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Preface

This book has evolved from successive revisions of notes

used to teach a one-quarter course in topology to students
with a background in elementary calculus ; additional
material has been included to make the text suitable for a

one -semester course . The course is being taught at Oregon
State University at the sophomore - junior level . Topology

is presented here from the intuitive , rather than the axio
matic viewpoint . Some concepts are introduced , discussed
and used informally , on the basis of the student 's experi
ence ; formal definitions of these concepts are given only

when it appears that the intuitive basis is not sufficiently
precise . For example , no definition is given fo

r
ordinary

three - dimensional space , although this space figures promi
nently in many o

f

our examples ; sets are used informally

before themore formal discussion in Chapter 6 ; the Jordan
curve theorem is used several times without reference be
fore the presentation o

f
a specialcase in Chapter 5 .

In this brief course it is impossible to develop a
ll

the
aspects o

f topology ; rather , the student is introduced to a

few selected topics so that he can get some feeling for the
types o

f

results and themethods o
f proof in the discipline .

A brief discussion o
f

methods o
f proof in mathematics , in

cluding mathematical induction , is presented in Chap

te
r
0 . Itmay be best to use this material for reference a
s

the course progresses rather than to discuss it before the
student has seen the need fo

r

these methods o
f proof . Ini

tially , topology is thought o
f
a
s
“ rubber sheet geometry ” ;

Chapters 1 , 2 and 4 are concerned with some problems
dealing with networks and maps . All of these problems

are easily stated and understood , but some of them a
re still

unsolved even after considerable effort b
y

first -rate mathe
maticians extending over many years . Chapter 3 gives

some practice in recognizing topological equivalence o
f

figures ,but still entirely from a
n intuitive viewpoint .
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Chapter 5 presents a proof of th
e

Jordan curve theorem for th
e

special case
o
f
a polygon . This theorem is o
f

basic importance in the topological study of

the plane and the student can appreciate that different axiomatic foundations

are possible for this study . Chapter 6 gives an introduction to set theory .

The last chapters form a major portion o
f

this introductory course . In

Chapter 7 , transformations are discussed , a topological transformation , or

homeomorphism , is defined , and Brouwer ' s fixed point theorem is proved ,

contact with the student ' s previous experience being maintained by frequent
reference to familiar functions . The index of a transformation is defined and
this concept is used to prove the fundamental theorem o

f algebra . In Chapter 8

the intuitive concept of three -dimensional space is generalized to give a defini

tion o
f
ametric space ; a further generalization yields a definition o
f
a topologi

cal space . Many examples are included . The last three sections of Chapter 8

discuss connectedness , compactness and completeness .

Many books and papers have been o
f

assistance in the preparation o
f

this

text . Several of the problems and some o
f

the proofs are based upon material
from these sources . Fi

g
. 2 – 3 . 12 is from Burton W . Jones , Elementary Concepts

o
f

Mathematics (New York :Macmillan , 1947 ) ; Fig . 3 – 2 . 5 b is from Mathematics
and the Imagination , copyright 1940 b

y

Edward Kasner and James Newman ,

b
y

permission o
f

Simon and Schuster , Inc . They are reproduced here with th
e

kind permission o
f

the copyright holders .

The author is particularly indebted to Professor Harry E . Goheen , Miss
Patricia Prenter , and Professor Sheldon T . Rio , each o

f

whom read th
e

manuscript at some stage and offered valuable suggestions . Of course , the
author alone is responsible for any remaining errors .

Three special notational symbols are used . Problems whose results a
re

referred to later in the text are marked with “ # ” ; especially difficult problems
are marked with a

n asterisk “ * ” The symbol “ « ” is used to indicate the

end o
f
a proof .

B . H . ARNOLD

S .
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ZERO

:Statements and Proofs
in Mathematics

0 - 1 Statements

We shall not enter into a philosophical discussion
of the meaning of truth and falsity , but shall
consider that the meanings of these words are

known. We define a statement to be any collec
tion of symbols which forms a meaningful

assertion and which has the property that this
assertion is either definitely true or definitely

false , but not both .

Example 1. 1 Each of the following three items is a

statement :

(a) George Washington was a traitor .
(b) 2 + 2 = 4.
(c) The moon ismade of green cheese.
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Example 1. 2 No one of th
e

following three items is a statement :

( a ) All mimsy were the borogroves .

( b ) Stop , thief !

( c ) This statement is false .

There are several ways in which statements are combined to produce

other statements . These combinations appear very frequently inmathe
matics , so it is necessary to know about them in order to recognize what
information is being conveyed b

y
a particular sentence o
r paragraph .

Perhaps the simplest operation o
n statements is negation . If p is any

statement ,we can form the collection of symbols “ not p . ” This collection

o
f symbols becomes a statement if we agree that “not p ” is true in exactly

the same circumstances that p is false , and that " not p " is false in exactly

the same circumstances that p is true . Since p is given to us as being a

statement , it must be either true o
r

false , not both , and the proposed
agreement endows “ not p " with this same property , so " not p ” becomes

a statement .

This agreement is summarized in Fig . 1 . 1 , where the letters " T " and

" F " have been used to stand for " true " and " false ” respectively . The
table is called a truth table for " not p ” because it describes the circum
stances under which the statement “ not p ” is true . Of course , the table
also describes the circumstances under which "not p ” is false .

Only one more remark is needed in connection with negation . Accord
ing to the rules o

f English grammar , the negation of a statement pmay

b
e

formed b
y

injecting the word “ not ” a
t any one o
f

several places in the

inner workings o
f

the statement p . There are other circumlocutions ,

such a
s
“ it is false that , ” which may b
e

used ,but these are easily recog
nized and lead to n

o

confusion .

The operation o
f negation is performed with a single statement ;

Fig . 1 . 2 describes two operations which can be performed with two state
ments to yield another statement . If p is a statement and q is a state
ment , we can form the collection of symbols “ p and q ” and the collection

o
f symbols “ p o
r
q . " Each o
f

these becomes a statement if w
e

make the

FIGURE 1 . 1

" not p . "

Truth Table for
Q not eТЕ

F

և



T
T
O

a

և

p and

և

և

•

E
E
E

aa por

FIGURE 1 . 2 Truth Table for

" p and q ” and for " p o
r q . " .

agreement o
n truth and falsity se
t

forth in Fig . 1 . 2 . Most of this is

familiar , but there is one point a
t

which care must be taken . The word

“ o
r
” appears in common English usage in two different meanings . Some

times it means that exactly one of two alternatives occurs and sometimes

it means that a
t

least one o
f

two alternatives occurs . (Examples : I ' m

going to the dance with Mary o
r

Jean . When I teach a class , I always
wear a coat o

r
a necktie . ) In mathematics , the second o
f

these meanings

o
f
“ o
r
” has been selected a
s the standard one ; we shall always use " or "

in the sense o
f
" a
t

least one o
f

two alternatives , " as is indicated in

Fig . 1 . 2 .

There are twomore operations o
f particular importance which ca
n

b
e
a

performed with two statements . These operations give the results “ if þ
then q ” and “pif and only if q ” respectively . They are described in Fi

g
. 1 . 3 .

Since many mathematical theorems are expressed in one o
r

the other of
these two forms , a knowledge of these forms is required merely to under
stand the meaning o

f
a theorem before trying to prove it ( o
r

to follow

someone else ' s proof ) .

The statement " if p then q ” can b
e

considered to make the following
requirement : In every circumstance under which the statement p is true ,

it is required that the statement q should also b
e true . This is al
l

that is

required ; in particular , in a circumstance under which the statement p is

false , no requirement a
t

a
ll
is made . It is to be emphasized that the

FIGURE 1 . 3 Truth Table fo
r
" if p

then q , " and for " p if and only if q . "

a if p then a p if and only if a

TI

7
4
0

7
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u

E
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statement “ if p then q” does not assert that the statement p is true , nor
does it assert that there is any procedure by which one may start with p

and perform certain manipulations and finally arrive at q. All that is
asserted is that every single time the statement p is true it also happens

that q is true.

Example 1. 3 Each of the following statements is true :
( a) If 2 + 2 = 5, then 3 + 4 = 7.
(b) If 2 + 2 = 5, then 3 + 4 = 6.
( C) If 2 + 2 = 4, then 3 + 4 = 7.

Example 1. 4 The following statement is false :
(a) If 2 + 2 = 4, then 3 + 4 = 6.

Any statement of the form “ if p then q” is called an implication . Such
statements can be phrased in many different ways in the English language ;

several of the phrasings which are in common usage are shown in Fig . 1.4 .
The reader must be prepared to recognize that any one of these phrasings

ismaking the same assertion as the statement “ if p then q.”
It is recommended that each student become thoroughly familiar

with the various forms of one particular statement . He can then use
these forms as standards of comparison to determine the meaning of any

other statement with the samemanner of phrasing as one of his standard
forms. For example, consider the various forms of phrasing the state

ment : “ If Ihave $ 1000 then I can afford a date with Yvette ."

FIGURE 1. 4 Different Phras
ings of the Same Implication( a ) If e then a

(b ) p is sufficient for a
( c ) 9 is necessary for p

( d) p implies a

( e ) 9 follows from p

( f ) ponly if a
( g ) 9 unless not p

( h ) qif p
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( a ) p if and only if a
( b ) piff a
( c ) e is necessary and sufficient for a

( d ) If p then a and conversely

( e ) q it and only it p
FIGURE 1.5 Different Phrasings
of the Same Equivalence

The remaining statement in Fi
g
. 1 . 3 , “ p if and only if q , ” is an abbrevi

ation o
f
“ p if g and p only if q . " By reference to the table of equivalent

forms in Fig . 1 . 4 , this can b
e phrased a
s
“ if p then q and if q then p . ” A
s

Fi
g
. 1 . 3 shows , this statement asserts that p and q have the same truth

value , i . e . , that both o
f

them are true o
r

both o
f

them are false . Two
statements p and q which have the same truth value are called equivalent ;

if p and q are equivalent and it is desired to prove that p is true , it would

b
e equally a
s acceptable to prove that q is true . Just as with a
n implica

tion , there are several ways of phrasing a
n equivalence . Figure 1 . 5 shows

themost common ones .

B
y

making a truth table fo
r

each o
f the statements " if p then q ” and

" if not q then not p , ” it is easy to see that these two statements are
equivalent . Thus , the number of phrasings shown in Fig . 1 . 4 could b

e

doubled b
y

including the forms for the statement “ if not q then not p . "

In mathematics w
e

often consider expressions , such a
s

x
2
> - 1 ,

which involve one o
r more variables . These expressions a
re not state

ments , since they cannot be said to be either true or false unless w
e

know
something about the values o

f

the variables involved ( if x stands for

“dog , ” our example becomes meaningless ) . With certain appropriate
auxiliary conditions regarding the variables such a

n expression becomes a

sentence . These auxiliary conditions are called quantifiers ; there are two
different types in which we shall b

e interested . From our example ,

x ? > - 1 , we can obtain two sentences :

For al
l

real values o
f
x , x2 > - 1 . ( 1 )

and

There is a real value o
f
x such that x ? > - 1 . ( 2 )

† The abbreviation " if
f
” means " if and only if . ” It is frequently used in order to obtain

a more readable sentence than would result from the use o
f

one o
f

the other forms .



Statements and Proofs in Mathematics / 0 - 1

Each of these sentences is true . Notice that if we were concerned with
complex numbers instead of real ones , the first sentence would be false ,

but the second one would still be true . Evidently sentence (1) could also
be phrased : If x is a real number , then x2 > - 1. Sometimes the reader is
expected to understand , from context or experience , part of the condition

involved in a quantifier . Thus, if the context indicated that real numbers
were under consideration , the sentence (1) above could be written simply

as

For al
l
x , x2 > - 1 .

Three other formswhich have exactly the samemeaning are

For any x , x2 > – 1 .

For each x , x2 > - 1 .

For every x , x2 > – 1 .
Similarly , in suitable context , sentence ( 2 ) could be written as

There is an x such that x2 > - 1 .
Three other formswith exactly the same meaning are

There exists an x such that x2 > – 1 .

For some x , x2 > – 1 .

For at least one x , x2 > – 1 .

No confusion seems to arise in connection with sentences formed b
y

applying a single quantifier to a
n expression involving a single variable ,

but students frequently have difficulty understanding what is meant
when two different quantifiers are applied successively to the same
expression . There is a convention (explained below ) which is of consider
able help in interpreting such expressions . For example , consider the
following two sentences :

For any positive number x there is a positive number y

such that x2 – y
2

> 0 .

There is a positive number y such that ,

fo
r

any positive number x , x2 - y2 > 0 .

These two statements are not the same . Wemake the convention that
the order in which the variables are mentioned in the sentence gives the

order in which their values are chosen o
r

determined . Thus , in the first
sentence above , x is mentioned first and y second . This means that the



0- 1 / Statements and Proofs in Mathematics

value fo
r
x is chosen first and then , knowing the choice that was made

for x , a value for y is chosen . O
f

course , there is another difference in the
two choices : wemust try all possible values for x , whereas weneed only a

single value for y , and this value for y may change when x changes . It is

easy to see that the first statement is true . No matter what positive
number x is chosen , wemay choose y to be Jx ; this value of y is a positive

number and , with these values ,

x
2 - y2 = x2 – 3x2 = 4x2 > 0 .

Now let u
s consider the second o
f

the sentences above . In this

sentence y is mentioned first and x second ; thus ymust be chosen first and
this choice is known when we are choosing x . Again , a single value of y

will suffice , but we must use every possible choice for x . This second
statement is false . It is not possible to choose one single value o

f
y so

that , keeping y fixed and equal to that value , and using a
ll possible

values o
f
x in turn , it will always b
e true that x2 - y
2
> 0 . In fact ,

suppose someone suggests the positive number y
o a
s
a value o
f
y ; one of

the values o
f
x which must b
e

considered is Jyo and ,with these values ,

* 2 — y
2
= 4
y
? – y
ž

= – y < 0 .

The preceding examples illustrate the procedures used in giving proofs

o
f

statements involving quantifiers . Notice that if we are considering a
statement o

f

the form , “ For al
l
x , . . . , ” in order to prove that the state

ment is true it is necessary to consider each value o
f
x in turn o
r

else to

give a
n argument which is valid for every allowable value o
f
x . To prove

the statement is false , it is sufficient to find one single allowable value of x

for which the condition represented by the three dots is not satisfied .

Such a value fo
r
x is called a counter example to the statement .

If we are considering a statement of the form , " There is an x such that

. . . , ” in order to prove that the statement is true it is sufficient to give a

single example of an allowable value for x such that the condition repre

sented b
y

the three dots is satisfied . A proof that the statement is false
would require the consideration of every allowable value for x .

One further word o
f

caution is required . It sometimes happens that a

quantifier is supposed to b
e

understood from the context but is not
actually written . For example , th

e

equation

1 + 2 + . . . + n = ;_ n ( n + 1 )

would probably b
e

taken to mean :
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n (n + 1)
For all positive integers n , 1 + 2 + . . . + n = -

2.

Further practice on the convention in connection with the order of

mention of variables and on proofs of quantified statements is supplied in
the problems . It is vitally necessary that the student thoroughly under
stand this convention ; it will be used throughout this text . (Caution :
Not al

l

authors conform to this convention . )

PROBLEMS

1 . Which of the following are statements ? O
f

the statements , which are true ?

In some instances it may b
e necessary to make certain assumptions from

experience , or about the context in which a sentence occurs . If this is neces
sary ,make the assumptions , butnotice that you are making them .

( a ) 1 + 2 = 3 .

( b ) A + 0 = .

( c ) I am beautiful .

( d ) How nice !

( e ) I am beautiful or I am ugly .

( f ) I am beautiful and I am ugly .

( g ) If I am beautiful then I am ugly .

( h ) I am beautiful iff I am ugly .

( i ) The 10 ,000th digit in the decimal expansion of 7 is a 3 .

( j ) The digit 3 occurs an infinite number of times in the decimal expansion

o
f
1 .

( k ) If that ' s true , I ' m a monkey ' s uncle .

( 1 ) If there is life o
n Mars , then this course is interesting .

( m ) Let there b
e peace .

( n ) I am over seven feet tall unless I am older than 200 years .

( 0 ) T
o

b
e

over seven feet tall it is sufficient to be older than 200 years .

( p ) None but 7 -footers are over 200 years old .

( q ) All 7 -footers are over 200 years old .

( 1 ) If 2 + 2 = 4 , then either 3 + 2 = 5 or 3 + 6 = 7 .

( s ) Either 3 + 6 = 7 o
r
if 2 + 2 = 4 then 3 + 2 = 5 .

( t ) If 2 + 2 = 4 then both 3 + 2 = 5 and 3 + 6 = 7 .

( u ) 3 + 6 = 7 and if 2 + 2 = 4 then 3 + 2 = 5 .

( v ) If 3 + 6 = 7 then both 2 + 2 = 5 and 3 + 2 = 5 .

( w ) 3 + 2 = 5 and if 3 + 6 = 7 then 2 + 2 = 5 .

( x ) If 2 + 2 = 4 and 3 + 6 = 7 then 2 + 2 = 5 .

( y ) If 2 + 2 = 4 or 3 + 6 = 7 then 2 + 2 = 5 .

( z ) If 2 + 2 = 4 or 3 + 6 = 7 then 3 + 2 = 5 and 2 + 2 = 5 .
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2. In each of the following cases tell exactly what ismeant by the statement and
decide whether the statement is true or false . Use the convention explained
in the text with regard to order ofmention , and note any additional assump

tions you make from experience or context.
(a ) For every man there is a perfect wife .
(b ) There is a perfect wife fo

r

every man .

( c ) For every x there is a y such that x + y = 5 .

( d ) There is a y such that , fo
r

every x , x + y = 5 .

( e ) For every x there is a y such that x
y
= x .

( f ) There is a y such that , for every x , x
y
= x .

( g ) For every day there is a day which follows it .

( h ) There is a day which follows every day .

( i ) For every number x , ( 0 < x < 1 ) there is a number y ( 1 < y < 2 )

such that x + y < 2 .

( j ) There is a number y ( 1 < y < 2 ) such that , fo
r

every number

x ( 0 < x < 1 ) , x + y < 2 .

( k ) There is a number y ( 1 < y < 2 ) such that , fo
r

every number

x ( 0 < x < 1 ) , x + y < 2 .

( 1 ) For every father there is a child such that , if the child ismore than 1
0

years o
ld , then the father is more than 2
0 years old .

( m ) There is a child such that , fo
r

every father , if the child ismore than 1
0

years o
ld , then the father ismore than 2
0 years old .

( n ) There is a child such that if the child is more than 1
0 years old , then

every father ismore than 2
0 years o
ld .

( 0 ) For every x ( 0 < x < 1 ) there is a y ( 1 < y < 2 ) such that , if 0 < x < y

then x + % < 2 .

( p ) There is a y ( 1 < y < 2 ) such that , for every x 0 < x < 1 ) , if

0 < x < y , then x + x < 2 .

( q ) For every real number x , and every e > 0 there is a 8 > 0 such that , if

| x – xol < 8 , then ( x2 – xã ] < € .

( r ) For every e > 0 there is a 8 > 0 such that , fo
r

every real number x
o ,

if ( x – x
o
l
< 8 , then ( x2 – xộ ] < € .

( s ) For every real number x
o and every e > 0 there is a 8 > 0 such that , if

| x – xo ) < 8 , then | 2x – 2xo ) < € .

( t ) For every e > 0 there is a 8 > 0 such that , fo
r

every real number xo ,

if ( x – x
o
l
< 8 , then 2
x

– 2xol < € .

# 3 . Let p , q , and r b
e any given statements ; prove that each o
f

the statements

listed below is equivalent to each o
f

the others . (Hint : Use truth tables to

show that if any one of these statements is true , then a
ll

are true and if

any one is false , then a
ll

are false . )

( a ) If p then g .



Statements and Proofs in Mathematics / 0-2

(b ) If not q then not p.
(c) If p and not q then q.
(d ) If p and not g then not p.
(e ) If p and not g then r and not r.

0 - 2 Proofs

A great many of the theorems in mathematics can be phrased in the form

of an implication : If p then q. In this section we present several possible
procedures for proving such an implication . Only the generalmethods of
attack will be discussed ; the student is presumed to be familiar with the
validity of individual steps in a proof .
With p and q being given statements , we know , of course , that " if

p then q” is a statement . How might we prove that it is a true state
ment ? The third column in the truth table in Fig . 1. 3 shows that there is

no need to consider any cases in which p is false since , in those cases , “ if

þ then q” is true no matter what statement is used for q. Thus we may

confine our attention to the cases in which p is a true statement ; that is,

we may start with the hypothesis that the statement p is true . But, in
these cases , Fig . 1. 3 shows that the implication " if p then q” is true in
exactly the same circumstances that q is true ; that is, we would like to
reach the conclusion that q is true . We see , then , that one possible pro
cedure for proving the implication “ if p then q” is to start with the state
ment p asbeing true by hypothesis and to deduce that q is true ; any valid
stepsmay be used in this deduction . A proof which follows this procedure

is called a direct proof of the implication “ if p then q.”

Example 2. 1 Give a direct proof of the implication : If n is an odd integer , then
na is an odd integer .
PROOF . We have, by hypothesis , that n is an odd integer ; hence n – 1 is an
even integer . Thus ; (n − 1) is an integer , say

3 (n − 1) = m .

Solving this equation fo
r
n gives

n = 2
m

+ 1 ,

and squaring both sides o
f

the equation gives

m
2

= ( 2m + 1 ) 2 = 2 (2m2 + 2m ) + 1 .

But this last form shows that n is an odd integer and the proof is complete « .
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We have already noticed that if two statements are equivalent then a
proof of either of these statements must be accepted as a proof of the
other also . Problem 3 of Section 0 -1 lists 5 statements , each one of
which is equivalent to the implication “ if p then q.” Moreover, each of
these statements is in the form of an implication , so it is possible that
we might be able to give a direct proof fo

r

one o
r

another o
f

these impli
cations . A direct proof for any one o

f the implications ( b ) to ( e ) in

Problem 3 o
f

Section 0 - 1 is called a
n indirect proof o
f

the implication

“ if p then q . ” Such proofs are also sometimes called proofs b
y

contra

diction , especially those based o
n the implications in one o
f

the forms

( b ) , ( d ) , or ( e ) . Various special names are used for particular types of

indirect proofs , but we shall not go into these details .
Example 2 . 2 Give a

n indirect proof o
f

th
e

implication : If n is an integer whose .

square is even , then n is even .

PROOF B
Y

CONTRADICTION . Let p be the statement

n is a
n integer whose square is even

and let q be the statement

n is an even integer .

In this notation ,we are asked to give a
n

indirect proof o
f

the implication

If p then q .

We shall give a direct proof of the implication

If not q then not p .

This implication ,when written out in full , becomes

If n is not an even integer ,

then n is not an integer whose square is even .

For the proof we have , b
y

hypothesis , that n is not an even integer ; we
consider two cases .

CASE 1 . The object n is not an integer . In this case , evidently n is not one

o
f

the integers whose square is even , since n is not an integer a
t
a
ll .

CASE 2 . The object n is an odd integer . In this case n
a is also a
n odd integer

(Example 2 . 1 ) ; so again n is not an integer whose square is even « .

Note :Most of the material in the proof of Example 2 . 2 would usually b
e

left fo
r

the reader to supply . The entire proof would usually appear as follows :

PROOF B
Y

CONTRADICTION . Given that n is an odd integer , it follows (Example

2 . 1 ) that nº is also odd « .
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The reader should recognize that several steps have been omitted in

this shorter version and he should be able to supply these steps on request .

Example 2. 3 Prove that V2 is irrational .
PROOF BY CONTRADICTION . Suppose V2 is rational ; then it can be expressed
as a fraction in lowest terms, say

т

where n and m are integers which have no common factor except one . Then
n = V2m or, if we square both sides of this equation ,

n2 = 2m2.

Thus n is an integer whose square is even and , by Example 2.2 , n is even .
Setting n = 2r and substituting in the above equation , we find (2r)2 = 2m2, or

2
q
2
= m .

But this shows that m is an integer whose square is even ; hence m is even ,which
contradicts th

e

statement that n and m have n
o

common factors except one « .

The discussion o
f

this proof is left as an exercise (Problem 1
1 ) .

PROBLEMS

Directions fo
r

Problems 1 through 1
0 . Prove each o
f the implications in Prob

lems 1 through 1
0 and discuss your proof . Is your proof direct or indirect ?

If indirect ,which one of th
e

forms in Problem 3 ,Section 0 - 1 is being used ? Try

to give several different proofs for the same implication . Does one proof seem
easier o

rmore natural ? Note any assumptions you aremaking from experience

o
r

context .

1 . If x2 – 3x + 2 = 0 , then x = 2 or x = 1 .

2 . If x = 3 , then x
2
+ 2
x
– 15 = 0 .

3 . If x2 + 4x + 1 = 0 , then x < 5 .

4 . If x > 0 , then x
2
– 2
x

+ 2 > 0 .

5 . If A B and C
D

are two distinct lines in a plane and each o
f

these lines is

perpendicular to a given line in that plane , then AB and C D are parallel .

6 . If two sides of a triangle are equal , then th
e

angles opposite these sides a
re

equal .
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7. If two sides of a triangle are unequal, then the angles opposite these sides
are unequal.

8. If y = x2 and 1 < y < 4, then x < 2.

9. If x2 + y2 + y2 = 0 , then x = 0 and y = 0 and 2 = 0.

10. If x = 2 and x2 + 2x’ y — 3y4 = 0, then y + x .

11. Discuss the proof given in Example 2. 3. Is it direct or indirect , etc .?

(Hint : First phrase the theorem that is being proved as an implication .)

12. Examine several proofs ofmathematical theorems . Are the theorems stated
as implications? If not, could they be conveniently stated in that form ?
Are the proofs direct or indirect ? Which of the forms of Problem 3, Section
0 -1 are used ? (Perhaps some other form will be used ; not al

l

possibilities

are listed in Problem 3 , Section 0 - 1 . )

0 - 3 Mathematical Induction

The methods o
f proof discussed in Section 0 - 2 are available for use in

proving any implication . Of course , onemethod may bemore convenient
than another and we may very well try a

ll

themethods and fail , but each

o
f

the methods is a possibility fo
r

constructing a proof of a particular
implication . In this section we shall describe a method o

f proof which is

applicable only to a very special type o
f

theorem . Themethod is quite
important , because this special type of theorem occurs frequently in

mathematics .

We consider a theorem T and a
n infinite collection o
f

theorems T
1 ,

T
2 , T3 , . . . such that the theorem T is true if and only if every one of the

theorems T1 , T2 , T3 , . . . is true . That is , T is equivalent to

T
i

and T , and T
z

and . . . .

The theorems T o
f

this type frequently , but not always , state that
some condition involving a variable n is satisfied whenever n is a positive

integer .

Example 3 . 1 The theorem

T : If n is a positive integer

_ n ( n + 1 )

then 1 + 2 + . . . + n =
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can be expressed as

1 : 2

TT: 15. 2
2 : 3

a
n
d

T . :

2

and T
3 : 1 + 2 + 3 = >
- 3 . 4

and . . .

How might we try to prove such a theorem ? The theorem T might

b
e
in the form o
f
a
n implication (Example 3 . 1 ) , so one of themethods of

Section 0 - 2might be used . But , because I can b
e expressed a
s

T
i

and T
2

and T
z

and . . . ,

there is a different method which is available . This method is called

mathematical induction . We shall first explain the steps which must b
e

performed in giving a proof b
y

mathematical induction ; then we shall
illustrate b

y

carrying out these steps fo
r

the theorem in Example 3 . 1 ; and
then we shall present some reasons why it is plausible to accept the per

formance o
f

these steps a
s
a proof o
f

the theorem T . There are two steps

in a proofbymathematical induction :

STEP 1 . Prove the theorem T
ı
.

STEP 2 . Prove the implication : Tx implies T
x
+ 1 .

Comment on Step 1 .Any applicable method may b
e

used in proving

the theorem T
1 . It frequently happens that Ti is a very simple result

which can easily b
e proved o
r , perhaps , is already known .

Comment on Step 2 . There are two points to be noticed in connection
with Step 2 . First , it is the implication “ if Tk then T

k
+ 1 ” which w
e

are required to prove . We are not concerned with whether or not Tk is

true ;only that every single time Tx is true it follows that Tk + 1 is also true .

In proving this implication the methods o
f

Section 0 - 2 would probably

b
e o
f

use . Second , wemust be sure that the proof we give fo
r

the impli
cation “ If Tk then T

k
+ 1 ” is valid for every positive integer k . That is , we

must prove a
t

the same time every one o
f

the following implications :

If T , then T
z .

If T , then T
3 .

If T3 then T
4 .

· - . . . - -
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The necessity fo
r

this requirement will b
e

clear when we discuss the
plausibility o

f accepting Steps 1 and 2 as a proof of the theorem T .

Example 3 . 1 (continued ) Prove that if n is any positive integer then

n ( n + 1 )

1 + 2 + 3 + . . . + n =

2

PROOF B
Y

MATHEMATICAL INDUCTION . We have seen in Example 3 . 1 above
that this theorem I can b

e expressed a
s

T
į

and T , and T
z and . . . . All that

remains is to carry out Steps 1 and 2 .

STEP 1 . The theorem T
y
is

1 = - ; ?

and this result is completely trivial .

STEP 2 . Wemust prove the implication " If Tk then T
k
+ 1 ” where T
x is the

statement

k ( k + 1 )

1 + 2 + 3 + . . . + k =

and T
k
+ 1 is the statement

( k + 1 ) ( k + 2 )

1 + 2 + 3 + . . . + k + ( k + 1 ) =

2

We shall give a direct proof o
f

this implication . Accordingly , w
e

confine our
attention to the cases in which T

k

is true ; i . e . , we start with the hypothesis

( called the induction hypothesis )

k ( k + 1 )

1 + 2 + 3 + . . . + k = -

But then

k ( k + 1 )

1 + 2 + 3 + . . . + k + ( k + 1 ) = + ( k + 1 )

2

k ( k + 1 ) + 2 ( k + 1 )

2

( k + 1 ) ( k + 2 )

and the implication is proved . Notice that the proof is valid fo
r

every positive
integral value o

f
k « .

We come now to the interesting question :Why is it plausible to accept

Steps 1 and 2 as a proof o
f

the theorem T ? In a rigorous development it
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is frequently taken as an axiom that Steps 1 and 2 do, indeed , constitute
a proof of the theorem T. However, it is important that each student

should have an intuitive feeling for what is being accomplished by Steps 1
and 2;we shall , therefore , discuss the plausibility of accepting these steps

as a proof instead ofmerely stating ,axiomatically , that we shall do so .
We know that the theorem T is true if and only if every one of the

theorems T1, T2, T3, . . . is true. What information do Steps 1 and 2 give

us about these theorems ? Let usmake a list of the ones which Steps 1
and 2 show to be true. Step 1 shows that Ti is true, so wemay put T
on our list. Part of whatwe proved in Step 2 is

If T , then Tz;

thus , since Ti is already on our list, T , can be added . But part of what
we proved in Step 2 is

If T , then Tz;

thus , since T , is already on our list, Tz can be added . Again , part of what
we proved in Step 2 is

If Tz then Ta;

thus TA ca
n

b
e

added to our list . . . . , etc . , . . . . The list of theorems
which Steps 1 and 2 show to b

e

true , therefore , contains all of the theorems

T
1 , T2 , T3 , . . . ;and this means that the theorem T is true .

We can now see why it is important that the proof we give in Step 2

should b
e

valid for every positive integral value of k . In order to b
e

sure

that our list contains a
ll
o
f the theorems T
1 , T2 , T3 , . . .we must use ,

successively , every one o
f the implications

If T
į

then T
2 .

If T , then T
3 .

If Tz then T
A .

Thus wemust be sure that the proof in Step 2 really does prove every one

o
f

these implications ; i . e . , it must be valid fo
r

a
ll positive integral values

o
f
k .

Example 3 . 2 If n is any integer larger than 3 , then 2 < n !

PROOF B
Y MATHEMATICAL INDUCTION . We a
re

to consider the values n = 4 ,

5 , 6 , . . . ; so the theorem T which we have to prove easily breaks u
p

into the
following infinite collection o
f

theorems :
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Ti:
Tz :
Tz :

24 < 4 !

25 < 5!

26 < 6 !

Tä: 2(x+3) < (k + 3) !

Tk +1: 2(k+4) < (k + 4) !

Thus our theorem is one to which mathematical induction is applicable.
(These preliminaries are usually not given in a proof bymathematical induction ,
but the student should convince himself in each case that the theorem is one to
which mathematical induction applies .)
STEP 1. Wemust prove that 24 < 4 ! But this is just the statement 16 < 24 ,

which is well-known to be true .
STEP 2. Wemust prove the implication

If 26+3 < (k + 3)! then 26+4 < (k + 4 )!

We shall give a direct proof ; we have, therefore , by the induction hypothesis ,

2x+3 < (k + 3) !

But , fo
r

any positive integer k , 2 < k + 4 . Multiplying corresponding mem
bers o

f

these inequalities , we obtain

2 · 2k + 3 = 2k + 4 < ( k + 3 ) ! ( k + 4 ) = ( k + 4 ) !

which is the required result « .

There is a somewhat different procedure which is also acceptable as a

proof of a theorem o
f

the type we have been discussing . This procedure

also goes b
y

the name o
f

mathematical induction . We shall call itmathe
matical induction , Type 2 , to distinguish it from the former version ,

Type 1 ; we shall explain the steps which must be performed in this pro

cedure and shall illustrate them b
y

carrying out the steps in Example 3 . 3

below . It is left as an exercise (Problem 1
2 ) to discuss the plausibility o
f

accepting this procedure a
s
a proof . We shall need both of these types of

mathematical induction in our discussion ofmaps .

Let T1 , T2 , T3 , . . . be an infinite collection of theorems and le
t
T b
e
a

theorem which is true if
f every one o
f the theorems T
1 , T2 , T3 , . . . is true .

The following two steps are acceptable a
s
a proof o
f

the theorem T .

STEP 1 . Prove the theorem T
ı
.
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STEP 2. Prove the implication

If Tį and T2 and T , and . . . and Tk _1 then Tk.

Comment on Step 1. This is the same as Step 1 in Type 1 induction ;
it can be shown that Step 1 is not actually necessary in mathematical
induction , Type 2, but we shall not go into the matter here . (Caution :
Step 1 is necessary in Type 1 induction .)
Comment on Step 2 . Again , Step 2 is to prove a certain implica

tion . We are not concerned with whether or not the separate theorems
T1, T2, et

c
. are true ; allwe need to do in Step 2 is to prove that the impli

cation stated is true . As with Type 1 induction , wemust be careful that
the proof we give for the implication in Step 2 is valid for any positive

integral value o
f
k . In comparing this Step 2 with the Step 2 in Type 1

induction , we see that , in Type 1 , we prove each of the theorems T1 , T2 ,

T
3 , . . . ( except the first ) from the hypothesis that the particular theorem

just before it is true . In Type 2 , weprove each theorem from thehypoth

esis that every one of the theorems before it is true .
Example 3 . 3 If n is an integer larger than 1 , then either n is a prime o

r
n can

be expressed a
s
a product o
f primes .

PROOF B
Y

MATHEMATICAL INDUCTION . We shall use Type 2 induction ; the
student should convince himself that this theorem is one to which mathematical
induction is applicable .

STEP 1 . We consider the value n = 2 ; since 2 is a prime , the theorem is

true in this case .

STEP 2 . We consider a
n arbitrary integer n
o

> 1 . B
y

the induction hy
pothesis , each integer m such that 1 < m < no is either a prime or a product of
primes ;wemust prove that no is a prime or a product of primes . The proof is

made in two cases .

CASE 1 . The number no is a prime . In this case the implication is evidently
true .

CASE 2 . The number no is not a prime . In this case n
o has a positive inte

gral factor p such that 1 < p < no . Thus no = p . q where each one o
f
p and a

is an integer larger than 1 and less than n
o . By the induction hypothesis , each

o
f
p and q is either a prime o
r
a product o
f primes . Thus n
o is a product of

primes « .

