

42. ABC is a triangle with points D, E in AB, AC respectively, such
that BD =a =CE; prove that DE is perpendicular to Ol.

43. Sum the series 3 sin® ;—:+3’l 3in"%+3' ai.n'%-:—... to n terms,
and deduce the sum to infinity.

44. By expanding log {(1 —az)(1 - Bz)(1 —yz)(1 —3z)} in two ways,
show that a®+ B°+y*+8° +52af3 . ZaBy is divisible by a+8+7+8
and find the other factor.

45. If s, is the sum to nterms of 1+z+2*+2%+..., wherez =cisa
and a+ 2k, prove that

lim St 82t +8n_ 1 .
A n 1-2

46. Find the sums to infinity of

@ 1=.13=+ 3'.158*' 55.17' Foees
v 1 1
{u) ]'. 33+ 33’ 58-!-53. 73-}."' .
47. Prove that
(n—-2)r
2n

0030131—&083 ?I-P 8 5—?— cosec
on ﬂzﬂ CO! 802“ “ee

where n is 0dd, is equal to §{n +( - 1)ir+1)},
48. If

cos (B +7y +0) +cos 3 +cos y =1=cos (y +a +0) +cos y +cos g,
and a-B+2nr and y+0+(2n+1)m,
prove that cos (a+ 3 +0) +cosa+cos B=1.

49, AB is a horizontal line on an inclined plane OAB ; OA, OB, and
the plane OAB make angles a, 3, y with the vertical ; prove that the
cosine of £ AOB satisfies the equation

(1 —z?) cos?y + 2z cos a cos 8 =cos®a +cos?f3.

50. In a cyclic quadrilateral, prove that E+E > §+g, unless ¢ =a.



282 ADVANCED TRIGONOMETRY

51. Evaluate )
cos a+cos 3 cos (a + )+ cos? B cos(a+28) +... + cos"3 cos (a+npf).

1, 1 2
52. Ifx > 1, prove that e > log > %1
2(n3—12) ni(nd—12)(nt — 20
53. T fin)=1-5+ -1 ni(n 1"" 2)+... to n+l
terms, prove that f(2n)=(-1)"(n). '
54, If |#| <1, prove that
r{l —r*) sgin 6

. 2 o . _ )
rsin 6427 sn:t2t3+3r':=un$t!-t-...—(———-—ﬁ——l__21.‘:“:’8ﬁ_H_,)=

65. If mand n are integers such that 0 <m <n, andt= tusnE prove
that 20 "5 2
@ 1~ 0 - ‘I‘
56. Eliminate 8 and ¢ from the equations
tan 6 +tan ¢ =tan a, cot @ +cot p=cot 8, ¢sin (6 +¢)=1.

57. A fly, stationed at a point of the circular base, radius r, of a -
cylindrical tower, finds that he can just see a distant flagstaff by
walking along the tangent line to the base either a distance p in one
direction or a distance g in the other. Show that the distance of
the flagstaff from the centre of the base of the tower is

rV{(®* +r3)(¢* +r*)}/(pg - r%).

58. Straight lines are drawn through the vertices of a tri
ABC making the same angle 6 in the same sense with the opposite
sides, prove that the area of the triangle formed by them is 4A cos®@.

59. Does 3 sin®rf+ 3 cosrd tend to a limit when n->w ?
1 1

60. Prove that z*> (1 +z){log (1 +x)}®, where z > -1, z+0.
61. Solve the equation z®-+22%+2=0.
62. If log sin (0 +i¢) =a +1if3, prove that 2e%** =ch 2¢ —cos 26.

63. Use the result of No. 55 to show that if n and s are odd and
8< 2n -1, then

n—1 o TeT n—-1 . 787
n . sw S
=nsin>; and =0.
re 2 rr
cos — cos —
0 n 0 n

64. If 6,, 0,, 0, are roots of tan (8 +a) =k tan 26, no two of which
differ by nw, prove that 0, + 0, +0;=mmr —a.
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65. From a point on the ground of a square courtyard of area a?
the angles of elevation of the buildings (of equal height) at three
consecutive corners are 60°, 60°, and 45°.- Show that the height is

av/{3(1-3v2)}.

66. For a cyclic quadrilateral, prove that the square of the
distance from the centre of the circumcircle to the point of intersection
of the diagonals is

(ac +bd)* {bd (a® —e*)* +ac(d® —d*)*}/{o(ab +cd)(ad +bo)},
where o is the product of expressions like b+c¢+d —a. Verify the
result Ey ;.pplying it to a square, a triangle (d =0), and a rectangle
(a=c, b=d).

67. Draw the gr:fh of sin  +cos 2z, for 0 <z <2r, and use it to
find, roughly, the values of = for which 5(sin z +cos 2z)=1.

68. If 6 is positive, prove that 6° —% <3(sin 6 — 6 cos 0) <0°.

69. Find the values of (3 +4i)t +(3 —4i)}.

70. If the point of the Argand Diagram which represents the
complex n z describes the unit circle centre the origin, what
curve is described by the point representing 4z +2% ?

71, Tf a=cis 3%, show that

a+ad+at+a®+al®+a? and a®+od+a®+a’ +a®+al?
are the roots of 2® +z=3.
3 4

Deduce that cos Tn:é cos 1—’; cos -i§=f3 (v13+3).
tan (a+f8 -y)_tany
72, If L= ,

tan (a~fB+y) tan g
either sin (8 -y)=0 or sin 2a+sin 23 +sin 2y=0.

prove that

73. From two points A and B at the same level on a cliff, the
angles of depression of a ship S are observed to be a and 3 and the

ifference of bearing to be y. Prove that the plane ABS makes an
angle ¢ with the horizontal given by

gin?y tan®$ =tan’a +tan?f - 2 tan a tan 3 cos y.

T4. ABC is a triangle with B =80° =C, and points S, T are taken in
the productions of AC, AB, so that £ BCT =30° and L CBS =60°. Show
that ST is inclined at 50° to BC.

75. Find an equation which shows how to divide a given circle

into two parts of equal area by a circular arc whose centre is on the
sircumference of the given circle. Solve the equation graphically.
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76. If u,=(n+1)t, 4 ~(n—1)u, ,, prove that
lim 22 =uy(e ~2) - (26 ~5).

b

77. Find the locus in the Argand Diagram of the point which
represents at + 3t%, where ¢ is a real variable and a and 8 are complex
constants.

78. Find the sum to infinity of 1 -3 +3 - +dr - +ues

- o2 37 4 5
79. Show that sec y7 —sec 77 +8e¢ T3 —sacl—l-i-secﬁ—ﬁ.

80. If z <y <0, and 23=9(x +1), and ¥*=9(y +1), prove that
z+T=(y-1)%



ANSWERS

CHAPTER 1
EXERCISE I a. (p. 1.
2, 97° 54, 8. 111°2. 4. 38° 12, 48° 7, 93° 41",
5. 99-7. 6. ¢=7-01, a =224, A=176° 18".

7. —2°21’, B=10° 30/, C=15° 12", a=40-2.
8. 33-6; (6=32°14"). 9. C=59° 6, a =354, b=548.
10, C=66°5', A=T70°55', a=8-76 or C=113° 55, A=23°F,
a=3-63.
11. 36° 54/, 87° 4/, 56° 2",
12, A=25° 25}, C=34°" 49%', b=13-TT. 13. Impossible.
14, <5'1; =5-1or > 14-6; between 5-1and 14-5; (i) C=37° 56,
B=121° 28/, b=20-13, or C=142°4", B=17° 20", b=7-03;
(i) c=18°21", B=141°3, 5=28-95; (iii) impossible;
(iv) C =90°, b=13-57.
15. a® —2ac cosB +¢* —-b2=0; ZccosB, ¢ -b%; 180°; 180° -2B.

21. 40-2; (0=T7°22"). 24, —-5°5"; (6=53° 38').
a® +b% +c? a a+b
27. _ch_“. 29- -ﬁm.‘ 38. T.

EXERCISE L b. (p.7.)

7 J3
1. 181 2 7 5 3. 104, 12, 14.
4. 133, 665. 7. 2Rsin AsinBsinC.
25. 7-84. 28. 13-9. 29. 2,/(Rry).

37. 2R cos A cos B cos C, —2R cos A sin B sin C.

