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Preface

This book has evolved from successive revisions of notes
used to teach a one-quarter course in topology to students
with a background in elementary calculus; additional
material has been included to make the text suitable for a
one-semester course. The course is being taught at Oregon
State University at the sophomore-junior level. Topology
is presented here from the intuitive, rather than the axio-
matic viewpoint. Some concepts are introduced, discussed
and used informally, on the basis of the student’s experi-
ence; formal definitions of these concepts are given only
when it appears that the intuitive basis is not sufficiently
precise. For example, no definition is given for ordinary
three-dimensional space, although this space figures promi-
nently in many of our examples; sets are used informally
before the more formal discussion in Chapter 6; the Jordan
curve theorem is used several times without reference be-
fore the presentation of a special case in Chapter 3.

In this brief course it is impossible to develop all the
aspects of topology; rather, the student is introduced to a
few selected topics so that he can get some feeling for the
types of results and the methods of proof in the discipline.
A brief discussion of methods of proof in mathematics, in-
cluding mathematical induction, is presented in Chap-
ter 0. It may be best to use this material for reference as
the course progresses rather than to discuss it before the:
student has seen the need for these methods of proof. Ini-
tially, topology is thought of as “rubber sheet geometry”’;
Chapters 1, 2 and 4 are concerned with some problems
dealing with networks and maps. All of these problems
are easily stated and understood, but some of them are still
unsolved even after considerable effort by first-rate mathe-
maticians extending over many years. Chapter 3 gives
some practice in recognizing topological equivalence of
figures, but still entirely from an intuitive viewpoint.

Go 3lc



viii Preface

Chapter 5 presents a proof of the Jordan curve theorem for the special case
of a polygon. This theorem is of basic importance in the topological study of
the plane and the student can appreciate that different axiomatic foundations
are possible for this study. Chapter 6 gives an introduction to set theory.

The last chapters form a major portion of this introductory course. In
Chapter 7, transformations are discussed, a topological transformation, or
homeomorphism, is defined, and Brouwer’s fixed point theorem is proved,
contact with the student’s previous experience being maintained by frequent
reference to familiar functions. The index of a transformation is defined and
this concept is used to prove the fundamental theorem of algebra. In Chapter 8
the intuitive concept of three-dimensional space is generalized to give a defini-
tion of a metric space; a further generalization yields a definition of a topologi-
cal space. Many examples are included. The last three sections of Chapter 8
discuss connectedness, compactness and completeness.

Many books and papers have been of assistance in the preparation of this
text. Several of the problems and some of the proofs are based upon material
from these sources. Fig. 2-3.12 is from Burton W. Jones, Elementary Concepls
of Mathematics (New York: Macmillan, 1947); Fig. 3-2.5 b is from M athematics
and the Imagination, copyright 1940 by Edward Kasner and James Newman,
by permission of Simon and Schuster, Inc. They are reproduced here with the
kind permission of the copyright holders.

The author is particularly indebted to Professor Harry E. Goheen, Miss
Patricia Prenter, and Professor Sheldon T. Rio, each of whom read the

manuscript at some stage and offered valuable suggestions. Of course, the

author alone is responsible for any remaining errors.

Three special notational symbols are used. Problems whose results are
referred to later in the text are marked with “#”; especially difficult problems
are marked with an asterisk “*” The symbol “«” is used to indicate the
end of a proof.

B. H. ARNOLD

Go glc
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ZERDO

Statements and Proofs

in Mathematics

0-1 Statements

We shall not enter into a philosophical discussion
of the meaning of truth and falsity, but shall
consider that the meanings of these words are
known. We define a statement to be any collec-
tion of symbols which forms a meaningful-
assertion and which has the property that this
assertion is either definitely true or definitely
false, but not both.

Example 1.1 Each of the following three items is a
statement:

(a) George Washington was a traitor.

(b) 242 =4

(c) The moon is made of green cheese.

Go glc
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6 Statements and Proofs in Mathematics / O—1

Each of these sentences is true. Notice that if we were concerned with
complex numbers instead of real ones, the first sentence would be false,
but the second one would still be true. Evidently sentence (1) could also
be phrased: If x is a real number, then 2 > —1. Sometimes the reader is
expected to understand, from context or experience, part of the condition
involved in a quantifier. Thus, if the context indicated that real numbers
were under consideration, the sentence (1) above could be written simply
as

For all , 22 > —1.
Three other forms which have exactly the same meaning are
For any x, 22 > — 1.
For each z, 22 > — 1.
For every x, 2 > — 1.
Similarly, in suitable context, sentence (2) could be written as
There is an x such that 22 > — 1.
Three other forms with exactly the same meaning are
There exists an x such that #2 > — 1.
For some «, 22 > — 1.
For at least one x, 2 > — 1.

No confusion seems to arise in connection with sentences formed by
applying a single quantifier to an expression involving a single variable,
but students frequently have difficulty understanding what is meant
when two different quantifiers are applied successively to the same
expression. There is a convention (explained below) which is of consider-
able help in interpreting such expressions. For example, consider the
following two sentences:

For any positive number x there is a positive number y
such that a2? — 9% > 0.

There is a positive number vy such that,
for any positive number #x, 22 — 32 > 0.

These two statements are not the same. We make the convention that
the order in which the variables are mentioned in the sentence gives the
order in which their values are chosen or determined. Thus, in the first
sentence above, x is mentioned first and y second. This means that the

Go 3lc



0-1 / Statements and Proofs in Mathematics 7

value for x is chosen first and then, knowing the choice that was made
for x, a value for y is chosen. Of course, there is another difference in the
two choices: we must try all possible values for x, whereas we need only a
single value for y, and this value for y may change when x changes. It is
easy to see that the first statement is true. No matter what positive
number z is chosen, we may choose y to be 4x; this value of y is a positive
number and, with these values,

¥ — 9 =u? — fa? = Fa2 > 0.

Now let us consider the second of the sentences above. In this
sentence y is mentioned first and x second; thus y must be chosen first and
this choice is known when we are choosing x. Again, a single value of y
will suffice, but we must use every possible choice for x. This second
statement is false. It is not possible to choose one single value of y so
that, keeping y fixed and equal to that value, and using all possible
values of x in turn, it will always be true that 2 — > > 0. In fact,
suppose someone suggests the positive number y, as a value of y; one of
the values of ¥ which must be considered is 4y, and, with these values,

-y =h-%=—15<0.

The preceding examples illustrate the procedures used in giving proofs
of statements involving quantifiers. Notice that if we are considering a
statement of the form, “For all , . .. ,” in order to prove that the state-
ment is true it is necessary to consider each value of x in turn or else to
give an argument which is valid for every allowable value of x. To prove
the statement is false, it is sufficient to find one single allowable value of x
for which the condition represented by the three dots is not satisfied.
Such a value for z is called a counter example to the statement.

If we are considering a statement of the form, ‘“There is an x such that
...,” in order to prove that the statement is true it is sufficient to give a
single example of an allowable value for x such that the condition repre-
sented by the three dots is satisfied. A proof that the statement is false
would require the consideration of every allowable value for «.

One further word of caution is required. It sometimes happens that a
quantifier is supposed to be understood from the context but is not
actually written. For example, the equation

n(n +1)

1+2+..+n=—2_

would probably be taken to mean:

Go 3lc



Further practice on the convention in connection with the order of
mention of variables and on proofs of quantified statements is supplied in |

Statements and Proofs in Mathematics / 01 -

1
For all positive integersn,1 +2 +--- +n = W

the problems. It is vitally necessary that the student thoroughly under- |
stand this convention; it will be used throughout this text. (Caution:
Not all authors conform to this convention.)

PROBLEMS

1. Which of the following are statements? Of the statements, which are true?
In some instances it may be necessary to make certain assumptions from ‘
experience, or about the context in which a sentence occurs. If this is neces- '
sary, make the assumptions, but notice that you are making them.

(@) 1+2=23.

®) A+[J=o0.

(¢) I am beautiful.

(d) How nice!

(e) I am beautiful or I am ugly.

(f) I am beautiful and I am ugly.

(g) If I am beautiful then I am ugly.

(h) I am beautiful iff I am ugly.

(i) The 10,000th digit in the decimal expansion of w is a 3.

() The digit 3 occurs an infinite number of times in the decimal expansion

of .

k)
@
(m)
()
(0)
®)
Q)
(r)
(s)
)
(w)
v)
(w)
(x)
)
(z)

If that’s true, I’m a monkey’s uncle.

If there is life on Mars, then this course is interesting.

Let there be peace.

T am over seven feet tall unless I am older than 200 years.
To be over seven feet tall it is sufficient to be older than 200 years.
None but 7-footers are over 200 years old.

All 7-footers are over 200 years old.

If2+4 2 =4, theneither3+2=50r34+6=17.
Either34+ 6 =7o0rif2+4+2=4then3+ 2 = 5.
If242=4thenboth3+2=5and3+6=17.
3+6=7andif2+2=4then3+4+2=35.
If3+4+6=7thenboth2+2=5and3+2=35.
3+2=5andif34+6=7then2+ 2=35.
If2+2=4and3+6=7then2+2=35.
If24+2=40r3+6=7then2+4+2=35.
If24+2=40r34+6=7then3+2=5and2+2=35.

Google



0-1 / Statements and Proofs in Mathematics 9

2. In each of the following cases tell exactly what is meant by the statement and
decide whether the statement is true or false. Use the convention explained
in the text with regard to order of mention, and note any additional assump-
tions you make from experience or context.

(a) For every man there is a perfect wife.

(b) There is a perfect wife for every man.

(c) For every x there is a y such that x + y = 5.

(d) There is a y such that, for every x, x + y = 5.

(e) For every x there is a y such that xy = «.

(f) There is a y such that, for every x, xy = .

(g) For every day there is a day which follows it.

(h) There is a day which follows every day.

(i) For every number x, (0 < x < 1) there is a number y (1 <y < 2)
such thatx + y < 2.

(j) There is a number y (1 < y < 2) such that, for every number
r(0<zx<l),z+y<2

(k) There is a number ¥ (1 <y < 2) such that, for every number
r(0<zx<1),z+y< 2

(1) For every father there is a child such that, if the child is more than 10
years old, then the father is more than 20 years old.

(m) There is a child such that, for every father, if the child is more than 10
years old, then the father is more than 20 years old.

(n) There is a child such that if the child is more than 10 years old, then
every father is more than 20 years old.

(0) Foreveryx (0 < x < 1) thereisay (1 < y < 2)suchthat,if 0 <z <y
thenx + 2 < 2.

(@) There is a y (1 <y < 2) such that, for every x (0 <x<1), if
0<z<ythenx+2z<2

(@) For every real number x, and every & > 0 there is a § > 0 such that, if
|x — x| < 8, then |22 — af| < e.

(r) For every ¢ > 0 there is a 8 > 0 such that, for every real number x,,
if [x — x| < &, then |«? — xf| < e.

(s) For every real number %, and every ¢ > 0 there is a § > 0 such that, if
[x — x| < 8, then |2x — 2xg| < e.

(t) For every e > O there is a > 0 such that, for every real number o,
if ]x — x9| < 8, then |2x — 2x| < e.

#3. Let p, ¢, and r be any given statements; prove that each of the statements
listed below is equivalent to each of the others. (Hint: Use truth tables to
show that if any one of these statements is true, then all are true and if
any one is false, then all are false.)

(@) If p theng.

Go 3]0



10 Statements and Proofs in Mathematics / 0~

(b) If not ¢ then not p.

(¢) If p and not ¢ then q.

(d) If p and not ¢ then not p.

(e) If p and not ¢ then 7 and not .

0-2 Proofs

A great many of the theorems in mathematics can be phrased in the form
of an implication: If p then ¢. In this section we present several possible
procedures for proving such an implication. Only the general methods of
attack will be discussed; the student is presumed to be familiar with the
validity of individual steps in a proof.

With p and ¢ being given statements, we know, of course, that “if
p then ¢” is a statement. How might we prove that it is a true state-
ment? The third column in the truth table in Fig. 1.3 shows that there is
no need to consider any cases in which p is false since, in those cases, “if
p then ¢” is true no matter what statement is used for g. Thus we may
confine our attention to the cases in which p is a true statement; that is,
we may start with the hypothesis that the statement p is true. But, in
these cases, Fig. 1.3 shows that the implication “if p then ¢” is true in
exactly the same circumstances that ¢ is true; that is, we would like to
reach the conclusion that g is true. We see, then, that one possible pro-
cedure for proving the implication “if p then ¢’ is to start with the state-
ment p as being true by hypothesis and to deduce that g is true; any valid
steps may be used in this deduction. A proof which follows this procedure
is called a direct proof of the implication ““if p then ¢.”

Example 2.1 Give a direct proof of the implication: If # is an odd integer, then
7? is an odd integer.

Proor. We have, by hypothesis, that # is an odd integer; hence » — 1 is an
even integer. Thus #(» — 1) is an integer, say

dn—1)=m.
Solving this equation for »# gives
n=72m++1,
and squaring both sides of the equation gives
= (2m + 1) = 2(2m? + 2m) + 1.

But this last form shows that #? is an odd integer and the proof is complete«.

Go glc



)2 / Statements and Proofs in Mathematics "

We have already noticed that if two statements are equivalent then a
proof of either of these statements must be accepted as a proof of the
other also. Problem 3 of Section 0-1 lists 5 statements, each one of
which is equivalent to the implication “if  then ¢.” Moreover, each of
these statements is in the form of an implication, so it is possible that
we might be able to give a direct proof for one or another of these impli-
cations. A direct proof for any one of the implications (b) to (e) in
Problem 3 of Section 0-1 is called an indirect proof of the implication
“if p then ¢.” Such proofs are also sometimes called proofs by contra-
diction, especially those based on the implications in one of the forms
(b), (@), or (¢). Various special names are used for particular types of
indirect proofs, but we shall not go into these details.

Example 2.2 Give an indirect proof of the implication: If # is an integer whose
square is even, then # is even.
ProoF BY CONTRADICTION. Let p be the statement

n is an integer whose square is even

and let ¢ be the statement
7 is an even integer.

In this notation, we are asked to give an indirect proof of the implication
If p then g.
We shall give a direct proof of the implication
If not ¢ then not p.
This implication, when written out in full, becomes

If » is not an even integer,
then 7 is not an integer whose square is even.

For the proof we have, by hypothesis, that # is not an even integer; we
consider two cases.

Caske 1. The object # is not an integer. In this case, evidently # is not one
of the integers whose square is even, since # is not an integer at all.

Cask 2. The object n is an odd integer. In this case #?is also an odd integer
(Example 2.1); so again # is not an integer whose square is even®.

Note: Most of the material in the proof of Example 2.2 would usually be
left for the reader to supply. The entire proof would usually appear as follows:

Proor BY CONTRADICTION. Given that # is an odd integer, it follows (Example
2.1) that #? is also odd .
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12 Statements and Proofs in Mathematics / 0-2

The reader should recognize that several steps have been omitted in
this shorter version and he should be able to supply these steps on request.
Example 2.3 Prove that 4/2 is irrational.

ProoF BY CONTRADICTION. Suppose /2 is rational; then it can be expressed
as a fraction in lowest terms, say

where 7 and m are integers which have no common factor except one. Then
n = /2m or, if we square both sides of this equation,

n? = 2m?.

Thus # is an integer whose square is even and, by Example 2.2, n is even.
Setting #» = 2r and substituting in the above equation, we find (2r)? = 2m?, or

2r2 = m?,

But this shows that 7 is an integer whose square is even; hence m is even, which'
contradicts the statement that #» and 7 have no common factors except one®&. |

The discussion of this proof is left as an exercise (Problem 11).

PROBLEMS

Directions for Problems 1 through 10. Prove each of the implications in Prob-
lems 1 through 10 and discuss your proof. Is your proof direct or indirect?
If indirect, which one of the forms in Problem 3, Section 0-1 is being used? Try :
to give several different proofs for the same implication. Does one proof seem
easier or more natural? Note any assumptions you are making from experience
or context.

1. If2?—~3x+2=0,thenx=2o0rx= 1.
. If x = 3, then 42 4+ 2x — 15 = 0.
a2+ 4x+ 1 =0, then x < 5.
. If x> 0, thenx* — 2x 4+ 2> 0.

S e W N

. If AB and CD are two distinct lines in a plane and each of these lines is
perpendicular to a given line in that plane, then A B and CD are parallel.

6. If two sides of a triangle are equal, then the angles opposite these sides are
equal.

Go 3lc



0-3 / Statements and Proofs in Mathematics 13

7. If two sides of a triangle are unequal, then the angles opposite these sides
are unequal.

8. Ify=2*and1 <y <4, thenx <2
9. Ifx2?+ 9+ 22=0,thenx =0andy = 0and z = 0.
10. If x = 2 and 2% 4+ 2x%y — 3y* = 0, then y # x.

11. Discuss the proof given in Example 2.3. Is it direct or indirect, etc.?
(Hint: First phrase the theorem that is being proved as an implication.)

12. Examine several proofs of mathematical theorems. Are the theorems stated
as implications? If not, could they be conveniently stated in that form?
Are the proofs direct or indirect? Which of the forms of Problem 3, Section
0-1 are used? (Perhaps some other form will be used; not all possibilities
are listed in Problem 3, Section 0-1.)

0-3 Mathematical Induction

The methods of proof discussed in Section 0-2 are available for use in
proving any implication. Of course, one method may be more convenient
than another and we may very well try all the methods and fail, but each
of the methods is a possibility for constructing a proof of a particular
implication. In this section we shall describe a method of proof which is
applicable only to a very special type of theorem. The method is quite
important, because this special type of theorem occurs frequently in
mathematics.

We consider a theorem T and an infinite collection of theorems T},
Ty, Ts, . . . such that the theorem T is true if and only if every one of the
theorems 7'y, Ts, T, . . . is true. That is, T is equivalent to

Tyand T;and Tsand . ...

The theorems T of this type frequently, but not always, state that
some condition involving a variable # is satisfied whenever # is a positive
integer.

Example 3.1 The theorem
T:  If nis a positive integer

_ n(n+ 1)

thenl1+4+2+4---+n 2

Google



14 Statements and Proofs in Mathematics / 0-3

can be expressed as

T =2

1. - 2

2-3

and T,: 1+2=—2—
3-4

and T3:1+2+3=T

and

How might we try to prove such a theorem? The theorem T" might
be in the form of an implication (Example 3.1), so one of the methods of
Section 0-2 might be used. But, because T can be expressed as

Tiand T;and Tsand .. .,

there is a different method which is available. This method is called .
mathematical induction. We shall first explain the steps which must be
performed in giving a proof by mathematical induction; then we shall
illustrate by carrying out these steps for the theorem in Example 3.1; and
then we shall present some reasons why it is plausible to accept the per-
formance of these steps as a proof of the theorem T. There are two steps
in a proof by mathematical induction:

STEP 1. Prove the theorem 7).

STEP 2. Prove the implication: T implies Ti1.

Comment on Step 1. Any applicable method may be used in proving
the theorem T,;. It frequently happens that T is a very simple result |
which can easily be proved or, perhaps, is already known. |

Comment on Step 2. There are two points to be noticed in connection
with Step 2. First, it is the implication “if T then T:y,”” which we |
are required to prove. We are not concerned with whether or not T is |
true; only that every single time T is true it follows that T4, is also true. |
In proving this implication the methods of Section 0-2 would probably '
be of use. Second, we must be sure that the proof we give for the impli- -
cation “If T then T, is valid for every positive integer k. That is, we |
must prove at the same time every one of the following implications:

If T1 then Tz.
If T2 then T3.
If T; then T,.
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The necessity for this requirement will be clear when we discuss the
plausibility of accepting Steps 1 and 2 as a proof of the theorem T.

Example 3.1 (continved) Prove that if # is any positive integer then

_rnt 1)

14+2+34+n -

Proor BY MATHEMATICAL INDUCTION. We have seen in Example 3.1 above
that this theorem T can be expressed as 77 and T2 and T3 and . ... All that
remains is to carry out Steps 1 and 2.

STEP 1. The theorem T} is
1= L2
2

and this result is completely trivial.
SteEP 2. We must prove the implication “If T} then Tiy:” where T} is the
statement

_ k(k+1)

1+2+3+---+k )

and Tiyq is the statement

(k+DE+2)

142434 +k+Ek+1)= >

We shall give a direct proof of this implication. Accordingly, we confine our
attention to the cases in which T} is true; i.e., we start with the hypothesis
(called the induction kypothesis)

_kk+1)

14243+ +k ;

But then

k(k
1+2+3+~~+k+w+4)=ij}944k+n

=k®+1%+%b+ﬂ=(h+0@+2%
2 2

and the implication is proved. Notice that the proof is valid for every positive
integral value of k«.

We come now to the interesting question: Why is it plausible to accept
Steps 1 and 2 as a proof of the theorem T'? In a rigorous development it
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16 Statements and Proofs in Mathematics / 0-3

is frequently taken as an axiom that Steps 1 and 2 do, indeed, constitute
a proof of the theorem T. However, it is important that each student
should have an intuitive feeling for what is being accomplished by Steps 1
and 2; we shall, therefore, discuss the plausibility of accepting these steps
as a proof instead of merely stating, axiomatically, that we shall do so.

We know that the theorem T is true if and only if every one of the
theorems T, T2, T, . . . is true. What information do Steps 1 and 2 give
us about these theorems? Let us make a list of the ones which Steps 1
and 2 show to be true. Step 1 shows that T is true, so we may put T,
on our list. Part of what we proved in Step 2 is

If T, then Ts;

thus, since T} is already on our list, T; can be added. But part of what
we proved in Step 2 is

If Tz then Ta,

thus, since T is already on our list, Ts can be added. Again, part of what
we proved in Step 2 is

If T3 then T4;

thus T can be added to our list. ..., etc.,,.... The list of theorems
which Steps 1 and 2 show to be true, therefore, contains all of the theorems
T, T,,Ts,. .. ;and this means that the theorem T is true.

We can now see why it is important that the proof we give in Step 2
should be valid for every positive integral value of k. In order to be sure
that our list contains all of the theorems T, T3, T3, ... we must use,
successively, every one of the implications

If T1 then Tz.
If Tz then Ts.
If Ts then T4.

Thus we must be sure that the proof in Step 2 really does prove every one
of these implications; i.e., it must be valid for all positive integral values
of k.

Example 3.2 If n is any integer larger than 3, then 2" < n!

Proor BY MATHEMATICAL INDUCTION. We are to consider the values # = 4,
5,6,...;so the theorem T which we have to prove easily breaks up into the
following infinite collection of theorems:
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Ti: 2°< 4!
T,: 2°<35!
T3: 28 < 6!

Ty 2049 < (k + 3)!
Tk+1: 20+ < (k + 4)'

Thus our theorem is one to which mathematical induction is applicable.
(These preliminaries are usually not given in a proof by mathematical induction,
but the student should convince himself in each case that the theorem is one to
which mathematical induction applies.)

STEP 1. We must prove that 2¢ < 4! But this is just the statement 16 < 24,
which is well-known to be true.

StEP 2. We must prove the implication

If 2488 < (k + 3)! then 2¥ < (k + 4)!
We shall give a direct proof; we have, therefore, by the induction hypothesis,
208 < (k4 3)!

But, for any positive integer k, 2 < k + 4. Multiplying corresponding mem-
bers of these inequalities, we obtain

2- 288 =P < (k4 3)I(k+4) = (k+ 4)!
which is the required result «.

