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PREFACE

The Theory of Sets, which scarcely existed about fifty years ago, now plays
an important role in many mathematical disciplines: measure theory, func-
tions of real or complex variables, linear operations, etc. To apply it to
these different domains, it is not necessary to have an axiomatic approach:
a set is simply a collection of objects and the arguments which we shall use
will be independent of the nature of these objects.

In Set Topology,"’ with which we are concerned in this book, we study
sets in topological spaces and topological vector spaces; whenever these

- sets are collections of n-tuples or classes of functions, we recover well-known
results of classical analysis.

But the role of topology does not stop there; the majority of text-books
seem to ignore certain problems posed by the calculus of probabilities, the
decision functions of statistics, linear programming, cybernetics, economics;
thus, in order to provide a topological tool which is of equal interest to the
student of pure mathematics and the student of applied mathematics, we
have felt it desirable to include a systematic development of the properties
of multi-valued functions. This term is generic; it indicates that we are not
solely concerned with ‘single-valued’ functions. In fact, convention forces
us to use different terms, following the preoccupations of different authors:
we speak of a multi-valued mapping'® whenever we study properties con-
cerned with linearity or continuity; we speak of a binary relation whenever
we study certain structural properties (order, equivalence, etc.); we speak of

an oriented graph whenever we study combinatorial properties. In the first

case we can say that we have a topological theory, in the second an algebraic
theory and in the third a combinatorial theory. The coexistence of these
different terminologies might appear to be unfortunate, but their use is
standard whenever the points of view and the methods differ (we also follow
the usual conventions regarding the words equivalence and partition).

The reader working without supervision is advised to omit on the first read-
ing the paragraphs marked with an asterisk (these are generally in order to
demonstrate a point of detail rigorously). It is hoped that the examples,
which are taken from very different domains, will render the exposition more
concrete. '

We wish to express our thanks to Professor A. Lichnerowicz, who en-

() ‘Set’ topology or ‘general’ topology is so named in order to distinguish it from
combinatorial topology, which is not considered in the present work.

2} The following terms are also used: multiform functions, multivalent mappings. In
this book we shall simply call them mappings,
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couraged us to undertake this work and who kindly read the manuscript;
equally we wish to thank Dr M. Kervaire, whose suggeshons have been
valuable for each one of our chapters.

TRANSLATOR’S PREFACE

Every effort has been made to preserve the spirit of the French edition in the
present translation. The main alterations which have been made have been
incorporated at the author’s own suggestion.  These consist of various
amendments and the addition of new material, mainly in Chapter VIIL

Tam indebted to Dr Berge and to the publishers for their close co-operation;
also to Dr A. J. White for his helpful comments.
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CHAPTER 1

FAMILIES OF SETS

§ 1. Sets: general notations:

A set A is a collection of objects of any kind (for example points in a plane,
real numbers, functions) which are called the elements (or points) of 4; in
general sets are denoted by capital Latin letters and elements are denoted by
small Latin letters. _

n certain cases a set can be determined by means of a list or, more gener-
ally, by means of a property of its elements; for example, the set of positive
rational numbers,t) which we denote by R;}, is the collection of positive
numbers x which have the following property: x is the quotient of an integer
p by an integer g, where ¢ is not zero.

If @ is an element of the set 4, we write ae 4 or A3 a; if 4 and B are
two sets and

' a € A implies that a € B,

we write A< B (4 is contained in B) and we also say that 4 is a subset of B
or that B contains 4 and write B> A. If A< B and B is not contained in 4,
we write A< < B (4 is strictly contained in B); if A< B and Bc A, we write
A = B (4 is equal to B). In this case a € 4 is equivalent to a € B.

We write a ¢ A if it is not true that ae 4; B P A4 if it is not true that
BoA; A # Bif it is not true that 4 = B, etc. A subset.of 4 is said to . be.
empty if it contains no elements; this set is denoted by @. A subset of 4 is:
said to be full if it is equal to the set 4. The set consisting of the elements. .
a4, dz, A3, - - - 5 @, is denoted by {a;, a3, a3, . . ., a,}. More generally, the set
of elements of A4 which satisfy a property (L) is denoted by ‘

- {a/ae 4, asatisfies (L)}.

Exampres. The set of positive integers {0, 1,2,..., 7, ...} is denoted by
N and the set of real numbers, positive or negative, is denoted by R. We
can represent R by means of the points on an oriented line with an origin O,
such that to the number 1 there corresponds the point P whose abscissa
OP = ) (Cantor’s postulate); we also call R the Euclidean (or oriented, or
real) line. The set of positive rational numbers can be denoted by

R ={x/x=p/qg peN,geN,q # O}
Clearly -
NcR <R

) It is assumed that the reader is familiar with the concept of real number.
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In many problems it is convenient to adjoin to R two elements, denoted
by -+ o0 and — co, which satisfy

+00 = (= 0)(=00) = (+00)(+0) = 1+C§+ ©) = A—(—00),
=0 = (=00)(+®) = (+0)(—0) = A+(—0) = A—(+©),
— 00 <A< 400,

‘ A A :
for each A € R and also
(+o0)d = A(+ 00) = (=A(—®) = (—0)(—4) = +00,

for each teal number 4> 0. The set R together with the elements + oo and
— o0 is denoted by R and is called the augmented oriented line or the aug-
mented real number system. -

The following sets are called, mtervals

[Lu] ={x/xeR x21, x< u}  (closed interval, or segment),
1A, u[ = {x/xeR, x>1, x<yu} (open interval),
Mpl={x/xe ﬁ, x>A, x<p} (right half-closed interval),
[Apl = {x/xeR, x21, x< U} (left'half-closed interval).

Thus the set of real positive numbers can be denoted by [0, + o[ and the
set of real strictly positive numbers can be denoted by 10, +oof.

We use certain standard abbreviatory symbols, which are virtually indis-
pensable in simplifying the writing of formulae. For example ‘ae 4 = be B’
is read ‘a € 4 implies that be B’ and ‘ac A <> be B’ is read ‘ac 4 is equi-
valent to b € B’. We use the symbols V¥ and 3; (V 4a) is read “for each element
ain 4> and (3 ,a) is read ‘there exists in A an element @ such that’. For
example, ‘to each element x, there corresponds an element y such that

.f(x, ,2) = 0 for all 2’ is written: '

- (YO@NVI) : £, 2) = 0.

We note that the opposite statement can be obtained by a very simple rule,
which enaibles us to write it down automatically as follows:

@Ex)(V9)E2) 1 £ (% 3, 2) # O.

In formulae such as these, the symbols (3x); (Vy), (3z) (which are called
quantifiers) cannot, in general, be displaced. The reader is advised to practise
handling these symbols so as not to lose time in understanding the arguments
which are to follow. s

A one-one correspondence between two sets A and B is a rule in which
there is associated with each element a of 4 an element b of B, this being
denoted by a — b, such that for each b e B there exists one and only one
a € A for which @ — 5. In such a correspondence, the elements of 4 and B
corfespond in pairs as indicated in figure 1.
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For example, if 4 is the set of posi-
tive integers and B is the set of even
positive integers, the correspondence

* n - 2n is one-one.
In order to study a set A we often -

illustrate it on paper by means of a set
of points which we suppose to be.in

[N 2’ ) A

(GG _),,,,5

FiG. 1

one-one correspondence with 4. This. enables us to represent diagrammatic-.

ally certain operations. on sets.

The Cartesian sum 4, + 4, of two sets 4, and 4, is defined to be the set

" formed by the pairs (1, a,), where a, € 4; and (2, a,), where a, € 4,; we
can represent it as indicated in figure 2 on the left-hand side. The Cartesian
product 4, x 4, of two sets 4, and A4, is defined to be the set formed by the
pairs (a;, az), where a, € A; and a, €'4,; we can represent it as indicated in

figure 2 on the right-hand side.”
AtA,

— oo e SEERD, | ROERTE

2

Exampre l. . The product RxR =
{(x1, x2) | x; € R, x, € R}, which can
be represented by the points of a plane
(determined by two oriented rect-
angular axes), is called the Euclidean
plane, and is denoted by R2.

ExampLE 2. The product of two
plane circles C, and C,, which can be
represented by the points of a two-
dimensional torus, is called the
Euclidean torus. b

Fic. 2 | ) A
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§ 2. Elementary operations on sets .

If 4 and B are two sets, their union 4 U B is defined to be the set of elements
which belong to at least one of the sets 4 and B; their intersection 4 N B is
defined to be the set of elements which belong to both 4 and B; the difference
A— B is defined to be the set of elements which belong to 4-and not to B.

A A A

AuB AnB A-8
Fe. 4 _

If AN B = @, we say that the sets 4 and B are disjoint; if 4 N B # @, we
say that the sets 4 and B intersect. If Bc X, the difference X— B is called
the complement of B relative to X and is denoted by —B or CyB. The
following properties are easily verified:

1) -2=X; -X=0,

@ —(—4) =4,

() 4oB= —Ac—B,

4 AN(~A)=0; AU(~4) =X

Theorem. The operations U and N satisfy the following conditions:

(1) AUB=BUA . (commutativity of U),
(1" 4ANB=BNA ' (commutativity of M),
2 AUBUCO=MUBUC (associativity of U),

@) AnNBNC)=ANBNC (associativity of N), ,
B ANBUCO=UANBUUNC) (distributivity of U with respect to N),
(3) AUBNC)=AUBN(4UC) (distributivity of N with respect to U),

I

4 AN(AUB)=4 ‘ (absorption of U by N),
@4) AUANBY=4 (absorption of N by U),
(5) AUA=4 (idempotence with respect to U),
(5" ANAd=4 (idempotence with respect to N).

These formulae can easily be proved; for example, (3) can be proved as
follows:

, xeA
xeANBUC)= YeB or xeC

«{xcANB or xeANClexe(ANBUUNC)
and the other formulae can be proved by similar means.
REMARK 1. Because of formulae (2) and (2), we can writé

AUBUC)=A4UBUC,
ANBNC)=40BNC
for simplicity. :
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REMARKIZ. We see at once that from each formula such as (1) we can
deduce a formula such as (1") by making the following changes:

@ for X  (and vice versa),
A4 for —A (and vice versa),
U for N (and vice versa),
o for ¢  (and vice versa).

This remark is valid for every identity which involves only sets, the opera~
tions U, N, — and the relations » and < ; we say that pairs of formulae such
as (1) and (1') are duals of one another.

If AcX, the characteristic function of 4 relative to X is a numerical

function ¢4, defined on the elements of X by

pi(x)=1 if xed,
o, (x)=0 ifxeX—4.

The following relations are easily proved:

G4 up(x) = max {¢, (x), ¢5 (x)} = ¢4 () + 5 ()=, (x) P5 (%),
¢4 n 5 (%) = min {¢A (x), 5 ()} = b4 (x) b5 (x),
P-a(x) =1-=9,0).

§ 3. Families of sets

A set I and a correspondence i — «; in which there corresponds to each i in
I an element a; of a set 4, is called a family of elements in 4 and is denoted
by (a; [ i € I); I'is called the index set. In the case in which/ = {1,2,...,n}
we have a set called an n-tuple and if n=2, this n-tuple is called a pair. In
the case in which 7 is the set of strictly positive integers, we obtain a sequence

‘ (ais Az A3y« -« ) = (an)'

A set I and a correspondence in which there corresponds to each element
i of I a subset. 4; of 4 is called a family of sets in 4 and is denoted by
d = (Ai / i € I).

Any collection {4, B, C, ...} of distinct sets can be considered as a family
of sets; to do this it is sufficient to take the property which characterises a
set A (or even the set 4 itself) as the index for 4. A family of sets of this
type is called a collective family. In a collective family all the sets are differ--
ent; in general, however, it may happen that two sets 4, and 4; of a family
& = (A;[iel) are equal although i # j. It is important not to forget that
the family is defined by the 4, and the correspondence i — 4,; the notion of
‘family of sets’is more general than that of “collection of sets’. ;

Let &/ = (4;/ie]) be a family of non-empty sets; we shall assume that
there exists a family (g, / i € I) such that a; € 4; for each i (axiom of choice;
see Chapter III)..

B
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Exampre. If i denotes an interior point in a circle C and 4; the set of
points on the radius through i, then the A, form a family of sets; this is not
a collective family.

Let o = (4;/iel)and # = (B;/jeJ) be two families and let C be a
single set. We say that &7 is partially contained in the set C if 4,=C for at
least one i € I; we write this &/ - C. We say that & is finer than & in the
exterior sense if o is partially contained in every set B; € # and we write this
A -B. ML - B and B+ o, we say that o is eqmvalent in the exterior
sense to Z and we write &/ ~ #. On the other hand, we say that .« is finer
than & in the interior sense if

V1) @) 4; < B,

and we write &/ >- B. If oA >F and B > o, we say that & is equivalent
in the interior sense to & and we write this & ~ Z.

Theorem 1. If Ja? (4;/iel) and & = (B;|jeJ) are two families of
sets, the family & B = (4; N B; | (i,j) € IxJ) is finer than ﬂ and finer
than &, in both the interior and exterzor senses; moreover

C>A, C>A =>C>A N
Proof. We see at once that o [ &% ié finer than &, for

Vi) @GN 40 B; = A4,,
V@D @) : 4,NBjc 4,

and a similar argument applies to #. Moreover, if ¥ = (C, / k GK) isa
family which is finer than both &7 and & in the interior sense, then we have

~VME@AGH: C.c4;NB;

Theorem 2. If o = (4;/iel) and # = (B;[jeJ) are two Samilies of
sets, the family s/ U B = (4; U B; [ (i,j) € IxJ) is less fine than o/ and less
Jfine than & in both the interior and exterior senses; moreover

A-C B+ = AUBFE,

Proof. We see at once that & is finer than &/ U £, for

(V(I,])) (3 i) : Ai = A;UB
(V) @GJ) ¢ 4= 4;UE,

and a similar argument applies to #. Moreover if both & and & are finer
in the exterior sense than € = (C, [ k € K) then we have
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vk @3 GJ) 'Ai U B; < Crs
dUB+Z.

.For collective families (and for no others), &/ U denotes the collection
of sets which are in either & or &; likewise &/ N & denotes the collection
of sets which are in both &7 and . The larger symbols U and [ used in
the above theorems are thus necessary to avoid confusion.

whence

§4. Operations in a family of sets

The operations U and N defined in § 2 for two sets 4 and B extend easily
to a family of sets (4; /i€ ). The union of the 4;, which is written U4,

iel
is defined to be the set of elements which belong to at least one 4;. The
intersection of the A4, which is written N 4,, is defined to be the set of ele-

iel
ments which belong to all the 4;. The product of the 4;, which we write
[T 4., is the set of families of elements &€ = (a; / i e I) such that g; € 4; for
iel

each 7. The sum of the 4;, which we write X 4, is ‘the set of pairs @, @)
- . : iel

such that ae 4, and i e I. We note that if the family consists of only two
sets A and B, then these operations reduce to those defined in § 2.

Exampie. The pfoduct
RxRBRX...xR=R"= {(x3, X3, .+ - Xp) [ X15 X2, . - ., X, R},

which is the set of n-tuples of real numbers, is called Euclidean space of n
dimensions. By using three rectangular axes, R?® can be identified with the
ordinary space of elementary geometry. .

Theorem 1. For two families & = (4;[iel) and Q:=A (B; [ jeJ) we have
M) ~Ud4; =N (-4,
P otel tel
(1) —N4,=U(-4),
‘isI ] iel
@ . (U4)nUB) = U« N B),
el jelJ iel .
: jed
. bel jed iel
. jEJ
The verification of these fdrmulae is immediate and is left as an exercise
to the reader. BRI

. Theorem 2. If two families o = (4;[i€l) and B = (B, | ie]) have the
same index set, then L
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D) 4,0 <= HA;'?&Q’: ‘

Vi): 4, # @ .
@ [M4:<]]B;| = (V):Pcc4,<B,
tel iel

©) i];_[IAi n x_I;IIB: = iI;II(Ai N By,
@ [J4VI]B: < HI(Ai U B).
iel ie

iel

4% (AixAs) 0 (ByxBy)

". (A]XAz) U (B]XBz)

FiG. 5

These formulae can be proved immediately if we use the axiom of choice
(8 3).
§ 5. Partitions
We shall now study some important families of sets. A family o/ = (4, [/iel)
is called a partition of the set 4 if

(1) Ni):Ai9é®9AicAs
(3) U4;= 4.

iel
In other words, every point of 4 belongs to one and only one 4,.
A family & = (B;/jeJ)is called a sub-partition of the partition & if it
is a partition and if # > &7; because of the latter condition and the fact
that &/ is a partition we have )

BiN4,+2 = Bjc:;lii. .
.Let &/ and Z be partitions and let K be the subset of /x.J defined by
' (LNeK <« A;,NB; # 0.
We then write:
S N& = (4;N B,/ ())eK).
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Theorem 1. o7 [ & is a sub-partition of both o and &, every sub-partition
of both &7 and & is a sub-partition of <7 %.
Proof: &/ N & is a partition, because

(1) 4,0 B; # @, since (i,/) e K,

@ GH#ET implies that
4;NB)N(ApyNBy)=(4,NA4)N(B;NB))=O

@ U @nB )-—-UAnUB-AnA A.

ek jed
To prove the other part of the theorem, we observe that
" CA,C-B = C>ANA.

Theorem 2. If & = (A;]iel) is a partition of A and B = (B;[jelJ) is
a partition of B, the family S TI# = (4, X B;/ (z, NelIxD)isa partztzon of
the set A X B.

Proof. Using Theorem 2 of § 4, we have
(1) AixBjaéQ; AiXBjC:AXB,

4,04, =@ :
@ @GN #GT) = { or } = (4;xB)j) N (4, x B;)
B;N B, = (4, N 4)x(B;N B,) = @

3 U 4xB --U(Ax U B) =U4,xB=AxB.

{4, NelIxJ jer iel

The idea of a partmon can easily be generalised. A family &/ = (4;/iel)
is called a covering of A4 if

1) (Vi): 4;+ 9,
(2) U Ai = A.
iel
In other words, each element of 4 belongs to at least one 4;. The order of
a covering & is the greatest integer m for which there exist m+1 sets of &7
having a non-empty intersection; a partition is a covering of order 0. If &7
is a covering of 4 and & is a family such that &7 > 4, it is clear that & is
also a covering of 4 and we say that & is a sub-covering of &. There are
analogues for coverings of the above theorems for partitions.

. § 6. Filter baseé ,
A family & = (B, [ ieI)is called a filter base™ (or just a base) if

1) (Vi): B0,
@ (VD)@K : B < BNB,

) The idea of a filfer base is due to H. Cartan (C.R. Acad. Se., 1937, vol. 205, p. 595).
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A family #' = (B, [jeJ) is called a sub-base of # if it is a base and if
- %'+ Z; in other words

Vi) @j): B; < B,
ExampLE. Let N be the set of integers. If
Sp={n/neN; n=zm}

denotes the section beginning at m, the family & = (S,, / m e N) is a filter
base in N. This is called the Fréchet base. The base &' = (S,,/peN) is
a base such that &' & and & + &'; thus we have &' ~ &,

Theorem 1. If # is a filter base and if € = (C; | je€J) is any family such
that € ~ B, then € is also a filter base.

Proof. Since # €, we have C; # @; moreover, for each pair of indices
jand j’ there exist indices i and i’ such that

B, = C;; By = Cy.
In 4, there exists a set B such that
B < 'Bi n .Bil [ens C] n le.

Since ¥ + 4, there exists a set.C belonging to % and contained in B. There-
fore C = C; N C;. and the theorem is proved.

Theorem 2. If & = (4;/iel) and B = (B;|jeJ) are two filter bases,
the family & U B = (4;U B; | (i,j) € IxJ) is a filter base.

Proof. Clearly 4;U B; # @. Let 4;U B; and 4, U B}, be two sets in
& U %. There exist sets 4 and B in &/ and & respectively such that

Adc 4,04,
B < B;NB,,

and we therefore have

AUB € (4N 4) U (BN B) =

Theorem 3. If &/ and & are two bases such that 4; N B ., 5 D for each i in
I and each j in J, the family &/ N B = (4; N\ B; [ (i, )) ¢ IxJ) is a base.

Proof. Let 4;N B; and A4, N B; be two sets in &7 [ #; then there exist
sets 4 and B in & and & respectively such that

ACAinA,-:, .BCBJnBj'.
We therefore have

ANB < (4;NA4)N(B;NB;) = (4;NB)N (4N By).
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COROLLARY. If# = (B;/iel) is a base such that BN A # @ fof each
i, the family € = (B; N 4 | i € I) is a finer filter base than &.
This follows at once, for if we put &/ = {4}, then we have

%= N2A.

Theorem 4. If & = (4;/iel) and B = (B; | jJ) are filter bases in the
sets A and B, the family <Z H,@' (4;x B; [ (i,j) € IxJ) is a filter base in
the set A x B.

Proof. Clearly A;x B; # @. Given two sets 4;x B; and 4; X B there
exist sets 4 and B in & and & respectively such that

A_ < Ai nAin,
B < B,NB;.

Hence, by Theorem 2 of § 4,
AxB < (4;N4,)x(B; N By) = (4;x B) N (4 % By).

Letof = (4;/ieI) be any family of sets. The gnll&f is defined to be the
collection of sets which meet all the 4,. The grill # of a filter base & possesses
certain interesting properties; in partlcular it is clear that each set in #
belongs to &.

Theorem 5. If % is a filter base, the following properties are equivalent:

(1) for any set A, & + A or# + (—A4),
Q) B ~ %,
(3) for each base B’ such that B' ‘B, we have B' ~ %.

If a filter base satisfies one of these properties, we say that it is an ultra-
filter base. .

Proof of Theorem 5. We first show that (1) implies (2). Since & < %, we
also have & — . If & is not partially contained in &, there exists a set H
in & which does not contain any B; and so, by (1), # + (—H). Therefore
there exists a set B in % which does not meet H, which contradicts H e .

We next show that (2) implies (3). If a filter base &' = (B;/jeJ) is
such that #' -~ 4, then each B; meets each Bj;, so that &' < #. Since
% — %, we have

(Vj)@i): B;< B,

We therefore have & #',whence B ~F'.
Finally we show that (3) implies (1). If # is not partially contained in 4,
we have '

(Vi) : B,N(—A) # O.
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Then € = (B, N (—A4) /iel)is a filter base, by the corollary to Theorem 3.
Since ¥ %, we have € ~ % and so # +— %, whence

V1) @J) : By = BN (—4).

B (—d).

ExampLE, Let X be a set and let x, be one of its elements; the collective
family of all the subsets of X which contain x, is an ultra-filter base, for
X0 € A = B+ A,
Xg¢d = Bk (—A).
Theorem 6. If # is a filter base, there exists an ultra-filter base B, such
that B, & 4.

This result will be proved later, as an application of the theory of ordering
relations (Chapter III, § 6).

Therefore

§ 7. Closure operations in a set

If with each subset 4 of a set X we associate a subset 4 of X such that
(1) Ao 4,
(2 4>B = A>B,
4 D=0,

then we call the correspondence 4 — A4 a closure operation.*?
In a similar manner, a correspondence 4 — A4 is called an interior opera-
tion if
WD 4dc4,
QA>B = A> B
@ D=4
@4 X=X 4
The sets F such that F = F are said to be closed and the sets G such that

G = G are said to be open, with respect to the appropriate operations in each
case. . :

ExampLE." If X denotes the real line R and 4 the smallest segment[a, 5]
which contains all the points of the set 4, then the correspondence 4 — 4
is a closure operation.

Theorem 1. A one-one correspondence can be established between closure
operations and interior operations by means of the formulae:

A=-(D; A= -(-4)

) The idea of closure is due to E. H. Moore (Introduction to a form of general analysis,
New Haven, 1910, p. 53). )
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Proof. The correspondence 4 = A = —(—A4) is clearly an interior
operation, for

M) Ad=~(-d)c—(-4)=4

@ AcB = —A:—B=>(A):( B)=>A’,C:B
€) f{——( 4) =

@ X—-—Q—X.

In a similar manner, we can prove that the correspondence 4 — 4 = — (—;1)
is a closure operation. It is easily shown that the correspondence thus set up
between the two kinds of operations is one-one. ‘

REMARK. The complement of an open set is a closed set (and vice versa),

for ~F = —F = (— F), in what follows, we shall study only properties of
closure operations, those of interior operations being deducible immediately
on appealing to duality.

Theorem 2. The intersection of a family & = (F; | i€ I) of closed sets is a
closed set. .

Proof. Writing F = [ F;, we have, by condition (2) for a closure opera-
iel '
tion,
- F [omd F i = F i
for each i. Therefore F = F; hence, by condition (1), F = F.

Theorem 3. The closure A of A is the intersection of all the closed sets
‘which contain A.

Proof. Let E be the intersection of all the closed sets which contain 4; by
the preceding theorem, £ is closed. Since A is a closed set which contains A,
we have Ec4. But we also have E = Eo4, by condition (2), whence

E=A.

* Theorem 4. If A — u[A] and A — v[A] are two closure operations and if .
~vu[A] = v[u[4]] is closed in the u-sense, the correspondence A — vu[A] is a
closure operation in which the set corresponding to A is the intersection of all

the sets closed in both the u-- and v-senses and containing A; moreover
vu[ 4] = wlA4].

Proof. A — vu[A]1is a closure operation, since

1) vu[A] o v[4] = 4,
@ A>B = u[d]>u[B] = wu[d] > vu[B],
(3) vuvu[A] = vou[A] = vu[A4].

If a set Fis closed in the u-sense and in the v-sense, we have

Fod = u[F] =F> u[Aj = o[F] = F > vu[d].
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Since vu[ 4] is closed in the u-sense and the v-sense, it is therefore the inter-
section of all the sets closed in both senses which contain 4.
For the last part, we have ‘ '

4 cwfd] = | [A] < vu[d] = w[d] < vu[A4].

ExAMPLE. We discuss certain closure operations in the space R, the
familiar space of elementary three-dimensional geometry. |

A set A is said to be starred or star-like if a € 4 and A € [0, 1] imply that
Aae A. A set A'is said to be haloed if a € A" and A€ [1, + o[ imply that
Aae A'. A set 4" is said to be a cone if it is simultaneously starred and
haloed. - :

Fic. 6

We define the starred closure of a set B to be
e[B] = {x/x=4b; be B, Ae[0,1]},
the haloed closure to be
a[B] = {x/x = Ab; be B, Ae[1, +oo[},
and the conical closure to be | |
"¢[B]={x/x=24b; beB; Ae[0, +oo[}.
The set ae[ B] is a cone of vertex 0 and so is starred; we have

ae[B] = ea[B] = c[B].
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§ 8.* Lattices of sets

We say that a family 7 is a lattice®® with respect to the operations U and
nif
AeT, Beﬂ“ = AUBeZ, ANBeT

We say that a lattice J = (4;/iel) is complete with respect to the
operation U if
JcI = U A;eT.
ieJ
In a similar manner we can define completeness of a lattice with respect to
the operation N. For sets in a lattice we have the following properties:

8?) y g 5=2 g “ } (commutativity),
2 AU@BUC) = (4UBUC o

@) AN(BNC) = (ANB)NC } (associativity),
R 7 R Q.
82) ‘j :".J]j : ‘j . } (idempotence).

More generally let = (Ai /i€l be a family of sets; then an operation
Ain J is a law in which there corresponds to each ordered pair of sets 4;
and 4; a third set of 7, which we write

Ak = AiAAj.

Given two operations V and. A in 7, we say that J is a lattice with respect.
to these two operations if we have the above four properties: commutativity, |
associativity, absorption and idempotence, with V and A in place of U and N.
. ‘An interesting example of a lattice is obtained from a closure operation;
we prove the following result. :

Theorem. Given a closure operation, the family & = (F;[iel) of closed
sets is a lattice with respect to the operations V and A defined by

Proof. Evidently we have F;V F;e %, F;\ F;e% ; we shall prove the
four properties of a lattice for one of these operatmns, namely V, the proof
for the other being similar.

(1) Commutativity: o
FVF;=F;,UF,=F;VF;,

1) The idea of a lattice is due to O. Ore and Garrett Birkhoff.
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(2) Associativity: we put
A=FNEVF)= FiU(FjUF,‘),
B=(F,VF)VF, = (FiUFj) UF,

and prove that 4 = B. A is a closed set which contains F; and F; U F;
therefore A:Fi U F; and so

4> (FUF)UF, =B
Ina simﬂair manner we can show that 4 < B, and so we have 4 = B.
©)] Absbrption: write
A = F,\(F;V F) = F, N (F;UF)).
Then A<F, and A> F,, whence 4 = F,.
(4) Idempotence: we have
: FVF,=F,UF,=F,=F,

Vanous kmds of lattices play an important role in analys1s A lattice 7
is said to be distributive if any three sets 4, B, C satisfy

ANBVC)=(AAB)VAACOC).
A lattice 7 is said to be modular if
AAN[BV(AANC)] = (AAB)V(AAC).

We say that a closure operation is distributive if the lattice of closed sets
is distributive and that it is modular if the lattice of closed sets is modular.

We remark that if a lattice is distributive, it is also modular, for, because
of the distributivity, we have

AAN[BV(AANC)Y] = (AAB)V[AAAAC)] = (AAB)V(4AC).

ExAMPLE. Let X be the three-dimensional space R3. We call the following
sets linear (affine) varieties: the empty set @, each set {a} consisting of a
single point a, each line D, each plane P and the whole space R®.

It is clear that the intersection of a set of linear varieties is a linear variety.
If 4 is a set and we denote by A4 the intersection of all the linear varieties
which contain A4, then the correspondence 4 — 4 is clearly a closure opera-
tion, for

() 4> 4,
2 A>B = Ao B,
G @=2
@ 2=0.

9|
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This is not a distributive closure operation, as figure 7 shows: P is a plane,
D is a straight line, 4 = {a} is a point not on the plane or the line;
P A(AV D) is a straight line, although

PANAHV(PAD)=BVPADy=PAD

is a point.

A= {a}

On the other hand, we shall show that this closure operation is modular.
Suppose that

FiG. 7

ac AN[BV(AAQO)].
Then, in particular, ae BV (4 A C), which shows that either
(1) aeB, or
2) aeANC,or ‘
(3) there exist points be B and ce 4 N C such that o lies on the line
joining b and ¢. We now prove that
| ac(ANB)V(AANC)=(ANBUUNC).

In case (1), this result holds because a € 4 N B. In case (2) it holds because

ae ANC. In case (3), we can argue as follows: since 4 is closed and con-- .

tains @ and ¢, then it contains the whole line bc; therefore be A N B and
c€ A NC, which imply that acs (AN B U A NC).

Conversely, suppose that ae(ANB)UANC). Then it is clear that
a & A (since 4 is closed); also

2c@NBU@ANC) c BUANC)

and hence
acAN[BUMANC)| =AA[BV(AAC)].
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Thus we have proved that
AAN[BV(ANC)] = (A/\B)V(A/\C)
as required.

ReMARK 1. We can also express the fact that a lattice is dlstnbutwe by
means of the relation

AV(BAC)=(AVB)A4NC).
- For if the lattice is distributive, we have ;
(AVBYA(AVC) =[(AVB)AA]V[(4V B)AC].

Because of the absorption property, the right-hand side is equal to
AV [(4V B) A C] and therefore to 4 V [(4 A C)V (B A C)], since the lattice
is  distributive. By the associative property, this is the same as
[AV((AAC]V(BAC) which, again using absorption is equal to
AV BACQC).

Conversely, if the condition is satisfied, then we .can prove that the lattice
is distributive by interchanging V and A in the above argument.

REMARK 2. We can also express the fact thata lattlce is modular by means
of the relation

AV [B/\(AVC)] = (AVB)/\(AVC).
In fact we have, using the commutativity and absorption properties,

(AVBYA(AVC)=(4V C)A[BV ((4V C) A 4)],
which is equal to  _-

[AVCOYABIV[AVCO)AA] = [(4V C)/\B]VA',‘
since the lattice is modular. To prove the converse, it is sufficient to inter-
change V and A in the above argument.

§ 9. Principal limits of a family of sets

In this section we introduce the idea of principal limits of a family of sets.
We first consider a sequence of sets:

(4y) = (Ag, Ags ..

We define the superior (principal) limit of the sequence (4,) to be the set of -
points which belong to an infinity of the A4;; we write this Lim (4,). We

define the inferior (principal) limit of the sequence (4,) to be the set of points

which belong to all the A; from a certain value of the suffix onwards; we

write this Lim (4,). Clearly
n=co

Lim (4,) = Lim (4,).
n=w n=co
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Iann 4, = le (4,) we say that this set is the (principal) limit of the
sequence 4,) and we denote it by L1m 4,

Not every sequence of sets admlts a limit; on the other hand, in the two
following cases the sequences do admit limits (which can be @):

1) 4, 24,2 4;> ... (decreasing sequence),
2 A cd,cd; ... (increasing sequence).

The above ideas can be expressed differently in terms of the sections
S, = (n/neN, n=p); we have

aeLnn(A,,) <> (V‘p) (3spn) : ae d,
aele(A,,) < (Ep)(Vspn) ac A,

More generally, let (4;) = (4;/iel) be a family of sets and let & =
(S, / p € P) be a filter base on I; then the set of elements a which satisfy
(VQBS) (asi) . aEAi

is called the superior limit of (4;) with respect to . The set of elements a
which satisfy

(3935) (Vsi) taed,;

is'called the inferior limit of (4;) with respect to &. These sets are denoted
by Limg (4;) and Limg (4)).
Theorem. The superior and inferior limits of a family satisfy

le.% (Ai) - st(ileJSAt)’

Lima (4) = sz(iDsAi).

Proof. If a e Limg (4,), then, for each set S of 4, we have
ae U 4,

ieS
and conversely. If a € Limg (4,), then, for some set S of &, we have
aef Ai

ieS
and conversely.

In the case in which (4,) is a sequence of sets and the base & is the family
of sections S, the above formulae become

0 .
Tim(4,) = N(4,U4,,,U...),
n=o p=1

Lim (4,) = U(4,N 4, N...).
n=w p=1 .

T8 C



CHAPTER IT

MAPPINGS OF ONE SET INTO ANOTHER

§ 1. Single-valued, semi-single-valued and multi-valued mappings

Let X and Y be two sets. If with each element x of X we associate a subset
T'(x) of ¥, we say that the correspondence x — I'(x) is a mapping of X into
Y; the set I'(x) is called the image of x under the mapping I. Where no
confusion is possible we shall denote this set indifferently by I'x or I'(x).
The set X* = {x/x e X, I'x # @} is called the domain (or set of definition)
of " and Y* = U I'x is called the range (or sg’g{yg}yes) of I'; we also say

xeX

that I is defined on X* and that it is 2 mapping of X onto Y*.

If the mapping I" of X into Y is such that the set I'x always consists of a
single element, we say that I is a single-valued function or a single-valued
mapping of X into Y. Single-valued mappings will usually be denoted by
small Greek letters; general or multi-valued mappings will be denoted by
capital Greek letters.

ExaMpLE. If x — ox is a single-valued mapping of a set X into the line
R = ]—o0, + o[, we say that ¢ is a numerical funchon defined on X; if o is
a single-valued mapping of X into the complete line R = [—c0, + 0], we
say that it is a generalised numerical function; if ¢ is a single-valued mapping
of X into the set C of complex numbers, we say that it is a complex function.
In these cases, we usually denote the image of x by ¢(x) or f(x).

A mapping is called semi-single-valued if

TxNTx'#8 = I'x=TIx".
Clearly a single-valued mapping is also semi-single-valued.

ExampLE. Let X be the three-dimensional space R® and let O be a fixed
point in X; given x € X, let I'x be the set of points other than O on the straight
line joining x fo O. This determines a semi-single-valued mapping I', whose
domain is R*—{0}.

A mapping is called injective if

x#x = IxNIx' = 0.
An injective mapping is evidently semi-single-valued.
If T is 2 mapping of X into Y and A4 is a non-empty subset of X, we write
Td=UTx.

xed
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If A = @, we write I'© = @. The set I'4 is called the image of 4 under the
mapping I'; if we compare x to a source of light, making a shadow I'x on a
screen, then I'4 is the shadow produced by a set 4 of sources of light.

Ifel = (A;/iel)is a family of sets, we write

= T4;/iel)
and call Ie/ the image of & under the mapping I".
Theorem 1. 4 < B implies that T4 < T'B.

Proof. If yeT'4, then y e I'x for some x& 4. This implies that yeI'x
for some x € B, whence y e I'B.

) COROLLARY. &7 > B implies that T >T1%; o = RB implies that
I/ +T4A. _
These properties can be deduced at once as follows:

(V) @):4,cB; = (Vj)@i):T4 cTB,
Theorem 2. We have '
(UA-) = UI‘Ai.

iel iel

Proof. If ye T (U 4,), then y € I'x for some x e U 4;, whence, for at least
one index i;, we have y € I'4,;,. Therefore y e UT'4;. By reversing the argu-
ment, we can deduce the desired formula.

Theorem 3. We have
I‘( ﬂA,) o N T4,

iel el

Proof. If yeT'(N 4,), then y e 'x for some x such that x € 4; for all
i, whence

yeﬂI’Ai

tel
and so the result is proved.

Theorem 4. If A <« X and if T is a mapping of X with range Y, then
—T4 =« T (—4).
If, further, T is injective, then
—Td =T (-4).

Proof. If y e —T'4, then clearly y e " (— 4), since T is a mapping whose
range is Y. If I is injective, then

yel' (—4) = (@-4x):yelx = y¢ld = ye-T4.
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Theorem 5. If & = (4;/iel) is a partition of X and T is an injective
mapping with domain X and range Y, the family T &/ is a partition of Y.

Y Proof. If & is a covering of X and T’

' is a mapping with range Y, then I/ is
a covering of Y. T (A)NT(4;) # 9D
there exist elements ze 4; and z' € 4;
such that I'(z) NT'(z") # ©. But I' is
injective and so z = z’; hence 4; = 4;
and so I'(4,)) = I'(4)).

X Theorem 6. If # = (B;/iel) is a

1. Mapping defined on X' filter base in X and T is a mapping whose

domain is X, the family T'# is a filter

base in Y.

Tx

Proof. If T is a mapping whose
domain is X, then, for all i, I'B; # @.
Furthermore, for each (4, j) in I x I, there
exists a set B, contained in B; N B,
Therefore, by Theorem 3,

Hence I'Z is a filter base.

ReMarg. If I is a mapping of X into
Y we call the subset

Y Tx={(xy)/xeX,ye¥,yelx}
xeX

of X x Y the graphical representation of
T". If ' is a numerical function, this
.reduces to the well-known concept
X X {llustrated in figure 8, part 3.

1
-xg

i
i
5
3. Function f(x) =
Fic. 8
§2. Operations on mappings
If T, and I, are two mappings of X into ¥, their union is the mapping
(r'; UT,) of X into Y defined by
T, U x=TxUTx
The intersection of I"; and I", is the mapping (I'y N I';) of X'into Y defined by
;N x=Tx N

The Cartesian product of I', and T, is the mapping (I'y xI';) of X into
Y x Y defined by '
Ty xTy)x =T xxIx.
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More generally, given any operation V on sets, we write
(Fi V Fz) X = le V sz.

If I'y is a mapping of X into Y and I'; is a mapping of Y into Z, the
composition product of I', by I'y is the mapping (I'; . T';) of X into Z de-
fined by

(T TYx=T,Ix).
We have

® (FIUFZ)A=F1AUFZA;
2 T;NIY)A « T ANT,4,

for
| (UTi) N (UT) = UTix Loy = @ NT4 U U (Tyx N T);
(3) (T xTpd < T,AxTyd,
for
U lexUFzy =) U (lexl“zy) = UI“lxxI‘zx,
T @ (T4 = TE:A.

A mapping A is said to be constant if there exists a subset C of Y such that
Ax = Cfor all x. A constant mapping satisfies the following property:
ANDA4 = AdNTA.

~ Another important mapping is the identity mapping, which is the single-
valued mapping I of X onto X defined by

Ix = {x}.
"If Ty, T,, I'; are mappings of X into X, we have.

Fs Ty Tx=(T3-T3) Tyx
(associativity of composmon product),

: Thus, if I' is a mapping of X into X, we can write

I'’x = I'(Tx),
I'’x = I'T?%x) = ['*(Tx), etc.

The transitive closure of I" is a mapping I of X into X defined by
: P = {xUrxUIxUT3xU..,
: 'Thg correspondence 4 — T'4 is a closure operation, for

W Tas4,
2 4>B = TA>1IB,
(3) T4 ="T4
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Theorem 1. If I'y and T, are twé semi—single-valded mappings, Tl nr,
and Ty x Ty are semi-single-valued mappings.

Proof. We have

, I'ixNTix'#+ 9
(T NTYxN (T NTx # @ = {rzx o g}

- {I‘lx =Tx

Tox=T x’}»”“ FyxOTx =Tx' NTx
24 =22

and the proof for the Cartesian product I'y x I'; is similar.

Theorem 2. If one of the mappings I'y and Ty is injective, the mappings
T'yNT, and Ty xT, are injective. .

Proof. If a and b are two distinct points, then .
TwanNTaNTdNTLD) = TN NTLa n I‘zb)
and the proof for the Cartesian product I'y x I', is similar.

§ 3. Upper and lower inverses of a mapping

If T is a mapping of X into Y, its lower inverse is the mapping I'™ of Y into
X defined by

== {x/xeXyeTx}.

This is a mapping whose domain is ¥* and whose range is X*; for any non-
empty subset B of ¥ we have

= {x/xeX I'xN B +# @}

and we also write I'™ @ = @. Itis clear that the inverse of I'" is (I'™) ™ =
and that y e Tx is equivalent to x e I'"y.

For a single-valued mapping o, the lower inverse is denoted by ¢~ * and is
simply called the inverse, because no confusion is possible.

Theorem 1. If T is single-valued, T'™ is injective; if T is injective I'™ is
single-valued; if T is semi-single-valued, I"~ is semi-single-valued.

Proof. IfI'is singie-valued, then
y#y = I'yNI7y = 0.

If I is injective, the set I'"y = {x / y € I'x} has only one element and I"" is
therefore single-valued. If I' is semi-single-valued, we have

I'yNIy' #@ = (@@Ax):yelxyelx = I''y=I"y

Apart from the mapping I'", it is sometimes useful to consider another
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correspondence of a similar kind, which we call the upper inverse of T;in
this mapping to each subset B of Y there corresponds the set’

T*B={x/xeX* I'x < B}.

In parﬁcular, if B= @, wehaveI'" @ = @. We observe that for all subsets
B we have T'*B < IT'"B and that, for a single-valued mapping o, we have
6tB=0¢"B=o0"1B

ExaMpLe. Let X be the set of possible positions in the game of chess; a
position consists of the coordinates of the different pieces on the chess-board
and the player whose move is next. The set X is then the union of three
disjoint sets X, X,, Xo; X is the set of positions in which White can move,
X, is the set of positions in which Black can move and X|, is the set of
positions of checkmate or stalemate, when it is not possible for either to
move. ’

If xe X, (resp. X,) we shall denote by I'x the set of positions which
White (resp. Black) can reach immediately after position x; this determines
a mapping I of X— X, into X. Then x denotes the set of positions that it
will be possible to reach eventually, starting with the position x; I'"x is the
set of possible posmons which could have occurred immediately before the
position x and, if 4 is a subset of X, I'* 4 is the set of positions which can
only give a position belonging to 4 in the following move.

If K, denotes the set of positions in which Black is checkmated, clearly
K, = X,. It is easily verified that the set of positions in which White can
‘mate in two moves’ is " T I K,.

In all the following theorems, I’ denotes a mapping whose domain is X
and whose range is Y.

" Theorem2.. If B, and B, are subsets of Y, then we.have

(1) —T*B, = T™(—By); —T"B, =T (~B,),
() T*B,UT*B, = T* (B, U B,),
(3) I‘-—Bi U F—BZ = F— (‘Bl U Bz).

The proofs of these results are immediate.
We say that a family of sets &7 is complemented if
dest = X—ded.

Theorem 3. The subsets P of Y such that P = F P (called ‘pure’ sub-
sets) form a complemented lattice 2.

Proof. If Pe?, then Y—Pe2, _for
[*(=P)= —T"P = —T*P = T~ (=P).
Further, if P, and P, belong to 2, ;?vg have
I~ (P,UP)=T"P,UI"P,=T*"P,UT*P, c T'* (P, UP,.
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Since the opposite inclusion holds automatically, we have P, U P, e2.
Also P, NP, e, for .

—P1 NPy =(~P)U(=P)e.

Theorem 4. The subsets S of X such that T~ T'S = S (called ‘stable’ sub-
sets) form a complemented lattice &. :

Progf. Clearly & is complemented; moreover, if S; and S, belong to &,
we have

rr@,uUs,)=rrs,ur" I‘S2 =S, Us,
and so S; U S2 €& also S; N S, € &, since
=(S1NSy) = (=S)U (-S)e&.

Theorem 5. The correspondence A — T'*T' A is a closure operation (called
the ‘Galois closure’).

Proof. It can easily be verified that

(1) T*T4 > 4,
2 A>B = F+FADF+PB
BTIT*ratra = I‘f’(IT*)(I‘A):I“*(FA).

ReMARK. In general, I'"T is not a closure operation, as is shown by 2
case such as that illustrated in figure 9.

F1c. 9
In fact, if we take 4 = {x,}, we have

r—rA = {xl, xz, x3},
I"'TI T4 = {xla X25 X35 X4}-

ExaMpLE. We now re-examine the concept of linear closure (defined in
§ 8, Chapter I). Let X be the set R® and ¥ the set of planes in R3, Let T
be the mapping of X into ¥ in which the point x corresponds to the set of
planes not containing x. If x;, x,, x5 are three non-collinear points, we
denote the plane containing them by P (x;, x,, x3) and the straight line con-
taining the points x; and x, by D (xy, x;). Then x &P (x;, x,, x3) is equi-
valent to

I'x =« Tx; UTx, UTx; = T {xy, x,, x3}.
Thus
C o THT {xy, xg, x5} = P (x4, X3, X3)°
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and similarly
T* T {xy, X2} = D (x1, x3).

Here the Galois closure coincides with the linear closure.

Let & be a complemented family of sets and let % be a filter base.. Then
we say that & is an ultra-filter base with respect to o if, for each set 4 of &,
we have either Z# 4 or B+~ X—4 (f & = P(X), the collective family
of subsets of X, we recover the definition of ultra-filter base, given in Chap-
ter I). The following result can be proved immediately:

Let B = (B; | i € I) be an ultra-filter base in X and let T" be a mapping of X
into Y; then T is an ultra-filter base with respect to the lattice Py of pure
subsets of Y.

In particular, if ¢ is a single-valued mapping of X into ¥ and & is an
ultra-filter base in X, then 64 is an ultra-filter basein Y (foro~ = o* = ¢~ 1:
every subset of Y is pure).

§ 4. Graphs

A pair consisting of a set X and a2 mapping I" of X into itself is called a graph
(or, more precisely, an oriented graph). If two elements x; and x, of X are
such that x, € T'x,, we say that x, is linked to x, by the relationT’, which is
represented by joining the two points by an oriented line from x; to x,.

If there exists an element x of X such that x e T'T'x, we say that the graph
(X, T) is cyclic; if ' is injective, we say that the graph (X, T) is a tree. A

path is a sequence of points Xy, X;, X3, ... such that x;eIx;, , for
i=2,3,...; a chain is a sequence of poinis x;, X, X3,.... such that
Cyclic graph Tree
Fic. 10

x,€Tx;_, U x;,_, fori = 2,3,... The study of combinatorial properties = |
of chains and paths constitutes the theory of graphs. L



_CHAPTER 1II

ORDERED SETS

§ 1. Order and equivalence

Let 4 be any set; a binary relation in A4 is a proposition (L) such that, given
any pair (a, b), where a, b € 4, we can say whether the proposition (L) is true
or false. For example, if 4 is a set of individuals, ‘a is a brother of b’ and
‘a is an ancestor of b’ are binary relations in 4. All the pairs (g, &) which
satisfy (L) form a subset L of 4 x 4 and those which do not satisfy (L) form
the set —L. If (a, b) € L, we say that a is related to b by (L) and we often
indicate this by writing a = b This relation is called a pre-ordering if

Daza ﬁ (reflexivity)

@azb bzc = aze (transitivity).

Given a pre-ordering =, we write b < aif ¢ = b. If a = b and it is not
true that b = a, we write a > b. If, however, a = b and b = a, we write
a = b. The relation < is also a pre-ordering, for

(1) a é as '

@ cLb,bta = cZa.

The relation = is an equivalence relation: that is, it satisfies

MDa=a : (reflexivity),

QQa=bb=c = a=c (transitivity),
Bla=b = b=a (symmetry).

A relation = which satisfies

Daza,

@azbbzc = azg
Pazb bza = a=b,

is called a partial ordering or just an ordering (in other words an ordering is a
pre-ordering which admits equality as the corresponding equivalence).

ExampLes. In the set N the following determine orderings: ‘p divides ¢’,
‘p is a multiple of ¢’, ‘p is greater than or equal to ¢’, ‘p is less than or equal
to g’.

In a set 4 of individuals, ‘e possesses the same parents as &’ is an equi-
valence relation, ‘a is b or an ancestor of 4’ is an ordering; ‘a is stronger than
b’ is a strict ordering (a > b), but ‘a wins regularly in playing against & is
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not an ordering, because the property of transmwty is not necessanly

satisfied.
In the family of subsets of any set X, ‘4 o B’ is an ordering.

Given an equivalence relation = in X, a set of the form
S,={x/xeX, x=a}
is called an equivalence class.
Theorem. The collective family of equivalence classes is a partition of X.

Proof. Let S, §', etc. be the equivalence classes with respect to an equi-
valence relation = in a set X. Then

(1) S+ @,since S = §,2aq,
@ SES=5NS =0, forif S NS, # D, then there exists an element
c Of" this intersection and we have v

XES, < x=a % X=ECc < x=b « xe8,
whence S, = S,

(3) Clearly X = U §,.
aeX
ReEMARK. This theorem shows that every equivalence relation in X deter-
mines a partition of X. Conversely, every partition & = (4; /i € I) defines
an equivalence relation; for if we write @ = b whenever « and b belong to
the same set 4,, we have

MWDa=a
@QDa=bb=c = a=ec,
Ba=b = b=a

ExaMPLE 1. ‘In the set N, write p = ¢(3) if p = g+ 3k, where k € N. This
determines an equivalence relation; in arithmetic, the corresponding equi-
valence classes are called integers modulo 3.

ExampLE 2. In elementary geometry, we call a pair (x,») in R®*xR? a

localised vector, which we denote by xy We can define an equivalence

relation = by
— —

xy=xy < x=y=x"-y.
With respect to =, an equivalence class is called a free vector..
Another equivalence =~ is defined by

— — - — ., .
xy=x'y <« xy=x'y and x, y, x, ¥’ collinear.

With respect to = ,an equivalence class is called a line vector.
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§ 2. Countable infinite and continuum infinite sets

A set is said to be finite if it consists of a finite number of elements: that is,
it has no elements, or just one element, or two elements, or three elements,
etc. A set which does not consist of a finite number of elements is said to
be infinite. Let 4 and B be two sets, finite or infinite. If there exists a one-one
correspondence between them, we say that 4 and B have the same number
of elements or have the same power and write 4 ~ B. Clearly ~ is’an
equivalence relation, for

(1) 4~ 4,
Q) A~B B~C = A~C,
3 A~B = B~A

If a set A has the same power as the set N = {0, 1,2, ...} of positive
integers, we say that it is denumerable; if 4 has the same power as the set
[0, 1] of real numbers between 0 and 1 we say that it is continuum infinite or
has the power of the continuum. A set which is either finite or denumerable
is said to be countable.(")

The set [0, 1] is not denumerable. For suppose that there is a one-one
correspondence between N and [0, 1], such as

1 - a, = 0648729 ...
2 a, = 0844371 . ..
30, =0119762...

..................

To avoid one number a; of [0, 1] being represented by two distinct decimal.
developments (e.g. 0-499999 . . . and 0-5000000 . . .) we do not include those
which consist only of nines from a certain point onwards. If we form a
number a (such as 0-513...) in which the first digit is different from the
first digit of a,, the second digit is different from the second digit of a,, the
third digit is different from the third digit of a; and so on (avoiding the use
of 9) then a does not appear in the table representing the correspondence,
" because it differs from each g; in at least one place. Thus the correspondence
cannot after all be one-one, which gives a contradiction.

ExampLE 1. Consider the set of posiﬁve rational numbers
R' = {x/x =§, peN, geN, g # 0}

and form the following table

) (Translator’s note.) The terms ‘denumerable’ and ‘countable’ are not always used
in the same sense as here. The French edition uses only the word ‘dénombrable’, but we
have felt it advantageous to use the two words so as to make it quite clear when the finite
case is included. '
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1 2 3 4 5
1 2 32 & 5
A T

1

2

3

4

5

FiG. 11

If we number the elements of the different diagonals successively in the
senses indicated by the arrows in the table, omitting those that have already
been numbered (e.g. 2 = 1), we can establish a one-one correspondence
between N and R;':

0 1 2 3 4 5 6
bolorby !
0 1 2 3 3 3 4

Therefore the set R;" is denumerable.
In a similar manner, we can prove that if two sets 4 and B are denumerable,
then A x B is also denumerable. .

ExampLE.2. The positive augmented half-line [0, + o] has the power. of
the continuum, for the correspondence: 4 — (%—-1—) is a one-one corres-:

pondence between [0, 1] and [0, +0]."

The terminology introduced above is extended to families of sets; we say
that a family o = (4;/ieI) is finite'if the set I is finite and otherwise we
say that &/ is infinite. We also say that &/ is denumerable (resp. countable) if
the set I is denumerable (resp. countable) and is continuum infinite if I has the
power of the continuum.

In addition to the above, we say that & is locally finite at a point a e 4
if the set I, = {i /i€ I, ae 4;} is finite: and that & is locally finite if it is
locally finite at each point. In a similar manner, we can define families
which are locally denumerable, or locally countable, or locally continuum
infinite. :

EXAMPLE 3. The union of a denumerable family of denumerable sets is
denumerable; this can be verified exactly as in Example 1.
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ExaMpLE 4. Let X be the set R and let & = (4, /i) be a locally ‘de-
numerable family of proper intervals (that is, intervals which each have more
than one point). We shall prove that & is denumerable. .

We begin by enumerating the positive and negative rational numbers
A, Az, A3 . . . as in Example 1. We then set up a correspondence as follows:
with the number 1, we associate the denumerable set I, of indices i such
that A, € 4;; with A, we associate the set I, of indices 7 such that Ay e A;and

.so on. Since each 4; includes a rational number, we cover all indices in this
way and so I = U I,, which is the union of a denumerable family and so is

n=1

denumerable (cf. Example 3).

§ 3.* Transfinite cardinal numbers

As we have already seen, the relation ~ , which expresses the fact that two
sets have the same power, is an equivalence relation. The idea of cardinal
number is introduced as a means of labelling the equivalence classes corres-
ponding to the relation ~. For example, a set 4 ‘has cardinal number 3’ if
there is a one-one correspondence between A and the set consisting of the
thumb, the first finger and the second finger; in fact ‘3’ is the name which the
first arithmeticians gave to the equivalence class of ~ which contains the
set: thumb, first finger, second finger.

Clearly we can do something similar for any finite set and in fact we extend
the idea to infinite sets as well. We define the cardinal number o(4) of a set
4 to be the equivalence class of ~ which contains the set 4. The cardinal
number of a denumerable set is denoted by R, (aleph nought); that of a
continuum infinite set™* is denoted by X,.

If two sets 4 and B are such that there is a one-one correspondence be-
tween A4 and a subset of B, we write 0o(4) < o(B). It can be proved that,
given any two sets 4 and B, then either o(4) < o(B) or o(B) £ o(d). For
cardinal numbers, < is a pre-ordering, for

(1) o(4) = o(4)
@) o(4) = o(B), o(B) < o(C) = o(4) < o(C).

The following theorem shows that < is, in fact, an ordering relation.
Bernstein’s theorem. If o(4) < o(B) and o(B) < o(4), then o(4) = o(B).

Proof. Let o be a one-one correspondence between 4 and a subset of B
and let 7 be a one-one correspondence between B and a subset of 4; write
A" = A—1B.

() (Translator’s note.) Many authors prefer to denote the cardinal number of a con-
tinuum infinite set by ¢ whenever the continuum hypothesis (see page 35) is not assumed.
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Fic. 12

Let & = (4;/iel) denote the collective family of subsets of A which
satisfy .
1) 4;o 4,
(2) T(G'Ai) < Ai'
This family & is non-empty, for 4 e&/. If we put G = N 4;, we have

iel
(1) Go 4, ‘
@) 160G =10(NA4)=N1d;, = NA4;=G.

Then Gesf and also G = 4’ U weG e, for
D G > 4,
2) 106G = 106G = 4A'U1G =G,
Then we have G' o G since G’ e, and G' < G since
G =AUwGc AUG=G.

Thus
A UG = G.

Consider the mapping.« of 4 into B defined by

ax = ox if xe€G,
ax.=t txif xed-G.

In order to show that this is a one-one correspondence between 4 and B,
it is sufficient to show that if we write O'G H, then we have ©®(B—H )
A~ G; and this is immediate, since

1 (B—H)=1tB—-(4'U wG—) =1tB—-G = A—-G.

ExampLE 1. The unit square [0, 1]x[0, 1] = [0, 1]* has the power of
the continuum. For if X is the cardinal number of [0, 1]%, we have 8, < X,
since :
[0,1] ~ {(*,»)/0£x<1,y=0} = [0,1]%

On the other hand, to each (x,y) [0, 1]*> there corresponds an element
A€ [0, 1] defined as follows:

X = O'X1x2x3x4x5x6 .o

= A= 0% y1%3V2X3Y3X4VaX5V5 « o
y = 0')’13’23’3}’4)’5}’5- . } 1Y1%2Y2X3Y3X4)VaX5) 5
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for example,

x = 0-4396055 . . . .
y = 0-8886431 .

0-4 3 8§ g In writing x and y we avoid, as before, decimal
developments which consist only of nines from a

VVW certain point onwards; otherwise we get repetitions.
0-8 8 8 6 Let E be the set of numbers A such that the decimal

Fig. 13 development of A consists of nines in every second
position (but not every position) from a certain pomt onwards. Then

[0, 17 ~ [0, 1]—E < [0, 1].

