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underlying systems.

This book offers a concise and modern introduction to the core topics of differential
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on smooth manifolds and their tangent spaces before moving on to regular values and
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global properties, a short introduction to Morse theory and a proof of Ehresmann’s fibration
theorem.

The treatment is hands-on, including many concrete examples and exercises woven into
the text, with hints provided to guide the student.
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Preface

In his inaugural lecture in 18541, Riemann introduced the concept of an “n-fach
ausgedehnte Grösse” – roughly something that has “n degrees of freedom” and
which we now would call an n-dimensional manifold.

Examples of manifolds are all around us and arise in many applications, but
formulating the ideas in a satisfying way proved to be a challenge inspiring the
creation of beautiful mathematics. As a matter of fact, much of the mathematical
language of the twentieth century was created with manifolds in mind.

Modern texts often leave readers with the feeling that they are getting the answer
before they know there is a problem. Taking the historical approach to this didactic
problem has several disadvantages. The pioneers were brilliant mathematicians,
but still they struggled for decades getting the concepts right. We must accept that
we are standing on the shoulders of giants.

The only remedy I see is to give carefully chosen examples to guide the mind
to ponder over the questions that you would actually end up wondering about even
after spending a disproportionate amount of time. In this way I hope to encourage
readers to appreciate and internalize the solutions when they are offered.

These examples should be concrete. On the other end of the scale, proofs should
also be considered as examples: they are examples of successful reasoning. “Here
is a way of handling such situations!” However, no amount of reading can replace
doing, so there should be many opportunities for trying your hand.

In this book I have done something almost unheard of: I provide (sometimes
quite lengthy) hints for all the exercises. This requires quite a lot of self-discipline
from the reader: it is very hard not to peek at the solution too early. There are
several reasons for including hints. First and foremost, the exercises are meant to be
an integral part of class life. The exercises can be assigned to students who present
their solutions in problem sessions, in which case the students must internalize
their solution, but at the same time should be offered some moral support to lessen
the social stress. Secondly, the book was designed for students who – even if eager
to learn – are in need of more support with respect to how one can reason about
the material. Trying your hand on the problem, getting stuck, taking a peek to see
whether you glimpse an idea, trying again . . . and eventually getting a solution that
you believe in and which you can discuss in class is way preferable to not having

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 https://en.wikipedia.org/wiki/Bernhard_Riemann
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anything to bring to class. A side effect is that this way makes it permissible to
let the students develop parts of the text themselves without losing accountability.
Lastly, though this was not a motivation for me, providing hints makes the text
better suited for self-study.

Why This Book?

The year I followed the manifold course (as a student), we used Spivak [20], and I
came to love the “Great American Differential Geometry book”. At the same time,
I discovered a little gem by Bröker and Jänich [4] in the library that saved me on
some of the occasions when I got totally befuddled. I spent an inordinate amount
of time on that class.

Truth be told, there are many excellent books on manifolds out there; to name
just three, Lee’s book [13] is beautiful; in a macho way so is Kosinski’s [11]; and
Milnor’s pearl [15] will take you all the way from zero to framed cobordisms in 50
pages. Why write one more?

Cambridge University Press wanted “A Short Introduction” to precede my orig-
inal title “Differential Topology”. They were right: this is a far less ambitious text
than the ones I have mentioned, and was designed for the students who took my
classes. As a student I probably could provide a proof for all the theorems, but if
someone asked me to check a very basic fact like “Is this map smooth?” I would
feel that it was so for “obvious reasons” and hope for the life of me that no one
would ask “why?” The book offers a modern framework while not reducing every-
thing to some sort of magic. This allows us to take a hands-on approach; we are less
inclined to identify objects without being specific about how they should be iden-
tified, removing some of the anxiety about “variables” and “coordinates changing”
this or that way.

Spending time on the basics but still aiming at a one-semester course forces some
compromises on this fairly short book. Sadly, topics like Sard’s theorem, Stokes’
theorem, differential forms, de Rham cohomology, differential equations, Rieman-
nian geometry and surfaces, imbedding theory, K-theory, singularities, foliations
and analysis on manifolds are barely touched upon.

At the end of the term, I hope that the reader will have internalized the fun-
damental ideas and will be able to use the basic language and tools with enough
confidence to apply them in other fields, and to embark on more ambitious texts.
Also, I wanted to prove Ehresmann’s fibration theorem because I think it is cool.

How to Start Reading

The core curriculum consists of Chapters 2–8. The introduction in Chapter 1 is not
strictly necessary for highly motivated readers who cannot wait to get to the theory,
but provides some informal examples and discussions meant to put the later mate-
rial into some perspective. If you are weak on point set topology, you will probably
want to read Appendix A in parallel with Chapter 2. You should also be aware
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of the fact that Chapters 4 and 5 are largely independent, and, apart from a few
exercises, can be read in any order. Also, at the cost of removing some exercises
and examples, the sections on derivations (Section 3.5), orientations (Section 6.7),
the generalized Gauss map (Section 6.8), second-order differential equations (Sec-
tion 7.4), the exponential map (Section 8.2.7) and Morse theory (Section 8.4) can
be removed from the curriculum without disrupting the logical development of
ideas. The cotangent space/bundle material (Sections 3.4 and 5.6) can be omitted
at the cost of using the dual tangent bundle from Chapter 6 onward.

Do the exercises, and only peek(!) at the hints if you really need to.

Prerequisites

Apart from relying on standard courses in multivariable analysis and linear algebra,
this book is designed for readers who have already completed either a course in
analysis that covers the basics of metric spaces or a first course in general topology.
Most students will feel that their background in linear algebra could have been
stronger, but it is to be hoped that seeing it used will increase their appreciation of
things beyond Gaussian elimination.
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Notation

We let N = {0, 1, 2, . . . }, Z = {. . . ,−1, 0, 1, . . . }, Q, R and C be the sets of
natural numbers, integers, rational numbers, real numbers and complex numbers.
If X and Y are two sets, X × Y is the set of ordered pairs (x, y) with x an element
in X and y an element in Y . If n is a natural number, we let Rn and Cn be the
vector spaces of ordered n-tuples of real and complex numbers. Occasionally we
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may identify Cn with R2n . If p = (p1, . . . , pn) ∈ Rn , we let |p| be the norm√
p2

1 + · · · + p2
n . The sphere of dimension n is the subset Sn ⊆ Rn+1 of all p =

(p0, . . . , pn) ∈ Rn+1 with |p| = 1 (so that S0 = {−1, 1} ⊆ R, and S1 can be
viewed as all the complex numbers eiθ of unit length).

Given functions f : X → Y and g : Y → Z , we write g f for the composite,
and g ◦ f only if the notation is cluttered and the ◦ improves readability. The
constellation g · f will occur in the situation where f and g are functions with the
same source and target, and where multiplication makes sense in the target. If X
and Y are topological spaces, a continuous function f : X → Y is simply referred
to as a map.



1 Introduction

The earth is round. This may at one point have been hard to believe, but we have
grown accustomed to it even though our everyday experience is that the earth is
(fairly) flat. Still, the most effective way to illustrate it is by means of maps: a
globe (Figure 1.1) is a very neat device, but its global(!) character makes it less
than practical if you want to represent fine details.

This phenomenon is quite common: locally you can represent things by means
of “charts”, but the global character can’t be represented by a single chart. You
need an entire atlas, and you need to know how the charts are to be assembled, or,
even better, the charts overlap so that we know how they all fit together. The mathe-
matical framework for working with such situations is manifold theory. Before we
start off with the details, let us take an informal look at some examples illustrating
the basic structure.

1.1 A Robot’s Arm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To illustrate a few points which will be important later on, we discuss a concrete
situation in some detail. The features that appear are special cases of general phe-
nomena, and the example should provide the reader with some déjà vu experiences
later on, when things are somewhat more obscure.

Figure 1.1. A globe. Photo by DeAgostini/Getty Images.
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Consider a robot’s arm. For simplicity, assume that it moves in the plane, and
has three joints, with a telescopic middle arm (see Figure 1.2).

Call the vector defining the inner arm x , that for the second arm y and that for
the third arm z. Assume |x | = |z| = 1 and |y| ∈ [1, 5]. Then the robot can reach
anywhere inside a circle of radius 7. But most of these positions can be reached in
several different ways.

In order to control the robot optimally, we need to understand the various
configurations, and how they relate to each other.

As an example, place the robot at the origin and consider all the possible posi-
tions of the arm that reach the point P = (3, 0) ∈ R2, i.e., look at the set T of all
triples (x, y, z) ∈ R2 × R2 × R2 such that

x + y + z = (3, 0), |x | = |z| = 1, |y| ∈ [1, 5].
We see that, under the restriction |x | = |z| = 1, x and z can be chosen arbitrarily,
and determine y uniquely. So T is “the same as” the set

{(x, z) ∈ R2 × R2 | |x | = |z| = 1}.
Seemingly, our space T of configurations resides in four-dimensional space
R2 × R2 ∼= R4, but that is an illusion – the space is two-dimensional and
turns out to be a familiar shape. We can parametrize x and z by angles if we
remember to identify the angles 0 and 2π . So T is what you get if you con-
sider the square [0, 2π] × [0, 2π] and identify the edges as in Figure 1.3. See
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Figure 1.4.
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Figure 1.5.

www.it.brighton.ac.uk/staff/jt40/MapleAnimations/Torus.html
for a nice animation of how the plane model gets glued.

In other words, the set T of all positions such that the robot reaches P = (3, 0)
may be identified with the torus in Figure 1.4. This is also true topologically in the
sense that “close configurations” of the robot’s arm correspond to points close to
each other on the torus.

1.1.1 Question

What would the space S of positions look like if the telescope got stuck at |y| = 2?
Partial answer to the question: since y = (3, 0) − x − z we could try to get an

idea of what points of T satisfy |y| = 2 by means of inspection of the graph of |y|.
Figure 1.5 is an illustration showing |y| as a function of T given as a graph over
[0, 2π] × [0, 2π], and also the plane |y| = 2.

The desired set S should then be the intersection shown in Figure 1.6. It looks
a bit weird before we remember that the edges of [0, 2π] × [0, 2π] should be
identified. On the torus it looks perfectly fine; and we can see this if we change our
perspective a bit. In order to view T we chose [0, 2π]×[0, 2π] with identifications
along the boundary. We could just as well have chosen [−π, π] × [−π, π], and
then the picture would have looked like Figure 1.7. It does not touch the boundary,
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so we do not need to worry about the identifications. As a matter of fact, S is
homeomorphic to the circle (homeomorphic means that there is a bijection between
S and the circle, and both the function from the circle to S and its inverse are
continuous. See Definition A.2.8).

1.1.2 Dependence on the Telescope’s Length

Even more is true: we notice that S looks like a smooth and nice curve. This will
not happen for all values of |y|. The exceptions are |y| = 1, |y| = 3 and |y| = 5.
The values 1 and 5 correspond to one-point solutions. When |y| = 3 we get a
picture like Figure 1.8 (the solution really ought to touch the boundary).

We will learn to distinguish between such circumstances. They are qualitatively
different in many aspects, one of which becomes apparent if we view the exam-
ple shown in Figure 1.9 with |y| = 3 with one of the angles varying in [0, 2π]
while the other varies in [−π, π]. With this “cross” there is no way our solution
space is homeomorphic to the circle. You can give an interpretation of the picture
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above: the straight line is the movement you get if you let x = z (like two wheels of
equal radius connected by a coupling rod y on an old-fashioned train), whereas the
curved line corresponds to x and z rotating in opposite directions (very unhealthy
for wheels on a train).

Actually, this cross comes from a “saddle point” in the graph of |y| as a function
of T : it is a “critical” value at which all sorts of bad things can happen.

1.1.3 Moral

The configuration space T is smooth and nice, and we get different views on it
by changing our “coordinates”. By considering a function on T (in our case the
length of y) and restricting to the subset of T corresponding to a given value of
our function, we get qualitatively different situations according to what values we
are looking at. However, away from the “critical values” we get smooth and nice
subspaces, see in particular Theorem 4.4.3.
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1.2 The Configuration Space of Two Electrons
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider the situation where two electrons with the same spin are lonesome in
space. To simplify matters, place the origin at the center of mass. The Pauli exclu-
sion principle dictates that the two electrons cannot be at the same place, so the
electrons are somewhere outside the origin diametrically opposite of each other
(assume they are point particles). However, you can’t distinguish the two electrons,
so the only thing you can tell is what line they are on, and how far they are from
the origin (you can’t give a vector v saying that this points at a chosen electron:−v
is just as good).

Disregarding the information telling you how far the electrons are from each
other (which anyhow is just a matter of scale), we get that the space of possible
positions may be identified with the space of all lines through the origin in R3.
This space is called the (real) projective plane RP2. A line intersects the unit sphere
S2 = {p ∈ R3 | |p| = 1} in exactly two (antipodal) points, and so we get that RP2

can be viewed as the sphere S2 but with p ∈ S2 identified with−p. A point in RP2

represented by p ∈ S2 (and −p) is written [p].
The projective plane is obviously a “manifold” (i.e., can be described by means

of charts), since a neighborhood around [p] can be identified with a neighbor-
hood around p ∈ S2 – as long as they are small enough to fit on one hemisphere.
However, I cannot draw a picture of it in R3 without cheating.

On the other hand, there is a rather concrete representation of this space: it is
what you get if you take a Möbius band (Figure 1.10) and a disk (Figure 1.11),
and glue them together along their boundary (both the Möbius band and the disk
have boundaries a copy of the circle). You are asked to perform this identification
in Exercise 1.5.3.

1.2.1 Moral

The moral in this subsection is this: configuration spaces are oftentimes manifolds
that do not in any natural way live in Euclidean space. From a technical point of
view they often are what can be called quotient spaces (although this example was
a rather innocent one in this respect).

Figure 1.10. A Möbius band: note that its boundary is a circle.
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Figure 1.11. A disk: note that its boundary is a circle.

1.3 State Spaces and Fiber Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following example illustrates a phenomenon often encountered in physics, and
a tool of vital importance for many applications. It is also an illustration of a key
result which we will work our way towards: Ehresmann’s fibration theorem, 8.5.10
(named after Charles Ehresmann, 1905–1979)1.

It is slightly more involved than the previous example, since it points forward
to many concepts and results we will discuss more deeply later, so if you find the
going a bit rough, I advise you not to worry too much about the details right now,
but come back to them when you are ready.

1.3.1 Qbits

In quantum computing one often talks about qbits. As opposed to an ordinary bit,
which takes either the value 0 or the value 1 (representing “false” and “true” respec-
tively), a qbit, or quantum bit, is represented by a complex linear combination
(“superposition” in the physics parlance) of two states. The two possible states of
a bit are then often called |0〉 and |1〉, and so a qbit is represented by the “pure
qbit state” α|0〉 + β|1〉, where α and β are complex numbers and |α|2 + |β|2 = 1
(since the total probability is 1, the numbers |α|2 and |β|2 are interpreted as the
probabilities that a measurement of the qbit will yield |0〉 and |1〉 respectively).

Note that the set of pairs (α, β) ∈ C2 satisfying |α|2 + |β|2 = 1 is just another
description of the sphere S3 ⊆ R4 = C2. In other words, a pure qbit state is a point
(α, β) on the sphere S3.

However, for various reasons phase changes are not important. A phase change
is the result of multiplying (α, β) ∈ S3 by a unit-length complex number. That is,
if z = eiθ ∈ S1 ⊆ C, the pure qbit state (zα, zβ) is a phase shift of (α, β), and
these should be identified. The state space is what you get when you identify each
pure qbit state with the other pure qbit states you get by a phase change.

So, what is the relation between the space S3 of pure qbit states and the state
space? It turns out that the state space may be identified with the two-dimensional
sphere S2 (Figure 1.12), and the projection down to state space η : S3 → S2 may
then be given by

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 https://en.wikipedia.org/wiki/Charles_Ehresmann
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Figure 1.12. The state space S2.

Piece of qbit space

State space

U

U × S1

Figure 1.13. The pure qbit states represented in a small open neighborhood U in state space form
a cylinder U× S1 (dimension reduced by one in the picture).

η(α, β) = (|α|2 − |β|2, 2αβ̄) ∈ S2 ⊆ R3 = R× C.

Note that η(α, β) = η(zα, zβ) if z ∈ S1, and so η does indeed send all the phase
shifts of a given pure qbit to the same point in state space, and conversely, any two
pure qbits in preimage of a given point in state space are phase shifts of each other.

Given a point in state space p ∈ S2, the space of pure qbit states representing p
can be identified with S1 ⊆ C: choose a pure qbit state (α, β) representing p, and
note that any other pure qbit state representing p is of the form (zα, zβ) for some
unique z ∈ S1.

So, can a pure qbit be given uniquely by its associated point in the state space
and some point on the circle, i.e., is the space of pure qbit states really S2 × S1

(and not S3 as I previously claimed)? Without more work, it is not at all clear how
these copies of S1 lying over each point in S2 are to be glued together: how does
this “circle’s worth” of pure qbit states change when we vary the position in state
space slightly?

The answer comes through Ehresmann’s fibration theorem, 8.5.10. It turns out
that η : S3 → S2 is a locally trivial fibration, which means that, in a small neigh-
borhood U around any given point in state space, the space of pure qbit states
does look like U × S1. See Figure 1.13. On the other hand, the global structure
is different. In fact, η : S3 → S2 is an important mathematical object for many
reasons, and is known as the Hopf fibration.
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The input to Ehresmann’s theorem comes in two types. First we have some point
set information, which in our case is handled by the fact that S3 is “compact” A.7.1.
Secondly, there is a condition which sees only the linear approximations, and which
in our case boils down to the fact that any “infinitesimal” movement on S2 is the
shadow of an “infinitesimal” movement in S3. This is a question which – given the
right language – is settled through a quick and concrete calculation of differentials.
We’ll be more precise about this later (this is Exercise 8.5.16).

1.3.2 Moral

The idea is the important thing: if you want to understand some complicated model
through some simplification, it is often so that the complicated model locally (in
the simple model) can be built out of the simple model through multiplying with
some fixed space.

How these local pictures are glued together to give the global picture is another
matter, and often requires other tools, for instance from algebraic topology. In the
S3 → S2 case, we see that S3 and S2 × S1 cannot be identified since S3 is simply
connected (meaning that any closed loop in S3 can be deformed continuously to a
point) and S2 × S1 is not.

An important class of examples (of which the above is one) of locally trivial
fibrations arises from symmetries: if M is some (configuration) space and you have
a “group of symmetries” G (e.g., rotations) acting on M , then you can consider the
space M/G of points in M where you have identified two points in M if they can
be obtained from each other by letting G act (e.g., one is a rotated copy of the
other). Under favorable circumstances M/G will be a manifold and the projection
M → M/G will be a locally trivial fibration, so that M is built by gluing together
spaces of the form U × G, where U varies over the open subsets of M/G.

1.4 Further Examples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A short bestiary of manifolds available to us at the moment might look like this.

● The surface of the earth, S2, and higher-dimensional spheres, see Exam-
ple 2.1.5.

● Space-time is a manifold: general relativity views space-time as a four-
dimensional “pseudo-Riemannian” manifold. According to Einstein its curva-
ture is determined by the mass distribution. (Whether the large-scale structure
is flat or not is yet another question. Current measurements sadly seem to be
consistent with a flat large-scale structure.)

● Configuration spaces in physics (e.g., the robot in Example 1.1, the two elec-
trons of Example 1.2 or the more abstract considerations at the very end of
Section 1.3.2 above).
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● If f : Rn → R is a map and y a real number, then the inverse image

f −1(y) = {x ∈ Rn | f (x) = y}
is often a manifold. For instance, if f : R2 → R is the norm function f (x) =
|x |, then f −1(1) is the unit circle S1 (c.f. the discussion of submanifolds in
Chapter 4).

● The torus (c.f. the robot in Example 1.1).
● “The real projective plane” RP2 = {All lines in R3 through the origin} (see the

two-electron case in Example 1.2, but also Exercise 1.5.3).
● The Klein bottle2 (see Section 1.5).

We end this introduction by studying surfaces in a bit more detail (since they
are concrete, and this drives home the familiar notion of charts in more exotic sit-
uations), and also come up with some inadequate words about higher-dimensional
manifolds in general.

1.4.1 Charts

The space-time manifold brings home the fact that manifolds must be represented
intrinsically: the surface of the earth is seen as a sphere “in space”, but there is no
space which should naturally harbor the universe, except the universe itself. This
opens up the question of how one can determine the shape of the space in which
we live.

One way of representing the surface of the earth as the two-dimensional space
it is (not referring to some ambient three-dimensional space), is through an
atlas. The shape of the earth’s surface is then determined by how each map
in the atlas is to be glued to the other maps in order to represent the entire
surface.

Just like the surface of the earth is covered by maps, the torus in the robot’s
arm was viewed through flat representations. In the technical sense of the word,
the representation was not a “chart” (see Definition 2.1.1) since some points were
covered twice (just as Siberia and Alaska have a tendency to show up twice on some
European maps). It is allowed to have many charts covering Fairbanks in our atlas,
but on each single chart it should show up at most once. We may fix this problem
at the cost of having to use more overlapping charts. Also, in the robot example
(as well as the two-electron and qbit examples) we saw that it was advantageous to
operate with more charts.

Example 1.4.2 To drive home this point, please play Jeff Weeks’ “Torus Games”
on www.geometrygames.org/TorusGames/ for a while.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 www-groups.dcs.st-and.ac.uk/∼history/Biographies/Klein.html



1.5 Compact Surfaces 11

1.5 Compact Surfaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This section is rather autonomous, and may be read at leisure at a later stage to fill
in the intuition on manifolds.

1.5.1 The Klein Bottle

To simplify we could imagine that we were two-dimensional beings living in a
static closed surface. The sphere and the torus are familiar surfaces, but there are
many more. If you did Example 1.4.2, you were exposed to another surface, namely
the Klein bottle. This has a plane representation very similar to that of the torus:
just reverse the orientation of a single edge (Figure 1.14).

Although the Klein bottle is an easy surface to describe (but frustrating to play
chess on), it is too complicated to fit inside our three-dimensional space (again a
manifold is not a space inside a flat space, it is a locally Euclidean space). The
best we can do is to give an “immersed” (i.e., allowing self-intersections) picture
(Figure 1.15).

Speaking of pictures: the Klein bottle makes a surprising entré in image anal-
ysis. When analyzing the nine-dimensional space of 3 × 3 patches of gray-scale
pixels, it is of importance – for instance if you want to implement some compres-
sion technique – to know what high-contrast configurations occur most commonly.
Carlsson, Ishkhanov, de Silva and Zomorodian show in [5] that the subspace of
“most common high-contrast pixel configurations” actually “is” a Klein bottle.

a a

b

b

Figure 1.14. A plane representation of the Klein bottle: identify along the edges in the direction
indicated.

Figure 1.15. A picture of the Klein bottle forced into our three-dimensional space: it is really just
a shadow since it has self-intersections. If you insist on putting this two-dimensional manifold
into a flat space, you must have at least four dimensions available.
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Their results have been used to develop a compression algorithm based on a “Klein
bottle dictionary”.

1.5.2 Classification of Compact Surfaces

As a matter of fact, it turns out that we can write down a list of all compact surfaces
(compact is defined in Appendix A, but informally should be thought of as “closed
and of bounded size”). First of all, surfaces may be divided into those that are
orientable and those that are not. Orientable means that there are no loops by which
two-dimensional beings living in the surface can travel and return home as their
mirror images. (Is the universe non-orientable? Is that why some people are left-
handed?)

All connected compact orientable surfaces can be obtained by attaching a finite
number of handles to a sphere. The number of handles attached is referred to as the
genus of the surface.

A handle is a torus with a small disk removed (see Figure 1.16). Note that the
boundary of the hole on the sphere and the boundary of the hole on each handle
are all circles, so we glue the surfaces together in a smooth manner along their
common boundary (the result of such a gluing process is called the connected sum,
and some care is required).

Thus all orientable compact surfaces are surfaces of pretzels with many holes
(Figure 1.17).

There are nonorientable surfaces too (e.g., the Klein bottle). To make them, con-
sider a Möbius band3 (Figure 1.18). Its boundary is a circle, so after cutting a
hole in a surface you may glue in a Möbius band. If you do this on a sphere
you get the projective plane (this is Exercise 1.5.3). If you do it twice you get
the Klein bottle. Any nonorientable compact surface can be obtained by cutting

Figure 1.16. A handle: ready to be attached to another 2-manifold with a small disk removed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 www-groups.dcs.st-and.ac.uk/∼history/Biographies/Mobius.html
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Figure 1.17. An orientable surface of genus g is obtained by gluing g handles (the smoothing out
has yet to be performed in these pictures).

Figure 1.18. A Möbius band: note that its boundary is a circle.

a finite number of holes in a sphere and gluing in the corresponding number of
Möbius bands.

The reader might wonder what happens if we mix handles and Möbius bands,
and it is a strange fact that if you glue g handles and h > 0 Möbius bands you get
the same as if you had glued h + 2g Möbius bands! For instance, the projective
plane with a handle attached is the same as the Klein bottle with a Möbius band
glued onto it. But fortunately this is it; there are no more identifications among the
surfaces.

So, any (connected compact) surface can be obtained by cutting g holes in S2 and
either gluing in g handles or gluing in g Möbius bands. For a detailed discussion
the reader may turn to Chapter 9 of Hirsch’s book [8].

1.5.3 Plane Models

If you find such descriptions elusive, you may derive some comfort from the fact
that all compact surfaces can be described similarly to the way we described the
torus. If we cut a hole in the torus we get a handle. This may be represented by
plane models as in Figure 1.19: identify the edges as indicated.

If you want more handles you just glue many of these together, so that a
g-holed torus can be represented by a 4g-gon where two and two edges are iden-
tified. (See Figure 1.20 for the case g = 2; the general case is similar. See
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a

a

b

b

the boundary

a a

b

b

Figure 1.19. Two versions of a plane model for the handle: identify the edges as indicated to get
a torus with a hole in.

a

a′

a

a′

b

b

b′

b′

Figure 1.20. A plane model of the orientable surface of genus two. Glue corresponding edges
together. The dotted line splits the surface up into two handles.

a a

the boundary

Figure 1.21. A plane model for the Möbius band: identify the edges as indicated. When gluing it
onto something else, use the boundary.

also www.rogmann.org/math/tori/torus2en.html for instruction on how
to sew your own two- and three-holed torus.)

It is important to have in mind that the points on the edges in the plane models
are in no way special: if we change our point of view slightly we can get them to
be in the interior.

We have plane models for gluing in Möbius bands too (see Figure 1.21). So a sur-
face obtained by gluing h Möbius bands to h holes on a sphere can be represented
by a 2h-gon, with pairwise identification of edges.

Example 1.5.1 If you glue two plane models of the Möbius band along their
boundaries you get the picture in Figure 1.22. This represents the Klein bottle,
but it is not exactly the same plane representation as the one we used earlier
(Figure 1.14).

To see that the two plane models give the same surface, cut along the line c in the
diagram on the left in Figure 1.23. Then take the two copies of the line a and glue
them together in accordance with their orientations (this requires that you flip one
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a a

a′a′

Figure 1.22. Gluing two flat Möbius bands together. The dotted line marks where the bands were
glued together.

a a

a′a′

c a

a′

a′

c

c

Figure 1.23. Cutting along c shows that two Möbius bands glued together amount to the Klein
bottle.

of your triangles). The resulting diagram, which is shown to the right, is (a rotated
and slanted version of) the plane model we used before for the Klein bottle.

Exercise 1.5.2 Prove by a direct cut-and-paste argument that what you get by adding a handle to
the projective plane is the same as what you get if you add a Möbius band to the
Klein bottle.

Exercise 1.5.3 Prove that the real projective plane

RP2 = {All lines in R3 through the origin}
is the same as what you get by gluing a Möbius band to a sphere.

Exercise 1.5.4 See whether you can find out what the “Euler number”4 (or Euler characteristic)5

is. Then calculate it for various surfaces using the plane models. Can you see that
both the torus and the Klein bottle have Euler number zero? The sphere has Euler
number 2 (which leads to the famous theorem V − E + F = 2 for all surfaces
bounding a “ball”) and the projective plane has Euler number 1. The surface of
Exercise 1.5.2 has Euler number −1. In general, adding a handle reduces the Euler
number by two, and adding a Möbius band reduces it by one.

Exercise 1.5.5 If you did Exercise 1.5.4, design an (immensely expensive) experiment that could
be performed by two-dimensional beings living in a compact orientable surface,
determining the shape of their universe.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 www-groups.dcs.st-and.ac.uk/∼history/Biographies/Euler.html
5 http://en.wikipedia.org/wiki/Euler_characteristic
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1.6 Higher Dimensions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Although surfaces are fun and concrete, next to no real-life applications are two-
or three-dimensional. Usually there are zillions of variables at play, and so our
manifolds will be correspondingly complex. This means that we can’t continue
to be vague (the previous sections indicated that even in three dimensions things
become complicated). We need strict definitions to keep track of all the structure.

However, let it be mentioned at the informal level that we must not expect to have
such a nice list of higher-dimensional manifolds as we had for compact surfaces.
Classification problems for higher-dimensional manifolds constitute an extremely
complex and interesting business we will not have occasion to delve into. It opens
new fields of research using methods both from algebra and from analysis that go
far beyond the ambitions of this text.

1.6.1 The Poincaré Conjecture and Thurston’s Geometrization
Conjecture

In 1904 H. Poincaré 6 conjectured that any simply connected compact and closed 3-
manifold is homeomorphic to the 3-sphere. This problem remained open for almost
100 years, although the corresponding problem was resolved in higher dimensions
by S. Smale7 (1961; for dimensions greater than 4, see [18]) and M. Freedman8

(1982; in dimension 4, see [7]).
In the academic year 2002/2003 G. Perelman9 published a series of papers build-

ing on previous work by R. Hamilton10, which by now have come to be widely
regarded as the core of a proof of the Poincaré conjecture. The proof relies on
an analysis of the “Ricci flow” deforming the curvature of a manifold in a man-
ner somehow analogous to the heat equation, smoothing out irregularities. Our
encounter with flows will be much more elementary, but will still prove essential
in the proof of Ehresmann’s fibration theorem, 8.5.10.

Perelman was offered the Fields Medal for his work in 2006, but spectacularly
refused it. In this way he created much more publicity for the problem, mathemat-
ics and himself than would have otherwise been thinkable. In 2010 Perelman was
also awarded the USD1M Millennium Prize from the Clay Mathematics Institute11.
Again he turned down the prize, saying that Hamilton’s contribution in proving the
Poincaré conjecture was “no less than mine” (see, e.g., the Wikipedia entry12 on
the Poincaré conjecture for an updated account).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 www-groups.dcs.st-and.ac.uk/∼history/Biographies/Poincare.html
7 www-groups.dcs.st-and.ac.uk/∼history/Biographies/Smale.html
8 www-history.mcs.st-andrews.ac.uk/Mathematicians/Freedman.html
9 http://en.wikipedia.org/wiki/Grigori_Perelman

10 http://en.wikipedia.org/wiki/Richard_Hamilton
11 www.claymath.org
12 http://en.wikipedia.org/wiki/Poincare_conjecture
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Of far greater consequence is Thurston’s geometrization conjecture. This conjec-
ture was proposed by W. Thurston13 in 1982. Any 3-manifold can be decomposed
into prime manifolds, and the conjecture says that any prime manifold can be cut
along tori, so that the interior of each of the resulting manifolds has one of eight
geometric structures with finite volume. See, e.g., the Wikipedia page14 for fur-
ther discussion and references to manuscripts with details of the proof filling in
Perelman’s sketch.

1.6.2 The History of Manifolds

Although it is a fairly young branch of mathematics, the history behind the the-
ory of manifolds is rich and fascinating. The reader should take the opportunity
to check out some of the biographies at The MacTutor History of Mathematics
archive15 or the Wikipedia entries of the mathematicians mentioned by name in the
text (I have occasionally provided direct links).

There is also a page called History Topics: Geometry and Topology Index16

which is worthwhile spending some time with. Of printed books, I have found
Jean Dieudonné’s book [6] especially helpful (although it is mainly concerned with
topics beyond the scope of this book).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 www-groups.dcs.st-and.ac.uk/∼history/Biographies/Thurston.html
14 http://en.wikipedia.org/wiki/Geometrization_conjecture
15 www-groups.dcs.st-and.ac.uk/∼history/index.html
16 www-groups.dcs.st-and.ac.uk/∼history/Indexes/Geometry_Topology.html
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2.1 Topological Manifolds
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us get straight to our object of study. The terms used in the definition are
explained immediately below the box. If words like “open” and “topology” are
new to you, you are advised to read Appendix A on point-set topology in parallel
with this chapter.

Definition 2.1.1 An n-dimensional topological manifold M is a Hausdorff
topological space with a countable basis for the topology which is locally
homeomorphic to Rn .

The last point (locally homeomorphic to Rn – implicitly with the metric topology
– also known as Euclidean space, see Definition A.1.8) means that for every point
p ∈ M there is

an open neighborhood U of p in M ,
an open set U ′ ⊆ Rn and
a homeomorphism (Definition A.2.5) x : U → U ′.

We call such an x : U → U ′ a chart and U a chart domain (Figure 2.1).

U

U′

X

M

Figure 2.1.
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A collection of charts {xα : Uα → U ′α} covering M (i.e., such that the union⋃
Uα of the chart domains is M) is called an atlas.

Note 2.1.2 The conditions that M should be “Hausdorff” (Definition A.4.1) and
have a “countable basis for its topology” (Section A.3) will not play an important
rôle for us for quite a while. It is tempting to just skip these conditions, and come
back to them later when they actually are important. As a matter of fact, on a first
reading I suggest you actually do this. Rest assured that all subsets of Euclidean
spaces satisfy these conditions (see Corollary A.5.6).

The conditions are there in order to exclude some pathological creatures
that are locally homeomorphic to Rn , but are so weird that we do not want
to consider them. We include the conditions at once so as not to need to
change our definition in the course of the book, and also to conform with usual
language.

Note that Rn itself is a smooth manifold. In particular, it has a countable basis for
its topology (c.f. Exercise A.3.4). The requirement that there should be a countable
basis for the topology could be replaced by demanding the existence of a countable
atlas.

Note 2.1.3 When saying that “M is a manifold” without specifying its dimension,
one could envision that the dimension need not be the same everywhere. We only
really care about manifolds of a fixed dimension, and even when allowing the
dimension to vary, each connected component has a unique dimension. Conse-
quently, you may find that we’ll not worry about this and in the middle of an
argument say something like “let n be the dimension of M” (and proceed to talk
about things that concern only one component at a time).

Example 2.1.4 Let U ⊆ Rn be an open subset. Then U is an n-manifold. Its atlas
needs only one chart, namely the identity map id : U = U . As a sub-example we
have the open n-disk

En = {p ∈ Rn | |p| < 1}.
The notation En has its disadvantages. You may find it referred to as Bn , Bn(1),
En(1), B1(0), N Rn

1 (0) . . . in other texts.

Example 2.1.5 The n-sphere

Sn = {p ∈ Rn+1 | |p| = 1}
is an n-dimensional manifold. To see that Sn is locally homeomorphic to Rn we
may proceed as follows. Write a point in Rn+1 as an n + 1 tuple indexed from 0 to
n: p = (p0, p1, . . . , pn). To give an atlas for Sn , consider the open sets

U k,0 = {p ∈ Sn | pk > 0},
U k,1 = {p ∈ Sn | pk < 0}
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U 0,1
U 0,0

U 1,0 U 1,1

Figure 2.2.

U1,0

D1

Figure 2.3.

for k = 0, . . . , n, and let

xk,i : U k,i → En

be the projection to the open n-disk En given by deleting the kth coordinate:

(p0, . . . , pn) 
→ (p0, . . . , p̂k, . . . , pn)

= (p0, . . . , pk−1, pk+1, . . . , pn)

(the “hat” in p̂k is a common way to indicate that this coordinate should be deleted).
See Figures 2.2 and 2.3.

(The n-sphere is Hausdorff and has a countable basis for its topology by
Corollary A.5.6 simply because it is a subspace of Rn+1.)

Exercise 2.1.6 Check that the proposed charts xk,i for Sn in the previous example really are
homeomorphisms.

Exercise 2.1.7 We shall later see that an atlas with two charts suffices on the sphere. Why is there
no atlas for Sn with only one chart?

Example 2.1.8 The real projective n-space RPn is the set of all straight lines
through the origin in Rn+1. As a topological space, it is the quotient space (see
Section A.6)
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RPn = (Rn+1 \ {0})/∼,
where the equivalence relation is given by p ∼ q if there is a nonzero real number
λ such that p = λq. Since each line through the origin intersects the unit sphere in
two (antipodal) points, RPn can alternatively be described as

Sn/∼,
where the equivalence relation is p ∼ −p. The real projective n-space is an n-
dimensional manifold, as we shall see below. If p = (p0, . . . , pn) ∈ Rn+1 \ {0} we
write [p] for its equivalence class considered as a point in RPn .

For 0 ≤ k ≤ n, let

U k = {[p] ∈ RPn|pk �= 0}.
Varying k, this gives an open cover of RPn (why is U k open in RPn?). Note that
the projection Sn → RPn when restricted to U k,0 ∪U k,1 = {p ∈ Sn|pk �= 0} gives
a two-to-one correspondence between U k,0 ∪U k,1 and U k . In fact, when restricted
to U k,0 the projection Sn → RPn yields a homeomorphism U k,0 ∼= U k .

The homeomorphism U k,0 ∼= U k together with the homeomorphism

xk,0 : U k,0 → En = {p ∈ Rn | |p| < 1}
of Example 2.1.5 gives a chart U k → En (the explicit formula is given by sending
[p] ∈ U k to (|pk |/(pk |p|)) (p0, . . . , p̂k, . . . , pn). Letting k vary, we get an atlas
for RPn .

We can simplify this somewhat: the following atlas will be referred to as the
standard atlas for RPn . Let

xk : U k → Rn

[p] 
→ 1

pk
(p0, . . . , p̂k, . . . , pn) .

Note that this is well defined since

(1/pk)(p0, . . . , p̂k, . . . , pn) = (1/(λpk))(λp0, . . . , λ̂pk, . . . , λpn).

Furthermore, xk is a bijective function with inverse given by(
xk
)−1

(p0, . . . , p̂k, . . . , pn) = [p0, . . . , 1, . . . , pn]
(note the convenient cheating in indexing the points in Rn).

In fact, xk is a homeomorphism: xk is continuous since the composite U k,0 ∼=
U k → Rn is; and

(
xk
)−1

is continuous since it is the composite Rn → {p ∈
Rn+1 | pk �= 0} → U k , where the first map is given by (p0, . . . , p̂k, . . . , pn) 
→
(p0, . . . , 1, . . . , pn) and the second is the projection.

(That RPn is Hausdorff and has a countable basis for its topology is shown in
Exercise A.7.5.)
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Note 2.1.9 It is not obvious at this point that RPn can be realized as a subspace
of a Euclidean space (we will show it can in Theorem 8.2.6).

Note 2.1.10 We will try to be consistent in letting the charts have names like x
and y. This is sound practice since it reminds us that what charts are good for is to
give “local coordinates” on our manifold: a point p ∈ M corresponds to a point

x(p) = (x1(p), . . . , xn(p)) ∈ Rn.

The general philosophy when studying manifolds is to refer back to properties
of Euclidean space by means of charts. In this manner a successful theory is built
up: whenever a definition is needed, we take the Euclidean version and require that
the corresponding property for manifolds is the one you get by saying that it must
hold true in “local coordinates”.

Example 2.1.11 As we defined it, a topological manifold is a topological space
with certain properties. We could have gone about this differently, minimizing the
rôle of the space at the expense of talking more about the atlas.

For instance, given a set M , a collection {Uα}α∈A of subsets of M such that⋃
α∈A Uα = M (we say that {Uα}α∈A covers M) and a collection of injections (one-

to-one functions) {xα : Uα → Rn}α∈A, assume that if α, β ∈ A then the bijection
xα(Uα∩Uβ)→ xβ(Uα∩Uβ) sending q to xβxα−1(q) is a continuous map between
open subsets of Rn .

The declaration that U ⊂ M is open if for all α ∈ A we have that xα(U ∩Uα) ⊆
Rn is open determines a topology on M . If this topology is Hausdorff and has a
countable basis for its topology, then M is a topological manifold. This can be
achieved if, for instance, we have that

(1) for p, q ∈ M , either there is an α ∈ A such that p, q ∈ Uα or there are
α, β ∈ A such that Uα and Uβ are disjoint with p ∈ Uα and q ∈ Uβ and

(2) there is a countable subset B ⊆ A such that
⋃
β∈B Uβ = M .

2.2 Smooth Structures
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We will have to wait until Definition 2.3.5 for the official definition of a smooth
manifold. The idea is simple enough: in order to do differential topology we need
that the charts of the manifolds are glued smoothly together, so that our questions
regarding differentials or the like do not get different answers when interpreted
through different charts. Again “smoothly” must be borrowed from the Euclidean
world. We proceed to make this precise.

Let M be a topological manifold, and let x1 : U1 → U ′1 and x2 : U2 → U ′2 be
two charts on M with U ′1 and U ′2 open subsets of Rn . Assume that U12 = U1 ∩U2

is nonempty.
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Figure 2.4.

Then we may define a chart transformation as shown in Figure 2.4 (sometimes
called a “transition map”)

x12 : x1(U12)→ x2(U12)

by sending q ∈ x1(U12) to

x12(q) = x2x−1
1 (q)

(in function notation we get that

x12 =
(
x2|U12

) ◦ (x1|U12

)−1 : x1(U12)→ x2(U12),

where we recall that “|U12” means simply “restrict the domain of definition to
U12”). The picture of the chart transformation above will usually be recorded more
succinctly as

U12
x1|U12

�����
��
��
�� x2|U12

���
��

��
��

��

x1(U12) x2(U12).

This makes things easier to remember than the occasionally awkward formulae.
The restrictions, like in x1|U12 , clutter up the notation, and if we’re pretty sure
no confusion can arise we may in the future find ourselves writing variants like
x2x−1

1 |U12 or even x2x−1
1 when we should have written (x2|U12)(x1|U12)

−1. This is
common practice, but in the beginning you should try to keep everything in place
and relax your notation only once you are sure what you actually mean.

Definition 2.2.1 A map f between open subsets of Euclidean spaces is said to be
smooth if all the higher-order partial derivatives exist and are continuous. A smooth
map f between open subsets of Rn is said to be a diffeomorphism if it has a smooth
inverse f −1.
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The chart transformation x12 is a function from an open subset of Rn to another,
and it makes sense to ask whether it is smooth or not.

Definition 2.2.2 An atlas on a manifold is smooth (or C∞) if all the chart
transformations are smooth.

Note 2.2.3 Note that, if x12 is a chart transformation associated with a pair of
charts in an atlas, then x−1

12 is also a chart transformation. Hence, saying that
an atlas is smooth is the same as saying that all the chart transformations are
diffeomorphisms.

Note 2.2.4 We are interested only in the infinitely differentiable case, but in some
situations it is sensible to ask for less. For instance, we could require that all chart
transformations are C1 (all the single partial differentials exist and are continuous).
For a further discussion, see Note 2.3.7 below.

One could also ask for more, for instance that all chart transformations are ana-
lytic functions – giving the notion of an analytic manifold. However, the difference
between smooth and analytic is substantial, as can be seen from Exercise 2.2.14.

Example 2.2.5 Let U ⊆ Rn be an open subset. Then the atlas whose only chart
is the identity id : U = U is smooth.

Example 2.2.6 The atlas

U = {(xk,i ,U k,i )|0 ≤ k ≤ n, 0 ≤ i ≤ 1}
we gave on the n-sphere Sn in Example 2.1.5 is a smooth atlas. To see this, look
at the example U = U 0,0 ∩ U 1,1 shown in Figure 2.5 and consider the associated
chart transformation(

x1,1|U
) ◦ (x0,0|U

)−1 : x0,0(U )→ x1,1(U ).

P
U0,0 ⊃ U1,1

Figure 2.5. How the point p in x0,0(U) is mapped to x1,1(x0,0)−1(p).
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First we calculate the inverse of x0,0: Let p = (p1, . . . , pn) be a point in the open
disk En , then (

x0,0
)−1

(p) =
(√

1− |p|2, p1, . . . , pn

)
(we choose the positive square root, since we consider x0,0). Furthermore,

x0,0(U ) = {(p1, . . . , pn) ∈ En|p1 < 0}.
Finally we get that if p ∈ x0,0(U ) then

x1,1
(
x0,0

)−1
(p) =

(√
1− |p|2, p̂1, p2, . . . , pn

)
.

This is a smooth map, and on generalizing to other indices we get that we have a
smooth atlas for Sn .

Example 2.2.7 There is another useful smooth atlas on Sn , given by stereo-
graphic projection. This atlas has only two charts, (x+,U+) and (x−,U−). The
chart domains are

U+ = {p ∈ Sn | p0 > −1},
U− = {p ∈ Sn | p0 < 1},

and x+ : U+ → Rn is given by sending a point p in Sn to the intersection x+(p)
of the (“hyper”) plane

Rn = {(0, p1, . . . , pn) ∈ Rn+1}
and the straight line through the South pole S = (−1, 0, . . . , 0) and p (see
Figure 2.6). Similarly for x−, using the North pole instead. Note that both x+ and
x− are homeomorphisms onto all of Rn

S

p

x+(p)

x−(p)

(p1, . . . , pn) (p1, . . . , pn)

p0

p

p0

N

Figure 2.6.
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To check that there are no unpleasant surprises, one should write down the
formulae:

x+(p) = 1

1+ p0
(p1, . . . , pn),

x−(p) = 1

1− p0
(p1, . . . , pn).

We observe that this defines homeomorphisms U± ∼= Rn . We need to check that
the chart transformations are smooth. Consider the chart transformation x+

(
x−
)−1

defined on x−(U− ∩U+) = Rn \ {0}. A small calculation gives that if q ∈ Rn then

(
x−
)−1

(q) = 1

1+ |q|2 (|q|
2 − 1, 2q)

(solve the equation x−(p) = q with respect to p), and so

x+
(
x−
)−1

(q) = 1

|q|2 q,

which is smooth. A similar calculation for the other chart transformation yields
that {(x+,U+), (x−,U−)} is a smooth atlas.

Exercise 2.2.8 Verify that the claims and formulae in the stereographic projection example are
correct.

Note 2.2.9 The last two examples may be somewhat worrisome: the sphere is the
sphere and these two atlases are two manifestations of the “same” sphere, are they
not? We address questions of this kind in the next chapter, such as “When do two
different atlases describe the same smooth manifold?” You should, however, be
aware that there are “exotic” smooth structures on spheres, i.e., smooth atlases on
the topological manifold Sn which describe smooth structures essentially different
from the one(s?) we have described (but only in high dimensions). See in particu-
lar Exercise 2.3.10 and Note 2.4.13. Furthermore, there are topological manifolds
which cannot be given smooth structures.

Example 2.2.10 The atlas we gave the real projective space is smooth. As an
example consider the chart transformation x2(x0)−1: if p2 �= 0 then

x2
(
x0
)−1

(p1, . . . , pn) = 1

p2
(1, p1, p3, . . . , pn).
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Exercise 2.2.11 Show in all detail that the complex projective n-space

CPn = (Cn+1 \ {0})/∼,
where z ∼ w if there exists a λ ∈ C \ {0} such that z = λw, is a compact 2n-
dimensional manifold. If your topology is not that strong yet, focus on the charts
and chart transformations.

Exercise 2.2.12 There is a convenient smooth atlas for the circle S1, whose charts we will refer to
as angle charts. For each θ0 ∈ R consider the homeomorphism

(θ0, θ0 + 2π)→ S1 − {eiθ0}
given by sending θ to eiθ . Call the inverse xθ0 . Check that {(xθ0, S1 − eiθ0)}θ0 is a
smooth atlas.

Exercise 2.2.13 Give the boundary of the square the structure of a smooth manifold.

Exercise 2.2.14 Let λ : R→ R be defined by

λ(t) =
{

0 for t ≤ 0
e−1/t for t > 0.

This is a smooth function with values between zero and one. Note that all deriva-
tives at zero are zero: the McLaurin series fails miserably and λ is definitely not
analytic.

2.3 Maximal Atlases
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We easily see that some manifolds can be equipped with many different smooth
atlases. An example is the circle. Stereographic projection gives a different atlas
than what you get if you for instance parametrize by means of the angle (Exam-
ple 2.2.7 vs. Exercise 2.2.12). But we do not want to distinguish between these two
“smooth structures”, and in order to systematize this we introduce the concept of a
maximal atlas.

Definition 2.3.1 Let M be a manifold and A a smooth atlas on M . Then we define
D(A) as the following set of charts on M :

D(A) =
⎧⎨⎩charts y : V → V ′ on M

∣∣∣∣∣∣
for all charts (x,U ) in A, the composite

x |W (y|W )−1 : y(W )→ x(W )

is a diffeomorphism, where W = U ∩ V

⎫⎬⎭ .
Lemma 2.3.2 Let M be a manifold and A a smooth atlas on M. Then D(A) is a
smooth atlas.
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Proof. Let y : V → V ′ and z : W → W ′ be two charts in D(A). We have to show
that

z|V∩W ◦ (y|V∩W )
−1

is smooth. Let q be any point in y(V ∩ W ). We prove that z ◦ y−1 is smooth in a
neighborhood of q. Choose a chart x : U → U ′ in A with y−1(q) ∈ U .

Letting O = U ∩ V ∩W , we get that

z|O ◦ (y|O)−1 = z|O ◦ ((x |O)−1 ◦ x |O) ◦ (y|O)−1

= (z|O ◦ (x |O)−1
) ◦ (x |O ◦ (y|O)−1)

)
.

Since y and z are in D(A) and x is in A we have by definition that both the maps
in the composite above are smooth, and we are done. �

The crucial equation can be visualized by the following diagram:

O
y|O
����
��
��
��
�

x |O
��

z|O
���

��
��

��
��

y(O) x(O) z(O).

Going up and down with x |O in the middle leaves everything fixed so the two
functions from y(O) to z(O) are equal.

Definition 2.3.3 A smooth atlas is maximal if there is no strictly bigger smooth
atlas containing it.

Exercise 2.3.4 Given a smooth atlas A, prove that D(A) is maximal. Hence any smooth atlas is a
subset of a unique maximal smooth atlas.

Definition 2.3.5 A smooth structure on a topological manifold is a maximal
smooth atlas. A smooth manifold (M,A) is a topological manifold M equipped
with a smooth structure A. A differentiable manifold is a topological manifold
for which there exists a smooth structure.

V ′ = y (V )

• q
y (                )U ⊃ V ⊃ W

y (V ⊃ W)

Figure 2.7.
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Note 2.3.6 The following terms are synonymous: smooth, differential and C∞.

Note 2.3.7 We are interested only in the smooth case, but in some situations it is
sensible to ask for less. For instance, we could require that all chart transformations
are C1 (all the single partial differentials exist and are continuous). However, the
distinction is not really important since having an atlas with C1 chart transforma-
tions implies that there is a unique maximal smooth atlas such that the mixed chart
transformations are C1 (see, e.g., Theorem 2.9 in Chapter 2 of [8]).

Note 2.3.8 In practice we do not give the maximal atlas, but choose only a small
practical smooth atlas and apply D to it. Often we write just M instead of (M,A)
if A is clear from the context.

Exercise 2.3.9 To check that two smooth atlases A and B give the same smooth structure on
M (i.e., that D(A) = D(B)) it suffices to verify that for each p ∈ M there
are charts (x,U ) ∈ A) and (y, V ) ∈ B with p ∈ W = U ∩ V such that
x |W (y|W )−1 : y(W )→ x(W ) is a diffeomorphism.

Exercise 2.3.10 Show that the two smooth atlases we have defined on Sn (the standard atlas in
Example 2.1.5 and the stereographic projections of Example 2.2.7) are contained
in a common maximal atlas. Hence they define the same smooth manifold, which
we will simply call the (standard smooth) sphere.

Exercise 2.3.11 Choose your favorite diffeomorphism x : Rn → Rn . Why is the smooth structure
generated by x equal to the smooth structure generated by the identity? What does
the maximal atlas for this smooth structure (the only one we’ll ever consider) on
Rn look like?

Exercise 2.3.12 Prove that any smooth manifold (M,A) has a countable smooth atlas V (so that
D(V) = A).

Exercise 2.3.13 Prove that the atlas given by the angle charts in Exercise 2.2.12 gives the standard
smooth structure on S1.

Following up Example 2.1.11 we see that we can construct smooth manifolds
from scratch, without worrying too much about the topology.

Lemma 2.3.14 Given

(1) a set M,
(2) a collection A of subsets of M, and
(3) an injection xU : U → Rn for each U ∈ A,

such that
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(1) there is a countable subcollection of A which covers M,
(2) for p, q ∈ M, either there is a U ∈ A such that p, q ∈ U or there are

U, V ∈ A such that U and V are disjoint with p ∈ U and q ∈ V , and
(3) if U, V ∈ A then the bijection xU (U ∩ V ) → xV (U ∩ V ) sending q to

xV xU
−1(q) is a smooth map between open subsets of Rn,

then there is a unique topology on M such that (M,D({(xU ,U )}U∈A)) is a smooth
manifold.

Proof. For the xU s to be homeomorphisms we must have that a subset W ⊆ M
is open if and only if for all U ∈ A the set xU (U ∩ W ) is an open subset of Rn .
As before, M is a topological manifold, and by the last condition {(xU ,U )}U∈A is
a smooth atlas. �

Example 2.3.15 As an example of how Lemma 2.3.14 can be used to construct
smooth manifolds, we define a family of very important smooth manifolds called
the Grassmann manifolds (after Hermann Grassmann (1809–1877))1. These mani-
folds show up in a number of applications, and are important to the theory of vector
bundles (see for instance Section 6.8).

For 0 < k ≤ n, let

Gr(k,Rn)

(the notation varies in the literature) be the set of all k-dimensional linear subspaces
of Rn . Note that Gr(1,Rn+1) is nothing but the projective space RPn .

We will equip Gr(k,Rn) with the structure of an (n − k)k-dimensional smooth
manifold, the Grassmann manifold.

Doing this properly requires some care, but it is worth your while in that it serves
the dual purpose of making the structure of this important space clearer as well
as driving home some messages about projections that your linear algebra course
might have been too preoccupied with multiplying matrices to make apparent.

If V,W ⊆ Rn are linear subspaces, we let prV : Rn → V be the orthogonal
projection to V (with the usual inner product) and prV

W : W → V the restriction of
prV to W .

We let Hom(V,W ) be the vector space of all linear maps from V to W . Con-
cretely, and for the sake of the smoothness arguments below, using the standard
basis for Rn we may identify Hom(V,W ) with the dim(V ) · dim(W )-dimensional
linear subspace of the space of n × n matrices A with the property that, if v ∈ V
and v′ ∈ V⊥, then Av ∈ W and Av′ = 0. (Check that the map

{A ∈ Mn(R) | v ∈ V, v′ ∈V⊥ ⇒ Av ∈ W, Av′ = 0} → Hom(V,W )

A 
→ {v 
→ Av}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 https://en.wikipedia.org/wiki/Hermann_Grassmann
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is an isomorphism with inverse given by representing a linear transformation as a
matrix.)

If V ∈ Gr(k,Rn), consider the set

UV = {W ∈ Gr(k,Rn) |W ∩ V⊥ = 0}.
We will give “charts” of the form

xV : UV → Hom(V, V⊥),

to which the reader might object that Hom(V, V⊥) is not as such an open subset of
Euclidean space. This is not of the essence, because Hom(V, V⊥) is isomorphic to
the vector space M(n−k)k(R) of all (n− k)× k matrices (choose bases V ∼= Rk and
V⊥ ∼= Rn−k), which again is isomorphic to R(n−k)k .

Another characterization of UV is as the set of all W ∈ Gr(k,Rn) such that
prV

W : W → V is an isomorphism. Let xV : UV → Hom(V, V⊥) send W ∈ UV to
the composite

xV (W ) : V
(prV

W )
−1

−−−−→ W
prV⊥

W−−−→ V⊥.

See Figure 2.8. Varying V we get a smooth atlas {(xV ,UV )}V∈Gr(k,Rn) for Gr(k,Rn).

Exercise 2.3.16 Prove that the proposed structure on the Grassmann manifold Gr(k,Rn) in Exam-
ple 2.3.15 actually is a smooth atlas which endows Gr(k,Rn) with the structure of
a smooth manifold.

Note 2.3.17 In Chapter 1 we used the word “boundary” for familiar objects like
the closed unit disk (whose boundary is the unit circle). Generally, the notion of a
smooth n-dimensional manifold with boundary M is defined exactly as we defined
a smooth n-dimensional manifold, except that the charts x : U → U ′ in our atlas
are required to be homeomorphisms to open subsets U ′ of the half space

Hn = {(p1, . . . , pn) ∈ Rn | p1 ≥ 0}

V ⊥
W

V

υ
xv(W) (υ)

Figure 2.8.
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(i.e., U ′ = Hn ∩ Ũ ′, where Ũ ′ is an open subset of Rn). If y : V → V ′ is another
chart in the atlas, the chart transformation y ◦ x−1|x(U∩V ) is “smooth”, but what
do we mean by a smooth map f : V ′ → W ′ when V ′ and W ′ are open subsets of
half spaces? Here is the general definition: let f : V ′ → W ′, where V ′ ⊆ Rm and
W ′ ⊆ Rn are arbitrary subsets. We say that f is smooth if for each p ∈ V ′ there
exist an open neighborhood p ∈ Ṽ ′ ⊆ Rm and a smooth map f̃ : Ṽ ′ → Rn such
that for each q ∈ V ′ ∩ Ṽ ′ we have that f (q) = f̃ (q).

If M is a manifold with boundary, then its boundary ∂M is the subspace of
points mapped to the boundary ∂H = {(0, p2, . . . , pn)} by some (and hence, it
turns out, all) charts. The boundary is an (n − 1)-dimensional manifold (without
boundary). As an example, consider the closed n-dimensional unit ball; it is an
n-dimensional manifold with boundary the unit (n − 1)-sphere. Ordinary smooth
manifolds correspond to manifolds with empty boundary.

2.4 Smooth Maps
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Having defined smooth manifolds, we need to define smooth maps between them.
No surprise: smoothness is a local question, so we may fetch the notion from
Euclidean space by means of charts. (See Figure 2.9.)

Definition 2.4.1 Let (M,A) and (N ,B) be smooth manifolds and p ∈ M .
A continuous map f : M → N is smooth at p (or differentiable at p) if for
any chart x : U → U ′ ∈ A with p ∈ U and any chart y : V → V ′ ∈ B with
f (p) ∈ V the map

y ◦ f |U∩ f −1(V ) ◦ (x |U∩ f −1(V ))
−1 : x(U ∩ f −1(V ))→ V ′

is smooth at x(p).
We say that f is a smooth map if it is smooth at all points of M .

M

x

x (U ⊃ f –1(V ))

y

•p •f (p)
f –1(V )

N
VU f

U′ V ′

Rm Rn

•x (p)

Figure 2.9.
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Figure 2.9 will often find a less typographically challenging expression: “go up,
over and down in the picture

W
f |W−−−→ V

x |W
⏐⏐� y

⏐⏐�
x(W ) V ′,

where W = U ∩ f −1(V ), and see whether you have a smooth map of open subsets
of Euclidean spaces”. To see whether f in Definition 2.4.1 is smooth at p ∈ M
you do not actually have to check all charts.