39. R(cos B cos C +cos C cos A +cos A cos B).
285
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EXERCISE L ¢ (p.12)

33 5 29
2. HJ3-1). 4 = T3 336"
2279 4873
5- 1100" 6- W.
17
af_ 2 1 -
11. cot? (5 JS?)' 12. cot1{}(cot @ —cot B)).
13. 3/2. 18. AK . AL =bc. ,
. . ccos (A -B)
19, }aR cosA, aRcosBcosC; {aRcos(B—-C); 5008 (C = A) © A
2L |, 22. tan A : tan B : tan C. 23. N; H.
39. (ii) G. 40. A circle, centre O.
EXERCISE I. d. (p. 17.)
26. -4Rry(s -¢).
EXERCISE I. e. (p.19.)
1. 15° 43", 2. 98° 56 or 43° 39", 3. 89° 36', 12-0.
4, 78° 28", 5. 95° 1", 6. 7J5. 8./5.
8. ‘% , a? :I:% J(4R? —a?). 9. ry/J{lry +12)(ry +13)}
bsin A
_osmAa — 8 o 44’
10, Zooto. 1L et 450 4200 - 4AY). 13, 20° 44,
14. 10-2, 15. 8, 113° 25’ or 1, 6° 35", 16. 8./3, .
17. 2 or 17. 19. 2r2 cot 3A--(p —2r)
EXERCISE 1. f. (p.21)
6. 0-05 ft.
EXERCISE 1. g. (p.22)
9. 2R sin }A. 16. tan 1B /(b* —a® sin®B).
21. LACB=45° 24. cos~'}.
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CHAPTER I
EXERCISE II. a. (p. 26.)

1. 29-0. 2. 7-43, 7-94. 3. 7-95. 4. 110° 47".
g-¢ cd
7. e 10. /(abed) ; e 11. 3-51.
abed (ac + bd) _a(bc +ad) _c(ab +cd)

15 redadibe) o W—goa W aa » ote
EXERCISE IL b. (p.28.)

1. cos (B +D)= ~1&. 2. tan 6= — 4%,

3. 30,/85. 4. tan 6=2-4.

5. 55;/3; 55. 6 fp 14 sinorC. J(abed).

16. (i) 6J10; (ii) 2105 (iii) cos™ % ; (iv) 594, 6-40; (v) 3-29.

17. 7; 2. 18, 2358.
EXERCISE H. c. (p-29.)

1. cosi( - §). 2. 138, 14-3, 14-1. 3. 3528 ; no.

4. 7. 5. 1, 120° or 3, 60°. 6. Two solutions.

7.15. 8. 7xJ22. 9.3, 3.  10. 33,38

™ ™

17. cos -z 1. 18. cos’;: 1. 22. /3.
EXERCISE II. d. (p.30.)

3. 834, 12./865, tan~ . 4. 90° or 118° 28’.

10.
17.

g2 (a0 ~bd)(bc -~ ad)

o (G0 = bd)(ab —cd)
ab —cd * bec —-ad -

J(2p —gs +15* - 8%).

The values of x, y are any pair selected from 6-53, 8-27, 10-9.




23,

25.
28.
29

31
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Inm or 2nw +Eorﬂ._.,._£. 24, nr or (4n—1}1.-.
2 4 —s
z nw (dn+1)r
T +a i?‘}' 26. 1= 21. —
nw or nr +4(a+f), provided that a+8+(2m +1)w.
nw

2nm or 2n1r-%. 30. ?+a.

n7w +}aor nw +4(7 ~a) where a is a value of sin-l[___(gn : l)n-] .

32. x1./3.
33. (i) 2nw or 2nxw +“—-; (ii) no solution ; (iii) 2n=x +% or 2nw +1-;—.
2 -
34. 2nw - 7 35. nxw +13° 37. Yes.
EXERCISE IIL. c. (p. 40.)

. +0-824, 2. 0-642, 3. 7. 4, b.

5. 09130r —2517. 6.3, T.nm-% <6<nw+z.
10. a®* +02g 4.
11. z, y are m.-+§, (n - 2k)r —=, or mr-—%, {ﬂ.-2k)a'+£.

12.

13.
14.
15,

16
117.

18,

or nw +%’3. (n -2k)r, or awm, (n-2k)7 +5?1r.
z=k= +a, ¥y =(28 + k)= + 8 where a,ﬁa.rez, EB’ or—%. —%,
T o = -
or E, Z. Or—'g. —Z.

mw
r=nwT, Y ="? .

z =mw, Yy =nw, or any values which satisfy sin z -siny=1.

y=km.

z=nw +£
= 5

6 =126° 47/, ¢ =367° 5" or 6=357°0’, ¢ =126° 47,

x=136° 52, y=90° or z =351° 12/, y =208° 4,

z=(5k-3n+%, y=(6n-3k+D 5.
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EXERCISE IIL e. - (p. 48.)

1 1
1. p= i;J(l -':E’}, q= im}.

=4 ad -4 1 _1 3 g4
2. P_"‘J{I-{»:z:’)’qﬂ ST r=- 3. p=%,9=3%. _
. Y. (5 T 1
B. (i) 2. J(1-2%); (ii) :]:«/—-—--(1 —z" 6. 0, 4 cos™'x
7. isin1(2z,/(1 —2*)}. 9. ’—;. 10. E.
12, 1-22% 18. z=3. 14 sin?(3z-42). 16 .
1 —z® —y? —dzy +a%y?
. -2z, 17. . 20. p* =1
16. k7 -2z i) P e
23. 2=3 24. =1 or §. 25. z=ten .
26. z=cos & . 27. z=1./3.
12
EXERCISE III f. (p.49.)
nw (4n -1)= T T
1 5 Z'T' 3. nw -+ or T g
4, %. 5. X(nw—a-B). 6. nr+for(2n +1)%—n-—,6.
T 57 11w 197
7. mr+§ or 2nw +a +b +e. 8. AT g BT =, T =
9. n x 360° +41° 4’ or n x 360° — 78° 56°.
10. (2n+1)= or mr+7-r2— or 2“?#
11. —sin }(a+p) sec }(a —B) or —sin (a - B) sec }(a +p).
12. 2n7 < <207+ or 207 += <0< (2n+1)7 or

13.

3 2

@n+l)m+3<0<(@n+1)7 +27.

3

. k3
r=ag+4nw, y=a-nw, faFnw +-§,-

indeterminate, « +y=(2n+1)7 if a=n= +52.
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14, 6=2mr +a +fB, ¢=2nr+aFy  where [, y are positive
angles, less than =, given by 2a%?cos8=a'+c*-b%,
2b%? cos y =b'+ct —at.

k3
B

2

)
15, z=mr, y=nw or z=mwr +—, y=nw +

2

16. :=2mrrj;£3, y=2n7rd:gaz or :e=2m1r;{-,%£, y=2mr:!:§:

and z=kmr +%.

19. One value if § <¢<§; otherwise no values.

20. Two possible values of cosz if 0<m <}, one possible value
if —-1<m<0; otherwise no values.
22. sin }0=3{ - /(1 +sin 0) + /(1 —sin 6)} ; 270° <0 < 450°.
0 w—0 -8
23. —Oﬂtvz, m-——4— » “'Goth .

25. (i) 4p values ; (ii) 2p + 1 values.

2nT +a
5

29. tan-1} =tan-1} +tan—*}; tan—1}=tan—1} +tan—l g

3r =«

10° 2°

26. 2k cos forn=0, 1, 2. 217. tan—1p —tanlr,

33. 4. 34,

CHAPTER IV

EXERCISE IV. a. - (p. 54.)
1. -693, 1-000, 1-386, —+693. 9. sq 2t =41*; sq(—¢#)=sqt,

d a1 _ 1
13. Yes. a—‘(hypt]—-i. | 14. hypt= -hyp‘,

15. hyp . 16. L, 3 3 4%
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EXERCISE IV. b. (p. 58.)

2 3 -1
2‘5!;’

n
z 'z

- 4, cot z, 2 cosec 2z, — 2 cosec 2z.

. hypw, hyp(z+1), hyp(x-1), -hyp(l-z), 4 hyp (22 +3),

—~lhyp(4-5x), z~2hyp(z+2), 2 +3hyp (z -3).

f(z); hyp (sinz), —hyp (cosz), $hyp (sin 2x),

} byp (az® + 2bx +c), ;‘l-hyp (1 +2z"), hyp (1 +sinz).

. hyp (tanz), }hyp (tan ). 8. 1+hypz, zhypz -=.

10, +, -.

EXERCISE IV. c. (p. 6L)

1-386, 1-792, 2-079, 2-198, --693, —1-386, -4086, -812, -08;

6. L ¢

" flx) dx
T

9. +.

1‘

2-718.

2, -406; -406;
3

7

10.

14.
18,

20.

22.

-693 ; -693.

. hypb; hyp (ab)=hypa +hypb.
' b
. hyp (tb) — hyp (ta) is independent of ¢ and equals hypa.

EXERCISE IV. d. (p. 66.)

. ae, g, e, €°. 5. z3, 2%, 2 +logz.
. logz, tlogt -t +1. 9. ze?, (t ~1)et +1.
1-logz 1
z+2zlogzx. 11, & 12. -5 13. ae®*,
3%, 15. 1. 16. —tanz. 17. tanz.
cos x . e8inz, 19. 2 tan x sec%z . etan’s,
secz (1 +ztan x) exp (zsecz). 21. —e&®sin(e®).
1 nb
- cosec (log z) cot: (log ). 23. P e
o1 25. cosec z, x L
C BT 1" ' ) 880 % W '



204 ADVANCED TRIGONOMETRY

26. 1log (3x +4). 27. z +% log(2x +3).
28. iz —§log (2z +3). 29. le’= 30. e= 4%,
3l. ~}log(2+83cosz). 32 log(s?+3x+4). 33. L{logz)

34 2logum’§’. 35. 1e*. 36, 3logsin3z. 37. —log(l+e-2).