Therefore } < X, and so, by Bernstein’s theorem, ¥ = X,.
~ This result can be generalised as follows: The product Ax B of two sets
having the power of the continuum also has the power of the continuum.

} - A = 0-48389866045351 . ..

CoROLLARY 1. If the union AU B is denumerable or continuum infinite,
then o(A U B) is the greater of the cardinal numbers 0(4) and o(B).

Proof. Without loss of generality, we can.suppose that o(4) = o(B).
Since 4 = A U B, we have o(4) £ o(4 U B). Hence, by Bernstein’s Theorem,
it is sufficient to prove that the opposite inequality holds.

If o(4) = N,, we have

A ~{0,2,4,6,...)
B~Ec{l,3,5,..}

Therefore o(4 U B) £ o(N) = X, = o(4).
If o(4) = ¥,, we have -

4~ [Oa 1/2]:
B ~ E < [2/3,1].

Therefore o(4 U B) £ o([0, 1]) = Nl’ = o(4).

COROLLARY 2. If A is a denumerable or continuum infinite set and if Bisa
set such that o(B) < o(4), then o(A - B) = o(4).

Proof. By Corollary 1, (4—B)U B.= 4 U B has cardinal number o(4)
and so o(4) is the greater of the cardinal numbers o(4— B) and o(B). Since -
o(4) # o(B), we have o(4d—B) = o(A). ’

ExampLE 2, We shall show that the set Z(N) of subsets of N has cardinal
number N;. '

Let O be a subset of N and let ¢, be the characteristic function (cf. Chap-
ter I, § 2) of Q. Writing

RIORIORC N
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- we set up a correspondence between Z(N) and [0, 1]. This correspoﬁdence

is not one-one because, for example,

1—}+£+0+ 9+1+1+

2T 2T T TN

but the numbers in [0, 1] which, like 4, have two dyadic developments, form
a denumerable set. Let & be the collection of sets Q such that the $y(n) are
all equal to 1 from a certain point onwards. Then we have ’

.@(N) -7 ~ [0,1],
o ~ N
and: so, by Corollary 2,

o(PMN)) = o(PMN)—) = Nl
Cantor’s theorem. For \fmy set A, the family P(A4) of subsets of A4 satisfies
o(P(4)) > o(4). .

Proof. Since ({a} | aeA) = P(4), we have o(P(4)) = o(4).- Equality is
impossible, for if o(P(4)) were equal to o(4) then there would be a one-one
correspondence in which a subset 4, « 4 would correspond to a& 4; but
the subset B defined by

B={alacd, a¢d}

would then differ from each set 4, by at least the element ¢ and so could not
be included in the correspondence.

If A is any infinite set, then it has a denumerable subset; for if a, is any
element of A4, then 4 has an element a, different from a,, and. an. element .
different from both «; and a,, and so. on. Therefore N, is the smallest
transfinite cardinal number.

We have seen that Z/(N) has cardinal number X, ; we denote the cardinal
number of Z([0, 1]) by R,. More generally, if 4 is a set of cardinal number
., we denote the cardinal number of (4) by X,.;. From Cantor’s Theorem
we get

Ny < X; <N, <

The following is called the generalised Izypotheszs of the continuum. there
is no cardinal number X such that

Nk < N < N,‘.H.

This proposition has never been prox;ed, although it is generally accepted.
All the sets which we shall consider have cardinal number X, or X; or N,.
TSD
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"REMARK. It is easy to extend the usual operations of elementary arithmetic
to transfinite cardinal numbers. If 4 and A’ are sets such that AN 4" = @
and if ¥ = o(4) and R’ = o(4’), then the cardinal number o(4 U 4') is
called the sum X+X’ of X and R’'. The cardinal number o(4 x 4') is called
the product X x X’. We have

Ro+Ry =28, = K,
Nox®p = NI=N,etc....

. §4. Ordered sets

A pair (X, =) consisting of a set X and an ordering relation = deﬁned in
X is called an ordered set. If a € X, the set :

S@) ={x/xeX, xza}

is called the section from a. The correspondence a — S(a) is a mapping of
X into X, which we shall denote by S.

- Theorem. If B is a subset of X, the correspondence
B — S(B) = U S(b)
beB
is an additive closure operation: that is,

(1) S(B) = B,

(@ B>B = SB)>SB),
(3) S(SB) =

@ S@BU B') = S(B) U S(B).

Proof. Condition (1) is immediate since b € S(b); (2) and (4) follow from
the fact that S is a mapping. To prove (3), it is sufficient to observe that
xeS(SB) = x=za azbh beB = x >b,beB = xeS(B)
Then S(SB) = SB whence, by (1), S(SB) = )
Let (X, =) be an ordered set and let B be a subset of X; we say that
ae X is a majorant of B if a = x for all x € B. Similarly we say that ae X
is a minorant of B if a < x for all x € B. The set S[B] = N S(b) is thus the
- beB

set of majorants of B. If S~ denotes the lower inverse defined by
S (@ ={x/xeX,azx}={x/xeX, x<a}
then the set S”[B] = N S™(b) is the set of minorants of B.
beB
An element a of S[B] N B (if there is one) is called 2 maximum of B and
we write ¢ = max B. If a exists, it is unique, for if @ and a’ are two maxima
in B, then a = @' and a' = a, whence a = 4’. In a similar. manner, an

element 2 of S"[B] N B (whlch is unique if it exxsts) is called a minimum of
B and we Wr1tea = min B.
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If the set S[B] of majorants has a minimum @ = min S[B], then this
element is called the supremum of B and we write @ = sup B. Intuitively,
sup Bis the ‘least upper bound’ of B. In the case in which B has a maximum,
then B has a supremum sup B = max B. The idea of supremum is an
extension of the idea of maximum.

In a similar way, the infimum inf B is defined to be max S™[B] (the ‘greatest
lower bound’ of B).

ExaMpiE 1. In the ordered set (R, =) formed by the straxght line R and
the relation ‘greater than or equal to’, the set .

={1,1/2,1/3,1/4,...}

. has a maximum, which is 1, but has no minimum. On the other hand, it has
an infimum, namely 0.
It is known that in the ordered set (R, =), every subset B admits a supremum
and an infimum (Cantor-Dedekind).
If fis a numerical function defined on a set 4, the supremum of the set
S(4) = {f(x) | x e 4} is, in general, denoted by sup f(x); in particular, if the
xed ’

supremum is attained in A4, it is denoted by max f(x).
xed

EXAMPLE 2. In the ordered set (P(X), =) we can venfy that a collection
= (4;[ie ) of subsets of X admits a supremum and an mﬁmum, namely

sup & = _UIA,,
inff = (1 4, '
If o7 is a complete léttice with respedt to U and N, we can write
max &7 = illeA,-,
min & = OIAi.

If every non-emipty subset B — X has a minimum, we say that the ordered
set (X, ) is well-ordered; every subset of a well-ordered set is also well-
_ordered. (N, =) is well-ordered but (R, =) is not.
An ordering = defined on a set X, is called latticial if

Vx)(Vy)@a:a=sup {x,y}
An ordenng = is called total if

V) (V) @) a=max{xy).
In the case of a total ordering, any pau' of elements x, y is such that either
X = yory = x; the pair (X, =) is then called a totally ordered set. A well-
ordered set is totally ordered, for if B = {x, y} has a minimum, then either
xSyory=s=x .
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ExampLE 1. (Economics.) Let X be a set of possible states; if a given
individual prefers state x to state y, we write x 2 y (x is ‘preferable’ to'y).
The relation = thus defined is a total pre-ordering, for

o xZ X,
@Qxzypyzz = x22
@) x,yeX = gither x = yory = x

(such a relation 2 is sometimes called a ‘quasi-ordering’ or a ‘preference
relation’). ; '

ExampLE 2. Let X be any set and let f be a numerical function defined on
X: we write x = y if (and only if) we have f(x) 2 f(3); this defines a total
pre-ordering. : :

ExampLE 3. Let X be the set R? and write (x, ¥) = (x', »') if either (i)
x>x'or(i)x=x"andy 2 ¥'. We then obtain a total ordering, for

M) @)z s

@ xy) =), &¥NzE.Y) = N2 ELY),
3) y) 2 ' J’f), &)z (x) = ) =&LY),
(@) either (x,¥) 2 (x',)) or (x', ) 2 (%, »).

Economists have raised the question of whether a preference relation can
always be expressed as a numerical function as in Example 2 above; we can
prove that this is not the case. Suppose that 2 numerical function f does
represent the total ordering that we have just defined, so that

) > @LY) = fx))>x,Y)

Let y, and y, be two numbers such that y; < y,. With each number x we
associate the proper closed interval

I = [f(xs yl)a S, J"2)]
inR. If x # x', we have [, N I, = @, for

x>x = flxy1) > y2)

The family of disjoint intervals I, is denumerable (cf. example 4, § 2) and so
we have a contradiction, because there cannot be a one-one correspondence
between the non-denumerable numbers x and the denumerable intervals I..

§ 5.% Transfinite ordinal numbers

Let (4, =) and (B, Z) be two well-ordered sets. A one-one mapping o of 4
into B is said to be order-preserving if

aza <« ocazod.
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For such a mapping we also have

' p azd .
oa =od <« , <> a=a
aza
and
oa>od = oa & od agza <« a>d
oa # ca’ a#d :

We say that two well-ordered sets (4, =) and (B, =) are similar if there
is a one-one order-preserving mapping of 4 onto B; we then write
(4, =) ~ (B, =). We can see at once that ~ is an equivalence relation, for

DU z)=U4,2), . '
@ 4, 2) = (B, 2), (B, =) = (C, 2) implythat (4, ) ~ (C, 2),
(3) (4, =) ~ (B, 2) implies that (B, =) =~ (4, 2).
The ordinal number of a well-ordered set (4, =) is defined to be the equi-
valence class which contains it.

Exampre. Consider the set (4,5, 6,...; 1,2, 3) ordered by the position
of the elements:

4<5<6<...<1<2<3.

This is a well-ordered set; it is not similar to the well-ordered set
(5,6,7,...; 1,2,3,4) for example. The ordinal numbers of various sets
of this form are denoted as follows: we say that

(1,2,3,...n) _' has ordinal number n,
1,2,3...n.. has ordinal number w,
2,3,4,...;1) has ordinal number w+1,
(3,4,5,...;1,2) .~ has ordinal number w-2;
a,3,5...; 2,4,6,...) has ordinal number 20w,
(3,57,...; 2,4,6,...; 1) has ordinal number 2w+ 1, etc.

Ordinal numbers constitute above all a convenient system of notation, as: -
we can see in the following example. '

ExampLe. For each ne N, let 4, be a set of cardinal number X,. Then .
we denote by X, the cardinal number of 4 = U 4,, and by X, ; the cardinal
. n=0
number of Z(4), etc.

§ 6.* The different forms of the axiom of choice

Let o/ be a family (4;/ie ). A set Bis said to be comparable to & if for.
any index i we have either B > 4; or B = 4;. If every set in .o/ is comparable’
to &7, then we say that &7 is comparable to itself; in this case, the ordered -
set (&, o) is totally ordered. o
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Fixed point theorem. Let A be a non-empty subset of a set X and let 6 be a
single-valued mapping of P(X) into X; we say that a Somily o = (4;]iel)
 satisfies property L(A4, 6) whenever
) ﬂ A;=Adedd,

iel
(@ 4;U{c4;}ed, :
(3) every subfamily (A; | j € J) of &/ comparable to itself satisfies U 4;e .
_ PoJjel
Then if & satisfies the property L(4, o), there exists an index i such that
oA € Ay ' z
Proof. Let & be the intersection of all sub-families of & which satisfy
L(4, v); then & satisfies L(4, ¢). The theorem can be proved by showing
that & is comparable to itself; for if this is so, then, putting 4; U {cd;} =
f(4)), we have :
UB= .Bo e# = f(Bo) ceZ = f(Bo) < -BO = U’Bo}EBo.

Be®
That & is comparable to itself is a consequence of the following two

lemmas.
LEMMA 1. For each set B e % comparable to &, we have
%y ={C|Ce®; CcBor C>f(B)}=24.
Proof. We show that % satisfies the property L(4, 0).
(1) Since 4 € %5, we have 1 C = A.

Ce¥p

(2) If C e %, we have either C o fiB) or C = B; in the first case we have
Cof®) = fO>CsfB = [t

and in the second case

CeBo {f(C) < B, {f(C) < B,
or C < B c f(C) = {or f(C) = B,
orC=2B

Y

7

{f(C) < B = f(C)e¥p. -

or f(C) = f(B)
Thus in either case, we have f(C) € €5.

(3) Let 2 = (D,/k € K) be a sub-family of %y comparable to itself. Then
either D, < B for all k or D, > f(B) for one index k. Since

(Vk): D,cB = UD,cB = UD,e%;
k k

@k) : Dy > f(B) = fBesUD, = UD,e%p -
k k

it follows that €, satisfies (3).
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We therefore conclude that & « €5, and since €5 = & by definition, we
have & = €.

LemMA 2. If BB, is the collection of setsin & comparableto %, then B, = 4.
Proof. %, satisfies L(4, o), for
(1) since A €%, we have [1 B = 4,

Bedy

(2) if Be%#,, we have f(B) e #, since, by Lemma 1,

Cc B C < f(B)
CeZ = AucofB = lorCoAB),
(3) the union of every sub-family of #, comparable to itself is in #;.

Therefore &, = & and so, since #; = #, we have #, = &.

COROLLARY. Let (X, ) be an ordered set in which every totally ordered
subset B has a supremum b = sup B. If [ is a single-valued mapping of X
into X such that f(a) = a for all ae X, then there exists an element a, in X
such that f(ag) = ag.

Proof. Let x4 be an element in X and let o/ = (4;/ielI) be the collection
of subsets of X such that ’

(1) Xo € Ai9
(2) A4, is totally ordered with respect to the relation =.

Let o be the single-valued mapping of &7 into X defined as follows:

o(4y) {

Then o satisfies property L({x,}, 0), for if (4;/ieJ) is a sub-family of &
comparable to.itself, the union of this sub-family is in &/. By the fixed point
theorem there exists an index 7 such that
P Sy

o(dy) e 4;;

hence there exists an element max 4; = a, such that f(a,) = &(Ai) € A;
Then

= f(max 4;) if max 4; exists,
= sup 4; otherwise.

ao 2 flao) 2 ao

and so we have f{(a,) = aq.

In an ordered set (X, =), an element a of X is called maximal if

xelkX, x=a = X = q.

If the element max X exists, then it is clearly a maximal element; moreover
it is then the only maximal element, for if x = max X and « is another
maximal element, then x € X and x = a, whence x = 4. In general, however,
there may be more than one maximal element.

\_/
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L ExampLe. Consider the tree shown
b in figure 14. Put a = b to signify that
& a a is further from the origin than b;
as then = is an ordering relation. (X )
a, a3 ag is not totally ordered (the elements
3 a and a,, for example, are not com-
parable). The maximal elements are a,,
ds, A3, Ay, A5, Qg

Fic. 14

Fundamental theorem (Zorn). The axiom of choice can be stated in any
one of the following equivalent forms:

(1) Given a set X, there exists a single-valued mapping y in which to every
non-empty subset B there corresponds an element y(B) in X such that y(B) € B.

(2) If X is an ordered set such that every totally ordered subset of X has a
supremum, then X has a maximal element,

3) If (X, =) is an ordered set, the collection (&, o) of all totally ordered
subsets of X contains a maximal element.

@) If (X, 2) is an ordered set such that every totally ordered subset of X
" has a majorant, then X has a maximal element.

(5) If X is any set, there exists an. ordering relation .= such that (X, Z) is
a well-ordered set.

Proof. The axiom of choice, which was stated above (§ 3, Chapter I) is
clearly equivalent to condition (1); we shall prove that

D =00 =06 =¢=06 = O

(1) implies (2). Let (X, =) be an ordered set such that every totally
ordered subset has a supremum and let f be the function defined as follows:

‘f(x){:;yc(Ax) g ﬁ:z{j’./yEX,y>x}7é®,

Then f(x) = x and so, by the corollary to the fixed point theorem, there
exists an element a such that a = f(a). Therefore 4, = @ and hence the
element a is maximal.

(2) implies (3). Let (X, =) be an ordered set and let &7 be the collection
of subsets of X totally ordered with respect to =. Since (&7, =) satisfies the
hypotheses of (2), & contains a maximal element 4,:

A:Ao,AEM = A=.Ao.

(3) implies (4). Let (X, =) be an ordered set satisfying the hypothesis of .
(4); then, if (3) holds, X contains a maximal totally ordered subset 4,. By
hypothesis, 4, has a majorant 2 and

azx .

x 2 a = Ay U {x} totally ordered = x€ 4y = { and } = x=a.
xza

Then the element @ is maximal in X. :
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(4) implies (5). Let X be any set and let & = (4; /i € I)) be the family of
subsets 4; which can be well-ordered, the ordering relation for 4; being
~ denoted by =% Put 4; > 4;if

(1) AiDAj . .
@ yed;—A4;, xed; = y=tx
B) x,yed,yz'x = y=

~ We can verify at once that > is an ordering
relation, for

Ai>Aia
Ai>'Ak: Ak>'Aj = Ai>'Aja
Ai>'Aj!' Aj>-Az = Ai =-Aj.

Fi1c. 15

If (4,/ ieJ) is a sub-family totally ordered by > and if 4 = U 4,, then
ieJ
x,yed = (@A,)):xecd,yed; = (k) :x,yed

(for either 4; o 4; or A; > 4;). Writing x 2 y if x 2*y, we define a
well-ordered set (4, =). Since 4 is a majorant of (4, / i e J), & satisfies the
hypotheses of (4). Therefore amongst the Well-ordered sets (4;, =?) there
exists a maximal set (4q, =°). .

Suppose that 4, is not the full set X. Then there is an element a in X— 4,
and 4, U {a} is well-ordered by the relation = defined by

M xzy if x,yedo; x2%y,
@ya>x if xed,.

This implies that 4, is not a maximal totally ordered set and so leads.to a .

contradiction; hence 4, = X. Thus (X, =°)is a well-ordered set as required. -
(5) implies (1)." Let X be any set; if the set (X, =) is well-ordered with .

respect to the ordering relation = and if B < X, B # @, then there is a

" single-valued mapping y of #(X) into X defined by
y(B) = min Be B.

This completes the proof of the theorem.
A very convenient form of the axiom of choice is given in the following
theorem. ‘ '

Zorn’s Theorem. If every totally pre-ordered subset of a pre-ordered set X
has a majorant, then there is an element a in X such that

xza xeX = X =a.

Proof. If x* denotes the equivalence class, with respect to =, which
contains x, then we write x* =* y* whenever x = y. The set X* of equi-
valence classes is then ordered by =* and a subset B* of X* admits a
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majorant if it is totally ordered. Therefore X* contains a maximal element a*
and so we have -

xza = x*z¥ag* = x¥t=%g* = x=a

CoroLLARY (Bourbaki). Given a filter base #, there exists an ultra-filter
base B, which is finer than & (that is, B = B).

Proof. Let % be a filter base in a set 4 and let ® = {#,/iel} be the
collection of filter bases in 4 which are finer than . As can easily be seen,
F is a pre-ordering in ®. Moreover, if {#; [ j € J} is a sub-collection totally
pre-ordered by k=, it admits as a majorant the filter base consisting of sets
of the form

‘BK = n Bi’
) iek )
where B; € &, for all i € K and K is a finite subset of J.
By Zorn’s theorem, there is a base # in @ such that, for any filter base #,,

- B,ed

Hence, by Theorem 5, § 6, Chapter I, #,, is an ultra-filter base.

} = B, ~a,



CHAPTER IV
TOPOLOGICAL SPACES

§ 1. Metric spaces

Let X be any set. A numerical function 4 defined on X'x X is called a
distance function or metric if ‘

1) dx»)=z0,

@ dx%,»)=0 <« x=y

3 dlx,y) = d@y, %),

(4) d(x: J’)'*‘d(y, Z) = d(x: Z).‘
The inequality (4) is the only condition likely to cause difficulty; it is called
the triangular inequality. _

The pair (X, d) consisting of the set X and the metric 4, is called a metric
space and d(x, y) is called the distance between x and y. If in any given
situation only one metric on X is involved and no confusion is possible, we
follow the convention of referring to X as the metric space.

ExampLE 1. Let X be the set of towns on a geographical map and let
d(x, y) be the length of the shortest route by road from town x to town y.
Clearly d satisfies the axioms (1) to (4) for a metric.

ExamrLE 2. Let X = C, the set of complex numbers. We can define a
metric d by writing d(zy, z,) = | z,—2; |, where | z; —z, | is the modulus of
21““22. *

ExampLE 3. Let X be the Euclidean space R” of n dimensions; if

'x=(x_1,x2,...,x")

J’=O’1,J’2,---=J’")

are two points of R", we write
dix, y) = /& =y )+ =P+ ..+ (=)

and this determines a metric d on R". This is called the Euclidean metric on
R® and, in what follows, R” will always be considered as a metric space with
this function d as metric. In R, the Euclidean metric is simply given by
dx,y) = | x-|.

The triangular inequality in R” can be proved by a similar method to that
used in proving it for R3. It follows from a general inequality which we shall
prove later (Chapter VIII, § 9).

and
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ExaMPLE 4. Let X be any set. Then a metric 4 can be defined by \ ‘

‘=0 if x=
d("’y){=1 it %ty

ExAMPLE 5. Let X be the set ® of numerical functions defined on the
segment [0, 1]. A metric 4 on X is defined as follows:

d(f, 8) = sup { | f(x)—g() |/ x [0, 11}.
The triangular inequality is satisfied, since

A(f, £)+d(g, h) = sup | f(x)—g(x) | +sup | g()—h(¥) | |
2 sup (| f(x)—g() |+] g)—h() |) Z sup | fx)—h(x) |

In a metric space X, the set
. By(x0) = {x ] d(x, x0) < A}
is called the ball of centre x, and radius 4. The set

Sz.(xo) = {x [ d(x, x0) = A}

is called the sphere of centre x, and radius 4.

A point g in X is called an interior point of the set 4 if there exists astrictly
positive number & such that B(a) = 4; the set of interior points of 4 is
denoted by A4 and is called the interior of 4. Clearly 4 = 4.

A point @ in X is called a point of closure of a set 4 if for any strictly
positive number &, we have B,(a) N 4 # @. The set of points of closure of
the set A is denoted by A4 and is called the closure of 4. Clearly Ao A

It is possible for a point a to be a point of closure of 4 without being in 4;
for example if X is the real line R and 4 is the set {1, 3,4, 4, . . .}, the point
0 is a point of closure of 4 but does not belong to 4.

A set G such that every point of G is an interior point of G is said to be
open. A set Fsuch that every point of closure of Fis in Fis said to be closed. .

ExampLE 1. Let X be the real line R and let d be the Euclidean metric
defined by d(x,y) = | x—p|. The segment [A, p] ={x/x2 4, x = u} is
a closed set; the interval 4, u[ is an open set; the union ]4, u[ U T4, p[ is
an open set; the intervals 4, 1] and [A, u[ are neither open nor closed.

Using Example 4, § 2, Chapter III, we can prove the following result: a
subset of R is open if and only if it is the union of a countable number of disjoint
open. intervals. ‘

ExAMPLE 2. Let X be any metric space. The set
4 = By@)—S;(a)

is open. For suppose that x, € 4; then d(xo, @) < 4. Hence there is a
number & such that 0 < &¢ < A—d(x,, a); since
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x€Bxo) = dxx)ss =
d(x, @) £ d(x, xo)+d(a, xo) < e+(A—e)y =4 => xed,

we have B,(x,) = A and therefore x, is an interior point of 4, whence
A is open. '

ExAMPLE 3. Let X be any metric space. The set {a} which has oniy one .
element a is closed, for if x is a point of closure of this set, then .

(Vo) : aeB(x) = (Ve):dx,a)Le = dx,a)=0 = x=a
Theorem 1. If% = (G, /i €I is the collective family of open sets, then
M JeI = UGe%,

ledJ ;
(2) il,iz,...,i"éI == nGiEg,
i=iy
() De¥% Xe9.

Proof. Let a be a point of U G;. Then a is an interior point of this set, -
. “ield

because .

@):aeG, = @)@):BcG = @@o): B@<=UG,.
ieJ

Therefore the union of the G; is an open set. -

: . in
Suppose now that b is a point of the finite intersection N G,. For each

i=iy
i=1i,i5...,i, there exists a strictly positive number &; such that

B,(b) = G;. If we denote the smallest of the numbers &, &, - - - 5 &, DY &
we have. _
B®) = NG,
i=iy

Therefore b is an interior point of the set M G; and so this set is open.

This proves parts (1) and (2) of the tlzelorem} the proof of part (3) is
immediate.

Theorem 2. The complement of an open set is closed and the complement of
a closed set is open.

Proof. Let F be a closed set and write 4 = —F. If a ¢ F, there exists a
ball B,(¢) which does not meet F. Therefore B(a) =« —F = 4 and so a is
an interior point of 4, whence A is an open set.

Let G be an open set and let a be a point of closure of —G. Thenae —G,
for otherwise there would be a ball B,(a) such that B,(a) = G; this implies
that B,(@) N —G = @ and so contradicts the fact that a is a point of closure
of —G.
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COROLLARY 1. If F = (F, | ielI)is the collective family of closed sets, then
N JelI = .ﬂ FeF,
@) il,iz,...,i,,eI‘lEJ: _G‘Fiegf’
(G) BeF, Xei. o

Proof. The set F,e % if and only if —F;e¥%. Then the intersection
N F; belongs to &, for

iedJ

iel

A similar reasoning can be apphed to the finite union U F,

i=ig

COROLLARY 2. The ball B,(a) is a closed set.

Proof. If x, €—B,;(a), then d(a, x,) > A and so there exists a number &
such that 0 < ¢ < d(a, x;)—A. Then

x € B(xp) = d(x,a) = d(a, xo)—d(x, xo) = d(a; Xg)—e> A = xe —B;@

and therefore — B,(a) is an open set.

Let X and Y be two metric spaces, having.metrics dy and dy respectively.
A single-valued mapping o of X into Y is said to be continuous at the point
X, if to each number &> 0 there corresponds a number 5 >0 such that

dx(x,x0) =m =  dy(ox,0x0) S e.

A single—valued‘ mapping o is called continuous (on X)) if it is continuous at
each point of X. If X = ¥ = R, this definition reduces to the well-known
one of continuity of a numerical function.

"Theorem 3. A necessary and sufficient condition Jor the single-valued
mapping ¢ of X into Y to be continuous at x, is that, for any open set G of ¥
containing y, = 0Xy, the pomz X is an interior point of ¢ 'G.

Proof. Suppose that x, is an interior point of ¢~ 1G for each open set G
of Y containing y, = ox,. Choose G to be the set B,(yy)—S.(y,). Then
. there exists a ball B,(x,) contained in 6~ 1G and we have ' '

dy(x, %) S0 = xeBx) = o0xeG = dyox,y) e

Suppose conversely that o is continuous at x, and let G be an open set of
Y containing y, == ¢x,. Then there exists a number ¢ such that B,(y,) < G.
To this number ¢ there corresponds a number # such that

dy(x,x0) £n =  dy(ox,y0) S,
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whence o
O-Bn(xO) < Ba(y())
B,(x0) = 0,'—1 B,(yo) < st G.

. Therefore x, is an interior point of ¢~!G and so the set ¢~ G is open.
By means of this theorem, we can study the idea of continuity of a single-
valued function in a very general setting. '

and so

§2.* L*- and L°- spaces

. A sequence (x,) = (x, X3, X3, . . .) of elements of a set X is an element of
the -product set X?=XxXxXx .... We say that a sequence
(x}) = (x1, x5, x5,..)is a sub-sequence of the sequence (x,,) if -

X = xkl, Xg = Xp,3 X3 = Xp,; €fC..

18k <k, <ks; <.

and we write (x;) = (x,).
-A mapping A of X® into X is called a convergence if the following condi-
tions are satisfied:

(1) xo € A(x,) }
(o) F (x)

@) (Vi) : x; = xq = X eA(x,,)

) xp¢ A(x,,) whenever (V(xp); (x) F (%)) @(xh); () (x,,)) X0 € A(xD).

If x, € A(x,), then we say that (x,) converges to x, and this is sometlmes
written (x,) —> xo.

A pair (X, A) consisting of a set X and a convergence A is called an
L*-space; where the convergence A is fixed, so that there is no possibility of
confusing it with another convergence, we shall refer to the:set X itself as
an L*-space.

= X € A(xp),

ExaMpLE 1. Numerical convergence.

Let X be the real line R. A sequence (x,) = (%, X3, X3, . .) is said to
converge numerically to a if, ‘given any strictly positive number e, there is an
integer n(e) such that

kzne = |xn—a|s
In o.the’:r words, we have ]
(Ve; & > 0) @n) (Vk; k 2 ) | xe—a| £ e
We remark that R is a metric space with metric |

dix,y) = | x-»]|,
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and that a convergence can be defined in any metric space in a similar
manner: the sequence (x,) converges to x, if, given any strictly positive
number ¢, there is an integer n(c) such that

kznE = d(x,, a) £ s

Axioms (1) and (2) are clearly satisfied. To. prove axiom (3), suppose that
Xg ¢ A(x,); then there exists a number ¢ such that d(x,, xy) > & for an
infinity of values of k, say ky, ks, k3, ..., such that k; <k, <k; <
We have

(xk,.) - (x")i

and (x; ) contains no subsequences converging to x,.
EXAMPLE 2. Simple convergence on [0, 1].

Let X = @, the set of numerical functions defined on [0, 1]; we say that
a sequence (f;) of elements of @ converges snnply to fy on [0, 1] if, for any
x in [0, 1], the numerical sequence (f,(x)) converges numerically to fi(x); in
other words we have

(Vx) (Ve) @n) (Vk; k2 1) : lﬂ(x)~fo(x)l Se

Clearly axioms (1) and (2) for a convergence are satisfied. To prove axiom
(3), suppose that (f;) does not converge simply to f,: then

(Ixo) Qeo) (V) Bk; k > n) : lfk(xo) —~fo(xo0) ] > &g.
Thus, taking » = 1, there is an integer. k4 such that
lf;q(xo)—fo(xo) ' > &3
then, taking n = k,, there is an integer k, such that
lﬁc;(xo)"‘fo(xo)l > &g.

Continuing this process in the obvious way, there is a sequence
(fr> fezs Jigs + - -) Which does not contain a sub-sequence convergmg to fo.
Therefore axiom (3) is satisfied.

ExAMPLE 3. Uniform convergence on [0, 1].

Let X = @, as in example 2. A sequence (/f;) is said to converge uniformly
on[0,1]tofoe®if

(V&) @no) (Vk; k = no) : sup { [ f)—/fo®) |/ x€[0,1]} < e.

This convergence is that determined by the metric

d(f, 8) = sup { | f(x)—g() |/ xe[0, 1] }.
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We note that a sequence of functions can converge on [0, 1] without con-
verging uniformly. For example the sequence of functions £, defined by

=x if x<v !
f"("){—_—o it x =1 "

converges to the function f; which

]

]

i

|

is identically zero on [0, 1]; however, o i
it does not converge uniformly, since, Y 1
for each », ; i () "y E
' 1
1

sup {|f,(® ]| /xe[0,1]} = 1. fp(x) = i1
. 0 x
FiaG. 16

ExaMPLE 4. Uniform convergence on a family of sets.

A sequence (f1, f2, /3, . . .) of functions in @ is said to converge uniformly
on a family o/ = (A, [ ieI) contained in Z([0, 1]) if, for each i, the sequence
(/) converges uniformly on A4;; in other words

(V1) (V&) @n) (Vk; k 2 m) « sup | i) —fo) | < e

As in the previous examples, we can easily verify that the axioms for a
convergence are satisfied.

If &/ is the partition determined by the single set [0, 1] we have umform
convergence; if &/ is the partition determined by the sets 4, each consisting
of a single element, we have simple convergence.

In an L*-space, a set F is said to be closed if .
x, € F, (x,) - a imply that ae F.
Theorem 1. The family & = (F;|ieI) of closed sets satisfies
M JelI = NF e,

ieJ
e
(2) il,iz,...,ikel = UF;E.?,
: i=iy
(3) DeF; XeF.
Proof. The set N F, is closed, for -
tedJ
. x,eNF, x)—>a = aeNF,.

The union U F; is closed, for if (x) is a sequence of elements in this union
i=1y

converging to a pomt a, then there is an infinity of elements (x,) belonging
to the same set F;; these elements form a sequence (y,) - (x,). Therefore,

by axiom (1) for a convergence, (y,) - @ and so we have ae F; = U F,.

=1y
Finally, @ and X are closed; this is trivial. :
TS E
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Suppose now that we call the complement of a closed set ‘open’. Then, by
" taking complements in Theorem 1, we can prove the following result.’

COROLLARY. The family % of open sets satisfies:
N JeI = UG e¥9,
. iel
In
(2) il,iz,...,i,,EI = nGiEg,
i=i
@) Pe¥; Xe¥. '

; If Xand Y are two L*-spaces, a single-valued mapping o of X into Y is
' called L*-continuous at the point x, if

() = xo implies that (ox,) > axo.

- A mapping o is called L*-continuous (on X) if it is L*-continuous at each
point of X. This concept has certain similarities to the concept of continuity
studied in § 1, the most interesting cases being those in Whlch the convergence
© A satisfies the additional axiom:

. (4) For any subset A of X, the intersection A of the closed sets which contain
- A consists of the points a for which there exists a sequence of elements of A
converging 1o a.

For a convergence A which satisfies (4), we say that the pair (X, A) is an
LO-space; it is easily verified that a metric space is an L%space (with respect
‘to the convergence introduced in example 1).

‘We now prove the following theorem.

Theorem 2. If X and Y are two L*-spaces and o is a single-valued L*-con-
tinuous mapping of X into Y, then ¢~ 'F is closed for each closed set F of ¥
and o~ 1G is open for each open set G of Y. If Y is an L%-space,. then the
converse is true: that is, if ¢ is a single-valued mapping of X into Y such that

o~ YF is closed for each closed set F of Y, then o is L¥-continuous.

Proof. Let ¢ be a single-valued L*-continuous mapping of X mto Y and
let F be a closed set in Y; then 6~ 1F is closed, since

{(xn)"’xo} - {(ax,,)ﬂaxo} = ox,eF = x,e0-'F

x,e06”'F ox,€F

Suppose now that Y is an L%space and that o is a single-valued
mapping of X into ¥ such that ¢~ *F is closed for each closed set Fin Y. If
o is not L*-continuous, there exists a sequence (x,) converging to x, such
that (ox,) does not converge to gxo = y,. By axiom (3), there exists a sub-
sequence (o, ) which does not contain any sub-sequence converging to yo.
If 4 = {ox,, 0%, - . .}, then, by axiom (4), y, ¢ 4, whence x, ¢ o ~14. But
o~ 14 is a closed set, and 50

() = X0» X, €074 = xpeo 4,
which gives a contradiction. Therefore o is L*-continuous.
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§ 3. Topological spaces |

DermarioN 1. A topological structure or a topelogy in a set X is a collective
family ¢ = (G; /i€ I) of subsets of X satisfying

) JeI = UGey,
ied
(2) Jfinite; J =1 = N G;e¥9,
ielJ

(3) QDe¥9, Xe9.

The pair (X, %) is called a topological space®? and the sets in & are called
open sets. Where the topology ¥4 is fixed and no confusion is possible, we
shall refer to the set X itself as the topological space. A metric space will
always be considered to have the topology ¢ defined in § 1. Thus the concept
of topological space can be regarded as a generalisation of that of metric
space.

ExampiE 1. Let X be any set and let ¥ = Z(X), the family of all subsets
of X. The axioms (1), (2) and (3) are easily seen to be satisfied and so we
have a topology; this is called the discrete topolegy on X.

ExAMPLE 2. Let X be any set and let ¥ = (9, X) consist only of the empty
set and the whole set X. This topology is called the coarsest topology.

More generally, if two topologies ¢, and ¥, are such that ¥, >%,, we
say that ¥, is finer than %, or that %, is coarser than ¥,.

ExampLE 3. Let X be any set;.if &f = (4;/iel)is a family of sets in X,
then the ‘smallest’ topology ¢ which contains the A4;.is formed:as follows:
let % be the collective family (B; /jeJ), where B; is the intersection of a
finite number of the sets 4;; then let € be the collective family (C, / k € K),
where Cj is a union of sets B; or the empty set or the whole set. Since

O Ucge%,
k
@ nc=n UBi= U (B NB,N - NBj})e?,
k=1 k=1 jely Jreds .
Jz€dz
(3) 9e%, Xe¥%, nedn

the family ¥ determines a topology, which is called the topology generated
by the family <.

1) The idea of a topological space is introduced in different places in the literature with
some slight variations in the axioms. The axioms used here are those used by P. Alexan-
droff and H. Hopf (Topologie, 1). We have followed N. Bourbaki(Topologie) for terminology.
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DEFINITION 2. A set F is said to be closed if its complement —F is open.
From the axioms for open sets it follows immediately that the family
= (F; [ ieI) of closed sets satisfies

a Jel = nFeﬁ

ieJ

. in
(2’) J={i1, iz,-.-,i"}CI = UFiEﬁ,
. i=iy

() @eF, XeF.

Remark. (1'), (2') and (3') are sufficient to characterise a topology. In
fact, every family & satisfying these properties determines a topology ¥, for
which & is the family of closed sets.

DErFINITION 3. Given any subset 4 of a topological space X, the inter-
section 4 of all the closed sets contammg A is called the topological closure
of 4. From (1’) above, it follows that 4 is a closed set.

The following properties of topological closure are easily verified:

1) Ao A4,

)] E_T_J? = AU B,

® D=1

@4 2=0.
Properties (1), (3) and (4) are immediate. To prove (2), we observe that
AU Bis a closed set containing 4 and B and so it contains 4 and B, whence

AUB > AU B. Similarly AU B is a closed set which contains 4 and B,
whence AU B > AU B,

ReMARK 1. The correspondence 4 — A is a closure operation of the kind
defined above (§ 7, Chapter I), for, in addition to the above properties, we
have

A>B = A=AUB = A=AUB=A4AUB = A>B.
We observe that the lattice of closed sets (§ 8, Chapter I), in which

.Fl/\F2=F1 ans
F1VF2=F1UF2=F1UF2,

is distributive in this case, since
FiN(F,UF;) = (F,NF)UF NF).

REMARK 2. A set A is closed if and only zf A = A; this follows from the
definition of closure.



TOPOLOGICAL SPACES 55

REMARK 3. Properties (1), (2), (3) and (4) of a topological closure opera-
tion are sufficient to characterise a topology: given a closure operation
A — A which is additive (that is, one which satisfies (2)), and defining a set
A to be closed if and only if A = 4, we can define a topology ¢ for which
the topological closure operation is 4 A

DEFINITION 4. Given a set 4, the union 4 of all the open sets contained
in A is called the interior of 4; it is easily seen that

A= (D
A point x in 4 is called an interior point of the set 4.

DEFINITION 5. An open set containing a point x of X is called an open
neighbourhood of x; such a set will be denoted by U(x) or ¥(x) and the
collective family of open neighbourhoods of x will be denoted by ¥ (x).
Clearly ¥"(x) is a filter base. Any set containing a set ¥(x) is called a neigh-
bourhood of x; such a set will be denoted by N(x) and the collective family
of neighbourhoods of x will be denoted by A"(x).

A family of sets Z(x) = (N; /i) is called a fundamental base of nelgh-
bourhoods of x if it is equivalent in the exterior sense (cf. § 3, Chapter I) to
Y (x). If B(x) ~ ¥ (x), then every set N; contains a U(x) and every U(x)
" contains an N;; therefore every N, is a neighbourhood of x. A family
(#(x) | x € X) of fundamental bases satisfies the following properties:

(1) xeX, NeB(x) = xeN,
(2) %(x) is a filter base,
(3) for each N, € %(x), there exists an N e.%’(x) such that

Vi) AM0G); M) e Z()) : M) = No.

Property (1) is immediate, for if ¥"(x) I #(x), then in each N there. exists
an open neighbourhood of x, which contains x. Property (2) can be deduced
from the fact that a family eqmvalent to a filter base is itself a filter base
(Theorem 1, § 6, Chapter I).” To prove property (3), we observe that if
N, € %(x), then there exists a V(x) contained in Ny; then, choosing N to be
a set of #(x) contained in ¥(x), we have

yeN = VXe?() = @AMO); MO)eBB)): MG) < V() < No

ReMARk 1. 4 point'x ed ;fand only if every neighbourhood of x meets A.

Proof. Suppose that x € 4 and that there is a set F(x) such that
V(x) N 4 = @; the closed set — ¥{(x) then contains 4 and so contains A
Since xe 4 and x ¢ — V(x), we have a contradiction.

.Conversely, suppose that each set V(x) meets 4. Since the open set -—(A)
does not meet A it cannot be an open neighbourhood of x and therefore
xed. :
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REMARK 2. A set is open if and only if it is a neighbourhood of each of its
points. . -
" Proof. If G is open, then by definition it is an open neighbourhood of each
of its points. Conversely, if a set 4 is a neighbourhood of each of its points,
then given a € 4 there exists a set V(q) = 4 and so

A=U{a =« UWa < 4.
ac4 aed

Therefore A = U V(a) and so 4 is open.
acd
REMARK 3. It can be shown that the properties (1), (2) and (3) of a family
of bases (#(x) /| x € X) are sufficient to characterise a topology: given a
family (#(x) | x € X) satisfying (1), (2) and (3) and using the property men-
tioned in Remark 2, we can define a topological structure ¥ which admits
(Z(x) | x € X) as the family of fundamental bases. '

ExaMmpLE. Let X be a metric space; for fundamental base at x we can take
the family

B(x) = (By(x), B1/2(x)s B1/3(x)a .o -l)
“(where B,(x) is the ball of centre x and radius 1).

- DermITION. ‘Let ¢ be a.single-valued mapping of a topological space X
into a topological space Y; then ¢ is said to be continuous at a peint x, of X'
-if, for each neighbourhood V(ox,) = ¥(y,)in Y there exists a neighbourhood
U(x,) such that

x e Ulxg) = ox € V(yq):
that is,
(YV(e)) @U(xo)) = aU(x0) = V(o).

A mapping ¢ which is continuous at each point of X is said to be a continuous
mapping (on X). (In the special cases when X is a metric space or an L°-space,
we have the type of continuity already discussed.)

A numerical function f defined on a topological space X is said to be
continuous if it is a continuous mapping of X into R. In this case the following
property is satisfied: given any point x, € X and any strictly positive number
&, there exists a neighbourhood ¥(x,) such that

xeVlx) = [f®-flxo)]|=Le

A one-one correspondence ¢ between two spaces X and Y is called a
homeomorphism if o and ¢~ are continuous mappings. If two spaces X and
Y. are such that there.exists a homeomorphism between them, then we say
that X and Y are homeomorphic, or topologically equivalent; we can verify
that the relation of being homeomorphic is an equivalence relation.
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Exampre. In R3, it is sometimes easy to see intuitively if two surfaces 4
and B are homeomorphic; they will be so related if we can obtain B by
deforming A4, without tears or joins, as if it were a perfectly elastic rubber
sheet. The sphere is homeomorphic to the cube but not to the torus; from
figure 17 we can see that the cylinder and the M&bius band (which can both
be obtained by sticking together the ends of a strip of paper abed) belong to
two different topological equivalence classes...

FiGc. 17

Theorem. A single-valued mapping o of a topological space X into a topo-
logical space Y is continuous if and only if, for each open set G < Y, the set
6~ 1G is open; likewise ¢ is continuous if and only if for each closed set
F < Y the set ¢™'F is closed.

Proof. Suppose that ¢ is a mapping of X into ¥ such that ¢™1G is open
for each open set G < Y. Given any neighbourhood. V(sx,) = V{(y,),
then ¢~ ¥(y,) is open; therefore it is-a set of the form U(x,) and we have

aU(xo) = V(yo)-

‘Hence ¢ is continuous at x,.

Conversely, suppose that ¢ is continuous at each point x of X. Let G be
an open set of ¥ and let x, be an element of ¢7*G. Since y, = ox, € G,
there exists a set U(x,) such that

oU(xy) = G, ie. Ulx,) < o™ lG

Therefore x, is an interior point of the set c~*G and so 6™ 1G is open.
This proves the first part of the theorem; the second part can easily be
proved by taking complements. -

- CoroLLARY 1. If a continuous mapping o maps a subset A of X into a
subset B of Y, then 6A < B.

Proof. The set F = ¢~ 1B is closed and contains 4; therefore F > 4 and

¢A c oF = B.
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COROLLARY 2. .4 one-one correspondence o between two topological spaces
X and Y is a homeomorphism if and only if it induces (in the obvious way) a
one-one correspondence between the open sets of X and the open sets of Y;
likewise o is @ homeomorphism if and only if it induces a one-one correspond-
ence between the closed sets of X and the closed sets of Y.

This is an immediate consequence of the theorem.

DermrTioN. Let 4 be a subset of a topological space X; we say that an
element x of X is a point of closure of A4 if every V(x) meets 4: that is, if
x e A. We say that an element x € X is a point of accumulation of the set 4
if every V(x) meets the set 4—{x}: that is, if xe A—{x}. The set 4’ of
points of accumulation of 4 is called the derived set of A.

We observe that A = AU A4', for if xed or xeA’ then xe 4 and"'

conversely if x € 4 and x ¢ 4, then
xed = A4-{x},
whence x e 4.

Given a set A, the frontier of A is the set Fr 4 of pomts of closure of 4
which are not interior points of 4; we have

A=AUFrd4; FrAN4d=0.
We observe that Fr 4 is a closed set, for
Frd=ANn(-4) = AN (-A4).
ExaMpLE. In a metric space, the frontier of the ball B,(a) is the sphere
8@ = {x/ d(x, @) = 3}.

§ 4. Sequences and filtered families

Let (x,) = (X, X5, X3, - - - ) be a sequence of elements of X. Then we say

that an element ¢ € X is a limit point of (x,) if
(YU@) @no) (Vk; k = no) : %€ Ula).

In other words, any neighbourhood of a contains all the x, from a certain’

value of n onwards. If g is a limit point of (x,), we say that (x,) converges
to a and we write (x,) — a.
Given a sequence (x,), we say that a point a is a cluster point of (x,) if

(VU(@) (Vn) @k; k = n) : x, € Ua).

In other words, any neighbourhood of a contains members x;, of the sequence
with indices as large as we please. It is an immediate consequence of the
definitions that a limit point is always a cluster point.

ExaMmpLE. Let X = R; then if x, = 1/n, the sequence (x,) has 0 as a limit
point; if x, = (=1"(1—1/n), the sequence (x,) has two cluster points +1
and —1, but has no limit point.
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These ideas can be extended to any family (x;/ie ). To do this™ we
associate with the family a filter base & on I; we then obtain a filtered family
(x) = (x() / ie I, #). Unless otherwise stated, a sequence (x,) will always
be considered as a filtered family with the Fréchet base & = (S, / ke N) as
the filter base on the index set N; here S, is the section {n/neN, n = k}.
The above definition of limit point of a sequence (x,) can be stated as follows:
a is a limit point of (x,) if

VU@) @3S; Se&) : x(S) = iUS{x(i)} < Ua).

Likewise a cluster point of a sequence (x,) can be defined to be a point a
such that

(VU(@) (VS; Se &) : x(S)N Ua) # 2.

The purpose of restating the definitions in these forms i§ to make them
suitable for generalisation to any filtered family. Thus we say that an
element a is a limit point of the filtered family (x() /ie I, &) if

(YU(a)) @B; Be®B) : x(B) = U(a).

In other words, the filter base x(%) is partially contained in every neighbour-
hood of a: thus x(%) F ¥ (a). '

As in the particular case of sequences, we say that (x;) converges to a if a
is a limit point of the filtered family (x;) and this is written (x;) — a.

An element a is called a cluster point of the filtered family (x(i) / i € I, &) if

(VU(a)) (VB, Be ) : x(B) N U(a) # D.

In other words,. given any neighbourhood U(a), the filter:base x(%) is not
partially contained in —U(a).

Let (x) = (x()/iel,%) and (y) = (@) /iel, &) be two filtered
families. If x(%) F y(#'), then we say that (x;) is a sub-family of (y;) and
we write (x;) F (¥;). It is easily seen that a sub-sequence (x;,) of a sequence
(x,,) is also a filtered sub-family of (x,).

If x(#) is an ultra-filter base, then we say that (x,) is an ultra-filtered
family.

. We now mtroduce a particular type of filtered family which is of some _
importance. Let (x;/iel) be a family of elements of X and let = be a
latticial ordering relation (cf. § 4, Chapter III) on the index set . Then the
sections S, = {i/iel, i Z k} form a filter base, since :

(1) S # D (because ke Sp),
@ (V) (¥) @k; k= sup {,5)) : S, = SN S,
(because I = sup {i,j} = I1=ilz)).

() (Translator’s note.) An alternative development is through the concept of directed
set. For an account of this, se€J. L. Kelley (General Topology).
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The pair formed by the family (x; /i€ I) and the filter base determined by
the sections S, is called a Moore-Smith family. By definition it is a filtered
family; we denote it by (x; /i€ l, =). For a Moore-Smith family, the defi-
nitions of limit point and cluster point ¢an be stated more simply as follows.
A point a € X is a limit point if

(YV(@) @) : x;€ V(a) forall i = j;
a point b € X is a cluster point if
(YV7(®)) (V1)) : x;€ V(b) for at least one i = j.
EXAMPLE. Let uy, u,, us, . . . be elements of R and write
Xy = Uytuytus+ ... Fu,

Then we say that the series Zu, is convergent if the sequence (x,) converges
to a point x,; in other words if, given & > 0, there exists an integer m such that

nzm = |x-x|=Ze
Let K = {ny, ny, . .. n;} be a finite subset of N. Then we write
Xg = Uy F Uyt oo Uy,

. Let £ be the collection of finite sets K.« N. The inclusion relation = isa
latticial ordering relation on &, since

Sup {Kl’ Kz} = Kl U Kz € '.7{‘-

We “say that the series Zu, is summable if the Moore-Smith family
(xg | Ke X, o) converges to a point x,: that is, to each ¢ > 0 there cor-
responds a finite set K, < N such that :

K(ﬁnite) = Ko = ] xK‘-‘xo I é E.

It can be shown that the series Zu, is convergent independently of the order
in which the terms u, are taken if and only if it is summable. This result is
very general and is still valid if R is replaced by a ‘topological vector space’
(cf. Chapter IX).

In the theorems which follow, we can use indifferently the idea of ‘ﬁltered
family’ or that of ‘Moore-Smith family’.

Theorem 1. If (y;) & (x,), every limit point of (x;) is a limit point of (¥}) and
every cluster point of (y;) is a cluster point of (x).

Proof. If (y;) & (x;), then Y(#') = x(%); if a is a limit point of (x)), then
there is a set B € % such that x(B) = U(g) and so there is a set B’ € &' such
that y(B") = x(B) = U(a). Hence a is a limit point of (y;).

Suppose now.that b is a cluster point of (y;). ‘Then, for.each neighbourhood
U(x) and for each B' ¢ %', we have

YB)NUR) # 2.
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Let B be any set in . Then there exists B’ € 4’ such that y(B’) = x(B) and
therefore x(B) N U(a) # @. Hence b is a cluster point of (x,).

Theorem 2. A point a belongs to A if and only if there exists a filtered
Samily (x;) = (x(i) / i € I, B) contained in A and having a as a limit point.

Proof. Suppose that ae A. Let ¥ be any set in #"(a); then, by the axiom-
of choice, there exists an element x(¥) in ¥ N'4. Since. <:is a latticial
ordering in ¥"(a), (xy) = (x(¥)/ V € ¥"(@); <) is a Moore-Smith family. For-
any neighbourhood U(a), we have

V < Ul = x(V) eV < Ul

and so a is a limit point of (x;).
Conversely suppose that  is a limit point of a filtered famﬂy

C(x) = (x(i)/ieI; B).
Then, for every neighbourhood U(a), we have

» VB (Ez) : x;€ U(a}
- and so 4 N U(a) # @, whence a is a point of closure of 4.

COROLLARY 1. A point a is a point of accumulation of A if and only if there
exists a filtered family contained in A— {a} and having a as a limit point.

This result is an immediate consequence of Theorem 2 and the definition
of point of accumulation.

COROLLARY 2. A set F is closed if and only if for each limit point a of a
filtered family of F we have a € F. '

This result.follows from Theorem 2 and the fact that a set F is closed if .
and only if F = F.

Theorem 3. A point a is a cluster point of (x;) if and only if there exists a
Jfiltered family (y;) admitting a as a limit point and satisfying (y;) V= (x,).

Proof. Suppose that (y)) = (»(j) / je J, #’) admits a as a limit point and
is such that y(#') & x(&). Then, if a is not a cluster point of (x;), the filter
base x(#) is partially contained in a set — U(a) and so there exist sets B e &
and B’ € &' such that :

WB) = x(B) = —Ula),

which implies that (y;) does not admit a as a limit point, contrary to hypo-
thesis. Therefore a is a cluster point of (x,).
Suppose conversely that a is a cluster point of (x;). Then

VB (YV eV (@) (35(B, ) : x(B, V)ex(B)N ¥
and (xg, ) = (x(B, V)/ (B, V)€Bx¥(a); <) is a Moore-Smith family.
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For any set x(B,) € x(#), we bave
| BxV c ByxV, - x(B,V)ex(Bo)
and so (xp, y) & (x;). For any set U(a) € ¥ (a), we have
BxV < Byx Ula) = x(B, VYeV < Ua)

and so « is a limit point of (xg, ). '

COROLLARY. Every limit point is a cluster point.

This follows at once from the fact that (x;) = (x)).

REMARK. Every cluster point of an ultra-filtered family (x;) is a lz'mit point.

Proof. If x(%) is an ultra-filter base, then either x(%)  V(a) or
(%) - [—V(@)]. I ais a cluster point the second case is impossible and so
a is a limit point of (x;).

Theorem 4. A necessary and sufficient condition for a single-valued mapping
o of a topological space X into a topological space Y to be continuous at xg
is that ‘ .
(x) = xo = (0x;) = oxo.

Proof. If ¢ is continuous at x,, then

(YVo)) QU(x0)) : aUxo) = V(¥o),

where y, = 0x,. If (x;) — x, there exists a set Be&# such that
x(B) = U(x,); we have

ox(B) = ¢U(xo) = V(o)

and therefore (gx;) — y,.
Conversely, suppose that o is not continuous at x,. Then

@V (e) (YU(xp)) (@xgp € U(xo)) : 0xp ¢ VQO). :

The filtered family (xy / Ue ¥ (xo); <) has x, as a limit point but (oxp)
does not have y, = 0, as a limit point.

Theorem 5. Convergence of filtered families in a topological space satisfies
the following conditions:

D) G)=x, P ) = @)~ Yo .

@ (V):ix=x = (%)= X :

() (x) = xo whenever (V(y); () F (x0) 3(z); ) = () : () = %o

(@) if (x;) — xo and, for each ie I, we have (x| k € K, ;) — x;, then the
set D = {x{|keK; iel} contains a filtered family (y;) having x4 as a limit
point. - .
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Proof. The proofs of properties (1) and (2) are immediate. To prm}e (3),
suppose that x, is not a liniit point of (x;). ~“Then

(@V(x0) (VB) : x(B) & V(xo)-

If I, = {i | x() ¢ V(xo)} then the sets BN I, form a filter base &, (by the
Corollary to Theorem 3, § 6, Chapter I). The family (x}) = (x(i) / i€ I, Bo)
is a sub-family of (x;) and, since x(B N Iy) = — V(x,), it does not admit x,
as a cluster point. Thus we have a contradiction and so x, is a limit point
of (x;).

To prove property (4) it is sufficient to prove that x, is a point of closure
of the set D; the result then follows from Theorem 2. Any neighbourhood
U(x;) contains an element x,;; hence, since U(x,) is a neighbourhood of x;, it
contains an element x; and so U(xo) N D # @. Therefore x, is a pomt of
closure of D.

REMARK. Properties (1), (2), (3) and (4) of a filtered family are sufficient
to characterise a topology. Starting with any convergence (x;) — X, satis-
fying these properties and using Corollary 2 of Theorem 2, we can define a
topology for which xo is a limit point of a filtered family (x;) if and only
if (%) — Xo.

§ 5. Separated, quasi-separated, regular and normal spaces

We now study certain important properties which characterise various types
of topological spaces. Let X be a topological space with ¥ = (G;/iel) as
the topology. Let A be a subset of X. For the family ¢, defined by

gd = (G,nA/iEI)
we have
U@G,n4d)=4nN UG e¥9,,
ied iel

in 4 in
n(GiﬂA) AnGiEgA’

: i=iy ih
A= ANXe¥, ©@=ANDGc%,

Therefore ¢, determines a topology on 4; we call (4, ¢,) a topological
subspace of (X, %).

If the topological space (4, .‘9 ') satisfies a property (L), we say that, in X,
A satisfies the property (L). Given a point x € X, we say that an arbitrarily
small neighbourhood (or a neighbourhood as small as we please) of x satisfies
(L) if each U(x) contains an N(x) satisfying (L). We also say that X satisfies
(L) locally if, for each x € X, an arbitrarily small neighbourhood of x satis-
fies (L).

A topological space X is called a separated space or a Hausdorff space,
if, given any two distinct points x; and x,, there exist disjoint neighbourhoods
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U(xl) and U(x,). A topological space X is said to be quas1-separated if,
given any two distinct points x, and x,, there exists a neighbourhood U(x,)
not containing x,. Clearly a separated space is also quasi-separated.

ExampLe 1. A metric space is separated, for if x; # x;, we have
d(xy, x;) = & > 0, and so the neighbourhoods

UGs) = Bop(e) = Sea(a)s - UGxs) = Byya() = Syalevy)
are disjoint. '
ExAMPLE 2. A space X having the coarsest topology ¢ = (X, @) is not
separated unless it has only one pomt or is empty. On the other hand, a
space with the discrete topology ¢ = Z(X) is always separated.