There is a somewhat different procedure which is also acceptable as a
proof of a theorem of the type we have been discussing. This procedure
also goes by the name of mathematical induction. We shall call it mathe-
matical induction, Type 2, to distinguish it from the former version,
Type 1; we shall explain the steps which must be performed in this pro-
cedure and shall illustrate them by carrying out the steps in Example 3.3
below. It is left as an exercise (Problem 12) to discuss the plausibility of
accepting this procedure as a proof. We shall need both of these types of
mathematical induction in our discussion of maps.

Let Ty, T, T3, . . . be an infinite collection of theorems and let T be a
theorem which is true iff every one of the theorems T, T, T3, . . . is true.
The following two steps are acceptable as a proof of the theorem T

Step 1. Prove the theorem 7).
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StEP 2. Prove the implication
If Tyand Ty and Ts and . . . and T, then T.

Comment on Step 1. This is the same as Step 1 in Type 1 induction;
it can be shown that Step 1 is not actually necessary in mathematical
induction, Type 2, but we shall not go into the matter here. (Caution:
Step 1 4s necessary in Type 1 induction.)

Comment on Step 2. Again, Step 2 is to prove a certain implica-
tion. We are not concerned with whether or not the separate theorems
T,, T, etc. are true; all we need to do in Step 2 is to prove that the impli-
cation stated is true. As with Type 1 induction, we must be careful that
the proof we give for the implication in Step 2 is valid for any positive
integral value of k. In comparing this Step 2 with the Step 2 in Type 1
induction, we see that, in Type 1, we prove each of the theorems T, T,
T, . . . (except the first) from the hypothesis that the particular theorem
just before it is true. In Type 2, we prove each theorem from the hypoth-
esis that every one of the theorems before it is true.

Example 3.3 If » is an integer larger than 1, then either # is a prime or # can |
be expressed as a product of primes.
Proor BY MATHEMATICAL INDUCTION. We shall use Type 2 induction; the |
student should convince himself that this theorem is one to which mathematical
induction is applicable. |

StEP 1. We consider the value #» = 2; since 2 is a prime, the theorem is
true in this case. ;

StEP 2. We consider an arbitrary integer 7, > 1. By the induction hy-
pothesis, each integer m such that 1 < m < n4 is either a prime or a product of |
primes; we must prove that #, is a prime or a product of primes. The proof is
made in two cases.

CaSE 1. The number 7, is a prime. In this case the implication is evidently
true.

CASE 2. The number 74 is not a prime. In this case 7o has a positive inte-
gral factor p such that 1 < p < m. Thusn = p- g where each one of p and ¢
is an integer larger than 1 and less than n#o. By the induction hypothesis, each .
of p and ¢ is either a prime or a product of primes. Thus # is a product of
primes«.

PROBLEMS

Directions for Problems 1 through 11. Use mathematical induction to prove
each of the results in Problems 1 through 11. Which type of induction seems
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>3 / Statements and Proofs in Mathematics 19

most natural in each case? Try to prove each result without using induction.

1

10.

11,

13.

If » is any positive integer then

SN SRS S
1-2 3 nn+1) n+1

2.3

. If n is any non-negative integer then 2" > z.

. In any convex polygon with # sides the sum of the angles is ( — 2)180 deg.

(Hint: By a theorem of plane geometry the sum of the angles of a triangle
is 180 deg.)

. Let n be a positive integer; in any set of # real numbers there is a largest

one.

. For any positive integer »

1-3+2-4+3-5+---+n(n-|—2)=§(n+1)(2n+7).

. If n is an integer larger than 1, then the maximum number of points of inter-

section of # distinct lines in a plane is 4z (z — 1).

. If »n is any positive integer then

_n(n+ 1)2.

B4+ 28434 428 1

. If # is an integer greater than 1, then the number of prime factors of # is

less than 2 log, n.

. If » is a non-negative integer, then #? < 4». [Hint: First prove (without

using induction) that, for any positive integer %, 2n + 1 < 3n2.]

If » is any positive integer, then ¢ — b is a factor of ¢" — . [Hint:
a* — b = (a" — ba"™') + (ba*! — b*).]

If » and m are any positive integers, prove that there is a non-negative
integer ¢ and an integer » such that 0 <7 < m and » = mg + 7. Prove
also that the integers ¢ and r are uniquely determined by # and m.

Discuss the plausibility of accepting the procedure of mathematical induc-
tion, Type 2 as a proof the theorem T.

Discuss the following “proof” of the (false) theorem: If # is any positive
integer and S is a set containing exactly # real numbers, then all the num-
bers in .S are equal.
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Proor BY INpucTION. STEP 1. If # = 1 the result is evident.
SteP 2. By the induction hypothesis the result is true when n = k; we must|
prove that it is correct when # = k + 1. Let S be any set containing ex
actly k¥ + 1 real numbers and denote these real numbers by @y, a2, a3, - ..,
Gk, Grq1. If we omit g,y from this list, we obtain exactly k numbers a,, a., ...,
ax; by the induction hypothesis these numbers are all equal.

|

G =08 ="' = by |

If we omit g, from the list of numbers in S we again obtain exactly k num

bers a,, a3, - - -, ai, ary1; by the induction hypothesis these numbers art

all equal. |
G=0=: " =& = G

It follows easily that all ¥ + 1 numbers in S are equal «.



What is Topology?

1-1 A Glance at Euclidean Geometry

A formal definition of topology is given in Section
7-3; an intuitive feeling for the subject will suffice
for the present. This intuitive feeling can be
developed by noticing the similarities, and the
differences, between topology and ordinary (Eu-
clidean) high school geometry.

Euclidean geometry is the study of certain
properties of figures in a plane or in space. Not
all properties of a figure are of interest — only
the “geometric” properties. But how can we tell
whether or not a certain property is a geometric
one? For example, we might notice the follow-
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26 What is Topology? / 1-2

shape of a circle, it is not possible to make it into a knot just by stretching
it, but it is quite easy to obtain the knotted curve by first cutting the
rubber band, then tying the knot, and finally joining the two ends as they
were before. Since these manipulations are allowed under what we have
called an elastic motion, the two curves are topologically equivalent.
Other examples are given in the problems.

|

|

!

(a)

Hemisphere with Square disk pierced
tangent segment by line segment

P (b) @
Three line segments A circle and radius

meeting at a point

These figures are composed of lines and
curves only; no surfaces are included

N %

Each of these figures is composed of a single
area (shaded) together with some lines or curves

FIGURE 2.5

\/

Go 3lc



1-2 / What is Topology? 27

PROBLEMS

1. (a) For each of the properties 2, 4, and 5 noted in connection with Fig. 1.1,
find a triangle congruent to the one shown, which does not have the property.
(b) Find an elastic motion of the plane of Fig. 2.1a which will arrange that
the point B is closer to the curve C than 4 is.

Directions for Problems 2 and 3. Several properties are noted for each of
Figs. 2.3 and 2.4. Which are geometric properties? Which are topological
properties?

2. The following properties refer to Fig. 2.3.
(@) The curves C, and C, intersect.
(b) The curves C; and C; are perpendicular.
{(c) The curves C, and C; are not tangent.
(@) The point A4 is on the curve C,.
(e) The point A is not on the curve C,.
(f) The point A is below the curve C,.
(8) The curve C; is concave toward the point A.

3. The following properties refer to Fig. 2.4.
(@) The figure consists of a square and a circle drawn in a plane.
(b) The figure consists of two curves drawn in a plane; one of them has four
corners and the other one is smooth.
(c) The area enclosed by the curve S is smaller than the area enclosed by

the curve C.
(d) The area enclosed by the upper curve is smaller than the area enclosed

by the lower curve.
(e) The curves S and C do not intersect.
(f) No point is enclosed by both the curves S and C.

#4. Four pairs of figures are shown in Fig. 2.5. Which of these pairs of figures
are topologically equivalent?
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TWO

Networks and Maps

2-1 Traversability of Networks

The city of Konigsberg (now called Kalinin-
grad) in East Germany stands where the New
Pregel and Old Pregel Rivers join to form the
Pregel River; there is an island formed at the
point of confluence. In the eighteenth century
there were seven bridges, as shown in Fig. 1.1
(two more bridges have since been built). It
was asked whether or not it would be possible to
make a walking tour of Konigsberg and cross
each of the bridges exactly once. This question,
along with many related problems, was settled
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2-1 / Networks and Maps 31

Before we continue with Euler’s solution, it will be convenient to have
some general terminology which will also be of interest in other con-
nections.

A network is a figure (in a plane or in space) consisting of a finite,
non-zero, number of arcs, no two of which intersect except possibly at
their end points. The end points of these arcs are called vertices (singular:
veriex) of the network. Figure 1.2 shows an example of a network with
seven arcs and four vertices. Other examples of networks are shown in
Fig. 1.3. The points which are vertices are depicted by enlarged dots

FIGURE 1.3 Ex-
amples of Networks

) L
2%
Ay OO0
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32 Networks and Maps / 2-1

in this figure. We shall not always use this convention and, when it is not
used, it is sometimes necessary to decide somewhat arbitrarily which
points are vertices. For example, in Fig. 1.3b the points 4 and B must be
vertices; any of the other points could have been chosen as vertices.

The order of a vertex in a network is the number of arc ends at that
vertex. A vertex is odd or even iff its order is odd or even, respectively.
In Fig. 1.2, each of the vertices 4, B, and D is of order 3; vertex C is of
order 5; each of the four vertices is odd. In Fig. 1.3e, the only vertex is
evén, and of order 2, since there are two arc ends at the vertex. In fact,
these two arc ends are the two opposite ends of the same arc.

The total number of arcs in a network could be any positive integer;
similarly, the total number of vertices is unrestricted. On the other hand,
each arc has two ends, so the total number of arc ends is twice the number
. of arcs, and hence is even. But the total number of arc ends in a network
_ is the sum of the orders of all the vertices of the network; thus, in any net-
work, the sum of the orders of all the vertices of the network must be a
positive even integer. The possibility of arbitrarily choosing both the
number of arcs and the number of vertices of a network is considered in
Problem 6.

A path in a network is a sequence of different arcs in the network
that can be traversed continuously without retracing any arc. That is,
each arc of the sequence must have one of its arc ends considered as the
initial end and the other as the terminal end. The same vertex must be at
the terminal end of the first arc and the initial end of the second arc;
similarly, the terminal vertex of the second arc must be the initial vertex
of the third arc, and so on. A vertex of an arc of a path is called a vertex
of the path. The initial vertex of the first arc of a path is the initial
vertex of the path; the terminal vertex of the last arc of a path is the
terminal vertex of the path. A path is closed iff its initial and terminal
vertices are the same point. Paths are sometimes designated by listing
the succession of vertices along the path. Such a designation may be
ambiguous; for example, there are 4 different paths in the network of
Fig. 1.2 which could be designated by ACBACD. When an unambiguous
notation is required, points which are not vertices are included to indicate
exactly which arcs form the path under consideration.

Example 1.1 In Fig. 1.4, there are two different paths which .are denoted
by ABC; only one of these is denoted by 4 DBC.

Example 1.2 The path ADBCA (Fig. 1.4) is made up of the arcs ADB, BC,
and CA. The vertex A is both the initial and terminal vertex for the path;
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34 Networks and Maps / 2-1

It follows that
D—N=2n+2n +4n +4n; + - - -,

so that D — N is an even number. Also, D is an even number since each
arc has exactly two ends; thus, D — (D — N) = Nisevena.

A path in a network is said to ¢raverse the network iff every arc of the
network is included in the path. A collection of several paths in a net-
work traverses the network iff each arc of the network is included in
exactly one of the given paths. ‘

The question about the Kénigsberg bridges can now be phrased: Is .
there a path which traverses the network of Fig. 1.2? The next four
theorems describe the conditions under which a network can be traversed
by one, or several, paths. :

Theorem 1.2 If a network has more than two odd vertices, it cannot be
traversed by a single path.

Proor. We shall prove the equivalent result: If a network can be tra-
versed by a single path, then, with the possible exception of two of the
vertices, each vertex of the network is even. Let a1, a2, ..., @, be a
sequence of arcs forming a path which traverses a given network, and let 4
be any vertex of this network except the initial and terminal vertices of
this path. The initial and terminal vertices of the path may coincide or
they may be distinct. We shall show that 4 is an even vertex of the net-
work. Imagine a point which starts at the initial vertex of @, and moves
along g, to its terminal vertex (which is also the initial vertex of a,),
and then moves along a, to its terminal vertex (which is also the initial
vertex of a@;), etc. until it finally arrives at the terminal vertex of a,.
Each time this point passes through the vertex A4, it accounts for two arc
ends at A — one on which to arrive and one on which to leave. Thus, the
total number of arc ends at A must be even, and 4 is an even vertex of the
network «.

Theorem 1.3 If a connected network has no odd vertices, then it can be
traversed by a single path. Moreover, the initial vertex 4, of the path
can be chosen arbitrarily, and the first arc of the sequence forming the
path can be chosen as any arc ¢, of the network having 4, as one of
its vertices.
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Proor. Given a network containing the arc 4, with initial vertex 4,, let
4, be the terminal vertex of @, (4, and 4, might be the same point), and
form a sequence of arcs in the network as follows: Let a; be any arc of the
network different from @, and having A, as one of its vertices; take 4,
as the initial vertex of a, and let A, be its terminal vertex. Let a; be any
arc of the network different from @, and a,, and having A4, as one of its
vertices; take A, as the initial vertex of 4, and let A4, be its terminal vertex,
and so on. This process, when continued as far as possible, produces a
sequence @i, @, . . . , @, of distinct arcs which forms a path in the network.
If the terminal vertex A, of the arc a, were different from the vertex A,,
the path a,, a,, . . . , @, would account for an odd number of arc ends at 4.
(two arc ends for each passage through 4, and one more as the terminal
vertex of the arc a.). Since every vertex of the network is even, there
would be an arc of the network different from a,, a,, . . . ; a., and having
A, as one of its vertices, and the process could be continued. Thus, when
the process is continued as far as possible, 4, must be the same as 4, and
the path a,, a,, . . ., @, is closed.

If the path a,, a,, ..., a. traverses the entire network, the proof is
complete; if not, since the network is connected, there is some arc &
different from a,, as, . . . , @,, and such that one of the vertices B, of b, is a

vertex-of the path @y, as, . . . , a.;say By = A,. Start again with the arc b,,
using B, as its initial vertex, and form a closed path consisting of a se-
quence by, bs, ..., bn of arcs, each different from the others and also
different from ay, as, . . . , @,.. Join the two closed paths into one by form-
ing the sequence A

1,82 ...,85 b1, by ..., b, Gpi, - .., Gp

The terminal vertex of a, is the same as the initial vertex of b, and the
terminal vertex of b, is the same as the initial vertex of ¢,,, so this se-
quence is a path. If this enlarged path traverses the entire network, the
proof is complete; if not, the path can be still further enlarged. Since
there is only a finite number of arcs in the network, repeated enlargements
must eventually produce a path which traverses the entire network
(Problem 11 is concerned with the logical structure of this proof) e.

Theorem 1.4 If a connected network has exactly two odd vertices, it

can be traversed by a single path whose initial and terminal vertices are
the two odd vertices of the network.
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40 Networks and Maps / 2-2

which is topologically equivalent to some network in a plane is called a
planar network. Thus Fig. 2.1 shows that the network of the edges of a
tetrahedron is planar. If the entire surface of a tetrahedron is to be con-
sidered, as well as the edges, it cannot be represented topologically by |
Fig. 2.1, since, in that figure, a single point in the plane would represent |
two points in different faces of the tetrahedron.

An interesting example of a non-planar network is the gas-water- y
electricity network shown in Fig. 2-2. It shows the connections required
to supply each of three utilities (gas, water, and electricity, represented |
by the points G, W, and E) to each of three houses (represented by the |
points 4, B, and C).

FIGURE 2.2 |

Theorem 2.1 The gas-water-electricity network is non-planar.

Proor. We must show that no elastic motion of the network shown in
Fig. 2.2 will place this network in a plane. The proof is by contradiction.
Suppose there were such an elastic motion; then it would carry the
six arcs AG, GB, BW, WC, CE, and EA into a curve which completely
surrounds a portion of the plane (Fig. 2.3). Of the remaining three arcs,
AW, BE, and CG, one would have to be placed inside this curve and a
second one outside, and no matter how this is done, it is impossible to
place the last of the three arcs in the planea.

A rigorous proof of Theorem 2.1 requires results about theta curves
which are beyond the scope of this text [see Ref. (28)).

Theorem 2.2 The network in which each of 5 vertices is joined by an arc
to each of the other 4 vertices (Fig. 2.4) is non-planar. This network is
called the complete network on 5 points.

ProoF. Problem 2«.
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2-3 / Networks and Maps 43

(e) The legs, rungs, slats, perimeter of the seat, etc. of a chair.

(f) The edges and the diagonals of the faces of a cube. (Notice that the
diagonals of any one face intersect; this intersection is, of course, a vertex.)
(8) The edges, the diagonals of the faces, and the body diagonals of a cube.
(h) The edges and body diagonals of a cube.

(i) The edges and body diagonals of a regular octahedron.

2. Prove Theorem 2.2.

3. Can the gas-water-electricity network (Theorem 2.1) be drawn on the sur-
face of a sphere? On the surface of a doughnut?

4. Can the complete network on five points (Theorem 2.2) be drawn on the
surface of a sphere? On the surface of a doughnut?

2-3 The Four Color Problem

How many colors do you need to color a map? No one knows for sure!
We shall prove in this section that every map in a plane can be colored
with five colors, but no one has found an example of a planar map which
requires five colors — in each example that has been examined it has been
possible to color the map with only four colors. Several excellent mathe-
maticians have given considerable thought to this question, but nobody
has been able to prove that four colors are always sufficient.

Before we begin the proof of the five color theorem, it will be necessary
to understand very clearly what a planar map is, and what conditions are
imposed on the coloring of a map. A map is a network, together with a
surface which contains the network. If this surface is a plane, the map
is called a planar map or a map in a plane; several examples are shown in
Fig. 3.1. Only planar maps are considered in this section. Maps in more
general surfaces will be discussed in Chapter 4.

The distinction between a planar network and a planar map may
appear at first to be a minor one, but this is not the case. The entire view-
point is changed; this change is emphasized by using, in connection with
maps, notation and terminology which is somewhat different from that
which we have used in our work on networks. The main interest in a
network is focused upon the arcs of the network, with the vertices playing
a subordinate roll. In a map, the main interest is centered on the portions
into which the surface is divided by the arcs of the network, with the
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HAO®©

(b)

(g)

(f)
FIGURE 3.1 Examples of Maps in a Plane.

network itself playing a subordinate roll. In an ordinary map in an atlas,
these portions of the surface are the states or countries shown by the
map; in the general case, these portions of the surface are called the faces
of the map. In an ordinary map in an atlas, we shall count the portion
of the plane outside the map as one of the faces of the map; thus, in a
plane, one of the faces of a map will be unbounded. The arcs and vertices
of the network are called edges and vertices of the map, respectively; the
edges which form the boundary of a particular face are called the edges of
that face. Usually, the edges in a map are edges of two different faces,
but Figs. 3.1e and 3.1h show that it is possible for an edge to be an edge
of only one face.

In coloring a map, two faces which have an edge in common must be
colored with different colors; if two faces have only vertices, or no bound-
ary points in common, they may be colored the same color. For example
in the map in Fig. 3.1a, the four quarters of the square could be colored
with only two colors since the same color could be used for diagonally
opposite quarters. The region exterior to the square would have to be
colored a third color.

We are now ready to start toward the five color theorem. Several
auxiliary results will be needed for the proof; the first of these results will
also be useful in other situations. A map is connected iff the network of
the map is connected. In any connected, planar map, there is a relation-
ship among the numbers of vertices, edges, and faces of the map, as shown
by the following theorem.
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2-3 / Networks and Maps 45

Theorem 3.1 (Euler) If V, E, and F are, respectively, the numbers of
vertices, edges, and faces of a connected planar map, then V — E +
F=2.

Proor. It is intuitively evident that any connected map in a plane can be
built up by starting with a single edge and performing a succession of the
following three operations.

(i) Add a new edge joined at one end only;
added: 1 vertex, 1 edge, no faces.

(ii) Add a new vertex in an existing edge;
added: 1 vertex, 1 edge, no faces.

(iii) Add a new edge joined at both ends;
added : no vertices, 1 edge, 1 face.

When we start with just one edge there are two possibilities; either
there are two vertices and one face or there are only one vertex and two
faces; in either case,

V—-_E4F=2

Now notice that none of the three operations described above makes any
change in the sum V' — E + F since each adds one edge and either adds a
vertex and no faces or adds a face and no vertices. Thus, with V, E, and
F being, respectively, the number of vertices, edges, and faces in the com-
pleted map, we still will have

V—-—E+F =2«.

A map is regular iff each vertex is of order 3. The maps shown in
Fig. 3.1b and Fig. 3.1d are regular. In a regular, connected map, the
following lemma shows that at least one face must be relatively simple.

Lemma 3.2 Any regular, connected map in a plane has at least one face
with five or fewer edges.

Proor. In a regular, connected map with V vertices, E edges, and F
faces, let #; (¢ = 1,2, 3,...) be the number of faces with 7 edges. Then
the total number of facesis#; + %2 + 73 + - - - so that

m+n,+mn+---=F. (1)

Second, each edge has exactly 2 ends, and there are exactly three arc ends
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at each vertex. Thus, each of the numbers 2E and 3V gives the total
number of arc ends in the map, and these two expressions must be equal.

2E = 3V. @)

Third, each edge in the map is either an edge of only one face, or it is an
edge of exactly two faces. Thus, if we find the number of edges in each
face and add all these numbers, some edges may be counted once, and
some twice, but no edge will be counted more than two times. The n;
faces, each of which has one edge, account for #, edges; the n, faces, each
of which has two edges, account for 2, edges, and so on; hence,

m +2n +3n + - - - < 2E. ©)
By Theorem 3.1, we have
V—-E+F=2. “)

From Egs. (2) and (4),
12 = 6V — 6E + 6F = 4E — 6E + 6F = — 2E - 6F,
so 6F = 12 + 2E. But this result, combined with Egs. (1) and (3), gives

6m +6m +6ms + - >12 4 m 420, +3m5 - - -
or

Sny +4ny +3n + 204 +1m5 — 07 — 205 — - - - > 12,

Since, for each 4, the number of faces with 7 edges is either positive or
zero, at least one of #, to n; must be positive; that is, there is at least one
face with five or fewer edges«.

We can now prove a result of the type we have been expecting. It
deals with the coloring of certain special maps in a plane, and six colors
are allowed. Later, we will be able to reduce the number of colors to five,
and remove the restrictions on the maps.

Lemma 3.3 Any regular connected map in a plane can be colored with
six colors.

