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PREFACE

This book is intended as a first text in topology. If the reader has com-
pleted at least three semesters of a calculus and analytic geometry sequence,
he should have sufficient background to understand this book. The reader
might gain a deeper appreciation of the contents, howewver, if he has also
had at least one semester of real analysis, or its equivalemt.

If anyone asks, “What is topology?”; the most correct answer is,
“Topology nowadays is a fundamental branch of mathematics and like
most fundamental branches of mathematics does not admit of a simple
concise definition.”> Topologists are indeed investigating widely different
problems and are using a multitude of techniques. Topology is today one
of the most rapidly expanding areas of mathematical thought.

Historically, however, topology has its roots in geometry and analysis,
that is, the study of real and complex functions. Geometricallly, topology
was the study of properties preserved by a certain group of transforma-
tions, the homeomomphitnms. Geometry itself can be considered as the
study of properties preserved by certain types of functions; e.g., Euclidean
metric geometry is the study of properties preserved by rigid (that is,
distance-preserving) transformations (kmown sometimes as congruences).
(Of course, as with topology, it is somewhat unfair to try to define geom-
etry as the study of one particular thing.)

Certain of the notions of topology are also abstractions of concepts
which are classical in the study of real or complex functioms. Open sets,
continuity, metric spaces, etc., were a basic part of analysis before being
generalized in topology.

Topology, then, has its roots in at least two areas of mathematics;
but now topology has reached the point where a mathematician engaged
in topological research is not only justified in calling himself a topologjst,
but he must specify whether he is a point set topologist, differential
topologist, algebraic topologistt, or some other topological specialist.

Since topology is now a study in its own right, we would be justified
in merely introducing topological concepts without giving some idea of
where or how these concepts arose. Since this is an introductory text,
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viii Preface

howewver, we have tried to motivate the concepts introduced so that the
reader can see where these concepts came from originally. Where a con-
cept is primarily geometric, we have tried to treat it geometrically; where
analysis is the inspiration for a concept, an analytic approach is used. It
is hoped that the reader of this book will not only learn the fundamentals
of topology, but will appreciate how abstract topological notions de-
veloped from classical mathematics.

Topology, the child of geometry and analysis, now serves as a powerful
tool not only in these areas, but in almost all areas of mathematical study.
But besides being an instrument for use elsewhere, topology has a beauty
and a content of its own. Topology is valuable in its own right in so far
as any well-developed mathematical study is valuable, or, in fact, any
aesthetically pleasing creation of the human mind is valuablie.

In this second edition we have attempted to correct all errors, typo-
graphical and otherwise, found in the first edition. Numerous exercises
have been added as well as a section dealing with paracompactness and
complete regularity. The Appendix on infinite products has been extended
to include the general Tychonoff Theorem; a proof of the Tychomoff
theorem which does not depend on the theory of convergence has also
been added in Chapter 7.

Northampton, Mass. M. G.
September 1971
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1
PRELIMINARIES

1.1 SETS AND FUNCTIONS

It is assumed that any reader of this book has already had some experience
with sets; hence most of what is said in this section will be for the sake of
review rather than for the purpose of presenting new materiall.

We will not deal with sets axiomatically. A set will be taken to be
any well-defined collection of objects; the objects in a set are called ele-
ments, or poiitis, of the set. If x is an element of the set §, we write x & §.
We denote the phrase is not an element of by .

Sets may be denoted either by explicitly listing their elements inside
of braces (for examplle, {1, 2, 3} is the set having 1, 2, and 3 as elements)
orF by giving the rule by which a typical object of the set is determined
(for examplie, {x || is a red schoolhouse} is the set of all red schoolhouses
of, alternatively, the set of all x such that x is a red schoolthouts).

A set S is said to be a subset of a set T if each element of § is an element
of T. We usually denote S is a subset of T by § C T. Two sets § and T
are egual if they contain exactly the same elements; that is, § = T if
S € Tand T € S. The phrase is not a subset of is denoted by &

The empty set, that is, the set which contains no elements whatsoewer,
is denoted by &.

If S and T are any two sets, then the complement of 8 in T is the set
of all elements of T which are not elements of §; we denote the complement
of Sin T by T — S: Similarly, the complement of T in §, denoted by
S — T, is the set of all elements of S which are not elements of T.

The two most basic set operations are union and intersection. If {&%),
i & I, is any family of sets indexed by some set I, then the union of this
family of sets is {x \x & Si for at least one i & J}. (We will rigorously
define the notion of an index set later in this section; for now the reader
ean consider I to be merely a set of labels distinguishing the various mem-
bers of the family of sets)) The union of .1 & I, may be denoted by
U7 Si, of U{Si |i € I}. The intersection of this family of sets is {x \x € 8i
for every i & I, that is, x is an element of every member of the family of
sets}. The intersection of {Si}, i € I, may be denoted by A 8 or
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2 Preliminaries 1.1

D{Si ||t € I}. Where only a few sets are involved, say {Si, §2 §3, the
intersection and union of these sets may be denoted by Si D §2A §3and
S§i U S2U §3, respectively.

It is assumed that the reader is moderately familiar with these set
operationg, at least so far as any finite family of sets is concemned. We
now prove the DeMorgan farmulas for an arbitrary family of sets.

Proposition 1. Suppose {Sj}, i € I, is a family of subsets of some set T.
Then

a) Uy — =tr-N;8; Si)= T - Dj Sf,

by Ay  — 8y =TIsy ¥1-0j §.

Prooff, a) To prove that any two sets are equal, we must show that they
contain the same elements. Suppose x € Uf (T — S§f); then x € T — Si
for at least one ¢ & I. Therefore x & Si for at least one i € 7. Then x is
not in S for every i & I ;hence x A/ Si. Consequently, x € T — flj Si.
We have thus proved that every element of Uj (T — Si) is an element of
T — fi4 Si) that is,

L‘J(T=S'h)CT-—ff|§u,

Suppose x € T — flf Si. Then there is some i & I for which x & Si
(ar else x would be an element of fl4 Si). Therefore x € T — 8 for some
iel. Thenxe Uf (T —Si). Consequently, T — fls £; C Uj (F — 8i);

hence

T=f}iS,1=lf|(T=S’|i).
The proof of (b) is left as an exercise.

If S and T are any two sets, then the Cartesian product of S and T is
defined to be the set of all ordered pairs (8, £) such that s€ § and t € T.
The Cartesian product of § and T is denoted by § X T.

If § and T are any sets, then a subset R of § X T is said to be a rela-
tion between § and T. A subset of § X § is said to be a relation on S. If R
is a relation between S and T, that is, if R C § X T, then if (5, &) E R,
we may also write sRt, or say that s and t are R-related. Some special
types of relations will be discussed in the next sectiom. Although strictly
speaking a relation is a set, at times ajphrase or symbol defining the rela-
tion will be used in place of the actual set. For example, although s equal
to defines a relation on the collection of subsets of some set, we usually
write simply § = T if § and T are equal subsets, rather than explicitly
refer to any relation.

A function § from a set § into a set T is a relation between S and T
such that each element of § is foreliated to one and only one element of T.



11 Sets and Fumctions 3

If (6,1 £/, then we may write t = f(s). Functions are usually defined
by giving a rule which enables us to find f(s) whenever s is givem. Agaim,
rarely is explicit mention made of the fact that a function is a set. Func-
tions are also called maps or mappings.

If £ is a function from S into T, then § is called the domain of 7, T the
range of f, and {t & T ||t = /() for some & & 8§} the image of /. The image
of £ may be denoted by f(£).

If £ is a funetion from S into T and W C S, then the restriction of f
io W, denoted by £ || W, is a function from W into T defined by / |W(w) =
f(aw) for each w € W.

If £ is a function from S into T, we may write /: § —+T. Iff(§) = T,
then £ is said to be onto. If f(s) = 7(s”) implies s = &’ for any s, &' € §,
then £ is said to be one-one; that is, f is one-one if each element of T is the
image of at most one element of §.

Suppose £: 8§ —+T. If te T, then

YY) = {sse S \s) = ).
If UCT, then

FAW) = {sE 8f(») € U}-

By f=41we mean {(t, 9) | 5, ©) E4}. Note that /=1 is a relation between
T and S, called the inverse relation of /, and that it is a function from T to
S if and only if / is one-one and onto.

Suppose f: S — T and g: T — W. Then g of is defined by

{6, w) |s € S, w & W, such that there is some t € T with t = f(s) and
w = g{t); that is, w = #{A)) for some s € §}.

g of is a function from S into W and is called the composition of g with /.

There are two special types of functions, sequences and indices, which
the reader should already have encountered at least informally. A sequence
u in a set S is any function from the set N of positive integers into 8.
If u is a sequence in S, then u(n) is usually denoted by un; the sequence
itself may be denoted by uf {up},n € N, or {ui, u2 w3, ...}

Sometimes the elements of one set are used to label the elements of
another set, this often being a convenient way to express a collection of
objects, or sets. For examplie, the elements of {1, 2, 3} are used to label
the elements of {fj, t2,15}. A one-one and onto function / from some set
I onto a set S for the purpose of labeling the elements of § is called a
system of indices for S, and [ is called the set of indices, or the index set.
The set S is said to be indexed by 7, and we may represent this relationship
by writing § as {31 € 1.



1.2 Orderings; Equivalience Relations ()

to is denoted by <, then < defines a relation on R having the properties
that

P x < x, for any x G R;
P2) x < y and y <€ x implies x — y, for any x)y € R)and
P3) x < yand y < z implies x < z for any x,y, and z in R,

Any relation on any set S which shares properties P1 through P3 is
called a partial ordering on 8. If S has a partial ordering defined on it,
then S is said to be a partially ordered set. We may denote a set § with
partial ordering < by 8§, <.

Example 1. Let P(S) be the family of subsets of a set 8. Then C defines a
partial ordering on P(8). We verify that C satisfies P1 through P3.

PL) If W is any subset of §, then W C W.

P2) If W and T are any two subsets of § such that W C T and T C W,
thenW = T.

P3) If W, T} and Z are any sets such that WC T and T C Z, then
each element of W is an element of T. But since T C Z, each element
of T is also an element of Z; therefore each element of W is an
element of Z, that is, W CZ.

Note that in Example 1, it is not true that given any two subsets W
and T of S, either W C T or T C W. It is true, however, that given any
two real numbers s and t, either s < tor t < 5. In P(S), C, any two
elements are not necessarily comparable, whereas in R, <, any two ele-
ments are comparahblle. If S is any set with a partial ordering <, then the
partial ordering of S is said to be a total ordering if given any elements s
and t of S, either s < tor t < s. The partial ordering < on the set of
real numbers is a totaPordening, but C does not define a total ordering on
P(S) in Example 1L

Sinee the less than or equal to relation on the set of real numbers is
the prototype of a partial ordering, we will generally denote a partial
ordering by <, unless there is a special symbol called for.

Suppose S is a set partially ordered by <, and W C S. Then W can
also be considered to be partially ordered by < through the device of
letting w < w’ for any two elements of W if and only if w < wfconsidering
w and w’ as elements of S. We say the ordering < on § induces an order-
ing on W.

Let S, < be any partially ordered set, and suppose W C §. An ele-
ment wof &is said to be an upper bound for W if w < u for each w € W.
An element v of S is said to be a lower bound for W if vy < wforeachw & W.

It is not necessarily true that every nonempty subset of a partially
ordered set S, < has an upper or a lower boumd.
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Example 2. Let § = {x]|0 < x < 1} be partially ordered by <. Then
if W = S, W has no upper bound, nor any lower bound. Suppose that u
is an upper bound for W; then 0 < u < 1L Therefore

O<u<@+1)2< 1L

Hence (u + 1)/2 is an element of W which is greater than u¥ thus u could
not be an upper bound for W. Similarly, W has no lower boumnd.

The partially ordered set R, < of real numbers has neither an upper
nor a lower bound since, given any real number, we can find both a larger
real number and a smaller real number.

Suppose that W is a subset of a partially ordered set S, <. Then an
element ¥ of S is said to be a least upper bound for W if U is an upper
bound for W and U < u if u is any upper bound of W. An element L
of S is said to be the greatest lower bound of W if L is a lower bound for W
and if v is any lower bound for W, then v < L. The least upper bound and
greatest lower bound for W may be denoted by lub W and glb W, re-
spectivelly.

It is not always true that any nonempty subset of §, < which has
an upper bound has a least upper bound.

Example 3. Let Q be the set of rational numbers partially ordered by <.
Let W be the set of rational numbers less than /2. Then 3 is an upper
bound of W; but since y/2 is an irrational number, it can be shown that
W has no least upper bound in Q. Note that W does have a least upper
bound in the full set of real numbers, namely, y/2.

Every nonempty subset of the set of real numbers which has an upper

bound (llower bouwnd)) has a least upper bound (greatest lower boumna).

Example 4. Let P($), C be the partially ordered set described in
Example 1. Suppose {t/;}, * &€ I, is any collection of subsets of §. Then
this collection has a least upper bound Uf Uf and a greatest lower
bound O} UL Note that glb P(S) = &and lub P(S) = §.

Let S, < be any partially ordered set, and let W C §. An element
M of W is said to be maximal in W if M £ wforeachw & W — {M}. An
element m of W is said to be minimal in W if w £ m for each
we& W — {m}. An element M of § is said to be maximal (minimal) if
M is maximal (@minimal) in 8.

Example 5. Let R be the set of real numbers and W = {1,,2,4}. Then 4
is maximal in W and 1Lis minimal in W. R contains no maximal or minimal
element.

Suppose P(R) is the collection of subsets of R partially ordered by C.
Let W = {{1}, {2}, {¢3}. Then each element of W is both maximal and
minimal in W. R is a maximal element and & is a minimal element of P(®®).
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If a subset W of a partially ordered set §, < is tetally ordered by the
ordering on W induced by <, then W is said to be a chain in §. That is,
W € S is a chain in S if given any two elements w and w' of W, either
w<w,orw < w

Example 6. Let S = {1, 2,3,4, 5} and P(S) be the family of subsets of §
partially ordered by C. Then

{1, 1.2}, (1,2, 3}, 1,2, 3,436}
is an example of a chain in P(§).

One of the fundamental axioms in the theory of sets (@md hence in
mathematics) is the axiom of chodee. As its name implies, the axiom of
cholee is a true axiom, assumed and not proved, although there are dif-
ferent ways in which it can be formulated. The axiom of choice properly
so-called is stated as follows.

The axiom of choice. Suppose {Si}, i € I, is a family of nonempty
sets. Then there is a function / from I into U¢ §i such that f(i)) € 8i
foreachi e I.

The axiom of choice essentially says that given any collection of nom-
empty sets, it is possible to form a set by choosing one element from each
set in the collectiom. It all sounds simple enough, but it is hardly simple;
it has stemmed from and led to some of the deepest thinking in the founda-
tions of mathematics. The purpose of this book is not to delve into this
problem, however.

The axiom of choice has several apparently different but actually
equivalent formulationss. The particular formulation we will be interested
in later in this book is known as Zorn’s lemma.

Zorn’s lemma. Suppose S, < is a partially ordered set with the prop-
erty that every chain in S has an upper bound. Then § contains a
maximal element.

A partial ordering is an example of a special kind of relation that can
be defined on a set. Another particularly important type of relation is an
eguivalence relation. The prototype for an equivalence relation is =, just
as < is the prototype for a partial ordering. Since ambiguity is likely to
result if = is used to denote an arbitrary equivalence relatiom, E will be
used instead. A relation £ on a set S is said to be an egquivalence relation
on S if E satisfies the following properties:

EX) sEs for any s € 8.

ED) If s and §" are any elements of S such that sE, then s'Es.

E3) If s, §', and s" are any elements of 8§ such that sEs* and s'Es",
then sEs".
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Compare E1 through E3 with the properties of =. Note that the
only difference between a partial ordering on § and an equivalence relation
on § is that property P2 has been replaced by property E2.

Example 7. Let T be the set of all plane triangles. Then is similar 1o
defines an equivalence relation on T. An equivalence relation on T is
also defined by is congruent to; still another equivalence relation on T is
defined by has the same area as.

The most important property of an equivalence relation is given in
the following proposiitimm.

Proposition 2. Let § be any set. A partition @of S is any collection of
nonempty subsets of § such that each element of 8 is contained in one
and only one member of @ Suppose E is an equivalence relation
on S. For each s € Syset s = {t € § \sE¢}. Then the collection of
s for all s € § is a partition of S, called the partition induced by E.
Morreowsr, given any partition @of S, there is an equivalence relation
E on 8 such that @is the partition induced by E.

Proof. Suppose that E is an equivalence relation on a set S. We must
show that {§},s& S, is a partition of §. Since sEs for each s & § by EIL,
then S s; hence each element of § is contained in at least one member of
{s}, s €S. We now must show that each element of S is contained in
only one member. Suppose that s € s and s ett. Choose any s' € s. Then
sEs*; also tEs since s ett. By E3, tEs and sEs” implies tEs"y hence s’ € t.
Therefore s Ct A similar argument, however, shows that tCss, and
hence s = t. Thus s is the only member of {s}, s € §, which contains s
for each s € §. Therefore {sf};,sE §, is a partition of S.

Suppose that @is a partition of S. Define a relation E on § by letting
sEs’ if and only if s and s' are contained in the same member of @for any
s and §' in 8. It is left as an exercise to prove that E is an equivalence
relation on S. By definition of E, @is clearly the partition induced by E.

If E is an equivalence relation on a set S, then if s&ls’, s and s’ are
said to be E-equivalent, or simply, equivalent. The set of elements of S
which are equivalent to an element s of § is said to be the E-equivalence
class of s, or simply the eguivalence class of s. It is the collection of K+
equivalence classes which forms the partition of § induced by E.

Example 8 Let / be a function from a set § into a set T. Define sEs’ if
f(®) = fi@") for any sand s' in S. Then E is an equivalence relation on S.
Denote the set of F-equivalence classes by S/E; if s €8, denote the
equivalence class of sby s. We may associate with/a functionf: S/E — T,
defined by fi@) = [&) for any s € S/E. Since s’ = s if and only if f&) =
A", 1 is well defined. Note that whereas f may not have been one-one,
[ is one-one.
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EXERCISES

1. Prove that E in the second part of the proof of Proposition 2 is an equivalence
relation on S.

2. The following refer to Example 8

8) Verify that E is an equivalence relation on 8.

B) Prove that f is well defined, that is, single valued, and one-one.

3 Suppose that N is the set of positive integers. Let n ||m denote n divides m,
that is, m —nk for some positive integer k. Prove that || defines a partial
ordering on N. Does N contain & maximal element (with respect to this
partial ordering)? a minimal element?

