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PREFACE

The concept of a continuous, or what is the same thing, topological group,
arose in mathematics from the study of groups of continuous transformations.
A group of continuous transformations, e.g. geometric transformations, con-
stitutes in a natural way a topological manifold. It appeared later that for
the treatment of the greater part of the problems arising in this connection it is
not necessary to consider a group as a group of transformations, but merely to
study the group intrinsically, remembering however that there is defined in it
an operation of passage to a limit. Thus arose a new mathematical concept—
topological group.

From a purely logical point of view the topological group is simply a com-
bination of two fundamental mathematical concepts, group and topological
space. Therefore the axiomatization of the concept of topological group is a
natural procedure. In considering groups we study in purest form the alge-
braic operation of multiplication, while in considering topological spaces we
investigate in just as pure a form the operation of passage to a limit. Since
both these operations are among the fundamental operations of mathematics,
they often occur together. The topological group is precisely that concept in
which these two operations are united and interrelated. From the construc-
tive point of view the axiomatization of topological groups is not interesting
since in substance it is the same as for abstract groups. The first steps of the
theory of topological groups are likewise devoid of specific interest. We devote
the third chapter of this book to the exposition of this almost trivial part of
the theory. In the first two chapters we have collected such information about
groups and abstract spaces as will be needed throughout the book.

Once we possess the axiomatization and general theory of topological groups
we come to a more interesting problem: to give a constructive development of
this new abstract concept, i.e. to correlate it with older and more concrete con-
cepts. In doing this new light is thrown from the new and more general
point of view on the old concrete concepts, and at the same time the new ab-
stract concept becomes more concrete. This is where the theory of representa-
tions, given in the fourth chapter of the book, plays a leading part. Indeed
this theory enables us to study in detail the structure of compact topological
groups and commutative ones. This is done in the seventh and fifth chapters.

One of the concrete concepts of the theory of topological groups is the con-
cept of Lie group. In fact the theory of topological groups first arose in the
theory of Lie groups. As is usual in relatively older theories, the theory of Lie
groups left unsolved some of its fundamental problems. We devote the sixth
chapter of this book to the solution of these problems. We also give there the
required preliminary material for the seventh chapter since we investigate
compact topological groups by means of their relation to Lie groups. The lat-
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vi PREFACE

ter are investigated in greater detail in the ninth chapter where we give the
foundation of the thecory of Lie groups and formulate without proof certain
results whose proofs are too complicated to be included. In the eighth chapter
we define the concept of a universal covering group, which establishes a link
between local properties of topological groups and their properties in the large.

Almost every section of this book ends in examples of various kinds—nearly
trivial illustrations of the theoretical material on the one hand and on the other
short proofs of theorems which are of interest in themselves.

The book need not be read in order. The interdependence of chapters is ex-
plained by the plan at the end of the table of contents.

The book is intended for the reader with rather modest mathematical prepa-
ration. On the whole we merely presuppose the knowledge of quite elementary
mathematical material such as analytic geometry, theory of matrices, theory of
ordinary differential equations, etc. Besides this elementary information, the
book makes use of the following less elementary material:

1) The theory of integral equations, needed for Chapter IV. As a refer-
ence we may recommend W. V. Lovitt’s Linear Integral Equations, New York,
McGraw-Hill, 1924,

2) The theory of partial differential equations, in particular the conditions
for solvability of equations in total differentials, this being needed for Chapter
IX. As a reference we may recommend the chapter on this subject in de la
Vallée-Poussin’s Cours d’ Analyse infinitésimale, vol. 2.

All necessary material along the lines just mentioned will be precisely formu-
lated in the book in the form of theorems given without proof.

Numbers written in square brackets throughout the book refer to the biblio-
graphical list at the end.

L. PONTRJAGIN

The V. A. Stekloff Mathemalical Institute

of the Academy of Sciences of the U.S.S.K.
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BASIC NOTATION

The notion of set or aggregate is fundamental in the exposition of this book,
and it is assumed as known. We shall give here some definitions connected
with the concept of set and with elementary operations on sets.

A) The notation a € M means that the element a belongs to the set M. If
the set M is finite or countable, it will sometimes be given simply by enumer-
ating its constituent elements. In symbols we would write M = ay, a3, - - -,
@y, - - -, which means that the set M is composed of the elements ay, as, - - -,
any - -

B) The notation M = N implies that M and N coincide.

C) The notation M € N or N o M means that every element of the set M
is contained in the set N, i.e., that the set M is a subset of the set N. Here the
possibility of the equality of M and N is not excluded.

D) M n N denotes the intersection of the sets M and N, i.e. the set com-
posed of all the elements which belong simultaneously to both M and N.

E) M u N denotes the sum of the sets M and N, i.e. the set composed of all
elements which belong to at least one of the sets M and N.

F) M — N denotes the difference between the set M and the set N, i.e. the
set composed of all the elements of M which are not contained in N. Defined
in this way the operation of subtraction is always possible, whether the set N
is a subset of the set M or not. If M c N the result of subtraction is the null
set, 1.e. the set which contains no elements.

G) Let M and N be two sets. Suppose that to each element z of the set M
there corresponds a definite element y = f(x) of the set N. We shall then say
that there exists a mapping f of the set M in the set N. The element y is
called the vmage of the element x under the mapping f, while the element z is
the inverse image or one of the inverse images of the element y.

We say that fis a mapping of the set M on the set N if each element y of the
set N has at least one inverse image r under the mapping f, i.e. for each y there
is at least one z such that y = f(z).

If A is a subset of the set M,i.e. A ¢ M, then by f(A) we shall designate the
set of all those elements of N which are images of the elements of A, and we
shall call F(A) the image of the set A. If B ¢ N, we shall designate by
f~YU(B) the set of all those elements of M which go over into the set B under the
mapping f. We shall call the set f~1(B) the complete tnverse image of the set B
under the mapping f.

The mapping f of the set M on the set N is called one-to-one if every element
of the set N has a unique inverse image under the mapping f. If fis one-to-one
the equation y = f(z) can be solved for r, i.e. given y we can determine z
uniquely; we express the solution as @ = f~1(y). The mapping f~! is called
the inverse of f.
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CHAPTER 1

ABSTRACT GROUPS

The theory of abstract groups investigates an algebraic operation in its pur-
est form. The elements which compose the group are considered only from
the point of view of the group operation; all other aspects of these elements are
laid aside.

The present chapter is dedicated to the exposition of the fundamental con-
cepts of the theory of abstract groups.

1. The Concept of a Group

DerinITION 1. A set G of elements is called a group if the following condi-
tions, known as group axioms, are satisfied:

1) There exists an operation in @ which associates with each pair of elements
a, b of @ a third element ¢ of G. This operation is usually called multiplication
and the element c is called the product of a and b, written ¢ = ab. (The prod-
uct ab may depend on the order of the factors a and b; ab, in general is not equal
to ba.)

2) The multiplication is associative, i.e.,if a, b, and c are any three elements of
G, then (ab)c = a(bc).

3) The group G contains a right identity, which is the same for all elements
of the group, i.e., an element ¢ such that ae = a for every element a of G.

4) For each element a of G there exists a right inverse element, i.e., an element
a~! such that aa=! = e.

The set of elements of the group G can be either finite or infinite. If the
set ( is finite, then the group itself is also called finite, and the number of ele-
ments of the group G is called the order of the group . Otherwise the group G
is called tnfinite.

If besides the four axioms given above the group also satisfies the commuta-
tive law, i.e., if for any two elements a and b of @ it is true that

(1) ab = ba,

then the group is called commutative or abelian.

In abelian groups the multiplicative notation is often replaced by additive
notation, i.e., instead of the product ab we write the sum a + b, in which case
the group operation is called addition instead of multiplication. The identity e
is then called zero and denoted by 0, and the element a~!, the inverse of a, is
called the negative of a and denoted by —a.

A) Since by axiom 2) (ab)c = a(bc) we designate this element simply by abc.
In exactly the same way a product of four elements, say ((ab)c)d, can be written
simply as abced, for, as can be seen easily, this product does not depend on the

3



4 ABSTRACT GROUPS [cH. 1

distribution of parentheses. The same rule holds for the product of any num-
ber of factors.

B) Aright identity e of a group is likewise a left identity)i.e., ea = a for every
element a. A right inverse element a—! of the element a is also a left inverse
element,i.e.,a~la = e. An element inverse to the element a~! coincides with
the element q, i.e., (a!)~! = a.

We shall now prove B). It follows from axioms 3) and 4) that a~laa! = a~%.
Multiplying this equation on the right by the right inverse of the element a=1,
we get a~la = ¢, i.e., the right inverse is a left inverse. This also shows that
the element inverse to a='is a. Moreover we see that ea = aa~la = ae = a,
i.e., a right identity is also a left identity.

C) In the group @ each of the equations

(2) ar = b
and
3) ya=b

has a unique solution with respect to the unknowns r and y. From this fol-
lows, in particular, the uniqueness of the identity and of the inverse element,
since ¢ 1s the solution of the equation ax = a, and the element a—!is the solution
of ar = e.

To establish the solvability of (2) and (3) it is sufficient to point out that the
element a='b is a solution of (2), while the element ba~! satisfies (3). It isobvi-
ous that the above solutions are unique, for multiplying (2) on the left by a™!
we get = a~'b, while multiplying (3) on the right by a~! we obtain y = ba~%.

D) After we have proved the uniqueness of the identity and of the inverse
element (see C)), it is natural to introduce the notations of elementary algebra.
If m is a natural number, then a™*! is determined by induction from the equa-
tion ™! = gma, with @’ = a. We determine negative powers of a by defining
a™ = (a~ '), whilea® = e. If p and ¢ are two integers, it is easy to show that
the ordinary rules of algebra hold, namely: ara? = a?+7, (a?)? = a??. In the
additive notation we write na for a”.

E) We shall say that an element a of a group is of finite order if there exists a
natural number m such that a» = e. Otherwise we ascribe to the element a
an infinite or zero order, or we say that the element a is free.

If the element a is of finite order, then we take for the numerical value of this
order the least natural number r for which a” = e. It turns out that if a® = e
for an integer n, then n is divisible by 7. To prove this assertion let us divide n
by r,i.e., write n in the form n = pr + ¢, where ¢ is the remainder on division,
and

4) 0<q<m.

Then we have e = a® = a?*¢ = (a")?a? = a%. Hence a¢ = e and, therefore,
from the inequality (4), ¢ = 0, i.e., n is divisible by r.
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ExampLe 1. Let M be a set. We shall call any one-to-one mapping of the
set M onto itself a transformation of the set M. 1If sis a transformation of M,
then every element a of M is associated with some definite element s(a) of M.
The result of the transformation s as applied to a is also written sa, s(a) = sa.

The aggregate G of all the transformations of the set M forms a group. Lets
and ¢ be two transformations of M. We shall define their product » = st by
means of the condition r(a) = s(t(a)) for every element a of M. Itis easy to
see that we have so determined » that it is a one-to-one mapping of M onto it-
self.

The law of multiplication of transformations given above is associative since
(rs)t = r(st). To prove this we operate with both sides of this equation on an
arbitrary element a of M:

(r9)t(a) = (rs)(t(a)) = r(s(t(a))),
r(st)(a) = r(st(a)) = r(s(t(a))),

i.e., in both cases we get the same result.

The identity of the group G of transformations of the set M is the identity
transformation, i.e., a transformation ¢ under which every element a of M is
transformed into itself, e(a) = a. The inverse of the transformation s is the
transformation s—! which transforms every element s(a) of the set M into a.
Since the transformation s is a one-to-one mapping, it follows-that every ele-
ment of M can be written in the form s(a) and therefore the transformation s
is determined for all the elements of the set M.

Hence all the axioms of a group are satisfied by the set G of transformations.

Let H be an aggregate of transformations of the set M which need not con-
tain all the transformations of M. H forms a group by virtue of the same law
of multiplication which operates in G if /1 contains the product of any two
transformations of H and also contains the inverse of every transformation
of H.

ExaMpLE 2. Let G be the totality of all n-rowed square matrices [Isi]| whose
elements are real numbers and whose determinant is different from zero. We
define as the product of two matrices ||s| and ||¢]| the matrix ||r{]], where

7‘; = Z Q;ti
k=1

The group G defined in this way can be regarded as the group of all linear
transformations of the n-dimensional Euclidean space R which leave fixed a
certain point 0. Let the point 0 be the origin of our coordinate system, and
let a be any point of R* with coordinates a’, 7 = 1,2, - - -, n. Denote by s(a)
the point whose coordinates are b* = D ok.isiak,i=1,2,- - -, n. We thus ob-
tain a cne-to-one mapping s of the space R* into itself. In fact if we regard the
last set of equalities as a system of linear equations with respect to a*, then this
system has a unique solution since the determinant | si| =0.
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It is easily seen that if s and ¢ are two transformations of the space R™ de-
termined by the matrices ||s{| and ||¢]], then the product st = ris determined
by the matrix 7| which is the product of the matrices ||s{| and ||¢]|. ~ We have
proved in example 1 that the totality of transformations obeys the associative
law. Hence, the associative law holds in the totality of matrices discussed
above.

The identity of the group of matrices is the unit matrix |[6f[[, 6 = 1, 6} = 0,
fori # j. Inorder to find the matrix ||#]| inverse to the matrix ||s]], it is suffi-
cient to solve the system of equations ) ;_sitf = ). Since the determinant
]s},l # 0, this system of equations has a solution.

2. Subgroup. Normal Subgroup. Factor Group

In what follows we shall frequently have to consider different subsets of a
group, and several operations on these subsets. We give here a notation for
these operations.

A) If A and B are two subsets of a group @, we denote by AB the subset
composed of all the elements of the form zy, where x ¢ A, y ¢ B. We denote
by A~! the subset composed of all the elements of the form z~!, where z € A.
For a natural number m we determine the subset A™t! by induction from
Am™tl = Am4 with A!' = A. The subset A—™ is determined by letting
A" = (A~Y)m, while the subset A° = {e}. The notation above enables
us to form the product of any number of subsets raised to arbitrary integral
powers. In what follows we shall sometimes fail to distinguish between a set
containing a single element, and that element itself. It therefore makes sense
to write Ab, where A ¢ @, be G. We note that if 4 is not the null set, then

(1) AG=GA =(
(2) Gl=@
(3) Ae = ed = A.

Using the additive notation we would write 4 4+ B for AB and nA for A"
Given a group G we can construct from it other groups. The easiest con-
struction is the following:
DEerFINITION 2. A set H of elements of a group @ is called a subgroup of G
if H forms a group under the same law of multiplication which operates in G.
B) In order that the subset H of the group G be a subgroup it is necessary
and sufficient that one of the two following conditions be fulfilled:
a) If H contains any two elements a and b, it must contain the element ab.
Making use of the notation in A) this condition can be written in the form

(4) HH'cH.

b) If H contains any two elements a and b, it must contain the element ab
and the element a~!. In symbols this condition can be written

(5) H:cH




§2] SUBGROUP. FACTOR GROUP 7

and
(6) H-tcH.

The necessity of the above conditions is obvious. We shall now prove their
sufficiency. If a € H, then by a) we have aa—! = e e H. Further since e ¢ H
and a £ H it follows from condition a) that ea=! = a~'e H. If a and b are two
elements of H, then b=! ¢ H, and therefore from a) we have ab = a(b~)~' ¢ H.
Therefore, if the condition a) is satisfied, H is a subgroup. The proof of the
sufficiency of b) is quite analogous.

Every group contains as one of its subgroups the set consisting of all integral
powers of a given element. A group which consists exclusively of integral
powers of one of its elements is called cyclic. Infinite cyclic groups are called
free groups; all their elements (with the exception of the identity) are free
(see §1, E)).

In construeting new concepts modern mathematics often makes use of a
relation of equivalence, which can be formulated as follows:

C) We say that a relation of equivalence has been established in a set M if
it is possible to assert whether any two elements a, b of M are equivalent or not,
in symbols @ ~ b or a not ~ b, where the relation of equivalence is

a) reflexive:a ~ a;

b) symmetric: If @ ~ b, then b ~ a,

¢) transitive: If a ~ b and b ~ ¢, then a ~ c.

If the above conditions hold, then the relation of equivalence established in
M automatically divides M into disjoint classes of equivalent elements.

Let us now apply this general concept of equivalence to groups.

D) Let G be a group and H a subgroup. If 2 and b are two elements of G,
then we shall say that a ~ b if and only if ab=' e H. It turns out that this
relation of equivalence established in @ satisfies the conditions of Definition C),
and therefore G is divided into classes of equivalent elements. FEach of the
classes thus obtained is called a right coset of the subgroup H relative to the
group G. It turns out that if 4 is a right coset of the subgroup H andif a ¢ 4,
then A = Ha (see §2, A)); moreover, every subset of the form Hb is a right
coset. Since H = He, the subgroup H itself is one of the cosets.

We shall show first of all that the relation of equivalence given in D) satisfies
the conditions of definition C).

First a ~ a, since aa~! = ee H. If a ~ b, then ab~' ¢ H; hence (ab—!)-!
=ba'eH,sothat b~a. If a~bandb~c, then ab~'e H and bc~' e H;
hence ac=! = ab='bc~! ¢ H, that is a ~ ¢. Thus all three conditions are satis-
fied.

We show further that if 4 is any right coset of the subgroup H andif a € 4,
then 4 = Ha. Infact,letz e A;thenza=!e H, and hence z € Ha. If y € Ha,
then ya=! ¢ H, and hence y ¢ A.

Finally we prove that every set Hb is a coset. In fact, the element b be-

longs to one of the cosets, say B, and, therefore, from what we have just proved,
B = Hb.
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Hence D) is established.

E) Besides the definition of equivalence given in D), we can give another
entirely analogous definition by saying that a ~ bif and only if a='b ¢ H. The
classes obtained in this way are called left cosets of the subgroup H. Just asin
D), it can be proved that every left coset can be written in the form aH, and
conversely every subset of the form bH is a left coset.

We shall now ask under what conditions the right and left cosets of the sub-
group H coincide. If A is both a right and a left coset of H, then A = Ha = aH,
where a € A. 1If every right coset is also a left coset, then Ha = aH for every
a € G. Multiplying the last relation on the left by a=! we get a='Ha = H.
Subgroups which possess this property are characterized by the following prop-
erty.

DeriniTiON 3. A subgroup N of a group G is called an invariant or normal
subgroup of G if for every n ¢ N and every a € G we have a—'na € N, or what is
the same, a='Na c N for every a € G.

If N is a normal subgroup,i.e.,a*Na c N forevery a € G, then a='Na = N
for every a ¢ G. Infact, let a = b~!; we then have bNb~! ¢ N. Multiplying
this relation on the left by b= and on the right by b we get N ¢ b—'Nb. But
since a was arbitrary, b is an arbitrary element of G, and therefore b='Nb = N
for an arbitrary b € (. - The last relation can be written

) Nb = bN.

F) In order that the right and left cosets of the subgroup N coincide it is
necessary and sufficient that N be a normal subgroup.

The necessity of this condition was shown above. We shall now prove the
sufficiency. If A is a right coset of N, then A = Na, but Na = aN (see (7)),
and therefore A is a left coset.

The following definition gives a second method for the construction of groups
from a given group G.

DeriniTiOoN 4. Let N be a normal subgroup of the group G, and let A and B
be two cosets of N, A = Na, B = Nb. We form the product AB (see A)),
and obtain AB = NaNb = NNab = Nab, that is, the product AB is also a
coset of N. Thus we have established a law of multiplication in the totality
of cosets, and, as we shall show presently, this multiplication satisfies the group
axioms. The set of all cosets thus obtained is called the factor group of G by
the normal subgroup N and is denoted by G/N.

We shall show that the axioms 2), 3), and 4) of Definition 1 are satisfied in
G/N. '

Associativity is obvious, as it holds in G. The iderntity of the group G/N
is N. For if aN is a coset, then (aN)N = aN. The inverse of Na is a='N,
for (Na)(a='N) = N.

G) Every group G has at least two normal subgroups, namely the subgroup
consisting only of the identity, and the subgroup which coincides with the
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group G. If G has no normal subgroups other than these two trivial ones, G is
called a simple group.

ExampPLE 3. Let G be the group of all transformations of the set M (see
Example 1), and let a be an element of M. Let us denote by H the totality
of all transformations which leave a fixed. It is easy to see that H is a sub-
group of G.

If M contains more than two elements, then H is not a normal subgroup of G.
In the first place H # G. Infact, let b ¢ M, where b = a. We shall now de-
termine the transformation ¢ by means of the conditions t(a) = b and t(b) = a,
whilet(r) = xif x % aand z # b. Further let b’ be an element of M different
from a and b. Such an element exists since M is supposed to contain more than
two elements. We now determine a transformation s by prescribing s(b) = b/,
s(b’) = b;for all other elements, sis the identity. Then s(a) = a, thatisse H.
Consider now t~'st(a): we have t='st(a) = t~1s(b) = t~1(b’) = b’, and therefore
{~1st is not an element of H. ,

ExampLE 4. Let G be the group of matrices of example 2. The set H of all
orthogonal matrices (see below) forms a subgroup of the group G. Let us con-

sider the matrix s = ||s!||. The matrix ¢ = ||¢!|| determined by ¢/ = s} is called
the transpose of s and is denoted by s*, ¢ = s*. The matrix s is called orthogonal
if ss* = ||| = e.

It is obvious that the unit matrix ||6!/| = e is orthogonal, and e e H. If sis

an orthogonal matrix, then s—! = s*, since ss¥* = e. We shall show that s* is
also orthogonal. The tranpose of s* is s, i.e., s** = s. Hence s*s** = s*s.
But since s* = s71, it follows that s*s** = ¢, i.e,, s7! = s* is an orthogonal
matrix. Hence if sis in H, so is s7!. Now let s and ¢ be two matrices. It is
easy to see that (stf)* = t*s*. If s and ¢ are orthogonal, we have (st)(st)*
= stt*s* = e, i.e., the matrix st is also orthogonal. Therefore if s and ¢ are
matrices in H, so is their product st. Hence H is a subgroup of G. It is easy
to show that H is not an invariant subgroup of the group G.

ExampLE 5. Let G be the group of matrices given in example 2. Denote
by H the aggregate of all those matrices it G whose determinant is unity.
Since in multiplying matrices the associated determinants are also multiplied,
it is not hard to see that H is a normal subgroup of the group G.

3. Isomorphism. Automorphism. Homomorphism

We pointed out at the beginning of this chapter that the abstract theory of
groups considers a group only from the point of view of the group operation.
This situation is clearly expressed in the following definition.

DeriniTioN 5. A mapping f of a group G on a group G’ is called isomorphic
or an tsomorphism, if it is

1) one-to-one, and

2) such that the operation of multiplication is preserved, i.e., f(zy) = f(2)f(y)
for any two elements z, y, of G.
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It is easy to see that if the mapping f is isomorphic then its inverse mapping
f1is also isomorphic.

Two groups G and G’ are called isomorphic if there exists an isomorphic
mapping of one group upon the other.

If two groups G and G’ are isomorphic, then they are identical from the point
of view of abstract group theory. In other words, the theory of abstract
groups studies only those properties and concepts which remain unchanged
under isomorphic transformations.

A) Consider the isomorphic mappings of a group G onto itself. Such iso-
morphic mappings are called automorphisms of G. Since every automorphism
of G is one-to-one, it follows that an automorphism of G is a transformation
of G (see example 1). Hence two automorphisms can be multiplied, and the
resulting product gives a transformation of the group G which is also an auto-
morphism of G. It is clear, moreover, that the identity transformation is an
automorphism, and that a transformation inverse to an automorphism is also
an automorphism. Therefore the aggregate of all automorphisms of a group @
forms a group.

B) Let a be a fixed element of the group G. We determine from it an auto-
morphism f, of the group G by letting

(1) fo(x) = axa™!

for every z £ G. The automorphism thus obtained is called an inner auto-
morpbism. The aggregate of all inner automorphisms of the group G forms a
subgroup of the group of all automorphisms. Moreover

(2) fafb = fub-

Let us show that the relation (1) really gives an automorphism. First of all
the mapping f, has an inverse f;! defined by

3 = fo
In fact f, (fi-1(x)) = a(a~'za)a=! = z, and therefore, f, is one-to-one. Further
fo(zy) = azya™' = axa'aya™' = fu(2)fu(y).

To prove that the totality of all inner automorphisms forms a group one has
only to prove (2), (see §2, B)). Wehave

Jufo(2)) = a(bxdb=Ya~! = (ab)x(ab)™" = fu(z).

A relation between two groups which is weaker than the isomorphic mapping
is established by the so-called homomorphic mapping.

DEeFINITION 6. A mapping g of a group G into a group G* is called homo-
morphic or a homomorphzsm if it preserves the operation of multiplication, i.e., if

4) g(xy) = g(x)g(y)

for any two elements «, y of . The set of all the elements of the group G
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which go into the identity of the group G* under the homomorphism g is called
the kernel of this homomorphism.
If g is a homomorphism of the group ¢ into the group G* then

(5) g(e) = e¥,

i.e., the identity e of the group ¢ goes into the identity ¢* of the group G*.
Moreover

(6) 9@ = (g(2))!

for any z € G. 1In fact g(z)g(e) = g(ze) = g(x), so that g(e) = e¢*. Further
g(x)g(z~t) = g(zx~') = g(e) = e*, which means that g(z~!) = (g(x))~"

The following theorem establishes the connection between homomorphic and
isomorphic mappings.

THEOREM 1. Let the group G be homomorphically mapped on the group G* by

" a homomorphism g, and let N be the kernel of the homomorphism g. Then N is a

normal subgroup of the group G and G* is isomorphic with the group G/N (see
Definition 4).

This can be stated more explicitly as follows: If z* is an element of the group
G*, and X is the set of all elements of the group G which go into x* under the
homomorphism g, then X is a coset of the subgroup N,i.e., X ¢ G/N. The one-to-
one relation thus obtained between the elements of the groups G/N and G* is an
1somorphism.

We shall call this the natural isomorphism to distinguish it from other possible
isomorphisms between the two groups.

Proor. We shall show that N forms a group. If z ¢ N and y € N, it follows
that g(z) = ¢*, g(y) = e*. Then g(zy) = g(x)g(y) = e*e* = ¢*, i.e, zy e N.
Furthermore, if x ¢ N, then g(x) = ¢*, but then (see (6)) g(z~!) = (g(x))?
= ¢*"! = ¢* ie.,, 271 e N. Therefore, (see §2, B)) N is a subgroup of the group
G.

We show next that N is an invariant subgroup of the group G. Let z ¢ N
and a € G, then g(a~'za) = g(a~Y)g(x)g(a) = (g(a))"le*g(a) = e*,ie.,a zae N.

Let a* be an element of G*, and A the totality of all the elements of G which
map into a* under the homomorphism g. If a and a’ are two elements of 4,
then

gla’a™) = g(a")g(a™?) = g(a')(g(a))™! = a*a*! = €*.

Hence a’a=' e N, i.e.,a and a’ belong to the same coset of N. Conversely, if z
belongs to thie same coset as a, that is, if za=! £ N, then g(z)a*~! = g(z)g(a™?)
= g(xa~!) = e* i.e.,, g(x) = a*. Hence A forms a complete coset of N, and
we have a one-to-one correspondence between cosets of N on the one hand and
elements of G* on the other. In fact, to every element a* of G* there corre-
sponds a coset formed from all the elements which map into a* under the
homomorphism g. But every coset is an element of the group G/N (see Defini-
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tion 4) and, therefore, to every element A € G/N there corresponds an element
f(A) = a* € G*, where f is a one-to-one mapping. We shall show that f is an
isomorphic mapping. Let A and B be two elements of G/N, and a € A, b e B.
Suppose that g(a) = a*, g(b) = b*; then f(A) = a*, f(B) = b*. Furthermore,
ab € AB; therefore

J(AB) = g(ab) = a*b* = f(A)f(B),

and the conditions for isomorphism are satisfied. Hence G* and G/N are iso-
morphic.

The next proposition is closely connected with theorem 1.

C) Let G be a group, and N a normal subgroup of (. Construct the map-
ping g of the group G on the group G/N by associating with every element
z ¢ G that element g(z) = X ¢ G/N which contains z, x ¢ X. The mapping
of the group G on the group G/N which we thus obtain is homomorphic. We
shall call this mapping the natural homomorphism of a group on its factor group
to distinguish it from other possible homomorphisms.

Let a and b be two elements of G. Suppose that a e A e G/N,be Be G/N.
Then by definition

™ g(a) = A,
8) g(b) = B.
On the other hand ab € A B, and therefore

(9) g(ab) = AB.

Combining (7), (8), and (9) we get g(ab) = g(a)g(b), which means that ¢ is a
homomorphism.

D) We note that if the homomorphism g has the identity for its kernel, i.e.,
N = {e}, then g is an isomorphism. In fact in this case there is mapped upon
every element of G* only one element of G, since every coset contains just one
element.

E) If the homomorphism g maps the group G in (part of) the group G* in-
stead of on (all of) the group G*, then the set of all the elements of G* which
are images of the elements of G forms a subgroup of the group G.*

Let us denote the above set by H*. If z* and y* are two elements of H*,
then z* = g(z) and y* = ¢g(y), and z*y*~! = g(xy™?), i.e., 2*y*~1 ¢ H*. There-
fore, (see §2, B)) H* is a subgroup of the group G*.

F) Let g be a homomorphism of the group G on the group G*. If His a
subgroup of G, then g(H) is a subgroup of G*. If H is a normal subgroup of
the group @G, then g(H) is a normal subgroup of the group G*.

The fact that g(H) is a subgroup follows from proposition E), since g is a
homomorphism of the group H in the gioup G*. Let us consider the case
where H is a normal subgroup. Let 2* ¢ G*; then there exists an x € G such
that g(z) = z*. We have x~'Hz c H, from which it follows that z*~1g(H)z*
= g(z~'Hz) c g(H). Therefore g(H) is a normal subgroup of the group G*.
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G) Let g be a homomorphism of the group ¢ in the group G*. Denote by
g~'(H*) the set of all those elements of (¢ which go into H* ¢ G* under the
homomorphism g. If H* is a subgroup of the group G*, then g='(I{*) is a sub-
group of the group G. If H* is a normal subgroup of the group G*, then
g~'(H*) is a normal subgroup of the group G.

Let H* be a subgroup and let aeg '(H*), beg '(H*). Then g(ab™!)
= g(a)(g(b))~' e H* ie.,ab™' e g~'(H*). Hence (see §2, B)) g~'(H*) is a sub-
group. Let H* be a normal subgroup, and aeg~'(H*), reG. Then
g(z~lax) = (g(x))~'g(a)g(x) € H*, i.e., z7'ax e g~'(H*). Hence ¢g~'(H*) is a
normal subgroup of the group G.

H) It is not hard to see that if g is a homomorphism of the group G on the
group G*, and g* is a homomorphism of the group G* on the group G**, then
the mapping h(x) = g*(g(z)) is-a homomorphism of the group G on the group
G**‘

ExampLE 6. Let G be the additive group of all real numbers, and @’ the
multiplicative group of all positive real numbers. The groups ¢ and G’ are
isomorphic. Let us construct the isomorphic mapping f(x) = e* which assigns
to every elément x € G a corresponding element f(2) € G'. Clearly the mapping
f(z) is one-to-one and is isomorphic, since f(x + y) = f(2)f(y).

ExampLE 7. Let G be the group of matrices given in example 2, and let G*
be the multiplicative group of all real numbers different from zero. We shall
give a homomorphic mapping of the group G on G*. If s is a matrix of G, we
will suppose that g(s) = |s|, where |s| is the determinant of the matrix s.
Then we have g(st) = |st| = |s]||t|. Moreover, G contains matrices with ar-
bitrary determinants different from zero. Hence ¢ is a homomorphic mapping
of the group ¢ on G*. Since the identity of the group G* is the number 1, the
kernel of the homomorphism g is the totality of all matrices whose determinant
is equal to unity.

4. Center. Commutator Subgroup

In this section we investigate the question of the dependence of the product
.on the order of its factors.

A) Two elements a and b of the group G are said to commute if their product
does not depend on the order of the factors, ab = ba.

DEFINITION 7. An element z of the group G is called central if it commutes

with each element of the group G, i.e., zz = 2z for every r € G, or equivalently,
272z = z. The set Z of all central elements of the group G is called the center
of the group G.
. We shall now show that the center Z is a subgroup of the group G. In fact,
¥f zand z’ are two elements of Z, then for every z € G, xzz' = zxz’ = zz'z, that
Is 22" € Z. We next raise both sides of the relation 2z = 2z to the power —1,
and obtain z='z~! = z~1z-! and on replacing 7! by y we obtain z7ly = yz7!;
but since z is an arbitrary element, y is also an arbitrary element, i.e., 2" ¢ Z.
Hence Z is a subgroup of the group G.
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B) Every subgroup H of the group Z is a normal subgroup of the group G.
In fact if h € H, then h € Z, and hence 2—'hz = h € H for every z ¢ G. In par-
ticular the center itself is a normal subgroup. The subgroups of the group Z
are called central normal subgroups.

C) In order to settle the question whether the elements ¢ and b commute
or not, it is sufficient to form the product ab(ba)=' = aba~'b~!; if this product
is equal to unity, then a and b commute, if not, they do not commute. The
product aba—1b~!is called the commutator of a and b.

DeriniTiON 8. Let us form the set @ of all the elements of the group ¢ which

can be written in the form ¢i¢z - - - ¢, where each ¢; is the commutator of some
pair of elements of G. The set @ is called the commutator subgroup of the
group G.

We shall show that the commutator subgroup @ of the group G is a normal
subgroup of the group G.
Let z and y be two elements of @, x = q1- - * @m, ¥ = ¢1 - - * ¢,, Where the

factors on the right are commutators. Then 2y = q1 - - - gng; - - - ¢n, and
therefore zy € Q. If ¢is a commutator, then ¢ = aba=b~!, and ¢! = bab~la™},
i.e., ¢! is also a commutator. Hence x'=g¢,"' - ¢ belongs to @, and

therefore @ is a subgroup of the group G. If ¢ = aba='b~!, then
cgc = (c'ac)(c™'be)(clac)~(clbc)~'. Hence ¢ lgc is also a commutator.
If 2=¢q1- - gm then ¢ lzc = (c7'¢qic) - - - (¢7'qmc), and therefore c~lzc e Q
for every ¢ £ G, and every z ¢ Q, and the proposition follows.

D) The factor group G/Q of the group G by its commutator subgroup @ is
commutative; moreover, @ is the least normal subgroup of the group G which
has this property, i.e., if G/N is commutative, then @ c N.

Let A and B be two cosets of Q. We form the product AB A~'B~'. This
product contains a commutator, namely aba=1b~!, where a ¢ A, be B. Then,
since ABA~'B~1is a coset, we have ABA~1B~! = @ (see Definition 4). Hence
if we consider A and B as elements of the group G/, then ABA~'B~!is the
identity of this group, i.e., A and B commute in G/Q, and G/Q is a commutative
group.

Let N be a normal subgroup of G such that N » . Then N cannot con-
tain all the commutators of the group @; otherwise N would contain all the
products of all the commutators, and so would contain Q. Let a and b be two
elements of G such that aba='b~!is not an element of N. Denote by 4 and B
the cosets of the subgroup N which contain a and b respectively. Then
aba~'b~! does not belong to N and therefore ABA~'B~! is not the identity
of the group G/N, i.e., A and B do not commute in G/N. Hence the group
G/N is not commutative. '

E) Let N be a normal subgroup of the group G and @ the commutator sub-
group of N. Then @ is a normal subgroup of the group G.

1t is obvious that @ is a subgroup of the group ¢ Let ¢ be a commutator
of two elements of N, ¢ = aba~'b~1, where a ¢ N, be N. Then we have for
every c e (, c7lgc = (c~'ac)(c~bc)(c~lac)~ (c~'bc)~Y, but since N is a normal
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subgroup of G, ¢~lac € N, ¢c7'bc € N, i.e., ¢c~!gc is a commutator of elements of N.
Hence Q is a normal subgroup of the group G.

DeriNiTION 9. Let G be a group. We form the sequence of subgroups
Qy, -, Qi -, where @, is the commutator subgroup of G, while Qi is
the commutator subgroup of @Q;. All @'s are normal subgroups of the group G
(see E)). If the above sequence contains the subgroup composed only of the
identity of the group G, then the group G is called solvable.

The concepts of center and commutator play an important role in the theory
of continuous groups.

ExampLE 8. Let G be the group of matrices given in Example 2. Let us
denote by Z the aggregate of all the diagonal matrices of G which are such that
each matrix has all its diagonal elements equal. It is easy to see that Z is a
central normal subgroup of the group G. It can readily be shown that Z is
the center of the group G. Let us denote by @ the normal subgroup of G com-
posed of all the matrices with determinant unity (see Example 5). Since
G/Q is evidently a commutative group (see Example 7), it follows that the
commutator subgroup of G is contained in the group @ (see D)). It can be
shown that @ is the commutator subgroup of the group G.

5. Intersection and Product of Subgroups. Direct Product

The concept of direct product plays an important part in the theory of
groups: by decomposing a group into a direct product of other groups we re-
duce the study of the group to the consideration of simpler groups; on the other
hand, by forming the product of given groups we have a method of constructing
new groups.

We shall prove some properties of intersections and produects of subgroups of
a given group.

A) Let M be an aggregate of subgroups of G and let D be the intersection
of all the subgroups in M ; then D is a subgroup of the group G. If all the sub-
groups of M are normal subgroups of @, then D is also a normal subgroup of G.

In fact let @ and b be elements of D. Let H be a subgroup in M ; then a ¢ H
and b € H so that ab=! ¢ H. ‘Hence ab™! belongs to an arbitrary subgroup of M,
i.e.,ab™le D. Therefore, (see §2, B)) D is a subgroup of G. If all the elements
of M are normal subgroups of the group @, then we have for an arbitrary z € G,
z7'az € H, but since H is an arbitrary subgroup of M, it follows that z=lax € D.

B) Let R be a subset of elements of a group G. We denote by M the set of
all the subgroups of G which contain R. The intersection of all subgroups of
the set M is the minimal subgroup of the group G which contains R. In the
same way we define the minimal normal subgroup of the group G which con-
tains R.

C) If H is a subgroup and N a normal subgroup of the group G, then the
intersection H N N = D of the groups H and N is a normal subgroup of the
group H.

We have already shown (see A)) that D is a group and is therefore a sub-
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group of H. Let h ¢ H and n € D; then h~'nh &€ H, since all the factors belong
to H. But h~'nh e N since ne N and N is a normal subgreup. Therefore
h~'nh € D, and hence D is a normal subgroup of the group H.

D) Let H be a subgroup and N a normal subgroup of the group . Then
the product HN = NH (see Definition 3) is a subgroup of the group G. In
case H is a normal subgroup of G, HN is also a normal subgroup of G.

If @ and b are elements of HN, then a = hn, b = h'n’, where h and 2’ be-
long to H, while n and n’ belong to N. Therefore ab~! = hnn'~'h'~!
= hh'~Y(h'nn'~h'~1), but since N is a normal subgroup, A'nn'~'h’~t = n'" ¢ N
and ab=! = (hh'~)n’"" ¢ HN. Hence (see §2, B)) HN is a subgroup of the
group G.

If H is a normal subgroup and a = kn, then for any ze G we have
r7'ar = (x7'hx)(x~'nx) € HN, i.e., HN is a normal subgroup of the group .

E) If Ny, - - -, N are normal subgroups of the group @, then it follows by
induction from what we have shown in D) that N, - - - N, is also a normal sub-
group of the group G.

THEOREM 2. Let H be a subgroup and N a normal subgroup of the group G.
PutD = HAN,and P = HN. Then the factor group H/D ts isomorphic with
the factor group P/N.

Proor. Let A be an element of H/D, then A = Da, where a ¢ H. Suppose
A" = Na, where A’ is an element of P/N. Since D ¢ N, A ¢ A’. Hence
every element of H/D is contained in one and only one element of P/N.
Now let B’ = bN = Nb, where be H. Then B = Db is an element of the
group H/D and Bc B’. Henceevery element of the group P/N is contained in
at least one element of the group H/D; we shall prove that it is contained in
only one. Let A4 and B be two elements of H/D which are contained in the
same element C’ of P/N. We have AB~1c(C’C'~' = N, moreover AB~'c H,
hence AB~'c D, i.c., A = B. This establishes a onc-to-one correspondence
between the elements of the groups H/D and P/N.

Let us show that this correspondence beiween the elements of H/D and
P/N is an isomorphism. Let 4 and B be two elements of H/D, A’ and B’
the corresponding elements of P/N,ie.,A € A, Bc B". Then AB ¢ A'B/,
and hence to the element A B of the group H/D corresponds the element A'B’
of the group P/N, and we have an isomorphism between these groups.

We shall now take up a more special type of produet of subgroups, namely
the direct product.

DEerFiniTION 10. Let H and K be two normal subgroups of the group G.
We say the (7 is decomposed inte the direct product of H and K if HK = G and
IInK = {].

) We shall show that if ¢ is decomposable into the direct product of H
and K, then every clement of H commutes with every element of K and every
clement of ' can be represented uniquely in the form hk, where h ¢ H and
kes.
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Let he H and k ¢ K, and let us consider the commutator hkh—%~1 = q.
Since K is a normal subgroup, hkh~! € K, and hence ¢ = (hkh~1)k~' e K. On
the other hand since H is a normal subgroup, kh~'k~'e H,and ¢ = h(kh—'k~ ') e H.
Hence q = ¢,i.e., hk = kh.

Let z ¢ G. Since G = HK it follows that z = hk, where he H, and k ¢ K.
Suppose at the same time that x = h’k’, where A’ ¢ H and k¥’ ¢ K. Then
hk = h’k’. Multiplying this equation on the left by A~! and on the right by
k'-1, we get kk'~! = h~'h’. But the left side of this equation belongs to K,
while the right side belongs to H; hence kk'~! = h~'h’ = e, i.e., h = h’, and
E=Fk.

In Definition 10 we started with a given group G. Let us now take the op-
posite point of view, and construct ¢ from the groups H and K.

DeriNiTION 10’. Given two groups H and K, let us construct the set G of
all pairs of elements (h, k), where h ¢ H, and k¢ K. We define as the product
of two pairs (h, k) and (h’, k'), the pair (hh’, kk’). Under this law of multi-
plication, G forms a group. The group G is cailed the direct product of the
groups H and K.

It is obvious that the associative law hclds in G, since it holds in the groups
H and K. The identity of G is the pair (e, '), where e is the identity of H,
and e’ is the identity of K. The element inverse to the pair (k, k) is the pair
(B4 k7Y).

The two following propositions, G) and H), establish a connection between
Definitions 10 and 10’

G) Let G be decomposed into a direct product of normal subgroups H and K
(see Definition 10). Denote by H’ a group which is isomorphic with the
group H, and by K’ a group isomorphic with the group K, and let us form the
direct product G’ of the groups H’ and K’ (see Definition 10’). Then the
group @’ is isomorphic with the group G.

In fact let f be an isomorphic mapping of the group H’ on the group H, and
let ¢ be an isomorphic mapping of the group K’ on the group K. The iso-
morphic mapping h of the group G’ on the group @ is determined by the rela-
tion h((h', k")) = f(R")g(k)).

H) Let @ be the direct product of H and K (see Definition 10’). ILet us
denote by H' the set of all elements of the group G which are of the form (2, e'),
and by K’ the set of all the elements of the group ¢ which are of the form (e, k).
Then H' and K’ are normal subgroups of the group @, and G is decomposed
into the direct product of H' and K’, moreover H’ is isomorphic with H, and
K’ is isomorphic with K.

Let us show that H’ is a normal subgroup. If (h, ¢’) and (h/, ¢’) are two
elements of H’, then (h, e’)(k', e’)~' = (hh'~%, ¢’) € H’' and therefore H'is a
subgroup. If (a, b) is an arbitrary element of @, then (a, b)~!(h, e’)(a, b)
= (a7'ha, ¢’) € H’, and therefore H' is a normal subgroup. In the same way
it can be proved that K’ is a normal subgroup. The intersection of the groups
H' and K’ contains only the identity, since if (h, e’) = (e, k), then % = e,
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k = e’. The product of the groups H’ and K’ coincides with G since every ele-
ment (h, k) € G can be written in the form (&, k) = (h, ¢’)(e, k). -Furthermore
if we associate with every element i € H the element (h, ¢) € H’, we obtain an
isomorphism between the groups H and H’. In the same way we can establish
the isomorphism of the groups K and K’.

I) Let @ be decomposed into the direct product of normal subgroups H
and K. Then the group H is isomorphie with the factor group G/K.

We can prove 1) by applying Theorem 2. In fact HnK = {e} and
HK = G, and therefore H/{e} is isomorphic with G/K.

The definition of a direct product given here can be extended in a trivial
way to the product of a finite number of factors. In what follows, however,
we shall have to do with a countable number of factors and to avoid misunder-
standing we pause here to discuss the matter.

DeriniTioN 10*. Let G be a group, and let M be a countable set of normal
subgroups of G, M = {_Gl, ey Gy } We say that G is decomposable
into the direct product of the subgroups of the set A, if the following conditions
are fulfilled.

1) The minimal normal subgroup of the group G (see B)) which contains all
the subgroups of the set M coincides with G.

2) If we denote by H, the minimal normal subgroup of the group G (see B))
which contains all the subgroups of the set M with the exception of the sub-
group (,, then the intersection of all the subgroups H,, n=1, 2, - - -, contains
only the identity e of the group G.

A*) The group G can be decomposed into the direct product of its two sub-
groups G, and H, (see Definitions 10* and 10).

The product G,H, is the normal subgroup of the group G (see D)) which,
as can easily be seen, contains all the subgroups ;. Therefore by condition 1)
of Definition 10*, G,H, = G. Denote by G, the intersection of all the groups
Hy, k=1,2, - - -, with the exception only of the group H,. It is obvious that
G. € @,. From condition 2) of Definition 10* it follows that the intersection
G,nNH, = {e}. Hence the intersection G,n H, = {e}, and G can be de-
composed into the direet product of the groups @, and H.,.

B*) For ¢ & j every element of the group G; commutes with every element
of the _~oup G;. Furthermore, every element z € G can be uniquely repre-
sented as a product # = x; - - - z, where 2; ¢ Gy, 1 =1,2,-- -, n,and nis a
sufficiently large number depending on z.

Since @; € H; the commutativity of the elements of the groups G: and G;
follows from A*) (see F)). We remark further that the set G’ of all products
of the form z =z, -+ -z, wherez; c G;,i=1,- -, n,n=12-.-,isa
normal subgroup of the group @, and every group Gy belongs to G’. In this
way it follows from condition 1) of Definition 10* that G’ = G and therefore
every element x € G can be written in the form of the product given above.

The uniqueness of such a decomposition into a product follows easily from F)
and A¥).
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DeriniTioN 10*'. Let M be a countable aggregate of groups
M = {G,, sy Gy e } We shall construct a new group G from the
groups of the set M, which we call the direct product of the groups of the
set M. The elements of G will be the sequences z = {xy, - -, 20, - - - },
where 2, £ G,,n = 1,2, - - -, and only a finite number of the z, are not identi-
ties. The produet of two sequences x and y = {y;, o UYny - -} is defined
as the sequence

Ty = {Zlyly"'yxnym‘" : }

It is not hard to see that the group G obtained in this way does not depend on
the way in which the groups of the set M are numbered. The identity of G is
e = {c;, Ce ey }, where e, is the identity of the group G,,n = 1,2, - - - .
The inverse of the element z is the element z~! = {xr‘, R S T
is easy to see that all the group axioms hold in the set G.

The equivalence of Definitions 10* and 10*’ is established without difficulty
in the same way as was done above for Definitions 10 and 10’ (see G) and H)).
Because of the triviality of these generalizations, we shall not stop here to con-
sider them.

ExampLE 9. Let G be a countable commutative group all of whose elements,
with the obvious exception of the identity, are of prime order p. It is not hard
to show that the group G can be decomposed into the direct product of a
countable number of cyclic subgroups of order p, i.e., subgroups of the form
H = {e, a, a? - -, a"“}, where a* = e.

ExampLE 10. Let G be the group of matrices given in Example 2. The total-
ity G’ of all matrices with a positive determinant forms a subgroup of the
group G. Let us decompose G’ into a direct product.

Let us denote by Z the totality of all diagonal matrices of G’ which are such
that the diagonal elements of each matrix are equal and positive. We denote
by @ the totality of all matrices whose determinant is unity. It is easy to see
" that Z and Q are normal subgroups of ¢ and that G’ is decomposed into the
direct product of Z and Q. In fact, the intersection of Z and @ contains only
the unit matrix, while every matrix of G’ can be represented as the product of a
matrix Z by a matrix Q.

6. Commutative Groups

In this section we give a proof of the fundamental theorem of commutative
groups (see F)). We shall use this result in Chapter 5 only, and it is not essen-
tial tc an understanding of the other parts of this book.

We consider here commutative groups only, and we shall use the additive
notation.

A) A finite system of elements g, gz, - - -, gx of the group G is called linearly
tndependent if the equation

a1gl+"‘+akgk=07
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where ay, - - -, a are integers, implies that
a=0,---,a =0.

An infinite system of elements of the group G is called linearly independent if
all its finite subsystems are linearly independent. The maximal number of lin-
early independent elements of G is called the rank of G. It is obvious that a
linearly independent system cannot contain elements of finite order.

B) A finite or infinite system

(1) gi, © -y Gny

of elements of a group G is called a system of generators of this group if every
element g £ G can be written in the form

(2) g=aag + -+ Qg

where ay, - - -, ay are integers. If the system (1) of generators of the group G
is linearly independent, then the representation (2) of every element ¢ is, as
can easily be seen, unique.

C) Let G be a group having a finite system

(3) gy -y gk

of linearly independent generators. Then every subgroup H of the group @
also contains a finite system of linearly independent generators, whose number
does not exceed k.

The proof is by induction. For k = 0 the statement is obvious, as in this
case (7 contains only zero, and H coincides with G. Suppose that the proposi-
tion is proved for k¥ = m; we shall then proveitfork =m + 1. Letk =m + 1,
and let us designate by G’ the subgroup of the group G with the generators
g1, - -, gm, and by H’ the intersection of H and G’, H' = H n G’. From the
hypothesis of the induction the subgroup H’ of the group G’ has a finite system
of linearly independent generators

(4) hl)'.')hn

withn < m. Now let

h=ag+ + @ + CGnirGmir

be an arbitrary element of the group H’. Because of the condition of linear
independence, the number a,.4: is uniquely determined by the element h. If
for every choice of the element h, the number a,.; is equal to zero, then
H c G',)ie, H = H’ and hence H has a system of linearly independent gen-
erators (4). Suppose that for some elements h ¢ H, the number a4, is differ-
ent from zero. Then there exist elements h for which the number a,,,, is posi-
tive, since for every element h of the group H there is an element —h. Let
us denote by A, the element for which the number a4, achieves its least posi-
tive value @, ,,
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hn+l = afgl + -+ a:ngm + a:n+1gm+1-

We shall show that for every h € H the number a,.,1 is divisible by a,,,,. We
write the number a,,; in"the form am; = bpp1am+1 + 7, where b,y; and r are
integers and 0 < r < a,,,,. Then

h — bn+1hn+1 = (al - bn+la/1)gl + -+ ((lm - bn+1a,m)gm + TGm+1

is an element of the group H for which a,.;1 has the value r. Since
0 <r <ap,, and a,,,, is the least positive value of the number an.;, we
have r = 0. Hence any1 is divisible by a,,,, and the element h — b,;1ha41 be-
longs to G, i.e. belongs to H’, and we have

h - bn+1hn+l = blhl + T + bnhn
(see (4)), and therefore
h = blhl + T + bnhn + bn+1hn+l~

Hence the system Ay, - « -, ks, hay1is a system of generators of the subgroup H.
The linear independence of this system follows from the linear independence
of the system (4) and the definition of the element h,,,.

The following proposition D) forms a basis for the proof of theorem F).

D) Leta = Hai,-H be a matrix with p rows, ¢ columns, and integer elements.
Then there exist two unimodular matrices (i.e., square matrices whose elements
are integers and whose determinants are +1) s and ¢ of order p and ¢ respec-
tively which are such that the matrix b = ||b;;|| = sat (see Example 2) has a
so-called canonical form, i.e., it satisfies the following conditions: a) for 7 # j,
bi; = 0, b) the number b;,,,:11 is divisible by the number b;;, ¢) the numbers b,;
are non-negative.

To prove this we introduce the so-called elementary operations on a matrix z
with integer elements. Operation 1 consists in multiplying any row of the
matrix £ by —1, operation 2 consists in an interchange of any two rows of the
matrix z, operation 3 consists in the addition to any row of the matrix z of
an integer multiple of some other row. Analogously, we define operations 1,
2’, and 3’ as applied to columns rather than rows of the matrix z. It is easy
to see that each one of the operations 1, 2, or 3 can be effected by multiply-
ing the matrix z on the left by a unimodular matrix. Analogously, each one
of the operations 1/, 2/, and 3’ can be effected by multiplying the matrix z
on the right by a unimodular matrix. In this way to prove D) it is sufficient
to show that the matrix z can be reduced to the canonical form by means of
successive applications of the elementary operations.

We shall show that if in the matrix # = ||z, the element z1, divides all the
elements of the first row and column, then by successive application to z of a
series of elementary operations the matrix x can be transformed into a matrix
y = ”yﬁ which is such that yn = z1;, and all the other elements of the first
row and the first column of y are equal to zero.
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Since z; is divisible by xy;, we may write z; = — rzy, where r is an integer.
Adding to the 7-th row of the matrix z the first row multiplied by r we get a
new matrix which has a zero in the ¢-th place of the first column. Applying
this operation to every row, beginning with the second, and then to every
column, beginning with the second, we obtain the desired result.

Let us denote for brevity by (z) the minimum of the positive absolute values
of the elements of z, and show that if it is false that every element of the
matrix z is divisible by (z), then the matrix z can be transformed by means of
elementary operations into a matrix y which is such that (y) < (z).

It is easy to see that by means of an interchange of rows, and of columns,
and also by changing sign in some row, the matrix « can be reduced to a matrix
which satisfies the condition (z) = zy;. If now the first column of the matrix =
contains an element x;; which is not divisible by z;;,, then we shall have
rg = — rxu + n, where 0 < n < z;1.  Adding to the 7-th row of the matrix z
its first row multiplied by r, we shall get a new matrix y for which (y) = n < ().
If now xy; divides all the elements of the first column, but not all the elements of
the first row, we can apply a similar operation and obtain a matrix y which
satisfies the condition (y) < (x). If, however, all the elements of the first row
and the first column are divisible by zi;, this matrix can be reduced to the form
in which .the only element different from zero in the first row and column is
the element zy;. If the resulting matrix contains an element z;; which is not
divisible by z1;, we add the 7-th row to the first row and obtain a matrix not all
of whose elements in the first row are divisible by zi, i.e., a matrix to which can
we can again apply the reasoning above.

It follows from what we have just proved that by means of elementary opera-
tions the matrix x can be transformed into a matrix z all of whose elements are
divisible by (z). Infact, if not every element of the matrix z is divisible by (z)
then, as we have just shown, the matrix z can be transformed into a matrix y
with (y) < (z). Since we are dealing here with whole numbers only (x) can
be diminished in this way only a finite number of times, and therefore after a
finite number of steps our process will terminate by reducing the matrix to the
desired form.

Hence by means of applications of elementary operations it is possible to
reduce the matrix z to a form in which all of its elements are divisible by (z).
Moreover, also by means of elementary operations, it is possible to get z;; = ()
and all other elements of the first row and column equal to zero, without de-
stroying the divisibility of the elements of 2 by (x). The matrix thus obtained
is said to be in semi-canonical form. Let us denote by z’ the matrix obtained
from the matrix x by crossing out the first row and column. Every element of
x’ is divisible by z;;. Reducing the matrix z’ to a semi-canonical form, and
repeating the process we shall finally reduce the matrix z to the canonical form.

In this way, the proof of D) is completed.

E) Let X be a group having a system of linearly independent generators, and
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let Y be a subgroup. Then we can select in X a system z{, - - - , zJ of linearly
independent generators which are such that the elements

dryy -, dos, r<q,
form a system of generators of the group Y where d; > 0,7 =1, 2, - -, r,
and diy is divisible by ds, i = 1, - - -, r — 1.
Let
(5) Xy, = 0 0, Ty

be a system of linearly independent generators of the group X, and

(6) Yy, = Yp

be an arbitrary system of linearly independent generators of the group Y
(see C)). Then we shall have the following relations,

(7) ?/f:ai11'1+"'+aiq-1'0y i=],"'yp)

where Haﬁ[ = a is a matrix with integral elements. Let us further denote by
s = ||| and ¢ = [|t;|| two unimodular matrices of orders p and g respectively.
Making use of these matrices we introduce into the groups X and Y new sys-
tems of generators

(8) Ty, © 0, Tg

.and

9) Yy, Y

by means of the relations

(10) Tj =ty + bty i=1,2-,4q,
(11) ye = sy + -+ Skoliny k=1, ---,p.

It is permissible to introduce new systems of generators in the groups X and Y
by means of these relations because the matrices ¢ and s have unimodular
determinants, so that relations (10) and (11) can be solved for the elements (8)
and (6); hence these elements can be expressed in terms of linear forms of the
elements of (5) and (7) with integral coefficients. For the new system of gen-
erators we get instead of (7), the following relation:

P4 a

/ A / ’r ’ ’

Yr = 20 20 20 Skt = Ty + - -+ iy k=1---,p,
j=1

D 1=1 =1

where “a;dH = @’ is a matrix with integer elements, and a’ = sat. Choosing
the matrices s and ¢ in such a way that the matrix a’ has a canonical form
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(see D)), we arrive at a new system of generatorsz{, - - -, x, of the group @
which satisfies the assertion E). .

F) A group G having a finite system of generators is decomposable into the
direct sum of cyclic subgroups

Uy -y Un; Vi - Vi
where U;, 2 =1, -, m, is a free cyclic group and V;, j=1,---,n,is a
cyclic group of finite order 7; > 1 with 7,4, divisible by 7;, 7 =1, ---,n — 1

(see §2, B)). In case ( has a finite system of linearly independent generators,
then G has no summands of finite order.

Let g1, - - -, g, be a finite system of generators of the group G. Let us de-
note by X the set of all linear forms of the type
(12) T=ox + - -+ oagr,
with integral coefficients a4, - - -, a, and variables z;, - - -, z,, We can define
naturally in X an operation of addition, so that X becomes a group having a
system 2y,- - - , x4 of linearly independent generators. With every element

z € X (see (12)) we associate the element f(z) = aig1 + - - -+ + a,g, of the group
g. The mapping fis obviously a homomorphism of the group X on the group
G. The kernel of the homomorphism f we denote by Y. Let us now choose
in X the system

(13) Ty, o, g

of linearly independent generators which was constructed in E). Suppose that
gi = f(x!),i=1,---,q. Theng!, - g/ is a system of generators of the
group G. These generators satisfy the following relations:

digi =0, - ,dgl =0
(see E)). On the other hand if the relation

bgi + 4 by =0

holds, then b; is divisible by d; for ¢ = 1, - - -, r and is equal to zero for
i=r+1,---,¢ Infactsuppose that

g = bl + -+ by

then f(z’) = 0 and hence z’ £ Y, i.e., the numbers by, - - -, b, satisfy the above
relations since the system of generators (13) is linearly independent, and
dyxi, - - -, d.x! form a system of generators of the group Y. Letnowd,, - - -, d,
be those numbers of the system dy, - - -, d, which are equal to unity. Let
us denote the numbers dsy1, - - -, dr by 71, - - -, 7.. Further suppose that
Gosy =0viJ=1,-+-,mg =u,i=1--+,q—r=m. Thesubgroup of
the group G with the generator u; we denote by U;, and the subgroup with the
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generator v; we denote by V. It is easy to see that the subgroups constructed
in this way give a decomposition of the group G into a direct sum.

If G has a finite system of linearly independent generators, then each of its
subgroups has the same property (see C)), and therefore G has no elements of
finite order. In this case the decomposition into a direct sum contains no sum-
mands of finite order.

Hence the proposition F) is completely proved.

In conclusion we remark that the decomposition of & into a direct sum which
we have obtained is unique up to an isomorphism, which means that the num-
ber m and the system 7, - - -, 7, are invariants of the group G. The unique-
ness of decomposition will, however, not be used by us in the future, and
therefore I shall leave this fact without proof.



CHAPTER II
TOPOLOGICAL SPACES

Just as the theory of groups studies the algebraic operation of multiplication
in its purest aspect, so abstract topology sets as its goal the investigation of
the operation of passing to the limit, disregarding all other properties of the
elements under consideration. If a group can be regarded as a generalization
of the concept of real numbers, then a topological space should also be treated
as a generalization of these same real numbers. Only in the first case the oper-
ation of multiplication is generalized, while in the second it is the limiting
operation, or, what is the same, the concept of limit point which is generalized.

Given a set M of real numbers it is possible to ascertain of any real number
whether it is or is not a limit point of the set M. It is possible to formulate
in terms of limit points the condition for convergence of a sequence of real
numbers, and in general all concepts connected with passing to a limit. The
concept of a limit point is at the foundation of the structure of a topological
space. It seems more practical, however, to axiomatize not the concept of
limit point, but the entirely equivalent concept of closure. Adding to a given
set M all its limit points we get the so-called closure M of the set M. M con-
sists of all the numbers which belong to M, together with the limits of the
numbers of M. Hence, knowing what a limit point is, we also know what
closureis. Conversely, it is possible to formulate the concept of a limit point
in terms of closure. If the point a does not belong to the set M, then it is a
limit point of M if and only if a ¢ M. However, in case a € M, this criterion
is insufficient, since a can be an isolated point of the set M. But if a belongs
to M and is at the same time a limit point of M, then a is a limit point of
M — a,ie., ae M — a; this condition is sufficient, moreover it is applicable
also when a does not belong to M, since in that case M = M — a. Hence it
follows that a is a limit point of M if and only if a ¢ M — a.

7. The Concept of a Topological Space

Axiomatizing the concept of closure, we arrive at the concept of topological
space.

DeriNiTION 11. A set R of arbitrary elements is called a topological space if:

1) To every set M of elements of the space R there corresponds a set M
which is called the closure of M.

2) If M contains only one element a, then M = M, or what is the same,
a=a.

3) If M and N are two sets of elements of the space R, then M u N = Mu N,
i.e. the closure of the sum of two sets is equal to the sum of the closures.

4) M = M, i.e., the operation of closure applied twice gives the same result
as a single application of the operation.

26
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The elements of a topological space are called points. A point a of the space
R is called a limit point of the set M of elements of Rif a e M — a.

A) Let us show that M c J/.

In fact, let a € M, then M = M ua. Taking the closure of both sides of
this equationweget ¥ = M ua= Mud = Mua,thatisae M,and M c M.

B) If Mc N, then M cN.

In fact, N = M u N. Taking the closure of both sides of this equation we
get N=MuN,ie, McN.

DEerFINITION 12. A set F of elements of a topological space R is called closed
if F = F. Aset @ of elements of a topological space R is called open if R — @
is a closed set.

As can be seen from Definition 12 closed sets and open sets are complements
of one another in the space R. Therefore to every statement concerning closed
sets corresponds some statement concerning open sets. We shall take this
remark into consideration in the proofs of some simple theorems which follow.

C) The sum of a finite number of closed sets is a closed set.

In fact if £ and F are two closed sets, then ¥ u F = EuF = EuF,
Eu F is closed. By induction this assertion can be extended to any finite
number of summands.

The corresponding proposition for open sets is the following:

D) The intersection of any finite number of open sets is an open set.

The proof of this proposition is quite trivial, and in the future similar proofs
will be omitted, but it is worth while to carry out the proof once. Let G and H
be two open sets of . Then E = R — G and F = R — H are closed sets.
The intersection G 0 H is the complement of Fu F,i.e.,GnH = R — (Eu F).
But E u F is a closed set (see C)), and hence G n H is an open sét.

E) Let = be a system of closed sets of the space R, and let D be the inter-
section of all the sets contained in Z. Then D is a closed set.

In fact, let F be a set of the system . Then DcF, and hence DcF = F.
Since F is an arbitrary set of the system 2, DeD. But D> D (see A)), hence
D = D.

The corresponding proposition for open sets is the following:

F) The sum of an arbitrary number of open sets is an open set.

G) We remark that, except for the trivial case in which the space R contains
only a single point every space R contains two closed sets: R itself, and the
null set. Therefore in every set R there are also two open sets, the set R and
the null set.

In fact, the closure of every subset of R isin R, and therefore R ¢ R, and from
this together with A) it follows that R = R, i.e., R is closed. Furtherif R con-
tains two distinct points @ and b, then the null set, being the intersection of the
two sets each containing the one point a or b is closed (see E)).

ExaMpLE 11. Let R be an infinite set. Let us define in R the operation of
closure by means of the following conditions. If M is a finite subset of R,
we shall suppose that ¥ = M. If M is an infinite subset of R we shall sup-
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pose that M = R. It is easy to check that the operation of closure which we
have just defined satisfies the conditions of Definition 11.

ExampLE 12. Let R be a set. We shall define in R the operation of closure
by supposing that M = M for every subset M of R. It is easy to see that by
this operation R becomes a topological space, since, as can easily be verified,
conditions 2, 3, and 4 of Definition 11 are satisfied. Every subset of the space
R is closed. A space R defined in this way we shall call discrete.

8. Neighborhoods

In this section we shall give a method of defining a topological space by
means of neighborhoods rather than by means of the operation of closure.
This method is rather important and is often used as the foundation of the
axiomatic treatment of the concept of a topological space.

According to Definition 11, in order to determine a topological space R, it
is necessary to associate with each subset M of R its closure M. It can be seen,
however, that it is not necessary to give the closure of every set but it is suffi-
cient to specify the family of all the closed sets in order to determine the
closure of every set of R uniquely. The justification of this statement can
be found in the following proposition.

A) Let M be some set of R and let = be the totality of all the closed sets of B
which contain M. If we denote by D the intersection of all the sets of Z,
then M = D. In other words M is the minimal closed set containing M.

Since M = M, it follows that M is a closed set. Moreover M > M and hence
M cz, thatis Dec M. Furthermore D> M, but since D is the intersection of
closed sets, D = D> M. Hence D = 1.

In order to give all the closed sets of the space R it is sufficient to give all the
open sets of the space R, since every closed set is the complement of some open
set, and the complement of every open set is a closed set. Hence in order to
determine the topological space R it is sufficient to give all the open sets of E.
Making use of the fact that the sum of an arbitrary number of open sets is
also an open set we arrive at the following simplification.

DerintTioN 13. A system 2 of open sets of a space R is called a basis of B
if every open set of R can be obtained as a sum of open sets belonging to Z.
A basis 2 of a space R is also called a complete system of neighborhoods of the
space R, while every open set of the system Z is a neighborhood of every point
contained in this open set.

The simplest example of a basis of a space R is the totality of all the open
sets of Ik.

Kuowing a basis of the space B we thereby know all the open sets of R and
therefore closure is uniquely determined in R. Hence in order to determine a
apace R it is sufficient to specify one of its bases.

As is seen from Definition 13 the concept of neighborhood is not completely
letermined by the operation of closure in R, but it also depends on the choice
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of the basis =. Therefore, when speaking of neighborhoods in the future we
shall keep in mind that some definite basis = has been chosen.

B) In order that a system of neighborhoods Z form a basis of the space R
it is necessary and sufficient that for every open set G and element a belonging
to @, there exist an open set U of the system X such that a ¢ U € G.

If = is a basis of R, then there exists a system Z’ of open sets of Z such that ¢
is the sum of all the open sets of £’. Then there exists an open set U ¢ =’
such that a € U. Since G is a sum of open sets among which is U, it follows
that U c@.

Let us now suppose that the condition formulated above is satisfied for Z,
and let G be an arbitrary open set of R. Then for every x € G, there can be
found an open set U, & 2, which is such that x € U, cG. The sum of all the
open sets U, with an arbitrary x € 7 is obviously equal to &, and hence Z is a
basis of the space R.

By analogy with the criterion B) we give the following definition.

B’) A system Z’ of neighborhoods of a point a is called a basis about the
point a or a complete system of neighborhoods of the point a if for every open set ¢
containing the point a a neighborhood U € 2’ can be found such that. U cG.
It follows directly from B) that if Z is a basis of the whole space, then the total-
ity of the open sets of the system = which contain the point a forms a basis,
about the point a.

As we have remarked above, the knowledge of a complete system of neigh-
borhoods Z in the space R enables one to determine uniquely the operation of
closure in this space. We shall show concretely how the above transition from
neighborhoods to the operation of closure can be accomplished.

C) Let a be a point, and M a set of R. Then a belongs to M if and only if
&ery neighborhood U of the point a contains a point belonging to M. By a
neighborhood of the point a, we understand here any element of a basis about
the point a (see B')).

For suppose that @ does not belong to . Then R — 71 is an open set con-
taining @, and hence there exists an open set U ¢ =’ such that ae Uc R — M
(see B’)). Hence there exists a neighborhood U of the point a which does not
intersect M. If further V is a neighborhood of the point @ which does not in-
tersect M, then M c R — V = F, where F is a closed set since V is an open set.
Then M cF = F,i.e., M does not contain a. Hence in order that 3 should
not contain a, it is necessary and sufficient that a should have a neighborhood
which does not intersect M. But this assertion is equivalent to C).

D) If = is a complete system of neighborhoods of a topological space R (see
Definition 13), then the following conditions are fulfilled:

a) If @ and b are two distinct points of the space R, then a neighborhood
U ¢ Z of the point a can be found which does not contain the point b.

b) If Ue 2 and V ¢ S are two neighborhoods of the point a ¢ E, then a
neighborhood W e Z of the same point a can be found such that WeUn V.

To prove condition a) we observe that R — b is an open set, and hence
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from B) there exists a neighborhood U of the point @ which is contained in
R —b. To prove condition b) we apply the same remark B) to the open set
U n V, which contains the point a.

Conditions a) and b) are important inasmuch as they in turn can be taken
as axioms for neighborhoods in a topological space. In greater detail this
thought is expressed in Theorem 3, which is at the same time a converse of the
propositions C) and D) taken together.

THEOREM 3. Let R be a set, and let Z be a system of its subsets for which the fol-
lowing conditions are satisfied:

a) For any two distinct points a and b of R there exists a set U of the system =
which is such that a ¢ U, but b ¢ U.

b) For any two sets U and V of the system Z which contain the point a € R,
there exists a set W of the system which is such thata e We UNnV.

We shall now define in R the operation of closure of an arbitrary set M c R,
by stating that a € M if and only if every subset of the system = which contains a
intersects M. The operation of closure thus defined satisfies Definition 11, and
hence R is a topological space. Moreover the system X is a complete system of
neighborhoods of the space R.

Proor. Condition 1) of Definition 11 is satisfied in R, since the operation of
closure is defined. We now proceed to show that conditions 2), 3), and 4) are
also satisfied. We shall call the set U € £ a neighborhood of the point a ¢ R
if aeU.

Let M contain only a single point a. Since every neighborhood of the point
a contains a, then a e M. Let b be a point of R distinct from a. By condi-
tion a) of the theorem there exists a neighborhood U of the point b which
does not contain a. Hence b does not belong to M, and M = a, so that condi-
tion 2) of Definition 11 is satisfied.

Let M and N be two subsets of R. If a € M u N, then every neighborhood U
of the point a intersects either M or N, but in that case U intersects M v N,
ie,ae MuN. If now adoes not belong to 2 u N, there exist neighborhoods
U and V of the point ¢ which are such that U, V do not intersect M and N
respectively. By condition b) of the theorem there exists a neighborhood W
of the point @ which is contained in U n V. W does not intersect M u N, and
hence a does not belong to M v N. Hence M u N = M u N, and condition 3)
of Definition 11 is satisfied. ,

Before taking up the proof that condition 4) of Definition 11 is satisfied, we
remark that under the operation of closure introduced in Theorem 3, N c N.
In fact, if x € N, then every neighborhood of z intersects N, since it contains z.
Hencere N,i.e.,, NcN.

Let a € M. This implies that every neighborhood U of the point a inter-
sects M, i.e. there exists a point b, which is such that be U and be M. But
then U is a neighborhood of the point b, and since b € M, it follows that U
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intersects M. In this way, an arbitrary neighborhood U of the point a inter-
sects M, i.e., a ¢ M and hence M ¢ M. On the other hand we have shown above
that M c M. Hence M = MM, i.e., condition 4) of Definition 11 is satisfied.

We shall now. show that 2 is a complete system of neighborhoods of the
space R. Let us show first of all that every set U e Z is an open set of the
space R. To do this, it is sufficient to prove that F = B — U is closed. If
the point z does not belong to F, then x ¢ U, and hence the neighborhood U
of the point z does not intersect F. Hence x does not belong to F. There-
fore F = F, and hence U is an open set. If now G is an arbitrary open set of R,
and a € G, then R — G = FE is closed and does not contain a. Hence there
exists a neighborhood W of the point @ which does not intersect £. In this
way for an arbitrary open set G and point a € G, there exists a neighborhood W
which is such that a £« W c @G, i.e., Z is a basis of R (see B)).

Hence the proof of Theorem 3 is complete.

E) Theorem 3 enables us to define a topological space R by means of a sys-
tem 2 of subsets of the space R which satisfies conditions a) and b) of Theorem
3 rather than by means of the operation of closure. Given the system Z, the
operation of closure in R is determined by the method given in Theorem 3,
and this system Z is called the defining system of neighborhoods of the space R.

If the space R is given by means of a defining system of neighborhoods, then
the operation of closure in R is uniquely determined. The converse is not
true, however. If R is given by means of the operation of closure then the
defining system of neighborhoods is not uniquely determined. Therefore, the
question arises under what conditions two different systems of defining neigh-
borhoods of the same set R lead to the same operation of closure.

F) Two defining systems of neighborhoods = and 2’ are called equivalent if
they lead to the same operation of closure in R. In order that two systems =
and Z’ of defining neighborhoods be equivalent, it is necessary and sufficient
that for every point a and neighborhood U ¢ = of the point a there can be
found a neighborhood U’ € 2’ of the point a such that U’ ¢ U, and conversely,
for every neighborhood V'’ € 2’ of the point @ there can be found a neighbor-
hood V € Z of the same point such that Ve V".

The necessity of this condition is obvious. In fact, since U is an open set
containing a, and 2’ is a basis of R, there exists a U’ ¢ £’ such that a ¢ U’ c U.
In the same way we can prove the existence of V for a given V’. Supposing
now that the conditions of equivalence of £ and X’ are satisfied, we shall show
that = and Z’ lead to the same operation of closure. Suppose that a ¢ M,
where the closure is constructed with respect to the system =. Let ¥V’ be an
arbitrary neighborhood of the point a in the system 2’.  From the condition of
equivalence there exists a neighborhood V € = of the point a such that Ve V’,
but V intersects M, and therefore V' intersects M. Since V' is an arbitrary
neighborhood of the point a in the system X, it follows that a € M, where the
operation of closure is defined with respect to the system 2.

We now formulate in terms of neighborhoods a necessary and sufficient con-
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dition that a subset G of the space R be an open set. This condition is as
follows: :

G) The subset G of a space R is an open set if and only if for every point
a € (7 there exists a neighborhood U of the point @ which is contained in G.

The necessity of this condition follows directly from the fact that the defining
system of neighborhoods is a basis of the space R. If now @ satisfies the above
condition, we shall prove that R — G = F is a closed set. Suppose that a does
not belong to F. Then a ¢ G, and hence there exists a neighborhood U of the
point a which does not intersect . Hence a does not belong to F, and F is,
therefore, closed.

We now give in terms of neighborhoods a necessary and sufficient condition
for a point a to be a limit point of a set M. This condition can be formulated
as follows:

H) In order that a point a be a limit point of a set M, it is necessary that
every neighborhood of the point a contain infinitely many points of M, and
it 1s sufficient that every neighborhood of the point a contain at least one point
of M distinet from a.

In fact, suppose that a e M — q, and that some neighborhood U of the point
a contains only a finite set N of points of the set M — a. Then U — N is an
open set containing @, and hence there exists a neighborhood V of the point a
which is contained in U" — N, i.e., a neighborhood V which does not intersect
the set M — a; but this is impossible, since a e M — a. If conversely, every
neighborhood of the point a contains a point of M distinct from a, this means
that every neighborhood of the point a intersects M — a,i.e.,ae M — a, and
hence a is a limit point of M.

ExampLE 13. Let R* be the n-dimensional Euclidean space. Every point
of B"is determined by its n cartesian coordinates. We consider the sequence
of points 2, k = 1,2, - - - . The coordinates of the point x; we denote by xt,
t=1,---,n Wesay that the sequence x; converges to the point x with co-
ordinates z¢, if lim;., r} = 2 for every 7. Let M be a set of points of R
We say that x is a limit point of the set M if there exists in M a sequence of
points distinet from x which converges to . We define as the closure M of the
set M the totality of the points which either belong to M or are limit points of
M. Tt follows readily that the operation of closure thus defined satisfies all
the conditions of Definition 11. Hence R* becomes a topological space.

Since R" is a Euclidean space, in it is defined the distance between any two
points. The set of all points of R* whose distance from a fixed point a is less
than a given number r is called the sphere with center a and radius r. It is
easily seen that every sphere is an open set in R*. It can also be shown that
the aggregate of all spheres forms a basis of R”. Similarly, the aggregate of all
spheres with rational centers and rational radii forms a basis of R".

ExampLE 14. In this section we have given a method of defining the opera-
tion of closure by means of neighborhoods. Another rather important way of
defining the same operation is by means of a metric. It is not possible, how-
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ever, to define the operation of closure in all topological spaces by means of a
metric. Therefore the important class of metrizable topological spaces is
singled out.

The set R of elements is called a metric space if to every pair z, y of its points,
corresponds their distance, i.e., a non-negative real number p(z, y) which satisfies
the following conditions: a) p(x,y) = 0if and only if x = y; b) p(z,y) = p(y, 2);
c) P(xs y) + P(yr z) 2 p(,2).

The operation of closure satisfying the conditions of Definition 11 can be
introduced naturally into a metric space so that a metric space is transformed
into a topological space. Let M be a subset and a a point of a metric space R.
We shall call the distance from the point a to the set M the lower bound p(a, M)
of the numbers p(a, x) for x ¢ M. The closure M of the set M is defined as the
totality of all the points whose distance from M is equal to zero. A topological
space in which the operation of closure can be defined in this way by means of
a metric is called metrizable.

By the sphere of center a and radius ¢ > 0 in a metric space R we understand
the set of all points whose distance from a is less than e. It follows that every
sphere in R is an open set and that the aggregate of all spheres forms a basis
of the topological space R.

Fundamental examples of metric spaces are the Euclidean spaces of finite
dimension (see Example 13), and their generalization to infinitely many dimen-
sions, known as Hilbert space H.

The elements of the space H are all the sequences 2 = {a1, - =+, Zn, * - - } of
real numbers for which the series 2> + - - - +22 + - - - is convergent. Dis-
tance in H is defined by the relation

o y) = V[ — )+ -+ @ =y

9. Homeomorphism. Continuous Mapping

From the point of view of abstract topology two topological spaces having
the same operation of closure are identical, or making use of the adopted termi-
nology, homeomorphic. This is expressed more precisely in the following defi-
nition.

DeriNiTION 14. A mapping f of a topological space R on a topological space
R’ is called homeomorphic or topological if it is

1) one-to-one, and

3) preserves the operation of closure, i.e., for every M cR, we have
JQI) = j(M).

Obviously, if the mapping f is homeomorphie, then the inverse mapping f-!
is also homeomorphic.

Two topological spaces B and R’ are called homeomorphic if one of them can
be homeomorphically mapped on the other.

.The concept of homeomorphism for topological spaces is an analogue of the
concept of isomorphism for groups. As topological properties of topological
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spaces we count only those which remain invariant under a homeomorphic
mapping. it follows from Definition 14 that topological properties are those
and only those which can be expressed in terms of closure. In this way the
property of sets of being open or closed is topological, while the property of
being a neighborhood is not topological, since an open set may enter into one
basis of a space but not into another. In view of non-invariance of the con-
cept of neighborhoods, we shall have to verify the topological invariance of all
definitions formulated in terms of neighborhoods, i.e., if we replace a system of
neighborhoods by an equivalent system the definition will have to remain un-
altered (see §8, I')).

A weaker connection between two spaces than homeomorphic mapping is
given by a continuous mapping. If homeomorphic mapping is an analogue of
isomorphism, then continuous mapping is an analogue of homomorphism.

DEriNITION 15. A mapping g of a topological space R into a topological
space R’ is called continuous, if for every M c R we have

g(M) cg(M).

A) We shall prove that if the mapping g is one-to-one and bicontinuous, i.e.,
if both g and g~ are continuous, then g is homeomorphic.

Since the mapping ¢ is continuous, g(77) € g(M). We denote the set g(M)
by M’, and applying to it the mapping ¢—! we obtain g—1(M’) c¢g~'(M’). But
since the mapping ¢g~! is continuous, g~(M’) €¢g~'(M’). The last two rela-
tions taken together give g~}(M’) = ¢g-1(M’), i.e., the mapping g~! is homeo-
morphic, since the set M, and hence also the set M’, is arbitrary. Since g—*
is a homeomorphic mapping, ¢ is also homeomorphic.

We now formulate the condition for continuous mapping in terms of neigh-
borhoods. As a matter of fact this condition is rather important since it is
used in practise to determine a continuous mapping.

THEOREM 4. In order that a mapping g of a space R into a space R’ be continu-
ous it is necessary and sufficient that the following condition be fulfilled: For every
point a & R and every neighborhood U’ of the point a’ = g(a) € R’ there exists a
neighborhood U of the point a such that g(U) c U’.

Proor. Suppose that the mapping g is continuous, and let U’ be an arbitrary
neighborhood of the point a’ = g(a). Put F’ = R’ — U’ and denote by F the
complete inverse image of the set F’/ under the mapping g, F = g~'(F’). Then
F does not contain the point a.

Furthermore, because ¢ is a continuous mapping we have g(F) cg(F) c F’
= F’, since F' is closed. Hence F c F, i.e., F is also closed, and there exists a
neighborhood U of the point a which does not intersect F, and this means that
g(U)c U’. And so the necessity of the condition formulated above is estab-
lished. We now prove its sufficiency. Suppose that this condition is fulfilled,
and let M ¢ R. We shall show that if a ¢ 7, then a’ = g(a) e g(M). Let U’
be an arbitrary neighborhood of the point a’. Then by the condition above




§10] SUBSPACE 35

there exists a neighborhood U of the point a such that ¢g(U)c U’. Since
ae M, U intersects M, but then U’ intersects g(M), i.e. a’ € g(M). Hence
g(M) < g(M).

We give two other necessary and sufficient conditions for a continuous map-
ping, which are also rather important.

TaEOREM 5. In order that a mapping g of a space R in a space R’ be continu-
ous it 18 necessary and sufficient that one of the two following conditions be fulfilled:

1) If F' is a closed set of R', then the complete inverse image F of the set F' under
the mapping g is a closed set in R.

2) If G' is an open set of R’, then the complete inverse image G of the set G’ under
the mapping g is an open set in R.

Proor. We shall show first of all that the conditions 1) and 2) are equiva-
lent. Let F’and G’ be two non-intersecting sets of R’, whose sum is equal to R’.
Let us denote by F and G the complete inverse images of the sets F/ and G’
under the mapping g. It is obvious that F and @ do not intersect, and that
their sum is equal to B. Suppose now that condition 1) is fulfilled and that
G’ is an arbitrary open set of R’. Then F’is a closed set (see Definition 12),
and from condition 1) it follows that F is also closed, so that G is an open set.
In this way 2) follows from 1). The fact that 1) follows from 2) can be proved
in a similar way.

We shall now prove the necessity of condition 2). Let G’ be an arbitrary
open set of R’ and G be the complete inverse image of G’. Let a be an arbi-
trary point of G and let a’ = g(a). Since G, is an open set, there exists a
neighborhood U’ of the point a’ which is entirely contained in G’ (see §8, G)).
By Theorem 4 there exists a neighborhood U of the point a such that g(U) ¢ U’,
but since U’ c G’ and G is the complete inverse image of G’ we have U cG.
Hence G is an open set (see §8 G)).

We finally prove the sufficiency of condition 2). Let a be an arbitrary point
of R, a’ = g(a) and U’ an arbitrary neighborhood of the point a’. Since U’
is an opensetin R’, it follows from condition 2) that the complete inverse image
G of the set U’ under the mapping ¢ is an open set in R, and hence there exists
a neighborhood U of the point a which is entirely contained in G (see §8, GQ)).
Hence g(U) € U’, and the mapping g is by reason of Theorem 4 continuous.

B) It is easy to see that if ¢ is a continuous mapping of the space R in the
space R’, and ¢’ is a continuous mapping of the space R’ in the space R’’, then
the mapping h(z) = g¢'(g(x)) is also a continuous mapping of the space R in
the space R'’.

10. Subspace

If we want to carry out an analogy between the second and first chapters,
then homeomorphic and continuous mappings become analogues of isomorphic
and homomorphic mappings. We shall now proceed to construct an analogue
of a subgroup.
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DeriniTiON 16. Let R be a topological space, and 2* a subset of the set K.
We can introduce a topology into R* in a natural way by deducing it from the
topology of the space R, so that the set R* itself will become a topological
space, a subspace of the space R. The concepts of closure, closed sets, and
open sets, and other concepts which arise in this way in RB* are called relative.
The relative operation of closure M* of the set M in the space R* is defined as
follows: M* = M n R*.