Proor. The proof is by induction on the number of faces in the map.
Any map with six or fewer faces can certainly be colored with six colors.
Consider a regular connected map with » faces, n > 6, and suppose that
every regular connected map with fewer than » faces can be colored with
six colors; it will suffice to show that this map can be colored with six
colors. By Lemma 3.2, there is at least one face f of this map which has

Google



‘Original from
UNIVERSITY OF MICHIGAN

Digitized by G()Og[e

916006-pd#asn ssadde/ba0"3snaiTyrey mmm//:dily / paz1ithip-21boon ‘utewoq 2T19nd
GE9Z00ZO0STO6E " dpuw/Lzoz/32u d1puey 1py//:sdily / IW9 6T1:9T 80-70-ZZOT UO PJ0oJX0 JO ALTSISATUN 1B paledausy



9 ©0C
A

FIGURE 3.3

and in Problem 2 above. (Note: For the induction step in the proof of
Lemma 3.3, we considered maps with more than six faces, but, for sim-

plicity, the ones pictured in Fig. 3.3 have fewer faces.) ‘

(b) The induction step in the proof of Lemma 3.3 cannot be performed with
the maps shown in Figs. 3.3c, 3.3f, and 3.3g. Why does it fail for these
maps? Prove that this induction step can be performed with any regular,
connected, planar map having more than two vertices.

6. Prove that there cannot be more than five regular solids. (Hint: Consider
the network of the edges of the solid. If each vertex is of order # and each
face is a polygon with m sides, show that nV = 2E = mF, then use Euler’s
theorem.)

6. (a) Prove that in any regular connected map there are an even number of
vertices.
(b) Prove that if » is any positive even integer, there is a regular connected
map with » vertices.

7. In the proof of Lemma 3.3, why is the network still connected after the edge
¢ is removed?

8. Draw a map in which no face has fewer than six edges.
Now that we have seen that six colors are sufficient to color any

regular connected map, our next task is to show that the same result can
be accomplished with only five colors.
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face fi must appear on both sides of e and, in this face, we may draw a
curve C, such as the dashed curve in Fig. 3.4, which goes from one side of ¢
to the other. If there is only one face of the map enclosed within C,
then this face must have only one edge, as shown in Fig. 3.5, and this
situation has been considered in Case 1. Similarly, Case 1 arises if there is
only one face of the map which lies entirely outside C.

If there are at least two faces of the map inside C and at least two
outside C, the original map can be replaced by two separate maps, as
shown in Figs. 3.6a and 3.6b. These two maps are obtained by cutting
the edge e at the point P (Fig. 3.4) where it intersects C, thus disconnect-
ing the network; we consider the two maps formed by the separate pieces

FIGURE 3.6
N face 7, tace 7, il
P P
A B
/7 AN
d (a) (b) N

of the network. Each of the two new maps is made regular by the addi-
tion of a loop at the point where ¢ was cut. In Fig. 3.6a the face f; has
been enlarged to include everything that was inside C in Fig. 3.4 (except
for the new face inside the loop); similarly, the face f; in Fig. 3.6b includes
almost everything that was outside C in Fig. 3.4. Now, in making each
of these new maps, at least two faces of the original map were included in
the face f1, and only one new face was added by the loop, so each of these
maps has fewer faces than the original map. By the induction hypothesis,
each of these separate maps can be colored. Color them so that the
face f, is the same color in the two maps; a coloring of the original map in
Fig. 3.4 can be obtained by putting together the two maps of Fig. 3.6
and shrinking the loops to a point.

Cask 3. The removal of any one edge does not disconnect the map,
and there is a face f with five edges. In this case no edge can have the
same face on both sides of it, since its removal would then disconnect the
map. Thus, the face f has five edges, as shown in Fig. 3.7, and each of the
edges ei, e,, €, €, ¢; has a face different from f on the other side of it.
Denote by f; the face on the other side of .
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52 Networks and Maps / 2-3 |

cause, for example, the points A and B may be joined by going around
the edge of the old face fi. This new map has two fewer faces than the
original one; hence, by the induction hypothesis, the new map can be
colored with five colors. But then the original map can also be colored
with five colors, because, when the edges e, and e; are replaced, the faces
/1 and f, having no edge in common, can be allowed to remain the same
color and there will be at most four different colors used for the five faces
fir fo, f3, fu, f5, leaving at least one of the five colors available for the
face fea.

It is now quite easy to prove the five color theorem; all that is needed
is to remove the two restrictions of regularity and connectedness on the
maps which are under consideration.

Theorem 3.5 Any map in a plane can be colored with five colors.

Proor. First consider any connected map in a plane. We can obtain a
regular connected map by ‘“blowing up” each vertex which is of order
n # 3 into a small face with # edges.  Figure 3.9 illustrates the process

— O —O—

Order 1 Order 2 Order 5

Obtaining vertices of order 3 from
vertices of orders 1,2, and 5

FIGURE 3.9

for vertices of orders 1, 2, and 5. Since, by Lemma 3.4, the resulting
regular connected map can be colored with five colors, we can obtain a
coloring of the original connected map merely by shrinking to a point
each one of the small faces which were added. This shrinking process
makes no change in the edges which are common to two different faces of
the original map, so the coloring remains satisfactory. Therefore, any
connected map in a plane can be colored with five colors.
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12.

14,

Prove the following statement made in connection with Fig. 3.4 in the
proof of Case 2, Lemma 3.4: If there is only one face of the map enclosed
within C, then this face must have only one edge.

. Prove the following result, which was used in the proof of Case 3, Lemma

3.4: If an edge e of a map has the same face on both sides of it, then the
removal of e will disconnect the map.

Prove the following statement made in connection with Fig. 3.8 in the
proof of Case 3, Lemma 3.4: The points 4 and B may be joined by going
around the edge of the old face f;.

*16. Show that it is not possible to draw a map in a plane in which five of the

16.

faces have the property that each of them has an edge in common with each
of the other four. Why doesn’t this prove the four color theorem? (Hint:
Remember that the complete network on five points cannot be drawn in a
plane.)

Show by an example that; for any positive integer #, it is possible to have »
solids in three-dimensional space, each of which has an area (face) in com-
mon with each of the others. Thus the immediate generalization of the
four color problem to volumes in three-dimensional space is uninteresting.
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THREE

Topological Equivalence
in
Three-Dimensional Space

3-1 Topological Equivalence

A solid ball is topologically equivalent to a solid
cube, or to any regular solid. As mentioned in
Chapter 1, two figures in three-dimensional
Euclidean space are called topologically equiva-
lent iff there is an elastic motion which will make
one of the figures coincide with the other. Of
course, if we are presented with two physical
objects, one of which is a solid rubber ball and
the other a solid wooden cube, we cannot make
the rubber ball “coincide” with the wooden cube.
If we try to do so, they bump into each other and
the rubber ball flattens out against the outside of

Go 3lc
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3—2 / Topological Equivalence in Three-Dimensional Space 63

(0) A solid in the shape of a heavy leather glove for the left hand.

(@) A plain solid gold ring.

(q) An annulus (the portion of a plane which lies between two circles which
are in that plane and have the same center and different radii).

(r) The entire surface of a phonograph record.

(s) The network of Fig. 1.4a.

(t) The network of Fig. 1.4b.

b. Block letters are shown in Fig. 1.5. Arrange the letters in groups, so that
all the letters in the same group are topologically equivalent, and letters in
different groups are not topologically equivalent.

3-2 Classiflcation of Surfaces

Every schoolboy knows that an ordinary piece of paper has two sides;
sometimes he must write only on one side, and sometimes he may write
on both sides. In this section we shall see some examples of surfaces
which have only one side, but first we must describe a little more in
detail exactly what surfaces we are considering.

A surface should be “two-dimensional,” like a plane or a sphere; but
what about a sphere with a spine sticking out (Fig. 2.1a) or two tangent
spheres (Fig. 2.1b); are these surfaces? In this section we consider a
special type of surface called a manifold. A manifold is a connected sur-
face (i.e., a surface ““all in one piece”) such that, sufficiently near to each
point, the surface is topologically equivalent to an open disk. That is,
for each point p of the surface, all of the points of the surface sufficiently
near to p form a set topologically equivalent to an open disk. The set of
all points of the surface near to p is called a neighborhood of p.

Neither of the surfaces shown in Fig. 2.1 is a manifold. In Fig. 2.1a,
the points on the spine do not have satisfactory neighborhoods, and in
Fig. 2.1b the surface is not topologically equivalent to a disk near the
point of tangency of the two spheres. ,

A surface is bounded iff the entire surface is contained in some open
ball. A torus is a bounded surface; a plane is not a bounded surface. If
we consider a particular piece of a surface, the boundary of that piece is
defined to be the curve which separates that piece from the rest of the
surface. For example, consider a disk as a portion of a plane; the bound-
ary of the disk is the circle which encloses it; the boundary of an annulus
in a plane consists of two circles. Notice that the boundary of a piece
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66 Topological Equivalence in Three-Dimensional Space / 3—2

is sometimes convenient, since it will lie flat on a desk and all of one side
of the surface can be seen at once.

Suppose that one of the arrows in Fig. 2.2 is reversed, as shown in
Fig. 2.3a. If one end of this rectangle is given a half twist and the ends
are then joined so that the two segments labelled 4B coincide, with the
two arrows pointing in the same direction, a manifold called a M&bius
strip (Fig. 2.3b) is obtained. As with Fig. 2.2, the horizontal line seg-
ments at the top and bottom of Fig. 2.3a must be excluded from the
surface to obtain a manifold. However, these line segments no longer
reptesent two circles; here they represent two halves of the same simple
closed curve. A Mobius strip has only one side. To see this, imagine a
fly which starts at the point P and crawls along the curve C on the surface,
returning to P along the dotted portion of C. Since the fly does not go
through the surface, nor around the edge of the surface, it must be on the
same side of the surface all the time. But it appears to return to the
point P on the “other side” of the surface from where it started. Thus,
what appear to be two different sides of the surface at P are really just
two different pieces of the same side of the surface. Notice that one-
sidedness is an extrinsic, rather than intrinsic, property of a surface.
That is, the test as to whether or not a surface is one-sided is not carried
out entirely on the surface, but instead use is made of the space around
the surface. In our example with the fly, we have implicitly agreed that
if the fly walks with his feet always on the surface, and does not cross any
edge of the surface, then all the points through which his head moves
must lie on the same side of the surface. If the surface is a Mobius strip,
the fly can move his head from any point near the surface to any other
point near the surface. Hence, all points are on the same side of the
surface, and the surface is one-sided. Problems 5 through 9 are concerned
with an intrinsic property of surfaces which is closely allied to one-
sidedness.

FIGURE 2.3 Mé&bius Strip

8 A

T |

(a) (b)

Google



‘Original frem
UNIVERSITY OF MICHIGAN

Digitized by G()Og[e

916006-pd#asn ssadde/ba0"ysnaiTyiey mmm//:dily / paz1ithip-21boo9g ‘utewoq 2T19nd
GE9Z00ZOOSTO6E " dpw/Lzoz/32u d1puey 1py//:sd1ly / 1IW9 6T:9T 80-70-ZZOZ U0 Pl0o4X0 JO ALTSISATUN 1B palelaudy



‘Original frem
UNIVERSITY OF MICHIGAN

Digitized by G()Og[e

916006-pd#asn ssadde/ba0"ysnaiTyiey mmm//:dily / paz1ithip-21boo9g ‘utewoq 2T19nd
GE9Z00ZOOSTO6E " dpw/Lzoz/32u d1puey 1py//:sd1ly / 1IW9 6T:9T 80-70-ZZOZ U0 Pl0o4X0 JO ALTSISATUN 1B palelaudy



Original frem
UNIVERSITY OF MICHIGAN

Digitized by G()Og[e

916006 -pdgasn ssadde/Huo 1sniiTyiey -mmm//:dizy / pazrithrp-216009 ‘utewoq dT1qnd
GE9Z00ZOOSTO6E "dpu/Lzoz/32u"d1puey 1py//:sdily / LW 6T:9T 80-70-7ZOZ U0 pJoyxQ 40 AITSIaATUN 1B paledaudy



‘Original from
UNIVERSITY OF MICHIGAN

Digitized by G()Og[e

916006-pd#asn ssadde/ba0"3snaiTyrey mmm//:dily / paz1ithip-21boon ‘utewoq 2T19nd
GE9Z00ZO0STO6E " dpuw/Lzoz/32u d1puey 1py//:sdily / IW9 6T1:9T 80-70-ZZOT UO PJ0oJX0 JO ALTSISATUN 1B paledausy



Original frem
UNIVERSITY OF MICHIGAN

Digitized by Google

21b006-pdgasn ssadoe/Huo 1snuiTyrey mmm//:diyy / pazrithip-916009 ‘utewoq d114nd

GE9Z0AZOOSTO6E "dpw/Lz0T/13u"21puey 1py//:sdiy

/ LW9 6T:9T 80-%0-7ZOZ UO pJoyxQ 40 AITSISATUN 1@ palelaudn



‘Original frem
UNIVERSITY OF MICHIGAN

Digitized by G()Og[e

916006-pd#asn ssadde/ba0"ysnaiTyiey mmm//:dily / paz1ithip-21boo9g ‘utewoq 2T19nd
GE9Z00ZOOSTO6E " dpw/Lzoz/32u d1puey 1py//:sd1ly / 1IW9 6T:9T 80-70-ZZOZ U0 Pl0o4X0 JO ALTSISATUN 1B palelaudy



FOUR

Maps on a Sphere
with Handles

4-1 Introduction

In Section 2-3 we defined a map as a network
together with a surface which contains the net-
work, and we discussed some properties of maps
in a plane. In Chapter 3 we discussed more
general surfaces and stated that any closed two-
sided surface is topologically equivalent to a
sphere with some number of handles. In this
chapter we shall discuss maps on these more
general surfaces. Since the four color problem
in the plane is still ursolved, it might be sus-
pected that very little would be known about
coloring maps on these more general surfaces.
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74 Maps on a Sphere with Handles / 4-2

Surprisingly enough, the map-coloring problem has proved to be easier,
on these more general surfaces. The solution to the map-coloring prob-
lem on a torus is presented in Section 4-4.

4-2 Simply Connected Sets

In any map on a given surface, the faces of the map are the separate
pieces into which the surface is divided by the arcs of the network of the.
map. Thus any face of a map is a connected piece of a surface. Such a
connected piece is called simply connected iff every simple closed curve in
that piece can be deformed into a point in the piece; that is, during the
deformation the curve must remain in the piece.

Figure 2.1a illustrates the fact that a disk is a simply connected set;
any simple closed curve C, in the disk, can be deformed into a point in the
disk. On the other hand, an annulus, or ring-shaped region (Fig. 2.1b), is
not simply connected, since the curve C cannot be deformed into a point
without leaving the region. A plane and a sphere are also examples of
simply connected sets; a torus is not simply connected. Notice that the
deformation of a'curve into a point is not an elastic motion because dis-
tinct points of the curve are made to coalesce into the same point.

Of course, even in a connected set which is not simply connected,
there may be some simple closed curves which can be deformed into a
point in the set. If there were some way to change the set so that only

FIGURE 2.1

(a) (b)
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4-3 / Maps on a Sphere with Handles 79

Another interesting result which can be obtained from these considera-
tions is given in the following theorem.

Theorem 3.2 Each face of a map on a sphere is simply connected if and
only if the map is connected.

Proor. Given any map on a sphere in which the face f is not simply
connected, we prove that the map is not connected. In fact, there is a
simple closed curve C lying entirely inside f (C contains no points of the
network), and C cannot be deformed into a point in f. Now if C is
removed from the sphere, there remain two areas 4, and A4, of the sphere,
and since C can be deformed into a point in either one of these regions, it
follows that neither 4, nor A4, can be completely contained in f. Let us
denote by A; either of the areas 4, or 4,, We have shown that 4;
contains points of f and also points of some other face of the map; hence
4; must contain a portion of the network forming the boundary between
two faces. But if any point on a particular arc of the network lies in 4;,
the entire arc must lie in 4;, because the boundary curve C of 4; contains
no points of the network. Thus 4; contains an entire arc of the network
and must, therefore, contain a vertex of the network. Let g; be a vertex
of the network contained in 4; (z = 1,2). No path in the network has
both @, and a, as vertices, since such a path would have to cross C, and
this proves that the network is not connected.
The proof of the converse is left as an exercise (Problem 3) «.

Theorem 3.2 shows that for connected maps on a sphere, the faces
are simply connected; the same result is not true of connected maps in a
plane, nor is it true of connected maps on a sphere with p handles
(p > 0). However, Euler’s theorem can be extended to maps on a
sphere with handles if the hypothesis that the map is connected is re-
placed by the requirement that each face be simply connected.

Theorem 3.3 (Euler) If a map on a sphere with p handles has V vertices,
E edges, and F faces, and if each face is simply connected, then

V—E+F=2-2p

Proor. Before beginning the proof we make two preliminary comments.

First, notice that the equation we are to prove expresses a topological
property of the map. In proving this result we are free to change the
map by any elastic motion, and, if we can demonstrate that the equation

Go glc



80 Maps on a Sphere with Handles / 4-3

is correct for the changed map, it must also be correct for the original
map. Some of the elastic motions we shall use in the proof will leave the
entire surface in the same shape and position, but will stretch or shrink
certain faces of the map so that some individual points will be moved toa
different place on the surface. We shall describe these elastic motions as
“sliding the network around on the surface” but, of course, in the actual
elastic motion, the surface must slide along with the network.

Second, notice that we may alter the map (the network or the surface)
in any way we wish so long as we arrange that, for the new map (with V"’
vertices, E’ edges, and F’ faces), the sum V' — E’ 4+ F’ has the same
value as V — E + F; in fact, we can even permit an alteration in the
map for which

V' —E +F %V —E +F,

provided that we keep track of the change in the value of this expression
and allow for it in our final result.

We are now ready to give the proof of Theorem 3.3; it is illustrated in
Fig. 3.3 for the case of a sphere with three handles. Only a portion of the
network is shown in the figure. We consider (Fig. 3.3a) any map with
simply connected faces, on a sphere with p handles, and suppose that the
network has been slid around so that there is no vertex on any one of the
circles in which the handles join the sphere, and so that none of these
circles has a segment in common with any arc of the network. Since each
face of the map is simply connected, no single face can contain a circular
cross section of one of the handles. Thus, for each handle, there must be
at least one path in the network which goes along that handle lengthwise.
(Figure 3.3a shows two such paths for the handle #; and one path for each

of the handles %, and /;.)
- We now make three successive changes in the map, for each of which

V'—E +F =V —E+F.

First, for each handle %;, we choose one of the circles C; in which that
handle joins the sphere, and we add new vertices to the network by plac-
ing a vertex at each intersection of the network with any of the circles C:
(t=1,2,...,p). Each of these added vertices divides an arc into two
smaller arcs, so if we let # be the number of new vertices which are added
to the network, then also the number of edges is increased by #; no change
is made in the number of faces.
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Theorem 4.1 Arny map on a torus can be colored with seven colors, and
th.ere is at (a3t one map on a torus which requires seven colors.

Pxr#k. The construction of an example to show that seven colors may
actually be required is left as an exercise Problem 1.

The general outline of the proof that seven colors are sufficient is quite
similar to that of the nve color theorem Theorem 3.5 in Chapter 2 and
the Lemmas which precede it , and we shall omit some of the details.

First, we may confine our attention to maps in which the faces are
simply connected, for, if we are given a map on a torus in which some of
the faces are not simply connected, we may change the map by introduc-
ing cuts in such a way that all of the faces become simply connected. If
this changed map can be colored with seven colors, a satisfactory color-
ing of the original map can be obtained by merely erasing the cuts.

Second, we may confine our attention to regular maps with simply
connected faces because any vertex which is not of order 3 can be ex-
panded into a small open disk (which is simply connected) and, if this new
map can be colored with seven colors, so can the original map.

Third, every regular map on a torus, in which each face is simply
connected, has at least one face with six or fewer edges. In fact, if the
map has V vertices, E edges, and F faces, with n; of the faces having
edges each, then

m+n +n+--- =F
Also, the total number of arc ends is given by 2E and by 3V'; hence
2E = 3V.
By Theorem 3.3
V—-E4+F=0.

Since each arc of the network is an edge of at most two faces

m +2n, + 31 + - - - < 2E.

Eliminating V, E, and F from these relations gives
Sy +4ny, +3n + 204 + 15 — 17 — 2m5 — - - - > 0.

Thus at least one of 7, to #s must be positive.

Fourth, except in trivial cases, each face of a map on a torus has at
least one edge which separates that face from a different face.

Fifth, and finally, the proof can now be completed by induction on
the number of faces in the map. If there are seven or fewer faces, the

Google



4~4 / Maps on a Sphere with Handles 87

result is obvious. Suppose that every regular map on a torus, with
k simply connected faces, can be colored with seven colors, and consider
any regular map on a torus with £ + 1 simply connected faces. Choose
a face f of this map with six or fewer edges, and choose an edge e of f
which separates f from a different face. Remove the edge ¢, keeping the
map regular by the usual suppression of vertices; this change in the map
gives a regular map with % simply connected faces. By the induction
hypothesis, this map can be colored with seven colors; when the edge e
isreplaced to regain the original map, there is sure to be at least one color
available for the face f, because the faces which have an edge in common
with f account for at most six colors«.

PROBLEMS

1. Give an example of a map on a torus with seven faces, each of which has an
edge in common with each of the other six. Prove that seven colors are
required to color this map. The torus may be represented by a rectangle
with edges identified as in Fig. 2.6 in Chapter 3.

2. (a) Prove that, except in trivial cases, each face of a map on a torus has at
least one edge which separates that face from a different face. What are the
trivial exceptions?

(b) Prove that when the edge e is removed from the map as described at the
end of the proof of Theorem 4.1, each of the & faces of the new map is simply
connected.

3. Carry out the steps in the proof of Theorem 4.1 for the maps on a torus shown
in Fig. 4.1. The torus is represented as a rectangle with edges identified,
and the network of the map is shown in dashed lines.

—— ————
| \/' //
FIGURE 4.1 _:_ < X~
I o2 P
1 / //
——— -————
(a) (b)
—_———> ———>
<t 1
- — — — 7
N // \\ /‘ /
\<\ /» l,
—_——— -_———>
(c) (d)
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FIVE

The

Jordan Curve Theorem

5-1 Introduction

The Jordan curve theorem is an important and
frequently used result in topology; we have used
it several times in our previous work. It states,
roughly, that there are an inside and an outside
of a simple closed curve in a plane. More
exactly, if a simple closed curve C lies in a plane,
and if the points of C are removed from the
plane, the remainder of the plane is composed of
exactly two connected pieces and the curve C is
the boundary of each of these pieces. Intui-
tively, it is impossible to get from one of these
pieces to the other in the plane without crossing
the curve C.

Go 3[0



90 The Jordan Curve Theorem / 5-2

FIGURE 1.1

The result certainly seems evident for a circle in a plane, and it seems
equally plausible that any elastic motion will leave the portions of the
plane inside and outside of the curve still connected, and that these por-
tions will still have the curve as their common boundary. However, let
us look at an example. Figure 1.1 shows a simple closed curve in a plane;
is the point P inside or outside this curve? Of course, it would be possible
to draw a much more complicated simple closed curve than the one
shown in Fig. 1.1. How can we be sure that we can always tell whether a
particular- point, not on such a curve, is inside the curve or outside the
curve? Isthere some test we could apply? The proof of the Jordan curve
theorem in its full generality is beyond the scope of this book, but a proof
is given in the next section for the special case of a polygon.

5-2 A Proof for the Case of a Polygon

Before proving the Jordan curve theorem for the special case of a polygon,
we must be quite sure that we understand exactly what a polygon is.

Go glc
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1.

PROBLEMS

Which of the figures drawn in Fig. 2.3 represent polygonal paths? Which
represent polygons? Which represent simple polygons? In each case, tell
which points are vertices; is it possible to choose different vertices for the

same figure?