ExampLE 3. (Alexandroff- Urysohn) Let X be the real line R. Given any
g > 0, we write

Ne(x) = [x—s, x+¢]
if x < 0and .
N = [5—8, x+8]U [—x—8, —x+e] — {}

if x > 0. Then the sets N,(x) satisfy the axioms for fundamental bases and
so determine a topology. Since

N NN(—x)# D

the space is not separated; however it is easily shown that it is quasi-
separated.

Theorem 1. A topological space X is quasi-separated if and only zf every set
{x} consisting of a single element is closed.

Proof. Suppose that the sets consisting of single elements are closed
Then, if x # y, we have xe —{y} = U(x) and y ¢ U(x); therefore X is
quasi-separated.

Conversely, suppose that X is quasi-separated. Let x, be a fixed point
of X and let x be any point of X such that x, # x. Then there exists a
neighbourhood U(x) which does not contain x,. The union of the U(x) for
all x € X such that x, s x is an open set and it is equal to the complement
of the set {xo}. Therefore the set {x,} is closed.

Theorem 2. A space X is separated if and only if every filtered family (x;)
has at most one limit point.

Proof. Suppose that X is a space which is not separated. Then there exist
two points x, and x, such that, for each neighbourhood U of x; and each
neighbourhood V of x,, we have U N ¥V # @. The filtered family defined by

(o, v) = (U, V) [ (U, V) eV (x) XV (x3); C)_; _
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where x(U, V) denotes an element of U N ¥, has x,; as a limit point, éince
for any neighbourhood U(x,), we have :

UxVecUx)xVy = x(U, V)eUc Ulx).

Similarly x, is a limit point of the family and so the family has at least two
limit points. Therefore if every filtered family of a space X has at most one
limit point, the space X is separated.. .

Conversely, suppose that X is a separated space.: Let (x;). = (x(i) / ie I, &)
be a filtered family in X. Suppose that x; and x, are two limit points of the
family such that x; # x,. Then there exist disjoint neighbourhoods U(x;)
and U(x,) and therefore there exist sets B and B’ in & such that

x(B) = U(xy),
x(B) = U(xz).

Then x(B) N x(B) « U(x,) N U(x,) = @, which leads to a contradiction,
for x(%) is a filter base and so x(B) N x(B’) # D.

In what follows all the topological spaces which we consider will be
assumed to be separated. v

An open neighbourhood of a set 4 is any open set containing 4 and will
be denoted by U(4) or V(4), just as an open neighbourhood of a point x is
denoted by U(x) or ¥(x). A topological space X is said to be regular if it is
separated and if, for any point x and any closed set F not containing x,
there exist disjoint neighbourhoods U(x) and U(F). A topological space X’
is said to be normal if it is separated and if, for.any two disjoint closed sets.
F and F’ there exist. disjoint neighbourhoods. U(F) and U(F’).. Clearly a.
normal space is regular.

_ExampLE.-A space with the discrete topology is normal.

Theorem 3. 4 separated space X is regular if and only if it is locally closed:
that is, every neighbourhood-of x contains a closed neighbourhood of x.

Proof. Suppos’e that X is regular and let U(x) be an open neighbourhood
of x. Since F = —U(x) is closed, there exist disjoint neighbourhoods ¥(x)
and V(F).. Then V(x) @ — V(F) and so

V(&) = —V(F) < UR).

Therefore U(x) contains a closed neighbourhood V(x).

Conversely, suppose that for each x € X and each neighbourhood U(x)
there exists a closed neighbourhood of x contained in U(x). Let F be a
closed set not containing x. Then the open set U(x) = —F contains x and
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so contains a closed neighbourhood N(x). Writing V(F) = — N(x), we have
V(F) N N{x) = @. Therefore X is regular.

-N(x)=V(F)
FiG. 18

Theorem 4. A subspace X of a separated (resp. quasi-separated, regdlar,
normal) space is a separated (resp. quasi-separated, regular, normal) space.

Proof. We prove the result in the case in Wlnch X is separated; the other
cases can be treated in a similar manner.

If A = X and g, b € 4, then there exist disjoint neighbourhoods U(a) and
U(d); therefore

[U@nN A] n[u®G) N A] =
and so the space (4,9 ) is separated.

§ 6. Compact sets

Again all the topological spaces which we are considering are assumed to be
separated. A topologmal space X is said to be compact if it is separated and
if the following axiom is satisfied:

(1) (Borel-Lebesgue axiom). Every family of open sets (G, [ i e I) forming
a covering of X, contains a finite covering:

(Giyy Gigs -+ - » G)-

A compact set X is a subset of a topological space X such that (K G is
compact; in other words, every family of open sets whose union contains K
has a finite sub-family whose union contains K.

ExampLE 1. Let X be the set R, with the usual topology. Then the set
K = [0, 1] is compact. To prove this we suppose that &/ = (G,;/iel) is
an open covering of [0, 1] and that it contains no finite sub-covering. Divide
K into two segments [0, 1] and [, 1]; at least one of these segments cannot
be covered by a finite sub-family of &; let [a,, b;] denote this segment.
Sub-divide [a,, b;] into two equal segments [a,,%(a;+5b;)] and
[4(ay+b,), by 1; at least one of these segments cannot be covered by a finite
sub-family of & ; let [a,, b,] denote this segment. Continuing this process,
we obtain a sequence of segments [a,, b,]. The sequence (a;, a3, @3, .. .)
is increasing and is bounded above by 1; the sequence (by, by, b3, . .) is
decreasing and is bounded below by 0. Thus (g,) tends to a limit 4, and
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(by) tends to a limit by; but | b,—a, | tends to zero and so a = by. Let G,
be an open set of &/ which contains @, (since & is an open covering, such a
set exists). For n sufficiently large, the interval [a,, b,] is contained in G,,
which contradicts the definition of [a,, b,]. Therefore the hypothesis that
there is no finite sub-covering is false. .

ExampLE 2. The straight line R, with the usual topology, is a locally
compact space; in fact, from the above, each point x of R possesses a funda-
mental base. of compact  neighbourhoods, consisting of the sets
N(x) = [x—¢, x+¢]. ' ‘

ExAMPLE 3. Let R be the augmented real line (that is, the line R together
with the points +co and —0). A topology in R is generated (see Example 3
of § 3) by the following sets:

(1) the open sets in R,

(2) the union of {+co} with an open set of R containing an interval
14, +oof,

(3) the union of {—oo} with an open set of R containing an interval
T=c0, L.
" By means of an argument similar to that given in example 1, we can show
' that R, together Wlth the topology just defined, is a compact space.

ExaMmpLE 4. In R a set 4 which is not bounded above is not compact, for
a covering of 4 consisting of open mtervals of length unity does not contain
a finite sub-covering.

EXAMPLE 5. Any finite set {x;, X, ..., %} in a space X is compact, for
an.open covering:of thlS set contains a finite open covering consisting of at.
most k sets.. . -

Bolzano-Welerstrass theorem. If X is a compact space, every mﬁmte Subset
A of X possesses a point of accumulation.

Proof. Suppose that 4 is a set which possesses no points of accumulation.
Then, if x is any point of X, we have x ¢ 4’ and so there exists a neighbour-
hood U(x) disjoint from 4— {x}. The family (U(x)/xe X) is an open
covering of X, wlnch contains a ﬁmte open covering (U(x,), Uxz), ..o Ulxy),

since X is compact. Then X = U U(x;) and, since U(x;) contains at most

one point of 4 (the point x; bemg the only possibility) it follows that 4 is
finite.

Theorem 1. 4 compact set is closed.
it g ——

Proof. Let K be a compact set and let x be a point not belonging to K.
If y e K, there exist disjoint neighbourhoods U?(x) and ¥(y), since X is a

separated space. Then (V(y)/y e K) is an open covering of K and S0 con-
TS F
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tains a finite open covering (V(3), V(72), - - V(y,,)) Since the neighbour-
hood U(x) = ﬂ U”"(x) does not meet V(K) U V(yp it follows that K is
closed.

Theorem 2. If F is a closed set contained in a compact set K, then F is
compact.

Proof. If (G, | i e I) is an open covering of F, then we can obtain an open
covering of K by adjoining —F = G,. Since K is compact, this covering
contains a finite covering (Gy, Gy, . - - » G,) and then (Gy,...,Gy) is a
finite open covering of F. Therefore F is compact.

COROLLARY. A subset of the straight line R (with the usual topology) is
compact if and only if it is closed and bounded.

Proof. By Theorem 1, a compact set is closed and, by Example 4, a
compact set in R is bounded. Conversely, if 4 is a closed and bounded
subset of R, then it is contained in a segment, which is compact, and so, by
Theorem 2, A4 is compact. '

Theorem 3. A compact space is normal.

Proof. Let X be a compact space. We first prove that X is regular. If F
is.a closed subset of X, then, by Theorem 2, F is compact. Let x be a point
not in F. For each point y of F there exist disjoint neighbourhoods ¥(y) and
U(x). Because F is compact the covering (V(»)/y EF) contains ‘a finite

covering (V(»1), ..., V(). Then, writing U(x) = N U™(x) and
k=1

-

n . .
V(F) = U V(y,), we have disjoint néighbourhoods containing x and F
k=1

respectively, and so X is regular.

F

utec)

vy
FiG. 19

We now complete the proof by using the regularity of X to prove that it
is normal. Let F and F’ be disjoint closed sets. If x € F, there exist disjoint
open sets U(x) and V*(F"), since X is regular. Since F is compact, the open
covering (U(x) [ x e F) contains a finite open covering U(xy), U(xyp), . oo Ulxy)

and then the sets U(F) = U U(x,) and V(F') = ﬂ V""(F’) are disjoint open

neighbourhoods contammg F and F’ respecﬂvely
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Theorem 4. The union of a finite number of compact sets is compact. The .S
intersection of any number of compact sets is compact.

Proof. Let Ky, K,, ..., K, be compact sets and let 4 be their union. If
= (G, /i€ I)is an open covering of 4, then the sets of & which cover X
contain a finite covering, those which cover K, contain a finite covering and
so on. Thus &/ contains a finite open covering of 4 and so 4 is compact.
Suppose .now that K (iel) is any collection of compact sets. Then

B =1 K, is closed since it is the intersection of closed sets; but B is contained-
iel
in each set K; and so, since K; is compact, B is compact by Theorem 2.

Theorem 5. Let o be a single-valued continuous mapping of a space X into
a space Y. If K is a compact subset of X, then the image oK is a compact
subset of Y.

Proof. Let (G;/iel) be an open covermg of ¢K; then the family
(67'G;/ieI)is an open covermg of K, and since K is compact, this contains
a finite open covering (67 Gy, 671Gy, . .., 671G,). Then(Gy, Gy, ..., G;)
is an open covering of ¢K and therefore oK is compact.

CoroLLARY. Iff is a numerical function defined and continuous on a spgc ¢ n
X, and if K is a compact subset of X, then f attains the value sup f(x) in K

xeK
(in other words; the supremum is a maximum). Similarly, f attains the value
inf f(x) in K.
xekK

Proof. If f is a continuous. mapping of X into R, then, by Theorem 5,
S(K) is compact. Therefore, by the Corollary to Theorem 2, f(K) is closed
and bounded. Hence fhas a maximum f(a) and a minimum £(b), where both
aand.b are:in K.

Broadly speaking, it is this result which accounts for the mterest of topo-
logists. in compact sets.. ‘

Theorem 6. Let X be a topologzcal space. The axzom )] for compactness
is equivalent to each of the Jollowing:

(2) (Finite intersection axiom). If (Fy/iel) is a family of closed sets in
X for which every finite intersection is non-empty, then ﬂ Fi # 0.

(3) (Cluster axiom.) Every filtered family (x;) of elements of X admits at
least one cluster point.

(4) (Limit axiom.) Every ultra- ﬁltered Jamily of elements of X admits a
limit point. i

Proof. One method of proving the theorem is to show that

D= =3=@=(Q.
However, it is simpler here to prove the following:

OEAWEHOR O
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(1) implies (2). Let (F;/ieI) be a family of closed sets for which every
finite intersection is non-empty. If M F; = @ then the family
iel
(—F;/iel)
is an open covering of X, which contains a finite covering
(-~ F,,——Fiz,... ~F;) by (1). ThenU( F,k—XandsoﬂF o,

contrary to hypothe31s Therefore N F; sé o.
ieJ :
(2) implies (1). Let & = (G;/ieI) be an open coveringf of X and write
F; = —G,. If (G;/ieI) does not contain a finite open covering, then every
finite intersection of the closed sets F; is non-empty. Therefore, by (2),

N F, # @, which contradicts the fact that ¢ is a covermg Hence (1) is
iel

satisfied. :

(2) implies (3). Let (x(})/ie I, %) be a filtered family in X. Since x(%)
is a filter base, every finite intersection of sets of type x(B) is non-empty;
hence every finite intersection of sets x(B) is non-empty and so, by (2),
we have

n x(B) # O,

Bed

Therefore every point a of this intersection is a cluster point, since
(VV(@) (YB) : V(@) N x(B) # D.

(3) implies (2). Let (F;/iel) be a family of closed sets for which every
finite intersection is non-empty; then the finite intersections of the sets F;
form a filter base #. Choose a point x(B) in each set B e #; then, by hypo-
thesis, the filtered family (x(B) / B € %, <) admits a cluster point 4, and so

(V V(a)) (VBy) 3B; B < By) : x(B)e V(a),
whence
(v V(a)) (VBy) : BN V(a) # @.

Since B, is closed, it follows that a belongs to By ; this is true for all sets B,
and so a belongs to all sets F;. Hence condition (2) is satisfied.

(3) implies (4). If x(&) is an ultra-filter base, then every cluster point is a
limit point, by Corollary 2 to Theorem 3 of § 4.

(4) implies (3). By Theorem 6 of § 6, Chapter I, there is an ultra-filter
base x(%,) such that x(%,) & x(#); then (x(i)/iel, %) admits the limit
point of (x(i) /i e I, #,,) as a cluster point. ‘

COROLLARY. A necessary and.sufficient condition for a filtered family (x;)
in a compact space to admit a limit point is that (xi) admits one and only one
cluster point.
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Proof. The condition is clearly necessary. To prove that it is sufficient,
suppose that (x;) admits only one cluster point a; then the theorem just
proved shows that for any family (y;) F(x;) there exists a family (z9 F ()
possessing a limit point, which can only be a; then g is a limit point of (x;)
by Theorem 5 of § 4. .

§ 7. Connected sets

A topological space.is said to be disconmected if it satisfies any one of the
following equivalent conditions:

(1) There is a partition (G,, G,) consisting of two open sets.
(2) There exists a set G, neither empty nor the whole space, which is both
open and closed.
@’\il“here emsts a set G, neither empty nor the whole space, whose frontier
is empty.

A topological space which is not disconnected is said to be connected.
A connected subset of a space X is a subset 4 for which (4, ¢ ) is connected ;
in other words, 4 is connected if the following conditions cannot be satisfied
simultaneously:

G, G,e%,

Ac G UG,
GNG,NA=0,
ANG, # 9,
ANG, # @.

ExampLe 1. The space R is connected.. For suppose that Gy and G, are
two disjoint open sets whose union is R. .The set G; (resp..G,) is a union
of disjoint open intervals D} (resp. Dj). If G, and G, are both non-empty,
there exist a € G;-and b € G,; without loss of generality we can assume that
a < b. Since the segment [a, 5] is compact,™ it is covered by a finite number
of open intervals of the form D or Dj. If ae D} = ]A, u[ then pe[a, b];
but u does not belong to any of the selected intervals, which leads to a
contradiction. Thus one of G, and G, is empty and so R is connected.

ExampLE 2. In any topological space a set {x} contamlng a single element
is connected and the null set @ is also connected.

ExaMPLE 3. In a quasi-separated space X, the set 4 = {x,, x,} (Where
X, # X,) is not connected, for there exist neighbourhoods U(x,) not con-
taining x, and U(x,) not containing x,. Denoting these by G, and G,, we
see that the above conditions for disconnectedness are satisfied.

Y (Translator s'note. ). This result can be proved without appealmg to the compactness -
of [a, b].
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EXAMPLE 4. Consider the sets in R? represented in figure 20.
/ A,

A,

@As _ )

; Fic. 20
Without arguing rigorously, we can see that there exist disjoint open sets
G,, G,, G; covering Ay, 4,, A5 respectively, so that 4 is not connected.
But — A is connected, and B is connected, although — B is not connected.

Al

\

' Theorem 1. If A; and A, are two intersecting connected sets, then the set
A = A, U A4, is connected.

~ ‘Proof. Suppose that 4 is disconnected. Then there exist open sets G, and
G, such that '

4= G, UG,
AnGlnG2=®,
ANG, # 9, '
ANG, 5 D.

Let a be an element of 4,-N 4,; without loss of generality, we can suppose
that
aeGy; G,NA4, #O.

Then we have »

A1 < Gl U Gz,

Al n G1 n Gz = @,

A, NG, # O (because it contains aq),

A, NG, # D.

Therefore A, is not connected, which is contrary to hypothesis. -
CoROLLARY 1. If A4y, s, ..., A, are connected sets suchthat A, N A, #D
n
fori=1,2,...,n—1, the set A = .U A, is connected.

i=1 '
Proof. By the theorem, Ay U 4, is connected; hence 4, U 4, U 4; =
(4, U A4,) U 4, is connected and so on.

COROLLARY 2. If & = (4;[iel) is a family of connected sets whose
intersection is non-empty, their union is a connected set.
A similar-argument can be used in this case.

COROLLARY 3. .If a family of connected sets & = (A4;]iel) contains a
set Ao which meets all the A;, the union of the A; is a connected set.
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Proof. The famlly &y = (4o U Ai / zeI) satisfies the condmons of
Corollary 2.

Theorem 2. If A is a connected set, so is its closure A.
Proof. If A is not connected, there exist open sets G, and G, such that

Ac G UG,
ANG NG, =9,
ANG, # 9,
ANG, # @.
Then
4 < G UG,
ANG NG, =09, :
AN G, # @ (for otherwise, 4 = — G, so that 4 = —Gy),
ANG, # @ (for otherwise, 4 = —G,, so that 4 = —G,).

This implies that 4 is not connected, contrary to hypothesis.

Theorem 3. If o is a single-valued continuous mapping of a topological
space X into a topological space ¥, and A is a connected subset of X, then the
set oA is connected.

Proof. If 64 is not connected, there exist open sets G, and G, such that

cd = G, UGy,
cANG, NG, = O,
cANG, # 9,
cANG, # O.
Then '
4Ac o G, UG,
ANe™ G, Ne™ G, = D,
/ ANoG, # O,
AN~ G, # O

and so A is not connected, contrary to hypothesis.

~ Theorem 4. The only connected sets in R are the intervals (the&e include, in -
particular, the sets

@ =14, and {1} = [, A]).

Proof. As in example 1 above, we can prove that an interval is connected.
"Suppose now that 4 is any connected subset of R. To show that 4 is an
interval, it is sufficient to show that if ae 4 and b € B, then each point 4
between a and b belongs to 4. If this were not true, then we should have a
point A € Ja, b[, such that 1 ¢ 4; then Gy = ]—c0, A[ and G, = ]4, + oof
would be disjoint open sets covering A, which would contradict the hypo-
thesis that A4 is connected.
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COROLLARY. If A4 is a connected subset of X, then any numerical function
f defined and continuous on X attains in A every value strictly between

sup f(x) and mf f(x)

xeA
Proof. If f 1s a continuous mapping of X into R, then f(4) is connected
by Theorem 3 and is therefore an interval by Theorem 4.
Broadly speaking, it is this result which accounts for the interest of topo—
logists in connected sets.

§ 8. Numerical functions defined on a topological space

The ideas of continuity introduced above apply in particular to numerical
functions and we say that a numerical function f, defined on a topological
space X, is continuous at a point x,, if it is a mapping of X into R and, as such,
is continuous at x,; in other words if, to each ¢ > 0, there corresponds a
neighbourhood U(x,) such that

xel) = |f)-fxo)| <.

In certain situations this idea turns out to be too restrictive and we are
forced to consider the concepts of lower and upper semi-continuity,*) as
given in the following definitions.

A numerical function defined on X is said to be lower semi-continuous. at a
point x, if, to each & > 0, there corresponds a neighbourhood U(x,) such that

xeUlx) = fx)>flxo)—e

Similarly a numerical function f is said to be upper semi-continuous at x, if,
to each ¢ > 0, there corresponds a neighbourhood U(x,) such that

xeUky) = fO) <fl)+e

We note that fis continuous at x, if and only if it 1s both lower and upper
semi-continuous at that point.

Properties of upper semi-continuous functions can easily be deduced from
those of lower semi-continuous functions by replacing f(x) by —f(x);
we shall therefore consider only the case of lower semi-continuous functions.

‘We say that a function f'is lower semi-continnous (in X) if it is lower semi-
continuous at each point of X.

ExampLE 1. As an intuitive example, consider the photographic image X
of an opaque object Y. The object, a set of points in three-dimensional
space, can be regarded as a topological space; the image is a set of points in

() (Translator’s note.) The terms ‘lower semi-continuous’ and ‘upper semi-continuous’
-. for single-valued numerical functions must not-be confused with similar phrases introduced
in' Chapter VI and referring to different concepts concerning multi-valued functions. For
the latter, the abbreviations 1.s.c. and u.s.c. are used subsequently; these abbreviations are
not used for the other types of semi-continuity.
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a plane and can also be regarded as a topological space. Let o be the map-
ping in which there corresponds to each point x of X the point y of ¥ which
is seen on the photograph at x. Given any point x € X, let f(x) be the actual
distance of the observer from the point ox of the object. The numerical
function f so defined is not necessarily continuous in X, but it is upper
semi-continuous.

ExaMPLE 2. Let f be a numerical function defined in [0, 1] and having a
_continuous derivative. The set C, = {(x,/(x)) [ x€ [0, 1]} in R? is called .
the representative curve of f. The number

1
©p = | JIFTEP &

is called the length of the curve C,. If C; and C, are two curves, then

dC;, C) = sup { | f)—g@) | [ x€ [0, 1T}

is called the distance between the ctrves. With this definition of distance,
curves form a metric space (and so a topological space) which we denote by %.

Let C;, C,,... be a sequence of curves defined as follows: C; is the
semi-circle on the unit segment [0, 1] as diameter, as indicated in figure 21;
C, is the union of the semi-circles on [0, ], [, 1] as diameters; C; is the
union of the semi-circles on [0, ], [$, ], [%, £, [3, 1] as diameters and so
on. Clearly this sequence of curves in % tends to a limit, which is the seg-
ment [0, 1]. However, the lengths of the curves are given by

T
1(01)—-2-’
3 1 T
(Cy)= 2><an _2’
KC3) = 4xnx-1- —T—C etc
‘ 3 8 - 2:

]
Mo
o

G, 2
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Therefore the sequence (i(C,)) does not tend to ([0, 1]); this shows that [(C)
is not a continuous function in ¥, but we can prove that it is lower semi-
continuous.

Theorem 1. A necessary and sufficient condition for a numerical function f
to be lower semi-continuous is that, for each number A, the set
S; = {x/xe X, f(x) > A} is open.

1"’raaj2 The family 2~ of intervals
Q% +o[/AeR)

determines a topology in R. Then it follows quickly from the definition of
lower semi-confinuity that f is lower semi-continuous if and only if it is a
continnous mapping of X into the topological space (R,Z 7). Since
S, = f~1 (14, + oo[), the theorem stated is equivalent to this result.

COROLLARY. A numerical function f is lower semi-continuous if and only if,
for each number A, the set T, = {x [ f(x) £ A} is closed.

Theorem 2. If K is a compact subset of X, a lower semi-continuous function
f attains in K the value m = inf f(x) (in other words, mf f(x) is a minimum).

xekK

Proof. Let jube'a number such that p > m. Then S {x [|xeK, f(x) £ u}
-is not empty and is a closed subset of the compact set K; hence, by the finite
intersection axiom, we have

ns, %G

cp>m
For any point x, of this intersection, v_ve have Sfxg) = m
Theorem 3. If (f; ] i& ) is a family of lower semi-continuous functions, the

Sfunction g such that g(x) = sup fi(x) is lower semi-continuous.
: iel

Proof. Let x, be any point of X. Given ¢ > 0, there exists an index i such
that '
fi(x0) > glxo)—e.

Since f; is lower semi-continuous, there exists a neighbourhood U(x,) such
that

x € Ulxo) = fi(x) > fi(xo)—¢& > g(xo)—2¢
and therefore
xeUlx) = gx) 2 glxo)—2e

Hence g is lower semi-continuous at x,; since x, is arbitrary, the theorem
is proved.
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Theorem 4. If fi, fa, . .., [, are lower semi-continuous functions then the
Junction h(x) = inf f(x) (where I = {1,2,...,n}) is lower semi-continuous.
iel

Proof. Let x, be any point of X. Given ¢ > 0, there exists a neighbour-
hood Uj(x,) such that

x € Uyxo) = fix) > filxo)—e.
If x € N U(x,), then, for all i,
, iel

Jix) > filxo)—e,

h(x) = inf fi(x) Z inf (fi(xo)—¢) = h(xo)—e

whence

13

and so % is lower semi-continuous.

Theorem 5. If f and g are two lower semi-continuous numerical functions,
the function f+g is lower semi-continuous.

Proof. The set
x/f®)+8() > a} = &’ {x/1f&) > a=2} N {x/g(x) > 1}
is a union of open sets and so is open.

Theorem 6. If f and g are two positive lower semi-continuous numerical
JSunctions, the function h defined by h(x) = f(x) g(x) is lower semi-continuous.

Proof. If @ > 0, the set

/@80 > ) = U G160 > 0 {60 > 2

is a union of open sets and'so is open:
\ ' : _
+§9. Products.and sums of topological spaces -

In order to fix our ideas, we first consider a countable family (X;, X5, ...)
of topological spaces. If.& = (x;,x,,...) is an element of the set
X = X, x X, x ..., the projection of X on X is the single-valued mapping
7; (or projx,) of X into X, defined by my(x1, X3, .+ + 5 X1y . . -) = X;1

We wish to define a topological structure ¢ on X for which =; is a con-
tinuous mapping; in other words, if

9, = (Gi/keKk)
is the topology for X :» then & must contain the sets
@) X XXX . XX XX Xy X X X

The coarsest topological structure & which satisfies this condition is that
generated by the sets (n;)”'G%, where i and k vary (cf. example 3, §3). A
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finite intersection of these sets (n;) " *G¥ is called an elementary open set in X;
thus an elementary open set is a set E of the form

E = XiszstxX4xG5xX5x .

where only a finite number of the G, differ from X;. Then the topology ¢ is
obtained by forming unions of elementary open sets. With this definition
of ¢, we call (X, %) the topological product of the spaces (X, .‘9,) and this -
new topological space is denoted by

X = H :X.i'. : .
It is easily seen that this definition can be extended to the cases in which the
family of spaces X; is not countable.

“Exampre. The plane R?, with the metric topology deﬁned above, is the
topological product of the space R with itself; it is easily seen that every
open set of R? is a union of elementary open sets E = G¥x G%.

Let (X;, %)) be a family of topological spaces Then the pair (X, %)
consisting of the set

X = {(l',x,-)/ief, xiéXi}

.and the topology & on X generated by the sets (i, G%), where k€ K; and
iel, is called the topological sum of the X;. This new space is denoted by

X=Z‘Xi'

Theorem 1. If A is a subset of a topological space X and B is a subset of a
topological space Y, then

AxB AxB

Proaf Ty is a continuous mapping of X'x ¥ into X and =y (A xB) < A
therefore, by Corollary 1 to the theorem of § 3 ,we have

Ty (A X .B) < A.
Similarly, the projection ny of X'x Y into Y satisfies

7y (Ax B) < B,
whence

AxB < AxB.
If (x, ) € Ax B and (x, y) ¢ A X B, there exists an elementary neighbour-
hood U(x)x V(») in X x ¥ such that
(U V) N(AxB) =

Then either U(x) N 4 = @ or V(y) N B = @; therefore (x, y) ¢ A x B, con-
trary to hypothesis. It follows that

AxB = AxB. .
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Theorem 2. If G is an open set of X = [| X, the projection 7,G is an open
iel
set of X;. ‘

Proof. If G is an elementary open set, the result is true trivially. If G is
any open set, it is a union of elementary open sets E* and then

n,G == TCi(UEk) == UniEk
k k
is clearly an open set.’

LemMA. Let x2 be a X, E,
point of X;. Then the .
single-valued mapping ¢ E,
of X, into Xy x X, defined "~ 2% 6
b.y ox, = (x, x,) is con- G- G'
tinuous.

Proof. If G is an open
‘setin X; x X,, then 6™!G
is the union of projec- : ‘
tions (on X,) of element- 20 X4
ary open sets of G meeting !
{x3} x X,.

X
2
Thebrem 3. If F is a compact] ’ G,

closed set in X;x X, and G F

X, is a compact space, 211 Ety)

. then m.F is a closed set

in X.

Proof.. Let x? be a
point of X;. Then, by the
lemma, {x3} x X, is com- :
pact, since it is the image !
of a compact set under a ‘ xs TWF
continuous mapping. ' F1G. 22

X

Ifx0¢ n,F and y € {xJ} x X, then y ¢ F. Therefore there exists an elemen-
tary open neighbourhood E(y) disjoint from F. The covering
EQ)|ye {x‘l’}‘x X,) contains a finite covering E(»,), E(y2),.- - - » E(va); the

set N 7, E(y,) is an open neighbourhood of x? disjoint from =, F and so the
k=1 .

set 7, F is closed.

. Tychonoff’s Theorem. A necessary and sufficient condition for the topological

product X = ] X, to be compact is that each space X, is compact.
iel
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Proof. If X is compact, then X; is separated, for if x? and y? are distinct
elements of X; we can find disjoint elementary open neighbourhoods for the

points
() = (x;/iel) and (y) = (y;/iel)

(with x; = y,;if j # i, x; = x? and y; = 1P).

Thus X is a separated space and, since X; = n,X is the image of a compact
space under a continuous mapping, it is itself a compact, space.

Suppose conversely that each space X; is compact. Then it is easily shown
that X is separated. Let x = (x(k) / k € K, &) be an ultra-filtered family in
X and consider the projection mx = (x;(k) [ k € K, #). The latter is the
image under a single-valued mapping of an ultra-filtered family and so is
itself an ultra-filtered family. Smce X;is compact this family adm1ts a limit
point x{ € X. Then

k) ke K, B)— x° = 0 [iel).

Therefore every ultra-filtlered family in X admits a limit point and so X is
compact by Theorem 6 of § 6.

ExaMPLE 1. The square [0, 1]x [0, 1] is compact; more generally, the n
dimensional cube [0, 1]” in R" is compact.

ExampLE 2. The plane R? is locally compact, for.each poiﬁt x = (x!, x?)
admits a fundamental base of compact neighbourhoods, consisting of the sets

N, (%) = [x'—¢g, x' +e] x [x*—¢', x> +£"].
More generally, the space R” is locally compact.

Theorem 4. The topological sum X =y X, is not compact if I is infinite.
iel

n
The topological sum X =Y. X, of a finite number of topological spaces is
i=1
compact if and only if each space X, is compact.

Proof. If Iis infinite, the sets (i, X;) determine an open covering of X and
this covering does not contain a finite open covering; therefore SX; is not
compact.

Suppose now that X = Y. X, is the sum of a finite number of spaces X;
i=1

and that X is compact. Then X; is clearly separated. Let (G%/ke K,) be
an open covering of X;; then ((, G’f) | k € K;) is an open covering of (i, X;)
and so it contains a finite covering (i, G}), (i, Gi ) oo oy (G, GP), for G, X)),
being a closed subset of a compact space, is compact. Then the sets
GLGE...,Gr form a finite open covering of K, and therefore X;is compact.

Suppose conversely that X = Z X; is the sum of a finite number of com-

pact spaces. It is easily shown that Xis separated and if (G, /keK)isan
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open covering of X, then we see that there exists a finite covering of (1,.X 03
similarly there exists a finite covering of (2, X3) and so on, whence there
exists a finite covering of X.

The remaining theorems of this section are analogous results concerning
connectedness. '

Theorem 5.. The topological product X . X X, is connected if and only if
X, and X, are connected. '

Proof. If X, x X, is connected, then X; = m;(X; x X) is the image of a
~ connected space under a single-valued continuous transformation 7, and
therefore X, is connected. Similarly X, is connected.

Suppose now that X; and X, are connected. Let a; be a point of X;; by
the lemma immediately preceding Theorem 3, the single-valued mapping of
X, into X, x X, defined by ay = (a,, y) is continuous. Therefore the set
A, = {a;} x X,, being the image of the connected space X, under this
mapping, is connected. Similarly, if y € X, the set A(y) = X x {y} is
connected. Moreover, we have

4, NAG) = {(@, )} # @
and so, by Corollary 3 to Theorem 1 of §7,
4, UUA4AQD) = Xix X,
yeXa
is also connected. '
Theorem 6. The. topological sum X, + X, is not connected.
Proof. In the space X, 1+X2, the set
(LX) = {1, %)) [ %y € X}
is both open.and closed but is neither the null set nor the whole space..



CHAPTER V

TOPOLOGICAL PRQPERTIES OF METRIC SPACES

§ 1. Topology of a metric space s

We have already seen that a metric*? for a set X is a numencal function d
defined on X x X such that

1) dxy) 20,

@ dxy)=0 <= x=y

3 dix, y) = d@, %),

@ dix, »)+dWy, z) z dx, 2) (tnangular mequahty)

If d is a generalised numerical function (with values i mr R) satisfying axioms
(1), (2), (3) and (4) we say that d is a generalised metric.

With each metric space (X, d) we associate a topology ¥, defined as above
(Chapter IV, § 1). Conversely, we say that a topological space (X, %) admits
a metric d or is metrisable if the topology %, of the metric space (X, d)
coincides with &. Clearly certain topological spaces do not admit a metric
(for example, non-separated spaces). On the other hand a topological space
can admit several metrics. Two metrics d and d’ on the same set X are said
to be equlvalent if for each strictly positive number ¢ there exist numbers 7
and 5’ such that

@) dx,p=n - = dxy=ses
@ dxysy = dxy=se

Theorem 1. If d and d’ are equivalent metrics for X, we have
Yi=%,

Proof. If Ge%,, then to each ae G there correspond numbers & > 0
and 5" > 0 such that

dx,a) 7' = dix,a) ¢ = xeG.

Hence a is an interior point of G relative to the topology %, and so G €%,..
Therefore, by symmetry, we have %, = &,.

1) The idea of a metric space is due to M. Fréchet (Rend. Circ. Mat. di Palermo, 22,
1906); also that of complete space introduced in § 4 (thesis). Important contributions to
the theory of metric spaces have been made by Urysohn, Hausdorff, Alexandroff and Hopf.
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ExampLE. Let
x=(x!,x% %% and y=(*,1%5%
be two points in R? and let 4, d’, d” be the three metrics defined by
Cd(x, ) = J(x -—y‘)2+(x2—y2)2+(x yf’)2 ’
d'(x,y) =|x'—y l+lx2—y l+ »®-y],
d'(x, y) = max { | x* =y* |, | x*~»* |, | x*~»* | }.

~ Then
dix,y) < d'(x,3); d'(x,y) < 3d(x, y);
, d'(x,y) £3d'(x, 3); d"(x,y) = d'(x, );
and so these three metrics are equivalent.

Theorem 2. If (X, d) is a metric space, then d is a continuous numerical
Junction on the topological product X x X.

Proof. Let (xo, yo) be a point of X'x X and consider the neighbourhood
n(xd; yO) = ﬁa(xo) X éaU’O)‘
If (x, ¥) belongs to this neighbourhood, then

| d(x, y) d(xo, yo) | < | dx, ¥)—d(x, yo) | + | d(x, Po)—d(3co, 7o) |
< d, yo)+d(x, xp) £ 2,

and so d is continuous in ¥'x X.

If 4 is a subset of a metric space (X, d), then clearly the topological sub-
space (4, %) admits d restricted to 4 x 4 as a metric.
The distance. between a point x and a set .4 is defined to be

d(x, A) = inf {d(x, y) | y € 4}.

If 4 is compact, then {x} x 4 is compact in Xx X and so, by Theorem 2,
this infimum is 2 minimum.

If 4 and B are two sets, then we define the distance between them to be
the number

d(4, B) = inf {d(x,7) | x€ 4, y  B}.

If 4 and B are compact, then 4 x B is a compact subset of X x X and so, by
Theorem 2, this infimum is a minimum.
The number

0(4) = sup {d(x,y) /| xc 4, ye 4} ’

is called the diameter of the set 4. As in the previous cases, we can easily
see that this supremum is a maximum if 4 is compact.
A set A is said to be bounded if §(4) < + c0; any metric d (or even general-
T8 G
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ised metric) is equivalent to a metric d' for which X is a bounded set. For
if we write
d'(x, y) = d(x, » if dxy) =1,
d(x,y) =1 if dx,y)>1,
then 4’ is a metric, since '
d@xp 20,
d'(x,) =0 <« x=y,
d'(x,y) = d'(y, x),
d'(x, )+d'(y, 2) = d'(x, 2).

The triangular inequality is 1mmed1ate ifd'(x,y) =1ord(y,z) = 1;in the
other cases we have

d'(x,y)+d'(y, 2) = d(x, y)+d(», 2) 2 d(x, 2) 2 d'(x, 2).

Moreover, it is clear that 4 and 4’ are equivalent.

A property of a metric space (X, d) is called topological if it is unchanged
whenever d is replaced by an equivalent metric d’. The above remarks show
that the property of being bounded is not topologlcal

In what follows we can always suppose, in studying the topology of a
metric space (X, d), that X is bounded.

Theorem 3. If A-is a subset of a metric space X, the distance d(x, A) from
a point x to this subset determines a continuous function f in X, where

f) = d(x, 4).

~ Proof. Let ¢ be a strictly positive number and let x, y € X be such that
d(x,y) £ . There exists an element @ € 4 such that :

d(x, a) £ d(x, A)+e.
Therefore
d», 4) £ d(y, a) < A, x)+d(x,a) < d(x, A)+2e
and so, by symmetry, we have
l d(y, A)—d(x, A) ] <2e
Since this inequality holds whenever d(x, y) < &, it ffollows that the function
f defined by f(x) = d(x, 4) is continuous.

A metric space possesses certain interesting topological properties; one of
these is that there exists a countable fundamental base of nelghbourhoods,
namely

H(X) = (By (), By (x), By (%), ...)

and another is given in the following theorem.
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Theorem 4. A metric space is normal.

Proof. Let (X, d) be a metric space. Then it is separated, for if x € X,
.ye Xand x # y, then d(x, y) = & > 0; since

dz,¥) <= =  dzy) 2 dx p)—dzx)2 e—

2

)

g
4

Slm

we have:
~ ‘B, (x) N B,(y) = @.

4 4

Suppbse now that F; and F, are two disjoint closed sets. If x € Fy, there
exists a positive number & such that B,(x) = —F, and we have

d(x, Fz) g e > Oz d(x, Fl)'
It follows that

q V(Fy) = {x ] d(x, Fy) < d(x, F;)}
an
' V(F,) = {x ] d(x, Fy) < d(x, F,)}

are disjoint sets containing F; and F, respectively. Moreover, since
d(x, F))—d(x, F,) determines a continuous function of x, V(F,) is open;
similarly V() is open. Therefore X is normal.

§ 2. Sums and products of ‘metric spaces

We consider a family of metric spaces (X}, d;) and ask whether the topblo gical

sum Y X; and the topological product [] X; are metrisable spaces. ..
tel tel

Theorem:1. The topological sum.y. X, of the metric spaces (X, d;y admits
iel

a metric d, which is defined as follows: for each i€ I, let a; be an element of
X; and write

d(x y) = di(xis yi) . Zf X = (i: xi),y = (i: yi)’ .
’ = di(xi’ ai)+l+dj(yj3 aj) lf X = (l: xi)’y = (js yj): i ]
Proof. The function d is a metric, for
dx,») z 0,
dix,59) =0 <= x=y,

d(x: y) = d(y: x),
d(x, »)+d(y, 2) = d(x, 2).

To prove the triangular inequality, it is sufficient to consider the following
cases separately:

Case 1. If x = (i, x)), y = (i, y), z = (i, z;) we have
d@x, P)+d, 2) = dix, y)+di0s 2) 2 .di(x;, 2;) = d(x, 2).
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Case 2. I x = (i, x), ¥y = (, ), z = (J, z;) where i # j, we have .
d(x, y)+d(y, 2) = dfxs, y)+di(yi a)+1 '*jdj(aja z;) ~
g d,-(xi, ai)+1+dJ(aJ, Zj) = d(x, Z).

Case3. ¥ x = (i, x), y = (J, ¥y), z = (k, z) where i # ] and j # k, we
have ' )

A, )+, 2) = dixs, a)+1+2 diay, y)+1+da, z) Z d(x, 2).

To complete the proof, we verify that the topology @, is that of the topolo gical
sum.

n
Theorem 2. The topological product || X; of the metric spaces
i=1

. (Xl’ dl): (X2= d2)9 (XS! dS)’ s (Xm dn)
admits a metric d, defined by writing
d(x, y) = max d(x’, ')
i

for the distance between x = (x%, X%, ..., XY andy = (0, % ..., V")
Proof. The function d is a metric, for

dix,y) 2 0,

d(x: y) =0 had X =),
d(xs y) = d(y, X), g

d(x, y)+d(y, 2) Z d(x, 2).

To prove the triangular inequality, we observe that, for all j < n,
max dx', ) +max d(¥, 2) 2 dix, ) +d,07, ) & 4y, 2),
[ i o '
whence " ’
d(x, y)+d(», z) Z max dy(x’, z) = d(x, 2).
. J
To complete the proof, we verify that the topology is that of the topological
product.
REMARK. We could equally well have proved that [] X, admits the
=1 :
metric d, defined by

Cd(x, ) = i/ 2:1 (4, yHIP.

The triangular inequality is immediate if p = 1; in the other cases, it follows
from a general result (cf. § 9, Chapter VIII). The metric d, is equivalent to.
the metric d defined in Theorem 2, for

dy(x, y) £ d(x, y)x%/n,
d(x,y) = dy(x, ).
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Applications. The ideas contained in the above remarks enable us to define
a new class of metric spaces. Let p be an integer and let L, be the set of

o0
numerical sequences (x") such that ) | x*|° < +c0. If x = (x") € L,, then
n=1

Ax = (Ax") e L, for each number A, since
"iMﬂP=IAP§JﬂP<+w.
Ifx = (x"eL,and y = (") e L,, we have x+y = (x"+)") € L, since
 Slwerrsz ZdePrlrh <t
We also note that 0 = (0,0,0,..) €L,

We observe that L, = L, < Ly < ... For,if x € Ly, then }, | x" [P <+ o0,
. n=1

so that | x"| < 1 for all n from a certain number n, onwards, whence

5wt s Ylal < e
n=no

n=ng

For two points x and y of L,, the function d, defined by

@mw=J§puyp
is a metric, for
Sy sz Sdzlelrp <t
The space L, is called the real Hilbert space.l

§ 3. Sequences of elements

The ideas of limit point and cluster point for a sequence (x,) were introduced -
in the preceding chapter. Sincea metric space is a separated space, a sequence
in such a space cannot have more than one limit point.

All the results established for filtered families can be applied to sequences
when X is_a metric space. The proofs are the same if we replace 77(x) by
the denumerable base

JV(JC) = (Bl(x)3 B%(X), B—}(x)a .. ')

. We now state, without proofs, the results of § 4, Chapter IV, modified to
the case of sequences in metric spaces.

Theorem 1. Let (x,) be a sub-sequence of (x,). Then every cluster point of
(%) is a cluster point of (x,). -

N
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Theorem 2. A point ae A if and only y‘” there exists a sequence (x,,) in A
converging to a.

_ CoroLLARY 1. 4 point a is a point of accumulation of A if and only if there
exists a sequence in A—{a} converging to a.

COROLLARY 2. A set F is closed if and only if
X, eF (x,) = a imply that aeF.

M A point a is a cluster point of a sequence (xp) if and only if
there exists a sub-sequence (x,_) converging to a.

Theorem 4. If o is a single-valued mapping of a metric space X into a
metric space Y, then o is continuous if and only if

(x,) = xo implies that (ox,) — ‘axo;
Theorem 5. In a metric space X, the following properties hold:

1) ) = xo implies that (x,,) — Xo,
2) (Vn) : x, = x, implies that (x,) — x,, : :
(3) if every sub-sequence of (x,) has xq as a cluster point then
' (xn) > Xo»
@i
() = xg,
(x ) = Xp,
then the set {x{ i Z 1, k = 1} contains a sequence which converges 1o Xy.
In a metric space X, we say that a sequence (x; )b is Cauchy—coﬁi\vérgent or

that it is & Cauchy sequence, if to each ¢ > 0 there corresponds an integer
“m such that .

nzmpz=m => d(x,, x,) < &

Theorem 6. A sub-sequence (x;) of a Cauchy-convergent sequence is.
Cauchy-convergent.

Proof. This result is immediate, since k, = m and k, 2 m 1mp1y that
d(xk,.a xkp) se '

Theorem 7. Every convergent sequence is Cauchy-convergent.

Proof. Suppose that (x,) = x,, and let m be such that

nzm = d(x,, %) = 58

Then if n = m and p = m, we have

d(xns xp) £ d(x,, Xo)+d(x,, X0) < &
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Theorem 8. If a Cauchy-convergent sequence (x,) contains a sub-sequence
(%) converging to x,, then (x,) — X,.

Proof. Let ¢ be a strictly positive number; then there exists an integer m
~ such that

nEmpzm =  dxyx)S ;e
and an integer m’ such that.
nzm = d(xy,» Xo) = %s.
Let / be an index for the sub-sequence such that k; = m and / = m'; then

if # = I, we have

= §

[ ST

A o) S Aty %)+ (0 %) S 5+

and therefore (x,) — x,.

Cé& Theorem 9. A4 metric space X is compact if and only if every sequence has
a cluster point.

Proof. If X is compact, then every sequence has a cluster point by
Theorem 6 of § 6, Chapter IV.

Suppose now that X is a metric space such that every sequence has a
cluster point. If X is not compact, there exists an open covering (G; /i€ I)
of X which does not contain a finite sub-covering. Write

Afx) = d(x, —G)

and .
' M) = sup A,(x).-
iel .

We first show that the mapping 4 is continuous. For each index i,

A(x) £ dlx, x)+A4(x") £ dlx, x)+AUx")
and therefore .
A(x)— A(x") £ d(x, x").

Hence, by symmetry, we have
| 49— A0 | < d(x, )

and so A is a continuous numerical function in X.
Write p = inf A(x). If u = 0, there exists a sequence (x,) such that

xeX

(A(x,)) = 0. Let x be a cluster point of this sequence. ‘Then A(x) = 0,
which implies that x is in none of the sets G, contrary to the hypothesis that
these sets form a covering. Therefore 2 > O.

Let x; be a point of X. Then there exists an index i; such that
Ay (xy) > p /2. Since G;, does not cover X, there exists a point x, ¢ G;,;
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corresponding to x, there exists an
index i, such that A.,(x;) > u/2.
Since G; U G,, does not cover X,
\ there exists a point x; ¢ G;, U G,,;
" corresponding to x; there is an
[ 73 integer i3 such that A;(x3) > p/2
"and so on. The sequence (x,) so
formed has no cluster points, since if

FiG. 23 () is a sub-sequence, then

m#n = a@xy,, xx,) > g
Thus we have a contradiction and so the hypothesis that X is not compact
is false. '

CoROLLARY 1. 4 necessary and sufficient condition for a metric space to be
compact is that every infinite subset admits at least one point of accumulation.

Proof. The condition is necessary by the Bolzano-Weierstrass theorem of
§ 6, Chapter IV.
To prove the sufficiency, suppose that X is a metric space such that every
. infinite subset admits a point of accumulation. .In order to prove that X is
compact,. it is sufficient to show that any sequence (x,) admits a cluster
point. If infinitely many of the x, coincide with a point a, then the sequence
admits ¢ as a cluster point and our aim is achieved. If not, the set
A = {xq, x5, ...} is infinite and so, by hypothesis, it admits a point of
accumulation x,. Let &k, be an index such that d(x;, xo) <'1; let k, be an
index such that k, > k; and d(x,,, xo) < %; let k3 be an index such that
k3 > k, and d(x;,, xo) < 3 and so on. Then (x,,) — x, and so the sequence
(x,) has x, as a cluster point.

COROLLARY 2. A necessary and sufficient condition for a sequence (x,) in a
compact metric space to be convergent is that the set of cluster points of the
sequence reduces to a single element. ' ‘

This follows from the Corollary to Theorem 6 of § 6, Chapter IV.

§ 4. Totally bounded spaces and complete spaces

If X is a metric space such that every sequence (x,) contains a Cauchy-
convergent sub-sequence, then we say that X is totally bounded. A metric
space X for which every Cauchy-convergent sequence is convergent is said
to be complete.

ExampLe 1. R is complete.
If (x,) is Cauchy-convergent, then to each & > O there corresponds an
integer m such that
n

v

mo o= xeBx).
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Since B,(x,,) is compact, (x,) contains a convergent sub-sequence and hence,
by Theorem 8 of § 3, (x,) is convergent. '

On the other hand, R is not totally bounded, because the sequence (x,)
in which x, = n does not contain a Cauchy-convergent sub-sequence.

A fundamental property of totally bounded spaces is contained in. the
following theorem.

Theorem 1. Let X be a totally bounded space. Then, to each ¢ > 0, there
corresponds a finite set A < X such that

(Vx) (340 : d(x,a) = &
Proof. Suppose that there is an ¢ > 0 such that, for each finite set 4,
@x) (V49) : d(x,a) > &

Let x, be any; point of X. Then, taking 4 = {x,}, there exists a point x,
such that :
: d(xg, x1) > &

Taking 4 = {xo, x,}, we see that there exists a point x, such that
d(xg, %3) > &, d(xy, %3) > &

Continuing in this way, we can define a sequence (x,) which has no Cauchy-
convergent sub-sequence. Therefore X is not totally bounded.

COROLLARY. 4 fotally bounded space is bounded.

Proof. Taking e = 1 in the theorem, let 4 = {a;, a;,43,...,4a,} be a
finite set such that.

(V) @0 : dlx, @) S 1. e (dé.,‘gg

Then, if a, is any fixed point of X, we have -
d(x, ap) < d(x, a)+d(ay, ap) = 1 W(Qizﬁol/_i =12,...n}
for all X, and so X is bounded. =%

Theorem 2. A metric 3pace X is compact if and only if it is com?lete and
totally bounded. :

Proof. If X is compact, any sequence (x,) contains a sub-sequence which
is convergent and so Cauchy-convergent. Therefore X is totally bounded.
Moreover, by the same property, namely that any sequence contains a
convergent sub-sequence, every Cauchy-sequence is convergent (see Theorem
8, § 3); therefore X is complete.

Conversely, let X be complete and totally bounded. Then any sequence
(x,) contains a sub-sequence which is Cauchy-convergent and therefore
convergent; hence X is compact.
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Theorem 3. If (X,, d,), (X5, d,), ..., (X}, d) are complete metric spaces,
then the product space || X, is complete.
i=1

Proof. The distance between .
x =L, 59 and y = (04 9%, .00,
in X =[] X, is defined to be
d(x,y) = max (', ).
If (x,) is a Cauchy-convergent sequence in X, then there exists m such that
foralln = m, »
d(%3 xfx+p) < d(x,, xn+p)’ s e

Hence (x}) is Cauchy-convergent, and therefore convergent, since X; is
complete. If x; is the limit point of this sequence, we have

nzm = dx,x) < e
" _ 1 3
Writing x, = (x3, x2, ..., x¥), we have

nzm = d(%, %)= max dfx},xp) S &
and therefore (%) = xo.

Complete subsets possess certain properties analogous to those of com-
pact subsets; in particular, we have the following theorems.

Theorem 4. If F is a closed set contained in a complete space X, then F is
complete. : -

Proof. If (x,) is a Cauchy-convergent sequence of elements of F, it con-
verges to a point @ € X, since the space X is complete. Since Fis closed, we
have a € F and so F is complete.

Theorem 5. A complete subset A of X is closed in X.

Proof. If a € 4, there exists a sequence (x,) in 4 converging to a. Since 4

is complete, we have a € 4 and so 4 is closed.
k

Theorem 6. If Ay, A,, . . . , Ay are complete sets, so is their union A = U A4,
i=1
Proof. If (x,) is a Cauchy sequence in 4, there exists an infinity of indices
n such that ' '

X, € Ay

for a suitably chosen index i,. Therefore the Cauchy-convergent sequence
(x,) contains a convergent sub-sequence and so, by Theorem 8 of §3, it
converges to an element a € 4;, = 4. Hence the set 4 is complete.



TOPOLOGICAL PROPERTIES OF METRIC SPACES 93

Theorem 7. If (4;/iel) is a family of complete sets, the intersection

A = N A4; is complete.
iel

Proof. By Theorem 5, the set 4 is closed; since 4 is closed and contained
in a complete set 4,,, the set 4 is complete by Theorem 4.

§ 5. Separable sets -

A subset B of a space X is said to be dense in X if B = X. A metric space:
X is said to be separable if it contains a countable dense subset B; we then

have
(Vx) (Ve) (3h) : d(x, ) < &

ExampLE 1. R is separable, for the set R, of positive or negative rational
numbers is dense and countable.

ExampLE 2. R" is separable, for the points whose coordinates are rational
numbers form a countable dense subset.

2 (cf. §2) is separable, for the points which
have a finite number of their coordinates rational numbers and the remeunder
Zero, form a countable dense subset.

ExamprLe 4. The metric space consisting of R together with the metric d
defined by d(x, y) = 0if x = y and d(x, y) = 1 if x # y is not separable.

A fundamental family for a topological space X is a family of open sets
= (4, [ ieI) such that, given any non-empty open set G there exists a
subset J. of I for which
G U 4,
ieJ
Theorem 1. A4 metric space is separableif and only if'it possesses a countable "
Jundamental family.

Proof. Let X be a separable metric space and let B be a countable dense
subset. Then, if B,(b) is the open ball of radius 1 and centre b, the family

o = (Byb)/be B, AcRY)

is countable. If G is an open set and x € G, there exists a rational number
A such. that
'-B}L(x) < Ga

and an element b € B such that d(b, x) < A /2. Then
él(b) cB(x) =6

and so G is a union of open sets in the farmly &, whence & is a fundamental
family.
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Conversely, suppose that X possesses a countable fundamental family
&f = (A, A;,...). Let a; be an element of 4;. The set B = {a;, a5, . ..}
is dense, for if B # X, then the set X—B is a non-empty open set, which
therefore contains a set 4; and so contains an element a;, contrary to hypo-
thesis.

Theorem 2 (Lindelof). If X is a separable metric space, then any open
- covering & = (G | k € K) of X contains a countable covering.

Proof. Let (4;/ieN,), where N, is a subset of the set N of positive
integers, be a countable fundamental family. Then the set

I= {i/ieNo; (axk) : Ai Lo Gk}
is-countable. The family (4;/ieI)is a covering of X, since
xeX = (Bk): xeG, = (@) : xe 4,

For each ie ], let k; be an index such that Gy, © A4;. The family (G, /iel)
is then a countable covering of X.

Theorem 3. The cardinal number of a separable metrzc space is at most
that of the continuum.

Proof. Let B be a countable subset such that B = X. If xe X and x ¢ B,
there exists an element b, of B such that d(x, b;) < 1, an element b, of B
such that d(x, b,) £ 1, an element b, of B such that d(x, b3) < 4 and so on. -
The set A = {by, b, b3, . . .} has the point x as its only point of accumula-
tion. Thus we can set up a one-one correspondence between X and a subset
of #(B). By Cantor’s Theorem (§ 3, Chapter III) Z/(B) has the power of
the continuum (unless B is finite, in which case 2°(B) is also finite). Therefore
the cardinal number of X is at most that of the continuum.

Theorem 4. A totally bounded space X is separable.

Proof. Putting ¢ = 1/n in Theorem 1 of § 4, we see that there is a finite
set A, , such that

1
(Vx) Fa; aedy,)  dx, o) = -
Then B = U 4, is countable; moreover B = X, for
n=1
1
(V) (Y1/7) )+ A5 B) S .

§ 6. Compact sets

Compact subsets andconnected subsets of a metric space possess certain
interesting topological and metrlcal properties. These are the subject of this
section and the next.
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Theorem 1. A compact subset K of a metric space is closed and bounded.

Proof. If K is compact, then, as we have already seen, it is closed. Suppose
that K is not bounded. Let a be any point; then

(Vn) @gx,) : d(a, x,) > n. L,

Since. K is compact, the sequence (x,) admits a cluster point x, in K; if (y,)
is a sub-sequence converging. to x,, there exists an integer n, such that.
n > ny implies that -

d(a3 yn) é d(a: x0)+d(x0: yn) é 2 d(av xo)-
Since d(a, y,) increases indefinitely with n, we have a contradiction.

COROLLARY. In R™ a necessary and sufficient condition for a set A to be
compact is that it is closed and bounded.

Proof. By the preceding theorem, it is sufficient to show that if 4 is closed
and bounded it is compact. Now in R there exist closed intervals
Dy, D,, ..., D,such that

Ac D;xDyx ... xD,

Since the D, are compact sets in R, their topological product is a compact
subset.of R* (by Tychonoff’s theorem). Thus the set 4 is closed and is
contained in a compact set; therefore it is compact.

Lebesgue’s theorem. Let (Fy, Fy, . .., Fy) be a finite closed covering of a
compact metric space X. Then there exists a number ¢ such that for each set A
of diameter 5(A) < ¢ the intersection of the sets F; meeting A is not empty.

Proof. Suppose that no.such number ¢ exists. Then, for any k e N, there-
is a set A, such that:.

6y O(4p =

ieIk

w‘lv—-

Since there is only a finite number of the sets F,, there exists a set I, such
that I, = I, for infinitely many values of k. Let ky, ks, . . . be these values
of k, with k; < k, < ... Let g, be an element of 4. Since X is compact,
the sequence (a,) adnnts a cluster point @, in X; there is therefore a sub-
sequence (@, ) converging to a. Any ball B,(a,) contains an 4, ; it is suffi-
cient to choose 7 to be suﬁiclently large for the conditions

1 A
B 184, ) S~ =<
ay, € ).(ao) (4;) = A 5

n

to be satisfied. Then, if i € I, the set F; meets all the B;(a,) and so
a,eF; = F,



96 TOPOLOGICAL SPACES
This is true for all i in J, and therefore
NF 9,

ielp
which is contrary to hypothesis.
Another result, which we shall use later, is the following.