Hence condition 1) of Definition 11 is fulfilled in B*. We shall prove that
conditions 2), 3), and 4) of this definition are also fulfilled.

If M contains only one element a, then 3/* = M n R* = M n R* = M.
Hence condition 2) holds.

Let M and N be two sets of R*. Then

(Mo N)* = (Mo N)nR* = (MuN) nR* = (M nR*)u (N nR*) = M*u N*,

i.e., condition 3) holds.

In proceeding to establish condition 4) we remark that it follows from
the construction of the operation of closure in R* that N c N*, since
N* = NanR*>NnR* = N. Furthermore, we have M n R*c M, so that

M n R* c M, and hence

—_—k = —_—— I —
M*= M*aR*= (MnR*)aR*c M nR* = M*,

But we have just shown that 3* c A_“T:, hence ]:l[i = M* and condition 4) holds.

We give now some elementary properties of subspaces.

A) Let R* be a subspace of the space R (see Definition 16). If F is a closed
set in R, then E = F n R* is a relative closed set in B*, and conversely, every
relative closed set E of R* can be obtain«1 as the intersection with B* of some
closed set F of R.

In fact, let F be a closed set of R au. let E = FaR* Then EcF and
EcF = F. Taking intersections with R* on both sides of the last relation we
get E n R*c F n R*,i.e., E*c E, but since E c E*, it follows that £* = E, and
hence E is a relative closed set of R*.

Conversely let E be a relative closed set of R*. This implies that
E = E* = En R*,i.e., E is the intersection of a closed set E and R*.

B) Let R* be a subspace of the space R. If (7 is an open set of R, then
H = G n R*is a relative open set of R*. Conversely, every relative open set
H of R* can be obtained as the intersection with R* of some open set G of R.

Let G be an arbitrary openset of R. Then F = B — Gis a closed set. Sup-
pose that H = G n R*and E = F n B*. Itf{ollowsreadily that H = R* — E,
but from what we have just shown (see A)), E is a relative closed set and hence
H is a relative open set.

If conversely, H is a relative open set, then E = R* — H is a relative closed
set and hence E = F n R* where F is closed in R (see A)). ThenG =R — F
is an open set and H = G n R*.
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C) Let R be a topological space, R* a subspace of R and Z a basis of R.
If we denote by Z* the totality of all sets of the form G’ n R*, where G’ ¢ 2,
then £* forms a basis of R*. An analogous proposition holds for a basis about
a point.

In fact since all the elements of Z are open sets, it follows from what we have
already shown (see B)) that Z* is composed of relative open sets. We shall
prove that every relative open set H of R* can be obtained as the sum of rela-
tive open sets belonging to the system Z*. We have shown (see B)) that
H = G n R* where (@ is an open set. Since X is a basis of R, it follows that
@ can be written as the sum of some system A of open sets of Z. We denote
by A* the totality of all sets of the form G’ n R* with G’ ¢ A. Then A* c Z*
and H is the sum of all the sets contained in A*.

D) Let R* be a subspace of the space B. We shall associate with each point
z € R* the point f(z) = z ¢ R. Then the mapping f is a continuous mapping
of the space R* in the space R.

In order to prove this, we make use of condition 1) of Theorem and re-
mark A). If Fis a subset of the space R, then the complete inverse image of
the set F under the mapping fis F n R*, If F is closed, then the set F n R*
is closed in R*, and hence the mapping f is continuous.

E) Let g be a continuous mapping of the space R in the space R’. Suppose
that g(R) c R* c R’. Since R* is a subset of the space R’, it is also a topological
space. It follows that g isa continuous mapping of the space R in the space R*.

To prove this it is sufficient to remark that if ¥ ¢ R’ then the complete in-
verse image of the set F under the mapping ¢ coincides with the complete in-
verse image of F n R*, and then to apply this remark to the case when F is
closed.

Prapositions D) and E) show that Definition 16 was given, so to speak, cor-
rectly. For if we were faced with the problem of assigning the topology of a
subspace, we would aim to do so in such a way that propositions D) and E)
would hold. It is interesting to notice that from this point of view the topol-
ogy of a subspace is determined uniquely, that is, if we insist that propositions
D) and E) be fulfilled, we will arrive at Definition 16.

ExampLE 15. Let R be the totality of all real numbers. R can be treated
as the set of all points on a line. We define in R the operation of closure as
in Example 13 (for the case n = 1). Let R* be the subspace of the space R
which is composed of all numbers y such that —1 <y < + 1. We shall show
that R and R* are homeomorphic. Let y = (¢* — ¢%)/(e* + ¢%). Thisrela-
tion associates every point z of the line B with some point of the interval R*.
This correspondence is one-to-one and bicontinuous.

ExampLE 16. Let R be a plane with its usual topology (see Example 13).
We denote by R* the subspace of the space R which is composed of all points
on the unit circle, i.e., of all points (z, y), which satisfy the equation 2% 4 3? = 1.
By R** we denote the set of all points on the axis of abscissas whose abscissas ¢
satisfy 0 < ¢ < 2r. We obtain a one-to-one continuous mapping of the space
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R** on the space R* by means of the relations z = cos ¢, y = sin ¢. It is not
difficult to verify that this mapping is continuous and one-to-one. What is
interesting is the fact that this mapping is not bicontinuous, i.e., the inverse
mapping of the space R* on the space R** is not continuous. In fact the map-
ping has a discontinuity at the point whose coordinates are (1, 0).

11. Connectedness

In this and the two following secti some additional restrictions will be
pointed out which we shall impose ma general topological space.
Connectedness is one of these restrictions which, however, does not play a very
important role.

A) A topological space R is called connected if it cannot be decomposed into
the sum of two non-null and non-intersecting closed sets 4 and B. Obviously
the same definition can be given in still another form: a topological space R is
connected if it cannot be decomposed into the sum of two non-null and non-
intersecting open sets A and B.

Applying this definition to a subspace we obtain the concept of a connected
set; namely, a set M of points of the space R is called connected when it can be
thought of as a connected subspace (see Definition 16).

A more useful definition of a connected set can, however, be given directly
as follows:

B) A subset M of a space R is called connected if it cannot be decomposed
into the sum of two non-null and non-intersecting sets A and B which are such
that (4 n B) n M is a null set. If M = R, then obviously this definition coin-
cides with definition A).

C) Let A be the totality of connected subsets of the space R (see B)) which
have a point @ in common. Then the sum M of all the sets contained in A is
connected.

Suppose that M is not connected. Then M can be decomposed into the
sum of two non-null and non-interesting sets A and B which are such that
(A nB)n Misanullset. LetacA,beB,and P bean element of the system A
which contains the point b. Let A’ = A nP,and B’ = BnP. Then A’ and
B’ are two non-null and non-intersecting sets whose sum is P. Moreover,
A'c4, B'c B (see §7, B)), and Pc M. We have therefore (4’ n B’) n P
c (4 n B) n M, but since the right side of this relation is zero by assumption,
the left side is also zero. In this way P appears not to be connected, which con-
tradicts the hypothesis.

D) Let a be a point of a topological space R. Then there exists in R a
maximal connected subset K which contains the point a. The set K is a maxi-
mal set in the sense that every connected subset of the space R which contains a
isin K. The set K is always closed and is called the component of the point a
in the space R.

In fact let A be the totality of connected subsets of the space R which con-
tain the point a. The sum K of all the sets contained in A is connected by
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virtue of remark C), and is by construction the maximal connected set which
contains a. We shall show that the set K is closed. To do this, it is sufficient
to show that K is connected, since in that case, K being a maximal set, we
shall have K ¢ K, and hence K = K (see §7, A)). Suppose K were not con-
nected. Then K is decomposable into the sum of two non-null and non-inter-
secting sets A and B such that 4 n Bn K is null. Suppose that A’ = A n K,
B’ = Bn K, andthat ae A’. We shall then show that B’ is empty. In fact,
if B’ is not empty, then K could be decomposed into the sum of two non-null
and non-intersecting sets A’ and B’ such that 4’ n B’ n K is empty, since the
last intersection is contained in 4 n B n K, which is empty by hypothesis.
Hence we have arrived at a contradiction and B’ is empty. But this means
that K ¢ A and hence the intersection An Bn Ko KnBnK=KnB>KnB
is not empty, since the set B is not empty and is contained in K.

E) If there exists a continuous mapping g of a connected topological space R
on some space R’, then the space R’ is connected.

Suppose the contrary were true. Then the space R’ can be decomposed into
two non-intersecting closed non-null subsets E' and F’. The inverse images E
and F of these subsets in R are also closed (see Theorem 5) and add up to R.
Hence the space R is decomposed into the sum of two non-intersecting non-null
closed sets, which contradicts the assumption that R is connected.

12. Regularity. The Second Axiom of Countability

In this section we shall consider rather important further restrictions, namely
regularity and the second axiom of countability, which we shall impose at times
upon the topological spaces to be considered. Although we shall not make use
of the first axiom of countability, in the future, we give it here for the sake of
completeness.

We say that a topological space satisfies the first axiom of countabzlzty if each
of its points admits a countable basis.

DeriNiTION 17. A topological space R is called regular if for every neighbor-
hood U of an arbitrary point a there exists a neighborhood V of the same point
such that V' c U.

.The invariance of this definition follows readily (see §8, F)). Let Z and I’
be two complete systems of neighborhoods of the space R (see Defi-
nition 13). Supposing that the system X is regular, we prove the regularity of
the gystem Z’. Let U’ € Z’ be a neighborhood of the point a. Since Z and
3" are equivalent (see §8, F)), there exists a neighborhood U € Z of the point a
such that Uc U’. Since Z is regular, there exists a neighborhood V ¢ 2 of
the point a such that Ve U. Furthermore, because of the equivalence of
and 2’, we can find a neighborhood V' e 2’ of the point a such that V' cV,
so that we have V' e Ve Uc U/, i.e., 2’ is regular.

In the future proofs of this type will be omitted because of their triviality.

A) In a regular space R each pair of distinct points a and @’ have neighbor-
hoods ¥V and V’ whose closures do not intersect.
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Let U be a neighborhood of the point a which does not contain a’ (see §8,
D)). Since R is regular, there exists a neighborhood V of the point a such that
VcU. Theopenset R — V contains a’, and therefore there exists a neighbor-

hood U’ of the point a’ which is contained in B — V. Because of regularity
there also exists a neighborhood V' of the point a’ such that V' e U’. Obvi-
ously V and V' do not intersect.

DeriniTioNn 18. We say that the topological space R satisfies the second
axtom of countability if it contains a basis having not more than a countable
number of open sets (see Definition 13).

B) If a topological space R is regular then each of its subspaces R* is regular,
and if R satisfies the second axiom of countability then each of its subspaces
satisfies the second axiom of countability (see Definition 16).

Suppose that R satisfies the second axiom of countability. Let = be a count-
able basis of the space B. The basis Z* of the subspace R* which corresponds
to the basis = (see §10, C)), is also countable, and hence R* satisfies the second
axiom of countability. Suppose that R is regular, and let U* = U n R* be a
neighborhood of the point a in the space R*, while U is a neighborhood of this
point in R. Since R is regular, there exists a neighborhood V of the point a in
R such that Ve U. Suppose that V* = V nR*. Then V' = (V n R*) n R*
cVeU, and V* c R* hence V* c U*, i.e., the space R* is regular.

In what follows in this section we shall consider only regular topological
spaces which satisfy the second axiom of countability, although some of the
propositions which we shall prove hold in a more general case. For brevity
we introduce the following notation:

C) A regular topological space which satisfies the second axiom of counta-
bility will be called an S-space.

D) In an S-space R there exists for every point a a basis composed of open
sets

1) W/'l!..‘)Wﬂl'..

which are such that

2) Wapnc W, n=12 -
Let = be a countable basis of the space R. We denote by Uy, - - -, Uy, - - -

the open sets of = which contain the point a, and by V, the intersection of all

the open sets Uy, - - -, U,. It is easy to see that the open sets

3) Vi oy Ve oo

form a basis about the point a, with V,;,cV,, n=1,2,-.-. In fact, if G

is any open set containing the point a, there exists a number p such that U, c G,
but then also V,cG. We now select from the sequence 3) the sequence 1),-
ie, Wi;=V,,7i=1,2, -, which satisfies condition 2). To do this suppose
that W, = V,, and that the open set W;is already chosen. Because of regular-
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ity, there exists a number n; + k for which V., x€V,,. Letting Wi = Vi,
the sequence 1) is determined by induction.

We shall now introduce the concept of a convergent sequence of points.
This concept could be introduced into an arbitrary topological space, but in all
its generality it does not prove valuable. We shall use it only in connection
with S-spaces.

E) We say that a sequence of points

4) al}...,an,...

of an S-space R converges to the point a of this space if for every neighborhood U
of the point a there exists an integer &k such that U contains all the points a, of
the sequence 4), with n > k. In particular, all the points of sequence 4) may
coincide with the point b, in which case a = b.

) If in an S-space R the sequence 4) converges to a, then the set N of points
of this sequence cannot have a limit point @’ # a. Furthermore, the sequence
(4) cannot converge to a point a’’ # a.

In fact, let V and V' be two non-intersecting neighborhoods of the points a
and a’ (see A)). Since the sequence (4) converges to a, it follows that all of
its points, except a finite number, belong to V, and hence a’ cannot be a limit
point of N. In the same way we can prove that the sequence (4) cannot con-
verge to a’’.

G) Let R be an S-space and let M cR. The point a &€ R belongs to M if
and only if M contains a sequence of points which converges to a.

For if M contains a sequence which converges to a, then every neighborhood
of the point a intersects M, and hence a e M (see §8, C)). If conversely
a e M, we construct for a the basis (1) which satisfies condition (2). Since
every neighborhood W, of the point a intersects M (see §8, C)), there exists a
point a, € W, which belongs to M. It is easy to see that the sequence
ai, -+, @y, - - - thus obtained converges to a.

H) Let R be a topological space which satisfies the second axiom of counta-
bility, let M be one of its subsets, and let Q be a set of open sets whose sum con-
tains M. Then we can select from the system @, a countable system Q' of
open sets whose sum also contains M.

In short, from an arbitrary covering we can always select a countable cover-
ing.

Let 2 be a countable basis of the space R. Denote by =/ = {Ul, Uy, - - -,
U, - - - | the totality of all open sets of = which are such that each of them is
contained in at least one open set of the system Q. Every open set G of the
system Q can be represented as the sum of some system Z¢ of open sets of X.
But since each open set of the system Z¢ is contained in G, Z¢c Z’. Hence
every open set of £ can be represented as a sum of open sets of £’. Because
the system Q covers M, the system Z’ possesses the same property. Denote
by G, an open set of the system Q which contains the open set U7,. The sys-
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tem Q' = {Gl, R € } covers the set M. Hence from an arbitrary
covering @ we have selected a countable covering Q.

Exampre 17. Let R be the topological space defined in Example 12. Since
a complete system of neighborhoods = of R can be assigned in such a way that
every open set of = contains only one point, the regularity is obvious. On the
other hand, if R contains a non-countable number of points, the second axiom
of countability is not satisfied, since every basis of the space R must contain all
the open sets having one point each.

ExamrLE 18. Let R be the topological space defined in Example 11. Every
non-null open set G of R can be obtained by removing from R a finite set N,
G = R — N. It follows from this directly that R satisfies the second axiom of
countability if and only if the number of points in B does not exceed a count-
able number, and that R is regular only if it has a finite number of points. In
fact, let a be a point and U a neighborhood of a. Let V be another neighbor-
hood of a. If R contains an infinite number of points, then V = R, and hence
VeU only when U = R, but, of course, every point a has a neighborhood U
distinet from R.

13. Compactness

We shall consider here the rather important restricting condition of compact-
ness, which we shall impose at times on the topological spaces under considera-
tion. It is worth noting that the condition of compactness alone is not a
sufficient restriction, and, therefore we shall discuss primarily compact S-spaces
(see §12,C)). Together with compactness an important part is played by local
compactness.

DeriNiTION 19. A subset M of a topological space R is called compact if
every infinite subset N ¢ M has at least one limit point in M. A topological
space R is called compact, if the set R is itself compact. A topological space R
is called Jocally compact if each of its points has a neighborhood whose closure
is compact.

A) A closed subset M of a compact topological space R is compact. In par-
ticular it follows that every compact space is at the same time locally compact.

For, every infinite subset N € M has a limit point in R since I is compact;
but since M is closed, this limit point belongs to M.

B) Every compact subset M of an S-space is closed.

Suppose the contrary to be true. Then there exists a point a contained in M
but not belonging to M. By §12, G), M contains a sequence

1) Ay -y Qpy c vy

which converges to a. But (1) has to contain an infinite number of distinet
points, for in the contrary case all the points of the sequence 1), with only a
finite number of exceptions, will have to concide with a. But a does not belong
to M. Hence (1) is an infinite set, and as such must have a limit point in M,
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but its only limit point is the point a (see §12, F')). - Hence a € M, which con-
tradicts the assumption.

THEOREM 6. Let
2) Fl,"‘,Fn,"‘

be a sequence of compact non-null subsets of an S-space such that F..; € F.,,
n=1,2---. Thentheintersection F of all sets of the sequence 2) is non-empty
and compact.

Proor. If the sequence 2) is stationary beginning with a certain subseript 7,
ie., if Fo = Foy for every n 2 4, then F = F;, and F. is by assumption not
empty. If this does not happen, then we can choose from the sequence 2) a
subsequence

3) EI’A..’E"‘,‘..

such that E.. # E,, with E,;,cE,, n=1,2,---. Let a,e E, — E,..
All the points a, n =1, 2,---, are distinct and therefore the set
M, = {a, G, - - } is infinite. We remark that the limit points of the

sets M; and M; coincide because these sets differ by only a finite number of
points. We shall therefore designate the totality of limit points, of M; by N.
The set N is not empty, since E; is compact. Furthermore N c E;, since
M;cE, and E,, being compact, is closed (see B)). Hence NcF and F is
non-empty. Being the intersection of closed sets of the sequence (2), F is
closed, and being a subset of a compact set Fy, the set F'is also compact (see A)).

As a consequence of Theorem 6, we prove the following proposition.

C) If G is an open set containing the intersection F of the sets of sequence 2)
(see Theorem 6), then there exists a number & such that for every n = k, we
have F, c(.

We shall suppose that E, = F, — G, and show that E, is compact. For the
sets R — G and F, are closed (see B)), and hence their intersection E, is closed.
But, being a closed subset of a compact space F,, the set £, must be compact
(see A)). Wehave E,,,cE,,n=1,2, ---. If all sets E; of the sequence

4) Ey,- -, K, -

)

with 7 exceeding some integer n, are zero, then the assertion C) is proved; if
all the sets of the sequence 4) are non-empty, then the intersection E is also
non-empty (see Theorem 6). It is easy to see that ' = F — @, but since we
have supposed that F c G, it follows that E is empty,i.e., we have arrived at a
contradiction.

THEOREM 7. Let R be an S-space, M a compact subset of R and Q a system of
open sets whose sum contains M. We can then select from the system Q a finite
system of open sets whose sum contains M. In short, we can select from an arbi-
trary covering Q a finite covering.
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Proor. From the covering Q we select a countable covering

Q' = {Glr"')Gn)"'}
(see §12, H)). Suppose that H, = GiuGu - - v G,, and F, = M — H,.
Then F,;1cF, and F, is compact, n = 1, 2, - - - (see B), A)). If beginning
with a certain number £, all sets of the sequence
5) Fy - F.
are empty, then H; > M, and hence a finite system @y, - - -, G« of open sets of Q

covers M,i.e.,the theorem is already proved. If all the sets of the sequence 5)
are non-empty, then their intersection is also non-empty by Theorem 6. This
means that there exists a point in M which does not belong to any open set of
the system Q', which contradicts the condition that Q' covers the set M.

THEOREM 8. Let f be a continuous mapping of a compact space R on R’.
Then R' is also compact. If, moreover, the mapping f is one-to-one, and if R’ is
an S-space, then f is a topological mapping.

Proor. If R’ is non-compact, then there exists in R’ an infinite subset N’
having no limiting point in R’. We shall show that this is impossible. We
select for every point z’ of the set N', a point x of R such that f(z) = z’. The
totality of all points x thus obtained we denote by N. Then N is an infinite
set and has a limit point @ in R, since R is compact. We shall show that
a' = f(a) is a limit point of the set N’. Let U’ be an arbitrary neighborhood
of the point a’, and let U be a neighborhood of a for which f(U) cU’. Such a
neighborhood exists, since f(z) is continuous (see Theorem 4). Since a is a
limit point of the set N, there exist in U two distinet points p and g of N. The
points f(p) and f(q) are distinet and both belong to U’. Hence at least one of
these points is distinet from a and belongs to both U’ and N’, so that a’ is a
limit point of N’, and we have arrived at a contradiction.

Suppose now that the mapping f(z) is one-to-one, and that R’ is an S-space.
We shall show that in this case the inverse mapping f~!(z’) is also continuous.
To do this, it is sufficient to show that if F is an arbitrary closed subset of R,
then its complete inverse image F’ is closed under the mapping f~(z’) (see
Theorem 5). ‘Since f(z) is one-to-one, it follows that F' = f(F). But F, being
a closed subset of a compact space, is compact. We have in this way a con-
tinuous mapping of a compact space F on the space F’, and hence, by what we
have just shown, F'is compact. But as such, it is closed in R’ (see B)).

D) If
6) By
is a sequence of points of a compact S-space R, then we can select from it a
convergent sequence.

Let N be the set of all points of the sequence 6). If the set N is finite, then
the sequence 6) has an infinite number of points which coincide with some
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point a. The points of the sequence 6), which coincide with a form a subse-
quence which converges to a. Suppose now that N is infinite. Then N has a
limit point a, and it follows from remark G) of §12 that three exists a sequence
of points of N which converges to a. This gives us the desired subsequence.

For many constructions of converging sequences in mathematics the so-called
diagonal process is often used. We shall formulate it here by means of the fol-
lowing theorem.

THEOREM 9. Let R, - - -, RY, - - - be a sequence of compact S-spaces, and let
a,n=12---,71=12 —--- beasystem of points such that a, ¢ R*. Then 1t
is possible to select an increasing sequence n(1), n(2), - - -, n(k), - - - of natural
numbers such that for a fixed v, every sequence @by, anay, * * 5 Gnay, - - © CONverges
in the space R*.

ProoF. Since the space R! is compact, it follows from D) that there exists
an increasing sequence

7) n(l) 1)) n(ly 2)7 Ty n(ly k)y T

of natural numbers such that the sequence ah, 4, k=1, 2,---, con-
verges in R!. Since the space R? is compact, we can select from the se-
quence 7), a subsequence n(2, 1), n(2, 2), - - - , n(2, k), - - - of natural numbers
such that the sequence of points @iy 4, k=1, 2, - -, converges in R2
Continuing this process of selection we construct increasing sequences
At = {n(i, 1), n(?, 2), - - -, n(, k), - - } of natural numbers, which are such
that the sequence of points

8) ai(i.k)y k= ]; 27 ]

converges in R fortv = 1,2, - - -, and the sequence A*! is a subsequence of the
sequence A, We now write n(k) = n(k, k), and let A = {n(l), n(2), - - -,n(k')}.
If we strike out the first # — 1 terms from the sequence A, we obtain a sequence
which is a subsequence of the sequence A¢, and since the sequence of points 8)
converges, it follows that the sequence ay), k = 1, 2, - - -, also converges.
Hence we have constructed the desired increasing sequence of natural numbers.

ExampLE 19. Let R be a Euclidean space with its usual topology (see Ex-
ample 13). It is easy to see that R is regular, and that it satisfies the second
axiom of countability. But R is not compact, since there exists in it an infinite
sequence of points having no limit point. However, every closed bounded
subset of the space R is compact. And conversely, every compact subset of R
is a closed bounded set.

14. Continuous Functions

In what follows an important réle will be played by continuous functions de-
fined on a topological space. It is easy to prove for these functions the usual
propositions of analysis concerning continuous functions (see below, A) and
B)). The main purpose of this section is to give a proof of a rather important
and non-trivial lemma of Urysohn.
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DeriniTiOoN 20. We say that a real-valued function f(z) is defined on a topo-
logical space R if to every element z € R corresponds a real number f(x). The
function f(x) is called continuous at the point a, if for every positive number e
there exists a neighborhood U of the point a such that for every z € U we have
\ flz) — f(a){ < e. The function f(z) is called continuous if it is continuous at
every poiat z of the space R.

This definition expresses with precision the fact that the function f(z) gives
a continuous mapping of a topological space R in the space of real numbers
(see Definition 15)

A) Let f(z) be a continuous real-valued function defined on a connected
topological space (see §11, A)). If the function f(x) assumes the values a and
b, then it assumes every intermediary value ¢, a < ¢ < b.

For if we assume the contrary to be true, it will follow that a continuous
function f(z) gives a mapping of a connected topological space R on a non-
connected set of real numbers, which is impossible (see §11, E)).

B) A real-valued function f(x) given on a compact topological space R (see
Definition 19) is bounded and achieves its maximum and minimum.

We denote by R’ the set of all values assumed by the function f(z), R’ = f(R).
The set R’, being an aggregate of real numbers, is a topological space. Since R
is compact, it follows from Theorem 8 that R’ is also compact. As a compact
set of real numbers R’ must be closed and bounded, and hence the function
f(z) is bounded. We now denote by s and ¢ the greatest lower and least upper
bounds of the set R’. Since R’ is bounded and closed, s and ¢ belong to R’,
and hence the function f(z) achieves its maximum and minimum.

Propositions A) and B) make it clear what type of lemmas we shall use to
prove some of the well known theorems of analysis concerning continuous func-
tions.

UrYsoHN’s LEMMA. Let R be a compact regular topological space satisfying the
second axiom of countability (see Definitions 17, 18, 19) and let E and F be two
of 1ts non-intersecting closed subsets. Then there exists a continuous function f(x)
defined on G such that 0 < f(x) < 1 for every.x e R, f(x) = 0 for every x ¢ E, and
f(x) = 1 foreveryxeF.

The idea of the proof of this lemma depends on the following construction.
Every binary fraction r, 0 < r < 1 is put into correspondence with an open
set G, of the space R such that E ¢ G, and G, does not intersect F. Moreover,
Grc@G if r' < r''. After such a system of open sets has been constructed,
the construction of the function can be accomplished without difficulty.

ProoF. We show first of all that if A and B are two non-intersecting closed
subsets of R, then there exists an open set  such that A ¢, and G does not
intersect B.

Let z be an arbitrary point of A, and R — B an open set containing z. Since
R is regular there exists a neighborhood U, of the point x such that U, ¢ R — B,
i.e., U.does not intersect B. When z assumes all the values of the set 4, the
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system of open sets U, covers A. Being a closed subset of a compact space,
A is compact (see §13, A)). By Theorem 7 we can select from the cover-
ing of the set A by open sets U, a finite covering Uy, Us, - - -, Us. The
sum G = Uyu Uzu - - -u U; contains 4, and G does not intersect B since
G = U,u Uzu - - - uUy, and U; does not intersect B for any <.

We now construct in R a finite system Z, of open sets G,, where 7 is a rational
number, written in the form ¢/27, ¢ = 1, 2, - - -, 2* — 1, and possessing the
following properties: a) E ¢ G,, G, does not intersect F, b) for r’ < r"’, G, € Gyr..

We shall carry out the construction by induction on n, and Z,,; will be ob-
tained by enlarging Z,.

¥, contains only one open set (3. To construct Gy welet A = Fand B = F.
Then by what we have just proved, there exists an open set G such that A ¢ @,
and G does not intersect with B. Let G; = G, then condition a) for 2 is satis-
fied, while condition b) has as yet no meaning.

Suppose that Z, is already constructed, we then proceed to construet Z,.;.
Letr = ¢/2"*!. Ifqiseven,let ¢ = 2p;thenr = p/2" and we havein this case
G, ¢ Z,, so that G, has already been constructed. Now let ¢ = 2p + 1, and
let s =p/2"andt = (p + 1)/2". We have to distinguish three cases: 1) s > 0,
t < 1;in this case G, and G, have already been constructed, and we can let
A =Gy B=R — G, then A and B are closed non-intersecting sets, since
G.cG:. 2)s = 0;in this case ¢, exists and welet A = E, B = R — G, and 4
and B are closed non-intersecting sets since £ € G,. 3) t = 1; then G, exists and
welet A = G,, B = F,and A and B are again two closed non-intersecting sets
since G, and F do not intersect. It follows that in all three cases there exists
an open set G such that A ¢ G, and G does not intersect B. Let G, = G; in
this way the system of open sets Z,;; is constructed.

We now show that in the system 2., thus constructed condition a) is satis-
fied. Incasel) wehave Ec(G,c(,, G,cG,cR — F, and hence E c G, and G,
does not intersect F. Incase2) Ec@,and G,cG,cR — F, and hence E cG,
and G, does not intersect F. Finally in case 3) E c G, cG,, while G,.c R — F,
and hence E c G, and G, does not intersect F. Hence condition a) is satisfied.

We now pass to condition b). Let r’ <7’’, where r’ = ¢’/2"+! and
r'" = ¢q'’/2~1  If ¢’ and ¢’’ are both even, then G, and G,.. belong to X,
and hence by the hypothesis of the induction G, c@G,.. Let ¢’ = 2p/,
q¢"" =2p"" 4+ 1,and let s = p’’/2". Then r’ < s and we have G, € G, <€ G,
ie, GnecG... If ¢/ =2p" + 1, and ¢’ = 2p"', we let t = (p’ + 1)/2".
Then ¢ < r"’ and we have G, cG.,cG,, ie., GncGu. If ¢ =2p + 1,
¢ =2p"” + 1, welet s = p’’/2". Then r’ < s and we have G, cG,cG,,
i.e., G, € G, Hence condition b) is also fulfilled.

Let now Z’ be the totality of all open sets which belong to all the systems Z,,
n=12---. Weenlarge ' by the open set G; = R, and denote this en-
larged system by Z’/. Then Z’’ contains all the open sets G, where r is an
arbitrary” binary fraction not exceeding unity. Also E c G, and G, does not
intersect F/, with the single exception when r = 1;moreover G, € G... forr’ < r’’.
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Let  be an arbitrary point of . We denote by f(z) the.lower bound of
all values of r for which x € ;. The function f(z) thus obtained satisfies the
conditions of the lemma.. Infact,if z ¢ E, then x € G, for every r, and since the
lower bound of all possible values of r is zero, f(z) = 0. If x ¢ F, then r ¢ G,
only when r = 1, and hence f(z) = 1. Moreover, since r takes on only posi-
tive values not exceeding unity, it is true for all values of z that 0 < f(x) < 1.
We shall now prove the continuity of f(x) for an arbitrary point z = a in R.
Let e be an arbitrary positive number. Let us first suppose that f(a) = 0.
Let r be a positive binary fraction less than e. Then ae G, We denote
by U a neighborhood of a such that Uc@,. Then for any z & U we have
f(x) £ r £ esince z € G, but since f(z) = 0, |f(x) ——f(a)! <e Letf(a) >0
and let r, s, and ¢ be three positive binary fractions not exceeding unity, and such
that f(a) — e <r < s < f(a) £t < f(a) + e. Obviously a does not belong
to G4, and since 7 < s, a does not belong to G,, but a € G,. Hence a belongs
to the open set G, — G,. We denote by U a neighborhood of the point a
such that Uc G, — G,. For every x ¢ U we have r < f(z) <t and hence
|f(x) — f(a)] < e Tt follows that the function f(z) is continuous.

We remark that in the construction of f(x) the compactness of B was used
only in the first point of the proof.

ExampLE 20. We give here by way of an example a brief exposition of a theo-
rem of Urysohn having to do with metrizability.

In connection with Example 14, the question naturally arises under what
conditions a space R is metrizable. It turns out that a compact topological
space R is metrizable if and only if it is regular and satisfies the second axiom
of countability. We shall sketch here the proof of only the following proposi-
tion:

A compact regular topological space R satisfying the second axiom of counta-
bility is metrizable.

Let = be a countable basis of the space R. We denote by (U, V,),
n =1, 2, ..., the totality of all pairs of open sets of the system Z such
that U/, and V, do not intersect. Let E = U,and F = V, and denote by f,(z)
the continuous function constructed in Urysohn’s lemma for the sets E and F.
We associate with every point x ¢ R the sequence of numbers z, = (1/n)f,(x),
n=1 2, ---. We also associate with every point z € R the point g¢(x)
= {xl, Sy Tyt } of Hilbert space (see Example 14). The mapping ¢
of the space R on Hilbert space turns out to be continuous and one-to-one.
Hence by Theorem 8 the space R is homeomorphically mapped on a subspace R’
of the Hilbert space, and hence R is homeomorphic with a metric space R’.

15. Topological Products |

Some analogies between the theory of topological spaces and the theory of
groups have been pointed out before. This analogy is most pronounced in the
concept of topological product, which appears to be an exact repetition of the
concept of direct product.
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DeriniTION 21. Let R and S be two topological spaces.  From them we con-
struct a new topological space T called the topological product of the spaces R
and S, T = R-S. By a point of the space T we understand any pair of points
(z,y) where z e Rand y € S. The topology of T can be given by means of the
definition of a topological space based on neighborhoods. Let M ¢ R and
NcS8. Wedefine as the product of the sets M and N the set P = M- N com-
posed of all pairs (z, y) where x ¢ M and y e N; then M-NcR-S. If now =
is a basis of R and Z' a basis of S, we define the basis '’ of the space T as the
totality of all sets of the form W = U-V, where U ¢ Z, and Ve 2’

The topological space T is given by means of the defining system of neighbor-
hoods Z'’ (see §8, E)). We now have to show that the conditions of Theo-
rem 3 hold for the system ='’.

Let (z, y) and (z’, ¥’) be two distinet points of 7. Then either x # 2’ or
y ¥ y'. Suppose that z # z’, and let U be a neighborhood of the point z not
containing z’, and V be an arbitrary neighborhood of y. The product U-V
gives a neighborhood of the point (z, ¥) not containing (z’, y¥’). Hence con-
dition a) of Theorem 3 is satisfied.

Let U-V and U’ V’ be two neighborhoods of the point (z, y) in the space T.
We denote by U’’ a neighborhood of the point z such that U’ c U n U”’, and
by V'’ a neighborhood of y such that V'’cV nV’. Then the neighborhood
U''-V'" of the point (z, y) satisfies the relation U"- V"' c&-V nU’- V' and
hence condition b) of Theorem 3 is also satisfied.

It is not hard to see that the definition of topological produet given here is
a topological invariant, i.e., if we replace the systems £ and =’ by equivalent
systems, 2’ will also be replaced by an equivalent system (see §8, F)).

A) If G is an open set of the space R and H an open set of the space S, then
the produet G- H is an open set of the space 7.

For, let (z, y) be a point of G- H, so that x € G, y ¢ H, and there exist neigh-
borhoeds U and V of the points z and y such that U ¢ G,and V¢ . But then
U-V is a neighborhood of the point (z, y¥) belonging to G- H and hence G- H
is an open set (see §8, G)).

B) If E and F are two closed sets of the spaces R and S, then the product
E-Fis a closed set in T.

Let G =R — Eand H = S — F. 1t can readily be seen that E-F = R- S
— (G-Su R-H). But G-S and R-H, being products of open sets, are them-
selves open sets and hence E - F is closed in R S.

C) If the second axiom of countability holds in R and S it also holds in T.
This follows directly from the construction of a basis for 7.

D) If R and S are regular, then their product 7 is also regular.

Let (2, y) be a point in T and let U -V be one of its neighborhoods in the sys-
tem 2/, Since R and S are regular, there exist neighborhoods U’ and V' of the
points z and y such that U'cU, V'cV. Then U'-V'cU'  V'cU V.
Since U/'- V' is the product of two closed sets, it is also closed and hence
UVelU -V, and UV cU-V.




50 TOPOLOGICAL SPACES [cH. 11

E) If R and S are compact regular topological spaces satisfying the second
axiom of countability then their product T is compact.

Let M be an infinite set of 7. We shall prove that M has a limit point in 7.
Without loss of generality we may suppose that M is countable, for if M were
non-countable, we could prove the existence of a limit point for some colintable
subset of M. Let us number all the points of M, M = {c], Coy =t 5y Cny * " }
and let us suppose that ¢, = (a,, b,). Since R is compact, regular, and .
satisfies the second axiom of countability, we can select from the sequence

ay - -+, @, - - - a convergent subsequence @, - - -, @, - - - (see §13, D)),
converging to the point a. Since S is compact, regular, and satisfies the second
axiom of countability, we can select from the sequence b,,, - - - , b,,, - - - a con-

vergent subsequence. Let this subsequence converge to the point b. Then it
follows readily that the point ¢ = (a, b) is a limit point for the set M.

F) If R and S are locally compact, regular, and satisfy the second axiom of
countability, then their product 7 is also locally compact.

Let ¢ = (a, b) be a point of T. Since R and S are locally compact, there
exist neighborhoods U and V of the points @ and b such that U and V are com-
pact. It follows from what we have already proved that UV is compact and
closed, hence UV € U-V, and therefore UV, being a closed subset of a com-
pact space U- V, must be compact. Hence the product U- V is a neighborhood
of the point ¢ whose closure is compact, and therefore T is locally compact.

We note that we can determine without difficuity the product of an arbitrary
finite number of topological spaces.

The concept of a topological product is useful for the discussion of functions
of many variables.

G) Let R and S be two topological spaces. We say that f(z, y) is a real-
valued function of two variables x ¢ R and y € S, if to every pair x e Rand y ¢ S
corresponds a real number f(z, y). The function f(z, y) is called conttnuous
for x = a and y = b if for every positive e there exist neighborhoods U and V
of the points a and b such that for x ¢ U and y € V we have lf(x, y) — f(a, b)]
<e.  The function f(z, y) is called continuous if it is countinuous for every pair
of valuesx = aeR,y = be S.

We now denote by T the topological produet of R and S. The function
f(x, y) of two variables x ¢ R and y € S can be treated as a function f(z) of a
single variable z = (z, y) € T, f(2) = f(z, y). Conversely the function f(z) of
a single variable z = (z, y) € T can be treated as a function f(x, y) of two varia-
bles r e Rand y € S, f(z, y) = f(2). Thus a continuous function f(, ) corre-
sponds to a continuous function f(z) and conversely a continuous function f(z)
corresponds to a continuous function f(z, y).

If the spaces R and S coincide, we arrive at the ceneept of a function of two
variables belonging to the same space.

In this way, making use of the topological product, we reduce the concept of
continuity for a function of many variables to the concept of continuity of a
function of one variable.
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ExamrLe 21. We shall discuss here the concept of a topological product of a
system of compact, regular, topological spaces, satisfying the second axiom of
countability.

Let Ry, - - -, R, - - -, be a countable sequence of compact regular topologi-
cal spaces satisfying the second axiom of countability. Let us define their
topological product. We take for a point = of the product T any countable

sequence T = {xl, Cy Xyt }, where z, e R,, n =1,2,---. We define
an arbitrary neighborhood U in T from a finite system of neighborhoods
Uy, -, Uy, where U;cR;, i =1, .-,k by saying that z e U if ;e U,,
i=1---,k

It is not hard to show that the conditions of Theorem 3 are satisfied for the
system of neighborhoods of the space T which we have defined here.

We can also show easily that the produet T thus defined is regular and satis-
fies the second axiom of countability. The proof of compactness of the space
T can be carried out by means of the diagonal process (see Theorem 9).

ExampLE 22. The topological product of two Euclidean spaces R™ and R”
of dimensions m and n is homeomorphic with the Euclidean space of dimen-
sionality m + n.

The coordinate method itself is a concrete application of the concept of a
topological product. A plane can be regarded as the product of two straight
lines, a three-space as the product of three straight lines, and so on.



CHAPTER II1
TOPOLOGICAL GROUPS

From the point of view of logie, the concept of topological group is a simple
combination of the concepts of abstract group and topological space. The
operations of group multiplication and of topological closure can be assigned
simultaneously in the same set G. These operations are, however, not inde-
pendent, but are connected by the condition of continuity: the group operations
operating in (¢ must be continuous in the topological space . Because of such
a definition the concept of a topological group is not at all specific in the first
stages of its development. The fundamental relations holding for abstract
groups and topological spaces are more or less bodily earried over into topologi-
cal groups. In this way we have here the subgroup, the normal subgroup, the
factor group, ete. A few particular situations arise, but they are comparatively
superficial. This chapter is devoted to the exposition of these rather general,
and non-specific properties of topological groups. A deeper study of topologi-
cal groups will be made later.

Historically, the coneept of a topological group arose in connection with the
consideration of groups of continuous transformations. If some continuous
manifold, such as a Eueclidean space, for instance, is subjected to a group of con-
tinuous transformations, then some limiting relations arise naturally in the
group itself, and it is transformed into a topological group. In this way, origi-
nally, a topological group was treated as a group of continuous transformations.
Further developments in this field have shown, however, that the most inter-
esting of the properties studied are not connected with the fact that the group
under consideration is a group of continuous transformations, but depend only
on the limiting relations taking place in the group itself. This is why it is
useful to give first the theory of topological groups without treating them as
groups of transformations, and only later to point out, by way of application,
the connection with continuous transformations.

16. The Concept of a Topological Group

We shall give here the definition of a topological group and indicate its sim-
plest properties.

DeriNiTION 22. A set G of elements is called a topological group if

1) G is an abstract group (see Definition 1),

2) G is a topological space (see Definition 11),

3) the group operations in G are continuous in the topological space G. In
greater detail this condition can be formulated as follows (see Definition 13,
and §2, A)):

a) If a and b are two elements of the set 7, then for every neighborhood W

52
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of the element ab there exist neighborhoods U and V of the elements a and b
such that UV c W.

b) If a is an element of the set G, then for every neighborhood V of the ele-
ment a~! there exists a neighborhood U of the element a such that U~'c V.

It is not hard to show that conditions a) and b) can be replaced by the single
condition:

¢) If a and b are two elements of the set G, then for every neighborhood W
of the element ab~! there exist neighborhoods U and V of the elements a and b
such that UV-1c W.

The topological invariance of this definition, i.e., the independence of condi-
tion 3) of the choice of the defining system of neighborhoods can readily be
shown (see §8, F)).

We shall now determine somé rather elementary properties of topological
groups.

A) Let ay, - - -, a, be a finite system of elements of a topological group G,
let a' - - - @y = ¢ be a product of powers of the a’s, where the powers may be
positive or negative, and let W be an arbitrary neighborhood of the element c.
Then there exist neighborhoods Uy, - - -, U, of the clements a4, - - -, a, such
that U? - - - Upre W, where U, is taken equal to U; if a; = a;, the same being
true for a greater number of equal elements.

This assertion can be proved by a successive application of condition 3) of
Definition 22 together with condition b) of remark D) of §8.

B) Suppose that f(x) = za, f'(x) = ax, ¢(x) = 27!, where a is a fixed ele-
ment of the group @, and x a variable element of this group. Then each of the
functions f(x), f’(x) and ¢(z) is a topological mapping of the space G into itself
(see Definition 14).

We shall prove this only for f(x). First, f(x) is one-to-one. In fact for every
element y’ there exists one and only one element ' such that y' = 2’a.  Fur-
thermore, the mapping f(z) is continuous. For if y’ = &'« and W is some
neighborhood of y’, then by condition 3) of Definition 22 there exist neighbor-
hoods U and V of the elements 2’ and a such that UV e W; but a € V, so that
Uac W, ie., f(U)c W, which proves the continuity of the mapping f(x) (see
Theorem 4). The continuity of the inverse mapping f~'(y) = ya~! can be
proved in the same way. ,

C) Let F be a closed set, U an open set, P an arbitrary set, and a some ele-
ment of the group G. Then Fa, aF, F~! are all closed sets, while UP, PU, U-!
are open sets (see §2, A)).

This assertion follows from B). For the mapping f(r) = xa is a topological
mapping and therefore a closed set F' goes into a closed set f(F') = Fa. In the
same way it can be shown that the set Ua is an open set, but then UP is a sum
of open sets and, therefore, also an open set.

D) A topological group G is homogeneous. This means that for any two
elements p and q of the group @ there exists a topological transformation f(x)
of the space G into itself which transforms p into q.
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To prove this it is sufficient to let a = p~lq, for then the topological trans-
formation f(z) defined in B) satisfies the condition f(p) = ¢.

E) From the homogeneity of a topological group @ it follows that it is suffi-
cient to state and verify its local properties for a single element only. For
instance, in order to make sure that the space G is locally compact it is suffi-
cient to show that its identity e admits a neighborhood U whose closure is com-
pact. Regularity may be verified in the same way. Moreover, if the identity
e admits a neighborhood containing e alone, then every element of G has a
neighborhood consisting of a single element.

F) The topological space G of a topological group @ is regular (see Definition
17).

By remark E) the regularity of the space G can be established by considering
the neighborhoods of the identity e. Let U be a neighborhood of e. Since
ee”! = ¢, it follows from A) that there exists a neighborhood V of the identity
such that VV-1c U. We shall show that Ve U. Let p be a point of V.
Then every neighborlood of the point p intersects V (see §8, C)). It follows
from C) that pV is a neighborhood of p and hence there exists in V' a point b
such that pb = aeV, but then p = ab=' e VV-1c U, and this means that
VeU.

G) Let G be a topological group satisfying the second axiom of countability,
and let P and @ be two of its compact subsets; then the produet PQ is compact
(see Definitions 18 and 19, and also §2, A)).

Letcy, - - -, ¢, - - - beaninfinite sequence of elements of the set PQ. Every
element ¢, can be written in the form ¢, = a,b,, a, ¢ P, b, € Q. Since G satis-
fies the second axiom of countability and is regular by F), it follows that from

the sequence a;, - - -, a,, - - - a subsequence a,, - - -, @,, - can be se-
lected which converges to some element a & P (see §13, D)). The sequence
bny - -+, bay, - - - has alimit point bin Q. It follows readily that the sequence
Cnyy " * * y Cnyy - - - has the limit point ab. This can be proved using condition

3) of Definition 22.

17. Systems of Neighborhoods of the Identity

It follows from the considerations of the previous section that condition 3)
of Definition 22 establishes a very close connection between algebraic and topo-
logical operations in a topological greup G. Because of this it follows, in par-
ticular, that if the algebra of G is given then in order to define the topology of G
it is not necessary to give a basis of the whole space G (see Definition 13), but
it is sufficient to assign a complete system of neighborhoods of the identity
(see §8, B')). The simplest illustration of this fact is afforded by the so-called
discrete groups.

A) A topological group @ is called discrete if it contains no limit elements,
i.e., if each of its elements has a neighborhood containing only a single point.
It follows from remark E) of §16 that a topological group @ is discrete if and
only if its identity is an isolated element of the group.
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It is easy to see that a topology can be introduced into any abstract group G
whatsoever in such a way that G becomes a discrete group. It follows there-
fore that the theory of discrete groups coincides with the theory of abstract
groups.

The question of how the topology of a group ¢ may be determined by a com-
plete system of neighborhoods of the identity, and how, in general, a topology
may be introduced into an abstract group is answered by remark C) and Theo-
rem 10. Before taking up these propositions, however, we introduce an im-
portant topological notion.

B) A subset M of a topological space R is called everywhere dense in R if the
closure 3 of the set M coincides with R, M = R. Itis clear that M is every-
where dense in R if and only if every open set of R intersects M.

C) Let G be a topological group, Z* a complete system of neighborhoods of
its identity e, and M a set everywhere dense in (. Then the totality T of all
sets of the form Uz where U € Z* x ¢ M, forms a complete system of neighbor-
hoods of the space G, while the system Z* satisfies the following conditions:

a) The only element common to all the sets of the system =* ise.

b) The intersection of any two sets of the system Z* contains a third set of
the system Z*.

¢) For every set U of the system Z* there exists a set V of the same system
such that VV-tc U.

d) For every set U of the system Z* and element a ¢ U there exists a set V
of the system Z* such that Vac U.

e) If U is a set of the system Z* and a an arbitrary element of the group G,
then there exists a set ¥ of the system Z* such that a='Vac U.

We shall first prove proposition C). It follows from remark C) of §16 that the
sets of the system Z are open sets of the space G. We shall show that the sys-
tem X forms a basis of the space . Let W be an arbitrary open set of the
space G and let @ ¢ W. Then Wa~!is an open set containing the identity, and
hence by §16, A), there exists a neighborhood U of the identity e (U & =*) such
that UU-'c Wa~'. Since the set M is everywhere dense in G, it follows that
aM-1is also everywhere dense in G, and hence there exists an element d which
belongs to both U and aM~! We note that then d-'a e M. But then
Ud-'a € Z. On the other hand, since UU~!c Wa™!, and since d € U, we have
Ud-'c Wa!, and this means that Ud~'ac W. Furthermore, since d € U, it
follows that e € Ud~!, and hence a € Ud~'a. In this way the completeness of
the system Z is established (see §8, B)).

As to the five conditions a), - - -, e), conditions a) and b) are fulfilled in any
topological space (see §8, D)), while conditions ¢), d), and e) follow, from re-
mark A) of §16.

THEOREM 10. Let G be an abstract group, and Z* a system of subsets of G which
satisfies the five conditions of remark C). Then a topology can be iniroduced into
the group G uniquely 1n such a way that the group operations in G are continuous
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in this topology, and the system Z* may be taken as a complete system of neighbor-
hoods of the identity. In other words, the abstract group G admits one and only
one topologization under which the system =* is a complete system of neighborhoods
of the vdentity.

Proor. If the group G can be topologized in such a way that =* is a com-
plete system of neighborhoods of the identity, then by remark C) a complete
system of neighborhoods of a topological space G can be composed of all sets
of the form Uz, where U € 2* and z ¢ G. We denote by = the totality of all
sets of this form, and show first that Z satisfies the conditions of Theorem 3,
and second that the group operations in G are continuous in the topology thus
obtained.

Let a and b be two distinct elements of the group G. Since the intersection
of all sets of the system =* contains only e, there exists a U ¢ Z* such that ba~!
does not belong to U; but then Ua does not contain b. Hence condition a)
of Theorem 3 is satisfied.

To prove that condition b) is satisfied we note first of all that if b ¢ Ua, where
U € Z* then there exists a V & =* such that Vbc Ua. In fact ba='e U, and
by condition d) there exists a V € Z* such that Vba=!c U, but then Vbc Ua.

Let now Ua and Vb be two neighborhoods of the point ¢, i.e., ¢ € Ua, and
ce Vb, Ue Z* and Ve Z*. From what we have just remarked there exist
U’ e =* and V' ¢ Z* such that U'cc Ua and V'cc Vb. Since by condition b)
there exists a W & Z* which is contained in the intersection of U’ and V’, it
follows that We e Ua, and Wee Vb, But Weis a neighborhood of ¢ and hence
the condition b) of theorem 3 is also fulfilled.

We shall show now that the operations of the group @ are continuous in the
topology thus obtained.

Lét ¢ = ab~! and W'¢’ be a neighborhood of the point ¢. By what has al-
ready.been shown there exists a W & 2* such that Wec W’'¢’. By condition c)
there exists a U € Z* such that UU-'c W. Furthermore, by condition e) there
exists a ¥V & Z* such that ab~'Vba—'c U. But then ab 'V-'c U-lab™! and
hence

Ua(Vb)™' = Uab™'VlcUU'ab*c Wab™' = WeecW'c'.

Hence condition 3) of Definition 22 is fulfilled.

Therefore, the abstract group ¢ with the topology introduced by the system
of neighborhoods 2 is a topological group.

We shall now show that =* is a basis about the point e (see §8, B)). Let W
be an arbitrary open set of the space G containing e. Since Z is a basis of the
space @, there exists a neighborhood Ua.€ 2 of the point e such that Uac W
(see §8, B)). From e e Ua it follows that a=! € U, and hence by condition d)
there exists a V &€ Z* such that Va='c U, i.e., V¢ Ua c W, and since e ¢ V, this
implies that Z* is a basis about the point e.

We now show that if a topology T is given in a group @ under which the
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system >* can be taken as a complete system of neighborhoods of the identity,
then this topology T' coincides with the topology constructed by means of the
system Z. To prove this, it is sufficient to show that the system X can be
taken as a complete system of neighborhoods in the topology T.

By assumption Z* is a complete system of neighborhoods in the topology T
and hence all the sets of the system Z* are open sets in the topology T. Then
all the sets of the system X are also open sets (see §16, C)) .Let now W be
an open set in the topology T which contains a. Then Wa™! contains e and
is (by §16, remark C)) also an open set. Since Z* is a complete system of
neighborhoods of the identity, there exists in Z* an open set U such that
UcWa!, but then UacW. Hence the system Z gives a complete system
of neighborhoods in the topology T (see §8, B)).

ExampLi 23. Let G be the additive group of whole numbers. We introduce
into @ a series of different topologies.

Let p be a prime number. We denote by U, the set of all whole numbers
which are divisible by p*. We take for a complete system of neighborhoods
of zero the totality Z* of all sets Uy, k = 1,2, - - - .

It can easily be verified that all the conditions imposed by Theorem 10 on
the system Z* are satisfied. Let us verify only ¢). If a e Upand b e Uy, then
a — be U, Inthis way condition ¢) holds here in-a particularly simple man-
ner.

It is clear that the topologies obtained by the above method for two distinct
prime numbers p and p’ are distinct. In fact the sequence p, p%, - - -, p%, - - -
converges to zero under the first topology, but does not converge to zero under
the second.

ExaMmpLE 24. The set of vectors of the r-dimensional Euclidean space forms
an additive group. In Example 13 we introduced a topology into the space of
these vectors. It can easily be verified that the operation of addition of vec-
tors is continuous in the topology thus defined. We therefore obtain the topo-
logical group of vectors of r-dimensional Euclidean space, or the r-dimensional
vector group.

ExampLe 25. Let G be the set of all square matrices of order n with determi-
nants different from zero. In example 2 we define a multiplication in G. Let
us now introduce a topology into @ as follows: we denote by &, the set of all
matrices of G whose elements do not exceed 1/k in absolute value, and by Uy
the set of all matrices of G of the form a + ¢, where e is the unit matrix, and
ae ®,. By Z* we denote the totality of all sets U, k = 1,2, - - -. Itisnot
hard to show that the system =* satisfies all the conditions of Theorem 10, and
therefore the set G is topologized.

18. Subgroup. Normal Subgroup. Factor Group

In this section we extend to topological groups the results obtained for ab-
stract groups in section 2.
DeriNiTION 23. Let G be a topological group. A set H of elements of
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is called a subgroup of the topological group G if a) H is a subgroup of theubstract
group G (see Definition 2), b) H is a closed subset of the topological space G
(see Definition 12), A subgroup N of a topological group G is called a normal
subgroup of G if N is a normal subgroup of the abstract group G (see Defini-
tion 3).

Thus, the fact that G is not merely an abstract group but is further a topolog-
ical group imposes on H and N. only the one additional condition of topological
closure.

A) Let H be a subset, not necessarily closed, of a topological group , and
let H be a subgroup of the abstract group G@. Then H is a topological group
because of the topology which arises in H as a subspace of the space G (see
Definition 16). In particular a subgroup H of a topological group G is itself a
topological group.

To prove this it is sufficient to show that the group operations in / are con-
tinuous in the topological space H. Let a and b be two elements of the set H
and let ab—! = ¢. Every neighborhood W’ of the element ¢ in the space H
can be obtained as the intersection with H of some neighborhood W of the
element ¢ in the space G, W = H n W (see §10, B)). Since ( is a topological
group, there exist neighborhoods U and V of the elements a and b such that
UV-tceW. NowU’ = H n Uand V' = H n V are relative neighborhoods
of the elements a and b in the space H. Wehave U'V'-'c W, and also
U'V'-tcH; hence U'V’'~1c W', i.e., condition 3) of Definition 22 is satisfied
for the group H.

B) Let G be a topological group and H one of its subgroups. If G is compact
or locally compact, then H is respectively compact or locally compact (see
Definition 19).

If Gis compact, then H, as a closed subset of G, is also compact (see §13, A)).
If G is locally compact and if @ € H, then there exists a neighborhood U of the
element @ in G such that its closure U is compact. The intersection
H n U = U’ is a relative neighborhood of the element a in the space H.
Since H is closed in @, it follows that U’ ¢ H, and hence U™* = U’ n H = [".
Furthermore, U’ ¢ U, and therefore U’ is compact, as a closed subset of a com-
pact set. Hence H is locally compact.

In §2 we established the concept of cosets of a general subgroup H in the
group G. In the case of abstract groups the set of all cosets of a subgroup H
presented nothing of interest from’ our point of view. If, on the other hand,
we are concerned with a topological group, then the totality of cosets forms
here in a natural way a topological space which plays an important role.

DeriniTION 24. Let G be a topological group and H one of its subgroups.
We denote by G/H the totality of all right cosets of the subgroup H in the group
G (see §2, D)). We introduce a topology into the set G/H as follows. Let 2
be a complete system of neighborhoods of the space G (see Definition 13) and
let U e 2. Denote by U* the set of all cosets of the form Hz, where z ¢ U.
For the system Z* of neighborhoods of the space G/H we take the totality of all
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sets of the form U*, where U is an arbitrary element of £. The topological
space G/H thus obtained we shall call the space of right cosets of the subgroup H
in the group G. Analogously we define the space of left cosets and use the
symbol G/H for it also. In the cases where there is no danger of ambiguity
we shall make no distinction between the spaces of left and right cosets.

It is easy to show that the definition of topology in the space G/H given
here is invariant, i.e., it does not depend on the choice of the system Z (see §8,
).

We shall now show that the system Z* satisfies the conditions of Theorem 3.

Let A and B be two distinct cosets and let a € A. Since B = Hb is a closed
set (see §16, C)) and a does not belong to B, there exists a neighborhood U of
the element a which does not intersect B. Then the set U* of all the cosets of
the form Hz, where x ¢ U, forms a neighborhood of the coset A which does
not contain B. Hence condition a) of Theorem 3 is fulfilled.

Let now U* and V* be two neighborhoods of a coset A, andletae A. U*is
the set of all cosets of the form Hzx, where x ¢ U, U ¢ Z, while V* is composed
of all cosets of the form Hy, where y e V, Vc Z. HU and HV are open sets
in @ containing a (see §16, C)). Hence there exists a neighborhood W of the
element a which is contained in both open sets HU and HV. We denote by
W* the set of all cosets of the form Hz, where z ¢ W. It follows readily that W*
" is a neighborhood of the coset 4 which is contained in the intersection U* n V*.
Hence condition b) of Theorem 3 is also satisfied.

C) The mapping f of a topological space R into a topological space R’ will be
called open if every open set U of the space R goes over into an open set under
the mapping f, i.e., f(U) is an open set. The mapping f is open if and only if for
every point a ¢ R and every neighborhood V of a there exists a neighborhood
V' of the point f(a) = a’ such that V' cf(V).

For, if the mapping f is open, then the existence of the deqlred neighborhood
V' is obvious, since f(V) is an open set containing the point a’. . Suppose now
that the assumption that V' exists is satisfied for every point a and every
neighborhood V of a. Let U be an open set of the space R. We shall show
that f(U) is an open set. Let a’ € f(U). Then a’ = f(a), where ae U. Let
us denote by V a neighborhood of the point a which is contained in U; such a
neighborhood exists, since U is an open set. Then, by assumption, there exists
a neighborhood V' of the point a’ such that V' ef(V). Smce Vel,
f(V) ef(U) and hence V' cf(U), and f(U) is an open set (see §8, G)).

TuEOREM 11. Let G be a topological group, H one of its subgroups and G/H
the space of cosets (see Definition 24). We associate with every element x of the
space G the element X = f(x) of the space G/H which is the coset containing the
element x. The mapping f of the topological space G on the space G/H is a con-
ttnuous open mapping.

This mapping will be called the natural mapping of the space G on the space
G/H.
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Proor. Let us suppose for the sake of definiteness that G/H is the space of
right cosets. Let a € @, and A = Ha, so that f(a) = A. Further let U* be
some neighborhood of the element A of the space G/H. U* is composed of all
cosets of the form Hz, where x € U, and U is a neighborhood of a in the space G.
HU is an open set in @ containing the element a (see §16, C)). Hence there
exists a neighborhood V of the element a which is contained in HU. It follows
readily that f(V) c U*. Hence the mapping f is continuous (see Theorem 4).

Let ae G, and A = Ha = f(a). Denote by U some neighborhood of the
element a. The set of all cosets of the form Hz, where z £ U, forms a neighbor-
hood U* of the element A. Wehavef(U) = U*, and hence U* cf(U). Hence
the mapping f is open (see C)).

The most important case arises when H is a normal subgroup. In this case
we have the following definition:

DeriniTION 25. Let G be a topological group and N a normal subgroup G.
The set G/N of cosets is an abstract group by Definition 4, and at the same
time the set G/N is a topological space by Definition 24. It will be shown that
the group operations in G/N are continuous in the topological space G/N.
Hence G/N is a topological group. It is called the factor group of the topologi-
cal group G by the normal subgroup N.

We first prove the continuity of the group operations in G/N.

Let A and B be two elements of G/N, C = AB~!, and W* a neighborhood
of the element C. W* is composed of all the cosets of the form Nz, where
ze W, and W is a neighborhood in G. Since C &€ W*, there exists an element
c e W such that C = Nc. Let b be an arbitrary element of Band a = ¢b; then’
aeA. Since the group operations in G are continuous, there exist neighbor-
hoods U and V of the elements a and b such that UV-'cW. Let us denote
by U* the neighborhood of the element 4 which is composed of all cosets of
the form Nz, where z ¢ U, and by V* the neighborhood of the element B com-
posed of all cosets of the form Ny, where y ¢ V. We have then

Nz(Ny)~! = Nzy 'N-' = NN-lay~! = Nay e W.*

Hence U*V*-1 ¢ W*, i.e., condition 3) of Definition 22 is satisfied and the group
operations are continuous in G/N.

D) Let G be a topological group and G/N one of its factor groups. If ¢
satisfies the second axiom of countability, so does G/N (see Definition 18).

The proof of this proposition follows from Definitions 24 and 25.

E) If a topological group G is compact or locally compact, then each of its
factor groups G/N is correspondingly compact or locally compact.

In case G is compact the statement follows from Theorems 8 and 11. Sup-
pose now that @ is locally compact. Then there exists a neighborhood U of
the identity e such that its closure U is compact. Let f be the natural mapping
of the space @ on the space G/N (see Theorem 11). Since f is an open mapping
(see C)), it follows that f(U) = U*isanopensetin G/N. Since fiscontinuous
f(U) is compact (see Theorem 8). Furthermore N & U*, and because of the
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regularity of G/N (see §16, F)) there exists a neighborhood V* of the element N
such that V*c U* cf(U). Since V*is a closed subset of the compact set f(T7),
it is also compact. Hence by remark E) of §16 the space G/N is locally com-
pact.

F) Let G be a topological group satisfying the second axiom of countability.
If a normal subgroup N and the corresponding factor group G/N = G* are
both compact, then G itself is compact.

Let a1, - - -, a., - - - be a sequence of elements of the group G. We shall
show that we can select from it a convergent subsequence. We denote by f
the natural mapping of the group @ on the group G* (see Theorem 11), and
let af = f(a.). Since the group G* is compact, we can select from the se-
quence af, - - -, ay, - - - a subsequence which converges to some element a*.
In order not to change notation we shall suppose simply that the sequence
a¥, - - -, ay, - - itself converges to a*.

We now denote by Uy, - - -, U,, - - - some decreasing sequence of neighbor-
hoods of the identity e in @ which forms a basis about e. Taking Uy = f(U,),
it follows that the sequence U¥, - - -, Uk, - - - is also decreasing, and forms a
complete system of neighborhoods of the identity e* in the group G*. Replac-
ing the sequence a;, - - -, a,, - - - by one of its subsequences, we can arrive
at the relation aja*'e U, n = 1,2, - - - . We shall denote an inverse image
of the point a* in the group G by a’, and an inverse image of the point afa*—!
in the neighborhood U, by b,. We also set a, = b,a’. Then the sequence
a, -, a,- - converges to a’, and f(a,) = f(a,),n = 1,2, - -.

Let us now suppose that ¢, = a,a, !. Then the sequencec;, - - -, ¢y, - - -
belongs to N, and therefore we can select from it a converging subsequence.
In order not to change notation we shall again suppose that the sequence
ai, -+ -, Qs - - - has been replaced by a subsequence for whiche¢,, - - -, ¢,, - - -

converges. Since the sequences a}, - - -, @, --- and ¢, -+, ¢,, - - - con-
verge, it follows that the sequence

’ /
a; = a1y * * *, Ay = CpQp, * * *

also converges. Hence by replacing the sequence a,, - - -, a,, - - - by its sub-
sequences several times we finally arrive at a convergent sequence, and hence
we have established the compactness of the group G.

G) Every topological group G has two trivial normal subgroups. These are
the subgroup {e} consisting only of the identity, and the whole group G. In
contradistinction to the terminology established for the theory of abstract
groups (see §2, G)), the topological group @ is called simple only if each of its
normal subgroups is either discrete or coincides with G (see §17, A)). In
general, discrete normal subgroups play a special part in the theory of topo-
logical groups.

We conclude with one more remark.

H) Let G be a topological group, and H a subgroup or a normal subgroup of
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the abstract group G. Then H is respectively a subgroup or a normal sub-
group of the topological group G.

Suppose that a ¢ H, and be H. We then prove that ab='e¢ H. Let W be a
neighborhood of the element ab=!. Then there exist neighborhoods U and V
of the elements a and b such that UV-'c W. Since a ¢ H and b ¢ H there exist
elements = and y of H such that x € U and y € V; but then zy~! ¢ H, and at the
same time 2y~! ¢ W. Hence an arbitrary neighborhood W of the element ab—!
intersects H, and ab~'e H. Accordingly H is a subgroup of the abstract
group G. But since H is closed in the space G, it follows that H is a subgroup
of the topological group G.

Now let H be a normal subgroup of the abstract group @, and let a € H, and
ce(@. Let V bean arbitrary neighborhood of the element ¢—lac. Then there
exists a neighborhood U of the element a such that ¢c-'Ucc V. Since a ¢ H,
there exists an element z in H belonging to U. Furthermore ¢—'z¢c ¢ H and
¢ 'zc ¢ V, i.e., an arbitrary neighborhood V of the element ¢—lac intersects H
and therefore ¢-lac ¢ H. Hence H is a normal subgroup of the topological
group G.

ExampLE 26. Let G be the additive group of all real numbers. This set G
of all real numbers forms a topological space. It is not hard to verify that we
have here a topological group. :

Let us make clear what subgroups the group ¢ admits. Let H be a subgroup *
of the group G. If H contains elements different from zero, then it contains a
positive number d. If d can be chosen arbitrarily small then its multiples
will fill out G arbitrarily densely, and since H is closed, we shall have G = H.
Hence if H # @, then there exists in H a least positive number A. 1t is not
hard to show that in this case H consists of all multiples of &, and hence H is a
discrete subgroup of the group G. Therefore, @ is a simple topological group
(although it is not a simple abstract group).

A typical example of a discrete subgroup N of the group @ is the set of all
whole numbers. The factor group G/N is homeomorphic with the circle. It
is easy to see that G/N is also a simple group.

ExampLE 27. Let @ be the r-dimensional vector group (see Example 24).
We select in (@ a coordinate system and denote by N the set of all elements with
integral coordinates. It can be seen readily that N is a discrete normal sub-
group of the group G, and that the factor group G/N is compact.

19. Isomorphism. Automorphism. Homomorphism

In this section we generalize to topological groups the concepts and relations
which have been established for abstract groups in section 3.

From the point of view of our theory two topological groups are the same if
they possess the same topological and algebraic structures. In greater detail
this thought is expressed in the following definition.

DeriNiTION 26. A mapping f of a topological group G on a topological
group G’ is called isomorphic if
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1) f is an isomorphic mapping of the abstract group G on the abstract
group G’ (see Definition 5),

2) fis a homeomorphic mapping of the topological space G on the topological
space G’ (see Definition 14).

Two topological groups are called isomorphic if there exists an isomorphic map-
ping of one group on the other.

We shall show below by examples that two topological groups may be iso-
morphic as abstract groups, but not isomorphic as topological groups.

A) An isomorphic mapping of a topological group G into itself is called an
automorphism of the group G. As in section 3, the set of all automorphisms
of a topological group G forms an abstract group. We shall not discuss here
the question of introducing a topology into the group of automorphisms of a
topological group. '

DerINITION 27. A mapping g of a topological group @ into a topological
group G* is called homomorphic if

1) ¢ is 2 homomorphic mapping of the abstract group G into the abstract
group G* (see Definition 6),

2) g is a continuous mapping of the topological space @ into the topological
space G* (see Definition 15).

A homomorphic mapping g of a topological group G into a topological group G*
is called open if ¢ is an open mapping of the topological space G into the topo-
logical space G* (see §18, C)).

The distinetion between open and non-open homomorphisms is quite essen-
tial in the theory of topological groups. It is the open homomorphism which
gives a natural generalization of the concept of homomorphism in the theory
of abstract groups.

B) Let G and G* be two topological groups, and let g be a homomorphic
mapping of the abstract group G into the abstract group G*. In order that the
mapping ¢ should be continuous or open it is sufficient that it should be such
at the identity e of the group G, i.e., it is sufficient in order that g be continuous
that

a) for every neighborhiood U* of the identity e* of the group G* there exist
a neighborhood U of the identity e such that g(U) ¢ U*;
and in order that g be open that

b) for every neighborhood V of the identity e there exist a neighborhood V*
of the identity e* such that g(V) o V*.

Suppose that condition a) is fulfilled. Let a € G, g(a) = a* and let U* be an
arbitrary neighborhood of the element a*. Then U*a*~!is a neighborhood of
the unit ¢*, and hence from condition a) there exists a neighborhood U’ of the
identity e such that g(U’) € U*a*~!. Since U = U’a is a neighborhood of the
element a we have g(U) = g(U’)g(a) € U*a*~'a* = U*. Hence the mapping g
'is continuous. Analogously, it follows from condition b) that the mapping ¢
is open.

C) Let @ be a topological group, N one of its normal subgroups and G/N
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the corresponding factor group. Let us associate with every element z & G
that coset X of the normal subgroup N which contains z, z € X, g(z) = X.
Then the mapping g of the topological group G on the topological group G/N
is an open homomorphic mapping. We shall call this mapping the natural
homomorphic mapping of the group G on the group G/N.

We have shown in §3 that g is a homomorphic mapping of the abstract
group G on the abstract group G/N (see §3, C)). In §18 it was shown that g
is an cpen continuous mapping eof the topological space G on the topological
space G/N (see Theorem 11). It follows, therefore, from Definition 27 that g
is an open homomorphic mapping of the topological group G on the topological
group G/N.

A proposition inverse to C) may be stated in the following theorem.

TrEOREM 12. Let G and G* be two topological groups, let g be an open homo-
morphic mapping of the group G on the group G* and let N be the kernel of the
homomorphism g. Then N s a normal subgroup of the group G, and the topologi-
cal group G* is isomorphic with the group G/N. The isomorphism established
here between the groups G* and G/N coincides with the isomorphism of Theorem 1.

We shall call it the natural isomorphism.

Proor. By Theorem 1, N is a normal subgroup of the abstract group G.
Furthermore, since N is a complete inverse image of the element ¢* under the
continuous mapping g, it follows from Theorem 5 that N is a closed subset of
the topological space G. Hence N is a normal subgroup of the topological
group G.

Let z* be an element of the group G*, and X the totality of all the elements
of G which go into z* under the mapping g. It was shown in Theorem 1 that X
is a coset of N in the group G. Let us suppose that f(z*) = X. Aswasshown
in Theorem 1, f is an isomorphic mapping of the abstract group G* on the ab-
stract group G/N. We shall show that f is a homeomorphic mapping of the
space G* on the space G/N. To do this it is sufficient to show that the mapping
f1is bicontinuous, since the fact that the mapping is one-to-one follows from the
isomorphism for abstract groups. :

Let a* ¢ G*, and f(a*) = A. Let us denote by U* a neighborhood of the
element A in the space G/N. By Definition 24, U* is composed of all cosets
of the form Nz, where z € U, and U is some fixed neighborhood in the space G.
Let a be an element of U such that A = Na. Since the mapping g is open and
g(a) = a*, there exists a neighborhood V* of the element a* such that
g(U)> V*. Tt follows from this that f(V*)cU*. For let z* e V*. Then
there exists an element z € U such that g(z) = z*. Hence f(z*) = Nz e U*,
and the mapping f is continuous.

Let us now denote by f~! the mapping inversetof. Let A = Na e G/N and
f~Y(A) = a*. Also let U* be a neighborhood of the element a*. Since the
mapping ¢ is continuous and g(a) = a*, it follows that there exists a neighbor-
hood V of the element a such that g(V) ¢ U*. We denote by V* the neighbor-
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hood of the element A which is composed of all cosets of the form Nz, where
zeV. Since g(V) c U*, it follows that f~}(V*) ¢ U*. Hence the mapping f~!
is continuous. A

We see thus that the mapping f is isomorphic for abstract groups, and bi-
continuous for topological spaces. Therefore, f is an isomorphic mapping of
the topological group G* on the topological group G/N.

It is worth noting that if the mapping g were not open, it would have been
possible to prove only the continuity of f~1, but not the continuity of f.

If we restrict ourselves, however, to the consideration of locally compact
groups satisfying the second axiom of countability, then for such groups every
homomorphism will be open.

TrEOREM 13. If G and G* are two locally compact topological groups satisfying
the second axiom of countability, then every homomorphic mapping g of the group
G on the group G* is open.

Proor. Let W be an open set of the space G. We shall show that g(W) con-
tains an open set.

Since the topological space G is locally compact and regular (see §16, F)),
there exists an open set V such that its closure V is compact and Ve W. The
set of all the open sets of the form Vz covers the whole space @, and since the
space G satisfies the second axiom of countability it follows that from this
covering we can select a countable covering (see §12, H)). Hence there exists
a countable sequence of points a,,n = 1,2, - - - , such that the system of open
sets Va,, n =1, 2,- .-, covers the space G. Suppose that ¢(Va,) = F.,.
Since Va, is compact, F, is also compact (see Theorem 8). Since G* is regular
and satisfies the second axiom of countability, F, is closed (see §13, B)). The
system of sets F,, n = 1,2, - - -, covers the space G*.

We now show that among the sets F, there exists at least one containing an
open set. Let us suppose the contrary to be true. Let V* be an open set of G*
such that its closure V* is compact. Since F; does not contain an open set,
there exists a point b; € V* not belonging to F,. There exists further a neigh-
borhood V; of the point b, such that V, e V*, and V; does not intersect F\.
In the open set V; we can also find a point b, not belonging to F,, and a neigh-
borhood V: such that V. c V; and V, does not intersect F,. Continuing this
process we construct a sequence of open sets V,, n =1, 2, .- ., such that
Vat1€ Vs, V,ais compact and does not intersect F,. By Theorem 6 the inter-
section of all the sets V,,n = 1,2, - - -, is not empty,i.e.,there exists a point b
not belonging to any of the sets F,. This is however impossible, since the sys-
tem F,,n = 1,2, - - -, covers the space G*. Hence one of the sets F,, say F,
contains an open set, but then the set g(V) = Fig(a;"') also contains an open
set (see §16, C)). Since Ve W, g(W) contains an open set.

Let U be a neighborhood of the identity e e @. Then there exists a neigh-
borhood W of the identity such that WW-tc U (see §16, A)). From what we
have just proved g(W) contains an open set W*. Let ¢ e W* and let p be a
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point of W such that g(p) = q¢. Then Wp~!is a neighborhood of the point e
which is contained in U. For since pe W, Wp~lc WW-1c U. Also W*¢!
is a neighborhood of the identity ¢* e G*. Since g(W) > W*, it follows that
g(Wp=1) > W*¢~!, and therefore, g(U) > W*q~!. Hence the mapping g is open
(see B)).

D) We note that if an open homomorphic mapping g of a topological group
G on a topological group G* has a kernel containing only the identity, then this
mapping is isomorphic.

In fact, under these conditions the homomorphism ¢ is one-to-one and coin-
cides with the natural isomorphism of the groups G/N and G*, as constructed
in Theorem 12.

E) Let G and G* be two topological groups, and let f be an open homomor-
phic mapping of the group G on the group G* with the kernel N’/. Then there
exists a one-to-one correspondence between the subgroups of the group G* and
the subgroups of the group @ which contain N’. This correspondence can be
established as follows: if N* is a subgroup of the group G*, then the correspond-
ing subgroup N of the group G is determined as the complete inverse image
N = f~1(N*) of the group N* under the mapping f. If N is a subgroup of the
group @ containing N’, then the corresponding subgroup N* is determined as
the image N* = f(N) of the group N under the mapping f. The two relations
thus established are inverses of each other. Moreover, the normal subgroups
correspond to each other, and if N and N* are two corresponding normal sub-
groups then the factor groups G/N and G*/N* are isomorphic.

We shall first discuss the mapping of N* on N.

The set N, being a complete inverse image of the set N*, is closed and con-
tains N'. Moreover N is a subgroup of the abstract group G (see §3, G)), and
therefore N is a subgroup of the topological group G as well. If N* is a normal
subgroup of the group G*, we denote by g the natural homomorphic mapping of
the group G* on the group G*/N* = G**. Then h(z) = g(f(z)) is an open
homomorphic mapping of the group G on the group G** with kernel N. It
therefore follows from Theorem 12 that N is a normal subgroup of the group G,
and that the factor groups G/N and G*/N* are isomorphic with each other.

We now consider the mapping of N on N*, where N* = f(N), and N> N’.
We shall first show that the complete inverse image of the set N* in the group
G, under the mapping f coincides with N. In fact if f(a) € N*, there exists an
element b € N such that f(a).= f(b). Then f(ab~!) = ¢* ie.,ab'e N' €N, or
ae Nb = N. It follows from this that f(G — N) = G* — N*, and since the
mapping f is open and @ — N is an open set G* — N* is also an open set, i.e.,
N*is closed in G*. The fact that N* is a subgroup or a normal subgroup of the
abstract group G* can be proved directly (see §3, F)). ,

ExampLE 28. Let G be the additive group of real numbers with the discrete
topology, and G* the additive group of real numbers with its natural topology.
We shall associate with every real number z £ G the same real number z* & G*,
and write g(z) = z*. It is obvious that the mapping ¢ is a homomorphic
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mapping of the group G on the group G*. Algebraically g is even isomorphic,
but ¢ is not an open mapping, and therefore not isomorphic for the topological
groups G and G*. For, every element z of the group G forms an open set, but
this is not true for the corresponding element z*. Theorem 13 does not hold
in this case because the group G does not satisfy the second axiom of counta-
bility. :

ExampLE 29. Let G be a plane given in cartesian coordinates. Its points,
or equivalently, its vectors, form an additive topological group. Let H be a
straight line in the plane G passing through the origin and having the slope a.
It is obvious that H is a subgroup of the topological group G. Let us denote
by N the totality of all points in the plane G with integral coordinates. Then N
is also a subgroup of the group G. Let G* = G/N, and let us denote by g the
natural homomorphic mapping of the group G on the group G* (see C)). Un-
der this homomorphism ¢ the subgroup H goes into a subgroup H* of the ab-
stract group G* (see §3, F)). However, H* may not be a closed subset of the
topological space G*. It is easy to verify that H*is a closed set if a is a rational
number; as a matter of fact H* is a closed curve in G* in this case. If aisirra-
tional, H* forms a set everywhere dense in G*.

In order to give a complete proof of this fact we need a result to be stated
later in Example 51. It is easy to see that if « is irrational, there exists a num-
ber B such that 8and af are linearly independent, i.e., the relation pg + ¢qa8 = r,
where p, ¢, and r are integers implies p = ¢ = r = 0. Let us now denote by a
an element of G with coordinates 8 and o3, and by A a subgroup having a for
a generator. Then A ¢ H; moreover, it follows from the result stated in Ex-
ample 51 that g(A) is everywhere dense in G*. Hence H* is also everywhere
dense in G*.

We see, therefore, that if « is irrational, H* need not be closed. Hence H*
is not a subgroup of the topological group G*, but is nevertheless a topological
group (see §18, A)). The mapping ¢ of the topological group H on the topo-
logical group H* is homomorphic, but this homomorphism is not open. Alge-
braically the mapping g of the group H on the group H* is even isomorphic.
It can be readily checked that although H* satisfies the second axiom of counta-
bility, (see §12, B)) it is not locally compact. This explains why Theorem 13
does not hold here. The abstract groups H and H* are isomorphic, but the
topological groups H and H* are not isomorphic. They are not even homeo-
morphic, since only one of them is locally compact.

20. The Intersection and Product of Subgroups. Direct Product

In this section we generalize to topological groups the concepts and results
which were established for abstract groups in §5.

A) Let G be a topological group and M a set of its subgroups. Let us denote
by D the intersection of all subgroups belonging to M. Then D is a subgroup
of the group . If all the subgroups of M are normal subgroups of G, then D
is also a normal subgroup of G.
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In §5 we showed that D is a subgroup or a normal subgroup of the abstract
group G (see §5, A)). It was shown in §7 that the intersection of an arbitrary
number of closed subsets of a topological space is a closed subset of that space
(see §7, E)). Hence D is respectively a subgroup or a normal subgroup of the
topological group G.

B) Let A be a set of elements of the topological group G. Then there exists
a unique minimal subgroup of the group @ containing A. In the same way
there exists a unique minimal normal subgroup of the group G which contains
the set A.

Let us denote by M the set of all subgroups of the group G which contain A.
The intersection D of all the subgroups belonging to M is a subgroup of the
topological group @, by A). Obviously D is the minimal subgroup contain-
ing 4. Similarly we can demonstrate the existence of the minimal normal sub-
group of the group @ containing A.

C) If H is a subgroup and N a normal subgroup of a topological group @
then the intersection H n N = D is a normal subgroup of the topological group
H (see §18, A)).

We have shown in §5, that D is a normal subgroup of the abstract group H
(see §5, C)). At the same time D is a closed subset of the space G and, there-
fore, also of the space H (see §10, A)). Hence D is a normal subgroup of the
topological group H.

D) Let H be a subgroup and N a normal subgroup of the topological group
G. Suppose that the product HN is a closed subset of the topological space G.
Then HN = NH is a subgroup of the topological group G. If, moreover, H is a
normal subgroup of the topological group G, then AN 1is also a normal sub-
group. Obviously, the condition of closure of the set HN is always satisfied
by a compact topological group @ satisfying the second axiom of countability.
We note that if G satisfies the second axiom of countability than the compact-
ness of one of the groups H or N is sufficient for the closure of HN.

We have shown in §5 that HN is a subgroup or a normal subgroup of the
group G respectively (see §5, D)). Since we impose on HN the condition of
closure it becomes a subgroup or a normal subgroup of the topological group G.
We shall show now that if @ satisfies the second axiom of countability, and if
one of the groups H or N, say H, is compact, then the set HN is closed. Let
€, ,Cn -+ beasequence of elements of HN which converges to ¢. We
have ¢, = a,b,, where a, e H,b,e N,n =1,2,-- .. Since H is compact, we
can select from the sequence aj, - -+, @, + - - a subsequence @, * - -, @n; * * -
which converges to an element a ¢ H. We conclude from the convergence
of the sequences Cn;y - =+, Cn;y - >+ and @y, * -+, any, - - - that the sequence
by, ¢y bay, -+ - converges to the element a~'c¢, which belongs to N, since N
is closed. Hence ¢ = a(a~'c) e HN and the closure of the set HN is estab-
lished.

E) If Ny, - - -, N; are normal subgroups of a topological group G, and if the
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product P = N - - - Niis closed in (7, then P is a normal subgroup of the topo-
logical group G.

It was shown in §5 that P is a normal subgroup of the abstract group @ (see
§5, E)); since moreover, P is closed in (, proposition E) is proved.

TueoREM 14. Let H be a subgroup and N a normal subgroup of a locally com-
pact topological group G satisfying the second axiom of countability. Suppose
that the product HN = P s a closed subset of the topological space G, and denote
by D the intersection H 0 N. Then the factor group H/D is isomorphic with the
factor group P/N (see C), D)).

Proor. In proving Theorem 2 we have shown that every element X of the
group H/D is contained in a definite element X' of the group P/N. Let
f(X) = X'. If X = Dx, where z ¢ H, then X’ = Nz. As was shown in
Theorem 2, the mapping f of the abstract group H/D on the abstract group
P/N is isomorphic. We shall show that fis at the same time a bicontinuous
mapping of the space H/D on the space P/N.

Let U’* be a neighborhood of the element A’ in the space P/N. By Defini-
tion 24, U’* is composed of all cosets of the form Nz, where z ¢ U’, and U’ is a
definite neighborhood in the space P. The product NU’ is an open set in P
which contains A’. Therefore the intersection H n (NU’) = U is an open set
in H (see §10, B)), containing A = f~1(A4’), since A c 4’. We denote by U*
the neighborhood of the element A composed of all cosets’of the form Dz, where
ze U. It is obvious that if X e U*, then f(X) e U*. Hence the mapping f
is continuous.

In this way the mapping f is algebraically isomorphic and topologically con-
tinuous, and therefore f is a homomorphic mapping. of the.topological group
H/D on the topological group P/N. It followé_ from Theorem 13 that fis an
open mapping, and hence (see §19, D)) f is tsomorphic. We can apply Theo-
rem 13 here because the groups P and H are logally compact and satisfy the
second axiom of countability (see §18 B), and §12, B)) and therefore the
groups P/N and H/D are also locally compact and satisfy the second axiom
of countability (see §18, E) and D)).