PROBLEMS

Directions for Problems 1 through 1
1 . Use mathematical induction to prove

each o
f

the results in Problems 1 through 1
1 . Which type of induction seems
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most natural in each case ? Try to prove each result without using induction .

1. If n is any positive integer then

1 1

1 . 2 2 . 3 ' non + 1) n + 1
satta + ... +5 + . . . + 1 , * , .

2. If n is any non -negative integer then 2n > n .

3. In any convex polygon with n sides th
e

sum o
f the angles is ( n − 2 ) 180 deg .

(Hint : B
y
a theorem o
f plane geometry the sum o
f the angles o
f
a triangle

is 180 deg . )

4 . Let n be a positive integer ; in any set of n real numbers there is a largest
one .

5 . For any positive integer n

1 : 3 + 2 . 4 + 3 . 5 + . . . + n ( n + 2 ) = + 1 ) ( 2n + 7 ) .

6 . If n is an integer larger than 1 , then themaximum number of points o
f inter

section o
f
n distinct lines in a plane is fn ( n − 1 ) .

7 . If n is any positive integer then

_ ? (

1
3
+ 2
3
+ 3
3

+ . . . + n3 = -

+ 1 )̂ .

4

8 . If n is an integer greater than 1 , then the number of prime factors of n is

less than 2 loge n .

9 . If n is a non -negative integer , then n < 4 " . (Hint : First prove (without
using induction ) that , fo

r

any positive integer n , 2n + 1 < 3n2 . ]

1
0 . If n is any positive integer , then a – b is a factor of an – bº . (Hint :

a
n

– b
n

= ( a ” – ban - 1 ) + (ban - 1 – bn ) . ]

1
1 . If n and m are any positive integers , prove that there is a non -negative

integer q and a
n integer r such that 0 < r < m and n = mg + r . Prove

also that the integers q and r are uniquely determined b
y
n and m .

1
2 . Discuss the plausibility o
f accepting the procedure o
fmathematical induc

tion , Type 2 as a proof the theorem T .

1
3 . Discuss the following “ proof ” o
f

th
e

( false ) theorem : If n is any positive
integer and S is a set containing exactly n real numbers , then a

ll

the num

bers in S are equal .
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PROOF BY INDUCTION . STEP 1. If n = 1 the result is evident .
STEP 2. By the induction hypothesis the result is true when n = k ; we must
prove that it is correct when n = k + 1. Let S be any set containing ex
actly k + 1 real numbers and denote these real numbers by 21, 22, 23, . ..,
Ok, Qx+1. If we omit axtı from this list ,we obtain exactly k numbers 21, 22,...,
Qk;by the induction hypothesis these numbers are al

l

equal .

d
j
= d
2
= . . . = Ak .

If w
e

omit a
y

from the list o
f

numbers in S w
e

again obtain exactly k num

bers 22 , 23 , . . . , Qk , Akt1 ; by th
e

induction hypothesis these numbers a
re

a
ll equal .

Q
2
= 2
z
= . . . = ax = 2k + 1 .

It follows easily that al
l
k + 1 numbers in S are equal « .
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What is Topology ?

1 - 1 A Glance at Euclidean Geometry

A formal definition of topology is given in Section
7 -3 ;an intuitive feeling fo

r

the subject will suffice
for the present . This intuitive feeling can be
developed b

y

noticing the similarities , and the
differences , between topology and ordinary (Eu
clidean ) high school geometry .

Euclidean geometry is the study o
f

certain

properties o
f figures in a plane or in space . Not

all properties o
f
a figure are o
f

interest — only

the " geometric ” properties . But how can we tell
whether o

r

not a certain property is a geometric

one ? For example , wemightnotice the follow
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FIGURE 1.1

in
g

properties o
f

the triangle shown in Fig . 1 . 1 :

( 1 ) The length o
f

the longest side is about 2 inches .

( 2 ) The triangle is drawn in black ink .

( 3 ) One angle is about 90 deg .

( 4 ) The triangle is drawn near the left -hand edge o
f

the page .

( 5 ) The angle which is about 90 deg is higher o
n the page than either

o
f

the other angles .

Which o
f

these are geometric properties ?

The answer to this question can be based o
n the concept o
f congruent

? , figures ; two figures are called congruent Aff one of them can be placed

upon the other so that the two figures exactly coincide . A geometric
property o

f
a figure is a property which is also enjoyed b
y

every congruent

figure . That is , all congruent figures are the same to a geometer and , in
studying a certain figure , he is interested only in properties which are

common to all the figures congruent to that one . It is now easy to see

that properties 1 and 3 above are geometric properties o
f

the triangle in

Fig . 1 . 1 since these properties will also b
e possessed b
y

any triangle con
gruent to the given one . Properties 2 , 4 , and 5 are not geometric proper
ties , since a triangle congruent to the given triangle may fail to have these
properties . The property of having four corners is a geometric property ,

a
s
is the property o
f being a pentagon ; other examples appear in the

problems .

1 - 2 What is Topology ?

It is surprising that a fairly satisfactory description of topology can be

obtained b
y

changing " geometry ” to “ topology , " " geometric ” to “ topo
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logical,” etc . in Section 1-1 above , and by changing the interpretation of
one phrase . The reason that this material describes both geometry and
topology is that th

e
only difference between the two has been wrapped u

p

and hidden in the phrase " can b
e placed upon , " which appears in the

definition o
f
“ congruent . ” Let us examine this phrase more closely .

How d
o we " place " a figure ? How can we move it ? What are we

allowed to d
o
to it on the way ? In geometry , the movements we are

allowed are the rigid motions ( translations , rotations , reflections ) , in

which the distance between any two points of the figure is not changed .

Thus , the geometric properties are those which are invariant under the
rigid motions — any rigid motion o

f
a figuremakes no change a
t
a
ll
in the

geometric properties o
f

the figure .

In topology , themovements we are allowed might be called the elastic
motions . We imagine that our figures are made of perfectly elastic rubber
and , in moving a figure ,we can stretch , twist , pull ,and bend it at pleasure .

We are even allowed to cut such a rubber figure and ti
e it in a knot , pro

vided that we later sew u
p

the cut exactly a
s it was before ; that is , so

that points which were close together before we cut the figure are close
together after the cut is sewed u

p
. However , wemust be careful that

distinct points in a figure remain distinct ;we are not allowed to force two

FIGURE 2 . 1

( a )

( b )
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different points to coalesce into just one point. Two figures are topologi
cally equivalent if

f

one figure can b
e

made to coincide with the other b
y

a
n

elastic motion . The topological properties of a figure are those which are
also enjoyed b

y

a
ll topologically equivalent figures . That is , al
l topo

logically equivalent figures are the same to a topologist and , in studying a

certain figure , he is interested only in properties which are common to al
l

the figures which are topologically equivalent to that one . Thus the
topological properties o

f
a figure are those which are invariant under the

elastic motions — any elastic motion o
f
a figure makes n
o change a
t

a
ll

in the topological properties o
f

the figure . Of course , topology is the
study o

f topological properties o
f figures .

Certainly , any topological property o
f
a figure is also a geometric

property o
f

that figure , butmany geometric properties are not topological
properties . The topological properties of a figure can b

e only the most
basic and fundamental o

f

it
s geometric properties . In fact , it might

appear a
t

first glance that n
o property is a topological one — that any

property o
f
a figure could b
e changed b
y

some elastic motion ! Fortu
nately , this is not the case . For instance , a circle C (Fig . 2 . 1a ) divides the
points o

f
a plane into 3 sets — the points inside the circle , the points on

the circle , and the points outside the circle . This property of a circle in a

plane is a topological property , for , if we imagine that the circle and the
two points A and B are marked o

n

a perfectly elastic sheet o
f

rubber , and
that the figure is subjected to a

n

elastic motion , the result might be a
FIGURE 2 . 2
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FIGURE 2. 3

curve C and two points A and B , such as are shown in Fig . 2. 1b . The
points A and B are, respectively , inside and outside the circle (Fig . 2. 1a )
and , after the elasticmotion of this sheet of rubber , the points A and B
are still , respectively , inside and outside the curve C (Fig . 2. 1b ) . Thus,

the property “ A is inside the curve C” is a topological property of the
original figure . The property “ A is closer to C than B is ” is not a topo
logical property , since , by an elastic motion , we can arrange that B is very
close to C while A is far from C .
As another illustration , the circle and the knotted curve shown in
Fig . 2.2 are topologically equivalent . If we imagine a rubber band in the

FIGURE 2.4

SX
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shape of a circle , it is not possible tomake it into a knot just by stretching
it , but it is quite easy to obtain the knotted curve by first cutting the
rubber band , then tying the knot, and finally joining the two ends as they

were before . Since these manipulations are allowed under what we have
called an elastic motion , the two curves are topologically equivalent .
Other examples a

re given in the problems .

lo )
Hemisphere with
tangent segment

Square disk pierced
by line segment

( b )

Three line segments
meeting a

t
a point

A circle and radius

( c )

These figures are composed o
f

lines and
curves only ; no surfaces are included

( d )

Each of these figures is composed o
f
a single

area (shaded ) together with some lines o
r

curves

FIGURE 2 . 5
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PROBLEMS

1. (a ) For each of the properties 2, 4, and 5 noted in connection with Fig . 1.1,

find a triangle congruent to the one shown , which does not have the property .
(b ) Find an elastic motion of the plane of F

ig . 2 . 1a which will arrange that
the point B is closer to the curve C than A is .

Directions fo
r

Problems 2 and 3 . Several properties are noted fo
r

each o
f

Figs . 2 . 3 and 2 . 4 . Which are geometric properties ? Which are topological

properties ?

2 . The following properties refer to Fig . 2 . 3 .

( a ) The curves C
į

and C
2

intersect .

( b ) The curves C
į

and C
2

are perpendicular .

( c ) The curves C
1

and C , are not tangent .

( d ) The point A is on the curve C
1 .

( e ) The point A is not on the curve C
2 .

( f ) The point A is below the curve C
2 .

( g ) The curve C
2
is concave toward the point A .

3 . The following properties refer to Fig . 2 . 4 .

( a ) The figure consists o
f
a square and a circle drawn in a plane .

( b ) The figure consists of two curves drawn in a plane ; one of them has four
corners and the other one is smooth .

( c ) The area enclosed b
y

the curve S is smaller than the area enclosed by

the curve C .

( d ) The area enclosed by the upper curve is smaller than the area enclosed

b
y

the lower curve .

( e ) The curves S and C do not intersect .

( f ) N
o point is enclosed b
y

both th
e

curves S and C .

# 4 . Four pairs of figures are shown in Fig . 2 . 5 . Which of these pairs of figures

are topologically equivalent ?





TWO

Networks and Maps

2 – 1 Traversability of Networks

The city of Königsberg (now called Kalinin
grad ) in East Germany stands where the New
Pregel and Old Pregel Rivers join to form the
Pregel River ; there is an island formed at the
point of confluence . In the eighteenth century
there were seven bridges , as shown in Fig . 1. 1
(two more bridges have since been built ). It
was asked whether or not it would be possible to

make a walking tour of Königsberg and cross

each of the bridges exactly once. This question ,
along with many related problems, was settled



New Pregel R

Pregel R

Old
Pregel R

FIGURE 1. 1

by th
e

Swiss mathematician Leonhard Euler (1707 - 1783 ) in 1736 , as

indicated below .

First , notice that the actual shape of the river bank , the position o
f

the island , etc . are of no importance ; Fi
g
. 1 . 1 could be replaced b
y

the

simpler Fig . 1 . 2 , which shows how the various sections of the city a
re

interconnected b
y

bridges . The point A in Fig . 1 . 2 represents the entire
section o

f

the city lying to the north o
f

the river ; similarly , D represents
the section south of the river , B represents the area between the New and

the Old Pregel , and C represents the island section . The bridges connect
ing various sections o

f

the city are represented b
y

line segments or pieces

o
f

curves . A line segment , or a curve which can be obtained b
y

a
n elastic

motion o
f
a line segment , will be called a
n

arc . We shall even allow the
two end points o

f
a
n arc to be brought together (forming a curve like a

circle ) and shall still call the figure a
n arc , but a
n arc cannot have any

intersections with itself except a
t

the two end points . (Caution :We are
departing from the standard terminology here . The end points of an arc
are usually required to b

e

two different points , but wewill find it conveni
ent to allow them to b

e

the same point . ) The study of the Königsberg
bridges has le

d

u
s

to a figure composed o
f

seven arcs and four points .

FIGURE 1 . 2
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Before we continue with Euler 's solution , it will be convenient to have
some general terminology which will also be of interest in other con
nections .

A network is a figure ( in a plane or in space) consisting of a finite ,

n
o
n
-zero , number of arcs , no two of which intersect except possibly a
t

their end points . The end points of these arcs are called vertices (singular :

vertex ) o
f

the network . Figure 1 . 2 shows a
n example o
f
a network with

seven arcs and four vertices . Other examples of networks are shown in

Fi
g
. 1 . 3 . The points which are vertices are depicted by enlarged dots

FIGURE 1 . 3 Ex
amples o

f

Networks

( a ) ( 6 )

( d )

( c )

( f )

la )
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in this figure. We shall not always use this convention and , when it is n
o
t

used , it is sometimes necessary to decide somewhat arbitrarily which
points are vertices . For example , in Fig . 1 . 3b the points A and B must be

vertices ; any of the other points could have been chosen a
s vertices .

The order o
f
a vertex in a network is the number o
f

arc ends a
t

that

vertex . A vertex is odd or even if
f

its order is odd o
r

even , respectively .

In Fig . 1 . 2 , each of the vertices A , B , and D is of order 3 ; vertex C is of

order 5 ; each of the four vertices is odd . In Fig . 1 . 3e , the only vertex is

even , and of order 2 , since there are two arc ends at the vertex . In fact ,

these two arc ends are the two opposite ends o
f the same arc .

- ; The total number of arcs in a network could b
e any positive integer ;

similarly , the total number of vertices is unrestricted . On the other hand ,

each arc has two ends , so the total number o
f

arc ends is twice thenumber

o
f

arcs , and hence is even . But the total number of arc ends in a network

is the sum o
f the orders o
f

all the vertices o
f

thenetwork ; thus , in any net
work , the sum o

f

the orders of a
ll

the vertices of the network must be a

positive even integer . The possibility o
f arbitrarily choosing both th
e

number o
f

arcs and the number o
f

vertices o
f
a network is considered in

Problem 6 .

A path in a network is a sequence o
f

different arcs in th
e

network

that can be traversed continuously without retracing any arc . That is ,

each arc o
f

the sequence must have one o
f

it
s

arc ends considered a
s

the

initial end and the other as the terminal end . The same vertexmust be at

the terminal end o
f

the first arc and the initial end o
f

the second a
rc ;

similarly , the terminal vertex of the second arc must be the initial vertex

o
f

the third a
rc , and so on . A vertex of an arc of a path is called a vertex

o
f

the path . The initial vertex o
f

the first arc o
f
a path is the initial

vertex o
f

the path ; the terminal vertex of the last a
rc o
f
a path is th
e

terminal vertex o
f the path . A path is closed if
f its initial and terminal

vertices are the same point . Paths are sometimes designated by listing

the succession o
f

vertices along the path . Such a designation may be

ambiguous ; fo
r

example , there are 4 different paths in the network o
f

Fig . 1 . 2 which could b
e designated b
y

ACBACD . When a
n unambiguous

notation is required , points which are not vertices are included to indicate

exactly which arcs form the path under consideration .

Example 1 . 1 In Fig . 1 . 4 , there are two different paths which are denoted
by ABC ; only one of these is denoted b

y

ADBC .

Example 1 . 2 The path ADBCA (Fig . 1 . 4 ) is made u
p

o
f the arcs ADB , BC ,

and CA . The vertex A is both the initial and terminal vertex fo
r

the path ;
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FIGURE 1. 4

hence the path is closed . The vertex C is the terminal vertex of the arc BC
and the initial vertex of th

e

arc CA .

A network is connected if
f

every two different vertices of the network

are vertices o
f

somepath in the network . The network shown in Fig . 1 . 3d

is not connected ; all the other networks in Fig . 1 . 3 are connected .

With this background , we ca
n

now prove some general results about

networks from which it will be easy to answer the questions about the
Königsberg bridges .

Theorem 1 . 1 In any network , the total number of odd vertices is even .

PROOF . Given any network , fo
r

each positive integer i , let n
i
b
e

the

number o
f

vertices of the network o
f

order i ; also , let N be the total
number o

f

odd vertices and le
t
D b
e

the total number o
f

arc ends . The
total number o

f

odd vertices is the sum o
f

the numbers o
f

vertices o
f

orders 1 , 3 , 5 , . . . .

N = N
i
+ n
3
+ n
g
+ . . . .

(There are only a finite number o
f

terms in the sum o
n the right , although

the exact number will depend o
n the network being considered . This

notation will be used here and in Section 2 - 3 ; no infinite series will be

involved . ) Similarly , the total number of arc ends is the sum o
f

the

numbers o
f

arc ends a
t

vertices o
f

orders 1 , 2 , 3 , . . . . The n
i

vertices o
f

order 1 account for exactly n
i

arc ends ; the n2 vertices of order 2 account

fo
r

2n2arc ends , and so on . Hence

D = N
i
+ 2n2 + 3n3 + . . . .
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It follows that

D – N = 2n2 + 2nz + 414 + 4ng t . . . ,

so that D – N is an even number . Also , D is an even number since each
arc has exactly two ends; thus , D – (D – N ) = N is even « .

A path in a network is said to traverse the network if
f every arc o
f

the

network is included in the path . A collection o
f

several paths in a net

work traverses the network if
f

each arc o
f

the network is included in

exactly one o
f

the given paths .
The question about the Königsberg bridges can now b

e phrased : Is

there a path which traverses the network o
f Fig . 1 . 2 ? The next four

theorems describe the conditions under which a network can b
e

traversed
by one , or several , paths .

Theorem 1 . 2 If a network has more than two odd vertices , it cannot b
e

traversed b
y
a single path .

PROOF . We shall prove the equivalent result : If a network can b
e tra

versed b
y
a single path , then , with the possible exception o
f

two o
f

the

vertices , each vertex of the network is even . Let ai , 22 , . . . , an be a

sequence o
f arcs forming a path which traverses a given network ,and let A

be any vertex o
f this network except the initial and terminal vertices o
f

this path . The initial and terminal vertices of the path may coincide or

they may be distinct . We shall show that A is an even vertex of the net
work . Imagine a point which starts at the initial vertex o

f
a , and moves

along a
i
to it
s

terminal vertex (which is also the initial vertex o
f
a
z ) ,

and then moves along a
z
to it
s

terminal vertex (which is also th
e

initial
vertex o

f

a
z ) , et
c
. until it finally arrives at the terminal vertex of an .

Each time this point passes through the vertex A , it accounts for two arc
ends a

t
A — one on which to arrive and one on which to leave . Thus , the

total number of arc ends a
t
A must be even , and A is an even vertex o
f

the

network « .

Theorem 1 . 3 If a connected network has no odd vertices , then it can b
e

traversed b
y
a single path . Moreover , the initial vertex A , of the path

can b
e

chosen arbitrarily , and the first arc of the sequence forming the
path can b

e

chosen a
s any a
rc a
i
o
f

the network having A , as one o
f

its vertices .
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PROOF . Given a network containing the arc Q, with initial vertex Ao, le
t

A
l
b
e

the terminal vertex of Q
ı
( A , and A ,might be the same point ) , and

form a sequence o
f

arcs in the network a
s follows : Let azbe any arc of the

network different from a , and having A , as one of its vertices ; take Ai

a
s the initial vertex o
f
a , and le
t
A , be its terminal vertex . Let az be any

a
rc o
f

th
e

network different from a , and az , and having A , as one of its

vertices ; take A , as the initial vertex of az and le
t

A
3

b
e

it
s

terminal vertex ,

and so o
n . This process , when continued a
s far a
s possible , produces a

sequence Q
1 , Q2 , . . . , Qn of distinct arcs which forms a path in the network .

If the terminal vertex A
n
o
f the arc an were different from the vertex A
o ,

the path 2
1 , 22 , . . . , Qnwould account for an odd number of arc ends at An

(two arc ends for each passage through A
n

and one more a
s

the terminal

vertex o
f

the arc a
n
) . Since every vertex o
f

the network is even , there
would b

e

a
n arc o
f

the network different from Q
1 , Q2 , . . . ; An , and having

An as one o
f
it
s

vertices , and the process could b
e continued . Thus ,when

the process is continued a
s far as possible , Anmust be the same as A , and

the path a
i , 22 , . . . , an is closed .

If the path 2
1 , 22 , . . . , an traverses the entire network , the proof is

complete ; if not , since the network is connected , there is some arc bi

different from d
i , 22 , . . . , An , and such that one of the vertices B . of b , is a

vertex o
f

the path Q
1 , Q2 , . . . , An ; say B
o
= A
p
. Start again with the a
rc b
i ,

using B
o

a
s

its initial vertex , and form a closed path consisting o
f
a se

quence b
i , b2 , . . . , bm o
f

arcs , each different from the others and also

different from Q
1 , Q2 , . . . , an . Join the two closed paths into one b
y

form
ing the sequence

2
1 , 22 , . . . , A
p , bı , b2 , . . . , bm , A
p
+ 1 , . . . , An .

The terminal vertex o
f
a , is the same as the initial vertex of bı , and the

terminal vertex o
f
b
m is the same as the initial vertex o
f
a
p
+ 1 , so this se

quence is a path . If this enlarged path traverses the entire network , the
proof is complete ; if not , the path ca

n

b
e

still further enlarged . Since
there is only a finite number of arcs in the network , repeated enlargements

must eventually produce a path which traverses the entire network

(Problem 1
1 is concerned with the logical structure o
f

this proof ) « .

Theorem 1 . 4 If a connected network has exactly two odd vertices , it

ca
n

b
e

traversed by a single path whose initial and terminal vertices are

th
e

two odd vertices o
f

the network .
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PROOF . Given a network in which A and B are the only odd vertices ,
form a new enlarged network by joining A to B with a new arc do. In this
enlarged network , every vertex is even ; by Theorem 1.3, there is a path do,

Q1, . . . , an which traverses this enlarged network . Then the path di, da,
. . . , An traverses the original network and the initial and terminal vertices
of this path are the two odd vertices A and B « .

Theorem 1 .5 If a connected network has exactly an odd vertices , it ca
n

b
e

traversed b
y
a collection o
f
n paths and cannot b
e

traversed b
y

any

collection containing fewer than n paths .

PROOF . Problem 3 « .

PROBLEMS

1 . ( a ) The problem o
f

th
e

Königsberg bridges was presented in connection

with Figs . 1 . 1 and 1 . 2 . Solve this problem .

( b ) There are nowadays nine bridges in Königsberg , as shown in Fi
g
. 1 . 5

T
IT
IF

FIGURE 1 . 5

(one is a railroad bridge ) . Is it possible to make a walking tour o
f Königs

berg which crosses each o
f

these bridges exactly once ? Can this b
e

done if

the railroad bridge is excluded ?

( c ) Which o
f

the networks in Fig . 1 . 3 ca
n

b
e

traversed b
y
a single path ?

2 . Figure 1 . 6 shows the floor plan of a five -room house . Is it possible towalk
through each door exactly once ?

3 . Prove Theorem 1 . 5 .
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ETLI
FIGURE 1.6

4. For each of th
e

networks in F
ig . 1 . 7 find a collection of paths which tra

verses the network and such that the network cannot be traversed by a

collection o
f

fewer paths . (Hint : First decide which points are vertices . )

( a ) ( c )

FIGURE 1 . 7

5 . Prov
e

th
e

th
ë

n
e
v
e
r

le
t

h
e
re

th
e

co
d
e

vecices o
th a ba
it
a5 . Prove that if a network has exactly 2 odd vertices then any path which

traverses the network must have these two odd vertices a
s

its initial and

terminal vertices .

6 . ( a ) Is there a network with 5
0 arcs and one vertex ?

( b ) Is there a network with one arc and 5
0 vertices ?

( c ) Find a network with five arcs and eight vertices .



( a ) ( b )

FIGURE 1.8

(d ) Prove that, if n and m are positive integers such that m < 2n , then
there is a network with n arcs and m vertices .
(e ) Prove that, if n and m are positive integers such that m < n + 1, then
there is a connected network with n arcs and m vertices .

7. A chemical application . The structure of a molecule can be schematically
represented by a network . The vertices of the network represent the atoms
of which the molecule is composed and the arcs represent chemical bonds
between certain pairs of these atoms. Figure 1.8 shows two essentially differ
ent ways of forming a molecule with four atoms, two of which have two
chemical bonds each , while the other two have one bond and three bonds,
respectively .
(a ) Prove that the molecules diagrammed in Fig . 1.8 are the only ones
which can be formed from four atoms with the given bonds.
(b ) Find three molecules which can be formed from four atoms, two of
which have two chemical bonds each while the other two have three bonds
each .

(c ) Find four differentmolecules which can be formed from four atoms ,
two of which have three chemical bonds each , while the other two have
two and four bonds, respectively .

8. Hamiltonian paths. The theorems of this article give necessary and suffi
cient conditions for a network to be traversable by a single path . A seem
ingly slight change in the properties desired of a path can completely change

the complexity of the problem . A Hamiltonian path in a network is a closed
path such that every vertex of the network is the terminal vertex of exactly
one arc of the path (and consequently is also the initial vertex of exactly one
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arc of the path ). Necessary and sufficient conditions fo
r
a network to have

a Hamiltonian path are not known . The problem originated with the Irish
mathematician , Si

r

William Rowan Hamilton (1805 - 65 ) who discussed
such paths along the edges of a regular dodecahedron .

( a ) Which o
f

the networks o
f Fi
g
. 1 . 3 have a Hamiltonian path ?

( b ) Which o
f

the networks o
f Fig . 1 . 7 have a Hamiltonian path ?

9 . ( a ) Explain why the theorems in Section 2 - 1 are of interest to a topologist .

( b ) Find a theorem about networks which would not be of interest to a

topologist .

1
0 . ( a ) Explain how you decided which points were vertices in Fi
g
. 1 . 7 . Is

the decision you made the only possible one ?

( b ) In a figure in which there is a point which may b
e
a vertex but does not

have to b
e
a vertex , what is the order of this point if it is considered to be a

vertex ?

1
1 . The proof of Theorem 1 . 3 is based o
n mathematical induction , but the

inductive step is somewhat glossed over a
s

the proof is presented in the text .

Point outwhere this occurs in the proof and rewrite the proof with the in
ductive step formally presented .

2 – 2 Planar Networks

Each o
f

the networks in the figures in Section 2 - 1 was drawn in a plane .

In some cases , a network drawn in space may b
e topologically equivalent

to a network in a plane . That is , it may b
e possible to find a
n elastic

motion o
f
a particular network in space which will place the network in a

plane . Figure 2 . 1 shows a network in the plane which is topologically

equivalent to the network o
f

the edges o
f
a tetrahedron . A network

FIGURE 2 . 1
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which is topologically equivalent to some network in a plane is called a

planar network . Thus Fig . 2. 1 shows that the network of the edges of a
tetrahedron is planar . If the entire surface of a tetrahedron is to be con
sidered , as well as the edges, it cannot be represented topologically by
Fig . 2.1 , since , in that figure , a single point in the plane would represent
two points in different faces of the tetrahedron .
An interesting example of a non -planar network is the gas-water

electricity network shown in Fig . 2-2. It shows the connections required

to supply each of three utilities (gas , water , and electricity , represented
by the points G , W , and E ) to each of three houses (represented by the
points A , B , and C ).

E FIGURE 2.2

Theorem 2 .1 The gas -water -electricity network is non -planar .

PROOF . Wemust show that no elastic motion of the network shown in
Fig. 2.2 will place this network in a plane . The proof is by contradiction .
Suppose there were such an elastic motion ; then it would carry the

si
x

arcs A
G ,GB , BW ,WC , CE , and EA into a curve which completely

surrounds a portion o
f

the plane ( F
ig . 2 . 3 ) . Of the remaining three arcs ,

AW , BE , and C
G , one would have to b
e placed inside this curve and a

second one outside , and no matter how this is done , it is impossible to

place the last o
f

the three arcs in the plane « .

A rigorous proof of Theorem 2 . 1 requires results about theta curves
which are beyond the scope of this text (see Ref . ( 28 ) ] .

Theorem 2 . 2 The network in which each o
f
5 vertices is joined by a
n arc

to each o
f the other 4 vertices (Fig . 2 . 4 ) is non -planar . This network is

called the complete network o
n
5 points .

PROOF . Problem 2 « .
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FIGURE 2.3

FIGURE 2. 4

We have seen two examples (Figs . 2.2 and 2.4 ) of networks which
cannot be placed in a plane. The Polish mathematician C . Kuratowski

has used these two networks to characterize planar networks; hi
s

charac
terization also uses the concept of a subnetwork . A subnetwork o

f
a given

network is obtained b
y

choosing any collection o
fpaths in the given net

work subject to the following restrictions :



42 Networks and Maps / 2-2

( a )

( b )

FIGURE 2.5

( 1) No vertex is repeated along any one of the chosen paths (except

that the initial and terminal vertices of a path may be the same).
(2) No two of the chosen paths intersect, except possibly at their

initial or terminal vertices .
The chosen paths form the arcs of a new network , which is called a

subnetwork of the given one . As an example , the network of Fig . 2.5b
is a subnetwork of the one shown in Fig . 2.5a . It is obtained by choosing
the paths which are shown by heavy lines in Fig. 2.5a. Of course , a net
work may have many subnetworks .
With this terminology we can present Kuratowski 's result ; he proved
[Ref. (28 ) ] that any network which cannot be placed in a planemust have
a subnetwork which is topologically equivalent to the gas -water -electric

it
y

network o
r
to the complete network o
n five points . Thus these two

examples characterize planar and non -planar networks . The proof is be
yond the scope o

f

this text .

PROBLEMS

1 . Which o
f

the following networks are planar ? For each one which is planar ,

find a
n elastic motion which will place it in a plane .

( a ) The edges o
f
a cube .

( b ) The edges o
f
a regular octahedron .

( c ) The edges of a regular dodecahedron .

( d ) The edges of a regular icosahedron .



2– 3 / Networks and Maps

( e) The legs, rungs , slats , perimeter of the seat, et
c
. of a chair .

( f ) The edges and the diagonals of the faces o
f
a cube . (Notice that the

diagonals o
f any one face intersect ; this intersection is , of course , a vertex . )

( g ) The edges , the diagonals of th
e

faces , and the body diagonals o
f
a cube .

( h ) The edges and body diagonals o
f
a cube .

( i ) The edges and body diagonals of a regular octahedron .

2 . Prove Theorem 2 . 2 .

3 . Can the gas -water -electricity network (Theorem 2 . 1 ) be drawn o
n the sur

face o
f
a sphere ? O
n

the surface o
f
a doughnut ?

4 . Can the complete network o
n five points (Theorem 2 . 2 ) be drawn o
n the

surface o
f
a sphere ? On the surface o
f
a doughnut ?

2 – 3 The Four Color Problem

How many colors d
o you need to color a map ? No one knows for sure !

We shall prove in this section that every map in a plane ca
n

b
e

colored

with five colors ,but no one has found a
n example o
f
a planar map which

requires five colors — in each example that has been examined it has been
possible to color the map with only four colors . Several excellentmathe
maticians have given considerable thought to this question , but nobody

has been able to prove that four colors are always sufficient .

Before webegin the proof o
f

the five color theorem , it will be necessary

to understand very clearly what a planar map is , and what conditions are
imposed o

n the coloring o
f
a map . A map is a network , together with a

surface which contains the network . If this surface is a plane , themap

is called a planar map o
r
a map in a plane ; several examples are shown in

Fig . 3 . 1 . Only planarmaps are considered in this section . Maps in more
general surfaces will be discussed in Chapter 4 .

The distinction between a planar network and a planar map may
appear a

t

first to b
e
aminor one ,but this is not the case . The entire view

point is changed ; this change is emphasized b
y

using , in connection with
maps , notation and terminology which is somewhat different from that
which we have used in our work o

n networks . The main interest in a

network is focused upon the arcs o
f

the network ,with the vertices playing

a subordinate roll . In amap , themain interest is centered o
n the portions

into which the surface is divided b
y

the arcs o
f the network , with the
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A OO( a ) ( b ) la )

( 9 )
( f )

FIGURE 3. 1 Examples of Maps in a Plane .

network itself playing a subordinate roll . In an ordinary map in an atlas,
these portions of the surface are the states or countries shown by the
map ; in the general case , these portions of the surface are called the faces
of the map . In an ordinary map in an atlas, we shall count the portion

of the plane outside themap as one of the faces of the map ; thus , in a
plane , one of the faces of a map will be unbounded . The arcs and vertices
of the network are called edges and vertices of the map , respectively ; the
edges which form the boundary of a particular face are called the edges of
that face . Usually , the edges in a map are edges of two different faces ,

but Figs . 3. 1e and 3. 1h show that it is possible fo
r

a
n edge to b
e

a
n edge

o
f only one face .

In coloring a map , two faces which have an edge in common must be

colored with different colors ; if two faces have only vertices , or no bound
ary points in common , they may be colored the same color . For example

in the map in Fig . 3 . 1a , the four quarters of the square could b
e

colored

with only two colors since the same color could b
e

used for diagonally

opposite quarters . The region exterior to the square would have to be

colored a third color .

We are now ready to start toward the five color theorem . Several
auxiliary results will be needed for the proof ; the first of these results will
also b

e useful in other situations . A map is connected if
f the network o
f

themap is connected . In any connected , planar map , there is a relation
ship among thenumbers o
f

vertices , edges , and faces of the map , as shown
by the following theorem .
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Theorem 3. 1 (Euler) If V , E , and F are , respectively , the numbers of
vertices , edges , and faces of a connected planar map , then V - E +
F = 2.

PROOF . It is intuitively evident that any connectedmap in a plane can be
built up by starting with a single edge and performing a succession of the
following three operations .

(i) Add a new edge joined at one end only ;
added : 1 vertex, 1 edge , no faces .

(ii) Add a new vertex in an existing edge ;
added : 1 vertex , 1 edge , no faces .

( iii ) Add a new edge joined atboth ends ;

added : no vertices , 1 edge , 1 face .
When we start with just one edge there are two possibilities ; either

there are two vertices and one face o
r

there are only one vertex and two

faces ; in either case ,

V - E + F = 2 .

Now notice that none o
f

the three operations described above makes any

change in the sum V - E + F since each adds one edge and either adds a
vertex and n

o

faces or adds a face and n
o

vertices . Thus , with V , E ,and

F being , respectively , the number ofvertices , edges , and faces in the com
pleted map , we still will have

V – E + F = 2 « .

A map is regular if
f

each vertex is o
f

order 3 . The maps shown in

Fi
g
. 3 . 1b and Fig . 3 . 1d are regular . In a regular , connected map , the

following lemma shows that at least one facemust be relatively simple .

Lemma 3 . 2 Any regular , connected map in a plane has at least one face

with five o
r

fewer edges .

PROOF . In a regular , connected map with V vertices , E edges , and F

faces , le
t

n
i
( i = 1 , 2 , 3 , . . . ) be the number of faces with i edges . Then

the total number o
f

faces is n
i
+ n
2
+ n
g
t . . . so that

n
i
+ 1
2
+ 1
3
+ . . . = F . ( 1 )

Second , each edge has exactly 2 ends , and there are exactly three arc ends
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(2)

at each vertex . Thus , each of the numbers 2E and 3V gives the total
number of arc ends in themap , and these two expressionsmust be equal .

2E = 3V .
Third , each edge in themap is either an edge of only one face , or it is an
edge of exactly two faces . Thus, if we find the number of edges in each
face and add all these numbers , some edges may be counted once , and
some twice , but no edge will be counted more than two times . The ni
faces , each ofwhich has one edge , account forni edges ; the na faces , each
ofwhich has two edges ,account for 2n2 edges , and so on ;hence,

ni + 2n2 + 3n3 t . . . < 2E .