Theorem 2. Let Ky, K, . .. be a decreasing sequence of compact sets and
let K be their intersection. Then, Jor each € > 0, there exists an integer ny
such that

nzn, = K,c B(K)= UB(x)

Proof. Suppose that the theorem is false. Then there exist indices 7,

such that
n1 <n2<...<nk<...

and points x,, such that

IlkS d(xnks K) > 8

The sequénce formed by the . contains a sequence (y,) converging to a
- point x,, which belongs to all the K; and so

onK nKi

On the other hand because d(x, K) is continuous, we have
. d(x, K) = &

and so we have a contradiction.

1

§ 7. Connected sets(®

A finite family of elements (¢;,ay,...,a,) is called an e-chain if
d(ay, a;) < &, daz, a3) S &, ..., d@y,_1,a,) <& Two points @ and b in a
set A are said to be e-connected in 4 if there exists an e-chain (a, ay, . . ., @)
contained in 4 and such that ¢, = a, a,, = b. If a and b are e-connected for
every &€ > 0, then we say that they are well-chamed. These concepts enable
us to make a considerable simplification in the study of compact connected
sets in a metric space.

Theorem 1. If A is a connected set having at least two distinct points a and
b, then the cardinal number of A is at least X,.

Proof. If A is connected and B is any set, then

ANB#@
AN(-B)# @

) ' We have followed M. H. A. Newman (Topology of plane sets of points) concerning
. questions relating to connectivity. .

} imply that 4 N (Fr B) # O,
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for otherwise we should have |
A< BU(-B),
ANB # O,
4an ("E # 9,

which contradict the fact that 4 is connected.
Let @ and b be.two distinct. points. of 4 and let & be such that & < d(a, b).
Then 4 N Fr [B,(a)] # @ and so there exists a point x, such that .

x, 64, dix,a) = &

Then we have a one-one correspondence & — x, between |0, d(a, b)[ and
a subset of 4 and so the cardinal number of 4 is at least ¥,.

Lemma 1. In a metric space X, the set E(a) of points which can be linked
to a by means of an e-chain is both open and closed. '

Proof. E/(a) is open, since

{ Xxo € Efa)

d(x, %) < & imply that x e E )

and E,(a) is closed, since

{ ;&f 3%)(a)< . imply that x ¢ E,(a).

Levma 2. Let (K, K, .. . ). be a decreasing sequence of compact. sets:
K1:K23K33..-
If each pair of points in K, is e-connected in:K;, then each pair in. K =NK,is
i .

(2¢)-connected in K.

Proof. By Theorem 2 of § 6, there exists an intéger n(; such

n=ny = K, « B,(K) = U B,(x).
3 xeK 3
If a and 'b are two poiﬁts-in K, then they are e-connected in K, by an e-chain
(a, = a,a,,...a, =Db).

Choose n = ny and let x(1 <i < m) be a point in the (non-empty) set
Be/z(a,) NnkK. Then )

(a9 X2y X35 ¢ 0 v Xp—15 b)
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is a (2g)-chain in K, since

A ' & €
d(xpXir 1) S (X @)@, 8540+ @i 1s Xisr) = :2+ &+ 5
Theorem 2. A necessary and sufficient condition for a compact metric space
X to be connected is that any two of its points are well-chained.

Proof. Suppose that X is connected. If a€ X, then E(a) is non-empty
(since it contains a) and is both open and closed by Lemma 1; hence
E,((@) = X. This holds for each strictly positive ¢ and so any two points in X
are well-chained.

If X is not connected, then there exist open sets G, and G, such that

X =G UG,
G,NG, =0,
G, # 9,
G, # @.

If X is compact, the sets (—G;) and (—G,) are compact; since they are also
non-empty and disjoint, we have

d(— Gy, —G,) = min {d(x,y) [ xe =Gy, y€ —G,} = ¢ > 0.

Therefore a point of G, cannot be linked to a point of G, by means of an
(¢/2)-chain and so not every pair of points in X is well-chained.

Theorem 3. The intersection of a decreasing sequence (K, Kz, .. of
compact connected sets is a compact connected set.

Proof. Suppose that none of the sets K; is empty (otherwise the theorem
is trivial). Then K = ﬂ K, is a non-empty compact set, by the finite inter-

section axiom. By Lemma 2, any two points in K can be linked by a
(2¢)-chain in K, where ¢ is an arbitrary strictly positive number. Therefore
K is connected.

Let K be a compact set and let a be a point of K. The connected component
in K of a is the union of all the connected subsets of X which contain a. This
union is non-empty, for {a} is connected and is contained in K. The.con-
nected component of a is denoted by Cx(a). By Theorem 1 of § 7, Chapter
IV, Ci(a) is connected, since it is the union of a family of connected sets
whose intersection is non-empty.

The set Cy(a) is closed, since Cil@)isa connected set (by Theorem 2, § 7,
Chapter IV) contained in K, and so Cx(a@) = Cg(a), whence Cx(a) = Cx(a).
Hence Cy(a) is a compact set, since it is a closed subset of a compact set.

‘We now show that the different sets Cg(x) form a partition of K. If x € K,
ye K and Cg(x) N Cx(y) # D, the set E = Cg(x) U Cx(y) is connected and
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is contained in K. Therefore E = Cy(x), whence Cg(x) = E. By symmetry
we have :

Cx(y) = E = Cx(x)
and the result follows.

Theorem 4. Let a and b be two points in a compact set K. Then b e Ck(a)
if and only if a and b are well-chained in K.

Proof. If be Cy(a), then a and b are well-chained in Cg(a), because this
set is compact and connected, and therefore are well-chained in K.

Suppose conversely that  and 5 are well-chained in X. By Lemma I, the
set Ey,(a) of points of K which can be linked to @ by means of a (1/n)-chain
in K is compact. Consider the sequence Ex(@)s £1/m+1(@s E1jm+2(a), . . . of
compact sets; this is a decreasing sequence and any two points of Ey 4 (@)
can be linked by means of a (1/m)-chain. Therefore, by Lemma 2, any two

 points of the set

E = ﬁ El/ll (a) = n El/n (a)
n=1 n=m

.can be linked by means of a (2/m)-chain. This is true for all m and hence

any two points of the compact set E are well-chained; therefore E is con-
nected and so E « Cy(a). Thus if @ and b are well-chained in K, we have
be CK({‘)

§ 8.* Locally connected sets: carves

A metric space X is said to be locally connected at g e X if each neighbour-
hood U(a) contains a connected neighbourhood N(a). We say that X is
locally ‘connected if- it. is locally: connected :at each of its. points; likewise a
set 4 is locally connected.if for each point a € 4 there exists a.neighbourhood
N(a) as small as we please such that N(a).N 4 is connected...

Exampre. In R, the set 4 = {0, 1, 1/2, 1/3,.. .} is not locally connected .
because, for each neighbourhood N(0), the set :

NO n4a 0 1 —--1 ———1 }
ONA =900
is not connected.

Theorem 1. A necessary and sufficient condition for a space X to be locally
connected is that, for each open set G, the connected components Cg(x) in G
. are open sets.

Proof. The condition is sufficient, for if it is satisfied, then in each neigh-
bourhood G of @, C4(a) is a connected neighbourhood.
To prove that the condition is necessary, let X be a locally connected
space, let G be an open set of X and let a be a point of G. If x € Cy(a) and
TSH
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N(x) is a connected neighbourhood of x contained in G, then N(x) = Cg(a). -
Hence Cy(a) is a neighbourhood of each of its points and so is an open set. -

Theorem 2. A4 necessary and sufficient condition for a metric space X to be
compact and locally connected is that for each strictly positive number ¢ there
exists a finite covering by compact connected sets K; such that 6(K;) < e.

"Proof. Let X be a compact and locally connected metric space. Given
&> 0, we can cover X with the connected components of the open balls

A ,z(x) By Theorem 1, these components are open sets. Since X is compact,
the covering contains a finite covering (G4, G, . . . , G,); the sets

Ki':é_i

cover X and K; is a connected compact set such that 6(K)) < &.
Suppose now that X is a metric space such that for each strictly posmve £
there exists a finite covering by compact connected sets

(KI: Kzs LA n)
such that O0(K;) < e Since

it follows that X is compact. Let ¢ € X and write

= min {d(a, K;) | K;$ a} if a¢NK,
i

=1 if ae n Ki'

Let K be the union of the sets K; which contain the point a; if < §,, then
B,(a) = K = BJ(a) and so K is a connected neighbourhood of a contained
in B/(a). Therefore X is locally connected.

Theorem 3. Let o be a single-valued continuous mapping of a metric space
X into a metric space Y; if A is a compact locally connected subset of X, then
the image ¢ A is a compact locally connected subset of Y.

Proof. Given & > 0 there exists # > 0 such that if x, x, € 4, then
dy(x, xo) < n implies that dy(ox, ox;) < ¢

(see Heine’s Theorem, §9). If (K, K,,...,K,) is a family of compact
connected sets forming a covering of 4 and such that

oK) = m,

then (0K, 6K,, ..., 0K,) is a family of compact connected sets covering
oA and such that 6(¢K;) < ¢. It therefore follows from Theorem 2 that ¢4
is compact and locally connected.
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These results will now be applied to the special case of curves. A set C
in a metric space is called a curve if there exists a single-valued contmuous
mapping f of [0, 1] into X such that

¢ = A0 1])

Such a function fis called a parametrisation x(0)
of the curve C; the pair (C, f) is called a
para}netnse.d. curve. We say that x is a x(t)=2(t)
multiple point of a parametrised curve (C, f)
ifwe have (as in figure 24) % (t) x (1)
x = f(t;) = f(t2); t # ta Fic. 24

Let g be a continuous numerical function. Then the representative curves
C, = {(x, g(x) / x [0, 17} are very simple examples of curves in the plane
with the function f defined by f(2) = (¢, g(t)) as parametrisation.

ExampLe (Hilbert). With a suitable parametrisation, the unit square can
be regarded as a curve in the above sense. Let X, ¥ be [0, 1] and [0, 1]*

Y "
—
1
Dy
oL 2 : 3.
X @ 03 [\ J
X [
D,
e i 1 4.
1
D1 C}
0
A y Y
e 17 |10lmn 22]23] 26127 | B30 ] 4T3
. M | 2i] 26125]28] 7 [50141 4
5 SK%)S 1 - |20113]30]29 3635 45[a5
| . 1718 | 37[32[33[34 |47 ]58
A s | et 1§13 1211 1553152143
L 15114 9 Mo 5526] 51]50]
” \2) 15\_16 2] 3 |87 [s[57]ez[es
c? 1 | 4ts76 |59[60[61]64

Fic. 25
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respectively. Subdivide the unmit square Y into four equal squares
Cl, CL, CL, CL, and the interval X into four intervals D}, D}, D}, Dj of
equal lengths, as shown in figure 25, with D}, D3, D3 semi-closed and D}
closed. Now subdivide each square C} into four equal squares in a similar
manner, and each interval D} into four intervals; we then obtain squares
C? and intervals D} which correspond as in figure 25.

We continue this operation of subdividing the squares and the intervals.
With each x e X we associate a point ye ¥ determined as follows: if x
belongs to the intervals D}, D%, Di,, ..., we consider the corresponding
squares CL,, CZ,, C,, .. .; these have at least one common point y, for ¥
is compact and so the finite intersection axiom holds. Moreover y is unique,
for the diameter 6(C%) tends to zero as n tends to infinity. Thus we can
define a single-valued mapping ¢ by writing y = ox.

If [ x—x0 | < %, the points x and x, are in the same interval D" or in

adjacent intervals D"; then the corresponding points y and y, are in the
* same square C” or in the adjacent squares C", so that

1
|p=yo| < 3x55
and hence the mapping ¢ of X onto Y is continuous.

If f'is a homeomorphism, the curve C = f(0, 17]) is called a simple curve;
in the above example the unit square is not a simple curve. An immediate
consequence of the definition is that a
simple curve cannot have multiple points.

A curve Cis called a simple closed curve
oy it) if it is the image under a homeomorphism
of a circle in the plane. For example, the
boundary of a square or an ellipse is a
Fi6. 26 simple closed curve (see figure 26).

Lett = (0, #;, I3, . . . , 1) be a finite sequence in [0, 1] such that
‘ O<t; <t <...<Ll
The length of the curve C is defined to be

I(C) = SliP ; a(f (), F(ts1))-

If (C) < + oo, we say that C is a rectifiable curve.
ExAMPLE. Let g be the numerical function in [0, 1] defined by

=¢sinlft if 250,
g@{=;m/ oo

The representative. curve C, = {(t, g(?))/ t€ [0, 1]} is a curve in the plane
R? having no multiple points (see figure 27). It is not rectifiable, since
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w ‘ 1 1 21
kg&d (f ( n)’ f‘(a>> g k; T
kn+§ kn+§

which tends to infinity with n.

The considerations of the preced- 4
ing: paragraphs facilitate the study
of topological properties of plane
curves. We notice first of all that
C.= f([0, 1]) is a compact connected
set in the plane, since [0, 1] is a com-
pact connected set and fis continuous.
One consequence of this is that for
any given ¢ > 0, two points of C can
be linked by an s-chain in C. More- 0 ﬂ\‘ln/n .

over C is a compact locally connected UU
~ set, since [0, 1] is compact and locally
N

—ht

connected. We can, in fact, prove
that the following result holds:

Hahn-Mazurkiewicz theorem. A 27 371 N
necessary and sufficient condition for _ N
a subset C of a metric space to be a \
curve is that it is compact, connected
and locally connected.

/

4._._—-——...—_.—4»—-—-—.—1-.--—_—-—.

Fre. 27
We quote.also the following theorem:

Jordan’s theorem. If C is a simple closed curve in the plane, its complement -
—C is not connected and is the union. of two disjoint open connected sets Gy .
and G, whose frontiers satisfy

FI'G.l:Fer:C.

We refer the reader to works dealing specifically with the topology of
plane sets for a proof of this theorem.

§9. Single-valued mappings of one metric space into another

Let ¢ be a single-valued mapping of a metric space (X, dy) into a metric .
space (Y, dy). Then ¢ is continuous if

(Vxxo) (V&) @n) : dxlxo, ¥) S = dyloxp,0x) S ¢

where the number # satisfying this condition depends in general on ¢ and x,.
If there exists 2 number n which satisfies this condition and depends on ¢
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"but not on x,, we say that ¢ is uniformly continuous in X; the property can be
expressed as follows:

(V&) @n) (Vo) © dx(xo, )< n =  dy(oxg,0%) S &

Clearly a uniformly continuous mapping is contmuous, but a continuous
mapping need not be uniformly continuous.
Let A be a positive number. We say that ¢ is A-contracting (in X) if

(Vxxo) (Vxx) : dy(ox,, 0%) < Adx;(xm x).
Clearly a A-contracting mapping is uniformly contix;luous.

ExampLe 1. Let X = R. The numerical function f defined by f(x) = x>
is 2-contracting in [0, 1], but it is not A-contracting in R. It is continuous
_ in R, but not uniformly continuous.

ExaMPLE 2. If a mapping ¢ of R? into R2 is a similitude of ratio 4, then
¢ is A-contracting in R2.

ExaMpLE 3. In a metric space X, the numencal funcuon Jf defined by
f(x) = d(x, @)
is uniformly continuous, because ‘ ,
d(x, x') £ & = d(x, @) £ e+d(x', ) = | fD-fx) | S &

Heine’s theorem. If X is a compact metric space, then a single-valued
continuous mapping ¢ of X into Y is uniformly continuous.

Proof. Let & be a positive number and let #(x,) be a positive number
such that .

dx(x, x0) = (o) = dy(ox,, 6X) = &.
£ mf n(x) > 0, then uniform continuity is ensured; in particular, the

theorem is trivial if X is finite).
Let B(x) be the open ball of centre x and radius 45(x). Since X is compact,
it can be covered by a finite number of these open balls:

-é(xl): j}(xz)s L é(xn)'
Write 7 = min {n(x,), 7(x2), . . . , 7(x,)}; we propose to prove that

dy(x,x") £ g = dy(ox, 0x") < 2e.

In fact, if dx(x, x') £ 4n, then, for some index k between 1 and #n, we have

11(k)

dx(x', %) £ —— = (%),

1) RN

dx(x, %) £ dx(x, x)+dx(x', ) £ —— = n(x),
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whence . -
dy(ox, ox) £ &,
dy(ox', ax) < &
which imply that
o dy(ox, ox") £ dy(ox, ox,)+dy(ox;, 0x7) £ 28
and it follows that ¢ is uniformly continuous...

Lipschitz’s theorem. If A < 1 and o is a single-valued A-contracting mapping.
of a complete metric space X into itself, then there exists one and only one
point a in X such that ca = a. Moreover, for each point x,, the sequence
(6"x,) converges to a.

Proof. Let x, be a point in X and write x, = ¢"x,; then

-

d(xm Xn+ 1) = d(axn—la a'x,,) é Ad(xn-—la X,,) é And(an Uxo),
whence

n+p
d(xn: xn+p) —<_= d(x()a O'xo) Z ;Lk'
k=n

This shows that the sequence (x,) is Cauchy-convergent. Since X is com-
plete, the sequence converges to a point a and, since ¢ is continuous,
(%,+1) = (ox,) converges to oa. But (x,) converges to a and therefore we
have @ = oa. Moreover a is the only solution of x = ox, for if 2 = saq and
b = ob are two distinct solutions, then d(a, b) > 0 and so

Ad(a, b) < d(a, b) = d(ca, ob) < Ad(a, b), .

which: is a contradiction. . .

Let (o,) be a sequence. of single-valued mappings of a metric space X into. -
a metric space Y. Then we say that the sequence converges simplyin 4 ¢ X
to a mapping o, if, for each x.e 4 the sequence (0,x) converges to gox. We
also say that the sequence conyerges uniformly in A4 to o if, for each s, there
exists an integer m such that

nzm = sup dy(o,x, 6¢%) S &
xed

ExampLE. Consider the numerical functions f, in R defined By
(“‘W .
nx

1+nx

i) =

In the interval ]0, 1] these fuﬁctions converge simply to a function f; such
~ that f5(x) =1 for all xe]0,1]. They do not converge uniformly, because
if x € ]0, 1], then
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nx 1

Jo(X)=fu(x) = T1tnx  1+nx

and so, for any n,
sup ‘| f(x)—fo(x) | = 1.
x€]}0, 1)

The following important theorem describes circumstances in which a
single-valued mapping, which is a limit of single-valued continuous mappings,
is itself continuous. :

Weierstrass® theorem. If a se‘guence (0,) of single-valued continuous map- -
pings converges uniformly to a mapping o,, then g, is also continuous.

Proof. Let & be an arbitrary strictly positive number. Then there exists an
integer m such that

sup dy(o,x, 09%) < ¢
=

On the other hand, there exists a number 7,,(x,) such that
dy(x, %0) S Mn(¥0) = dyl(owx, 0ux%0) S 6.
Therefore dy(x, xg) < nm(xo) implies that
dy(00%, 00%0) S (0o, 0x)+dy(0nX, Ouo) +dy(0mo, Go%o) S 38
and so o, is continuous. '

CorOLLARY 1. If a sequence (o) of uniformly continuous mappings con-
verges uniformly in X to o, the mapping o is also uniformly continuous.

Proof. It is sufficient to replace lm(Xo) in the above argument by a number
7, independent of x,. 4

CoRrOLLARY 2. If a sequence (c,) of continuous mappings converges uni-
Jormly to o4 on every compact set K, then the mapping o, is continuous.

Proof. Let (x,) be a sequence converging to x;. On the compact set
K= {x0, X3, X35« e« s Xy« :}

the sequence (o,) converges uniformly to oy. Then, on K, the mapping o, is
continuous and so (gx,) — 0oXo. It follows from Theorem 4 of § 3 that the
mapping o, is continuous in X.

Weierstrass’ theorem has the following converse:

Dini’s theorem. Let (o,) be a sequence of continuous mappings converging
simply to a continuous mapping oo If X is compact and if, for all x,
8,(x) = dy(o,x, 6¢x) is decreasing as it tends to zero, then (c,) converges
uniformly to oy.
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Proof. We observe first of all that §,, is a continuous numerical function,
for if (x,) = x, in X, then (6,%,, 6oX,) = (X0, GoXo) in Yx Y and so, in
’R 5m(xn) - 6m(x0)
To prove the theorem, we suppose that (o',,) does not converge uniformly
to 6,. Then

He) (Vn) (Fk; k > n) @ sup dy(opx, opx) > &
xeX

In particular, taking # = 1, there is an index &, and a point x, such that.
dy(oy, X1, Oo%y) > &;

then, taking n = k,, there is an index k, > k; and a point x, such that
dy(0y,%2, Go%2) > &;

then, taking n = k,, there is an index k3 > k, and a point x5 such that
dy(0y,%3, GoX3) > &;

and so on. Thus we obtain a sequence (x,) = (xy, X,, X3, .. .). Since X is
compact, this sequence contains a sub-sequence converging to a point
.a€ X;let y, = x;, be the general term of this sub-sequence.

Let m be an arbitrary integer; then there exists an integer n, such that

nzmy = 8@ 2 6001

Moreover, there exists an integer #, such that » = n, implies that k,, = m,
~where n' = h,; therefore if n is an integer greater.than max {no, n,}, we have

g g e &
o,(a).= 6 —_—2 O (X)) > = = —,
m(a).- m(yn) 2—. k,.( ) 2 2 )
But this shows that 8,(¢) does not converge to zero, which is contrary' to
hypothesxs Thus the theorem is proved.

Remarx 1. If the mappings o, are numerical functions f,, we have a
convenient criterion for uniform convergence depending upon the theory of
series. In fact we do not often know the simple limit f;, and so cannot form

8,(x) = | fu(x)—fo(x) | Instead, we make use of the following result:
If sup [£u)—f=1(%) | = w, is the general term of a convergent series (that

is, if }: U, < + o), the sequence (f,) converges uniformly.
1

Proof. In this case, the serie;
£ = LG+ (L@ —AE)+ - .+ —f-1())

converges to the sum fy(x) and, for all x, we have
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85.%) = | F)=Ffo¥) | _s_kgnlfm(x)—-fk(x) | éé U,

Given ¢ > 0, there then corresponds a number 7, such that
n=ng = sup §,(x) < e
} x
ReMARK 2. The preceding criterion, although very convenient, does not
give a necessary and sufficient condition for uniform convergence. Instead,

we sometimes use the following result:
If the sequence whose general term is {, = sup sup | frot s =S} | com-
. . P x .

verges to zero, then the sequence (f;) converges uniformly.

Proof. If ({,) = 0, the sequence (f,(x)) is Cauchy-convergent in R for all
x. Since R is complete, (f,(x)) = fo(x). Moreover, given & > 0, there exists
a number ny such that

nzng, = |fir®=fx)]| S e (foral x and all p).
Letting p tend to + oo, we get
nzn = |f@-fH]| e - (foralx)

and so (f;) converges uniformly to fj.
We can easily verify that this sufficient condition is also necessary.



CHAPTER VI

MAPPINGS FROM ONE TOPOLOGICAL SPACE
INTO ANOTHER

§1. Semi-continuous mappings

Let I' be a mapping of a topological space X into a topological space Y and
let x, be a point of X. We say that I is lower semi-continuous'®) at x, if for
each open set G meeting I'x, there is a neighbourhood U(x,) such that

x € Ulxg) = I'xNG s+ 9.

We say that I is upper semi-continuous at x, if for each open set G containing
T'x, there exists a neighbourhood U(x,) such that

x € Ulxo) = I'xc G

We say that the mapping I is continuous at x, if it is both lower and upper
semi-continuous at x,.

If T is a single-valued mapping, the definition given above for lower semi-
continuity coincides with the ordinary definition of continuity; the same is
true for upper semi-continuity. .

We say that I' is lower semi-continuous in X (and abbreviate this to 1 s.c. in
X) if it is lower semi-continuous at each point of X.. We say that I is upper
semi-continuous.in X (and abbreviate this.to w.s.c. in X)) if it is upper semi-
continuous at each point of X and if, also, I'x is'a compact set for:each: x. ..

If T"is both 1.s.c..in X and u.s.c. in X, then it will be called.continuous in X. .

Exampre 1. LetT bea mapping of X into ¥ such that I'x is a fixed com-
pact set K, of Y for each x. Then I'is L.s.c. and u.s.c. and so it is continuous.

Theorem 1. A necessary and sufficient condition for T to be lLs.c. is that for
each open set G in Y, the set T~ G is open.

Proof. Suppose that T is Ls.c. Clearly I'” Gis open if it is empty. We
therefore suppose that I'” G # @. If x,eI'” G, then l"x0 NG # @, and
so there is a neighbourhood U(x,) such that

x € U(xy) = TxNG+# 0,

() The two kinds of semi-continuity of a multivalued function were introduced inde-
pendently by Kuratowski (Fund. Math. 18, 1932, p. 148) and Bouligand (Ens. Math., 1932,
p. 14). In general, the definitions given by different authors do not coincide whenever we
deal with non-compact spaces (at least for upper semi-continuity; which is the more
important from the point of view of applications). The definitions adopted here, which
we have developed elsewhere (C. Berge, Mém. Sc. Math. 138), enable us to include the case
when the image of a point x can be empty.
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whence
' Ulxg) =« T~ G

Therefore I"~ G is a neighbourhood of each of its points and so is open.

Suppose now that I'™ G is an open set for each open set G in Y. Let G
be an open set meeting I'x,; then I'™ G is an open neighbourhood of x,-
and we have

xel'™ G = TxNG# Q.
Therefore T is Ls.c.

Theorem 2. A necessary and sufficient condition for T to be u.s.c. is that
the set Tx is compact for each x and that for each open set G in Y the set
I't G is open'®.

Proof. Suppose that T is us.c. If I't G = @ then it is open. Suppose
therefore that I'* G % @ and let x, € I'* G. There exists a neighbourhood
U(xo) such that

x € Ulxy) = I'x = G.

Then U(x,) = I'* G and so the set I'* G is a neighbourhood of each one
of its points and therefore is an open set.

. Suppose now that, for each open set G in Y, the set T* G is open and
that I'x is compact for each x. Let x, € X and let G be an open set containing
I'xy. Then I'*t G is an open neighbourhood of x, and .

xel'"'G = TIxcG

Therefore I is u.s.c.

Mappings of X into Y which are u.s.c. have the following fundamental
property:

Theorem 3. If I is u.s.c., the image TK of a compact subset K of X is
also compact.

Proof. Let {G,/iel} be an open covering of I'K. If x & K, the set I'x,
which is compact, can be covered by a finite number of the G;; let G, denote
the union of the sets in such a finite family. Then '* G,/ x€K) is an
open covering of K and so it contains a finite covering I'* G, T'* G, - . .,
T'* G, . The sets Gy, Gy,, . .. Gy, cover K and so I'K can be covered
by a finite number of the G,.

. ) (Translator’s note.) In dealing with u.s. .c. mappings, we define I'+ G by
I+G={x[xeX:Ix = G}
This is a slightly different.definition from that given in Chapter IL. In particular,
1"+z {xlxeX I'x = @}. .




MAPPINGS FROM ONE TOPOLOGICAL SPACE INTO ANOTHER 111

In addition to the two types of semi-continuity, it is sometimes con-
venient to consider a third topological property. We say that I is a closed
mapping of X into Y if whenever xo€ X, yo€ ¥, yo ¢ I'xp there exist two
neighbourhoods U(x,) and V(y,) such that x & Ulxp) = TI'x N ¥(yo) =

Cons1der the graphical representation. Y Ixof'in Xx Y; thisisa closed

xeX
set if and only if T is a closed mapping, for the above condition is equi-

valent to

U(xo) X V(o) < —-xle“x.

We observe that an immediate consequence of the definition is that if I' is a
closed mapping then the set I'x is closed in Y.

Exampre. If fis a continuous numerical function in X x ¥, the mapping
defined by I'x = {y/y € ¥, f(x,y) < 0} is a closed mapping of X into ¥,
for, in X x ¥, the graphical representation ‘

xg'xrx = {(x, ») [ fx,y) < 0}

is a closed set.
In particular, if A is a continuous numerical function in a metric space
(X, d) the mapping
I'x = Byy(®) = {y | ye X; d(x, y)—4x) = 0}
is closed.

Theorem 4. If T is a closed mapping, then

(xn) - Xo
() = o = yoeIXx,.
(Vn) : yae T,
Proof. The graphical representation of I is a closed set; ((x,, y,,)) (Xo» Vo)
and (x,,, V) € Z TI'x, whence (xq, ¥o) € z I'x.

Theorem 5. If (I"; / i e I) is a family of closed mappings of X mto Y, then
I' = N T, is also a closed mapping.

iel

Proof. If yo ¢ T'xy, then there exists an index i, such that

Yo ¢ FioxO'
Therefore there exist neighbourhoods U(x,) and ¥(y,) such that

[, Uxo) N V(po) = @

TU(xy) N V(yo) = @

whence I is a closed mapping.

and so
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Theorem 6. FEvery u.s.c. mapping is closed.

Proof. Let T be a u.s.c. mapping of X into ¥ and suppose that yé.é I'x,.
~ Since I'x, is compact, there exists an open set G in Y containing I'x, and a
neighbourhood ¥(y,) such that :

GNWV(y) = D.
Since T is u.s.c., there exists a neighbourhood U(x,) such that

xeUlxy) = Ixc(G.
Then
xeUlxy) = TITxNV(y) =9

and I’ is therefore close_d.

Theorem 7. If T, is a closed mapping of X into Y and T, is a u.s.c. mapping
of Xinto Y, the mapping T =T, NT, is us.c. |

Proof. For e:ach x, the set I'x is compact, becalflse it is a closed set con-
tained in a compact set I';,x. Let G be an open set such that I'x, =
T'yxo NTyxy = G. We.shall prove that there exists a neighbourhood U(x,)
such that T'U(x,) = G. If G o I',x,, there is nothing to prove; suppose
then that T',xo N (—=G) = K # @. Let y be a point of K; then there exist
neighbourhoods ¥(y) and U,(x,) such that

T Ux) N V() = @.
Since the set K is compact, there exist elements y,, ¥,, . . . , ¥, in K such that

V(yy), V(33)s - - . s V(,) cover K. Write V(K) = U V(p,)). Then there exists
i=1 :
a neighbourhood U’(x,) such that

xelU'(xg) = I'xc GUVKX).

Putting U(x,) = U,, (%) N U,,(x0) N . .. N U, (x0) N U'(xo), we have
6

I"l U(xO) n V(K) = Q, r1 2, —

I, U(x,) « GU V(K), S

whence A= REER
(r‘l n rz) U(xO) < G. -‘;:v-"' “‘:_‘ A

Therefore I' is u.s.c.
’ Fic. 28

CoROLLARY. If Y is a compact space, a mapping of X into Y is closed if
and only if it is u.s.c. :

Proof. If T"1is closed, and A is the mapping such that Ax = ¥ for each x,
then I' = I"'N A is u.s.c., because A is u.s.c. The other half of the result
follows from Theorem 6.



MAPPINGS FROM ONE TOPOLOGICAL SPACE INTO ANOTHER 113

Theorem 8. If X is a compact space and I is a u.s.c. mapping of X into
itself such that, for each x, I'x # @, then there exists a compact non-empty
subset K of X such that TK = K.

Proof. The sets X, TX, I'2X, ... form a sequence of non-empty compact
sets; if any of these is:equal to its successor, it is a set of the required kind.
and so the desired result:is proved. We therefore assume.that. the sets are:
distinct; since X > I'X, we have I'’X o I'?X, I'’X > I'’*X and so on. Thus
the sequence: of sets. T™X is decreasing. By the finite intersection axiom,
we have

K=NI"X # @.
n=1
For each n, we have K < I 'X and so 'K = I'"X, whence T'K < K.

We now prove that K = T'K. Let a be a point of K then, for each n, there
exists a point x, in I™X such that 4 € I'x,. The sequence (x,) admits a cluster
point x, and a sub-sequence () converges to x,. Since at most n—1 points
of this sub-sequence are outside I X and I""X is compact, we have x, e "X

and 50 x, € K. Also ((x;,, @) — (xo, ) and (%, @) € ¥, I'x and so, since T
xeX
is a closed mapping, a € I'x,; therefore a e I'K. It follows that K < T'K and

hence that 'K = K.

§2. Properties of the two types of 'semi-continuity

In this section we compare the properties of lower semi-continuity with
those of upper semi-continuity.

Theorem 1. IfTy is an Ls.c. mapping.of X into Y-and I'; is an l.s.c. mapping
of Y into Z, the composition product T':= Ty * T'y is an Ls.c. mapping of X
into Z.

Proof. If G is an open set in Z, then
I'G={x|T, T)xNG+# @} ={x/TxNI;G # B} =T (T;G).
Therefore, if I'; and I, are Ls.c., I'” G is open and so I" is Ls.c.

Theorem 1'. If T, is a u.s.c. mapping of X into Y and T'; is a u.s.c. mapping
of Y into Z, the composition product I" =T, ' Ty is a u.s.c. mapping of X
into Z.

Proof. By Theorem 3 of § 1, the set I'x = I',(I';x) is compact for all x;
moreover, if G is an open set of Z, then '

I*G = {x|T, Tx = G} = {x|Tyx = TG} = T[T} G).

Therefore if T'; and T, are u.s.c., I'* G is open and so I is u.s.c.
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Theorem 2. The unionI” = U T'; of a family of Ls.c. mappings T'; of X into

Y is also an Ls.c. mappzng of X mto Y.
Proof. If G is an open set of ¥, we have

r- G—{x/UI"xﬂGaéQ}-—UI" G.

iel

Therefore the set I"™ G is open and so I"is Ls.c.

Theorem 2. The intersection T = N T'; of a family of u.s.c. mappings T';
of Xinto Yis also a u s.c. mapping ofl'EAI’ into Y.

Proof. By Theorem 50f §1, the mapping ® = N T is closed therefore,

i#ip

by Theorem 7 of § 1, the mapping I" = I';, N ® is u.s.c.

Theorem 3. Theunion T = U T'; of a finite family of w.s.c. mappings T,
ometo Y is also u.s.c.
Proof. The set I'x'= U I';x is compact for all x, by Theorem 4 of §6,
. i=1
Chapter IV. Moreover, if G is an open set in Y, we have
I*6={x/Ulr'xc G} =NTI;G
i=1 i=1

Therefore I'* G is an open set and so I is w.s.c.
In this case the analogous property for 1.s.c. mappings does not hold.

Theorem 4. The Cartesian product T’ = H T'; of a finite number of Ls.c.

mappings I'; of X into Y, is an lL.s.c. mapping of X into Y = H Y,
Proof. Let G = UE" be the union of the elementary open sets E*in Y.

Since E* = H G*, where G" is an open set in Y;, we have

I~ E* = {x/[[Tx N]] G # @} = NI} G~
i=1 i=1 i=1
Then I'" E* is an open set and therefore so is I'” G = UT"~ E*, Hence I’
k
is Ls.c.

Theorem 4'. The Cartesian product T' = H T'; of a finite number of u.s.c.

mappings I'; of X into Y, is a w.s.c. mapping of X into ¥ = H Y.

Proof. To fix our ideas, we cons1der the. case # = 2. Since I';x'and I',x
are compact, so is I'x = I';xx I';x, by Tychonoff’s Theorem, §9, Chap-
ter IV.
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Let G be an open setin ¥ and.let a be an element of I'* G. Since I'a is
compact and is contained in G, it can be covered by a finite number of
elementary open sets contained in G; let E!, E2, ..., E" be such a finite
covering. Suppose that (y,, y,) € I'yaxI'ya; let E(y,) denote the union of
the E* meeting the set {y,} x I',a and let E(p,) be the union of the E" meeting
the set I'yax {y,}. The projection m;E(y;) of ,,
the set E(y,) on the space Y, is open, by Theorem =~
2 of §9, Chapter IV. As y; varies.the. sets. -
7, E(y,) are finite in number and therefore their ¥,
intersection is open; similarly the intersection of

Ta.

the sets =, E(y,) is open. We write Tpa
' Gy = nr 1 E(72),
y2elaa
n Le W
G, = N mE®y,).
2 eria 2 00 , Fic. 29 .

Then E = G, x G, is an elementary open set of ¥ and

TE={x|TxxIx <G xG}=(T{GNI]G)UI{oUTI; @.
Therefore I‘*; Eis aﬁ obeq seﬁ 'of X ;"siﬁce T'a <« E « G, we also have

. @eTYEcT*G
Therefore the set _I‘“r G is a neighbourhood of each of ‘its points and so is
open; hence I' is u.s.c.
. '§ 3. Maximum theorein -

We shall make frequent uée of the following results..

Theorem 1. . If ¢ is a lower semi-continuous numerical function in Xx Y.
and T is an lLs.c. mapping of X into Y such that, for each x, T #-0@, the
numerical function M defined by

M(x) = sup {¢(x,») | y e T'x}
is lower semi-continuous.
Proof. Suppose that x, € X and let y, be such that
Yo €Txg; $(x0, ¥o) = M(xo)—e.
There exist neighbourhoods U(x,).and ¥(y,) such that
%) e Uy x V(o) = $(x,3) Z $(k0, yo) =& Z M(xo)—2s;
there exists a neighbourhood U’(x,) such that

. . xeU'(xg) = I'xDV(yy) # 9.
Therefore . . S '
xe Ulx) NU(xy) = M(x) Z M(xy)—2e.
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Theorem 2. If ¢ is an upper semi-continuous numerical function in XX Y
and T is a u.s.c. mapping of X into Y such that, for each x, T'x # 9D, the
numerzcal Junction M defined by

M(x) = max {¢(x, ) [ y e T'x}

is upper semi-continuous.

Proof. Suppose that x, € X; to each y in I'x, there correspond neigh-
bourhoods U,(x,) and V() such that
&, 2) e Uyxo) x V) = 6(x, 2) < $xo, y)+é
Since I'xg is compact it can be covered by a finite number of nelghbourhoods

of the form V(»), say V(¥y), V(¥2), . . . » V(¥n). Putting U'(x,) = ﬂ Uy.(x0)
=1

and V(I'x,) = U V(y,), we have
xe U(xo), y e V(Txy) = ¢(x,y) < max d(x, y)+e =S M(x0)+e

Moreover there exists a neighbourhood U(xo) such that

x e Ulxp) = T'x = VI'xy)
and so
xeUxg) NU(xy) = M(x) = max ¢(x, ¥) £ M(x,)+e.
: ye Ix

Maximum theorem. If ¢ is a continuous numerical function in YandT isa
continuous mapping of X into Y such that, for each x, Tx # @, then the
numerical fimction M defined by M(x) = max {¢(y) | y e T'x} is continuous
in X and the mapping ® defined by ®x = {y [y eT'x, ¢(y) = M(x)} is a
_u.s.c. mapping of X into Y. .

Proof. The function ¢ is continuous in X'x ¥ and so M is a contmuous
numerical function; moreover the mapping A given by

Ax = {y | M(x)— ¢() = 0}

is closed (by the example following Theorem 3 of § 1) and hence ® = I' N A
is u.s.c.

Let ¢ be a continuous numerical function defined in a topological space
Y. A family of compact sets & = (K;/iel)in Y is called selective (with
respect to ¢) if for each i there exists one and only one a; such that

a;e K;; ¢(a) = max {¢(»)/ye K}

In other words, the maximum of ¢ is attained at only one point of the set K.
For example, in R” every family of ballsis selective, with respect to ¢(y) = m;y;
in R, every family of compact sets is selective with respect to ¢(y) =
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Theorem 3. Let I be a continuous mapping of X into Y such that, for each x,
Ix # @. If the family of sets (TUx [ x € X) is selective, there is a single-valued
continuous mapping ¢ of X into Y such that, for each x, cx € I'x.

Proof. Let ¢ be a continuous numerical function in ¥ for which (I'x / x & X)
is selective; if ®x = {y/yeI'x, ¢(»y) = M(x)} then ® is a single-valued
mapping of X into Y.. Moreover,.it is.u.s.c. by the preceding theorem and-
so is continuous (since it is single-valued). The mapping:ox = @x satisfies .

(Vx) : oxelx.
as required. :

CoroLLARY. IfT is a continuous mapping of X into R such that, for each x,
I'x # @, there exists a continuous single-valued mapping o such that, for each x,
oxelIx. ‘ '

Proof. 1t is sufficient to take ¢(y) = y, whence ox = max I'x.

§ 4. Fixed points of a mapping of R into R

~ We can now prove an important result which will be generalised in Chap-
ters VIII and IX.

Kakutani’s theorem (weak form). Let [a, b] be a closed interval in R and
. let T be a u.s.c. mapping of [a, b] into [a, b). If Tx is a closed interval for each
x, then there exists an x, such that xy € I'x,.

Proof. (1) We first show that if ¢ is a positive number, then there exists a
point x, in [a, &] such that B,(x,) N I'x, # D.

Suppose that this is not the case. Then, for each x, we have
B,(x) NT'x = @ and I'x (being a closed interval) can: only be to.theright of x.
or to.the left of x in [a, b]. Let.A4 be the set of x.€ R.such that.I'xis to the.
right of x and let B be the set such that I'x is to the left of x. Since.ae 4.
and b € B, the sets 4 and B are both non-empty. Also ANB = @ and
AUB = [a,b]." '

Moreover, if x; € A, then, since I'x, is compact,

x4 +& < min Ixy.
Let A be a number-such that
' x1+8<l<min1"x1.

£EE A _
! ; o i
a T Tz b
Frc. 30

Since I" is u.s.c., there is a neighbourhood ¥(x,) such that
xeV(x) = Txcli, 77]
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and so : R
xe V(xi)ﬂB(xl) = xe A.

Therefore A is open; by symmetry B is also open. But this implies that A
and B determine an open partition of [a, 5], which is not possible since
[a, b] is connected. Therefore we have reached a contradlctlon

(AN} follows that, for each mteger n, the set

K, = {x/Bl(x) NTIx # @}

is non-empty. Smee the mapping A such that Ax = Bl(x) NTIxisws.c., the

set ‘A* @ is open and therefore K, = —A*® is closed.  Moreover )
K, o> K, > K5 > ... and so, by the finite intersection axiom, there ex1sts a
a point x, of [a, b] belongmg to all the K,. Then

(Vn) : Bl(xo) NTx, # @.

Hence x; is a. cluster point of T'x, and so, since I“xo is c]osed ‘we have
Xo € IT'x,. :

COROLLARY 1. 'Brouwer’s fixed pomt theorem (weak form). If o is a
continuous szngle-valued mapping of [a, b] into [a, b]; there exists-a poznt Xg
such that 0%Xo = Xo- : :

. Proof. The mapping ¢ satisfies the condltlons of Kakutani’s Theorem,
- ax = [y, y] = {y} being a closed interval. . ,

COROLLARY 2. If T is a continuous mapping of [a, b] into [a, b] such that,
for each x;Tx # @, there exists a point X, in [a, b] such that

“x9 €T'xy; Xo = max I'x,.

- Proof. The mappmg ox = max I'x is contmuous, I;y the Maximum
Theorem, and so we can apply Corollary 1 to show tHat there exists an xg
such that

Xo = o':x0 = max I'x,.

§ 5.* Limits of a family of sets

Let (44, 45, ...) = (4,) be a sequence of sets'? in a topological space. ‘We
say that x, is a limit peint of (4,) if to each neighbourhood U(x,) there .
corresponds an integer n such that

kgn = Aan(xo)#g.
) The results on sequences -of sets are due to Kuratowski (Topologie, 1). . Certain

extensions to filtered families of sets have been made by G. Choquet (Ann. Univ. Grenable
1947, vol. 23, p. 57). :
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We say that x, is a cluster point of (4,) 1f for each nelghbourhood U(xo) and
for each positive integer n, we have + .

@k; kzn) 4N Ulx) # 2.

To extend these ideas to-any family (4;/1 E.I), we associate with it a filter
. base & = (S, S, ...)on the index set I; we then obtain a filtered family of
sets, which is denoted by (4)) = (4;/i€,%#). Unless otherwise stated, a
sequence (4,) will always be considered to have the Fréchet base consisting.
of the sections. S, = {k/keN, kzn}. For a fitered family

© (4 = (4;] ie I, B) we say that x, is a limit point if

(VU(x)) @S; Se®B) (Vsi): 4;N U(xo) # .
‘We. say that x, is a cluster pomt if
' (V U(xo)) (VS) (3s) + 4, n.U(x'o) # 0.

The set of limit points of (4;) is called the lower limit of (4;) and is denoted
by Lim (4,); the set of cluster points of (4,) is called the upper limit of (4,)
and is denoted by Tim (4,). In all cases Lim (4;) < Lim (4;). If Lim (4;) =
Lim (4,) = 4y, we say that the family (4;) converges to A4, and write
(4,) - A,, or that Ao is-the limit of (4,) and write 4, = Lim (4)).

EXAMPLE 1. Let X be a set with the discrete topology Then x, € Lim (4,)
. is equivalent o~

@S)(Vs) : xoeds  Lolomn

| Lim (4,) is then the prmc1pal lower limit of (4;) Wt to &, which we
have already encountered (Chapter I, § 9) and which we write Limg (4)).
Further, x, € Lim (4,) is equivalent to

VS) (Fsi) : xo€ 4,
Lim (4,) is then the principal upper limit of (4,) with respect to &, which we
Wl'ite Limga (Ai)

EXAMPLE 2 Let (4,) be a sequence of sets in a metric space X. Then
X0 € Lim (4,) is equivalent to

(VBe(xo)) (3n) : k = n implies that 4, N B,(xo) # 2.

In other words, x, € Lim (4,) 1f the sequence whose general term is d(xo, 4,)
converges to 0.
Further, x, € Lim (4,) is equivalent to

(YB(xo)) (V) (ks k Z ) = A, N Bxo) # 2.

In other words, Xo € Lim (4,) if the sequence whose general term is d(xq, 4,)
admits 0 as a cluster point. :
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ExampLE 3. Let T’ be a mapping of X into Y such that, for each x,
I'x # @; if xo € X, the lower limit of the filtered family (I'x / x € X; 77(x,))
is written Lim I'x and the upper Limit is Wntten Lim I'x.

x-+xo x—+xo

In a compact set, the sets Lim I'x and Lim I'x can be used to deﬁne lower
X~X0 x-vxo .

and upper seml-contmmty at xo of a mapping I".

Theorem 1. If # is the grill of the filter base %, the lower limit of the '
family (4,) = (4; ] ie I, B) is given by '
Lim (4) = N [U 4]

Hed icH

Proof. We recall that the grill Z consists of the sets H which meet all the
sets § of #. If x,eLim (4;), then to each ne1ghbourhood U(x,) there
corresponds a set Sy of & such that

ie Sy implies that 4; N Ulx,) # 9.
Then for all H we have

U 4; N Uxy) # 9,
ieH-
since H belongs to the grill 4 and so meets Sy.
Conversely, suppose that x, ¢ Lim (4;). Then

(3 U(xy) (VS) (35 z(S))) 14y N U(xq) =
and so, if H = {i(S) [ S € %}, we have
U 4,0 U(x,) =

ieH
To sum up, we have -
xo € Lim (4)) <> (VH) (YU(xo)) : U 4, N Ulxo) # @ < (VH) : xoe U4,
ieH N

ieH
whence

Lim (4) = N [ U 4;].

He® ieH

Theorem 1'. The upper limit of the family (4;]ie 1, %) is
Tm) = NTU 4]
Sed leS
Proof. We have
xo € Lim (4;) < (VS) (VU(xp)) : U 4, N Ulxy) # @ < (VS) : x5 U 4,
ieS ieS
and the result follows.

These formulae generalise those which give the limits of a family of sets
with respect to # (Chapter I, § 9).
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CorOLLARY 1. Lim (4) and Lim (4,) are closed sets. '

This is immediate, since Lim (4;) and Lim (4,) have been proved to be
intersections of closed sets.

COROLLARY 2. If A; < B, for all i, then
Lim (4) <= Lim (By),
Lim (4) = Lim (B)).
This is an immediate consequence of Theorems 1 and 1'.
' COROLLARY 3. We have
| Lim (1) = Lim (4),
Lim (4;) = Lim (4).

Proof. We have U 4; = U 4,, since U 4, is the intersection of the closed
sets containing all ;ﬁg Ai, (;;,that angnts to the same thing, all the 4.
Theorem 2. If (4} /ie I, #’) is a sub-family of
(4) = (4; ) ic L, B)
(that is,lif A; = A}, B+ %B), we have
Lim (4)) = Lim (4.

Proof. If x, € Lim (d4;), then for each U(x,) there exists a set S e % such
that i e S implies that 4; N .U(x,) # @. There exists a set S’ in &’ contained
in S and for this set we have

ieS = A;0Uxy) # Q
Hence x, € Lim (42). |
Theorem 2'. If (4}) is a sub-family of (A4,), then
Lim (4;) > Lim (4)).
Proof. If x, € Lim (4}), then for all U(x,) and for all S’ in &',
’ U 4,N Ulxg) # D.

ieS’
But for each S in &, there exists an S’ in #’ contained in S and so we have

U Ai N U(xo) # @.

ieS

Hence x, € Lim (4,).
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CoROLLARY. If(A})is a sub famzly of (A,) and if (4) — Ao, then (4}) — A,.

‘Proof. ‘We have L o

4o = Lim (4,) = Lim (4) = Tim (4) = Tim (4)) = 4,
and so L e o
Lim (4) = Lim (4) = 4,.

Theorem 3. If a filtered family is such that A; = A, for all i, then (4;) — A,.
Proof. 'We shall show that '

Ay c L1m ) c: Lnn (4) c: Ao
The inclusion (2) is immediate. For the inclusion (1), we have
xoedy = (V U(xo)) A n U(xo) %0 = X € Lim (4)).
‘For the mclusmn (3), we have
Xo eTim (Ai) = (VU(xo)) (VS) U 4; n U(xo) £0 = xoer
Thus the theorem is proved.
The definitions of lower .and upper limits .can be formulated rather

differently as follows. Let (4;) be a filtered family and let I" be the mapping
of X into I defined by

Ix = {z/xeAi}.
Suppose that U e #(x,). We have
' U= {z/AinU;éQ}
then x, € Lim (4,) is equivalent to
(YUG) @S) : S = TUGo).
Sxmﬂa;rly, xo € Lim (4,) is equivalent to )
(YUGxo)) (¥S) : SNTU(xo) # @..

These remarks help us to make the proofs of the following theorems some-
what easier.

Theorem 4. If (4%) is a sub-family of (4,), then
Lim (4;) = N Lim (4%.
Proof. If x4 e Lim (4,), then, for any sub-family (4%),

%o € Lim (4,)) = Lim (4% = Lim (49,
whence s
xo € N Lim (49.
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Conversely, if x, ¢ Lim (4,), there exists a neighbourhood U of x‘.,v'such
that » : :
S : SN(-TU) # 2.

Then, by Theorem 3 of § 6, Chapter I, the sets S N (~TU) form a filter base
%' with B' = & ; every set A} of the sub-family of (4,) defined by means of
Z#' is disjoint from U and so

Xo ¢ Lim (4)).
Theorem 4'. If (49 is a sub-family of (4,), then
Lim (4, = 9 Lim (47).
ﬁroof. If xy € Lim (A4%), we have
%o € Lim (4%) < Lim (49 < Lim (4,
and so x, € Lim (4,).

Conversely, if xo € Lim (4,), the sets SN I'U (where S runs through &
and U runs through 77(x,)), form a filter base &’ with &' - &. Writing
A} = (4;/ie I,%’), we have :

(YU(xe)) AS"; S'e B’ = S' = TU(x,).
Therefore x, € Lim (4}) and so the proof of the theorem is complete.

Theorem 5. Let (4;) be a filtered family of sets; if every sub-family (42)
has a sub-family (A"} converging to Ay, then

(Ai) b d Ao.
Proof. We shall show that
W @___ ®
4, = Lim (4;) = Lim (4;) = 4,.
The inclusion (2) is immediate. For the inclusion (1), we have, for any
sub-family (47,
Ao = Lim (4%) <= Lim (4)).
Then, by Theorem 4,
4, = N Lim (49 = Lim (4,).
To prove the inclusion (3), we suppose that x, € Lim (4); then, by Theo-
rem 4', there exists a sub-family (47) such that x, € Lim (4}) and so

%o € Lim (4;) = Lim (47) = 4,.
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. REMARK. We note that limits of sequences (F,) of non-empty closed sets
have the following properties:
(1) If (F;) is a sub-sequence of (F,) and if F, = Lim (F,), then

F, = Lim (F)).

' () If F, = F, for all n, the sequence (F,) is convergent and Fy = Lim F,.
(3) If every sub-sequence (F}) contains a sub-sequence which converges to
F,, the sequence (F,) is convergent and F, = Lim (F)).

Thus the collection & of non-empty closed sets forms an L*-space (cf.
§ 2 of Chapter IV). Unfortunately, the filtered families (¥;) do not in general
possess the fourth characteristic property of filtered families in a topological
space (Theorem 5, § 4, Chapter IV) and so it is not possible to define the
convergence of the (F;) by means of a topological structure.

Theorem 6. We have
Lim (4;UB) = I?E(Agum(a,)
Proof. Since A;U B; > 4;, then Lim (4;U B,) > Lim (4;) whence, by
symmetry,
Lim (4,UB) > Lim (4,) U_f{ﬁ (B
We now prove the opposite inclusion. Let x, be a point of
- Tim (4 U By,
and, for each neighbourhood U of x,, write
TU={i/4;NU +# @}; AU {i| B; ﬂU;é @}.

We must show that at least one of the following relations holds:

(YU)(VS): SNTU # @,
(YU)(VS) : SNAU # @.

" Suppose that this is not so; then there exist sets S and 7'in & and sets U
and Vin #7(x,) such that

SNTU =0, TNAV = 0.
KS,cSNTand Uy = UNV, then

SeNTU, = 9,
SO ﬂ AUO = g,
whence

So N[TUUAUp) = SoN{i/(4;UB)N T, @} = @

Since x, € Lim (4, U B;), we have a contradiction.
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Theorem 6'. We have |
Lim (4, U B) = Lim (4, U Lim (B),
Lim (4; U B) < Lim (4, U Lim (8) U [Lim (4,) N Lim (B)].

Proof. The first relation is immediate. To prove the second, suppose. that
X, is such that :
xo € Lim (4; U By,

Xo ¢ Lim “)n Lim (B2,
xo ¢ Lim (4)),
xo ¢ Lim (B)).

We can suppose that x, ¢ Lim (4;) (1f not, then we interchange the families
(4)) and (B))). Then there exist a set U, in ¥"(x,) and a set S, in & such that

ie So = Ai n UO = Q.
For any neighbourhood U of x,, there exists a set S such that

iESO = Ain(UnU0)=®
ieS, = (LUB)NUNU,) 2.

Then, if S < So N Sy, Se, we have
ieS = BNUNU)#9D = BNU# 2.
Since x, ¢ Lim (B;), we have a contradiction, and so the theorem is proved.
COROLLARY 1. If the family (B;) converges, then

Tim (4; U B) = Lim (4,) U Lim (B)),
Lim (4; U B;) = Lim (4, U Lim (B).

This. follows. immedié.tely. from Theorems: 6 and 6'.

COROLLARY 2. If the family (A4;) converges to A, and the famzly (B) con-
verges to By, the family (A; U B)) converges to A, U By.
This follows immediately from the preceding corollary.

COROLLARY 3. If the family (A; U B;) converges, and if
| Lim (4) NTim (8) = @
then the families (A;) and (B;) converge.
Proof. In this case, we have :
Lim(4)ULim(B) = L1m (4;UB) = Lnn (4;U B)) = Lim (4;) U Lim (B,)
Since Lim (4;) < Lim (Ai), Lim (B, < Lim (B;), we have

Lim (4,) = Lim (4)),
Lim () = Lim (B).
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§ 6.* Hausdorff metrics

Some of the ideas which we have just studied take on a s'pecial significance
in the case in which X is a metric space.
Let A and B be two non-empty closed sets m a metrlc space X, and Wnte

p(4, B) = sup {d(x, B) | x € A}
P(B, 4) = sup {d(y, 4) | y € B},

where d(x, B)is the distance from the point x to the set B (cf. § 1, Chapter V).
The numerical function & defined by

5(4, B) = max {p(4, B), p(B, 1)}

is called a Hausdorff metric. We shall prove that & satlsﬁes the necessary
properties of a metric for the family &' of non-empty closed sets.

(1) 6(4,B)= 0. .
() 6(4,B)=0 = p(4,B)=0 = 4 = B, andso,bysymmetry,A B;
A = B = p(d, B) =0, p(BA)—0=>5(AB)-—0 :
(3) 6(4, B) = d(B, 4).
(4) To prove the triangular inequality, we observe thatif xe 4 and ¢ > 0,
there exist points y € B and z € C such that

d(x, B)+6(B, C) z d(x,y)—&+d(y, C) z d(x, y)+d(p, 2)—2&
= d(x, 2)—2¢ = d(x, C)—2¢.

Since this inequality is satisfied for all £ > 0, we have

d(x, C) £ d(x, B)+4(B, C),
whence : _
p(4, C) = sup d(x, C) =-6(4, B)+4(B, C).

xed

In this inequality, we can interchange A and C without changing theArightj-
hand side, and so

(4, C) £ 6(4, B)+6(B, C).
Thus we can regard & as a metric space, with é as the metric.

Theorem 1. Let X and Y be two metric spaces, ' the family of non-empty
compact sets in Y, I' a mapping of X into Y such that, for each x, T'x # O.
Then T is a continuous mapping of X into Y if and only lf it is d single-valued
continuous mapping of X into "'

Proof. To begin with, we note that

T'x < B(I'xp) I'x = BTx,)
o(T'x, Txp) S & < {I“xo - Be(l“;)} > {(‘eroJ’) : B:(y)nl“x £
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If T is a continuous mapping of X into Y, then to each & > 0 there
corresponds a number # such that

d(x, x;) < n implies that Tx = B,(T'xo) < B,(T'x,).