It is worth noting that Theorem 14 does not hold for general topological
groups, as will be shown by an example.

DeriniTION 28. Let K and N be two normal subgroups of the topological
group . We say that G is decomposed into the direct product of its subgroups K
and Nif KN = Gand KnN = {¢}

DeriniTION 28’. Let K and N be two topological groups. We denote by G
the set of all pairs of elements (z, y) where z ¢ K, y e N. Then @, being the
direct product of the abstract groups H and K, is an abstract group (see Defini-
tion 10’). Similarly @ is a topological space, being the topological product of
the spaces K and N (see Definition 21). The topological group G thus con-
structed is called the direct product of the topological groups K and N.
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This definition can be extended in an obvious manner to any finite number of
topological groups. )

We shall show that Definition 28 actually defines a topological group. To
do this it is sufficient to show that the group operations of thé abstract group G
are continuous in the topological space G. Let a= (a’, a’’) and b= (b’, b"’)
be two elements of G. Let ¢ = ab™! = (a'b'7!, @’’b"'~!) = (¢/, ¢’’) and let us
denote by W a neighborhood of the element ¢ in the space @. By Definition
21, W is composed of all pairs of the form (z/, z’’), where z’ ¢ W', and 2" ¢ W/,
and W’ is a neighborhood of the element ¢’ in the space K, while W'’ is a
neighborhood of the element ¢’’ in the space N, ¢/ € W', ¢’ ¢ W''. Because
the group operations are continuous in the groups K and N, there exist neigh-
borhoods U’, V', U"’, V'’ of the elements a’, b’, a’’, b’ such that U'V'-1c W',
U"V'""-tcW'". Let us denote by U the set of all pairs (z/, z’') such that
z' e U’, 2”7 e U, and by V the set of all pairs (y', y'’) such that 3’ ¢ V’,
y'" € V'". Obviously U and V are neighborhoods of the elements a and b such
that UV-1c W. Hence @ is actually a topological group.

Propositions F) and H) of §5 can be automatically extended to topological
groups.

In order to establish the equivalence of Definition 28 and 28’, there remains
to be proved the following proposition, which is, by the way, not true for gen-
eral topological groups.

F) Let G be a locally compact topological greup satisfying the second axiom
of countability. Suppose that G is decomposed into the direct product of K
and N, and denote by K’ a topological group isomorphic with K, and by N’
a topological group isomorphic with N. If G’ is the direct product of the
groups K’ and N, then the topological groups G and G’ are isomorphie.

Let f be an isomorphic mapping of the topological group K’ on the topo-
logical group K, and g an isomorphic mapping of N’ on N. To every ele-
ment (z, y) € G’ corresponds an element h((z, y)) = f(z)g(y) of the group G.
It was shown in §5 that A is an isomorphic mapping of the abstract group G’
on the abstract group G (see §5, G)). We shall show that % is a continuous
mapping of the space G’ on the space G.

Let W be a neighborhood of the element ¢ = ab e G, where ac K, b e N.
There exist neighborhoods U* and V* of the elements a and b in the space G
such that U*V*cW. Suppose U= KnaU* V=NnaV* Then U and V
are neighborhoods of the elements a and b in the spaces K and N (see §10, C)).
Let us further suppose that a’ = f~'(a), b’ = ¢~*(b). Then there exist neigh-
borhoods U’ and V’ of the elements a’ and b’ such that f(U') c U, g(V') c V.
We denote by W' the neighborhood of the element (a’, b’) composed of all
pairs (z, y) where z € U’ and y € V’. Obviously A(W’) ¢ W, and hence the
mapping k is continuous.

Since the mapping & is algebraically isomorphic and topologically continu-
ous, it follows from Theorem 13 that it is open, and therefore by remark D) of
§19, h is an isomorphism. Theorem 13 is applicable because the groups K and
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N are locally compact and satisfy the second axiom of countability (see §18, B)
and §12, B)), and therefore the group G’ is also locally compact and satisfies
the second axiom of countability (see §15, F), and C)). We recall in passing
that the space of a topological group is always regular (see §16, F)).

G) Let G be a locally compact topological group satisfying the second axiom
of countability. If G is decomposed into the direct product of its subgroups K
and N then K is isomorphic with the factor group G/N.

This proposition follows from Theorem 14.

ExampLE 30. Let G be a plane given in cartesian coordinates. Its points
form an additive topological group. We denote by N a straight line of slope «,
and by H the set of all points having integral coordinates. H and N are nor-
mal subgroups of G. We further denote by P the product HN, i.e., the set of all
elements of the form & + n, where he H, ne N. P is closed in G if a is a ra-
tional number; for an irrational @, however, P is neither closed nor locally com-
pact.

Let us discuss the case of irrational a. P is a topological group although
it is not a subgroup of the topological group G (see §18, A)). The intersection
D = H n N contains zero only. It is obvious, however, that the groups H/D
and P/N are not isomorphie, as the first is discrete, while the second is not
discrete. We note further that the group P decomposes into the direct sum of
its subgroups H and N, but the propositions F) and G) do not hold here.

21. Infinite Direct Product

In the theory of topological groups a special part is played by the infinite
direct product, whose construction differs from the corresponding construction
in the theory of abstract groups because of the possibility of passing to the
limit.

DeriNtTION 29. Let G be a compact topological group satisfying the second
axiom of countability, and M a countable set of normal subgroups of the group
q M= {Gl, <o, G -+~ ). We say that the group @ decomposes into the
direct product of the set M of its subgroups if the following conditions are fulfilled:

1) The minimal normal subgroup of the group G (see §20, B)) which con-
tains all the subgroups of the set M coincides with G.

2) If we denote by H, the minimal normal subgroup of the group G which
contains all the subgroups of the set M with the exception of G5, then the inter-
section of all the groups H,, n = 1,2, - -, contains only the identity e of the
‘group G.

A) The group @ can be decomposed into the product of two of its subgroups
G and H, (see Definition 28 and 29).

The product G.H, is compact (see §15, E)) and hence is closed in G (see
§13, B)). Hence G.H, is a normal subgroup of the group G (see §20, D)).
Also G,H, contains the subgroups of the set M and hence by condition 1)
G.H, = G. We denote by @, the intersection of all ‘the groups Hjy,
k=1,2 ..., with the exception of the group H,. Obviously G.c@G,. It
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follows from condition 2) of Definition 29 that the intersection G, N H, = {e}.
Hence the intersection G, n H,, = {e }, and G decomposes into the direct prod-
uct of G, and H,.

B) Fori # j every element of the group G; commutes with every element of
the group G,. Letz,, - - -, z,, - - - be a sequence of elements of the group G
such that z; e G;, 7 = 1,2, - - - . Then the infinite product z; - - - z, - - - con-
verges, and every element of the group @ is uniquely represented in the form
of a product. ’

Since G c H;, the commutativity of the elements of the groups G; and G,
follows from A) (see §5, F)).

We suppose that ym, = 2, -z, and show that the sequence yu,
m =1, 2,---, converges. Since the intersectiop of all the sets H, con-
tains only the identity, there exists for every neighborhood V of the identity
a number ¢ which is such that H;n - - - nH,cV (see §13, C)). It follows
from this that for p > ¢t and ¢ > ¢t we have yy, ¢ V. Since G is compact,
the sequence y,,, m = 1, 2, - - - | has at least one limit point . Suppose that
there is another limit point z’ of the same sequence. Denote by U and U’
neighborhoods of z and z” whose closures do not intersect (see §12, A)). Then
U’U-'is a compact set not containing the identity, and therefore there exists
a neighborhood V of the identity such that V does not intersect U’U~!. Since
x and z’ are limit points of the sequence yn., m = 1,2, - - - | there exist number
p > tand ¢ > tsuch that y, € U, y, € U’; but then y,y, " is not contained in V
contrary to what has been shown above. Hence z = z’.

We note that the infinite product x;, - - - z, - - - in which z; = e belongs to
H.

Let 2 now be an arbitrary element of the group G. Since G decomposes into
the direct product of the subgroups G, and H,, it follows that z = z,2,, where
Tn € Gn, 2, € Hy (see §5, F)). We form the infinite product 2; - - - x, - - - = 2’
and show that z = 2’. Wehavea'z =2, - -2, - -2;'%2; ' cH,. Sincethe
number 7 is arbitrary z’z~! belongs to the intersection of all the H,, and there-
fore by condition 2) of Definition 29, 2’z~! = e.

Let us now suppose that the same element z is represented in two ways as an
infinite product of the type under consideration. We should then have

x:xl..‘xn.’..=I’1..‘I’n...

from which it would follow that

T
But the left side of this last equation belongs to H,, while the right side be-
longs to G, hence z; 'z, = ¢, i.e., r, = x, for every n.
DeriniTION 29’. Let M be a countable set of compact topological groups
satisfying the second axiom of countability, M = {Gy, - - -, G,, - - }. We
construct from the groups of the set M a new topological group G which is
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also compact and satisfies the second axiom of countability, and which we shall
call the direct product of the groups belonging to the set M. The elements of

the set G will be all the sequences z = {1, - -, Z,, - - - |, where z, € G,
n=12---. The product of two elements z, y of the group G, where
y=1{y, ", Y}, is given by the formula
Ty = {xlyl; Ty TalYny }
The neighborhoods in the space @ are defined as follows:let U, - - -, U, be a
set of neighborhoods in the spaces Gy, - - -, G.. Then the neighborhood U
of the space G is composed of all the elements z = {xl, Ce Ty } such

that z;e Uy, 7 = 1,2, - - -, r. The totality of all sets of the type U gives a
complete system of neighborhoods of the space G.

It is not hard to see that the group G thus obtained does not depend on the
way in which the groups of the set M are numbered.

Theidentity of the group Gis e = {el, N M },where e;is the identity of
the group Gi, 1 = 1,2, - - -. Theinverse of the element z = {xl, Ce oy Xy }
is the element z7! = {x—l, ey xpt } 1t follows readily that all the
group axioms are satisfied in the set G.

We shall show that the complete system of neighborhoods given in Definition
29’ satisfies the conditions of Theorem 3. Let z and y be two distinct elements
of the group G. Since z  y there exists a number & such that x = yx. Let
U, be a neighborhood of the element z; not containing the element y.. We de-
fine the neighborhood U of the element x by letting U, = Gy, - - -, Ukmy = Gy,
U, = U;. Obviously U does not contain the element ¥.

Let U and V be two neighborhoods of the element x. Let U be determined
by the system of neighborhoods U,, - - -, U,, and V by the system of neighbor-
hoods Vi, - - -, V,. If r <s, we suppose that U,y = Gryy, - - -, Us = G
There exists a neighborhood W; of the element z; which is contained in the
intersection U;nV;, 72 =1, ---,s. Then the neighborhood W of the element
z defined by the sequence of neighborhoods W, - - -, W, obviously possesses
the property We U n V. '

The condition of continuity of the group operations in G can be verified easily
as was done in §20 for the direct product of two topological groups.

The fact that the second axiom of countability is satisfied in G follows from
the construction of the complete system of neighborhoods in G, since we obtain
only a countable system of neighborhoods.

Weshallnow show that the space Giscompact. Leta, = {xlk, C Tk -'},
k=1,2 .-, beasequence of elements of the space @. We make use of the
diagonal process to select from this sequence a converging subsequence. By
Theorem 9 there exists an increasing sequence k(1), - - - , k(¢) of natural num-
bers such that the sequence T,.;), © = 1, 2, - - -, of elements of the group G,
converges in (, to the element y, It is readily seen that the element
y= {yl, e Yyt } is a limit element for the sequence zyu), ¢t = 1,2, - - -,
in the group G. For if U is a neighborhood of the element y defined by the sys-
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tem of neighborhoods Uy, - - -, U,, then beginning with some number j (i.e.,
for 7 > j) we have .y e Un,n=1,-- - 1 le., zppye Ufori>j We have
in this way selected a convergent subsequence from an arbitrary sequence, and
hence G is compact.

G) Let M be a countable set of compact topological groups satisfying the

second axiom of countability, M = {Gy, - - -, G, - - - }, and G the direct prod-
uct of the groups belonging to M (see Definition 29’). We dentote by G the
set of all elements z = {xl, R S } such that z; = e; for ¢ # k, where ¢;

is the identity of the group G:. Then every set G} is a normal subgroup of the
group G, and G is decomposed into the direct product of the subgroups G;’c,
E=12---.

Let z = {xl, R } be an arbitrary element of the group G. Let-
ting ym = {xl, C o Ty €mtly a2y }, it is easy to see that the sequence ¥,
m =12, . converges to z, for every neighborhood of the element x con-
tains all elements y., if m is sufficiently large.

We denote by H, the set of all elements z = {x], N A } such that
zr = e.. Hj canberegarded as the direct product of all the groups of the set M
with the exception of the group G;, in place of which is taken the group {ek}.
It follows that H; is compact, and being a subset of the space G, is closed. We
can also check that H} is a normal subgroup of the group G, that G;c H, for
1 # k, and that H, is the minimal normal subgroup containing all the groups
@, with the exception of the group G;. For such minimal normal subgroup
must contain all products of the form G}, - - - , G, which do not contain G},
and because of closure it must contain all the limit elements, i.e., all the ele-/
ments belonging to H;. Obviously the intersection of all the subgroups H,
contains only the identity of the group G.

We can also verify that G} is a normal subgroup of the group @, and in the
same way as was done for H; convince ourselves that the minimal normal sub-
group containing all the subgroups @, coincides with G.

D) Let G be a compact topological group satisfying the second axiom of
countability. Suppose that G is decomposed into the direct product of a
countable set M of its subgroups, M = {Gl, e, Gy e } Let Gy be a

group isomorphic with the group G4, k = 1, 2, - - - . If we denote by G’ the
direct product of the groups G, - - -, Gy, - - -, then the groups G’ and G are
isomorphic.

I do not give here the proof of this fact because it is similar to the proof of
the analogous fact given in a preceding section (see §20, F)).

ExampLE 31. Let M be a countable set of finite abstract groups. We shall
consider each of the groups of M as a topological group with the discrete topol-
ogy. Then all the groups of the set M are compact and satisfy the second
axiom of eountability. We denote by G the direct produect of all groups of the
set M. The group G is compact and satisfies the second axiom of countability,
while except for trivial cases G contains infinitely many elements. Hence G
has a non-discrete topology. We have here a method for constructing topolog-




*§22] CONNECTED AND 0-DIMENSIONAL GROUPS 75

ically non-trivial groups from abstract groups. However, as will be shown
later (see Example 33) this method gives only topological groups of a special
type, namely 0-dimensional groups, and does not even give all such groups
ExampLE 32. We can define the direct product of a non-countable number
of groups of the set M just as was done in Definition 29’. We denote the
groups of theset M by (o, where a is the index of some, in general, non-count-
able set. The elements x of the direct product G are defined as the sets of ele-
ments z,, where z, € G4, and where one element x, has been taken from each
group G.. Weshall call the elements z. the coordinates of the element x. The
product of two elements x and y of G we define as before, i.e., we set (2)a = Tale.
In order to define a neighborhood in G we take a finite system of indices

o, + -, 0 asystem of neighborhoods U.,, - - -, Ug, in thespaces Gq,, - - -, Ga,,
and then define the corresponding neighborhood U of the space G as the set of
all elements z for which ;e Uy, 2 = 1, 2, - - -, 7.

Let us consider the set H in G of all the elements z having at most a countable
set of coordinates distinet from the identities. It is easily seen that H is com-
pact and forms a group. At the same time the closure of the set H coincides
with G. It does not follow from this, however, that H = G. This would have
been true if G had satisfied the second axiom of countability. But if the groups
of the set M are non-trivial, that is if each one contains more than a single
element, and if M has more than a countable number of elements, then H is
obviously distinct from G. It follows from this that G does not satisfy the
second axiom of countability. It is worth noting that although H is compact
it is not a closed subset of the space G.

The following interesting condition known as bicompactness is satisfied by the
group @ constructed above, namely that from any covering of the space G'by
open sets a finite covering can be selected. This fact, however, cannot be
proved easily, and we shall not stop to consider it here. We only remark that
bicompactness is in general more restrictive than compactness, but if the second
axiom of countability is satisfied, compactness and bicompactness coincide.

22. Connected and 0-dimensional Groups

In this section we shall consider some rather special topological properties
of topological groups which have no analogues in abstract groups.

A) Let G be a topological group, and let N be the component of the point e
in the topological space G (see §11, D)). Then N is a normal subgroup of the
group G.

Let a and b be two elements of N. Since N is connected it follows that the
set aN~! is also connected (see §16, B)). Moreover aN~! contains e. Hence
aN-'c N, and we have ab~! ¢ N, i.e., N is a subgroup of the abstract group G.
Since N is closed in G (see §11, D)), N is a subgroup of the topological group G.
If z is an arbitrary element of G, then z~'Nz is a connected set containing the
identity e, and hence z7'!Nz c¢ N, and N is a normal subgroup of the topological
group G.
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B) In case the space of the topological group G is connected, the component
of the identity of the group G coincides with G, and the group itself is said to
be connected. If, on the other hand, the component of the identity of the group
G contains only the identity, the group G is called a 0-dimenstonal or totally-
disconnected group.

C) Let G be a topological group and N the component of the identity in G.
Then the factor group G/N = G* is a 0-dimensional group.

Let f be the natural homomorphic mapping of the group @ on the group G*
(see §19, C)). The mapping fis an open homomorphic mapping of the group G
on the group G*. Let us denote by P* the component of the identity of the
group G*, and by P the complete inverse image of the set P* under the mapping
f,f~Y(P*) = P. Weshall show that the mapping f of the space P on the space
P*is open. Let U be an open set of the space P. Then there exists a neigh-
borhood V in the space G such that U = P nV (see §10, B)). It can be seen
readily that f(U) = P* nf(V). Butsince fis an open mapping of the group @
on the group G*, it follows that f(V) is an open set in G*, and hence f(U) is an
open set of the space P*.

Let us now suppose that G* is not a 0-dimensional group, that is, that P*
contains elements different from the identity. Then N is a part of the space P
and hence P is not connected. Therefore, P can be decomposed into the sum
of two non-intersecting sets A and B, each of which is non-empty, and is an
open set in the space P (see §11, A)). It is not hard to see that if a € 4, then
Nac A, for if Na were to intersect B, it would decompose into two non-inter-
secting closed sets, but, in reality, Na is connected when Nis. It follows there-
fore that the sets f(4) and f(B) do not intersect. But these sets are open in
the space P*, and therefore P* decomposes into two non-intersecting subsets
which are open sets in the space P*, which is impossible, since P* is connected.

We now take up some properties of connected groups.

THEOREM 15. A connected topological group G is generated by an arbitrary
netghborhood U of the identity. This means that G coincides with the sum of all
sets of the form Ur, n = 1,2, - - -, or, what is the same, that every element of G
can be represented as a finite product of elements belonging to U.

Proor. Let V be the sum of all sets of the form U= Since all sets of the
form Um are open sets (see §16, C)), it follows that V is an open set. We shall
show that V is at the same time a closed set. Let us suppose that a belongs to
the closure of theset V,a e V. Since aU~'is a neighborhood of the element a,
it intersects V, i.e., there exists an element b e V such that beaU~!. Since

b eV, there exists a number m such that be U™ and hence b = u; - - - Up,
whereu; e U,7 =1, --,m. SincebealU},it follows that b = au,,},, where
Umi1 € U. Wehave therefore a = u; * « * Unlmsr, wherew; e U, j =1, -+, m,

m + 1. Hence ae Umt'cV,i.e., Visclosed. Let W =G — V. Since Vis
closed and open, W is also closed and open. But if W were not empty, G would
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decompose into the sum of two non-intersecting closed sets, which would con-
tradict the assumption that the group G is connected; hence G = V.

D) We shall call the totality of all central elements of the abstract group G
(see Definition 7), the center Z of the topological group G. Z is a normal sub-
group of the topological group G. Every subgroup N of the group Z is also a
normal subgroup of the group G and is called a central normal subgroup. .

We have shown in §4 that Z is a normal subgroup of the abstract group G.
We shall now show that Z is closed in G. Let a € Z, and let us suppose that
there exists an element z € G such that ¢’ = z~'ax # a. Since the space G is
regular (see §16, F)), there exist two neighborhoods U and U’ of the elements a
and a’ whose closures do not intersect (see §12, A)). Let V=ZnU. Itis
easy to see that a ¢ V, but then o’ = z~laxr e 27 'Vz = z-'Vz = V (see §16,
B)). But thisisimpossible since U’ and V do not intersect. Hence 2~ laz = a
andaceZie,Z = Z.

Any subgroup N of the group Z, being closed in Z, must also be closed in G
(see §10, A)). And since N is a normal subgroup of the abstract group G (see
§4, B)), it must be a normal subgroup of the topological group G.

TuEoOREM 16. Every discrete normal subgroup N of a connected topological
group G is a central normal subgroup of this group (see §17, A)).

Proor. Since N is a discrete group, there exists for each element a of N a
neighborhood V which contains no element of the group N except the element a
itself. Since e~lae = a, there exists a neighborhood U of the identity such that
UaU cV (see §16, A)). Let w e U;then u'au eV, but since N is a normal
subgroup of the group @, it follows that u~'au ¢ N, and hence u~lau = a.
If x is an element of @, then by Theorem 15, x = w; - - - u,, where u; e U,
t=1, --,n Sincea commutes with every element u;, @ must commute with
z, i.e., z7'ax = a. Hence N belongs to the center Z of the group G and the
theorem is proved.

Theorem 16 is important because it facilitates the process of finding discrete
normal subgroups of connected topological groups, which play an important
part in the theory of topological groups.

We now consider 0-dimensienal groups, and limit ourselves to locally com-
pact groups satisfying the second axiom of countability.

THEOREM 17. Let G be a locally compact topological 0-dimensional group satis-
fying the second axiom of countability. If U is a neighborhood of the identity of
the group G, then there exists a subgroup H of the group G such that H € U and H
ts an open setin G.  Since H is an open set the space G/H is discrete (see Defini-
tion 24).

Proor. Let V), - -+, V,, - - - be a basis about the identity e (see §8, B’))
such that V., eV, n=1,2 - (see §12, D)). Let M be a compact subset
of the space G containing the identity e. We shall say that a point a ¢ M can
be connected to e over the set M by a chain of order n, if there exists a sequence
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a; = e, a - - -, a = aof points of M such that a;'ai1 e Vayi=1,-- -, k — 1.
Let us denote by M, the totality of the points which can be connected to e by
chains of order n over the set M. It can readily be seen that every point
a € M, can be connected to ¢ by a chain of order n over the set M, itself.
Moreover M ;€ M,. We shall show that the set M, is compact and is a rela-
tive open set in the space M (see §10, B)). Leta e M,. Then the intersection
aV, n M lies entirely in M, and is a relative neighborhood of the point @ in
the space M. Hence M, is a relative neighborhood in the space M. Letabea
point of M not belonging to M,; then aV,; ' cannot intersect M, and therefore
M, is closed, and hence compact (see §13, A)).

We denote by M* the intersection of all thesets M,,n = 1,2, - - - | and show
that M* is connected. It will follow from this that M* contains only the iden-
tity e, since by assumption the group G is a 0-dimensional group.

‘Suppose that M* can be decomposed into the sum of two non-empty non-
intersecting closed sets 4 and B, e ¢ A. The set A71B is compact and does not
contain the identity; therefore there exists a sufficiently large number r such
that V2V ! does not intersect A~'B. We shall now show that if b & B we can-
not connect b to ¢ over the set M*V, by a chain of order r. First, it isclear
that the sets AV, and BV, do not intersect; therefore if there exists a connect-
ing chain it would have to have two adjacent points p and ¢ such that p e AV,
and q & BV, and therefore p~l¢e V;'A-'BV, Since at the same time
plge V,, it follows that V2V, ! intersects A~!B. In this way we have ar-
rived at a contradiction, and therefore it is impossible to connect the point b
to e over the set M*V, by a chain of order r, and what is more, by a chain of
order s = 7. Now let s = r be a sufficiently large number such that M,c M*V,
(see §13, C)). Let b € B; then since b € M,, b can be connected to ¢ by a chain
of order s over the set M,; but this contradicts what we have just shown since
M,c M*V..

Hence the intersection of all the sets M,, n = 1, 2, - - - | is connected and
therefore contains only e.

Now let U be a given.neighborhood of e.  Without loss of generality we can
suppose that its closure {7 is compact. Let us apply the above construction
to theset M = U. Let V be a neighborhood of the identity such that V*c U.
Since the intersection of all the sets M,, n = 1, 2, - - -, contains only the
identity there exists a sufficiently large number ¢ such that M ,c V (see §13,
C)). Since M, is a relative open set of the space U, there exists an open set
W of the space G such that M, = U n W (see §10, B)). We have further-
more UnW = M,cVecV2cU. Taking intersections with W on both sides
of this relation we get UnWec U nW. On the otherhand UnWecUn W
and hence M, = UnW, ie., M, being the intersection of two open sets U
and W, is an open set in the space G. It can readily be seen, moreover, that
every point a ¢ M? can be connected to the identity over the set M? by a chain
of order ¢, and since M} ¢ U, it follows that M? ¢ M, and therefore we have for
every natural number m that M™c M, or for every a € M, we have a™ ¢ M.
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Since M, is compact, the sequence a, @?, - - -, @™, - - - has a limit point in M|,
from which it follows that for an arbitrary neighborhood V, of the identity,
there exist natural numbers m and m’ > m for which a™’(a™)~! = am'~™ = ak»
c V.. Let us denote by b a limit point of the sequence a*~~, n = 1,2, - . .
We then have ab = lim,., a*» = ¢, and be M, Hence for every element
a £ M, there exists an element b e M, inverse to it, so that M;'e M, It fol-
lows from remark B) of §2, that M, is a subgroup of the abstract group G.
Therefore H = M ,c U is a compact open subgroup of the topological group G.

E) Let @ be a compact topological 0-dimensional group satisfying the second
axiom of countability. If U is a neighborhood of the identity of the group G,
then there exists in G a normal subgroup N such that N ¢ U and N is an open
set in G. Since the factor group G/N is both discrete and compact, it is finite.

Let H be a subgroup of the group G constructed as in Theorem 17. We
denote by N the intersection of all the subgroups of the form z~'Hz, where =
is an arbitrary element of G. It follows from remark A) of §20 that N is a
subgroup of the group @, and it can easily be seen that N is a normal subgroup
of G. We shall show that N is an open set in G. To do this we show first of
all that N contains a neighborhood of the identity. For if N contained no
neighborhood of the identity there would exist a sequence a;, 7 =1, 2, - - -,
of elements not belonging to N which would converge to the identity e. Since
a; €@ — N, it follows that a; = z;'bx;, where b;eG — H, i =1, 2,---.
Since @ is compact we can suppose without loss of generality that the se-
quences z; and b, ¢ = 1,2, - - - | converge to the elements x and b respectively.
Sinte H is open, be G — H. Moreover, z='bz = ¢, or what is the same, b = ¢;
but that is impossible since b ¢ @ — H, and e ¢ H. Hence there exists a neigh-
borhood V of the identity e which is entirely contained in N. Since N is a
group we have Vn ¢ N for any n ¢ N, and hence the subgroup N contains with
every point n its neighborhood Vn, i.e., N is an open set.

F) We note that if a topological group @ is a 0-dimensional group it has no
connected subset containing more than a single element.

For if F is a connected subset of the group G which contains two distinct
elements a and b, then the component of the identity ¢ must contain the set
Fa™!, i.e., the element ba=! # ¢ belongs to the component of the identity, and
therefore G is not a 0-dimensional group.

The following trivial proposition G) is a variant of Theorem 17.

G) If every neighborhood U of the identity of the topological group G con-
tains an open subgroup H of the group G, then @ is a 0-dimensional group.

The group G decomposes into the sum of two non-intersecting open sets H
and G — H. Hence the component of the identity of the group @, being con-
nected, must belong to H, and hence to U; but since U is an arbitrary neighbor-
hood of the identity, the component of the identity of the group G contains
only the identity.

ExampLE 33. Let us consider the direct product G given in Example 31 of
a countable number of arbitrary groups G., n = 1,_2, -+ .. Let us denote
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by Cj the set of all the elements z = {xl, Cee Ty e } such that z; = e,
i=1,---,k Itisnot hard to see that C} is a normal subgroup of the group
@, and that the factor group G/Cy is isomorphic with the direct product of the
groups Gy, - - - , G+. Hence the normal subgroup Cy is open in G since the fac-
tor group G/Cyis finite. We note further that for every neighborhood U of the
identity of the group G there exists a number m such that C,,c U. From this
it follows readily that the component of the identity of the group G contains
only the identity (see G)). Hence G is a 0-dimensional group.

ExampLe 34. Let G be the additive group of real numbers. Then G is a
topological group. Let us denote by H the set of all rational numbers. H is
obviously a subgroup of the abstract group G, and therefore H is a topological
group (see §18, A)). Obviously, the component of zero of the group H con-
tains only zero. Hence H is 0-dimensional. It is worth noting, however, that
the group H can be generated by any neighborhood whatever of zero (see Theo-
rem 15). This shows that connected groups are not the only groups which
enjoy the properties formulated in Theorem 15. We can conclude from this
that G does not possess an open subgroup which is contained in U. Hence
Theorem 17 does not hold for general 0-dimensional groups. The group H,
although it satisfies the second axiom of countability, is nevertheless not locally
compact.

23. Local Properties. Local Isomorphism

Of special importance for topological groups are the so-called local properties;
i.e., those properties determined by the behavior of the group in the neighbor-
hood of the identity. Local isomorphism is the most important of these prop-
erties.

DerintTION 30. Two topological groups G and G are called locally isomorphic
if there exist neighborhoods U and U’ of theidentities ¢ and ¢’ and a homeomor-
phic mapping f of the neighborhood U on the neighborhood U’ such that a)
if the elements z, ¥, and xy belong to U, then f(zy) = f(z)f (y); b) if the elements
z', y' and z'y’ belong to U’, then f~1(z', y') = f~1(z")f~'(y').

A) We note that if the above conditions are satisfied, the following condi-
tions also hold: ¢) f(e) = ¢/, and d) if the elements x and z~! belong to U, then
J@=) = (f(x))~

In fact the elements ¢, ¢’ and ee = ¢ belong to U, and hence f(e) = f(e)f(e),
from which it follows that f(e) = e¢’. Furthermore, if  and z~! belong to U,
then since zz~! = ¢ ¢ U, we obtain ¢’ = f(e) = f(x)f(z™ 1) i.e., f(z™!) = (f(x))~"

B) We note that condition b) of Definition 30 follows from a). In fact if
‘there exist neighborhoods U and U’ satisfying condition a), then neighborhoods
V and V' can be found satisfying both conditions a) and b).

Let V be a neighborhood of the identity such that V2c U. If we suppose
that V' = f(V), then condition a) is satisfied for both V-and V'. Let us check
condition b). Let the elements 2/, y’ and z'y’ belong to V', and let z = f~!(z’),
y = f~(y’). Since z and y belong to V, we have xy ¢ U, and hence f(zy)
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= f(z)f(y) = «'y’. It follows from this that f~'(z'y’) = zy = f~(z")f~(y"),
i.e., condition b) is satisfied.

C) Let G be a topological group, and N a discrete normal subgroup. Then
the groups G and G/N = G’ are locally isomorphic.

Let f be the natural homomorphic mapping of the group G on the group G’
(see §19, C)). Let us denote by W a neighborhood of the identity of the group
@G which contains no element of the group N other than the identity. Let U
be a neighborhood of G such that UU~1c W, and let f(U) = U’. It can read-
ily be seen that the mapping f is one-to-one between the open sets U and U’.
In fact, let us suppose that the two elements x and y belonging to U go into
the same element under the mapping f. Then xy~!'e N, but zy~'e W and
hence zy~! = e, or * = y. The mapping f is open and continuous (see §19,
C)), and therefore it is bicontinuous on U. Condition a) of Definition 30 is
satisfied for the mapping f because fis a homomorphic mapping. Therefore by
remark B) condition b) is also satisfied, and the groups G and G’ are locally iso-
morphic.

Proposition C) furnishes a method for constructing groups locally isomorphic
to a given group. The following theorem shows that this method is rather gen-
eral.* :

THEOREM 18. Let G and G’ be two connected locally tsomorphic topological
groups. Then there exists a group H such that G is isomorphic to the factor group
H/N and G’ is isomorphic to the factor group H/N', where N and N’ are two dis-
crete normal subgroups of the group H.

In proving this theorem we shall make use of the connectedness of the groups
G and G, only in that they can both be generated by arbitrary neighborhoods
of their identities (Theorem 15).

Proor. Let U and U’ be those neighborhoods of the identities of the groups
G and G’ for which the conditions of Definition 30 are satisfied, and let f be
the corresponding mapping. Let us denote by K the direct produect of the
groups G and G’ (see Definition 28’). Let V be the set of all the elements of
the group K which can be represented in the form (z, f(x)), where z ¢ U. In
order not to complicate the discussion let us suppose that the neighborhood U
is symmetric, i.e., U™ = U. We denote by H the sum of all the sets of the
form V»,n = 1,2, - - .. H may be defined equivalently as the totality of all
the elements of the group K which can be represented as finite products of
elements belonging to V. The set H is obviously a subgroup of the abstract
group K, but it may not be a closed set in the topological space K. Neverthe-
less, from remark A) of §18, H forms a topological group in a natural way.
We shall however introduce a tepology into H by a different method.

Let U, be a complete system of neighborhoods of the identity of the group G,
where a is an index which, in general, runs over a non-countable set. Without
loss of generality we may suppose that U,c U for an arbitrary a. Let

* The proof of this theorem is due to B. A. Efrimovich.
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U, = f(U,) and denote by V, the set of all elements of the group K of the
form (y, f(y)), where y ¢ U,. By remark C) of §17 the conditions of Theo-
rem 10 are satisfied for the system of neighborhoods U,, and also for the system
of neighborhoods U,. It follows from this that the system of sets V, satisfies
the conditions of Theorem 10 with respect to the abstract group H. We shall
take the system V, for a complete system of neighborhoods of the identity of
the topological group H (see Theorem 10).

We associate with every element z = (z, 2) € K the element z £ G, g(2) = z.
It is easy to see that ¢ is a homomorphic mapping of the abstract group K on
the abstract group . It follows from this that g is also a homomorphic map-
ping of the group H on some subgroup G* of the abstract group G. We shall
show that G* = G. Infact, g(V) = U, and hence U € G*, but since G is gen-
erated by every neighborhood of the identity, it follows that G c G*.

We shall now show that ¢ is an open homomorphic mapping of the topologi-
cal group H on the topological group G. It follows from the relation
g(Va) = U.. that the mapping g is'both continuous and open at the identity.
Hence g is an open continuous mapping (see §19, B)).

By Theorem 12 the group G is isomorphic with the factor group H/N, where
N is the kernel of the homomorphism ¢g. We shall show that N is a discrete
normal subgroup of the group H. To do this, it is sufficient to show that there
exists a neighborhood of the identity of the group H which contains no ele-
ment of the group N other than the identity. This condition is satisfied by any
neighborhood of the system V,, since the mapping ¢ on the set V, is one-to-one.

Similarly we can prove that G’ is isomorphic with the factor group H/N’,
where N’ is a discrete normal subgroup of the topological group H. This com-
pletes the proof of the theorem.

The statement of Theorem 18 will be further developed in Chapter VIII, how-
ever only for groups of a special type. We shall there find a corresponding
group H for the whole class of groups locally isomorphic to a given group.
Such a result enables us to divide the study of topological groups into the study
of local properties and the study of the group as a whole.

By local properties of topological groups we shall understand those properties
which hold for all locally isomorphic groups. It is worth noting that the local
behavior of a group influences its behavior in the large to a great degree, and
therefore the study of local properties is rather important.

Since in order to study local properties of a topological group G we need be
interested only in the behavior of the group G in an arbitrarly small neighbor-
hood U of the identity, the question naturally arises whether it is not possible
to study the neighborhood U as an independent entity, without reference to
the group @ as a whole. This is the point of view of the classical theory of Lie
groups (see Chapters VI and IX). We study there an entity which later turns
out to be a neighborhood of theidentity of an entire topological Lie group. Igive
here the exact definition of the corresponding logical concept. All that follows in
thissectionis necessary only for the understanding of Chapters VI, VII, and IX.
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D) A topological space G is called a local group if for some pairs a, b of ele-
ments of G a product ab € G is defined, and if the following conditions are satis-
fied:

a) If the products ab, (ab)c, be, a(be) are defined, then (ab)c = a(be).

b) If the product ab is defined, there exist neighborhoods U’ and V' of the
elements a and b such that for a’ € U’ and b’ € V', the product a’b’ is defined.
Furthermore the law of multiplication for the pair a, b is continuous, i.e., for
every neighborhood W of the product ab there exist neighborhoods U and V of
the elements a and b for which UV c W.

¢) G contains an element e which plays a special part and is called the iden-
tity. 1t possesses the following property:if a € G, then the product ae is defined
and ae = a.

d) If the product of the pair a, b is defined and ab = ¢, we say that b is a
right inverse element of @, or b = a7!. If a has a right inverse element a~!, then
there exists a neighborhood U’ of the element a such that for every a’ ¢ U’
there exists a right inverse element a’~!.  Furthermore, for every neighborhood
V of the element a—! there exists a neighborhood U of the element a such that
U-icV.

E) If G is a local group and n an arbitrary integer there exists in G a suffi-
ciently small neighborhood U of the identity e such that for every element
a € U there exists an inverse a~'in G, and for every set of n elements a,, - - -, a,
of the neighborhood U, the product

( ((ma)as) - - - a,) =b

is defined and does not depend on the distribution of the parentheses. We can
therefore write b = a; - - - @,.

From condition c) it follows that the product ee is defined and that ee = e.
From this and from conditions b) and ¢) follow the existence of a neighborhood
W of the identity such that for any a € W, there exists an inverse element a™!,
and for a € W, b ¢ W, the product ab is defined. Furthermore, from the con-
dition of continuity follows the existence of a neighborhood V such that Vzc W.
It is easy to see that condition E) is satisfied for V with » = 3. Continuing
the construction further we shall obtain the desired neighborhood U for an
arbitrary integer n.

F).If G is a local group, then there exist neighborhoods U and V ¢ U of the
identity such that the following conditions are satisfied:

a) If a € U, the product ea is defined and ea = a.

b) if a € U, there exists an element a~! such that the products aa! and a~'a
are defined, and aa™! = a"la = e.

c) If the elements a and b belong to V, then the equations ax = band ya = b
are solvable in the neighborhood U, and in that neighborhood each of these
equations has a unique solution.

The assertion F) can be proved just as B) and C) were proved in §1, except
that we have to select sufficiently small neighborhoods U and V in order that
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all the operation which we have carried -out in §1 should be possible. The
existence of such small neighborhoods U and V is guaranteed by proposition E).

G) Let G be a local group. Every neighborhood U of the identity e of the
group G we shall call a part of the local group G. Every part U of the local
group G is itself a local group by virtue of the same operations which hold in G.
In particular, we shall consider that the product ab is defined in U if it is defined
in G and belongs to U.

H) Let G and G’ be two local groups, and U, U’ parts of G, G’ respectively.
We say that fis a locally ¢somorphic mapping of the group G on the group G’
if f is a topological mapping of the part U on the part U’, and if the following
conditions are fulfilled. If the product ab is defined in U, then the product
f(a)f(b) is defined in U’ and f(ab) = f(a)f(b). The identity goes over into the
identity under the mapping f. Finally the mapping f~! must satisfy the same
conditions that f satisfies. We say that two local groups G and G’ are locally
isomorphic if there exists a locally isomorphic mapping of one group on the
other.

Two locally isomorphic mappings f and f’ of the group G on the group G’
are called equivalent, if they coincide on some part of the group G. In what
follows we shall study local isomorphisms only up to equivalence.

It is obvious that Definiton 30 is a special case of definition H) when the
local groups G and G’ are entire groups.

The true object of our investigation is not the local group itself, i.e.,our con-
cern is not with all of its properties, but only with those which remain invariant
under locally isomorphic transformations. We are therefore interested in
those constructions in local groups which remain invariant under locally iso-
morphic transformations.

Here a problem arises which is connected with the concept of a local group.
Is every local group locally isomorphic with some topological group? This
question is answered in the affirmative only for Lie groups, and even then by
the application of a very complicated and special process (see §54).

We now go over to the definitions of other fundamental concepts, such as
the subgroup, normal subgroup, factor group and homomorphic mapping for
local groups.

I) Let G be a local group and H one of its subsets containing e. By Defini-
tion 16, H is a topological space. Furthermore we shall consider that the prod-
uct ab of a pair of elements a, b of H is defined if it is defined in ¢ and belongs
to H. If the topological ahd algebraic operations thus defined in H satisfy the
conditions of definition D), then H is itself a local group. If, moreover, there
exists a neighborhood U of the identity of G in which the intersection U n H
is closed, then H is called a subgroup of the local group G. A local subgroup N
of a local group G is called a normal subgroup if there exists a neighborhood V
of the identity e in G such that forx € Vand y € V n H we have 2~ 'yx ¢ H.

Two subgroups H and H' of the local group G are called equivalent if they
have a common part (see G)), i.e., if they coincide in some neighborhood of the
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identity. It can readily be seen that the class of all-equivalent local subgroups
of the group @ is invariant under locally isomorphic transformations. It is
such a class of subgroups that we shall be studying, i.e., we shall investigate
the structure of a subgroup H only with reference to the properties common to
all subgroups equivalent to H.

J) Let G be a local group, and N a normal subgroup. Let us construct the
factor group G* = G/N. To do this we select a neighborhood U of the iden-
tity in G, whose smallness will be determined by future constructions. We
shall decompose the set U into cosets of the normal subgroup N, putting the
elements z and y of U in the same class if zy~' e N. If Uis sufficiently small
all the axioms of equivalence (see §2, C)) will be satisfied. We can represent
every coset X in the form X = U n (Nz), where z is an arbitrary element of X.
Conversely every set of the form U n (Nz), where z € U, will represent a coset.
Furthermore, there exists a neighborhood V of the identity e in G sufficiently
small so that if X and Y are cosets intersecting V, then U n (XY) = Z is also
a coset. If Z also intersects V, then we shall say that we have defined the
product XY = Z. We denote by G* the set of all cosets which intersect V.
We introduce a topology into G* in a natural way, as was done in Definition 24.
By virtue of the established operations the set G* becomes a local group and is
called a factor group.

It is clear that the group G/N = G* is not uniquely defined when a group @
and one of its normal subgroup N are given, but depends also on the choice of
the neighborhoods U and V. It is not hard to see, however, that all the factor
groups thus obtained are locally isomorphic with one another, so that those
properties of the group@/N in which we are interested are uniquely determined.
In the same way if we replace the normal subgroup N by an equivalent normal
subgroup N’, we obtain a factor group G/N’ locally isomorphic with the factor
group G/N.

K) Let G and G* be two local groups, and U, U* parts of G, G* respectively.
We say that fis a locally homomorphic mapping of the group G on the group G*
if f is an open continuous mapping of the part U on the part U* satisfying the
following conditions: If the product ab is-defined in U, then the product
f(a)f(b) is defined in U* and f(ab) = f(a)f(b). Moreover, the identity goes
over into the identity under the mapping f.

The set N of elements which go over into the identity under the mapping f
is called the kernel of the homomorphism f, and is a normal subgroup of the
local group G. It can also be shown that the group G* is locally isomorphic
with the factor group G/N.

Two locally homomorphic mappings f and f’ of the group G on the group G*
are called equivalent if they coincide in some part of the group G. In what
follows we shall study local homomorphism only up to equivalence.

L) We say that the local group G is decomposed into the direct product of
normal subgroups H and K if there exist parts X, Y, Z of the local groups
H, K,and G such that every element z ¢ Z is uniquely and continuously decom-
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posed into the product zy, where z ¢ X, y ¢ Y. Continuity means that the ele-
ments z and y, uniquely determined from the equation z = zy, are continuous
functions of the element z.

Obviously if the local groups H and K are given only up to a local isomor-
phism, the local group G is also defined only up to an isomorphism. This con-
struction of the group G from the groups H and K can be carried out as in §15.

We have now transferred all the fundmaental concepts and relations of topo-
logical groups to local groups. We shall introduce here one more rather spe-
cial, but nevertheless important concept.

M) Let G be a local group. We shall say that G has a one parameter sub-
group g(t), |l| < q, if in G an element g(¢) is given which depends continuously
on a real parameter ¢ and which is defined for all values of ¢ not exceeding « in
absolute value, and if the following conditions are satisfied: g(0) = e, and if
|s| < q, |t‘ < a, and ]s + t| < a, then the product g(s) ¢g(¢) is defined and
g(s)g(t) = g(s +t). Obviously if G is a topological group, then the one pa-
rameter subgroup g(¢) can be extended to arbitrarily large values of @, making
use of the relation g(s)g(t) = g(s + t) as a defining operation.

ExamrLe 35. Let G be the additive topological group of real numbers, and
N the subgroup of all integers. By C) the groups G and G/N are locally iso-
morphic. It is obvious however that these groups are not isomorphie, since
the first of them is not compact while the second one is. We have here the
simplest example of locally isomorphic groups. More complicated examples
will be given later.

ExampLe 36. Let G* be the additive topological group of vectors in n-dimen-
sional Euclidean space, given in cartesian coordinates. Let us denote by G*
the subgroup of G» which is generated by the first k& coordinate axes, and by N*
the totality of all the vectors in the space G* having integral coordinates.
N* is a discrete subgroup of the group G* and therefore the factor group
G"/N* = (% is locally isomgrphic with the group G* (see C)). Hence all the
groups G, k = 0, 1, - - -, n, are locally isomorphic with one another, but no
two of these groups are isomorphic or even homomorphic. The group Gy is
compact, while all the other groups are not compact. The group Gj is iso-
morphic with the group G».

It turns out that every connected group G which is locally isomorphic with
the group G is isomorphic with one of the groups Gj.




CHAPTER 1V
REPRESENTATIONS OF COMPACT TOPOLOGICAL GROUPS

In the preceding chapter the general theory of topological groups was de-
veloped. The concepts and relations considered there were of the most gen-
eral type. The next problem consists of a deeper and constructive study of
topological groups. It is desirable to connect general topological groups with
more concrete subjects which can be studied independently with less difficulty.
Such subjects are for example groups of matrices and Lie Groups (for the latter
see Chapters 6 and 9). Such a connection would enable us to reduce questions
about topological groups to corresponding questions about more elementary
subjects. Moreover, we shall be able to construct topological groups of a very
general type from particular topological groups. The method which we shall
employ here is the method of representations.

We say that the topological group G admits a representation if there exists a
homomorphism A4 of the group G into a topological group of matrices.

It is obvious, however, that every group admits a trivial representation in
which all the elements of the group go into the identity of the group of matrices.
Such a trivial representation can of course be of no help to us in the study of
topological groups. The question therefore arises as to the existence of a non-
trivial representation for a given group, or, what is even more, the question of
the existence of a complete system of representations.

We say that a group G admits a complete system of representations if for each
element g of the group G distinct from the identity there exists a representation
of G under which ¢ does not go over into the unit matrix.

The question of the existence of a complete system of representations for an
arbitrary locally compact topological group satisfying the second axiom of
countability bas as yet not been solved. On its solution depends the solution
of the central problems of the theory of topological groups. We can, however,
construct the complete system of representations for every compact topological
group satisfying the second axiom of countability. This chapter is devoted to
the exposition of this construction. Some supplementary results will be given
in Chapters V and VII.

The first step in the construction is to establish on the group an tnvariant
measure, or what is the same, an tnvariant integration. Speaking more pre-
cisely, we assign to every set M of elements of G some non-negative number as
its measure in such a way as to fulfill the condition of invariance, i.e., the meas-
ure of the set M is equal to the measure of the set Ma for any element a of the
group G. 1f a group G has an invariant measure, then invariant integration
can be established in it. Originally, an invariant measure in locally compact
groups satisfying the second axiom of countability was constructed by Haar
[11]. A little later von Neumann [22] independently constructed an invari-
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ant integration in compact groups with the second axiom of ecountability. von
Neumann’s construction is considerably simpler, and since in the future we
shall use invariant integration for compact groups only, we shall make use here
of the work of von Neumann.

Before the construction of invariant integration was used for general com-
pact topological groups, it was used by Peter and Weyl [24] for the construc-
tion of a complete system of representations for compact Lie groups, for which
invariant integration is established rather simply. Peter and Weyl considered
for their purposes some integral equations on a group, and in doing this they
have essentially used the compactness of the group. As a result of the work
of Haar their construction can be automatically applied to compact topological
groups. But it has not been possible to extend it to locally compact groups.

24. Continuous Functions on a Topological Group

The set of elements of a topological group G forms a topological space, and
therefore we'can consider continuous functions defined on G (see Definition 20).
The fact that G is a group, however, enables us to formulate the definition of
continuity in a slightly different way, and what is more, to introduce the con-
cept of uniformly continuous functions.

A) Let G be a topological group, and M a set of its elements. The real
valued function f(x) defined on the space M (see Definition 16) is continuous at
a point a of M (see Definition 20) if and only if there exists for every positive
number e a neighborhood V of the identity such that if z ¢ M and za='e V,
then ‘f(:r) —f(a)‘ <e

We shall first show the sufficiency of the above condition. If za=! e V, then,
and only then, 2 ¢ Va = U. Hencez e U n M and ‘f(x) - f(a)| < ¢ and since
U n M is a neighborhood of the point a in the space M, the condition of Defini-
tion 20 is fulfilled. If the function f(z) is continuous at the point a (see Defini-
tion 20), then there exists for every positive number e a neighborhood U’ of
the point a in the space M such that !f(x) - f(a)| < eforz e U'. Further-
more there exists a neighborhood U of the point @ in the space G such that
U' = UnM (see §10, C)). But Ua~' = V is a neighborhood of the identity
in G, and if za=' ¢ V, and x ¢ M, then z ¢ U’ and, therefore, [f(x) - f(a)[ < e
Hence the above condition is also necessary.

B) Let M be a subset of a topological group @, and f(x) a real valued func-
tion defined on M. The function f(z) is called uniformly continuous if for
every positive number e there exists a neighborhood V of the identity such
that |f(x) — f(y)| < efor zy~teV, ze M, and y e M. Together with this
definition, we give another analogous definition. A function f(z) is called uni-
formly continuous if for every positive e there exists a neighborhood V' of the
identity in the space G such that [f(x) — f(y)l < eforz~'y e V'. The above
two definitions of uniform continuity are in general not equivalent, but in all
the cases in which we are interested they are actually equivalent (see C)).
Obviously, a uniformly continuous function is continuous.
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In some cases uniform continuity follows from ordinary continuity.

C) Let G be a topological group satisfying the second axiom of countability,
and M a compact subset of G. The continuous function f(z) defined on M is
automatically uniformly continuous in both senses (see B)).

Let € be an arbitrary positive number. Since f(z) is continuous, for every
point a € M there exists a neighborhood V, of the identity of the group G such
that if za=1 e V,, and z ¢ M, then |f(x) — f(a)! < %1e. Let us denote by W, a
neighborhood of the identity such that W2 € V,. Obviously, the system of all
open sets of the form W.a, where a is an arbitrary element of M, covers the
whole set M. By Theorem 7 we can select from this covering a finite covering.
Therefore there exists a finite sequence a,, - - -, @, of elements of the set M
such that the system of open sets Wa,a:, 7 = 1,2, - - -, n, covers M. We de-
note by V the intersection of all open sets of the system W,. Then V is a
neighborhood of the identity in G. We shall show that if zy='eV, z e M,
y € M, then |7(x) — f(y)| < e. This will prove the uniform continuity of f(z).
Since the system W,.a; covers M, there exists a number & such that ya; ' ¢ W,,,
and therefore \ fly) — f(ak)] < %e. Furthermore we have za;' = zy—'ya;!
e VW, ¢c Wﬁk c V., so that If(x) — f(ak)l < %e. Combining the two inequali-
ties we get ‘f(x) — f(y)| < e

Together with the concept of uniformly continuous functions, there exists
the important concept of an equi-continuous family or set of functions.

D) Let M be a subset of a topological group G. A set A of functions defined
on M is called equi-continuous if for every positive number e there exists a
neighborhood V of the group G such that for zy='e V, e M, and y ¢ M, we
have If(x) — f(y)[ < efor all functions f of the set A.  Obviously all functions
of an equi-continuous family are themselves uniformly continuous.

We shall now recall the concept of a uniformly convergent sequence of fune-
tions.

E) We say that a sequence f.(z), n = 1, 2, - - -, of functions defined on a
topological space M converges uniformly to the function f(z) defined on M, if for
every positive number e there exists an integer m such that |f(x) - fn(x)| < e
for n > m, and an arbitrary z ¢ M.

Just as in classical analysis, we can prove Cauchy’s necessary and sufficient
condition for uniform convergence, which can be stated as follows:

F) A sequence f,(z), n =1, 2, - - -, of functions defined on a topological
space M is uniformly convergent if for every positive e there exists a sufficiently
large number m such that for p > m, ¢ > m, we have [f,,(x) — fq(x)l < efor
every x ¢ M.

G) If a sequence of continuous functions converges uniformly, then its limit
is a continuous function. This proposition can be proved just as in classical
analysis.

We shall now prove the following important theorem.

TrEOREM 19. Let G be a topological group, satisfying the second aziom of
countability, and M a compact subset of G. We denote by A an equi-continuous
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family of functions defined on M (see D)) which are uniformly bounded, i.e., there
exist real numbers | and U such that | < f(x) £ U’ for every function f(x) of the
family A and arbitrary x € M. Then a uniformly convergent subsequence can be
selected from any sequence A’ = {fl(:c), <oy fa(), - } of functions of the
Sfamily A (see E)).

Proor. Let us note first of all that M contains a countable everywhere dense
set N (see §17, B)). For since @ satisfies the second axiom of countability,
M contains a countable basis. Taking one point from every open set of the
basis, we get a countable set N everywhere dense in M. Let us number all the
points of the set N by setting N = {al, IR PR }, and let us consider the
system fa(a;),n =1,2,---,7=1,2, -, of real numbers. All these num-
bers lie on the interval between [ and I’, and therefore Theorem 9 is applicable
here. Hence there exists an increasing sequence n(1), n(2),- - - , n(k),- - - of
integers such that the subsequence f.ay(a:), k=1, 2, --., converges
for a fixed ¢. Letting faw(x) = gr(z), k=1, 2,---, we get a sequence
A" = {g(x), - -, ga(x), - - - | which converges at every point a;e N. We
shall show that the sequence A’’ converges uniformly on M.

Let e be a positive number. Since the family A is equi-continuous there
exists a neighborhood V of the identity of the group G such that if 2y~te V,
zeM,yeM, then Ig,.(x) — gn(y)l < %efor an arbitrary n. Since the set N
is everywhere dense in M, the system of regions Va,, k = 1,2, - - - | covers M.
By Theorem 7 a finite covering can be selected from this covering, i.e., there
exists a finite system of points az; = b;,j = 1, - - -, k, such that the system of
open sets Vb;, 7 = 1,- - |k, covers G. Since the point b; belongs to N, the
sequence of numbers g,(b;), n=1, 2,- - - | converges, and therefore there exists
a sufficiently large number m; such that |g,(b;) — g¢(b;)| < 3e for p > m;,
and ¢ > m;. Denote by m’ the maximum of the numbers m;, 7 =1, - -, h.
Then g,(b;) — go(b;) < 3eforp >m’y,¢g>m"andj=1,---,h Let z be
any point of M. Since the system of open sets Vb;, j = 1,- - - , h covers M
there exists a_point b; such that zb;~! ¢ ¥V and hence |g,,(x) — g,,(bi)l < %¢ and
1gq(x)—gq(b.-)l <3}e. Combining the last inequalities we get | g,(z) —g4(2)| <e
Hence the criterion F) of uniform convergence is satisfied for the sequence A’/
and therefore this sequence is uniformly convergent.

We shall make one more remark concerning continuous functions.

H) Let M be a compact topological space and f(x) a continuous function
defined on M (see Definition 20). We denote the minimum of the function
f(z) by K(f(z)) and the maximum by L(f(z)) (see §14, B)). The number
S(f(x)) = L(f(z)) — K(f(x)) is called the variation of the function f(z). If the
sequence fq(z), n = 1, 2, - - , of continuous functions converges uniformly to
the function f(x) (see E)), then the following relations hold, as may be easily
verified :

im K(fa(2)) = K(f(2)), Lm L(f.(2)) = L(f(z)), lim S(fa(x)) = S(f(x)).

n—ro n—o n— o




§25] INVARIANT INTEGRATION 91

ExampLE 37. Let G be a compact topological group satisfying the second
axiom of countability. Let us consider the set R of all continuous functions
on @. We can introduce a distance into the set R in a natural way by defining
the distance between two continuous functions f(z) and g(z) defined on G, i.e.,
between two elements of R, as the maximum of ]f(x) — g(x)|. It is easy to
show that R is a metric space (see Example 14). In the first place the maxi-
mum of lf(x) — g(x)l is equal to zero if and only if f(z) = g(r). Furthermore
if f(z), g(z), and h(z) are three continuous functions defined on G then
|f@)- — k(@) < |f(z) — 9@@)| + |g(z) — h(z)|, from which the triangle
axiom in R follows.

It is easy to formulate the condition of uniform convergence of a sequence
of functions f.(z),n = 1,2, - - - , to a function f(z) in terms of the metric space
R. This convergence exists if and only if the sequence f.(z), n = 1,2, - - - |
converges to f(z) in the sense of a metric defined in the space R.

Let A be a uniformly bounded equi-continuous family of functions defined on
G. Then AcR. It follows from Theorem 19 that the closure A of the set A
in the space R is compact.

ExamrLE 38. Let G be the additive topological group of real numbers, and
M a closed interval on the real axis. The propositions given in this section
then become the well known propositions of classical analysis.

25. Invariant Integration

This section is devoted to the exposition of the work of von Neumann in
which he gives the construction of invariant integration in a compact topologi-
cal group satisfying the second axiom of countability.

DeriniTiON 31. We say that an invariant integration is defined over a com-
pact topological group G if the following conditions are satisfied.

1) To every real continuous function f(x) defined on G (see Definition 20)
corresponds a real number, which we designate symbolically by [f(z)dz, and
call the integral of the function f(z) over the group G.

2) If ais a real number, then faf(z)dz = «ff(z)dz, i.e., in integration a con-
stant multiplier can be taken outside the integral sign.

3) If f(x) and g(x) are two continuous functions, then

[ v +o@niz = [ 1@+ [ gy

4) If f(z) is always non-negative, then [f(z)dz = 0.
5) If f(z) = 1 for every z, then [f(z)dz = 1.
6) If the function.f(z) is non-negative and is not identically zero, then

Jf(x)dz > 0.

7) If ais an element of G, then

[ stewi = [ s@az.
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8) If a is an element of G, then

ff(ax)d:c = ff(x)dx.

9) ff(r”l)dx = ff(x)dx.

The first six conditions are natural for any concept of integration, while the
last three express special properties of group invariance.

We note that conditions 2), 3), and 4) make possible the integration of in-
equalities and absolute values; in fact, if f(z) = g(z), then

ff(:r)dx éfg(x)dx, ‘ff(x‘)dx éf | 1(x) | dz.

For if g(z) — f(x) = 0, it follows from 4) that [(g(z) — f(2))dz = 0, and by
2) and 3) this relation can be written in the form

fg(:r)d.t — ff(x)dx =0, ie., ff(x)dx = f g(z)dx.

Furthermore — l f (x)| < flx) = l f(x)| and by the integration of inequalities
just established we have — [|f(z)|dz < [f(z)dz < []f(z)|dx which can be

written
lff(x)dx gf | f(z) | dx

THEOREM 20. It is possible to define uniquely invariant integration (see Defini-
tion 31) over every compact topological group G satisfying the second axiom of
countability. If an integral is defined which satisfies conditions 1) to 5) and 7),
then the remaining conditions 6), 8), and 9) are also satisfied.

The proof of Theorem 20 is not simplé and is divided into a series of steps.
We shall give these steps in the form of preliminary remarks, and shall denote
only the concluding part as the proof of the theorem.

In what follows we shall understand by G a compact topological group satisfy-
ing the second axiom of countability.

A) Let G be a topological group, f(z) a continuous function defined on G,
and A = {al, cee, a,,.} a finite system of elements of the group G. We shall
introduce the following notation:

J(za:)

m

& M, f@) = 3

The function M (A, f(x)) is continuous, and is fundamental in the construction
of invariant integration. For it, as can easily be verified, the following rela-
tions hold (for notation see §24, H)):
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2 K(M(4, f(x))) 2 K(f(z)),

3) L(M(4, f(=))) = L({f()),

(4) S(M(4, f(2))) = S(f(x)).

Furthermore, if A and B are two finite systems of elements of G, then
(5) M(4, M(B, f(z))) = M(AB, f(z)).

B) If f(z) is a non-constant continuous function defined on @, then there
exists in @ a finite system A of elements such that

(6) S(M(4, f(x))) < 8(f(2))

(see A)).

Let &k be the minimum and ! the maximum of the function f(z). Since f(x)
is continuous and k < [, there exists an open set U c @ such that for every
z € U the inequality f(z) < A < L holds. The set of all open sets of the form
Ua™! covers the group G, and, therefore by Theorem 7 there exists a finite
system A = {ai, - - -, an} of elements of G such that the system of open sets
Ua;', i =1, ---,m, covers G. We shall show that the function M (A4, f(x))

(m—1l+h
m

has a maximum which does not exceed I. Infact forevery z,
flxa;) = 1,7 =1,2,---,m, but for any z a number 7 can be found such that
ze Ua; ', ie., za; e U, and therefore f(za;) < h. Since the minimum of the
function M (4, f(x)) is not less than k (see (2)), the relation (6) is established.

C) Let f(z) be a continuous function defined on the group G. We shall call
a right mean of the function f(z) any real number p which possesses the follow-
ing property: For every positive e there exists a finite system A of elements
of the group @ such that

(7) | M(4,f(2) —p| < e

We shall show that a continuous function f(z) defined on G has at least one
right mean.

Let us denote by A the totality of all functions of the type M (A4, f(z)), where
f(z) is a given function, and A is an arbitrary finite system of elements of G.
It follows from 2) and 3) that the family A is uniformly bounded. We shall
show that it is equi-continuous (see §24, D)).

Being continuous, the function f(z) is uniformly continuous (see §24, C)).
Therefore for every positive € a neighborhood V of the identity can be found
such that [f(:c) - f(y)] < efor zy~te V. But since zy~'e V, it is also true
that (za:)(ya;)™' = xy~'e V. Hence |f(xa.~) —f(ya,-)l < e. Summing this
inequality over ¢ from 1 to m and dividing the result by m, we obtain
| M4, f(z)) — M(A, f())| < e. The last inequality holds for zy=' e V, and
for an arbitrary system A. Hence the family A is equi-continuous.
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We denote by s the lower bound of all the numbers S(M (4, f(z))), i.e., the
lower bound of the variations of all the functions belonging to A. Then there
exists a sequence

(8) fl(x)’ T rfn(x); T
of functions of A such that
lim S(f.(x)) = s.

n— o

Since the family A is uniformly bounded and equi-continuous, it follows from
Theorem 19 that we can select from the sequence (8) a uniformly convergent
subsequence

(9) gl(x): ) g"(x)7 T

whose limit we denote by g(z). We have S(g(z)) = s (see §24, H)). Weshall
show that the function g(z) is a constant or, what is the same, that s = 0.

Let us suppose that g(x) is not a constant. Then it follows from B) that
there exists a finite system A of elements of G such that

(10) S(M(4, g(x))) = ¢ <s.

Let ¢ = 3(s — s’). Since the sequence (9) converges uniformly to g(z), there
exists a number % for which |g(x) — gk(x)‘ < e. Replacing z in the last in-
equality by za; and summing all the inequalities thus obtained ovei ¢ from 1
to m and dividing by m, we obtain

(11) | M(4, g(2)) — M(4, g(2)) | < e
It follows from inequalities 10) and 11) that
S(M(A, g:(x))) =< s’ + 2¢ <.

But by (5) the function M (A, g«(x)) belongs to A so that we have arrived at a
contradiction, since the lower bound of the variations of all the functions be-
longing to Ais equal to s by assumption. Hence the function g() is a constant:
g(z) = p.

Since the sequence 9) converges uniformly to g(z) = p, there exists for every
positive e a number n such that | g.(z) — pl < e. But g.(z) € A, and therefore
for every positive e there exists a system A of elements of ¢ for which the in-
equality 7) holds.

D) By analogy with A) we introduce a new function by letting

v f(ba
(12) M’(B, f(x)) = 10:)

j=1 n
where B = {bl, SN bn}. It can be readily verified that
(13) M(A, M'(B, f(z))) = M'(B, M(4. f(x))).
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E) By analogy with C) we introduce the left mean. We shall call a real
number ¢ a left mean of a continuous function f(z) defined on G, if it possesses
the following property: For every positive number e there exists a finite sys-
tem B of elements of the group G such that

(14) M'(B, f(x)) — ¢| < e

We shall show that there exists at least one left mean for every continuous func-
tion defined on G. To do this we retain the topology of G, but introduce into G
the operation of multiplication in a different way. The new topological group
thus obtained we shall denote by G’. We shall define the product a X b in
the group G’ by suppose that a X b = ba, where ba is the product in the group
G. Itisnot hard to verify that this method gives rise to a topological group G'.
It is also not hard to see that a right mean of the group G’ is a left mean of the
group G, but as the existence of a right mean has already been established, we
arrive at the existence of a left mean.

F) For every continuous function f(z) defined on @ there exists only one
right mean and one left mean and these means coincide. The unique mean
thus obtained is called the mean of the function f(z) and is denoted by M (f(x)).

Let p be some right mean of the function f(z), and ¢ some left mean of the
same function. Then relations (7) and (14) hold. Putting into (7) the ele-
ment b;x instead of £ and summing over j from 1 to n and dividing the result
by n we get

(15) | M'(B, M(4, f(2))) — p| < e

Substituting za; instead of z in (14) and summing over 7 from 1 to m, we get
after dividing by m,

(16) | M(4, M'(B, f(x))) — ¢| <

From the inequalities (15), (16), and relation (13) we obtain |p - q[ < 2e.
Since the last inequality holds for an arbitrary positive ¢, it follows that p = g.
Hence every right mean is equal to every left mean and proposition F) is
proved.

G) If f(z) and g(z) are two continuous functions defined on the group @, then

(17) M(f(x) + g(x)) = M(f(z)) + M(g(x))
(see F)). Weshail show first that

(18) M(M(B, f(z))) = M(f(z)).

Let

(19) M(f(z)) =p

Then p is a left mean of f(z), and there exists for a positive € a system C of ele-
ments of the group G such that '

| M'(C, f(x)) — pl <e
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Replacing z in the last relation by zb; and summing over j from 1 to n, we ob-
tain after division by n,

| M(B, M'(C,§@))) — p| <.
This last inequality may be written in the form
| M'(C, M(B, f(x))) = p| < e

by making use of (13). Hence p is a left mean of M (B, f(z)) and, therefore,
relation (18) is fulfilled.
Let

(20) M(g(z)) = q.

Then ¢ is the right mean for g(z) and hence there exists for an arbitrary posi-
tive ¢ a finite system B of elements of the group @ such that

| M(B, 9(@) ~ ¢| < e
From this inequality it follows that
| M(4', M(B, g(=))) = ¢] <,
where A’ is an arbitrary finite system of elements. From (5) we have
(21) | M(4'B, g(z)) ~ q] <.

From (18) and (19), it follows that p is a right mean of M(B, f(z)), i.e., there
exists a finite system A of elements of the group G such that

| M(4, M(B, f(z))) — p| < e
and this can be written in view of (5) in the form
(22) | M(AB, f(x)) — p| < e
Relations (21) and (22) give for A = A/,
| M(AB, f(z) + 9()) — (0 + ¢) | < 2e.

Therefore, p + ¢ is a right mean for the sum f(z) + g(z), which proves (17).
H) Let f(z) be a continuous function defined on G, and a an arbitrary ele-
ment of the group G. Then

(23) M(f(zac) = M(f(x)),
(24) M(f(az)) = M(f(z)).

We remark first of all that
M(A, f(xa)) = M(Aaq, f(x))

(see (1)). It follows from this relation that the right means of the functions
f(za) and f(z) co'ncide, from which it follows that equation (23) is satisfied.
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Relation (24) can be established in an analogous way by making use of the
left mean.

I) If f(z) is a non-negative continuous function defined on & which is not
identically zero, then

(25) M(f(x)) > 0.

It can readily be seen that there exists an open set Uc(@ such that
fx) > h > 0 for x € U. The set of all open sets of the form Ua™! covers
G and by Theorem 7 we can select from this covering a finite covering, i.e.,
there exists a system of elements A = {al, Cee am} such that the system of
opensets Ua;',2 =1, - - -, m, covers G. Forevery z we have f(z) = 0, and also
for any z a number & can be found such that z € Ua; ', i.e. za; € U, and hence
f(zar) > h. Inthisway M(A,f(z)) = h/m,i.e. M(f(z)) = M(M(A,f(x))) = h/m
(see (1) and (18)).

Proor oF THEOREM 20. We define the integral [f(z)dz of any continuous
function defined on G by setting

(26) f J@)dz = M(f())

(see F)). In this way condition 1) of Definition 31 is satisfied.

The fact that conditions 2), 4), and 5) of Definition 31 hold is established
rather simply, while the fulfillment of conditions 3), 6), 7), and 8) follows from
propositions G), I), and H) established above.

We shall now show that if we define an integral [*f(z)dz in such a way that
it satisfies conditions 1) to 5) and 7) of Definition 31, then

@) f f@)dz = M(J(@)).

Let p be a right mean of the function f(z). Then we have
| M(A, () — p| < e

This inequality can be integrated because conditions 2), 3), and 4) of Definition
31 hold. We obtain by making use of 2), 5), and 7),

(28) U*M(A,f(x))dx - p] = U*f(x)dz - pl <e

Since inequality (28) holds for any positive ¢, relation (27) follows at once.
Hence the uniqueness of the integral satisfying condition 1) to 5) and 7) of
Definition 31 is established.
It remains to be proved that condition 9) of Definition 31 is fulfilled. To do
this we define on G the integral [*f(z)dz by setting

(20) [ sz = mis.
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It is not hard to check that conditions 1) to 5) and 7) of Definition 31 hold for
this integral. We shall go through the verification of condition 7) only. We
have

[ s@ayis = M(gema) = Mis(@09) = M) = [ e

(see (24)). Because of the uniqueness established above we have M (f(z~1))
= M (f(z)), which completes the proof of Theorem 20.

In what follows we shall use integration not only with respect to one varia-
ble, but also with respect to two variables. It is therefore necessary to prove
that the result of integration does not depend on the order of integration.

J) Let G and H be two compact topological groups satisfying the second
axiom of countability, and f(z, y) a continuous function of two variables x £ G
and y ¢ H (see §15, G)). For a fixed y, the function f(z, y) is a continuous
function of z. We can therefore form the integral [f(z, y)dz = g(y) (see Defi-
nition 31 and Theorem 20). Then g(y) is a continuous function defined on the
group H.

Let P be the direct product of the topological groups G and H (see Definition
28"). Then the function f(z, y) can be treated as a continuous function f(z) of a
single variable z = (z, y) € P, defined on P (see §15, G)). Since the group P is
compact and satisfies the second axiom of countability (see §15, E) and C)), the
function f(2), being continuous, is also uniformly continuous (see §24, C)).
Hence for a given positive e there exists a neighborhood W of the identity
of the group P such that If(z’) — f(z)l < efor 2’271 e W. The neighborhood
W is composed of all pairs (z, y) such that z ¢ U, y ¢ V, where U and V are
neighborhoods of the identities of the groups G and H (see Definition 21).
Hence if z’271e U, y'y~' e V, then If(x', y") — f(z,y)| < e. In particular for
y'y~'e V, wehave |f(z,y") — f(z, )| < ¢, from which it follows that.

lo) — o) | = f |7, v') — 1z, ) | dz<e,

i.e., g(y) is a uniformly continuous function.

THEOREM 21. Let G and H be two compact topological groups satisfying the
second axiom of countability and f(z, y) a conlinuous function of two variables
ze@,andy e H (see §15, G)). Then we have the following relations

f(ff(x, y)dx>dy =f<ff(x, y)dy)d:c = ff f(x, y)dzdy.

(See Definition 31 and Theorem 20. The second integration in the first and
second parts of this relation is permissible because the function under the in-
tegral sign is continuous (see J)). The last equality is a definition.

Proor. Let P be the direct product of the groups G and H (see Definition
28"). P is compact and satisfies the second axiom of countability (see §15, E)
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and C)). The function f(z, y) can be considered as a continuous function f(z)
of a single variable z = (z, y) ¢ P, f(2) = f(z, y) (see §15, G)). For a fixed y,
f(z, y) is a continuous function on G, and we can define [f(z, y)dz. This in-
tegral taken as a function of y is continuous in H (see J)) and therefore we can
define [(ff(z, y)dz)dy. We shall show that the integral thus obtained coin-
cides with [f(z)dz. To do thislet [*f(z)dz= [([f(x,y)dz)dy. Itisnothard to
see that the integral [*f(z)dz satisfies all the conditions of Definition 31. Let
us verify only condition 7). Let c ¢ P, where ¢ = (a,b) and a € G, b ¢ H; then

[ reous = [ ( [ stea,urta)iu = [ ( [ 16 yb)dx)dy
- ( [ 16, y)dr)rm - " ey

Hence, since invariant integration is unique (see Theorem 20),

f(ff(:r, y)dx)(ly = ff(z)dz.

Similarly, it can also be shown that [([f(x, y)dy)dx = [f(z)dz, so that a
double integral does not depend on the order of integration, and Theorem 21
is proved.

If the group H coincides with the group G then the function f(x, y) is a con-
tinuous function of two variables defined on G. This gives the most important
case.

ExampLe 39. If the group G is finite, then the integral of a function over @
is defined simply as the arithmetic mean of the values of this function on the
elements of the group.

ExampLE 40. Let G* be the additive topological group of real numbers
and ¢(2*) a continuous periodic function of period one, defined on G*,
e(x* + 1) = o(a*). We denote by N the subgroup of the group G* com-
posed of all integers. The function ¢(x*), being periodic, assumes equal values
on all elements of every coset of N in G*. Hence to the function ¢(z*) de-
fined on G* corresponds a continuous function f(z) defined on the factor group
G*/N = (G. And conversely, every continuous function f(z) on G can be ob-
tained in this way. Since the group @ is compact, there exists on it an integral
Jf(x)dz, satisfying the conditions of Definition 31. It is not hard to see that
Jf(x)dz = [\o(x*)dz*, where on the right we have the ordinary integral of
a function of a real variable.

’

26. Systems of Functions and Integral Equations on a Group

Making use of integration over a group (see the preceding section) it is pos-
sible to establish on a group a series of concepts and relations of ordinary
analysis. To this we devote the present section.
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In what follows we shall denote by G a compact topological group satisfying
the second axiom of countability. All the functions considered on G will be
suppose to be continuous. We shall assume here that the functions under con-
sideration take on complex as well as real values. We shall denote by Z the
conjugate of z.

A) Two functions ¢(x) and ¢(x) defined on G are called orthogonal if

M [ @iz = o.
It is easy to see that relation (1) implies
[ s@w@az = o

Hence the orthogonality relation is symmetric. A set A of functions defined
on G is called an orthogonal system if any two distinet functions belonging to A
are orthogonal. The orthogonal system A is called orthonormal if for every
function ¢(z) € A we have

@) f o@o(@)dz = 1.
B) Let
3 A={a@), -, ), -}

be a finite or countable orthonormal system of functions defined on G. Let
g(z) be a function defined on G, and let

4) _ hi =fg(x)g;i(x)dx.

The numbers h;, ¢ = 1, 2, - - -, are called the Fourier coefficients of the func-
tion g(z) with respect to the system (3). They satisfy the inequality

(5) > i = [ o@gds.

To prove (5) we form the finite sum g.(z) = ;- hiei(2z) and consider the
integral

[ 0@ - 0@ - gu@iz =

Since we have under the integral sign the product of two complex conjugates
and therefore a real non-negative quantity, it follows that @ = 0. A simple
calculation shows that
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(6) a = f g(@)g(x)dx — Y hih..
i=1
But since a = 0, (5) follows from (6).
C) The orthonormal system (3) is called complete if for every function g(%)
we have instead of the inequality (5) the equality -

) ; hih; = fg(x)g‘;(x)dx.

If the orthogonal system A under consideration is not normal, it can be nor-
malized by setting ¢; (z) = ¢i(x)/B:, where 8; = + \/[ftpi(x)?ai(x)dx]. The
new orthogonal system o (2), 2 =1,2, -, thus obtained is normal, and if

"it is complete the system A is also called complete.

D) A set Q of functions given on G is called a uniformly complete system if

for'every function g(z) defined on G and every positive ¢, there exists a finite

linear form g*(z) = Y_i_.a:p:(x), with constant coefficients a;, 7 = 1,2, - - -, n,
pi(@) e Q7 =1, -, n, such that |g(z) — g*(2)| < e
E) Let
A= {ﬁol(x)y T ~)‘Pi(x); T }

be an orthogonal system of functions defined on . If the system A is uni-
formly complete (see D)), then it is a complete orthogonal system of functions
(see C)).

We shall assume for simplicity that the system A is normalized.

Let g(x) be a function on G. We denote the Fourier coefficients of this func-
tion with respect to the system by h;, 2 = 1,2, - - - . Let n be a fixed integer
and ay, - - -, a, arbitrary numbers. Let us suppose that

@) = 3 awa).

i=]

We shall now ask for what values of the numbers ay, - - - , @, the expression
v = [ 6@ — @) E@ - @)

achieves a minimum.
A straightforward calculation gives

v = [ o = X (i + Ry + 3 ads
i=1 i1
Making a simple algebraic transformation we get

v = [ owo@de = X kit 3 b - ad i — a0,

tm=l
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This formula shows that vy attains its minimum for a; = h;, 7 =1, - - -, n,and
also that this minimum value is

v = [ s@a@as — 3 hk
i=1
We note now that since the system A is uniformly complete, we can select for
every positive number e an integer n and a set of numbers a,, - - - , a, such that
lg(x) — g* (x)l < ¢, and this shows that v < €? for the indicated choice, and
therefore the minimum value v’ of v also does not exceed ¢?, i.e., we have

[ @@z — > hii < e
i=1
It follows from the last inequality combined with (5), that equation (7) is true.
F) If

A= {<p1(z), T 'yﬂai(x); T }

is a system of orthogonal functions defined on G which does not contain the
identically zero function, then all its functions are linearly independent.

Let us suppose that there exists a linear relation D _;_,b;p;(z) = 0. Multi-
plying this equation by ¢x(z) and integrating we obtain b, [¢.(z)ei(x)dz = 0.
But since the function under the integral sign is non-negative and is not iden-
tically zero, the integral is positive and therefore b, = 0 for every k.

THEOREM 22. Let A be an orthogonal system of functions defined on the compact
topological group G satisfying the second axiom of countability. Then the set A
18 at most countable.

Proor. Let us exclude from the system A the identically zero function, and
let us normalize all the remaining functions. We denote the orthonormal sys-
tem thus obtained by @ and prove that Qis at most a countable set.

Let 2 be a countable basis of the topological space G. We shall call a pair
of open sets (U, V) of 2 distinguished if V cU. The set of all distinguished
pairs is countable, and therefore they can be numbered. Let (U,, V.,),
n =12, -, betheset of all distinguished pairs. By Urysohn’s Lemma (see
§14) there exists on G a continuous function g,(x) which possesses the following
properties: 0 < g.(z) < 1, gu(z) = 0 for 2 G — U, ga(x) = L for z & V,.

We shall show that for every function ¢(z) £ 2 there exists a number m such
that [gm(z)e(z)dz % 0. In fact since () is continuous and not identically
zero, there exists a region W on which the real or imaginary part of the func-
tion ¢(x) does not change sign. Let m be a number such that U, c W. It can
readily be seen that [g.(z)¢(z)dz % 0 (see Definition 31, 6)).

Let us now denote by Q% the set of all functions y(z) of the system  for
which

> 1/k,

| [ ou@pan
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where k is an integer. Since the inequality (5) is applicable to each finite sub-
system of the system %, the number of functions of the system 2% does not
exceed kﬁg,.(:c)g,.(x)dx. Hence the set @ is finite. On the other hand it
has been shown above that for every function y(z) € @ there exists a number m
such that [g.(x)e(x)dz % 0 and hence there exists a sufficiently large number
k for which o(z) & %),

Hence 2 is a countable sum of finite sets €%, k =1,2,---,n =1,2,-- -,
and Theorem 22 is proved.

In the theory of representations of compact topological groups an important
part is played by a certain integral equation on a group. We therefore stop
here to review some results in the theory of integral equations which will be
of use later.

G) Let k(z, y) be a real continuous function of two variables defined on ¢
(see §15, G)), which is symmetric, i.e.,

(8) k(z, y) = k(y, 2).

Let us consider the integral equation
©) 0@ = [ ke, o)y

where ) is a real parameter, and ¢(z) is a continuous real function. The values
of the parameter \ for which there exists not identically zero solutions of equa-
tion (9) are called characteristic values of this equation, while the corresponding
solutions are the characteristic functions belonging to a given characteristic
value.

H) Let A’ be a characteristic value of equation (9) and A the totality of all
characteristic functions belonging to this characteristic value. Then A is a
linear system of functions, i.e., if p(2) and ¥ (x) are two functions of A, then A
contains the functions aep(z) + by(x), where a and b are arbitrary real num-
bers. Furthermore, A contains a finite orthogonal basis, i.e., it contains a
finite orthonormal system of functions

(10) @1(1)7 ) ‘pn(x)y e

such that all the other functions of A can be expressed as a linear combination
of functions of (10).

The fact that the system A is linear can be checked easily. We shall show
that the number of linearly independent functions of the system cannot exceed
a certain fixed integer depending on the kernel k(z, y) and the characteristic
valueN’. Let

(11) pi(x), i=1,---,m,

be a system of linearly independent functions of A. Without loss of generality
we may suppose that the system (11) is orthonormal, for if it were not, it could
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be replaced by such a system by means of a linear transformation without
changing the number of its functions. Let

m

1
k*(z, y) = Z: ?uh(x)‘l/i(y)

and let us consider
5= [ [ e, ) = wGa, sy
(see Theorem 21). Wehave § = 0. A straightforward calcu'ation shows that

5 =ff (k(x,'y))gdxdy - ;’fz,

from which it follows that

m = )\'sz (k(z, y))*dzdy.

Hence A contains a finite maximal system of linearly independent functions
from which, by means of linear transformations, can be obtained an ortho-
normal system satisfying condition H).

We give without proof the following important fact in the theory of integral
equations.

I) Let

o(z) = f Kz, I ()dy.

Then the function g(z) can be represented as the sum of a uniformly convergent
series of functions

9(x) = o(2) + - - - + oulx) + - -

where ¢.(z), n = 1, 2, - - | are characteristic functions of equation (9).*

ExampLE 41. Let G = {al, N a.,} be a finite group. Let us define on it
the function ¢;(z) by supposing that ¢;(a;) = nd;; where 8;; = 1 and 8;; = 0
for ¢ # j. It is not hard to verify that the system ¢:(z),7 = 1, - - -, n, is a com-
plete orthonormal system of functions on the group G.

ExampLE 42. Let G* be the additive topological group of real numbers, N the
subgroup of all integers, and G = G*/N. We have noted in Example 40 that
every function defined on G can,be treated as a periodic function of a real vari-
able with period 1, and conversely. Let p.(r) = e?im be a function of the real
variable x, where ¢ is the base of natural logarithms, 7 = v/ — 1, and n is an

* The proof of this theorem can be found in W. V. Lovitt’s Linear Integral Equations,
page 158, McGraw-Hill, New York, 1924.
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integer. The function ¢,(x) is of period 1 and hence can be regarded as
_ defined on @. It can be shown in a straightforward way that the system
en(x),n =0, £1, +2, - - - is an orthonormal system of functions defined on G.
The completeness of this system follows from a well-known theorem of analysis,
which we shall prove later (see Example 47).

27. Preliminary Remarks about Matrices

I shall review here a number of elementary propositions in the theory of
matrices, and also give a proof of Schur’s lemma which plays an important part
in the theory of linear representations.

A) Let R be the r-dimensional vector space and f a linear transformation
of R. The condition that the transformation f be linear may be expressed in
the form

(1) flaz + By) = of (x) + Bf(y)

where z and y are any two vectors of the space R and « and $ are two real or
complex numbers, according as R is a real or complex vector space.

Let x, - - -, . be the coordinates of the vector z in R, and fi(z), - - -, f-(x)
the coordinates of f(x). Then the following relations hold:

(2) fiz) = 2 dijz;,

j=1
where the coefficients d;; do not depend on the choice of the vector z, but are
defined by the transformation f. Hence for a fixed set of coordinates in the
space R there exists a one-to-one correspondence between linear transforma-
tions of this space and square matrices of order r,

3) f=lldidl = a

If the transformation f is non-singular, then the determinant of the matrix
“d,-,-“ is not equal to zero, and conversely. The product of two transformations
corresponds to the product of the corresponding matrices (see Example 2), and
to the transformation f~!inverse to f corresponds a matrix inverse to the matrix
Hdij”. The transformation f has an inverse if and only if the determinant of
the corresponding matrix is not equal to zero.

