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PREFACE

This text is designed for a one-semester introduction to topology at the un-
dergraduate and beginning graduate levels. It is accessible to junior mathematics
majors who have studied multivariable calculus.

The text presents the fundamental principles of topology rigorously but not
abstractly. It emphasizes the geometric nature of the subject and the applications
of topological ideas to geometry and mathematical analysis. The following basic
premise motivated the writing of this book: Topology is a natural, geometric, and
intuitively appealing branch of mathematics which can be understood and appre-
ciated by undergraduate students as they begin their study of advanced mathematical
topics. A course in topology can even be an effective vehicle for introducing students
to higher mathematics. Topology developed in a natural way from geometry and
analysis, and it is not an obscure, abstract, or intangible subject to be reserved only
for graduate students.

The usual topics of point-set topology, including metric spaces, general to-
pological spaces, continuity, topological equivalence, basis, subbasis, connectedness,
compactness, separation properties, metrization, subspaces, product spaces, and
quotient spaces, are treated in this text. In addition, the text contains introductions
to geometric, differential, and algebraic topology. Each chapter has historical notes
to put important developments into an historical framework and a supplementary
reading list for those who want to go beyond the text in particular areas.

Chapter 1 introduces topology from an intuitive and historical point of view.
This chapter also contains a brief summary of a modest amount of prerequisite
material on sets and functions required for the remainder of the course. Chapter 2
initiates the rigorous presentation of topological concepts in the familiar setting of
the real line and the Euclidean plane. Chapter 3 takes an additional step toward
general topology with the introduction of metric spaces and treats such topics as
open sets, closed sets, interior, boundary, closure, continuity, convergence, com-
pleteness, and subspaces in the metric context. Euclidean spaces and Hilbert space
are emphasized.

The core of the course is Chapters 4 through 8. Chapter 4 extends the ideas
of Chapter 3 to general topological spaces and introduces the additional concepts
of basis, subbasis, topological equivalence, and topological invariants. The topo-
logical invariants discussed in Chapter 4 include separability, first and second
countability, the Hausdorff property, and metrizability. Chapter 5 treats connect-
edness, with particular attention to the connected subsets of the real line and to
applications in analysis. This chapter also introduces the related concepts of local
connectedness, path connectedness, and local path connectedness. Chapter 6 deals
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with compactness and such related properties as countable compactness, local com-
pactness, and the Bolzano-Weierstrass property. Particular attention is paid to
compactness in Euclidean and metric spaces, the one-point compactification, and
the Cantor set. Chapter 7 treats product and quotient spaces and introduces geo-
metric and differential topology through an analysis of surfaces and manifolds.
Chapter 8 deals with separation properties, metrization, and the Stone-Cech com-
pactification.

Chapter 9, the final chapter of the text, provides an introduction to algebraic
topology through the fundamental group and a brief encounter with categories.
Like the other chapters, the final chapter emphasizes geometric applications, such
as the Brouwer Fixed Point Theorem and the fundamental groups of familiar sur-
faces. A brief appendix on groups is included for the benefit of those who have not
studied the necessary algebraic prerequisites for Chapter 9.

Most of the factual information about topology presented in this text is stated
in the theorems and illustrated in the accompanying examples, figures, and exercises.
Theorems are proved to provide a logical and rigorous framework, to show the
development of the subject, and to illustrate important techniques. From the stu-
dent’s point of view, topology is an excellent subject for learning to prove theorems
correctly, for learning the concepts of mathematical rigor, and for developing the
mathematical maturity and sophistication that are required for higher level courses.
The reader should keep in mind, however, that the examples are extremely important
for bringing abstract concepts into more concrete form.

The exercises are the most important part of the text, since we all learn better
by doing than simply by watching. This book contains many exercises of varying
degrees of difficulty. Most of the exercises provide practice in applying the material
from each section or ask the reader to supply arguments either omitted from the
text or given only in outline form. Some of the exercises go considerably beyond
the text and are worthy projects for undergraduate research and independent study.

No introductory course can cover all areas of topology, and many topics have
necessarily been omitted or given only cursory treatment in this text. There is a
supplementary reading list at the end of each chapter that points the way for the
interested reader to the more advanced aspects of topology.

For reference within the text, theorems are numbered consecutively within
cach chapter. For example, “Theorem 5.6 refers to the sixth theorem of Chapter
5. In addition, the name by which a theorem is known in the mathematical literature
is given whenever applicable. This is usually a descriptive name, like “the Mean
Value Theorem,” or a name that recognizes the discoverer, like “the Urysohn
Metrization Theorem” or “Cantor’s Nested Intervals Theorem.” Examples are
numbered consecutively within each section of each chapter. For example, “Example
3.7.4” is the fourth example of the seventh section of Chapter 3.

The notation used in this text is reasonably standard; a list of symbols with
definitions appears on the front endsheets.

The following reviewers read several preliminary versions of this text and
made many thoughtful and helpful suggestions for improvements: Paul J. Bankston,



PREFACE  vii

Marquette University; Bruce P. Conrad, Temple University; Doug W. Curtis, Lou-
isiana State University; Robert J. Daverman, University of Tennessee; and Dennis
M. Roseman, University of Iowa. It is a pleasure to acknowledge their contributions
to this project.

Fred H. Croom
Sewanee, Tennessee
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Introduction

1.1 THE NATURE OF TOPOLOGY

The word “topology” is derived from the Greek word “romos,” which means
“position” or “location.” This name is appropriate, for topology deals with geometric
properties which are dependent only upon the relative positions of the components
of figures and not upon such concepts as length, size, or magnitude. Topology deals
with properties which are not destroyed by continuous transformations like bending,
shrinking, stretching, and twisting. Discontinuous transformations, such as cutting,
tearing, and puncturing, are not allowed.

This section presents several examples to illustrate the fundamental concepts of
topology. The examples are necessarily based on intuition and are intended only
to give a heuristic introduction to the subject. The ideas sketched here will be made
precise as the subject is developed in the succeeding chapters.

Example 1.1.1

Consider a circle in the ordinary Euclidean plane, as shown in Figure 1.1. Point
A is inside the circle, B is on the circle, and C is outside the circle. Imagine that
the entire plane undergoes a continuous deformation or transformation, that is,
a stretching or twisting. For definiteness, imagine that horizontal distances are
doubled and vertical distances are halved, so that the circle is transformed into

oC

FIGURE 1.1
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FIGURE 1.2

an ellipse and points 4, B, and C are mapped by the transformation to points
f(A), f(B), and f(C), as shown in Figure 1.2.

Note that point f(A) is inside the image curve, f(B) is on the image curve,
and f(C) is outside the image curve, the same relative positions held by their
predecessors A4, B, and C with respect to the original circle. Thus we note that
the property of being inside, on, or outside a closed plane curve is not altered
by this continuous transformation.

Let us now restrict out attention to the circle and the ellipse obtained from
it in Figure 1.2 and omit consideration of the inside and outside points. Think
of the ellipse as being obtained from the circle by a continuous transformation.
By reversing the transformation to reduce horizontal distances by a factor of
1/2 and increase vertical distances by a factor of 2, we can imagine the ellipse
being transformed back into the original circle. This is the basic idea of topological
equivalence; we would say that the circle and the ellipse are “topologically equiv-
alent” or “homeomorphic.” For two figures to be topologically equivalent, there
must be a reversible transformation between them which is continuous in both
directions.

By defining suitable transformations, one can see that the following pairs of
figures in the plane are topologically equivalent. Objects from different pairs are
not topologically equivalent, however.

The preceding discussion illustrates why topology has often been called “rubber
geometry.” One imagines geometric objects made of rubber which undergo the

ON 12 Al

FIGURE 1.3
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continuous deformations of shrinking, stretching, bending, and twisting. The reader
should be aware, however, that the rubber figure idea is too narrow for an accurate
understanding of topology and somewhat misleading as well. For example, as the
reader will easily be able to demonstrate later, the two objects illustrated in Figure
1.4 are topologically equivalent, but neither can be shrunk, stretched, bent, or
twisted to match the other. The point here is that the definition of topological
equivalence does not require that the stick “pass through” the spherical surface.

Example 1.1.2

The number 0 is the limit of the sequence 1/2, 1/3, 1/4, ..., 1/n, . ... Stu-
dents of calculus know the reason; the given sequence has limit 0 because no
matter how small a positive number e is given, there is a positive integer N such
that all terms of the sequence from the Nth term on are within distance € of 0.

Here it is understood that distances on the number line are to be measured
in the standard way. The distance d(a, b) between real numbers a and b is the
absolute value of their difference:

d(a, b) = |a — b|.
Suppose that we define a new distance function d’ by
d'(a, b) = 20d(a, b).

In other words, the new distance from a to b is 20 times the usual distance. It
should not take the reader long to realize that the sequence 1/2, 1/3, 1/4, ...,
1/n, . . . still has O as its limit with this new method of measuring distances. Later
we will see that the distance functions d and d’ produce the same topological
structure; for now it is sufficient to realize that multiplication of distances by a
positive constant does not alter the convergence of sequences.

NN

(a) Sphere with (b) Sphere with
stick inside stick outside

FIGURE 1.4
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Topology replaces distance with a weaker, more general concept of nearness.
Different distance functions may produce the same concept of nearness and, in
this sense, be equivalent for the purposes of topology. This point will be made
precise in Chapter 3.

Example 1.1.3

The open unit interval (0, 1) on the real number line R consists of all real numbers
x with 0 < x < 1. The closed unit interval [0, 1] consists of all real numbers x
with 0 < x < 1. Thus [0, 1] contains the endpoints 0 and 1 while
(0, 1) does not. The intervals (0, 1) and [0, 1] are topologically different, for the
following reasons:

(a) The open interval (0, 1) contains sequences of points which converge
to limits not in (0, 1). For example, the sequence 1/2, 1/3, 1/4, ..., 1/n, ...
converges to 0. The closed interval [0, 1], on the other hand, has the property
that every convergent sequence of its points converges to a point in [0, 1].

(b) If any point of (0, 1) is removed, the remaining points make up two
disjoint or disconnected intervals. In other words, every point of (0, 1) is a cut
point, since removing any point “cuts” the interval into two disjoint pieces. The
closed interval [0, 1], however, has two points, the endpoints 0 and 1, which are
not cut points. We shall see later that the number of cut points and the number
of non-cut points of a figure are unaltered by topological transformations.

Explain in terms of cut points why the geometric objects in the following
figure are not topologically equivalent:

/N T

FIGURE 1.5

Answer One reason is that 4 has two non-cut points while B has three. Another
is that each cut point of 4 separates 4 into two components while B has one special
cut point which separates it into three components.

The reader has probably seen the following theorem and been told that its
proof would be given in a later course:
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Theorem 1.1: The Intermediate Value Theorem. Letf R — R be a con-
tinuous function on the set R of real numbers and suppose that there are'real numbers
a and b for which fla) < 0 and fib) > 0. Then there is a real number c between a
and b for which flc) = 0.

This theorem is made very plausible by considering the possibilities for the
graph of the function y = f(x). Since the point (a, f(a)) lies below the x-axis and
(b, (b)) lies above it, and since the graph of the function must connect (a, f(a))
and (b, f(b)) with a continuous unbroken curve, then the graph must cross the
Xx-axis at some point (c, f(c)) with ¢ between a and b. Then c is the desired real
number with f(c) = 0.

The main problems with the argument of the preceding paragraph are that it
does not make precise what is meant by a “continuous unbroken curve,” it does
not establish that the graph of a continuous function is a continuous unbroken
curve, and it does not give any reason beyond intuition why the curve from (a,
f(a)) to (b, f(b)) must intersect the x-axis. By topological considerations, the above
argument will be made precise in Chapter 5 and will be used to prove a more
general version of the Intermediate Value Theorem (Theorem 5.8).

The Intermediate Value Theorem is the type of result with which topology
has been most successful. The theorem is called an *“existence theorem™ because it
asserts the existence of a real number ¢ with f(c) = 0 without, however, giving any
method for determining the value of ¢ in particular cases. Since existence theorems
usually do not give methods for finding solutions, they may appear to be of little
value. Precisely the opposite is true. Existence theorems are the basis on which
calculus and real analysis rest, and in differential equations and functional analysis,
for example, there are many applications in which the existence of a solution and
not its particular form is the most important factor.

(M)

‘/(c‘ﬂc» ®

(@ fla)
FIGURE 1.6
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EXERCISE 1.1

L.

Tell whether the following pairs of figures are topologically equivalent. Give reasons for
your answers,

@

It is sometimes said that a topologist is a person who can’t tell the difference between a
doughnut and a coffee cup. By imagining a (solid) doughnut made of rubber, explain
intuitively how to make a topological transformation of the doughnut to a coffee cup
by bending, twisting, and stretching.

Separate the letters of the alphabet, as printed below, into groups in such a way that
members of the same group are topologically equivalent and members of different groups
are not.

ABCDEFGHIJKLMNOPQRSTUVWXYZ



1.2 / The Origin of Topology 7
1.2 THE ORIGIN OF TOPOLOGY

Topology emerged as a well-defined mathematical discipline during the early
years of the twentieth century, but isolated instances of topological problems and
precursors of the theory can be traced back several centuries. Gottfried Wilhelm
Leibniz (1646-1716) was the first to foresee a geometry in which position, rather
than magnitude, was the most important factor. In 1676 Leibniz used the term
“geometria situs” (geometry of position) in predicting the development of a type
of vector calculus somewhat similar to topology as it is known today. Leibniz is
now best known as one of the independent inventors of calculus, along with Isaac
Newton (1642-1727).

The first practical application of topology was made in the year 1736 by the
Swiss mathematician Leonhard Euler (1707-1783) and is explained in the following
example.

Example 1.2.1 The Konigsberg Bridge Problem

In the eighteenth century the German city of Konigsberg was located on an
island in the Pregel River and on the surrounding banks, at the point where the
river divided into the Old Pregel and New Pregel. Island and mainland were
joined by a network of seven bridges as shown in Figure 1.7.

The problem, which was of interest to Sunday strollers, was to cross each
of the seven bridges exactly once in one continuous trip. This is clearly a to-
pological problem, since it depends only upon the relative positions of bridges
and land masses and not on the size of the island or the lengths of the bridges.
Following Euler, let us replace each land mass by a point and each bridge by a
line segment (Fig. 1.8). In the resulting configuration, called by Euler a “graph,”
each point is a “vertex” and each line segment is an “edge.”

A vertex with an odd number of edges leading from it is an odd vertex,
and even vertex is defined in the analogous way for an even number of edges.
As can be seen in Figure 1.8, each vertex of the Konigsberg Bridge problem is

FIGURE 1.7
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FIGURE 1.8 Graph for the Konigsberg Bridge problem.

odd. Note that the bridges at any odd vertex can be crossed exactly once only if
that vertex is either the beginning point or the ending point of the journey. But
since there are more than two odd vertices in this case, Euler showed that the
desired route is impossible. Euler went on to give a general solution for the
number of continuous journeys required to traverse exactly once each edge of
a connected graph. The number of odd vertices is always an even number, and
if this number is 0 or 2, then the graph can be traversed, as required, in one
continuous journey. If the number of odd vertices exceeds 2, then the number
of continuous journeys required will be half the number of odd vertices.

Euler also proved that the first topological formula, which was conjectured
earlier but not proved by René Descartes (1596-1650): For a connected graph
drawn on the surface of a sphere,

V—-E+F=2

where V denotes the number of vertices, E the number of edges, and F the number
of faces or areas into which the spherical surface is divided by the graph. This
principle is illustrated in Figure 1.9.

Carl F. Gauss (1777-1855), who influenced so much of modern mathematics,
predicted in 1833 that “geometry of location” would become a mathematical dis-

N__

V=8,E=12,F=6 V=4,E=6,F=4
FIGURE 1.9
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cipline of great importance. His study of closed surfaces such as the sphere and the
torus (surface of a doughnut) and surfaces like those encountered in multidimen-
sional calculus may be considered a harbinger of general topology. Gauss was also
interested in knots, which are of current topological interest.

The word “topology” was coined by the German mathematician Joseph B.
Listing (1808-1882) for the title of his book Vorstudien zur Topologie (Introductory
Studies in Topology), a textbook published in 1847. Listing’s book dealt with knots
and surfaces but failed to popularize either the subject or the name. Throughout
the nineteenth and early twentieth centuries, the loosely defined area of geometry
that was later to become topology was called analysis situs (analysis of position).

Example 1.2.2 The Mobius Strip

In 1858 the German mathematician A. F. Mobius (1790-1868) discovered a
curious surface with only one side and one edge which, remarkably, can be easily
constructed from a strip of paper. Cut a thin strip of paper and after giving the
strip a twist through 180 degrees, join the two ends with glue or tape. The resulting
surface is the Mabius strip.

As one can see by tracing with finger or pencil, the Mobius strip has only
one continuous surface and one edge. Try drawing a closed curve along the
length of the band and then cutting along the curve, as though cutting the band
into two bands of half the original width. You may be surprised at the result.

The first mathematician really to foresee topology in anything like the gen-
erality it has achieved today was Bernard Riemann (1826-1866). Riemann initiated
the study of the connectivity of a surface (the arrangement of the holes in a surface).
He also used concepts in which the number of dimensions exceeded three, which
was generally conceded to be the maximum number of dimensions involved with
any geometric object.

The mathematical research of the nineteenth century which eventually pro-
duced the field of topology can now be traced to two primary sources: the devel-
opment of non-Euclidean geometry and the process of putting calculus on a firm
mathematical foundation. For over 2000 years it was believed that the ordinary

FIGURE 1.10 Mébius Strip.
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two- and three-dimensional geometry of Euclid was the only geometry that pertained
to the “real” world. Geometric research was restricted to the system satisfying Eu-
clid’s axioms and to projective geometry, which was of interest in Renaissance art
because of its applications to perspective. The dominance of Euclidean ideas was
especially reinforced by the philosopher Immanuel Kant (1724-1804), who taught
that human intuition, perception, and experience were necessarily restricted to the
realm of Euclidean geometry. Such beliefs discouraged free thinking and severely
retarded the advancement of mathematics, particularly geometry.

Finally, around 1830, geometries which do not satisfy all the Euclidean axioms
were invented independently by Janos Bolyai (1802-1860) and N. 1. Lobachevsky
(1792-1856). Their work involved an attempt to show that the parallel postulate
of Euclid could be derived from the other axioms. Actually, they showed that it
could not and that, indeed, there was a perfectly reasonable geometry, now called
a non-Euclidean geometry, which does not satisfy the parallel postulate but which
does satisfy the other Euclidean axioms. Interest generated by the discoveries of
Bolyai and Lobachevsky stimulated free geometric thinking and led to other non-
Euclidean geometries, for example the elliptic geometry of Riemann, and, eventually,
to the abstraction of geometric ideas to form the subject of topology.

The second nineteenth century current that influenced the development of
topology was the work done by many mathematicians, notably A. L. Cauchy (1784~
1857) and Karl Weierstrass (1815-1897), in defining rigorously the real number
system and the concept of limit in order to put the foundations of calculus on firm
ground. Pathological examples like Weierstrass’ function which is everywhere con-
tinuous but nowhere differentiable and the “space filling curves” of Guiseppe Peano
(1858-1932), which mapped an interval onto a square or a cube, demanded that
lines, planes, curves, and surfaces be defined rigorously and that loose arguments
which appealed only to intuitive plausibility be thrown out. During the latter part
of the nineteenth century, problems arose in functional analysis and differential
equations which made it necessary to consider large collections of functions, curves,
and surfaces as collections, not merely as individuals.

Point-set topology or set-theoretic topology, which is the branch of topology
considered in this text, was decisively influenced by the work of Georg Cantor
(1845-1918) during the years 1872 to 1890. Cantor and his coworkers discovered
many properties of the real number line that are now considered the basic concepts
of point-set topology. In addition, Cantor laid the foundations and posed many
basic questions and paradoxes concerning the theory of infinite sets. With the in-
troduction by Maurice Fréchet (1878~1973) in 1906 of general distance functions
for abstract spaces whose *“points™ were not required to be the points of ordinary
geometry, the groundwork for topology was laid. The subject emerged as a cohesive
discipline with the publication of the textbook Grundziige der Mengenlehre by Felix
Hausdorff (1868-1942) in 1914, Hausdorff’s classic treatise presented a list of de-
fining axioms for the term “topological space,” a very general concept which in-
cluded the ordinary line, the plane, three-dimensional space, spaces of more than
three dimensions, curves, surfaces, spaces of curves, spaces of functions, and even
spaces of sets.
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As a mathematical discipline, topology is divided into several overlapping
areas. Chapters 1 through 8 deal primarily with point-set topology. Algebraic to-
pology, which is the subject of Chapter 9, attempts to describe geometric objects
in terms of algebraic structures. Algebraic topology is less general in terms of the
objects studied than is point-set topology, and it is more specialized in its methods
of attack. Differential topology, which is introduced in Chapter 7, is concerned
with the properties of “smooth” spaces and surfaces which permit a concept of
differentiability for functions. Geometric topology is also introduced in Chapter 7.
As the subjects are taught today, an introduction to point-set topology is required
before one can learn anything of significance about algebraic, differential, or geo-
metric topology.

Progress in topology was greatly accelerated when Hausdorff carefully selected
from the work of his predecessors those principles of greatest importance and pre-
sented them, in a general and abstract form, as an object for consideration. In the
years immediately following the appearance of Hausdorff’s book, point-set topology
developed wide applicability. The power of the subject is derived from its generality;
from a few simple axioms and definitions one can deduce principles which apply
to problems in real and complex analysis, differential equations, functional analysis,
and other areas where the relations of points to sets and continuity of functions
are important.

Much progress in mathematics as a whole, not just in topology, has been the
result of abstraction of ideas to their basic elements. Reduction to basic principles
strips away superfluous and confusing information; it leads to simplification and
to the unification of ideas once thought to be completely separate. Often, however,
one can see the beauty and power of an abstract subject only after studying it for
some time. For the beginner, abstraction is more often a bane than a blessing; it
can make the subject appear artificial and obscure its utility; it can stifle the intuition
and produce confusion instead of clarity. For these reasons, we shall enter the
abstract world of topology gradually, avoiding the temptation to do everything in
the smallest possible number of steps.

In the remaining sections of this chapter, we shall review some basic ideas on
sets and functions which are useful in topology. Then, following Cantor and the
early workers in topology, we shall undertake in Chapter 2 a study of the real
number line and plane. After studying general distance functions in Chapter 3, we
shall move on to general topological spaces in Chapter 4. Those who like to think
in terms of an historical perspective may imagine that Chapter 2 corresponds roughly
to the year 1890, Chapter 3 to 1906 when general distance functions were defined
by Fréchet, and Chapter 4 to 1914 when Hausdorff defined general topological
spaces. Succeeding chapters lead to the more modern aspects of the subject.

1.3 PRELIMINARY IDEAS FROM SET THEORY

It is assumed that the terms “set” and “member of a set™ are familiar terms
from the reader’s previous training in mathematics. The terms “collection,” “ag-
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gregate,” and “family” are synonyms for set; the members of a set are often referred
to as its “elements” or “objects.” These terms are used in this book in a way which
agrees with their customary usage.
Sets are usually denoted by capital letters and elements by lower case letters.

The symbol “€” (abbreviation for “belongs to0’) indicates set membership. Thus
a € A means that object g is a member of set 4, and b ¢ 4 means that b is not a
member of 4. Sets are often described using brackets: {x: ...} denotes the set of
all elements x satisfying the statement . . ..

Example 1.3.1

Let A = {x: x is an integer between 0 and 5 inclusive}. Then set 4 has as its
elements the integers 0, 1, 2, 3, 4, and 5 and could be expressed as 4 = {0, 1,
2, 3, 4, 5}. This method of defining a set by listing its members has obvious
drawbacks for large sets. One could not, for example, list all members of the set
B = {x: x is a real number larger than 10}.

The set having no members is called the empty set and is denoted by the
symbol &.

If A and B are sets for which each member of A is also a member of B, then
A is a subset of B or is said to be contained in B. Such set inclusion is denoted by
the symbol “C”: 4 C B provided that A is a subset of B.

Observe that A C 4 and & C A4 for every set A. The latter inclusion is true
because & has no members and therefore has no members outside A. Two sets 4
and B are equal precisely when each is a subset of the other. This fact is often used
in showing set equality.

Note The concept of set inclusion defined here allows for the possibility of equality:
A C B includes the possibility A = B. In some texts, this relation is expressed 4 < B and is
read A is contained in or equal to B.

The collection of all subsets of a given set A4 is called the power set of A and
is denoted P(A). Thus X € P(4) means that X C 4. The subsets of 4 other than
A itself and the empty set are the proper subsets of A.

Example 1.3.2

Let A = {0, 1, 2}. The subsets of 4 are &, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2},
and A. The power set of A is the set whose elements are the eight subsets of A:

PU) = {D, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.
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It is often desirable to discuss collections of sets and to name pnany sets in a
systematic way. The standard method of doing this, called indexing; is defined next.

Definition: Let A be a set for which, corresponding to each element a € A, there
is a set M,. Then the collection of sets {M,: a € A}, also denoted {M,}.c4, is said
to be indexed by A or to have A as index set.

Example 1.3.3

(a) For each real number g, let L, denote the collection of all real numbers
less than a. Then the family of sets

L ={L,:a€R}

is indexed by the set R of real numbers.
(b) As a simpler illustration, consider four sets 4, 4>, A3, and A,. The
family of sets

A={A:i=1,23,4}

is indexed by the set {1, 2, 3, 4}.

EXERCISE 1.3

1. Find the power set of B = {a, b, ¢, d}.
2. Suppose that 4 and B are sets for which P(4) = P(B). Show that 4 = B.

3. Explain why each of the following statements is false. Alter each one to make a true
statement:

(@8 aC{a,b,c}.
) {a}E€{a,b,c}.

(c) ACP().
4. Tell whether each of the following statements is true or false for a given set A.
(@) FCPA). @ 2-={g}
(b) D EP@4). () I =7PD).
() AEPA) " {F}=2PD).

5. Prove the following transitive property of set inclusion: If A C B and B C C, then
ACC.
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6. Prove that if set 4 has n members, 7 a positive integer, then P (4) has 2" members. (Hint:
A subset B of A associates with each member of 4 one of the two words “in” and “out.”)

1.4 OPERATIONS ON SETS: UNION, INTERSECTION,
AND DIFFERENCE

A note on word usage is in order before defining the standard set operations.
The conjunction “or” is used in mathematics and logic in the inclusive sense: If p
and q are statements, then the statement “p or ¢ is true whenever at least one of
D, qis true. The only case for which “p or ¢” is false is the case in which p is false
and g is also false.

A similar interpretation applies to the indefinite articles “a” and “an.” These
articles indicate at least one object of a specified type. Thus, “There is a real number
between 0 and 100” is a perfectly correct statement even though there are many
real numbers between 0 and 100.

Definition: If A4 and B are sets, the union AU B of A and B is the set consisting
of all elements x which belong to at least one of the sets A, B:

AUB= {x: xEAorx€E B)}.

The intersection AN B of A and B is the set of all elements x which belong to both
A and B, that is, the set of elements common to A and B:

ANB= {x: x€EAandx € B).

Sets A and B are said to be disjoint if A N B = .

Example 1.4.1
LetA={0,1,2,3}and B= {2,3,5,7, 8}. Then

AUB=1{0,1,2,3,57,8},ANB={2,3}.

The set operations of union and intersection are represented pictorially in the

Venn diagram on the following page (Figure 1.11).
Note the following elementary properties of U and N for any sets A and B:

(@ AUA=A4ANA=A.
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AUB ANB
FIGURE 1.11

(b) Both 4 and B are subsets of 4 U B.
(c) AN Bis a subset of both 4 and B.

Theorem 1.2: The following statements are equivalent for any sets A and B.

(@ ACB;
() AUB=B;
(c) ANB=A.

Proof: The following argument is for the equivalence of (a) and (b); the analogous
argument for the equivalence of (a) and (c) is left to the reader.
Suppose A C B and consider AU B. Since A C B, then

AUBCBUB=B
50 AU B is a subset of B. But BC A U B for any sets A and B, so it follows that
AU B = B. Thus (a) implies (b).
To reverse the implication, suppose AU B = B. Then
ACAUB=B

soACB. a

Theorem 1.3: The Distributive Properties for Union and Intersection.
For any sets A, B, and C,

(a AUMBNC)=(AUB N(AUC);

() ANMBUC)=(ANBUANC).

Proofof (8): AU(MBNC)= {x: xEAorxEBNC}
= {x: x belongs to A or x belongs to both B and C}
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= {x: x belongs to A or B and x belongs to A or C}
={x:x€EAUBandxEAUC}=(AUB)N (AU ().
The analogous argument for (b) is left to the reader. O

Definition: Let A and B be subsets of a set X. The set difference B\A is the set
of all points of B which do not belong to A:

B\A = {x:xEBand x & A}.

The difference X\A is called the complement of A relative to X.

XN\A

FIGURE 1.12

Note that the complement of A4 relative to X is used only when A is a subset
of X, but the difference B\A is defined whether A is a subset of B or not.

Theorem 1.4: De Morgan’s Laws. If A4 and B are subsets of a set X, then

(@ X\(AU B) = (X\4) N (X\B);
(b) X\(AN B)=(X\4) U (X\B).

Proofof (a): X\(AUB)= {x: xEXandx& AU B}

= {x: x € X and x belongs to neither A nor B}

= {x: x € (X\4) and x € (X\B)} = (X\4) N (X\B).

The analogous proof of (b) is left as an exercise. a

Definition: Let {4;: i € 1} be a family of sets indexed by index set I. The union
and intersection of this family of sets are defined respectively by



1.4 / Operations on Sets: Union, Intersection, and Difference 17
U 4; = {x: x € A, for some i € I}
i€l

QIA,: {x:xEA;foralli€I}.

The reader will no doubt observe that the definitions of union and intersection
of two sets are special cases of the above definitions in which the index set is a set

of two elements.
It is customary to denote a family of sets 4; indexed by the integers 1 through
n by {4,}i-) and to express the union and intersection of such a family by

U 4;and N 4,.

i=] i=1

Similarly, {4,}{2, denotes a family of sets indexed by the set of positive integers,
and the union and intersection of such a family are denoted by

U A;and N A;.

i=1 i=1

A family {A;: i € I} of sets is pairwise disjoint provided that no two of the
sets have any member in common:

14;(1 /li== £§ for iiﬁ.i

The next two theorems are natural extensions of Theorems 1.3 and 1.4 to
the general case.

Theorem 1.5: Distributive Laws for Union and Intersection. Ler 4 be a
set and {B;: i € I} a family of sets indexed by set I. Then

(@ ANUg Bi=VUie (AN By);
(b)) AUNig Bi=Nig (AU B)).

Proof: This theorem can be proved in a manner similar to that used for Theorem
1.3. For a slightly different approach that may be easier to follow, a more detailed
argument is given here for (a), showing that the sets A N\ U;e; B; and U;e; (AN B;)
are subsets of each other.

Suppose x € A N U, B;. Then x € A and x belongs to B; for some i € I.
Thus x € A N B; for some i, so x € U;e; (A N B;). From this we conclude

AnUB,cUw@nBy.
iel iel
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For the reverse inclusion, suppose x € U;er (A N By). Then x € A N B; for some
i € 1. This means that x € A and x € B; for some i € I. Thus x € A and
xe€ Uje] Bj, SOXEAN Uje’ Bj. Thus

Uuna)canU B
iel i€l

and the proof of (a) is com}Iete.
The proof of (b) is left as an exercise. a

Theorem 1.6: De Morgan’s Laws. Let X be a set and {A;: i € 1} a family
of subsets of X. Then

(@) X\(Uig 4i) = Nier (X\Ay);

(b)) X\(Niesr Ai) = Uies (X\A)).

Proof of (8): Let x € X\(U;er A;). Then x € X and x does not belong to A; for
any i €I Thus x € (X\A;) for all i € I and x € Nier (X\A;).

For the opposite inclusion, let x € N;g; (X\A;). Then x belongs to the com-
Dplement of each set A;, so x does not belong to the union of the sets A;. In other
words, x € X\(U;er Ai). Since we have demonstrated that the sets X\(U;e; A;) and
Mies (X\A,) are subsets of each other, we conclude that they are equal.

The proof of (b) is left as an exercise. a

EXERCISE 1.4

1. Prove part (b) of Theorems 1.3 and 1.5.
2. Prove part (b) of Theorems 1.4 and 1.6.
3. Prove that for any sets 4 and B, AC Bifand onlyif AN B = A.
4. Let X be a set with subsets 4 and B. Prove:
@ X\(X\4) =4.
(b) If A C B, then X\BC X\A.
(c) AC Bifand only if X\B C X\A.
(d X\ACBifandonlyif 4UB =X,
(¢) ACX\Bifandonlyif ANB= (.
(f) A\B=A4N(X\B).
(8) X\(A\B) = BU (X\4).

5. Assume that 4, B, and C are subsets of a set X. Express each of the following using the
symbols U, N, and \.
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(a) The elements of X which belong to both 4 and B but do not belong to C.

(b) The elements of X which belong to C and to either 4 or B.

(c) The elements of X which belong to 4 but not to both B and C.

(d) The elements of X which do not belong to all three sets 4, B, and C.

(¢) The elements of X which fail to belong to at least two of the sets 4, B, and C.

1.5 CARTESIAN PRODUCTS

An ordered pair of objects is a set of two objects in which one element is
designated as the first term and the other element as the second term. For objects
x and y, (x, y) denotes the ordered pair whose first term is x and whose second
term is y. If n is a positive integer, an ordered n-tuple(a,, a,, . . . . , a,) is an ordered
arrangement of n objects.

Definition: Let A and B be sets. The Cartesian product or simply product of A
and B is the set A X B (read A cross B) of all ordered pairs whose first terms belong
to A and whose second terms belong to B:

AXB= {(a,b):a€ Aand b€ B)}.

Example 1.5.1

The number plane of ordinary analytic geometry is the product R X R, where
R denotes the set of real numbers.

The definition of Cartesian product is easily extended to more than two factors.
If {4;}i-, is a finite sequence of sets, then their Cartesian product, denoted by
A] XAz X oo XA,,orby H?.] A,,lsdeﬁnedby

n
[14i={(a,a...,a):a, €A foreachi=1,2,...,n}.
i=]

For an infinite sequence of sets {4,}{2,, the Cartesian product is defined by

(-]
II 4 = {(a\, a2, a3, . . .): a; € A, for each positive integer i}.
i=]
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Notation The symbol R" denotes the Cartesian product formed by taking the set R of
real numbers as a factor n times. Thus R" = {(x;, X3, . . . . , X): X; is a real number for each
i=1,2,..., n}. In particular, R? and R® are the ordinary plane and three-dimensional
spaces encountered in calculus. The set R" is called Euclidean n-dimensional space. Naturally,
we consider the real line R = R' to be one-dimensional Euclidean space.

EXERCISE 1.5

If A has m members and B has n» members, prove that 4 X B has mn members.
Prove that & X B = & for each set B.
Sketch each of the following sets on the number plane.
(@ {0} xR @ {(x)):0<y<5}
® RXx{o,1} () {x:0=<x=<1}X{y:1sy=<2}
(©) {(x, y): x and y are both integers}

4. Find a subset of R? which does not equal A4 X B for any subsets 4 and B of R.

Suppose that X and Y are sets having at least two members. Prove that X X Y has a
subset which is not the product of a subset of X with a subset of Y.

6. Show that (4 X B) X C, A X (B X C), and 4 X B X C are identical for any sets 4, B,
and C except for placement of parentheses. (In practice, no distinction is made for
products of sets associated in different ways.)

1.6 FUNCTIONS

The following sequence of definitions involving functions is probably familiar
from the study of calculus.

Definition: A function f from set X to set Y, denoted f* X = Y or X 4 Y,isa
rule which assigns to each member x of X a unique member y = f{x) of Y. If y = f{x),
then y is called the image of x and x is called a preimage of y. The set X is the
domain of fand Y is the codomain or range of f.

Note that for a function f: X — Y, each element x in X has a unique image
f(x) in Y. However, the number of preimages of a point y in Y is not necessarily
one; the number of preimages may be zero, one, or more than one.

Definition: Let f: X = Y be a function: For a subset A of X, the set

flA) = {yE Y:y = fix) for some x € A}
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is called the image of A under f. The set f{X), the image of the domain under f, is
sometimes called the image of the function.
For a subset C of Y, the set

S0 = {(xE€X:fix) € C}

is the inverse image of C under f. The set of points {(x, y) E XX Y:y = fix)} is
called the graph of the function f.

Example 1.6.1

Consider the function f: R — R defined by the rule f(x) = x2. The graph of this
function appears in Figure 1.13.

Since f(2) = 4, then 4 is the image of 2 under fand 2 is a preimage of 4.
However, —2 is also a preimage of 4. Note that a member y of the range has
two, one, or zero preimages as the value of y is positive, zero, or negative.

For an example of an image set and inverse image, note that

f¢0, 2, -3} = {0, 4,9}
/7o, 4,9} = {0, 2, -2, 3, -3}.

For any subset D of R consisting only of negative values, f ~'(D) = &. The image
of fis the set of non-negative real numbers:

JR)={y€R: y=0}.

(=24 14 @49

-2 -1

FIGURE 1.13

Definition: A function f: X —> Y is one-to-one or injective means that for distinct
elements x;, x3, of X, fixy) # fixz). In other words, f is one-to-one provided that no
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two distinct points in the domain have the same image. In contrapositive form this
can be stated as: fix;) = f{x;) implies that x; = x;.

A function f for which f{lX) = Y, that is, for which the image f{X) equals the
codomain, is said to map X onto Y or to be surjective.

A one-to-one function from X onto Y is called a one-to-one correspondence or
a bijection. Thus f: X = Y is a one-to-one correspondence provided that each member
of Y is the image under f of exactly one member of X. In this case there is an inverse
function f~': Y = X which assigns to each y in Y its unique preimage x = f~(y)
in X.

Example 1.6.2
Let X = {a,b,c,d, e}, Y = {1, 2, 3, 4, 5}. The function f: X = Y defined by

f@=1, f)=2, flc)=3, f(d)=4, flee=5
is a one-to-one correspondence with inverse function f~': Y = X defined by

M =a, f7'@=b, f'G)=¢ fT@=4d fTOS)=e

Theorem 1.7: Let f: X = Y be a function, A; and A, subsets of X, and B; and
B, subsets of Y. Then

(@ fld;UA)=fl4)Uf4),
(b) fidNA) Cfid) N fd),
(© f7(B1UBY)=f""(B)US'(B),
@ f~'(BiN By =f"(B) Nf~!(B).

Proof: (a) Since A; and A; are subsets of A; U A3, it follows easily that flA;) and
flA,) are subsets of flA; U Ay). Thus fld;) U fld;) C flAd; U A,). For the reverse
inclusion, consider a member y € fl4; U A). Then y = f{x) for some x € A; U A,.
Thus y = f{x) for some x in either A; or A,. Hence y € flA;) U flA3), so flA; U A,)
C fl4;) U flA2) and the proof of (a) is complete.
(b) Since A; N A, is a subset of both A; and A3, it follows from the definition
of image that flA; N A) is a subset of both flA;) and flA2). Thus flA; N Ay) C
JIA) N flA2). The reverse inclusion is not true in general. It is left as an exercise for
the reader to find an example for which flA;) N f{A,) is not a subset of flA; N A»).
() f7!(B;U B) = {x € X: fix) € B; U B,}
= {xEX:flx) EB,orfix) €E B} = {xE X: fix) EB;} U {x EX: fix) € By}
=f~'(B) U f~!(By).
The proof of part (d) is similar. (]
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Definition: The identity function ix: X = X from a set X into itself is the function
defined by

ixtxx) =x, xXEX.

Definition: Iff X = Y and g: Y = Z are functions on the indicated sets, then
the composite function g - f* X — Z is defined by

g-flx) =glflx). x€EX.

The composite function g - f is sometimes denoted simply gf.

The idea of composition of functions is illustrated in Figure 1.14.

o gofix) = gflx)
S g
/"‘—> —
X Y VA

FIGURE 1.14

Example 1.6.3

Consider the functions /: R = R and g: R = R defined by f(x) = x2, g(x) =.
x + 1. Then the composite functions g - fand f - g are both defined and have
the following formulas:

g-f(x) = g(f(x) = g(x?) = x* + 1,
fo800) = flg(x) = fix+ 1) = (x+ )%

It is left as an exercise for the reader to show that if f: X — Y is a one-to-one
correspondence with inverse function f~!: Y — X, then the composite function
/7' . fis the identity function on X and f- f ! is the identity function on Y.

Definition: A seguence is a function whose domain is the set Z* of all positive
integers or the set of positive integers less than or equal to some given positive integer
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N. The sequence is called infinite if its domain is Z* and finite if its domam is {1,
2, ..., N}. A sequence is usually represented in the form {x,}; or {x, },,= 1 where
Xn denotes the value of the sequence at the integer n.

Example 1.6.4

The sequence {1/n}3., is the function ffrom Z* into the set of real numbers
whose values are f(1) =1, f(2) = 1/2,f3) = 1/3, ..., f(n) = 1/nm, ....

In practice, the word sequence is often used to refer to what is properly the
range or image of the sequence. For example, one often refers to the sequence of
points {1/n}3,, meaning the set {1/n: n € Z*} rather than the function which
maps 1 to 1, 2 to 1/2, 3 to 1/3, and so on. Whether the object of interest is the
function itself or its range is generally clear from the context.

Definition: Iff' X = Y is a function and A is a subset of X, then the function
Sfla: A= Y defined by

fla(@) = fla), a € 4,

is called the restriction of f to A. Equivalently, f is called an extension of f | 4 to X.

EXERCISE 1.6

1. Give an example to show that f(4, N A4,) may not equal f(4,) N f(4,). Show that equality
" does hold if fis one-to-one.

2. Letf: X -> Y be a one-to-one correspondence with inverse function f~!: Y = X. Show
that f~' . fand f- f~! are the identity functions on X and Y, respectively.

3. Letf:X-> Ybeafunction, {4;: i € I} a family of subsets of X, and {B;: j € J} a family
of subsets of Y. Prove that

@) Sf(Uier4) = Uier f(4));
®) S(Oies 4) C Nir f(A;
©) f'(YesB) =VUsesf'(B));
@ S(Nes B) = Niesf7'(B).
4. Letf: X~ Y be a function, 4 a subset of X and B a subset of Y. Prove:
(@ ACS(f)).
® f((B)CB.
(c) Iffis one-to-one, then f~!(f(4)) = A.
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(d) If fmaps X onto Y, then f(f~'(B)) = B.
(€ f7'(Y\B)=X\f"\(B).
) fANSYB) =) NS\ (B) = f(4) N B.
5. Letf: X— Yand g: Y = Z be functions on the indicated sets. For a subset 4 of Z,
show that (g - £)~'(4) = f~'(g""(4)).
6. Letf:X— Yand g: Y — Z be functions on the indicated sets. Prove:
(a) If fand g are one-to-one, then g - f'is one-to-one.
(b) If fand g are surjective, then g . f'is surjective.
(c) If fand g are bijections, then g . fis a bijection and (g . f)™' = f~' . g™,
7. Definition. Suppose f: X = Y is a function. A left inverse for f is a functiong: Y - X
Jor which g . f is the identity function on X. A right inverse for f is a function h: Y = X

Jor which f+ h is the identity function on Y. Prove the following statements for a function
fiX=>Y.

(a) fis one-to-one if and only if fhas a left inverse.
(b) fmaps X onto Y if and only if f has a right inverse.

(c) fis a one-to-one correspondence if and only if there is a function k: Y = X such
that k . fand f . k are the identity functions on X and Y respectively. Show in
addition that if k . f = iy and f k = iy, then k = f~'. (Do not assume that the left
inverse from (a) and right inverse from (b) are equal without proper proof.)

8. Let X and Y be sets and A4 a subset of X.

(a) Explain how it is possible for two different functions f: X = Yand g: X = Y to
have identical restrictions to A4.

(b) Explain how it is possible for a function A: 4 = Y to have more than one extension
to X.

9. Let X and Y be sets, 4 a subset of X, and f: 4 = Y and F: X = Y functions on the sets
indicated. Show that F is an extension of fif and only if the graph of f'is a subset of the
graph of F.

1.7 EQUIVALENCE RELATIONS

Definition: Let X be a set. A relation R on X is a subset of X X X. If (x, y) ER,
it is customary to say that x is related to y by R and to write xRy.

Example 1.7.1

The usual order for real numbers determines a relation R, called the less than
relation, on the set of real numbers as follows: (x, ¥) € R or xRy provided that
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X is less than y. It is customary to denote this relation by x < y instead of xRy.
Note in this example that no element is related to itself by R and that xRy (x <
y) is definitely not the same as yRx (y < x).

Definition: A relation R on a set X is called reflexive, symmetric, or transitive if
it satisfies the corresponding property stated below:

(a) The Reflexive Property: xRx for all x € X.
(b) The Symmetric Property: If xRy, then yRx.
(c) The Transitive Property: If xRy and yRz, then xRz.

The relation < on the set of real numbers is transitive, but it is not reflexive
or symmetric. The relation < is reflexive and transitive but not symmetric. Equality
is reflexive, symmetric, and transitive.

Definition: An equivalence relation on a set X is a relation on X which is reflexive,
symmetric, and transitive.

Notation Equivalence relations are usually denoted by symbols like ~, ~, and = rather
than by letters of the alphabet. A slanted bar through the symbol indicates that the relation
does not hold: x #£ y indicates that x is not related to y by ~.

Example 1.7.2 Examples of Equivalence Relations

(a) The relation of equality on any set.

(b) Congruence of geometric figures.

(c) Similarity of plane triangles.

(d) The relation ~ defined on the set Z of integers as follows: x ~ y
means that x — y is an even integer. Under this relation any two even
integers are related to each other, and any two odd integers are related
to each other. Anticipating the next definition, we say that there are
two “equivalence classes” for this relation; one class is the set of even
integers, and the other is the set of odd integers.

Definition: Let ~ denote an equivalence relation on X. For x € X, the set [x] of
all elements of X to which x is related by = is called the equivalence class of x:

[x]={yEX:y=~x}.

Proofs to establish the following properties of equivalence classes are left as
exercises:

(a) x € [x] foreach x € X.
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(b) x =~ yifand only if [x] = [y].
(¢) x# yifandonlyif[x]N[] = J.
(d) For x, yin X, [x] and [y] are either identical or disjoint.

Example 1.7.3
(a) Congruence modulo 5, denoted = mod 5, is the relation on Z defined
as follows: x = y mod 5 means that x — y is divisible by 5. Congruence modulo
5 is an equivalence relation with the following five equivalence classes:
[0] = {0, 5, =5, 10, —10, . . .} (multiples of 5)
[11={1,6,-4,11,-9,...} (integers of the form 5k + 1)
[21={2,7,-3,12,-8,...} (integers of the form 5k + 2)
(31 ={3,8,—-2,13,-7,...} (integers of the form 5k + 3)
[4] = {4,9, -1, 14, —6, ...} (integers of the form 5k + 4)
(b) Congruence modulo n, = mod n, is the relation on Z defined as follows:
x = y mod n means that x — y is divisible by . This is an equivalence relation

with n equivalence classes [0], [1], ..., [#n — 1] corresponding to the possible
remainders when dividing by n.

EXERCISE 1.7

1.

Let ~ be the so-called sibling relation defined on the set of all people: x ~ y means that
y is a sibling of x. For the purposes of this problem, assume that each person is a sibling
of himself or herself. Prove that ~ is an equivalence relation.

Determine whether the following relations satisfy the reflexive, symmetric, or transitive
properties:

(a) > on the set R of real numbers,

(b) =onR,

(¢) = defined on Z by x =~ y if and only if x — y is odd,

(d) ~ defined on Z by x ~ y if and only if x is a divisor of y.

Let f: X = Y be a function, and define a relation ~ on X as follows: x ~ y if and only
if f(x) = f(3).

(a) Prove that ~ is an equivalence relation.

(b) Prove that the equivalence class [x] is the set of preimages of f(x):

X1 =" S).
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4. Show that congruence modulo 7 is an equivalence relation on the set of integers.
5. Consider the unit circle C with equation x2 + y? = 1 in the plane. Thus

C={x)ERXR x2+y*=1}.

Define a relation ~ on C as follows: For (x, y) € C, (x, y) is related to itself and to its
antipodal point (—x, —y). In symbols,

x5, ~xy); (xy)~(Cx -y,

(a) Show that ~ is an equivalence relation.

(b) Think of C as a rubber band and imagine gluing together the equivalent antipodal
points of C. Describe the resulting figure. (Much more will be said on this topic in
Chapter 7.)

SUGGESTIONS FOR FURTHER READING

For intuitive examples illustrating topological concepts, see Intuitive Concepts
in Elementary Topology by B. H. Amold, First Concepts of Topology by Steenrod
and Chinn, and What is Mathematics? by Courant and Robbins. For an interesting
historical account of the development of point-set topology, see The Genesis of
Point-Set Topology by J. Manheim.

The papers “Elementary Point-Set Topology” by R. H. Bing and “Topology”
by Tucker and Bailey may also be of interest. (Complete bibliographical information
on suggested books and papers appears in the Bibliography.)



g The Line and the Plane

In this chapter we shall examine some topological properties of the real number
line R and the Euclidean plane R2. Some of the ideas presented here will be familiar
from algebra and calculus, but others may be new. In later chapters, the ideas
introduced here will be carried over to a much more general family of sets. Section
2.1 reviews properties of the real number system, and Section 2.2 uses the real
number system to introduce the concept of the number of elements in a set. To-
pological considerations begin formally with consideration of open and closed sets
in Section 2.3.

2.1 UPPER AND LOWER BOUNDS

In order to establish some necessary terminology, let us review the various
types of intervals studied in calculus.
Let a and b be real numbers with @ < b. The set

(@b)={xER a<x<b}
is the open interval with endpoints a and b and

[a,b)={xER a<x=<b}
is the corresponding closed interval. Both of the sets

(@ bl={xER a<x=<b}

[a, b) = {xEIR:an<b}'

are called half-open and half-closed intervals. The latter two types are distinguished
by the fact that (a, b] is open on the left and closed on the right, while [a, b) is closed
on the left and open on the right. The sets (a, b), [a, b], (a, b), and [a, b) are called
bounded intervals, since they do not extend indefinitely in either the positive or
negative direction. We shall also have occasion to refer to the unbounded open
intervals

@ o) ={xERa<x}, (~w,a)={xER:x<a}, (-0, 0)=R
and to the unbounded closed intervals

[a, 0)= {xERasx}, (—w,a]={xER x=<a}, (-, ©0)=R.



30 TWO / THE LINE AND THE PLANE

Note that intervals from a to b have been defined only for a < b. For the case
of a closed interval, the definition is extended to allow equality of the endpoints
by defining [a, a] to be the singleton set {a}. The empty set & is sometimes called
the empty interval. Intervals that are either empty or have only one point are called
degenerate intervals.

The term “interval” is used to refer to sets of the type (a, b), [a, b}, (a, b],
[a, b), (a, ©©), (—00, a), [a, ©), (—o0, a), R, and & when no further specialization
in terms of openness, closedness, or boundedness is needed. Open intervals may
be of the bounded type (a, b) and the unbounded types (a, o), (—o0, a), and R.
Closed intervals may be of the bounded type [a, b] and the unbounded types
[a, o), (—o0, a], and R. A further characterization of intervals will be undertaken
in Chapter 5.

Definition: A number u is an upper bound for a set A of real numbers provided
that a < u for all a € A. If there is a smallest upper bound w, for A, that is, an upper
bound uy less than all other upper bounds for A, then u, is called the least upper
bound or supremum of A. The least upper bound for a set A is denoted by lub A or
sup A.

Example 2.1.1

(a) Any real number greater than or equal to 3 is an upper bound for
the set {0, 1, 2, 3}. The least upper bound is 3.

(b) The least upper bound of [a, b] is b.
(c) The least upper bound of (g, b) is b.
(d) The least upper bound of the set (—o0, 0) of negative numbers is 0.

(e) Theset (0, o) of positive numbers has no upper bounds and therefore
has no least upper bound.

Note that some sets of real numbers do not have upper bounds and that a
set which has upper bounds may or may not contain its least upper bound. If a set
contains its least upper bound, the least upper bound is simply the largest member
of the set.

Definition: A4 number | is a lower bound for a set A of real numbers provided that
I < aforall a € A If there is a largest lower bound |, for A, that is, a lower bound
greater than all other lower bounds for A, then I, is called the greatest lower bound
or infimum of A. The greatest lower bound of a set A is denoted by glb A or inf A.
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Example 2.1.2

(a) The greatest lower bound of {0, 1, 2, 3} is 0.
(b) The greatest lower bound of [a, b] is a.
(c) The greatest lower bound of (a, b) is a.

(d) The interval (— oo, 0) has no lower bounds and therefore has no greatest
lower bound.

(e) The greatest lower bound of the interval (0, o) is 0.

A set may or may not have lower bounds. A set which has lower bounds may
or may not contain the greatest lower bound. If a set contains its greatest lower
bound, then the greatest lower bound is the smallest member of the set.

The Least Upper Bound Property: Every non-empty set of real numbers which
has an upper bound has a least upper bound.

We shall not prove the Least Upper Bound Property but rather accept it as
one of the defining axioms of the real number system. A complete list of the axioms
for the real number system, with corresponding constructive definition of R, can
be found in many textbooks on real analysis. Some references are given in the
suggested reading list at the end of the chapter. It is left as an exercise for the reader
to use this property to prove the corresponding Greatest Lower Bound Property.

The Greatest Lower Bound Property: Every non-empty set of real numbers
which has a lower bound has a greatest lower bound.

Example 2.1.3

(a) Consider the sequence {1/n}:2, of real numbers 1, 1/2, 1/3, 1/4. . ..
The least upper bound of this set is 1, the largest member. To see that
0 is the greatest lower bound, we reason as follows: Certainly 0 is a
lower bound for the set since 0 < 1/n for each positive integer n.
Now, a number ¢ > 0 cannot be a lower bound for {1/n}2, because
1/n < e when nis an integer greater than 1/¢. Thus 0 is a lower bound,
and no number greater than 0 is a lower bound. This means that 0
is greater than every other lower bound and is hence the greatest lower
bound of the sequence.

(b) The sequence {1 — 1/n}2, of real numbers 0, 1/2, 2/3, 3/4 . .. has
greatest lower bound 0 (the smallest term) and least upper bound 1.
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To see that 1 is the least upper bound, first note that 1 — 1/n < 1 for
every positive integer #, so 1 is an upper bound. It now must be shown
that no number less than 1 is an upper bound. To this end, consider
a number 1 — ¢, where € > 0, and let n be a positive integer greater
than 1/e. Then

l—e<1-1/n.

Thus 1 — ¢ is not an upper bound for {1 — 1/n}2,, so 1 must be its
least upper bound. '

The next theorem is the first example of an important phenomenon called
denseness, which will appear many times in later chapters. The theorem shows that
there are rational numbers “very close” to every real number. (Recall that a rational
number is a real number which can be expressed as p/q for some integers p, . A
real number which is not rational is called irrational.)

Theorem 2.1: Between any two real numbers there is a rational number.

Proof: Let a and b be real numbers with a < b. It must be shown that there is a
rational number r with a < r < b. Intuitively, the argument proceeds as follows: Let
q be a positive integer and consider the rational numbers p/q for p = 0, £1, *2,
.. .. The numbers p/q, when arranged in order on the number line, have successive
terms separated by distance 1/q. If 1/q is less than the distance from a to b, it seems
reasonable that at least one number of the form p/q must fall between a and b.

This intuitive idea is made precise by the upper bound concept. Let q be a
positive integer for which 1/q is less than b — a. The set P = {p/q: p € Z} has no
bounds, either upper or lower. In particular, a is neither an upper bound nor a lower
bound for P. Thus there is an integer p, such that p/q < a when p < pgand p/q > a
when p >. pg. Then the rational number r = (py + 1)/q is greater than a. The fact
that r is less than b follows from properties of py and q: po/q < a and 1/g < b — a
so '

p0+1

r= =po/a+1/g<a+(b—a) =b.

Thus r is a rational number between a and b. O

Theorem 2.1 can be extended to show that there is an unending sequence of
rational numbers between any two real numbers @ and b. There is a rational number
r, between a and b. There must be, in addition, a rational number r, between a
and r, and a rational number r; between r, and b. This process can always be
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repeated to show the existence of another rational number between any two already
determined.

Theorem 2.1 also shows that there are rational numbers within any prescribed
positive distance of a given real number. For a real number a and distance ¢, there
must be a rational number between a — € and a + €. Such a rational number will
be at a distance less than € from a. The fact that there are rational numbers arbitrarily
close to every real number is expressed by saying that the set of rational numbers
is dense in R.

Example 2.1.4

Let A denote the set of rational numbers between 0 and V2. It should be clear
from the preceding discussion that 4 has least upper bound V2 and greatest lower
bound 0.

EXERCISE 2.1

1. Find the least upper bound and greatest lower bound, if they exist, for the following sets:
(a) The set Z of integers.
(b) The set Z* of positive integers.
(c) The set of rational numbers greater than .
d —-L,2)U@3,7).

2. Explain why a set of real numbers cannot have more than one least upper bound or
more than one greatest lower bound.

3. Prove that a set cannot contain more than one of its upper bounds or more than one of
its lower bounds.

4. Prove the Greatest Lower Bound Property assuming the Least Upper Bound Property
as an axiom. (Hint: There is a natural correspondence between upper bounds of a set 4
and lower bounds of the set —A of negatives of members of A4.)

2.2 FINITE AND INFINITE SETS

Section 2.1 dealt with several subsets of the set of real numbers: integers,
intervals, sequences, rational numbers, and irrational numbers. It was shown that
between any two real numbers there is a rational number. In view of this property,
how many rational numbers are there? Is the number of rational numbers equal
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to the number of real numbers? How does one compare sets to determine which
one has the greater number of members anyway?

The definitions and theorems of this section apply to sets in general, not just
to subsets of the real line. The real line is simply used in this section as the primary
source of examples.

Definition: A4 set A is finite provided that A is empty or there is a positive integer
N for which there is a one-to-one correspondence between A and the integers 1
through N. In the latter case it is said that A has N members. A set which is not
finite is called infinite.

Example 2.2.1
Each of the following sets is infinite:
(a) the set Z of integers,
(b) the set Z* of positive integers,
(c) the set R of real numbers,
(d) any interval with endpoints a and b for which a < b,
(e) the set of rational numbers.

Definition: Two sets A4 and B are equipotent or have the same cardinal number
provided that there is a one-to-one correspondence from A onto B. This relation is
expressed by A ~ B or card A = card B. The terms “‘cardinally equivalent” and
simply “equivalent” are sometimes used synonymously with “equipotent.”

The definition of equipotence of sets is more fundamental than the principle
of counting. A small child, for example, learns that right and left hands have equal
numbers of fingers by pressing corresponding fingers together in a one-to-one cor-
respondence long before he or she can count to five. Furthermore, we shall soon
see that the principle of counting does not apply to a large class of infinite sets.

Theorem 2.2: Equipotence of sets is an equivalence relation.

Proof: It must be shown that the relation ~ of set equipotence is reflexive, sym-
metric, and transitive.

The Reflexive Property: For any set A, A ~ A because the identity function
on A is one-to-one correspondence.
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The Symmetric Property: Suppose A ~ B by a one-to-one correspondence f
from A onto B. Then the inverse function f~! is a one-to-one correspondence from
Bonto A, s0B ~ A.

The Transitive Property: Suppose A ~ B and B ~ C by one-to-one corre-
spondences f: A = B and g: B — C. Then the composite map g - f is a one-to-one
correspondence from A onto C, so A =~ C. a

Definition: A set A is denumerable or countably infinite provided that A is equiv-
alent to the set Z* of positive integers. A set which is either finite or countably infinite
is called countable; a set which is not countable is called uncountable.

We thus have the following hierarchy of sets, according to size: finite sets,
countably infinite sets, and uncountable sets. Sets of the first two types are referred
to collectively as countable sets. Demonstration of the following important properties
is left as an exercise for the reader:

(a) Each subset of a finite set is finite.

(b) Each subset of a countable set is countable.

(c) Each set which contains an infinite set is infinite.

(d) Each set which contains an uncountable set is uncountable.

Example 2.2.2

(a) The set Z* U {0} of all non-negative integers is countably infinite. In
fact, the function f: Z* U {0} = Z* defined by

fm)=n+1, n€EZ*U {0},

is a one-to-one correspondence. Thus Z* has “the same number of
members” as the set Z* U {0} formed by adjoining to Z* another
element.

(b) The set Z of all integers is countably infinite. It is left as an exercise
for the reader to show that the following function g from Z to the set
of non-negative integers is a one-to-one correspondence:

2n — 1 if n is positive,
-2n if n is negative or zero.

g(n) = [

This function was obtained by starting with the following correspon-
dences: 0 +0,1 > 1,-1>2,2—>3 -2 =4, etc.
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(¢c) The Cartesian product Z* X Z* is countably infinite. The product

Z* X Z* of all ordered pairs (m, n) of positive integers is represented
by the points having integral coordinates in the first quadrant of the
Euclidean plane.

Figure 2.1 suggests a method of defining a one-to-one corre-
spondence f: Z* = Z* X Z* by working successively across the di-
agonals.

43+ fu0)e ° ° )
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3+ f6)e f9e °

NN

21+ fBe e f®e

\\\

1+ A e A2)e e

FIGURE 2.1

Another proof that Z* X Z* is countably infinite can be made
as follows: Define g: Z* X Z* = Z* by

g(m, n) =2"3", (m,n)EZ* X Z*.

Then g is not surjective, but the Fundamental Theorem of Arithmetic
(unique factorization into primes) does guarantee that it is one-to-
one. Thus Z* X Z* is equivalent to a subset of Z*. Since every subset
of a countable set is countable, then Z* X Z* is countable. Since
Z* X Z* is clearly not finite, then it must be countably infinite.

Proofs of the following facts about unions and products of finite and countable

sets are left as exercises:

Theorem 2.3:

(@ If {A;},., isa ﬁmte sequence of sets and each set A; is finite, then
Uff. 1A;and H:-z A; are finite.



2.2 / Finite and Infinite Sets 37

(b) 1If {A;}2, is a sequence of sets and each set A, is countab;e then UL, A;

is countable
(¢ If {A; },- 1 is a finite sequence of sets and each set A; is countable, then
I, A; is countable. ]

Theorem 2.3 is often paraphrased as follows:

(a) Finite unions and finite products of finite sets are finite.
(b) The union of a countable family of countable sets is countable.
(c) The product of a finite family of countable sets is countable.

The following hints may be helpful in proving Theorem 2.3. For part (b), a
diagonal counting process like that used in Example 2.2.2 (c) can be used. For (c),
use the fact that Z* X Z* is countable to prove the result for N 2, and then use
the principle of mathematlcal induction. (Assuming that I'L- A; is countable,
prove that [T7., 4; = TI\-)' 4; X A is countable.)

Note that part (c) of Theorem 2.3 asserts only that a finite product of countable
sets is countable. It is not true that the product of a countable family of countable
sets is countable; in fact, the following example shows that the product of a countable
family of finite sets may fail to be countable.

Example 2.2.3

The set 4 = [1{2, A; where each set 4; is the two element set {0, 1} is uncountable.
Suppose to the contrary that

A= {(a1,a, a3,...): a € {0, 1} for each i € Z*}

is countable. The set is clearly not finite, so it must be countably infinite. Thus
there must be a one-to-one correspondence f: Z* — 4. We shall reach a con-
tradiction by showing that f'cannot possibly be surjective.

For an element a = (a,, a, as, ...) of A, let us refer to a, as the first
coordinate, a, as the second coordinate, and so on. Then A4 consists of all infinite
sequences (a,, a4y, as, . ..) in which each coordinate is either 0 or 1. Consider
the element x = (x,, x3, X3, . ..) whose coordinates are defined as follows: for
any positive integer i, x; is 1 if the ith coordinate of f(i) is 0 and is O if the ith
coordinate of f(i) is 1. In other words, x; is chosen so that x and f(i) will differ
in their ith coordinates. But this means that x and f(i) cannot be equal for any
i € Z*. Thus x is not in the image of f; so f'is not a surjective function. This
contradiction shows that 4 is not a countable set.