Moreover, since I'x, is compact, it centains points ¥y, ¥3, - . . , ¥, such that
the balls B, ,(y;) cover I'x,. Therefore there is a number 7’ such that

dx, %) £ 1 = (Vi) : BUANTx # @ = (Vo ») : BO)YNTx # @
and so, finally, we have
d(x, xo) € min {n,7'} = 6Ix,TI'xq) e

Conversely, suppose that I" is a single-valued continuous mapping of X
into 7. Let G be an open subset of ¥ containing I'x,. Then by Theorem 3
of § 1, Chapter V, there exists a number & such that B(I'xo) = G and so
there exists a number 5 such that

x€Bfx;) = TIxc B(Ix) =G
Hence T is u.s.c.

- Moreover, if G is an open set meeting I'x,, there exists a point y, in
I'x, N G and an ¢ such that B,(y,) = G and hence there exists a number 7
such that

x€B(x5) = TxNB(y) # @ = IxNG # O
Hence I' is Ls.c.

CoroLLARY. If T is a continuous mapping defined in a compact metric
space X, T is uniformly continuous:. that is, to each & > O there corresponds a
number 1 such that, for each pair. (x, x"), we have

dx,x)<n = oITxTx)=Le

To prove this, it is sufficient to combine the result of the prevmus theorem
with Heine’s Theorem (cf. § 9, Chapter V).

ReMARK. The Hausdorff metric enables us to topologise the famx]y
of non-empty closed sets in X. In the case in which X is not a metric space,
this suggests the following more general problem: can we associate with &
a topological structure such that

(1) the study of the continuity of a mapping I" with values in X 1is reduced
to that of a single-valued mapping with values in &, :

(2) the study of the convergence of a sequence (F,) of closed sets of Xis
reduced to that of a sequence of elements of &'?

In fact there exist several methods of topologising ', amongsf which are
one due to Vietoris and another due to Bourbaki. Nevertheless we should
note the following points:
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(1) In adopting this point of view, we can only hope for partial results
concerning mappings; we must assume that I'x # @ for each x and that T
is semi-continuous in both senses; also the differences between elements and
sets are not taken into account.

(2) Regarding the study of convergence of sequences (F,), we have already
indicated that this does not in general possess the characteristics of conver-
gence of sequences of elements in a proper topological space. The introduc-
tion of a ‘pseudo-topology’ appears to lead to inextricable complications.



CHAPTER VII

MAPPINGS OF ONE VECTOR SPACE
INTO ANOTHER ‘

§ 1. Vector spaces

We now study certain special types of operations whose nature is of particular
interest to algebraists.

I. An operation in a set X is called an addition if it is a correspondence in
which to each pair (x,y) of Xx X there corresponds an element of X,
written x+y, such that

(1) x+(+2) = (x+y)+z  (associativity),
(2) there exists an element 0 of X, called the neutral element, such that,
for all x, ' - -

x40 =0+x = x,

(3) to each x there corresponds an elerhent —x of X, called the inverse of
x, such that x+(~x) = (~x)+x.= 0, '
@) x+y = y+x  (commutativity).

A pair consisting of a set X and an addition + on X is called an
abelian group (if condition (4) is omitted, then we call the pair a non-abelian’
group). We refer to the element x+y as the sum of x and y. .

The set X of integers, positive, negative or zero, together with ordinary
addition + forms an abelian group, with zero as the neutral element.. Simi-
larly the set X of strictly positive real numbers together with multiplication
forms an abelian group having 1 as the neutral element. The set of displace-
ments in the plane forms a non-abelian group, with the ‘unit’ displacement,
which leaves everything unchanged, as the neutral element.

REMARK. An abelian group cannot contain more than one neutral ele-
ment, for if e and ¢’ are neutral elements, then ¢’ = e+¢’ = e. Similarly an
element x cannot have more than one inverse, for if @ and b are inverses
of x, we have o

a=0+a=b+x)+a = b+(x+a) = b+0 = b,

II. In an abelian group (X, +) a scalar multiplication is an operation m
which to each pair consisting of a real number 1 and an element x of X
there corresponds an element of X" (written Ax) such that
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(1) Ax+y) = Ax+4y,
@ @A+px = Ax+px,
3 Ax = A(px),

4 1x=2x

A set X together with an addition and a scalar multiplication is called a
vector space (over the real numbers). If addition and scalar multiplication
are fixed and no confusion is possible, we shall refer to X itself as the vector
space. The points of X will be called vectors.

ExampLE 1. R"is a vector space, if we define addition and scalar multipli-
cation by ,
Xty = (xl’ xza ) x")+(}’1, J’z, )= (x1+y1= x2+y2’ ey x"+}’"),

A Ax = A, % L., X = (A, A2, .., AXT)
and write
0=(0,0,...,0),

—x = =4 x% ..., %) = (=%, =x%, ..., —x").
It is easily verified that all the requirements for a vector space are fulfilled.

ExampLE 2. The set ® of numerical functions defined on the segment
[0, 1] forms a vector space if, for f, g € @ we write

[+l () = f(x)+g(),
[Af1x) =4-f(x),
[0] (X) = Oa ’
[-f1®) = —f(x).

ExampLE 3. The space L, of numerical sequences (x,), such that
. - |
Ylx P < +oo
n=1
(real Hilbert space) is a vector space if we write

)+ = a2,

Axy). = (Axy),
0=(0,0,...),
""(xn) = (— n)'

We have (ix,) € L,, for
S a7 = |2 | x] < +o;
n=1
also (—x,) € L,, for
‘ Sl=%P= X% <40
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To show that x+y € L,, we observe that

%, 2+ [P = 2] %] x [m] = (%] = |2])? 20
Then

|t yal? £ (otu|+|9aD? S |50 P+ 2a P +2] 5] % 30| £ 2], 24250 ]?

and so
'"SJ Xty |2 S zéjll X [2+2n‘;]y,, |> < +o0.
Remark 1. Ox = 0. For
x4+0x = 1x+0x = (14+0)x = lx = x
and so
0x = (—x+x)+0x = —x+(x+0x) = —x+x = 0.
_ REMARK 2. (=1)x = —x. For.
| (=Dx+x = (—=1+1Dx = 0x = 0

and so

(=Dx = (= Dx+[x+(=%)] = [(=Dx+x]+(—%) = 0+(~x) = —x.

ReMARK 3. Ax = 0, A # 0 are equivalentto x =0, 1 £ 0. Forif x =0
and 4 # 0, then, by Remark 2,

Ax = 0+A[y+(—-1)y]l = 4-Ay = 0.
Conversely, if Ax = 0 and 1 # 0, we have

1 1 1
x=(il>x -—Z(ﬂ.x)-—}:O——O.

Let A and B be two non-empty subsets of a vector space X. Put

A+B = {a+b/acd, be B},
ld = {la]ae 4},

where 1 is a real number. Then 4+ B and A4 are non-empty subsets of X.
We also write :

A+9D = 0,
1D =0,
—4 = (—1)4,

A—B = A+(-B).

TSK
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Theorem 1. We have

(1) A+B=B+4,

() A+(B+C) = (4+B)+C,
(3) A+{0} = 4,

(@) A+(—4) > {0} if A+ @,
(5) MA+B) = AA+1B,

6 (A-+mAd c Ad+pA,

(7)) ip A4 = Nud),

® 1:-4=4.

Proof. These formulae are trivial if 4 or B is empty and are easily verified
if 4 # @ and B # O.

FiG. 31

In general, the set Z(X) of subsets of X does not form a vector space; the
inclusions (4) and (6) are not necessarily equalities, as we can see from
figure 31, in which X = R? and 4 = {a,, a,}. We have

A+(—4) # {0}
or
14+(—~14 # (1-1D4
Theorem 2. (4+B) NC=0is equivalent to A N (C—B) =
Proof. If A N(C—B) # D, we have |
@,a) @gb)(Bcc0): a=c—b.
Then a+b = c and (4+B) N C ¢ @; thus we have shown that
A+B)NC=0@ = AN(C-B)=0
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Replacing B by —B, 4 by C and C by 4 in this formula, we obtain

(C-B)NA=0@ = CN(4+B)=0.
Hence
(A+BNC =0 <« AN(C-B)= Q.

Theorem 3. A+B < C implies that A = C—B.
Proof. TA+B < C,'We have

(Vi) (Vpb)(Ecc) :atb=c
(V40)@5b) Ecc) 2 a=c—b,

A <« C—B.

and so

whence

§2. Linear mappings

Let X and Y be two vector spaces and let I" be a mapping of X into ¥ such
that T'x % @ for at least one x ¢ X. We say that I" is linear if

@ ii?ﬁi .= y+y el(x+x),

2 yelx = lyel(lx).
If T is a single-valued mapping f, these conditions become

1) fR+E) = fx+x),
@) M(x) = f(Ax).

A numerical function which is linear is often called a linear form.

ExampLE 1. Let X = R?, Y = R and consider the projection n, which
maps the point (x*, x%) of R? into the point x* of R. We have .

x4’ = x'+x"t = n(x+x"),
C o dmgx = Axt = my(Ax).

* Therefore =, is a single-valued linear mapping.

ExaMmpLE 2. Let ® be the vector space formed by the numerical functions
defined on [0, 1] and let T be the mapping of ® into ® which maps each
function ¢ of @ into the set I'¢ of its indefinite integrals; then

o) = { Ja¢(§) dé+A]Ae R} if ¢ has an indefinite integral,

T'o(t) = @ otherwise.
"We can verify that this mapping is linear.



134 TOPOLOGICAL SPACES
Theorem 1. 4 mappmg T is linear if and only if

¢)) P(x+x') = I'x+TIx',
(@ T@x)=Ai'x if A #0,
€)] 0eTI0.

Proof. Clearly if T satisfies these conditions it is linear.

Conversely, suppose that I" is a linear mapping. We shall prove the pro-
perties in the order (3), (2), (1). A
To prove (3), we suppose that x is such that I'x # @ and let y be an

element of I'x. Then .

R 0= 0yeI'(0x) =

To prove (2), let A be a real number not equal to zero and let x be an
element of X; if I'x 5 @, then it follows from the definition of linearity that

ATx = T(Ax)

and this inclusion is also satisfied if T'x = 0. To show that the opposite
* inclusion also holds, we replace 4 by 1/4 and x by Ax in this formula and get

%r(lx) eI (1—11 Ax) =

T(Ax) = AI'x.

It follows that

Therefore
T(Ax) = AT'x.

To prove (1), let x and x’ be elements of X; if I'x # @, I'x’ # @, then it
follows from the definition of linearity that

Ix+Tx" e I'(x+x").

II'x = @ orI'x’ = @, this inclusion is still valid. To show that the opposite
inclusion also holds, we replace x by x+x’ and x’ by —x’ in this formula
and get

Tx+x)+T(—x") < I'x.

Using (2) and Theorem 3 of § 1, we now get

I'(x+x") = Fx —T(~x") = Tx+(=1)2Tx" = I"x+I‘x
Therefore
Tx+Tx' = T'(x+x").

COROLLARY. A necessary and sufficient condition for a linear mapping T’

. . to be single-valued is TO = {0}.
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Proof. By the theorem, we have 0 e I'0; if I is single-valued, then cléarly
o = {0}.
Conversely, if I'0 = {0}, then, by the theorem,

I'x—Tx =T(x—x) =T0 = {0}.

If @ and b are two elements of I'x, then a—b = 0 and so a = b; hence I" is
single-valued.

Theorem 2. The inverse I'™ of a linear mapping T" of X into Y is a linear
mapping of Y into X.

Proof. If T is linear, then

xel""y}:yel"x

X el™y y’el’"x’} = y+y el(x+x) = x+x'el'” (y+))

and also
xel™y = yelx = Jlyel(lx) = Axel (i)

Theorem 3. If T, is a linear mapping of X into Y and I, is a linear mapping
of Y into Z, the composition product I" = I'y + T'y is a linear mapping of X
into Z.

Proof. We have

zely, I'ix - zel,y, yel'ix
zel, Iix zel,y,yelx
z4+z e T,(p+¥) , . ,
y+y € Dot = z+4+z'el, Ti(x+x)

and also

' Az eT,(4
zel',Tix = zeiI‘zy, yelix = {Ayel":&g = Azel, T,(Ax).

Theorem 4. If 'y and T, are two linear mappings of X into Y, then
T =I'; NI, is a linear mapping of X into Y. _

Proof. We have

z el'x z el'yx, z el'px
Zelx Zelx, 2 elpx

| z+2 e T'y(x+x) , ,
{z-i-z’el"z(x-!—x’) = z+7 ellx+x)

and also

= AzeI'(1x).

zel' x Aze T (Ax)
Zer;x:‘{zefzx {lzefz(lx)
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Theorem 5. If I'y and I, are two linear mappings of X into Y, the mapping
I’ = I'y+T, (defined by Tx = I'yx+T',x) is linear.

Proof. We have

z elx z =y;+Yya; y1elyx; yoelyx
7 4 = f !’ 1 1 ! ? 7
Z'elx 2 = p{+y;; yielyx'; y;€Tox
z+2' = (P +y)+ 2 +r2),
= { y1+y{ e Ty(x+x), = z4+2' e T(x+x')
V2 +y; € Ta(x+x),
and also
Z = J’1+J72 )»Z = lyl’*‘lyz
zel'x = { y,elyx = { Ay;el'(Ax) = Azel(x).
yaelx Ayz € T'a(Axy)

§ 3. Linear varieties, cones, convex sets

DEFINITION 1. A subset E of a vector space X is called a vector subspace if

(1) x€E, yeE = x+yeck,
(2 xeE, AeR = AxeE.

It follows at.once from the definition that @, {0} and X are vector sub-
spaces; moreover, by putting 4 = 0 in (2), we see that every non-empty
vector subspace contains the point 0. Conditions (1) and (2) can be replaced
by the single condition

, x,yekE
an {A,_ueR = Ax+uyek.

Two vector subspaces E; and E, are said to be supplementary if
E1+E2 = X, E1 nEz = {0}.

If E; and E, are two supplementary subspaces, each point x of X can be
written in the form x = x, +x,, where x, € E; and x, € E,. Moreover, this
decomposition is unique, for

X =X1+X;, = Y;+¥2 X3=Y1 = X3—)2
Xy, Y € By = { X,y € E; =
X3, Y2 € By X,—y,€E,

X, =M
= Xy =Y, = Xp—Py =0 = 1
1M1 27)2 {xz = ,.

A set of the form

D,={x/x=2Aa, AeR}

where a is a point of X different from 0, is called a straight line through 0;
clearly every straight line through 0 is a vector subspace. -If P is a vector
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subspace supplementary to a straight line D, through 0, then P is called a
plane through 0.

)
x
,/'/.'/.\- a
S~ \ Da
. .xl xz
DN T
A : O Fic. 32
. P

Theorem 1. Iffisa numerical linear function which is not identically zero,
then the set E; = {x | f(x) = O} is a plane through 0, conversely, every plane
through 0.is a set of this form.

Proof. We first show that E| is a vector subspace, as follows:

(1) x€EpyeE; = f(x+y) = fR)+f() = 04+0 =0 = x+yeE,
(2 xeE; = f(Ax) =4(x) =0=0 = IxekE,. :

Since f is not identically zero in X, there exists a point a of X such that
f(a) # 0; we now show that the straight line D, through 0 satisfies

D,+E, =X, D,NE;={0}.

The 'second condition follows at once from the fact that f(la) = Af(@) = 0
only if 1 = 0. To prove the first, we put A = f(x) / f(a); then we have

fx—2d) = fx)—Mf(@) = 0 = x—Aa = beE, = x = Aa+b, be E,.

Hence E| is a plane through 0.

Conversely, suppose that P is a plane through 0 and that D, is a straight
line through O supplementary to P. Every point x of X can be written in the
form x = la+b, where beP. Writing 1 = f(x), we obtain a numencal
function of x; and this function is linear, for 4

1) x+x" = [fx)+fxN)]a+b+b" = f(x+x)a+b"; | b,b',b" P,
@ Ix = [Af(x)]a+b = f(Ax)a+Db'; b, b €P. ‘
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\ .
Thus we have f(x+x') = f(x)+/(x’) and f(Ax) = Af(x). Moreover, fis not
identically zero, since f(a) = 1; finally we have

P ={x/f(x) = 0}.

There are several different generalisations of the idea of vector subspace.
DermNITION 2. A subset 4 of a vector space X is called a linear variety if

x,x' €A,
AAeR, = Ix+Ax'ed.
A+l =1,

The set @, the set X and the set {a} consisting of a single point &, are all
linear varieties.

Theorem 2. If E is a vector subspace and x, is a point of X, the set E+x,.
is a linear variety. Conversely, every linear variety is of the form E+x, for
some vector subspace E and some point x,.

Proof. E+x, is a linear variety, for if A and A’ are real numbers such
that A4-1" = 1, we have

x —x,eFE
x, x' € E+x, = { 0

x'—xo€ E

= (Ax+AX)=xp = Ax—xg)+ A (X' —xp) e E = Ax+1'x" € E+x,,.

Fic. 33
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Suppose now that 4 is any linear variety; we shall prove that ther¢ exists
a vector subspace E and a point x, such that 4 = E+x,. '

Ifd =0, then clearly 4 = @ = @+x,; if 4 # @, let x, be a point in
A and write E = A—x,. Then E is a vector subspace, for

X =a—x =>3
acd :
= Ax = da—Axy = Aa+(1—A)xo—xp € A—x, = E,

(1) xeE =

X=a—X
x+x a+ad

2 2

(2) X, x,EE = x'= a’-—-xo => ""xoeA—xO

a,a’'eAd
= x+x ek

Thus 4 = E+x,, where E is a vector subspace.

If 4 is a linear variety such that 4 = E;+x; and 4 = E;+x,, then
E; ='E,. For x,—Xx, € E,, since

Xy = 0+X1 €A = Ez+x2.

Then _
E1 = E2+(x2“-x1) < Ez'l“Ez [eng Ez.

By symmetry, we also have E, < E; and so E; = E,.

DEFINITION 3. The space E such that 4 = E+x, (necessarily unique, as
has just been proved) is called the subspace parallel to 4. If two varieties 4
and B have the same parallel subspace E, they are said to be parallel to one
another. .

A linear variety D which has a straight line D, through 0 as a parallel
subspace is called a straight line; a linear variety P which has a plane through
0 as a parallel subspace is called a plane.

REMARK 1. Two varieties A and B which are parallel to one another are
either coincident or disjoint. :

Proof. Suppose that AN B # @; if A = E+a and B = E+b (acd;
b € B) there exist points e, and e, in E such that e, -+a = e, +b; then

a=(e,—e)+beE+b = B.

Since a is an arbitrary point of 4, we have 4 = B; by symmetry B = 4
and so 4 = B.
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REMARK 2. Every plane is of the form Ef = {x [ f(x) = o} for some a € R
and some numerical linear function f not zdentzcally zero; conversely, every set
of this form is a plane.

Proof. We have

x€Ep+xy < x—xo€ Ep <> f(x) = f(x,)
and so . .

_ Ep+xo = {x [ f(x) = f(x0)}-
Conversely, let E} be the set {x / f(x) = «} and let a be such that f(a) # 0.

. o
Putting ¥y = —a, we get

" i@
xeEf <> f(x)—f(xo) = 0 <> x—Xxo € E;
and therefore Ef = E;+x, is a plane. ’
REMARK 3 Two distinct points determine one and only one straight Izne
Proof. If a # b, the points a and b determine the straight line
D(a,b) = {x|x=Aa+ub /A neR, A+p =1}

Geometrically, we can see that a set 4 is a linear variety if, for each pair
a, b of points of 4, the straight line D(a, b) is contained in A.

DEermITION 4. We say that a set 4 is a cone if
xed,Az0 = Axe A
Every vector subspace is a cone.

ExampLE 1. Theset D = {x[x = Aa, A = 0}, where ae X and a # 0, is
called the half-line through a.

Geometrically, we can see that a set 4 is a cone if, for each point ain 4, the
half-line D, is contained in 4.

ExampLE 2. A set of the form

Hf’:: {x/f(x) g 0}’

where f is a linear numerical function not identically zero, is a cone; such a
set is called -a half-space.

ExampLE 3. Let I be a subset of {1 2,...,n} and let Q; be the subset of
R defined by Oy = {x/x = (x', x%, ... Jc")x201fzelx'<01fz¢1}
Then Qjis a cone. There are 2" such sets in R™
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DEFINITION 5. A set C is said to be convex if
1) xx'eC
ALA 20 = Ax+Ax'eC.
A+A =1

Every linear variety is convex; in particular, @, {a}, X are convex.

L (convex)
C'(convex)
: D (non convex)
CL"
Z=Ax+Nx'

FiG. 34

ExampLE 1. Let f be a numerical linear function not identically zero. We
can see immediately that the following sets are convex:

the plane E% = {x [ f(x) = a},
the open half-space H'§ = {x [ f(x) < a},
the closed half-space Hf = {x [ f(x) < «}.

ExampLE 2. The following sets, which are called linear intervals; are convex:.
the linear segment [a, 5] = {la+ub /4, p 2 0, 2+p =1},
' [a, b = {Aa+pb[A>0,p 20, Ad+pu =1},
Ja, 8] = {Aa+ub /A 2 0, p> 0, A+p = 1},
Ja, 8] = {Aa+pb [ A > 0, p >0, A4+p = 1}

Geometrically we see that a set C is convex if for each pair (g, b) of points
of C, the linear segment [a, b] is contained in C.

ExaMPLE 3. A set K such that
s 0";;%} = Ax+Xx ek
is called a convex come. A convex cone is a cone and is a convex set; con~
versely if a set K is a cone and is convex, it is a convex cone, for
x,x' e K } A A

A et v yek 1% = A+ ye K.
x>0l = ixxn Tipar Tek = A @+tyye
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ExampLe 4. (Calculus of probabilities.) The probability distributions
(p;/iel)onagivenset 4 = {a;/ie I} form a convex set in the linear space
of functions defined on A4.

ReMARK. We shall denote by P, the set formed by the elements p =
(1, D25 -« - » p,) of R” such that

P1sPas e« Dy g 0: P1+P2+ e +pn = 1.
Condition (1) defining a convex set C is equivalent to the following:
(1) For any positive integer n, we have

xl,xz,...,anC
.(plapb L spn) EPII

Clearly (1) = (1), for (1") reduces to (1) when n = 2. We now show that
(D= (19. If (1) is satisfied, then clearly (1) is also satlsﬁed for n = 1.
Suppose that (1') is satisfied for n = k—1; then

} = pyXi+pPyXat .. +px,€C.

k—1

k
2P =) Pt oy =
i=1 i1 .

_(Zp,) o X Pz Xot.. +p" Xy 1)+pkxkeC
b;

Pi Z b Z
) 1 1

and so (1') is satisfied for n = k. Therefore, by induction, (1) is satisfied
for all positive integers n.

Theorem 3. If 4 and B are two convex sets (resp. vector subspaces, linear
varieties, cones) the intersection A N B is a convex set (resp. a vector subspace,
a linear variety, a cone).

Proof. Suppose that 4 and B are two convex sets. If 4,1’ = 0 and
A+4+1" = 1, we have
xedNRB xed,x'ed Ax+A'x' e d '
{x’eAnB:{xeB,x’eB {Ax+l’x'eB=>)‘x+}"XEAn,B
and so 4 N B is a convex set.
In the other cases, analogous proofs can easily be constructed.

Theorem 4. If 4 and B are two convex sets (resp. vector subspaces, linear
varieties, cones) their sum A+ B is a.convex set (resp a vector. subspace, a
linear variety, a cone).
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Proof. Suppose that A4 and B are two convex sets. If 1,4’ = 0 and
A+A" = 1, we have ’

x = a+b vt ., .
x €A+B X =a'+b I+ Xy = (la+2a)+(b+1'b)
/ = ’ = { lat+ld'ed
¥ed+B aaed Ab+ 1 € B
b,b'eB

and so A+ B is a convex set.
In the other cases, analogous proofs can easily be constructed.

Theorem 5. Let I be a linear mapping of X into Y; if A is a convex subset
(resp. vector subspace, linear variety, cone) in X, the image T'A is a convex
subset (resp. vector subspace, linear variety, cone) in Y.

Proof. Suppose that 4 is a convex set. If 1, A’ = Oand A+ 1" = 1, we have

yel'd oY ela, aecd - Ay e T'(1a) -
y'eT4 yeld,aded Ay el(Va)
Ay+Ay eTla+A'a) ey
= {la+ﬂ.’a’eA = by+iyeld
and so I'4 is a convex set.
In the other cases, analogous proofs can easily be constructed.

CoroLLARY. If A& R and A is a convex set (resp. vector subspace, linear
variety, cone), then A4 is a convex set (resp. vector subspace, linear variety,
cone). ‘

This follows immediately when we apply Theorem 5 to the linear mapping
I' defined by I'x = {Ax}.

Theorem 6. Let I be a linear mapping of X into Y; if A is a convex subset
(resp. vector subspace, linear variety, cone) in Y, then I'"A and T'* 4 are
convex subsets (resp. vector subspaces, linear varieties, cones) in X.

Proof. Let A be a convex set; if I' is a linear mapping of X into Y, then

-I'" is a linear mapping of Y into X and so, by Theorem 5, I'"4 is a convex

set. _
IfA, A > 0and A+A' =1, then

xel*4 _ [Txcd_ [TQ)=xcid _
x'eTt4 ITx'cd I(Vx) = ATx < VA. 4
= I'(Ux+Ax) c AMd+14d c 4 = Ix+1x eTA.

IfA+A" = 1 and A or A’ is zero, the same property holds trivially. Therefore

I'* 4 is a convex set.
In the other cases, analogous proofs can easily be constructed.
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§ 4. Dimension of a convex set

Let A be a subset of a vector space X. The intersection of the convex sets
containing 4 is a convex set [4], called the convex closure (or convex cover)
of A. The intersection of the vector subspaces containing 4 is a vector
subspace s [ 4], called the spatial closure of 4. The intersection of the linear
varieties containing A4 is a linear variety lin [4], called the linear closure of
A. The intersection of the cones containing 4 is a cone k [4], called the
conical closure of 4. The intersection of the convex cones contammg Aisa
convex cone kc [ 4], called the convex conical closure of 4.

The correspondence 4 — [A] is a closure operation (see Chapter I, § 7),
for

[4] = 4,

4 > B = [4] > [B],
411 = [41,

[0] = @

It can easily be verified that similar properties hold for s [4], lin [4], k [4],
ke [4].
Theorem 1. Let A be the set {a;[ieI}. Then A
[4] = {}:p,a,/.fﬁmtc c I; ZP: =1,p; 2 OforaJliinJ}

s[4] = {zliai/Jﬁmte c:I; A;eR for all z},'

lin [4] = {Ziai/JﬁmtecI > —-1},

k[d] = {la;/220,iel} = U4,
120

ke[4] = {i;liai/Jﬁmte cl; 412 OforalliinJ}.

Proof. We shall prove the first formula, the proofs of the others being
similar. We write
B = {Zpa | J finite < I, Zp,- 1, p,ZOforallz}

If C is a convex set contammg A then, by the remark in §3 we have
C > Band so

[4] = B.

To prove that [4] = B, it'is therefore sufficient to verify that B is a convex
set containing 4. By definition B » A4 and, since
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b = Y pa;eB,
ield

imply that
Ab+AY = 3 (Apdat iZK(A'pS)a'i,

ied

Y, (Ap)+ _Zx(l’p;) = AN =1,

ieJ

we have Ab+A' b’ € B and so B is convex.

Given a set 4, a plane Ef such that f()c) > « for all x in 4 and f(x) = «
for at least one x in 4, is called a plane of support of 4. We shall prove the
following corollary to Theorem 1.

COROLLARY. If P is a plane of support of A, then P N [A4] = [PN 4]

Proof. We have f(@) = a for all @ in 4; if x € P N [4], then

Ay, 8., €4,

{x = p1ay+padat - .. +P8, € P,
(.plaPZa e :Pn) eP,.

For all i, we have f(a;)) = o; otherwise we should have f(a;) > « for at least
one i and then

f() = pifl@)+pafla)+ ... +Duf(@) > p1oApaot ... FpU =

so that x would not belong to P. Hence all the a; belong to P N A; therefore
xe[PNA4] '

Conversely, it is easily proved that if xe[P N A], then xeP N[4].
Hence P N[4] = [P N 4].

Theorem 2 We have

[lin [4]] = lin [[4]] = lin [4],
k [[4]] = [k[4]] = ke [4].

Proof. We shall prove only that k [[4]] = ke [4], the other identities
being immediate. Because of Theorem 4 of § 7, Chapter I, it is sufficient to
show that k [[4]] is a convex set. Letx = Agand x' = A'a’ be two points of
k [[4]], where 3,4’ Z Oand g,a'€ [4]; if (p, p') € P, then
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x+p'% = platpda = it ph) (=P at 2%

a.’) e k[[4]]

and so k [[4]] is convex.

We say that the points x,, x,, . . . , x, of a vector space X are linearly inde-
pendent if :

Aixg+ A%+ ... +A,x, = 0 implies that A, = 1, = ... =1, =0.

If Xy, X, ..., X, are not linearly independent, then we say that they are
linearly dependent.

A vector subspace E is said to have dimension » if in E there exist » linearly
independent ‘points and if any set of more than » distinct points of E is
linearly dependent. We say that a linear variety ¥ has dimension # if the
vector subspace E to which it is parallel has dimension » and we say that a
convex set C has dimension » if the linear variety lin [C] has dimension ».

Theorem 3. Let ey, e,,...,e, be linearly independent points in a vector
subspace E; then a necessary and sufficient condition for E to have dimension
n is that each point of E can be expressed in the form

x = Aies+hen+ ... e A A, ... A, €R.

Proof. If E has dimension #, there exist n+1 numbers p, iy, i, - - . fp
not all zero, such that

Nx+ﬂ181+ﬂ2€2+ e +ﬂ,,e,, = (.

Since the e; are linearly independent, u is not zero.

Putting 1; = -—%i; we have

x= -2 el--&z e— ... -—%’ e, = Are;+Ae+ ... +Ae,.

u

Suppose conversely that each point of E can be expressed in this form;
we shall prove that E has dimension n. Assuming that this is not the case,
there is an integer k£ > 0 such that there exist n+k linearly independent
points ay, a,, . . . , @4y Byhypothesis, wehave a; = dje;+Aye,+ ... + e,
for some A;, at least one of which is non-zero. Without loss of generality
we can suppose that 4;  0; then
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and so each point x of E can be expressed linearly in terms of a,, e,, e, . . ., €,.
By a similar argument we can show that each point x of E can be expressed
linearly in terms of a,, a5, es, . . . , €, and we can continue this process until
each of the e; has been replaced by an a;. Thus each point x can be expressed
linearly in terms of a;,a,,...,a, In particular this is true for
Qi 1s Auizs « - » Guyg; DUt, by hypothesis, a;, a,,...,a,., are linearly
independent and so we have a contradiction. It follows that there is no
integer k > 0 such that there exists a set of n-+ k& linearly independent points.
Hence E has dimension ».

Remark. If E has dimension », then an n-tuple of linearly independent
points (e, €5, . .. , e,) is called a basis for E. Each point of E can then be
expressed in the form x = Ae;+4e,+ ... +4,e, where the coefficients
A; are unique, since

x=Y ke, =2 Me; = Y (hi—A)e; =0 = (Vi) : 4;,—4; = 0.

Theorem 4. If a subset A of a vector space X is contained in a linear variety
of dimension n, then each point x of [A] can be expressed in the form

" X = p1@y+padat oot oo TPy
(plap,‘b e apn+1) EPn-!-l:
A1y gy evey Oy EA.
Proof. We must show that each point of the form
X = p1a1+p2a2+ . o +pkak
where (py, P2, . .« » Pi) € P and k is arbitrary, can also be written
x = piay+p2az+ ... +Pr+1 Gneys

Whel'ﬁ (P;_, P'Zs e vy pr’x+1) E.Pn+1'

This is trivial if &k £ n+1 and so we suppose that & > r+1 and that all
the p, are non-zero. The points a, —a,, ay—ay, ..., G-, —a, 0 are con-

tained in a subspace E of dimension n < k-1 and so there exist numbers
Ags Agy o .oy Ag—q, not all zero, such that

Al(al—ak)"l‘lz(az—ak)"" “en +}.k_.1(ak.§.1—‘ak) = 0,
Writing 4, = —4, —22 « oo —Ag—y, We have

k .
}flal +A’2a2+ “ .o +I1kak = 0; Zli = 0,
=1

TS L



148 TOPOLOGICAL SPACES

The numbers A, / p; are not all éero; let u be the greatest. Then p > 0 and

k A k A k 1k
x=x-0=¥(p~2)as 3 (n-2) =T p—=T k=1,
i=1 o i=1 Hi=1

12 i=1
R * . ( A;)
Vi): pp—— =0, (3i): ——] =0,
v : =720 @):(p—]

T hus we have reduced the number of the a; which appear in the expression
for x; repeating the operation as often as is necessary, we can express x in
terms of at most n+-1 of the points a,. :

Theorem 5. If ¢ is a single-valued linear mapping of X into Y and C is a con-
vex subset of X having dimension n, then the convex set ¢C has dimension less
than or equal to n.

Proof. Let E+ X, be the linear variety of dimension » containing C; its
image
o(E+x,) = 0E+0x,

is a linear variety containing ¢C. To prove the theorem,; it is sufficient to
show that the subspace ‘¢E has. dimension less than or equal to »n. If-
(€1, €25 « - - » €,) is a basis for E, then each point of ¢E can be written

y = 0'(/1131“']").282’*" PR +l,,e,,) = /110'31'*‘112032'*‘ PP +A"U'en. )

Let (oey,, o€y . . ., 0€;) be a k-tuple of linearly independent points ex-
tracted from the oe;, with k as large as possible. This is a basis for ¢E and
so ¢E has dimension k; therefore k < n. -

§ 5. The gauge of a convex set

In this section we study ‘local’ properties of a convex set: that is, properties
which relate to a particular point x,; we suppose, for convenience, that
XO = 0.

Let C be a convex set. We say that a half-line D™ issuing from 0 is
privileged (with respect to 0) if to each point x of D* there corresponds a
number 5 > 0 such that ’

nx e C.

Similarly we say that a line D passing through 0 is privileged if to each point
x in D there corresponds a number 1 > 0 such that '

nx.e C, -—nxeC.
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A convex set C is said to be symmetric (Witil respect to 0) if ‘
x & C implies that —x e C;

in other words, C = —C. o

A convex set C is said to be semi-bounded (with respect to 0) if every half-
line issuing from O contains at least one point not belonging to C. In R", a
bounded set is semi-bounded, but the converse is not true: in R? the convex
set

C={x»/x20,y>0y=1}U[O0),(1,0[

is semi-bounded but is not bounded (see figure 35).

/D
(o1

‘e
ce,

0o o)

Fic. 35

Let 0 be a point of a convex set C. If there are no privileged lines with
respect to 0, then 0 is called an extreme point of C. If, on the other hand,
every line through 0 is privileged with respect to 0, then 0.is called an internal
point of C.. The set of extreme points of C is denoted by C; this is called the
profile.of C. We say that a point x of X is frontal (with respect to 0) if

O 10,xf[ =,
(2) D:—[O,x] < ""Ca

where D is the half-line issuing from 0.

ExampLE. In a plane convex polygon, the extreme points are the vertices
of the polygon; the idea of extreme point is a natural generalisation of that
of vertex.

In the above figure, the extreme points are (0, 0) and (0, 1); the internal
points are the points (x, ¥) such that

x>0 y<l;y>0

The frontal points are the points (x, y) such that x = 0, y = 1, and the
point (1, 0).
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Theorem 1. If a convex set C admits a privileged line with respect to a point
0, then the union of all the privileged lines with respect to 0 is a vector subspace.

Proof. Let A be the union of the privileged lines with respect to 0. We
first show that if a,, a, € 4, then a;+a, € 4. If a; = 0 or a, = 0, this is
trivial. Suppose therefore that a; # 0 and a, # 0. There exists a positive
number # such that '

+na, =c,eC, +na, =c,eC,

—na; = —¢; €C, —fa, = —c, e C.
Then i
(e +a) = 2%,
2 .
_g (a,+a;) = ("‘01)‘*‘(”‘02) eC

2 .
and so a, +a, belongs to a privileged line. '

We now show that if e 4 then lae 4. If A = 0, this is trivial. Suppose
therefore that A # 0. Then

%(Aa)= naecC, »——%(Jla) = —naeC

and therefore Aa belongs to a privileged line.

Theorem 2. A necessary and sufficient condition for O to be an extreme
point of C is that C—{0} is a convex set.

Proof. If C—{0} is not convex, there exist points x, and x, such that

X1, %y € C—{0}; p1xy+psxs ¢ C'f {0}; (P1>p2) P,

Since p;x,+p,x, € C, we have p;x;+p,x, = 0. This implies that the
straight line joining x, and x, passes through 0 and is privileged; therefore
0 is not an extreme point.

Conversely, suppose that 0 is not an extreme point; we shall show that
C—{0} is not convex. Since 0 is not an extreme point, there exists a pri-
vileged line; if x is a point of this line there exists a positive number # such
that

nxe C—{0}; —nxeC-—{0}.

Then C— {0} cannot be convex, since

1 1
inx-{-i(—nx) = 0¢C—{0}.
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If C is a convex set containing 0, then the generalised numerical function
J defined by

! = inf {t/t > 0, tC3 x} if tC3 x for at least one ¢ > 0,
J = 4+ otherwise

is called the gauge of C (with respect to 0). If x e C, then j(x) £ 1 and if
x ¢ C, then j(x) = 1.

Theorem 3. The gauge j of a convex set C satisfies the following conditions:

(1) j(x) = 0forall x # 0; j0) =0,
@ JjOx) = A4jx) if >0
B) jx+y) £ Jx)+iO)-

Proof. Condition (1) is immediate. If A > 0, then

j(x) < +0 = j(Ax) = inf {t [ tC3 ix} =

J@) = + 0 = jlAx) = + oo = Aj(x),
{ = inf {As / As C 3 Ix} = Aj(x)

and so (2) is satisfied. Condition (3) is immediate if j(x) = +o0 or
J() = +o0;if j(x) < +c0 and j(y) < +co, then, for all & > 0,

x
il-)<1 eC
{s=j(x)+a=> J(s) - s -

t = j(y)+e j<z) <1

i

eC
t

1 5 (x t [y
= s TN = m(s)*r;t(;)e C.

Hence we have
+0C = (j(x)+j(»)+26)Cs (x+y)
and therefore
Jee+y) = jO)+i()+2e.

Since ¢ is arbitrary, condition (3) follows.
RemARK. Condition (2) cannot be replaced by

() JjOx) = Aj(x) if 1 2 0,

because it is necessary to take into account the case Jx) = 40,4 =0.



152 TOPOLOGICAL SPACES

Theorem 4. Given a function j satisfying properties (1), (2) and (3) of
Theorem 3, there exists a convex set

C={x/xeX, jx) <1}
which has j as gauge (this set is called the representative of j).
Proof. The set C; is convex, for if (py, p,) € P,, then

X1, X3 € C; = j(pyxs+p2%s) £ py j(x)+p2J(x2) £ py+p, =1
= p1x1 +p2X2 € Cj.

Furthermore, 0 € C;, since j(0) = 0.

Let j’ be the gauge of C; and let a € X be such that a % 0. We shall prove
that /(@) = j(a). ‘

Case (1). If j(@) = - oo, the only point of C; on the half-line D} is 0 and
so j'(@ = + oo = jla). :

Case (2). If j(@) = 0, then D} < C; and so j'(@) = 0 = j(a).

Case (3). If j(a) > 0 and j(a) < + oo, the intersection of C; and D} isa
linear segment [0, x,]; we have .
J(xo) = 13 j'(xo) =1
and therefore :

J@) = jAxo) = Aj(xo) = A = Xj'(x) = j'(Axo) = j'(@).

ReMARK. We observe that if a convex set C, containing 0, has gauge j,
then C; is the union of C and its frontal points. Thus a set which contains
all its frontal points is the representative of its gauge. :

Theorem 5. If C;, C,, . .., C, are convex sets having gauges ji, jz, . . . » j,
- respectively, the convex set C = [ C; has gauge j given by

J(x) = max j{x).

Proof. Case (1). If tC$ x(Vt > 0), there exists a C, such that ¢C;3 x
(V¢ > 0) and then

J(x) = max j(x) = +c0.
i
Case (2). If tC o x for at least one ¢ > 0, then
J(x) = max jy(x) = inf {t /¢ > 0, tC;ox (Vi < m)} = inf {t/¢ > 0, 1C3x)}. _

Therefore j is the gauge of C = N C,.
i=1

Theorem 6. If C has gauge j, the convex set C' = — C has gauge j', where
J) = j(—x). :



MAPPINGS OF ONE VECTOR SPACE INTO ANOTHER 153
Proof. Case (1). If {(—C)$ x (V¢ > 0), then #C$ —x (¥¢ > 0) and so
J6) = J(=%) = +co.
Case (2). If t(—C) 3 x for some ¢ > 0, then
JG) = j(—%) = inf {¢ 1C5 —x} = inf {¢ | {(—C) x}.
Therefore j' is the gauge of C' = —C.

Theorem 7. A convex set C containing O is symmetric with respect to 0
(except for frontal points) if and only if its gauge j satisfies j(x) = j(—x);
C has 0 as an internal point if and only if its gauge j satisfies j(x) < + co for
all x; C is semi-bounded if and only if its gauge j satisfies j(x) > 0 for all x # 0.

This follows immediately from the preceding theorems.

In a vector space X, a gauge which satisfies j(x) = j(—~x) is called a semi-
norm. If, further, j(x) > Oforall x # 0, jis called a norm; if also j(x)< + o0
for all x, then j is called a proper norm.

A proper norm j satisfies the following characteristic properties

1) ix) =0,

(@ jx)=0 <« x=0,

() Jjx) = | 4]j(x) (for all 4),
(@) Jx1+x2) S jGer)+i(x)-

ExampLE 1. In the space R”, put

d(x, 0) = JGY+GE+ ... + &P = | =]
Then the function j defined by j(x) = | x | is a norm, for
] 2o
[x]=0=x=0,
[2x ] ={a]-] =],
|2t | < [ x| + ] 22 |-

ExampLE 2. Let f be a numerical linear function defined on a vector space
X. The function j defined by j(x) = ! Jx) ] is a semi-norm, because
M |f@]z0; |fO|=0,
@ |fGx)]|=2|f®)]|if A>0, 5 :
B |f&+) | = O+ | 2 |/@ ] + ||
@ @] == ‘
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FiG. 36

Let C and D be two convex sets in a vector space X, having j and k res-
pectively as gauges. Suppose that C and D each have 0 as an internal point,
-that they are semi-bounded and that they each contain their frontal points.
We can define a single-valued mapping of X into X by writing

= ox = (¥
= os= ()
By means of this mapping we can set up a correspoﬁdence in which to each
point x of C there corresponds a point y of D such that
_ 1 | i) .
In other words, the mapping o establishes a one-one correspondence between
the points of C and those of D and between the frontal points of C and those

of D. This mapping is called the radial projection of C on D. We shall study
it from a topological point of view in the following chapter.

§ 6. The Hahn-Banach theorem
We say that a plane {x / f(x) = 1} separates two sets 4 and B if

xed = fx)=1,
xeB = f(x)z=1.

In many problems in analysis we encounter two disjoint convex sets to be
separated by a plane; in this section we prove the fundamental theorem
concerning separation.
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Lemma 1 (Kakutani). If A and B are two disjoint convex sets, there exist
two convex sets Co, and D, such that Co > 4, Dy > B, CoN Dy = O,
CO U .Do = X.

Proof. Let € be the family of pairs (C, D) consisting of two disjoint
convex sets C and D such that C > 4, D o B; ¥ is not empty, since
(4, B)ye¥. Write (C,D) £ (C', D) if C= C' and D = D’; then % is
ordered by the ordering relation <. Since every totally ordered sub-family
has an upper bound in %, then, by Zorn’s theorem (Chapter I, § 6) there
exists a maximal element (Cy, Do) in %:

CDC(), DDDO

c D)e(g} = C=Co, D= Do

If x, € X, then the following two conditions cannot be satisﬁed simul-
taneously:

(Bce) @pd) : ce [x0,d]
(Fco0) @pdo) : do € [x0s col-

(Otherwise [¢, ¢cy] and [d, d,] intersect and so Co and Dy, intersect). Suppose,
for example, that the first condition is not satisfied, so that

(Vcoc) (Vpod) : cé[xo,d].

If we write D = [Do U {x,}], we have Co,N D = @ and so (Cp, D)e¥.
Since D o D,, it follows that D = D, and therefore x, € Dy. A similar
argument shows that, if the second condition is not satisfied, then x, € C,.
Therefore either x, &€ D, or xo € Cy, and hence Cy U Dy = X.

LeMMA 2 (Ghouila-Houri). ‘Let C and D be non-empty disjoint convex sets
in a vector-space X such that CU D = X. If C has an internal point, there
exists a linear non-constant numerical function f such that

xeC = flx)=1,
xeD = flx)z 1L

Proof. By making a translation (if necessary) we can choose the origin 0
to be an internal point of C. Then, given a point x € X, there exists a real
number A > 0 such that x e AC. _

If there exists a A > 0 such that x ¢ AC, we write

f(x) =inf{1/2 > 0; xeiC} > 0.
If there exists a 1 < 0 such that x ¢ AC, we write

fG) = =f(=%) <0.

' If x € AC for all A # 0, we write

J(x) = 0.
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The function f defined in this way is not identically zero and satisfies

xeC = f(x)él,
xeD = f(x)=1L

It is clear that if ¢ R and x e X, then f(ax) = of(x). It remains to be
shown that for any two given points x and y we have

J&+y) = fx)+f0). _
Case 1. f(x) = 0 = f(y). In this case 3(x+) & AC for all A > 0 and so

fx+y) = 0 = fx)+f).

Case 2. f(x) = 0 and f(») > 0. Ifl>0,%yeCandO<s<%,then

1 1—ed 1
(:1'_8) x+y) = al( P )x+(1——s/1)1yec.

If2.>O,i(x+y)eCand0<s<%,then

(%_ )y =&l (%;):x+(1—-sl)%(x+.1’)ec-

Hence

fer43) = FDHO).
Case 3. f(x) = 0 and f(y) < 0. We have
f+3) = ~f(=5=3) = =f(=0)=f(=3) = F)+1O).

Cased. f(x) >0and f(3) >0. £A1>0,p > O,%xeCandll—;yeC,then

1 A \1 o \1
a— | e f —|=yeC.
Froitast (/1+p)ftx+<l+ﬂ>uye
1
Similarly, if A > 0, p > 0,-/11xeDandl—lyeD,then}:}_—;(x+y)eD.
Therefore
. x+y
Sx+y) = mf{l+#/~l—+—€ C} = f(x)+f(»).
u
Case 5. f(x) < 0 and f()) < 0. We have

fx+y) = =f(=x=y) = =f(=0)=f(=y) = fD)+1O).
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Case 6. f(x) > 0and f(3) < 0. If f(x+y) = 0, then

S&x) = fG+3)+f(=y) = fx+9)—f).
If f(x+y) <0, then

fO) = fG+P)+f(=x) = f(x+3)=f(%).
This completes the proof of Lemma 2.

Hahn-Banach theorem. Let A and B be two disjoint non-empty convex sets
in a vector space X. If A has an internal point, there exists a plane separating
A and B.

Proof. By Lemma 1, there exist two disjoint convex sets C and D such
that 4 =« C, B< D and CU D = X. The theorem then follows immedi-
ately from Lemma 2.

This proof™), unlike the usual proofs, makes no appeal to topological
concepts.

() This proof is due to Ghouila-Houri and has been added to the present (English)
edition with the kind of permission of its author.



CHAPTER VIII

CONVEX SETS AND CONVEX FUNCTIONS
IN THE SPACE R" ‘

§ 1. Topological properﬁes of convex sets

In the preceding chapter we made no use of topological ideas in studying
the vector space X. In the present chapter, we consider the space X = R”
and regard it both as a vector space and a topological space'®); we obtain a
number of interesting theorems by using the metric topology of R".

Let x*, x%,...,x" be real numbers; we shall denote the corresponding
point of R” by x, so that x = (x, x%,..., x"). The symbol &} (known as
the Kronecker symbol) represents the number 0 if i s j and the number 1
if i = j. The points

6; = (64, 68%,...,8%9 = (0,0,...,0,1,0,...,0)
form a basis for R”, because for any point x we have
x=x'6,+x*8,+ ... +x"6,. .
Let @ and x be points of R". We write
{a, x) = a'x'+a’x*+ ... +ax".

The number {a, x) is called the scalar product of the points @ and x; we have
(1) <a: x> = (x, a>’

@) <a,ix) = Ka, x),
(3) <aa x1+x2> = <a: xl) + <as x2>'

Thus, for fixed a, the correspondence x — {a, x) determines a numerical
linear function in R". We note that
xk == <x, 5k>‘

Two vectors x and y are said to be orthogonal if {x, y> = 0.
We write

| x| =& x> = JEP+EP+ . -+
(see Example 1, § 5, Chapter VII); we call || x || the Euclidean norm of x and
1) We obtain certain results often used in the calculus of variations, linear programming,

the theory of games, etc. Some of the results of the present chapter are extended to more
general spaces in Chapter IX,
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in what follows we shall denote the distance between x and y by | x—y || in
preference to d(x, y).

REMARK 1. We have
KEBIEAEL |»| (the Cauchy-Schwartz inequality).
Proof. The expression
[ Ax+y |2 = Ax+y, Ax+y> = 2 | = [2+24<x, wE| P

- is a quadratic form in 1 with no negative values and so its discriminant is
not strictly pos1t1ve that is, ’

===y P =0
which proves the mequahty
ReMARK 2. We have
|x+y] < | x|+]|»] (the triangular inequality).
~ Proof. Using the Cauchy-Schwartz inequality, we have

| > |? = Cxt, x40 >= [ x|2+]y[2+2<x 9>
S P Dl 2 ] G | S P )P +2 llxll Il = (=l + 2
and the result follows.

REMARK 3. The numerical function j defined by j(x) = || x | is a norm
in the sense defined above (see p. 153); in fact

W x]zo0 |x]eR
(@ | x| =0 isequivalentto. x = 0.
@ Jax]=12]"]x]
@ Jxtr|=l=]+]].
The convex set representing this norm is the ball
‘ B ={x/|x| =1}
(which is thus a symmetric convex set admitting O as an mternal point).

Theorem 1. If f is a numerical linear function in R, there exists a fixed
point a€ R” such that f(x) = {a, x); furthermore, f is continuous.

Proof. We have
- £0) = fEx'5) = Tx £5).
Then, writing a = (f(51), f(82); - - - »f(3x)), We have f(x) = {a, x). More-

over, fis continuous in R, for | x—x, || < E-lia-;—‘ implies that

|f0)~f(r) | = | (=) | S 2| af| - | x'—xh | = E——f;—‘ |at| =
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COROLLARY 1. The plane Ef = {x [ f(x) = a} and the closed half-space
F=1{x/fx)z o}

are closed sets; the open half-space

Hf = {x/£() > a}
is an open set. )
Proof. Since the numerical linear function f'is both upper and lower semi-
continuous, the sets {x / f(x) = «} and {x / f(x) < o} are closed and the sets
{x | f(x) > o} and {x [ f(x) < a} are open.

COROLLARY 2. Ifa set A is situated entirely on one side of the _glane Jx) = a
(that is, if jxeﬁ; D za or :1:1: J(x) £ a) then so is its closure A.
Proof. If ;‘mﬁ f(x) Z o, we have Hf > 4; then, since H} is closed,
| HE=H:o 4
A similar argument can l_Se used if iug S = e

| Theorem 2. Let X = R”; then the single-valued mapping o defined by
o(x, y) = x+y
is a continuous mapping of X x X into X; the single-valued mapping« defined by
‘ (%) = Ax
is a continuous mapping of R x X into X.

Proof. The mapping o is continuous at (x,, y,), for
d[(x, »), (%0, ¥o)] = max { ” X—Xq ": " Y—=Xo " }=e
implies that
| 43— Go+30) | = | —x0) +G—30) |
Slx—x ] + |y=y0 || Set+e=2e

Since (xg, yo) is arbitrary, ¢ is continuous in X x X.
The mapping 7 is continuous at (1, x,), for

d[(4, x), (Ao, %0)] = max {| A—1, |, ]l x—x |} S
implies that
‘ " ﬂx—loxo " = ” llx—ﬂnxo +Axo—').oxo "
< [ AG—x0) | + | G=Ao)xo | < [2]ete | xo | = ([ xo ]| + [ 4])e.
For ¢ sufficiently small, we have
[ Ax—=Aexo | < (%o || + | 40| +D e

Since (g, xo) is arbitrary, 7 is continuous in R x X. -
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COROLLARY 1. If A and G are two sets in X and if G is an open set, then
the set A+ G is also open.

Proof. The mapping o, defined by ¢,x = x+a is single-valued and con-
tinuous and so is its inverse ¢3!, where o;!(x) = x—a. Hence o, is a

homeomorphism and therefore G+a = 0,G is an open set. Therefore the set- -

G+4=U (G+a)
acd
is also open.

COROLLARY 2. If K and K' are two compact sets in X, the set K+K' is
compact. '

Proof. By Tychonoff’s theorem, Kx K’ is a compact set in X x X; since
o(x,y) = x+y defines a continuous single-valued mapping of X'x X into
the separated space X, the image 6(Kx K') = K+K'is a compact set.

COROLLARY 3. If F is a closed set in X and K is a compact set in X, then the
set K+ F is a closed set in X.

Proof. Let (x,) = (y,+2z, be a convergent sequence in K+F, where
y,€ K and z,e F. The sequence (y,) contains a convergent sub-sequence
U I () = yo and (x,) — xo, We have

(Zk,. = (xk,,'“J’k.,) - Xo—Yo = zo..
Since z, € F and F is closed, we have z, € F and so
Xg = Yo+2o€ K+F.

But if, in a metric space, every convergent sequence of elements of a set F”
converges to a point of F’, then we know that this set is closed (Theorem 2,.
§ 3, Chapter V).. Therefore K+ F is closed..

COROLLARY 4. If the sets G, F, K are respectively open, closed and compact,
then the sets AG, AF, AK are respectively open, closed and compact (except
when A = 0 in the first case).

Proof. If A # 0, the mapping defined by o;x = Ax is single-valued and

. . o N -1 1
continuous and the same is true of its inverse, given by 67 x = 7 x; there-

fore ¢, is a homeomorphism and so AG = 0,G is open, 1F = ¢,F is closed
and 1K = ¢,K is compact. In the cases of closed sets and compact sets, the
theorem is true trivially if 4 = 0.

Let Ef be a plane and let 4 and B be two non-empty sets; we say. that Ef
separates 4 and B (see § 6, Chapter VII) if

sup f(x) £ ¢ = lnff(y)

xad
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We also say that EF separates 4 and B strictly if
sup f(x) < & < inf f(y).
yeB

xed

LemMmA 1. If C is a non-empty closed convex set not containing the origin,
there exists a linear function f and a positive number « such that

xeC = f(x)>a

Proof. Let B,(0) be a closed ball with centre the origin and meeting C; the -
set C N B,(0) is compact. The continuous function defined by g(x) = EZ|
therefore attains its infimum for this set at a point x, of the set. Since xeC
we have || x, | > 0; furthermore, we have '

xeCNBO) = |x]z]x]
whence
xeC = [x|z|x]

We shall prove that, at each point x of C,
(xon ) 2 | %0 |

This is sufficient to- prove the lemma, for the function defined by
J(x) = {xg, x) is linear.

- Suppose that y € C and that {xo, ) = || x, |?~e, where & > 0. Let ¢ be
a number between 0 and 1. Then

| A=Dxo+ty > = (1-9? [ %0 [|>+26(1 = 1) <o, >+ 22 | |2

= D% [P=2t [ 30 [P+ | 3o |2 +2601=0) [ | 30 |21+ | 5 ]2,

= | % P21 =2 [ | 3 || 56 1.
We can choose ¢ to be such that

L = 1% 1< 2

this implies that

[ @=t)xg+2y |2~ xo |2 < —2¢(1—f)e+1.26(1~%) = 0.
But, since (1—1#)x,+ 1y € C, we also have

la-x+]z x|

which gives a contradiction. Therefore it is false that $xo, 3> = || %o ]]éns
and so we have {xo, x) 2 || x, ||2 as required. :
Thus the lemma is established. '

LeMMA 2. If C is a non-empty convex set not .containing the origin, there
exists a linear form f, not identically zero, such that

xeC = f(x)=0.
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Proof. With each point x € C we associate the set '

A= {p/]y] =1and (p, x> 0},

Let x4, x5, ..., x;, be any finite family of points in C. The set of points x
of the form

X =) px;, where 3 p;=1and p, 20

is a closed convex set not containing the origin; therefore, by Lemma 1,
there exists a vector y such that {y, x;> > 0 for all ., We can choose y to be
“such that || y | = 1; then we have

k
N4, # 9.
i=1

By definition the sets 4, are contained in the compact set {y/ |y || = 1}
and therefore, by the finite intersection property, we have
N 4, # 2.

xeC

Choose a to be a point of [ 4,,; then the function fdefined by f(x) = {a, x)

xeC
satisfies the desired conditions.

First separation theorem. If C and C' are two non-empty disjoint convex
sets, there exists a plane E} which separates them.

Proof. The set C—C' = C+(~C") is convex and does not contain the
origin. Therefore, by Lemma 2, there exists a linear function f, not identically
zero, such that

ceCand 'elC’ = f(c)--f(c') = fle—c") = 0.

We then have
ing flo) =z sup f().
ce ceC

Second separation theorem. If C and C’ are two non-empty disjoint convex
sets and if C is compact and C' is closed, there exists a plane E} which separates
C and C’ strictly: that is,

zg%f(x) <a< ini; Sx).

Proof. The set (—C’) is convex and closed. Therefore, since C is convex
and compact, the set C—C’ = C+(—C’)is convex and closed, by Corollary 3
to Theorem' 2. Moreover 0¢ C—C’, since CNC’ = @. Therefore, by
‘Lemma 1, there exists a linear form f and a number A > 0 such that

xeC—-C'" = f(x)> A
Therefore
ceCand c'eC’ = flo)—f(c)>1>0,

TS M
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whence
inf f(c) = sup f(c)+ A > sup f(c").
ceC ceC c'eC

Thus there exists a number « such that

supf(c) <a< mff(c)
c’el’
and Ej7 is then a plane with the required properties.
An important application of this result to Economics is obtained from -
the following:

Farkas® corollary. Let ay, a,,. .., a, b be points of R" other than 0 and
Suppose that each solution x of the system

<ai:x>§0 i=12,...,p)

satisfies (b, x) = 0; then there exist coefficients Ay, Az,...,4, all Z 0,
such that

b= Aay+Aa+ ... +4,a,

Proof. Let A be the convex cone generated by the points ay, a,, . .