4. Let M, || be the partially ordered set described in Exercise 3
8) Prove that any two-element subset of N has a greatest lower bound and

a least upper bound.

b) Whieh of the following subsets of N are chains in ¥? Find a maximal
and a minimal element, an upper and a lower bound, and & least upper
bound for each subset:

) {1,2,4,6,8} i) {1,2,3 4,5},
i) {3 6,9 12 15 18}, iv) {4 8,16, 3, 64, 128},

5, A subset W of the set Z of integers is said to be closed under addition if given
any elements w and w' of W, w+ w' & W. Prove that there is a maximal
subset of Z which is closed under addition and does not contain 9. Do this
using Zorn's lemma. 1

1.3 CARDINALITY

Two sets S and T are said to have the same number of elements, or to have
the same cardinality, if there is a one-one function f from § onto 7. That
is, S and T have the same cardinality if the elements of S can be put into
one-one correspondence with the elements of T.

A set S is said to be finite if S has the same cardinality as &3 or if there
is a positive integer n such that S has the same cardinality as {1, 2,. .. ,n}.
Otherwise, S is said to be tnfinite. Furthermore, a set § is said to be count-
able if S has the same cardinality as a subset of N, the set of positive
integetrs. Otherwise, S is said to be uncountable. Thus any finite set is
certainly countablle.

Proposition 3
a) Any subset of a finite set S is finite.
b) Any subset of any countable set $ is countahbile.
Proof
a) Simee S iis fiimite, either S = ® or there is @ positive imteger m sach
that S has the same cardinality as {I,2,...,n}. If § = ¢ then the
only subset of S is &; which is finite. Suppose that § ¢ ¢ Then there
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is a one-one funetion £ from S onto {1, 2, ... ,n} for an appropriate n.
Suppose W€ S. If W = &; then W is finite. If ¥ 8* s let i\, 12,.. ., im
be the elements of {I,2,...,n} in the image of W. Then defining
oW —{L,2,...,m} by g{w) = ji, where {w) = ij, for each w e W,
we see that W is finite.

The proof of (b) is left as an exercise.

Proposition 4. Let {A;},n € Nybe a eountable collection of countable
sets. Then MM Ap is also countable (M represents the set of positive
integens)).
Proaff. We may enumerate the elements of each of the An in an array
as showmn.

Ay Q11 — Q12 a13 — Q14 Ay — Q18" " °

Ay a2, A2 23] Q24 A25 azeg* " *

/ / 9 /
Ag 031/032 asy%-t azs a3ze
Ay Q41 Q42 a43 Q44 a45 Q46

The element aj is the rath element of Ap. If we run out of elements in
any set, i.e., if any of these sets are finite, we just put down x*8in the spot
where an element should go.

We now must find a one-one funetiion/ from Uy Anonto some subset
of the set N of positive integers. Setf(aw) = 1,/(@i?) = 2, andf(a2i) = 3
In general, follow the path indicated in the diagram and correspond the
itth element reached with k. Eventually every element of Uiy will be
reached; hence Uy Ap can be put in one-one correspondence with a subset
of N, and is therefore countahik.

Corollary 1. If A and B are countable sets, then A X B is countabile.
Proof. Let A = {ai,az a3 ...} and B = {&j, b2, b3 ...} Set
Ap — {(an,b) ||b & B} for each n &N.

Then each Ap has the same cardinality as B, and hence is countabille.
Therefore, by Proposition 4, Uat Apis a countable set. But then A X B =
Uat Ap, as the union of a countable number of countable sets, is countalbile.
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Corollary 2. The set Q of rational numbers is countalblle.

Proof. If g is any positive rational number, then we may consider g as the
quotient of two positive integers ra/n, where the fraction m/n is in lowest
terms. Associate g with the ordered pair (®, n). We then see that the
positive rational numbers may be associated with a subset of N X N,
where N is the set of positive integens. But N X N is countable by Corol-
lary 1. Therefore, by Proposition 3, the set of positive rational numbers
is countabliz. The set of negative rational numbers, however, has the same
cardinality as the set of positive rational numbers (corresponding g with
—¢g, where g is any positive rational numhez), and hence the set of negative
rational numbers i countable. But Q is the union of {0}, the set of positive
rational numbens, and the set of negative rational numbers, all three of
which are countable sets; therefore, by Proposition 4, Q is countabile.

Corollary 3. The set Z of integers is countabile.

Preoff. Z is a subset of Q, the set of ratiomals, and hence is countable by
Proposition 3.

Although we now have a goodly number of sets we know to be count-
able, we have not yet shown that any set is uncountablle. The following
example shows that the set of real numbers is uncountabilke.

Example 9. The set S of unending decimals between 0 and L which contain
only 0 or Las digits is uncountalie. For proof, suppose that § is countabile.
Then we can find a one-one correspondence between § and the set N of
positive integers; hence we can make a table like the following, in which
the first column gives a positive integer and the second column the element
of S associated with it by a suitable function /.

n

1 0.011010- ==
2 0.1110111 ===
3 0.10110] ===
4 0.0000000111

We now form an element XD **=of £ as follows: If the first
digit of (1) is 0, let ¥\ = 1, and if the first digit of /(1) is L, let x\ = O.
Similadly, if the second digit of /(2) is 0, let x2 = 1, and if the second digit
of f(2) is 1, let x2 = 0. In general, if the nth digit of/{) is O, let xp, the
nth digit of our new element of S, be 1, and if the nth digit of /(n) is 1L,
let xp = 0. Then .xixzx§ —==eould not be f(n) for any positive integer n,
since .23 =~==differs from each/f(m) at least in the nth digit because of
the way it has been constructed.. Hence £ could not be onto, and 8 is there-
fore uncountahile.
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But S is a subset of R, the set of real numbers. If R were countablle,
then, by Proposition 3, 8 would also be countable; therefore R is un-
countahblle.

We have only gone as far in our discussion of cardinality as it was
felt necessary to go in order that the reader understand the contents of
this book. The discussion has been somewhat informal and much has
been left unsaid. For a more complete discussion of cardinality and
cardinal numbers, the following texts are recommended.

L J. L. Ke1LEy, General Topology, Van Nostrand, New York, 1955. The
appendix to Kelley gives a concise axiomatic treatment of set theory
and ordinal and cardinal numbers. It may be a bit too concise for the
reader.

2. G. BirkHorF and S. MaeLang, A Survey of Modern Algebra, Macmiillam,
New Youk, 1953. Chapter XII gives a nice introduction to cardinal
numbers and their arithmetic.

3. E, Kamkw, Theory oj Sets} Dower, New York, 1950. This book is one
of the classics in set theory and is a must in the library of any serious
mathematiicimm.

EXERCISES

1L Let @& be the class of all sets. (Technically, the collection of all sets is not a
set, so in such cases we use some word like class) Prove that has the same
cardinality as defines an equivalence relation on & An equivalence class is
called a cardinal number.

2. Prove (b) of Proposition 3

3. Prove that no finite set S has the same cardinality as one of its proper sub-
sets W. (A subset W of S is said to be proper if W £ S)) Does this remain
true if S is infinite? Prove that any two infinite subsets of ¥, the set of
positive integers, have the same cardinality.

4. The cardinality of a set S is said to be strictly greater than the cardinality of
a set T if there is a subset W of S which has the same cardinality as T, but
no subset of T which has the same cardinality as S.

a) Prove that the cardinality of any uncountable set is strictly greater than
the cardinality of any countable set.

b) Let S be any set and let P(S) denote the collection of subsets of S. Prove
that the cardinality of P(S) is strictly greater than the cardinality of S.

¢) Show that given any set whatsoever, there is a set of strictly greater
cardinality.

5. Prove: The set R of real numbers has the same cardinality as a subset of the
set P(N) of all subsets of the positive integers. Prove that P(N) has the
same cardinality as a subset of R. It can then be shown that R and P(N)
have the same cardinality.
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Example 9. Let R be the set of real numbers. Then R, + is a group with
identity 0. R is not a group with respect to multiplicatiom, since 0 has no
inverse with respect to multiplication; but B — {0} is a group with
multiplication as the operation and 1 as the identity.

Example 10. There are groups which contain only a finite number of
elements. The table below gives the “multiplication table”for a group
of only four elements:

# 8i 82 &8 sd
Si Si §2 3 sS4

& & & 54 &3

s | 88| sé Si 82

& 84 £ 82 Si

It would actually take a great deal of computation to verify directly that
this is indeed the operation table for a group; therefore, if the reader
does not immediately recognize this group, he will more or less have to
accept its being a group on faith. Note that the identity of this group is
8j and that each element of the group is its own inverse.

Suppose that §, #and T, $ are groups. There may be many functions
from S into T, but perhaps only a few of these are related in any way to
the group structures of § and T. When studying groups, however, we
wish to consider functions which somehow respect the operations of the
groups; such functions are called homomonphisns. More formally, a
function f: § — T is called a homomorphism if

Flsi# sd) =A(s) $1(s2)

for any elements sxand s2of 8. If £ is a one-one and onto function as well
as being a homomompthism, then f is said to be an isomorphism, and the
groups S, #land T,$ are said to be isomorphhic. Isomorphic groups have
essentially the same group propenties.

If 8, Hiand T, § are any groups, then we can define an operation & on
8§ X T as follows: If (s, f) and (&', t') are any elements of § X T, define

6D & @, )= G#s, t8L).

We call the group thus formed the direct sum of S, # and T, $ (see Exer-
cise &). We denote the direct sum of §, $8and T, $by S @ T.
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Agaiin, we have only set forth as much about groups as will be required
to understand the text. For a more complete treatment of the theory
of groups, the following books are suggested.

1. G. Birkuorr and 8. MacLang, A Survey of Modern Algebra, Macmiilkan,
New Youk, 1953. Chapter VI is a good introduction to groups. Chap-
ters I and II can also be used as a reference on the structure of the
real numbers.

2. W. LevermMaNN, Introduction to the Theory of Finite Groups, Oliver and
Boyd, Londom, 1961. This is another excellent book that should be in
anyone’s mathematics library.

EXERCISES

1. Let S be any set. Prove that the set of one-one functions from § onto £ is
a group with composition as the group operation. Suppose that / and g are
any one-one functions from S onto S. Is it necessarily true thatt/<p = g=f°

2. Suppose f to be a homomorphism from the group S, # into the group T, &
Prove that f(S), $is a group contained in the group T, % Q@f S, #is any group
and 10 is a subset of S such that W, #is also a group, then W, #is said to be a
subgroup of S, #) Let k" be the identity of T, $with respect to & Prove that
F=1@) is a subgroup of S, #

8, Let Z,+ be the additive group of integers. Prove that any subgroup of Z,,+
consists of all the multiples of some fixed integer n; that is, if P is a subgroup
of Z, +, then there is an integer n such that W = {mz{|z & Z}.

4. Suppose £, #is a group and {T:3,1 € 7, is a family of subgroups of S. Prove
that A} Ti is a subgroup of S.

5. Prove that if S, #and T, $are groups, then S@ T, the direct sum of Sand T,

is also & group. Prove that S,#and T, $are each isomorphic to some subgroup
S@ T. Find a homomorphism f from S @ T onto S, i.

6. Suppose a set S with operation # has an identity k with respect to # Prove
that kis the only identity in S with respect to # Prove that if #is associative
and s & S has an inverse t, then t is the only inverse of s in 8.
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21 THE NOTION OF A METRIC SPACE

Most of the important notions in point set topology are generalizations
of concepts which were first studied in the context of metric spaces. By
way of motivatiom, and also because metric spaces are still extremely
important in their own right, we would do well to consider the fundamental
properties of metric spaces.

A metric space is a set in which we have a measure of the closeness
or proximity of two elements of the set, that is, we have a distance defined
on the set. A metric is nothing more than the ordinary notion of distance.
More precisely, we make the following definitiom.

Definition L. Let X be any set. A function D from X X X into R,
the set of real numbers, is said to be a metric on X if

i) DCx,y) > 0, forallx,y € X;
ii) D{x,y) = D(y, x), forall x,y € X;
iii) D(x, ¥) = 0 if and only if x = y; and
iv) D(x, y) + D(y,2) > D{x,2), for all x,y,z € X.
A set X with metric D is said to be a metric space, and may be denoted
by X, D.

Note that the metric D has properties that we intuitively associate
with distance; in fact, as has already been remarked, a metric is merely
a formalized expression of distance.

Example 1. Let R be the set of real numbers. One possible metric for R
is the absolute value metric; that is, define Dx, y) = f&x — ¥}

Example 2. The metric in Example L should already have been familiar
to the reader (@ithough he may not have called it a metric). Another
metric usually encountered in more elementary courses is the “Pytha-
goream” metric on the coordinate plane R2 If (xi, ¥{) and (%2, %) are
any two points of R2, then we can define a metric D on R2by setting

((xi, 201), (x2, 22PN y1), (32, 92)) =V r2)2 + (ygxir2ye)®. (1 — 2/2)2-
16
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Example 3. The metric defined on fi2in Example 2 is not the only metric
which can be defined for  RAgganléstingg(¢xu aadd(®2,  be any
two points of , we can defRPwsetaiesdefine metnics  emd®® asfolomasfollov

W, 6y = = +lnm=
i I T S P e
D@13 ) Naesyyid) =mmees ({hxi—wab\ o=y s

Example 4. If is any metricXspameywitbtritetpac®wdtid nieisiany, sabdet is a
of X, then F can also be considered to be a metric space using the same
metrie as X. More precisely, ¥ with metric D || F(i.e. D defined for pairs

of elements of F) is a metric space. ¥, || F is said to be a subspace of

the metric space X, D.

Example 5. This example is given to illustrate that a metric can be defined
on & set which is neither R for some n nor a subset of Rh. Let X be the
set of all funetions from the closed interval [0, 1 into itself. If / and g are
any such functions, define

D(f, g) = least upper bound {I/() — g(\ | & [ 1

Sinee any subset of the real numbers which has an upper bound has a
least upper bound and

0< W) — | <1 forallg(f]g€1X andforradt [0 lhe X and

then D(F, g) is defined for all f, € We will now show thag ' is a
metrle for X by showing that D satisfies each of the properties required
for a metric in Definition 1

i) D{f,9 > Oforall/, € Since each elemg@t of X

e = gz € P, 1B

is greater than or equal to 0, the least upper bound of this set, D(¥, g),
is greater than or equal to 0.

i) D(f, 9) = D(o,f) forallf, € This follows at once fygem the fact
that If(x) — gG\ = |H® — FEN.
iif) D(f,9) =0 0f ibrmhdrdplyfif £= If f = g, then f(z) = glg)foral], the

xe [0 13, and hence {x) — g\ €| LY = {0}, Therefore it
follows that D(f, g) = 0. On the other hand, if D(f, g) = 0, then

' al

b f7@) —  ||zel0, 1]} = 0. Ix 6 O 1T
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Sinee M(%) = g(oN is always greater than or equal to 0, it follows that
e = a0l |x 6 @ I} = O}

henee [f(x) = g(x)l= 0 for all x & [0, 1. Therefore fi(x) = g(x) for
all « G [, 1; that is, ¥ = g.

vy D, a)+ D@ mm)> R, m)foradllf, g hee X. Thissiireepadityy fodloowss

from

hftwd = < Wi = g+ g — bl forall = &0, 1.

The details are left as an exercize.

EXERCISES

L. Prove that D\, B2, and Ds as defined in Example 3 are really metrics for R2.

2. Let @, yi) and @2, ) be any points of R2. Which of the following do not
define metrics for R2? Explain your answer in each case.

a) R(OG2, y2)) W)= min(|*i ID-
b) D(@i,y), G2yD) = x— (Y1 — y2)2. X2)2+ (yi -

where D\ and D3 are as defined in Example 3
-d) D((xd,  (v2,¥2)) DY fwabdh+ VA2l + VA
& Suppose X, D is a metric space. We may define a metric D" for X X X as
follows: If (%, ¥) and @/, y’) are any elements of X X X, set

@, y)) = WZ/@) + D@, ¥ D+D(Y.y").
Prove that D' is really a metric for X XXX. Define a metric for Xn, that is,
X X ==X (mtimes) X X.
4. Suppose X, D is a metric space. If x and y are any elements of X, which of
the following define metrics on X?

a) Dix, y) = Wk, \)), wiare Kiisany posiiive real numbeir.
b) DA, y) = WL, \)), winare Kiisamy real numiiser.
¢) Ds(x, ¥) = [r,\)), wihake miisany posiitive integer.
d) Dits, y) = [Brs,))), whieeee®< r < 1. 1
5. Supply the details for the proof of Example 5(v).

6. For any two distinct points Piland P2of R, set
M(Ph Pp) = {F B2| P) = dP2

where d is & metric on R2. Describe geometrically M(Pil, P2) for each of the
metries on R2introduced in Example 3 as well as for the Pythagorean metric.
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Figure 2.2

Let X, D be a metric space. If x is any point of X, then we may want
to consider all the points of X within a certain distance of x, that is, the
set of points of X which are within some degree of nearness to x.

Definition 2. If X} D is a metric space, x € X, and p is any positive
real numbei, then the D-p-neighborhood of x is defined to be the set

of all points ¥ of X such that D(x,y) < p; that is, the D-p-neigh-
borhood of x is defined to be

{weX 1D(xy) < p}

Where there is no danger of ambiguity, the D-p-msighiborhood of x will
be called the p-meighborhood of x and will be denoted by N(x, p).

Example 6. Let R2be the coordinate plame. Figures 2.1 through 2.4
illustrate the I-msigiiiborhoods of (0,0) with respect to the metrics D),

=1, a, o1 01

<—1,0> 9 .

Figure 2.3 Figure 24

®, )
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y=y"

0,1
(z/, y’+p) %Dy

(z, f(x)+p)

z=2/
(z, f(x))
“(a, fiz)-p)
(x’,y"—p)
(0, 0) (1,0)
Figure 2.5 Figure 2.6

D\yDg2, and D3of Examples 2and 3. The reader should be sure to verify
these figures.

Note that the Dx-1-neighborhood of (0, 0) is a subset of the D-l-
neighborhood of (@, 0). Since

Df@s. ), @2,22) < Pul(@, ¥5), Gz,4/2))

for any two points (xx, 2% and (2, #2) of (Exercise 2), the Di-p-
neighborhood of any point (¢, ¥") of R2is a subset of the D-p-neighbor-
hood for any positive real number p. Howewer, a simple calculation
shows that the D-p/y/2-meighborhood of (*,y") is a subset of the
Dx-p neighborhood of (', y") (Fig. 25). Note, however, that if p < 1,
there is no positive number ¢ such that either the D-g-nwigjiiborhood of

@fy") or the Dggnnighitiuntiwod of (', y) is a subset of the D 2p-meigh-
borhood of (&', y") which consists of (x', y*) alone.

Example 7. Let X, D be the metric space described in Example 5 Suppose
f8X and p > 0. We may draw a p-collar about the graph of £ as shown
in Fig. 2.6. Then the D-p-msighiborhood of / will consist of all functions
from [0, 1] into [0, 1] whose graphs lie within the p-collar of £.