By Theorem 3.1, we have

V – E + F = 2.

From Eqs. (2 ) and (4),

12 = 6V – 6E + 6F = 4E – 6E + 6F = – 2E + 6F ,

so 6F = 12 + 2E . But this result , combined with Eqs. (1) and ( 3), gives

6n1 + 6n2 + 6n3 t . . . > 12 + ni + 2n2 + 3nz + . . .

or

5n1 + 4n2 + 3n3 + 2n4 + ng – Ny – 2ng – . . . > 12 .

Since , fo
r

each i , the number of faces with i edges is either positive or
zero , a

t

least one of n
i
to n
g

must be positive ; that is , there is at least one
face with five o

r

fewer edges « .

We can now prove a result of the type we have been expecting . It

deals with the coloring o
f

certain special maps in a plane , and si
x

colors

are allowed . Later , we will be able to reduce thenumber of colors to five ,

and remove the restrictions on themaps .

Lemma 3 . 3 Any regular connected map in a plane can b
e colored with

six colors .

PROOF . The proof is by induction o
n

the number o
f

faces in the map .

Any map with si
x

o
r

fewer faces can certainly b
e

colored with si
x

colors .

Consider a regular connected map with n faces , n > 6 , and suppose that
every regular connected map with fewer than n faces ca

n

b
e

colored with

si
x

colors ; it will suffice to show that this map ca
n

b
e

colored with si
x

colors . B
y

Lemma 3 . 2 , there is at least one face f of this map which has
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five or fewer edges . At least one of the edges of this facemust separate it
from another face (Problem 1). Choose any such edge e and remove it
from the figure ; the two vertices at the ends of e thus become vertices of
order 2, so , by joining two edges into one, they no longer need to be con
sidered as vertices . Thus, the removal of the edge e joins f to another
face and forms a new regular connected map with n – 1 faces. By the
induction hypothesis , this map can be colored with si

x

colors . When the
edge e is replaced , to regain the originalmap , the face fwill have a

n edge

in common with a
tmost five other faces , so there is sure to b
e a
t

least one

o
f

the si
x

colors available fo
r

the face f « .

PROBLEMS

1 . Prove the statement made in the proof of Lemma 3 . 3 , that a
t

least one edge

o
f f must separate f from another face . (Hint : Start with a
n arbitrary edge

o
f f and form a path composed o
f edges o
f f ; since the map has only a finite

number o
f

vertices , some vertex will have to appear twice in this path if it is

continued far enough . )

2 . In the proof of Lemma 3 . 3 ,what happens if the face f has only one edge , as
shown in F

ig . 3 . 2 ? (Hint :When the edge e is removed , the vertex to which

it was attached becomes a vertex o
f

order 1 ; is it possible to simultaneously

remove the other edge attached to this vertex ? )

3 . For each o
f

themaps shown in Fi
g
. 3 . 1 , what is the smallest number of colors

with which it can b
e

colored ?

4 . ( a ) For each of the regular connected maps shown in Fig . 3 . 3 , find a face f ,

with five o
r

fewer edges , and an edge e of f , such that e separates f from an
other face . Obtain a regular connected map which has one less face than the
given map b

y

removing the edge e , as explained in the proof of Lemma 3 . 3

· FIGURE 3 . 2
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FIGURE 3.3

and in Problem 2 above . (Note : For the induction step in the proof of
Lemma 3. 3, we considered maps with more than si

x
faces , but , fo

r

sim

plicity , the ones pictured in Fig . 3 . 3 have fewer faces . )

( b ) The induction step in the proof o
f

Lemma 3 . 3 cannot b
e performed with

the maps shown in Figs . 3 . 3c , 3 . 3f , and 3 . 3g . Why does it fail for these
maps ? Prove that this induction step can b

e performed with any regular ,

connected , planar map having more than two vertices .

5 . Prove that there cannot bemore than five regular solids . (Hint : Consider
the network of the edges o

f

the solid . If each vertex is of order n and each
face is a polygon with m sides , show that n V = 2 E = mF , then use Euler ' s

theorem . )

6 . ( a ) Prove that in any regular connected map there are an even number of

vertices .

( b ) Prove that if n is any positive even integer , there is a regular connected
map with n vertices .

7 . In the proof of Lemma 3 . 3 ,why is the network still connected after the edge

e is removed ?

8 . Draw a map in which n
o

face has fewer than si
x

edges .

Now that we have seen that si
x

colors are sufficient to color any

regular connected map , our next task is to show that the same result ca
n

b
e accomplished with only five colors .
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Lemma 3. 4 Any regular connected map in a plane can be colored with
five colors .

PROOF . The proof is by induction on the number of faces in the map .
Any map with five or fewer faces can certainly be colored with five colors.

Consider a regular connected map with n faces, n > 5, and suppose that
every regular connected map with fewer than n faces ca

n

b
e

colored with

five colors ; it will suffice to show that this map can b
e

colored with five

colors . As in the proof of Lemma 3 . 3 , there is a
t

least one face f , with five

o
r

fewer edges ,buthere the proof breaks into three cases .

CASE 1 . The face f has four or fewer edges . The proof continues
exactly a

s

fo
r

Lemma 3 . 3 : Find a
n edge e o
f f which separates f from

another face ; remove e from themap to obtain a regular connected map

with n - 1 faces ; color this reduced map . When the edge e is replaced

in the map , the face f will have an edge in common with a
t most four

other faces , so there is sure to b
e a
t

least one o
f

the five colors available

for the face f .

CASE 2 . The map has an edge e (Fig . 3 . 4 ) such that when e is removed
the map becomes disconnected . Since e disconnects the map , the same

FIGURE 3 . 4

face

FIGURE 3 . 5

Saro
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face fımust appear on both sides of e and , in this face , we may draw a
curve C , such as the dashed curve in Fig . 3.4 ,which goes from one side of e
to the other. If there is only one face of the map enclosed within C,
then this face must have only one edge , as shown in Fig . 3.5, and this
situation has been considered in Case 1. Similarly , Case 1 arises if there is
only one face of the map which lies entirely outside C .

If there are at least two faces of th
e

map inside C and a
t

least two
outside C , the original map can b

e replaced by two separatemaps , as

shown in Figs . 3 . 6a and 3 . 6b . These two maps are obtained b
y cutting

the edge e a
t

the point P ( Fig . 3 . 4 ) where it intersects C , thus disconnect

in
g

the network ;we consider the twomaps formed b
y

the separate pieces

FIGURE 3 . 6

face to facet ,

la ) ( b )

map .

Color th
e

origine Fig . 3 .

o
f

the network . Each of the two new maps is made regular b
y

the addi
tion o

f
a loop a
t

the point where e was cut . In Fig . 3 . 6а the face fı has
been enlarged to include everything that was inside C in Fig . 3 . 4 ( except

fo
r

the new face inside the loop ) ; similarly , the face fi in Fig . 3 . 6b includes
almost everything that was outside C in Fig . 3 . 4 . Now , in making each

o
f

these new maps , at least two faces o
f

the original map were included in

the face fı , and only one new face was added by the loop , so each o
f

these
maps has fewer faces than the original map . B

y

the induction hypothesis ,

each o
f

these separate maps can b
e

colored . Color them so that the
face fı is the same color in the twomaps ; a coloring of the originalmap in

Fig . 3 . 4 can b
e obtained b
y

putting together the two maps o
f Fig . 3 . 6

and shrinking the loops to a point .

CASE 3 . The removal of any one edge does not disconnect the map ,

and there is a face f with five edges . In this case no edge ca
n

have the
same face o

n both sides o
f it , since its removal would then disconnect the

map . Thus , the face f has five edges , as shown in Fig . 3 . 7 , and each o
f

the

edges e
1 , C2 , C3 , C4 , es has a face different from f on the other side o
f it .

Denote b
y
fi the face o
n the other side o
f e
i .
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FIGURE 3.7

The faces fi, f2, f3, fa , f;may not al
l

b
e

different from each other , but we
show next that a

t

least two of them are different and ,moreover , have n
o

edge in common . In fact , if fı and f3 have no edge in common , wemay use
them ; if they do have a

n edge in common , then it is possible to draw , in the
faces f , fi , and f3 , a curve C , such a

s
is shown dashed in Fig . 3 . 7 . This

curve completely encloses fz o
r completely encloses both f4 and fó ; in either

case f2 can have n
o edge in common with fs .

We now suppose that fı and f3 are two faces which have n
o edge in

common . Remove from the map both o
f

the edges e
i and ls , making a

new map in which the three faces f , fı , and f3 are joined into one , as shown

in Fig . 3 . 8 . The new map is kept regular b
y

the usual suppression o
f

vertices , and the removal of ei and e
z leaves the map still connected be

FIGURE 3 . 8

fs les +

erfaB

7 , 1
4
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cause , for example, the points A and B may be joined by going around
the edge of the old face fı. This new map has two fewer faces than the
original one; hence, by the induction hypothesis , the new map can be
colored with five colors . But then the originalmap can also be colored
with five colors , because , when the edges ei and ez are replaced , the faces

fi and fa, having no edge in common , can be allowed to remain the same
color and there will be atmost four different colors used for the five faces
fı , fa , fa, fa, fs, leaving at least one of the five colors available for the
face f « .

It is now quite easy to prove the five color theorem ;all that is needed
is to remove the two restrictions of regularity and connectedness on the
maps which are under consideration .

Theorem 3. 5 Anymap in a plane can be colored with five colors .

PROOF . First consider any connected map in a plane . We can obtain a
regular connected map by “ blowing up ” each vertex which is of order
n + 3 into a small face with n edges . Figure 3.9 illustrates the process

- a

Order 1 Order 2 Order 5
Obtaining vertices of order 3 from
vertices of orders 1, 2 , and 5

FIGURE 3.9

fo
r

vertices o
f

orders 1 , 2 , and 5 . Since , by Lemma 3 . 4 , the resulting
regular connected map can b

e

colored with five colors , we can obtain a

coloring o
f

the original connected map merely b
y

shrinking to a point

each one o
f

the small faces which were added . This shrinking process
makes n

o change in the edges which are common to two different faces of

the originalmap , so the coloring remains satisfactory . Therefore , any
connected map in a plane can b

e colored with five colors .
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Finally , consider an arbitrary map in a plane. If it is not connected ,
wemay connect it by the addition of new edges in such a way that each of
these new edges will have the same face on both sides of it . The preced
ing paragraph shows that the connected map can be colored with five

colors , and we ca
n

obtain a coloring o
f

the given arbitrarymap b
y

simply

erasing the new edges which were added to connect themap . Since each

o
f these new edges has the same face on both sides of it , the same color

will appear on both sides o
f

each o
f

these edges , and the coloring will still

b
e satisfactory after the edges have been erased « .

PROBLEMS (continued )

9 . For each of themaps in Fig . 3 . 10 , obtain a regular connected map b
y

carry

in
g

out the construction suggested in the proof of Theorem 3 . 5 .

1
0 . ( a ) For each o
f themaps in Fig . 3 . 11 , decide which of the cases of the proof

o
f Lemma 3 . 4 apply . ( The cases are notmutually exclusive , so more than

one case may apply . )

( b ) In each map ( F
ig . 3 . 11 ) a particular face with five edges ismarked with

th
e

letter f . Try to carry out the procedure o
f Case 3 , Lemma 3 . 4 with

this face .

1
1 . Figure 3 . 12 shows a regular connected map in a plane . Which cases in the

proof o
f

Lemma 3 . 4 apply to this map ? Show that this map ca
n

b
e

colored

with four colors .

FIGURE 3 . 10

AAA( a ) ( b ) ( c )

OO

( d ) ( e ) ( f )
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12. Prove the following statement made in connection with Fi
g
. 3 . 4 in the

proof o
f

Case 2 , Lemma 3 . 4 : If there is only one face of the map enclosed
within C , then this face must have only one edge .

1
3 . Prove the following result , which was used in the proof of Case 3 , Lemma

3 . 4 : If an edge e of a map has the same face o
n both sides o
f
it , then the

removal o
f
e will disconnect the map .

1
4 . Prove the following statementmade in connection with Fi
g
. 3 . 8 in th
e

proof o
f

Case 3 , Lemma 3 . 4 : The points A and B may b
e joined b
y

going

around the edge o
f

the old face fı .

* 1
5 . Show that it is not possible to draw a map in a plane in which five o
f the

faces have the property that each o
f

them has an edge in common with each

o
f

the other four . Why doesn ' t this prove the four color theorem ? (Hint :

Remember that the complete network o
n five points cannot be drawn in a

plane . )

1
6 . Show b
y

a
n example that ; for any positive integer n , it is possible to have n

solids in three -dimensional space , each o
fwhich has an area (face ) in com

mon with each o
f the others . Thus the immediate generalization o
f

the

four color problem to volumes in three -dimensional space is uninteresting .
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املنم:

لا
ل
ه

Topological Equivalence

in

Three -Dimensional Space

3 - 1 Topological Equivalence

A solid ball is topologically equivalent to a solid

cube , or to any regular solid . As mentioned in

Chapter 1 , two figures in three -dimensional
Euclidean space are called topologically equiva

lent iff there is an elastic motion which willmake

one o
f the figures coincide with the other . Of

course , if we a
re presented with two physical

objects , one o
f

which is a solid rubber ball and

the other a solid wooden cube , we cannot make
the rubber ball “ coincide ” with the wooden cube .

Ifwe tr
y
to d
o

so , they bump into each other and
the rubber ball flattens out against the outside of
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the cube instead of moving on through the interior of the cube. This
serves to emphasize the fact that the figures studied in mathematics -
both in Euclidean geometry and in topology — are not physical objects

but abstractions . A triangle is not a thing that can bemade out ofwood,
paper , or string - it is composed of “ line segments ” which fi

t together in

a certain way , and “ line segments " are certain collections of “points . "

Thus , an adequate foundation fo
r

any serious study o
f

either geometry o
r

topology requires some discussion o
f

sets o
f points , and a clear under

standing o
f

how one set o
f points is made to coincide with another . This

foundation will be laid in Chapter 6 ; fo
r

the present , we shall continue

to rely o
n

a
n intuitive feeling for topological equivalence o
f figures based

o
n the concept o
f
a
n

elastic motion o
f
a perfectly elastic figure .

Several standard figures in which we shall be interested are described
below . Some of them have appeared informally in our previouswork , but
their descriptions are included here for completeness .

A circle is a curve in a plane , all points o
f

which are a
t
a given distance

from some particular point of the plane . The particular point is the

center o
f

the circle , and the given distance is the radius of the circle . A

simple closed curve is a curve which is topologically equivalent to a circle .

A simple closed curvemay , ormay not , lie in a plane . Figure 1 . 1 shows an

example o
f
a knotted simple closed curve which does not lie in a plane .

A
n open disk is the portion o
f
a plane which is enclosed within some

circle ,but not including the circle . A closed disk is the portion o
f
a plane

which is inside o
r
o
n some circle ; that is , al
l

the points o
f

the circle are

included in the closed disk . Note that both open and closed disks are
surfaces in a plane . A closed disk is an open disk together with the circle
whose interior is that open disk .

FIGURE 1 . 1



3- 1 / Topological Equivalence in Three -Dimensional Space 59

JI
O

FIGURE 1 . 2

A sphere is a surface in three dimensions , al
l

points of which are a
t
a

given distance from some particular point . The particular point is the
center o

f

the sphere and the given distance is the radius o
f

the sphere .

A
n

open ball is the portion o
f

three -dimensional space which is enclosed
within some sphere , but not including the sphere . A closed ball is the
portion o

f

three -dimensional space which is inside or on some sphere ; that

is , al
l

the points o
f

th
e

sphere a
re included in the closed ball . Note that

both open and closed balls are solids in three dimensions . A closed ball

is a
n open ball together with the sphere whose interior is that open ball .

A sphere with p handles is a surface in three dimensions obtained b
y

cutting 2
p

holes in a sphere and bending p different tubes so that their

ends fi
t
in these holes . Figure 1 . 2 shows a sphere with three handles .

A torus (Fig . 1 . 3 ) is a surface in three dimensions obtained b
y rotating

a circle about a line which lies in the plane o
f

the circle but does not inter
sect th

e

circle . A torus may be thought of as the surface of an inner tube

o
r

o
f
a doughnut .

If two figures are topologically equivalent , wemay be able to prove

this fact by exhibiting a
n elastic motion which carries one o
f

the figures
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oFIGURE 1. 3into the other . For example , given a rubber band in the shape of a circle,

we could cut it , bend it into the shape of the curve of Fig . 1. 1, and then
fasten the two ends together as they were originally . This would prove
that the curve of Fig . 1.1 really is a simple closed curve, since it is topo
logically equivalent to a circle .
How could we hope to prove that two figures are not topologically

equivalent ? It would be necessary to show that no elasticmotion of one
of the figures would make it coincide with the other figure . Of course , we
cannot tr

y

each o
f

the elastic motions in turn — there are to
o

many o
f

them . One way o
f giving such a proof is to find a property possessed b
y

one o
f

the figures which is lacking in the other figure . If this property is a

topological property , the two figures cannot b
e topologically equivalent ,

because n
o

elastic motion can either create o
r destroy this property , so no

elastic motion can make one o
f

the figures coincide with the other . We
illustrate this procedure b

y

proving that a sphere is not topologically
equivalent to a torus . In fact , any simple closed curve o

n
a sphere d
is

connects the sphere — if the surface is cut along any simple closed curve ,

the surface falls apart in two pieces . A torus does not have this property ,

since it is not disconnected b
y
a circle going through the hole and around
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a cross section of the torus — if a torus is cut along such a circle , the
surface becomes a tube , but it is still al

l
in one piece . Moreover , the

property o
f
a surface ' s being disconnected by any simple closed curve

lying in the surface is clearly a topological property . Thus , a sphere and a

torus arenot topologically equivalent .

PROBLEMS

1 . ( a ) Prove that a torus is topologically equivalent to the surface o
f
a button

with one hole , and also to a sphere with one handle .

( b ) Is there a simple closed curve on a torus which disconnects the torus ?

2 . Prove that the surface of a button with p holes is topologically equivalent

to a sphere with p handles .

3 . ( a ) Prove that a sphere with two handles isnot topologically equivalent to a

sphere with three handles .

( b ) Prove that if p + 9 , a sphere with p handles is not topologically equiva

lent to a sphere with q handles .

4 . Arrange th
e

following items in groups so that a
ll

items in the same group

are topologically equivalent , and items in different groups are not topologi
cally equivalent .

( a ) A circle .

( b ) An open disk .

( c ) A line segment .

( d ) A sphere .

FIGURE 1 . 4

( a )

( b )
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( e) A spherical shell (the portion of three - dimensional space which lies

between two spheres which have the same center and different radii ).
(f) A ball.
(g ) The surface of a cube.
(h ) A solid cube .
(i) A solid cube with a hole bored through it .
(j) A torus .
(k ) The network composed of the edges of a tetrahedron .
(1) A solid in the shape of a piece of gas pipe.
(m ) A solid in the shape of a piece of gas pipe together with a plug at each
end .

(n ) A solid in the shape of a heavy leather glove fo
r

the right hand .

FIGURE 1 . 5
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(0 ) A solid in the shape of a heavy leather glove fo
r

the left hand .

( p ) A plain solid gold ring .

( 9 ) A
n

annulus (the portion o
f
a plane which lies between two circles which

are in that plane and have the same center and different radii ) .

( 1 ) The entire surface o
f
a phonograph record .

( s ) The network o
f Fi
g
. 1 . 4a .

( t ) The network o
f Fi
g
. 1 . 4b .

5 . Block letters are shown in Fi
g
. 1 . 5 . Arrange the letters in groups , so that

all the letters in the same group are topologically equivalent , and letters in

different groups are not topologically equivalent .

3 - 2 Classification o
f

Surfaces

Every schoolboy knows that a
n ordinary piece o
f paper has two sides ;

sometimes h
emust write only o
n one side , and sometimes hemay write

o
n both sides . In this section we shall se
e

some examples of surfaces
which have only one side , but first we must describe a little more in

detail exactly what surfaces we are considering .

A surface should b
e
" two -dimensional , ” like a plane or a sphere ; but

what about a sphere with a spine sticking out ( F
ig . 2 . 1a ) or two tangent

spheres (Fig . 2 . 1b ) ; are these surfaces ? In this section we consider a

special type o
f

surface called amanifold . A manifold is a connected sur
face ( i . e . , a surface " all in one piece ” ) such that , sufficiently near to each
point , the surface is topologically equivalent to a

n open disk . That is ,

fo
r

each point p of the surface , a
ll
o
f the points of the surface sufficiently

near to p form a set topologically equivalent to a
n open disk . The se
t

o
f

a
llpoints o
f

the surface near to p is called a neighborhood o
f
p .

Neither o
f

the surfaces shown in Fig . 2 . 1 is amanifold . In Fig . 2 . 1a ,

the points on the spine d
o not have satisfactory neighborhoods , and in

Fig . 2 . 1b the surface is not topologically equivalent to a disk near th
e

point o
f tangency o
f

the two spheres .

A surface is bounded if
f

the entire surface is contained in some open

ball . A torus is a bounded surface ; a plane is not a bounded surface . If

w
e

consider a particular piece o
f
a surface , the boundary of that piece is

defined to be the curve which separates that piece from the rest o
f the

surface . For example , consider a disk a
s
a portion o
f
a plane ; the bound

ary o
f the disk is the circle which encloses it ; the boundary of an annulus

in a plane consists o
f

two circles . Notice that the boundary o
f
a piece
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90
( a )

( b )

FIGURE 2 .1

of a surface is not completely determined by that piece , but depends also
on the rest of the surface , since the boundary must be a " divider ” or
" edge ” between these two sets . An example will clarify this point . As
noted above, if we consider a disk as a piece of a plane , its boundary is a

circle . However , suppose we consider a disk a
s
a piece o
f

that disk itself ;

then all the points of the surface are in the piece under consideration , so

certainly there is no “ divider ” between that piece and the rest o
f

the

surface . That is , when the disk is considered a
s
a subset o
f

itself , it has no
boundary . We will have a more satisfactory definition o

f
“ boundary ” in

Section 8 - 3 ; fo
r

the present w
e

shall be interested only in simple cases , so

the intuitive concept will suffice . When we speak of the boundary o
f
a

surface , we shall be considering that surface as a piece of some surface
which is a natural extension of it : for instance , a disk in a plane . It is
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also important to notice that, although the words “ bounded ” and
" boundary ” are quite similar , the concepts are not at al

l

similar . Both a

sphere and a disk are bounded surfaces , but a sphere has no boundary ,

while the boundary o
f
a disk is a circle . A plane is an unbounded surface

which has no boundary ; a thin strip o
f
a plane is an unbounded piece

whose boundary consists of two parallel lines . A surface is closed if
f it is

bounded and has n
o boundary . A sphere is a closed surface , since it is

bounded and since one can move about freely o
n

a sphere and never

come to an edge . On the other hand , neither a
n open disk nor a closed

disk is a closed surface , since each disk has as its boundary the circle which
encloses the disk . Notice that the word " closed " is used here in connec
tion with surfaces in a way similar to the way in which it was used in

Section 2 - 1 in connection with paths in a network ; in either case , it indi
cates that motion is never halted b

y

a
n

end o
r

a
n edge . (The condition of

boundedness was not required for a closed path , since al
l

our paths were

bounded . ) A manifold may , or may not , be a closed surface . A sphere

is a closed surface which is a manifold ; an open disk is a manifold which

is not a closed surface ; a closed disk is not a manifold , since , near a point

o
f the boundary circle , the surface is not topologically equivalent to an

open disk .

There is an interesting way of representing certain manifolds a
s

rectangles with some sides identified . For example , in Fig . 2 . 2 the ends

o
f

the rectangle are to b
e joined so that the two segments labelled AB

coincide , with the two arrows pointing in the same direction . Themani
fold represented b

y

this rectangle is the curved surface o
f
a cylinder .

Notice that the line segments BB and AA represent the two circles at the
ends o

f

the cylindrical surface . The points o
n these line segments ( o
r

circles ) cannot b
e

included in the manifold , since they d
o not have satis

factory neighborhoods o
n the surface . This representation o
f
a cylinder

FIGURE 2 . 2
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is sometimes convenient , since it will lie flat on a desk and a
ll o
f

one side
o
f

the surface ca
n

b
e

seen a
t

once .

Suppose that one of the arrows in Fig . 2 . 2 is reversed , as shown in

Fi
g
. 2 . 3a . If one end o
f

this rectangle is given a half twist and the ends
are then joined so that the two segments labelled AB coincide , with the
two arrows pointing in the same direction , a manifold called a Möbius
strip (Fig . 2 . 3b ) is obtained . As with Fig . 2 . 2 , the horizontal line seg

ments a
t

the top and bottom o
f Fig . 2 . 3a must be excluded from the

surface to obtain a manifold . However , these line segments n
o longer

represent two circles ; here they represent two halves of the same simple

closed curve . A Möbius strip has only one side . To se
e

this , imagine a

fl
y

which starts a
t

the point P and crawls along the curve C on the surface ,

returning to P along the dotted portion o
f
C . Since the fl
y

does not g
o

through the surface , nor around the edge of the surface , itmust be on the
same side o

f

the surface all the time . But it appears to return to the
point P on the “ other side ” of the surface from where it started . Thus ,

what appear to be two different sides of the surface a
t
P are really just

two different pieces o
f

the same side o
f

the surface . Notice that one
sidedness is an extrinsic , rather than intrinsic , property o

f
a surface .

That is , the test as to whether or not a surface is one -sided is not carried
out entirely o

n the surface , but instead use is made of the space around
the surface . In our example with the fly , we have implicitly agreed that

if the fl
y

walks with his feet always on the surface , and does not cross any
edge o

f

the surface , then a
ll

the points through which his head moves
must lie on the same side of the surface . If the surface is a Möbius strip ,

the fl
y

can move his head from any point near the surface to any other
point near the surface . Hence , all points are o

n the same side o
f

the

surface , and the surface is one -sided . Problems 5 through 9 are concerned
with a

n intrinsic property o
f

surfaces which is closely allied to one
sidedness .

FIGURE 2 . 3 Möbius Strip

X
V A
N
S

( 0 ) ( b )
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FIGURE 2 .4 Klein Bottle

Another example of a one-sided surface is shown in Fig . 2.4 . This
manifold is called a Klein bottle , and it cannot bemade in three -dimen
sional space . Figure 2.4a shows the representation of a Klein bottle as a
rectangle with two pairs of edges identified . Identification of the two
edgesmarked with the solid arrows gives a cylindrical surface (Fig . 2.4b ) ,

with the two ends of this cylinder still to be identified . This is the step

which cannot be performed in three -dimensional space ; one end of the
cylinder must be thrust through the side and joined with the other end
inside as shown in Fig . 2.4c. However , the surface must not intersect
itself where the neck is thrust through the side (a fourth dimension is

needed to “ go around " the surface instead of through it).
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The next theorem gives an interesting classification of closed two
sided manifolds. A similar classification of one-sided manifolds may be
found in the references provided .

Theorem 2. 1 Any closed two -sided manifold is topologically equivalent
to a sphere with some number of handles .

PROOF . The proof of this theorem is beyond the scope of this book .
The interested reader can find a proof in Ref . (8), Theorem 2, p . 33, or in
Ref. (1), Theorem 7.2, p . 110 « .

PROBLEMS

1. For each of the following surfaces tell whether it is (i) closed or not closed ,
(ii) amanifold or not amanifold , ( iii ) one -sided or two -sided , ( iv ) bounded

FIGURE 2 . 5

( b )

( a ) ( c )
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or unbounded . For each one which is a closed two -sided manifold , find the
number p such that the surface is topologically equivalent to a sphere with
p handles.
(a ) A plane.

(b ) A torus .
(c) A Möbius strip .
(d ) A Klein bottle .
( e ) An open disk .
(f) A closed disk .
(g ) The surface of Fi

g
. 2 . 5a .

( h ) The surface o
f Fig . 2 . 5b .

( i ) The portion o
f the conical surface with two nappes which is shown in

Fi
g
. 2 . 5c .

( j ) The entire surface (rungs , slats , seat , back , etc . ) of a chair .

2 . What surface is represented b
y
a rectangle with sides identified a
s

shown

in Fig . 2 . 6 ?

; UIC
C

.

- - - >

- - - > FIGURE 2 . 6

3 . Experiment with the cylindrical surface and Möbius strip shown in Fig . 2 . 7

b
y

twisting one end several times before attaching it to the other end ,and
then cutting the surface along the dotted curve C . What is the effect of the
extra twists ?

FIGURE 2 . 7

- - - >

-

- - - - -

0
4

( b )



70 Topological Equivalence in Three -Dimensional Space / 3-2

FIGURE 2.8

4. There is an old oriental game called Go-Moku or Five- in -a-row , which is
played by two players using a square board ruled with 13 or 25 lines each
way (Fig . 2.8). Each player has a supply of counters in his own color, and
the playersmove alternately by putting a counter at one of the intersections

on the board . The counters a
re

never moved after they are placed . The
first player to get five of his counters adjacent in a row (horizontal , vertical ,

o
r diagonal ) wins . Play this game on a torus ( Fi
g
. 2 . 6 ) or a Klein bottle

(Fig . 2 . 4a ) ruled with about eight lines in each direction . Because th
e

edges are identified , it will bemore convenient to put the counters in th
e

squares rather than o
n the intersections o
f

the lines .

5 . ( a ) Prove that on a Möbius strip it is possible to choose a direction o
f

rota

tion about somepoint P , and then move P around o
n the surface without

changing the direction o
f

rotation about the moving point , but still arrange
that when P has returned to its initial position the direction o

f rotation is

different from that originally chosen . A surface which has this property is

FIGURE 2 . 9 FIGURE 2 . 10



3- 2 / Topological Equivalence in Three -Dimensional Space 71

FIGURE 2.11

a
lir
i...

called non -orientable ; otherwise the surface is orientable . (Hint : Try moving

P along the dotted curve in Fig . 2 . 9 . )

( b ) Is a torus orientable o
r

non -orientable ?

( c ) Is a Klein bottle orientable o
r

non -orientable ?

6 . The surface shown in Fi
g
. 2 . 10 is a projective plane . It is topologically

equivalent to a surface studied in courses in projective geometry , although

in these courses it is usually approached from a somewhat different stand
point .

( a ) Prove that a projective plane can b
e

considered a
s
a disk and a Möbius

strip whose edges are joined . (Hint : Cut the projective plane of Fi
g
. 2 . 10

along the dotted line . )

( b ) Is th
e

projective plane orientable ?

( c ) Is the projective plane a manifold ?

| 7 . Prove that a manifold contained in ordinary three -dimensional space is

orientable if and only if it is two -sided . (Hint :Consider a fly walking o
n the

surface and themotion o
f
a right -hand screw from the fl
y ' s feet to his head . )

8 . Is the surface shown in Fi
g
. 2 . 11 amanifold ? Is it orientable o
r

non -orient
able ? What happens if the surface is cut along a curve which goes around

th
e

surface , staying just below the upper line in the drawing ? What hap
pens if the surface is cut along the dotted curve C ?

* 9 . Fi
g
. 2 . 12 shows a solid cube of edge 2 units in length with it
s

center a
t

the
origin . We identify pairs of points o

n the surface of this cube according to

the following rule : On the faces x = 1 and x = – 1 , identify points which

a
re symmetric with respect to the z -axis ; i . e . , identify ( 1 , y , z ) and

( - 1 , – y , ) . On the faces y = 1 and y = – 1 , identify points which
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FIGURE 2.12

are symmetric with respect to the x-axis ; i.e., identify (x, 1, 2) and (x, – 1,
– z ). On the faces z = 1 and 2 = – 1, identify points which are sym

metric with respect to the xy-plane ; i.e., identify (x, y, 1) and (x, y, - 1).
We now have a solid in which , for each point , al

l
o
f

the space near that
point is topologically equivalent to a ball . Such a solid is called a three
dimensional manifold . However , this three - dimensional manifold is

peculiarly twisted . Consider the three surfaces obtained a
s

the inter

sections o
f

this solid with the three coordinate planes .

( a ) Which o
f

these surfaces is orientable ?

( b ) Which o
f

these surfaces is one -sided in this solid ? (Hint : Imagine a

fl
y walking with his feet on the surface , and find out where it is possible fo
r

his head to g
o
. )

( c ) Similarly , discuss the surface composed of al
l

the points whose coordi

nates satisfy the equation

x
2
+ y
2

+ z2 = 1
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Maps on a Sphere

with Handles

4 - 1 Introduction

In Section 2-3 we defined a map as a network
together with a surface which contains the net
work , and we discussed some properties ofmaps
in a plane . In Chapter 3 we discussed more
general surfaces and stated that any closed two
sided surface is topologically equivalent to a
sphere with some number of handles . In this
chapter we shall discuss maps on these more
general surfaces . Since the four color problem
in the plane is still unsolved , it might be sus
pected that very little would be known about
coloring maps on these more general surfaces .
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Surprisingly enough , the map - coloring problem has proved to be easier
on these more general surfaces . The solution to the map -coloring prob

le
m

o
n

a torus is presented in Section 4 - 4 .

4 - 2 Simply Connected Sets

vicce

In any map o
n
a given surface , the faces o
f

the map are the separate

pieces into which the surface is divided b
y

th
e

arcs o
f

the network o
f

the
map . Thus any face of a map is a connected piece o

f
a surface . Such a

connected piece is called simply connected if
f every simple closed curve in

that piece can be deformed into a point in the piece ; that is , during the
deformation the curve must remain in the piece .

Figure 2 . 1a illustrates the fact that a disk is a simply connected set ;

any simple closed curve C , in the disk , can be deformed into a point in the

disk . On the other hand , an annulus , or ring -shaped region ( Fig . 2 . 1b ) , is

not simply connected , since the curve C cannot be deformed into a point

without leaving the region . A plane and a sphere are also examples of

simply connected sets ; a torus is not simply connected . Notice that th
e

deformation o
f
a curve into a point is not an elastic motion because dis

tinct points o
f

the curve aremade to coalesce into the same point .

O
f

course , even in a connected set which is not simply connected ,

there may be some simple closed curves which can be deformed into a

point in the set . If there were some way to change the set so that only

FIGURE 2 . 1
( a ) ( b )
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FIGURE 2. 2 FIGURE 2.3

those simple closed curves were still available , the se
t

could b
e changed

into a simply connected one . The usual way to make this change is to

remove certain arcs from the set . These arcs which are removed are
called cuts . Figure 2 . 2 shows a simply connected set obtained by making

one cut in the annulus o
f Fig . 2 . 1b . With the points o
f

this cut removed

from the annulus , any simple closed curve in the se
t

can b
e

deformed into

a point in the set .

There are connected sets (Fig . 2 . 3 ) in which two cuts are required to

make the set simply connected . It is easy to see how to obtain sets which
require three , four , or any larger integral number of cuts to make them
simply connected .

It is not really obvious that every connected se
t

can b
e changed into a

simply connected one b
y making certain cuts in the se
t
. The difficulty

is that a simply connected set must b
e connected , and it is conceivable

that the cuts needed to make the set simply connected might separate the
set into two or more pieces . We shall assume that any face of a map o

n
a

closed two -sided surface can bemade simply connected by cuts .

For the sets in Figs . 2 . 1 and 2 . 3 , it is easy to see that after the cuts
have been introduced to make the surface simply connected , any addi
tional cut will disconnect the surface ; that is , any additional cut will
separate the surface into two pieces . We shall assume the following
result : On a closed two - sided manifold , any cut in a simply connected set
separates the set into two simply connected pieces .
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FIGURE 2.4

PROBLEMS

1. Which of the following surfaces are simply connected ? Make cuts in each
one which is not simply connected so that it becomes simply connected , an

d

check that any additional cut would separate the surface into two simply

connected pieces .

( a ) A torus .

( b ) A sphere .

( c ) A sphere with two handles .

( d ) The portion o
f
a sphere shown in F
ig
. 2 . 4 .

( e ) Each face o
f

themap o
n
a sphere with three handles shown in Fig . 2 . 5 .