Theorem 2.4: The set of rational numbers is countably infinite.
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Proof: Every rational number can be expressed uniquely in lowest terms m/n,
where m and n are integers with no common positive divisor other than 1, and n is
Dpositive. Thus we consider the function

m/n - (m, n)

Jrom the set of rational numbers into Z X Z. This function is one-to-one since the
ordered pair (m,n) determines only one rational number m/n. The range Z X Z is
countable since it is the product of two countable sets. Thus the set of rational
numbers is equivalent to a subset of a countable set and hence is countable. Since
the set of rational numbers is obviously not finite, then it must be countably
infinite. (m]

Theorem 2.5: The set R of real numbers is uncountable.

Proof: Recall that all terminating and non-terminating decimals represent real
numbers. Since there is an obvious one-to-one correspondence between decimals
and sequences of digits,

.ajazaz ...« (a;, a az...),
Example 2.2.3 shows that the set of all decimals of the form .a;aa; . . . where each
ay is 0 or 1 is uncountable. Note also that the two distinct decimals whose terms can

be only 0 or 1 cannot represent the same real number. Thus R contains an uncountable
set and must itself be uncountable. O

Corollary: The set of irrational numbers is uncountable.

Proof: If the set I of irrational numbers were countable, then, since the set R of
rational numbers is countable, it would follow that their union

R=IUR

is countable. Since R is uncountable, then I must be uncountable. O

EXERCISE 2.2

1. Explain why every set which contains an uncountable set must be uncountable.
2. Prove that the function g of Example 2.2.2 (b) is a one-to-one correspondence.
3. Prove Theorem 2.3.
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4. Prove that every subset of a countable set is countable.

Prove that any two non-degenerate closed and bounded intervals have the same cardinal
number. (Hint: Find a one-to-one correspondence from [0, 1] onto an arbitrary non-
degenerate closed interval [a, b).)

Prove that (0, 1) is equivalent to R.

Prove that every (non-degenerate) open interval is equivalent to R.

(a) Prove that any two non-degenerate intervals have the same cardinal number.
(b) Prove that every non-degenerate interval is uncountable.

(c) Prove that every non-degenerate interval contains both rational and irrational
numbers.

9. Definition: For sets A and B, we say that card A < card B provided that A is equivalent
to a subset of B. The inequality card A < card B means that card A < card B
and card A # card B.

(a) Restate the meanings of card 4 < card B and card 4 < card B in terms of functions.
(b) Show that if card 4 < card B, then card P(4) < card P(B).
(c) Show that if 4 is a countable set, then card P(A4) < card R.

Note: If A is a countably infinite set, then card P(4) = card R, but the proof goes
beyond the amount of set theory developed in this course.

The continuum hypothesis, originally proposed by Georg Cantor, says that if X
is an infinite set with card X < card R, then X is either countably infinite or is equivalent
to R. Thus the continuum hypothesis asserts that there is no cardinal number *“between”
the cardinal numbers of the set of positive integers and the set of real numbers. Sur-
prisingly, the continuum hypothesis has been shown to be independent of the usual
axioms for set theory; both the continuum hypothesis and its negation are consistent
with the usual axioms. Further information on the continuum hypothesis and axiomatic
set theory can be found in the suggestions for further reading at the end of the chapter.

10. Show that for any set 4, card A < card P(A). (Hint: The function a = {a}, a € 4,
establishes a one-to-one correspondence between A4 and the family of all singleton sets
in P(A). Conclude from this that card 4 < card P(A4). Then, proceeding by contradiction,
suppose that f: 4 = P(A) is a one-to-one correspondence from 4 onto P(4). Let Q =
{a € A: a & f(a)} and consider the member ¢ of A for which f(g) = Q. Show that
neither of the relations g € f(q) or g & f(q) is possible.)

2.3 OPEN SETS AND CLOSED SETS
ON THE REAL LINE

Distances between points on the real line R are measured by the absolute
value function, with |a — b| being defined as the distance from a to b. The reader
is probably familiar with the following distance properties:

(@) |la—b| =20,and |a— b| =0 only when a = b;
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() la—bl=|b—-al;
) la—c|=<la—b|+ |b-c|

for any real numbers q, b, and c.

Topology deals with distances between points and sets and, more generally,
with a concept of “closeness” of points and sets which can be defined independently
of any distance function. In this section, we shall explore the concept of closeness
for the case of points and subsets of the real line. A similar property will be defined
without recourse to a distance function in Chapter 4.

Definition: Let a be a real number and B a non-empty subset of R. The distance
from a to B, d(a, B), is the greatest lower bound of all distances |a — b| for b € B:

d(a, B) = glb{|a — b|: b€ B}.

Note in the preceding definition that { |a — b|: b € B} is a set of non-negative
real numbers and thus has 0 (and any negative number) as a lower bound. The
Greatest Lower Bound Property insures that d(a, B) is well-defined and non-negative.

Example 2.3.1

(@ d(O,[1,2])=dO,(,2)=1.

(®) d(1,[1,2]) =d(1,(1,2)=0.

(c) For the set R of rational numbers, the denseness property of R in R
(Theorem 2.1) insures that d(x, R) = 0 for every real number x.

Definition: Let A be a subset of R. If {|x — y|: x, y € A} has an upper bound,
then A is a bounded set and the least upper bound of all distances |x — y| for x, y
in A is called the diameter D(A) of A.

Example 2.3.2

(@ D([a, b)) = D(a, b)) = |b — al.

(b) If B is the set of rational numbers in (a, b), then D(B) = |b — a|.

(¢) R, intervals of the form (a, ), [a, o0), (—00, a), and (—oo0, 4], the set
of rational numbers, and the set of irrational numbers are all un-
bounded sets.




2.3 / Open Sets and Closed Sets on the Real Line 41

Definition: A subset O of the real line R is an open set provided that O is the
union of some family of open intervals.

Theorem 2.6: The following statements are equivalent for a subset O of R:

(a) O is an open set.

(b) For each x € O, there is an open interval I, centered at x and contained
in O.
For O # R, (a) and (b) are equivalent to:

(c) For each x € O, d(x, R\O) > 0.

Proof: The proof will be accomplished by showing that (a) is equivalent to (b) and
(b) is equivalent to (c). For condition (c) we assume that O # R, since otherwise
R\O would be the empty set and the distance from x to R\O would be undefined.

To see that (a) implies (b), suppose O is an open set and x € O. Since O
is an open set, then x belongs to some open interval (a, b) contained in O. Thus
|x — a| and | x — b| are both positive numbers. If € is a positive number less than
or equal to both | x — a| and |x — b|, then I, = (x — €, x + ¢€) is an open interval
centered at x and contained in O.

The argument that (b) implies (a) is easier. Assuming (b), there exists for each
X in O an open interval I, centered at x and contained in O. Thus

Urco.

xX€E0

Since each x in O is a member of the interval I, then

ocU .
x€0
Thus
o=U1,
P (=]

so O is a union of open intervals.

To see that (b) implies (c), consider an open interval I, = (x — ¢, x + ¢) centered
at x and contained in O. Then any point within distance € of x must be in O, so the
distance from x to any point outside O must be at least €. Thus d(x, R\O) is positive
for each x in O.

Assuming that (c) holds, d(x, R\O) is a positive number a. This means that
the distance from x to any point outside O is at least a,, so any real number within
distance a, of x must be in O. Thus the open interval (x — a,, x + ayx), which
contains only points within distance a, of x, is contained in O. Thus we conclude
that (c) implies (b), and the proof is complete. a
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Theorem 2.7: The open subsets of R have the following properties:

(a)
(b)
(¢

Proof:
(a)

b

(¢

R and & are open sets.
If {O,: a € A} is a collection of open sets, then U,c,4 O, is open.
If {O,}i-, is a finite collection of open sets, then N}, O; is open.

The real line R is open since it can be expressed in many different ways
as a union of open intervals. For example,

R=(—oo,oo)=g(—n,n)= O (n,n+ 2).

n=—oo

The empty set & is open since it is the union of the empty collection of
open intervals.

If {O,: a € A} is a family of open sets indexed by a set A, then for each

a € A, O, is a union of open intervals. Then U, O, is the union of all
the open intervals of which the open sets O, are composed and is, therefore,

an open set. Property (b) is sometimes paraphrased by saying that the
union of any family of open sets is open.

We shall prove (c) first for n = 2 and then complete the proof by induction.

Suppose that O, and O, are open sets and that point x belongs to

O, N O,. By Theorem 2.6, there exist open intervals I, and I, centered
at x and contained in O, and O,, respectively. But then I; N I, is an open

interval centered at x and contained in O; N O,, and it follows from

Theorem 2.6 that O; N O, is open.

Proceeding inductively, suppose that the intersection of every family
of n — 1 open sets is open and consider a family {O,};-; of n open sets.
Then N;-; O; and O, are open sets, so what has just been proved shows
that their intersection N}.; O; is open also. Property (c) is paraphrased
by saying that the intersection of any finite family of open sets is open.

O

Definition: A subset C of R is a closed set if its complement R\C is open.

Note in the preceding definition that the term “closed set” does not mean a
set which is not open. We shall see many examples to illustrate that “closed”” and
“not open” are very different properties for sets.

Theorem 2.8: The closed subsets of R have the following properties:

(a)

R and & are closed sets.
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(b)) If{C,: a € A} is a family of closed sets, then N4 C, is closed.
(c) If {Ci}i-1 is a finite family of closed sets, then U;., C; is closed.

Proof: (a) R and & are closed because their respective complements & and R
are open.

Statements (b) and (c) are proved from Theorem 2.7 and De Morgan’s Laws
(Theorem 1.6). The method is illustrated here for (b), and the analogous proof of
(c) is left to the reader. For any collection {C,: a € A} of closed subsets of R, the
Jamily of complements {R\C,: a € A} is a family of open sets. Theorem 2.7 insures
that

U ®r\c)=R\NC,
o€A o€A
is an open set. Then, by definition, N4 C is a closed set. a

Note the duality between open sets and closed sets: A set is closed if and only
if its complement is open. The union of any family of open sets is open; the inter-
section of any family of closed sets is closed. The intersection of any finite family
of open sets is open; the union of any finite family of closed sets is closed.

Example 2.3.3

(a) Itis obvious from the definition that an open interval is an open set.
It is true, but not quite so obvious, that a closed interval [a, b] is a
closed set:

R\[a, b] = (—o0, a) U (b, )

is open so [a, b] is closed. Closed intervals of the forn (—oo, a] and
[a, o0) are also closed sets.

(b) Since a singleton set {a} can be regarded as a closed int. rval [q, 4],
then each singleton subset of R is closed. Combining thi: fact with
statement (c) of Theorem 2.8, we conclude that every finite . ubset of
R is closed.

(c) Many subsets of R are neither open nor closed. Examples of suc » sets
are the rational numbers, the irrational numbers, and half-open 1 alf-
closed intervals. (The interval [q, b) is not open because it contains
no open interval centered at g; it is not closed because its complement

IR\[a9 b) = (_wy a) U [bs CD)

contains no open interval centered at b.)
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The announced idea of closeness of a point to a set appears in the next def-
inition.

Definition: A point x in R is a limit point or accumulation point of a subset A
of R provided that every open set containing x contains a point of A distinct
from x.

Note in the definition of limit point that it is not required that every open
set containing x contain the same point of A; different open sets may contain
different points of 4. Note also that the possibility is left open for a limit point of
A to be either in A4 or outside it. Limit points are sometimes called cluster points.

Theorem 2.9: A real number x is a limit point of a subset A of R if and only if
d(x, A\{x}) = 0.

Proof: Suppose first that x is a limit point of A and let € be a positive number.
Then the open set (x — €, x + €) contains a point y of A distinct from x. Since y €
(x— € x+ ¢, thend(x, y) < € sod(x, A\{x}) < e. Since the latter inequality holds
Jor all € > 0, then d(x, A\{x}) = 0.

Suppose now that d(x, A\{x}) = 0 and consider an open set O containing x.
Then O contains an open interval (x — 6, x + &) for some positive number §. Since
d(x, A\{x}) < & and the interval (x — 8, x + 8) consists precisely of all points at a
distance less than 6 from x, then (x — 6, x + ) must contain a point z in A\{x}.
Thus

zEMKX—6,x+8)CO

and z # x since z € A\ {x}. Hence every open set containing x contains a point of
A distinct from x, and x is a limit point of A. a

Theorem 2.9 is interpreted intuitively as saying that x is a limit point of 4 if
and only if x is arbitrarily close to points of 4 other than x itself. (The phrase “other
than x itself” is applicable only in case x belongs to 4.) This interpretation of limit
point is illustrated in the following examples.

Example 2.3.4

(@) O is the only limit point of {1/n},. Note in this case that the limit
point is outside the set.

(b) The set of limit points of a closed interval [a, b], a < b, is precisely
the same interval.
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(c) The set of limit points of an open interval (a, b), a < b, is the corre-
sponding closed interval [a, b]. In the latter case, the set is a proper
subset of its set of limit points.

(d) A finite subset of R has no limit points.

(e) The set of limit points of the set of rational numbers is the entire real
line. This is a consequence of Theorem 2.1.

The following theorem explains the relationship between closed sets and limit
points.

Theorem 2.10: A subset A of R is closed if and only if A contains all its limit
points.

Proof: Suppose first that A is closed and consider a limit point x of A. If x were
outside A, then R\A would be an open set containing x but containing no point of
A, and we would be forced to conclude that x is not a limit point of A. Thus, if x is
a limit point of A, then it must be a member of A.

Now suppose that A contains all its limit points. We shall show that A is closed
by showing that R\A is open. If y € R\A, then y is not a limit point of A so there
is an open set O,, containing y but containing no point of A. Then R\A is the union
of such open sets O, and is an open set. Thus A is closed. 0

The reader should be aware of the distinction between limit point and limit
of a sequence. A real number x is the /imit of a sequence {a,} 5=, or {a,} | converges
to x, provided that given € > 0 there is a positive integer N such that if n = N, then
|a, — x| < e. As the reader will see in Problem 9 of Exercise 2.3, saying that x is
a limit point of 4 is equivalent to saying that there is a sequence {a,}s, of distinct
members of 4 which has limit x. It should be noted, however, that if a sequence
does not have distinct terms, then its limit is not necessarily a limit point of the
range of the sequence. Keep in mind for future reference that sequences are not
adequate to determine limit points in the more general context in which limit
points will be considered later in the course. In a general topological space, if a
sequence of distinct points of a set A converges to a point x, then x is a limit point
of A. However, A may have limit points which are not limits of sequences of distinct
points of A. We shall return to this subject in Section 4.1.

EXERCISE 2.3

1. Let x be a real number, 4 a subset of R, and € a positive number. Prove that (x — ¢,
x + €) C A if and only if d(x, R\A) = ¢.
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2. Let x be a real number and A4 a subset of R.
(a) Prove that if d(x, 4) > 0, then d(x, y) > O for all y € 4.
(b) Give an example for which d(x, y) > 0 for all y € 4 but d(x, 4) = 0.

3. Prove that a subset of R is bounded if and only if it has both upper and lower bounds.
Complete the proof of Theorem 2.8.

Prove that a non-empty subset C of R is closed if and only if d(x, C) > 0 for each point
X in the complement of C.

6. Let abe areal number and let B, C be subsets of R. Prove that d(a, B U C) is the smaller
of d(a, B) and d(a, C).
Give examples to show that (4 U B) may be larger or smaller than D(4) + D(B).
Show that if x is the limit of the sequence {a,}2. of real numbers and all the terms of
the sequence are distinct, then x is a limit point of the range of the sequence. Give an

example to show that the limit of a sequence may not be a limit point of the range of
the sequence if the terms of the sequence are not distinct.

9. Let x be a real number and A a subset of R.
(a) Prove that x is a limit point of A if and only if there is a sequence of distinct points
of A which converges to x.
(b) Prove that x is a limit point of 4 if and only if every open set containing x contains
infinitely many points of 4.

2.4 THE NESTED INTERVALS THEOREM

The closed intervals [0, 2], [1/2, 3/2], [2/3, 4/3), ... [(n — 1)/n, (n + 1)/n],
... have precisely one point in common, the number 1. The main result of this
section shows that any such collection of “shrinking” or “nested” closed intervals
with diameters approaching zero must have exactly one point in common. This
may seem intuitively obvious or even uninteresting, but it is a property of great
importance in mathematics. It is one of the early topological discoveries of Georg
Cantor in his work on R. We shall prove Cantor’s Nested Intervals Theorem and
formulate two related but less obvious properties in this section. The importance
of Cantor’s theorem will become clear in Chapter 6 and in the reader’s study of
real analysis.

Definition: A4 sequence {S,}%; of sets is nested if S,.; C S, for each positive
integer n.

Theorem 2.11: Cantor’s Nested Intervals Theorem If {/a,, b,/ , is a nested
sequence of closed and bounded intervals, then N, [a,, b,] is not empty. If, in
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addition, the diameters of the intervals converge to 0, then N, [a,, b,] has precisely
one member.

Proof: Since [ay+1, buii] C [an, b,] for each positive integer n, the sequences
{a,}3x; and {b,}5 ) of left and right endpoints have the following properties:

(i) {an}sx is an increasing sequence (a; <@y < * ** <@, <Qns; < ***);
(i) {bn}s1 is a decreasing sequence (b; = by = +++ 2 by =2 bpyy =+ +);
(iii) Each left endpoint is less than or equal to each right endpoint.

Let ¢ denote the least upper bound of the left endpoints and d the greatest
lower bound of the right endpoints. Note that the existence of ¢ and d is guaranteed
by the Least Upper Bound Property and the Greatest Lower Bound Property, re-
spectively. Then, by property (iii), ¢ < b, for eachn soc < d. Sincea, <c<d<b,,
then [c, d] C [a,, b,] for each n. Thus N, [a,, b,] contains the closed interval
[c, d] and must therefore be non-empty.

If we assume further that the diameters of the intervals [a,, b,] approach 0,
then it follows that ¢ = d and that c is the one point in N, [a,, b,].

Example 2.4.1

The closed intervals [a,, b,] of Cantor’s Nested Intervals Theorem cannot be
replaced by open intervals. Note, for example, that {(0, 1/n)}, has empty
intersection.

The next two theorems are consequences of Theorem 2.11, but they are not
so intuitively plausible.

Theorem 2.12: The Heine-Borel Theorem Let [a, b] be a closed and bounded
interval and O a collection of open intervals whose union contains [a, b]. Then there
is a finite subset {0, O,, . .., Ox} of O whose union contains [a, bj.

Proof: The following terminology will simplify the proof. The intervals
[c. (c + d)/2] and [(c + d)/2, d] will be called the left half and right half of the
interval [c, d], respectively. If [c, d] is contained in the union of a finite number of
members of O, then we shall say that [c, d] is finitely coverable by O.

Proceeding with the proof of the theorem by the method of contradiction, sup-
pose that [a, b] is not finitely coverable by O. Then either the left half or the right
half of [a, b] is not finitely coverable by O. Let [a,, b,] denote-either half of [a, b]
which is not finitely coverable by O.

The same reasoning applies to [a,, b,]. Since [a;, b,] is not finitely coverable
by O, it has (at least) one half [a,, by] which is not finitely coverable by O. Applying
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this reasoning inductively, there exists a nested sequence {[a,, b,]}2; of closed
intervals, none of which is finitely coverable by O, such that [ay.,, b,.,] is either the
left half or the right half of [a,, b,]. The diameters of the intervals [a,, b,] have limit
0 since the length decreases by a factor of 1/2 at each stage; i.e., the length of
[an, b,] is (b — a)/2".

Cantor’s Nested Intervals Theorem guarantees that there is precisely one point
p common to all the intervals [a,, b,]. Since p € [a, bj, there is some open interval
O in O with p € O. Let € be a positive number such that (p — ¢, p + ¢) C O, and
let n be a positive integer such that (b — a)/2" < e. Then, since p € [ay, b,], it follows
that

[an, b)]C(p—€p+ ¢ CO.
But this contradicts the fact that [a,, b,] is not finitely coverable by O: [a,, b,] is

contained in one member of O©. Assuming that [a, b] is not finitely coverable by O
has led to a contradiction, so we conclude that [a, b] is finitely coverable by ©. 0O

Example 2.4.2

The closed interval [a, b] of the preceding theorem cannot be replaced by an
open interval (a, b). Note for example, that (0, 1) is contained in the union of
the family of open intervals O = {(1/n, 1)}, but is not finitely coverable
by O.

Theorem 2.13: The Bolzano-Weierstrass Theorem Every bounded, infinite
subset of R has a limit point.

The proof of the Bolzano-Weierstrass Theorem is left as an exercise with the
hint that a proof can be modeled after the proof of Theorem 2.12: A bounded,
infinite set must be a subset of some closed interval [a, b]. Divide the interval
[a, b] into halves, and the halves into halves, and so on, with at least one half at
each stage always containing an infinite number of members of the original infi-
nite set.

EXERCISE 2.4

1. Give an example of an infinite subset of R which has no limit point.

2. Give an example of a nested sequence {[a,, b,)}2, whose intersection is empty.

3. Consider [0, 1] and the family of open intervals @ = {(—0.001, 0.001), (0.999, 1.001)}
U {(1/n, 1)}2.,. Find a finite subcollection of @ whose union contains [0, 1].
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4. Prove the Bolzano-Weierstrass Theorem (Theorem 2.13).

Prove the following generalization of Cantor’s Nested Intervals Theorem (Theorem 2.11):
If {4,} 7, is a nested sequence of sets each of which is closed, bounded, and non-empty,
then NZ, A4, is non-empty.

6. Prove the following generalization of the Heine-Borel Theorem (Theorem 2.12): Let
[a, b] be a closed, bounded interval and U a collection of open sets whose union con-
tains [a, b). Then there is a finite subcollection {U,, U, ..., Uy} of U whose union
contains [a, b).

7. Prove that the theorem stated in Problem 6 remains valid with [a, b)] replaced by an
arbitrary closed and bounded subset 4 of R. (Hint: A C [a, b] for some closed interval
[a, b) and R\A is an open set.)

8. Show that every uncountable subset of R has a limit point. (Hint: Show that such a set
must have infinitely many of its members in an interval of the form [n, n + 1] where n
is an integer.)

2.5 THE PLANE

The purpose of this section is to show that the ideas presented for the real
line in Sections 2.3 and 2.4 are also applicable to the Euclidean plane R?. Recall
that the distance d(a, b) between points a = (a,, a;) and b = (b,, b,) in R? is defined
by

d(a, b) = ((a\ — by)* + (a2 — b))

b (b1,6)

(al ,“2)

az

ay b]

FIGURE 2.2 The distance from (a,, a;) to (b;, b2) is ((a; — b,)* + (a2 — b))%
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This distance function satisfies the following properties:
(@) d(a, b) = 0, and d(a, b) = 0 only when a = b;

(b) d(a, b) = d(b, a);
(c) d(a,c)=da,b)+db,c)

for any points a = (a,, @), b = (by, by), ¢ = (c1; ¢2) in R2.

The basic object used to define open sets in R is the open interval. The gen-
eralization of open sets to R? can easily be made once the subsets of R which are
analogous to the open intervals of R are determined. An open interval in R centered
at g is an interval (@ — r, a + r), where r is a positive number. In terms of distance,
(a — r, a + r) consists of all points x in R for which the distance from x to a is less
than r:

(@a-ra+n={x€R: |la-x| <r}.

We naturally call g the center and r the radius of the interval.

It is now easy to formulate the analogue of an open interval for R% It is a
disk that excludes the circular edge in the same way that an open interval excludes
the endpoints. The term “ball” is used rather than “disk™ to anticipate the gener-
alization to dimensions three and higher.

Definition: Let a = (a;, a5)) € R? and let r be a positive number. The open ball
B(a, r) with center a and radius r is the set

B(a, 1) = {x = (x;, xJ) ER% d(a, x) <r}.
Open sets and closed sets are defined in complete analogy with R.

Definition: A subset O of R? is an open set if it is the union of some family of
open balls. A subset C of R? is a closed set provided that its complement R>\C
is open.

Theorems corresponding to those proved for R in Sections 2.3 and 2.4 can
be formulated and proved for R?; some instructive ones are suggested in the exercises
for this section. Rather than redo everything for the plane, however, let us set our
sights a bit higher. The next chapter introduces the general concept of distance

|—r —>la—r—»|

a-—r a a+r

FIGURE 2.3 The open interval with center a and radius r.
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\ B(a,n

FIGURE 24

function, and the properties touched on here for the plane are presented in detail
for any set which has a distance function.

EXERCISE 2.5

1. Give the definition of the following terms for R
(a) Distance from a point to a set.
(b) Bounded set.
(c) Diameter of a set.
(d) Limit point of a set.
2. Prove the analogues of Theorems 2.7 and 2.8 for R2.

State and prove the analogue of Cantor’s Nested Intervals Theorem (Theorem 2.11) for
a nested sequence {[a,, b, X [c,, ds)}2) of closed rectangles in R,

4. Prove the analogues of Theorems 2.9 and 2.10 for R2,

SUGGESTIONS FOR FURTHER READING

For a readable introduction to the real number system based on the axiomatic
approach, see Apostol’s Calculus. Rudin’s Principles of Mathematical Analysis is
recommended for a constructive definition of the real number system.
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For further study of the topology of plane sets, Newman’s Elements of the
Topology of Plane Sets of Points and Wall’s A Geometric Introduction to Topology

are recommended.
Numbers, Sets and Axioms by A. G. Hamilton and Infinity and the Mind by

R. Rucker both give readable introductions to the continuum hypothesis and to
axiomatic set theory.
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S TORICAL NOTES FOR CHAPTER 2

T're ideas introduced in this chapter were developed during the latter part of
tliz nineteenth century as mathematicians examined the real number system and
gtizmpted to make rigorous the foundations of calculus. Those primarily responsible:
Far coherent definitions of the real number system were Karl Weierstrass, Richard
Ledeldnd (1831-1916), Charles Méray (1835-1911), and Georg Cantor (1845-
"12£%). Least upper bound and greatest lower bound were defined by Weierstrass
in bis lzctures during the 1880’s, but they were used in less rigorous form by Bernard
Biizano (1781-1848) as early as 1817.

It is Cantor who deserves the credit for the theory of infinite sets. In a series
of paners during the years 1872 to 1878, Cantor defined equivalence of sets, count-
able sets, and uncountable sets. He was led to these ideas by his work on the con-
vaipence of trigonometric series, examining the “exceptional points” where the
serics failed to converge. Cantor proved that the set of rational numbers is countable
by tiie diagonal counting method of Example 2.2.2(c). He proved also that the set
of alzebraic numbers, which includes the raticnal numbers, is countable. (An al/-
gebraic number is a real number which is a root of a polynomial equation with
integer coefficients.) Cantor showed that the union of a countable family of countable
<zis is countable. The argument of Example 2.2.3 was given by Cantor in 1890 to
urove that the closed interval [0, 1] is uncountable.

The properties of open and closed sets in Section 2.3 are also due to Cantor.
He defined limit points, dense sets, open sets, and closed sets and established their
properties for the line, plane, and higher dimensional Euclidean spaces during the
years 1872 to 1890. Cantor’s Nested Intervals Theorem (Theorem 2.11) was proved
in 1884. Considerations of limit points and related ideas were made independently
and approximately concurrently with those of Cantor by Paul du Bois-Reymond
(1831-1889).

The Heine-Borel Theorem (Theorem 2.12) was first proved by Emile Borel
(1871-1956) in 1894 under the additional assumption that the collection of open
intervals whose union contains [a, ] is countable. More will be said about the
history and significance of Borel’s theorem in the historical notes to Chapter 6.

The Bolzano-Weierstrass Theorem (Theorem 2.13) is usually credited to
-Weierstrass in the 1880’s, but the method of proof used in the text for Theorem
2.12 and suggested for the Bolzano-Weierstrass Theorem was used by Bolzano in
his lectures in 1817 and is clearly explained in his book Paradoxien des Unendlichen
(Paradoxes of the Infinite), published in 1851.







a)
CLTD Metric Spaces

In the preceding chapter we studied the notion of limit point, defined in terms
of open sets, for the real line and plane. That investigation continues in this chapter
with the line and plane replaced by an arbitrary set in which it is possible to measure
distances. The properties required of a distance function, also called a metric, are
given in the definition in Section 3.1. In analogy with R and R?, there is a natural
definition of open sets for any set X on which a metric is defined. This chapter
explores the fundamental and most useful aspects of metrics, which are of real
importance in modern mathematics. Historically, the development of metric space
led to the more general concept of topological space, which is introduced in Chap-
ter 4.

3.1 THE DEFINITION AND SOME EXAMPLES

Definition: Let X be a set and d: X X X = R* a function from X X X to the set
R* of non-negative real numbers satisfying the following properties. For all x, y, z
in X,

(@) d(x,y)=0ifandonlyifx=y;
(b) d(x,y)=d(y x);
(¢) d(x, z) <d(x y)+dy 2.

Then d is called a metric or distance function on X and d(x, y) is called the distance
from x to y. The set X with metric d is called a metric space and is denoted by
(X, d).

Notice that the properties required of a metric are parallel to those of the
distance functions used for R and R? in Chapter 2. In analogy with the plane,
property (c) is often called the “Triangle Inequality.” When the metric under con-
sideration is clear or when the symbol for the metric is unimportant, we shall often
omit mention of the metric and refer to metric space X instead of (X, d).

The real line R and the plane R?, with the metrics defined for them in Chapter
2, are special cases of the most important class of metric spaces, the Euclidean
spaces

R" = {x = (x;, X2, ..., Xn): X;is a real number fori=1,2,..., n}
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with metric d defined for each n by
n 172
‘sz}’)=(2(xi"}’i)2) ’ xg(xl’°°-9xn)’ y=(}’l,---,}’n)ERn‘
i=1

Strictly speaking, we should use a symbol like d”, indicating the dimension, for the
metric on R” since there is a different metric in each dimension. This notation is
cumbersome, however, so we shall avoid it. The dimension in question will always
be indicated by the superscript of R”. Anticipating the fact that d is a metric for
each n, we call d the usual metric for R". Unless stated otherwise, we shall assume
that R" is assigned the usual metric. To see that d is a metric for R”, it will be helpful
to review some of the vector properties of R”.

For pointsa = (@;,...,a,)and b= (b, ..., b,) in R, the sum a + b and
difference a — b are defined by

a+b=(@+b,...,a,+b,)
a—b=(a|—b|,...,a,,—b,,)
It is often said that addition and subtraction in R" are defined coordinatewise. The
dot product or scalar product a - b is defined by
ab= Z a.~b,~.

i=]

The norm or length |la| of a vector a is the distance from a to the origin 0 =
0, ..., 0) (the point all of whose coordinates are zero):

n 1/2
lal = da, ) = (3 ).

=]
With this notation, the distance between two vectors is simply the norm of their
difference: d(a, b) = |la — b|.
Theorem 3.1: The Cauchy-Schwarz Inequality Forany pointsa=(a;, .. .,
a,)andb= (b, ..., b,) inR",

la-bl=< lalllb|.

Proof: If either a or b is the origin, the result is true because both sides of the

inequality reduce to zero. Thus we may assume that both a and b have at least one
non-zero coordinate and hence that ||a| and ||b| are both positive numbers.
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lail |bt|)2
O0s|+— — v+
(IIaII sl

2|a,b,| + b)
lalllibl llall’ lol?

Foreachi=1,...,n,

SO0

Then
" 2labl (af bf)
Al Sy )
2 Taiel = Z\Tal? * Tl

Splitting the right hand side into two sums and factoring constant terms from both
sides gives

n 2 2
alter 2 1ot < o ||’,.E, "'nbnn.z,”’ Tal * 1o~ 2
Thus
I s o<1
Talllal &
S0
la-b] = ‘_ﬁl ab| < ‘_él laibil < lalllBl. o

Theorem 3.2: The Minkowski Inequality For any pointsa = (a,, ..., a,)
andb=(b;, ..., b,) IinR"

lla + &l < llall + llbll.
Proof: The Cauchy-Schwarz Inequality applies to produce the following:

la+bl? =3 (@+b)f =3 (al + 2abi+ b)) = S ai +2 3 aby+ 3 B

i=] i=1 i=] i=] i=]

= llall* + 2a-b + |Bl° < llall® + 2llallldll + 151 = (llall + 5]}
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Taking square roots of the first and last terms gives the desired result |a + b|| <
lall + l&l. O

We are now ready to prove that d is a metric for R”. It follows directly from
the definition that d(x, y) = 0 precisely when x = y and that d(x, y) = d(y, x). The
proof of the remaining metric property, the Triangle Inequality, will use the Min-
kowski Inequality. For points x = (X1, ..., X)), ¥ = (D1, ...,y and z= (2, ...,
z,) in R",

d(x, 2) = Ix — 2|
=llx=n+@-2 =lx—yl +lly—zl = dx, y) + d, 2).

Thus d is a metric and (R”, d) is a metric space. O

Example 3.1.1 The Taxicab Metric for R*

Define a function d’ on R” X R" as follows: For x = (x;, ..., Xx,) and y = (3,
..»Yn)inR",

dx,y) =2 |lxi—yl.

i=]

The proof that 4’ is a metric is left to the reader. It is called the taxicab metric
because, in the plane, the distance from x to y is the sum of the lengths of a
horizontal segment and a vertical segment (“streets”) joining x to y.

y=0102

|2 = y2

Jxi =l

x = (x1,X2)

FIGURE 3.1
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Example 3.1.2 The Max Metric for R*
Another metric d” for R” is defined by taking the largest or maximum of the
absolute values of the differences of the coordinates of x and y:

d"(x, y) = max {|x; — yi| }i-=1.

It should be clear that d" satisfies properties (a) and (b) in the definition of metric.
To see that it also satisfies the Triangle Inequality, consider points x = (x, ...,
xn),)’:(}’l,---,yn),andz=(Z.,...,z,.)ian":
d"(x, z) = max {|x; — z|}i-
= max {|(x; — y) + (¥ — z)| }i=1 = max {|x; — yil + |yi — zi| } s
< max {|x; — y;| }}=1 + max {| y; — z| }i=y = d"(x, y) + d"(, 2).

Example 3.1.3

For an arbitrary set X, define d(x, y) to be 0 when x = y and 1 when x # y. The
reader should check to see that d is a metric; it is called the discrete metric and
is usually of little interest. It does demonstrate, however, that every set can be
assigned a metric.

Example 3.1.4

Consider the set C[a, b] of all continuous real-valued functions defined on a
given closed interval [a, b). For £, g in €]a, b), define

b
o9 = [ 17w - g0l ax

The fact that p is a metric follows easily from properties of the Riemann integral.
This metric measures the *“‘distance’ between two functions to be the area en-
closed between their graphs from x = ato x = b.

)

e
-+

FIGURE 3.2
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Example 3.1.5
For the set @[a, b] of Example 3.1.4, define o’ by

p'(f; 8 = lub {| f(x) — g(x)|: x € [a, b]}.

The proofthat p' is a metric is left to the reader. (A proof of the Triangle Inequality
can be made along the lines of Example 3.1.2.) The metric o' is called the su-
premum metric or the uniform metric for @[a, b]. It measures the “distance”
from f'to g as the supremum (which, in this case, is the same as the maximum)
of vertical distances from points (x, f(x)) to (x, g(x)) on the graphs of fand g.

Examples 3.1.4 and 3.1.5 suggest an important point about the value of gen-
eralization and abstraction. When people think of metric spaces, they usually con-
ceive something like the plane with its usual distance function. Imagination and
geometric intuition may suggest theorems whose proofs depend only on properties
which the plane shares with other metric spaces. Such theorems would, of course,
be true for all metric spaces, including the spaces of Examples 3.1.4 and 3.1.5. The
process of generalization, which brings under one umbrella a large collection of
apparently disparate objects, has been one of the great advances of modern math-
ematics. It gives much more than the simple economic benefit of not having to
give a separate proof for each special situation; it also gives new and decisive insights
into complicated phenomena and suggests new relationships where none had been
seen before. In short, generalization and abstraction of mathematical concepts pro-
vide a deeper and more profound understanding than can be attained by considering
each example in isolation.

Definition: Let (X, d) be a metric space and A a non-empty subset of X.
If {d(x, y): x, y € A} has an upper bound, then A is called a bounded set and
lub {d(x, y): x, y € A} is called the diameter D(A) of A. For completeness, we define
the diameter of the empty set to be zero. If the set X is bounded, then (X, d) is called
a bounded metric space.

Example 3.1.6

Consider the unit square
S={x=(x,x):0=<x<1; i=12}
in R2. With the usual metric d, this set has diameter \5; with the taxicab metric

d', its diameter is 2; with the max metric d”, its diameter is 1; and with the
discrete metric its diameter is 1.
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Definition: Let (X, d) be a metric space, A a non-empty subset of X, and x a point
of X. The distance d(x, A) from x to A is defined by

d(x, A) = glb{d(x, y): y € A}.

EXERCISE 3.1

10.

11.

For a = (=2, 1) and b = (3, 4) in R?, compute the distance from a to b in each of the
following metrics: (a) usual, (b) taxicab, (c) max, (d) discrete.

Determine the distance from (3, 4) to the unit square [0, 1] X [0, 1] in R? with respect
to each of the four metrics listed in Problem 1.

Prove that the taxicab metric d’ is actually a metric for R”".
Prove that each of the following functions is a metric:

(a) the discrete metric of Example 3.1.3

(b) the function p of Example 3.1.4

(c) the function p’ of Example 3.1.5

Describe pictorially in R? the set of points x whose distance from the origin is less than
or equal to 1 with respect to each of the following metrics: (a) usual, (b) taxicab, (c)
max, (d) discrete.

Repeat Problem 5 for the set of points whose distance from the origin is less than 1.

Describe pictorially (on a graph) the set of functions g in @[a, b] whose distance from
a given function f'is less than or equal to 1 for each of the following metrics: (a) the
integral metric p of Example 3.1.4, (b) the supremum metric p’ of Example 3.1.5, (c)
the discrete metric.

Let B = {x = (x, X2, x3) € R* x} + x} + x3 < 1} be the unit ball in R*. Compute the
diam;ter of B for each of the following metrics: (a) usual, (b) taxicab, (c) max, (d)
discrete.

Show that if (X, d) is a metric space with discrete metric d and A is a subset of X with
at least two members, then the diameter of 4 is 1.

Let 4 = {x = (x;, X2) ER%: x} + x3 < 1} and let b = (1, 1). Find the distance from b
to A for the following metrics: (a) usual, (b) taxicab, (c) max, (d) discrete.

Let (X, d) be a metric space and A a subset of X. Prove that the diameter of A is zero
if and only if 4 has fewer than two members.

3.2 OPEN SETS AND CLOSED SETS

IN METRIC SPACES

There will be a rather obvious parallelism between the concepts defined in

this section and those defined for the line and plane in Chapter 2.
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Definition: Let (X, d) be a metric space, a a member of X, and r a positive
number. The open ball B,(a, r) with center a and radius r is the set

By(a, 1) = {xE X: d(a, x) <r)}.
The corresponding closed ball By[a, r] is defined by

Byfa, 1] = {xE X:d(a, x) <r).

When there is only one metric under consideration, the symbols for open balls and
closed balls are sometimes simplified to B(a, r) and Bfa, r].

The following example is for those who did not do Problem 5 of the preceding
exercises.

Example 3.2.1

(a) For the plane R? with the usual metric d, B4(0, 1) is the region inside
the circle with center at the origin 6 and radius 1. The closed ball
B,[0, 1] is the union of B,(0, 1) with the bounding circle.

(b) For R? with the taxicab metric d',

Bs0,1) = {(x, ) ER% |x] + |y| <1}

is the interior of the diamond shown in Figure 3.3. The closed ball
By,[0, 1] is the union of B,-(#, 1) with the four bounding line segments.

7 (1,0

FIGURE 3.3
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(c) For R? with the max metric 4",

Bs06, 1) = {(x, ) € R: max {|x|, |y|} <1}

is the interior of the square of side 2 centered at 0; B[, 1] is the
union of B,»(0, 1) with the four bounding line segments.

(-LDh ((R))

(=1,-1 ()

FIGURE 34

(d) For any set X with the discrete metric,

Ba,r={a} if r=<]l,

Bla,r) = {a} if r<]|,

Bla,r]=X if r=1,
B@a,r)=Bla,r]=X if r>1.

Definition: A4 subset O of a metric space (X, d) is an open set with respect to the
metric d provided that O is a union of open balls. The family of open sets defined
in this way is called the topology for X generated by d. A subset C of X is a closed
set with respect to d provided that its complement X\C is an open set with respect
tod.

As usual, when there is only one metric under consideration, repeated ref-
erences to it will be omitted.
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Theorem 3.3: The following statements are equivalent for a subset of O of a
metric space (X, d).

(a) O is an open set.

(b) For each x € O, there is an open ball B(x, €,), for some positive radius
€, which is contained in O. For O # X, (a) and (b) are equivalent to:

(¢c) For each x € O, d(x, X\O) > 0.

Proof: As was done for the corresponding result in Chapter. 2 (Theorem 2.6), the
proof will be accomplished by showing that (a) is equivalent to (b) and (b) is equivalent
to (c). In condition (c) we again assume O # X since the distance from a point to
the empty set is not defined.

To see that (a) implies (b), suppose O is open and x € O. Since O is a union
of open balls, then x belongs to some open ball B(a, r) contained in O. Then
d(x, a) < r. Let ¢, be a positive number less than or equal to r — d(x, a). Then
B(x, €,) C B(a, 1) for the following reason: If y € B(x, ¢,),

dly,a) <d(y,x)+d(x,a)<e+d(x,a)<r—dix a+dx a=r

Thus B(x, €) is an open ball of positive radius centered at x and contained in O.

The proof that (b) implies (a) is immediate: Assuming (b), O must be the
union of the balls B(x, e,).

To see that (b) implies (c), consider an open ball B(x, ¢,) centered at x and
contained in O. Then any point within distance ¢, of x is in O, so the distance from
X to X\O must be at least ¢,.. Thus d(x, X\O) > 0 for each x € O.

Assuming that (c) holds, d(x, X\O) is a positive number o, depending on x.
This means that the distance from x to a point outside O must be at least a,, s0O
any point within distance a, of x must be in O. In other words, B(x, a,) CO. 0O

Theorem 3.4: The open subsets of a metric space (X, d) have the following prop-
erties:

(a) X and & are open sets.

(b) The union of any family of open sets is open.

(c) The intersection of any finite family of open sets is open.

Proof:

(a) The entire space X is open since it is the union of all open balls of all
possible centers and radii. The empty set & is open since it is the union
of the empty collection of open balls.

(b) If {O,: « € A} is a collection of open sets in X, then for each o in the
index set A, O, is a union of open balls. Then U,e4 O, is the union of
all the open balls of which the open sets O, are composed and is, therefore,
an open set.
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(c) Let {O,;}}-} be a finite collection of open sets and let x € N}, O;. Then
by Theorem 3.3(b) there is for each i = 1, ..., n a positive number ¢,
such that B(x, €;) C O,. Then

ﬁ‘B(x, Gj) (@ ﬁ 0,.
i=] i=]

But the intersection of the balls B(x, €,;) is simply the ball B(x, ¢) where
€ = minimum {¢,}-,, so B(x, ¢) is an open ball centered at x and contained
in N%; O;. Thus N.; O, is open. a

In Chapter 4 we shall define a topology for an arbitrary set X by taking as the
defining properties the statements (a), (b), and (c) of Theorem 3.4.

The proof of the following theorem, the analogue of Theorem 2.8, is left as
an exercise.

Theorem 3.5: The closed subsets of a metric space (X, d) have the following
properties:

(a) X and & are closed sets.

(b) The intersection of any family of closed sets is closed.

(c) The union of any finite family of closed sets is closed.

Example 3.2.2

Whether a set is open or not open depends upon the space in which it is con-
sidered. For example, it is common practice to identify the real line R with the
horizontal axis {(x, 0) € R%: x € R} in R Since R contains no open balls in R?,
then R is not open when considered as a subset of R2. Similarly, whether or not
a set is closed also depends upon the space in which it is being considered.

Example 3.2.3

In the plane with the usual metric, the set 4 = {(x;, X)) ERZ0<x; < l;i =
1, 2} shown in Figure 3.5 is neither open nor closed.

Definition: Let (X, d) be a metric space and A a subset of X. A point x E X is a
limit point or accumulation point of A provided that every open set containing x
contains a point of A distinct from x. The set of limit points of A is called its de-
rived set.
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FIGURE 3.5

Theorem 3.6: Let (X, d) be a metric space and A a subset of X. A point x € X
is a limit point of A if and only if d(x, A\{x}) = 0.

The proof of Theorem 3.6 is completely analogous to that of Theorem 2.9
and is left to the reader.

Example 3.2.4
For R? with the usual metric d:

(a) The origin is the only limit point of the sequence {(1/n, 1/n)}5.

(b) The derived set of the closed unit square S = {(x;, x2): 0 < x; < 1;
i = 1, 2} is precisely the set S itself.

(c) The derived set of the open unit square U = {(x;, x2): 0 < x; < 1;
i = 1, 2} is the closed unit square. Note in this case that the set U is
a proper subset of its derived set.

(d) A finite set has no limit points.
(¢) The derived set of the set R of all points (x;, x;) having rational
coordinates is the entire plane.

The proof of the following theorem is identical to that of Theorem 2.10, with
R replaced by X.

Theorem 3.7: A subset A of a metric space (X, d) is closed if and only if A contains
all its limit points.
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Definition: Let (X, d) be a metric space and {x,}%; a sequence of points of X.
Then {x,}w-; converges to the point x € X, or x is the limit of the sequence, provided
that given € > 0 there is a positive integer N such that if n = N, then d(x,, x) < e.
A sequence that converges is called a convergent sequence.

Since d(x,, x) < € is equivalent to x, € B(x, €), the definition of convergence
can be restated as follows: A sequence {x,}s~; in a metric space X converges to
X € X if and only if for each € > 0 the open ball B(x, €) contains x, for all but a
finite number of positive integers n.

Theorem 3.8: A4 sequence in a metric space cannot converge to more than
one limit. -

Proof: Suppose to the contrary that {x,}s, converges to two distinct limits a and
b in the metric space (X, d). Let ¢ = 1d(a, b). By definition, there must exist integers
N, and Ny such that if n = N,, then d(x,, a) < € and if n = N,, then
d(x,, b) < e. This means that both d(x,, a) and d(x,, b) are less than € when n is
greater than or equal to the larger of N, and Ny. Then

d(a, b) < d(a, x,) + d(x,, b) <e+ €= 2e=d(a, b

so d(a, b) < d(a, b), an obvious contradiction. Thus the assumption that {x,}%,
converges to more than one limit must be false. a

Theorem 3.9: Let (X, d) be a metric space and A a subset of X.

(a) A point x in X is a limit point of A if and only if there is a sequence of
distinct points of A which converges to x.

(b) The set A is closed if and only if each convergent sequence of points of A
converges to a point of A.

Proof:

(a) Suppose first that x is a limit point of A. Then there is a member x; of
A distinct from x in the open ball B(x, 1). Proceeding inductively, suppose
that the first n — 1 terms x;, . . ., Xn—; have been chosen, all distinct from
each other and from x. It is left as an easy exercise to show that the finite
set {x; )%= has no limit points and is therefore a closed set. Then the
complement X\ {x;})’={ is open, so B(x, 1/n) N (X\{x;}’=}) is an open set
containing x and must contain a point x, of A distinct from x. The fact
that d(x, x,) < 1/n insures that the resulting sequence {x,}x.; converges

to x. Since x, is always chosen in the complement of {x;}’={, it follows
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()

that the terms of the sequence are all distinct. Thus there is a sequence
of distinct points of A which converges to x.

For the reverse implication, suppose that there is a sequence
{xn}; of distinct points of A which converges to x. Let O be an open set
containing x and € a positive number for which B(x, ¢) C O. By the
definition of convergent sequence, there is a positive integer N for which
Xn € B(x, €) for all n = N. Since B(x, €) C O, we conclude that O contains
points of A distinct from x and that x is a limit point of A.

To prove (b), suppose first that A is closed and consider a convergent
sequence {y, }a-1 of points of A which converges to a point y in X. It must
be shown that y is in A.

If the range of the sequence {y,}w, is infinite, it follows easily that
y is a limit point of this set. Since A is closed, then y belongs to A. If, on
the other hand, the range of {y.}w1 is finite, then convergence of the
sequence requires that it be constant from some point on, and this constant
value y, = y, n = N, is the limit of the sequence. Since each term of the
sequence belongs to A, then y belongs to A in this case also.

To complete the proof, suppose that each convergent sequence of
points of A converges to a point of A. We shall show that A is closed by
showing that it contains all its limit points and invoking Theorem 3.7.

Let x be a limit point of A. By part (a), there is a sequence of distinct
points of A which converges to x. By hypothesis, such a convergent se-
quence of points of A must converge to a point of A. Since the sequence
cannot converge to two different limits, the one point x to which it does
converge must be in A. We conclude that A contains all its limit points,
so Theorem 3.7 guarantees that A is a closed set. This completes
the proof. O

Corollary: Let x be a limit point of a subset A of a metric space X. Then every
open set containing x contains infinitely many members of A.

EXERCISE 3.2

For metric space (X, d), a € X, and r > 0, prove that the open ball B(a, ) is an open
set and the closed ball Bla, r] is a closed set.

Show that a finite subset of a metric space has no limit points and is therefore a
closed set.

Prove Theorem 3.5.
Prove Theorem 3.6.

Show that the limit of a convergent sequence of distinct points in a metric space is a
limit point of the range of the sequence. Give an example to show that this is not true
if the word “distinct” is omitted.
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Determine whether the set 4 of Example 3.2.3 is open, closed, or neither for the taxicab
and max metrics.

Prove that a non-empty subset C of a metric space (X, d) is a closed set if and only if
d(x, C) > 0 for each x ¢ C.

Prove that d(a, B U C) is the smaller of d(a, B) and d(a, C) for a point a and subsets
B, C of a metric space.

Let (X, d) be a metric space with the discrete metric.
Prove:

(a) Every subset of X is open.
(b) Every subset of X is closed.
(c) No subset of X has a limit point.

Let (X, d) be a metric space and x;, x; distinct points of X. Prove that there are disjoint
open sets O, and O, containing x; and x;, respectively.

Show that the result of Problem 10 remains true when x; is replaced by a closed set C,
which does not contain x;,.

Show that the result of Problem 10 remains true when x;, x, are replaced by disjoint
closed sets C,, C,.

Show that every open ball in R? contains a point x = (x,, x,) both of whose coordinates
are rational.

Let R denote the subset of R” consisting of points x = (x|, . . . , X,) all of whose coordinates
are rational.

(a) Prove that every non-empty open set in R” contains a member of R.

(b) Prove that every non-empty open set in R” contains infinitely many members
of R.

(c) Prove that every point of R” is a limit point of R.

3.3 INTERIOR, CLOSURE, AND BOUNDARY

This section introduces ideas closely related to open sets and closed sets.

Definition: Let A be a subset of a metric space X. A point x in A is an interior
point of A, or A is a neighborhood of x, provided that there is an open set O which
contains x and is contained in A. The interior of A, denoted int A, is the set of all
interior points of A.

In the preceding definition, note that if O is an open set contained in 4, then

every point of O is an interior point of A. Hence the interior of 4 contains every
open set contained in A4 and is the union of this family of open sets. This description
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X\A

FIGURE 3.6 The point a is an interior point of 4.

reveals two facts about interiors: (1) The intérior of a set A4 is necessarily an open
set. (2) Int A is the largest open set contained in A, in the sense that if U is an open
set contained in 4, then U C int 4.

Example 3.3.1
Consider R with the usual metric, as defined in Chapter 2.
(@) Fora,beRwitha<b,

int (a, b) = int [q, b) = int (a, b] = int [a, b] = (a, b).

(b) The interior of a finite set is empty since such a set contains no open
interval.

(c) Theinterior of the set of irrational numbers is empty since every open
interval contains some rational numbers (Theorem 2.1). The interior
of the set of rational numbers is also empty. (An open interval must
be uncountable since it is equivalent to R. Hence an open interval
cannot contain only rational numbers because the set of rational
numbers is countable.)

d intg=gintR=R,

Example 3.3.2
Consider R? with the usual metric.
(@) Ifa€R?andr> 0, then

int B(a, r) = int B{a, r] = B(a, r).

(b) The interior of a finite set is empty.

(c) The interior of the set of points with rational coordinates is empty.
So is the interior of the set of points having at least one irrational
coordinate.

d) intQd=;intR?=R2%
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It is left as an exercise for the reader to show that all parts of Example 3.3.2
generalize to R".

Definition: The closure A of a subset A of a metric space X is the union of A with
its set of limit points:

A=A4AUA

where A' is the derived set of A.

The preceding definition can be rephrased as follows: A point x is in A provided
that either x € A or every open set containing x contains a point of 4 distinct from
x. If x € A, then every open set containing x contains a point of 4, namely x itself.
Thus if we omit the phrase “distinct from x” in the description of limit point, we
may reformulate the definition of closure: x € 4 if and only if every open set
containing x contains a point of 4.

Example 3.3.3
Consider R with the usual metric.
(a) Fora, bER witha < b,

(a, b) = [a, b) = (a, b] = [a, b] = [a, b]

(b) If Ais a finite set, then 4 = 4 because the derived set 4’ is empty.

(c) The closure of the set of rational numbers is R. The closure of the set
of irrational numbers is also R. (Every open interval contains both
rational and irrational numbers.)

@ F=g;R=R

Example 3.3.4
Consider R"” with the usual metric.
(@ Ifa€R"andr> 0, then

B(a, r) = Bla, r] = Bla, r].

(b) If A is a finite set, then 4 = A.

(c) Let R be the subset of R” consisting of all points having only rational
coordinates. Then R = R”. To see this, leta = (a,, . . . , a,) € R"and
let O be an open set containing a. By Theorem 3.3, there is an open
ball B(a, r) of positive radius r contained in O. By Theorem 2.1, there
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isforeach i = 1, ..., n a rational number x; between a; — r/ Vn and
a; + r/V_' Then x = (x;, ..., X,) €E Rand

d(a, x) = (é (a; — ,x,.)z)l/2 < (é (r/v;l)2)l/2 = (nr¥n)"? = r

i=1 i=1

X € B(a,r) CO.

Thus a € R so R = R". The complement I = R"\R consisting of
points having at least one irrational coordinate has the property I =
R” by a similar argument.

@ F=-,R=R"

The next two theorems explain the relations between closures and closed sets.

Theorem 3.10: If A is a subset of a metric space X, then A is a closed set and is
a subset of every closed set containing A.

Proof: By Theorem 3.7, showing that A is closed can be accomplished by showing
that it contains all its limit points. Suppose x & A. Then there is an open set O
containing x which contains no point of A. But if O contains no point of A, then it
cannot contain a limit point of A either. (If an open set contains a limit point of A,
then it must contain a point of A, by the definition of limit point.) Thus O contains
no point of A, so x is not a limit point of A. This means that all limit points of A
must necessarily be in A. By Theorem 3.7, this is equivalent to saying that A is a
closed set.

Suppose now that F is a closed subset of X for which A C F. Then A C F (as
the reader will prove in Problem 5 of Exercise 3.3) and, since F contains all its limit
points, then F = FU F' = F. Thus A C F for every closed set F containing A. 0

Since A is a closed set which is a subset of every closed set containing 4, we
may justifiably say that A is the smallest closed set which contains A. Equivalently,
A is the intersection of all closed sets containing 4. Note the duality between A,
the smallest closed set containing A4, and int 4, the largest open set contained in A.
This duality is further illustrated by the next theorem, whose proof is left to the
reader.

Theorem 3.11: Let A be a subset of a metric space X.

(a) A isopenifandonly if A = int A.
(b) Aisclosed if and only if A = A.
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Definition: Let A be a subset of a metric space X. A point x € X is a boundary
point of A provided that x belongs to A and to (X\A). The set of boundary points of
A is called the boundary of A and is denoted by bdy A.

FIGURE 3.7 The point b is a boundary point of A.

It follows immediately from the definition that a set and its complement have
the same boundary. The readers should test their knowledge of the definitions in
this chapter by explaining why the following statements are equivalent for a subset
A and point x in a metric space X:

(4)) ; € bdy 4.

(2) x € (A\int 4).

(3) Every open set containing x contains a point of 4 and a point of X\A4.
(4) Every neighborhood of x contains a point of 4 and a point of X\A4.
(5) d(x, A) = d(x, X\A) = 0.

6) x€A4ANX\A).

Example 3.3.5

(a) The boundary of any interval in R with endpoints g and b is {q, b}.
(b) InR",

bdy B(a, r) = bdy Bla, r] = {x € R™ d(a, x) = r}.

(c) The boundary of the set of all points of R” having only rational co-
ordinates is R".

(d) In any metric space X,

bdy & = bdy X = &.
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EXERCISE 3.3

10.

11.

Show that Example 3.3.2 generalizes to R".

In R”, let R denote the set of points having only rational coordinates and / its comple-
ment, the set of points having at least one irrational coordinate.
Prove that

(@) intR=intlI=g.

(b) R =TI =R", where R and I’ are the derived sets of R and I.
(¢) bdyR=bdyI=R"

For a subset 4 of a metric space X, prove that

(a) A = Xifand only if int (X\4) = &.

®) (N\4) = X\int 4.

For a subset 4 of a metric space (X, d), prove that

(a) x € A if and only if d(x, 4) = 0.

(b) x € int A4 if and only if d(x, X\4) > 0. (Assume 4 # X.)

Let A, B be subsets of a metric space with 4 C B.
Prove that

(a) intA4Cint B;

(b) ACB;

(c) ACB.

Give an example for which 4 C B but neither bdy 4 nor bdy B is a subset of the other.
Prove Theorem 3.11.

Show that in any metric space,

(@ A =4, (b)int (int 4) = int 4.

Prove that the boundary of a subset 4 of a metric space X is always a closed set.

Let X be a metric space and A4 a subset of X.
Prove:

(a) A isopen if and only if bdy 4 C X\A.

(b) Aisclosed if and only if bdy 4 C 4.

(c) A isboth open and closed if and only if bdy 4 = &.

Let X be a space with the discrete metric. Show that every subset of X has. empty
boundary.

Let 4, B be subsets of a metric space. Show that AUB =AU Band that ANBC
A N B. Give an example to show that 4 N B and 4 N B may not be equal.
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3.4 CONTINUOUS FUNCTIONS

This section introduces continuity for functions from one metfic space to
another. The definition is a natural generalization of continuity for a function
f:R =R, The primary purpose of the section is to show that continuity for functions
on metric spaces can be described in terms of the topologies of the domain and
range spaces.

The reader is probably familiar with the definition of continuity for functions
on R:

Definition: Let f: A — R be a function from a subset A of R toR and let a € A.
Then f is continuous at a if for each positive number € there is a positive number &
such that if x € A and |x — a| <, then | f(x) — f(a)| < e. If fis continuous for
each a € A, then it is said simply that f is continuous.

The definition of continuity is extended to functions on arbitrary metric spaces
as follows:

Definition: Let (X, d) and (Y, d') be metric spaces and f: X = Y a function. Then

[ is continuous at the point a in X if for each positive number € there is a positive
number & such that if x € X and d(x, a) < &, then d'(f(x), f(a)) < €. A function is
said to be continuous provided that it is continuous at each point of its domain.

The definition of continuity can be restated in terms of open balls as follows:
[ is continuous at a € X means that for each open ball By (f(a), €) centered at
f(a), there is an open ball By(a, §) such that the image f(By(a, 8)) is a subset of

By (f(a), €.
The next theorem is a direct analogue of a theorem for real functions.

Theorem 3.12: Let f: X = Y be a function from metric space (X, d) to metric
space (Y, d') and let a € X. Then fis continuous at a if and only if for each sequence
{Xn}sx1 in X converging to a, the sequence {f(x,)}s= converges to f(a).

Proof: Suppose first that f is continuous at a and let {x,}s-, be a sequence in X
converging to a. It must be shown that {f(x,)}s=; converges to f(a). With this in
mind, let € be a positive number. Since fis continuous at a, there is a positive number
o such that if x € X and d(x, a) < 8, then d'(f(x), f(a)) < €. Since {x,}w=; converges
to a, there is a positive integer N such that if n = N, then d(x,, a) < 8. The choice
of 8 now insures that d'(f(x,), f(a)) < € for n = N, so {f(x,) }==1 converges to f(a).
The reverse implication will be proved in contrapositive form: If f is not con-



76 THREE / METRIC SPACES

tinuous at a, then there is a sequence {x,}m; in X converging to a for which
{f(xn) }5= 1 does not converge to f(a). Iffis not continuous at a, then there is a positive
number € with the property that if 6 > 0 then there is an x (depending on §) in X
such that d(x, a) < & but d'(f(x), f(a)) = e. In particular, there is such a point x, for
the reciprocal 1/n of each positive integer n:

d(x,, a) < 1/n, but d'(f(x,) fla) = e.

The preceding line shows that {x,}.; converges to a and that {f(x,)}w-1 does not
converge to f(a). O

Theorem 3.13: The following statements are equivalent for a function f from
metric space (X, d) to metric space (Y, d'):

(1) fis continuous.

(2) For each sequence {x,};>; converging to a point a in X, the sequence
{f(xn) }o=1 converges to f(a).

(3) For each open set O in Y, f~1(0) is open in X.

(4) For each closed set C in Y, f~!(C) is closed in X.

Proof: The equivalence.of (1) and (2) is established by applying Theorem 3.12 at
each point a € X.

The equivalence of (3) and (4) follows from the duality between open sets and
closed sets. Suppose f~'(0) is open in X for each open set O in Y and let C be a
closed subset of Y. Then Y \C is open so f ~!(Y\C) is open in X, and X\f ~*(Y\C))
is closed in X. But

X\f(Y\C) = X\(X\f ~(C)) = f(C),

sof~(C) is closed in X for each closed subset C of Y. The analogous argument that
(4) implies (3) is left as an exercise.

It now remains to be proved that (1) and (3) are equivalent. Suppose first that
[is continuous and let O be open in Y. It must be proved that f ~*(0) is open in X.
Let a € f~!(0). Then f(a) belongs to the open set O so there is an open ball
Bu(f(a), 1), r > 0, in Y centered at a and contained in O Since f is continuous
at a, there is a positive number & such that if x € X and d(x, a)*< §, then d'(f(x),
f(a)) < r. This means that

f(Ba(a, 3)) C Ba(f(a), 1) CO

S0

Ba(a, 5) C f~1(0).
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Since f~!(0) contains such an open ball centered at each of its points, then f~(0)
is open.

Suppose now that f ~'(0) is open in X for each open subset O of Y. Fora € X
and € > 0, By(f(a), € is an open set in Y, so f~(By(f(a), €)) must be open in X.
Since a belongs to f ~!(Ba-(f(a), €)), there is an open ball By(a, §) of positive radius
b contained in f (B, (f(a), €)). Then

f(Ba(a, 3)) C Bua(f(a), ¢).

But this simply means that if x € X and d(x, a) < 8, then d'(f(x), f(a)) < €. Thus f
is continuous at each point a in X, so [ is continuous. 0

Statement (3) of Theorem 3.13 describes continuity of functions on metric
spaces in terms of the topologies of the domain and range spaces. In the next
chapter, where we shall deal with collections of open sets not necessarily determined
by metrics, this property will be used as an alternate definition of continuity.

EXERCISE 3.4

1. Let X and Y be metric spaces and let a be a point of X which is not a limit point of X.
Show that every function f: X = Y is continuous at a. Illustrate this phenomenon with
a function f: 4 = R from a subset 4 of R to R.

2. Prove that (4) implies (3) in Theorem 3.13.

Let f: X = Y be a function on the indicated metric spaces and let a be a point of X.
Prove that fis continuous at a if and only if for each open set O containing f{a), f ~'(O)
is a neighborhood of a.

4. Letf: X = Y be a function on the indicated metric spaces. Prove that the following
statements are equivalent:

(a) fis continuous.
(b) For each subset A of X, f(d) C f(4).
(c) For each subset B of Y, f~!(int B) C int f~'(B).

5. Show that every function f: X = Y for which the domain X has the discrete metric is
continuous.

6. Let X be a metric space with metric d and 4 a non-empty subset of X. Define f: X - R
by
f(x) =d(x, 4), xEX.

Show that f'is continuous.