EXERCISES

1. Confirm Figs. 2.1 through 2.4.

2. Prove that D((xi, Y, G2)yd) < Di((x\, ¥4), GRy3)) for any two points
@4,y and (2, 7) in R2 as claimed in Example 6. Also in Example 6,
carry out the computation which shows that the D-pAy/Z-neighborhood

of (x, %) is a subset of the Dx-p-maigiinorinood of (%, ¥) for any ¢ )) E R2
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p — D(z,w). Then if z& N(w, q), we have D(w,2) < p — D(z, w).
Therefore

D(x,z) S D(I,QD) +D(w,z) < D(Z, w) +p - D(wi) = p.

We thus have that z € N(zx, p); hence N(w, qg) C N(z, p). Therefore
N(z, p) is an open set.

Proposition 2. Let X, D be a metric space. Then

a) X and ¢ are both (D-) open sets,

b) the intersection of any two open sets is again an open set, and
c) the union of any family of open sets is again an open set.

Proof

a) f ze X and p > 0, then N(z, p) C X. Therefore X is an open
set. Since ¢ contains no points whatsoever, it is true that for each
z € ¢ (there is no such z) and any p > 0, N(z, p) C ¢; hence ¢ is
also an open set.

b) Suppose U and V are open subsets of X and x € U N V. Since
U is open, there is a positive number p; such that N(z, p;) C U.
Since V is open, there is a positive number p, such that
N(z,ps) CV. B8Bet p = min (p1,ps). Then N{z,p) CUNYV;
therefore U N V is open.

c) Let {U;}, i € I, be any family of open subsets of X and z € U; U,.
Then z € U; for some 1. Sinee U; is open, there is a positive
number p such that N(x,p) C U; But then N(z,p) CU; U;;
hence U; U; is open.

Proposition 3. Let X be a set with metric D. A subset U of X is open
if and only if U is the union of a family of p-neighborhoods.
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Proof. Assume U to be the union of a family of p-neighborhoods. Since
each p-meighborhood is open by Proposition 1, U is the union of a family
of open sets. Therefore U is open by Proposition 2(c).

Suppose that U is an open subset of X. Then for each x & U, we can
find at least one N(z, p) such that N(x, p) C U. Since X(& p) C U for
each x @ U, Uy N(x, p) C U. On the other hand, each x € U is an element
of at least N(x, p); hence U C Uy N(x,p). Therefore U = Uy N(x,p).

If X is any set, then X and ¢*have been shown to be D-apen sets for
any metric D which can be defined on X. If and Dg are any two
metrics for X, it is not necessarily true that each Di-open set is D#open,
or that each Dzapen set is Dir-open

Example 9. Let D and D2be the metrics defined on R2 as in Examples
2and 3 For any (x, y) € R2, the D21-msighiborhood of (x, y) is precisely
{(x, v)}, since (x,y) is the only point which is less than Dg2diistance 1
from itself. Therefore {(x, y)} is Dz open, since it is a Dzmeighborhood.
But {(x, ¥)} is not D-opemn, since for any p > 0, the D-p-meighiborhood of
(, y) contains infimitely many points besides (x, y). (See Exercise 4 alsn.)

EXERCISES

L Let X, D be a metric space. Suppose that x and y are two distinct points of X.
Prove that there are open sets U and ¥ in X such that x € U, y & ¥V and
UMV = ¢ [Hint: Let U = N(x, $D(x, v)).]

2. Determine which of the following subsets of the plane R2 with the Pytha-
gorean metric are open.

) {& | 0}x| &}

b {tx, |z+ p1by- y >5

o {z, ¥ - <xtAery@sd) or @ N9))= (L O}
d {(zy1x|z = &and 3} y 8

3. Let p be any positive number. Prove that any D-p-neighborhood of R2 is
Di-, Dg-, and D3-open.

4. Prove that any subset of B2 which is D-open is Di-open and, conversely, that
any subset of the plane which is Di-open is D-open.

5. Make appropriate sketches for the proofs of (b) and (¢) in Propoesition 2.

6 Let Di and D2 be possible metrics for a set X. Dy and D2 are said to be
equivalent if every Di-open set is Dz-open and every Dz-open set is Di-open.
Prove that Di and D2 are equivalent if and only if, given any x & X and
any p > 0, there are positive numbers pi and p2 such that the Di-pfmeigh-
borhood of £ is a subset of the Ds-p-meighhborhood of , and the Pz-ps-
neighborhood of x is a subset of the Di-p-neighborhood of .

7. Let L be any straight line in R2. Prove that B2 — L is open with respect
to all metrics introduced on B2 thus far in the text. Try to find a metric on
R2 for which B2 — L is not necessarily open.
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24 CLOSED SETS

Definition 4. Let X, D be a metric space. A subset F of X is said to
be closed if F is the complement in X of an open set; that is, F =
X — U, where U is opem.

min (&, I1=-4) Figure 2.9

Example 10. The closed interval [@ 1 is a closed subset of the real line
R with the absolute value metric. For suppose x € R — [ 1}." Set
p = min (J1 — x)y|x|). Then N(x, p) C R — [@ 1] Therefore R — [0 1j
is opem, and hence [, I is closed (Fig. 2.9).

Example 11. If X is a set with metric D, if x € X, and if p is any positive
numbeir, then the closed p-neighborhood of x, denoted by CIN (x, p), is
defined to be the set of all y & X such that D(x, y) < p, that is,

CIN &,p) = {y € X |D(x, y) < p}.

It is left as an exercise to show that CIN (x, p) is a closed subset of X.
Note in Example 10 that [ I] = CIN (3, ¥); therefore the fact that
[0, 1lis closed follows from the more general considerations of this exampile.

The following proposition gives the basic properties of closed sets in
a metric space.

Proposition 4. Let X, D be a metric space. Then

a) X and  are closed subsets of X,
b) the union of any two closed sets is closed, and
¢) the intersection of any family of closed sets is again a closed set.

Proof

8) X = X — @. Since § is an open set, X is the complement of an
open set and hence is closed. Now, § = X — X, hence 6 is also
the complement of an open set, and is therefore closed. (Note that
X and @ are both open and closed. It is quite possible for a set to
be both open and closed; the complement of such a set would also
have the property of being both open and closesl)

b) Let F and F” be any closed subsets of X. Then F = X — U and
F" = X — U, where U and B are open subsets of X. Then

FUF=X- D) UX- ) =X—UnUY.

But U N Uftis open by Proposition 2(g); therefore X — (U fi U’) =
F UF' is closed.
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¢) Let {Fi}, i€/, be any family of closed subsets of X. Then
Fi = X — Uj, where U} is an open subset of X for each i € I.
It follows that

Nr=0@- fo=x -~ yar
Since Uj  is opem, (17 P is closed.

Proposition 5. If X is a set with metric D and x € X, then {x} is a
closed subset of X.

Prooff. Since {x} = X — (X — {z}), if we show that X — {x} is opem,
we will have shown that {x} is closed. Suppose y € X — {z}. Setp =
D(x, ¥). Then N(y,p) CX — {x}; hence X — {x} is opem.

EXERCISES

1. Show that the union of arbitrary family of closed subsets of a metric
space need not be closed. Find an example to show that the imtersection of
any family of open sets need not be open. [Mint: Use Proposition &]

2. Let X, D be a metric space and ¥, D || F be a metric subspace of X (gee
Example 4). Prove each of the following.

8) A subset W of F is open in F (that is, is D || F-open) if and only if W =
¥ f} U}where U is an open subset of X.

b) A subset C of F is closed in F if and only if C = ¥ fi F, where F is a
closed subset of X.

¢) If F is an open subset of X, then a subset of F is open in F if and only if
it is open @ X).

d) If F is a closed subset of X, then a subset of F is closed in F if and only
if it is closed @@n X).

€) A subset of F may be open or closed in F without being open or closed in X,

3 Prove that a subset F of a metric space X, D is closed if and only if X — F
is open.

4. Decide which of the following subsets of R2 with the Pythagorean metric
are closed.

#) {& |z =0,y]x 50, y 8

b) {CG ) [|x = 20r x = 3 i/ is an integer}

o) {& |z2+ypxz+lydrlmwr G (1,0)} y= (L0}
d {& | = %) y =x2

5 Suppose that {Fi}, i € I, is a family of closed subsets of a metric space X, D
with the property that given any x € X, there is p > @ such that N, p)
intersects fimitely many of the Fi. Prove that |(Jj Fi is closed. Try to find
and prove an analegous statement for a family of open subsets of X.
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6. Hroowee thadt aastreagdtit lHirec iin BE2iss chbeeel withh resgeett tho adl | of f thee nietkicss
on R2introduced thus far. Prove a circle in R (gircle in the usual geometric
sense) is closed with respect to all of these metrics. List some other standard
geometric objects which are always closed.

25 CONVERGENCE OF SEQUENCES

The reader should already have been introduced in previous courses to
the notions of convergence of sequences, limits, and continuity, at least
as far as the real numbers with the absolute value metric is concermed.
We now extend these ideas to general metric spaces.

Definition 5. Let X, D be a metric space and § = {sp},n & N, be a
sequence in X. (The capital N will be used almost exclusively in this
text to denote the set of positive integens.) Then § is said to converge
to a point y of X if given any positive number p, there is a positive
integer M such that if n > M, then sp & N(y, p) (Fig. 210). If §
converges to ¥, then we may write sp — y; v is said to be the limit of 8.

Definition 5 could be restated as follows: sp—>y if all but a finite
number of the sp are in N(y,p) for any positive number p. Or agaim,
sp—y if all but finitely many of the sp are closer to y than any given
distance.

Example 12. Consider the sequence defined by sp= (@, 1/n) in the
coordinate plane (Fig. 2.11). If any of the metrics 3, Dj, or D3are used,
then this sequence converges to (4, 0). For in these cases,

D(sh, (1,.0)) = Diitsn, (1,0)) = D3(sn, (1,0)) = W/m

for any n & N. Given any positive number p, if we let M be any integer
greater than 1/p, if n > M, then D(sp, (1, 0)) < p. On.the other hand,
this sequence does not converge to (I, 0) with respect to the metric B2

0,0
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(0, 1)

0, 1)

©,0) (1,0)
Figure 2.12 Figure 2.13

For if p < 1, then the Dy-p-neighborhood of (1, 0) contains only (1, 0),
and hence excludes all of the points of the sequence.

Example 13. Let X, D be the metric space of functions described in
Example 5. Let S be the sequence in X defined by s, (x) = z". If we were to
plot the graphs of s, for successively greater n (Fig. 2.12), it would appear
that the sequence S converges to the function f € X defined by

0 ifzl,
@ =1\ ifz=1.

Such is not the case, however. For if we draw a p-collar about the graph
of f for p = 3 (Fig. 2.13), we see that no s, has its graph wholly within
the collar; therefore S cannot converge to f. Note, however, that S con-
verges “pointwise” to f; that is, for each z € [0, 1], s,(z) — f(x), where
{sn(x)}, n €N, is considered as a sequence in the plane with the
Pythagorean metric.

Proposition 6. If S = {s,},n € N, is a sequence in a metric space
X, D such that s, — y and s, — ¥/, then y = y’. That is, a sequence
in a metric space can converge to at most one limit.

Proof. We will suppose y # ¥/, and prove a contradiction. Set

p= 3Dy, vy)
(Fig. 2.14). Then

Ny,p)nNW,p) = ¢.
For if w € N(y, p) N N(¥, p), then we have

D(y,y) < D(y,w) + D(w,y) <p-+p= D@y,

a contradiction. But since s, — y and s, — ¥/, both N(y, p) and N(¥/, p)
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each contain all but finitely many of the sp. Therefore some sp must be
in both N(y,m) and N(¥*,p), contradicting the fact that N(y,») and
N(y’, p) have no points in commamn. Therefore y = y".

Open sets were defined in terms of p-meighborhoods. Since con-
vergence is also defined using p-neighborhoods, we might suspect that
convergence can also be characterized solely in terms of open sets (rather
than p-neighborhoodis). The following proposition gives such a char-
acterization.

Proposition 7. A sequence § = {sp}, n € N, in a metric space X, D
converges to y if and only if any open set which contains y contains
all but finitely many of the sp.

Proof. Suppose S converges to y and U is any open set which contains y.
Since U is opemn, there is p > 0such that N(p, p) C U. But since sp —>y,
all but finitely many of the sp are elements of N, p); therefore all but
finitely many of the sp are elements of U.

Conversely, suppose that given any open set U which contains y, all
but finitely many of the sp are elements of U. Let p be any positive num-
ber. Then N(y, p) is an open set which contains ¥\ hence all but finitely
many of the sp are elements of N(y, p). Therefore sp—>y.

EXERCISES

1. Diseuss the convergence of each of the following sequences in the spaces
indicated.
8) sp = 1+ 1/, in the space of real numbers with the absolute value metrie

b) sp = (2 2), in the plane R2with the metric D2 (Example 3)
©) sp = (2 n), in the plane R2 with metric D3
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Figure 2,15

Example 14, Let R be the space of real numbers with the absolute value
metric. Then the function defined by fi(x) = 2x+ 3 from R to R is
continuous. A simple calculation shows that (N (a, p/2)) C N(/(a), p),
for any a € R.

It is usually quite awkward to prove the continuity of a function
directly from Definition 6. We therefore need propositions which will
help us determine whether or not a function is continuows, but which are,
in general, easier to apply than Definition 6.

Proposition 8. Let / be a function from the metric space X, D into the
metric space F, DT. Then / is continuous if and only if, given any

open set U of F,
rion= e

is an open subset of X.

Proof. First suppose that f is continuous and that U is an open subset
of F. Let x &€ f~H(U); then fi{(x) & U. Since U is opem, there is a positive
number p such that N(f(x), p) C U. Since f is continuous, there is a
positive number g such that

f(W{z, CN(fiz),p) CU. DIC N{x), p) C

Therefore N(x, g) C ¥~ 1(U). Since, for x we have found
such that N(z, g) CF~1(U), thems ({7) is opem.

Suppose, on the other hand, that is an open subset of X' when-
ever U is an open subset of ¥. We have previously shown that if /(a) € ¥
and if is sRpPositiei mmbeetheth M(REaD) pY dn apapsatnebsef 3f; Y;
therefore F=1(N(j(a), p)) is an open subset of X. There is therefore a
positive number g such that

N(a, 9 C F1(NGJ@).p).

We have then that for this g, f(¥(a, ¢)) Cp); hencp)/ henoa-f is con-
tinuous.
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The following proposition is quite similar to Proposition 8, but is
often easier to apply.

Proposition 9. Let f be a function from the metric space X, D into
the metric space Y, D’. Then f is continuous if and only if given any
D’-p-neighborhood U in Y, f~}(U) is an open subset of X.

Proof. Suppose f is continuous. If U is any D’-p-neighborhood in Y,
then U is an open subset of Y. Therefore f~*(U) is an open subset of X
by Proposition 8.

Suppose that f~(U) is an open subset of X whenever U is a D’-p-
neighborhood in Y. Let V be any open subset of Y. By Proposition 8 we
will have shown that f is continuous if we show that f~'(V) is an open
subset of X. Now V is the union of D’-p-neighborhoods (Proposition 3),
say V = U; U;, where each U; is a D’-p-neighborhood. Then

oy =1 (lIJ U,-) = Usrw.

But each f~'(U;) is by hypothesis an open subset of X; hence f~!(V) is
the union of a family of open subsets of X and consequently is open.
Therefore f is continuous.

Example 15. Using Proposition 9, we will show that the function f from
R? with the Pythagorean metric to R, the set of real numbers with the
absolute value metric, defined by f(z,y) = z, is continuous. If ac R
and p is any positive real number, then N(a, p) is the open interval
(@ — p, a + p). Then f~'(N(a, p)) is easily seen to be

{@yle—p<z<a+tp}

(Fig. 2.16), an open subset of R2. Therefore, by Proposition 9, f is con-

% f"(N(a p)
(a+p, 0) i

%/4 Figure 2.16

Example 16. The identity function i [defined by i(z, y) = (z, ¥)] from
R? with metric D onto R? with metric D, is continuous, since any D-open
subset of R? is D,-open, and conversely (Section 2.3, Exercise 4). That

(a—p, 0)
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is, if U is any open subset of R2, Dj, then = Uy = U is also
an open subset of R, D; hence { is continuows. Since =1 = §, and since
each D-open set is also D'-opem, we see that i1 is continuous as a func-
tion from R%} Dilonto R2 D. It is quite possible, however, for a one-one
function from a metric space, X, D onto a metric space E, D’ to be con-
tinuous without =1 being continuows, as will be demonstrated in Ex-
ample 17.

The following proposition relates continuity with the convergence of
SequUEnCeR.

Proposition 10. Let / be a function from the metric space X, D into the
metric space ¥, DT. Then f is continuous if and only if given any
sequence § = {sp},n € N, in X such that sp —;

S = {fesh)li ne N, convergesto f(y) inFE.

Preaff. Suppose that £ is continuous, but that there is a sequence § = {sp},
n & N, in K such that sp —y, but £(8) does not converge to /(). Since
§(8) does not converge to fi(y), there must be a positive number p such
that N((&g), p) excludes infinitely many of the f(sp). But since / is con-
tinuous, there is a positive number g such that f(N{y}q)) C N, p).
By assumptiam, sp—3y; hence N(y, ¢) contains all but finitely many of
the sp. This implies that N (f(v)}p) contains all but finitely many of the
f(sp), a contradictiiom.

Conversely, suppose that given any sequence S = {§},n N, in X
such that sp —»y, then §(8) converges to f(y)} assume that / is not con-
tinuous. Then, since £ is not continuouws, there is a point/{@) in ¥ and a
positive number p for which there is no positive number g such that

V@, ) < N

Consider the family {Up}, n g\V, of neighborhoods of a, where Up =
N(a, 1/n). For each n we can select sp & Up such that/(sp) & N(f(a), p);
this selection is possible because £ is not continuous. Then sp —>a (Exer-
cise 1); but {/(sn)}, n € N, is a sequence in ¥ which does not converge to
/(8), since X({(a),p) by construction of {sp}, n €W, contains no f(sp)
whatsoewerr. This contradicts our initial hypothesis that f preserves the
limits of sequences; hence f could not be discontinuous. Therefore / is
continuons.

A continuous function is thus seen to be one which in some sense
preserves the convergence of sequences. (See Exercise 7 also.)

Example 17. The identity function i from R2with metric D onto R2with
metric D2 (Example 3) is not continuous. For the sequence defined by
sp = (@, I/n) converges to (1,,0) with respect to metric D (Example 12),
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but the sequence {z(sn)} = {sn}, n G N does not converge to 1,0) =
(1,,0) with respect to D2 Note, however, that

"1 RYyD2—~+R2 D

is continuows. This follows from the fact that any sequence in R2 which
converges with respect to D2 is essentially a constant sequence (Section
2.5, Exercise 4), and any constant sequence converges with respect to
any metric whatsoever on R2 We thus see that even the identity function
from a set X with one metric onto the same set with a different metric
may fail to be continuous.