Lemma 2.4.2 Let (M,A) and (N ,B) be smooth manifolds. A function f : M →
N is smooth if (and only if) for all p ∈ M there exist charts (x,U ) ∈ A and
(y, V ) ∈ B with p ∈ W = U ∩ f −1(V ) such that the composite

y ◦ f |W ◦ (x |W )−1 : x(W )→ y(V )

is smooth.

Exercise 2.4.3 Prove Lemma 2.4.2 (a full solution is provided in Appendix B, but you should
really try yourself).

Exercise 2.4.4 Show that the map R→ S1 sending p ∈ R to eip = (cos p, sin p) ∈ S1 is smooth.

Exercise 2.4.5 Show that the map g : S2 → R4 given by

g(p0, p1, p2) = (p1 p2, p0 p2, p0 p1, p2
0 + 2p2

1 + 3p2
2)

defines a smooth injective map

g̃ : RP2 → R4

via the formula g̃([p]) = g(p) (remember that |p| = 1; if you allow p ∈ R3−{0},
you should use g(p/|p|)).

Exercise 2.4.6 Show that a map f : RPn → M is smooth if and only if the composite

Sn g→ RPn f→ M

is smooth, where g is the projection.

Definition 2.4.7 A smooth map f : M → N is a diffeomorphism if it is a bijec-
tion, and the inverse is smooth too. Two smooth manifolds are diffeomorphic if
there exists a diffeomorphism between them.
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Note 2.4.8 Note that this use of the word diffeomorphism coincides with the one
used earlier for open subsets of Rn .

Example 2.4.9 The smooth map R → R sending p ∈ R to p3 is a smooth
homeomorphism, but it is not a diffeomorphism: the inverse is not smooth at
0 ∈ R. The problem is that the derivative is zero at 0 ∈ R: if a smooth bijective
map f : R → R has a nowhere-vanishing derivative, then it is a diffeomorphism.
The inverse function theorem, 4.2.1, gives the corresponding criterion for (local)
smooth invertibility also in higher dimensions.

Example 2.4.10 If a < b ∈ R, then the straight line f (t) = (b − a)t + a gives a
diffeomorphism f : (0, 1)→ (a, b)with inverse given by f −1(t) = (t−a)/(b−a).
Note that

tan : (−π/2, π/2)→ R

is a diffeomorphism. Hence all open intervals are diffeomorphic to the entire real
line.

Exercise 2.4.11 Show that RP1 and S1 are diffeomorphic.

Exercise 2.4.12 Show that CP1 and S2 are diffeomorphic.

Note 2.4.13 The distinction between differentiable and smooth of Definition 2.3.5
(i.e., whether there merely exists a smooth structure or one has been chosen) is
not always relevant, but the reader may find pleasure in knowing that according
to Kervaire and Milnor [10] the topological manifold S7 has 28 different smooth
structures (up to “oriented” diffeomorphism, see Section 6.7 – 15 if orientation is
ignored), and R4 has uncountably many [21].

As a side remark, one should notice that most physical situations involve
differential equations of some sort, and so depend on the smooth struc-
ture, and not only on the underlying topological manifold. For instance,
Baez remarks in This Week’s Finds in Mathematical Physics (Week 141), see
www.classe.cornell.edu/spr/1999-12/msg0019934.html, that all
of the 992 smooth structures on the 11-sphere are relevant to string theory.

Once one accepts the idea that there may be many smooth structures, one starts
wondering what manifolds have a unique smooth structure (up to diffeomorphism).
An amazing result in this direction recently appeared: Wang and Xu [22] have
proved that the only odd-dimensional spheres with a unique smooth structure are
S1, S3, S5 and S61(!). The even-dimensional case is not fully resolved; S4 is totally
mysterious, but apart from that one knows that S2, S6 and S56 are the only even-
dimensional spheres in a range of dimensions that support exactly one smooth
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structure (at the time of writing it has been checked by Behrens, Hill, Hopkins and
Ravenel, building on computations by Isaksen and Xu, up to dimension 140).

Lemma 2.4.14 If f : (M,U) → (N ,V) and g : (N ,V) → (P,W) are
smooth, then the composite g f : (M,U)→ (P,W) is smooth too.

Proof. This is true for maps between Euclidean spaces, and we lift this fact to
smooth manifolds. Let p ∈ M and choose appropriate charts

x : U → U ′ ∈ U , such that p ∈ U ,
y : V → V ′ ∈ V , such that f (p) ∈ V ,
z : W → W ′ ∈W , such that g f (p) ∈ W .

Then T = U ∩ f −1(V ∩ g−1(W )) is an open set containing p, and we have that

zg f x−1|x(T ) = (zgy−1)(y f x−1)|x(T ),
which is a composite of smooth maps of Euclidean spaces, and hence
smooth. �

In a picture, if S = V ∩ g−1(W ) and T = U ∩ f −1(S):

T

x |T
��

f |T �� S

y|S
��

g|S �� W

z|W
��

x(T ) y(S) z(W ).

Going up and down with y does not matter.

Exercise 2.4.15 Let f : M → X be a homeomorphism of topological spaces. If M is a
smooth manifold then there is a unique smooth structure on X that makes f a
diffeomorphism.

In particular, note that, if M = X = R and f : M → X is the homeomor-
phism given by f (t) = t3, then the above gives a new smooth structure on R,
but now (with respect to this structure) f : M → X is a diffeomorphism (as
opposed to what was the case in Example 2.4.9), so the two smooth manifolds
are diffeomorphic.

Definition 2.4.16 Let (M,U) and (N ,V) be smooth manifolds. Then we let

C∞(M, N ) = {smooth maps M → N }
and

C∞(M) = C∞(M,R).



36 Smooth Manifolds

Note 2.4.17 A small digression, which may be disregarded if it contains words
you haven’t heard before. The outcome of the discussion above is that we have a
category C∞ of smooth manifolds: the objects are the smooth manifolds, and, if M
and N are smooth, then

C∞(M, N )

is the set of morphisms. The statement that C∞ is a category uses that the identity
map is smooth (check), and that the composition of smooth functions is smooth,
giving the composition in C∞:

C∞(N , P)× C∞(M, N )→ C∞(M, P).

The diffeomorphisms are the isomorphisms in this category.

Definition 2.4.18 A smooth map f : M → N is a local diffeomorphism if for
each p ∈ M there is an open set U ⊆ M containing p such that f (U ) is an open
subset of N and

f |U : U → f (U )

is a diffeomorphism.

Example 2.4.19 The projection Sn → RPn is a local diffeomorphism
(Figure 2.10). Here is a more general example: let M be a smooth manifold, and

i : M → M

a diffeomorphism with the property that i(p) �= p, but i(i(p)) = p for all p ∈ M
(such an animal is called a fixed point free involution). The quotient space M/ i
gotten by identifying p and i(p) has a smooth structure, such that the projection

Figure 2.10. Small open sets in RP2 correspond to unions U ∪ (–U), where U ⊆ S2 is an open set
totally contained in one hemisphere.
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f : M → M/ i is a local diffeomorphism. We leave the proof of this claim as an
exercise.

Exercise 2.4.20 Show that M/ i has a smooth structure such that the projection f : M → M/ i is a
local diffeomorphism.

Exercise 2.4.21 If (M,U) is a smooth n-dimensional manifold and p ∈ M , then there is a chart
x : U → Rn such that x(p) = 0.

Note 2.4.22 In differential topology one considers two smooth manifolds to be
the same if they are diffeomorphic, and all properties one studies are unaffected by
diffeomorphisms.

Is it possible to give a classification of manifolds? That is, can we list all the
smooth manifolds? On the face of it this is a totally over-ambitious question,
but actually quite a lot is known, especially about the compact (Definition A.7.1)
connected (Definition A.9.1) smooth manifolds.

The circle is the only compact connected smooth 1-manifold.
In dimension two it is only slightly more interesting. As we discussed in Sec-

tion 1.5, you can obtain any compact (smooth) connected 2-manifold by punching
g holes in the sphere S2 and glue onto this either g handles or g Möbius bands.

In dimension four and up total chaos reigns (and so it is here that most of the
interesting stuff is to be found). Well, actually only the part within the parentheses
is true in the last sentence: there is a lot of structure, much of it well understood.
However, all of it is beyond the scope of this text. It involves quite a lot of manifold
theory, but also algebraic topology and a subject called surgery, which in spirit
is not so distant from the cutting and pasting techniques we used on surfaces in
Section 1.5. For dimension three, the reader may refer back to Section 1.6.1.

Note 2.4.23 The notion of a smooth map between manifolds with boundary is
defined exactly as for ordinary manifolds, except that we need to use the extension
of the notion of a smooth map V ′ → W ′ to cover the case where V ′ and W ′ are
open subsets of half spaces as explained in Note 2.3.17.

2.5 Submanifolds
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What should a smooth submanifold be? Well, for sure,

Rn × {0} = {(t1, . . . , tn+k) ∈ Rn+k | tn+1 = · · · = tn+k = 0}
ought to be a smooth submanifold of Rn × Rk = Rn+k , and – just as we modeled
smooth manifolds locally by Euclidean space – we use this example to model the
concept of a smooth submanifold (see Figure 2.11). At this point it is perhaps not
entirely clear that this will cover all the examples we are interested in. However,
we will see somewhat later (more precisely, in Theorem 4.7.4) that this definition is



38 Smooth Manifolds

M

N

x

x(U) = U′

U

Rk

Rn

U′ ⊃ Rn

Figure 2.11.

equivalent to another, more conceptual and effectively checkable definition, which
we as yet do not have all the machinery to formulate. Regardless, submanifolds are
too important for us to afford to wait.

Definition 2.5.1 Let (M,U) be a smooth (n + k)-dimensional manifold.
An n-dimensional smooth submanifold in M (Figure 2.11) is a subset N ⊆ M

such that for each p ∈ N there is a chart x : U → U ′ in U with p ∈ U such that

x(U ∩ N ) = U ′ ∩ (Rn × {0}) ⊆ Rn × Rk .

We say that the codimension of N in M is k.

In this definition we identify Rn+k with Rn ×Rk . We often write Rn ⊆ Rn ×Rk

instead of Rn × {0} ⊆ Rn × Rk to signify the subset of all points with the last k
coordinates equal to zero.

Note 2.5.2 The language of the definition really makes some sense: if (M,U) is
a smooth manifold and N ⊆ M a submanifold, then N inherits a smooth structure
such that the inclusion N → M is smooth. If p ∈ N choose a chart (x p,Up) on M
with p ∈ Up such that x p(Up ∩ N ) = x p(Up)∩ (Rn × {0}). Restricting to Up ∩ N
and projecting to the first n coordinates gives a homeomorphism from Up ∩ N to
an open subset of Rn . On letting p vary we get a smooth atlas for N (the chart
transformations consist of restrictions of chart transformations in U).

Example 2.5.3 Let n be a natural number. Then Kn = {(p, pn)} ⊆ R2 is a smooth
submanifold. We define a smooth chart

x : R2 → R2, (p, q) 
→ (p, q − pn).
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Figure 2.12.

Note that as required, x is smooth, with smooth inverse given by

(p, q) 
→ (p, q + pn),

and that x(Kn) = R1 × {0}.

Exercise 2.5.4 Prove that S1 ⊂ R2 is a submanifold. More generally, prove that Sn ⊂ Rn+1 is a
submanifold.

Exercise 2.5.5 Show that the subset C ⊆ Rn+1 given by

C = {(a0, . . . , an−1, t) ∈ Rn+1 | tn + an−1tn−1 + · · · + a1t + a0 = 0},
a part of which is illustrated for n = 2 in Figure 2.12, is a smooth subman-
ifold. (Hint: express C as a graph of a real-valued smooth function and extend
Example 2.5.3 to cover such graphs in general.)

Exercise 2.5.6 The subset K = {(p, |p|) | p ∈ R} ⊆ R2 is not a smooth submanifold.

Note 2.5.7 If N ⊆ M is a smooth submanifold and dim(M) = dim(N ) then
N ⊆ M is an open subset (called an open submanifold). Otherwise dim(M) >
dim(N ).

Example 2.5.8 Let MnR be the set of n × n matrices. This is a smooth manifold
since it is homeomorphic to Rn2

. The subset GLn(R) ⊆ MnR of invertible matrices
is an open submanifold (the determinant function det : MnR→ R is continuous, so
the inverse image GLn(R) = det−1(R− {0}) of the open set R \ {0} ⊆ R is open).
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Exercise 2.5.9 If V is an n-dimensional vector space, let GL(V ) be the set of linear isomorphisms
α : V ∼= V . By representing any linear isomorphism of Rn in terms of the standard
basis, we may identify GL(Rn) and GLn(R).

Any linear isomorphism f : V ∼= W gives a bijection GL( f ) : GL(V ) ∼= GL(W )

sending α : V ∼= V to f α f −1 : W ∼= W . Hence, any linear isomorphism f : V ∼=
Rn (i.e., a choice of basis) gives a bijection GL( f ) : GL(V ) ∼= GLnR, and hence
a smooth manifold structure on GL(V ) (with a diffeomorphism to the open subset
GLnR of Euclidean n2-space).

Prove that the smooth structure on GL(V ) does not depend on the choice of
f : V ∼= Rn .

If h : V ∼= W is a linear isomorphism, prove that GL(h) : GL(V ) ∼= GL(W ) is a
diffeomorphism respecting composition and the identity element.

Example 2.5.10 Let Mm×nR be the set of m × n matrices (if m = n we write
Mn(R) instead of Mn×n(R)). This is a smooth manifold since it is homeomorphic
to Rmn . Let 0 ≤ r ≤ min(m, n). That a matrix has rank r means that it has an r × r
invertible submatrix, but no larger invertible submatrices.

The subset Mr
m×n(R) ⊆ Mm×nR of matrices of rank r is a submanifold of codi-

mension (n− r)(m− r). Since some of the ideas will be valuable later on, we spell
out a proof.

For the sake of simplicity, we treat the case where our matrices have an invertible
r × r submatrix in the upper left-hand corner. The other cases are covered in a
similar manner, taking care of indices (or by composing the chart we give below
with a diffeomorphism on Mm×nR given by multiplying with permutation matrices
so that the invertible submatrix is moved to the upper left-hand corner).

So, consider the open set U of matrices

X =
[

A B
C D

]
with A ∈ Mr (R), B ∈ Mr×(n−r)(R), C ∈ M(m−r)×r (R) and D ∈ M(m−r)×(n−r)(R)
such that det(A) �= 0 (i.e., such that A is in the open subset GLr (R) ⊆ Mr (R)).
The matrix X has rank exactly r if and only if the last n−r columns are in the span
of the first r . Writing this out, this means that X is of rank r if and only if there is
an r × (n − r) matrix T such that[

B
D

]
=
[

A
C

]
T,

which is equivalent to T = A−1 B and D = C A−1 B. Hence

U ∩ Mr
m×n(R) =

{[
A B
C D

]
∈ U

∣∣∣∣ D − C A−1 B = 0

}
.

The map

U →GLr (R)× Mr×(n−r)(R)× M(m−r)×r (R)× M(m−r)×(n−r)(R),
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A B
C D

]

→ (A, B,C, D − C A−1 B)

is a diffeomorphism onto an open subset of Mr (R)×Mr×(n−r)(R)×M(m−r)×r (R)×
M(m−r)×(n−r)(R) ∼= Rmn , and therefore gives a chart having the desired property
that U ∩Mr

m×n(R) is the set of points such that the last (m− r)(n− r) coordinates
vanish.

Definition 2.5.11 A smooth map f : N → M is an imbedding if the
image f (N ) ⊆ M is a submanifold, and the induced map N → f (N ) is a
diffeomorphism.

Exercise 2.5.12 Prove that

C→ M2(R),

x + iy 
→
[

x −y
y x

]
defines an imbedding. More generally it defines an imbedding

Mn(C)→ Mn(M2(R)) ∼= M2n(R).

Show also that this imbedding sends “conjugate transpose” to “transpose” and
“multiplication” to “multiplication”.

Exercise 2.5.13 Show that the map

f : RPn → RPn+1,

[p] = [p0, . . . , pn] 
→ [p, 0] = [p0, . . . , pn, 0]
is an imbedding.

Note 2.5.14 Later we will give a very efficient way of creating smooth subman-
ifolds, getting rid of all the troubles of finding actual charts that make the subset
look like Rn in Rn+k . We shall see that if f : M → N is a smooth map and q ∈ N
then more often than not the inverse image

f −1(q) = {p ∈ M | f (p) = q}
is a submanifold of M . Examples of such submanifolds are the sphere and the
space of orthogonal matrices (the inverse image of the identity matrix under the
map sending a matrix A to AT A, where AT is A transposed).

Example 2.5.15 This is an example where we have the opportunity to use a bit
of topology. Let f : M → N be an imbedding, where M is a (nonempty) compact
n-dimensional smooth manifold and N is a connected n-dimensional smooth man-
ifold. Then f is a diffeomorphism. This is so because f (M) is compact, and hence
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closed, and open since it is a codimension-zero submanifold. Hence f (M) = N
since N is connected. But since f is an imbedding, the map M → f (M) = N is
– by definition – a diffeomorphism.

Exercise 2.5.16 (This is an important exercise. Do it: you will need the result several times.) Let
i1 : N1 → M1 and i2 : N2 → M2 be smooth imbeddings and let f : N1 → N2 and
g : M1 → M2 be continuous maps such that i2 f = gi1 (i.e., the diagram

N1
f−−−→ N2

i1

⏐⏐� i2

⏐⏐�
M1

g−−−→ M2

commutes). Show that if g is smooth, then f is smooth.

Exercise 2.5.17 Show that the composite of two imbeddings is an imbedding.

Exercise 2.5.18 Let 0 < m ≤ n and define the Milnor manifold by

H(m, n) =
{
([p], [q]) ∈ RPm × RPn |

m∑
k=0

pkqk = 0
}
.

Prove that H(m, n) ⊆ RPm × RPn is a smooth (m + n − 1)-dimensional
submanifold.

Note 2.5.19 The Milnor manifolds and their complex counterparts are particu-
larly important manifolds, because they in a certain sense give the building blocks
for all manifolds (up to a certain equivalence relation called cobordism).

2.6 Products and Sums
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 2.6.1 Let (M,U) and (N ,V) be smooth manifolds. The (smooth)
product is the smooth manifold you get by giving the product M × N the smooth
atlas given by the charts

x × y : U × V →U ′ × V ′,
(p, q) 
→ (x(p), y(q)),

where (x,U ) ∈ U and (y, V ) ∈ V .

Exercise 2.6.2 Check that this definition makes sense.
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Figure 2.13. The torus is a product. The bolder curves in the illustration try to indicate the
submanifolds {1} × S1 and S1 × {1}.

Note 2.6.3 Even if the atlases we start with are maximal, the charts of the form
x × y do not form a maximal atlas on the product, but as always we can consider
the associated maximal atlas.

Example 2.6.4 We know a product manifold already: the torus S1 × S1

(Figure 2.13).

Exercise 2.6.5 Show that the projection

pr1 : M × N → M,

(p, q) 
→ p

is a smooth map. Choose a point p ∈ M . Show that the map

i p : N → M × N ,

q 
→ (p, q)

is an imbedding.

Exercise 2.6.6 Show that giving a smooth map Z → M×N is the same as giving a pair of smooth
maps Z → M and Z → N . Hence we have a bijection

C∞(Z ,M × N ) ∼= C∞(Z ,M)× C∞(Z , N ).

Exercise 2.6.7 Show that the infinite cylinder R1×S1 is diffeomorphic to R2\{0}. See Figure 2.14.
More generally: R1 × Sn is diffeomorphic to Rn+1 \ {0}.

Exercise 2.6.8 Let f : M → M ′ and g : N → N ′ be imbeddings. Then

f × g : M × N → M ′ × N ′

is an imbedding.
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Figure 2.14. Looking down into the infinite cylinder.

Exercise 2.6.9 Show that there exists an imbedding Sn1 × · · · × Snk → R1+∑k
i=1 ni .

Exercise 2.6.10 Why is the multiplication of matrices

GLn(R)× GLn(R)→ GLn(R), (A, B) 
→ A · B

a smooth map? This, together with the existence of inverses, makes GLn(R) a “Lie
group”.

For the record: a Lie group is a smooth manifold M with a smooth “multiplica-
tion” M ×M → M that is associative, and it has a neutral element and all inverses
(in GLn(R) the neutral element is the identity matrix).

Exercise 2.6.11 Why is the multiplication

S1 × S1 → S1, (eiθ , eiτ ) 
→ eiθ · eiτ = ei(θ+τ)

a smooth map? This is our second example of a Lie group.

Definition 2.6.12 Let (M,U) and (N ,V) be smooth manifolds. The (smooth)
disjoint union (or sum) is the smooth manifold you get by giving the disjoint union
M
∐

N the smooth structure given by U ∪ V . See Figure 2.15.

Exercise 2.6.13 Check that this definition makes sense.

Note 2.6.14 As for the product, the atlas we give the sum is not maximal (a chart
may have disconnected source and target). There is nothing wrong a priori with
taking the disjoint union of an m-dimensional manifold with an n-dimensional
manifold. The result will of course be neither m- nor n-dimensional. Such examples
will not be important to us, and you will find that in arguments we may talk
about a smooth manifold, and without hesitation later on start talking about its
dimension. This is justified since we can consider one component at a time, and
each component will have a well-defined dimension.
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Figure 2.15. The disjoint union of two tori (imbedded in R3).

Figure 2.16.

Note 2.6.15 Manifolds with boundary, as defined in Note 2.3.17, do not behave
nicely under products, as can be seen already from the simplest example [0, 1] ×
[0, 1]. There are ways of “rounding the corners” that have been used in the literature
to deal with this problem, but it soon becomes rather technical.

There is no similar problem with the disjoint union.

Example 2.6.16 The Borromean rings (Figure 2.16) give an interesting example
showing that the imbedding in Euclidean space is irrelevant to the manifold: the
Borromean rings amount to the disjoint union of three circles S1

∐
S1
∐

S1. Don’t
get confused: it is the imbedding in R3 that makes your mind spin: the manifold
itself is just three copies of the circle! Moral: an imbedded manifold is something
more than just a manifold that can be imbedded.

Exercise 2.6.17 Prove that the inclusion

inc1 : M ⊂ M
∐

N

is an imbedding.
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Exercise 2.6.18 Show that giving a smooth map M
∐

N → Z is the same as giving a pair of
smooth maps M → Z and N → Z . Hence we have a bijection

C∞(M
∐

N , Z) ∼= C∞(M, Z)× C∞(N , Z).

Exercise 2.6.19 Find all the errors in the hints in Appendix B for the exercises from Chapter 2.



3 The Tangent Space

In this chapter we will study linearizations. You have seen this many times before
as tangent lines and tangent planes (for curves and surfaces in Euclidean space),
and the main difficulty you will encounter is that the linearizations must be defined
intrinsically – i.e., in terms of the manifold at hand – and not with reference to
some big ambient space. We will shortly (in Predefinition 3.0.5) give a simple and
perfectly fine technical definition of the tangent space, but for future convenience
we will use the concept of germs in our final definition. This concept makes nota-
tion and bookkeeping easy and is good for all things local (in the end it will turn
out that due to the existence of so-called smooth bump functions (see Section 3.2)
we could have stayed global in our definitions).

An important feature of the tangent space is that it is a vector space, and a smooth
map of manifolds gives a linear map of vector spaces. Eventually, the chain rule
expresses the fact that the tangent space is a “natural” construction (which actually
is a very precise statement that will reappear several times in different contexts. It
is the hope of the author that the reader, through the many examples, in the end
will appreciate the importance of being natural – as well as earnest).

Beside the tangent space, we will also briefly discuss its sibling, the cotangent
space, which is concerned with linearizing the space of real-valued functions, and
which is the relevant linearization for many applications.

Another interpretation of the tangent space is as the space of derivations, and we
will discuss these briefly since they figure prominently in many expositions. They
are more abstract and less geometric than the path we have chosen – as a matter
of fact, in our presentation derivations are viewed as a “double dualization” of the
tangent space.

3.0.1 The Idea of the Tangent Space of a Submanifold of Euclidean
Space

Given a submanifold M of Euclidean space Rn , it is fairly obvious what we should
mean by the “tangent space” of M at a point p ∈ M .

In purely physical terms, the tangent space should be the following subspace
of Rn . If a particle moves on some curve in M and at p suddenly “loses its grip
on M” (Figure 3.1) it will continue out in the ambient space along a straight line
(its “tangent”). This straight line is determined by its velocity vector at the point
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Figure 3.1. A particle loses its grip on M and flies out on a tangent

Figure 3.2. A part of the space of all tangents

where it flies out into space. The tangent space should be the linear subspace of Rn

containing all these vectors. See Figure 3.2.
When talking about manifolds it is important to remember that there is no

ambient space to fly out into, but we still may talk about a tangent space.

3.0.2 Partial Derivatives

The tangent space is all about the linearization in Euclidean space. To fix notation
we repeat some multivariable calculus.

Definition 3.0.1 Let f : U → R be a function where U is an open subset of Rn

containing p = (p1, . . . pn). The i th partial derivative of f at p is the number (if
it exists)

Di f (p) = Di |p f = lim
h→0

1

h
( f (p + hei )− f (p)),

where ei is the i th unit vector ei = (0, . . . , 0, 1, 0, . . . , 0) (with a 1 in the i th
coordinate). We collect the partial derivatives in a 1× n matrix
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D f (p) = D|p f = (D1 f (p), . . . , Dn f (p)).

Definition 3.0.2 If f = ( f1, . . . , fm) : U → Rm is a function where U is an open
subset of Rn containing p = (p1, . . . pn), then the Jacobian matrix is the m × n
matrix

D f (p) = D|p( f ) =
⎡⎢⎣D f1(p)

...

D fm(p)

⎤⎥⎦ .
In particular, if g = (g1, . . . gm) : (a, b)→ Rm the Jacobian is an m × 1 matrix, or
element in Rm , which we write as

g′(c) = Dg(c) =
⎡⎢⎣g′1(c)

...

g′m(c)

⎤⎥⎦ ∈ Rm .

For convenience, we cite the “flat” (i.e., in Euclidean space) chain rule. For a proof,
see, e.g., Section 2-9 of [19], or any decent book on multivariable calculus.

Lemma 3.0.3 (The Flat Chain Rule) Let g : (a, b) → U and f : U → R be
smooth functions where U is an open subset of Rn and c ∈ (a, b). Then

( f g)′(c) = D( f )(g(c)) · g′(c)

=
n∑

j=1

D j f (g(c)) · g′j (c).

Note 3.0.4 When considered as a vector space, we insist that the elements in
Rn are standing vectors (so that linear maps can be represented by multiplication
by matrices from the left); when considered as a manifold the distinction between
lying and standing vectors is not important, and we use either convention as may
be typographically convenient.

It is a standard fact from multivariable calculus (see, e.g., Section 2-8 of [19])
that if f : U → Rm is continuously differentiable at p (all the partial derivatives
exist and are continuous at p), where U is an open subset of Rn , then the Jacobian is
the matrix associated (in the standard bases) with the unique linear transformation
L : Rn → Rm such that

lim
h→0

1

|h|( f (p + h)− f (p)− L(h)) = 0.

Predefinition 3.0.5 (of the Tangent Space) Let M be a smooth manifold, and let
p ∈ M. Consider the set of all curves γ : R → M with γ (0) = p. On this set
we define the following equivalence relation: given two curves γ : R → M and
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γ1 : R→ M with γ (0) = γ1(0) = p, we say that γ and γ1 are equivalent if for all
charts x : U → U ′ with p ∈ U we have an equality of vectors

(xγ )′(0) = (xγ1)
′(0).

Then the tangent space of M at p is the set of all equivalence classes.

There is nothing wrong with this definition, in the sense that it is naturally iso-
morphic to the one we are going to give in a short while (see Definition 3.3.1).
However, in order to work efficiently with our tangent space, it is fruitful to intro-
duce some language. It is really not necessary for our curves to be defined on all
of R, but on the other hand it is not important to know the domain of definition as
long as it contains a neighborhood around the origin.

3.1 Germs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Whatever one’s point of view on tangent vectors is, it is a local concept. The tangent
of a curve passing through a given point p is only dependent upon the behavior of
the curve close to the point. Hence it makes sense to divide out by the equivalence
relation which says that all curves that are equal on some neighborhood of the point
are equivalent. This is the concept of germs.

Definition 3.1.1 Let M and N be smooth manifolds, and let p ∈ M . On the set

{ f | f : U f → N is smooth, and U f an open neighborhood of p}
we define an equivalence relation where f is equivalent to g, written f ∼ g, if
there is an open neighborhood V f g ⊆ U f ∩Ug of p such that

f (q) = g(q), for all q ∈ V f g.

Such an equivalence class is called a germ, and we write

f̄ : (M, p)→ (N , f (p))

for the germ associated with f : U f → N . We also say that f represents f̄ .

Definition 3.1.2 Let M be a smooth manifold and p a point in M . A function
germ at p is a germ φ̄ : (M, p)→ (R, φ(p)). Let

OM,p = Op

be the set of function germs at p.

Example 3.1.3 In ORn ,0 there are some very special function germs, namely those
associated with the standard coordinate functions pri sending p = (p1, . . . , pn) to
pri (p) = pi for i = 1, . . . , n.
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Note 3.1.4 Germs are quite natural things. Most of the properties we need about
germs are “obvious” if you do not think too hard about them, so it is a good idea
to skip the rest of the section which spells out these details before you know what
they are good for. Come back later if you need anything precise.

Exercise 3.1.5 Show that the relation ∼ actually is an equivalence relation as claimed in
Definition 3.1.1.

Let

f̄ : (M, p)→ (N , f (p))

and

ḡ : (N , f (p))→ (L , g( f (p)))

be two germs represented by the functions f : U f → N and g : Ug → L . Then we
define the composite

ḡ f̄ : (M, p)→ (L , g( f (p)))

as the germ associated with the composite

f −1(Ug)
f | f−1(Ug )−−−−−→ Ug

g−−−→ L

(which makes sense since f −1(Ug) ⊆ M is an open set containing p). See
Figure 3.3.

Uf Ug
N

f –1(Ug)

L

g

f

Figure 3.3. The composite of two germs: just remember to restrict the domain of the representa-
tives.
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Exercise 3.1.6 Show that the composition ḡ f̄ of germs is well defined in the sense that it does
not depend on the chosen representatives g and f . Also, show “associativity”:
h̄(ḡ f̄ ) = (h̄ḡ) f̄ ; and that, if h̄ and f̄ are represented by identity functions, then
h̄ḡ = ḡ = ḡ f̄ .

We occasionally write g f instead of ḡ f̄ for the composite, even though
pedants will point out that we have to adjust the domains before composing
representatives.

Also, we will be cavalier about the range of germs, in the sense that if q ∈
V ⊆ N we will sometimes not distinguish notationally between a germ (M, p)→
(V, q) and the germ (M, p)→ (N , q) given by composition with the inclusion.

A germ f̄ : (M, p) → (N , q) is invertible if (and only if) there is a germ
ḡ : (N , q) → (M, p) such that the composites f̄ ḡ and ḡ f̄ are represented by
identity maps.

Lemma 3.1.7 A germ f̄ : (M, p) → (N , q) represented by f : U f → N is
invertible if and only if there is a diffeomorphism φ : U → V with U ⊆ U f an
open neighborhood of p and V an open neighborhood of q such that f (t) = φ(t)
for all t ∈ U.

Exercise 3.1.8 Prove Lemma 3.1.7. A full proof is provided in Appendix B, but . . .

Note 3.1.9 The set OM,p of function germs forms a vector space by pointwise
addition and multiplication by real numbers:

φ̄ + ψ̄ = φ + ψ, where (φ + ψ)(q) = φ(q)+ ψ(q) for q ∈ Uφ ∩Uψ,

k · φ̄ = k · φ, where (k · φ)(q) = k · φ(q) for q ∈ Uφ,

0̄, where 0(q) = 0 for q ∈ M.

It furthermore has the pointwise multiplication, making it what is called a
“commutative R-algebra”:

φ̄ · ψ̄ = φ · ψ, where (φ · ψ)(q) = φ(q) · ψ(q) for q ∈ Uφ ∩Uψ,

1̄, where 1(q) = 1 for q ∈ M.

That these structures obey the usual rules follows by the same rules on R.
Since we both multiply and compose germs, we should perhaps be careful in

distinguishing the two operations by remembering to write ◦ whenever we com-
pose, and · when we multiply. We will be sloppy about this, and the ◦ will mostly
be invisible. We try to remember to write the ·, though.

Definition 3.1.10 A germ f̄ : (M, p)→ (N , f (p)) defines a function

f ∗ : O f (p)→ Op
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by sending a function germ φ̄ : (N , f (p))→ (R, φ f (p)) to

φ f : (M, p)→ (R, φ f (p))

(“precomposition”).

Note that f ∗ preserves addition and multiplication.

Lemma 3.1.11 If f̄ : (M, p) → (N , f (p)) and ḡ : (N , f (p)) → (L , g( f (p)))
then

f ∗g∗ = (g f )∗ : OL ,g( f (p))→ OM,p.

Exercise 3.1.12 Prove Lemma 3.1.11. A full proof is provided in Appendix B, but . . .

The superscript ∗ may help you remember that this construction reverses the
order, since it may remind you of transposition of matrices.

Since manifolds are locally Euclidean spaces, it is hardly surprising that, on the
level of function germs, there is little difference between (Rn, 0) and (M, p).

Lemma 3.1.13 There are isomorphisms OM,p
∼= ORn ,0 preserving all algebraic

structure.

Proof. Pick a chart x : U → U ′ with p ∈ U and x(p) = 0 (if x(p) �= 0, just
translate the chart). Then

x∗ : ORn ,0 → OM,p

is invertible with inverse (x−1)∗ (note that idU = idM since they agree on an open
subset (namely U ) containing p). �

Note 3.1.14 So is this the end of the subject? Could we just as well study Rn?
No! these isomorphisms depend on a choice of charts. This is OK if you just look
at one point at a time, but as soon as things get a bit messier, this is every bit as bad
as choosing particular coordinates in vector spaces.

3.2 Smooth Bump Functions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Germs allow us to talk easily about local phenomena. There is another way of
focusing our attention on neighborhoods of a point p in a smooth manifold M ,
namely by using bump functions. Their importance lies in the fact that they can
represent all local features near p while ignoring everything “far away”. The exis-
tence of smooth bump functions is a true luxury about smooth manifolds, which
makes the smooth case much more flexible than the analytic case. We will return
to this topic when we define partitions of unity.
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Definition 3.2.1 Let X be a space and p a point in X . A bump function around
p is a map φ : X → R, which takes values in the closed interval [0, 1] only, which
takes the constant value 1 in (the closure of) a neighborhood of p, and takes the
constant value 0 outside some bigger neighborhood.

We will be interested only in smooth bump functions.

Definition 3.2.2 Let X be a space. The support of a function f : X → R is the
closure of the subset of X with nonzero values, i.e.,

supp( f ) = {x ∈ X | f (x) �= 0}.

Lemma 3.2.3 Given r, ε > 0, there is a smooth bump function

γr,ε : Rn → R

with γr,ε(t) = 1 for |t | ≤ r and γr,ε(t) = 0 for |t | ≥ r + ε. More generally, if M
is a manifold and p ∈ M, then there exist smooth bump functions around p. See
Figure 3.4.

Proof. Let βε : R → R be any smooth function with non-negative values and
support [0, ε] (for instance, you may use βε(t) = λ(t) · λ(ε − t), where λ is the
function of Exercise 2.2.14).

Since βε is smooth, it is integrable with
∫ ε

0 βε(x)dx > 0, and we may define
the smooth step function αε : R → R which ascends from zero to one smoothly
between zero and ε by means of

αε(t) =
∫ t

0 βε(x)dx∫ ε
0 βε(x)dx

.

See Figure 3.5. Finally, γ(r,ε) : Rn → R is given by

γ(r,ε)(x) = 1− αε(|x | − r).

As to the more general case, choose a chart (x,U ) for the smooth manifold M
with p ∈ U . By translating, we may assume that x(p) = 0. Since x(U ) ⊆ Rn

0.2
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Figure 3.4.
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Figure 3.5.

is open, there are r, ε > 0 such that the open ball of radius r + 2ε is contained
in x(U ). The function given by sending q ∈ M to γ(r,ε)x(q) if q ∈ U and to 0 if
q �= U is a smooth bump function around p. �

Example 3.2.4 Smooth bump functions are very handy, for instance if you want to
join curves in a smooth fashion (e.g. if you want to design smooth highways!). They
also allow you to drive smoothly on a road with corners: the curve γ : R → R2

given by γ (t) = (te−1/t2
, |te−1/t2 |) is smooth, although its image is not a smooth

submanifold.

Exercise 3.2.5 Given ε > 0, prove that there is a diffeomorphism f : (−ε, ε) → R such that
f (t) = t for |t | small. Conclude that any germ γ̄ : (R, 0)→ (M, p) is represented
by a “globally defined” curve γ : R→ M .

Exercise 3.2.6 Show that any function germ φ̄ : (M, p)→ (R, φ(p)) has a smooth representative
φ : M → R.

Exercise 3.2.7 Let M and N be smooth manifolds and f : M → N a continuous map. Show
that f is smooth if for all smooth φ : N → R the composite φ f : M → R is
smooth.

3.3 The Tangent Space
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that if γ̄ : (R, 0) → (Rn, γ (0)) is some germ into Euclidean space, the
derivative at zero does not depend on a choice of representative (i.e., if γ and
γ1 are two representatives for γ̄ , then γ ′(0) = γ ′1(0)), and we write γ ′(0) without
ambiguity.
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Definition 3.3.1 Let (M,A) be a smooth n-dimensional manifold. Let p ∈ M
and let

Wp = {germs γ̄ : (R, 0)→ (M, p)}.
Two germs γ̄ , γ̄1 ∈ Wp are said to be equivalent, written γ̄ ≈ γ̄1, if for all
function germs φ̄ : (M, p) → (R, φ(p)) we have that (φγ )′(0) = (φγ1)

′(0).
We define the tangent space of M at p to be the set of equivalence classes

Tp M = Wp/ ≈ .

We write [γ̄ ] (or simply [γ ]) for the ≈-equivalence class of γ̄ . This definition
is essentially the same as the one we gave in Predefinition 3.0.5 (see Lemma 3.3.9
below). So, for the definition of the tangent space, it is not necessary to involve the
definition of germs, but it is convenient when working with the definition since we
are freed from specifying domains of definition all the time.

Exercise 3.3.2 Show that the equivalence relation on Wp in Definition 3.3.1 could equally well be
described as follows. Two germs γ̄ , γ̄1 ∈ Wp are said to be equivalent, if for all
charts (x,U ) ∈ A with p ∈ U we have that (xγ )′(0) = (xγ1)

′(0).

Exercise 3.3.3 Show that, for two germs γ̄ , γ̄1 : (R, 0) → (M, p) to define the same tangent
vector, it suffices that (xγ )′(0) = (xγ1)

′(0) for some chart (x,U ).

However – as is frequently the case – it is not the objects, but the maps comparing
them, that turn out to be most important. Hence we need to address how the tangent
space construction is to act on smooth maps and germs.

Definition 3.3.4 Let f̄ : (M, p)→ (N , f (p)) be a germ. Then we define

Tp f : Tp M → T f (p)N

by

Tp f ([γ ]) = [ f γ ].

Exercise 3.3.5 This is well defined.

Does anybody recognize the next lemma? It is the chain rule!

Lemma 3.3.6 If f̄ : (M, p) → (N , f (p)) and ḡ : (N , f (p)) → (L , g( f (p)))
are germs, then

T f (p)g Tp f = Tp(g f ).
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Proof. Let γ̄ : (R, 0)→ (M, p), then

T f (p)g(Tp f ([γ ])) = T f (p)g([ f γ ]) = [g f γ ] = Tp(g f )([γ ]). �
That’s the ultimate proof of the chain rule! The ultimate way to remember it is

as follows: the two ways around the triangle

Tp M
Tp f ��

Tp(g f ) ���
��

��
��

��
T f (p)N

T f (p)g

��
Tg f (p)L

are the same (“the diagram commutes”).

Note 3.3.7 For the categorists: the tangent space is an assignment from pointed
manifolds to vector spaces, and the chain rule states that it is a “functor”.

Exercise 3.3.8 Show that, if the germ f̄ : (M, p) → (N , f (p)) is invertible (i.e., there is a germ
ḡ : (N , f (p)) → (M, p) such that ḡ f̄ is the identity germ on (M, p) and f̄ ḡ is
the identity germ on (N , f (p))), then Tp f is a bijection with inverse T f (p)g. In
particular, the tangent space construction sends diffeomorphisms to bijections.

3.3.1 The Vector Space Structure

The “flat chain rule” in Lemma 3.0.3 from multivariable calculus will be used to
show that the tangent spaces are vector spaces and that Tp f is a linear map, but, if
we were content with working with sets only, the one-line proof of the chain rule
in Lemma 3.3.6 would be all we’d ever need.

Summing up the Exercises 3.3.2 and 3.3.3, the predefinition of the tangent space
given in Predefinition 3.0.5 agrees with the official definition (we allow ourselves
to make the conclusion of exercises official when full solutions are provided).

Proposition 3.3.9 The tangent space at a point p is the set of all (germs of) curves
sending 0 to p, modulo the identification of all curves having equal derivatives at
0 in some chart.

Proof. This is the contents of the Exercises 3.3.2 and 3.3.3, and, since by
Exercise 3.2.5 all germs of curves have representatives defined on all of R, the
parenthesis could really be removed. �

In particular if M = Rn , then two curves γ1, γ2 : (R, 0) → (Rn, p) define the
same tangent vector if and only if the derivatives are equal:

γ ′1(0) = γ ′2(0)
(using the identity chart). Hence, a tangent vector in Rn is uniquely determined by
(p and) its derivative at 0, and so TpRn may be identified with Rn . See Figure 3.6.
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Figure 3.6. Many curves give rise to the same tangent.

Lemma 3.3.10 A germ γ̄ : (R, 0) → (Rn, p) is ≈-equivalent to the germ
represented by

t 
→ p + γ ′(0)t.
That is, all elements in TpRn are represented by linear curves, giving a bijection

TpRn ∼= Rn, [γ ] 
→ γ ′(0).

More generally, if M is an n-dimensional smooth manifold, p a point in M and
(x,U ) a chart with p ∈ U, then the map

Ax : Tp M → Rn, Ax([γ ]) = (xγ )′(0)
is a bijection with inverse Ax

−1(v) = [Bv
x ], where Bv

x (t) = x−1(x(p)+ tv).

Proof. It suffices to check that the purported formula for the inverse actu-
ally works. We check both composites, using that x Bv

x (t) = x(p) + tv, and

so (x Bv
x )
′(0) = v: Ax

−1 Ax([γ ]) = [B(xγ )′(0)
x ] = [γ ] and Ax Ax

−1(v) =
(x Bv

x )
′(0) = v. �

Proposition 3.3.11 Let f̄ : (M, p)→ (N , f (p)) be a germ, (x,U ) a chart in M
with p ∈ U and (y, V ) a chart in N with f (p) ∈ V . Then the diagram

Tp M
Tp f−−−→ T f (p)N

∼=
⏐⏐�Ax ∼=

⏐⏐�Ay

Rm D(y f x−1)(x(p))·−−−−−−−−−→ Rn

commutes, where the bottom horizontal map is the linear map given by multiplica-
tion with the Jacobian matrix D(y f x−1)(x(p)) (c.f. Definition 3.0.2).
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Figure 3.7. Two curves on M are sent by a chart x to Rn , where they are added, and the sum is
sent back to M with x−1.

Proof. To show that the diagram commutes, start with a [γ ] ∈ Tp M . Going
down and right we get D(y f x−1)(x(p)) · (xγ )′(0) and going right and down we
get (y f γ )′(0). That these two expressions agree is the chain rule: (y f γ )′(0) =
(y f x−1xγ )′(0) = D(y f x−1)(x(p)) · (xγ )′(0). �

Proposition 3.3.11 is extremely useful, not only because it eventually will prove
that the tangent map Tp f in a natural way is linear (we define things so that Ax

and Ay turn out to be linear isomorphisms, giving that Tp f is displayed as the
composite of three linear maps), but also because it gives us a concrete way of
calculating the tangent map. Many questions can be traced back to a question of
whether Tp f is onto (“p is a regular point”), and we see that Proposition 3.3.11
translates this to the question of whether the Jacobi matrix D(y f x−1)(x(p)) has
rank equal to the dimension of N .

Note 3.3.12 The tangent space is a vector space, and like always we fetch the
structure locally by means of charts. Visually it goes like the sequence shown in
Figure 3.7.

Explicitly, if [γ1], [γ2] ∈ Tp M and a, b ∈ R we define

a[γ1] + b[γ2] = A−1
x (a Ax [γ1] + bAx [γ2]).

This is all well and fine, but would have been quite worthless if the vector space
structure depended on a choice of chart. Of course, it does not. To see this we use
the following observation.

Exercise 3.3.13 Let X be a set, V,W vector spaces, α : X → V a bijection and β : V → W a linear
isomorphism. Then show that the vector space structures induced on X by α and
βα are equal. Note that α becomes a linear isomorphism with this structure.

Lemma 3.3.14 The vector space structure on Tp M in Note 3.3.12 is indepen-
dent of the choice of chart. Furthermore, if f̄ : (M, p) → (N , q) is a germ, then
Tp f : Tp M → Tq N is linear.
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Proof. Consider the diagram in Proposition 3.3.11 when f is the identity:

Tp M Tp M

∼=
⏐⏐�Ax ∼=

⏐⏐�Ay

Rm D(yx−1)(x(p))·−−−−−−−−→ Rm

with two potentially different charts (x,U ) and (y, V ). Since ȳ x̄−1 is invertible, the
Jacobi matrix D(yx−1)(x(p)) is invertible and so we see that the bijection Ay is
equal to the composite of Ax with a linear isomorphism. Hence, by the observation
in Exercise 3.3.13 (with α = Ax and β multiplication by the Jacobi matrix), the
vector space structure induced on Tp M by Ax is equal to the vector space structure
induced by Ay .

That the tangent map is linear now follows immediately from the diagram in
Proposition 3.3.11 for a general f̄ . �

Example 3.3.15 Consider the map det : M2(R)→ R sending the matrix

A =
[

a11 a12

a21 a22

]
to its determinant det(A) = a11a22−a12a21. Using the chart x : M2(R)→ R4 with

x(A) =

⎡⎢⎢⎣
a11

a12

a21

a22

⎤⎥⎥⎦
(and the identity chart on R) we have that the Jacobi matrix is the 1× 4 matrix

D(det x−1)(x(A)) = [a22,−a21,−a12, a11]
(check this!). Thus we see that the rank of D(det x−1)(x(A)) is 0 if A = 0 and 1
if A �= 0. Hence TA det : TA M2(R) → Tdet AR is onto if and only if A �= 0 (and
T0 det = 0).

Exercise 3.3.16 Consider the determinant map det : Mn(R) → R for n > 1. Show that TA det is
onto if the rank rk A of the n × n matrix A is greater than n − 2 and TA det = 0 if
rk A < n − 1.

Exercise 3.3.17 Let L : Rn → Rm be a linear transformation. Show that DL(p) is the matrix
associated with L in the standard basis (and hence independent of the point p).

3.4 The Cotangent Space
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Although the tangent space has a clear physical interpretation as the space of
all possible velocities at a certain point of a manifold, it turns out that for
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many applications – including mechanics – the cotangent space is even more
fundamental.

As opposed to the tangent space, which is defined in terms of maps from the
real line to the manifold, the cotangent space is defined in turn of maps to the real
line. We are really having a glimpse of a standard mathematical technique: if you
want to understand an object, a good way is to understand the maps to or from
something you think you understand (in this case the real line). The real line is the
“yardstick” for spaces.

Recall from Definition 3.1.2 that OM,p denotes the algebra of function germs
φ̄ : (M, p)→ (R, φ(p)). If W is a subspace of a vector space V , then the quotient
space V/W is the vector space you get from V by dividing out by the equivalence
relation v ∼ v + w for v ∈ V and w ∈ W . The vector space structure on V/W is
defined by demanding that the map V → V/W sending a vector to its equivalence
class is linear.

Definition 3.4.1 Let M be a smooth manifold, and let p ∈ M . Let

J = Jp = JM,p ⊆ OM,p

be the vector space of all smooth function germs φ̄ : (M, p) → (R, 0) (i.e., such
that φ(p) = 0), and let J 2 = J 2

p = J 2
M,p be the sub-vector space spanned by all

products φ̄ · ψ̄ , where φ̄ and ψ̄ are in J . The cotangent space, T ∗p M, of M at p is
the quotient space

T ∗p M = Jp/J 2
p .

The elements of T ∗p M are referred to as cotangent vectors.
Let f̄ : (M, p)→ (N , f (p)) be a smooth germ. Then

T ∗ f = T ∗p f : T ∗f (p)N → T ∗p M

is the linear transformation given by sending sending the cotangent vector rep-
resented by the function germ ψ̄ : (N , f (p)) → (R, 0) to the cotangent vector
represented by ψ̄ f̄ : (M, p)→ (N , f (p))→ (R, 0).

Lemma 3.4.2 If f̄ : (M, g(p))→ (N , f g(p)) and ḡ : (L , p)→ (M, g(p)) are
smooth germs, then T ∗( f g) = T ∗gT ∗ f , i.e.,

T ∗f g(p)N
T ∗ f ��

T ∗( f g) ����
��

��
��

�
T ∗g(p)M

T ∗g
��

T ∗p L

commutes.

Proof. There is only one way to compose the ingredients, and the lemma follows
since composition is associative: ψ( f g) = (ψ f )g. �
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Exercise 3.4.3 Prove that, if f̄ is an invertible germ, then T ∗ f is an isomorphism.

Note 3.4.4 In the classical literature there is frequently some magic about “con-
travariant and covariant tensors” transforming this or that way. To some of us this
is impossible to remember, but it is possible to remember whether our construction
turns arrows around or not.

The tangent space “keeps the direction”: a germ f̄ : (M, p) → (N , q) gives
a linear map: T f : Tp M → Tq N , and the chain rule tells us that composition is
OK – T ( f g) = T f T g. The cotangent construction “turns around” the arrows:
we get a map T ∗ f : T ∗q N → T ∗p M and the “cochain rule” Lemma 3.4.2 says that
composition follows suit – T ∗( f g) = T ∗gT ∗ f .

Definition 3.4.5 The linear map d : OM,p → T ∗p (M) given by sending φ̄ : M →
R to the class dφ ∈ Jp/J 2

p represented by φ̄ − φ(p) = [q 
→ φ(q)− φ(p)] ∈ Jp

is called the differential.

The differential is obviously a surjection, and, when we pick an arbitrary element
from the cotangent space, it is often convenient to let it be on the form dφ. We note
that

T ∗ f (dφ) = d(φ f ).

Exercise 3.4.6 The differential d : OM,p → T ∗p (M) is natural in the sense that, given a smooth
germ f̄ : (M, p)→ (N , q), the diagram

ON ,q
f ∗−−−→ OM,p

d

⏐⏐� d

⏐⏐�
T ∗q N

T ∗ f−−−→ T ∗p M

(where f ∗(φ̄) = φ̄ f̄ ) commutes.

Lemma 3.4.7 The differential d : OM,p → T ∗p (M) is a derivation, i.e., it is a
linear map of real vector spaces satisfying the Leibniz rule:

d(φ · ψ) = dφ · ψ + φ · dψ,
where φ · dψ = dψ ·φ is the cotangent vector represented by q 
→ φ(q) · (ψ(q)−
ψ(p)).

Proof. We want to show that dφ · ψ(p) + φ(p) · dψ − d(φ · ψ) vanishes. It is
represented by (φ̄ − φ(p)) · ψ̄ + φ̄ · (ψ̄ − ψ(p)) − (φ̄ · ψ̄ − φ(p) · ψ(p)) ∈ Jp,
which, upon collecting terms, is equal to (φ̄−φ(p)) · (ψ̄−ψ(p)) ∈ J 2

p , and hence
represents zero in T ∗p M = Jp/J 2

p . �
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In order to relate the tangent and cotangent spaces, we need to understand the
situation (Rn, 0). The corollary of the following lemma pins down the rôle of J 2

Rn ,0.

Lemma 3.4.8 Let φ : U → R be a smooth map, where U is an open ball in Rn

containing the origin. Then

φ(p) = φ(0)+
n∑

i=1

pi · φi (p), where φi (p) =
∫ 1

0
Diφ(t · p)dt.

Note that φi (0) = Diφ(0).

Proof. For p ∈ U and t ∈ [0, 1], let F(t) = φ(t · p). Then φ(p) − φ(0) =
F(1) − F(0) = ∫ 1

0 F ′(t)dt by the fundamental theorem of calculus, and F ′(t) =∑n
i=1 pi Diφ(t · p) by the flat chain rule. �

Corollary 3.4.9 The map JRn ,0 → M1×n(R) sending φ̄ to Dφ(0) has kernel
J 2

Rn ,0.

Proof. The Leibniz rule implies that J 2
Rn ,0 is in the kernel {φ̄ ∈ JRn ,0|Dφ(0) = 0}:

if φ(p) = ψ(p) = 0, then D(φ · ψ)(0) = φ(0) · Dψ(0) + Dφ(0) · ψ(0) = 0.
Conversely, assuming that φ(0) = 0 and Dφ(0) = 0, the decomposition φ =
0+∑n

j=1 pr jφ j of Lemma 3.4.8 (where pr j : Rn → R is the j th projection, which
obviously gives an element in JRn ,0) expresses φ̄ as an element of J 2

Rn ,0, since
φ j (0) = D jφ(0) = 0. �

Definition 3.4.10 Let V be a real vector space. The dual of V , written V ∗, is the
vector space HomR(V,R) of all linear maps V → R. Addition and multiplication
by scalars are performed pointwise, in the sense that, if a, b ∈ R and f, g ∈ V ∗,
then a f + bg is the linear map sending v ∈ V to a f (v)+ bg(v) ∈ R.

If f : V → W is linear, then the dual linear map f ∗ : W ∗ → V ∗ is defined by
sending h : W → R to the composite h f : V → W → R.

Notice that (g f )∗ = f ∗g∗.

Example 3.4.11 If V = Rn , then any linear transformation V → R is uniquely
represented by a 1× n matrix, and we get an isomorphism

(Rn)∗ ∼= M1×n(R) = {vT | v ∈ Rn}.
If f : Rn → Rm is represented by the m × n matrix A, then f ∗ : (Rm)∗ → (R)∗ is
represented by the transpose AT of A in the sense that, if h ∈ (Rm)∗ corresponds
to vT, then f ∗(h) = h f ∈ (Rn)∗ corresponds to vT A = (ATv)T.

This means that, if V is a finite-dimensional vector space, then V and V ∗ are
isomorphic (they have the same dimension), but there is no preferred choice of
isomorphism.
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Definition 3.4.12 If {v1, . . . , vn} is a basis for the vector space V , then the dual
basis {v∗1 , . . . , v∗n} for V ∗ is given by v∗j

(∑n
i=1 aivi

) = a j .

Exercise 3.4.13 Check that the dual basis is a basis and that, if f : V → W is a linear map, then the
dual linear map f ∗ : W ∗ → V ∗ is a linear map with associated matrix the transpose
of the matrix of f .

The promised natural isomorphism between the cotangent space and the dual of
the tangent space is given by the following proposition.

Proposition 3.4.14 Consider the assignment

α = αM,p : T ∗p M → (Tp M)∗, dφ 
→ {[γ ] 
→ (φγ )′(0)}.

1. αM,p is a well-defined linear map.
2. αM,p is natural in (M, p), in the sense that if f̄ : (M, p)→ (N , q) is a germ,

then the diagram

T ∗q N
T ∗ f−−−→ T ∗p M

αN ,q

⏐⏐� αM,p

⏐⏐�
(Tq N )∗ (T f )∗−−−→ (Tp M)∗

commutes.
3. Let (x,U ) be a chart for M with p ∈ U, and Ax : Tp M → Rm the isomorphism

of Lemma 3.3.10 given by Ax [γ ] = (xγ )′(0). Then the composite

T ∗p M
αM,p−−−→ (Tp M)∗

(A−1
x )∗−−−−→∼= (Rm)∗

sends the cotangent vector dφ to (the linear transformation Rm → R given
by multiplication with) the Jacobi matrix D(φx−1)(x(p)). In particular, under
this isomorphism, dxi correspond to e∗i = eT

i ·, the dual of the i th standard basis
vector in Rn.

4. αM,p is an isomorphism.

Proof.

1. We show that J 2
p is in the kernel of the (well-defined) linear transformation

Jp → (Tp M)∗, φ̄ 
→ {[γ ] 
→ (φγ )′(0)}.
If φ(p) = ψ(p) = 0, then the Leibniz rule gives

((φ·ψ)γ )′(0) = ((φγ )·(ψγ ))′(0)=(φγ )(0)·(ψγ )′(0)+(φγ )′(0)·(ψγ )(0)=0,

regardless of [γ ] ∈ Tp M .
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2. Write out the definitions and conclude that both ways around the square send a
cotangent vector dφ to the linear map {[γ ] 
→ (φ ◦ f ◦ γ )′(0)}.

3. Recalling that A−1
x (v) = [t 
→ x−1(x(p)+tv)]we get that the composite sends

the cotangent vector dφ to the element in (Rm)∗ given by sending v ∈ Rm to
the derivative at 0 of t 
→ φx−1(x(p)+ tv), which by the chain rule is exactly
D(φx−1)(x(p)) · v.

4. By naturality, we just have to consider the case (M, p) = (Rm, 0) (use natu-
rality as in Exercises 3.3.8 and 3.4.3 with f̄ the germ of a chart). Hence we
are reduced to showing that the composite (A−1

x )∗αRm ,0 is an isomorphism
when x is the identity chart. But this is exactly Corollary 3.4.9: the kernel of
JRm ,0 → (Rm)∗ ∼= M1×m(R) sending φ̄ to Dφ(0) is precisely J 2

Rm ,0 and so the

induced map from T ∗0 Rm = JRm ,0/J 2
Rm ,0 is an isomorphism. �

In order to get a concrete grip on the cotangent space, we should understand the
linear algebra of dual vector spaces a bit better.

Note 3.4.15 Take (x,U ) as a chart for M around p ∈ M and let xi = pri x be

the “i th coordinate”. The isomorphism (A−1
x )
∗αM,p : T ∗p M

∼=→ (Rm)∗ of Proposi-
tion 3.4.14(3) sends dxi to multiplication by the Jacobi matrix D(xi x−1)(x(p)) =
D(pri )(x(p)) = [0 0 . . . 0 1 0 . . . 0 0] = eT

i , i.e., the dual of the i th standard basis
vector ei :

T ∗p M
dxi↔e∗i
∼=

�� (Rm)∗.

Consequently, {dxi }i=1,...,m is a basis for the cotangent space T ∗p M .

Exercise 3.4.16 Verify the claim in Note 3.4.15. Also show that

dφ =
n∑

i=1

Di (φx−1)(x(p)) · dxi .