FIGURE 2 . 5
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4-3 Euler 's Theorem

In this section we shall prove Euler 's theorem ( Theorem 3 .3) fo
r

the

general case o
f
a sphere with p handles . It is convenient to consider first

the sphere itself ( i . e . , with n
o

handles ) , and to use Euler ' s theorem in the
plane ( Theorem 3 . 1 in Chapter 2 ) to obtain the result fo

r

the sphere .

There are several ways in which maps on a sphere can b
e

correlated with
maps in a plane . One o

f

the simplest such correlations is given by a

polar projection , which is shown in Fig . 3 . 1 . The plane is tangent to the
sphere a

t

the point S , and the point N is diametrically opposite to S ;

that is , N and S are the end points of a diameter of the sphere . For any
point P o

n

the sphere , and different from N , the line through N and P

intersects the plane in exactly one point Q . Conversely , for each point Q

in the plane , the line through N and Q intersects the sphere in exactly

one point P which is different from N . Thus we have a correspondence

between points o
n the sphere and points in the plane . The point S on the

sphere corresponds to the same point S in the plane . The point N on the
sphere does not correspond to any point in the plane , but N is the only
point o

n the sphere with n
o corresponding point in the plane . This

point - to -point correspondence is called the polar projection from N , and

th
e point N is called the pole o
f

the projection ,

Any map o
n

a sphere can b
e

transferred to a plane b
y

choosing any

point N o
f

the sphere ,which is not on the network o
f

themap , and using

FIGURE 3 . 1 Polar projection o
f
a sphere onto a

plane

N
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.

the polar projection from N . Conversely , any map in a plane can be
transferred to a sphere by a polar projection , and the pole of the pro
jection will not be on the network on the sphere. In fact , the pole will
always be in the face which corresponds to the “ outside ” face of the map

in the plane .

Theorem 3 . 1 (Euler ) If a connected map on a sphere has V vertices , E
edges , and F faces , then

V – E + F = 2.
PROOF . Any connected map on a sphere can be transformed , by a polar
projection , into a connected map in a plane and the two maps will have
the same numbers of vertices , edges , and faces. The result now follows
from Theorem 3. 1 in Chapter 2 « .

We have frequently made use of the fact that a circle , or any simple
closed curve in a plane , separates the plane into three pieces — the piece

inside the curve, the piece outside the curve , and the curve itself . Any
simple closed curve on a sphere also separates the sphere into three
pieces — two areas and the curve itself — but there is a difference in the
two cases . In the plane a simple closed curve can be deformed into a
point in the area inside the curve , but cannot be deformed into a point in
the area outside the curve . On the sphere , a simple closed curve can be
deformed into a point in each of the two areas of the remainder of the
sphere. These facts are illustrated in Fig. 3.2. Incidentally , this result
shows that a sphere and a plane are not topologically equivalent , since
we have found a topological property in which they differ — not a very

surprising result .

FIGURE 3.2

( a ) ( b )
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Another interesting result which can be obtained from these considera
tions is given in the following theorem .

Theorem 3. 2 Each face of amap on a sphere is simply connected if and
only if themap is connected .

PROOF . Given any map on a sphere in which the face f is not simply
connected , weprove that themap is not connected . In fact, there is a
simple closed curve C lying entirely inside f ( C contains no points of the

network ), and C cannot be deformed into a point in f. Now if C is
removed from the sphere , there remain two areas A1 and A2 of the sphere,
and since C can be deformed into a point in either one of these regions , it
follows that neither Aį nor A2 can be completely contained in f. Let us
denote by Ai either of the areas Ai or A2. We have shown that Ai
contains points of f and also points of some other face of the map ; hence
A ;must contain a portion of the network forming the boundary between
two faces . But if any point on a particular a

rc o
f

the network lies in A
i ,

the entire arcmust lie in A
i , because the boundary curve C of Ai contains

n
o points o
f

the network . Thus A
i

contains an entire arc o
f

the network

and must , therefore , contain a vertex of the network . Let a
i
b
e
a vertex

o
f

the network contained in A
i
( i = 1 , 2 ) . No path in the network has

both a
i

and a
z a
s

vertices , since such a path would have to cross C , and

this proves that the network is not connected .

The proof of the converse is left as an exercise (Problem 3 ) « .

Theorem 3 . 2 shows that for connected maps o
n
a sphere , the faces

are simply connected ; the same result is not true of connected maps in a

plane , nor is it true o
f

connected maps o
n

a sphere with p handles

( > 0 ) . However , Euler ' s theorem can b
e

extended to maps o
n

a

sphere with handles if the hypothesis that the map is connected is re

placed by the requirement that each face be simply connected .

Theorem 3 . 3 (Euler ) If amap o
n
a sphere with p handles has V vertices ,

E edges , and F faces ,and if each face is simply connected , then

V - E + F = 2 – 2p .

PROOF . Before beginning the proof wemake two preliminary comments .

First , notice that the equation w
e

are to prove expresses a topological

property o
f

the map . In proving this result we are free to change the
map b

y

any elastic motion , and , if we can demonstrate that the equation
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is correct for the changed map , itmust also be correct for the original
map . Someof the elasticmotions we shall use in the proof will leave th

e

entire surface in the same shape and position ,but will stretch o
r

shrink

certain faces o
f themap so that some individual points will bemoved to a

different place o
n the surface . We shall describe these elasticmotions as

" sliding the network around o
n the surface ” but , of course , in the actual

elasticmotion , the surfacemust slide along with the network .

Second ,notice that wemay alter themap (the network o
r

the surface )

in any way we wish so long aswe arrange that , for the new map (with V '

vertices , E edges , and F ' faces ) , the sum V ' – E ' + F ' has the same
value a

s
V – E + F ; in fact , we can even permit a
n alteration in th
e

map for which

V ' – E ' + F + V – E + F ,

provided thatwe keep track of the change in the value o
f

this expression

and allow for it in our final result .

We are now ready to give the proof o
f

Theorem 3 . 3 ; it is illustrated in

Fig . 3 . 3 for the case of a sphere with three handles . Only a portion of the

network is shown in the figure . We consider (Fig . 3 . 3a ) any map with
simply connected faces , on a sphere with p handles , and suppose that th

e

network has been slid around so that there is no vertex on any one o
f

the

circles in which the handles join the sphere , and so that none o
f

these

circles has a segment in common with any arc o
f

the network . Since each
face o

f

the map is simply connected , no single face can contain a circular
cross section o

f

one o
f

the handles . Thus , for each handle , there must be

a
t

least one path in the network which goes along that handle lengthwise .

( Figure 3 . 3a shows two such paths for the handle hi and one path for each

o
f

the handles h
2and h
z . )

• Wenow make three successive changes in themap , for each of which

V ' – E ' + F ' = V – E + F .

First , for each handle h
i , we choose one of the circles Ci in which that

handle joins the sphere , and we add new vertices to the network by plac

in
g
a vertex a
t

each intersection o
f the network with any o
f

the circles C
i

( i = 1 , 2 , . . . , p ) . Each of these added vertices divides a
n arc into two

smaller arcs , so if we le
t
n be the number of new vertices which are added

to th
e

network , then also the number of edges is increased b
y
n ; no change

ismade in the number of faces .
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( a )

02

h2

h)
( b )

FIGURE 3.3(a) & (b )
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FIGURE 3.3(c )
( c )

Second , we add new arcs to the network by placing an arc along each

one of the pieces into which any one of the circles Ci is divided by the new
vertices which were added in the first change above . On each of the
circles Ci, the number of arcs added in this second step is the same as the
number of vertices added in the first step ; thus, the total number of arcs

added is n . Each of these arcs is a cut in one of the simply connected
faces of themap , so each new arc divides a face into two smaller simply

connected faces , making a total increase of n in the number of faces ; no
change is made in the number of vertices .
Third , we cut the surface along each of the circles Ci and pull the cut

end of each handle slightly away from the sphere so that the handles
become tubes sticking out from the spherical surface (Fig . 3. 3b ) . At the
same time, we alter thenetwork by duplicating the vertices and arcs of Ci
on the cut end of the handle hi. This copy of Ci is denoted by Ci A
total of n vertices , n edges , and no faces have been added to themap in the
third step . The surface is now a sphere with p circular holes cut in it and
with p open -ended tubes sticking out of the surface . There are now
V + 2n vertices , E + 3n edges , and F + n faces in the map .
Finally , wemake a change in the map for which

V ' – E ' + F ' + V – E + F ;

we pull each of the tubes back onto the surface , obtaining a sphere with
2p circular holes cut out of it, and we fil
l
u
p

these holes b
y

adding to the
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map 2p faces in the form of open disks (Fig . 3. 3c ). We now have amap
on a sphere with V + 2n vertices, E + 3n edges , and F + n + 2p simply

connected faces . By Theorem 3.2, this finalmap on a sphere is connected ;

hence, by Theorem 3.1,

( V + 2n ) – ( E + 3n ) + ( F + n + 2p) = 2

or V - E + F = 2 – 2p « .

PROBLEMS

1. Consider the polar projection of the earth in which the pole N is the North
Pole.

(a) What are the images in the plane of the circles of latitude on the sphere ?
(b ) What are the images in the plane of the circles of longitude on the
sphere ?

(c ) What are the images in the plane of the circles on the sphere which are
neither circles of latitude nor circles of longitude ?
(d ) Characterize the curves on the sphere whose images in the plane are
straight lines .

2. Find a (non -connected )map on a sphere for which V – E + F + 2. What
values of V - E + F are possible for maps on a sphere ?

3. Prove that if each face of a map on a sphere is simply connected , then the
map is connected .

FIGURE 3.4
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4. (a ) Prove that no map in a plane has al
l
o
f

it
s

faces simply connected .

( b ) Show b
y

a
n example that , for any p > 0 , there is a connected map on a

sphere with p handles , in which one of the faces is not simply connected .

5 . Figure 3 . 4 shows a map o
n
a sphere with two handles .

( a ) What are the values of V , E , and F for this map ?

( b ) Is each o
f

the faces simply connected ?

( c ) Show that it is impossible to slide the network o
f

this map around so

that , for each o
f the two handles , one of the circles in which it joins th
e

sphere ismade u
p

o
f

arcs o
f

the network .

( d ) Referring to the proof o
f

Theorem 3 . 3 , show that for somemaps th
e

first two changes made in themap could b
e replaced b
y
a single sliding of th
e

map o
n the surface , but show that this cannot b
e

done fo
r

a
llmaps .

FIGURE 3 . 5
( a )

FIGURE 3 . 6
( a ) ( 6 )



FIGURE 3.7

6. In Section 3-2 we found that a torus ,which is topologically equivalent to a
sphere with one handle , can be represented by a rectangle with the edges
identified in a certain way . Show that either Fi

g
. 3 . 5a or Fig . 3 . 5b repre

sents a sphere with two handles . (Hint : Cut Fig . 3 . 4 along the arcs of the
network to obtain Fig . 3 . 5a ; simplify themap o

f Fig . 3 . 4 and cut again to

obtain Fig . 3 . 5b . ) In each of these figures , two sides labelled with the same
letter are to be identified , with the arrowheads matching in direction .

7 . Each of Fig . 3 . 6a and Fig . 3 . 6b represents amap o
n
a sphere with two handles

(only the dashed lines are edges o
f

themap ) . Sketch each of these maps in a

form similar to Fig . 3 . 4 .

8 . Each o
f Fig . 3 . 4 and Fi
g
. 3 . 7 shows a map o
n

a sphere with two handles .

Represent each of these maps in a form similar to Fig . 3 . 6 .

4 - 4 The Seven Color Theorem o
n

a Torus

In Section 2 - 3 we proved that any map in a plane could b
e

colored with

five colors , and wementioned that no planarmap had so far been discov

ered which actually required five colors . Thus , fo
r

maps in a plane , the
minimum number o

f

colors which would suffice for any map is not exactly

known . The discussion of polar projection in Section 4 - 3 showed that
maps could b

e transferred from a plane to a sphere , or from a sphere to a

plane . This means that the map -coloring problem o
n
a sphere must be in

exactly the same state o
f completion a
s the problem in the plane . Para

doxically , ifwe turn to amore complicated surface , such as the torus , the
problem is completely solved .
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Theorem 4 . 1 Any map on a torus can be colored with seven colors , an
d

there is a
t

least one map o
n
a torus which requires seven colors .

PROOF . The construction of an example to show that seven colors may

actually b
e required is left as an exercise (Problem 1 ) .

The general outline o
f

the proof that seven colors are sufñcient is quite

similar to that o
f

the five color theorem ( Theorem 3 . 5 in Chapter 2 a
n
d

the Lemmas which precede it ) , and w
e

shall omit some o
f

the details .

First , we may confine our attention to maps in which the faces a
re

simply connected , for , if we are given a map o
n

a torus in which some of

the faces are not simply connected , we may change themap b
y

introduc
ing cuts in such a way that al

l

o
f

the faces become simply connected . If

this changed map can b
e

colored with seven colors , a satisfactory color
ing o

f

the original map can b
e obtained b
y merely erasing the cuts .

Second , we may confine our attention to regular maps with simply

connected faces because any vertex which is not o
f

order 3 can b
e

e
x

panded into a small open disk (which is simply connected ) and , if this new
map can b

e

colored with seven colors , so ca
n

the originalmap .

Third , every regular map o
n

a torus , in which each face is simply

connected , has a
t

least one face with six or fewer edges . In fact , if th
e

map has V vertices , E edges , and F faces , with n
i
o
f

the faces having i

edges each , then

m + n
2

= n
3 t . . . = F .

Also , the total number o
f arc ends is given b
y

2
E

and b
y

3
V ; hence

2
E
= 3
V .

B
y

Theorem 3 . 3

V - E + F = 0 .

Since each arc o
f

the network is a
n edge o
f

a
t

most two faces

n
i
+ 2n2 + 3n3 t . . . < 2E .

Eliminating V , E , and F from these relations gives

5
m

+ 4n2 + 3nz + 2n4 + n
g
– N
o
– 2ng – . . . > 0 .

Thus a
t

least one o
f
n
i
to n
emust b
e positive .

Fourth , except in trivial cases , each face o
f
a map o
n
a torus has at

least one edge which separates that face from a different face .

Fifth , and finally , the proof can now b
e completed b
y

induction o
n

the number o
f

faces in the map . If there are seven or fewer faces , the
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result is obvious . Suppose that every regular map on a torus, with
k simply connected faces , ca

n

b
e colored with seven colors , and consider

any regular map o
n
a torus with k . + 1 simply connected faces . Choose

a face f of this map with si
x o
r

fewer edges , and choose a
n edge e off

which separates f from a different face . Remove the edge e , keeping the
map regular by the usual suppression o

f

vertices ; this change in the map

gives a regular map with k simply connected faces . B
y

the induction
hypothesis , this map can b

e

colored with seven colors ; when the edge e

is replaced to regain the originalmap , there is sure to b
e
a
t

least one color

available fo
r

the face f , because the faces which have an edge in common
with f account fo

r

a
tmost si
x

colors « .

PROBLEMS

1 . Give a
n example o
f
a map o
n
a torus with seven faces , each of which has an

edge in common with each o
f the other si
x . Prove that seven colors are

required to color this map . The torus may b
e represented b
y
a rectangle

with edges identified a
s
in F
ig . 2 . 6 in Chapter 3 .

2 . ( a ) Prove that , except in trivial cases , each face of a map o
n
a torus has a
t

least one edge which separates that face from a different face . What are the
trivial exceptions ?

( b ) Prove that when the edge e is removed from the map a
s described a
t

the

end o
f

the proof o
f

Theorem 4 . 1 , each of the k faces of the new map is simply
connected .

3 . Carry out the steps in the proof o
f

Theorem 4 . 1 for themaps on a torus shown

in Fig . 4 . 1 . The torus is represented a
s
a rectangle with edges identified ,

and the network of the map is shown in dashed lines .

- - - →

FIGURE 4 . 1

- - - >

( a ) b

- - > - - - >

( d )





FI V E

The

Jordan Curve Theorem

5 - 1 Introduction

The Jordan curve theorem is an important and
frequently used result in topology ; we have used
it several times in our previous work . It states ,
roughly , that there are an inside and an outside
of a simple closed curve in a plane . More
exactly , if a simple closed curve C lies in a plane,

and if the points of C a
re

removed from the
plane , the remainder of the plane is composed of

exactly two connected pieces and the curve C is

th
e

boundary o
f

each o
f

these pieces . Intui
tively , it is impossible to get from one o
f

these
pieces to the other in th

e

plane without crossing

the curve C .
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FIGURE 1.1

The result certainly seems evident for a circle in a plane , and it seems
equally plausible that any elastic motion will leave the portions of the
plane inside and outside of the curve still connected , and that these por
tions will still have the curve as their common boundary . However, let
us look at an example . Figure 1.1 shows a simple closed curve in a plane ;

is the point P inside or outside this curve? Of course, it would be possible
to draw a much more complicated simple closed curve than the one
shown in Fig . 1. 1. How can we be sure that we ca

n

always tell whether a

particular point ,not on such a curve , is inside the curve or outside the
curve ? Is there sometestwe could apply ? The proof o

f

the Jordan curve
theorem in it

s full generality is beyond the scope of this book ,but a proof

is given in the next section for the special case o
f
a polygon .

5 - 2 A Proof for the Case o
f
a Polygon

Before proving the Jordan curve theorem fo
r

the special case o
f
a polygon ,

we must be quite sure that we understand exactly what a polygon is .
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Le
t

a
i , da , . . . , an be a sequence o
f
n points in a plane . There may b
e

some repetition among th
e

points , but it is required that each pair of

points d
i , Qit1 which are adjacent in the sequence b
e

distinct , so that they

determine a unique line segment . The polygonal path with vertices di ,

Q
z ; . . . , an is the sequence of n - 1 line segments did2 , 2203 , . . . , An - lQn .

The path is said to join the points a ¡ and a
n . If the points a , and a
n

are

distinct , the polygon with vertices d
i , A2 , . . . , an is the sequence o
f
n line

segments 2102 , Q2 3 , . . . , An la
n , andi . These line segments are the sides

o
f

the polygon . A polygon is simple if
f
a
ll

o
f

it
s

vertices are distinct and

n
o two o
f

its sides intersect except (possibly ) a
t

their end points .

We can now state the special case o
f the Jordan curve theorem which

w
e

shall prove .

Theorem 2 . 1 ( Jordan ) If S is any simple polygon in a plane P , the
points o

f
P which are not on S can b
e divided into two sets A and B in such

a way that any two points in the same set can be joined b
y
a polygonal

path not intersecting S ,while n
o two points , one of which is in A and the

other in B , can be so joined .

PROOF . Choose a direction in the plane P which is not parallel to any

side o
f thepolygon S and , for each point x o
f

the plane , denote by H , the

half line in the chosen direction starting a
t
x . That is , H , is the collection

o
f a
ll points o
n

the line through x parallel to the chosen direction and
lying o

n the side o
f
x which is indicated b
y

that direction . This process is

illustrated in Fig . 2 . 1 . Now let A be the set o
f a
ll points x o
f

the plane ,

not on S , for which H , intersects S an even number of times . Similarly ,

le
t
B b
e

the set o
fall points , not on S ,whose half lines have a
n odd number

o
fpoints o
f

intersection with S . In counting the number of intersections

o
f
a half line with S , there is a special rule for counting intersections a
t

FIGURE 2 . 1

Chosen

directionNH
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vertices of S. If the polygon crosses the half line at the vertex , this
intersection is counted , but if the polygon does not cross the half line at
the vertex , the intersection is not counted . Thus, in Fig . 2. 1, H , has two
points of intersection with S, while H , has only one point of intersection .
Now , if a point x moves along a line segment which does not inter

sect S, the number of intersections of H , with S can change only when
H , moves past a vertex of S. But consideration of the two cases —

( 1) S crosses H , at the vertex and (2) S does not cross H , at the vertex –
shows that, although the actual number of intersections of H ,with S may
change, this number of intersections cannot change from even to odd nor
from odd to even . Thus al

l
points along any line segment (and hence

along any polygonal path ) not intersecting S are in the same one of the

sets A o
r
B . This proves that no point of A can be joined to a point of B

by a polygonal path .

We have left to show that if p and q are any two points , either both

in A o
r

both in B , then p and q can b
e joined b
y
a polygonal path n
o
t

intersecting S . Consider the line segment p
q

(Fig . 2 . 2 ) . If this line
segment does not intersect S , it is a satisfactory path . If it does inter
sect S , form a polygonal path a

s follows : Go along the line segment pa

until just before it
s

first intersection with S , then g
o along line segments

near to the sides of S (but do not cross S ) until you are near the last inter

section o
f pq with S . Proceed to q along a portion o
f

the segment p
a .

The proof that this polygonal path does not intersect S is left as an
exercise (Problem 2 ) « .

FIGURE 2 . 2
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PROBLEMS

1 . Which of th
e

figures drawn in F
ig . 2 . 3 represent polygonal paths ? Which

represent polygons ? Which represent simple polygons ? In each case , tell
which points are vertices ; is it possible to choose different vertices for the

same figure ?

FIGURE 2 . 3

n XA( c )
( f )

( 0 )

2 . ( a ) Prove that S does not intersect the polygonal path constructed a
t the

end o
f

the proof o
f

Theorem 2 . 1 . (Hint : B
y

the first part o
f

the proof , al
l

points along this path must lie in the same one of the sets A and B . )

( b ) For the sets A and B o
f

Theorem 2 . 1 , prove that there is a
t

least one
point in A and at least one point in B .

3 . Is the statement and proof of Theorem 2 . 1 topological ? Why or why not ?

Discuss .

4 . What difficulties would you encounter in attempting to extend the proof of

Theorem 2 . 1 to apply to a
n arbitrary simple closed curve ?

5 . ( a ) Define the inside and outside o
f
a simple polygon .

( b ) Is the inside of a simple polygon simply connected ? How about the
outside ?

6 . In the proof of Theorem 2 . 1 , the division o
f points between the sets A and B

was based o
n counting certain intersections . Think of another property

which might have been used to divide th
e

points o
f

th
e

plane not on S into
two sets with the desired properties .
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Sets

6 - 1 Introduction

In several places in our work so far we have had

occasion to consider collections of objects —
perhaps all the points on a certain surface , or all

the paths in a certain network . In the future ,

we shall be much more concerned with collec
tions , or sets, of objects . We shall need some
acquaintance with the notation and terminology

used in connection with sets , as well as an intui
tive concept of what constitutes a se
t
. In the
last part o
f

the nineteenth century , some very
serious questions arose in connection with the
foundations o

f

se
t

theory ; even today , not al
l

o
f
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these questions have been answered to everyone 's satisfaction . At least,
everyone is agreed that the formation of sets must be somehow restricted
or carried on by some sort of orderly process . Frequently ,membership in
a se

t

is taken as one o
f

the undefined concepts in a logical development of

set theory . Certain axioms are stated which se
t

membership is required

to satisfy and other concepts are defined in terms o
f

this one .

In this introductory text , wepropose to ignore the restrictions o
n

th
e

formation o
f

sets , except fo
r

brief references in some o
f

the problems , and
we shall develop our set theory intuitively rather than deductively . For
the interested student , references to more rigorous developments o

f

se
t

theory are given in the bibliography (for example ,Ref . ( 20 ) ] .

6 - 2 Relations Involving Sets

Everyone is familiar with sets o
r

collections . A library is a collection o
f

books ; a committee is a se
t

o
f people ; a year is a collection of days ; a

galaxy is a set o
f

solar systems . We shall use the terms set , collection ,

family , and aggregate as synonyms and shall think o
f
a set a
s being com

posed o
f

identifiable , distinguishable objects . That is , given any object

whatever wemust be able to identify o
r recognize this object , and from

this recognition itmust be possible to determine whether the object is an

element o
f

the set o
r
is not an element o
f

the set . Moreover , two objects
which appear a

s

different elements in a set must be distinguishable , one

from the other ; we do not allow identical objects to appear a
s

different

elements o
f
a set . More simply , no repetitions are allowed among th
e

elements o
f
a set .

As an example , let us consider the set of al
l

positive integers less than

o
r equal to 10 . In asserting that this is a set , we aremaintaining that :

( 1 ) Having given any object whatever , it can b
e determined whether

this object is , or is not , a positive integer less than o
r equal to 10 .

( 2 ) Having given a
n object a , which is a positive integer less than o
r

equal to 10 , and an object b , which is a positive integer less than

o
r equal to 10 , it is possible to determine whether a is different

from b , or whether the objects a and b are , in fact , identical .

At first glance , it may appear evident that the two determinations
called for in ( 1 ) and ( 2 ) above can always b

emade , but carelessness in the

making o
f

these decisions is a fertile source o
f

fruitless arguments . Let
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us look at another example : Suppose we are concerned with the set of al
l

round objects and someone suggests the earth a
s

a
n object fo
r

our con
sideration . Is the earth a

n element o
f

our se
t

o
r not ? It is commonly

said that the earth is round ,but everyone knows that there are mountains ,

hills , and valleys o
n the earth ; thus , the decision turns o
n the exactmean

ing to be attributed to the word “ round . ” Another example : Suppose
you lend a friend o

f yours a dime , which h
e promises to repay , and the

next day your friend gives you ten pennies . Did your friend repay the
debt ? Are the ten pennies your friend gave you the same object as the

dime you gave to him ? Again we see that , in order to understand a state
ment , it is necessary to have a clear understanding o

f

the meanings o
f

the

terms involved in the statement .

We shall generally use capital Roman letters to stand for sets , and

lower case Roman letters fo
r

the elements o
f
a se
t
. If the object a is an

element o
f

the se
t
A , w
e

write

a E A .

If th
e

object a is not an element o
f

the se
t

A , w
e

write

a & A .

There are two systems o
f

notation which are in general use fo
r

nam

in
g

sets . The first of these notations is most convenient in connection

with a set which has only a few elements . In that case , the elements may

b
e listed and enclosed between braces . For example , { 0 , 1 } is the se
t

which has exactly two elements — the numbers 0 and 1 . This listing of

a
ll the elements o
f
a setmakes it easy to decide , about any object ,whether

o
r not that object is an element of the set . It suffices to compare the

object with each o
f

th
e

set elements in the list . If the object is identical
with one o

f

the elements in the list , it is an element of the set ; otherwise ,

it is not . Of course , it still must be possible to determine whether o
r

n
o
t

two objects are identical . Consider th
e

object ſ . Is it an element of

th
e

set { 0 , 1 } ? We recognize that “ q ” and “ l ” are just different names

fo
r

the same object , so E { 0 , 1 } .

If a set has many elements , o
r
a
n infinite number , a complete listing

o
f the elements o
f

the set is impractical or impossible . In such cases , it

may b
e possible to list a few o
f

the elements o
f

the se
t

and expect the

reader to guess correctly what the other elements are , either from the
context , or from previous experience . For example , the set { 3 , 4 , 5 , . . . ,

4
9
8
} should b
e

understood to have exactly 496 elements . These elements
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are a
ll
o
f

the integers from 3 to 498 inclusive . Similarly , { 1 , 2 , 3 , . . . } is

the set o
f

a
ll positive integers .

The second notation which may be used to name a set consists o
f
a

description o
f

the set ; that is , a test is given which can b
e applied to any

object and such that , from the result o
f

the test , it can b
e

determined

whether or not the object is an element of the set . A skeleton form for
this notation is { x : . . . } . The three dots are to b

e replaced b
y
a state

ment of the test which any object x must pass in order to be an element

o
f

the se
t
. For instance , { x : 3 < x < 498 } (which may be read “ the se
t

o
f
a
ll objects x such that x is between 3 and 498 inclusive ” ) is composed

o
f
a
ll

the objects x (and no others ) for which the statement 3 < x < 498

is true . Thus , the essential feature of this second notation is that it tells

how to determine , about any object , whether or not that object is an

element o
f

the set . For this second notation , just as with the first nota
tion , the reader is sometimes required to supply , from context or other
wise , a part of the information which is not actually written down . For
example , in a discussion o

f

the integers , the set

{ x : 3 < x < 498 }

would b
e understood to have exactly the same elements as the se
t

{ 3 , 4 , 5 , . . . , 498 ) .

If the discussion was concerned with real numbers , these two sets would
not have the same elements ; e . g . ,

TE { x : 3 < x < 498 ) , but a & { 3 , 4 , 5 , . . . , 498 } .

A set which is named using the first notation discussed above is said

to b
e

listed ; if the second notation is used , the set is said to be described .

Another way o
f looking at a description o
f
a set is to notice that the

three dots in the skeleton { x : . . . } are replaced b
y

the statement that

x possesses a certain property . The set is composed o
f
a
ll objects which

actually d
o possess this property (and no others ) . The set

{ x : x is round )

is composed o
f a
ll objects which are round . Thus , any property , such

that each object either has this property or fails to have it , can b
e

used to

describe a set . Conversely , fo
r

any set there is a property which can be

used to describe it . Clearly , if we are given a particular set A , the prop

erty o
fbeing a
n element o
f
A is characteristic o
f

it
s

elements ; i . e . ,

A = { x : x E A } .

5 ' ,



5- 2 / Sets 99

This last equation raises the question of what we mean by saying that
two sets are equal . We have said that a se

t
is composed o
f

the objects

which are it
s

elements . Thus it is natural to agree that two sets are equal

if and only if they have the same elements .

Besides equality , there is another important relation between sets .

If every element o
f
a set A is also a
n element o
f

the set B ,we say that A is

a subset o
f
B , or A is included in B , and write A CB or , equivalently ,

B ) A . (We shall follow the convention of using “ is contained in ” in the

sense o
f
" is an element o
f
” and “ is included in ” in the sense o
f
“ is a

subset o
f . " ) As usual , the negation of A CB is written A ¢ B . Notice

that each set A is a subset of itself , for surely every element of the set A

is also a
n element o
f
A ! If A C B and A + B ,we say that A is a proper

subset o
f
B . If the sets A and B are given by descriptions , say

A = { x : S ( x ) }

and B = { x : T ( x ) } ,

it is easy to see that A = B if and only if , fo
r

a
ll
x , statement S ( x ) is

equivalent to statement T ( x ) ;moreover , A CB if and only if , for all x ,

statement S ( x ) implies statement T ( x ) . Thus a study of the relations of

equality and inclusion between sets is , at the same time , a study of equiva
lence and implication between sentential functions (functions whose

values are sentences ) .

There are several special sets in which w
e

shall be interested . It is

frequently convenient to consider a se
t

which contains a
ll

o
f

the objects

which it is necessary to consider in connection with a given problem .

Such a set will frequently , but not always , be denoted by X and will be

called the universal se
t ,although the article “ the ” is somewhat misleading .

If a universal set X has been chosen fo
r
a particular problem , any set

which includes X could b
e

used a
s

the universal set fo
r

that problem .

O
f

course , two different investigations may have completely different
universal sets . The selection of a universal set may b

e thought o
f
a
s
a

definition o
f

the term “ object ” ; it is understood that the definition is

applicable only in connection with a particular investigation . In most

cases , an acceptable universal setwill be clear from the context , but where
confusion seems likely , the universal se

t

will be mentioned .

The second o
f

the interesting special sets is far removed from the

universal set . A
s

we have noticed , any property o
f objects , such that

each object either possesses this property o
r fails to possess it , gives rise

to a set — namely , the set of all objects with the given property . But
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consider the property of being different from itself ; no object possesses

this property , since each object is identical with itself. Thus the se
t

which is described by this property ; that is , the set { x : x + x } has no

elements . From our definition o
f equality o
f

sets , there is only one se
t

which has no elements . It is called the empty se
t
(null set , void set ) , and

we shall reserve the symbol Ø for this set . Notice that Ø is a subset of

every set A since each element o
f
Ø ( there are none ! ) is also a
n

element

o
f
A .

The sets which have exactly one element play a
n important role in

many problems . Such sets a
re called singletons ; the set { a } , whose only

element is the object a , is called singleton a . It is important to notice that

the object a and th
e

set singleton a ar
e

not identical . That is ,we conceive

o
f

the process o
f

se
t

formation a
smaking a new object , different from th
e

objects o
n which the process operates . This is evident for sets with more

than one element — n
o

one would confuse the se
t

{ a , b } with the single
object a — however , some confusion is possible between { a } and a .

That it is convenient , o
r

even necessary , to distinguish between the two

can b
e

seen b
y

considering the case in which the object under considera

tion is itself a set , say the set N of all positive integers . Then N has an

infinite number o
f

elements , whereas { N } has only one ; certainly , they
cannot b

e

the same .

The example just discussed shows that sets a
re themselves objects ,

and may appear a
s

elements o
f

other sets ; thus we will not always b
e

able

to use the convention that capital Roman letters represent sets and lower
case Roman letters represent elements o

f

sets . For example , wemay wish

to consider a set o
f people , perhaps the set

T = { x : x is a person more than 6 feet tall } .

Each o
f

the elements o
f
T is a human being and may , therefore , be con

sidered a
s
a collection o
f

molecules . Similarly , each of these molecules is a

set o
f

atoms . Thus we see that the elements of a set may themselves be

rather complicated sets . On the rare occasions when this phenomenon is

o
f

interest to u
s ,weshall try to use a
n appropriate notation , such a
s

a , b , x , etc . : Elements o
f

the simplest type considered .

A , B , S , X , etc . : Sets of elements such as a , b , x , etc .

A , B , S , et
c
. : Collections ofsets such as A , B , etc .

In connection with the set T of tall people described above , cmight be a

particular atom o
f

carbon which , together with certain other atoms , forms
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a se
t

which is a molecule M . A collection of such molecules could be a

particular basketball player B and a suitable aggregate o
f

basketball

players would form a squad S .

Example 2 . 1 Le
t

A = { 1 , 2 , 3 }

and B = { x : x is an integer and 1 < x < 1
0 ) .

Then A C B and A + B ;hence A is a proper subset of B . Also 2 E A ,2¢ B ,

{ 2 } & A , { 2 }CA . One description o
f
A is given b
y

A = { x : x €Band – 5 < x < 4 } .

Example 2 . 2 Let A = { 1 , 2 , 3 } and B = { x : x C A } . Then

A E B , but A ¢ B ;

1 € A , but 18 B ;

{ 1 } $ A , but { 1 } C A and { 1 } E B .

The se
t
B consists o
f eight elements ; a listing of B ca
n

b
e given a
s

B = { 0 , { 1 } , { 2 } , { 3 } , { 2 , 3 } , { 1 , 3 } , { 1 , 2 } , { 1 , 2 , 3 } } .

Example 2 . 3 The se
t
A = { 1 , 1 , 2 , 2 , 2 } has exactly two elements , 1 and 2 .

PROBLEMS

1 . Let A = { 1 , 2 , 5 , 9 } .

( a ) Find a
n object which is an element o
f
A .

( b ) Find a
n object which is not an element of A .

( c ) Find a
n object which is a subset o
f
A .

( d ) Find a
n object which is not a subset of A .

( e ) Is there a
n object which is both a
n element and a subset o
f
A ?

2 . Let A = { x : x is round } and B = { x : x is red } .

( a ) Explain how you could determine , b
y

examining a
n object , whether or

not it is an element o
f
A .

( b ) Find a
n object x such that x E A and x E B .

( c ) Find a
n object y such that y E A and y & B .

( d ) Find an object z such that z ¢ A and z & B .

( e ) Find a set C such thatCC A and C C B .
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3. Each of the following sets is named by being listed . Give a description of
each of these sets . Can you think of different descriptions for the same se

t
?

Which notation seems more natural and convenient ?

( a ) { 2 , 3 , 5 , 7 , 11 , 13 } .

( b ) { 2 , 3 , 5 , 7 , . . . } .

( c ) { 1 , 4 , 9 , 16 } .

( d ) { 1 , 4 , 9 , . . . , 625 } .

( e ) { a , b , c } .

( f ) { a , b , . . . , 2 } .

( g ) ( John Jones ,Mary Smith } .

( h ) {the gas station o
n the corner o
f

1
st and Main , the gas station o
n

th
e

corner o
f

2nd and Main } .