EXERCISES

1. In the converse part of Proposition 10, prove sn—>a.
2. Discuss the continuity of the function in each of the following:

8) the function defined by (%) = Sx {f 7 from the space R, D onto itself,
where R is the set of real numbers and D is the absolute value metric;

b) the function defined by F(x,¥%) = xFy from R2, D\ onto R, D [with
R, D as in @];

¢) the function defined by f{g) = g(0®) from the space X, D of Example &
onto the closed interval [f) 1 considered as a subspace of the space of real
numbers with the absolute value metric;

d) the identity function i from R2, D\ onto R, D3.

3 Suppose f to be a function from a metric space X, D into the metric space
Y, D’ such that D(x, =) > kD'((z), f(x")), where R\is a constant positive
real number. Prove that / is continuous.

4. Suppose that / is a continuous function from X, D into ¥, D', and g a con-
tinuous function from Y, D' into Z, D”. Prove that g <F is a continuous
function from X, D into Z, D".

5. Assuief to be a function from X, D onto a subspace W of ¥, Zf. Prove that
£ is continuous as a function from X, D into ¥, Df if and only if / is con-
tinuous as a funetion from X, D onto Wy D’ || W.

6 Suppose W is a pubset of ¥, D. Prove that the function i: W—Y defined
by i(w) = w for each w&W is continuous as a function from Wy D || W
into ¥, D.

7. Prove that a function f/ from a space X, D into a space ¥, D* is continuous if
and only if given any convergent sequence S in X, f(S) is a convergent se-
quence in Y. [Hint: It must be shown that if S converges to x in X, then
J(B) converges to/f(s).]

& The concept of equivalent metrics was introduced in Section 2.3, Exercise &
Prove that metrics D and D’ on a set X are equivalent if and only if the
identity map from both X, D onto X, D' and from X, D* onto X, D is
continuous.
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. a) Suppose f: R? — R? takes any circle in R2? onto a eircle. Need f be

continuous if R2 has the usual Pythagorean metric?
b) Suppose f: R2 — R? takes collinear points into collinear points. Need
J be continuous?

Prove that the set f~1(N(a, p)) C R? of Example 15 is open with respect
to the usual Pythagorean metric.

“DISTANCE” BETWEEN TWO SETS

Definition 7. Let X, D be any metric space. Suppose that z € X and
A C X. Then define

D(z, A) = greatest lower bound {D(z, a) | a € A}.
If A and B are subsets of X, define
D(A, B) = greatest lower bound {D(a,b) |a € A, b € B}.
The following equalities follow immediately from the definition:
D(z, A) = D({z}, 4)

and

D(A, B) = glb {D(a, B) |a € A} = glb {D(4,b) | b€ B}.

Note, however, that D is not a metric for the set of all subsets of X. It
is quite possible, for example, to have sets W and Y such that D(W, Y) =0,
but WNY = ¢ (a contradiction to Definition liii) as we see from the
following.

Example 18. Let R? be the plane with the Pythagorean metric D. Set

Z={(—1,0)} W={(l,0)}
Y

Y= {@yl|22+y* <1} and W= {(1,0)}

,

Figure 2.17 Figure 2.18
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(Fig. 2.17). Then D(Y, W) = 0, since there are points of Y arbitrarily
close to (1, 0), but (1, 0) is not a point of Y. If welet Z = {(—1, 0)}, then

D@Z,W)=2> D(W,Y)+ D(Y,Z) =0+0=0.

Therefore the “metric” D on the set of all subsets of RZ does not even
satisfy the triangle inequality.

Note too that the distance between a set and any of its nonempty
subsets is always 0.

Even though the “metric” for the subsets of a metric space is not
really a metric according to Definition 1, it is still of great use in helping
us describe the properties of metric spaces.

Proposition 11. Let X, D be a metric space. A subset F of X is closed
if and only if given any point zin X — F, D(z, F) # 0.

Proof. 1If F is a closed subset of X, then X — F is open. Therefore, given
any r € X — F, there is a positive number p such that N(z,p) C X — F.
But then D(z, F) > p; hence D(z, F) = 0.

Suppose, on the other hand, that given any point z in X — F,
D(z,F) % 0. Then setting p = D(z, F), we have N(z,p) CX — F.
That is, for each z € X — F, we have a positive number p such that

N(z,p)CX — F,

which is to say that X — F is open. Therefore F = X — (X — F) is
closed.

Proposition 12. Let X, D be a metric space. Suppose F is a closed
subset of X and z € X — F. Then there are open sets U and V of X
suchthat z€ U, FCV,and UNV = ¢.

Proof. Sinee F is closed and z € X — F, D(z, F) = 0 (Fig. 2.18). For
eachy € F, set

Uy = N(y, 3D(z, F)).

Then V= UpU, is an open set which contains F. Also U =
N (z, $D(z, F)) is an open set which contains z. In order to complete the
proof that U and V satisfy the terms of Proposition 12, we must show that
UNV =¢. Suppose UNV = ¢, and select w from UN V. Then
D(w,y) < 3D(z, F) for some y € Fand D(w,z) < 3D(z, F). It then
follows that

D(z,y) < D(w, z) + D(w,y) < 3D(z, F) + D(z, F) = D(z, F).
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But D(x, F) = glb {D(xf2) \z € F}, and y &fF}; hence D@, 9) > D(x, P),
a contradickion. Since the assumption that U fi ¥ & ¢ led to a con-
tradictiom, it must be that Un V = ¢

We now prove an even stronger result.

Proposition 13, Let X, D be a metric space. Then if F and F’ are two
closed subsets of X such that F A Ff = ¢ there are open sets U and
V¥ of X such that

FaX, F' CV, and unv=a.

(Note that this proposition contains Proposition 12 as a special case,
since each one-element subset of X is a closed subset by Proposition 5.)

Figure 219

Prooif. For each y € F, set py = 3D(y, F"), and for each y' € F*, set
PY = ¥D(G/',F). Set U= UFN(y,py) and V= UF'N,py) (Fig.
2.19). Since both U and V are the union of a family of open sets, both are
open. Then, since F C U and F' C V, it remains to show that U fi ¥V = &
Suppose we can find w€ U D V. It follows that D(y, w) < py for some
y € Fy and that D(y’, w) < py* for some ¥y € F. We may suppose

e 2 = Then
W) < gy w)+ MG\ <p,+py <2 = F'). 3 py+

But D(y, y?) > D(y, F'), hence a contradiction. It follows then that
UnV =&

Propositions 12 and 13 represent what are called separation properties
because they measure our ability to “Separate”or distinguish disjoint
closed subsets. Oddly enough, as the following example demomstrates,
Proposition 13 does not imply that the “distance” between two disjoint
nonempty closed subsets of a metric space is always greater than Q.
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Example 19. Let R2be the coordinate
plane with the Pythagorean metric
Dyand let

{(x = {(z, v} T y=
and
Fro B={ | =0y - o

(Fig. 2.20). That is, F is the graph of
the rectangular hyperbola y = I/,
while Ff is the x-axis. Both these
sets are closed and FNE' = ¢

Since ¥y = 1Ifx has the x-axis for an \
asymptote, D(F, F') = 0. Never-
theless, F and F’ can still be sep- Figure 2.20
arated in the sense of Proposition 13.

We saw in Proposition 11 that a subset F of a metric space X, D is
closed if and only if each point of X which is O distance from F is an element
of F. This inspires the following definitiom.

Definition 8. Let X, D be a metric space and A C X. We define the
closure of A}denoted by Cl A, by

ClA = {z e K|| D(xyA) = 0}.

Example 20. Let R be the space of real numbers with the absolute
value meteic. Set A= {I/n\n= 1,23 ..} Since i/n =0, then
d(0, A) = 0 (Exercise 5). Since IDXd/n, L/n) = O for each n, then
A € ClA. On the other hand, if y is any number other than 0 or an
element of Af then it is readily verified that D(g, A) > 0. Therefore
ClA = AU {0}.

Proposition 14. Cl A as given in Definition 8 is a closed subset of X.

Pyooff. Suppose that Cl A is not closed. Then X — Cl A is not open;
therefore there is an element x & X — Cl A such that for any positive
number p, N(x, p) fi C1 A 2 @. Select w & N(x, p) n Cl A. Then since
N(x}p) is open, there is a positive number g such that N(wyq) C N(x, p).
But since w & Cl A, then D(w, A) = 0; therefore there is at least one
element

a & A O Nt g) C N(x, p).

But this means that, for any positive number p, there is an element a € A
such that DQfya) < p. It follows then that glb {D(x, a) [|la € A} =
DQey A) = 0; thus x ECL A, a contradiction, since x € X — Cl A,
ClI A must therefore be a closed subset of X.
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6) Fr{x||x is a rational number} C R, as in @)
d) Fe{(z, V) | 2 = 3} C R, with metric D2 (Example 3)

7. Prove that a subset A of a metrie space X, D is open if and only if ErA 0 A =
& Prove that A is closed if and only if FrA C A,



3
TOPOLOGIES

3.1 THE NOTION OF A TOPOLOGY

The fundamental properties of open subsets of a metric space are outlined
in Proposition 2of Chapter 2. Mathematicians have found from experience
that families of subsets having these same properties arise in contexts
other than those of metric spaces; hence it is reasonable to study these
properties in their own right, abstracted from the limitations that metric
spaces impose. In particullar, the properties of open sets in metric spaces
inspire the following definitiom.

Definition 1. Let X be any set. A collection 7 of subsets of X is said
to be a topology on X if the following axioms are satisfied:

i) X and ¢are members of r.
ii) The interseetion of any two members of r is a member of r.
iii) The union of any family of members of r is again in r.

The members of r are then said to be F-aepen subsets of X, or merely
open subsets of X if no confusion may result.

Example 1. If X, D is a metric space, then the D-open subsets of X form
a topology on X. This topology is called the metric tapology induced on
X by D. It was, of course, this topology that we studied in Chapter 2.

Example 2. Let X be any set. Then the family of all subsets of X forms
a topology on X. This topology consisting of all of the subsets of X is
called the discrete topology on X. The discrete topology contains the maxi-
mum possible number of open sets since, relative to the discrete topology,
every subset of X is opem.

Example 3. If X is any set, then the collection {X, ¢ of subsets of X also
forms a topology on X_. This topology is called the trivial (by some, the
indisamatiz) topology on X. It contains the fewest possible open sets com-
patible with having a topology on X.

The discrete and trivial topologies represent opposite extremes.
Topologies which are of genuine interest usually lie somewhere in between;
for example, the topology induced on the set of real numbers by the

40
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absolute value metric is neither the trivial nor the discrete topology. We
now give an example of a topology which is neither discrete nor triviall,
but also is not related to any metric.

Example 4. LettX = {a, b}. Define r = {X, & {a}}. It is easily verified
that + is a topology on X. Suppose D to be any metric on X, and set
p — D(a, b). Then Xi(B, p) = {&}, and it follows that {b} is a D-open set.
But {b} is not a r-open set; hence r could not be the topology induced
on X by D.

Definition 2. A set X with topology r is called a topological spawe.
Just as X, D was used to denote a set X with metric D, so X, r will be
used to denote a set X with topology r.

As in metric spaces, so in a topological space X, r we say that a
subset F of X is r-closed (or merely closed) if F = X — U, where U
is a v-open set. (Compare this to Definition 4 of Chapter 2.)

Proposition 1. Let X, r be a topological space. Then the closed subsets
of X have the following properties.

a) X and ¢>are closed subsets of X.

b) The union of any two closed subsets of X is again a closed subset
of X.

6) The intersection of any family of closed subsets of X is again a
closed subset of X.

The proof is the same as the proof of Proposition 4, Chapter 2.

The next proposition shows that rather than defining a topology on
a set by specifying the open subsets, we may equally well determine the
topology by specifying the closed subsets.

Proposition 2. Let X be any set, and suppose that ¥ is a family of
subsets of X such that
i") X and ¢>are in 5
ii") the union of any two members of § is a member of F;
ii") the intersection of any family of members of  is a member of &

If we now define a subset U of X to be open ifand only if U = X — E,
where F is some element of %; then the set r of open sets thus formed
is a topology on X with as the set of (r-) closed subsets of X.

Preaf. We first show that r is a topology on X by verifying that r satisfies
Definition 1L

i) X and ¢are inr. Since X and are in %, and since X = X — ¢
and €= X — X, then X and ¢are in 1.
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ii) The itenserstiom off sy twe memiers of r i @ mexdber of . Sugp-
pose U and V¥ are members of r. Then

U=X—Fx and V=X-Fg
where Fxand F2are in & Therefore
TnVr=@X-—FnX-—F)=X— RiuFd.

But, by (ii'), FiUF2e & hence UM F 7.

iil)  THee umitom off amy feamilly of meemibss of 7 i a membor of . Suppese
{Ui}, i € 1, is a family of members of r. It follows that for each
i6[I, Uji= X — F;, where B> & Then

UUi=U@-Fy=X-—AFL
I i I I

But, by (iii*), iy Pse hence Uj Opa .
Therefore r satisfies the definition of a topology on X.
It remains to be shown that & is the set of closed sets for the topology
r. Suppose F is r-closed. Then F = X — {7, where W cr. But & =
X = F, where F' € & therefore

F=X=X=F)=Fe®

On the other hand, if F & & then X —# ¢¢. Then, since F = X —
(X — F), F is r-closed. The members of § are therefore precisely the
r-closed subsets of X.

Example 5. We define a family $of subsets of R, the coordinate plane,
as follows: Let F & &if and only if F = R3 F — §, or F is a set consisting
of finitely many points together with the union of finitely many straight
lines. By hypothesiiz, X and 6 are in It follows from the fact that two
straight lines can only intersect in either a straight line (if they coingidls),
a point, or the empty set, that the intersection of any family of members
of & is again a member of & Since the union of finitely many lines and
points with finitely many more lines and points still consists of finitely
many lines and pointg, the union of any two members of 3 is also a mem-
ber of &= Therefore, $ satisfies (i") through (iii") of Proposition 2, and
hence determines a topology on R2. The topology which $ determines is
in fact the smallest topology in which lines and points are closed sets.
It is not, however, the topology induced on R2by the Pythagorean metric
D; for a subset of R2 can exclude at most finitely many lines and still be
open in the topology determined by but {(x,¥) M2+ y2 < 1} ex-
cludes infinitely many lines and still is D-open.
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EXERCISES

1. Prove that the intersection of fimitely many open sets is open and that the
union of fimitely many closed sets is closed.

2, Suppose X, r a topological space, and A C X. The interior of A, denoted by
A®, is defined by A= = U{U € r || C A}. Prove the following:
8) (A0 = A%
b) A®C A.
¢ (AmMEP® = A™nBB".
d) A subset U of X is open if and only if U = U=

8, Let R2be the plane with the Pythagorean metric. Let Bl be the set of all
p-mdighiborlioods in R2. Which properties of a topology for R2 does 3 fail
to satisfy? Let r be the set of all unions of elements of B. Prove that r is a
topology for R2. What topology is this?

4. Find all possible topologies for the set {I,2, 3}.

5. Suppose X a set with more than one element. Prove that there is no metric
on X which induces the trivial topology on X. Find a metric for X which
induces the discrete topology on X.

6. Let N be the set of positive integers. Define a subset F of N to be closed if
F contains a finite number of positive integers, or F = N. Show that the
closed subsets of NI thus defined satisfy the conditions of Proposition 2, and
hence can be used to define a topology on N. Prove that this topology is
not induced by any metric. [Hint: Show that the topology does not satisfy
Proposition 12 of Chapter 2]

7. Prove that the topology defined on R2 in Example 5 is really the smallest
topology i which lines and points are closed sets. Would it be possible to
have a topology on R2in which every line was a closed set, but every one-
polnt subset was not? in which every one-point subset was closed, but
every line was not? Try to find a topology satisfying the latter conditiom.

8. 8) Define explicitly, that is, characterize completely the members of, the
topology on R2 which has the fewest members and relstive to which each
one point subset of R2is closed,

b) Characterize the smallest topology on R2 relative to which each straight
line of R2 is closed. Is this the same topology found in @)? Does it
contain the topology found in (@)?

32 BASES AND SUBBASES

Quite often it is impractical to explicitly specify all the open sets in order
to define a topology on some set. Note that when we defined an open sub-
set of a metric space, it was done in terms of p-meighiborhoods and not by
listing each open set separately. Proposition 2 has also shown us that we
could equally well define a topology by giving the closed sets instead of
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the open onexz. We now investigate other methods of determining a
topology on a given set. In the first of these methods, a collection of sets
is furnished which “generaties” the topology (in much the same way that a
basis of a vector space generates the vector spacs).

Definition 3. Suppose that X, r is a topological space. A subset @ of
r (ie., a collection of open sets) is said to be a basis for the topology
r if each member of r is the union of members of @

There is no analog of linear independence in Definition 3. Any topology
has at least one basis, namely itself. Generally it is of no consequence
whether or not a basis is in any sense minimall

Example 6. Suppose R2 to be the plane with the Pythagorean metric D.
Then the p-meiighborhoods of R2 form a basis for the topology induced by
D (mee Section 3.1, Exercise 3). In fact, if X, D is any metric space, then
the p-meighborhoods of X form a basis for the topology induced by D.

Note that if X, D is any metric space x € X and p > 0, then there is
a rational number ¢, 0 < g < p, with N(x, g) C N(x, p). This fact can be
used to prove that

{N(x, 9) Ix € X, q a positive rational number}

is also a basis for the topology induced by D (Exercise 6). It can also be
proved that
{N(x, I/n) || € X and n a positive integer}

is a basis for the metric topology (Exercise 6). Thus we see that bases
for a topology can be quite diverse.

Proposition 3. Suppose that X, r is a topological space and that @is
a basis for ¥. Then the intersection of any two members of @is the
union of members of @& and X itself is the union of members of @

Proef. Since both X and the intersection of any two members of @ are
members of r, such sets must be the union of members of @

The case often occurs when rather than being given a topology for a
set X, we are merely given a collection of subsets of X. For example, in
our study of metric spaces, it was the p-meighborhoods which arose most
naturally; the open sets were defined after the p-meighborhoods had been
introduced. We might, themn, reasonably ask, When is a collection of
subsets of X the basis for a topology on X? The following proposition
answers this questiom.
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Proposition 4. Let X be any set. Assume @ to be a family of subsets
of X such that

i") X is the union of members of @&

ii") the intersection of any two members of @ is the union of members
of ®

Define r = {U C X \U is the union of members of @}. Then r is a

topology on X and @is a basis for r. (The topology r for which @is a

basis is, in fact, unique; see Exercise 3.)