FIGURE 2.3

N DT <G

@M

(a) Prove that S does not intersect the polygonal path constructed at the
end of the proof of Theorem 2.1. (Hint: By the first part of the proof, all
points along this path must lie in the same one of the sets 4 and B.)

(b) For the sets A and B of Theorem 2.1, prove that there is at least one
point in 4 and at least one point in B.

. Is the statement and proof of Theorem 2.1 topological? Why or why not?

Discuss.

4, What difficulties would you encounter in attempting to extend the proof of

Theorem 2.1 to apply to an arbitrary simple closed curve?

. (a) Define the inside and outside of a simple polygon.

(b) Is the inside of a simple polygon simply connected? How about the
outside?

. In the proof of Theorem 2.1, the division of points between the sets A and B

was based on counting certain intersections. Think of another property
which might have been used to divide the points of the plane not on S into
two sets with the desired properties.
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SI X

Sets

6-1 Introduction

In several places in our work so far we have had
occasion to consider collections of objects —
perhaps all the points on a certain surface, or all
the paths in a certain network. In the future,
we shall be much more concerned with collec-
tions, or sets, of objects. We shall need some
acquaintance with the notation and terminology
used in connection with sets, as well as an intui-
tive concept of what constitutes a set. In the
last part of the nineteenth century, some very
serious questions arose in connection with the
foundations of set theory; even today, not all of
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96 Sets / 62

these questions have been answered to everyone’s satisfaction. At least,
everyone is agreed that the formation of sets must be somehow restricted
or carried on by some sort of orderly process. Frequently, membership in
a set is taken as one of the undefined concepts in a logical development of
set theory. Certain axioms are stated which set membership is required
to satisfy and other concepts are defined in terms of this one.

In this introductory text, we propose to ignore the restrictions on the
formation of sets, except for brief references in some of the problems, and
we shall develop our set theory intuitively rather than deductively. For
the interested student, references to more rigorous developments of set
theory are given in the bibliography [for example, Ref. (20)].

6-2 Relations Involving Sets

Everyone is familiar with sets or collections. A library is a collection of
books; a committee is a set of people; a year is a collection of days; a
galaxy is a set of solar systems. We shall use the terms set, collection,
family, and aggregate as synonyms and shall think of a set as being com-
posed of identifiable, distinguishable objects. That is, given any object
whatever we must be able to identify or recognize this object, and from
this recognition it must be possible to determine whether the object is an
element of the set or is not an element of the set. Moreover, two objects
which appear as different elements in a set must be distinguishable, one
from the other; we do not allow identical objects to appear as different
elements of a set. More simply, no repetitions are allowed among the
elements of a set.

As an example, let us consider the set of all positive integers less than
or equal to 10. In asserting that this is a set, we are maintaining that:

(1) Having given any object whatever, it can be determined whether
this object is, or is not, a positive integer less than or equal to 10.

(2) Having given an object a, which is a positive integer less than or
equal to 10, and an object b, which is a positive integer less than
or equal to 10, it is possible to determine whether ¢ is different
from b, or whether the objects a and b are, in fact, identical.

At first glance, it may appear evident that the two determinations
called for in (1) and (2) above can always be made, but carelessness in the
making of these decisions is a fertile source of fruitless arguments. Let
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us look at another example: Suppose we are concerned with the set of all
round objects and someone suggests the earth as an object for our con-
sideration. Is the earth an element of our set or not? It is commonly
said that the earth is round, but everyone knows that there are mountains,
hills, and valleys on the earth; thus, the decision turns on the exact mean-
ing to be attributed to the word “round.” Another example: Suppose
you lend a friend of yours a dime, which he promises to repay, and the
next day your friend gives you ten pennies. Did your friend repay the
debt? Are the ten pennies your friend gave you the same object as the
dime you gave to him? ‘Again we see that, in order to understand a state-
ment, it is necessary to have a clear understanding of the meanings of the
terms involved in the statement.

We shall generally use capital Roman letters to stand for sets, and
lower case Roman letters for the elements of a set. If the object ¢ is an
element of the set 4, we write

ac€ A
If the object a is not an element of the set 4, we write
a§ A

There are two systems of notation which are in general use for nam-
ing sets. The first of these notations is most convenient in connection
with a set which has only a few elements. In that case, the elements may
be listed and enclosed between braces. For example, {0, 1} is the set
which has exactly two elements — the numbers 0 and 1. This listing of
all the elements of a set makes it easy to decide, about any object, whether
or not that object is an element of the set. It suffices to compare the
object with each of the set elements in the list. If the object is identical
with one of the elements in the list, it is an element of the set; otherwise,
it is not. Of course, it still must be possible to determine whether or
not two objects are identical. Consider the object 4. Is it an element of
the set {0, 1}? We recognize that “4” and “1” are just different names
for the same object, so 4 € {0, 1}.

If a set has many elements, or an infinite number, a complete listing
of the elements of the set is impractical or impossible. In such cases, it
may be possible to list a few of the elements of the set and expect the
reader to guess correctly what the other elements are, either from the
context, or from previous experience. For example, the set {3, 4,5, ...,
498} should be understood to have exactly 496 elements. These elements

Go 3[0
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are all of the integers from 3 to 498 inclusive. Similarly, {1, 2, 3,...}is
the set of all positive integers.

The second notation which may be used to name a set consists of a
description of the set; that is, a test is given which can be applied to any
object and such that, from the result of the test, it can be determined
whether or not the object is an element of the set. A skeleton form for
this notation is {x:...}. The three dots are to be replaced by a state-
ment of the test which any object x must pass in order to be an element
of the set. For instance, {x: 3 < x < 498} (which may be read ‘“the set
of all objects x such that x is between 3 and 498 inclusive’’) is composed
of all the objects x (and no others) for which the statement 3 < x < 498
is true. Thus, the essential feature of this second notation is that it tells
how to determine, about any object, whether or not that object is an
element of the set. For this second notation, just as with the first nota-
tion, the reader is sometimes required to supply, from context or other-
wise, a part of the information which is not actually written down. For
example, in a discussion of the integers, the set

{x:3 < x <498}
would be understood to have exactly the same elements as the set
{3,4,5,...,498}.
If the discussion was concerned with real numbers, these two sets would
not have the same elements; e.g.,
m€ (x:3<x<498), but = ¢ {3,4,5,...,498}.

A set which is named using the first notation discussed above is said
to be listed; if the second notation is used, the set is said to be described.

Another way of looking at a description of a set is to notice that the
three dots in the skeleton {x:...} are replaced by the statement that
x possesses a certain property. The set is composed of all objects which
actually do possess this property (and no others). The set

{x: x is round}

is composed of all objects which are round. Thus, any property, such
that each object either has this property or fails to have it, can be used to
describe a set. Conversely, for any set there is a property which can be
used to describe it. Clearly, if we are given a particular set 4, the prop-
erty of being an element of 4 is characteristic of its elements; i.e.,

A= {x:x€ A4}.
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This last equation raises the question of what we mean by saying that
two sets are equal. We have said that a set is composed of the objects
which are its elements. Thus it is natural to agree that two sets are equal
if and only if they have the same elements.

Besides equality, there is another important relation between sets.
If every element of a set A is also an element of the set B, we say that A4 is
a subset of B, or A is included in B, and write A C B or, equivalently,
B D A. (We shall follow the convention of using ““is contained in”’ in the
sense of “is an element of” and “is included in” in the sense of “is a
subset of.””) As usual, the negation of A C B is written 4 ¢ B. Notice
that each set 4 is a subset of itself, for surely every element of the set 4
is also an element of A! If A C Band 4 # B, we say that 4 is a proper
subset of B. If the sets A and B are given by descriptions, say

= {x:S(x)}
and B = {x:T@)},

it is easy to see that A = B if and only if, for all x, statement S(x) is
equivalent to statement 7'(x); moreover, A C B if and only if, for all z,
statement S(x) implies statement T'(x). Thus a study of the relations of
equality and inclusion between sets is, at the same time, a study of equiva-
lence and implication between sentential functions (functions whose
values are sentences).

There are several special sets in which we shall be interested. It'is
frequently convenient to consider a set which contains all of the objects
which it is necessary to consider in connection with a given problem.
Such a set will frequently, but not always, be denoted by X and will be
called the universal set, although the article ‘“the” is somewhat misleading.
If a universal set X has been chosen for a particular problem, any set
which includes X could be used as the universal set for that problem.
Of course, two different investigations may have completely different
universal sets. The selection of a universal set may be thought of as a
definition of the term ‘“‘object”; it is understood that the definition is
applicable only in connection with a particular investigation. In most
cases, an acceptable universal set will be clear from the context, but where
confusion seems likely, the universal set will be mentioned.

The second of the interesting special sets is far removed from the
universal set. As we have noticed, any property of objects, such that
each object either possesses this property or fails to possess it, gives rise
to a set — namely, the set of all objects with the given property. But
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consider the property of being different from itself; no object possesses
this property, since each object is identical with itself. Thus the set
which is described by this property; that is, the set {x:x = x} has no
elements. From our definition of equality of sets, there is only one set
which has no elements. It is called the empty set (null set, void set), and
we shall reserve the symbol # for this set. Notice that § is a subset of
every set A since each element of § (there are none!) is also an element
of A.

The sets which have exactly one element play an important role in
many problems. Such sets are called singletons; the set {a}, whose only
element is the object g, is called simgleton a. It is important to notice that
the object ¢ and the set singleton a are not identical. That is, we conceive
of the process of set formation as making a new object, different from the
objects on which the process operates. This is evident for sets with more
than one element — no one would confuse the set {a, b} with the single
object @ —however, some confusion is- possible between {a} and a.
That it is convenient, or even necessary, to distinguish between the two
can be seen by considering the case in which the object under considera-
tion is itself a set, say the set IV of all positive integers. Then N has an
infinite number of elements, whereas {/N} has only one; certainly, they
cannot be the same.

The example just discussed shows that sets are themselves objects,
and may appear as elements of other sets; thus we will not always be able
to use the convention that capital Roman letters represent sets and lower
case Roman letters represent elements of sets. For example, we may wish
to consider a set of people, perhaps the set

J = {x:xis a person more than 6 feet tall}.

Each of the elements of J is a human being and may, therefore, be con-
sidered as a collection of molecules. Similarly, each of these molecules isa
set of atoms. Thus we see that the elements of a set may themselves be
rather complicated sets. On the rare occasions when this phenomenon is
of interest to us, we shall try to use an appropriate notation, such as

a, b, x, etc.: Elements of the simplest type considered.

4, B, S, X, etc.: Sets of elements such as ¢, b, x, etc.

@, B, §, etc.:  Collections of sets such as 4, B, etc.
In connection with the set J of tall people described above, ¢ might be a
particular atom of carbon which, together with certain other atoms, forms
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a set which is a molecule M. A collection of such molecules could be a
particular basketball player B and a suitable aggregate of basketball
players would form a squad ©.

Example 2.1 Let
A4 =1{1,23}
and B = {x:xisaninteger and ‘1 < x < 10}.

Then A C B and A = B;hence A'is a proper subset of B. Also2 € 4,2 { B,
{2} ¢ 4, {2} C A. One description of 4 is given by

A=f{x:x€ B and —5<=zx<4j.

Example 2.2 Let A = {1,2,3} and B = {x: x C 4A}. Then
A€ B, but 4d B;
1€ 4, but 1¢ B;
{1} ¢ 4, but {1} C 4 and {1} € B.
The set B consists of eight elements; a listing of B can-be given as

B= {8, {1}, (2}, {3}, {2,3}, {1, 3}, {1,2}, {1,2,3}}.

Example 2.3 The set A = {1, 1,2, 2, 2} has exactly two elements, 1 and 2.

PROBLEMS

1. Let A = {1,2,5,9}.
(a) Find an object which is an element of 4.
(b) Find an object which is not an element of 4.
(c) Find an object which is a subset of 4.
(d) Find an object which is not a subset of 4.
(e) Is there an object which is both an element and a subset of 4?

2. Let A = {x:xisround} and B = {x: x is red}.
(a) Explain how you could determine, by examining an object, whether or
not it is an element of 4.
(b) Find an object x such that x € 4 and x € B.
(¢) Find an object y such that y € 4 and y ¢ B.
(d) Find an object z such that z ¢ 4 and z ¢ B.
(e) Find a set C such that C C 4 and C C B.
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3.

#5.
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Each of the following sets is named by being listed. Give a description of
each of these sets. Can you think of different descriptions for the same set?
Which notation seems more natural and convenient?

@) {2,3,5,7,11, 13}.

() {2,3,5,7,...}.

©) {1,4,9,16}.

d) {1,4,9,...,625).

(e) {a,b,¢c}.

&) {a,b,...,z2}.

(g) {John Jones, Mary Smith}.

(h) {the gas station on the corner of 1st and Main, the gas station on the
corner of 2nd and Main}.

(i) {Fig. 3.1 in Chapter 2, Fig. 7.9 in Chapter 2, Fig. 4.2 in Chapter 5}.
(§) {the fourth word on the third line of page 17 of this book, the third
word on the fourth line of page 27 of this book}.

. Each of the following sets is named by a description. Give a listing of each

of these sets. Can you think of different listings for the same set? Which
notation seems more natural and convenient?

(@) {x:xisan integer and =x < 5}.

(b) {x:xis an integer and x> 5}.

() {x:xisaninteger and 4 < x < 5}.

(d) {x:=x is an even integer}.

(e) {x:xisan even integer and «x isa prime}.
() {x:xis a word which begins with zy}.

(g) {x:x is a word which begins with s}.

(h) {x: x is a word which ends with pt}.

(i) {x:xis a word used in this book}.

(j) {x: x is the publisher of this book}.

Prove that A = B if and only if A C B and B C A. This result is the
basis for many proofs of equality between sets.

Which of the following listings or descriptions names a set? Justify your
answer by discussing whether or not it can be determined that an arbitrary
object is, or is not, an element of the set. Mention any additional assump-
tions you are making from context, previous experience, or otherwise.
(a) thouse, dog}.

(b) {you, I}.

) {a,d,...,YZ,}.

@) {a,b,...,7,8}.

(e) {a,b,...}.

(f) {x:x is big}.
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11,

(8) {x:xis a digit which appears in the decimal expansion of }.

(h) {x:x is a digit which appears between the 1,000,000th and the
2,000,000th decimal place in the decimal expansion of w}.

() {«x:x is a digit which is repeated infinitely often in the decimal expan-
sion of 7}.

() {x: x is zybnatious}.

. How many subsets are there of the set

A=1{1,2,...,n0}?

How many of these are proper subsets?

. Which pairs of the following objects are connected by one or more of the

relations =, €, C, or D?
R = {x: x is a real number}.
E = {x: x is an even integer}.
F = {x: x is a rational number}.
T = The number 2.
V={x:x€ E and x¢ R}.

S = {2}.

D=17-35.

S ={x:xCF}.

Q = {x: x is a quotient of two elements of £}.
N=1{1,2,3...,n}

. Explain why @ is a subset of every set. Is@ C @7 Is@ € @?
10.

Suppose that you were engaged in a project to prove the Pythagorean
theorem. What would you choose for a universal set?

As we have seen, the elements of a set may be any objects whatever; in
particular, these elements may themselves be sets. Thus it is conceivable
that a set might contain itself as a member. Let us call a set “extraordi-
nary”’ if it does contain itself as a member, and ‘“‘ordinary” if it does not
contain itself as a member. Set

& = {x:xis an ordinary set}.

Prove that & is neither ordinary nor extraordinary. This is one form of the
Russell Paradox, first given by the British mathematician Bertrand A. W.
Russell (1872- ) in 1908. It shows that, if sets are to behave in the way
in which our intuition would like, we must place some restriction or regula-
tion on the formation of sets so that they do not become “too big.” The
appropriate restrictions on set formation are not discussed in this intro-
ductory text.
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For any sets A and B, the difference A — B can be expressed in terms
of the other operations. It is easy to see from Fig. 3.4 that A — B =
A M B'. The most important properties of the operations of union, inter-
section, and complement are given in Theorem 3.1. Other properties, as
well as those of subtraction, are dealt with in the problems.

Theorem 3.1 The operations of union, intersection, and complement
satisfy the conditions listed below. Here X is the universal set, 4, B,
and C are any subsets of X, and @ is the empty set.

Commutative Laws:
AUB=BUA4. ANB=BNA.
Associative Laws:
AUB)UC=4VU(BUYO). ANB)NC=AN(BNCOC).
Idempotent Laws:
AUA =A. ANA=A.
Distributive Laws:
ANBUYUC)=UAUANBYANC).
AUBNC)=AIYBNAVO).
DeMorgan’s Laws:
(AUB=A4A"N\PB. (AN B)Y =A"UB.
Laws of Complementation:
4y = A. ANA =9 AUA =X.
Special Properties of § and X:
AU P =A. AUX =X. p =X.
ANG =40 ANX = A. X' = 4.

RemMark. Because of the associative laws, we shall write expressions
such as 4 \U B U C with no parentheses, since the result of performing
the operations does not depend on the way in which the parentheses
are inserted.

ProoF. To illustrate the methods used, we shall prove the first of the
two distributive laws and the first of DeMorgan’s laws; the proofs of the
other parts of the theorem are left as exercises (Problem 3).
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Proof of AN (BUC) = (AN B)U (AN C). From Problem 5 of

Section 6-2, this equation is equivalent to the two inclusions
ANBUCO)CMANBUMANC)
and ANBUYC)DANBYYMANCQ).

The first of these inclusions can be proved by noticing that if z is
any element of A N\ (B\UC), thenx € A andx € B\UC. Thatis, zis
an element of 4, and «z is an element of at least one of the sets B and C.
But this means that x is an element of both 4 and B, or that x is an
element of both 4 and C; hence,

x€ ANB)UANCQ).

The second inclusion above can be proved by reversing the steps in

the proof of the first inclusion. If
T€EUANBUMANDO),
thenx € AN Borx € AN C. Ineithercase,x € A and « is an element

of at least one of the sets B and C; thus x € 4 and x € BUC. 1t
follows that

x€ AN (BYCO).

Proof of (A \U B)Y = A’ N\ B’. Again, we replace this equation by

two inclusions and shall prove that
(AUBY CA'NB and (A\UB)YDA' NB.

If x€ (AU B), then x § AU B. This means that x is not an
element of either one of the sets A and B; hence x € 4’ and x € B,
which gives x € A’ M\ B’. The other inclusion can be proved by revers-
ing these steps«.

PROBLEMS

1. Define sets N, E, O, T, P as follows:

N =1{1,2,3,...}. (Take N as the universal set.)
E=1{2,4,6,...}, 0=1{1,35,...},
T=1{3,6,9,...}, P=1{2,3,57,11,...}. (P is the set of all prime

numbers.) Find a simple description, and list some of the elements of each
of the following sets. :

(@) EVO. (e) TN (E\U P).
M) ENO. & (TN E)\J (TN P).
(¢) EUT. ® (PNOHUJ (P'NO).

@ (EVT)Y. @ {(ENO)YUJ (E'NO)\U P}.
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Give a representation, using Venn diagrams, of the distributive law and
DeMorgan’s law (Theorem 3.1) which were proved in the text.

(a) Prove the second distributive law and represent the result by a Venn
diagram.

(b) Prove the parts of Theorem 3.1 which have not already been proved,
and draw Venn diagrams illustrating the statements.

Prove that the following statements are all equivalent.
(@) A CB. d) A—-—B=4.
(b) AN B = A. (e) A'’D B
(c) AJB=B. ) ANB =4.

Prove that each of the following conditions is necessary and sufficient for
the sets 4 and B to be disjoint.

@) A—B=4A4 (c) AC B’

(b) B—A=B d) A’UB' =X

. Is it possible for a set to be disjoint from one of its subsets? Can a set be

disjoint from itself?

. Simplify each of the following.

@) {[(A\UB)N (4\U 4]\ B'}".
®) {[(4'N\ B)'U (4'M 4A)]N B}'.
©) {[(4\U BYN 4]\ B'}.
@d) {{[(4\U B)'N 4]'U B}".

. Prove that for any sets 4, B, C, each of the following equations is correct.

Ilustrate the results with Venn diagrams.

@ (A—B)—C=4—-— (BUC)=A—-B)N 4 -0).
) A-—(B-C)=(A4—-B)YU ANBNC).

€ A— (BNC)=A-B)J @4 -0).

d) ANB-C)=(ANB)— (ANC().

) A VB —-C)=(4UB)—[(BNC)— 4]

) (4— By =4"UB.

. For any sets 4 and B, define

AAB= (AU B)— (AN B).

@) Provethat AA B= (A — B)\U (B— 4).

(b) Find a set Z such that, foreachset 4, 4 A Z = A, and show that there
is only one set Z satisfying these conditions.

(¢) For each set A4, find a set A* such that A A A* = Z, and prove that,
for each 4, the set A* is unique.

) Provethat (A AB)AC=AA (BAC).

(e) Prove that 4 and B are disjoint if and only if A A B = 4\U B.
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10.

11.

12.

13.

Sets / 63

Compare the operations of union, intersection, and subtraction of sets with
the operations addition, multiplication, and subtraction of numbers, res-
spectively. In what ways are the two sets of operations similar? In what
ways do they differ?

Let B be any given set and define
@ ={4: 4C B}.

@) Whatis\U {4: 4 € @}?
(b) WhatisM {4: 4 € @}?

‘In Section 6-2 we noticed that a study of the relations of equality and

inclusion between sets could be considered as a study of the relations of
equivalence and implication between sentential functions. What aspects
of sentential functions correspond to the operations \J, M, —, and ' for
sets? [Hint: Suppose 4 = {x: S(x)} and B = {x: T(x)} and find de-
scriptions of the sets 4 \U B, 4 M B, etc.]

Simplify each of the following.

(@ [4'N(BYO)].

) [(4\U B)UCT.

€ [(AYUBYN(BUCN (A4UOY.

dy 4—-[B— (C\YD)].

() A—[B— (C— D).

& 4-[B—- (N D).

® ANI[4\Y B) - Bl

h) A-B)N[AANBY 4 -0)

i) ANCHY ANBNCYJ (A4NCQC).

G) ANBNC)J A4'UB'UC.

k) [AVANBIYANBNC)IN[AUYU BUC.

O [NV P NOIYJ (PN NPV Q)N (PUQ))].
m) (PN (ANBNOINPNOI A4"U B'U (']
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SEVEN

Transformations

7-1 Introduction

In Chapter 1 we used the concept of an elastic
motion to give a tentative definition of topology;
in Chapter 3 we remarked that a real understand-
ing of the concept of an elastic motion would
require some knowledge of set theory, which we
have gained in Chapter 6. In this chapter we
shall be able to explain more clearly just what
we have had in mind in connection with this
concept. Unfortunately, the term “elastic mo-
tion” carries with it some undesirable intuitive
connotations. Chief among these undesirable
connotations is the idea that “motion” from one
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place to another necessarily entails some sort of path, or route, along
which this motion takes place. In Section 7-2 we define a transformation
— the thing we have really meant all the time by “motion” — and it will
be evident that no path, or route, is needed for a transformation. The
discussion in Section 7-2 is applicable to arbitrary sets. In Section 7-3
we confine our attention to subsets of ordinary three-dimensional Euclid-
ean space. For these sets, we shall define a homeomorphism, or topologi-
cal transformation, and shall point out that this new concept is what we
have been attempting to suggest all along by the intuitive idea of an
elastic motion. Two indices of transformations are discussed in Section
7-4 and, in Section 7-5, these indices are used to prove Brouwer’s fixed
point theorem and the fundamental theorem of algebra.