38

.

log tan ( y 2) logtan ; log {z +./(a® +2%)}.
39. log(z +1) +2log (z ~1).
40. 2log (z +1) - log (z +2) ~log (z +3).
1
3z-2)"
log (:z: —-8)-1log(x®+1). 43. 32% +12? +x +log (z -1).
4. = +

41. -}logz +}log(x-2)~

8

log (x—a) +i— log (x - b).
2 o+ Nl
45, zlogz -z. 46. Elogx—z-. 417. n—_!_llogs “mEE
48. ze* —e2, 49. z%* —2xe%+2¢%. 50, - {Iog:z 1).
51. Differential coefficients, ¢3 (@ sin bx +b cos bz) ;
€%%(a cos bz - b sin bz),
1 .
Integrals, ey s ¢**(asin bx —b cos bx);
5. a’+b’6ﬂ (aaosbz+bsmba:)

53. ~; 1root for A<O, 2rootsfor0{A<~l-,norootsforA:-E.

LI

EXERCISE IV. e. (p. 70.)
6. Untrue if 2> 1. 15. y+log2. 16. log 2. 17. log 2.

EXERCISE IV. f. (p. 72.)
3 1
(x=1) (z-1p"
4. 1y, =26 —(n + 1)1, 5. o%. - T.20r3,

1. @ -ayt 3 z+3loglz-1)-
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1 _acos 2bx + 2b sin 2bx
at + b .

17. (i) logt)é-(l——‘;), (ii) Iog$>2(l--}‘); the last.

11, 302 14. z - 12 + 2%

23. e=(a? -2z +2). 25. ;{f-,-yo when y—>o, if n>0.

EXERCISE IV. g. (p. 74.)

mn . B(m, n)

a “ logx .7 1
6. 2. 2L § JOB% gp=Tlogg. 24 TR

CHAPTER V
EXERCISE V. a. (p.82.)
1. sin L, 2. cos 1. 3. 1-sin 2. 4, sin 1-cosl.
5. 1. 6. sin 1+oos 1. 7. 0-540.
8. 0-0523 11. 1 + + 7z
’ * 6 360" or (:_r +x)'
12. (-, L (%) e 1 4
- ( ) 'm ( ) 21/2 1
zn ]
130 (-l}”z.—ﬂn_)! {3‘1‘3“). 15. banm-%tan—z.
18. 0-4502. 19. 4-5.

EXERCISE V. b. (p. 86.)
1. (i) log 2; (ii) log3; (iii) } log 2.
2. (i) -142& 1; (ii)0<gsz; (iii) 22> L

3. @ -iz—n. —2<z<2;

() -2 +(-37) -}<z<ds
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(3 (= 1)1 . ;11{2'1 +3%), ~l<z<d;

(iv) {—1)'1-1.2, -l<z<1;
(v) {—l)"-l.f—tﬂ-", —2<2<2;
(i) (-1, 2 (142, —1<z<1;

n
$1
(vii) n odd, %; n even, %(1-—-2E hai<i;

(V'.I.L‘I.) n= 3?! '_2$ﬂ 3?:!:1’1' -l1<z<],

4, (i) 0-6931; (ii) 0-4055, 0-2231, 0-1541; (iii) 1-0986, 1-3863,
1-6094, 1-7918, 1-9459, 2-0794, 2-1972, 2-3026.

5. (i) L2 i< z<;

n(n=-1)
2

EICES Vo R
-1 1 -1

(m}neven,(—l}?- . 21-“'nodd,( 1}2 —, 227,
22 < 4. ‘n-1

(i) (=1)* -3<z<§3

6. (i)log(l-=) +1”T£;
(i) #{(1 +x) log (1 +x) + (1 —z)log (1 —x)};
(iii) 1 —(1 +£) log (1 +2), for z+0: if z=0, sum is 0.

1 1 1
o T —r
7“‘{::*3;"’&5*"'}' 8. Srin-r,
Zyﬂ—l ___2' R 1
9. E lwharay_z,_a_‘,x:-tl. 10. 1.
11. -1+210g2. 12. 2log 2 - 1}. 13. log 2 ~&.
14, 2(1 -log 2). 15. 3-41log 2. 17. -3.

18. -1. 20. 0-175, 1-244



1L

7.

8.
9.

13.

17.

21.

23.

25.

27.

28

29

.
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EXERCISE V. c. - (p. 89.)

2tan—1};'ll;. 2 p-m; x-27; T-N¥.
E- - 1y-1 -__1_.. 1—-21 121 :
3 42[( . g (2 8 }]. 6 -
}log:—'l_-a—;-!»&tan—‘z,i.iz“cl.
(n+1)7 +tan 6 —§ tan®0 + tan®0 —...
tan 60 +516° + %05 o 10, de+ €@ — im0
EXERCISE V. d. (p. 95.)
L 2. }(s -1). 3. 2. 41
e e
1 3 1
e—1. 6. be. 7. -8. 8. I+I8.
3e - e? -3
—2;'. 10. e —e. 11 e+1. 12. -—BE'—-
2 -
?+86-9 14 e+l 15, -1, 16. 1+2.
4e e e
L 8.7 19 4e-1 20 1.
e+l 8
Te 1 .
-Io 22. ;(G —1-3)-
1 - = - ._l_ VT _g—=4Z) —
Sl@-De+1 -4, 24, 2Jz(s e-vz) -1,
n
%[(2—2:+x‘)e‘—2-—§z’]. 26. 2+5z+...+(2+3n}‘-:ﬁ+....
' n
1+z+-.3-z‘+...+[-—1)“(1—5‘n+3n’)%+....
zﬂr
s(l+z+...+-—'+...).
n:
2 4
2 1+L2§‘}—+-(*ﬁl)+...]; coefficient of z™ is 0 if n is odd;

jt is 2n41 | — if n is even.
n!
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—_ 2
30. 1+i‘;‘_.2_?1 2t -, 41 H20n —16n E - N T
8 2" . n!

32. . 33. In(3n-2).27s. 341 . 35 3.
37. (i) e*<

1 . 24z
. 5% aE .
1._”1.{3{0, (ii) e >2_x1!:c<0.

EXERCISE V. e. (p. 97)

L (i) 0; (i) $log2; (iii) J2log (J2+1); (iv) 'J3

(v) -—Wl)— 3 (vi) (e —-E +2sin1).

4. £1033,0. 5. a(l-2cos6)+2a?sin20. 9. 0-26194.
14, @) log§-+'2;‘1- (3" -2-Man; —2<z<;

1 2 1
6 31 [ e oy

5 Y\ 22
1.2-27_—(—) P B>y

16 EI: a:+b il::n (z+2h)>0.
17. log 10=2-30258 ; log;,2=0-30103.

.

18. log 2=0-693. - 19. Sum =log ( - cot 8).
20. i]ogi'l':fc', all values of z; n even, coefficient of z> is
zero ; n odd, —E.
3n
21. (i) log2; (ii) 1 -log2; (iii) }log2; (iv) 3 -2log2.
o _ ST 1+z 4
22. $log2 - 4. 26. (1}8, (i) i]ogl_z }tan1z,
27. 3. 28. a=3, b= 8.
29. :hE[{ 1)"'1 1 T (tangta.n ] t-an’ tan’ gl.
30. le. 31. le. 32. 4c+l.
33. e~ 1j. 34. §+§-1. 35. 2le,

42. 1 —a cos k +a? sin®k +Ja® sin%k cos k.
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EXERCISE V. £. " (p. 100.)
a1

* 1050°

10. n=6p, -g; n=6p:|:1.§; n=6p +2, 0; n=06p+3, —1.

n
1
12. 5;‘[1 +( —l)ﬂ'—" . 2].

16. p" _npn—lq.}.“{’;: 3)1,»-4 ¢ _“_(”_—'i%’l'_i}?n-uq: Free

20. Order is (iii), (@), (v), (vi), (i), (iv). 2L §.  25. 15e.
28. (i) (n =1)!; (i) Hn+D)1; (i) £ (3n +1)(n +2)!

z \",
33. (1 —m is the greater.

CHAPTER VI

EXERCISE VI. a. (p. 106.)

7. 25h3(6+4) ch}(6-$); 2ch F(0+4) ch}(0-).
9. (3th8+th‘0}+{! +3th26). 10. cosech?z =coth?z - 1.

11, —cosechiz. 12, }(sh 3x -3shz).