Proof. We must verify that r satisfies Definition 1L

i) X is the union of members of @ by (i*), and ¢*is the union of the
empty subfamily of @ Therefore X and $ are members of r.

ji) Suppose that U and ¥ are inr. Then U = Uj B{and V = U¢ Bj,
where I and J are appropriate index sets and where Bi and Bj are
members of @ for eachi € [ andj € J. Then

UnV=H(BmBj),

Since each Bi n Bj is the union of members of @ by (ii*), U f ¥
is the union of members of @ and hence is in r. The intersection
of any two members of r is again a member of r.

i) If {[7}, k€K, is any family of members of r, then Uk is the
union of members of @ for each k 6 K. Therefore Ug Uk is the
union of members of @ and hence is in r. That is, the union of
any family of members of r is again a member of r. Therefore r
satisfies the definition of a topology on X. Since each member of
r is by definition the union of members of @ @ is a basis for r.

Example 7. Let R be the set of real numbers. Clearly R is the union of
open intervals. Since the intersection of any two open intervals in R is
either empty or again an open interval, condition (jii") of Proposition 4 is
satisfied by the collection of open intervals in R. The family of open
intervals in R thus forms the basis for a topology on R. This topology is
the same as the topology induced on R by the absolute value metric

(Exercise 1).

Suppose X to be any set, and $ any collection of subsets of X. Com-
bining Propositions 3 and 4, we see that $ is the basis for a topology on X
if and only if S satisfies conditions (i*) and (i*) of Proposition 4; but not
every family of subsets of X satisfies these conditioms. We may ask,
therefore, in what topologies on X the given sets are open. There is, how-
ever, generally no unique topology on X for which the given sets are opem.
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For example, the p-neighborhoods in R? with the Pythagorean metric D
are open in the topology induced by D, but they are also open with respect
to the discrete topology. We may therefore rephrase our question by
asking, What is the “smallest” topology 7 on X, that is, the topology
having the “fewest” open sets, for which § C 7? This question is answered
in the following proposition.

Proposition 5. Let X be any set and suppose $ to be a collection of
subsets of X. Set

® = {B| B is the intersection of finitely many sets in $ or B = X}.
Then ® is the basis for a topology 7 on X defined by

7 = {U| U is the union of members of ®}.

Moreover, $ C 7, and if 7’ is any topology on X such that $ C 7/,
then 7 C 77; that is, 7 is the smallest topology on X for which § is a
collection of open sets.

Proof. We first show that ® satisfies (i’) and (ii’) of Proposition 4.
i) X is itself the union of members of ®, since X € @ by hypothesis.

i’y If B, and B; are both in ®, then both B, and B, are the inter-
section of finitely many members of §. Therefore B; N B, is it-
self the intersection of finitely many members of 8, and is hence
in @. The intersection of any two members of ® is thus again a
member of B. By Proposition 4, then, ® is the basis for a topology,
the topology 7 as defined above, on X. Clearly s C 7.

If 8 is to be a collection of open subsets in any topology on X, then
all finite intersections of members of § must also be open sets (Section 3.1,
Exercise 1), and hence any union of a family of these intersections must
also be open. Since 7 is the smallest topology on X in which these con-
ditions are fulfilled, it is therefore the smallest topology on X for which §
1s a family of open sets.

Proposition 5 inspires the following definition.

Definition 4. Let X, 7 be a topological space. A subset $ of 7 is said
to be a subbasis for 7 if the set

® = {B| B is the intersection of finitely many members of S}

is a basis for 7.

Proposition 5 tells us that any collection of subsets of X whose union
i8 X is the subbasis for a unique topology on X.
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Figure 3.1

Example 8. We saw in Example 7 that the family of open intervals in the
set R of real numbers is the basis for a topology on B. Each open interval
(Fig. 3.1) is, however, the intersection of two half-lines (rays) without
endpoints, and each such half-line is open in the topology determined by
the open intervals. Thus the set of all half-lines without endpoints forms
a subbasis for the open-interval topology.

Example 9. Let R? be the coordinate plane with metric D3 as in Chapter
2, Examples 3 and 6. As in any metric space, the Ds-p-neighborhoods in
R? form a basis for the topology induced on R% by Dj;. Note that each
D3-p neighborhood of R? is the intersection of finitely many open half-
planes (Fig. 3.2), and that each of these half-planes is open in the topology
induced by Dj3. The collection of open half-planes is therefore a subbasis
for this topology.

et

Figure 3.2

Thus far we have four means of specifying a topology on a set X:
(1) by explicitly giving the open sets, that is, the members of the topology;
(2) by explicitly giving the closed sets; (3) by giving a basis for the topol-
ogy; or (4) by giving a subbasis for the topology.

EXERCISES

1. Prove that the topology on R, the set of real numbers, for which the collec-
tion of open intervals is a basis is the same as the topology induced on E by
the absolute value metric.

2. Let R2 be the coordinate plane and let D, D, D2, and D3 be the metrics
described in Chapter 2, Examples 2 and 3.
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a) Prove that the collection of open half-planes is a subbasis for the topol-
ogies induced by D and D\.

b) Prove that the collection of closed half-planes (it is, a half-plane and
its bounding line) is a subbasis for the topology induced by Dy

¢) Suppose that X, t is a topological space and S a subbasis for . Prove
that r is the only possible topology on X for which 8 is a subbasis; that is,
if rfis a topology on X for which § is also a subbasis, then ¥ = .

d) Using (¢), prove that the topologies induced by D, D\ and Ds on R2are
equal.

3 Let X be any set. Suppose a collection @ of subsets of X is the basis for
topologies r and ' on X. Prove t = r.. Thus any collection of subsets of X
which satisfies (i*) and @i") of Proposition 4 is a basis for one and only one
topology on X.

4. Prove that each of the following are bases for topologies on the preseribed
sets.

a) the set of intervals of the form [a, b) in the set of real numbers
b) X = {#Iif is a function from [} 1] into (), I} and the collection of sub-
sets of X of the form

He=X 19 KO fer D@SKe S},

where is some subset of [ 1
©) X = {§p| pp its sa pudyuomite| witth reed] cnefffidianits]) sanbl thie qdltedtion of
subsets of X of the form

Bpn = {p&X\ degree of p = n},

where n is a nonnegative integer

5 Moottt
{N(x, @) ||a is a rational mumber, x & I}

and
{N(x, 1/n) ||x E X and n a positive integeir}

are both bases for the topology induced on X by D as is claimed in Example 6.

6 Let N be the set of positive integers. Find explicitly all the open sets in the
smallest topologies on N for which each of the following is a collection of
open sets.

8) Mantd W) N, {12 B4.5 )N, {2 HB45 4.7

7. Let Xf D be a metric space. For each xf yEXX, define Hi(x ,y) to be
{wEX || D(x, w) > D(y, w)} and HAz, y) = {wEX || D(xfw) < D(y, w)}-
a) Prove that Hi(x, ¥) and HX, y) are open with respect to D.
b) Describe these sets relative to two distinct points of R2with the Pythsg-
orean metric.
¢) Prove or disprove: {H\{£;%) || ) € X X X, x # ¥} is a subbasis for
the topology induced on X by D.
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33 OPEN NEIGHHEOEHHOOD SYSTEMS

Although we already have four ways to specify a topology on a set, we
have not as yet formally introduced one of the most widely used manners
of determining a topology. Actually, however, we have already en-
countered this methodl, since it is nothing more than the generalization
of the p-meighiborhoods of a point in a metric space.

Definition 5. Suppose X, r to be a topological space, and suppose
that for each point x & X we have a collection 913 of open sets having
the following properties:

i) o .
i} x € N for each N & 913,
iiif) If ¥j and N2 are in 93, then there is ¥3 & 97 such that NV3C
NinNg
iv) Given N € 91 and any y & N, there is N € Sty such that N' C N.
v) A subset U of X is open if and only if for each x € U, there is
N & 9 such that N ¢ U.

Then the collection of families of members of r (one for each x & X)
is called an open neighborhood system for r.

Example 10. Suppose X, D is a metric space. Set = {N(x, p) |lp > O},
for each x & X. We will verify that the collection of 91 forms an open
neighborhood system for the topology induced on X by D.

i) Since N(x, 1) € I for each x ¢ X, 9 £* 6 for each x & X.

ii) Dx,x) = 0 for any x & X implies that x € N{x}p) for any
p > 0. Therefore x & N for any N & 9.

iii) Suppose N\ snd N2are in 9. Then N\ = N(x, pi) and N2=
N(x3}p32), where pi and p2are positive numbers. We may suppose
pi > p2- Then

Nx A N2= N(x, p?) € 9z

iv) This is essentially Proposition 1, Chapter 2
v) This is the definition of open set in the topology induced by D.

The following proposition relates open neighborhood systems and
bases for a topology..

Proposition 6. Suppose that X, t is a topological space. Then if 9
is any open neighborhood system for r, the collection of subsets of X
contained in 9 forms a basis for r. On the other hand, if @ is any
basis for r, them, setting 9> = {B € @||x c B} for each x ¢ X, we
obtain an open neighborhood system for r.
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N, C V. Therefore
zeN NN,CUNV.

By Definition 5(iii), there is N3 € 91, such that
z&e N3 CN, nN2CUﬂV;

hence U NV is also an open set. The intersection of any two
open sets is again an open set.
iii) Suppose {U;}, i € I, is a family of open sets, and z € U; U,.
Then r € U; for some 7; hence there is N € 3, such that rt € N C
U; c U; U;. The union of any family of open sets is thus again
an open set. Therefore 7 is a topology on X.
The reader should compare the proof of Proposition 7 with the proof
of Proposition 2, Chapter 2. Why might one expect to see many simi-
larities?

Example 11. Let R be the set of real numbers. For each z € R, let 9,
be the set of all half-open intervals having z as a left-hand endpoint; that is,

N, = {[z,a) |la€E R,z < a}.

The reader should verify at once (Exercise 3) that the collection of I,
satisfies (i) through (iv) in Definition 5. In accordance with Proposition 7,
then the collection of 31, determines a topology on X. Exercise 2 shows
that this topology is unique.

Example 12. Let R? be the coordinate plane. For each z € R?, let :,
be the set of interiors of all triangles which contain x in their interior.
Then the collection of 91, forms an open neighborhood system for a topol-
ogy on X.

Example 13. The following topology has applications in algebraic geom-
etry. Let S be aring. For each s € S, define

5N, = {s-+ A | A is a nonzero ideal of S},

that is, 9, is the set of cosets of s. It can be verified that the collection
of 9, satisfies (i) through (iv) of Definition 5 and hence forms an open
neighborhood system for a topology on S (Exercise 5).

The reader should note that even though the definition of an open
neighborhood system seems more cumbersome than other methods of
specifying a topology, in actual practice it is often the easiest and most
natural way.
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Definition 6. Let X be any set, and suppose that r and r* are two
topologies on X. Then r is said to be finer than 7' if r* C t, that is,
any +'-open set is also a r-open set. r is said to be strictly finer than
¢ if ¢ is finer than ¢", but r 2 . If r is finer than 7, then we may
say that ¢’ is coarser than r.

Proposition 8. Let X be any set. Then two topologies r and * on X
are equal if and only if r is finer than ' and r’ is finer than r.

Preaff, r finer than ' means ' C r. 7’ finer than r means r C 7. There-
fore ¥ — 7.

Example 14. Let X be any set. Then the discrete topology on X is finer
than any topology on X and is strictly finer than any other topology on X.
The trivial topology on X is coarser than any topology on X_.

Example 15. Let r and r' be any two topologies on some set X. Let
Srnar and ¢=rur.

Then $ and §* are subbases for unique topologies ri and t3g, respectively,
on X. (By Proposition 5, any collection of subsets of X is a subbasis for
a unique topology on X. The reader should be certain that he under-
stands that r m t” is the family of all subsets of X which are both r-open
and r"-open, e.g. X and §, and not intersections of r-open and r'-open sets.)
7\ is coarser than both r and ¢, since any ri-open set is both r-open and
r'-open. rz, on the other hand, is finer than both r and r". The reader
should also see Exercise 5.

Proposition 9. Let r and *" be two topologies on some set X. Suppose
that $L.and 9’ are open neighborhood systems for r and 7, respectively.
Then r C ¢’ if and only if for each x € X and N € 91}, there is X' £ 9’
such that N* C N.

Pvooif. Assume U to be any r-open set and x € U. Then there is N € 9
such that x € N C U. Now if there is N* € 9‘ such that x € X' C X,
then x € X" C ¥; hence Eis also r’-open. Therefore r C r". On the other
hand, if r C 1", then since ¥ € r, Nex ¥*; hence there is X" € 9’ such
that X" € X. (Note that the reason for virtually every step in this proof
is Definition &v.)

Corollary L. Let r and v" be two topologies on the set X. Suppose 9L
and 9" are open neighborhood systems for r and r”, respectively.
Then r = ¢’ if and only if for each x € X and X € 913, there is X' € %’
such that X" C X, and for each X' € @’, there is ¥ € 90 such that
N oXN..
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Proaff. Applying Proposition 9, we see that this corollary merely states
that r = v ifandonly if rCr and v C 1.

Corollary 2. Suppose X to be a set and D and Df possible metrics on
X. Then the topology induced by D is the same as the topology in-
duced by Df if and only if for each x € X and positive number p,
there are positive numbers pxand p2such that the D-pyx-meighiborhood
of £is a subset of the D'-preiglitvarhood of x, and the D’-pzneigh-
borhood of x is a subset of the D-p-msighiborhood of x.

Proef. The p-neighborhoods of points in a metric space form an open
neighborhood system for the metric topology (see Example 10). Corol-
lary 2 then is merely a restatement of Corollary 1L applied to metric spaces.

Example 16. Suppose that R2, the coordinate plane, is given either the
Pythagorean metric D, or the metric Dj of Chapter 2, Example 3. It was
shown in Chapter 2, Example 6 that the hypotheses of Corollary 2 apply;
hence the topologies induced by D and Dxon R2are the same.

Example 17. Let r be the topology on R2 which is defined by the
open neighborhood system described in Example 12. It is easily verified
(Fig. 3.3) that r is the same topology as that induced on R2by the Pythag-
orean metric (Exercise 7).

——

Figure 33

The reader might be tempted to conjecture that two topologies r and
t' on some set X are equal if and only if given bases @and €3 for r and
t'j respectively, for each B & @there is B' & € with B* € B, and for
each B’ & there is B & @such that B € B’. This conjecture is, how-
ever, false, as is-shown by Example 11 and Section 3.3, Exercise 3. Each
interval of the form [fxf a) contains some interval of the form (p, ¢) firough
of course (p, ¢) could not contain x]9and each interval of the form (p, g)
contains some interval of the form [, a). The set of all half-open intervals
of the form [da) forms a basis for a topology #’, and the set of open
intervals also forms a basis for a topology r. If the conjecture were correct,
these two topologies should be equall, which they are not.
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EXERCISES

1L In Example 15, prove as asserted that 1\ is coarser than both r and v, and
that #2is finer than both r and +".

2. Prove that the topology induced on R)the set of real numbers, by the absolute
value metric is the same as the topology for which the set of all open intervals
is a basis.

3 Prove that the topologies induced on R2 by the metrics Dy and B3
Chapter 2, Example 3, are equal.

4, Define a metric D' on the set R of real numbers by D'(x}y) = 3 — iy}
How does the topology induced on R by D’ compare with the topology in-
duced on R by the absolute value metric? Answer this same question with
D’ replaced by D", whete D" is defined by D"(x, %) = & —¥&

5 In Example 15 prove that r\ is the fimest topology which is coarser than
both r and #’, and that #2is the coarsest topology which is finer than r and »’.

6@ Find all possible topologies on {x, v, z}. Order these topologies as to fineness
and coarseness. Construct a diagram which illustrates the relationships be-
tween the topologies.

7. In Example 17, prove that r is the same as the topology induced on R2by
the Pythagorean metric.

8 Suppose @and @ are bases for topologies r and r’, respectively, on a set X.
Suppose that each member of @ contains a2 member of @ Are t and ¥
necessarily comparable? If so, in what way?

35 DERIVED SETS

Let X, r be a topological space. Then associated with any subset A of X,
there are a number of sets which are topologically related to or “derived””
from A. We have already encountered some of these sets in the discussion
of metric spaces.

Definition 7. If A € X, where X, r is a topological space, then we
define

a) the closure of A, denoted by Cl A, to be the intersection of all
closed sets which contain A (cf. Chapter 2, Definition 8 and
Proposition 15);

b) the interior of A, denoted by A®, to be the union of all open sets
which are contained in A (Section 3.1, Exercise 2);

¢) the frontier of A, denoted by Fr A, to be

{x ||each open set which contains x contains points of
both A and X — A}

(Section 2.7, Exercise 6);
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d) the exterior of A, denoted by Ext A, to be X — Cl A; and
€) the derived set of A (sumetimes called the weak derived set), denoted
by A, to be

{x |lif x € U, U an open set, then A n (U — {&}) = ¢;
that is, if x & U, then U — {x} contains some point of A}.

Ext A
Fr A={(z, y)|a?+4%=1}

///

(0 0)

Cld= {(r Y2 +y%<1}

z

1,0

\\\\\

Example 18. Let R2 be the plane with the topology induced by the
Pythagorean metric D. Let

A= {xy Ix2+y2< 1}
(Fig. 3.4). Then

ClAa = {(x, y»*\xi‘* S& < ]l}y AS = A,
Fr 4 = {(x,y) lx2+y2= 1,
Ext A — {(x,v) [x2+y2> 1}, and A’ —CIlA.

The reader is not expected to see all of these equalities until more in-
formation has been obtained about these topologically derived sets, but
he should verify as many as possiblle. He should also examine this example
for possible relations that might hold between the sets topologically
associated with A. These reflections also hold for the following examplle.

Example 19. Let R be the set of real numbers with the topology induced
by the absolute value metric, and let A be the set of rational numbenrs.
Then Cld =R, 4°= ¢ Fr A — R, Ext A = ¢ (mote that both A*°
and Ext A can simultaneously be empty), and A’ = R. If R is given the
trivial topology, then these sets topologically associated with A are
exactly the same as in the metric topology. We can conclude then that
what the topologically derived sets happen to be for any one subset of R
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does not give much information about the topology. If, however, we
know, say, Cl A for every A C X, then the topology is completely deter-
mined, as we shall see from Proposition 1L

Proposition 10. Suppose X, r is a topological space and A and B are
any subsets of X. Then

i) ACCIA; ii) Ci(C1 A) = Cl4;
iii) CI(AUB) = CLAUCIB; iviy)CL¥=¢0;
v) A is closed if and only if A — Cl A.

Proafi. Cl A is the intersection of a family of sets each of which contains
A; therefore A C Cl A, and (i) is proved. Since Cl A is the intersection
of a family of closed sets, Cl A is closed. If A is already closed, then A is
one of the closed sets which contains A;hence ClA C A. Since ACCIA
by (i), A — Cl A. We have therefore proved (v), (i), and Gv).

It still remains to prove (ii). Since A C C1{(A U B) and B C Cl{(A U B),
we have

ClACCI(CI(AUB)) = Cl(AUB) and CIBC CI(A UB).