7. Suppose that f: X =» Y and g: Y = Z are continuous functions on the indicated metric
spaces. Prove that the composite function g . f: X = Z is continuous.
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3.5 EQUIVALENCE OF METRIC SPACES

What should it mean to say that two metric spaces (X, d) and (Y, d') are
equivalent? The present section answers this question in two ways, both of which
require a one-to-one correspondence between X and Y. The first form of equivalence,
called metric equivalence, requires that for every pair of points a, b € X, the distance
from a to b must be the same as the distance between the corresponding points of
Y. The second definition of equivalence, called fopological equivalence, is a condition
on the topologies for X and Y determined by their respective metrics.

Definition: Metric spaces (X, d) and (Y, d') are metrically equivalent or isometric
if there is a one-to-one function f: X — Y from X onto Y such that for all a, b € X,

d(a, b) = d'(f(a), f(b)).
The function f is called an isometry.

The following observations show that metric equivalence is an equivalence
relation:

(a) The identity function on any metric space is an isometry, so metric
equivalence is a reflexive relation.

(b) Iff: X = Yis an isometry from X onto Y, then the inverse function /'
Y —» X is an isometry from Y onto X. Thus the relation is symmetric.

(c) The composition of two isometries is an isometry, so metric equivalence
is also a transitive relation.

Definition: Metric spaces (X, d) and (Y, d') are topologically equivalent or ho-
meomorphic if there is a one-to-one function f: X = Y from X onto Y for which
fand the inverse function f ~! are both continuous. The function fis called a homeo-
morphism.

Recall from Theorem 3.13 that continuity of f: X —> Y can be expressed by
saying that f ~!(O) is open in X for each open subset O of Y. Similarly, f~": ¥ —»
X is continuous provided that (f~')~"'(U) = AU) is open in Y for such open subset
U of X. Thus a one-to-one function f from X onto Y is a homeomorphism pro-
vided that a subset O of Y is open if and only if f ~!(O) is open in X.

It is left as an easy exercise to show that topological equivalence is an equiv-
alence relation.

Since each isometry is a continuous map, it follows that topological equiva-
lence is weaker than metric equivalence. In other words, if (X, d) and (Y, d') are
metrically equivalent, then they must be topologically equivalent also.
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Example 3.5.1

Consider the metric spaces X = (0, 1) and Y = (0, 2) with metries determined

by the usual metric on the real line. The function f: X — Y defined by
Sx)=2x, x€(0,1),

is a homeomorphism but not an isometry. Since X has diameter 1 and Y has
diameter 2, X and Y cannot be isometric.

Example 3.5.2

The open intervals (a, b), a < b, and (0, 1) are topologically equivalent when
considered as metric spaces with metrics given by the usual method of measuring
distances in R. This follows from the fact that the function f: (0, 1) = (a, b)
defined by

fX)=b-ax+a x€(,1),

is a homeomorphism.

Example 3.5.3
Recall from calculus that the function g: (— n/2, x/2) = R defined by

gx) =tanx, x€(-7/2, n/2),

is a one-to-one correspondence, is continuous, and has as inverse function the
principal arctangent function, which is also continuous. Thus (—#/2, =/2) is
topologically equivalent to R. It is left as an exercise to show that unbounded
open intervals (—oo, @) and (a, o) are topologically equivalent to R. Since to-
pological equivalence is an equivalence relation, this example shows that all
open intervals on R are topologically equivalent to each other and to the entire
real line.

The next theorem gives conditions under which two different metrics for a
set X determine the same family of open sets. A lemma will be needed.

Lemma: Let d; and d, be two metrics for the set X and suppose that there is a
positive number ¢ such that dy(x, y) < cdxx, y) for all x, y € X. Then the identity
Junction i: (X, d;) = (X, d}) is continuous.
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Proof: Let a € X and let € be a positive number. Then if 6 = €/c and x is a
member of X for which dx(x, a) < 6, then

di(i(x), i(a)) = di(x, a) < cdy(x, a) < cb = e.

Thus d,(i(x), i(a)) < € whenever dyx, a) < 8. Thus i: (X, d)) = (X, d}) is
continuous. O

Theorem 3.14: Let d; and d, be two metrics for the set X and suppose there are
positive numbers ¢ and ¢' such that

di(x, y) < cdsx, y), doAx, y) <c'di(x, y)

Jor all x, y € X. Then the identity function on X is a homeomorphism between
(X, d)) and (X, d).

Proof: The identity map is clearly a one-to-one correspondence from X onto itself.
Continuity in both directions is guaranteed by the preceding lemma. O

Definition: Metrics d; and d; for a set X which determine the same topology are
called equivalent metrics.

For metrics d,, d, on a set X satisfying the hypotheses of Theorem 3.14, the
description of continuity for the identity function in terms of open sets shows that
d, and d, are equivalent: Since i: (X, d,) = (X, d,) is continuous, then for each d,-
open set O, i ~'(0) = Ois also dy-open. Since i ' = i: (X, d5) = (X, d,) is continuous,
then for each d,-open set U, i~!(U) = U'is also d>-open. Hence d; and d, determine
precisely the same open sets.

Example 3.54
Consider the usual metric d and the taxicab metric d’ for R™

n 1/2 n
dx, y) = (E (x,-—.v,-)’) , dx, =3 |xi—yil

i=1 i=1

forx=(x1,...,x,)andy = (3, ..., ¥,) in R". Since Vu? + v? < u + v for all
non-negative real numbers u and v, it follows that d(x, y) < d'(x, y). Itisalso a
simple matter to observe that d'(x, y) < nd(x, y). Hence, by Theorem 3.13, the
metrics d and 4’ are equivalent.
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The equivalence of d and 4’ is visualized in R? as follows: An open ball
By(a, r) is an “open disk” centered at a with radius r excluding the bounding
circle. An open ball B,/(a, ) is an “open diamond” centered at a and excluding
the four bounding segments. Note that every open disk can be expressed as a
union of open diamonds, and that every open diamond can be expressed as a
union of open disks. This says simply that d and d’ determine identical open
sets for R?,

Bgy(a,r)

[ ]
3 Bya,r/2)

By’ (a,n)

FIGURE 3.8

By considerations like those of Example 3.5.4, the reader can show that the
topology for R” determined by the max metric is identical with that determined by
the usual and taxicab metrics.

EXERCISE 3.5

1. Show that any two non-degenerate closed and bounded intervals are topologically
equivalent.

2. Show that two metric spaces with discrete metrics are isometric if and only if they have
the same cardinal number.

Prove that topological equivalence is an equivalence relation for metric spaces.

4. Suppose that d, and d, are metrics for X and c is a positive number for which
d\(x, y) < cdx(x, y). Prove that By(x, r/c) C Ba(x, 1).
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5. For the usual metric d and the max metric d* on R", prove that, for all x, y in R",
d"(x, ) < d(x, y) < Vnd"(x, y).

Conclude that d and d” are equivalent metrics.

6. Show that every metric space (X, d) is topologically equivalent to a bounded metric
space. (Hint: Let d'(x, y) = min {1, d(x, y)}, the minimum of 1 and d(x, ). The metric
d"(x, y) = d(x, y)/(1 + d(x, y)) is somewhat more complicated but illustrates the same
phenomenon.)

7. The open unit n-cube J" is the subset of R" defined by J" = {x = (x;, ..., x,) ER™
0<x;<lfori=1,...,n} with the metric determined by the usual metric d of R".
Prove that J" is topologically equivalent to R".

For a, b € R", prove that there is an isometry of R" onto itself which maps a to b.

. Let f: X = Y be an isometry between metric spaces (X, d) and (Y, d'). Show that for
eacha€Xandr> 0,

fiB4(a, ) = BsAf(a), ).

3.6 NEW SPACES FROM OLD

There are two standard methods of building new metric spaces from those at
hand. The first method, which produces subspaces, involves simply taking a subset
Y of a given metric space X and measuring distances in Y with the metric of X.
We have already considered intervals as subspaces of R in the preceding section.
The second method of building new spaces assigns a metric to the Cartesian product
of metric spaces.

Definition: Let (X, d) be a metric space and Y a subset of X. The metric space
(Y, d'), where d' is the restriction of d to Y X Y, is called a subspace of (X, d).

Example 3.6.1
The following are commonly used subspaces of Euclidean spaces.
(a) The unit n-cube is the set

I"={x=®,...,.%}€ER0<x;<1 fori=1,...,n}

with the subspace metric induced by the usual metric 4

n 172
dx,y = (E O — y:)’) .

i1



(®)

(c)

@
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The n-dimensional unit sphere S" is the set

n+1
S" = {x= (xla e ,x"+|)EIR"+I: 2 x,z = l]
i=1

with the metric induced by d: Thus S is the unit circle in R? and S?
is the unit sphere in R3. Note that S’ is a curve, so it is a one-dimen-
sional object even though it is a subspace of R2. Also, S? is a surface,
so it is a two-dimensional object even though it is a subspace of R>.
In general, S” is an n-dimensional object in R™*!,

The n-dimensional unit ball B" is the set

B"=[x=(x.,...,x..)ER":2x?51]
i=1

with metric induced by d. The boundary of B" is S"'.
For n = 2, consider the set

An_' = {x=(xla°--’xn)eR":x"=o}

with metric induced by d. Then 4" is a subspace of R” and is iso-
metric to R""! under the correspondence

(xla ooy Xn-1s O)H(xl, .. .,x,,..).

(The only distinction between R"~! and 4" is the extra O for points
in A"!.) For this reason, it is often said that R" is a subspace of R".
Thus we consider the real line to be a subspace of the plane, the plane
to be a subspace of three-dimensional space, and so on. To be abso-
lutely correct, it should be said that R"~! is metrically equivalent to
a subspace of R” or that R""! is isometrically embedded in R". For all
practical purposes, no distinction is made between a metric space and
an isometric copy of it.

Definition:
metric space (X, d) is the Cartesian product

of the sets X, . .

Let {(X;, d;)}i-1 be a finite collection of metric spaces. The product

n
X=HX1

i=]

. » X with the product metric d defined by

n 172
dix, ) = (2 (di(x, yi))’)
=]



84  THREE / METRIC SPACES

forx=(x;,...,x,)andy = (y1, ..., y.) in X. The spaces (X;, d;) are called the
coordinate spaces or the factors of the product space (X, d).

It is not altogether obvious that what has been called the product metric-is
actually a metric. This is proved in the next theorem.

Theorem 3.15: If {(X,, d;)}i-, is a sequence of metric spaces, then the product
metric is a metric for the product set X = 1%, X;.

Proof: Consider points x = (x;, ..., Xp), y=1, ..., V) andz = (z;, ..., z,)
in X. Since each d; is a metric, the properties d(x, y) = 0, d(x, y) = 0 only when
x =y, and d(x, y) = d(y, x) follow from the corresponding properties in the coordinate
spaces. As usual, it is the Triangle Inequality that requires more attention. Note
that

dx, 2’ = 2 (di(x;, )<Y [di(xi, yi) + di(vi, Zi)lz
i=1 i=1

I

2 (di(xi, y)P + 2 Z di(xi, y)di(yi, zi) + 2 (di(wi, z)f

i=1 i=1 i=1
< (d(x, y))? + 2d(x, y)d(y, 2) + (d(y, 2))* = [d(x, y) + d(y, 2)F.

The last inequality follows from the Cauchy-Schwarz Inequality (Theorem 3.1).
Thus we conclude that d(x, z) < d(x, y) + d(y, z) and that d is actually a metric.(

Example 3.6.2

Euclidean n-dimensional space R”, with its usual metric d, is the product of the
real line R taken as coordinate space n times:

|Rn=HX,'

i=1

where (X;, d) = (R, usual metric) fori=1,...,n.

Example 3.6.3

Hilbert space H consists of all infinite sequences x = (xy, . .., X, . . .) for which
each coordinate x; is a real number and for which 22, x? converges to a finite

limit. The number
<) 1/2
Il = ( > x%)

i=1
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is called the normof x. For x = (x;, ..., Xp,...)and y= (1, ..., Vu, .. .) in
H, the distance from x to y is defined by

) 1/2
dx, y) = (2 O = y:)’) .

i=1

In order to show that d(x, y) is actually well-defined, it must be proved that
Z®, (x; — y)® is a convergent series. To this end, consider a finite sum
20y (5= Y%

=y =Zxt-23Zxy+ 2y}
=1 i=1 i=1 i=1

< é xi+ Z(i x?)m(é y%)l/2 + i vi,

i=1 i=1 i=1 i=]

the last inequality following from the Cauchy-Schwarz Inequality. Since
Th,x? < |Ix||? and 27, y? < || y||? regardless of the value of n, then

n
2 =y < Ixl? + 2lxllyl + 1y1% = dixll + 10

i=1

so 2%, (x; — y,)? is bounded for all n by (lx|| + || ¥ll)%. Since a bounded series
of non-negative real numbers is convergent, then T2, (x; — »,)* converges. The
proof that d is a metric is similar to the proof that the usual distance function on
R" is a metric and is left to the reader.

Note that the correspondence

(xl""’x")H(xl’""xn’o’o’o”")’

between points of R” and points of H which have non-zero coordinates in at
most the first n terms, is an isometry between R” and a subspace of H. Thus R"
is isometrically embedded in H, and we may consider R" as a subspace of H.

Hilbert space, with its infinite number of coordinates, suggests the possibility

of infinite products of metric spaces. We shall consider such products in Chapters
7 and 8.

EXERCISE 3.6

. Let (X, d) be a metric space and (Y, d’) a subspace. Prove that the inclusion map
i Y = X defined by

)=y ye€Y,
is continuous.
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Suppose that metric space (X;, d)) is topologically equivalent to (¥;, d))fori=1,...,
n. Show that the product metric spaces X = [I%, X; and Y = []%, Y, are topologically
equivalent.

Fori=1,..., n,let[a;, b] be a non-degenerate closed, bounded interval. Prove that
the product metric space K = [I%, [a;, b;] is homeomorphic to the unit n-cube I".

Prove that each open ball B(a, r), a € R", r > 0, considered as a subspace of R", is
homeomorphic to R". (Hint: Show first that the unit open ball B (0, 1) with center at
the origin and radius 1 is homeomorphic to R".)

Let {(X;, d)}}~: be a sequence of metric spaces and let X = J]%, X; be the Cartesian
product set. Define metrics d’ and d” on X as follows: For x = (x;, ..., x,) and y =
(yl! oo ,Yn)inx,

d(x,y) = 2 di(x;, y)

i=1
d"(x, y) = max {d;(x;, y)}i1.

Show that d' and d* are metrics and that both are equivalent to the usual product metric
dfor X.

(a) Prove the Cauchy-Schwarz Inequality for Hilbert space H: For x = (x;, ...,
xm---)md)"’(.}’h---,ym---)inH

5ol (3] ()"

=1 i=1

(b) Prove the Minkowski Inequality for H:

(§ O+ y:)’)"2 < ( qZDJ'x?)m + (% y%)m.

=1 i=1 i=1

(c) Define dot product x - y and vector addition x + y for H so that the above inequalities
can be restated
@ |x-yl < Ixllyll.
®) lx+yll < llxh + Iyl

(d) Prove that the distance function d for H defined in Example 3.6.3 is a metric.

Let (X, d) be a metric space, (Y, d’') a bounded metric space, and C(X, Y) the set of all
continuous functions f: X = Y. Show that the function p defined for £, g in C(X, Y) by

o(/; 8 = sup {d'(f(x), g(x)): x € X}

is a metric for C(X, Y).



3.7 /| Complete Metric Spaces 87

3.7 COMPLETE METRIC SPACES

Convergence of sequences was discussed in Section 3.2. In this section, that
discussion continues in the context of a property of metric spaces which insures
the convergence of certain sequences. The property of interest is completeness.
Intuitively speaking, this property is characteristic of those spaces in which every
convergent sequence converges to a point in the space. For example, the open unit
interval (0, 1) is not complete since the sequence {1/n}7, converges to a point not
in (0, 1). This idea is made precise in the definitions that follow.

Definition: Ler (X, d) be a metric space. A sequence {x,}%; of points of X is a
Cauchy sequence provided that for each positive number e there is a positive integer
N such that if m and n are integers greater than or equal to N, then d(x,, x,) < €.

A comparison of definitions will reveal that every convergent sequence is
Cauchy.

Definition: 4 metric space (X, d) is complete if every Cauchy sequence in X con-
verges to a point in X.

Example 3.7.1

(a) The completeness of the real line R is a fact of elementary analysis.
A proof can also be made using Cauchy’s Nested Intervals Theorem
(Theorem 2.11). The details of this process are left as an exercise for
the reader.

(b) Completeness of R” follows from that of R. To see this, consider a
Cauchy sequence {x}#, in R", n = 2. For 1 < i < n, the sequence
of ith coordinates of the points x; is a Cauchy sequence in R and
hence converges to a real number z;. It follows easily that {x;}&,
converges to z = (zy, 23, ..., Z,).

(c) Each closed interval [a, b] is complete. To prove this, consider a
Cauchy sequence {xi}&, in [a, b]. Since R is complete, this sequence
converges to a real number x in R. Since [a, 5] is closed, it follows
easily that x belongs to [a, b].

(d) Open intervals and half-open, half-closed intervals are not complete.
For example, {1/n};2, is a Cauchy sequence in (0, 1) which does not
converge to a point of (0, 1). Analogous examples show the incom-
pleteness of (a, b), (a, b], and [a, b) for all real numbers a < b.

(e) Hilbert space (Example 3.6.3) is complete. The proof of this fact is
left as an exercise.
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The preceding example shows that a subspace of a complete space may fail
to be complete. The next theorem characterizes those subspaces that do inherit the
completeness property.

Theorem 3.16: Let (X, d) be a complete metric space. A subspace A of X is
complete if and only if it is closed.

Proof: Suppose first that A is a complete subspace. It will be proved that A is
closed by showing that A contains all its limit points. If x is a limit point of A, then
by Theorem 3.9 there is a Sequence of distinct points of A which converges to x.
Since each convergent sequence is Cauchy and A is complete, the limit of this se-
quence, namely x, must be in A. Thus A is closed.

Suppose now that A is a closed subspace of a complete metric space X. To
demonstrate that A is complete, consider a Cauchy sequence {x,}n- of points of A.
Since X is complete, this sequence converges to a point x belonging to X. By Theorem
3.7(b), the fact that A is closed insures that the limit x belongs to A. Thus each
Cauchy sequence of points of A converges to a point of A, and we conclude that A
is a complete subspace. 0O

Example 3.7.2

The property of completeness is not preserved by topological equivalence. In
other words, there are pairs of metric spaces which are topologically equivalent
with one space complete and the other not complete. The real line R and the
open interval (0, 1) illustrate this phenomenon.

Definition: A subset A of a metric space X is nowhere dense in X if A has empty
interior.

Example 3.7.3

(a) As subsets of the real line R, each of the following is nowhere dense:
(i) any finite set
(ii) the range of the sequence {1/n}4
(iii) the set Z of integers
(b) As subsets of the plane, each of the following is nowhere dense:
(i) any finite set
(ii) the points whose coordinates are integers
(iii) any finite collection of lines
(iv) a circle
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The property of being nowhere dense is designed to describe those sets which
are “very thinly distributed” in their containing space. The thinness of the distri-
bution is reflected in the fact that the closure of a nowhere dense set does not
contain any open ball of positive radius. A set A which fails to be nowhere dense,
int 4 # &, is thought of as being “densely distributed” near the interior points of
A and is often called somewhere dense. Although we shall not have reason to use
this term, it does seem preferable to the double negative “not nowhere dense.”

Definition: A metric space or subspace that is the union of a countable family of
nowhere dense sets is said to be of the first category. A metric space which is not of
the first category is said to be of the second category.

Example 3.7.4

(a) As asubspace of R, the set R of rational numbers is of the first cate-
gory. It is the union of a countable collection of nowhere dense sin-
gleton sets, each containing one rational number. Similarly, the
set of points in R” having all coordinates rational is also of the first
category.

(b) The next theorem, the Baire Category Theorem, shows that every
complete metric space is of the second category. It will justify the
present assertion that R” is of the second category for each positive
integer n.

From an intuitive viewpoint, the category concept describes the thinness or
thickness of the distribution of the points of a set relative to the containing space.
As we have noted, a nowhere dense set, whose closure contains no ball of positive
radius, is thought of as very thinly distributed. A set of the first category is the
union of a countable family of such thin sets, and a set of the second category
is not.

The following lemma provides a characterization of nowhere dense sets. Its
proof is left as an exercise.

Lemma: A subset A of a metric space X is nowhere dense in X if and only if each
non-empty open set in X contains an open ball whose closure is disjoint from A.

Theorem 3.17: The Baire Category Theorem Every complete metric space,
considered as a subspace of itself, is of the second category.

Proof: The proof is by contradiction. Supposing that the theorem is false, let X
be a complete metric space which is not of the second category. Then there is a
sequence {A,}s=; of nowhere dense sets whose union is X.
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By the lemma, the open set X must contain an open ball B; whose closure B,

is disjoint from A;. We choose such an open ball B, of radius less than 1. Since B,
is a non-empty open set, it must contain an open ball B, of radius less than 1/2 for
which B, is disjoint from A,. Proceeding inductively, we define a nested sequence
{B,}3; of open balls for which the radius of B, is less than 1/n and B, is disjoint

Jfrom A,. The sequence {x,}-, of centers of these open balls is a Cauchy sequence
which, by completeness, converges to a point x in X. Since x belongs to each of the

sets B,, then x belongs to none of the sets A,. Thus the union of the sets A, cannot
equal X, contrary to the assumption that X is of the first category. Thus complete
metric spaces can be only of the second category. O

Definition: Let (X, d) be a metric space and f* X = X a function. Then f is
contractive with respect to the metric d provided that there is a positive number
a < 1 such that, for all x, y in X,

d(f(x), f(y)) < ad(x, y).

It is an easy exercise to show that a contractive function is always continuous.
In fact, any function that does not increase distance is continuous.

Theorem 3.18: The Contraction Lemma Ler (X, d) be a complete metric
space and f* X = X a contractive function. Then there is exactly one point x in X
Jor which f(x) = x.

Proof: To show the existence of such a point, choose a point x; in X and define

xX2=flx)), xs=f(xd), ..., %n=fxn-1)y n22.

The fact that f'is a contractive function insures that {X,}m; is a Cauchy sequence.
By completeness, this sequence has a limit x in X. Since f: X = X is continuous,
then the sequence {f(x,)}m1 converges to f(x). But f(Xn) = Xps1, n = 1, so
{f(xn) }5=1 is simply {x, )52, whose limit is x. Thus f(x) = x.

To show the required uniqueness property, suppose that y is a second point
satisfying f(y) = y. Then

d(x, y) = d(f(x), f(¥)) < ad(x, ).

Since a < 1, this relation cannot hold unless d(x, y) = 0 and x = y. O

The point x for which f(x) = x in the proof of Theorem 3.18 is called the
Jixed point of the function f; and theorems of this type are called fixed point theorems.
This particular example, the Contraction Lemma, is extremely useful for solving
equations in function spaces and illustrates the significance -of the completeness
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property. We shall see fixed point theorems again in a more general context in
Chapters 5 and 9.

The final result of this chapter shows that every metric space can be considered
a subspace of a complete metric space, called the completion of the given space.
Several preliminary definitions are needed.

Definition: Let (X, d) and (Y, d') be metric spaces. A distance preserving function
f X = Y from X into Y is called an isometric embedding.

Definition: A subspace A of a metric space X is dense in X provided that A = X.

Theorem 3.19: Let (X, d) be a metric space. Then there is a complete metric
space (Y, d') and an isometric embedding e: X — Y for which e(X) is a dense
subspace of Y. The space (Y, d') is unique up to metric equivalence.

Proof: The lengthy proof of this theorem, which defines the completion of a metric
space (X, d), is presented in outline form. Some details of the proof are left for the
reader as exercises.

Let C be the family of all Cauchy sequences {x,}w=; in X. For brevity, let us
denote a typical Cauchy sequence by (x,). Define an equivalence relation ~ on
@ as follows: Cauchy sequences (x,) and (y,) are to be considered equivalent,
(X») ~ (V). provided that the sequence {d(x,, yn)}n=1 of real numbers has limit
0. It is left as an exercise for the reader to verify that ~ is an equivalence rela-
tion. Let Y = @/~ denote the family of equivalence classes, where [(x, )] denotes the
equivalence class of (x). For [(x,)], [(V»)] in Y, define

d'([(xa)], [(Yn))) = limit d(x,, y»)

to be the limit of the sequence {d(x,, y»)}s=1 of real numbers.

Since d' is defined for pairs of equivalence classes, it is necessary to show that
d'([(xa)], [{(y»))) is independent of the choice of the representatives (x,) and (y,)
in their respective classes. For Cauchy sequences (x,) and (v, ) equivalent respec-
tively to (x,) and (y,), it must be demonstrated that

limit d(xy, ya) = limit d(x}, y%).
This follows from properties of the distance function d and the fact that
limit d(x,, x,) = limit d(y,, y») = 0
and is left as an exercise. The proof that d' is a metric is also left as an exercise.

For x in X, the constant sequence (x) whose only value is x is clearly Cauchy
and determines a member [(x)] of Y. Define e: X = Y by

e(x) =[(x)], x€EX.
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For x, yin X,
d'(e(x), e(y)) = d'([(x)], [(¥))) = limit d(x, y) = d(x, y),

so e is an isometric mapping from X into Y.

To see that the closure of e(X) is Y, let [(X,)] be a point of Y and e a positive
number. The desired conclusion will follow if it can be shown that there is some
member of e(X) whose distance from [(x,)] is less than €. Since (x,) is Cauchy,
there is a positive integer N for which m, n = N imply d(x,, X.) < €¢/2. Let z = xy,
and consider the member [(z)] of e(X) determined by z. Then

d'([(xs)], [(2)]) = limit d(x,, 2) = limit d(x,, xy) < €/2 < ¢,

50 [(2)] is within the prescribed distance of [(x,)].

The completeness of (Y, d') can be proved as follows. The details are left as
an exercise. First note that each Cauchy sequence in the dense subspace e(X) of Y
converges. To see this, let {[(z*)]}%.; be a Cauchy sequence in e(X), where each
sequence (z*) has constant value z*, a point in X, k = 1, 2, 3, .. .. Then {z*},
is a Cauchy sequence in X and determines a member of Y to which the given Cauchy
sequence in e(X) converges. Now let {[(x¥)]}%\ be a Cauchy sequence in Y. Since
e(X) is dense in Y, there is for each positive integer k a member [(z* )] in e(X) whose
distance from [(x} )] is less than 1/k. It follows that {[(z* )]}, is a Cauchy sequence
which, as just demonstrated, converges to some member of Y. By the way the members
[(z*)] were chosen, it follows that {[(x* )]}, converges to the same member of Y.
Thus Y is complete.

It remains to be shown that (Y, d') is unique up to metric equivalence. To
establish this, let (Z, d") be another complete metric space and f: (X, d) = (Z, d")
an isometric embedding of X in Z for which f(X) is dense in Z. It must be proved
that (Y, d') is metrically equivalent to (Z, d"). Define F: e(X) —> f(X) by

. Fle(x)) = f(x), xEX.

This function is extended to an isometry F: Y = Z from Y onto Z as follows: Let
y be a member of Y \e(X). Since e(X) is dense in Y, there is a sequence {y,}sx; of
members of e(X) which converges to y. Then {F(y,)}sx-, is a Cauchy sequence in Z
which, by completeness, converges to a point F(y) in Z. It is left as an exercise to
show that F is an isometry from (Y, d') onto (Z, d"). a

Definition: Let (X, d) be a metric space. The space (Y, d') defined by Theorem
3.19 is called the completion of (X, d').

Since we do not distinguish between isometric metric spaces, Theorem 3.19
guarantees. the existence of exactly one completion for each metric space. In fact,
the uniqueness condition is often more useful in determining the completion of
metric space than the rather complicated construction described by the theorem.
This is illustrated by the following example.



3.7 / Complete Metric Spaces 93

Example 3.7.5

(a) The completion of the space of rational numbers is the real line R.
The completion construction is, in fact, often used to define the real
numbers from the rational numbers. Assuming, however, that the
real numbers have already been defined, the assertion is established
as follows: The real line is a complete metric space which contains
the metric space of rational numbers as a dense subspace. The
uniqueness of the completion shows that R is the desired completion.

(b) The completion of (0, 1) is [0, 1]. This follows easily from the unique-
ness of the completion: [0, 1] is a complete metric space which contains
(0, 1) as a dense subspace.

Example 3.7.6 The Space C(X, R)

This example generalizes the space €[a, b] of continuous, real-valued functions
defined on a closed interval [a, ). For a given metric space (X, d), C(X, R)
denotes the family of continuous, bounded, real-valued functions with domain
X. (A bounded function f: X = R is a function whose image f(X) is bounded.)
For f, g in C(X, R), define

p(f, 8 = lub {|f(x) — g(x)|: x € X}.

The proof that p is a metric is left as an exercise. The metric p is called the
supremum metric or uniform metric for C(X, R).

The metric space (C(X, R), p) is a complete metric space. To see this, let
{/a}»=1 be a Cauchy sequence in C(X, R). Then for x in X, the sequence
{ f(x)} 2= is a Cauchy sequence of real numbers which converges to a real number
f(x). This defines a function f: X — R, called the /imit of the sequence
{/fa}2=1. The sequence { f,}s=1 converges to the limit function in the following
rather strong sense: Given € > 0, there is a positive integer N such thatif n = N
and x € X, then

| fo(x) = f(X)| < e

The essential feature here is the fact that the integer N is dependent only upon
€ and not on the choice of x. The same integer N will suffice for each point x in
X. For this reason, the sequence { f,}, is said to converge uniformly to f. The
completeness of C(X, R) will be established by showing that the limit function
fis bounded and continuous.

The fact that f'is bounded follows easily: Let M be a positive integer for
which n = M implies p(f;, f) < 1. Then since fjs is bounded and f{x) and f3,(x)
differ by no more than 1 for all x in X, f must be bounded also.

The continuity of f is established as follows. Let x, be a point of X
and € a positive number. Let N be a positive integer such that if » = N then
p(fn, f) < €/3. Since fy is continuous at xo, there is a positive number &
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such that if d(x, x;) < 8, then d(fv(x), fv(x0)) < €/3. Thus for x in X satisfying
d(x, xo) < 9,

d(f(x), f(x0)) =< d(f(x), fw(x)) + d(fu(x), fu(x0)) + d(Sfw(x0), £(X0))
<e€/3+e/3+¢€/3=c¢

Thus the limit function fis continuous, and C(X, R) is a complete metric space.

The space C(X, R) has additional structure which, although interesting, is
not central to the purpose of this text. It has an algebraic structure of addition
and multiplication by real numbers defined as follows:

(f+8)x) =f(x) + g(x), f, g€ CKX,R),
(@ )x) = af(x), fFECX,R), aER.

With these operations, C(X, R) is a vector space. A norm for C(X, R), having
properties analogous to those for the norm in R”, is defined by || /|| = Iub {| f(x)]:
X € X}, f€ C(X, R). This norm defines the metric for C(X, R) as follows:

o(f,&=If—¢l, f,g€CKXR).

Thus C(X, R) is a vector space with a norm, and it is complete in the metric
defined by that norm. Such a space is called a Banach space. Banach spaces are
extremely important in topology and analysis. Hilbert space is a Banach space;
the proof of this is left as an exercise. Additional information on the topic of
Banach spaces can be found in the supplementary reading list at the end of the
chapter.

The convergence of sequences in C(X, R) is defined in a more general context
in the next definition.

Definition: Let (X, d) and (Y, d') be metric spaces and {f,: X —=» Y }3; a sequence
of functions from X to Y. This sequence converges uniformly to a function f: X =
Y provided that for each positive number € there is a positive integer N such that if
n = N and x is a point of X, then d'(fy(x), f(x)) <.

The proof of the following theorem, which can be based on Example 3.7.6,
is left as an exercise.

Theorem 3.20: Let (X, d) and Y, d') be metric spaces and {f,}s=1 a sequence of
continuous functions from X to Y which converges uniformly to a function f: X =
Y. Then f is continuous.
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The major theorems of this section have wide applicability to other areas of
mathematics. For example, the Contraction Lemma is used to prove the Inverse
Function Theorem of analysis and the Picard Existence Theorem of differential
equations. The Baire Category Theorem has a multitude of applications, including
the Uniform Boundedness Principle of functional analysis and theorems on ap-
proximation of functions; it can be used, for example, to show that there is a
continuous function f: [0, 1] = R which is nowhere differentiable. The applicability
of Baire’s theorem rests largely on the fact that C(X, R), Hilbert space, and many
related spaces are complete metric spaces. References for investigation of these
applications are given at the end of the chapter.

EXERCISE 3.7

1. Show the incompleteness of (a, b), (a, b}, and [a, b) by exhibiting Cauchy sequences
that do not converge.

2. Prove that every convergent sequence is Cauchy.

(a) Prove the following:
Cantor’s Intersection Theorem: Let (X, d) be a complete metric space and
{An}1 a nested sequence of non-empty closed sets whose diameters D(A,) have
limit 0. Then N2, A, has exactly one member.

(b) Show that, in part (a), N7, 4, may be empty if the requirement that the diameters
approach 0 is deleted.

4. Show that Hilbert space (Example 3.6.3) is complete and conclude that it is a Banach
space.

5. Prove that the following statements are equivalent for a subset 4 of a metric space X
(a) A is nowhere dense.
(b) Each non-empty open set in X has a non-empty open subset disjoint from A.

(c) Each non-empty open set in X contains an open ball whose closure is disjoint
from A.

6. Let (X, d) be a metric space, M a positive number, and /: X — X a continuous function
for which

A (x), f(») = Md(x, y)

for all x, y in X. Prove that f is continuous. Use this to conclude that every contractive
function is continuous.

7. Give an example of two metric spaces (X, d;) and (X, d>) which are topologically
equivalent and for which (X, d,) is complete and (X;, 4,) is not.

8. Give an example of a set X with two equivalent metrics d and 4’ for which (X, d) is
complete and (X, d4') is not.
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Let (X, d) be a complete metric space. Show that the completion process of Theorem
3.19 defines a metric space (Y, d’) which is metrically equivalent to (X, d).

Complete the details in the proof of Theorem 3.19.
Prove Theorem 3.20.

Give an example of a sequence { f,} 5 of continuous functions f,: 7 = I such that, for
each xin I = [0, 1], { f(x)}==1 converges to a real number f(x), but the limit function
fis not continuous.

Let (X, d) be a metric space and A a dense subspace such that every Cauchy sequence
in 4 converges in X. Prove that X is complete. Identify the use of this result in the proof
of Theorem 3.19.

Definition: Let (X, d) be a metric space. A point p in X is an isolated point if the
singleton set {p} is an open set.

(a) Let (X, d) be a metric space and p a point of X. Assume X # {p}.
Prove that the following conditions are equivalent:

(i) pis an isolated point.
(i) d(p, X\{p})>O0.
(i) p & X\{p}).

(b) Prove that a complete metric space without isolated points must be uncountable.
(Hint: Use the Baire Category Theorem.)

Let (X, d) be a complete metric space and {U,}»; a sequence of open dense subsets
of X. Prove that N, U, is dense in X.

The Baire Category Theorem (Theorem 3.17) shows that for metric spaces, completeness
implies the property of being of the second category. Show that these properties are
not equivalent by giving an example of a metric space which is of the second category
but is not complete. (Hint: Any open interval (g, b) in R is topologically equivalent
toR.)

Let f: R = R be a continuous, unbounded function. Show that there is a number ¢,
for which { f(nto): n an integer} is an unbounded set.

SUGGESTIONS FOR FURTHER READING

For additional reading on metric spaces, Set Theory and Metric Spaces by

Kaplansky and Introduction to Topology and Modern Analysis by Simmons are
recommended. Simmons’ text is particularly recommended for Banach and Hilbert
spaces.

Picard’s Theorem and related applications of the Contraction Lemma can be

found in textbooks on differential equations and real analysis. See, for example,
Differential and Difference Equations by Brand. Some applications of the Baire
Category Theorem are given in Willard’s General Topology and Eisenberg’s To-
Dpology. For applications to functional analysis, Introduction to Topology and Modern
Analysis by Simmons is a good place to start.
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HISTORICAL NOTES FOR CHAPTER 3

The extension of topological considerations beyond the realm of Euclidean
space was first made by Maurice Fréchet. Fréchet introduced metric spaces in 1906
in a very general context that allowed the “points” under consideration to be abstract
objects, not just real numbers or n-tuples of real numbers. This revolutionary idea
brought under one theory the work of an essentially topological nature done on
sets of curves by G. Ascoli, the study of sets of lines and planes by Emile Borel,
and the function space studies of C. Arzela, V. Volterra, David Hilbert, 1. Fredholm,
and others.

The supremum metric for functions in @[a, b] and C(X, R) is usually attributed
to Fréchet, but it was used as early as 1885 by Weierstrass in his work on uniform
convergence. The systematic study of continuous functions and homeomorphisms
on abstract spaces was initiated by Fréchet, although the idea of homeomorphism
had been used in a less general context by Henri Poincaré in 1895.

Hilbert space H was the invention of David Hilbert (1862-1943) in 1906.
The Cauchy-Schwarz Inequality in the form used in this chapter is due to Cauchy.
The Minkowski Inequality was proved by Hermann Minkowski (1864-1909)
in 1909.

The idea of a completion of a metric space can be traced to Cauchy, who
attempted in 1821 to define the irrational numbers as limits of Cauchy sequences
of rational numbers, thus effecting a completion for the space of rational numbers.
Cauchy’s method depended to a considerable extent on intuition and was revised
and put on a logically sound basis by Charles Méray in 1869. Méray referred to
the completion technique as a definition of “fictitious numbers.” A similar com-
pletion for the set of rational numbers was defined by Cantor. The general concept
of complete metric space was defined by Fréchet, and the general completion con-
struction was presented by Hausdorff in 1914.

The Contraction Lemma is due to Stefan Banach (1892-1945). The concept
of a general normed space is due to Banach and others, notably Hans Hahn (1879-
1934), Eduard Helly (1884-1943), and Norbert Wiener (1894-1964). Banach spaces
were introduced by Banach in 1923.

The Baire Category Theorem was proved by the French mathematician René
Baire (1874-1932) for the real line in 1889. The general theorem for complete
metric spaces first appeared in Grundziige der Mengenlehre in 1914 and is attributed
to Hausdorff.
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It was shown in Chapter 3 that such properties as limit point, interior, closure,
boundary, and continuity of functions on metric spaces can be expressed in terms
of the open sets or topologies on the spaces involved. In addition, the latter part of
the chapter demonstrated that the same topology may be determined by several
different metrics. Thus, for the study of ideas like continuity, it appears that the
families of open sets for the spaces involved are more basic than their metrics. For
this reason, we turn in this chapter to a general definition of the term “topology
for a set,” defining it in a manner consistent with the topology determined by a
metric. This will allow us to extend the ideas of Chapter 3 to situations in which
metrics are not available.

4.1 THE DEFINITION AND SOME EXAMPLES

Theorem 3.4 lists the primary properties of the topology generated by a metric
which were used in our study of metric spaces. The term “topology for a set” is
extended to the nonmetric case by using the conditions of Theorem 3.4 as the
defining axioms.

Definition: Let X be a set and let T be a family of subsets of X satisfying the
Jfollowing conditions:

(a) The set X and the empty set & belong to T .

(b) The union of any family of members of T is a member of T.

(c) The intersection of any finite family of members of T is a member of T.

Then T is called a topology for X and the members of T are called open sets. The
ordered pair (X, T) is called a topological space or simply a space.

Using the term “open set” instead of “member of T,” the definition of a
topology may be restated as follows: A4 family of subsets of X is a topology for X
means that:

(a) Both X and & are open sets.
(b) The union of any family of open sets is an open set.
(c) The intersection of any finite family of open sets is an open set.

When the topology T is understood, it is common practice to refer to topological
space X instead of (X, T), omitting mention of the topology.
99
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Example 4.1.1

The usual topology for the real line R is the topology generated by its
usual metric. We shall refer to the real line with the usual topology
as simply “the real line,” or R, understanding that the usual topology
is to be applied unless a different topology is specified.

The usual topology for R" is the topology generated by the usual metric.
By Example 3.5.4, the taxicab metric ¢’ and the max metric d” also
determine the usual topology for R”. We shall refer to R” with the
usual topology as Euclidean n-space, or simply R”, understanding
that the usual topology is to be used unless a different one is specified.
For a set X, the topology generated by the discrete metric is the discrete
topology. In the discrete topology, every subset of X is open. A set
with the discrete topology is called a discrete space. Note that the
discrete topology is the largest possible collection of open subsets
of X.

At the opposite extreme, the trivial topology for X is the family T =
{J, X} whose only members are & and X. (Refer to the definition
to see that this is a topology.) A set with its trivial topology is called
a trivial space. As one might surmise, neither discrete nor trivial spaces
are of much interest as topological spaces. However, discrete spaces
can be combined by various constructions to produce very interesting
spaces which are not discrete. Several such examples will appear in
later chapters.

As another example, consider a set X with topology T’ consisting of
the empty set & and all subsets O of X for which X\O is a finite set.
Then T’ is a topology for X and is called the finite complement to-
pology. This topology is of interest only when X is an infinite set; if
X is finite, it coincides with the discrete topology in which every subset
is open.

Definition:

A subset C of a topological space X is closed provided that its com-

plement X\C is an open set.

Theorem 4.1: The closed sets of a topological space X have the following prop-

erties:

(a) X and & are closed sets.
(b) The intersection of any family of closed sets is a closed set.
(c) The union of any finite family of closed sets is a closed set.

The proof of Theorem 4.1 is left as an exercise.
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Definition: Let (X, T) be a topological space and A a subset of X. A point x in
X is a limit point, cluster point, or accumulation point of A if every open set containing
X contains a point of A distinct from x. The set of limit points of A is called the
derived set of A.

Example 4.1.2

Consider the topological space (R, T '), where T’ is the finite complement topology
of Example 4.1.1(e). For any infinite subset A of R, the derived set A4’ is R itself.
To see this, consider any point x in R and an open set O containing x. Since
R\O is finite, then O must contain all but a finite number of members of 4. In
particular, O must contain at least one point of A distinct from x. Hence x € 4’
sod =R.

A finite subset B of R has no limit points with respect to the finite com-
plement topology. If x does not belong to B, then R\B is an open set containing
x which contains no point of B; if x does belong to B, then {x} U (R\B) is an
open set containing x which contains no point of B different from x.

The next theorem should come as no surprise. Its proof is left as an exercise.

Theorem 4.2: A subset A of a topological space X is closed if and only if A
contains all its limit points.

Definition: Let X be a topological space and {x,}; a sequence of points of X.
Then {x,}w; converges to the point x € X, or x is a limit of the sequence, if for
each open set O containing x there is a positive integer N such that x, € O for all
nz=N.

The following examples show that Theorems 3.8 and 3.9 for sequences in
metric spaces do not carry over to general topological spaces. These examples suggest
that sequences will not play in general topological spaces the fundamental role that
they play in metric spaces.

Example 4.1.3

Consider the set R of real numbers with the finite complement topology. Every
sequence {x,}s= of distinct points converges to every point. To see this, let x €
R and let O be an open set containing x. Then O has finite complement and
hence must contain all but a finite number of terms of the sequence. In particular,
there is a positive integer N such that if n = N, then x, € O. We conclude that
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{Xn}n=1 converges to every member of R and, therefore, that a sequence may
have more than one limit.

Example 4.1.4

Consider a trivial topological space X = {a, b} consisting of only two points a
and b. Then a is a limit point of {b} since X is the only open set containing a.
However, the singleton set {b} contains no sequence of distinct points converging
toa.

EXERCISE 4.1

10.

1.

Show that the trivial topology T, and the discrete topology 7, are, respectively, the
smallest and largest topologies for any set X.

Let X be a set with at least two members. Show that there is no metric for X which
generates the trivial topology.

Show that the finite complement topology is actually a topology for any set X.

Show that a space (X, T ) is discrete if and only if each set consisting of only one point
is open.

Prove Theorems 4.1 and 4.2.

Let A, B be subsets of a space X with 4 C B, and let 4, B’ denote the derived sets of
A and B, respectively. Show that 4’ C B'. Show by an example that A’ may equal B’
even though A is a proper subset of B.

Let X be a space, 4 a subset of X, and x a member of X. Prove that if there is a sequence
of distinct points of 4 converging to x, then x is a limit point of 4.

Let X be a set and 7' the finite complement topology for X.
(a) Show that (X, T’) is discrete if and only if X is a finite set.

(b) Show that if 4 is aa infinite subset of X, then every point of X is a limit point
of A.

Let X be a set. The countable complement topology T" for X consists of & and all
subsets O of X for which X\O is a countable set.

(a) Show that T"” is actually a topology for X.

(b) For the space (X, T"), show that a countable subset A of X has derived set 4' =
& and that an uncountable set B has B' = X.

(c) Show that the intersection of any countable family of members of 7 ” is a member
of T".

Let S = {a, b} be a two-element set and let T = {J, {a}, {a, b}}. Show that T isa
topology and identify the limit points of each subset of S. (The space S is called Sierpiriski
space.)

How many different topologies are there for a set with three members?
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4.2 INTERIOR, CLOSURE, AND BOUNDARY

The interior, closure, and boundary for subsets of a topological space are
defined in complete analogy with their counterparts for subsets of metric spaces.

Definition: Ler A be a subset of a topological space X. A point x in A is an interior
point of A if there is an open set O containing x and contained in A. Equivalently,
A is called a neighborhood of x. The interior of A, denoted int A, is the set of all
interior points of A.

The closure A of A is the union of A with its set of limit points:

A=AUA

where A' is the derived set of A. _
A point x in X is a boundary point of A if x belongs to both A and (X\A). The
set of boundary points of A is called the boundary of A and is denoted bdy A.

Theorem 4.3: For any subsets A, B of a topological space X:

(1) The interior of A is the union of all open sets contained in A and is
therefore the largest open set contained in A.

(2) AisopenifandonlyifA = int A.

(3) IfACB, thenint AC int B.

(4) int (AN B) = int AN int B.

Proof: Statements (1) and (2) carry over from Chapter 3, and (3) is an immediate
consequence of the definition of interior. To prove (4), note first that since A N\ B
is a subset of both A and B, then int (A N B) is a subset of int A N int B by (3).
For the reverse inclusion, note that int A N int B is an open set and is a subset of
A N B. Since int (A N B) is the largest open set contained in A N B, then

int AN int BCint (AN B). a

Example 4.2.1

It is not true in general that int (4 U B) equals int 4 U int B. As a counterexample,
consider the real line with 4 = [0, 1] and B = [1, 2]. Then

int (4 U B) = int [0, 2] = (0, 2)

while

int4Uint B= (0, 1)U (1, 2)
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so int (4 U B) contains 1 while int 4 U int B does not. The reader is asked in
one of the exercises to prove that the inclusion

int AU int BCint (4 U B)

is always valid.

Theorem 4.4: For any subsets A, B of a space X:

(1) The closure of A is the intersection of all closed sets containing A and is
therefore the smallest closed set containing A.

(2) Aisclosed if and only if A = A.
(3) IfACB, thenAC B.
(4 AUB=AUB.

Proof: Again statements (1) and (2) carry over from Chapter 3 (Theorems 3.10
and 3.11). For (3), note that if A C B, then the definition of limit point guarantees
that A C B'. Then

A=4AUACBUB =8

To prove (4), note first that A U B is a closed set which contains A U B. Since
A U B is the smallest closed set containing A U B, then

AUBCAUB.
For the reverse inclusion, use (3) and the fact that both A and B are subsets of
AU B. O
Example 4.2.2

It is not true in general that A N B equals 4 N B. For example, let 4 =
(0, 1) and. B = (1, 2) on the real line. Then

ANB=Q@ =y
but
ANB=[0,11N[1,2]={1}.
The reader is left the easy exercise of showing that the inclusion
ANBCANB

is always valid.
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Theorem 4.5: Let A be a subset of a topological space X.

(1) bdyA=AN(X\A) = bdy (X\A).

(2) bdy A, int A, and int (X\A) are pairwise disjoint sets whose union is X.
(3) bdy A is a closed set.

(4) A=int AU bdy A.

(5) A is open if and only if bdy A C (X\A).

(6) A is closed if and only if bdy A C A.

(7) A is open and closed if and only if bdy A = &.

Proof: Properties (1) through (4) follow immediately from the definitions. To prove
(5), note that if A is open, then A = int A by Theorem 4.3, part (2). Since int A’ and
bdy A are disjoint by (2), then A and bdy A are disjoint, so bdy A must be a subset
of X\A. For the reverse implication, suppose bdy A C X\A. Then no point of A is
a boundary point of A, so every point of A is an interior point. Thus A = int A, so
A is open.

Statement (6) follows from the duality between open sets and closed sets: A is
closed if and only if X\A is open. By (5), this is equivalent to saying that

bdy (X\4) C X\(X\4)
or
bdy AC A.

Statement (7) is proved by combining (5) and (6): A is both open and closed
if and only if bdy A is contained in both A and X\A. Since A and X\A are disjoint,
this occurs if and only if bdy A = &. a

According to Theorem 4.5, the points of a subset 4 of a space X may be of
two types, interior points and boundary points. The set 4 may have additional
boundary points outside 4, however; the union of all interior points and boundary
points of 4 is A. The points of X are of three non-overlapping types: (1) interior
points of A, (2) interior points of X\4, and (3) boundary points of 4, which are
identical with the boundary points of X\ A4. (Of course, any of these three sets may
be empty.)

The following examples are an attempt to spare the reader some of the com-
mon misconceptions about boundaries and closures in metric spaces.

Example 4.2.3

For an open ball B(a, r) in a metric space (X, d), B(a, r) may not be the closed
ball B{a, r], and bdy B(a, r) may not be {x € X: d(x, a) = r}.
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(a) Consider first the case of a discrete metric space (X, d) and an open
ball B(a, 1) of radius 1:

B(a, 1) = {a}, Bla, 1] =X.
Note also that
bdy B(a, 1) = &, {xE X:d(x,a)= 1} = X\{a}.

(b) These phenomena are not restricted to discrete spaces. Let Y be the
subspace of R? shaded in Figure 4.1: Y = {8} U {x ER% ||x| = 1}.

S By

FIGURE 4.1

In Y, B(6, 1) = {8} = {6} while B0, 1] is the union of {#} with the unit circle.
Also, bdy B(0, 1) = & and {x € Y: d(x, §) = 1} is the unit circle.

Definition: A subset A of a space X is dense in X provided that A = X. If X has
a countable dense subset, then X is a separable space.

It is a simple consequence of the definitions of closure and dense set that a
subset 4 of X is dense in X if and only if every non-empty open set in X contains
at least one point of 4.
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Example 4.2.4

(a)
()

(©

@

The real line R is separable. The set of rational numbers is countable
and dense in R.

Euclidean n-space R” is separable. The set R of points of R” having
only rational coordinates is dense in R” by Example 3.3.4(c). This set
is countable since it is the product of the set of rational numbers (a
countable set) taken as a factor n times.

Hilbert space H is separable. Let C denote the set of all points x =
(X15 .. . » Xn, . . .) all of whose coordinates are rational and for which
only finitely many coordinates x; are non-zero. In other words,

c=Uc,

n=1

where C, = {x = (x1,...,Xs, 0,0, ...) € H: x; is rational for i = 1,

.., nand x; = 0 for i > n}. Since each set C, is countable, then C
is the union of a countable family of countable sets and is hence
countable. To see that C is dense in H, consider a non-empty open
set O. Let B(a, r) be a ball with center a = (a;, ..., G, ...) and
positive radius r contained in O. Since 22, a, converges, there is a
positive integer N such that

(-]
> ai<r?2.
n=N+1

Fori=1,..., N there is a rational number x; between a; — r/VZ_N
and a; + r/V2N. Then x = (x;, ..., x», 0,0, . . .) belongs to C and

© 1/2 N © 172
d(a, x) = ( (ai— x:)’) = (Z @-xP+ X a?)
1

n= n=1 n=N+1

N 2
< (2 (r/V2NY? + r’/2) = (Nr¥2N + r¥2)"2 = r

n=1

X€ B(a,nCO.

Thus C = H and H is separable.

The real line with the finite complement topology is separable since,
by Example 4.1.2, every countably infinite subset is dense.
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Definition: A4 subset B of a space X is nowhere dense provided that int B = &.

The relations between dense sets and nowhere dense sets are explored in the

exercises for this section.

EXERCISE 4.2

Let 4 and B be subsets of a space X. Show that
(@ intAUint BCint(4U B).

b) ANBCANB.

(c) int(int 4) = int 4.

@ A=4-

Prove statements (1) through (4) of Theorem 4.5.

Let (X, d) be a metric space, a a point of X, and r a positive number. Prove that

(@) B(a, r) C Bla, 1.

(b) bdy B(a,r)C {x€ X:d(x,a) = r}.

Identify int 4, bdy 4, int (X\4), 4, and the derived set A’ in each of the following cases:
@ A4={x=(x,x)ER:x;>0}inR%

(b) A4 =0, 1], as a subset of R with the finite complement topology;

(c) A = {a} where X = {a, b} with the discrete topology;

(d) A = {a} where X = {a, b} with the trivial topology.

(a) If(X,, d)) and (X;, d,) are separable metric spaces, prove that the product metric
space X, X X, is separable.

(b) Use (a) to prove that R" is separable for each positive integer n.

Let A be a subset of a space X. Prove that 4 is dense in X if and only if
int (X\4) = .

Let B be a subset of a space X. Prove that the following statements are equivalent.
(a) B is nowhere dense.

(b) X\Bisdensein X,

© X\(X\B)=g.

d) BC(X\B).

Definition: For a subset A of a space X, the exterior of A is the set ext A = X\A.
Prove that ext A = int (X\A).

Prove:

(a) Every finite subset of R” is nowhere dense.

(b) The set of points of R" all of whose coordinates are integers is nowhere dense.

(¢) R™!is nowhere dense when considered as a subset of R”".
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10. The purpose of this problem is to show that the concept of topology for a set X can be
defined in terms of the closure operation.

Definition: Let X be a set. A closure operator on X is a function ¢ which associates
with each subset A of X a subsel c(A) of X satisfying the following properties:

(1) Q) =49,

(2) ACc(4)

(3) clc(4)) = c(A4),

(4) (AU B) = c(4) U ¢(B),
Jor all subsets A, B of X.

A subset A of X is c-closed provided that c(A) = A, and a subset B of X is c-open provided
that X\B is c-closed.

Assume that ¢ is a closure operator for a given set X. Prove that:
(a) The family T of c-open sets is a topology for X.
(b) For each subset A of X, c(4) = A, where 4 is the closure of 4 in the topology 7.

4.3 BASIS AND SUBBASIS

A topology for a set X can be a very large and complicated family of subsets.
Often it simplifies matters to deal with a smaller collection which generates the
topology by taking unions. Such a subcollection is called a basis; the precise defi-
nition follows.

Definition: Let (X, T) be a topological space. A base or basis B for T is a sub-
collection of T with the property that each member of T is a union of members of
B. Reference to the topology is sometimes omitted, and we speak of basis for X
rather than a basis for the topology of X. The members of B are called basic open
sets, and T is the topology generated by B.

Example 4.3.1

(a) The collection B of all open intervals is a basis for the usual topology
of R.

(b) For any metric space (X, d), the collection B of all open balls
B(a, r), a € X, r > 0, is a basis for the topology generated by d.

(c) For any set X, the collection of all singleton sets {x}, x € X, is a basis
for the discrete topology.

(d) For any space (X, T), the topology T is a basis for itself. This fact is
of little use because the point of defining a basis is to produce a smaller
collection of open sets with which to work.
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Definition: Let (X, T) be a space and let a be a member of X. A local base or
local basis at a is a subcollection B, of T such that

(1) a belongs to each member of B,, and
(2) each open set containing a contains a member of B,.

Example 4.3.2

(a) For a € R, the collection B, of all open intervals of the form (d — ¢,
a + €) e > 0, is a local basis at a.

(b) For any metric space (X, d) and a € X, the collection B, of all open
balls centered at g is a local base at a.

(c) For a discrete space X, the singleton set {a} forms a local basis at a.
(The local basis is the collection whose only member is {a}.)

(d) For any space (X, T) and a € X, the collection of all open sets con-
taining a is a local basis at a.

(e) If B is a basis for a space X, then the collection of all members of B
which contain a is a local basis at a. Conversely, if for each g € X,
B, is a local basis at a, then U,y B, is a basis for the topology of X..

Definition: A space X is first countable or satisfies the first axiom of countability
provided that there is a countable local basis at each point of X. The space X is
second countable or satisfies the second axiom of countability provided that the
topology of X has a countable basis.

If a space X has a countable basis, that is, a basis B consisting of a countable
family of open sets, then the members of B which contain a particular point a
form a countable local basis at a. Thus each second countable space is first countable.

Theorem 4.6: Every second countable space is separavle.

Proof: Let X be a second countable space with countable basis B. Let A be the
countable set formed by choosing a member from each basic open set. (If B happens
to have & as a member, then choose one member from each non-empty member
of B.) It follows from the definition of basis that A is dense in X. O

Theorem 4.7:

(a) Every metric space is first countable.
(b) Every separable metric space is second countable.
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Proof:

(a) The reader is left the exercise of showing that the collection of open balls
{B(a, 1/n) }3x, is a countable local base at a, for each point a in a metric
space X.

(b) Let (X, d) be a separable metric space with countable dense set A. Then

Jor each a € A, {B(a, 1/n) }3~, is a countable collection and hence B =
{B(a, 1/n): a € A, n a positive integer} is the union of a countable family
of countable sets and is therefore countable. The proof will be completed
by showing that B is a basis for the metric topology generated by d. To
this end, let O be an open set and let x € O. There is an open ball
B(x, r) of positive radius r centered at x and contained in O. Let n be a
positive integer for which 1/n < r/2. Since A is dense in X, then there is
some member a of A in B(x, 1/n). Then x € B(a, 1/n), and B(a, 1/n) is
a member of B. For any y € B(a, 1/n),

dix,y)<d(x,a)+da y <Im+1/m=2/n<2r2=r,
soy € B(x, r). Thus
X € B(a, 1/n) C B(x, r) C O.

Hence, for each x in O, there is a member of B which contains x and is
contained in O. Then O is a union of members of B, so B is a countable
basis for X. ]

Corollary: Euclidean n-space R" is second countable for each positive integer n.

Proof: By Example 4.2.4, the collection of points of R" having only rational co-
ordinates is a countable dense set. Thus R" is a separable metric space and is second
countable by Theorem 4.8. (m]

Corollary: Hilbert space H is second countable.

Proof: Example 4.2.4(c) shows that H is separable. (m]

Example 4.3.3

Consider the space (R, 7') of real numbers with the finite complement topology.
This space does not have a countable local basis at any point. To see this, let
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a € R and suppose that T’ has a countable local basis B, = {B,}x, at a. Then
for each positive integer n, R\B,, is finite so

0 (R\B,) = lR\ﬁl B,
n=1 n=

is countable. Since R is uncountable, then N2, B, must be uncountable and
must contain at least one point (actually, uncountably many points) b distinct
from a. Then

O = X\{b}
is an open set containing a, but O does not contain any member of the collection

B, = {B,}:. Thus B, is not a local basis at a, and (R, 7’) has no countable
local basis at any point.

There are two viewpoints from which to consider bases. Thus far, we have
started with a topology and considered the problem of finding a basis for it. On the
other hand, one might start with a basis and generate a topology from it by forming
unions. But not every family of subsets of X is a basis for a topology. The next
theorem gives necessary and sufficient conditions that a family of subsets generate
a topology.

Theorem 4.8: A family B of subsets of a set X is a basis for some topology for
X if and only if both of the following conditions hold:

(a) The union of the members of B is X.

(b) For each B;, B, in B and x € B; N B,, there is a member B, of B such
that

xe li‘(: I?]f\ 192.

Proof: Suppose first that B is a basis for a topology for X. Then (a) follows from
the fact that X is an open set and must be a union of members of B. Since each
member of B is a subset of X, then

xX=U B
BEB

For (b), let B;, B, be members of B and x a member of B N\ B,. Then B, N B, is
an open set and is therefore some union of members of B. Thus there is some
B, € B such that

x e I{x(: 1?1 N I?z.



4.3 / Basis and Subbasis 113

Now suppose that B satisfies properties (a) and (b) and consider the collection
T of all unions of members of B. It must be shown that T is a topology for X. Note
that &, the union of the empty collection of members of B, is in T; X isin T
by (a).

Since T consists of all unions of members of B, then the union of any family
of members of T is also in T. In other words, the union of any family of open sets
is open.

It remains to be proved that the intersection of any finite collection of open
sets is open. This follows easily by induction provided it is first shown that for O,,
0;in T, O; N O, belongs to T. For x € O; N O,, there must be members B,, B,
of B such that

XE€EB, CO,, xEB,CO,.
Thus
XEB NB,CO;NO,.
By (b), there is a member B, of B with
XEB,CO,NO0;.

Then O; N O, is the union of such members B, of B and is therefore a member of
T. Thus T is a topology for X. O

Example 4.3.4

Let B be the family of all intervals in R of the form [a, b), a < b. It is easily
observed that B satisfies the conditions of Theorem 4.8 and is a basis for a
topology, called the half-open interval topology T" for R. It is left as an exercise
for the reader to show that (R, T ") is first countable and separable but not second
countable. (The real line with the half-open interval topology is sometimes called
the Sorgenfrey line.)

Definition: Let B and B’ be bases for topologies T and T' for a set X. Then B
and B' are equivalent bases provided that the topologies T and T’ are identical.

The proof of the following theorem is left as an exercise.

Theorem 4.9: Bases B and B’ for topologies on a set X are equivalent if and
only if both of the following conditions hold:
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(a) For each B € B and x € B, there is a member B' € B’ such that x €
B'CB.

(b) For each B' € B’ and x € B', there is a member B € B such that x €
BCB. )

In some instances it is advantageous to have a smaller collection of sets which
generates a basis by the process of forming finite intersections. Such a family, called
a subbasis, is defined as follows:

Definition: Let (X, T) be a space. A subcollection § of ‘T is a subbasis or subbase
for T if the family B of all finite intersections of members of § is a basis for T.

Example 4.3.5

The collection & of all open intervals of the form (a, o) and (—o0, b), a, bER,
is a subbasis for the usual topology for R.

EXERCISE 4.3

1. Let (X, T) be a space and B a subcollection of T. Suppose that for each a in X, the
set B, of members of B which contain q is a local base at a. Show that B is a basis
for T.

Prove part (a) of Theorem 4.7.

Give an example different from Example 4.3.4 of a space X that is first countable but
not second countable.

4. Let X be a first countable space and x a limit point of a subset 4 of X. Show that there
is a sequence of points of A\{x} which converges to x.

5. Describe the bases B’ and B’ for R" determined by the open balls of the taxicab metric
d’ and the max metric d”, respectively. Show that B’ and B” are both equivalent to
the basis B of open balls in the usual metric d.

6. Let X be a first countable space and x a member of X. Prove that there is a local nested
basis {S,}=, at a (i.e., a local basis such that S,.,; C S, for each positive integer 7).

7. Let (R, T") be the real line with the half-open interval topology of Example 4.3.4.

(a) Find the closure, interior, and boundary of the set 4 = [0, 2] and the set B =
(0, 2).
(b) Prove that (R, T") is separable and first countable but not second countable.
8. Letd, and d, be metrics for a set X, and let B, and B, denote, respectively, the families

of all open balls generated by d; and d>. Show that d, and d; are equivalent metrics if
and only if B, and B, are equivalent bases.
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9. Prove Theorem 4.9.

10. Let X be a set and & any family of subsets of X whose union equals X. Show that & is
a subbasis for a topology for X.

4.4 CONTINUITY AND TOPOLOGICAL EQUIVALENCE

Since distance between points is not defined for general topological spaces,
how should one define continuity for a function from one topological space to
another? Keep in mind that the definition, when applied to metric spaces, should
agree with the definition of continuity given in Chapter 3. Recall that a function
f: X = Y from metric space (X, d) to metric space (Y, d') is continuous at a point
a in X if and only if for each open ball B,;-(f(a), €) in Y centered at f(a), there is
an open ball B,(a, 6) in X centered at a such that f(B,(a, 6) is contained in
Ba(f(a), €). Continuity at g for a function f: X = Y on topological spaces X and
Y is defined by simply replacing the open balls centered at f(a) and a by open sets
containing f(a) and a, respectively.

Definition: Let (X, T) and (Y, T') be topological spaces, f: X = Y a function,
and a a point of X. Then f is continuous at a provided that for each open set V in
Y containing fla) there is an open set U in X containing a such that fflU) C V. The
Jfunction f is continuous if it is continuous at each point of its domain.