The totality of all linear transformations, or of all the matrices whose de-
terminants are different from zero, forms a group under multiplication. This
group becomes topological in a natural way if we define an arbitrary neighbor-
hood in it as the totality of all matrices ||| such that |z:; — ai;| < ¢, where
”aij“ is a matrix with rational elements, and e a positive rational number.
Hence the topological group of matrices satisfies the second axiom of counta-
bility. :

B) Let us replace the coordinates in R by a new set of coordinates, and let
us suppose that the new and the old coordinates of the same vector are con-
nected by the relation
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(4) = i,
j=1

where the matrix ||¢:;]| = ¢ has a determinant different from zero. With this
set of coordinates the transformation f will correspond to some matrix
||dyl| = @’, where

(5) d = tdt~.

We say that the matrix d is transformed, into the matrix d’ by the matrix ¢.
Hence the invariant properties of the transformation f are those and only those
which belong simultaneously to all the matrices connected by relation (5). An
example of such a property is afforded by the trace s(d),

(6) s@) = X di

of the matrix d, since s(d’) = s(d). Hence we can talk about the trace of the
transformation f and s(f) = s(d). If a and b are two matrices, then the trace
of their product does not depend on the order of the factors:

(7N s(ab) = s(ba).

C) Let the linear transformation f of the space R leave invariant some s-di-
mensional vector subspace S, f(S) €S, 0 < s <r. Let us select a coordinate
system in the space R in such a way that the first s axes lie in the space S.
Then the matrix d which corresponds to the transformation f will be of the form

(8) d =

where a and ¢ stand for square matrices of orders s and r — s, bis a rectangular
matrix, and 0 is a rectangular matrix composed entirely of zeros. If d* is the
transpose of the matrix d (see Example 4), then the transformation f* which
corresponds to the matrix d* leaves invariant a subspace generated by the last
r — s coordinate axes, and the dimensionality r — s of this space is distinct
from zero and from r. It is not true, however, that the connection between f
and f* is an invariant one. As a matter of fact this connection is purely acci-
dental and depends on the choice of coordinates.

D) Let A be a set of linear transformations of the r-dimensional vector space
R. The set A is called reducible if there exists anr s-dimensional subspace S
of the space R, with 0 < s < r, which remains invariant under all the trans-
formations of the set A. If this condition of reducibility is not satisfied, then A
is called irreducible. We denote by = the set of all matrices which correspond
to the transformations of the set A for a given set of coordinates. The set =
of matrices will be called reducible or irreducible according as the set of trans-
formations of A is reducible or not.
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We shall show that if the set = of matrices is reducible, then the set Z* of the
transposed matrices is also reducible.

It follows from C) that there exists a constant matrix ¢ such that all the
matrices tZt~! have the special form (8), i.e.,if 2 ¢ 2, then txt~! = z’ has the
form (8). By remark C) the matrix z’* leaves invariant some subspace S’ of
the space R. Let us take the transpose of the relation {xt~! = 2’ and solve
it for z*. We obtain t*~lz*t* = z’*, or z* = t*z’*t*~1. Since the matrix z*
leaves invariant the subspace S’, it follows that the matrix 2* also leaves in-
variant some subspace 8’’, and hence the family =* of the matrices z* is reduc-
ible.

We shall now prove the following important proposition due to I. Schur.

ScrUR’S LEMMA. Let Z and Q be two trreducible sets of square matrices of
orders m and n, and let a be a rectangular matriz of m rows and n columns such that

(9) Za = aQ,
i.e., for every matrix w € Z there exists a matriz v € Q such that
(10) ua = av,

and conversely, for every matriz v’ € Q there exists a matriz u’ € Z such that

’ !

ua=av.

Under these conditions, only two cases are possible: either all the elements of the
mairiz a are equal to zero, or else m = n and the square matriz a has a non-zero
determinant.

Proor. Let R be the m-dimensional vector space with a certain coordinate
system. Then the matrices of the set = can be regarded as linear transforma-
tions of the space R. Further let a = ||a;;|| and let a; be the vector of the
space R with coordinates aix, - - - , @ni. In this way the coordinates of the vec-
tor a; are elements of the kth column of the matrix a. Let us denote by S a
linear subspace of the space R generated by the vectors ai, - - -, @,; we can
then show that the subspace S is invariant under all transformations of the
set Z. .

Let u = ||ui| be a matrix of the set 2 and v = ||v;;]| a matrix of the set @
such that ua = av. Applying the transformation u to the vector a; we get a
vector by with coordinates by = D j-juiam, 2 = 1, -+ -, m. Calculating the
corresponding member of the right side of the equality ua = av, we get
ba = Z;=1a.~,-v,-k, 1=1,---, m Hence the coordinates of the vector b, are
expressible as a linear combination of the coordinates of the vectors ai, - - -, @s,
which implies that b, € S. Hence all the transformations of the set Z leave in-
variant the space S.

Since the set 2 isirreducible, the dimension of the space S must be zero or m.
In the first case all the vectors a; which generate the space S become zero, i.e.,
all the elements of the matrix a are zero. In the second case there are exactly m
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linearly independent vectors in the system ay, - - -, a,, which means that there
are exactly m linearly independent columns in the matrix a. Therefore
(11) n=m.

Let us denote by Z* the set of matrices obtained by transposing the matrices
of the set Z, and by Q* the analogous set of matrices obtained from Q. It fol-
lows from remark D) that the sets £* and Q* are irreducible. We denote by a*
the transpose of the matrix a. Taking the transpose of relation (9) we get
Q*a* = a*T*. Applying to this relation the same considerations that we ap-
plied to (9) we see that there are, as before, only two possibilities: either all the
elements of the matrix a* are zero, or else the matrix a* contains n linearly in-
dependent columns. The first possibility has already been considered, while
in the second case the matrix a contains n linearly independent rows, i.e., n < m.
This inequality combined with (11) proves that a is a square matrix whose de-
terminant is different from zero, so that Schur’s lemma is proved.

The following proposition is a direct consequence of Schur’s lemma.

E) Let Q be an irreducible set of square matrices of order r, and let b be a
square matrix of order r which commutes with all the matrices of the set Q.
Then the matrix b has the form Be where 8 is a complex number and e is the
unit matrix.

To prove this, let us consider the matrix a = b — Be, where (8 is a complex
number chosen in such a way as to make the determinant of the matrix a equal
to zero. Since the matrix b commutes with all matrices of the set @, the matrix
a must possess the same property. We therefore have the relation Qa = aQ.
It follows from the above lemma that all the elements of the matrix a are equal
to zero, since the determinant of the matrix a is equal to zero by hypothesis.
Hence b = Be.

F) Let Q@ be an irreducible system of matrices such that any two of its
matrices commute. Then all the matrices of the set @ are of the first order.

It follows from E) that all the matrices of the set Q are of the form Be, where 8
is a number, and e is the unit matrix. But a set of matrices of this form can be
irreducible only if all the matrices are of the first order.

We shall pause here to discuss some special properties of unitary matrices.

G) Let R be a complex r-dimensional vector space, and z a vector with co-

ordinates i, - - -, ,. Let us consider the Hermitian form
(12) o(x) = Z Xi&i.
=1

Let d = ||d.j|| be a matrix and f the transformation of the space R which corre-
sponds to it. The matrix d is called unitary if the transformation f leaves in-
variant the Hermitian form (12), i.e. if o(f(z)) = ¢(z) for every x. Straight-
forward calculations show that in order that the matrix d be unitary it is
necessary and sufficient that the following relations hold:

(13) Z dij?iik = 5,');, (5“‘ = 1, 5.‘,’ =0 fOI' 1 #])
i=1
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Denoting by d* the transpose of d, we can write (13) in the form

(14) d*d = e

where e is the unit matrix. Hence d is unitary if and only if
(15) d-! = d*.

This last relation can be written in the form

(16) dd* = e

or

(17) }: diidyi = 8j.

=1

Relations (13) to (17) are equivalent and all express the unitary character of
the matrix d. If the unitary matrix d is real, then it is orthogonal (see Ex-
ample 4). We note that a unitary matrix leaves invariant not only the Her-
mitian form (12), but also the bilinear form y(z, y) = Y_i-,2:J:, where y is a
vector with coordinates yi, - - -, y». We have in fact ¢(f(z), f(¥)) = ¥(z, y).
If the bilinear form y(z, y) of two vectors is equal to zero, then these vectors
are called orthogonal. If the transformation f is unitary and if the vectors z
and y are orthogonal, then the vectors f(z) and f(y) are also orthogonal.

H) Let R be the complex r-dimensional vector space, and z a vector with
coordinates zy, - - -, Z». Let us consider the Hermitian form

(18) o' (x) = i ZT: aiiZi%j,

i=1 j=1
where the coefficients a;; are symmetrice, i.e.
(19) ag; = d]‘,'.

The form (18) assumes only real values. Let us suppose that it is a positive
definite form, i.e., it is always positive for z # 0. Let f be a transforma-
tion of the space R which leaves invariant the Hermitian form (18),.i.e.,
o' (f(x)) = ¢’(x). We denote the corresponding matrix by d’ = Hd;,”, and
write f — d’. As is well known we can reduce the positive definite Hermitian
form (18) to the form (12) by a transformation of coordinates of the space R.
In these new coordinates there corresponds to the transformation f a matrix
d = ||d:j||. Hence d = t~'d’t, where d is a unitary matrix.

I) Let R be the r-dimensional complex vector space and f a unitary trans-
formation with matrix d = |[d1-,»||. Let us suppose that f leaves invariant some
s-dimensional space S, where 0 < s < r. Let us denote by S’ the space of
all vectors orthogonal to every vectdr of the space S. Then S’ is a space of
r — s dimensions. Let us select coordinates in the space R in such a way that
the first s axes lie in the space S, while the remaining axes lie in the space S’.
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In these new coordinates the matrix d’ which corresponds to the transformation
f has the special form

a 0 H

0 b

where d’ = tdt™!, and ¢, a, and b are unitary matrices.

J) It follows from the definition of a unitary matrix that the product of two
unitary matrices is a unitary matrix, and that the matrix inverse to a unitary
matrix is also unitary. Hence the set of all unitary matrices of order r forms
a group G under multiplication. This group, being a subgroup of the topologi-
cal group of all matrices whose determinants are different from zero, is top-
ological (see A)). Since all the elements of a unitary matrix do not exceed
one in absolute value by (13), the group G'is compact. Itis not hard to show
that @ satisfies the second axiom of countability (see A) and §12, B)). The
set of all orthogonal matrices of order r forms a subgroup of the group G.

[—

28. Orthogonality Relations

We shall denote here by G, as in §26, a compact topological group satisfying
the second axiom of countability, and by Z the complex conjugate of z.

DerinrTioN 32. A homomorphic mapping g of a topological group G in the
topological group of matrices of order r (see §27, A)) is called a representation
of degree r of the topological group G. In this way, to every element z e G
corresponds a matrix g(z) of order r whose elements we shall denote by g.;(z),
g(z) = Hg;,(x)“. By a representation simply we mean a representation of some
(unspecified) degree.

Two representations g and % of the group G of the same degree are called
equivalent if there exists a constant matrix ¢ (not depending on ) such that

(1) h(z) = t~'g(x)t

for every z € G.

If g is a representation of a topological group @, g(z) = Hg,,-(x)“, then the
functions g¢.;(z) are continuous, since we have to do with a homomorphic
mapping of one topological group in another, i.e., with a continuous mapping.
Conversely, if there exists a homomorphic mapping g of an abstract group G
in an abstract group of matrices, g{z) = 1|gii(x)][, and if the functions g:;(x)
are continuous on the topological group @, then g is a homomorphic mapping
of the topological group @ in a topological group of matrices, i.e., g is a repre-
sentation of the topological group G.

THEOREM 23. If g is a representation of the compact group G then there exists
an equivalent representation g’ all of whose matrices are unitary (see §27, G)).

In other words for every representation there exists an equivalent unitary represen-
tation.
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Proor. Let r be the degree of the representation g. Let us denote by E
the r-dimensional complex vector space with a definite coordinate system, and
let

(2) o(u) = 2w,

=1
where u is a vector in the space R with coordinates u, - - -, u,. To every
matrix g(z) corresponds some linear transformation of the space R, which we
shall denote by g.. We now substitute into the Hermitian form (2) the vec-
tor g.(u) instead of the vector » and get

(3) ‘P(gx(u)) = Z,: g,-]~(a:)§jik(x)ujﬁk.

(i,7,k)=1

This new Hermitian form satisfies the condition of symmetry (19) of §27, and
is positive definite (see §27, H)). We now construct a new Hermitian form

@) o'(u) = f o(g-(u))dz;

then ¢’(u) is also a positive definite form. We shall show that this form is in-
variant if we replace the vector u by the vector g,(x). To do this we substi-
tute the vector g,(u) for u in (4), remembering that g.(g,(u)) = gs,(u) since g
is a homomorphic mapping. Because of the invariance of integration (see
Definition 31, 7)) we have

o/ @) = [ olgn(w)iz = f olg(w))dx = ¢'(u).

As we have already remarked (see §27, H)), the form ¢’(u) can be reduced to
the form (12) of §27 by means of a transformation of coordinates in R. In
these new coordinates to every transformation g, will correspond the matrix
g'(x) = Hgilj(x)H, where ¢’(r) = t~'g(z)t, and t is the matrix of the transforma-
tion of the coordinates. All the matrices g’(z) are unitary and therefore the
theorem is proved.

DeriNiTION 33. The character x(z) of the representation g of the group G is
the trace of the matrix g(z) (see §27, B)). Hence the character of a representa-
tion is a real valued function defined on G, namely x(z) = s(g(z)). Obviously,
two equivalent representations have equal characters since the traces of the
matrices g(z) and t~lg(z)t are equal. The character of the representation is
invariant, i.e.,

(5) x(a™'za) = x(z),
where a is an arbitrary element of G. For

x(a7'za) = s(g(a~'za)) = s((g(a)'g(x)g(a)) = s(g(z)) = x(2).



112 REPRESENTATIONS OF COMPACT GROUPS [cH. 1v

A) Let g be a reducible representation of the group G. By Theorem 23 and
remark I) of §27 we can assert that there exists a matrix ¢ such that the mat-
rices h(z) = t~'g(z)t have the special form

g'(x) 0
0 g¢'(x)

where g’(z) and ¢’/(z) are unitary matrices. We say then that the representa-
tion ¢ decomposes into two representations g’ and ¢g’’. If the representations
g’ and ¢g’’ are also reducible, then they in turn may be further decomposed.
In this way every representation g can be decomposed into a finite system of
irreducible representations g1, - - -, g.. If we denote by x(r) the character of
the representation g and by x.(x) the character of the representation g;, then
the following equality holds

x() = x1(z) + - - - + xa(2).

M

- |

THEOREM 24. Let g and h be two distinct unitary irreducible non-equivalent
representations of the group @G, g(x) = Hgi,-(a:)H, h(z) = ‘ h.-,-(x)][. If we denote
by x(x) and x'(x) the characters of the representations g and h, then the following
orthogonality relations hold:

6) f 0:1(@) () dz

I
k=

I
e

) f x(@)%'(@)dz

Proor. Let m be the degree of the representation g, and n be the degree of
the representation . Let us denote by b a constant matrix with m rows and n
columns, and let a(z) = g(z)bh(z). Let a = [a(z)dz. It is not hard to
show that g(y)ah(y~!) = a. Infact

o(y)ah(y~) = f 0()g(@)bh(z-h(y~)dz = f g (ym)bh((yz)-dz = a

(see Definition 31, 8)). We have, therefore, g(x)a = ah(z). It follows from
Schur’s Lemma (see §27) that there are two possible cases. If we suppose that
the determinant of the matrix a is different from zero, we get h(z) = a~'g(z)a,
i.e., the representations g and h are equivalent, which contradicts the assump-
tion of the theorem. Therefore, the matrix a is composed of zeros and we have

fg(x)bh(x—l)da: =ga=0.
Let us select the matrix b in a special way by supposing that its element in

the j-th row and [-th column is unity, while all the other elements are equal to
zero. 'Then, by taking into consideration relation (15) of §27 we obtain
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fgii(x)’_lkl(x)dx = 0.

Relation (7) for the characters x(z) and x’(z) follows from (6) since x(z) and
x'(z) can be expressed in terms of g;;(x) and h;i(z).

THEOREM 25. Let g be a unitary irreducible representation of the group G of
degree r, g(x) = Hg,,(x)”. Let us denote the character of the representation g by

®) &) = X outo).
Then the following orthogonality relations hold:
© [ ss@raaz ==
If i 5% korj # lthen
(10) [ stz = o,
and finally
a1 [ x@x@az = 1.
Proor. Let us denote by b = ||bj]|a constant square matrix of order 7, and

let a(z) = g(z)bg(z~!) and @ = fa(x)dz. Itisnot hard to see that the matrix a
has the following property of invariance

(12) gag(y™) = a.
In fact

1agr™) = [ 6We@baa96 e = [ ooy iz = a

(see Definition 31, 8)). It follows from relation (12) that g(z)a = ag(z) for
an arbitrary z. From this together with remark E) of §27 we can conclude
that the matrix a is of the form ae’, where €’ is the unit matrix and « is a com-
plex number depending on the matrix b. Hence

(13) fg(x)bg(x“)dx = ae’.

Let us determine the number a. To do this we take the trace of both sides of
relation (13). Taking into consideration formulas (15) and (13) of §27 we have
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8<f g(f)bg(x_l)dx> = Er: 9:;(@)bpgu(r)dr = Z bjndy

(i,7,k)=1 (7,k)=1
. .
= | D bjdx = s(b).
j=1

But the trace of the right hand side of (13) is equal to ar, and therefore
a = s(b)/r.

Let us now select the matrix b in a special way by supposing that only the
element standing in the j-th row and I-th column is distinct from zero, and that
this element is equal to unity. Then s(b) = §;;. Making use of formula (15)
of §27, we get under these conditions from relation (13),

_ _ 1. .
(14) f @) = — sub

But the last relation is equivalent to (9) and (10), and from it also follows rela-
tion (11). Hence the theorem is proved.

We now consider in greater detail the characters of the representations.

B) Let A be the set of characters of all the inequivalent irreducible represen-
tations of the group G. It follows from (7) and (11) that A is an orthonormal
system of functions defined on G. Hence A contains not more than a count-
able number of functions (see Theorem 22) and we can suppose

A= {x@, @, -]

Let ¢ be a representation of the group G and x(z) its character. By A) the
representation g decomposes into a system of irreducible representations and
we have

(15) x(r) = z": mixi(x),

where m; is a non-negative integer denoting the multiplicity with which the
irreducible representation g; of character x;(z) occurs in the representation g.
Multiplying (15) by xx(z) and integrating we get

me = f x(@)Xe()dz.

Hence the numbers m; are the Fourier coefficients of the function x(z) with
respect to the system A, This means that the numbers m; are uniquely deter-
mined by the function x(xr). Hence the character x(z) of the representation g
determines g uniquely up to equivalence.

Multiplying (15) by its conjugate and integrating we get

(16) }: m; = f x(@)x(x)dz.
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The last relation gives us a criterion for the irreducibility of the representa-
tion g, namely, a representation ¢ is irreducible if and only if its character x(z)
satisfies the condition

(17) fx(.v);(.r)dx = 1.
If the representation g is reducible, then
fx(a')i(r)dx > 1.

THEOREM 26. If the group G vs commutative then all its irreducible representa-
tions are of the first degree, and every irreducible representation g coincides with
its character x(x), g(x) = Hx(x)H, since the matriz g(x) reduces in this case to an
ordinary number.

The proof follows directly from remark F) of §27.

ExampLE 43. Let G and H be two compact topological groups satisfying the
second axiom of countability. Let us denote by F their direct product. Every
element z of F represents a pair (z, y), where x ¢ G, y e H. Let g and h be
irreducible representations of the groups G and H of degrees m and n respec-
tively, g(z) = | g,-]-(x)H, h(y) = Hh“(y)ll. From the representations ¢ and h of
the groups G and H we construct a representation f of the group F which is
also irreducible. To do this we introduce a double index (¢, k), where the
first element of the pair runs over the values 1, - - -, m and the second the
values 1, - - -, n. It is of course possible to number all pairs (7, k) with the
numbers 1, - - - | mn, but we shall not make use of that. We now introduce a
new square matrix f(z) = Hf(i,k)(;’,l)(Z)H of order mn by letting fG. (.0 (2)
= ¢ij(@)hui(y), where z = (z, y). It is not hard to verify that the matrix f(z)
gives a representation of the group F. We shall show that this representation
is irreducible. To do this we calculate the character x(z) of the representa-
tion f. We denote by x'(z) and x''(y) the characters of the representations g
and h. Direct calculations show that x(z) = x'(2)x’'(y), where z = (z, y).
Applying to the character x(z) the criterion of irreducibility (17) we obtain

f X()%(2)dz = f f @)X @)X @)% @)drdy = 1

(see proof of Theorem 21). Hence the representation f is irreducible. In the
next section we shall show that all irreducible representations of the group F
can be obtained by a similar construction—of course, only up to an equivalence
(see Example 45).

ExampLE 44. Let G be the topological group discussed in Examples 40 and
42, and ¢,(x), n =0, £1, +2, - - - the system of functions defined on @ in
Example 42, ¢,(x) = e2""s, Let us consider the matrix of the first order
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gn(2) = “<p,.(x)”. Then ¢, is a representation of the group ¢ of the first de-
gree, and moreover, g, is unitary. The character of the representation g, is the
function ¢,(z). Since the functions ¢,(z), n = 0, +1, £2, - - -, form a com-
plete orthogonal system in G, there exist no irreducible representations of the
group G besides the.representations g, which we have just constructed, for in
the contrary case the complete system of orthogonal functions could be en-
larged by one more function, orthogonal to all the others, which is impossible.

29. The Completeness of the System of Irreducible Representations

In the present section we give an exposition of the results of Peter and Weyl
concerning the completeness of the system of functions arising from irreducible
representations. The proof given here differs from the original proof (see [29])
inasmuch as we make use of the orthogonality of the system in proving its com-
pleteness, which simplifies the proof greatly.

Here, as in the preceding section, we designate by G a compact topological
group satisfying the second axiom of countability. All the functions consid-
ered here are continuous.

THEOREM 27. We select from each class of mutually equivalent irreducible repre-
sentations of the group G a unitary representation. By remark B) of §28 there is
only a countable number of such representations which we number by writing them as

e} () ) ()
(1 g 5 ag g (@ = llgii @
We denote by A the totality of all functions ¢ (x) arising from the representations
of the system (1). Then the system A vs a uniformly complete system of functions
on G (see §26, D)), and hence from relations (6), (9), and (10) of §28, and from

Theorems 24 and 25, the system A is a complete orthogonal system of functions of G
(see §26, E)). '

Proor. Let k(2) be a real continuous function defined on G which satisfies
the condition of symmetry
(2) k(z"Y) = k(2).

Let us consider the integral equation

3) o(z) = A f k() o(y)dy.

It follows from (2) that the kernel of equation (3) is symmetric,
k(z7'y) = k(y ).

We denote by A’ the totality of all characteristic functions of all the equations
of type (3) (see §26, G)) and show that the system of functions A’ is a uniformly
complete system on G.

Let f(z) be a continuous function defined on G. Since the function f(x) is
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continuous it is uniformly continuous (see §24, C)), i.e., for every positive e
there exists a neighborhood U of the identity e of the group G such that for
z-ly ¢ U we have

4) | 1) — f@) | < %e

and U~! = U. Let V be a neighborhood of the identity e such that Ve U.
By Urysohn’s Lemma (see §14) there exists a continuous function ¢(z) such
that 0 < ¢q(z) = 1 for every ze @, ¢(z) = 0 for ze G — U and ¢(z) = 1 for
zeV. Letk'(z) = a(q(z) + q(z71)), where a is a real positive number selected
in such a way that [k’(2)dz = 1. The function k’(2) is different from zero only
for z £ U and satisfies the condition of symmetry (2). Let

f@) = f B () ).

Because of the special choice of the function k’(z) and inequality (4) we have
5) | /() = f'(@) | < }e.
In fact

|f'@@) = flo)| = .fk'(x“y)(f(y) —f(x))dy. éfk’(x“y)-%edy = ze

By remark I) of §26 the function f'(z) can be decomposed into a uniformly con-
vergent series

f'(@) = @) + -+ + enl@) + - - -,

_where the functions ¢;(z), 7 = 1, 2, - - -, are characteristic functions of the
equation

®) o@) = [ B ey,

Therefore there exists an n sufficiently large so that the function

(7) f'(@) = 2 ei)

=1

satisfies the inequality

(8) [f'@) =@ | < e

Combining inequalities (5) and (8) we get

) [fx) = ()| < e

Since equation (6) is of the form (3), all the functions ¢;(z), 7 =1, - - -, n,

belong to the system A’.  But since eis arbitrarily small, the uniform complete-
ness of the system A’ follows from (7) and (9).
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Let us denote by A’’ the set of all functions g;;(z) arising from all possible

representations g, g(z) = Hg.-,-(x)“, of the group G and let us show that the
" system of functions A’’ is uniformly complete in G.

To prove this it is sufficient to show that every function of the system A’
can be expressed as a finite linear form in the functions of the system A’/ with
constant coefficients, since the uniform completeness of the system A’ has al-
ready been shown.

If ¢'(x) is a function of the system A’ it satisfies equation (3) for some choice
of the kernel k(z). Let N be that characteristic value of the parameter N to
which corresponds the function ¢'(z). We denote by

(10> ‘pl(x); T §0n(I)

the complete orthogonal system of solutions of equation (3) which belong to
the given characteristic value N\’ (see §26, H)). Then ¢'(z) can be expressed
as a linear combination of functions of the system (10), and it will suffice to
show that every function of the system (10) can be expressed as a linear com-
bination of functions of the system A”’,

If the function () is a solution of equation (3), then the function ¢(az) is
also a solution of (3) for the same characteristic value A. In fact since z is
an arbitrary variable in equation (3), x can be replaced by az, and at the same
time, because of the invariance of integration, y can be replaced by ay, and we
get

olaz) = [ ey = 2 [ ke wetanis

Therefore, the functions
(1) @1(0'1'); ) Son(ax)

are solutions of equation (3) for the characteristic value X', and hence can be
expressed as a linear combination of functions of the system (10). In this way
we obtain

(12) ei(az) = 2 gii(a)e;i(x).
i=1
Moreover, the system (11) is orthogonal, since
fw(ax)(p,-(ax)dx = f ei()pi(x)dr = ;.

Hence the functions of the system (11) are linearly independent, and the func-
tions of the system (10) can be expressed as linear combinations of them.
Hence the matrix [ g;i(x)H = g(x) has an inverse. It could also be shown that
the matrix g(z) is orthogonal, but this is not essential for our purposes. We
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shall show that the functions g;;(z) are continuous. In fact multiplying (12)
by ¢x(z) and integrating we get

9u(0) = [ extanoa)is
(see §25, J)). We next calculate g(ab). We have from (12),
(13) iabs) = 3 gu(ab)e ().
From the same relation (12) we also get
(14) aabn) = 3 gul@)en(t) = 3 ga@(t)e(o).

(k,i)=1

Comparing coeflicients in the right sides of (13) and (14) we get
gii(ab) = 2 ga(a)ge;(b),
k=1

which can be written in matrix form

(15) g(ab) = g(a)g(b).

It follows from (15) and from the continuity of the functions g;;(z) that g(x)
gives a representation of the group G, and therefore all the functions

(16) gii(x)

belong to the system A”’,
We now replace z in equation (12) by the identity e. We obtain

ei(@) = 2 gii(@)eie).
j=1
But this means that the functions of the system (10) are expressed as a linear
combination of functions of the system (16) belonging to the system A’’. This
proves that the system A’’ is uniformly complete.

All the functions of the system A appear in the system A/, AcA’'. We
shall now show that every function of the system A’’ is expressible as a linear
combination of functions of the system A. This will show that the system A
is uniformly complete, since the uniform completeness of the system A’’ has
already been proved.

Let p(z) be an arbitrary function of the system A’’. Then there exists a
representation ¢ of the group G, g(z) = Hg,-,(x)“, such that p(z) is one of the
functions

a7 gii(x).
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By remark A) of §28 there exists a constant matrix f such that -

. (18) g(x) = t"'h(2)t,
where the matrix h(z) has the special form
gl(x) 0 . 0
0 o() - -+ 0
hz) = ga(x)

0 0 PR gn(x)
and where
(19) gi(x)y t1=1,2,---,n,

give irreducible unitary representations of the group G. By a special choice
of the matrix ¢ it is possible to have all the representations of the system (19)
belong to the systém (1), for the system (1) contains irreducible representations
equivalent to any given representation. If we then suppose that the repre-
sentations (19) belong to the system (1), then relation (18) shows that all the
functions (17) can be expressed as linear combinations of functions of the sys-
tem A. In particular, this is true for the function p(z). Hence the uniform
completeness of the system A is established.

The following proposition, which plays a particularly important part in the
study of compact topological groups, is a direct consequence of Theorem 27.

TrEOREM 28. We select one representative from each class of irreducible equiva-
lent representations of the group G and denote the representatives by

(20) g, - g

Then for every element a € G distinct from the identity, there exists a representation
g™ of the system (20) such that g™ (a) is not the unit matriz.

Proor. It follows from Urysohn’s Lemma that since a # e, there exists a
function f(x) defined on G such that f(a) = f(e) (see §14). If, contrary to the
statement of the theorem, the equality ¢ (a) = g™(e), should hold for every
representation g of the system (20), then we should have for every function
of the system A (see Theorem 27) the equality ¢ (a) = ¢§)(e). But in this
case it would be impossible to approximate the function f(x) by linear forms

in the functions of the system A, since f(a) 5 f(¢). Hence Theorem 28 is estab-
lished.

We now pass to the consideration of systems of characters.
THEOREM 29. Let
Q= {Xl(x); ) Xﬂ(x)y t }

be the totality of all characters of irreducible representations of the group G. We
shall say that the function f(x) defined on G is invariant if
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21 f(a~'ra) = f(2)

for every a e G. From relation (5) of §28 the functions of the system Q are in-
variant. The assertion of this theorem is that the system Q is uniformly complete
with respect to all invariant functions defined on G. This means that for every
invariant function f(x) defined on G, and for every positive ¢, there exists a linear
form f'(x) = D i—icixi(x) with constant coefficients such that

[ f@) = f'@)| < e

Proor. Let g be an irreducible representation of the group G of degree 7,
g(z) =| g:i()||. Let us suppose that the function

(22) p(z) = 27: biigi(x)

(i,1)=1
isinvariant. We can then show that
(23 p(x) = ax(z)

where x(z) is the character of the representation g, and a is a number.
By assumption

,.

(24) p(atra) = i: bigila=za) = 2 bigal(aVgu(x)gu(a) = p(z).

(i,7)=1 (7,1,k,1)=1
Since all the functions g;;(x) are linearly independent (see Theorems 23 and
§26, F)), the corresponding coefficients b in (22) and (24) must be equal and we
have
bu = 2. gui(@)bjiga(a™).
(=1

Ih matrix notation this last equality can be written: b = g(a)bg(a='), where
b= “bij ; 1t can also be written g(a)b = bg(a). From remark E) of §27 we
can conclude from this that the matrix b has the form ae’ , where e’ is the unit
matrix, and « is a number. Then equation (22) assumes the form (23).

Now let ¢(z) be an invariant function defined on G which is expressible as a
finite linear form in the functions of A (see Theorem 27). The sum ¢(x)
can be decomposed into a series of partial sums p:(z), ¢(z) = D ;1—,p:(z), where
each sum p;(x) has the form (22), i.e., it is composed of functions belonging to
one irreducible representation g¢». It follows from the invariance of the fune-
tion ¢(x) that each of the functions p;(z) is also invariant. For the function
pi(a~'za) can be expressed as a function of z linearly in terms of the functions
99 (z) belonging to the representation g (see equation (24)). It follows from

this and from the linear independence of the functions of the system A, that
the equation

3 pilaza) = 3 pila)
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must be true termwise, i.e., p;(a~'za) = p;(z),t = 1, - - - ,n. _ We therefore ob-
tain from (23) the equation p;(z) = a:xi(z), i.e.,

(25) 1@ = 3 axio).

Finally let f(z) be an arbitrary invariant function defined on G. By Theo-
rem 27 there exists a finite linear form f/(z) of functions of the system A such
that

(26) [f@) = f@)| < ¢

where eis a preassigned positive number. It follows from inequality (26) that

27) iff(a*‘xa)da —ff’(a*‘xa)da <e

Since f(z) is invariant we have [f(a~'za)da = f(x). Let us suppose that
Jf'(a='za)da = ¢(x). Then inequality (27) has the form

[ fl@) = g(@) | < e

Since the function f'(z) is a finite linear form in the functions of the system A,
f'(a'za) has the same form as a function of z, and therefore ¢(z) is a finite
linear form in the functions of the system A. It is not hard to see that the func-
tion ¢(z) is invariant, because of the invariance of integration (see Definition
31, 7)). It follows from relation (25) that ¢(z) = D ;_,aix:(z). Hence
|f(z) — Z;;laixf(z)[ < eand the theorem is proved.

A) Let

Q= {Xl(x)) t '7Xn(x)) T }

be the totality of all characters of irreducible representations of the group G
and f(z) an invariant function defined on G. We denote by h; the Fourier co-
efficients of the function f(x) with respect to the system Q,

ne= [ s@xo
Then we have the equation

S ki = [ s
=1
The proof is based on Theorem 29, and is analogous to the proof of Remark E)
of §26.

Just as Theorem 28 follows from Theorem 27, so Theorem 30 can be made to
follow directly from Theorem 29. This theorem is, however, not important
for our purposes.
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TraEOREM 30. Let a and b be two non-conjugate elements of the group G, i.e.,
elements such that there exist no element ¢ € G for which b = ¢ 'ac. Then there
exists a character x(x) of an irreducible representation of the group G such that
x(a) # x(b).

Proovr. It is not hard to see that the set B of all elements conjugate to b
is compact. From Urysohn’s Lemma (see §14) there exists a non-negative
function f(x) which is zero on B and different from zero at a. Moreover the
function ¢(xr) = [f(y~'ry)dy is invariant, and ¢(b) = 0, while o(a) = 0. By
Theorem 29 the function ¢(z) can be approximated uniformly by means of
linear forms in functions of the system  (see A)), and hence there exists a
function in @ which assumes distinct values at the points a and b.

ExampLE 45. Let us complete the discussion of Example 43. Let

Q= {X'1(T>, Ty X,n(l‘)y e }

be the totality of all the characters of irreducible representations of the group G
and let

Q' = {X,/l (y), Ty, Xn”(y); T }

be the totality of all the characters of irreducible representations of the group
H. Let us denote by Q the totality of all the functions x.;(2) = x;(x)x,”(y)
where z = (z, y). It follows from what we have shown in Example 43 that
all the functions of the system Q are characters of irreducible representations
of the group F. We shall show now that the system © contains all the char-
acters of the irreducible representations of the group F.

Let f(z) = f(z, y) be an invariant function defined on F.  Let us determine
the Fourier coefficients of this function with respect to the system Q by setting

(28) 15 = [ 1@xa@iz = [ [ s, p@x; sy
(see proof of Theorem 21). The function f(z, y) is an invariant function on H

for a fixed . Let us determine its Fourier coefficients with respect to the sys-
tem Q' by setting

fi@) = f 1, DX W)y
From remark A) we have
(29) S @) = f 1, i, v)dy.

The series on the left side of equation (29) is composed of positive continuous
functions and converges to a continuous function; therefore, by a well known
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theorem of analysis, it is uniformly convergent and we can integrate it term-
wise. We then obtain

(30) > [ f@itaae = f f 1z, )iz, y)dedy.

It can readily be seen that the function f;(z) defined on G is continuous and
invariant. Determining its Fourier coefficients with respect to the system Q'
we get

[ @@z = 1
But from A) we have

(31) [ 1@i@az = T 1.

=1

Combining relations (30) and (31) we get

(32) S sifs = [ [ 60, i@ vyaay = [ serferae
G)=1

Let us now suppose that some character x(z) of an irreducible representation
of the group F does not belong to the system Q. Then all the Fourier coeffi-
cients of the function x(z) with respect to the system Q will be equal to zero (see
Theorem 24). But on the other hand by Theorem 25. [x(z)x(z)dz = 1.~
Hence we have arrived at a contradiction to equation (32) for the function
@) = x(2).

Therefore the construction given in Example 43 gives all possible irreducible
representations of the direct product F by starting with irreducible representa-
tions of its factors G and H.

ExamprLE 46. We give here an application of the theory of representations
to the theory of almost periodic functions.

A continuous complex function f(¢) of a real variablet, — © <t < 4 0, is
called almost periodic if the family H of all functions of the form f(t + a),
where a is an arbitrary real number, is compact, i.e., if from any sequence
ft&+a), -, f(t + a,), - - - there can be selected a uniformly convergent
subsequence.

The simplest example of almost periodic functions are the periodic functions
of the form e™!, where \ is an arbitrary real number, and i = v/—1. We de-
note the set of all functions of the form et by A. We shall show that the sys-
tem A is uniformly complete in the set of all almost periodic functions (see §26,
D)). This proposition is the fundamental theorem in the theory of almost
periodic functions.

Starting with a definite almost periodic function f(¢), we denote by G the
set of all functions which are uniform limits of functions of the family H. The
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set G is compact in the sense of uniform convergence, and is a topological space
satisfying the second axiom of countability. The set H is everywhere dense
in G. We define addition in the set H as follows: if z’ = f(t + a’) and
z'" = f(t + a’’) are two elements of the set H, then their sum z’ + z’’ is
defined as the function f(t + a’ + a’’), also belonging to the family H. The
operation of addition thus defined in the set H can be uniquely extended to all
elements of the set G because of continuity. In this way G becomes a compact
commutative topological group, satisfying the second axiom of countability.
Therefore to the group @ is applicable all of the theory of representations.
Let

(33) gw, . g

be the totality of all irreducible representations of the group G. Since, by
Theorem 26, all irreducible representations of the group G are of degree 1, it
follows that ¢ is simply a homomorphic mapping of the group G into the
‘multiplicative group K of eomplex numbers of absolute value unity. Hence
g‘™(z) is a complex number of absolute value unity, and

(34) g™z +y) = g™ ()9 ().

If = belongs to the subset H, then x is a function of the form f(t + a) and
therefore depends on the parameter a. We therefore write ¢ = x(a), and we
have from the addition defined in H that z(a’) 4+ z(a’’) = z(a’ + a’’). Itcan
readily be seen, moreover, that as an element of the space G, z(a) is a continu-
ous function of the parameter a. We shall now consider the meaning of
g™ (z(a)). We have

0™ (e’ + ) = g0(x(@))g ™ (2(a”)),

Hence if we consider ¢ (z(a)) as a function of the parameter a, then g (x(a))
gives a homomorphic mapping of the additive group of real numbers in the
group K. We can conclude from this that ¢ (z(a)) = e®»*since every homo-
morphism of the type indicated is expressible in this form (see §32, H)).

We associate with every element z(a) € H the number f’'(z) = f(a). In this
way we have defined the function f’(z) on H. This function can be extended
by continuity to the whole group @, and will be continuous on G.

By Theorem 27 the function f’(z) can be uniformly approximated by finite
linear forms in the functions (33). If we consider this approximation only on
H, we obtain an approximation of the function f(a) by linear forms in the func-
tions g™ (x(a)) = e, n =1,2,---. Hence the system A is uniformly com-
plete in the set of all almost periodic functions.



CHAPTER V
COMMUTATIVE TOPOLOGICAL GROUPS

The present chapter is devoted to the detailed investigation of locally com-
pact topological commutative groups satisfying the second axiom of countabil-
ity. All the questions arising here are completely solved or are at least reduced
to questions concerning abstract commutative groups.

The principal method employed in this chapter consists in the construction
of a character group (see Definition 34). To every locally compact topological
commutative group G satisfying the second axiom of countability there corre-
sponds a locally compact topological commutative group X satisfying the sec-
ond axiom of countability, which is called the character group of the group G.
The correspondence thus established between the groups G and X is symmet-
ric. It enables us to reduce any question concerning one of these groups to
the corresponding question about the other.

If the group @ is compact then its character group X is discrete, and con-
versely (see §17, A)). In this way the study of compact commutative groups
is reduced to the study of discrete, or what is the same, abstract groups. The
structure of locally compact groups is made quite clear.

The main results depend on the theory of representations of Peter and Weyl.
We have already shown in the previous chapter (see Theorem 26) that every
irreducible representation of a commutative group @ is a representation of the
first degree, i.e., it essentially coincides with the character of the representation.
It now appears that the totality of all characters of the group @ forms in a
natural way a new group X, which is called the character group of G. Let
us consider this in greater detail. Let g(z) be a unitary irreducible representa-
tion of the group G. Since it is of the first degree, we can say simply that g(z)
is a complex number of absolute value unity. In other words g(z) can be con
sidered as a homomorphic mapping of the group G into the multiplicative group
of complex numbers of absolute value unity. If g(z) and A(x) are two such
mappings, then f(z) = g(z)h(z) is also a mapping of the same type. It isin
this way that we define the operation of multiplication in a character group.

The fundamental results of this chapter are due to myself (see [27], [28],
and [25]). A number of important generalizations and improvements ob-
tained by van Kampen (see [13] and [15]) will also be taken into account.

All the topological groups considered in this chapter are commutative,
locally compact, and satisfy the second axiom of countability. These conditions
are always supposed to be satisfied, even if they are not explicitly stated.

Since all the groups discussed here are commutative we shall use the additive
notation. Therefore, the multiplicative group of complex numbers of absolute
value one will be replaced by an additive group K isomorphic with it, whose
complete definition will be given at the beginning of §30. Since this group will
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play a fundamental part in the whole discussion, the letter K will be reserved
for it during the whole chapter.

30. Character Groups

We shall first of all construet a character group (see Definition 34) and then
give a proof of its simplest fundamental properties (see Theorem 31).

A) Let D be the additive topological group of real numbers, and N its sub-
group of all integers. We denote by K the factor group D/N (see Definition
25). It can readily be seen that K is a compact topological group satisfying
the second axiom of countability. Since the group K arises from the group
of real numbers, we shall sometimes treat its elements as real numbers defined
up to an additive integer. If, in particular, we limit ourselves to the considera-
tion of a sufficiently small neighborhood U of zero of the group K, then we can
assign uniquely and continuously to each of its elements a definite numerical
value, taking for the numerical value of an element a € U the least real numbei
(in absolute value) from which the element @ has arisen.

DeriniTioN 34. Let G be a locally compact commutative topological group
satisfying the second axiom of countability. KEvery homomorphic mapping of
the group G in the group K (see A)) will be called a character of the group G.
The set of all characters of the group G we denote by. X. We can introduce
i a natural way into the set X an operation of addition and a topology. The
commutative topological group X thus obtained is called the character group
of the group G. -

Let « and 8 be two elements of X. Their sum

(1) y=a+8

is defined as follows. If z € G, we let

2) v(@) = a(z) + B(z).
We then have

v@+y) =alx+y) + B +y) = al) + aly) +Bx) + By = v +v)-

Therefore vy is a homomorphism of the group G in the group K and hence
v & X. The continuity of the mapping v follows directly from the continuity
of the mappings @ and 8. The zero of the group X is that homomorphism of
the group @ in the group K which maps every element of the group G into the
zero of the group K. The homomorphism a’ tnverse to the homomorphism «,
a’ = = @, is determined by the relation a'(z) = — a(z).

In order to introduce a*topology into the group X we make use of Theorem
10, i.e., we define a complete system Z* of neighborhoods of zero of the group X.
We find an arbitrary neighborhood V of the system =* by starting with a
neighborhood U of zero in the group K and an arbitrary compact set F of the
group G. We then define the neighborhood V as the totality of all @ € X such
that
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(3) a(F)cU.

It is not hard to verify that the system of neighborhoods Z* thus obtained
satisfies all the conditions of Theorem 10, and therefore X becomes a topologi-
cal group.

We make here the following preliminary remark.

B) There exists a neighborhood U of zero of the group K such that for any
topological group G and character a of G. the relation

4) a(@cU
implies that
(5) a=0.

We can define U as the set of all elements a ¢ K which satisfy the inequalities
— 1% < a < 1% (see A)). Let us suppose that there exists an element z ¢ G
such that

(6) a(z) # 0.

It can readily be seen that in that case there exists an integer n such that the
element na(z) = a(nz) does not belong to U. Therefore relations (4) and (6)
are contradictory so that (5) follows from (4).

TrEOREM 31. The character group X of the group @G (see Definition 34) s al-
ways locally compact and satisfies the second axiom of countability. If the group G
is discrete, then the group X is compact. If the group G is compact, the group X
is discrete (see §17, A)).

Proor. We divide the proof into four parts.

a) X satisfies the second axiom of countability.

We shall show first of all that X contains a countable complete system of
neighborhoods of zero.

Let

(7) Uy -y Uny - - -
be a countable complete system of neighborhoods of zero of the group K and let
(8) Wy, -, Wy v - -

be a countable complete system of neighborhoods of the group @ such that the
closure W, of every open set of the system (8) is compact. We denote by V7,
a neighborhood of the system Z* (see Definition 34) defined by the neighbor-
hood U, and by the compact set Wiu Wau - - - u W,.. The set of all neigh-
borhoods Vi, m = 1,2,---,n = 1,2, - ,is countable. We shall show that
it forms a basis about zero (sce §8, B’)). Let V be a neighborhood of zero of
the group X defined by a neighborhood U of zero of the group K and by a
compact set F' of the group G (see Definition 34). Then there exists a suffi-
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ciently large number m such that U, c U. Since the system (8) covers F, it
follows from Theorem 7 that there exists a sufficiently large number n such
that Fc Wiu Weu - - - u W,. It can readily be seen that Vi, cV (see (3)).
Hence there exists a countable complete system of neighborhoods of zero of
the group X.

In order to complete the proof that X satisfies the second axiom of counta-
bility it is now sufficient to show that X contains a countable everywhere dense
set M (see §17, B)). We shall now construct this set M.

Let T be a countable complete system of neighborhoods in K, and A a count-
able complete system of neighborhoods in G such that if B € A, then B is com-
pact. Furthermore, let

(9) Aly T A,-
be a finite sequence of elements of the system T, while
(10) By, ---,B,

is a finite sequence of elements of the system A. Starting with the sequences
(9) and (10) we determine a set C of elements of the group X composed of all
v & X such that y(By) c Ay, k = 1, - - -, r. There is only a countable number
of sets of the type C. We select a single element from every non-null set of
the type C, and denote the set thus obtained by M. The set M is countable.
' We shall show that it is everywhere dense in X.

Let @ be an arbitrary element of X and V an arbitrary neighborhood of zero
of the group X defined by a neighborhood U of zero of the group K and by a
compact set F of G (see (3)). We shall show that there exists an element
B & M such that 8 — a € V. This will show that M is everywhere dense in X.

For every z ¢ F there exists a neighborhood 4. & T of the element a(z) such
that

(11) A; — a(x)cU

(see §2, A)). We denote further by B, € A such a neighborhood of the element
z ¢ F that

(12) a(B.) € 4..

The system of all regions B., = € F, covers F and therefore by Theorem 7 we
can select a finite covering from this covering. Therefore there exists a finite

system zy, - - -, x,of elements of F such that the system of opensets B.,, - - -, B,
covers F'. The sequences

(13) Agyy - -+, Ax,

and )

(14) B., - -, B,

define, just as do the sequences (9) and (10), some set C' of the type C, where
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aeC’. (’isnotempty since a € C’, and therefore there exists an element 3 of
the set C’ belonging to M. We shall show that 3 — a = 8¢ V. To do this it
is sufficient to show that 6(F) c U, i.e., if y ¢ F we have 8(y) — a(y) e U. But
for every y e F there exists a number k such that y € B;, and therefore a(y) € 4.,
(see (12)). On the other hand since g € C’, it follows that 8(y) € 4., and there-
fore by (11), 8(y) — a(y) e U.

Hence, we have shown that X satisfies the second axiom of countability.

b) X is locally compact.

Let W be a neighborhood of zero in the group G whose closure W is compact.
Let us denote by U the interval — 45 < a < 1% in the group K, which is a
neighborhood of zeroin K. We define the neighborhood V of zero in the group
X as the set of all elements « for which

(15) a(W)cU

(see (3)). We shall show that V has a compact closure V.
In order to show the compactness of V, we show that every sequence

(16) o, - am

of elements of the set V has a limit element in X. We snow in particular that
a convergent subsequence can be chosen from (16).

We shall consider the elements of U as numbers in the interval between
—1 and ++1% (see A)). Then every element a ¢ V defines a function a(z)
on W which assumes numerical values not exceeding 1% in absolute value.
From this point of view the set V is a uniformly bounded family of real-valued
continuous functions defined on W. We shall show that this family is equi-
continuous (see §24, D)).

Let € be an arbitrary positive number, and I > 10 a sufficiently large positive
number such that

1
17 € > — -

l
We now denote by W’ a neighborhood of zero of the group @ such that if
ze W', then

(18) kze W, =1, L

Let us suppose that there exist two elements z and y of the set W and an ele-
ment a ¢ V for which the following conditions are satisfied.

(19) x—y=zeW,
(20) |a(@) — a@) | =] ak)| > «
We shall then arrive at a contradiction. To that end we consider the elements

(21) a(kz), k=1,




§30] CHARACTER GROUPS 131

On the one hand it follows from relations (19), (18) and (15) that
(22) ka(z) = a(kz) ¢ U, k=1,---,1

while on the other hand it follows from relations (20) and (17) that for some
k = k' we have % < | k'a(z) [ < 1% and therefore the element a(k’z) cannot be-
long to U. This contradiction shows that for every positive e there exists a
neighborhood W’ of zero of the group G such that if ze W, ye W, and
z — y e W, then la(x) - a(y)| < € for every o€ V. This means that the
family V is equi-continuous.

Since the family V is equi-continuous and all the elements of the sequence
(16) belong to V, we can select from that sequence a subsequence

(23) By« vy Byt

which converges uniformly in W. Denote the limit of the subsequence by 8.
Then 8 is a continuous function on W, whose values do not exceed % in abso-
lute value. We have in this way defined a continuous mapping 8 of the set
Win U. The uniform convergence of the sequence (23) can now be formulated
as follows: for every neighborhood U’’ of zero of the group K there exists a
sufficiently large integer n’, such that for n > n’ and x € W we have

(24) B(x) — Bulx) e U"".

The set of all open sets of the form ¢ + W, where g € G, covers G, and there-
fore there exists a countable sequence

(25) Gy Gy
of elements of the group G such that the totality of all open sets of the form
(26) gn + W, m=12 -,
covers G (see §12, H)). We now select a subsequence

(27) VL Ve

of the sequence (23), such that for every m there exists a limit

(28) hﬂ Yalgn) = v(gn).

Since the group K is compact, we can carry out this process of selection by
means of the diagonal process (see Theorem 9).

We shall now show that for every element g € G there exists the limit
(29) lim v.(9) = v(9),
and that the mapping v(g) is a homomorphic mapping of the group @ into the
group K.

We note first of all that the sequence (27), being a subsequence of the se-
quence (23), converges uniformly on W (see (24)), and has for its limit the



132 COMMUTATIVE GROUPS [cr. v

mapping 8. But, since the sequence of open sets (26) covers G every element
g € G can be written in the form g = ¢, + z, where z ¢ W. We have in this
way

(30) lim v,(¢9) = lim va(gn) + lim v.(x) = v(gn) + B(x) = v(9).

n—w n—o n—o®
Furthermore, if ¢ and h are two elements of G, then

v(g + k) = lim v.(g + k) = lim vya(g) + lim va(h) = v(g) + v(h).
Hence v is a homomorphic mapping of the abstract group G in the abstract
group K. It can readily be seen that the mapping v is continuous (see §19,
B)), and therefore is an element of the group X.

We shall now show that the sequence of homomorphisms (27) converges to
the homomorphism v in the sense of the topology established in X (see Defini-
tion 34).

Let v, = v» — v. It suffices to show that every neighborhood V' of zero
of the group X contains all the elements of the sequence

(31) 'ny"':'y:n"'

with the exception of only a finite number. Let us suppose that the neighbor-
hood V’ is defined by the compact set F’ ¢ G and the neighborhood U’ of zero
of the group K (see Definition 34). Let U’’ be a neighborhood of zero of the
group K such that

(32) U’ + U'cU'.

Since the system of open sets (26) covers the group G, we can select a finite sub-
system

{33) gm+W: m=1,~--,r,

of open sets of the system (26) which covers the compact set F’ (see Theorem
7). It follows from (28) that lim,., v,(gm) = 0. Therefore, there exists a
sufficiently large n’’ such that for n > n’’ we have '

(34) valgm) e U, m=1,---,r.
Furthermore, it follows from relation (24) that for n > n’ we have
(35) (W) eU".

Relations (34), (35), and (32) for n > n' and n > n'’ imply ~,(F')cU’.
Hence we have for n > n’ and n > n’’ that v, ¢ V'. Hence the sequence
(31) converges to zero in the sense of the topology in the group X, and there-
fore the sequence (27) converges to .

It follows directly from the fact that every sequence of elements of the set V
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has a limit point in X, that the set V is compact. Hence the local compactness
of the group X is established.

¢) If G is discrete, then X is compact.

In case @ is discrete we can take for a neighborhood of zero in G (see b))
a set containing only the zero of the group G. Then the neighborhood V of
the group X will be composed of all the elements of the group X (see (15)),
and since we have already shown that V is compact (see b)), it follows that X
is also compact.

d) If Gis compact, then X is discrete.

For a compact group G we can take for a neighborhood W of zero the set G
itself (see b)). Then condition (15) signifies, because of remark B), that V con-
tains only the zero of the group X and therefore X is discrete.

Hence Theorem 31 is completely proved.

Theorem 31 shows, first of all, that by applying the operation of forming a
character group to a locally compact commutative group which satisfies the
second axiom of countability we obtain a group which satisfies the same condi-
tions. In this way the set L of all locally compact commutative groups which
satisfy the second axiom of countability forms a class closed with respect to
the following operations: the formation of a subgroup, the formation of a factor
group, the formation of the character group.

We denote by C the set of all commutative compact groups satisfying the
second axiom of countability, and by D the set of all countable commutative
discrete groups. Each of the classes C and D is closed with respect to the oper-
ations of forming subgroups and factor groups, but the operation of forming
the character group gives a transition from one class into the other. 1In this
way in the theory of characters, classes C' and D are complements of one an-
other. From this point of view it is more natural and economical to consider
the whole class L at once so as not to separate cases, which would be inevitable
in the consideration of classes C and D. It is worth noting, however, that the
most important applications of the theory of characters are obtained for the
classes C' and D.

31. Fundamental Relations in the Theory of Characters

We shall formulate here, first of all, the fundamental Theorem 32 in the
theory of characters. The proof of this theorem is rather complicated: it de-
pends on the results of Peter and Weyl and on some delicate group-theory con-
siderations. We shall develop all this gradually in the following sections.
Here we shall also formulate the second fundamental Theorem 33 in the theory
of characters, as a direct consequence of Theorem 32.

We have already remarked at the end of the preceding section that the class
L of all locally compact commutative groups satisfying the second axiom of
countability is closed with respect to the operations of forming subgroups, fac-
tor groups, and character groups. The present section is devoted to clearing
up the connection between these three operations. It is true that since we give
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no proof of Theorem 32 in this section, its most important consequences,
namely Theorems 33 and 35 also remain for the moment without proof.
Nevertheless it is desirable to have all these connections formulated in the
same place.

A) Let X be the character group of the group G (see Definition 34). Then
every element g of the group G represents in a natural way a definite character
of the group X. Infact if a ¢ X, then g(e) is defined by

(1) g(a) = alg),

where a(g) is defined because « is a character of the group G.

In order to prove that the mapping ¢ of the group X in the group K defined
by equation (1) is really a charactg‘ of the group X, we consider two elements
a and B8 of the group X. The sum of these elements v = a + B is defined by
equation (2) of §30, and we have

g(v) = v(g) = alg) + B(g) = g(a) + g(B).

Hence ¢ is a homomorphic mapping of the abstract group X in the abstract
group K. In order to prove that g is continuous, it is sufficient to show that
for every neighborhood U of zero of the group K there exists a neighborhood V
of zero of the group X such that g(V) c U (see §19, B)). We determine this
neighborhood V of the group X from the neighborhood U of zero of the group K
and from the compact set F ¢ G which contains only the point g. Then by
Definition 34 the element a € X belongs to the neighborhood V under the con-
dition that a(g) € U, but this implies that'g(e) € U, i.e., g(V) c U.
The meaning of remark A) is made clear by the following theorem.

TaeorEM 32. Let X be the character group of the group G (see Definition 34).
By remark A) every element g of the group G represents a character of the group X.
In this way G is a set of characters of the group X. The set G of characters, to-
gether with the topology and the addition defined in it, is the character group of the
group X.

The proof of this theorem will be given below (see §35). Here we shall only
make some preliminary remarks leading up to the proof of Theorem 32.

B) Let X be the character group of the group G, and let G’ be the character
group of the group X. It follows from remark A) that every element r e G
represents some definite character of the group X. To avoid misunderstand-
ing we designate this character not merely by z but by ' = ¢(z). Then ¢isa
homomorphic mapping of the topological group G in the topological group G'.

We shall show first that ¢ is a homomorphic mapping of the abstract group G
in the abséract group G’. Let z and y be two elements of G, and letz = z + y.
Suppose further that =/ = o(r), ¥y’ = o(y), and 2’ = ¢(2). If a e X, we have

/(@) = alz) = a(@) + aly) = 2(a) +y'(a).
Hence ¢(z + y) = ¢(z) + o).
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We shall now show that ¢ is a continuous mapping of the space G in the space
G'. To do this it is sufficient to show that for every neighborhood V' of zero
of the group G’ there exists a neighborhood V of zero of the group G such that

@) o(V)e V'

(see §19, B)).

Let us suppose that the neighborhood V' is defined by the compact set
F’ ¢ X and by the neighborhood U’ of zero of the group K (see Definition 34).
Then property (2) of the neighborhood V can be formulated as follows,

3) if acF’ and zeV, then ea(x)eU’.

We now construct the neighborhood V which has this property. Since ais a
continuous mapping, there exists a neighborhood.V, of zero of the group @ such
that

4) a(V,)eU’

where V, is compact. Let U, be a neighborhood of zero of the group K such
that ’

(5) a(Vs) + UscU’.

We further define the neighborhood W, of zero of the group X by the compact
set V. €@, and the neighborhood U, of zero of the group K. Let us suppose

(6) Wo=a+ W,

where W is a neighborhood of the element a in the group X, having the follow-
ing property: if & W, and y € V,, then

M Bly)e U'.

As aruns over the set F', the system of neighborhoods (6) covers this set. Let
us select from this covering a finite covering W, - - -, W (see Theorem 7).
The intersection of all the open sets V., ¢ =1, - - -, n, we denote by V. It

follows from (7) that if B e F’' and y € V, then 8(y) e U’. We have therefore
found a neighborhood V of zero of the group G which possesses the desired
_ property (3), and hence the mapping ¢ is continuous.

C) Let X be the character group of the group G. In order to prove Theorem
32 it is sufficient to prove the two following propositions.

a) For every element z ¢ G, distinet from zero, there exists an element a ¢ X
such that a(zx) # 0.

b) Every character z’ of the group X can be generated by means of some
element z of the group @ (see A)).

The proof of proposition C) follows directly from B). In fact if condition a)
is satisfied then the mapping ¢ (see B)) has the identity for its kernel. Fur-
thermore, if condition b) is satisfied, then the mapping ¢ is a mapping of the
group G on the whole group G’. Under these two conditions the mapping ¢



136 COMMUTATIVE GROUPS [cH. Vv

is an isomorphic mapping of the topological group G on the topological group G’
(see Theorem 13 and §19, D)).

The value of Theorem 32 consists in the first place in that it allows us to con-
sider every compact group @ as the character group of a discrete group X (see
Theorem 31). The consideration of the discrete group X can in turn be re-
duced essentially to the consideration of an abstract group X (see §17, A)) with
a countable number of elements, for by Theorem 31, the discrete group X
satisfies the second axiom of countability.

Theorem 32 establishes a complete symmetry between the groups G and X;
each of these groups is the character group of the other. A further develop-
ment of the duality of the groups G' and X is given by Theorem 33. This
theorem enables us to establish a one-to-one correspondence between the
groups G and X. It is necessary, however, to precede Theorem 33 by the
following definition.

DeriniTiON 35. Let X be the character group of the group G (see Definition
34), and H a subgroup of the group G. Let us denote by (X, H) the set of all
elements a € X for which a(z) = 0 for every x ¢ H. The set (X, H) is called
the annzhilator of the group H in the group X, and is a subgroup of the group X.

Let ® be a subgroup of the group X, and let us denote by (G, ®) the set of
all elements z € G for which a(z) = 0 for every e € ®. The set (G, ®) is called
the annihilator of the group ® in the group G, and is a subgroup of the group G

The fact that the sets (X, H) and (G, ®) are subgroups of the groups X and @
can be proved directly, and we shall therefore not stop to do so here.

TuroreM 33. Let X be the character group of the group G (see Definition 34)
and let H be a subgroup of the group G. Let ® = (X, H) and H' = (G, ®) (see
Definition 35). Then H' = H.

The proof of Theorem 33 will be given later (see §35). Here we shall make
only a preliminary remark:

D) Using the notation of Theorem 33 we have H'> H.

In fact if € H and a € ®, then we have by Definition 35 that a(z) = 0. On
the other hand H' is defined as the totality of all the elements = for which
a(xr) = 0. Hence H'>H.

TueorEM 34. Let X be the character group of the group G (see Definition 34),
and H a subgroup of the group G. Let ® = (X, H) (see Definition 35). Then
the factor group G* = G/H has the group ® for its character group. In greater
detail: Every element o € ® is a character of the group G*: in fact if * € G* then
a(x*) is defined by the equality

(8) a(z*) = alz)

where x 1s an arbitrary element of the coset x*, and a(x*) does not depend on the
choice of x from this coset. Under these conditions the set ® of characters together
with its original topology and addition s the character group of the group G*.
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Proor. First of all it is clear that equation (8) defines a mapping a of the
group G* in the group K. In fact let  and z’ be two elements of the coset z*
and let @« ¢ . Then a(z) — a(z’) = 0, since a(x — z') € a(H), and every ho-
momorphism « € & maps the whole group H into zero. Hence a(z) = a(z’).

‘We shall show now that the mapping « of the group G* in the group K is a
homomorphic mapping. If z* and y* are two elements of the group G* and
z e z*, y € y*, then the sum z* = z* + y* is defined as the coset containing the

~element z = z + y. We obtain in this way

a(z*) = a(2) = a(z) + a(y) = a(z*) + a(y®).

Hence « is a homomorphic mapping of the abstract group G* in the abstract
group K. Let us show that « is a continuous mapping of the group G* in the
group K. Let U be a neighborhood of zero of the group K. Then there exists
a neighborhood V of zero of the group @ such that (V) cU. Let us denote
by V* the totality of all cosets of the form w« + H, where v ¢ V. Then V*isa
neighborhood of zero of the group G*. Obviously, a(V*) ¢ U, since a(H) = (0).
Hence the mapping « of the group G* is continuous, and therefore is a homo-
morphic mapping of the topological group G* in the topological group K.

We denote by &' the character group of the group G*. From what we have
already shown every element « € ® is a character of the group G*. We shall
denote this character not by «, but by

(9) o' = Y(a)

and show that ¢ is an isomorphic mapping of the group ® on the group &’.
We denote by f the natural homomorphic mapping of the group G on the

group G* (see §19, C)). Then equation (9) is equivalent to the relation

(10) a(z) = a'(f(z)),

where z is an arbitrary element of G. If o’ is an arbitrary element of &', then
relation (10) defines an element « € ® such that ¥(a) = a’. Hence the map-
ping ¥ is a mapping on the whole group ®’. Furthermore, relation (10) enables
us to define for every element a’ a corresponding element a, since the mapping
¥ is one-to-one, and we can consider its inverse 1. We shall show that the
mapping ¢! is isomorphic. Let o’ and 8’ be two arbitrary elemcnts of ¢’ and
let v/ = a’ 4+ B’. Let also
a=y o), B=y1B) v=¥v().
‘Then we have
v() = ¥ (f(x)) = «'(f(x)) + 8'(f(z)) = alz) + B(2).
Hence
v a +B) =¢7(a) + 7B

and therefore the mapping ¢! is an isomorphic mapping of the abstract group
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&’ on the abstract group ®. It remains to be shown that ¢! is continuous.
Let V be an arbitrary neighborhood of zero of the group X. Suppose V is
defined by the compact set F ¢ @ and by a neighborhood U of zero of the group
K (see Definition 34). Suppose f(F) = F* and let us define the neighborhood
V' of zero of the group ®’ by the compact set F* ¢ G* (see Theorem 8), and
by the neighborhood U. Obviously in this case

(11) v (V) eV,

since if @’ € V', then a(F) = o'(f(F)) = a'(F¥*)c U. Relation (11) shows that
the mapping y~! is continuous (see §19, B)). Hence ¢ is an isomorphic map-
ping (see Theorem 13 and §19, D)).

Hence Theorem 34 is proved.

E) Let X be the character group of the group G and H a subgroup of the
group G. Let & = (X, H). If Theorem 32 is true for the factor group
G* = G/H and the group ® (see Theorem 34), then Theorem 33 is also true,
ie. H = H, where H' = (G, ®).

By Theorem 34 the group G* has for its character group the group . Since
Theorem 32 is true by assumption for these groups, it follows that G* is in turn
the character group of the group ®. Let us suppose that there exists an ele-
ment z of H’ which isnotin H. We denote by z* that element of the group G*
which, considered as a coset, contains the element z. Since z does not belong
to H, it follows that z* = 0. By its construction, H' is composed of all the
elements of G which are mapped into zero by all the characters of ®. Hence
the element z* is mapped into zero by any character of ®, i.e., a(z*) = 0 for
every a ¢ . On the other hand, z* is a non-zero character of the group &,
since 2* # 0, and therefore there exists an element 8 € ® such that z*(8) # 0.
But z*(8) = B(z*) and we have arrived at a contradiction. Hence H' c H; but
by D) we have H'> H, and therefore H' = H.

TuroreM 35. Lef G be a topological group, H a subgroup of G, y an element of G
which does not belong to H, and 8* a character of the group H. Then there exists d
character a of the group G such that a(y) # 0 and a(z) = *(x) for every x € H.
The character a becomes in this way an extension of the character *.

Theorem 35, just as Theorem 33, is a direct consequence of Theorem 32.
We shall indicate here a way af reducing Theorem 35 to Theorem 32.

F) If Theorem 32 is true, then Theorem 35 is also true.

Let X be the character group of the group G. Let & = (X, H) and
X* = X/®. Since Theorem 32 is true by assumption, it follows from E) that
H = (G, ®). From Theorem 32, G is the character group of the group X and
therefore we can assert by Theorem 34 that H is the character group of the
group X* and, conversely, X* is the character group of the group H.

Since 8* is a character of the group H, 8* ¢ X*. We denote by 8 an ele-
ment of the coset 8*. Then B(x) = p*(x) for x ¢ H. If now B(y) # 0, then
our proposition is proved. In case 8(y) = 0, some further considerations are
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necessary. Let us consider this case. Since y is not in H, there exists an ele-
ment v & ® such that v(y) # 0. Suppose @ =8+ v. Then ay) = (@)
+ v(y) = v(y) # 0. At the same time a(z) = B(z) for x ¢ H, since y(z) = 0
as vy e &.

32. Simple Examples and Preliminary Considerations

We shall consider here the character groups of the simplest groups. We
shall establish the truth of Theorem 32 for these groups. This will not only
serve as a concrete example, but will also form the foundation of the proof of
Theorem 32 in the general case.

First of all we establish some properties of the group K (see §30, A)).

A) Every subgroup N of the group K either coincides with K, or else is of a

finite orderr,7 = 1,2, - - - . Inthe latter case, all the elements of the group N
can be expressed in the form
(1) . ])/l', 7)=0,1,"',7”—1

(see §30, A)). Hence N is a cyclic group with the generator 1/r. If N is finite,
it can be characterized as the group composed of all the elements of the set K
of finite order whose orders divide the number r.

Suppose that the group N is infinite. Then there exists an element in K
which is a limit element for the subset N, and hence N contains twa elements a
and b arbitrarily close to each other. The difference ¢ = a — b is arbitrarily
close to zero, and its multiples n¢, n = 1, 2, - - - | which belong to N, fill up
the group K arbitrarily densely. Since the set N is closed in K, it follows that
N =K.

Let us now consider the case of a finite group N of order . If a ¢ N, then
ra = 0, which means that the element a can be written numerically as p’/r. It
is obvious that every element of the form p’/r can be written in the form p/7,
where 0 £ p < r. The totality of all the elements p/r, p = 0,1, - - -, r — 1,
forms a group of order .  We can conclude from this that N is composed of all
the elements of the form (1), since the elements which are not of that form
cannot belong to N, and there are just r elements of the form (1).

B) There are only two automorphisms of the group K, the identical auto-
morphism, a(z) = z, and another automorphism 8 for which 8(z) = — .

Let v be an arbitrary automorphism of the group K. The only element of
order 2 in the group K is 1/2 (see A)); therefore v(1/2) = 1/2. K contains
only two elements of order 4, namely 1/4, and —1/4. There are therefore
two possible cases, y(1/4) = 1/4 and v(1/4) = — 1/4. These two cases are
realized by the automorphisms a and 8. We shall show that no other auto-
morphisms exist. Let us consider the case in which y(1/4) = 1/4. The ele-
ment 1/8 can go over under the automorphism v only into one of the elements
1/8, 3/8, 5/8, or 7/8, but since the automorphism v is a continuous mapping
it preserves the cyclic order on K, and knowing that

v(0) =0, - y(1/4) =1/4,  ~(1/2) =1/2, ~(3/4) = 3/4,



140 COMMUTATIVE GROUPS [cH. vV

we conclude that y(1/8) = 1/8. Continuing in this way we conclude that
v(1/2*) = 1/2». Multiplying the last equation by a positive integer m < 2=,
we get v(m/2*) = m/2". It follows from the continuity of the automorphism
v and from the last relation that v is the identical automorphism. Similarly,
the case in which v(1/4) = — 1/4leads toy = B. -

C) Every homomorphism « of the group K into itself can be expressed in
the form a(z) = mx, where m is an integer which characterizes the homomor-
phism o, @ = a». If @, and e, are two homomorphisms of the group K into K,
i.e., two characters, then

Qm + Oy = Omyn.

Let N be the kernel of the homomorphism «. From remark A), N either
coincides with K, or else is finite and is characterized by a positive number r.
If N = K, thena(xr) = 0-z. Suppose that N is finite. Then the factor group
K’ = K/N can readily be seen to be isomorphic with the group K. The ques-
tion now arises as to how to establish an isomorphic mapping of the group K’
on the group K, since it is not possible to have an isomorphic mapping of the
group K’ on a subgroup of the group K. It follows from B) that there exist -
only two isomorphic mappings of the group K’ on the group K, and they corre-
spond to the two distinct cases a(z) = rx and a(z) = — rz. Hence C) is
proved.

D) Let G be an infinite cyclic group, i.e., a group isomorphic with the addi-
tive group of integers. Then the character a of the group-G can be given by
the relations a(ng) = na, where g is a generator of the group G and a an arbi-
trary element of the group K. The element a determines the character
a = a,. The sum of two characters is defined by the formula, a. + as = aarte.

Proposition D) is obvious.

E) Let G be a finite cyclic group of order 7. Then every character « of the
group @G is defined by the relation a(ng) = np/r, where g is a generator of the
group G and p/r an element of the group K, written in fractional form. The
character « is defined by the element p/r, and we write @ = ap. The sum of
two characters is defined by the formula e,/ + agr = (i)

Proposition E) follows:directly from remark A).

F) Let G be a discrete infinite cyclic group,and let X be the character group
of the group G. Then X is isomorphic with the group K and Theorem 32 is
true for the pair G, X. |

This follows directly from remarks D) and C). )

G) Let @ be a finite cyclic group and X its character group. Then X is iso-
morphic with G and Theorem 32 is true for the pair @, X.

This proposition follows directly from remark E).

H) Let G be the topological additive group of all real numbers. Then every
character a of the group @ can be expressed in the form a(z) = dz, wherez
is an arbitrary element of the group @, d is a real number defining the char-
acter @, a = a4, and where the right side is defined up to an additive in-
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teger. The sum of two characters of the group G is defined by the formula
‘o + g = g

Let N be the kernel of the homomorphism a. If N = G we have the case
a(z) = 0-z. If N does not coincide with G, then N contains a least positive
number ¢, and N is an infinite cyclic group with the generator ¢. Then the
group K’ = G/N is isomorphic with the group K, and we are to find the iso-
morphism which will map the group K’ on K. By B) there are then only two
possible cases: a(z) = z/t and a(z) = — z/t: Hence H) is proved.

I) Let G be the topological additive group of all real numbers, and let X be
the character group of the group G. Then X is isomorphic with G and Theo-
rem 32 is true for the pair G, X.

This follows directly from remark H).

The following proposition enables us to construct character groups and to
prove Theorem 32 for a wider class of groups.+

TueOREM 36. Let
(2) G, , G

be a finite system of topological groups. Let us denote by X the character group
of the group G;. Furthermore, let G be the direct sum of the groups of the system
(2), and X the direct sum of

@) Xy, e, Xo

Then X s the character group of the group G. In greater detail, if x = (a1, - - -, )
is an element of the group G and & = (au, - - -, a,) an element of the group X, €hen
the character a of the group G s defined by the relation

4) a(z) = ai() + - -+ + a(x).

Furthermore, if Theorem 32 is true for the groups of the system (2), then it is also
true for the group G.

Proor. It is obvious, first of all, that relation (4) actually gives a character
of the group G. Let a’ be an arbitrary element of the group G. Since the
groups of the system (2) can be regarded as subgroups of the group G, the
character a' is defined also for the group G, i.e., to the character a corre-
sponds a definite character o; of the group G;. It is not hard to verify that
o' = (a3, -+ -,cal). Hence theset X contains all the characters of the group G.
{n the same way, it is not hard to verify that X is the character group of the
group G. ’

Now let 2’ be an arbitrary element of the group X. Just as above, to z’°
corresponds a definite character z; of the group X;. Since Theorem 32 is true
_ by assumption for the pair @;, X;, it follows that z; ¢ G;. Hence there exists
an element (2, - - - ,2,) = 2'/in G. It can easily be verified that 2’ = 2'" e G.

Hence Theorem 36 is completely established.

J) If the discrete group G has a finite system of generators, (see §6, B)), and
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if X is the character group of the group @G, then Theorem 32 is true for the
pair G, X. We shall call the group X a generalized toroidal group.

This follows directly from proposition F) of §6 and Theorem 36 together with
remarks G) and F).

K) Let @ be a discrete group having a finite system of linearly independent
.generators (see §6, A), B)) and X its character group. Then X can be decom-
posed into a direct sum of a finite number of groups isomorphic with the group
K, and we shall therefore call X a toroidal group. The generalized toroidal
group (see J)) can be decomposed into the direct sum of a toroidal group.and a
finite group.

The proof of this proposition follows directly from F) of §6, and Theorem 36
together with remarks G) and F).

L) Let G be the additive topological vector group, and X its character group.
Then X is isomorphic with G, and Theorem 32 is true for the pair G, X.

Since the vector group G can be decomposed into the direct sum of groups
isomorphic with the group of real numbers, proposition L) follows directly from
Theorem 36 and remark I). ‘

We shall now make two preliminary remarks of a general character.

LeMmMA. Let G be a topological group, and H a subgroup of G such that the fac-
tor group G/H is discrete. Let 3 be a character of the group H and g an element
of G not belonging to the subgroup H. Then the character B can be extended to
some character a of the whole group G in such a way that a(g) ¥ 0. In other
words our lemma asserts the truth of Theorem 35 in case the factor group G/H <s
duscrete.

Proor. Since the factor group G/H is discrete, there exist only a countable
number of cosets of the subgroup H in the group G. Let us select a single -
element from each coset, and denote the elements selected by

(5) gy, © s Gny

where we let g; = g. We denote by H, the minimal subgroup of the group G
which contains the subgroup H and the finite system of elements gy, - - -, ga,
and by H, the subgroup H itself. We now construct by induction the sequence
of characters

(6) ,30=ﬂ,61,"',5n,"‘,

where (3,41 1s a character of the group H,,, and is the extension of the char-
acter 8,. Assoon as the construction of the sequence (6) is effected, the lemma
is proved, the character o being defined by setting @ = 8, on the group H.,.
Since every element of the group @ is in one of the groups H,, « is defined
over the whole group G. The homomorphism « coincides with 8 on H, and
since H contains a neighborhood of zero of the group G, the continuity of «
follows from the continuity of 8 (see §19, B)). Hence it remains only to verify
that a(g) # 0.

Let us suppose that the homomorphism 8, has already been constructed, and
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let us construct the homomorphism B.+1. In doing this we have to separate
three cases:
a) If the element g,41 € H,, then H..; = H,, and we have

.Bn-H = Bn-

b) If no multiple of the element g.,1 belongs to the subgroup H,, then every
element z ¢ H,,; can be written uniquely in the form z = y + mg.41 where
y € H, and m is an integer. In this case we shall suppose that

Bﬂ-f-l(l') = :Bn(y) + ma,

where a is an element of the group K. In case n = 0 we shall suppose that
a # 0 in order that 8,(g) should not map into zero. If z = y + mg.4: and
z' =y + m'g,.. are two elements of the group H,.1, then we have

Brii(x + 2) = Baly +¥") + (m + ma = B.(y) + ma + B.(y") + m'a
= 6n+1(x) + .8n+1(xl)-

Hence B, is a character of the group H 1.

c) Let r > 1 be an integer such that rg,,, € H,, and suppose r is the least
number satisfying this condition. Then every element z of the group H, can
be written uniquely in the form x = y + mg,,, where y ¢ H,, and m is a non-
negative number less than 7. Let a be an element of K such that ra = B.(rga+1).
There always exist one or more elements a satisfying this condition. There-
fore, if n = 0, we can suppose that a ¥ 0. The character 3,4, is now defined
by the relation

6"-’-1(1‘) = Bn(y) + ma.

Let £ = y 4+ mgn.a and 2" =y’ + m’g.,1 be two elements of the group H,41.
Let us denote by j a number which is equal to zero if m + m’ < r, and which
- is equal to one if m + m’ = r, so that 0 < m 4+ m’ — jr <r. We then have

Bupr(x + 2') = Baly + ¥’ + Jrgas) + (m + m' — JT)G
= Bn(y) + 51»(.7//) + jﬁn(rgn+l) + ma + m'a — jm
= B.(y) + ma + Ba(y") + m'a = Bnpi(2) + Busr(z").

Hence 8,41 is a character of the group H,41, and the lemma is proved.

As a consequence of this lemma we have the following proposition:

M) Let X be the character group of the group G and H a subgroup of the
group G such that G/H is discrete. Let ® = (X, H) (see Definition 35).
Then H has for its character group the group X* = X/®. This can be stated
in greater detail as follows; If @ and o’ are two elements of the group X be-
longing to the same coset of the subgroup ®, then the characters « and o'
coincide on H. In this way every element of the group X* can be regarded as
a character of the group H, and X*, taken as the set of all these characters to-
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gether with its original topology and addition, is the.character group of the
group H.

Let us denote by X*’ the character group of the group H. Every character
a of the group G defines on the subgroup H some character y(a). It can be
checked in a trivial way that the mapping ¢ is a homomorphlc mapplng of the
abstract group X on the abstract group X*'. It is also not hard to see that the
mapping ¢ is continuous. Roughly speaking this can be expressed by saying
that two homomorphisms which are neighboring on G will also be neighboring
on H. It follows from the fact that every character of the group H can be
extended into a character of G (see the Lemma) that the mapping ¢ is a map-
ping on the whole group X*’. Furthermore, the character « ¢ X maps into
zero on the group H if and only if @ ¢ ®. Hence the kernel of the homomor-
phism ¢ is ®. By Theorems 13 and 12 the group X*' is isomorphic with X/®
and hence proposition M) is proved. )

ExampLE 47. Let G be a compact commutative topological group. If g(x)
is a representation of the first degree of the group G (see Definition 32),
we shall consider g(z) not as a matrix of order one, but simply as a num-
ber. This number, as can easily be seen, has absolute value unity. Let
a(z) = log (g(z))/2wi. Then a(z) is a real number, defined up to an addi-
tive integer, and hence a(z) can be treated as an element of the group K (see
§30, A)). It is not hard to verify that a(x) is a character of the group @
(see Definition 34). Conversely if 8(x) is a character of the group G then
h(z) = e?™#® is a representation of the first degree of the group G

Let G = K. Then g.(x) = e* "= is arepresentation of the group G = K (see
Example 44), and the corresponding character a,(zx) = log (g.(z))/27{ = nz.
The set a.(x),n = 0, +1, + 2, - - -, contains all the characters of the group K
(see C)), and therefore the corresponding set g.(x), n.= 0, +1, £2, - - - , gives
a complete system of irreducible representations of the group K. Hence by
Theorem 27 the system of functions g,(z), n = 0, +1, +2, - - -, is a complete
orthogonal system. Conversely, proposition C) can be made to follow from a
theorem in analysis concerning the completeness of this system of functions.

33. Compact and Discrete Groups

We shall prove here for compact and discrete groups the propositions which
we have formulated in §3L* We shall be concerned primarily with Theorem 32,
since Theorems 33 and 35%ollow as corollaries. We shall also give Theorem 38,
which has no analogue for'general locally compact groups. By way of applica-
tions of the results of this section we shall give Examples 48 and 49, which,
however, are not devoid of general value.

A) Let @ be a discrete group and X its character group. Then Theorem 32
is true for the pair &, X. (We should recall here that the group X is compact
by Theorem 31.) .

To prove this, we make use of remark C) of §31. Let gi, -, gs, - - be
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the totality of all the elements of the group G. Let us denote by H, the mini-
mal subgroup of the group G which contains the elements

(1) g, * -+, Jn.

Then the group H, has a finite system of generators, namely the system (1).
Furthermore, the sequence

(2) Hy, - ,Hn -

is non-decreasing, and it exhausts the whole group G, i.e.; an arbitrary element
z € @ is contained in one of the members of the sequence (2). Let now
®, = (X, H,), (see Definition 35). Since the sequence (2) is non-decreasing
it follows that the sequence

(3) By, -y Dy, e

is non-increasing, i.e., ®,. € ®,,n = 1,2, - - - . Since, moreover, the sequence
- (2) comprises the whole group G, it follows that the intersection of all the ele-
ments of the sequence (3) contains only the zero of the group X. We can con-
clude from this that for every neighborhood V of zero of the group X, a suffi-
ciently large number m can be found such that

(4) ®,cV

(see §13, C)).

- We shall show that condition b) of remark C) of §31 is satisfied. Let z be a
character of the group X, and U the neighborhood of zero of the group K con-
sidered in remark B) of §30. Let us denote by V a neighborhood of zero of
the group X such that z(V) ¢ U. It follows from (4) that z(®,) c U, but by
remark B) of §30 this means that z(®,) = 0. Hence the character z of the
group X can be looked upon as a character of the factor group X* = X /&,
‘(see Theorem 34). By remark M) of §32 the group H, has for its character
group the group X*, but since the group H, admits a finite system of genera-
tors, it follows from remark J) of §32 that H, is in turn the character group
of the group X*. Hence the character z of the group X* is contained among
the elements of the group H,, or z € H,, which means that z, being a character
of the group X, belongs to the group G.

We shall now show that condition a) of remark C) of §31 also holds here.
Let g be an element of the group @, distinct from zero. Let us denote by 8
the null character of the null subgroup of the group G. The conditions of the
lemma of §32 are satisfied here, and hence there exists a character « of the
group @ such that a(g) # 0.

In this way, A) follows from remark C) of §31.

B) Theorem 33 is true for a discrete group G.

This statement is a direct consequence of remark E) of §31 and proposi-
tion A).
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In order to prove Theorem 32 for a compact group @, we formulate in terms
of the notation of the present chapter the single result of the theory of represen-
tations which we shall need in this chapter.

C) If G is a compact group, and a one of its elements, distinct from zero,
then there exists a character a of the group @ such that a(a) # 0.

By Theorem 28 there exists an irreducible representation ¢ of the group G
such that g(a) is not a unit matrix. By Theorem 26 the irreducible representa-
tion g is of the first degree, and hence g(z) is a unitary matrix of the first order.
We shall treat g(z) simply as a complex number of absolute value unity. Let
a(z) = log (g(z))/2wi. Then a(z) is an element of the group K, and since g is a
representation, « is a character of the group G. Since g(a) # 1, a(a) # 0.

D) If G is a compact group and X its character group, then Theorem 32 is
true for the pair G, X. (We recall here that X is discrete by Theorem 31.)

To prove this we shall make use of remark B) of §31. Let G’ be the char-
acter group of the group X. By Theorem 31, the group G'*is compact. Fur-
thermore, by remark B) of §31, there exists a natural homomorphic mapping ¢
of the group G in the group G’. We shall show that this mapping is isomorphie
By remark C) there exists for every element a € @, distinct from zero, & char-
acter @ € X such that a(a) # 0. But this implies that the character ¢(a) of
the group X does not map the element « into zero, and therefore ¢(a) = 0.
Hence the mapping ¢ is an isomorphic mapping of the group G on the subgroup
(@) of the group G’, since the set ¢(@), being compact, is closed in G'. We
shall simply say that by means of the isomorphism ¢ the group G is imbedded
in the group G/, or o(@) = Q.