Therefore Cl A UCIB C C1(A UB). On the other hand, since Cl A U
Cl B is the union of two closed sets, it is closed. Thus CLA UCLB is a
closed set which contains A U B} consequently, Ci{A UB) CCl A UCI B.
Therefore CI{A UB) = Cl A UCIB.

Proposition 11. Let X be any set, and suppose that Cl is a function
from the set of subsets of X into the set of subsets of X such that ClI
satisfies (i) through (v) of Proposition 10. Then if we define a subset
of X to be closed in accordance with (v), the collection $ of closed
subsets thus obtained satisfies (i*) through (ii*) of Proposition 2 and
hence determines a topology r on X. Mowreowsr, Cl A is the closure
of A with respect to r for each subset A of X.

Proof. We must verify (i*) through (ii") of Proposition 2.
i) Since X c ClX ¢ X, X = CIl X; therefore X is closed. Then
Cle= by (iv)-
ii) Let F and Ff be any two closed sets. Then F = Cl A and F* =
Cl B, where A and B are subsets of X. Hence

FUF = ClA UCIB = CI(A UB),

and it follows that F U F' is also a closed subset.

ii") Let {Fi}, i € 1, be any family of closed subsets of X. Then
Fi = CI1Fj for each i. Now Fj Fi C Fi for each i; it follows
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therefore that

8%(1 CClF; = k ClL

[For F)4 Ei C Ei implies (M F,) U Fi — Fi, and thus
¢l ((ﬁ Eyu F;) = ¢l @ F't) UCIFi

= ClFi=Cl (m m) UFi = F]
Therefore

ci(nf{)cnf.,

By (i), however, flf ExC CI(M} F.); hence
Di Fi = 01((0; Fy).

We have shown then that fl; Fiis closed. The family &of closed
subsets of X therefore satisfies (i) through (in") of Proposition 2
and hence defines a topology on X.

Now if A is any subset of X, then since C1(C1A4) = Cl A, CI A is
closed with respect to . But A C Cl A by (@); hence the ¥-closure of A
is a subset of Cl A. If F is any set such that CLF — F and A € F, then
Cl A C CIE = E. Therefore the intersection of all such F, the ¥-closure
of A, contains Cl A; that is, Cl A C r-closure of A. Hence Cl A is the
same as the r-closure of A.

EXERCISES

L. Suppose K, r a topological space. If A and B are any two subsets of X,
show that it is not true in general that C1I{A D B) = Cl A fi Cl B.

2. Let X, = be any topological space. Compute Cl X, X®, Fr X, Ext X, X',
and the corresponding sets for 8.

3 Suppose X is any set and “Is a function from the set of subsets of X to the
set of subsets of X with the following properties:

i) AT A, i) (&)= A%
i) (4 N B = 4°f B, andiv) X= iv)XX WherX ,Awhark Bl axadaiy are any
subsets of X.

Define a subset U of X to be open if and only if U™ = U. Prove that the
set of open sets thus defined gives a topology on X.

4. Suppose that X is any set and that r and ¢’ are topologies on X with ¥ finer
than +'. If AC X, we will denote the closure of A with respect to ¥ by Cl A
and the closure of A with respect to ¥* by ClI" A. Anslogous notation will
be used with regard to the other sets topologically derived from A. Prove
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that

a) Cl ACC" 4 b) A®C A™.

¢) Find relations between the corresponding other sets topologically derived
from A.

& Try to find a method for specifying a topology on a set X by specifying Fr A
for each AC X. Do likewise for Ext.

6 Suppose that X is a set with the discrete topology and that A € X. Find
sets topologically associated with A.

7. Is it possible for two distinct subsets of a topological space to have exactly
the same topologically derived sets? Support your assertion.

8. Suppose  and 1" are topologies on a set X. Determine if each of the following
conditions implies either ¥ C ¢’ or #' C . In the following, A stands for any
subset of X; we use * to indicate that a derived set is being taken relative

to +'.
a) Fr ACF" A b) CLACCIrA c) ExtACExt' A

36 MORE ABOUT TOPOLOGICALLY DERIVED SETS

In this section we continue the discussion begun in Section 3.5. Through-
out this section X, r will be assumed to be a topological space.

Proposition 12. If A ¢ X, then

a) ClA= Au A, b)) 1A= A= u Fr A;
¢) Fr A = Fr(X — A); d) WIAA— Fr A = A®,
Proof

a) Assume that x € Cl A, but that x& A. We prove first that for
each open set U which contains x, UDA . If AnU= g,
then X — U is a closed set which contains A ;hence ClA € X — U,
But since x & U, x could not be in Cl A, a contradiction. We
have then that for each open set U which contains x, A m
(U—{x})) & Butthenx & A". Therefore

ClACAUA.

Now suppose that ye A UA". If y & A then y & Cl A, since
A C Cl A. Suppose further that y € A", and that F is a closed
subset of X which contains A, but not y. Then X — F is open;
hence X — F is an open subset which contains y such that
(@X—=PF — ) n A =9 Therefore y could not be in A, a
contradictiom. Thus y is contained in any closed set which con-
tains A, and hence y € Cl A. This gives A wAM”cCCI;; it
follows that

ClA=AUA".
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b) Suppose x & Cl A, but x & Fr A. Since x & Er A, there is some

)]

open set U which contains x such that either YC A, or JC X — A.
If UCX — A, then X — U is a closed set which contains A;
therefore Cl A ¢ X — U, contradicting the assumption that
x € Cl A. It must be then that U C A, and hence x € A®. There-
fore

CIA C ADUFr A

Assume that y & AW Fr A, but that y Cl A. Since A*C A C
Cl A, y must be in Fr A. Since y & Cl A, there is a closed set F
which contains A, but not y. Then X — F is an open set which
contains y, but does not intersect A; hence y could not be in
Fr A, a contradictiom. Therefore y must be in Cl A. It follows
that A°w Fr A € Cl A; hence

Cli = A*UFr A.

Suppose x € Fr A. Then any open set UJ which contains x meets
bothAand X — A. Then Umeets X —Aand X — (X — A) = A4,
and hence x € Fr(X — A). Thes<pre Fr(Ee=—2=2). Similarly, if
x € Fr(X — A), xe Fr A.

d) Proposition 12(d) will follow from (b) if we show that

ANFrA=¢&

Suppose A® 0 Fr A 2 & and choose x in this intersection. Then
since x € Fr A, every open set which contains x meets X — A.
Since x € A®, however, there is an open set U which contains x
such that U C A. Clearly these two possibilities mutually exclude
one another; thus it is impossible to have x in both A® and Fr A.

The following terminology is introduced as an aid in making certain
statements about topological spaces.

Definition 8 Let X, r be a topological space. If x € X, then any open
set which contains x is said to be a neighborhood of x. (Some texts
define a neighborhood of x to be any set which contains x in its interior,
and refer to what we have defined to be a neighborhood as an open
neighborhood. Such variations in terminology should be expected, how-
ever, in topology, since topology is still a rather young branch of
mathematics and much terminology still has not become universally

acceptadl.)

The following proposition relates neighborhoods and the topologically
derived sets.

Proposition 13. Suppose that X, r is any topological space and A C X.
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Then

a) x & Cl A if and only if every neighborhood of x meets A;

b) x & A®if and only if some neighborhood of x is contained in A;

¢) x € Ext A if and only if x has some neighborhood disjoint from A ;

d) x € Fr A if and only if every neighborhood of x meets both A
and X — A;

e) x & A’ if and only if every neighborhood of x meets A in some
point other than x.

Proof

a) By Proposition 12(a), ClIA = AUA". IfxeClA and xg A,
then every neighborhood of x meets A (inx). If x € A", then every
neighborhood of x meets A also. On the other hand, if every
neighborhood of x meets A, then either x € A, or x & A’; hence

xe AUA = Cl A

b) If x & A, then there is a neighborhood (@pen set) U of x such that
U ¢ A\by definition of A®. Conversely, if there is a neighborhood
U of x with U C A\ then x & A%

c) If x & Ext A, then since Ext A = X — Cl A is opem, Ext A is a
neighborhood of x disjoint from A. On the other hand, if there is a
neighborhood of x disjoint from A, then x & X — Cl A = Ext A.

d) and e) are merely the definitions of Fr A and A’ stated in terms
of neighborhood.

Example 20. Let R be the set of real numbers with the topology induced
by the absolute value metric D. Let A = (@, 1], Given any a & A\
a % 1, it is possible to find a neighborhood of a which lies entirely in
A\Eince A — {1} = (O, 1) is openi. On the other hand, no neighborhood
of 1 lies entirely in A\ hence AS®= (0, 1). There are only two points, 0
and 1, with the property that every neighborhood of each of these points
meets both A and R — A Therefore Er A= {0, 1}. Since Cl A=
AU Fr A Cl A= [p 1. If U is a neighborhood of any point x in [, 1,
then U intersects A\ in some point other than x; hence X = [ 1. Note
that although A¥N Fr A= & it is not true in general that AN A7= &
We also have (see Fig. 3.5).

ExtA=R—ClA={xeR|x> 1, or x <0}

A= {fD< <1}
ExtA 0 4°=0,1)) 11 EsxtA

C\A=[ 1]
Figure 35
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Example 21. Let N be the set of positive integers, and define a subset U
of N to be open if U contains all but finitely many positive integers. The
set r of open subsets of N forms a topology for N (Section 3.1, Exercise 6).
Let A be the set of even positive integars. Then Cl A = N, since any
open set which contains any integer must contain at least one (in fact an
infinite number) of even integers. For if the open set excluded all even
integens, it would exclude infinitely many positive integers and hence
would not be opem. It is true that A= = @, since any subset of A excludes
infinitely many positive integers and hence could not be opem. Also,

FrA=ClA—-A*=N-6=N.

Note that Fr A can be larger than A. Then Ext A = N — Cl A = §.
Finally, A" = N, since any neighborhood of any integer contains both
even and odd integers.

The notion of denseness is important in topology. Although we will
not develop the concept in this chapter, this is an appropriate place to
define it.

Definition 9. Let X, r be a topological space. A subset A of X is said
to be somewhere dense if
€l A = 9,

that is, if the closure of A contains some open set. A is said to be
nowhere dense if A is not somewhere dense. A is said to be dense if

ClA = X.

If A is any subset of a topological space such that A ¢« @, then A
is somewhere dense, since A*C A C Cl A.

Example 22. Let R be the set of real numbers with the topology induced
by the absolute value metric. The set A = [} 1) is somewhere dense,
since A= (@, 1) # 6. The set of integers Z is nowhere dense, since Z
is closed [[R — Z is the union of open sets of the form (m — I, n), n an
integer, and hence is opem] and no neighborhood of any integer contains
only integers; that is,

ClZ=12Z and Z°= §.

Since any neighborhood of any number contains a rational number, the
closure of Q, the set of ratiomals, is all of R (Proposition 13a). Therefore Q
is dense in R.

The following proposition gives a simple criterion for determining if
any given set is dense.



4

DERIVED TOPOLOGICAL SPACES.
CONTINUITY

4.1 SUBSPACES

We have already noted that if X, D is a metric space and ¥ C X, then
F, D ||Y is also a metric space (Section 2.1, Example 4). Recall that a
subset W of ¥ is D ||F-open if and only if W = ¥ n U, where U is a
D-open subset of X (Section 2.4, Exercise 2). Howewer, ¥ is not merely
a subset of X, but is a subspace of X, and the topology which D || F in-
duces on F can be defined by means of the topology which D induces on X.
Suppose F is a subset of a topological space X }r. It is reasonable then to
inquire whether there is any topology on F which is “inhduced” by r.
Using what we learned about metric spaces, the following definition seems
in order.

Definition 1. Let K, r be a topological space and ¥ C X. A subset
W of F is said to be open in ¥ if

9 h
W=¥nd, where Par.

Proposition 1. If X, 7 is a topological space and F C X, then the set
of all subsets of F which are open in F forms a topology for E.

Pronf. We shall show that the set of all subsets of ¥ which are open in F
satlsfies the definition of a topology on ¥ (Chapter 3, Definition 1).

i) X and gare members of . Therefore FN X = Fand F N £= ¢
are open in F,

i) Suppose U and V are open in E. Then U= ¥ n U’ and V =
Y n Vf, where Ufand ¥ are open subsets of X. Then

UnNV=EnUYnEnV)=Yn Urn V).
But U’ B V' is an open subset of X; hence U fi ¥ is an open
subset of F.
iii) Suppese {I~} iE 7, is a family of open subsets of F. Then
Ui= Fm whebere is an open subset of X for each i € 7.

64
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Then
UUi=UG’nUi3=¥n(U -

Since Uj is the union of open sets, it is opem, and therefore
Uj Ugis open in F. The set of subsets of ¥ which are open in ¥
therefore forms a topology on ¥.

Proposition 1 enables us to make the following definitiom.

Definition 2. The topology on ¥ described in Definition 1 and Prop-
osition 1 is called the subspace topology on ¥. ¥ with this topology is
said to be a subspace of X. If X, r is a topological space and ¥ C X,
then ¥ will be assumed to have the subspace topology when con-
sidered as a topological space, unless explicitly stated otherwise.

Example 1. If X, D is a metric space and ¥ ¢ X, then the topology in-
duced on F by D || Y is the same as the subspace topology on ¥ induced
by the metric topology on X. It was in fact this example which inspired
us to define the subspace topology as we did. (See the remarks opening

this chapitien:)

Example 2. Let N be the set of positive integers with the topology defined
by declaring a set to be open if it contains all but at most finitely many
elements of N. Let ¥ — {1, 2 3, 4, 5}. We now show that the subspace
topology on ¥ is the discrete topology. Suppose n & F. Then

U@ = {n} UN — )

is an open subset of N, since it excludes only four positive integers. There-
fore U(n) n ¥ — {n} is open in ¥. Every one-point subset of ¥ is there-
fore open in F, and hence every subset of ¥ (lbeing the union of one-point
subsets) is open in ¥. Consequently ¥ has the discrete topology. We
thus see that it is quite possible for a subspace to have the discrete topology
even when the space itself does not have the discrete topology.

Example 3. If a set X has the discrete topology, then every subspace of
X has the discrete topology. If X has the trivial topology, then every
subspace of X has the trivial topology. The proof of these assertions is
left as an exercise.

Proposition 2. If ¥ is a subspace of X and W is a subspace of ¥, then
W is a subspace of X. That is, if ¥ is given the subspace topology from
X, and then a subset W of F is given the subspace topology considered
as a subset of the topological space ¥, then W would be given the same
topology as though W were considered as a subset of X and were
given the subspace topology.
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Proof. Let ry be the topology on W considered as a subspace of ¥, and
let ¥x be the topology on W considered as a subspace of X. We must
show that rx = ry. Suppose U & Tx= Then U — W N I, where Uf
is open in X. But then

U=WnU=WnNnYNU =WnEHI),

since W C ¥; hence U &wm. On the other hand, if [7&€my, then U =
W @ U, where U’ is open in ¥. But since U’ isopen in ¥, ¥ = ¥ Al U7,
where 87" is open in X. It follows that

U=whuU'=whg®Wm U% = (Wn¥) nU" = IFn o7,

and hence 07 & rix. Therefore rx = Fy.

EXERCISES

L. a) Prove that every subspace of a topological space with the discrete topology
has the discrete topology,
b) Prove that every subspace of a space with the trivial topology has the
trivial topology.
2. Suppose that X, r is a topological space and that F is a closed subset of X.
Prove that a subset W of F is closed in F if and only if WPis a closed subset of
X. Make and prove the corresponding statement about open subsets of X.

3 Assume X, r a topological space and @a basis for ¥. If ¥ C X, define
& = {BD Y\ B<LB}.

Prove that @y is a basis for the subspace topology on ¥.

4. Suppose R is the space of real numbers with the topology induced by the
absolute value metric. Prove that the following subsets of R do not have
the discrete subspace topology.

a) the set of rational numbers

b) &|lx = @,or x = 1/n, where n is a positive integer}
©) {|lx = gw, where g is a rational number}

d) any subset of R which is somewhere dense

&6 Let X, D be any metric space. Prove that if ¥ is a finite subset of X, then
the subspace ¥ has the discrete topology. Is this true if we replace finite by
countable?

6. Prove or disprove: A subset A of a topological space X, ¥ is nowhere dense
if and only if the subspace A has the discrete topology-

7. Suppose X, ¢ is a topological space with the property that every two-point
subspace of X has the trivial topology. Prove that X has the trivial topology-
Show that the corresponding statement about the discrete topology is not
true.
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8 Find the coarsest topology on R2for which each finite subspace of R2has the
discrete topology. Find the finest topology on R2for which each finite sub-
space of R® has the trivial topology.

4.2 THE TOFOLOGICALLY DERNED SETSS 1IN SUBSEXCES

Suppose that X, r is a topological space and that F is a subspace of X.
If A is a subset of F, then A is also a subset of X. We may wish to know
the sets topologically associated with A either with respect to the topology
on X or with respect to the subspace topology on E. As we shall see, the
corresponding sets are not always equall, nor should we expect them to be,
since it is not at all true that a set open in F is necessarily open in X.
Nevertheless, the subspace topology on F is defined in terms of the topol-
ogy on X ; there should therefore be some relationships between the
corresponding sets. It is the purpose of this section to investigate these

relationships.

Example 4. Assume that R is the set of real numbers with the topology
induced by the absolute value metric. Let

F=@1 and A = {{x |00 x < 11 and x is rational}.

Then the closure of A in F is (0, 1), while the closure of A in R is [0, 1.
Fr F in F is ¢ since no subset of F, open or otherwise, contains any
elementsof ¥ — F = §. But Fr Fin R is {0, 1}.

Example 5. Let the plane R2have the topology described in Example 5
of Chapter 3. Let

F= {1 Ix24+y2< 1} and A= {9 Ix2+y2< 1.

There is no closed subset of B2, except B2, which contains A ; that is, no
union of finitely many lines and points contains all of A. Therefore the
closure of A in R2is all of R2 Suppose F is a subset of ¥ which is closed
in ¥ and which contains A. Applying Proposition 3 below, then F =
¥ m F’j where F’ is a closed subset of R2 But F' contains F; hence
A C F'. Since R2is the only closed subset of R2 which contains 4, it
follows that F = R2 Thus F = ¥ m R2= ¥. We have then that the
closure of A in F is F.

Proposition 3. If X, r is a topological space and F is a subspace of X,
then a subset F of F is closed in F if and only if F = ¥ m F'f where
F’ is a closed subset of X.

Proafi. Suppose F is closed in F. Then ¥ — F is open in F; therefore
Y—F=Fn¥,
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where U is an open subset of X. But then ¥ — (¥ — F)=F —Y¥Y A
(X — U). Since U is opem, X — {/is closed; hence F is of the desired
form.

Suppose further that F — F n Ff, where F’ is a closed subset of X.
Then

Y —F=YYn((X — F).

But X — F’'isopen; hence ¥ — F — ¥ n (X — F") isopen in ¥. There-
fore F is closed in ¥.