We shall deal most often with continuity of a function on its entire domain
rather than at each point separately, so we examine the definition a bit more closely.
The function f'is continuous simultaneously for all a in X means that for every
open set ¥ in Y and every point a with f(a) in V, there is an open set U, in X with
ain U, and f(U,) C V. Since f(U,) C V is equivalent to U, C f~!(V), this means
that £ ~'(¥) contains an open set about each of its members; in other words, f ~!(V)
is open in X for each open set V'in Y.

Alternate Definition: A function f: (X, T) = (Y, T’) is continuous means that
for each open set V in Y, f~!(V) is an open set in X.

The following theorem restates the definition of continuity in several equiv-
alent forms.

Theorem 4.10: Letf X—> Y bea function on the indicated topological spaces
and let a € X. The following statements are equivalent:
(1) fis continuous at a.

(2) For each open set V in Y containing fla), there is an open set U in X such
thata€ Uand UC (V).



116  FOUR / TOPOLOGICAL SPACES

(3) For each neighborhood V of fla), f ~'(V) is a neighborhood of a.
(4) For each subset V of Y with fla) € int V, a belongs to int f (V).

A proof of Theorem 4.10 can be formulated directly from the definitions of the
terms involved; this is left as an exercise for the reader.

Theorem 4.11: Let f- X = Y be a function on the indicated topological spaces.
The following statements are equivalent.

(1) fis continuous.

(2) For each closed subset C of Y, f~!(C) is closed in X.

(3) For each subset A of X, f{A) C fl4).

(4) There is a basis B for the topology of Y such that f ~'(B) is open in X for
each basic open set B in B.

(5) There is a subbasis § for the topology of Y such that f ~'(S) is open in X
Jor each subbasic open set S in §.

Proof: We use the open set formulation to describe continuity: f is continuous if
and only if for each open set Vin Y, f~!(V) is open in X. The equivalence of (1) and
(2) follows from the duality between open sets and closed sets, precisely as in the
proof of Theorem 3.13. .

[(2) = (3)]: Suppose that (2) holds, and let A be a subset of X. Then f(A) is a
closed subset of Y, so its inverse image f ~'(f{4)) is closed in X. Since

ACf(fl4)
and the latter set is closed, then
ACS(MA4)
so
fid) C fi4)
and (3) holds.
[(3) = (2)]: Assume (3) and let C be a closed subset of Y. Then
firic)cpigcc=c
so

rocrio

and f ~(C) must be a closed set. Thus (3) implies (2).
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We have completed the proof that (1), (2), and (3) are equivalent. Since a basis
B and subbasis $ for Y consist of open sets, it should be clear that (1) implies both
(4) and (5). Similarly, since a basis is a subbasis, (4) implies (5). The proof will be
completed by showing that (5) implies (4) and (4) implies (1).

[(5) = (4)]: Suppose (5) holds and consider the basis B generated from § by
taking finite intersections. For any basic open set B € B,

B=MNs;

i=1

for some finite collection of members S, . .., S, of §. Then
7B = f-'(Q S.-) =N 7s)

by Theorem 1.7. Since each set f ~!(S;) is open in X and the intersection of any finite
collection of open sets is open, then f~'(B) is open in X. Thus (5) implies (4).
[(4) = (1)]: Assuming (4), let O be an open set in Y. By the definition of basis,

0=UBs,
o€l
Jor some subcollection {B,: a € I} of the basis B. Then
V() =f"(U B..) = U f(B.).
o€l o€l

Since each set f ~'(B,) is open in X and the union of any family of open sets is open,
then f~1(0) is open in X and f'is continuous. a

Conditions (4) and (5) of Theorem 4.11 will be useful when we want to deal
with a basis or subbasis rather than with the entire topology of the range space.
Condition (3) is the description of continuity which seems to fit best with the intuitive
idea of closeness. We visualize continuity of f'at x by thinking that whenever x is
“close” to a set A4, then f(x) is “close” to f(A4). In topological language, x is “close”
to A means x € 4, and f(x) is “close” to f(4) means f(x) € f(A4).

Theorem 4.12: If f X — Y and g: Y — Z are continuous functions on the
indicated spaces, then the composite function g - f* X = Z is continuous.

The proof of Theorem 4.12 is left as an exercise.
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Example 4.4.1

It should be emphasized that continuity for a function f: X = Y is expressed
in terms of inverse images of open sets in Y: fis continuous if and only if for
each open set O in Y, f~Y(0) is open in X. This is not to be confused with f
mapping open sets in X to open sets in Y, which is quite a different property.
Consider, for example, the function f: R = Y from the real line R to a discrete
two-point space Y = {a, b} defined by

a ifx=<0

f(")={b if x> 0.

This function does map open sets in X to open sets in Y, because every subset
of Y is open. But f'is not continuous; {a} is open in Y but

f—l(a) = (—o0, 0]

is not open in R.

Definition: Let f* X = Y be a function on the indicated spaces. Then fis an open
Junction or open mapping if for each open set O in X, f{O) is open in Y. The function
[is a closed function or closed mapping if for each closed set C in'X, f{C) is closed
inY.

Example 4.4.1 shows that an open mapping may fail to be continuous. The
reader is asked in the exercises to find examples to illustrate the following:

(a) A closed mapping may not be continuous.

(b) An open mapping may not be closed, and conversely.

(c) A continuous function may be neither open nor closed.

(d) A mapping that is both open and closed may not be continuous.

Definition: Topological spaces X and Y are topologically equivalent or homeo-
morphic if there is a one-to-one function f: X — Y, from X onto Y for which both
f and the inverse function f~! are continuous. The function f'is called a homeo-
morphism.

Topological equivalence is an equivalence relation for topological spaces.

A homeomorphism f: X ~» Y between spaces X and Y is a one-to-one function
from X onto Y for which both fand f~! are continuous. Since (f~')™! = ffor a
bijection, continuity of f ™! can be expressed by the fact that for each open set O
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in X, f(O) is open in Y. In other words, a homeomorphism is just a bijection which
is also an open, continuous function. Since continuity of /! can also be expressed
by the fact that for each closed set C in X, f(C) is closed in Y, then fis a homeo-
morphism if and only if it is a closed, continuous bijection.

Definition: A property P of topological spaces is a topological property or topo-
logical invariant provided that if space X has property P, then so does every space
Y which is topologically equivalent to X.

The next three theorems give examples of topological properties.
Theorem 4.13:  Separability is a topological property.

Proof: Let X be a separable space with countable dense subset A and Y a space
homeomorphic to X. Let f- X = Y be a homeomorphism. The obvious candidate
Jfor a countable dense subset of Y is flA). To see that f{A) is dense in Y, let O be a
non-empty open set in Y. Then f~(0) is a non-empty open set in X. Since A is
dense in X, f ~1(O) contains some member a of A. Then O contains the member fla)
of flA), so every non-empty open set in Y contains at least one member of f{A). Thus
fA) = Y and Y is separable. 0

Proofs of the next two theorems are left as exercises.

Theorem 4.14:  First countability and second countability are topological prop-
erties.

Definition: A4 topological space X is metrizable provided that the topology of X
is generated by a metric.

Theorem 4.15:  The property of being a metrizable space is a topological property.

Hint: Let (X, d} be a metric space, Y a topological space homeomorphic to X, and
f: X = Y a homeomorphism. Define d’ on Y X Y by

d(y, y2) =d(f'), (), n, »EY.

Show that 4’ is a metric and that d’ generates the topology of Y.

Since R and (0, 1) are homeomorphic, we note that the property of being a
bounded metric space is not a topological property.
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Until this point, it has not been possible to give a precise definition of the
branch of mathematics known as topology. Topology is the branch of mathematics
which deals with topological properties. One objective of topology is to give criteria
in terms of topological invariants which allow one to determine whether or not
two given spaces are homeomorphic. Ideally, one would want a list of topological
properties which are easy to check and for which two spaces are homeomorphic if
and only if they share the same properties from the list. Theorems of this type are
called classification theorems because they divide topological spaces into classes,
with two members of the same class being homeomorphic. Mathematicians have
experienced only limited success in classifying topological spaces. There is no known
list of topological properties which completely classifies topological spaces.

A second objective of topology is to establish relations among various topo-
logical properties and to show which combinations of topological properties are
equivalent. Theorems of this type are called characterization theorems since they
completely describe or characterize spaces of a certain type. We shall see one of
the most famous characterization theorems, the Urysohn characterization, which
gives necessary and sufficient conditions for a space to be homeomorphic to a
separable metric space (Theorem 8.18), in Chapter 8.

EXERCISE 4.4

1. Letf: X —> Y be a function and let a € X. Prove that fis continuous at a if and only
if for each subset 4 of X with a € 4, f(a) € f(A).

2. Letf: X —> Y be a function and let a € X. Prove that fis continuous at a if and only
if there is a local basis By, at f(a) such that for each B € By,), f~'(B) is a neighborhood
of a.

3. Find an example of each of the following:
(a) A closed mapping that is not continuous
(b) An open mapping that is not closed and a closed mapping that is not open
(c) A continuous function that is neither open nor closed
(d) A function that is both open and closed but not continuous

4. Prove that the composition of continuous functions is continuous (Theorem 4.12).
Prove that topological equivalence is an equivalence relation.

6. Letf: X —> Y be a one-to-one correspondence from space X onto space Y. Prove that
the following statements are equivalent:

(a) fis a homeomorphism.

(b) fand f~! are both open mappings.

(c) fandf~! are both closed mappings.
7. Prove Theorem 4.14.



10.

1.

12.

13.

14.

4.4 / Continuity and Topological Equivalence 121

Prove Theorem 4.15.
Let f: X = Y be a one-to-one function from space X onto space Y.
(a) Show that the following statements are equivalent:
(1) f~!is continuous.
(2) fis an open mapping.
(3) fis a closed mapping.
(b) Show that the following statements are equivalent:
(1) fis a homeomorphism.
(2) fis an open, continuous mapping.
(3) fis a closed, continuous mapping.

Let X be a separable space, Y a space, and f: X —> Y a continuous function from X
onto Y. Prove that Y is separable.

Definition: Let X be a space and f: X — R a real-valued function on X. Then
f is upper semicontinuous if f ~'(—o0, a) is open for each a in R; f is lower
semicontinuous if f ~'(a, ®) is open for each a in R.

(a) Prove that a function f: X = R is continuous if and only if it is both upper and
lower semicontinuous.

(b) Give an example of an upper semicontinuous function that is not continuous.
(¢) Repeat (b) for a lower semicontinuous function.

(a) Prove that a function f: X = R from a space X into R is upper semicontinuous
if and only if {x € X: f(x) = a} is closed in X for each a in R.

(b) State and prove the condition analogous to (a) for lower semicontinuous functions.

Definition: Let A be a subset of a given space X. The characteristic function of A is
the function f,: X —> R having value 1 at each point of A and value 0 at each point of
X\A.

Let X be a space with subspace 4. Prove:
(a) The characteristic function of A is lower semicontinuous if and only if A4 is open.
(b) The characteristic function of 4 is upper semicontinuous if and only if 4 is closed.

(c) The characteristic function of A4 is continuous if and only if 4 is both open and
closed.

(a) Let X be a space and {f.}.e« a family of lower semicontinuous functions
Ja: X = R for which {f,(x): « € A} has an upper bound for each x in X. Prove
that the function g: X — R defined by

gx)=1ub {fi(x): a EA}, xEX,

is lower semicontinuous.

(b) State and prove the corresponding result for upper semicontinuous functions.
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4.5 SUBSPACES

A subspace of a metric space (X, d) is simply a subset 4 of X with the metric
of X used to measure distances between points of 4. In other words, the metric of
Xis essentially “cut down” to A. The main definition of this section defines subspaces
of a general topological space X in an analogous manner by “cutting down” the
open sets of X.

Definition: Let (X, T) be a topological space and A a subset of X. The relative
topology or subspace topology T’ for A determined by T consists of all sets of the
Jorm O N A for which O is an open set of T :

T'={0NA:O€ET)

The members of T' are called relatively open sets or simply open sets in A, and
(A, T') is called a subspace of (X, T).

FIGURE 4.2 Open sets in A are of the form O N A, where O is open in X.

When no confusion is likely, it is common practice to refer to 4 as a subspace
of X, omitting mention of the topologies 7 and 7'

It is a simple matter to show that what we have called the subspace topology
‘T’ for a subset 4 of a space (X, T ) is actually a topology for 4:

(a) & and A are relatively open sets since

F=@FNA, A=XNA

and both & and X are open in X.
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(b) For any family {O, N A} of relatively open sets, where each O, is open
in X,

U@.n4= (Uo.,) N4
is relatively open because the union of any family of open sets in X is open.

(c) For any finite family {O; N A};.; of relatively open sets, where each O;
is open in X,

n n
ﬂ (0N A4) = (p 0,)0,4
- =1

is relatively open because the intersection of any finite family of open sets in X
is open.

A subset D of A is relatively closed if it is a closed set in the subspace topology
for A: D is relatively closed if and only if

AAD=0NA4

for some open set O in X. The next theorem shows that a relatively closed set could
be defined equivalently as the intersection with 4 of a closed set in X.

Theorem 4.16: Let (4, T') be a subspace of a topological space (X, T). A subset
D of A is closed in the subspace topology for A if and only if D = C N A for some
closed subset C of X.

Proof: Suppose first that D is a relatively closed set. Then
AAD=0NA4

for some open set O in X, and

D = A\(A\D) = A\(ON 4) = (X\O) N 4,
so D is the intersection of A with the closed set C = X\O in X.

For the reverse implication, suppose that D = C N A for some closed set C in

X. Then O = X\C is open in X and

A\D = A\(CNA4)=(X\C)NA=0NA4,
50 A\D is open in the subspace topology of A, and D is a relatively closed set. O

Proofs of the next two theorems are left as exercises.
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Theorem 4.17: Let (A, T') be a subspace of a space (X, T), a a member of A,
and N a subset of A. Then N is a neighborhood of a with respect to the subspace
topology for A if and only if N = U N A where U is a neighborhood of a with respect
to the topology T on X.

Theorem 4.18: Let (X, d) be a metric space and (A, d') a metric subspace. Let
T be the topology for X generated by d, T’ the subspace topology for A determined
by T, and T" the metric topology for A determined by d'. Then T' = T".

Definition: A property P of topological spaces is hereditary provided that if X has
property P, then every subspace of X has property P.

Example 4.5.1

First countability and second countability are hereditary properties. If X has a
countable local basis {B,};; at point a € X and 4 is a subset of X containing
a, then {B, N A}, is a local base at a in the subspace topology for 4. If X is
second countable, the same method of proof shows that every subspace is second
countable.

Example 4.5.2

Separability is not hereditary. Consider, for example, the subset X of R? consisting
of the real axis R and the one additional point a = (0, 1). Define a topology T
on X to consist of the empty set & and all subsets of X which contain a. Then
(X, T) is separable since the singleton set {a} is dense. However, the subspace
topology T’ for R as a subspace of X is the discrete topology, so (R, 7') is not
separable.

Definition: A topological space X is a Hausdorff space if for each pair a, b of
distinct points of X there exist disjoint open sets U and V such that a € U and
bev.

Example 4.5.3

Every metric space (X, d) is Hausdorff. To see this, note that if a, b are distinct
points of X, then r = d(a, b) is a positive number. Thus U = B(a, r/2) and V =
B(b, r/2) are disjoint open sets containing a and b, respectively. Thus R”", Hilbert
space, and discrete spaces are examples of Hausdorff spaces.
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The space (X, T') of Example 4.5.2 is not Hausdorff since every non-empty

open set in X contains the point (0, 1). The real line with the finite complement

topology and trivial spaces with more than one point are also not Hausdorff.

Example 4.5.4 The Zariski Topology

Let n be a positive integer and consider the family 2 of all polynomials in » real
variables x;, X, ..., x,. For such a polynomial P, let Z(P) denote its solution
set in R™

Z(P) = {(x1, X2, - -, Xn) ER™ P(x1, Xz, - .., X) = O}.

It is left as an exercise for the reader to show that the set B of all complements
of the sets Z(P), P € P, is a basis for a topology for R”. This topology is called
the Zariski topology for R".

For n = 1, the Zariski topology equals the finite complement topology on
R. The reason is that the finite subsets of R coincide precisely with the solution
sets of polynomials in one real variable. To see this, note that if 4 = {a,, ...,
a,} is a finite subset of R, then

Px)=(x—a)(x—az)+ »++ *(x—a,)

is a polynomial for which Z(P) = A. Furthermore, the solution set of a polynomial
in one real variable is always a finite subset of R.

For n > 1, the Zariski topology does not coincide with the finite complement
topology. The reason is that the finite subsets of R” do not coincide with the
solution sets of polynomials in 7 real variables, n > 1. For example, the line
y = 1 in R? is the solution set of the polynomial

Px,y)=y—1,
but this solution set is not finite.

It is left as an exercise for the reader to show that R” with the Zariski
topology is not Hausdorff.

Theorem 4.19:

(1) The property of being a Hausdor(f space is a topological and hereditary
property.

(2) A sequence {x,}x, in a Hausdorff space cannot converge to more than
one point.
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Proof:

(1) Suppose that X is Hausdorff and Y is homeomorphic to X by homeo-
morphism f- X = Y. For distinct points a and b in Y, f ~!(a) and f~'(b)
are distinct points of X, so there are disjoint open sets U and V in X such
that

faeu flmev.

Then f1U) and f{V) are disjoint open sets in Y containing a and b, re-
spectively.

The proof that the Hausdor(f property is hereditary is even easier.
If A is a subspace of X and a, b are distinct points of A, then there are
disjoint open sets U and V in X containing a and b, respectively. Then
U N A and V N A are disjoint relatively open sets in A containing a and
b, respectively, so A is Hausdorff.

(2) Suppose that {x,}x-; converges to two distinct limits a and b in a Haus-
dorff space X. Then there are disjoint open sets U and V containing a
and b. But by the definition of convergence, there are positive integers N,
and N, such that ifn =z N,, then x, € U and if n = N,, then x, € V. If
n is greater than or equal to the larger of N, and N, then x, belongs to
the empty set U N V. This contradiction shows that {x,}, cannot con-
verge to two distinct limits in a Hausdorff space. ()

Note that the preceding proof for the uniqueness of the limit of a convergent
sequence in a Hausdorff space is essentially the same as the proof of the corre-
sponding property for metric spaces (Theorem 3.8).

The Hausdorff property is sometimes called a separation property since it
states that any two distinct points can be “separated” by disjoint open sets. Addi-
tional separation properties will be studied in Chapters 6 and 8.

Definition: If X is a space which is homeomorphic to a subspace A of a space Y,
then X is said to be embedded in Y. The homeomorphism f: X = A is called an
embedding of X in Y.

The isometric embeddings of R™"! in R” and of R” in Hilbert space discussed
in Examples 3.6.1 and 3.6.3 are topological embeddings.

Following the outline of our earlier work on metric spaces, it would be natural
to introduce the product of topological spaces, the second method of forming new
spaces from old ones, at this point. This is postponed until Chapter 7, however, in
order to study the most important topological properties, connectedness and com-
pactness, first. Any reader who cannot wait to learn about product spaces may read
that chapter now and then return to Chapter 5.
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EXERCISE 4.5

10.

12

13.

14,

(a) Give an example to show that if 4 is a subspace of a space X, then a relatively
open set in 4 may fail to be an open subset of X. Prove that if A is an open subset
of X, then every relatively open set in A4 is open in X.

(b) Repeat (a) for closed sets.

Give an example of a subspace 4 of a topological space X and subsets B and C of X
for which

(a) The closure of B N A in the subspace topology for 4 does not equal BN A.
(b) The interior of C N A in the subspace topology for 4 does not equal (int C) N 4.

Let A be a subspace of a space X and let B be a subset of 4.
Prove that:

(a) A point x in 4 is a limit point of B in the subspace topology for 4 if and only if
X is a limit point of B in the topology for X.

(b) The closure of B in the subspace topology for A4 equals B N A.

Let f: X = Y be a continuous function on the indicated spaces and A4 a subspace of
X. Prove that the restriction f | ,: 4 = Y of fto A is continuous.

Prove Theorem 4.17.
Prove Theorem 4.18.

Let (X, T) be a space, Y a subset of X and Z a subset of Y. Then Y has a subspace
topology T’ and Z can be assigned a subspace topology in two ways: Z has a subspace
topology T, as a subspace of (X, T), and a subspace topology T, as a subspace of
(Y, T'). Prove that T, = T,.

Give an example of a separable Hausdorff space which has a non-separable subspace.

Prove that a finite subset 4 of a Hausdorff space X has no limit points. Conclude that
A must be closed.

Let X be a Hausdorff space, A4 a subset of X, and x a limit point of 4. Prove that every
open set containing x contains infinitely many members of 4.

Prove: If there is an embedding of X in Y and an embedding of Y in Z, then there is
an embedding of X in Z.

Give an example of spaces 4 and B for which 4 can be embedded in B and B can be
embedded in A4, but 4 and B are not homeomorphic. (Hint: Simple examples can be
found in R.)

(a) Let X be a space and {X,}:, a sequence of separable subspaces of X for which
U%,; X, is dense in X. Prove that X is separable.

(b) Use (a) to prove that Hilbert space H is separable.

(a) Show that the family of sets B of Example 4.5.4 is a basis for a topology for R".
(b) Show that the Zariski topology for R” is not Hausdorff.

(c) For R” with the Zariski topology, show that each finite set is closed.
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15. Definition: A space X is locally Euclidean of dimension n provided that each point in
X belongs to an open set homeomorphic to n-dimensional Euclidean space R".

This exercise shows that a locally Euclidean space may not be Hausdorff.
Let X be the subset of R? defined by

X =R X {0} U (0, ) X {1}).
Let B consist of all subsets of X of the following types:

(a, b) X {0} fora<b,
(@, b)x {1} for0<a<b,
((a, 0) X {0}) U ([0, ) X {1}) fora<O0<b.
(a) Show that B is a basis for a topology for X.
(b) Show that the subspace R X {0} of X is homeomorphic to the real line.

(c) Show that the subspace ((—c0, 0) X {0}) U ([0, o) X {1}) of X is homeomorphic
to the real line.

(d) Show that X is locally Euclidean of dimension 1.
(e) Show that X is not a Hausdorff space.

SUGGESTIONS FOR FURTHER READING

For additional reading on general topological spaces, several textbooks are
listed in the bibliography. Introduction to Topology by Gamelin and Green, Basic
Topology by Armstrong, and Topology by Hocking and Young are recommended
for a general review of the subject. Willard’s General Topology and Kelley’s General
Topology have accessible accounts of nets, which are a generalization of sequences;
these texts also explain the theory of convergence based on filters, another approach
to convergence. A readable introduction to filters also appears in General Topology
by Bourbaki.

Counterexamples in Topology by Steen and Seebach is an excellent resource
for locating spaces of various special types.
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HISTORICAL NOTES FOR CHAPTER 4

Point-set topology emerged as a coherent discipline with the publication in
1914 of the classic treatise Grundziige der Mengenlehre by Felix Hausdorff. Haus-
dorff defined topological space in terms of neighborhoods of the points of the un-
derlying set. His definition is equivalent to the definition in this chapter with the
additional requirement that a space satisfy what is now called the Hausdorff property.
Each pair of distinct points must have disjoint neighborhoods in Hausdorff’s original
definition.

Hausdorff’s axiom system was the culmination of many attempts to formulate
defining axioms for abstract spaces. The study of abstract spaces beyond the Eu-
clidean spaces had been foreseen by Riemann in the 1860’s. The first definition of
abstract space, based on axioms for limits of sequences, was given by Maurice
Fréchet in 1906. This formulation, although suitable for metric spaces, was restricted
by the denumerability of the terms of a sequence and did not prove adequate for
spaces in general. Frigyes Riesz (1880-1956) in 1908 proposed a set of axioms for
abstract spaces based on limit points, but his definition was too complicated and
a theory based on his ideas was never developed in detail. The major drawback in
the Riesz approach was that it did not require the closure of a set to be a closed
set. An axiom system for the plane, from which Hausdorff drew some ideas, was
proposed by David Hilbert in 1902. A set of axioms for Riemann surfaces, based
on the neighborhood concept, was formulated by Hermann Weyl (1885-1955) in
1913. Axioms for a topological space based on a closure operator, listed in Problem
10 of Exercise 4.2 and called the Kuratowski Closure Properties, came later than
the Hausdorff axioms. The closure axioms were proposed by K. Kuratowski
in 1922.

In Grundziige der Mengenlehre, HausdorfT gave his definition of topological
space and brought the topological research of the late nineteenth and early twentieth
centuries into a logical and unified framework. Hausdorff went well beyond what
was known at that time, however, and introduced many new properties of interest
in topology. These included the first and second axioms of countability, the subspace
topology, a systematic treatment of continuity and homeomorphism, and other
properties which will be mentioned as they are studied in this text.

Separability, in the context of metric spaces, was introduced by Fréchet in
1906. Nowhere dense sets were introduced by du Bois-Reymond in his research
on Euclidean spaces.

There is now a description of topological spaces along the lines envisioned
by Fréchet, but for which his sequence approach was inadequate. The new approach
involves nets, which are a generalization of sequences introduced by E. H. Moore
and H. L. Smith in 1922. Additional information on Moore-Smith convergence
can be found in the suggested reading list for this chapter.







Connectedness

A

The property of connectedness, that is, the property of being “unbroken” or
“allin one piece,” is one of the most important topological properties. It isa relatively
simple property for the more common topological spaces, and it seems to fit well
with our intuition in those spaces. For example, the real line R is connected, and
its connected subspaces are precisely the intervals. The plane is also connected but,
as we shall see, its connected subspaces are considerably more complicated. Con-
nectedness is one of the oldest topological properties, having been defined in es-
sentially the form used today by Camille Jordan in 1892.

Connectedness is one of the more useful topological invariants for other
branches of mathematics. As was hinted in Chapter 1 and will be proved in this
chapter, the Intermediate Value Theorem of calculus depends upon the fact that
R is connected.

The properties of being “connected near a point” and “connected by paths”
are also introduced in this chapter.

5.1 CONNECTED AND DISCONNECTED SPACES

It is easier to say what it means for a space to be disconnected, so that term
is defined first.

Definition: A4 topological space X is disconnected or separated if it is the union
of two disjoint, non-empty open sets. Such a pair A, B of subsets of X is called a
separation of X. A space X is connected provided that it is not disconnected. In other
words, X is connected if there do not exist open subsets A and B of X such that

A+, B#¥Jd, ANB=CJ, AUB=X

A subspace Y of X is connected provided that it is a connected space when
assigned the subspace topology. The terms connected set and connected subset are
sometimes used to mean connected space and connected subspace, respectively.

Example 5.1.1

(a) A discrete space with more than one point is disconnected.

(b) Any trivial space is connected since there fail to exist two non-empty
open sets.

121
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(c) Let Y be the set of non-zero real numbers with the subspace topology
of R. Then Y is disconnected since (—oo, 0) and (0, co) form a sep-
aration.

(d) Let Z = R:\R denote the plane minus the real axis, with the subspace
topology. Then Z is disconnected since the upper half plane U =
{(x1, x2) € R% x, > 0} and lower half plane V = {(x;, x;}) € R%:
X, < 0} form a separation.

(e) Let X = [0, 1] U [2, 3] with the subspace topology of the real line.
Then 4 = [0, 1] and B = [2, 3] are disjoint, non-empty open subsets
of X for which X = A U B, so X is disconnected. (Note that 4 and B
are relatively open since 4 = (—o0, 3/2) N X and B = (3/2, 0) N X.)

(f) Let X denote the set of real numbers with the one additional point
a = (0, 1), and let the topology T for X consist of & and all subsets
of X which contain a. Then there do not exist two disjoint non-empty
open sets, so X is connected. Note that as a subspace of (X, T), R is
assigned the discrete topology and is therefore disconnected. This
example (as well as examples (c), (d), and () above) demonstrate that
the property of being connected is definitely not hereditary.

Example 5.1.2

The real line R with the usual topology is connected. To see this, suppose to the
contrary that R is disconnected. Then

R=AUB
for some disjoint, non-empty open sets 4 and B of R. Since
A=R\B, B=R\4,

then A and B are closed as well as open. Consider two points a and b with g €
A and b € B. Without loss of generality we may assume a < b.
Let

A =AN|[a, b).

Now A is a closed and bounded subset of R and consequently contains its least
upper bound c. Note that ¢ # b since 4 and B have no point in common. Thus
¢ < b. Since A4 contains no point of (c, b], then

(c, )CB

and hence ¢ € B. But B is closed, so ¢ € B. Thus ¢ belongs to both 4 and B,
contradicting the assumption that 4 and B are disjoint. This contradiction shows
that R is connected.
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It will be shown in Section 5.3 that the connected subspaces of R are precisely
the intervals.

EXERCISE 5.1

Prove that connectedness is a topological property.
Show that the set of rational numbers, with the subspace topology of R, is disconnected.
Modify the proof of Example 5.1.2 to show that every closed interval is connected.

Let (R, T') be the space of real numbers with the finite complement topology. Is (R,
T') connected or is it disconnected? Prove your answer.

W=

5.2 THEOREMS ON CONNECTEDNESS

The argument of Example 5.1.2, a proof by contradiction, is typical of ar-
guments involving connectedness. To show that a space is connected, one must
demonstrate that two sets having certain properties cannot exist. Proceeding in the
contrapositive form by assuming disconnectedness gives a pair of sets with which
to work. Several examples of such arguments are given in this section to prove the
fundamental theorems about connectedness.

Connectedness has been described in many apparently different but equivalent
ways. The major ones are presented in the Corollary to Theorem 5.1.

Deﬁnitiog: Non-empty subsets A and B of a space X are separated sets if AN\ B
and A N B are both empty.

Theorem 5.1:  The following statements are equivalent for a topological space X:

(1) X is disconnected.

(2) X is the union of two disjoint, non-empty closed sets.

(3) X is the union of two separated sets.

4) ;‘here}’ is a continuous function from X onto a discrete two-point space
a, b}

(5) X has a proper subset A which is both open and closed.

(6) X has a proper subset A such that

ANX\4) = &.
Proof: It will be shown that (1) implies each of the other statements and that each

statement implies (1). Assume first that X is disconnected and let A, B be disjoint,
non-empty open sets whose union is X.
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[(1) = (2)]: B=X\Aand A= X\B aredisjoint, non-empty closed sets whose
union is X.

[(1) = (3)]: Since A and B are closed as well as open, then

ANB=ANB=G, ANB=ANB=(,
so X is the union of the separated sets A and B.
[(1) = (4)]: The function f X = {a, b} defined by
a ifxEA
o) = [b ifxEB
is continuous and maps X onto the discrete space {a, b}.
[(1)= (5)]: A+ D, and
A=X\B#+X
since B # &. Thus A is the required set. (B will do equally well.)

[(1) = (6)]: Either A or B can be used as the required set.

[2)=(1)]: If X = CU D where C and D are disjoint, non-empty closed
sets, then

D=X\C, C=X\D
are open as well as closed.

[(3) = (1)]: If X is the union of separated sets C and D, then C and D are
both non-empty, by definition. Since X = CUD and CN D =
D, then C C C, so C is closed. The same argument shows that
D is also closed, and it follows as before that C and D must be
open as well.

[(4) = (1)]: If f:X—> {a, b} is continuous, then f~'(a) and f ~'(b) are disjoint
open subsets of X whose union is X. Since f is required to have
both a and b as images, both f ~'(a) and f ~'(b) are non-empty.

[(5) = (1)]: Suppose X has a proper subset A which is both open and closed.
Then B = X\A is a non-empty open set disjoint from A for which
X=AUB.

[(6) = (1)]: Suppose X has a proper subset A for which

ANMX\A) = &.

Then A and (X\A) are disjoint, non-empty closed. sets whose
union is X, and it follows as before that A and (X\A) are also
open. O
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Corollary: The following statements are equivalent for a topological space X:

(1) X is connected.

(2) X is not the union of two disjoint, non-empty closed sets.

(3) X is not the union of two separated sets.

(4) There is no continuous function from X onto a discrete two-point space
{a, b}.

(5) The only subsets of X which are both open and closed are X and &.

(6) X has no proper subset A for which

AN(X\4) = &.

Theorem 5.2: Let X be a connected space and f- X —> Y a continuous function
from X onto a space Y. Then Y is connected.

Proof: Using the contrapositive form, assume that Y is disconnected. Then there
are disjoint, non-empty open sets A and B in Y such that Y = AU B. Then the sets

S7'(4) and f~'(B)
(a) are open sets because f is continuous;
(b) are disjoint because f is a function;
(c) are non-empty because f is surjective;
(d) have union X because

X=f(Y)=f""(AU B) =f~(4) Uf'(B).

Thus, if Y is disconnected, then X is also disconnected and the proof is complete. O

Corollary: If f: X = Y is a continuous function on the indicated spaces and X is
connected, then the image f{X) is a connected subspace of Y.

Theorem 5.2 is sometimes rephrased by saying that connectedness is preserved
by continuous functions. Properties preserved by continuous functions are called
continuous invariants.

Example 5.2.1

Each open interval on the real line, being homeomorphic to R, is connected. (A
later example will show that the connected subsets of R are precisely the intervals.)

The next theorem is a useful criterion for determining whether or not a sub-
space is connected.
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Theorem 5.3: A subspace Y of a space X is disconnected if and only if there exist
open sets U and V in X such that

UNY+d, VNY#*Z, UNVNY=@, YCUUV.

Proof: Suppose first that Y is disconnected. Then there are disjoint, non-empty
open sets A and B in the subspace topology for Y such that Y = A U B. By the
definition of relatively open sets, there must be open sets U and V in X such that
A=UNY B=VNY.
It is a simple matter to check that U and V have the required properties.
For the reverse implication, suppose that U and V are open subsets of X such
that
UNY+d, VNY+J, UNvNnY=gg, YCUUYV.
Then
A=UNY, B=VNY

are non-empty, disjoint relatively open sets whose union is Y, so Y is
disconnected. 0O

The analogue of Theorem 5.3 for closed sets is left as an exercise.
Theorem 5.4: IfY is a connected subspace of a space X, then Y is connected.

Proof: Suppose Y is connected. For a change of pace, the connectedness of Y will
be shown by proving that there is no continuous function from Y onto a discrete two-
point space.

Consider a continuous function f: ¥ = {a, b} from Y into such a discrete
space. We must show that fis not surjective. The restriction f | y cannot be surjective.
This means that f maps Y to only one point of {a, b}, say a:

AY) = {a}.
Since f is continuous, Theorem 4.11 guarantees that
NY) CAY) = {a} = {a},

so f is not surjective. Thus, by Theorem 5.1, Y is connected. 0
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An examination of the preceding proof will reveal that Theorem 5.4 can be
strengthened as follows:

Corollary: Let Y be a connected subspace of a space X and Z a subspace of X
such that Y C Z C Y. Then Z is connected.

Example 5.2.2

Every interval on the real line is connected. This can be proved as follows: It
has already been shown in Example 5.2.1 that each open interval is connected.
A non-degenerate closed interval is the closure of an open interval, so Theorem
5.4 shows that every non-degenerate closed interval is connected. A degenerate
closed interval is connected since it has only one member. Any other non-empty
interval is contained between an open interval and its closure, so the Corollary
to Theorem 5.4 establishes connectedness. The empty set &, which is an interval,
is connected since it has no non-empty subsets.

Example 5.2.3 The Topologist’s Sine Curve

LetA={0,)ER:-1<y<l1},B={x,)ER:O0<x=<1l,y=
sin (7/x)}. The subspace T = 4 U B of R% shown in Figure 5.1, is called the

—

|
}
T
e

FIGURE 5.1 The topologist’s sine curve.

topologist’s sine curve. Note that B is corlnected since it is the image of (0, 1]
under a continuous function. Since T = B, it follows from Theorem 5.4 that T
is connected.
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Obviously, it is not true in general that the union of connected sets is always
connected. The reader should also be able to give an example to show that the
intersection of two connected sets may fail to be connected. It does seem reasonable,

however, that if a family of connected sets all have a point in common, then their
union is connected. This is true and is proved in the next theorem.

Theorem 5.5: Let X be a space and {A,: a € I} a family of connected subsets
of X for which N.e; A, is not empty. Then U,.e; A, is connected.

Proof: Theorem 5.3 will be used to show that Y = U,e; A, is connected. Suppose
that U and V are open sets in X for which

UNY+d, UNvNY=g, and YCUUYV.
It will be shown that VN'Y = &, thus proving that Y is connected. Now UN Y #
&, so U contains some point in Ay, for some o' € I. Since A, is connected, then
Ay C U Ifb € Nyer Ao, then b must be in Ay, so b € U. Thus U contains a point
bin each A,, a € I. Since A, is connected, then A, C U for each a € I. Thus

vy=U4,cu
o€l
soVNY=. O

Corollary: Let X be a space, {A,: a € 1} a family of connected subsets of X, and
B a connected subset of X such that, for each « € I, A, N B ¥ &. Then
BU (U.er A,) is connected.

Proof: By Theorem 5.5, each set BU A, a € I, is connected and the intersection

N@BUA)+ I
ol
since it contains B. Thus, by Theorem 5.5,
BU(U A.,) =UmBua4,)
o€l o€l
is connected. 0O

The proof of the following variation on the union of connected sets is left as
an exercise.
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Theorem 5.6: Let {A,}%; be a sequence of connected subsets of a space X such
that for each integer n = 1, A, has at least one point in common with one of the
preceding sets A;, . .., An—;. Then UL, A, is connected.

Definition: A4 component of a topological space X is a connected subset C of X
which is not a proper subset of any connected subset of X.

The following properties of the components of a space X should be noted:

(1) Each point a € X belongs to exactly one component. The component
C, containing aq is the union of all the connected subsets of X which
contain a and thus may be thought of as the largest connected subset of
X which contains a.

(2) For points a, b in X, the components C, and C, are either identical or
disjoint.

(3) Every connected subset of X is contained in a component.

(4) Each component of X is a closed set.

(5) Xis connected if and only if it has only one component.

(6) If Cis acomponent of X and 4, B form a separation of X, then Cis a
subset of A or a subset of B.

Example 5.2.4

(a) For the subspace X = (0, 1) U (2, 3) of R, there are two components,
(0, 1) and (2, 3). Note that both components are closed sets with
respect to the subspace topology for X determined by R.

(b) In a discrete space, each component contains only one point.

(c) For the set R of rational numbers with the subspace topology deter-
mined by the real line, each component contains only one point.
Note, however, that the topology in this case is not discrete.

Example 5.2.5

Property (6) of components states that if two points a.and b belong to the same
component of X, then they must belong to the same member of any separation
of X. This example shows that the converse is false: It is possible for points a, b
to be always in the same member of any separation 4, B of X yet to belong to
different components.

Consider the subspace X of R? in Figure 5.2 consisting of a sequence of
line segments converging to a line segment whose midpoint ¢ has been deleted.
Then [a, ¢) is the component of X which contains g and (c, b] is the component
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FIGURE 5.2

which contains b, so a and b belong to different components. However, for any
separation of X into disjoint non-empty open sets A and B whose union is X,
both a and b belong to A4 or both a and b belong to B.

Definition: A4 space X is totally disconnected provided that each component of X
consists of a single point.

According to Example 5.2.4(b) and (c), discrete spaces of more than one point
and the set of rational numbers are totally disconnected spaces. The property of
total disconnectedness results from an attempt to classify the “degree of discon-
nectedness” of a space. Most people would agree, for example, that the set of rational
numbers, in which the components consist of single points, is disconnected to a
greater extent than is the space X = [0, 1] U [2, 3], which has only two components.

EXERCISE 5.2

1. (a) Prove that the union of two disjoint closed intervals is always a disconnected
subspace of R.

(b) Repeat (a) for disjoint open intervals.

(c) Is the union of two disjoint intervals in R always disconnected? Give reasons for
your answer.

Prove the analogue of Theorem .5.3 for closed sets.

Prove Theorem 5.4 and its corollary using a separation into disjoint, non-empty open
sets.

4. Prove Theorem 5.6.

Determine whether each of the following subspaces of R? is connected or disconnected.
Give a reason for each answer.
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(a) Asymptotic curves Asymptotic curves and
the asymptote

(c) Intersecting lines (d)

FIGURE 5.3

Prove that every countable subset of R is totally disconnected.

Prove properties (1)-(6) for components listed in the text.

Give examples of subsets 4 and B of R? to illustrate each of the following:
(a) A and B are connected, but A N B is disconnected.

(b) A and B are connected, but A\B is disconnected.

() A and B are disconnected, but 4 U B is connected.

(d) A and B are connected and 4 N B # &, but 4 U B is disconnected.

(a) Suppose that 4 and B are open subsets of a space X for which 4 UBand A N B
are connected. Prove that 4 and B are connected.

(b) Repeat part (a) for closed sets.

Prove that a homeomorphism A: X — Y between spaces X and Y induces a one-to-one
correspondence between components of X and components of Y.

Give an example of spaces X and Y for which there is a one-to-one correspondence
between components of X and components of Y with corresponding components ho-
meomorphic, but X is not homeomorphic to Y. (Hint: Consider the rational numbers
and the integers.)

Definition: A Hausdorff space X is 0-dimensional if X has a basis B of sets which are
simultaneously open and closed.

Prove that every 0-dimensional space is totally disconnected.
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13. Prove:

(a) The property of being totally disconnected is a topological invariant but not a
continuous invariant.

(b) The property of total disconnectedness is hereditary.

14. Definition: A point x is a cut point of a connected space X provided that X\{x} is a
disconnected subspace.

Prove:
(a) Every point of R is a cut point.

(b) If h: X = Y is a homeomorphism between the indicated spaces and x is a cut
point of X, then /(x) is a cut point of Y.

(c) Every point of the subspace
(-1,01 X {ODU {(x, »ER:O0<x <1, y=sin(1/x)}

of R? is a cut point.
15. Let X be a space such that for each pair a, b of points of X, {a, b} is a subset of a
connected set. Prove that X is connected.
16. In R? let A, be the edges of the rectangle of height 2 — 2/n and length n centered at
the origin, n = 2, 3, .... Let L, and L, be the horizontal lines y = 1 and y = —1,
respectively, and let

X=L.UL;U(QA,,)

with the subspace topology of R2. Prove that the components of X are the sets L,, L,,
and A4,, n = 2, but that there is no separation X = 4 U B of X with L, C 4 and
L, CB.

Ly

L]
0,0 Ay A A
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5.3 CONNECTED SUBSETS OF THE REAL LINE

Examples 5.1.2, 5.2.1, and 5.2.2 have shown that the real line and all intervals
on the real line are connected. This section shows that there are no other connected
subsets of R.

Lemma: A non-empty subset A of R is an interval if and only if for each pair
¢, d of members of A, every real number between c and d is in A.

Proof: It is evident from the definition of intervals in Chapter 2 that every interval
has the stated property.

Consider, then, a subset A of R which contains every real number between
any two of its members. The proof breaks into several cases depending upon whether
or not A has a least upper bound or greatest lower bound and whether or not these
bounds, if they exist, belong to A.

Suppose, for example, that A has neither a least upper bound nor a greatest
lower bound. Then for x € R there are members c and d of A for which ¢ < x and
d> x. Then x € A, so it follows that A = R and A is the interval (—oo, o0).

Suppose A has greatest lower bound a which does not belong to A and A has
no least upper bound. Then A contains no real number x < a. If y > a then y is not
an upper bound for A so there is a member d of A with d > y. Similarly, y is not
the greatest lower bound for A, so there is a member ¢ of A with ¢ < y. Then ¢ <
y<dsoy€ A Thus A = (a, ) and is an interval.

The remaining cases are left to the reader. O

Theorem 5.7: The connected subsets of R are precisely the intervals.

Proof: Since we know that every interval is connected, it remains only to be proved
that a subset B of R which is not an interval must be disconnected. Let B be a subset
of R that is not an interval. Then, by the lemma, there are members c and d in B
and a real number y with ¢ <y < d for which y ¢ B. Then the open sets

U=(-0,)), V=(y o)

have the following properties:
(@ ceEUNB soUNB+ J;
deEVNB soVNB+
b UNvVv=Z soUNVNB=,
(¢ BCUUYV.

By Theorem 5.3, B is disconnected. Hence every connected subset of R must be an
interval. O
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EXERCISE 5.3

1. Give another proof of the fact that every interval on R is connected by showing that
every interval is the image of R under a continuous function. (Hint: The function whose
graph appears below maps R onto [a, b].)

FIGURE 5.5

2. Let A be an interval on R and f: 4 = R a continuous function. Prove that f(A4) is an
interval,

3. Letf:[a, b] = [c, d] be a homeomorphism on the indicated intervals. Prove that f maps
endpoints to endpoints.

4. Prove that an open interval (a, b) and a closed interval [c, d] are not homeomorphic.

5.4 APPLICATIONS OF CONNECTEDNESS

In Chapter 1 a suggestive but incomplete argument was given for a special
case of the Intermediate Value Theorem (Theorem 1.1). The Intermediate Value
Theorem will be shown in the present section to be a simple consequence of our
work on connectedness. The subject of fixed-point theorems and their importance
will also be discussed in this section.

Theorem 5.8: The Intermediate Value Theorem Let f [a, b = R be a
continuous function from a closed interval [a, b] into R and y, a real number between
Nla) and f1b). Then there is a number c € [a, b] for which fic) = y,.
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Proof: The interval [a, b] is connected. Since f is continuous, then f{[a, b)) is a
connected subset of R and, by Theorem 5.7, must be an interval. Thus any number
Yo between fla) and f{b) must be in the image f{[a, b]). This simply means that y, =
fc) for some real number ¢ between a and b. O

Corollary: Let f: [a, b] = R be a continuous function for which one of fla) and
fb) is positive and the other is negative. Then the equation f{x) = 0 has a root
between a and b.

Theorem 5.9: Let f: [a, b] = [a, b] be a continuous function from a closed interval
[a, b] into itself. Then there is a member c € [a, b] such that f{c) = c.

Proof: Iffla) = a or f{b) = b, then f has the required property, so we assume that
fla) # a and fib) # b. Thus a < fla) and fIb) < b, since fla) and f{b) must be in
[a, b]. Define g: [a, b] = R by

gx) =x—fix), x€[a, b]
Then g is continuous and
ga)=a—flaj<0, gb)=>b-fib)>0.

The Intermediate Value Theorem (Theorem 5.8) applies to show the existence of a
number of ¢ € [a, b] for which g(c) = 0. Then f{c) = c for this number c. a

Recall from Chapter 3 that a fixed point of a function f: X = X is a point x
for which f(x) = x. A topological space X has the fixed-point property if every
continuous function from X into itself has at least one fixed point.

Theorem 5.9 can now be restated as follows: Every closed and bounded interval
has the fixed-point property. In Chapter 9 we shall investigate the Brouwer Fixed
Point Theorem, which shows that every closed ball in R” has the fixed-point property.

The next theorem shows that if X is homeomorphic to a space with the fixed-
point property, then X has the fixed-point property as well. Combining this result
with the Brouwer Fixed Point Theorem will allow us to conclude, for example,
that any subset of R* which is homeomorphic to a closed disk has the fixed-point
property. Thus squares, triangles, and other closed figures homeomorphic to a closed
disk have the fixed-point property. The n = 2 case of the Brouwer Fixed Point
Theorem will be proved in Chapter 9.

Theorem 5.10: The fixed-point property is a topological invariant.

Proof: Let X be a space which has the fixed-point property, Y a space homeo-
morphic to X, and h: X = Y a homeomorphism. Let f- Y = Y be a continuous
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Junction. Since the composite function h™'fh: X = X is a continuous function on X,
it has at least one fixed point xo:

h~fh(xa) = x,.

Then

fth(xa) = hh™'fh(xa) = h(xd),

5o the point h(xg) is a fixed point for . Thus Y has t(ze fixed-point property. O

Example 5.4.1

The real line does not have the fixed-point property since, for example, the
function

f=x+1, x€R,
has no fixed point. Since each open interval is homeomorphic to R, Theorem
5.10 shows that no open interval has the fixed-point property. It is left as an

exercise for the reader to show that intervals of the form [a, b), (a, b], (—0, 4],
and [a, o0) do not have the fixed-point property.

Example 5.4.2
The n-sphere S”, n = 1, does not have the fixed-point property since the function
gx)=-x, x€S",

has no fixed point.

EXERCISE 5.4

1.
2.

3.

Prove that every polynomial having real coefficients and odd degree has a real root.

Prove that intervals of the form (a, ], (a, b], (—o0, a], and [a, c0) do not have the fixed-
point property.

Which of the following subsets of the plane have the fixed-point property? Give reasons
for your answers:

@ B6, 1= {0n,x)ER X +x3<1}
() R = {(x1, x;) € R% x, and x; are both rational}
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(© A= {(x,x) ER%x, = 0orx; =0} (the axes).
d C={(x,x)ER:0=<x,<landx,=0,0rx;=0and0 <x, < 1}.
4. (a) Prove that R"” does not have the fixed-point property.
(b) Prove that no open ball B(q, r), a € R", r > 0, in R" has the fixed-point property.

5. Does the topologist’s sine curve of Example 5.2.3 have the fixed-point property? Justify
your answer.

5.5 PATH CONNECTED SPACES

Path connectedness is a topological property stronger than connectedness
which is useful in many applications. Intuitively speaking, a space X is path con-
nected provided that each pair of points in X can be joined by a continuous curve
in X.

Definition: A path in a space X is a continuous function p: [0, 1] = X. The points

D(0) and p(1) are the endpoints of the path. The path is said to join the initial point

Dp(0) and the terminal point p(1). The path p is also called a path from p(0) to p(1).
Ifp is a path in X, the reverse path p is the path defined by

) =pl—1, t€0,1]

Note that the initial point of a path is the terminal point of its reverse path,
and conversely. Note also that since [0, 1] is connected and connectedness is a
continuous invariant (Theorem 5.2), then the image of every path is a con-
nected set.

Definition: A4 space X is path connected provided that for each pair a, b of points
of X there is a path in X with initial point a and terminal point b. A subspace A of
X is path connected provided that A is a path connected space with its subspace
topology. The terms path connected set and path connected subset are sometimes
used for path connected space and path connected subspace, respectively.

Example 5.5.1

Every interval on the real line is path connected. For q, b in an interval K, the
path

p®)=(—-ta+1h, t€]0,1],

is a path in K with initial point ¢ and terminal point b.
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Example 5.5.2

The preceding example generalizes to the subsets of R” called “convex sets.”
For a point a = (a,, ..., a,) € R" and r € R, the scalar multiple ra is
defined by

ra=(ra,...,ra,).

The line segment from a = (ay, ..., a,) to b = (b, ..., b,) is the set
{(1 —Ha+th:0 <t=<1}. Asubset Cof R"is convex provided that for all a, b
in C, the line segment from a to b is contained in C.

Since the line segment from a to b is simply the image of the path

pO=0-ta+th 0=<t=<]l,

then each convex subset of R” is path connected. In particular, R” is path con-
nected.

@ (b) © d)

Examples of convex sets in R2,

©) ()] (® (h)
Examples of non-convex sets in R2,

FIGURE 5.6

Theorem 5.11: Every path connected space is connected.
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Proof: Suppose that X is a path connected space and let a be a member of X. For
each x in X, let p, be a path in X with initial point a, terminal point x, and image
Cx = P[0, 1]). Since each image C, is connected and a belongs to each C,, then,
by Theorem 5.5, ’

x=U ¢,
x€EX
is connected. O

The connected subsets of R are the intervals. By Example 5.5.1, every interval
is path connected. Combining this fact with Theorem 5.11 shows that connectedness
and path connectedness are equivalent properties for subsets of R; a subset of R is
connected if and only if it is path connected. The next example shows a connected
subset of R? that is not path connected and therefore justifies the statement made
earlier that path connectedness is stronger than connectedness.

Example 5.5.3

Recall from Example 5.2.3 that the topologist’s sine curve is the subspace T =
AU B of R? for which 4 = {(0, ) ER%: —1 <y < 1} and B = {(x, y) ER%:
0 < x < 1, y = sin (x/x)}. Refer to Figure 5.1 for the picture and to Example
5.2.3 for the proof that T is connected.

It is intuitively plausible that there should be no path in T joining a point
of A to a point of B. The following lemma will aid in the proof.

Lemma: In the topologists’ sine curve T, any connected subset C containing a
point a in A and a point b in B has diameter greater than 2.

Proof: The lemma is based on the fact that any such set C must contain all of
B to the left of b = (b,, by). The diameter of this set exceeds 2 because sin (x/x)
oscillates in value between the extremes 1 and —1 as x approaches 0. For the
proof, suppose there is a point d = (d;, d;) € B for which d; < b; and d & C.
Then

U={x,)€ER:x<d)}), V={xyER:d <x}

are disjoint open sets in R?, each containing at least one point of C, whose union
contains C. Thus, by Theorem 5.3, C is not connected. This contradiction shows
that C must contain all points of B to the left of b and hence must have diameter
greater than 2.

Returning now to the argument that 7 is not path connected, suppose that
there is a path p in T with initial point a in 4 and terminal point b in B. The
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following argument shows that p cannot be continuous at the value of ¢ € [0, 1]
where the curve “passes from A4 into B.” Let

W= {t€[0, 1]: p([0, t]) C A4},
and let w be the least upper bound of W. Then w € W, so by continuity of p,
pP(W) Ep(W)Cp(W)CA=A.

Also by continuity of p at w there must be a positive number é such that if
tE€[0, 1]and |w — t| <, then the distance in R? from p(w) to p(f) is less than
1/2. Since w + & exceeds the least upper bound of W, there is a number
v € [0, 1] such that w < v < w + & and p(v) € B. Then the image p([w, v])is a
connected subset of T containing a point p(w) € 4 and a point p(v) € B. By the
choice of 8, the diameter of p([w, v]) cannot exceed 1. This contradicts the
lemma, however, and completes the proof that T is not path connected.

Example 5.5.4

The subspace X of the plane shown in Figure 5.7 is also connected but not path
connected. The reader is left the exercise of showing that there is no path in X
from a to b. (The point ¢ indicated by the hollow dot does not belong to X.)

a c b

FIGURE 5.7

If there is a path in a space X with initial point g and terminal point b and a
second path with initial point b and terminal point c, then it seems reasonable that
one should be able to “put the paths together” to obtain a path from a to c. This
will be proved with the aid of the following Gluing Lemma, which shows how two
continuous functions can be “glued” together.
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The Gluing Lemma: Let A and B be closed subsets of a space X = AU B and
f*A = Y and g: B —> Y continuous functions into a space Y for which f(x) = g(x)
Jor all x € AN B. Then the function h: X — Y defined by

(x) ifxeA

W) =\er0 ifxeB

is continuous.

Proof: For a closed subset C of Y,

h(C) = {(xEX: h(x) EC} = {xE A: f(x) EC}U {x E B: g(x) E C}
=f~1(C) U g'(C).

Since f is continuous, f ~'(C) is a closed set in the subspace topology on A:
f)=bn4

where D is closed in X. Since A is closed in X, then f ~'(C) is the intersection of two
closed sets and is therefore closed in X. The same reasoning shows that g”'(C) is
closed in X. Therefore,

k() = QU g(C)

is a closed set in X for each closed set C in Y, so h is continuous. [m]

Definition: Let p; and p, be paths in a space X for which p,(1) = p,(0). The path
product p;»p; of p; and p; is the path in X defined by

pi(2t) 0<t<1/2
(2t —1) 1/2<t=<1.

DP1#pAt) =

Py1)

P\(1)=P0)

P0) P\*P,
FIGURE 5.8
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The continuity of p;*p, in the preceding definition follows easily from the
Gluing Lemma with 4 = [0, 1/2], B = [1/2, 1], f(¢) = p\(2¢), and g(¢) = px(2t — 1).
The agreement of fand g on A N B is provided by

S(1/2) = p\(2+1/2) = py(1) = px(0) = p(2-1/2 — 1) = g(1/2).
Theorem 5.12: Every open, connected subset of R" is path connected.

Proof: For an open, connected subset O of R" and a € O, let U, = {x € O: there
is a path in O joining a and x).

Note that U, is an open set containing a for each a € O: If x € U,,, let B(x, r)
be an open ball centered at x and contained in O. Since B(x, r) is convex, Example
5.5.2 guarantees that there is a path in B(x, r) from x to any member y of B(x, r).
Since there is a path in O from a to x, the method of forming path products shows
that there is a path in O from a to each point of B(x, r). Thus B(x, r) C U,, so U,
is an open set.

For any a, b in O, U, and U, are either identical or disjoint. To prove this,
suppose that x belongs to U, N Uy. Then there are paths in O from a to x and from
b to x and, consequently, a path in O from a to b. But then any point that can be
Jjoined by a path in O to point a can be joined by a path in O to point b, and vice
versa, so U, = U,. Thus either U, = Uyor U,N U, = &.

Suppose now that O is not path connected and let a, b be members of O which
cannot be joined by a path in O. Then U, #* O since b & U,, and U, and U, are
disjoint open sets in R". Then

V=U{U:x€EO and x& U,}

and U, are disjoint, non-empty open sets whose union is O, contradicting the fact
that O is connected. O

Many theorems about connectedness have analogues for path connectedness.
Proofs of the following two are left as exercises.

Theorem 5.13: Let X be a space and {A,: o € 1} a family of path connected
subsets of X for which Ng; A, is not empty. Then U,e; A, is path connected.

Theorem 5.14: Let {A,}; be a sequence of path connected subsets of a space
X such that for each integer n = 1, A, has at least one point in common with one
of the preceding sets A;, . . ., An—;. Then UX; A, is path connected.

Definition: 4 path component of a space X is a path connected subset P of X
which is not a proper subset of any path connected subset of X.
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The following properties of path components should be noted.

(1) Each point a in X belongs to exactly one path component. The path
component P, containing a is the union of all the path connected subsets
of X which contain a and is therefore the largest path connected subset
of X which contains a.

(2) For points a, b in X, the path components P, and P, are either identical
or disjoint. ’

(3) Every path connected subset of X is contained in a path component.

(4) X is path connected if and only if it has only one path component.

The preceding properties of path components are quite analogous to corre-

sponding properties of components of a space X. Note, however, that it is not stated
above that a path component must be a closed set. It is left as an exercise to show
that one of the path components of the topologist’s sine curve is not a closed set.

Each topological space is divided into components and into path components.

Is each component a subset of a path component, or is it the other way around?

EXERCISE 5.5

10.

11
12.

Identify two path components of the topologist’s sine curve (Examples 5.2.3 and 5.5.3).
Show that one of the path components is closed and the other is not.

Prove that in R” each path component of an open set is an open set.

Let X be a space and P a path component of X. Prove that P is a subset of some
component of X.

Let O be an open set in R”. Prove that the components of O and the path components
of O are identical.

Prove Theorems 5.13 and 5.14.
Prove that path connectedness is a continuous invariant.

Prove that a space X is path connected if and only if there is a point a in X such that
each point of X can be joined to a by a path in X.

Give an example of a space X with a path connected subset 4 whose closure A is not
path connected.

(a) Give the definitions for the terms scalar multiple, line segment, and convex set in
Hilbert space H.

(b) Prove that every convex subset of-H is path connected.

Let X be a space, and define a relation ~ on X as follows: x ~ y if and only if there
is a path in X from x to y. Show that ~ is an equivalence relation whose equivalence
classes are the path components of X.

Prove that convexity is not a topological property.
Give an example of a path connected subset of R? that is not convex.
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5.6 LOCALLY CONNECTED AND LOCALLY PATH
CONNECTED SPACES

Connectedness is called a global topological property because it describes a
characteristic of an entire topological space. Path connectedness, second countability,
separability, and the Hausdorff property are also global properties. Local topological
properties deal with the characteristics of a space “near” a particular point. Our
first example of such a property was first countability, which describes the open
sets containing a particular point. This section introduces local properties corre-
sponding to connectedness and path connectedness.

Definition: A topological space X is locally connected at a point p in X if every
open set containing p contains a connected open set which contains p. The space X
is locally connected provided that it is locally connected at each point.

The first theorem on local connectedness is essentially a restatement of the
definition. The proof is left as an exercise.

Theorem 5.15:

(a) A space X is locally connected at a point p in X if and only if there is a
local basis at p consisting of connected open sets.

(b) A space X is locally connected if and only if it has a basis of connected
open sets.

Example 5.6.1

(a) Any interval in R is both connected and locally connected.

(b) R”is connected and locally connected for each positive integer ».

(c) The subspace X = [0, 1] U [2, 3] of R is locally connected but not
connected.

(d) The topologist’s comb C is the subspace of R? shown in Figure 5.9:
C consists of the interval [0, 1] on the real line with vertical segments
of length 1 attached at the origin and at each point 1/n, n a positive
integer.

The topologist’s comb C is obviously connected; in fact, it is
path connected since paths can run up and down the vertical segments
and across the base [0, 1]. However, C is not locally connected at any
point (0, ¢), 0 < ¢ < 1, since small open sets containing such points
consist of collections of open vertical intervals. A typical one is shown
in Figure 5.10.
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FIGURE 5.9 The topologist’s comb.

——

FIGURE 5.10

(e) The set of rational numbers, as a subspace of R, is neither connected
nor locally connected.

As the preceding examples show, one cannot predict local connectedness or
connectedness on the basis of the other. This is commonly the case with local and
global properties; generally speaking, a local property does not necessarily imply
the corresponding global property, and vice versa. Recall, however, that second
countability does imply first countability, so this is not an infallible rule.

Theorem 5.16: A4 space X is locally connected if and only if for each open subset
O of X, each component of O is an open set.
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Proof: Suppose that C is a component of an open subset O of a locally connected
space X. For x in C, there is a connected open set U, with x € U, and U, C O.
Since C is the largest connected subset of O containing x, then U, C C. Thus C
contains an open set about each of its points, so C is open.

For the converse, suppose that each component of each open subset of X is
open, and let a be a point of X and O an open set containing a. Then the component
C of O which contains a is an open set containing a and contained in O, so X must
be locally connected at a. a

Definition: A space X is locally path connected at a point p in X if every open set
containing p contains a path connected open set containing p. The space X is locally
path connected provided that it is locally path connected at each of its points.

Proofs of the next two theorems are left as exercises.

Theorem 5.17:

(a) A space X is locally path connected at a point p in X if and only if there
is a local basis at p consisting of path connected open sets.

(b) A space X is locally path connected if and only if it has a basis of path
connected open sets.

Theorem 5.18: A space X is locally path connected if and only if for each open
subset O of X, each path component of O is an open set.

Both local connectedness and local path connectedness are topological prop-
erties. Furthermore, it is easily observed that every locally path connected space is
locally connected. One of the exercises for this section is to find an example of a
locally connected space that is not locally path connected.

Theorem 5.19: If X is a connected, locally path connected space, then X is path
connected.

Proof: For each a in X, let P, denote the path component of X to which a belongs.
Since X is an open set, Theorem 5.18 shows that each P, is open. Recall that for
path components P, and Py of X, either P, = Py or P, and P, are disjoint.

For a particular point a in X, suppose P, # X. Then P, and the union of all
P, for which x & P, are disjoint, non-empty open subsets of X whose union is X.
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Thus we conclude that X is disconnected, a contradiction. Since X is connected, then
P, = X and X must be path connected as well. O

EXERCISE 5.6

1. Prove Theorem 5.15.

2. Give an example of a space X which is
(a) path connected but not locally path connected;
(b) locally path connected but not path connected.
Prove that every locally path connected space is locally connected.
(a) Prove that R” is locally path connected.
(b) Prove that every open set in R” is locally path connected.
Prove Theorems 5.17 and 5.18.

Give an example of a space X and a point a in X for which X is locally connected at a
but not locally path connected at a.

7. Discuss the properties of local connectedness and local path connectedness for the
topologist’s sine curve (Examples 5.2.3 and 5.5.3).

8. Let X be the subset of the plane consisting of a circle and a spiral in the circle winding
outward with the circle as limit, as shown in Figure 5.11. Prove that X fails to be locally
connected at points on the circle.

FIGURE 5.11

9. The broom space B is the subset of R? consisting of segments from the origin of unit
length and slope 1/n, n = 1, 2, . . ., together with the limiting segment [0, 1] on the x-
axis. Prove that B is locally path connected at each point of B\(Q, 1] and is not locally
connected at any point of (0, 1].
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FIGURE 5.12 Broom space.