We shall now show that G = G’. Suppose the contrary is true. Then there
exists an element b belonging to G', but not to G. We denote the factor group
G'/G by G*, and the coset containing b by b* Since b is not in G, b* # 0.
Hence by C) there exists a character a of the group G* such that «(b*) # 0.
A character a of the factor group G* can be looked upon as a character of the
group G’ (see Theorem 34) with a(G) = 0. G’ is the character group of the
group X, but by A) the group X is in turn the character group of the group
G’. Hence @ ¢ X. But the character a of the group G’ maps the whole group
G into zero, while the group X was originally defined as the character group
of the group G. Therefore a is the null element of the group X, but then
a(b*) = 0. Hence we have arrived at a contradiction, and G’ = @, which
proves D).

E) Theorem 33 is true for a compact group G.

This follows directly from remark E) of §31 and from D).

TueorEM 37. If G is compact or discrete all propositions of §31 hold.

Proor. Theorems 32 and 33 are proved in this case in A), B), D), and E).
Theorem 35 is also true since in case the group @ is compact or discrete all
the groups enc¢ountered in the proof of this theorem are also compact or dis-
crete (see §31, F)).
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We could conclude here the consideration of compact and discrete groups
were it not for an important proposition which unfortunately has no analogue
in the general case.

DerinrTiON 36. Let G be a discrete group, and X a compact group. We
shall-say that the groups G and X form a pair if there exists a law of multiplica-
tion of the elements of the group G by the elements of the group X, i.e., to every
pair of elements z € G and ¢ € X there corresponds an element a € K, called
the product of the elements z and ¢, z¢ = ¢r = a e K. Moreover, two dis-
tributive laws, and a condition of continuity of the product have to be satis-
fied. The distributive laws have the following form; (z + z')¢ = z£ + z'¢,
(] + ¢) =zt + z¢'. The condition of continuity is as follows: if
limg., & = & where £, e X, n = 1,2, - - -, and if £ ¢ X, then lim, ., 2§, = ¢,
where z is an arbitrary element of G.

Let H be a subgroup of the group G. We shall call the set of all elements ¢
of the group X for which £ = 0 for every z & H the annthilator (X, H). In
the same way we introduce the annihilator (G, ®), where & is a subgroup of the
group X. It is not hard to show that the annihilators are subgroups.

If the following conditions are satisfied for the pair G, X

@G, X) = {o} X,® = {o}

then this pair is called orthogonal.

F) If G and X form a pair, then every element = € G represents naturally a
character of the group X. In order to determine the character z it is sufficient
to let x(£) = &, where the right side is defined since G and X form a pair (see
Definition 36). In the same way every element £ of the group X is a character
of the group G.

The following theorem, which is very convenient for applications, is a direct
consequence of the theory of characters:

TreorEM 38. If G and X form an orthogonal pair, then each of these groups
is the character group of the other.

Proor. Let G’ be the character group of the group X. Since X is compact,
it follows that G’ is discrete (see Theorem 31). By F) every element z ¢ Gis a
character of the group X. We denote this ¢haracter by ' = ¢(z). Using the
same considerations which were used to prove B) of §31, it is easy to show that
the mapping ¢ of the group @ in the group G’ is homomorphic. The proof is
considerably simplified here by the fact that G and G’ are discrete, and hence
all topological considerations may be omitted. Furthermore, it can readily be
seen that the mapping ¢ is isomorphic. In fact, let @ be an arbitrary element
of the group G distinct from zero. Since the groups G and X are orthogonal
there exists an element a € X such that aa # 0, and this implies that the char-
acter ¢(a) is not null. Hence ¢ is an isomorphic mapping of the group G on a
subgroup G’’ of the group G'. Because of the orthogonality we have
(X, @'") = {0}. Butsince G’ is the character group of the group X it follows



148 COMMUTATIVE GROUPS [cH. v

from Theorem 32 and 33 (see Theorem 37) that G'' = (G’{O}) = @'. Hence
G'" = @', and the group @ is the character group of the group X. We can
conclude from this with the help of Theorem 32 (see Theorem 37) that the
group X is the character group of the group G.

Hence Theorem 38 is proved.

The proof of the corresponding theorem in the general case of locally com-
pact groups does not go through because it is not possible to assert that G'’
is a subgroup of the group G’, since the subset G'' may not be closed in G'.
Example 50 (see below) shows that Theorem 38 is actually not true in the gen-
eral case.

In Examples 48 and 49 given below we shall make clear the connection be-
tween the topological properties of the character group X of a discrete group G
and the algebraic properties of the group G itself. )

ExamprLE 48. Let G be a discrete group and X its character group. We shall
show that X is connected if and only if the group G has no elements of finite
order.

Suppose that G contains an element a of finite orderr > 1. We denote by H
the cyclic subgroup of the group G having the generator a. The group H is
finite and is of order . Let & = (X, H). Then by Theorem 33 (see Theorem
37) we have H = (G, ®). Furthermc », by Theorem 32 (see Theorem 37) the
group @ is the character group of the group X. We can conclude from this
and from Theorem 34 that the group X/® has.the group H for its character
group. But then the group X/® is the character group of the group H. It
follows from remark G) of §32 that the group X/® is of finite order . Hence
the group X can be mapped continuously on the finite set X /®, which contains
more than one element. But this means that X is not connected.

Let us now suppose that X is not connected, and let X’ be the component of
zero of the group X (see §22, A)). Then the factor group X/X’ = X* is a
0-dimensional group (see §22, C)). Let us select in X* a small open subgroup
®* (see Theorem 17). Then X*/®* is a finite group (see §22, E)). We denote
by ® the inverse image of the group ®* in the group X under the natural homo-
morphic mapping. Then X/® is also finite and contains more than one ele-
ment. Let H = (G, ®). Then H is the character group of the group X/®,
and hence H is a finite subgroup of the group G, i.e., G contains elements of finite
order.

ExampLE4” Let G be a discrete group and X its character group. We shall
show that the dimension of the group X is equal to the rank of the group G (see
§6, A)).

Suppose that the rank of the group @ is finite and is equal to ». We shall
show that in this case the dimension of the group X does not exceed r. Let H,,
n = 1,2, .-, be an increasing sequence of subgroups of the group G which
comprises the whole group @, such that each group of the sequence admits a
finite system of generators. Let &, = (X, H,); then the group X = X/,
is the character group of the group H,. Since H, admits a finite system of
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generators, it follows that X¥ is a generalized toroidal group (see §32, J)), and
it can be seen directly that the dimension of the group X} is equal to the rank
of the group H,, but, obviously, the rank of the group H, does not exceed 7.
Since the group ®, is by construction arbitrarily small, it can easily be proved
(see §44, F)) that the dimension of the group X itself does not exceed the num-
ber r.

In order to give a lower bound for the dimension of the group X we consider
the component of zero X' of the group X. Let H = (G, X’). From consid-
erations similar to those of Example 48 it follows readily that H is composed
of all the elements of the group G having a finite order. Therefore the group
G* = (G/H has no elements of finite order, and its rank is equal to the rank
of the group G. Moreover, X' is the character group of the group G*. We
shall now show that the dimension of the group X' is not less than the rank of
the group G*. This will complete our investigation.

Let
®) By T

be a complete system of linearly independent elements of the group G*. Then
every element z of the group G* can be expressed linearly in terms of the ele-
ments of the system (5) with rational coefficients (since G* contains no elements
of finite order, division in G* is always unique, although not always possible).
Let

(6) d],"',d,.,"'

be a finite system of real numbers. Starting with the system (6) we define the
character a of the group G*. Let z = Y _» 7, and let a(z) = Y r:d;, where
the right side is considered as an element of the group K, i.e., it is reduced
modulo 1. The character «, defined in this way, depends on n real parameters
and therefore the group X' is at least n-dimensional (see §44, B), C)). Butnis
an arbitrary number not exceeding the number of elements of the sequence (5),
i.e., n is an arbitrary number not exceeding the rank of the group G*. Hence
the dimension of the group X is not less than the rank of the group G*, and
hence not less than the rank of the group G. In conjunction with what we
have proved above we see that the dimension of the group X is equal to the
rank of the group G. .

ExampLE 50. Let G be a discrete group with two linearly independent gen-
erators a and b. We denote by D the additive topological group of real num-
-bers. We define the law of multiplication of the elements of the group G by
the elements of the group D (see Definition 36), starting with two real
numbers a and 8 whose ratio a/g is irrational. The product of the element
z = ma + nb € G by the element d ¢ D is defined by letting xd = dma + dng,
where the right side is considered as an element of the group K, i.e.,is reduced
modulo 1. It can readily be seen that the law of multiplication thus defined
satisfies the distributive laws and any natural continuity conditions. Fur-
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thermore, the groups G and D are orthogonal in the sense of Definition 36. In
fact zd = d(ma + nB) can be equal to zero (mod 1) for every d & D only if
z = 0. Moreover, if d € (D, G), we have da = 0, dB8 = 0 (of course we under-
stand here equations with respect to the modulus 1, so that in the usual nu-
merical notation these equalities should be written as follows: da = m, b = n,
where m and n are integers). But this is impossible if d # 0, since the ratio
a/B is by assumption irrational.

It is obvious, however, that neither of the groups G and D is the character
group of the other. Hence Theorem 38 is not true for general locally compact
groups.

ExampLe 51. Let oy, - - -, @, be a finite system of linearly independent irra-
tional numbers, i.e., such that a sum m; + - - - + n,a, with integral coefli-
cients can be an integer only if all of its coefficients are equal to zero. We
shall show that for any e and any system of real numbers d, - - -, d. a system
of integers ny, - - -, n, and an integer m can be found such that

|ma,~—d,~—n,‘<e, i=1,---,r

This proposition is an elementary theorem in the theory of approximations
of real numbers by integral multiples of irrationals. We shall prove it here
by use of the theory of characters. This proof is of interest since the original
exposition of the theory of characters depended on the above theorem in the
theory of irrational numbers.

Let @ be a discrete group with r linearly independent generators a;, - - -, a,.
We associate with every integer m a character 8., of the group G in the following
way:ifz = miai + - - - + n,a,then weshall define 8,.(z) = m(mas + - - - + n,ar),
where the right side is considered as an element of the group K, i.e., is reduced
modulo 1. It can readily be seen that 8. + 8, = Bmin. Hencetheset A of all
the characters of the type 8, forms a group. We denote by X the character
group of the group G. Then A is a subgroup of the abstract group X. We
denote by ® the closure of the set A in X. It can be seen easily that if
Bn(x) = 0for every m, then z = 0. This follows from the linear independence
of the numbers a;. We can conclude from this that (G, &) = {0}, and this
gives us by Theorem 33 the equality ® = X. Hence the set A is everywhere
dense in X, i.e., every character 3 of the group G can be approximated arbi-
trarily closely by characters of the form B8,. The proof of the theorem now
follows directly from the above statement. In fact if dy, - - -, d, are given
numbers, we can define a character 8 of the group G by settmg B(a;) = d;,
i =1,---,r, where the right side is considered as an element of the group K.
By approx:matmg the character 8 by the characters 8, we get the desired rela-
tions.

34. The Direct Sum for a Group and for its Character Group

The connection between a group G and its character group X which we have
established in the preceding section in case G is compact or discrete enables us
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to associate with every decomposition of the group G into a direct sum a definite
decomposition of the group X into a direct sum (see Definitions 10* and 29).
This question has already been considered in Theorem 36 for a finite number of
summands only. Here we shall consider this question simultaneously for a
finite and an infinite number of summands, but we shall have to confine our-
selves to compact and discrete groups.

A) Let G be a compact or discrete group, X its character group, and M a
set of subgroups of the group @. We denote by Q the totality of all the sub-
groups of the group X of the form (X, H), where H € M, by L the minimal sub-
group of the group G which contains all the groups of the set M, and by ¥ the
intersection of all the subgroups of the set . Then we have

(1) ¥ = (X, L),
or what is the same,
(2) L = (G, P).

It follows from Theorem 33 (see Theorem 37) that M is composed of all the
groups of the form (G, ®), where ® £ Q. Let

3) v' = (X, L)
and
4) L' = (G, V).

For every H ¢ M we have H c L, and therefore (X, H)> (X, L) = ¥/, i.e,,
) o ¥/,

Furthermore, for every. ® € @ we have ® > ¥ and hence (G, ®) c (G, ¥) i.e.,
(6) LcL'

From Theorem 33 we have ¥ = (X, L’), and since LcL’, it follows that
(X,L)>(X,L"),ie,¥' o¥. Thelastrelation together with (5) gives ¥’ = ¥,
Hence A) is established.

TaEOREM 39. Let G be a compact or discrete group and X its character group.
Let us suppose that G decomposes into the direct sum of a countable or finite system
of its subgroups Hy, - - -, H,, - - . Then there exists one and only one decom-
position of the group X into a direct sum of subgroups &,, - - -, ®,, - - - which
satisfies the following conditions:

a) For i # j, we have
Y] ®;c (X, Hy),
or what is the same,

(8) Hi c (Gy q’i)'
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b) The groups H; and ®; form an orthogonal pair by virtue of the same law of
multiplication which holds for the groups G and X (see Definition 36). Hence
the groups H; and ®; are character groups of each other (see Theorem 38).

Proor. Let us denote by Lj; the minimal subgroup of the group G which
contains all the subgroups H; with the exception of H;. We denote by H; the
intersection of all the subgroups L; with the exception of the group L;. It is
obvious that H, € H;. We shall show that H; = H,.

Since by assumption the intersection of all subgroups L; (see Definitions 10*
and 29) contains only zero, it follows that the intersection H; n L; also contains
only zero. Since ¢ can be decomposed into the direct sum of the groups H; and
L; (see §5, A*) and §21, A)) it follows that H; + L; = G and hence H; + L; = G,
and @ is decomposable into the direct sum of the groups H; and L;. Suppose
there exists an element z ¢ H;, which does not belong to F;. Then, since G
is decomposable into the direct sum of the subgroups H; and L;, z = z + y,
where z € H;, and y ¢ L;, We also have 2 ¢ H,, y ¢ L;, and z = z 4+ 0, where
ze H;, 0 e L;,. Hence if G is considered as the direct sum of the group H; and
L; we get two decompositions of the element z:z = z + 0 = z + y, therefore
z=u,ie,zeH;and H; = H.. .

Let us now take ®; = (X, L;), ¥; = (X, H;). It follows from Theorem 37
and proposition A), that ¥, is the minimal subgroup containing all the sub-
groups ®; with the exception of ®;, and &, is the intersection of all the sub-
groups ¥; with the exception of ¥;. Since the minimal subgroup containing
all the groups H; coincides with G, the intersection of all the subgroups ¥, con-
tains only zero (see A)). Furthermore, since the intersection of all the sub-
groups L; contains only zero, the minimal subgroup containing all the
subgroups ®; coincides with X. Hence X is decomposable into the direct
sum of the subgroups ®;, - - -, ®,, - - - .

Relations (7) and (8) are obvious. Let us show that H; and &; form an
orthogonal pair. Let xz € H;, ¢ 0: then there is an element v € X such that
v(z) # 0. Let v = o + 8, where ae ®; and BeV¥,; Since ¥; = (X, H;),
it follows that B(z) = 0, and hence a(z) = y(z) # 0. We therefore get
(H;, ®;) = {0} In view of the complete symmetry of the relations, we
can prove in an analogous way that (®;, H;) = {0}. Hence the groups H;
and &; are orthogonal.

Suppose now that there exists another decomposition of the group X into
a direct sum of subgroups &;, - - -, ®,, - - - satisfying condition a), i.e., such
that for 7 # j we have ®;c (X, H;). It follows from this relation that &;c¥;
for¢ # j,i.e., ®;€ ®;. Letis now denote by ¥, the minimal subgroup contain-
ing all the subgroups &; with the exception of &, Then ¥;c¥, Since
&, + ¥, = X, it follows that &, + ¥; = X. Since the intersection ®;n¥;
contains only zero, the intersection ®;n ¥; also contains only zero. Hence @
is decomposable into the direct sum of the subgroups &; and ¥;. We have
here exactly the same state of affairs as in the beginning of the proof of this
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theorem. Just as we proved there that H; = H,, so we can show here that
®; = &;. This proves the uniqueness of the decomposition of the group X into
a direct sum satisfying condition a). This completes the proof of Theorem 39.

Theorem 39 shows that the study of the decomposition of the group X into
a direct sum is.entirely equivalent to the study of the decomposition of the
group @ into a direct sum.

The primary value and interest of Theorem 39 consists in the reduction of
the problem of decomposition of a compact commutative group into a direct
sum to the same problem for a discrete commutative group.

35. Locally Compact Groups

It was shown in the preceding section that every compact commutative
group is the character group of a discrete group. We have given in this way
a method of construction of a general compact commutative group, and its
study has been reduced to the study of a discrete group. We have now before
us the problem of proving Theorem 32 for locally compact groups. Before
attempting to do this, however, we have to make a rather detailed investigation
of the structure of locally compact commutative groups. Lemma 1 (see below)
enables us to reduce the study of locally compact commutative groups to that
of compact groups, which we have already investigated. It turns out that
fundamentally a locally compact, commutative group differs from a compact
group only by a vector direct summand (see Theorem 41 and Remark E)).

LemMa 1. Let G be a locally compact, commutative, connected, but not compact
group. Then there exists in G a discrete subgroup D having a finite system of
linearly independent generators (see §6, B)), such that the factor group G/D 1is
compact.

In order to prove Lemma 1 we shall first prove the following lemma.

LeMmMma 2. Let G be a connected, commutative, locally compact, but not compact
group, and U a symmetric neighborhood of zero of the group @G i.e., such that
—U = U, for which the closure U is compact. Then there exists an element d in
the boundary U’ = U — U of the open set U such that the relation nd € U, where
n 1s an integer, implies that n = 0. In this way the element d generates a discrete
infinite cyclic subgroup of the topological group G.

Proor. Let U, = U, and define U, by induction from (see §2, A))

@ U1 = U, + U.

Since U is open, U, is also open (see §16, C)). It can be seen easily that
@) U, + U, = Upa

and

(3) Ur + l]I = Ur-H-
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Since U is compact, U, is also compact (see §16, G)). Let
(4) U= TUn— Un

Since U, is compact, it follows that U, # @, and since G is connected we can
conclude that U, is not empty.
We shall show that

(5> ("r + (7: = (]r+l-

In factlet a e U,, and be U,. Since b is a limit element of U,, there exists an
arbitrarily small element ¢ such that b — ¢ € U, (¢ is arbitrarily small in the
sense that it can be selected from an arbitrary neighborhood of zero). Since ¢
is arbitrarily small, we can suppose that a 4 ¢ € U,, since.U,is open. Then we
have

a+b=(a+c)+(b—2c)elU,,,
(see (2)). Hence U, + U,€ U,4,. It is obvious that U, + U,> U,,..

We now construct an infinite sequence

(6) dh Ty dﬂv T
of elements of the set U such that
(7) i+ +dieU,

for every n. Since U, is not empty, there exists an element ¢, € U,. From (3).
this element ¢, can be written in the form

(8) Crn = dl,n + R + dn,n,
whered;,e U,i =1, --,n. Weshall show that forj < n,
9 g=din+ - +dinecU,.

Infactleth = ¢, —g. Obviously g e Uj, he U._j, but sinceg + h = ¢, e Uy,
it follows from (5) that g e U;. Since U is compact, we can make use of the di-

agonal process (see Theorem 9) to select a sequence of integers ny, « -+, Ny, * - -
such that the limit
(10) lim d; ., = ds

k—
exists for every 7. We shall show that
(11) di+ - +dieU;
for every j. Infact

di4 - dp=1im {dia, + o dig)

k— o0

(see (10)), but since the sum under the limit sign in the last relation belongs
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to U, (see (9)), the left side also belongs to Uj, since Uy is closed. Hence the
sequence (6) is constructed.
We shall now show that for an arbitrary system

(12) my, - - - m
of distinct integers we have
(13) a=dun + -+ dneU,.

Let n be an integer exceeding all the numbers of the system (12). Then the
sum

(14) c=di+ -+ da

can be written in the form ¢ = @ + b. Obviously be U,_,and a e U,. Since
moreover, a + b & U, (see (7)), it follows that a £ U; (see (5)).
Let d be a limit point of the sequence (6). We shall show that

(15) rd e U,

for an arbitrary positive integer r.
Let V be a neighborhood of the element rd. We denote by W a neighbor-
hood of the element d such that

(16) rWeV.

-Bince the element d is a limit element for the sequence (6), there exists in the
neighborhood W a system of elements d,, - - -, dn,, all of whose indices are
distinct. It follows from (13) that

(17) a=dml+"'+dm,€Uf,.

Hence an arbitrary neighborhood V of the element rd intersects U, since a ¢ V
(see (16) and (17)). But the set U, is closed and therefore rd & U,.

Since U, does not intersect U for any value of r, the element rd cannot be-
long to U for any positive integer r (see (15)). Therefore since the neighbor-
hood U is symmetrie, no element nd, where n is an integer, belongs to U with
the single exception of 0-d.

Hence Lemma 2 is established.

Proor or LeEmMA 1. Let U be a symmetric neighborhood of zero of the
group @, i.e.,—U = U, for which the closure U is compact. We shall con-
struct by induction the system

(18) A, = {ql)' .'7ar}

of elements of the group G satisfying the following conditions:a) The linear
form na; + - - - +n.a, with integral coefficients belongs to U only if n; = 0,
t=1---,randb)a;eU',i=1,---,7r

We denote by D, the set of all linear forms
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(19) ma; + - - - + n.a,

with integral coefficients, and show that if the system (18) satisfies conditions
a) and b), then the set D, is a discrete subgroup of the group G having the
system of linearly independent generators (18). First, it is clear that the set D,
is a subgroup of the abstract group @. Furthermore, it follows from condition
a) that if niay + - - - + na, = 0, thenn; = 0,7 =1, - - -, r, and this means
that the system (18) is a linearly independent system of generators of the
group D,. Since the neighborhood U contains only the zero element of the
group D,, the group D, is closed in the topological space G and is a discrete
subgroup of the group G.

We note that from Lemma 2 the system of elements (18)-satisfying condi-
tions a) and b) exists for » = 1. Supposing that the system (18) has been con-
structed for » = s, we show that there are two possible cases: 1) the factor
group G/D, is compact, in which case Lemma 1 has already been proved, and
2) the system (18) constructed for r = s can be enlarged to the system with
r = s + 1 by adjoining one element.

Let us suppose that the first case does not occur, i.e., that the factor group
G* = (/D, is not compact. Let f be the natural homomorphlc mapping of
the group G on the group G* (see §19, C)). From the construction of the neigh-
borhoods in the factor group G* (see Definition 24), f(U) = U* is a neighbor-
hood of zero of the group G*. Since U is symmetric, U* is also symmetric,

e., —U* = U*. Since

(20) U*ef(U),
U* is compact. We shall show that
(21) U™ cf(U").

In fact U*cf(U)u f(U') (see (20)). Subtracting from both sides of this rela-
tion the set U* = f(U) we get U'*cf(U’). We now apply Lemma 2 to the
group G* and its neighborhood U*. Let d* be such an element of U’* that

(22) nd* ¢ U* implies n = 0.

We now denote by a.41 an element of U’ such that f(a,.1) = d*. This ele-
ment exists because of relation (21). It can readily be seen that the system
ay, - - -, @, Ay satisfies conditions a) and b). It is obvious that b) is satisfied
since a,41 € U’.  Let us suppose that

(23) a=ma + -+ na + neia,q1 e U.

Then f(a) = n,yd* € U* and hence by (22), n,41 = 0. Thus the linear form
(23) becomesa = ma; + + - - +n,a,. ButifaeU,thenn; =0,7 =1, s,
since condition a) is satisfied for the system A, by assumption.

Hence we can enlarge the system A, by induction as long as the group G/D,
is not compact. But an unlimited enlargement is not possible since U’ is com-
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pact, and it follows, from condition a) in particular, that the difference a; —a;,
where 7 # j, cannot belong to U.
Hence Lemma 1 is proved.

THEOREM 40. Let G be a locally compact group, G' the component of zero of the
group G (see §22, A)), and U a neighborhood of zero of the group G.  If the factor
group G/G' is compact, there exists a compact subgroup Q € U of the group & such
that the facter group G/Q decomposes into the direct sum of a toroidal group T
(see §32, K)), a vector group A, and a finite group C.

To prove Theorem 40, we first prove the two following propositions A) and
B).

A) Let G be a locally compact commutative connected group and D a dis-
crete subgroup of G having a finite system of linearly independent generators.
If the factor group G/D is a toroidal group T*, then the group G can be decom-
posed into the direct sum of a vector group 4 and a toroidal group T.

The group T*, being toroidal, decomposes into the direct sum of a finite
number r of groups isomorphic with K (sece §32, K)). In this way T* can be
thought of as a factor group 4*/N, where A* is the vector group of dimension r,
and N is composed of all the vectors of the group A* with integral components.
We denote the natural homomorphic mapping of the group A* on the group T*
by f, and the natural homomorphic mapping of the group G on T* by g. Since
the groups D and N are discrete, the mappings f and g are one-to-one in small
neighborhoods of zero, and therefore we can define uniquely the mapping

(24) g (f(2)) = h(z)

of a neighborhood U of zero of the group A* on a neighborhood V of zero of
the group G. The mapping h is a local isomorphism of the group A* in G (see
Definition 30).

We now extend the local isomorphism A of the group A* on the group @ into
a homomorphism A’ of the whole group A* on the whole group G. Let x be an
arbitrary element of the group A*. There exists a sufficiently large number n
such that z/n € U, and we let h'(z) = nh(x/n). It can readily be seen that b’
is defined by this relation uniquely and that it represents a homomorphic map-
ping of the group A* on the group G. Furthermore, it follows from (24) that

(25) J@) = g(h'(x)).

Let us denote by N’ the kernel of the homomorphism h’. It follows from
(25) that N'cN. It is also not hard to see that the factor group N/N’ is
isomorphic with the group D. Since the factor group N/N’ contains no ele-
ments of finite order (see §6, A)), we can select a system of linearly independent
generators

(26) Ay * vy Qsy Aspry © * 0y Ay

of the group N in such a way that a,, - - -, a, form a system of generators of the
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group N'. In fact by E) of §6, we can select in N a system of linearly inde-
pendent generators (26) in such a way that the elements da,, - - - , d,a,, where
di>0,1=1,---,s,and d;, is divisible by d;, t =1,-- -, s — 1, form a
system of generators of the group N’. It can readily be seen that since the
factor group has no elements of finite order, then all the d; must be equal to
unity. The vectors of the system (26) can be taken for a basis of the vector
space A*. Making use of this choice of basis, it becomes obvious that the
factor group A*/N’ = G can be decomposed into the direct sum of s groups
isomorphic with the group K and r — s groups isomorphic with the additive
group of real numbers. Hence G decomposes into the direct sum of an s-dimen-
sional toroidal T and the (r — s)-dimensional vector group A, which proves A).

B) Let G be a locally compact commutative group, G’ the component of
zero of the group @, and D a discrete subgroup of the group G’ having a finite
system of linearly independent generators. If the factor group G/D is a gen-
eralized toroidal group, then the group G decomposes into the direct sum of a
vector group A and a generalized toroidal group T (see §32, J)).

It can readily be seen that G'/D is the component of zero of the group G/D,
and since the group G/D is a generalized toroidal group, the group G'/D is a
toroidal group (see §33, K)). Therefore the group G’ decomposes by A) into
the direct sum of a vector group A and a toroidal subgroup T’.

Since it follows from what we have just said that the group G/G’ is finite,
it can be decomposed into the direct sum of a finite number of finite cyclic
groups Zi, - - -, Zy (see §6, F)). We denote the generator of the group Z;
by z¥, and an element of the coset z,* by z:;. If r; is the order of the group Z;,
then riz; € G’, and G’ contains an element x; such that r;x; = r:2;, since division
is always possible in the group @, which is a direct sum of a vector group and a
toroidal group. Letz; = z; — z,, thenrz; = 0. The subgroup C of the group
G having 2}, - - -, 2, for generators can easily be seen to be finite, and the group
G decomposes into the direct sum of the subgroups G’ and C. And since G’
in turn decomposes into the direct sum of A and T, proposition B) follows
from remark K) of §32.

Proor or THEOREM 40. Let D be a discrete subgroup of the group G’ having
a finite system of linearly independent generators and such that the factor
group @’'/D is compact (see Lemma 1). Since the factor group G/G’ is com-
pact by assumption, and since the factor group G’/D is also compact, the factor
group G/D = G* is compact (see §18, F)). Let us denote by f the natural
homomorphic mapping of the group G on the group G*. Since the subgroup D
is discrete, there exists a sufficiently small symmetric neighborhood V of zero
of the group G such that the neighborhood 4V contains only the zero element
of the group D. We shall also suppose that V is compact and belongs to U.

By Theorem 37 the compact group G* is the character group of some dis-
crete group X. Let Hy, - - -, H,, - - - be an increasing sequence of subgroups
of the group X, which exhausts the group X, and is such that each H, admits a
finite system of generators. Let @} = (G*, H,). It can readily be seen that
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for a sufficiently large m we have QX cf(V) (the proof of this is similar to the
proof of remark A) of §33). Then the factor group G*/G%, being the character
group of the group H,, is a generalized toroidal group (see §32, J)). Let us
denote by Q the complete inverse image of the group @, in V under the
mapping f. It follows that @ is a compact subgroup of the group G, whose
intersection with D contains only zero. We shall prove only that @ is a
subgroup, the rest being evident. Let a and b be two elements of @; then
fla — b) = f(a) — f(b) £ @}, and there exists an element c¢e @, such that
fe) = f(a — b), i.e.,, fla — b — ¢) = 0, or what is the same, a — b — ce D.
Since, moreover, a — b —ce3V c4V, it follows that a — b — ¢ = 0, i.e.,
a—b=ce@. HenceQisagroup. Wenotethatthe completeinverseimage
of the group Q% in the group G under the mapping fis D 4+ Q. Hence the
factor group G/(D + Q) is isomorphic with the factor group G*/Q¥ (sce §19,
E)). We denote the factor group G/Q by H and the image of the group
D + @ in the group H under the corresponding homomorphism by E. Then
the factor group H/E is isomorphic with the factor group G/(D + Q) (see §19,
E)). Since, furthermore, D n @ contains only zero, E is isomorphic with D
(see Theorem 14). Hence the group H contains the discrete subgroup £ hav-
ing a finite system of linearly independent generators and such that the factor
group H/E, which is isomorphic with the factor group G*/Q%, is a generalized
toroidal group. Hence by B) the group H decomposes into the direct sum of a
vector group A and a generalized toroidal group T’. Hence Theorem 40 fol-
lows from remark K) of §32.

. C) Let G be a locally compact commutative group and G’ the component of
zero of the group G. If the factor group G/G’ is compact then there exists in G
a compact subgroup Z such that the factor group G/Z is a vector group. The
subgroup Z is the maximal compact subgroup of the group @ in the sense that
all other compact subgroups of the group G are contained in Z. In this way Z
is defined uniquely.

Let @ be a compact subgroup of the group G such that the factor group
G/Q = G* can be decomposed into the direct sum of a vector subgroup A
and a generalized toroidal subgroup T (see Theorem 40). We denote by Z
the complete inverse image of the group 7T in the group G. Since the groups T
and @ are compact, the subgroup Z is also compact (see §18, ¥)). Further-
more, the factor groups G/Z and G* /T are isomorphic (see §19, E)). But since
the factor group G*/T is obviously isomorphic with the vector group A (see
Theorem 14), it follows that the factor group G/Z is also isomorphic with the
vector group 4, and the first point of proposition C) is proved for the subgroup Z.

Let now Z’ be an arbitrary compact subgroup of the group G. Under the
homomorphism of G in G/Z, the group Z’ maps into a compact subgroup of
.the vector group A. But the vector group contains only one compact sub-
group, namely the null subgroup. Henée under the homomorphism of ¢ in
G/Z the subgroup Z' maps into a null group and hence Z’c Z. This proves
the second point of proposition C) for the group Z.
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D) If a locally compact commutative group G admits a compact subgroup Z
such that the factor group G/Z = G* is a connected group, then the group G
satisfies the conditions of remark C),i.e., the factor group G/G’, where G’ is
the component of zero of the group G, is compact.

Let H = G' 4+ Z. Since Z is compact, H is a subgroup of the group G (see
§20, D)). We shall show that G = H. To do this we prove that G/H con-
tains only zero. Let G/G’ = G**, and denote by H** the image of the group H
in G**. Then the groups G/H and G**/H** are isomorphic (see §19, E)).
Furthermore, the group G** is a 0-dimensional group (see §22, C)). But then
the group G**/H** is also a 0-dimensional group. In fact, the group G** con-
tains an arbitrarily small open compact subgroup @** (see Theorem 17). - The
image of the group @** in the group G**/H** is also an arbitrarily small open
compact subgroup, and, therefore, G**/H** is a 0-dimensional group (see §22,
G)). Hence the group G/H is a 0-dimensional group. On the other hand,
the group G/H is isomorphic with some factor group of the group G/Z (see§19,
E)), i.e., G/H is connected. Being both connected and 0-dimensional, the
group G/H contains only zero. Hence H = G.

It follows that the factor group G/G’ is isomorphic with the factor group
Z/Z', where Z' is the intersection G’ n Z (see Theorem 14). And since Z is
compact, G/G' is also compact (see §18, E)).

Remark C) leads us naturally to the following theorem, which plays an im-
portant part in what follows.

THEOREM 41. Let @ be a locally compact commutative group and G' the com-
ponent of zero of the group G. I the factor group G/G' is compact, then the group
G decomposes into the direct sum of a compact subgroup Z and a vector subgroup A.
Here the compact subgroup Z is defined uniquely, while the vector subgroup A is
arbitrary, except that its dimension is determined by the group G.

Proor. Let Z be the maximal compact subgroup of the group G (see C)).
We denote by

(27) Uy, - -, Un -

a decreasing sequence of neighborhoods of zero of the group G which is such
that the closure U, of every neighborhood U, is compact and the intersection
of all U, contains only the zero of the group G. We shall now construct by
induction the sequence of subgroups

(28) Go=G, G, -+, GCn

satisfying the following conditions: a) G'ny1 € G, b) the intersection Z n G € Uy,
¢) the group sum Z + G, = G, and d) the groups @, satisfy the condition of re-
mark C).

The first member of the sequence (28) is the group G. Let us suppose that
all the groups up to and including G, have already been constructed. We then
construct the group G, 1.
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By Theorem 40 there exists a compact subgroup @, c U.;; of the group G,
such that the factor group G,./Q. decomposes into the direct sum of a vector
group A, and a generalized toroidal group T,.. We denote the inverse image
of the group T, in the group G, by Z,, and the inverse image of A, by G.1.
Obviously Gn41/@. is isomorphic with A4,, i.e., it is connected, and therefore
by D), the group G, satisfies the conditions of remark C). Hence condition
d) holds for the group G,,1. Furthermore,

(29) GranZ, = Qn

and since obviously G,..1 + Z, = @,, it follows from Theorem 14 that G,/Z.,is
isomorphic with the vector group A,.. Hence Z, is the maximal compact sub-
group of the group G, (see C)). Then the intersection G, n Z, being a com-
pact subgroup of the group G,, belongs to Z, and hence

(30) GinnZc@unZzZ,cQ.cU.,

(see (29)). Hence condition b) holds for the group G,.1. By the hypothesis
of the induction G = G, + Z; but G, = Gny1 + Z,. and therefore

(31) G = Gn.q.l + Zn + Z = Gu+1 ‘{"‘ Z,

since Z,, being a compact subgroup of the group @, must be contained in Z
(see C)). Hence the group G,y satisfies the condition of C). Since condition
a) is automatically satisfied, the induction is completed and we can assume the
existence of the whole sequence (28).

We now denote by 4 the intersection of all the subgroups (28) and show that
G is decomposable into the direct sum of the subgroup Z and the subgroup 4
(see Definition 28).

It follows from condition b) that the intersection of Z and A contains only
zero. We shall show that Z + 4 = (. In fact let z be an arbitrary element
of the group G. Then by condition ¢), x = 2z, + a,, where z, ¢ Z, a, e G,.
Since the group Z is compact, we can select from the sequence of elements z,,
a subsequence which converges to an element z ¢ Z. Then the corresponding
subsequence of elements of A, will converge to the element 2 — z = q, and
wehavexr = z + a. Since the sets G, are closed, it follows that a ¢ A. Hence
G = Z + A and all the conditions of Definition 28 are satisfied.

The subgroup A is isomorphic with the factor group G/Z, and since the latter
is a vector group, it follows that A also is a vector group.

This proves Theorem 41.

Theorem 41 analyzes the structure of a rather wide class of locally compact
groups. The following remark shows the relation of this class to general locally
compact groups.

E) Let G be an arbitrary locally compact commutative group. Then there
exists a subgroup H in @ satisfying the following conditions: a) the factor
group G/H is discrete, b) the factor group H/H', where H' is the component of
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zero of the group H, is compact. In this way the group H satisfies the condi-
tions of Theorem 41. )

Let us denote by G’ the component of zero of the group G. Then the factor
group G/G' = G*is a 0=dimensional group (see §22, C)). By Theorem 17, the
group G* contains an open compact subgroup H*. We denote the inverse im-
age of the subgroup H*in the group G by H. Then the factor group G/H is
isomorphic with the factor group G*/H* (see §19, E)), and since the latter is dis-
crete, G/H must also be discrete. Furthermore, since the factor group G/H is
discrete, the component of zero H' of the group H coincides with the compo-
nent of zero of the group @, and H/H'is isomorphic with H*, which is compact
by assumption. In this way E) is proved. '

We now pass to the proof of the fundamental theorem of the theory of char-
acters for general locally compact groups. To do this we first prove the follow-
ing proposition;

F) Let G be an arbitrary locally compact commutative group. Then there
exists in G an expanding sequence of subgroups

(32) - Hy ---,H, -

which comprises the whole group G, and which satisfies the following condi-
tions: a) the factor group G/H, is discrete, b) every group H, decomposes into
the direct sum of a vector group 4,, a compact group Z,, and a discrete group
D, having a finite system of linearly independent generators.

Let H be the subgroup of the group G which we have constructed in remark
E). Since the factor group G* = G/H is discrete, it contains an expanding
sequence of subgroups

*

(33) HYy oo HE

which comprises the whole group G*, and is such that every group H admits a
finite system of generators. We denote the inverse image of the group Hj in
the group G by H,, and we shall show that H, is decomposable into the sum of
three groups as indicated. The fact that the factor group G/H, is discrete is
obvious, since H c H, and G/H is discrete.

The group H} can be decomposed into the direct sum of a finite group C%
and a group D} having a finite system of linearly independent generators
af, - -, a¥ (see §6, F)). We denote the inverse image of the group C} in the
group G by C,. Then the factor group C,/H is isomorphic with the group C%
and hence it is finite. Therefore the group C, satisfies the conditions of Theo-
rem 41, since the group H satisfies these conditions. Hence the group C, de-
composes into the direct sum of a vector group 4, and a compact group Z,.
We denote by a; one of the inverse images of the element af in the group G,
i =1, --,r and by D, the subgroup of the abstract group G with the genera-
tors a, - ¥+, a,. It is not hard to see that D, is a discrete subgroup of the
group @, and that H, decomposes into the direct sum of the groups (', and D.,.
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But since we have just shown that the group C, decomposes into the direct sum
of the group 4, and Z, the proposition F) is proved.
Proor or THEOREM 32. This proof depends on remark C) of §31. Let

(34) Hy,  --,H, -

be the sequence of subgroups of the group G constructed in proposition F).
We denote by X, the character group of the group H,.. Since the group H,
decomposes into the direct sum of three groups for each of which Theorem 32
has already been proved (see §32, J) and L), and §33, D)), it follows from Theo-
rem 36 that the group H, is the character group of the group X,. Therefore
every non-zero element x € H, is a non-zero character of the group X,, i.e., there
exists an element 8 ¢ X, such that

(35) z(B) = B(z) # 0.

We shall show that condition a) of remark C) of §31 holds for the group G.
Let z be an element different from zero of the group G. Since the sequence
(34) comprises the whole group G, there exists a number n such that = ¢ H,.
From relation (35) there exists a character g8 of the group H, such that 8(z) 0.
Since the factor group G/H, is discrete, the character 8 can be extended into a
character a of the whole group G (see Lemma of §32) and therefore we have
a(z) # 0.

We shall now show that condition b) of remark C) of §31 is also satisfied for
the group G. Let X be the character group of the group G, and let &, = (X, H,)
(see Definition 35). By Theorem 34, the group G/H, has the group &, for its
character group, and since G/H, is discrete, the group ®, is compact (see Theo-
rem 31). Since the sequence (34) is an increasing sequence, the sequence

(36) iy, By

is decreasing. Also since the sequence (34) comprises the whole group G, the
intersection of all the groups of the sequence (36) contains only the zero of the
group X. It follows from this that there exists for every neighborhood V of
zero of the group X a sufficiently large number m such that

37 ®,cV.

Let now z be an arbitrary character of the group X and let U be that neigh-
borhood of zero of the group K which we have discussed in remark B) of §30.
Furthermore, let V be a neighborhood of zero of the group X such that
z(V)cU. We then have 2(®,) c U (see (37)), and hence z(®,) = {0} (see
§30, B)). Therefore the character z of the group X can be considered as a
character of the factor group X/®,, (see Theorem 34). It follows from re-
mark M) of §32 that the factor group X/®, is the character group of the group
H,, ie., Xn = X/®,. From what we have mentioned before H, is in turn the
character group of the group X,, and therefore « € H,, and this means that z,
being a character of the group X, belongs to the group G.
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In this way Theorem 32 follows from remark C) of §31.

Proor or THEOREM 33. Since we have now established Theorem 32 for all
locally compact groups, Theorem 33 follows from remark E) of §31.

Proor or THEOREM 35. Since Theorem 32 is now proved for all locally com-
pact groups, Theorem 35 follows from remark F) of §31.

Hence all the results in the theory of characters which we formulated in §31
are now proved for general locally compact commutative groups satisfying the
second axiom of countability.

The following natural question arises here: How can we explain the excep-
tional role played by the group K in the exposition of this theory, and is this
choice of the group K accidental or not? The following proposition gives an
answer to this question.

G) Let Q be a locally compact commutative group. We denote by K the
group of all homomorphisms of the group K, and by K the group of all homo-
morphisms of the group K, in the group Q. Then the groups K and K are
isomorphic if and only if the group @ is isomorphic with the group K. Hence
the group K is the only group which can be employed in the foundation of the
theory of characters in order that the fundamental Theorem 32 should
hold.

We now proceed to prove this. If K contains only zero, then K also con-
tains only zere, which contradicts the supposed isomorphism between the
groups K and K. Hence there exists a non-zero homomorphism « of the group
K into the group @. Under this homomorphism « the group K maps into some
subgroup K’ of the group @. Since the homomorphism « is not zero, the
group K' is isomorphic with K (see §32, A)); while the homomorphism « itself
is not necessarily an isomorphism. Hence  contains a subgroup K’ isomor-
phic with the group K.

We denote by P the maximal compact subgroup of the component of zero
of the group @ (see §35, C)). Then K’cP. We shall prove that P decom-
poses into the direct sum of the subgroup K’ and some subgroup L’.

We denote by G the character group of the group P, and suppose that
H= (G, K'). Then G/H is the character group of the group K, i.e., G/H is a
free cyclic group (see §32, F)). We denote by z one of the inverse images of a
generator of the group G/H in the group G, and by Z the free cyclic subgroup
of the group G having z as generator. It can readily be seen that G decom-
poses into the direct sum of the subgroups Z and H. Let L’ = (P,Z). Then P
decomposes into the direct sum of the subgroups K’ and L’ (see Theorem 37 and
39). Every homomorphism g of the group K in the group @ maps K into P,
B(K).c P, and since the group P decomposes into the direct sum of the sub-
groups K’ and L’, the group K of all homombrphisms decomposes into the
direct sum of the subgroups A and B, where A is composed of all the homo-
morphisms of the group K in the group K’, and B of all the homomorphisms
of the group K in the group L'. Hence 4 is a free cyclic group, while the
nature of the group B does not concern us.
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Since the group K is decomposable into the direct sum of its subgroups A
and B, the group K of all the homomorphisms of the group X in the group @
decomposes into the direct sum of the subgroups €' and D,where C is isomorphic
to the group of all homomorphisms of the group A in the group @, and D is
isomorphic with the group of all homomorphisms of the group B in the group Q.

Since 4 is a free cyclic group, the group of all homomorphisms of the group 4
in the group @ is obviously isomorphic with the group @ itself. Hence the
group C is isomorphic with Q.

The group K is by assumption isomorphic with the group K. Therefore Q
is isomorphic with some subgroup of the group K. Since, moreover, @ con-
tains a subgroup K’ isomorphic with K, it follows that the group @ is isomor-
phic with K.

This proves proposition G).

Proposition G) shows that the group K is actually exceptional, and is the
only group which could have been used for the purpose of constructing the
theory of characters. This peculiarity of the group K is emphasized by the
fact that all factor groups of K contain either only zero, or else are isomorphic
with the group K itself. This same property is possessed by finite groups of
prime order, but these groups, being finite, cannot be used for the construction
of the theory of characters.

ExampLE 52. Let @ be a locally compact group and X its character group.
By Theorem 41 the component G’ of zero of the group G decomposes into the
direct sum of a vector group A and a compact group. In the same way the
component X' of zero of the group X decomposes into the direct sum of a
vector group II and a compact group. Let H = (G, I1). Madking use of Theo-
rems 32 and 33 we can show that G decomposes into the direct sum of the
subgroups H and A, where H has a compact component of zero. Hence every
locally compact group G can be decomposed into the direct sum of a vector
subgroup A and a subgroup H having a compact component of zero.

We leave the proof of this proposition to_the reader.

We shall call an element of the group G compact if all of its multiples are
contained in a compact subset of the group G. The totality of all compact
elements of the group G forms a group (@, X’) = Z such that the factor group
G/Z contains no compact elements, and is decomposable into the direct sum
of a vector group and a discrete group having no elements of finite order.

If the group @ is a 0-dimensional group, then its character group contains
only compact elements. Conversely, if the group G contains only compact ele-
ments, then its character group is a 0-dimensional group.

We leave the proofs of these propositions to the reader.

36. Locally Connected Commutative Groups

We shall occupy ourselves here with the investigation of locally compact
commutative groups satisfying the rather special topological condition of being
locally connected. This erables us, in particular, to clarify in greater detail
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the structure of general locally compact commutative groups. The study of
locally connected groups is of interest because it enables us to solve for com-
mutative groups the so-called fifth problem of Hilbert, the problem of deter-
mining the structure of topological groups having a neighborhood which is
homeomorphic with an open set of Euclidean space. The condition of being
locally Euclidean can be applied to topological groups only with extreme diffi-
culty, and we therefore replace it by another and weaker condition of local con-
nectedness.

A) A topological space R is called locally connected if for every point a € R
and neighborhood U of a there exists a neighborhood V of a such that for any
z e V there exists a connected set S ¢ U which contains the points a and z.

A topological group is called locally connected if its topological space is locally
connected.

Obviously every open set of Euclidean space satisfies the condition of local
connectedness.

B) Let G and G* be two topological spaces and f an open continuous map-
ping of the space G on the space G* (see §18, C)). If the space @ is locally -
connected, then G* is also locally connected.

Let a* be a point of G*, and U* a neighborhood of a*. We denote by a
a point of G such that f(a) = a*, and by U a neighborhood of a for which
f(U) cU*. Furthermore, let V be a neighborhood of the point a, such that
for z e V there exists a connected set Sc U containing the points a and z.
Suppose that V* = f(V). Since the mapping fis open, V* is open in G*. For
every point z* ¢ V* there exists a point z € V such that f(z) = z*. If now
S c U is a connected set containing ¢ and z, then 8* = f(8) ¢ U*is a connected
set (see §11, E)), containing a* and z*. Hence G* is locally connected.

We consider first of all the local topological structure of some groups of spe-
cial form. .

C) Lét G be a discrete commutative group of finite rank r (see §6, A)) having
no elements of finite order, and let X be the character group of the group G.
Then there exists a neighborhood V of zero of the group X which is homeo-
morphic to the topological product of the spaces E and & (see Definition 21),
where E is the interior of an r-dimensional cube, and & can be one of two things:
a) @ contains only one point, and then the group G admits a finite system of
linearly independent generators, b) & is an infinite compact 0-dimensional
group, in which case G does not have a finite system of generators.

. Let

(1) . ay, Gy

be a system of r linearly independent elements of the group G. We consider
the neighborhood V' of zero of the group X which is defined by the compact
set F composed of the points of the system (1), and by a neighborhood U of
zero of the group K (see Definition 34) which consists of all elements a of the
group K which satisfy the inequality |a| < 1 (see §30, A)).
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Every element z of the group G can be represented uniquely in the form

(2) : T =801+ -+ 8a,
where s;,, ¢ = 1, - - -, r, are rational numbers. Let
(3) dl: ) dr

be a system of real numbers satisfying the inequalities

) | d

<3, i=1---,r

We associate with every system of numbers (3) a character

) aldy, -+, d) = a

of the group G. If z ¢ G is defined by relations (2), then a is defined by letting
a(z) = sidy + - - - + s.d,,

where the right member is considered as an element of the group K, i.e.,is re-
"duced modulo 1 (see §30, A)). The set of all characters of the form (5) will
be denoted by E. Obviously E is homeomorphic to the interior of an r-dimen-
sional cube. It follows from (4) that EcV’. The inverse relation, however,
holds only in exceptional cases.

We denote by H the subgroup of the group G generated by elements of the
system (1). Let ® = (X, H); then &'’ c V’. Let v be any character of the
set V. Then vy(a;) =d;y 1 =1,---,r, where ld,-l < % since y ¢ V'. Here
the d; are considered simply as real numbers. Let a = a(dy, - - -, dr) (see (5))3
then 8 = v — a & ®/, since the characters v and a coincide on the subgroup H.
In this way every element v € V' is represented in the form v = a + 3, where
ac E,Be®. Itisnothard to see that this representation is unique. There-
fore the neighborhood V' decomposes into the direct sum of the set E and the
subgroup ®’. From this it follows that V’is homeomorphic to the topological
product of the set E and the set &'.

We now make clear the structure of the set . By Theorem 34, &' is the
character group of the group G* = G/H. If the group G* is finite, ®' contains
only a finite number of elements. Then E is an open set in V' and therefore E
is a neighborhood of zero of the group X. We have here case a). Since H
has a finite system of generators, and since G* is finite, it follows that G also
admits a finite system of generators; and since G has no elements of finite
order, it must admit a finite system of linearly independent generators (see $6,
F)). If the group G* is infinite, we denote by HY, - - -, H¥, - - - an infinite
increasing sequence of finite subgroups of the group G*, whose sum coincides
with G*. Such a sequence exists in G* since every element of G*, as can easily
be seen, is of finite order. Let &, = (&', H¥). Then the intersection of all
the groups of the decreasing sequence &}, - - -, &,, - - contains only zero, and
therefore there exist arbitrarily small groups in this sequence. On the other
hand, the factor group ®’/®,, being the character group of the group H}, is
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finite. Hence the group ®’ has arbitrarily small open subgroups, and therefore
@' is a 0-dimensional group (see §22, G)). At the same time &' is infinite since
G*isinfinite. We have here case b). The group G does not admit a finite sys-
tem of generators, for were such a system to exist in G, it would also exist in the
factor group G*. But then G* would be finite since all of its elements are of
finite order.

Hence C) is proved.

D) Let G be a discrete commutative group of finite rank r (see §6, A)) having
no elements of finite order. The character group X of the group @ is locally
connected if and only if the group G admits a finite system of linearly independ-
ent generators.

The proof of D) follows directly from C). Case a) gives a locally connected
group, while in case b) local connectedness is obviously impossible, since every
neighborhood V splits up into separate slabs converging to each other.

In order to consider infinite ranks we prove the following proposition.

E) Let @ be a discrete group having no elements of finite order. If every
increasing sequence Hy, - - -, H,, - - - of subgroups of a constant finite rank r
becomes constant after a certain n, then the group G decomposes into the direct
sum of a finite or infinite number of infinite cyclic subgroups.

To prove this we shall construct by induction the sequence

(6) Go,G1,"‘,Gr,"'

of subgroups of the group @, which comprises the whole group G, and is such
that the following conditions are satisfied: a) the subgroup G, is the maximal
subgroup of the group G having the rank r; this is to be understood in the sense
that every subgroup H of rank r which contains G, coincides with G,, b) the
subgroup G, admits a finite system of linearly independent generators

(7 ay v, Gy,

¢) the system of linearly independent generators for G,,; is obtained by adjoin-
ing to the system (7) the single element a,4;.
We number the set of all elements of the group G by denoting them by

(7!) gl,...,g",..-

We construct the sequence (6) by induction. We take for G the subgroup
which contains only zero. Let us suppose that the subgroup G, has already
been constructed. If the rank of the group @ is r, then by a), G = G,, and
hence G admits a finite system of linearly independent generators (see b)), i.e.,
it decomposes into the direct sum of a finite number of infinite cyclic subgroups
(see §6, F)). If the rank of the group G exceeds r, then the sequence (7’) con-
tains elements not belonging to G.; we denote the first such element by z,. By
adjoining to the group G- the element z, we obtain a subgroup H; of rank r + 1
which contains G, and has a finite number of generators. If H;is not the maxi-




§36] LOCALLY CONNECTED COMMUTATIVE GROUPS 169

mal group of rank r 4+ 1 we can adjoin to H; an element of the group G in such
a way that the resulting group H, will contain H; but will preserve the rank
r + 1. Continuing this process, we obtain an increasing sequence -of sub-
groups of rank r 4+ 1, each of which admits a finite system of generators.
This sequence after a finite number of steps becomes constant on reaching a
maximal group of rank r + 1 with a finite number of generators. We shall
denote this group by G,1. Let (7) be the system of linearly independent gen-
erators of the group G,. We shall show that we can obtain from it the system
of generators for the group G,;;1 by adjoining one element to the system (7).
Let G* = G,41/G,. The group G* admits a finite system of generators since the
group G, admits such a system. Furthermore, G* has no elements of finite
order. In fact, if H* is the subgroup of the group G* composed of all elements
of finite order, then we denote by H the complete inverse image of the group H*
in the group G-41.  Then it can easily be seen that H is a group of rank r which
contains the group @,, and therefore by condition a), H = @,, which means
that H* contains only zero. Therefore the group G*, being of rank 1 as can
readily be seen, is an infinite cyclic group having a generator a* (see §6, F)).
We denote one of the inverse images of the element a* in the group G,.1 by
ar-41. 1t is obvious that the system ay, - - -, a,, @41 is a system of linearly inde-
pendent generators of the group G,,;.

This completes the induction.

If the construction of the sequence (6) terminates after a finite number of
steps, then the group G decomposes into a finite direct sum of infinite cyclic
subgroups. If the sequence (6) is continued indefinitely then we denote by

®)

an increasing sequence of linearly independent generators of the groups of the
sequence (6) (see b) and ¢)). Then the system (8) gives an infinite sequence of
linearly independent generators of the group G. If we denote by A; an infinite
cyclic group having the generator a;, then it is not hard to see that G decom-
poses into the direct sum of the subgroups A, - - -, 4,, - - - . Hence proposi-
tion E) is proved.

's THEOREM 42. A compact locally connected and connected commutative group X
decomposes into the direct sum of a finite or countable number of subgroups, each
isomorphic with the group K (see §30, A)). '

Proor. Let G be the character group of the group X. Then by Theorem 32,
X is the character group of the group &, where @ is discrete (see Theorem 31).
Since the group X is connected, the group G has no elements of finite order
(see Example 48). Suppose that the group G does not satisfy the conditions
of remark E),i.e., that G contains an unlimited expanding sequence of sub-
groups

(9) Hy -, Hy,- -
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of a constant finite rank r. We denote by H the minimal subgroup containing
all the subgroups H,. Since the sequence (9) expands without limit, the group
H cannot admit a finite system of generators. Let ® = (X, H). Then
X* = X /& is the character group of the group H (see §32, M)). Since the
group X is locally connected, the factor group X* is also locally connected (see
B)). But then by remark D) the group H admits a finite system of generators,
and therefore we have arrived at a contradiction. Therefore the group G satis-
fies the conditions of remark E) and it follows that X decomposes into the di-
rect sum of a finite orinfinite number of subgroups isomorphic with the group K
(see Theorem 39 and §32, F)). Hence Theorem 42 is proved.

Theorem 42 can easily be generalized to non-connected groups.

F) A compact locally connected commutative group X can be decomposed
into the direct sum of a finite or infinite number of groups isomorphic with K,
and a finite group.

We denote by X' the component of zero of the group X. From the local
compactness of the group X follows the local compactness of the groups X'
and X/X' (see B)). The group X/X’ is 0-dimensional and compact, and
therefore, being locally connected, must be finite. For were X/X’ infinite,
it would have zero for a limit element, i.e., there would exist some element a in
every neighborhood of zero. But zero and a cannot both be included in a con-
nected set, since X/X’ is a 0-dimensional group. Therefore the supposition
that X /X' is infinite contradicts the assumption of local connectedness. The
The group X' is connected and by Theorem 42 decomposes into the direct sum
of a finite or countable number of groups isomorphic with K. From the facts
that X’ has such a simple structure and that the factor group X /X’ is finite it
follows easily that X is decomposable into the direct sum of the group X' and a
finite group.

THEOREM 43. A locally compact locally connected and connected commutative
group G decomposes into the direct sum of a finite number of groups isomorphic
with the additive group of real numbers and a finite or countable number of groups
1somorphic with the group K (see §30, A)).

Proor. By Theorem 41, the group G decomposes into the direct sum of a
vector group A and a compact group Z. Since G is connected Z is also con-
nected (see §11, E)). Furthermore, since @ is locally connected its factor
group G/A = Z is also locally connected (see B)). Hence by Theorem 42,
Z decomposes into the direct sum: of a finite number of groups isomorphic
with K. The vector group A in turn decomposes into a direct sum of a finite
number of groups, isomorphic with the group of real numbers. Hence Theo-
rem 43 is proved.

TuroREM 44. If a locally compact commutative group G has a neighborhood o]
zero homeomorphic to an open set of Euclidean space, then it decomposes into the
direct sum of a finite number of groups isomorphic with the group of real numbers,
and a finite number of groups isomorphic with the group K (see §30, A)).
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Proor. It follows from the fact that G has a neighborhood of zero homeo-
morphic to an open set of Euclidean space that @ is locally connected, and
therefore satisfies the conditions of Theorem 43. However, it would be im-
possible here to have an infinite number of direct summands isomorphic with
the group K, since in that case the group @ would have infinitely many dimen-
sions. This proves the theorem.

ExampLE 53. Let G’ be the discrete additive group of rational numbers, and
G one of its subgroups distinct from zero, Obviously ¢ has no elements of
finite order and its rank is equal to 1. Therefore the character group X of the
‘group ( is connected and one-dimensional (see Examples 48 and 49).

It is not hard to see that every compact connected group of dimensionality 1
can be obtained as the character group of a group Ge @’. If the group @ has
a finite system of generators, then it is an infinite cyclic group. Hence since
the group X is locally connected, it is isomorphic with the group K (see D)
and §32, F)).

The group X considered here has been investigated in detail by van Dantzig
[8], who called these groups solenoidal groups.

It has been supposed that every finite-dimensional connected compact group
decomposes into the direct sum of solenoidal groups. This supposition has,
however, been shown to be false. In fact there exists a two-dimensional con-
nected compact group which in general does not decompose into a direct sum.
The construction of this example can be achieved by constructing a discrete
group @ of rank 2 having no elements of finite order which does not decompose
into a direct sum. Then the character group of the group G gives the desired
example of a compact topological group (see [28]).

37. Topologized Algebraic Fields

It is natural to consider together with topological groups some other topolo-
gized algebraic structures. *We meet very frequently in mathematics with just
such structures; it is sufficient to point out the field of real numbers, and the
field of complex numbers. These fields are not purely algebraic structures,
since limiting processes play in them as important a part as the operations of
addition and multiplication. The question of the structure of topologized al-

. gebraic fields seems to me of interest because its solution would clarify the
role played by real and complex numbers and give a reason for their exceptional
position in mathematics. What is it that separates them from other analogous
entities? Real and complex numbers arise in mathematics in a purely con-
structive way. It is desirable now to give a deductive definition for them, and

‘to show that their exceptional position is not due to historic accident, but is a
necessity arising from very general considerations.

The above investigation of topological groups makes the solution of this
‘problem almost trivial.

DeriNiTION 37. A set K is called an algebraic field, or simply a field, if two
operations are established in K: addition and multiplication, which satisfy the
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following conditions: The set K forms a commutative group under the opera-
tion of addition. The zero of this group is called the zero of the field K. Un-
der multiplication the totality of all the elements of the set K with the excep-
tion of zero also forms a group, in general not commutative. The identity of
this group is called the identity of the field K. By definition the product of
zero by an arbitrary element is equal to zero. The operations of addition and
multiplication are connected by distributivity conditions

z(y + 2) = zy + az, (y + 2)x = yx + zz.

A field K is called topological if the set K is a topological space, and if the
algebraic operations operating in K are continuous in the topological space K.

Well-known examples of topological fields are the fields of the real and com-
plex numbers with their natural topologies and the usual operations of addition
and multiplication. Both these fields are commutative. An example of a
non-commutative topological field is afforded by quaternions.

A) Let us denote by K, the set of all linear forms of the type

(1) a—+ bt +c¢j+ dk = z,

where a, b, ¢, d are real numbers, while the symbols 7, j, k are as yet undefined.
Addition can be defined naturally in the set K, as the addition of linear forms.
We shall now define the operation of multiplication in the set K,. We shall
agree beforehand that multiplication is to be distributive and associative, that
real numbers are to be multiplied in the usual manner, and that they commute
with all quantltles Under these COIldlthl’lS in order to define the law of multi-
plication it is sufficient to define the product of the quaternion units 5 k. We
set .

@ =~ 1,2 =~ Lk =—1ij=—ji=kjk=—kj=1ik = —ik=j.

A topology can be introduced naturally into the set K,, and the resulting topo-
logical field is called the field of quaternions, and its elements-are called qua-
ternions.

The norm of the quaternion z (see (1)) is the nonnegative real number

3) | 2| = +V/[a® + b2 + ¢ + d2)].

Direct calculation shows that if z and y are two quaternions, then
@) | 2y =] ][ 9],

and

(5) |z +yl =] 2| +]yl.

The inverse of the quaternion z is the quaternion z~! defined by

(6) el =] 2|2 (a — bi — ¢j — dk).
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In this way every quaternion whose norm is different from zero has an inverse,
and the norm zero corresponds to the quaternion zero.

It is not necessary for our purposes to go into greater detail about the proper-
ties of quaternions.

We can define in a natural way isomorphism between topological fields.
Two topological fields K’ and K are said to be isomorphic if there exists a
homeomorphic mapping of the field K on the field K’ which preserves the oper-
ations of addition and multiplication.

TraEOREM 45. Let K be a locally compact connected topological field satisfying
the second axiom of countability. Then K is isomorphic with one of three topo-
logical fields D, K,, K, where D is the field of real numbers, K s the field of com-
plex numbers, and K, is the field of quaternions.

As a preamble to the proof of this theorem we make the following remark.

B) A topological field K satisfying the conditions of Theorem 45 contains a
subfield D isomorphic with the field of real numbers, and such that every ele-
ment of D commutes with every element of K. Furthermore K contains a
finite system of elements zy, - - -, z,, such that every element z of the field K
can be naturally represented in the form

T=a + oo+ o+ A

where a; €D, 1 =0, 1, .-, r.
Let us show first of all that K cannot be compact. K contains at least two
elements, zero and one. Therefore, being connected, the field K must have

zero for a limit element. Let yy, - - -, yn, - - - be a sequence of elements of the
field K which are distinct from zero, but converge to zero. Then the sequence
of inverse elements y;'%, - - -,y %, - - - cannot have a limit element. Therefore

the field K is not compact.

Since K is a commutative group under addition, it follows from Theorem 41
that this group is decomposable into the direct sum of a vector group 4 and a
compact group Z. Let a be an element of the subgroup 4 distinct from zero.
Then the sequence

(7) a,ZQ’...,na’...

of integral multiples of the element a has no limit points in K. Furthermore
let z be an element of the group Z distinct from zero. The sequence

8) 2,22, - - ,nz, - -

of integral multiples of the element z has limit points in K since Z is compact.
But the sequence (8) can be obtained from the sequence (7) by multiplication
by a~!z and hence, because of the continuity of the operation of multiplication,
the sequences (7) and (8) simultaneously do or do not have limit elements.
Therefore, the assumption that both subgroups A and Z contained elements
distinct from zero leads to a contradiction, and hence one of the subgroups
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must contain only zero. And since K is not compact, Z must contain only
zero, and K coincides with A.

Hence K, being an additive group, is isomorphic with a vector group. We
shall think of K simply as an additive vector group.

The product az of a vector z by a real number a is defined in K.  We denotc
by e the identity of the field K and show that :

9) (bx)(ae) = (ab)x
and
(10) (ae)(b2) = (ab)x

where a and b are all real numbers and z £ K.

Relation (10) is obvious when a is a positive integer n, for then
ne =-¢+ - -+ ¢ and (10) follows from the distributivity of multiplica-
tion in K. If n is a negative integer, we can easily show (10) to be true
for n by letting n’ = — n. It follows in this way for an integer n = 0 that
(ne)(1/n)e) = e, i.e.,, (ne)~! = (1/n)e. Furthermore, for n > 0 we have
(nb)x = (ne)(br). Multiplying both sides of this relation by (ne)~! we get
((1/n)e)(nbx) = ((1/n)nb)x. Letting nb = ¢ we get ((1/n)e)(cx) = ((1/n)c)x.
Hence (10) is proved for a=1/n. Let now m and n > 0 be integers. From
what we have just shown ((m/n)e) = (me)((1/n)e). Multiplying this by bz
we get ((m/n)e)(bx) = (me)((1/n)e)(bx) = (me)((b/n)x) = ((m/n)b)x. Hence
(10) is proved for a rational a. Because of the continuity of the operation of
multiplication in K, we can now extend relation (10) to an arbitrary real num-
ber a.

Relation (9) is proved in like manner.

We denote by D the set of all the elements of the field KX which can be
written in the form de, where d is a real number, and e is the identity of the
field K. If a and b are two real numbers, then it follows from the properties
of the vector space K that ae + be = (a + b)e. Moreover, it follows from
(10) that (ae)(be) = (ab)e. This shows that the set D is a field isomorphic
with the field of real numbers. Relations (9) and (10) taken together show
that every element of the set D commutes with every element of the field K.

We now select in K a complete system of linearly independent vectors, which
include the vector e. Let e, xy, - - -, 7, be this system. Then every element z
of the vector space K can be written uniquely in the form

r=be + buri + - - - + b,

where b;, 7 = 0, 1, - - - |, real numbers. But by (10) this same element z can
also be written in the form

r=a+ ax+ - + a2,

wherea; e D, =1,---,7.
Hence B) is proved.
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Frobenius has shown that every field of the type to which we have reduced K
is isomorphic with one of the fields D, K,, or K,. Hence Theorem 45 follows
from this result of Frobenius, the proof of which follows.

Proor oF THEOREM 45. We shall simply identify the field D constructed in
remark B) with the field of real numbers.

a) if K = D, then Theorem 45 already holds for the field K.

b) We now denote by I the set of all elements z € K for which the following
conditions are fulfilled; 22 ¢ D, 22 < 0, and show that every element z ¢ K can
be decomposed uniquely into the sum.

(11) z=d+ 2z where deD, zel.
Consider the sequence
(12) 17 Z, .’172, T, T e

of powers of an element . Since by remark B) the field K is a vector space
of a finite number of dimensions, the elements of the sequence (12) are linearly
dependent with respect to the field D of real numbers. Therefore there exists
a polynomial f(y) with real coefficients which reduces to zero when the un-
known y is replaced by the element z, f(z) = 0. We can assume that f(y) is
irreducible; and it is well known that an irreducible polynomial in the domain
of real coefficients is of the first or second degree. If f(y) =y — d, then
z = de D, and the decomposition (11) is established. Let now f(y) = y?
+ py + ¢q. By a simple algebraic transformation the polynomial f(y) can be
reduced to the form f(y) = (y — d)2 + % Let x — d = z: then ze I and
hence z = d + z.

Hence (11) is proved. Suppose that we have also z = d’ + 2/, where
d'eD,2’el. Thenz’ =2z 4+ d — d’. Squaring both sides of this relation we
get 2’2 = 22 + (d — d’) 2 + 2(d — d’)z, from which it follows that (d — d’)z is
a real number. But this is possible only if d — d’ = 0 or z = 0. In either
case the uniqueness of the decomposition (11) readily follows.

¢) We shall now show that I is a linear subset of elements of K, i.e.,

(13) axr +byel,

ifxel,yel,and a and b are real numbers.

We shall first consider the case where z, y, and 1 are linearly dependent with
‘respect to the field D of real numbers, i.e., where there exist real numbers e, 8, v
not all zero such that ez = By + v. It can readily be seen that the elements
ax and By belong to I, and therefore because of the uniqueness of the decom-
position (11), ¥y = 0. Hencey = (a/B8)r and the element az + by assumes the
form (a + b(e/B))z, from which (13) follows directly.

Let us now suppose that the element ax 4+ by can belong to D only under
the condition @ = 0, b = 0. Let

(14) ar + by =d' + 2’
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where d’ e D, 2z’ ¢ I (see (11)). Here the elements d’ and z’ depend on the
choice of the real numbers a and b; z’ reduces to zero if and only if @ = b = 0.
We must show that d’ = 0 for an arbitrary choice of a and b. Let

(15) y+yr=d+z
(see (11)). Squaring both sides of (14) we get
d'* 4+ 2'2 4+ 2d’z' = a%® + b%? + ab(xy + y2)

(16)
= a?r? 4+ b%? 4 abd + abz.

Since the decomposition (11) is unique it follows from (16) that
(7) 2d'z' = abz.

Suppose that d’ is fxot equal to zero for at least one pair of values a, b. Then
equation (17) shows that z 0, and this means in turn that d’ = 0 if ab = 0
since z does not depend on the choice of @ and b. Hence we have

ab

18 2= —z,
(18) 20’

where the equation always has a meaning when ab # 0. Hence
(19) by = ——b + d’
9 ar + 2 .
Y 2d’

Since z does not depend on the numbers a and b and since equation (19) has a
meaning whenever ab = 0, it follows that (19) can give two independent rela-
tions connecting the elements z, y, and z. Eliminating z from them we get
a't + b’y = ¢’, which contradicts the original relation. Hence we have ar-
rived at a contradiction by supposing that d’ is distinet from zero for some pair
of values aand b. This means that d’ = 0, and hence the linearity of the set I
is established.

d) Let ¢ and j be two elements of K such that i* = — 1, j2= — 1, and
k =1el. We shall show that the elements 7, j, and k are linearly independ-
ent with respect to the field D and form a system of quaternion units, i.e., they
satisfy relation (2).

Since 7j £ I, we can write 4j in the form al, whereae Dand 12 = — 1. We
have (i)(ji) = 7(—1)t = 1. Hence ji = (al)~'. The element (al)~! can
easily be seen to be equal to —a~!, and hence ji = — a”!l. Since [ is a

linear set, and since the elements ¢ and j belong to I, it follows that ¢ + j ¢ I.
Hence (¢ + j)? = 12 4 72 + ¢j + j¢ is a real number, and this means that 5 + j¢
is also a real number. It follows from this that (a — (1/a))l e D, i.e.,a? = 1,
and hence the condition k2 = — 1 is satisfied for k¥ = al. We have therefore

(20) = -1, j=-1 k=-1

Taking inverses on both sides of the equation
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(21) y=k
we get j7%~! = k71, or what is the same (see (20)), ji = — k. Multiplying
relation (21) on the left by —7 we get j = — ¢k. The remaining relations of

the system (2) are obtained in the same manner. We now suppose that the
relation

(22) bi +cj + dk = 0

holds with real coefficients. Multiplying (22) oh the left by k& we get
bj = ¢i + d. Because of the uniqueness of (11) we have d = 0, and this
means that bij = — ¢, which is possible only when b = ¢ = 0, since (i5)? = — 1.
This proves the linear independence of the elements ¢, j, and k.

e) Let us suppose that K D, but that any two elements in I are linearly
dependent with respect to the field D. Then the field K is isomorphic with
the field K; of complex numbers. In fact, let us select an element 7 in I such
that 42 = — 1. Since any two elements in the set I are linearly dependent,
it follows from the decomposition (11) that every element of K can be uniquely
represented in the form a 4 bi where a and b are real numbers, and this means
that K is isomorphic with the field of complex numbers.

f) Suppose now that I contains two elements z and y, linearly independent
with respect to the field D. We can then show that K contains a subfield K,
isomorphic with the field of quaternions.

Let 7y = z 4+ d, where ze I, d € D (see (11)). Then we can select a real
number a such that az? = — d, and for this particular number a we would have
z(u + ar) = z. Since z and y are linearly independent, z 0O and y’ = y + az
# 0, where y' € I since I is a linear set (see ¢)). Normalizingzandy’ =y + ar
by real multipliers we get elements 7 and j such that 2= — 1, j2= — 1,
ij = ke I. Then the elements 7, j, and k are linearly independent and satisfy
the relations of quaternion units (see d)). It can be seen readily that the set
of all linear forms a + b 4+ ¢j + dk forms a subfield K; of the field K which
is isomorphic with the field of quaternions.

g) Suppose finally that the field K contains the subfield K, of quaternions.
We then show that in this case K = K,.

Let 7, j, and k be the quaternion units of the field K,. If the field K con-
tains some elements not belonging to K, then we can find an element z e I
which is linearly independent of the units 7, j, k. Let

=di+2, jJe=d+z k=d+z
(see (11)). Suppose further that
I = a(z + dii + doj + dsk),

where a is a real number. Then since I is linear (see c¢)), il e I, jle I and kl € I.
Furthermore, since I is a linear system and since z is linearly independent of
the units 7, j, k, we can select the number a in such a way that I? = — 1. Then
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the elements 7, [, and ¢l form a system of quaternion units (see ¢)). In particu-

laril = — li, (¢11)> = — 1. The same is true for the elements j and k, and we
get

(23) @2=ht=(E)2=—-1, d=—-U, jl=—1, kl=—1Ik
It follows from relation (23) that on one hand

(24) @Dk = (= L)k = I(— k) = 1j,

while on the other

(25) @Dk = (k) = i(— Kl) = (— k)l = jl.

Equations (23), (24), and (25) give 251 = 0, which contradicts the relation
(j)2 = — 1. Hence we have arrived at a contradiction, assuming that
K # K.

This proves Theorem 45.

ExampLE 54. Let K be the field of rational numbers. We introduce a topol-
ogy into K by assigning a system of neighborhoods of zero in the field K as
follows: Every rational number r ¢ K can be written in the form p*(m/n),
where p is a prime number fixed for a given construction, m and n are integers
not divisible by p, and k¥ may be positive or negative or zero. A neighborhood
U, of zero in the field K is defined as the totality of all numbers r for which
k = s, where s is a positive integer. Hence the higher the power of p by which
r is divisble, the closer is the element r to zero. The topological field thus
obtained will not be locally compact, but it can be made so through addition
of new elements which are sequences of elements of the field K, just as is done
in introducing real numbers. This enlarged locally compact field K is called
the field of p-adic numbers. It is not connected.




CHAPTER VI
THE CONCEPT OF A LIE GROUP

So far, in considering topological groups, we have imposed upon them condi-
tions of a rather general character formulated in terms of abstract algebra and
abstract topology. The concept of a Lie group, however, contains in its very
definition the condition of analyticity—or at least of differentiability—of the
functions which define the operation of multiplication in the group (see Defini-
tion 38). Therefore in studying Lie groups we can avail ourselves of the ma-
chinery of analysis, including the theory of integration of differential equations.
Because of these possibilities Lie groups admit a very detailed investigation
which finally reduces their study to that of some elementary, although very
delicate algebraic problems. These problems are essentially some special prob-
lems in the theory of matrices. Only after these considerations begins the
really refined and deep theory of Lie groups. However, we shall not take up
these problems in the present chapter.

Usually in theories of an older date the question of the differentiability or
analyticity of the functions under consideration was not subjected to a rigorous
scrutiny. All the funections arising in the consideration of certain given func-
tions were simply assumed when necessary to be differentiable or analytic.
This, however, has one serious defect. It is one thing to suppose that some
definite functions appearing in the definition of a given object are differentiable,
and quite another thing to suppose in advance the differentiability of all func-
tions which may arise in the process of investigation of this object. In actual
fact we may know nothing in advance of the nature of these functions; we can-
not compute them a priori and it may happen that a thoroughly natural prob-
lem leads to non-differentiable functions. This is precisely the unsatisfactory
situation in the classical theory of Lie groups. Let us suppose for example that
we are investigating a given Lie group G. Although it does not follow a prior:
that every subgroup of this Lie group is also a Lie group, still the necessity
of considering such subgroups may easily arise. The same is true in connection
with factor groups. It may also become necessary to discuss the automor-
phisms of a Lie group. Can they be expressed in terms of differentiable func-
tions? We devote this chapter to the solution of these preliminary questions.
Starting with the differentiability or analyticity of some definite functions we
arrive at the differentiability or analyticity of a series of functions which arise
naturally in the course of the investigation. It would in fact be possible to
limit ourselves to the single assumption of differentiability, since with this as-
sumption we can reduce our entire investigation, without loss of generality,
to that of analytic functions. We shall be forced, however, to make a double
investigation in this chapter, assuming differentiability and analyticity in turn,
as the corresponding proof of the reduction of differentiable to analytic func-
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tions is beyond the scope of the present chapter. On the other hand we cannot
limit ourselves to differentiable functions alone, for in that case the results of
the following chapter will not be complete. :

If, however, the reader is willing to confine himself to the classical way of
handling this problem and does not care to enter more deeply into the funda-
mental principles discussed above, he need not read this chapter in its entirety.
It would then be sufficient to read §§38, 39, and 42, omitting Theorem 48.

In the classical theory a Lie group G is defined as any local group in which
differentiable coordinates D have been introduced (see Definition 38). The
properties of the group G are those properties of the system of equations (3) of
§38 which remain invariant under a differentiable transformation of the co-
ordinates D (see §38. A)). Furthermore by a subgroup H of the group G is
understood only such a subgroup as is defined by relations (1) of §41, i.e.
Theorem 50 is reduced to a definition. In the same way only those homo-
morphisms x which are defined by relations (21) of §41 are admitted as homo-
morphisms of the group G, i.e. Theorem 51 is also reduced to a definition.

The results of this chapter are intended primarily as preparatory material
for Chapter VII in which we shall show that the study of compact topological
groups satisfying the second axiom of countability can be reduced to the study
of Lie groups. There we shall also define compact Lie groups in general terms
without making use of the concept of differentiability.

Because of the great many calculations which we shall have to face in this
and the ninth chapter, we make use of tensor notation in both these chapters,
without assuming, however, a knowledge of tensor calculus. We shall simply
eliminate the summation sign . The usual rule is that indices are written
both as subscripts and as superseripts, and if a monomial has the same index ¢
as both subscript and superseript then this monomial represents a sum over 2,
7 going over all possible values. If a monomial contains not one double index
but several, then this monomial represents a corresponding multiple sum. For
example the monomial a;b?stands for Y_,_,a;b%, while ¢;a stands for the double
sum Y ;> chai. It is not permissible to interchange the subscripts with the
superscripts, so that every system of numbers has a definite distribution of
indices. This distribution should of course be carried out in some convenient
way. In particular, the coordinates of points and the components of vectors
are denoted by letters with superseripts, where the letters chosen are the same
as those used for the points and vectors themselves. For example the coordi-
nates of the point z are denoted by z!, 22 - - -, z*. We shall not write the
upper indices in parentheses to distinguish them from powers, but on the con-
trary when we want to raise a letter to some power we shall use parentheses as
follows: (a)” will mean the n-th power of a. However powers will hardly be
met with in our discussions. We shall denote by &) a number equal to unity
for7 = j, and equal to zero for z 5 j.
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38. Lie Groups

The classical theory of Lie groups studies first of all local Lie groups, and
therefore we shall give here the definition of a local Lie group, which however
is applicable to entire groups.

DeriNiTION 38. A local group G (see §23, D)) is called a local Lie group, if
the following conditions are fulfilled :

1) A coordinate system can be introduced in . This means that there exists
a topological mapping ¢ of a neighborhood U of zero of the group G on an
open set V of a Euclidean space S, under which the identity transforms into the
origin. In this way to a point x € U corresponds a system of real numbers

(1) xly xz, e, X

which are the coordinates of the point ¢(x) € S. We shall call these numbers
the coordinales of the point « € U. The identity will have its coordinates equal
to zero. Furthermore, to every system of numbers (1), if these numbers are
sufficiently small in absolute value, corresponds a definite point « € U having
these numbers for its coordinates. The dimension r of the space S is called
the dimension of the group G.

Let W be a sufficiently small neighborhood of the identity of the group G,
so that for any two elements z and y in W the product zy is defined and 2y ¢ U.
We then have

(2) vy =z = f(x,y).

Since all the points z, y, and 2z belong to U, they all have coordinates, and in
coordinate form relation (2) can be rewritten as

(3) zi=fi(x,y)=fi(xl’,.,’xr;y1,,.,,yr)
where the functions f?in the right side of the equation are continuous functions

defined for all sufficiently small values of the arguments. Since furthermore
ze = z, ey = y, we have
(4) fi(xly T "IT;O) t )0) =xir fi(0,0, t ',O;yl, c ';yr) = yi'

2) Differentiable coordinates can be introduced into G. More precisely, for
some choice of a neighborhood U and a mapping ¢, the functions f* which ap-
pear in the right side of (3) have all their third derivatives, and these deriva-
tives are continuous.

It follows from (4) that

: afi afi

(5) =

axi_6y5=6i for z =y =,

where || 8| is the unit matrix.

3) Analytic coordinates can be introduced into G. This means that for
some choice of a neighborhood U and a mapping ¢ , the functions appearing in
the right side of (3) are analytic.
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An entire topological group @ is called a Lie group if it satisfies the second
axiom of countability, and is a local Lie group i.e., if in some neighborhood of
the identity coordinates can be introduced in the proper way.

It can readily be seen that a Lie group is always locally compact. Obviously
condition 2) is a direct consequence of condition 3). In this chapter we shall
distinguish between analytic Lie groups, i.e., Lie groups satisfying condition 3)
and differentiable Lie groups, which satisfy condition 2). We shall show in the
ninth chapter that analytic coordinates can be introduced into every differ-
entiable Lie group. Hence the distinction which we have introduced here is
temporary and conditional.

We shall formulate here one important problem, the so-called fifth problem
of Hilbert. This problem can now be stated as follows: Is condition 3) a
consequence of condition 1)? This has been answered in the affirmative for
compact and for commutative groups (see Theorems 37 and 44). In the gen-
eral case this still remains an open question.

The whole investigation of a Lie group G is built on the properties of the
differentiable coordinates which can be introduced into it. We study not the
properties of the group G itself, but the properties of the systém (3) which ex-
presses the law of multiplication in . Actually we study only such properties
of this system which do not depend on the choice of coordinates in G, and which
therefore express properties of the group ( itself. First of all it is clear that
together with some definite system D of differentiable coordinates we can con-
sider a whole set [D] of coordinate system obtained from D by means of
differentiable transformations (see A)). We should therefore endeavor to
study only those properties of the system (3) which hold in all the coordinates
of the totality [D]. Since this has to do with finding the invariants of the
system (3) under differentiable transformations of coordinates, no particular
difficulty arises at this point. We should further clarify the question of
whether there exists in [D] a differentiable system of coordinates D’ such that
a differentiable transition from the system D to the system D’ is impossible.
We shall show below (see §40) that such a system does not exist, and therefore
that the whole question of finding all the properties of the group G reduces to
the question of finding such properties of the system (3) which remain un-
altered under differentiable transformations of coordinates.

We shall recall here the definition of a differentiable and of an analytic trans-
formation of coordinates.

A) Let @ be a local Lie group and D some definite differentiable or analytic
system of coordinates in G (see Definition 38). The coordinates of a point z
in the system D are denoted as usual by z®. Let

(6) 0i(z) = ¢i(z!, - - -, 27), i=1-- -,

be a system of differentiable functions having three continuous derivatives, or a
system of analytic functions, such that
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(7 e'le) = (0, - - -, 0) = 0.
Let

i 0ot
() p = o'(e)

oxi
and suppose that the determinant of the matrix ||p}|| is different from zero.
Then the system of equations

(Q) = ‘pi(xly T mr)

can be thought of as introducing a new system of coordinates in G, i.e., the new
coordinates of the point z are the numbers z’?. It can readily be seen that if
both the original coordinates D and the transformation (9) are differentiable
or analytic, then the new coordinates D’ will be correspondingly differentiable
or analytic.