Note that this proposition tells us that the subspace topology on ¥
could equally well have been defined by defining the subsets of ¥ which
are closed in ¥ in the same way that the subsets of ¥ which are open in
F are defined (sulbstituting closed for opem, of course) in Definition 1L

Proposition 4. Let X, r be a topological space, and let ¥ be a sub-
space of X. If A C F, then

Cld inF= Fmal A @nX).

Proof. Cl A is closed in X and A C Cl A; hence FnCl A is a closed
@in F) subset of ¥ (Praposition 3) which contains A. Therefore Cl A in
FCFnClA. Now Cl A in F is a closed (in F) subset of F, and thus,
again by Proposition 3, there is a closed subset F of X such that Cl A in
F= FnF. But A C F; hence Cl A C F. It follows that

FnClAcFm¥-=< CAA in F.

We therefore have Cl A in F = F n Cl A.

The reader might be tempted to conjecture that A®in F = F n A®.
This is not true, as is shown by the next examplie.

Example 6. Let R2be the coordinate plane with the topology induced by
the Pythagorean metric, ¥ = {(x, ¥) ||ly = O}, that is, F is the x-axis,
and A = Y. Then A®in F = ¥, while

EFmats=Fno=9,

since F contains no open subset of R2 We might also note that Fr A in
F = @, while Fr A = A;hence itis also false that Fr Ain ¥ = ¥ n Fr A.

Proposition 5. Suppose that X, r is a topological space and that for
each x XX, we have a collection 3y of subsets of X such that the ®13}
form an open neighborhood system for X. Let F ¢ X. Then setting

A= {FAN N Em}
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for each y € ¥, we obtain an open neighborhood system for the sub-
space topology of ¥.

Preoaff. We must show that the ®1° satisfy Definition 5 of Chapter 3.

i) Since there is at least one N & Ry for each y € ¥ C X, there is
N fi ¥ € 31"; hence &' % &

ii) Definition 5(ii) follows at once from the fact that y € N for each
N E ag.

iiil) Suppose Nf and N2 are in 91*. Then Nf = ¥ n Ni-and N2 =
¥ n N2 for some Ni and N2in 9. There is, however, N €\aty,
such that Ns CWi,C\ Nz Therefore

Nf=YnNsCNpAN2 and N7EMR,.
The proofs of (iv) and (v) are left as exercises.

Since N € 9} is an open subset of X, N — ¥ QN is an open (in ¥)

subset of ¥. Therefore we do have an open neighborhood system for the
subspace topology on F.

EXERCISES
d<

L
2

&

Prove (iv) and (v) in Propasitiion 5.

Assume U to be an open subset of a topological space X, r and AC U. Isit
true that Fr A in U = Fr An U? Does this equality hold if U is a closed
subset of X rather than an open subset?

Why is it true that Cl A in ¥ = Cl Afi F, but that A”in F & A°n F?
(@ee Proposition 4 and Example 6.) “Try to reproduce the proof of Proposi-
tion 4 for A= instead of Cl A and see where the proof fails.

. Let R2be the coordinate plane with the usual Pythagorean metric. Let

F = {&Y|x2+y2< Lorg = Oor Lland y = Qor 1}.

For each of the following subsets of ¥ compare the sets topologically derived
from these sets in F with those topologically derived in X. That is, compute
Cl A in F and compare it with Cl A in X, ete.

a) {Q, ) |x = 0and y = 1/n, n a positive integer, or y = 0}

b @,y Ix2+y2< 1} ©) {(, y) ||either x or y is irrational}
Suppose that F is a subspace of X, r and that AC F. Prove
a) FrAinFCFrADF; b) AC A®in F.

6. Compute Ext A, A', A and Fr A in F, for A and F in Example 5.

7.

Find a necessary and sufficient condition for each subset A of a subspace W
of aspace X, r to have the same frontier relative to W as A has relative to X.
Find such a condition on W in order to have A" in W equal to A’ (n X) for
each subset A of W.
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4.3 CONTINUITY

We now come to one of the central notions in all of topology: continuity.
We have already encountered continuity in connection with metric spaces.
Then a continuous function was a “fiearness-jesarwimg” Tunction. Neigh-
borhoods of a point in a general topological space are in a sense measures
of nearness, just as the term “fieighborheod” implies. As we have seen,
howeverr, many topological spaces are not metric spaces, nor can they be
made into metric spaces by defining an appropriate metric. We therefore
need a definition of continuity which will reduce to the metric definition
of continuity when we are dealing with a metric space, generalize ap-
propriately the idea of a “fiearness-juesanwing” function, and not depend
on metrics (or anything else which is not common to all topological spaces)
for its definition. In Chapter 2 we found at least one criterion for the
continuity of a function from one metric space to another which does not
include any mention of the metrics in its statement (Proposition 8 Chap-
ter 2). We will therefore use this proposition for a generalized definition of
continuity.

Definition 3. Let X, r and F, 7 be topological spaces. Then a function
£ from X to F is said to be continuous if given any open subset U of F,
then #~1(U) is an open subset of X.

Example 7. If X is any space with the discrete topology and F is any
topological space, then any function f from X into F is continuous. For
if U is any subset (@pen or not) of F, then f~U) is an open subset of X,
since every subset of X is opem.

Example 8. If X is any space with the trivial topology and / is any func-
tion from X onto a space F, then £ is continuous if and only if F has the
trivial topology. For if ¥ has the trivial topology, then ¥ and ¢are the
only open subsets of F; hence is open in X (being either ¢ for
U = g or X for U = Y) for any open subset U of ¥. On the other hand,
if ¥ does not have the trivial topology, then there is an open subset U of
F which is neither ¥ nor ¢» Thens—1({7) is neither X nor ¢ and hence is
not an open subset of X. Therefore § could not be continuous.

The following proposition is the generalized version of Definition 6 of
Chapter 2.

Proposition 6. A function f from a topological space X, r to a space
F, r' is continuous if and only if given any f(x) & F and any neigh-
borhood V off{¢d), there is a neighborhood U of x such that

o) cv.
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Prooff. Suppose £ is continuous. Then if ¥ is any neighborhood of f(x),
V is an open subset of F. Therefore /=1(¥) is an open subset of X which
contains x; that is, /=1(¥) is a neighborhood of x. Setting U = /~1(¥),
we have the desired resulf.

Suppose that given any §(x) € ¥ and any neighborhood V of f(x),
there is a neighborhood U of x such that f(U) C V. Let W be any open
subset of F; we must show thatt/=1 (W) is an open subset of X. Suppose
2e/~1(F). Then f(z) € W, that is, W is a neighborhood of §(z). Then
there is a neighborhood U of z such that f{U) C W. But then U C f=~1(W).
We therefore have that for each z € f/~1(#), z € U C#~1(W), where U is
an open subset of X. Hence f~'(W) is the union of open subsets of X,
and thus is an open subset of X. Therefore / is continuous.

Propositions 7 and 8 give further criteria for the continuity of a
functiom.

Proposition 7. Suppose that X, r and F, r’ are topological spaces, and
that £ is a function from X to ¥. Let @& be any basis for . Then f is
eontinuous if and only if for each B € & f~'(B) is an open subset of X.
(Compare this with Proposition 9, Chapter 2.)

Proof. Assume f continuous. Then since each B € @ is an open subset of
F, f=1(B) is an open subset of X. Suppose instead that f='(B) is an open
subset of X for each B € ® Let ¥V be any open subset of F. Then V —
U} Bij, where each J i is a member of @ and [ is a suitable index set. It
follows that

D) = F1(U By) = Uy 18).

But f=1¢B) is open in X for each i € I} hence /=1(¥) is the union of a
family of open sets and is therefore open. Consequently, / is continuous.

Corolllary. Suppose that £ is a function from X, r into F, 7 and that
{80/%, y € F, is an open neighborhood system for . Then / is con-
tinuous if and only if given any N Edty for any y € ¥, /~1(A0 is an
open subset of X.

Preaf. The collection of all N contained in some 9y forms a basis for r'
by Proposition 6 of Chapter 3. The corollary then follows at once from
Proposition 7.

Example 9. Let R2be the coordinate plane with the usual metric topology.
A "rotation” of R2is best described using polar coordinates. If Apis an
angle measured in radians, define

Ragle, &) = €, A+ AD
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for any point (r, A) (expressed in polar cooudiinates) of R2. The reader
may recall from analytic geometry that Rapis a rotation through angle
AQ. Then ng\ = RE A the rotation through angle —AQ  Any rotation
preserves congruences; in particular, if U is the interior of some triangle
or square, then B{§/) is also the interior of a triangle or square. Since
the family of interiors of triangles, or the family of interiors of squares,
forms a basis for the standard topology on R2, any rotation is continuous.
The inverse of any rotation, also being a rotatiom, is continuous.

Proposition 8 Let X, r and F, r’ be topological spaces. Then a func-
tion £/ from X to F is continuous if and only if given any closed subset
F of ¥, f~XF) is a closed subset of X.

The proof is left as an exercise.

Proposition 9. Suppose that X is any set and that r and +’ are topol-
ogies for X. Then r is finer than r* if and only if the identity function
i from X to X defined by

ix) = x forall xgk

is continuous from the topological space X, r to the topological space
X, r.

Proaf. Assume i continuous. If U & v’, then = () = Uisinr.
Therefore r* C 7, that is, 7 is finer than #/. Suppose r is finer than 7.
Then if U & ",

~\@) =Uer
(since any r'-open set is r-opem). Therefore i is contimuous.

The following proposition shows that the composition of continuous
functions is contimueows.

Proposition 10. If / is a continuous function from the space X, r to
the space F, ' and if g is a continuous function from F, ' to Z, ¢",
then g of is a continuous function from X, r to Z, r".

Proof. Suppose U is an open subset of Z. Then g=*(U) is an open subset
of F, since g is continuous. But then since £ is contiinuows,

= (goN)THTH'IU))= ©O)-1(1/)
is an open subset of X. Therefore g&f is continuous.

Propositions 11 and 12 pertain to continuous functions as they are
related to subspates. Proposition 11 deals with a function which is known
to be continuous on certain subspaces of a space X.
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Proposition 11. If f is a function from X, r to F, v', X = A UB, and
/1A and f 1 are both continuous (where A and B are considered as
subspaces of X)), then if A and B are both open or both closed, / is
continuous.

Preaf. We will prove Proposition 11 for the case when A and B are both
closed. The case when A and B are both open is left as an exercise. We
use Proposition 8. Let F be any closed subset of F. We must show that
f~1(@ is a closed subset of X. (7]|A)=1®) is closed in A and (/|| B)=1(®)
is closed in B, since £ [LA and 7 ||B are both assumed to be continuows.

But since A and B are closed, (#14)=1(® and (#1B)=1(®) are closed
subsets of X (see Section 4.1, Exercise 2). Since A UB = X,

r\(F)=0@ L ), f\AT 1§

which is a closed subset of X since it is the union of two closed subsets
of X. Therefore / is continuous.

Example 1. Let R be the set of real numbers with the topology induced
by the absolute value metric. Define /: R —> R by

z, ifx> 0,
fl@) = 0, ifx <0.

Set A= {x||x>0tand B = {x||x < 0}. Then AUB=R, Aand B
are closed, and / 1A and / 1B are easily seen to be continuous. There-
fore, by Proposition 11, / is continuows.

Note that A and B must either both be closed, or both be opem. One
cannot be closed and the other opem. For if we continue to let R be the
space of real numbers with the absolute value topology and set

A= {x|=> 0},

B= {x <0},
and define g: R R by

6 & ifxe A
@ if X& Bj

then A is closed, B is open; but g is not contimuous.

The next proposition answers the following questions:

a) Suppose that £ is a continuous function from X, r onto a subspace
¥ of Z, ¥". Is £ then continuous as a function from X to Z?

b) Suppose that £ is a continuous function from X, r to F, r* and that
W is a subspace of X. Isf ]| W continuous?
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Proposition 12. Suppose / is a continuous function from X, r to F, ¢".

a) If ¥ is a subspace of Z, r*, then f is a continuous function from
X to Z

b) If WP is a subspace of X}then £ AW is a continuous funection from
WP to F.

Proof
a) Suppose U is an open subset of Z. Then ¥ n U is open in E;
hence /=1(¥ n B) is an open subset of X. But/{(x) & F for every
x & X, and thus

AR () N =¥

is an open subset of X. Therefore f is continuous as a function
from X to Z.

The proof of (b) is left as an exercise.

Example 11. Let TP be a subspace of an X, r. The identity function
restricted to WP, i || WP, is sometimes called the inclusion mapping of WP
into X. If #Fw denotes the subspace topology on WP, then

T, rw T, Tw

is continuous; hence, applying Proposition 12(a), i ||WP: W, ty¢y X, t is
continuouss. Looking at it another way, i: X, r — X, r is continuows, and
therefore, by Proposition 12(b), i || P is also contimuouss.

Note that Proposition 12(a) implies that we never would lose any
generality by assuming that a continuous function was onto.

EXERCISES

1. Prove Proposition &

2. Prove Proposition 1Z(b).

& Suppose that / is a function from a space X, r to a set ¥. Define a subset UJ
of ¥ to be open if f=1(F7) is an open subset of X. Prove that the set of open
subsets of ¥ then forms a topology #'. Further, prove that £ is continuous
from X, r to F, ¥. Show that ¢’ is the finest topology for which / is con-
tinuous.

4. Let £ be a function from a set X to a topological space F, ¥'. Define a subset
U of X to be open if U = f=1(¥) for some open subset W of F. Prove that
the family of open subsets of X thus obtained forms a topology ¥ on X.
Prove that /: X, r =>¥, ¢ is continuous. Prove that f is the coarsest
topology for which / is continuous.

5 In Example 11, show that the subspace topology is the coarsest topology
for which i Il WFis continuous.
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Example 13. Let R2 again be the plane with the Pythagorean metric
topology. Then any triangle in R2is homeomorphic to any circle. We
can prove this by positioning the triangle and circle so that the center of
the circle lies inside the triangle. We can then “project”the circle onto
the triangle as shown in Fig. 4.2 An argument similar to that of
Example 12 shows that this projection is a homeomapihiksm..

Proposition 13. Let / be a one-one function from a space X, v onto a
space F, . Then the following statements are equivalent:

a) f is a homeomompihism.

b) A subset U of ¥ is open if and only if F~1{U) is open in X.

¢) A subset F of F is closed if and only if f~1(F) is closed in X.

d) If @is a basis for r, thew/ ((8) = {f(B) ||B « @&} is a basis for r".

Pyoef. Statement (@) implies statement (b): If fiis a homeomaompthism, then
both £ and =1 are continuouss. Therefore if U is any open subset of F,
f WT) is open in X. Suppose U is a subset of ¥ such thatt/=1{U) is open
in X. Since / is onto, /({/ WT)) = U. But f = (#=1)™4, and since =1
is continuous andlf=1(U) is open in X,

=U (r'rlir'm)= u

is open in F. Therefore U is open in F if and only if f~1(U) is open in X.

Statement (b) implies statement (€): Suppose F is a closed subset of F.
Then F — F is an open subset of ¥; heneef/=1(¥ — F) is open in X. But
[~I(F —F) = X —F~XP), and thus /~1(F) is a closed subset of X.
Suppose that F is a subset of F such thait/=1(F) is a closed subset of X.
Then

FAY — F) = X —§\e)
is an open subset of X ; hence ¥ — F is an open subset of F; hence F is
closed. Therefore (b) implies (c).

Statement (c¢) implies statement (@): By Proposition 8, (c) states that
f andif=1 are continuous; hence / is a homeomaompthim.
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Statement (@) implies statement (d): Suppose U is any open subset
of . Since £ is continuous, is an open subset of X. Therefore
= U/ Bi, where each Bi € @and [ is a suitable index set. Now

= #(r\gw)Bj = U f(B)).

But each Bj is open in X, and it has been shown that (@), (b), and (¢) are
equivalent (@ implies b implies ¢ implies a); hence, by (b), fBY) is an open
subset of E. Then U is the union of members of /((®), and each member of
/(®) is an open subset of F. Themftoed (&) is a basis for v”.

Statement (d) implies statement (@): Suppose U is an open subset
of . Then U — Uif(@3)), where Bi € @and I is again a suitable index
set. It follows that

= (Y #B) /Y £BY) —rUB), = u bu

which is an open subset of X, Therefore / is continuouss. On the other
hand, if V is any open subset of X, then V — \j B/, where each Bj € @
Thus

V) =7 (U B) = U/@)

is the union of open subsets of ¥ and is therefore open. Butf = (f=1)=4;
hence (f=%)73(¥) is open in F if ¥ is open in X. Thereflare/=1 is con-
tinuous, and 7 is a homeomomphiism.

We see from Proposition 13 that homeomorphic spaces are essentially
equivalent from a topological point of view. If two spaces are homeo-
morphic, there is not only a one-one function from one space to the other,
but also a natural one-one correspondence between their open sets (Prop-
osition 13b). Put another way, if X, r and F, +’ are homeomorphic spaces,
then by suitably relabeling the points of ¥, we obtain X, and ' becomes r.

We must keep in mind, however, that homeomorphic spaces can appear
quite different from other points of view than the topologitz=ll. We have
seen, for example, that a circle and a triangle are homeomomphic. From a
geometric point of view, a circle and a triangle are quite different, even
though from a topological point of view they are indistinguishablle. Recall
that Euclidean geometry is primarily concerned with the properties of
objects which are preserved under rigid motioms, that is, in Euclidean
geometmy, we are interested in studying properties common to all objects
which are congruemt. Almost all geometric studies can be classified ac-
cording to the type of properties they studily; in particullar, these types of
properties are those which are preserved by certain kinds of functioms.
Topology, considered as a branch of geometiry, studies properties preserved

by a very special type of functiom, the homeomomnphism.

U= /
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Proposition 14. Let T be the class of all topological spaces. Then the
relation R defined on T by “5 homeomorphic to”is an equivalence
relation on T.

Proef. If X, r is any topological space, then X, ¢ is homeomorphic to X, »
by the identity function. Therefore X, r is R-equivalent to X, r.

Suppose X, r is homeomorphic to F, ' by some homeomorphism £.
Then F~1 is a homeomorphism from ¥, r* to X, r. Hence if X, r is B
equivalent to F, v, then F, v’ is R-equivalent to X, r.

Now suppose that / is a homeomorphism from X, r to F, ’, and that
g is a homeomorphism from F, #' to Z, r". Since both f and g are one-one
and onto, @¥: X —Z is one-one and onto. Since £, g, f~1)and g=1 are all
continuous, g&f and (g=fH)=1= are also continuous (Praposition

10). Therefore
goft-X, r —+Z 7

is a homeomonphism. Hence the relation R is transitive, and, consequently,
R is an equivalence relation on T.

From a topological point of view then, any two homeomorphic spaces
are equivalent, or interchangeablle. The question of determining whether
or not two given spaces are homeomorphic is often extremely difficult.
As a matter of fact, it is usually very difficult to determine whether there
is even a continuous function from one space onto another. In most in-
stances, this problem has not been solved.