13. ch®z —chy. 14, 3{ch (8 +¢) —ch (0 - ¢)}

15. 3{sh (0 +¢) +sh(0 — @)} 16. }{ch (8 +¢)+ch (6 —-9)}

17. chz +sh z. 18. ch nz +shnz. 19. chnz —shnx,

20, {S(thz)+thxthythz}+{1+Z(thathy)h
23, +./(1 +sh?6); sh 8-+./(1+sh*8).
24, 1+,/(1 ~-th®6); th8-+,/(1 ~th?0).
k-1 2t 148
95, + /(- 1) i\/{m} .26 o P
927. z?cosectu —y?sec?u =1; z? sech? +y* cosech’v=1.
32. —coth #¢. 33. —4sh (y+z)sh(z+2)sh(z+y)

3. 4 -3)s *(z%).
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1 a
7. :FI—J(I —z’)' 8 —!—"—-'ml : J{a:‘-i-a’)'
9. aehxeahm-chzlogx). 10. €3%(a sh bz +b ch bz).
11, e*thz. 12. % (2ch 6z —6ch 2z - 3 ch 4xz).
1 l+chz
18. . % (ashbz-behba). 14 logz—r.
16, y=1+422; L. 16. % 18. 1; L. 19. -2,
z? | Tt . L E+Y
2. 1-% 455 26. 1-91(6). 29. th (m)
_a{l+#) 2t _
. z= = Y=i-p- 33. The parabola, y* =4az.
EXERCISE VI. e. (p. 115.)
L2 %
"Tar 0t T=a 0"
4. shu= ~tan 0 ; u=Ilog(sec & —tan 8); th'—;= -tan-g.
5. Y1, 6. 1 ﬂl_lqu-b(z +z,)+c.
y(z, -z) % Y
xz _thz a at
9. BTl_ﬂ'.‘. —-5—. 11. =1 or 6. 12. 10324-5—"3—4.

16. ch z =u, 16u® - 20u® + 5u. 17. sh x =v, 16v* 4 200°* + bv.
18. sh x=v, 32v5 + 32 + 6v.

19, o4 (sh 72 - 7 sh 5z +21 sh 3z - 35 sh z),

20. o5 (ch 6z —6 ch 4z + 15 ch 2z - 10).

i} nd né
22, 2"ah“§(ch?+sh?).
24. sh(n-l-l)gsh?,;a cosechg.
B, B B
25. ch|a+(n-1) E]sh—-zu cosech 3°

26. §cosech? }0 {n shgah{n+§)o -shqna}.
29 sh (sh 0)eche, 32. esin®ché ch (0 +sin 0 sh 6).
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CHAPTER VII
EXERCISE VIL a. (p.121.)
2x 4 ™
1. THJ’ T—!—B; T +0; ——3—8.

Ed 3 3=
. ¢——2. ¢-m; ¢+2. 4ﬁ+-i'o
. AC; CA. 4. SP; PS.
. (i) —4cos¢p, —~5cosd, 0; (ii) —~4sin ¢, 5sin0, 3.

. (i) —esin ¢, —ccos ¢, —c cos (d} +§);

@ W B

(ii) c cos ¢, —csing, —¢sin (¢ +§).

7. a cos a,a cos a+§), acoaa+acos(a+§), 2acos(a+-§).
—2a cos a.

8. 3cosa-2sina; 3sina+2cosa.

9. 4-2cosa +3sina -2sin (¢ +f); 2sina +3cosa—2cos(a+3).

10. 5sin a+cos a. 11. (h+rcos 8, k+rsin A).

12. (h—scos ¢, k ~2sing). 13. J{ry® +r5® + 2ryrycos(0; — 6,)}.

14. heos a +%sin a ~p.

EXERCISE VI b. (p.126,)
2. (xcosA+ysin A, ~zsin A +y cos A).

3. Asin No. 2. 9. Yes. 12. sin®n@ cosec 6.

EXERCISE VIL c. (p. 129.)

. (2n+1)0 [/
1. }m.n( n: ) cosec 7 —3.

7. (i)sin [a+(n - 4)B] sin nB sec }8;
(ii) cos (a +nf3) cos (n +3)B sec 38 ;

(iii) cos [a +¥(m —1)(8 +m)] sin T (B+7) sec 3.

8. sin [a+}(n ~1)(B+)] sin 3 (B +) sec 3.
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19, tan~11}(n+21+tan—1;(n+1a+tan—=§n+m-1§(n—1)-E.

20. ta.n“-( n )
n+l

EXERCISE VIL e. (p. 133.)
1. J2 2. 25.

4 4 J@+BY), 0=7-a; =-J(@+b), 0=-F-a, where

sina:cosa:l=a:b: ++/(a?+b%).
. $#(n —1) cos 0 +} sin (2n -+ 2)0 cosec 0.
. 3n cos B —} cos [2a +(n-+2)B] sin nf3 cosec B.

© o -3

12. } cosec? g {(n+1) cos nf —n®cos(n+1)8
—sin (n+3)0 cosec 48}.

. % sin }(n +3)0 sin }n0 cosec 6 —} sin (n +3)0 sin nf cosec 0.

13. log (sin 8) —log (sin 2-"8) —n log 2; 2~ cot (2-"6) —cot 6.

14, log (sin 2"0) ~log sin 8 —n log 2. 15. }.
16. 0. 17. cot 8 — 27 cot (2"8).
18. 4" cosec? (2"6) —cosec?d — §(4" - 1).

19, Zsin?*(8-76) cos (3-78) =% [cos (3-"0) —cos 0], for r=1 to n.

EXERCISE VIL f. (p. 135.)

5. 1= {sin }(n + 1)a sin }na cosec $a} where a=2+y -2z,

y+z-z, z+z-y, -T-Y-2z
6. y% {2sin }(n +1)0 sin {nb cosec }6

+sin$(n+1)0 sm?'%goosec:jg
5nb 58}

—sin §(n +1)6 sin-—z—ooseo? R

T % {lﬂsin{n-i-i)ﬂ cosec 30 + 5sin 3(n +3)0 coscc%a—

56

+sin 5(ﬂ-+i-]3¢0a80? -1

0.
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ar. coseou{cos(%—a)-}isin(g—a)} or
( -cosee a) {cos (3?" —a) +isin (3?“' - )} .
ST N
(—secﬁ){cos( +32)+£sin( -1%)}
29. cos(-ﬁ—’—;) +1'si.n(—ﬁ‘ -g)

] 6 .. 8
30. 2cos—2(cos-2-+$sm§) or

(—2%32) cosg+a-)+isin(g+n-)
2 2 2 *
31. 2cosg {cos(—g)+isin(—g)} or
2005 leos(x - 1isi 6
S5 ( -3 +tsm(r—§)}.
x 6 T 6\, .. (/% 0
32. 2cos Zmﬁ){c (4 3 +1sm(;-—§)} or
..2cos( {cos 5:—- 6 isin 51r 8)}

33. 2cos }a - ﬁ){cosi(a+ﬁ)+tsm§(a+ﬁ)} or
—2cos }(a - BHcos }(a+f8 +27) +isin }(a +f +2m)j.
34, 2sin}{a -~ B){cos(a+B +7) +isinHa+B +7)} or
2sin 3 (8 - a){cos §(a +8 ~7) +isin (a+ 8 - =)}
35. s(cosy +1 sinyr) where 8= +,/(1 +2rcos ¢ +7?) and
cosyr:sinyr:l=1+rcosg:rsing:a.

36. (cos0 +isin0) + {cos(s +2—;') +isi.n(8 +23—’r)}

+{cos (o +43—-”) +isin (o +‘%”)} =o.

38. —cos 8’, COos 81-



ANSWERS 309

35. (i) From (1, 0) to cthe origin and back with  constant
acceleration ; (ii) from (-1, 0) away from the origin
with increasing acceleration and back along the positive
z-axis to (1, 0).

36. (i) See No. 35; (ii) z, moves from (}, 0) negatively along the
z-axis; (m} zy moves from (2, 0) along the axis to the
origin.

37. (i) Describes |z| =2, antl-clockmsa (ii) describes |z] =1, clock-
wise; (iii) describes |z +§| =1, anti-clockwise; (iv) describes
cardioid r=2(1 +cos 0), anti-clockwise.

38. (i) Circle, |z+1|=1, anticlockwise; (ii) z= -}, upwards;
(iii) # = -1, upwards ; (iv) z =0, upwards.

39. (i) Circle, |z — 2| =1, anti-clockwise ; (ii) circle, |z - 2| =1, anti-
clockwise ; (iii) eircle, |z| =1, clockwise.

40, (i) Circle, |z|=1, anti-clockwise; (ii) circle, [z —£| =1, anti-
clockwise ; (iii) y =4, from left to right; (iv) z=4%, down-
wards,

41, From (-1, 0) to (1, 0) along the upper half of the circle
lzl=

42, For the motion of z, see No. 35. z, describes the lower half
of the circle [z] =1. z,=z.

43. The lemniscate, r2=2 cos 20.

EXERCISE VIIL f. (p. 156.)

6. (i) 35 (i) ;(z pos.); -3 (neg.).

7. ()0<z<1; (i) z=1; (i) -1<2<0.

9. (i) 0(z pos.), w(sneg.); (i) 5 pos.), -3 (yneg).

10. (1)—.=c>0 —T,z«:o (ii) -—.z>0;%,¢¢0.