To get notation as close as possible to the classical notation, one often writes
∂φ/∂xi (p) instead of Di (φx−1)(x(p)), and gets the more familiar expression

dφ =
n∑

i=1

∂φ

∂xi
(p) · dxi .

One good thing about understanding manifolds is that we finally can answer the
following questions. “What is the x in that formula. What is actually meant by
‘variables’, and what is the mysterious symbol ‘dxi ’?” Here x is the name of a
particular chart. In the special case where x = id : Rn = Rn we see that xi is just a
name for the projection onto the i th coordinate and Di (φ)(p) = ∂φ/∂xi (p).
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Hence, the Jacobian of a smooth function f : M → R in some chart (x,U ) is
nothing but the vector corresponding to df in the basis {dxi }i=1,...,n .

In view of the isomorphism T ∗p Rn ∼= Rn , dφ 
→ [D1φ(p), . . . , Dnφ(p)]T some
authors refer to the differential dφ as the gradient of φ. We will resist this tempta-
tion for reasons that will become clear when we talk about Riemannian structures:
even though Tp M (where the gradient should live) and T ∗p M are abstractly isomor-
phic, we need a choice of isomorphism and for general M we will want to control
how this choice varies with p.

Example 3.4.17 In the robot example in Section 1.1, we considered a function
f : S1 × S1 → R1 given by

f (eiθ , eiφ) = |3− eiθ − eiφ| = √11− 6 cos θ − 6 cosφ + 2 cos(θ − φ),

and so, expressed in the basis of the angle charts as in Exercise 2.2.12, the
differential is

d f (eiθ , eiφ)

= (3 sin θ − cosφ sin θ + sinφ cos θ)dθ + (3 sinφ − cos θ sinφ + sin θ cosφ)dφ

f (eiθ , eiφ)
.

Note 3.4.18 Via the correspondence between a basis and its dual in terms of
transposition we can explain the classical language of “transforming this or that
way”. If x : Rn ∼= Rn is a diffeomorphism (and hence is a chart in the standard
smooth structure of Rn , or a “change of coordinates”) and p ∈ Rn , then the diagram

TpRn Tp x−−−→ Tx(p)Rn

[γ ]
→γ ′(0)
⏐⏐�∼= [γ ]
→γ ′(0)

⏐⏐�∼=
Rn Dx(p)·−−−→ Rn

commutes, that is, the change of coordinates x transforms tangent vectors by mul-
tiplication by the Jacobi matrix Dx(p). For cotangent vectors the situation is
that

T ∗x(p)R
n T ∗x−−−→ T ∗p Rn

∼=
⏐⏐�dφ 
→[Dφ(x(p))]T ∼=

⏐⏐�dφ 
→[Dφ(p)]T

Rn [Dx(p)]T·−−−−−→ Rn

commutes.
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Exercise 3.4.19 Let 0 �= p ∈ M = R2 = C, let x : R2 = R2 be the identity chart and let y : V ∼= V ′
be polar coordinates: y−1(r, θ) = reiθ , where V is C minus some ray from the
origin not containing p, and V ′ the corresponding strip of radii and angles. Show
that the upper horizontal arrow in

T ∗p M

T ∗x(p)R
2

dφ 
→[Dφ(x(p))]T
��

��

T ∗x
����������

T ∗y(p)R
2

dφ 
→[Dφ(y(p))]T
��

T ∗y
����������

R2 �� R2

is T ∗(xy−1) and the lower horizontal map is given by multiplication by the trans-
posed Jacobi matrix D(xy−1)(y(p))T, and calculate this explicitly in terms of p1

and p2.
Conversely, in the same diagram with tangent spaces instead of cotangent spaces

(remove the superscript ∗, reverse the diagonal maps, and let the vertical maps
be given by [γ ] 
→ (xγ )′(0) and [γ ] 
→ (yγ )′(0) respectively), show that the
upper horizontal map is Tx(p)(yx−1) and the lower one is given by multiplication
with the Jacobi matrix D(yx−1)(x(p)), and calculate this explicitly in terms of p1

and p2.

Example 3.4.20 If this example makes no sense to you, don’t worry, it’s for the
physicists among us! Classical mechanics is all about the relationship between the
tangent space and the cotangent space. More precisely, the kinetic energy E should
be thought of as (half) an inner product g on the tangent space, i.e., as a symmetric
bilinear and positive definite map

g = 2E : Tp M × Tp M → R.

This is the equation E = 1
2 m|v|2 you know from high school, giving the kinetic

energy as something proportional to the norm applied to the velocity v. The usual –
mass-independent – inner product in Euclidean space gives g(v, v) = vT ·v = |v|2,
in mechanics the mass is incorporated into the inner product.

The assignment [γ ] 
→ g([γ ],−), where g([γ ],−) : Tp M → R is the lin-
ear map [γ1] 
→ g([γ ], [γ1]), defines an isomorphism Tp M ∼= (Tp M)∗ =
HomR(Tp M,R) (isomorphism since g is positive definite). The momentum of
a particle with mass m moving along the curve γ is, at time t = 0, exactly
the cotangent vector g([γ ],−) (this is again the old formula p = mv: the
mass is intrinsic to the inner product, and the v should really be transposed
(p = g(v,−) = mvT) so as to be ready to be multiplied by another v to give
E = 1

2 m|v|2 = 1
2 p · v).
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3.5 Derivations1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Although the definition of the tangent space by means of curves is very intuitive
and geometric, the alternative point of view of the tangent space as the space
of “derivations” can be very convenient. A derivation is a linear transformation
satisfying the Leibniz rule.

Definition 3.5.1 Let M be a smooth manifold and p ∈ M . A derivation (on M
at p) is a linear transformation

X : OM,p → R

satisfying the Leibniz rule

X (φ̄ · ψ̄) = X (φ̄) · ψ(p)+ φ(p) · X (ψ̄)

for all function germs φ̄, ψ̄ ∈ OM,p.
We let D|p M be the set of all derivations.

Example 3.5.2 Let M = R. Then φ̄ 
→ φ′(p) is a derivation. More generally, if
M = Rn then all the partial derivatives φ̄ 
→ D j (φ)(p) are derivations.

Note 3.5.3 Note that the set D|p M of derivations is a vector space: adding two
derivations or multiplying one by a real number gives a new derivation. We shall
later see that the partial derivatives form a basis for the vector space D|pRn .

Definition 3.5.4 Let f̄ : (M, p) → (N , f (p)) be a germ. Then we define the
linear transformation

D|p f : D|p M → D| f (p)N

by

D|p f (X) = X f ∗

(i.e. D|p f (X)(φ̄) = X (φ f )).

Lemma 3.5.5 If f̄ : (M, p) → (N , f (p)) and ḡ : (N , f (p)) → (L , g( f (p)))
are germs, then

D|p M
D|p f ��

D|p(g f ) 		��
��

��
��

�
D| f (p)N

D| f (p)g
��

D|g f (p)L

commutes.

Exercise 3.5.6 Prove Lemma 3.5.5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 This material is not used in an essential way in the rest of the book. It is included for completeness, and for

comparison with other sources.
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3.5.1 The Space of Derivations Is the Dual of the Cotangent Space

Given our discussion of the cotangent space T ∗p M = Jp/J 2
p in the previous section,

it is easy to identify the space of derivations as the dual of the cotangent space (and
hence the double dual of the tangent space).2

However, it is instructive to see how naturally the derivations fall out of our
discussion of the cotangent space (this is of course a reflection of a deeper theory
of derivations you may meet later if you study algebra).

Proposition 3.5.7 Let M be a smooth manifold and p ∈ M. Then

βM,p :
(
T ∗p M

)∗ −−−→ D|p M, βM,p(g) = {OM,p
φ̄ 
→dφ−−−→ T ∗p M

g−−−→ R}
is a natural isomorphism; if f : M → N is a smooth map, then(

T ∗p M
)∗ βM,p−−−→ D|p M

(T ∗ f )∗
⏐⏐� D|p f

⏐⏐�(
T ∗f (p)N

)∗ βN , f (p)−−−−→ D| f (p)N

commutes.

Proof. Recall that T ∗p M = Jp/J 2
p , where Jp ⊆ OM,p consists of the germs

vanishing at p. That βM,p(g) is a derivation follows since g is linear and since
d satisfies the Leibniz rule by Lemma 3.4.7: βM,p(g) applied to φ̄ · ψ̄ gives
g(d(φ · ψ)) = φ(p) · g(dψ) + g(dφ) · ψ(p). The inverse of βM,p is given as
follows. Given a derivation h : OM,p → R, notice that the Leibniz rule gives that
J 2

p ⊆ ker{h}, and so h defines a map β−1
M,p(h) : Jp/J 2

p → R.
Showing that the diagram commutes boils down to following an element g ∈

(T ∗p M)∗ both ways and observing that the result either way is the derivation sending
φ̄ ∈ OM,p to g(d(φ f )) ∈ R. �

For a vector space V , there is a canonical map to the double dualization V →
(V ∗)∗ sending v ∈ V to v∗∗ : V ∗ → R given by v∗∗( f ) = f (v). This map is
always injective, and if V is finite-dimensional it is an isomorphism. This is also
natural: if f : V → W is linear, then

V −−−→ (V ∗)∗

f

⏐⏐� ( f ∗)∗
⏐⏐�

W −−−→ (W ∗)∗

commutes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 For the benefit of those who did not study the cotangent space, we give an independent proof of this fact in

the next subsection, along with some further details about the structure of the space of derivations.
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Together with the above result, this gives the promised natural isomorphism
between the double dual of the tangent space and the space of derivations:

Corollary 3.5.8 There is a chain of natural isomorphism

Tp M
∼=−−−→ ((Tp M)∗)∗

(αM,p)
∗

−−−−→ (T ∗p M)∗
βM,p−−−→ D|p M.

The composite sends [γ ] ∈ Tp M to Xγ ∈ D|p M whose value at φ̄ ∈ OM,p is
Xγ (φ̄) = (φγ )′(0).

Note 3.5.9 In the end, this all sums up to say that Tp M and D|p M are one and the
same thing (the categorists would say that “the functors are naturally isomorphic”),
and so we will let the notation D|p M slip quietly into oblivion.

Notice that in the proof of Corollary 3.5.8 it is crucial that the tangent spaces
are finite-dimensional. However, the proof of Proposition 3.5.7 is totally algebraic,
and does not depend on finite dimensionality.

3.5.2 The Space of Derivations Is Spanned by Partial Derivatives

Even if we know that the space of derivations is just another name for the tangent
space, a bit of hands-on knowledge about derivations can often be useful. This
subsection does not depend on the previous one, and as a side effect gives a direct
proof of Tp M ∼= D|p M without talking about the cotangent space.

The chain rule gives, as before, that we may use charts and transport all
calculations to Rn .

Proposition 3.5.10 The partial derivatives {Di |0}i = 1, . . . , n form a basis for
D|0Rn.

Exercise 3.5.11 Prove Proposition 3.5.10.

Thus, given a chart x̄ : (M, p) → (Rn, 0) we have a basis for D|p M , and we
give this basis the old-fashioned notation to please everybody.

Definition 3.5.12 Consider a chart x̄ : (M, p) → (Rn, x(p)). Define the
derivation in Tp M

∂

∂xi

∣∣∣∣
p

= (D|px
)−1 (

Di |x(p)

)
,

or, in more concrete language, if φ̄ : (M, p)→ (R, φ(p)) is a function germ, then

∂

∂xi

∣∣∣∣
p

(φ̄) = Di (φx−1)(x(p)).
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Note 3.5.13 Note that, if f̄ : (M, p) → (N , f (p)) is a germ, then the matrix
associated with the linear transformation D|p f : D|p M → D| f (p)N in the basis
given by the partial derivatives of x and y is nothing but the Jacobi matrix
D(y f x−1)(x(p)). In the current notation the i, j entry is

∂(yi f )

∂x j

∣∣∣∣
p

.

Definition 3.5.14 Let M be a smooth manifold and p ∈ M . With every germ
γ̄ : (R, 0)→ (M, p) we may associate a derivation Xγ : OM,p → R by setting

Xγ (φ̄) = (φγ )′(0)
for every function germ φ̄ : (M, p)→ (R, φ(p)).

Note that Xγ (φ̄) is the derivative at zero of the composite

(R, 0)
γ̄−−−→ (M, p)

φ̄−−−→ (R, φ(p)).

Exercise 3.5.15 Check that the map Tp M → D|p M sending [γ ] to Xγ is well defined.

Using the definitions we get the following lemma, which says that the map
T0Rn → D|0Rn is surjective.

Lemma 3.5.16 If v ∈ Rn and γ̄ is the germ associated with the curve γ (t) = v ·t ,
then

Xγ (φ̄) = D(φ)(0) · v =
n∑

i=0

vi Di (φ)(0).

In particular, if v = e j is the j th unit vector, then Xγ = D j is the j th partial
derivative at zero.

Lemma 3.5.17 Let f̄ : (M, p)→ (N , f (p)) be a germ. Then

Tp M
Tp f−−−→ T f (p)N⏐⏐� ⏐⏐�

D|p M
D|p f−−−→ D| f (p)N

commutes.

Exercise 3.5.18 Prove Lemma 3.5.17.
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Proposition 3.5.19 Let M be a smooth manifold and p a point in M. The
assignment [γ ] 
→ Xγ defines a natural isomorphism

Tp M ∼= D|p M

between the tangent space at p and the vector space of derivations OM,p → R.

Proof. The term “natural” in the proposition refers to the statement in
Lemma 3.5.17. In fact, we can use this to prove the rest of the proposition.

Choose a germ chart x̄ : (M, p)→ (Rn, 0). Then Lemma 3.5.17 proves that

Tp M
Tp x−−−→∼= T0Rn⏐⏐� ⏐⏐�

D|p M
D|p x−−−→∼= D|0Rn

commutes, and the proposition follows if we know that the right-hand map is a
linear isomorphism.

But we have seen in Proposition 3.5.10 that D|0Rn has a basis consisting of
partial derivatives, and we noted in Lemma 3.5.16 that the map T0Rn → D|0Rn

hits all the basis elements, and now the proposition follows since the dimension
of T0Rn is n (a surjective linear map between vector spaces of the same (finite)
dimension is an isomorphism). �



4 Regular Values

In this chapter we will acquire a powerful tool for constructing new manifolds
as inverse images of smooth functions. This result is a consequence of the rank
theorem, which says roughly that smooth maps are – locally around “most” points –
like linear projections or inclusions of Euclidean spaces.

4.1 The Rank
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remember that the rank of a linear transformation is the dimension of its image. In
terms of matrices, this can be captured by saying that a matrix has rank at least r if
it contains an r × r invertible submatrix.

Definition 4.1.1 Let f̄ : (M, p)→ (N , f (p)) be a smooth germ. The rank rkp f
of f at p is the rank of the linear map Tp f . We say that a germ f̄ has constant rank
r if it has a representative f : U f → N whose rank rk Tq f = r for all q ∈ U f . We
say that a germ f̄ has rank ≥ r if it has a representative f : U f → N whose rank
rk Tq f ≥ r for all q ∈ U f .

In view of Proposition 3.3.11, the rank of f at p is the same as the rank of the
Jacobi matrix D(y f x−1)(x(p)), where (x,U ) is a chart around p and (y, V ) a
chart around f (p).

Lemma 4.1.2 Let f̄ : (M, p)→ (N , f (p)) be a smooth germ. If rkp f = r then
there exists an open neighborhood U of p such that rkq f ≥ r for all q ∈ U.

Proof. Note that the subspace M≥r
n×m(R) ⊆ Mn×m(R) of n×m matrices of rank at

least r is open: the determinant function is continuous, so the set of matrices such
that a given r × r submatrix is invertible is open (in fact, if for S ⊆ {1, . . . n} and
T ⊆ {1, . . . ,m} being two sets with r elements each we let detS,T : Mn×m(R)→ R
be the continuous function sending the n × m matrix (ai j ) to det((ai j )i∈S, j∈T ) we
see that M≥r

n×m(R) is the finite union
⋃

S,T det−1
S,T (R \ {0}) of open sets).

Choose a representative f : U f → N and charts (x,U ) and (y, V ) with p ∈ U
and f (p) ∈ V . Let W = U f ∩U ∩ f −1(V ), and consider the continuous function
J : W → Mn×m(R) sending q ∈ W to the Jacobian J (q) = D(y f x−1)(x(q)). The
desired neighborhood of p is then J−1(M≥r

n×m(R)). �
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Note 4.1.3 In the previous proof we used the useful fact that the subspace
M≥r

n×m(R) ⊆ Mn×m(R) of n × m matrices of rank at least r is open. As a mat-
ter of fact, we showed in Example 2.5.10 that the subspace Mr

n×m(R) ⊆ Mn×m(R)
of n × m matrices of rank (exactly equal to) r is a submanifold of codimension
(m − r)(n − r). Perturbing a rank-r matrix may kick you out of this manifold and
into one of higher rank (but if the perturbation is small enough you can avoid the
matrices of smaller rank).

To remember what way the inequality in Lemma 4.1.2 goes, it may help to recall
that the zero matrix is the only matrix of rank 0 (and so all the neighboring matri-
ces are of higher rank), and likewise that the subset Mmin(m,n)

n×m (R) ⊆ Mn×m(R) of
matrices of maximal rank is open. The rank “does not decrease locally”.

Example 4.1.4 The map f : R→ R given by f (p) = p2 has D f (p) = 2p, and
so

rkp f =
{

0 p = 0

1 p �= 0.

Exercise 4.1.5 What is the rank of the function f : R2 → R2 given by f (s, t) = (s2, st)?

Example 4.1.6 Consider the determinant det : M2(R)→ R with

det(A) = a11a22 − a12a21, for A =
[

a11 a12

a21 a22

]
.

By the calculation in Example 3.3.15 we see that

rkA det =
{

0 A = 0

1 A �= 0.

For dimension n ≥ 2, the analogous statement is that rkA det = 0 if and only if
rk A < n − 1.

Example 4.1.7 Consider the map f : S1 ⊆ C→ R given by f (x+iy) = x . Cover
S1 by the angle charts x : S1 − {1} → (0, 2π) and y : S1 − {−1} → (−π, π) with
x−1(t) = y−1(t) = eit (whenever defined, c.f. Exercise 2.2.12). Then f x−1(t) =
f y−1(t) = cos(t), and so we see that the rank of f at z is 1 if z �= ±1 and 0 if
z = ±1.

Definition 4.1.8 Let f : M → N be a smooth map where N is n-dimensional.
A point p ∈ M is regular if Tp f is surjective (i.e., if rkp f = n). A point
q ∈ N is a regular value if all p ∈ f −1(q) are regular points. Synonyms for
“non-regular” are critical or singular.
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Note that a point q which is not in the image of f is a regular value since
f −1(q) = ∅.

Note 4.1.9 These names are well chosen: the critical values are critical in the
sense that they exhibit bad behavior. The inverse image f −1(q) ⊆ M of a regular
value q will turn out to be a submanifold, whereas inverse images of critical points
usually are not.

On the other hand, according to Sard’s theorem (Theorem 4.6.1) the regular
values are the common state of affairs (in technical language: critical values have
“measure zero” while regular values are “dense”).

Example 4.1.10 The names correspond to the normal usage in multivariable
calculus. For instance, if you consider the function

f : R2 → R

whose graph is depicted in Figure 4.1, the critical points – i.e., the points p ∈ R2

such that

D1 f (p) = D2 f (p) = 0

– will correspond to the two local maxima and the saddle point. We note that
the contour lines at all other values are nice one-dimensional submanifolds of R2

(circles, or disjoint unions of circles).
In Figure 4.2, we have considered a standing torus, and looked at its height

function. The contour lines are then inverse images of various height values. If
we had written out the formulae we could have calculated the rank of the height
function at every point of the torus, and we would have found four critical points:
one on the top, one on “the top of the hole”, one on “the bottom of the hole” (the
point on the figure where you see two contour lines cross) and one on the bottom.
The contours at these heights look like points or figure eights, whereas contour
lines at other values are one or two circles.

Figure 4.1.
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Figure 4.2.

Example 4.1.11 In the robot example in Section 1.1, we considered a function

f : S1 × S1 → R1

and found three critical values. To be more precise,

f (eiθ , eiφ) = |3− eiθ − eiφ| = √11− 6 cos θ − 6 cosφ + 2 cos(θ − φ),
and so (using charts corresponding to the angles as in Exercise 2.2.12: conveniently
all charts give the same formulae in this example) the Jacobi matrix at (eiθ , eiφ)

equals

1

f (eiθ , eiφ)
[3 sin θ − cosφ sin θ + sinφ cos θ, 3 sinφ − cos θ sinφ + sin θ cosφ].

The rank is one, unless both coordinates are zero, in which case we get that we
must have sin θ = sinφ = 0, which leaves the points

(1, 1), (−1,−1), (1,−1), (−1, 1),

giving the critical values 1, 5 and (twice) 3: exactly the points we noticed as
troublesome.

Exercise 4.1.12 The rank of a smooth map is equal to the rank of the cotangent map.

Exercise 4.1.13 Fill out the details in the robot example of Section 1.1.

4.2 The Inverse Function Theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The technical foundation for the theorems to come is the inverse function theorem
from multivariable calculus which we cite below. A proof can be found in Theorem
2.11 of [19], or in any other decent book on multivariable calculus.
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UU0

p

Figure 4.3.

Theorem 4.2.1 Let f : U1 → U2 be a smooth function where U1,U2 ⊆ Rn. Let
p ∈ U1 and assume the Jacobi matrix D f (p) is invertible in the point p. Then
there exists a neighborhood around p on which f is smoothly invertible, i.e., there
exists an open subset U0 ⊆ U1 containing p such that

f |U0 : U0 → f (U0)

is a diffeomorphism onto an open subset of U2. See Figure 4.3.

Note that the flat chain rule, Lemma 3.0.3, gives that the inverse has Jacobian
matrix

D( f −1)( f (x)) = [D f (x)]−1.

Recall from Lemma 3.1.7 that an invertible germ (M, p) → (N , q) is exactly
a germ induced by a diffeomorphism φ : U → V between neighborhoods of p
and q .

Theorem 4.2.2 (The inverse function theorem) A germ

f̄ : (M, p)→ (N , f (p))

is invertible if and only if

Tp f : Tp M → T f (p)N

is invertible, in which case T f (p)( f −1) = (Tp f
)−1

.

Proof. Choose charts (x,U ) and (y, V ) with p ∈ W = U ∩ f −1(V ).
By Proposition 3.3.11, Tp f is an isomorphism if and only if the Jacobi
matrix D(y f x−1)(x(p)) is invertible (which incidentally implies that dim(M) =
dim(N )).

By the inverse function theorem, 4.2.1 in the flat case, this is the case if and only
if y f x−1 is a diffeomorphism when restricted to a neighborhood U0 ⊆ x(U ) of
x(p). As x and y are diffeomorphisms, this is the same as saying that f |x−1(U0)

is a
diffeomorphism. �
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The inverse function theorem has two very useful corollaries. The first follows
directly from Lemma 3.1.7.

Corollary 4.2.3 A germ f̄ : (M, p)→ (Rm, q) is represented by a chart x : U →
U ′ if and only if Tp f is invertible.

Corollary 4.2.4 Let f : M → N be a smooth map between smooth n-
dimensional manifolds. Then f is a diffeomorphism if and only if it is bijective
and Tp f is of rank n for all p ∈ M.

Proof. One way is obvious. For the other implication assume that f is bijective
and Tp f is of rank n for all p ∈ M . Since f is bijective it has an inverse function.
A function has at most one inverse function(!), so the smooth inverse functions
existing locally by virtue of the inverse function theorem must be equal to the
globally defined inverse function, which hence is smooth. �

Exercise 4.2.5 Let G be a Lie group (a smooth manifold with a smooth associative multiplica-
tion, with a unit and all inverses). Show that the map G → G given by sending
an element g to its inverse g−1 is smooth. (Some authors have this as a part of
the definition of a Lie group, which is totally redundant. However, if G is only a
topological space with a continuous associative multiplication, with a unit and all
inverses, it does not automatically follow that inverting elements gives a continuous
function.)

4.3 The Rank Theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The rank theorem says that, if the rank of a smooth map f : M → N is constant in
a neighborhood of a point, then there are charts such that f looks like a composite
Rm → Rr ⊆ Rn , where the first map is the projection onto the first r ≤ m coordi-
nate directions, and the last one is the inclusion of the first r ≤ n coordinates. So,
for instance, a map of rank 1 between 2-manifolds looks locally like

R2 → R2, (q1, q2) 
→ (q1, 0).

Not only does the rank theorem have an enormous impact, but also its proof
carries two very neat ideas, namely

(1) if the question is “local”, we may reduce to the case where our manifolds are
Euclidean spaces, and

(2) the inverse function theorem (in the guise of Corollary 4.2.3) is an extremely
efficient device for checking that a concrete formula actually gives rise to a
chart – you simply calculate the Jacobian and observe that it is invertible.

As we present it, the rank theorem comes in four different flavors, which can
be a bit much for a first reading. At this stage, the reader might want to focus on
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a variant (the third, which is the one relevant for discussing regular values) and
return to the full version when the other variations come into play. So, the advice
is to study Lemma 4.3.1 and its proof closely, then jump directly to Exercise 4.3.4
and take in the rank theorem, 4.3.3, during the second reading.

Lemma 4.3.1 (The Rank Theorem, Regular Value/“Third” Case) Let f̄ :
(M, p) → (N , q) be a germ with rkp f = dim N. Then, for any chart (y, V )
around q, there exists a chart (x,U ) around p such that

y f x−1 = pr,

where pr : Rdim M → Rdim N is the projection pr(t1, . . . , tdim M) = (t1, . . . ,
tdim N ).

Proof. Let m = dim M and n = dim N and let f : U f → N be some
representative of f̄ , where we may assume that U f ⊆ f −1(V ).

First we do the case where y(q) = 0. On choosing any chart (x1,U1) around p
with x1(p) = 0 we get that Dy f x−1

1 (0) has rank n. If need be, we may permute the
coordinates of x1 (which has the effect of permuting the columns of Dy f x−1

1 (0))
so that

Dy f x−1
1 (0) = [A B],

where A ∈ GLn(R). Letting g = y f x−1
1 |x1(U f ∩U1) and x2(t) = (g(t), tn+1, . . . , tm)

for t in the domain of g, we get that

Dx2(0) =
[

A B
0 I

]
.

This matrix is invertible, so, by Corollary 4.2.3 of the inverse function theorem, x2

defines a diffeomorphism x2 : U2
∼= U ′2 where U2 and U ′2 both are neighborhoods

of 0 in Rm .
For t ∈ U ′2 we have

pr(t) = pr(x2x−1
2 (t)) = (pr x2)(x

−1
2 (t)) = gx−1

2 (t).

Now, if we let x = x2x1|U , where U = x−1
1 (U2) ∩U f , we get a chart (x,U ) such

that

y f x−1(t) = y f x−1
1 x−1

2 (t) = gx−1
2 (t) = pr(t)

for all t ∈ x(U ) ⊆ U ′2.
To end the proof, we need to cover the case when y(q) = q ′ �= 0. Consider the

translation T : Rn ∼= Rn given by T (v) = v − q ′. Then (T y, V ) is a chart with
T y(q) = 0, so that the argument above gives us a chart (x,U ) with T y f x−1(s) =
pr(s), or equivalently, y f x−1(s) = pr(s)+ q ′. Letting S : Rm ∼= Rm be defined by
S(t) = t + (q ′, 0) we get that, when we exchange the chart (x,U ) with (Sx,U ),
we have that
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y f (Sx)−1(t) = y f x−1S−1(t) = pr(S−1(t))+ q ′ = pr(t)

for t ∈ Sx(U ), as desired. �

Remember, if this is your first reading, you may now jump directly to Exer-
cise 4.3.4 and come back to the full version of the rank theorem later (you will
need it).

In the formulation of the rank theorem we give below, the two last cases are
the extreme situations where the rank is maximal (and hence constant). Notice that
the conditions vary quite subtly in terms of what charts can be arbitrary and what
charts exist only as a consequence of the theorem.

In the first version, where the condition on the rank is weakest, we need to
be able to tweak a given chart ever so slightly by means of a permutation. If
σ : {1, . . . , n} → {1, . . . , n} is a bijection (a permutation), we refer to the dif-
feomorphism sending (t1, . . . , tn) to (tσ−1(1), . . . , tσ−1(n)) as a permutation of the
coordinates corresponding to σ ; which in an abuse of notation is also denoted
σ : Rn → Rn . When you start composing such permutations, you will appreciate
that we insisted on the inverse of σ in the indices.

Exercise 4.3.2 The permutation of the coordinates is given by multiplication by a permutation
matrix, and as a sanity check you might want to find out exactly what matrix this is.

Theorem 4.3.3 (The Rank Theorem) Let M and N be smooth manifolds of
dimensions dim(M) = m and dim(N ) = n, and let f̄ : (M, p) → (N , q) be a
germ.

1. If f̄ is of rank ≥ r , then for any chart (z, V ) for N with q ∈ V there exists a
chart (x,U ) for M with p ∈ U and permutation σ : Rn → Rn such that

pr σ z f x−1 = pr,

where pr is the projection onto the first r coordinates: pr(t1, . . . , tm) =
(t1, . . . , tr ).

2. If f̄ has constant rank r , then there exist charts (x,U ) for M and (y, V ) for N
with p ∈ U and q ∈ V such that

y f x−1 = i pr,

where i pr(t1, . . . , tm) = (t1, . . . , tr , 0, . . . , 0).
3. If f̄ is of rank n (and so m ≥ n), then for any chart (y, V ) for N with f (p) ∈ V ,

there exists a chart (x,U ) for M with p ∈ U such that

y f x−1 = pr,

where pr(t1, . . . , tm) = (t1, . . . , tn).
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4. If f̄ is of rank m (and so m ≤ n), then for any chart (x,U ) for M with p ∈ U
there exists a chart (y, V ) for N with f (p) ∈ V such that

y f x−1 = i,

where i(t1, . . . , tm) = (t1, . . . , tm, 0, . . . , 0).

Proof. This is a local question: if we start with arbitrary charts, we will fix them
up so that we have the theorem. Hence we may just as well assume that (M, p) =
(Rm, 0) and (N , f (p)) = (Rn, 0), that f is a representative of the germ, and that
the Jacobian D f (0) has the form

D f (0) =
[

A B
C D

]
,

where A is an invertible r × r matrix. This is where we use that we may permute
the coordinates: at the outset there was no guarantee that the upper left r×r matrix
A was invertible: we could permute the columns by choosing x wisely (except in
the fourth part, where x is fixed, but where this is unnecessary since r = m), but
the best we could guarantee without introducing the σ was that there would be an
invertible r × r matrix somewhere in the first r columns. For the third part of the
theorem, this is unnecessary since r = n.

Let fi = pri f , and for the first, second and third parts define x : (Rm, 0) →
(Rm, 0) by

x(t) = ( f1(t), . . . , fr (t), tr+1, . . . , tm)

(where t j = pr j (t)). Then

Dx(0) =
[

A B
0 I

]
and so det Dx(0) = det(A) �= 0. By the inverse function theorem, 4.2.2, x̄ is an
invertible germ with inverse x̄−1, and, as spelled out in Corollary 4.2.3, is repre-
sented by a chart. Choose a representative for x̄−1, which we, by a slight abuse of
notation, will call x−1. Since for sufficiently small t ∈ M = Rm we have

( f1(t), . . . , fn(t)) = f (t) = f x−1x(t) = f x−1( f1(t), . . . , fr (t), tr+1, . . . , tm),

we see that

f x−1(t) = (t1, . . . , tr , fr+1x−1(t), . . . , fnx−1(t))

and we have proven the first and third parts of the rank theorem.
For the second part, assume rk D f (t) = r for all t . Since x̄ is invertible

D( f x−1)(t) = D f (x−1(t))D(x−1)(t)



82 Regular Values

also has rank r for all t in the domain of definition. Note that

D( f x−1)(t) =
⎡⎢⎣ I 0
. . . . . . . . . . . . . . . . . . . . . .

[D j ( fi x−1)(t)] i=r+1,...,n
j=1,...m

⎤⎥⎦ ,
so since the rank is exactly r we must have that the lower right-hand (n−r)×(m−r)
matrix [

D j ( fi x
−1)(t)

]
r+1 ≤ i ≤ n
r+1 ≤ j ≤ m

is the zero matrix (which says that “for i > r , the function fi x−1 does not depend
on the last m−r coordinates of the input”). Define ȳ : (Rn, 0)→ (Rn, 0) by setting

y(t) = (t1, . . . , tr , tr+1 − fr+1x−1(t̄), . . . , tn − fnx−1(t̄)
)
,

where t̄ = (t1, . . . , tr , 0, . . . , 0). Then

Dy(t) =
[

I 0
? I

]
,

so ȳ is invertible and y f x−1 is represented by

t = (t1, . . . , tm) 
→
(

t1, . . . , tr , fr+1x−1(t)− fr+1x−1(t̄), . . . , fn x−1(t)− fn x−1(t̄)
)

= (t1, . . . , tr , 0, . . . , 0),

where the last equation holds since D j ( fi x−1)(t) = 0 for r < i ≤ n and r < j ≤
m and so fi x−1(t)− fi x−1(t̄) = 0 for r < i ≤ n and t close to the origin.

For the fourth part, we need to shift the entire burden to the chart on
N = Rn . Consider the germ η̄ : (Rn, 0) → (Rn, 0) represented by η(t) =
(0, . . . , 0, tm+1, . . . , tn)+ f (t1, . . . , tm). Since

Dη(0) =
[

A 0
C I

]
is invertible, η̄ is invertible. Let ȳ = η̄−1 and let y be the corresponding diffeomor-
phism. Since f̄ is represented by (t1, . . . , tm) 
→ η(t1, . . . , tm, 0, . . . , 0), we get
that ȳ f̄ is represented by (t1, . . . , tm) 
→ (t1, . . . , tm, 0, . . . , 0), as required.

�

Exercise 4.3.4 Let f : M → N be a smooth map between n-dimensional smooth manifolds.
Assume that M is compact and that q ∈ N a regular value. Prove that f −1(q)
is a finite set and that there is an open neighborhood V around q such that for each
q ′ ∈ V we have that f −1(q ′) ∼= f −1(q).
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Exercise 4.3.5 Prove the fundamental theorem of algebra: any non-constant complex polynomial
P has a zero.

Exercise 4.3.6 Let f : M → M be smooth such that f ◦ f = f and M is connected. Prove that
f (M) ⊆ M is a submanifold. If you like point-set topology, prove that f (M) ⊆ M
is closed.

Note 4.3.7 It is a remarkable fact that any smooth manifold can be obtained by
the method of Exercise 4.3.6 with M an open subset of Euclidean space and f
some suitable smooth map. If you like algebra, then you might like to think that
smooth manifolds are to open subsets of Euclidean spaces what projective modules
are to free modules.

We will not be in a position to prove this, but the idea is as follows. Given a
manifold T , choose a smooth imbedding i : T ⊆ RN for some N (this is possible
by virtue of the Whitney imbedding theorem, which we prove in Theorem 8.2.6 for
T compact). Thicken i(T ) slightly to a “tubular neighborhood” U , which is an open
subset of RN together with a lot of structure (it is isomorphic to what we will later
refer to as the “total space of the normal bundle” of the inclusion i(T ) ⊆ RN ),
and in particular comes equipped with a smooth map f : U → U (namely the
“projection U → i(T ) of the bundle” composed with the “zero section i(T )→ U”
– you’ll recognize these words once we have talked about vector bundles) such that
f ◦ f = f and f (U ) = i(T ).

4.4 Regular Values
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since by Lemma 4.1.2 the rank cannot decrease locally, there are certain situations
where constant rank is guaranteed, namely when the rank is maximal.

Definition 4.4.1 A smooth map f : M → N is

a submersion if rk Tp f = dim N (that is, Tp f is surjective)
an immersion if rk Tp f = dim M (Tp f is injective)

for all p ∈ M .

In these situations the third and/or fourth version in the Rank Theorem, 4.3.3,
applies.

Note 4.4.2 To say that a map f : M → N is a submersion is equivalent to claim-
ing that all points p ∈ M are regular (Tp f is surjective), which again is equivalent
to claiming that all q ∈ N are regular values (values that are not hit are regular by
definition).
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Theorem 4.4.3 Let

f : M → N

be a smooth map where M is (n + k)-dimensional and N is n-dimensional. If
q ∈ N is a regular value and f −1(q) is not empty, then

f −1(q) ⊆ M

is a k-dimensional smooth submanifold.

Proof. Let p ∈ f −1(q). We must display a chart (x,W ) around p such that

x(W ∩ f −1(q)) = x(W ) ∩ (Rk × {0}).
Since p is regular, the rank theorem, 4.3.3(3) (aka Lemma 4.3.1), implies that

there are charts (x,U ) and (y, V ) around p and q such that x(p) = 0, y(q) = 0
and

y f x−1(t1, . . . , tn+k) = (t1, . . . , tn), for t ∈ x(U ∩ f −1(V ))

(moving x(p) and y(q) to the origins does not mess up the conclusion). Let W =
U ∩ f −1(V ), and note that W ∩ f −1(q) = (y f |W )−1(0). Then

x(W ∩ f −1(q)) = (y f x−1|x(W )

)−1
(0)

= {(0, . . . , 0, tn+1, . . . , tn+k) ∈ x(W )}
= x(W ) ∩ ({0} × Rk)

and so (permuting the coordinates) f −1(q) ⊆ M is a k-dimensional submanifold
as claimed. �

Exercise 4.4.4 Give a new proof which shows that Sn ⊂ Rn+1 is a smooth submanifold.

Note 4.4.5 Not all submanifolds can be realized as the inverse image of a regu-
lar value of some map (for instance, the central circle in the Möbius band is not
the inverse image of a regular value of any function, c.f. Example 5.1.4), but the
theorem still gives a rich source of important examples of submanifolds.

Example 4.4.6 Consider the special linear group

SLn(R) = {A ∈ GLn(R) | det(A) = 1}.
We show that SL2(R) is a three-dimensional manifold. The determinant function
is given by

det : M2(R)→ R,

A =
[

a11 a12

a21 a22

]

→ det(A) = a11a22 − a12a21
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and so, with the obvious coordinates M2(R) ∼= R4 (sending A to [a11 a12 a21 a22]T),
we have that

D(det)(A) = [a22 −a21 −a12 a11
]
.

Hence the determinant function has rank 1 at all matrices, except the zero matrix,
and in particular 1 is a regular value.

Exercise 4.4.7 Show that SL2(R) is diffeomorphic to S1 × R2.

Exercise 4.4.8 If you have the energy, you may prove that SLn(R) is an (n2 − 1)-dimensional
manifold.

Example 4.4.9 The subgroup O(n) ⊆ GLn(R) of orthogonal matrices is a
submanifold of dimension n(n − 1)/2.

To see this, recall that A ∈ Mn(R) is orthogonal if and only if AT A = I . Note
that AT A is always symmetric. The space Sym(n) of all symmetric matrices is
diffeomorphic to Rn(n+1)/2 (the entries on and above the diagonal can be chosen
arbitrarily, and will then determine the remaining entries uniquely). We define a
map

f : Mn(R)→Sym(n),

A 
→ AT A

which is smooth (since matrix multiplication and transposition are smooth), and
such that

O(n) = f −1(I ).

We must show that I is a regular value, and we offer two proofs, one computational
using the Jacobi matrix, and one showing more directly that TA f is surjective for
all A ∈ O(n). We present both proofs; the first one since it is very concrete, and
the second one since it is short and easy to follow.

First we give the Jacobian argument. We use the usual chart Mn(R) ∼= Rn2
by

listing the entries in lexicographical order, and the chart

pr : Sym(n) ∼= Rn(n+1)/2

with pri j [A] = ai j if A = [ai j ] (also in lexicographical order) defined only for
1 ≤ i ≤ j ≤ n. Then pri j f ([A]) =∑n

k=1 aki ak j , and a straightforward calculation
yields that

Dkl pri j f (A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aki i < j = l

ak j l = i < j

2akl i = j = l

0 otherwise.
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In particular

Dkl pri j f (I ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 k = i < j = l

1 l = i < j = k

2 i = j = k = l

0 otherwise

and rk D f (I ) = n(n + 1)/2 since D f (I ) is on echelon form, with no vanishing
rows. (As an example, for n = 2 and n = 3 the Jacobi matrices are

⎡⎣2
1 1

2

⎤⎦ and

⎡⎢⎢⎢⎢⎢⎢⎣
2

1 1
1 1

2
1 1

2

⎤⎥⎥⎥⎥⎥⎥⎦
(in the first matrix the columns are the partial derivatives in the 11, 12, 21 and 22
variables, and the rows are the projection on the 11 12 and 22 factors; likewise in
the second one).)

For any A ∈ GLn(R) we define the diffeomorphism L A : Mn(R) → Mn(R) by
L A(B) = A · B. Note that if A ∈ O(n) then

f (L A(B)) = f (AB) = (AB)T AB = BT AT AB = BT B = f (B),

and so, by the chain rule and the fact that D(L A)(B)· = A·, we get that

D f (I )· = D( f L A)(I )· = D( f )(L A I ) · D(L A)(I )· = D( f )(A) · A·,
implying that rk D( f )(A) = n(n + 1)/2 for all A ∈ O(n). This means that A is a
regular point for all A ∈ O(n) = f −1(I ), and so I is a regular value, and O(n) is a
submanifold of dimension

n2 − n(n + 1)/2 = n(n − 1)/2.

For the other proof of the fact that I is a regular value, we use that Mn(R)
and Sym(n) are Euclidean spaces. In particular, any tangent vector in TA Mn(R) is
represented by a linear curve

νB(s) = A + s B, B ∈ Mn(R), s ∈ R.

We have that

f νB(s) = (A + s B)T(A + s B) = AT A + s(AT B + BT A)+ s2 BT B

and so

TA f [νB] = [ f νB] = [γB],
where γB(s) = AT A+ s(AT B+ BT A). Similarly, any tangent vector in TI Sym(n)
is in the equivalence class of a linear curve

αC(s) = I + sC



4.4 Regular Values 87

for C a symmetric matrix. If A is orthogonal, we see that γ 1
2 AC = αC , and so

TA f [ν 1
2 AC ] = [αC ], and TA f is surjective. Since this is true for any A ∈ O(n), we

get that I is a regular value.

Note 4.4.10 The multiplication

O(n)× O(n)→ O(n)

is smooth (since multiplication of matrices is smooth in Mn(R) ∼= Rn2
, and we

have the result of Exercise 2.5.16), so O(n) is a Lie group. The same of course
applies to SLn(R).

Exercise 4.4.11 Prove that the unitary group

U(n) = {A ∈ GLn(C) | ĀT A = I }
is a Lie group of dimension n2.

Exercise 4.4.12 Prove that O(n) is compact and has two connected components. The component
consisting of matrices of determinant 1 is called SO(n), the special orthogonal
group.

Exercise 4.4.13 Prove that SO(2) is diffeomorphic to S1, and that SO(3) is diffeomorphic to the
real projective 3-space.

Note 4.4.14 It is a beautiful fact that, if G is a Lie group (e.g., GLn(R)) and H ⊆
G is a closed subgroup (i.e., a closed subset which is closed under multiplication
and such that if h ∈ H then h−1 ∈ H ), then H ⊆ G is a “Lie subgroup”. We will
not prove this fact, (see, e.g., Theorem 10.15 of [20]), but note that it implies that
all closed matrix groups such as O(n) are Lie groups since GLn(R) is.

Example 4.4.15 Consider the map f : S1 × S1 × S1 → SO(3) uniquely defined
by the composite g : R3 → S1 × S1 × S1 → SO(3) ⊆ M3(R) sending (α, β, γ ) to⎡⎣cos γ −sinγ 0

sin γ cos γ 0
0 0 1

⎤⎦⎡⎣1 0 0
0 cosβ −sinβ
0 sinβ cosβ

⎤⎦⎡⎣cosα −sinα 0
sinα cosα 0

0 0 1

⎤⎦ .
A quick calculation shows that the rank of this map is 3, unless sinβ = 0, in

which case the rank is 2. (Do this calculation!) Hence all points on S1 × S1 × S1

are regular except those in the two sub-tori S1 × {±1} × S1 ⊆ S1 × S1 × S1 with
middle coordinate 1 or −1 (β = 0 or β = π). (Why? Explain why the rank of the
composite g gives the rank of f .) For instance, on the sub-torus with β = 0, the
rotation is simply α + γ around the z-axis.

Hence, around any point away from these two tori, f is a local diffeomorphism,
and can be used as “coordinates” for SO(3), and the angles of the set (α, β, γ )
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(with β ∈ (0, π) – ensuring uniqueness) are called the Euler angles, representing
this rotation. For a fuller treatment of Euler angles, check Wikipedia.

Euler angles are used, e.g., in computer graphics and in flight control to rep-
resent rotations. However, a rotation in the image of the critical sub-tori has
an inverse image consisting of an entire circle (for instance, f −1( f (z, 1, w)) =
{(zy−1, 1, yw) | y ∈ S1}), a situation which is often referred to as the gimbal lock
and is considered highly undesirable. This name derives from navigation, where
one uses a device called an inertial measurement unit (IMU) to keep a reference
frame to steer by (it consists of three gimbals mounted inside each other at right
angles to provide free rotation in all directions with gyroscopes in the middle to
provide inertia fixing the reference frame). The map f above gives the correspon-
dence between the rotation in question and the angles in the gimbals. However, at
the critical value of f – the gimbal lock – the IMU fails to work, causing a loss of
reference frame. Hence a plane has to avoid maneuvering too close to the gimbal
lock.

See www.hq.nasa.gov/alsj/gimbals.html giving some background
on the worries the gimbal lock caused NASA’s Apollo mission.

Exercise 4.4.16 A k-frame in Rn is a k-tuple of orthonormal vectors in Rn . Define the Stiefel
manifold Vk

n (named after Eduard Stiefel (1909–1978))1 as the subset

Vk
n = {k-frames in Rn}

of Rnk . Show that Vk
n is a compact smooth (nk−k(k+1)/2)-dimensional manifold.

Note that V1
n may be identified with Sn−1.

Note 4.4.17 In the literature you will often find a different definition, where a
k-frame is just a k-tuple of linearly independent vectors. Then the Stiefel manifold
is an open subset of Mn×k(R), and so is clearly a smooth manifold – but this time
of dimension nk.

A k-frame defines a k-dimensional linear subspace of Rn . The Grassmann man-
ifold Gr(k,Rn) of Example 2.3.15 has as underlying set the set of k-dimensional
linear subspaces of Rn , and we get a quotient map Vk

n → Gr(k,Rn). In particu-
lar, the quotient map V1

n+1 → Gr(1,Rn+1) may be identified with the projection
Sn → RPn .

Exercise 4.4.18 Let Pn be the space of degree-n polynomials. Show that the space of solutions in
P3 of the equation

(y′′)2 − y′ + y(0)+ xy′(0) = 0

is a one-dimensional submanifold of P3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 https://en.wikipedia.org/wiki/Eduard_Stiefel
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Figure 4.4. A labeled flexible 8-gon in R2.

Exercise 4.4.19 Formulate a more interesting exercise along the lines of the previous one, and
solve it.

Exercise 4.4.20 Let A ∈ Mn(R) be a symmetric matrix. For what values of a ∈ R is the quadric

M A
a = {p ∈ Rn | pT Ap = a}

an (n − 1)-dimensional smooth manifold?

Exercise 4.4.21 In a chemistry book I found the van der Waals equation, which gives a relationship
between the temperature T , the pressure p and the volume V , which supposedly
is somewhat more accurate than the ideal gas law pV = n RT (n is the number
of moles of gas, R is a constant). Given the relevant positive constants a and b,
prove that the set of points (p, V, T ) ∈ (0,∞)× (nb,∞)× (0,∞) satisfying the
equation (

p − n2a

V 2

)
(V − nb) = n RT

is a smooth submanifold of R3.

Exercise 4.4.22 Consider the set Fn,k of labeled flexible n-gons in Rk . A labeled flexible n-gon
(e.g., the one shown in Figure 4.4) is what you get if you join n > 2 straight lines
of unit length to a closed curve and label the vertices from 1 to n.

Let n be odd and k = 2. Show that Fn,2 is a smooth submanifold of R2×(S1)n−1

of dimension n.

Exercise 4.4.23 For odd n, prove that the set of non-self-intersecting flexible n-gons in R2 is a
manifold.

4.5 Transversality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Theorem 4.4.3 we learned about regular values, and inverse images of
these. Often interesting submanifolds naturally occur not as inverse images of
points, but as inverse images of submanifolds. A spectacular example appears in
Note 4.5.8, where the non-diffeomorphic smooth manifolds homeomorphic to S7

are constructed in this way. How is one to guarantee that the inverse image of a
submanifold is a submanifold? The relevant term is transversality.
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L

L
f (N)

f (N)

Figure 4.5. The picture to the left is a typical transverse situation, whereas in the picture to the
right f definitely can’t be transverse to L since Im{Tpf} and Tf(p)L span only a one-dimensional
space. Beware that pictures like this can be misleading, since the situation to the left fails to be
transverse if f slows down at a point p of intersection, i.e., if Tpf = 0.

Definition 4.5.1 Let f : N → M be a smooth map and L ⊂ M a smooth sub-
manifold. We say that f is transverse to L ⊂ M if for all p ∈ f −1(L) the image
of Tp f and T f (p)L together span T f (p)M . See Figure 4.5.

Example 4.5.2 An important example is given by the case when f is the inclu-
sion of a submanifold: we say that two smooth submanifolds N and L of M are
transverse if for all p ∈ N ∩ L the subspaces Tp N and Tp L together span all of
Tp M (note that if f : N ⊆ M is the inclusion, then f −1(L) = N ∩ L).

At the other extreme, we may consider two smooth maps f : N → M ,
g : L → M , see Exercise 4.7.11.

Exercise 4.5.3 Let z = (a, b) ∈ S1 ⊆ R2 and let Nz = {(a, y) | y ∈ R} be the vertical line
intersecting the circle at z. When is S1 ⊆ R2 transverse to Nz ⊆ R2?

Note 4.5.4 If L = {q} in the definition above, we recover the definition of a
regular point.

Another common way of expressing transversality is to say that for all p ∈
f −1(L) the induced map

Tp N
Tp f−−−→ T f (p)M −−−→ T f (p)M/T f (p)L

is surjective. Here T f (p)M/T f (p)L is the quotient space: recall that, if W is a sub-
space of a vector space V , then the quotient space V/W is the vector space you
get from V by dividing out by the equivalence relation v ∼ v + w for v ∈ V and
w ∈ W . The vector space structure on V/W is defined by demanding that the map
V → V/W sending a vector to its equivalence class is linear.

Note that the definition of transversality refers only to points in f −1(L), so if
f (N ) ∩ L = ∅ the condition is vacuous and f and L are transverse, as shown in
Figure 4.6.

Furthermore, if f is a submersion (i.e., Tp f is always surjective), then f is
transverse to all submanifolds.
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L

f (N)

Figure 4.6. A map is always transverse to a submanifold its image does not intersect.

Theorem 4.5.5 Assume that the smooth map f : N → M is transverse to a
k-codimensional smooth submanifold L ⊆ M and that f (N ) ∩ L �= ∅. Then
f −1(L) ⊆ N is a k-codimensional smooth submanifold.

Proof. Let q ∈ L and p ∈ f −1(q). Choose a chart (y, V ) around q such that
y(q) = 0 and such that

y(L ∩ V ) = y(V ) ∩ (Rm−k × {0}),
where m is the dimension of M . Let π : Rm → Rk be the projection
π(t1, . . . , tm) = (tm−k+1, . . . , tm). Consider the commutative diagram

Tp N
Tp f ��

surjective ����
���

���
��

Tq M
Tq y

∼=
��

projection

��

T0Rm

projection
��

T0π �� T0Rk,

Tq M/Tq L ∼=
�� T0Rm/T0Rm−k

∼=



											

where the left diagonal map is surjective by the transversality assumption and the
right diagonal map is the isomorphism making the triangle commute. Then we get
that p is a regular point of the composite

U = f −1(V )
f |U−−−→ V

y−−−→ y(V )
π |y(V )−−−→ Rk .

This is true for any p ∈ f −1(V ∩ L) so 0 ∈ Rk is a regular value. Hence

(πy f |U )−1(0) = f −1 y−1π−1(0) ∩U = f −1(L) ∩U

is a submanifold of codimension k in U . Varying q, we therefore get that f −1(L) ⊆
N is a k-codimensional submanifold. �

Corollary 4.5.6 If N and L are transverse submanifolds of M, then N ∩ L is a
smooth (dim N + dim L − dim M)-dimensional smooth submanifold of N .

Exercise 4.5.7 Let n ≥ 3 and let a0, . . . , an be integers greater than 1. Consider f : Cn+1 \ {0} →
C given by f (z0, . . . , zn) = ∑

k zak
k . Then L = f −1(0) is a 2n-dimensional

submanifold of Cn+1 which is transverse to the sphere S2n+1 ⊆ Cn+1.

Note 4.5.8 The intersection W 2n−1(a0, . . . , an) = L ∩ S2n+1 of Exer-
cise 4.5.7 is called the Brieskorn manifold. Brieskorn showed [3] that
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W 4m−1(3, 6r − 1, 2, . . . , 2) is homeomorphic to S4m−1. However if m = 2 (so
that 4m − 1 = 7), then W 7(3, 6r − 1, 2, 2, 2) for r = 1, . . . , 28 is a complete list
of the 28 smooth oriented structures on the seven-dimensional sphere mentioned
in Note 2.3.7! The situation for higher dimensions varies according to whether we
are in dimension +1 or −1 modulo 4.

4.6 Sard’s Theorem2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As commented earlier, the regular points are dense. Although this is good to know
and important for many applications, we will not need this fact, and are content
to cite the precise statement and let the proof be a guided sequence of exercises.
Proofs can be found in many references, for instance in Chapter 3 of [15].

Theorem 4.6.1 (Sard) Let f : M → N be a smooth map. The set of critical
values has measure zero.

Recall that a subset C ⊆ Rn has measure zero if for every ε > 0 there is a
sequence of closed cubes {Ci }i∈N with C ⊆⋃i∈N Ci and

∑
i∈N volume(Ci ) < ε.

In this definition it makes no essential difference if one uses open or closed
cubes, rectangles or balls instead of closed cubes.

Exercise 4.6.2 Any open subset U of Rn is a countable union of closed balls.

Exercise 4.6.3 Prove that a countable union of measure-zero subsets of Rn has measure zero.

Exercise 4.6.4 Let f : U → Rm be a smooth map, where U ⊆ Rm is an open subset. Prove
that, if C ⊆ U has measure zero, then so does the image f (C). Conclude that a
diffeomorphism f : U → U ′ between open subsets of Euclidean spaces provides
a one-to-one correspondence between the subsets of measure zero in U and in U ′.

Definition 4.6.5 Let (M,A) be a smooth n-dimensional manifold and C ⊆ M a
subset. We say that C has measure zero if for each (x,U ) ∈ A the subset x(C ∩
U ) ⊆ Rn has measure zero.

Given a subatlas B ⊆ A, we see that by Exercise 4.6.4 it suffices to check that
x(C ∩U ) ⊆ Rn has measure zero for all (x,U ) ∈ B.

Exercise 4.6.6 An open cover of the closed interval [0, 1] by subintervals contains a finite open
subcover whose sum of diameters is less than or equal to 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 This material is not used in an essential way in the rest of the book. It is included for completeness, and for

comparison with other sources.
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Exercise 4.6.7 Prove Fubini’s theorem. Let C ⊆ Rn be a countable union of compact subsets.
Assume that for each t ∈ R the set

{(t1, . . . , tn−1) ∈ Rn−1 | (t1, . . . , tn−1, t) ∈ C} ⊆ Rn−1

has measure zero. Then C has measure zero.

Exercise 4.6.8 Show that Sard’s theorem follows if you show the following statement. Let
f : U → Rn be smooth where U ⊆ Rm is open, and let C be the set of critical
points. Then f (C) ⊆ Rn has measure zero.

Let f : U → Rn be smooth where U ⊆ Rm is open, and let C be the set of
critical points. For i > 0, let Ci be the set of points p ∈ U such that all partial
derivatives of order less than or equal to i vanish, and let C0 = C .

Exercise 4.6.9 Assume Sard’s theorem is proven for manifolds of dimension less than m. Prove
that f (C0 − C1) has measure zero.

Exercise 4.6.10 Assume Sard’s theorem is proven for manifolds of dimension less than m. Prove
that f (Ci − Ci+1) has measure zero for all i > 0.

Exercise 4.6.11 Assume Sard’s theorem is proven for manifolds of dimension less than m. Prove
that f (Ck) has measure zero for nk ≥ m.

Exercise 4.6.12 Prove Sard’s theorem.

4.7 Immersions and Imbeddings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We are finally closing in on the promised effective definition of submanifolds, or
rather, of imbeddings. The condition of being an immersion is a readily checked
property, since we merely have to check the derivatives at every point. The rank
theorem states that in some sense “locally” immersions are imbeddings. But how
much more do we need? Obviously, an imbedding is injective.

Something more is needed, as we see from the following example.

Example 4.7.1 Consider the injective smooth map

f : (0, 3π/4)→ R2

given by

f (t) = sin(2t)(cos t, sin t).

Then

D f (t) = 2[(1− 3 sin2 t) cos t, (3 cos2 t − 1) sin t]
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Figure 4.7. The image of f is a subspace of R2.

is never zero and f is an immersion.
However, (0, 3π/4)→ Im{ f } is not a homeomorphism, where

Im{ f } = f ((0, 3π/4)) ⊆ R2

has the subspace topology (Figure 4.7). For, if it were a homeomorphism, then

f ((π/4, 3π/4)) ⊆ Im{ f }

would be open (for the inverse to be continuous). But any open ball around (0, 0) =
f (π/2) in R2 must contain a piece of f ((0, π/4)), so f ((π/4, 3π/4)) ⊆ Im{ f } is
not open.

Hence f is not an imbedding.

Exercise 4.7.2 Let

R
∐

R→ R2

be defined by sending x in the first summand to (x, 0) and y in the second summand
to (0, ey). This is an injective immersion, but not an imbedding.

Exercise 4.7.3 Let

R
∐

S1 → C

be defined by sending x in the first summand to (1 + ex)eix and being the inclu-
sion S1 ⊆ C on the second summand. This is an injective immersion, but not an
imbedding (Figure 4.8).

But, strangely enough, these examples exhibit the only thing that can go wrong:
if an injective immersion is to be an imbedding, the map to the image has got to be
a homeomorphism.
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Figure 4.8. The image is not a submanifold of C.

Theorem 4.7.4 If f : M → N is an immersion such that the induced map

M → Im{ f }
is a homeomorphism where Im{ f } = f (M) ⊆ N has the subspace topology,
then f is an imbedding.

Proof. Let p ∈ M . The rank theorem, 4.3.3(4), implies that there are charts

x1 : U1 → U ′1 ⊆ Rm

with p ∈ U1 and x1(p) = 0 and

y1 : V1 → V ′1 ⊆ Rm+k

with f (p) ∈ V1 and y1( f (p)) = 0, such that

y1 f x−1
1 (t) = (t, 0) ∈ Rm × Rk = Rm+k

for all t ∈ x1(A), where A = U1 ∩ f −1(V1), so that x1(A) = U ′1 ∩ x1 f −1(V1).
Since V ′1 is open, it contains open rectangles around the origin. Choose one such

rectangle V ′2 = U ′ × B ⊆ V ′1 so that U ′ ⊆ x1(A) (see Figure 4.9).
Let U = x−1

1 (U ′), x = x1|U and V2 = y−1
1 (V ′2).