7-2 Transformations Between Arbitrary Sets

Let X and ¥ be any sets; by a transformation from X into Y we mean a
correspondence which determines, for each element x € X, exactly one
element y € ¥. That is, there must be a rule, or procedure, such that
whenever a particular element x, € X is chosen, the rule determines
exactly one element yo € ¥. We say that the element y determined in
this way corresponds to x, under the transformation (or that yo is the
image of xo, or that x, is sent into s, etc.).

It is important to notice certain things which are not required in the
definition of a transformation. For instance, if x; and x; are two different
elements of X, their corresponding elements y; and y. in ¥ may be differ-
ent, or they may be the same element; the definition makes no require-
ment on this point. Also, for certain of the elements y € ¥, there may be
no elements in X to which they correspond. All that is required is that,
for each x € X, there is exactly one corresponding y € ¥. We use a
notation such as f, or f : X — ¥ (other letters may be used instead of f),
for a transformation from X into ¥ and, for each x € X, we denote by
f(x) the element of ¥ which is the image of x under the transformation.
If every element y € ¥ is the image of at least one element x € X, we say
that the transformation is from X onto Y.

One way of defining a transformation is to give a rule which can be
used to determine the image of an arbitrary element x € X; that is, to
give a procedure for determining an element f(x) € ¥ for each element
x € X. This method is used to define the transformations in the follow-
ing examples. These examples are continued later in this section.
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fxample 2.1 Each of the sets X and Y is the set of all real numbers; f(x) = 2x.
The transformation f : X — ¥ is onto V.

Example 2.2 Each of X and Y is the set of all real numbers; g(x) = 22 The
transformation g : X — ¥ is into ¥, but not onto V.

Example 2.3 X is the set of all real numbers; ¥ = {0, 1}.

. 0, if x is rational.
h(x) =
1, if x is irrational.

The transformation 2 : X — ¥V is onto Y.

Example 2.4 X is an arbitrary set and ¥ = X; i(x) = x. The transformation
t: X — X is called the identity transformation on X; it is onto X.

It is evident from the definition of a transformation, and from the
examples given above, that there is no physical motion, or movement,
loccasioned by a transformation. The element x € X does not “move” to
the element f(x) € ¥; x is merely made to correspond to f(x). The
elements x and f(x) can be thought of as being associated in some way,
with the particular association being described by the transformation f;
however, this association cannot usually be pictured as a physical motion.

The correspondence given by the transformation f: X — ¥ is from
an element x € X to an element y = f(x) € Y. It is frequently conveni-
‘ent to consider the correspondence obtained by reversing the given one.
'For each element y € ¥ we define the #nverse image of y under f, denoted
by f~1(y), to be the set of all elements of X which correspond to y. That is,

fily) = {x:2€ X and f(x) = y}.

For any subset B C Y, the inverse image of B under f, denoted by f~(B),
iis the set of all elements x € X whose images are in B; that is,

f(B) = {x:x € X and f(x) € B}.
Similarly, for any set A C X, we define
f(4) = {y: y corresponds to some element x € A4}.

It may happen that, for certain elements y € ¥, f-'(y) is the empty
set, or f~'(y) may be a set having a great many elements. If, for each
element y € ¥, the set f~!(y) is a singleton (that is, if each ¥ € ¥ corre-
sponds to exactly one element x € X), we say that the transformation f

|is ome-to-one and we write f1(y) = x instead of f~'(y) = {x}. In this
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case, the correspondence f~! : ¥ — X is a transformation which is called
the inverse of the transformation f: X — ¥. Notice that, for every trans
formation f: X — ¥, we have defined a correspondence f~! from subset:
of ¥ to subsets of X, but in order that this correspondence be called the
inverse transformation of f, it is required that f be one-to-one.

There are several interesting and important results concerned with
one-to-one transformations. If there is a one-to-one transformation of X
onto ¥, it is natural to say that the sets X and ¥ have the same number of
elements. However,if N = {1,2,3, ...} is the set of all positive integer
and E = {2, 4, 6, ...} is the set of all positive even integers, then th
transformation given by f(n) = 2n for each n € N, is a one-to-one trans
formation of N onto its proper subset E. It seems paradoxical that :
proper subset of N could have the same number of elements as N, but, or
the other hand, if the set &V is in one-to-one correspondence with the set £,
surely there cannot be more elements in one set than in the other.

The concept of “same number of elements,” based on the existence of a
one-to-one transformation, has been found to be a fruitful one. Formally,
the definition states that two sets A and B have the same cardinal number
if and only if there is a one-to-one transformation from 4 onto B. With
this definition, the statement ‘‘the whole is greater than any one of it
parts” which is customarily given as one of the postulates, or ‘“commor
notions” of Euclid, is actually not correct. Some further results are
suggested in the problems.

Example 2.1 (continved) The inverse of the transformation f:X — ¥V is the
transformation f~1 : ¥ — X given by f~1(y) = #y.

Example 2.2 (continved) The transformation g : X — ¥ does not have an in-
verse transformation, since g'(— 2) = @; also g (1) = {1, — 1}, which is

not a singleton.

Example 2.3 (continued) The transformation % : X — ¥ does not have an in-
verse transformation, since #71(0) is a set with an infinite number of elements.

Example 2.4 (continued) The transformation ¢ : X — X is its own inverse.

PROBLEMS

1. Discuss each of the following. In which cases is f: X — V a transforma-
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tion? In which cases is f onto ¥? In which is it one-to-one? Which
transformations have an inverse?
(a) Each of X and VY is the set of all real numbers.

1/x, if x < 0.
flx) = 3 2, ifx =0.
x? if x> 0.

(b) X is the collection of all people residing in the United States; V is the
set whose elements are the 50 states; f(x) is the state in which x resides.

{(c) Let f(x) be the area of x. (What sets are you using for X and V?)
(d) Each of X and Y is the set of all real numbers.

0, if x is irrational.
fx) = 3 1/g, if x is rational and equals p/q,
where p and ¢ are integers.

(e) Define f(x) to be a grandchild of x. (What are the sets X and ¥?)
(f) X is the set of chairs in a particular classroom in which a class is meet-
ing; Y is the set of all students registered for that class; f(x) is the student
sitting in x. (Are some other sets more suitable than X and Y for discuss-
ing this situation? What if some student is absent, or reciting at the
board? What if some visitors are seated in the classroom?)

2S¢t 4 ={x:—1<x<1} and B = {0,1}. With the functions f, g,
and % of Examples 2.1 to 2.3, find
@) f(4) (e) g(B) @ f(B)
(b) g(4) (f) h(B) (4) £'(B)
() h(4) ®) /71(4) (k) A7 (B)
d) f(B) (h) g7'(4)

3. Let f: X — Y be a transformation, and let 4 and B be any subsets of X.
(a) Show that f(4\J B) = f(4)\J f(B).
(b) Show that f(4 M B) C f(4) N f(B), and give an example to show
that the inclusion sign cannot always be replaced by an equality.
(c) Show that f*(f(4)) D 4, and give an example to show that the in-
clusion sign cannot always be replaced by an equality.

4. Let f: X — Y be a transformation and let 4 and B be any subsets of ¥.
(a) Show that f~1(4\J B) = f~1(4) U f~Y(B).
(b) Show that f1(4 M B) = f1(A) N f~(B).
(c) Show that f~1(4’) = [f~1(4)]".
(d) Show that f~'(4 — B) = f~1(4) — f~Y(B).
(e) Show that f(f~'(4)) C 4, and give an example to show that the
inclusion sign cannot always be replaced by an equality.
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6. (a) If X = {1,2,3} and ¥ = {1, 2}, how many different transformations
f:X — Y are there?
b)) If X=1{1,2,...,n} and Y = {1,2,...,m}, how many dlﬁerenl
transformations f: X — Y are there?

6. Let f: X — V be the transformation of Example 2.1.
(a) For what real numbers «x is it true that f(x) = «?
(b) For what sets A is it true that f(4) = A4?
(c) Answer the questions in parts (a) and (b) if the transformatior
g:X — Y of Example 2.2 is used instead of f.

7. (a) Show that there is a one-to-one transformation from the se
N =1{1,2,3,...} onto the set F of all positive rational numbers. (4
positive rational number is the quotient of two positive integers.)

*(b) Show that there is no one-to-one transformation from the set N ontc
the set 7 = {x:0 < x < 1}. (Hint: Express each x € I as an infiniti
decimal and assume there is a one-to-one transformation f:N — 7. Forn
an infinite decimal d such that, for each # € N, the nth decimal place of ¢
is different from the nth decimal place of f(n). Show that d € I, bul
d ¢ f(N); this is a contradiction.)

8. Let X, Y, and Z be any sets.
(a) Show that X has the same cardinal number as X.
(b) Show that if X and ¥ have the same cardinal number, then ¥ and X
have the same cardinal number.
(¢) Show that if X and Y have the same cardinal number, and ¥ andZ
have the same cardinal number, then X and Z have the same cardinal
number.

7-3 Transformations Between Subsets of Three-Dimensional
Euclidean Space

A transformation f: X — ¥ becomes more interesting if there is some
“structure” in the sets X and V; that is, if there are some properties of
the elements, or of sets of elements, in which we are interested. We can
then inquire whether these properties are preserved by the transformation
or by its inverse. With this idea in mind, we shall confine our discussion
in this section to transformations in which both of the sets X and ¥ are
subsets of three-dimensional Euclidean space. Because of its geometric
interpretation, we shall speak of ‘“‘points” instead of ‘‘elements” of X
and ¥. The “structure” with which we shall endow these sets stems from
the concept of the distance between two points. For any points p and ¢
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of three-dimensional space, we shall denote the distance from p to ¢ by
d(p, ¢); we recall that this distance satisfies the following conditions:

For any points p, ¢, 7,

(1) d(p,q) > 0. (Therefore, d(p, ¢) is a real number.)

(2) d(p,q) =0iff p = ¢.

4) d(p,q) +d(g,7) > d(p, ).

The first condition states that for any two points (or for the same
point taken twice), there is a distance from one point to the other, and this
distance is a non-negative real number. Condition 2 contains two bits of
information. It says that the distance from any point to itself is zero,
and also that the distance from any point to a different point is never
zero. Condition 3 tells us that the distance from one point to another is
always the same as the distance from the second point back to the first.
Because of this symmetry relation, we can speak of the distance between
two points, instead of the distance from one point to another. The fourth
condition is called the triangle inequality; the points p, ¢, and r can be
thought of as the vertices of a triangle (the triangle may degenerate into a
line segment), and, with this interpretation, the condition states that the
'sum of the lengths of any two sides of a triangle is at least as big as the
length of the third side.

Thus each of these four conditions states a very simple fact about
distances in three-dimensional Euclidean space. It would be possible to
mention many other properties of distances, but these four conditions
will play an especially important role in the work of the next chapter.

In Section 7-2 we saw several examples of transformations between
sets in which the elements were objects of various types. To gain familiar-
ity with the special case of transformations between subsets of three-
dimensional space, several examples of transformations of this type
are given below.

Example 3.1 Let each of the sets X and ¥ be the real numbers; then X and ¥
can be represented by two lines (or by the same line) in three-dimensional
space. Thus any transformation f : X — ¥, where X and Y are each the set of
‘real numbers, can be thought of as a transformation between subsets of three-
_dimensional space. In the future, whenever it is convenient, we shall identify
Ithe real numbers with any particular line in three-dimensional space, and shall
call a line an X-axis iff X is the set of real numbers and the line is identified
iwith X ; similarly, for a Y-axis.
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also have an understanding of what the definition says. Very roughly
(and inaccurately), the transformation f: X — ¥ is continuous at the
point x € X iff, whenever a point x € X is near to o, its image f() is
near to the image f(xo) of 0. The inaccuracy in this form of the statement
arises from not knowing just what is meant by ‘“near.” In fact, in the
statement of the definition, it can be seen that there are two different
standards of “nearness” which are used. For any positive real numberr,
let us call the two points p and ¢ of three-dimensional space r-near iff
d(p, q) < r. Itisevident, from the definition of continuity at x, that we
are using é-nearness in the set X and e-nearness in the set ¥. With this
notation, the definition says that a positive value for ¢ can be chosen
arbitrarily and that, after this choice has been made, it must be possible to
find a & > O such that:

Ifx € X and «isé-near to xo, then f(x) is e-near to f(xo).

Thus the standard of nearness in ¥ is chosen first, and, for every such
choice, there must be a standard of nearness in X so that these two
standards of nearness are related as required by the definition.

Notice that x, represents one and the same point throughout the dis-
cussion in the preceding paragraph. That is, all of this discussion is
concerned with a property having something to do with the particular
point x,. The property, of course, is continuity of f at 2. (From our
definition it is meaningless to discuss continuity of f at points z § X.)
For the related property, continuity of the transformation f, it is required
that f should be continuous at each point 20 € X. That is, for each choice
of a point %) € X and a number ¢ > 0, there must be a > 0 which satis-
fies the appropriate condition. Notice that the value of § may depend
on both o and ¢, since both of these are chosen before § is found.

Example 3.5 Let X = V = {x:x2 >0}, and set f(x) = 1/x. Thenf:X—>7Y
is a one-to-one transformation from X onto ¥. We shall give two proofs that
the transformation f is continuous. The first proof is analytic in nature, and is

in the form in which such proofs are frequently presented; the second proof is
more intuitive, and indicates how the first proof could be discovered.

FirsT ProOF. Given any point ¥y € X, and any & > 0, choose
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Now suppose that x € X is é-near to x, i.e., that d(x, ) < §; we must show
that f(x) is e-near to f(x;). We find

d(f(x0), f(x)) = L?t - ﬂ Il TR

XX XoX XX
But, since
2
8 = ] )
1 + &Xo
and x is 8-near to xy,
2
&x)
xpx > xo(2% — 8) = xo(xo— 1+exo)
exs
) 1+ en
and d(f(x), f(x)) < — < 2
“ e(e- i)
1+ exo

ex

T Al tem—em)

Seconp Proor. Figure 3.3 shows the sets X and Y represented as portions of
lines in three-dimensional space. Given any point xy € X, and any ¢ > 0, we
first locate the point f(x) = 1/x € ¥, and then locate the subset of ¥ com-
posed of all the points of ¥ which are e-near to f(x). This subset is the heavy

FIGURE 3.3
Y
1 —_
S |
PRS- ———
| l
KINP? S S S — .
X
0 | : :
|
L S 1 3 | X
Xo O Xo j' Xo
t+ex _q )
° £7'($) %o
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vertical segment S in Fig. 3.3. Next we find the subset f~!(S), composed of
all points of X which correspond to points of S. The set f~(S) is a segment
with x; to the left of its center. Now we must find a positive number § such that
if x is 8-near to xo, then x € f7(S). Clearly, we may take § as the distance from
%o to the left (nearest) end point of the segment f~!(S). Thus we choose

% ex

1 14+ exo 1+ exo

There is another remark that should be made. Figure 3.3 is somewhat mis-
leading in certain cases. If exy; > 1, then the point shown as the lower end of
the interval S is not in ¥ (since its coordinate is not positive). In all cases, the
set .S is chosen as the subset of ¥ composed of the points of ¥ which are e-near
to f(xo). The upper end point of S, and not the lower one, was used to de-
termine 8; thus the possibility that the lower end point indicated in Fig. 3.3
may actually be incorrect has no effect on the choice of §, and our result is cor-
rect in all cases.

Example 3.6 Let each of X and V be the set of all real numbers and define

_ )0, ifx<O.
/&) = {1, if x>0,

Then if x, is any point of X except 0, it can be proved by an argument similar
to the one in Example 3.5 above that f : X — ¥ is continuous at x,. Let us
consider the special choices xp = 0, ¢ = 4. Then no matter what positive value
is taken for 8, the point x; = 35 will be d-near to x,. But the image of this
point is f(x1) = 1, and this image is not 4-near to f(x) = 0. Thusf: X —Y
is not continuous at the point 0.

Example 3.7 Let each of X and ¥ be the set of points with positive integral
coordinates along a line; that is,

X=V=1{1,23...}.

Define a transformation f : X — ¥ by setting f(x) = 2x. Then f is a continu-
ous transformation of X into ¥ (but net onto ¥). In fact, for any x, € X and
any ¢ > 0, we may choose § = %, since, if x € X and x is 3-near to x,, then
x = x9 and it follows that f(x) = f(x), so f(x) is e-near to f(xo) no matter what
positive value of ¢ was chosen.

We are now in a position to sharpen our understanding of the type of
problems which is considered in topology. A homeomorphism or topologi-
cal transformation is a transformation which is continuous and which has a
continuous inverse transformation. The concept of a homeomorphism is
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what we have tried to suggest in the past by the term “‘elastic motion.”
Two subsets X and ¥ of three-dimensional space are homeomorphic or
topologically equivalent iff there is a homeomorphism f: X — ¥. The trans-
formations in Examples 3.2a, 3.2b, 3.2c (if & > 0 and k > 0), 3.4, and 3.5
are homeomorphisms. Other examples and properties are presented in
the problems. Topology is the study of properties which are invariant
under homeomorphisms.

In some important special cases, there are ways of combining two
transformations to obtain a third one. That is, there are binary opera-
tions on transformations. We shall confine our attention here to the case
where X = ¥ and each of these sets is the set of all real numbers, and we
shall represent these sets by a line, as usual. We define three binary
operations as follows:

Iff: X - X and g: X — X are any two transformations,
f+g:X — X is defined by setting (f+g)(x) = f(x) + g(x);
fg:X — X is defined by setting (fg)(x) = f(x)g(x);
fOg:X — X is defined by setting (fOg)(x) = f(g(x)).

These three operations are called addition, multiplication, and
composition, respectively. We shall also consider multiplication of a
transformation by a real numberr. This operation is defined by the
equation

(f)(x) = of(x).
As an example, if f(x) = 2%, and g(x) = «%, then (f+g)(x) = x* + 2%,
(fo)x) = #*, (fOg)(x) = «*, (1) (x) = T=".

Theorem 3.1 If X is the set of real numbers and each of f:X — X and
g:X — X is a continuous transformation, then each of the transformations
f+g, fg, and f Og is continuous; also, for any real number 7, the transfor-
mation 7f is continuous.

Proor. We give the proof for the function f+g; the other cases are left
as exercises (Problem 2). If x.€ X and ¢ > 0 are given, choose §; > 0
and 8, > 0so that

If x is 8i-near to xo, then f(x) is %-near to f(x),

and

If x is 8,-near to x, then g(x) is %-near to g(xo). .
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The choices of 8 and &, are possible because f and g are continuous. Now
choose § as the smaller of 8, and 8, and we find that if x is é-near to x,

then f(x) is %—near to f(x0) and also g(x) is %—near to g(x0). This means that

[f(x) = fxo)] <§ and [g(x) — g(x)| < ;
But then
[(F+8)@) — (F+8) @) = f(x) + g@) — f(xe) — g(xo)]

< f@ — fw)] + lg@) — g@)| <.

so that (f+4g)(x) is e-near to (f+g)(x)) and f+4g is continuous at z.
Since x, was an arbitrary point, the function f ¢ is continuous«.

For any real polynomial awx* + aix*! + - - - + @,, we may define a
transformation f: X — X of the real numbers into themselves by setting

f@) = ax® + @t + - - - 4 ag.

It is an easy consequence of Theorem 3.1 that this transformation is
continuous.

PROBLEMS

1. Discuss each of the following transformations with reference to the ques-
tions: At which points is the transformation continuous? Is there an in-
verse transformation? At which points is the inverse transformation
continuous? Is the transformation a homeomorphism?

(a) The transformation g: X — YV defined in Example 3.3.

(b) The transformation 4: X — Y defined in Example 3.3. (Hint: Con-
sider various cases according as the points ¢ and b are, or are not, on the
boundary sphere of the ball V.)

(¢) The transformation f: X — Y defined in Example 3.3.

(d) A translation of a plane (Example 3.2a).

(e) A rotation of a plane (Example 3.2b).

(f) A stretching of a plane (Example 3.2c).

(8) The transformation f: X — ¥ defined in Example 3.4.

(h) Each of X and Y is the set of real numbers; the transformation
f:X — Y is defined by

1/x, ifx <0.
f@y=14 2, ifz=0.
a2, if x> 0.
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#6.

(i) Each of X and Y is the set of real numbers; the transformation
f:X — Y is defined by

0, if x is irrational.
flx) = 0, ifx=0.
1/¢g,  if x is rational, % 0, and equals p/q
when expressed in lowest terms
(¢ > 0, p and ¢ integers).

(3) A closed disk is folded along a diameter. (What sets are you using
for X and ¥7?)

(k) A closed ball is projected onto a tangent plane. (What are X and ¥?)
(1) A sphere is projected onto a tangent plane.

. (@) Let X be any subset of three-dimensional space. Prove that the

identity transformation 7: X — X, defined by i(x) = « for each v € X,
is a homeomorphism.

(b) Complete the proof of Theorem 3.1.

(c) Prove the statement made just before this set of problems, that any
polynomial transformation is continuous.

(d) Let each of X and Y be the real numbers and let f:X — ¥ be a
transformation. The student is already familiar with such transforma-
tions under the name “function.” Show that in this special case, our
definition of continuity is equivalent to the usual one found in calculus
texts. We shall use this result in some other special cases (e.g., when X
is the unit interval I = {x:0 < x < 1}).

. If f: X — ¥V and g: ¥ — 7 are homeomorphisms, prove that gOf is a homeo-

morphism from X onto Z.

, For each point x in three-dimensional space, and for each positive real

number 7, let us denote the open ball with center x and radius » by B(x; r).
Prove that a transformation f: X — Y between subsets of three-dimen-
sional space is continuous at xy € X if and only if, for each & > 0, there
isa 6 > O such that :

XN B(x;8) C fLY N B(f(x0); €)]

Let each of X and Y be all of three-dimensional space and use B(x;7) as
defined in Problem 4. Prove that f:X — T is continuous if and only if,
for each ¥ € Y and each real number » > 0,

If x € f~1(B(y;r)), then there is an open ball B(x; s)
such that B(x;s) C fY(B(y;r)).

This condition can be rephrased: The inverse image of each open ball in ¥
contains some open ball about each of its points.
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be a segment of length 1. Write each value of x; and x; as a decimal and,
if two different decimal forms are available for a particular value, choose
the form which has the digit 9 repeated. For example,

4 =0.5000...=049999 ... ;

the form 0.49999 . . . is chosen as the one to express the value of 3. Define
f: X — Y as follows: For each point x = (2, 2;) € X, where

X = 0&&& ey and Xy = 0.711172113 ooy

set f(x) = 0.5m&means . ... Is f: X — Y a transformation? Is it con-
tinuous? Is it one-to-one? Is it a homeomorphism? Can you use f to
find a set which has the same cardinal number as the unit square?

7-4 The Index of a Transformation

Throughout this section X is a plane, and we consider transformations
f:X — X (or perhaps f: X1 — X, where X; C X). A point which is its
own image under the transformation (that is, a point x € X for which

FIGURE 4.1

Pe
Py P

Po

(a)

flx) = ), is called a fixed point of f. Every point of X is a fixed point of
the identity transformation, while a translation (not the identity) has no
fixed points.