11.n>—1. None. nc*l-:o.
m m

14, -7 forz<-1; Ofor -l<z<l; wforz>1
16. 0Ofor 122> 0; ~4sinlzfor0>z> -1.
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18. z=(1 - 2i)/(Z —4). 19. p* > 26c%
21, -1; 3;0ifn=3p,1ifn=3p+1, ~u*ifn=3p-1
22. a® -b3%, a® +b% +¢* - 3abe..

EXERCISE VIIL h. (p. 159.)

1. (i) 2n+ ( —l}n!sinn";ﬁ mﬁ(ﬂ +ﬁ)=

P
LI
(i) 2% (-1) * sin" 25 B gin “—-(“2“’"3).
_3(2+cosf) ~3sin 6

3.z

=Ftdcost’ Y 5 Tdcos0"
4, p*+g*=a* +y* + 22y cos (a - ).

6. (i) 2sin 2(a —f) cis (2a +26 +E2) or
2sinz<ﬁ-a)cis(2u+2ﬁ-32);
(ii) 2sin(c+,3—‘y—8)cis(a+ﬁ+?+8+ g) or
2sin(7+8—u-,8}(ﬁs(u+,3+y+8—%);
(ili) 2sin 0 cis ; or -2ainecis(—‘% .
9. A congruent curve.  10. A circle. 12. A cardioid.
15. Ares of circles of radius A5 . 17, Z9atBBroy o
J3 -a+b+e
18. Equilateral triangle. 19. Similar triangles.
23. Isolated points (2mw + =, 2n= + ) together with oval curves
inscribed in squares bounded by
z=2mm +cos~( - 1), y=2nw £cos~( ~3).
25. The upper half of |z]=1. The part of the z-axis outside
(+1, 0). The lower half of [z]=1.
30. 2? 442 +22 —yz —z2 —2y ; (T +Y +2)(T + 0y +wi2)(T + ey +wz).

3L (i) 3(a,7° +ag@® +...) 5 (ii) 3(as7* +a2* +.)
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CHAPTER IX
EXERCISE IX. a. (p. 168.)

. . 30 [T 0 144 1-4
. B; -_—— —-——=13 _ —
1. tcis :I:CIB( 3 ) +eis (4 3 +. 5 %+ T}

2. cis(e+2"T”). r=0, 1, 2; 1, ~§(12iJ3); —i, (3 +i);

6 M a3 -i); s =0 r0,1, 2 cis[g-i-{k—ljf:l,
r=0,1, 2. 3 6

3.1, —#(14,/3); cia[(ér—3)%]r=0, 1, 2, 3; :j::fz.cisf;
:/4.@[":_’;(31-—1)].,-:01;04; 2@3’;,r=omﬁ.

4 cisZT p0tod; b (1) 6. -1 7 -1

. 5T : i,Jz +1). . =1 . =1,

8. {i}ﬂ:m’s%; p.v.cis%; (ii) cis(fs+'—;‘3).r=0to 7.p.v.cia§.
1 . 1 ; . ™ .

9. :-/—2{1 '—‘l), 72-(]-—1). 10. m(—l—z), CLS—B-

11. (i) 1; (i) 0; 2F=1. 13. cis—2;—”,r=own-1; 0.

14. ois%,mo, 1, 3, 5. 15. cot(er;)r,f=1 to 6.

16. itan ", r=0ton -1 17. ms(z’T” ;I:a), r=0ton-1.

18. cis{zr-l)’i,r=1m4, and oiag%,s=0to4.

19. (i) ,J(% cotg) (L+i)5 (i) \/( —,}cutg).{l -4). 20.7;3.
i 1

21. (i) (2mg) s (ii)(—2cosg) cis (0 - 27

22. ais(a+5”§). r=1to5.

23. (i) Circle, centre (3, 0), rad. 2; (ii) circle, centre (2, 0), rad. 1;
(iii) circle, || =3, twice.
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24, (i) Circle |z]=1, 3 times; (ii) circle, centre (1, 0), rad. 1,
3 times ; (iii) two semicireles of |z| =1.

25. (i) Right half cirele of |z|=1; (ii) cardioid, r=2(1 +cos 0) ;
(iii) cardioid in (ji) displaced 1 unit to left.

26. (i) Right loop of Temniscate, 7*=2 cos 20 ; (ii) right branch
of rect. hyperbola, 2r?cos 26 =1; (iii) both loops of (i)
simultaneously.

EXERCISE IX. b. (p. 171.)
1. 2cos 30 ; 2isin 46.
2. }{(cis0)7 +(cis 07} s %;(cis B)6 — (cis 0)-*).

3. }(cos 36 +3cos 6). 4, %(cos 46 +4cos 20 +3).
5. & (cos 78 +7 cos 58 421 cos 36 + 35 cos §).

6. 1(cos40 —4 cos 20 +3).

7. —z4(sin76 -7 sin 56 +21sin 36 - 35sin 6).

8. —1(sin 40 —2sin 26).

9. — 4 (sin 70 +sin 56 - 3sin 36 ~ 3sin 6).

10. 514 (cos 90 +cos 76 —4cos 56 — 4 cos 30 -+ 6 cos 0).

12. (i) - {5 (}cos 56 —§ cos 36 +10 cos 6 +a);

(ii) };(}sin'?ﬁ-i—%sinw+73§n38+355in8+a);

(iii) g3 (] 5in 90+ sin 76 — £ sin 50 —$ sin 30 +6 sin 0 +a).
13. giy(yysin 100 +} sin 80 —} sin 60 — 2sin 46 +sin 26 + 60 +a).
19. 24. .

EXERCISE IX. c. (p.173.)

1. 5s — 208" +-16s°%. 2. 16¢5 — 20¢3 + 5e.

3. 32¢% — 326 +be. 4, 1185 +48st — 3238,
46 —483  5L-108 415 :

S YeEss’ T-10A 450" 6. ¢(# -3)(3¢ -1)=0.

7. 1-21¢ + 356 - T8 =0, g, ath—tithlds

L—tily +t,ts + 1ty

9. 8, s+t =tiaty 5 Tt =Z(htahy); hita +Hlals Tt =1
10. &" - (5)s" % +... =cos ("-4-21- »n&) ;

m"“o-—(;) 8"3c3 4+ . =sin (’323 —-nﬂ).
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11. @) (-1)% . 873 (-1)"l.nca»—1‘;
-1 n—1
(i) (-1) ¥ nes"; (—1)

12. (@) (-1 . nem1; (- 1)
n-1 a1
(i) (-1 * .5 (-1 * .
1|-1
14, n even, ( - 1) ; nodd, (-1) *

17. # 218 +3562 —7 =0, 18. -”-i .
l-c+f

EXERCISE IX. d. (p. 176.)

1 dcosf—-2+2-"cosnb-2>"cos(n+1)8 4cosh -2
5—4cosf P 5 _dcos0’
2, (i) If 0+ rm, cot O cos™@ sinn; if O@=rx, n; (ii) O.
3. (i) sin®*f —sin®+10sin (n +1)6 +sin"+2ﬂsinﬂ.0.
' 1 —sin 20 +5in2@ ’
sin?8
1 -sin 26 +sin28 "

(i)

4. cosec 3 sin ¥nf cis {a +}(n —1)8}; equations (11) and (12),

Ch. VII, pp. 125, 126.

6. (—1)i"t sin nf (2 sin §)". 7. cosnf. 8. sin"0 cos n¢.

10. cos™(6 ) —(}) cos®* (6 — ) cospcos 0 +...
+(=1)" (7) cos™ " (0 — ) cosTpcos rh....
12. (i) cos (n+1)0; (ii) 2 cos nd. 13. cosec 0 cos (a—8).
n
14. (1 +2xcos 0 +z’}§cosrw. wherecosa:sina:1
=(l+zcosf):zsin B: +.J(1+2x cos 8 +?).

15. (1 +222 cos 20 +z‘)§ cos na, where cosa:sina:1

=cos 8(1 +22) : sin 8(1 —2%) : +./(1 +22° cos 20 +=4).

16. For r=0ton-1, Z(r+1)cosrf=

—~ 2} cosec? 30 {cos @ —(n +1) cos (n — 1)@ +n cos nbd},

Z(r+1)sinrf=

% cosec? }0{sin 0 +{n +1)sin (n -~ 1)8 —nsinnb}

17. 231 coand {cos®™ 30 — ( — 1)*sin*" 30},
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EXERCISE IX. e. .(p. 182))

1. Insin0; nsin@; (—1)i"-D 27-1ginng,
2. (i)incos8; (~1)i"; 2"1cos"f;

(i) insin8; 1; (~1)" 20-1sin0.
3. Insin 8; nsinf; (—1)in-2 271 sin""20,
4, (i) In cos 8; n(—1)}n—1; 2n-lcos" 1 8;

(ii) in sin 05 15 (—1)Hn-D) 20-1ginn-20.
5. (i) Insin 0; n; (- 1D 27gin™16;

(ii) incos 8; (—1)ir—1); 2n—1cos™ 10,

6. (i) Insin 8; n; (=1)in-1201sin™20;
(i) in cos 8; n(-1)in1; 271cos" 6.