( i ) {Fig . 3 . 1 in Chapter 2 , Fi
g
. 7 . 9 in Chapter 2 , Fig . 4 . 2 in Chapter 5 ) .

( j ) {the fourth word o
n the third line o
f

page 1
7 o
f

this book , the third
word o

n the fourth line o
f page 2
7 o
f

this book } .

4 . Each of the following sets is named b
y
a description . Give a listing of each

o
f

these sets . Can you think o
f different listings for the same set ? Which

notation seems more natural and convenient ?

( a ) { x : x is an integer and x < 5 ) .

( b ) { x : x is an integer and x > 5 ) .

( c ) { x : x is an integer and 4 < x < 5 ) .

( d ) { x : x is an even integer } .

( e ) { x : x is an even integer and x is a prime } .

( f ) { x : x is a word which begins with zy } .

( g ) { x : x is a word which begins with s } .

( h ) { x : x is a word which ends with p
t
} .

( i ) { x : x is a word used in this book } .

( j ) { x : x is the publisher of this book } .

# 5 . Prove that A = B if and only if A C B and B C A . This result is th
e

basis fo
r

many proofs o
f equality between sets .

6 . Which of the following listings or descriptions names a se
t
? Justify your

answer b
y

discussing whether o
r not it can b
e

determined that an arbitrary

object is , or is not , an element of the set . Mention any additional assump

tions you are making from context , previous experience , or otherwise .

( a ) {house , dog } .

( b ) {you , I } .

( c ) { a , b , . . . , Y2 , } .

( d ) { a , b , . . . , 7 , 8 } .

( e ) { a , b , . . . } .

( f ) { x : x is big } .
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( g ) { x : x is a digit which appears in the decimal expansion of a } .

( h ) { x : x is a digit which appears between the 1 ,000 ,000th and the

2 ,000 ,000th decimal place in the decimal expansion o
f
a } .

( i ) { x : x is a digit which is repeated infinitely often in the decimal expan

sion o
f
7 } .

( j ) { x : x is zybnatious } .

7 . How many subsets are there of the set
A = { 1 , 2 , . . . , n } ?

How many o
f

these a
re proper subsets ?

8 . Which pairs of the following objects are connected b
y

one o
r

more o
f

the

relations = , E , C , or ?

R = { x : x is a real number } .

E = { x : x is an even integer } .

= { x : x is a rational number } .

= The number 2 .

= { x : x E E and x € R } .

S = { 2 } .

D = 7 – 5 .

S = { x : x C F } .

Q = { x : x is a quotient of two elements of E } .

N = { 1 , 2 , 3 , . . . , n } .

9 . Explain why Ø is a subset of every se
t
. Is Ø cØ ? Is Ø E Ø ?

1
0 . Suppose that you were engaged in a project to prove the Pythagorean

theorem . What would you choose for a universal set ?

1
1 . As we have seen , the elements o
f
a setmay b
e any objects whatever ; in

particular , these elements may themselves b
e

sets . Thus it is conceivable
that a setmight contain itself as a member . Let us call a se

t
“ extraordi

nary ” if it does contain itself as a member , and “ ordinary ” if it does not
contain itself as a member . Set

R
e
tu
o
v
o

S = { x : x is an ordinary se
t
} .

Prove that S is neither ordinary nor extraordinary . This is one form o
f

the

Russell Paradox , first given b
y

the British mathematician Bertrand A . W .

Russell ( 1872 - ) in 1908 . It shows that , if sets are to behave in the way

in which our intuition would like ,wemust place some restriction o
r regula

tion o
n the formation o
f

sets so that they d
o not become “ too big . ” The

appropriate restrictions o
n set formation are not discussed in this intro

ductory text .
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6 - 3 Operations Involving Sets

In the preceding section we have seen several relations which may hold
between two sets or between an object and a set. In this section we shall
consider ways in which sets may be used to manufacture other sets .
Usually , two sets will be combined to produce a third set ; such a pro

cedure , or rule of combination , is called a binary operation . Binary
operations are already familiar in other contexts — for example , either
addition ormultiplication of numbers is a procedure fo

r

combining two

numbers to produce a third number . In fact , two o
f

the set operations

we shall define will havemany properties in common with addition and
multiplication o

f numbers . We shall also be interested in a unary opera

tion b
y

which a single set can b
e

used to form another one .

Before we define these operations , it will be convenient to have avail
able a schematic representation for sets . One such representation is b

y

means o
f

Venn diagrams in which (Fig . 3 . 1 ) the universal set is repre

sented b
y

the set o
f points enclosed within a rectangle , and the elements

o
f
a particular set A are represented by the points enclosed b
y
a simple

closed curve inside the rectangle . In the diagram , the point a represents

a
n object which is a
n element o
f
A : a E A ; similarly , the object repre

sented b
y

the point b is not an element o
f
A :b¢ A .

The se
t

operations can now b
e

defined , and illustrated b
y

Venn

diagrams .

The union o
f

two sets A and B , denoted b
y
A U B , is the set (shaded

in Fig . 3 . 2 ) defined b
y

A U B = { x : * E A o
r
x E B } .

Notice that the word “ o
r
” is used in mathematics in the inclusive sense .

That is , “ statement S or statement T ” means that a
t

least one o
f

the

FIGURE 3 . 1 FIGURE 3 . 2

.

. b

Venn diagram o
f AUB
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Venn diagram of ANB
FIGURE 3.3

statements S and T is true. Thus the condition " x E A or x E B” means
that the object x is an element of at least one of the sets A and B , and it
may be an element of both of these sets . Of course , an object which is an
element both of A and of B will appear only once as an element of AUB,
since the same object cannot be repeated as two different elements of
a set.
The intersection of two sets A and B , denoted by An B , is the set
(shaded in Fi

g
. 3 . 3 ) defined b
y

An B = { x : * E A and XE B } .

The operation o
f

intersection can b
e

used to define a
n important relation

between sets . The sets A and B are said to be disjoint ( or either one of

th
e

sets is disjoint from the other ) if
f
A n B = Ø ; that is , iff no object is

a
n element o
f
A and also a
n element o
f
B . Two sets which are not dis

joint are said to meet . We have already seen several examples of disjoint

sets . The inside and outside of a simple closed curve in a plane are dis
joint . If the faces of a map are thought of as the pieces of the surface
obtained b

y

removing the network from the surface , that is , if the edges

o
f
a face are not included in that face , then any two different faces of a

map are disjoint .

In Section 8 - 3 we shall need somewhat more general operations o
f

union and intersection than those defined above . If A is any family of

sets , we define the union of the family A by

U { A : A E A } = { x : There is an AE A with x E A } .

Similarly , the intersection of a non -empty family A of sets is defined b
y

n { A : A E A } = { x : For every A E A , XE A } .

In case A = { A
1 , A2 , . . . , An } , we also write

VA ; a
n
d

ņ A
i
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in place of

U { A : A E A } and n {A : A E A }

respectively .
The difference obtained by subtracting the se

t
B from the set A ,

denoted b
y
A – B , is the set (shaded in Fig . 3 . 4 ) defined b
y

A - B = { x : x E A and x 0 B } .

Notice that the operation of subtraction can b
e performed with any two

sets . It is not required that B should b
e

somehow " smaller ” than A in

order to form th
e

set A – B .

The complement o
f
a set A , denoted b
y
A ' , is the set (shaded in Fig . 3 . 5 )

defined b
y

A ' = { x : x € A } .
Notice that , nomatter what se

t
A is chosen , the sets A and A ' are always

disjoint .

Example 3 . 1 Let the universal se
t

b
e

X = { 1 , 2 , . . . , 10 } , and se
t

A = { 2 , 5 , 7 , 8 } , B = { 1 , 5 , 8 , 10 } , C = { 3 , 6 , 9 } . Then it is easy to check

each o
f

the following statements .

AU B = { 1 , 2 , 5 , 7 , 8 , 10 } . (Notice that each of th
e

objects 5 and 8 ,which
are elements o

f
A and also o
f
B , appears only once a
s

a
n element of

A U B . )

AN B = { 5 , 8 } .

An C = 0 , so that A and C are disjoint .

A - B = { 2 , 7 } .

A – C = { 2 , 5 , 7 , 8 } = A .

A ' U B ' = { 1 , 2 , 3 , 4 , 6 , 7 , 9 , 10 } = ( A n B ) ' .

A ' N B ' = { 3 , 4 , 6 , 9 } = ( A U B ) ' .

C CA ' N B ' .

FIGURE 3 . 4 FIGURE 3 . 5

Venn diagram o
f
A - 8 Venn diagram o
f
A
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For any sets A and B , the difference A - B can be expressed in terms
of the other operations . It is easy to se

e

from Fig . 3 . 4 that A - B =

A n B ' . The most important properties of the operations of union , inter
section , and complement are given in Theorem 3 . 1 . Other properties , as

well as those of subtraction , are dealt with in the problems .

Theorem 3 . 1 The operations of union , intersection , and complement
satisfy the conditions listed below . Here X is the universal set , A , B ,

and C are any subsets o
f
X , and Ø is the empty set .

Commutative Laws :

AUB = BUA . A n B = B N A .

Associative Laws :

( A U B ) U C = A U (BUC ) . ( A n B ) C = A n (BOC ) .

Idempotent Laws :

A V A = A . An A = A .

Distributive Laws :
A n (BU C ) = ( A n B ) U ( A n C ) .

A U (BOC ) = ( AUB ) n ( A UC ) .

DeMorgan ' s Laws :

( A U B ) ' = A ' N B ' . ( A n B ) ' = A ' U B ' .

Laws of Complementation :

( A ' ) ' = A . An A ' = Ø . AU A ' = X .

Special Properties o
f
Ø and X :

AU 8 = A . AUX = x . 8 = x .

An Ø = Ø . An X = A . X ' = 0 .

REMARK . Because of the associative laws , we shall write expressions

such a
s

AUBUC with n
o parentheses , since the result of performing

th
e operations does not depend o
n the way in which the parentheses

are inserted .

PROOF . To illustrate the methods used , we shall prove the first of the

two distributive laws and the first of DeMorgan ' s laws ; the proofs of the
other parts o

f

the theorem are left as exercises (Problem 3 ) .
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Proof of A n (BU C) = ( A n B ) U ( A n C ). From Problem 5 of

Section 6 -2, this equation is equivalent to the two inclusions

An (BUC) C (An B ) U ( A n C )
and An (BUC) ) ( A n B ) U (An C ).
The first of these inclusions can be proved by noticing that if x is

any element ofAn (BU C ), then x E A and x E BUC. That is, x is
an element of A , and x is an element of at least one of the sets B and C.
But this means that x is an element of both A and B , or that x is an
element of both A and C ; hence ,

| $ € ( A OB) U ( A OC).
The second inclusion above can be proved by reversing the steps in

the proof of the first inclusion . If

| $ € (AO B) U (ACC),
then x E A N B or x E ANC. In either case , x E A and x is an element
of at least one of the sets B and C ; thus x E A and x E BUC. It
follows that

* € An(BCC).
Proof of ( A U B)' = A ' N B'. Again , we replace this equation by

two inclusions and shall prove that

( A U B )'CA' N B ' and (A U B )' ) A ' N B '.
If x E ( A U B )', then x € AUB. This means that x is not an

element of either one of the sets A and B ; hence x E A ' and x E ' B',
which gives x E A n B'. The other inclusion can be proved by revers
ing these steps « .

PROBLEMS

1. Define sets N , E, O , T , P as follows:
N = {1, 2, 3, . . .}. ( Take N as th

e

universal se
t
. )

E = { 2 , 4 , 6 , . . . } , 0 = { 1 , 3 , 5 , . . . } ,

T = { 3 , 6 , 9 , . . . } , P = { 2 , 3 , 5 , 7 , 11 , . . . } . ( P is the set of al
l

prime

numbers . ) Find a simple description ,and list some of the elements o
f

each

o
f

the following sets .

( a ) EU O . ( e ) In (EU P ) .

( b ) En 0 . ( * ) (TO E2O (TOP ) .

( c ) EUT ' . ( g ) (Pn o ' ) U ( P ' n o ) .

( d ) (EU T ) ' . ( h ) { [ (En O ' ) U ( E ' n O ) ] ' U P } ' .
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!. Give a representation , using Venn diagrams, of th
e

distributive law and
DeMorgan ' s law ( Theorem 3 . 1 ) which were proved in the text .

3 . ( a ) Prove the second distributive law and represent th
e

result b
y
a Venn

diagram .

( b ) Prove the parts o
f

Theorem 3 . 1 which have not already been proved ,

and draw Venn diagrams illustrating the statements .

1 . Prove that the following statements are al
l

equivalent .

( a ) A CB . ( d ) A – B = 0 .

( b ) An B = A . ( e ) A ' B ' .

( c ) AU B = B . ( f ) An B ' = 0 .

5 . Prove that each of the following conditions is necessary and sufficient for
the sets A and B to be disjoint .

( a ) A – B = A ( c ) A C B '

( b ) B – A = B ( d ) A ' U B ' = X

6 . Is it possible fo
r
a set to b
e disjoint from one o
f
it
s

subsets ? Can a set be
disjoint from itself ?

7 . Simplify each of the following .

1 ( a ) { [ (AUB ) n (AU A ' ) ] U B ' } ' .

( b ) { [ ( A ' N B ) ' U ( A ' N A ) ] n B } ' .

( c ) { [ ( A U B ' ) n A ' ] U B ' } .

( d ) { [ (AUB ) ' n A ] ' U B } ' .

8 . Prove that for any sets A , B , C , each of the following equations is correct .

Illustrate the results with Venn diagrams .

( a ) ( A – B ) – C = A – (BUC ) = ( A – B ) n ( A – C ) .

( b ) A – ( B – C ) = ( A – BU (AN BOC ) .

( c ) A – (BNC ) = ( A – BU ( A – C ) .

( d ) An ( B – C ) = (ANB ) – (ANC ) .

( e ) AU ( B – C ) = (AUB ) – [ (BOC ) – A ] .

( f ) ( A – B ) ' = A ' U B .

9 . For any sets A and B , define

A A B = ( A U B ) – (An B ) .

( a ) Prove that A A B = ( A – B ) U ( B – A ) .

( b ) Find a set Z such that , for each set A , A A2 = A ,and show that there

is only one se
t
Z satisfying these conditions . "

( c ) For each se
t
A , find a se
t
A * such that A A A * = Z , and prove that ,

fo
r

each A , the set A * is unique .

( d ) Prove that ( A A B A C = A A (BAC ) .

( e ) Prove that A and B are disjoint if and only if A A B = A U B .
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10. Compare the operations of union , intersection , and subtraction of sets with
the operations addition ,multiplication , and subtraction of numbers , re

s

spectively . In what ways are the two sets of operations similar ? In what
ways d

o they differ ?

1
1 . Let B be any given se
t

and define

A = { A : A CB } .

( a ) What is U { A : A E A } ?

( b ) What is n { A : A E A } ?

1
2 . ' In Section 6 - 2 w
e

noticed that a study o
f

the relations o
f

equality and

inclusion between sets could b
e

considered a
s
a study o
f

the relations of

equivalence and implication between sentential functions . What aspects

o
f

sentential functions correspond to the operations U , n , - , and ' for

sets ? (Hint : Suppose A = { x : S ( x ) } and B = { x : T ( x ) } and find d
e

scriptions o
f

the sets A U B , An B , etc . )

1
3 . Simplify each o
f the following .

( a ) [ A ' N (BU C ) ] ' .

( b ) [ ( A U BU C ' ] ' .

( c ) [ (AUB ) n (BUC ) n (AUC ) ] ' .

( d ) A – ( B – (CU D ) ] .

( e ) A – [ B – ( C – D ) ) .

( f ) A – [ B – (Cn D ) ] .

( g ) An [ (AUB ) – B ] .

( h ) ( A – B ) n [ (An B ) U ( A – C ) ] .

( i ) (An C ' ) U (AN BOC ) U (ANC ) .

( j ) (AN BNC ) U AU B 'UC ' .

( k ) [AU (AN BU (An Bn C ) ] [AU BUC ] .

( 1 ) [ ( PNOU ( P ' n O ' ) U (PNO ' ) ' n [ (PUO ' ) n (PUO ' ) ] ' .

( m ) ( (PMO ) U (AN BOC ) ] n [ (PAQU A ' U B ’ U C ' ] .



SE V EN

Transformations

7 - 1 Introduction

In Chapter 1 we used the concept of an elastic

motion to give a tentative definition of topology ;

in Chapter 3we remarked that a real understand
ing of the concept of an elastic motion would
require some knowledge of se

t

theory , which we
have gained in Chapter 6 . In this chapter we
shall be able to explain more clearly just what
we have had in mind in connection with this

concept . Unfortunately , the term “ elastic mo
tion ” carries with it some undesirable intuitive

connotations . Chief among these undesirable
connotations is the idea that “motion ” from one
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place to another necessarily entails some sort of path , or route , along

which this motion takes place . In Section 7- 2we define a transformation
— the thing we have really meant a

ll

the time b
y
“motion ” — and it will

b
e

evident that no path , or route , is needed fo
r
a transformation . The

discussion in Section 7 - 2 is applicable to arbitrary sets . In Section 7 - 3

we confine our attention to subsets o
f ordinary three -dimensional Euclid

ean space . For these sets , we shall define a homeomorphism , or topologi

cal transformation , and shall point out that this new concept is what we
have been attempting to suggest a

ll along by the intuitive idea o
f

a
n

elastic motion . Two indices of transformations are discussed in Section

7 - 4 and , in Section 7 - 5 , these indices are used to prove Brouwer ' s fixed
point theorem and the fundamental theorem o

f algebra .

7 - 2 Transformations Between Arbitrary Sets

Let X and Y be any sets ; b
y
a transformation from X into Y wemean a

correspondence which determines , for each element x E X , exactly one
element y EY . That is , there must be a rule , or procedure , such that
whenever a particular element X

o
E X is chosen , the rule determines

exactly one element y
o

E Y . We say that the element yo determined in

this way corresponds to X
o under the transformation ( or that y
o

is the

image o
f
x
o , or that xo is sent into yo , etc . ) .

It is important to notice certain things which are not required in the

definition o
f
a transformation . For instance , if xı and x2 are two different

elements o
f
X , their corresponding elements y
ı

and y
z

in Y may b
e differ

ent , or they may b
e

the same element ; the definition makes no require

ment on this point . Also , fo
r

certain o
f

the elements y E Y , theremay be

no elements in X to which they correspond . All that is required is that ,

for each x E X , there is exactly one corresponding yEY . We use a

notation such a
s
f , or f : X → Y (other letters may be used instead o
f
f ) ,

for a transformation from X into Y and , for each x E X , we denote b
y

f ( x ) the element o
f
Y which is the image of x under the transformation .

Ifevery element y E Y is the image of at least one element x E X , we say
that the transformation is from X onto Y .

One way o
f defining a transformation is to give a rule which can b
e

used to determine the image o
f
a
n arbitrary element x E X ; that is , to

give a procedure fo
r

determining a
n element f ( x ) E Y for each element

X E X . This method is used to define the transformations in the follow
ing examples . These examples are continued later in this section .
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Example 2. 1 Each of the sets X and Y is the se
t

o
f

a
ll

realnumbers ; f ( x ) = 2x .

The transformation f :X→ Y is onto Y .

Example 2 . 2 Each of X and Y is th
e

se
t

o
f
a
ll

real numbers ; g ( x ) = x2 . The
transformation g : X → Y is into Y , but not onto Y .

Example 2 . 3 X is the se
t

o
f a
ll

real numbers ; Y = { 0 , 1 } .

if x is rational .

h ( x ) =

T
o ,

3 .
1
1 . if x is irrational .

The transformation h :X→ Y is onto Y .

Example 2 . 4 X is an arbitrary set and Y = x ; i ( x ) = x . The transformation

i : X → X is called the identity transformation o
n

X ; it is onto X .

| It is evident from the definition o
f
a transformation , and from the

examples given above , that there is n
o physical motion , or movement ,

occasioned b
y
a transformation . The element x E X does not “move ” to

the element f ( x ) E Y ; x is merely made to correspond to f ( x ) . The

elements x and f ( x ) can b
e thought o
f
a
s being associated in some way ,

with the particular association being described b
y

the transformation f ;
however , this association cannot usually be pictured a

s
a physicalmotion .

| The correspondence given b
y

the transformation f : X + Y is from

a
n element x E X to an element y = f ( x ) E Y . It is frequently conveni

ent to consider the correspondence obtained b
y

reversing the given one .

For each element y E Y w
e

define the inverse image o
f
y under f , denoted

b
y
f - 1 ( y ) , to be the set of all elements o
f
X which correspond to y . That is ,

f - ( y ) = { x : X E X and f ( x ) = y } .

For any subset B CY , the inverse image of B under f , denoted by f - 1 ( B ) ,

is the se
t

o
fall elements x + X whose images are in B ; that is ,

f - 1 ( B ) = { x : X E X and f ( x ) E B } .

Similarly , fo
r

any set A CX , we define

f ( A ) = { y : y corresponds to some element x E A } .

It may happen that , for certain elements y EY , 5 - ( y ) is the empty
set , or f - 1 ( y )may b

e
a set having a great many elements . If , fo
r

each

element y E Y , the se
t
f - ( y ) is a singleton (that is , if each y E Y corre

sponds to exactly one element x E X ) , we say that the transformation f

is one - to -one and we write f - ' ( y ) = x instead of f - ' ( y ) = { x } . In this
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case , the correspondence f -1 : Y → X is a transformation which is called
the inverse of the transformation f: X →Y . Notice that, fo

r

every trans

formation f : X - Y , we have defined a correspondence f - 1 from subset :

o
f
Y to subsets o
f
X , but in order that this correspondence be called the

inverse transformation o
f f , it is required that f be one - to -one .

There are several interesting and important results concerned with
one - to -one transformations . If there is a one - to -one transformation of X

onto Y , it is natural to say that the sets X and Y have the samenumber of

elements . However , if N = { 1 , 2 , 3 , . . . } is the set of al
l

positive integers

and E = { 2 , 4 , 6 , . . . } is the set of al
l

positive even integers , then the
transformation given b

y
f ( n ) = 2n fo
r

each n E N , is a one - to -one trans
formation o

f
N onto it
s proper subset E . It seems paradoxical that a

proper subset o
f
N could have the same number o
f

elements a
s
N , but , or

the other hand , if the se
t
N is in one - to -one correspondence with the set E ,

surely there cannot b
emore elements in one se
t

than in the other .

The concept o
f
" same number o
f

elements , ” based on the existence of a

one - to -one transformation , has been found to be a fruitful one . Formally

the definition states that two sets A and B have the same cardinal number

if and only if there is a one - to -one transformation from A onto B . With
this definition , the statement “ the whole is greater than any one of its

parts ” which is customarily given a
s one of the postulates , or “ common

notions ” of Euclid , is actually not correct . Some further results a
re

suggested in the problems .

Y is th
e

Example 2 . 1 (continued ) The inverse of the transformation f : X

transformation f - : Y → X given b
y
f - ' ( y ) = y .

Example 2 . 2 ( continued ) The transformation g : X → Y does not have a
n in

verse transformation , since 8 ' ( - 2 ) = Ø ; also g ( 1 ) = { 1 , - 1 } , which is

not a singleton .

Example 2 . 3 ( continued ) The transformation h : X → Y does not have a
n

in

verse transformation , since h - : ( 0 ) is a se
t

with a
n infinite number of elements .

Example 2 . 4 ( continued ) The transformation i : X → X is its own inverse .

PROBLEMS

1 . Discuss each of the following . In which cases is f : X + Y a transforma
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tion ? In which cases is f onto Y ? In which is it one- to -one? Which

transformations have an inverse ?
(a ) Each of X and Y is the set of a

ll

real numbers .

( 1 / x , if x < 0 .

f ( x ) = { 2 , if x = 0 .

if x > 0 .

ng in th
e

United States

. Vi

( c ) Lechelements

a
re th
e
5
0 states a

( b ) X is the collection o
f

a
ll people residing in the United States ; Y is the

set whose elements are the 50 states ; f ( x ) is the state in which x resides .

( c ) Let f ( x ) be the area of x . (What sets are you using for X and Y ? )

( d ) Each o
f
X and Y is the set of al
l

real numbers .

( 0 , if x is irrational .

f ( x ) = { 1 / 9 , if x is rational and equals p / 9 ,

where p and q are integers .

( e ) Define f ( x ) to be a grandchild o
f
x . (What ar
e

the sets X and Y ? )

( f ) X is the set of chairs in a particular classroom in which a class ismeet
ing ; Y is the set of al

l

students registered for that class ; f ( x ) is the student
sitting in x . (Are some other setsmore suitable than X and Y for discuss
ing this situation ? What if some student is absent , or reciting a

t

the
board ? What if some visitors are seated in the classroom ? )

2 . Set A = { x : - 1 < x < 1 } and B = { 0 , 1 } . With the functions f , g ,
and h o

f Examples 2 . 1 to 2 . 3 , find

( a ) f ( A ) ( e ) 8 ( B ) ( i ) f - 1 ( B )

( b ) 8 ( A ) ( f ) h ( B ) ( j ) 8 - ' ( B )

( c ) h ( A ) ( g ) f - 1 ( A ) ( k ) h - 1 ( B )

( d ) f ( B ) ( h ) 8 ( A )

3 . Let f : X + Y be a transformation , and let A and B be any subsets of X .

( a ) Show that f (AUB ) = f ( A )Uf ( B ) .

( b ) Show that f (ANB )Cf ( A ) n f ( B ) , and give a
n example to show

that the inclusion sign cannot always be replaced b
y

a
n equality .

( c ) Show that f - ( ( A ) ) ) A , and give a
n example to show that th
e

in

clusion sign cannot always b
e replaced b
y

a
n equality .

4 . Let f : X → Y be a transformation and let A and B be any subsets of Y .

( a ) Show that f - 1 ( A U B ) = f - 1 ( A )Uf - 1 ( B ) .

( b ) Show that f - 1 (AN B ) = f - 1 ( A ) n f - 1 ( B ) .

( c ) Show that f - 1 ( A ' ) = [ f - 1 ( A ) ] ' .

( d ) Show that f - 1 ( A – B ) = f - ( A ) – 5 - 1 ( B ) .

( e ) Show that f ( - 1 ( A ) ) C A , and give a
n example to show that the

inclusion sign cannot always be replaced b
y

a
n equality .
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5 . (a ) If X = {1, 2, 3 } and Y = { 1, 2 },how many different transformations
f : X → Y are there ?
(b) If X = {1, 2, . . . , n } and Y = {1, 2, . . . ,m }, how many different
transformations f: X + Y are there ?

6. Let f : X → Y be the transformation of Example 2.1.
(a ) For what real numbers x is it true that f (x ) = x ?
(b ) For what sets A is it true that f ( A ) = A ?
(c ) Answer the questions in parts (a ) and (b ) if the transformation
8: X → Y of Example 2.2 is used instead of f.

7. (a ) Show that there is a one -to-one transformation from the se
N = {1, 2, 3, . . . } onto the set F of al

l positive rational numbers . ( A

positive rational number is the quotient of two positive integers . )

* ( b ) Show that there is no one - to -one transformation from the set N onto

th
e

se
t I = { x : 0 < x < 1 } . (Hint : Express each x E I as an infiniti

decimal and assume there is a one - to -one transformation f : N →1 . Form

a
n infinite decimal d such that , for each n E N , the nth decimal place of d

is different from the nth decimal place o
f
f ( n ) . Show that d E I , but

de f ( N ) ; this is a contradiction . )

8 . Let X , Y , and Z be any sets .

( a ) Show that X has the same cardinal number as X .

( b ) Show that if X and Y have the same cardinal number , then Y and X

have the same cardinal number .

( c ) Show that if X and Y have the same cardinal number , and Y and 2

have the same cardinal number , then X and Z have the same cardinal
number .

7 - 3 Transformations Between Subsets o
f

Three -Dimensional
Euclidean Space

A transformation f : X - Y becomes more interesting if there is some

“ structure ” in the sets X and Y ; that is , if there a
re some properties o
f

the elements , or of sets of elements , in which w
e

are interested . We ca
n

then inquire whether these properties are preserved b
y

the transformation

o
r by its inverse . With this idea in mind , we shall confine our discussion

in this section to transformations in which both o
f the sets X and Y are

subsets of three -dimensional Euclidean space . Because of its geometric
interpretation , we shall speak of " points ” instead o

f
" elements ” o
f
X

and Y . The “ structure ” with which we shall endow these sets stems from
the concept o

f

the distance between two points . For any points p and q
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of three -dimensional space, we shall denote the distance from p to q by

d(p, q) ; we recall that this distance satisfies the following conditions :

For any points p, 9, 1,
(1 ) d ( , 9) > 0 . ( Therefore , d (p , q) is a real number.)
(2 ) d (p , q ) = 0 iff p = q .

( 3 ) d ( 0 , 9 ) = dlg , p ) .

( 4 ) d ( p , q ) + d ( 9 , r ) > d ( , r ) .
The first condition states that for any two points ( or fo

r

the same
point taken twice ) , there is a distance from one point to the other , and this
distance is a non -negative real number . Condition 2 contains two bits o

f

information . It says that the distance from any point to itself is zero ,

and also that the distance from any point to a different point is never
zero . Condition 3 tells u

s

that the distance from one point to another is

always the same a
s

the distance from the second point back to the first .

Because o
f

this symmetry relation , we can speak of the distance between
two points , instead of the distance from one point to another . The fourth

condition is called the triangle inequality ; the points p , q , and r can be
thought o

f
a
s the vertices o
f
a triangle (the triangle may degenerate into a

line segment ) , and ,with this interpretation , the condition states that the

su
m

o
f

the lengths o
f any two sides o
f
a triangle is a
t

least a
s big a
s

the
length o

f

the third side .

Thus each of these four conditions states a very simple fact about
distances in three -dimensional Euclidean space . It would b

e possible to

mention many other properties o
f

distances , but these four conditions

will play a
n especially important role in the work o
f

the next chapter .

1 In Section 7 - 2 we saw several examples of transformations between

sets in which the elements were objects o
f

various types . T
o gain familiar

it
y

with the special case o
f

transformations between subsets o
f

three

dimensional space , several examples of transformations o
f

this type

are given below .

Example 3 . 1 Let each of the sets X and Y be the real numbers ; then X and Y

ca
n

b
e represented b
y

two lines ( o
r

b
y

the same line ) in three -dimensional
space . Thus any transformation f : X → Y , where X and Y are each the set of

real numbers , can b
e thought o
f
a
s
a transformation between subsets o
f

three
dimensional space . In the future , whenever it is convenient , we shall identify
the real numbers with any particular line in three - dimensional space ,and shall
call a line a

n

X -axis iff X is the set of real numbers and the line is identified
with X ; similarly , fo

r
a Y -axis .
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Example 3. 2 Let X and Y be the same plane in three -dimensional space . A
transformation f : X → Y is given by any physical motion of the plane (for
example , a translation or rotation ) which is such that each point of the plane
is carried by the motion into a point in that same plane . The rule of corre
spondence is that, for any point x E X , f (x ) is the point of the plane into which
the point x is carried by themotion . As special cases of such motions , wemay

consider the following .
(a ) Translation . Each point x E X ca

n

b
e assigned Cartesian coordinates

( x1 , x2 ) ; then f ( x ) is the point whose coordinates are ( x1 + h , x2 + k ) , where

h and k a
re two given constants .

( b ) Rotation . For each point x = ( x1 , x2 ) of the plane , the corresponding
point is

f ( x ) = ( x
i

cos 0 – x2 si
n
0 , xı sin 0 + x2 cos 6 )

where 0 is a given constant . Of course , the points in the plane could be
represented b

y

polar coordinates instead o
f rectangular coordinates . The

transformation is a correspondence between the points themselves , and this
correspondence can b

e

described in several different ways .

( c ) A stretching ( or shrinking ) of the plane . For any point x = ( x1 , x2 ) E X ,

set f ( x ) = (hxı , kx2 ) , where h and k are given constants . In this example ,

if h = k , the plane is stretched away from the origin if h > 1 , and is shrunk
toward the origin if h < 1 ; if h = k = 1 we obtain the identity transforma
tion o

n the plane . Notice that the identity transformation is an example

o
f

each o
f

the three types : translation , rotation , and stretching . If h + k ,

the physical movement is a little harder to picture , but consists o
f two

different stretchings ( or shrinkings ) which operate in different directions .

FIGURE 3 . 1
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FIGURE 3.2

Example 3. 3 Let X be a closed ball, and le
t
y b
e
a closed ball included in X

( F
ig . 3 . 1 ) ; for each x E X , define f ( x ) to be the point of Y which is closest to x .

Let a and b be two distinct points o
f
Y ; twomore transformations g : X + Y

and h : X → Y can b
e

defined a
s follows :

For each x E X , set g ( x ) = a .

For each x E X , set

h ( x ) = Ja , if x E Y .

if x € Y .

Example 3 . 4 X is the X -axis and V is the origin together with the graph of th
e

equation y = x si
n
( 1 / x ) ( in a plane , see Fig . 3 . 2 ) . For each point x E X , le
t

f ( x ) be the point ( x , y ) of Y whose first coordinate is the realnumber x . (Notice
that we have identified the real numbers with the X -axis . )

We are now ready to use the concept o
f

distance in three -dimensional
space to define continuity o

f

transformations . A transformation f : X → Y

is continuous a
t

th
e

point Xo E X if
f , given any real number e > 0 , there is

a real number 8 > 0 such that :

If x 6 X and d ( xo , x ) < 8 , then d ( f ( xo ) , f ( x ) ) < € .

A transformation f : X Y is continuous if
f it is continuous at each point

o
f
X .

Continuity , and some related concepts which w
e

shall meet later , are

o
f fundamental importance in a
ll o
f

mathematical analysis . It is , there
fore , extremely important not only that each mathematics student should
know the definition o

f
a continuous transformation , but that he should
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also have an understanding of what the definition says . Very roughly

(and inaccurately ), the transformation f: X → Y is continuous at th
e

point xo e X if
f ,whenever a point x 6 X is near to x
o , its image f ( x ) is

near to the image f ( xo ) of xo . The inaccuracy in this form o
f

the statement

arises from not knowing just what is meant b
y
" near . ” In fact , in the

statement o
f

the definition , it can b
e

seen that there are two different
standards o

f
“ nearness ” which are used . For any positive real number r ,

let u
s

call the two points p and q o
f

three -dimensional space r -near iff

d ( , 9 ) < r . It is evident , from the definition o
f continuity a
t
x
o , that we

are using d -nearness in the set X and e -nearness in the se
t
Y . With th
is

notation , the definition says that a positive value for e can b
e

chosen

arbitrarily and that , after this choice hasbeen made , itmust be possible to

find a 8 > 0 such that :

If x E X and x is o -near to xo , then f ( x ) is e -near to f ( xo ) .

Thus the standard o
f

nearness in Y is chosen first , and , for every such
choice , there must be a standard o

f

nearness in X so that these two

standards o
f

nearness are related a
s required b
y

the definition .

Notice that xo represents one and the same point throughout the d
is

cussion in the preceding paragraph . That is , al
l

o
f

this discussion is

concerned with a property having something to do with the particular
point x

o . The property , of course , is continuity o
f f at Xo . (From o
u
r

definition it is meaningless to discuss continuity o
f
f a
t points z 8 X . )

For the related property , continuity of the transformation f , it is required
that f should b

e

continuous a
t

each point Xo E X . That is , for each choice

o
f
a point Xo E X and a number e > 0 , there must be a 8 > 0 which satis

fies the appropriate condition . Notice that the value of dmay depend

o
n both X
o

and € ,since both of these are chosen before d is found .

Example 3 . 5 Let X = Y = { x : x > 0 } , and set f ( x ) = 1 / x . Then f : X Y

is a one - to -one transformation from X onto Y . We shall give two proofs that
the transformation f is continuous . The first proof is analytic in nature , and is

in the form in which such proofs a
re frequently presented ; the second proof is

more intuitive , and indicates how the first proof could b
e discovered .

FIRST PROOF . Given any point xo E X , and any e > 0 , choose

ô = E
x
ó .