Since M → f (M) is a homeomorphism, f (U ) is an open subset of f (M), and
since f (M) has the subspace topology, f (U ) = W ∩ f (M) where W is an open
subset of N (here is the crucial point where complications as in Example 4.7.1 are
excluded: there are no other “branches” of f (M) showing up in W ).

B

U ′

V ′1

x1(A)

Figure 4.9.
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Let V = V2 ∩W , V ′ = V ′2 ∩ y1(W ) and y = y1|V .
Then we see that f (M) ⊆ N is a submanifold (y( f (M) ∩ V ) = y( f (M) ∩

W ∩ V2) = y f (U ) = (Rm × {0}) ∩ V ′), and that M → f (M) is a bijective
local diffeomorphism (the constructed charts show that both M → f (M) and
its inverse f −1| f (M) : f (M) → M are smooth around every point), and hence a
diffeomorphism. �

We note the following useful corollary.

Corollary 4.7.5 Let f : M → N be an injective immersion from a compact
manifold M. Then f is an imbedding.

Proof. We need only show that the continuous map M → f (M) is a homeomor-
phism. It is injective since f is, and clearly surjective. But from point-set topology
(Theorem A.7.8) we know that it must be a homeomorphism since M is compact
and f (M) is Hausdorff ( f (M) is Hausdorff since it is a subspace of the Hausdorff
space N ). �

Those readers who struggled to get Exercise 2.5.17 right using only the def-
initions will appreciate the fact that Theorem 4.7.4 makes everything so much
simpler:

Exercise 4.7.6 Show that the composite of two imbeddings is an imbedding.

Exercise 4.7.7 Let a, b ∈ R, and consider the map

fa,b : R→ S1 × S1,

t 
→ (eiat , eibt).

Show that fa,b is an immersion if either a or b is different from zero. Show that
fa,b factors through an imbedding S1 → S1× S1 if and only if either b = 0 or a/b
is rational (Figure 4.10).
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Figure 4.10. Part of the picture if a/b = π (this goes on forever).
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Exercise 4.7.8 Consider smooth maps

M
i−−−→ N

j−−−→ L .

Show that, if the composite j i is an imbedding, then i is an imbedding.

Example 4.7.9 As a last example of Corollary 4.7.5 we can redo Exercise 2.5.13
and see that

f : RPn → RPn+1,

[p] = [p0, . . . , pn] 
→ [p, 0] = [p0, . . . , pn, 0]
is an imbedding: RPn is compact, and f is injective and an immersion (check
immersion in the standard charts or do it on spheres instead since the projection is
a local diffeomorphism).

Exercise 4.7.10 Let M be a smooth manifold, and consider M as a subset by imbedding it as the
diagonal in M × M , i.e., as the set {(p, p) ∈ M × M}: show that it is a smooth
submanifold.

Exercise 4.7.11 Consider two smooth maps

M
f−−−→ N

g←−−− L

Define the fiber product

M ×N L = {(p, q) ∈ M × L | f (p) = g(q)}
(topologized as a subspace of the product M × L: notice that, if f and g are inclu-
sions of subspaces, then M ×N L = M ∩ L). Assume that for all (p, q) ∈ M ×N L
the subspaces spanned by the images of Tp M and Tq L equal all of T f (p)N . Show
that the fiber product M ×N L ⊆ M × L is a smooth submanifold (of codimen-
sion equal to the dimension of N ) such that the projections M ×N L → M and
M ×N L → L are smooth.

Exercise 4.7.12 Let π : E → M be a submersion and f : N → M smooth. Let E ×M N be the
fiber product of Exercise 4.7.11. Show that the projection E ×M N → N is a
submersion.



5 Vector Bundles

In this chapter we are going to collect all the tangent spaces of a manifold into a
single object, the so-called tangent bundle.

5.0.1 The Idea

We defined the tangent space at a point in a smooth manifold by considering curves
passing through the point (Figure 5.1). In physical terms, the tangent vectors are
the velocity vectors of particles passing through our given point. But the particle
will have velocities and positions at other times than the one at which it passes
through our given point, and the position and velocity may depend continuously
upon the time. Such a broader view demands that we are able to keep track of the
points on the manifold and their tangent space, and understand how they change
from point to point.

As a set the tangent bundle ought to be given by pairs (p, v), where p ∈ M and
v ∈ Tp M , i.e.,

T M = {(p, v) | p ∈ M, v ∈ Tp M} =
∐
p∈M

Tp M.

Figure 5.1. A particle moving on S1: some of the velocity vectors are drawn. The collection of all
possible combinations of position and velocity ought to assemble into a “tangent bundle”. In this
case we see that S1× R1 would do, but in most instances it won’t be as easy as this.
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In the special case M = Rm we have a global chart (e.g., the identity chart), and
so we have a global (not depending on the point p) identification of TpR with the
vector space Rm through the correspondence [γ ] ↔ γ ′(0). Hence it is reasonable
to say that T Rm can be identified with the product Rm × Rm . Now, in general
a manifold M is locally like Rm , but the question is how this local information
should be patched together to a global picture.

The tangent bundle is an example of an important class of objects called vec-
tor bundles. We start the discussion of vector bundles in general in this chapter,
although our immediate applications will focus on the tangent bundle. We will pick
up the glove in Chapter 6, where we discuss the algebraic properties of vector bun-
dles, giving tools that eventually could have brought the reader to fascinating topics
like the topological K-theory of Atiyah and Hirzebruch [1] which is an important
tool in algebraic topology.

We first introduce topological vector bundles, and then see how transition
functions, which are very similar to the chart transformations, allow us to coin
what it means for a bundle to be smooth. An observation shows that the work
of checking that something actually is a vector bundle can be significantly
simplified, paving the way for the sleek definition of the tangent bundle in Defi-
nition 5.5.1. Using the same setup we easily get the cotangent bundle as well, see
Section 5.6.

If you like electrons and want to start with an example instead of with the theory,
you are invited to study Example 5.1.13 before reading on.

5.1 Topological Vector Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Loosely speaking, a vector bundle is a collection of vector spaces parametrized in
a locally controllable fashion by some space (Figure 5.2).

The easiest example is simply the product X × Rn , and we will have this as our
local model (Figure 5.3).

vector spaces

topological
space

Figure 5.2. A vector bundle is a topological space to which a vector space is stuck at each point,
and everything fitted continuously together.
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Figure 5.3. The product of a space and a Euclidean space is the local model for vector bundles.
The cylinder S1×R is an example.

Definition 5.1.1 An n-dimensional (real topological) vector bundle is a
continuous map

E

π

⏐⏐�
X

and a choice for each p ∈ X of a real vector space structure of dimension n on
the fiber π−1(p), such that for each p ∈ X

● there is an open set U ⊆ X containing p and
● a homeomorphism h : π−1(U )→ U × Rn such that

π−1(U ) h ��

π |
π−1(U ) ���

��
��

��
��

U × Rn

prU����
��
��
��
�

U

commutes, and such that for every q ∈ U the composite

hq : π−1(q)
h|
π−1(q)−−−−−→ {q} × Rn (q,t)
→t−−−−→ Rn

is a vector space isomorphism.

Note 5.1.2 The map π : E → X is surjective since we have insisted that
each fiber π−1(p) has a vector space structure and hence is not empty (it
contains 0).

To distinguish the dimension of the fibers from the dimension of manifolds (X
often is a manifold), we may also say that the vector bundle has rank n. A vector
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bundle of rank 1 is often referred to as a line bundle. It is not uncommon to mention
just the total space E when referring to the vector bundle.

Example 5.1.3 The “unbounded Möbius band” (Figure 5.4) given by

η1 = ([0, 1] × R)/((0, p) ∼ (1,−p))

defines a line bundle by projecting onto the first coordinate η1 → [0, 1]/(0 ∼
1) ∼= S1.

Restricting to an interval on the circle, we clearly see that it is homeomorphic to
the product as shown in Figure 5.5.

This bundle is often referred to as the tautological line bundle. The reason for
the name tautological line bundle is that, by Exercise 2.4.11, we know that RP1 and
S1 are diffeomorphic, and over RPn we do have a “tautological line bundle” ηn →
RPn , where ηn is the space of pairs (L , v), where L is a line (one-dimensional linear
subspace) in Rn+1 and v a vector in L . The map is given by (L , v) 
→ L . We will
prove in Exercise 5.4.4 that this actually defines a vector bundle. The tautological
line bundles are very important because they, in a precise sense, classify all line
bundles. See Section 6.8 for some inadequate remarks.

Figure 5.4.

Figure 5.5.
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Exercise 5.1.4 Consider the tautological line bundle (unbounded Möbius band)

η1 → S1

from Example 5.1.3. Prove that there is no smooth map f : η1 → R such that the
central circle ([0, 1] × {0})/(0, 0) ∼ (1, 0) ⊆ η1 is the inverse image of a regular
value of f .

More generally, show that there is no map f : η1 → N for any manifold N such
that the central circle is the inverse image of a regular value of f .

Definition 5.1.5 Given a rank-n topological vector bundle π : E → X , we call

Eq = π−1(q) the fiber over q ∈ X ,
E the total space, and
X the base space of the vector bundle.

The existence of the (h,U )s is referred to as the local trivialization of the bundle
(“the bundle is locally trivial ”), and the (h,U )s are called bundle charts. A bundle
atlas is a collection B of bundle charts that “covers” X , i.e., is such that

X =
⋃

(h,U )∈B
U.

Note 5.1.6 Note the correspondence that the definition spells out between the
homeomorphism h and the isomorphism hq : for r ∈ π−1(U ) we have

h(r) = (π(r), hπ(r)(r)).

Example 5.1.7 Given a topological space X , the projection onto the first factor

X × Rn

prX

⏐⏐�
X

is a rank-n topological vector bundle.

This example is so totally uninteresting that we call it the trivial bundle over
X (or, more descriptively, the product bundle). More generally, any vector bundle
π : E → X with a bundle chart (h, X) is called trivial.

Definition 5.1.8 Let π : E → X be a vector bundle. A section to π is a
continuous map σ : X → E such that πσ(p) = p for all p ∈ X .

Example 5.1.9 Every vector bundle π : E → X has a section, namely the zero
section, which is the map σ0 : X → E that sends p ∈ X to zero in the vec-
tor space π−1(p). As for any section, the map onto its image X → σ0(X) is a
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X

E

image of a section

image of the
zero section

Figure 5.6.

1

0

Figure 5.7. The trivial bundle has nonvanishing sections.

homeomorphism, and we will occasionally not distinguish between X and σ0(X)
(we already did this when we talked informally about the unbounded Möbius
band). See Figure 5.6.

Example 5.1.10 If n > 0, the trivial bundle X × Rn → X has nonvanishing sec-
tions as shown in Figure 5.7 (i.e., a section whose image does not intersect the zero
section); for instance, if we choose any nonzero vector v ∈ Rn , the section p 
→
(p, v) will do. The tautological line bundle η1 → S1 (the unbounded Möbius band
of Example 5.1.3), however, does not. This follows by the intermediate value the-
orem: a continuous function f : [0, 1] → R with f (0) = − f (1) must have a zero.

We have to specify the maps connecting the vector bundles. They come in two
types, according to whether we allow the base space to change. The more general
is specified in the following definition.

Definition 5.1.11 A bundle morphism from one bundle π : E → X to another
π ′ : E ′ → X ′ is a pair of (continuous) maps

f : X → X ′ and f̃ : E → E ′

such that

E
f̃−−−→ E ′

π

⏐⏐� π ′
⏐⏐�

X
f−−−→ X ′
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commutes, and such that each restriction to a fiber

f̃ |π−1(p) : π−1(p)→ (π ′)−1( f (p))

is a linear map.

The composite of bundle morphisms is defined in the obvious way. For many
purposes the most important bundle morphisms are those where the map on the
base space is the identity given in the following definition.

Definition 5.1.12 Given a space X , a bundle morphism over X is a bundle
morphism of the form

E
f̃−−−→ E ′

π

⏐⏐� π ′
⏐⏐�

X X.

An isomorphism (over X) of two vector bundles π : E → X and π ′ : E ′ → X over
the same base space X is an invertible bundle morphism over X .

We will show in Lemma 5.3.12 that, essentially because a bijective linear map
is an isomorphism, a bundle morphism over X is an isomorphism if and only if it
is a bijection.

Note that a bundle is trivial if and only if it is isomorphic to a product bundle
(see Exercise 5.1.7).

Bundles abound in applications. Here is a fairly simple one which demonstrates
some important aspects.

Example 5.1.13 Consider two electrons of equal spin exposed to outside forces
dictating that the electrons are equidistant from the origin in R3 (but not necessarily
antipodal as in Section 1.2). How can we describe the space of possible configura-
tions? Again, the two electrons are indistinguishable and cannot occupy the same
point; the distance between the electrons does not contribute anything interesting
and we’ll ignore it. One way to record such a situation is to give the line in R3

which the electrons span and the center of mass. However, not every pair of a line
and a vector gives a configuration: the center of mass is the point on the line closest
to the origin (here I use the equidistance property).

A faithful description is thus to give a line through the origin L ∈ RP2 and a
vector v ∈ L⊥ (to the center of mass).

This is an example of a vector bundle: the base space is RP2 and each point in
the total space is given by specifying a point L ∈ RP2 and a vector v in the fiber
L⊥.

Note that the vector space L⊥ changes with L , so, although there are isomor-
phisms L⊥ ∼= R2, these may obviously depend on L and we are not simply
considering RP2 × R2: there are twists.
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Locally these twists can be undone. For instance, consider the open subset U 0 ⊆
RP2. Saying that L = [p] ∈ U 0 (i.e., p0 �= 0) is the same as saying that the
projection

hL : L⊥ → R2, hL

⎛⎝⎡⎣v0

v1

v2

⎤⎦⎞⎠ = [v1

v2

]
is a linear isomorphism. The inverse of hL is given by sending [v1 v2]T ∈ R2 to
[v0 v1, v2]T ∈ L⊥, where v0 = −p1v1/p0 − p2v2/p0. Consequently, the space of
all configurations (L , v) with L ∈ U 0 may be identified with U 0×R2 via the local
trivialization (aka “gauge”) sending (L , v) to h(L , v) = (L , hL(v)).

What happens when we look at two different local trivializations? For L = [p] ∈
U 0 ∩ U 1 we have, in addition to h (at least) one more given by sending (L , v) to
g(L , v) = (L , gL(v)) = (L , [v0 v2]T). How do these compare? The obvious thing
is to look at the composite (called the “bundle chart transformation”)

(U 0 ∩U 1)× R2 gh−1
�� (U 0 ∩U 1)× R2.

Tracing through the definitions we see that

gh−1

(
L ,

[
v1

v2

])
=
(

L ,

[−p1/p0 −p2/p0

0 1

] [
v1

v2

])
,

from which we learn two things. First, the L is not touched; and second, the fiber is
moved by a linear isomorphism depending smoothly on L = [p] – in this instance
given by multiplying by the invertible (since neither p0 nor p1 is zero) matrix

A[p] =
[−p1/p0 −p2/p0

0 1

]
.

If we insist that the line L is in the plane (“restrictions of bundles” will reap-
pear in Section 6.1), i.e., L ∈ RP1 ∼= S1, things simplify slightly. The curve
γ : R→ RP1, t 
→ [cos t sin t]winds around RP1 once as t travels from 0 to π and
intersects U 0∩U 1 in two disjoint opens: when t ∈ (0, π/2) and when t ∈ (π/2, π).
We see that det Aγ (t) = −cost/sint is negative when t ∈ (0, π/2) and posi-
tive when t ∈ (π/2, π). This is a clear indication of an irreparable twist akin to
the Möbius band, see Exercise 5.3.15. In fact, our vector bundle is fundamentally
twisted and very different from RP2 × R2.

5.2 Transition Functions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will need to endow our bundles with smooth structures, and in order to do this
we will use the same trick as we used to define manifolds: transport everything
down to issues in Euclidean spaces. Given two overlapping bundle charts (h,U )
and (g, V ), on restricting to π−1(U ∩ V ) both define homeomorphisms

π−1(U ∩ V )→ (U ∩ V )× Rn,
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Figure 5.8. Two bundle charts. Restricting to their intersection, how do the two homeomorphisms
to (U ∩ V)× Rn compare?

which we may compose to give homeomorphisms of (U ∩ V ) × Rn with itself
(Figure 5.8). If the base space is a smooth manifold, we may ask whether this map
is smooth.

We need some names to talk about this construction.

Definition 5.2.1 Let π : E → X be a rank-n topological vector bundle, and let B
be a bundle atlas. If (h,U ), (g, V ) ∈ B then

gh−1|(U∩V )×Rn : (U ∩ V )× Rn → (U ∩ V )× Rn

are called the bundle chart transformations. The restrictions to each fiber

gqh−1
q : Rn → Rn

are linear isomorphisms (i.e., elements in GLn(R)) and the associated functions

U ∩ V →GLn(R),

q 
→ gqh−1
q

are called transition functions.

Again, visually bundle chart transformations are given by going up and down in

π−1(U ∩ V )
h|
π−1(U∩V )

��


















 g|
π−1(U∩V )



��
���

���
���

��

(U ∩ V )× Rn (U ∩ V )× Rn.

The following lemma explains why giving the bundle chart transformations or
the transition functions amounts to the same thing (and so it is excusable to confuse
the two after a while; also, one should note that the terminology varies from author
to author).
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Lemma 5.2.2 Let W be a topological space, and f : W → Mm×n(R) a function.
Then the associated function

f∗ : W × Rn → Rm,

(w, v) 
→ f (w) · v
is continuous if and only if f is. If W is a smooth manifold, then f∗ is smooth if
and only if f is.

Proof. Note that f∗ is the composite

W × Rn f×id−−−→ Mm×n(R)× Rn e−−−→ Rm,

where e(A, v) = A · v. Since e is smooth, it follows that, if f is continuous or
smooth, then so is f∗.

Conversely, considered as a matrix, we have that

[ f (w)] = [ f∗(w, e1), . . . , f∗(w, en)
]
.

If f∗ is continuous (or smooth), then we see that each column of [ f (w)] depends
continuously (or smoothly) on w, and so f is continuous (or smooth). �

This lemma will allow us to rephrase the definition of vector bundles in terms
of so-called pre-vector bundles (see Definition 5.4.1), which reduces the amount
of checking needed to see that some example actually is a vector bundle. Also,
the lemma has the following corollary which will allow us to alternate whether
we want to check smoothness assumptions on bundle chart transformations or on
transition functions.

Corollary 5.2.3 Let E → M be a vector bundle over a smooth manifold and let
B be a bundle atlas. A bundle chart transformation in B is smooth if and only if the
associated transition function is smooth.

A nice formulation of the contents of Lemma 5.2.2 is that we have a bijection
from the set of continuous functions W → Mm×nR to the set of bundle morphisms

W × Rn ��

prW ���
��

��
��

��
W × Rm

prW����
��
��
��
�

W

by sending the function g : W → Mm×nR to the function

G(g) : W × Rn (p,v) 
→(p,g(p)·v)−−−−−−−−−→ W × Rm .

Furthermore, if W is a smooth manifold, then g is smooth if and only if G(g) is
smooth.

Exercise 5.2.4 Show that any vector bundle E → [0, 1] is trivial.
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Exercise 5.2.5 Show that any line bundle (rank-1 vector bundle) E → S1 is either trivial or iso-
morphic to the tautological line bundle η1. Show the analogous statement for rank
n vector bundles over S1.

5.3 Smooth Vector Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 5.3.1 Let M be a smooth manifold, and let π : E → M be a vector
bundle. A bundle atlas is said to be smooth if all the transition functions are smooth.

Note 5.3.2 On spelling the differentiability out in full detail we get the following.
Let (M,A) be a smooth n-dimensional manifold, π : E → M a rank-k vec-
tor bundle and B a bundle atlas. Then B is smooth if, for every pair of bundle
charts (h1,U1), (h2,U2) ∈ B and every pair of charts (x1, V1), (x2, V2) ∈ A, the
composite going up, over and across

π−1(U )
h1|π−1(U )

��			
			

			
	 h2|π−1(U )

��















U × Rk

x1|U×id
��

U × Rk

x2|U×id
��

x1(U )× Rk x2(U )× Rk

is a smooth function in Rn+k , where U = U1 ∩U2 ∩ V1 ∩ V2.

Example 5.3.3 If M is a smooth manifold, then the trivial bundle is a smooth
vector bundle in an obvious manner.

Example 5.3.4 The tautological line bundle (unbounded Möbius strip of Exam-
ple 5.1.3) η1 → S1 is a smooth vector bundle. As a matter of fact, the trivial
bundle and the tautological line bundle are, up to isomorphism, the only line bun-
dles over the circle (see Exercise 5.3.15 for the smooth case or Exercise 5.2.5 for
the topological case).

Note 5.3.5 Just as for atlases of manifolds, we have a notion of a maximal
(smooth) bundle atlas, and with each smooth atlas we may associate a unique
maximal one in exactly the same way as before.

Definition 5.3.6 A smooth vector bundle is a vector bundle equipped with a
maximal smooth bundle atlas.

We will often suppress the bundle atlas from the notation, so, if the maximal atlas
is clear from the context, a smooth vector bundle (π : E → M,B) will be written
simply π : E → M (or, even worse, E).
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Definition 5.3.7 A smooth vector bundle (π : E → M,B) is trivial if its
(maximal smooth) atlas B contains a chart (h,M) with domain all of M .

Lemma 5.3.8 The total space E of a smooth vector bundle (π : E → M,B) has
a natural smooth structure, and π is a smooth map.

Proof. Let M be n-dimensional with atlas A, and let the bundle be of rank
(dimension) k. Then the diagram in Note 5.3.2 shows that E is a smooth (n + k)-
dimensional manifold. That π is smooth is the same as claiming that all the up,
over and across composites

π−1(U )
h|
π−1(U )

��			
			

			
	 π |

π−1(U )

���
��

��
��

��
�

U × Rk

x |U×id
��

U

x |U
��

x(U )× Rk x(U )

are smooth, where (x, V ) ∈ A, (h,W ) ∈ B and U = V ∩W . But

π−1(U )
h|
π−1(U )

�����
��
��
�� π |

π−1(U )

���
��

��
��

��

U × Rk
prU

�� U

commutes, so the composite is simply the projection prx(U ) : x(U )× Rk → x(U ),
which is smooth. �

Note 5.3.9 As expected, the proof shows that π : E → M locally looks like the
projection

Rn × Rk → Rn.

Exercise 5.3.10 Show that the following is an equivalent definition to the one we have given. A
smooth rank-k vector bundle is a smooth map π : E → M together with a vector
space structure on each fiber such that for each p ∈ M there is an open U ⊆ M
containing p and a diffeomorphism h : π−1(U )→ U ×Rk which is linear on each
fiber and with prU h(e) = π(e).
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Definition 5.3.11 A smooth bundle morphism is a bundle morphism in the sense
of Definition 5.1.11

E
f̃−−−→ E ′

π

⏐⏐� π ′
⏐⏐�

M
f−−−→ M ′

from a smooth vector bundle to another such that f̃ and f are smooth.
An isomorphism of two smooth vector bundles

π : E → M and π ′ : E ′ → M

over the same base space M is an invertible smooth bundle morphism over the
identity on M :

E
f̃−−−→ E ′

π

⏐⏐� π ′
⏐⏐�

M M.

The term “invertible smooth bundle morphism” signifies that the inverse is a
smooth bundle morphism. However, checking whether a bundle morphism is an
isomorphism reduces to checking that it is a bijection.

Lemma 5.3.12 Let

E
f̃−−−→ E ′

π

⏐⏐� π ′
⏐⏐�

M M

be a smooth (or continuous) bundle morphism. If f̃ is bijective, then it is a smooth
(or continuous) isomorphism.

Proof. That f̃ is bijective means that it is a bijective linear map on every fiber, or,
in other words, a vector space isomorphism on every fiber. Choose charts (h,U ) in
E and (h′,U ) in E ′ around p ∈ U ⊆ M (one may choose the Us to be the same).
Then

h′ f̃ h−1 : U × Rn → U × Rn

is of the form (u, v) 
→ (u, αuv), where αu ∈ GLn(R) depends smoothly (or
continuously) on u ∈ U . But by Cramer’s rule (αu)

−1 depends smoothly on αu ,
and so the inverse(

h′ f̃ h−1
)−1 : U × Rn → U × Rn, (u, v) 
→ (u, (αu)

−1v)

is smooth (or continuous), proving that the inverse of f̃ is smooth (or continuous).
�
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Exercise 5.3.13 Let a be a real number and E → X a bundle. Show that multiplication by a in each
fiber gives a bundle morphism

E

���
��

��
��

�
aE �� E

����
��
��
��

X

which is an isomorphism if and only if a �= 0. If E → X is a smooth vector bundle,
then aE is smooth too.

Exercise 5.3.14 Show that any smooth vector bundle E → [0, 1] is trivial (smooth on the boundary
means what you think it does: either don’t worry or check up on Note 2.3.17 on
smooth manifolds with boundary).

Exercise 5.3.15 Show that any smooth line bundle over S1 is either trivial or isomorphic to the
tautological line bundle of Example 5.1.3. Show the analogous statement for rank-n
smooth vector bundles over S1.

5.4 Pre-vector Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A smooth or topological vector bundle is a very structured object, and much of its
structure is intertwined very closely. There is a sneaky way out of having to check
topological properties all the time. As a matter of fact, the topology is determined
by some of the other structure as soon as the claim that it is a vector bundle is
made: specifying the topology on the total space is redundant!

Definition 5.4.1 A pre-vector bundle of dimension (or rank) n is

a set E (total space)
a topological space X (base space)
a function π : E → X
a vector space structure on the fiber π−1(q) for each q ∈ X
a pre-bundle atlas B, i.e., a set B of pairs (h,U ) with

U an open subset of X and
h a bijective function

π−1(U )
e 
→ h(e)=(π(e),hπ(e)(e))−−−−−−−−−−−−−→ U × Rn

which is linear on each fiber,
such that

B covers X and
the transition functions are continuous.
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That B covers X means that X = ⋃
(h,U )∈B U ; that h is linear on each

fiber means that hq : π−1(q) → Rn is linear for each q ∈ X ; and that the
transition functions of B are continuous means that, if (h,U ), (h′,U ′) ∈ B,
then

U ∩U ′ → GLn(R), q 
→ h′qh−1
q

is continuous.

Definition 5.4.2 A smooth pre-vector bundle is a pre-vector bundle where the
base space is a smooth manifold and the transition functions are smooth.

Lemma 5.4.3 Given a pre-vector bundle, there is a unique vector bundle with
underlying pre-vector bundle the given one. The same statement holds for the
smooth case.

Proof. Let (π : E → X,B) be a pre-vector bundle. We must equip E with
a topology such that π is continuous and the bijections in the bundle atlas are
homeomorphisms. The smooth case follows then immediately from the continuous
case.

We must have that, if (h,U ) ∈ B, then π−1(U ) is an open set in E (for π to
be continuous). The family of open sets {π−1(U )}U⊆X open covers E , so we need to
know only what the open subsets of π−1(U ) are, but this follows by the requirement
that the bijection h should be a homeomorphism. That is, V ⊆ π−1(U ) is open if
V = h−1(V ′) for some open V ′ ⊆ U × Rk (Figure 5.9). Ultimately, we get that{

h−1(V1 × V2)

∣∣∣∣ (h,U ) ∈ B, V1 open in U,
V2 open in Rk

}
is a basis for the topology on E .

�

Figure 5.9. A typical open set in π−1(U) gotten as h−1 of the product of an open set in U and an
open set in Rk
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Exercise 5.4.4 Let

ηn =
{
([p], λp) ∈ RPn × Rn+1

∣∣ p ∈ Sn, λ ∈ R
}
.

Show that the projection

ηn → RPn,

([p], v) 
→ [p]
defines a non-trivial smooth vector bundle, called the tautological line bundle. Be
careful that your proposed bundle charts are well defined.

Exercise 5.4.5 Let p ∈ RPn and X = RPn \ {p}. Show that X is diffeomorphic to the total space
ηn−1 of the tautological line bundle in Exercise 5.4.4.

Exercise 5.4.6 You are given two pre-vector bundles over a common base space and a function
f̃ : E → E ′ between their total spaces. Spell out the condition for this to define a
bundle morphism.

Note 5.4.7 Don’t look at this until you’ve done Exercise 5.4.4: as always, you
should do it without looking at the hint. However, it is handy to have a reference
for a bundle atlas for the tautological line bundle: letting {(xk,U k)} be the standard
atlas for RPn , you get a bundle chart hk : π−1U k → U k ×R (where π : ηn → RPn

is the projection) by sending ([p], (v0, . . . , vn)) to ([p], vk) (the inverse is given by
h−1

k ([p], t) = ([p], (t/pk)p)).

5.5 The Tangent Bundle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We define the tangent bundle as follows.

Definition 5.5.1 Let (M,A) be a smooth m-dimensional manifold. The
tangent bundle of M is defined by the following smooth pre-vector bundle:

T M =∐p∈M Tp M (total space)
M (base space)
π : T M → M sends Tp M to p
the pre-vector bundle atlas

BA = {(hx ,U ) | (x,U ) ∈ A}
where hx is given by

hx : π−1(U )→ U × Rm,

[γ ] 
→ (γ (0), (xγ )′(0)).

Note 5.5.2 We recognize the local trivialization hx : π−1(U ) → U × Rm given
in the definition of the tangent bundle: on the fiber above a point p ∈ U it is
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nothing but the isomorphism Ax : Tp M ∼= Rm of Lemma 3.3.10. We see that the
tangent bundle is smooth (as claimed), since the transition functions are given by
multiplication by the Jacobi matrix: hyh−1

x (p, v) = (p, D(yx−1)(x(p)) · v).
Strictly speaking, an element in T M is a pair (p, [γ ]) with p ∈ M and
[γ ] ∈ Tp M , but we’ll often abbreviate this to [γ ], letting γ bear the burden of
remembering p = γ (0).

Note 5.5.3 Since the tangent bundle is a smooth vector bundle, the total space
T M is a smooth 2m-dimensional manifold. To be explicit, its atlas is gotten from
the smooth atlas on M as follows.

If (x,U ) is a chart on M ,

π−1(U )
hx−−−→ U × Rm x×id−−−→ x(U )× Rm

[γ ] 
→ (xγ (0), (xγ )′(0))

is a homeomorphism to an open subset of Rm × Rm . It is convenient to have an
explicit formula for the inverse (c.f. Lemma 3.3.10): it sends (q, v) ∈ x(U )×Rm to
the tangent vector [x−1γ(q,v)] in the fiber Tx−1(q)M , where γ(q,v) : (R, 0)→ (Rm, q)
is the germ defined by the straight line sending t to q + tv.

Lemma 5.5.4 Let f : (M,AM)→ (N ,AN ) be a smooth map. Then

[γ ] 
→ T f [γ ] = [ f γ ]
defines a smooth bundle morphism

T M
T f−−−→ T N

πM

⏐⏐� πN

⏐⏐�
M

f−−−→ N .

Proof. Since T f |π−1(p) = Tp f we have linearity on the fibers, and we are left
with showing that T f is a smooth map. Let (x,U ) ∈ AM and (y, V ) ∈ AN . We
have to show that up, across and down in

π−1
M (W )

T f |−−−→ π−1
N (V )

hx |W
⏐⏐� hy

⏐⏐�
W × Rm V × Rn

x |W×id

⏐⏐� y×id

⏐⏐�
x(W )× Rm y(V )× Rn

is smooth, where W = U ∩ f −1(V ) and T f | is T f restricted to π−1
M (W ). This

composite sends (q, v) ∈ x(W ) × Rm to [x−1γ(q,v)] ∈ π−1
M (W ) to [ f x−1γ(q,v)] ∈
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π−1
N (V ) and finally to (y f x−1γ(q,v)(0), (y f x−1γ(q,v))

′(0)) ∈ y(V ) × Rn , which is
equal to

(y f x−1(q), D(y f x−1)(q) · v)
by the chain rule. Since y f x−1 is a smooth function, this is a smooth function too.

�

Lemma 5.5.5 If f : M → N and g : N → L are smooth, then

T gT f = T (g f ).

Proof. It is the chain rule in Lemma 3.3.6 (made pleasant since the notation no
longer has to specify over which point in your manifold you are). �

Note 5.5.6 The tangent space of Rn is trivial, since the identity chart induces a
bundle chart

hid : T Rn → Rn × Rn,

[γ ] 
→ (γ (0), γ ′(0)).

Definition 5.5.7 A manifold is often said to be parallelizable if its tangent bundle
is trivial.

Example 5.5.8 The circle is parallelizable. This is so since the map

S1 × T1S1 → T S1,

(eiθ , [γ ]) 
→ [eiθ · γ ]
is both a diffeomorphism and linear on each fiber (here (eiθ · γ )(t) = eiθ · γ (t))
with inverse [γ ] 
→ (γ (0), [γ (0)−1γ ]).

Exercise 5.5.9 Show that the 3-sphere S3 is parallelizable.

Exercise 5.5.10 Show that all Lie groups are parallelizable. (A Lie group is a manifold with a
smooth associative multiplication, with a unit and all inverses: skip this exercise if
this sounds too alien to you.)

Example 5.5.11 Let

E = {(p, v) ∈ Rn+1 × Rn+1 | |p| = 1, p · v = 0}.
Then

T Sn → E, [γ ] 
→ (γ (0), γ ′(0))

is a homeomorphism. The inverse sends (p, v) ∈ E to the tangent vector [t 
→
(p + tv)/|p + tv|] ∈ Tp Sn. See Figures 5.10 and 5.11.
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p
v

|p| = 1

p . υ = 0

Figure 5.10. A point in the tangent space of S2 may be represented by a unit vector p together
with an arbitrary vector v perpendicular to p.
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Figure 5.11. We can’t draw all the tangent planes simultaneously to illustrate the tangent bundle
of S2. The description we give is in R6.

More generally we have the following fact.

Lemma 5.5.12 Let f : M → N be an imbedding. Then T f : T M → T N is an
imbedding.

Proof. We may assume that f is the inclusion of an m-dimensional submanifold
in an (m+k)-dimensional manifold (the diffeomorphism part is taken care of by the
chain rule which implies that if f is a diffeomorphism then T f is a diffeomorphism
with inverse T ( f −1)).

In this case, T M is a subset of T N with inclusion T f , and we must display
charts for T N displaying T M as a 2m-dimensional submanifold. Let y : V → V ′
be a chart on N such that y(V ∩ M) = V ′ ∩ (Rm × {0}). For notational simplicity,
we identify the subspace Rm × {0} of Rm+k with Rm . Since curves in Rm have
derivatives in Rm we get a commuting diagram
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T (V ∩ M)

T fV∩M

��

∼=
T yV∩M

�� T (V ′ ∩ Rm)

��

∼= �� (V ′ ∩ Rm)× Rm

inclusion
��

T V
∼=
T y

�� T V ′
∼= �� V ′ × Rm+k,

where the rightmost diffeomorphisms are the standard identifications sending a
tangent vector [γ ] to (γ (0), γ ′(0)). The horizontal composites are just the charts
for T M and T N associated with the chart (y, V ), and since T V∩T M = T (V∩M)
the diagram shows that the charts are of the required form. �

Corollary 5.5.13 If M ⊆ RN is the inclusion of a smooth submanifold of a
Euclidean space, then

T M ∼=
{
(p, v) ∈M× RN

∣∣∣∣ v = γ ′(0) for some germ
γ̄ : (R, 0)→ (M, p)

}
⊆ RN × RN ∼= T RN

(the derivation of γ happens in RN ).

Exercise 5.5.14 There is an even groovier description of T Sn: prove that

E =
{
(z0, . . . , zn) ∈ Cn+1

∣∣∣∣∣
n∑

i=0

z2 = 1

}
is the total space in a bundle isomorphic to T Sn .

Definition 5.5.15 Let M be a smooth manifold. A vector field on M is a smooth
section in the tangent bundle, i.e., a smooth map σ : M → T M such that the
composite πMσ : M → T M → M is the identity.

Exercise 5.5.16 Let M be a smooth manifold and X (M) the set of vector fields on M . Using the
vector space structure on the tangent spaces, give X (M) the structure of a vector
space. If you know the language, extend this to a C∞(M)-module structure, where
C∞(M) is the ring of smooth functions M → R.

Exercise 5.5.17 Let M be an n-dimensional parallelizable manifold (i.e., the tangent bundle is triv-
ial). Give an isomorphism X (M) ∼= C∞(M,Rn) ∼= C∞(M)×n from the space of
vector fields to n times the space of smooth real functions.

Exercise 5.5.18 Give an isomorphism X (Sn) ∼= {σ ∈ C∞(Sn,Rn+1) | p · σ(p) = 0} and an
isomorphism

X (Sn)× C∞(Sn) ∼= C∞(Sn)×(n+1).
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Exercise 5.5.19 Prove that the projection Sn → RPn gives an isomorphism

T RPn ∼= {(p, v) ∈ Sn × Rn+1 | p · v = 0}/(p, v) ∼ (−p,−v).

Exercise 5.5.20 Consider the inclusion O(n) ⊆ Mn(R), giving a description of the tangent bundle
of O(n) along the lines of Corollary 5.5.13. Show that under the isomorphism

T Mn(R) ∼= Mn(R)× Mn(R), [γ ]� (γ (0), γ ′(0))

the tangent bundle of O(n) corresponds to the projection on the first factor

E = {(g, A) ∈ O(n)× Mn(R) | AT = −gT AgT} → O(n).

This also shows that O(n) is parallelizable (which we knew already by Exer-
cise 5.5.10, since O(n) is a Lie group), since we get a bundle isomorphism induced
by

E → O(n)× Skew(n), g, A) 
→ (g, g−1 A),

where Skew(n) = {B ∈ Mn(R) | BT = −B} (a matrix B satisfying BT = −B is
called a skew matrix).

As we will see in Chapter 7, vector fields are closely related to differential
equations. It is often of essence to know whether a manifold M supports non-
vanishing vector fields, i.e., a vector field s : M → T M such that s(p) �= 0 for all
p ∈ M .

Example 5.5.21 The circle has nonvanishing vector fields (Figure 5.12). Let
[γ ] �= 0 ∈ T1S1, then

S1 → T S1, eiθ 
→ [eiθ · γ ]
is a vector field (since eiθ · γ (0) = eiθ · 1) and does not intersect the zero section
since (viewed as a vector in C)

|(eiθ · γ )′(0)| = |eiθ · γ ′(0)| = |γ ′(0)| �= 0.

Figure 5.12. The vector field spins around the circle with constant speed.
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This is the same construction as the one we used to show that S1 was paral-
lelizable. This is a general argument: an n-dimensional manifold with n linearly
independent vector fields has a trivial tangent bundle, and conversely.

Exercise 5.5.22 Construct three vector fields on S3 that are linearly independent in all tangent
spaces.

Exercise 5.5.23 Prove that T (M × N ) ∼= T M × T N .

Example 5.5.24 We have just seen that S1 and S3 (if you did the exercise) both
have nonvanishing vector fields. It is a hard fact that S2 does not: “you can’t comb
the hair on a sphere”.

This has the practical consequence that, when you want to confine the plasma
in a fusion reactor by means of magnetic fields, you can’t choose to let the plasma
be in the interior of a sphere (or anything homeomorphic to it). At each point on
the surface bounding the region occupied by the plasma, the component of the
magnetic field parallel to the surface must be nonzero, or the plasma will leak
out (if you remember your physics, there once was a formula saying something
like F = qv × B, where q is the charge of the particle, v its velocity and B the
magnetic field: hence any particle moving nonparallel to the magnetic field will be
deflected).

This problem is solved by letting the plasma stay inside a torus S1 × S1 which
does have nonvanishing vector fields (since S1 has by virtue of Example 5.5.21,
and since T (S1 × S1) ∼= T S1 × T S1 by Exercise 5.5.23).

Although there are no nonvanishing vector fields on S2, there are certainly inter-
esting ones that have only a few zeros. For instance “rotation around an axis” will
give you a vector field with only two zeros. The “magnetic dipole” defines a vector
field on S2 with just one zero (Figure 5.13).

–1
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1
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Figure 5.13. A magnetic dipole on S2, seen by stereographic projection in a neighborhood of the
only zero.
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It turns out that, in the classification of orientable surfaces mentioned in
Note 2.4.22, the torus is the only one to support a nonvanishing vector field (this
has strangely to do with the Euler characteristic “V − E + F” of Exercise 1.5.4).
As a spin-off, since we know that Lie groups are parallelizable and hence support
nonvanishing vector fields, this gives that the torus is the only orientable surface
supporting a Lie group structure.

Exercise 5.5.25 Let M be an n-dimensional smooth manifold. For p ∈ M , let E p be the set of
germs σ̄ : (R2, 0) → (M, p) modulo the equivalence relation that σ̄1 � σ̄2 if for
any chart (x,U ) with p ∈ U we have that

D1(xσ1)(0) = D1(xσ2)(0), D2(xσ1)(0) = D2(xσ2)(0) and

D1 D2(xσ1)(0) = D1 D2(xσ2)(0).

Let E = ∐
p∈M E p and consider the projection E → T M sending [σ ] to [t 
→

σ(0, t)]. Show that the assignment E → T (T M) sending [σ ] to [s 
→ [t 
→
σ(s, t)]] is a well-defined bijection, making E → T M a smooth vector bundle
isomorphic to the tangent bundle of T M .

5.6 The Cotangent Bundle1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let M be a smooth m-dimensional manifold. Recall the definition of the cotangent
spaces from Section 3.4, more precisely Definition 3.4.1. We will show that the
cotangent spaces join to form a bundle, the cotangent bundle T ∗M , by showing
that they define a pre-vector bundle.

Let the total space T ∗M be the set

T ∗M =
∐
p∈M

T ∗p M = {(p, dφ) | p ∈ M, dφ ∈ T ∗p M}

and π : T ∗M → M be the projection sending (p, dφ) to p. For a smooth chart
(x,U ) we have a bundle chart

hx : π−1(U ) = T ∗U → U × (Rn)∗

gotten by sending (p, dφ) to (p, D(φx−1)(x(p)·). To get it in exactly the form of
Definition 5.1.1 we should choose an isomorphism HomR(Rm,R) = (Rm)∗ ∼= Rm

once and for all (e.g., transposing vectors), but it is convenient to postpone this
translation as long as possible.

By the discussion in Section 3.4, hx induces a linear isomorphism π−1(p) =
T ∗p M ∼= {p}×(Rm)∗ in each fiber. If (y, V ) is another chart, the transition function
is given by sending p ∈ U ∩V to the linear isomorphism (Rm)∗ → (Rm)∗ induced
by the linear isomorphism Rm → Rm given by multiplication by the Jacobi matrix

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 If you did not read about the cotangent space in Section 3.4, you should skip this section.



5.6 The Cotangent Bundle 121

D(yx−1)(x(p)). Since the Jacobi matrix D(yx−1)(x(p)) varies smoothly with p,
we have shown that

T ∗M → M

is a smooth (pre-)vector bundle, the cotangent bundle.

Exercise 5.6.1 Go through the details in the above discussion.

Definition 5.6.2 If M is a smooth manifold, a one-form is a smooth section of
the cotangent bundle T ∗M → M .

Example 5.6.3 Let f : M → R be a smooth function. Recall the differential map
d : OM,p → T ∗p M given by sending a function germ φ̄ to the cotangent vector rep-
resented by the germ of q 
→ φ(q)−φ(p). Correspondingly, we write dp f ∈ T ∗p M
for the cotangent vector represented by q 
→ f (q) − f (p). Then the assignment
p 
→ (p, dp f ) ∈ T ∗M is a one-form, and we simply write

d f : M → T ∗M.

We call this one-form d f the differential of f .
Here’s a concrete example. If f : R→ R is given by f (s) = s2, then under the

trivialization T ∗R ∼= R×R induced by the identity chart (i.e., given by (s, dφ) 
→
(s, φ′(s))), d f corresponds to s 
→ (s, 2s). Classically the identity chart could also
be called “s”, making the expression ds f = 2s ds meaningful (and admittedly
more palatable than “2s d(idR)”).

To signify that the differential d f of Example 5.6.3 is just the beginning in a
series of important vector spaces, let �0(M) = C∞(M,R) and let �1(M) be the
vector space of all one-forms on M . The differential is then a map

d : �0(M)→ �1(M).

Even though the differential as a map to each individual cotangent space
d : OM,p → T ∗p M was surjective, this is not the case for d : �0(M)→ �1(M). In
fact, the one-forms in the image of d are the ones that are referred to as “exact”.
(This is classical notation coming from differential equations, the other relevant
notion being “closed”. It is the wee beginning of the study of the shapes of spaces
through cohomological methods.)

Example 5.6.4 If x1, x2 : S1 ⊆ R2 → R are the projections to the first and second
coordinate, respectively, then one can show that

x1 dx2 − x2 dx1

is a one-form that is not exact, a phenomenon related to the fact that the circle is not
simply connected. As a matter of fact, the quotient H 1(S1) = �1(S1)/d(�0(S1))

(which is known as the first de Rham cohomology group of the circle) is a
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one-dimensional real vector space, and so the image of the non-exact one-form
displayed above generates H 1(S1).

Example 5.6.5 In physics the total space of the cotangent bundle is referred to
as the phase space. If the manifold M is the collection of all possible positions
of the physical system, the phase space T ∗M is the collection of all positions and
momenta. For instance, if we study a particle of mass m in Euclidean 3-space,
the position is given by three numbers x1, x2, x3 (really, coordinates with respect
to the standard basis) and the momentum by another three numbers p1, p2, p3

(coordinates with respect to the basis {dx1, dx2, dx3} in the cotangent space). See
also Example 3.4.20. We will come back to such matters when we have talked
about Riemannian metrics.

5.6.1 The Tautological One-Form

If M is an m-dimensional smooth manifold, T ∗M is a 2m-dimensional smooth
manifold. This manifold has an especially important one-form θM : T ∗M →
T ∗T ∗M , called the tautological one-form (or canonical one-form or Liouville
one-form or symplectic potential – a dear child has many names). For each point
(p, dφ) ∈ T ∗M in the total space of the cotangent bundle we define an element
in T ∗(p,dφ)T

∗M as follows: consider the map Tπ : T (T ∗M) → T M induced by
the projection π : T ∗M → M . By the isomorphism αp(M) : T ∗p M ∼= (Tp M)∗,
the cotangent vector dφ corresponds to the linear map Tp M → R sending [γ ] to
(φγ )′(0). By composing these maps

T(p,dφ)T
∗M → Tp M → R

we have an element θM(p, dφ) ∈ T ∗(p,dφ)T
∗M ∼= (T(p,dφ)T ∗M)∗ (the isomorphism

is the inverse of αT ∗p M,(p,dφ)).

Exercise 5.6.6 Show that the procedure above gives a one-form θM on T ∗M (that is a smooth
section of the projection T ∗(T ∗M)→ T ∗M).



6 Constructions on Vector Bundles

A good way to think of a vector bundle is as a family of vector spaces indexed
over a base space. All constructions we wish to perform on the individual vector
spaces should conform with the indexation in that they should vary continuously
or smoothly from point to point. This means that, in all essence, the “natural” (in
a precise sense) constructions we know from linear algebra have their counterparts
for bundles – allowing us to “calculate” with vector bundles (we can “add” and
“multiply” them, plus perform a lot of other operations). The resulting theory gives
deep information about the base space, as well as allowing us to construct some
important mathematical objects. We start this study in this chapter.

6.1 Subbundles and Restrictions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There is a variety of important constructions we need to address. The first of these
has been lying underneath the surface for some time.

Definition 6.1.1 Let π : E → X be a rank-n vector bundle. A rank-k (or
k-dimensional) subbundle of this vector bundle is a subset E ′ ⊆ E such that around
any point in X there is a bundle chart (h,U ) for E such that

h(π−1(U ) ∩ E ′) = U × (Rk × {0}) ⊆ U × Rn.

See Figure 6.1.

Note 6.1.2 It makes sense to call such a subset E ′ ⊆ E a subbundle, since we
see that the bundle charts, restricted to E ′, define a vector bundle structure on
π |E ′ : E ′ → X which is smooth if we start out with a smooth atlas.

Example 6.1.3 Consider the trivial bundle S1 × C → S1. The tautological line
bundle η1 → RP1 ∼= S1 of Example 5.1.3 can be thought of as the subbundle given
by

{(eiθ , teiθ/2) ∈ S1 × C | t ∈ R} ⊆ S1 × C.
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p X

EpE′p

Figure 6.1. A rank-1 subbundle in a rank-2 vector bundle: pick out a one-dimensional linear
subspace of every fiber in a continuous manner.

Exercise 6.1.4 Spell out the details of the previous example. Also show that

ηn =
{
([p], λp) ∈ RPn × Rn+1

∣∣ p ∈ Sn, λ ∈ R
} ⊆ RPn × Rn+1

is a subbundle of the trivial bundle RPn × Rn+1 → RPn . Don’t look at it before
you have done the exercise, but for later reference explicit charts are given in the
hint.

Definition 6.1.5 Given a bundle π : E → X and a subspace A ⊆ X , the
restriction to A is the bundle

πA : E A → A,

where E A = π−1(A) and πA = π |π−1(A) (Figure 6.2).

As before, in the special case where A is a single point p ∈ X we write E p =
π−1(p) (instead of E{p}). Occasionally it is typographically convenient to write
E |A instead of E A.

Note 6.1.6 We see that the restriction is a new vector bundle, and the inclusion

E A
⊆ ��

πA

��

E

π

��
A

⊆ �� X

is a bundle morphism inducing an isomorphism (the identity) on every fiber.

Example 6.1.7 Let N ⊆ M be a smooth submanifold. Then we can restrict the
tangent bundle on M to N and get

(T M)|N → N .
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E½A

E

A

X

Figure 6.2. The restriction of a bundle E→ X to a subset A⊆ X.

M

N

TpN

TpM = (TM⏐N)p

p

Figure 6.3. In a submanifold N⊆M the tangent bundle of N is naturally a subbundle of the
tangent bundle of M restricted to N.

We see that T N ⊆ T M |N is a smooth subbundle (Figure 6.3).

Definition 6.1.8 A bundle morphism

E1
f ��

π1

��

E2

π2

��
X1

�� X2

is said to be of constant rank r if, restricted to each fiber, f is a linear map of
rank r .

Note that this is a generalization of our concept of constant rank of smooth maps.
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Theorem 6.1.9 (Rank Theorem for Bundles) Consider a bundle morphism

E1
f ��

π1 ���
��

��
��

E2

π2����
��
��
�

X

over a space X with constant rank r . Then around any point p ∈ X there are
bundle charts (h,U ) and (g,U ) such that

E1|U f |U−−−→ E2|U
h

⏐⏐� g

⏐⏐�
U × Rm (u,(t1,...,tm )) 
→(u,(t1,...,tr ,0,...,0))−−−−−−−−−−−−−−−−−−→ U × Rn

commutes. If we are in a smooth situation, these bundle charts may be chosen to
be smooth.

Proof. This is a local question, so translating via arbitrary bundle charts we may
assume that we are in the trivial situation

U ′ × Rm f ��

prU ′ ����
���

���
��

U ′ × Rn

prU ′����
��
��
��
�

U ′

with f (u, v) = (u, ( f 1
u (v), . . . , f n

u (v))), and rk fu = r . By a choice of bases on
Rm and Rn we may assume that fu is represented by a matrix[

A(u) B(u)
C(u) D(u)

]
with A(p) ∈ GLr (R) and D(p) = C(p)A(p)−1 B(p) (the last equation follows as
the rank rk f p is r ). We change the bases so that this is actually true in the standard
bases.

Let p ∈ U ⊆ U ′ be the open set U = {u ∈ U ′ | det(A(u)) �= 0}. Then again
D(u) = C(u)A(u)−1 B(u) on U . Let

h : U × Rm → U × Rm, h(u, v) = (u, hu(v))

be the homeomorphism where hu is given by the matrix[
A(u) B(u)

0 I

]
.

Let

g : U × Rn → U × Rn, g(u, w) = (u, gu(w))
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be the homeomorphism where gu is given by the matrix[
I 0

−C(u)A(u)−1 I

]
.

Then g f h−1(u, v) = (u, (g f h−1)u(v)), where (g f h−1)u is given by the matrix[
I 0

−C(u)A(u)−1 I

] [
A(u) B(u)
C(u) D(u)

] [
A(u) B(u)

0 I

]−1

=
[

I 0
−C(u)A(u)−1 I

] [
A(u) B(u)
C(u) D(u)

] [
A(u)−1 −A(u)−1 B(u)

0 I

]
=
[

I 0
−C(u)A(u)−1 I

] [
I 0

C(u)A(u)−1 0

]
=
[

I 0
0 0

]
as claimed (the right-hand lower zero in the answer is really a 0 = −C(u)A(u)−1

B(u)+ D(u)). �

Recall that, if f : V → W is a linear map of vector spaces, then the kernel (or
null space) is the subspace

ker{ f } = {v ∈ V | f (v) = 0} ⊆ V

and the image (or range) is the subspace

Im{ f } = {w ∈ W | there is a v ∈ V such that w = f (v)}.
We will frequently use the fact that (if V is finite-dimensional)

dim ker{ f } − dim V + dim Im{ f } = 0.

Corollary 6.1.10 If

E1
f ��

π1 ���
��

��
��

E2

π2����
��
��
�

X

is a bundle morphism of constant rank, then the kernel⋃
p∈X

ker{ f p} ⊆ E1

and image ⋃
p∈X

Im{ f p} ⊆ E2

are subbundles.
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Exercise 6.1.11 Let π : E → X be a vector bundle over a connected space X . Assume given a
bundle morphism

E
f ��

π ���
��

��
��

� E

π����
��
��
��

X

with f ◦ f = f ( f is “idempotent”). Prove that f has constant rank.

Exercise 6.1.12 Let π : E → X be a vector bundle over a connected space X . Assume given a
bundle morphism

E
f ��

π ���
��

��
��

� E

π����
��
��
��

X

with f ◦ f = idE . Prove that the space of fixed points

E { f } = {e ∈ E | f (e) = e}
is a subbundle of E .

Exercise 6.1.13 Show that f : T R → T R given by f ([γ ]) = [t 
→ γ (γ (0) · t)] is a well-defined
bundle morphism, but that f does not have constant rank and neither the kernel nor
the image of f is a subbundle.

Exercise 6.1.14 Let f : E → M be a smooth vector bundle of rank k. Show that the vertical bundle

V = {v ∈ T E | T f (v) = 0} ⊆ T E

is a smooth subbundle of T E → E .

6.2 The Induced Bundle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 6.2.1 Assume given a bundle π : E → Y and a continuous map
f : X → Y . Let the fiber product of f and π be the space

f ∗E = X ×Y E = {(x, e) ∈ X × E | f (x) = π(e)}

(topologized as a subspace of X × E), and let the induced bundle be the projection

f ∗π : f ∗E → X, (x, e) 
→ x .

Note 6.2.2 Note that the fiber over x ∈ X may be identified with the fiber over
f (x) ∈ Y .



6.2 The Induced Bundle 129

The reader may recognize the fiber product X×Y E from Exercise 4.7.11, where
we showed that if the contributing spaces are smooth then the fiber product is often
smooth too.

Lemma 6.2.3 If π : E → Y is a vector bundle and f : X → Y a continuous
map, then

f ∗π : f ∗E → X

is a vector bundle and the projection f ∗E → E defines a bundle morphism

f ∗E −−−→ E

f ∗π
⏐⏐� π

⏐⏐�
X

f−−−→ Y

inducing an isomorphism on fibers. If the input is smooth the output is smooth too.

Proof. Let p ∈ X and let (h, V ) be a bundle chart

h : π−1(V )→ V × Rk

such that f (p) ∈ V . Then U = f −1(V ) is an open neighborhood of p. Note that

( f ∗π)−1(U ) = {(u, e) ∈ X × E | f (u) = π(e) ∈ V }
= {(u, e) ∈ U × π−1(V ) | f (u) = π(e)}
= U ×V π

−1(V )

and we define

f ∗h : ( f ∗π)−1(U ) = U ×V π
−1(V )→ U ×V (V × Rk) ∼= U × Rk,

(u, e) 
→ (u, h(e))↔ (u, hπ(e)e).

Since h is a homeomorphism f ∗h is a homeomorphism (smooth if h is), and since
hπ(e) is an isomorphism ( f ∗h) is an isomorphism on each fiber. The rest of the
lemma now follows automatically. �

Theorem 6.2.4 Let

E ′
f̃−−−→ E

π ′
⏐⏐� π

⏐⏐�
X ′

f−−−→ X

be a bundle morphism. Then there is a factorization

E ′ −−−→ f ∗E −−−→ E

π ′
⏐⏐� f ∗π

⏐⏐� π

⏐⏐�
X ′ X ′

f−−−→ X.
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Proof. Let

E ′ → X ′ ×X E = f ∗E,

e 
→ (π ′(e), f̃ (e)).

This is well defined since f (π ′(e)) = π( f̃ (e)). It is linear on the fibers since the
composition

(π ′)−1(p)→ ( f ∗π)−1(p) ∼= π−1( f (p))

is nothing but f̃ p. �

Exercise 6.2.5 Let i : A ⊆ X be an inclusion and π : E → X a vector bundle. Prove that the
induced and the restricted bundles over A are isomorphic, i∗E ∼= E A.

Exercise 6.2.6 Show the following statement: if

E ′ h−−−→ Ẽ
g−−−→ E

π ′
⏐⏐� π̃

⏐⏐� π

⏐⏐�
X ′ X ′

f−−−→ X

is a factorization of ( f, f̃ ), then there is a unique bundle map

Ẽ ��

���
��

��
��

� f ∗E

����
��
��
��

X

such that

E ′ ��

���
��

��
��

��
Ẽ

�� ���
��

��
��

��

f ∗E �� E

commutes.
As a matter of fact, you could characterize the induced bundle by this property.

Exercise 6.2.7 Show that, if f : Y → X is a map and g : E → F represents a bundle morphism
over X , then you have a bundle morphism f ∗g : f ∗E → f ∗F over Y (with a slight
conflict of notation) in a manner that takes composites to composites and identity
to identity and so that

f ∗E
f ∗g ��

��

f ∗F

��
E

g �� F

commutes, where the vertical maps are the projections. If g is an isomorphism,
show that so is f ∗g.
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Exercise 6.2.8 Show that, if E → X is a trivial vector bundle and f : Y → X a map, then
f ∗E → Y is trivial.

Exercise 6.2.9 Let E → Z be a vector bundle and let

X
f−−−→ Y

g−−−→ Z

be maps. Show that ((g f )∗E → X) ∼= ( f ∗(g∗E)→ X).

Exercise 6.2.10 Let π : E → X be a vector bundle, σ0 : X → E the zero section and

π0 : E \ σ0(X)→ X

the restriction of π . Construct a nonvanishing section on π∗0 E → E \ σ0(X).

6.3 Whitney Sum of Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Natural constructions you can perform on vector spaces can be made to pass
to constructions on vector bundles by applying the constructions on each fiber.
As an example, we consider the sum ⊕. You should check that you believe the
constructions, since we plan to be sketchier in future examples.