Let f: X — X be a continuous transformation and let C be an oriented
closed curve in X which contains no fixed points of f (Fig. 4.1a). That is,
C is a curve which begins at some point p,, is traced out in a given sense,
and ends at the same point p,. For each point p € C, set f(p) = p’;
then pp’ is a non-zero vector. Choose any convenient point O € X and
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draw a vector Op"’ which is parallel, and equal in length, to pp.” (Fig. 4.1
shows the construction for two points p;, and p..) Now imagine that the
point p moves along the curve in the given sense, eventually returning to
its original position. As p moves, the vector Op’’ may rotate about O in
either direction, but when p has completed one circuit around C and has
returned to its original position, the vector Op’’ will also have returned to
its original position and will have made an integral number of complete
revolutions about the point O. Let us describe rotations in the counter-
clockwise direction as positive, and clockwise rotations as negative; then
there is a unique integer n (positive, negative, or zero) which gives the
number of rotations of Op" about O as the point p moves once around the
curve C. This integer # is called the index of f along C (in the given sense).
Notice that the index of f along C is not defined if C contains a fixed point

of f.

Example 4.1 Let C be a circle, oriented as in Fig. 4.2a, and let f be the trans-
formation given by a counterclockwise rotation of 90 deg about the center of C.
Several of the vectors pp’ are shown in Fig. 4.2a. Figure 4.2b shows the cor-
responding vectors Op’’. The index of f along C is +1.

We want to show that certain deformations of an oriented closed
curve C do not affect the index of a transformation along C; a rigorous
proof of this fact is beyond the scope of this introductory text, but we
shall be able to make the result seem plausible.

FIGURE 4.2

P
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PROBLEMS

1. For each of the following transformations f: X — X, find the index of f
along the circle with center at the origin and radius 1. Orient the circle
in the counterclockwise direction.

(a) A translation (Example 3.2a).

(b) A rotation (Example 3.2b).

(c) A stretching (Example 3.2¢).

(d) Let O be the origin, and define f(x) = O for every x € X.

(e) Let a be the point (10, 15) (in rectangular coordinates), and define
f(x) = a foreveryx € X.

(f) The two transformations which send the point with polar coordinates
(r,8) into the point with polar coordinates (kr, 20); k = 4, 2.

(g) The transformation which sends the point with polar coordinates
(r, s) into the point with rectangular coordinates (r, s). (Hint: Be careful!)

2. What are the fixed points of the transformations of Problem 1?

3. Let f: X — X be a continuous transformation, and let C be an oriented
curve in X (not necessarily closed) which contains no fixed points of f.
Define an oriented closed curve C’ by tracing the curve C and then re-
tracing C in the reverse direction. Prove that the index of f along C’ is zero.

#4. Let f: X — X be a continuous transformation and suppose f(a) # @, where
a is some particular point of X. Show that if C is a circle in X with center
@ and sufficiently small radius, then the index of f along C is zero.

5. Prove Theorem 4.2.

6. (a) Find the index of a rotation at the origin with respect to the unit
circle (center at the origin, radius 1, oriented counter-clockwise).
(b) Find the index of a rotation at the point (10, 15) (rectangular coordi-
nates) with respect to the unit circle.
(¢) Find the indices of the transformations of Problem 1(f) at the origin
with respect to the unit circle.
(@) Find the indices of the transformations of Problem 1(f) at the point
(10, 15) (rectangular coordinates) with respect to the unit circle.

#(e) Let f: X — X be the transformation which sends the point with polar

coordinates (r, ) into the point with polar coordinates (r*, n6). Find the
index of f at the origin with respect to the unit circle. [Ans.: n.]

#1. Prove that the index of f at ¢ with respect to the oriented closed curve C is

the same as the index of the identity transformation at a with respect to
the curve f(C).
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8. Criticize the proof of Theorem 4.1. Why is it only a “proof of plausibility”?
Where did we use the hypothesis that, in the deformation, the curve does
not pass over any fixed point. of f?

7-5 Applications of Indices of Transformations

We have found (Section 7-4, Problem 2) that a continuous transformation
may, or may not, have a fixed point. In this section we shall use the con-
cept of the index of a transformation to prove a remarkable theorem due
to the Dutch mathematician L. E. J. Brouwer (1881- ) which says that
certain transformations must have a fixed point. We shall also give a
proof of the fundamental theorem of algebra. The proofs of these two
theorems will be based on the two different indices of transformations
which were defined in Section 7-4.

Theorem 5.1 (Brouwer’s fixed point theorem) If X is a closed disk, then
every continuous transformation f: X — X has a fixed point.

Proor. The proof is by contradiction. Let C, be the circumference of X
and let C, be a circle concentric with C, and with radius 7 smaller than
the radius of Co. If f has no fixed points, then C, can be deformed into C;
without passing over any fixed points of f, and, by Theorem 4.1, the
indices of f along Co and C, must be the same. If 7 is sufficiently small,
the index of f along Ci is zero (Problem 4, Section 7-4). The proof will be
completed by showing that the index of f along Co is not zero. In fact, at
each point p € Co, the vector from p to p’ = f(p) must point into the disk
(Fig. 5.1); that is, the vector pp’ stays always on the same side of the
tangent line to C at p. Evidently, when p makes one circuit around C, the
tangent line to C makes exactly one revolution. Since the vector pp’
stays always on the same side of the tangent, it must also make one
revolution, and the index of f along Cyis +1 or — 1.

Let us say that a subset X of three-dimensional space has the fixed
point property iff every continuous transformation of X into itself has a
fixed point. Then Brouwer’s fixed point theorem states that a closed
disk has the fixed point property. It is easy to see that a closed disk with
the center point removed does not have this property (try a rotation);
also, a sphere fails to have the fixed point property. Other examples
appear in the problems.

Go glc



Original from
UNIVERSITY OF MICHIGAN

Digitized by G()Og[e

916006-pdgasn  ssedoe/buo"1snaiTyrey mmm//:dizy / pazrithip-216009 ‘uTewoq 2T1qnd
GE9700Z00STO6E " dpu//zoZ/32uU " d1puey 1py//:sdily / LWO 61:9T 80-70-ZZOT UO PJOIXQ 4O AITSISATUN 3B paledaudg



134 Transformations / 7-5

A
°
aﬂ
FIGURE 5.2

Now under the continuous transformation f:X — X, which sends the
point z into the point f(z), the origin is sent into the point a.. Because f
is continuous, all the points sufficiently near to the origin are sent into
points which are near to a,. Thus, the image of a small circle Co with
center at the origin is a closed curve C lying near to a. (Fig. 5.2). It
follows that the index of f at the origin with respect to Co is zero. But
Co can be enlarged to an arbitrarily large circle C; without passing over
any point of f~1(0) (f~'(0) is empty, since f(z) = 0 has no roots); hence,
by Theorem 4.2, the index of f at the origin with respect to C, is zero.

Now consider the transformation g:X — X defined by g(z) = z*. By
Problem 6(e), Section 7-4, the index of g at the origin with respect to the
unit circle is #. Since g~'(0) = {0}, the unit circle can be enlarged to the
circle C, without passing over any point of g~'(0); hence, by Theorem 4.2,
the index of g at the origin with respect to C,is #.

The proof by contradiction will be concluded by showing that the
indices of f and g at the origin with respect to C; are the same. By Prob-
lem 7, Section 7-4, it suffices to show that the indices of the identity trans-
formation 7:X — X (i(z) = z for every z € X) at the origin with respect
to the two curves f(Cy) and g(C,) are the same. This result will follow
from Theorem 4.2 if we show that the curve f(C,) can be deformed into
the curve g(C,) without passing through the origin (:-1(0) = {0}). Such
a deformation is described in the next paragraph.

Choose the radius R of C; so that
R>1, and R > |a) +|as] +- - + |aa|

For any point z € Ci, the distance from f(z) to g(z) is |[f(z) — g(z)| and
we find

[f(z) — g(@)| = |awe" + a5 + - -+ + ansz + aa
< |ai| Rt + |ag|R*2 + - - - + |an—ll-R + |a.)
< R |ai| + |ao] +- - - + |aa|] < R = [g(3)].
Thus, for any z € Cy, the distance between f(z) and g(z) is less than the
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distance from g(z) to the origin, so the origin cannot be on the line seg-
ment from f(z) to g(z). But this means that the curve f(C,) can be de-
formed into the curve g(C.) by moving each point f(z) € f(C,) along the
line segment joining f(z) to g(z), and, during this deformation, the curve
will never pass through the origine.

PROBLEMS

1. Prove that none of the following subsets of three-dimensional space has
the fixed point property.
(a) A torus.
(b) A sphere.
(c) An open disk.
(d) A closed disk with a single point of the open disk removed.
(e) A closed disk with a single point of the circumference removed.

2. (a) Examine several examples of continuous transformations of a closed
disk into itself and find a fixed point for each. Can there be more than one
fixed point? Can there be any number of fixed points?

(b) Find a homeomorphism of a sphere onto itself with no fixed points;
with exactly one fixed point; with exactly two fixed points.

3. Give an alternative proof of Brouwer’s fixed point theorem based on the
following: Let f: X — X be a continuous transformation of a closed disk
into itself which has no fixed points. For each point x € X, draw the line
segment from f(x) to x and extend this segment until it meets the circum-
ference in the point x’. Define a transformation g: X — X by setting
g(x) = x’. Then g is a continuous transformation which transforms the
closed disk into its circumference and leaves each point of the circum-
ference fixed. But it is intuitively evident that there is no such trans-
formation as g.

*4, Prove that if f is a continuous transformation of a sphere S into itself, then
either f has a fixed point or there is some point which f sends into its dia-
metrically opposite point. (Hint: Suppose f has no fixed points, and sends
no point into its diametrically opposite point. Determine a unique direc-
tion d at each point p € S by taking the tangent to the shorter arc of the
great circle joining p to f(p). Now consider any directed circle C on S
(Fig. 5.3). At each point p € C let 8 be the angle between the vector ¢
which is tangent to C at p and the direction ¢ determined as above. As p
moves once around C, the net change in the angle 6 will be an integral
multiple of 360 deg. Call this integral multiple the index of C. By a proof
similar to that of Theorem 4.1, prove that deforming a circular curve does
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EIGHT

Spaces

8-1 Introduction

In Chapter 7 we have seen how the concept of
the distance between two points in three-dimen-
sional space can be used to define continuity of
transformations; this concept, in turn, was used
to define topological equivalence of figures. But
we have also discussed some figures (for example,
the Klein bottle) which are not subsets of three-
dimensional Euclidean space. The definitions
of continuity and topological equivalence can be
generalized so that they are applicable in these
situations. The generalization is made in this
chapter.
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In Section 8-2 we show that the concept of the distance between two
points may be available even when the “points” are elements of an
arbitrary set (perhaps a set of functions). In this case, we speak of the set
as a metric space; the definitions of continuity and topological equiva-
lence can be carried over to metric spaces immediately from their state-
ments in Chapter 7.

In Section 8-3 we shall find that some of the concepts which can be
defined in a metric space (e.g., open set, closed set) may be available in
still more general situations. These concepts will be used to define con-
tinuity and topological equivalence in these more general situations.

Three particularly important properties (connectedness, compactness,
and completeness) are discussed in Sections 8-4, 8-5, and 8-6. The first
two are topological properties; the last is not.

8-2 Metric Spaces

In Section 7-3 we mentioned four basic properties of the distance function
in three-dimensional space. We shall see here that, if X is any set and
d is a function which has these properties, then many of the concepts of
interest in connection with three-dimensional space can be defined in
the set X.

Let X be a set, and let d be a real-valued function defined for pairs of
points x € X, y € X. The function d is a metric in X if and only if the
following conditions are satisfied for all points x, y, and z of X.

(1) d(x,y) > 0.

(2) d(x,y) =0, iff x=4y.
) d(x,y) = d(y, »).

(4) d(x,y) +d(y,2) 2 d(x, 3).

The value of the functiond at the points x, y [i.e., the real number
d(x, y)]is called the distance from x toy. A metric spaceis a set X together
with a metric d in X.

Before we discuss metric spaces, let us look at some examples. Each
of Examples 2.1 through 2.6 is a metric space.

Example 2.1 X is any subset of three-dimensional Euclidean space; d(x, y) is
the ordinary distance from x to y.
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Example 2.2 X is an arbitrary set; the function d is defined by setting

_J0, ifx=y.
d(x, y) = {1, if x = 9.

Example 2.3 X is the set of all points in a plane; for any points x = (x;, x2) € X
and y = (y, y2) € X, set

d(x, y) = lxs — 3| + |22 — .

Example 2.4 X is the set of all continuous real-valued functions defined on the
unit interval

I=1{:0LtL1};
for any two functions * € X and y € X, set

d(z, y) = max [2(2) — y(2)!.
tel

Example 2.5 X is the same as in Example 4;

dx,3) = [ 126 — 3(0)| dn.

Example 2.6 X is the set of all ordered #n-tuples of real numbers. For any two
ordered n-tuples

= (x,%,...,2,)€ X and y= (y,3...,9) € X,

set

d(x,y) = max |z — yi.

0Si<n

Each of Examples 2.7 through 2.10 is not a metric space.
I

Example 2.7 X is the set of all real numbers;
d(x,3) = & = #.

Example 2.8 X is the set of all real numbers;
d(x,9) = lat = 5.

Example 2.9 X is the set of all real numbers;

x — ifx>y.
d(x,y)={ f ifxzi.

bt
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Example 2.12 In the space X of Example 2.5, let 2y € X be the function which is
identically zero; that is, 2o(f) = Oforallt € I. The open ball B(x; 1) is the set
composed of all the functions ¥ € X such that the area bounded by the curves

=x(?)

FIGURE 2.2

x= x(¢) and the linesx = 0,¢ = 0,¢ = 1is less than 1. Figure 2.2 shows one
such area; note that the area below the ¢-axis is #ot counted as being negative.

The reader should prove the following theorem as an exercise; this
result will be used in proving later theorems.

Theorem 2.1 A transformation f:X — ¥ is continuous iff, for every
7, € X and every open ball

By = B(f(m);9) C ¥
with center f(x,), there is an open ball

B, = B(x;;6) CX
'with center x; such that B, C f~1(B.).

Proor. Exercise«.

Theorem 2.2 Let X and ¥ be metric spaces with metrics d and e respec-

itlvely, a necessary and sufficient condition that f: X — ¥ be continuous
'is that if B, is an open ball in ¥ such that x € f~(B,), then there is an
open ball B, C X such thatx € B, C f~'(B)).

' PROOF. Sufficiency: Suppose that the condition of the theorem is satis-
fied and let B, = B(f(x1); ¢) be an open ball in ¥ with center f(x;). Then
1 € f~1(By), so there is some open ball B, = B(x,;7) in X such that

1 € B, Cf'(B). Set 6 =7 —d(x,x); since #1 € B, § >0. Let
B¥ = B(x1;4); then B¥ is an open ball with center ;. If x € B, then

| d(xs, x) < d(xz, 21) +d(x1,x) < d(, 1) +6 =7,

jso x € B,. Thus Bf C B, C f'(B1). Therefore, by Theorem 2.1,
fis continuous.

Go 3[0
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Necessity: If f is continuous, then the condition of Theorem 2.1 is
satisfied. Suppose that B, = B(y;;r) isanopenballin ¥ and x € f~1(B)).
Then f(x) € B, so that

e =r —e(y, f(x)) > 0.
Set By = B(f(x); ¢); it follows from the triangle inequality that B, C B.

But by Theorem 2.1 there is an open ball B, = B(x; ) C X, with centerz,
such that

B C f(Bo) C f(By).
Certainly x € B,«.

Two concepts which we have not previously discussed are defined
below; these definitions are applicable in any metric space. We shall see
later that these concepts may be meaningful in more general situations.
In fact, one of them will form the basis of our generalization from metric
spaces to topological spaces in Section 8-3.

A subset U of a metric space X is open iff, for each point x € U, there
is an open ball B such that x € B C U. A subset F C X is closed iff F/
is open.

If U is open and x € U, there is a ball B, such thatx € B; C U. But
then there is a ball B, with center x such that B, C B,. Thus, a set
U C X isopeniff, foreach x € U, thereisa ball B(x;7) C U. This form
of the definition shows why the word “open” was chosen to describe this
concept; it is in the sense of ‘“wide open spaces.” If U is open and
x € U, then U also contains any point that is sufficiently near to x. That
is, intuitively, x cannot be on the ‘“‘edge” of U in the sense of having some
point very near to x be outside of U. The intuitive meaning of the word
“closed” is a little more difficult to describe. We shall see later that it can
be interpreted in the sense of “‘enclosed” or “containing a fence around it.”

It is easy to see that there are sets which are neither open nor closed.
In the metric space composed of the real numbers (Example 1), let
A = {x:xis rational} and B = {x: x is irrational}. Then neither 4 nor
B is an open set; but 4 and B are complements, so neither one is closed.
A more surprising result is that there are some sets which are both open
and closed. In fact, in Example 2.2, it is easy to see that B(x; %) = {z};
that is, each open ball of radius 4 contains exactly one point. In this
metric space, every set is open, and, consequently, every set is also
closed. This is an extreme example, but, in any metric space X, the
empty set # and the whole space X are both open and closed.
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Theorem 2.3 The transformation f: X — ¥ from the metric space X
into the metric space ¥ is continuous iff, for every open set V C ¥, the
set f~1(V) is open.

ProOF. Necessity: Let f be continuous, let ¥ be an open subset of ¥, and
let x be a point of f~1(V); to show that f~*(V) is open, we shall find an
open ball B such that x € B C f~(V). Since f(x) € V, there is an open
ball B, with f(x) € B, C V. But then x € f~(B,), and, by Theorem 2.2,
there is an open ball B C X such that

x € BCf(B) Cf(V).

Sufficiency: Let B be an open ball in ¥ and let x be a point of f~'(B,).
Since B is an open ball, it is open (Problem 9); hence, by the condition of
the theorem, f~1(B,) is also open. Since x is a point of the open set
f1(B.), there is an open ball B, such that x € B, C f~(B:) and, by
Theorem 2.2, f is continuous«.

Theorems 2.2 and 2.3 give two characterizations of continuous trans-
formations between metric spaces. The condition of Theorem 2.2 is
usually more convenient to use, but, in more general spaces, this condition
will become meaningless and the condition of Theorem 2.3 will be the
important one.

PROBLEMS

1. (a) Prove that each of Examples 2.1 through 2.6 is a metric space.
(b) Prove that each of Examples 2.7 through 2.10 is not a metric space.

2. Which of the following examples are metric spaces?
(a) The set X is the set of positive real numbers; for x € X and y € X,
set d(x,y) = |x — ¥
(b) The set X is the set of real numbers; for x € X and y € X, set
d(x,y) = (xv — yo)
(¢) The set X is a plane; for x = (x;,42) € X and y = (3, ) € X, set

d(x) y) = max Hxl - 3’11, |x‘2 - y2“
(d) The set X is a plane; for x = (1, %,) € X and y = (31, 32) € X, set

[(xl - )’1)2 + (22 — )’2)2]”2, if 1y N
d(x,y) = ¢ ifx; =9 and a7y
0, ifzi =9 and x = y.
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. Prove that a real-valued function d defined for pairs of points x € X,

y € X is a metric in X if and only if d satisfies the two conditions
@) d(x,y) =0 iff x = y.
(b) d(x,y) < d(x,2) + 2y, 2).

. Let 1 be the identity transformation from the metric space of Example 2.4

to the metric space of Example 2.5. Prove that ¢ is continuous. Is i’
continuous?

. (a) Let X be the metric space of Example 2.4 and define a transformation

f:X — X by setting f(x) = y where
t
y(@t) = f x(t) dt.
0

Is f continuous?
(b) Do the problem in part (a) if X is the metric space of Example 2.5.

. Prove that a necessary and sufficient condition that f: X — 1" be continuous

is that for every x; € X and for every open ball B, = B (f(x1);¢) C T,
with center f(x1), there is an open ball B, = B(x;;8) C X, with center x,
such that B, C f~1(By).

. Compare the statement of Theorem 2.2 with the statement of Problem 5

of Section 7-3. Why was it necessary for the statement in the problem to
be more complicated than the statement in the theorem?

. Prove that, in any metric space X, each of the sets @ and X is both open

and closed.

. Show that an open ball is open; show also that a closed ball is closed.
10.

(a) Show that the intersection of any two open sets is open.

(b) Show that the intersection of any finite number of open sets is open.
(c¢) Show that the union of any family (not necessarily finite) of open sets
is open.

#11. (a) Show that the intersection of any family of closed sets is closed.

12.

13.

(b) Show that the union of any finite number of closed sets is closed.

Prove that a transformation f: X — ¥ between two metric spaces is con-
tinuous iff, for every closed subset F of ¥, f7!(F) is a closed subset of X.

Let X and Y be the metric spaces of Example 2.2 and Problem 2(a) re-
spectively. Which of the following transformations f: X — T are continu-
ous? Which have a continuous inverse?

(@) flx) =«
(b) f(x) = 2«
(€) f(x) = «*
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14. Do Problem 13 for the transformations f: 7 — X.

16. Let X and Y be the metric spaces of Examples 2.4 and 2.5 respectively.
Which of the following transformations f: X — 1" are continuous? Which
have a continuous inverse?

@) f(x(@®) = =)
() f(x(®) = 2x(¢)
) fx@®) = [x@&)F
d) f(x@®) = 2(#)

16. Do Problem 15 for the transformations f: I’ — X.

We shall discuss two more concepts, closure and convergence, in
metric spaces before we consider more general spaces in the next section.

For any subset A of a metric space S, the closure of A, denoted by A,
is the smallest closed set having 4 as a subset. That is,

(1) A~ is closed.
(ii)) A- D 4.

(iii) I Fisclosedand F D A, then F D 4-.

It is easy to see that each set A C X has a closure; that is, there always
exists a smallest closed set having A as a subset. For, consider the
family F of all closed sets which have 4 as a subset (the set X is certainly
a member of this family). By Problem 11a above, the intersection of all
the sets in this family is, a closed set. This intersection will have 4 as a
subset and will certainly be the smallest closed set which has 4 as a subset.
Thus we see that the closure of A is the intersection of all the closed sets
which have A as a subset. Thatis,

A-=N{F:Fisclosed and F D A}.

Theorem 2.4 A point x € X is in the closure of a subset 4 C X if and
only if each open ball B(x; r) has at least one point in common with 4;
that is,

AN B(x;r) 0.
PrOOF. Suppose x § A~; then x € (4-)". But (4~)’ is an open set;

hence, there is an open ball B, such that x € B, C (4~)’. Since x € B;,
there is an open ball B, with center at x, such that B C B, and we have

BCB CA)Y CA.
Thus A N B = §.
Suppose there is an open ball B = B(x;r) such that A N\ B = §.
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Then B’ is one of the closed sets having 4 as a subset, so A~ C B’. Since
x € B, it follows that x ¢ 4-«.

Theorem 2.4 shows that the closure of a set A consists of all th({
points which are very near to points of 4 ; more exactly, x € A— iff, for
every e > 0, there is a point of 4 which is e-near to .

We have seen that any subset A C X determines a subset A~ call
the closure of 4, This means that closure is a unary operation on th
subsets of X. The next theorem gives the most important properties of
this operation.

Theorem 2.5 For any subsets S and T of X,

(a) 6- = 0. (c) §-—- =5
(b) S-DS. d S-UT-=(SUT-.