1 + E
X
O
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Now suppose that x E X is 8-near to xo, i.e., that d( x0, x ) < 8; we must show
that f (x ) is e-near to f (xo) . We find

| 1 il
d (f(xo), f(x )) = _ d( o,3) , ô .+ – 20-

x x XXo

But, since

e
x
ê

- -

хох Xox

1 + EXO

and x is d -near to xo ,

v
o
r

2 to
le
o
– 0 ) = 50 ( 40 - 4 mi )

V
I

e
x
ő

)

exo

o
x

> x ( x - 5 ) = xo | xo -
1 + E
x
o

e
x
ã

1 + E
x
o

a
n
d

d ( f ( xo ) , f ( x ) ) <

| xo | đo -
1 + Exo /

exa

cổ ( 1 + Xo - er
o
)

SECOND PROOF . Figure 3 . 3 shows the sets X and Y represented a
s portions o
f

lines in three -dimensional space . Given any point xo E X , and any e > 0 , we
first locate the point f ( xo ) = 1 / xo E Y , and then locate the subset of Y com
posed o

f

a
ll

the points o
f
Y which are e -near to f ( xo ) . This subset is the heavy

= E .

n
a ra
n
g
e

o
ri
ce

ti
p

ca
n

p
re
v
ie
n
e

FIGURE 3 . 3

1 tee

fixo ) to

- - - -to - e
t
- - - + - --

i 8

X
o

1 + E X
o 1 - EXOfois )
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vertical segment S in Fig . 3. 3. Next we find the subset f - ( S), composed of
a
ll points o
f
X which correspond to points o
f
S . The se
t
4 - ( S ) is a segment

with x
o
to the left o
f
it
s

center . Now wemust find a positive number 8 such that

if x is d -near to Xo , then x Ef - ( S ) . Clearly , wemay take d as the distance from

x
o to the left (nearest ) end point o
f

the segment f - ' ( S ) . Thus we choose

| x
o e
x
ổ

$ = X
o

-

1 + E
x
o

1 + E
x
o

ate

There is another remark that should b
emade . Figure 3 . 3 is somewhatmis

leading in certain cases . If ex
o
> 1 , then the point shown a
s

the lower end o
f

the interval S is not in Y ( since its coordinate is not positive ) . In al
l

cases , the

se
t
S is chosen a
s

the subset o
f
Y composed o
f

the points o
f
Y which are s -near

to f ( xo ) . The upper end point of S , and not the lower one , was used to d
e

termine 8 ; thus the possibility that the lower end point indicated in Fig . 3 . 3

may actually b
e

incorrect has no effect on the choice o
f
d , and our result is cor

rect in all cases .

Example 3 . 6 Let each o
f
X and Y be the se
t

o
f a
ll

real numbers and define

f ( x ) = { 0 ;

So ,
1 ,

if x < 0 .

if x > 0 .

Then if xo is any point of X except 0 , it can b
e proved b
y

a
n argument similar

to the one in Example 3 . 5 above that f :X→ Y is continuous at xo . Let us

consider the special choices X
o
= 0 , € = 3 . Then n
o matter what positive value

is taken fo
r
8 , the point x
1
= td will be d -near to X . But the image o
f

this

point is f ( x1 ) = 1 , and this image is not } -near to f ( x ) = 0 . Thus f : X Y

is not continuous at the point 0 .

Example 3 . 7 Let each of X and Y be the set of points with positive integral

coordinates along a line ; that is ,

X = Y = { 1 , 2 , 3 , . . . } .

Define a transformation f : X → Y b
y

setting f ( x ) = 2x . Then f is a continu
ous transformation o

f
X into Y (but not onto Y ) . In fact , for any xo E X and

any e > 0 , wemay choose g = 3 , since , if x E X and x is 3 -near to xo , then

x = x
o

and it follows that f ( x ) = f ( xo ) , so f ( x ) is e -near to f ( xo ) nomatter what
positive value o

f
£ was chosen .

We are now in a position to sharpen our understanding o
f

the type of

problems which is considered in topology . A homeomorphism o
r topologi

cal transformation is a transformation which is continuous and which has a

continuous inverse transformation . The concept o
f
a homeomorphism is
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what we have tried to suggest in the past by the term “ elastic motion .”
Two subsets X and Y of three -dimensional space are homeomorphic or
topologically equivalent if

f

there is a homeomorphism f : X + Y . The trans
formations in Examples 3 . 2a , 3 . 2b , 3 . 2c ( if h = 0 and k + 0 ) , 3 . 4 , and 3 . 5

a
re homeomorphisms . Other examples and properties are presented in

the problems . Topology is the study o
f properties which are invariant

under homeomorphisms .

In some important special cases , there are ways o
f combining two

transformations to obtain a third one . That is , there are binary opera
tions on transformations . We shall confine our attention here to the case
where X = Y and each of these sets is the set o

f
a
ll

real numbers , and we
shall represent these sets b

y
a line , as usual . We define three binary

operations a
s

follows :

Iff : X → X and g : X → X are any two transformations ,

f + 8 : X → X is defined b
y

setting ( f + g ) ( x ) = f ( x ) + g ( x ) ;

f8 : X → X is defined b
y

setting ( fg ) ( x ) = f ( x ) g ( x ) ;

fog : X → X is defined b
y

setting (fog ) ( x ) = f ( g ( x ) ) .

These three operations are called addition , multiplication , and
composition , respectively . We shall also consider multiplication o

f

a
transformation b

y
a real number r . This operation is defined b
y

the
equation

( rf ) ( x ) = rf ( x ) .

A
s

a
n example , if f ( x ) = xạ , and g ( x ) = xe , then ( f + g ) ( x ) = x2 + x3 ,

( fg ) ( x ) = 36 , (fog ) ( x ) = x6 , ( 7f ) ( x ) = 7
x
2
.

Theorem 3 . 1 If X is the set of real numbers and each of f : X + X and

8 : X X is a continuous transformation , then each of the transformations

f + 8 , 58 , and fog is continuous ; also , for any real number r , the transfor
mation rf is continuous .

PROOF . We give the proof for the function f + g ; the other cases are left

a
s

exercises (Problem 2 ) . If xo . E X and € > 0 are given , choose di > 0

and 8
2

> 0 so that

If x is 81 -near to xo , then f ( x ) is ; -near to f ( xo ) ,

a
n
d

If x is dz -near to x
o , the
n

g ( x ) is 5 -near to g ( x ) . .
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The choices of 81 and d2 are possible because f and g are continuous . Now
choose d as the smaller of 81 and 82, and we find that if x is d-near to xo,

th
e
n
f ( x ) is - -near to f ( xo ) an
d

a
ls
o
g ( x ) is -near to g ( xo ) . This means th
a
t

he mea

\ f ( x ) – f ( xo ) ! < 3 a
n
d

1
8 ( * ) – 8 ( 2o ) ) < 3

But then

1
6
f
+ 8 ) ( x ) – ( f + g ) ( xo ) | = \ f ( x ) + g ( x ) – f ( xo ) – 8 ( x0 ) | |

= \ f ( x ) – f ( xo ) | + 18 ( x ) – g ( x ) / < .

so that ( f + g ) ( x ) is e -near to ( f + g ) ( xo ) and f + g is continuous a
t
X
o .

Since X
o was an arbitrary point , the function f + g is continuous « .

For any real polynomial doxn + aqxn - 1 + . . . + an , wemay define a

transformation f : X → X of the real numbers into themselves by setting

f ( x ) = Aoxin + Auxn - 1 t . . . + an .

It is an easy consequence o
f

Theorem 3 . 1 that this transformation is

continuous .

PROBLEMS

1 . Discuss each of th
e

following transformations with reference to the ques

tions : A
t

which points is the transformation continuous ? Is there a
n in

verse transformation ? A
t

which points is the inverse transformation
continuous ? Is the transformation a homeomorphism ?

( a ) The transformation g : X + Y defined in Example 3 . 3 .

( b ) The transformation h : X + Y defined in Example 3 . 3 . (Hint : Con
sider various cases according a

s

the points a and b are , or are not , on the
boundary sphere o

f

the ball Y . )

( c ) The transformation f : X → Y defined in Example 3 . 3 .

( d ) A translation o
f
a plane (Example 3 . 2a ) .

( e ) A rotation o
f
a plane (Example 3 . 2b ) .

( f ) A stretching o
f
a plane (Example 3 . 2c ) .

( g ) The transformation f : X → Y defined in Example 3 . 4 .

( h ) Each o
f

X and Y is the se
t

o
f real numbers ; the transformation

f : X → Y is defined b
y

if x < 0 .

f ( x ) = { 2 , if x = 0 .

if x > 0 .ša
n
a
s
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(i) Each of X and Y is the set of real numbers ; the transformation
f: X + Y is defined by

( 0, if x is irrational .
f (x ) = { 0, if x = 0.

if x is rational , = 0 , and equals p/ 9
when expressed in lowest terms

(9 > 0, p and q integers ).

(j) A closed disk is folded along a diameter . (What sets are you using
for X and Y ?)

(k ) A closed ball is projected onto a tangent plane. (What are X and Y ? )
(1) A sphere is projected onto a tangent plane .

2. (a ) Let X be any subset of three -dimensional space. Prove that the
identity transformation i: X → X , defined by i (x ) = x for each x E X ,
is a homeomorphism .
(b) Complete the proof of Theorem 3.1.
(c ) Prove the statement made just before this set of problems, that any
polynomial transformation is continuous.

(d) Let each of X and Y be the real numbers and le
t
f : X → Y b
e
a

transformation . The student is already familiar with such transforma
tions under the name “ function . ” Show that in this special case , our
definition o

f continuity is equivalent to the usual one found in calculus
texts . We shall use this result in some other special cases ( e . g . ,when X

is the unit interval I = { x : 0 < x < 1 } ) .

3 . If f : X → Y and g : Y → Z are homeomorphisms , prove that gof is a homeo
morphism from X onto 2 .

4 . For each point x in three -dimensional space , and fo
r

each positive real

number r , let us denote the open ball with center x and radius r b
y
B ( x ; r ) .

Prove that a transformation f : X → Y between subsets of three -dimen
sional space is continuous a

t

X
o
E X if and only if , for each e > 0 , there

is a 8 > 0 such that

X n B ( xo ; 8 )Cf - y n B ( f ( xo ) ; e ) ]

# 6 . Let each of X and Y b
e a
ll
o
f

three -dimensional space and use B ( x ; r ) as

defined in Problem 4 . Prove that f : X + Y is continuous if and only if ,

for each y E Y and each real number r > 0 ,

If x Ef - 1 ( B ( y ; r ) ) , then there is an open ball B ( x ; s )

such that B ( x ; 3 ) c f - 1 ( B ( y ; r ) ) .

This condition can b
e rephrased : The inverse image of each open ball in Y

contains some open ball about each o
f

it
s points .
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6. Let f : X → be a transformation between subsets of three -dimensional
space , and le

t
e > 0 b
e
a positive real number . Call a positive number o

" satisfactory a
t
x
o
” provided that

If x E X and x is o -near to xo ,

then f ( x ) is e -near to f ( xo ) .

( a ) Prove that f : X → l ' is continuous at xo iff , fo
r

each e > 0 , there is a

8 > 0 which is satisfactory a
t

X
o .

( b ) Prove that f : X → V is continuous if and only if , fo
r

each point xoand

each e > 0 , there is a 8 > 0 which is satisfactory a
t
x
o .

( c ) In Example 3 . 5 , show that , fo
r
ε = 1 , there is no value of 8 which is

satisfactory a
t
a
ll points x E X . A
t

which points is 8 = 1 satisfactory ?

7 . Do Problem 4 o
f

Section 1 - 2 .

8 . ( a ) Prove that the two subsets of three -dimensional space represented b
y

the lines and curves in F
ig
. 3 . 4 are homeomorphic . (No surfaces are in

volved — only lines and curves . )

( b ) In setting u
p
a homeomorphism between the two figures o
f Fig . 3 . 4 ,

which o
f

the points s , t , u , v , w , x , y , z in Fi
g
. 3 . 4b can correspond to each

o
f

the points a , b , c , d , e , f in Fig . 3 . 4a ? (Caution : There are many different
homeomorphisms between these two figures ; the problem is to find which

o
f

the points s , t , . . . , 2 correspond to the point a under at least one of

these homeomorphisms ; similarly fo
r
b , c , d , e , f . )

9 . Let X be the se
t

o
f
a
ll real numbers , and le
t
f : X → X , 8 : X → X , an
d

h : X → X be transformations (not necessarily continuous ) . Prove that

( 18 ) Oh = (foh ) (gOh ) .

1
0 . Let

X = { ( x1 , x2 ) : 0 < x < 1 and 0 < x
2
< 1 }

b
e

the unit square in a plane ,and le
t

Y = { y : 0 < y < 1 }

FIGURE 3 . 4
( a ) ( b )
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be a segment of length 1. Write each value of xı and x2 as a decimal and ,
if two different decimal forms are available for a particular value , choose
the form which has the digit 9 repeated . For example ,

} = 0. 5000 . . . = 0.49999 . . . ;

the form 0.49999 . . . is chosen as the one to express the value of 3. Define
f : X + Y as follows : For each point x = (x1, x2) E X , where

x1 = 0.$1$ 28
3
. . . , and X
2
= 0 .919293 . . . ,

set f ( x ) = 0 . 19
1

2
0
2

3
9
3
. . . . Is f : X → Y a transformation ? Is it con

tinuous ? Is it one - to -one ? Is it a homeomorphism ? Can you use ſ to

find a se
t

which has the same cardinal number as the unit square ?

7 - 4 The Index of a Transformation

Throughout this section X is a plane , and we consider transformations

f : X → X ( o
r perhaps f : X1 → X , where X1CX ) . A point which is it
s

own image under the transformation (that is , a point x E X for which

FIGURE 4 . 1

P
2 , - p
a

goi

"

( b )

( a )

f ( x ) = x ) , is called a fixed point of f . Every point of X is a fixed point of

th
e

identity transformation ,while a translation (not the identity ) has no

fixed points .

Let f :X X b
e
a continuous transformation and let C be an oriented

closed curve in X which contains no fixed points o
f f (Fig . 4 . 1a ) . That is ,

C is a curve which begins a
t

some point p
o , is traced out in a given sense ,

and ends a
t

the same point p
o . For each point p E C , se
t fp ) = Þ ' ;

then p
p

is a non -zero vector . Choose any convenient point o E X and
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draw a vector Op ''which is parallel, and equal in length , to pp .' (Fig . 4 .1
shows the construction fo

r

two points p
1

and p
z . ) Now imagine that the

point p moves along the curve in the given sense , eventually returning to

it
s original position . As p moves , the vector O
p
' 'may rotate about O in

either direction , but when p has completed one circuit around C and has
returned to its original position , the vector Op ' will also have returned to

it
s original position and will have made a
n integral number o
f complete

revolutions about the point O . Let us describe rotations in the counter
clockwise direction a

s positive , and clockwise rotations a
s negative ; then

there is a unique integer n (positive , negative , or zero ) which gives the

number o
f

rotations o
f Op ' about O as the point pmoves once around the

curve C . This integer n is called the index of f along C ( in the given sense ) .

Notice that the index o
f
f along C is not defined if C contains a fixed point

o
f f .

Example 4 . 1 Let C be a circle , oriented as in Fig . 4 . 2a , and le
t
f be the trans

formation given by a counterclockwise rotation of 90 deg about the center of C .

Several o
f

the vectors p
p ' are shown in Fig . 4 . 2a . Figure 4 . 2b shows the cor

responding vectors O
p ' ' . The index of f along C is + 1 .

We want to show that certain deformations o
f a
n

oriented closed

curve C d
o not affect the index o
f
a transformation along C ; a rigorous

proof o
f

this fact is beyond the scope o
f

this introductory text , but w
e

shall b
e

able tomake the result seem plausible .

FIGURE 4 . 2

- P
i

7
2

- P
a

P5

lo ) ( b )
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Ca +8 Alcal

ca

lit(Ca+8 )

FIGURE 4.3

Theorem 4. 1 If f : X X is a continuous transformation , and if the
oriented closed curve Co can be deformed into the oriented closed curve Ci
without passing over any fixed point of f, then the index of f along Co
equals the index of f along C1.

PROOF (of plausibility ) . As the curve Co is deformed into the curve Cı, it
changes successively through an infinite number of positions (curves ).
We think of al

l

these curves a
s being parametrized b
y
a real number a ,

0 < a < 1 , so that , fo
r

each a in this range , we have a curve C
a , and the

first and last o
f

these curves ( C
o

and C
ı
) ar
e

the curves o
f

the theorem .

We define a function n b
y

setting n ( a ) equal to the index o
f
f along C
a .

Then the function n is defined for all values of a between 0 and 1 inclusive ,

and the values o
f

this function are integers . Now if a is changed slightly ,

say to a + 8 , the curve C
a changes slightly to the curve Cato (Fig . 4 . 3 ;

only a portion o
f

each o
f the curves is shown ) . An arbitrary point p on

C
a

moves to a point q on Cato . But f : X → X is continuous , so the image

curve also changes only slightly . Thus , for each vector p
p ' , whose rota

tion gives the index of f along C , the vector qq ' is in almost the samedirec
tion , and the rotation o

f

this vector q
q ' gives the index of f along Cato .

Since a
t

each point the directions of p
p

and q
q ' are almost the same , the

total amount o
f

rotation o
f

these two vectors must b
e nearly the same .

But this total amount of rotation is a
n integral number o
f

revolutions .

Thus , since n can change only slightly , and is always a
n integer , it must

remain constant ; this is the desired conclusion « .



P2

P2 = f (P2 )

pi = f ( p )

FIGURE 4.4

It is evident from the proof of Theorem 4. 1 that f does not have to be
defined on the entire plane X . It is sufficient for f to be defined on the
portion of the plane which is used in deforming Co into C1. This case will
arise in the applications in Section 7-5.
We have been discussing the index of a transformation along an ori

ented closed curve C ; there is another related concept which we shall
describe . Let f : X → X be a continuous transformation ; let C be an

oriented closed curve in X (Fig . 4.4), and let a E X be a point which is
not contained in the image of C under f ; that is, a & f (C ) . For each point

PE C , determine the vector from a to the point p = f ( ) (Fig . 4.4 shows
the construction fo

r

two points ) . Now imagine that the point p moves
along the curve C in the given sense , eventually returning to it

s original

position . As p moves , the vector a
p 'may rotate about a in either direc

tion ,but when p has completed one circuit around C and has returned to

it
s original position the vector a
p ' will also have returned to it
s original

position and will have made an integral number of complete revolutions

about a . This number o
f

revolutions (positive if counter -clockwise ,

negative if clockwise ) is the index o
f f at the point a with respect to the

curve C ( in the given sense ) .

Theorem 4 . 2 Let f : X → X be a continuous transformation and let a be

a point o
f
X . If the oriented closed curve C
o

can b
e

deformed into the

oriented closed curve C
i

without passing over any point in f - 1 ( a ) , then the
index o

f
f at a with respect to Co equals the index o
f
f at a with respect

to Ci .

PROOF . Problem 5 « .

The two indices o
f

transformations which have been defined in this

section will be used in Section 7 - 5 to prove two important results .
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PROBLEMS

1. For each of the following transformations f: X → X , find the index of f
along the circle with center at the origin and radius 1. Orient the circle
in the counterclockwise direction .
(a ) A translation (Example 3.2a ) .
(b ) A rotation (Example 3. 2b ).
(c ) A stretching (Example 3.2c).
( d ) Let O be the origin , and define f (x ) = 0 for every x E X .
(e) Let a be the point (10, 15 ) (in rectangular coordinates ), and define
f (x ) = a for every x E X .
(f ) The two transformations which send the point with polar coordinates
( , 0) into the point with polar coordinates (kr , 20) ; k = 1, 2.
( g) The transformation which sends the point with polar coordinates

(r, s ) into the point with rectangular coordinates (r, s ). (Hint : Be careful !)

2. What are the fixed points of the transformations of Problem 1?

3. Let f :X→ X be a continuous transformation , and le
t
C b
e

a
n oriented

curve in X (not necessarily closed ) which contains no fixed points o
f f .

Define a
n

oriented closed curve C ' by tracing the curve C and then re
tracing C in the reverse direction . Prove that the index of falong C ' is zero .

# 4 . Let f : X + X be a continuous transformation and suppose f ( a ) + a ,where

a is some particular point of X . Show that if C is a circle in X with center

a and sufficiently small radius , then the index of f along C is zero .

5 . Prove Theorem 4 . 2 .

6 . ( a ) Find the index o
f
a rotation a
t

the origin with respect to the unit

circle ( center a
t

the origin , radius 1 , oriented counter - clockwise ) .

( b ) Find the index o
f
a rotation a
t

the point ( 10 , 15 ) (rectangular coordi
nates ) with respect to the unit circle .

( c ) Find the indices of the transformations o
f

Problem 1 ( f ) a
t

the origin

with respect to the unit circle .

( d ) Find the indices o
f

the transformations of Problem 1 ( f ) at the point

( 10 , 15 ) (rectangular coordinates ) with respect to the unit circle .

# ( e ) Let f : X → X be the transformation which sends the point with polar

coordinates ( 1 , 0 ) into the point with polar coordinates ( g
r , no ) . Find the

index o
f
f a
t

the origin with respect to the unit circle . (Ans . : n . ]

# 7 . Prove that the index of f at a with respect to the oriented closed curve C is

the same a
s the index o
f

the identity transformation a
t
a with respect to

the curve f ( C ) .
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8 . Criticize the proof of Theorem 4.1.Why is it only a “proof of plausibility ” ?
Where did we use the hypothesis that , in the deformation , the curve does

not pass over any fixed point of f?

7 - 5 Applications of Indices of Transformations

We have found (Section 7 -4 , Problem 2 ) that a continuous transformation
may , ormay not , have a fixed point. In this section we shall use the con
cept of the index of a transformation to prove a remarkable theorem due
to th

e

Dutch mathematician L . E . J . Brouwer ( 1881 - ) which says that
certain transformations must have a fixed point . We shall also give a

proof of the fundamental theorem o
f

algebra . The proofs of these two
theorems will be based o

n the two different indices o
f

transformations

which were defined in Section 7 - 4 .

Theorem 5 . 1 (Brouwer ' s fixed point theorem ) If X is a closed disk , then
every continuous transformation f : X → X has a fixed point .

PROOF . The proof is b
y

contradiction . Let Co be the circumference of X

and le
t

C
i

b
e
a circle concentric with C
o

and with radius r smaller than

the radius o
f
C
o . If f has no fixed points , then C
o

can b
e deformed into C
i

without passing over any fixed points o
f
f , and , b
y

Theorem 4 . 1 , the
indices o

f f along Co and C
į

must b
e the same . If r is sufficiently small ,

the index o
f
f along Ci is zero (Problem 4 , Section 7 - 4 ) . The proof will be

completed b
y

showing that the index of f along C
o is not zero . In fact , at

each point p E Co , the vector from p to p = f ( b ) must point into the disk

(Fig . 5 . 1 ) ; that is , the vector p
p stays always o
n the same side o
f

the

tangent line to C at p . Evidently ,when pmakes one circuit around C , the
tangent line to C makes exactly one revolution . Since the vector p

ř

stays always o
n the same side o
f

the tangent , it must also make one
revolution , and the index of f along Co is + 1 or – 1 « .

Let u
s

say that a subset X o
f

three -dimensional space has the fixed
point property if

f every continuous transformation o
f
X into itself has a

fixed point . Then Brouwer ' s fixed point theorem states that a closed
disk has the fixed point property . It is easy to see that a closed disk with

the center point removed does not have this property (try a rotation ) ;

also , a sphere fails to have the fixed point property . Other examples
appear in the problems .
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pc

FIGURE 5.1

The proof of Theorem 5. 1 was based on the concept of the index of a
transformation along a curve . The proof of the following theorem will

u
se the index o
f
a transformation a
t
a point with respect to a curve .

Theorem 5 . 2 (fundamental theorem o
f algebra ) Every polynomial equa

ti
o
n

with coefficients which a
re complex numbers , and of degree n > 0 ,

has a
t

least one rootamong the complex numbers .

PROOF . We think of any complex number u + iv as representing th
e

point

in a plane X whose rectangular coordinates are ( u , v ) , and we define the
absolute value o

f
a complex number in the usualway as

lu + iv
l
= V12 + 1
2 .

Then , if 21 and 2
2 are any two complex numbers , the distance from the

origin to 21 is 21 , and the distance from the point 21 to the point za is

1
2
2
– 2
1 .

Since we can divide through b
y

the coefficient o
f

the highest degree

term , wemay suppose that

f ( x ) = 2n + aizn - 1 + a2zn – 2 + . . . + an – 1 % + an

where a
i , 22 , . . . , an are complex numbers , and we must prove that the

equation f ( x ) = 0 has a
t

least one root .

The proof proceeds b
y

contradiction . Suppose that f ( x ) = 0 has

n
o

roots ; then a
n
# 0 , since otherwise zero would b
e
a root o
f f ( x ) = 0 .
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FIGURE 5.2

Now under the continuous transformation f : X + X , which sends the
point z into the point f(x ), the origin is sent into the point an. Because f
is continuous , al

l

the points sufficiently near to the origin are sent into
points which are near to an . Thus , the image of a small circle C

o

with

center a
t

the origin is a closed curve C lying near to an (Fig . 5 . 2 ) . It

follows that the index of f a
t

the origin with respect to C
o
is zero . But

C
o

can b
e enlarged to a
n arbitrarily large circle C
1 without passing over

any point o
f f - ( 0 ) ( f - 1 ( 0 ) is empty , since f ( x ) = 0 has no roots ) ; hence ,

by Theorem 4 . 2 , the index o
f
f at the origin with respect to Ci is zero .

Now consider the transformation g : X → X defined b
y
g ( x ) = z " . B
y

Problem 6 ( e ) , Section 7 - 4 , the index of g a
t

the origin with respect to th
e

unit circle is n . Since g - ' ( 0 ) = { 0 } , the unit circle can b
e enlarged to the

circle C
i

without passing over any point o
f
g 1 ( 0 ) ; hence , b
y
Theorem 4 . 2 ,

the index o
f
g a
t

the origin with respect to C
i
is n .

The proof b
y

contradiction will b
e

concluded b
y

showing that the

indices o
f f and g at the origin with respect to C
į

are the same . B
y

Prob
lem 7 , Section 7 - 4 , it suffices to show that the indices of the identity trans
formation i : X → X ( i ( z ) = 2 for every % E X ) at the origin with respect

to the two curves f ( C
i
) and g (C1 ) are the same . This result will follow

from Theorem 4 . 2 if we show that the curve f ( C ) can b
e deformed into

the curve g ( C ) without passing through the origin ( - 1 ( 0 ) = { 0 } ) . Such

a deformation is described in the next paragraph .

Choose the radius R of C , so that

R > 1 , and R > lai + a
2

+ . . . + lanl .

For any point z E C
1 , the distance from f ( x ) to g ( z ) is \ f ( z ) – g ( 2 ) | an
d

we find

\ f ( x ) – g ( z ) | = |ajzn – 1 + azzn – 2 + . . . + An - 1 % + an |

s | ai | Rn - 1 + | az | Rn - 2 + . . . + lan - 1 | R + | an |

s R
n
= 1 [ | a1 + | a2
1

+ . . . + lanl ] < R " = ( g ( x ) .

Thus , fo
r

any % E C
1 , the distance between f ( z ) and g ( z ) is less than the
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distance from g (x ) to the origin , so the origin cannot be on the line seg
ment from f (x) to g (x) . But this means that the curve f (C1) can be de

formed into the curve g(C1) by moving each point f(x ) E f (C1) along the
line segment joining f (x) to g (x) , and , during this deformation , the curve
willnever pass through theorigin « .

PROBLEMS

1. Prove that none of the following subsets of three -dimensional space has

th
e

fixed point property .

( a ) A torus .

( b ) A sphere .

( c ) A
n

open disk .

( d ) A closed disk with a single point of the open disk removed .

( e ) A closed disk with a single point of the circumference removed .

2 . ( a ) Examine several examples of continuous transformations of a closed
disk into itself and find a fixed point for each . Can there b

e

more than one

fixed point ? Can there b
e any number o
f

fixed points ?

( b ) Find a homeomorphism o
f
a sphere onto itself with n
o

fixed points ;

with exactly one fixed point ; with exactly two fixed points .

3 . Give a
n alternative proof of Brouwer ' s fixed point theorem based o
n the

following : Let f : X → X be a continuous transformation o
f
a closed disk

into itself which has n
o

fixed points . For each point x E X , draw the line
segment from f ( x ) to x and extend this segment until itmeets the circum
ference in the point x ' . Define a transformation g : X → X b

y

setting

8 ( x ) = x ' . Then g is a continuous transformation which transforms the
closed disk into it

s

circumference and leaves each point o
f

the circum

ference fixed . But it is intuitively evident that there is no such trans
formation a

s g .

* 4 . Prove that if f is a continuous transformation o
f
a sphere S into itself , then

either f has a fixed point or there is some point which f sends into it
s dia

metrically opposite point . (Hint : Suppose f has no fixed points , and sends

n
o point into it
s diametrically opposite point . Determine a unique direc

tion d a
t

each point PE S by taking the tangent to the shorter arc of the
great circle joining p to f ( p ) . Now consider any directed circle C on S

( F
ig
. 5 . 3 ) . A
t

each point pe C let o be the angle between the vector i

which is tangent to C a
t
p and the direction d determined a
s above . As p

moves once around C , the net change in the angle will be an integral
multiple of 360 deg . Call this integralmultiple the index of C . By a proof

similar to that o
f

Theorem 4 . 1 , prove that deforming a circular curve does
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not change it
s

index . A contradiction is reached b
y

starting with a very

small circle C
o

and subjecting it to two different deformations : ( 1 ) Slide
C
o

around to the diametrically opposite position C
i
o
n the sphere , keeping

the size o
f

C
o

constant ; ( 2 ) expand Co to a great circle and contract in th
e

other hemisphere to obtain the same final circle C , as in deformation ( 1 ) .

Prove that under a
t

least one of these deformations the index of the circle

must change . )

5 . Prove that if hair grew a
ll

over a billiard ball , it would b
e impossible to

comb it without a cowlick . (Hint : Use Problem 4 . )

6 . Prove that if f : S → S and g : S → S are two continuous transformations of a

sphere S into itself , then a
t

least one o
f the transformations f , g , and gof

has a fixed point . [Remember (gof ) ( x ) = g ( f ( x ) ) . ] (Hint : If not , then fo
r

each point p E S , the three points p , Þ ' = f ( P ) , and � ' ' = g ( P ' ) are dis

tinct . These three points determine a unique circle . Use this circle to

define a continuous transformation h : S → S with n
o fixed points and n
o

point sent into it
s diametrically opposite point . This contradicts th
e

result of Problem 4 . )

7 . As a special case of the result of Problem 6 ,prove that if f : S → S is a con
tinuous transformation o

f
a sphere into itself , then either f has a fixed point

o
r

there are two distinct points p and q o
f
S such that f ( P ) = q and f ( q ) = p .

8 . Draw figures illustrating the proof of Theorem 5 . 2 for the case where

f ( x ) = 22 + 2 % + 2 .

9 . In the proof of Theorem 5 . 2 it was stated that the transformations f and g
are continuous . Prove this fact . (Hint : Define addition and multiplication

o
f two points z1 and 22 in a plane , and generalize the proof of Theorem 3 . 1

to the case where X is a plane . )

FIGURE 5 . 3

p ' = f ( p )

9



EIGHT

Spaces

8 - 1 Introduction

In Chapter 7 we have seen how the concept of
the distance between two points in three -dimen

sional space can be used to define continuity of
transformations ; this concept , in turn , was used
to define topological equivalence of figures . But
we have also discussed some figures (for example,

the Klein bottle) which are not subsets of three
dimensional Euclidean space . The definitions
of continuity and topological equivalence ca
n

b
e

generalized so that they are applicable in these

situations . The generalization is made in this
chapter .
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In Section 8- 2 we show that the concept of the distance between two
points may be available even when the " points ” are elements of an
arbitrary se

t
(perhaps a se
t
o
f

functions ) . In this case ,we speak of the se
t

a
s
a metric space ; the definitions o
f continuity and topological equiva

lence can b
e carried over tometric spaces immediately from their state

ments in Chapter 7 .

In Section 8 - 3 we shall find that some o
f

the concepts which can b
e

defined in ametric space ( e . g . , open set , closed se
t
) may be available in

still more general situations . These concepts will be used to define con
tinuity and topological equivalence in these more general situations .

Three particularly important properties (connectedness , compactness ,

and completeness ) are discussed in Sections 8 - 4 , 8 - 5 , and 8 - 6 . The first
two are topological properties ; the last is not .

8 – 2 Metric Spaces

In Section 7 - 3 wementioned four basic properties of the distance function

in three -dimensional space . We shall see here that , if X is any set and

d is a function which has these properties , then many of the concepts of

interest in connection with three - dimensional space can be defined in

the se
t
X .

Let X be a set , and let d be a real -valued function defined for pairs of

points x E X , y E X . The function d is a metric in X if and only if the
following conditions are satisfied for all points x , y , and z o

f
x .

( 1 ) d ( x , y ) > 0 .

( 2 ) d ( x , y ) = 0 , iff x = y .

( 3 ) d ( x , y ) = d ( y , x ) .

( 4 ) d ( x , y ) + d ( y , x ) > d ( x , m ) .

The value o
f

the function d a
t

the points x , y [ i . e . , the real number

d ( x , y ) ] is called the distance from x to y . A metric space is a set X together
with a metric d in X .

Before w
e

discuss metric spaces , let us look at someexamples . Each

o
f Examples 2 . 1 through 2 . 6 is ametric space .

Example 2 . 1 X is any subset of three -dimensional Euclidean space ; d ( x , y ) is

the ordinary distance from * to y .
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Example 2.2 X is an arbitrary set ; the function d is defined by setting

d (x. v) = 0, if x = y.
if x + y.

Example 2. 3 X is th
e

set of a
ll

points in a plane ; fo
r

any points x = ( x1 , x2 ) E X

and y = ( y
ı , ya ) E X , set

d ( x , y ) = x
1
– y
ıl
+ 1
x
2
- y2
l
.

Example 2 . 4 X is the se
t

o
f
a
ll

continuous real -valued functions defined o
n the

unit interval

I = { t : 0 1 } ;

for any two functions x E X and y E X , se
t

d ( x , y ) = max ( x ( t ) — y ( t ) ) .tel

Example 2 . 5 X is the same as in Example 4 ;

d ( x , y ) = Sº | x ( t ) – y ( t ) \ dt .

Example 2 . 6 X is the se
t

o
f
a
ll

ordered n -tuples of real numbers . For any two
ordered n - tuples

x = ( x1 , x2 , . . . , xn ) E X and y = ( y
ı
, Y2 , . . . , yn ) E X ,

se
t

d ( x , y ) = max \ xi – yilosisn

Each o
f Examples 2 . 7 through 2 . 10 is not ametric space .

max

Example 2 . 7 X is the se
t

o
f a
ll

real numbers ;

d ( x , y ) = x2 - y2 .

Example 2 . 8 X is the se
t

o
f a
ll

real numbers ;

d ( x , y ) = ( 2x
2

- y
2
) .

Example 2 . 9 X is the set of al
l

real numbers ;

a w _ x – y , if x > y .

d ( x , y ) = { 1 , if x < y .
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Example 2. 10 X is the se
t

o
f all points along a certain river bank ( fixed relative

to the earth , not moving with the river ) . For any two points x E X and y E X ,

se
t
d ( x , y ) equal to the time required to row from x to y .

Any definitionswhich depend only o
n the concept o
f

distance can b
e

generalized immediately to apply to arbitrary metric spaces . For com
pleteness ,we state below the ones in which we shall be most interested .