Definition 6.3.1 If V1 and V2 are vector spaces, then V1 ⊕ V2 = V1 × V2 is the
vector space of pairs (v1, v2) with v j ∈ Vj . If f j : Vj → W j , j = 1, 2 are linear
maps, then

f1 ⊕ f2 : V1 ⊕ V2 → W1 ⊕W2

is the linear map which sends (v1, v2) to ( f1(v1), f2(v2)).

Note 6.3.2 Trivially, idV1⊕ idV2 = idV1⊕V2 and if gi : Ui → Vi and f j : Vj → W j ,
i = 1, 2 are linear maps then f1g1 ⊕ f2g2 = ( f1 ⊕ g1)( f2 ⊕ g2).

Note that not all linear maps V1 ⊕ V2 → W1 ⊕ W2 are of the form f1 ⊕ f2.
For instance, if V1 = V2 = W1 = W2 = R, then the set of linear maps R ⊕
R → R ⊕ R may be identified (by choosing the standard basis) with the set of
2 × 2 matrices, whereas the maps of the form f1 ⊕ f2 correspond to the diagonal
matrices.

Definition 6.3.3 Let (π1 : E1 → X,A1) and (π2 : E2 → X,A2) be vector
bundles over a common space X . Let

E1 ⊕ E2 =
∐
p∈X

E1p ⊕ E2p

and let π1 ⊕ π2 : E1 ⊕ E2 → X send all points in the pth summand to p ∈ X . If
(h1,U1) ∈ A1 and (h2,U2) ∈ A2 then (h1 ⊕ h2,U ) with U = U1 ∩U2 is defined
by the composite
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(π1 ⊕ π2)
−1(U ) U × (Rn1 ⊕ Rn2)

∐
p∈U E1p ⊕ E2p

∐
h1p⊕h2p ��

∐
p∈U Rn1 ⊕ Rn2 .

This defines a pre-vector bundle, and the associated vector bundle is called the
Whitney sum of the two vector bundles.

If

E j
f j ��

π j ���
��

��
��

E ′j

π ′j����
��
��
�

X

are bundle morphisms over X , then

E1 ⊕ E2
f1⊕ f2 ��

π1⊕π2
���

��
��

��
��

E ′1 ⊕ E ′2

π ′1⊕π ′2����
��
��
��
�

X

is the bundle morphism defined as f1 ⊕ f2 on each fiber.

Exercise 6.3.4 Check that, if all bundles and morphisms are smooth, then the Whitney sum is a
smooth bundle, and that f1 ⊕ f2 is a smooth bundle morphism over X .

Note 6.3.5 Although ⊕ = × for vector spaces, we must not mix them for vector
bundles, since × is reserved for another construction: the product of two bundles
E1 × E2 → X1 × X2.

As a matter of fact, the total space E1 ⊕ E2 is the fiber product E1 ×X E2.

Exercise 6.3.6 Let

ε = {(p, λp) ∈ Rn+1 × Rn+1 | |p| = 1, λ ∈ R}.
Show that the projection down to Sn defines a trivial bundle.

Definition 6.3.7 A bundle E → X is called stably trivial if there is a trivial
bundle ε → X such that E ⊕ ε → X is trivial.

Exercise 6.3.8 Show that the tangent bundle of the sphere T Sn → Sn is stably trivial (this is
provocative, since even though the tangent bundle of S2 is nontrivial, we can get a
trivial bundle by adding a trivial bundle).

Exercise 6.3.9 Show that the sum of two trivial bundles is trivial. Also show that the sum of two
stably trivial bundles is stably trivial.
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Exercise 6.3.10 You are given three bundles πi : Ei → X , i = 1, 2, 3. Show that the set of pairs
( f1, f2) of bundle morphisms

Ei
fi ��

πi ���
��

��
��

E3

π3����
��
��
�

X

(i = 1, 2) is in one-to-one correspondence with the set of bundle morphisms

E1 ⊕ E2
��

π1⊕π2 ���
��

��
��

��
E3

π3����
��
��
�

X.

6.4 Linear Algebra on Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There are many constructions on vector spaces that pass on to bundles. We list a
few. The examples 1–4, 8 and 9 in Section 6.4.1 will be used in the text, and the
others are listed for reference, and for use in exercises.

6.4.1 Constructions on Vector Spaces

1. The (Whitney) sum. If V1 and V2 are vector spaces, then V1 ⊕ V2 is the vector
space of pairs (v1, v2) with v j ∈ Vj . If f j : Vj → W j is a linear map j = 1, 2,
then

f1 ⊕ f2 : V1 ⊕ V2 → W1 ⊕W2

is the linear map which sends (v1, v2) to ( f1(v1), f2(v2)).
2. The quotient. If W ⊆ V is a linear subspace we may define the quotient V/W

as the set of equivalence classes V/∼ under the equivalence relation that v ∼ v′
if there is a w ∈ W such that v = v′ + w. The equivalence class containing
v ∈ V is written v̄. We note that V/W is a vector space with

av̄ + bv̄′ = av + bv′.

If f : V → V ′ is a linear map with f (W ) ⊆ W ′ then f defines a linear map

f̄ : V/W → V ′/W ′

via the formula f̄ (v̄) = f (v) (check that this makes sense).
3. The hom-space. Let V and W be vector spaces, and let

Hom(V,W )
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be the set of linear maps f : V → W . This is a vector space via the formula
(a f + bg)(v) = a f (v)+ bg(v). Note that

Hom(Rm,Rn) ∼= Mn×m(R).

Also, if R : V → V ′ and S : W → W ′ are linear maps, then we get a linear
map

Hom(V ′,W )
Hom(R,S)−−−−−−→ Hom(V,W ′)

by sending f : V ′ → W to

V
R−−−→ V ′ f−−−→ W

S−−−→ W ′

(note that the direction of R is turned around!).
4. The dual space. This is a special case of the example above (and was discussed

thoroughly in the section following Definition 3.4.10): if V is a vector space,
then the dual space is the vector space

V ∗ = Hom(V,R).

5. The tensor product. Let V and W be vector spaces. Consider the set of bilinear
maps from V ×W to some other vector space V ′. The tensor product

V ⊗W

is the vector space codifying this situation in the sense that giving a bilinear
map V ×W → V ′ is the same as giving a linear map V ⊗W → V ′. With this
motivation it is possible to write down explicitly what V ⊗ W is: as a set it is
the set of all finite linear combinations of symbols v ⊗ w, where v ∈ V and
w ∈ W subject to the relations

a(v ⊗ w) = (av)⊗ w = v ⊗ (aw),
(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

where a ∈ R, v, v1, v2 ∈ V and w,w1, w2 ∈ W . This is a vector space in the
obvious manner, and given linear maps f : V → V ′ and g : W → W ′ we get a
linear map

f ⊗ g : V ⊗W → V ′ ⊗W ′

by sending
∑k

i=1 vi⊗wi to
∑k

i=1 f (vi )⊗g(wi ) (check that this makes sense!).
Note that

Rm ⊗ Rn ∼= Rmn

and that there are isomorphisms

Hom(V ⊗W, V ′) ∼= {bilinear maps V ×W → V ′}:
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the bilinear map associated with a linear map f : V ⊗W → V ′ sends (v,w) ∈
V×W to f (v⊗w). The linear map associated with a bilinear map g : V×W →
V ′ sends

∑
vi ⊗ wi ∈ V ⊗W to

∑
g(vi , wi ).

For some reason, people tend to try to make tensors into frightening beasts.
It doesn’t help that the classical literature calls an element of V⊗n = V ⊗
· · · ⊗ V (n tensor factors) a “contravariant n-tensor” and obscures it by double
dualizing and considering ((V ∗)⊗n)∗ instead (they are isomorphic when V is
finite-dimensional). The vector space of “tensors of type

(k
l

)
” is (in the finite-

dimensional case naturally isomorphic to) Hom(V⊗k, V⊗l).
6. The exterior power. Let V be a vector space. The kth exterior power �k V is

defined as the quotient of the k-fold tensor product V⊗k by the subspace gen-
erated by the elements v1 ⊗ v2 ⊗ · · · ⊗ vk , where vi = v j for some i �= j . The
image of v1 ⊗ v2 ⊗ · · · ⊗ vk in �k V is written v1 ∧ v2 ∧ · · · ∧ vk . Note that it
follows that v1 ∧ v2 = −v2 ∧ v1 since

0 = (v1+v2)∧(v1+v2) = v1∧v1+v1∧v2+v2∧v1+v2∧v2 = v1∧v2+v2∧v1

and similarly for more ∧ factors: swapping two entries changes sign.
Note that the dimension of �kRn is

(n
k

)
. There is a particularly nice

isomorphism �nRn → R given by the determinant function.
7. The symmetric power. Let V be a vector space. The kth symmetric power Sk V

is defined as the quotient of the k-fold tensor product V⊗k by the subspace
generated by the elements v1⊗ v2⊗ · · ·⊗ vi ⊗ · · ·⊗ v j ⊗ · · ·⊗ vk − v1⊗ v2⊗
· · · ⊗ v j ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk .

8. Alternating forms. The space of alternating forms Altk(V ) on a vector space V
is defined to be

(
�k V

)∗
, the dual of the exterior power�k V in Section 6.4.1(6).

That is, Altk(V ) consists of the multilinear maps

f : V × · · · × V → R

(in k V -variables) which are zero on inputs with repeated coordinates.
The space of alternating forms on the tangent space is the natural home of

the symbols like dx dy dz you’ll find in elementary multivariable analysis.
Again, the dimension of Altk(V ) is

(dim V
k

)
, and the determinant is a basis

element for the one-dimensional vector space Altn(Rn).
9. Symmetric bilinear forms. Let V be a vector space. The space of SB(V ) sym-

metric bilinear forms is the space of bilinear maps f : V × V → R such that
f (v,w) = f (w, v). In other words, the space of symmetric bilinear forms is
SB(V ) = (S2V

)∗
.

6.4.2 Constructions on Vector Bundles

When translating these constructions to vector bundles, it is important not only
to bear in mind what they do on each individual vector space but also what they
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do on linear maps. Note that some of the examples “turn the arrows around”. The
Hom-space in Section 6.4.1(3) is a particular example of this: it “turns the arrows
around” in the first variable, but not in the second.

Instead of giving the general procedure for translating such constructions to bun-
dles in general, we do it on the Hom-space, which exhibits all the potential difficult
points.

Example 6.4.3 Let (π : E → X,B) and (π ′ : E ′ → X,B′) be vector bundles of
rank m and n. We define a pre-vector bundle

Hom(E, E ′) =
∐
p∈X

Hom(E p, E ′p)→ X

of rank mn as follows. The projection sends the pth summand to p, and
given bundle charts (h,U ) ∈ B and (h′,U ′) ∈ B′ we define a bundle chart
(Hom(h−1, h′),U ∩U ′). On the fiber above p ∈ X ,

Hom(h−1, h′)p : Hom(E p, E ′p)→ Hom(Rm,Rn) ∼= Rmn

is given by sending f : E p → E ′p to

Rm Rn

h−1
p

⏐⏐� h′p
4⏐⏐

E p
f−−−→ E ′p.

If (g, V ) ∈ B and (g′, V ′) ∈ B′ are two other bundle charts, the transition function
becomes

p 
→ Hom(g−1
p , g′p)

(
Hom(h−1

p , h′p)
)−1 = Hom(h pg−1

p , g′p(h
′
p)
−1),

sending f : Rm → Rn to
Rm Rn

g−1
p

⏐⏐� g′p
4⏐⏐

E p E ′p
h p

⏐⏐� (h′p)−1

4⏐⏐
Rm f−−−→ Rn.

That is, if W = U ∩U ′ ∩ V ∩ V ′, then the transition function

W −→ GL(Hom(Rm,Rn)) ∼= GLmn(R)

is the composite of

(1) the diagonal W → W ×W sending p to (p, p),
(2) the product of the transition functions

W ×W → GL(Rm)× GL(Rn),

sending (p, q) to (gph−1
p , h′q(g′q)−1), and
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(3) the map

GL(Rm)× GL(Rn)→ GL(Hom(Rm,Rn)),

sending (A, B) to Hom(A, B).

The first two are continuous or smooth depending on whether the bundles are
topological or smooth. The last map, GL(Rm) × GL(Rn) → GL(Hom(Rm,Rn)),
is smooth (C 
→ BC A is a linear transformation on Hom(Rm,Rn)

which depends smoothly on A and B since the algebraic operations are
smooth).

In effect, the transition functions of Hom(E, E ′) → X are smooth (resp. con-
tinuous) if the transition functions of E → X and E ′ → X are smooth (resp.
continuous).

It is worth pausing a bit at this point. The three-point approach above will
serve us in many cases, so you should review it carefully. In particular, the
smoothness of the third map and the equation Hom(g−1

p , g′p)
(
Hom(h−1

p , h′p)
)−1 =

Hom(h pg−1
p , g′p(h′p)−1) are pure linear algebra features of the Hom-construction

that have nothing to do with the vector bundles.

Exercise 6.4.4 Let E → X and E ′ → X be vector bundles. Show that there is a one-to-one
correspondence between bundle morphisms

E
f ��

���
��

��
��

� E ′

����
��
��
��

X

and sections of Hom(E, E ′)→ X .

Exercise 6.4.5 Convince yourself that the construction of Hom(E, E ′)→ X outlined above really
gives a vector bundle, and that if

E
f ��

���
��

��
��

� E1

����
��
��
�

X

and E ′
f ′ ��

���
��

��
��

� E ′1

����
��
��
�

X

are bundle morphisms, we get another

Hom(E1, E ′)
Hom( f, f ′) ��

		��
���

���
���

Hom(E, E ′1)

�����
���

���
�

X.
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Exercise 6.4.6 Let L → X be a line bundle. Show that the associated Hom-bundle Hom(L , L)→
X is trivial both in the continuous situation and in the smooth situation.

Exercise 6.4.7 Write out the definition of the quotient bundle, and show that, if

E
f ��

���
��

��
��

� E ′

����
��
��
��

X

is a bundle map, and F ⊆ E and F ′ ⊆ E ′ are subbundles such that Im{ f |F} ⊆ F ′,
then we get a bundle morphism

E/F
f̄ ��

���
��

��
��

�
E ′/F ′

����
��
��
��

X.

Example 6.4.8 Given a bundle E → X , the dual bundle E∗ → X is important in
many situations. If (h,U ) is a bundle chart, then we get a bundle chart for the dual
bundle

(E∗)U =∐p∈U E∗p

∐
(h−1

p )∗−−−−→ ∐
p∈U (R

k)∗ = U × (Rk)∗

(choose a fixed isomorphism (Rk)∗ ∼= Rk).

Exercise 6.4.9 Check that the bundle charts proposed for the dual bundle actually give a bundle
atlas, and that this atlas is smooth if the original bundle was smooth.

Exercise 6.4.10 For those who read the section on the cotangent bundle T ∗M → M associated
with a smooth n-manifold M : prove that the maps of Proposition 3.4.14

αp : T ∗p M → (Tp M)∗, dφ 
→ {[γ ] 
→ (φx)′(0)}
induce an isomorphism from the cotangent bundle to the dual of the tangent
bundle.

Given Exercise 6.4.10, readers who have not studied the cotangent bundle are free
to define it in the future as the dual of the tangent bundle. Recall that the elements
of the cotangent bundle are called 1-forms.

Exercise 6.4.11 Given a bundle E → X , write out the definition of the associated symmetric
bilinear forms bundle SB(E)→ X .
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Example 6.4.12 An alternating k-form (or just k-form) is an element in Altk(T M)
(see Section 6.4.1(8). These are the main objects of study when doing analysis of
manifolds (integration, etc.).

Exercise 6.4.13 Write out the definition of the bundle of alternating k-forms, and, if you are still
not bored stiff, do some more examples. If you are really industrious, find out on
what level of generality these ideas really work, and prove it there.

Exercise 6.4.14 Let L → M be a line bundle. Show that the tensor product L ⊗ L → M is also
a line bundle and that all the transition functions in the associated (non-maximal)
bundle atlas on L ⊗ L → M have only positive values.

6.5 Normal Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will later discuss Riemannian structures and more generally fiber metrics over
smooth manifolds. This will give us the opportunity to discuss inner products, and
in particular questions pertaining to orthogonality, in the fibers. That such struc-
tures exist over smooth manifolds is an artifact of the smooth category, in which
local smooth data occasionally can be patched together to give global smooth
structures.

However, there is a formulation of these phenomena which does not depend on
inner products, but rather uses quotient bundles.

Definition 6.5.1 Let N ⊆ M be a smooth submanifold. The normal bundle
⊥N → N is defined as the quotient bundle (T M |N )/T N → N (see Exercise 6.4.7
and Figure 6.4).

More generally, if f : N → M is an imbedding, we define the normal bundle
⊥ f N → N to be the bundle ( f ∗T M)/T N → N .

It turns out that there is an important consequence of transversality pertaining to
normal bundles.

M

N

TpN

TpM = (TM⏐N)p

p

Figure 6.4. In a submanifold N⊆ M the tangent bundle of N is naturally a subbundle of the
tangent bundle of M restricted to N, and the normal bundle is the quotient on each fiber.
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Theorem 6.5.2 Assume f : N → M is transverse to a k-codimensional
submanifold L ⊆ M and that f (N ) ∩ L �= ∅. Then f −1(L) ⊆ N is a
k-codimensional submanifold and there is an isomorphism

⊥ f −1(L)
∼= ��

����
���

���
��

f ∗(⊥L)

�����
���

���
�

f −1(L).

Proof. The first part is simply Theorem 4.5.5. For the statement about
normal bundles, remember that ⊥L = (T M |L)/T L and ⊥ f −1(L) =
(T N | f −1(L))/T ( f −1(L)) and consider the diagram

T ( f −1(L)) ��

∩
��

T L

∩
��

T N | f −1(L)
��

��

T M |L

��
⊥ f −1(L) �� ⊥L .

Transversality gives that the map from T N | f −1(L) to⊥L is surjective on every fiber,
and so – for dimensional reasons – ⊥ f −1(L) → ⊥L is an isomorphism on every
fiber. This then implies that ⊥ f −1(L) → f ∗(⊥L) must be an isomorphism by
Lemma 5.3.12. �

Corollary 6.5.3 Consider a smooth map f : N → M and a regular value q ∈ M.
Then the normal bundle ⊥ f −1(q)→ f −1(q) is trivial.

Note 6.5.4 In particular, this shows that the normal bundle of Sn ⊆ Rn+1 is trivial.
Also it shows that the normal bundle of O(n) ⊆ Mn(R) is trivial, and so are all the
other manifolds we constructed in Chapter 4 as the inverse image of regular values.

In Exercise 6.3.8 we showed that the tangent bundle of Sn is stably trivial, and
an analysis of that proof gives an isomorphism between T Rn+1|Sn and T Sn⊕⊥Sn .
This “splitting” is a general phenomenon and is a result of the flexibility of the
smooth category alluded to at the beginning of this section. We will return to such
issues in Section 6.6 when we discuss Riemannian structures.

Exercise 6.5.5 Let M be a smooth manifold, and consider M as a submanifold by imbedding it
as the diagonal in M × M (i.e., as the set {(p, p) ∈ M × M}: show that it is a
smooth submanifold). Prove that the normal bundle ⊥M → M is isomorphic to
T M → M .
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Exercise 6.5.6 Consider the tautological line bundle η1 → S1. Show that η1⊕ η1 → S1 is trivial.

6.6 Riemannian Metrics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In differential geometry one works with more highly structured manifolds than
in differential topology. In particular, all manifolds should come equipped with
metrics on the tangent spaces which vary smoothly from point to point. This is
what is called a Riemannian manifold, and is crucial to many applications.

We will eventually show in Theorem 8.3.1 that all smooth manifolds have a
structure of a Riemannian manifold. However, there is a huge difference between
merely saying that a given manifold has some Riemannian structure and actually
working with manifolds with a chosen Riemannian structure.

Recall from Section 6.4.1(9) that, if V is a vector space, then SB(V ) is the vector
space of all symmetric bilinear forms g : V × V → R, i.e., functions g such that
g(v,w) = g(w, v) and which are linear in each variable. In particular, there is a lin-
ear isomorphism between SB(Rn) and the vector space Sym(n) of symmetric n×n
matrices, given by sending a symmetric bilinear form g to the symmetric matrix
(g(ei , e j )); the inverse sends a symmetric matrix A to the symmetric bilinear form
(v,w) 
→ 〈v,w〉A = vT Aw.

Recall that this lifts to the level of bundles: if π : E → X is a bundle, we get
an associated symmetric bilinear forms bundle SB(π) : SB(E) → X (see Exer-
cise 6.4.11). A more involved way of saying this is SB(E) = (S2 E)∗ → X in the
language of Section 6.4.1(4) and Section 6.4.1(7).

Definition 6.6.1 Let V be a vector space. An inner product is a symmetric bilin-
ear form g ∈ SB(V ) which is positive definite, i.e., we have that g(v, v) ≥ 0 for
all v ∈ V and g(v, v) = 0 only if v = 0.

Example 6.6.2 If A is a symmetric n×n matrix, then 〈v,w〉A = vT Aw defines an
inner product 〈, 〉A ∈ SB(Rn) exactly if A is positive definite (all eigenvalues are
positive). In particular, if A is the identity matrix we get the standard inner product
on Rn .

Definition 6.6.3 A fiber metric on a vector bundle π : E → X is a section
g : X → SB(E) on the associated symmetric bilinear forms bundle, such that
for every p ∈ X the associated symmetric bilinear form gp : E p × E p → R is
positive definite. The fiber metric is smooth if both the vector bundle E → X and
the section g are smooth.

A fiber metric is often called a Riemannian metric, although many authors reserve
this notion for a fiber metric on the tangent bundle of a smooth manifold.

Definition 6.6.4 A Riemannian manifold is a smooth manifold with a smooth
fiber metric on the tangent bundle.
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Example 6.6.5 Let M = Rn and consider the standard trivialization of the tangent
bundle given by T Rn ∼= Rn × Rn sending [γ ] to (γ (0), γ ′(0)). The usual dot
product on Rn gives a fiber metric on the product bundle and hence a Riemannian
metric on Rn:

g([γ1], [γ2]) = γ ′1(0) · γ ′2(0).
Somewhat more generally, parallelizable manifolds have especially attractive

Riemannian metrics: given a global trivialization T M ∼= M × Rn we choose the
usual dot product for Rn and transport this back. Of course, these considerations
carry over to trivial vector bundles in general.

Fiber metrics are used to confuse bundles with their dual.

Lemma 6.6.6 Let V be a (finite-dimensional) vector space with an inner product
〈−,−〉. Then the assignment

V → V ∗, v 
→ 〈v,−〉
(where 〈v,−〉: V → R sends w to 〈v,w〉) is a linear isomorphism.

Proof. The bilinearity of the inner product ensures that the map V → V ∗ is linear
and well defined. The non-degenerate property of the inner product is equivalent to
the injectivity of V → V ∗, and, since any injective linear map of vector spaces of
equal finite dimension is an isomorphism, V → V ∗ is an isomorphism. �

Since a fiber metric p 
→ gp varies smoothly/continuously in p, this assembles
to an isomorphism of bundles:

Corollary 6.6.7 Let E → M be a vector bundle and g a fiber metric. Then

E
g∗
∼=

��

���
��

��
��

� E∗

����
��
��
��

M,

defined by g∗ : E p
∼= (E p)

∗ with g∗(v) = gp(v,−), is an isomorphism. If (M, g) is
a Riemannian manifold this gives an isomorphism between the tangent bundle and
its dual

T M
g∗−−−→∼= (T M)∗.

If you prefer the cotangent bundle to the dual tangent bundle you should follow
through with the inverse of the natural isomorphism α : T ∗M → (T M)∗ of Propo-
sition 3.4.14 (and expanded on in Exercise 6.4.10) sending dφ ∈ T ∗p M to the linear
map Tp M → R, [γ ] 
→ (φγ )′(0). Consequently, the Riemannian metric provides
us with an isomorphism
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T M
g∗
∼=

�� (T M)∗ T ∗Mα

∼=
�� ,

which is used for all it’s worth (and a bit more) in many expositions. The notion of
the gradient of a real-valued smooth function f is nothing but the differential d f
carried over with this isomorphism.

Definition 6.6.8 Let (M, g) be a Riemannian manifold and let f : M → R be a
smooth function. The gradient of f is the vector field

grad f = g−1
∗ α df : M → T M.

Another way of saying this is that grad f is the unique vector field such that if X is
any other vector field, then d f (X) = g(grad f, X).

Example 6.6.9 Let M = Rn equipped with the Riemannian metric of Exam-
ple 6.6.5 given by the dot product on TpRn ∼= Rn:

gp([γ1], [γ2]) = γ ′1(0) · γ ′2(0).
Then the composite isomorphism

Rn TpRn
∼=
Aid�� g∗

∼=
�� (TpRn)∗ (Rn)∗∼=

A∗id�� ∼=
�� M1×nR

is a very complicated way of expressing transposition. If f : M → R is smooth,
then dp f ∈ T ∗p M and gradp f ∈ Tp M both correspond to the Jacobi matrix Dp f ∈
M1×nR.

Example 6.6.10 Consider the function f : S1 × S1 → R (whose differential is
written out in Example 4.1.11) of the robot example. Since S1×S1 is parallelizable
we see that the gradient is given by S1 × S1 → T (S1 × S1) ∼= (S1 × S1)× R2,

(eiθ , eiφ) 
→
(
(eiθ , eiφ),

1

f (eiθ , eiφ)

[
3 sin θ − cosφ sin θ + sinφ cos θ
3 sinφ − cos θ sinφ + sin θ cosφ

])
.

Exercise 6.6.11 Make a visual representation of the gradient field of the function f : S1 × S1 → R
(whose differential is written out in Example 4.1.11) of the robot example. Pay
special attention to the behavior near the critical points.

Normal bundles in general were introduced in Section 6.5, but in the presence of
a fiber metric things become somewhat less abstract.

Definition 6.6.12 Given a bundle π : E → X , a fiber metric g and a subbundle
F ⊆ E , we define the normal bundle with respect to g of F ⊆ E to be the subset

F⊥ =
∐
p∈X

F⊥p
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given by taking the orthogonal complement of Fp ⊆ E p (relative to the inner
product g(p)).

Lemma 6.6.13 Given a bundle π : E → X with a fiber metric g and a subbundle
F ⊆ E,

(1) the normal bundle F⊥ ⊆ E is a subbundle;
(2) the composite

F⊥ ⊆ E → E/F

is an isomorphism of bundles over X;
(3) the bundle morphism F ⊕ F⊥ → E induced by the inclusions is an

isomorphism over X;
(4) the bundle E → X has an atlas whose transition functions map to the

orthogonal group.

The lemma also holds in the smooth case.

Proof. Choose a bundle chart (h,U ) such that

h(F |U ) = U × (Rk × {0}) ⊆ U × Rn.

Let v j (p) = h−1(p, e j ) ∈ E p for p ∈ U . Then (v1(p), . . . , vn(p)) is a basis
for E p, whereas (v1(p), . . . , vk(p)) is a basis for Fp. Perform the Gram–Schmidt
process with respect to the metric g(p) to transform these bases to orthogonal bases
(v′1(p), . . . , v

′
n(p)) for E p, (v′1(p), . . . , v

′
k(p)) for Fp and (v′k+1(p), . . . , v

′
n(p)) for

F⊥p .
We define a new bundle chart (h′,U ) by

h′ : E |U → U × Rn,

n∑
i=1

aiv
′
i (p) 
→ (p, (a1, . . . , an))

((h′,U ) is a bundle chart since the metric varies continuously/smoothly with
p; explicitly, the transition function p 
→ h ph′−1 is given by the upper tri-
angular matrix with ones on the diagonal and for k < i the (k, i) entry
is g(p)(vi (p), vk(p))/(g(p)(vi (p), vi (p))), which restricts to an isomorphism
between F⊥|U and U × ({0} × Rn−k). Hence, F⊥ ⊆ E is a subbundle.

For the second claim, observe that dim F⊥p = dim E p/Fp, and so the claim
follows if the map F⊥ ⊆ E → E/F is injective on every fiber, but this is true
since Fp ∩ F⊥p = {0}.

For the third claim, note that the map in question induces a linear map on
every fiber which is an isomorphism, and hence by Lemma 5.3.12 the map is an
isomorphism of bundles.

Lastly, if in the Gram–Schmidt process in the proof we also normalize, we
have shown that we can always choose an atlas such that the charts (h′,U ) are
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orthogonal on every fiber (i.e., g(p)(e, e′) = h′p(e) · h′p(e′)) and all the transi-
tion functions between maps produced in this fashion would map to the orthogonal
group O(n) ⊆ GLn(R). �

Example 6.6.14 In applications the fiber metric is often given by physical con-
siderations. Consider a particle moving on a manifold M defining a smooth curve
γ : R→ M . At each point the velocity of the curve defines a tangent vector, and so
the curve lifts to a curve on the tangent space γ̇ : R→ T M (see Definition 7.1.13
for careful definitions). The dynamics is determined by the energy, and the con-
nection between the metric and the energy is that the norm associated with the
metric g at a given point is twice the kinetic energy T , c.f. Example 3.4.20. The
“generalized” or “conjugate momentum” in mechanics is then nothing but g∗ of
the velocity, living in the cotangent bundle T ∗M which is often referred to as the
“phase space”.

For instance, if M = Rn (with the identity chart) and the mass of the particle
is m, the kinetic energy of a particle moving with velocity v ∈ Tp M at p ∈ M
is 1

2 m|v|2, and so the appropriate metric is m times the usual Euclidean metric
gp(v,w) = m · 〈v,w〉 (and in particular independent of p) and the generalized
momentum is m〈v,−〉 ∈ T ∗p M .

6.7 Orientations1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The space of alternating forms Altk(V ) on a vector space V is defined to be(
�k V

)∗ = Hom(�k V,R) (see Section 6.4.1(8)), or, alternatively, Altk(V ) consists
of the multilinear maps

V × · · · × V → R

in k V -variables which are zero on inputs with repeated coordinates.
In particular, if V = Rk we have the determinant function

det ∈ Altk(Rk)

given by sending v1∧· · ·∧vk to the determinant of the k× k matrix [v1 . . . vk] you
get by considering vi as the i th column.

In fact, det : �kRk → R is an isomorphism.

Exercise 6.7.1 Check that the determinant actually is an alternating form and an isomorphism.

Definition 6.7.2 An orientation on a k-dimensional vector space V is an equiv-
alence class of bases on V , where (v1, . . . , vk) and (w1, . . . , wk) are equivalent if
v1∧· · ·∧vk = λw1∧· · ·∧wk for some λ > 0. The equivalence class, or orientation
class, represented by a basis (v1, . . . , vk) is written [v1, . . . , vk].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 This section is not used anywhere else and may safely be skipped.
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Note 6.7.3 That two bases (v1, . . . , vk) and (w1, . . . , wk) in Rk define the same
orientation class can be formulated by means of the determinant:

det(v1 ∧ · · · ∧ vk)/det(w1 ∧ · · · ∧ wk) > 0.

As a matter of fact, this formula is valid for any k-dimensional vector space V
(choose an isomorphism V ∼= Rk and check that the choice turns out not to matter).

Note 6.7.4 On a vector space V there are exactly two orientations. For
instance, on Rk the two orientations are [e1, . . . , ek] and [−e1, e2, . . . , ek] =
[e2, e1, e3 . . . , ek].

Note 6.7.5 An isomorphism of vector spaces f : V → W sends an orientation
O = [v1, . . . , vk] to the orientation f O = [ f (v1), . . . , f (vk)].

Definition 6.7.6 An oriented vector space is a vector space together with a chosen
orientation. An isomorphism of oriented vector spaces either preserves or reverses
the orientation.

Definition 6.7.7 Let E → X be a vector bundle. An orientation on E → X is a
family O = {Op}p∈X such that Op is an orientation on the fiber E p, and such that
around any point p ∈ X there is a bundle chart (h,U ) such that for all q ∈ U we
have that hqOq = h pOp.

Definition 6.7.8 A vector bundle is orientable if it can be equipped with an
orientation.

Example 6.7.9 A trivial bundle is orientable.

Example 6.7.10 Not all bundles are orientable, for instance, the tautological line
bundle η1 → S1 of Example 5.1.3 is not orientable: start choosing orientations, run
around the circle, and have a problem.

Definition 6.7.11 A smooth manifold M is orientable if the tangent bundle is
orientable. An oriented diffeomorphism is a diffeomorphism f : M → N such that
for all p ∈ M the tangent map Tp f preserves the orientation.

6.8 The Generalized Gauss Map2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The importance of the Grassmann manifolds to bundle theory stems from the fact
that in a certain precise sense the bundles over a given manifold M are classified
by a set of equivalence classes (called homotopy classes) from M into Grassmann
manifolds. This is really cool, but unfortunately beyond the scope of our current

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 This section is not used anywhere else and may safely be skipped.



6.8 The Generalized Gauss Map 147

investigations. We offer a string of exercises as a vague orientation into interesting
stuff we can’t pursue to the depths it deserves.

Exercise 6.8.1 Recall the Grassmann manifold Gr(k,Rn) of all k-dimensional linear subspaces
of Rn defined in Example 2.3.15. Define the tautological k-plane bundle over the
Grassmann manifold

γ k
n → Gr(k,Rn)

by setting

γ k
n = {(E, v) | E ∈ Gr(k,Rn), v ∈ E}.

Note that γ 1
n = ηn → RPn = Gr(1,Rn+1). (Hint: use the charts in Example 2.3.15,

and let

hV : π−1(UV )→ UV × V

send (E, v) to (E, prV v).)

All smooth manifolds can be imbedded in Euclidean space, so the assumption in
the following exercise is not restrictive.

Exercise 6.8.2 Let M ⊆ Rn+k be a smooth n-dimensional submanifold of Euclidean space. Then
we define the generalized Gauss map

T M −−−→ γ n
n+k⏐⏐� ⏐⏐�

M −−−→ Gr(n,Rn+k)

by sending p ∈ M to Tp M ∈ Gr(n,Rn+k) (we consider Tp M as a subspace of Rn+k

under the standard identification TpRn+k = Rn+k) and [γ ] ∈ T M to (Tγ (0)M, [γ ]).
Check that it is a bundle morphism and displays the tangent bundle of M as the
induced bundle of the tautological n-plane bundle under M → Gr(n,Rn+k).

More generally, let E be a rank-n subbundle of the trivial bundle M × Rn+k →
M . Define a map f : M → Gr(n,Rn+k) such that E → M is isomorphic to
f ∗γ n

n+k → M .

So, we get a lot of bundles by pulling back the tautological k-plane bundle over
compact manifolds, but there is some repetition. If f0, f1 : M → Gr(k,Rn) factor
through a map H : M × [0, 1] → Gr(k,Rn) (we say that f0 and f1 are homotopic
and H is a homotopy) the vector bundles f ∗0 γ

k
n and f ∗1 γ

k
n are isomorphic.

The upshot is a classification result: a one-to-one correspondence between iso-
morphism classes of vector bundles over M and homotopy classes of maps from
M to the Grassmannian (we have to let n go to infinity – there are many technical
details to gloss over).
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Many applications lead to situations where you end up with a differential equation
on some manifold. Solving these is no easier than it is in the flat case. However,
the language of tangent bundles can occasionally make it clearer what is going on,
and where the messy formulae actually live.

Furthermore, the existence of solutions to differential equations is essential for
showing that the deformations we intuitively are inclined to perform on mani-
folds actually make sense smoothly. This is reflected in the fact that the flows we
construct are smooth.

Example 7.0.1 In the flat case, we are used to drawing “flow charts”. For example,
given a first-order differential equation[

x ′(t)
y′(t)

]
= f (x(t), y(t))

we associate with each point (x, y) the vector f (x, y). In this fashion a first-order
ordinary differential equation may be identified with a vector field (Figure 7.1).
Each vector would be the velocity vector of a solution to the equation passing
through the point (x, y). If f is smooth, the vectors will depend smoothly on the
point (it is a smooth vector field), and the picture would resemble a flow of a liquid,
where each vector would represent the velocity of the particle at the given point.
The paths of each particle would be solutions of the differential equation, and,
upon assembling all these solutions, we could talk about the flow of the liquid
(Figure 7.2).

7.1 Flows and Velocity Fields
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If we are to talk about differential equations on manifolds, the confusion regarding
where the velocity fields live (as opposed to the solutions) has to be sorted out.
The place of residence of velocity vectors is the tangent bundle, and a differential
equation can be represented by a vector field, that is, a section in the tangent bundle
T M → M , and its solutions by a “flow”.
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Figure 7.1. The vector field resulting from a system of ordinary differential equations (here a
predator–prey system with a stable equilibrium).

Figure 7.2. A solution to the differential equation is a curve whose derivative equals the
corresponding vector field.

Definition 7.1.1 Let M be a smooth manifold. A (global) flow on M is a smooth
map

� : R× M → M

such that for all p ∈ M and s, t ∈ R

● �(0, p) = p,
● �(s,�(t, p)) = �(s + t, p).

We are going to show that on a compact manifold there is a one-to-one correspon-
dence between vector fields and global flows. In other words, first-order ordinary
differential equations have unique solutions on compact manifolds. This statement
is true also for non-compact manifolds, but then we can’t expect the flows to be
defined on all of R × M anymore, and we have to talk about local flows. We will
return to this later, but first we will familiarize ourselves with global flows.



150 Integrability

Our first example is the simplest interesting flow you can think of (one has
to admit that the unique flow on R0 is even simpler, but it isn’t particularly
interesting). It is so important that we give it in the form of a definition.

Definition 7.1.2 Let M = R, let

L : R× R→ R

be the flow given by L(s, t) = s + t .

Example 7.1.3 Consider the map

� : R× R2 → R2

given by (
t,

[
p
q

])

→ e−t/2

[
cos t sin t
−sint cos t

] [
p
q

]
.

Exercise 7.1.4 Check that this actually is a global flow!

For fixed p and q this is the solution to the initial value problem[
x ′
y′

]
=
[−1/2 1
−1 −1/2

] [
x
y

]
,

[
x(0)
y(0)

]
=
[

p
q

]
whose corresponding vector field was used in Figures 7.1 and 7.2 in Example 7.0.1.

A flow is a very structured representation of a vector field.

Definition 7.1.5 Let� be a flow on the smooth manifold M . The velocity field
of � is defined to be the vector field

→
� : M → T M,

where
→
�(p) = [t 
→ �(t, p)].

The surprise is that every (smooth) vector field is the velocity field of a flow (see
Theorems 7.2.1 and 7.3.5).

Example 7.1.6 Consider the global flow of Definition 7.1.2. Its velocity field
→
L : R→ T R

is given by s 
→ [Ls], where Ls is the curve t 
→ Ls(t) = L(s, t) = s + t . Under

the standard trivialization T R ∼= R×R, [ω] 
→ (ω(0), ω′(0)), we see that
→
L is the

nonvanishing vector field corresponding to picking out 1 in every fiber.
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Example 7.1.7 Consider the flow � in Example 7.1.3. Under the standard trivi-

alization T R2 ∼= R2 × R2, [ω] 
→ (ω(0), ω′(0)), the velocity field
→
� : R2 → T R2

corresponds to

R2 → R2 × R2,

[
p
q

]

→
([

p
q

]
,

[−1/2 1
−1 −1/2

] [
p
q

])
.

Definition 7.1.8 Let � be a global flow on a smooth manifold M , and p ∈ M .
The curve

φp : R→ M, φp(t) = �(t, p)

is called the flow line of � through p. The image of the flow line through p is
called the orbit of p (Figure 7.3).

The orbits split the manifold into disjoint sets.

Exercise 7.1.9 Let � : R× M → M be a flow on a smooth manifold M . Then

p ∼ q ⇔ there is a t such that �(t, p) = q

defines an equivalence relation on M . Hence, every point in M lies in a unique
orbit: different orbits do not intersect.

As an example, consider the flow of Example 7.1.3 (here M/∼may be identified
with S1∐{0}).
Example 7.1.10 The flow line through 0 of the flow L of Definition 7.1.2 is the
identity on R. The only orbit is R.

More interesting is that the flow lines of the flow of Example 7.1.3 are of two
types: the constant flow line at the origin, and the spiraling flow lines filling out the
rest of the space.

–0.5

0.5

1

1.5

2

2.5

–4 –3 –2 –1 1

Figure 7.3. The orbit of the point
[ 1

0

]
of the flow of Example 7.1.3.
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Exercise 7.1.11 Given (r, θ) ∈ R2 let � : R×C→ C be the flow�(t, z) = z · r t eitθ . Describe the
flow lines when (r, θ) is (i) (1, 0), (ii) (1, π/2) and (iii) (1/2, 0).

Note 7.1.12 (This contains important notation, and a reinterpretation of the term
“global flow”.) Writing �t(p) = �(t, p) we get another way of expressing a flow.
To begin with we have

● �0 = identity,
● �s+t = �s ◦�t .

We see that for each t the map �t is a diffeomorphism (with inverse �−t ) from M
to M . The assignment t 
→ �t sends sum to composition of diffeomorphisms (i.e.,
s + t 
→ �s+t = �s�t ) and defines a continuous “group homomorphism”

R→ Diff(M),

called the one-parameter family associated with the flow, from the additive group
of real numbers to the group of diffeomorphism (under composition) on M .

We have already used this notation in connection with the flow L of Defini-
tion 7.1.2: Ls(t) = L(s, t) = s + t .

Definition 7.1.13 Let γ : R → M be a smooth curve on the manifold M . The
velocity vector γ̇ (s) ∈ Tγ (s)M of γ at s ∈ R (Figure 7.4) is defined as the tangent
vector

γ̇ (s) = T γ
→
L (s) = [γ Ls] = [t 
→ γ (s + t)].

Note 7.1.14 The curve γ Ls is given by t 
→ γ (s + t) and (Ls)
′(0) = 1. So,

if (x,U ) is a chart with γ (s) ∈ U , we get that γ̇ (s) ∈ Tγ (s)M corresponds
to (xγ Ls)

′(0) = (xγ )′(s) under the isomorphism Tγ (s)M ∼= Rm induced by x ,
explaining the term “velocity vector”.

γ(s)

γ(s)·

Figure 7.4. The velocity vector γ̇ (s) of the curve γ at s lives in Tγ (s)M.
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The following diagram can serve as a reminder of the definition of the velocity
vector and will be used later:

T R
T γ �� T M

��
R

→
L

��
γ̇

����������� γ �� M.

Definition 7.1.15 Let X : M → T M be a vector field. A solution curve is a curve
γ : J → M (where J is an open interval) such that γ̇ (t) = X (γ (t)) for all t ∈ J .

The velocity field and the flow are intimately connected, and the relation can be

expressed in many ways. Here are some. (In this lemma, the equation φ̇p =
→
�φp

expressing that “the flow line is a solution to curve to the velocity field” is the one
to pay closest attention to.)

Lemma 7.1.16 Let � be a global flow on the smooth manifold M, p ∈ M and
s ∈ R. Let φp be the flow line through p and �s : M ∼= M the diffeomorphism
given by φp(s) = �s(p) = �(s, p). Then the diagrams

T M
T�s

∼=
�� T M

M

→
�

��

�s

∼=
�� M

→
�

�� , R
φp ��

∼=Ls
��

M

∼=�s
��

R
φp �� M

and T M

R

φ̇p

����������

φp

�� M

→
�

��

commute. Furthermore,

φ̇p(s) = T�s[φp].

Proof. The claims are variations of the fact that �(s + t, q) = �(s,�(t, q)) =
�(t,�(s, q)). �

Exercise 7.1.17 In this exercise we classify the flow lines of a flow. Let � be a flow on a smooth
manifold M , and p ∈ M . If φp : R→ M is the flow line of � through p, then

● φp is an injective immersion, or
● φp is a periodic immersion (i.e., there is a T > 0 such that φp(s) = φp(t) if

and only if there is an integer k such that s = t + kT ), or
● φp is constant.

Note 7.1.18 In the case in which the flow line φp is a periodic immersion we
note that φp must factor through an imbedding f : S1 → M with f (eit) =
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φp(tT/2π). That f is an imbedding follows by Corollary 4.7.5, since it is an
injective immersion from a compact space.

When φp is an injective immersion there is no reason to believe that it is an
imbedding.

Example 7.1.19 The flow lines in Example 7.1.3 are either constant (the one at
the origin) or injective immersions (all the others). The flow

� : R× R2 → R2,

(
t,

[
x
y

])

→
[

cos t −sint
sin t cos t

] [
x
y

]
has periodic flow lines (except at the origin).

Exercise 7.1.20 Display an injective immersion f : R→ R2 which is not the flow line of a flow.

7.2 Integrability: Compact Case
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A difference between vector fields and flows is that vector fields can obviously
be added, which makes it easy to custom-build vector fields for a particular pur-
pose. That this is true also for flows is far from obvious, but is one of the nice
consequences of the integrability theorem, 7.2.1 below. The theorem allows us
to custom-build flows for particular purposes simply by specifying their velocity
fields.

Going from flows to vector fields is simple: just take the velocity field. Going
the other way is harder, and relies on the fact that first-order ordinary differential
equations have unique solutions. We note that the equation

φ̇p(s) =
→
�(φp(s))

of Lemma 7.1.16 says that “the flow lines are solution curves to the velocity field”.
This is the key to proof of the integrability theorem.

Theorem 7.2.1 (Integrability: Compact Case) Let M be a smooth compact
manifold. Then the velocity field gives a natural bijection between the sets

{global flows on M}� {vector fields on M}.

Before we prove the integrability theorem, recall the basic existence and unique-
ness theorem for ordinary differential equations. For a nice proof giving just
continuity see Chapter 5 of Spivak’s book [20]. For a complete proof, see, e.g.,
Chapter IV of Lang’s book [12].



7.2 Integrability: Compact Case 155

Theorem 7.2.2 Let f : U → Rn be a smooth map where U ⊆ Rn is an open
subset and p ∈ U.

● (Existence of solution) There is a neighborhood p ∈ V ⊆ U of p, a neighbor-
hood J of 0 ∈ R and a smooth map

� : J × V → U

such that

– �(0, q) = q for all q ∈ V , and
– ∂
∂t�(t, q) = f (�(t, q)) for all (t, q) ∈ J × V .

● (Uniqueness of solution) If γ1 and γ2 are smooth curves in U satisfying γ1(0) =
γ2(0) = p and

γ ′i (t) = f (γi (t)), i = 1, 2,

then γ1 = γ2 where they both are defined.

Notice that uniqueness gives that � satisfies the condition �(s + t, q) =
�(s,�(t, q)) for small s and t . In more detail, for sufficiently small, but fixed,
t let γ1(s) = �(s + t, q) and γ2(s) = �(s,�(t, q)). Then γ1(0) = γ2(0) and
γ ′k(s) = f (γk(s)) for k = 1, 2, so γ1 = γ2.

Proof. To prove Theorem 7.2.1 we construct an inverse to the function given by
the velocity field. That is, given a vector field X on M , we will produce a unique

flow � whose velocity field is
→
� = X .

Given a point p ∈ M , choose a chart x = x p : Up → U ′p with p ∈ Up. Let
Hx p : T Up

∼= U ′p×Rn be the standard trivialization Hx p [γ ] = (x pγ (0), (x pγ )
′(0)).

Let γ : J → Up be a curve and consider the diagram

U ′p × Rn T Up

Hx p

∼=
��

U ′p

q 
→(q, f p(q))

��

Up
x p

∼=
��

X |Up

��

J,
γ��

γ̇
����������

where f p : U ′p → Rn is defined as the unique map so that the rectangle commutes,
i.e., f p is the composite

U ′p
x−1

p �� Up

X |Up �� T Up
[γ ]
→(x pγ )

′(0) �� Rn,

and the commutativity of the triangle says exactly that γ is a solution curve for X
on Up (i.e., that γ̇ (t) = X (γ (t))), which we see is equivalent to claiming that

(x pγ )
′(t) = f p(x pγ (t)).
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By the existence and uniqueness theorem for first-order differential equations, The-
orem 7.2.2, there is a neighborhood Jp×V ′p around (0, x p(p)) ∈ R×U ′p for which
there exists a smooth map

� = �p : Jp × V ′p → U ′p

such that �(0, q) = q for all q ∈ V ′p and ∂
∂t�(t, q) = f p(�(t, q)) for all (t, q) ∈

Jp × V ′p. Furthermore, for each q ∈ V ′p the curve �(−, q) : Jp → U ′p is unique
with respect to this property.

The set of open sets of the form Vp = x−1
p V ′p is an open cover of M , and hence

we may choose a finite subcover. Let J be the intersection of the Jps corresponding
to this finite cover. Since it is a finite intersection, J contains an open interval
(−ε, ε) around 0.

What happens to f p when we vary p? Let p′ be another point, q ∈ U = Vp∩Vp′ ,
and consider the commutative diagram (restrictions suppressed)

x pU

r 
→(r, f p(r))

��

U

X
��

x p

∼=
��

x p′
∼=

�� x p′U

r 
→(r, f p′ (r))

��

T (U )
Hx p

∼=��   
   

   
   

  Hx p′
∼= ��!!

!!!
!!!

!!!
!!!

x pU × Rn

(r,v) 
→ (x p′ x−1
p (r),D(x p′ x−1

p )(r)·v)
�� x p′U × Rn.

Hence, we get that f p′x p′x−1
p (r) = D(x p′x−1

p )(r) · f p(r) for r ∈ x pU . So, if we

set P(t, q) = x p′x−1
p �p(t, x px−1

p′ (q)), the flat chain rule Lemma 3.0.3 gives that
∂
∂t P(t, q) = f p′(P(t, q)). Since in addition P(0, q) = q, we get that both P
and �p′ are solutions to the initial value problem (with f p′), and by uniqueness
P = �p′ on the domain of definition. In other words,

x−1
p �p(t, x p(q)) = x−1

p′ �p′(t, x p′(q)), q ∈ U, t ∈ J.

Hence we may define a smooth map

�̃ : J × M → M

by �̃(t, q) = x−1
p �p(t, x pq) if q ∈ x−1

p V ′p. Note that the uniqueness of the solution

also gives that �̃(t, �̃(s, q)) = �̃(s + t, q) for |s|, |t | and |s + t | less than ε. This
also means that we may extend the domain of definition to get a map

� : R× M → M,

since for any t ∈ R there is a natural number k such that |t/k| < ε, and we simply
define �(t, q) as �̃t/k applied k times to q. �

The condition that M was compact was crucial to this proof. A similar statement
is true for non-compact manifolds, and we will return to that statement later.
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Exercise 7.2.3 You are given two flows �N and �S on the sphere S2. Why does there exist a
flow � with �(t, q) = �N(t, q) for small t and q close to the North pole, and
�(t, q) = �S(t, q) for small t and q close to the South pole?

Exercise 7.2.4 Construct a vector field on the torus such that the solution curves are imbedded
circles. Construct a vector field on the torus such that the solution curves are dense
immersions.

Exercise 7.2.5 Let O(n) be the orthogonal group, and recall from Exercise 5.5.20 the isomorphism
between the tangent bundle of O(n) and the projection on the first factor

E = {(g, A) ∈ O(n)× Mn(R) | AT = −gT AgT} → O(n).

Choose a skew matrix A ∈ Mn(R) (i.e., such that AT = −A), and consider the
vector field X : O(n)→ T O(n) induced by

O(n)→ E,

g 
→ (g, g A).

Show that the flow associated with X is given by �(s, g) = ges A, where the
exponential is defined as usual by eB =∑∞n=0 Bn/n!.

7.3 Local Flows and Integrability
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now make the modifications necessary for proving an integrability theorem
also in the non-compact case. On manifolds that are not compact, the concept of
a (global) flow is not the correct one. This can be seen by considering a global
flow � on some manifold M and restricting it to some open submanifold U . Then
some of the flow lines may leave U after finite time. To get a “flow” �U on U we
must then accept that�U is defined only on some open subset of R×U containing
{0} ×U .

Also, if we jump ahead a bit, and believe that flows should correspond to gen-
eral solutions to first-order ordinary differential equations (that is, vector fields),
you may consider the initial value problem y′ = y2, y(0) = y0 on M = R (the
corresponding vector field is R→ T R given by s 
→ [t 
→ s + s2t]).

The solution to y′ = y2, y(0) = y0 is

y(t) =
⎧⎨⎩

1

1/y0 − t
if y0 �= 0

0 if y0 = 0

and the domain (Figure 7.5) of the “flow”

�(t, p) =
⎧⎨⎩

1

1/p − t
if p �= 0

0 if p = 0
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Figure 7.5. The domain A of the “flow”. It contains an open neighborhood around {0} × M .

M

A

R × {p}
ap bp

Figure 7.6. The “horizontal slice” Jp is an open interval (ap, bp) containing zero.

is

A = {(t, p) ∈ R× R | pt < 1}.

Definition 7.3.1 Let M be a smooth manifold. A local flow is a smooth map
� : A→ M, where

A ⊆ R× M

is open and contains {0} × M , such that for each p ∈ M

Jp × {p} = A ∩ (R× {p})
is connected (so that Jp is an open interval (ap, bp) containing 0; Figure 7.6) and
such that for all s, t, p with (t, p), (s + t, p) and (s,�(t, p)) in A

● �(0, p) = p,
● �(s,�(t, p)) = �(s + t, p).



7.3 Local Flows and Integrability 159

Definition 7.3.2 A local flow � : A → M is maximal if there is no local flow
� : B → M such that A � B and �|A = �.

Note 7.3.3 The definitions of the velocity field

→
� : M → T M

(the tangent vector
→
�(p) = [t 
→ �(t, p)] depends only on the values of the curve

in a small neighborhood of 0), the flow line

φp : Jp → M, t 
→ φp(t) = �(t, p)

and the orbit

φp(Jp) ⊆ M

through p ∈ M make just as much sense for a local flow �.
However, we can’t talk about “the diffeomorphism �t ” since there may be p ∈

M such that (t, p) /∈ A, and so �t is not defined on all of M .

Example 7.3.4 Check that the formula

�(t, p) =
⎧⎨⎩

1

1/p − t
if p �= 0

0 if p = 0

defines a local flow with velocity field
→
� : R→ T R given by s 
→ [t 
→ �(t, s)]

(which under the standard trivialization

T R
[ω]
→(ω(0),ω′(0))−−−−−−−−−→ R× R

corresponds to s 
→ (s, s2) – and so
→
�(s) = [t 
→ �(t, s)] = [t 
→ s + s2t]) with

domain

A = {(t, p) ∈ R× R | pt < 1}
and so ap = 1/p for p < 0 and ap = −∞ for p ≥ 0.Note that �t only makes
sense for t = 0.

Theorem 7.3.5 (Integrability) Let M be a smooth manifold. Then the velocity
field gives a natural bijection between the sets

{maximal local flows on M}� {vector fields on M} .



160 Integrability

Proof. The essential idea is the same as in the compact case, but we have to
worry a bit more about the domain of definition of our flow. The local solution
to the ordinary differential equation means that we have unique maximal solution
curves

φp : Jp → M

for all p. This also means that the curves t 
→ φp(s + t) and t 
→ φφp(s)(t) agree
(both are solution curves through φp(s)), and we define

� : A→ M

by setting

A =
⋃
p∈M

Jp × {p}, and �(t, p) = φp(t).

The only questions are whether A is open and � is smooth. But this again follows
from the local existence theorems: around any point in A there is a neighborhood
on which � corresponds to the unique local solution (see pages 82 and 83 of [4]
for more details). �

Note that maximal flows that are not global must leave any given compact subset
within finite time.

Lemma 7.3.6 Let K ⊂ M be a compact subset of a smooth manifold M, and let
� be a maximal local flow on M such that bp < ∞. Then there is an ε > 0 such
that �(t, p) /∈ K for t > bp − ε.

In particular, the maximal local flow associated with a vector field vanishing
outside a compact set is global.

Proof. Since K is compact there is an ε > 0 such that

[−ε, ε] × K ⊆ A ∩ (R× K )

(cover {0} × K by open sets of the form (−δ, δ) × U in the open set A, choose
a finite subcover and let ε be less than the minimum δ). The problem is then that
“you can flow ε more from anywhere in K ”: if there is a T ∈ (bp−ε, bp) such that
�(T, p) ∈ K we could extend � by setting �(t, p) = �(t − T,�(T, p)) for all
t ∈ [T, T + ε], contradicting the maximality of bp (since bp < T + ε). �

Here is a particularly important flow afforded by the integrability theorem.
It will reappear at a crucial point in our discussion of Morse theory and is
generally used whenever you want to deform a submanifold in a controlled
fashion.

Definition 7.3.7 Let M be a Riemannian manifold and let f : M → R be a
smooth function. The gradient flow is the local flow on M associated through
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the integrability theorem, 7.3.5, with the gradient field grad f : M → T M of
Definition 6.6.8.

Example 7.3.8 The function f : R → R given by f (s) = s2 of Example 5.6.3
has gradient grads f = (s, [t 
→ s + s2t]) (the Jacobi matrix is D f (s) = 2s) and
so the gradient flow is the local flow of Exercise 7.3.4.

Note 7.3.9 Some readers may worry about the fact that we do not consider “time-
dependent” differential equations, but, by a simple trick as on page 226 in [20],
these are covered by our present considerations.

Exercise 7.3.10 Find a nonvanishing vector field on R whose solution curves are defined only on
finite intervals.

7.4 Second-Order Differential Equations1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We give a brief and inadequate sketch of second-order differential equations. This
is important for a wide variety of applications, in particular for the theory of
geodesics which will be briefly discussed in Section 8.2.7 after partitions of unity
have been introduced.

For a smooth manifold M let πM : T M → M be the tangent bundle (we just
need a decoration on π to show its dependence on M).

Definition 7.4.1 A second-order differential equation on a smooth manifold
M is a smooth map

ξ : T M → T T M

such that

T T M
TπM

�����
��
��
�� πT M

���
��

��
��

��

T M T M=�� = ��

ξ

��

T M

commutes.

Note 7.4.2 The equality πT Mξ = idT M just says that ξ is a vector field on T M ; it
is the other equality, (TπM)ξ = idT M , which is crucial.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 This section is not referred to later in the book except in the example on the exponential map, Example 8.2.7.
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Exercise 7.4.3 The flat case: the reference sheet (c.f. Exercise 5.5.25). Make sense of the following
remarks and write down your interpretation.

A curve in T M is an equivalence class of “surfaces” in M , for if β : J → T M
then for each t ∈ J we have that β(t) must be an equivalence class of curves,
β(t) = [ω(t)], and we may think of t 
→ {s 
→ ω(t)(s)} as a surface if we let
s and t move simultaneously. In more detail, on choosing a chart we may assume
that our manifold is an open set U in Rn , and then we have the trivialization

T U
[ω]
→(ω(0),ω′(0))−−−−−−−−−→∼=

U × Rn

with inverse (p, v) 
→ [t 
→ p + tv] (the directional derivative at p in the vth
direction) and

T (T U )
[β]
→(β(0),β ′(0))−−−−−−−−−→∼=

T (U )× (Rn × Rn)

(β(0),β ′(0)) 
→((ω(0,0),D2ω(0,0)),(D1ω(0,0),D2 D1ω(0,0)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∼=
(U × Rn)× (Rn × Rn)

with inverse (p, v1, v2, v3) 
→ [t 
→ [s 
→ ω(t)(s)]] with

ω(t)(s) = p + sv1 + tv2 + stv3.