‘s ap;
by Theorem 1 of § 4, Chapter VII, every point 5* can be written

b = Afa,+2fay+ ... +2a,
where
ALk k=0,

In particular, we deduce that the set 4 is closed, for if a sequence of points b*
converges to a point »°, then this point also satisfies the above conditions
and so is in 4.

Suppose that the point b does not belong to 4. Then the set {b} is a
compact convex set and 4 is a closed convex set not meeting {b}. Therefore
they can be separated strictly by a plane with equation <z, x) = «, such that
by <a< mf(t x>. Since 0 € 4, we have ¢ < 0; but no point & of the’

cone 4 satlsﬁes (t a) < 0and we can therefore choose « as close to 0 as we.
please; hence we have {a;, ) 2 0 (i = 1,2, ..., p), but (b, £) < 0, contrary
to hypothesis. It follows that b € 4 and so the result is proved.

Intersection theorem'Y). In the space R" let C,, C,, ..., C,, be compact
convex sets whose union is a convex set. If the intersection of any m—1 of
them is non-empty, then the intersection of all the C; is non-empty.

@) This result is important in numerous applications (c.f., for example, Sion’s theorem, .
p. 210) and has recently given rise to various generalisations (c.f. Berge, C.R.Ac.Sc. Paris,
1248, 1959, p. 2698; Ghouila-Houri, C.R.Ac.Sc. Paris, 252, 1961, p. 494). The resuilt is still
true if the C,, instead of being compact, are merely closed; this follows from the theorem
on p. 169.
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Proof. We shall first prove the theorem in the case m = 2. Let C; and
C, be two non-empty compact convex sets such that C; U C, is convex. If
C; and C, are disjoint, there is a plane P which separates them strictly, by
the second separation theorem. Since there exist points of C,; U C, on both
sides of P and since C1 U C, is convex, there exist points of C1 UC, on P;
but this is impossible since P meets neither C, nor C,.

Suppose now that the result holds for m = r convex sets; we shall prove
that this implies that it holds for m = r+1 convex sets. C;, C,, ..., Cpyq.

Put C = N C;; by hypothesis C # @, C,., # D. Suppose that these two
j=1

sets are disjoint; then there exists a plane P which separates them strictly.
Writing C}; = C; N P, we have

r r+1

UCj = U(CjﬂP)U(C,+1 np=prPn(UC).

Jj=1 j=1 .

Therefore the union of the sets C;, C;,..., C! is convex. Also the inter-
section of any r—1 of Cy, C3,..., C, meets C and C,,, and hence meets
P; therefore the intersection of any r—1 of C{, C;,..., C} is not empty.
But, by hypothesis, this implies that :

r
NCj=CNP+#0,
i=1
contradicting the fact that P is a plane which separates C and C, . strictly.
It follows that
CNC,.1 #9

and so the result holds for m = r+1.
Hence, by induction, the theorem: is true for all m = 2.

Helly’s theorem. Let Cy, C,, . .., C,, (Where m = n+1) be compact convex
sets in R". If the intersection of any n+1 of them is non-empty, then the inter-
section of all the C; is non-empty.

Proof. We shall show that if p = n+1 and the intersection of any p of
Cy, Cy, <., Cpyy is non-empty, then the intersection of Cy, Cy, ..., Cpyg
is non-empty. Consider the sets ‘

n c; i=12,...,p+1).
jgp+1 -
FE
If these are non-empty, there exist points a;, @, . . . , 4,44, one belonging
to each set. If

A = {al, as, cee N ap+1}

then,.by Theorem 4 of §4, Chapter VII, each point of the convex closure
[A4] can be expressed as a linear combination of n-+1 points of [4], with
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coefficients py, pa, + « + s Ppeq = 0 such that T p; = 1. Therefore each point
of [A] belongs to at least one of the C; and so

+1
[4] < Uc,
j=1

Putting Cj = C; N [4], we obtain a set of compact convex sets C; whose
union is a convex set [A]. The intersection of any p of these sets is non-
empty; therefore, by the Intersection Theorem, the intersection of all the
Cjis non-empty. Hence the intersection of all the C; is non-empty.

Theorem 3. A closed convex set is equal to the intersection of the half-spaces
which contain it.

Proof. Let C be a closed convex set and let 4 be the intersection of the
half-spaces which contain it. If x, ¢ C, then {x,} is a compact convex set
which does not meet C; therefore there exists a plane Ef such that

fxo) < e <xi££f ().

We then have Hf > C and x, ¢ Hf; consequently x, does not belong to the
intersection of the half-spaces Hf containing C: that is, x, ¢ 4. Hence
C o A and so, since 4 > C by definition, we have 4 = C.

Let C be any set. A plane Ef containing at‘least one point of C and such
that all the points of C are on one side of E?, is called a plane of support of C
(see Chapter VII, § 4). We observe that, if C is compact, then, for any linear.
function f which is not identically zero, there exists a plane of support having
equation f(x) = « (it is sufficient to take a = min f(x)). ‘ '

xeC

“Plane of sapport’ theorem. If C is a compact non-empty convex - set, it
admits an extreme point; in fact every plane of support contains an extreme
point of C. .

Proof. (1) The theorem is true in R, for a compact convex set in R is a
closed segment [o, f] and contains two extreme points « and f; the planes
of support {x [ x = a} and {x [ x = B} contain « and B respectively.

(2) Suppose now that the theorem holds in R". We shall prove that this
implies that it holds in R™*!, Let C be a compact convex set in R"*! and
let Ef be a plane of support. The intersection EF N C is a non-empty closed
convex set; since Ef N C is contained in the compact set C, it is also a
compact set.

The set Ef N C can be regarded as a compact convex set in R” and so, by
hypothesis, it admits an extreme point x,. Let [x;, x,] be a linear segment
of centre x,, with x; # x, and x, # x3. Since X, is an extreme point of
E; N C, we have [xy, x;] ¢ Ef N C. Therefore, if x; and x, € C, we have
. X1, X, ¢ Ef and hence x,, x, are separated by Ef; but this contradicts the
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definition of Ef as a plane of support of C. It follows that there is no segment
[x1, x,] of centre x, contained in C and so X, is an extreme point of C; by
definition x, is in Ej.

Thus, if the theorem holds for # = r, it holds for n = r+1; but, as we
have seen, it holds for n == 1. Hence, by induction, the theorem is true for
alln = 1.

The closed-convex closure ¢ [4] of a set A4 is the intersection of.the closed
convex sets containing A4.

Theorem of Krein and Milman. 4 non-empty compact convex set C is equal
to the closed-convex closure of its profile C.
Proof. Since C < C, we have

[¢] = ¢[C] = C.

To prove the theorem, it is therefore sufficient to show that C = ¢[C].
Suppose that this is false; then there exists a point x, in C such that
%o ¢ ¢ [C]. By the second separation theorem, there exists a linear function
fsuch that

flxo) < inf {f(x) [ xe & [CT}
and so

f(C)‘ ¢ fE[C]).

On the other hand, f(C) is a compact convex set in R and is therefore a
segment [«, f]. By the preceding theorem, the plane Ef, (which is a plane
of support of C), contains an extreme point. Then

wefe[C]).

By symmetry, a similar relation holds with f in place of «, and hence, since
f(€[€]) is a convex set (see Theorem 5, § 3, Chapter VII), we also have

f(C) = [a, B1 = F(E [C])-

Thus we have reached a contradiction and so the hypothesis C ¢ & [C] is
false. '

If C and D are two compact convex sets, each having at least one interior
point, then they are homeomorphic; this can be proved by using the idea of
radial projection (cf. page 154), as shown in the following theorem.

Theorem of Sz. Nagy. If two closed convex sets C and D in R" each have O
as an interior point and are bounded, then the radial projection y = ox of C
on D is a contracting mapping in C and is also a homeomorphism.
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Proof. Let B,(0) be a ball containing CU D and let B,(0) be a ball con-
tained in C N D. Letj and k be the gauges of C and D respectively; we have

1 S T
sIxl=ic = 1=
‘also

156~ | $ max (iGe—), ¢ =} = | 5= |

and similar jnequalities hold with k(x) in place of j(x).
We must show that ¢ is a contracting mapping; that is, that there exists a
number o such that

- (Ve (Yex): [ ox—ox'| £ a| x—x"|.
Let x and x’ be points of C such that k(x) = k(x") and write

S ox x'
Y = ——, v=—-; we have

k(x)’ *= )

1 i), 3
k(x) “ k(X) k(xf) x ](u)u ](D) k(
Jj(®)

= j(u)(u—”)’*[j(“)—WJUH

j)
k(v)

i 1
kol i ol [fe-e]

1,

" Jwu—

= i) (u-v)+[J(u) —j@o+ [k®)— k@]

A

Then

A ORYEA MY ED o
[ ox—ox'] = [E’(Ef’u @ Tk ke |17 |

1 1/p
< [1;6{*” At 1//lf1 '/1] | %=x"] = o] x=x"]

1t follows that ¢ is continuous in C; by symmetry ¢~ ! is continuous in D
and therefore ¢ is a homeomorphism.

§ 2. Simplexes; Kakutani’s Theorem

We have seen that every closed convex set C is the intersection of the closed
half-spaces which contain it. ‘If a set T'is the intersection of a finite number
of closed half-spaces H%, we say that T is a truncation. The planes Ef are
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called the generating planes of T. A truncation is a closed convex set, since
it is the intersection of sets H} which are closed and convex.

A bounded truncation is called a convex polyhedron; a convex polyhedron
is a compact convex set (it is compact since it is closed and bounded in R”).
The exireme points of a truncation or a convex polyhedron are called its
vertices.

Exampre 1. The unit cube
K={x/0<x*'<£1,05%*<1,...,05x"<1}
is a truncation generated by the half-spaces
{x/x*<1} and {x/x'z0}.
Since K is bounded, it is a convex polyhedron. Its vertices are the points

d={x/xF=0ifielLx*=1ifi¢l}
where
Ic{l,2,...,n}.

_ EXAMPLE 2. The set P, = {x/x' = 0 for all i, Z xt
is a truncation generated by the half-spaces {x/ x’ > 0} and the half-spaces
{x/ Z ¥ £ 1} and {x/ Z x! = 1}. Since P, is bounded, it is a convex poly-
v i=m1 i=1

hedron; its vertices are the points 84, d,, . . . , 0, (where 55 is the Kronecker
symbol).

© Ifaisapointofa truncauon T, we denote by V, the linear variety formed

by the privileged lines of T passing through a (cf. page 148); if a is a vertex,

so that V, = @, we also say that {a} is a face of order 0; if ¥, has dimension 1,

we say that ¥, N T'is an edge, or a.face of order 1, of T'; if ¥, has dimension .
k, we say that ¥, N T is a face of order k of T. Since €very face is an inter~
section of generating planes, they are finite. in number. .

Theorem 1. If {a;, as, ..., &} is a finite set in R", its convex closure
ey, azs - . o a}] = [ay, @5y« + + , @] i a compact set. .

Proof. Let p be the single-valued mapping of P, into R” defined by

p(P1sP2s « + - s PK) = P11 +D2a0+F . .. +D1

Then p is a continuous mapping, for

maxlpi P;! =3 " 2 " lZP; a; ;Piai! s ;pri"Pi ] ' " a; " =e
Since P, is a compact set in R¥, so is its image

pP.=[ay, a5 ...,4]



170 TOPOLOGICAL SPACES

CoroLLARY. If C is a convex polyhedron, its profile C is a finite set and
C = [C]. ‘

Proof. The extreme points of C are finite in number since they are faces
of order 0; therefore C is a finite set. Since C is a compact convex set, it is
equal to the closed-convex closure of €, by the theorem of Krein and
Milman; by the above theorem, [€] is a closed set and so

C = e[¢] = [¢].

A convex polyhedron whose vertices ay, @,, ..., @4, are k+1 linearly
independent vectors is called a k-simplex; clearly a k-simplex S, has dimen-
sion k. A O-simplex is a point, a 1-simplex is a linear segment, a 2-simplex
is called a triangle, a 3-simplex is called a tetrahedron. For k& > n, there are
no k-simplexes.

Let S, be the k-simplex [{ay, as, ..., %%1}] = [, a0, . .., @yq]: if
g < k, a face of order g of this simplex is just the convex closure of g+1 of
the a;; thus a face of the simplex is also a simplex.

Two faces S and T of S, are said to be opposite if T

SUT=8,85NnT=0.
Put

]ai,az,...,ak[= S
' Fic. 37

o K
{p1ay+pras+ ... +pua [Py > 0,02 > 0,...,p > O,iZIPi =1}

Such a set is called an open simplex; an open 0-simplex is a point, an open
1-simplex is an interval Jx;, x,[, an open 2-simplex is the interior of a
triangle, etc.

If T, = lay, azs . . ., @4 [ is an open simplex, we shall again use the term
vertex for the points a; and we shall denote the set {a, a5, . .. a4} by T}
An open simplex such as Ja;,, a;,, a,,[ (where iy, i,, i3 < k+1) will be called
a face of the open simplex T,.

Let S, = [ay,a;,...,a,.,] be an n-simplex. A family 7 of open sim-
plexes 7" such that

(1) UTi=s5,
(2 is#jimpliesthat "NT' = @,
(3) every face of a T belongs to 7,

is called a triangulation of S,.

FiaG. 38 a,
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ExampLE 1. Consider the triangle S, = [a;, a,, a;] in R%. The ~tﬁangu-
lation & represented in figure 38 consists of - -
(1) the open 2-simplexes

lay, by ma[, Jms, b, ay[, Ja,, h,‘»ml[, Imy, by a5, Jas, b, my[, ]mzs ’f’ a[
(2) the open 1-simplexes

las, AL, Jas, AL, Jas, AL, Imy, AL Jmy, B[, Jms, hL
las, ms[, Jms, aof, lag, my[, Jmy, asl, Jas, my[, Im,, ay[

(3) the open 0-simplexes

{a:}, {az}s {as}, {mi}, {ma}s {m3}, {B}

Exampre 2. If S, is an n-simplex [ay,4a5,...,@,.,], the sets
{a1}, Jas, a;[, Ja;, a;, a,f, etc. are open simplexes of a triangulation of S,
These sets are dlSJOlnt for otherwise we should have (for example)

]al, az[ n ]a3, Qs a5[ # Q,
. so that

D181 +DaGs = P3Gyt P4als+DsAs,

for certain numbers p,, p,, P, P4, Ps Dot all zero, which would imply that
ay, ay, a3, a4, as were not linearly independent. The sets of this tnangulatlon
of S, are called the elementary faces of the simplex S,,.

Sperner’s lemma. Let I be a triangulation of an n-simplex

Sn = [al, gy e oy a,,+1],

and let o be a single-valued mapping which maps each vertex e of an open
simplex of I onto a vertex a; = ce of the elementary face of S, containing e.
Then'there exists an open n-simplex T, of 7 such that 6T}, = {a;, a5, ..., @y}

Proof. Let T, be the set of n-simplexes T,, of 7 such that
ol = {ay, a0 ..oy @y}

We shall in fact prove that the number g of elements of J, is odd.

For n = 0, this result is clearly true. We shall show that the assumption
that it is true for » = r implies that it is true for n = r+1; the theorem then
follows by induction.

Let T1,T2,...,T™ be the (r+1)-simplexes of a triangulation J~ of an
(r+1)-simplex S,,; = [ay, az,...,a,+;]. We say that an r-face of 7% is
marked if its vertices have ay, a,, . . ., a,,., as images. Let r; be the number
of marked faces of the (r+1)-simplex 7°. We shall determine the sum
ry4ry+ ... +r, in two different ways.



172 , TOPOLOGICAL SPACES
(1) Consider the following different cases:

Q) T'eTy = r=1, |
(ﬁ) Ti¢'7_0’ GT,-:P {a13a29'--5ar+1} = ri=0a
(i) T'¢T, 012 {a,a0...,0,44} = r;=2.

The first two of these are immediate. To prove (iii), suppose that
T'¢T oand that 7 = {e,, e,, ..., €,.,}issuchthatoe, = a,,0e; = a,, ...

6€,41 = Q,.1; then we have ge, ., # a,,, (for T ¢7 ). If, for example,
oe,4; = a;, then T has two marked faces [e;,e,,...,e,4,] and

[erizs 2,0 s epsq].
It follows from these considerations that

(ritro+ ... +r) =q+2k; kel

(2) Let T, be an r-simplex of the triangulation . Then the following
possibilities can occur: :
(@) T, is not a marked face of any

(i) T, is not contained Tpyyq, OF
in any face of order = () T, is a marked face of T,,, and
rof S, T'.+; (which have 7, in com-
mon).

(i) T, is contained in a
face of order r of
S,.1 but this face is

not [01, Aoy e e v 5 Qpy 1;]

= T, is not a marked face.

(iif) (@) if two vertices of T, have the same
a; forimage, then T, is not a marked
face of any T, ,, )

(b) if the vertices of T, have distinct
images, T, is the marked face of
only one 7, ,.

Trc[alsazs-“,ar+1] =

Let ¢’ be the number of T, contained in S, = [a,, ay, . . . , @, ;] and whose
vertices have distinct images; we then have .

(ry+ra+ oo +r) =g +2k'; kK eN.

It follows that g and ¢’ have the same parity. By hypothesis, ¢’ is odd and
therefore ¢ is also odd.

Kuratowski-Knaster-Mazurkiewicz theorem. Let S, = [a,, a5, . . . , a,.,]
be an n-simplex and let F|, F,, ..., F,, be n+1 closed sets. If for each set
{4y s 3= {1,2,. .., n+1} we have

[ai,a;,...,] =« F;UF;U...UF,
then the F; have a non-empty intersection.
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Proof. We observe that the F; form a closed covering of the compdct set
S,, since

S,,=[a1,a2,...,a,,+1]CFIUFZU...UF,,.,.l.

By Lebesgue’s theorem (§ 6, Chapter V) there exists a number ¢ such that,
for each set A of diameter less than e, the intersection of the F; meeting 4 is
non-empty. Moreover, we can always find a triangulation 7~ of S, whose
simplexes T have diameter 6(T) < &. With each vertex e of a simplex of 7,
we associate a vertex a; = oe of the elementary face of S, containing e, such
that F, 3 e. By Sperner’s lemma, there exists an n-simplex T, of 7 such that
oT, = {ay, az ..., qys1}. In other words the sets Fy, Fs, ..., Foyy cach
contain an element of 7', so that

Vi) : F;NT, # 9.
Since 8(7°)) < e, we have

n
NF # 2.
i=1
CoroLLARY. Let Fy, Fy, ... F,., be closed sets covering an n-simplex
S, = [ay, @y -« . » Qys 1), Such that F; contains a; and does not meet the face
opposite to a;. Then the F; have a non-empty intersection.

Pl‘oof. Let Slf"l = [al, gy v o ey [/ s, Aip35 4053 an+1] be the fa.ce Of
S, opposite to a;. If S = [ay,ap, ..., a;,,] is a face of S, and if
i % iy, 05 ...,1,, we have S, = S;_;. Since F; does not meet Si_., F
does not meet S,. This is true for all # # iy, iz, . . ., §,,, and so

Sk = [ail, Digs « o o ,aik“] = Fi;,UFizU ...UF

I+ 1®

Therefore, by the theorem, we have
N F, # 9.
i=1
We now use the above results to prove certain deep properties of mappings
of R" into R". :

Theorem 2. If I'; and T, are two w.s.c. (resp. l.s.c.) mappings of X = R”
into itself, the mapping Ty +T, is u.s.c. (resp. Ls.c.).

Proof. The mapping defined by (I'; xT'p)x = T'yxxTpxisaus.c. mapping
of X into X x X; the single valued mapping o defined by o(x, y) = x+yisa
continuous mapping of X x X into X and so it is u.s.c. Hence, by Theorem 1’
of § 2, Chapter VI, :

14T, = o'y xT)

is a u.s.c. mapping of X into X.
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Kakutani’s theorem.'" Let C be a non-empty compact convex set in R";
if T is a u.s.c. mapping of C into C and if the set I'x is convex and non-empty
Jor each x, then there exists a point xq in C such that

Xo € er

Proof. (1) We first prove the theorem in the case in which Cis an n—SImplex
[a, a5, ..., a,.,] and T is a single-valued mapping.

Every simplex of dimension » has an internal point. Without loss of
generality, we can assume that the origin 0 is an internal point (we can always
make a translation if necessary). Consider the convex cone

== {llal +},2a2+ PR +l,-..1a;_.1+ '
Aie18is1F oo Fh1@uia [ 215 oo oy Apyy 20}
and let B,(0) be a ball of centre 0 and radius A chosen sufficiently large for
B,(x) to contain C for all x e C. The cone K; is closed and so
&y K=K, NB,0) :

iscompact. By the preceding fheorem,
the mapping defined by

Ty = x+K})

is w.s.c. ; this is also true for the map-
ping I N I';, and so the set

o > TNITY*@={x/TxNTx=0
3 {y}=Ty a *NTy =02}
Fic. 36 is open.

Let F; be the complement of this set. Then F; is the set of points x such
that I'x meets I';x and F; is closed. The sets F; form a covering of C (for
FxUTxU...UT,,x o C and so I'x meets at least one of the I';x).
Furthermore, F; contains a,, for

r,-ai >Co Fai.
If F, meets the face S!_, opposite to a;, there exists a point y such that
yeSi_;; TyNTy # @.

This implies that I'y = y, which is the desired result.

Suppose therefore that F; does not meet the face S:_, opposite to- a;.
Then, by the corollary to the Kuratowski-Knaster-Mazurkiewicz theorem,
we have

AF +0

i=1

(1} Although this theorem is of a purely set-theoretic character, it has never been proved
without the assistance of combinatorial arguments, except in R, :
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If x, belongs to this intersection, then I'x, meets all the I';Xo; therefore
Xo = I'x,. ' .

(2) We now prove the theorem in the case in which C is an n-simplex S
and I is a w.s.c. multi-valued mapping.

. . 1 .
Given a simplex [a;, a3, . . . , a;], the pomt}; (a,+a;+ ... +a;)is called

the barycentre of this simplex. The barycentres of all the faces of orders
0,1,2,...of asimplex S determine a family ") of n-simplexes, called the
barycentric division of order 1 of S, with the properties:

(i) each n-simplex of &™) contains the barycentre of a face of dimension
0, of a face of dimension 1, etc.,

(i) if an n-simplex of &™) contains the barycentres of lajpap,, .00 a]
and [a;,, @z, - - - > aiP], where k < p, then

{ji’jZ’ cu ’jk} < {ili‘ iz, ceoy ip}.

If we divide each n-simplex of &) in a similar manner, we obtain a new
family of n-simplexes, called the barycentric division of order 2, which we
denote by @, Continuing this process, we can define the barycentric
division #® of order k. o

For each vertex & of the kth barycentric division F® of the simplex S,
let b* be a point of I'd* and write 5* = ¢y(a¥). For each x & S, we consider
an n-simplex [af, at, . .., ak, ] € &® which contains it and we put

in+t

$u(x) = Gu(pral+padht .. ) = Prdu(ah) + P dd)+ ...

The function ¢, so defined is linear in the interior of a simplex of #® and is
therefore continuous; moreover it is uniquely determined, even at the points
which belong to several n-simplexes of &®; consequently ¢, is continuous.
in S. Therefore, by part (1) of the proof, there exists a point x; & S such that
x, = (). Since S is compact, the sequence (x;) has a cluster point x,;.
we shall prove that x, € I'xp. -

If [, a%, ..., ak ] is an n-simplex of &® which contains the point
Xy, We can write

% = G = duphak+phak+ .. ) = piguaD) + pidu(ad)+ . ..
= pibh+psBs+ ... + D abaty
where b%.e Ta® and b% e T, etc.

Let (%) be a sub-sequence of (xz) which converges to x, and let (/,) be
a sub-sequence of (k) such that

B —b (i=1,2...,n+1),
> p? (i=1,2...,n+1).
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We have

nt+l

P20, =1 2 pPbY = x,.
&

Since (aj™) — xo, (b") = b?, bim e T'al™ and T is u.s.c., we have
b? € I'x,.
But, by hypothesis, I'x, is convex, and so
xo = Y, pPb? € T'x,.

(3) Finally, we prove the theorem in the case in which C is any compact
convex set.

Let C have dimension », choose an interior point of C for origin 0 and
consider an n-simplex S which contains C in its interior. Let ¢ be the single-
valued mapping defined by

¢x)=x ifxeC,
¢(x) = the extremity of the seg¢ment [0, x] N C
ifxeS-C.

Then ¢ is a continuous mapping of S into C and I'¢ is a u.s.c. mapping
defined in S. By part (2) of the proof, there exists a point x, such that

xo € T[$(x0)]- .
Since I'[¢(x0)] = C, it followé that x, € C and so ¢(x,) = x,. Therefore
%o € T[$(x6)] = I'xo. |

CoRroLLARY (Brouwer’s theorem). If C is a non-empty compact convex set
in R" and o is a single-valued continuous mapping of C into C, there exists a
point x4 in C such that x, = ox,. ' '

This follows immediately, because o satisfies the conditions of Kakutani’s
theorem.

§ 3. Matrices

In this section we recall some well-known results which are required in_the
sequel. '

Let « be a linear mapping which associates with each point
x=(xx% ..., ¥ of R"apointy = (3%, 3% ...,5") = a(x) of R". We
have

y=uaf i x'6;) = ¥ x'o(sy) = ¥ x'ay,
i51 =1 i=1
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where a(d;) = a; = (a}, a?, ..., a7); thus

yr=xtal+xtal+ ... +x"al,
y? = xtal+x?ai+ ... +x"d?,
y' = xtal+x%al+ ... +x"al

The linear mapping « is completely determined by the array

1 .1 1 1
a% a% ag a,i
ai a3 a3 a;

n n n n
ay a; 4as ay

Conversely, such an array uniquely determines, by means of the above
equations, a linear mapping «. Such an array is called a matrix of order n
(more precisely a square matrix of order #). We denote the matrix with
coefficients a} by A.

The vector a; = (a4, d% ..., d}) is called a column-vector of A and
@ = (al,a,...,al)is called a row-vector of A. We can write

1.1 1 a'

ay Az «.. Gy 2

2 2 2 a
A = a; as ... a;

-------

= (a4,03y...,0,;) =

We also put Ax = a(x).
In this section and elsewhere in the present chapter we put

N={,2...,n}

In certain cases, it will be convenient to denote the matrix A by AX to:stress
the row and column indices-of A. IfI = N, J = N, the (rectangular) matrix
obtained from AY by suppressing the column-vectors a; for which j ¢ J and
the row Vectors o' for which i ¢ I, is denoted by A}. If I, J, K, L = N and
INK =@, JNL = @, we denote by A] ® Bf the (square) matrix C}
defined by

i

ajifielandjeJ,
b;ificKandjeL,
= 0 in the other cases.

S
I

For any matrix A, we have
‘ al = (8, a;) = (8, AG).

If Ax = Bx for all x, then we say that the matrices A and B are equal; we
then have

ai = (6, As;> = {5, Bs;) = bj.
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The sum A+B of two matrices A and B is defined to be the matrix S
corresponding to the linear mapping o such that

o(x) = Ax-+Bx.
We have
s = {0;, Ad;+Bd;) = (6,, A51)+<5,, Bs;>
= q; +b’

The product AA of a matrix A and a scalar A is defined to be the matrix T
corresponding to the linear mapping t such that

7(x) = A(Ax).

]

We have
| th= (8, ARGy = IS, A3y = Ad,

Writing O for the matrix of order » whose elements are all zero, we see that *

the set of matrices of order » forms a vector space; the followmg properties
are easily verified:

(1) A+B=B+A,
(@ A+(B+C)=(A+B)+C,
(3) A+O = A,

@ A+(-DA =0,

(5) MA+B) = AA+1B,

6 (A+wA = IA+pA,

(N QWA = AuA), ‘

®) 1A = A.

The vector space determined by the matrices of order # has 12 dimensions,
for we can write

A=Y dE}
k- .
where Ef denotes the matrix with components (€h)} satisfying

=0 ifitkorj#l
=1 ifi=kandj=L
Thus

0

- A S
0 00 1 0 §... k

000 0

In what follows, we shall identify the space of matrices of order » with R™.
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Let A be the matrix determined by the linear mapping «; then the inverse
matrix of A is defined to be the matrix B determined by the inverse mapping
o~ 1, provided that this exists (that is, if and only if the determinant of the
coefficients a} is non-zero).

The transposed matrix:of A is a matrix A* such that

(x, A*y) = (AX, )
for all x and all y; A* exists for each A and is unique. - We have
a*} = (5, A*6;> = (AS, 8 = al.

If A and B are the matrices determined by the linear mappings o and £,
the product AB is the matrix determined by the mapping y = «f;if C = AB,
we have )

¢} = <3, ABS;y = (A*5, B3;> = (d\, by
= fk_‘, aibk.

The wunit matrix is the matrix E whose coefficients are the Kronecker
symbols &}, so that

100 ..0
010 ..0

E = 1,
000 1

RemARK. The above matrices represent single-valued linear mappings.
However, the ideas can be extended so as to give matrices which represent
linear ‘mappings: that are not necessarily single-valued. Let I" be a multi-.
valued linear mapping of R into itself; if x =-(x', ¥%, ..., ¥") e R" we have

I'x =T (Y x'6) =Y £ T(5).

. ieN ieN .
If, for all x, I'x is a Cartesian product of # one-dimensional sets of the form
AY(x) x A2 (x) % ... x A"(x), and if we put 4%(§;) = A4, then we have

ANx) = x* AL+ x4 + .. x4l

A%(x) = x'AF+x243+ ... +x"42,

AX) = X AT FX2ALE .. XA
The-array formed by the sets 4} is called a multi-vélued matrix; it is written

Al AL ... 4l
A A2 ... A2

---------
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§ 4. Bistochastic matrices

We now study an important family of matrices of order n, which plays a
significant role in the theory of convexity. A matrix P of order » is said to
be bistochastic or doubly stochastic if its coefficients p } satisfy

Vi) (V{;) 1piz0,
(Vi) :jglp} =1

\2)) 121?}: =1

Ife=(1,1,...,1) denotes the point of R* whose coordinates are all equal
to unity, we have

(e,p"y =<e,pp = 1.

ExaMprLe. Consider the bistochastic matrix

This matrix has only one coefficient in each row equal to 1 and only one
coefficient in each column equal to 1; the image of the point x = (x!, x%, x3, x%)
is the point

Px = (&%, x!, x*, x%)
Such a matrix is called a permutation matrix.

The product of two permutation matrices is again a permutation matrix;
for example ’ '

0010 1 000 0100
1 000 < 0 0 01 _ 1 000
0 001 0100 - 0010
01060 0010 0 0 01

A permutation matrix P has determinant equal to either +1 or —1. Its
inverse is the transposed matrix P*; for example

0010 0100 1 000
1 000 N 0 0 01 _ 0100
0 0 01 1000 - 0010
0100 0010 0 001

(Thus permutation matrices form a group).
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Theorem 1. The product of two bistochastic matrices is also a bistochastic
matrix.

Proof. Let P and Q be bistochastic matrices; if C = PQ, we have
® c i <P QJ>

@ Y- z &gy = <pf,=i g = <phey =1,

<p g = <Zp 4 =<eq;) = 1.

—~
L3
-
il S
HM: [
HM:

Therefore C is a bistochastic matrix.

LeMMA. A row-vector p* of a bistochastic matrix P has norm || p* | < 1
equality occurs if and only if p* is a unit vector §;.

Proof. Since 0 £ p} < 1, we have (p})* £ pj, whence

P E = R L (B S P . P = L

“If p* is not a unit vector, then (p%)? < pi for at least one index i and so the
inequality i 1s satisfied strictly. On the other hand if p* is a unit vector, then
clearly || p* | = 1.

Theorem 2. If P is a bistochastic matrix having an inverse Q which is also
bistochastic, then P is a permutation matrix.

Proof. Write. :
Qs = (L x% ..., x") =x

Since 6, = Px, we have.
1=plxt+plx?+ ... +plx" = {p', x).
Using the Cauchy-Schwartz inequality, we have
L= 2 12 12 = 12 Tas |
Therefore, by the lemma just proved,
[P =1lal=1

Similarly we have | p* | =1, |p*| =1,..., | p*| = 1. Thus each row
of P is a unit vector. Since the determinant of P is not zero, the matrix P
contains an element equal to unity in each row and also in each column;
therefore it is a permutation matrix.

Theorem 3. The set P of bistochastic matrices of order n is a convex poly-
hedron in R™; its dimension is at most (n—1)%.

-
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Proof. The set P is the intersection of the half-spaces H} = {x /[ x! = 0},
the planes Ef = {x/Zx =1} and the planes E; = {x/Zx = 1}; each

plane is itself the mtersecuon of two half-spaces. Therefore P is a truncation,
and since | P | = ./ E (_pj)2 < ./n, it is a polyhedron.

Smce P is contamed in 2n—1) hnearly independent planes of the form
E' or E, the dimension of P is at most n*—(2n—1) = (n—1)

Theorem of Birkhoff and von Neumamn. The profile P is equal to thé set P,
of permutation matrices of order n.

Proof. We first show that P, = P: that is, we show that if Q is a permu-
tation matrix, it is an extreme point of P. Suppose therefore that

Q = AP+1'P’; P,P'ecP; QeP,
‘ where A, ' > 0and 1+ 1' =

Since p} # 0 implies that g} # 0, the only non-zero p;} are those whose posi-
tion corresponds to that occupied by an element of Q equal to unity;
therefore, since P is bistochastic, we have P = Q. Similarly, P’ = Q and
therefore the matrix Q is an extreme point of P.”

We now prove that P = P,, using an inductive argument. The inclusion
clearly holds for matrices of order 1; we shall prove that if it holds for matrices
of order n—1, then it holds for matrices of order n. In: this proof, it is
convenient to use the notation introduced in § 3 (page 177) to indicate: the
number of rows and columns of the matrices involved. -

If PN e P, there exists an index i, such that the row-vector p” is a um't.
vector d;,. For otherwise there would be at least 2n non-zero coefficients p;;
but the polyhedron P, in a linear vanety of (n—1)? dimensions, is defined by
generating planes of equations x} = 0 and so each of its vertices belongs to
at least (n—1)? of these planes, whence there are at least (n—1)* zero co-
efficients p}. Thus we have a contradiction, since

2n+(n—1)% > n*
We therefore conclude that

Jo
7 p 0 Pu
p 0 i
N IS S I .
R R

Put {ig} =1, {jo} =J. The matrix PN-I (obtained from PY by sup-
pressing the column of index j, and the row of index i,) is then a bistochastic
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matrix of order n—1. Moreover, if 1,4’ > 0 and A+1’ = 1 and if ¢} =1
for all i and ail j, we have

J = AQN—J'*"‘VQIN_ =
= MQR:1® E})+A’(Q' IQEh) =
Q SI®El=QNII® =
QN—J = QI§:J.
~Therefore PNZ1 is an extreme point of the set of bistochastic matrices of

order n—1 and so it is a permutation matrix; therefore PX is a permutation
matrix.

COROLLARY. If P is a bistochastic matrix, we can write

P = AIQ]_"‘I{zQz"!‘ .0 +].QO,
where
(s Az v v o5 Am) €Rs m < (n—1)2+1;
Q,, Qz,...,Q € P,.

Proof. By the corollary to Theorem 1, § 2, a convex polyhedron is equal
to the convex closure of its profile €. Choose C to be the set P of bistochastic
" matrices of order n; then, since P has dimension at most (n—1)?, the result
follows from Theorem 4.of § 4, Chapter VII.

LemMA. Let x = (x*, x%, ..., x") e R” and suppose that
<<, . =X EXS.. . S
suppose also that & > 0. Ify = (', »%,. .., )" is a vector of R" such that

¥ = x'4e £ X,
¥y =xl—ezx,
V=xrifk#ij,

there exists a bistochastic matrix P such that y = Px.
Proof. Since x/—x' = & > 0, we can define a number 4 by

Al —xb) = +s,

so that
¥ = xite=Ax+(1-A,
P=xl—e = Ax+(1-x.
Also
i
A= >0 A= <X7X g

X —xt = X=X
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Then the matrix P such that

=8  (1#i))
is bistochastic, and y = Px.

Theorem of Hardy, Littlewood and Polya. If x = (x', x%,...,x") and
y = (Y, ¥% ..., ") are two vectors of R" such that

*=<x*g... 8%,
1 2
yVEys...25

then the following three conditions are equivalent:

(1) there exists a bistochastic matrix P such that y = Px,
(2) for any convex function ¢ defined in R, we have

N+ O+ ...+ Z SO+ IO+ ... +607),
(3) we have

D I o S S S ik PPN & L (7 2 ) §
X2 X = PR

Proof. (1) implies (2). We say that a numerical function ¢ defined in R
is convex (see §5) if, for all #;,25,...,2,€R, (D1, P2, .+ ., Py) €P,, and
all m, we have

m m '
¢(_leiti) = .lei o).
i= i=
If y = Px, then
y'=pixt+pix®+ ... X",
y? = plxt+pixt4 ... +pEx",
and so

(") < pi dx)+p3 XD+ . .. +p; G,
¢(»?) £ Pt ¢ +p3 S+ ... +pF ST,

Adding these together we get
S+ P+ ... +907) £ SO+ D)+ L.+ ).

(2) implies (3). Foreachk < n, let ¢, be the numerical function defined by

ou(t) = X¥—1 if 1< X,
(=0 if > x~
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Y

N\

FiG. 40

As we can see from figure 40, ¢, is a positive convex function and so, by (2),
k n . n R k .
362 = 3 4 2 2 0 2 3 6F =) +0.

Hence

xi yi

I
fin
ek

T . i

and so we have the inequalities stated in (3). If £ = n, we have
AR T N - o (L ol S 5 )
On the other hand, putting ¢(f) = ¢ in (2), we get

X424+ L FX PR
and therefore -
b X =YY L

" (3) implies (1). To prove this, we use induction. If n = 1, the result is
clearly true; we shall suppose that it holds for all integers strictly less than n
and shall show that this implies that it holds for #.

Put

4 x4+ X" Y YL

n : n )

We can assume that x* < ¢ and x" > a, for otherwise we have
' l=x=...=x"=a,

so that
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and therefore y* = y? = ... = y" = g; condition (1) then clearly holds, for
the unit matrix E is bistochastic and y = Ex. ‘ '

We consider two cases:

Case 1. There exists an integer &, strictly less than n, such that

35 =3 yh

h=1 h=1-

Then we have

HFL b+ Xt = PR g

PutK = {1,2,...,k}; by hypothesis thefe exist two bistochastic matrices
PX and QN-% such that ‘ ’ '

YE = PEXE,  YN-E - QNZEXN-K,
Then the matrix P§ ® QNZE is bistochastic and we have
y = (P ® QNP

Thus (1) is established.
Case (2). For each integer k strictly less than n, we have

Lol

k
xt < Yk
) S

]

Let i be the greatest index such that x' < @ and j the smallest index such
that x/ > a. By the lemma, there exists a bistochastic transformation

Xo = Px

such that
xl=x+e < q
xf=x'—¢e2a,

If this transformation leads us to.a situation in which the condition of case
(1) is satisfied, the proposition is proved, for

y = Pxy, = PP_x.
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We therefore suppose that, for all &, we have

x5 <yt
x5+x5 < y 457,

X5 4xZF L X< YRy L T,
X424 .. XD = YR L

Putting & = min{(a~x%), (x’—a)}, the transformation P, enables us to in-
crease the number of components of x equal to . We can then repeat the
process: by a new bistochastic transformation we can again increase the
number of components of x equal to a, or else verify (1) by reverting to
case (1). If sooner or later we do not revert to case (1), we finally obtain a
vector

xy = (b2 ..., xD)

‘where

xt=xt=...=x} =aq,

xp <y

xi+x3 <yl

X x4 X = plEyi L Y
But this implies that

1 2 n
Lo Yty +n...+y > )i aleg

and so this situation cannot arise.

'"COROLLARY. Let x = (x}; x%,...,x") and'y = (3, ¥% ..., ") be such
that x* £x* 2 ... 22X £y* ... )" and put z <y whenever
2" < ¥ for all i. There exists a bistochastic matrix P such that y =z Px if and
only if, for each integer k < n, we have

‘Proof. If z = Px and z £ y, we have
LR At SR STk aE SN J Rl Sl A

for all k.

Conversely, suppose that these inequalities are satisfied for each integer
k = n; we must prove that there exists a vector z such that z = Px and
z<y.
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By means of a transformahon yt = 2!, we can reduce the value of y! to
obtain

x4+ 4 S 24+ (k< m),
X x4 X =2 YL T,
X x?d X <2 Y L+ (k> m).

If m = n, the result follows at once from the theorem. If m < n, we have
xm+1 < ymtl: by a transformation ™+ — z"t1 = x™*1 which reduces the
value of y™*1, we can replace the -+ 1)th inequality by an equality. More-
over, we always have

2P Syt gyl

IA

yn
since
oMl oyt o gl =gt oyt
X b X > Py Ly

If necessary we repeat this operation until we obtain
_ X x?b X =2t Y e L
Then z = (2%, ..., z") is the required vector.

ReMmark. Inthe statement of the theorem of Hardy, Littlewood and Polya,
conditions (1) and (2) do not involve the order in which we have arranged
the components of x or of y. Condition (3) can also be expressed in a form
which does not depend on this order. If we denote the family of subsets
I of N={1,2,...,n} having k elements by 7, then (3) can be replaced by

max y x' < max Y, )/,

Iegriel Jegried
39 . ;

Yx= Z ¥

ieN jeN

The corollary can then be stated as follows:
If x, y e R, a necessary and sufficient condition for there to exist a bisto-
chastic matrix P such that y = Px is that, for each integer k = n, we have

max Y x' < max Y y.
Iegriel Jegr jed

§ 5.” Convex functions'"

Let C be a convex set in R". We say that a numencal function fis convex
in Cif
fpx+p'x) £ pf(x)+pf(x)

(1) For the remainder of this chapter, we are concerned mainly with convex functions
and their generalisations.
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for all x, x’ € C and (p, p’) e P,. We say
that fis concave if B R /
' Dy
fpx+p'x) 2 pf)+pf(x).
Thus f is concave if and only if —f is
convex. If the above inequalities are strict
for x # x' and p, p’ # 0, we say that fis

strictly convex, or strictly concave, as the .
case may be.

! pf(x)+p i)

ExamMpLE 1. A numerical function )
g such that g(x) = {a@, x)+a, where L
aeR", weR, is called a linear affine func- Example of a convex function in R
tion; it is a convex function in R” Fic. 41

.Z'°=p:1f+p’.'I." x’

ExaMPLE 2. The gauge j of a convex set C < R", admitting O as an internal
point, is a convex function in R"; in fact, if x, x" e R",

Jox+p'x) £ j(px)+i(p'x) = pi(x)+p(x).
If C50 and if 0 is not an internal point of C, the function j can take the

"value -+ o0} in this case, j is an example of a generalised convex function.

ExAMPLE 3. If r(x) = d(x, C) is the distance from a point x to a convex
set C = R", then r is a convex function in R". For suppose that x, x’ € R"
and that ¢ > 0; then there exist points ¢ and ¢’ of C such that

I] x—c_[] < r(x)+e, ll x'—c " < r(x")+e.
Therefore

rpx+p'%) < | prtp'x —(pe+p'e) | S | p—0) | + | P =) |

< plrG)+el+pTr(x) +e].
Since this holds:for all &, we have

Hp+p'x) S pri)+pr(x).

Theorem 1. In order that a function f should be convex in C it is necessary
and sufficient that

{(Pbpz"--9pm)EPm

X143 X2y 000y Xy€C

= f :(i:ZIPi %;) éi;jlpif (%)

for all integers m.

Proof. If the condition is satisfied, then clearly f is convex: we simply
consider the case m = 2. :

Suppose conversely that fis a convex function. Clearly the condition is
satisfied for m = 1 and m = 2. Suppose that it is satisfied for m = r; then,
if.pr-i'l # 1’ ‘



190 TOPOLOGICAL SPACES

r+1 r r
_lei X = izlpi Xi+Prag Xy =( iZIPi) G+ Dras X1
i= = =

where
r
a=Y 2 xec
i=1 Z pi
=1
Therefore

r+i r r
S( 21: pix) = ( ; P (@ +Prs1 f(Xry) S 1[ 2;, Pif(xl)] + Dy S(Xp 4 1)
It follows that the condition is satisfied for m = r+ 1; hence, by induction,
it holds for all m.

Theorem 2. In order that a function f should be convex in C it is necessary
and sufficient that, for each pair of points ¢ and ¢’ in C, the function ¢ defined by

9@ = flAe+(1-2)c)
is convex in the segment [0, 1].

Proaf If ¢ is a convex function in [0, 1] and if (p, p") € P,, we. have

 Sflpe+p'c’) = ¢(p) = ¢(px1+p' x0)
< po(D)+p'9(0) = pfe)+pS(c).

This holds for all ¢ and ¢’ and therefore the function fis convex in C.
Conversely, suppose that fis a convex function in C.- vaen A, 4, €]0, 1],
we write
¢y = Alc-l—(l —-A)c'ele ],
¢y = Ae+(1—-4)) c'e[e ']

Then, if (py, p,) € P,, we have

P1C1 D26y = Prhic+pic’ —piAic’ +prAzc+pac’ —padsc’
= (p1A1 +P2A2) e+ [1—(p1A1+pads)] ¢
and so
O(D141 +D247) = f(pycy+P262) £ pif(e)+P2f(e2) = p1d(A1) +p26(A5).
Therefore ¢ is convex in [0, 1].

Theorem 3. A ﬁmction fis convex in C < R” if and only if the set

Tr={%=0E%%. .., ") /x=x*%...,x0)eC, f(x) £ x"*1}
in R"*1 is convex. : : v ,
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Proof. Suppose that the set T, is convex. If xe C, x' € C, y = f(x) and
y' = f(x'), then _

p(xL, %2, ., X" )+ L X xM YD) = (pxtp'x't, . py+ DY) eT,
and therefore. -
fox+p'x) S py+5Y = o) +PS1(X).
Hence the function f'is convex. _
Conversely, suppose that the function f is convex. If (x%, x2, ..., *" »)

and (x'%, x'%, ..., x™, y') are in T, we have
. flox+p'x) £ pf(x)+pf(x") < py+p7y'.
Then
ot X% )P X X ) e T

and therefore T'f is a convex set.

A function ¢ in R™ is said to be increasing if
(Vi) : Z é. Z;‘ = ¢(Zly Zos ey Zm) § ¢(Z’1, ZZI’ soy znlx)'

Theorem 4. If fis Jas + + « s S Gre convex (resp. concave) functions in C = R”
and if ¢ is an increasing convex (resp. concave) function in R™, then the function
g defined by

g(x) = ¢LA1(x), (), - . o ful¥)]
is convex (resp. concave) in C.

Proof. If x, x' € C, then, for all i,
Slpx+p'x) £ pfix)+pfix).

Therefore

gox+p'x") = ¢[fi(px+p'x), . ..] £ ¢[pfiX)+pS1(x), .. ]
: < poLfi(x),.. o 1+ BLf1(x), - . .] = pg(x)+p'g(x")

- and so g is convex. A similar proof bolds for concave functions.
Theorem 5. If (f;/iel) is a family of convex functz'ohs in C, then the
Sfunction f defined by f(x) = sup fi(x) is convex in C.
iel '
Proof. If fi is convex, the set
Tro={&=0G4%. ., ") [ xeCx"* !t 2 fixh, 2%, ..., x")}
is convex and therefore so is the set
T,=NT,,.
S el St

Hence fis a convex function.
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In particular, if 4 is a set in R", the function f defined by
sup {a, x) = f(x)
is convex.

LemMA. If C < R" is a closed set and f is a lower semi-continuous function
in R®, the set

Tr={x=0G4L2%. ., x=EL3% ..., eCfx) £ x+)}
is closed in R™*1,

Proof. Suppose that @ = (a',d%,...,a""*) ¢ T;. We shall prove that
there exists a ball of centre @ not meeting Tf; there are two cases which can
occur.

Case 1. If a = (a',d? ..., a") ¢ C then, since C is closed, there exists a
number ¢ such that : '
"x-—a” e = x¢C.
Therefore

[®-d|<e = |x—a|<e = x¢C = ¢ T,
and so there exists a ball of centre @ not meeting T.
Case 2. If f(@) > a"*!, there exists a number ¢ such that
‘ f@—e>attte

Since f'is lower semi-continuous, there exists a number # such that
la-x| <1 = f®z5@-=

Therefore, if | @—X || < min (1, &), then ' ’
fG) z fla)—e > a** e 2 1

and so there exists a ball of centre 7 not meeting T;. Thus the lemma is
proved.

Theorem 6. Let C = R" be a closed convex set and let f be a convex lower
semi-continuous function in R". If 4 = (g; [ i e I) is the family of linear affine
Junctions such that g{x) < f(x) for all x € C, then we have

S(x) = sup g(x)
iel
forall xeC.

Proof. Let a be the point (a*, @%, ..., a") € C. Suppose that there exists
a positive number ¢ such that

sup ga) < fla)—e.
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If a"*! = f(a)—e¢, the point @ = (a*, @% ..., a" a*Y) in R**! does not
belong to T, for :

f@ > fl@—e = a"**.

By the lemma, T is closed and convex. Therefore, by the second separation
theorem (§ 1) there exists a plane in R"*! separating @ and T;, say
x*tlog(xt, x%, ..., x") = 0, where g is a linear affine function in' R". Then -
we have

(VE FeT) : @ lmg(@) S 0 S ¥ —5(0).

." .:. x /7+]_)C'(x)>0 .

Fr1G. 42

In particular, if we take x"*! = f(x), we have g(x) < f(x) (for all x in C).
Therefore ge % and so -

g(@) < sup gia) < fl@—& = a™*.
iel
But ’
' a*l—g@) £0

and so we have a contradiction. Therefore there is no strictly positive
number ¢ such that i

sup g{a) < fla)—e¢
and the theorem is proved.

Theorem 7. If G is a convex open set in R" and f is a convex function in G,
then f is continuous in G.

Proof. We first show that if ¢ € G, there exist numbers é and o such that

][ x-—al[ =8 = fsa
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In fact, there exists an n-simplex [a;, a,, . . . , 4,41 | Wwhose vertices all belong
to G and for which a is an interior point. If B,(a) is 2 ball contained in this
simplex and if & = max f(a;), then, for all x in By(a),

) = f(”Zzlp,- a) S %, uf@) 5

Suppose now that x, is a point of B,(a); we shall prove that f'is continuous
at x,. By means of a translation we can replace x, by 0 and, by replacing
f(x) by f(x)—f(x,), we can make f(0) equal to 0. If B,(0) = B;,(a) and ¢ is

x
a strictly positive number, then for all x such that . < A, we have

£(%) =f[(1-e)0+s’—;~ < ef(-’§> < eo.

Also
1 —x\ |
0=70 =f[mx+ﬁ‘a ("E>
1 e —X 1 e
= s (F) s T

Therefore f(x) = —e&ox and so
[x] % = |f®]=ce
It follows that fis continuous at x,; since x, is arbitrary, fis continuous in G.

Theorem 8. Let C be a convex set and let f be a convex function in C. If f
attains its maximum on C at an interior point of C, then f is constant in C.

Proof. Suppose that f is not constant in C. Write o = max f(y). Then
yelC

there exists a point x in C such that f(x) < a. If a e C, there exists a point y
such that

yeC; a=px+qy; p,g>0; p+tg=1.
Therefore '
f@) = flpx+qy) £ pf(X)+4f(») < patqgo = o

and so f does not attain its maximum at a.

§ 6. Differentiable convex functions

The property of ‘admitting derivatives’ in the space R” has been advantag-
eously replaced, by Stolz and Fréchet, by the now classical notion of
‘differentiability’.

Let f be a numerical function, with values f(x) = f(x!, x2, . .., x"), defined



CONVEX SETS AND CONVEX FUNCTIONS IN THE SPACE R* 195

in an open set G of R. We say that f is differentiable in G if for all
x=@xx%...,x") in G and all Ax = (Ax', Ax?, ..., Ax") such that
x+Ax e G, we have

FEAAX)=f(x) = 0y(x) Ax* +ay(x) Ax*+ . . . +o,(x) Ax"+B(x, Ax) || Ax |,

where the numerical functions o, &,, ..., «, are finite and the numerical
function f(x, Ax) tends to 0 whenever Ax tends to O (the point x remaining
fixed)..

We say that f admits a partial derivative with respect to x! if

J+h8)~f(x)  fGt+h, X2, XY —f(x, X2, L., X7
h - h

tends to a lnmt when # tends to 0; this limit, which we denote by f{ =—a—ifi,
is called the partial dérivative of f with respect to x!.

Theorem 1. In an open set G, a differentiable function is continuous and
admits partial derivatives with respect to all the variables.

Proof. We have

| fGe+Ax)—f() | §'=Z1" [o; || A% | + | BCx, Ax) | . | Ax |.
Let ¢ be a strictly positive number and choose a number # such that
M |ax]sn = ||,

&
< .

e

(3) néZlex,l'

. Then
[Ax] =0 = lf(x+Ax)-—f(x)1g§+§=e

and so fis continuous at x. Since x is an arbitrary point of G, fis continuous
in G.
Furthermore, f admits partial derivatives, because

x+hdy)—f(x h
LA RODTE) _ o, -4, ) L)
tends to o, (x) when # tends to 0; we then have
o
ay(x) =

oxt’
TS0 :
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RemARK. The converse of this proposition is not true. For example, con-
sider the function fin R? such that

Xy
X, y) = ifxs#0o0rys0,

S, ») =0 ifx=0andy = 0.

This is continuous at 0 = (0, 0), but it is easily seen that the principal part
of f(h, k)~0 is not linear in 4 and k, so that this function is not differentiable
at 0.

Theorem 2. Suppose that fis a function which admits, in an open set G < R",
continuous partial derivatives with respect to all the variables. Then f is differ-
entiable in G.

Proof. For simplicity, we prove the theorem for R?, but the same argument
can be applied to the general case. We write

Af = fx+h, y+E)—f(x, y)
= [f(x+h, y+E)—f(x+h, )]+ fx+h, ) =1 x )]

If (x, ¥) € G and h, k are sufficiently small, then, by the Mean Value Theorem,
we have

Af = kf y(x+h, y+0:K)+ hfi(x+65h, y) = k[fj+e.]+hLfi+e,]

o of [keithe
st kvl [

where ¢; and &, are functions which tend to 0 with | Ax ]| The expression
between the brackets in the last term tends to 0, for

ke, + he,
[ ax]

and therefore f'is differentiable.

k h
< b L o < e 4 e
Tax] o+ o]

Theorem 3. Let £, f5, . . . » [ be differentiable functions in G = R and let
¢ be a differentiable function in R™. Then the function g determined by

g(x) = ¢[A1(), f2(x), . - ., ful(x)]
is differentiable in G.

Proof. Corresponding to the change Ax in x we have

Az, = f(x+Ax)—fi(x) = Z 2 . Ax'+ By(x, Ax) || Ax |
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The corresponding change in g is
& 99 af Y,

Y ;
Ag __kz — Az +79(z, Az) ” Az " - ;A k=1 52 o

T 0z,
+lax|| ¥ L % - i AX)+(z, Az) }} ~ {H

Clearly the expression in the last term. between‘the brackets tends to 0 with
| Ax || and so the function g is differentiable..

We note that we have the following well-known formula:

REMARK. Let f be a function defined in an open set G of R". Then f'is
said to be bi-differentiable in G if, whenever x and x+ Ax belong to G, we
have

fx+Ax)—f(x) = Z ay Ax* +1 Z Z o Ax' AxT+ B(x, Ax) | Ax |3,
where the a, and the o} are finite functions of x and the function f(x, Ax)
tends to 0 with || Ax ||, the point x remaining fixed. We then write -
o _ . ’f "
W ~hE =g = f

Bi-differentiable functions.possess the -following properties::

)
(1) If the partial derivatives —— are differentiable in an open set G, then fis

Ix Al
. . . . . . Lo .
bi-differentiable; in particular, this occurs if, for all i, W admits continuous

partial derivatives in G.
(2) If f is bi-differentiable in an open set G, we have

o (¥\_ o _ & o\
ax*\ox’) ~ ox'ox’  oxI ox' axf ax!
(3) If fis fas + + « » [ are bi-differentiable functions in an open set G and if
¢ is bi-differentiable in R™, the function g defined by
g(x) = ¢[f1(x):f2(x)3" .. ’fm(x)]
is bi-differentiable in G.

(These results are no longer true if we remove the restriction that G is open.)
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Fundamental Theorem. If a function ¢ in an interval D = R possesses a
derivative ', it is convex in D if and only if ¢’ is increasing in D.

Proof. Suppose first that ¢’ is increasing in D. If ¢, and ¢, are real numbers
such that ¢; < ¢, and if (p,, p,) € P,, then, by the Mean Value Theorem,
(D121 +p212)— $(ty) = (Pity+pata— 1)y = pa(ta =11y
P'(t) S wy £ o1ty +P2t2)
Slmllarly, we have
P(t2)— d(pyt; +pats) = (tz —P1t1—Pala)ls = P1(52“t1)l—‘z
¢'(psty+paty) £ H2 S ¢'(t2).

Since ¢’ is increasing and ¢; < p2, +pats < 15, we have g, < p,. Therefore

PiPa(ta— 11y S P1Pa(ta—1)Ma,
Pi[d(p1ty+patr)— d(2,)] = po[d(t) — ¢4t +p2t5)]-

Therefore :
O(p1t1+p2t2) S p19() +p26(22)
and so ¢ is convex. '

Conversely, suppose that ¢ is a convex function admitting a derivative in
D. Let t;,15, %, %, 6D be such that #; < x; £ x, < t, with x, = x;
initially. -Since the point m(x;) = (x;, #(x,)). is- below the segment
[m(ty), m(t,)], we have

=) _ gope fmgey), mien)]  slope [z, miey)] = 2E2E)
X1~ _ Xy—1y

S
Frt)

or

8
. S —

FIG. 43

Letting x, tend to #,, we get

B(x2)— ¢(25)

Xg—1z

¢'(ty) =
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and then, letting x, tend to #,, we get

P'(t) < 9'(t2)
Therefore ¢’ is increasing.