10. Let X be a locally path connected space. Prove that each path component of X is both
open and closed.

11. Definition: Let X be a space and x a point of X. Then X is connected im kleinen at x
provided that for each open set U containing x there is an open set V containing x with
the property that for each point y in V, there is a connected subset of U containing both
xandy.

(a) Prove that a space which is locally connected at a given point is connected im
kleinen at that point.

(b) Show that the space X shown below, which is sometimes called a “sequence of
shrinking broom spaces,” is connected im kieinen at the point x but not locally
connected at x.

FIGURE 5.13 Sequence of shrinking broom spaces.

(c) Let X be a space that is connected im kleinen at each point x in X. Prove that X
is locally connected. (Hint: Show that each component of each open subset of X
is open.)
12. (a) Show that local connectedness is not a continuous invariant by describing a con-
tinuous function f: [0, 1) = Y from [0, 1) onto the space Y shown in Figure 5.14.
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FIGURE 5.14

(b) Let X bea locally connected space, Y a space, and f: X > Y a continuous function
from X onto Y. Prove:

(i) If fis an open function, then Y is locally connected.
(ii) Iffis a closed function, then Y is locally connected.

SUGGESTIONS FOR FURTHER READING

Most of the general topology textbooks listed in the Bibliography contain
information on connectedness and related properties. The treatments given in Du-
gundji’s Topology and Willard’s General Topology are particularly recommended.
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HISTORICAL NOTES FOR CHAPTER 5

Connectedness was defined for closed and bounded subsets of R” by Georg
Cantor in 1883 in the following way: A subset X is connected provided that for
each pair a, b of points of X and positive number ¢, there is a finite sequence
{xi}1=1 of points of X such that x, = a, x, = b, and d(x;, x;+,) <efori=1,2,...,
n — 1. This definition is not suitable for general topological spaces because of its
reliance on distances. In fact, Cantor’s definition is not suitable even for general
metric spaces.

The modern definition of connectedness is due to Camille Jordan (1838-
1922), who defined the property in 1892 for closed and bounded subsets of R" as
follows: A set X is connected provided that it has no proper subset 4 for which 4
and X\4 are disjoint. This definition is property (6) of the Corollary to Theorem
5.1. Jordan showed the equivalence of his definition to Cantor’s and proved Theo-
rems 5.2 and 5.5 for the situation covered by his definition. Jordan’s definition was
extended to abstract spaces by N. J. Lennes in 1911.

The systematic study of connectedness began with Hausdorff’s Grundziige
der Mengenlehre in 1914. The notion of separated sets is due to Hausdorff, who
defined a set to be connected provided that it is not the union of two separated
sets. Hausdorff’s book contains Theorem 5.4 and its corollary, as well as Theorem
5.5. The definition of component is due to Hausdorff, as is the idea of a totally
disconnected space, which was called “hereditarily disconnected” at that time.

Local connectedness was defined by Hans Hahn (1879-1934) in 1914. Similar
properties were considered by Pia Nalliin 1911 and Stephan Mazurkiewicz in 1913.
Theorem 5.16 was proved independently by Hahn in 1921 and Kuratowski
in 1920.

Path connectedness is the oldest of the connectedness properties; the joining
of points by continuous curves can be traced back for centuries. In a stricter to-
pological sense, path connectedness was used by Weierstrass prior to 1890 for subsets
of R",




Compactness

Compactness is the topological property that generalizes to topological spaces
a property of closed, bounded intervals [a, b] developed in Chapter 2. Recall that
the Heine-Borel Theorem (Theorem 2.12) showed that if @ is a collection of open
intervals whose union contains [a, b}, then there is a finite subcollection of @ whose
union contains [a, b]. A topological space which has this property for every covering
by open sets is called compact. Compactness is a subtle property whose ramifications
are not immediately apparent; do not let the term ‘“compact” suggest simply small-
ness of size. The intervals [0, 1] and (0, 1) have the same size, but [0, 1] is compact
and (0, 1) is not.

One of the main results of this chapter is that a subset of R" is compact if and
only if it is closed and bounded. Historically, compactness was intended to generalize
to topological spaces the properties which characterize the closed and bounded
subsets of R". Several different properties that will be introduced in this chapter
were put forward with varying degrees of success until it was recognized that com-
pactness is the desired property.

The reader may already know from calculus that a continuous, real-valued
function f: [a, b] = R whose domain is a closed interval [a, b] attains-a maximum
and a minimum value. This result is proved in the present chapter as a corollary
to the more general theorem that any continuous, real-valued function whose do-
main is a compact space attains a maximum and a minimum value.

6.1 COMPACT SPACES AND SUBSPACES

Definition: Let A be a subset of a topological space X. An open cover of A is a
collection @ of open subsets of X whose union contains A. A subcover derived from
an open cover O is a subcollection @' of @ whose union contains A.

Note from the preceding definition that an open cover of a space X is a family
of open subsets of X whose union is X.

Example 6.1.1

Consider the subspace 4 = [0, 5] of R and the open cover @ = {(n — 1,
n + 1)}5%_,, of A. In this case the subcollection @ consisting of (-1, 1), (0, 2),
(1, 3), (2, 4), (3, 5), (4, 6) is a subcover and happens to be the smallest subcover

161
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for A that can be derived from O. There are many other subcovers for A, however,
since it is only requiréd that the union of the members of the subcover con-
tain A,

Definition: A4 space X is compact provided that every open cover of X has a finite
subcover. Equivalently, X is compact provided that for every collection © of open
sets whose union equals X, there is a finite subcollection {O,}%.; of © whose union
equals X. A subspace A of a space X is compact provided that A is a compact
topological space in its subspace topology.

Since relatively open sets in the subspace topology for a subset A of a space
X are the intersections of 4 with open sets in X, the definition of compactness for
subspaces can be restated as follows:

Alternate Definition: A subspace A of a space X is compact if and only if every
open cover of A by open sets in X has a finite subcover.

Example 6.1.2

(a) Any space consisting of a finite number of points is compact.

(b) Each closed and bounded interval [a, b] is compact. This follows from
the Heine-Borel Theorem (Theorem 2.12) since each open set is a
union of open intervals. Let @ be an open cover of [a, b] by open
subsets of R, and for each x in [, b] let O, be a member of O which
contains x. Since O, is open, there is an open interval I, containing
x and contained in O,. By Theorem 2.12, the collection {I,: x €
[a, b]} has a finite subcover {I,}X,. Since

IL,CO,, x€]la,b)

it follows that the corresponding collection {O,}, is a finite subcover
of [a, b] derived from O.

(c) We shall see in Theorem 6.11 that the compact subsets of R” are
precisely the sets which are both closed and bounded.

(d) The real line R with the finite complement topology 7" is compact.
To see this, let O be an open cover of R. Then any non-empty member
O, of O contains all but some finite number N of points of R.
By choosing from O an open set containing each of these remaining
points, one obtains a subcover derived from @ having at most
N + 1 members.
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Example 6.1.3

(a) An infinite set X with the discrete topology is not compact. The open
cover @ = {{x}: x € X} is an open cover with no finite subcover.

(b) The open interval (0, 1) is not compact since @ = {(1/n, 1)};22 is an
open cover with no finite subcover. Non-compactness for any open
interval (a, b) is proved similarly.

(c) R"is not compact for any positive integer n since @ = {B((6, n)}n=,
is an open cover having no finite subcover.

Definition: A4 family A of subsets of a space X has the finite intersection property
provided that every finite subcollection of A has non-empty intersection.

Example 6.1.4

The collection {(1/n, 1)}, is a family of open subsets of R with the finite in-
tersection property. Note that the intersection of any finite collection of these
open intervals is the smallest interval (the interval of largest index) involved in
the intersection.

The duality between unions of open sets O, and intersections of the corre-
sponding closed sets C, = X\O,, in a space X,

xX\nc,=uo,,
produces the followiné characterization of compactness in terms of closed sets.

Theorem 6.1: A space X is compact if and only if every family of closed sets in
X with the finite intersection property has non-empty intersection.

Proof: Suppose first that X is compact and let A = {C,: a €I}, for an index set
I, be a family of closed sets in X with the finite intersection property. It must be
shown that the intersection of all the members of A is non-empty. Proceeding by
contradiction, suppose that this intersection N,er C, is empty. Consider the corre-
sponding family O = {0, = X\C,: a € I} of open sets in X. Then

Uo.=Umx\c)=x\NC,=x\o=x,
o€l o€l o€l

so O is an open cover of X. Thus, by compactness of X, © has a finite subcover
O' = {0, }}-, for X. Then

X=U0al=U(X\C¢‘)=X\nCap
i=i i=i i=i
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so N; C,, must be empty. But this contradicts the fact that A has the finite inter-
section property. Thus, if A has the finite intersection property, then the intersection
of all the members of A must be non-empty.

The argument for the reverse implication is similar and is left as an exercise.
O

Theorem 6.2: Cantor’s Theorem of Deduction Let {E,}7; be a nested
sequence of non-empty, closed and bounded subsets of R. Then N3, E, is
not empty.

Proof: The family {E,};.,, being nested and composed of non-empty sets, has
the finite intersection property. Since E; is bounded, it must be a subset of some
closed interval [a, b]. Since each E,, is closed inR, then each is closed in the subspace
topology for [a, b]. Thus {E,}x.; is a collection of closed subsets of the compact
space [a, b], and {E, }5-,; has the finite intersection property. Theorem 6.1 guarantees
that N3.; E, is not empty. O

Note thai the preceding theorem has Cantor’s Nested Intervals Theorem
(Theorem 2.11) as a special case.

Example 6.1.5

The requirement that the subsets E, of Cantor’s Theorem of Deduction be
bounded cannot be removed. Consider, for example, the collection {4,}7, of
infinite intervals

A,=[n ), n=1273,....

Then {4,}:2 is a nested sequence of closed subsets of R whose intersection is
empty. The requirement that the sets E, be closed cannot be omitted either. The
collection {(0, 1/n)}, is a nested sequence of non-empty bounded sets whose
intersection is empty.

Theorem 6.3: Each closed subset of a compact space is compact.

Proof: Let A be a closed subset of a compact space X and © an open cover of A
by open sets in X.
Since A is a closed set, then X\A is open and

0* = O U{X\4)
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is an open cover of X. By compactness of X, O* has a finite subcover which contains
only finitely many members O, . . ., O, of O and may contain X\A.
The fact that

x=muuUo,

i=i

implies that

n
4cU o,
i=i
since X\A contains no points of A. Thus {O,}; is a finite subcover for A derived
from O, and A is compact. a

Theorem 6.4: Each compact subset of Hausdorff space is closed.

Proof: Let A be a compact subset of Hausdorff space X. It will be proved that
X\A is open and hence that A is closed. Let x € X\A. Then for each y € A, there
exist disjoint open sets U, and V, with y € U, and x € V,. The collection {U,:
y € A} of such open sets U, is an open cover of A which, by compactness, has a
finite subcover {U,,}i-;. Then, since U,, and the corresponding open set V,, are dis-
Jjoint, the sets

n n

v=Uuy, v=Ny,
i=i i=i

are disjoint open sets containing A and x, respectively. In particular, V is an open

set containing x which is disjoint from A. Thus X\A is open, so A is closed. a

Corollary: Let X be a compact Hausdorff space. A subset A of X is compact if
and only if it is closed.

Theorem 6.5: If A and B are disjoint compact subsets of a Hausdorff space X,
then there exist disjoint open sets U and V in X suchthat AC Uand BC V.

Proof: Consider the relation between a point x in B and the compact set A. By
the proof of Theorem 6.4, there exist disjoint open sets U and V in X containing A
and x, respectively. Since we shall require such a pair of open sets for each x in B,
we add a subscript x to the notation for indexing. For each x in B, there are disjoint
open sets Uy and V. in X such that

ACU,, x€V,.
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The collection {V,: x € B} is an open cover of B and, by compactness, has a finite
subcover {V,, }i-; for B. Then since Uy, and Vy, are disjoint, the sets

v=Nu, v=Uy,

i=] i=1

are disjoint open sets containing A and B, respectively. a

Corollary: If A and B are disjoint closed subsets of a compact Hausdorff space
X, then there exist disjoint open sets U and Vin X with AC Uand BC V.

Proof: Since A and B are closed subsets of the compact space X, then A and B
are compact by Theorem 6.3. Then A and B are disjoint compact subsets of a
Hausdorff space, so the desired conclusion follows from Theorem 6.5. 0

Theorem 6.5 is sometimes rephrased by saying that in a Hausdorff space,
every pair 4, B of compact sets can be separated by disjoint open sets. This extends
to pairs of disjoint compact subsets the analogous Hausdorff property for pairs of
points. Note that this use of the term ‘“separated” refers to inclusion in disjoint
open sets and is not to be confused with the idea of a separated or disconnected
space. The Corollary to Theorem 6.5 says that in a compact Hausdorff space every
pair of disjoint closed sets can be separated by disjoint open sets. We shall have a
more complete account of such separation theorems in Chapter 8.

EXERCISE 6.1

1. In Example 6.1, explain the sense in which the open subcover @' is the smallest sub-
collection of @ which contains A.

2. Complete the proof of Theorem 6.1.
Give examples of each of the following:
(a) A closed subspace that is not compact.
(b) A compact subspace that is not closed.
(c) An open, compact subspace.
(d) Two compact subsets whose intersection is not compact.
4. Prove:
(a) The union of a finite number of compact subsets of a space X is compact.

(b) If X is Hausdorff, then the intersection of any family of compact subspaces is
compact.
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5. Prove that a space X is compact if and only if X has a basis B for which every open
cover of X by members of B has a finite subcover.

6. Show that the real line with the countable complement topology is net compact.

6.2 COMPACTNESS AND CONTINUITY

Compactness is of importance in topology largely because of its relationships
with continuity. Some of these relationships are examined in this section.

Theorem 6.6: Let X be a compact space, Y a space and f- X —> Y a continuous
Sunction from X onto Y. Then Y is compact.

Proof: Let O be an open cover of Y. Then, for each O in @, f~'(0) is open in X
50 the collection @* = {f~(0): O € O} of inverse images of members of O is an
open cover of X. Since X is compact, O* has a finite subcover {f ~'(0;) }i-; for X
corresponding to a finite subcollection {O;}}-; of ©. Since

X= IL_"Jlf (o)
and f maps X onto Y, then
Y =00 =f(H £0)) = iL_"Jlf(f-'roi) c g o.
Thus {O;}%- is a finite subcover for Y derived from O, so Y is compact. O

Corollary: Let X be a compact space, Y a space and f> X — Y a continuous
Sfunction from X into Y. Then the image f(X) is a compact subspace of Y.

Corollary: Compactness is a topological invariant.

In the language of invariants, Theorem 6.6 simply says that compactness is
a continuous invariant. This theorem is often paraphrased by saying that the con-
tinuous image of a compact space is compact.

Theorem 6.7: Let X be a compact space, Y a Hausdorff space, andf- X = Y a
continuous function. Then fis a closed function.
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Proof: It must be proved that if C is a closed set in X then the image f(C) is closed
in Y. This is merely a combination of previous results. By Theorem 6.3, the closed
-subset C of X is compact. By the first corollary to Theorem 6.6, f(C) is a compact
subspace of Y. Since Y is Hausdorff, Theorem 6.4 applies to show that the compact
subspace f(C) is a closed set. 0

Theorem 6.8: Let X be a compact space, Y a Hausdorff space, andf* X - Y a
continuous one-to-one function from X onto Y. Then fis a homeomorphism.

Proof: Since fis hypothesized to be a continuous bijection, it remains only to be
shown that f ! is continuous. This follows from Theorem 6.7. For any closed subset
Cof X,

()7 = f(C)
is closed in Y, so f ! is continuous. 0O
Theorem 6.8 can be interpreted as saying that the continuity of f ! is produced

“free” by the fact that fis a continuous bijection from a compact space onto a
Hausdorff space.

Example 6.2.1

Theorem 6.8 would be of great value in elementary calculus if its proof were
accessible at that level. Many laborious proofs of continuity could be avoided.

(a) Suppose, for example, that we know that the squaring function
fx)=x* x€ER,

is continuous and want to prove the continuity of the square root
function

gx) = V)_c,, x=0.

Consider a non-negative real number a. Let b be a real number greater
than a and consider

£: 10, Vb1 = [0, b).

Now fis a continuous, one-to-one function from [0, VZ] onto [0, b).
By Theorem 6.8, its inverse is continuous as a function from [0, b]
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to [0, Vi]. In particular, the square root function g is continuous at
a and must be continuous on its entire domain [0, o).

(b) Since the sine function is a continuous bijection from [—x/2, x/2]
onto [—1, 1], its inverse (the arcsine function) is continuous. A similar
argument applies to the arccosine function.

The trick of restricting to closed intervals, as in part (a), can be used to
prove continuity for the other inverse trigonometric functions.

Example 6.2.2

The method of restricting to compact sets to argue the continuity of an inverse
function, as in Example 6.2.1, is not applicable in every case. This example
shows a continuous bijection from a space X onto a Hausdorff space Y whose
inverse is not continuous.

Let X = [0, 1) and let Y = S, the unit circle in R2. Then the function f*:
X = Y defined by

J(x) = (cos 2xx, sin 27x), x€E [0, 1),
is a continuous, one-to-one function from X onto Y whose inverse function is

not continuous at the point (1, 0) in S'. Note that f maps O to (1, 0) and wraps
the interval [0, 1) around S’ in the counterclockwise direction. In Figure 6.1,

f
e .0

0 X] X2 X3 000

FIGURE 6.1

the sequence {y,}m=: in Y converges to (1, 0), but the corresponding sequence
{Xn}1, Xn = £ ~'(¥s), does not converge to f~'(1, 0) = 0 in X.
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The reader should know from calculus that a continuous function
f: [a, b] =& R assumes maximum and minimum values on the bounded, closed
interval [a, b]. In other words, there are points ¢ and d in [a, b] such that

f() = f(x) < f(d)

for all x in [a, b]. This property is a consequence of the next theorem.

Theorem 6.9: Let X be a compact space and f: X = R a continuous real-valued
Junction on X. Then there are members c and d of X such that, for all x € X,

fle)=f(x) =f(d).

Proof: Since X is compact and f is continuous, the first corollary to Theorem 6.6
insures that f(X) is a compact subset of R. Since R is Hausdorff, Theorem 6.4 shows
that f(X) is closed.

Now {(—n, n)}s., is an open cover of f(X) and, since f(X) is compact, this
open cover has a finite subcover {(—n;, n;) }X, for f(X). If K is the largest value of
n; for 1 < i < N, then f(X) must be a subset of (—K, K). From this we conclude that
f(X) is bounded.

Since f(X) is bounded and closed, it contains its least upper bound U and
greatest lower bound L. Thus there are members c and d of X such that

flo=L, fd=U.
Then, for any x € X,

Se) =f(x) =f(d). o

Corollary: A continuous function f: [a, b] = R whose domain is a closed and
bounded interval assumes a maximum value and a minimum value.

Definition: Let (X, d) and (Y, d') be metric spaces and f: X = Y a function. Then
[ is uniformly continuous if for each positive number € there is a positive number &
such that if x;, x; are points of X for which d(x;, x;) < 6, then d'(f(x)), f(x2) <.

Note that every uniformly continuous function is continuous.

Theorem 6.10: Let (X, d) be a compact metric space, (Y, d’) a metric space, and
f: X = Y a continuous function. Then f is uniformly continuous.

Proof: Let € be a positive number. Since f is continuous, there is for each x
in X a positive number 6, such that if X’ € X and d(x, x') < 0%, then
d(f(x), f(x') < e/2.
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The collection of open balls {B(x, 13,) :x € X} is an open cover of X. Since X
is compact, this open cover has a finite subcover {B(x;, 48,,)}X,. Let & be the min-
imum value of 46,,i=1,2,..., N.

Consider any pair x, x' of points of X with d(x, x') < 8. Then x belongs to
B(xj, 46, for some j with 1 < j < N. Since

d(x, x') < 8 < 43,,
then x' must belong to B(x;, d). Thus
d(xj, x) <8y, d(x;,x')<dy,
so
d(f(x). f(x) < e/2, d(f(x) f(x')) <e/2.
Then
d(f(x). f(x') = d(f(x). f(x) + d(f(x). f(x') < €/2 + ¢/2 = .

Thus 6 is a positive number such that d'(f(x), f(x')) < € for all x, x' in X with
d(x, x') < b, and f is uniformly continuous. O

d \
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FIGURE 6.2

EXERCISE 6.2

1. Let arctan x denote the inverse of the function tan x: (—x/2, x/2) = R. Assume that
tan x is continuous and prove that arctan x is continuous.

2. Definition: A function f: R = R is a strictly increasing function provided that for all
x, yinRwithx <y, f(x) <f(y).
Prove:
(a) Every strictly increasing function is one-to-one.

(b) Letf: R — R be a continuous, strictly increasing function from R onto R. Then
S~ is also continuous and strictly increasing.
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3. Letf:[a, b] = R be a continuous function from a closed and bounded interval [a, b]
into R. Show that f([a, b]) is a closed and bounded interval.

4. (a) Prove that every compact subset of a metric space X is closed and bounded.

(b) Give an example of a metric space having a closed and bounded subset that is not
compact. (Hint: A bounded metric space which is not compact will suffice. Consider
Hilbert space for more sophisticated examples.)

5. Let B[a, b] denote the collection of all bounded functions from a closed interval [a, b]
into R; i.e., /€ B[a, b] if and only if f([a, b]) is a bounded subset of R. Assign B[a, b]
the supremum metric p: for f; g in B[a, b],
o(f, 8 = lub {| f(x) — g(X)|: x € [a, b]}.
Prove the following facts about (B[a, b], p)

(a) (Bla, b), p) is a metric space which contains the space (€[a, b], p’) of Example
3.1.5 as a subspace.

(b) A sequence {f,}=, in B[a, b] converges to a member f € B[a, b] with respect to
the metric p if and only if {f,}=, converges to funiformly. (For this reason, p is
often called the uniform metric for Bla, b).)

(c) @la, b] is a closed subspace of Bla, b], but €[a, b] is not compact.
(d) @la, b] is nowhere dense in BJa, b).

6.3 PROPERTIES RELATED TO COMPACTNESS

It will be shown in this section that the compact subsets of R” are precisely
the closed and bounded sets. We shall also examine some other properties related
to compactness and equivalent to it in various situations.

Lemma: The unit n-cube I" = {x = (x;, ..., X)) ER" 0 <x; < 1 fori= I,
.., n} is a compact subspace of R".

Proof: The case n = 1 is proved by the Heine-Borel Theorem (Theorem 2.12).
The following argument, which is parallel to the proof given for the Heine-Borel
Theorem, proves the lemma for n = 2. The analogous argument for n > 2 is left to
the reader. ’

For a square [a, b] X [c, d] in R?, we shall refer to

a+b c+d a+b c+d
[+ 55 ]x [ =57 [+ =% [ 4
a+b c+d a+b c+d
(5 o<+ 5 [5x4

as the four “quarters” of the square.
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(a,d) b, d

(a,0) b,0)
FIGURE 6.3 The four quarters of a square.

Let O be an open cover of P and, proceeding by contradiction, suppose that
O has no finite subcover for I°. Then there is at least one quarter

Q: = [a;, b)] X [c1, d)]
of PP for which O has no infinite subcover. Note that the coordinate intervals [a;, b,]
and [c;, d;] have length 1/2. Since Q, is not contained in the union of any finite
subfamily of O, then at least one of its quarters

Q2 = [aZ’ bZI X [c21 d2]

must have the same property. Note that [a,, b,] and [c,, d,] have length 1/4. Pro-
ceeding inductively, we define a nested sequence {Q,}-; of squares in R?,

On = [an, ba] X [Cn, d0] ,
whose coordinate intervals {[a,, ba]}w=1 and {[c,, dn]}s=1 are nested and of length
|@n—bal = lcn—dal =1/2", nz1

By Cantor’s Nested Intervals Theorem (Theorem 2.11) there are real numbers

PEN [an b, €N [c,, dn] .
n=1 n=]
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Then
(n.@ € Q O

50 (p, @) must belong to some member O of the open cover O. But since the diameters
of the squares Q, approach zero, then Q, C O for some integer n. This contradicts
the assumption that Q, is not contained in the union of any finite number of members
of ©. Thus O must have a finite subcover for P, so P is compact. (]

Theorem 6.11: A4 subset A of R" is compact if and only if it is closed and bounded.

Proof: Suppose first that A is compact. Since R" is Hausdorff, Theorem 6.4 insures
that A is closed. Since the open cover {B(6, n) }; of open balls centered at the origin
must have a finite subcover, then A must also be bounded. Thus each compact subset
of R" is closed and bounded.

Suppose now that A is closed and bounded. Let M be a positive number such
that

Ixl =M, x€EA.

Let J" be the cube in R" each of whose coordinate subspaces is the interval
[—M, Mj:

J"=T1l (e, b, [ab]=[-MM], i=1,...,n
i=]

Then A C J". Since J" is homeomorphic to the unit n-cube I", and since the lemma
insures that I" is compact, then J" is compact. Thus A is a closed subset of a compact
space and is itself compact by Theorem 6.3. (]

Definition: A topological space X is countably compact provided that every count-
able open cover of X has a finite subcover.

The reader is left the following exercises:

(a) Every compact space is countably compact.

(b) Countable compactness is a topological property.

(c) (A challenging problem) There are countably compact spaces that are
not compact.

The next definition introduces a condition under which compactness and
countable compactness are equivalent.
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Definition: A space X has the Lindelif property or is a Lindelof space if every
open cover of X has a countable subcover.

Theorem 6.12: If X is a Lindeldf space, then X is compact if and only if it is
countably compact.

Proof: Since compactness always implies countable compactness, it is necessary
to prove only the converse. Let O be an open cover of a Lindelif space X. Then O
has a countable subcover @' for X. Since X is countably compact, @ has a finite
subcover O" for X. Then @' is a finite subcover for X derived from O, so X is compact.

0O

Theorem 6.12 may appear to be merely a play on words. It appears that the
Lindelsf property was designed expressly to make Theorem 6.12 obvious. The next
theorem shows, however, that the Lindelsf property holds in an important class of
spaces.

Theorem 6.13: The Lindelof Theorem Every second countable space is
Lindeldf.

Proof: Let B be a countable basis for a second countable space X and O an open
cover of X. For each x in X, let O, be a member of O containing x and B, a member
of B such that

X € B, C O,.

Since B is a countable basis, the set {B,: x € X} defined in this way is a countable
open cover of X. For each B,, let O, be a member of O such that

B, C Ox.

Then the collection @' of open sets O’ so defined is a countable subcover for X
derived from O. (m]

Since R” is second countable (Theorem 4.8), Theorem 6.13 insures that R"
is Lindel6f, and Theorem 6.12 shows that the concepts of compactness and countable
compactness coincide for subsets of R": A subset of R” is compact if and only if it
is countably compact.

Definition: A4 space X has the Bolzano-Weierstrass property provided that every
infinite subset of X has a limit point.
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Note that a subspace 4 of a space X has the Bolzano-Weierstrass property
means that every infinite subset of 4 has a limit point in 4. The Bolzano-Weierstrass
property is evidently a topological invariant.

Theorem 6.14:  Every compact space has the Bolzano-Weierstrass property.

Proof: Suppose to the contrary that X is a compact space with an infinite subset
B having no limit point. Then B is closed, and for each x in B there is an open set
O, in X containing x which contains no other member of B. Then O = {O,:
X € B} is an open cover of B, O is infinite because B is infinite, and © has no proper
subcover for B because the members of O each contain only one member of B. Thus
B is not compact, contradicting Theorem 6.3. This contradiction establishes the
theorem. O

Example 6.3.1

(a) According to both Theorem 2.13 and 6.14, each closed and bounded
interval [a, b] has the Bolzano-Weierstrass property.

(b) An open interval (a, b) fails to have the Bolzano-Weierstrass property.
Note than an infinite sequence converging to a or to b has no limit
point in (a, b).

(c) The real line does not have the Bolzano-Weierstrass property. The
set of integers, for example, has no limit point.

(d) Let S denote the unit sphere in Hilbert space:

S={x=(,x,..)EH: x| =1}.

Then § is bounded and closed but it does not have the Bolzano-
Weierstrass Property. The set of points

Pl=(l’0309”')9 P2=(03 1,0,0,...),
pPy;=(0,0,1,0,0,...),...,

where P, has nth coordinate 1 and all other coordinates 0, has no
limit point. (The distance from P; to P, is V2 if i # j.)

Theorem 6.15: A metric space is compact if and only if it has the Bolzano-
Weierstrass property.

Proof: In view of Theorem 6.14, it is only necessary to prove that each metric
space (X, d) with the Bolzano-Weierstrass property is compact. This proof will be
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given in a sequence of lemmas. We assume in each lemma that (X, d) satisfies the
Bolzano-Weierstrass property.

Lemma 1: Let O be an open cover of X. Then there is a positive number ¢ such
that, for each x in X, the open ball B(x, ¢) is a subset of some member of O.

Proof of Lemma 1: Assuming that the conclusion of the lemma is false, there
must be for each positive integer n a point x, in X for which B(x,, 1/n) is not a
subset of any member of the open cover O.

For each point y in X, y belongs to some member U, of @. Since U, is open,
there is a positive number €, such that B(y, €,) C U,. Thus x, must be distinct from
y whenever 1/n < ¢,. This indicates that a point of X cannot equal x,, for an infinite
number of values of n and hence that {x, }3, is an infinite subset of X.

By the Bolzano-Weierstrass property {x,}m, has a limit point a in X.
Then a € O for some member O of O, and there is a positive number & such that
B(a, ) C O. By the corollary to Theorem 3.9, B(a, §/2) must contain infinitely many
members of {x, }a=1. Thus B(a, 8/2) contains some x, for which 1/n < /2. Then
Jor z in B(x,, 1/n),

d(a, z) <d(a, x,) +d(x,, 2) <86/2+8/2=0
YY)
B(x,, 1/n) C B(a, §) C O,

contradicting the fact that B(x,, 1/n) is not a subset of any member of ©. This
completes the proof of Lemma 1.
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FIGURE 6.4
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Lemma 2: For each positive number e there is a finite subset A, of X such that
each member of X is within distance € of some member of A..

Proof of Lemma 2: Proceeding by contradiction, as usual, suppose that the con-
clusion of the lemma fails to hold for a particular positive number €. Let a; € X.
By hypotbhesis, there is a point a; in X such that

d(a;, a)) = e.
Suppose that a set {a; }i-) has been defined for which
da, a)z¢ i#].
Then there must be a point ay.; in X for which
dap+1, a;))=¢ 1<i=<n.

Thus there is an infinite sequence A = {a; }2; of points of X such that the distance
between any two members of A is at least €. This set has no limit point, contradicting
the Bolzano-Weierstrass property for X. This completes the proof of Lemma 2.
Turning now to the proof that X is compact, let O be an open cover of X.
By Lemma 1 there is a positive number € such that, for each x in X, the open ball
B(x, ¢ is contained in some member of @. By Lemima 2, there is a finite subset
A, = {x;}l-1 of X for which {B(x;, €}, is an open cover of X. For eachi =1, . . .,
n, let O; be a member of O which contains B(x;, €). Then {O; }i-, is a finite subcover
of X derived from O, so X is compact. (]

Definition: Let X be a metric space and € a positive number. An e-net for X is a
finite subset A, of X such that each member of X is within distance € of some member
of A.. The metric space X is totally bounded provided that it has an e-net for each
positive number e.

Lemma 2 above states that every metric space satisfying the Bolzano-Weier-
strass property, and hence every compact metric space, is totally bounded.

Definition: Let X be a metric space and O an open cover of X. A Lebesgue number
Jor O is a positive number € with the property that every subset of X of diameter less
than e is contained in some member of O.

Lemma 1 in the proof of Theorem 6.15 essentially establishes the existence
of Lebesgue numbers for open covers of compact metric spaces. This is formalized
in the next theorem.
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Theorem 6.16: If X is a compact metric space, then every open cover of X has a
Lebesgue number.

Proof: Let O be an open cover of the compact metric space X. By Lemma 1 in
the proof of Theorem 6.15, there is a positive number € such that each open ball of
radius e is contained in some member of Q. Since each set of diameter less than ¢
is a subset of an open ball of radius €, then ¢ is a Lebesgue number for O. (]

The information about compact subsets of R” provided by Theorems 6.11,
6.12, and 6.15 is summarized as follows:

Theorem 6.17: For a subset A of R", the following statements are equivalent:

(1) A is compact.

(2) A has the Bolzano-Weierstrass property.
(3) A is countably compact.

(4) A is closed and bounded.

Example 6.3.2

Every compact subset of a metric space is closed and bounded, but a subset may
be closed and bounded without being compact. According to Example 6.3.1,
the unit sphere S in Hilbert space is closed and bounded but does not satisfy the
Bolzano-Weierstrass property. Thus S is closed and bounded but not compact.

Problem 9(c) for this section establishes a criterion comparable to being closed
and bounded which is equivalent to compactness in general metric spaces: A metric
space is compact if and only if it is complete and totally bounded.

There are many interesting relationships among the properties of compactness,
connectedness, path connectedness, and their corresponding local properties. One
example that illustrates a famous characterization theorem is described here without
proof. The interested reader is encouraged to pursue this topic in the Suggestions
for Further Reading at the end of the chapter.

Definition: A4 compact, connected, locally connected metric space is called a Peano
space or a Peano continuum.

For example, closed and bounded intervals in R, closed squares and closed
disks in R?, closed cubes and closed balls in R3, and their higher dimensional an-
alogues in R" are all Peano spaces. The remarkable fact about Peano spaces is that
for any Peano space X, there is a continuous function from the closed unit interval
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I=[0, 1] onto X. Such a function was first discovered for the case of the unit square
in the late nineteenth century by the Italian mathematician Guiseppe Peano and
was called a “‘space-filling curve.”

In fact, the properties of being a Hausdorff space and the image of the closed
unit interval under a continuous function characterize the Peano spaces: In order
that a topological space X be a Peano space it is necessary and sufficient that X be
Hausdorff and that there exist a continuous function from 7 onto X. This celebrated
result is called the Hahn-Mazurkiewicz Theorem. One of its surprising consequences
is the existence of space-filling curves from I onto closed cubes and closed balls of
any finite dimension.

EXERCISE 6.3

1. (a) Show that countable compactness, the Lindel6f property, and the Bolzano-Weier-
strass property are topological invariants but are not hereditary.

(b) Show that the three properties of part (a) are inherited by closed subspaces.
2. Give an example of a Lindel6f space that is not second countable.

(a) Prove that every uncountable subset of the real line has a limit point. (Hint: The
union of a countable family of finite sets is countable.)

(b) Prove that every uncountable subset of R” has a limit point.

4. (a) Let (X, d)be a metric space. Prove that every subset of X of diameter less than ¢
is contained in an open ball of radius ¢, € > 0.

(b) Give an example to show that a set of diameter less than ¢ may not be contained
in an open ball of radius /2.

5. (a) Prove that a Hausdorff space X is countably compact if and only if it has the
Bolzano-Weierstrass property.

(b) Prove that a metric space is compact if and only if it is countably compact.

6. Prove that a subset 4 of R" is compact if and only if every nested sequence {4,}; of
relatively closed, non-empty subsets of 4 has non-empty intersection.

7. Prove that if a metric space (X, d) has an e-net for some positive number ¢, then
(X, d) is bounded. Conclude that every totally bounded metric space is bounded.

8. Prove that every compact metric space is totally bounded, separable, and second
countable.

9. (a) Show that completeness of metric spaces is not a topological invariant.
(b) Show that every compact metric space is complete.

(c) Show that a metric space is compact if and only if it is complete and totally
bounded. (Hint: The hard part is to prove that a complete and totally bounded
metric space X is compact. This can be done as follows by showing that X has the
Bolzano-Weierstrass property: Let 4 be an infinite subset of X. Since X is totally
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bounded, some infinite subset 4; of 4 must be contained in an open ball of radius
1. Show that there is a nested sequence {4,}; of infinite subsets of 4 such that
A, is contained in a ball of radius 1/n. For each n, let x, € 4,. Then {x,}=, isa
Cauchy sequence.)
10. Let {C,: a € I} be a family of closed subsets of a compact metric space X such that
Neer C, = D. Prove that there is a positive number ¢ such that every subset of X of
diameter less than e fails to intersect at least one member of {C,: a € I}.

11. Use a Lebesgue number argument to make a new proof for Theorem 6.10.

12. Let X denote the real line with the half-open interval topology of Example 4.3.4. Show
that X is a Lindel6f space.

13. Let X be a metric space. Prove that second countability, separability, and the Lindel6f
property are equivalent for X.

14. (a) Let X be a second countable space. Prove that X is separable and Lindelsf.

(b) Give an example of a separable Hausdorff space that is not second countable.
15. Prove:

(a) Every compact space is countably compact.

(b) Countable compactness is a topological property.

(c) (A challenging problem) There are countably compact spaces that are not compact.

6.4 ONE-POINT COMPACTIFICATION

In this section we consider one construction for answering the question “When
can a topological space be considered to be a subspace of a compact topological
space?” We shall see that the question can always be answered affirmatively by
adding one additional point. It will be noted that this construction is of little value,
however, unless the given space satisfies a local compactness condition.

Definition: 4 space X is locally compact at a point x in X provided that there is
an open set U containing x for which U is compact. A space is locally compact
provided that it is locally compact at each of its points.

Local compactness is a topological property. If X is compact, then X itself is
an open set with compact closure. Thus every compact space is locally compact.
It should be clear that local compactness does not imply compactness.

Local compactness and local connectedness are modifications of global prop-
erties to local ones. Note, however, that a locally compact space need only have
for each point p at least one open set containing p whose closure is compact, but
a locally connected space must have for each point p an entire local basis of con-
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nected open sets. It is left as an exercise for the reader to show that this difference
is only superficial by proving that each point p in a locally compact space has a
local basis of open sets with compact closures.

Example 6.4.1

(a) R"is locally compact since the open ball B(x, r) is an open set con-
taining X whose closure B[x, r] is compact.

(b) Hilbert space H is not locally compact. The following argument shows
that H is not locally compact at the origin 0, but it adapts easily to
any point.

Suppose H is locally compact at § and let U be an open set
containing § whose closure U is compact. Let r be a positive number
such that B(4, r) C U. Then

BO,n=B[6,1CU

and B[#, r] is compact since it is a closed subset of the compact set
U. However, the set 4 = {p;}2, of points p; having ith coordinate r
and all other coordinates 0 is an infinite subset of B[f, r] with no limit
point (d(p;, p)) = V2rfori# 7). In view of the fact that compactness
is equivalent to the Bolzano-Weierstrass property in metric spaces
(Theorem 6.15), we must conclude that B[6, r] is not compact. Thus
U is not compact and H is not locally compact at the origin.

Definition: Let X be a topological space and o, called the point at infinity, an
object not in X. Let X, = X U {oo } and define a topology T ., on X, by specifying
the following open sets: (a) the open sets of X, considered as subsets of X,; (b) the
subsets of X, whose complements are closed, compact subsets of X; and (c) the set
Xw-. The space (X, T ) is called the one-point compactification of X.

The proof that T , is indeed a topology for the set X, of the preceding def-
inition is left as an exercise.

Theorem 6.18: Let (X, T) be a space and (X, T ) its one-point compactification.
Then

(@ (Xeo, T ) is compact;
(b) (X, T) is a subspace of (X, T «);
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(¢) X, is Hausdorff if and only if X is Hausdorff and locally compact;
(d) X is a dense subset of X, if and only if X is not compact.

Proof:

(a) Any open cover O of X, must have a member U which contains co. Since
the complement X,,\U is required to be compact, it has a finite subcover
{0, }%; derived from @. Then the subcollection consisting of U and O,,
..., Oy is a finite subcover for X, derived from Q. Thus X, is compact.

(b) The fact that the relative topology for X as a subspace of (Xo,, T ) is T,
the original topology for X, is implicit in the definition of T ,; the details
are left to the reader. Note that an open set U containing oo must be one
of two types: (1) U = X, in whichcase UNX = X isopeninT; (2) U
is a subset of X, for which X, \U is a closed, compact subset of X. In
the latter case, U N X is an open set in T since its complement X \U. is
closed.

(c) Suppose first that X, is Hausdor(f. Then X is Hausdor(f since this property
is hereditary. To see that X is locally compact, let a € X. There exist
disjoint open sets U and V in X, such that

o €U a€V.
Thus
VC X \U
and the latter set is closed and compact in X. Hence

VC X \U

so V is compact since it is a closed subset of a compact set. Thus X is
locally compact at a.

Suppose that X is Hausdorff and locally compact. To show that X ,,
is Hausdorff, we need only show that oco and an arbitrary point a € X
have disjoint open neighborhoods. Since X is locally compact, there is an
open set O in X containing a such that O is compact. Then O and X, ,\O
are disjoint open sets in X containing a and oo, respectively.

The proof of (d) is left as an exercise, with the following hint. If X is compact,
then {oo } = X \X is open in X. Furthermore, if X is not dense in X, then {oo }
must be an open set. O

If X fails to be a locally compact Hausdorff space, then X, is not Hausdorff.
Since non-Hausdorff spaces are of limited interest, many texts define the one-point
compactification only for locally compact Hausdorff spaces X.
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Example 6.4.2

Consider the open unit interval X = (0, 1) and adjoin an additional point oo to
form the set X,,. Open sets which do not contain oo are the usual open sets in
(0, 1). Open sets containing oo are X, itself and sets U whose complements are
closed, compact subsets of (0, 1). An example of such an open set U is shown
in Figure 6.5.

e8

~3-

by
y 7
1

[=Xe o)
IS
S

U= {o}U(0,a)U(b,1)
Xo\U=[a,b]

FIGURE 6.5

Thus (X, T ) is a compact space. It is an easy exercise to show that the function
[: X, —>S!
from X, to the unit circle S' in R? defined by

(cos 2wt sin 27t) if0<t<1
S = o

(1,0) ift=o00
is a one-to-one continuous function from X, onto S'. By Theorem 6.8, fis a
homeomorphism and the one-point compactification X, of the open interval
(0, 1) is topologically equivalent to the unit circle.

Example 6.4.3

(a) The one-point compactification R,, of the real line R is (homeo-
morphic to) a circle. Actually, this follows from Example 6.4.2 since
R is homeomorphic to (0, 1), but the following description gives an
interesting method of visualizing R,,. Note that the compactness of
R is guaranteed by Theorem 6.18.
Consider R with a circle C tangent at the origin, as in the fol-
lowing figure.
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FIGURE 6.6

Define a function g: R = C as follows: For x € R, g(x) is the point
of intersection of the line segment from x to the “north pole” p of C
with the circle. Note that g is one-to-one and that g(R) = C\{p}. We
extend g to a function from R, to C be defining g(c0) = p. Then g
is a continuous bijection from R, onto C. By Theorem 6.8, fis a
homeomorphism, so R,, is homeomorphic to C.
(b) The one-point compactification R2, of R? is a two-dimensional sphere
§2 = {x = (x1, X2, x3) € R ||x| = 1}. The details of this example
are left to the reader with the suggestive picture in Figure 6.7.
The method of defining the functions g of parts (a) and (b) is

FIGURE 6.7



186  SIX / COMPACTNESS

called stereographic projection. The point x is said to be the stereo-
graphic projection of the corresponding point g(x).

(c) The one-point compactification R%, of R” is the #n-dimensional sphere
S"={x=(X1,...,X1) ER" x| = 1}.

Forming the one-point compactification X, of a space X is the simplest method
of embedding a locally compact Hausdorff space in a compact Hausdorff space.
We shall return to this problem in Chapter 8 with the Stone-Cech compactification
which applies to a more general class of spaces, the class of completely regular
spaces. The Stone-Cech compactification S(X) of a space X has the following prop-
erties, the second of which makes it more useful than the one-point compactification:

(1) B(X)is a compact Hausdorff space in which X is a dense subspace.

(2) Every bounded continuous function f: X = R from X to the real line R
can be uniquely extended to a continuous function f*: 8(X) = R.

Several other aspects of the problem of extending continuous functions will
also be addressed in Chapter 8.

EXERCISE 6.4

1. Prove that local compactness is a topological property.

2. Let X be a space and x a point of X at which X is locally compact. Prove that there is
a local basis B at x such that B is compact for each B € B.

Show that Hilbert space is not locally compact at any point.
Is the real line with the finite complement topology locally compact? Prove your answer.

Prove that the family of sets T ., which was claimed in the definition of one-point
compactification to be a topology, really is a topology.
Complete parts (b) and (c) of Example 6.4.3.

If X is a Hausdorff space, show that the requirement that X, \U be closed in X can be
omitted in the definition of the topology for X, .

8. Prove thata space_X is locally compact if and only if for each x in X there is a subspace
A of X such that 4 is compact and x € int A.

9. Let X be a locally compact Hausdorff space, A a closed subset of X, and p a point not
in A. Prove that there are disjoint open sets U and Vin X such thatpE Uand A C V.
(Hint: Consider the one-point compactification of X.)

10. Definition: A point p in a space X is an isolated point provided that {p} is an
open set.

Prove that a space X is compact if and only if co is an isolated point of X, .
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11. Prove that a space X is a dense subset of its one-point compactification if and only if
" Xis not compact.

12. (a) Let X be a Hausdorff space. Show that X is locally compact if and only if each
point of X has a compact neighborhood; i.e., X is locally compact if and only if
each point x of X belongs to the interior of a compact set K,.

(b) Give an example of a space X for which each point has a compact neighborhood,
but X is not locally compact. (Hint: By (a), X cannot be a Hausdorff space.)

6.5 THE CANTOR SET

Of all the subsets of the real line, the Cantor set is probably the most fertile
source of examples and counterexamples in topology. In this section we define this
remarkable set and examine some of its properties.

Definition: The Cantor set is the subset of I = [0, 1] defined as follows: Let
F,= [0, 1/3]V [2/3, 1]
be the subset of [0, 1] formed by removing the open midadle third (1/3, 2/3). Let

F,=[0, 1/9]V [2/9, 1/3] U [2/3, 7/9] V [8/9, 1]

be the subset of F; formed by removing the open middle thirds (1/9, 2/9) and
(7/9, 8/9) of the two components of F,. Continuing in this manner, let F,., be the
subset of F, obtained by removing the open middle third of each of the components
of F,. Then the set

c=NF,

n=1]

is the Cantor set.

Note that the Cantor set is a closed subset of R since it is the intersection of
closed sets.

For an alternative-definition of the Cantor set, recall that a ternary expansion
of a real number x, 0 < x < 1, is an expression x = 0.x,X,X;. . . representing x as
a sum of powers of 3,

x = % Xn/3",

n=1
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FIGURE 6.8 The first three stages in the construction of the Cantor set.

where x, is restricted to the values 0, 1, and 2. Thus 1/3 has the two ternary ex-
pansions

1/3=1/3+0/32+0/3*+0/3*+ - - -,
and

1/3=0/3+2/32+2/3*+2/3*+ - . -,
and 1/9 can be similarly expressed as

1/9=0/3+1/32+0/33+0/3*+ - - -
and

1/9=0/3+0/32+2/3>+2/3*+ - -«

Observe that the numbers which absolutely require 1 in the first place of their
ternary expansions are the numbers strictly between 1/3 and 2/3. As shown above,
1/3 has a ternary expansion without 1 in the first place. Thus, F; excludes all
members of [0, 1] which require 1 in the first place of the ternary expansion. Sim-
ilarly, F, excludes those members of [0, 1] which require 1 in the second place. In
general, F, excludes those members of [0, 1] which require 1 in the nth place of
their ternary expansions. Thus the Cantor set is the set of real numbers x
which have a ternary expansion x = 0.x;x2X3. . . where X, is restricted to the values
0 and 2.
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Example 6.5.1

The Cantor set contains the end points 0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, - - -
of the open intervals deleted to define the sets {F,};2,. However, these are not
the only members of the Cantor set. In particular, the number 1/4 belongs to
C. To see this consider the convergent series

x=32/3"=2/32+2/3*+2/3°+ - - .

By factoring out 1/3? from each term, it follows that x satisfies the equation
x=1/9 2 + x).

Solving gives x = 1/4. Thus 1/4 is a member of C since it has a ternary expansion
which does not require 1 in any term.

Actually, the Cantor set is uncountable. The proof of this fact, which follows
from the ternary expansion representation, is left as an exercise.

Example 6.5.2

In the construction of the Cantor set from the intersection of the sets F,, F,,
F;, ..., the open intervals removed were of length

L=1/34+2/9+4/27+8/81 4+« +2"3"+ ...,

The sum of this geometric series, which represents the total length of the intervals
removed, can be calculated by several different methods. First, there is the formula

1
L+r+ri+ e +r"+ .- =T Irl < 1.

This gives

n/2n ce )= 1 =
L=1/31+23+4/9+ -+ +2"3"+...) 1/3(1_2,3) L.

For a second method, note that
L=2/31/2+1/3+2/9+ +++ +2"1/3"+ ...)=2/3(1/2+ L)
so that
L=1/3+ (2/3)L,

which again gives L = 1.
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By either method, we conclude that the sum of the lengths of the intervals
removed in the construction of C'is 1, the total length of [0, 1]! Thus the Cantor
set is revealed to have the following rather bizarre property: C is a closed, un-
countable subset of [0, 1] which contains no proper interval. In other words, the
Cantor set is an uncountable and nowhere dense subset of R.

Note Students of analysis may observe that the Cantor set C, as defined here,
has measure 0. The measure of a set is not a topological property, however. There
are other representations of the Cantor set in which the measure is positive.

Definition: A4 closed subset A of a topological space X is perfect provided that
every point of A is a limit point of A.

Theorem 6.19: The Cantor set is a compact, perfect, totally disconnected
metric space.

Proof: Since C is closed and bounded, Theorem 6.17 assures compactness. The
Cantor set is a metric space since it is a subspace of the real line. The fact that C
is totally disconnected is an easy consequence of the fact that it contains no proper
intervals; since the connected subsets of R are precisely the intervals, this means
that the components of C consist of single points.

It remains to be proved that C is perfect. Let x be a member of C
and € a positive number. Let N be a positive integer for which 2/3" < €. Since
x = 0.x1x2x3. .. has a ternary expansion where each x, is 0 or 2, we let y =
0.y1y2y;. . . be the real number having the indicated ternary expansion with y, =
Xn for n # N and yy differing from xy as follows: yy is 0 if xy is 2, and yy is 2 if
Xy is 0. Then y is a member of C, and

Ix=yl=2/3"<e

Thus y is a member of C within distance € of x, so x is a limit point of C and C is
a perfect set. 0O

There is an important extension of the preceding theorem that illustrates a
case in which the classification problem has been solved: Not only is the Cantor
set a compact, perfect, totally disconnected metric space, but any topological space
with these four properties is homeomorphic to the Cantor set. Thus any two com-
pact, perfect, totally disconnected metric spaces are homeomorphic, and the Cantor
set may be considered the prototype of this genre. In order to move on to other
subjects, the proof of this classification theorem is omitted. Further details can be
found in the suggested reading list for this chapter.
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EXERCISE 6.5

1. Show that 1/36 is a member of the Cantor set.
2. Show that each set F, defined in the construction of the Cantor set has 2" components.
3. (a) If xis a member of [0, 1) with a binary expansion

x= 2 a,/2", a,€{0,1},

show that the ternary expansion

3 2a,3"

n=1

represents a point of the Cantor set C.

(b) Use (a) to define a one-to-one function from [0, 1) into C. Take into account the
fact that some members of [0, 1) have more than one binary expansion.

(c) Conclude that C is uncountable.

4. Example 6.5.2 showed that the Cantor set is nowhere dense in R. Conclude, however,
that as a metric space in its own right, with d(a, b) = |a — b| for a, b in C, the Cantor
set is of the second category.

5. Prove that a subspace 4 of a space X is perfect if and only if 4 is closed and has no
isolated points.

6. (a) Prove that every perfect subset of [0, 1] is uncountable. (Hint: Assume to the contrary
that {a,}x, is a countable, closed, perfect subset of [0, 1]. Show that there is a
nested sequence { ¥}, of non-empty open subsets of [0, 1] such that ¥, does not
contain a,. Consider N2, ¥,.)

(b) Use part (a) to give a new proof that every non-degenerate interval in R is un-
countable.

7. Prove that every perfect, compact Hausdorff space is uncountable.

8. Leta = .ajaas. ..and b =.b,b,bs. . . be points of the Cantor set whose indicated ternary
expansions into 0’s and 2’s agree for the first N terms and disagree at the next term:
ap = by, 1 <= n <N, and an,, # by+1. How close can a and b be?

9. Define a function f: C = [0, 1] from the Cantor set to [0, 1] as follows: For x in C,
consider the ternary expansion

x= % X/3" X%, € {0, 2}.
n=1
Define
Rx) = i Xnf2MH1,
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(a) Show that fis a non-decreasing function (i.e., prove that if x < y, then f{x) < f(3)).
(b) Show that fmaps C onto [0, 1]. Conclude from this that C is uncountable.
(c) Show that

A1/3) = f2/3), [1/9) = A2/9), R7/9) = f8/9).

(d) Show, in general, that fla,) = f{b,) where a,, b, are endpoints of one of the middle
third intervals deleted from F, in the construction of C.

(¢) Define an extension F: [0, 1] = [0, 1] of f as follows: If x belongs to an interval
(@n, b,) of part (d), then fla,) = f(b,). Define F(x) to have this common value. Thus,
we extend fto [0, 1] by defining the extension to be constant on the intervals deleted
to form C. The function F is called the Cantor function.

Show that the Cantor function is continuous and sketch its graph.

SUGGESTIONS FOR FURTHER READING

Most textbooks on point-set and general topology include compactness and
related properties. For a readable account somewhat more advanced than that in
this text, General Topology by Kelley and Topology: A First Course by Munkres
are recommended.

For a proof that every compact, perfect, totally disconnected, metric space is
homeomorphic to the Cantor set, see Topology by Hocking and Young or General
Topology by Willard. These texts also contain accessible proofs of the Hahn-
Mazurkiewicz Theorem.
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HISTORICAL NOTES FOR CHAPTER 6

The term compact was introduced in 1904 by Maurice Fréchet to describe
those spaces in which every sequence has a convergent subsequence. Such spaces
are now called sequentially compact. Sequential compactness is equivalent to com-
pactness in metric spaces.

The property of compactness has a long and complicated history. Basically,
the purpose of defining compactness was to generalize the properties of closed and
bounded intervals to general topological spaces. The early attempts to achieve this
goal included sequential compactness, countable compactness, the Bolzano-Weier-
strass property, and, finally, the modern property of compactness, which was in-
troduced by P. S. Alexandroff and Paul Urysohn in 1923.

The first theorem on compactness was the Heine-Borel Theorem (Theorem
2.12), which states that a closed and bounded interval [a, b] is compact. Actually,
Emile Borel proved in his doctoral thesis in 1894 that every countable open cover
of [a, b] has a finite subcover; in other words, that [a, b] is countably compact. The
extension to arbitrary open covers was made possible by the work of Ernst Lindel6f
(1870-1946), who showed that every open cover of [a, b] has a countable subcover.
Eduard Heine (1821-1881), whose name appears in the Heine-Borel Theorem, was
not involved in its discovery. Heine’s primary mathematical contribution was to
prove in 1872 that every continuous real-valued function defined on [a, 4] is uni-
formly continuous. A. M. Schoenflies (1858-1923), in reading Heine’s proof, noted
a relation to Borel’s theorem and gave Borel’s result its present name, the Heine-
Borel Theorem. It is doubtful that Heine would have claimed any credit for the
famous theorem named in his honor.

The Heine-Borel Theorem was easily extended from closed and bounded
intervals to closed and bounded subsets of R. W. H. Young (1863-1942) extended
the theorem to R? in 1902 by proving that every open cover of a closed and bounded
subset of R? has a finite subcover. Henri Lebesgue (1875-1941) published the same
result in 1904 and claimed to have known the extension to R” as early as 1898.

Consideration of compactness via the finite intersection property is due to
Frigyes Riesz in 1908. Felix Hausdorff showed in Grundziige der Mengenlehre in
1914 that sequential compactness, countable compactness, the Bolzano-Weierstrass
property, and compactness are all equivalent in metric spaces. The equivalence of
sequential compactness and compactness in the metric case was shown earlier by
Fréchet.

The crucial step in the characterization of compact subsets of R"” (Theorem
6.11) can be traced to Weierstrass, who proved that closed and bounded subsets of
R? have the Bolzano-Weierstrass property.

Lindel6f spaces were first considered by Ernst Lindel6f, who proved the Lin-
del6f Theorem (Theorem 6.13) and that every subspace of R” has the Lindel6f
property in 1903. The term Lindeldf space was coined by K. Kuratowski and W.
Sierpinski, who initiated the formal study of these spaces in 1921.
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The prototype of Theorem 6.10 on uniform continuity is, of course, Heine’s
Theorem of 1872 which showed that every real-valued continuous function with
domain a closed and bounded interval is uniformly continuous. Camille Jordan
proved in 1893 the precursors of Theorems 6.6 and 6.8 for compact subsets of R".

As mentioned earlier, the definition of compactness in use today was proposed
in 1923 by the Russian mathematicians P. S. Alexandroff and Paul Urysohn. They
called the property bicompactness and developed its properties in a series of papers
published in 1923, 1924, and 1929. Their results included Theorems 6.3, 6.4, and
6.5. Alexandroff proved Theorems 6.6, 6.7, and 6.8 in 1927. An equivalent definition
of compactness was given in 1921 by Leopold Vietoris, whose results included
“Theorems 6.1, 6.3, and 6.4.

Local compactness was introduced independently by Heinrich Tietze and
Alexandroff. The one-point compactification and Theorem 6.18 are due to Alex-
androff. The Stone-Cech compactification was developed in 1937 independently
by Eduard Cech and M. H. Stone.

Of the other ideas of Chapter 6, Lebesgue numbers were first used by Henri
Lebesgue, and total boundedness was defined by Hausdorff in Grundeziige der
Mengenlehre. The Cantor set was studied by Cantor in 1883, and the extension of
Cantor’s Nested Intervals Theorem (Theorem 2.11) to Cantor’s Theorem of De-
duction (Theorem 6.2) was also made by Cantor. As was noted in the text, space-
filling curves were first considered by Guiseppe Peano, and Peano spaces are named
in his honor. The Hahn-Mazurkiewicz theorem is due to Hans Hahn and Stephan
Mazurkiewicz.




Product and Quotient
Spaces

This chapter will make precise two ideas that were mentioned earlier. The
first, the product of topological spaces, was considered for metric spaces in Section
3.6. We shall define the product of topological spaces in such a way that the product
of metric spaces can be considered a special case and then examine continuity and
topological invariants in product spaces. Products of finite collections of spaces will
be considered before arbitrary products.

The second principal idea of this chapter is quotient or identification spaces.
In Chapter 1 the Md&bius strip was defined by identifying or “gluing together” the
ends of a rectangular strip after giving the strip a half twist. This method of identifying
points to form a new space is the basis of the quotient construction.

7.1 FINITE PRODUCTS

Example 7.1.1

The Euclidean plane R?, considered as a set, is the Cartesian product R X R of
the real line with itself. This example shows a standard method of defining a
topology for R X R from the topology of R, without recourse to metrics, which
produces the usual topology of R2. This construction is generalized in the re-
mainder of the section to arbitrary finite products of topological spaces.

Consider the collection B of all subsets of the form O, X O,, where O,
and O, are open in R. If O, and O, are open intervals, then O, X O, is an open
rectangle, as shown in Figure 7.1.

In general, O, and O, are unions of open intervals, so O, X O, is a union
of open rectangles. The set B is not a topology because the union of two members
of B may fail to be a member of B. In Figure 7.2, for example, the set (O; X
0,) U (05 X 0,) cannot be expressed as the product of two open sets.

Although B is not a topology, it is a basis for a topology, as will now be
demonstrated by showing that B satisfies the requirements of Theorem 4.8.
First, it should clear that the union of the members of B is R2. For the second
condition, let

B|=O|X02, Bz=U|XU2
be members of B. Since

B N B; = (0, X0)N (U, X U) =(0, NUY) X (0N V),
195
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0,

¢ ’j

FIGURE 7.1
04 0304 | i
0,
¢ ) —
Oy 0O;
FIGURE 7.2

then B, N B, is actually a member of B. This property is stronger than what is
required by Theorem 4.8. At any rate, B is a basis for a topology for R2. The
topology determined by B is the product topology for R?,

The product topology for R? consists of all sets which can be expressed as
unions of open rectangles. The usual topology for R? consists of all sets which
can be expressed as unions of open balls, in this case open disks. Since any open
rectangle can be expressed as a union of open balls and any open ball can be
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expressed as a union of open rectangles, then the product topology for R? is
precisely the usual topology.

Definition: Let (X;, T)), (X2, T3), ..., (Xn, Ta) be a finite collection of non-
empty topological spaces, and let X denote the Cartesian product

n
X=HX;=X1XXZX e XX,,.
i=]

Let B be the family of all subsets of X of the form

0=H0,=0,X0;X~--X0,,

i=]

where each set O, is an open set in the topology T ; for X;. Then B is a basis for a
topology for X. This topology is the product topology, and the set X with the product
topology is a product space. The spaces X;, X,, . .., X, are called the coordinate
spaces or factor spaces of X.

Since each point x in X is of the form

X=(X1,X2,...,%), XE€X;, 1<i=<n,

there is a function p;: X —» X, defined by pi(x;, X3, . . ., X») = X;. The function p;:
X = X;, 1 <i<n, is called the projection map on the ith coordinate space or the
ith projection map.

Lemma: The projection maps p;: X = X; from a product space X = X; X X; X
« « « X X, to the coordinates spaces are continuous.

Proof: For an example to indicate the method of proof, consider the first coordinate
map p,;: X = X, and let O, be an open set in X;. Then

Pili0) ={x=(x1,%2, ..., X) EX: X €01} =01 X X3 X +++ XX,

is the product of O; with the coordinate spaces X, . . ., X,. Thus p7’(0,) is open
in X, so p; is continuous.

For an arbitrary coordinate map p;: X = X; and an open set O; in X;,
D1 (0;) consists of all points x = (x;, X3, . . ., X») of X for which the ith coordinate
X; is a member of O;. In other words, the values of the coordinates of x are unrestricted
except for x;, and X; is required to be in O;. This means that

pil(0) =A; X A3 X «++ X 4,
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where A; = O; and A; = X; when i # j. Thus p;'(0;) is a product of open sets and
is therefore open in X. Thus each coordinate map is continuous. a

In the notation of the preceding lemma, note that for a basic open set
II?-I Oi in X’

11 0, = N p(0).

=] i=1

This means that each basic open set in the defining basis for the product topology
is a finite intersection of sets of the form p;'(0O,), where O; is open in X;. In other
words, the collection

& = {p;(0): O;isopenin X;, 1=<i=<n}

is a subbasis for the product topology. This fact is useful in characterizing continuity
for functions for which the range is a product space.

Theorem 7.1: Letf: Y = X be a function from a space Y into a product space
X =TI%, Xi. Then f is continuous if and only if the composition p;f of f with each
projection map is continuous.

Proof: Iffis continuous, the fact that each composition p; f is continuous follows
Jfrom the continuity of p; and the fact that the composition of continuous functions
is continuous.

Suppose now that p;f is continuous for each coordinate map p;. By Theorem
4.11, it is sufficient to show that there is a subbasis & for X such that f ~!(S) is open
in Y for each subbasic open set S. Consider the subbasis 8 for X defined in the
remarks preceding the theorem:

& = {pi'(0): OiisopeninX;,, 1<i=<n)
For any subbasic open set p;'(0,),
f(pi'0y) = (pif)7'(0)

is open in Y because p;f is continuous. Thus f is continuous. O

The reader may have seen Theorem 7.1 in a slightly different form in calculus.
Suppose that f: Y — X is a function from a space Y into a product space X =
I1%, X;. For yin Y, f(y) is an n-tuple, so

JO) = (HO) LD, - - - Sl
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where each f; is a function from Y into the ith coordinate space. Then f; is simply
the composition of f with the ith coordinate map, f; = p;f. Theorem 7.1 asserts
that f is continuous if and only if each of the coordinate functions f; is continuous.
This result is used in calculus to show the continuity of functions like

f(x) = (x?, sin x + cos x)

from R to R2,

©,1)

e ————

0,0) ‘ I (\| ,0) S' X [a,b], a cylinder

[0,1] X [0,1], the unit square

S' X S', atorus

R? = R X R, the Cartesian plane
FIGURE 7.3 Examples of product spaces.