7. 1; see No. 22. 8. n; see No. 25.
26 n(n-5)(n-6)(n-T7)_ _n(n-6)(n-7)(n-8)(n-9)
) 41 L 51 *

-12
2%, sin? =p {1 = et

2
PEE.TEL -

o ol 2
_ﬂ’."'_:)!(_’l'_m z +£)'H .

82, y* —9y" +27y° - 30y* + 9y, where y=x +é.

33. 4* +7y? + 14y +7, where y _—.( _;1.)’.

EXERCISE IX. f. (p. 185.)

1. ds??’,r=1m&

. . (2r+1)=

2. cis % , r=0 to 17, excluding r =3k +1.

315
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3. {(a’ +b?) cos 2— +2ab +14 (a' -b%)sin 23

-:—{a’ +b* +2abeosg%ﬂ'} ,r=0ton-1.

tan DT 0ton-1. 5 cis®T, k=24, 6, 8.
4n 5

s —2-46, 142,/3+4(2-/3), 1-2,/3+i(2+,/3).
- L-nz - (3)a® +(5) 2 +(]) 2 - (B) 25 ~ee
M3 {1+F) 2+ (%)t +.. )5
(i) 8 {(¥) a2+ (%) a5 +...} 5
iii) 3 { ()= + () = +... }.

11. f_'“-'; 13. The line z = —}. 14. The lines y = 4.
0

16. (i) r* +6r2cos20 +5=0; (ii) r=8003’§ .

© ®m = n

18. (2cos $6)" cos inb, 19. 1; 2n+1,
21. 2nsinnf(1 —cos 6).

EXERCISE IX. g. (p. 186.)
1 (a:+1}(x3—2z:cos7-r,i+1)
(xzhzzcma—;r+l)(x’—2zcos§;+l).

2. (z‘+z+l)(z’ —2:5005?934-1)

a:‘-—%cos%f+1)(z’—2zcos%w+l).

7. Tsin'} (B - ‘Y) 2(;34‘7)
=2%sin® }(a B}sm‘ﬂu -y) (2a~i-ﬁ+-y)

{2 cos B)» (2 cos B)n—2r
21. n!{ po +".+(?W-—_2;ﬂ+ }
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CHAPTER X
EXERCISE X. a. (p.196.)
1. —e. 2, 2cos 1. 3. 1—-‘-2%@.
40 sm.ciﬂtsin 9). 5» 3”- 6 reis 0.
7. ecis (tan a). 8. ezcosd+ycosd cis (2 sin 0 +y sin ).
9. -1. 10. -~ 1. 11. 260089 cos (sin 0).
12, eslnf ¢is (sin26 sec 6). 13. 2iesinfsin (cos 6).

14, ee%088cos(einé). cis{ec08? gin (sin 6)}.
16. X2 +Y2=¢%; Xsinm =Y cosm.
_ x?-a®+yt 2ay
17. wmexp {(a: +a)® +y‘} eos {(z +a)t +y'} -
18. (1 —a®)cos B . DL, (1 +a?) sin 6 .D1, where
D =1 -2a%cos 20 +a'.

19. (i) Down the y-axis; (ii) from left to right along y =2n= -'_; .

20. a=2b=4mm.

. co! 2a’
22, ¢oons cos (sin @) =1+ 1 + g +uun b
esom< sin (sin a)=“‘¥ +?“;—,2“+...;

ecos(tanfB)=1+Z2 (;‘!Tnec“ﬁ cos nﬁ) ;

esin (tanﬁ)=2($sea“ﬁsinnﬁ).

- in

23, smnﬂ_ 24. u=v=0; ?—wcosg.
nl n! 4
" ., fnw zcos 6 —z?

26. E;ﬁmn(-—z— ~na). 21, LI

xsina —2sin (a - 3)

28. T-Szes iz 29. ecos8 cos (sin 8).
30. e~c02fgin (sin 0). 81, e~%c088 cos (a —x sin B).
32. esinf cos (sin?f sec 6). 33. ecos'Bcos (a +cos Bsin S).

34. cos (sin a) sh (cos a).
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EXERCISE XI d. (p. 216.)
1. 1625 —202° + 52 =}.,/2;;
-3J2 and sin *% for k=1, 3, 9, and ~T.

2.2} 6.5 6 9. 2101. 40 422=3. 14, 224z +3=0.
17. 16nfcosect 2nf —E“:L?'—"'”cosec' 2n6 +2n.
25. :—;4-%”'-35; 123-%“"-%‘.
2. () Z; () gyt f+42n-462;
(i) 1716—154:-’--2—18-5”—‘—-?—;;.
27, dablat—B)/(dot—dcH@ +B) + (@B 2. o,
CHAPTER XII
EXERCISE XIL a. (p. 220.)
1 (z-1) z—cis%r)(:c—qis:;—w).
2. (z-1)(a*+2 +1). 3. (2% +2/2 +1)(a? =2 /2 +1).
2ra

4. (z—I)II(z—cis - ),r: +1, +2;

@ - }(J5 - 1z + 12 + (/B + )z +15
5. (i) (2 +1)(z® +2,/3 +1)(a? -, /3 +1);

(i) ﬁ(m‘—hycosk—; +y‘), k=1,3,5, 7;

(iii) (z? - a?) (2? ~az +a?) (2* +ax +6%) ;
(iv) (2 - 4) (2 +4) (* - 22/2 +4)(2* + 22,/2 +4).

4
6. r[{z‘ — 2z cos (6r + l}1+1} .
7. (i) ooa(2r+1}%, forr=0ton-1;

(i) coszTﬂr, for r=0 to [in];
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(iii) cos{Q—"'n—”E, for r=1to [F(n+1)];
(iv) cos(n+2—:;f), forr=0ton—1;
(v) cos —, for r=1ton - 1.
n
1 . T 4 - "
8. (i) sin 5, Iorr—‘ +1, £83, ... x(rn-1);
. ., T n
(ii) sin——, forr=+1, +2, ... ;};(E +l).
9. (i) sin%,forr:O, £1, £2,..+3(n-1);

(i) sin%.forr: +1, +3,...x£(n-2).

10. cis{;l:(u+g-;—f)}.ior r=0ton-1.
n (2r-1)= .- (2r -7
11 I;[{:ci_ﬁz:ms—z-u—+1}, ‘2I[ 2? +tan® }.

14, w-n"i‘lil( 2:coos—+l)

EXERCISE XIL b. (p. 223.)
1. (i) 5sin 6 (1 ~sin?0 cosec=’-;)(1 —ain’ﬁcosec’z?w);
(ii) 32sin 0 (sin® 8 —})(sin®*0 - 1) ;
(ifi) 16 (sin 6 —sin a}{sin 0 +sin (a - g)} {sin 6 - sin( a+ %’)}
{sin 6 +sin (a + %)} {sin 6 —sin (a - —)}
2. See Nos. 4 and 3.

37N/ . . b
14. 8(sinf —sin ﬁ)(sm0+sm M)(sm&—amﬁ).

15, (-4)i=-DTI {sin ] —si.u[-; +( - 1)'::]}

for r=0, %1, ... £}(n-1)if n is odd.
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CHAPTER XIII
EXERCISE XIII a. (p.243.)
1. (i) 2nwi, (4n + 1;%‘. log 2+ (2n +1) 3, log 2 + (4n — 1) 53
(i) as (i) with n=0.
2. (i)}log2+i (-E +2mr) (8n+1) =2,

log 5 +i (= —tan~1§ + 2n=w), log 5 +4 ( =7 +tan~1§ + 2n7);
(ii) as (i) with n=0.

3. 1+(2n+1)mi. 4. (i) i(a +2kx); (i) ¥(a - 2n~w).
.

5. _512, _%. 6. log ( ~20c08 8)+4 (6 )
o dF

1. —(4n+1}§,log2+‘(§+2mr).

8. log( —seca)+i(a—=). 9. e ",¥%-e ",
10, 2i(a +7), 2ia.

11, For dmm < 0< (4m +2)r, 1og(2sm-g)+-;(°;'+2kw)=

p-v., k= -m.
For (4m +2)r < 8 < (4m +4)m,

log( —-2sin 8) +i(8—tf+2kr); PV, k=-m-1.

2 2
af+bg o _ag-Yf
a®+bt "’ a+52"

12. ¢=e? cosB, d =e* sinB, where A=

13. 3 Log vt 15. +a.
~{4n+1)5 ~{(8n+ DT
16. i 2, J2.e ‘cis(yogu%).
17, e-a-2n=, 18. log (@ +2mr)+i(£2+2m=r).

. oy '
20. }log{(z +1)*+y?} +itan lx+l+‘h-'

2 2132 ]
(2* +y ll) +4dy }+£t.an-1 _ 2y.r_ ik
(x+1)+y? x4yt -1

21. log J




22,

23.
24.

1
2.

8.
11
16.

17.
18.

19.