B) Let G be a local Lie group and D a system of differentiable coordinates
defined on G.  We shall say that a curve 2(2), |t| < a,is defined in G if there
exists an element z(t) which depends continuously on a real parameter ¢ and
which is such that £(0) = e. We shall say that the curve z(t) has a tangent in
the system of coordinates D if the derivatives

dxi(0)

(10) py

= q'

exist. We shall call the numbers a the components of the vector a which is
tangent to the curve z(t). Of course we understand here a tangent vector at
the point ¢ = 0, but as other tangent vectors will not be considered, we shall
omit the words “at the point ¢t = 0.”

When we pass from the system D to the system D’ by means of relations(9),
the vector a will have a new set of components in the new coordinate system
which can be expressed by means of the old components as follows:

2 IR

(11) a = p;a
(see (8)).

By means of the above construction we associate with a local Lie group a
vector space R composed of all vectors tangent to the curves in G. The con-
nection between G and R is given by means of a definite system of coordinates
D. To every transformation of coordinates (9) in G corresponds a definite
transformation of coordinates (11) in R, and the connection between G and R
is invariant with respect to a differentiable transformation of coordinates in G.
It can readily be verified that if the curves z(t) and y (t) have the tangent vec-
tors a and b, then the curve z(t) = z(t)y(t) has the tangent vector ¢ = a + b (see
(6)). In this way the addition of vectors in R assumes an invariant meaning.

We note here also that the dimension of the vector spare R is equal to the
dimension of the group G.
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C) If ¢ and G' are two differentiable or analytic local Lie groups, then their
direct product H is a differentiable or analytic local Lie group.
Let D and D’ be differentiable or analytic coordinates of the groups G and G"'.

If %, - - -, 2" are the coordinates of the point z € G, and z', - - -, z’* are the
coordinates of the point z’ ¢ G’, then we take for the coordinates of the pair
(z,z') ¢ H the numbers z!, - - -, 27, 2'Y - - - [ z’*. If the operation of multipli-
cation in the groups G and @’ is written in coordinate form by the relations

(12) Zl:f{(l.l»' : '7Ir;yly' : 'Jyr)

and

(13) o't = f,l(a'llr Ty -T’x; ylly T Z/'s)

then the law of multiplication in the group H can be written by means of the
relations (12) and (13) taken together. This proves C).

ExaMpLE 55. Let G be the set of all square matrices of order n whose deter-
minants are different from zero. By remark A) of §27, F is a topological group.
We shall show that G is an analytic Lie group. To do this we introduce co-
ordinates into ( in the following way. We represent an arbitrary matrix z € @
in the form

(14) e + |l

where ¢ is the unit matrix, and the elements of the matrix ||z}|| are taken for
the coordinates of the matrix z. The mapping thus obtained of the whole
group G on an open set of the Euclidean space S of n? dimensions maps the
identity into the origin. Relation (3) assumes for G the following algebraic
form

T 1 1 v A
(15) _ g =+ y; + ny,.
Hence G is an analytic Lie group.

39. One-Parameter Subgroups

In the study of Liegroups an important part is played by one-parameter sub-
groups (see §23, M)). These subgroups are connected invariantly with the
Lie group, i.e., they do not depend on the choice of coordinates in the group,
and allow the introduction of a special set of coordinates into the group.

A) As we have remarked before (see §23, M)), a one-parameter subgroup of
the group G is a curve ¢(1), |t| < «a (see §38, B)), which satisfies the condition

() g(s)g(t) = g(s + 1).

Two one-parameter subgroups g(t) and h(t) of the group @ are said to coincide
if the equation g(t) = h(¢) holds for sufficiently small values of ¢. Obviously
under this condition the two subgroups really coincide for all those values of ¢
for which they are both defined (see (1)). If now @ is a local Lie group and D
a differentiable coordinate system in @, then the one-parameter subgroup g(t)
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is said to be differentiable in the coordinates D if the curve g(t) has a tangent
vector a in these coordinates (see §38, B)). We shall call the vector a the
direction vector of the subgroup ¢(t).

We shall now take up the question of the existence and of the uniqueness of
a one-parameter subgroup with a given direction vector a. In order to formu-
late in detail the corresponding theorem we shall introduce the auxiliary func-
tions

i i r J v
(2) ”1'(1) = v,'(fl‘l, T '71) = _—f(xly T ':I;O, t )0)
Ay’

(see §38, (3)).

THEOREM 46. Let G be a local Lie group and D a differentiable system of coordi-
nates on G.  Then every one-parameter subgroup g(t) having the direction vector a
in the coordinates D satisfies in these coordinates the following system of equations

dg(t)

(3) - vi(g(6)a

(see (2)), having for initial conditions
(4) 9'(0) = 0.

Conversely, the solution of the system (3) with the initial conditions (4) defines a
one-parameter subgroup g(t) having a for its direction vector. Because of the
existence and the uniquencss of the solution of system (3) under the initial condi-
tions (4), the group G contains one and only one one-parameter subgroup g(t) with
the direction vector a.

Proor. Let ¢(t) be a one-parameter subgroup having the direction vector a.
We shall show that the coordinates g(¢) of its element satisfy the system of
equations (3) with the initial conditions (4).

Let us evaluate the limit

gt +s) —g'®)
lim

80 S

= g"(t).

From relations (1) and (3) of §38 we have
g(t+s) =10, 0 =g @+ vg®)g'(s) + €s.
From this equation we obtain (see §38, (4))

gt —g® _ v,(g (1)) 9'(s)

S $

+ei

where ¢t — 0 as s — 0 It follows from this that the derivative ¢i'(f) exists
and that thé functions gi(¢) satisfy the system (3). Since ¢g(0) = e it follows
that g?(0) = 0 and this gives the initial conditions (4).
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Since the functions ¢i(t) satisfy the system (3), it follows that the group g(t)
with the direction vector a is unique inasmuch as the system (3) has a unique
solution under the initial conditions (3). It also follows from (3) that the func-
tions gi(t) have three continuous derivatives if the system of coordinates D
is differentiable, and are analytic if the system of coordinates D is analytic.

We shall now prove the existence of the one-parameter family g(¢) having the
direction vector a. We shall suppose that the functions gi(¢) satisfy the system
(3) with the initial conditions (4), and show that in this case the point g () hav-
ing the coordinates gi(t) describes a one-parameter subgroup having a direction
vector a. ‘

We note first of all that it follows from relations (5) of §38, that dgi(0)/dt = a’,
i.e., the curve g(¢) has the tangent vector a. Hence it remains to show only that
g(t) is a one-parameter subgroup.

Let

(5) g*(t, u) = g(t)g(w),

and denote by g*i(t, «) the coordinates of the point g*(¢, u). Let us estimate
the difference

(6) g (b w) — gt +w) = aqu
by showing that ¢ tends to zero with w.
We have

gr i, w) = fi(g(®), g(w)).

From this and equation (2) we get

(7) ¢, w = ¢'®) + vig®)a'u + e,
where ¢, — 0 with . On the other hand from (3) we have
(8) g+ =g'® + vigt)a'u + au,

where ¢ — 0 with u. Our assertion about € follows now from (7) and (8).
We shall now show that the functions g*i(s, t) satisfy the system of equations

ag*i(s, 1)
at

9) = vi(g*(s, )d’

with the initial conditions
(10) g*i(s, 0) = gi(s).

The initial conditions (10) follow directly from (5). We shall calculate
dg*i(s, t)/dt. We have

g*i(s, t + u) = fi(g(s), g(t + ).

From this, taking into account relation (6), we get
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g (s, t+ 1) = 1 (g(s), 6" (1, w)) + ent,
1

where ¢ — 0 as u — 0. From this, and because multiplication is associative,
we get

g“ (s, t+ 1) = £ (s, 1), g(0) + e

This can be written in view of (2) as follows:

(11) 0¥ (s, b+ u) = g*(s, ) + v,(g*Cs, D)a'n + e,

where € — 0 for « — 0. Equation (9) follows directly {rom this.
On the other hand the functions gi(s + ) obviously satisfy the system of
equations
agi(s + t) i i
(12) Y = v;(9(s + t))n]
with the initial conditions

(13) g'(s + 0) = gi(s),

since equations (12) coincide with equations (3).

Hence the functions g*i(s, t) and gi(s + t), considered, as functions of ¢,
satisfy the same system of equations (9), (12) with the same initial condi-
tions (10), (12). It follows from the uniqueness of the solution of this system
that g*i(s, t) = gi(s + t), and this means that g(s)g(t) = g(s + ) (see 5)), i.e.,
g(t) is a one-parameter subgroup. This completes the proof of Theorem 46.

B) Let G be a local Lie group. The differentiable system of coordinates D
established in the neighborhood U of the identity of the group G is called a
canonical system of the first kind if every system of equations gi(t) = a't,
ltl < a, in the coordinates D gives a one-parameter subgroup ¢(t), !tl < a
Here the ai are arbitrary constants and « is a positive number satisfying the
sole condition that if |¢| < « then U contains a point with coordinates a't.

"It can easily be seen that a linear transformation of the canonical coordi-
nates of the first kind (see §38, A)) leads again to canonical coordinates of the
first kind.

C) Let G be a local Lie group, D canonical coordinates of the first kind in G,
and U an open set in which these coordinates D exist. Every one-parameter
subgroup g(f), lt < a, which is differentiable in the coordinates D, and defined
in @, and which satisfies the condition g(t) € U for [tl < « can be expressed in
the coordinates D by the equations

(14) gi(t) = at, |t| =aq

where the ai are the coordinates of the direction vector a of the subgroup g(?).

We now denote by g*(f) the point with coordinates ait, and by M the set of
all positive numbers 8 < a such that for It[ < B the point g*(t) exists. If
B € M, then by B) the curve ¢g*(¢t), | t| < B, Is a one-parameter subgroup. Since
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the direction vector of the subgroup ¢*(¢) is obviously equal to a, it follows
from Theorem 46 that g(¢) = ¢*(¢) for sufficiently small values of the parameter
t. But in that case the one-parameter subgroups coincide in the whole domain
of their existence (see A)), i.e.,g(t) = g*() for M < B. We denote by v the
least upper bound of all the numbers in the set M. Since for [t[ < v we have
g*(t) = g(t), and for |t| = v we have ¢(t) € U, it follows that for (t| = v the
point whose coordinates are at exists and coincides with the point ¢g(¢). If now
v < a then there exists a positive e such that v + ¢ < « and the point ¢g*(¢)
is defined for all ¢ not exceeding v + einabsolute value,i.e.,y + ee M. Hence
if ¥ < athen v cannot be the least upper bound of all the numbers of the set M,
and consequently v = a. Therefore g(t) = g*(t) for |t| < a, i.e., relations (14)
are true.

THEOREM 47. Let D be a differentiable or analytic system of coordinates of a
local Lie group. Then there exists a canonical system of coordinates D' of the
first kind having a transformation inio the system D which is differentiable or
analytic, and such that the matriz ||pl|| which corresponds to the transformation
from coordinates D' to coordinates D (see §38, A)) is a unit matriz.

Proor. Let g(t) be a one-parameter group, differentiable in coordinates D,
and having the direction vector a (see Theorem 46). We put in evidence the
dependence of the one-parameter subgroup g(¢) on the vector a by writing

(15) 9@t) = g(a, 1).

We denote the coordinates of the point g(¢) in the system D by ¢i(t), and the
coordinates of the vector a by a’. We may then write

(16) g't) = gi(a, t) = gi(a’, - - -, a’}t).

We consider the function g(at) where a is a real number. The point g(at)
considered as a function of ¢ deseribes a one-parameter subgroup since

g(as)g(at) = g(as + at) = g(als + 1)).

The direction vector of the one-parameter subgroup g(at) can easily be seen
to be aa. In fact
dgi(at dgi(at
—q—(l-r—)'=—g-£—)a= aat for t=0.
dt d(at)
Since by Theorem 46, G contains only one one-parameter subgroup having the
direction vector aa we have

(17) g(ay at) = g(aay t)-
This can also be written:
(18) gi(a, at) = gi(aa, t),

or




§39] ONE-PARAMETER SUBGROUPS 189
(19) gial, - - -, a"; at) = gi(aal, - - -, aa’; ).

We note that the functions (16) are differentiable or analytic functions of all
their arguments. This follows directly from the fact that they are solutions
of the system of equations (3).

We now introduce the functions

(20) W@ = B, - @) = gty -0 L),

We show that they are defined for all sufficiently small values of the arguments.
In fact, by a well known theorem in the theory of differential equations, there
exist sufficiently small numbers ¢ and & such that for |a*| < e the solution
of the system (3) is defined for |t| < 8. In greater detail, the functions
gi(at, - - -, a"; t), being solutions of the system (3), are defined and are differ-
entiable or analytic for |¢| < 8. But in view of (19) this means that the func-
tions (20) are defined for | a*| < 8.
The functions (20) satisfy the condition

(21) R0, - - -, 0) = 0.
In fact
hi(0al, - - -, 0a") = gi(al, - - -, a";0-1) = 0.

We now calculate the derivatives of the functions (20) for arguments which
become zero. It is obvious that in calculating (8/da?)hi(0, - - -, 0) all the
arguments except a’ can be put equal to zero beforehand. We therefore assign
to the vector a a special value a’ by assuming that all the coordinates of the vec-
tor a are”zero with the exception of the j-th coordinate, which is equal to 1.
We now calculate the derivative (d/dt)hi(a’t). From formulas (20) and (19) we
have hi(a’t) = gi(al, t). Hence (d/dt)hi(a’t) = (d/dt)gi(a’, t). Supposing
that ¢t = 0 in the last equation we get as the derivative (d/dt)gi(a’, 0) the i-th
coordinate of the direction vector a’ of the subgroup g(a’, ). From (3) and
this special choice of the vector a’ we obtain in this way

da’

In order to introduce the coordinates D' in the group G we consider the sys-
tem of equations

(23) zi = hi(z't, - - -, ')

in the unknowns z'*. If z* = 0, the system (23) has the solution z'* = 0 (see
equation (21)). Furthermore, the Jacobian of the system (23) is equal to unity
when all the arguments equal zero (see equation (22)). Therefore the system
(23) has a unique solution, which is continuous in the neighborhood of the zero
values of the arguments, and therefore it can serve to introduce a new system
of coordinates z'* for the point z which had the coordinates z¢in the system D
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(see §38, A)). The new system of coordinates thus obtained we shall denote
by D’.

We consider in the group G a curve g*(t) given linearly in the coordinates D’
as follows:

(24) g*i(t) = at.

Let us consider the form of this curve in the coordinates D. To do this we
substitute in equation (23) the expression a*t for z’* and get

zi = hi(alt) Ty a't) = gi(aly ) ar; t)

(see (20) and (19)). This shows that the curve ¢g*(f) under consideration is a
one-parameter subgroup. Hence any curve given in D’ coordinates by equa-
tions (24) is a one-parameter subgroup, and therefore the coordinates D’ con-
stitute a canonical system of the first kind (see B)).

Since the functions (16) are differentiable or analytic the functions (20)
possess the same property, and therefore the transformation from D’ coordi-
nates to D coordinates is correspondingly differentiable or analytic.

Hence Theorem 47 is proved.

The following Theorem 48 shows that every one-parameter subgroup is dif-
ferentiable in any differentiable system of coordinates. In this way Theorem
48 is the first step towards the proof of the differentiability of certain functions
for which differentiability was not presupposed.

TrEOREM 48. If D is a system of differentiable coordinates in the local group @,
then every one-parameter subgroup g(t) of the group G is differentiable in the co-
ordinates D.

Proor. Since by Theorem 47 it is possible by means of a differentiable trans-
formation to go from the coordinates D to a set of canonical coordinates of the
first kind, we can suppose without loss of generality that the coordinates D
themselves are canonical of the first kind.

We denote by V that neighborhood of the identity e of the group G in which
the coordinates D are defined. We now denote by U, the set of elements of V
whose coordinates satisfy the relations

(25) | 21| < e.

Obviously there exists a positive number e such that for @ = € there corre-
sponds to every system z* satisfying equation (25) a point of V: Let U, = U.
There also exists a positive number § such that

(26) UicU,

and such that the product of any two elements of U; is defined (see §23, E)).
Weset Us = U'.
Let ¢’ be a sufficiently small positive number such that
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27 gitye U’ for |t| <t

We denote the coordinates of the point ¢(¢) in the system D by gi(t). Further-
more, let n be a positive integer. We set

K n i tl
28 ﬂ=— —
(28) a t,g(n>

and denote the vector whose coordinates are @', by a,, and the one-parameter
subgroup having the direction vector a, (see Theorem 46) by ¢.(f), while the
coordinates of the point g,(f) we denote by gi(t). Since the coordinates D are
canonical it follows that

(29) gu(t) = anl.

It should be remembered that equations (29) hold only for sufficiently small
values of the parameter ¢, in fact only as long as the curve g,(¢) remains in the
region V (see C)) in which the coordinates D were defined. The curve g,(t)
may leave the region V and return to it again and the point g,(f) will again have
coordinates, but they will not be defined by equations (29).

We now take up the question: for what values of the parameter ¢ do
elaqluations (29) hold? We shall show that they hold for all values of ¢ for which

=t

Since for |t| =t, gt) e U’, it follows that g(t’/n) e U’, and therefore
lgit'/n)| < 5. It follows from this that |ait| < & for |t| < t'/n (see (28)).
Hence for |¢| < t//n we have

(30) _ gn() e U’

and equations (29) have a meaning for these values of the parameter. We get
from equations (28) and (29) that ¢4(t'/n) = gi(t'/n) and hence

31) gn(t'/n) = g(t'/n).

Now let m be a positive integer which does not exceed n. Raising equation
(31) to the m-th power we get

m m
(32) m(; t’) = g(; t’>,

where the left side exists because of the existence of the right side. We now
consider a positive number ¢ which does not exceed t. This number can be
written in the form ¢ = (m/n)t’ + s, where m < nand 0 <s < t'/n. It fol-
lows from equation (1) that

m m
go(t) = gn<— t’>7n(s) = g(— t’>9n(8)~
n n

By (27), g((m/n)t') e U’, and by (30) we have g.(s) € U’, and therefore
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g.(t) e U'U'cU. Hence for |t| = t’ we have ¢.(f) ¢ U, and equations (29)
have a meaning for all ¢ such that |¢| < ¢".

Supposing that m = n in (32) we get g.(t') = g(t’). Writing this equation
in coordinate form, which is possible by what we have just proved, we get
at’ = gi(t"). Hence a}, does not depend on the number n and therefore the
group g.(¢) does not depend on n, and we can denoteit by g*(f). Equation (32)
can then be written

m m
G- )
n n

where m and n, m =< n, are arbitrary positive integers. Since the elements of
the groups g*(¢) and g(f) are continuous functions of ¢, it follows from (33) that
g*(t) = g(t), and this means that the group ¢(¢) coincides with the differentiable
group g*(¢). Hence Theorem 48 is proved.

Theorem 48 can be thought of as the first invariance theorem. It shows that
every one-parameter subgroup has a direction vector in any differentiable co-
ordinates.

40. Invariance Theorem

We shall show here that if a Lie group has two differentiable systems of co-
ordinates, then these system are connected by a differentiable transformation.
The significance of this proposition has already been explained in §38. It
forms the basis for a coordinate study of Lie groups. In fact, when we in-
vestigate the law of multiplication of a group from the point of view of co-
ordinates, we actually study the properties of the system of equations (3) of
§38. In order to study the properties of the group itself, we must look for
those properties of this system which remain invariant under a transformation
of coordinates. Theorem 49 below shows that we need only consider differ-
entiable transformations of coordinates.

To prove Theorem 49 we introduce canonical coordinates of the second kind
(see A)). .

We note here that the dimension r of the Lie group G was defined by means
of coordinates (see Definition 38), and therefore if we do not wish to refer to
the topological theorem of the invariance of the number of dimensions, we can-
not as yet assert that the dimension is an invariant of the group G. Therefore
we shall speak here of the dimension of the group G with respect to a given
system of coordinates. We also recall that the dimension of the group G in
the coordinates D is equal to the dimension of the vector space R associated
with the group @ by means of the coordinates D (see §38, B)).

We now pass to the construction of canonical coordinates of the second kind.

A) Let G be a local Lie group and D a system of differentiable or analytic
coordinates defined in G; and let the dimension of the group G be equal to r
in these coordinates. We shall say that a set of one-parameter subgroups of
the group @ are linearly independent in the coordinates D if their direction vee-
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tors are linearly independent in the system D. We select in G a system of r
one parameter subgroups,

ey a®), -, 0.0, |t £ a
which are linearly independent in the coordinates D. We consider the points
2) git, - -, ) = qt) - gt), [ <B = q

which exist for sufficiently small values of 8.

If B is chosen sufficiently small, then the points of the type. (2) form a neigh-
borhood U of the identity in the group G such that every point of U can be
uniquely represented in the form (2), i.e., it defines the numbers t*. Therefore
if we take the numbers t* for the coordinates of the point g(t%, - - -, #") e U, we
shall introduce into G a new system of coordinates D’, which is called a canoni-
cal system of the second kind.

We can then show that there exists a differentiable or an analytie transfor-
mation of D into D’ according as the original system D was differentiable or
analytic, respectively.

In order to prove A) we denote by gi(t) the coordinates of the point gi(t) in
the system D, by ¢i(t}, - - -, t") the coordinates of the point g(¢!, - - -, ¢") in
the system D, and by a} the coordinates of the direction vector a; of the group
gi(t) in the system D.

The transition from the system D’ to the system D is effected by

(3) zt = gi(tly ] tr);

where the z¢ are the coordinates of the point z in the system D while the t* are
the coordinates of the same point in the system D’. To prove A) we show that
the system (3) satisfies the conditions of Definition A) of §38.

The system (3) is differentiable or analytic. This follows from Theorem 46.

Since gx(0) = e, it follows that ¢(0, - - -, 0) = ¢, and hence g(0, - - -, 0) = 0.

We now calculate the derivative (8/dt*)gi(t, - - - , t") when the arguments all
become zero. In this calculation we can suppose that all the arguments ex-
cept one, t*, are already zero, and then find the derivative with respect to t*.
We therefore obtain

d i . da i i
atkg(t, e t) = 6tgk(t) =a for ¢t =1¢=0.
Hence the Jacobian of the system (3) is equal to the determinant of the matrix
lat]|, which is different from zero because of the linear independence of the
selected system of subgroups (1).
Hence the system of equations (3) has a solution in a small neighborhood of
zero, and therefore assertion A) is proved.
Before taking up Theorem 49 we make one more preliminary remark.
B) Let G be alocal Lie group, D and D’ two differentiable systems of coordi-
nates defined in @, and R and R’ the vector spaces associated with G by means
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of the coordinate systems D and D’ (see §38 B)). Let g(t) be a one-parameter
subgroup of @G, and a and a’ its direction vectors in the coordinates D and D’
(see-Theorem 48), a ¢ R, a’ ¢ R’. The one-to-one correspondence a & a’ thus
obtained between the spaces R and R’ is bicontinuous. Therefore a topology
can be introduced in a natural way into the set of all one-parameter subgroups
of the group G independently of any coordinate system. The proximity of
two subgroups is defined as the proximity of their direction vectors in any dif-
ferentiable system of coordinates.

It follows from Theorem 47 that we can assume without loss of generality
that D and D’ are canonical systems of the first kind. To prove the continuity
of the mapping @ — a’ in the neighborhood of some definite vector a, we select
a sufficiently small number 7 such that a point with coordinates a‘r in the sys-
tem D and a point with coordinates a’ir in the system D’ are defined and both
coincide with the point g(r) (see §39, B) and C)). To a small change in the
vector a there obviously corresponds a small change in the point g(7), and to a
small change in g(r) correspond small changes in the coordinates a’ir, i.e., a
small change in the vector a’. Hence the mapping a — a’is continuous. The
continuity of the mapping ¢’ — a is proved in the same way.

TreOREM 49. Let D and D' be two systems of coordinates in a local Lie group G-
We suppose that they are both either differentiable or analytic, We denote by r
and s the dimensions of G in the coordinates D and D', respectively. Thenr = s,
and there exists a differentiable or analytic transformation of coordinates D to
coordinates D' (see §38, A)), t.e., the transformation of the coordinate system D
to D' is given by

4) gt = ity -, 2,

where the functions on the right hand side are differentiable or analytic, and the
Jacobian of the system (4) does not become zero when the arguments assume zero
values.

ProoF. Suppose that r < s. Weselect, asin-A), a system of r linearly inde-
pendent one-parameter subgroups in the coordinates D,

(5) ), - -+ g-(®).

These subgroups will have direction vectors in the coordinates D’ (see Theorem
48), but it is not at all obvious that the one-parameter subgroups (5) will be
linearly independent in the coordinates D’. Since s = r, it is possible by a
slight change in these subgroups to make them linearly independent in D’.
This change, being arbitrarily small, will not affect the linear independence of
the subgroups (5) in the coordinates D: Hence the subgroups (5) are linearly
independent in both sets of coordinates D and D’. In case s > r we adjoin
to the system (5) the one-parameter groups g,+(¢), - - -, g.(f) in such a way that
the new system

(5I) gl(t)) I} gr(t); gf+1(t): T g!(t)
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is linearly independent in the coordinates D’.

The systems (5) and (5’) of one-parameter subgroups can be taken as
bases for the construction for canonical coordinate systems D* and D'* of the
second kind. Let

(6) t/lr Ty t’r: t’r+ly Ty t's

be a system of arbitrarily small numbers. If these numbers are sufficiently
small then there exists a point  whose coordinates in the system D’* are num-
bers of the system (6). Also, if the numbers of the system (6) are sufficiently
small, then the coordnates of the points « are defined in the system D*; we de-
note them by

t, -,
We now have
i) - g1 (0) - - - gs(0) = @i (@) - - g (BTG (BT - gu(t7).

If we consider this equation from the point of view of the coordinate sys-
tem D™, we conclude that the point z has in this system the coordinates
¢,---, 1,0, ---, 0, and at the same time the coordinates t'?, - - -, t’,
¢/r+1, . .-, t’s. This is possible only when ¢'*+! = ... =’ = 0. This last
equation contradicts the assumption that the numbers of thé system (6)
are arbitrary, although sufficiently small. Hence the assumption that s > r
has led to a contradiction. Therefore s = r, and the systems (5) and (5’) of
one-parameter subgroups coincide, which means that the coordinate systems
D* and D’* also coincide.

By A) there exists a differentiable or analytic transformation from the system
D to the system D*. In the same way there exist a differentiable or analytic
transformation from the system D’ to the system D’*. Since, as we have just
shown, D* = D’* it follows that there exists a differentiable or analytic trans-
formation from the system D to the system D’.

This proves Theorem 49.

ExampLE 56. Let G be a commutative Lie group. We introduce into G
canonical coordinates of the second kind. We denote the elements having the

coordinates t¢ by g(¢!, - - -, ¢"). It is not hard to see that the product of two
elements can be expressed by the formula
g(sl7 T 18r)g(tly Ty tr) = g(sl + tl! ) s + tr)-

This shows that the commutative group @ is 18cally isomorphic with a vector
group (see Definition 30).

41. Subgroup and Factor Group

We shall show in this section that every subgroup H of the Lie group G is
also a Lie group, and that H is a differentiable manifold in the manifold G.
We shall also show that every factor group G* of the Lie group @ is also a Lie
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group, and that a natural homomorphic mapping of the group @ on the group
G* can be given by means of differentiable functions. It will be proved here
that in considering subgroups and factor groups we can limit ourselves to dif-
ferentiable functions.

TrEOREM 50. A subgroup H (see §23, 1)) of a local Lie group @ is also a local
Lie group, and H ts a differentiable or analytic Lie group according as the group G
s differentiable or analytic. We denote by D and E arbitrary systems of coordi-
nates in the groups G and H. We shall suppose that D and E are either both

differentiable or both analytic. Lety', - - -, y° be the coordinates of the pointy ¢ H
in the system E, and z', - - - , x" the coordinates of the same point in the system D.
Then we have

(1) xi=¢i(?/1,“'»?/s>7 i=1,"‘,T,

where the funcitions in the right side of equation (1) are differentiable or analytic.
Furthermore let
i 0

@) i =—(0, - - -,0).
ay’ ,

Then the rank of the matriz ||q}|| is equal to s, i.e., in particular s < r.

In short, Theorem 50 can be formulated by saying that a subgroup of a local
Lie group is also a local Lie group, and is a differentiable or analytic mani-
fold of the correspondingly differentiable or analytic manifold G.

Proor. Let D’ be a system of canonical coordinates of the first kind in @
(see §39, B)), and V the open set in which they exist. We denote the dimen-
sion of the group G by r, and the coordinates of the point z ¢ V by z¢in the
system D’. We denote by U, the set of all the points z for which the following
inequality holds:

izt 4 - - -+ xzr < o

where a is a positive number. There exists a sufficiently small number 8 such
that any set of numbers y which satisfy the inequality y'y* + - - - + y'y = *
defines a point y € V with coordinates yi. There also exists a sufficiently small
number v < B8 such that the product of any r + 1 elements of U, is defined,
and if these elements belong to H then their product also belongs to H, (see
§23, E)). Finally there exists a sufficiently small number § < v such that the
set Us n H is closed in ;. We shall make use of all these conditions of small-
ness in what follows. In order not to introduce unnecessary complications
into the calculations we shall suppose that § is equal to unity. This is permis-
sible since we can always change the scale of the construction by an appropriate
transformation of coordinates.

Let b € Uy be an element of H whose coordinates in the system D’ we denote
by b. Let p = /(' + - - - +bd"). We shall show that if m is an integer
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satisfying the inequality mp < 1, then the element (b)™ has the coordinates mb?
and belongs to H,

3) b)"eH for mp < 1.

We consider the one-parameter subgroup ¢(¢), |t( < 1/p, the coordinates of
whose direction vector are the numbers b?. We then have gi(t) = b, [ t[ <1/p
(see §39, B)). Henceb = g(1). Let p be an integer not exceeding m. Rais-
ing the relation b = ¢(1) to the p-th power, we get (b)? = g(p), i.e., the coordi-
nates of the elements (b)? are the numbers pb®. This element exists since
p < 1/p. We shall show that all the elements b, (b)%, - - - , (b)™ belong to H.
The proof is by induction. Let p + 1 < m so that (b)? € U,, and suppose that
(b)» e H. Then the product b(b)? is defined and belongs to H since both factors
belong to U; and to H. Therefore (b)?*! ¢ H.

Theorem 50 is obviously true in case the identity e of the group G is an iso-
lated element of the group H. For then s = 0 and relation (1) becomes z* = 0.

We now make the following inductive assumption. Suppose that for some
non-negative k there exists a system of one-parameter subgroups

(4) g0, -, gel®)
which has the following properties: 1) the element g¢;(f) belongs to H for
|t[ <1,j =1, --,k;2) The direction vectors a;, - - -, a, of the subgroups of

the system (4) are orthogonal unit vectors in the system of coordinates D’;
if we denote the coordinates of the vector a; by a;, then

(5) : Z aplg = Opq.
i=1
Obviously k£ < r.
Our inductive assumption is obviously true for k& = 0. Suppose that it is
true for a given k. We denote by H; the set of all elements of the form

(6) glt', - -, ) = @) - g, | ] =1, =1,k

If kb = 0 welet H, = {e}.

The set H, is entirely contained in H inasmuch as every element g;(t") be-
longs to H and to U, and k < r by hypothesis. We shall now show that there
exist two mutually exclusive cases: a) the set H, contains some neighborhood
of the identity of the group H, b) the system of subgroups (4) can be enlarged
by adjoining one more subgroup in such a way that the inductive assumptions
will hold for the enlarged system.

We denote by L; the set of all elements of U; for which the coordinates
z!, - - -, z" satisfy the linear relations

(7 > ai =0, i=1, -,k

=1
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If & = 0 we suppose that L, = U;,. We denote by

(8) g(tl) ) tk) I)
the element g(¢!, - - - , t¥)z~!, where z € U;. The set of all elements of the form
(8) for a fixed r and for It,-[ =1,5=1, -,k is theset Hyz™ L.

We consider the intersection of the sets L, and Hyzr—! with respect to the
element z, for z in the neighborhood of e.

To do this we denote by ¢i(¢!, - - -, t*; z) the coordinates of the element (8).
In order to find the intersection of the sets L; and Hz~! it is sufficient to solve
with respect to the parameters ¢!, - - -, ¢t* the system of equations

L1 k )
(9) Zajg(t,"',t;.’l)) 0, ]:1,...’10.

i=1
For z = e this system has the obvious solution ¢’ = 0,7 = 1, - - - | k. Inorder
to clarify the question of the solution of the system (9) we calculate the
Jacobian of this system fort» = 0,p =1, - -, k, £ = e. Under these condi-
tions we have

a % d s L.
(10) at:.g‘(tr"'rt;z)'__'agi(t)=ai for t=0.
Hencefort» =0,p =1, - - -,k z = e we have
9 L i k o6
'-—.Zahg(t"",t;x)=Zahai=6hi
atl s i=1

(see (10) and (5)). Hence for = in the neighborhood of e there exists only one
solution of the system (9) which is in the neighborhood of the original solution,
and which depends continuously on z. This means that if z is sufficiently
close to e then there exists one and only one point of intersection of the sets Ly
and H,z~! which is close to e, and that this point ¢(z) depends continuously
on z and ¢(e) = e.

Let us suppose that assumption a) is not fulfilled. Then there exists a se-
quence

(11) bl»b%"';bm"'

of elements of the group H which converges to the identity e and is such that
its elements do not belong to the set Hy. Let ¢, = ¢(b,). Since the function
¢(z) is continuous and since ¢(e) = e, the sequence

(12) Cly C2y * * * 5 Cpy * * °

converges to e. All the points of this sequence belong to Ly since ¢(r) € L;.
Furthermore, they all belongto H. Infactc, € Hyb,' € H sinceb;' e U,. We
note another important fact, namely, that no element of the sequence (12)
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equals e. For if we suppose that ¢, = ¢ we get e € Hyb, ', but then b, & H,,
which contradicts our assumption.

We shall use system (12) together with the properties just established,
namely:
(13) Cn € Ly, c. e H, ca #e, limc, =e,

n—w

as the foundation of the following construction. We denote the coordinates
of the point ¢, of the sequence (12) by

T

(14) Cn

and suppose further that

(15) pn =V (Cntn + - - + Cuci).
The point with coordinates

1 T "
(16) — Cn = Qn

Pn
we denote by a;,; It is not hard to show that the point a, lies on the intersec-
tion of the set L; and the boundary of the neighborhood U;. Therefore there
exists a point a which is a limit point of the sequence

(17) all,a;)"')a;y"'y

and a also lies on the intersection of the set Ly and the boundary of the neigh-
borhood U;. We denote by a;,, the coordinates of the point a in the system
D’. These coordinates satisfy the system of equations (7) since @ € L. More-
over

1 1 r r
1@y + - 0+ Gar = 1,

since a belongs to the boundary of the neighborhood Uj;.
We consider the one-parameter subgroup g¢:;1(t) defined by the relations
g (t) = diyit, M < 1. The direction vector of this subgroup has the co-
ordinates aj,;, and therefore if we adjoin the subgroup gi41(¢) to the system (4)
the inductive assumption 2) will still hold for the enlarged system. It can also
readily be seen that the subgroup gx+1(t) satisfies the inductive assumption 1).
"In fact the point ¢, € H has the coordinates p,a, (see (16)). From this it fol-
lows that (c,)™ € H and has coordinates mpna,’ if mp, < 1 (see (3)). Now let ¢
be a real number satisfying the inequalities 0 < ¢ < 1. Since the sequence
(17) has the limit point a, and since lim,..p, = 0 (see (13)), we can find in-
tegers m and n such that mp, < 1 and |ta§c+1 - mp,.a;f| < ¢ where e is a pre-
assigned positive number. Hence the point g:41(¢) is a limit point for points
of the form (c,)e U; n H, and since U, n H is closed in T, it follows that

Gr+1(t) € H.
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Thus we have shown that either the case a) or the case b) holds.
The abdve inductive construction enables us, beginning with k£ = 0, to en-
large.th® system (4) to a system

(18) git), - - -, 9:(t) where k=s=r,

and condition a) is satisfied for the whole system (18). The direction vectors
ay, - - -, as of the system (18) are linearly independent because of the orthogo-
nality conditions (5). If s < r we can enlarge the system (18) to a complete
linearly independent system

(19) gl(t)y I gs(t)) g8+1(t)1 Ty g,—(t)

By remark A) of §40 the system (19) can be taken as the basis of canonical
coordinates D* of the second kind in G.

Condition a) is satisfied for the system (18), and hence there exists a neigh-
borhood W of the identity in the group H such that W e H,. Since the set
of all open sets of the form U, forms a complete system of neighborhoods of
the identity in G, there exists a sufficiently small positive number «’ such that
the intersection H n U, is entirely contained in W, and hence in H,. More-
over, we can suppose that o’ is so small that the coordinates D* are defined in
the neighborhood U,.. If now y is a point of H belonging to U, then its
coordinates in the system D* are the numbers ¢!, - - -, ¢, 0,---,0. We can
take the numbers ¢, - - - | #* as coordinates of the point y in the group H. In
this way we obtain a coordinate system E* in the group H. It can readily be
seen that the coordinates E* thus obtained in the group H are differentiakle or
analytic according as the coordinates D* are differentiable or analytic. Re-
lation (1) holds obviously for the systems D* and E*, and has the particularly
simple form

(20) = yhat=gh @ =yet= 0,0 =0

If D is a system of differentiable coordinates in G, then by Theorem 49 there
exists a differentiable transformation from it to the system D*. If, on the
other hand, the system D is analytic, then by remark A) of §40 the transforma-
tion from D to D* will be analytic. For the same reason, the transformation
from a system E of H to E* will be correspondingly differentiable or analytic.
Combining in the proper way the transformations from one system of coordi-
nates to another we can obtain formula (1), which also satisfies the conditions
of Theorem 50, from formula (20).

This completes the proof of Theorem 50.

THEOREM 51. Let G be a local Lie group of r-dimensions, and H a factor group
of the group G (see §23, J)). Then H is also a local Lie group, differentiable or
analytic according as G is differentiable or analytic. We denote by x the natural
local homomorphic mapping of the group G on the group H (see §23, K)), and by D
and E coordinate systems in the groups G and H which are either both differentiable
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or both analytic. Then the homomorphism x can be expressed b @klm"
coordinates D and E as follows: ’Uf—L

(21) ‘7/1 = X]('Tl) Ty Ir)) 7

where the functions on the right side of the equations are differentiable or analytic.
Furthermore let

(22) ri=

x (0, , 0).

Py { )

Then the rank of the matriz ||r)]| is equal to s, i.e., in particular s < r, and the
kernel of the homomorphism x has (r — s) dimensions.

Proor. We denote by N the kernel of the homomorphism x. By Theorem
50, N is a local Lie group. Suppose the dimension of the group N isr — s, and
denote by

(23) g8+1(t)y T gr(t)

asystem of r — slinearly independent one-parameter subgroups of the group N
(see §40, A)). By Theorem 50, the subgroups (23) are also linearly independ-
ent in the group G. Hence the system (23) can be enlarged to form a system

(24) gl(t)y o y.(]x(t), ﬂs"(t)y e )gr(t)x

in such a way that the new system is composed of linearly independent sub-
groups in G. We shall use the system (24) as the basis for the construction of a
canonical system D* of the second kind in G (see §40, A)).

We denote by K the set of all those elements of G for which the last r — s
coordinates become zero in the system D*. It can be seen easily that every
element z € G which is sufficiently close to the identity decomposes uniquely
into a product

(25) T = u,

where v ¢ K, ve N. Furthermore, two elements z = wv and z’ = «'v’ which
are sufficiently close to the identity belong to the same coset of N if and only
ifu =u'. Infactif u = u',wehaverlz’ = v~ e N. Conversely, if z and
=’ belong to the same coset, then z’ = rw, where w € N, and hence ¢’ = uow,
where u ¢ K, vw € N, i.e., because of the uniqueness of the decomposition (25)
~wehaveu’ = u. Thisremark shows that all the elements which belong to one
and the same coset X of the subgroup N have their first s coordinates in com- -
mon.  We shall take these first s coordinates for the coordinates of the coset X.
We denote the system of coordinates thus obtained in H by E*.

Let X and X’ be two cosets, and let ¢!, - - -, t* and t'}, - - -, t'* be their co-
ordinates in the system E*. We now denote by 2 the elements with the co-
oxdinates

(26) tly"';tx70"")0



202 CONCEPT OF LIE GROUP [cH. vi
in the system D*, and by 2’ the element with the coordinates

(27) £ 0, -, 0

in the same system. Then z¢ X, 2’ ¢ X’. We denote by

(28) g g

the first s coordinates of the product zz’ = z'’ in the system D*. Then the
coordinates of the coset X’/ = XX’ in the system E* will be equal to (28).
Since the numbers (28) are obtained from the numbers (26) and (27) by means
of those operations which form a product in the system D*, it follows that the
coordinates E* are differentiable or analytic according as the coordinates D*
are differentiable or analytic. Hence H is a Lie group.

In the coordinates D* and E¥* relations (21) become

(29) yt=azxl -,y =a

It is clear that this relation satisfies the conditions of Theorem 51. In going
from the coordinates D* and E* to arbitrary coordinates D and E we can make
sure that Theorem 51 is also true for them by using Theorem 49 and remark A)
of §40, just as was done in the proof of Theorem 50. This completes the proof
of Theorem 51.

Theorems 49, 50, and 51 show that from now on in studying Lie groups we
can confine our attention to differentiable functions only.

We give here one rather important corollary to Theorem 50.

A) Let G be the set of all complex squiare matrices of order » with non-zero
determinants. From remark A) of §27, G is a topological group. It can be
shown that G is also an analytic Lie group. Hence by Theorem 50 every sub-
group of the group @ is also an analytic Lie group.

In order to introduce coordinates into the group G, the matrix z € G can be
written in the form

(30) =+ ||7h + b ||

where ¢ is the unit matrix, i = 4/—1, and z} and z} are real numbers. We
shall take these numbers as coordinates of the matrix x. Hence the dimension
of Gis 2n% If z, y, and 2 are three matrices, and if z = zy, then in coordinate
form this relation may be written

(31) z = o~y + ykj + zayr — xfyk/a, o = @ + y::j + zoye + :cfy;:
Since these relations are analytic, the group G is an analytic Lie group.

42. Supplementary Remarks about Canonical Coordinates

If we make use of canonical coordinates of the first kind (see §39, B)), then
the relations appearing in Theorems 49, 50, and 51 are linear and can be ob-
tained rather simply. To prove this we give a preliminary proposition.
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A) Let us consider a differentiable function

(1) f(zly IR zk)

defined in the neighborhood of arguments which approach zero and such that
2 f@o,---,0) =0.

Let us further suppose that the function (1) is homogeneous, that is, if
28 =cit,1=1,---, k where ¢!, - - -, c* are arbitrary constants and ¢ is a
parameter, then the function

(3) flett, - - -, cft) = ¢t

is a linear function of the parameter t. Under these conditions the function (1)
is linear, i.e.,

@) =t
where p1, - - -, Pk are constants.
Let cl, - - -, c* be a system of arbitrary but sufficiently small numbers.

Then relation (3) has a meaning for ¢ = 1, and we get
(4) c = f(cly T )Ck)'
Differentiating relation (3) with respect to ¢ and letting ¢ = 0, we get

ko9
(5) c=p, —f(0, -, 0)

i-1 02°
Since in relations (4) and (5) the numbers ¢!, - - -, ¢* are arbitrary and suffi-

ciently small we see that (1) is a linear function.

B) If we now assume the systems of coordinates considered in Theorems 49,
50, 51 to be canonical of the first kind, then relation (4) of §40, and (1) and (21)
of §41 assume a linear form and become

(6) 2" = pia’
(7 2" = qn
(8) y = rz.

The proof of proposition B) follows directly from remark A). On the right
sides of relation (4) of §40, and relations (1) and (21) of §41, we put the coordi-
nates of a point which describes a one-parameter subgroup. Since all the co-
ordinates under consideration are canonical of the first kind, it follows that all
the arguments and functions become linear functions of the parameter ¢ and
remark A) can be applied in this case.



CHAPTER VII
THE STRUCTURE OF COMPACT TOPOLOGICAL GROUPS

The object of the classical theory of continuous groups is the study of Lie
groups (see Definition 38). These groups have been studied in considerable
detail, and it is therefore advisable to establish the connection between general
topological groups and Lie groups. It turns out that it is possible by means of
a certain limiting process to construct any compact topological group satisfying
the second axiom of countability from compact Lie groups (see Theorem 54).
Therefore, questions about topological groups of a rather general character can
be reduced to corresponding questions co.cerning Lie groups. In particular,
it is possible to single out compact Lie groups from general topological groups
by imposing certain conditions of a rather general character (see Theorems 56
and 57). All these results depend entirely on Theorem 28 of the fourth chap-
ter. Since no analogue of Theorem 28 has as yet been found for locally com-
pact groups, the methods which are applicable to compact groups cannot be
generalized to locally compact groups, and many of the fundamental problems
are still open for these groups.

The problem of distinguishing Lie groups from topological groups of a more
general type was formulated by Hilbert. Modernizing a little the statement
of this problem without, however, altering its meaning, we can formulate the
problem as follows:

We shall call a topological group G a parameter group if there exists a neigh-
borhood U of the identity of the group G which is homeomorphic with n-dimen-
sional Euclidean space. This means that coordinates or parameters can be
introduced into the neighborhood U. The problem consists in proving that
every parameter group is a Lie group.

von Neumann (see [21]) solved this problem in the affirmative for com-
pact groups by use of Theorem 28. For commutative groups the positive
answer to this question was given by me (see Theorem 44).

On the basis of Theorem 28 results have been given after von Neumann’s
which expose the structure of compact topological groups and contain in par-
ticular the solution of Hilbert’s problem (see [26], [14], and [16]). We devote
the present chapter to the exposition of these results.

43. Approximation to Compact Groups by Lie Groups

We establish here on the basis of Theorem 28 certain connections between
compact topological groups satisfying the second axiom of countability, and
Lie groups. In particular we prove Theorem 54 which enables us to construct
any compact group from Lie groups.

TuEOREM 52. Let Q, be the topological group of all unitary matrices
of order n- (see §27, J)). We denote by Q the direct product of all the groups

204
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Q, D, -, Q, - (see Definition 29’). Q 7s a compact topological group
satisfying the second azxiom of countability. The theorem states that Q is a uni-
versal group of all compact topological groups satisfying the second axiom of count-
ability, i.e., every such group G is isomorphic with some subgroup of the group Q.

Proor. Let g, ¢®, - .- ¢g® ... be the complete system of unitary repre-
sentations of the group @G, given in Theorem 28. We denote by p, the degree
of the representation g‘®, and select an increasing sequence of natural numbers
Ny, Mg, - -+, Mgy - - - such that pr < ny, bk = 1,2, - - -. It follows from the last
inequality that the totality of all unitary matrices of order p; is a subgroup
of ,,, and therefore the homomorphism ¢‘® can be considered as a homomor-
phism of the group @ in the group .. From Definition 29’ every element

of @ represents a sequence r = {xl, Ty * oty Xpy ot } such that z, ¢ Q,,
n=1 2 ---. We now associate with every element y ¢ ¢ an element
fly) = z ¢ Qdefined by the following relations: ., = ¢®(y), k = 1,2, - - - ;ifn

is a natural number not belonging to the sequence ny, then z, is the identity of
the group Q,. It canreadily be seen that the mapping fthus obtained is a homo-
morphic mapping of the group G in the group 2. We shall show that f is an
isomorphic mapping of the group G on some subgroup G’ of the group Q.

Let 5 e be an element of the group G. Then by Theorem 28 there exists
a number k such that ¢g®(y) # e,, and therefore from the above construction
of the mapping f, f(y) is not the identity of the group €. In this way fisa
one-to-one mapping. Since it is also continuous, it follows that f(G) = G'is
compact, and is therefore a closed subset of the space £ (see Theorem 8, and
§13, B)). _Since G’ is moreover an abstract group, Theorem 52 is proved.

We give one more direct corollary of Theorem 28.

TuroreM 53. Let G be a compact topological group satisfying the second axiom
of countability, and U a neighborhood of the identity in G. Then there exists a
normal subgroup N c U of the group G such that the factor group G/N is a Lie
group. We can even assert a little more, namely that there exists in G a decreasing
sequence N1, Na, - - -, Nn, - - - of normal subgroups such that their intersection
contains only the identity and such that the factor group G/N, is a Lie group for
every n (see Definition 38).

Proor. We denote by ®, the normal subgroup of the group 2 (see Theorem
52), defined as the product of the groups @, - - -, 2, and by ¥, the normal sub-
group of the group @ defined as the product of the groups Qa41, @nye, - - - . It
can readily be seen that € is the direct product of the groups ¢, and ¥,, and
that the group &, (see §20, G)) is isomorphic with the factor group @/¥,. The,
group &, is a Lie group, being the direct product of a finite number of Lie
groups (see §38, C) and §41, A)). Hence Q/¥, is a Lie group. We note that
the intersection of all the groups ¥,, n = 1,2, - - -, contains only the identity.

From Theorem 52 we can suppose that G is a subgroup of the group Q. If
we denote by N, the intersection G n ¥,, then N, is a normal subgroup of the
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group G (see §20, C)). Under the homomorphism h, of the group € on the
group /¥, the subgroup G goes into the subgroup G, of the group @/¥,, and
since the group Q/¥, is a Lie group, its subgroup G, is also a Lie group (see
Theorem 50). But G, is obviously isomorphic with G/N,. Since, moreover,
the intersection of all the groups ¥, contains only the identity, the intersection
of all the groups N,, n =1, 2, - - -, also contains only the identity.

Hence the groups N, under consideration satisfy the conditions of the theo-
rem. This proves Theorem 53.

DerinNiTION 39. Let

(1) G, Gy -, Gy -
be a sequence of compact topological groups satisfying the second axiom of
countability, and let g, be a homomorphism of the group G, .1 on the group G,,

n=12,---. We construct a compaect topological group G from the se-
quence (1) and from

(2) gy g2y, -y Gny c

This group G will satisfy the second axiom of countability, and we shall call
it the lumit of the sequence (1) under the homomorphisms (2).
We shall call a sequence

(3) x:{xl,xz,...’xn’...}

Sfundamental if it is such that

(4) Tne Gy, n=12 -,
and
(5) T, = gn(xn+1), n = 1, 2, et

We denote the set of all fundamental sequences by G, and introduce into G a
topology and a law of multiplication.

The product zy of two fundamental sequences z = {xl, Ty +t vy Tyt o }
and y = {yl, Yo, *ty Yny t } is defined by

Iy = {xlyly TelYe, * * 5y TnlYny © * - }

We introduce a topology into G by means of neighborhoods. A neighborhood
U in @G is defined by means of an arbitrary finite system of neighborhoods
Uy, - - -, U, where Uy is a neighborhood of the group Gi,« = 1, - - - ,n. Then
U is composed of all the sequences (3) for which z; e U, = 1, - - - | n.

We first show that this really defines a compact topological group G satisfy-
ing the second axiom of countability.

We denote by @ the direct product of all the groups in the sequence (1).
Then every fundamental sequence is an element of the group Q. Hence G is
a subset of @, G c Q. It can readily be seen that the law of multiplication and
topology defined in G coincides with the law of multiplication and topology
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induced in G from Q. We shall show that G is a subgroup of Q. In fact the
element

(6) x:{zl,x,‘,’...’xn’...}

of the group @ belongs to G if and only if conditions (5) are satisfied for the se-
quence (6). It can be seen directly that every single equation z, = ga(zn41)
singles out a subgroup P,, while the totality of all conditions (5) corresponds
to the intersection of all subgroups P,, n = 1, 2, - - - | i.e., it also singles out a
subgroup (see §20, A)). Hence G is a compact topological group satisfying
the second axiom of countability (see Definition 29’ and §17, B)). It can
readily be seen that the limit of the sequence (1) remains unchanged if we dis-
card a finite number of its initial members.

A) Let G be the limit of the sequence of groups (1) with the homomorphisms
(2). We associate with every element = £ G (see (3)) an element h,(z) = z, £ G..
Then h, is the homomorphism of the group G on the group @, where
ha(z) = gn(ha1(z)). We denote the kernel of the homomorphism A, by N,.
Then N,y €N, and the intersection of all the groups Ny, N, - - -, N,
contains only the identity.

Proposition A) can be verified directly.

The construction introduced in Definition 39 can be justified by the following
theorem.

TueoreM 54. Every compact topological group G’ which satisfies the second
aziom of countability is isomorphic with the limit of some sequence of compact Lie
groups (see Definitions 38 and 39).

Proor. Let Ny, Ng, - - -, N,, - - - be adecreasing sequence of normal sub-
groups of the group G', as was considered in Theorem 53. Let G, = G’/N,,
and let h, be the natural homomorphic mapping of the group G’ on the group
G,. Since N, cN,, there exists one and only one homomorphic mapping g.
of the group G.,1 on the group G, which is such that

(7) hn(x,) = gn<hn+1(xl))'

The sequence of groups Gy, G, - - -, G, - - - together with the homomorphisms
g1, g2 * -+, gn, - - - has for its limit a group G. We shall show that G’ is iso-
morphic with ¢.  To do this we associate with every element z’ € G’ the ele-
ment

(8) f@') = {hl(x’),hz(x’), cee ha(d), - } = {xl, Zoy © -ty Tyttt } =z

and show that the mapping f is an isomorphic mapping of the group G’ on the
group G.

It follows from (7) that the sequence (8) is fundamental, and therefore f(z')
is really an element of the group G. It can be verified directly that fis a
homomorphic mapping of the group G’ in the group G. We shall show that f
is a mapping on the whole group G.



208 THE STRUCTURE OF COMPACT GROUPS [cH. vII

Leta = {al, Qgy ="y Qpy * - } be an arbitrary element of the group G. We
denote by A, the set of all elements of the group G’ which go into a, under
the homomorphism h,. Since A, is a mapping of the group G’ on the whole
group G,, it follows that A, is not empty. It is also obvious that A, is com-
pact. Furthermore, from relations (6) and (7) we have A,,; € A,. Hence the
intersection of all the 4,, n = 1,2, - - - | is not empty (see Theorem 6), i.e., it
contains at least one element a’, and we have h.(a’) = a,,n =1,2, - -, so
that f(a’) = a. Thus fis a mapping on the whole group G.

We shall now show that f is an isomorphic mapping.

If f(z') is the identity, then h,(z’) is the identity of the group G, and there-
fore 2’ e N,,n =1,2,---. Since the intersection of al N,, n =1,2,-- -,
contains only the identity, the kernel of the homomorphism f contains only the
identity, and therefore the homomorphism f is an isomorphism (see Theorem
13, and §19, D)).

Since all the groups G, are Lie groups (see Theorem 53), Theorem 54 is
proved.

ExampLE 57. Let D be the additive topological group of real numbers and
let N be the subgroup of all integers. We let K = D/N, and denote by G,
n=1,2, -, asequence of groups isomorphic with K; G, = f.(K), where f,
is an isomorphic mapping. Then there exists an inverse mapping f,* which is
also isomorphic. We now define the homomorphism g, of the group G,,; on
the group G, by letting g,(z) = fa.(s.fni1(2)), where z € G441, and s, is an arbi-
trary integer which defines the homomorphism g,. The sequence of groups

G, Gy, - - -, G, - - - together with the homomorphisms g1, g2, - - * , gn, - - -+ de-
fines a group G (see Definition 39). This group G depends on the choice of the
numbers s,, n = 1, 2,- - - . If these numbers beginning with a certain num-

ber are all equal to unity, then G is isomorphic with K. Otherwise, the group
G has a rather complicated structure. This structure will be clarified in the
sections that follow.
We note also that the set of all possible groups G obtained for different
choices of s, coincides with the set of all groups X given in example 53.
+ ExampLE 58. Let

9) G, Gy -, Q-

be a sequence of finite groups and g1, g, - - -, ga, - - - & sequence of homomor-
phisms, where g, is a homomorphism of the group G,;; on the group G.. Then
the limit of the sequence (9) is a 0-dimensional group (see Definition 39).

In fact let N, be the normal subgroup of the group G defined in remark A).
Then the factor group G/N, is finite, and therefore the set containing only its
identity is an open set, and hence N,, being a complete inverse image of this
open set in the group @G, is itself an open set in G. Since by A) there exists an
arbitrarily small subgroup of the type N, the group G is 0-dimensional (see
§22, C)).
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Conversely, every 0-dimensional compact topological group can be obtained
as a limit of a sequence of finite groups (see §22, E)).

44. Auxiliary Topological Concepts

We define in this section two auxiliary topological concepts: dimension and
local connectedness. They will be used in the near future in order to impose
further restrictions on general topological groups.

A) Let R be a compact regular topological space satisfying the second axiom
of countability (see Definitions 19, 17, and 18). We shall say that there exists
a finite covering Q of the space R by open sets if there exists a finite system
Q= {Ul, cee, U,.} of open sets whose sum contains R. Analogously we
shall say that there exists a finite covering A of the space R by closed sets if there
exists a finite system A = {Fl, N Fm} of closed sets whose sum contains R.
If for every F; e A there exists an open set U; ¢ @ such that F;c U;, we shall
say that A is a refinement of @ and write A ¢ Q. We shall say that the covering
A has the multzplicity k if the system A has at most & sets having a common
point.

Using the above terminology, we give a definition of the dimension of a space.

DerINITION 40. A compact regular space R has a finite dimension r if the
following conditions are satisfied:

1) For every finite covering Q of the space R by open sets, there exists a
finite covering A of the space R by closed sets such that Ae Q and the multi-
plicity of the covering A does not exceed r -4 1 (see A)).

2) There exists a finite covering @ of the space R by open sets such that if A
is a covering of the space R by closed sets which is a refinement of Q, then the
multiplicity of A exceeds r.

In case there exists no r satisfying the above conditions, we say the dimen-
sion of the space R is infinite.

The above definition of dimension is justified in the first place by the follow-
ing proposition B), whose proof is not given because of its complexity.

B) If R is a cube of an n-dimensional Euclidean space, then the dimension
of the space R (see Definition 40) is equal to n (see [2] and [3]).

I give here without proof another property of the concept of dimension.

C) If the space R decomposes into a sum of a finite number of closed subsets
Ry, - - -, Ry, then the dimension of the space R is equal to the maximum of the
dimensions of the spaces R;, 7 = 1, - - -, k.

In considering the dimension of the space of a topological group, we can re-
state the definition of dimension in a way better suited to our purposes.

D) Let G be a compact topological group satisfying the second axiom of
countability, and V a neighborhood of the identity in the group G. We shall
say that the finite covering A = {Fy, - - -, F} of the space G by closed sets
is a V-coveringif F;F;'cV,7 = 1,---,m. Thenthedimension r of the space
G is defined by the following conditions:
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a) For every neighborhood V of the identity of the group G there exists a
finite V-covering of the space @ by closed sets whose multiplicity does not ex-
ceed r + 1.

b) There exists a neighborhood V of the identity of the group G such that
every finite V-covering of the space G by closed sets has a multiplicity greater
than r.

In case there exists no finite number r satisfying conditions a) and b), the
dimension of the space G is said to be infinite.

We proceed to prove proposition D).

We suppose that the dimension of the space G is equal to r, and show that for
every neighborhood V of the identity there exists a V-covering of multiplicity
<r+41. )

Let W be a neighborhood of the identity such that WW-1c V. The set
of all regions Wz, where z € G, covers the group G; hence by Theorem 7 we
can select from this covering a finite covering Q = {Wal, ceey Wa,.}. Since
the dimension of the space @ is equal to r by assumption, there exists a finite
covering A = {FI, cee, F,,,} of the space @ by closed sets such that Ae Q,
and such that its multiplicity does not exceed » + 1. Since every F; is con-
tained in some region Wa;, it follows that F.F;'c WW-1cV. Hence A is a
V-covering whose multiplicity does not exceed r + 1.

Let us now suppose that the dimension of @ is r, where r may be infinite.
We then show that for every finite s < r there exists a neighborhood V of the
identity such that every V-covering of the space G has a multiplicity which
exceeds s. The case of s < r is only of interest for r = .,

Let @ = { Uy, U,.} be a finite covering of the space @ by open sets such
that every covering A which is a refinement of Q has a multiplicity which is
greater than s (see Definition 40). For every point = € G there exists a num-
ber k such that z € U;. We denote by V. a neighborhood of the point z such
that V,c Ux. We select from the covering of the space G by open sets V, the
finite covering

(1) Vzl: ) Vzp-

The covering (1) possesses the property that for every open set V,, there exists
an open set U;such that V,,c U;. Let E; = G — U;. Theset E;V'is a com-
pact set which does not contain the identity, and therefore there exists a neigh-
borhood of the identity V which does not intersect any of the sets E,~V;“.
Suppose now that there exists a finite V-covering A = {FI, cee Fm} by closed
sets whose multiplicity is s. We shall show that this is impossible; in fact we
shall show that A € Q.

Since (1) forms a covering of the space G, there exists for every F a number 1
such that F and V., intersect. It can readily be seen that in this case F} can-
not intersect Ej since E;V;' does not intersect V, and FiFy'cV. Hence
FycUjie., A€ Q and therefore by assumption the dimension of the covering
A exceeds s.
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Hence proposition D) is completely proved.

E) Let G be a compact topological group satisfying the second axiom of
countability. If the group G is 0-dimensional (see §22, B)), it is of dimension
zero (see Definition 40) and conversely if the group G is of dimension zero, then
it is 0-dimensional.

Let V be an arbitrary neighborhood of the identity in the group G. If the
group G is 0-dimensional, then there exists an open normal subgroup N such
that N ¢ V (see §22, E)). We denote by

2) Ay - -, An

the cosets of G by the normal subgroup N. From remark E) of §22 there are
just a finite number of such cosets. It can readily be seen that the system of
sets (2) forms a finite V-covering of the space G by closed sets, having the mul-
iplicity one. Hence the dimension of the space G is zero.

Let us now suppose, conversely, that G is of dimension zero. Suppose that
G contains a connected closed set S, containing the identity and an element
a # e. Weshall show that this is impossible.

Let V be a neighborhood of the identity in the group G which does not con-
tain the element a. Since the dimension of @ is zero, there exists a finite
V-covering A of the space @ by closed non-intersecting sets. We denote by F
that set of the system A which contains ¢, and by £ the sum of all the other
sets of the system. Let A = Sn F,and B = Sn E. It can readily be seen
that the sets A and B are not empty and do not intersect; further, they are
closed. Hence S is not connected and we have arrived at a contradiction.
This proves E).

F) Let G be a compact topological group satisfying the second axiom of
countability and of dimension r < . Let s be a finite number not exceeding
r. Then there exists a neighborhood U of the identity such that if a normal
subgroup N of the group G is in U, then the factor group G/N is of dimension
not less than s.

We denote by V a neighborhood of the identity of the group G such that
every finite V-covering of the space G by closed sets has a multiplicity which
exceeds s. Let U, furthermore, be a neighborhood of the identity of the group
G such that U2c V. Suppose that N is a normal subgroup of the group G con-
tained in U, Nc U, and let G/N = G’. We denote by g the natural homo-
morphic mapping of the group G on the group G’. Let g(U) = U’. Itiseasy
to see that the complete inverse image g~'(U’) of the set U’ under the mapping
g is containedin V, g~ (U") c V.

Suppose the dimension of the group G’ does not exceed s — 1; we shall show
that this is impossible.

Let A’ = {F;, - - -, F,,} bea finite U'-covering of the space G’ by closed sets
whose multiplicity does not exceed s (see D)). We denote by F; the complete
inverse image in G of the set F,. It can readily be seen that A = {Fi, -, Fn}
ls'a finite V-covering of the space G by closed sets whose multiplicity is equal to
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the multiplicity of the covering A’. But this contradicts our original assump-
tion about V. This proves F).

G) Let G be a compact Lie group of dimension r (see Definition 38). Then
the dimension of the group @, in the sense of Definition 40, is also r.

Since @ has the dimension r in the sense of Definition 38, there exists a neigh-
borhood U of the identity of the group G such that U is homeomorphic with
an r-dimensional cube. The whole group @ can easily be represented as the
sum of a finite number of subsets of the form Uz. In this way by remarks B)
and C) the dimension of the space @ is r in the sense of Definition 40 as well.

DeriniTION 41. Let R be a compact regular topological space satisfying the
second axiom of countability. The space R is called locally connected if for
every point a and neighborhood U of a there exists a neighborhood V €U of a
such that for every x € V, U contains a connected set containing both @ and z.

H) It can readily be seen that every compact Lie group is locally connected.

45. Compact Topological Groups of Finite Dimension

We investigate in this section compact topological groups satisfying the sec-
ond axiom of countability which have a finite dimension. A positive solution
of Hilbert’s fifth problem will be given here for compact groups on the basis
of this investigation (see Theorem 57).

A) Let G and H be two Lie groups (see Definition 38) and let f be a homo-
morphic mapping of the group H on the group G. Furthermore let z(?),
[tl < @, be a one-parameter subgroup defined in G (see §39, A)). Then H
|colntains a one-parameter subgroup y(?), lt' =< a, such that f(y(t)) = z(t) for

tl £ a.

To prove this, we introduce canonical coordinates of the first kind in the
neighborhoods of the identities of the groups G and H (see §39, B)). Then
the mapping f will be expressed in the neighborhood of the identity in the form
of a linear mapping (see §42, B)). It follows from this that H contains a
one-parameter subgroup y’(f) defined for small values of the parameter such
that f(y'(t)) = z(t). Extending this subgroup to values of the parameter

t[ =< a we obtain the desired group y(t), |t] < a

B) Let @ be the topological group which is the limit of the sequence of com-
pact Lie groups Gy, G, - - -, G, - - - having g1, 92, - - -, gn, - - - for homomor-
phisms (see Definition 39). Furthermore let 21(t), |{| < @, be a one-parameter
subgroup defined in G, and let A; be the homomorphic mapping of the group G
on the group G discussed in remark A), §43. Then G contains a one-parameter
subgroup z(?), | t' < a, such that

(1) ha(x(t)) = z.(t) for |t] < a.

By remark A), G contains only one one-parameter subgroup zs(t), |t| < q
such that ¢i(x2(t)) = z,(¢) for [t| < a. Continuing this process of con-
struction we obtain an infinite sequence of one-parameter subgroups
z1(t), z2(t), - - -, zall), - - - where z,(1), Itl < a, is a one-parameter subgroup




§45] COMPACT GROUPS OF FINITE DIMENSION 213

of the group G,, while g,(z,+1(t)) = z,(t) for |t| Saandn=1,2---. Let
z(t) = {xl(t), 2o(t), - - -, xa(t), - - - } (see Definition 39). Then z(t) is an ele-
ment of the group G which depends on the parameter ¢, and is defined for all
values of ¢ which are less than a in absolute value. It can readily be seen that
z(t) is a one-parameter subgroup in G which satisfies condition (1).

THEOREM 55. Let G be a compact topological group of finite dimension r satisfy-
ing the second axiom of countability. Then G contains a local Lie subgroup L of
dimension r (see Definition 38 and §23, I)), and a 0-dimensional normal sub-
group Z (see §22, B)) such that U = LZ s a neighborhood of the identity in G,
and U decomposes into the direct product of the local subgroup L and the normal
subgroup Z (see §23, L)). In case G is connected, Z is a central normal subgroup
of the group G (see §22, D)).

In greater detail: every element u € U is decomposed uniguely and continuously
into the product

(2) u =lz, where leL,zeZ,
and lz = zl. The continuity of the decomposition (2) means that the elements

I = l(u) and z = z(u), which are defined uniquely by (2), are continuous functions
of the element .

Proor. It follows from Theorem 54 that G may be considered as the limit
of a sequence of compact Lie groups

(3) GI’G%...,GM...
with homomorphisms
(4) g1, 92y © "y Gny "

We introduce into the group G; canonical coordinates D of the second kind
(see §40, A)), constructing them on the basis of the one-parameter subgroups

Ill(t); Tty Ial(t)y | tl s a
We denote by L,'s the set of all points of the form
=zt - - oz(t), | 5| <8, k=1,---,8B8= a

Let a be a positive number sufficiently small to insure that L,:, is a region of
existence of the coordinates D. Let h; be the homomorphic mapping of the
group G on the group G, introduced in remark A) of §43. Then it follows from
B) that G contains a one-parameter subgroup z(t), |t{| < @, such that
h(2i(t)) = a(t) for || < a, i =1,---,s We denote by Ls the set of all
elements of the form

T =a(t) - -x(t), | t] <8 k=1,---,88%a

Obviously Ay(x) = z’. We shall show that the mapping &, is topological on
the set L,.
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To every element z corresponds uniquely an element-z. Hence the map-
ping k; of the set L, on the set L. has a unique inverse mapping and therefore
the mapping h; itself is one-to-one on the set L,. Furthermore, we have
Lsc L, for B < a, and since Lz is compact, the mapping ki, being continuous
and one-to-one, is topological on L (see Theorem 8), and this implies that A; is
topological on the whole set L,.

Hence we see that @ contains an s-dimensional cube L, and therefore the
dimension of the group @ is not less than s (see §44, C)). Therefore s =< r.
Since it is possible to omit a finite number of members of the sequence (3) with-
out changing the limit @, it follows that the dimension of every group of the
sequence (3) does not exceed r.

We shall show that the dimension of every group @, of (3) after a certain n
isequal to r.

There exists a neighborhood V of the identity of the group G such that if
N c V is a normal subgroup of the group @, then the dimension of G/N is not
less than r (see §44, F)). By remark A) of §43, the group G, is isomorphic
with the factor group G/N,, where N, 4, € N,, and the intersection of the groups
Ni, Ngy - -+, Na, - -+ contains only the identity. Hence after a certain n,
N.cV,ie., the dimension of the group G, is not less than . Therefore, after
a certain n the dimension of the groups G, in the sequence (3) is equal to 7.

We shall therefore say that all the groups of the sequence (3) are of dimen-
sion r since the omission of the first few members of this sequence does not
change the limit G. In particular the local Lie group L; is of dimension r,
s=r.

We denote by Z the kernel of the homomorphism k;, and show that Z is a
0-dimensional group, and that if G is connected, then Z belongs to the center.

We denote by Z; the totality of all the elements of the group G; which go
into the identity under the homomorphism ¢;, and by Z; the totality of all
the elements which go into Z; under the homomorphism gz, and, in general,
by Z,..1 the totality of all the elements which go into Z, under the homomor-
phism g,. Since the dimension of all the groups in (3) is r, and since Z, is the
kernel of the homomorphism of the group @, on G; obtained through the homo-
morphisms gn._1, - * * , g2, g1, it follows that Z, has dimension zero (see Theorem
51) and therefore all the groups Z, are finite, being compact Lie groups of di-
mension zero (see Theorem 50). We also note that Z, is a normal subgroup
of the group G, (see Theorem 12) and hence Z, belongs to the center if it
is connected (see Theorem 16). But if G is connected, G, is also connected,
since G, is a homomorphic image of the group G (see §43, A)). Hence Z, be-
Jongs to the center if G is connected. It is not hard to see that the groups
Zs, Zsy, -+, Zn, - - - with homomorphisms gs, gs,.- - -, gn, - - - have as their
limit the group Z, and therefore Z is 0-dimensional (see Example 58). In case
G is connected Z belongs to the center, since, as is easy to verify, the limit of a
sequence of central normal subgroups is itself a central normal subgroup.

We denote by Up the complete inverse image of the neighborhood Lj under
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the homomorphism h;. Then Upgis a neighborhood of the identity in G. We
shall show that Us = LgZ, where every element u € Ug decomposes uniquely
into the product

(5) u = lz, le Lg, zeZ.

If u & Us, then hi(uw) € Ly and therefore there exists an element I £ Ls such
that hi(w) = hi(l). Then we have M(I"'u) = ¢, i.e,, I"'u = z¢eZ. Hence
u = lz. If, moreover,u = 'z’ with !’ ¢ Lyand 2’ € Z, then ly(u) = k(1) = M(l"),
and hence | = I, since the mapping h; is one-to-one on L;. Hence I’ = [,
2’ = z and the decomposition (5) is established.

We shall now show that the decomposition (5) is continuous,i.e., the ele-
ments [ = l(u) and z = z(u) are defined uniquely by (5) and are continuous
functions of the element w.

For 8 < a we have U € U, and therefore the decomposition (5) is unique for
all elements of the set Us. In this way the set Us is a unique and continuous
image of the topological product ‘of the spaces Ls and Z (see Definition 21).
Since this topological product is compact (see §15, E)), it follows that Us is
simply homeomorphic to the topological product of the spaces Ls and Z (see
Theorem 8). This proves the continuity of the decomposition (5).

We shall show next that for a sufficiently small v, L, = Lis alocal Lie group,
and h, is an isomorphic mapping of the local Lie group L, on the local group L.

Since the mapping &, is homeomorphic and homomorphie on L, it is suffi-
‘cient to select ¥ < Bin such a way that fora £ L,, b € L,, and ab € U, we have
ab € L,. Let v be sufficiently small so that L?c Us. Then the function z(u)
is defined on L. Since z(L?) ¢ Z is connected and contains the identity, and
since Z is 0-dimensional, it follows that Z(L?) = {e}, i.e., ab e L,.

We shall finally show that every element of the group Z commutes with
every element of the group L,.

Let ze Z. We are to show that lzI-! = zfor l e L,. We shall move [ con-
tinuously in the interior of L, towards the identity. Since Z is a normal sub-
group, lzl~! always belongs to Z, and therefore describes a continuous curve
in Z. Since Z is 0-dimensional, we have lz2[=! = z. Hence Theorem 55 is com-
pletely established.

TuEOREM 56. Let G be a compact topological group satisfying the second axiom
of countability. If G s locally connected (see Definition 41) and s of finite di-
mension, it is a Lie group.

Proor. Let U be the neighborhood of the identity defined in Theorem 55.
If Z is a finite group, then L is a neighborhood in @, and since L is a local Lie
‘group, G is also a Lie group. We shall show that in case the group Z is infinite,
G is not locally connected.

Suppose that G is locally connected. Then there exists a neighborhood
V e U of the identity e of the group G such that if x € V, then there exists a
connected set Sc U which contains both x and e. Since Z is infinite by as-



216 THE STRUCTURE OF COMPACT GROUPS [cH. vII

sumption, and is also compact, there exists a point € Z n V distinct from the
identity. Let S< U be a connected set containing the points z and e. We
associate with every point v = lz € S, where l ¢ L and z £ Z, a point z = z(u).
The mapping z(u) is continuous, and therefore the set z(8S) is a connected set
containing the points ¢ and z. But this is impossible since Z is 0-dimensional
and z(S) ¢ Z, while z # e. This proves Theorem 56.

As a consequence of Theorem 56 we prove the following proposition.

THEOREM 57. Let G be a compact topological group satisfying the second axiom
of countability. If there exists a neighborhood V of the identity of the group G
which is homeomorphic with a Euclidean space then G is a Lie group.

Proor. It follows from the fact that the neighborhood V is homeomorphic
with the Euclidean space that G is of finite dimension and is locally connected.
Hence G is a Lie group by Theorem 56.

ExampLE 59. Let G be a connected compact topological group of finite di-
mension satisfying the second axiom of countability, and let L be a local Lie
group of the sort defined in Theorem 55. We denote by G’ the set of all the
elements of G which can be represented in the form of finite products of ele-
ments belonging to L. Then G’ is a subgroup of the abstract group G. It is
not hard to see that G’ is a homomorphic image of some Lie group G*, i.e.,
G’ = f(G*), where f is a one-to-one mapping, which, however, is continuous
in one direction only. Moreover it turns out that the set G’ is everywhere
dense in G.




CHAPTER VIII

LOCALLY ISOMORPHIC GROUPS

We shall develop in this chapter the results of Schreier (see [31] and [32])
concerning the connection in the large between locally isomorphic groups (see
Definition 30). We have already considered this question in Theorem 18.
Here we shall obtain deeper results by narrowing down the class of groups
under consideration. It will be shown that from the totality of all groups
locally isomorphic with a given group @ a certain group G*, which is called the
universal covering group, is naturally singled out. Moreover, every group
which is locally isomorphic with the group G* can be obtained as a factor
group G*/N, where N is a discrete normal subgroup of the group G*. The
construction of a universal covering group is based on a process applicable not
only to topological groups, but to a wider class of topological spaces. In the
construction of a universal covering group we run across the important topolog-
ical concept, due to Poincaré, of the fundamental group.

One should not think that Schreier’s results reduce completely the study of a
topological group to its local properties. His results only give a method of
constructing all groups locally isomorphic with a given group. The study of
the properties of this given group, however, cannot be reduced to the study of
its local properties. We shall meet this sitation in the next chapter.

It should be noted that the results of this chapter belong to Schreier only
in the sense that he has organized and formulated them. The concepts which
we shall discuss here have been used independently by Weyl (see [35]) and
others.

46. Fundamental Group. Covering Space

We shall consider here some purely topological concepts which, because of
their generality, we shall not restrict to topological groups.

A) We say that the topological space R contains a path or a curve I if in it
is defined a function f(¢) of a real parameter ¢, 0 < ¢ < 1, which associates with
every numbert, 0 < ¢ < 1, a definite point f(¢) in the space B. The point f(0)
is called the beginning of the path I, and the point f(1),its end. The path [ con-
nects the points 0 and 1 in the space R. The path [is called a null or identity
path if the function f(¢) is a constant. Let the oppostte or inverse path to the
given path [, denoted by [=1, be given by the function f(1 — ¢) of the parameter
t. If two paths k and [ are given by the functions f(¢) and g(t) such that the end
of the first path coincides with the beginning of the second path,i.e., f(1) = g(0),
then we can define the product kl of the paths k and I as follows. The product
klis defined by the function k(t) which is defined by h(t) = f(2t) for0 = ¢ < 3,
and h(t) ~ g(2t — 1) for L <t < 1. Let1be called closed if its beginning and
end coincide.

217
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One should not think that the totality of all paths given in the space G
forms a group. First, multiplication is not always possible. Moreover, the
product does not satisfy the associative law, and the product of the path I by
its inverse [~! is not a null path; nor is the product of the path [ by a null path
the path [, but rather something new. Because of this the paths themselves
will not interest us a great deal. What will be important for our purposes are
the classes of equivalent or homotopic paths. Certain totalities of these classes
also form a group, namely the fundamental group.

B) Two paths k and [ in the space R are called homotopic or equivalent, de-
noted by k ~ [, if there exists a continuous deformation of the path k& which
does not displace the beginning and end points of k¥ and changes %k into I. This
definition can be expressed more fully as follows: Let f(¢) and g(f) be the func-
tions which define the paths k and I. The paths k and [ are called equivalent
if there exists a function ¢(s, ), continuous simultaneously in both its real
parameters s and £, 0 = ¢ <1, 0 £ s =1, and such that (0, t) = f(?),
‘P(17 t) = g(t)) 59(87 0) = f(O) = g(O)) 90(3, 1) = f(l) = g(l)

A closed path [ is called homotopic or equivalent to zero, I ~ 0, if the path [
is equivalent to a null path.

It is not difficult to see that the concept of equivalence which we have intro-
duced here is reflexive, i.e., [ ~ [, symmetric, i.e.,if k ~ [, then [ ~ k, and transi-
tive, i.e.,if k ~ [, and [ ~ m, then kK ~ m. It is also not hard to see that if
k ~k'and [ ~ ', and if the product kl is defined, then the product k'l’ is also
defined and

(1) KU~k
moreover
(1) k=t~ k'

C) Let k be an arbitrary path, [ a null path, and let the product &l be defined.
Then kI ~ k.

This proposition is obvious but I shall give here a formal proof.

Let f(t) be the function which defines the path k. We define the fune-
tion (s, t) as follows; o(s, ¢) = f(2t/(1 + s)) for 0 £ ¢t = (1 + 5)/2, and
o(s, t) =f(1) for 14+ s)/2 =t =< 1. It can be checked readily that the
function (s, t) defines a continuous deformation of the path kl into the path &
(see B)). Hence kIl ~ k.

D) If k, I, and m are three paths such that the products kl and Im are de-
fined, then (kl)m ~ k(lm).

To prove this let f(¢), g(¢), and h(¢) be the three functions which define the
paths k, [, and m. Then the function ¢(s, ¢) is defined as follows;

o(s, 1) = f(4t/(1 + ), for 0=t =< (1+5)/4
o(s,t) =gdt—1—3), for 1+98)/4=t=(2+59)/4
o(s,t) = h(1 —4(1 —)/(2 — ), for (2+s)/4 st 1
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It can readily be verified that the function (s, t) performs the continuous de-
formation of the path (kl)m into the path k(lm).

E) Let k and [ be two paths such that the product kl~! exists and the path
kl-'is closed. Then the relations

2 k~1
and
3) k-1~ 0

follow one from the other.

We shall show first that (3) follows from (2). First, since k ~ [, it follows
from (1) that kI=! ~ lI-* and it is sufficient to show that I[=! ~ 0. Let g(¢)
be the function which defines I. The function (s, t) we define as follows:
o(s, t) = g(2t(1 — s)), for 0 < t' < 1/2, and o(s, t) = g(2(1 — £)(1 — s)) for
1/2 £t £ 1. It can readily be checked that the function ¢(s, t) performs the
deformation of the path II=! into a null path.

Suppose now that (3) holds. This means that there exists a function ¥ (s, t)
which deforms the path k-1 into a null path. Denoting by f(®) the function
which defines the curve k, we have y(0, 1) = f(2¢) for 0 < ¢t < 1/2, and
¥v(0,t) = g(2 — 2t)for1/2 £t £ 1. Furthermore ¢(s, 0) = y(1,¢) = y¥(s, 1)
= f(0) = g(0).

We shall give a geometric interpretation.of these equations. We shall con-
sider a square @ in the plane s, ¢, which is defined by the inequalities: 0 < s < 1,
0 =t = 1. The function ¥(s, ¢) gives a continuous mapping of this square on
the space R under consideration. Under this mapping, as is clear from the
above relations, three sides of the square @ go into one point f(0) = ¢(0),
namely the sides

The remaining side (0, 0) — (0, 1) goes into the curve kI-!, or more exactly, its
segment (0, 0) — (0, 1/2) goes into k, while the segment (0, 1) — (0, 1/2) goes
into I.  Geometrically it is obvious that inside the square @ it is possible by
means of a continuous deformation to change the segment (0, 0) — (0, 1/2)
into the segment (0, 1) — (0, 1/2) so that the vertex (0, 1/2) remains station-
ary, while the vertex (0, 0) moves along the sides of the square which map into
the point f(0) = g(0). It is clear that if we map this deformation by means
of the function ¢ (s, ¢) in R we get the deformation of the path & into the path 1.
This proves E).

F) In this chapter we shall call a topological space connected if any two of
its points can be joined by a curve (see A)).

DeriNiTION 42. Let R be a connected topological space (see F)) and p one
of its points. We denote by P the totality of closed paths in R which begin
at p. Wedivide the set P into classes, putting in each class all the paths which
are equivalent (see B)). The set of all the classes thus obtained we denote
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by G, and we define the group operation in G as follows: Let A and B be
two elements of the set G. We denote by a a path of the class 4, and by b a
path of the class B. The paths a and b can be multiplied (see A)), since they
begin and end in p. Let ¢ = ab. We denote by C that class of paths which
contains ¢. It follows from (1) that the class C is uniquely defined by the
classes A and B. We define the product AB by setting AB = C. The group
G thus obtained does not depend on the choice of the point p, is a topological
invariant of the space R, and is called the fundamental group of this space.

It is not hard to see that the operation of multiplication which we have de-
fined in G satisfies all the conditions of Definition 1. The associativity follows
from D). The identity of the group @ is the class composed of all the paths of
the set P which are homotopic to zero (see C)). Finally if A is an element of
the set G, then A~ is defined as the class composed of all the paths opposite
to the paths of class A (see (1') and E)).

We shall now show that the fundamental group G of the space R does not
depend on the choice of the point p. Let p’ be another point, and let G be the
fundamental group constructed on the basis of the point p’ in the same way
as G was constructed from p. We shall show that G and G’ are isomorphic.

"Let ! be a path from the point p’ to the point p; such a path exists since R
is connected by assumption (see F)). Let A be an arbitrary element of the
group G, and a a path of class A. Let a’=lal™!, and let A’ be the class con-
taining a’. It follows from (1) and (1’) that the class A’ is uniquely deter-
mined by the class A, i.e., it does not depend on the choice of the path a of the
class A (of course, it is supposed that [ is fixed). Let A’ = ¢(4). We can
then show that ¢ is an isomorphic mapping of the group G on the group G'.
We show first of all that the mapping ¢ is one-to-one. To do this consider the
path I=%a’l. It is not hard to see that the path [='a’l = I-al~'l is homotopic
to the path a (see C), E) and (1), (1')). Hence the class 4 in turn is uniquely
defined by the class A’ and the mapping ¢ is one-to-one. Because of the com-
plete symmetry of the roles played in this investigation by G and G', the map-
ping ¢ is 2 mapping on the whole group G’. It can readily be shown that ¢
preserves the law of multiplication. In fact let A and B be two elements of
the set G, and let a be a path in 4 and b a path in the class B. Let a’ = lal™},
b’ =Wl ¢ = ab. It follows from C), E), and (1) that the paths a’d’ and
lel=! are equivalent, and this means that ¢(AB) = ¢(4)¢(B). Hence the iso-
morphism between the group G and G’ is established.

We should note that the isomorphic mapping ¢ which we have just con-
structed depends on the choice of the path I. Hence ¢ is not defined uniquely.
In particular if the points p and p’ coincide, then our construction can still be
carried out, if we take for [ some closed path which begins and ends in the point
p. The isomorphism p thus obtained will be an automorphism of the group G,
and can easily be shown to be an inner automorphism (see §3, B)).