If each coordinate space has a certain topological property, it is natural to
ask if the product space has the property also. The following sequence of theorems
shows that the Hausdorff property, connectedness, separability, first countability,
second countability, and compactness carry over from coordinate spaces to finite
products. The reader should be aware, however, that there are topological properties
for which this is not the case. We shall see later, for example, that the product of
two Lindel6f spaces may fail to be Lindel6f.

Theorem 7.2: The product of a finite number of Hausdorff spaces is a Hausdorff’
space.
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Proof: Let {X;}/-; be a finite collection of Hausdorff spaces and consider distinct
pointsa = (a;, ..., a,)and b= (b;, ..., b,) of the product space X = 1%, Xi.
Then there is a coordinate space X; for which a; # b;. Since X; is Hausdorff, there
are disjoint open sets U; and V; in X; containing a; and b;, respectively. Then

U=pi'(U), V=pi'(Vi)

are disjoint open sets in X containing a and b, respectively. O
Theorem 7.3: The product of a finite number of connected spaces is connected.

Proof: Consider the case n = 2 first and suppose that X, and X, are connected
spaces. Let x; € X;. Then {x;} X X,, as a subspace of X; X X,, is homeomorphic
to X, under the correspondence

(x1, )t tEX,.

Then {x;} X X, is connected, and a directly analogous argument shows that
X, X {t} is connected for each t € X;. Note that {x;} X X; and X; X {t} have the
point (x;, t) in common. Then, by the Corollary to Theorem 5.5, the set

((xi} X X)) U U (X, x 1)),
€X;

which equals X; X X,, is connected.

The preceding argument is easier to understand in terms of a picture. Think
of X, as a horizontal axis and X as a vertical axis. Then {x;} X X is a (connected)
vertical line and each X, X {t} is a (connected) horizontal line. The union of the
one vertical line and all the horizontal lines is connected because each horizontal
line crosses the vertical line.

Proceeding now by induction, suppose that [17=/ X; is connected and consider
I X;, where X;, i = 1, . . ., n, is a connected space. By the argument for n = 2,
I1%; X, is connected since it is the product of the two connected spaces I1-} X; and
Xn. Hence the product of any finite collection of connected spaces is connected. 0O

If you are content with the inductive proof of Theorem 7.3, then skip this
paragraph. Actually there is a small difficulty with the last part of the proof
of Theorem 7.3. According to the definition of product spaces, [I%, X; and
(IT%=! X;) X X, are technically not the same. Points of the former are n-tuples
(x1, . . . » Xn) while points of the latter are ordered pairs ((x,, . . ., X,-1), X,) whose
first coordinates are (n — 1)-tuples. However. the obvious correspondence between
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X3 {alxx;

Xy x{t}

(xl ,t)

X1

FIGURE 74

the points of 1%, X; and (I1%; X)) X X, is a homeomorphism, and it is customary
to consider these spaces as equal. That custom is followed in this text.
Proofs of the next three theorems are left as exercises.

Theorem 7.4: The product of a finite number of separable spaces is separable.

Theorem 7.5:

(a) The product of a finite number of first countable spaces is first countable.

(b) The product of a finite number of second countable spaces is second
countable.

Theorem 7.6: If(X;, d)), (X2, ds), . .., (X dn) are metric spaces, then the product
topology for 1%, X; is the topology generated by the product metric.
(Hint for proof: Look at Examples 3.5.4 and 7.1.1.)

In view of Theorem 7.6, we may consider R" to be the product space R X
R X -« + X R in which the real line R is used as coordinate space n times.

The final theorem of this section shows that the product of a finite number
of compact spaces is compact, a result that seems quite natural. The proof is a bit
more difficult for compactness than for the other topological properties we have
considered. The following lemma will be needed.
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Lemma: Inorder that a space X be compact it is sufficient that there exist a basis
B for X such that every open cover of X by members of B has a finite subcover.

Proof: Suppose that X has such a basis B and let O be an open cover of X. For
each x in X, let O, be a member of O containing x. By the definition of basis, there
is for each x in X a member B, of B such that

X € B, C Oy.

Then {B,: x € X} is an open cover of X by members of B and therefore has a finite
subcover {B, }i-;. The corresponding collection {O;,}i-, is then a finite subcover for
X derived from O. a

Theorem 7.7: The product of a finite number of compact spaces is compact.

Proof: By an inductive argument like that for Theorem 7.3, it is sufficient to prove
that if X; and X, are compact spaces, then X; X X, is compact.

Let B = {UX V:Uis open in X; and V is open in X,} be the defining basis
Jor the product topology of X; X X, and let © be an open cover of X; X X, composed
of members of B. By the lemma, the compactness of X; X X will be proved if it can
be shown that there is a finite subcover for X; X X, derived from O.

For x in X, the subset {x} X X; of X; X X, is compact and is therefore
contained in the union of a finite number of members, say Uy X V;, Uy X V>, ...,
Un X Vi of O, each of which meets {x} X X,. Then

m

u,=Nu

i=]

is an open subset of X, containing x. Note that

mxn=mx@%ﬂﬂhmxmcUmxm,
- i=1

i=1

the last inclusion following from the fact that U, is contained in U, fori =1, . ..,
m. Thus, for each x in X,, there is an open set U, containing x for which the set
U, X X; is contained in the union of a finite number of members of O.

Since the family of open sets {Uy: x € X} is an open cover of the compact
space X, then there is a finite subcover {U, }i-; for X, derived from {U,: x € X}.
We now have the following situation:

i=1

p 4
mxn=“ﬂ@xm=Ua&xw
i=]
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is the union of a finite number of sets Uy, X X3, Uy, X X3, ..., Uy, X X, each of
which is contained in the union of a finite number of members of O. Since the union
of a finite collection of finite sets is finite, then X; X X, is contained in the union of
a finite number of members of O. Thus X; X X, is compact. a

The lemma preceding Theorem 7.7 actually gives a necessary and sufficient
condition for compactness. The necessity follows from the fact that every open
cover of X, and in particular every cover by basic open sets, must have a finite
subcover. There is a stronger and more useful condition for compactness involving
subbasic open sets: A space X is compact if and only if there is a subbasis § for X
such that every open cover of X by members of § has a finite subcover. This result,
the celebrated Alexander Subbasis Theorem, will be used in the next section to
prove compactness for infinite products of compact spaces.

EXERCISE 7.1

1. Let O; and U, be subsets of a set X, for i = 1, 2. Prove that
(O X O0)N (U X U,) = (0, NUY) X (0, N o).

Generalize this result to the case of n sets X, X5, ..., X,.

2. Show that the set B in the definition of product topology is actually a basis, as claimed
in the definition.

3. Let X}, X, and X; be spaces.
(a) Prove that (X; X X3) X X; is homeomorphic to X; X (X; X Xj).
(b) Prove that X; X X, is homeomorphic to X; X X,.
4. Prove Theorems 7.4, 7.5, and 7.6.
Use the Alexander Subbasis Theorem to give a different proof of Theorem 7.7.

6. Knowing that a subset 4 of R is compact if and only if it is closed and bounded, use
product space ideas to prove the same characterization of the compact subsets of R".

7. Let X, and X, be spaces with subsets 4 C X; and B C X,. In the product space X; X
X, prove that

(@ AXB=AXB.
(b) int(4 X B)=intA4 X int B.

8. Let X denote the real line with the half-open interval topology of Example 4.3.4 and
letY=XXX.

(a) Prove that B = {[a, b) X [c,d):-a, b,c,dE R, a < ¢, b < d} is a basis for Y.
(b) Show that Y is separable.
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(c) Show that the line y = —x + 1 is a non-separable subspace of Y.

(d) Show that X is Lindeldf but Y is not. (Hint: The Lindeldf property is inherited by
closed subspaces. Show that the line of part (c) is closed and not Lindeléf.)

9. Prove that the product of a finité family of locally compact spaces is locally compact.

10. This exercise is intended to show that a result like Theorem 7.1 does not hold for
functions g: [1 X; = Y when the domain is a product space instead of the range.
Definition: Let X; and X, be spaces and g: X; X X, => Z a function from X; X X, to
a space Z. Then g is continuous in the first variable provided that for each y in X,, the
function g(+, y): X; = Z, whose value at x is g(x, y), is continuous. Continuity in the
second variable is defined in the analogous way.

Show that the function f: R X R —» R defined by

foy) = [xy/(xz +y%) if(x, ) #(0,0)
Y7o if (x, ) = (0, 0)

is continuous in the first variable and continuous in the second variable but not con-
tinuous at (0, 0).

11. Definition: In a product space X X X, the set {(x, x): x € X} is called the diagonal.
Prove that a space X is HausdorfT if and only if the diagonal of X X X is a closed set.

7.2 ARBITRARY PRODUCTS

This section generalizes the idea of product space to the product of an arbitrary
family of topological spaces. It will be evident that the finite product considered in
Section 7.1 is a special case.

Suppose that A is an index set and that X, is a space for each « in A. The
first question to be answered in trying to define the product of the spaces X,
a € A, is the following: What is meant by the Cartesian product [].c.« X. when
A is an infinite set? Suppose first that A is countably infinite. Then {X,: a € A}
can be considered an infinite sequence {X;}&,. In this case [12, X; is the collection
of all infinite sequences

X = (X1, X2, 000y Xny o 2)

for which the ith coordinate x; belongs to the ith coordinate space X; for all values
of i. Actually, the sequence x is a function. Its domain is the set of positive integers
(the index set) and its value at the integer i is the ith coordinate x;. This function
idea is used to define the Cartesian product of an arbitrary family of sets.
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Definition: Let A be an index set and {X,: a € A} a family of sets. The Cartesian

product X = [1.c4 X, is the collection of all functions x with domain A having the
property that the value x, of x at a belongs to the set X,:

xX=1] X..=[x:a4-> U X.,:x.,EX.foreachae.A]
a€A

a€A
For a € A, the function
Du: X = X,
defined by
Pu(X) = Xay XEX,

is called the projection map of X on the ath coordinate set X,,.

In the preceding definition, the symbol X, is used to denote x(a), the value
of x at «, in analogy with the notation

x=(xl9x2s'-°,xn9---)

commonly used for sequences. The definition of Cartesian product set agrees with
the definition already given for a finite product []%, X; since a point

X=X1y...,%), XE€X;, 1<i=<n,

may be interpreted as a function with domain {1, 2, ..., n} whose value x; at i is
a member of the set X;.

Definition: Let A be an index set and {X,: a € A} a collection of non-empty
topological spaces. The product topology for X = I1.e 4 X, is the topology generated
by the subbasis § of all sets of the form p;'(0,), a € A, where O, is open in X,.
The product set X with the product topology is called a product space with X, as
ath coordinate space.

According to the preceding definition, a basis for the product topology for X
consists of all finite intersections

n
N p:}0,), aE€EA, l=isn,

i=]
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where each O, is an open subset of X,,,. Such a basic open set may be expressed in
product form as

N pzl0.) = T1 4.
i=1 aEA

where 4,, = O,,fori =1, ..., nand 4, = X, otherwise. Hence we may think of
a basis for the product topology as consisting of all products [] ..« 4, where each
A, is open in X, and 4, = X, for all but finitely many « in A.

Since each set of the form p_!(0.), O. open in X,, is a subbasic open set,
each projection map p, is continuous. The next theorem is a direct analogue of
Theorem 7.1; its proof is left as an exercise.

Theorem 7.8: Let f: Y = X be a function from a space Y into a product space
X = I1.cu X.. Then fis continuous if and only if the composition p. f of f with each
Dprojection map is continuous.

Theorem 7.9: The product of any family of Hausdorff spaces is a Hausdorff
space.

Proof: Let {X,: a € A} be a family of Hausdorff spaces and let x and y be
distinct points of the product space X = Il.cu X.. Then there is some member
a € A such that x, # y.. Since X, is Hausdorff, there are disjoint open sets U, and
V, in X, containing x, and y,, respectively. Then

U=p'(U) V=p(V)

are disjoint open sets in X containing x and y, respectively. a

The properties of separability, first countability, and second countability in-
volve countable sets, so it should not be expected that Theorems 7.4 and 7.5 gen-
eralize to uncountable products. These theorems do generalize to countably infinite
products; the proofs are left as exercises. A bit more can be said for separability. If
each space in the set {X,: a € A} is separable and the cardinal number of A is
less than or equal to the cardinal number of [0, 1], then [].c« X, is separable.
Proofs of this result can be found in the references listed at the end of the chapter.

The remainder of this section is devoted to showing that every product of
connected spaces is connected and every product of compact spaces is compact,
thus extending the corresponding results already proved for finite products.

Theorem 7.10:  The product of an arbitrary collection of connected spaces is con-
nected.
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Proof: Let {X,: a € A} be a family of connected spaces indexed by A and let
Y = {Va: @ € A} be a particular point in the product space X = Il .ca X.. It will
be shown that X is connected by showing that the component C of X which contains
y is the entire space.

First, by an argument analogous to the proof that the product of two connected
spaces is connected, it follows that the set Y, of all points differing from y in at most
one coordinate is connected. It follows by induction that the set Y, of all points
differing from y in at most n coordinates is connected. Since each set Y, contains
¥, then the union

is connected. It is an easy consequence of the definition of the product topology that
Y is dense in X, so Theorem 5.4 applies to show that X is connected. [m]

In order to prove that the product of compact spaces is compact, the following
extension of the lemma preceding Theorem 7.7 to subbases will be needed. The
proof of this result, the Alexander Subbasis Theorem, involves set theoretic con-
siderations which would take us rather far afield. For this reason, the proof is rel-
egated to outline form in the exercises at the end of this section. The interested
reader is encouraged to pursue this topic further in the suggested reading at the
end of the chapter.

Lemma: The Alexander Subbasis Theorem In order that a space X be com-
pact, it is necessary and sufficient that there exist a subbasis § for X such that every
open cover of X by members of § has a finite subcover.

Theorem 7.11: The Tychonoff Theorem The product of an arbitrary family
of compact spaces is compact.

Proof: Let {X,: a € A} be a collection of compact spaces and let X = I1.ex X.
be the product space. Let 8 be the defining subbasis for the product topology. Recall
that 8 consists of all subsets of X of the form p;'(0.), a € A, where O, is open in
the coordinate space X,. By the Alexander Subbasis Theorem, it is sufficient to
show that every open cover of X by members of' $ has a finite subcover.
Proceeding by contradiction, suppose that U is an open cover of X by members
of § which has no finite subcover. For o in A, let U, be the family of open sets O,
in X, for which p3'(0,) belongs to U. Note that if a finite subfamily {O,, }i; of U,
covered X,,, then the corresponding finite subfamily {p!(O.,)}i-; would cover X.
Thus we conclude that no finite subfamily of U, covers X,. From the compactness
of X,, it follows that U, must fail to be a cover of X,. Thus for each o in A, there
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is a point x, in X, which is not in any member of U . It follows that the point x =
{x.: a € A} defined by these coordinates fails to be in any member of U. This
contradicts the fact that U is an open cover and completes the proof of the
theorem. 0

Example 7.2.1 The Hilbert Cube and Infinite Dimensional Euclidean
Space

‘The Hilbert cube I® is the product of a countably infinite family of closed unit
intervals:

I°=1] 4., 4x=100,1), n=1,2,..

n=1

Infinite dimensional Euclidean space R® is the product of a countably infinite
family of lines:

R°=]] B, B.=R, n=1,2,...

n=1

Since [0, 1] C R, it is clear that I* is a subspace of R®. Since R is homeo-
morphic to (0, 1), then R® is homeomorphic to a subspace of 7*. However, I®
and R* are not homeomorphic since, for example, I is compact and R® is not.
This phenomenon of non-homeomorphic spaces embedded in each other is not
too unusual; it also occurs for an open interval and a closed interval. Note that
both I* and R*® are connected by Theorem 7.10.

The purpose of this example is to show that the infinite products /® and
R* are metric spaces by showing that they can be embedded in Hilbert space
H. Define f: I° = H by

S, x2, X3, ...) = (1, X2/2, x3/3, .. ).

Since 22, 1/n? is a convergent series, it follows that 22, x2/n% 0 < x, < 1 for
all n, is also convergent and hence that f does map into H. The image of I®
under fis the subset

£a=) =TI 10, )

n=1

of H. It is left as an exercise to show that f'is one-to-one and continuous. Since
I is compact and H is Hausdorff, Theorem 6.8 insures that fis an embedding
of I* in H. Since R® can be embedded in /® and the composition of two
embeddings is an embedding, then R® can be embedded in H also.
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Since I* and R*® are homeomorphic to subspaces of the metric space H,
we conclude that their topologies are determined by metrics; that is to say, I®
and R* are metrizable spaces. We shall return to Hilbert space embeddings in
the next chapter to prove a general metrization theorem. The spaces R® and H
are actually homeomorphic, but the proof of this is well beyond the scope of an
introductory course.

Example 7.2.2 The Cantor Set as an Infinite Product

This example shows that the Cantor set C is homeomorphic to a countably
infinite product of discrete, two-point spaces. Consider the product space 4 =
TI®, A;, where each set 4, is the discrete space {0, 1}. The space 4 is sometimes
denoted 2“ since each coordinate space has two members and w often denotes
a countably infinite set.

Recall that the Cantor set consists of all real numbers x in [0, 1] which
have a ternary expansion x = .x;X>X3 . . . where x; has only the values 0 and 2.
The space A4 consists of all infinite sequences y = (y, )2, s, . . .) where y; has
only the values 0 and 1. Thus we define f: C = A4 by

F(xix2x3 . ..) = (x1/2, X2/2, x3/2 ...), Xx= .X1X2X3...€C.

The preceding discussion establishes the fact that f is a one-to-one correspondence
between C and A.

To prove that f'is continuous, we shall show that the composition p;f:
C — {0, 1} of fwith the ith coordinate map is continuous and use Theorem
7.8. For a positive integer i and point x in C, p;f(x) is one-half of the ith coordinate
of the ternary expansion of x into 0’s and 2’s. Since members of C sufficiently
close to x must have identical ternary expansion through the ith term, it follows
that

pif(x) = pif(x')

when x' is sufficiently close to x. Thus p;fis continuous. Theorem 7.8 applies
to establish the continuity of £ Since f: C = A is a continuous one-to-one function
from a compact space onto a Hausdorff space, Theorem 6.8 shows that f'is a
homeomorphism.

EXERCISE 7.2

1.

For each of the following properties, prove that if each factor space X;, i = 1,2, ...,
has the property, then so does the product space X = JI2, X;:

(a) first countability,
(b) second countability,
(c) separability.
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Prove: If A = B U @, where B, € are disjoint, non-empty index sets and {X,:
a € A} is a family of spaces indexed by A, then [].e. X. is homeomorphic to
Hpen X X H160 X,.

Prove that an infinite product of discrete spaces may not be discrete.
Prove that the function f: I* = H of Example 7.2.1 is an embedding.

(@) Let {X,: a € A} be a collection of spaces with product space X = [l.ex Xa.
Show that each projection map p,: X =» X, is an open mapping.

(b) Show that the projections p;, p»: R? = R are not closed mappings.

Definition. Let {X,: a € A} be a family of non-empty spaces. The collection of all
subsets O of the product set X = [1.ex X, of the form

o=1]] o..
a€A

where each O, is open in X,, is a basis for a topology, called the box topology for X.
The product set X with the box topology is called a box product space.

Prove:

(a) If Aisa finite set then the box topology for X coincides with the product topology.
(b) The projection maps for a box product space are continuous, open maps.

(c) Ifeach space X,, a € A, is discrete, then the box product space X is also discrete.

(d) Ifeach space X,, a € A, is compact, the box product space may fail to be compact.
(Hint: Let X, = {0, 1} for each « in an infinite set A.)

Let X and A4 be non-empty sets. The symbol X denotes the collection of all functions
ffd—=> X

(a) Show that the set X“ is the product set [1.e4 X., where X, = X for each a € 4.

(b) Show that if 4 = B U C for disjoint, non-empty subsets B and C, then the spaces
X“* and X2 X X€, with their product topologies, are homeomorphic.

Complete the details of the proof of Theorem 7.10. In particular, show that each of the
sets Y, is connected.

Although it is not proved in this text, it is true that every compact, perfect, totally
disconnected metric space is homeomorphic to the Cantor set. Use this result to prove
that a countably infinite product of discrete two-point spaces (Example 7.2.2) is homeo-
morphic to the Cantor set.

(a) Prove that a finite product of discrete spaces is discrete.

(b) Prove that if each space in an infinite collection of discrete spaces has more than
one point, then their product is not discrete.

Show that the Hilbert Cube (Example 7.2.1) is nowhere dense in Hilbert space.
This exercise presents an outline of the proof of the Alexander Subbasis Theorem.

Let & be a subbasis for a space X for which every open cover of X by members of §
has a finite subcover. Suppose X is not compact and obtain a contradiction by showing
the following:
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(a) There is a family O of open subsets of X for which no finite subcollection of O
covers X and @ is maximal with respect to this property. In other words, O is not
properly contained in any family of open sets no finite subfamily of which covers
X. (This will involve some form of the Axiom of Choice.)

(b) If {U;}%, is a finite collection of open sets whose intersection is contained in a
member of @, then at least one of the sets U, belongs to O.

(¢) Conclude that the family O fails to cover X.

13. Let {(Xx, ds)}»=1 be an infinite sequence of metric spaces. Prove that the product space
X =TI1%, X, is a metrizable space. (Hint: Show first that each metric space is topologically
equivalent to a metric space of diameter at most 1. Thus it can be assumed that each
metric space under consideration has diameter at most 1. Show that the function d on
X X X defined by

wor- 3 (52

n=1 n

for x = (x;, X2, ...), ¥ = (1, »2, ...) in X is a metric which generates the product
topology.)

7.3 COMPARISON OF TOPOLOGIES

Definition: Let X be a set with two topologies, T; and T ,. If T, C T 5, then T,
is weaker than T ; and T ; is stronger than T .

The terms coarser and finer are sometimes used synonymously with weaker
and stronger, respectively. It should be clear that the trivial topology is the weakest
topology for any set and the discrete topology is the strongest.

It is not hard to verify that the intersection T, N T, of two topologies is a
topology. This topology is weaker than both T, and T, but stronger than any other
topology weaker than both of them. Similarly, the intersection of any family of
topologies is a topology that is weaker than every member of the family but stronger
than any other topology having this property.

The situation with unions is somewhat more complicated since the union of
two topologies may fail to be a topology. However, the union of any family of
topologies is a subbasis for a topology, and this topology is the weakest topology
which is stronger than each topology in the given family. Verification of this is left
as an exercise.

Definition: Let X be a set and {f,: X = X,, a € A} a family of functions from
X into topological spaces X,. The weak topology for X generated by the functions
fa is the topology determined by the subbasis of open sets {f3'(0,): a € A, O,
open in X, }.
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It should be apparent that the weak topology generated by a family of functions
is the weakest topology with respect to which each of the given functions is con-
tinuous.

Example 7.3.1

Let (X, d) be a metric space. For a in X, define f;: X = R* from X to the space
R* of non-negative real numbers by

fa(x) = d(x,a), xEX.
Then for r > 0,
f3'(0, n) = B(a, ),

the open ball centered at a with radius r. It follows that the weak topology
generated by { f;: a € X} is the metric topology for X.

The weak topology gives the following alternative view of the product topology.

Theorem 7.12: Let {X,: a € A} be a family of spaces and let X = [].cx X..
Then the weak topology generated by the projection maps p,: X > X, is the product
topology for X.

Proof: By definition, the product topology for X has as a subbasis the family of
all sets of the form p;'(0.), a € A, O, open in X,. This subbasis is precisely the
same as that for the weak topology generated by the projection maps. 0

Theorem 7.13: Let (X, T) bea space and ¥ = {f,: X - Y, } a family of continuous
Junctions with domain X. Then the weak topology generated by F is weaker
than T.

Proof: By hypothesis, each member of F is continuous with respect to the given
topology. Then the weakest topology with respect to which each member of F is
continuous must be weaker than T. 0

We shall return in Chapter 8 to the weak topology determined by a given
family of functions. In the meantime, the reader is invited to consider the following
question: Under what conditions does the weak topology generated by a given
family of functions equal the original topology on a space X?



7.4 / Quotient Spaces 213

EXERCISE 7.3

(a) Show that the intersection of any family of topologies for a set X is a topology
for X.

(b) Use part (a) to conclude that the intersection of a family of topologies for X is the
strongest topology for X that is weaker than each topology in the given.family.

(a) Show that the union of any family of topologies for a set X is a subbasis for a
topology for X.

(b) Show that the topology of part (a) is the weakest topology that is stronger than each
topology in the given family.

Let X be a set, { fo: X = X,, a € A} a family of functions with domain X, and T the
weak topology generated by the given family of functions. Prove that if Y is a subset of
X, then the subspace topology for Y as a subspace of (X, T) equals the weak topology
generated by the family of restrictions {£,|y: Y = X,, a € A}.

Describe the weak topology for R generated by each of the following families of functions.
(Assume that the range space has the usual topology and determine the weak topology
for the domain.)

(a) The family of constant functions f: R = R.
(b) The set of all functions continuous with respect to the usual topology.
(c) The family consisting only of the identity map on R.

(d) The set of all bounded real-valued functions that are continuous with respect to
the usual topology.

Let X be a set with three different topologies &, T, U for which & is weaker than T, T
is weaker than U, and (X, T) is compact and Hausdorff. Show that (X, &) is compact
but not Hausdorff, and (X, U) is Hausdorff but not compact.

Consider R” with the finite complement topology T, and the Zariski topology T, (Ex-
ample 4.5.4). Show that T, is weaker than T ,.

7.4 QUOTIENT SPACES

The idea of quotient space is one of the more intuitively plausible notions of

topology. It originated from the process of pasting or gluing together parts of geo-
metric figures to form new figures.

Example 7.4.1

Consider the process of pasting together two opposite edges of a square to form
a cylinder. For definiteness, let us take the unit square 12 = {(x,, x,) ER% 0 <
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FIGURE 7.5

x1 < 1,0 < x; < 1} in the plane and describe the process of pasting together the
left and right edges to form a cylinder.

We wish to describe a method by which two points (0, x,) and (1, x,) in
I? may be considered as one point of a new space, the cylinder. The standard
method of doing this is to define an equivalence relation on 72 and to let the
new points be the equivalence classes of the relation. Define a relation ~ on I,
as follows: Each point is related to itself, and each point (0, x,), 0 < x; < 1, is
related to the point (1, x;). Thus the equivalence class [x] of a point x = (x;, X2)
consists of the one point x if x; is not 0 or 1. Otherwise, it consists of the two
points (0, x,) and (1, x,). The set of equivalence classes defied in this way is
called a quotient space when the following topology is assigned. A collection of
equivalence classes is an open set in the quotient space if and only if the points
that they contain form an open set in I2. For a point x in the interior of %, a
basic open set about x is an open ball, and the same picture applies for a basic
open set around [x]. For points (0, x,) and (1, x;), basic open sets are “open half
balls” (open quarter balls at the corners), as shown in Figure 7.5. A basic open
set around the corresponding point of the quotient space is the union of the two
half balls joined along their straight edges. This heuristic description is formalized
in the next definition.

Definition: Let X be a space and ~ an equivalence relation on X. Let X/~ denote
the set of all equivalence classes [x] = {y € X: x ~ y} determined by ~. A collection
A of equivalence classes is an open set in X/~ if the union of the members of A is
an open set in X. The collection of such open sets in X/~ is a topology called the
quotient topology for X/~, and the set X/~ with its quotient topology is called the
quotient space of X modulo ~ .
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It is an easy exercise to show that the open sets for X/~ in the preceding
definition actually form a topology.

To define a particular quotient space of a given space X, one need only specify
the equivalence relation to be used. From that point on, the construction is standard.
Since for every equivalence relation each point must be related to itself, this is often
not stated explicitly. The common practice is to specify which unequal points are
to be equivalent, with it being understood that each point is always to be considered
equivalent to itself.

The simplest kind of quotient space has its own name, as explained in the
next definition.

Definition: Let ~ be an equivalence relation on a space X for which there is one
equivalence class [xq] = A having more than one member and for which every other
equivalence class has only one member, [x] = {x}. Then the quotient space X/~ is
denoted X/A and called the quotient space or identification space obtained by iden-
tifying the members of A to a single point.

Example 7.4.2

(a) The quotient space of [0, 1] obtained by identifying the two points 0
and 1 is homeomorphic to a circle.

(b) The quotient space of I? obtained by identifying the boundary to a
single point is homeomorphic to a sphere in R3.

(c) The quotient space of I? obtained by identifying the pairs of points
(0, x;) and (1, 1 — x,), 0 < x; < 1, is homeomorphic to the Mobius
strip.

(d) Let X = I’ with equivalence relation ~ defined as follows: (1)
(x1, 0) ~ (x;, 1) for each x;, € [0, 1], and (2) (0, x2) ~ (1, x3) for
each x, € [0, 1]. Then, thinking of the quotient space being defined
in two steps as in Figure 7.6, X/~ is homeomorphic to a torus in R>,

(X‘l,l)
¢ (0,x,) (1,x2) ¢ 0 1,%)¢
,((. ) (L )T) — (>
\
¢1,0)

FIGURE 7.6
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(e

®

Let ~ be the equivalence relation on R defined by x ~ yif and only
if x — y is an integer. In other words, x ~ (n + x) for all integers n.
In order to get an intuitive picture of R/~, consider the equivalence
classes in terms of real numbers t with0 <¢ < 1:

[2] = {t + n:'nis an integer}.

Every real number belongs to such a class, so we have reduced the
problem from a statement about R to a statement about [0, 1]. Re-
alizing that [0] = [1], the quotient space R/~ is homeomorphic to
the quotient space of [0, 1] obtained by identifying 0 and 1. Thus,
R/~ is topologically equivalent to a circle.

Let X = I? with equivalence telation ~ defined by: (1) (x;, 0) ~
(x1, 1) for each x; € [0, 1], and (2) (0, x;) ~ (0, 1 — x;) for each x;
in [0, 1]. This example is similar to part (c) except that in the second
stage of the identification the circular ends of the cylinder are identified
with orientations reversed; the pairs 4 and 4', B and B’, and C and
C’ are to be identified in Figure 7.7.

®

FIGURE 7.7

The resulting space X/~, called the Klein bottle, can be embed-
ded in R* but not in R, The picture shown is the best 3-dimensional
representation available. The surface actually does not intersect itself
as it appears to do in the drawing.

Let D denote the unit disk
D={(x,x)ER:x}+x3<1}

with equivalence relation x ~ —x for x = (x;, x,) on the bounding
circle x? + x% = 1. In other words, each pair x, —x of diametrically
opposite points is to be identified. The resulting space D/~, called
the projective plane, cannot be reasonably drawn in three dimensions.
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The foregoing examples indicate that quotient spaces go considerably beyond
what can be accomplished with paper and glue.

Definition: Let X be a space, ~ an equivalence relation on X, and X/~ the
resulting quotient space. The function q: X = X/~ which maps each point x in X
to its equivalence class [x] in X is called the quotient map of ~.

The definition of the quotient topology insures that the quotient map g:
X = X/~ is continuous. In fact, the quotient topology for X/~ can be defined as
follows: A subset 4 of X/~ is open if and only if g~'(4) is an open set in X. The
proof of the next theorem is left as an exercise.

Theorem 7.14: Let X/~ be a quotient space of X with quotient map q: X =
X/~. Then a function h: X/~ — Y from X/~ into a space Y is continuous if and
only if the composite function hq: X = Y is continuous.

Definition: Let X be a space, Y a set, and f: X = Y a function from X onto Y.
Define a subset O of Y to be open provided that its inverse image f ~'(0) is open in
X. The family of open sets defined in this way is a topology for Y called the quotient
topology determined by f.

Remark The quotient topology determined by f: X = Y is a topology for Y. To
see this, note that

@=9, fin=x
are open in X, so & and Y are open in Y. If {O,: a € A} is a family of open sets
in Y, then

f"(‘}e{‘ oa) = U r0)

is open in X, so U,e4 O, is open in Y. If {O;}L, is a finite family of open sets in
Y, then

f'(Q o,-) - {jf"(o;)

isopen in X, so N}, O;is open in Y. Thus the quotient topology is indeed a topology
for Y.
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A comparison of definitions shows that the quotient topology for a quotient
space X/~ is identical with the quotient topology determined by the quotient map
q: X = X/~. It is left as an exercise for the reader to prove that the quotient
topology is the strongest topology with respect to which the quotient map is con-
tinuous.

Theorem 7.15: Let X and Y be spaces and f: X = Y a continuous function from
Xonto Y. Iffis either open or closed, then Y has the quotient topology determined

byf

Proof: Let T denote the given topology in Y and T s the quotient topology deter-
mined by f If O € T, then, since f is continuous, f~'(0) is open in X. But this
means that O € T;. Thus T C T,.

Suppose in addition that f is an open function, and let U € T. Then f~!(U)
is open in X and f is an open function with respect to T, so

fifw)=u
is an open set in the topology T. Then T;C T, so T = T,. The analogous proof
Jor closed functions is left as an exercise. (]

Definition: Let f: X — Y be a function from space X onto space Y. The relation
~ defined by x; ~x; if and only if f(x;) = fixy) is an equivalence relation on X
called equivalence modulo f.

It should be easily observed that equivalence modulo fis an equivalence
relation. Note also that the equivalence class of x under ~is simply the set of
points which have the same image as x:

X1 ="'(fx), xEX.
Since fis required to be surjective, then the correspondence
[x] < f(x)

is a one-to-one correspondence between the quotient space X/~ and Y. The next
theorem gives a necessary and sufficient condition for this correspondence to be a
homeomorphism.

Theorem 7.16: Let X and Y be spaces and f: X = Y a continuous function from
X onto Y. In order that the natural correspondence h: X/~ — Y defined by

hilx)) = f(x). x€X,
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be a homeomorphism, it is necessary and sufficient that Y have the quotient topology
determined by f.
Proof: The diagram below may be of help in following the proof.

————Z———-»
X Y
X/~,

The diagram is called commutative because hq = f. Suppose first that h is a ho-
meomorphism and consider a subset O of Y. Then O is open in Y if and only if
h~'(0) is open in X/~;. By the definition of the quotient map q and the quotient
topology for X/~;, h™'(0) is open in X/~ if and only if g~'h~'(O) is open in X.
Since hq = f, then

q~'h™'(0) = f71(0).

Thus O is open in Y if and only if f~!(O) is open in X. Thus Y has the quotient
topology determined by f.

For the converse, suppose that Y has the quotient topology determined by f.
Then h is continuous by Theorem 7.14 since the composite map hq = fis continuous.
To see that h is an open function, let U be open in X/~ ;and consider h(U):

h(U) = {f(x): [x] € U} = {f(x): x € ¢”'(U)} = f(q'(V)).

Now Y has the quotient topology determined by f; so the test for openness of h(U)
is to determine whether or not f ~'(h(U)) is open in X. Since

S7IWU) = £7(fq7'(U) = ¢7'(U)

and q~'(U) is open in X, then h(U) is open in Y. Thus h is an open mapping.
Summarizing, h is a continuous, open bijection and is therefore a homeo-
morphism. (]

Example 7.4.3

Theorem 7.16 can be used to replace the heuristic geometric arguments given
earlier in determining quotient spaces.

Consider, for example, the function f: R = S' from R to the unit circle
S"! defined by

f(x) = (cos 27x, sin 27x), xER.
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Then f(x) = f(y) if and only if x and y differ by an integer, so the equivalence
relation ~/is precisely the relation of Example 7.4.2(e). Since fis a continuous,
open surjection, Theorem 7.15 insures that S' has the quotient topology deter-
mined by f. Theorem 7.16 applies to show that X/~/, the quotient space of
Example 7.4.2(e), is homeomorphic to S'. The reader should perform a similar
analysis for parts (a) through (d) of Example 7.4.2.

EXERCISE 7.4

10.

11

In the definition of quotient space, show that the quotient topology really is a topology
for X/~.

Let f: X = Y be a continuous function from X onto Y and suppose that Y has the
quotient topology determined by f. Prove that a function g: Y = Z from Y to a space:
Z is continuous if and only if the composite function gf: X = Z is continuous.

Let X/~ be a quotient space of X and g: X = X/~ the quotient map. Prove:
(a) A subset O of X/~ is open in X/~ if and only if g~'(O) is open in X.
(b) A subset C of X/~ is closed if and only if ¢~!(C) is closed in X.

Consider the relation ~ on R? under which two points are related if and only if they
have the same first coordinate. Prove that R?/~ is homeomorphic to R and interpret
geometrically.

Describe an equivalence relation for R? for which the resulting quotient space is homeo-
morphic to a circle.

(a) Let ~ be the equivalence relation on the unit circle S' defined by x ~ —x,
x € S'. Show that S'/~ is homeomorphic to S' and interpret geometrically.

(b) Let =~ be the equivalence relation on the unit sphere S? defined by x ~ —x,
x € S2 Show that S*/~ is homeomorphic to the projective plane defined in
Example 7.4.2(g).

By defining suitable functions and using Theorem 7.16, redo parts (a) through (d) of
Example 7.4.2.

Let X and Y be spaces and f: X —> Y a continuous function from X onto Y. Prove:
(a) The topology of Y is a subset of the quotient topology determined by f.

(b) The quotient topology for Y determined by f is the finest topology for Y with
respect to which fis continuous.

Prove Theorem 7.15 for the case in which f'is a closed mapping.

Show that the relation =, equality for the points of a space X, determines a quotient
space X/= homeomorphic to X.

Let X be a space and ~ an equivalence relation on X for which X/~ and each equiv-
alence class [x], x € X, are connected. Prove that X is connected.
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12. Prove:
(a) If X is connected, then every quotient space of X is connected.
(b) If X is compact, then every quotient space of X is compact.
(c) If Xis a Lindeldf space, then every quotient space of X is Lindelof.
(d) If Xis locally connected, then every quotient space of X is locally connected.

13. Give an example of a Hausdorff space which has a quotient space that is not Hausdorff.

14. Give examples to show that:
(a) A quotient map may not be an open function.
(b) A quotient map may not be a closed function.

7.5 SURFACES AND MANIFOLDS

Many of the most interesting and important topological spaces are “locally
like Euclidean spaces” in the sense that each point has neighborhoods that are
homeomorphic to open sets in Euclidean spaces. This includes curves, which are
locally like R, and surfaces such as the two-sphere and torus, which are locally like
R2. The purpose of this section is to define an important class of such spaces, called
manifolds, and to develop some of their properties. In the latter part of the section
we shall see a more specialized type of manifold that requires “smoothness™ as well
as the locally Euclidean property.

Definition: A topological n-dimensional manifold or n-manifold is a second
countable Hausdorff space in which each point has a neighborhood homeomorphic
to an open set in Euclidean n-space R". A 1-manifold is called a curve, and a 2-
manifold is called a surface.

For the dimension of an n-manifold to be well defined, it must be noted that
an open set in R” is not homeomorphic to an open set in R™ unless m = n. This
fact, called the Invariance of Domain Theorem, is proved in textbooks on geometric
and algebraic topology. References are given in the suggested reading list at the end
of the chapter.

Note that the definition of n-manifold requires uniformity of dimension
throughout the manifold. Note also that, without loss of generality, the open set in
R" may be taken to be an n-dimensional open ball. Since such a ball is homeo-
morphic to R”, the definition could have specified that each point have a neigh-
borhood homeomorphic to R”. Different choices are useful in various applications.



222  SEVEN / PRODUCT AND QUOTIENT SPACES

(@
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Example 7.5.1

The unit circle S! is a 1-manifold. The required neighborhoods are
defined as follows: The open upper half circle C, = {(x, ) ES": y >
0} is homeomorphic to the open interval (—1, 1) by the map p, which
projects to the first coordinate. The inverse of this projection is the
function g,: (—1, 1) = C, defined by

a(x) =(x, V1 =x?), x€(-1,1).

Similar considerations show that the open lower half circle C, =
{(x, y) € S": y < 0} is also homeomorphic to (-1, 1). The two open
sets C; and C, suffice for all points in S* except (1, 0) and (-1, 0).
For these the open right half circle and open left half circle are suitable
neighborhoods.

In general, S” is an n-manifold. The reader is left the exercise of
extending the argument of part (a) to the general case.

Example 7.5.2

The graph of a continuous function f: R => R is always a 1-manifold.
Other familiar curves in the sense of calculus, such as those defined
parametrically, are also 1-manifolds if they do not have points of self-
intersection. In Figure 7.8, the space of part (iii) is not a 1-manifold
since the point of intersection has no neighborhood homeomorphic
to an open interval.

The reader should be aware that mathematicians use the term
“curve” in several different ways. For example, some authors refer to

(i) A 1-manifold (ii) A 1-manifold (iii) Not a 1-manifold
FIGURE 7.8
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the image of a path as a curve. This usage allows for “space-filling
curves,” which were discussed briefly in Chapter 6, and should not
be confused here with the usage of the term to denote a 1-manifold.

(b) The torus, Klein bottle, and projective plane are additional examples
of surfaces or 2-manifolds. An “open annulus,” composed of an an-
nulus with the inner and outer bounding circles removed, is also a 2-
manifold.

(c) An n-dimensional torus T" is the product of n copies of the circle S'.
Projective n-space P" is the quotient space of S” obtained by identifying
pairs of antipodal points. Both 7" and P” are n-manifolds. Of course,
the most immediate example of an n-manifold is R” itself.

(

2-Sphere Torus

Open annulus

FIGURE 7.9 Examples of 2-manifolds.

Theorem 7.17:  The product of an n-manifold and an m-manifold is an (n + m)-
manifold.

Proof: Let X and Y be an n-manifold and m-manifold, respectively. Note first
that X X Y is a second countable Hausdorff space since it is the product of two
spaces having these properties. To establish the locally Euclidean condition, consider
a point (x, y) in X X Y and let U and V be neighborhoods of x and y in X and Y
which are homeomorphic to R" and R™, respectively. Then U X V is a neighborhood
of (x, y) which is homeomorphic to R" X R™. Since this space is homeomorphic to
R™™ then X X Y is a manifold of dimension n + m. a

Definition: An n-dimensional topological manifold with boundary is a second
countable Hausdorff space X with two types of points: (a) interior points, each of
which has a neighborhood homeomorphic to R", and (b) boundary points b, each of
which has a neighborhood homeomorphic to the upper half space U" = {x = (x,,
X2, ..., Xn) € R®: x, = 0} by a homeomorphism which maps b to a point of U"
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whose nth coordinate is 0. The set of interior points of X is called the interior, Int
X, and the set of boundary points is called the boundary, 3X, of X.

Example 7.5.3

(a) A closed interval [a, b] is a 1-manifold with boundary. The interior
is (a, b) and the boundary is the set {a, b} of endpoints.
(b) As examples of 2-manifolds with boundary, note the following:
(i) A rectangle, whose boundary is its four bounding line segments.
(i) An annulus, whose boundary consists of the inner and outer
circles.
(iii) A closed cylinder, S' X [0, 1] whose boundary is the upper and
lower circles, S' X {0, 1}.

Rectangle Q
Annulus Cylinder

FIGURE 7.10 Examples of 2-manifolds with boundary.

Note that a manifold, which is also called a manifold without boundary, may
be considered the special case of a manifold with boundary in which the boundary
happens to be empty. The non-empty boundary of an n-manifold with boundary
isan (n — 1)-manifold without boundary. A rigorous proof of this intuitively plausible
fact requires the Invariance of Domain Theorem, which states that an open set in
R" is not homeomorphic to an open set in R™ unless m = n.

Definition: A closed manifold is a compact, connected manifold with empty
boundary.

The interior and boundary of a manifold are intrinsic properties of that man-
ifold and not of the space in which the manifold is embedded. Thus they must not
be confused with the terms “interior” and “boundary” for subsets of a topological
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space. For example, S? is a 2-manifold whose interior is S? and whose boundary
is empty. However, as a subspace of R3, the set S? has empty interior and each of
its points is a boundary point.

Theorem 7.18: Let X be an n-manifold without boundary and Y an m-manifold
with boundary. Then X X Y is an (n + m)-manifold with boundary and

IXXY)=XXdaY.

Proof: Note first that X X Y is second countable and Hausdorff since both factor
spaces are. Since Y = Int Y U Y, we have

XXY=(XXIntY)U(XXaY)

The preceding theorem shows that each point of X X Int Y has a neighborhood
homeomorphic to R™™, It remains to be proved that each point of X X dY has a
neighborhood homeomorphic to U™™. This follows easily, however, since if (x, y)
belongs to X X dY, then x has a neighborhood homeomorphic to R" and y has a
neighborhood homeomorphic to U™. Then (x, y) has a neighborhood homeomorphic
to R" X U™, which is homeomorphic to U™ by an obvious homeomorphism. O

This section has given only the barest of introductions to the subject of to-
pological manifolds. An advanced theorem, which will not be proved here, shows
that it is always possible to consider an n-manifold as a subspace of some Euclidean
space. It should be clear, however, that the dimension of the manifold and the
dimension of the containing space may be different. A 2-sphere, for example, cannot
be embedded in R2. References for more advanced treatments of topological man-
ifolds are given in the Suggestions for Further Reading at the end of the chapter.

A topological immersion of a closed manifold X in R™ is a continuous function
f: X = R™ such that each point x in X has a neighborhood U that is mapped by f
homeomorphically onto f(U). The usual model of the Klein bottle, which appears
in Figure 7.7, represents an immersion of the Klein bottle in R3. The Klein bottle
is a 2-manifold that cannot be embedded in R3,

Since manifolds share many geometric characteristics with R”, the study of
manifolds and related objects is often called geometric topology. Manifolds can be
specialized further by requiring a smoothness condition similar to that required for
differentiable functions. The resulting manifolds, which are defined below, are called
smooth manifolds and their study is called differential topolbgy. Introductory text-
books for both geometric and differential topology appear in the suggested reading
list at the end of the chapter.

Definition: A4 function f: U = R™ from an open set U in R" into R™ is smooth
provided that f has continuous partial derivatives of all orders. A function f: A —
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R™ from an arbitrary subset A of R" to R™ is smooth provided that for each x in A
there is an open set U containing x and a smooth function F: U = R™ such that F
agrees with fon UN A.

In the preceding definition, it is necessary that smooth functions be local
restrictions of similar functions defined on open sets so that partial differentiation
makes sense.

Definition: Let A and B be subsets of Euclidean spaces R" and R™, respectively.
A diffeomorphism from A to B is a one-to-one function f: A = B from A onto B for
which both f and the inverse function f =’ are smooth. If there is a diffeomorphism
Jfrom A onto B, then A and B are called diffeomorphic spaces.

/

Definition: A4 subset X of a Euclidean space is an n-dimensional smooth manifold
or a smooth n-manifold if each point of X has a neighborhood which is diffeomorphic
toR",

Example 7.5.4

The functions defined for S' in Example 7.5.1 are smooth and show that S is
a smooth 1-manifold. It follows similarly that S$” is a smooth manifold. The
torus and projective plane are smooth surfaces, and the graph of an infinitely
differentiable function f: R —» R is a smooth curve. The graph of the absolute
value function y = | x|, which has a sharp point at the origin, is not smooth.

+5 +5

+4 +4

+3 +3

+2 +2

11 +1
P I - 2
The graph of y=x2is The graph of y = |x| is not

a smooth curve. a smooth curve.

FIGURE 7.11
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The proof of the following theorem, which can be patterned after the proof
of Theorem 7.17, is left as an exercise.

Theorem 7.19: The product of a smooth n-manifold and a smooth m-manifold
is a smooth (n + m)-manifold.

Definition: .4n n-dimensional smooth manifold with boundary is a subset X of a
Euclidean space for which the points of X are of two types: (a) interior points, each
of which has a neighborhood diffeomorphic to R", and (b) boundary points b, each
of which has a neighborhood diffeomorphic to the upper half-space U" under a
diffeomorphism which maps b to a point of U" whose nth coordinate is 0.

The analogue of Theorem 7.18 carries over to smooth manifolds, and its
proof is left as an exercise.

Theorem 7.20: Let X be a smooth n-manifold without boundary and Y a smooth
m-manifold with boundary. Then X X Y is a smooth (n + m)-manifold with boundary
and

IXXY)=XXaY.

Example 7.5.5

The product of two smooth manifolds with boundary may fail to be smooth.
The difficulty arises from the fact that the product may fail to be smooth at
points of 34X X 3Y. For example, I = [0, 1] is a smooth 1-manifold, with oI =
{0, 1}. However, I X I is not smooth at any of the corner points (0, 0), (0, 1),
(1,0),0r (1, 1).

EXERCISE 7.5

1. Consider the 2-sphere S2, torus T, projective plane P, and closed unit interval 7. Show
that each of the following is a topological manifold. Find the dimension, interior, and
boundary in each case and determine whether or not the manifold is smooth.

(@ S*XT d IxXIxXI
b) S*xI () S*XIXI
(¢ PXT ) PXS*XI

2. Show that the subspace of R? composed of the two coordinate axes is not a manifold.
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Show that every manifold is locally compact.
4. Explain why each of the following is not a manifold:
(a) The topologist’s sine curve
(b) The topologist’s comb (Example 5.4.2)
(c) The Cantor set
(d) Hilbert space

5. Let X be an n-manifold with non-empty interior Int X and non-empty boundary 3X.
Show that Int X and 4X are manifolds without boundary having dimensions n and
n — 1, respectively. (Assume the Invariance of Domain Theorem: An open set in R" and
an open set in R™ cannot be homeomorphic unless m = n.)

6. Show that the graph of an infinitely differentiable function f/: R = R is a smooth 1-
manifold.

7. Show that the relation of being diffeomorphic is an equivalence relation for subspaces
of Euclidean spaces.

Prove Theorems 7.19 and 7.20.

9. Let X be an n-manifold with boundary and Y an m-manifold with boundary. s X X Y
a manifold with boundary? Explain.

SUGGESTIONS FOR FURTHER READING

The texts General Topology by Kelley and Topology by Hocking and Young
are recommended for additional reading on product spaces, especially for detailed
exposition on the Tychonoff Theorem (Theorem 7.11). For additional work on
quotient spaces, see Schurle’s Topics in Topology. Moise’s Geometric Topology in
Dimensions Two and Three is an excellent introduction to geometric topology. For
differential topology, Differential Topology by Guillemin and Pollack and Topology
from a Differential Viewpoint by Milnor are highly recommended.

Proofs of the Invariance of Domain Theorem can be found in Basic Concepts
of Algebraic Topology by Croom and Topology: A First Course by Munkres.
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HISTORICAL NOTES FOR CHAPTER 7

Maurice Fréchet introduced finite products of abstract spaces in 1910, but a
special case had been considered two years earlier by Ernst Steinitz (1871-1928).
The extension to countably infinite products was made by a variety of researchers
during the 1920’s, and the general definition of product space was formulated by
A. N. Tychonoff in 1930.

Tychonoff proved in 1935 that the product of any family of compact spaces
is compact. This result, now called the Tychonoff Theorem, established compactness
as the proper generalization of the properties of closed and bounded subsets of R”
to general topological spaces. Prior to the work of Tychonoff, compactness, countable
compactness, sequential compactness, the Bolzano-Weierstrass property, and other
properties had been proposed as the proper generalization. The Stone-Cech com-
pactification, which was mentioned at the end of Chapter 6, was also inspired by
the work of Tychonoff on product spaces.

Theorem 7.3, showing that connectedness is preserved by products, was proved
by Hans Hahn in 1932. Infinite dimensional Euclidean space R was introduced
by Fréchet and is sometimes called Fréchet space. The remarkable fact that Fréchet
space is homeomorphic to Hilbert space was proved by R. D. Anderson in
1966. The Alexander Subbasis Theorem was proved in 1939 by J. W. Alexander
(1888-1971).

Since the quotient space construction developed from the idea of pasting one
part of a figure to another part, it is probably impossible to single out the originator.
The basic quotient construction was used by A. F. Mobius in 1858 and by Felix
Klein (1849-1925) in 1882 in defining the Mdbius strip and Klein bottle, respec-
tively. Explicit use of the quotient space construction beyond the identification
idea appeared, for a special case, in the work of R. L. Moore in 1925 and P. S.
Alexandroffin 1927. The general quotient space and quotient map were introduced
by R. W. Baer and F. Levi in 1932,

The systematic study of surfaces and manifolds dates back to the work of
Bernard Riemann, A. F. Mobius, Enrico Betti, and others in the mid-nineteenth
century.







Separation Properties
and Metrization

The term “‘separation property” refers to a characteristic of topological spaces
describing those pairs of points or those pairs of sets which can be enclosed in
different open sets. The Hausdorff property is an example since it states that any
two distinct points are contained in disjoint open sets.

There are some separation properties that are weaker than the Hausdorff
property and others that are stronger. The property of being a metric space is
stronger, for example, since Example 4.5.3 guarantees that every metric space is
Hausdorff. In the latter part of the chapter we shall consider combinations of to-
pological properties which insure that the topology of a given space is generated by
a metric.

8.1 T, T,, AND T,-SPACES

The separation properties to be studied in this chapter are denoted sequentially
To, T, T», T3, T, in order of increasing strength. The Hausdorff property is property
T,. Its definition is repeated here to emphasize the sequential progression of the
separation properties or separation axioms, as they are sometimes called.

Definition: A space X is a To-space if for each pair a, b of distinct points of X,
there is an open set containing one of the points but not the other.

Definition: A space X is a T;-space if for each pair a, b of distinct points of X,
there are open sets U and V in X such that a belongs to U but b does not, and b
belongs to V but a does not.

Definition: A space X is a T,-space or Hausdorff space if for each pair a, b of
distinct points of X, there are disjoint open sets U and V such that a belongs to U
and b belongs to V.

It should be clear that every T»-space is T, and that every T)-space is Ty. In
other words, Ty, T, T, is the arrangement of the properties in order of increasing
strength.

Theorem 8.1: A4 space X is a T;-space if and only if each finite subset of X is
closed.

231
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Proof: Suppose X is T,. It is sufficient to prove that each singleton set {a} is
closed since any finite set is the union of a finite number of such sets. If b is a point
of X different from a, there is an open set V containing b but not a. Thus b is not a
limit point of {a}, so {a} is a closed set.

For the converse, suppose each finite subset of X is closed and consider distinct
points a, b in X. Then

U=X\{b}, V=2X\{a}

are open sets, U contains a but not b, and V contains b but not a. Thus X is T,. O

The following examples show that a Ti-space may fail to be T, and that a T;-
space may fail to be T>.

Example 8.1.1

(@) A Ty-space which is not T',.
Let X = {a, b} be a two-point set with open sets &, {a}, and
X. Then given two distinct points of X, one of them (namely a) is
contained in an open set which does not contain the other. However,
every open set containing b also contains q, so X is not T;.
(b) A T\-space which is not T5.
Let X denote the set of real numbers with the finite complement
topology. Then for distinct points g, b in X,

U= X\{b}, V=2X\{a}

are open sets such that U contains a but not b and ¥V contains b but
not a. Thus X'is T.

Since non-empty open sets in X must have finite complements, there cannot
exist disjoint open sets for any pair of distinct points of X.

The proof of the following theorem is left to the reader. The HausdorfT case
has already been proved in Theorem 7.9.

Theorem 8.2 The product of T;-spaces is a T;-space fori = 0, 1, 2.

EXERCISE 8.1

1. Prove that the T, and T properties are hereditary and topological properties.
2. Prove Theorem 8.2.
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Let X be a space, Y a T,-space and f, g: X = Y continuous functions.
Prove:

(@) {xE X: f(x) = g(x)} is a closed subset of X.
(b) If fand g agree on a dense subset of X, then /= g.

Let f: X = Y be a continuous function and assume that Y is 7. Prove that {(x,, x;) €
X X X: f(x)) = f(x2)} is a closed subset of X X X.

Definition: A Ty-space is a space in which each sequence has at most one limit. A Ty~
space is a space in which each compact set is closed.

Prove that:

(a) Each T»-spaceis Ty;.

(b) Each T);-space is Ty.

(c) Each Tyy-spaceis T;.

Definition: A simple order relation for a set X is a relation < on X satisfying:
(1) If x, y are distinct members of X, then either x <y ory < x.

(2) Ifx<y,theny < x is false.

(3) Ifx<yandy<z thenx < z.

A set X which has a simple order relation is called a simply ordered set.

Definition: Let X be a simply ordered set with respect to the simple order relation <,
and let B be the family of subsets of X consisting of X and all subsets of the following

types:

() {(yEX:x<ylLx€EX;

2 {(yEX:y<x},xEX;

(3) {(yEX: z<y<x)x,zEX.

Then B is a basis for a topology for X called the order topology generated by <.
(a) Show that the family B of the preceding definition is actually a basis.

(b) Show that a simply ordered set with its order topology is a Hausdorff space.

(¢) Define the terms upper bound and least upper bound for subsets of a simply or-
dered set.

This problem involves the order topology defined in the preceding problem.

Definition: Let X be a simply ordered set with its order topology. The space X has a
gap if there are points x, y in X with x <y for which there isno z in X withx < z < y.
The space X is called order complete provided that each non-empty subset of X that has
an upper bound has a least upper bound.

Prove: If T is the order topology for a simply ordered set X, then (X, T) is connected if
and only if it is order complete and has no gaps.

This problem involves the order topology defined in Problem 6 above. Let X be a compact,
connected T,-space with exactly two non-cut points a, b. Show that the topology of X
is an order topology.
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8.2 REGULAR SPACES

The properties Ty, T, T, describe the separation of pairs of points by open
sets. The next properties in the sequence describe the separation of a point from a
closed set and the separation of a pair of disjoint closed sets. Matters are simplified
by requiring that each point be a closed set; in other words, it is required that each
space under consideration be a T-space.

Definition: A T;-space or regular space is a T,-space X such that for each closed
subset C of X and each point a not in C, there exist disjoint open sets U and V in
Xsuchthata€ Uand CC V.

If X is T; and a, b are distinct points of X, then C = {b} is a closed set which
does not contain a. Thus there are disjoint open sets Uand Vwitha€ Uand b €
V. Thus each T;-space is 7.

Theorem 8.3: A4 T,-space X is regular if and only if for each point a in X and
each open set U containing a, there is an open set W containing a whose closure is
contained in U.

Proof: Suppose first that X is regular and let a be a point of X and U an open set
containing a. Then X\U is a closed set which does not contain a, so there are disjoint
open sets W and V such that

aew, X\UCYV.

Since

wCX\V.
and X\V is closed, then

WCX\V.
Thus

WCX\VCX\(X\U) =U,
so W is the required open set.
Suppose now that the latter condition of the theorem holds and let a be a point

and C a closed set not containing a. Then X\C is an open set containing a, so there
is an open set W such that

aEW, WCX\C
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Then W and X\W are disjoint open sets containing a and C, respectively, so X is
regular. a

Theorem 8.4: A T,-space X is regular if and only if for each point a in X and
closed set C not containing a, there exist open sets U and V in X such that a € U,
CCV,and U and V are disjoint.

Proof: The condition clearly implies regularity for a T;-space X since it requires
more than disjointness of the open sets U and V; it requires that their closures be
disjoint as well. Thus it need only be proved that each regular space satisfies the
condition of the theorem.

Suppose then that a is a point and C a closed set which does not contain a.
By Theorem 8.3, there is an open set W such that

a€EW, WCX\C

Applying the same theorem again, there is an open set U containing a with U C W.

Let V = X\W.
Then
UCWCWCX\C
so0
CCX\W=V.
Since
ONv=0nX\W)CWnX\W) =g,
then U and V are the required open sets. O

Example 8.2.1 A Hausdorff Space which is Not Regular

Consider the closed upper half-plane U = {x = (x;X;) € R% x, = 0} with the
topology defined as follows: For x = (x;, x3) in U with x, > 0, a local basis at x
consists of open balls B(x, r), r < x,, in the usual metric d. For a point z =
(z,, 0) in U and positive number 7, let

D(z,n={z} U{y=0n,»)EU:d(y,z)<r and y,>0}.

Thus D(z, r) consists of the point z on the horizontal axis and the half of the
ball of radius r centered at z which is strictly above the axis. The collection of
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sets D(z, r), r > 0, is a Jocal basis at z. The two types of basic open sets are shown
in Figure 8.1.

//%%>Mz,r)
[
z
FIGURE 8.1

The collection of all sets B(x, r), D(z, r), r > 0, described above is a basis for the
topology for U.

The space U is easily seen to be Hausdorff. It is not regular since for a
point a on the horizontal axis R, C = R\{a} is a closed set for which there do
not exist disjoint open sets containing a and C.

Theorem 8.5:  The product of any family of regular spaces is regular.

Proof: Let {X,: a € A} be a family of regular spaces and consider the product
space X = Il.ex X,. Let a be a point of X and U an open set containing a. By
Theorem 8.3, it is sufficient to show that there is an open set V in X containing a
whose closure is contained in U. Let

ﬁ; pal(Us)

be a basic open set in X which contains a and is contained in U, where each U, is
an open set in X containing p,(a). Since each space X, is regular, there is for each
i=1,...,nanopensetV, inX, for which

pal(a) e Va,-: I-/'t:x,‘ C Uai'

Then

= é pal(Va)
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is an open set in X, V contains a, and
n n
V= ﬂl pal(Va,)CcNpl(u,)CU.
i= i=]

Thus X is regular. a

EXERCISE 8.2

1. Show that regularity is an hereditary and topological property.

2. LetA={l/m:n=1,2,3,...} and let T denote the usual topology for R.
(a) Show that B = T U {R\A] is a subbasis for a topology T’ for R.
(b) Show that (R, T’) is Hausdorff.

(c) Show that (R, T') is not regular. (Hint: There do not exist disjoint open sets con-
taining 0 and 4.)

Prove that every compact Hausdorff space is regular.

4. Definition: A space X is a T-space or Urysohn space provided that for each pair a, b
of distinct points of X, there exist open sets U and V with disjoint closures such that a €
Uandbev.

(a) Prove that each regular space is a Urysohn space.
(b) Prove that each Urysohn space is Hausdorff.

(c) Give an example of a Hausdorff space that is not Urysohn and an example of a
Urysohn space that is not regular.

5. In Example 8.2.1, show that the subspace topology for R as a subset of U is the discrete
topology. Use this fact to justify the statement that R\{a} is a closed subset of U.

8.3 NORMAL SPACES

Definition: A T)-space X is a T¢space or normal space provided that for each
pair A, B of disjoint closed sets in X there exist disjoint open sets U and V such that
A is contained in U and B is contained in V.

Since each singleton set in a normal space is closed, it follows easily that every
normal space is regular. The following characterizations of normality can be proved
by methods parallel to those used for Theorems 8.3 and 8.4.
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Theorem 8.6: A T,-space X is normal if and only if for each closed subset A of
X and open set U containing A, there is an open set W containing A whose closure
is contained in U.

Theorem 8.7: A4 T,-space X is normal if and only if for each pair A, B of disjoint
closed sets in X there exist open sets U and V such that

ACU BCV, UNnv=g.

In our new terminology, the corollary to Theorem 6.5 can be rephrased as
follows:

Theorem 8.8: Every compact Hausdorff space is normal.
The next theorem is considerably stronger.

Theorem 8.9: Every regular Lindeldf space is normal.

Proof: Let A and B be disjoint closed subsets of a regular Lindeldf space X. By
Theorem 8.4, there is for each a in A an open set O, whose closure does not intersect
B. Let A denote the resulting open cover of A. By the same argument, there is also
an open cover B of B by open sets whose closures do not intersect A. Then A U
B U {X\(A VU B)} is an open cover of X. Since X is Lindeldf, this open cover has a
countable subcover. Thus there are countable sequences {U,}s.; and {V,}ne; of
open sets such that

aAcUuvu, BcUvVv, 0,nNB=g V,NA=G, n=12,....

n=1] n=1
For each positive integer n, let
n _ n _
U, =UN\U 7, v, =v\U T,
im -

Note that U, and V', are disjoint for all integers m and n. (For m < n, V. was
subtracted in the construction of Uy, so U, N\ V,, = &.) Since U, is disjoint from
B and V, is disjoint from A for all n, then

Q0 (-]
AcUuv, BcUrw,.

n=1 n=1
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Since each finite union of closed sets is closed, then U, and V', are open sets for
each integer n. Thus

v=Uu, v=Ur,

n=1 n=1

are disjoint open sets containing A and B, respectively, so X is normal. O
Corollary: Every second countable regular space is normal.