Hence, if γ : J → U is a curve, then γ̇ corresponds to the curve

J
t 
→(γ (t),γ ′(t))−−−−−−−−→ U × Rn;

and if β : J → T U corresponds to t 
→ (x(t), v(t)), then β̇ corresponds to

J
t 
→(x(t),v(t),x ′(t),v′(t))−−−−−−−−−−−−−→ U × Rn × Rn × Rn.

Hence, the two equations πT Mξ = idT M and (TπM)ξ = idT M for a second-order
differential equation ξ : T U → T T U give that ξ corresponds to a map

U × Rn (p,v) 
→(p,v,v, f (p,v))−−−−−−−−−−−−→ U × Rn × Rn × Rn.

This means that γ̈ = ˙̇γ corresponds to

J
t 
→(γ (t),γ ′(t),γ ′(t),γ ′′(t))−−−−−−−−−−−−−−→ U × Rn × Rn × Rn.

Exercise 7.4.4 Show that our definition of a second-order differential equation corresponds to the
usual notion of a second-order differential equation in the case M = Rn .

Definition 7.4.5 Given a second-order differential equation

ξ : T M → T T M,

a curve γ : J → M is called a solution curve for ξ on M if γ̇ is a solution curve to
ξ “on T M”.
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Note 7.4.6 Spelling this out, we have that

γ̈ (t) = ξ(γ̇ (t))
for all t ∈ J . Note the bijection

{solution curves β : J → T M}� {solution curves γ : J → M}, γ̇ ← γ,

β 
→ πMβ.

Exercise 7.4.7 The inclusion Sn ⊆ Rn+1 induces isomorphisms T Sn ∼= E and T T Sn ∼= F , where
E = {(p, v) ∈ Sn × Rn+1 | p · v = 0} and

F = {(p, v1, v2, v3) ∈ Sn × Rn+1 × Rn+1 × Rn+1
∣∣ p·v1=p·v2=
v1·v2+p·v3=0

}
.

Show that the great circle given by

γ (t) = cos(|v|t)p + sin(|v|t)
|v| v

defines a solution curve for the second-order differential equation ξ : T Sn→ T T Sn

induced by

E
(p,v) 
→(p,v,v,−|v|2 p)−−−−−−−−−−−−→ F.

Exercise 7.4.8 Show that the set of second-order differential equations on a smooth manifold M
is a convex subset of the vector space of all vector fields ξ : T M → T T M ; that is,
if s1+ s2 = 1 and ξ1 and ξ2 are second-order differential equations, then s1ξ1+ s2ξ2

is a second-order differential equation.



8 Local Phenomena that Go Global

In this chapter we define partitions of unity. They are smooth devices making it
possible to patch together some types of local information into global information.
They come in the form of “bump functions” such that around any given point there
are only finitely many of them that are nonzero, and such that the sum of their
values is 1.

This can be applied for instance to patch together the nice local structure of a
manifold to an imbedding into a Euclidean space (we do it in the compact case,
see Theorem 8.2.6), to construct sensible metrics on the tangent spaces (so-called
Riemannian metrics, see Section 6.6), and in general to construct smooth func-
tions with desirable properties. We will also use it to prove Ehresmann’s fibration
theorem, 8.5.10.

8.1 Refinements of Covers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to patch local phenomena together, we will be using the fact that manifolds
can be covered by chart domains in a very orderly fashion, by means of what we
will call “good” atlases. This section gives the technical details needed.

If 0 < r let En(r) = {x ∈ Rn | |x | < r} be the open n-dimensional ball of radius
r centered at the origin.

Lemma 8.1.1 Let M be an n-dimensional manifold. Then there is a countable
atlas A such that x(U ) = En(3) for all (x,U ) ∈ A and such that⋃

(x,U )∈A
x−1(En(1)) = M.

If M is smooth, then all charts may be chosen to be smooth.

Proof. Let B be a countable basis for the topology on M . For every p ∈ M there
is a chart (x,U ) with x(p) = 0 and x(U ) = En(3). The fact that B is a basis for
the topology gives that there is a V ∈ B with

p ∈ V ⊆ x−1(En(1)).

For each such V ∈ B choose just one such chart (x,U ) with x(U ) = En(3) and

x−1(0) ∈ V ⊆ x−1(En(1)).
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The set of these charts is the desired countable A. If M were smooth, we would
just insert “smooth” in front of every “chart” in the proof above. �

Lemma 8.1.2 Let M be a manifold. Then there is a sequence A1 ⊆ A2 ⊆ . . . of
compact subsets of M such that for every i ≥ 1 the compact subset Ai is contained
in the interior of Ai+1 and such that

⋃
i Ai = M.

Proof. Let {(xi ,Ui )}i=1,... be the countable atlas of the lemma above, and let

Ak =
k⋃

i=1

x−1
i (En(2− 1/k)). �

Definition 8.1.3 Let U be an open cover of a space X . We say that another cover
V is a refinement of U if every member of V is contained in a member of U .

Definition 8.1.4 Let U be an open cover of a space X . We say that U is locally
finite if each p ∈ X has a neighborhood which intersects only finitely many sets in
U .

Definition 8.1.5 Let M be a manifold and let U be an open cover of M . A good
atlas subordinate to U is a countable atlas A on M such that

(1) the cover {V }(x,V )∈A is a locally finite refinement of U ,
(2) x(V ) = En(3) for each (x, V ) ∈ A, and
(3)

⋃
(x,V )∈A x−1(En(1)) = M .

Theorem 8.1.6 Let M be a manifold and let U be an open cover of M. Then there
exists a good atlas A subordinate to U . If M is smooth, then A may be chosen to
be a subatlas of the smooth structure.

Proof. By Lemma 8.1.2 we may choose a sequence

A1 ⊆ A2 ⊆ A3 ⊆ . . .
of compact subsets of M such that for every i ≥ 1 the compact subset Ai is
contained in the interior of Ai+1 and such that

⋃
i Ai = M . For every point

p ∈ Ai+1 − int(Ai )

choose a Up ∈ U with p ∈ Up and a (smooth) chart (yp,Wp) such that p ∈ Wp ⊆
Up and yp(p) = 0. Since WP and int(Ai+2) − Ai−1 are open there is an εp > 0
such that

En(εp) ⊆ yp((int(Ai+2)− Ai−1) ∩Wp).
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A chart domain
“radius 3”, totally
contained in int(Ai+2)

“radius 1” These cover Ai+1 – int(Ai)

Ai+2
Ai+1

Ai–1
Ai

Figure 8.1. The positioning of the charts.

Let Vp = y−1
p (E

n(εp)) and

x p = 3

εp
yp|Vp : Vp → En(3).

Then {x−1
p (E

n(1))}p covers the compact set Ai+1 − int(Ai ), and we may choose a
finite set of points p1, . . . , pk such that

{x−1
p j
(En(1))} j=1,...,k

still covers Ai+1 − int(Ai ). See Figure 8.1.
Letting A consist of the (x p j , Vp j ) as i and j vary we have proven the theorem.

�

8.2 Partition of Unity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 8.2.1 A family of continuous functions

{φα : X → [0, 1] |α ∈ A}
is called a partition of unity if{
φ−1
α ((0, 1]) |α ∈ A

}
is a locally finite (Definition 8.1.4) open cover of X and

for each p ∈ X the (finite) sum
∑

α φα(p) = 1.

The partition of unity is said to be subordinate to a cover U of X if in addition
for each φα there is a U ∈ U with supp(φα) = φ−1

α ((0, 1]) ⊆ U .
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Given a space that is not too big and complicated (for instance, if it is a compact
manifold), it may not be surprising that we can build a partition of unity on it. What
is more surprising is that on smooth manifolds we can build smooth partitions of
unity (that is, considered as real-valued functions, all the φαs are smooth).

In order to do this we need smooth bump functions. In particular, we will use the
smooth bump function

γ(1,1) : Rn → R

defined in Lemma 3.2.3, which has the properties that

● γ(1,1)(p) = 1 for all p with |p| ≤ 1,
● γ(1,1)(p) ∈ (0, 1) for all p with |p| ∈ (1, 2), and
● γ(1,1)(p) = 0 for all p ∈ Rn with |p| ≥ 2.

Theorem 8.2.2 Let M be a smooth manifold, and let U be a cover of M. Then
there is a smooth partition of unity of M subordinate to U .

Proof. To the good atlas A = {(xi , Vi )} subordinate to U constructed in
Theorem 8.1.6 we may assign functions {ψi } as follows:

ψi (q) =
{
γ(1,1)(xi (q)) for q ∈ Vi = x−1

i (En(3))

0 otherwise.

The function ψi has support x−1
i (En(2)) and is obviously smooth. Since {Vi } is

locally finite, around any point p ∈ M there is an open set such that there are only
finitely many ψi s with nonzero values, and hence the expression

σ(p) =
∑

i

ψi (p)

defines a smooth function M → R with everywhere positive values. The partition
of unity is then defined by φi (p) = ψi (p)/σ (p). �

Exercise 8.2.3 Let M be a smooth manifold, f : M → R a continuous function and ε a positive
real number. Then there is a smooth g : M → R such that for all p ∈ M

| f (p)− g(p)| < ε.

You may use without proof Weierstrass’ theorem, which says the following. Sup-
pose that f : K → R is a continuous function with K ⊆ Rm compact. For
every ε > 0, there exists a polynomial g such that for all x ∈ K we have
| f (x)− g(x)| < ε.

Exercise 8.2.4 Let L → M be a smooth line bundle. Show that L ⊗ L → M is trivial.
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Example 8.2.5 (Imbeddings in Euclidean Space) As an application of bump func-
tions, we will prove an easy version of Whitney’s imbedding theorem. The hard
version states that any manifold may be imbedded in the Euclidean space of the
double dimension. As a matter of fact, with the appropriate topology, the space of
imbeddings M → R2n+1 is dense in the space of all smooth maps M → R2n+1

(see, e.g., Section 2.1.0 of [8], or the more refined version, Section 2.2.13 of [8]).
We will prove only the following theorem.

Theorem 8.2.6 Let M be a compact smooth manifold. Then there is an imbedding
M → RN for some N.

Proof. (After [4]) Assume M has dimension m. Choose a finite good atlas

A = {xi , Vi }i=1,...,r .

Define ψi : M → R and ki : M → Rm by

ψi (p) =
{
γ(1,1)(xi (p)) for p ∈ Vi

0 otherwise,

ki (p) =
{
ψi (p) · xi (p) for p ∈ Vi

0 otherwise.

Consider the map

f : M →
r∏

i=1

Rm ×
r∏

i=1

R,

p 
→ ((k1(p), . . . , kr (p)), (ψ1(p), . . . , ψr (p))).

Using that M is compact, we shall prove that f is an imbedding by showing that it
is an injective immersion (c.f. Corollary 4.7.5).

First, f is an immersion, because for every p ∈ M there is a j such that Tpk j

has rank m.
Secondly, assume f (p) = f (q) for two points p, q ∈ M . Assume p ∈

x−1
j (E

m(1)). Then we must have that q is also in x−1
j (E

m(1)) (since ψ j (p) =
ψ j (q)). But then we have that k j (p) = x j (p) is equal to k j (q) = x j (q), and hence
p = q since x j is a bijection. �

Techniques like this are used to construct imbeddings. However, occasionally
it is important to know when imbeddings are not possible, and then these tech-
niques are of no use. For instance, why can’t we imbed RP2 in R3? Proving
this directly is probably quite hard, and for such problems algebraic topology is
useful.
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Example 8.2.7 (the Exponential Map)1 As an example of the use of partitions of
unity, we end this section with a string of exercises leading to a quick definition of
the exponential map from the tangent space to the manifold.

Exercise 8.2.8 (The Existence of “Geodesics”) The second-order differential equation T Rn →
T T Rn corresponding to the map

Rn × Rn → Rn × Rn × Rn × Rn, (x, v) 
→ (x, v, v, 0)

has solution curves given by the straight line t 
→ x + tv (a straight curve has
zero second derivative). Prove that you may glue together these straight lines by
means of charts and partitions of unity to get a second-order differential equation
(see Definition 7.4.1)

ξ : T M → T T M

with the spray property that for all s ∈ R

T T M
T s−−−→ T T M

sξ

4⏐⏐ ξ

4⏐⏐
T M

s−−−→ T M
commutes, where s : T M → T M is multiplication by s in each fiber. A solution γ
of the second-order differential equation ξ is then called a geodesic with respect to
ξ with initial condition γ̇ (0).

Note 8.2.9 The significance of the spray property in Exercise 8.2.8 is that “you
may speed up (by a factor s) along a geodesic, but the orbit won’t change” (see
Exercise 8.2.10). Second-order differential equations satisfying the spray property
are simply referred to as sprays.

For instance, under the trivializations given in Exercise 8.2.8, that a vector field
on T Rn has the spray property corresponds to saying that the map

Rn × Rn → Rn × Rn × Rn × Rn, (p, v) 
→ (p, v, f1(p, v), f2(p, v))

has the property that, if s ∈ R, then f1(p, sv) = s f1(p, v) and f2(p, sv) =
s2 f2(p, v). The condition that it is a second-order differential equation requires
in addition that f1(p, v) = v.

Exercise 8.2.10 Let ξ be a spray on a smooth manifold M , let γ : (a, b) → M be a geodesic
with respect to ξ and let s be a nonzero real number. Then the curve γs =
γ s : (a/s, b/s)→ M (interpreted properly if s is negative) given by γs(t) = γ (st)
is a geodesic with initial condition sγ̇ (0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Geodesics and the exponential map are important for many applications, but are not used later on, so the rest

of this section may be skipped without disrupting the flow.
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Exercise 8.2.11 (Definition of the Exponential Map) Given a second-order differential equation
ξ : T M → T T M as in Exercise 8.2.8, consider the corresponding local flow
� : A→ T M , define the open neighborhood of the zero section

T = {[ω] ∈ T M | 1 ∈ A ∩ (R× {[ω]})}
and you may define the exponential map

exp : T → M

by sending [ω] ∈ T M to πM�(1, [ω]).
Essentially exp says the following: for a tangent vector [ω] ∈ T M start out in

ω(0) ∈ M in the direction on ω′(0) and travel a unit in time along the correspond-
ing geodesic. This “wraps the tangent space of a point p down to the manifold”,
making it possible to identify small tangent vectors with points near p (just as
[γ ] 
→ p + γ ′(0) gives an identification TpRn ∼= Rn).

The exponential map depends on ξ . Alternatively we could have given a defini-
tion of exp using a choice of a Riemannian metric, which would be more in line
with the usual treatment in differential geometry.

Exercise 8.2.12 Show that the second-order differential equation ξ : T Sn → T T Sn defined in
Exercise 7.4.7 is a spray, i.e., it satisfies the equation T s (sξ) = ξ s as in Exer-
cise 8.2.8. Since we showed in Exercise 7.4.7 that the great circles γ (t) =
cos(|v|t) p + (sin(|v|t)/|v|)v are solution curves we get that the great circles are
geodesics with respect to ξ .

Show that, with respect to this spray, the exponential exp : T Sn → Sn is given
by

exp([ν]) = cos(|ν ′(0)|)ν(0)+ sin(|ν ′(0)|)
|ν ′(0)| ν ′(0).

8.3 Global Properties of Smooth Vector Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Section 6.6 we studied how the presence of a fiber metric on a vector bundle
simplified many problems. Using partitons of unity, we now show that all smooth
vector bundes support fiber metrics, so that these simplifications actually hold in
total generality.

Theorem 8.3.1 Let M be a smooth manifold and let E → M be a smooth bundle.
Then there is a smooth fiber metric on E → M. In particular, any smooth manifold
supports a Riemannian metric.

Proof. Assume the rank of E is n. Let B be the bundle atlas. Choose a good atlas
A = {(xi , Vi )}i∈N subordinate to {U | (h,U ) ∈ B} and a smooth partition of unity
{φi : M → R} with supp(φi ) ⊂ Vi as given by the proof of Theorem 8.2.2.
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Since for any of the Vi s, there is a bundle chart (h,U ) in B such that Vi ⊆ U ,
the bundle restricted to any Vi is trivial. Hence we may choose a fiber metric, i.e.,
a section

σi : Vi → SB(E)|Vi

such that σi is (bilinear, symmetric and) positive definite on every fiber. For
instance we may let σi (p) ∈ SB(E p) be the positive definite symmetric bilinear
map

E p × E p
h p×h p−−−→ Rn × Rn (v,w) 
→v·w=vTw−−−−−−−−−→ R.

Let gi : M → SB(E) be defined by

gi (p) =
{
φi (p)σi (p) if p ∈ Vi

0 otherwise,

and let g : M → SB(E) be given as the sum g(p) = ∑
i gi (p). The property

“positive definite” is convex, i.e., if σ1 and σ2 are two positive definite forms on
a vector space and t ∈ [0, 1], then tσ1 + (1 − t)σ2 is also positive definite (since
tσ1(v, v)+ (1− t)σ2(v, v)must obviously be non-negative, and can be zero only if
σ1(v, v) = σ2(v, v) = 0). By induction we get that g(p) is positive definite since
all the σi (p)s were positive definite (Figure 8.2). �

On combining Theorem 8.3.1 with point 4 of Lemma 6.6.13 we get the following
convenient corollary.

Corollary 8.3.2 Every smooth vector bundle possesses an atlas whose transition
functions map to the orthogonal group.

Note 8.3.3 This is an example of the notion of reduction of the structure group,
in this case from GLn(R) to O(n); the corollary says that this is always possible.

Usually a reduction of the structure group tells us something important about
the bundle. In particular, a reduction of the structure group for the tangent bundle
provides important information about the manifold.

tσ1+ (1 – t)σ2

SB(Ep)

σ1

σ2

Figure 8.2. In the space of symmetric bilinear forms, all the points on the straight line between
two positive definite forms are positive definite.
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The bundle is orientable, see Section 6.7, if it is possible to choose an atlas
whose transition functions map to the special linear group SLn(R). If we can reduce
to the subgroup consisting of only the identity matrix, then the bundle is trivial. If
n = 2m, then GLm(C) ⊆ GLn(R), and a reduction to GLm(C) is called a complex
structure on the bundle.

Here is an example of the unreasonable power of the existence of fiber met-
rics, making the theory of smooth vector bundles much easier than some of its
neighboring fields.

Proposition 8.3.4 Surjective morphisms of smooth bundles split, i.e., if

E

���
��

��
��

f �� F

����
��
��
�

M

is a surjective smooth bundle morphism, then there is a bundle morphism s : F →
E over M such that f s = idF .

Proof. Assume E has rank n and F has rank k. By the surjectivity assumption f
has constant rank k and Corollary 6.1.10 gives that K = ker{ f } ⊆ E is a subbundle
of rank n − k. Since F and E/K have equal rank, the surjective bundle morphism
E/K → F defined by v̄ 
→ f (v) is an isomorphism. Choosing a fiber metric, we
get from Lemma 6.6.13 that K⊥ ⊆ E → E/K is an isomorphism. Let s be the
resulting composite

F E/K
∼=�� K⊥ ⊆ E .

∼=��

By construction the composite f s : F → F is the identity. �

As further evidence of the simplifications made possible by the combination
of Theorem 8.3.1 and Lemma 6.6.13 we offer the following string of exercises,
culminating in the tantalizing isomorphism T RPn ⊕ ε ∼= ηn ⊕ · · · ⊕ ηn .

Recall from Definition 6.5.1 that, if N ⊆ M is a smooth submanifold, the normal
bundle ⊥N → N is defined as the quotient bundle (T M |N )/T N → N , which –
subject to a choice of Riemannian metric – is isomorphic to (T N )⊥ → N .

Exercise 8.3.5 Let M ⊆ Rn be a smooth submanifold. Prove that ⊥M ⊕ T M → M is trivial.

Exercise 8.3.6 Consider Sn as a smooth submanifold of Rn+1 in the usual way. Prove that the
normal bundle is trivial.



8.4 An Introduction to Morse Theory 173

Exercise 8.3.7 The tautological line bundle ηn → RPn is a subbundle of the trivial bundle
pr : RPn × Rn+1 → RPn:

ηn = {(L , v) ∈ RPn × Rn+1 | v ∈ L} ⊆ RPn × Rn+1 = ε.
Let

η⊥n = {{(L , v) ∈ RPn × Rn+1 | v ∈ L⊥} ⊆ RPn × Rn+1 = ε
be the orthogonal complement.

Prove that the Hom-bundle Hom(ηn, η
⊥
n ) → RPn is isomorphic to the tangent

bundle T RPn → RPn .

Exercise 8.3.8 Let ε = RPn×R→ RPn be the product line bundle. Prove that there is an isomor-
phism of bundles between T RPn ⊕ ε and the (n + 1)-fold sum of the tautological
line bundle ηn → RPn with itself:

T RPn ⊕ ε ∼= ηn ⊕ · · · ⊕ ηn.

Prove that “4η3” and “4η2” are trivial.

Exercise 8.3.9 Do this exercise only if you know about rings and modules. If E → M is a
smooth vector bundle, let �(E) be the vector space of smooth sections. Give �(E)
a C∞(M)-module structure. Assume that E → M is a subbundle of a trivial bundle.
Prove that �(E) is a projective C∞(M)-module.

Also, give the set of smooth bundle morphisms between two vector bundles over
M a C∞(M)-module structure such that the one-to-one correspondence between
bundle morphisms and sections in the Hom-bundle of Exercise 6.4.4 becomes a
C∞(M)-isomorphism.

8.4 An Introduction to Morse Theory
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morse theory (named after its inventor Marston Morse, 1892–1977)2 essentially
states that the critical points of any sufficiently nice smooth function f : M →
R contain all the information necessary to build the manifold M . Hence it is an
eminent example of how local information (critical points) occasionally can be
gathered to give a global picture.

This is important both for practical and for theoretical reasons. As we shall see
in Theorem 8.4.16, smooth functions are sometimes able to tell when a manifold is
homeomorphic to a sphere, which was how Milnor could know that what turned out
to be an exotic sphere actually was homeomorphic to a sphere. In applied topology,
ideas from Morse theory are used to recognize the shape of complex data. The list
showing the usefulness of Morse theory could go on, spanning from quantum field
theory to Lie groups.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 https://en.wikipedia.org/wiki/Marston_Morse
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Raoul Bott (1923–2005)3 used Morse theory to show the periodicity theorem.
Periodicity implies, among other things, the amazing fact that (modulo stably
trivial bundles) vector bundles over Sn depend only on n modulo 8 – so our clas-
sification of vector bundles over the circle in Exercise 5.3.15 is relevant to S9, S17

. . . as well!
Proving periodicity is beyond our scope, but the reader may enjoy consulting,

e.g., Milnor’s book [14] for this and much else relating to Morse theory. Most of
the material we will cover requires no heavy machinery, but a crucial point (Propo-
sition 8.4.14) uses both the existence of Riemannian metrics and the integrability
theorem.

Example 8.4.1 Imagine you are a fish near the shore, but can only see things
under water. A standing torus is placed on the beach and the tide is coming in.
Initially you see only the base of the torus. Shortly it grows into a bowl with the
surface of the water touching the rim in a nice circle, and perhaps you imagine that
this is the base of a sphere (both tori and spheres are fairly commonplace at the
beach).

This remains the state of affairs for a while, but all of a sudden something dra-
matic happens: the water reaches the hole in the torus and the surface of the water
touches the torus in something that looks like a figure eight.

This is the only dramatic event for a while: for some time the surface of the water
touches the torus in two disjoint circles – like in the top picture in Figure 8.3.

Two more noteworthy incidents occur: when the two circles come together and
finally when the top is capped off at the moment the torus gets fully submerged –
a situation between these two events is pictured at the bottom in Figure 8.3.

Figure 8.3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 https://en.wikipedia.org/wiki/Raoul_Bott
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Figure 8.4.

The fish (and homotopy theorists) would say that the torus can be described by
the following procedure (Figure 8.4).

1. Start with a point (which grows into a disk).
2. Attach a handle to get a basket.
3. Attach a new handle on top of the old one so that the rim is again a circle.
4. Attach a disk to this circle.

The point is that all this information on how to assemble a torus by “attaching
handles” is hidden in a single function given by the height; and the places where
anything interesting happens are exactly the critical points of this function.

This way of viewing a torus isn’t actually all that fishy. Consider the usual flat
representation of the torus obtained from identifying opposite edges of a square.
Start with a small disk D around the common corner point. Fatten up the two edges
to ribbons A and B which we attach to the small disk. Finally, attach a disk S to
fill the square. See Figures 8.5 and 8.6.

Note 8.4.2 How to attach handles is determined by something called the “index”
of the critical point, which is calculated concretely in terms of second derivatives.
For functions f : R→ R this is well known from high school. The critical points
are the points p where f ′(p) = 0. If f ′′(p) > 0 (resp. f ′′(p) < 0) then p is a
local minimum (resp. maximum) of the graph. One dimension up, it gets only a
little more complicated. If f : R2 → R the critical points are the points p where
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Figure 8.6. A view of D, A and B with identifications performed – do you recognize the basket
with two handles?

the Jacobian vanishes D f (p) = 0. The nature of the critical point is given by the
Hessian matrix [

D1 D1 f (p) D1 D2 f (p)
D2 D1 f (p) D2 D2 f (p)

]
.

If it has two negative (resp. positive) eigenvalues p is a local minimum (resp. max-
imum) and if it has one positive and one negative eigenvalue it is a saddle
point.

From the point of view of f being the height function of its graph, a minimum
is like starting with a disk and a maximum is like capping off with one. A saddle
point is building a handle.

Note 8.4.3 A critical point of a smooth map f : M → R is a point p ∈ M where
the differential dp f ∈ T ∗p M is zero, which is the same as saying that the Jacobian
(in some chart) is zero. This agrees with Definition 4.1.8, where a critical point was
said to be a point p ∈ M such that Tp f : Tp M → T f (p)R ∼= R has rank zero (c.f.
also Exercise 4.1.12).
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Definition 8.4.4 We say that a critical point p ∈ M of a smooth map f : M → R
is non-degenerate if d f and the zero section are transverse at p. We say that f is a
Morse function if d f is transverse to the zero section, i.e., if all critical points are
non-degenerate.

Lemma 8.4.5 The critical points of a Morse function are isolated.

Proof. We can assume that M = Rn . Then the Morse condition states that the
composite

Rn → T ∗Rn ∼= Rn × Rn, p 
→ (p, [D f (p)]T)
is transverse to Rn×{0}, i.e., we have that [D f (q)]T = 0 implies that the Jacobian
of p 
→ [D f (p)]T at q is nonzero. The inverse function theorem, 4.2.1, applied
to p 
→ [D f (p)]T then implies that there is a neighborhood around q such that
p 
→ [D f (p)]T is a diffeomorphism, so that q is the only critical point in this
neighborhood. �

We noticed in the proof that (in some chart) the “Jacobian of the Jacobian” played
a rôle. This symmetric matrix of all second partial derivatives is important enough
to have its own name: the Hessian matrix.

Definition 8.4.6 Let f : M → R be smooth with critical point p. The Hessian
matrix of f at p with respect to a chart (x,U ) around p is the matrix

D(D( f x−1))(x(p)).

The index of f at p is the sum of the dimensions of the eigenspaces of the Hessian
with negative eigenvalues.

Again, the rank and index of the Hessian are independent of the choice of chart
(check this!)

As in the proof of Lemma 8.4.5, the transversality of d f and the zero section at
p is equivalent to the Hessian matrix being invertible, giving the following lemma.

Lemma 8.4.7 A critical point p of a smooth function f : M → R is non-
degenerate if and only if (in some chart) the Hessian matrix has maximal
rank.

Example 8.4.8 Consider the critical point 0 of the function f : R → R, f (t) =
t3. The Jacobian (in the identity chart) is f ′(t) = 3t2 and the Hessian is f ′′(t) = 6t .
Since f ′′(0) = 0 the critical point is not non-degenerate (aka degenerate).

Note that adding an arbitrarily small quadratic term (dampened by an appro-
priate bump function) will change f into a Morse function. This is an example
of a general phenomenon: up to an arbitrarily small correction term, any smooth
function is a Morse function.
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Exercise 8.4.9 Continuing the robot example, show that the length f : S1 × S1 → R1,
f (eiθ , eiφ) = √11− 6 cos θ − 6 cosφ + 2 cos(θ − φ) of the telescopic arm is a
Morse function and calculate the index at each critical point.

Exercise 8.4.10 Let a ∈ R and consider the smooth function f : R→ R, f (t) = t4−at2. For what
a is f Morse?

We have the following extension of the rank theorem to non-degenerate critical
points. If p is critical the linear part of f near p is of course zero, but the quadratic
part takes a very special form.

Lemma 8.4.11 (The Morse Lemma) Let p be a non-degenerate critical point of
index k of the smooth map f : M → R. Then there is a chart (x,U ) around p such
that for t = (t1, . . . , tn) ∈ x(U ) we have that

f x−1(t) = −
k∑

i=1

t2
i +

n∑
i=k+1

t2
i .

Proof. On choosing an arbitrary chart we are reduced to the case where (M, p) =
(Rn, 0). Now, recall that Lemma 3.4.8 showed that

f (t) =
n∑

i=1

ti fi (t),

where fi (0) = Di f (0) = 0. Applying Lemma 3.4.8 to each of the fi we get that

f (t) =
∑
i, j

ti t j fi j (t) =
∑
i, j

ti t j hi j (t), where hi j (t) = fi j (t)+ f ji (t)

2
.

Now, hi j (t) is symmetric, so we can orthogonally diagonalize it, the only possi-
ble problem being that this must be done smoothly with respect to t . Furthermore,
on taking all the second partial differentials we see that the matrix [hi j (0)] actu-
ally is the Hessian of f at 0, and hence it is non-degenerate. Consequently, in a
neighborhood of 0 the eigenvalues will all be different from zero. By a change of
coordinates, we may assume h11(t) �= 0 in a neighborhood.

Let x(t)=(x1(t), . . . , xn(t))where x1(t)=√|h11(t)|
(
t1+∑n

i=2(hi1(t)/h11(t))ti
)

and x j (t) = t j for j > 1. Since the Jacobian Dx(0) is invertible (det Dx(0) =√|h11(0)|) there is a neighborhood of 0 where x defines a smooth chart. Upon
inserting

t1 = x1(t)√|h11(t)| −
n∑

j=2

hi1(t)

h11(t)
ti
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into our expression for f we get that

f x−1(s) = h11x−1(s)

|h11x−1(s)|s
2
1 +

∑
i, j>1

si s j h̃i j (s)

with [h̃i j (s)] symmetric and [h̃i j (0)] invertible. By iterating this process n times
we obtain a sum of squares with coefficients ±1. The index of a symmetric matrix
is not changed upon orthogonal diagonalization, so by rearranging the summands
we get the desired form. �

Note 8.4.12 Morse functions are everywhere: given any smooth f : M → R and
ε > 0 there is a Morse function g such that for all p ∈ M | f (p)− g(p)| < ε (see,
e.g., Section IV3.4 of [11]).

Let M be a compact manifold, f : M → R a smooth function and a a regular
value. Then f −1(a) ⊆ M is a smooth submanifold of codimension 1 (or empty),
f −1((−∞, a)) ⊆ M is an open submanifold and

Ma = f −1((−∞, a])
is a manifold with boundary f −1(a). We will state most results in terms of Ma , but
if you are uncomfortable with manifolds with boundary, much can be gained by
looking at f −1((−∞, a)) instead.

Exercise 8.4.13 Check that, when a is regular, Ma = f −1((−∞, a]) is indeed a manifold with
boundary.

The following proposition gives substance to the notion that “nothing happens
between critical points”. The compactness condition is not important, it just allows
us to refer to the compact case of the integrability theorem, 7.2.1, in order to avoid
giving a separate argument proving that a certain flow is global.

Proposition 8.4.14 Let M be a compact manifold, f : M → R a smooth func-
tion and a < b ∈ R. Suppose f has no critical values in [a, b]. Then Ma is
diffeomorphic to Mb.

Proof. Let σ : M → R be a bump function with f −1([a, b]) ⊆ σ−1(1) and such
that the support of σ contains no critical points. Choose a Riemannian metric g
on M . Recall that the gradient grad f : M → T M is defined in Definition 6.6.8
through the equation d f = g(grad f,−). Let X : M → T M be the vector field
defined by

X (p) =
⎧⎨⎩

σ(p)

g(gradp f, gradp f )
gradp f p ∈ supp(σ )

0 otherwise.
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Let� be the global flow corresponding to X provided by the integrability theorem,
7.2.1. The associated diffeomorphism �b−a : M ∼= M of Note 7.1.12 will take Ma

diffeomorphically onto its image, and our task is then to show that this image is
precisely Mb.

Let φp be the flow line through p ∈ M . Observe that

( f φp)
′(0) = d f ([φp]) = d f (X (p))

= g(gradp f, X (p))

= σ(p).
Hence, if �(s, p) ∈ σ−1(1) for s between 0 and t we have that

f�(t, p) = t + f (p),

with slower movement when we stray outside σ−1(1) (even constant outside
supp σ ).

Consequently, if p ∈ Ma , then f (�b−a(p)) ≤ b − a + f (p) ≤ b − a + a = b
and if p ∈ Mb, then p = �b−a(�a−b(p) and f (�a−b(p)) ≤ a. See Figure 8.7.

�

Note 8.4.15 The proof of Proposition 8.4.14 actually provides us with what is
called a deformation retraction of Ma in Mb (which is stronger than saying that
the inclusion Ma ⊆ Mb is a “homotopy equivalence”). Roughly it says that we can

Φ(b – a, q)

Φ(a – b, p)
q

p

f –1(b)

f –1(a)

b

a

Figure 8.7.
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deform Ma to gradually get Mb. More precisely we have the following. In addition
to the inclusion Ma ⊆ Mb we have a (continuous) “homotopy”

H : [0, 1] × Mb → Mb

defined by

H(t, q) =
{

q if f (q) ≤ a

�t (a− f (q))(q) if a ≤ f (q) ≤ b,

which has the property that for q ∈ Mb we have H(0, q) = q and H(1, q) ∈ Ma ,
whereas for q ∈ Ma and any t ∈ [0, 1] we have H(t, q) = q.

Here is a striking consequence, originally due to Georges Reeb (1920–1993)4,
which allows us to recognize a sphere when we see one – at least up to homeomor-
phism. This is exactly what made it possible for Milnor to show that the smooth
manifolds he constructed (diffeomorphic to the Brieskorn manifolds discussed in
Note 4.5.8) were homeomorphic to the 7-sphere.

Theorem 8.4.16 (Reeb) A compact manifold supporting a Morse function with
exactly two critical points is homeomorphic to a sphere.

Proof. Let f : M → R be such a Morse function. The critical points must nec-
essarily be the maximum and the minimum, for simplicity say min f = 0 and
max f = 1. By the Morse lemma, 8.4.11, there is an ε > 0 such that both Mε and
f −1[1− ε, 1] are diffeomorphic to disks. Since there are no critical values between
0 and 1, Mε is diffeomorphic to M1−ε .

Hence, M is obtained by taking two spaces M1−ε and f −1[1 − ε, 1] – both
of which are diffeomorphic to disks – and gluing them together along their com-
mon boundary – which is diffeomorphic to a sphere in two ways. Such a thing
must necessarily be homeomorphic to a sphere, a fact which can be seen as
follows.

Given a continuous h : Sn−1 → Sn−1, we extend it to a continuous Ch : Dn →
Dn by Ch(p) = |p|h(p/|p|) if p �= 0 and Ch(0) = 0. If h is a homeomorphism,
then so is Ch . Now, consider the situation where a space X is the union of X1 and
X2 and we have homeomorphisms gi : Dn → Xi that restrict to homeomorphisms
hi : Sn−1 → X1 ∩ X2. Define the homeomorphism Sn → X via g1 on the Northern
Hemisphere and g2Ch−1

2 h1
on the Southern Hemisphere.

�

Note 8.4.17 The extension idea used in the proof of Theorem 8.4.16 doesn’t work
in the smooth setting. For instance, if h : S1 → S1 is given by h(z) = z2, then the
proposed Ch : D2 → D2 is not smooth at the origin (h is not a diffeomorphism,
but illustrates the problem).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 https://en.wikipedia.org/wiki/Georges_Reeb
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Note 8.4.18 Morse theory goes on from here to describe how manifolds may be
obtained by “attaching handles”. Unfortunately this will take us a bit too far afield
from our main focus, so we will content ourselves with stating the first main result.
The reader is encouraged to refer to Milnor [14] or Section VII of Kosinski [11].

Definition 8.4.19 Let φ : Sn → X be continuous. Let X
∐
φ Dn+1 be the quotient

space X
∐

Dn+1/∼ under the equivalence relation that is p ∈ Sn , then φ(p) ∈ X
is equivalent to p ∈ Dn+1. We say that X

∐
φ Dn+1 is obtained from X by attaching

an (n + 1)-cell.

Example 8.4.20 Consider the usual flat representation of the torus obtained from
identifying opposite edges of a square. The common corner is a 0-cell. The two
edges are two 1-cells attached to the point. Finally, we attach a 2-cell to fill the
square.

Theorem 8.4.21 Let M be compact and let f : M → R be a Morse function.
Assume f −1[a, b] contains a single critical point p with c = f (p) ∈ (a, b) and
let λ be the index of f at p. Then Mb is obtained from Ma by attaching a λ-cell.

Example 8.4.22 This is exactly what happened to our fish on the beach in Sec-
tion 8.4, observing a torus gradually submerged as the tide came in. The height
function underwent critical points of index 0, 1, 1 and 2 corresponding to the
attaching of cells eventually resulting in the full torus.

Returning to the robot example, the length of the telescopic arm gave another
Morse function with four critical points with indices – according to Exercise 8.4.9 –
0, 1, 1 and 2.

It should be noted that the cell decomposition is very sensitive to deformations
of the Morse function.

8.5 Ehresmann’s Fibration Theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have studied quite intensively the consequences of a map f : M → N
being an immersion. In fact, by adding the point set topological property that
M → f (M) is a homeomorphism we got in Theorem 4.7.4 that f was an
imbedding.

We are now ready to discuss submersions (i.e., smooth maps for which all points
are regular). It turns out that by adding a point set property we get that submersions
are also rather special: they look like vector bundles, except that the fibers are not
vector spaces, but manifolds!
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Definition 8.5.1 Let f : E → M be a smooth map. We say that f is a locally
trivial fibration if for each p ∈ M there is an open neighborhood U around p and
a diffeomorphism h : f −1(U )→ U × f −1(p) such that

f −1(U ) h ��

f | f−1(U ) ���
��

��
��

��
U × f −1(p)

prU
�����

��
��
��
�

U

commutes.

Example 8.5.2 The projection of the torus down to a circle, which is illustrated
in Figure 8.8, is kind of misleading since the torus is globally a product. However,
due to the scarcity of compact two-dimensional manifolds, the torus is the only
example of a total space of a locally trivial fibration with non-discrete fibers that
can be imbedded in R3.

However, there are nontrivial examples we can envision: for instance, the
projection of the Klein bottle onto its “central circle” (see Figure 8.9).

E

M

U

f–1(U) ≅ U × f–1(p)

Figure 8.8. Over a small U∈M a locally trivial fibration looks like the projection U×f−1(p)→U

a a

b

b

central circle

Figure 8.9. The projection from the Klein bottle onto its “central circle” is a locally trivial
fibration.
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Figure 8.10. In the immersed picture of the Klein bottle, the “base space runs around the hole
you see through”. The fibers near the top are horizontal.

If we allow discrete fibers there are many examples small enough to be pictured.
For instance, the squaring operation z 
→ z2 in complex numbers gives a locally
trivial fibration S1 → S1: the fiber of any point z ∈ S1 is the set consisting of the
two complex square roots of z (it is what is called a double cover). However, the
fibration is not trivial (since S1 is not homeomorphic to S1∐ S1)!

The last example is of a kind one encounters frequently: if E → M is a vector
bundle endowed with some fiber metric, one can form the so-called sphere bundle
S(E)→ M by letting S(E) = {v ∈ E | |v| = 1}.

The double cover of S1 above is exactly the sphere bundle associated with the
infinite Möbius band, i.e., the line bundle with total space [0, 1] × R/(0, t) ∼
(1,−t). Similarly, the Klein bottle (Figure 8.10) is the sphere bundle associ-
ated with the vector bundle over S1 with total space [0, 1] × R2/(0, (t1, t2)) ∼
(1, (−t1, t2)).

Recall from Exercise 5.2.5 that, up to isomorphism, there are exactly two vector
bundles of a given rank r over S1, and likewise there are exactly two r -sphere
bundles over S1: the trivial and the “generalized Klein bottle”.

Exercise 8.5.3 Let E → M be a vector bundle. Show that E → M has a nonvanishing vector
field if and only if the associated sphere bundle (with respect to some fiber metric)
S(E)→ M has a section.

Exercise 8.5.4 Prove that a smooth vector bundle with trivial sphere bundle is trivial. More pre-
cisely, if π : E → M is a smooth vector bundle of rank n such that the sphere
bundle S(π) : S(E)→ M with respect to some fiber metric is trivial (in the sense

that there is a diffeomorphism f : S(E)
∼=→ M × Sn−1 with S(π) = prM f ), then

π : E → M is trivial.

Exercise 8.5.5 In a locally trivial (smooth) fibration over a connected smooth manifold all fibers
are diffeomorphic.
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The point set condition ensuring that submersions are locally trivial fibrations is
the following.

Definition 8.5.6 A map f : X → Y is proper if the inverse images of compact
subsets are compact.

Exercise 8.5.7 Prove that a locally trivial fibration with compact fibers is proper.

Exercise 8.5.8 Consider maps (and, as always, a “map” is continuous) f : X → Y and g : Y → Z
of Hausdorff spaces. If f and g are proper then g f is proper. If g f is proper, then
f is proper.

Exercise 8.5.9 The composite of two submersions is a submersion. If a composite g f is a
submersion, then g is a submersion.

Theorem 8.5.10 (Ehresmann’s Fibration Theorem) Let f : E → M be a
proper submersion. Then f is a locally trivial fibration.

Proof. Since the question is local in M , we may start out by assuming that M =
Rn . The theorem then follows from Lemma 8.5.12 below. �

Note 8.5.11 Before we start with the proof, it is interesting to see what the ideas
are.

By the rank theorem a submersion looks locally (in E and M) like a projection
(Figure 8.11)

Rn+k → Rn × {0} ∼= Rn

and so locally all submersions are trivial fibrations. We will use flows to glue all
these pieces together using partitions of unity (Figure 8.12).

The clue is then that a point (t, q) ∈ Rn × f −1(p) should correspond to what
you get if you flow away from q , first a time t1 in the first coordinate direction, then
a time t2 in the second and so on.

Rn

Rk

Figure 8.11. Locally a submersion looks like the projection from Rn+k down onto Rn.
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The “fiber direction”

q

Figure 8.12. The idea of the proof: make “flow” that flows transverse to the fibers: this is locally
OK, but can we glue these pictures together?

Lemma 8.5.12 Let f : E → Rn be a proper submersion. Then there is a
diffeomorphism h : E → Rn × f −1(0) such that

E h ��

f

���
��

��
��

� Rn × f −1(0)

prRn
�����

���
���

��

Rn

commutes.

Proof. If E is empty, the lemma holds vacuously since then f −1(0) = ∅, and
∅ = Rn × ∅. Disregarding this rather uninteresting case, let p0 ∈ E and r0 =
f (p0) ∈ Rn . The third part of the rank theorem, 4.3.3, guarantees that for all
p ∈ f −1(r0) there are charts x p : Up → U ′p such that

Up

f |Up−−−→ Rn

x p

⏐⏐� ∥∥∥
U ′p ⊆ Rn+k pr−−−→ Rn

commutes (the map pr : Rn+k → Rn is the projection onto the first n coordinates).
Recall the “i th partial derivative”

Di : Rm → T Rm, Di (r) = [t 
→ r + ei t],
where ei ∈ Rm is the i th unit vector. Choose a partition of unity (see Theo-
rem 8.2.2) {φ j } subordinate to {Up}. For every j choose a p such that supp(φ j ) ⊆
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Up, and let x j = x p. For i = 1, . . . , n we define the vector field (a “global i th
partial derivative”)

Xi : E → T E, Xi (q) =
∑

j

φ j (q) · T (x−1
j )Di (x j (q))

=
∑

j

φ j (q) · [t 
→ x−1
j (x j (q)+ ei t)].

We claim that

T E
T f−−−→ T Rn

Xi

4⏐⏐ Di

4⏐⏐
E

f−−−→ Rn

commutes for all i = 1, . . . , n. Indeed, using that i ≤ n and that f |U j = pr x j we
get that

T (pr)Di (x j (u)) = Di (pr x j (u)) = Di ( f (u))

for all u ∈ U j , and so

T f Xi (q) =
∑

j

φ j (q) · T ( f x−1
j )Di (x j (q))

=
∑

j

φ j (q) · T (pr)Di (x j (q))

=
∑

j

φ j (q) · Di ( f (q))

= Di ( f (q)).

Fix the index i for a while. Notice that the curve β : R → Rn given by β(t) =
u + tei is the unique solution to the initial value problem β ′(t) = ei , β(0) = u
(see Theorem 7.2.2), or, in terms of the velocity vector β̇ : R → T Rn given by
β̇(t) = [s 
→ β(s + t)] of Definition 7.1.13, β is unique with respect to the fact
that β̇ = Diβ and β(0) = u.

Let �i : Ai → E be the local flow corresponding to Xi , and let Jq be the slice
of Ai at q ∈ E (i.e., Ai ∩ (R× {q}) = Jq × {q}).

Fix q (and i), and consider the flow line α(t) = �i (t, q). Since flow lines are
solution curves, the triangle in

T E
T f �� T Rn

Jq

α̇

����������
α �� E

f ��

Xi

��

Rn

Di

��
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commutes, and since T f (α̇) = ˙( f α) and ( f α)(0) = f (q) we get by uniqueness
that

f�i (t, q) = f α(t) = f (q)+ tei .

We want to show that Ai = R×E . Since f�i (t, q) = f (q)+ei t we see that the
image of a bounded open interval under f�i (−, q)must be contained in a compact
set, say K . Hence the image of the bounded open interval under �i (−, q) must be
contained in f −1(K ), which is compact since f is proper. But, if Jq �= R, then
Lemma 7.3.6 tells us that �i (−, q) will leave any given compact set in finite time,
leading to a contradiction.

Hence all the �i defined above are global and we define the diffeomorphism

φ : Rn × f −1(r0)→ E

by

φ(t, q) = �1(t1,�2(t2, . . . , �n(tn, q) . . . )), t = (t1, . . . , tn) ∈ Rn, q ∈ f −1(r0).

The inverse is given by

E → Rn × f −1(r0),

q 
→ ( f (q)− r0,�n((r0)n − fn(q), . . . , �1((r0)1 − f1(q), q) . . . )).

Finally, we note that we have also proven that f is surjective, and so we are
free in our choice of r0 ∈ Rn . Choosing r0 = 0 gives the formulation stated in the
lemma. �

Corollary 8.5.13 (Ehresmann’s Fibration Theorem, Compact Case) Let f : E →
M be a submersion of compact smooth manifolds. Then f is a locally trivial
fibration.

Proof. We need only notice that E being compact forces f to be proper: if K ⊂
M is compact, it is closed (since M is Hausdorff), and f −1(K ) ⊆ E is closed
(since f is continuous). But a closed subset of a compact space is compact.

�

Exercise 8.5.14 Check in all detail that the proposed formula for the inverse of φ given at the end
of the proof of Ehresmann’s fibration theorem, 8.5.10, is correct.

Exercise 8.5.15 Give an example of a submersion that is not a locally trivial fibration.
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Exercise 8.5.16 Consider the projection

f : S3 → CP1.

Show that f is a locally trivial fibration. Consider the map

� : S1 → CP1

given by sending z ∈ S1 ⊆ C to [1, z]. Show that � is an imbedding. Use
Ehresmann’s fibration theorem to show that the inverse image

f −1(�S1)

is diffeomorphic to the torus S1 × S1. (Note: there is a diffeomorphism S2 → CP1

given by (a, z) 
→ [1 + a, z], and the composite S3 → S2 induced by f is called
the Hopf fibration and has many important properties. Among other things it has
the truly counter-intuitive property of detecting a “three-dimensional hole” in S2!)

Exercise 8.5.17 Let γ : R → M be a smooth curve and f : E → M a proper submersion. Let
p ∈ f −1(γ (0)). Show that there is a smooth curve σ : R→ E such that

E

��
R

σ

  �������� γ �� M

commutes and σ(0) = p. Show that, if the dimensions of E and M agree, then σ
is unique. In particular, study the cases and Sn → RPn and S2n+1 → CPn .

Exercise 8.5.18 Consider the map

f : O(n + 1)→ Sn, A 
→ f (A) = Ae1,

where e1 ∈ Rn+1 is the first standard basis vector. That is, f (A) is the first column
of A. Show that f is a locally trivial fibration with fiber diffeomorphic to O(n).

Exercise 8.5.19 Prove that every smooth vector bundle over Rn is trivial.

Exercise 8.5.20 Let π : E → M be a locally trivial fibration and f : N → M a smooth map. Show
that the induced map φ : E×M N → N is a locally trivial fibration, where E×M N
is the fiber product defined in Exercise 4.7.11.

Exercise 8.5.21 Let 0 < m ≤ n and recall the Milnor manifold by

H(m, n) =
{
([p], [q]) ∈ RPm × RPn |

m∑
k=0

pkqk = 0

}
,

which we proved in Exercise 2.5.18 was a smooth (m + n − 1)-dimensional sub-
manifold of RPm × RPn . Show that the projection π : H(m, n) → RPm sending
([p], [q]) to [p] is a locally trivial fibration with fiber RPn−1.
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We end with three exercises giving (more) classical examples of something
called principal bundles (which has to do with actions of Lie groups). There is
a host of related exercises you can do, but I figured this would suffice.

Exercise 8.5.22 Let 0 < k < n and consider the map f : SO(n) → Vk
n to the Stiefel manifold of

Exercise 4.4.16 given by letting f (A) be the n × k matrix consisting of the k first
columns of A. Notice that this represents a k-frame: f (A)T f (A) is the k×k identity
matrix. Prove that f is a locally trivial fibration with all fibers diffeomorphic to
SO(n − k).

Exercise 8.5.23 Let 0 < k < n and consider the map C : SO(n) → Gr(k,Rn) to the Grassmann
manifold of Example 2.3.15 given by sending a rotation matrix A to the subspace
of Rn spanned by the first k columns of A: C(A) = A · Rk ⊆ Rn (we identify
Rk with Rk × {0} ⊆ Rn). Prove that C is a locally trivial fibration with all fibers
diffeomorphic to SO(k)× SO(n − k).

Exercise 8.5.24 Let 0 < k < n. Show that the map S : Vk
n → Gr(k,Rn) sending a frame to the

subspace it spans is a locally trivial fibration with all fibers diffeomorphic to SO(k).



Appendix A
Point Set Topology

I have collected a few facts from point set topology. The aim is to present
exactly what we need in the manifold course. Point set topology may be your first
encounter of real mathematical abstraction, and can cause severe distress to the
novice, but it is kind of macho when you get to know it a bit better. However, keep
in mind that the course is about manifold theory, and point set topology is only a
means of expressing some (obvious?) properties these manifolds should possess.
Point set topology is a powerful tool when used correctly, but it is not our object of
study.

The concept that typically causes most concern is the quotient space. This con-
struction is used widely whenever we are working with manifolds and must be
taken seriously. However, the abstraction involved should be eased by the many
concrete examples (like the flat torus in the robot’s arm in Example 1.1). For con-
venience I have repeated the definition of equivalence relations at the beginning of
Section A.6.

If you need more details, consult any of the excellent books listed in the refer-
ences. The real classics are [2] and [9], but the most widely used these days is [17].
There are also many on-line textbooks, some of which you may find at the Topol-
ogy Atlas’ “Education” website http://at.yorku.ca/topology/educ.
htm.

Most of the exercises are not deep and are just rewritings of definitions (which
may be hard enough if you are new to the subject), and the solutions are short.

If I list a fact without proof, the result may be deep and its proof (much too)
hard.

At the end, or more precisely in Section A.10, I have included a few standard
definitions and statements about sets that are used frequently both in the text and
in the exercises. The purpose of collecting them in a section at the end is that,
whereas they certainly should not occupy central ground in the text (or even in
this appendix), the reader will still find the terms in the index and be referred
directly to a definition, if she becomes uncertain about them at some point or
other.
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A.1 Topologies: Open and Closed Sets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition A.1.1 Let X be a set. A topology on X is a family U of subsets
of X with ∅, X ∈ U and which is closed under finite intersection and arbitrary
unions, that is

if U,U ′ ∈ U , then U ∩U ′ ∈ U ,
if I ⊆ U , then

⋃
U∈I U ∈ U .

We say that the pair (X,U) is a topological space.

Frequently we will even refer to X as a topological space when U is evident from
the context.

Definition A.1.2 The members of U are called the open sets of X with respect to
the topology U . A subset C of X is closed if the complement X \C = {x ∈ X | x /∈
C} is open.

Exercise A.1.3 An open set on the real line R is a (possibly empty) union of open intervals. Check
that this defines a topology on R. Check that the closed sets do not form a topology
on R.

Definition A.1.4 A subset of X is called a neighborhood of x ∈ X if it contains
an open set containing x .

Lemma A.1.5 Let (X, T ) be a topological space. Prove that a subset U ⊆ X is
open if and only if for all p ∈ U there is an open set V such that p ∈ V ⊆ U.

Proof. Exercise! �

Definition A.1.6 Let (X,U) be a space and A ⊆ X a subset. Then the interior
int A of A in X is the union of all open subsets of X contained in A. The closure Ā
of A in X is the intersection of all closed subsets of X containing A.

Exercise A.1.7 Prove that int A is the biggest open set U ∈ U such that U ⊆ A, and that Ā is the
smallest closed set C in X such that A ⊆ C .

Exercise A.1.8 If (X, d) is a metric space (i.e., a set X and a symmetric positive definite function

d : X × X → R

satisfying the triangle inequality), then X may be endowed with the metric topology
by letting the open sets be arbitrary unions of open balls (note: given an x ∈ X and
a positive real number ε > 0, the open ε-ball centered in x is the set B(x, ε) =
{y ∈ X | d(x, y) < ε}). Exercise: show that this actually defines a topology.

In particular, Euclidean n-space is defined to be Rn with the metric topology.
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Exercise A.1.9 The metric topology coincides with the topology we have already defined on R.

A.2 Continuous Maps
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition A.2.1 A continuous map (or simply a map)

f : (X,U)→ (Y,V)
is a function f : X → Y such that for every V ∈ V the inverse image

f −1(V ) = {x ∈ X | f (x) ∈ V }
is in U .

In other words, f is continuous if the inverse images of open sets are open.

Exercise A.2.2 Prove that a continuous map on the real line is just what you expect.
More generally, if X and Y are metric spaces, considered as topological spaces by
giving them the metric topology as in Example A.1.8: show that a map f : X → Y
is continuous if and only if the corresponding ε − δ-horror is satisfied.

Exercise A.2.3 Let f : X → Y and g : Y → Z be continuous maps. Prove that the composite
g f : X → Z is continuous.

Example A.2.4 Let f : R1 → S1 be the map which sends p ∈ R1 to eip =
(cos p, sin p) ∈ S1. Since S1 ⊆ R2, it is a metric space, and hence may be endowed
with the metric topology. Show that f is continuous, and also that the images of
open sets are open.

Definition A.2.5 A homeomorphism is a continuous map f : (X,U)→ (Y,V)
with a continuous inverse, that is a continuous map g : (Y,V) → (X,U) with
f (g(y)) = y and g( f (x)) = x for all x ∈ X and y ∈ Y .

Exercise A.2.6 Prove that tan : (−π/2, π/2)→ R is a homeomorphism.

Note A.2.7 Note that being a homeomorphism is more than being bijective and
continuous. As an example, let X be the set of real numbers endowed with the
metric topology, and let Y be the set of real numbers, but with the “indiscrete
topology”: only ∅ and Y are open. Then the identity map X → Y (sending the real
number x to x) is continuous and bijective, but it is not a homeomorphism: the
identity map Y → X is not continuous.

Definition A.2.8 We say that two spaces are homeomorphic if there exists a
homeomorphism from one to the other.
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A.3 Bases for Topologies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition A.3.1 If (X,U) is a topological space, a subfamily B ⊆ U is a basis
for the topology U if for each x ∈ X and each V ∈ U with x ∈ V there is a U ∈ B
such that

x ∈ U ⊆ V

as in Figure A.1.

Note A.3.2 This is equivalent to the condition that each member of U is a union
of members of B.

Conversely, given a family of sets B with the property that if B1, B2 ∈ B and
x ∈ B1 ∩ B2 then there is a B3 ∈ B such that x ∈ B3 ⊆ B1 ∩ B2 (Figure A.2),
we have that B is a basis for the topology on X = ⋃

U∈B U given by declaring
the open sets to be arbitrary unions from B. We say that the basis B generates the
topology on X .

Exercise A.3.3 The real line has a countable basis for its topology.

Exercise A.3.4 The balls with rational radius and whose centers have coordinates that all are
rational form a countable basis for Rn .

Just to be absolutely clear: a topological space (X,U) has a countable basis for
its topology if and only if there exists a countable subset B ⊆ U which is a basis.

xU

V

Figure A.1.

B1 B2

B3

x

Figure A.2.
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Exercise A.3.5 Let (X, d) be a metric space. Then the open balls form a basis for the metric
topology.

Exercise A.3.6 Let X and Y be topological spaces, and B a basis for the topology on Y . Show that
a function f : X → Y is continuous if f −1(V ) ⊆ X is open for all V ∈ B.

A.4 Separation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There are zillions of separation conditions, but we will be concerned only with
the most intuitive of all: Hausdorff spaces (named after Felix Hausdorff (1868–
1942))1.

Definition A.4.1 A topological space (X,U) is Hausdorff if for any two distinct
x, y ∈ X there exist disjoint neighborhoods of x and y (Figure A.3).

Example A.4.2 The real line is Hausdorff.

Example A.4.3 More generally, the metric topology is always Hausdorff.

A.5 Subspaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition A.5.1 Let (X,U) be a topological space. A subspace of (X,U) is a
subset A ⊂ X with the topology given by letting the open sets be {A ∩U |U ∈ U}
(Figure A.4).

Exercise A.5.2 Show that the subspace topology is a topology.

x

y

Figure A.3. The two points x and y are contained in disjoint open sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 https://en.wikipedia.org/wiki/Felix_Hausdorff
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X

U
A

A

⊂

X

Figure A.4.

Exercise A.5.3 Prove that a map to a subspace Z → A is continuous if and only if the composite

Z → A ⊆ X

is continuous.

Exercise A.5.4 Prove that, if X has a countable basis for its topology, then so has A.

Exercise A.5.5 Prove that, if X is Hausdorff, then so is A.

Corollary A.5.6 All subspaces of Rn are Hausdorff, and have countable bases
for their topologies.

Definition A.5.7 If A ⊆ X is a subspace, and f : X → Y is a map, then the
composite

A ⊆ X → Y

is called the restriction of f to A, and is written f |A.

A.6 Quotient Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before defining the quotient topology we recall the concept of equivalence
relations.