G) A connected space R is called simply connected if its fundamental group
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contains only the identity. This condition expresses the fact that every closed
path defined in R is homotopic to zero.

H) A space R is called locally simply connected, if for every point p and neigh-
borhood U of p there exists a neighborhood V € U of the same point such that
any closed curve beginning at p, and contained in V is homotopiec to zero in U.

I) We shall call a space R locally connected in this chapter if for every point p
and neighborhood U of p there exists a neighborhood V ¢ U of the same point p
such that for x € V there exists a curve in U which connects the points p and z.

It can readily be seen that from the above definition of local connectedness,
and from the condition of connectedness in the sense of Definition A) of §11
follows connectedness in the sense of Definition F). We shall not make use of
this fact, however.

DeriniTIiON 43. Let R be a connected, locally connected, locally simply con-
nected space, and let p be one of its points (see F), I), and H)). Let @ be the
set of all the paths of the space R which begin at p. We divide the set @ into
classes, putting in each class the totality of all equivalent paths, We denote
the set of classes thus obtained by S. We note that there exists a natural
mapping ¢ of the set S on the space R. In fact if A €S, then all the paths
which belong to the class A end in the same point a, and we write a = ¢(A).
We now introduce a topology into S, by defining an arbitrary neighborhood U*
of the topological space S in terms of a certain neighborhood U of the space R
and a certain path ! ¢ @, which ends in U. Let z be an arbitrary path in U
whose beginning coincides with the end of the path . Let y = lr,and let Y be
the totality of all the paths equivalent to the path y. We denote by U* the set
of all classes Y obtained from all possible choices of z in U. Itis not hard to
see that the set U* will not change if the path [ is replaced by the path I’ € 4,
where A € U*. The totality of all neighborhoods of the type U* obtained by
an arbitrary choice of a neighborhood U and a path I forms by definition a com-
plete system Z* of neighborhoods of the space S. The space S is called a cover-
ing space for the space R, or more precisely the universal covering space for R.

We shall show that the complete system Z* of neighborhoods of the space S
which was constructed in Definition 43 satisfies all the conditions of Theorem 3
and therefore S is really a topological space.

Let A and B be two distinet points of the space S. We shall show that there
exists a neighborhood U* of the point A which does not contain the point B.
We distinguish two cases: a) Let ¢(A) # ¢(B). Then we define the neighbor-
hood U* by means of a certain neighborhood U of the point ¢(A), which does
not contain the point ¢(B), and by means of a path € A. It can readily be
seen that with this choice of U, the set ¢(U*) does not contain the point ¢(B)
and therefore U* does not contain B. b) Let now ¢(A) = ¢o(B) = a. Since R
is locally simply connected, there exists a neighborhood U of a such that every
closed path beginning at a and going through U is homotopic to zero in the
space R. We now define the neighborhood U* by means of a neighborhood
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UcR,and a pathle A. Suppose that B e U*. This means that U contains
a path z beginning at a such that Iz £ B, but then the end of the path Iz coin-
cides with the point a, i.e. the path z is closed. Because of the construction of
the neighborhood U the path x is homotopic to zero in R and therefore lz ~ I,
i.e., A = B, which contradicts A # B.

Let now U* and V* be two neighborhoods of the point A ¢ S.  We shall show
that there exists a neighborhood W* of the point A which is contained in the
intersection U* n - V*. Suppose that the neighborhoods U* and V* are defined
by the neighborhoods U and V of R. We can use the path [ £ A as the path
defining both the neighborhoods U* and V*, since A ¢ U* and A € V*. Since
the end of the path [ lies in the intersection of the neighborhoods U and V there
exists a neighborhood W of the end of the path I such that WeUn V. We
define the neighborhood W* by means of the neighborhood W and the path [
Then it is easily seen that W* c U* n V*.

Hence S is a topological space.

THEOREM 58. The natural mapping ¢ of the covering space S on the space R
(see Definition 43) is a continuous open mapping (see Definition 15 and §18, C)).
Moreover, the mapping ¢ is a locally homeomorphic mapping i.e., for every point
A & 8 there exists a neighborhood U* such that the mapping ¢ is homeomorphic
on the neighborhood U* (see Definition 14).

Proor. We first establish the continuity of the mapping ¢. Let A £ .S and
©(4) = a. We denote by U an arbitrary neighborhood of the point a. We
define the neighborhood U* of the point A by means of the neighborhood U
and the path l € A. Obviously ¢(U*) c U. Hence the mapping ¢ is continu-
ous.

We show next that ¢ is an open mapping. Let A be a point of the space
S and U* a neighborhood of A. Suppose U* is defined by the neighborhood U
and the path I e A. Since the space R is by assumption locally connected,
there exists a neighborhood V of the point a = ¢(4) such that for z & V there
exists a path in U which begins at a and ends at . It follows from this choice
of the neighborhood V that o(U*)> V. Hence ¢ is an open mapping.

We shall show that the mapping ¢ is locally homeomorphic. Let A £ S, and
»(A) = a. Since the space R is locally simply connected there exists a neigh-
borhood U of the point a such that every closed path beginning at @ and con-
tained in U is homotopic to zero in the space R. We now define a neighborhood
U* of the point A by means of the neighborhood U and a pathl e A. We shall
show that the mapping ¢ is one-to-one on the set U*. Suppose there exist two
different points ¥ and Y’ of the set U* such that ¢(¥Y) = ¢(Y’). This means
that U contains two paths = and z’ beginning at a such that lx e Y, Iz’ e Y’
and such that the ends of these paths coincide. Then the path 2’z~!is a closed
path beginning at a and contained in U, and is therefore homotopic to zero in
R; hence lxr ~ Iz’ (see E) and (1)). It follows from the last relation that
Y = Y’. Hence we have arrived at a contradiction and the mapping ¢ is one-
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to-one on U*. Since the mapping ¢ is thus continuous, open, and one-to-one,
it follows that it is homeomorphic on U*. This proves Theorem 58.

In the process of proof of Theorem 58 we made use of the local connectedness
and the local simple connectedness of the space B. The connectness of the
space R is used when we suppose that ¢ is a mapping on the whole space R.

J) Let I be a curve in the space R with a fixed beginning p, which depends
on one or several parameters, say I = I(s). We denote by F(s) that element of
the covering space S (see Definition 43) which considered as a class of curves,
contains the curve I(s). If the curve [(s) depends continuously on the parame-
ter s, then the element F(s) also depends continuously on s in the space S.

Let f(s, t) be the function which defines the curve I(s) for a fixed s. The
point f(s, 1) is the end of the curve I(s) and depends continuously on the
parameter s. Let o be some value of the parameter s and let U* be a neighbor-
hood of the point F(¢). We can suppose that U* is defined by some neighbor-
hood U c R and by the curve [(¢). Let € be a sufficiently small positive num-
ber so that for |s — o| < ewe have f(s, 1) ¢ U. We shall show then that for
|o" — al < e we have F(s') e U*. We introduce the curve k(s), which de-
pends continuously on the parameter s, and which is defined by the following
function of t: f(s + (¢’ — s)t, 1). It can readily be seen that the beginning
of the curve k(s) coincides with the end of the curve I(s), and therefore the prod-
uct 1(s)k(s) = m(s) is defined. The curve m(s) depends continuously on the
parameter s and has fixed end points: therefore m(a) ~ m(c’). Furthermore
k(¢') is a null path and therefore m(s’) ~ l(¢"). Hence m(s) ~I(c’). But
k(o) is a path contained in U. Therefore F(¢') ¢ U*. Hence the element F(s)
depends continuously on the parameter s. The case involving several parame-
ters can be similarly disposed of.

K) The covering space S of the space R (see Definition 43) is connected,
locally connected, and locally simply connected.

It follows from Theorem 58 that the spaces R and S are locally homeomor-
phic; therefore all the local properties of the space R are automatically true for
the space S.

We shall show that S is connected. Let A € S and let P be that point of the
space S which considered as a class of paths contains a null path. To prove
that S is connected, it is sufficient to show that the point A can be connected
by a curve to the point P, since A is an arbitrary point while P is fixed. Let
le A, and let f(t) be the function which defines the path I. Let us consider
the family of paths which depend on the parameter s, and which are defined
by the function f(st). Fora fixeds,0 < s < 1, this function defines a path I(s)
in the space R, with 1(0) ¢ P, and I(1) = 1€ A. We denote by A(s) the class
of paths which contains the path I(s). A(s) is a point of the space S which
depends continuously on the parameter s (see J)). Hence A(s) defines in the
space S a path which connects the point P to the point 4.

he following theorem states the fundamental property of the universal
covering space.
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THEOREM 59. The universal covering space S of a topological space R (see
Definition 43) is always simply connected (see G)).

Proor. Let us denote by P that element of the space S which considered
as a class of paths contains a null path. We shall show that a closed curve L
in the space S which begins at the point P is homotopic to zero in S.

Let F(t) be the function which defines the curve L, and let f(t) = o(F(t)),
where ¢ is the natural mapping of the space S on the space R (see Definition
43). The function f(st) defines for a fixed s, 0 < s < 1, a certain path I(s)
which begins at p (see Definition 43) and depends continuously on s. We de-
note by F’(s) that element of the space S, which considered as a class of paths
contains the path I(s). We shall then show that
(6) F'(s) = F(s).

It can readily be seen first of all that

S(F'(8)) = o(F(3)).
For s = 0, the equation (6) is obvious. If now equation (6) is true for all
values of s < o, then it is true for s = o, since F(s) and F'(s) are continuous
functions of the parameter s (see J)). Furthermore, if equation (6) holds for
s = o, then for a sufficiently small A, it also holds fors = ¢ + h. Infactlet U*
be that neighborhood of the point F'(¢s) = F(o) for which the mapping ¢ is
one-to-one (see Theorem 58). Then for a sufficiently small A we have
F'(c + h) e U*, F(¢ + k) € U*. But in view of the fact that the mapping ¢
is one-to-one, and because of equation (7), F'(¢ + h) = F(¢ + h). Hence
equation (6) is true for all valuesof 5,0 = s < 1.

Since the curve L is closed, F(1) = P and therefore (see (6)) [(1) is a curve
which is homotopic to zero. Let I(s, t) be the function which exhibits the
homotopy to zero of the curve I(1) (see B)). The function ¢(s, 7t) for s and 7
fixed defines a curve I(s, 7) which depends continuously on the parameters s
and 7. We denote by ®(s, 7) that element of the space S which considered
as a class of paths contains the curve I(s, 7). The point ®(s, 7) depends con-
tinuously on the parameters s and 7 (see J)). It is not hard to see that the
function ®(s, ¢) realizes the homotopy to zero of the curve L. This proves the
theorem.

THEOREM 60. Let R and S be two connected topological spaces (see F)). We
denote by T their topological product (see Definition 21). Then the space T s
connected and its fundamental group is isomorphic with the direct product of the
SJundamental groups of the spaces R and S (see Definition 10’). Hence, in par-
ticular, the topological product of two stimply connected topological spaces (see G))
18 simply connected.

Proor. Let us select a single fixed point from each of the spaces R and S:
pe R, geS. Then (p, q) € T is a definite point of T. Let k be a path in the
space R which begins at p and is defined by the function f(¢), and let ! be a
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path in the space S which begins at ¢ and is defined by the function g(t).
Then the function (f(¢), g(¢)) defines a certain path in the space T, which we
shall denote by (k,1). Then (k, 1) begins at the point (p, ¢) and ends at the point
(f(1), g(1)). Since the spaces R and S are connected the end points of the
paths k and I can be selected arbitrarily, and hence the endpoint of the path
(k, 1) can also be selected arbitrarily so that the point (p, ¢) can be joined by a
path with an arbitrary point of the space T. Hence T is connected.

Obviously every path m of the space T which begins at (p, ¢) can be repre-
sented by the pair (k,1). Itis not hard to verify thatif k" ~ kand !’ ~ [, then
(k', 1) ~ (k,1). The converse is also true i.e.,if (k’,1") ~ (k,1), then k' ~ k,
and I’ ~ 1. If k and I are closed, then the path (k, ) is also closed, and con-
versely. Finally if the paths k, I, k', I’ are all closed, then the product
(k, (&', 1") is equal to (kk', U").

It follows from what has just been said that every element of the fundamen-
tal group of the space T is uniquely represented in the form of a pair of elements
of the fundamental groups of the spaces R and S in such a way that all the
conditions of Theorem 10’ hold. Hence Theorem 60 is proved.

47. The Universal Covering Group

In this section we develop the results of Schreier. The main idea consists
in constructing a covering space for every topological group, and then showing
that this covering space itself forms a topological group in a natural way. The
group thus obtained is called the universal covering group of the original group.

Because the constructions of this section depend entirely on the results of
the preceding section we must limit ourselves by the followirg conditions:

A) All the topological groups considered in this section are connected, locally
connected, and locally simply connected, (see §46, F), I), and H)).

It is not hard to verify that Lie groups (see Definition 38) which are con-
nected in the ordinary sense (see §11, A)) satisfy the above conditions. There-
fore the results of this chapter are applicable to connected Lie groups.

TrEOREM 61. There exists for every topological group G a simply connected
topological group G* (see §46, G)) which is locally isomorphic with it, and is such
that the group G is isomorphic with the factor group G*/N, where N is a discrete
normal subgroup of the group G*, and the fundamental group of the space G (see
Definition 42) is ¢somorphic with the group N. (We suppose here that the group
@ satisfies condition A); then the group G* also satisfies the condition A).)

Proor. We construct the universal covering space’ G* for the topological
space (, by taking the identity e of the group G for the fundamental point p
(see Definition 43). In this way G* is a topological space satisfying conditions
A) (see §46, K)), and there exists a natural mapping ¢ of the space G* on the
space (f, which is a continuous open mapping (see Theorem 58).

We now introduce into G* the group operation of multiplication. Let 4 and
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B be any two elements of the set G*. We denote by k a-path in the class A4,
and by [ a path in the class B. Both these paths begin at the identity e of the
group G, while we designate the ends of these paths by a and b. Then

o(4) =a,  o(B) =b.

Let g(t) be the function defining the path I (see §46, A)). The function ag(t)
defines a new path, which we denote by al (here the product ag(t) is taken in
the sense of the group operation in G). It can be seen readily that

(1) if I ~1 then al~al.

The paths k and al can be multiplied since the end of the first coincides with
the beginning of the second. We denote by C the class of paths which con-
tains the path m = k(al). The element C is defined uniquely by the classes
4 and B, i.e., it does not depend on the choice of the paths k and [ of the classes
A and B (see (1) and §46, (1)). The product AB is defined by letting AB = C.
We note that the end of the paths of C is ab and hence

2 ¢(AB) = ¢(4)¢(B).

We shall show that the operation of multiplication defined on G* satisfies
all the group axioms. To prove associativity we make use of the obvious fact
that if ¥’ and !’ are two paths in G which can be multiplied together, and if
a’ € G, then

€] a (k') = (a'k)(a'l").

Now let A, B, and C be three elements of G*. We denote by %, [, and m three
paths selected from A, B, and C, and denote their ends by a, b, and ¢. By the
law of multiplication A (BC) is defined as the class which contains the path

k(a(l(dm))) = n,

while the product (AB)C is defined as the class containing
(k(al))(abm) = n'.

From (3) we have
n = k((al)(abm)).

Hence n ~ n' (see §46, D)), and multiplication is associative in G*. The
identity of the group G* is the class £ which contains all the paths homotopic
to zero. To find the element A~! inverse to the element A, we denote by [
some path of the class A and by a the end of this path. The class containing
the path a~1l-! we denote by B It is not hard to see that AB = E. For by
the law of multiplication AB is defined as the class containing the path
l(aa~1-1). But this path is homotopic to zero (see §46, E)). Hence A~! = B
and the inverse element always exists in G*. Hence all the group axioms are
satisfied in G*.
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We shall show that the group operations taking place in G* are continuous
in the topological space G*, and hence G* is a topological group.

Let A and B be two elements of G* and let C = AB. We denote by W* a
neighborhood of the element C, and select from A and B the paths & and I,
whose ends we denote by @ and b. Then m = k(al) € C, and we can assume
that the neighborhood W* is defined by a certain neighborhood W ¢ G, and by
the path m (see Definition 43). We have ab ¢ W, and therefore there exist
neighborhoods U and V of the elements a and b such that

4) UVecW.

The neighborhood U* of the element A is defined by the neighborhood U and
the path k. In the same way the neighborhood V* of the element B is defined
by the neighborhood V and the path I. An arbitrary element A’ of the neigh-
borhood U* is defined as the class which contains the path kz, where z is an
arbitrary path beginning at a and contained in U. Let f(¢) be the function
which defines the path z. For a fixed s, 0 < s < 1, the function f(st) defines
the path z(s). Let k(s) = kxz(s), and let &(s) be a continuous function of s,
with k(0) = k, k(1) = kx. We make an analogous construction for the neigh-
borhood V and denote the variable path there obtained by I(s), where [(0) = [
and the path [(1) defines an arbitrary preassigned element B’ of the neighborhood
V*. We denote the end of the path k(s) by a(s), and let m(s) = k(s)(a(s)l(s)).
We have m(0) ¢ AB, m(1) ¢ A’B’. We have to show that A'B’ ¢ W*, and to
do this it is sufficient to show that the path m(1) is homotopic to the path
m(0)z, where z is a path going through W. We denote by c¢(s) the end of the
variable m(s). The point ¢(s) describes for 0 < s < 1 a certain path which is
entirely contained in W (see (4)) and which we denote by z. Obviously
m(1) ~ m(0)z. Hence A'B' ¢ W*, and U*V* c W* and this means that the
operation of multiplication is continuous. In the same way we can show that
the operation of taking an inverse of an element is also continuous. Hence G*
is a topological group.

As we have already noted, ¢ is an open continuous mapping of the topological
space G* on the topological space G. It follows from (2) that this mapping
is an open homomorphic mapping of the topological group G* on the topological
group G. We denote by N the kernel of the homomorphism ¢. Since ¢ is a
locally homeomorphic mapping (see Theorem 58), there exists a neighborhood
U* of the identity of the group G* which admits a one-to-one mapping, and
this means that N is a discrete normal subgroup of the group G*. By Theorem
12 the group G is isomorphic with the factor group G*/N.

We consider in greater detail the set N. If A € N, then ¢(4) = e, and hence
all the paths of the class A are closed. Conversely if all the paths of the class
A are closed, then ¢(A) = eand A ¢ N. Therefore N is composed of all classes
of closed paths, i.e., N, considered as a set, coincides with the fundamental
group of the topological space G (see Definition 42). It is not hard to see,
furthermore, that if 4 and B are two closed paths which begin at e, then the
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law of multiplication which we have established for the elements 4 and B of
the group G* simply coincides with the multiplication law which holds for the
elements 4 and B of the fundamental group. Therefore N coincides with the
fundamental group of the space G. This proves Theorem 61.

The following rather interesting result is a direct consequence of Theorem 61.

TarEOREM 62. If G is a topological group satisfying conditions A), then the
Sfundamental group of the topological space G (see Definition 42) is commutative.

Proor. By Theorem 61 the fundamental group of the topological space G
is isomorphic with the discrete normal subgroup N of the connected topological
group G*. Since G* is connected, it follows from Theorem 16 that the normal
subgroup N of this group is commutative. Hence the fundamental group of
the space @ is commutative.

In view of some further applications we formulate Theorem 63 which follows
in a more general form than is necessary for the purposes of the present chapter.
Instead of limiting ourselves to local isomorphism we introduce here the con-
cept of local homomorphism.

B) Let G’ and @ be two topological groups and let U be a neighborhood of
the identity in the group G. Suppose that there exists a continuous mapping f
of the set U in the space G’ such that for z € U, y ¢ U, and zy € U, we have
flxy) = f(x)f(y). We shall then say that fis a local homomorphism of the group
G in the group @’. If fis an open mapping of U on a certain neighborhood of
the identity of the group G’, then we shall say that f is a local homomorphism
of the group G on the group G’. In case fis a homeomorphic mapping on some
neighborhood of the identity of the group G', we get the old concept of local
isomorphism.

The following theorem plays a rather important part.

THEOREM 63. Let G’ and G be two connected topological groups, and let G be
locally connected and also simply connected (see §46, G), and J)). We do not
require that G' satisfy the conditions of A). Let f be some local homomorphism
of the group G in the group G' (see B)). Then it is possible to extend uniquely the
local homomorphism f into a homomorphism ¢ of the entire group G in theentire
group G'. The extension of the homomorphism f is understood in the sense that f
and ¢ coincide on some neighborhood W c U of the identity of the group G, where U
1s the neighborhood in which the local homomorphism f is defined. If f is a local
homomorphism of the group G on the group G', then ¢ s a homomorphism of the
group G on the group G'. If f is a local jomorphism, then the homomorphism ¢
is open. If the group G' is simply connected and satisfies condition A) and if f is
a local isomorphism, then the homomorphism ¢ is an isomorphism.

Proor. We shall show first of all that if ¢ is a homomorphic mapping of the
abstract group @ in the abstract group G’, where ¢ is an extension of the local
homomorphism f, then ¢ is a homomorphic mapping of the topological group G
in the topological group G’. In fact in the neighborhood W the functions f
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and ¢ coincide, and since the function f is continuous, the function ¢ is every-
where continuous (see §19, B)).

If f is a locally homomorphic mapping of the group G on the group G’, then
the extension ¢ is a homomorphism of the group G on the group G’. In fact
in this case f(W) contains a certain neighborhood of the identity, and since a
connected group G’ can be generated by any neighborhood of its identity (see
Theorem 15), it follows that every element z’ ¢ G’ can be represented in the
form z’ = o(x).

If f is a local isomorphism, then its extension ¢ is an open homomorphism.
In fact, in this case the mapping f is homeomorphic and hence the mapping ¢
is open in the neighborhood of the identity, and therefore it is always open
(see §19, B)).

We shall show that the extension of the homomorphism f to the homomor-
phism ¢ can be accomplished in only one way. Suppose that there exist two
extensions ¢ and ¢’. Let = be an arbitrary element of G and let W be that
neighborhood of the identity in the group G on which ¢ and ¢’ coincide with f.
Since @ is connected, it follows from Theorem 15 that every element x can be
represented in the formz = a; - - - a,, wherea; e W,7 = 1,- - - ,n. Hence we
have

e(@) = f(ar) - - - f(an)
o'(x) = f(a1) - - - flan)

and
e(r) = ¢'(v).

We now proceed to construct the homomorphism ¢. Let [ be a curve in G
which begins at the identity e of the group G. We denote the function which
defines this curve by g(t). We construct for the curve I a curve I’ which
uniquely corresponds to it in the space G, and which is such that its de-
fining function g'(t) satisfies the following conditions: a) g/(0) = e’, where ¢’ is
the identity of the group G’, b) there exists a sufficiently small positive number
esuch that for |t — ta| < ¢, (g(t))"'g(t2) € U and (g'(t)) "¢’ (t) = f((g(tr)"'g(t)).

We shall show first of all that if the curve I’ exists, then it is defined uniquely
by conditions a) and b). The beginning of the curve I’ is defined by condi-
tiona). Furthermore, if the curve I’ is defined uniquely for all values of ¢ < 7,
then it is defined for ¢ = r because of the continuity of the functions g(t) and
g'(t). Finally if the function ¢’(¢) is defined for ¢t = 7, then it is defined for all ¢
such that t — 7 < e In fact by b), ¢’(t) = ¢'(z)f((g())~'g(t)). Therefore
the curve I’ is defined uniquely for all values of t.

We shall show now that the curve I’ exists. Let V be a neighborhood of the
identity of the group G such that V-1V c U. There exists a sufficiently large
fiumber n such that for |, — tgl < 1/nwehave (g(t))"'g(tz) e V. Lete=1/n
.and suppose that the function ¢’(¢) is already defined for all values of ¢ < me,
and that conditions a) and b) hold for these values of . We shall show that
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this function can be extended further. Let & be a positive number not exceed-
ing e. We then defined g’'(me + h) by setting

(5) g'(me + h) = g'(me)f((g(me))~'g(me + h)).

We shall show that condition b) now holds for the extended function g’(t).
Let 2’ be a number not exceeding e in absolute value. We then have

(6) g'(me + ') = g'(me)f((g(me))~'g(me + h")).

If h' is positive, relation (6) follows from (5), and if A’ is negative, (6) follows
from the assumption of the induction. Hence

(9'(me + h))7'g'(me + ') = f((g(me + h))~'g(me + h"))

and condition b) is also satisfied. To start the induction at m = 0 it is suffi-
cient to let ¢’(0) = ¢’. Then condition a) will always hold. Hence the induc-
tion is completed and the curve I’ constructed.

Let now ¢ and {; be two numbers such that 0 =t <t < 1, where
|t; — t.| < e If the curve ! is subjected to a continuous deformation which
only changes its points in the interval ¢; < ¢ < t,, then, obviously, the corre-
sponding curve [’ is also changed only on that interval, since the above con-
struction of the curve I’ for values of ¢t < {; depends only on the curve ! in the
interval ¢ < t;,. Furthermore, for ¢t = ¢, the function ¢’(¢) is defined by condi-
tion b) from the value of the function ¢'(;), while the further development of
the curve I’ depends only on the value of ¢'(fz). We shall call such a deforma-
tion of the curve [ a small deformation. A We have just shown that under a
small deformation of the curve [ the corresponding curve !’ is also subjected to a
small deformation, and in particular does not change its end point.

It is not hard to show that any deformation of the curve I which leaves its
ends unaltered can be achieved by means of a series of small deformations.
Therefore if we subject the curve [ to any continuous deformation which pre-
serves its ends, then the corresponding curve !’ also undergoes a continuous
deformation which does not change its ends.

Let z be an arbitrary point of G and I a curve which connects the identity e to
the point z. Let I’ be the curve which corresponds to the curve !, and let z’
be the end of the curve I’.  We shall show that the point 2’ is defined by the
point z and does not depend on the choice of I. In fact, let k be another curve
which connects e and z. Since G is simply connected, the curves k and [ are
homotopic, and therefore they can be transformed into each other by a con-
tinuous deformation. From what we have already shown the corresponding
curve in G’ will not change its ends during this process, and therefore the point
z' is defined by the curve k as well as by the curve . Hence we can suppose
that 2’ = o(z). i

We shall now show that there exists a neighborhood W ¢ U of the identity
of the group G on which ¢ = f. Let V be a neighborhood of the identity of
the group @ such that V-1V e U. We define W c V as a neighborhood of the
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identity of the group ¢ which is such that there exists a curve [ ¢ V which con-
nects every point z of V with e (such a neighborhood exists since the group ¢
is locally connected). Let g(t) be the parametric representation of the curve
lcV. It can be seen readily that the curve !’ which is defined in parametric
form by the condition g’(¢) = f(g(t)) satisfies condition b) of our construction.
In fact since g(t) € V, it follows that (g(t))~"'c V1< U, and for any #; and t,,
(gt)'g(t) e V=V e U, and hence f((g(t))'g(t2)) = f((g(tr))")f(g(t))
= (flg(t))"Y(g(t2)) = (¢'(t1))"'¢'(t). Hence the end of the curve I’ is f(z),
where z is the end of the curve [, i.e., ¢(x) = f(x) forx ¢ W.

We shall show that the mapping ¢ is a homomorphic mapping of the ab-
stract group G in the abstract group G'.

Let a and b be two arbitrary points of G. We denote by k and ! the curves
which connect e to @ and b, and by &k’ and I’ the curves which correspond to k
and 1, and which have their ends at @’ and b’. Obviously, the curve k(al) = m
connects the identity e to the point ab, while the corresponding curve
k'(a’l’) = m' goes from e’ to a’d’. It is not hard to verify that the curve m’
corresponds to the curve m. Hence, because of the way in which the mapping
o was constructed, we have ¢(ab) = a’b’, and this means that ¢(ab) = ¢(a)e(d),
i.e., the mapping ¢ is homomorphic.

It remains to consider only the case in which G’ is a simply connected group
satisfying conditions A), and f a local isomorphism. If the neighborhood U is
chosen sufficiently small, then the mapping f~! is a local isomorphism of the
group G’ in G. Since G’ is supposed to be simply connected, and since it
satisfies conditions A), it follows from the above that the local isomorphism f~!
can be extended into an open homomorphism y of the group G’ on the group G.
The mapping ¥ (¢(x)) = x(z) is a homomorphic open mapping of the group G
into itself. In a sufficiently small neighborhood of the identity of the group G,
the mapping x(x) coincides with the mapping f~'(f(z)) = z. Hence x is an
extension of an identical local automorphism of the group G. Because of the
uniqueness of the continuation of a mapping, the mapping x is the identical
mapping of the group G into itself, and this means tha tthe mappings ¢ and ¢
are inverses of each other. Hence ¢ is a unique inverse mapping and therefore
¢ is an isomorphic mapping. This completes the proof of Theorem 63.

THEOREM 64. Let G' be a simply connected topological group satisfying condi-
tions A), and let N’ be a discrete normal subgroup of the group G'. Then the
Jundamental group of the topological space G'/N' = G is isomorphic with the
group N'.

Proor. We denote by y the natural homomorphic mapping of the topologi-
cal group G’ on the topological group G. Since N’ is a discrete normal sub-
group, the mapping ¢ represents a local isomorphism of the group G in the
group G’ (see §23, C)) in a sufficiently small neighborhood of the identity of
the group G’. Now let G* be that simply connected group which was con-
structed for the group G in Theorem 61, and let N be a discrete normal sub-
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group of G* such that G is isomorphic with G*/N. We denote the natural
homomorphic mapping of the group G* on the group G by ¢. The mapping ¢
represents a local isomorphism of the group @ in G* in a small neighborhood
of the identity; therefore the mapping ¢~'(¢(z)) = f(z) is defined and repre-
sents a local isomorphism of the group G’ in G*. Since the groups G’ and G*
are simply connected, the local isomorphism f can be extended into an isomor-
phism x of the group G’ on the group G* (see Theorem 63). Furthermore, the
mapping y¥(z) coincides locally with ¢(x(x)) and hence y(z) = ¢(x(z)) because
of the uniqueness of the extension of a local isomorphism. Hence the normal
subgroup N’ goes over into the normal subgroup N under the isomorphism x,
i.e., N and N’ are isomorphic groups. By Theorem 61 the fundamental group
of the space G is isomorphic with the group N, and hence it is also isomorphic
with the group N'. This proves Theorem 64.

The above theorems enable us to formulate the following definition.

DeriniTION 44. Let A be the aggregate of all topological groups satisfying
conditions A) and locally isomorphic with one such group. By Theorem 61,
the set A contains at least one simply connected group, which we denote by G*.
It follows from Theorem 63 that up to an isomorphism the set A contains only
one simply connected group. Hence the group G* is defined uniquely by the
set A. G*is called the universal covering group for all the groups of the set A.

It follows from Theorem 61 that every group G of the set A can be written
in the form G*/N, where N is some discrete normal subgroup of the group G*,
By Theorem 16, N is a central normal subgroup of the group G*, while Theo-
rem 64 shows that N is isomorphic with the fundamental group of the space G.

Hence in order to obtain all the groups of the set A, it is sufficient to know
all central discrete subgroups of the group G*. We must therefore study in de-
tail all the discrete subgroups of the center Z of the group G. This does not
present any great difficulty because the center is commutative.

ExampPLE 60. Let G* be the r-dimensional vector group, and N the subgroup
of G* composed of all vectors whose coordinates are integers. The factor
group G*/N = @ is a toroidal r-dimensional group. It is not hard to see that
the group G* is simply connected and therefore is the universal covering group
for the group G. The subgroup N, when considered as an abstract group, is a
commutative group having r linearly independent generators. Such is also the
fundamental group of the r-dimensional torus G.

In the next chapter we shall give more examples of topological groups, and
also more complicated and more interesting examples of universal covering
groups.

ExampLE 61. We point out here one interesting generalization of Theorem
64. Let G be a simply connected group satisfying conditions A), and let H
be a discrete subgroup of the group G (not necessarily a normal subgroup).
Then the fundamental group of the space G/H = R (see Definition 24) is iso-
morphic with the group H.

The proof of this proposition is as follows. We denote by ¢ the natural
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mapping of the space G on the space R and let ¢(e) = p, where ¢ is the identity
of the group G. Let I be a curve going from e to some point 2 ¢ H. The image
I’ = ¢(l) of the curve ! in the space R is a closed curve. It can be shown,
conversely, that every closed curve !’ beginning in p can be obtained as the
image of some curve [ beginning at ¢ and ending at H. It can be shown further
that the curve I’ is homotopic to zero if and only if the curve lis closed. In this
way a one-to-one correspondence is established between the elements of the
fundamental group of the space R and the elements of the group H. The iso-
morphism can readily be proved.

In the next chapter we give an example of a simply connected group @ satis-
fying conditions A), which has a non-commutative discrete subgroup H (see
Example 71). Hence the fundamental group of the topological space is in gen-
eral non-commutative. This explains the particular interest of Theorem 62.



CHAPTER IX

THE STRUCTURE OF LIE GROUPS

The concept of Lie groups was defined in Chapter VI, where we established
the simplest properties of Lie groups. We shall study Lie groups in greater
detail here, making use of the results of Chapter VI. We shall associate with
Lie groups more elementary algebraic entities, namely infinitesimal groups, and
show that the local study of Lie groups can be reduced entirely to the study of
infinitesimal groups. This is the main object of the present chapter. We shall
also consider some related concepts, and indicate further developments of the
theory. We shall not take up the deeper results of Killing, Cartan (see [5]),
and Weyl (see [35]). These results depend on the properties of infinitesimal
groups and represent a far reaching theory. We shall state some of them with-
out proof.« The most important result of the theory is a complete classification
of simple Lie groups. This classification, however, necessitates such cumber-
some and complicated considerations that it is impossible to consider it here.
The reader will find a more detailed exposition of the theory of Lie groups in
the forthcoming book of N.G. Chebotareff, on “The Theory of Lie Groups”
(in Russian).

We have shown in Chapter VI that in studying Lie groups we can confine
ourselves to triply differentiable functions of several variables. We can there-
fore avail ourselves here of the theory of differential calculus and differential
equations. This will form the main method of investigation in the present
chapter. Because of the extensive calculations which we meet, we shall make
use here, as in Chapter VI of tensor notation.

48. Structural Constants. Infinitesimal Groups

We shall introduce here the structural constants of Lie groups. They form a
tensor, i.e., they transform as components of a tensor under a transformation
of coordinates in a Lie group. An infinitesimal group is an invariant with re-
spect to coordinate transformations whose study is equivalent to that of the
totality of structural constants. We shall establish here the fundamental rela-
tions between structural constants and the corresponding relations in the infin-
itesimal group.

The main method of the present section consists in expanding the functions
under consideration in Taylor series up to terms of the second and sometimes
third order. The study of the coefficients thus obtained introduces the struc-
tural constants as well as some of the relations between them. This could have
been done by means of derivatives, but Taylor series seem more useful in this
connection.

A) The remainders of the series will not be written out in detail but merely
denoted by e with different subscripts, but the order of magnitude of each e
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will be made clear. If e depends on the arguments zy, - - - , z, we shall say that
e is of the order of magnitude ¢ + 1 with respect to these arguments if ¢/p?,
where p = V(@ + - - - + 22), tends to zero with p.

B) In the future we shall denote the coordinates of a point or vector by the
same letters used for that point or vector, but with superseripts. This will
save us the necessity of introducing the notation each time.

DEFINITION 45. Let G be an r-dimensional local Lie group and D a differ-
entiable system of coordinates in it (see Definition 38). If z and y are two
elements of the group G which are sufficiently close to the identity, then the
product f = zy = f(=, y) is also close to e and the law of multiplication can be
written in coordinate form by means of the system D. We then have

(1) =0y =i, 25y, y).
Since the coordinates of the identity are zero, we have:

(2) iz, ¢) =i - -, 2750,--+,0) = a
3) e, y) =70, - -, 0,9, - - -, y) =yt

Since the functions f¢ have by assumption three continuous derivatives they
can be expanded in a Taylor series up to terms of the third order. Because of
(2) and (3) these expansions have a special form, which is not hard to find.
In fact we have

) [ 1 1 j k 1 j ko1 i Aol i
4) =2 +y +aury +gurry +hudyy + e«

where ¢} is a quantity of the fourth order of magnitude with respect to the co-
ordfnates of the points z and y. The numbers

€ i i
(5) Cik = Qji — Qkj

are called the structural constants of the group G in the coordinates D.
he structural constants satisfy the relation

(6) it = — Cii.
Relations (4) show that a Lie group is in the first approximation commutative
and isomorphic with an r-dimensional vector group. The second approxima-
tion, however, already deviates from commutativity. It is not hard to show
that even a commutative group may in some coordinates have an expansion
(4) with non-zero terms of the second order. But in case G is commutative
we have obviously aj, = a};, and therefore the structural constants are zero
for a commutative group. This is the first indication that the structural con-
stants play an important part in the theory of Lie groups. Later we shall show
that the structural constants define completely the local structure of Lie
groups, which explains the terminology used.

We shall give here another definition of structural constants, which throws
further light on their nature.
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C) Let z and y be two elements of the group @. We consider the commuta-
tor q (see §4, C)) of the elements z and y

7 q = zyz~'y~ = q(z, y).
In coordinate form equation (7) may be written

i ik i
(8) ¢ =ciry + e

(see (5)), where € is a quantity of the third order of magnitude with respect to
the coordinates of the points z and y. Relation (8) may be used as a new defi-
nition of structural constants. It follows from (4), (5) and (8) that

(9) ‘@ =fay -1+

where ¢; is also of the third order of magnitude.
In order to prove relation (8) we calculate first of all the element 2z’ inverse
to 2, 22’ = e, in coordinate form. Using (4) we have

/"t

(10) = — b 4 e
If now z* = zy,and z = yz, then by (4), (5), (7), and (10) we have ¢ = z*z" and
¢ =@y +ay) + (- -y -y +aE +)E + )
—apu(@ + ) + )+ @ =y + e
Hence (8) is proved.

THEOREM 65. The structural constants of a Lie group G satisfy the following
relations:

(11) = — ¢y
and
(12) ciCin + Ciacri + CraCi; = 0.

Relation (12) is closely connected with the associativity of multiplication in
the group G.

Proor. Relation (11) has already been proved (see (6)). To prove (12) it is
sufficient to express the associativity of multiplication in coordinate form. Let

u = yz, v = zy, w = U, w’ = vz

We then write the equality w = w’ in coordinate form. Using (4) and carrying
out our calculations up to terms of the third order we get

B o=+ + 7+ a4 ahwys + ke
i 8 8 7k ¢ 7k k
+anz W +2 +anyz) + gy +2)
) ] j k k
+hine (6 +2)y +2) + &
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w’= "+ + day + gy + Ky + 27
+an(z 4y + diay)d + gl +)E 4+ o)
+hin(@ + y)e7 + 6,
where € and € are of the fourth order of magnitude.

The comparison of the terms of the first order in the expressions for w?
and w’? gives

xﬂ_*_ (y:ﬂ+z?) = (xl’+yl’) +2P
while the comparison of the terms of the second order gives
|k s is i s k s k
afky’z + a,",’x ¥y + af:x z = ai-’,x y] + a:;cx z + a:;cy 2z

so that the equality for the terms of the first and second order holds identically.

We now pass to the comparison of the terms of the third order. In doing
so we shall limit ourselves to those terms which depend on the coordinates of
all three points z, y and z, since the equality should hold for them separately.
As a matter of fact all the other terms of the third order are identically equal,
but that does not concern us. We then have

' any’st + W' 2 + ') = didaye gy + 2y
Equating coefficients in the last relation we get
(13) af;a;k - agca:j = — h:;k - ht’;tj + gf}k + !]ﬁk-

We now eliminate from this last relation the members on the right side. To
do so we permute the indices 1, j, & in all possible ways. The six relations thus
dbtained are called odd or even depending on whether the corresponding per-
mutation of the indices is odd or even. We now add these six relations by
taking the even ones with the plus sign and the odd ones with the minus sign.
The relation so obtained as the sum, which we denote by (a), has zero in the
right side and twelve terms in the left side. If we now replace the structural
constants in relation (12) by their expressions from (5), we get a new relation
(b), which also contains twelve terms in the left side, and zero in the right side.
It is not hard to guess from the general character of the terms that relations
(a) and (b) coincide. Therefore, relation (12) is a consequence of relations
(13) and (5). This proves Theorem 65.

We now proceed to the construction of an infinitesimal group.

DeriNITION 46. Let R be the r-dimensional vector space in which the follow-
ing operation of composition of vectors is defined: to every pair of vectors a
and b corresponds a vector ¢ = [a, b], which is called the commutator of the
vectors @ and b. This operation satisfies the following conditions:

'(14) [aa + a’a’, b] = ala, b] + o’ [a’, b].

where a and o’ are real numbers. Furthermore,
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(15) [a,b] + [b,a] =0, and
(16) la, [b, c]]1 + [b, [¢, a]] + [¢, [a,B]] = 0.

We shall call the vector space R, together with the operation of commutation
established in it, an infinitesimal group.

Since the operation of commutation is linear (see (14), (15)), it can be written
in coordinate form as follows

(17) ¢i = la, b]i = chald.

1

The numbers ¢, are called the structural constants of the infinitesimal group R
in the given system of coordinates. From relations (15) and (16) we obtain
the following relations for the structural constants of the infinitesimal group R:

»i e
(18) Cix = — Cyyy
D »8 D =8 *D 3
(19) cts Cjk + c]s ckl + Cks Cij = 0

It can readily be seen that, conversely, if the numbers c;, satisfy relations (18)
and (19) then we get an infinitesimal group on defining the operation of com-
mutation by (17). Hence the consideration of the constants c;; which satisfy
relations (18) and (19) is completely equivalent to the consideration of the
infinitesimal group R.

THEOREM 66. Let G be an r-dimensional Lie group. It follows from B) of §38
that to every differentiable curve x(t) defined on G corresponds a tangent vector a.
Hence the r-dvmensional vector space R is associated with the group G. We estab-
lish in R the operation of commutation (see Definition 46) on the basis of the prop-
. erties of the group G. Let a and b be two vectors in R, and let x(t) and y(t) be two
curves to which the vectors a and b are tangent.  Let

(20) ¢(t) = 2@y (x@®) (@)™

q(t) then defines a curve in G.  We introduce on this curve a new parandeter s by
letting t = \/s. The new curve g(~/s) thus defined for non-negative values of the
parameter s has a tangent vector ¢, which is defined by the vectors a and b. We
define the commutator [a, b] by letting [a,b] = c. The operation of commutation
thus defined in the space R satisfies conditions (14), (15), and (16). The infini-
tesimal group R thus obtained is called the infinitesimal group of the Lie group G.
The structural constants of the group G and of the infinitesimal group R coincide
wn corresponding coordinates (see Definitions 45 and 46).

Proor. To prove this we introduce in G a differentiable system of coordi-
nates, and calculate the vector ¢ in coordinate form. It can readily be seen
that ¢ = lim,., ¢i(t)/t2. In view of (8) we have

) . 1 T 7 k 1 i 3k
c = 1’13(} " (e (Dy () + e(t)) = cua'd,
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where €(t) is of the third order of magnitude with respect to £. In this way we
have

¢ = [a,b] = cpad.

Hence the structural constants of the infinitesimal group R coincide with the

structural constants of the Lie group G. Since the structural constants of the

group G |satisfy relations (11) and (12), it follows that the commutators in R

satisfy conditions (14), (15), and (16), i.e., R is really an infinitesimal group.
D) Inprder to calculate rapidly the commutators of the infinitesimal group

R of the'Lie group G we proceed as follows: let

q*i(:r) y) = q*i(xly Ce, 2T yl, ) yr)

be the sum of all the terms of the second order in the expansion of the difference
fi(x, y) — fi(y, z) (see (1)). Then the vector ¢ = [a, b] can be written in
coordinate form as follows

(21) ¢ = qri(aty -, @b ).

The truth of this assertion follows directly from relation (9).

The part played by infinitesimal groups is explained by the fact that to every
infinitesimal group corresponds uniquely some local Lie group. The following
sections are devoted to the proof of this fact. The question of whether a com-
plete Lie group corresponds to every infinitesimal group is a more difficult one,
but it also can be solved in the affirmative. Of course uniqueness is not possi-
ble here, as to the same group R may correspond several non-isomorphic entire
Lie groups, but all these Lie groups are locally isomorphic and the question of
their connection follows from Schreier’s results (see Chapter VIII).

ExaMpLE 62. Let R be the three dimensional vector space in which the vec-
tor product is defined in the usual way: to every pair of vectors a and b corre-
sponds their vector product [a, b]. If we now take for the commutator of the
vectors a and b their vector product [a, b], then the conditions of Definition 46
will follow from the usual rules of vector calculus. Hence we get an infini-
tesimal group R. It can be shown that to this infinitesimal group corresponds
as a Lie group the group of rotations of the three dimensional Euclidean space
around a fixed point.

ExampLE 63. Let G be the multiplicative group of all square matrices of
order n whose determinant is different from zero. In order to introduce co-
ordinates into the group G, as should be done in a Lie group, we represent every
matrix z € G in the form = ¢ + 2*, where eis the unit matrix. Then the ele-
ments of the matrix z*, which we denote by zj, can be taken as the coordinates
of the element . The dimension of the group G is therefore n2. Under these
conditions relations (4) can be written for the group @ as follows:

(22) S =4y + 2y
We denote by R the infinitestimal group of the group G. We take for the
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elements of the vector space R the totality of all square matrices of order n,
having the usual rules of addition of matrices and multiplication by real num-
bers. If a and b are two matrices of the set R, then by remark D) and relation
(22) the commutator is defined as follows:

(23) ¢ = [a, b]} = albt— bia},
ie.,
(24) ¢c=[a, b] = ab — ba.

The infinitesimal group R thus obtained is called the infinitesimal group of
the group of all square matrices of order n. In order to visualize the elements
of the set R as tangent vectors to curves in G, we consider a certain curve
z(t) = e + 2*(t) in G. The coordinates of the point z(¢) are the elements z}(t)
of the matrix *(f). The coordinates of the vector a tangent to the curve under
consideration are the numbers a; = dz}(0)/dt. Hence the element a ¢ Rmay
be represented naturally in the form of the matrix a = ||a]|.

The matrix group G may be considered as a group of linear transformations
of the n-dimensional vector space S. From this point of view every element
x ¢ (G is merely a transformation x(u) which associates with every vector v € S
another vector x(u) & S in such a way that the condition of linearity holds, i.e.,

z(ou + Bv) = azx(w) + Ba(v),

where o and 8 are real numbers and « and v are vectorsin 8. The product f of
two transformations x and y is defined as the transformation f(u) = x(y(u)).

The infinitesimal group R of the group G can now be composed from all linear
mappings of the space (@ into itself. If a and b are two elements of R, then
their sum d is defined by the relation d(u) = a(u) + b(u), while the product of
an element a by a real number « is given by (aa)(u) = aa(u). It follows from
(24) that the commutator ¢ = [a, b] is defined by

(25) c(u) = a(b(u)) — b(a(u)),
ie.,
(26) la, b]=ab—ba.

The above example of a matrix group plays an important part in the theory
of Lie groups.

49. Subgroup. Factor Group. Homomorphic Mapping

In the previous section we associated with every Lie group G its infinitesimal
group E. We construct here the infinitesimal group concepts which corre-
spond to subgroup, normal subgroup, factor group and homomorphic mapping
of the group G.

A) Let R be an infinitesimal group (see Definition 46). A set S of vectors
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of the space R will be called an infinitesimal subgroup of the group R if the fol-
lowing conditions are fulfilled: a) the set S is a linear subspace of the space R,
i.e.,if a and b are vectors of S, then aa + Bb is also a vector of S, where « and
are arbitrary real numbers. b) If a and b are two vectors of S, then the vector
[a, b] also belongs to 8.  An infinitesimal subgroup S of the infinitesimal group
R is called a normal subgroup, if ¢) for ae R, be S we have [a, b]eS. An
infinitesimal subgroup S is called central if d) for a € R, and b e S we have
[a, b] = 0.
The following theorem justifies the terminology introduced in A).

THEOREM 67. Let G be a local Lie group, R its infinitesimal group, and H
a subgroup of the group G. We denote by S the set of all vectors which are tangent
to curves in H (see §38, B)). Then S is a subgroup of the infinitesimal group R.
We shall say that to the subgroup H corresponds the subgroup S, and denote this
relation by H — S.  If H is a normal subgroup of the group G, then S is a normal
subgroup of the group R. If H is a central normal subgroup of the group G, then S
1s a central normal subgroup of the group R.

Proor. By Theorem 50, H is a differentiable sub-manifold of the manifold G,
and therefore S is a linear subspace of the space R. Hence condition a) of
definition A) is satisfied. We shall show that condition b) is also satisfied.
Let a and b be two vectors of S, and let x(¢) and y(f) be two curves in H to
which the vectors a and b are tangent. In order to find the vector ¢ = [a, b]
we consider the curve q(t) = z(t)y(t)(x(t))"'(y(t))~! (see Theorem 66). This
curve is also in H, since H is a group. Hence the curve ¢(1/s) is in H, and
therefore the vector ¢ which is tangent to the curve ¢(1/s) is in S, and we have
[a,b] e S.

We shall prove relation ¢) of definition A) in case H is a normal subgroup
of the group G. Let ae R, and be S. We denote by z(f) a curve of ¢ with
the tangent vector @, and by y(f) a curve of H with the tangent vector b. The
element z()y(t) (x(¢))~! belongs to H, since H is a normal subgroup. Therefore
the element g(t) = x(t)y(t)(x(t))~(y(t))~! also belongs to H. Hence the curve
q(+/s) is in H and its tangent vector ¢ = [a, b] belongs to S.

In order to consider the case in which H is a central normal subgroup we
continue our discussion of normal subgroups. In this case ¢(¢) can easily be
seen to degenerate into the point e and therefore the tangent vector ¢ is a null
vector. This proves Theorem 67.

B) Let R be an infinitesimal group and S a normal subgroup of R (see A)).
We divide the vector group R into cosets of the subgroup S. The set R* of
cosets thus obtained is in turn a vector space. The operation of commutation
can easily be introduced into the space R* (see Definition 46). Let A and B
be two cosets. Furthermorelet ae A and be B, andletc = [a,b]. We shall
show that the coset C containing the element ¢ does not depend on the choice
of the elements a and b, but is defined by the cosets A and B. To prove this
we take an arbitrary element a’ ¢ A and show that ¢/ = [a’, b]e C. In fact
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¢/ —c=la',b] — [a,b] = [’ —a,b] eS8 (see A), ¢c)). Hencec’'eC. The
commutator [4, B] of the elements 4 and B is defined by letting [4, B] = C.
Since the operation of commutation in R satisfies conditions (14), (15), and
(16) of §48, it is not hard to show that the same conditions hold in R*. In this
way R* is an infinitesimal group. R* is called the factor group of the infini-
tesimal group R by its normal divisor 8. In symbols, R* = R/S.

C) Let R and R’ be two infinitesimal groups and let g be 4 mapping of R
on R’. The mapping g is called homomorphic if the following conditions hold:
a) the mapping g is linear, i.e., we have for arbitrary real numbers « and B,

g(aa + Bb) = ag(a) + Bg(b) where acR, beR,

and b) g([a, b]) = [g(a), g(b)], where ae R, be R. The set S of all the ele-
ments of B which go into the zero of R’ under g is called the kernel of the
homomorphism ¢g. A homomorphie mapping is called zsomorphic if it is one-to-
one. Two infinitesimal groups R and R’ are called zsomorphic if there exists
an isomorphic mapping of one group onto the other.

D) Let R and R’ be two infinitesimal groups and let ¢ be a homomorphic
mapping of the group R on R’. We denote by S the set of all elements of the
group R which map into the zero of the group R’ under the homomorphism g.
Then S is a normal subgroup of the infinitesimal group R, and the factor group
R/8 is isomorphic with the group R’ (see A), B) and C)).

Since ¢ is a linear mapping of the space R on the space R’ it follows that S
is a linear subspace of the space R. Let ae R, beS. Then

g[a) b]) = [g(a)! g(b)] = [g(a)) O] = 0.

Hence [a, b] € 8, i.e., S is a normal subgroup of the infinitesimal group R.

Now let a’ be an element of R’. We denote by A4 the set of all elements of R
which go into a’ under the mapping g. Since g is a homomorphic mapping of
the vector group R on the vector group R’, it follows from the general theorems
about the homomorphism of groups that A is a coset of S. In this way there
exists a one-to-one correspondence between the elements of the factor group
R/S and the elements of the group R’. The proof of the fact that this corre-
spondence establishes an isomorphism between the infinitesimal groups R/S
and R’ is quite trivial. )

The following theorem justifies the concepts which we have introduced here.

THaEOREM 68. Let G and G’ be two local Lie groups and let f be a locally homo-
morphic mapping of the group G on the group G'. We denote by R and R’ the
infinitesimal groups of the groups G and G’. Let a £ R, and let z(t) be a curve in G
having the vector a for tangent. The function f(x(t)) defines a curve in G’ whose
tangent vector we denote by a’.  Then the vector a’ is defined by the vector a, 1.e., 1t
does not depend on the choice of the curve x(t), except that it mus‘ have the tangent
vector a. Therefore we can write a’ = g(a), where g is a homomorphic mapping of
the infinitesimal group R on the infinitesimal group R’.
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In this way to every homomor’phism f of the group G en the group G’ corresponds
a homomorphism g of their infinitesimal groups, f — g. We denote by N the kernel
of the homomorphism f, and by S the kernel of the homomorphism 9. Then to the
subgroup N of the group G corresponds the subgroup S of the infinitesimal group R,
N — 8 (see Theorem 67).

Proor. By Theorem 51 the mapping f can be expressed by means of differ-
entiable functions. This means that the mapping g defined in the theorem is
uniquely determined, and is a linear mapping of the space R on the space R’.
Let z(t) and y(¢) be two curves in G, and let @ and b be the vectors tangent to
them. Let

¢@®) = =y O () O) ™"

Then the vector ¢ = [a, b] is a tangent to the curve g(v/s) (see Theorem 66).
The vectors a’ = g(a) and b’ = g(b) are tangent to the curves z’(f) = f(z(f))
and y’(t) = f(y(t)). Inorder to define the vector ¢’ = [a’, b’] we consider the
curve

') =@y’ O O) @' O

Since the mapping f is homomorphic, it follows that ¢’(\/s) = f(q(/s)).
Hence g(¢) = ¢’ and the homomorphism of the mapping g is established.

We denote by S’ that infinitesimal subgroup which corresponds to the sub-
group N (see Theorem 67). Since every curve of N goes over into the point e’
under the homomorphism f, 8’ € 8. The equality S’ = S follows from the cal-
culation of their dimensions. This proves Theorem 68.

E) Let G, G’, and G’ be three local Lie groups and R, R’, and R’’ their
infinitesimal groups. Suppose we have defined local homomorphisms f’ and
f"" of the group G on the group G’ and of the group G’ on the group G’'.
The corresponding homomorphisms of the infinitesimal groups we denote by ¢’
and ¢, f' —¢’, and f"’ — ¢’’ (see Theorem 68). Let f(z) = f"'(f'(¢)) and
g(a) = ¢'’(9’(a)). Then to the homomorphism f corresponds the homomor-
phism g, i.e.,f — g.

The proof of proposition E) follows directly from the definition of the corre-
spondence given in Theorem 68. If x(¢) is a curve of G having the tangent
vector a, then the curve f'(z(f)) has the tangent vector ¢g’(a), and hence the
curve f"’(f'(z(t))) has the tangent vector g'’(¢’(a)). It follows that the curve
f(z(t)) has the tangent vector g(a) and therefore, f — g.

Theorems 67 and 68 show that to every concept or relation concerning Lie
groups corresponds naturally and uniquely some concept or relation for infini-
tesimal groups. To the inverse transition from infinitesimal to Lie groups we
shall devote the following section.

It would not be hard to introduce the concept of direct product for infini-
tesimal groups and to show that to the decomposition into a direct product of a
local Lie group corresponds a decomposition into a direct product of its infini-
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tesimal group. However, because of the complete triviality of the construec-
tion, I shall not stop to carry it out.

ExampLE 64. We continue the discussion of Example 62 and show that the
infinitesimal group R of that example has one-dimensional subgroups only, and
that every one-dimensional linear subspace of the infinitesimal group is a sub-
group of it. Let us suppose that R admits a two-dimensional subgroup 8.
Then S contains two linearly independent vectors @ and b. The vector
[a, b] = ¢, which is the vector product of @ and b, will be distinet from zero
and perpendicular to the plane S. Hence ¢ cannot be contained in 8. In the
same way it can be verified that the group R is simple, i.e., it has no non-trivial
normal subgroups.

ExaMpLE 65. Let us continue the discussion of Example 63 by selecting some
interesting subgroups of the group G given in that example, and finding which
subgroups of the infinitesimal group R correspond to them.

Let H be the subgroup composed of all matrices whose determinant is equal
to unity. We consider an arbitrary curve z(¢) in H. The determinant of the
matrix z(f) is equal to unity. It is not hard to see that in coordinate form it
is of the type 1 + 7i(f) + e(t), where () is a quantity of the second order
of magnitude with respect to ¢ (here as usual we suppose that sumiation is
carried out with respect to the index ¢). Since this determinant must be equal
to unity, it follows that dz}(0)/dt = 0. Hence the vector a which is tangent
to the curve z(¢) satisfies the condition which can be written in coordinate form

(1) a =0,

i.e., the trace of the matrix a is equal to zero. We denote by A that subgroup
of the group R which corresponds to the subgroup H (see Theorem 67). Every
matrix of A satisfies condition (1). The converse is also true and follows from
the fact that the dimension of H is equal to n* — 1, and hence the dimension
of 4 is also n? — 1, and therefore 4 must contain all the matrices which satisfy
condition (1).

Let K be the subgroup of all orthogonal matrices (see Example 4) and B the
subgroup of the infinitesimal group R which corresponds to it. In considering
orthogonal matrices it is more convenient to write both indices of the elements
as subscripts. Let x(¢) be a curve in K. Then this curve z(¢) satisfies in co-
ordinate form the following condition

8ii + xii(t) + 2is(0) + 2 za®ralt) = o
k=1

Taking derivatives with respect to ¢ on both sides of this equation we get the
following conditions for the tangent vector a to the curve z(¢):
(2) a;; + a;; = 0.

Hence B is composed of skew symmetric matrices.
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50. Integrability Conditions

In construecting Lie groups by means of their structural constants we make
use of one elementary result in the theory of partial differential equations. We
here give this result without proof, and derive from it some conclusions which
will be of use later.

We consider the system of differential equations
af i n i
f = Qai(fl: C ';f ;xly Ty x') = ‘Pi(f: ‘l')
dx’ .

i1=1, - ,nj=1---,r

‘)

where f is a point with coordinates f, - - - | f* and x a point with coordinates
z', - - -, 2". The functions ¢!(f, x) are defined and are doubly differentiable
or even analytic in the region of values of fe U and x ¢ V, where U and V
are open sets in the corresponding coordinate spaces, while z!, - - - | 27 are inde-
pendent variables, and f1, - - - | f* are functions of these variables. We have to
find a function f(z), or in coordinate form, a system of functions

@) =@, i=1,n

which/are such that conditions (1) are identically true in the independent vari-
ablesz!, - - - 2"

A natural way of proposing the question of solving the system (1) is as fol-
lows. Let the initial conditions xo € V, fo € U be given. It is required to find
a solution f(z) such that

(2) J(@o) = fo,

where f(x) must be differentiable and defined for values of the argumenf z in
the neighborhood of zo. Then the following theorem holds.

THEOREM 69. In order that the system (1) should have a solution for arbitrary
initial values xo eV, and foe U, it is necessary that the following relation be
identically true

a6(f, 7) i, n) 940, )

®) T Ao+ =0 -

=0

3¢ (f, 7)
J

xk

@; (fv I) -

for all values of x € V, f € U. On the other hand if relation (3) holds for all values
ofx eV, feU,then there exists a unique solution f(x) with arbitrary initial condi-
tHonszoe V, foe U.

We express the dependence of the solution f(x) on its initial conditions by
writing f(z) = f(x, fo, xo). Let U’ and V'’ be two open sets having compact
closures U’ and V’ such that U’c U and V’cV. Then it is possible to
find a sufficiently small positive number e such that for foe U’, zoe V' and
Ix" - xf,l <e¢t=1,---,r the solution f(z, fo, x0) exists and is triply differ-
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entiable (or even correspondingly analytic) with respect to all the arguments z,
Jo, zo.

Relations (3) are called the integrability conditions for the system (1). I
prove here only the necessity of conditions (3).*

Suppose that there exists a solution f(z) of the system (1) with arbitrary
initial conditions xo e V, fo e U. We substitute the solution f(z) into the sys-
tem (1), and differentiating the resulting identity, we get

o doi(f, x) of*  d¢i(f,x)  dei(f, x) so:(f, )
4 = = .
@ S of o T o of orlh ) + =0
Since 7
aZfi_ _ azfi
dxidrk dx*ox? y

relation (3) holds for f = f(x).

For x = z, we have f(z¢) = fo and therefore relation (3) holds for z = z,,
f = fo. Since; by assumption, the initial values may be assigned arbitrarily,
equation (3) holds for arbitrary z ¢ V, f € U. Hence the necessity of condition
(3) is established.

In what follows we shall not be concerned directly with a system of the type
(1), but with a system in which the derivatives 9f?/dz? are not given explicitly.
We shall therefore write the integrability conditions for the system of equations
which will concern us in a form more desirable for our purposes.

A) We consider the system of differential equations

of* i . .
(5) ‘ k(f—-—v,(:c) ’L=l,"',7‘;j=l,"‘,7'

where vj(z) = v} (2!, - - -, 27) are functions which are defined and are doubly
differentiable in.the region z ¢ U, and are such that the determinant of the
matrix Hv}(z)” does not become zero in this region. The system (5) can easily
be reduced to the form (1), and therefore its integrability conditions can be
written as

av,i(z) 6vf(z) i
= R (o)

(6)

where T}, are certain constants. The system (5) can be rewritten in the follow-
ing symmetric form

(7) vi(f)of’ = vi(x)ox,
where df7 is the total derivative of the function fi(x), and 87 is the derivative

with respect to the independent variable 7.

* For a proof of the sufficiency see de la Vallée-Poussin, Cours d’ Analyse, vol. 2, chapter
on equations in total differentials.
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In order to deduce relation (6) we introduce the matrix ||u}(2)|| inverse to the
matrix ||s}(z)||. This matrix exists since the determinant of the matrix ||v!(2)||
is, by assumption, distinct from zero in the region U. We have

(8) ua(2)o; (2) = va(®)u;(2) = 5,
where || 8| is the unit matrix. Differentiating relation (8) we get

© v.,(z) ou; (z) ava(z)

1()—0

Multiplying (5) by »?(f) and summing over 7 we get, changing the notation of
the indices,

aft

L = wl@.

(10)

In this way the system (5) is reduced to the form (1), and Theorem 69 is there-
fore applicable to it. By this theorem the integrability condition for the sys-
tem (10) has the form

1 B T
d o, v i 0vg d a, v, . 8
an 289 i) + w2 et
af« dr! af* 8
i al),‘(z)
— ug(f) =
Joxk

Multiplying (11) by ¢?(f) and summing over ¢ we get from (9) and (8)

s (f) m)
ofe

WP (P @) +

3? i « ;(x
D sl i) - ”()=0
of= dr*

Multiplying the last relation by w/(x)uf(z) and summing over j and k we get
v5(x)  dva(2) ws(f)  oval
(12) ( 62(“ - P~ >u.; (I)lu( ) =( ;faf — ({)‘f“p)us (f)lu(f)

The last relation must be true identically. Since the variables are separated
in it, each side of it must be a constant. Hence we have

(avg(z) 61);(2)
dz¢ 928

+

)u:(z)uf(z) = E:,.

Multiplying this last relation by v}(z)vi(z) and summing over s and ¢ we get
relation (6). Proceeding in the opposite direction we can get relation (11) from
relation (6).
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51. The Construction of Lie Groups from Structural Constants

We shall give here a construction of a local Lie group by means of its structur-
al constants. This construction will be carried out in terms of coordinates, i.e.
we shall endeavor to find functions fi(z, y) which express the coordinates of
the element f = xy = f(x, y) in terms of the coordinates of the elements x and y
(see Definition 45). It is evident that the structural constants themselves can-
not define the functions fi(x, y), since there exist transformations of coordinates
which do not change the structural constants but do change these functions.
Therefore, we must select for this construction some special coordinates, such
as the canonical coordinates of the first or second kind. Either of these choices
is possible. We make use here of the canonical coordinates of the first kind.
The construction of a local Lie group is carried out in two steps. The first
step consists in the introduction of some auxiliary functions which define
uniquely the functions fi(z, y), and are themselves defined by the latter.
These auxiliary functions satisfy certain differential equations which contain
the structural constants. The second step consists in the solution -of these
equations. It is necessary here to use canonical coordinates because the auxil-
iary functions are uniquely defined by the structural constants only in these
coordinates.

A) Let G be a local Lie group and let

(1) =y = f(z, 9).

This relation may be written in coordinate form as follows:

(2) fi=fi(x’y)=fi(xl,..,,xr;yl’.,.’yr)_

We shall now introduce the auxiliary functions. We denote symbolica]ly by
x + 6z the element whose coordinates are ¢ + gaf, i = 1, - - -, r, where z,
1 =1, .-, are the coordinates of a certain element z, wh1le

(3) ozt t=1,---,n

are small increments.
Let p = (z 4+ dz)z~!, and let us expand the coordinates of the element p in
Taylor series in powers of the increments (3). We then have

(4) p' = vi@)éc + a,
where ¢! is of the second order of magnitude with respect to the increments (3),
while vi(z) = v} (2!, - - -, 27) is a function of z. In this notation the following
relation holds:
(5) vile) = 4;
where H 5}]] is the unit matrix, and e is the identity of the group G. Also

i aft i
(6) u(f) — = vj(z).

ax?
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Hence f(z, y), as a funetion of x, (for y constant) satisfies the system of differ-
ential equations (6) with the obvious initial conditions

(M fle,y) = v.
Finally the funticons v}(z) satisfy the following system of equations

dui(z)  avi(x) )
—_ = C.80; (T)v; (X
ox! dx*k # !

(8)

where cj, are the structural constants of the group G. 1t is worth noting that
‘relation (8) is nothing else but the integrability condition for the system (6)
(see §50, A)).

We also note that it is possible to write the equation of a one parameter sub-
group in a simple form by making use of the auxiliary functions vj(z). In fact,
if 2(t) is a one-parameter subgroup of the group @, having the direction vector a,
then the following relation holds:

d 1
) a—M@)”)

Relation (5) is obvious. To prove (6) we assign in (1) certain increments to
the coordinates of the element z. Then the coordinates of the element f also
acquire certain increments, and we have

f+of = (x + dax)y.
It follows from this and from (1) that
(f+ Nt = (a2 +d)ylay)™ = (x + )2~

This last relation can be written in coordinate form by making use of (4) as
follows:

(10) n()sf = vi@)sr + e

where ¢, is of the second order of magnitude with respect to the increments (3).
Expanding the functions §f* in a Taylor series in powers of the increments (3)
we get
'k

(11) 5f = o oz + e,

dx?
where ¢ is of the second order of magnitude. It follows from relations (10) and
(11) that

of* i i i
vk(f) — 61 = 0;(x)0r + e

By comparing the coefficients in this last relation we obtain (6).
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In order to prove (8) we note that if 2, and f; are two elements in the neigh-
borhood of the identity, then there exists an element yo such that fo = zoy,.
Hence the system (6) has a solution for arbitrary initial conditions z, and f,
in the neighborhood of the identity e. Hence by Theorem 69, the integrability
conditions hold for the system (6). By remark A) of §50, these integrability
conditions have the form -

di(z)  dvi(x)

a B
S = e (2)0A(a),

(12)

where &), are certain constants. It remains to show that.these constants are
the structural constants of the group G. For z = e, relation (6) gives

i af(e, y) o
va(y) 'a— = 0;.

z]
Differentiating this last equation we get

va(y) of (e, D i @0 (e, y) o
ay* oxi e dxoy* ’

which becomes fory = e

W) 400 _

(13) ,
dy* Iz’ dy*

It follows from here and from (4) of §48 that dvj(e)/dy* = — aj. Hence for
z = e, relation (12) becomes

i
aik - ak: = Ciky

i.e., the & are the structural constants of the group G (see §48, (5)).
To prove (9) we let the parametet ¢ jave a small increment 6t. Then we have
z(t + ot)(x(1)~* = =z(dt),
and therefore

2 (8t) = vy(x(®)) (@ (t + 8) — &' () + e

Dividing both sides of this equation by 8 and passing to the limit as 6t — 0,
we obtain relation (9). Hence A) is completely established.

TaEOREM 70. Let U be an open set of the r-dimensional Euclidean space con-
taining the origin of coordinates e. Suppose the following doubly differentiable
functions are defined in U:

*1 *xi, 1 r
] (.’L‘)=1),' (:c,---,x),
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such that the determinant of the matriz ||v}(z)|| does not become zero in the region
U, and such that the following conditions are satisfied.

(14) v}'(e) = &
(15) ML e

dx? dxk
where ck' are certain constants. We form the system of differential equations

of* i
=
ax?

(16) o () (2).

Relations (15) are the integrability conditions for the system (16) (see §50, A)),
and therefore by Theorem 69 there exists a neighborhood G of the origin of coordi-
nates e such that, for any xo € G and fy € G, there exists a solution f(z, fo, o) having
the initial values xo and fo which holds for all x € G. Let f(z, y) = f(z, y, e).
Then

(17 fle,y) =y
We now define the law of multiplication of two points x and y by setting
(18) f=ay = fz,y).

Then with this law of multiplication G is a local Lie group such that the auxiliary
functions vi(z) of the group G (see A)) coincide with the given functions v} (z) and
the structural constants cjy of the group G coincide with the constants c)f, i.e.,

(19) vi(a) = o) (2)
(20) Cin = O

Proor. We prove first of all the associativity of the multiplication law. It
follows from (17) that f(e, ¢) = e. Since the function f(z, y) is continuous, we
can select a sufficiently small neighborhood V of the point e such that for
zeV,yeV wehavef(z,y)eG. LetzeV,yeV,zeV,andlet u = f(z, y),
v = f(y, 2), w = f(u, 2), w* = f(z,v). We shall then show that w = w*, which
will prove associativity.

In this proof we shall consider the elements y and z as fixed, and z as variable.
From the definition of the function f, the function w*(x) is a solution of the
system (16) with the initial condition w*(e) = v. We shall show that w(z) is
also a solution of the system (16) with #he same initial condition w(e) = .
Because of the uniqueness of the solution of the system (16) (see Theorem 69),
it will follow that w*(z) = w(x).

We have forz = ethat u = y,i.e.,w = f(y,2) = v. Hencethe initial condi-
tions coincide for the functions w(x) and w*(x).

In order to show that w(x) is a solution of the system (16) we introduce the
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matrix ||uf(2)|| inverse to the matrix lox'(z)||l. In this notation the system
(16) may be written
ofi

- = (P @),

(21) P

Furthermore, we have
dwt  dw' Ju*

T 3 a 1 k
T T ot o e (@) =k (w)y (@),
ox? ous ox?

Hence w(z) is a solution of the system (21) and associativity is proved.

The identity of the group G is the element e. For f = z, as can easily be
seen, is a solution of the system (16) with the initial condition f(e) = e. Hence,
because of the uniqueness of the solution, f(z, e) = z,i.e.,ze = 2.

In order to find the inverse elergent, it is necessary to solve with respect to y
the system of equations

(22) fiz,y) = 0.

For z = e this system has the obvious solution y = e. Furthermore it follows
from relation (17) that the Jacobian of the system (22) is equal to unity for
x =y = e. Hence the system (22) is solvable for y in the neighborhood of the
identity e, and the existence of the inverse element is proved.

Since we have already shown that @ is a local Lie group, it follows from re-
mark A) that the function f(z, y) satisfies the system (6) and at the same time
the system (16). It follows from this that vi(2) = v}*(z), since by putting
z = ein the systems (6) and (16) we get a method of calculating the functions
v'(2) and v}*(2) by means of f(z, y) (see (5) and (14)). By (19) the constants of
equations (8) and (15) must coincide, i.e., ¢k = cyl. This proves Theorem 70.

The first step in the construction of a Lie group is now completed. We pass
to the second step. Here the problem consists in solving the system (8), i.e.,
in finding the auxiliary functions vj(z) from the structural constants. The
form of the system (8) shows that the solution satisfying the initial conditions
(5) is not uniquely defined. As already mentioned, it is necessary to specialize
in some way the choice of coordinates in order to impose an additional condi-
tion on the functions v!(z) and solve the problem uniquely. We chose as these
special coordinates the canonical coordinates of the first kind (see'§39, B)).

The problem of solving the system (3) in canonical coordinates can be re-
duced to the integration of a system of ordinary differential equations. The
method used here is a rather common one. The functions v}(z) are not sought
at once in the whole neighborhood of the identity, but along a certain curve,
in this case along a one-parameter subgroup. If g(¢) is a one-parameter sub-
group, we have, in view of our canonical coordinates, gi(t) = a't. The fune-
tions v}(g(t)) for a fixed subgroup ¢(t) depend on a single parameter ¢. It turns
out that the functions ti(g(t)), as functions of the parameter ¢, satisfy a cer-
tain system of ordinary linear differential equations with constant coefficients.
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The sulution of these equations is reduced to a simple application of an elemen-
tary existence theorem, and the problem is completely sol ved.

We give here one characteristic property of the system of canonical coordi-
nates of the first kind.

B) Let D be a system of coordinates in a local Lie group. In order that
the system D be canonical of the first kind it is necessary and sufficient that
there exist auxiliary functions vj(x) in the system D (see A)) which satisfy the
following relation:

(23) v;(x):ci =z,

Suppose that the coordinates D are canonical of the first kind.  Let g(¢) be
a one-parameter subgroup of the group D having the direction vector a (see
§39, A)). Since the coordinates D are canonical we have g’ (t) = a't. Making
use of (9) we have

(24) v:(at)aj =d.

This relation becomes (23) fora = z,¢ = 1.

Suppose now that relation (23) holds. Let g(t) be a one-parameter subgroup
having the direction vector a. From relation (9) we have

i dg’(t) i

(25) o) L= = a
In view of relation (23), the system (25) is satisfied for ¢gi(t) = ait. Hence,
because of the uniqueness of the solution of the system (25), we have gi(t) = a't,
i.e., the system of coordinates D is canonical of the first kind.

C) Let @ be a local Lie group and D a canonical system of coordinates of
the first kind defined in it. Further, let vi(x) = v}(z!, - - -, «") be the auxiliary
functions (see A)) defined in the system D. Let

(26) wilt) = wilt, a) = wi(at, - - -, d't) = toyat),

where a is a fixed vector, and at represents symbolically a vector with coordi-
nates at: this notation is not common, but it is natural in canonical coordinates
of the first kind. Then the following relations hold

@27) viz) = wi(l, z),
(28) w;(0, @) = 0,
d l t 7 T a
(29) ' u;:t( ) = 0§; + Capa w?(t).

In this way the functions wi(t, @), considered as functions of the parameter ¢,
are solutions of the system (29) with initial conditions (28). From the func-
tions wi(t, a) we can now define by means of relation (27) the desired functions
j(x). This will show that in canonical coordinates of the first kind the aux-
iliary functions »{(z) are uniquely defined by the structural constants cj.
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Relations (27) and (28) are obvious. We shall now prove relation (29).

Differentiating (23) we get
xkavz(a:)

—— F (@) = 5

(30)

Multiplying (8) by z* and summing over k we get

£k, €

61)'.(.%) 6vi- z) « 8 i ap
i - —Lx = Cap?; (:c)v,,(ac)ac’c = — copz v;(x)

—
oz’ dz*
(see (23) and §48, (6)). From relations (30) and (31) it follows that

@31)

avi'(x) k $ i i a8
"z + vi(x) = 8; + capz vi(x)
ozk

Replacing z by at in the last relation we get

i
ov;(at N i i a
(;(k ) ta,k + v;(at) = §; + cap0 tvg(at).
z

(32)

The left side of the last relation can eas"11y be seen to be the derivative of the
function wj(t, a) with respect to t. Hence relation (32) can be written in the
form (29).

TaEOREM 71. Let cjy be a system of constants satisfying the following relations

*1 *1
(33) Cik = — Ckjy
*D % *p %8 *p *e
(34) Cis Cik + Cjs Cki + CrsCi; = 0.

We consider the system of ordinary differential equations

dw*’ ) :
(35) — =5+ ct,;aaw?ﬁ,
dt
where a is a constant vector, and w;* are unknown functions of the parameter t.
The system (35) is linear with constant coefficients, and therefore its solutions exist
for all values of t, — © <t < . We denote by wy*(t, a) the solution of the
system (35) having the initial conditions

(36) w0, a) = 0.
Let us suppose further that
(37) 0 (@) = w; (1, 2).

Then the functions vi*(x) satisfy relations (14) and (15), where e is the origin of
the coordinates. Moreover the following relations hold :

i

(38) () =z
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Proor. In order to establish (14) we must solve system (35) fora = e. Ob-
viously this solution is w}*(t) = &%, i.e., v]*(e) = &) (see (37)).

Relations (15) and (38) are proved by the same method, but in order to
make this method clear we shall first take up the simpler case of (38).

Let

(39) Kt = wi(t, a)a’ — ta.
We shall show that hi(t) = 0. Relation hi(1) = 0 gives (38). First of all it
is clear that
(40) hi(0) = 0.
We now calculate the derivative of the function Ai(f). Making use of relations
(35) and (33) we get

dhi t) i i a ] i - 1 j

—?5— = (6; + gaﬁa 1;,8 t a)a —a = Casdl w*ja (t, a)a

= Ctzaa(wjﬂ(t, a)aj - taB).

Hence the function hi(t) satisfies the system of linear equations

dh’ $i o f
41) — =c¢qah
( 7 i
With the initial condition 2{(0) = 0 the system (41) has the obvious solution
hi(t) = 0, hence, because of the uniqueness of the solution of the system (41),
we have hi(t) = 0 (see (40)).
To prove relations (15) we let

*1 H
ow, ¢, a)  dwr (@) xi xa

i 8
(42) hi(t) = ——— = o (6 i (@)

and show that h%(t) = 0. Then the special case hj(1) = 0 gives us (15).
Since wy*(0, a) = 0, it follows that dw*i(0, a)/da* = 0 and therefore
(43) hi(0) = 0.

We now calculate the derivative of the function hj(f). Differentiating rela-
tions (35) we get

2 %1 *
dw (¢, a) %i %8 xi o« 0w (¢, @)
44) T D Huk’t, 0) + e 2
( otoal B8 Wk (» ) ) oai
Making use of (35) and (44) we get
i *8 *B
dh:‘k _ cfiw*ﬁ + c*iaa owy C*iw*ﬂ _ c*iaa ow;
dt Lo N da’ wH d dak

*i, a ka v *B xB8 *1 ka, B *B v *8
— cap(8; + Cysa w; )wi — Capw; (8 + Cys@ Wi ).
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Collecting similar terms in the last equation we get by means of (33) and (34)

*8 *B
dhj *i a(awk dw; *B k7 *B) *i a B

o = Cq5a o et CppW; Wk | = Cap@ hj.
Hence the function hj(t) is a solution of the system of equations
dhie i ap
(45) dt] = Copa Ry,

having the initial conditions (43). With these initial conditions the system
(45) has the obvious solution hj, = 0, so that it follows from the uniqueness
of its solution that hj(t) = 0. This proves Theorem 71.

This completes the second step of the construction of a local Lie group from
its structural constants. We now state the whole construction in a final

form.

THEOREM 72. Let c, be constants satisfying relations (11) and (12) of §48.
We consider the system of equations
dw::

T i a B
(46) = 4t cwa wi,
where a is a constant vector and w; are unknown functions of the parametert. We

denote by wi(t, a) the solution of the system (46) with the initial conditions

47 wi(0, @) = 0.
Let
(48) vi(x) = wi(l, ).

Since the system (46) vs linear with constant coefficients, its solution is defined for
an arbitrary vector a and for an arbitrary value of the parameter t. Therefore the
functions vi(z) are defined for arbitrary values of the coordinates of the point z,i.e.,
over the whole Euclidean space. We consider, furthermore, the system of partial
differential equations

(49) u(f)

ot

'a? = vj(x).

The integrability conditions for this system of equations are satisfied, and since
the matrix ij’(x)l] becomes a unit matrix at the origin of coordinates e, there exists
a sufficiently small neighborhood G of the origin e such that for x € G, y € G, there
exists a solution f(x, y) of the system (49) which satisfies the initial condition

(50) fle, y) = .
We define the product of two points x and y in G by
(51) zy = f(z, y).
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By virtue of this law of multiplication G is a local Lie group taken in canonical
coordinates of the first kind, and the structural constants of this group coincide with
the preassigned numbers c. If furthermore G* is an arbitrary local Lie group,
considered in canonical coordinates of the first kind, and having for structural con-
stants the same numbers ci, then the function f*(x, y) which defines the law of
m'ultiplication tn G* cotncides with the function f(x, y) which we have defined above.

We have therefore shown the existence and the uniqueness of a local Lie
group. It is worth noting that the function f(x, ) which we have obtained
above is an analytic function, because the systems of equations which we had
to solve are analytic. Therefore every local Lie group admits analytic coordinates.

The proof of Theorem 72 follows directly from propositions A), B), C) and
Theorems 70 and 71.

We now formulate the above result in terms of infinitesimal groups.

THEOREM 73. Let R be an arbitrary infinitesimal group (see Definition 46).
Then there exists a local Lie group G such that the infinitesimal group of the group
G 1is isomorphic with the group R (see Theorem 66). Let G and G' be two local
Lie groups, and R and R’ their infinitesimal groups. Suppose there exists an iso-
morphic mapping g of the group R on the group R’. Then there exists one and
only one locally isomorphic mapping h (up to an equivalence) of the local group
G on the local Lie group G' (see §34, K)) which is such that the mapping of the
group R on the group R’ which corresponds to it (see Theorem 68) coincides with
the given mapping g.

Proor. In order to construct the group G from its infinitesimal group R it
is sufficient to take the group R in coordinate form. Since the structural con-
stants of the group R satisfy relations (11) and (12) of §48, it follows from
Theorem 72 that it is possible to construct the local Lie group G.

We select in the groups R and R’ coordinate systems which correspond to
each other under the mapping g. Then the structural constants of the groups
R and R’ will coincide.

Taking corresponding canonical coordinates of the first kind in the groups G
and G’ we obtain in them the functions f(x, y) and f’(z, y), which define the
law of multiplication, and which coincide in case the structural constants of
the groups coincide (see Theorem 72). In this way if we associate with each
point x € G a point ' ¢ G’ whose coordinates are equal to the coordinates of
the point x, we shall obtain the desired isomorphic mapping h. The unique-
ness of the mapping & follows from the fact that every automorphism of the

“group G’ can be written in canonical coordinates in the form of a linear trans-
formation (sce §42, B)). In this way to a non-identical automorphism of the
group @ corresponds a non-identical automorphism of the group R’. This com-
pletes the proof of Theorem 73.

Theorem 73 shows that the study of local Lie groups is completely reduced
to the study of their infinitesimal groups.



258 THE STRUCTURE OF LIE GROUPS [cH. X

It should be noted that the above method of construecting a Lie group from
its infinitesmal group is primarily of theoretical interest. From a practical
point of view it is more convenient to construct a Lie group from a given infini-
tesimal group from entirely different considerations and to make use of Theo-
rem 73 only as a uniqueness theorem.

ExampLE 66. We consider the structure of a two-dimensional Lie group.
Let R be a 2-dimensional infinitesimal group and p and ¢ two linearly inde-
pendent vectors of R. Let [p, ¢] = 7. It is not hard to verify that for any
two vectors @ and b of R we have [a, b] = ar, where a is some number. We
shall distinguish two cases: 7 = 0, and r > 0. If r = 0, then the commutator
of any two vectors of R is equal to zero, and the group R is commutative. In
case r = 0, there exists a vector ¢ such that [r, t] = . We take the vectors r
and t as the basis of the space R. Then the structural constants have the
values ¢}, = 1,¢%, = 0. Hence there exists only two non-isomorphic two-di-
mensional infinitesimal groups.

If the group R is commutative, then the Lie group G which corresponds to
it is also commutative.

If the group R is not commutative, then the corresponding group G can be
defined by the relations

f‘ =gl 4 yle~z2’ f2 =72 4 y2.

The set of all elements of the group G which have zero for their second co-

ordinate forms a normal subgroup of the group G. The normal subgroup of -

the group R which corresponds to it is composed of all vectors of the form ar,
where « is an arbitrary number.

52. The Construction of a Subgroup and of a Homomorphism

In the preceding section we have established the complete equivalence of the
concepts of a local Lie group G and of its infinitesimal group R. We shall ex-
amine here this equivalence in greater detail by establishing a one-to-one cor-
respondence between the subgroups, normal subgroups, and factor groups of
the groups G and R. We have already arrived at the group R from the group @
(see §49). Here we shall proceed in the opposite direction. It should be noted
that all the considerations of the present section are of a purely local character.

THEOREM 74. Let G be a local Lie group, R its infinitesimal group, and S a
subgroup of the group R. Then there exists, up to an equivalence, one and only
one subgroup H of the group G (see §23, 1)), which is such that the subgroup which
corresponds to it in R is 8.  We shall say that the subgroups H and S correspond
to each other, and write H = S.