ProoF. (a) Since # is closed and is a subset of every set, it is evidently
the smallest closed set having @ as a subset. That is, §— = §.

(b) Thisis evident from the definition of closure.

(c) Since S- is itself closed, it is one of the closed sets having S—asa
subset. Evidently, it is the smallest closed set having S— as a subset;
ie,S— =5 :

(d) The set (S\J T)- is one of the closed sets having S as a subset;
hence S~ C (§\U T)-. Similarly, T- C (§\U T)-, and these two in-
clusions simply that

S~UT-C (VT

For the other inclusion, notice that S- is a closed set having .S as a subset,
and T is a closed set having T as a subset. Thus, S—\U T is a closed
set (Problem 11b above) having S \U T as a subset. Thatis, S—\U T-D
SV TN«

Example 2.13 Let X be the metric space of Example 2.4, and let S be the set of
all functions x € X such that the graph of x consists of a finite number of line
segments. Let x; € X be the function defined by x,(¢) = # for £ € I. Then
%, € S~. This can be seen in Fig. 2.3, which shows the graph of the function 1
and a strip of vertical dimension 2e about this graph. Evidently, for any
x € S, d(x, x) < eiff the graph of x lies in this strip; Fig. 2.3 shows that there
is at least one x € S which satisfies this condition. Thus, for any e, the open
ball B(x; €) has at least one element in common with S so that, by Theorem
24, % € S
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~

Example 2.14 Let X be the set of real numbers and, for x € X, y € X, define
d(x,y) = [x — y|.
(a) Set
= (—1D"1/n), n=12,....

For any open ball B with center at x = 0, the sequence (x,) is eventually in
B; consequently, (x,) converges to 0. If A = {x:x > 0} is the set of all posi-
tive real numbers, the sequence (x,) is frequently (but not eventually) in 4.
(b) Set
2 = (— )™, n=12....
This sequence is frequently in the positive numbers, but does not converge to
any point.

Example 2.15 (a) Let X be the metric space of Example 2.4 and let
%, (n=2,3,4,...) be the function whose graph is shown in Fig. 2.4. The

(5,n)

FIGURE 2.4

0 4-1i/n? 1+1/n® A

sequence (x,) does not converge to any point x € X. This can be seen by
noticing that for any x € X,

Thus, for n > x(3) + 1, d(x, x,) > 1 and (x,) is eventually outside the open
ball B(x; 1).

(b) Let X be the metric space of Example 2.5 and let x, (n = 2,3,4,...)
be the function whose graph is shown in Fig. 2.4. Then x, — xo where x(f) = 0
forall¢ € I. In fact,

Ao, 1) = [ l(® = % 0] dt = 1/

[

It follows that for any open ball B with center xo, the sequence (x,) is eventually
in B.
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As might be expected, the metric space where X is the set of real
numbers and

A(x, %) = |1 — 2o

is a special case of considerable importance. In fact, convergence of
sequences in any metric space can be described in terms of convergence in
this space. Let ¥ be a metric space with distance function e and let
(y») be a sequence in ¥. Then y, — y, € ¥ iff the sequence (y,) is even-
tually in each open ball with center y,. That is, iff for any real number
r > 0, the sequence of real numbers (e(yo, ¥,)) is eventually in the set

A, = {x:0< x <r}.

This condition is necessary and sufficient for the sequence (e(yo, ¥»)) of
real numbers to converge to zero in the metric space X. Thus, conver-
gence of sequences in the arbitrary metric space ¥ can be described in
terms of convergence to zero in the metric space X.

The following theorem gives the connection between convergence
and closure.

Theorem 2.6 Let X be a metric space and let S C X; a point x € X is
an element of S- if and only if there is a sequence (x,) in .S which con-
verges to x.

Proor. If x € S—, then each open ball with center x intersects .S. Choose
%, € SN B(x; 1/n).

Then the sequence (x.) is eventually in each open ball with center x;
hence, x. — x.

If there is a sequence (x,) in S which converges to x, then this sequence
is eventually in each open ball with center x; so certainly each of these
open balls intersects S. Thusx € S—«.

\

Theorem 2.6 points up the intuitive connotations carried by the term
“closed set.” A set 4 is closed if and only if A = A~ (Problem 17); by
Theorem 2.6, this is the case iff, whenever a sequence (x,) of points in 4
converges to a point x, the point x must bein 4. Intuitively, the sequence
(x,) converges to x iff the points x, get “very close” to z, so the condition
that 4 be closed can be phrased as follows: Any point which is “very
| close” to points of 4 is a point of 4. Again: It is not possible to sneak

along a sequence of points in 4 and get “very close” to a point that is not
'in 4. The points of A are enclosed — it is impossible to escape from
| them by sneaking along a sequence of points in 4.

t
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PROBLEMS (continued)

17. Let A be a subset of a metric space.
(&) Prove that A4 is closed iff A = A~
(b) Prove that A4 is closed iff 4 is the closure of some set.
(¢) Prove that if A C B then A~ C B~.

18. (a) If S and T are subsets of a metric space, how is the set S~/ T re-
lated to the set (SN T)~?
(b) How is (S™)’ related to (S’)~?
(c) Give an example of an open ball B(x; r) whose closure is different from
the closed ball B~ (x;r).

#19. Let X be a metric space.
(@) If p € X and

Xn = P, n=123...,

prove that x, — p.

(b) If x,—x and 7 <#m <m<..., prove that the sequence
(Xnyy Xngy Xnyy - - .) converges to x. The sequence (Xn,, Xn,y Tngy...) IS
called a subsequence of the sequence (x,).

(¢) Prove that (x,) has a subsequence which converges to x, iff (x,) is
frequently in each open ball B(x,; r) with center x,.

(d) Prove that if x, — x and x, — y, then x = y.

20. Let (x.) be a sequence in X and let 4 be a subset of X. Prove that (x,)
is eventually in A iff it is false that (x,) is frequently in A’.

21. Let X be the set of real numbers and, for x € X, y € X, set
dx,y) = |z — 9|

Find the closure of each of the following subsets of X.
(a) 4 =1{1,2,3,...}.

(b) B = {11%)%)}

(c) C= {1;_%)%’7'—%)"'}'

(d) D= {1!7}! 37%{)57 L }

e) E={x:0<x<1}.

(f) F = {x:x is rational}.

& G = {x:x is irrational}.

22. For each of the sets 4 to G in Problem 21, choose several points in the
closure of the set and, for each point x which you choose, find a sequence in
the set which converges to x. This process checks the result in Theorem 2.6.

23. (a) Let X be the metric space of Example 2.4, and let x, € X be the
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function defined by x,(¢) = #* for all £ € I. Does the sequence (x.) con-
verge? If so, what is its limit?
(b) Do part (a) for the metric space of Example 2.5.

. Let X be the set of real numbers and, forx € X,y € X, set

_§0, ifx=y.
4 ) = {1, if % = .

Describe convergence in this metric space; that is, tell which sequences
converge to which points. What can you say about the closure of a set 4
in this space?

*26. Let X = {0,1,2,...} be the set of non-negative integers, and define a

26.

function d as follows: For

x€ X, ye€X, x#y,
let & be the biggest non-negative integer such that 2¢ is a factor of |x — 9],
then

d(x,y) = ) d(xz,x) = 0.

b4+ 1
(a) Find: (i) (0, 2), (ii) d(4, 19), (iii) d(3, 99).

(b) Prove that the function 4 is a metric in X.

(c) Prove that the sequence (2, 4, 8, ..., 2" ...) converges to 0.

(d) Prove that the sequence (3,6,9,...,3n,...) does not converge.

(e) Find a sequence of distinct elements of X such that the sequence
converges to 5.

(f) Find the closure of the set {3,6,9,...}. [Hint: First prove that, if »
is any positive integer, then

22n+l 1
k, = il ot
3
is also a positive integer. For any m € X consider the sequence (3km,

3kam, 3ksm, . . .) and show that this sequence converges to m.]

Review the definitions we have had for closed path, closed curve, closed
surface, closed disk, closed ball, closed set. What similarities are there, and
what differences?

8-3 Topological Spaces

In Section 8-2 we defined and discussed the concepts of open set, closed
set, closure, and convergence in a metric space. The metric was used to
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define these concepts, and the properties of a metric (symmetry, triangle
inequality, etc.) were used to derive certain properties of each of the new
concepts. Any one of these concepts could be used to obtain a generaliza-
tion of a metric space. This generalization would be obtained by starting
with a set X, in which the appropriate concept is given axiomatically (not
defined in terms of a more fundamental concept), and by studying the
structure imposed on the set X by the axioms. We shall adopt “open
set” as our fundamental concept and shall define other concepts in terms
of this one.

A topological space is a set X, together with a family O of subsets of X
satisfying the following conditions:

(01) X € 0, gco.
(02) U €O and V€O, then UNVeO.
(03) ESCO, then U {4:4 €8} €O,

The members of the family O are called open sets in the topological space.
This means that the statement “U is an open set” is equivalent to the
statement “U € 0.”

Thus, in any topological space, the empty set and the set X itself are
open sets; the intersection of any two open sets is open; and the union of
any collection of open sets is open.

Before we give some examples of topological spaces, it is convenient
to have another definition. A set 4 C X is closed if and only if A’ is
open. Certainly the family O of all open sets in a topological space X
completely determines the collection C of all closed sets. In fact,

= {4: 4" € O}.
Conversely, the collection € also determines O, since
O =1{4:4"€ C}.

The three requirements O1 through O3 which were made above on the
family O are easily seen to be equivalent to the conditions C1 through C3
below on the collection C.

(Cgee, XeC
(C2) If F€ € and G€C, then FUGEC.
(C3)) IS CC, then N{4:4¢€8)¢C.

For a particular set X there may be several different families © of
subsets of X which satisfy conditions O1 through O3, as shown by the
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examples below. The selection of one such family © is said to define a
topology in the set X. Clearly, a topology in X may be defined by speci-
fying a collection C of subsets of X which satisfies conditions C1 through
C3, since the family O is then uniquely determined. This procedure is
used in some of the following examples.

In each of Examples 3.1 through 3.5 the set X is the set of all real
numbers; the topological spaces differ in the selection of the family © of
open sets.

Example 3.1 ©, = {6, X}. From condition Ol, this is the smallest family
which defines a topology in X. In this topological space, C; = {X, 8} so that
a set is open iff it is closed.

Exomple 3.2 A subset F C X is called finste iff F has a finite number of ele-
ments. For example: @ is finite, since it has=0 elements; the set {2, 3, 8} is
finite, since it has three elements; the set N= {1,.2,3,...} is not finite. Let

F={F:FCX and Fisa finite set}
and let
ez = 3U {X}.

Then C, satisfies the conditions C1 through C3 and is, therefore, the collection
of all closed sets in some topology defined in X. In this topological space, every
finite set is closed, the set X is closed, and no other sets are closed. The family
of open sets is given by

Q;={4:4=0 or A’isa finite subset of X}.

Example 3.3 Let us call a set A denumerable iff there is a one-to-one trans-
formation of 4 into the set N = {1, 2, 3,...} of all positive integers. Every
finite set is denumerable, but there are also infinite denumerable sets; for
example, the set {2, 4, 6, . . .} is denumerable, as is the set NV itself. Problem 7
of Section 7-2 shows that the set of all positive rational numbers is denumerable,
whereas the set {x:0 < x < 1} is not denumerable. Let

D={4:ACX and A4 is denumerable}

and let C3 = DU {X}. Then C; is the collection of all closed sets in some
topology defined in X. In this topological space, every denumerable set is
closed; the set X is closed; and no other sets are closed. The family of open
sets is given by

O;={4:4 =0 or A'isa denumerable subset of X}.
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Example 3.4 Set O, = {A: A C X}. The family O, satisfies conditions
O1 through 03; it is evidently the largest family which defines a topology in X.
(The topology defined by O, is called the discrete topology.) In this topology
it is again true that a set is open iff it is closed; i.e., O, = C,. We have met this
topological space before as a metric space. The family O, is the collection of all
sets which are open in the metric space X, where the distance between points x
and y is given by

_Jo, ifx=y.
i, 3) = {1, if x # 9.

Example 3.5 For each real number x € X, let

L= {y:y <z}
and let £={L:x€ X}
Then the set Oy= £U {9, X}
defines a topology in X.
PROBLEMS

#b.

. Prove that each of Examples 3.1 through 3.5 is a topological space. What

is the collection of closed sets in Example 3.5?

. Show that if X is any metric space and © is the collection of all subsets of

X which are open in that metric space, then O satisfies conditions O1
through O3, so X can be considered to be a topological space. Thus the
two concepts of open set — one in a metric space and one in a topological
space — need not cause any confusion.

. Show that not every topological space can be thought of as a metric space.

(Hint: Try the space of Example 3.1.)

. Let X be the set of real numbers and let

I={x:0<x<1}.

Which of the following families defines a topology in X?
@) O0=1{4:TCAC X}V {0}

b) O={4:4C I}V {X}.

€) O={4:Td 4and 4 ¢ I}V {9, X}.

Let X be the set of all continuous functions defined on the unit interval

I={:0<5t<L1}
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and let © be the family of all subsets U of X which satisfy the following
condition: If xy € U, then there are a positive number ¢, a positive integer
n,and z numbers 4, € I, € I,...,t, € I such that

UDfxilx@) —m) <e(@=1,2,...,n)}.
Prove that X, together with the family O, is a topological space.

#6. Let I* = {£:0 < ¢} and let X be the set of all continuous functions defined
on I*. Define a family O of subsets of X as in Problem 5 and prove that
X, together with this family O, is a topological space.

In our definition of a continuous transformation between metric
spaces, the distance concept played a major role, since the definition was
concerned with e-nearness, etc. Of course, e-nearness has no meaning in a
general topological space, but the condition of Theorem 2.3, which is
necessary and sufficient for continuity of a transformation between metric
spaces, is meaningful in the general situation, and we use this condition to
extend our definition of continuity.

Let X and Y be topological spaces; a transformation f: X — ¥ is con-
tinuous if and only if, for every open set V C ¥, the set f~(V) is open
in X. Notice that this definition is concerned with continuity, and not
with “continuity at x,.”” It would be possible to extend this latter con-
cept to transformations between topological spaces, but we shall not do
so. A homeomorphism is a continuous transformation which has a con-
tinuous inverse transformation.

Example 3.6 Let each of X and ¥ be the topological space of Example 3.5;
define two transformations f : X — ¥ and g : X — ¥ by setting

1, ifx<oO. -1, iz <0
fx) = " x>0 g(x) = 0, ifx=0.
’ = 1, ifx<0.

Since X and Y are the same topological space, we could call them both X, but
in the definition of continuity the two spaces are treated differently, so it is
convenient to have a notation that indicates which space is being considered.
We shall show that f is continuous, but g is not. First, consider f and let V be
any open set in ¥. We distinguish several cases, as follows:

Case 1. V = @. Then f~(V) = 0, which is open in X.
Caseg 2. V =Y. Then f~Y(V) = X, which is open in X.
CasE3. V=L,= {3:3 < y}.
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(a) If y < — 1, then f~Y(V) = @, which is open in X.
() If — 1<y <0, then f7(V) = {x:x < 0}, which is open in X.
(c) If 0 < y, then fY(V) = {x:x < y}, which is open in X.

Thus, for every open set V C ¥, the set f~(V) is open in X, and this proves
that f: X — ¥ is continuous.

Now consider the transformation g. Set V = {y:y < 4}; then V¥ is an open
subset of ¥, but f/~1(V) = {x: x < 0}, which is not an open subset of X. Thus,
g:X — ¥ is not continuous.

We define the concept of closure in a topological space X exactly asina
metric space. The closure A~ of a set A C X is the smallest closed set
having A4 as a subset.

It is easy to prove, from condition C3, that every set A C X hasa
closure; that is, that there is a smallest closed set having A as a subset.
Also, for any set 4, its closure 4~ is a closed set, and, in fact, 4 is closed
iff 4 =A4-.

We have been concerned with the boundary, or edge, of a set on
several occasions in our previous work, but we have not had a clear defi-
nition of this term. We can now define it. The boundary of a set A ina
topological space X is the set A= M (4')~.

Thus, a point x € X isin the boundary of 4 iff

x€ A~ and x€ (4')-.

We can think of the points of A— as the points which are stuck very
tightly onto 4 ; from this viewpoint, the boundary of 4 is composed of all
the points which are stuck very tightly onto 4 and also are stuck very
tightly onto A’. This seems to be a quite satisfactory interpretation for
the term boundary, or edge.

Notice that the boundary of a set 4 depends on the space X as well
as on the particular set 4. An example will clarify this point. Let X;
be ordinary three-dimensional space; choose a particular point x, € X,
and consider the sphere S = {x:d(%, «) = 1}. This sphere is a closed
set in the metric space X}, and ($')~ = X,. Thus the boundary of S is

SSNE)-=SNX; =38

The sphere is its own boundary when considered as a subset of ordinary
three-dimensional space.

Now let X, be the sphere S, which is a metric space if we use the
ordinary notion of distance, and again consider the subset S of X,. The
set S is closed, but S” = @, so, in the space X3, the boundary of S is

S-NE)>-=SNo=40.
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The boundary of the sphere is empty when the sphere is considered as a
subset of itself.

In our previous work, when we mentioned the boundary of a piece of a

surface, we have meant to think of this piece as a subset of the surface;
when we have spoken of the boundary of a solid, we have meant to con-
sider this solid as a subset of ordinary three-dimensional space.

7.

#9.

10.

11.

12.

PROBLEMS (continued)

Let each of X and Y be one of the topological spaces of Examples 3.1
through 3.5. Define a transformation 7: X — Y by setting i(x) = = for
each x € X. For which choices of X and Y is the transformation 7 con-
tinuous? For which choices is ¢ a homeomorphism?

With X and Y} as in Problem 7, define f: X — V by setting f(x) = a2
For which choices of X and ¥ is f continuous? For which choices is f a
homeomorphism?

(a) Let A be a subset of a topological space X and let x be a point of X.
Prove that x € A~ iff every open set containing x contains at least one point
of 4.
(b) Prove that a transformation f: X — ¥ between two topological spaces
is continuous iff, for every closed subset F C Y, f7'(F) is a closed subset
of X.

For each of the following sets, consider it in turn as a subset of each of the
topological spaces of Examples 3.1 through 3.5 and find the closure and
the boundary of the set.

(a) A = {0,1}.

(b) B= {x:0< x < 1}.

€) C={x:0<x< 1}.

d) D= {x:0< x < 1}.

() E={x:0<x< 1},

) F = {x:2 <0}.

@) G = {x:1 £0}.

th) H= {x:2 <0 or x> 1}.

@ I ={x:x<0 or x2>1}.

G) J ={x:x<0 and x> 1}.

Review the places in our previous work where we have discussed the
boundary of a set (see pp. 44, 63, 65, 78, 89).

Prove the following statements made in the text: If X is a topological
space, then every subset 4 of X has a closure; 4~ is a closed set; and, in
fact, A is closed iff 4 = A4~
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13. Let X be a set and let ~ be a unary operation such that, for any 4 C X,
A~ is also a subset of X. Suppose, further, that for any subsets A and B
of X

@) 9~ = 0. €) A== = A-.
) &~ DA. @) A-UB = (4U B)~.

Set C={4:AC X and A4~ = A}. Prove that C satisfies the con-
ditions C1 through C3, so X may be thought of as a topological space.
What is the closure operation in this space?

We now turn our attention to convergence of sequences in topological
spaces. In a metric space, open balls were used to define convergence of
sequences. How can we generalize this concept to topological spaces?
An open ball B(x;r) may be thought of as establishing a standard of
nearness; it consists of all the points which are r-near to x. We have seen
that an open set containing a point x can be thought of as containing all
the points “right around” x. Thus we may think of each open set U
containing x as setting up a standard of “nearness to x.” Namely, all
the points of U can be called U-near to x, and the points of U’ can be said
to be not U-near to x. The ideas involved in the convergence of (x,) tox
in a metric space can now be paraphrased as follows: A sequence (x.,)
converges to x iff, given any open ball B = B(x;¢) (a standard of near-
ness to x), the sequence (x,.) is eventually in B (eventually near to x,
according to the given standard of nearness). These ideas generalize
immediately to topological spaces and suggest the following definition.

A sequence (x,) in a topological space X converges to the point x € X
iff the sequence is eventually in each open set containing x.

Example 3.1 (continved) In the space X of Example 3.1, let (x.) be any sequence
and let x be any point. The only open set containing x is X itself, and certainly
(x,) is eventually in X. Thus, the sequence (x,) converges to x. That is, in
this topological space, any sequence converges to all points of X. In particular,
limits of sequences in topological spaces may not be unique.

We have seen that, in a metric space, a point z is in the closure of a
set A iff there is a sequence of points in 4 which converges to x. This
pleasant state of affairs does not carry over to topological spaces (see
Problem 16). There are some (non-metric) topological spaces for which
the statement is true, and there are generalizations of the concept of
sequence for which the analogous statement is true in any topological
space, but we shall not go further into these matters here. Problem 9a
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ibove gives a characterization of the closure of a set which involves some
of the ideas which we have used as the basis of convergence.

(m1)

FIGURE 3.1

n=1 n+1

Example 3.7 Let X be the topological space of Problem 6 above; let x, € X be
the function whose graph is shown in Fig. 3.1; and let 2 be the function de-
fined by

xwH)=0 (0<09.

We shall show that the sequence (x,) converges to x,. In fact, if U is any open
set containing x,, then there are a positive number ¢, a positive integer m, and
m non-negative numbers 4, &, . . . , ¢ such that

UD {x: |2(t:) — ot < e (G=1,2,...,m}.

Let us set
ny = max {i, b, ..., tn}.

Then, clearly, if n > nq, it follows that

) =0 (i=1,2,...,m).
Hence
[%alt) — () =0<e (i=1,2,...,m)

and x, € U for all # > ny. That is, the sequence (x.) is eventually in every
open set which contains xo; consequently, x, — xo.

PROBLEMS (continued)

14. Which sequences converge to which points in the topological spaces of
Examples 3.2 through 3.5?

16. Which sequences converge to which points in the topological spaces of
Problem 4?

16. Give an example of a topological space X and a subset A C X such that
there is a point x € A~ and no sequence in A converges to x. (Hint: Try:
the space of Example 3.3.)
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17.

18,

19.

20.

Show that, in Example 3.7, the function x, is the only function to which
the sequence (x.) converges.

Let X be the topological space of Problem 6. Define a sequence (x,) in
X by setting

Aa(t) = 27,
Does this sequence converge? If so, to what function?

(a) Let X be the topological space of Problem 5 and let R be the metric
space of real numbers with

d(r, ) = |n — n
for any real numbers r; and 7;. For any
x€ X andany t€ 1= {10<t<L1}, x(t) € R.

Thus, if (x,) is a sequence in X and ¢ € I, then (x,(2)) is a sequence in R.
Prove that (x,) converges to xo in the topological space X iff, for each
t € I; (x,(t)) converges to xo(¢) in the metric space R. This convergence
of functions is called pointwise convergence.

(b) Prove that the result in part (a) remains valid if X is replaced by the
topological space of Problem 6 and I is replaced by I* = {¢:¢ > 0}.

Generalize the results of Problem 19, Section 8-2 to topological spaces X
to obtain the following results: :

(@) Ifp€ Xandx, =p,n=1,2,..., then (x,) converges to p.