Definition A.6.1 Let X be a set. An equivalence relation on X is a subset E of
the set X × X = {(x1, x2) | x1, x2 ∈ X} satisfying the following three conditions:

(reflexivity) (x, x) ∈ E for all x ∈ X ,
(symmetry) if (x1, x2) ∈ E then (x2, x1) ∈ E ,

(transitivity) if (x1, x2) ∈ E and (x2, x3) ∈ E , then (x1, x3) ∈ E .

We often write x1 ∼ x2 instead of (x1, x2) ∈ E .
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Definition A.6.2 Given an equivalence relation E on a set X we may for each
x ∈ X define the equivalence class of x to be the subset [x] = {y ∈ X | x ∼ y}.

This divides X into a collection of nonempty, mutually disjoint subsets.
The set of equivalence classes is written X/∼, and we have a surjective function

X → X/∼
sending x ∈ X to its equivalence class [x].

Definition A.6.3 Let (X,U) be a topological space, and consider an equivalence
relation ∼ on X . The quotient space with respect to the equivalence relation is the
set X/∼ with the quotient topology. The quotient topology is defined as follows.
Let

p : X → X/∼
be the projection sending an element to its equivalence class. A subset V ⊆ X/∼
is open if and only if p−1(V ) ⊆ X is open (Figure A.5).

Exercise A.6.4 Show that the quotient topology is a topology on X/∼.

Exercise A.6.5 Prove that a map from a quotient space (X/∼) → Y is continuous if and only if
the composite

X → (X/∼)→ Y

is continuous.

Exercise A.6.6 The projection R1 → S1 given by p 
→ eip shows that we may view S1 as the set
of equivalence classes of real number under the equivalence p ∼ q if there is an
integer n such that p = q + 2πn. Show that the quotient topology on S1 is the
same as the subspace topology you get by viewing S1 as a subspace of R2.

V
p–1(V)

X/ ~X

p

Figure A.5.
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A.7 Compact Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition A.7.1 A compact space is a space (X,U) with the following prop-
erty: in any set V of open sets covering X (i.e., V ⊆ U and

⋃
V∈V V = X ) there

is a finite subset that also covers X .

Exercise A.7.2 If f : X → Y is a continuous map and X is compact, then f (X) is compact.

We list without proof the following results. Remember that a subset A ⊆ Rn

is bounded if the set of distances between points, {|p − q| | p, q ∈ A} ⊆ R, is
bounded above.

Theorem A.7.3 (Heine–Borel) A subset of Rn is compact if and only if it is closed
and bounded.

Example A.7.4 Hence the unit sphere Sn = {p ∈ Rn+1 | |p| = 1} (with the
subspace topology) is a compact space.

Exercise A.7.5 The real projective space RPn is the quotient space Sn/∼ under the equivalence
relation p ∼ −p on the unit sphere Sn . Prove that RPn is a compact Hausdorff
space with a countable basis for its topology.

Theorem A.7.6 If X is a compact space, then all closed subsets of X are compact
spaces.

Theorem A.7.7 If X is a Hausdorff space and C ⊆ X is a compact subspace,
then C ⊆ X is closed.

A very important corollary of the above results is the following theorem.

Theorem A.7.8 If f : C → X is a continuous map where C is compact and X is
Hausdorff, then f is a homeomorphism if and only if it is bijective.

Exercise A.7.9 Prove Theorem A.7.8 using the results preceding it.

Exercise A.7.10 Prove in three or fewer lines the standard fact that a continuous function
f : [a, b] → R has a maximum value.

A last theorem sums up some properties that are preserved under formation of
quotient spaces (under favorable circumstances). It is not optimal, but will serve
our needs. You can extract a proof from the more general statement given on p. 148
of [9].
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Theorem A.7.11 Let X be a compact space, and let∼ be an equivalence relation
on X. Let p : X → X/∼ be the projection and assume that, if K ⊆ X is closed,
then p−1 p(K ) ⊆ X is closed too.

If X is Hausdorff, then so is X/∼.
If X has a countable basis for its topology, then so has X/∼.

A.8 Product Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition A.8.1 If (X,U) and (Y,V) are two topological spaces, then their prod-
uct is the set X × Y = {(x, y) | x ∈ X, y ∈ Y } with a basis for the topology given
by products of open sets U × V with U ∈ U and V ∈ V .

There are two projections, prX : X × Y → X and prY : X × Y → Y . They are
clearly continuous.

Exercise A.8.2 A map Z → X × Y is continuous if and only if both the composites with the
projections

Z → X × Y → X

and

Z → X × Y → Y

are continuous.

Exercise A.8.3 Show that the metric topology on R2 is the same as the product topology on R1 ×
R1, and, more generally, that the metric topology on Rn is the same as the product
topology on R1 × · · · × R1.

Exercise A.8.4 If X and Y have countable bases for their topologies, then so has X × Y .

Exercise A.8.5 If X and Y are Hausdorff, then so is X × Y .

A.9 Connected Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition A.9.1 A space X is connected if the only subsets that are both open
and closed are the empty set and the set X itself.

Exercise A.9.2 The natural generalization of the intermediate value theorem is “If f : X → Y is
continuous and X connected, then f (X) is connected”. Prove this.

Note A.9.3 We say that a space X is path connected if for any p0, p1 ∈ X there
is a continuous f : [0, 1] → X such that f (0) = p0 and f (1) = p1.
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The unit interval [0, 1] is connected (as is any other interval, bounded or not), and
so Exercise A.9.2 implies that, if f : [0, 1] → X is any continuous map, then the
image is a connected subspace. Hence, if X is path connected then X is connected.

The maximal connected subsets of a space are called the connected compo-
nents. The path components are the maximal path connected subspaces. Manifolds
(being locally homeomorphic to Euclidean spaces) are path connected if and only
if they are connected, so, for manifolds, the path components and the connected
component coincide.

Definition A.9.4 Let (X1,U1) and (X2,U2) be topological spaces. The disjoint
union X1

∐
X2 is the union of disjoint copies of X1 and X2 (i.e., the set of pairs

(k, x), where k ∈ {1, 2} and x ∈ Xk), where an open set is a union of open sets in
X and Y .

Exercise A.9.5 Show that the disjoint union of two nonempty spaces X1 and X2 is not connected.

Exercise A.9.6 A map X1
∐

X2 → Z is continuous if and only if both the composites with the
injections

X1 ⊆ X1

∐
X2 → Z

and

X2 ⊆ X1

∐
X2 → Z

are continuous.

A.10 Set-Theoretical Stuff
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The only purpose of this section is to provide a handy reference for some standard
results in elementary set theory.

Definition A.10.1 Let A ⊆ X be a subset. The complement of A in X is the
subset

X \ A = {x ∈ X | x /∈ A}.
Definition A.10.2 Let f : X → Y be a function. We say that f is injective (or
one-to-one) if f (x1) = f (x2) implies that x1 = x2. We say that f is surjective (or
onto) if for every y ∈ Y there is an x ∈ X such that y = f (x). We say that f is
bijective if it is both surjective and injective.

Definition A.10.3 Let A ⊆ X be a subset and f : X → Y a function. The image
of A under f is the set

f (A) = {y ∈ Y | there exists an a ∈ A such that y = f (a)}.
The subset f (X) ⊆ Y is simply called the image of f .
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If B ⊆ Y is a subset, then the inverse image (or preimage) of B under f is the
set

f −1(B) = {x ∈ X | f (x) ∈ B}.
The subset f −1(Y ) ⊆ X is simply called the preimage of f .

Exercise A.10.4 Prove that f ( f −1(B)) ⊆ B and A ⊆ f −1( f (A)).

Exercise A.10.5 Prove that f : X → Y is surjective if and only if f (X) = Y and injective if and
only if for all y ∈ Y f −1({y}) consists of at most a single element.

Definition A.10.6 Let X be a set and {Ai }i∈I be a family of subsets. Then the
union is the subset⋃

i∈I

Ai = {x ∈ X | there is an i ∈ I with x ∈ Ai }

and the intersection is the subset⋂
i∈I

Ai = {x ∈ X | x ∈ Ai for all i ∈ I }.

Lemma A.10.7 (De Morgan’s Formulae) Let X be a set and {Ai }i∈I be a family
of subsets. Then

X \
⋃
i∈I

Ai =
⋂
i∈I

(X \ Ai ),

X \
⋂
i∈I

Ai =
⋃
i∈I

(X \ Ai ).

Apology: the use of the term family is just phony: to us a family is nothing but a
set (so a “family of sets” is nothing but a set of sets).

Exercise A.10.8 Let B1, B2 ⊆ Y and f : X → Y be a function. Prove that

f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2),

f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2),

f −1(Y \ B1) = X \ f −1(B1).

If in addition A1, A2 ⊆ X then

f (A1 ∪ A2) = f (A1) ∪ f (A2),

f (A1 ∩ A2) ⊆ f (A1) ∩ f (A2),

f (X) \ f (A1) ⊆ f (X \ A1),

B1 ∩ f (A1) = f ( f −1(B1) ∩ A1).



Appendix B
Hints or Solutions to the Exercises

Below you will find hints for all the exercises. Some are very short, and some are almost
complete solutions. Ignore them if you possibly can, but, if you are really stuck, take a
quick peek and see whether you can get some inspiration. You can seriously undermine
your efforts if you make a habit of looking at the hints too early. To partially compensate:
if you looked at the hint and believe you understood everything, close the book and see
whether you can write down an argument without referring back to these pages.

Chapter 1

Exercise 1.5.2 Draw a hexagon with identifications so that it represents a handle attached to a Möbius
band. Try your luck at cutting and pasting this figure into a (funny-looking) hexagon with
identifications so that it represents three Möbius bands glued together (remember that the
cuts may cross your identified edges).

Exercise 1.5.3 First, notice that any line through the origin intersects the unit sphere S2 in two antipodal
points, so that RP2 can be identified with S2/p ∼ −p. Since any point on the Southern
Hemisphere is in the same class as one on the Northern Hemisphere we may disregard (in
standard imperialistic fashion) all the points on the Southern Hemisphere, so that RP2 can
be identified with the Northern Hemisphere with antipodal points on the equator identified.
On smashing down the Northern Hemisphere onto a closed disk, we get that RP2 can be
identified with a disk with antipodal points on the boundary circle identified. By pushing
in the disk so that we get a rectangle we get the equivalent picture (disregard the lines in
the interior of the rectangle for now) shown in Figure B.1.

The two dotted diagonal lines in Figure B.1 represent a circle. Cut RP2 along this circle,
yielding a Möbius strip (Figure B.2) and two pieces (Figure B.3) that glue together to a
disk (the pieces have been straightened out at the angles of the rectangle, and one of the
pieces has to be reflected before it can be glued to the other to form a disk).

Exercise 1.5.4 Do an internet search (check for instance Wikipedia) to find the definition of the Euler
characteristic. To calculate the Euler characteristic of surfaces you can simply use our flat
representations as polygons, just remembering what points and edges really are identified.

Exercise 1.5.5 The beings could triangulate their universe, counting the number of vertices V , edges E
and surfaces F in this triangulation (this can be done in finite time). The Euler characteristic
V − E + F uniquely determines the surface.
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Chapter 2

Exercise 2.1.6 The map xk,i is the restriction of the corresponding projection Rn+1 → Rn which
is continuous, and the inverse is the restriction of the continuous map Rn →
Rn+1 sending p = (p0, . . . , p̂k, . . . , pn) ∈ Rn (note the smart indexing) to
(p0, . . . , (−1)i

√
1− |p|2, . . . , pn).

Exercise 2.1.7 (This exercise uses many results from Appendix A). Assume there was a chart covering all
of Sn . That would imply that we had a homeomorphism x : Sn → U ′, where U ′ is an open
subset of Rn . For n = 0, this clearly is impossible since S0 consists of two points, whereas
R0 is a single point. Also for n > 0 this is impossible since Sn is compact (it is a bounded
and closed subset of Rn+1), and so U ′ = x(Sn) would be compact (and nonempty), but Rn

does not contain any compact and open nonempty subsets.
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Exercise 2.2.8 Draw the lines in the picture in Example 2.2.7 and use high school mathematics to show
that the formulae for x± are correct and define continuous functions (the formulae extend
to functions defined on open sets in Rn+1 where they are smooth and hence continu-
ous). Then invert x− and x+, which again become continuous functions (so that x± are
homeomorphisms), and check the chart transformation formulae.

Exercise 2.2.11 To get a smooth atlas, repeat the discussion in Example 2.1.8 for the real projective space,
exchanging R with C everywhere. To see that CPn is compact, it is convenient to notice that
any [p] ∈ CPn can be represented by p/|p| ∈ S2n+1 ⊆ Cn , so that CPn can alternatively
be described as S2n+1/∼, where p ∼ q if there is a z ∈ S1 such that zp = q. Showing
that CPn is Hausdorff and has a countable basis for its topology is not hard, but can be a
bit more irritating, so a reference to Theorem A.7.11 provides an easy fix.

Exercise 2.2.12 All the chart transformations are identity maps, so the atlas is certainly smooth.

Exercise 2.2.13 Transport the structure radially out from the unit circle (i.e., use the homeomorphism from
the unit circle to the square gotten by blowing up a balloon in a square box in flatland). All
charts can then be taken to be the charts on the circle composed with this homeomorphism.

Exercise 2.2.14 The only problem is in the origin. If you calculate (one side of the limit needed in the
definition of the derivative at the origin)

lim
t→0+

λ(t)− λ(0)
t

= lim
t→0+

e−1/t

t
= lim

s→∞
s

es
= 0,

you see that λ is once differentiable. It continues this way (you have to do a small induc-
tion showing that all derivatives at the origin involve limits of exponential times rational),
proving that λ is smooth.

Exercise 2.3.4 If B is any smooth atlas containing D(A), then D(A) ⊆ B ⊆ D(D(A)). Prove that
D(D(A)) = D(A).

Exercise 2.3.9 This is yet another of those “x̄ ȳ−1 = (x̄ x−1)(xy−1)(y ȳ−1)”-type arguments.

Exercise 2.3.10 It suffices to show that all the “mixed chart transformations” (like x0,0(x+)−1) are smooth.
Why?

Exercise 2.3.11 Because saying that “x is a diffeomorphism” is just a rephrasing of “x = x(id)−1 and
x−1 = (id)x−1 are smooth”. The charts in this structure are all diffeomorphisms U → U ′,
where both U and U ′ are open subsets of Rn .

Exercise 2.3.12 This will be discussed more closely in Lemma 8.1.1, but can be seen directly as follows.
Since M is a topological manifold, it has a countable basis B for its topology. For each
(x,U ) ∈ A and p ∈ U choose a V ∈ B with p ∈ V ⊆ U . The set of such sets V is
countable. For each such V choose one of the charts (x,U ) ∈ A with V ⊆ U .
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Exercise 2.3.13 The mixed chart transformation consists of suitably restricted (co)sines and their inverses.

Exercise 2.3.16 Notice that xV is a bijection, with inverse sending f ∈ Hom(V, V⊥) to the graph �( f ) =
{v + f (v) ∈ Rn | v ∈ V } ⊆ Rn .

If V,W ∈ Gr(k,Rn), then xV (UV ∩ UW )={ f ∈ Hom(V, V⊥) |�( f ) ∩ W⊥= 0}. We
must check that the chart transformation

UV ∩UW

xW

��""
"""

"""
"""

xV (UV ∩UW )

xV
−1



###########
xW (UV ∩UW )

sending f : V → V⊥ to

W
(prW

�( f ))
−1

�� �( f )
prW⊥
�( f ) �� W⊥

is smooth. For ease of notation we write

g f = xW xV
−1( f ) = prW⊥

�( f )(prW
�( f ))

−1

for this map (see Figure B.4). Now, if x ∈ V , then (prV
�( f ))

−1(x) = x + f (x), and so the
composite isomorphism

A f = prW
�( f )(prV

�( f ))
−1 : V → W

sending x to A f (x) = prW x + prW f (x) depends smoothly on f . By Cramer’s rule, the
inverse B f = A−1

f also depends smoothly on f .
Finally, if y ∈ W , then

(prW
�( f ))

−1(y) = y + g f (y)

is equal to

(prV
�( f ))

−1(B f (y)) = B f (y)+ f (B f (y)),

and so

g f = B f + f B f − 1

depends smoothly on f .
The point set conditions are satisfied by the following purely linear algebraic assertions.

For a subset S ⊆ {1, . . . , n} of cardinality k, let VS ∈ Gr(k,Rn) be the subspace of all
vectors v ∈ Rn with v j = 0 for all j �∈ S. The finite subcollection of A consisting of
the UVS as S varies covers Gr(k,Rn). If W1,W2 ∈ Gr(k,Rn) there is a V ∈ Gr(k,Rn)

such that W1,W2 ∈ UV . Explicitly, you may try something like this: decompose W1 =
K ⊕ K⊥ and W2 = L ⊕ L⊥, where K = ker{prW1

W2
} and L = ker{prW2

W1
}. Choosing as

bases (a1, . . . , at ) and (b1, . . . , bt ) for K and L , let V = K⊥ ⊕ M , where M is spanned
by (a1 + b1, . . . , at + bt ) (check that this works).

Exercise 2.4.3 Given such charts, we prove that f is smooth at p. This implies that f is smooth since p
is arbitrary.
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W⊥

W

V

y
gfy

Bfy+ fBfy= y+ gfy

Bfy

Figure B.4.

The function f |W is continuous since y ◦ f |W ◦ (x |W )−1 is smooth (and hence continu-
ous), and x and y are homeomorphisms. We must show that given any charts (x̃, Ũ ) ∈ A
and (ỹ, Ṽ ) ∈ B with p ∈ W̃ = Ũ ∩ f −1(Ṽ ) we have that ỹ f |W̃ (x̃ |W̃ )−1 is smooth at p.
Now, for q ∈ W ∩ W̃ we can rewrite the function in question as a composition

ỹ f x̃−1(q) = (ỹ y−1)(y f x−1)(x x̃−1)(q)

of smooth functions defined on Euclidean spaces: x x̃−1 and y ỹ−1 are smooth since A and
B are smooth atlases.

Exercise 2.4.4 Use the identity chart on R. The standard atlas on S1 ⊆ C using projections is given simply
by real and imaginary parts. Hence the formulae you have to check are smooth are sin and
cos. This we know! One comment on domains of definition: let f : R→ S1 be the map in
question; if we use the chart (x0,0,U 0,0), then f −1(U 0,0) is the union of all the intervals
on the form (−π/2+2πk, π/2+2πk) when k varies over the integers. Hence the function
to check in this case is the function from this union to (−1, 1) sending θ to sin θ .

Exercise 2.4.5 First check that g̃ is well defined (g(p) = g(−p) for all p ∈ S2). Check that it is smooth
using the standard charts on RP2 and R4 (for instance: g̃x0(q1, q2) = (1/(1 + q2

1 +
q2

2 ))(q1q2, q2, q1, 1 + 2q2
1 + 3q2

2 )). To show that g̃ is injective, show that g(p) = g(q)
implies that p = ±q.

Exercise 2.4.6 One way follows since the composite of smooth maps is smooth. The other follows since
smoothness is a local question, and the projection g : Sn → RPn is a local diffeomor-
phism. More (or, perhaps, too) precisely, if f : RPn → M is a map, we have to show
that, for all charts (y, V ) on M , the composites y f (xk)−1 (defined on U k ∩ f −1(V )) are
smooth. But xk g(xk,0)−1 : Dn → Rn is a diffeomorphism (given by sending p ∈ Dn to
(1/
√

1− |p|2)p ∈ Rn), and so claiming that y f (xk)−1 is smooth is the same as claiming
that y( f g)(xk,0)−1 = y f (xk)−1xk g(xk,0)−1 is smooth.
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Exercise 2.4.11 Consider the map f : RP1 → S1 sending [z] (with z ∈ S1 ⊆ C) to z2 ∈ S1,
which is well defined since (−z)2 = z2. To see that f is smooth either consider the
composite

S1 → RP1 f→ S1 ⊆ C

(where the first map is the projection z 
→ [z]) using Exercises 2.4.6 and 2.5.16, or do
it from the definition: consider the standard atlas for RP1. In complex notation U 0 =
{[z] | re(z) �= 0} and x0([z]) = im(z)/re(z) with inverse t 
→ ei tan−1(t). If [z] ∈ U 0, then
f ([z]) = z2 ∈ V = {v ∈ S1 | v �= −1}. On V we choose the convenient chart y : V →
(−π, π) with inverse θ 
→ eiθ , and notice that the “up, over and across” y f (x0)−1(t) =
2 tan−1(t) obviously is smooth. Likewise we cover the case [z] ∈ U 1. The method for
showing that the inverse is smooth is similar.

Exercise 2.4.12 Consider the map CP1 → S2 ⊆ R× C sending [z0, z1] to

1

|z0|2 + |z1|2
(
|z1|2 − |z0|2, 2z1z0

)
,

check that it is well defined and continuous (since the composite C2 − {0} → CP1 →
S2 ⊆ R × C is), calculate the inverse (which is continuous by Theorem A.7.8), and use
the charts on S2 from stereographic projection in Example 2.2.7 to check that the map and
its inverse (r, z) 
→ [1− r, z] are smooth. The reader may enjoy comparing the above with
the discussion about qbits in Section 1.3.1.

Exercise 2.4.15 Given a chart (x,U ) on M , define a chart (x f −1, f (U )) on X .

Exercise 2.4.20 To see this, note that, given any p, there are open sets U1 and V1 with p ∈ U1, i(p) ∈ V1
and U1 ∩ V1 = ∅ (since M is Hausdorff). Let U = U1 ∩ i(V1). Then U and i(U ) =
i(U1) ∩ V1 do not intersect. As a matter of fact, M has a basis for its topology consisting
of these kinds of open sets.

Carrying out shrinking even further, we may assume that U is a chart domain for a chart
x : U → U ′ on M .

We see that f |U is open (it sends open sets to open sets, since the inverse image is the
union of two open sets).

On U we see that f is injective, and so it induces a homeomorphism f |U : U →
f (U ). We define the smooth structure on M/ i by letting x( f |U )−1 be the
charts for varying U . This is obviously a smooth structure, and f is a local
diffeomorphism.

Exercise 2.4.21 Choose any chart y : V → V ′ with p ∈ V in U , then choose a small open ball B ⊆ V ′
around y(p). There exists a diffeomorphism h of this ball with all of Rn . Let U = y−1(B)
and define x by setting x(q) = hy(q)− hy(p).

Exercise 2.5.4 Use “polar coordinates” (Figure B.5).
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Figure B.5.

Exercise 2.5.5 Let f (a0, . . . , an−1, t) = tn+an−1tn−1+· · ·+a0 and consider the map x : Rn+1 → Rn+1

given by

x(a0, . . . , an) = (a1, . . . , an, f (a0, . . . , an))

This is a smooth chart on Rn+1 since x is a diffeomorphism with inverse given by sending
(b1, . . . , bn+1) to (bn+1 − f (0, b1, . . . , bn), b1, . . . , bn). We see that x(C) = Rn × 0, and
we have shown that C is an n-dimensional submanifold. Notice that we have only used
that f : Rn+1 → R is smooth and that f (a0, . . . , an) = a0 + f (0, a1, an).

Exercise 2.5.6 Assume there is a chart x : U→U ′ with (0, 0) ∈ U , x(0, 0) = (0, 0) and x(K ∩ U ) =
(R× 0) ∩U ′.
Then the composite (V is a sufficiently small neighborhood of 0)

V
q 
→(q,0)−−−−−→ U ′ x−1−−−−→ U

is smooth, and of the form q 
→ T (q) = (t (q), |t (q)|). But

T ′(0) =
(

lim
h→0

t (h)

h
, lim

h→0

|t (h)|
h

)
,

and, for this to exist, we must have t ′(0) = 0.
On the other hand, x(p, |p|) = (s(p), 0), and we see that s and t are inverse functions.

The directional derivative of pr1x at (0, 0) in the direction (1, 1) is equal to

lim
h→0+

s(h)

h
,

but this limit does not exist since t ′(0) = 0, and so x can’t be smooth, which amounts to a
contradiction.

Exercise 2.5.9 Let f1, f2 : V → Rn be linear isomorphisms. Let G1,G2 be the two resulting smooth
manifolds with underlying set GL(V ). Showing that G1 = G2 amounts to showing that
the composite

GL( f1)GL( f2)
−1 : GL(Rn)→ GL(Rn)

is a diffeomorphism. Noting that GL( f2)
−1 = GL( f −1

2 ) and GL( f1)GL( f −1
2 ) =

GL( f1 f −1
2 ), this amounts to showing that, given a fixed invertible matrix A
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(representing f1 f −1
2 in the standard basis), conjugation by A, i.e., B 
→ AB A−1, is a

smooth map Mn(R)→ Mn(R). This is true since addition and multiplication are smooth.
That GL(h) is a diffeomorphism boils down to the fact that the composite

GL( f )GL(h)GL( f )−1 : GL(Rn)→ GL(Rn)

is nothing but GL( f h f −1). If f h f −1 : Rn → Rn is represented by the matrix A, then
GL( f h f −1) is represented by conjugation by A and hence a diffeomorphism.

If α, β : V ∼= V are two linear isomorphisms, we may compose them to get
αβ : V → V . That GL(h) respects composition follows, since GL(h)(αβ) = h(αβ)h−1 =
hαh−1hβ)h−1 = GL(h)(α)GL(h)(β). Also, GL(h) preserves the identity element since
GL(h)(idV ) = h idV h−1 = hh−1 = idW .

Exercise 2.5.12 Consider the chart x : M2(R)→ R4 given by

x

([
a b
c d

])
= (a, b, a − d, b + c).

Exercise 2.5.13 The subset f (RPn) = {[p, 0] ∈ RPn+1} is a submanifold by using all but the last of the
standard charts on RPn+1. Checking that RPn → f (RPn) is a diffeomorphism is now
straight-forward (the “ups, overs and acrosses” correspond to the chart transformations in
RPn).

Exercise 2.5.16 Assume i j : N j → M j are inclusions of submanifolds – the diffeomorphism part of
“imbedding” being the trivial case – and let x j : U j → U ′j be charts such that

x j (U j ∩ N j ) = U ′j ∩ (Rn j × {0}) ⊆ Rm j

for j = 1, 2. To check whether f is smooth at p ∈ N1 it suffices to assert that
x2 f x−1

1 |x1(V ) = x2gx−1
1 |x1(V ) is smooth at p where V = U1 ∩ N1 ∩ g−1(U2), which

is done by checking the higher-order partial derivatives in the relevant coordinates.

Exercise 2.5.17 Let f : X → Y and g : Y → Z be imbeddings. Then the induced map X → g f (X) is a
diffeomorphism. Hence it suffices to show that the composite of inclusions of submanifolds
is an inclusion of a submanifold. Let X ⊆ Y ⊂ Z be inclusions of submanifolds (of
dimension n, n + k and n + k + l). Given p ∈ X , let z : U → U ′ be a chart on Z
such that z(U ∩ Y ) = (Rn+k × {0}) ∩ U ′ and let y : V → V ′ be a chart on Y such that
y(V ∩ X) = (Rn × {0}) ∩ V ′ with p ∈ U ∩ V . We may even assume (by shrinking the
domains) that V = Y ∩U . Then((

yz−1|z(V ) × idRl

)
|U ′ ◦ z,U

)
is a chart displaying X as a submanifold of Z .
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Exercise 2.5.18 With the standard notation for the atlas on RPn , prove that U kj = H(m, n) ∩ (U k × U j )

gives an open cover of H(m, n) when k < j varies. Define charts xk j : U k × U j →
Rm+n via xk j ([p], [q]) =

(
xk([p], x j

k ([q]), (1/pkq j )
∑m

i=0 pi qi

)
, where x j

k ([q]) =
(1/q j )(q0, . . . , q̂k, . . . , q̂ j , . . . , qn). Show that this is well defined and gives a smooth atlas
for
⋃

k< j (U
k ×U j ) displaying H(m, n) as a smooth submanifold.

Exercise 2.6.2 Check that all chart transformations are smooth.

Exercise 2.6.5 Up, over and across, using appropriate charts on the product, reduces this to saying that
the projection Rm × Rn → Rm is smooth and that the inclusion of Rm in Rm × Rn is an
imbedding.

Exercise 2.6.6 The heart of the matter is that Rk → Rm ×Rn is smooth if and only if both the composites
Rk → Rm and Rk → Rn are smooth.

Exercise 2.6.7 Consider the map (t, z) 
→ et z.

Exercise 2.6.8 Reduce to the case where f and g are inclusions of submanifolds. Then rearrange some
coordinates to show that case.

Exercise 2.6.9 Use the preceding exercises.

Exercise 2.6.10 Remember that GLn(R) is an open subset of Mn(R) and so this is in flatland, Exam-
ple 2.5.8. Multiplication of matrices is smooth since it is made out of addition and
multiplication of real numbers.

Exercise 2.6.11 Use the fact that multiplication of complex numbers is smooth, plus Exercise 2.5.16.

Exercise 2.6.13 Check chart transformations.

Exercise 2.6.17 Using the “same” charts on both sides, this reduces to saying that the identity is smooth.

Exercise 2.6.18 A map from a disjoint union is smooth if and only if it is smooth on both summands since
smoothness is measured locally.

Exercise 2.6.19 It is a finite list. When you’re done, please send it to me and proceed to the other chapters.
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Exercise 3.1.5 The only thing that is slightly ticklish with the definition of germs is the transitivity of the
equivalence relation: assume

f : U f → N , g : Ug → N , and h : Uh → N

and f ∼ g and g ∼ h. On writing out the definitions, we see that f = g = h on the open
set V f g ∩ Vgh , which contains p.

Exercise 3.1.6 Choosing other representatives changes nothing in the intersection of the domains of defini-
tion. Associativity and the behavior of identities follow from the corresponding properties
for the composition of representatives.

Exercise 3.1.8 If φ : U → V is a diffeomorphism such that f (t) = φ(t) for all t ∈ U , then φ−1 represents
an inverse to f̄ . Conversely, let g : Vg → M represent an inverse to f̄ . Then there is an
open neighborhood p ∈ Ug f such that u = g f (u) for all u ∈ Ug f ⊆ U f ∩ f −1(Vg) and
an open neighborhood q ∈ V f g ⊆ g−1(U f ) ∩ Vg such that v = f g(v) for all v ∈ V f g .
Letting U = Ug f ∩ f −1(Vg f ) and V = g−1(Ug f ) ∩ Vg f , the restriction of f to U defines
the desired diffeomorphism φ : U → V .

Exercise 3.1.12 Both sides send the function germ ψ̄ : (L , g( f (p)))→ (R, ψ(g( f (p)))) to the composite

(M, p)
f̄ �� (N , f (p))

ḡ �� (L , g( f (p)))

ψ̄

��
(R, ψ(g( f (p)))),

i.e., f ∗g∗(ψ̄) = f ∗(ψg) = (ψg) f̄ = ψ̄(g f ) = (g f )∗(ψ̄).

Exercise 3.2.5 We do it for ε = π/2. Other εs are then obtained by scaling. Let

f (t) = γ(π/4,π/4)(t) · t + (1− γ(π/4,π/4)(t)) · tan(t).

As to the last part, if γ̄ : (R, 0) → (M, p) is represented by γ1 : (−ε, ε) → M , we let
γ = γ1 f −1, where f is a diffeomorphism (−ε, ε)→ R with f (t) = t for |t | small.

Exercise 3.2.6 Let φ : Uφ → R be a representative for φ̄, and let (x,U ) be any chart around p such that
x(p) = 0. Choose an ε > 0 such that x(U ∩Uφ) contains the open ball of radius ε. Then
the germ represented by φ is equal to the germ represented by the map defined on all of M
given by

q 
→
{
γ(ε/3,ε/3)(x(q))φ(q) for q ∈ U ∩Uφ
0 otherwise.

Exercise 3.2.7 You can extend any chart to a function defined on the entire manifold.
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Exercise 3.3.2 Let γ, γ1 ∈ Wp. If (x,U ) is a chart with p ∈ U and if for all function germs φ̄ ∈ Op

(φγ )′(0) = (φγ1)
′(0), then by letting φ = xk be the kth coordinate of x for k = 1, . . . , n

we get that (xγ )′(0) = (xγ1)
′(0). Conversely, assume φ̄ ∈ Op and (xγ )′(0) = (xγ1)

′(0)
for all charts (x,U ). Then (φγ )′(0) = (φx−1xγ )′(0) = D(φx−1)(x(p)) · (xγ )′(0) by the
flat chain rule, Lemma 3.0.3, and we are done.

Exercise 3.3.3 If (y, V ) is some other chart with p ∈ V , then the flat chain rule, Lemma 3.0.3, gives that

(yγ )′(0) = (yx−1xγ )′(0)
= D(yx−1)(x(p)) · (xγ )′(0)
= D(yx−1)(x(p)) · (xγ1)

′(0)
= (yx−1xγ1)

′(0) = (yγ1)
′(0),

where D(yx−1)(x(p)) is the Jacobi matrix of the function yx−1 at the point x(p).

Exercise 3.3.5 It depends neither on the representation of the tangent vector nor on the representation of
the germ, because, if [γ ] = [ν] and f̄ = ḡ, then (φ f γ )′(0) = (φ f ν)′(0) = (φgν)′(0)
(partially by definition).

Exercise 3.3.8 This is immediately evident from the chain rule (or, for that matter, from the definition).

Exercise 3.3.13 α−1(aα(x)+ bα(y)) = α−1β−1β(aα(x)+ bα(y)) = (βα)−1(aβα(x)+ bβα(y)).

Exercise 3.3.16 Upon expanding along the i th row, we see that the partial differential of det with respect
to the i, j-entry is equal to the determinant of the matrix you get by deleting the i th row
and the j th column. Hence, the Jacobian of det is the 1 × n2 matrix consisting of these
determinants (in some order), and is zero if and only if all of them vanish, which is the
same as saying that A has rank less than n − 1.

Exercise 3.3.17 This can be done either by sitting down and calculating partial derivatives or by argu-
ing abstractly. Since the Jacobian DL(p) represents the unique linear map K such that
limh→0(1/h)(L(p + h)− L(p)− K (h)) = 0 and L is linear, we get that K = L .

Exercise 3.4.3 This follows directly from the definition.

Exercise 3.4.6 Both ways around the square send φ̄ ∈ OM,p to d(φ f ).

Exercise 3.4.13 If V has basis {v1, . . . , vn} and W has basis {w1, . . . , wm}, then f (vi ) = ∑m
j=1 ai jw j

means that A = (ai j ) represents f in the given basis. Then f ∗(w∗j ) = w∗j f =∑n
i=1 ai jv

∗
i ,

as can be checked by evaluating at vi : w∗j f (vi ) = w∗j (
∑m

k=1 aikwk) = ai j .

Exercise 3.4.16 Use the definitions.
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Exercise 3.4.19 The two Jacobi matrices in question are given by

D(xy−1)(y(p))T =
[

p1/|p| p2/|p|
−p2 p1

]
and

D(yx−1)(x(p)) =
[

p1/|p| −p2/|p|2
p2/|p| p1/|p|2

]
.

Exercise 3.5.6 Let X : OM,p → R be a derivation, then

D| f (p)g(D|p f (X)) = D| f (p)g(X f ∗)
= (X f ∗)g∗ = X (g f )∗

= D|pg f (X).

Exercise 3.5.11 Assume

X =
n∑

j=1

v j D j
∣∣
0 = 0.

Then

0 = X (pri ) =
n∑

j=1

v j D j (pri )(0) =
{

0 if i �= j

vi if i = j.

Hence vi = 0 for all i and we have linear independence.
If X ∈ D|0Rn is any derivation, let vi = X (pri ). If φ̄ is any function germ, we have by

Lemma 3.4.8 that

φ̄ = φ(0)+
n∑

i=1

pri · φi , φi (p) =
∫ 1

0
Diφ(t · p)dt,

and so

X (φ̄) = X (φ(0))+
n∑

i=1

X (pri · φi )

= 0+
n∑

i=1

(
X (pri ) · φi (0)+ pri (0) · X (φi )

)
=

n∑
i=1

(
vi · φi (0)+ 0 · X (φi ))

)
=

n∑
i=1

vi Diφ(0),

where the identity φi (0) = Diφ(0) was used in the last equality.
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Exercise 3.5.15 If [γ ] = [ν], then (φγ )′(0) = (φν)′(0).

Exercise 3.5.18 The tangent vector [γ ] is sent to Xγ f ∗ one way, and X f γ the other, and if we apply this to
a function germ φ̄ we get

Xγ f ∗(φ̄) = Xγ (φ̄ f̄ ) = (φ f γ )′(0) = X f γ (φ̄).

If you find such arguments hard, notice that φ f γ is the only possible composition of
these functions, and so either side had better relate to this!

Chapter 4

Exercise 4.1.5 Using the identity charts, we get that the Jacobian is given by

D f (s, t) =
[

2s 0
t s

]
,

implying that

rk(s,t) f =

⎧⎪⎨⎪⎩
0 if s = t = 0

1 if s = 0 �= t

2 if s �= 0.

Exercise 4.1.12 If f : M → N and p ∈ M , the diagram

T ∗f (p)N
T ∗p f

��

αN , f (p)∼=
��

T ∗p M

αM,p∼=
��

(T f (p)N )∗
(Tp f )∗ �� (Tp M)∗

of Proposition 3.4.14 commutes. Now, the rank of the linear map Tp f and its dual (Tp f )∗
agree (the rank is not affected by transposition of matrices).

Exercise 4.1.13 Observe that the function in question is

f (eiθ , eiφ) =
√
(3− cos θ − cosφ)2 + (sin θ + sinφ)2,

giving the claimed Jacobi matrix. Then solve the system of equations

3 sin θ − cosφ sin θ + sinφ cos θ = 0,

3 sinφ − cos θ sinφ + sin θ cosφ = 0.

By adding the two equations we get that sin θ = sinφ, but then the upper equation claims
that sinφ = 0 or 3− cosφ + cos θ = 0. The latter is clearly impossible.
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Exercise 4.2.5 Consider the smooth map

f : G × G → G × G,

(g, h) 
→ (gh, h)

with inverse (g, h) 
→ (gh−1, h). Use that, for a given h ∈ G, the map Lh : G → G
sending g to Lh(g) = gh is a diffeomorphism, and that

TgG × ThG

[
Tg Lh Th Rg

0 1

]
−−−−−−−−→ TghG × ThG

∼=
⏐⏐� ∼=

⏐⏐�
T(g,h)(G × G)

T(g,h) f−−−−→ T(gh,h)(G × G)

commutes (where the vertical isomorphisms are the “obvious” ones and Rg(h) = gh), to
conclude that f has maximal rank, and is a diffeomorphism. Then consider a composite

G
g 
→(1,g)−−−−−→ G × G

f −1

−−−−→ G × G
(g,h) 
→g−−−−−→ G.

Perhaps a word about the commutativity of the above square is desirable. Starting with a
pair ([γ ], [η]) in the upper left-hand corner, going down, right and up you get ([γ ·η], [η]).
However, if you go along the upper map you get ([γ ·h]+ [g ·η], [η]), so we need to prove
that [γ · η] = [γ · h] + [g · η].

Choose a chart (z,U ) around g · h, let� : R→ R×R be given by�(t) = (t, t) and let
μ : G ×G → G be the multiplication in G. Then the chain rule, as applied to the function
z(γ · η) = zμ(γ, η)� : R→ Rn , gives that

(z(γ · η))′(0) = D(zμ(γ, η))(0, 0) ·�′(0)
= [D1(zμ(γ, η))(0, 0) D2(zμ(γ, η))(0, 0)

] · [1
1

]
= (z(γ · h))′(0)+ (z(g · η))′(0).

Exercise 4.3.2 Let (t1, . . . , tn) = e1 = (1, 0, . . . , 0). Then tσ−1( j) is going to be 1 if σ−1( j) = 1 (i.e.,
if σ(1) = j) and zero otherwise. Hence, the permutation of the coordinates sends e1 to
(tσ−1(1), . . . , tσ−1(n)) = eσ(1) – the σ(1)st standard unit vector. Likewise we get that the
permutation of the coordinates sends the ek to eσ(k), and the matrix associated with the
permutation of the coordinates is [eσ(1), . . . , eσ(n)].

Exercise 4.3.4 The rank theorem says that around any regular point there is a neighborhood on which f
is a diffeomorphism. Hence f −1(q) is discrete, and, since M is compact, finite. Choose
open neighborhoods Ux around each element in x ∈ f −1(q) such that f defines a diffeo-
morphism from Ux to an open neighborhood f (Ux ) of q. Let the promised neighborhood
around q be ⋂

x∈ f −1(q)

f (Ux )− f
(

M −
⋃

x∈ f −1(q)

Ux

)
(remember that f takes closed sets to closed sets since M is compact and N Hausdorff).
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Exercise 4.3.5 (After p. 8 of [15].) Extend P to a smooth map f : S2 → S2 by stereographic projection
(check that f is smooth at the North pole). Assume 0 is a regular value (if it is a critical
value we are done!). The critical points of f correspond to the zeros of the derivative P ′,
of which there are only finitely many. Hence the regular values of f cover all but finitely
many points of S2, and so give a connected space. Since by Exercise 4.3.4 q 
→ | f −1(q)|
is a locally constant function of the regular values, we get that there is an n such that
n = | f −1(q)| for all regular values q. Since n can’t be zero (P was not constant) we are
done.

Exercise 4.3.6 (After [4].) Use the rank theorem, which gives the result immediately if we can prove that
the rank of f is constant (spell this out). To prove that the rank of f is constant, we first
prove it for all points in f (M) and then extend it to some neighborhood using the chain
rule.

The chain rule gives that

Tp f = Tp( f f ) = T f (p) f Tp f.

If p ∈ f (M), then f (p) = p, so we get that Tp f = Tp f Tp f and

Tp f (Tp M) = {v ∈ Tp M | Tp f (v) = v} = ker{1− Tp f }.
By the dimension theorem in linear algebra we get that

rk
(
Tp f

)+ rk
(
1− Tp f

) = dim(M),

and since both ranks can only increase locally, they must be locally constant, and hence
constant, say rkTp f = r and rk(1 − Tp f ) = dim(M) − r , since M was supposed to be
connected.

Hence there is an open neighborhood U of p ∈ f (M) such that rk Tq f ≥ r for all
q ∈ U , but since Tq f = T f (q) f Tq f we must have rk Tq f ≤ T f (p) f = r , and so rk Tq f =
r too.

That f (M) = {p ∈ M | f (p) = p} is closed in M follows since the complement
is open: if p �= f (p) choose disjoint open sets U and V around p and f (p). Then U ∩
f −1(V ) is an open set disjoint from f (M) (since U∩ f −1(V ) ⊆ U and f (U∩ f −1(V )) ⊆
V ) containing p.

Exercise 4.4.4 Prove that 1 is a regular value for the function Rn+1 → R sending p to |p|2.

Exercise 4.4.7 Show that the map

SL2(R)→ (C \ {0})× R[
a b
c d

]

→ (a + ic, ab + cd)

is a diffeomorphism, with inverse

(a + ic, t) 
→
[

a at−c
a2+c2

c a+ct
a2+c2

]
,

and that S1 × R is diffeomorphic to C \ {0}.
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Exercise 4.4.8 Calculate the Jacobi matrix of the determinant function. With some choice of indices you
should get

Di j (det)(A) = (−1)i+ j det(Ai j ),

where Ai j is the matrix you get by deleting the i th row and the j th column. If
the determinant is to be one, some of the entries in the Jacobi matrix then must be
nonzero.

Exercise 4.4.11 Copy one of the proofs for the orthogonal group, replacing the symmetric matrices with
Hermitian matrices.

Exercise 4.4.12 The space of orthogonal matrices is compact since it is a closed subset of [−1, 1]n2
. It has

at least two components since the set of matrices with determinant 1 is closed, as is the
complement: the set with determinant −1.

Each of these is connected since you can get from any rotation to the identity through
a path of rotations. One way to see this is to use the fact from linear algebra which says
that any element A ∈ SO(n) can be written in the form A = BT B−1, where B and T
are orthogonal, and furthermore T is a block diagonal matrix where the block matrices are
either a single 1 on the diagonal, or of the form

T (θk) =
[

cos θk −sinθk

sin θk cos θk

]
.

So we see that by replacing all the θks by sθk and letting s vary from 1 to 0 we get a path
from A to the identity matrix.

Exercise 4.4.13 Elements of SO(2) are of the form [
a b
c d

]
,

where a2+c2 = 1, ab+cd = 0, b2+d2 = 1 and ad−bc = 1. Conclude that S1 → SO(2)
sending eit to [

cos t −sint
sin t cos t

]
is a diffeomorphism.

Insofar as SO(3) is concerned, identify RP3 with the quotient of the closed unit 3-ball
where antipodal points on the boundary have been identified. Consider the function that
sends a point p in this space to the element of SO(3) corresponding to the rotation around
the vector p by an angle π |p|. Beware of what happens when |p| = 1. Check that this is a
smooth bijection inducing an isomorphism on each tangent space. It is probably useful to
write out a formula.

Exercise 4.4.16 Consider a k-frame as a matrix A with the property that AT A = I , and proceed as for the
orthogonal group.
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Exercise 4.4.18 Either just solve the equation or consider the map

f : P3 → P2

sending y ∈ P3 to f (y) = (y′′)2 − y′ + y(0)+ xy′(0) ∈ P2. If you calculate the Jacobian
in obvious coordinates you get that

D f (a0 + a1x + a2x2 + a3x3) =
⎡⎣1 −1 8a2 0

0 1 24a3 − 2 24a2
0 0 0 72a3 − 3

⎤⎦ .
The only way this matrix can be singular is if a3 = 1/24, but the top coefficient in f (a0 +
a1x + a2x2 + a3x3) is 36a2

3 − 3a3, which won’t be zero if a3 = 1/24. By the way, if
I did not calculate something wrong, the solution is the disjoint union of two manifolds
M1 = {2t (1− 2t)+ 2t x + t x2 | t ∈ R} and M2 = {−24t2 + t x2 + x3/12 | t ∈ R}, both of
which are diffeomorphic to R.

Exercise 4.4.19 Yeah.

Exercise 4.4.20 Consider the function

f : Rn → R

given by

f (p) = pT Ap.

The Jacobi matrix is easily calculated, and using that A is symmetric we get that D f (p) =
2pT A. Hence, given that f (p) = b, we get that 1

2 D f (p) · p = pT Ap = b, and so
D f (p) �= 0 if b �= 0. Hence all values but b = 0 are regular. The value b = 0 is critical
since 0 ∈ f −1(0) and D f (0) = 0.

Exercise 4.4.21 You don’t actually need Theorem 4.4.3 to prove this since you can isolate T in this equa-
tion, and show directly that you get a submanifold diffeomorphic to R2, but still, as an
exercise you should do it by using Theorem 4.4.3.

Exercise 4.4.22 Code a flexible n-gon by means of a vector x0 ∈ R2 giving the coordinates of the first
point, and vectors xi ∈ S1 going from point i to point i + 1 for i = 1, . . . , n − 1 (the
vector from point n to point 1 is not needed, since it will be given by the requirement that
the curve is closed). The set R2 × (S1)n−1 will give a flexible n-gon, except that the last
line may not be of length 1. To ensure this, look at the map

f : R2 × (S1)n−1 → R,

(x0, (x1, . . . , xn−1)) 
→
∣∣∣∣∣
n−1∑
i=1

xi

∣∣∣∣∣
2

and show that 1 is a regular value. If you let x j = eiφ j and x = (x0, (x1, . . . , xn−1)), you
get that
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D j f (x) = D j

((
n−1∑
k=1

eiφk

)(
n−1∑
k=1

e−iφk

))

= ieiφ j

(
n−1∑
k=1

e−iφk

)
+
(

n−1∑
k=1

eiφk

)
(−ie−iφ j ).

That the rank is not 1 is equivalent to D j f (x) = 0 for all j . Analyzing this, we
get that x1, . . . , xn−1 must then all be parallel. But this is impossible if n is odd and∣∣∣∑n−1

i=1 xi
∣∣∣2 = 1. (Note that this argument fails for n even. If n = 4 then F4,2 is not a

manifold: given x1 and x2 there are two choices for x3 and x4 (either x3 = −x2 and
x4 = −x1 or x3 = −x1 and x4 = −x2), but when x1 = x2 we get a crossing of these two
choices.)

Exercise 4.4.23 The non-self-intersecting flexible n-gons form an open subset.

Exercise 4.5.3 Under the identification TzR2 ∼= R2 given by [γ ] 
→ γ ′(0), Tz S1 corresponds to {v | z ·v =
0} and Tz Nz to {(0, y) | y ∈ R}. These subspaces span R2 except when z = (±1, 0).

Exercise 4.5.7 Before we start, it is perhaps smart to review the relation between derivations in the real
case and those in the complex case. If g = u + iv represents a function C → C in
standard complex analysis notation (which we will use freely for a short while), the usual
identification C ∼= R2 displays the Jacobian as

Dg(z) =
[
∂u/∂x ∂u∂y
∂v/∂x ∂v∂y

]
.

Under the identification in Exercise 2.5.12 of a complex number z = x + iy with real
matrix [

x −y
y x

]
,

we see that g satisfies the Cauchy–Riemann equations exactly when Dg(z) corresponds
to a complex number, which in this case is nothing but the complex derivative g′(z). In
particular, if g(z) = za for some positive integer a, then Dg(z) corresponds to g′(z) =
aza−1, and so has rank 0 if z = 0 and rank 2 otherwise.

Getting back to the exercise, we first prove that L = f −1(0) �= ∅ is a submanifold by
proving that 0 is a regular value for f : on representing x + iy ∈ C by the real matrix[

x −y
y x

]
,

we can express the Jacobian as

D f (z) = [a0za0−1
0 , . . . , anzan−1

n ],
which has maximal rank 2 since (z0, . . . , zn) �= 0.
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To see that L and S2n+1 are transverse in z ∈ L∩ S2n+1, it suffices to demonstrate that L
has a tangent vector [γ ] at z which is not in Tz S2n+1, i.e., such that γ ′(0) · z �= 0. Letting
a be the least common multiple of a0, . . . , an , the curve given by

γ (t) = ((1+ t)a/a0 z0, . . . , (1+ t)a/an zn) ∈ L

has

γ ′(0) =
(

a

a0
z0, . . . ,

a

an
zn

)
,

and so

γ ′(0) · z =
∑

k

a

ak
|zk |2 > 0.

Exercise 4.6.2 It suffices to prove that for any point p ∈ U there is a point q ∈ U with all coordinates
rational and a rational r such that p ∈ C ⊆ U with C the closed ball with center q and
radius r . Since U is open, there is an ε > 0 such that the open ball with center p and
radius ε is within U . Since Qn ⊆ Rn is dense we may choose r ∈ Q and q ∈ Qn such that
|q − p| < r < ε/2.

Exercise 4.6.3 Let {Ci }i∈N be a countable collection of measure-zero sets, let ε < 0 and for each i ∈ N
choose a sequence of cubes {Ci j } j∈N with Ci ⊆⋃ j∈N Ci j and

∑
j∈N volume(Ci j ) < ε/2i .

Exercise 4.6.4 By Exercise 4.6.2 we may assume that C is contained in a closed ball contained in U . On
choosing ε > 0 small enough, a covering of C by closed balls {Ci } whose sum of volumes
is less than ε will also be contained in a closed ball K contained in U . Now, the mean value
theorem assures that there is a positive number M such that | f (a) − f (b)| ≤ M |a − b|
for a, b ∈ K . Hence, f sends closed balls of radius r into closed balls of radius Mr , and
f (C) is covered by closed balls whose sum of volumes is less than Mε.

Note the crucial importance of the mean value theorem. The corresponding statements
are false if we just assume our maps are continuous.

Exercise 4.6.6 Since [0, 1] is compact, we may choose a finite subcover. By excluding all subintervals
contained in another subinterval we can assure that no point in [0, 1] lies in more than two
subintervals (the open cover {[0, 1), (0, 1]} shows that 2 is attainable).

Exercise 4.6.7 It suffices to do the case where C is compact, and we may assume that C ⊆ [0, 1]n .
Let ε > 0. Given t ∈ [0, 1], let dt : C → R be given by dt (t1, . . . , tn) = |tn − t | and
let Ct = d−1

t (0). Choose a cover {Bt
i } of Ct by open cubes whose sum of volumes is

less than ε/2. Let Jt : Rn−1 → Rn be given by Jt (t1, . . . , tn−1) = (t1, . . . , tn−1, t) and
Bt = J−1

t (
⋃

i Bt
i ). Since C is compact and Bt is open, dt attains a minimum value mt > 0

outside Bt ×R, and so d−1
t (−mt ,mt ) ⊆ Bt × It , where It = (t −mt , t +mt )∩ [0, 1]. By

Exercise 4.6.6, there is a finite collection {t1, . . . , tk} ∈ [0, 1] such that the It j cover [0, 1]
and such that the sum of the diameters is less than 2. From this we get the cover of C by
rectangles {Bt j

i × It j } j=1,...,k,i∈N whose sum of volumes is less than ε = 2ε/2.
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Exercise 4.6.8 Use the preceding string of exercises.

Exercise 4.6.9 Let C ′ = C0 − C1. We may assume that C ′ �= ∅ (excluding the case m ≤ 1). If p ∈ C ′,
there is a nonzero partial derivative of f at p, and by permuting the coordinates, we may
equally well assume that D1 f (p) �= 0. By the inverse function theorem, the formula

x(q) = ( f1(q), q2, . . . , qm)

defines a chart x : V → V ′ in a neighborhood V of p, and it suffices to prove that g(K )
has measure zero, where g = f x−1 : V ′ → Rn and K is the set of critical points for g.
Now, g(q) = (q1, g2(q), . . . , gn(q)), and on writing gq1

k (q2, . . . , qm) = gk(q1, . . . , qm)

for k = 1, . . . , n, we see that since

Dg(q1, . . . , qm) =
[

1 0
? Dgq1(q2, . . . , qm)

]
the point (q1, . . . , qm) is a critical point for g if and only if (q2, . . . , qm) is a critical point
for gq1 . By the induction hypothesis, for each q1 the set of critical values for gq1 has
measure zero. By Fubini’s theorem (Exercise 4.6.7), we are done.

Exercise 4.6.10 The proof is similar to that of Exercise 4.6.9, except that the chart x is defined by

x(q) = (Dk1 . . . Dki f (q), q2, . . . , qm),

where we have assumed that

D1 Dk1 . . . Dki f (p) �= 0

(but, of course Dk1 . . . Dki f (p) = 0).

Exercise 4.6.11 By Exercise 4.6.2 U is a countable union of closed cubes (balls or cubes have the same
proof), so it suffices to show that f (K ∩ Ck) has measure zero, where K is a closed cube
with side s. Since all partial derivatives of order less than or equal to k vanish on Ck , Taylor
expansion gives that there is a number M such that

| f (a)− f (b)| ≤ M |a − b|k+1

for all a ∈ K ∩Ck and b ∈ K . Subdivide K into N m cubes {Ki j }i, j=1,...,N with sides s/N
for some positive integer. If a ∈ Ck ∩ Ki j , then f (Ki j ) lies in a closed ball centered at
f (a) with radius M(

√
m · s/N )k+1. Consequently, f (K ∩ Ck) lies in a union of closed

balls with volume sum less than or equal to

N m · 4π
(
M(
√

m · s/N )k+1
)n

3
= 4π

(
M(
√

m · s)k+1
)n

3
N m−n(k+1).

If nk ≥ m, this tends to zero as N tends to infinity, and we are done.

Exercise 4.6.12 This is done by induction on m. When m = 0, Rm is a point and the result follows. Assume
Sard’s theorem is proven in dimension less than m > 0. Then Exercises 4.6.8, 4.6.9, 4.6.10
and 4.6.11 together prove Sard’s theorem in dimension m.
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Exercise 4.7.2 It is clearly injective, and an immersion since it has rank 1 everywhere. It is not an
imbedding since R

∐
R is disconnected, whereas the image is connected.

Exercise 4.7.3 It is clearly injective, and an immersion since it has rank 1 everywhere. It is not an imbed-
ding since an open set containing a point z with |z| = 1 in the image must contain elements
in the image of the first summand.

Exercise 4.7.6 Let f : M0 → M1 and g : M1 → M2 be imbeddings. You need only verify that M0 →
g f (M0) is a homeomorphism and that for all p ∈ M0 the tangent map Tpg f = T f (p)gTp f
is an injection.

Exercise 4.7.7 If a/b is irrational then the image of fa,b is dense; that is, any open set on S1×S1 intersects
the image of fa,b.

Exercise 4.7.8 Show that it is an injective immersion homeomorphic to its image. The last property
follows since both the maps in

M −−−−→ i(M) −−−−→ j i(M)

are continuous and bijective and the composite is a homeomorphism.

Exercise 4.7.10 Prove that the diagonal M → M × M is an imbedding by proving that it is an immersion
inducing a homeomorphism onto its image. The tangent space of the diagonal at (p, p) is
exactly the diagonal of T(p,p)(M × M) ∼= Tp M × Tp M .

Exercise 4.7.11 Show that the map

f × g : M × L → N × N

is transverse to the diagonal (which is discussed in Exercise 4.7.10). Identifying tangent
spaces of products with products of tangent spaces, we must show that any (v1, v2) ∈
Tr N × Tr N , where r = f (p) = g(q), is of the form (Tp fw1, Tq gw2) + (w,w). This is
achieved by choosing w1 and w2 so that v2− v1 = Tq gw2− Tp fw1 (which is possible by
the transversality hypothesis) and letting w = v1 − Tp fw1. Finally, show that the inverse
image of the diagonal is exactly M ×N L .

Exercise 4.7.12 Since π is a submersion, Exercise 4.7.11 shows that E ×M N → N is smooth and that
E ×M N ⊆ E × N is a smooth submanifold. If (e, n) ∈ E ×M N , with π(e) = f (n) = m,
notice that the injection T(e,n)(E ×M N )→ T(e,n)(E × N ) ∼= Te E × Tn N factors as

T(e,n)(E ×M N )→ Te E ×Tm M Tn N ⊆ Te E × Tn N .

Hence the map T(e,n)(E ×M N ) → Te E ×Tm M Tn N is an injection, and – since the
dimensions agree – an isomorphism. Finally, the map T(e,n)(E ×M N ) → Tn N factors
as

T(e,n)(E ×M N ) ∼= Te E ×Tm M Tn N → Tn N ,

where the last map is the projection, which is surjective since Teπ : Te E → Tm M is.
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Exercise 5.1.4 For the first case, you may assume that the regular value in question is 0. Since zero is
a regular value, the derivative in the “fiber direction” must be nonzero, and so the values
of f are positive on one side of the zero section . . . but there IS no “one side” of the zero
section! This takes care of all one-dimensional cases, and higher-dimensional examples are
excluded since the map won’t be regular if the dimension increases.

Exercise 5.2.4 See the next exercise. This refers the problem away, but the same information helps you
out on this one too!

Exercise 5.2.5 This exercise is solved in the smooth case in Exercise 5.3.15. The only difference in the
continuous case is that you delete every occurrence of “smooth” in the solution. In partic-
ular, the solution refers to a “smooth bump function φ : U2 → R such that φ is one on
(a, c) and zero on U2 \ (a, d)”. This can in our case be chosen to be the (non-smooth) map
φ : U2 → R given by

φ(t) =

⎧⎪⎨⎪⎩
1 if t ≤ c

(d − t)/(d − c) if c ≤ t ≤ d

0 if t ≥ d.