Theorem 4. Let D be an open interval in the space R and let ¢ be a function
admitting a second derivative ¢" in D. Then

(1) ¢ is convex if and only if ¢"(t) Z 0 for all t in D,
(2) ¢ is strictly convex if and only if ¢"() Z O for all t in D but is not
identically zero in any non-trivial sub-interval of D.

Piogf. The first part of the theorem follows 1mmed1ately from the funda-
mental theorem.

If ¢ is strictly convex, then ¢” cannot be identically zero'in an interval
D' < D, because then ¢ would be linear in D".

If ¢ is not strictly convex, there exist points ¢, and #, (where #; # ;) such
that the negative function g given by

g() = LA -ty + ] —(1 =) ¢(t)— 4 §(z5)

is zero at a point A, of ]0, 1[; since g is a convex function which attains its
maximum at an interior point 4o, then, by Theorem 8 of § 5, g(4) is constant
in J0, 1[; in fact g(4) = 0 in ]0, 1[. Therefore ¢ is linear in [1;, #,] and so
¢"(t) = 0 for all ¢ in [14, £, ].

COROLLARY 1. If a function f is differentiable in an open convex set C = R,
. then f'is convex if and only if for all ¢ and ¢’ in C, the function g given by

80) = ¥, (@= e Silte -0 )

increases as t increases from 0 to 1.
Proof. The function fis convéx in C if and only if the funcﬁon ¢ defined by
Bty = fle+(1—1)c’)

is convex in [0, 1], by Theorem 2, § 5. By Theorem 3, ¢ admits a derivative,
which is precisely the function g.

CoROLLARY 2. If a function f is bi-differentiable in an open convex set w
C < R, it is convex in C if and only if the quadratic form
nom
Y. 2, B fij(co)
=1isr

is positive for all ¢4 € C.
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" Proof. The function f'is convex 1f (and onlyif)forallcand¢’'in C and tin
[0, 1], we have - .
") = Z Z (= (=N [e+1A—-D '] = 0.
=1

Since zc+(1—#)c’ = ¢, is a point of C and C is open, this condition can be
written

3 B W) 2 0.

AM=

J i

APPLICATION. If (P1sP2s-+-sP)EP, and x4, X5, ...,x, are positive
numbers, then

PiX1+PaXot oo+ 0% 2 ()7 (x)72 . L L (x,)Pn
Proof. The function defined by f(x) = log x is concave, for

1
-5 50

f(x) =
Therefore, by Thedrem 1of §5,

~ log ( Z Bix) 2 Z pilog x; = log [H (x)"]

and the required inequality follows (in partlcular,- we deduce that ‘the
arithmetic mean is greater than the geometric mean’).

§7. The fundamental properties of convex functions

Nearly all the known properties of convex functions which are difficult to
prove can be deduced from the two fundamental theorems which we are
now going to prove. :

First fundamental theorem. Let C be a convex set < R" and let SisSzs e oo Sm
be convex functions. If the system

K20 (=12,...,k
flx) <0  (=k+1,k+2,...,m)

admits no solution x € C, there exists a function f, given by

f(x) =iZ,1pifi(x)s where (pls P2 - .. st) € Pma

such that
' fx) 20, (xeC).
Proof. Write

G(x) = {(él: éla ey Em)/éz g.fz(x) fOI‘ l = 1:‘23 L 3ka
& > filx) for i =k+1,k+2,...,m}.
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By hypothesis, the set G = U G(x) does not contain the point 0. Also G is
convex, since if £ e G(x), 5 e G(y), p and ¢ are positive and P+q = 1, then

péitan: 2 pfix)+4£0) 2 filpx+qy) (< k),
plitan: > pfi®)+40) 2 flpx+qy) (> k)

and so pé+qn € G(px+qy).
By the first separation.theorem, two disjoint convex sets in R™ can be
separated by a plane. Therefore there exist coefficients py, p,,. . ., p, (not

all zero) such that

gtk

piéigO ((61"523--':6m)EG).

i=1

i

Since each ¢, can be chosen as large as we please, p; = 0. We can also
suppose that Z Di = 1, because we can always multiply the p; by a constant

factor w1thout aﬂ‘ecung the situation.
Let & be a strictly positive number; writing £; = fi(x)+e¢, we have

Yaf)rez0  @eo.

Hence, if :
f= ZP 1S
we have
' inff(x) = —e.
xeC

. This holds for all strictly positive & and therefore we have

fx)z0
as required.

ReMARK:. We can show that, in the above theorem, we can take all but
n+1 of the p, to be zero.

COROLLARY. Let C be a convex set in R and let fi, f5, . . . , f,, be concave
Sunctions. If the system ;

fix=z0 (=12,...,k),
fix) >0 (=k+Lk+2,...,m)

admits no solution x € C, then there exists a function f given by

1) = 30,1, where (pus s, 22) € By
such that ‘
fR 50, xeo.

This can be deduced at once by changing the signs of the functions ocecur-
ring in the theorem.
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Second fundamental theorem. Let C be a compact convex set in R" and let _
(fx/ k € K) be continuous convex functions (not necessarily finite in number).

If the system
Hx =0 (keK)

does not admit a solution x e C, there exists a function f given by

f(x) =i§1piﬁcg(x): Where (pls D2y :.pm) EPm;

such that
Jx)>0 (xe ).

Proof. With each x;e C we associate an index k;e K and a number
&; > 0 such that
Jelx) > &

The sets G; = {x [ f,(x) > &;} form an open covering of C; since C is com-
pact, this contains a finite open covering, say Gy, G,, ..., G,. Consider the
single-valued mapping of C into R™ defined by ‘

X = f: (61: 629 v ey ém) = (ﬁq(x):f}cz(x)‘a ree ’fkm(x))‘
The image C of C does not meet the set 4 in R™ given by
€i<8i (i=1,2,...,m)

and the same is true of the convex closure [C] of C, for otherwise there would
exist Xy, X5, . . . » X,; € C such that

j’- = P15C‘1 +p23-52+ .o +pm5€_mEZ,
(.plsPZa .. '_spm) EPm;

and this is impossible, because for at least one index i < m we have

Vi= plﬁ“(xl)-f-pzf;“(xz)‘l’ e +pmﬁq(xm)
gf,'“(plx1+p2x2+ .. +mem) > &

Thus we have a non-empty open convex set 4 — R" and a convex set
[C] which does not meet 4; therefore these sets can be separated by a plane
with equation

lei &x‘ = lei €p
where
(.plapz:» e :pm) EP,,,.
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Hence

.lekfkg(x) = '21 pig >0 (xeC)

and so the theorem is proved. .
Remark 1. It is important to note that neither of the two fundamental
theorems is implied by the other. Suppose that the system

fix) =0 (=1,2,...,m)

is inconsistent over a convex set C; if C is not compact, we can apply the
first fundamental theorem and if C is compact we can apply the second
furidamental theorem to obtain a stronger result. But the hypothesis that
C is compact is essential, as the following example shows: consider the
convex set

C={x=(x1,x2)/x2>0}U{x/x1>0,x2=0}

in R%. As indicated in figure 44, this set is convex and not compact. The
system ’

Fi1G. 44

filx) =% =0,
flx) =x, 20

does not admit a solution x € C, but this does not imply the existence of
coefficients p,, p, such that '

xeC = py () +p,fo(x) = p1xi+pyx; > 0,
(p1, P2) € P;.

For clearly if p; > Othen p,x, + p,x, cannot be positive for all (x;,x,)e C(we
can choose any value we please for x,) and thus the condition p,x, +p,x, > 0
becomes x, > 0; but, by definition, C contains points for which x, = 0.
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RemMARrk 2. The second fundamental theorem is equivalent to the following
result: if the system fi(x) < 0 does not admit a solution in a compact convex
set C < R then there exist coefficients Dy, Pss.«.»Pps1 Such that
(P1sP2s + + « s Pus1) € Pyyy and functions fi, fuys + + « 5 Jr,,, Such that

n+l

i;pifk‘ >0 (xeC).

" - This theorem is due to Bohnenblust, Karlin and Shapley. We shall show
that it follows from the second fundamental theorem; that the converse is -
true is trivial. S

Consider the compact convex sets

C.= {x/xeC fi(®) < 0}.

By hypothesis, these have an empty intersection: suppose that the inter-
section of any n+1 of them is non-empty. Then every finite intersection of
the C, is non-empty, by Helly’s Theorem (§ 1). Since C is a compact space,
it follows from the finite intersection axiom (page 69) that the intersection
of all the C, is non-empty, which is contrary to hypothesis.

Suppose then that G, Cy,, ..., G, ,, are n+1 convex sets having an
empty intersection. Applying the second fundamental theorem to the func-
tions fi,s fizs + + + » Sk, .,» WE Obtain the desired result.

Minimax theorem (von Neumann).V Let C = R™ and D = R" be two
non-empty compact convex sets and let f be a numerical function defined on
R™xR" = R™"™*", such that x — f(x, y) is upper semi-continuous and concave
in C (for each y € D) and y — f(x, y) is lower semi-continuous and convex in
D (for each x € C). Then there exist points x4 € C and y, € D such that

S(xos .Vo) = maxf(xs yO) = minf(xo’ ).
xeC yeD

Proof. Write

a = inf sup f(x, y) = min max f(x, y),

yeDxeC yeD xeC

B = sup inf f(x, y) = max min f(x, y)

xeCyeD xeC yeD

(see Theorems 2 and 3, § 8, Chapter IV).
We first prove that « = . We have

(x0) (V) = max fGx, 3) 2 F(xor ¥)

{1 The ‘minimax’ theorems, which are given here and in § 8 in a very general form, play
an important part in the theory of games.
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and so
(on) . min maxf(x, .V) ; minf(xO: .V)a
: yeD xeC yeD
hence
@ = min max f(x, y) = max min f(x, y) = f.
yeD xeC xeC yeD

Therefore .2 .
Also

\4) mg.écf(x, ) 2.

Given any strictly positive number &, the function g, defined by

&) = fx, Y —ate,

is convex and lower semi-continuous. For all y in D, there exists a function
&g, such that g.(y) > 0; therefore, by the second fundamental theorem, there
exists a function ¢, such that

n+1

¢0(y) =‘i=21 D gxg(y)’

(Vy) : o) > 0.
Therefore . _
0 < ¢o() = X Pl flxis p)—a+e] = 3 pi fxy, Y)—at+s
< fQ pix, y)—ate,
whence .
ﬁigf(Zpi XpY) > a—e
and so

B = max min f(x, y) > a—e.
xeC yeD

Since this is true for all &, we have f = «; it therefore follows that o« = .
Suppose now that x, and y, are points of C and D such that

max f(x, yo) = min max f(x, y) = max min f(x, y) = min f(x,, ) = a.
xeC yeD

‘ yeD xeC xeC yeD
" 'We have -
(V%) : f(xp0) £ o,
V) & flxo, ¥) Z
Then
o §f(xo:J’o) é 4
and so

o = f(xg, yo) = magf(x, Yo) = lynsigf(xo, »).
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APPLICATION. Games of Strategies. Let (A) and (B) be two players and
let A} be a matrix of m rows and n columns. Simultaneously the player (A)
chooses a row i and the player (B) chooses a column j. This determines a
coefficient a} of the matrix, called the result of the game. We examine the
following question: how should the players proceed if (A) is attempting to
obtain a result as large as possible and (B) is attempting to obtain a result as
small as possible? We usually regard 4} as a sum of money which (A)
receives from (B); if 4} is negative, (B) receives the money from (A).

We shall consider two methods of playing.

Method (1). Before the game, (A) decides on a row i, which guarantees a
result min a}; thus the greatest result that (A) can guarantee is

¢ = max min 4.
i g

Similarly the smallest result that (B) can guarantee is

f' = min max aj.
: , i
For example, consider the matrix

j=1
0 +1
<_z +2)
2 -2

In this case (A) can guarantee o' = 0 (choosing the ‘pure’ strategy i=1)

~and (B) can guarantee ' = 2 (choosing either of the two pure strategies).
But between 0 and 2, there is an interval of uncertainty, which seems to defy
analysis.

Method (2). Instead of deciding a priori on a particular row, the player
(A) restricts himself to choosing a probability distribution and leaves the
final decision to a machine which ‘draws lots’ for one of the events with the
stated probabilities.

Thus, in the above example, the players (A) and (B) restrict their respectlve
choices to points of the sets

‘{x"(“ x2, x%) [xh %% %3 2 0; x'4xP4x7 =13,
={y=0" W1 y2>0 y+y: =1}

Having chosen x € C and y € D, the players must expect a ‘mean result’ of

fGx, ) = ¥ alx'y’.

i
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The greatest mean result which (A) can guarantee is

o = max min f(x, y)
xeC yeD

The smallest mean result which (B) can guarantee is

B = min max f(x, y).
yeD xeC

- "By the minimax theorem, we have « = § and so the interval of uncertainty
is now made good (which shows the superiority of this method of playing).

.In the above example, with the ‘combined strategy’ x = (4/5, 0, 1/5) the
player (A) is guaranteed a mean result of 2/5 (which is preferable to a certain
‘result of 0, if only that the game should continue). With the combined
strategy y = (3/5, 2/5), the player (B) is guaranteed a mean result of 2/5
(instead of a certain result of 2).

§ 8. Quasi convex functions

Let f be a function defined in a convex set C < R, with values
Fx) = f(x, %%, ..., x"). We say that fis quasi convex in C if the set

{x/xeC; flx) £ a}

is convex for all o Similarly we say that a function f is quasi concave if the
set {x [ x e C; f(x) = «} is convex for all «. A function fis quasi concave if
and only if —fis quasi convex. '

ExamprLE 1. If fis a convex function, then

HOSS = Sorers) S ooy pfis) < potpic =

and so.f is also quasi convex..

.ExaMPLE 2. Let f be a function in R, decreasing in the range —co to %,
and increasing in the range #, tc +oo(tp € R). Then fis quasi convex, for
' the set {x / f(x) < «} is either @ or an interval containing . :

(This example shows that a quasi convex function is not necessarily convex.
Thus, by the first example, the family of quasi convex functions is larger
than the family of convex functions.)

_ Theorem 1. If fi,f2> - - - » [ Gre convex functions in a convex set C < R”
and if § is an increasing quasi convex function in R™, then the function g given by

g(x) = ¢LA10), fo(x), - - - ful)]
is quasi convex in C. '

Proof. If g(x) £ o, g(x") £ «, we have

gpx+p'x) = $Lfilpx+p'x); . . ] £ $[AX+PHED, .. I S o
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Theorem 2. A Junction.f is quasi convex in C if and only if, for all ¢ and ¢’
in C, the function ¢ given by ¢(A) = f(Ac+(1—A)c") is quasi convex in [0, 1].

Proof. As in the proof of Theorem 2, § 5, we observe that

¢y = Ae+(1—1 | AT
, {c: - A;i—}-gl /1381 = P1€1+D2Cs = (PrAs +P2do)e+[1—(pidy +Dado)]e

where (py, p,) e P, and Ay, A, € [0, 1]. If fis quasi convex, then

{ zgg i Z = {;EZB é Z = f(p1e1+p2c3) S & = ¢(p1d;+prds) S @

and so ¢ is quasi convex.
Conversely, if ¢ is quasi convex in [0 1], then

{ﬁig 2 Z = { zg:g i Z = ¢(pA+phz) S o = f(P101 +pag) S o
and so f'is quasi convex.

CoOROLLARY. Let f be a differentiable function; then f is.quasi convex in C if
and only if, for all ¢ and ¢ in C, the function defined by

¢'(h) = Z (=) fi[Ae+(1=2)c] T

has constant sign in [0, 1] or changes szgn only once as A varies from 01
(to pass from negative to positive).

Theorem 3. Let K be a convex cone in R" and let f be a function such that
for xe K— {0} and A Z 0, we have -

Jx) >0,  flAx) = Af(x).

Then the function f is convex (resp. concave) in K if and only if it is quasi convex
(resp. quasi concave).

Proof. If f is convex in K, it is also quasi convex in K, as shown in Ex-
ample 1 above.

Conversely, suppose that fis quasi convex in K. By Theorem 3, § 5, it is
sufficient to prove that the set

T={/x=x%..., " )eR" L x= (', %%, ..., ek f(x) Sx"*1}
is convex. We observe that T is a cone, for if 1 > 0, then

aeT = JieT.
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Every generator D, of the cone T meets the plane P of equation x"** = 1;
moreover, the intersection 4 = P N T projects into the set

Ad={x/xeKk, f(x) £1}

in R®. By hypothesis, 4 is convex and therefore so is the set A, whence T,
being the conical closure of the set 4, is a convex set (see Theorem 2, § 4,
Chapter VII). .

APPLICATION. If ZI 20,4, 20,...4, =0, the function f given by
) = MM 2L,
is quasi concave in the ‘unpointed’ cone

Ki={x=0%%...x/x>0,x*>0,...x" > 0};

if the A; also satisfy A +2A,+ ... +A, £ 1 then the function f is concave in
K. (The set K, is not a cone according to our definition; however K, U {0}
is a cone and so we refer to K. as an unpointed cone.)

Proof. (1) We first prove that fis quasi concave in K,.. Since the loga-
rithmic function is increasing, it is sufficient to prove that the function
given by

log f(x) = 4, log x*+ 1, log x*+ ... +1,log x
is quasi concave._Since the function ¢ given by
D21y 2350 o5 Zp) = Mz +A025+ oL+ 4,2,

is increasing and concave and 4,(x) = log x* is concave, then, by Theorem 4,
§ 5, the function given by

log f(x) = ¢(Ay (), k() - . ., hi(x)

is concave and so is quasi concave. ‘

(2) We now show that, if A, +4,+ ... +4, = 1, then fis a concave
functionin K. If A;+24,+ ... +4, = 1, this follows at once from Theorem
.3 and (1) above. Suppose therefore that A;+A4,-+ ... +1, <1 and put
Ao = 1—=(A;+2,+ ... +4,). The function g defined by

At iz n
g(x) = (x1)1—zo (xZ)l—Ao . (xn)l—lo

is concave in K, as has already been shown. Also the function defined by -
¢(f) = t*7% is concave and increasing in [0, + oo[ : therefore, by Theorem 4,
§5, ¢(g(x) = (xHM (x”)”‘2 . (x*)*» determines a concave function in K.

The theory of quasi convex functions is important in certain problems
occurring in Applied Mathematics, for it enables us to generalise the minimax
theorem of von Neumann (§ 7) ; in fact we shall prove the following general-
isation of this theorem
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General minimax theorem (Sion). Let 4 = R™ and B < R” be two compact
convex sets and let f be a numerical function defined on A x B and such that
x = f(x, y) is upper semi-continuous and quasi concave in A (for each y € B)
and y = f(x, y) is lower semi-continuous and guasi convex in B(for each x € A)
Then there exist points x, € A and y, € B such that

S, y0) = flxo, ¥0) < f(x0,7) (x4, yeB).
Proof. (1) Asin §7, we have

min max f(x,y) = max min f(x, y).
yeB xed xed yeB

(2) Let 9, and y, be numbers such that

y; < min max f(x, ),
yeB xegd

¥, > max mmf(x, ».
xed yeB

With each x € 4 we associate the compact convex set

= {y/yeB and f(x,») < 7,}
and with each y € B we associate the compact convex set

= {x/xed and f(x,y) 2 72}

NB =N4, =

xed yeB

. 4
Therefore there exist points x;, X5, ..., X, € 4 such that ﬂ Bx, = @ and

‘ ‘We have

also there exist points y;, 5,...,y,€ B such that ﬂ 4,, - @.
Jj=1
Let & be the family of pairs (7, J) satisfying

I<(1,2,...,p), Ja(1,2,...,9),
I# @, J#£ @

such that the intersection of the (B,,);.; does not meet the convex polyhedron
generated by the (y,);., and the intersection of the (4, );.; does not meet
the convex polyhedron generated by the (x;);.,. This family is finite and
non-empty; let (f,, J5) be a minimal element: that is, an element such that

ILNeF,IclyandJ =J, = I=1I andJ =J,.

) Cf. M. Sion, C.R. Acad. Sciences, vol. 244, p. 2120, 15th April 1957. There exist other
minimax theorems using the idea of quasi convex functions, but with more restrictive
topological hypotheses. One of the most elegant proofs is contained in the theorem due to
Nash, which supposes f(x, ) to be continuous in (x, ¥) and which depends.on Kakutani’s

- Theorem (cf. Berge, Théorie générale des jeux, Gauthier-Villars, 1957, p. 72). The result
due to Nikaido, which supposes only that f(x, ») is continuous separately in .x and y,
depends on Brouwer’s Theorem (cf. H. Nikaido,.Pac. J. of Math., 1954, p..65).-'We observe
that whenever we use the idea of quasi convexity, the proof appeals to Sperner’s lemma or
its consequences.
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Let r and s be the numbers of elements of I, and J,, respectively. Let 4’ be
the convex polyhedron generated by the (x;);.;, and let B’ be the convex
polyhedron generated by the (¥));. so-

The intersection of the sets (4, );. s, does not meet 4, but the intersection
of any s—1 of them meets A’, since ([, J,) is minimal. It follows from. the
intersection theorem (§1) that A4’ is not contained in the union of the
(4,);e1,- Let xo be a point of 4’ not belonging to this union. We have

f(xo,.)"j) < Y2 fOI' jEJOs
and, since f(x, ¥) is quasi convex in y,
S(x0,¥) < v, for yeB'.
In a similar manner, we can show that there exists a point y, in B’ such that
S, y0) > 9, for xe 4. '
We therefore have '

71 < (X0, Yo) < Y2-
(3 In part (1), we proved that

min max f(x, y) = max mmf(x »)
yeB xed xed

and in (2), we showed that

¥, < min max f{(x,y) and yz > max mmf(x P =9 < 9,

yeB xed xed

Combining these results, we obtain

min max f(x, y) = max mmf(x ».
yeB xed xed

4) Let x, € 4 and y; € B be such that
max LfGe, y0)—f(x0, )] = m:n max LA y)—fx', 9] =

yeB yeB yeB

‘We have
f(x,.VO) éf(xo,J’) fOI' XéA,J/'EB:

| f(% ¥0) £ f(xo, ¥0) £ f(%o, y) for xe 4,y € B.
Thus x, and y, are the required points.

whence

§ 9. The funidamental inequality of convexity

In this section we consider
(1) the convex unpointed cone K, = {x/x* > 0,x* > 0,...x" > 0} in
R” (see §8) and the convex cone Ky = {x/x' = 0,x*=0,...,x" = 0};

TS P

il
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(2) the vector space @ of numerical functions defined on an arbitrary set
T and the cone @, of positive (strictly or otherwise) functions in the set ®.
A gauge j, defined on ®,, is said to be increasing if

¢ e o
{(V g :¢¢Z) f_>: oo = J(®) = j(9).

Fundamental theorem (Bourbaki). Let f be a numerical function continuous
and concave in K, and such that, for x € K., 1 = 0 we have

J&x) >0, f(x) = Af(x).

Let ¢yy ¢y ... 5 ¢, be functions in ®, and let j be an increasing gauge in @
such that j(¢,); j($2), - .., /(¢s) < +co. Then the function given by
&) = f1$1@), 622, . . ., $u(2)] satisfies

. J(g) éf[](‘ﬁa.)d(d’z)a see ’j(¢n)]'
Proof. In R", the set

C= {JC/XEKO,f(X) g 1} )

is closed (for f is continuous in K, and K, is closed).and convex (for f is
‘concave). Then C is the intersection of the closed half-spaces which contain
it (by Theorem 3, § 1); we suppose that these half-spaces are given by

i) =Y at x* = b"
=1

(1) If xe K., we have Ax € C whenever A is greater than a certain number

Ag> SO that
Azl = Affx)=fYAx) z b

This shows that f*(x) = 0 (for all x in K,) so that all the 4 are positive.
Furthermore, the half-space of equation f#(x) = 0 contains C, for otherwise
there exists an x in C such that f%(x) < 0 (which contradicts &% = 0); thus

we can assume that all the b" are positive. Because of the continuity of fin
K, we have '

Jx) 2 05 flx) = M)

for A =2 0 and x e K,
(2) We now show that

3. a 40 2 ¥ 800
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If g(#) = 0, this inequality is trivial. We therefore suppose that g(#) # O.
Consider the point y(¢¥) whose coordinates are

i o 800
g®’
Then y(¢) belongs to C, for”

(0D () A®) _ 1 _
0] =7 (49,48, 80) 80 40, b0 = 1.

T g(®
Therefore we have

so that, since g(f) > 0,

2ol 90 = b 500,
(3) We now show that

LIS I, - - K] 2 i(@)-

The case j(g) = 0 is trivial; we therefore suppose that j(g) # 0. Since j is
increasing in ®,, we have

Y alj(¢) 2 i ab 6) Z i ) = b'i(g).
Then

(J’(¢1) i($2) 1'(45,.)) cC
i)’ e’ "’ i)
and so

_ [1(1) J(42) J(¢s)
f@) ‘f(f(g)’ i@ j(g)) =1
Since j(g)> 0, we have

L0, 7($2)s - - -, H(d)] 2 j(8)-

RemARK., When f satisfies the hypotheses of the theorem apart from
concavity, the following conditions are equivalent:

(1) fis concave in K,
(2) fis quasi concave in K,
(3) fis quasi concave in K,
(4) fis concave in K.

It is clear that (1) = (2) = (3). By Theorem 3, §8, (3) = (4); and
(4) = (1) because of the continuity of fon K,. -
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APPLICATION 1. The Holder inequalities. ‘

Let f be the function defined by f(x!, x%) = (x\)* (x*)*, . where
A1, A3 >0, A;+4, = 1. Then fis a continuous and concave function in
K. (see page 209). Therefore

J(@0™ (71 < LT [i(d2)T.
Putting 4, =, (@57 = g, we obtain
. ] :

Ji(gigd) < [itetnTP [i(et) 1P,

whence

1 L 1
Li(gieD]? = Litedn1 Li(gdH1;

(1) fT= {1’ 2,.. '}’ gl(n) = | a, ]a gz(”) = l bn I:j(g) ="21! g(n) I’

we have

ISTaFToF <Y S[aP 5P
(first Holder inequality). |

If we put g=1, p, =p, =2, we recover the Cauchy-Schwartz in-
equality (§ 1). :

@ ¥T=[0,11j@ = fll g(®) | dt, we have
4]

q 1 i p1 1 2
| [s0aoras f [1sora 7 [laopra

(second Holder inequality).

APPLICATION 2. The Minkowski inequalities. _
From Corollary 2 to Theorem 4 of § 6, we deduce that the function given by

Feet, x?) = [+ A1

is concave in K,. We therefore have

L 1
jl(#1+¢1 < [Lid0] +Li(é1]"
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1, L -
Putting p = 7 (¢)? = g;, we obtain

E
)" <

1 1
([(gs+&2°D? = (ieD)+(i(gB)s p2=1

W HFT= {12} a6 =|a| a0 =|b]i@ = 3| s0)],

we have

Y2latb, P s Y Xl aP+Y X0,
(first Minkowski inequality).

If we put p = 2, we recover the triangular inequality for the Euclidean
norm.

(@ T =[0,1],j(g) = f 1[ g(9) | dt, we have
4]

A/ Lll gD +g0) [P dr < i/ J:I g:1() [P de+ i/ f:; g:(8) P dt,

(second Minkowski inequality).

- §10.* Sub-® functions'?

Let [xy, x,] = {pyx,+p2%; [ (p1, P2) €P,} be an interval in R" and let

D(xy, x5) = {Ayx14+2A2%; [ A4 +A; = 1} be the straight line passing through

x, and x,. We denote by @ a family of numerical functions defined in a
" convex set C « R" such that, 1f ¢, ¢’ € @, then

) { gzggg < ;fgg =~ () < (9 forall xin [x,, %,],

@ { ﬁgg : gigg =  ¢(x) = ¢'(x) forall x in D(x, x,) N C.

We say that a numerical function fis sub-® in C if

| pecd® ,

Sf(x2) = ¢(x2)

1) The idea of a sub & function’ was introduced by E F. Beckenbach (Bull. A.M.S.,
vol. 43, 1937, p. 363). .
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ExampLE 1. Let @ be the family of linear affine functions; then conditions
(1) and (2) are clearly satisfied. Let ¢ be a function in ® such that

f@) = ¢(xy),  flx2) = ¢(x2).
Then f is sub-® if and only if ’ ‘
F(pyxy+D2%x2) S §(p1x1+pax;) = py §(x)+p2 $(x2) = py [(x1)+D2 f(X2).
In other words, the sub-® functions in this case are the convex functions.

ExampLE 2. Let @ be the family of numerical functions with constant

values. Clearly @ satisfies conditions (1) and (2). A function f is sub-@ if
and only if

Sx) = a

fx)) S

Tn other words the sub-® functions in this case are the quasi convex functions.

= flpyx1+psx;) £ o

We say that the family @ is total if for all x, in C and «, in R, there exists
a function ¢ in ® such that ¢(x,) = op. We say that @ is bi-total if for all
x, and x, in C, o, and o, in R, there exists a function such that ¢(x,) = o,
-and ¢(x,) = a,. In what follows, we suppose that @ is a bi-total family.
For a given function f and given points x; and x,, we denote by ¢, any
particular function in @ such that

C$12(x1) = £,
$120x5) = S (x2).

PROPOSITION 1. Let D be a straight line in R" and let ¢ and ¢’ be functzons A
in®., Then ¢ and ¢’ either

(i) do not have the same value at any point of D, or
(it) have the same value at a unique point x of D, or
(iii) have the same value at all points of D.

In case (ii), the sign of ¢(x)— ¢'(x) is constant on each side of x, and changes
when we pass through x,.

Proof. Let D be the straight line containing the points xo, Xy, X, (in this
order) and suppose that

o(x;) = ¢'(xy),
(xz) > ¢'(x2).

Then ¢(x) # ¢'(x,), for otherwise ¢ and ¢’ would coincide on D; and
d(x0) > ¢'(x,) for, since x; € [xo, x5},

Pxo) > ¢'(x0) = (x1) > ¢'(x1)-

Therefore we have ¢(xy) < ¢'(xp).
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Suppose now that x, is a pbiﬁt on D on the same side of Xy as xz; Then
#(x3) # ¢'(x;), for otherwise ¢ and ¢’ would coincide on D; and

$(x3) & @'(x3) for, since x; € [xq, X3],
$lxg) < ¢'(xs) = d(xy) < $'Cx).
ProrosriTiON 2. If fis a given sub-® function, we have
Sf(x3) 2 ¢12(x3),
Sor all x5 in D(xy, x;)—[%y1, X5]

Proof. Let x5 be a point of D(x,, x,)—[xy, x,] situated (for example) on
the x, side. We have '

$13(xy) = fxy1) = $12(%1),
$130x2) Z fxz) = ¢12(x2).

If ¢13(x;) = ¢,,(x,), these functions coincide everywhere on the line, whence

Slx3) = (,b13(x3) = 15(x3)-

flax) ) PE ?‘3)

’/

J' S o)

X, x, X Ly
FiG. 45

If ¢13(x2) > &y2(x;), then, by Proposition 1,
Sxs) = $13(x3) > P12(x3).
The;efore, taking both cases into account, we have
f(x3) Z ¢12(x3)-

Theorem 1. If the functions in ® are continiious and if [x,%,] = C, a
sub-® function f is continuous at x, € |x,, X,[ and upper semi-continuous at
x, and x,, with respect to the usual topology of the segment [x,, x,].
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Proof. Orientate the line D(x;,x,) in such a way that x, < xz, if
Xo € |%y, x,[ there emsts a positive number 4 such that

X1 < Xo—h < X9 < Xg+h < x,.
Using Proposition 2, we have

b1o(xo—h) = f(xo—h) = Po2(x0—h).

As h tends 10 0, ¢10(xo—H) and ¢o,(xo—£) both tend to F(xe) = ¢10(xo) =
Po2(xo), so that f(xo—h) also tends to f(x,). Similarly f(x,+4) tends to
S(x0). Therefore fis continuous at the point x, € Jxy, x,[.

Let ¢ be any strictly positive number. Then there exists'a number # such
that

hsn = flx+h) S ¢a0e+h) £ dpa0x,)+e = flx,)+e.

Thus the function f is upper semi-continuous at the point x;; a similar
argument applies to the point x,.

Theorem 2. If @ is a convex set in the vector space of numerical functions
defined in R”, then so is the set of sub-® functions.

.Proof. Given two sub-® functions /" and f”; we must show that the function .
- fsuch that f(x) = p'f'(x)+p'f"(x), where (p’, p") € P,, is also a sub-® func-
tion. Suppose that ¢ is a function in ® such that
JGe) £ ¢(x1); f(x2) £ d(x,).

Let ¢3, and ¢, be functions in ® correspondmg to ' and f” respectwely
(for the two points x; and xz) and put

Po(x) = p'$12(x)+p"¢12(x).
" Then

Po(xy) = fx1) £ B(xy),
Po(2) = f(x3) £ P(xy).

Since ¢, € @, it is also a sub-®@ function (by Proposition 1) and so, for any
point x in [x,, x, ], we have

&) = pf'®)+pf'(x) = p'd120%)+P"912(x) = o(x) £ $(x).
Therefore f'is a sub-® function.

ReMARK. We observe that Theorems 1 and 2 apply in particular to convex
‘functions, but not to quasi-convex functions, for which the family @ is not
bi-total.
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§ 11. S-convex functions?

In this section, P denotes the set of bistochastic matrices P = P of order #,
where, as in §§3 and 4, N is the set {1,2,...,n}; D is an interval in R
and D" is the Cartesian product DxDx ... xD. :

If fis a numerical function definéd in D", we say that fis S-convex in D"
if, for all x in D" and all bistochastic matrices P, we have

- S(Px) = f().
We say that fis strictly S-convex in D" if, further, we have

S(Px) < fx)

whenever Px = (3, %, ..., " is not a permutation of (x!, x2,..., x".
~ Similarly we say that a function fis S-concave in D" if for all x in D" and
all bistochastic matrices P, we have

S(Px) =z f(x)
(and we can also define strictly S-concave functions in the obvious way). A
function fis S-concave if and only if —fis S-convex.

ExaMprLe. The function f such that f(x) = x'+x%+ ... +x" is both
S-convex and S-concave in R", for, if y = ' Px, we have '

CSO) =YY Y = X L = ().

Similarly, if ¢ is a coﬁvex function, the function defined by
F&) = ¢+ (P + ... +¢(x*) is an S-convex function (cf. the Theorem
of Hardy, Littlewood and Polya). We now generalise this result.

Theorem 1.. Let f be an S-convex (resp. S-concave) function which is increas-
ing in D" and let ¢ be a convex (resp. concave) function in Dy, = R, with
values in D; then the function g given by

| £() = F19G, 66, .. ., (0]
is S-convex (resp. S-concabe) in (Do)". ‘
Proof. If y. = Px, where x € D", we have
$0") = pi D+ p2 ¢+ ... + 1] H(7),
whengce -
(60" 602, - - -5 $0M) = PP, 6(x), .. ., ),
whence '
80) = fB0MN, . ) S FIPPGD, . )] S F4GY), ... ] = 2@

and so g is S-convex in (Dg)". _
() The idea of “S-convex function’ is due to I. Schur (Math. Z., vol. 12, 1922, p. 287).
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Theorem 2. Iffy, f3, . . . , /s are S-convex functions and if ¢ is an increasing
Junction in R™, the function given by :

8(x) = ¢L/1( Lo(3)s - . ., ful)]

is S-convex.,
Proof. If y = Px, we have fi(¥) £ fi(x) for all i, so that
g0) = ¢[£i0), .. 1 = ¢Lfi(®),...] = g(x)
and therefore g is S-convex. i

" Theorem 3. An S-convex funciion f in R is symmetric in x*, x2,...,x";

2

that is, the value f (x*, X%, . . . , X") remains unaltered when we permute the x*.

Proof. Let P be a permutation matrix and let Q be the transposed per-
mutation matrix (so that g} = p}). We have

| f@) =AQ. Px) £ f(Px) £ f(x).
Therefore f(Px) = f(x) for each permutation matrix P and so fis symmetric.

Theorem 4. If a numerical function f in R is convex. and symmetric with
respect to x', x%, ..., x", then f is S-convex.

Proof. Let P be.a bistochastic matrix; by the corollary to the theorem of
Birkhoff and von Neumann, there exist positive numbers 4,;, with sum equal
to 1, and permutation matrices Q; such that

P=Y1Q,
i=1
Then . : ‘
Sf(Px) = f(‘ileix) = zlﬂif(Qix) = iglﬂzf(x) = f(x),

and so fis S-convex. i
It follows from this theorem that, for symmetric functions, the idea of
S-convexity is a generalisation of the idea of convexity.

LeMvA. Let k < n and let PR be a bistochastic matrix such that
Vi >kN)NVm>D:pipr=0.

Then, ifK = {1,2, ..., k}, we have PN = PE ® PNZE.

Proof. We can write

PN _ ( PX Rxlsx—x)
N = - -
S o
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If r} # 0 (leK, je N—K), then s = 0 for all m > k and aﬂ i k, there-
fore S{~¥ = OF~X and

i
q; = n-—-k,
e N~K jeN-K

Y Y =k

teK jeK
whence
Y ry=0.
ieN~-K jeK

But the r} cannot be negative and so they are zero; hence, the supposition
ry#0 leads to a contradiction. Therefore RE_x = OR_g and similarly
sN K _ oN-

Theorem 5 (Ostrowski). Let D be an open interval in R and let f be a
symmetric differentiable function in D". If, for all x = (x*, x%, ..., x") in D"
such that x' # x%, we have

(%~ )(af aif)>°’

then the function f is strictly S-convex in D".
Prbof. (1) Let x = (x!, x2, ..., x") be a point in D" such that
<K<, <
Since the set P of bistochastic matrices in R™ is compact and f(Px) is a
continuous function in the coefficients p} and therefore in P, it attains its

maximum on P for some bistochastic. matrix Q. Permuting the rows of Q
if necessary, we can suppose that (%, 3%, ..., ") = Qux satisfies

VY. S

In order to show that fis strictly S-convex, it is sufﬁcwnt to show that the
matrix Q satisfies

7= Qx = x.
(2) We can suppose that the x* are not all equal to

_xX xR xR Ly
n h

for otherwise we should have y* 2 3" 1 > ... = y' = x! = « (theorem of
Hardy, Littlewood and Polya), whence y* = 3> = ... = J" = ¢ and the
proposition would then be proved.

Suppose therefore that

l=xt=...=xf<xl g x2 <, <X
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X igkandj>k, then ¥ —x* > 0. Given &£ > 0 and / < m, we define z
to be the point of coordinates

Y=l —x%),
ym+8(xj'—xi)s
yLif i#Lm.

z
Zm
S
The function defined by
BE) = FOL V2 Y = =D, Y e =X, L L, )
is differentiable and its derivative is
$'(8) = (X' =X fu(2)—f(2)]-

Since z"—2! = y™— y'4.2g(x —x‘) > 0, we have
xi—

PO = (Z —2) [f(@~f(2)] > o,

Whenever & is chosen to be sufficiently small for z to belong ta D". Hence
&(e) > ¢(0) for ¢ sufficiently small and so

fE&L 22,2 > L 2., YD),
(3) Put ’
‘ P = gi+e, P =qj—¢,
Pl = gi'—s, Py = dgj+e,
p:=qs if r#&lLm; s#i,j.

We have f(z) = f(Px) > f(Qx); since Q is a bistochastic matrix such that
f(Qx) has the maximum value, the matrix P is not blstochastlc, however
small ¢ may be; therefore we have

g;q7 = 0.

This is valid foralli £ k,allj > k, allJand all m > 1. Therefore, from the
lemma,

QN = Q¥ ® QXZE

(4) The result just proved shows that, in particular, if a function fin R2
satisfies .the conditions of the theorem, then f(Qx) attains the maximum

value when
1 0
-(o 1)

We then have y = Qx = x and therefore the result is true in R2.



CONVEX SETS AND CONVEX FUNCTIONS IN THE SPACE R* 223

Suppose then that the result is true for integers smaller than n. We shall
prove that this implies that it is true for the integer n and so the theorem will
be established by induction. Put

a=xt=x=... =< <X <., . <x"
Since y = QRx = (Q¥ ® QN=E)x, we also have
1_ .2 —
y =Yy =,,.-y"-—<x.

The function given by g(XN"%) = fle, o, ..., o, X*¥¥1, x¥¥2, | %" satis-
fies the conditions of the theorem and g(P NZEXN-E) attains its maximum
value with the bistochastic matrix QN-X; then, by hypothesis,

QN KxN K xN —K
Hence we have
y = (XE, XN-K) =

APPLICATION 1. If A > 1, the function f such that -
&) = G+ + ...+

is strictly S-convex in 10, + co[".
In fact, if 0 < x* < x?, we have 0 < (x")*"* < (x®)*7* and so

6= (- L) = sy o= - 0

APPLICATION 2. Consider the symmetric functions:

cy(x) = Z x*
e(x) = 3, % f ot
i<f
cy(x) = Y xtxfxk
i<j<k
c(x) = x* x2 ... x"
The functions c; and —— are Strictly S-concave and increasing in 10, + oo[".

Ct— 1

For example, we can prove that ¢, is strictly S-concave as follows. Put

cf = c(x3, x*, ..., X",
Then

ca = x* x? e+ (el +x2)eh+cl
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and so, if x' # x2, we have
dc, e
(x2—x1 <53-c%_5ﬁ = (x2—x!) [xlcg x2cy+ch—ch
= —(x?~x!)? ¢i(x) < 0.
Therefore ¢, is strictly S-concave.

Theorem 6. If D is an open interval of R, a necessary and sufficient condition
Jor a differentiable and Symmetrzc Junction f to be S-convex in D"‘is that, for

all x in D",
af of
2 ey
(x x)(axz 6x1>'2*0'

Proof. Let fbe a differentiable S-convex function in D", Let
x =, x%...,x") eD"

and let & be such that 0 < & < 1. Lety(s)—(y1 ¥, ..., ") be the point
such that

(—-a)x +ex?,
sx+(1 &)x?,
Xifi%l,2

yz
yi
J

Since y is the result of transforming x by means of a bistochastic matrix, we
have

Af = fly@)]-f(x) £ 0.

Also, since fis differentiable, we can write

8 = 2 0t -9+ (7482, 0) | )= |-
"Then
Y=L oy L woep 0 2021 o

Let ¢ tend to 0; we get
a of
2_ N M >
(x*=x (6x2 6x1> =0,

‘Suppose conversely that fis a symmetric differentiable function satisfying

of of
Ge? )(xz 6x)>0

as required,
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If & > 0, the function given by

g(x) = fO)+e[(x")? + (2 + . .. + (=]
is differentiable, symmetric and, for x* # x?, satisfies

(% — )<_g_§> = (x2— )<_‘?£ —%)+(x x1) 2¢(x* —x1) > 0.
Then if y = Px, we have g() < g(x) by Theorem 5; hence
SO+ +O + .o+ S FE+e[() + P+ ..+
Let & tend to 0; we get |
S £ 1)

and so fis S-convex.

Theorem 7. Let x = (x', x%,...,x") and y = (3, ¥%...,)") be two
pointsof D", suchthat x* £ x* < ... £ x" ' £y £ ... £y andy = Px
Sfor some bistochastic matrix P. Then, if f is an increasing S-concave function
inD"ifK={1,2,...,k} « Nand if

a=(d,a%,...,a)eD"
we have
VS, AN-K) > f(XK, AN-E),

Proof. If y Z Px, then, by the corollary to the theorem of Hardy, Little-
wood and Polya,

xt < J’ >

x1+x2 é yl +y2’

X R X S YL
Therefore thére exists a bistochastic matrix QF of order k such that
Y = QEXE,
whence, since f'is increasing,

SOYS, ANTE) >f(QKX]K ANTK) — fT(QE ® ENZE)(XE, AN- 9]
> f(xK AN K)
Thus the theqrem is proved.

APPLICATION. If x€R” is such that x* > 0,x* > 0,...%" > 0 and if
y 2 Px for some bistochastic matrix P, there exists a bzstochastzc matrix Q
such that

(logy*,logy? ... ,logy") = Q (log x',log x%, ..., log x").
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Proof. We can always suppose that

ﬂgfgﬂgﬂ

VEyrs. 20
Applylng ‘Theorem 7 to the fundamental symmetric function ¢, given by
c(x)=x'x?...x", which is S-concave and increasing, and taking

a={(1,1,. 1), we get

..........

Hence

log y! = log x*,
log y!+log y* = log x* +log x2,

log y'+log »*+ ... +log 3" = log x' +log x>+ ... +log x™

Therefore, by the corollary to the theorem of Hardy, Littlewood and Polya,'
there exists a bistochastic matrix Q such that

(log y',log y% ... ,logy") 2 Q(log x%, log x?, . .., log x*)

Let (x',x%...,x" and (3%,%...,¥") be two m-tuples whose com-
ponents are arranged in increasing order and which are such that y > Px
for some bistochastic matrix P. Then Theorem 7 enables us to obtain a large
number of inequalities. In particular, this situation occurs in the spectral
theory of matrices (for example, with n-tuples of latent roots of an Hermitian
matrix and the coefficients of the leading diagonal).

§ 12. Extremal problems with convex and concave functions
A problem which often occurs in questions of economics is the following:

Maxmum ProBLEM. Given concave functions f, g4, g5, . . . , £, defined in

R™, find a point x € R™ such that
(1) g](x)go (J=132:--->n),
(2 f(x) is maximal with respect to these constraints.

We shall show that this problem can be reduced to another which is much
easier to solve; the method used is a generalisation of the well-known method
of ‘Lagrange multipliers’ and is due to Kuhn and Tucker.

Let y = (o Y1, Y2 - - - » V) be a variable point of R"*1; we associate
with the above maximum problem a function, called the Lagrange function,
given by

F(.X, J’) yOf(x) + Z ng_](x)
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Ifwewite 7 = (1, %2, - - ., 7) and 3(x) = (g,(), £, - - . » £4(%)), we can
also write the Lagrange function in the form

F(x, y) = pof(x)+<{F, ().

LAGRANGE PROBLEM. Find an x e R™ and a y e R"** such that
(1) F(¢, ) is maximal in R™ for £ = x,
@F0920y20 5y =1,

(3) <7, g(x)> = 0.

Whenever the functions under consideration are differentiable, the La-
grange problem reduces to a system of inequalities which we know we can
solve, since we can replace (1) by

® wZe@y) -0 G=12...m

ox;
The fundamental result is given in the following theorem:

rIheorem of Kuhn and Tucker. Let f, g, 8,,...,8, be concave functions
in R™ (differentiable or otherwise); for each solution x € R™ of the maximum
problem, there exists a y € R*** such that (x, y) is a solution of the Lagrange
problem; for each solution (x,y) of the Lagrange problem with Yo # 0, the
point x is a solution of the maximum problem.

Proof. (1) Let x be a solution of the maximum problem. By hypothesis,
the system

g®»=z0 (=12...,n.

S > fx) ,
does not admit a solution &eR™ Therefore, by the first fundamental
theorem (§7) there exist coefﬁc1ents Yos Vis Yaivee Va2 0 with sum I,
" such that :
Yo fO-F)] + X yiei®) = 0 (¢ eRM),
or

Yof(E)+<7, 8> £ yof () . (eRM.

Putting & = x, we get {7, 8(x)> = 0. Hence, since the opposite 1nequa11ty is
also satisfied,

<y, &(x)> = 0.
Therefore

Yol O+, 3O S 3o f@D+F B> (EeRY).

TS Q
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Thus we have shown .that the Lagrange function Yo S(EY+ 7, 8(E)) is
maximal in R™ for ¢ = x and the first part of the theorem is established.

We now suppose that (x, y) is a solution of the Lagrange problem and
show that x is a solution of the maximum problem. To do this, we simply
reverse the argument given above to prove the first part of the theorem.
By hypothes1s we have

Yof ) + <7, 80D = yof(x) (EeR7)

or

»Lf@~f@] + Ly O S0 EeRr.

Since y, > 0, the system’

{ (0 20,
78 > 16

does not admit a soluuon éeR'" and f(x) is a solution of the mammum
. problem

‘We now consider differentiable, but.not.necessarily concave, functions
/181,825 . -« » 8y defined in R™, Put

g(x) = (gl(x)’ 8&2x)s ... gn(x))

?_g“_ agx 582 0g,\
ax, axi ax " 6x1 ’

The gradient of fis denoted by _
o = ("’f 9 Efi)

0xy 6x2 ox,

The global maximum problem consists of finding a point x in the set
G={x/gx)20forj=1,2,...,n} such that f(x) is maximal. Such a
point x will be called a global maximum of f.

A point x will be called a relative maximum of the functmn fif the value
f(x) decreases when we replace x by x' = x-+Au, where 4 is sufficiently small;
this must be verified for each vector u, unless there exists a j such that
g;(x) = 0 and {dg;, u> < 0 (for then the vector u is directed to the exterior
of the set G).

In general, the relative maxima are easier to determine than the global
maxima and nearly always include them. However, it can happen that a
global maximum is not a relative maximum, but is a singular point with
respect to the set G. For example, consider the global maxmum of
f(x,) = x,, in R?, with the constraints :
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&i(x) = (1_3‘1)3“"‘2 =0,
&2(%) = x; 2 0,
g3(x) = x, 2 0.

The set G is indicated in figure 46. The point (1, 0) is the global I_'naximum.

U =(1,0) '
S>>
|
!
|
|
|
|
Fia. 46
The vector u = (1, 0) satisfies
<ua 5g1> =0, <u: 5g2> = 1, -
< 0gsy =0.

However, f(x) does not increase in the direction of u; the point (1, 0) is not
a relative minimum. ’ '
We now compare the following two problems.

RELATIVE MAXIMUM PROBLEM. Let f,g,,8,,...,8, be differentiable
functions. To find an x = (x,, x,, . . ., X,,) such that -

(D) g0 = (8:(x), £2(x), - - ., 8(3)) 2 0,
. (2) fhas a relative maximum at x.

. LAGRANGE PROBLEM. Letf; g4, g, ..., g, be differentiable functions. To
find'an x = (xy,%3,..., %) and a y = (,,,,...,y,) such that
gx)z20, yz0,
&y)=0

of  /og _ .
5x,+< ,y>_0 i=12,...,m).
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Theorem. If x is a relative maximum, there exists a § = (¥4, Ys «« « » V)
such that (x, y) is a solution of the Lagrange problem.

Proof. LetJ < {1,2,... ,_n} be such that

{gj(x) =0 (jeJ),
gx) >0  (jed.

If the point x is a relative maximum we have {df; Ax) < 0 for each increase
Ax such that

(58,0, Axy 2 0 (jed).
By Farkas’ corollary (§ 1), there exist numbers p; = 0 such that
—of = }:Jpjégj(x)-
je
Consider the vector y = (¥4, ¥2, . - - » ¥,) such that

_ ) pif jed,
YiTV0ifj¢d.
We then have

, /..o .
—fL = <y, 6x,> i=12...,m.

On the other hand, we have

;>0 = jeJ = gix)=0,
whence

| 3, 5> = 0.
Thus we have recovered the cc)n_ditions of Lagrange’s problem.



CHAPTER IX

TOPOLOGICAL VECTOR SPACES

§ 1. Normed spaces

Let X be a vector space, on which is defined a numerical function x — || x ||
such that

o [x]zo

@ |[x]=0 <« x=0

@ [ax]=[4] ]| aE2em),

@ [xitx | =2 ]+ ][]
The function x — | x | is called a norm (cf. § 5, Chapter VII) and the pair
consisting of X and this norm is called a normed space. In a normed space

X, the distance from a point x to a point y is d(x, y) = || x~y | ; the function
d is a metric, because

d(x,») z 0,
dx,))=0 = x=y,
d(x’ y) = d()’s x)’ '
d(x, z) = d(x, y)+d(y, 2). -

A normed space is thus a metric'space and is therefore a topological space.

We observe that condition (1) for a' norm follows from conditions (3) and
(4), because

o=lo]-Jaf=f0-a]=]x=x]=]x]+]~-x]=2]x]
,ExamprLE 1. The space R” is normed, with
[l =l [P [ 2 e 2 2,

ExampLE 2. The space L, consisting of the sequences (x") such that

w0

Y| x*|P < + oo is normed, with
1

n=

=] = (5| .

To prove this, we use Minkowski’s inequality (§ 9, Chapter VIII).
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ExampLE 3. The space %, consmtmg of functions defined on [0, 1] such
that the Lebesgue integral

L | 603 |7 dt

I ¢ ||:= ( f:l o0 |* dt>'17

provided that we follow the convention of regarding two functions as being
equal if they take the same values on [0, 1] except for a set of measure zero
(forif | ¢ | = 0, then ¢(¥) is not necessarily zero for all in [0, 1]; however,.
the values of ¢ for which ¢(?) ¢ 0 form a set of measure zero).

exists, is normed, with

Theorem 1. In a normed space X, the single-valued mapping o of X x X
into X defined by o(x,y) = x+y is continuous; the single-valued mapping
of R x X into X defined by (A, x) = Ax is continuous.

Proof. (1) If (xg, o) € Xx X and if ¢ > 0, then

max { | x=xo [, [ y=y0 [} =&
implies that

" (x+y)—(x0+¥o) " = ” (x—x0)+(y—y0) “ . ,
£ | x=xo | + | y=2| =22

Therefore o is continuous at (x,, yo) and so, since this point is arbitrary, o is
" continuous in X' x X,

@ If(xo,xo)eRxXandlfa > 0, then
max {|A-2o |, | x—x |} S ¢
implies that

| Ax—Aoxo || = || Ax— ’1"0'*"1"0 onou | A=) | + | A= AO| leoll
< |a]ete] %o = (o] +e+ [ x0 |)e

Therefore 7 is continuous at (14, X,) and so, since this point is arbitrary, 7 is
continuous in R x X.

Theorem 2. If f is a single-valued linear mapping of a normed space X into
a norméd space Y, then f is continuous if and only if ﬂ J) ﬂ is bounded in
the unit ball B of X: that is,

;S::g ”f(x) “ = 0 < 400,

Proof. If || f(x) || is bounded in B by «, then f(x) is continuous at any
point x,, for :
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J(x)—f(x0)

&

= [f)~f(xo) || £ ce.

If ” Jx) ” is not bounded in B, there.exist points x;, X5, . .., X, . . . Such

1~
that || f(x,) | > n for each n; since ("—xnlu) — 0, the sequence (ﬁ x,,)

converges to 0; but we have

oo

. . 1
and therefore the sequence ( f (; x,,)) does not converge to f(0) = 0, so
that fis not continuous at the point 0. »

[x=x = = x—;—@eB

IIA

o

=l > 1

COROLLARY. A linear mapping f of X into Y is continuous if and only if
there exists a number o such that

) 2 @) | <a E2E

Proof. If f is continuous, then sup || f(x) | = « < + oo, by the theorem;
’ . xeB

‘since ——x— € B, we have
I =]

1769 ] < o] x].
Conversely, if the condition is satisfied, we have
lxl<1 = J/f@|=afx]se

Theorem 3. Let G be an open convex set and let f be a convex function in G.
Then f is continuous in G if and only if it is bounded above in a ball B(a) = G.

Proof. If fis continuous in G and @ € G, then, to each & > 0 there corres-
ponds a number # such that

xeB@ = f()Sf@+e.

Therefore J(x) is bounded above in B,(a).

Conversely, if f(x) is bounded above in a ball B,(a) then we can see, ex-
actly as in the proof of Theorem 7, § 5, Chapter VIII, that f(x) is continuous
in B,(a); we shall prove that fis continuous at an arbitrary point x, of G-
Let x; € G be such x; € Ja, x;[. There is no loss in generality in assuming
that x, = Oand that f(0) = 0, for we can always make a translation and also
replace £(x) by f(x)—f(0).

Let y, be a point of G such that \
| %o |

lal”

| 0=yo | < 21
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Put
_ el
¥y lxol!ya
Then
el Jel|_del ),
—a| = - = —xo | = 4,
R S e e e R e

and therefore y € B,(a). Consequently

SV EN AN EN \WIR Y
o0 = r(1-lpef)o] < i o

Therefore f(y,) is bounded above in a ball of centre x, and so fis continuous
at x,. :

FiG. 47

COROLLARY. If f is a convex function in an open convex set G and iffis
upper semi-continuous at a point of G, then it is continuous in G.

Proof. This is immediaté, since, given & > 0, there exists n such that
u x—xo | £ 7 = f(x) £ flxp)+e.

The set of continuous numerical linear functions on X is called the dual
space of X and is denoted by X’. If we write [ 1 +/5](*%) = f1(x)+/2(¥) and
[Af1(x) = 4 - f(x), then X’ becomes a vector space; the function which takes
the value 0 at each point of X is the neutral element of X'. If X is normed
and we write

|71 = sup [ 76 |,

where B is the unit ball in X, then the space X" is also normed. To prove this,
we verify the following properties:
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o lrlzo

@ lfl=0 = f=0

@ 4] =sup| | =]2]-]7];

@ | r+el =sup|/@+e@) | = sup | /@) | + sup|gC | = [f]+]e]-
REMARK. It is sometimes convenient to denote the number Jx) by £, %3

we then have all the properties of linearity of the scalar product already
proved in the space R":

1) MfHug, x> = XK, x>+u<g, x),
@) {firx+wy = Kf 0 +plf, >

and we also have the following inequality, analogous to the Cauchy-Schwartz
inequality (§ 1, Chapter VIIT): .
@t 1=

The proof of this formula is immediate, since

1= ()l =

E.

Theorem 4. If, in X', the sequence (f,)-converges to f, and the sequence (g,)
converges to go, we have

. (fat8) = fotZo
Proof. If ¢ > 0, then, for n sufficiently large, we have | f,—fo | £

171

>
" &n—8o u s f-, and hence

“ (f;x+gn) (fo+8o) ” = n (f;;“‘fo)'*'(gn -£0) “ s
~fo | + T an—go || < &

‘Theorem'S. If (x,) — xo in X and (f,) = fo in X', then(f,(%,)) = fo(%o) in R.