The next theorem will be useful in several examples. The proof uses facts
about cardinal numbers developed in Problems 9 and 10 of Exercise 2.2. The
following terminology will also be helpful. A set 4 which is equipotent to [0, 1] is
said to have the cardinal number of the continuum, and we write card A = c. Since
[0, 1] and R have the same cardinal number, then card R = c.

Theorem 8.10: If X is a separable normal space and E a subset of X with card
E = ¢, then E has a limit point in X.

Proof: Suppose to the contrary that X is a normal space with countable dense
subset D and subset E such that card E = ¢ and E has no limit point. Then for each
subset Y of E, Y and E\Y are disjoint closed sets. Since X is normal, there exist
disjoint open sets Uy and Vy containing Y and E\Y, respectively. Consider the
Sunction h: P(E) = P(D) from the power set of E to the power set of D defined as
Jfollows:

hY)=UyND, YE®PE).
The denseness of D will allow us to conclude that h is one-to-one. Suppose Y;,
Y, are distinct members of P(E). Then there is some point y in one of the two sets
but not in the other. For definiteness, suppose y € Y, and y & Y;. Then y € Uy,
and y € Vy,, so Uy, N Vy, is a non-empty open set in X. Since D is dense, then
U,NV,,ND+ .

But any point in this set is in h(Y,;) = Uy, N\ D but not in h(Y>), since h(Y)) is disjoint
from V,,. Thus if Y; # Y,, then h(Y,) # h(Y) and h is one-to-one. Then

card P(E) < card P(D).
But since D is countable and card E = c,

card P(D) < card R < card P(R) < card P(E),
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and the relation for the power sets should be
card P(D) < card P(E).

This contradiction shows that E must have a limit point. O

Example 8.3.1 A Regular Space that is Not Normal

Let X denote the real line with the half-open interval topology of Example 4.3.4.
As we shall see, the half-open interval space X is both regular and normal. It is
the product space S = X X X, called the Sorgenfrey plane, that is regular but not
normal.

In order to establish that X is regular, note first that each basic open set
[a, b), a < b, is also closed. If a € X and C is a closed set not containing a, then
there is a basic open set [a, b) contained in X\C. Then [a, b) and X\[a, b) are
disjoint open sets containing a and C, respectively. Thus X is regular.

It is left as an exercise for the reader to show that X is Lindel6f. In view
of Theorem 8.9, X must be normal.

Now consider the Sorgenfrey plane S = X X X, which has as a basis all
product sets of the form

[a, b) X [c, d).

Inspection of Figure 8.2 reveals that this basis imposes the discrete topology on
the diagonal line

E={x,)EXXX:x+y=1}.

FIGURE 8.2



8.3 / Normal Spaces 241

Since no point outside E is a limit point of E, then E is a subset of S such that
card E = c and E has no limit point.

The set of rational numbers is dense in X, so X is separable. Since the
product of two separable spaces is separable, then S is separable. Theorem 8.10
now applies to show that S is not normal. If S were normal, the set E would
have a limit point. Note, however, that S is regular since the product of regular
spaces is regular.

Thus the Sorgenfrey plane is a regular space that is not normal. In addition,
the Sorgenfrey plane is first countable and separable but not Lindelof. (If S were
Lindelof, then it would be normal by Theorem 8.9.) Since X is Lindelof and
normal, this example also shows that the product of two Lindelof spaces can fail
to be Lindeléf and that the product of two normal spaces can fail to be normal.

Theorem 8.11:  Every metric space is normal.

Proof: Let A and B be disjoint closed subsets of a metric space (X, d). For each
x in A, let 8, be a positive number such that the open ball B(x, é,) is disjoint from
B. For each y in B, let 8, be a positive number such that B(y, é,) is disjoint from A.
Then

U=U Bx, 48, v=U B, 45
XEA YEB

are open sets containing A and B, respectively. To see that U and V are disjoint,
suppose UN V # &. Then there is an x € A and a y € B such that

B(x, 45,) N B(y, 48,) #+ .
Then
d(x, y) <46, + §8, < §d(x, y) + §d(x, y) = d(x, y),

an obvious contradiction. Thus U and V are disjoint, so X is normal. 0

Theorem 8.11, under slightly different terminology, was assigned as a problem
in Exercise 3.2.

There are separation properties other than Ty, T, T;, T3, T4, and the metric
property. We shall see a most important one, sometimes called the T3; property,
in the next section. Several others are introduced in the exercises for this chapter.
Incidentally, metric spaces are not called Ts-spaces. The T's designation is usually
applied to completely normal spaces, which are defined in the exercise for this
section. The Suggestions for Further Reading at the end of the chapter contain
additional information about the separation properties.
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EXERCISE 8.3

1. Show that every closed subspace of a normal space is normal.
Prove Theorems 8.6 and 8.7.

Prove that every locally compact Hausdorff space is regular. (Hint: Consider the one-
point compactification.)

4. Prove:
(a) Every closed subspace of a Lindeldf space is Lindel6f.
(b) Every uncountable subset of a Lindeltf space has a limit point.

5. Definition: A space X is completely normal if for each pair A, B of separated subsets of
;\; tl;/ere exist disjoint open sets U and V such that A is contained in U and B is contained
Prove:

(a) Every completely normal space is normal.
(b) Every metric space is completely normal.
€c) A space X is completely normal if and only if every subspace of X is normal.

6. Consider the closed upper half plane M = {(x;, x;) € R%: x; = 0} with the topology
defined as follows: For x = (x;, x2) € M with x, > 0, a local basis at x consists of all
open balls B(x, 1), r < x,, in the usual metric d. For a point z = (z;,0)in M and r > 0,
let A(z, r) be the union of {z} with the open ball of radius r with center at (z,, r). Thus
A(z, r)is an open ball tangent to the horizontal axis together with the point z of tangency.
The collection of sets A(z, r), r > 0, is a local basis at z.

FIGURE 8.3

The set M with the topology generated by all sets of the form B(x, r), A(z, r) described
above is called the Moore plane or the Niemytzki plane.
Prove the following properties of the Moore plane M.

(a) M is regular and separable.
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(b) M is neither Lindel6f nor normal.
(c) M is first countable.
(d) M is not locally compact.

8.4 SEPARATION BY CONTINUOUS FUNCTIONS

Definition: Let X be a space and f: X = R a continuous real-valued function on
X. For subsets A and B of X, f separates A and B provided that there exist distinct
real numbers a and b such that f(A) = a and f(B) = b. A function which separates
a singleton set A = {x} from a set B is said to separate the point x from the set B;
a function which separates the singleton sets A = {x} and B = {y} is said to separate
the points x and y.

In the terminology of the preceding definition, a function f: X = R is one-
to-one if and only if fseparates each pair of distinct points of X.

Example 8.4.1
(@) The projection map p,: R? = R defined by

pilxi, x) =x1  (x1, x) ER?,

separates each pair A4, B of distinct vertical lines.
(b) The function f: R = R defined by

0 ifx=<0
X =9x if0<x<l
1 ifx=1

separates the sets 4 = (—o0, 0] and B = [1, o0).

(c) For each pair x = (x;, x;) and y = (3, y») of distinct points of R?,
there is a continuous function f: R?> = R which separates x and y. In
fact, f may be taken to be the projection p; on the first coordinate or
the corresponding projection p, on the second coordinate. Note that
this example did not claim that there is one function that separates
all distinct pairs of points of R?; the claim was that once the points
X, y were specified, then a function could be found to separate them.
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Theorem 8.12: Let X be a T)-space.

(a) If for each pair x, y of distinct points of X there is a continuous function
Jf: X =» R which separates x and y, then X is Hausdorff.

(b) If for each point x in X and closed set C not containing x there is a
continuous function f: X = R that separates x and C, then X is regular.

(c) If for each pair A, B of disjoint closed sets in X there is a continuous
Jfunction that separates A and B, then X is normal.

Proof: The following argument is for part (c). The completely analogous arguments
Jor (a) and (b) are left to the reader.

For disjoint closed sets A and B in X, let f: X = R be a continuous function
that separates A and B. Thus f(4) = a and f(B) = b for some distinct real numbers
a and b. Since R is Hausdorff, there exist disjoint open sets O, and O, containing
a and b, respectively. Then

U=f(0.), V=F"(0y

are disjoint open sets in X containing A and B, respectively, so X is normal. 0

The reader should note that the only property of R used in the proof of
Theorem 8.12 is the fact that it is Hausdorff, so R could be replaced in the theorem
by an arbitrary T,-space. In practice, however, most functions used to separate
points or sets are real-valued.

The implications of parts (a) and (b) of Theorem 8.12 are not reversible. In
other words, there are examples of Hausdorff spaces X with distinct points x and
y for which no continuous real-valued function on X separates x and y. There are
also examples of regular spaces X with point x and closed set C-not containing x
for which no continuous real-valued function on X separates x and C. The condition
of part (c), however, is equivalent to normality, and the proof of this is the primary
object of the present section. This celebrated result, known as Urysohn’s Lemma,
is one of the most remarkable theorems of topology. A definition and two prepa-
ratory lemmas will be needed.

Definition: A dyadic number is a number which can be expressed as a quotient
of two integers in which the denominator is a power of 2.

Thus the dyadic numbers are all the rational numbers which can be expressed
in the form r/s where ris an integer and sis 2° = 1,2,22=4,23=8,....
The proof of the first lemma is left as an exercise.

Lemma 1: The set of dyadic numbers is dense in R.
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The second lemma is technical in nature, but its utility will be apparent near
the end of the proof of Urysohn’s Lemma. Those who wish to skip Lemma 2
temporarily and refer to it when it is needed are invited to do so.

Lemma 2: Let X be a space and D a dense subset of the set R* .of non-negative
real numbers. Suppose that for each member t of D there is an open set U, in X such
that:

(@ ift;<t,, thenU, CU,, and
(b) Uep U, =X
Then the function f: X = R defined by

fix) =glb{teD:x€E U,}, x€EX,

is continuous.

Proof: It should first be noted that f is well-defined. This follows easily from the
facts that each point x in X is a member of at least one set U, and every subset of
R* has a greatest lower bound.
By Theorem 4.11, continuity can be proved by showing that there is a subbasis
§ for the topology of R such that f~(S) is open in X for each S in §. Consider the
usual subbasis § consisting of all subsets of the form (—oo, a) and (a, ), a ER.
For the first type of subbasic open set,

fi(—,a)= (xEX:f(x) <a}=U {U:tED, t<a}
The last equality follows from the fact that f(x) < a if and only if x € U, for some

t < a. Thus f~'(—0, a) is a union of open sets and is therefore open in X.
For a subbasic open set (a, ©), a € R, consider the complement

X\f(a, ) = {xE X: f(x) < a}.
It will be shown that {x € X: f(x) < a} is the set N {U,:t € D, t > a}. Now if
f(x) < a and t is a member of D with a < t, then there is a member s of D with
s <tandx € U;. Then
x€EU,CU,CU,
so x € U, for all members t of D with t > a. Thus

(xEX:flx) <a})CN {U.:tEDandt> aj.

Suppose now that x belongs to the intersection of all U, for which t € D and t > a.
Let € be a positive number. Since D is dense in R, there is a member s; of D with
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a <s;<a+ e Then x € U,,. Again using the denseness of D, there is a member
52 0f D such that s; < s; < a + ¢. Then

U, C U,
so x € Us,. Hence
fix) <s;<a+e
Since € was an arbitrary positive number, it follows that f(x) < a. Thus
X\fa, 0)={(xEX:fix) <a}=N{U:tED and t>a}

is the intersection of closed sets and is therefore closed. Thus f ~'(a, ©) is open in
X, and f is continuous.

Theorem 8.13: Urysohn’s Lemma In order that a T,-space X be normal it
is necessary and sufficient that for each pair A, B of disjoint closed subsets of X
there exist a continuous function f: X = [0, 1] such that f(A) = 0 and f(B) = 1.

Proof: The sufficiency of the condition is proved by Theorem 8.12. For the ne-
cessity, consider disjoint closed subsets A and B of X. Let D denote the set of positive
dyadic numbers. Since A is contained in the open set X\B, Theorem 8.6 guarantees
the existence of an open set U, such that

ACU, U,CX\B
Again applying Theorem 8.6, there exist open sets Uy and Uy such that
ACU, Ij;C U, U;C U, IngX\B.

By inductive application of the same reasoning, there exists for each dyadic rational
number t between 0 and 1 an open set U, such that

ACU, UCX\B
and, for s < t, U, C U,. We extend this collection to a family of open sets U,, one
Jfor each positive dyadic number t, by defining U, = X fort = 1.
According to Lemma 2, the function f: X = R defined by
f(x) =glb{tE D: xE U,}

is continuous. Since A C U, for all t € D, then f(x) = 0 for each x in A. Since points
of B lie in U, only for t = 1, then f(x) = 1 for each x in B. a
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Corollary: In order that a T)-space X be normal it is necessary and sufficient
that for each pair A, B of disjoint closed subsets of X there exist a continiious real-
valued function f on X which separates A and B.

Proof: The sufficiency of the condition is proved by Theorem 8.12, and the necessity
is an immediate consequence of Urysohn’s Lemma. 0

A function f of the type described ih Urysohn’s Lemma is called a Urysohn
Jfunction for the closed sets 4 and B. Note that a Urysohn function for 4 and B
maps each point of 4 to 0 and each point of B to 1. This means that

ACSN0), BCSfT'(D,

but it does not necessarily mean that 4 equals f~'(0) or that B equals f~!(1). Re-
quiring equality produces a stronger property than normality. This property is de-
veloped in one of the exercises for this section.

Definition: A completely regular space is a T)-space X with the property that for
each point x in X and each closed subset C with x & C, there is a continuous real-
valued function on X which separates x and C.

According to Theorem 8.12, every completely regular space is regular. By
Urysohn’s Lemma, every normal space is completely regular. Thus complete reg-
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ularity fits between T3 and T, in the scheme of separation axioms, and it is often
assigned the designation T3,. Complete regularity is an important topological prop-
erty, especially for the study of function spaces. We shall consider this property
further in the last section of this chapter, which defines the famous Stone-Cech
compactification.

Recall that for a function F: X —> Y and subspace A4 of X, the function f =
F|4: A = Y defined by

S(x) = Fx), x€A,

is called a restriction of F, and F is called an extension of f. It is always a simple
matter to define the restriction of a function to a given subspace. Of much greater
interest and importance is the problem of finding a continuous extension F: X —»
Y of a given continuous function f: 4 = Y. This is called the extension problem
in topological research. Some of the deepest theorems of topology deal with the
extension problem. Our next theorem, the Tietze Extension Theorem, is perhaps
the most famous of all the results related to the extension problem; it shows that
continuous extensions always exist for real-valued functions defined on closed sub-
sets of normal spaces.

Theorem 8.14: The Tietze Extension Theorem Let X be a normal space,
A a closed subset of X and f: A = R a continuous function. Then f has a continuous
extension F: X = R.

Proof: As the first step of the proof, note that the interval [0, 1] may be replaced
in Urysohn’s Lemma by any closed interval [a, b] with a < b. This is a direct
consequence of the fact that [0, 1] is homeomorphic to [a, b] under a homeomorphism
which maps 0 to a and 1 to b.

Suppose then that X is a normal space, A a closed subset of X, and f: A = R
a continuous function. As a first case, we make the additional assumption that the
image f(A) is a subset of [-1, 1]. Let

A= {xE€EA:f(x) <—1/3}, B, ={xEA:f(x)=1/3).
Then A, and B, are closed subsets of A, and since A is closed in X, then A; and B,
are closed subsets of X. By Urysohn’s Lemma with [—1/3, 1/3] replacing [0, 1],
there is a continuous function
h: X = [-1/3, 1/3]
such that

fi(A) = =1/3, fi(B) = 1/3.
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Note that for each x in A,
1/ = filx)| =< 2/3.
Now consider the function f' defined on A by
S'(x) = fx) = fitx), x€EA.
Then f' maps A into the interval [—2/3, 2/3]. Let
Ay= {XEA:f'(x) = —2/9}, By={xEA:['(x)=2/9}.
There is a Urysohn function
S X = [-2/9, 2/9]
such that
JAA) = =2/9, fAB3) = 2/9.
Note that for each x in A,
L0 = (filx) + fo(x)| = |f'(x) = fo(x)| < 4/9 = (2/3)".

Proceeding inductively, there exists a sequence {f,}x; of continuous
Jfunctions

j;:.]{_*,[2n—l/3n"zn—l/37/

such that

N
() lf(x) - Sl s @3t xea

n=1]

Since the series T2, 2"'/3" is convergent and | f,(x)| < 2"~1/3" for all x in X,
then the series 2., f-(x) converges to a real number F(x) which lies in the interval
between

o

> -2"i3"= -1 and 3 2"/3" = 1.

n=1 n=1]

Inequality (1) insures that F(x) = f(x) for all x in A.
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It remains to be proved that F is continuous. Let x be a member of X and O

an open set in R containing F(x). Let € be a positive number for which the interval
(F(x) — €, F(x) + €) is contained in O. Let N be a positive integer for which

S 2By <en

n=N+1

Since the functions fi, f2, . . ., fx are continuous, there are open sets V;, V,, ...,
Vx in X containing x such that for y in V,,

[fax) = fu))| <€/2N, 1<n<N.

Then ify €N, V,,

© b
|F(x) — F)| = |2 fax) — 2 ful¥)

n=1 n=1
N ©

< 2 ) =+ 2 1 fulx) = fulD)]
n=1 n=N+1

< N(¢/2N) + % (2/3)" < §/2 +e2=c¢e

n=N+1
Thus V = M., V, is an open set in X containing x such that if y E V,
F(y) € (F(x) — ¢, F(x) + ¢) C O.
In other words,
Fwv)co, VCFo),

so F is continuous. This completes the proof of the Tietze Extension Theorem under
the assumption that f(4) C [—1, 1].

To complete the proof, suppose that f: A — R is simply a continuous function
whose image may not be a subset of [—-1, 1]. Since R is homeomorphic to each open
interval, there is a homeomorphism h: R —=» (—1, 1). Then hf: A — R is a continuous
Sfunction whose image hf(A) is a subset of [—1, 1]. By what has already been proved,
hf has a continuous extension F': X — [—1, 1].

There may be a temptation to claim at this point that h™'F' is the desired
extension of f, but this would be wrong. The reason is that F' may take on the values
—1 or 1 at which h™ is not defined. This difficulty can be overcome, however, by
one more Urysohn function. Let

B={x€X: |F(x)| =1)}.
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Then A and B are disjoint closed subsets of X so there is a Urysohn function
& X = [0, 1] such that

&B)=0, g4)=1

Then for x € X, the product g(x)+ F'(x) belongs to (—1, 1) and is therefore in the
domain of h™'. Define F: X = R by

F(x) = h™'(g(x)+ F'(x)), x€X.

Then F is continuous, and for a € A,
F(a) = h™'(g(a)- F'(a)) = h™'(1- hf(a)) = fla),

so F is the desired extension of f. a

Note in the proof of the Tietze Extension Theorem that if fis bounded, then
the extension F may be chosen to be bounded also.

EXERCISE 8.4

Prove parts (a) and (b) of Theorem 8.12.
2. Prove that the set of dyadic numbers is dense in R.

. Suppose A and B are subsets of a space X and that there is a continuous function
f: X = R that separates 4 and B. Show that there is a continuous function g: X —
R for which g(4) = 0 and g(B) = 1.

4. Prove that a T;-space X is completely regular if and only if for each point x in X and
closed set C not containing x there is a continuous function f: X = R such that
f(x)=0and f(C)= 1.

5. Prove:
(a) Complete regularity is hereditary.
(b) The product of completely regular spaces is completely regular.

6. Show that the tangent function tan: (—/2, 7/2) = R has no continuous extension to
the one-point compactification of (—=/2, #/2).

7. Let X be a T)-space satisfying the extension condition of Theorem 8.14: For each
continuous function f: 4 = R from closed subset 4 of X to R there is a continuous
extension F: X = R.
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Prove that X is normal. (Hint: For disjoint closed subsets 4 and B of X, define
f:AUB—> Rby
0 ifxe4

S = [1 ifxeB.

Extend to a Urysohn function.)

Definition: A subset A of a space X is a G; in X provided that A is the intersection of
a countable collection of open sets. A Trspace X is perfectly normal if each closed set
in X is a G;.

Prove:
(a) Every metric space is perfectly normal.

(b) X is perfectly normal if and only if for each pair A4, B of disjoint closed sets in X
there is a continuous function f: X = [0, 1] such that

A=f70), B=f').

(Hint: To see that perfect normality implies the stated condition, consider a closed
set A. Then A = N%, U, where each set U, is open, and there is a Urysohn function
f, for A and X\U,, n= 1. Let

Ja) = 2 flx)/2"

n=1
For disjoint closed sets 4 and B, let

foy == ex)

T ) + o)’

Prove that a T-space X is completely regular if and only if for each x in X and closed
set C not containing x there is a continuous function f: X — R such that

S(x) € f(C).

Let X be a normal space, 4 a closed subset of X, and f: 4 = R" a continuous function.
Prove that fhas a continuous extension F: X — R".

Let (X, d) be a metric space with disjoint, non-empty, closed subsets 4 and B. For x
in X, define

d(x, A)

GV ErTY )

Show that f'is continuous and conclude that every metric space is normal.

Let X be a space, {a,}, a sequence of positive numbers for which 232, a, converges
to a real number b, and {f,}:x, a sequence of continuous functions f,: X = R
for which

[fX)| = an, xEX.
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Prove: For each x in X, the series 22, f,(x) converges to a real number f(x) in
[—b, b). The function f'so defined is continuous. (Hint: Review the continuity part of
the proof of the Tietze Extension Theorem.)

Definition: Let X be a space, (Y, d) a metric space, and {f,: X = Y}=, a sequence of
Sunctions from X to Y. Then {f, }=, converges uniformly to a function f: X —.Y provided
that for each positive number e there is a positive integer N such that

d(fu(x), f(x)) <e

foralln= N and x in X.

Prove: If a sequence {f,}= of continuous functions from X to Y converges
uniformly to a function f: X = Y, then the limit function fis continuous. (Hint: See
Example 3.7.6.) ’

(a) In the proof of the Tietze Extension Theorem (Theorem 8.14), show that F is
continuous by proving it to be the limit of a uniformly convergent sequence of
continuous functions.

(b) In Problem 12 above, prove the continuity of the limit function f* by showing that
[is the limit of a uniformly convergent sequence of continuous functions.

Prove Dini’s Theorem: Let { f,: X = R}, be a sequence of continuous functions from
a compact space X into R for which

LX) <fin(x), xEX,n=1,2,3,....

Suppose that { f,(x)}; converges for each x in X to a real number f(x) and that the
limit function f: X = R is continuous. Then { f,}7x| converges to funiformly.

Let f: A = Y be a continuous function from a dense subset 4 of a space X into a
Hausdorff space Y. Prove that / has at most one extension to a continuous function
F-X—>Y.

Let X be a T)-space with the following property: For each closed subset 4 of X and
continuous function f: A = {a, b} from A into a discrete two-point space {a, b}, f has
a continuous extension F: X — {a, b}. Prove that X is totally disconnected.

8.5 METRIZATION

Metrizability, the property of being homeomorphic to a metric space, is the

strongest of the separation properties consideréd in this text. Metric spaces are
reasonably easy to work with and have been studied extensively. It is therefore
important to have criteria which insure that the given topology of a space is generated
by a metric. The problem of determining properties that imply metrizability is
called the metrization problem. In this section we shall prove the famous Urysohn
Metrization Theorem and state without proof a more recently discovered collection
of necessary and sufficient conditions for metrizability.
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Definition: A4 topological space (X, T) is metrizable provided that there is a metric
d for X for which the metric topology generated by d is identical with the original
topology T.

Theorem 8.15: The product of a countable collection of metric spdces is met-
rizable.

Proof: This result has been previously assigned as an exercise for both the finite
case (Theorem 7.6) and the infinite case (Problem 13, Exercise 7.2). The proof
presented here is for the infinite case. Let {(X,, d,)}w-1 be a countably infinite
collection of metric spaces. It must be shown that the product topology for X =
I12; X, is generated by a metric. The metric to be used is similar to the product
metric of Section 3.6, with allowance made for the infinite number of coordinates
involved. ‘ :

As a preliminary step, note first that every metric space (Y, p) has an equivalent
metric p' in which Y is bounded: p' is defined by

p(yl: yZ)

3 ./ 1 ’ EY'
1+ y) 2"

p'(yl: yZ) =

It is left as an exercise to show that p' is a metric equivalent to p and that (Y, p')
has diameter at most 1. (One could also use the metric p” defined by

p"(v1, y2J) = minimum {p(y;, y2), 1}

to accomplish the same purpose.) This justifies choosing the metric d, for X,, n =
1, in such a way that X, has diameter at most 1.
Forx = (x;,x3,...)andy = (y1, y2, .. .) in X, define

© 2172
it 3) = (2 (dn(x;. yn)) )

n=1

Since du(x,, yn) < 1, the series under the radical sign is dominated by the convergent
series T2, 1/n* and is itself convergent. Thus d(x, y) has been meaningfully defined.
Since each d, is a metric, it follows easily that d is a metric.

Let T denote the product topology for X-and T’ the metric topology generated
by d. It will be shown that T = T’ by showing that T CT' and T' CT. Let O be
amember of T and x = (x;, X3, . . .) a member of O. By the definition of the product
topology, there is a positive integer N and, for 1 < n < N, an open ball B(x,, r,) of
positive radius r, in X, such that

N
x€E ﬂl D (B(xn, 1)) C O.
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Here p,: X = X, denotes the projection map on the nth coordinate space X,,. If r is
the minimum of the numbers r;, r3/2, . . . ry/N, it is easy to see that

N
XEByx,1)C ﬂl il (B(xy, 1n)) C O.

Then O must be a union of open balls generated by d, so O € T'. Thus T CT"'.

Toseethat T' C T, let U' be a member of T' and y = (y,, y,, . . .) a member
of U'. There is a positive number € for which the open ball B,(y, ¢) is contained in
U'. Let M be a positive integer for which

020: 1/n? < é/2.

n=M+1

Then
M
V= Q D7 (B(yn, €/V2M))

is an open set containing y in the product topology T. The reason for having
the radii of the balls in X,, ..., Xy be the rather bizarre number ¢/V2M will
become clear in a moment. For z = (z;, z5,...) in 'V,

© 2\1/2
dy, z) = (2 (dn(.Vr;; Z,,)) )

n=1

M 2 © 212
_ (E (d,.(x.’.l. .Vn)) + 3 (d..(x.., y,.)))

n=1 n=M+1 n

M e /VZ_ 2 A\ M2 e\ 172

<(Z(5)+5) <(26w)+3)
&€ &\l”2

= (3 + -2—) =e

Thus V C U', so U' is a union of members of T and is therefore a member of T.
ThusT'CT,s0T'=T. O

Infinite dimensional Euclidean space R* and the Hilbert cube I* were intro-
duced in Example 7.2.1. It is an immediate consequence of Theorem 8.15 that
both R® and I'® are metrizable. This fact was previously shown in Example 7.2.1
by exhibiting embeddings of R and /* in Hilbert space H. A similar embedding
technique is the basis of the most famous partial solution of the metrization problem,
the Urysohn Metrization Theorem, which is proved next. Urysohn’s remarkable
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idea shows that certain spaces can be embedded in H by associating with each point
of the domain space a sequence of real numbers determined by Urysohn functions.

Theorem 8.16: The Urysohn Metrization Theorem Every second countable
regular space is metrizable.

Proof: Let X be a second countable regular space with countable basis B =
{Bn}w=1. By Theorem 8.8, X is normal. Consider the collection of all ordered pairs
(i, j) of integers for which B; C B;. By Urysohn’s Lemma (Theorem 8.13), there is
Jor each such pair (i, j) a Urysohn function f: X = [0, 1] such that

f(B)=0, fIX\B)=1

Let & denote such a collection of Urysohn functions having one member for each
ordered pair (i, j) for which B; C B;. Since & is countable, then it can be indexed by
the set of positive integers, & = {f,}ox;.

Define a function F: X — H from X into Hilbert space H by

Fx) = (f,()f’(") = ) XEX

Thus the coordinates of F(x) are determined by the values of the members of & at
x; each value f,(x) is divided by n only to insure that F(x) is a member of H:

> (2 < 5

n=1 n=1

so the sum of the squares of the coordinates of F(x) is a convergent series of real
numbers.

To show that F is an embedding, it is sufficient to show that F is a one-to-
one, continuous and open function to the subspace F(X) of H. Then the metrizability
of X will follow from the fact that X is homeomorphic to a subspace of the metric
space H.

Let x and y be distinct points of X. Since X is Hausdorff, there is a basic open
set B; in B for which

xe Bj, y $ Bj.
By regularity, there is a basic open set B; for which

XEB;, B;CB,
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Then the set & of Urysohn functions has a member f, corresponding to (i, j) for
which )

Si(B) =0, f{X\B) = 1.
Then
Jlx) =0, fuly) =1,

so F(x) and F(y) differ in their nth coordinates. Then F(x) # F(3), so F is a one-to-
one function.

To prove the continuity of F, let x € X and let B(F(x), €) be an open ball in H
of positive radius e centered at x. It must be shown that there is an open set V in X
containing x for which

F(V) C B(F(x), €.

Let N be a positive integer for which

% 1/ < é/2.

n=N+1

Since each function f,, 1 < n < N, is continuous, there exist open sets V, such that
foryinV,,

¥ — )| <€/V2N, I1<n<N.

Then V = NX.; V, is an open set containing x. A calculation similar to that used in
the proof of continuity in the Tietze Extension Theorem (Theorem 8.14) shows that
F(V) is a subset of B(F(x), €). This calculation is left to the reader.

It remains to be shown that F is an open mapping from X onto F(X). Let W
be open in X. It must be shown that there is an open set U in H for which

F(w) =UnN F(X).
Consider a point x in W. There is a pair B;, B; of basic open sets for which
XEB,CE,CB_,C w.

Then there is a member f, of & for which

Julx) =0, S X\W) = L.
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Then for any point F(y) in B(F(x), 1/n) N F(X),
d(F(x), F(y)) < 1/n

50 f(y) cannot possibly be 1. Then y cannot belong to X\W, so y belongs to W. This
means that

B(F(x), 1/n) N F(X) C F(W).

Since x was arbitrary, we conclude that F(W) is the union of such relatively open
sets and is therefore an open set in the subspace topology of F(X). This completes
the proof that F is an embedding, and we conclude that X is metrizable. 0

The next theorem is an important consequence of the Urysohn Metrization
Theorem. It shows that the property of being a compact metric space is a continuous
invariant provided that the range space is Hausdorff.

Theorem 8.17: Let X be a compact metric space, Y a Hausdorff space, and f:
X = Y a continuous function from X onto Y. Then Y is metrizable.

Proof: Since the continuous image of a compact space is compact, then Y = f(X)
is compact. As a compact Hausdorff space, Y is normal by Theorem 8.8 and therefore
regular. It remains to be proved that Y is second countable.

As the reader proved in Chapter 6 or should prove now, the compact metric
space X has a countable basis B. Let A be the collection of all finite unions of
members of B. Then A is countable since it is the union of a countable collection
of countable sets. For A in A, let

A% = Y\ f(X\A).

Then A* = {A* A € A} is a countable collection of subsets of Y. Showing that
each member of A* is an open set is left as an exercise.

To see that A* is a basis for Y, let U be open in Y and y a member of U.
Then f~!(y) is a compact subset of X, f~!(U) is an open subset of X, and

fTwcrw).

Since f~1(y) is compact, there is a finite number of members By, . . ., B, of B such
that

fT'mc .L-"J: B, Cf(u).



8.5 / Metrization 259

Then A = U}, B; is a member of A, and the corresponding set A* is a member of
A*. Since f~!(y) is a subset of A, then

Yy € (Y\f(X\4)) = A*.

For any point f(x) € A* f(x) is not in f(X\A), so x cannot be in X\A. Thus x € A.
Since

ACf ),

then f(x) € U. Thus, for each open set U in Y and y € U, there is a member A* of
A* such that

yEA*C U.

This shows that A* is a countable basis for Y. The fact that Y is metrizable follows
from the Urysohn Metrization Theorem (Theorem 8.16). O

Theorem 8.18: The following conditions are equivalent for a topological space
X.

(a) X is regular and second countable.
(b) X can be embedded in Hilbert space H.
(¢) X is metrizable and separable.

Proof: An argument that (a) implies (b) is given by the proof of the Urysohn
Metrization Theorem (Theorem 8.16). For the proof that (b) implies (c), note that
any space satisfying (b) is metrizable since it is homeomorphic to a subspace of the
metric space H. Since it was shown in Chapter 4 that H is second countable, then
each of its subspaces is second countable as well. Thus X is second countable, and
therefore separable by Theorem 4.6. To show that (c) implies (a) and complete the
circle of implications, recall that every metric space is normal (and therefore regular)
and that every separable metric space is second countable (Theorem 4.8). o

Theorem 8.18 is a type of theorem to which topologists aspire. It completely
characterizes the set of second countable regular spaces by showing that this col-
lection is the same as the collection of (ostensibly nicer) separable metric spaces,
which can all be considered subsets of Hilbert space. There are related criteria that
are necessary and sufficient for a space X to be metrizable. Regularity of the space
is one of the criteria, and the other is a condition involving open sets which is
comparable to but considerably weaker than second countability.. That condition
and the complete solution to the metrization problem are stated next. The proof
of the general metrization theorem is beyond the scope of this text.
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Definition: A4 family A of subsets of a space X is locally finite provided that for
each x in X, there is an open set U, containing x such that U, intersects only finitely
many members of A. A family B of subsets of X is o-locally finite provided that B
is the union of a countable collection of locally finite families:

8=U 3,

n=1]

where each family B, is locally finite.

Theorem 8.19: The Nagata-Smirnov-Bing Metrization Theorem In order
that a topological space X be metrizable, it is necessary and sufficient that X be
regular and have a o-locally finite basis.

Suggestions for additional reading on the metrization problem and a proof
of Theorem 8.19 are made at the end of the chapter.

EXERCISE 8.5

1. Show, as suggested in the proof of Theorem 8.15, that every metric space (Y, p) has an
equivalent metric p' for which the diameter of Y does not exceed 1.

2. (a) Show that the function d in the proof of Theorem 8.15 is a metric.

(b) Show that the metric d in the proof of Theorem 8.15 is equivalent to the metric 4’
defined for x = (x;, X2, ...) in X by

@

=2

n=1

diXn, Vi)
P

3. Show by a direct proof that every second countable regular space can be embedded
in R*,

In the proof of Theorem 8.17, show that each member of A* is an open set.
Prove that a compact Hausdorfl space is metrizable if and only if it is second countable.

Let (X, d) be a separable metric space with countable dense subset A = {a,}x;. Then
X has an equivalent metric under which X has a diameter less than or equal to 1, so we
may assume that this property holds for the metric d. For x in X, let

Yo =d(x, an)/n, f(x)=,y2,...).

Prove that fis an embedding of X in Hilbert space H.
7. Prove that every locally compact, second countable Hausdorff space is metrizable.
Prove that every topological manifold is metrizable.
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8.6 THE STONE-CECH COMPACTIFICATION

It was shown in Section 8.5 that every second countable regular space is
metrizable. The method of proof involved embedding in Hilbert space. This section
exhibits a similar embedding for each completely regular space in a compact Haus-
dorff space.

It is left as an exercise to show that every subspace of a compact Hausdorff
space is completely regular. The main result of this section shows more than the
converse. Every completely regular space X can be embedded as a dense subspace
of a compact Hausdorff space S(X) having the remarkable property that every
continuous, bounded, real-valued function on X has an extension to a continuous,
bounded, real-valued function on S(X). To see that this property is remarkable,
consider the completely regular space (0, 1] and the continuous, bounded, real-
valued function f(x) = sin (1/x), whose values fluctuate ever more rapidly between
—1 and +1 as x approaches 0. This function cannot be extended continuously to
[0, 1], yet (O, 1] is a subspace of a compact Hausdorff space 8((0, 1]) to which f'can
be extended continuously. As we shall see, this Stone-Cech compactification 8(X)
is quite difficult to visualize, even for relatively simple cases. This discussion has
shown, for example, that 8((0, 1]) is definitely not [0, 1].

Definition: Let X be a Hausdorff space. A compactification of X is an ordered
pair (Y, e) for which Y is a compact Hausdorff space and e: X = Y is an embedding
whose image e(X) is a dense subspace of Y.

Note that the one-point compactification X, of a non-compact, locally com-
pact Hausdorff space X provides a compactification according to the preceding
definition. The embedding e: X = X, in this case is the inclusion map.

If (Y, e) is a compactification of X, it is common practice to identify X and
e(X) and to think of X as a subspace of Y. With this understanding, one often refers
to Y as a compactification of X, suppressing the role of the embedding.

The next definition extends to general topological spaces the space C(X, R)
of bounded, continuous, real-valued functions defined for metric spaces in Chap-
ter 3.

Definition: For a given topological space X, the symbol C(X, R) denotes the set
of bounded, continuous, real-valued functions with domain X and topology deter-
mined by the supremum metric p defined by

o(f, & = lub {1 f(x) — g(x)|: x €E X}, f, g € C(X, R).

The first connection between completely regular spaces and function spaces
is revealed by the following theorem.
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Theorem 8.20: If (X, T) is a completely regular space, then the weak topology
Jor X generated by C(X, R) is the given topology T .

Proof: Let T’ denote the weak topology generated by C(X, R). Since each member
of C(X, R) is continuous with respect to T and T’ is the weakest topology having
this property, then T' C T.

To show the reverse inclusion, consider an open set U in X and let C = X\U
denote its complement. For x in U, complete regularity guarantees the existence of
a continuous function f: X = [0, 1] such that

S =0 flC=1
Then x belongs to the T '-open set f ~'([0, 1/2)) and this set is disjoint from C. Thus
x€f(f0, 1/2) C U,

and U must be a union of T'-open sets. Thus U is open in T', so T C T'. Thus
T = T', and the proof is complete. O

Theorem 8.21: The Stone-Cech Theorem Let X be a completely regular
space. Then there is a compact Hausdorff space 8(X) which contains X as a dense
subspace and for which every member of C(X, R) can be extended to a member of

CB(x), R).

Proof: Before proving the theorem, the following interpretive remarks may be in
order. To say that B(X) contains X as a dense subspace means that there is an
embedding e: X = B(X) for which e(X) is dense in B(X). To say that every member
of C(X, R) can be extended to a member of C(8(X), R) means that for each member
Sof C(X, R), there is a member F of C(8(X), R) such that

Fle(x) = f{x), x€EX.

The long-awaited compactification B(X) is defined as follows: For f in
C(X, R), let I; denote the smallest closed interval containing f(X). Let

Y= II &
SEC(XR)

be the product of all the intervals I;, f€ C(X, R). Then Y is compact and Hausdorff
since each interval I is compact and Hausdorff and any product of compact Hausdorff’
spaces is a compact Hausdor/f space. Define e: X — Y by

ex)(f) = flx), x€X, fE€ CX, R).

This seemingly abstruse notation is explained as follows: For x in X, e(x) is to be a
member of the product space Y, whose members are functions from the index set
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C(X, R) into the union of all the sets I, such that the image of f is a member of I;.
Thus we define

e(x): C(X,R) = U I

to be the function whose value at f is the point e(x)(f) = f(x) of I;. To prove continuity
Jor e, consider the composition pye: X — I with an arbitrary projection map py. For
xin X,

pre(x) = e(x)(f) = f(x),

50 pre = f, and pye is continuous since f'is. Thus the composition pye of e with each
Dprojection map is continuous, so e is continuous by Theorem 7.8.

To see that e is one-to-one, consider distinct points x; and x, in X. Complete
regularity insures the existence of a continuous function f: X = [0, 1] such that

Sx) =0, fix)=1

Then e(x;) and e(x2) must be different since their values at f, namely e(x;)(f) = f(x1)
and e(x))(f) = f(x2), are different. Thus we conclude that e is one-to-one.

Establishing e: X = Y as an embedding now hinges on proving that e is an
open mapping from X onto e(X). Since e is one-to-one, it is sufficient to show that
there is a subbasis S for the topology of X for which e maps each member of § to
an open set in e(X). By Theorem 8.20, the weak topology for X generated by
C(X, R) equals the given topology on X. This means that the family of open sets
f7(U), fE€ C(X, R) and U open in R, is a subbasis § for the given topology of X.
For such a subbasic open set f~'(U), note that

e(f~(U)) = 7' (U) N e(X),

an open set in the subspace topology for e(X). Thus e is an open mapping from X
onto e(X) and embeds X as a subspace of Y.
Let B(X) denote the closure of e(X) in Y,

B(X) = e(X).

Since closed subspaces of compact spaces are compact, then B(X) is compact. Since
the Hausdorff property is hereditary, B(X) is a compact Hausdorff space containing
X, which we identify with e(X), as a dense subspace.

It remains to be proved that each member of C(X, R) can be extended to a
member of C(B(X), R). This is accomplished as follows: For fin C(X, R) and x in
X

S(x) = pre(x).

Thus the projection map py provides the desired extension. 0O
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For a completely regular space X, the compact Hausdorff space §(X) and
embedding e: X = B(X) described in the Stone-Cech Theorem and its proof form
a compactification (8(X), e) of X. This compactification is called the Stone-Cech
compactification of X. It has the remarkable property that every member of
C(X, R) can be extended to a member of C(8(X), R).

The Stone-Cech compactification (8(X), e) is unique in the following sense:
If (Z, i) is a compactification of X for which each member of C(X, R) can be
extended to a member of C(Z, R), then Z is homeomorphic to 8(X) under a homeo-
morphism k: 8(X) = Z which is the identity map on X. In other words, the homeo-
m\orphism h satisfies the property he = i in the diagram below.

h
BX) > Z

X

A proof of the uniqueness of the Stone-Cech compactification is outlined in the
exercise for this section.

EXERCISE 8.6

Prove that every subspace of a compact Hausdorff space is completely regular.

2. Prove that every compact Hausdorff space can be embedded as a closed subspace of a
product of intervals.

For a compact Hausdorff space X, prove that X and 8(X) are homeomorphic.
4. For a topological space X, show that C(X, R) is a complete metric space.
(a) Prove that every product of intervals is completely regular.

(b) Prove that every completely regular space can be embedded in a product of in-
tervals.

6. Give an example of a completely regular space X whose Stone-Cech compactification
is not homeomorphic to its one-point compactification.

7. For any completely regular space X and fin C(X, R), prove that the extension of f/to
a member of C(8(X), R) is unique.

8. Prove that in any product space, the subspace topology for a subspace equals the weak
topology for the subspace generated by the restrictions of the projection maps to the
subspace.

9. Let X be a normal space, 4 a closed subspace of X, Y a completely regular space, and
f: A = Y a continuous function. Show that f'has a continuous extension F: X — Z,
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where Z is a compact Hausdorff space which contains Y as a subspace. (Hint: Use the
Tietze Extension Theorem (Theorem 8.14).)

10. The definition below extends to general topological spaces the concept of category
defined for metric spaces in Section 3.7.

Definition: A ropological space X that is the union of a countable family of nowhere
dense sets is said to be of the first category. A space that is not of the first category is
of the second category.

Prove that every compact Hausdorff space is of the second category.

11. This exercise is intended to show the uniqueness of the Stone-Cech compactification.
The following terminology will simplify the discussion.

Definition: A space X is C*-embedded in a space Z provided that there is an embedding
i: X = Z for which every member of C(i(X), R) can be extended to a member of
C(Z, R).

The Stone-Cech Theorem asserts that for every completely regular space X, there
is a compactification (8(X), €) in which X is C*-embedded by e. Prove the following
to show that 8(X) is unique up to homeomorphism.

(a) Let X and Y be completely regular spaces and f/: X = Y a continuous function.
Show that there is a unique continuous map f: S(X) = 8(Y) for which

Jex=exf.

(b) Let Y be a compact Hausdorff space. Show that each continuous map fiX=>Y
has a unique continuous extension f: 8(X) = Y.

(c) Let (Z, i) be compactification of X where i: X = Z is an embedding such that
every continuous map f: X = Y from X to a compact Hausdorff space Y has an
extension to a continuous map F: Z — Y. Then there is a homeomorphism A:
B(X) = Z for which he = i. (Here e: X — (X) is the usual embedding.)

(d) Let(Z, i)be a compactification of X in which X is C*-embedded by the embedding
i: X = Z. Then there is a homeomorphism A: 8(X) = Z for which he = i.
(Hint: Let f: X — Y be a continuous map from X into a compact Hausdorff space
Y. Embed Y in a product T of closed intervals and show that f: X = Y can be
continuously extended to F: Z — T. Show that F(Z) is actually a subset of Y and
apply (c).)

SUGGESTIONS FOR FURTHER READING

For a more detailed treatment of separation and metrization, see Willard’s
General Topology or Munkres’ Topology: A First Course. For an introduction to
dimension theory, the classic treatise Dimension Theory by Hurewicz and Wallman
is recommended.
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HISTORICAL NOTES FOR CHAPTER 8

The numbering scheme for separation axioms or “Trennungsaxiomen” was
introduced by Heinrich Tietze in 1923 to bring order to the various separation
properties that had been proposed in the preceding two decades. The T, property
is due to A. N. Kolmogorov; T)-spaces were defined by Fréchet in 1907 under the
name accessible spaces; and the T, property was used by Hausdorffin 1914 as one
of his defining axioms for topological spaces. Regular spaces were first considered
by Vietoris in 1921 and Tietze in 1923; completely regular spaces by Urysohn in
1924 and Tychonoff in 1930; normal spaces by Vietoris in 1921, Tietze in 1923,
and Alexandroff and Urysohn in 1924; completely normal spaces by Tietze in 1923;
and perfectly normal spaces by Urysohn in 1924 and Cech in 1932.

The normality of regular Lindelof spaces (Theorem 8.9) was proved by Ty-
chonoff in 1925. Theorem 8.10, which is widely used in examples, is due to F. B.
Jones. The Sorgenfrey plane (Example 8.3.1) was defined by R. H. Sorgenfrey in
1947; the Moore plane or Niemytzki plane (Problem 6, Exercise 8.3) was considered
independently by R. L. Moore, V. Niemytzki, and D. van Dantzig. The space
of Example 8.2.1 is attributed to R. L. Moore and is sometimes called the
Moore plane.

The important results of Sections 8.4 and 8.5 are due largely to the remarkable
Russian mathematician Paul Urysohn (1898-1924). Urysohn’s Lemma and the
Urysohn Metrization Theorem date from 1924. Urysohn’s preliminary ideas on
embeddings in Hilbert space are illustrated by Problem 6 of Exercise 8.5, which he
proved in 1923. The conclusion of the Tietze Extension Theorem (Theorem 8.14)
was proved for-closed subsets of R? by Lebesgue in 1907, extended from the plane
to metric spaces by Tietze in 1915, and proved for general normal spaces by Urysohn
in 1924, In addition to the contributions already mentioned, Urysohn was one of
the founders of the branch of topology known as dimension theory, which is not
considered in this text. Urysohn’s remarkable career was cut short by accidental
drowning at the age of 25.

The general metrization theorem (Theorem 8.19) was proved independently
by J. Nagata, Y. Smirnov, and R. H. Bing in 1950.

As was mentioned in the Historical Notes for Chapter 6, the Stone-Cech
compactification was developed independently by M. H. Stone and E. Cech.
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9.1 THE NATURE OF ALGEBRAIC TOPOLOGY

In the first eight chapters we have dealt almost exclusively with point-set
topology. This chapter introduces the fundamental group which, as the term “group”
suggests, is an algebraic concept. Those who are not familiar with the basic properties
of groups and homomorphisms should consult the Appendix or one of the standard
textbooks on the subject before proceeding. Several excellent algebra texts are in-
cluded in the supplementary reading list for this chapter.

The purpose of algebraic topology is to describe the structure of topological
spaces by algebraic means, usually groups or rings. The algebraic structures involved
are topological invariants in the sense that homeomorphic spaces are associated
with isomorphic algebraic structures. Although algebraic topology and point-set
topology share the common goal of classifying spaces by topological properties, the
subjects are quite distinct in their historical development, emphasis, and methods.
The development of point-set topology has been summarized in Chapter 1 and in
the historical notes to the succeeding chapters. As we have seen, Cantor, Fréchet,
and Hausdorff deserve the major credit for bringing together an amorphous and
disparate collection of ideas about sets and continuous functions to form the subject
of point-set topology. Algebraic topology, on the other hand, was introduced in the
years 1895-1901 in remarkably modern form by the great French mathematician
Henri Poincaré. Additional information about Poincaré and preliminary devel-
opments in algebraic topology are given in the historical notes at the end of the
chapter.

Algebraic topology developed in response to specific geometric problems in
Euclidean spaces. The purpose of the theory, roughly speaking, is to describe the
connectivity or the *“holes in the space” by algebraic methods. Connectivity prop-
erties are reflected in the algebraic properties of the associated groups. This chapter
is restricted to the fundamental group, the first algebraic structure associated by
Poincaré with topological spaces, and to its applications. The reader should be
aware that algebraic topology is a very broad subject and that one chapter can give
only a brief introduction to a few of its major aspects. Those interested in a more
complete treatment should consult the supplementary reading list at the end of the
chapter.

9.2 THE FUNDAMENTAL GROUP

The following examples, which deal with integration on multiply connected
domains and with the classification of surfaces, are intended to illustrate the kind
of analysis that led to the development of the fundamental group.

267
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Example 9.2.1

(a) Consider an annulus in the plane with closed paths 4, B, C as shown

in Figure 9.1.

FIGURE 9.1

Let F(x, y) = (p(x, ), q(x, y)) be a continuous vector field defined
on an open set containing the annulus and satisfying the exactness
condition

% _9%
dy dx

According to Green’s Theorem, f 4 P dx + qdy = 0 since the region
interior to curve A4 is contained within the annulus. Since the region
bounded by curves B and C is completely within the annulus, it follows
also from Green’s theorem that the curve integrals of the vector field
over B and C are equal:

Lpdx+qdy=J‘dex+qdy‘

Thus from the point of view of integrating exact vector fields, path 4
is trivial in the sense that integrals over it equal 0, and paths B and
C are equivalent.

The geometric property producing these phenomena can be de-
scribed intuitively as follows: Since the region inside curve 4 is com-
pletely contained within the annulus, then 4 can be “shrunk to a
point” in the annulus. It is said that 4 is homotopic to a constant path.
Analogously, paths B and C are homotopic paths since each can be
continuously deformed into the other over a series of paths staying
within the annulus. Note, however, that paths B and C are not ho-
motopic to a constant path since they cannot be pulled across the
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“hole” that they enclose. The idea of homotopic paths will be defined
rigorously in this section.

(b) Consider the problem of explaining the difference between a two-
dimensional sphere S? and a torus. The difference, of course, is rather

QO

2-Sphere, S2 Torus, T
FIGURE 9.2

obvious. The torus encloses an inner region and has a “doughnut
hole” while the sphere only encloses an inner region. In addition, the
inner region enclosed by the sphere is different from the one enclosed
by the torus, although this difference is difficult to describe rigorously.
As we shall see later in the chapter, the idea of homotopic paths
explains the difference clearly and rigorously. We shall see that every
closed path in S? is homotopic to a constant path while the torus T
has two basic types of paths, meridian circle C; and longitudinal circle
C,, which are not homotopic to constant paths. These facts, which
seem intuitively plausible, are difficult to prove rigorously without a
considerable amount of preliminary work.

Paths and path connected spaces were introduced in Section 5.5. This section
extends these ideas to describe the concepts of simple and multiple connectedness
for general topological spaces. Throughout this chapter, the closed unit interval
[0, 1] is denoted by 1.

Definition: Let o, B: I = X be paths with common initial point «(0) = 8(0) and
common terminal point a(l) = B(1). Then a and B are equivalent or homotopic
modulo endpoints provided that there is a continuous function F: I X I = X such
that

Ft, 0 =af), Ftl1)=p8@1), t€I
F(, s) = a(0) = $(0), F(1,s)=a(l)=p6(1), sEL
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The function F is called a homotopy between the paths o and 8. For s in I,
the restriction of F to I X {s}, denoted F(s, s), is called the s-level of the homotopy.

Definition: A loop in a topological space X is a path in X with common initial
and terminal point. The common value of the initial point and terminal point is the
base point of the loop. Two loops a and 8 with common base point x, are equivalent
or homotopic modulo x,, denoted o ~, B, provided that they are equivalent as
paths. In other words, a ~, 8 if there is a homotopy F: I X I — X for which

Fo0)=a Feol)=8 FOs)=Fls) =x, s€I

Since F(0, s) = F(1, s) = xp for all s in 1, it is said that F is a “‘base point preserving
homotopy” or that the base point “stays fixed throughout the homotopy.”

The usual practice in studying the loops in a space X is to specify a point xp
in X to serve as the base point for the loops under consideration. This point X is
called the base point of X.

Definition: The loop c: I = X whose only value is the base point xy of X is called
the constant loop at x,. A loop that is equivalent to a constant loop is said to be
null-homotopic.

Example 9.2.2

Consider the annulus X shown in Figure 9.3 with base point x, and closed curves
A, B, C which are the images of paths «, 8, and ¥, respectively. Here, «, 8, and
« are vector-valued functions, and we assume that the parametrizations for 8
and v are chosen in such a way that the line segment from §(f) to v(¢), t € I,
lies in the annulus.
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Then « is null-homotopic by the homotopy F: I X I = X defined by
Ft, )= = s)a(t) + sx0, (t,EIXL

To see this, note that for fixed ¢, F(¢, s) defines the line segment joining x, and
a(?). Thus for fixed s, the s-level F(e, 5) is a path intermediate between F(e, 0) =
a and F(e, 1) = ¢, the constant loop at xp.

Note also that 8 and +y are equivalent by the homotopy G: I X I = X
defined by

G(t, ) =1 -8 +sv(), (sDEIXL

Theorem 9.1:

(a) The relation of equivalence for paths is an equivalence relation.
(b) The relation of equivalence for loops is an equivalence relation.

Proof: The following proof is for part (a); the obvious modifications needed to
prove (b) are left as an exercise.
If a is a path in a space X, the homotopy F: I X I = X defined by

Fits)=at), (t,s)€EIXI,

shows that « is equivalent to itself. Thus the relation is reflexive.
If a is equivalent to 8 by homotopy G with G(s, 0) = a and G(~, 1) = B, then
H: I X I - X defined by

Ht s)=Gt 1—35s), (ts)EIXI,

is a homotopy with 0-level B and 1-level a, which shows that 8 is equivalent to a.
Thus equivalence of paths is a symmetric relation.

To prove the transitive property, suppose that o is equivalent to 8 by homotopy
F and that B is equivalent to v by homotopy G. Then the homotopy K: I X-I - X
defined by

Kis) = F(t, 2s) O0<s=<1/2 tel
V=G 2s-1) 12<s<1, (€I
has 0-level
K 0)=Ff60)=a
and 1-level

Ko, 1) =Gfs, 1) = 7.
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The continuity of K when s = 1/2 is shown by the Gluing Lemma since F(e, 1) =
G(~, 0) = B. Thus equivalence of paths is a transitive relation and satisfies all the
requirements of an equivalence relation. O

We shall be concerned with the product of loops, as defined more generally
for paths in Chapter 5. In order to facilitate the statements of several definitions
and related properties, we assume for the remainder of this section that X represents
a space with base point xp and that all loops mentioned are loops in X with x, as
base point.

Definition: The product of loops o, B in X with base point x, is the loop asf3
defined by

a2t O0<t<1/2

ashl) = {ﬂ(Zt —1) Ip2stsl

Note that the product of loops « and g is simply their path product, which
was defined in Chapter 5.

The following lemma asserts that equivalence of loops is preserved by the
product operation. Its proof is left as an exercise.

Lemma: Ifa~, o' andB ~,, B then a»f ~,, a'+f".

Definition: For a loop a in X based at x,, the equivalence class or homotopy class
of a, denoted [a], is the set of all loops in X based at xo which are equivalent to a.
The set of such equivalence classes is denoted by I1; (X, xo) and is called the fun-
damental group, the Poincaré group, or the first homotopy group of X at x,. For
[a], [B] in I1; (X, xq), the group operation -, called the product, is defined by

[e] < [B] = [e+B].

It is, of course, necessary to prove that the set I, (X, xo) is actually a group.
This is accomplished in several steps by the proof of the next theorem. Note that
the lemma preceding the definition shows that the product of homotopy classes is
a well-defined operation.

Theorem 9.2: If X is a space and x, a point of X, then 11, (X, xo) is a group
under the - operation.

Proof: In order to conclude that I1, (X, xo) is a group, it must be shown that (A)
the operation - is associative, (B) there is a loop c for which [c] is an identity element,
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and (C) each homotopy class [a] has an inverse [a] = [a]~! under the - operation.
Each of these is proved as a separate lemma.

Lemma A: The operation - is associative.

Proof: It must be demonstrated that for all [o], (8], [v] in I1; (X, xo),
(] - [BD) - [v] = [e] - ([B] - 7))
or, equivalently,
[(axB)s] = [ax(B*v)].
The definition of the » operation shows that

a(4t) O0<t<1/4
((asB)sx)t) =S B(4t—1) 1/4<t<1/2
y2t—1 12<t<l

and

a(2t) O<t=<1/2

(asxBsy))(t) = B4t—2) 12<t<3/4
y(4t—3) 3/4<t<1

The desired homotopy is obtained from Figure 9.4, by the following consid-
erations. We desire a homotopy H: I X I = X which agrees with (axB)*v on the
bottom and with a*(B++v) on the top of the square. This can be accomplished by

| a B8 Y
a/B/'Y

L, L,

S
[T
Hijw 4+
—
-~

FIGURE 94



274  NINE / THE FUNDAMENTAL GROUP

defining the s-level H(s, s) to follow the route of a from t = 0 horizontally across to
the line L,, the path of B from L, horizontally across to L,, and the path of v from
L; horizontally across to t = 1.
Note that L; has equation s = 4t — 1 and that L, has equation s = 4t — 2.
The reader should supply the elementary geometry necessary to derive the homotopy
al4t/(s+ 1)) O<t<(s+ 1)/4
Ht s)=13 B(4t—1-5 (s+1)d<t<(s+2)/4
Y(4t—-2—-5)/)2-5) (s+2)/4d=<t=<1

and verify that H is a homotopy modulo x, between (ax )+~ and a*(B#+). Note
that the continuity of H is shown by applying the Gluing Lemma twice, to the union
of three closed sets. This completes the proof of Lemma A. O

Lemma B: The homotopy class [c], where c is the constant loop whose only value
is X, is the identity element for 1, (X, xJ).

Proof: Let us show first that
] - [a] = [o]
or, equivalently,
[esa] = [o], €], (X, xo.
The reader should apply the method of Lemma A to Figure 9.5 to obtain the homotopy

(% O0<t=<(l1-5)2
K9 = {a((zz +s=Dfs+1) (1-92sts]

FIGURE 9.5
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whose 0-level is ¢ * « and whose 1-level is a, thus demonstrating that [c] is an identity
element for the - operation when multiplied on the lefi. The proof that [c] also acts
as an identity element when multiplied on the right is left as an exercise. Since the
identity element in any group is unique, then [c] is the identity for [1; (X, xg. O

Lemma C: For [a] in 1, (X, x,), the inverse [a] " is the class of the reverse path
alt) =afl —t),tE€L

Proof: Note that
[of - [&] = [axa]
and

al2t) O<t=<1/)2

asafl) = {a(Z ) Ip2st=<l.

Thus ax*a follows the route of o and then reverses to follow the route of a back to
the starting point xo. We visualize a homotopy L for which the s-level L(s, s) follows
the route of a out to a(s) and then reverses its route back to xo. This homotopy is
defined by

a(2ts) 0<t=< 12

Ley= {a(Zs —2s) 12s<t<l1.

1t is easily observed that L is a homotopy between a:x & and c, showing that [&] is
a right inverse of [a]. Since a = a, the above argument also shows that

[&] < [o] = [&] - [a] = [d],
so that [a] = [a] ™! is a two-sided inverse for [a]. This completes the proof of Lemma

C and the proof that 11, (X, xq) is a group. O

Let X and Y be spaces with respective base points xp and ypand f: X —> Y a
continuous function for which f(xo) = 3. Then any loop « in X based at x, cor-
responds to the loop fa in Y based at y,. It is left as an easy exercise for the reader
to show that the function

S I, X x0) = I, (¥, wo)
defined by

fe([a)) = [fa], [a] € ][], (X, x0),
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is a homomorphism. This function is called the induced homomorphism of the
function f. Note also that if / is a homeomorphism, then the induced homomorphism
J+ is an isomorphism. Thus, the fundamental group is a topological invariant in
the sense that homeomorphic spaces have isomorphic fundamental groups at base
points which correspond under the homeomorphism.

In the next section we shall compute the fundamental group for several in-
teresting spaces. First, however, it is necessary to establish some preliminary
theorems.

Theorem 9.3: Let X be a path connected space and xy, x; points of X. Then the
Sfundamental groups I1; (X, xo) and 11, (X, x,) are isomorphic.

Proof: Let v: I = X be a path from v(0) = xp to ¥(1) = x;. Then for [a]
in T1; (X, xo), (Y*a)*v is a loop based at x;. Thus we define a function f:
I1; (X, xo) = I1, (X, X)) by

fUa)) = [(Yra)sv], [e] €T, (X, xo.

It is an easy exercise to show that the imagé of [a] under f is independent of the
representative a in [a] so that f is well defined.
Analogously, define g: I1, (X, X)) = I1, (X, xo by

g(B) = [(v+B)*7]. [BI €I, (X, xy.

Minor revisions in the proof of Lemma A show that a*(bxc) and (a=b)=c are
equivalent paths for any paths a, b, c for which the indicated products are defined.
Thus, in [(v*a)*v], we may ignore the parentheses and write [y * a*+] since the
equivalence class is unaffected by the way in which the terms are associated. Similarly,
Lemma C essentially shows that [y=+v] and [y#*+] are the identity elements of
I1; (X, xo) and T1, (X, x,), respectively. With these observations, we are prepared
to show that f is an isomorphism whose inverse is g.

To show that f is a homomorphism, note that for [a,], [a;] in T1; (X, xq),

Sflla] - [ad]) = f([arsaz)) = [Yea;sarey]
=[Yra;sysysarey] = [Yra;*y] - [Y*arey]
= f(les]) - f([a2)).

Thus fis a homomorphism.
For [a] €T1, (X, x0),

&f(le)) = glfysasv)) = [ysysasysy] = [o].
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Thus gf is the identity map on I1; (X, xo), and a completely symmetric argument
shows that fg is the identity map on I1, (X, x;). Thus fis an isomorphism between
I1; (X, xo) and I1, (X, x)). o

Because of the preceding theorem, it is common practice to omit mention of
the base point for the fundamental group of a path connected space. Following this
practice, we shall sometimes refer to 1, (X), the fundamental group of X, since the
same abstract group results for each choice of the base point when X is path con-
nected. Note, however, that Theorem 9.3 does not guarantee that the isomorphism
between [T, (X, xo) and IT, (X, x,) is unique; different paths can produce different
isomorphisms. In some applications, specification of the base point is important.
For example, when comparing fundamental groups of spaces X and Y on the basis
of a continuous map f* X — Y, it is usually necessary to specify base points x; in
X and yp in Y and to assume that f(xo) = yo.

Definition: A4 simply connected space is a path connected space X whose funda-
mental group I1, (X) is the trivial group consisting only of an identity element.

Definition: A4 space X is contractible to a point x, in X provided that there is a
continuous function F: X X I = X such that

F(x,0=x F(x, 1)=x9, F(xp,5)=x9, XEX, s€EIL

The function F is called a contraction of X to the point x,. A space X is contractible
if there is a point xy in X for which X is contractible to x,.

Intuitively speaking, a contractible space is one that can be “shrunk to a
point” through a continuous deformation proceeding in stages from ¢t = 0 to ¢ =
1. Thinking of ¢ as time, the 0-level F(o, 0) of the contraction is the identity map
on X; successive levels F(e, f) shrink the space to the final stage F(e, 1) which maps
all of X to the one point x,. Our definition requires that F(xo, 5) = Xxo at each stage,
so that the point x, stays fixed throughout the contraction process. The exercises
for this section show how to relax this requirement.