Let X and Y bemetric spaces with metrics d and e respectively . The
points x

i
E X and X
2
E X are d -near iff d ( x1 , x2 ) < 8 . Similarly , y
i
E Y

is e -near to yz E Y if
f
e ( y
ı , yz ) < € . A transformation f : X → Y is continu

ous a
t
X
o
E X if
f

for every e > 0 there is a 8 > 0 such that , if x is d -near

to x
o , then f ( x ) is e -near to f ( x ) . The transformation f is continuous iff it

is continuous a
t every point o
f
X . A homeomorphism is a continuous

transformation which has a continuous inverse transformation . The
open ball with center xo e X and radius r > 0 is the se

t

B ( xo ; r ) = { x : X E X , and d ( xo , x ) < r } .

A
n

open ball is called a
n open sphere b
y

some authors , but we shall
reserve the term " sphere ” for the set

{ x : d ( x0 , x ) = r } .

The closed ball with center xo E X and radius r > 0 (denoted b
y
B - ( xo ; r ) )

is the set

B - ( xo ; r ) = { x : x E X and d ( x0 , x ) < r } .

Example 2 . 11 In the space X of Example 2 . 4 , le
t
X
o
E X b
e

the function which is
identically zero ; that is , xo ( t ) = 0 for al

l

values o
f
t E I . The open ball B ( xo ; 1 )

is composed o
f all functions x E X whose graphs lie in the rectangle shown in

Fi
g
. 2 . 1 .

FIGURE 2 . 1
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Example 2.12 In the space X of Example 2.5, le
t

x
o
E X b
e the function which is

identically zero ; that is , xo ( t ) = 0 for al
l
t E I . The open ball B ( xo ; 1 ) is the set

composed o
f
a
ll

the functions x 6 X such that the area bounded b
y

the curves

x = x ( 7 )

FIGURE 2 . 2

x = x ( t ) and the lines x = 0 , 1 = 0 , 1 = 1 is less than 1 . Figure 2 . 2 shows one
such area ; note that the area below the t -axis is not counted as being negative .

The reader should prove the following theorem a
s

a
n

exercise ; this

result will beused in proving later theorems .

Theorem 2 . 1 A transformation f : X Y is continuous if
f , for every

x
1
€ X and every open ball

B = B ( f ( x1 ) ; € )CY
with center f ( x1 ) , there is an open ball

B , = B ( x1 ; 8 )CX
with center x

í

such that B , CF - 1 ( B ) .

PROOF . Exercise « .

Theorem 2 . 2 Let X and Y bemetric spaces with metrics d and e respec
tively ; a necessary and sufficient condition that f : X → Y be continuous

is that if B , is an open ball in Y such that x E F - 1 ( Bı ) , then there is an

open ball B , C X such that x E B2Cf - ( B . ) .

PROOF . Sufficiency : Suppose that the condition o
f

the theorem is satis

fied and le
t

B
i
= B ( f ( x1 ) ; e ) be an open ball in Y with center f ( x
i
) . Then

X
1Ef - ( B . ) , so there is some open ball B , = B ( x2 ; r ) in X such that

X
1
E B
2Cf - 1 ( B ) . Set s = p – d ( X2 , X1 ) ; since X
1
E B
2 , 8 > 0 . Let

B * = B ( x
ı ; ) ; then B * is an open ball with center X
1 . If x E B * , then

d ( X2 , x ) < d ( X2 , X1 ) + d ( x1 , x ) < d ( x2 , xi ) + 8 = 1 ,

so x E B
2 . Thus B * CB , C f - ( B ) . Therefore , by Theorem 2 . 1 ,

lf is continuous .
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Necessity : If f is continuous , then the condition of Theorem 2. 1 is
satisfied . Suppose that Bi = B ( yı; r) is an open ball in Y and xEf- (B1).
Then f (x ) E B1, so that

e = q – ely1, f (x )) > 0.

Set B, = B (f(x ); e) ; it follows from the triangle inequality that B , C Bi.
But by Theorem 2.1 there is an open ball B , = B (x ; 8)CX,with center x ,
such that

B,Cf- (Bo)Cf- (B .).
Certainly x E B , « .

Two concepts which we have not previously discussed are defined

below ; these definitions are applicable in any metric space . We shall se
e

later that these conceptsmay bemeaningful in more general situations .

In fact , one of them will form the basis of our generalization from metric
spaces to topological spaces in Section 8 - 3 .

A subset U o
f
ametric space X is open iff , for each point x E U , there

is an open ball B such that x E B CU . A subset F C X is closed iff F '

is open .
If U is open and x E U , there is a ball B , such that x E BICU . But

then there is a ball B , with center x such that B , C B
1 . Thus , a se
t

U CX is open iff , for each x E U , there is a ball B ( x ; r ) CU . This form

o
f

the definition shows why the word “ open ” was chosen to describe this

concept ; it is in the sense of “wide open spaces . ” If U is open and

X EU , then U also contains any point that is sufficiently near to x . That

is , intuitively , x cannot be on the “ edge ” of U in the sense of having some
point very near to x be outside of U . The intuitive meaning of the word

" closed " is a little more difficult to describe . We shall see later that it can
be interpreted in the sense o

f
“ enclosed ” o
r
“ containing a fence around it . "

It is easy to see that there are sets which are neither open nor closed .

In the metric space composed o
f

the real numbers (Example 1 ) , let

A = { x : x is rational } and B = { x : x is irrational } . Then neither A nor

B is a
n open se
t
; but A and B are complements , so neither one is closed .

A more surprising result is that there are some sets which are both open

and closed . In fact , in Example 2 . 2 , it is easy to see that B ( x ; ) = { x } ;

that is , each open ball of radius 4 contains exactly one point . In this
metric space , every se

t

is open , and , consequently , every set is also
closed . This is an extreme example , but , in any metric space X , the
empty se

t
Ø and the whole space X are both open and closed .



3- 2 / Spaces 143

Theorem 2 . 3 The transformation f : X → Y from the metric space X
into the metric space Y is continuous if

f , for every open set V CY , the

se
t
f - ( V ) is open .

PROOF . Necessity : Let f be continuous , le
t
V b
e
a
n open subset o
f
Y , and

let x be a point o
f
f - 1 ( V ) ; to show that f - 1 ( V ) is open , we shall find a
n

open ball B such that x E B Cf - ( V ) . Since f ( x ) E V , there is an open
ball B , with f ( x ) E B ,CV . But then x Ef - ( B1 ) , and , by Theorem 2 . 2 ,

there is an open ball B C X such that

* E B CF - ( B ) C4 - 1 ( V ) .

Sufficiency : Let B , be an open ball in Y and let x be a point of f - 1 ( B ) .

Since B , is an open ball , it is open (Problem 9 ) ; hence , by the condition o
f

the theorem , f - 1 ( B ) is also open . Since x is a point of the open set

f ( B . ) , there is an open ball B , such that x E B , C f - ( B2 ) and , b
y

Theorem 2 . 2 , f is continuous « .

Theorems 2 . 2 and 2 . 3 give two characterizations o
f continuous trans

formations between metric spaces . The condition o
f

Theorem 2 . 2 is

usually more convenient to use ,but , in more general spaces , this condition
will becomemeaningless and the condition of Theorem 2 . 3 will be the
important one .

PROBLEMS

1 . ( a ) Prove that each of Examples 2 . 1 through 2 . 6 is a metric space .

( b ) Prove that each o
f Examples 2 . 7 through 2 . 10 is not a metric space .

2 . Which of the following examples are metric spaces ?

( a ) The set X is the se
t

o
f positive real numbers ; fo
r
x E X and y E X ,

set d ( x , y ) = ( x – yl .

( b ) The se
t

X is the se
t

o
f

real numbers ; fo
r
x 6 X and y E X , se
t

d ( x , y ) = ( x8 – y
r
) ? .

( c ) The se
t

X is a plane ; for x = ( x1 , x2 ) E X and y = ( yı , y2 ) E X , set

d ( x , y ) = max { \ x1 – yı
l , ( x2 - y2
l
} .

( d ) The set X is a plane ; fo
r
x = ( x1 , x2 ) E X and y = ( y1 , y2 ) E X , se
t

( [ ( x1 – y
ı
) 2 + ( x2 - y2 ) 2 ] 1 / 2 , if Xı + Yı

d ( x , y ) = 3 if x
1
= y
ı

and x
2
+ y
2

x
1
= y
i

and X
2
=
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3. Prove that a real-valued function d defined for pairs of points x E X,
y E X is ametric in X if and only if d satisfies the two conditions
(a ) d ( x, y ) = 0 if

f
x = y .

( b ) d ( x , y ) = d ( x , 2 ) + d ( y , z ) .

4 . Let i be the identity transformation from themetric space of Example 2 . 4

to the metric space o
f Example 2 . 5 . Prove that i is continuous . Is il

continuous ?

5 . ( a ) Let X be themetric space of Example 2 . 4 and define a transformation

f : X → X by setting f ( x ) = y where
y ( t ) = S * r ( t ) dt .

Is f continuous ?

( b ) D
o

the problem in part ( a ) if X is themetric space o
f Example 2 . 5 .

6 . Prove that a necessary and sufficient condition that f : X → Y be continuous

is that fo
r

every x
i
E X and fo
r

every open ball B
1
= B ( f ( x1 ) ; E )CI' ,

with center f ( xi ) , there is an open ball B , = B ( x1 ; 8 ) C X ,with center x1 ,

such that B ,C5 - ( B1 ) .

7 . Compare the statement of Theorem 2 . 2 with the statement of Problem 5

o
f

Section 7 - 3 . Why was it necessary for the statement in the problem to

b
e

more complicated than the statement in the theorem ?

8 . Prove that , in any metric space X , each o
f the sets Ø and X is both open

and closed .

9 . Show that an open ball is open ; show also that a closed ball is closed .

1
0 . ( a ) Show that the intersection o
f any two open sets is open .

( b ) Show that th
e

intersection o
f

any finite number o
f open sets is open .

( c ) Show that the union o
f

any family (not necessarily finite ) o
f

open sets

is open .

# 1
1 . ( a ) Show that the intersection o
f any family o
f

closed sets is closed .

( b ) Show that the union o
f any finite number o
f closed sets is closed .

1
2 . Prove that a transformation f : X → Y between two metric spaces is con

tinuous iff , for every closed subset F of Y , 5 - 1 ( F ) is a closed subset of X .

1
3 . Let X and Y be the metric spaces of Example 2 . 2 and Problem 2 ( a ) re

spectively . Which of the following transformations f : X → l ' are continu
ous ? Which have a continuous inverse ?

( a ) f ( x ) = x

( b ) f ( x ) = 2x

( c ) f ( x ) = x2



8– 2 / Spaces 145

14. Do Problem 13 fo
r

the transformations f : 1 → X .

1
5 . Let X and I be the metric spaces of Examples 2 . 4 and 2 . 5 respectively .

Which o
f

the following transformations f : X → l ' are continuous ? Which
have a continuous inverse ?

( a ) f ( x ( t ) ) = x ( t )

( b ) f ( x ( t ) ) = 2x ( t )

( c ) f ( x ( t ) ) = ( x ( t ) ] ?

( d ) f ( x ( t ) ) = x ( t2 )

1
6 . Do Problem 1
5 for the transformations f : l ' → X .

We shall discuss two more concepts , closure and convergence , in

metric spaces before we consider more general spaces in the next section .

For any subset A o
f
ametric space S , the closure o
f
A , denoted by A - ,

is the smallest closed se
t

having A as a subset . That is ,

( i ) A - is closed .

( ii ) A - ) A .

( iii ) If F is closed and F ) A , then F ) A - .

It is easy to se
e

that each set A CXhas a closure ; that is , there always
exists a smallest closed se

t

having A a
s
a subset . For , consider the

family F o
f

all closed sets which have A as a subset (the set X is certainly

amember of this family ) . By Problem 11a above , the intersection o
f

all

the sets in this family is , a closed set . This intersection will have A as a

subset and will certainly b
e the smallest closed setwhich has A as a subset .

Thus we see that the closure of A is the intersection of all the closed sets

which have A as a subset . That is ,

A - = n { F : F is closed and F ) A } .

Theorem 2 . 4 A point x E X is in the closure of a subset A C X if and
only if each open ball B ( x ; r ) has a

t

least one point in common with A ;

that is ,

A n B ( x ; r ) + 0 .

PROOF . Suppose x ¢ A - ; then x € ( A - ) . But ( A - ) ' is an open se
t
;

hence , there is an open ball B , such that x E B , C ( A - ) ' . Since x E B1 ,

there is a
n open ball B , with center at x , such that B C B
i , and we have

B CB , C ( A - ) 'CA ' .

Thus A n B = 0 .

Suppose there is a
n open ball B = B ( x ; r ) such that A n B = % .
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Then B’ is one of the closed sets having A as a subset , so A - CB'. Since
XE B , it follows that x ¢ A - « .

Theorem 2.4 shows that the closure of a set A consists of al
l

th
e

points which are very near to points o
f
A ; more exactly , X E A - iff , fo
r

every e > 0 , there is a point of A which is e -near to x .

We have seen that any subset A CX determines a subset A - called
the closure of A , This means that closure is a unary operation o

n

th
e

subsets o
f
X . The next theorem gives themost important properties of

this operation .

Theorem 2 . 5 For any subsets S and T of X ,

( a ) Ø - = 0 . ( c ) S - - = S - .

( b ) S - S . ( d ) S - U T - = (SUT ) - .

PROOF . ( a ) Since Ø is closed and is a subset of every se
t
, it is evidently

the smallest closed se
t

having Ø as a subset . That is , Ø - = 0 .

( b ) This is evident from the definition o
f

closure .

( c ) Since S - is itself closed , it is one of the closed sets having s - as a

subset . Evidently , it is the smallest closed se
t

having s - as a subset ;

i . e . , S - - = S - .

( d ) The se
t

( S U T ) - is one of the closed sets having S a
s
a subset ;

hence S - C (SU T ) - . Similarly , T - C (SUT ) - , and these two in
clusions simply that

S -UT - C (SUT ) - .

For the other inclusion , notice that S - is a closed set having S as a subset ,

and T - is a closed set having T a
s
a subset . Thus , S -UT - is a closed

set (Problem 1
1
b

above ) having S U T a
s
a subset . That is , S -UT - )

( SUT ) - « .

Example 2 . 13 Let X be themetric space of Example 2 . 4 , and le
t
S b
e

the se
t
o
f

a
ll

functions x E X such that the graph of x consists of a finite number of line
segments . Let x2 E X be the function defined b

y

x
2 ( t ) = { 2 for tEI . Then

X
2
E S - . This can be seen in Fig . 2 . 3 ,which shows the graph of the function X
2

and a strip o
f

vertical dimension 2
€ about this graph . Evidently , for any

X E S , d ( X2 , x ) < e iff the graph of x lies in this strip ; Fig . 2 . 3 shows that there

is a
t

least one x E S which satisfies this condition . Thus , for any e , the open

ball B ( x2 ; e ) has at least one element in common with S so that , b
y

Theorem

2 . 4 , x2ES
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XES

FIGURE 2. 3

Having gained some acquaintance with the concept of closure , we
urn now to convergence , which , as we shall see , is a closely related
oncept . We shall confine our attention to convergence of sequences .
A sequence in a se

t
X is a transformation from the se
t
N = { 1 , 2 , 3 , . . . }

nto X . The notation used for sequences is somewhat different from that

fo
r general transformations . Instead o
f denoting the transformation by

1 letter , such a
s f , and th
e

image o
f
a
n element n E N b
y
f ( n ) , w
e

shall

follow the usual custom and indicate the image of n E N b
y

using a sub
script notation , such as Xn , and shall denote the sequence (transformation )

b
y

( x1 , X2 , X3 , . . . ) or ,more briefly b
y
( xn ) . The value x
n o
f

the function is

called the nth term o
f

the sequence . Of course , it may happen that

ti = x ; for certain distinct values of i and j . For example , ( 2 ,pp , . . )

is a sequence in th
e

se
t
{ P } ; here

X
i
= P fo
r i = 1 , 2 , . . . .

We shall be interested in sequences in ametric space X .

Suppose A CX and ( xn ) is a sequence in X . The sequence ( xn ) is

eventually in A if
f

there is a
n

n
o
E N such that , for n > no , Xn E A ; that is ,

there is some term in the sequence (the noth ) such that all of the later
terms o

f

the sequence lie in A . The sequence ( xn ) is frequently in A iff ,

fo
r every n
o
E N , there is an n > no such that Xn E A . This condition is

equivalent to the requirement that an infinite number o
f

terms o
f

the
sequence are elements o

f
A .

A sequence ( xn ) in a metric space X converges to a point x E X if and
only if fo

r

each open ball B ( x ; r ) with center x , the sequence is eventually

in B ( x ; r ) . Wewrite x
n →
x , or lim xn = x , to denote that ( xn ) converges

to x ,and w
e

call x a limit point o
f

th
e

sequence ( xn ) in this case .
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Example 2. 14 Let X be the se
t

o
f

real numbers and , for x E X , y E X , define

d ( x , y ) = ( x – yl .

( a ) Set

X
n
= ( - 1 ) " ( 1 / n ) , n = 1 , 2 , . . . .

For any open ball B with center at x = 0 , the sequence ( xn ) is eventually in

B ; consequently , ( Xn ) converges to 0 . If A = { x : x > 0 } is th
e

set o
f all posi

tive real numbers , the sequence ( xn ) is frequently (but not eventually ) in A .

( b ) Set
X
n
= ( - 1 ) rn , n = 1 , 2 , . . . .

This sequence is frequently in the positive numbers , but does not converge to

any point .

Example 2 . 15 ( a ) Let X b
e

the metric space o
f Example 2 . 4 and le
t

X
n ( n = 2 , 3 , 4 , . . . ) be the function whose graph is shown in Fig . 2 . 4 . The

lon )

FIGURE 2 . 4

o 1 - 1 / 12 { + 1 /621

sequence ( xn ) does not converge to any point x E X . This can be seen b
y

noticing that fo
r

any x E X ,

d ( x , xn ) = max | æ ( t ) — xn ( t ) / 2 ( x ( 3 ) — xn ( 1 ) = | x ( ) – n .tel

Thus , for n > x ( 4 ) + 1 , d ( x , xn ) > 1 and ( xn ) is eventually outside th
e

open

ball B ( x ; 1 ) .

( b ) Let X be the metric space o
f Example 2 . 5 and le
t

X
n ( n = 2 , 3 , 4 , . . . )

b
e

the function whose graph is shown in Fig . 2 . 4 . Then X
n

→ X
o

where xolt ) = 0

for all t E I . In fact ,
d [ xn , xin ) = " lole ) — xa ( 0 ) | di = 1 / n .

It follows that for any open ball B with center xo , the sequence ( xn ) is eventually

in B .
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As might be expected , the metric space where X is th
e

se
t

o
f

real
numbers and

d ( x1 , x2 ) = ( x1 - xz

is a special case o
f

considerable importance . In fact , convergence of

sequences in any metric space can b
e

described in terms of convergence in

this space . Let Y be a metric space with distance function e and le
t

( y
n
) be a sequence in Y . Then Y
n

→ Y
o
E Y if
f the sequence ( y
n
) is even

tually in each open ball with center yo . That is , iff for any real number

p > 0 , the sequence of realnumbers ( e ( yo , yn ) ) is eventually in the set

A
r
= { x : 0 < x < r } .

This condition is necessary and sufficient fo
r

the sequence ( e ( yo , yn ) ) of

real numbers to converge to zero in themetric space X . Thus , conver
gence o

f sequences in the arbitrary metric space Y can b
e

described in

terms of convergence to zero in the metric space X .

The following theorem gives the connection between convergence

and closure .

Theorem 2 . 6 Let X be a metric space and le
t
SCX ; a point x E X is

a
n element of S - if and only if there is a sequence ( xn ) in S which con

verges to x .

PROOF . If x E S - , then each open ball with center x intersects S . Choose

X
nESN B ( x ; 1 / n ) .

Then the sequence ( xn ) is eventually in each open ball with center x ;

hence , xn →x .

1 If there is a sequence ( xn ) in S which converges to x , then this sequence

is eventually in each open ball with center x ; so certainly each o
f

these

open balls intersects S . Thus x E S - « .

Theorem 2 . 6 points u
p

the intuitive connotations carried b
y

the term

" closed set . ” A set A is closed if and only if A = A - (Problem 1
7 ) ; b
y

Theorem 2 . 6 , this is the case if
f , whenever a sequence ( xn ) o
f points in A

converges to a point x , the point xmust be in A . Intuitively , the sequence

( xn ) converges to x if
f

the points X
n get " very close ” to x , so the condition

that A b
e

closed can b
e phrased a
s

follows : Any point which is “ very

close ” to points of A is a point of A . Again : It is not possible to sneak

along a sequence o
f points in A and get “ very close ” to a point that is not

in A . The points o
f
A are enclosed — it is impossible to escape from

them b
y

sneaking along a sequence o
f points in A .
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PROBLEMS (continued )

17 . Let A be a subset of a metric space .
(a ) Prove that A is closed if

f
A = A - .

( b ) Prove that A is closed if
f
A is the closure o
f

some set .

( c ) Prove that if A C B then A -CB

1
8 . ( a ) If S and T are subsets o
f
a metric space , how is the se
t
S - n T re

lated to the set ( s n T ) – ?

( b ) How is ( S - ) ' related to ( S ' ) – ?

( c ) Give a
n example o
f
a
n open ball B ( x ; r ) whose closure is different from

the closed ball B - ( x ; r ) .

# 1
9 . Let X be a metric space .

( a ) IfPE X and

x
n

= k , n = 1 , 2 , 3 , . . . ,

prove that X
n
→ p .

( b ) If xn → Xo and n
i
< 1
2
< 1
3
< . . . , prove that the sequence

( cm , 3m , đn
g
, . . . ) converges to a
o . The sequence ( xa , xay x
n
g
. . ) is

called a subsequence o
f

the sequence ( xn ) .

( c ) Prove that ( xn ) has a subsequence which converges to x
o if
f
( xn ) is

frequently in each open ball B ( xo ; r ) with center xo .

( d ) Prove that if xn → x and x
n

→ y , then x = y .

2
0 . Let ( Xn ) be a sequence in X and let A be a subset of X . Prove that ( xn )

is eventually in A if
f it is false that ( xn ) is frequently in A ' .

2
1 . Let X be the se
t

o
f real numbers and , fo
r
x E X , y E X , se
t

d ( x , y ) = ( x – y
l
.

Find the closure o
f

each o
f

the following subsets o
f
X .

( a ) A = { 1 , 2 , 3 , . . . } .

( b ) B = { 1 , 1 , 1 , . . . } .

( c ) C = { 1 , – 1 , , - ) , . . . } .

( d ) D = { 1 , 2 , 3 , 4 , 5 , . . . } .

E = { x : 0 < x < 1 } .

( f ) F = { x : x is rational } .

( g ) G = { x : x is irrational } .

2
2 . For each of the sets A . to G in Problem 2
1 , choose several points in the

closure o
f

the set and , for each point x which you choose , find a sequence in

the se
t

which converges to x . This process checks the result in Theorem 2 . 6 .

2
3 . ( a ) Let X b
e the metric space o
f Example 2 . 4 , and let X
n
E X b
e

th
e
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function defined by xn (t ) = {n for all t E I . Does the sequence ( xn ) con
verge ? If so, what is it

s limit ?

( b ) D
o part ( a ) fo
r

themetric space o
f Example 2 . 5 .

2
4 . Let X be th
e

set o
f

real numbers and , fo
r
x E X , y E X , set

a so , if x = y .

d ( x , y ) = 1 . if x + y .

Describe convergence in this metric space ; that is , tell which sequences
converge to which points . What ca

n

you say about the closure o
f
a se
t

A

in this space ?

* 25 . Let X = { 0 , 1 , 2 , . . . } be the set of non -negative integers , and define a

function d a
s follows : For

| x 6 x , y + x , x = y ,

le
t
6 b
e

the biggest non -negative integer such that 20 is a factor of ( x – y
l ,

then

d ( x , y ) = 1 , , d ( x , x ) = 0 .

( a ) Find : ( i ) d ( 0 , 2 ) , ( ii ) d ( 4 , 19 ) , ( iii ) d ( 3 , 99 ) .

( b ) Prove that the function d is ametric in X .

( c ) Prove that the sequence ( 2 , 4 , 8 , . . . , 2 " , . . . ) converges to 0 .

( d ) Prove that the sequence ( 3 , 6 , 9 , . . . , 3n , . . . ) does not converge .

( e ) Find a sequence o
f

distinct elements o
f

X such that the sequence
converges to 5 .

( f ) Find the closure o
f the se
t
{ 3 , 6 , 9 , . . . } . (Hint : First prove that , if n

is any positive integer , then

22n + 1 + 1

kn =

is also a positive integer . For any m E X consider the sequence (3kım ,

3kam , 3kzm , . . . ) and show that this sequence converges to m . ]

2
6 . Review th
e

definitions w
e

have had fo
r

closed path , closed curve , closed
surface , closed disk , closed ball , closed set . What similarities are there , and
what differences ?

8 – 3 Topological Spaces

In Section 8 - 2 we defined and discussed the concepts of open set , closed

se
t , closure , and convergence in a metric space . The metric was used to
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define these concepts, and the properties of a metric (symmetry , triangle
inequality , etc .) were used to derive certain properties of each of the new
concepts . Any one of these concepts could be used to obtain a generaliza
tion of ametric space . This generalization would be obtained by starting

with a se
t
X , in which the appropriate concept is given axiomatically (not

defined in terms o
f
a more fundamental concept ) , and b
y

studying th
e

structure imposed o
n the se
t

X b
y

the axioms . We shall adopt “ open
set ” a

s our fundamental concept and shall define other concepts in terms

o
f

this one .

A topological space is a set X , together with a family 0 of subsets of X

satisfying the following conditions :

(01 ) XEO , Ø E O .

( 0
2
) If U E O and VE O , then UOVE O .

( 0
3
) If S CO , then U { A : A E S } E O .

The members o
f

the family O are called open sets in the topological space .

This means that the statement “ U is an open se
t
” is equivalent to th
e

statement “ U E O . ”

Thus , in any topological space , the empty set and the set X itself a
re

open sets ; the intersection of any two open sets is open ; and the union o
f

any collection o
f

open sets is open .

Before we give some examples o
f topological spaces , it is convenient

to have another definition . A set A CX is closed if and only if A ' is
open . Certainly the family o of al

l

open sets in a topological space X
completely determines the collection C o

fall closed sets . In fact ,

C = { A : A ' E O } .

Conversely , the collection C also determines O , since

O = { A : A ' E C } .

The three requirements 01 through 03 which were made above o
n

th
e

family O are easily seen to b
e equivalent to the conditions C1 through C
3

below o
n the collection C .

( C
1
) 8 6 8 , X + e .

(C2 ) IfFEC and GE C , then FUGE C .

(C3 ) If S CC , then n { A : A ES } E C .

For a particular set X there may b
e

several different families o of

subsets o
f
X which satisfy conditions 0
1 through 0
3 , as shown b
y

th
e
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examples below . The selection of one such family o is said to define a
topology in the se

t
X . Clearly , a topology in X may b
e

defined b
y speci

fying a collection C o
f

subsets o
f
X which satisfies conditions C1 through

C
3 , since the family o is then uniquely determined . This procedure is

used in some o
f

the following examples .

In each o
f Examples 3 . 1 through 3 . 5 the set X is the se
t

o
f a
ll

real

numbers ; the topological spaces differ in the selection o
f

the family 0 o
f

open sets .

Example 3 . 1 0 = { 0 , X } . From condition 01 , this is the smallest family

which defines a topology in X . In this topological space , C ; = { X , Ø } so that

a se
t
is open if
f
it is closed .

Example 3 . 2 A subset F CX is called finite if
f
F has a finite number o
f ele

ments . For example : Ø is finite , since it has 0 elements ; the set { 2 , 3 , 8 } is

finite , since it has three elements ; the set N = { 1 , 2 , 3 , . . . } is not finite . Let

F = { F :FCX and F is a finite se
t
}

and let

C , = FU { X } .

Then C
2

satisfies the conditions C1 through C3 and is , therefore , the collection

o
f
a
ll

closed sets in some topology defined in X . In this topological space , every
finite set is closed , the se

t

X is closed , and no other sets are closed . The family

o
f

open sets is given b
y

O
2
= { A : A = 0 o
r

A ' is a finite subset of X } .

Example 3 . 3 Let us call a set A denumerable if
f

there is a one - to -one trans
formation o

f
A into the set N = { 1 , 2 , 3 , . . . } of al
l positive integers . Every

finite set is denumerable , but there are also infinite denumerable sets ; for
example , th

e

se
t
{ 2 , 4 , 6 , . . . } is denumerable , as is the se
t
N itself . Problem 7

o
f

Section 7 - 2 showsthat the se
t

o
f
a
ll positive rational numbers is denumerable ,

whereas the set { x : 0 < x < 1 } is not denumerable . Let

D = { A : A CX and A is denumerable }

and le
t

C
z
= DU { X } . Then C
3 is the collection o
f a
ll

closed sets in some
topology defined in X . In this topological space , every denumerable set is

closed ; the se
t

X is closed ; and no other sets are closed . The family o
f open

sets is given b
y

O
z
= { A : A = 0 o
r

A ' is a denumerable subset of X } .
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Example 3. 4 Set Of = {A : A CX}. The family of satisfies conditions
01 through 03; it is evidently the largest family which defines a topology in X.
(The topology defined by Of is called the discrete topology .) In this topology

it is again true that a se
t
is open if
f it is closed ; i . e . , O4 = C4 . Wehavemet this

topological space before as a metric space . The family O
d
is the collection o
f
a
ll

sets which are open in themetric space X , where the distance between points x

and y is given b
y

d
lx . v ) = so , if x = y .

if x + y .

Example 3 . 5 For each real number x E X , let
L = { y : y < x }

and let L = { L
q : X E X } .

Then the set 0
6
= LU { 0 , X }

defines a topology in X .

PROBLEMS

1 . Prove that each of Examples 3 . 1 through 3 . 5 is a topological space . What

is the collection o
f

closed sets in Example 3 . 5 ?

2 . Show that if X is any metric space and O is the collection o
f

a
ll

subsets of

X which are open in that metric space , then 0 satisfies conditions 0
1

through 03 , so X can be considered to b
e
a topological space . Thus the

two concepts o
f

open set — one in a metric space and one in a topological

space — need not cause any confusion .

3 . Show that not every topological space can b
e thought of as a metric space .

(Hint : Try the space of Example 3 . 1 . )

4 . Let X be the se
t

o
f

real numbers and le
t

I = { x : 0 < x < 1 } .

Which o
f

th
e

following families defines a topology in X ?

( a ) 0 = { A : ICA C X } U { 0 } .

( b ) 0 = { A : ACI } U { X } .

( c ) 0 = { A :1¢ A a
n
d

A ¢1 } U { 0 , X } .

# 5 . Let X be the se
t

o
f

a
ll continuous functions defined o
n the unit interval

I = { t : 0 < t < 1 }
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and le
t
O b
e

the family o
f

a
ll

subsets U o
f
X which satisfy the following

condition : If XoEU , then there are a positive number e , a positive integer

n , and n numbers to E I , tz E I , . . . , In E I such that
U ) { x : \ x ( ti ) – xo ( ti ) / < € ( i = 1 , 2 , . . . , n ) } .

Prove that X , together with the family O , is a topological space .

# 6 . Let I * = { t : 0 < t } and le
t
X b
e the set o
f

a
ll

continuous functions defined

o
n I * . Define a family 0 o
f subsets o
f

X a
s
in Problem 5 and prove that '

X , together with this family O , is a topological space .

In our definition o
f

a continuous transformation between metric

spaces , the distance concept played amajor role , since the definition was
concerned with e -nearness , etc . Of course , e -nearness has nomeaning in a

general topological space , but the condition o
f

Theorem 2 . 3 , which is

necessary and sufficient for continuity o
f
a transformation between metric

spaces , is meaningful in the general situation ,and we use this condition to

extend our definition o
f continuity .

Let X and Y be topological spaces ; a transformation f : X → Y is con
tinuous if and only if , fo

r

every open se
t
V CY , the se
t
f - 1 ( V ) is open

in X . Notice that this definition is concerned with continuity ,and not
with “ continuity a

t

x
o . ” It would b
e possible to extend this latter con

cept to transformations between topological spaces , but we shall not do

so . A homeomorphism is a continuous transformation which has a con
tinuous inverse transformation .

: ) =

Example 3 . 6 Let each of X and Y be the topological space of Example 3 . 5 ;

define two transformations f : X → Y and g : X → Y b
y

setting

– 1 , if x < 0 . 1 - 1 , if x < 0 .

1 x , if x > 0 . 8 ( x ) = 0 , if x = 0 .

1 , if x < 0 .

Since X and Y are the same topological space , we could call them both X , but

in the definition o
f continuity the two spaces are treated differently , so it is

convenient to have a notation that indicates which space is being considered .

We shall show that f is continuous , but g is not . First , consider f and le
t
V b
e

any open se
t
in Y . We distinguish several cases , as follows :

CASE 1 . V = 0 . Then f - ( V ) = Ø , which is open in X .

CASE 2 . V = Y . Then f - 1 ( V ) = X , which is open in X .

CASE 3 . V = Ly = { z : 2 < y } .
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(a) If y < - 1, then f - ( V) = 0, which is open in X .
(b ) If – 1 < y < 0, then f - 1(V ) = {x : x < 0 ), which is open in X .
( c) If 0 < y , then f - ( V ) = {x : x < y}, which is open in X.

Thus, for every open set VCY , the se
t
f - 1 ( V ) is open in X , and this proves

that f : X → Y is continuous .

Now consider the transformation g . Set V = { y : y < * } ; then V is an open

subset of Y , but f - 1 ( V ) = { x : x < 0 } ,which is not an open subset of X . Thus ,

8 : X + Y is not continuous .
We define the concept of closure in a topological space X exactly as in a

metric space . The closure A - of a set A CX is the smallest closed se
t

having A as a subset .

It is easy to prove , from condition C3 , that every set A CX has a

closure ; that is , that there is a smallest closed set having A a
s
a subset .

Also , for any set A , its closure A - is a closed set , and , in fact , A is closed

if
f
A = A - .

We have been concerned with the boundary , or edge , of a set on

several occasions in our previous work , but we have not had a clear defi
nition o

f

this term . We can now define it . The boundary of a se
t
A in a

topological space X is the set A - n ( A ' ) - .

Thus , a point x E X is in the boundary of A iff

x + A - and $ € ( A )̂ .

We ca
n

think o
f the points o
f
A - as the points which are stuck very

tightly onto A ; from this viewpoint , the boundary o
f
A is composed o
f

a
ll

the points which are stuck very tightly onto A and also are stuck very

tightly onto A ' . This seems to be a quite satisfactory interpretation fo
r

the term boundary , o
r

edge .

Notice that the boundary o
f
a set A depends o
n the space X a
s

well

a
s
o
n the particular se
t

A . An example will clarify this point . Let X1

b
e ordinary three -dimensional space ; choose a particular point X
o

E X ,

and consider the sphere S = { x : d ( x0 , x ) = 1 } . This sphere is a closed

set in themetric space X
1 ,and ( S ' ) - = X1 . Thus the boundary of S is

Sen ( S ' ) - = S n Xi = S .

The sphere is it
s

own boundary when considered a
s
a subset o
f ordinary

three -dimensional space .

Now le
t

X , be the sphere S , which is a metric space if we use the
ordinary notion o

f

distance , and again consider the subset S o
f X2 . The

set S is closed ,but S ' = 0 , so , in the space X2 , the boundary o
f
S is

Sen ( S ' ) - = S n = .
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The boundary of the sphere is empty when the sphere is considered as a

subset of itself.
In our previous work ,when we mentioned the boundary of a piece of a

surface , we have meant to think of this piece as a subset of the surface ;

when we have spoken of the boundary of a solid , we have meant to con
sider this solid as a subset of ordinary three -dimensional space .

PROBLEMS (continued )

7. Let each of X and Y be one of the topological spaces of Examples 3.1
through 3.5. Define a transformation i : X + Y by setting i (x ) = x for
each x E X . For which choices of X and Y is the transformation i con
tinuous ? For which choices is i a homeomorphism ?