Proof. Put g, = f,—f, and y, = x,—X,; if ¢ > 0, then, for n sufficiently
large, ][ &n H Le " P H e apd therefore

I <f;z: n> <f0’ x0> I = ( <f0+gm x0+yn> <f0’ x0> I
- = l <f0’ x0>+<f0’ yn>+<gm x0>+<gm yn> <f0: xO l
< l <f0,yn> I + I <gm x0> l + l <gn: yn) l S ”fO ” 8+H Xo " 8+6
Hence (<f;|: n>) <f03 x0> .
Thedrem 6. In X', we have (f,) — fo if and only if the sequence (f,(x))
converges uniformly to fo(x) in the unit ball B of X.
Proof. If (f,) - f, in X7, then, given ¢ > 0, there exists a number m such
that
n

v

m = |fi=fh|=e.
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For all x in B, we have

£ @~h@) | = [hiro | ] %] = ¢

whenever n = m and therefore (f,(x)) converges uniformly in B in the sense
defined in Example 3, § 2, Chapter IV. _

Conversely, suppose that (f,(x)) = fo(x) uniformly in the unit ball B.
Then, given ¢ > 0, there exists a number m such that

nzm = |fi~fol = sup | i) ~fo) | < .

Therefore () — f,.

§ 2. Topological vector spaces

A topological vector space™™ is a vector space X together with a topology,
such that the following conditions are satisfied:

(1) The single-valued mapping ¢ of X x X into X given by o(x, y) = x+y,
is continuous; in other words, for each neighbourhood V{xo+¥,), there exist .
neighbourhoods U;(x,) and U,(y,) such that

X € Uj_(xO) .
x+ye V(xe+7,).
{ ye Uy(yo) = Y (o +0)

(2) The single-valued mapping 7 of R x X into X, given by.z(A, x) = Ax,
is continuous; in other words, for each neighbourhood ¥(4, Xo), there exists
a number n and a neighbourhood U(x,) such that ;

YRS :
{ xe U(xo) = ;Lx € V(Ao xO). Lo

ExAmpPLE 1. A normed space X is a topological vector space with respect
to the topology defined in § 1 (sometimes called the strong topology of X). -

ExAMPLE 2. Let X be 2 normed space and let X” be its dual (that is, the set
of continuous numerical linear functions on X). Let @ be a finite subset of
X'. Given ¢ > 0, write

NP ={x/xeX,|f(x)| < e for all fe ®}.
We can verify that, as @ and & vary, the sets of the form
N2(x) = x+N?

() The idea of a topological vector space was introduced by A. Kolmogoroff (Studia
Math., vol. 5,1934, p. 29) in order to generalise the space R”, Hilbert space (used in quantum
theory), Banach spaces (which are becoming increasingly important in probability theory),
etc. In this chapter, we use some of the results of Chapter VIII, but more often we give
independent proofs. (We make use of Zorn’s theorem; the results in the previous chapter.
were obtained in a more elementary fashion.)
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constitute a fundamental base of neighbourhoods for a topology in X, called
the weak topology of X; and that X, together with the weak topology, is a
topological vector space.

We observe that the mapping of X into X given by f(x) = x+x, and the
inverse mapping such that f ~*(x) = x—x, are continuous; thus fis 2 homeo-
morphism. If U is an open neighbourhood of 0, the set f(U) = U-+x, is an
open set; moreover, since x, € U+ xo, the set U+x, is an open neighbour-
hood of x,. '

Conversely, it is easily seen that each open neighbourhood of x, is of the
form U+x,. We shall denote open neighbourhoods of 0 by U or ¥ and shall
write U(xo) and V(x,) for U+x, and ¥+x, respectively.

In what follows (to §4) we shall suppose that the space X satisfies the
following axiom: '

TOTALITY .AXIOM: for each point xo € X such that x, # 0, there exists a
continuous linear function fe X' such that f(x,) # O; in other words, X' is a
total family.

The spaces which we meet in analysis satisfy this axiom; without it, we
would not be able to develop a satisfactory theory. We observe that the
totality axiom implies the separation axiom; if x, # 0, there exists a neigh- -
bourhood U of 0 and a neighbourhood ¥(x,) of x, such that U and V(xo)
are disjoint. To prove this, it is sufficient to consider a function fe X’ such
that f(xg) = o > 0 and to write

U={x/xeX; f(x)<;—c},

V(xo) = {x [xeX;  f(x)> g}

PROPERTY 1. Amongst the open neighbourhoods of O there exists a JSunda-
mental base of starred and symmetric open neighbourhoods of 0.
A set A4 is starred (see § 7, Chapter I), if

aed, Aie[0,1] = Aae A
Furtﬁer, A is symmetric with respect to 0 (seé § 5, Chapter VII) if
‘ acd = —-;a € A.
Let ¥ be a neighbourhoaod of 0; there exists.a neighbourhood U of 0 and a

number # such that ‘

{‘leelv‘;rl» ../?.XEV.
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We consider the set

Uy= U iU.
IR
(1) The set Uy is open. For, if 4 s 0, the mapping given by f(x) =
isa homeomorphlsm (cf. page 161) and therefore AU is an open set; hence
Uy is a union of open sets.
(2) The set Uy is starred. For, if x, € Uy, then there exists a number p,
satisfying | | £ #, such that x, € uU. Hence

Axo € (AU ’
AE[O,I] .'-=> {llﬂléﬂ = AerUy.

(3) The set Uy is symmetric—this is immediate.
(4) As V varies, the sets Uy form a fundamental base of neighbourhoods.
For Uy < V, by the definition of Uy.

PROPERTY 2. Every open neighbourhood of 0 has 0 as an internal point.

Suppose that x, € X and that U is an open neighbourhood of 0. Since the
mapping f given by f(1) = Ax, is continuous at the point 1 = 0, there exists
a number 3 such that -

Illgn = ixy = f(A) e U.

This shows that 0 is an internal point of the set U, according to the definition
given above (§ 5, Chapter VII). .

ProPERTY 3. For each neighbourhood U, there exists a nelghbourhoad V
such that V+V < U.

Since the mapping o such that o(x, ) = x+y is contmuous, there exist
neighbourhoods ¥, and ¥, such that

{xEVl x+yel.

\

yev,
Hweput V=V, NV, wehave V+V < U.

PROPERTY 4. If U is a neighbourhood of 0 and A 0, the set AU is a
neighbourhood of 0, )
This follows from the fact that f(x) = Ax determines a homeomorphism.

RemMArk 1. Properties (1), (2), (3) and (4) are characteristic of a base of
neighbourhoods of 0 for a topological vector space; in fact we ¢an show that
if these properties are satisfied for a family (N; / i e J) of neighbourhoods of

0, the neighbourhoods -N;+x = N(x) define a topology on X and, with this .A

topology, X is a topological vector space.
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ReMARK 2. If U is a symmetric neighbourhood of 0, we have U = — U,
because of Theorem 2, § 1, Chapter VII, we have

xeUy) = {XNU+»N#0 = {0}N{U+y—x)# 9
= {-pINU-x)#0 = {y}ﬂ(U—!—x)#Q = ye U(x).
Thus x € U(y) is equivalent to y € U(x).

Theorem 1. Let 1 e Ry if F is a closed set, then AF is closed; if G is open
and ) # 0, then AG is open; if K is compact, then AK is compact..

Proof. If A # 0, the mapping given by f(x) = Ax is continuous and so is
its inverse f~1(x) = (1/A)x. Therefore f is a homeomorphism and so f(F),
f(G) and f(K) are closed, open and compact respectively. In the case of F
and K, the theorem is trivial if 1 = 0.

Theorem 2. If A is a subset of X, we have
A= ﬂ (U+4).

Proof. Let % be a fundamental base of symmetric neighbourhoods. We
“have
={x/Ux)NA+# @ forall UeH} =
o={x/{x}NA+TU) # @ forall Ue B}
=N {U+4) = ﬂ (U+4).

Ue®

Theorem 3. The family formed by the closures of the open neighbourhoods
" of 0 is a fundamental base of neighbourhoods of 0. .

Proof. For each neighbourhood ¥, there exists a nelghbourhood U such
that

U+Uc V.
Therefore, by the preceding theorem,
T=NW+U)c U+Uc V.
w
Hence the sets U form a fundamental base of .neighbourhoods of 0; in
particular, a topological vector space is regular (see § 5, Chapter IV).

Theorem 4. If K is a compact set and F is a closed set and if KN F = @,
there exists a neighbourhood U such that

(U+K)NU+F) =
Proof. Let x e K; we have ‘

x¢F=F=NU+P.
u
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Therefore there exists a neighbourhood U, such that
x¢ U +F
Let ¥, be a symmetric neighbourhood such that Vi+V, < U, we have

XNV +V+F) = @,
Therefore ‘
G+VaN(Vi+F) = @.

The sets (x+ V¥, [ x € K) form an open covering of K; therefore there exists
" v
a finite open covering: x;+ ¥y, x,4 Vo, ... , x,+ V, Writing V=NV,
. i=1 .

we have -
) KNWV+F) = @.

Let W be a symmetric neighbourhood such that W+ W < V; we have

KNW+W+F) =@
and so

K+W"N(W+F)= @
as required.

CoROLLARY. If G is an open set and K is a compact set such that G > K,
there exists a neighbourhood U such that

U+K < G.

Proof. The set —G is a closed set not meeting K, and so there exists a
neighbourhood U such that

E+U)N(~G+U) = @.
E+NN(-6=0

K+U < G.

- -

Hence we have

. and therefore

Theorem 5. (i) If G is an open set and A is any set, then G+4 is open;
() if F is a closed set and K is a compact set, then F+K is a closed set- (iii) if
K and K’ are compact sets, then K+K' is a compact set.

Proof. (i) Since G+a is open, so is

G+4 = U(G+a).

acd -

(i) Suppose that x, ¢ F+K; then
xo—F)NK= 0.
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The set x,—F is closed (for the mapping f such that f(x) = xp—x is a
‘homeomorphism). Hence, by Theorem 4, there exists a neighbourhood U
such that ’
’ xe—F+U)NK = O.
" Therefore
o+ U)N(K+F) =0

and so there exists a neighbourhood U(xy) = U+x, not meeting K+ F,
whence K+ F'is closed.
(iii) In X x X, the set K x K’ is compact (by Tychonoff’s theorem). Since
the mapping ¢ of X'x X into X defined by o(x, y) = x+y is continuous, the
set K+ K’ = o(Kx K') is compact.

Theorem 6. If E is a vector subspace of X, its closure E is also a vector
subspace of X.

Proof. The mapping ¢ given by o(x, ¥) = x+y is continuous and satisfies
o(E x E) < E; therefore by Corollary 1 on page 57, we have ¢(E X E) < E.
But, by Theorem 1, § 9, Chapter IV, we have Ex E = E x E; therefore

G(EXE) < F
and so .
xeE -
{yeE = x+yekE.

<

The mapping defined by (4, x) = Ax is continuous in R x X and satisfies

TR XE) < E;
therefore

TRXE) =1RxE)=1RXE)c E

{er =  AxeE."

and so

AeR
Hence E is a vector subspace.

Theorem 7. Let f be a numerical linear function in X. Then the planes
Ef = {x | f(x) = o} are all closed if and only if f is continuous in X.

Proof. If fis a continuous function, the set

Ef = {x/f(x) = a} N {x/f(x) Z o}
is closed.
If the function f'is not continuous at a point x, then there exists a number
& such that

VU; Ue%B): f(xo+U) & [a—e, a+e],
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where f(x,) = a. Since # is the family of symmetric neighbourhoods and
fis linear, we have : '

(VU; UeB) : flxo+U) > [a—s, é+s].

Then the plane P = {x 1 f(x) = a+§-} is not closed, since x, ¢ P and every

neighbourhood. of x, meets P.

Theorem 8. A plane P which is not closed satisfies P = X (we then say
that it is ‘everywhere dense’).

Proof. LetPbea plane, and suppose that 0 € P (if this is not the case, we
make a translation). If P is not closed, there exists a point a such that

aeP, aéP.

Let D, be the straight line through 0 and a; since P i, by Theorem 6, a
vector space, we have )

P> D,+P.
But, since Pis a plane, we have D,+P = Xandso P = X,

Theorem 9. If G is a non-empty open sét situated on one side of a plane E P
50 that G = {x | f(x) Z o}, then we have

Ge{x/f(x)>a}.

Proof. Suppose that the result is false. Then there exists a point ze G
such that f(a) = « and a point b € X such that J(b) = a+1 (for fis linear and
not identically zero). The straight line through g and b is .

D = {x/x = Ab+(1-2)a, LeR}.

. If x runs along this line in one direction, the value of f(x) increases continu-
ously, for we have

J@) = B +1-Df@) = Ma+1)+(1—Dx = A+o.
Since a is an internal point of G, there exist points x; and x, such that
X1, X% €G, flxy) >a, f(x) <. .
But this contradicts the hypothesis G < {x/f(x) = «} and the theorem
follows. :
§ 3. General properties of convex sets

In a topological vector space X, we can prove certain classical (and very
convenient) theorems concerning open or closed convex sets.
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Theorem 1. If C is a convex subset of X and if ae C, b e C, the interior C
contains the set ’

[a,b[ = {x/x = pa+gb,p > 0,4 2 0, p+q = 1}.

Proof. Suppose that x; € ]a, 5[ ; we must show that x, is an interior point
~ of the set C. Consider the transformation x »y = x, +A(x—x,) (often
called a ‘homothety of centre x, and ratio.A’). This leaves the point x, fixed
and, if we choose 4 to be such that b = x,+A(a—x,), it transforms q into b
(we then have A < 0).

Let U(a) be an open neighbourhood of a, contained in C. The above
homothety transforms U(g) into an open neighbourhood V(d); in V(b), there
exists a point v such that v e C N V(B) (for be C). The point v is the image
" under the homothety of a point u of U(a), so that

v = X+ Au—x,).
We also have

v—xg = Mu—xp) = Au—v)+A(v—2x,)
whence

. A
U—=Xg = -1 (—u).

urna)

FiG. 48

A . A
We have 1 >0, -1 < 1; the homothety of centre v and of ratio -1

transforms  into x, and U(a) into an open neighbourhood W(x,). Since
ve Cand U(g) < C, we have :

W(x,) = C.
Therefore the point x, is interior to C.
COROLLARY. The interior C of a convex set C is a convex set.

Proof. If xe G, ye C, then in particular y € C and so
[x,7] = C.

TSR
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Theorem 2. The closure C of a convex set C'is a convex set.

Proof. Let p,q be two numbers such that p > 0, g>0,p+qg =1, and
let p be the single-valued mapping of X x X into X defined by

p(x, ¥) = px+gy. '
Then p is continuous and maps Cx C into C; therefore, by Corollary 1 to
the theorem of § 3, Chapter IV, we have :
' p(C’XC’):p(CxC)cC’.
Hence

{;zg =  px+qyeC.

This is valid for each pair (p, g) e P, and so C is convex.

COROLLARY. The closed-convex closure of a set A is equal to the topological
closure of [A]. :
This follows immediately from the theorem and Theorém 4, § 7, Chapter I.
On the other hand, we observe that if Fis a closed set, its convex closure
[F]is not necessarily a closed set; but if Fis a finite set, we can see, as in the
proof of Theorem 1 of § 2, Chapter VIII, that [F] is closed.

Theorem 3. If G is an open set, its convex closure [G] is also an.open set.
Proof. Let x € [G]; we have '

X =Dp1@1+p2azt ... +pa,; ay,0,,...,a,€G;
(phpz’ .o ,P,,)EP,,; neN.

The set p;G+p,G+ ... +p,G is open, contains x and is contained in [G];
the set [G] is therefore a neighbourhood of each of its points and so is open. -

First separation theorem. If A and B are two disjoint non-empty convex sets
and A admits an interior point, then there exists a closed Dplane Ef which
separates A and B, so that

sup f(x) < a £ inf f(y).-
xed yeB
This follows at once from the Hahn-Banach Theorem, proved in §6,
Chapter VII, together with Theorem 8 of § 2.

COROLLARY 1. If C is a convex set having an interior point and A is a non-
empty linear variety, and if CN\ A = @, there exists a closed Dplane Ef con-
taining A and such that C is on one side of Ej.

Proof. By the theorém, there exists a closed plane P separating 4 and C.
If a € 4, the plane P+a contains 4 and the set C is on one side of this plane.
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COROLLARY 2. If C is a closed convex set having at least one interior point,
every frontier point of C (and, in particular, every extreme point of C) belongs
to a closed plane of support of C.

Proof. If xo € C—C, we have x, ¢ C, and we can separate {x,} and C by
a closed plane Ej such that f(x,) < «. The closed half-space {x/fx) = o}
contains. ¢ and so contains its closure C; therefore it contains x, and hence
Sf(xo) = «. Thus E} is a plane of support of C containing xg. .

§ 4. Separation by convex functions

Fundamental theorem. Let C = {c;/ i e I} be a compact convex subset in a
- topological vector space X and let ® be a family of lower semi-continuous
convex functions. If, for each point c;, there exists a function ¢; € ® such that
dc;) > 0, then there exists a function ¢, such that

¢0 =izlpi¢i’- P15 G2 e ens ¢m €®, (p1,P2--- s Pm) € Py
inf ¢g(x) > 0.

xeC

The proof of this theorem is similar to that of the second fundamental _

theorem of § 7, Chapter VIIIL i
Let @ be a family of lower seml-contmuous convex functions and suppose

that -

¢1a ‘I’Z ed '
= + e ®.
{ (Pan) € PZ pi(:bl ‘p2¢2
We say that a set.C in a vector space X is regularly convex‘®) with respect to
® if to each point a not belonging to C there corresponds' a function ¢, e @
such that
sup B,(x) < 0 < @u(a).

xeC

From the definition, it follows that the full set X is regularly convex; it is
convenient to regard the empty set as also being regularly convex.

Let E’ be a vector subspace of the dual space X”; we say that a set C is
regularly convex with respect to the space E’ if it is regularly convex with
respect to

® = {f+a/feE; ozeR}.

1) The idea of ‘regularly convex functions’ was introduced by M. Krein and D. Smulian
(Ann. Math., vol. 41, 1940, p. 556). Here it is introduced in a wider sense, to enable us to
apply it to certam non—lmear problems. For this purpose we use a previous work (Bull. ed
la Soc. Math. France, vol. 82, 1954, p. 301) in which we prove the general theorem of
separation by convex functions. We note that certain theorems (§ 4) are expressed here with
less restrictive hypothesis than in the classical work of Bourbakl (Les structures fondamentales
de I’Analyse, Livre V, Chapters I, I).
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ExampLE. If X’ is the family of numerical linear functions defined in R",
a set C « R" is regularly convex with respect to the family X' if and only if it
is a closed convex cone with vertex 0; a set D < R”" is regularly convex with
respect to the space X' if and only if it is a closed convex set (see § 1, Chap-
ter VIII).

Theorem 1. A set which is regularly convex with respect to @ is convex and
closed.

Proof. If Cis regularly convex, then to each pomt a ¢ C, there corresponds
a function ¢, such that

sup @,(x) < 0 < ¢.(a).
xeC
Therefore
€= {x/ 43 5 0}
agC

The set {x [ ¢,(x) < 0} is closed, for ¢, is lower semi-continuous; it is also
convex, for ¢, is a convex function. Hence C is both closed and convex.

Theorem 2. The intersection of any collection of sets which are regularly
convex with respect to @ is also regularly convex with respect to ®.

Proof. Let C;(iel)be regularly convex sets and put C == ﬂ C. If a¢C,

there exists an index k such that a ¢ C, and so there exists a functlon ¢ind
such that

sup $(x) = sup $(x) = 0 < ¢(a).

XE k
Therefore C is regularly convex.
General separation theorem. Let X be a topological vector space and let K
be a non-empty compact convex set in X. If C is a non-empty set regularly

convex with respect to @ and if CN\ K = @, then there exists a function ¢ in
® such that

sup do(x) =0 < mf $o(2)-

xeC

Proof. Suppose that a € K; then there exists a function ¢, € ® such that
sup $,() < 0 < 4,(a).
xeC
Therefore, by the fundamental theorem, there exists a function ¢, of the form
9o = 2, Pilbap Whete (p1, Pz, . . - , P) € Py, such that
inf ¢o(y) > 0.
yeK
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Since @ is assumed to be convex, we have ¢, € @; furthermore, we have
m '
sup do(x) < Y, pysup ¢,,(x) £ 0.
xeC i=1 xeC
~ Therefore the function ¢, satisfies the required conditions.

~ Smulian’s theorem. Let. E’ be a total ‘vector subspace of the dual space X’.
Then a compact convex set K .< X is regularly convex with respect to the
space E'.

Proof. Suppose that a ¢ K. The set {a} is regularly convex with respect to
the space E’, because E’ is a total space and so

x#a=x—a#0=3gf) fx—a) >0 = (@f) : fl@) <Sf).

Hence, by the preceding theorem, there exists a linear affine function ¢
such that

#(a) £ 0 < inf ¢(»).
yek
Therefore, putting ¢'(x) = — ¢(x)-+¢, we have
sup ¢'(%) 0 < ¢'(a)
yeK .
and so X is regularly convex with respect to ®.

COROLLARY. If E'is a total subspace of X' and if K and K' are two disjoint
compact convex sets, then we can separate K and K' strictly by a plane Ej}
such that fe E'. ‘

Theorem 3. In a space X, a compact convex set K is regularly convex with -
respect to the dual space X'.

Proof. By the axiom of totality (sée page 237) the space X" is total and so
this result follows at once from Smuliag’s theorem.

CoRrOLLARY. If K and K’ are two disjoint non-empty compact convex sets,
there exists a closed plane Ef which separates K and K’ strictly.

Theorem 4. In a space X, a closed convex set C having at least one interior
point is regularly convex with respect to the dual space X'.

Proof. Suppose that a ¢ C and x, € C If D* is the half-line issuing from
'xo and passing through a, then D™ N C is a closed interval [x,, ] and y is a
frontal point of C. By Corollary 2 in §3 there exists a closed plane E%,
passing through y, such that ; -

sup f(x) < oc.

xeC
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Since x, € C, we have f(x,) < o (by Theorem 9, § 2). Therefore, since f is
hnear and f(y) = o, we have f(a) > «, whence

sup (f(x)— 06) =0 < (f@—a).

xeC

Thus C is regularly convex with respect to the dual space X’.

CoroLLARY. If K is a non-empty compact convex set, if C is a closed convex
set admitting at least onme interior point and if CNK = @, there exists a
closed plane E} which separates C and K strictly.

Plane of Support Theorem. A non-empty compact convex set C admils at |
least one extreme point and every plane of support of C contains an extreme
point of C.

Proof. Let A be ‘the collective family of non-empty compact convex sets
K contained in C, such that

[a,b] = C, Ja,b[NK#@ = [a,b] cKk

-Since C satisfies this condition, " is non-empty; it can be ordered by means
.of the relation <. Furthermore, the intersection of a totally ordered sub-
famlly of A belongs to &£ . Hence, by Zorn’s Theorem, there exists a set X,
in 2 such that

KcKy,, KeXA = K=K,

Suppose that x, € K,; if there exists a point y, in K, such that y,  xo,
there exists a continuous linear function f such that f(y,) < f(x,), by the
totality axiom. Put

o = max f(x).
xeKo
The set Ef N K, is non-empty, compact and convex and is contained in C;
also

[a,b] = C, a
1a,b[N(EINK,) # @ } = [a,b] = EfN K,.
Therefore Ef N Ky € o7; since Ef N Ky = Ky, we have Ef N K = K,; but
this is impossible, since y, € K, and y, ¢ E7 N K.

Hence K, = {x,} and so x, is an extreme point of C.
If E} is a plane of support of C, the set E7 N C is compact and convex and
so admits an extreme point x,; it is clear that x; is also an extreme point of C.

Theorem of Krein and Milman. A4 non-empty compact convex set C is equal
to the closed-convex closure of the profile C of C.
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Proof. Let &[] be the closed-convex closure of C; namely the intersection
of all the closed convex sets containing €. We have C-> C and so

C = ¢[C] = ]
Therefore, if C s -¢[C], there exists a point x, such that
%o € C, x ¢ E[C].

The set ¢[C] is non-empty (by. the preceding theorem), compact (because it
is closed and contained in C) and convex; therefore; by Theorem 3, ¢[C] is
regularly convex with respect to X' and so there exists a contmuous linear
function f such that :

sup {f() / x & E[CT} < f(xo)-

Put o = sup f(x); since x, € C, we have f(x,) < «, whence E¢N ¢[C] =
xeC

But this is impossible, since Ef is a plane of support of C and so, by the
preceding theorem, it meets o} It follows that C = &[C].

§5. Locally convex spaces

We say that a space X is locally convex if it is separated and if there exists a
fundamental base of convex neighbourhoods for the point 0.

ExampLE 1. A normed space X, with its strong topology, is a locally
convex space. To prove this, consider the fundamental base of neighibour-
hoods B,(0) = {x/ | x| < &}, where & > 0; if (p, g) € P, we have

% e B,0) HED
'y € B0) lrl=se

= ||px+qy|| Spetge=¢ = px+qyeB(0).
The neighbourhood' B,(0).is therefore convex.

ExAMPLE 2. A normed space X, with its weak topology, is a locally convex
space. To prove this, consider the fundamental base of neighbourhoods

Ne={x/|fx)]| £ ¢ forall fe®},

where ® is a finite subset of the dual X’ and & > 0. The set N is convex,
because it is the intersection of closed half-spaces. -

ExampiE 3. Let ¢ be a numerical function defined in R"; the smallest
closed set outside which it is identically zero is called the support of ¢. Let
9,, denote the vector space formed by all the functions ¢ having a compact
support and admitting. contmuous partial derivatives up to the mth order.
If ¢ €9,,, we write .
grrtpzte. . pn

lén= sup sup ¢ |.

Pr+pz..kpasm x| (@xV)PL. .. (Bx™)Pn
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We say that the functions ¢,, ¢,, . .. converge to 0 in 2, if their supports
remain in a fixed compact set K and if -

Lim | ¢ = 0

We see at once that 9, is an L*-space (cf. § 2, Chapter IV) and that no
proper topology can give the same convergence. Nevertheless we can con-
sider the set DX of functions in @, which have their supports in the compact
set K; convergence in 95 can then be defined by means of the topology of a
locally convex space, with neighbourhoods of the origin of the form

U={¢/dca, | ¢ [lx < e ¢ hasa support in K}

EXAMPLE 4. If we put m = o0, we obtain the space of infinitely differenti-
able functions with compact support, which we denote by 2. The topological
dual &' is the space of distributions, introduced by L. Schwartz in order to
generalise the idea of function in certain functional equations. We can show
that the space of distributions is locally convex.

ReMARK. 4 locally convex space satisfies the totality axiom. To prove this,
it is necessary to show that if x, # 0, there exists a function JS€ X' such that
S(xo) # 0.

Suppose that x, # 0; then there exists a convex open set U such that
0 ¢ U+x,. The set U+x, is convex, open and does not meet the convex set
{0}. Therefore, by the first separation theorem, we can find a continuous
linear function f such that ' :

0=/f(0) = inf f(x)

xeUtxo

Moreover, since U+ x, is an open set we have
(Vx; xe U+txp) : f(x) >0
by Theorem 9, §2. ‘Hence f(x,) > 0.

Theorem 1. In a locally convex space X, a necessary and sufficient condition
Jor a set C to be regularly convex with respect to the dual space X' is that it is
convex and closed.

Proof. Let C be a closed convex set. If a ¢ C, there exists a convex open
neighbourhood U such that (U4+a) N C = @. Then the sets U +a and C
can be separated by a plane E?, so that

~xeC

supf(x) £« < inf f(y).
: yeU+a.
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Put ¢(x) = f(x)—o. The set U+a is open and so we have
sup ¢(x) £ 0 < mf () < #(a).

xeC

Therefore C is regularly convex.

Conversely, every regularly convex set is convex and clased by Theorem
1, §4.

CoROLLARY (Second separation theorem). If K is a non-empty compact
convex set in a locally convex space X and if C is a closed convex set disjoint
Jrom K, there exists a closed plane E§ which separates C and K strictly.

We now consider mappings of a locally convex space into itself.

Theorem 2. If N is a closed neighbourhbad of the origin, the mapping
determined by N(x) = N+ x is closed (cf. page 111).

Proof. Suppose that y, ¢ N(xo). The set {y,} is compact and the set N(x,)
is closed. Therefore, by Theorem 4, §2, there exists a neighbourhood U
such that

o+ N (xg+N+U) =

In other words, we have
NN (p+U) =0
for all x in U+x,. Hence the mapping is closed.
Fixed point theorem (Tychonoff, Kakutani, Ky Fan). Let C be a non-empty
compact convex set in a locally convex space X. If T is a w.s.c. mapping of C

into C and if, for all x, the set I'x is convex and non-empty, then there exists a
point xqy in C such that

X € I'xq.
Proof. Let N be a closed symmetric neighbourhood and consider the set-
Fy={x/xeTx+N)NC}.

(1) We first show that Fy is closed. Since the mapping determined by
N(x) = N+x is closed, the mapping determined by M(x) = N(x) N C is
w.s.c. and also the mapping determined by MT'x = (U'x+N)N C is ws.c.,
so that :
ANMDx =Tx+N)NCN {x}

determines a u.s.c. mapping. The set (1 N MT)* @ is therefore open and its
complement, which is the set Fy, is closed.

(2) We now show that Fy is non-empty Since C is compact, there exist
points x;, X5, ...,x, such that C « U (x,+N) By Theorem 1, § 2,
Chapter VIII (which is valid in general topologlcal vector spaces as well as
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in R”), we know that the convex closure K = [x;, x,, ..., x,,] is'a compact
set, having dimension at most n—1. We can then consider in R*~! the
mapping of K into K given by B(x) = ('x+N) N K; the set B(x) is convex
since N is convex and is non-empty since N is a symmetric neighbourhood,
whence :

I'xXceCcK+N = IxNE+N)# D = Tx+N)NK # @.

Therefore, by Kakutani’s theorem (§ 2, Chapter VI]I) there exists a pomt
Xo such that

Xpe(Txo+N)N K.

Hence xy € Txp+N) N C and Fy # O.
(3) If M and N are two symmetric closed neighbourhoods, we have

F M n F N = F MAN®
Then, because C is compact,
N Fy # @,
N
by the finite intersection axiom. If x, is a point of this intersection, then we
have x, € I'x, (for otherwise x, ¢ Fy for some neighbourhood N).

-COROLLARY (Schauder’s theorem).. Let C be a non-empty compact convex
subset of a locally convex space X and let ¢ be a single-valued mapping of C
into C. Then there exists a point xo in C such that 6xy = x5

§ 6. Banach spaces: strong convergence

A complete normed space is called a Banach space; in such a: space, every
Cauchy sequence (x,) is convergent (see page 88). :

EXAMPLE 1. ¥ pz 2 1, the space L, con51st1ng of sequences x = (x") such

that Z | x"|P < 4+ oo is a normed space, with

=] = (5] Py

We shall show that it is a Banach space. Let (x;, x,, X3,...) be a Cauchy-

convergent sequence. Then, for all ¢ > 0, there exists a number # such that
VB ¢ | =, | S
Therefore :
(Vk) 2 | xi—xi P < Z | Xhen—xi |7 < &2

Thus the sequence (xj) in R is Cauchy-convergent and therefore converges
to an element x§ in R.
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We now show that xo = (x§, x5, - . -) € L,. In fact, for any g, we have

l X=X ik lp < e

i

i
Letting k —» + o0, we get

q
| xh—xh [P < en
i=1
Letting g — +co, we see that (x,—x,) € L,; therefore, since L, is a vector

space, we have x = x,—(x,—Xo) € L,,. :
Finally, we show that (x,) — xo. In fact, we have just seen that

S | |7 < o7

, =1
and so we have
‘ mzn = |x,—x|=Le

ExampLE 2. Consider the space .Z,(p = 1) consisting of numerical
functions ¢ defined on [0, 1] (to within a set of measure zero) and such that

SR
161 = ( fl 0) lp'dt>v < +oo.

" We can verify as above that & p is a Banach space.
ExaMPLE 3. Consider a function ¢ defined on [0, 1] and a sub-division
T = (tO’tl" "’tk) Of[O, 1} Suchthat() = to é tl é .. é tk == 1. Write
k
v(7) =i;l ¢t~ §(ti-1) |-
The number-
| ¢ = supv)

is called the variation-of the function ¢. Let "//' be the set of functions ¢
such that

@® o] < +o,
@ ¢0) =0,

® 60 = 3 [lim ¢(+9)+im §—a)] if 1e10,1[.

We can verify that ¥ is a Banach épace.

ExampLE 4. Let € be the space of numerical functions ¢ defined and
continuous on [0, 1], together with the norm

6] = max] 401,

We can see as in example 1 that % is a Banach space.
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Theorem 1. If X is a Banach space, its dual X' is also a Banach space.

Proof. We have seen that the dual X’ of a normed space X is also normed,
and has the norm : '

o SO -
"f""'i‘il}’( ][x" Su lf )l

Ilél

‘

Let (f;) be a Cauchy-convergent seqﬁence in X’. Then, given & > 0, there
exists an integer » such that

V) ¢ || frar—ty | S &

Therefore

VB : [for®=£) | = [ o= |- [ x| S €] x|

This shows that, for all x, the sequence ((f,(x)) converges; suppose that it -
converges to g(x). Since this convergence is uniform in the unit ball, the
function g is continuous in the unit ball, by Weierstrass’ theorem. Since g is
linear, it is bounded in the unit ball and so is continuous ifi the-whole of X,
whence g € X’. Finally, we have

Ve x] =D -2 ]| L e

Therefore | f,—g | < ¢ and (f)) is a convergent sequence.

. We say that two Banach spaces X and Y are in duality if to each xe X
and each fe Y, there corresponds a number {f, x> such that

(1) fAx+Ax"> = Kf, %) +A'{f, %,
@ M+, x> = KJ D+, %),

@) (Vxx){fix>=0 = f=0,
@ yNHLx=0 = x=0

The number {f, x) is called the scalar product of f and x.

Clearly the Banach space X and its dual X" are in duality, if, for fe X’ and
x e X we write {f, x> = f(x). Conditions (1) and (2) are easily verified;’
condition (3) follows from the definition of the function f = 0. Condition
(4) is satisfied because, if x # 0, there exists a function f& X' such that
J(x) # 0 (totality axiom).

If X is a Banach space which is in duality with itself and if

ot =] x|,

then we say that X is an (abstract) Hilbert space.
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1 B
ExaMmpLE 1. Suppose thatp > 1,4 > 1, -};+$ = landthat he ¥, g€ %,
Put

1
<hgy = j g(Hh(t) dt (Lebesgue integral)
. 0

By the Holder inequality, we have <A, &> < +® and <k, g) is a scalar pro-
duct. We can show (Riesz’ theorem) that <k, g) is a continuous linear
function in g and conversely that any continuous linear function in g can be
expressed in the form <k, g) where he & ,; moreover, the norm of hin &,
is equal to the norm of the function (&, &> in the dual of &, We can then
_ agree to identify the dual of £, with £ ). ‘

EXAMPLE 2. Letge® andwe?””. Put

S
la, gy = J g(t) da(r)  (Stieljtes-Lebesgue integral)
0 4

Then <o, g> is a scalar product and it is a continuous linear function in g;
conversely, every continuous linear function in g can be written {a, 2,
where o is a function of bounded variation. .

The norm of & in ¥ is again equal to the norm of the function <a, &> in
the dual of #. We can therefore agree to identify the dual of € with 7"

ExaMPLE 3. Suppose that x = (x") € Ly, y = (") € L,. Put
xy> =2 %"

As we have seen (§9, Chapter VIII), {x,y)> is a finite number. Thus it
determines a scalar product, and we have .

= x|
Hence L, is a Hilbert space.

Theorem of norms. Let E be a vector subspace of X and let ¢ be a continuous
linear function defined in the space E. Then there exists a linear and continuous
function f defined in X such that :

(1) f&x) = ¢() if x€E,
@ | fl=1¢]s=normof ¢in E.

Proof. Put« = | ¢ |z and consider the open ball

6= {s115 <3
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in X. Theset 4 = {x/xeE, ¢(x) = 1} is a linear Variétyin X;in GNE,
we have :

@ salx]<ag=1

Then 4 does not meet G N E and so 4 does not meet G. By Corollary 1 to
the first separation theorem (§ 3), there exists a closed plane {x/f(x) = 1}
which contains 4 and for which G is on one side.

We have ¢(x) = f(x) in 4; therefore, since JSand ¢ are linear in E, we have
¢(x) = f(x) in E. : »

Since G is an open set, on one side of the plane of equation f(x) = 1,
then, by Theorem 9, § 2, B does not meet this plane, whence

=1 = x¢G = Hx][gé,

Therefore, since f'is linear, we have
o) o | x|
in the whole space. Hence

176 | = max (£, (=)} 5 max {a [ x o | =x [} = | 5]

and so

e O]
=y ==

On the other hand, we have

If(x)l>su —I—f—(—m=a
=T =28 T=1

xekE

71 = sup

xeX

and therefore || || = « = || ¢ |5

COROLLARY. If ae X, a s 0, there existsb a continuous linear function f
such that f(a) = | a | and | f]| = 1.

Proof. Consider the linear function defined by ¢(x) = ¢(la) = A |a]on
the subspace E = {1a /1 eR}. We have

L]
A P pa

Therefore there exists a continuous linear function fsuch that | f|| = 1 and
such that f(a) = ¢(a) = | a|.
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The continuous linear mappings ® of X’ into R form a space X", the dual
of X'; we call X" the bi-dual of X. If xe X, the mapping ®, such that
®@.(f) = f(x) for all fin X', is a linear mapping in X’ satisfying

oD =1/ = =] 7]

Therefore; by Theorem 2, § 1, @, is a continuous mapping and so @, & X"
Moreover, we have

[0 = swp o)< s (Ix]-[7D =]=]

By the above corollary, there exists a function f such that IAl=1
f(x) “ x ﬂ Wwhence

[ ] = s /)] 2] =]

Therefore || @, || = H x ||; this enables us to agree to identify the element
@, of X" with the point x of X and to write X = X".

If X = X", we say that the space X is reflexive; in other words, for each
continuous lmear function ®, in X’ there exists a point x, of X such that

(Vfs fe X7) : @(f) = f(xo)-

ExampLE. The space %, is reflexive. However, the space % is not reflexive,
for : -
. %II = Vl 5= %.

Theorem 2 Ifey, €5, .. . , €, are n linearly independent vectors, there exists
a number n > 0 such that, for every n-tuple of real numbers (A%, A%, ..., 2%,

we have )
| At + ] 22+ ..+ |27 < | Aleg+Ai%e+ ...+, .

Proof. Suppose that the: theorem -is false.. Consider.an n-tuple. 4 =.
(A%, A%, ..., A") as a point of R" with the norm :

LA] =4+ ]2]+..c+ ]2

(equivalenf to the Euclidean norm)f Then

I Zﬂ»’ei | =o.

uAu =1 =1

LetAd, = (AL A%, ..., bea vector of R" such that |4 =1 ‘and such that

ECINE YaalET

The sequence whose general term 1s x(k) converges to 0.
Since the set {4 /AeR", | 1] = l} is compact in R", there exists a sub-
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sequence (4,,) of the 4, converging to a vector 4, such that o] =1;
putting x, = Aje; +AZe,+ ... +Ale,, we have ,
n
| 5tk=xo | < %] %= | e .
Hence the sequence x(k,) converges to xo and, since x, # 0, we have ob-
tained a contradiction.

COROLLARY 1. If @ Banach space has dimension n, its norm is equivalent to
the Euclidean norm of R".

Proof. Suppose that there exist » linearly indepeﬁdent vectors e, e,,..., e,
such that each point x can be written in the form

n
x =) x'e; x',x%...x"eR.
i=1

We can always suppose that | ¢; | = 1 for all i, whence
<]x‘]+[x?|+...+[x"]§n]]x”gn([x1[+lx2]+...+[x”]).

Therefore, in the sense defined in § 1, Chapter V, the norm | x | is equivalent
to the norm defined by | x* | + | x* | + ... + | " |, which is itself equivalent
to the Euclidean norm (see the example in § 1, Chapter V).

COROLLARY 2. The subspace E generated by the linearly independent vectors
€15 €24 ..., €y I8 a closed set. :

Proof. Let the points x, = ) Ale; be such that (x,) — Xo, Where x; € X;
i=1 s

we shall prove that x, € E.
Given ¢ > 0, there exists a number # such that

| Adsr—22 l = H:H"‘l: I + l&%-&:k"'}:! +.o+ | k= Ay |
= U ” Xpag ™ X ” Se

Therefore the sequence (1) in R converges to a point A}, Since X is a
topological vector space, we have

) = (o) + 3 dhe
and therefore
Xo = Ajes+A3e,+ ... + 1%, e E.
Theorem 3. If the ball B= {x /| x| < 1} in a Banach space X is a
compact set, the X has finite dimension.

Proof. Suppose that X is not generated by a finite number of vectors. Let
X1 € B be such.that x; % 0. The vector subspace E; = s[x,] is strictly
contained in X and so there exists a point y, ¢ E,; since E, is closed (by the
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Corollafy 2 to Theorem 2), the distance 6(y;, E;) from y, to the set E, is
such that '
80y, Ey) = inf | pr=z| =8>0.
Zeky

Let z, be a;point of E, such that | y; —z; | £ 26 and put
I yi=z |
We have x, € B and, for all x in E;, we have

L
A

With the linear variety E, = s[x,, x,] in place of E;, we can determine a
point x; in a similar manner, with

Xg =

. 1, 1
[x—x| = |i—z0—(] .V1fz1 hx| z % z’f}f‘ lyi—z| = 5

- 1 1
%368, % # 0, | xs—x | 25, | %s—% | 2 5.

Continuing this process, we determine the points of a sequence (x,); by
Cauchy’s criterion, this sequence has no point of accumulation. But x,e B
and B is compact; therefore we have a contradiction.

§ 7. Banach spaces: weak convergence

‘We now considér a sequence (f1, fa, - + .) = (f,) in the dual X’ of a Banach

space X. We say that such a sequence converges strongly if it converges in
the sense of the norm | ||, and we write () - g.

On the other hand, we say that.a sequence (f,) converges weakly if; for-all’
x e X, the sequence:(f,(x)) is convergent in R.. Lét g(x) be the limit of . -

- (fu(x)); the function g so defined is called the weak limit of (f,) and we write

(f)—~se _ o
We remark that weak convergence to g = 0 can also be defined, in a

similar manner, by the topology of a locally convex space; it is sufficient to

take the sets of the form : '

NE={f/feX’; |fx)| S & forall xeE}
as a base of ﬂeighbourho‘ods, where ¢ > 0 and E is a finite subset of X.

OsGoop’s LEMMA. . If g4, 85, 83, . . . are functi’ons defined on an open set G

of X, if ] 8 | s lower semi-continuous and if the sequence (g,,(x)) converges for
all x in G, there exists a ball B = G in which the [ 2. ] areuniformly bounded:
that is, 5

) (V59 : | )| < .
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Proof. Suppose that the result is not true, Let a4, 05, ... be numbers
which increase indefinitely, let ¢, &,, . . . be numbers which tend to 0 and
let my, m,, ... be integers which increase indefinitely. Let B, be a ball
contained in G; there exists an integer i, = m,, a point x; € B, such that

lgi,(xs.) l 2 oy+1.
Let A; be a number such that 1, < &;, B, (x;) = By and
x G B).;(xl) = ‘ gi1(x) l g 0y

(such a number 1, exists because of the lower semi-continuity of g;,(x)).
By hypothesis, there exists a number i, = m, and a point x, € B, (x;)
such that

[giz(xl) I g d2+1.
Let 1, be a number such that 4, £ &, B;,(x,) < B, (x,) and.
xeBu(x) = |g,x)]|z2d.

In a similar manner, we can determine a number i; = m; and a ball B, (x3)
such that

x€ B (x3) = lgia(x)l Z 03,

. Continuing in this way, we obtain a sequence x;,.X,, X3, . . . ‘This sequence
converges, because, if ¢ > 0, there exists a number » such that

(Vk) : Il Xnake™ Xn H se

We therefore have (x,) — X,; since the ball B, (x,) is a complete set (it is a
closed set contained in a complete space) and since (x4,) = X, and
Xp+n € By, (1), we have x, € B, (x;) for all k. Therefore at the point x,, the
" sequence (g,(x,)) does not converge. This is contrary to hypothesis; there-
fore the theorem is proved.

Theorem of Osgood and Banach. If (f;) is a sequence in X' and for each
point x of an open set G we have ( 1)) = folx), then the f, are bounded in
norm.

Proof. By the lemma, there exists a number « and a ball Bl(x(;) such that

~ (V7)) (Vx5 x€ By(x0)) : | £u(® | g o
Therefore, if | y | < 1, we have -
Xo \
A(3)

)

2o
[4 0= s |10V = 7

4

IA

A | =

s
AT A

and so
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COROLLARY. If(f,) is a weakly convergent sequence, the f, are bounded in
norm: that is, : :

| 4| £ «for all n.

It is useful to extend the idea of weak cohvergence of a sequence to any
filtered family; the above corollary enables us to make this generalisation.

Let X be a Banach space and X" its dual. Let (f}) = (f;/iel,#) bea
family together with a filter base & on a set I (cf. § 4, Chapter IV). The filter
sections, namely the subsets of I belonging to the family %, will be denoted
by S, S’ etc. We say that (f;) converges weakly if v

(1) the f; are partially bounded by a number «: that is,

@38):ieS = |fi]2w

(2) for all x, the family (f(x)) is convergent in R.

Let g(x) be the limit in R of the family (f(x)). The function g so defined
is called the weak limit of (f;). We also say that (f;) converges weakly to g
and we write (f) — g.

Theorem 1 (Banach—Steinhaus). If (f) —~ g, then g € X' and also
HERE:(AD!

- Proof. The function g is linear, because

g(Ax) = lim (fi(Ax)) = A lim (f(x)),
glxy+ x,) = lim (fi(xy) +£i(x;)) = lim (ﬁ(x1))+ lim (fi(xz))- ,

Let o = Lim (|| ;| ) be the smallest of the cluster points of the family
(| f:])- Since the f; are partially bounded, & < +oc0; moreover, there
exists a sub-family (f7) such that '

Arih-e
BRI P R 2 B
Therefore, taking limits, we get

|509] s | x|
.This shows that g is continuous and that
lgll < «=Lim(]A]D
Theorem 2. If (f}) — fo, we also have (f}) — fo.

We have.

Proof. Supposé that ¢ > 0; there exists a section S, such that
iESO = “f‘l*fﬁ ” éss

Hﬁﬂéﬂﬁfﬁﬂ+ﬂﬁuge+nﬁw>

whence
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Therefore the f, are partially bounded. Furthermore, if x e X, we have .
[f@—~f@ | 1 fifll - Ix] se ] =]
whenever i e Sp. Therefore (fi(x)) converges to f5(x) and so (f}) — fo.
Theorem 3. If (f}) = fo, (fD) = Jo, then (fi+17) = fo+fs.
Proof. Let o, o, S, S’ be such that .

ieS _.oc,
iesS . f

If S, is a section contained in Sn S’, we have _
ieSy = |fA+fi] = A+ i) S ot

and so the (f;+f"%) are partially bounded.
Also, for all x, we have

FAG = 1ol +753) = Lo+ 6160,
Theorem 4. If (f ) —*fo, () = xo,. then (£i(x)) = foloko).
Proof There e)usts a sectlon So such that

< : .ux—xon 2‘;, ECRTOIET S

whenever i € Sp. Hence e »
i) | 5 |~ | + o)~ | 5
| |4l II Xi=%o | + | filxo)~folxo) | < “4%‘4‘; .,
whenever i € Sp.

We say that a subset F’ of X’ is weakly closed if whenever ( D—=f and
fi e F' for all i, we have f; € F'. Clearly if ' is weakly closed, it is also closed,

for
[(Dah o [Doh o ger

We say that a subset K’ of X’ is weakly compact if, given any filtered
- family in K, there exists a sub-family converging weakly to an element of
K’. Clearly a compact set K’ is also weakly compact.

Alaoglu’s theorem. The unit sphere B' = {f|fe X', | f| < 1} is weakly
compact.

Proof. Consider the interval I =[ — || x|, + | x| ] in R, with the
Euclidean topology; the product space ¥ = [] I, is then a compact topo-

xeX

logical space, by Tychonoff’s theorem (§ 9, Chapter IV). . Wlth feB, we
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associate the point y, = (f(x)/xe€ X) in Y. The set ¥, = {yr|feB}is
closed in ¥, for

U= {(f(x)) — g(x),
fieB’ IAl =1

= Yo =Yy = {
{863' el cLm(|n] =1

Therefore Y, is compact, because it is a closed set contained in'a compact ..
space. Hence every filtered family in B’ contains a sub-famﬂy which is
weakly convergent to a point of B'.
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Bi-dual, 257 .
Binary relation,.28
Birkhoff, 15, 182
Bistochastic matrix, 180 -
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weakly, 262
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Complete lattice, 15

space, 90
Complex function, 20
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Concave function, 189
quasi, 207
Cone, 14, 140
convex, 141
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Cartesian product, 3
product of mappings, 22
sum, 3 .
Cauchy-Schwartz inequality, 159

unpointed, 209
Conical closure, 14, 144
Connected, 71 '

component, 98
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locally, 99
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Constant mapping, 23
Continuous at a point, 56
L*., 52
lower semi-, 74, 109
mapping, 48, 56, 109
uniformly, 104
upper semi-, 74, 109

Continuum, generalised hypothesis of, 35

infinite, 30, 31
infinite, locally, 31
power of, 30
Contracting, -, 104
Convergence, 49, 58, 59, 60, 119
Cauchy, 88
simple, 50, 105
strong, 259
uniform, 50, 105
weak, 261
Convex closure, 144
cone, 141
conical closure, 144
cover, 144
function, 188
function, generalised, 189
function, strictly, 189
locally, 249
polyhedron, 169
quasi, 207
regularly, 245
set, 141
Correspondence, one-one, 2
Countable, 30, 31 :
locally, 31
Covering, 9
Curve, 101
length of, 75
parametrised, 101
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simple, 102
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Dense, everywhere, 242
subset, 93

Denumerable, 30, 31
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Disjoint sets, 4

INDEX

Distance, 45

between curves, 75

from a point to a set, 83

function, 45. .
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Domain, 20 .
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Edge, 169
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open set, 78
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topological, 56
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metrics, 82
Buclidean line, 1
metric, 45
norm, 158
plane, 3 .
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Everywhere dense, 242

Face, 169
elementary, 171
Faces, opposite, 170
Family, bi-total, 216
collective, 5§
filtered, 59, 119
fundamental, 93
Moore-Smith, 60
of elements, 5
of sets, 5
selective, 116
total, 216
ultra-filtered, 59
Farkas, 164
Filter base, 9
Filtered family, 59, 119
Finer, in the exterior sense, 6
in the interior sense, 6
topology, 53
Finite, 30, 31
intersection axiom, 69
locally, 31
Form, linear, 133
Fréchet, 82, 194
base, 10
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" Frontal point, 149 Identity, 23
Frontier?SS ’ Image, 20,21
Full get, 1 Increasing fung:tlon, 191
Function, characteristic, 5 Independent, linearly, 146
complex, 20 A Index set, 5
. concave, 189 ] Inequality, Cauchy-Schwartz, 159
‘convex, 188 Holder, 214
differentiable, 195 Mjnkowskx, 215
distance, 45 ‘ triangular, 45
generalised convex, 189 . Inﬁ:qum, 37
generalised numerical,.20 Inﬁmte., 30, 31
increasing, 191 continuum, 30, 31
Lagrange, 226 Injective, 20
linear affine, 189, . Interior of a set, 46, 55
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numerical, 20 point, 463 55
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- sub-®, 215 ’ Intersecting sets, 4
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family, 93 of mappings, 22
theorem, 164
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. ‘ linear, 141
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Grapl;i-, 27 Kelley, 59
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Krein, 167, 245, 248
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Kuhmn, 226 . ‘
Kuratowski, 109, 118, 172
Ky Fan, 251
Hahn, 103, 157 S
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Half-space, 140 . L*-continuous, 52
Haloed, 14 . ' Lagrange function, 226
closure, 14 : problem, 227
Hardy, 184 Lattice, 15
Hausdorff, 82 ) complete, 15
metric, 126 . distributive, 16
.space, 63 ‘  modular, 16
Heine, 104 - : Latticial ordering, 37
Helly, 165 : Lebesgue, 66, 95
Hilbert, 101 ) Length of a curve, 75
_space, 254 : Limit axiom, 69
space, real, 87 . i lower, 119
Holder inequality, 214 ; point, 58, 59, 118
Homeomorphism, 56 - principal, 18, 19, 119
Homothety, 243 - upper, 119

Hopf, 53, 82 weak, 259, 261
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Lindeldf, 94
Line, Euclidean, 1
oriented, 1, 2
privileged, 148
real, 1
straight, 136, 139
Linear affine function, 189
closure, 144
form, 133
interval, 141
mapping, 133
segment, 141
variety, 16, 138
Linearly dependent, 146
independent, 146
Lipschitz, 105
Littlewood, 184
Local property, 63
Locally connected, 99
continuum infinite, 31
convex, 249
countable, 31
denumerable, 31
finite, 31
Lower inverse, 24
limit, 119
semi-continuous, 74, 109

Majorant, 36
Mapping, 20
-closed, 111
constant, 23 .
continuous, 48, 56, 109
"linear, 133
order-preserving, 38
single-valued, 20

Mappings, Cartesian product of, 22

intersection of, 22

union of, 22
Matrices, product of, 179
Matrix, 177

bistochastic, 180

multi-valued, 179

permutation, 180

transposed, 179

unit, 179
Maximal element, 41
Maximum, 36

global, 228

relative, 228
Mazurkiewicz, 103, 172
Metric, 45, 82

Euclidean, 45

generalised, 82

Hausdorff, 126

space, 45

space, separable, 93
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Minimax theorem, 204, 210
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Minkowski inequality, 215
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Mobius band, 57
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Moore, 12

Moore-Smith family, 60

Multiple point, 101

Multi-valued function, 20
matrix, 179

Nagy, 167
Nash, 210
Neighbourhood, 55
arbitrarily small, 63
open, 55, 65
Neumann, von, 182, 204
Neutral element, 129
Newman, 96
Nikaido, 210
Norm, 153, 159, 231
Euclidean, 158
proper, 153
semi-, 153
Normal space, 65
Normed space, 231
Numerical function, 20

One-one correspondence, 2
Open, 12, 46 :
neighbourhood, 55, 65
set, 53
set, elementary, 78
simplex, 170
Opposite faces, 170
Ordered set, 36
Ordering, 28
latticial, 37
partial, 28
total, 37
Order-preserving mapping, 38
Ordinal number, 39
Ore, 15
Oriented line, 1, 2
Orthogonal, 158
Osgood, 259, 260
Ostrowski, 221

Parallel subspace, 139

Parametrisation, 101

Partial derivative, 195
ordering, 28
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Partition, 8
Path, 27
Permutation matrix, 180
Plane, 139

Euclidean, 3

of support, 145, 166, 248

through O, 137
Polya, 184
Polyhedron, convex, 169
Power,:30

of the continuum, 30,
Pre-ordering, 287
Principal limit, 18, 19, 119
Privileged line, 148
Product, Cartesian, 3
- composition, 23

of sets, 7

scalar, 158, 254

topological, 78
Profile, 149
-Projection, 77

radial, 154

Quantifier, 2

Quasi concave, 207 -
convex, 207

Quasi-separated, 64

Radial projection, 154
Range, 20 -
‘Real Hilbert gpace, 87
line, 1 -
Recuﬁable curve, 102
. Regular space, 65
Regularly convex, 245 .
Relative maximum,; 228 .
" Representative.curve, 75 .
of 4 gauge, 152
Riesz, 255 .
Row-vector, 177

Scalar multiplication, 129
product, 158, 254
Schauder, 252
Schur, 219
Schwartz, 250.
S-concave, 219
S-convex, 219
Section, 36
Segment, 2
linear, 141
Selective family, 116
Semi-bounded, 149
Semi-continuous, lower, 74, 109
upper, 74; 109
Semi-norm, 153
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Serni-single-valued, 20
Separable metric space, 93
Separated space, 63
Separation by a plane, 154, 161
theorems, 163, 244, 246, 251
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Cauchy, 88
Set 1
bounded 83
convex, 141
derived, 58
elementary open, 78
empty, 1
full, 1
index, 5
open, 53
ordered, 36
starred, 14, 237
symmetric, 149, 237
Shapley, 204
Similar, 39
Simple closed curve, 102
convergence, 50, 105
curve, 102
Simplex, 170
open, 170
Smgle-va.lued function, 20 .
mapping, 20 i
Sion, 210 .
Smulian, 245, 247
Space, Banach, 252
dual, 234
Euclidean, of n dimensions, 7
Hausdorff, 63
Hilbert, 254 -
metric, 45
normal, 65.
normed 231
of dlstnbutlons, 250
real Hilbert, 87
regular, 65
separated, 63
topological, 53
" topological vector, 236
vector, 130
Spatial closure, 144
Sperner, 171, 210
Sphere, 46
Stable subset, 26
Star-like, 14
Starred closure, 14 .
set, 14, 237 ' ;
Steinhaus, 261 :
Stolz, 194
Straight line, 136, 139 ,
Strictly convex function, 189
Strong convergence, 259
topology, 236
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Sub-® function, 215
Sub-base, 10
Sub-covering, 9
Sub-partition, 8
Sub-sequence, 49
Subset, 1
dense, 93
stable, 26
Subspace, parallel, 139
topological, 63
vector, 136 .
Subspaces, supplementary, 136

‘Sum, Cartesian, 3

topological, 78
Summable, 60
Supplementary subspaces, 136
Support, 249

plane of, 145, 166, 248
Supremum, 37
Symmetric convex set, 149, 237

Topological closure, 54
equivalence, 56
product, 78
space, 53
subspace, 63
sum, 78
vector space, 236

Topology, 53
coarser, 53
discrete, 53
finer, 53
generated by a family, 53
strong, 236
weak, 237

Torus, Buclidean, 3

Total family, 216
ordering, 37
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Totally bounded, 90
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Transposed matrix, 179
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of mappings, 22
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limit, 119
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Variation of a function, 253
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row-, 177 '
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