Proor. Let r and s be the dimensions of the spaces Rand S. We selectin R
a system of coordinates such that the vector a belongs to the subspace S if
and only if its coordinates satisfy the relations

(1) aa+l=07.,,’ar=0’
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while we introduce in G the corresponding canonical coordinates of the first
kind. We shall keep these coordinates in R and G throughout the whole proof.
If the subgroup H exists, it is defined in the coordinates chosen above by a
system of linear equations (see §42, B)). Since the subgroup S must corre-
spond to the subgroup H, it follows that H must be defined by the equations

(2) JNVH:O;"')IT:O:

i.e. the point z belongs to the subgroup H if and only if its coordinates satisfy
relations (2). Hence the uniqueness of the subgroup H is proved. We shall
now prove its existence.

We denote by H the set of all points of G whose coordinates satisfy condi-
tions (2) and show that H is a subgroup of the group G. To do this it is suffi-
cient to show that if x ¢ H, y ¢ H, then a2y ¢ H and 27! ¢ H. The proof will
consist in a direct calculation of the function f(z, y) which defines the law of
multiplication in G carried out in the coordinates selected above (see §48, (1)).

Let cj; be the structural constants of the group G or, what is the same, of
the group R. Since a subgroup is defined by relations (1), it follows that the
structural constants satisfy the following relations

3) ifz'>s,j§s,lc§s,thenc:k=0.

In order to avoid indicating each time what the possible values of a certain
index may be, we agree to write a prime (') after all indices which assume only

the values 1, - - -, s and a double prime (') after indices which assume the
values s + 1, - - -, r. With this notation relation (3) can be written
(4) C;fk' = 0.

In the same way if a point (or a vector) belongs to H (or to S) we shall prime
the letter by which it is represented.

We shall now occupy ourselves with the solution of the system of equations
(46) of §51 for a = a’ £ 8. To do this we divide this system into two inde-
pendent systems

d'w;: i i a’ B
(5) = §;» + Cqga wWj’
dt i B i
and
dw;

i i ar B
(6) = ;1 + Carpa W;re.

dt

In order to find the solution of the system (5) we first find the solution of the
system

*i!
dw;

dt

|'I ir ﬂ’ *ﬂl
= §;» + Cargra Wjr .

)
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It can easily be seen that in view of (4) the system (5) is satisfied if we let
(8) wj = wy

(9) w; = 0.
Because of the uniqueness of the solution of the system (46) of §51 we obtain
the result

(10) wi (8, a’) =0
from which it follows that
(11) 0/ (') = 0

(see §51, (48)).

We note that the functions vjﬁ(z’) which we have obtained from (8) are aux-
iliary functions of some Lie group whose infinitesimal group is the group 8.
In fact we have vl (z') = w/*(1, z'), where the functions w}*(¢, a’) are ob-
tained by integrating the system (7), while the constants c¥, which enter into
this system are the structural constants of the group S.

We now proceed to the solution of the system (49) of §51. We are inter-
ested only in the function fi(z’, y’). Infact we want to show that f¥'(z’,y") =0,
since this will show that f(z’, y’) ¢ H. Since for a fixed y’ the function f(z’, y")

depends only on the variables %, ' =4, - - - | s, it is sufficient to solve the
system
i af* i,
(12) u(f) — = v ().
ax?

In order to solve this sysiem, we first solve the system

f*k’

= v;'(zl)y

(13) UL'(f )

with the initial conditions f*¢'(e, y’) = y. The system (13) is solvable since
the functions v}:(z’) are, as we have seen, auxiliary functions of some Lie
group. It can now readily be seen that the system (12) is satisfied by
fe@, y') =@, y), @', y') =0, in view of (11). Because of the
uniqueness of the solution of the system (12) we get the sought-for result,
f¥(x',y") =0. Hencez'y' = f eH.

In order to prove that (x )~'c H, it is sufficient to point out that in canonical
coordinates of the first kind the element z—! has the coordinates —z¥,
t=1---, r. This fact follows readlly from the consideration of one-
parameter subgroups. Hence (z’)~! = 2’ ¢ H, and Theorem 74 is proved.

Before passing on to the discussion of normal subgroups, we introduce the
important concept of the adjoint group, which will form the foundation for the
proof of Theorem 75.

A) Let G be a local Lie group taken in canonical coordinates of the first
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kind. To every clement z £ G corresponds an inner automorphism a. of the
group G, i.e., if z € G, then

(14) a(2) = xza—l.

Because the coordinates are canonical, relation (14) can be written in coordi-
nate form as follows.

(15) au(z) = pi(x)

(see §42, B)).

It is not hard to see that pi(xy) = pi(z)pf(y). Hence we have a homo-
morphic mapping g of the group G on the Lie group P of matrices. To
every element z & G corresponds a matrix ||pi(z)|| = g(z). The group P of
matrices is called the adjoint group of the group G. The mapping ¢ is now a
homomorphic mapping of the group G on its adjoint group P, in which the
kernel of the homomorphism ¢ can easily be seen to be the center of the group G.
The group P of matrices can also be thought of as a group of automorphisms
of the infinitesimal group R of the Lie group G.

In order to calculate the functions pj(z) directly from the structural con-
stants ¢l we replace z by ta, where ta represents a point whose coordinates are
ta’, a being a constant vector and ¢ a parameter. Then the following relations
hold :

d 1 ta) 1 a
pilta) _ Casd Pi(t0).
dt

(16)

In other words, if we take into consideration the obvious initial conditions
(17) pi(0a) = 5;

we can determine the functions pj(x) by integrating the system (16).

To prove relations (16) we shall look for the functions pj(z) over a certain
one-parameter subgroup z(tf) having the direction vector a. Because the co-
ordinates are canonical, it follows that z i(t) = ta’. Furthermore we have

a:(2) = xzx~ 27z = q(x, 2)z.
The last relation can be written in coordinate form as follows:
(18) a@) =2 + czﬁtaazﬁ + ei,
where ¢ is of the third order of magnitude with respect to ¢ and with respect to
the coordinates of the element z (see §48, (4), (8)). Comparing relations (15)
and (18) we get
(19) pita) = & + eata’ + (1),

where ¢€)(¢) is of the second order of magnitude with respect to t. Since z(¢) is a
one-parameter group we have
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(20) Ipi((t + stya)||- || pitta)]| ™ = ||pista)].
It follows from (19) and (20) that
pil(t + 8)a) — pita) = copdta”pi(ta) + ex(8)pi(ta),

but the last relation implies (16).

B) We shall point out here one conclusion from relation (16), which how-
ever will not be used by us. It follows from A) that there exists a homomor-
phic mapping g of the group G on its adjoint group P. Since P can be regarded
as a group of linear transformations of the space R, the elements of the infini-
tesimal group T of the Lie group P can be regarded as linear transformations
of the space R (see Example 63). To the homomorphism ¢ corresponds the
homomorphism & of the infinitesimal group R on the infinitestimal group T (see
Theorem 68). In this way to every element a € R corresponds a linear map-
ping fo = h(a) of the space R into itself. It follows from (16) that the mapping
fa1s defined by the relation

(21) fo(w) = [a, u],

where u ¢ R. The set of all mappings of the form (21) forms an infinitestimal
group T of mappings of a vector space into itself. The infinitesimal group T
is called the infinitesimal adjoint group of the group R or of the group G.

THEOREM 75. Let G be a local Lie group, H a subgroup of G, R the infinitesymal
group of G, and S the subgroup of the group R which corresponds to the subgroup H,
H — 8 (see Theorem 67). If S is a normal subgroup of the group R, then H s a
normal subgroup of the group G. If S is a central normal subgroup of the group R,
then H 1is a central normal subgroup of the group G.

Proor. Let r and s be the dimensions of the groups G and H. We introduce
in @ canonical coordinates such that H will be defined by the relations

(22) 2t =0,-.-,27=0.

Then the subgroup S will be defined in corresponding coordinates in R by the
relations

(23) atl =0, - -,a =0.

Just as in Theorem 74 we shall mark with a prime (/) the indices which as-
sume the values 1, - - - , sand with a double prime (’’) the indices which assume
the valuess + 1, - - - ;7. The elements which belong to H will also be marked

with a prime.

To prove the theorem we have to clear up the question of the dependence
of the elements of the group H on the inner automorphisms of the group G.
To do this it is sufficient to calculate the matrix || pi(z) ||, using the method indi-
cated in A).

Because of the special choice of coordinates in G and the fact that S is a
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normal subgroup of the group R, the structural constants ¢, satisfy the rela-
tions '
(24) C;kf = 0.

We integrate the system (16) by splitting it up into two independent sys-
tems:

dpy(ta)

a B
25) . ————— = Cqpa pj-(ta),
(25) - 50" pi(ta)
dpi(ta) ¢ «
(26) i{# = Copa" Pl (ta).

In order to integrate the system (25) we first solve the system

d *-‘/i’ ta i’ a
(27) ————p] ( ) = ca,gfa\pjf,

pr (ta).

It can readily be seen that in view of (24) the system (25) is satisfied for
ph(ta) = p;’(ta), and pi'(ta) = 0. In this way we get the result

(28) - pi (z) = 0.

In case S is a central normal subgroup we have cj,» = 0 instead of (24). In
this case the system (25) has the solution pj(ta) = 8}, and hence

(29) pi(z) = 5

In follows from (28) that a.(z’) e H (see (14) and (15)), i.e., H is a normal
subgroup, while (29) shows that a.(2’) = 2z’ (see (14) and (15)), i.e., H is a cen-
tral normal subgroup. This proves Theorem 75.

.We now pass to the consideration of homomorphisms.

THEOREM 76. Let G and G’ be two local Lie groups, R and R’ their infinitesimal
groups, and let h be a homomorphic mapping of the group R on the group R’.
Then there exusts, up to an equivalence, one and only one locally homomorphic
mapping f of the group G on the group G’ (see §23, K)) such that the homomorphic
mapping of the group R on the group R’ which corresponds to it is the given map-
ping h (see Theorem 68). We shall say that the mappings f and h correspond to
each other, and write f = h.

Proor. Let S be the kernel of the homomorphism h. By Theorems 74 and
75 to the normal subgroup 8 of the group R corresponds the normal subgroup N
of the group G, N2 8. Let G* = G/N, and denote by f* the natural homo-
morphic mapping of the group G on G*, by R* the infinitesimal group of the
group G*, and by h* that homomorphism of the group R on the group R* which
corresponds to the homomorphism f* (see Theorem 68). Then S is the kernel
of the homomorphism A*, since the kernel of the homomorphism f* is N, and
N = 8 (see Theorem 74).
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Given an element a* € R* there exists a coset A of the subgroup S in the
group R which goes into the element a* under the homomorphism h*, while
under the homomorphism h the coset A goes into some element a’ e R’.
Let @’ = h’(a*). Itis not hard to see that A’ is an isomorphic mapping of the
group R* on the group R’ for which the following condition is satisfied:

(30) h(a) = h'(h*(a)),
where a is an arbitrary element of R. By Theorem 73 there exists a uniquely

defined isomorphic mapping f’ of the group G* on G’ such that the mapping of
the group R* on the group R’ which corresponds to it is ', f’ — k'. Let

(31) J(@) = f(f*(x)).
Since f* — h* and f/ — h’, it follows from (30) and (31) that
(32) f—h

(see §49, E)).

If there exist two distinct homomorphisms f and f’/ which satisfy (32), then,
since the kernels of the homomorphisms f and /'’ coincide, we would have a
non-identical automorphism of the group G’ such that the automorphism of
the group R’ which corresponds to it would be identical; but this is impossible
in view of Theorem 73. Hence Theorem 74 is proved.

The following examples show that the considerations of the present section
are really of a purely local character.

ExaMPLE 67. Let G2 be a two-dimensional toroidal group. Every element
of the group G2 is defined by a pair of real numbers z!, 22 which are defined up
to an additive integer. The product of two element 2y = f is defined by the
relations f! = 2! + !, f2 = 2% + y?, where these equations are taken modulo 1.
G2 is a Lie group defined in the large, whose infinitesimal group we shall denote
by R®.. We consider in G? a local one-parameter subgroup z(t) defined by the
relations z!(t) = a't, 22(t) = @*, where the ratio a!/a?® is irrational. To the
local subgroup {x(t)} = H corresponds a subgroup S of the infinitesimal group
R®. We shall show that no entire subgroup of G? corresponds to the sub-
group 8. Suppose such a subgroup H* exists. Since the subgroup H* is
uniquely defined in the neighborhood of the identity by the subgroup 8, it
follows that the subgroups H* and H must coincide there. We can conclude
from the fact that H* is an entire group that the group H* must contain all the
elements z(t), 21(t) = a't, 2%(t) = a¥, for arbitrary {. Since the ratio a'/a?is
irrational, it follows readily that the group H* is a set which is everywhere
dense in G2, and since H* must be one-dimensional and closed in G* we have
arrived at a contradiction.

It should be noted that the group G2 is not simply connected, and if we had
made all our constructions for the universal covering group of G? (see Definition
44), all would have been well. In the following example we shall show that
in the case of a simply connected Lie group there also exists no one-to-one corre-




§53] COMPLEX LIE GROUPS. CLASSIFICATION 265

spondence between an entire subgroup of a Lie group and its infinitesimal
group.

ExampLE 68. Let G be the group of all rotations of the four-dimensional
Euclidean space E around the point 0, or what is the same, let G be the group
of all orthogonal matrices of order four and deigrminant unity. If u ¢ E, then
the rotation ¢ € G transforms the point u in the point ¢(u) = ve E. We con-
sider the totality of all such rotations ¢, which are defined by the relations

Il
Il

v! = cos (su! + sin (st)u?, v? = — sin (sY)u! 4+ cos (s!)u?,

v® = cos (s?)u® + sin (s?)ul, ! = — sin (s?)u® + cos (s?)ul.

It is not hard to see that the above set of rotations with arbitrary s! and s? forms
a two-dimensional subgroup G2 of the group &, where (% is a toroidal group (see
Example 67). In this way the group G* contains the same difficulties which
were pointed out in Example 67. It is true that the group G is not simply con-
nected, but the fundamental group of the manifold G is of the second order,
and therefore the use of a universal covering group will not help matters.

In what follows we shall show that the situation is more favorable for normal
subgroups.

\

53. Complex Lie Groups. Classification

It follows from Theorems 72 and 49 that analytic coordinates can be intro-
duced uniquely, up to an analytic transformation, into every Lie group G. So
far we have always supposed that the coordinates of the elements of the group
G are real numbers. However, since the functions which define the law of
multiplication (see §48, (1)) may be chosen to be analytic, the formulas which
define the law of multiplication in coordinate form preserve their meaning for
complex values of the coordinates In this way a local Lie group may be en-
larged by adding to it elements with complex coordinates. In the set G of com-
plex elements thus obtained the same law of multiplication holds as in G and
all the fundamental conditions are fulfilled in it. Obviously ( forms a local
Lie group in the usual sense, since ordinary real coordinates may be introduced
in 7 by defining them as the real and imaginary parts of the former complex
coordinates. We shall call G a complex Lie group, or the complex form of the
real Lie group G. Because of the uniqueness (up to an analytic transforma-
tion) of the choice of analytic coordinates in the group G, the group @ is deter-
mined uniquely by the group G; this determination is, of course, in a local sense
only, but we do not consider any other aspects here.

The concept of a complex local Lie group may be introduced independently
without reference to a real Lie group. In order to do this it is sufficient to
note that relations (1) of §48 are analytic, and that the parameters which ap-
pear in these relations assume complex values. In doing this it may happen
of course that a complex Lie group is not generated by any real Lie group.
All the relations and definitions of the preceding sections are automatically ex-
tended to complex Lie groups. The concepts of structural constants and infini-
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tesimal groups are introduced; only all this is done in the complex rather than
the real domain. In particular, a complete correspondence is established be-
tween complex local Lie groups and their infinitesimal groups.

The meaning of this construction becomes clear when we consider that in the
study of infinitesimal groups it is necessary to solve algebraic equations and
therefore the introduction of complex numbers is quite natural. It is possible
of course to avoid complex numbers by a roundabout way, but the introduction
of a complex group seems more logical.

While a real group always has one and only one complex form, a complex
group may have no real form at all, or have several real forms. 1ln this way
in order to apply results obtained for complex groups to real groups we have
always to solve the additional question as to what real forms belong to a given
complex group. This question becomes particularly acute in the classification
of groups. Suppose that we have achieved a classification of a certain type of
complex groups. In order to infer from this a classification of real groups of
corresponding type, it is necessary to find all the real forms of each of these
complex groups. This determination, however, is far from simple.

We now pass to the isolation of some important types of groups. We shall
do this in terms of infinitesimal groups, recalling that there exists a complete
correspondence between them and the local Lie groups.

A) A complex or real infinitesimal group R is called commutative if for a € R,
b e R we always have [a, b] = 0 (see Definition 46).

B) Let R be a complex or real infinitesimal group. We define by R; the
minimal linear subspace (respectively complex or real) of the vector space I
which contains all the elements of the form

1) [a, b],

where a ¢ R,be R. R, is called the commutator of the group R, and is a normal
subgroup of R. The factor group R/R; is commutative, and the normal sub-
group R; can be characterized as the minimal normal subgroup having this
property, i.e., if S is a normal subgroup of the group R such that B/S is com-
mutative, then B, c 8. In other words; we simply carry over the concept of a
commutator subgroup from abstract groups to Lie groups.

In order to prove that the commutator subgroup R; is & normal subgroup it is
sufficient to note that the commutator of an arbitrary vector ¢ € R and a vector
of the form (1) is also a vector of the form (1), since [c, [a, b]] = [¢, d], where
d = [a, b]. The commutativity of the group R/R; follows directly from the
definition of a factor group (see §49, B)). We shall now prove the minimum
property. If R/Sis commutative, then for arbitrary a € R and b € R we have
[a,b] & S (see §49, B)). Hence R, c S.

C) Let R, be a complex or real infinitesimal group. We construct the se-
quence of groups

(2) Ro, Ry, -, Ry - - -
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where R;,, is defined as the commutator subgroup of the group R; (see B)).
Obviously, if two members of the sequence (2) are equal, then all the remaining
terms coincide with them. Furthermore, if two members are not equal, then
their dimensions differ at least by unity. Therefore, since the dimension of R,
is finite, the series (2) must eventually become stationary. If this sequence
becomes stationary beginning wigh the null subgroup (i.e., the subgroup of the
group R, which contains only zero), then the group R, is called solvable. This
definition is entirely analogous to the corresponding definition in the theory of
abstract groups (see Definition 9). We shall call the sequence (2) the series
of commutator subgroups of the group R,.

D) A complex or real infinitesimal group R is called semi-simple if it con-
tains no solvable normal subgroups distinct from zero.

We now pass to the proof of some elementary propositions about solvable
and semi-simple infinitesimal groups.

We note first of all that a number of the propositions proved in the first chap-
ter for abstract groups can easily be generalized to infinitesimal groups.

E) Let R be a complex or real infinitesimal group, and S and T two of its
subgroups. We shall understand by the intersection of two subgroups S and 7
the intersection of the sets S and T, and by the sum or product of the groups S
and T the set S + T composed of all elements of the form a 4 b where a ¢ S,
beT. With this understanding all the propositions and definitions about ab-
stract groups which were given in §5 are applicable to infinitesimal groups.
We shall review here only the concept of direct product.

We shall say that the infinitesimal group R decomposes into the direct sum,
or tnto the direct product, of its normal subgroups S and T, if the intersection
S n T contains only the zero, and if the sum S + T is equal to R. It is clear
‘that just as in abstract groups, the group R can be constructed, up to an iso-
morphism, from the groups S and T (see §5, F)).

F) In order that a complex or real infinitesimal group R be solvable, it is
sufficient that R contain a sequence of subgroups

3) Ro=R,R, Ry - ,Rl, -, Ry=1{0}
such that Ry, , is a normal subgroup of the group R, and that the factor group
R//R/,, is commutative fors =0, - - -, n — 1.

The proof of proposition F) is by induction on the number n 4 1 of elements
of the sequence (3). We denote by R; the commutator subgroup of the
group R. Since R/R] is commutative, R; ¢ R{ (see B)). It follows from this
that the proposition is true for n = 1. We denote by S; the intersection of
RinR,t1=0,1---, n—1 It is not hard to see that the sequence
So, Si, -+, Sny1 Possesses the same properties with respect to the group
R, = 8, as the series (3), but the number of its members is one less than
the number of terms in (3). Hence it follows from the hypothesis of the in-
duction that R, is a solvable group, but from this follows the solvability of the
group R in view of the definition of solvability (see C)).
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G) If a complex or real infinitesimal group E is solvable, then its subgroups
and factor groups are also solvable.
Let S be a subgroup of the group R and let

Ry=R,Ry, -+, R. = {0}

be the series of commutator subgroups of the group R (see C)). We denote
by S; the intersection S n R;. It is not hard to see then that the series of sub-
groups

satisfies the condition of remark F) and therefore the subgroup S is solvable.
Let R* be a factor group of the group R. We denote by R; the image of the
group R;in the group R*. It can readily be shown that the series of subgroups

R$=R*,R{,~~,R,',

satisfies the conditions of remark F) and therefore the factor group R* is solva-
ble.

H) If R is a complex or real infinitesimal group and S a solvable normal
subgroup such that R/S is solvable, then R is also a solvable group.

We denote by

Ry RY,-- -, Ri = {0}

the series of commutator subgroups of the group R/S, by R/ the inverse image
of the group Rj in the group R, and by

Ri = 8, Riys, - -, R = {0}
the series of commutator subgroups of the group S. Then the series
Ry=R,R, - -,Rt=258, Riys, -+, Ru = {0}

can easily be seen to satisfy the conditions of remark F), and therefore R is a
solvable group.

TurorEM 77. Let R be a complex or real infinitestmal group. Then there exists
in R a mazimal solvable normal subgroup S, i.e., a solvable normal subgroup S
which has the property that every other solvable normal subgroup S’ of the group R
is contained in S. Furthermore S may be characterized as that solvable normal
subgroup of the group R which renders the factor group R/S semi-simple.

Proor. Let S be a solvable normal subgroup of the group R which is not
contained in any other of its solvable normal subgroups. We shall show that
it has the property of being a maximal solvable subgroup as stated in the
theorem. Let S’ be an arbitrary solvable normal subgroup of the group R,
andlet 8’ = S 4+ 8’ (see E)). Then 8’’is a normal subgroup of the group R.
We shall show that the group S’’is solvable. We denote by D the intersection
S’ n 8. By Theorem 2 (see E)), S’'/8 is isomorphic with 8’/D. The last
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group is solvable in view of proposition G). Hence it follows from H) that the
group S’’is also solvable. If now S’is not contained in S, then S’’is a solvable
normal subgroup which contains S and which is greater than S, which contra-
dicts the assumption. Therefore S’ c S.

We shall now show that R/S is a semi-simple group. Let us suppose the
contrary to be true. Then there exists a solvable normal subgroup 7* of the
group R/S which is distinet from zero. We denote by T the complete inverse
image of the group T™* in the group%. Then the factor group 7'/S is isomor-
phic with T* and therefore by H), T is a solvable normal subgroup of the
group R. But if T* is a non-zero normal subgroup of the group R/S, then T
is greater than S, which contradicts the definition of the group S.

Let us now suppose that S’ is a solvable normal subgroup of the group R
which has the property that B/S’ is a semi-simple group. We then show that
S’ = 8. In fact, suppose S’ % S. Then S’ is a proper part of S and there-
fore the factor group R/S’ contains a non-zero solvable normal subgroup S/S’
(see G)). This proves Theorem 77.

All the above propositions are simple repetitions of corresponding theorems
in the theory of abstract groups. Theorem 77 shows that in a certain weak
sense the study of general infinitesimal groups can be reduced to the study of
semi-simple and solvable groups. There is, however, a way of strengthening
Theorem 77, although only for Lie groups. We give here this stronger theorem
without proof, since the proof is too complicated to be given here (see [18] and
[36]).

TueEoREM 78. Let R be an arbitrary complex infinitesimal group and 8 its
mazximal solvable normal subgroup. Then R contains a semi-simple subgroup T

which 1s such that
S+T=R, SnT-= {0}

(see E)). In this way R s, so to speak, decomposed into the direct sum of the
normal subgroup S and the subgroup T. A true decomposition into a direct sum
would have been achieved if the subgroup T were a normal subgroup.

Theorem 78 hows that the knowledge of solvable and semi-simple groups is
really quite important for the study of general groups.

We shall now establish some connections between real infinitesimal groups
and their complex forms.

I) Let R be a real infinitesimal group and R its complex form. Then Rc R,
and every vector ¢ of i can be represented uniquely in the form ¢ = a + b,
where a and b are vectors of R, and ¢ = v/—1. In this way it is possible to
introduce the concept of the complex conjugate of an element of the group R:
the two elements ¢ = a 4+ b7 and ¢ = a — b will be called complex conjugates
of each other. Furthermore, if M is a set of elements of R, we shall denote
by M the set of all elements which are complex conjugates of the elements of
the set M, and we shall say that the sets M and M are complex conjugates of
each other. It is not hard to see that if S is a subgroup or a normal subgroup
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of the group R, then S is correspondingly a subgroup or a normal subgroup of
the group R.

J) Let R be a real infinitesimal group and R its complex form. Then the
groups R and R are either both solvable or both insolvable.

We denote by

(4) Ro=R,Ry,---,Ry---

the series of commutator subgroups of the group R (see C)) and by R; the total-
ity of all vectors of the group R which can be represented in the form a -+ b,
where a € R;, b ¢ R;. It is not hard to see that the sequence

(5) EO=R;§17"';§i:"'

forms the series of commutator subgroups of the group B. Proposition J) fol-
lows directly from the connection between the series (4) and (5).

K) Let R be a real infinitesimal group and 7 its complex form. We denote
by S the maximal solvable normal subgroup of the group R, and by § its com-
plex form. Then § is the maximal solvable normal subgroup of the group R.
We see in this way that the groups R and R are either both semi-simple, or else
neither of them is semi-simple.

In order to prove K) we denote by T the maximal normal subgroup of the

group & (see Theorem 77). It follows from I) that T is also a solvable normal
subgroup of the group R and therefore Tc 7. Hence
(6) T =T.
We denote now by U the set of all real vectors of T, i.e.,the set of vectors ¢
such that ¢ = ¢. If a + bi € T where a and b are real vectors, then it follows
from (6) that ae T and be T, i.e., ae U and b e U. Hence T coincides with
the complex form of the group U, T = [, and it follows from J) that U is a
solvable normal subgroup of the group R. Hence

(7 UcS8.
On the other hand S is a solvable normal subgroup of the group R and therefore
(8) ScrT =T.

It follows from relations (7) and (8) that 7 = § = T.

L) A complex or real infinitesimal group R is called simple if it has no normal
subgroups other than the zero and the whole group R.

It should be noted that there exists one simple group which is not semi-
simple. This is the one-dimensional infinitesimal group. Obviously it is sim-
ple, but it is not semi-simple because it is a solvable group. All other simple
groups can readily be seen to be semi-simple also.

It should also be noted that if a real group is simple its complex form is not
necessarily simple (see Example 72).
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Our further investigations into infinitesimal groups have to do with their
classification. Solvable groups still remain unclassified, but we can give a com-
plete classification of semi-simple groups. This classification is effected by
means of a very complicated set-up, which makes it impossible to give here
complete proofs of all results. We therefore confine ourselves to a mere ex-
position of the results.

The following theorem reduces the classification of semi-simple groups to
that of simple groups.

THEOREM 79. If R 1§ a complex or real semi-simple group, then it is decom-
posable itnto the direct product of simple non-commutative groups.

This theorem is given here without proof (see [5]).

In order to present more clearly the results on the classification of semi-
simple groups I state here, also without proof, the two following theorems of
Weyl (see [35]).

THEOREM 80. If G is a real compact semi-simple Lie group then every group G’
which s locally isomorphic with the group G is also compact.

Hence the property of compactness is a local property for semi-simple Lie
groups and therefore depends only on the infinitesimal group R of the group G.
Therefore we shall call the infinitesimal group R itself compact in this case.

THaEOREM 81. Every complex semi-simple infinitesimal group R has a real com-
pact form R (see Theorem 80), and this form is unique up to an isomorphism.

The methods used in the classification of semi-simple infinitesimal groups
allow us in the first place to give a classification of complex groups. Theorem
81 shows, however, that there exists a one-to-one correspondence between com-
plex semi-simple groups and their compact real forms (see Theorem 80). In
this way the classification of complex semi-simple groups gives automatically
the classification of compact real semi-simple groups (see [19]). We also note
that if a simple real group is compact, then its complex form is simple. In this
way it follows from Theorem 81 that in order to give a complete classification
of semi-simple complex groups, it is sufficient to give a complete classification
of compact simple Lie groups up to local isomorphism. This classification is
given by the following theorem, which like the preceding one, is given without
proof (see [5]).

TueorEM 82. Compact non-commutative simple Lie groups can be classified,
up to local isomorphism, as follows. There are five isolated groups, whose dimen-
stons are 14, 52, 78, 133, and 248. (We cannot enter into a detailed considera-
tion of these groups here.)

Besides the above five groups, there are four infinite series of groups

A, B,,C, (n=1,2...) and D, (n=23,4,---)
A, = B, = (4, B, = (s, Az = Ds.
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The group A, is composed of all unitary unimodular matrices of order n + 1,
i.e., the elements a € A, are the matrices a = ||as;|| whose elements are complex num-
bers which satisfy the relations

n+1
2 @abp = bij
k=1
and the determinant of the matriz ||as,|| is equal to unity.
The group B, ts composed of all orthogonal matrices of order 2n + 1 having a
positive determinant, i.e., the elements b € B, are the matrices b = ||b;|| whose ele-
ments are real numbers satisfying the relations

2n+1

2 baby = b4
k=1

and the determinant of the matrix ”bi,- s equal to unity.
The group C, is composed of all unitary matrices of order 2n which leave in-
vartant the bilinear form

2n  2n

Z Z 0Tl

i=1 j=1
whose coefficients f:; have the following values :
J=— fa = L fau=— Ja=1," ", fon10n = = fangn1 =1,
while all the other fy; are equal to zero. Hence the elements ¢ € C, are the matrices
¢ = ||cij|| whose elements are complex numbers which satisfy the relations
2n  2n

2n
D calik = 8ij, > D ficaci = fu,
k=1

=1 j=1

and the determinant of the mutriz ||ci;l| is equal to unity.

The group D, s composed of all orthogonal matrices of order 2n with positive
determinants, so that the elements d € D, are the matrices d = ||di;|| whose elements
are real numbers satisfying the relations

2n

> dady = 8ij,

k=1
and the determinant of the matriz ||ds|| s equal to unity.

The classification of complex semi-simple groups was originally given by
Killing, but his proofs were incomplete. They were corrected by Cartan (see
[5]), and later van der Waerden (see [34]) gave, on the basis of results of
Weyl (see [35]), a new, more geometrical, and more elegant proof.

We note here that the groups A, and C, are simply connected, while the
groups B, and D, have a fundamental group of the second order (see §46, G)
and Definition 42).
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ExampLE 69. Let K be the quaternion field (see §37, A)). We denote by @
the set of all quaternions whose norm is equal to unity. The set G can readily
be seen to form a group under multiplication. Since G is a sphere in the space
K, the space G is the three dimensional sphere, and is therefore simply con-
nected. The center of the group G is composed, as can readily be seen, of the
two quaternions 41 and —1; we designate the center by Z. In this way every
group which is locally isomorphic with the group G is isomorphic either with the
group @ itself or with the factor group G/Z (see Definition 44).

Let R be the three dimensional subspace of the space K which is composed
of all quatemaions of the form a7 + bj + ck. It can easily be seen that if 2 ¢ R
and ¢ € G, then grg~' € R, and the norms of the quaternions x and gxg—! are
equal. In this way we associate with every quaterion g € @ a certain rotation
¢, of the space R which transforms the vector z into the vector ¢,(z) = gzg~'.
It is not hard to see that it is possible in this way to get all the rotations of the
space R, and that the rotation ¢, is the identity if and only if ¢ = + 1,1i.e.,
g e Z. Hence the group of rotations of the three dimensional Euclidean space
R is isomorphic with the group G/Z. The group G/Z enters into the classifica-
tion in Theorem 82 as the group B;.

ExampLE 70. Let K be the quaternion field and G the subgroup of quaterni-
ions of norm 1 (see Example 69). We associate with every pair of quaternions
(g, h), g € G, h € G the rotation ¢, of the space K which transforms every vector
z £ K into the vector ¢,n(x) = gah~!. It is not hard to show that we get in
this way all the rotations of the space K, and that the identical rotation ¢, cor-
responds only to the pairs (1, 1) and (—1, —1). It follows from this that the
group L of rotations of a four dimensional space K is locally isomorphic with
the direct product of two groups isomorphic with the group G. Therefore, the
group L decomposes locally into the direct product of two simple groups, and
is itself only semi-simple, but not simple.

ExampLE 71. Let @ be the group of quaternions of norm 1 (see Example 69).
We denote by H the finite subgroup of order 8 of the group C which is com-
posed of the units: +1, +¢, +j, +k (see §37, A)). The space G/H (see Defini-
tion 24) has for its fundamental group the group H (see Example 61). Hence
G/H is a three dimensional manifold having a non-commutative fundamental
group H.

ExampLE 72. Let R, be the n-dimensional vector space. We denote by Gf
the group of all linear transformations of the space R, which leave invariant
‘the non-degenerate quadratic form y,(x) which consists in its canonical form
of n — k positive and k negative squares. It is not hard to show that the
group Gy is a real Lie group. It is obvious that the complex forms of all the
groups G, k = 0,1, - - -, n, are isomorphic, since in complex form there is no
distinction between the quadratic forms yx(z), ¥ = 0,1, - - - , n. In their real
forms the groups G} and G} are locally isomorphic only if £ + I = n. In this
case they are, of course, simply isomorphic. There is an obvious distinction
between the groups Gj and GY, since the group Gj is compact, while the group G
is not.
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It is worth noting that the group G4 is simple in its real form; while the group
G5, as we have seen, (see Example 70) decomposes locally into a direct product.
Hence the complex form of the real simple group G4 is not simple, but only semi-
simple.

We now consider the group 3. We call a ray in the space R; the totality
of all vectors of the form ar; where x € R3, and « is an arbitrary real number.
The set of all rays of the space R; forms, as is well known, a projgective plane P.
The locus represented by the equation y,(x) = 0 intersects the plane P in a
real conic section V. In this way to every transformation of the group G corre-
sponds a projective transformation of the plane P which leaves invariant the
conic section V. Hence the group G? is locally isomorphic with the group of
transformations of a projective plane P which have an invariant curve V.
This last group is, as is well known, isomorphie with the group of rotations of a
non-Euclidean plane, and also with the group of linear fractional transforma-
tions of a line.

We note that, up to a local isomorphism, there are only two three-dimen-
sional simple Lie groups: The groups G and G2, the first of which is compact,
while the second is not. The complex forms of G3 and G2 are locally isomor-
phic.

There are no two-dimensional simple Lie groups (see Example 67).

We also note the obvious fact that in the classification of Theorem 82, the
group GZ"*! appears under the notation B,, and the group G2* as D,.

54. The Construction of a Lie Group in the Large

We shall give here a construction of an entire Lie group from its structural
constants. (An entire group is a group in the sense of Definition 1 as con-
trasted with a local group.) This construction depends on Theorem 78, which
remains unproved in this book; but since Theorem 78 is of a purely local char-
acter this construction is not devoid of interest. We shall make constructions
independent of Theorem 78 for groups having no center and for solvable groups.

We want to point out in advance that some of the details of the proofs which
follow are not given with complete care and exactness. The trouble is that
in a local group (see §23, D)) the operation of multiplication is not defined for
every pair of elements, and therefore certain of the constructions given below
have meaning not for the local group itself, but only for a sufficiently small part
of it (see §23, G)). However, were we to attempt to define each time the
proper portion of the group, and introduce a new notation for it, our text would
be unnecessarily cluttered up with non-essential details. Therefore we take
the liberty of talking about the local group itself, whereas, in some cases, we
should be talking only about a certain part of this group.

A) If a local Lie group G’ has no center, then a part of it can be contained
in an entire Lie group G.

To prove this we consider the adjoint local Lie group P’ of the group G'
(see §52, A)). Since G’ has no center, the mapping g of the group G’ on the
group P’ is isomorphic on some part of the group G’. We denote by
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(1) ' Ul)"')Ui)"'

a complete system of neighborhoods of the identity of the group P’. We de-
note furthermore by P the set of all finite products of matrices which belong
to P'. The set P, as can easily be seen, forms an abstract group under multi-
plication. We introduce a topology into the group P by taking the system (1)
for a complete system of neighborhoods of the identity. It is not hard to
verify that the system (1) in the group P satisfies the conditions of Theorem
10, and therefgge the group P is a topological group, and P’ is contained in P
as a neighborhood of the identity. Hence the local group P’is contained in the
complete group P, and since G’ and P’ are locally isomorphic, Proposition A)
is proved.

LeMMma. Let G’ be a local Lie group. Suppose G’ contains a normal subgroup
N’ and a subgroup H' having the properties that the intersection N' n H'contains
only the identity, the product N'H' coincides with G', and every element g’ € G'
can be represented uniquely in the form g’ = n'h’, where n’ e N', and h' ¢ H'.
Let us also suppose that the local groups N’ and H' can be included in the entire
connected simply connected groups N and H, respeciively (see §46, F), G)). We
now form the topological product G of the spaces N and H, 1.e., the set of all pairs
(ni, h), there ne N, and h € H (see Definition 21). We can define the law of
multiplication in the group G in such a way that G becomes a topological group
satisfying the following condition: if we associate with every element g’ = n'h’ e G’
a pair of elements (n', h") € G, we get a homeomorphic mapping x of the local Lie
group G' on some neighborhood of the identity of the group G, which is isomor phic
on some part of the group G'. Hence G is an entire connected simply connected
Lie group which contains a part of the group G' as a local group.

Proor. We consider the inner automorphism ¢, of the group G’ which is
defined by the relations ¢,,(z) = g’zg’~!. Since N'is a normal subgroup of the
group G, the automorphism ¢, of the group G is also an automorphism of the
group N’. By Theorem 63 the automorphism ¢, of the group N’ can be ex-
tended uniquely to the automorphism ¢, of the entire group N. In this way
to every element A’ € H' corresponds a definite automorphism ¢, of the group
N.

We denote by K’ the set of all elements of the group H' to which corresponds
the identical automorphism of the group N. Then the set L' of automorphisms
of the type ¢s forms a local Lie group isomorphic with the factor group H'/K'.
We denote by

(2) Wy ooy Wa, - -

a complete system of neighborhoods of the identity of the group L’, and by L
the set of all finite products of automorphisms belonging to L’. Then L is an
abstract group. We introduce a topology into L by taking the system (2) for
the complete system of neighborhoods of the identity. It is not hard to check
that the system (2) satisfies the conditions of Theorem 10, and therefore L is a
group which contains L’ as a local group.
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From what we have already established, to every element h’ e H' corre-
sponds an automorphism ¢ € L’. Therefore we have a locally homomorphie
mapping ¢ of the local group H' on the local group L’. By Theorem 63 the
homomorphism ¢’ can be extended in only one way into a homomorphism ¢
of the entire groupn H on the entire group L. Therefore, to every element
h & H corresponds a definite automorphism ¢, = (k) of the group N.

We now define the product of two pairs (n1, k1) and (nz, hs) of the set G as
follows:

3) (1, ha) (na, he) = (ragny(ma), haho).

It is not hard to verify that by virtue of this law of multiplication the set @G
becomes a topological group.
We establish first of all the fact that G is an abstract group. We have

((n1, h1)(ne, he))(ns, hs) = (mign,(n2), hihe)(ns, hs) = (Myen,(N2) onn,(ns), Rikehs),
((n1, h1)(ne, he) (Mg, h3)) = (nih1) (Negn,(ns), hehs) = (Ragn,(N2)@nn,(ns), hihohs).

Hence the associative law is satisfied. The identity of the group G is the pair
(es, €1), Where e, is the unit of the group N, and e; is the unit of the group H.
The pair inverse to the pair (n, h) is (g4~1(n71), A1), In fact (see (3)),

(n, W) (et (n71), k1) = (now™ (n71), hh™") = (ex, €n).

Hence in view of the multiplication law (3) the set G is an abstract group.

We shall show that the multiplication law (3) is continuous in the topological
space G. To do this, we show first of all that the element ¢4(n) ¢ N is a con-
tinuous function of the pair of elements n ¢ N and h ¢ H. We denote by U
and V such neighborhoods of the identities of the groups N’ and H' that
VUV-te N'. Obviously for n € U and h € V the function ¢x(n) is continuous,
since gn(n) = hnh~!. Let now h eV, and let n be some fixed element of N.
Since N is connected, n = n,, - - -, ng, where n; e U,7 = 1, - - - | k (see Theo-
rem 15). Then

on(n) = on(ny) - - - on(m).

Since we have already shown that ¢.(n;) is a continuous function of the ele-
ment h, the last product is also a continuous function of the element h, since
the multiplication law is continuous in the group N. Let h eV, and let n be
an arbitrary element of N. We can then write n = n*n’, where n* is fixed
and n’isin U. We then have ¢r(n) = or(n*)eon(n’), and hence, from what we
have already shown, the function ¢a(n) is continuous for A e V, and ne N.
Now let he H and n ¢ N be arbitrary variable elements; then we can write
h = h*h', where h* is fixed and A’ ¢ V. We have ¢,(n) = ¢1* (pr(n)), where
o (n) has been shown to be a continuous function of the pair of elements A’
and n. Furthermore ¢} (#) is a continuous function of the element 7. Hence
er(n) is a continuous functions of the pair of elements ~ and n.
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It follows from the above that nips,(n2) is a continuous function of the ele-
ments n,, &;, and n.. In the same way hh; is a continuous function of the
elements h, and h,. Therefore the law of multiplication (3) satisfies the con-
ditions of continuity, and @ is a topological group.

We now prove that the mapping x is isomorphic on some part of the local
group G'. Let g = mh, and g» = nshe be two elements of the group G'. We
then have gige = nmhinghy = nihinohy *hihy = (ugn,(n2))(hihs). If we now mul-
tiply the corresponding pairs (mh;) and (nehe) in the group @, we get, in view
of the multiplication law, (nies,(n2), hihe). Obviously the mapping x is homo-
morphic. This proves the lemma.

We note that the above lemma is true for real as well as for complex Lie
groups (see §53).

We shall now apply this lemma to construct a solvable Lie group in the large.

TurorEM 83. Let R be a solvable infinitestimal group (see §53, C)). Then
there exists an entire connected simply connected Lie group G whose infinitesimal
group is isomorphic with the given group R. The group G is homeomorphic to a
Euclidean space, t.e., we can introduce in it cartesian coordinates x', - - -, aT.
Moreover, there exists a set of cartesian coordinates having the following properties:
1) The multiplication law can be expressed in these coordinates by means of ana-
lytic functions defined in the whole group G, 2) If we denote by ¢:(t) a point whose
coordinates are equal to zero with the exception of the i-th coordinate which vs equal
to t, then gi(t) is a one-parameter subgroup of the group G, and the coordinates of
the point g1(t) - - - ¢.(t") are the numbers ¢!, - - -, t". We denote further by H;
the totality of all points of the form g,(t*) - - - g:(t*). Then H; is a subgroup of the
group G and a normal subgroup of the group H .

Proor. It is not hard to construct in a solvable infinitesimal group R an
increasing sequence of subgroups

Sy, - -,8 =R,

where the group S; is of dimension 7 and is a normal subgroup of the group
Si;1. Let G' be a local Lie group having the infinitesimal group R (see Theo-
rem 73). To the subgroup S; corresponds a subgroup H; of G’ (see Theorem
74). The group S, is a one-parameter group and the theorem is obvious for it.
Suppose that the theorem has been proved for the group S;. We then select
in the group Hy,, a local one-parameter subgroup {g,’H(t)} = K;H which is not
in H]. Then H;K,,, = H,,,, and theintersection H; n K, contains only the
identity, while H, is a normal subgroup of the group H;,, (see Theorem 75).
We are therefore in a position to apply the lemma of the present section, since
the group H; has already been constructed in the large, while the group K;,, be-
ing a one-paraneter group, can be included in the entire group K/, = {gini(t)}.
Hence we can represent every element of the entire group H,,1in the form of a
pair (h;, gi+1(f)), where h; € H;. 'This completes the induction and proves Theo-
rem 83. The analyticity of the law of multiplication follows directly from the
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fact that every automorphism of the group H; which is generated by the ele-
ment g;41(¢) can be expressed in an analytic form.
We note that Theorem 83 is true for real as well as complex groups R.

THEOREM 84. Let R be an arbitrary infinitesimal group. Then there exists an
entire group G whose infinttesimal group is isomorphic with the given group R.
(Note that the proof of this theorem depends on Theorem 78, which was given
above without proof.)

Proor. Since Theorem 78 is formulated for complex groups, we first give a
proof for a complex infinitesimal group £ which coincides with R if R is com-
plex, and is the complex form of R if R is real.

Let G’ be a local Lie group having the infinitesimal group R (see Theorem
73). By Theorem 78 the group R contains a solvable normal subgroup S and
a semi-simple group 7' such that the intersection § n 7' contains only zero and
the sum S + T coincides with the whole group #. Let N’ and A’ be those
subgroups of the group ' which correspond to the subgroups § and T (see
Theorem 74). Then N’ is a normal subgroup of the group G, and the inter-
section N’ n H’ contains only the identity, while the product N'H’ coincides
with G’. The group N’, being solvable, may be included in the entire con-
nected simply connected group N (see Theorem 83). The group ', being
semi-simple, does not contain a center and therefore may be included in some
entire connected group H* (see A)). Taking the universal covering group of
this entire group (see §47) we get a simply connected group /7, which contains
the group A’ as a local group. We are therefore in a position to apply the
lemma of the present section, i.e., to include the local Lie group G’ in the entire
group (, where @ is simply connected, as can easily be seen.

We now pass to the consideration of the case in which R is the complex form
of a real group R. Then G’ is the complex form of that real local group G’
whose infinitesimal group coincides with R. We associate with every element
r € @' its complex conjugate element & = y'(z). It can readily be seen that
the mapping ¢’ is a local automorphism of the above constructed topological
group (7, and since the group G is simply connected, this automorphism can be
extended into an automorphism ¢ of the entire group G (see Theorem 63).
We denote by G the set of all elements of the group G which remain invariant
under the automorphism ¥, i.e. such elements that y(z) = z. It is obvious
that the set G is a subgroup of the topological group ¢. The set G can readily
be seen to coincide with G’ in the neighborhood &', since in that neighborhood
the real elements coincide with their conjugates. In this way a neighborhood
of the identity of the group @ coincides with the local group G’. Hence the
local group G’ is contained in the entire group G.

It is worth noting that we have now established in the group G the concept of
conjugate elements,i.e., we can suppose that the elements z and y(z) are com-
plex conjugates. We have therefore the right to assert that the group G is the
complex form of the real group @, while prior to this the concept of complex
form had meaning only for local Lie groups, since it was defined in terms of
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coordinates. It should be remembered, however, that the entire real group G
thus obtained cannot be supposed to be given in advance. All we know is that
G is a real Lie group having a given infinitesimal group B. The complex group
G is defined uniquely, since it is connected and simply connected, and therefore
the group @ is also uniquely defined. However, if we are given an entire real
Lie group G, the question as to its complex form in the large is undetermined.

THEOREM 85. Let G be an entire simply connected Lie group and let N’ be a
local normal sullgroup of G. Then a certain part of the Lie group N' may be in-
cluded in an entire normal subgroup N of the group G. (It should be noted that
the analogous theorem would not be true for a local subgroup H’ of the group G
which is not a normal subgroup (see Example 68)).

Proor. Let G’ be a small neighborhood of the identity of the group G.
Then G’ is a local Lie group, and N'is a normal subgroup. The factor group
G'/N' = K’ (see §23, J)) is a local Lie group and therefore can be included in
the entire connected simply connected Lie group K (see Theorem 84). The
natural homomorphic mapping f’ of the group G’ on the group K’ is a local
homomorphism of the group G on the group K and, since G is simply connected,
the homomorphism f’ can be extended into a homomorphism f of the entire
group G in the entire group K (see Theorem 63). We denote the kernel of the
homomorphism f by N. It is not hard to see that N is an extension of a certain
part of the local group N'.

I do not know whether Theorem 85 holds in case the group G is not simply
connected, and whether the normal subgroup N obtained in this theorem is
simply connected or not. The fact that the normal subgroup N is connected
follows readily from the simple-connectedness of the group K.

Exampre 73. The method used in the proof of the lemma given in thissec-
tion is also useful for the construction of examples of Lie groups.

Let N be the r-dimensional Euclidean space, which we shall also consider as
an additive vector group. Let H be the group of all rotations in the space N ;
with each element z € H is associated a rotation ¢, of the Euclidean space N.
The rotation ¢, is an automorphism of the group N. We now define the group
G as the set of all pairs of the form (n, h), where n ¢ N, and h € H. The law
of multiplication is defined by letting

(n1, h1) (g, ha) = (nygn,(n2), hihs).

It is not hard to show that G is a Lie group, N a normal subgroup, and H a sub-
group.

Making use of this method we can include every Lie group N in some group ¢
in such a way that every automorphism of the group N can be realized by
means of some inner automorphism of the whole group G.

55. Compact Lie Groups

Compact Lie groups have a much simpler local structure than general Lie
groups. Thissimplicity is explained by the possibility of invariant integration
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over compact groups. It is true that invariant integration is possible over
some non-compact Lie groups, but in this case the volume of the entire group
is infinite, while it is finite for compact groups. Invariant integration can
easily be established independently for Lie groups, but I shall refer here to the
results of Chapter IV. We have established there invariant integration over a
compact group, and have proved Theorem 23 on the basis of this integration.
If we remain in the real domain, then Theorem 23 can be applied to Lie groups
in the following form:

A) Let g be a representation of a compact Lie group G, i.e., we associate with
every element z € G a square matrix g(z) = Hg,-,-(x)“ in such a way that the
mapping ¢ of the group @ into the multiplicative groups of matrices is homo-
morphic. Then there exists a constant matrix m, not depending on z, such
that all the matrices of the form mg(z)m~! are orthogonal.

This is the only result of Chapter 4 which we shall use here.

B) Let R be the infinitesimal group of the compact Lie group G. Then
every normal subgroup S of the group R is also a direct cofactor, i.e., there exists
for every normal subgroup S a normal subgroup 7T such that the intersection
S n T contains only zero and the sum S + T coincides with R. It is impor-
tant to note that every normal subgroup R’ of the group R possesses this prop-
erty,i.e., every normal subgroup S’ of the group R’ is also a direct cofactor of
the group R’.

To prove this let us consider the complete adjoint group P of the group G
(see §52, A)). The homomorphic mapping g of the group G on the group P
gives a representation of the group G. By A) we can introduce in @ a linear
transformation of coordinates such that all the matrices ||pi(z)|| = g(z) be-
come orthogonal. We select in R a corresponding set of coordinates and con-
sider the matrices || pi| as linear transformations of the vector space R. Since S
is a normal subgroup of the group R, the linear space S remains invariant under
all the transformations of the matrices ||pi(z)||. Since these matrices are or-
thogonal, the linear subspace 7', which is orthogonal to S, is also invariant un-
der all the transformations of the matrices ||pi(z)||. We shall now suppose
that the coordinates in R are selected in such a way that the first s axes lie in S
and the remaining » — s axes liein 7. With this choice of coordinates every
matrix Hp}(x)][ decomposes into two square matrices of orders s and r — s.
We can derive from this fact some conclusions about the behavior of struc-
tural constants by use of equations (16) of §52. Because the vector a is per-
fectly arbitrary, we can conclude that the constants c are zero for k& > s and
¢ < s, and this means that for b € T and an arbitrary vector @ ¢ R we have
[a, b] € T, i.e., T is a normal subgroup.

Now let R’ be a normal subgroup of the group R, and S’ a normal subgroup
of the group R’. From what we have shown above R’ is a direct cofactor of
the group R, and therefore S’ is a normal subgroup of the group R. In this
way S’ is a direct cofactor of the whole group R, i.e., there exists a normal sub-
group T of the group R such that the intersection 8’ n T' contains only zero,
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and the sum S8’ + T coincides with R. If we denote by T’ the intersection
T n R’, then it can readily be seen that R’ decomposes into the direct product
of the groups S’ and 7.

This proves proposition B).

THEGREM 86. Let R be the infinitesimal group of a compact Lie group G.
When R decomposes into the direct product of a finite number of non-commutative

simple groups Sy, - - -, Sk and its center So. This decomposition is unique, i.e.
the subgroups
(1) SO; Sl) Tty Sk

are uniquely defined.

Proovr. If the group R is not simple, then R is decomposable by B) into the
direct product of two normal subgroups S and 7. If these groups in turn are
not simple, the process of decomposition is continued until we arrive at inde-
composable factors. We denote the non-commutative factors by Sy, - - -, Si.
The direct product of the one-dimensional commutative factors can easily be
seen to form the center S, of the group R.

We now pass to the proof of the uniqueness of the above decomposition.
Suppose that there exists still another decomposition

(2) To, Ty, -, Ty - - -
We shall then show that there exists a one-to-one correspondence between the
groups of the decompositions (1) and (2) such that the corresponding-groups
completely coincide, and therefore the decompositions (1) and (2) do not differ

from each other. :
First of all it is clear that Ty = S,, since each of these subgroups is the center

of the group R.
Let a € R. We then have
3) = @o(a) + e(a) + - - - + afa),

where ¢;(a) e T;,j = 0,1, - - - ,I. Let, furthermore, b; € S;;7 = 1. Since the
group S;, 7 = 1, is not commutative, and has no center, there exists an ele-
ment a & R such that [b;, a] # 0. It follows from this and from relation (3)
that there exists a number j such that ¢ = [b;, ¢i(a)] # 0. But then the ele-
ment ¢ belongs to both S; and T, so that the group S; and T'; have an element
in common which is distinet from zero. Since the intersection of two normal
subgroups is also a normal subgroup, the intersection of the groups S; and T';
is a normal subgroup of the group R. But the group S:is simple; hence S; c T’;.
It follows from this that j 5 0, since T is the center. Furthermore, since T';
is a simple group, S; = T;. Hence we have shown that every normal subgroup
Si, 7 2 1, coincides with one of the normal subgroups T;, j = 1. Obviously
two distinet normal subgroups S; and S;» cannot coincide with the same nor-
mal subgroup T;. Therefore to every normal subgroup S; corresponds a defi-
nite normal subgroup T; which coincides with it. It is clear that this
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correspondence exhausts all the normal subgroups T, for in the contrary case
the direct product of all the normal subgroups (1) would not be equal to the
group RB. This proves Theorem 86.

We give here a simple consequence of proposition B) and Theorem 86.

C) A compact connected Lie group G is semi-simple if and only if its center
is discrete (see §53, D)).

Let R be the infinitesimal group of the group G. From its definition the
group @ is semi-simple if and only if R is semi-simple. If G has a non-discrete
center, then R has a center distinct from zero, and therefore R is not semi-
simple. On the other hand, if R is not semi-simple then there exists a solvable
normal subgroup S of the group R. By B) there exists a normal subgroup T
of the group R such that R is the direct product of the groups S and 7. Since S
is solvable, the commutator subgroup S’ of the group S is distinet from S, and
hence S decomposes by B) into the direct product of the groups S’ and S’’.
Since the factor group S/S’is commutative (see §53, B)), S’ is also commuta-
tive. Decomposing S’, S’, and T further until we reach the simple factors,
we arrive at a decomposition of the group R which contains a commutative
factor arising from S’'. This factor must belong to the center of the group R
by Theorem 86. In this way the group R has a center Sy, which is distinet from
zero.

We now denote by Z, the local subgroup of the group G which corresponds
to the subgroup S, (see Theorem 74). Then Z, is a central local normal sub-
group of the group G. We denote by Z, the set of all finite products of ele-
ments which belong to Z;. It is obvious that Z, is a central normal subgroup
of the abstract group G. The closure Z; of the set Z in the space G is a central
normal subgroup of the Lie group @ (see §22, D)). Hence G has a non discrete
center.

On the basis of the above results we can readily understand the structure
of a compact Lie group in the large. It is true that in doing this we have had
to make use of Weyl’s theorem, which remains unproved in this book (see
Theorem 80).

TrEoREM 87. Every connected compact Lie group can be obtained by the follow-
ing method. Let

(4) Hy -, Hy

be a finite system of compact connected simply-connected non commutative stmple
Lie groups and let

(5) K, -, K,

be a finite system of one-dimensional compact connected Lie groups. We form the
direct product G* of all the groups of the systems (4) and (5). We then take a
normal subgroup N of the group G* and form the factor group G*/N = G. The
set of all compact groups G obtained in this way coincides with the set of all compact
connected Lie groups. (We note the obvious fact that each one of the groups K;
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18 1somorphic with the factor group D/C, where D is the additive group of real
numbers and C is the subgroup of integral numbers.)

ProorF. Let G be an arbitrary compact connected Lie group, and let R be
its infinitesimal group. By Theorem 86 the group R decomposes into the di-
rect product of simple normal subgroups 8y, - - - , S and its center So.  Let H;
be the local subgroup of the group G which corresponds to the subgroup S; (see
Theorem 74). We denote by H, the set of all finite products of elements be-
longing to Hy. Then H, is obviously a central normal subgroup of the abstract
group G. We shall show that H, is a closed set in the space G, and therefore
is a central normal subgroup of the topological group G. We consider the
closure H, of the set Hyin the space G. It is not hard to see that Hois a central
subgroup of the group G. Since all the central elements which are in the neigh-
borhood of the identity are contained in H', it follows that Z, and H, coincide
in the neighborhood of the identity. Suppose now that a certain point z € Ho
does not belong to H,. Then zHé forms a neighborhood of this point in Z,,
and therefore there exists an element y ¢ H such that y ez H,. Butin that case
zey Hy ', ie., ze Hy. Inthis way H, = Hyand hence H, is closed in G.

We now denote by H’ the local subgroup of the group G which is the direct
product of the local subgroups Hy, - - -, H;. We note that H’ has no center.
It is obvious, furthermore, that the factor group G/H, is compact and is locally
isomorphic with H’. In this way G/H, is a compact semi-simple group (see
C)). Therefore a complete connected simply-connected Lie group H which
contains the local group H' as one of its neighborhoods of the identity is com~
pact (see Theorem 80). We denote by H;, ¢ = 1, a complete connected simply-
connected Lie group containing the local subgroup H/ as one of its neighbor-
hoods of the identity. It can readily be seen that the direct product H* of all
the groups Hy, - - -, H is simply-connected (see Theorem 60) and is.locally
isomorphic with the group H. Hence the group H* is isomorphic with the
group H (see Theorem 63), i.e. the group H is decomposable into a direct
product of compact, simple, simply-connegted Lie groups.

Since H' is a local group of the whole group H, there exists a natural local
isomorphism ¢’ of the group H in the group G which can be extended into an
isomorphism ¢ of the entire group H on the entire group G (see Theorem 63).
We now form the direct product G* of the groups Ho and H. Every element
g* € G* represents a pair g* = (h, hy), where h ¢ H and ho € H,. We assaciate
with the pair g*(k, ho) the element ¥(g*) = o(h)ho. It is not hard to see that
the mapping ¢ is a homomorphic mapping of the group G* on the group’G,
which becomes isomorphic in the neighborhood of the identity. Hence G is
isomorphic with the factor group G*/N, where N is a discrete normal subgroup
of the group G*.

The group H, is a connected commutative Lie group. It remains to show
that it decomposes into the direct product of one-dimensional Lie groups
K, - -+, K, Thisis done in the following proposition D). One could refer
here to Theorem 44 of Chapter V.
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The proof of proposition D) will complete the proof of Theorem 87.

D) Let G be a connected commutative Lie group. Then G decomposes into
the direct product of subgroups isomorphic with the group D and subgroups
isomorphic with the group K, where D is the additive topological group of real
numbers and K is its factor group with respect to the subgroup of integers. If
G is compact, then the direct cofactors which are isomorphie with D are absent.

Let R be the ~dimensional vector group. It is obvious that R is simply-
connected and since the groups G and R are locally isomorphic (see Example
56), it follows that R is a universal covering group for the group G (see Defini-
tion 44). In this way the group @ is isomorphice with the factor group R/N,
where N is a discrete subgroup of the group R (see Theorem 61). Hence we
have reduced this investigation to the study of a discrete subgroup N of the
vector group K.

We shall show that N contains a system of s < r elements

(6) Xy © ° -, Ts

which are linearly independent in the vector space R, and are such that every
element of N can be represented in the form

(7 ar + -+ aay,

where ay, - - -, a, are integers.
We shall construct the system (6) by induction. We shall suppose that N
contains a system

(8) Yy, - Yk

of linearly independent vectors having the following properties: If we denote
by P; the set of all elements of R which can be written in the form

9 dop+ -+ dap, 0<di<1,i=1,---,k

where dy, - - -, di, are real numbers, then every element of P, which belongs to
N can be represented by the form (9) with integral coefficients. This means
that only the vertices of the parallelopiped P; belong to N. We shall now
show that two cases are possible for the system (8): a) the system (8) is al-
ready the system (6), b) the system (8) can be enlarged by adjoining a single
element of N in such a way that the hypothesis of the induction holds for this
enlarged system.

We denote by Ry the set of all elements of B which can be represented in the
form

(10) dlyl + R + dl.'ylr,

where dy, - - -, di, are arbitrary real numbers, and by N the set of all elements
of N which can be written in the form

(11) oy + -+ s,
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where a;, - - -, a, are arbitrary integers. We shall show first of all that
Nir =N n Ri. In fact any element x of Rx can be written in the form
r =1+ 2", where z’ e Pr,and 2" e N;. If now z e N, then 2 — 2’/ = 2’ also
belongs to N. But z’ also belongs to P;. Hence z’ can be represented by the
form (9) with integral coefficients. But z’’ on the other hand can be repre-
sented by the form (11) with integral coefficients. Therefore z € N, and hence
Niy=N n Ri.. If N ¢ Ry, weget N = Ny, i.e, wehave case a). If N isnot
contained in R we introduce into R the Euclidean metric. Since Py is compact
and the subgroup N is discrete, it is obvious that the set N — R cannot contain
elements arbitrarily close to the set P;. Therefore the distance p between the
set N — R, and the set P; is positive. We shall show that the distance be-
tween the sets N — Rj and Ry is also equal to p. Let us suppose the contrary
to be true, i.e., that there exist elements z ¢ N — Ry and z € R, whose distance
is less than p. We have z = 2’ 4+ z'/, where 2’ ¢ Py, 2’/ € Nx. Then the dis-
tance between the elements z — 2’ e N — Ry and z’ € P, is also less than p,
which is impossible. We denote by y1 an element of N — R, whose distance
from Ry is equal to p. It is not hard to see that the system

Y, © Yy Yenr

now satisfies the hypothesis of the induction, i.e., we have case b).

I? c;rder to start the induction, at k& = 0, it is sufficient to let No = Ry = P
= {0;.

Since the dimension of the space R is finite, the extension of the system (8)
cannot continue indefinitely, and we shall finally arrive at case a). Therefore
the system (6) exists.

We shall now enlarge the system (6) until it becomes a complete linearly in-
dependent system xi, - - -, 7y, Top1, - -, Tr, and we shall take the vectors of
this system as the basis of the space B. The subgroup N has a special form
in the coordinates thus defined, from which the decomposition of the group G
into the desired direct product follows directly.

ExampLE 74. Making use of Weyl’s theorem (see Theorem 80), which re-
mains unproved in this book, and of the results of the present section, we can
give a complete analysis of the structure of a connected compact group of
finite dimension (see §45).

Every connected compact topological group G of finite dimension which
satisfies the second axiom of countability can be obtained in the following way.
Let H be a connected simply-connected compact semi-simple Lie group, and
let Ho be a connected compact commutative group of finite dimension. We
form the direct product G* of the groups H and H,, and then the factor group
G*/N = @, where N is a finite normal subgroup of the group G*. It turns out
that for a proper choice of the groups H and H, and also of the normal subgroup
N, this method will give the preassigned group G.

Comparing this proposition with Theorem 87 we see that for the case of com-
pact groups the only difference between the structure of a general topological
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group and that of a Lie group consists in the commutative factor H,, which,
as we have pointed out in Chapter 5, can have a very complicated set-theoreti-
cal structure.

In order to prove the above proposition we make use of Theorem 55. By
this theorem some neighborhood U of the identity of the group G decomposes
into the direct product of a local Lie group L’ and a O-dimensional central
normal subgroup Z, while the set of all finite products of elements belonging
to L’ is everywhere dense in G. On forming the factor group G/Z we obtain
a compact Lie group, and the group L’ is mapped isomorphically on some
neighborhood of the identity of the group G/Z. In this way the local Lie
group L’ decomposes into the direct product of a local semi-simple group H’
and the center Hy. The simply-connected entire group H which contains H’
as a neighborhood of the identity is compact. Just as in the proof of theorem
87 we denote by ¢’ the local isomorphism of the group H in the group G. It
can readily be seen that the isomorphism ¢’ can be extended into an isomor-
phism ¢ of the whole group H in the group G. We denote by Hy the set of all
finite produets of elements belonging to H,, and by H, the closure of the set HY
in the space G. Let G* be the direct product of the groups H and H,. We
associate with every element g* = (h, ho) € G* the element ¥(¢*) = o(h)h € G.
It is not hard to see that ¥ is a homomorphic mapping of the group G* on the
group G, whose kernel of homomorphism is finite.

56. Transformation Groups

As we have noted before, the concept of a Lie group originally arose in the
consideration of groups of continuous transformations. We shall first give the
fundamental results of the theory of groups of continuous transformations in
its classical local form, and then we shall stop somewhat to consider the theory
in the large.

In loeal considerations, which are usual for the classical approach, all the
funetions under consideration are defined not for all values of the variables,
but only in some definite region. Therefore an accurate account would neces-
sitate the definition of the region of existence of every function used. We shall
not stop here to define these regions, as it is not hard to determine the suffi-
ciently small regions in which each of these functions is defined.

DeriniTION 47. Let G be an r-dimensional Lie group, and T' an open set of
the n-dimensional Euclidean space. Suppose that to every element z ¢ G cor-
responds a transformation ¢, of the open set I' which associates with an element
¢ e T some element n € I':

(1) n= ‘PI(S) = ‘P(E; I).

We shall say that G is a transformation group of the manifold T if the following
conditions are fulfilled: a)

(2) <P1:(¢’u($)) = ‘PW(S):
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i.e., the product of the elements corresponds to the product of the transforma-
tions. From this it follows, in particular, that to the identity e corresponds the
identical transformation ¢,:

(3) e (k) = &

b) Two transformations ¢, and ¢, coincide only if = y. Thisis equivalent
to requiring that the transformation ¢, be the identity only when r is the iden-
tity e of the group G.

¢) In what follows we shall suppose that the function ¢(£, x), as a function
of the coordinates of the point ¢ and the element z, is differentiable a sufficient
number of times.

Relation (1) becomes in coordinate form

(4) ni=‘pi(£)=‘pi(£lr)=‘pi(£l)'"’gn;xly"'yf)) i=1,"',n'

A) Let G be a transformation group of the manifold T and z(¢) a curve in G
having the direction vector a (see §38, B)). The point (£, z(¢)) describes for a
fixed £ a curve in the manifold . The vector tangent to the curve ¢(£, z(t))
at the point ¢ = 0 does not depend on the curve z(¢) itself, but is defined by the
vector a only. We therefore denote this tangent vector by ¥(¢, ). In co-
ordinate form this vector ¥(&, a) can be expressed as follows:

(5) Vi @) = na®a’ =N, -, )
where
i dpi(§,
(6) (8 = _‘p_(ﬂ for =z =e
ax!

(see (4)). The function n = (£, x) taken as a function of « for a fixed £ can
be defined by the following system of differential equations (see (6)):
dn?

= N (),

(7)

where v} (z) are the auxiliary functions of the group G (see §51, A)). The in-
tegrability conditions for the system (7) are of the form (see Theorem 69)

M)« W
(n)kk(n)__ ()

a B
Ni(m) = cauds(n)
poe P ( +\g

(8)

where the c5, are the structural constants of the group G.
We shall first prove relations (5). Differentiating relation (4) with respect
to t we get, by putting z = z(¢),
doi(§, z(t)) _ d¢'(§, 2) dax
dt oze dt
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For ¢ = 0, this last relation gives (5).
In order to prove (7) we introduce, as in §51 (see §51, A)) the element
= (z + oz)z~'. We then have

o(& x4 6x) = o(n, p)

(see (1) and (2)). Passing from finite increments to derivatives we get relation
(7) (see §51, A)).
By Theorem 69, the integrability conditions of system (7) have the form

)
-3 0 .
(") OO ‘;(") e (n)v:(x)-l-)\s(n)(l)(x) =) -

Making use of relation (8) of §51, we can write the last relation in the form

(t”\ «(1) A () — a(n)
an7

(9) Aa(n) — M(n)caa>v} (2)vr(z) =

an
Since the determinant of the matrix ||o#(z)]| is distinct from zero, it is not hard
to see that relations (8) and (9) are equivalent.

B) .Let @ be a group of continuous transformations of the manifold I' and R
the infinitesimal group of the group G. In A) we associated with every vector
a £ R a vector field ¢(¢, a) defined in the manifold T'. In this way we have a
family P of vector fields of the form ¢ (£, a) defined on T. It follows directly
from relation (5) that if « and B are real numbers, then

(10) ¥(& aa + Bb) = oy (%, a) + BY(E, b).

Hence if the vector fields A and u belong to the family P, then the vector field
a\ + Bu also belongs to P. This means that the family P is a vector space
under addition. We define in the family P the commutator of two of its ele-
ments X = A(§) and u = u(¢) by letting

ON'(E) Iui(§)

pyes u7(§) — Py

Then the following relation holds:

(12) [W(g a), ¥ b)) = ¥(& [a, bD.

Relation (12) shows that if A € P and u € P, then also [\, u] ¢ P. This defines
the operation of commutation in P. It follows from relations (10) and (12)
that in passing from a vector a € R to the vector field (£, @) £ P the operations
of addition, multiplication by a real number, and commutation are preserved.
This shows that the operation of commutation established in P satisfies the
conditions of Definition 46, and that the mapping ¢ which associates the field
V(¢ a) e P with the vector a € R is a homomorphic mapping of the infinitesimal
group R on the infinitesimal group P. It appears moreover that the mapping ¢

(11) A, w®] = A (8).
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is not only homomorphic, but is also isomorphic. We shall call the infini-
tesimal group P an infinitesimal group of transformations of the manifold T.
Relation (10), as we have already indicated, follows directly from (5). In
order to prove (12) we multiply both sides of (8) by a’b* and sum over j and k.
The relation thus obtained gives (12) by making use of (5).

In order to establish the isomorphism of the mapping ¢ it is sufficient to
show that the dimension of the vector space P is equal to the dimension r
of the space R. We denote by Ai(¢) the vector field having the components
MN(E), - - -, Ni(§). The vector fields

(13) AK(E)! k= 11 Ty T

form a basis of the space P (see (5)). Therefore it will suffice to show that the
vector fields (13) are linearly independent, i.e., a linear combination of these
vector fields with constant coefficients is zero only if all the coefficients are zero.
We now consider in G a certain one-parameter subgroup z(t) having the di-
rection vector a. We substitute z(¢) for ¢ in (7), multiply the resulting equa-
tion by dz’(t)/dt and sum over j. We get
dn’

(14) M) 2
— = Ae(n)v; (2
dt e dt
(see §51, (9)). If we now suppose that the vector fields of the system (13) are
linearly dependent, then there exists a vector a # 0 such that the right side
of relation (14) is identically zero. This shows that n = ¢(&, 2(f)) is a con-
stant,i.e.,n = £&. Hence to the element z(¢) distinct from the identity corre-
sponds the identical transformation, which is impossible (see Definition 47).
Hence B) is completely established.
The converse of propositions A) and B) is found in the following theorem.

= Na(n)a”

THEOREM 88. Let T be an n-dimensional open set of Euclidean space. Sup-
pose an r-dimensional linear family P of vector fields is defined on T'.  (Linearity
of the family P means that if two vector fields A(£) and u(%) are in P, then P
also contains the field aA(£) + Bu(¢), where a and 8 are real numbers.) We
introduce into P the operation of commuation by pulting

NG ()

(15) INE), u(®) ] = w (%) g

A7 ().

We suppose that if the vector fields N and u are in P, then the vector field [\, u]
1s also in P.  Under these conditions we shall say that an infinitesimal group of
transformations P s defined on T. It turns out that there exists one and only one
local Lie group G of continuous transformations of the manifold T (see A) such
that the infinitesimal group of transformations which corresponds to it (see C))
coincides with the preassigned infinitesimal group P.

Proor. We note first of all that if \, u, » are three vector fields, then the fol-
lowing relations hold:
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(16) N ul+ kAl =0 _
(17) D‘y [:U'y V” + [/-‘7 [V; >‘]J + [V: [>‘y /"’]] =0

These relations can be verified by direct calculations from the defining relation
(15).

We now select  linearly independent vector fields \e(§) k =1, - - -, r,in P,
Such a system exists and forms a basis of the family P, since the dimension of
the family is 7 by assumption. We therefore have

(18) (), M(®] = ciny(8),

where the ¢}, are constants which in view of relations (16) and (17) satisfy the
usual relations holding for structural constants (see §48, (11) and (12)). We
construct from the structural constants ¢}, the local Lie group G (see Theorem
72), and denote its auxiliary functions by vj(z).
We now consider the system of equations

aﬂi T a
(19) — = Aa(mv; (2)

ax?
with respect to an unknown function 5 of the element z. We have already
considered a system of this type (see (7)) and have shown that its integrability
conditions are of the form (8). But (18) is merely another form of (8), so that
the system (19) is integrable. We denote by ¢(£, z) the solution of the system
(19) which satisfies the initial condition

(20) ok e) = &

In this way we have associated with every element z £ G a transformation ¢,
of the manifold T' which transforms the point ¢ € T' into the point n = &.(§)
= ¢(%, z) e T. We shall show that conditions a) and b) of Definition 47 hold
here.

Let = and y be two elements of G. We shall consider y as fixed and z as
variable. Let

f =y, n = ﬁo(fr y)y * = ‘P(le ZII), = QD(E, f)

In order to show that condition a) holds it is sufficient to show that {* = ¢.
In order to do this we proceed in the usual way and show that the functions
¢* and ¢ of the element z satisfy the same system of differential equations with
the same initial conditions {*(e) = {(e) = 7.
We have
ag—*i

= N @)

(21)

(see (7)). We denote by ||u!(z)|| the matrix inverse to the matrix ||vi(z)].
Then relation (6) of §51 is transformed into
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of« «
(22) A )
ar’
From relations (22) we have
ag-i ag-z afa T Y a 8 _ i ¢':
(23) ke ;f: Fie A (Ova(Hus(Nri(x) = Na($)v; (2).

But systems (21) and (23) coincide. Hence because of the uniqueness of the
solution of the system, satisfying given initial conditions, we have {* = ¢ and
hence condition a) is fulfilled.

In order to prove that b) holds, let us suppose on the contrary that b) does
not hold. Then there exists a normal subgroup N of the group @ to all of
whose elements correspond identical transformations of the manifold I. We
can conclude from this that there exists a one-parameter subgroup z(¢) to whose
elements correspond identical transformations of the manifold T, and which
has a direction vector a distinct from zero.

Substituting z(¢) for ¢ in relation (19), multiplying by dz’(¢)/dt and summing,
we get

dnt daf(t)

(24) dl=kaﬁma»—5~=kaf

(see 51, (9)). Since n(t) is a fixed point by assumption, the left side of relation
(24) becomes zero, and we get the identity

)\i,(s)aa = 0.

This show that the vector fields \(£), k = 1, - - -, r, are linearly dependent,
which contradicts our assumption.

It is obvious that c) holds since the function ¢(£, ) is obtained as a result
of integrating a system of equations. Hence Theorem 88 is proved.

We now consider a special type of transformation groups, namely the transi-
tive groups.

C) Let G be a transformation group of the manifold I'. The group G is
called transitive if for any two points p and ¢ of the manifold T there exists an
element z of the group @ such that ¢.(p) = q. (We should not forget here
that due to the local nature of the whole consideration the element £ may exist
only for points p and ¢ which are sufficiently close to each other.) Let a be a
fixed point of the manifold I'. We denote by K, the totality of elements z & G

for which ¢.(a) = p. Then H = K, is a subgroup of the group G, and K, is a
left coset of the subgroup H in the group G. Moreover the group H contains
no normal subgroup of the group G distinct from the identity. If K is a
left coset of the subgroup H in the group G, then for z ¢ K, y € K, we have
ez(a) = ¢,(a). Hence ¢.(a) is a definite point ¢ ¢ T, which depends on the
class K containing z, but not on the element r itself,i.e., K = K,. Wehave
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therefore established a one-to-one correspondence between points of the mani-
fold I' and left cosets of the subgroup H in the group G. If furthermore

(25) ex(p) = ¢,
then
(26) zK, = K,.

Hence if we know the group G and its subgroup H we can obtain the manifold T
as a manifold of cosets, and then define transformations in this manifold by
means of relations (25) and (26).

If we are given independently of the manifold T' a certain local group G and
a subgroup H of G which contains no normal subgroup of the group G distinct
from the identity, then by the above method we can construct a manifold T
and define in it in a natural way the transitive transformation group G. The
manifold T will be defined as the set of left cosets of the subgroup H in the
group G, and the transformation ¢, will be defined by the relations ¢.(K) = zK,
where K ¢ T.

The above shows that the consideration of a transitive transformation group
is entirely equivalent to the consideration of a local Lie group G and a subgroup
H of G which contains no normal subgroup of the group G distinet from the
identity. As long as we confine ourselves to a local investigation, the group G
and its subgroup H may be defined by the corresponding infinitesimal group R
and its subgroup 8. Hence the local study of a transitive transformation
group is reduced to the study of an elementary algebraic subject, namely the
infinitesimal group R together with a subgroup S of R which contains no normal
subgroup of R distinct from zero.

In particular, in order to classify the transitive transformation groups it is
sufficient to classify all the pairs R, S.

I do not give here the proof of proposition C,, but this proof presents no diffi-
culties.

D) Let G be a transitive transformation group of the manifold T' (see (Defi-
nition 47, and C)). Then we can introduce analytic coordinates in G and T,
i.e., a system of coordinates in which the functions (4) are analytic functions of
all of their variables.

In order to prove D) we shall interpret the points of the manifold I' as left
cosets of a subgroup H in the group G (see C)). We introduce first of all
canonical coordinates of the second kind in G (see §40, A)), by taking as their
basis the one-parameter subgroups hi(f), k¥ = 1, -, r. These subgroups
we shall select in such a way that h.y(t), -, h(t) are in H and their
products cover H. Every element z ¢ G can now be written in the form
z2 = h(tY) - - () hapa (™) - - - he(¢). If the coordinates ¢!, - -, t* are
fixed, while the remaining coordinates assume arbitrary values, then the ele-
ment z will describe a certain left coset K. We shall take for the coordinates
of the coset K the numbers ¢!, - - -, {». Since the points of the manifold T
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have been interpreted by us as cosets, this defines a definite system of coordi-
nates in the manifold I'. Let

xr = h(z?) - - k(")
be an arbitrary element of the group G and
E=h() - ha(Ehaga(sth) - - (Ra(s7)

be an arbitrary coset. In order to define the coset ¢,(¢) = n we form the prod-
uct
1= ¢0.(§) = o(§ 1) = xt
ho(x?) - - h(2h(EY) - - - Ru(E)hapa(s™Y) - - - Re(s*)
= hi(n") - ha(hpga (1) - R (2.

If x and £ are given, the coset ¢.(£) = 7 is also given, and hence 7’ = ¢i(§, z),
¢ =1,---,n,ie., ntdoes not depend on the arbitrary coordinates s**!, - - . s,
Since the canonical coordinates of the second kind are analytic (see Theorem
72 and §40, A)), the functions ¢i(%, r) are analytic functions. Hence D) is
established.

So far we have considered only the local aspects of a transformation. The
concept of a transformation group in the large is defined in a natural way
analogous to Definition 47. One does not suppose in this case that the man-
fold T is a region of Euclidean space. The statements of remark C) are carried
over to the transformation groups in the large. In fact we have the following
proposition.

E) Let G be an entire Lie group and H a subgroup of G which contains no
subgroup of the group @ distinct from the identity. The set of left cosets of
the subgroup H in the group @ forms a manifold . We now associate with
every element z ¢ G a transformation ¢, of the manifold T' by letting ¢.(K)
= vK, where K ¢ . From this construction we get a transitive transforma-
tion group G of the manifold I'. It is not hard to show that every transitive
Lie group of transformations can be obtained in this way. Hence the study of
the entire transitive Lie group of transformations is reduced to the study of the
pair G, H.

Now the question arises: Is it always possible to extend a given local group
of transformations into a transformation group? It appears that this is not
always possible. 1 give here an example to the contrary.

ExampLE 75. We constructed in Example 68 an entire simply-connected
Lie group @ and a one-dimensional local subgroup H of G such that H contains
no one-dimensional entire subgroup of the group G. It follows from Theorem
85 that H is not a normal subgroup of the group G, and being one-dimensional
H contains no normal subgroup. If G’ is a neighborhood of the identity of the
group G then the local group @’ together with its subgroup H defines a locally
transitive group of transformations (see C)). But it is not possible to extend
this group of transformations into an entire group, since H cannot be contained
in an entire one-dimensional subgroup of the group G.
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diagonal process 45

difference 1

differentiable coordinates 181

differentiable Lie group 182

differentiable one-parameter subgroup 185

dimension 181, 209

direct cofactor 280

direct product of groups 17, 19

direct product of topological groups 69, 73

direction vector 185

discrete 28, 54

distance 33

ELEMENTARY operation 21

end of a path 217

entire group 274

equi-continuous 89

equivalent locally homomorphic mappings
85

equivalent locally isomorphic mappings 84

equivalent paths 218

equivalent representations 110

equivalent subgroups 84

equivalent to zero 218

everywhere dense 55

Factor group of group 8

factor group of infinitesimal group 242
factor group of local group 85
factor group of topological group 60
field 171

finite covering by closed sets 209
finite covering by open sets 209
finite group 3

finite order 4

first axiom of countahility 39

free 4, 7

function 46

fundamental group 220
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fundamental/ ngt'léljce 208*% - <y
GENERAletg,tormdal g’roup 142:"‘
generator 20 % Z- ” '

group 3

group axioms 3%
- &40 @}/

HomeomorpHIC 3

homogeneous 53

homomorphic mapping 10, 63, 242
homomorphism 10

homotopic 218

homotopic to zero 218

-

IpENTITY 83

identity path 217

image 1

infinite group 3

infinitesimal adjoint group 262
infinitesimal group 238
infinitesimal group of transformations 289
infinitesimal subgroup 241

inner automorphism 10
intersection 1, 267

integrability conditions 246
invariant integration 91
invariant subgroup 8

inverse image 1

inverse mapping 1

inverse path 217

irreducible 106

isomorphic fields 173

isomorphic groups 10
isomorphic infinitesimal groups 242
isomorphic mapping 9, 62, 242
isomorphic topological groups 63
isomorphism 9

KERNEL 11, 85, 242

LEFT coset 8

left identity 4

left inverse 4

left mean 95

Lie group 182

limit 206

limit point 27

linearly independent 19, 20, 192
local group 83

local homomorphism 228

local Lie group 181

local properties 82

locally compact 42

locally connected 166, 212, 221
locally homomorphic 85
locally isomorphic 80, 84
locally simply connected 221

MaAPPING in 1

INDEX

mapping on 1

mean 95

metric space 33

metrizable 33

minimal normal subgroup 15
minimal subgroup 15
multiplication 3

multiplicity 209

NATURAL homomorphism 12, 64
natural isomorphism 11, 64
natural mapping 59

negative 3

neighborhood 28, 206

norm 172

normal subgroup 8, 58, 84, 241
null path 217

ONE-PARAMETER subgroup 86
one-to-one 1

open 27, 59, 63

opposite path 217

order 3

order of magnitude 235
orthogonal 9, 100, 147
orthonormal 100

Pair 147

part 84

path 217

point 27

product 3, 206, 217, 267

QUATERNION 172

Rank 20

real-valued 50
reducible 106
refinement 209
regular 39

relation of equivalence 7
relative 36
representation 87, 110
right coset 7

right identity 3

right inverse 3, 83
right mean 93

S-spack 40

second axiom of countability 40
semi-canonical form 22
semi-simple 267

series of commutator subgroups 267
set 1

simple 9, 61, 270

simply connected 220

small deformation 230
solenoidal 171

solvable 15, 267




space of right cosets 59
sphere 32, 33

structural constant 235, 238
subgroup 6, 58, 84
subspace 36

sum 1, 3, 267

symmetric 103

TaNGENT 183
topological field 172
topological group 52
topological mapping 33
topological product 49
topological space 26
toroidal 142
totally-disconnected 76
trace 106

INDEX

transformation 5, 286
transformed 106
transitive 291
transpose 9

UNIFORMLY continuous 8§
uniformly convergent 89
unimodular 21

unitary 108

universal covering group 232
universal covering space 221

V-covERING 209
vector 183

ZERO 3
O-dimensional 76