8. With X and Y as in Problem 7 , define f: X → Y by setting f(x ) = x2.
For which choices of X and Y is f continuous ? For which choices is f a
homeomorphism ?

#9. (a ) Let A be a subset of a topological space X and let x be a point of X .
Prove that x E A - iff every open se

t

containing x contains a
t

least one point

o
f
A .

( b ) Prove that a transformation f : X → Y between two topological spaces

is continuous iff , for every closed subset FC Y , f - 1 ( F ) is a closed subset

o
f
x .

1
0 . For each o
f

the following sets , consider it in turn a
s
a subset o
f

each o
f

the

topological spaces o
f Examples 3 . 1 through 3 . 5 and find the closure and

the boundary o
f

the set .

( a ) A = { 0 , 1 } .

( b ) B = { x : 0 < x < 1 } .

( c ) C = { x : 0 < x < 1 } .

( d ) D = { x : 0 < x < 1 } .

( e ) E = { x : 0 < x < 1 } .

( f ) F = { x : 1 < 0 } .

( g ) G = { x : a = 0 } .

( h ) H = { x : x < 0 o
r

x > 1 } .

( i ) 1 = { x : x < 0 o
r

x > 1 } .

( j ) J = { x : x < 0 and x > 1 } .

1
1 . Review the places in our previous work where w
e

have discussed the
boundary o

f
a set ( se
e

p
p . 44 , 63 , 65 , 78 , 89 ) .

1
2 . Prove the following statements made in the text : If X is a topological

space , then every subset A of X has a closure ; A - is a closed set ; and , in

fact , A is closed if
f
A = A - .

VIV
VI
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13. Let X be a set and let - be a unary operation such that, for any AC X ,
A - is also a subset of X . Suppose , further , that fo

r

any subsets A and B

o
f
x

( a ) 0 = 0 . ( c ) A - - = A .

( b ) A - ) A . ( d ) A - U B - = (AUB ) .

Set C = { A :AC X and A - = A } . Prove that C satisfies the con
ditions C

1 through C
3 , so X may b
e thought o
f
a
s
a topological space .

What is the closure operation in this space ?

We now turn our attention to convergence o
f sequences in topological

spaces . In a metric space , open balls were used to define convergence o
f

sequences . How can we generalize this concept to topological spaces ?

An open ball B ( x ; r ) may be thought o
f
a
s establishing a standard o
f

nearness ; it consists o
f

all the points which are r -near to x . Wehave seen
that an open set containing a point x can b

e thought o
f a
s containing a
ll

the points “ right around ” x . Thus we may think o
f

each open set U

containing x a
s setting u
p
a standard o
f
“ nearness to x . ” Namely , all

the points of U can be called U -near to x , and the points of U ' can be said

to be not U -near to x . The ideas involved in the convergence of ( xn ) to x

in a metric space can now b
e paraphrased a
s follows : A sequence ( xn )

converges to x if
f , given any open ball B = B ( x ; € ) ( a standard of near

ness to x ) , the sequence ( xn ) is eventually in B (eventually near to x ,

according to th
e

given standard o
f nearness ) . These ideas generalize

immediately to topological spaces and suggest the following definition .

A sequence ( xn ) in a topological space X converges to the point x E X

if
f

the sequence is eventually in each open se
t

containing x .

Example 3 . 1 (continued ) In the space X ofExample 3 . 1 , le
t
( xn ) be any sequence

and le
t
x b
e any point . The only open set containing x is X itself ,and certainly

( xn ) is eventually in X . Thus , the sequence ( xn ) converges to x . That is , in

this topological space , any sequence converges to all points of X . In particular ,

limits of sequences in topological spaces may not be unique .

We have seen that , in a metric space , a point x is in the closure of a

set A if
f

there is a sequence o
f points in A which converges to x . This

pleasant state o
f

affairs does not carry over to topological spaces ( se
e

Problem 1
6 ) . There are some (non -metric ) topological spaces for which

the statement is true , and there are generalizations o
f

the concept of

sequence for which the analogous statement is true in any topological

space , but we shall not go further into these matters here . Problem 9
a
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ibove gives a characterization of the closure of a se
t

which involves some

o
f the ideas which we have used as the basis of convergence .

( 1 , 1 )

FIGURE 3 . 1

0 - 1 n + 1

Example 3 . 7 Let X be the topological space of Problem 6 above ; let xn E X be

th
e

function whose graph is shown in Fig . 3 . 1 ; and le
t
x
o b
e

the function de
fined by

x
o ( t ) = 0 ( 0 < t ) .

We shall show that the sequence ( Xn ) converges to x
o . In fact , if U is any open

se
t

containing x
o , then there are a positive number e , a positive integer m , and

m non -negative numbers t1 , t2 , . . . , tm such that

U ) { x : ( x ( ti ) – xo ( ti ) | < € ( i = 1 , 2 , . . . , m ) } .

Let u
s

set

n
o
= max { t1 , t2 , . . . , im } .

Then , clearly , if n > no , it follows that

x
n ( tz ) = 0 ( i = 1 , 2 , . . . , m ) .

Hence

< ( tt ) - xo ( tt ) | = 0 < ( i = 1 , 2 , . . . , m )

and x
n
E U for al
l
n > N
o . That is , th
e

sequence ( xn ) is eventually in every

open set which contains xo ; consequently , Xn → Xo .

PROBLEMS (continued )

1
4 . Which sequences converge to which points in the topological spaces o
f

Examples 3 . 2 through 3 . 5 ?

1
5 . Which sequences converge to which points in the topological spaces o
f

Problem 4 ?

1
6 . Give an example o
f
a topological space X and a subset A C X such that

there is a point x E A - and no sequence in A converges to x . (Hint : Try

the space o
f Example 3 . 3 . )
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17. Show that, in Example 3.7, the function xo is th
e

only function to which

the sequence ( xn ) converges .

1
8 . Let X be the topological space of Problem 6 . Define a sequence ( xn ) in

X b
y

setting

X
n ( t ) = 2 - ( t - n ) ? .

Does this sequence converge ? If so , to what function ?

1
9 . ( a ) Let X be th
e topological space o
f

Problem 5 and le
t
R b
e

the metric

space o
f real numbers with

d ( 11 , 12 ) = \ r1 – ral

fo
r

any real numbers rı and r2 . For any

X E X and any ľE I = { t : 0 < t < 1 } , x ( t ) E R .

Thus , if ( xn ) is a sequence in X and t E I , then ( xn ( t ) ) is a sequence in R .

Prove that ( xn ) converges to x
o

in the topological space X if
f , for each

tE I ; ( xn ( t ) ) converges to xo ( t ) in the metric space R . This convergence

o
f functions is called pointwise convergence .

( b ) Prove that the result in part ( a ) remains valid if X is replaced b
y

the

topological space o
f

Problem 6 and I is replaced b
y

* = { t : t > 0 } .

2
0 . Generalize th
e

results of Problem 1
9 , Section 8 - 2 to topological spaces X

to obtain th
e

following results :

( a ) If PE X and X
n
= p , n = 1 , 2 , . . . , then ( xn ) converges to p .

( b ) If xn → Xo and ni < 12 < . . . , then ( Xn
ı , Xn
a , . . . ) converges to Xo .

( c ) Find a
n example o
f
a sequence ( xn ) in a topological space such that

X
n

→ x and X
n →y but x + y . (This shows that the result of Problem 1
9
0 ,

Section 8 - 2 does not generalize to topological spaces . Problem 19c ,

Section 8 - 2 is considered in Problem 2
2

below . )

# 2
1 . Let X be a plane with it
s points labelled in rectangular coordinates ;

that is ,

X = { ( x1 , x2 ) : X1 and X
2

are real numbers ) .

For each point p = ( P1 , P2 ) E X , set

G
p
= { ( x1 , x2 ) : Xı > Pi and X
2
> P
2
} .

Let O be the family o
f all unions of sets of the form Gp ; that is , U E O iff

there is a subsetPC X with

U = U {Gp :PE P } .

( a ) Show that X , together with th
e

family O , is a topological space .
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(b ) Let xn = ( - 1 /n, 1/n ). Does th
e

sequence ( « n ) converge ? If so ,

to what ?

( c ) Find the closure o
f the se
t

A = { x
1 , X2 , X3 , . . . } (notation o
f part ( b ) ] .

* 2
2 . Let X be the subset of a plane made u
p

o
f

the origin together with all the
points whose coordinates are positive integers ;

X = { ( 0 , 0 ) } U { ( m , n ) : m = 1 , 2 , . . . , n = 1 , 2 , . . . } .

However , the topology in X (defined below ) is not the usual topology .

For each positive integer mo , the se
t

C
m , = { ( mo , n ) : n = 1 , 2 , . . . }

is called the column a
t

mo in X . The open sets in X a
re defined a
s

follows .

Any subset o
f
X which does not contain the origin is open .

A subset U o
f
X which does contain the origin is open if
f

there is a

positive integer N such that if m > N then U contains a
ll but a finite

number o
f

the points in the column a
t
m .

( a ) Prove that X , with the open sets defined above , is a topological space .

( b ) Find a sequence ( Xn ) in X such that ( Xn ) is frequently in each open set

containing the origin but no subsequence o
f ( xn ) converges to the origin .

( This shows that the result of Problem 1
9
c
, Section 8 - 2 does not generalize

to topological spaces . )

8 – 4 Connected Sets

Wehave defined the faces of amap to b
e

the separate pieces into which a

surface is divided b
y
a network in that surface . But what is a piece ?

Evidently it is not the same a
s
a subset , because two of the things we have

thought o
f

a
s

faces would form a single subset o
f

the surface , but not a

single face o
f

the map . Wehave several times used the phrase “ connected
pieces " but we have not had a definition o

f the term " connected . ” In

discussing the Jordan curve theorem , we showed that certain pairs o
f

points could b
e joined b
y
a polygonal path ; these ideas could be used to

define a connected set in three -dimensional space , but a different approach

isneeded for an arbitrary topological space . It seems to bemore conveni
ent to define “ separated ” first , and then use this concept to define “ con
nected . ” Intuitively , wewould like to call two sets P and Q separated if ,

somehow , they have “ nothing to do with each other . ” The exact formu
lation which has been found most fruitful is a

s

follows : The subsets P and

l of a topological space X are separated iff

P + 0 + Q and P - n Q = 0 = Png .
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That is , neither set is empty , and each se
t
is disjoint from the closure of

the other . As an example , consider a
n

X -axis ( as a subset o
f three

dimensional space ) . Set
P = { x : x < 0 ) , Q = { x : x > 0 } , S = { x : x > 0 } .

Then P and Q are separated , but P and S are not separated .

A subset A CX is connected iff A is not the union o
f two separated

sets . In the X -axis just discussed , the se
t
{ x : x + 0 } is not connected

because it is the union of the two separated sets P and Q .

In any topological space , a singleton ( a se
t

containing exactly o
n
e

point ) is connected . For , if

{ a } = PUQ and P + 0 + Q ,

then P = { a } = Q so that

P -ne + 0 .
Thus , { a } is not the union of two separated sets .
Example 4 . 1 In th

e

topological space X of Example 3 . 1 ,every subset A is con
nected . For , if

A = PUQ and P + 0 + Q ,

then P = X ( X is the only closed set containing P ) , and

Pne + 0 .

Thus A is not the union o
f two separated sets .

O
f

course ,whether o
r

not a se
t
A is connected depends o
n the topologi

cal space under consideration ; the same setmay be a connected subset of

one space and not connected when it is considered a
s
a subset o
f

another

space .
It seems plausible that , if a set A is connected , and if we adjoin to A

the points which are " very close ” to A , then the enlarged set is also con
nected . The following theorem makes this notion precise .

Theorem 4 . 1 If A is a connected subset of a topological space X , then

A - is connected .

PROOF . The proof is b
y

contradiction . Suppose A - is not connected ;

then A - = PU Q , where P and Q are separated sets . If each ofANP
and An Q is non -empty , then

A = ( A n P ) U ( Ane )
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expresses A as the union of two separated sets , contrary to our hypothesis .
Thus, at least one of these sets is empty , say An P = 0. Then , since
ACPU Q, it follows that A C Q. This implies that A -Cl- . But
then

PCPU Q = A - ce
so that P = Pne- = 0, which contradicts the assumption that P and Q
are separated sets « .

Connectedness is a topological property of sets ; in fact , the following
theorem shows that if a set is connected it remains connected , even when

it is subjected to a much more general class of transformations than the
homeomorphisms .

Theorem 4. 2 Let X and Y be topological spaces ; le
t
A b
e
a connected

subset o
f
X , and le
t
f : X → Y be a continuous transformation . Then

f ( A ) is a connected subset of Y .

PROOF . The proof is b
y

contradiction . If f ( A ) is not connected , then

f ( A ) = PU Q with P and Q separated . Set

P
a
= f - ( P ) n A , an
d

Q
ı
= f ( Q ) N A ;

then we find

P
1
+ 0 + li and A = P , U Q
i
.

Since f is continuous , f – ( P - ) is a closed se
t
in X (Problem 9
b , Section 8 - 3 )

which has P , as a subset ;thus , P
i cf - ( P - ) and

Pin Q
iCf - ( P - )nf - ( Q ) = f ( P - n Q ) = f - Ø ) = .

Similarly , Pin Q
i
= 0 , so P , and Q
ı

are separated . This contradicts
the hypothesis that A is connected « .

The metric space R o
f

the real numbers with

d ( x , y ) = ( x – yl

for any two points x and y of R is a very important space . We have fre
quently used this space a

s

a
n example , and many of the concepts in

topology have arisen a
s generalizations of properties of the real numbers .

In the remainder o
f

the text , we shall denote this metric space b
y
R and

shall consider some of it
s properties . In the metric space R , the set R is

connected . This fact is sometimes taken a
s

one o
f

the axioms used in
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defining the real numbers , and sometimes proved from other results which
are taken as axioms . We shall assume this result and shall find what other
subsets of R are connected .
A subset of R will be called an interval iff , for some points a E Rand
be R , it is one of the following sets :

{ x : a < x < b } { x : a < x < b } { x : x < b }

{ x : a < x < b } { x : a < x } { x : x < b }

{ x : a < x < b } { x : a 5 x }

Some examples o
f

intervals are Ø , { 2 } , { x : 0 < x < 1 } . It is easy to see
that a se

t
A c R is a
n interval if and only if it contains all points which

lie between any two o
f

it
s

members ; that is , iff the following implication

is true . If

X E A and yEA and x < % < y ,

then

ZE A .

We shall use this characterization o
f

intervals in proving the following
theorem .

Theorem 4 . 3 A subset A CR is connected if and only if it is an interval .

PROOF . Suppose that A CR and A is not a
n interval ; then there a
re

three real numbers a < c < b such that

a EA , bEA , c¢ A .

Set

P = { x : x E A and x < c } , { = { x : x E A and x > c } .

Then P + 0 + Q , and

P -ne c { x : x < c } n Q = 0 .

Similarly , Pnl - = 0 , so P and Q are separated . Thus A is not con
nected .

It remains to be proved that every interval is connected . First , let us

consider the interval

I = { x : 0 < x < 1 } .

For x E R , set

f ( x ) = 1 *
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then f :R→I is a transformation from R onto I. We prove below that
f is continuous ; since R is assumed to be connected , Theorem 4.2 shows
that I is connected .
As to the continuity of f , if x and y have the same sign , then

\ f(x ) – f (y )] =\ _ |(\yl + 1)x – ( lx
1
+ 1 ) ;

( 1x
1

+ 1 ) ( \ y
l
+ 1 ) |

x – y

= | ( 1x + 1 ) ( \ \ \ + 1 ) = x – y
l .

If x and y do not have the same sign , then

\ f ( x ) – f ( y ) ] = 4 * , - = - . + 1
y !

| | 3 + 1 ly
l
+ 1
1

1201 + 1 ' y
l
+ 1

< [ x ] + ly ) = ( x – y
l

and continuity follows .

B
y

Theorem 4 . 1 , 1 - = { x : 0 < x < 1 } is connected . The remainder

o
f

the proof of Theorem 4 . 3 is left as an exercise (Problem 5 ) « .
PROBLEMS

1 . Prove that the empty set Ø is connected .

2 . ( a ) Prove that , in the space of Example 3 . 4 , no set containingmore than
one point is connected .

( b ) Let l ' be the space of Example 3 . 4 and let X be any topological space .

Prove that X is connected if
f every continuous transformation f : X → Y

is constant .

3 . Which sets a
re connected in the space o
f Example 3 . 5 ?

4 . ( a ) Prove that if A and B are connected subsets of a topological space X

and An B + 0 , then AUB is connected .

( b ) Prove that if A is connected and ACBCA - , then B is connected .

5 . The following steps complete the proof of Theorem 4 . 3 .

( a ) Suppose a E R , b E R , and a < b . For

x E I = { x : 0 < x < 1 } ,

define

f ( x ) = { [ ( b − a ) x + ( 6 + a ) ] .

Show that f is a continuous transformation from I onto { x : a < x < b } .

Hence , this latter set is connected b
y

Theorem 4 . 2 .
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(b ) For each a E R , define a continuous transformation fa from R onto

Lo = {x : x < a }, thus proving that L , is connected .
(c ) Complete the proof of Theorem 4.3 by considering each of the remain
ing types of intervals . (Hint: Use Problem 4 fo

r

some of the cases . )

6 . Let f : R → R be a continuous transformation , and le
t
a , b , and r be three

real numbers such that

f ( a ) < r < f ( b ) .

Prove that there is a c E R with a < c < b and f ( c ) = 1 . Briefly stated :

ſ takes o
n every value between any two o
f

it
s

values .

7 . ( a ) Let A and B be two non -empty open subsets o
f
a topological space X

such that neither one is a subset of the other . Prove that A – B and

B – A are separated .

( b ) Replace " open ” b
y
“ closed ” in part ( a ) and prove the same result .

* 8 . For the topological space of Problem 2
1 , Section 8 - 3 ,which of the following

sets are connected ?

( a ) A = { ( x1 , x2 ) : xỉ + xź < 1 } .

( b ) B = { ( x1 , x2 ) : 2 < xi + xź < 4 } .

( c ) C = AUB .

( d ) D = AU { ( x1 , x2 ) : ( x1 – 4 ) 2 + ( x2 – 4 ) 2 < 1 } .

( e ) E = A U { ( x1 , x2 ) : ( x1 – 4 ) 2 + ( x2 + 4 ) ? < 1 } .

9 . Review the places in our previous work where we have required a set to be

" all in one piece ” ( se
e

p
p . 60 , 63 , 74ff , 78 , 89 ) .

8 – 5 Compact Sets

A family F = { F :FE F } of subsets of a topological space X is called a

cover o
f
a set A C X if
f

A CU { F :FEF } .

A cover is an open cover if
f

each se
t
in the family is an open se
t
. A subcover

o
f
a cover F is a subfamily o
f

the family F which is also a cover ( of the

same se
t
A ) . For example , if A is a subset of ametric space X , the collec

tion B o
f

a
ll

open balls in X is an open cover o
f
A ; the collection of al
l

open

balls with center in A and radius 1 is a subcover of B .

We use this terminology in defining compactness . A set A in a

topological space X is compact if
f every open cover o
f
A has a finite sub

cover . Evidently , in any topological space X , any finite set

A = { a
i , 22 , . . . , an }CX
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is compact . For, if U = {U :UE U } is an open cover of A , and
1 < i < n , wemay choose an element UiE U such that di E Ui. The
family {U1, U2, . . ., Un} is a subcover of U .
Themetric space R is not compact ,because if we se

t

In = { x : n – 4 < x < n + }

then

U = { In : n = . . . , – 1 , 0 , 1 , . . . }

is an open cover o
f
R , which has no finite subcover . Before considering

other examples , we shall discuss certain consequences of compactness .

A family F o
f

sets is said to have the finite intersection property if
f

every finite subfamily o
f
F has a non - empty intersection . Theorem 5 . 1

characterizes compact spaces , using the finite intersection property .

Theorem 5 . 1 A topological space X is compact iff , whenever F is a

family o
f

closed sets with the finite intersection property , the intersection

n { F :FE F } o
f

a
ll

the sets in F is not empty .

PROOF . Suppose X is not compact ; then there is an open cover U of X

which has no finite subcover . Set F = { F : F ' E U } ; F is a family of
closed sets . If { F1 , F2 , . . . , Fn } is any finite subfamily o

f
F , the collec

tion

U
1
= { Fi ' , Fz ' , . . . , Fn ' }

is a finite subfamily o
f
U . Since U
i
is not a cover of X , there is a point

XE X such that

x & F ( i = 1 , 2 , . . . , n ) .

Clearly ,

x E Fin F2 n . . . n Fn ,

and F has the finite intersection property . Since U is a cover o
f
X , each

point x E X is contained in some U EU ,and , consequently , x $ U ' E F .

Thus n
o point o
f
X is contained in a
ll

the setsFE F ;

n { F :FEF } = 0 .

Now suppose X is compact , and le
t
F b
e
a family o
f closed sets such

that

n { F : F E F } = % .

Then

U = { U : U 'EF }
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is an open cover of X and , since X is compact , there is a finite subcover
{U1, U2, . . . , Un }. Set

F; = U : (i = 1, 2, . .. , n );
then

ņ F:)' = Y (F :) = Y (U :) = X .
Thus, ^ Fi = Ø a

n
d

does not have the finite intersection property « .

The statement o
f

Theorem 5 . 1 is useful in proving certain existence
theorems . Suppose X is compact and that we want to prove the existence

o
f
a point x E X which satisfies a
n infinite number o
f given conditions .

That is ,we want to prove that the conditions are consistent . If , for each
one o

f

the conditions , the set of points satisfying that condition is closed ,

and if each finite collection o
f

the conditions is consistent , then Theorem

5 . 1 asserts that there is a point which satisfies all the conditions .

In a compact subset o
f
a metric space , convergence of sequences is

somewhat well behaved , as the following theorem shows .
Theorem 5 . 2 If A is a compact subset of a metric space X and ( xn ) is a

sequence in A , then some subsequence of ( xn ) converges to a point of A .

PROOF . B
y

Problem 19c , Section 8 - 2 , it is sufficient to show that there is a

point Xo E A such that ( xn ) is frequently in each open set containing x
o .

The proof is b
y

contradiction . Suppose that no such point X
o

exists ;
then for each point x 6 A there is an open se

t

Ur containing x such that
Uz contains only a finite number of the points in the sequence ( xn ) . The
family

U = {Uz : X E A

is a
n open cover o
f

the compact set A , so there is a finite subcover , say

{U1 , U2 , . . . , Um } . Since each set in this finite subcover contains only a

finite number o
f

terms o
f

the sequence ( xn ) , there is only a finite number

o
f

the terms of this sequence in the union

UUUU . . . U Um .

But this is absurd ,because ( xn ) is in A , and A is a subset o
f

this union « .

Theorem 5 . 2 gives the intuitive meaning of the term “ compact . ” T
h
e

term should mean that the points o
f the se
t

a
re

somehow " jammed
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closely together ,” and Theorem 5 .2 asserts that every sequence has a
convergent subsequence; that is , a subsequence whose terms get “ close ”
to something and , consequently , get close to each other . Theorem 5.2 is
stated as an implication and not asan equivalence . It is also true that if
A is a subset of ametric space such that every sequence in A has a subse
quence which converges to a point of A , then A is compact . (For a proof ,

se
e
(Ref . 19 , Theorem 4 . 16 , p . 109 ) ] .

The concept o
f compactness is a topological one ; in fact , just as with

connectedness , compactness survives under even more general transfor
mations than homeomorphisms .

Theorem 5 . 3 Let X and Y be topological spaces ; le
t
f : X → Y be a con

tinuous transformation and let A be a compact subset o
f
X ; then f ( A ) is a

compact subset o
f
Y .

PROOF . If V = { V : V E V } is any open cover of f ( A ) , then

U = { f - ( V ) : V EV }

is a
n open cover o
f
A . Since A is compact , there is a finite subcover

{ f - 1 ( V : ) : i = 1 , 2 , . . . , n }

o
f
U . It follows that

{ V ; : i = 1 , 2 , . . . , n }

covers f ( A ) and is a finite subcover of V « .

We have seen that the metric space R is not compact ;however , there
are some important compact subsets of R .

Theorem 5 . 4 In the space R , the set

I = { x : 0 < x < 1 }

is compact .

PROOF . Let U = { U : U E U } be an open cover of I ; we shall show that

U has a finite subcover . The idea is that we shall start a
t
0 and see how

fa
r

we can advance toward 1 b
y

using a finite number o
f

sets in U . If

w
e

can reach 1 , we shall have achieved our goal . For each b E I , se
t

Io = { x : 0 < x < b }

and define

B = { b : b E I and a finite number o
f

sets in U cover Is } .
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UC

bro
FIGURE 5 .1

Evidently , 0 E B ; no negative number is in B (since none is in I) ; and , if
CE B and 0 < b < c, then b E B. Thus B is an interval. Let the real
number r be the right-hand end point of B ( there must be a right -hand

end point, since B C I) ; we shall show that y = 1. If not , le
t
U , be a

member o
f
U such that rEU . (Fig . 5 . 1 ) . Choose two points b and c in

U ,with b < r < c . Then b E B so there is a finite subfamily

{U1 , U2 , . . . , Un }

o
f
U which covers 1b . But then

{ U , U2 , . . . , Un , Uo }

covers Ic , which contradicts the definition of r as the right -hand end point

o
f
B . Thus r = 1 .

Wehave proved so far that B is an interval with end points 0 and 1

and 0 E B . This leaves two possibilities : either

B
i
= { x : 0 < x < 1 } o
r

B , = { x : 0 < x < 1 } .

It can be seen , as above , that B cannot be B , since if u has a finite sub
cover fo

r
Io whenever b E B
2 , then , b
y

adjoining one more set o
f

U ,

we could obtain a finite cover o
f I itself . Thus B = B1 , and the theorem

is proved « .

The compact subsets o
f
R are further discussed in Problem 5 .

Let X and Y be metric spaces with X compact . In this case , a con
tinuous transformation f : X → Y satisfies a condition which is , in general ,

somewhat stronger than continuity . Recall that f is continuous iff , for

every e > 0 and every x
o
E X , there is a d > 0 such that if x is d -near to Xo

then f ( x ) is e -near to f ( xo ) . We have seen (Example 3 . 5 in Chapter 7 )

that , in general , 8may depend o
n both X and e . If X is compact , 8 can b
e

chosen to depend o
n

e alone , and the same value of 8 will satisfy the con
dition for all points x

o

E X . We shall prove this theorem only in the

special case where

X = 1 = { x : 0 < x < 1 } .
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Theorem 5 .5 Let Y be ametric space and le
t
f : 1 — Y be a continuous

transformation . For any e > 0 there is a 8 > 0 such that if a and b are
points of I and la – b < 8 , then f ( a ) and f ( 6 ) are e -near to each other .

PROOF . Let e > 0 be given . Since f is continuous , w
e

may find , for each

* E I , an open ball B . = B ( x ; rx ) such that every point of f ( Bx ) is

-near to
f
( x ) . Thefamily

B = { B . z : X E I }

is a
n open cover o
f

the compact set I ;choose a finite subcover

B
i
= { B 2
4 : i = 1 , 2 , . . . , n } .

Now (Problem 6 ) choose 8 > 0 so that if a and b are points of I and

la – 6
1

< 8 , then there is one of the sets

B
2

( i = 1 , 2 , . . . , n )

which contains both a and b . If a and b are any points of I and

la – 61 < 8 , choose x ' so that a and b are both in Bz ' and denote the
distance function in Y b

y
e . We find that

e ( f ( a ) , f ( b ) ) = e ( f ( a ) , f ( x ' ) ) + e ( f ( x ” ) , f ( b ) ) < $ + * = € ,W
IN

which is the required conclusion « .

PROBLEMS

1 . ( a ) Prove that , in the space of Example 3 . 1 , every subset is compact .

( b ) Prove that , in the space o
f Example 3 . 2 , every subset is compact .

( c ) Which subsets o
f

the space o
f Example 3 . 4 are compact ?

2 . Let X be a topological space and le
t
A b
e
a subset of X . Prove that A is

compact if
f , whenever F is a family o
f

closed sets such that every finite

intersection o
f

sets o
f
F meets A , then the intersection o
f

all the sets of F

meets A .

3 . ( a ) Prove that , in a metric space , every compact se
t

is closed .

( b ) Give a
n example o
f
a compact subset A o
f
a topological space such

that A is not closed .

4 . Prove that a closed subset o
f
a compact se
t

is compact .

5 . ( a ) Prove that every compact subset o
f

the metric space R is closed and
bounded .
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(b ) Let a and b be any points in R ; prove that {x : a < x < b } is compact .
(c) Prove that a subset A of R is compact if and only if A is closed a

n
d

bounded .

6 . Let I = { x : 0 < x < 1 } be a subset of the metric space R and le
t

B = { B ( x
i ; ri ) : i = 1 , 2 , . . . , n }

be a cover of I composed of a finite number of open balls . Show that there

is a 8 > 0 such that if a and b are points of I and la – 61 < 8 , then there is

one o
f

the open balls

B ( x
i ; ri ) ( i = 1 , 2 , . . . , n )

which contains both a and b .

7 . Check th
e

result o
f

Theorem 5 . 5 in the case where Y = R and f : 1 → l ' is

defined b
y

f ( x ) = ( 4x – 192

Given € > 0 , find a value of 8 > 0 such that the condition o
f the theorem is

satisfied .

8 - 6 Complete Sets

The concept o
f completeness (defined below ) is applicable in metric

spaces ,but not in all topological spaces ; therefore , al
l

the spaces discussed

in this section will be metric spaces . A special property o
f sequences will

b
e

needed to define completeness .

A sequence ( xn ) in a metric space X is a Cauchy sequence if
f , given any

€ > 0 , there is a positive integer n
o such that every two points in the

sequence beyond the noth are e -near to each other . Using d for the dis
tance function in X , we ca

n

state the requirement after “ such that ” in

this definition a
s follows : If n > no and m > No , then d ( xn , xm ) < € . The

idea o
f

the definition is that , if € > 0 , then eventually the points o
f

the

sequence are e -near to each other . A metric space X is complete if
f

every Cauchy sequence in X converges to a point o
f
X . A subset A CX

is complete if
f every Cauchy sequence in A converges to a point o
f
A .

Example 6 . 1 Let X = { x : x > 0 } be the se
t

o
f all positive real numbers , and

define

d ( x , y ) = \ x – yl .
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Set Xn = 1/ n ; then (xn) is a Cauchy sequence , but there is no point of X to
which this sequence converges . Thus X is not complete .

Example 6 .2 Let X be any se
t

and , fo
r
x E X , y E X , define

d ( x , y ) = if x = y .

if x + y .

Then X is a metric space . If ( xn ) is a Cauchy sequence in X , then , eventually ,

every pair o
f points of the sequence must be t -near to each other ; but two

points in X ar
e
4 -near iff they are the same point . Thus , every Cauchy se

quence in X must eventually b
e
in a singleton . Evidently such a sequence

does converge ; the space X is complete .

Intuitively , something is complete if there is nothing missing that
should b

e

there . ” The definition o
f
a complete space requires that , for

every sequencewhose points are suitably near to each other , there must be

a point in the space to which the sequence converges . This is a quite
reasonable interpretation o

f
“ n
o points are missing that should b
e

there . ”

Example 6 . 1 shows that a Cauchy sequence may not converge ; the
following theorem states that a convergent sequence must be a Cauchy

sequence .

Theorem 6 . 1 If the sequence ( xn ) converges to x in themetric space X ,
then ( 4n ) is a Cauchy sequence .

PROOF . Let e > 0 be given . Since X
o
n

→ X , the sequence is eventually in

th
e

open ball B = B ( x ; ; ) . The proof is completed b
y

noting that a
n
y

two points of B are e -near to each other « .

w
s

Theorem 6 . 2 A compact subset of ametric space is complete .

PROOF . Suppose A is a compact subset o
f

the metric space X , and let

( xn ) be a Cauchy sequence in A . By Theorem 5 . 2 , some subsequence o
f

( xn ) converges to a point o
f
A , and this implies (Problem 4 ) that ( xn )

converges to the same point « .

Example 6 . 3 The metric space R is complete , but not compact . We have seen

in Section 8 - 5 that R is not compact ; it remains to prove that R is complete .

Le
t
( xn ) b
e
a Cauchy sequence in R and take ε = 1 . From the Cauchy condi

tion , there is a positive integer n
o

such that , fo
r
n > n
o , xn is 1 -near to Xno . Set

I = { x : Xno – 1 < x < X
n
o
+ 1 } ;
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then I is a compact subset of R (Problem 5c , Section 8 -5), and I is complete by
Theorem 6.2. The Cauchy sequence

( xn
o , * not1 , . . . )

is in 1 ; thus some subsequence of this sequence converges to a point o
f I , and

the result follows .

Wehave seen thatboth connectedness and compactness are preserved
under continuous transformations . This is not true of completeness . In

fact , completeness is not even a topological concept , as the following
example shows .

Example 6 . 4 Let R be the metric space of the real numbers and le
t

I = { x : - 1 < x < 1 } ,

with the distance in I defined b
y

d ( x , y ) = ( x – yl .

Then R is complete (Example 6 . 3 ) ; but I is not complete , since the sequence

( 1 – 1 / n ) is a Cauchy sequence in I , which does not converge to a point of I .

But the transformation f : R ~ I defined b
y

f ( x ) = 11

is a homeomorphism (Problem 5 ) . Thus R and I are topologically equivalent
spaces ;one of them is complete and the other is not ; it follows that complete
ness is not a topological property .

There are many important theorems concerning complete spaces .

The completeness o
f
R asserts the existence o
f
a real number which is th
e

limit o
f

the sequence

( 1 . 4 , 1 . 41 , 1 .412 , . . . ) .

If we define the nth term o
f this sequence to b
e the largest rational

number , with denominator 1
0
" , whose square is less than 2 , then it is

quite easy to prove that the number which is the limit of this sequence

must have it
s square equal to 2 . Moreover , V2 is not a rational number ;

thus , the completeness of R implies the existence of irrational numbers .

In fact , one of the standard procedures fo
r

constructing the real numbers
from the rational numbers is b

y

means o
f
a process called completion b
y

Cauchy sequences , butwe shallnot discuss this process here .



8–6 / Spaces 175

PROBLEMS

1. In the metric space R , which of the following sequences (xn ) are Cauchy
sequences ? For each of these Cauchy sequences , find the point to which it
converges .

(a ) Xn = 1/n . (f) Xº = n
1
0
/ n ! .

( b ) Xn = ( - 1 ) " ( 1 / n ) . ( g ) Xn = n / ( n + 1 ) .

( c ) Xn = 1 + ( - 1 )̂ ( 1 / n ) . ( h ) Xn = n2 / ( n + 1 ) .

( d ) Xn = ( - 1 ) " ( 1 – 1 / n ) . ( i ) Xn = n / ( n2 + 1 ) .

( e ) Xn = n . ( j ) Xn = sin n .

2 . Which of the following subsets of R are complete ?

( a ) The set o
f

a
ll

rational numbers .

( b ) The set of al
l

irrational numbers .

( c ) I = { x : 0 < x < 1 } .

( d ) N = { 1 , 2 , 3 , . . . } .

( e ) T = { 2 } .

( f ) The empty se
t
Ø .

3 . ( a ) Prove that every closed subset of a complete space is complete .

( b ) Prove that every complete subset o
f
a metric space is closed .

4 . Prove that if ( xn ) is a Cauchy sequence in a metric space X and if some
subsequence o

f
( xn ) converges to a point x E X , then the sequence ( xn )

converges to x .

5 . Prove that the transformation f : R → I in Example 6 . 4 is a homeomorphism .

6 . Define X
n

to b
e

the largest rational number , with denominator 10 " , whose
square is less than 2 .

( a ) Prove that ( Xn ) is a Cauchy sequence .

( b ) Prove that the equation x
2
= 2 is satisfied b
y

the real number x to

which the Cauchy sequence ( xn ) converges .
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