Example 9.2.3

An interval [a, b] on the real line is contractible to a. To see this, define F:
la, b] X I — [a, b] by

Fx,)=ta+(1-0x, (x,t)E[a, bl X1
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Note that
Fx,0)=x, f(x,1)=a, x€X,

so that over the “time interval” 0 < ¢ < 1 F(x, ¢) moves from x at time 0 to a
at time 1 along the line segment from x to a. Thus the contraction may be
thought of as “squeezing” the interval to the point a. An analogous argument
shows that [a, b] is contractible to each of its points.

It is left as an exercise for the reader to modify the ideas of Example 9.2.3
and produce a proof of the following theorem:

Theorem 9.4: A convex set A in R" is contractible to each point xy in A.
Theorem 9.5: Every contractible space is simply connected.

Proof: Let X be a space contractible to a point x, in X by contraction F:
X X I = X satisfying

F(x,00=x, F(x,1)=x9, F(xp,t)=x9, XE€EX, t€IL

To see first that X is path connected note that for a given point x, the function
JSx: I = X defined by

S = F(x, 1), t€I

is a path in X from x to xo. Thus for x, y in X, the product f;+f, of the path f, and
the reverse of f, is a path from x to y.
For [a] € T1; (X, xg), define a homotopy H: X X I = X by

H(t, s) = Fla(t),s), (t,s)€IXI

The properties of the contraction F insure that H is a homotopy between Hfs, 0) =
a and H(s, 1) = c, the constant loop at xo, demonstrating that [a] = [c]. Thus
I1, (X, xo) consists only of an identity element, so X is simply connected. ]

From Theorems 9.4 and 9.5 we conclude that a single point, an interval, the
real line, a disk, a rectangle, Euclidean n-space, and all other convex subspaces of
Euclidean n-space have trivial fundamental group. Our first non-trivial example of
a fundamental group occurs for the unit circle S in the next section.
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EXERCISE 9.2

10.

1.

12.

Prove that equivalence of loops is an equivalence relation.

Prove Lemma B: The identity element for I, (X, xo) is the homotopy class [c] deter-
mined by the constant loop c.

Prove that equivalence of loops is preserved by the # product: If & ~,, a' and 8 ~,,
g, then asB ~, a'+p'"

Let v be a loop in X with base point x, so that 4 defines an isomorphism f:
IT, (X, x0) = II, (X, xo) as in the proof of Theorem 9.3. Show that f'is the identity
isomorphism if and only if [y] belongs to the center of [T, (X, xo).

Let v, and v, be equivalent paths in X from x, to x;. Show that the isomorphisms f;
and f; determined by v, and v, in the proof of Theorem 9.3 are identical.

Give an example of a simply connected space that is not contractible.

(a) Let a and B be paths in a space X having common initial point x, and common
terminal point x;. Prove that a and 8 are equivalent if and only if the product
a#f is equivalent to the constant loop ¢ whose only value is x,.

(b) Let X be a path connected space. Prove that X is simply connected if and only if
each pair of paths in X having the same initial point and same terminal point are
equivalent.

Prove Theorem 9.4.

Let f: X = Y be a continuous function on the spaces indicated and let x, be a point
of X. Show that the function f,: I, (X, xo) = I1; (¥, f(x0)) defined by

Se(la) = [fa), [a] €], (X, x0),

is a homomorphism. Show in particular that f, is a well-defined function.

Let f: X = Y be a homeomorphism from X onto Y and x, a point of X. Prove that
I, (X, xo) and I1, (Y, f(xo)) are isomorphic.

Prove that the following spaces are contractible.
(a) The upper hemisphere U of S™: U = {x = (x . . . Xp+1) ES™ Xps1 = 0}.
(b) The “punctured n-sphere” S™\{ p}, where p is any particular point in S".

(c) The topologist’s comb (Example 5.4.2). (Find all base points to which the comb
is contractible.)

Definition: A4 space X is weakly contractible provided that there is a point x, in X and
a continuous function G: X X I = X such that

Gix,00=x, G(x, 1)=x9, xXEX.
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The function G is called a weak contraction.

Thus the difference between a contraction on X and a weak contraction on X is
in the fact that a weak contraction is not required to leave the base point x, fixed.

(a) Give an example of a weakly contractible space that is not contractible.
(b) Prove that each weakly contractible space is simply connected.

9.3 THE FUNDAMENTAL GROUP OF S'

This section shows that the fundamental group of a circle is isomorphic to
the additive group Z of integers. The function p: R = S' defined by

p(t) = (cos 2, sin 2xt), tER,

to which we shall refer as the covering projection of R over S, will be instrumental
in our computation of [], (S'). Note that p maps each integer k in R to the point
(1, 0) in S' and wraps each interval [k, k + 1] around S' exactly once in the
counterclockwise direction.

We shall use the point (1, 0) as the base point of S* for the remainder of this
chapter. For brevity, this base point will be denoted 1.

Definition: Lez X be a space and f: X = S' a continuous function. A function f:
X = R for which pf = fis called a covering function of f or a lifting of f to the real
line R.

We shall be particularly interested in lifting a path a: I = S to a covering
path & I = R and a homotopy F: I X I = S' to a covering homotopy F:
IXI—R.

The primary properties of the covering projection p: R — S" needed to produce
liftings are developed in the following lemma.

Lemma: There is a pair U;, U, of path connected, open subsets of S’ whose union
is ! and for which p: R = S* maps each path component of p~!(U;) homeomorph-
ically onto U;, i = 1, 2.

Proof: There are many possible ways to choose U, and U,, one of which is the
Jollowing. Let U, be the open arc on S’ beginning at (—1, 0) and extending coun-
terclockwise to (0, 1), and let U, be the corresponding open arc beginning at (1, 0)
and extending counterclockwise to (0, —1).
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©.n
(-1,0 10=1

(09 - l)
U, U;

FIGURE 9.6

Then U, and U, are clearly path connected open subsets of S’ whose union
equals S'. From the definition of the covering projection p, it follows easily that

p~l(Uy = ng (k—1/2, k+ 1/4),
pi(UY) = k‘U (k, k + 3/4).

Note that the path components of p~'(U,) are the intervals (k — 1/2, k + 1/4), k an
integer, each of which is mapped by a p homeomorphically onto U,. Similarly, p
maps the path components (k, k + 3/4) of p~(U,) homeomorphically onto U,. This
completes the proof of the lemma. (]

Theorem 9.6: The Covering Path Property Ifa:I-> S’ isa path with initial
point 1, then there is a lifting of a to a unique covering path &: I = R with initial
point 0.

Proof: The proof rests on the following intuitive idea. Subdivide the range of the
path a into connected sections so that each section is contained either in U, or U,,
the sets prescribed in the proof of the lemma. If a certain section is contained in U,
we choose one of the intervals A = (k — 1/2, k + 1/4) and consider the restriction
D| .4 of D to this interval. Since this restriction is a homeomorphism, we can compose
the inverse of p| 4 with the given section of a to “lift"” this section to a section of a
path inR. Sections lying in U, are lifted similarly. Being careful to have the terminal
point of one lified section agree with the initial point of the next lified section will
insure a continuous lifting of the entire path.
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Proceeding to the proof, let € be a Lebesgue number for the open cover {a™'(U)),
o~ !(Uy} of I. Choose a finite sequence

O=to<ty<++*<ty,=1

of numbers in I with successive terms differing by less than €. Then each set
afft;, tir1]), 0 < i < n— 1, must be contained either in U, or in U,.
Consider the first section a([ty, t;]). This section must be contained in U, since

afty = a0) = 1

is not in U,. We wish the lified section to have initial point 0, so we take A; =
(—1/2, 1/4) (i.e., k = 0) and define a on [ty, ;] by

@) = (pla)'alt), 1€ [to, t].

This defines the lified path on the first subinterval [ty, t,].

Proceeding by induction, suppose that & has been defined on [ty, t]. Then
afti, tiyi]) is contained in U, where U is either U; or U,. Let A;; be the path
component of p~!(U) to which a(t;) belongs. Since A;., is one of the intervals (k —
1/2, k + 1/4) or (k, k + 3/4), then p maps A;.; homeomorphically onto U. The
desired extension of d to [t;, t;+,] is defined by

&(t) = (pIAu.l)_la(t)t te [ti’ ti+l]'

Continuity is assured by the fact that lifted sections agree at the endpoints. This
inductive argument defines the lifting & on the entire interval [ty, t,] = I.

The fact that d is the only covering path of a with initial point 0 can be gleaned
Sfrom what has already been done. Since p| 4, is a homeomorphism, the lifting of the
first section of a to a section of a path beginning at 0 is unique. Since the second
lifted section must begin where the first ends and p| 4, is a homeomorphism, then
the definition of & on the second section is also unique. This argument extends
by an obvious inductive step to show the uniqueness of the covering path begin-
ning at 0. (]

Theorem 9.7: The Covering Homotopy Property IfH: I XI— S'isa
homotopy such that H(0, 0) = 1, then there is a lifting of H to a unique covering
homotopy H: I X I = R for which H(0, 0) = 0.

Proof: Since the proof is similar to that of the Covering Path Property, some of
the details are left to the reader. Using the same open sets U,, U, defined for the
Covering Path Property and a Lebesgue number argument, subdivide I X I into
rectangles

[te, tewt] X [0, Sivg], 0<k<=n—-1,0<i<m-—1,
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where
O=p<ty<+ *<ty=1 0=s5<8§;<°*+*<§p=1

so that H maps any of the prescribed rectangles into either U, or U,. Since
H(0, 0) = 1 is not in U,, then H must map the first rectangle [ty, t;] X [so, 5i]
into U,. Letting A; = (—1/2, 1/4) as before, define H on [ty, t;] X [so, s1] by

ﬁ(t: S) = @'A))‘IH(I’ S).

The definition of H is extended over the rectangles [tx, ti+1] X [So, 5] as in the proof
of the Covering Path Property, being sure that the definitions agree on the edges
between rectangles. This defines H on the strip [0, 1] X [so, s;]. Next, H is defined
in an analogous way on the strip [0, 1] X [s,, s;], with the definitions agreeing on
the edges between rectangles. This argument extends inductively in a straightforward
way to complete the proof. a

Definition: For a loop a in S with base point 1, the Covering Path Property
specifies a unique covering path & of a with a&(0) equal to 0. Since

(cos 2wd(l), sin 2xd(1)) = pé(l) = a(l) = 1,

it follows that (1) must be an integer. This integer is called the degree of the loop
a and is denoted deg(a).

Intuitively, one thinks of the degree of a loop « as the net number of times
that a “wraps” the interval [0, 1] around S'. Counterclockwise wrappings are
counted as positive and clockwise ones as negative. The next theorem shows that
the degree of a loop completely determines its equivalence class in I1,(S*, 1).

Theorem 9.8: For loops a, B in S' with base point 1, [a] = [B] if and only if
deg(a) = deg(p).

Proof: Suppose first that [a] = [B] so that a and 8 are equivalent loops in S’. Let
F: I X I— S! be a homotopy demonstrating the equivalence of a and B:

Fo0=a Fe1)=8
F0,9)=Fl,5)=1 s€L

The Covering Homotopy Property insures the existence of a unique covering homo-
topy F of F such that F(0, 0) = 0. For s in I,

pF(0,s) = F(0,s) = 1,
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so F(0, s) must be an integer. Since I is connected, the same integral value must
occur for each value of s. Since F(0, 0) = 0, then F(0, s) = 0 for all s in I. The same
argument shows that F(1, s) must have the constant integral value F:(I, 0) for all s
in I. The uniqueness of covering paths insures that & = F(s, 0) and 8 = F(s, 1) are
the unique covering paths of « and B which begin at 0. Thus

deg(a) = é(1) = F(1, 0) = F(1, 1) = 8(1) = deg(B).
Thus equivalent loops must have the same degree.

The other part of the proof is easier. Suppose that o and 8 are loops in S’ with
base point 1 having the same degree. This means that the covering paths ¢ and
beginning at common initial point 0 also have common terminal point &(1) =
B(1). Then the homotopy G: I X I = R defined by

Gt s) = (1 - s)a@) + sfr), (1 s)EIXI,
demonstrates the equivalence of & and B. It follows easily that loops o and B are
equivalent by the homotopy pG. O

Theorem 9.8 shows how to associate each homotopy class of loops in
I, (S, 1) with an integer. The next theorem demonstrates that this correspondence
is an isomorphism.

Theorem 9.9:  The fundamental group I1, (S’) is isomorphic to the additive group
Z of integers.

Proof: Consider the degree function d: I1, (S’, 1) > Z which assigns the integer
degree of a to each equivalence class [a]:

d([a]) = deg(e), [o] E ], (S", 1).

Theorem 9.8 shows that d is well-defined and one-to-one. To see that d is surjective,
let k be an integer. The loop u defined by

mdt) = p(ky), t€],
has as covering path the function
) = kt, t€I,

and thus has degree (1) = k. Thus d({uy)) = k.
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It remains to be proved that d is a homomorphism. For [q], [r] in T1, (S’, 1),
let ¢ and 7 denote the unique covering paths of ¢ and t beginning at 0. Then the
path g: I - R defined by

a(2t) O<st=<1/2

&t = {&(1) +72-1) I2<ts<]

is the covering path of o* with initial point 0. Thus

deg(a7) = g(1) = 6(1) + 7(1) = deg(o) + deg(7).

Hence
d([o] - [1]) = d([o+7]) = deg(c+7)
= deg(o) + deg(r) = d([o]) + d([t]).
Thus d is an isomorphism from I1,(S’, 1) onto Z. a

The covering projection p: R — S has been instrumental in our computation
of I1,(S"). The relevant properties of this map have been generalized to define an
important class of such functions p: E — B from a covering space E to a base space
B for which analogues of the Covering Path Property and Covering Homotopy
Property can be established. The fundamental group is used to determine which
spaces are covering spaces for a given space B. More complete information about
covering spaces can be found in the Suggestions for Further Reading at the end of
the chapter.

EXERCISE 9.3

1. Explain in detail why the loop u;: I = S defined by
w(t) = p(kt), t€1,

has degree k, for each integer k.

2. Complete the inductive definition of the covering homotopy in the proof of the Covering
Homotopy Property (Theorem 9.7).

3. Consider S' as the set z = x + iy of complex numbers having modulus 1. Then the
covering projection p: R — S is, by definition of the exponential function for complex
variables,

p(t) = cos 2xt + isin 2wt = ezwir, tER.
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Use this representation to prove the uniqueness assertion of the Covering Path Property
(Theorem 9.6) by showing the following:

(a) For a given loop a in S! with base point 1, let &, and &; be covering paths of
a with initial point 0. Show that the composition of p with & — & is a con-
stant path.

(b) Conclude from part (a) that &, — &, has only integral values. Use the connectedness
of R to show that &, — &; has only the value 0.

9.4 ADDITIONAL EXAMPLES OF
FUNDAMENTAL GROUPS

Our work in this chapter has revealed that the fundamental group of S' is
the additive group of integers and that the fundamental group of a contractible
space is trivial. It should be clear by now that the fundamental group is difficult to
determine rigorously. This section presents several theorems that are useful in de-
termining fundamental groups and some additional examples.

Definition: Let X be a space with subspace D. Then D is a deformation retract
of X provided that there is a continuous function H: X X I = X for which
H(x,0)=x, H(x,1)€D, x€X
H(y,t)=y, y€ED, tE€EL
The homotopy H is called a deformation retraction. Since for each y in D, H(y, t)

has the constant value-y as t varies from 0 to 1, it is sometimes said that the points
of D stay fixed throughout the deformation retraction.

Example 9.4.1

Consider the annulus
A={(x;,x)ER: 1 <x}+x}=<4}
shown in Figure 9.7(a). The function H: A X I — S defined by

X

Hx,)=(1—-0x+1t Txl’

x,)€EAXI,

is a deformation retraction from 4 onto its inner circle S'. For Figure 9.7(b), a
similar deformation retraction can be defined on any annulus X to show that a
circle like D is also a deformation retract.
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@ (b)
FIGURE 9.7

Example 9.4.2

A comparison of definitions will reveal that a space X is contractible to a point
Xo in X if and only if the single-point subspace {x,} is a deformation retract of
X. Thus any point of R” is a deformation retract of R", any point of the n-ball
B" is a deformation retract of B”, and any point of the n-cube I" is a deformation
retract of I".

Theorem 9.10: If D is a deformation retract of a space X and x, is a point of D,
then [1; (X, xo) and I1; (D, xo) are isomorphic.

Proof: Let H: X X I = X be a deformation retraction, as specified in the definition.
For brevity of notation, let h: X = D.denote the 1-level of H:

h(x) = H(x, 1), x€X.
Let hy: [1:(X, xo) = I1/(D, xo) be the homomorphism induced by h:
he([a)) = [ha], [e] € T, (X, xo).

The fact that h is a continuous map insures that h, is well-defined, and the definition
of the operation = reveals it to be a homomorphism. For [a], [8] in I1; (X, x0),

he([e] « [B]) = he([a*B]) = [h(axB)] = [hashB]
= he([)) - he ([B)).
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For [v] in I1, (D, xq), v is a loop in X so it determines a homotopy class in
I1; (X, xg) which, with some abuse of notation, we still call [y]. Since h leaves each
point of D fixed, then

he((v)) = [hY] = (],

50 hy, is surjective.

To see that h, is one-to-one, we first make the following observation. If [a] €
I1; (X, xo), then as loops in X, a and ha are equivalent. This is demonstrated by
the homotopy K: I X I = X defined by

K(t, s) = H(a(t),s), (t,s)EIXL

Thus, if [a], [B] are members of T1; (X, xg) for which h([a]) = hy([B]), then as
equivalence classes of loops in X

[o] = [ha] = hy([a]) = he([B]) = [hB] = [B],

so [a] = [B] and h, must be one-to-one. This completes the proof that h, is an
isomorphism. 0

Example 9.4.3

For an annulus 4, both its inner and outer circles are deformation retracts. From
Theorem 9.10 we conclude that [T, (4) is isomorphic to the group Z of integers.

Example 9.4.4

The punctured plane R*\{ p} consists of all points of R? except a particular point
p. It is left as an easy exercise for the reader to show that a circle containing p
in its inner region is a deformation retract of R?\{p} and hence that the fun-
damental group of R?\{ p} is the group of integers.

Theorem 9.11: Let X, and X, be spaces with base points x; and x;, respectively.
Then

H’ (Xl X X2! (xlr xZ)) = Hl (Xlr xl) ® HI (XZJ xz)'

Proof: Before beginning the proof, we note that the symbol “‘=" denotes isomor-
Dhism of groups and that T1, (X;, x;) ® I1; (X., x,) denotes the direct product of
the indicated groups. The direct product consists of all ordered pairs ([a;], [a3])
where [a;] € I1, (X;, x)) and [a] € T1; (X2, x2) with group operation ® defined by

((ei]. [e2d), ® ([Bi]. [B2)) = ([ee1#B1]. [z B3)).
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Those not familiar with direct products should consult the Appendix on groups

before proceeding.
Any loop a in X; X X, based at (x;, x) defines loops

a) =pa, o = pa

in X; and X, based at x; and x;, respectively, where p;: X; X X, = X, and p,:
X1 X X; = X, are the projection maps from the product space onto the coordinate
spaces. Also, any pair of loops a;, a; in X; and X, based at x; and x;, respectively,
determine a loop a = («;, a3) in X; X X, with base point (x;, x,). It is a straightforward
exercise to show that the function

f: H, (X1 X Xz, (x1, x2)) => H, (X1, x) ® H, (X2, x3)

defined by
Sa)) = ([eer], [edd),  [e] €], (X1 X X3, (x1, X2)
is an isomorphism. O
Example 9.4.5
(a) Since the torus T is homeomorphic to the product space S' X S,

then

Im=I,s"e[,sH=zez

(b) An n-dimensional torus T" is the product of n factors of S'. Thus
I1, (T is isomorphic to the direct product of n copies of the group
Z of integers.

(c) Since a closed cylinder C is the product of S' with an interval [a, b],

I[MIo=I,s"®I],(abh)=26 {0} =Z.

Theorem 9.12: For n = 2, the n-sphere S™ is simply connected.

Proof: Let

Vl = {x = (x,, ey x,,+,) e s Xn+1 < 1/2}
Vo= {x=(x1,..., Xn+1t) €E S™ Xps1 > —1/2}.
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Note that V,, V, are simply connected open subsets of S™ whose union is S" and
whose intersection is non-empty and path connected. The proof will show that any
space having such an open covering must be simply connected.

Let1=(1,0,...,0) €S" be the base point and consider a homotopy class
[o] inT1; (8" 1). Then a: I = S" is a continuous map and {o~'(V)), a™'(V)} is
an open cover of I. Since I is compact, this open cover has a Lebesgue number e.
Choosing successive terms of a sequence

O=s5)<§; <2+ <8§p=1

to differ by less than € insures that for 0 < i < m — 1 the image o([s;, si+;]) will be
a subset either of V; or of V,. Defining

ai(t) = af(1 — )s; + tsis), tEI

produces a sequence {a;}75' of paths in S™ for which a;(I) is a subset of a simply
connected set U;, which equals V; or V,, and

[a] = [ao*a;*- - #ap].

Since V; N\ V, is path connected, there is for 1 < i< m — 1 a path~;from 1 to afs;)
lying entirely within U,_; N U;. Letting v; denote the reverse of v;, it follows that
Y%, is equivalent to a constant loop, 1 < i < m — 1, so that

[of = [co% Y %Y %0 % Y20 Y20 02%° * * %Yy 1 %Y 1% Cm—i]
= [ag#Yi] o [Yi*o1#¥2] o * * * o [Ym-1%Am-1].

Y

az 73 )

Vi

FIGURE 9.8 Schematic diagram for Theorem 9.12 with m = 4.

Each equivalence class in this product is determined by a loop based at 1 in either
V, or V,, a simply connected set in either case. Thus each term in the product is -
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the identity class, so [a] must also be the identity class. Hence I1; (S", 1) = {0}
and S" is simply connected for n = 2. O

Question: Where in the preceding proof was the assumption n = 2 used?

The examples of fundamental groups given in this chapter are all abelian.
There are relatively simple topological spaces which have non-abelian fundamental
groups; the doubly punctured plane (plane with two points removed) and the sub-
space of the plane consisting of two tangent circles (a figure eight) are two examples.
Showing that the fundamental groups of these spaces are non-abelian would require
a considerable departure from the mainstream of this chapter, so these demonstra-
tions are omitted. Additional information on this subject can be found in the Sug-
gestions for Further Reading at the end of the chapter.

EXERCISE 9.4

1. Show that S' is a deformation retract of the cylinder S' X I. Use this to prove that the
fundamental group of a cylinder is isomorphic to Z.

Explain in detail where the assumption n = 2 was used in the proof of Theorem 9.12.
Generalize the proof of Theorem 9.12 to prove the following:
Theorem: Suppose X is a space with an open cover {V;} such that
(@ NV,+J,
(b) each V; is simply connected,
(c) fori#j, ViN V,is path connected.
Then X is simply connected.
4. Determine the fundamental group of the Mébius strip.
(@) Prove that S"! is a deformation retract of R™\{6}.

(b) Use part (a) to prove that punctured n-space R™\{p} is simply connected for
nz3.

6. Let X be a space consisting of two spheres S and S”, where m, n = 2, joined at a point.
Prove that X is simply connected.

9.5 THE BROUWER FIXED POINT THEOREM
AND RELATED RESULTS

Recall from Chapter 5 that a fixed point of a given function f* X = X from
a space X into itself is a point x in X for which f(x) = x. A space X has the fixed-
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point property provided that every continuous function f* X —> X has at least one
fixed point. The main result of this section shows that the closed unit ball

B? = {(xi, ) ER: x} + x3 < 1}

has the fixed-point property. The proof is based on an algebraic comparison of
I1: (B® and IT, (S") and illustrates the power of the fundamental group in geometry.
Actually, the closed unit n-ball

B"={(x1, X2, ..., X) ER:xI+x3+ -« +x2< 1}

has the fixed-point property for every positive integer n; this celebrated result is the
Brouwer Fixed Point Theorem. The case n = 1 was proved in Theorem 5.9, and
the case n = 2 is our object in this section. Those interested in the general result
should consult the supplementary reading list.

Two intuitively plausible results, Theorems 9.13 and 9.14, will be needed to
prove the n = 2 case of Brouwer’s theorem.

Theorem 9.13:  The unit circle S’ is not contractible.

Proof: Any contractible space has trivial fundamental group. Since [1, (S*) = Z,
then S’ is not contractible. O

Definition: A subspace A of a topological space X is a retract of X provided that
there is a continuous function f: X = A for which f(a) = a for each a in A. The
Sfunction fis called a retraction of X onto A.

Example 9.5.1

(a) In an annulus, both the inner and outer circles are retracts.

(b) A closed subinterval [c, d] of a given interval [q, b] is a retract of
[a, b).

(c) The set of endpoints A = {a, b} is not a retract of a closed interval
[a, b], where a < b, for the following reason: Since [a, b] is connected
and A4 is not, there cannot be a continuous function from [a, b]
onto A.

It should be clear that every deformation retract is a retract but that not every
retract is a deformation retract. This relation is pursued in the exercises for this
section.
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Theorem 9.14: The Brouwer No Retraction Theorem The unit circle S’ is
not a retract of the closed unit ball B>,

Proof: The proof is by contradiction. Suppose, contrary to the theorem, that S’
is a retract of the unit ball B and let f: B> — S’ be a retraction. Define a homotopy
h:S'"XI1—- S"by

hx, ) =ft+(1—t)x;, (1 —tx), x=(x;,x)ES!, tE€L

It is not difficult to see that h is a contraction of S to the point 1 = (1, 0), contradicting
the fact that S’ is not contractible. 0

Theorem 9.15: The Brouwer Fixed Point Theorem Every continuous func-
tion f: B> = B? from the two-dimensional ball to itself has at least one fixed point.

Proof: Suppose to the contrary that f: B> = B? is a continuous map having no
fixed point. Then for all x in B, f(x) and x are distinct points. For x in B>, consider
the half-line from f(x) through x, and let h(x) denote the intersection of this half-
line with the bounding circle S', as shown in Figure 9.9.

FIGURE 9.9

Then h: B?> = S is easily seen to be a retraction from B? onto S’, contradicting
Theorem 9.14. Thus we conclude that the assumption that a continuous map
f: B> = B? can have no fixed point must be false. O

The sequence of results just used to establish the Brouwer Fixed Point Theorem
in dimension two generalizes to higher dimensions in a very natural way. It is
intuitively plausible that the n-sphere S” is not contractible for any positive integer
n. Once this fact is established. the Brouwer No Retraction Theorem and the Brou-
wer Fixed Point Theorem can be proved with only minor modifications to the
arguments given above. Thus, the main result needed for the Brouwer Fixed Point
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Theorem is the non-contractibility of S”. Since this is established for S' by the
fundamental group, it seems natural to think that some similar algebraic structure
might do the same for S”, n = 2. This structure should describe the “hole” in S”"
in the way that the fundamental group describes the equivalence classes of loops
in S'. This is, in fact, the case. There is a sequence [1, (X, %), n=1,2,3,..., of
groups defined for general topological spaces which generalize the fundamental
group to higher dimensions. These groups establish the non-contractibility of S”
and allow a proof of the Brouwer Fixed Point Theorem, as well as many other
beautiful geometric theorems. The interested reader will find relatively easy access
to these higher homotopy groups in the suggested reading list for this chapter.

EXERCISE 9.5

1. Let X be a space. Prove that every deformation retract of X is also a retract of X.
2. (a) Prove that a single point in S' is a retract but not a deformation retract of S’.

(b) Prove that a meridian or longitudinal circle on the torus T is a retract but not a
deformation retract of 7.

3. Fillin the details in the proof of Theorem 9.15 by proving that the function 4 is continuous
and leaves each point of ' fixed.

4. Definition: Let f: X = Y be a continuous function on the indicated spaces. Then f is
null-homotopic provided that there is a continuous function H: X X I = Y such that
Hps, 0) = fand H(+, 1) is a constant map.

Prove the following:
(a) If Yis contractible, then every continuous map f: X = Y is null-homotopic.

(b) Ifg: X—S" n=z=l,isa continuous map whose image g(X) is a proper subset of
S”, then g is null-homotopic.

(c) If X is contractible, then every continuous map A: X = Y is null-homotopic.

5. Assuming that the n-sphere S” is not contractible, prove the Brouwer No Retraction
Theorem (Theorem 9.14) and the Brouwer Fixed Point Theorem (Theorem 9.15) for
n>2.

6. (a) Show that for the Cantor set C, every closed subset is a retract.
(b) Which subsets of C are deformation retracts?

7. Let X be a space, A a retract of X, xp a point of 4, and f* X = A a retraction. Show that
the induced homomorphism

j;: HI (X9 XO) -> Hl (A9 Xo)

is a surjection.

8. Show that S' is not weakly contractible. (Weak contractibility is defined in Problem 12
of Exercise 9.2.)
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9.6 CATEGORIES AND FUNCTORS

The theme of the present chapter has been the use of algebraic structures, in
the form of fundamental groups, to answer topological and geometric questions.
We think of translating a topological problem to an algebraic one and solving the
latter to reveal an insight into the former. This method of attack is formalized in
mathematical language by the theory of categories, the subject of this section.
Roughly speaking, a category is a class of sets, called objects, which share some
particular structure and a collection of functions or morphisms from one object to
another. For example, it would be said that a problem in the category of topological
spaces and continuous maps can be translated to the category of groups and ho-
momorphisms. The mechanism of translation between categories is called a functor.
Precise definitions and examples of these concepts are the object of this section.

Definition: A category € is a class whose members are the objects of the category,
together with sets of maps or morphisms from each object to every other object. The
set of all morphisms from object A to object B is denoted Hom(A, B). Iffis a member
of Hom(A, B), then we write f- A = B or A 2 B and call A and B the domain and
range of f, respectively. The morphisms are required to satisfy the following properties:

(a) For each triple A, B, C of objects and morphisms f: A—> Band g: B -
C, there is a composite morphism

gf=g-f4->C

(b) Composition of morphisms is associative, in the following sense. If f:
A—= B, g: B—> Candh: C — D are morphisms, then

he(gf)=(h-g -f A= D.

(c) For each object A there is an identity morphism 1,: A = A such that for
each object X

1.f=f f€ Hom(X, A),
gly=g g€ Hom(A, X).

Example 9.6.1

The system whose objects are topological spaces X and for which Hom(X, Y) is
the family of continuous functions from X to Y is a category. The composite
operation on morphisms is simply composition of functions, and the identity
morphism on an object X is the identity function. Following the usual practice,
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we shall refer to categories by specifying the class of objects first and the allowable
morphisms second, without further designation. Thus, the category of this ex-
ample is called the category of topological spaces and continuous functions.

Example 9.6.2
As additional examples of categories, note the following:

(a) The category of groups and homomorphisms.

(b) The category of metric spaces and continuous functions.
(c) The category of metric spaces and isometries.

(d) The category of sets and functions.

(e) The category of sets and injective functions.

(f) The category whose objects are ordered pairs (X, xp), where X is a
space with base point xo, and whose morphisms are continuous maps
1+ (X, xo0) = (Y, yo) which satisfy f(xo) = yo. This category is the
category of pointed topological spaces and base point preserving con-
tinuous maps.

Definition: Let C and @' be categories. A covariant functor from € to C' consists
of two functions, an object function which maps each object A of @ to an object T(A)
of C' and a morphism function which maps each morphism f of C to a morphism
T(f) of C' subject to:
(@) Iffis a morphism of @ from A to B, then T(f) is a morphism from T(A)
to T(B).
(b) Iff:A— Bandg: B— C are morphisms of C, then

T(g-f)=T(g - T(f).
(c) For each object A of @,

T(IA) = 17'(,4).

The definition of the term contravariant functor differs from the preceding
definition as follows. A contravariant functor satisfies (c), but instead of (a) and (b)
it satisfies

(a') Iffis a morphism of @ from A to B, then T(f) is a morphism of C' from

T(B) to T(A).
(b') Iff:A—> Bandg: B—> C are morphisms of C, then

Tg-f)=T0¢) - T(®.
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Example 9.6.3

The purpose of this example is to describe the fundamental group functor. Con-
sider the category P of pointed topological spaces and continuous base point
preserving maps and the category § of groups and homomorphisms. As we
know, the fundamental group assigns to each object (X, xo) of P an object
I1, (X, x) of . For a morphism f: (X, xo) = (Y, )o), the induced homomor-
phism f,, which is denoted [, (f) in functorial notation, is defined from
I1, (X, x0) to I1, (Y, yo) by composition of functions:

f‘([a]) = [faL [a] € Hl (X9 xO)-

This functor is covariant since f: 1, (X, x0) = Il, (¥, y,) whenever f:
(X, xo0) = (Y, yo).

Example 9.6.4

As an easier example of a covariant functor, consider the category T of topological
spaces and continuous functions and the category § of sets and functions. The
“forgetful functor” from 7 to & assigns to each topological space X the underlying
set X and to each continuous function f: X = Y on topological spaces the same
function f from set X to set Y. The name of this functor is derived from its
property of “forgetting” the structure of the category 7.

Example 9.6.5

For an example of a contravariant functor, consider the category T of topological
spaces and continuous functions and the category # of metric spaces and con-
tinuous functions. For each object X in T, let C(X, R) denote the space of
bounded, continuous real-valued functions f: X = R. With the supremum metric,
C(X, R) is a metric space. We define a functor from 7 to M whose object function
assigns to each member X of T the corresponding metric space T(X) = C(X, R)
and assigns to a morphism f: X = Y the morphism 7T(f): ((¥, R) = C(X, R)
defined as follows:

T(fXh) = Hf, h€CY,R).

Note that if &: Y = R, then 4f: X = R, so the functor T is contravariant.

EXERCISE 9.6

1.

Show in detail that Example 9.6.3 defines a covariant functor.

2. Show in detail that Example 9.6.5 defines a contravariant functor.
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3. Let T be the category of topological spaces and continuous maps and § the category of
sets and functions. Define a functor from 7 to § which assigns to each object X in T
its set of components. Describe the action of this functor on morphisms. Is this functor
covariant or contravariant?

4. Let C be the category of completely regular spaces and continuous functions and D the
category of compact Hausdorff spaces. The Stone-Cech functor assigns to each object X
of @ its Stone-Cech compactification 8(x) in D. Use Problem 11 of Exercise 8.6 to show
that this assignment does define a functor and describe its action on morphisms.

5. Let @ be a category and 4 an object of €. Show that the identity morphism 1,: 4 = 4
is unique.

6. Definition: Let @ be a category. If f: X = Y and g: Y —» X are morphisms for which
&f = Iy, then fis called a right inverse of g and g is called left inverse of f. A two-sided
inverse or inverse g of fis a morphism which is both a left and right inverse for f. If f has
an inverse, then f is called an equivalence, and the objects X and Y are said to be equivalent.

Prove:

(a) Letf: X = Y be a morphism with left inverse g: Y = X and right inverse : Y —»
X. Then g = h and f'is an equivalence.

(b) Equivalence of objects in a category is an equivalence relation.

SUGGESTIONS FOR FURTHER READING

For an introduction to various aspects of algebraic topology at a level accessible
to undergraduates, see Basic Concepts of Algebraic Topology by Croom or Algebraic
Topology by Massey. Several other introductory textbooks on the subject are in-
cluded in the Bibliography.

Introduction to Knot Theory by Crowell and Fox has an excellent exposition
of the fundamental group. Algebraic Topology by Spanier, at a higher level, gives
an excellent overview of algebraic topology; it is particularly recommended for
categories and functors.

For the background in group theory required for Chapter 9, Herstein’s Topics
in Algebra, Jacobson’s Basic Algebra I, and Shapiro’s Introduction to Abstract Al-
gebra are recommended.
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HISTORICAL NOTES FOR CHAPTER 9

As was mentioned in the introduction to this chapter, algebraic topology was
introduced in a series of papers during the years 1895-1901 by the French math-
ematician Henri Poincaré (1854-1912). Algebraic topology did not develop as an
outgrowth of point-set topology. Poincaré’s first paper preceded Fréchet’s work on
general metric spaces by 11 years and Hausdorff’s definition of general topological
spaces by 19 years. Furthermore, Poincaré’s work on the fundamental group and
other aspects of algebraic topology was not influenced by Cantor’s theory of sets.
Indeed, Poincaré was unimpressed by the theory of sets and referred to Cantor’s
work as a “disease” from which mathematics would eventually recover.

Henri Poincaré made significant mathematical contributions in the fields of
algebraic topology, algebra, non-Euclidean geometry, differential equations, complex
variables, algebraic geometry, astronomy, mathematical physics, and celestial me-
chanics. As the author of 30 books and over 500 papers on new mathematics,
Poincaré was the second most prolific writer of mathematics, being surpassed in
volume only by Leonard Euler. He is often considered the last universal mathe-
matician, in the sense of having a real grasp of most of the significant mathematics
of his time.

The Brouwer Fixed Point Theorem is due to the Dutch mathematician
L. E. J. Brouwer (1881-1966). The proof given in the text, using the fundamental
group, is not the one originally given by Brouwer. The higher homotopy groups,
which were mentioned in the discussion of the Brouwer Fixed Point Theorem in
higher dimensions, were defined during the years 19321935 by Eduard Cech (1893~
1960) and Witold Hurewicz (1904-1956).







Appendix: Introduction
to Groups

This brief appendix is intended to refresh the reader’s memory with the basic
facts about groups essential for Chapter 9 of the text. Proofs of propositions are
not included, and the presentation here is not to be considered an adequate intro-
duction to the theory of groups in any sense. Detailed exposition can be found in
many standard textbooks for algebra. The books Basic Algebra I by Jacobson and
Introduction to Abstract Algebra by Shapiro are recommended.

Definition: 4 binary operation on a set X is a function f: X X X = X. For x, ,
in X, it is customary to replace f(x, y) by xy or x-y (multiplicative notation) or
x + y (additive notation).

Definition: A4 group is an ordered pair (G, +) consisting of a set G and a binary
operation on G satisfying the following properties:

(a) (The Associative Property) (ab)c = a(bc) for all a, b, ¢ in G.

(b) There is an element e of G, called the identity element, satisfying ae =
ea=aforallainG.

(c) For each element a in G, there is an element a™', called the inverse of a,
for whichaa™ =a™'a=e.

In additive notation, the identity element is usually denoted by 0 and the
inverse of a by —a. A trivial group is a group {0} consisting only of an identity
element 0. It is a simple consequence of the definition that the identity element of
a group is unique and that each element has a unique inverse.

Definition: A group G satisfying ab = ba for all a, b in G is said to be commutative
or abelian,

Definition: A subset H of a group G is a subgroup of G if H is a group under the
operation of G.

The group Z of integers under addition is the group most frequently encoun-
tered in the text. The subgroups of Z are the groups H, composed of all integral
multiples of a given integer n.

301
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Definition: A functionf: G = H from a group G to a group H is a homomorphism
ifforalla, binG

f(ab) = f(a)f (b).
The kernel of f is the set of all members of G mapped by f to the identity of H. A

homomorphism which is also a one-to-one function from G onto H is called an
isomorphism; in this case the groups G and H are called isomorphic.

The relation of isomorphism for groups is an equivalence relation.

Definition: For groups G and H, the direct product G ® H is the set G X H with
group operation ® defined by
(a1, b)) ® (az, b)) = (a; - a3, b; - b)

forall (a;, b)), (a3, by) in G X H. (In order not to complicate the notation, the symbol
o is used here for the operations in both G and H.)

The concept of direct product extends in the usual way to any number of
factor groups.



BIBLIOGRAPHY

Apostol, T.M., Calculus, 2nd ed., Blaisdell, Waltham, MA, 1967.

Armstrong, M.A., Basic Topology, Springer-Verlag, New York, 1983.

Arnold, B.H., Intuitive Concepts in Elementary Topology, Prentice-Hall, Englewood Cliffs,
NJ, 1962.

Bing, R. H., “Elementary Point-Set Topology,” Slaught Memorial Papers, Number 8, Amer-
ican Mathematical Monthly, Vol. 67, No. 7, 1960.

Bourbaki, N., General Topology, Addison-Wesley, Reading, MA, 1966.

Brand, L., Differential and Difference Equations, Wiley, New York, 1966.

Courant, R., and Robbins, H., What is Mathematics? Oxford University Press, London,
1941.

Croom, F.H., Basic Concepts of Algebraic Topology, Springer-Verlag, New York, 1978.

Crowell, R.H., and Fox, R.H., Introduction to Knot Theory, Springer-Verlag, New* York,
1977.

Dugundji, J., Topology, Allyn and Bacon, Boston, 1965.

Eisenberg, M., Topology, Holt, Rinehart and Winston, New York, 1974.

Gamelin, T.W., and Greene, R.E., Introduction to Topology, CBS College Publishing, New
York, 1983.

Guillemin, V., and Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, NJ,
1974.

Hamilton, A.G., Numbers, Sets and Axioms, Cambridge University Press, Cambridge, 1982.

Hausdorff, F., Grundziige der Mengenlehre, 2nd ed., Walter de Gruyter, Leipzig, 1914.

Herstein, I.N., Topics in Algebra, Xerox, Lexington, MA, 1964.

Hocking, J.G., and Young, G.S., Topology, Addison-Wesley, Reading, MA, 1961.

Hurewicz, W., and Wallman, H., Dimension Theory, Princeton University Press, Princeton,
NJ, 1969.

Jacobson, N., Basic Algebra I, W.H. Freeman, San Francisco, 1974.

Janich, K., Topology, Springer-Verlag, New York, 1984.

Kaplansky, 1., Set Theory and Metric Spaces, Allyn and Bacon, Boston, 1972.

Kelley, J.L., General Topology, Springer-Verlag, New York, 1975.

Kosniowski, C., A First Course in Algebraic Topology, Cambridge University Press, Cam-
bridge, 1980.

Lefschetz, S., Introduction to Topology, Princeton University Press, Princeton, NJ, 1949,

Manbheim, J., The Genesis of Point-Set Topology, Pergamon, London, 1964.

Massey, W.S., Algebraic Topology: An Introduction, Harcourt, Brace and World, New York,
1967: Springer-Verlag, 1977.

Milnor, J., Topology from a Differential Viewpoint, University of Virginia Press, Charlottes-
ville, 1965.

Moise, E.E., Geometric Topology in Dimensions Two and Three, Springer-Verlag, New York,
1977.

Munkres, J.R., Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1975.

Newman, M.H.A., Elements of the Topology of Plane Sets of Points, 2nd ed., Cambridge
University Press, London, 1964.

303



304 BIBLIOGRAPHY

Rucker, R., Infinity and the Mind, Birkhiuser, Boston, 1982.

Rudin, W., Principles of Mathematical Analysis, McGraw Hill, New York, 1964.

Schurle, A.W., Topics in Topology, Elsevier/North Holland, New York, 1979.

Shapiro, L., Introduction to Abstract Algebra, McGraw-Hill, New York, 1975.

Simmons, G.F., Introduction to Topology and Modern Analysis, McGraw-Hill, New York,
1963.

Singer, .M., and Thorpe, J.A., Lecture Notes on Elementary Topology and Geometry, Scott,
Foresman, Greenview, IL, 1967.

Spanier, E.H., Algebraic Topology, McGraw Hill, New York, 1966.

Steen, L.A., and Seebach, J.A., Counterexamples in Topology, Holt, Rinehart and Winston,
New York, 1970.

Steenrod, N., and Chinn, W.G., First Concepts of Topology, The New Mathematical Library,
Number 18, The Mathematical Association of America, Washington, DC, 1966.
Tucker, A.W., and Bailey, H.S., “Topology,” Scientific American, CLXXXII: 18-24, 1950.
Wall, C.T.C., A Geometric Introduction to Topology, Addison-Wesley, Reading, MA, 1972,

Willard, S., General Topology, Addison-Wesley, Reading, MA, 1970.



INDEX

abelian (or cummutative) group, 301
accumulation point

in a metric space, 66

in a topological space, 101

of a subset of the real line, 44
Alexander Subbasis Theorem, 203, 207, 229
Alexander, J. W, 229
Alexandroff, P. S., 193, 194, 229, 266
algebraic number, 53
algebraic topology, 267
analysis situs, 9
Anderson, R. D, 229
annulus, 223-224
antipodal point, 28
Arzela, C., 97
Ascoli, G., 97

Baer, R. W, 229
Baire Category Theorem (Theorem 3.17), 89
Baire, René, 97

closed, 62
open, 50, 62
radius of, 62
Banach, Stephan, 97
base or basis for a topology, 109
equivalent, 113
local, 110
base point,
of a loop, 270
of a space, 270
basic open set, 109
Betti, Enrico, 229
bijection, 22
binary operation, 301
Bing, R. H., 266
Bolyai, Janos, 10
Bolzano, Bernard, 53
Bolzano-Weierstrass property, 175
Bolzano-Weierstrass Theorem (Theorem 2.13), 48
Borel, Emile, 53, 97, 193
boundary,
of a manifold, 223, 227

boundary (Continued)
of a set in a metric space, 73
of a set in a topological space, 103
boundary point,
in a metric space, 73
in a topological space, 103
of a manifold, 223, 227
bounded function, 93
bounded interval, 29
bounded metric space, 60
bounded set in a metric space, 60
bounded set on the real line, 40
box product space, 210
box topology, 210
broom space, 157-158
Brouwer Fixed Point Theorem (Theorem 9.15), 293
Brouwer No Retraction Theorem (Theorem 9.14),
293
Brouwer, L. E. J., 299

C*-embedding, 265

Cantor function, 192

Cantor set (Section 6.5), 187, 209

Cantor’s Intersection Theorem, 95

Cantor’s Nested Intervals Theorem (Theorem
2.11), 46, 164

Cantor’s Theorem of Deduction (Theorem 6.2),

164

Cantor, Georg, 10, 39, 53, 97, 160, 194, 267
cardinally equivalent sets, 34
Cartesian product,

finite case, 19

general case, 205
category, 295
category,

first, 89, 265

second, 89, 265
Cauchy sequence, 87
Cauchy, Augustin Louis, 10, 97
Cauchy-Schwarz Inequality, 56 .
Cech, Eduard, 194, 266, 299
center of a ball, 62
characteristic function, 121
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characterization of the Cantor set, 190
characterization theorem, 120
classification theorem, 120
closed ball, 62
closed function or closed mapping, 118
closed interval, 29
closed manifold, 224
closed set,
in a metric space, 63
in a topological space, 100
in the plane, 50
on the real line, 42
closed unit interval, 4
closure,
of a set in a metric space, 71
of a set in a topological space, 103
operator, 109
cluster point in a topological space, 101
coarser topology, 211
codomain of a function, 20
commutative (or abelian) group, 301
compact space, 162
compact subspace, 162
compatification of a space, 261
one-point, 182
Stone-Cech, 186, 264
comparison of topologies, 211
complement of a set, 16
complete metric space, 87
completely normal space, 242

completely regular space (or T%-spaoe), 247

completion of a metric space, 92
component, 139
composite function, 23
composite morphism, 295
composition of functions, 23
composition of morphisms, 295
congruence modulo n, 27
connected im kleinen, 158
connected space, 131
connected subsets of the real line, 143
connected subspace, 131
constant loop, 270
continuity,
at a point in a metric space, 75
at a point in a topological space, 115
for functions on metric spaces, 75
for functions on topological spaces, 115
in the first variable, 204
in the second variable, 204
continuous function,
on metric spaces, 75
on topological spaces, 115
continuum hypothesis, 39
contractible space, 277
contractible to a point, 277
Contraction Lemma (Theorem 3.18), 90
contraction, 277
contractive mapping, 90

contravariant functor, 296
convergence,
of a sequence, 67, 101
uniform, 94
convergent sequence, 67, 101
convex set, 148
coordinate spaces (or factor spaces), 84, 197, 205
countable complement topology, 102
countable set, 35
countably compact space, 174
countably infinite set (or denumerable set), 35
covariant functor, 296
Covering Homotopy Property (Theorem 9.7), 282
Covering Path Property (Theorem 9.6), 281
covering function (or lifting), 280
covering homotopy, 280
covering path, 280
curve, 221
cut point, 4, 142

Dedekind, Richard, 53
deformation retract, 286
deformation retraction, 286
degenerate interval, 30
degree of a loop, 283
DeMorgan’s Laws, 16, 18
dense set,

in a metric space, 91

in a topological space, 106
denumerable set (or countably infinte set), 35
derived set,

in a metric space, 66

in a topological space, 101
Descartes, René, 8
diagonal of a product space, 204
diameter of a set,

in a metric space, 60

on the real line, 40
diffeomorphic spaces, 226
diffeomorphism, 226
difference of sets, 16
differential topology, 225
Dini’s Theorem, 253
direct product of groups, 302
disconnected space, 131
discrete space, 100
discrete topology, 100
disjoint sets, 14
distance from a point to a set, 40, 61
distance function (see also metric), 55
distance,

in metric spaces, 55

in the plane, 49

on the real line, 39
domain of a function, 20
domain of a morphism, 295



dot product (or scalar product), 56
du Bois-Reymond, Paul, 53, 129
dyadic number, 244

embedding, 126

empty interval, 30

empty set, 12

endpoints of a path, 147

endpoints of an interval, 29

equipotent sets, 34

equivalence class, 26

equivalence class (or homotopy class) of a loop,
272

equivalence modulo a given function, 218

equivalence morphism, 298

equivalence of cardinal numbers, 34

equivalence relation, 26

equivalent bases, 113

equivalent loops, 270

equivalent metric spaces, 80

equivalent objects of a category, 298

equivalent paths, 269

equivalent sets, 34

Euclidean space, 100

Euler, Leonhard, 7, 299

even vertex, 7

extension of a function, 24, 248

extension problem, 248

exterior of a set, 108

factor spaces (or coordinate spaces), 84, 197
finer topology, 211
finite complement topology, 100
finite intersection property, 162
finite sequence, 24
finite set, 34
finitely coverable set, 47
first axiom of countability, 110
first category, 89, 265
first countable space, 110
first homotopy group (or fundamental group), 272
fixed-point property, 145
Fredholm, 1., 97
Fréchet space, 229
Fréchet, Maurice, 10, 97, 129, 193, 229, 267
function, 20
functions,
Cantor, 192
characteristic, 121
closed, 118
covering, 280
codomain of, 20
composition of, 23

Index 307

functions (Continued)
continuous, 75, 115
domain of, 20
extension of, 24, 248
graph of, 21
identity, 23
image of, 21
injective, 21
inverse, 22
left inverse, 25
lifting, 225
lower semicontinuous, 121
onto, 22
open, 118
projection map, 197, 205
range of, 20
restriction of, 24, 248
right inverse, 25
smooth, 225
strictly increasing, 171
surjective, 22
uniformly continuous, 170
upper semicontinuous, 121
functor, 296
contravariant, 296
covariant, 296
fundamental group, 272

Gauss, Carl F., 8
geometric topology, 225
geometry, rubber, 2
Gluing Lemma, 151
graph, 7
of a function, 21
Greatest Lower Bound Property, 31
greatest lower bound (or infimum), 30
group, 301
abelian, 301
fundamental, 272
homomorphism, 302
homotopy, 272, 294, 299
isomorphism, 302
Grundziige der Mengenlehre, 10, 129, 160, 193,
194

Hahn-Mazurkiewicz Theorem, 180

Hahn, Hans, 97, 160, 194, 229

half-open and half-closed interval, 29

half-open interval topology, 113

Hausdorff space, 124

Hausdorff space that is not regular, 235-236
Hausdorff, Felix, 10, 97, 129, 160, 193, 266, 267
Heine, Eduard, 193 :
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Heine-Borel Theorem (Theorem 2.12), 47, 53, 172,
193
Helly, Eduard, 97
hereditary property, 124
higher homotopy groups, 294, 299
Hilbert cube, 208
Hilbert space, 84, 107, 208, 265
Hilbert, David, 97, 129
homeomorphic spaces, 118
homeomorphism,
of metric spaces, 78
of topological spaces, 118
homomorphism, 302
induced, 276
homotopic modulo endpoints, 269
homotopic paths, 269
homotopy, 270
homotopy class (or equivalence class) of a loop,
272
Hurewicz, Witold, 299

identification space, 215
identity element of a group, 301
identity function, 23
identity morphism, 295
image,

of a function, 21

of a point, 20

of a set, 21
immersion of a manifold, 225
index set, 13
induced homomorphism, 276
infimum (or greatest lower bound), 30
infinite dimensional Euclidean space, 208
infinite sequence, 24
infinite set, 34
initial point of a path, 147
injective (or one-to-one) function, 21
interior,

of a manifold, 224

of a set in a metric space, 69

of a set in a topological space, 103
interior point,

in a metric space, 69

in a topological space, 103

of a manifold, 223, 227
Intermediate Value Theorem (Theorem 1.1 and

5.8), 5, 144

intersection of sets, 14, 16
interval, 29, 30
Invariance of Domain Theorem, 221, 228
inverse function, 22
inverse image of a set, 21
inverse of a morphism, 298
inverse of an element of a group, 301
irrational number, 32

isolated point,

in a metric space, 96

in a topological space, 186
isometric embedding, 91
isometric metric spaces, 78
isometry (or metric equivalence), 78
isomorphism of groups, 302

Jones, F. B., 266
Jordan, Camile, 131, 160, 194

Kant, Immanuel, 10

kernel of a homomorphism, 302
Klein bottle, 216, 229

Klein, Felix, 229

Kolmogorov, A. N., 266
Konigsberg bridge problem, 7
Kuratowski, K., 129, 160, 193

Least Upper Bound Property, 31
least upper bound (or supremum), 30
Lebesgue number, 178
Lebesgue, Henri, 194, 266
left inverse of a function, 25
Leibniz, G. W., 7
length (or norm) of a vector,

in Euclidean space, 56

in Hilbert space, 84
Lennes, N. J., 160
Levi, F., 229
lifting (or covering function), 280
limit of a sequence,

in a metric space, 67

in a topological space, 101
limit point,

in a metric space, 66

in a topological space, 101

of a subset of the real line, 44
Lindeldf property, 175
Lindeldf space, 175
Lindeldf Theorem (Theorem 6.13), 175
Lindeldf, Ernst, 193
line segment, 148
Listing, Joseph B., 9
Lobachevsky, N. L, 10

local base or local basis for a topology, 110

locally compact at a point, 181
locally compact space, 181
locally connected at a point, 154
locally connected space, 154



locally Euclidean space, 128

locally finite family of sets, 260
locally path connected at a point, 156
locally path connected space, 156
loop, 270

lower semicontinuous function, 121

manifold,
smooth, 226
topological, 221
manifold with boundary, 223, 227
map (or morphism) on categories, 295
max metric, 59
Meéray, Charles, 53, 97
Mazurkiewicz, Stephan, 160, 194
metric (or distance function), 55
in Euclidean space, 56
in Hilbert space, 85
in the plane, 49
on the real line, 39
max, 59
product, 83, 254
supremum, 60, 93, 172
uniform, 60, 93, 172
usual, 56
metric equivalence (or isometry), 78
metric space, 55
bounded, 60
complete, 87
completion of, 92
dense set in, 91
isometric, 78
product of, 83, 254
totally bounded, 178
topology for, 63
metric topology, 63
metrizable space, 119, 254
metrization problem, 253
Minkowski Inequality, 57
Minkowski, Hermann, 97
Moore plane (or Niemytzki plane), 242
Moore, E. H,, 129
Moore, R. L., 229, 266
morphism (or map) on categories, 295
identity, 295
morphism function, 296
Mabius strip, 9, 229
Mdbius, A. F., 9, 229

n-ball, 83

n-cube, 82

n-manifold, 221
closed, 224

Index

n-manifold (Continued)
smooth, 226, 227
with boundary, 223

n-sphere, 83

Nagata, J., 266

Nagata-Smirnov-Bing Metrization Theorem

(Theorem 8.19), 260
Nalli, Pia, 160
neighborhood,

in a metric space, 69

in a topological space, 103
nested sets, 46
net, 178
Newton, Isaac, 7
Niemytzki plane (or Moore plane), 242
Niemytzki, V., 266
norm (or length) of a vector,

in Euclidean space, 56

in Hilbert space, 84
nowhere dense set,

in a metric space, 88

in a topological space, 108
null-homotopic function, 294
null-homotopic loop, 270
number,

algebraic, 53

dyadic, 244

irrational, 32

rational, 32

object function, 296
object of a category, 295
odd vertex, 7
one-point compactification, 182
one-to-one (or injective) function, 21
one-to-one correspondence, 22
onto (or surjective) function, 22
open ball,

in metric space, 62

in the plane, 50
open cover, 161
open function or open mapping, 118
open interval, 29
open set,

in a metric space, 63

in a topological space, 99

in the plane, 50

on the real line, 41
open unit interval, 4
order complete space, 233
order topology, 233
ordered pair, 19

path, 147
path component, 152
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path connected space, 147
path connected subspace, 147
path product, 151
Peano continuum, 179
Peano space, 179
Peano, Guiseppe, 10, 180, 194
perfect set, 190
perfectly normal space, 252
Poincaré group (or fundamental group), 272
Poincaré, Henri, 97, 267, 299
point,
accumulation, 44, 66, 101
antipodal, 28
at infinity, 182
boundary, 73, 103, 223, 227
cluster, 101
cut, 4, 142
interior, 69, 103, 223, 227
isolated, 96, 186
power set, 12
preimage of a set under a function, 20
product metric, 83, 254
product of loops, 272
product of metric spaces, 83, 254
product of paths, 151
product of sets,
finite case, 19
general case, 205
product space,
finite case, 197
general case, 205
product topology,
finite case, 197
general case, 205
projection map, 197, 205
projective plane, 216
projective n-space, 223
proper subset, 12
punctured plane, 288

quotient map, 217

quotient space, 214

quotient topology, 214

quotient topology determined by a function, 217

radius of a ball, 62

range of a function, 20

range of a morphism, 295

rational number, 32

reflexive relation, 26

regular space (or T;-space), 234
regular space that is not normal, 240
Reisz, Frigyes, 129, 193

relation on a set, 25
equivalence, 26
reflexive, 26
symmetric, 26
transitive, 26
relative topology (or subspace topology), 122
relatively closed set, 123
relatively open set, 122
restriction of a function, 24, 248
retract, 292
retraction, 292
reverse path, 147
Riemann, Bernhard, 9, 129, 229
right inverse of a function, 25
rubber geometry, 2

same cardinal number, 34
scalar multiple of a vector, 148
scalar product (or dot product), 56
Schoenflies, A. M., 193
second axiom of countability, 110
second category, 89, 265
second countable space, 110
separable space, 106
separated sets, 133
separated space, 131
separation by continuous functions, 243
separation of a space, 131
separation property, 126
sequence, 23

Cauchy, 87

convergent, 67, 101

finite, 24

infinite, 24
set, 11
set difference, 16
sets,

bounded, 40, 60

boundary of, 73, 103

Cantor, 187ff, 209

Cartesian product of, 19, 205

closed, 42, 50, 100

closure of, 71, 103

complement, 16

convex, 148

countable, 35

countably infinite, 35

dense, 91, 106

denumerable, 35

derived, 66, 101

diameter of, 40, 60

difference of, 16

disjoint, 14

empty, 12

exterior of, 108

finite, 34



sets (Continued)
finitely coverable, 47
image of, 21
index, 13
infinite, 34
interior of, 69, 103
intersection of, 14, 16
metric for, 55
nested, 46
nowhere dense, 88, 108
open, 41, 50, 63, 99
perfect, 190
power, 12
product of, 19, 205
relation on, 25
relatively closed, 123
relatively open, 122
simply ordered, 233
somewhere dense, 89
subset, 12
topology for, 99
uncountable, 35
union of, 14, 16
Sierpinski, W., 193
simple order relation, 233
simply connected space, 277
simply ordered set, 233
Smirnov, Y., 266
Smith, H. L., 129
smooth function, 225
smooth manifold, 225
somewhere dense set, 89
Sorgenfrey line, 113
Sorgenfrey plane, 240
Sorgenfrey, R. H., 266
space filling curve, 180
space of bounded, continuous, real-valued func-
tions on a metric space, 93, 261
space of continuous real-valued functions on
[a, b], 59
spaces,
coordinate, 84, 197
Euclidean, 56, 100
factor, 84, 197
Hilbert, 84, 107, 208, 256
identification, 215
locally Euclidean, 128
metric (see also metric space), 55
of functions, 59, 93, 261
topological (see also topological space), 99
Steinitz, Ernst, 229
stereographic projection, 186
Stone, M. H., 194, 266
Stone-Cech compactification, 186, 264
Stone-Cech functor, 298
Stone-Cech Theorem (Theorem 8.21), 262
strictly increasing function, 171
stronger topology, 211
subbase or subbasis for a topology, 114

Index 311

subcover derived from an open cover, 161
subgroup, 301
subset, 12

proper, 12
subspace,

of a metric space, 81

of a topological space, 122

topology (or relative topology), 122
supremum (or least upper bound), 30
supremum metric (or uniform metric), 60, 93, 261
surface, 221
surjective (or onto) function, 122
symmetric relation, 26

To-space, 231
T,-space, 231
T,%-space, 233

T%-space, 233

T,-space (or Hausdorff space), 231
T;%-space (or Urysohn space), 237

T;-space (or regular space), 234
T;%-space (or completely regular space), 247

T,-space (or normal space), 237
taxicab metric, 58
terminal point of a path, 147
ternary expansion of a real number, 187
Tietze Extension Theorem (Theorem 8.14), 248
Tietze, Heinrich, 194, 266
topological equivalence, 118

of metric spaces, 78
topological immersion of a manifold, 225
topological invariant or topological property, 119
topological manifold, 221
topological manifold with boundary, 223
topological space (see also space), 99

box product of, 210

broom, 157-158

compact, 162

compactification of, 261

completely normal, 242

completely regular, 247

connected, 131

connected im kleinen, 158

contractible, 277

contractible to a point, 277

countably compact, 174

disconnected, 131

discrete, 100

Euclidean, 100

first category, 89, 265

first countable, 110

Hausdorff, 124

Hausdorff space that is not regular, 235-236

homeomorphic, 118
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topological space (Continued) topology (Continued)
identification, 215 subbeasis for, 114
infinite dimensional Euclidean, 208 subspace, 122
Lindeldf, 175 trivial, 100
locally compact, 181 Zarisky, 125
locally connected, 154 torus, 199
locally Euclidean, 128 n-dimensional, 298
locally path connected, 156 totally bounded space, 178
manifold, 221, 226 totally disconnected space, 140
manifold with boundary, 223, 227 transitive relation, 26
metric, 55 triangle inequality, 55
metrizable, 119, 254 trivial space, 100
normal, 237 trivial topology, 100
order complete, 233 Tychonoff Theorem (Theorem 7.11), 207
path connected, 147 Tychonoff, A. N., 229, 266
Peano, 179

perfectly normal, 252
product of, 197, 205

quotient, 214 unbounded interval, 29
regular, 234 uncountable set, 35
regular space that is not normal, 240 uniform continuity, 170
second category, 89, 265 uniform convergence, 94
second countable, 110 uniform metric (or supremum metric), 60, 93, 172
separable, 110 uniformly continuous function, 170
separated, 131 union of sets, 14, 16
separation of, 131 upper semicontinuous function, 121
simply connected, 277 Urysohn function, 247
of functions, 59, 93, 267 Urysohn Metrization Theorem (Theorem 8.16),
subspace, 81, 122 256
To, 231 Urysohn’s Lemma (Theorem 8.13), 246
T,, 231 Urysohn, Paul, 193, 194, 266
T\, 233 usual metric in Euclidean space, 56
T.; 233 usual topology in Euclidean space, 100
,’
T, (or Hausdorf), 231
T, , 237
7 (or Urysohn), 23 van Dantzig, D., 266
T; (or regular), 234 vertex, 7
T,.;. (or completely regular), 247 even, 7
T4 (or normal), 237 .°dd’. 7
totally disconnected, 140 Vietoris, Leopold, 266
trivial, 100 Volterra, V., 97
weakly contractible, 279
zero-dimensional, 141
topologically equivalent spaces,.118
topologist’s comb, 154 weak topology, 211
topologist’s sine curve, 137, 149 weaker topology, 211
topol ogy v oo weqkly contractible space, 279
as a branch of mathematics, 120 x::;?mrgt ;(7)’ 53,97, 160, 193

base or basis for, 109,
countable complement, 102
discrete, 100

finite complement, 100

for a set, 99 Young, W. H., 193
generated by a metric, 63

intuitive view of, 1

local basis for, 110

product, 197, 205 Zarisky topology, 125
relative, 122 zero-dimensional space, 141

Weyl, Hermann, 129
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