() If x, & xpand n, < ny < - - -, then (x,, x,,, . . .) converges to x,.
(c) Find an example of a sequence (x,) in a topological space such that
%, — x and x, = y but x # y. (This shows that the result of Problem 19d,
Section 8-2 does not generalize to topological spaces. Problem 19c,
Section 8-2 is considered in Problem 22 below.)

#21. Let X be a plane with its points labelled in rectangular coordinates;

that is,
X = {(x;, 22): 21 and =x, are real numbers}.
For each point p = (p1, p2) € X, set
Gp={(x,2):21 > p1 and 2 > p}.

Let O be the family of all unions of sets of the form G,; that is, U € Oiff
there is a subset P C X with

U=U{G:p€ P}

(@) Show that X, together with the family O, is a topological space.

Google



84 / Spaces ' 161

(b) Let x, = (—1/n,1/n). Does the sequence (x,) converge? If so,
to what?
(c) Find the closure of the set 4 = {xy, xs, 3, . . .} [notation of part (b)].

*22. Let X be the subset of a plane made up of the origin together with all the
points whose coordinates are positive integers;

X={00}U{mn:m=12...,n=12,...}.

However, the topology in X (defined below) is not the usual topology.
For each positive integer my, the set

Com, = {(mo,n):n =1,2,.. .}

is called the column at mg in X. The open sets in X are defined as follows.

Any subset of X which does not contain the origin is open.

A subset U of X which does contain the origin is open iff there is a

positive integer N such that if m > N then U contains all but a finite
number of the points in the column at m.
(a) Prove that X, with the open sets defined above, is a topological space.
(b) Find a sequence (x,) in X such that (x,) is frequently in each open set
containing the origin but no subsequence of (x,) converges to the origin.
(This shows that the result of Problem 19c, Section 8-2 does not generalize
to topological spaces.)

8-4 Connected Sets

We have defined the faces of a map to be the separate pieces into which a
surface is divided by a network in that surface. But what is a piece?
Evidently it is not the same as a subset, because two of the things we have
thought of as faces would form a single subset of the surface, but not a
single face of the map. We have several times used the phrase ‘“‘connected
pieces” but we have not had a definition of the term ‘“‘connected.” In
discussing the Jordan curve theorem, we showed that certain pairs of
points could be joined by a polygonal path; these ideas could be used to
define a connected set in three-dimensional space, but a different approach
isneeded for an arbitrary topological space. It seems to be more conveni-
ent to define “separated” first, and then use this concept to define “con-
nected.” Intuitively, we would like to call two sets P and Q separated if,
somehow, they have “nothing to do with each other.” The exact formu-
lation which has been found most fruitful is as follows: The subsets P and
0 of a topological space X are separated iff

P#x@=Q and PPNQ=0=PNQ-.
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That is, neither set is empty, and each set is disjoint from the closure of
the other. As an example, consider an X-axis (as a subset of three-
dimensional space). Set

P ={x:2 <0}, Q= {x:x2 > 0}, S = {x:x2 > 0}.

Then P and Q are separated, but P and S are not separated.

A subset 4 C X is connected iff A is not the union of two separated
sets. In the X-axis just discussed, the set {x:x 0} is not connected
because it is the union of the two separated sets P and Q.

In any topological space, a singleton (a set containing exactly one
point) is connected. For, if

{fa} = PUQ and P =0 =0,
then P = {a} = Qsothat
P-NQ = 4.
Thus, {a} is not the union of two separated sets.
Example 4.1 In the topological space X of Example 3.1, every subset 4 is con-

nected. For, if
A=PUQ and P00,

then P~ = X (X is the only closed set containing P), and
P-MNQ=0.
Thus A4 is not the union of two separated sets.

Of course, whether or not a set 4 is connected depends on the topologi-
cal space under consideration; the same set may be a connected subset of
one space and not connected when it is considered as a subset of another
space.

It seems plausible that, if a set A is connected, and if we adjoin to 4
the points which are “very close” to 4, then the enlarged set is also con-
nected. The following theorem makes this notion precise.

Theorem 4.1 If A4 is a connected subset of a topological space X, then
A~ is connected.

ProoF. The proof is by contradiction. Suppose A~ is not connected;
then 4~ = P U Q, where P and Q are separated sets. If each of A NP
and 4 M Q is non-empty, then

4d=ANP)UUANQ
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expresses 4 as the union of two separated sets, contrary to our hypothesis.
Thus, at least one of these sets is empty, say 4 N P = @#. Then, since
A C P\ Q, it follows that A C Q. This implies that A~ C Q~. But
then

PCPUQ=4-COQ"

sothat P = P N Q- = @, which contradicts the assumption that P and Q
are separated sets«.

Connectedness is a topological property of sets; in fact, the following
theorem shows that if a set is connected it remains connected, even when
it is subjected to a much more general class of transformations than the
homeomorphisms.

Theorem 4.2 Let X and ¥ be topological spaces; let 4 be a connected
subset of X, and let f: X — ¥V be a continuous transformation. Then
f(A4) is a connected subset of V.

Proor. The proof is by contradiction. If f(4) is not connected, then
f(4) = P\U Q with P and Q separated. Set

P, =fYP)MN A4, and Qi = Q)N 4;
then we find
P =00 and 4 =P UQ.

Since f is continuous, f~1(P-) is a closed set in X (Problem 9b, Section 8-3)
which has P, as a subset; thus, Pi C f~'(P-) and

PrNQ CAP)INFHO) =fP~-NQ) =f7(0) =90

Similarly, P, Qi = @, so P, and Q, are separated. This contradicts
the hypothesis that 4 is connected«.

The metric space R of the real numbers with

d(x,y) = |x — 9l
for any two points x and y of R is a very important space. We have fre-
quently used this space as an example, and many of the concepts in
topology have arisen as generalizations of properties of the real numbers.
In the remainder of the text, we shall denote this metric space by R and
shall consider some of its properties. In the metric space R, the set R is
connected. This fact is sometimes taken as one of the axioms used in
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defining the real numbers, and sometimes proved from other results which
are taken as axioms. We shall assume this result and shall find what other
subsets of R are connected.

A subset of R will be called an interval iff, for some points @ € R and
b € R, itis one of the following sets:

{x:a <x < b} {x:a < x < b} {x: 2 < b}
{x:a < x < b} {x:a < x} {x:x < b}
{x:a < x < b} {x:a < x} R

Some examples of intervals are @, {2}, {#: 0 < x < 1}. Itis easy to see
that a set A C R is an interval if and only if it contains all points which
lie between any two of its members; that is, iff the following implication
is true. If

x€A and y€ A4 and x <z <y,
then
2€ A

We shall use this characterization of intervals in proving the following
theorem.

Theorem 4.3 A subset A C R is connected if and only if it is an interval.

ProorF. Suppose that A C R and 4 is not an interval; then there are
three real numbers @ < ¢ < b such that

agc A, be A, c¢ A

Set

P={x:x€ A and =x <c}, Q={x:x€ A and x> c}.
Then P # @ # Q, and

P NQCix:x<c)JNQ=0.

Similarly, 2 N\ Q- = @, so P and Q are separated. Thus A4 is not con-
nected.

It remains to be proved that every interval is connected. First, let us
consider the interval

I={x0<zx<1}

For x € R, set

x
f(x) = lxl +1’
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then f: R — I is a transformation from R onto I. We prove below that
f is continuous; since R is assumed to be connected, Theorem 4.2 shows
that 7 is connected.
As to the continuity of f, if x and y have the same sign, then
_ Uyl + D=z = (2] + Dy
) =100 = P+ Dkl + 0
= x—Yy
(el + D0 + 1)
If x and y do not have the same sign, then

/) — 1)

Islx—yl-

x 0y ‘= ||
el +1 |y + 1] |2f +1
lx| + [y =[x — 9

|yl
CES

IA

and continuity follows.
By Theorem 4.1, /- = {x:0 < x < 1} is connected. The remainder
of the proof of Theorem 4.3 is left as an exercise (Problem 5)«.

PROBLEMS

1. Prove that the empty set @ is connected.

2. (a) Prove that, in the space of Example 3.4, no set containing more than
one point is connected.
(b) Let 1 be the space of Example 3.4 and let X be any topological space.
Prove that X is connected iff every continuous transformation f: X — T
is constant.

3. Which sets are connected in the space of Example 3.5?

4. (a) Prove that if 4 and B are connected subsets of a topological space X
and A N\ B = @, then AU B is connected.
(b) Prove that if A is connected and A C B C A, then B is connected.

5. The following steps complete the proof of Theorem 4.3.
() Supposea € R, b€ R,and a < b. For

rel={x:0<2x<1}
define
fx) =3[ — a)x+ (b+ a)].

Show that f is a continuous transformation from I onto {x:a < x < b}.
Hence, this latter set is connected by Theorem 4.2.
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(b) For each a € R, define a continuous transformation f, from R onto
L, = {x:x < a}, thus proving that L, is connected.

(c) Complete the proof of Theorem 4.3 by considering each of the remain-
ing types of intervals. (Hint: Use Problem 4 for some of the cases.)

6. Let f:R — R be a continuous transformation, and let @, b, and r be three
real numbers such that

f@a) <7 < f(d).

Prove that there is a ¢ € R with a < ¢ < b and f(¢) = r. Briefly stated:
f takes on every value between any two of its values.

7. (@) Let 4 and B be two non-empty open subsets of a topological space X
such that neither one is a subset of the other. Prove that 4 — B and
B — A are separated.
(b) Replace “open” by “closed” in part (a) and prove the same result.

*8. For the topological space of Problem 21, Section 8-3, which of the following
sets are connected?
@) A= {(x, )2+ 2 <1}
(b) B={(x,3m):2< 2+ 23 < 4.
c) C = AUB.
@) D=AU {(m,®m): (1 — 4?2+ (2 — 4 < 1}.
(€) E= AV {(x,2): (11 — 4)?+ (2 + 4)2 < 1}.

9. Review the places in our previous work where we have required a set to be
“all in one piece” (see pp. 60, 63, 74ff, 78, 89).

8-5 Compact Sets

A family F = {F: F € F} of subsets of a topological space X is called a
cover of aset A C X iff :

ACV |F:Fc F}.

A cover is an open cover iff each set in the family is an open set. A subcover
of a cover F is a subfamily of the family F which is also a cover (of the
same set A). For example, if 4 is a subset of a metric space X, the collec-
tion B of all open balls in X is an open cover of 4 ; the collection of all open
balls with center in 4 and radius 1 is a subcover of B.

We use this terminology in defining compactness. A set 4 in a
topological space X is compact iff every open cover of A has a finite sub-
cover. Evidently, in any topological space X, any finite set

A= {dl,dz,...,a"} CX
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is compact. For, if 4 = {U:U € U} is an open cover of A4, and
1 <7 £ n, we may choose an element U; € S such that a¢; € U;. The
family {U,, U, . . ., U,} is a subcover of Q.
The metric space R is not compact, because if we set
I.={x:n—3}<x<n-+%}
then
U= {lan=...,—101,...}

is an open cover of R, which has no finite subcover. Before considering
other examples, we shall discuss certain consequences of compactness.

A family F of sets is said to have the finite intersection property ift
every finite subfamily of F has a non-empty intersection. Theorem 5.1
characterizes compact spaces, using the finite intersection property.

Theorem 5.1 A topological space X is compact iff, whenever F is a
family of closed sets with the finite intersection property, the intersection
N {F: F € F} of all the sets in & is not empty.

Proor. Suppose X is not compact; then there is an open cover U of X
which has no finite subcover. Set F = {F: F’' € Ql}; F is a family of
closed sets. If {Fy, F,, ..., F,} is any finite subfamily of F, the collec-
tion

6111 = {F{,Fz', P ,F”I}

is a finite subfamily of SU. Since €U, is not a cover of X, there is a point
x € X such that

x ¢ F/ G=1,2,...,n).
Clearly,
xEFIf\Fgf\f\F,,,

and F has the finite intersection property. Since Al is a cover of X, each
point x € X is contained in some U € 9, and, consequently, x § U’ € F.
Thus no point of X is contained in all the sets F ¢ F;

N{F:FeF} =0

Now suppose X is compact, and let F be a family of closed sets such
that

N{F:FecF} =09.
Then
U={U:U € F}
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is an open cover of X and, since X is compact, there is a finite subcover
{U;, Uz, ey U,‘} Set

F.'=U.'I (i=1,2,,n),
then
(NF) = F) =V U) =X

Thus, N\ F; = @ and F does not have the finite intersection property«.

The statement of Theorem 5.1 is useful in proving certain existence
theorems. Suppose X is compact and that we want to prove the existence
of a point x € X which satisfies an infinite number of given conditions.
That is, we want to prove that the conditions are consistent. If, for each
one of the conditions, the set of points satisfying that condition is closed,
and if each finite collection of the conditions is consistent, then Theorem
5.1 asserts that there is a point which satisfies all the conditions.

In a compact subset of a metric space, convergence of sequences is
somewhat well behaved, as the following theorem shows.

Theorem 5.2 If A is a compact subset of a metric space X and (x.) isa
sequence in 4, then some subsequence of (x.) converges to a point of 4.

Proor. By Problem 19c, Section 8-2, it is sufficient to show that there isa
point xy € A4 such that (x,) is frequently in each open set containing .
The proof is by contradiction. Suppose that no such point x, exists;
then for each point x € A there is an open set U, containing x such that
U . contains only a finite number of the points in the sequence (x,). The
family

U= {U,:x € A}

is an open cover of the compact set 4, so there is a finite subcover, say
{Uy U,, ..., Un}. Since each set in this finite subcover contains only a
finite number of terms of the sequence (x,), there is only a finite number
of the terms of this sequence in the union

U, VU, V.- -UUn,.

But this is absurd, because (x,,) isin 4, and A is a subset of this union«.

Theorem 5.2 gives the intuitive meaning of the term ‘“compact.” The
term should mean that the points of the set are somehow ‘“‘jammed
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)

closely together,” and Theorem 5.2 asserts that every sequence has a
convergent subsequence; that is, a subsequence whose terms get “close”
to something and, consequently, get close to each other. Theorem 5.2 is
stated as an implication and not as an equivalence. It is also true that if
A is a subset of a metric space such that every sequence in A has a subse-
quence which converges to a point of 4, then 4 is compact. [For a proof,
see (Ref. 19, Theorem 4.16, p. 109)].

The concept of compactness is a topological one; in fact, just as with
connectedness, compactness survives under even more general transfor-

- mations than homeomorphisms.

Theorem 5.3 Let X and ¥ be topological spaces; let f: X — ¥ be a con-
tinuous transformation and let 4 be a compact subset of X; then f(4) isa
compact subset of Y.

Proor. If U = {V: V € D} isany open cover of f(4), then
U= {f(V): Ve D}
is an open cover of A. Since A is compact, there is a finite subcover
{(V):i=1,2,..., n}
of At. It follows that
{(Viei=1,2, ..., n}

covers f(4) and is a finite subcover of V«.

We have seen that the metric space R is not compact; however, there
are some important compact subsets of R.

Theorem 5.4 In the space R, the set
I=1{x:0<2<1}
is compact.

Proor. Let QU = {U: U € €U} be an open cover of I; we shall show that
9 has a finite subcover. The idea is that we shall start at 0 and see how
far we can advance toward 1 by using a finite number of sets in SU. If
we can reach 1, we shall have achieved our goal. Foreachd € I, set

I, = {x:0 <z < b}
and define

B = {b: b € I and a finite number of sets in SU cover [;}.
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Theorem 5.5 Let ¥ be a metric space and let f: I — ¥ be a continuous
transformation. For any ¢ > 0 there is a § > 0 such that if ¢ and b are
points of 7 and [a — b| < &, then f(a) and f(b) are e-near to each other.

Proor. Let ¢ > 0 be given. Since f is continuous, we may find, for each
x € I, an open ball B, = B(x; r,) such that every point of f(B.) is

%-near tof(x). The family

B ={B.:x€ I}
is an open cover of the compact set 7 ; choose a finite subcover
By ={B;:i=12,...,n}.
Now (Problem 6) choose & > 0 so that if a and & are points of I and
la — b| < 8, then there is one of the sets
B., (t=12...,n
which contains both a and &. If ¢ and & are any points of / and

le — 8] < &, choose #’ so that a and b are both in B.s and denote the
distance function in ¥ by e. We find that

e(f(a), f(%)) < e(fla), (=) +e(f(='), f(B)) < % +§ =,

which is the required conclusion«.

PROBLEMS

1. (a) Prove that, in the space of Example 3.1, every subset is compact.
(b) Prove that, in the space of Example 3.2, every subset is compact.
(c) Which subsets of the space of Example 3.4 are compact?

2. Let X be a topological space and let 4 be a subset of X. Prove that A4 is
compact iff, whenever F is a family of closed sets such that every finite
intersection of sets of F meets 4, then the intersection of all the sets of F
meets A.

3. (a) Prove that, in a metric space, every compact set is closed.
(b) Give an example of a compact subset A of a topological space such
that A4 is not closed.

4. Prove that a closed subset of a compact set is compact.

b. (a) Prove that every compact subset of the metric space R is closed and
bounded.
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(b) Let a and & be any points in R; prove that {x:a < x < b} is compact.
(c) Prove that a subset 4 of R is compact if and only if 4 is closed and
bounded.

6. Let 7 = {x:0 < x < 1} be a subset of the metric space R and let
By = {B(xi;ri):i=1,2,...,n)

be a cover of I composed of a finite number of open balls. Show that there
is a § > 0 such that if a and b are points of 7 and |a — 3| < 8§, then there is
one of the open balls

B(xs; i) Gt=12,...,n)
which contains both a and &.

7. Check the result of Theorem 5.5 in the case where I' = Rand f:I— T'is
defined by

f(x) = (4x — 1)~

Given ¢ > 0, find a value of § > 0 such that the condition of the theorem is
satisfied.

8-6 Complete Sets

The concept of completeness (defined below) is applicable in metric
spaces, but not in all topological spaces; therefore, all the spaces discussed
in this section will be metric spaces. A special property of sequences will
be needed to define completeness.

A sequence (x,) in a metric space X is a Cauchy sequence iff, given any
e > 0, there is a positive integer #; such that every two points in the
sequence beyond the noth are e-near to each other. Using d for the dis-
tance function in X, we can state the requirement after “such that” in
this definition as follows: If # > no and m > ny, then d(x,, xm) < . The
idea of the definition is that, if ¢ > 0, then eventually the points of the
sequence are e-near to each other. A metric space X is complete iff
every Cauchy sequence in X converges to a point of X. Asubset 4 C X
is complete iff every Cauchy sequence in 4 converges to a point of 4.

Example 6.1 Let X = {x:x > 0} be the set of all positive real numbers, and
define
d(x,y) = |x — yl.
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Set x, = 1/n; then (x,) is a Cauchy sequence, but there is no point of X to
which this sequence converges. Thus X is not complete.

Example 6.2 Let X be any set and, for x € X, y € X, define

_ )0, ifx=y.
dx,y) = {1, if x = y.

Then X is a metric space. If (x,) is a Cauchy sequence in X, then, eventually,
every pair of points of the sequence must be 4-near to each other; but two
points in X are }-near iff they are the same point. Thus, every Cauchy se-
quence in X must eventually be in a singleton. Evidently such a sequence
does converge; the space X is complete.

Intuitively, something is complete if there is “nothing missing that
should be there.” The definition of a complete space requires that, for
every sequence whose points are suitably near to each other, there must be
a point in the space to which the sequence converges. This is a quite
reasonable interpretation of ‘“no points are missing that should be there.”

Example 6.1 shows that a Cauchy sequence may not converge; the
following theorem states that a convergent sequence must be a Cauchy
sequence.

Theorem 6.1 If the sequence (x,) converges to x in the metric space X,
then (x,) is a Cauchy sequence.

ProorF. Let ¢ > 0 be given. Since x, — #, the sequence is eventually in

2
two points of B are e-near to each other«.

the open ball B = B (x; —e-) - The proof is completed by noting that any

Theorem 6.2 A compact subset of a metric space is complete.

ProoF. Suppose 4 is a compact subset of the metric space X, and let
(x») be a Cauchy sequence in 4. By Theorem 5.2, some subsequence of
(x») converges to a point of 4, and this implies (Problem 4) that (x.)
converges to the same point«.

Example 6.3 The metric space R is complete, but not compact. We have seen
in Section 8-5 that R is not compact; it remains to prove that R is complete.
Let (x,) be a Cauchy sequence in R and take ¢ = 1. From the Cauchy condi-
tion, there is a positive integer 79 such that, for n> ny, x, is 1-near to x,,. Set

I={x:2p,— 1< 2L 2+ 1};
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then I is a compact subset of R (Problem Sc, Section 8-5), and I is complete by
Theorem 6.2. The Cauchy sequence

(x'm Xnotly - - )

is in I; thus some subsequence of this sequence converges to a point of 7, and
the result follows.

We have seen that both connectedness and compactness are preserved
under continuous transformations. This is not true of completeness. In
fact, completeness is not even a topological concept, as the following
example shows.

Example 6.4 Let R be the metric space of the real numbers and let
I={x:—-1<zx<1},
with the distance in I defined by
d(x,y) = [x — 3.

Then R is complete (Example 6.3); but I is not complete, since the sequence
(1 — 1/m) is a Cauchy sequence in I, which does not converge to a point of I.
But the transformation f:R — I defined by

x
x) = ——
&)=
is a homeomorphism (Problem 5). Thus R and I are topologically equivalent
spaces; one of them is complete and the other is not; it follows that complete-
ness is not a topological property.

There are many important theorems concerning complete spaces.
The completeness of R asserts the existence of a real number which is the
limit of the sequence

(1.4, 141, 1.412, .. ).

If we define the nth term of this sequence to be the largest rational
number, with denominator 107, whose square is less than 2, then it is
quite easy to prove that the number which is the limit of this sequence
must have its square equal to 2. Moreover, V/2 is not a rational number;
thus, the completeness of R implies the existence of irrational numbers.
In fact, one of the standard procedures for constructing the real numbers
from the rational numbers is by means of a process called completion by
Cauchy sequences, but we shall not discuss this process here.
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PROBLEMS

1. In the metric space R, which of the following sequences (x,) are Cauchy
sequences? For each of these Cauchy sequences, find the point to which it
converges.

@) x, = 1/n. ) = nl%nl.
®) %, = (— 1)*(1/n). &) % =mn/(n+1).
©) =14 (— 1)*(1/n). th) x, = n¥/(n+ 1).

@) 2= (= DA —1/n). () x=n/#+1).

e) x, = n. (G) x, = sinn.

2. Which of the following subsets of R are complete?
(@) The set of all rational numbers.
(b) The set of all irrational numbers.
) I ={x:0<x<1}.
d) N={1,2,3,...}.
(e) T = {2}.
(f) The empty set @.

3. (a) Prove that every closed subset of a complete space is complete.
(b) Prove that every complete subset of a metric space is closed.

14. Prove that if (x,) is a Cauchy sequence in a metric space X and if some
subsequence of (x.) converges to a point x € X, then the sequence (x,)
converges to x.

b. Prove that the transformation f:R — I in Example 6.4 is a homeomorphism.

6. Define x, to be the largest rational number, with denominator 10", whose
square is less than 2.
(a) Prove that (x,) is a Cauchy sequence.
(b) Prove that the equation 2® = 2 is satisfied by the real number x to
which the Cauchy sequence (x,) converges.
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