16‘
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6 =«. AN
logtan§ +5¢or log( ~tan §) -5+
Loci are circles of two orthogonal coaxal systems.

Constant except at ( ta, 0).

macxsn XL b. (p. 250.)

—2— 22 ; unless y=0and z>1.
—ilog(l-—2rcosa+r‘}. 3. }log (1 -2 cosacosf3 +cos?a).
T 3r

5—8, ?—B. 7. log( -2cos8).

la:l-: i lz- r|<—. 9. }(2n+1)r -6,

$ log {4(cos a +cos B8)*}. 12. }log cosec?z.
_, f2xsinf
yan (5257)
kr +¢ —zsin 2¢ +3a*sin 44 —§2°sin 6 +....0
kr +a +tan? wsin 2a +} tant wsin 4a + § tan® wsin 6a +....

L - r—:._l__ 1 —
i 20. 22(-1) 2’._1::"" cos (2r —1)6.

EXEROCISE XTI c. (p. 254.)

¥ cis (log 2). 2. &, 3, eitin -1,
L3

" aois ($1log 2). b. smH' 4 cis ( —}log 2).

gin-1=, 7. - 8. ™.

(=1)" nF, 10. &+ gis (2nwz - y).

cis[3(4n - 1)7*]. 12, ™™ cis( ~logw)

log 2 + 2kmi 14 2 —ilog 3 15 4k +1

log 10 + 2n=s’ * o2nw "+l

ilog3 +kms 17. u - 2nwv +i(v +2n7u + 2k=).

log 3 +nmi
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18, ¢ +2am, 19. -1. 20. v=n7. 22, (-2)%; =

23, g2oos0+Immsing oig ((9m -+ 4n)w cos 6},

24, blog (= +¥y*) +a tan-' Y arisa multiple of .

2(a +2k)

TS

27. No; yes; yes.

31. s¢{2r+1)'§’, n>-1;

(i) (a) (2 cos 6)" cosn(f - 2kw);
(b) ( —2cos 0)" cosn(f — = —2kw);
(ii) (a) (2 cos 8)"sinn(8 — 2kw);
(6) ( —2cos 6)" sinn(f —= - 2kw).
0=(2r+ 1)%, (i) is zero for n>0 and unity for n=0, and
divergent for n< 0; (ii) is zero.

32. (i) —(—23in

a\™"® . n
—2') sm-§[a+fr—4]c1r);

(i) ~(25in3) "sin} (a — ~4km); (i) O
33. }Sing,J(—.‘Zaocg); 34. (—cos 6)" cosn(6 - ).
35, (sin 26 — 2xsin 8) (1 — 2z cos 0 +23)8,

EXERCISE XIIL d. (p. 258.)
2. Sh2z=i{nm - (= 1)"sin~Y(iz)}; Th 'z =i{nw - tan~1(iz)}.

10. 2n7 4ilog 2. 11 2n +7 ilog3.
12. (2n+l)r +ilog5. 13. kr +4 (~-1)*log (1 +,/2).
14 14sinf 1+4siné

NGEES 198 T Tamp? @ ~3+3 r gy L

. B= @
17. 2a=(2ﬂ—1)1r+-§+q':a. ﬁ—ilog(-—cot 2).
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18 (i) cos'g log (4 cos‘—g) +30sinf-1;

(ii) coa’—g log (4 cos? -g) +3(0-2m)sinf -1,
19. z=a,y -ay® +ay* — ... + 2k=.

21. (i)zm+’-’é<s<2(n+nr_§; -§<s<§.
CHAPTER XIV

EXERCISE XIV. d. (p. 270.)
1. tan*Beos?a=sin’a +tan?y. 2. a?sin®a=>b*+ct~2bccosa.
3. b-a=d. 4. (c*—d*)(a%d —abe — 2b%d) =0,
5. (a?-+b%)(a? +b? - 3) =2b.
6. at +bl=1; (a2 +b2 - 1)® +27a%2 =0,
T. 13(a® +b2) =24ab +25.
8. (4a — 3b)*(49 — (a +b)2} =49(a +b)2,
9. 2}y (2 +yt +3) =1, 10. —+!£=1.
11. (a? +2b* - 0)* =a?(b? — 3)(a? + b2 — 6).
12. ¥ +yi=(20)}; (2® +3? - da?)? +108a%2%y2 =0,
13. 2*=dala-.
14, 2® +y? =c?sec? {a. 15. ac+b*=ect.
16. (az)! +(by)i =c!; (a%® +biy® —ot)® + 2Ta%%c'aty? =0,

2 2
17. =l%+31'-=a:s +b.

b
18. (a® +b% —c?)(a? +b? - cd)® =a%*{d® — 4(cd —a® - bY)).
19. cd?(c +2d) =(c +3d)*. 20. (1+c*)tanB=(1 —c* tan'a.
21. b*=a* +¢? - 2ac cos 2a. 22, z? +xcosa=2.

23. z*=2abesin a. 24. 2sinycotx =a® +costy.
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EXERCISE XIV. e. (p. 272.)

1. a?+b?=sin?y. 2, 2? +y? —2ay cos a=a*sin’a.
3. (at+b2-2)® +4c?=4. 4, (z*+y2)(1 —-z) =2y(1 +2).

5. 4¢(2k —st) =a(k® -1*)% 6. ¢c=a(3 +3b -2a%).

7. z+a=0. 8. 2t +yt=a?+b%

9. (seca —1)(sec§ —1)=sin®y. 10 Yy =4u(x +a).
11. (a —g}b-g)lc~r)=p*@a+b-c—q)- 12. a® +b® +¢* =3abe.
13. ¢?=a?+b* +2abd. 14. cot®a =cot?f +cot?y.
15. (a® +b%)(a? +b® —4) +¢* +d? =2c(a® ~b%) + 4abd.
16. cos?f, +cos?f, +cos?f,=1. 1T, sin a +sin 8 +sin y =0.
19. cos $(a+B +7) . cos 3 (B +y ~a)
.cos}(y +a—P).cos}la+f -7)=0

2t -yt ay

20. =5 = h

EXERCISE XIV. £. (p. 274.)

1. Min. 44/3 for tanz:lg-;-; max. —4+/3 for tanz = -1/23.

2. Min. § for sinz=%; max. 3 for sinz=-1.
3. Max. 10 forsinz= —1; min. 2 forsinz =1
4. Min. 4 for cos 6 =% ; max. —4 for cosf=-%.

™

5. Max. and min. 14’7 for 20+a=2nwig, sin a =%,
cosa=1%.
7. +(a®-b%). 8. Max. 17 - 124/2; min. 17 +124/2.
10. +/(a? +2ab cos a +b?). 11. tan’%. 12. sina.
13. cos®a. 14. 1. 15. 3tanD, 3cot D, 3 cosec D,
EXERCISE XIV. g. (p. 275.)
2sc -4t
—_— ——, L at+bti= ,
4 o g 17. a* +b* =c* +d*

(a-b)? _
18. (ﬂ+b -2) +m =

19. (2% +y%)(2? +3* + 18) +8z(2? - 3y*)=2T.

2.
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20. Za{acos (B +a) +bcos2B +ceos (B +7)}
{a cos (y +a) +bcos (y +B) +c cos 2y} =0.
21. b%*(4a +3)° ={(1 +a)? — (B2 +c®)}{(1 +a)(1 +2a)? — (b2 +c2)}.
22. (z - 9)(z — 3)° + 128222 =0, where z =2+,
23. pg{pcos®a +gsin®a —sin acosa)?
=sin%a cos?a (p cos?a +g sinta)?,
24. zsin (f - a) =sin 2a. 25. §.

MISCELLANEOUS EXAMPLES
EXERCISE XV. (p.278.)

3. 2nw +§ or nw i:—; . 5. Confocal ellipses, foci ( +1, 0).

8. 4 sin s sin (8 —z) sin (s —y) sin (8 —z) where s =}(z +y +2).

—y=g—r T Y 2 T T Y I T T Y 2T
Woz=y=2=,5=1"3"% 376-1"7 1-3°6-7’
vy z T & ys T wy zT
77156 95 71 9 1351709

1
12. m —log (l -H:).

13. (- 1)}V y ginn-16 cos™ 16, n odd ;
( =1)}" 25in"f cos™ B, n even.

15. (1 +./21), (1 ~./21).
16. (2b* -a® —ac) : b(c —a) : (c* — 2b% +ac),

17. cot™1(/3 —3)=43"11". 19. P-1<e< b +1< 3
E A z" nw
a T ~_olngin =
20. z+x +5 735 '"+n! 2¢" sin N e
28. }(shz -sinz). 3L 2242 ~1=0; §(/5-1), -3 (J5+1).
33. Interpolation 7-16099, calculation 7-16070(5).
a,x -y < 1
-1 . = -1,
35. tan ayiz " 42&‘@: g

37. Z{cos(a +B)cos(a +7)sin (B -¥)} _
= —gin (B —vy)sin(y —a)sin (a - ).
2¢(c +d)
%+d COS @a

41. }(2c+d)seca -
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Absolute convergance, 189, 190,
Absolute value, 78, 145.
Addition theorems, 64, 105, 123,
193, 198, 199.
Algebraic factors, 219.
Ambiguous case, 2.
Amplitude, 145, see principal value.
Angle-bisectors in tnaﬁ%}e, 11.
Angle measurement,
Approximation, 82, 95.
Area, hyperbolic, 52,
of q ilateral, 24, 27, 28.
Argand diagram, defined, 145.
zyz,, 148, -
zlz,, z, -2, 151
28, 1)z, 152, 153,
%, 165 to 167.
Argument, 145.