Exercise 5.3.10 By Lemma 5.2.2 the transition functions are smooth if and only if the bundle chart trans-
formations are smooth, and the smooth structure on E provided by Lemma 5.3.8 is exactly
such that the bundle chart transformations are smooth.

Exercise 5.3.13 Check locally by using charts: if (h,U ) is a bundle chart, then the resulting square

E |U h−−−−→∼= U × Rk

aE

⏐⏐� idU×a·
⏐⏐�

E |U h−−−−→∼= U × Rk

commutes.

Exercise 5.3.14 Modify your solution to Exercise 5.2.4 so that it uses only smooth functions, or use parts
of the solution of Exercise 5.3.15.

Exercise 5.3.15 Let π : E → S1 be a one-dimensional smooth line bundle. Since S1 is compact we
may choose a finite bundle atlas, and we may remove superfluous bundle charts, so
that no domain is included in another. We may also assume that all chart domains are
connected. If there is just one bundle chart, we are finished; otherwise we proceed as
follows. If we start at some point, we may order the charts, so that they intersect in a
nonempty interval (or a disjoint union of two intervals if there are exactly two charts).
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Consider two consecutive charts (h1,U1) and (h2,U2), and let (a, b) be (one of the
components of) their intersection. The transition function

h12 : (a, b)→ R \ {0} ∼= GL1(R)

must take either just negative or just positive values. On multiplying h2 by the sign of h12
we get a situation where we may assume that h12 always is positive. Let a < c < d < b,
and choose a smooth bump function φ : U2 → R such that φ is one on (a, c) and zero on
U2 \ (a, d). Define a new chart (h′2,U2) by letting

h′2(t) =
(
φ(t)

h12(t)
+ 1− φ(t)

)
h2(t)

(since h12(t) > 0, the factor by which we multiply h2(t) is never zero). On (a, c) the
transition function is now constantly equal to one, so if there were more than two charts
we could merge our two charts into a chart with chart domain U1 ∪U2.

So we may assume that there are just two charts. Then we may proceed as above on one
of the components of the intersection between the two charts, and get the transition function
to be the identity. But then we would not be left with the option of multiplying with the
sign of the transition function on the other component. However, by the same method, we
could make it plus or minus one, which exactly correspond to the trivial bundle and the
unbounded Möbius band.

Exactly the same argument shows that there are exactly two isomorphism types of rank-n
smooth vector bundles over S1 (using that GLn(R) has exactly two components). The same
argument also gives the corresponding topological fact.

Exercise 5.4.4 Use the chart domains on RPn from the manifold section,

U k = {[p] ∈ RPn | pk �= 0},
and construct bundle charts π−1(U k)→ U k×R sending ([p], λp) to ([p], λpk). The chart
transformations then should look something like

([p], λ) 
→
(
[p], λ pl

pk

)
.

If the bundle were trivial, then ηn \σ0(RPn)would be disconnected. In particular, ([e1], e1)

and ([e1],−e1) would be in different components. But γ : [0, π ] → ηn \ σ0(RPn) given
by

γ (t) = ([cos(t)e1 + sin(t)e2], cos(t)e1 + sin(t)e2)

is a path connecting them.

Exercise 5.4.5 You may assume that p = [0, . . . , 0, 1]. Then any point [x0, . . . , xn−1, xn] ∈ X equals
[x/|x |, xn/|x |] since x = (x0, . . . , xn−1) must be different from 0. Consider the map

X → ηn−1,

[x, xn] 
→
([

x

|x |
]
,

xn x

|x |2
)

with inverse ([x], λx) 
→ [x, λ].



Chapter 5 225

Exercise 5.4.6 Let π : E → X be the projection and B be the bundle atlas of the first pre-vector bundle,
and correspondingly for the other. The first requirement is that f̃ must induce a linear
map on each fiber. This implies that f (π(v)) = π ′( f̃ (v)) gives a well-defined function
f : X → X ′, and we must require that it is continuous. Lastly, for any bundle charts
(h,U ) ∈ B, (h′,U ′) ∈ B′ we must have that the function U × Rk → U ′ × Rk′ sending
(p, v) to h′ f̃ h−1(p, v) is continuous.

Exercise 5.5.9 View S3 as the unit quaternions, and copy the argument for S1.

Exercise 5.5.10 A Lie group is a smooth manifold equipped with a smooth associative multiplication,
having a unit and possessing all inverses, so the proof for S1 will work.

Exercise 5.5.14 If we set z j = x j + iy j , x = (x0, . . . , xn) and y = (y0, . . . , yn), then
∑n

i=0 z2 = 1 is
equivalent to x · y = 0 and |x |2−|y|2 = 1. Use this to make an isomorphism to the bundle
in Example 5.5.11 sending the point (x, y) to (p, v) = (x/|x |, y) (with inverse sending
(p, v) to (x, y) = (√1+ |v|2 p, v)).

Exercise 5.5.16 Explicitly, if s1, s2 ∈ R and σ1, σ2 ∈ X (M) one observes that s1σ1 + s2σ2 : M → T M
given by (s1σ1 + s2σ2)(p) = s1σ1(p) + s2σ2(p) ∈ Tp M is smooth. More generally,
if f1, f2 ∈ C∞(M), then we define f1σ1 + f2σ2 : M → T M by ( f1σ1 + f2σ2)(p) =
f1(p)σ1(p)+ f2(p)σ2(p) ∈ Tp M .

Exercise 5.5.17 Using the global trivialization of T M → M , we may identify X (M) with the space of
sections of the product bundle M ×Rn → M . A section of the product bundle is uniquely
given by a map M → Rn to the fiber, which is the same as an n-tuple of functions M → R.

Exercise 5.5.18 Identify T Sn → Sn with the bundle

E = {(p, v) ∈ Sn × Rn+1 | p · v = 0} → Sn,

consider the map

{σ ∈ C∞(Sn,Rn+1) | p · σ(p) = 0} × C∞(Sn)→ C∞(Sn,Rn+1)

sending (σ, f ) to p 
→ σ(p)+ f (p)p and use Exercise 2.6.6.

Exercise 5.5.19 Consider the isomorphism

T Sn ∼= {(p, v) ∈ Sn × Rn+1 | p · v = 0}.
Any path γ̄ in RPn through [p] lifts uniquely to a path γ through p and to the
corresponding path −γ through −p.
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Exercise 5.5.20 By Corollary 5.5.13 we identify T O(n) with

E =

⎧⎪⎪⎨⎪⎪⎩(g, A) ∈ O(n)× Mn(R)

∣∣∣∣∣∣∣∣
g = γ (0)
A = γ ′(0)

for some curve
γ : (−ε, ε)→ O(n)

⎫⎪⎪⎬⎪⎪⎭ .
That γ (s) ∈ O(n) is equivalent to saying that I = γ (s)Tγ (s). This holds for all s ∈
(−ε, ε), so we may derive this equation and get

0 = d

ds

∣∣∣∣
s=0

(
γ (s)Tγ (s)

)
= γ ′(0)Tγ (0)+ γ (0)Tγ ′(0)
= ATg + gT A.

Exercise 5.5.22 Use the trivialization to pass the obvious solution on the product bundle to the tangent
bundle.

Exercise 5.5.23 Any curve to a product is given uniquely by its projections to the factors.

Exercise 5.5.25 Let x : U → U ′ be a chart for M . Show that the assignment sending an element
(q, v1, v2, v12) ∈ U ′ × Rn × Rn × Rn to

[t 
→ [s 
→ x−1(q + tv1 + sv2 + stv12)]] ∈ T (T U )

gives an isomorphism

U ′ × Rn × Rn × Rn ∼= T (T U ),

so that all elements in T (T M) are represented by germs of surfaces. Check that the
equivalence relation is the one given in the exercise so that the resulting isomorphisms
T (T U ) ∼= E |U give smooth bundle charts for E .

Exercise 5.6.1 Check that each of the pieces of the definition of a pre-vector bundle is accounted
for.

Exercise 5.6.6 Choose a chart (x,U ) with p ∈ U and write out the corresponding charts on T ∗M and
T ∗(T ∗M) to check smoothness. It may be that you will find it easier to think in terms of
the “dual bundle” (T M)∗ rather than the isomorphic cotangent bundle T ∗M and avoid the
multiple occurrences of the isomorphism α, but strictly speaking the dual bundle will not
be introduced until Example 6.4.8.
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Exercise 6.1.4 As an example, consider the open subset U 0,0 = {eiθ ∈ S1 | cos θ > 0}. The bundle chart
h : U 0,0 × C → U 0,0 × C is given by sending (eiθ , z) to (eiθ , e−iθ/2z). Then h((U 0,0 ×
C) ∩ η1) = U 0,0 × R. Continue in this way all around the circle.

The idea is the same for higher dimensions: locally you can pick the first coordinate
to be on the line [p]. For future reference we give explicit charts. Let {e0, . . . , en} be the
standard basis for Rn+1. Given p ∈ Rn+1 with pk �= 0, consider the basis {ẽ j } with
ẽk = (pk/|pk p|)p and ẽ j = e j − (e j · ẽk)ẽk for k �= j . If v ∈ Rn+1, we see that
v · ẽk = pkv · p/|pk p| and v · ẽ j = v j − p jv · p/|p|2 for k �= j . We write h[p]v =
(v · ẽ0, . . . , v · ẽn) and notice that h[p] is a linear isomorphism depending smoothly on
[p] ∈ U k . Furthermore, h[p] induces an isomorphism between the line [p] and the line
[ek]. This allows us to give RPn × Rn+1 → RPn , the bundle chart over U k ⊆ RPn ,
sending ([p], v) ∈ U k × Rn+1 to ([p], h[p]v) ∈ U k × Rn+1, displaying (after permuting
coordinates so that the kth coordinate becomes the first) ηn as a smooth subbundle of the
product bundle. Note that the smooth structure on ηn agrees with the standard one.

Exercise 6.1.11 Let Xk = {p ∈ X | rkp f = k}. We want to show that Xk is both open and closed, and
hence either empty or all of X since X is connected.

Let P = {A ∈ Mm(R) | A = A2}, i.e., the space of all projections. If A ∈ P , then
the column space is the eigenspace corresponding to the eigenvalue 1 and the orthogonal
complement is the eigenspace of the eigenvalue 0. Consequently,

Pk = {A ∈ P | rk A = k}
= P ∩ {A|rk A ≥ k} ∩ {A | rk(A − I ) ≥ n − k}

is open in P . However, given a bundle chart (h,U ), the map

U
p 
→h p f ph−1

p−−−−−−−→ P

is continuous, and hence U ∩ Xk is open in U . By varying (h,U ) we get that Xk is open,
and hence also closed since Xk = X \⋃i �=k Xi .

Exercise 6.1.12 Use Exercise 6.1.11 to show that the bundle map 1
2 (idE − f ) has constant rank (here we

use that the set of bundle morphisms is in an obvious way a vector space).

Exercise 6.1.13 Identifying T R with R × R in the usual way, we see that f corresponds to (p, v) 
→
(p, p · v), which is a nice bundle morphism, but∐

p

ker{v 
→ pv} = {(p, v) | p · v = 0}

and ∐
p

Im{v 
→ pv} = {(p, pv)}

are not subbundles.
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Exercise 6.1.14 The tangent map T f : T E → T M is locally the projection U ×Rk ×Rn ×Rk → U ×Rn

sending (p, u, v, w) to (p, v), and so has constant rank. Hence Corollary 6.1.10 gives that
V = ker{T f } is a subbundle of T E → E .

Exercise 6.2.5 A ×X E = π−1(A).

Exercise 6.2.6 This is not as complex as it seems. For instance, the map Ẽ → f ∗E = X ′ ×X E must send
e to (π̃(e), g(e)) for the diagrams to commute.

Exercise 6.2.7 This follows abstractly from the discussed properties of the induced bundle, but explicitly
f ∗g is given by 1× f : Y ×X E → Y ×X F .

Exercise 6.2.8 By Exercise 6.2.7 it suffices to consider the trivial case of the product bundle, but the
general case is not much harder: if h : E → X×Rn is a trivialization, then the map f ∗E =
Y×X E → Y×X (X×Rn) induced by h is a trivialization, since Y×X (X×Rn)→ Y×Rn

sending (y, (x, v)) to (y, v) is a homeomorphism.

Exercise 6.2.9 X ×Y (Y ×Z E) ∼= X ×Z E .

Exercise 6.2.10 The map

E \ σ0(X)→ π∗0 E = (E \ σ0(X))×X E

sending v to (v, v) is a nonvanishing section.

Exercise 6.3.4 The transition functions will be of the type U → GLn1+n2(R), which sends p ∈ U to the
block matrix [

(h1)p(g1)
−1
p 0

0 (h2)p(g2)
−1
p

]
,

which is smooth if each of the blocks is smooth. More precisely, the transition function is
a composite of three smooth maps:

(1) the diagonal U → U ×U ,
(2) the product

U ×U −−−→ GLn1(R)× GLn2(R)

of the transition functions, and
(3) the block sum

(A, B) 
→
[

A 0
0 B

]
,

namely

GLn1(R)× GLn2(R) −→GLn1+n2(R).

Similarly for the morphisms.
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Exercise 6.3.6 Use the map ε → Sn × R sending (p, λp) to (p, λ).

Exercise 6.3.8 Consider T Sn ⊕ ε, where ε is gotten from Exercise 6.3.6. Construct a trivialization
T Sn ⊕ ε → Sn × Rn+1.

Exercise 6.3.9
ε1 ⊕ ε2

h1⊕h2−−−−→∼= X × (Rn1 ⊕ Rn2)

and

(E1 ⊕ E2)⊕ (ε1 ⊕ ε2) ∼= (E1 ⊕ ε1)⊕ (E2 ⊕ ε2).

Exercise 6.3.10 Given f1 and f2, let f : E1 ⊕ E2 → E3 be given by sending (v,w) ∈ π−1
1 (p)⊕ π−1

2 (p)

to f1(v)+ f2(w) ∈ π−1
3 (p). Given f , let f1(v) = f (v, 0) and f2(w) = f (0, w).

Exercise 6.4.4 Send the bundle morphism f to the section which to any p ∈ X assigns the linear map
f p : E p → E ′p.

Exercise 6.4.5 For the bundle morphisms, you need to extend the discussion in Example 6.4.3 slightly
and consider the map Hom(V1, V2)×Hom(V3, V4)→ Hom(Hom(V2, V3),Hom(V1, V4))

obtained by composition.

Exercise 6.4.6 The isomorphism R ∼= Hom(L p, L p) given by sending a ∈ R to multiplication by a
extends to an isomorphism X × R ∼= Hom(L , L). You will need to use the fact that
multiplication in R is commutative.

As a matter of fact, by commutativity, the obvious atlas for Hom(L , L)→ X has trivial
transition functions: if (g,U ) and (h, V ) are two bundle charts for L → X , then the corre-
sponding transition function for Hom(L , L)→ X is the map U ∩ V → GL(Hom(R,R))
sending p to Hom(h pg−1

p , gph−1
p ) = { f 
→ gph−1

p f h pg−1
p = f } (i.e., the identity

element, regardless of p).

Exercise 6.4.7 Let F ⊆ E be a rank-k subbundle of the rank-n vector bundle π : E → X . Define as a set

E/F =
∐
p∈X

E p/Fp

with the obvious projection π̄ : E/F → X . The bundle atlas is given as follows. For p ∈
X , choose a bundle chart h : π−1(U )→ U×Rn such that h(π−1(U )∩F) = U×Rk×{0}.
On each fiber this gives a linear map on the quotient h̄ p : E p/Fp → Rn/Rk × {0} via the
formula h̄ p(v̄) = h p(v) as in Section 6.4.1(2). This gives a function

h̄ : (π̄)−1(U ) =
∐
p∈U

E p/Fp

→
∐
p∈U

Rn/Rk × {0}

∼= U × Rn/Rk × {0}
∼= U × Rn−k .
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You then have to check that the transition functions p 
→ ḡph̄−1
p = gph−1

p are continuous
(or smooth).

Insofar as the map of quotient bundles is concerned, this follows similarly: define it on
each fiber and check continuity of “up, over and down”.

Exercise 6.4.9 Just write out the definition.

Exercise 6.4.10 First recall the local trivializations we used to define the tangent and cotangent bundles.
Given a chart (x,U ) for M , we have trivializations

(T M)U ∼= U × Rn

sending [γ ] ∈ Tp M to (γ (0), (xγ )′(0)) and

(T ∗M)U ∼= U × (Rn)∗

sending dφ ∈ T ∗p M to (p, D(φx−1)(x(p))·) ∈ U×(Rn)∗. The bundle chart for the tangent
bundle has inverse

U × Rn ∼= (T M)U

given by sending (p, v) to [t 
→ x−1(x(p) + vt)] ∈ Tp M , which gives rise to the bundle
chart

(T M)∗U ∼= U × (Rn)∗

on the dual, sending f ∈ (Tp M)∗ to

(p, v) 
→ f ([t 
→ x−1(x(p)+ vt)]).
The exercise is (more than) done if we show that the diagram

(T ∗M)U
dφ 
→{[γ ]
→(φγ )′(0)}−−−−−−−−−−−−→ (T M)∗U

∼=
⏐⏐� ∼=

⏐⏐�
U × (Rn)∗ U × (Rn)∗

commutes, which it does since, if we start with dφ ∈ T ∗p M in the upper left-hand cor-

ner, we end up with D(φx−1)(x(p))· either way (check that the derivative at t = 0 of
φx−1(x(p)+ vt) is D(φx−1)(x(p)) · v).

Exercise 6.4.11 The procedure is just as for the other cases. Let SB(E) = ∐p∈X SB(E p). If (h,U ) is a

bundle chart for E → X define a bundle chart SB(E)U → U × SB(Rk) ∼= U ×Rk(k−n)/2

by means of the composite

SB(E)U
∐

p∈U SB(E p)∐
SB(h−1

p )

⏐⏐�
U × SB(Rk)

∐
p∈U SB(Rk).
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Explicitly, the transition function takes the form

U → GLkR→ GL(SB(Rk)),

where the first map is the corresponding transition function for E and the last map sends an
invertible matrix A to the linear isomorphism sending a symmetric bilinear f : Rk×Rk →
R to the composite

Rk × Rk A×A �� Rk × Rk f �� R,

which depends polynomially, and hence smoothly, on the entries in A (to be totally sure,
write it out in a basis for SB(Rk)).

Exercise 6.4.13 Altk(E) =∐p∈X Altk E p and so on.

Exercise 6.4.14 The transition functions on L → M are maps into nonzero real numbers, and on the tensor
product this number is squared, and so all transition functions on L ⊗ L → M map into
positive real numbers.

Exercise 6.5.5 Prove that the diagonal M → M × M is an imbedding by proving that it is an immersion
inducing a homeomorphism onto its image. The tangent space of the diagonal at (p, p) is
exactly the diagonal of T(p,p)(M × M) ∼= Tp M × Tp M . For any vector space V , the quo-
tient space V × V/diagonal is canonically isomorphic to V via the map given by sending
(v1, v2) ∈ V × V to v1 − v2 ∈ V .

Exercise 6.5.6 Consider the tautological line bundle η1 → S1 as the subbundle of the trivial bundle given
by

{(eiθ , teiθ/2) ∈ S1 × C | t ∈ R} ⊆ S1 × C

as in Example 6.1.3. Then η1 → η⊥1 sending (p, q)→ (p, iq) is an isomorphism, and so
we get an isomorphism η1 ⊕ η1 ∼= η1 ⊕ η⊥1 ∼= S1 × C.

Exercise 6.6.11 It is easiest to do this in the angle charts and plot the vectors displayed in Exam-
ple 6.6.10. Different choices will give different “windows” as in the original robot example
in Section 1.1.

Exercise 6.7.1 The conditions you need are exactly the ones fulfilled by the elementary definition of the
determinant: check your freshman introduction.

Exercise 6.8.1 Check out, e.g., page 59 of [16].

Exercise 6.8.2 Check out, e.g., page 60 of [16].
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Exercise 7.1.4 Check the two defining properties of a flow. As an aside: this flow could be thought of
as the flow R × C → C sending (t, z) to z−1e−t/2, which obviously satisfies the two
conditions.

Exercise 7.1.9 Symmetry (�(0, p) = p) and reflexivity (�(−t,�(t, p)) = p) are obvious, and
transitivity follows since if

pi+1 = �(ti , pi ), i = 0, 1

then

p2 = �(t1, p1) = �(t1,�(t0, p0)) = �(t1 + t0, p0).

Exercise 7.1.11 (i) Flow lines are constant. (ii) All flow lines outside the origin are circles. (iii) All flow
lines outside the origin are rays flowing towards the origin.

Exercise 7.1.17 Note that, since �s is a diffeomorphism and T�s φ̇p(0) = T�s[φp] = φ̇p(s), the velocity
vector φ̇p(s) is either zero for all s or never zero at all.

If φ̇p(s) = 0 for all s, this means that φp is constant since if (x,U ) is a chart with
φp(s0) ∈ U we get that (xφp)

′(s) = 0 for all s close to s0, hence xφp(s) is constant for all
s close to s0 giving that φp is constant.

If φ̇p(s) = Tφp[Ls] is never zero we get that Tφp is injective ([Ls] �= 0 ∈ TsR ∼= R),
and so φp is an immersion. To conclude we must treat the case where φp is not injective,
i.e., there are numbers s < s′ with φp(s) = φp(s′). This means that

p = φp(0) = �(0, p) = �(−s + s, p)

= �(−s,�(s, p)) = �(−s, φp(s))

= �(−s, φp(s
′)) = �(−s + s′, p)

= φp(−s + s′).

Since φp is continuous φp
−1(p) ⊆ R is closed and not empty (it contains 0 and−s+s′ > 0

among others). As φp is an immersion it is a local imbedding, so there is an ε > 0 such
that

(−ε, ε) ∩ φp
−1(p) = {0}.

Hence the set

S = {t > 0 | p = φp(t)} = {t ≥ ε | p = φp(t)}
is closed and bounded below. This means that there is a smallest positive number T such
that φp(0) = φp(T ). Clearly φp(t) = φp(t + kT ) for all t ∈ R and any integer k.

On the other hand, we get that φp(t) = φp(t ′) only if t − t ′ = kT for some integer k.
For, if (k−1)T < t− t ′ < kT , then φp(0) = φp(kT −(t− t ′))with 0 < kT −(t− t ′) < T ,
contradicting the minimality of T .
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Exercise 7.1.20 Consider one of the “bad” injective immersions that fail to be imbeddings, and force a
discontinuity on the velocity field.

Exercise 7.2.3 Consider a bump function φ on the sphere which is 1 near the North pole and 0 near

the South pole. Consider the vector field
→
� = φ

→
�N + (1 − φ)

→
�S . Near the North pole

→
� = →

�N and near the South pole
→
� = →

�S , and so the flow associated with
→
� has the

desired properties (that t is required to be small ensures that we do not flow from one pole
to another).

Exercise 7.2.4 The vector field associated with the flow

� : R× (S1 × S1)→ (S1 × S1)

given by �(t, (z1, z2)) = (eiat z1, eibt z2) exhibits the desired phenomena on varying the
real numbers a and b.

Exercise 7.2.5 All we have to show is that X is the velocity field of �. Under the diffeomorphism

T O(n)→ E,

[γ ] → (γ (0), γ ′(0))

this corresponds to the observation that

∂

∂s

∣∣∣∣
s=0

�(s, g) = g A.

Exercise 7.3.10 Do a variation of Example 7.3.4.

Exercise 7.4.3 There is no hint other than use the definitions!

Exercise 7.4.4 Use the preceding exercise: notice that TπMξ = πT Mξ is necessary for things to make
sense since γ̈ had two repeated coordinates.

Exercise 7.4.7 Insofar as the isomorphism F ∼= T T Sn is concerned, note that a curve t 
→ (p(t), v(t))
in E must satisfy p(t) · p(t) = 1 and p(t) · v(t) = 0, which upon differentiation gives
2p(t) · p′(t) = p′(t) · v(t)+ p(t) · v′(t) = 0. Evaluating at t = 0 gives exactly |p(0)| = 1,
p(0) · v(0) = p(0) · p′(0) = p′(0) · v(0) + p(0) · v′(0) = 0. The curve γ is a solution
curve to ξ since γ (0) = p, γ ′(0) = v and γ ′′(t) = −|v|2γ (t).
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Exercise 7.4.8 It suffices to check (TπM )ξ = idT M locally, so we may assume M = Rn . Under the
identifications T Rn ∼= Rn × Rn and T T Rn ∼= Rn × Rn × Rn × Rn of Exercise 7.4.3
the second-order differential equation ξi corresponds to (p, v) 
→ (p, v, v, fi (p, v)) for
i = 1, 2, and s1ξ1 + s2ξ2 to

(p, v) 
→ s1(p, v, v, f1(p, v))+ s2(p, v, v, f2(p, v))

= (p, v, s1v + s2v, s1 f1(p, v)+ s2 f2(p, v))

= (p, v, v, s1 f1(p, v)+ s2 f2(p, v)).

Chapter 8

Exercise 8.2.3 Consider a partition of unity {φi }i∈N as displayed in the proof of Theorem 8.2.2 where
supp(φ) = x−1

i En(2) for a chart (xi ,Ui ) for each i . Let fi be the composite

En(2)
∼=−→ x−1

i (En(2)) = supp(φi )
f |supp(φi )−−−−−→ R

and choose a polynomial gi such that | fi (x) − gi (x)| < ε for all x ∈ En(2). Let g(p) =∑
i φi (p)gi (xi (p)), which gives a well-defined and smooth map. Then

| f (p)− g(p)| = |
∑

i

φi (p)( f (p)− gi (xi (p)))|

= |
∑

i

φi (p)( fi (xi (p))− gi (xi (p)))|

≤
∑

i

φi (p)| fi (xi (p))− gi (xi (p))|

<
∑

i

φi (p)ε = ε.

Exercise 8.2.4 By Exercise 6.4.14, all the transition functions U ∩ V → GL1(R) in the associated bundle
atlas on the line bundle L ⊗ L → M have values in the positive real numbers. So let us
prove the following more general statement.

Lemma Let L → M be a smooth line bundle with a smooth atlas such that all transition
functions have positive values. Then L → M is trivial.

Proof. Choose a partition of unity {φi }i∈N subordinate to this atlas. For each i ∈ N,
choose a bundle chart (hi ,Ui ) such that suppφi ⊆ Ui . Define h : L → M × R by
h(p, e) = (p,

∑
i φi (p)hi

p(e)). We check whether (h,M) is a bundle chart in the max-

imal atlas by checking that, for each j , the transition function hU j (h j )−1 is smooth and a
linear isomorphism on each fiber. For p ∈ U j ,

h p(h
j
p)
−1 =

∑
i

φi (p)h
i
p(h

j
p)
−1,

so smoothness and linearity are assured. Since hi
p(h

j
p)
−1 corresponds to multiplying by a

positive number, this convex combination does too, and so hU j (h j )−1 is an isomorphism
on each fiber. Hence L → M is trivial. �
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Exercise 8.2.8 In the space of all vector fields on T M , the property of being a second-order differential
equation is convex (see Exercise 7.4.8) and the spray property is linear. To see the linearity
of the spray condition it suffices to implement it locally and assume M = Rn . Under the
identifications T Rn ∼= Rn × Rn and T T Rn ∼= Rn × Rn × Rn × Rn of Exercise 7.4.3
the spray condition on a vector field ξ : T M → T T M corresponds to saying that the
associated function

(p, v) 
→ (p, v, f1(p, v), f2(p, v))

must satisfy f1(p, sv) = s f1(p, v) and f2(p, sv) = s2 f2(p, v) for all s ∈ R. If (p, v) 
→
(p, v, g1(p, v), g2(p, v)) represents another such spray and s1, s2 ∈ R, then s1 fi (p, sv)+
s2gi (p, sv) = si (s1 fi (p, v)+ s2gi (p, v)) for i = 1, 2.

All in all, the conditions the sprays have to satisfy are convex and so can be glued
together (c.f. the proof of existence of fiber metrics Theorem 8.3.1 in the next sec-
tion). Choose a countable atlas {(xi ,Ui )} and a partition of unity {φi } subordinate to
{Ui }. For each i , choose any spray ξi : T Ui → T T Ui (e.g., the one associated with
(p, v) 
→ (p, v, v, 0)) and let

ξ =
∑

i

φiξi : T M → T T M,

which by convexity is a spray.

Exercise 8.2.10 Let us do it directly from the definitions! Recall the vector field
→
L : R → T R given

by
→
L (r) = [t 
→ r + t]. Observe that T s

→
L (r) = [t 
→ sr + st] = s

→
L (sr). Then

γ̇s(r) = T γs
→
L (r) = T γ T s

→
L (r) = T γ s

→
L (sr) = s T γ

→
L (sr) = sγ̇ (sr), so that γ̇s(0) =

sγ̇ (0). Finally, γ̈s = T γ̇s
→
L = T (sT γ

→
L s)
→
L = T s T T γ T

→
L T s

→
L = T s T T γ T

→
L s
→
L s =

T ssT T γ T
→
L
→
L s = T ssγ̈ s = T ssξ γ̇ s = ξsγ̇ s = ξ γ̇s .

Exercise 8.2.11 The thing to check is that T is an open neighborhood of the zero section.

Exercise 8.2.12 In the notation introduced in Exercise 7.4.7, if s ∈ R, the map s : T Sn → T Sn corresponds
to the map E → E sending (p, v) to (p, sv), and the maps s, T s : T T Sn → T T Sn corre-
spond to the maps F → F sending (p, v1, v2, v3) to (p, v1, sv2, sv3) and (p, sv1, v2, sv3).
Since ξ corresponds to the map E → F sending (p, v) to (p, v, v,−|v|2 p), both ξs and
T s (sξ) correspond to sending (p, v) to (p, sv, sv, s2(−|v|2 p)).

The formula for the exponential now follows by flowing along the solution curve for a
time t = 1.

Exercise 8.3.5 Use Lemma 6.6.13 to show that the bundle in question is isomorphic to (T Rn)|M → M .

Exercise 8.3.6 You have done this exercise before!
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Exercise 8.3.7 Analyzing Hom(ηn, η
⊥
n ) we see that we may identify it with the set of pairs (L , α : L →

L⊥), where L ∈ RPn and α a linear map. On the other hand, Exercise 5.5.19 identifies
T RPn with {(p, v) ∈ Sn × Rn+1 | p · v = 0}/(p, v) ∼ (−p,−v). This means that we
may consider the bijection Hom(ηn, η

⊥
n ) → T RPn given by sending (L , α : L → L⊥)

to ±(p, α(p)), where ±p = L ∩ Sn . This bijection is linear on each fiber. Check that it
defines a bundle morphism by considering trivializations over the standard atlas for RPn .

Exercise 8.3.8 By Exercise 6.4.6 the Hom-bundle Hom(ηn, ηn)→ RPn is trivial, so by Exercise 6.4.5 we
have an isomorphism

T RPn ⊕ ε ∼= Hom(ηn, η
⊥
n )⊕ Hom(ηn, ηn).

By the natural isomorphism

Hom(E, F)⊕ Hom(E, F ′) ∼= Hom(E, F ⊕ F ′),

the latter bundle is isomorphic to Hom(ηn, η
⊥
n ⊕ ηn), which is isomorphic to

Hom(ηn, ε ⊕ · · · ⊕ ε)
since η⊥n ⊕ ηn is trivial. By the same argument, we get an isomorphism to

Hom(ηn, ε ⊕ · · · ⊕ ε) = η∗n ⊕ · · · ⊕ η∗n .
Now, choosing a fiber metric, we get an isomorphism η∗n ∼= ηn and we are done.

Insofar as the last question is concerned, observe that RP3 ∼= SO(3) is parallelizable and
that the induced bundle of a trivial bundle is trivial.

Exercise 8.3.9 The module structure C∞(M) × �(E) → �(E) sends ( f, σ ) to the section p 
→
f (p) · σ(p) (scalar multiplication in the fiber). If E → M is a subbundle of a product
bundle T = M × RN → M , observe that we have an isomorphism of vector bundles
T ∼= E ⊕ T/E and so a C∞(M)-isomorphism C∞(M)×N ∼= �(T ) ∼= �(E) ⊕ �(T/E),
i.e., �(E) is a direct summand of a C∞(M)-free module (which is one characterization of
being projective).

Exercise 8.4.9 Given a positive function f , it is equivalent that f and its square g = f · f are Morse,
and if they are Morse the indices agree: the Hessian of g will contain both first and second
derivatives of f , but at a critical point p the first derivatives vanish and all that remains is
2 f (p) (which is a positive number) times the Hessian of f at p.

Using angle charts g is given by g(eiθ , eiφ) = 11− 6 cos θ − 6 cosφ+ 2 cos(θ −φ) and
the Hessian is [

6 cos θ − 2 cos(θ − φ) 2 cos(θ − φ)
2 cos(θ − φ) 6 cosφ − 2 cos(θ − φ)

]
.

Upon inserting the critical points (i.e., (θ, φ) equal to (0, 0), (π, π), (0, π) and (π, 0) with
corresponding critical values 1, 5, 3 and 3) we get the matrices[

4 2
2 4

]
,

[−8 2
2 −8

]
,

[
8 −2
−2 −8

]
,

[−4 −2
−2 4

]
.

The numbers of negative eigenvalues of these matrices (and hence the indices of g) are 0,
2, 1 and 1, respectively.
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Exercise 8.4.10 We have f ′(t) = 4t3 − 2at and f ′′(t) = 12t2 − 2a. The critical points are t = 0, and
possibly ±√a/2, which we insert into f ′′ and get −2a and (possibly, twice) 4a. Hence, f
is Morse iff a �= 0.

Exercise 8.4.13 The charts around interior points are inherited from M by intersection. At the boundary
Theorem 4.4.3 guarantees us charts in M where f −1(a) is cut out by Rn−1 × {0} ⊆ Rn .
By continuity Ma will occupy either the upper or the lower half space.

Exercise 8.5.3 If s : M → E is a nonvanishing vector field, then m 
→ s(m)/|s(m)| is a section of
S(E)→ M .

Exercise 8.5.4 Let i : Sn−1 ⊆ Rn be the inclusion and let (x,U ) be shorthand for the chart (x0,0,U 0,0)

in the standard atlas on Sn−1 (given by the projection to the last n − 1 coordinates). If
φ : Sn−1 → Sn−1 is a diffeomorphism, then the Jacobi matrix D(iφx−1)(0) ∈ Mn×(n−1)R
has linearly independent columns lying in the orthogonal complement of iφx−1(0). Hence,
the n × n matrix M(φ) = [iφx−1(0) D(iφx−1)(0)] is invertible. Also, note that, if A ∈
O(n) is considered as a diffeomorphism of the sphere, then the chain rule (and the fact that
the Jacobi matrix D A(p) = A is independent of p) gives that M(Aφ) = A · M(φ).

Choose a bundle atlas A for π : E → M with all transition functions mapping to O(n).
Let (h,U ) ∈ A, and define h′ : EU → U × Rn as h′(p, v) = (p,M(h p f −1

p )−1h pv).

Since h′ph−1
p = M(h p f −1

p )−1 ∈ GLnR depends smoothly on p (check this!), (h′,U ) is a
bundle chart in the maximal smooth bundle atlas. Given another (g, V ) ∈ A, the transition
function for (h′,U ) and (g′, V ) is

p 
→ g′p(h′p)−1 = M(gp f −1
p )−1gph−1

p M(h p f −1
p )

=M(gp f −1
p )−1 M(gph−1

p h p f −1
p ) = id.

Hence, {(h′,U )}(h,U )∈A is a smooth bundle atlas whose transition functions are constant
and equal to the identity matrix, proving that our bundle is trivial.

Exercise 8.5.5 Let π : E → M be a locally trivial smooth fibration with M a connected nonempty smooth
manifold. Choose a p ∈ M and let F = π−1(p). Consider the set

U = {x ∈ M |π−1(x) ∼= F},
and let V be the complement. We will show that both U and V are open, and so U = M
since p ∈ U and M is connected. If x ∈ U choose a trivializing neighborhood x ∈ W ,

h : π−1(W )→ W × π−1(x).

Now, if y ∈ W , then h induces a diffeomorphism between π−1(y) and π−1(x) ∼= F , so U
is open. Likewise for V .

Exercise 8.5.7 Let f : E → M be a locally trivial fibration with compact fibers. Assume M is connected
and let K ⊆ M be compact. Let (x1,U1), . . . , (xk,Uk) be charts from a good atlas such
that K ⊆⋃k

i=1 Ei , where Ei = x−1
i En(1), and such that f is trivial when restricted to Ui .

Since f −1 K ⊆ ⋃k
i=1 f −1 Ēi it suffices to observe that each f −1 Ēi ∼= Ēi × f −1(x−1

i (0))
is compact.
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Exercise 8.5.8 If K ⊆ Z is compact, then (g f )−1(K ) = f −1g−1(K ), so, if both f and g are proper,
so is g f . If K ⊆ Y is compact, then g(K ) ⊆ Z is compact, and if g f is proper, so
is (g f )−1g(K ) ⊆ X . But f −1(K ) ⊆ (g f )−1g(K ) is a closed subspace, and hence is
compact.

Exercise 8.5.9 This follows from the corresponding statements for surjections.

Exercise 8.5.14 Since f�i (t, q ′) = f (q ′) + ei t for all q ′ ∈ E we get that f φ(t, q) = f (q) + t = r0 + t
for q ∈ f −1(r0). This gives that the first coordinate of φ−1φ(t, q) is t , and that the second
coordinate is q follows since �i (−ti ,�i (ti , q ′)) = q ′. Similarly for the other composite.

Exercise 8.5.15 The inclusion R − {0} ⊆ R is an example, but if you want a surjective example the
projection to the first coordinate R2 − {0} → R will do.

Exercise 8.5.16 Concerning the map � : S1 → CP1, note that it maps into a chart domain on which
Lemma 8.5.12 tells us that the projection is trivial.

Exercise 8.5.17 Write R as a union of intervals J j so that, for each j , γ (U j ) is contained within one of the
open subsets of M so that the fibration trivializes. On each of these intervals the curve lifts,
and you may glue the liftings using bump functions.

Exercise 8.5.18 Since O(n + 1) is compact, it suffices by Corollary 8.5.13 to show that f is a submersion.
Recall from Exercise 5.5.20 that under the isomorphism

T Mn(R) ∼= Mn(R)× Mn(R),

[γ ]� (γ (0), γ ′(0))

we get an isomorphism

E = {(g, A) ∈ O(n)× Mn(R) | AT = −gT AgT} ∼= T O(n).

If we also use the identification

T Sn ∼= {(p, v) ∈ Sn × Rn+1 | vT p = 0},
we get that the map f sends (g, A) ∈ E to (g · e1, A · e1). So, we must show that, if
v ∈ Rn+1 and vT(ge1) = 0, then there is an A ∈ Mn+1R with AT = −gT AgT and
Ae1 = v. Let B = gT A and w = gTv. Then the demands translate to

(1) wTe1 = 0 (first entry of w is zero),
(2) B = −BT (B is skew symmetric), and
(3) Be1 = w (first column of B is w),

which are satisfied by the matrix whose first column is w, whose top row is −wT (which
is OK since the first entry is zero), and which is otherwise zero.

Since Sn is connected for n > 0 the fibers are all diffeomorphic, so it suffices to check
the fiber over e1, which consists of matrices A ∈ O(n + 1) with first column e1. Hence A
is uniquely given by the lower-right n × n submatrix which is necessarily orthogonal too.
When n = 1 we have that O(1)→ S0 is a bijection.
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Exercise 8.5.19 Exercise 8.5.7 gives that the associated sphere bundle is a proper submersion, which is
trivial by Lemma 8.5.12. Hence, Exercise 8.5.4 finishes the proof.

Exercise 8.5.20 Of course, one could use the Ehresmann fibration theorem and Exercise 4.7.12 in the case
when π is proper by showing that then φ is proper too, but it is easier to just prove the local
triviality directly. In fact, given a local trivialization π−1(U ) ∼= U × F of π , one gets a
trivialization φ−1( f −1(U )) ∼= f −1(U )×U π

−1(U ) ∼= f −1(U )× F .

Exercise 8.5.21 Observe that H(m, n) is compact, so by the compact version of the Ehresmann fibra-
tion theorem, Corollary 8.5.13, all we have to show is that π : H(m, n) → RPm is a
submersion. Consider the submersion

f : (Rm+1 \ {0})× (Rn+1 \ {0})→ R

given by f (([p], [q])) =∑m
k=0 pkqk , and consider the submanifold N = f −1(0). Now, if

π ′ : N → Rm+1 \ {0} is the projection given by π ′(p, q) = p, then

N
π ′−−−−→ Rm+1 \ {0}

projection

⏐⏐� projection

⏐⏐�
H(m, n)

π−−−−→ RPm

commutes, and so it suffices to show that π ′ is a submersion.
Lastly, since RPm is connected, to show that all fibers are diffeomorphic to RPn−1 it

suffices to see that π−1([1, 0, . . . , 0]) = {([1, 0, . . . , 0], [0, q1, . . . , qn])} is diffeomorphic
to RPn−1.

Exercise 8.5.22 Since SO(n) is compact and connected we need show only that f is a submersion and that
f −1( f (I )) ∼= SO(n− k). To show that f is a submersion, let A ∈ SO(n) and consider the
maps L A : SO(n)→ SO(n) and L A : Vk

n → Vk
n given by L A(B) = A · B. Show that both

are diffeomorphisms and that L A f = f L A. Hence

TI SO(n)

TI f
��

TI L A

∼=
�� TASO(n)

TA f
��

T f (I )Vk
n

L A

∼=
�� T f (A)Vk

n

commutes, and showing that f is a submersion reduces to showing that TI f is surjective.
First, recall from Exercise 5.5.20 the isomorphism

TI SO(n) ∼= Skew(n)

= {X ∈ Mn(R) | XT = −X}.
In the same manner, one establishes

T f (I )V
k
n
∼= Skew(k, n) =

{[
A
B

]
∈ Mn×k(R) | AT = −A

}
and that under these isomorphisms TI f corresponds to the surjection sending the skew

matrix

[
A −BT

B C

]
to

[
A
B

]
.
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Exercise 8.5.23 Just as in Exercise 8.5.22, this exercise reduces to showing that TI C is a surjection. Again
we use the isomorphism

TI SO(n) ∼= Skew(n)

(the image of TI SO(n) in TI GLn(R) is exactly {[s 
→ I + s B] ∈ TI GLn(R) | BT = −B}).
Recall from Example 2.3.15 the chart

xRk : URk → Hom(Rk, (Rk)⊥)

sending V = C(A) ∈ URk to the linear map

f A = xRk (V ) : Rk → (Rk)⊥,

where f A(p) ∈ (Rk)⊥ is such that p + f A(p) ∈ V .
To show that I is a regular point it suffices to show that Skew(n)→ T0 Hom(Rk, (Rk)⊥)

sending B to the tangent vector [s 
→ f I+s B] is surjective (C(A) makes sense for any A ∈
GLn(R) and I + s B is invertible when s is small). That is, given X ∈ Hom(Rk, (Rk)⊥) ∼=
M(n−k)×k(R), find B ∈ Skew(n) such that [s 
→ f I+s B] = [s 
→ s X ].

Choosing

B =
[

0 −XT

X 0

]
does the trick: f I+s B(p) = s X p.

Exercise 8.5.24 This follows by Exercise 8.5.9 since C = S f is a submersion by Exercise 8.5.23. Of
course, we could have chosen to establish Exercise 8.5.24 from scratch and deduced
Exercise 8.5.23 from Exercise 8.5.22 by saying that the composites of submersions are
submersions.

Appendix A

Exercise A.1.3 Consider the union of the closed intervals [1/n, 1] for n ≥ 1.

Exercise A.1.5 Consider the set of all open subsets of X contained in U . Its union is open.

Exercise A.1.7 By the union axiom for open sets, int A is open and contains all open subsets of A.

Exercise A.1.8 The intersection of two open balls is the union of all open balls contained in the
intersection.

Exercise A.1.9 All open intervals are open balls!

Exercise A.2.2 Hint for one way: the “existence of the δ” assures you that every point in the inverse image
has a small interval around it inside the inverse image of the ε ball (Figure B.6).
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a

U

f −1(U)

Figure B.6.

Exercise A.2.3 f −1(g−1(U )) = (g f )−1(U ).

Exercise A.2.6 Use first-year calculus.

Exercise A.3.3 Can you prove that the set containing only the intervals (a, b) when a and b varies over the
rational numbers is a basis for the usual topology on the real numbers?

Exercise A.3.4 Show that, given a point and an open ball containing the point, there is a “rational” ball in
between.

Exercise A.3.5 Use Note A.3.2.

Exercise A.3.6 f −1(
⋃
α Vα) =⋃α f −1(Vα).

Exercise A.5.2 Use that
(⋃

α Uα
) ∩ A =⋃α (Uα ∩ A) and

(⋂
α Uα

) ∩ A =⋂α (Uα ∩ A).

Exercise A.5.3 Use Exercise A.2.3 one way, and that if f (Z) ⊆ A, then f −1(U ∩ A) = f −1(U ) the other.

Exercise A.5.4 The intersections of A with the basis elements of the topology on X will form a basis for
the subspace topology on A.

Exercise A.5.5 Separate points in A by means of disjoint open neighborhoods in X , and intersect with A.

Exercise A.6.4 Inverse image commutes with union and intersection.
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Exercise A.6.5 Use Exercise A.2.3 one way, and the characterization of open sets in X/∼ for the other.

Exercise A.6.6 Show that open sets in one topology are open in the other.

Exercise A.7.2 Cover f (X) ⊆ Y by open sets, i.e., by sets of the form V ∩ f (X) where V is open in Y .
Since f −1(V ∩ f (X)) = f −1(V ) is open in X , this gives an open cover of X . Choose a
finite subcover, and select the associated Vs to cover f (X).

Exercise A.7.5 The real projective space is compact by Exercise A.7.2. The rest of the claims follow by
Theorem A.7.11, but you can give a direct proof by following the outline below.

For p ∈ Sn let [p] be the equivalence class of p considered as an element of RPn . Let
[p] and [q] be two different points. Choose an ε such that ε is less than both |p− q|/2 and
|p+ q|/2. Then the ε balls around p and −p do not intersect the ε balls around q and −q,
and their images define disjoint open sets separating [p] and [q].

Notice that the projection p : Sn → RPn sends open sets to open sets, and that, if
V ⊆ RPn , then V = pp−1(V ). This implies that the countable basis on Sn inherited as a
subspace of Rn+1 maps to a countable basis for the topology on RPn .

Exercise A.7.9 You must show that, if K ⊆ C is closed, then
(

f −1
)−1

(K ) = f (K ) is closed.

Exercise A.7.10 Use Theorem A.7.3 (Heine–Borel) and Exercise A.7.2.

Exercise A.8.2 One way follows by Exercise A.2.3. For the other, observe that by Exercise A.3.6 it suffices
to show that, if U ⊆ X and V ⊆ Y are open sets, then the inverse image of U × V is open
in Z .

Exercise A.8.3 Show that a square around any point contains a circle around the point and vice versa.

Exercise A.8.4 If B is a basis for the topology on X and C is a basis for the topology on Y , then

{U × V |U ∈ B, V ∈ C}
is a basis for X × Y .

Exercise A.8.5 If (p1, q1) �= (p2, q2) ∈ X × Y , then either p1 �= p2 or q1 �= q2. Assume the former, and
let U1 and U2 be two open sets in X separating p1 and p2. Then U1×Y and U2×Y are . . .

Exercise A.9.2 The inverse image of a set that is both open and closed is both open and closed.
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Exercise A.9.5 Both X1 and X2 are open sets.

Exercise A.9.6 One way follows by Exercise A.2.3. The other follows since an open subset of X1
∐

X2 is
the (disjoint) union of an open subset of X1 with an open subset of X2.

Exercise A.10.4 If p ∈ f ( f −1(B)) then p = f (q) for a q ∈ f −1(B). But that q ∈ f −1(B) means simply
that f (q) ∈ B!

Exercise A.10.5 These are just rewritings.

Exercise A.10.8 We have that p ∈ f −1(B1 ∩ B2) if and only if f (p) ∈ B1 ∩ B2 if and only if f (p)
is in both B1 and B2 if and only if p is in both f −1(B1) and f −1(B2) if and only if
p ∈ f −1(B1) ∩ f −1(B2). The others are equally fun.
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≈, 56

algebra, 52
αM,p , 64
alternating forms, 135
Altk(V ), the alternating forms on V , 135
angle charts, 27
AT, transposed matrix, 41
atlas, 19

bundle, 102
good, 165
maximal, 28
smooth bundle, 108

attaching cells, 182

Baez, 34
base space, 102
basis for the topology, 194
Behrens, 35
βM,p , 69
bijective, 200
Borromean rings, 45
Bott periodicity, 174
boundary, 32
Brieskorn manifold, 91
bump function, 54
bundle

atlas, 102
smooth, 108

chart, 102
transformation, 106

cotangent, 120
isomorphism, 104

smooth, 110
line, 101
morphism, 103

smooth, 110
normal, 139, 143
symmetric bilinear, SB(E), 138
tangent, 113
tautological n-plane, 147

tautological line, 113
vertical, 128

C, xi
canonical

one-form, 122
chain rule, 56

flat, 49
chart, 18

angle, 27
domain, 18
transformation, 23

C∞ = smooth, 29
C∞(M), smooth maps M → R, 35
C∞(M, N ), smooth maps M → N , 35
closed set, 192
closure, 192
Cn , xi
cobordism, 42
cochain rule, 61
codimension, 38
compact space, 198
complement, 192, 200
complex

projective space, CPn , 27
structure, 172

connected
component, 200
space, 199
sum, 12

constant rank, 73, 125
continuous map, 193
convex

property, 171
set, 163

coordinate functions
standard, 50

cotangent
bundle, 120, 138
space, 61
vector, 61
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countable basis, 194
CPn , complex projective space, 27
critical = non-regular, 74

D, maximal atlas assignment, 27
d : OM,p → T ∗p (M), 62
De Morgan’s formulae, 201
deformation retraction, 180
derivation, 62, 68
det, determinant function, 145
de Rham cohomology, 121
diffeomorphic, 33
diffeomorphism, 23, 33

oriented, 146
differentiable

manifold, 28
map, 32

differential, 62, 121
differential equation

first-order, 148
second-order, 161
time-dependent, 161

differential = smooth, 29
dimension

of bundles = “rank”, 100
disjoint union, 44, 200
double cover, 184
D|p f , 68
D|p M , the derivations, 68
dual

(vector) space, 63, 134
basis, 64
bundle, 138
linear map f ∗, 63

Ehresmann’s Fibration Theorem, 185
compact case, 188

Einstein, 9
embedding = imbedding, 41
En , the open n-disk, 19
En(r), the open n-disk of radius r , 164
equivalence

class, 197
relation, 196

ηn → RPn , the tautological line bundle, 113
Euclidean space, 192
Euler

angle, 88
characteristic, 15

exact form, 121
existence of maxima, 198
exotic spheres, 26, 34

exponential map, 170
exterior power, 135

f̄ , germ represented by f , 50
f ∗ : W ∗ → V ∗, dual linear map, 63
f ∗ : O f (p) → Op , 52
family, 201
fiber, 102

metric, 141
product, 97, 128

fixed point
free involution, 36
space, 128

flow
chart, 148
global, 149
line, 151, 159
local, 158
maximal local, 159

form, 138
Freedman, 16
function germ, 50
fusion reactor, 119

[γ ] = [γ̄ ], 56
�(E), space of sections, 173
γr,ε , a smooth bump function, 54
generalized Gauss map, 147
generate (a topology), 194
genus, 12
geodesic, 169
germ, 50
g · f , xii
g ◦ f = g f , xii
gimbal lock, 88
GLn(R), the general linear group, 39
GL(V ), the general linear group, 40
good atlas, 165
gradient, 143
gradient flow, 160
Gr(k,Rn), 30, 88
Grassmann manifold, 30

half space, 31
Hamilton, 16
handle, 12
Hausdorff space, 195
Heine–Borel theorem, 198
Hessian matrix, 177
Hill, 35
(hk ,U k), chart for the tautological line bundle, 113
H(m, n), 42, 189
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Hn , the half space, 31
hom-space, 30, 133
homeomorphic, 193
homeomorphism, 193
homotopy, 147
Hom(V,W ), 30, 133
Hopf fibration, 8, 189
Hopkins, 35
horror, 193

idempotent, 128
image, 200

of bundle morphism, 127
of map of vector spaces, 127

imbedding, 41
immersion, 83
index, 177
induced bundle, 128
injective, 200
inner product, 141
integrability theorem, 159

compact case, 154
interior, 192
intermediate value theorem, 199
inverse function theorem, 76, 77
inverse image, 201
invertible germ, 52
Isaksen, 35
isomorphism

of smooth vector bundles, 110
of vector bundles, 104

Jacobian matrix, 49
J 2

p , 61
Jp = JM,p , 61

k-frame, 88
kernel

of bundle morphism, 127
of map of vector spaces, 127

Kervaire, 34
k-form, 139
kinetic energy, 67
Klein bottle, 11

L : R× R→ R, 150
labeled flexible n-gons, 89
�k V , the kth exterior power, 135
Leibniz rule, 62, 68
Lie group, 44

S1, 44
U (n), 87

O(n), 87
SLn(R), 87
GLn(R), 44

line bundle, 101
Liouville one-form, 122
local

diffeomorphism, 36
flow, 158
trivialization, 102

locally
finite, 165
homeomorphic, 18
trivial, 102
trivial fibration, 183

Möbius band, 12
M A

a , quadric, 89
magnetic dipole, 119
manifold

analytic, 24
Brieskorn, 91
Grassmann, 30
Milnor, 189
orientable, 146
pseudo-Riemannian, 9
quadric, 89
Riemannian, 141
smooth, 28
Stiefel, 88
topological, 18
with boundary, 31

map (of spaces) = continuous function, xii
maximal

(smooth) bundle atlas, 108
atlas, 28
local flow, 159

measure zero, 92
metric topology, 192
Milnor, 34

manifold, 42, 189
Mm×nR, 40
MnR, 39
momentum, 67, 145
morphism

of smooth vector bundles, 110
of vector bundles, 103

Morse
function, 177
theory, 173

Mr
m×nR, 40

M≥r
m×nR, 73
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N, xi
neighborhood, 192
non-degenerate critical point, 177
nonvanishing

section, 103
vector field, 118

normal bundle
with respect to a fiber metric, 143
of a submanifold, 139
of an imbedding, 139

�n(M), the n-forms, 121
O(n), the orthogonal group, 85
one-parameter family, 152
one-to-one, 200
onto, 200
Op = OM,p , the function germs, 50
open

ball, 192
set, 192
submanifold, 39

orbit, 151, 159
orientable, 12

bundle, 146
manifold, 146

orientation
class, 145
of a vector bundle, 146
on a vector space, 145
preserving/reversing isomorphism, 146

oriented diffeomorphism, 146
oriented vector space, 146
orthogonal

matrix, 85
projection, 30

parallelizable, 115
partial derivative, 48
partition of unity, 166
path

component, 200
connected, 199

Perelman, 16
periodic immersion, 153
permutation of the coordinates, 80
phase

change, 7
space, 122, 145

plasma, 119
Poincaré conjecture, 16
positive definite, 141
pre-bundle atlas, 111

pre-vector bundle, 111
precomposition, 53
preimage, see inverse image
pri , coordinate function, 50
principal bundle, 190
product

bundle, 102
smooth, 42
space, 199
topology, 199

projections (from the product), 199
projective

plane, 12
space

complex, 27
real, 20

proper map, 185
prV , prV

W , orthogonal projections to V , 30
pure qbit state, 7

Q, xi
qbit, 7
quadric, 89
quotient

bundle, 138
space, 61, 90, 133, 197
topology, 197

R, xi
R-algebra, 52
rank, 73

constant, 73, 125
for bundles: dimension of fibers, 100
theorem, 80

for bundles, 125
for regular values, 79

Ravenel, 35
real projective space, RPn , 20, 26
reduction of the structure group, 171
refinement, 165
reflexivity, 196
regular

point, 74
value, 74

represent, 50
restriction, 196

of bundle, 124
Riemannian

manifold, 141
metric, 141

rkp f , the rank of f at p, 73
Rn , xi
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RPn , real projective space, 20

Sard’s theorem, 92
SB(E), symmetric bilinear forms bundle, 138
SB(V ), the symmetric bilinear forms on V , 135
second-order differential equation, 161
section, 102

nonvanishing, 103
simply connected, 9
singular, 74
skew matrix, 118
Skew(n), the skew matrices, 118
Sk V , the symmetric power of V , 135
SLn(R), the special linear group, 84
Smale, 16
smooth

bundle atlas, 108
bundle morphism, 110
manifold, 28

with boundary, 31
map, 32

at a point, 32
on open subsets of Euclidean space, 23
on subsets of Euclidean space, 32

pre-vector bundle, 112
structure, 28
vector bundle, 108

Sn , the n-sphere, xii, 19
solution curve

for first-order differential equation, 153
for second-order differential equation, 162

SO(n), the special orthogonal group, 87
space

of sections, 173
of vector fields, 117

special
linear group, 84
orthogonal group, 87

sphere
bundle, 184
exotic, 26, 34
standard smooth, 29

spray, 169
stably trivial, 132
state space, 7
stereographic projection, 25
Stiefel manifold, 88
subbundle, 123
submanifold, 38

open, 39
submersion, 83
subordinate, 166

subspace, 195
sum, of smooth manifolds, 44
supp( f ), 54
support, 54
surjective, 200
symmetric

bilinear form, 135
bundle, 138

power, 135
symmetry, 196
Sym(n), the symmetric matrices, 85
symplectic potential, 122

tangent bundle, 113
tangent space

geometric definition, 56
tautological

n-plane bundle, 147
line bundle, 101, 113
one-form, 122

tensor of type
(k

l

)
, 135

tensor product, 134
T f , tangent map, 114
Thurston’s geometrization conjecture, 16
T M , the tangent bundle, 113
T ∗M , the cotangent bundle, 120
topological space, 192
topology

on a set, 192
torus, 3, 43
total space, 102
Tp f , the tangent map, 56
T ∗p M , the cotangent space, 61
Tp M , 56
Tp M ∼= D|p M , 70, 71
transition function, 106
transitivity, 196
transposed matrix, AT, 41
transverse, 90
trivial

smooth vector bundle, 109
vector bundle, 102

tubular neighborhood, 83

U (n), the unitary group, 87
unbounded Möbius band, 101
unitary group, 87

V ∗, the dual vector space, 63
van der Waals equation, 89
vector bundle

real topological, 100
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smooth, 108
vector field, 117
velocity

field, 150, 159
vector, 152

vertical bundle, 128
Vk

n , the Stiefel manifold, 88
V ⊗W , tensor product of V and W , 134

W 2n−1(a0, . . . , an), 91
Wang, 34
Weierstrass’ theorem, 167
Whitney sum, 132

(xk,i ,U k,i ), a chart in the standard smooth atlas of
the sphere, 20

(xk ,U k), a chart in the standard smooth atlas of
projective space, 21

X (M), space of vector fields, 117
(x±,U±), charts from stereographic projection,

25
Xu, 34
(xV ,UV ), a chart on the Grassmann manifold, 31

Z, xi
zero section, 102
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