Base of logarithms, natural, 63.
generalised, 241, 253,
Bino;nis;ll Series, 142 ii. and Ex. 3,

Centroid, 10.
ch, sh, behaviour of, 109.
calculus applications, 107, 110.
formulae for, 105,
ralised, 198.
mnverse, 110, 256.
Circular functions, see cos.
Circumcentre, 4.
cis 6, 152.
Com;ﬁloxﬁ. number, amplitude, 145,

conjugate, 143.

definitions, 137 to 139,
difference, 139, 148,

first and second parts, 143.
geix;:etrical representation, see

5, 140, 141,

Complex number, manipulation,141.
modulus, 145.
modulus-amplitude, 145.
nomenclature, 143.
notation, 140, 152.
produet, quotient, 139, 151, 132,
sum, 138,

Complex variable, functions of
geometrical representation, asee

A.rga.nd.
princi%i value, 146, 164, 165.

oxp,
log, 241, 253.
sh, ch, ete., 198,
sin, cos, etec., 197, 199.
sin~?, sh~l, ete., 256,
Compound Interest law, 93.
Convergence, 11.
absolute, 189, 190,
circle of, 247.
conditional, 190.
cos (A +B), 123,
cosh, see ch.
cos 0, sin 8, differential of, 79.
expansion of, 80, 81.
exponential form, 194,
factors of, 223,
generalised, 197.
cos nd, in factors, 223.
in terms of ¢ and s, 172.
in terms of ¢ or s, 178.
cos"f, cosP# sin%8, in multiple anglea

169.
Cotes' properties, 228,
Cubic equations, 44.
Cyclic quadrilateral, 24.

De Moivre, property of,
theorem of, 151, 162 ;
and applications to
expansions, 169, 172.
factors, 219, 226.
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De Moivre, ers and roota, 165,
solution of equations, 167.
summation of series, 174.

Disf.al.ng-oas between points in triangle,

¢, defined, 63.
evaluated, 91.
irrationality, 92.
series, 91,
E-centre, 4.
Elimination, 270.
Eqmatg_om' approx. solution, 82,

construction of, 204.
cubie, 44.
functions of roots of, 206, 208.
graphical solution, 38.
trigonometrical, 34.
Errors, 20.
Essentially distinct roots, 212,
Euler’s constant, 70.
Expansions, polynomials, ete.,
cos nd, sin nd, 172, 178.
cos™d, sin"#, 169,
tan né, tan 4, 172, 173.
Expansions, power series

(1+2), 71.
(142z)” T (1 +2z)m, %253-
ch, sh, 104, 198,

cos, ain, 79, 198.
€%, exp z, 90, 191,
log, 84, 85, 245.
, 82.
tan-, 88,
Exponential function,

efined, 64, 192.
differential orf, 64,
expansion of, 90.
limit form, 93, 75.

Factors, algebraic, 219.

cos 4, sin 8, 223.

Cotes and de Moivre, 228.

fundamental theorem, 142, 219,

series and pro-ducts, 228.

sin né, ete., 222, 227,

trigonometrical, 221.

z"11, 219, 220,

M — 22" cos na +1, 226.
Feuerbach’s theorem, 16.
Funections, circular, 79, 197,

exponential, 64,

‘ hyp,’ 52.

INDEX

Functions, hyperbolic, 104, 198,
inverse, 46, 64, 88, 110, 256.
log, 63, &i. 211. 247
many-valued, 2&1.

Geometric progression, 77, 191
Gregory's t?xpemswn, 88,

Hygarbohn functions, 52, and see
cn.

i, 140, 141.
Idenhhee, 263.
IH:, I,H3, IN, I)N, 16.
In-centre, 4.
Indices, 27, 140.

zPle, 162,

zw, et’u, 252, 253,
Inaqu.ahues, cos, sin, 80,
exp, 71, 74, 97.
log, 67, 71, 73, 74.

miscellaneous, 57.

trigonometrical, 274.
Inﬁmltia’ljt_lat.agrals. 53, 54, 57 (No.17),

Infinite Products, 223, 240.
Infinity, Sum to, 77, 190.
Integration, 63, 64, 79.
Inverse Functions (see also Func-
tions),
differentiation of, 15_'1 (No. 18).
principal values, 155.
tan-'m+t-tan-m’, 47, 156 (No.
12).
Limits for n—»>w,
™, ="nl, 18,
(1tz/n)", 03.
(cos z[n)", 0.
n{%a -1), 89.
A'l?t ; -log n, 69.

Limits for, z-»o,

liyp 2o 8 7 11), 73 (N

(oéi_”z ’—&l (Nﬂ. ._Jl ( 0.
Limits for y—0,

{:' -1) y,MﬁH.

YP | Y |» 0%.
ilog{& +y)Hy, 68
68.

thms, base e, 63,
ifferentiation, 63.
inequalities, 7.
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Logarithms, integration, 67 (No.
45).
log w, log.{, 241, 253.

Machin's formula, 89.

Many-valued functions, 47, 155, 241.
Mass-centre theorem. 10.

Maxima and Minima, 274,

Median, 11.

Modulus, 78, 145, 148.
Modulus-amplitude form, 145.

Nine-point circle, 6, 16.
‘Number, 137, and see Complex.

0H32, 018, OI,3, 15.
Ordered pairs, 138.
Orthocentre, 5.

Osborn's rule, 105.

=, evaluation, 89.
roduct, 223,
«[6, 200, 228,
Partial fractions, 231.
Pedal triangle, 5.
Polar circle, 6.
Power series, 71.
Powers, see Indices.
Powers of cos 4, sin 6, 169.
Principal values,
amplitude, 146, 156 (No. 8).
(cis 6)P14, 164,
cos—1r, ete., 155,
Logw, Log(l+w), Log., 241,
247, 254,

== 2

2%, (1 +z)m, 252, 254,
Projection, cos, sin (A +B), 123.
points and lines, 118.
summation, 125.
Ptolemy’s theorem, 25, 21.

335
Quadrilateral, circumscribable, 27.
cyclie, 24.
general, 27.

erlrllpiilélﬁlzﬁ‘

Roots, essentially distinct, 212.
Roots of equations, 204,
Rutherford's formula, 89.

Series (see also Expansions)
Zzr, Z27, 77, 191,
Szrjrl, 2z7jr!, 90, 191.
Zr-%, 209, 228.
Zr4, 212 (No. 21).
z clozsl(.u +rB), Zsin(a+r8), 125,

Zzf cos rf, 2z sin rf, 174.
Z( - 1)"-1p"n-1 cos (or sin)ng 245
= cosec?rrz/n, 209, 228,
binomial, 253.
ealculus method, 128, 132 (ii).
definitions, 77, 189.
difference method, 127, 130.
products and, 228.
sh, sin, sinh, see ch, cos.
sin (A + B), 123,
Solution of Triangles, 1, 2, 19.
Submultiple angles, ’
cos 48, sin 30 in terms of cos 6, 41.
cos 38, sin §6 in terms of siné,

cos 10 in terms of cos 6, 43.
Subsidiary angle, L.
Successive approximation, 82, 93.
Sum to infinity, 77, 190.

tan nf, tan =6, 172, 173.

tan x, 82,

tan—'z, 88, 57.
Trigonometrical factors, 221.

Wallis’ limit for =, 223.



EXPLANATION OF SYMBOLS
r! denotes factorial-r, thatis 1.2.3.4....(r-1).r.

nn-1)(n-2)...(n-r+1)

(f) denotes the binomial coefficient 13 5 v

[x] denotes the integral part of x; more precisely the largest
whole number that is not algebraically greater than =z
eg. [f]=3and [-3]=-4.

a=Db(modc) denotes that a-b is a multiple of c.

= denotes “is approximately equal to.”

a<b=c<d denotes: a<b, and b=c; .. a<d
but c<d; .. a<d.

l{{s, ?,.--){B denotes ﬂ'(ﬂ{ﬁ, a<¢<ﬁ".l.

r=k

k
> i(x) or ij{r} denotes f(1)+£(2) +£(3) +... +f(k).
Tem]

r=k k
1'[11‘[1') or ]'l[f{r) denotes f(1).f(2).f(3). ... flk).
T

increases steadily is taken to mean * always increases or at any rate
does not decrease.”
E.T. EI tary Trig etry, by C. V. Durcll and R. M. Wright.

M.G. Meodern Geometry, by C. V., Durell.
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