Proposition 15, Suppose that X is any set and that r and r’ are two
topologies for X. Then r = 7’ if and only if the identity function i
on X is a homeomorphism from X, r to X, r".

The proof is left as an exercise.

EXERCISES

1. Prove Proposition 15.
2. Let R be the set of real numbers with the absolute value topology.

a) Prove that any open interval (@, b) is homeomorphie to the interval (@, 1).
[Hiint: Usef((e) = (x —a)/(b —a)]

b) Prove that the ray (@, <) is homeomorphic to (1, ).

¢) Prove that (@, ®) is homeomorphic to (— —a).

d) Prove that R is homeomorphic to (—it/2, #/2). [MHint: Usef((x) = tan=1 x]

e) Prove that (1, o) is homeomorphic to (@ 1). [Hint: Use g{x) = I/x]

We thus conclude that any two open intervals of the real line are homeo-

morphic.

f) Prove that any two closed intervals of the real line are homeomoupihiic.
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2. Homeomorphic spaces have essentially the same topological properties, that
is, properties related exclusively to their topologizs. Although the reader
has yet encountered very few topological properties, he should be able to
make an intelligent conjecture about whether the spaces in each of the follow-
ing pairs are homeomorphic to one another. If the spaces are homeomoiphic,
try to describe a homeomonphistn. If they are not homeomorphic, try to
find a topological property which one of the spaces has, but which the other
space does not have.

a) the open interval (@, 1) and the closed interval [0, 1] considered as sub-
spaces of the real numbers with the absolute value topology

b) @, 1) and [, 1]] considered as subspaces of the real numbers with the
discrete topology

¢) acircle C considered as a subspace of the plane R2with the usual topology
and the interval @, 1) from (@)

d fx||x is a rational number} and {n||n is an integer}, both considered as
subspaces of the real numbers with the absolute value topology

4. Let X be the space of functions described in Example 5, Chapter 2, with the
topology induced by the metric D.

a) Prove that X cannot be homeomorphic to the space R of real numbers
with the absolute value topology. [[fint: Prove that X has greater car-
dinality than [[@ 1] which has the same cardinality as R. Do this by
assuming that there is a one-one correspondence between the elements of
[ 1 and the elements of X and then constructing a function which does
not correspond to any element of [ Il More particularly, if x<5 £, set
g{® # /%), for each x & [, 1}]

b) Find an embedding of R as a subspace of X.

& Let N be the set of positive integers. Define a subset F of N to be closed if
E contains a finite number of positive integers, or F = N (¢f. Exercise 6 of
Section 31). Prove that any infinite subspace of N is homeomorphie to AT,
Is it possible to find a nontrivial topology on the set R of real humbers such
that every uncountable subspace of R is homeomorphic to R?

4.5 IDENTIRRTAZIODNSBACESS

If X is any set and R is an equivalence relation on Xythen R determines
a partition of X into R egpuivlence classes. We will denote the set of
equivalence classes by X/@®. If X also has a topology r, we might inquire
if r can be used in a natural way to give a topology on X/R.

We note that there is a natural functiiem/firom X to X/R defined by
f(x) = x, where x is any element of X and x is the R‘egpuimvalence class
of x. If X is a topological space, it is reasonable to want a topology on
X/R which would at least make foeoritiumuz. Of course, if X/R is given
the trivial topology, then f is continuows. But the trivial topology is
pretty much what its name implies, trivial. Furthermore, the trivial
topology on X/R is not necessarily related to r, and we are looking for a
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topology which is derived from r. We know that the function £ will be
continuous if and only if given any open set U of X/ 22, is open
in X. We will use this fact to define a topology on X/R; that is, we will
say that a subset U of X/R will be open if f~1(1J) is open in X.

Definition 5. Suppose X, r is a topological space and R is an equiv-
alence relation on X. Let X/R denote the set of R2equuiixallemce
classes. Define the function / from X to X/R by f{x) = x, where x
is any element of X and x is the R2equuiirsdlemee class of x. Then f is
called the identification mapping from X to X/#®. Define a subset U
of X/R to be open if F~1(U) is open in X. The topology thus obtained
on X/R (Praposition 16) is called the identification tepology on X/&.
(Some topologists refer to this topology as the gquotient topology, and
of X/R as a quotient spa.)

Proposition 16. The collection of open sets of X/R actually forms a
topology for X//R, that is, the identification topology is really a
topology.
Proaf. We verify that the collection of open sets in X/R satisfies Defini-
tion 1, Chapter 3

i) -1@® = ¢ and F~X/R) = X. Since X and § are both open
subsets of X, § and X/R are open subsets of X/®&.

ii) Let U and V be open subsets of X/iR. Then §~i%U) andif=1(¥)
are open subsets of X. Now F~1{U) aW=1(¥) is also an open
subset of X. But

N W) mf (V) =17 YW ).

Therefore U N ¥ is also an open subset of X/&.

iii) Suppose {UE}, i € 7, is a family of open subsets of X/®. Then
is open in X for each i & 7, and thus Uiff=%Up is an
open subset of X. But since

u (Vo) r\u=riu uty

U/ Ui is an open subset of X/®. Therefore the collection of open
subsets of X/R forms a topology on X/®&.

Proposition 17. Let X, r be a topological space, let ®2be an equivalence
relation on X, and suppose that X/R has the identification topology
t*. Then the identification map

:X,t »XpyR,r

is continuows. Furthermore, r* is the finest topology on X//R for
which £ is continuows.
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Proof. By definition of the identification topology, f~1(1J) is an open
subset of X whenever U is an open subset of X//®. The identification
topology has been specifically defined so as to make f continuous. Suppose
r” is a topology on X/R which is strictly finer than r'. Then there is
U & t” such that U € . Then is not an open subset of X @f it
were, U would also be in 7*); hence f is not a continuous function from X, r
onto X/&, .

The identification topology is so called because it may be viewed in
the following manner: Let X, r be a space, and let R be an equivalence
relation on X. Then we obtain X/R by identifying all R-equivalent
elements of X with one another, that is, we make an equivalence class a
point of a new set. We put a topology on X/R by defining a subset U
of X/R to be open if all elements of X contained in all the members of
U form an open subset of X.

Example 14. Let the closed interval [ I] have
the usual (alhsolute value) topology. Anequiva- © 1
lence relation on any set can be specified either

by giving the equivalence classes, that is, a par- 01

tition of the set, or by defining the relation. For
[®,1], we will let 0 be equivalent to 1, and every
other element of [@ I be equivalent only to it~
self. Then the equivalence classes are {0,1} and
{x}, for x £ 0, . By identifying 0 and 1L, we
obtain a circle (Fig. 4.3). We have joined the
endpoints of B 1] by making the endpoints a
single point of a new topological space, which
is a simple closed curve. We therefore have a @
continuous function from [ I onto a circle. Figure 4.3

Example 15. Suppose X is any set and F, ' is a topological space. Let
g be a function from X to E. Suppose we want to find a topology on X
which will make g continuows. Of course, the discrete topology will do,
but as with the trivial topology, this possibility is not of much interest.
Since g will be continuous if and only if given any open set U of F, g=1(1))
is open in X, we will define a subset ¥ of X to be open if there is an open
subset U of F such that ¥ = g=1(U). Then the family of open subsets
of X forms a topology room KX ; moreowmr, this topology is the coarsest
topology which makes g continuous (Section 4.3, Exercise 4).

Define an equivalence relation R on X by letting x R x” if g(x) = g(x")
for any x and x' in X. If x is the f-equivalence class of x, then there is
anatural function from X/R into F defined by 7§&) = g(x). The function
g is well-defined, for if x = x", then

gx) = = g(x") = g(@"). g = 9(x) = ¢
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Let / be the identification mapping from X to X//®. Then if g is onto and
X/R is given the identification topology #*, g is a homeomorphism from
X/R, 7" onto F, v". This is proved as follows: Since g is onto, g is onto.
Suppose gixi) = g(xz). Then g(xi) = g(xz). Therefore xj = x2, and
hence g is one-one.

It remains to show that g and g=1 are continuows. Suppose U is any
open subset of ¥. Then

= Ng-\U))-

which by definition is an open subset of X. Since 7=1 (@=1(U)) is an open
subset of X, and since X/R has the identification topology, g=1(U) is
open in X/®&. Therefore g is continuous. Assume that ¥ is any open sub-
set of X/®. Then f~1(W) is an open suliset of X. Hence

f:WV)) = 9:\@))»
where U is some open subset of F, and then
IV #V) = =U g{g~\U= U

is an open subset of ¥. Since g = @ )=, @=1)=1(W) is open in F;
hence g=1 is continuous. Therefore g is a homeomamythism.

If the reader is familiar with some group theory, he may find it in-
structive to recall the relationship between quotient groups and homo-
morphisms. If G and G’ are groups and h is a homomorphism from G
onto @, then G’ is isomorphic to the quotient group G/K, where K is the
kernel of h. The quotient group G/K is nothing but the set of equivalence
classes of the relation R, defined by g R g’ if h(g) = h(g"). There is a
function h from the set of R-ayuivalence classes G/K onto G\ defined by
h(g) = h(g) where g is the equivalence class of g & G. If his onto, then h
is one-one and onto. An operation is then defined on G/K by means of
the operation on G such that h and h=1 are homomorphisms; hence h is
an isomouphism.

This procedure is quite important in mathematics. That is, starting
with a function g onto a structured set ¥ from an unstructured set X, we
might wish to find a structure on X so that g becomes a structure-preserving
function with the structure on X derived from the structure on F in a
natural way. It might be that X already has a structure and that g is
structure preserving, hence making it unnecessary to define another
structure on X. This is the case for examplle, if X and F are groups and g
is a homomonphismm. In any event, taking the equivalance classes deter-
mined by g [fat is, x is equivalent to x* if g(x) = g(x*)}, we have a func-
tion g from the set of equivalence classes onto F which is one-one. We
also have the identification mapping from X onto the set of equivalence
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classes. We then find a structure on the set of equivalence classes so that
both the identification mapping, g, and g=! are structure preserving.
Note the close parallel in this respect between quotient groups and home-
morphisms in group theory, and identification spaces and continuous
functions in topology (also see Exercise 2).

EXERCISES

1L Verify that the identification space obtained from [ 1] in Example 14 is
really homeomorphic to a circle. An actual homeomorphism might be given
by “Yerapping” T0 1 around a circle in R2 of radius 1/2#.

2. A fundamental theorem of group homomorphisms states: There is a homo-
morphism from the group G onto the group G' if and only if there is a normal
subgroup K of @ such that G' is isomorphic to the quotient group G/K.
Provide an example to show that the following analegous statement about
topological spaces is not true: There is a continuous function g from the
space X, r onto the space ¥, r if and only if there is an equivalence relation
R on X such that the identification space X/R is homeomorphic to F, "
Explain why this statement fails to be true. Is it true if the phrase “if and””
is omitted? Is it true if the phrase “dnd only if” Is omitted?

Fig. 44 {{z IxEABUAIR} U  Fig. 45 {P = {wllwis diagonally opposite
{&x = ¥} |x & ABU CD}} P,otw = P},if P ison the circumference} V)
{{P |P = P},if Pisnot on the circumference}

l

Fig. 46 {{@, )\ =y+m Fig. 47 {{z ||z is on the perimeter of C}} U
where m is an integer}} {{zlz = 2} ||zis not on the perimeter of C}}

3 Each of Figs. 44 though 47 iis tio he condidiered @s @ sulbspaoe of tine plane
R2 with the usual Pythagorean metric topology. Under each figure is given
a partition of the set which the figure represents. Draw a picture of the
identification space determined by each partitiomn.
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4. Let g be a function from a space X, r onto a set Y. Define a subset U of ¥ to
be open if g=1(U) is an open subset ofl X7 It was shown in Section 4.3, Exer-
cise 3 that the open subsets of ¥ then form a topology ¥ on ¥ and that
g: X, =¥, ¢ is continuous. Prove that ¥, ¥ is homeomorphic to the

identification space X/R, where R is the equivalence relation associated with
the function g.

5 Find a quotient space of R2homeomorphic to each of the following.
a) a rectangle with its imterior
b) a sphere
¢) a straight line

4.6 PRODUCTT SPAAESS

The reader has undoubtedly encountered the concept of the Cartesian
product of fimitely many sets in previous studies. If S, Szf...,Sp are
sets, then the Cartesian product of these sets X"zj Si is defined by

X 8i= {6 @ —~3s)| €6ii—1...,n}

That is, the Cartesian product, or simply the product, of the Si is the set
of ordered n-tuples of elements of the Si. The coordinate plane is nothing
but the Cartesian product R X R, where R is the set of real numbers.
The ith place in an ordered n-tuple is usually called the it}i coordinate.

If, howewerr, the reader has already adjusted to the n-tuple definition
of the product of n sets, then he may find it somewhat hard to begin the
study of product topological spaces by having to learn a new and more
general definition of the product of a family of sets—one which allows us
to take the product of infimitely many sets as well as finitely many. In
the body of this text, we will extend the definition of the product so that
we can deal with the product of countably many sets. The Appendix
gives the definition and some properties of more general products. Wher-
ever possiblie, proofs about product spaces will be given in a form which
easily adapts to the more general definition of a product. It should be
kept in mind, howewer, that not all statements about finite or countable
products are true when applied to the product of an arbitrary family of
sets or topological spaces.

Definition 6. Let {Sj}, € I, be a family of sets, where [ is a countable
index set (either finite or infinite). We may then choose I either to be
{1,2,...,n}, where n is an appropriate positive integer, or to be the
set of positive integers. By X/ Si we will mean the set of ordered
tuples of the form (&, s ---,8§, -..), where 8 € 8i for each i € I
If

$= ($i9~-~)§1“-*)EXSi")
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is continuous. Mowreowar, r is the coarsest topology on X# Si for which
each pi is continuows.

Proaf. The product topology has been specifically defined so as to make
each projection continuous. If any topology on Xj S; were strictly coarser
than the product topology, then some member of $, the subbasis for r,
would not be open; hence at least one of the projections could not be
continuous.

Example 17. It is not true that the product space of countably many
discrete spaces necessarily has the discrete topology, although the product
topology will be discrete if only finitely many spaces are involved. Let [
be the set of positive integers. For each ¢ & 7, let Si — {I,,2} with the
discrete topology. Set U — X# where = {1} for each e L.
Then U is the product of open subsets of the Si (specifically, U =
{@,10,...,0,..)8), but U is not opem. The proof that U is not open is
left as an exercise. It is, however, a rather easy corollary of Proposition 19.

(0, d)
/
RX({c,d)|y (a, b)X(c, d)

.

(a, 0)

(b, 0) R

L

_ (@, b)XR

Figure 4.8 Figure 4.9

Example 18. Let R be the space of real numbers with the absolute value
topology. We will show that the product topology on the plane R2=
R X R is the same as the topology on R2induced by the Pythagorean
metric D. The topology induced by D is the same as the topology induced
by the metric Ds of Chapter 2, Example 3 (Section 3.2, Exercise 2). A
typical subbasis element for the product topology on R2 is shown in
Fig. 4.8. This means that a typical basis element for the product topology
is given by Fig. 4.9 (see Proposition 19). Each element of the basis for the
product topology is Z)@open, and each Dgpjliborinood of any point
of R2is exactly a basis element of the product topology. We can easily
verify that a basis for the product topology is also a basis for the topology
induced by Dg; hence the topologies are the same.
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Note that not every open set of the product topology is of the form
U X ¥, where U and F are open subsets of R. For examplle,

{(z,y)d 25+ 1} y2< }
is opem, but is not a product set.

Proposition 19. Let Xj Si, r be the product space of the countable
family of spaces {Si, r3},1 & 7. Set

@= {X¢ Vi || is open in Si, and Wi = Si
for all but at most finitely many i} -

Then @ is a basis for r.

Proof. Let $ be the subbasis for r described in Definition 7. Then a
basis for r is obtained by taking all finite intersections of members of $
{Chapter 3, Definition 4). Suppose {7y, ..., Up are elements of $, with
Uk — X¢ W, where W = 8% for all i, except possibly § = &, €= 1, ... n.
Then

ti A U2A = =¥%

where ¥ = &, except possibly for #{f i2) ..., 4= This means that each
element of the basis derived from S is also a member of @ but each mem-
ber of @is the intersection of finitely many members of S. Therefore @is
a basis for r.

Corollary. If 7 is finite, then a basis for r consists of all sets of the
form Xj ¥, where ¥ is open in S

Proposition 20. Suppose X/ % r is the product space of the nonempty
spaces {Si, i}, ¢ & 7. Then &}, r; is homeomorphic to a subspace of
Xf & rforeachie 7.

Proof. We lose no generality in proving this proposition for 8i, Ty, since
the same proof could be used for any i € 7. Let 42, ..., ¥i,-.. be fixed
points of 82, ..., 8§, ..., respectively. Define the function from §i

into Xj &by
= @ Uz s WAy ==
for each # € & Let F be the subspace of X¢ 8%, defined by
V={xy3....8%..,) Ix € &}

Then gxtakes &onto F; moreowsr, gxis one-one. It remains to show that
gi and gf"1are continuous.

Assume U an open subset of F. Then 7 = F n I, where I is an
open subset of Xj &5. If pxis the projection into the first compeomemt, then
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Pi(U™) is an open subset of §j (Exercise 2). But it is readily seen that
gl (U) = Pi(W0”). Therefore giTl(U) is an open subset of S, and thus gi
is continmouss. On the other hand, suppose ¥ is an open subset of Si.
Then

PP = @rD=1V) = ¥ mNW;,

where W§ = Si, { > 2, and W\ = V. It follows that (gr')™¥) is an
open subset of ¥; hence gl is continuows. Therefore gi is a homeo-

morphismm.

Example 19. Let R be the set of real numbers with the absolute value
topology, and let R2be the plane with the product topology. Figure 4.10
illustrates one possible embedding of R as a subspace of R2 One generally
thinks of the x-axis as being the real line, whereas, strictly speaking, it
is a space which is homeomorphic to the real line. Note that even when
restricting oneself to the procedure of Proposition 20, there are uncountably
many subspaces of R2homeomorphic to R.

:! Figure 4.10

Proposition 21. Suppose £ is a function from a space X, r into the
product space Xj Si, r. Define £;: X, r — 8, 7} by £i(x) = Bi®f(x)
for each x ¢1X, where pi is the projection into the ith compomemit.
Then £ is continuous if and only if £; is continuous for each i &

Preaf. If £ is continuows, then fe== pi=f is the composition of two con-
tinuous functions and therefore is contimugous.

Assume now thatf; is continuous for each ¢ &€ 7. We will use Proposi-
tions 7 and 19. We first note that

o) = @), ..., fi@),. . X)), ...JiKx),

for each x & X. Suppose X¢ Vi is any member of the basis @ for r* de-
scribed in Proposition 19, where Wi = 8j for each t € I, except 1), - .., im
Now §=1 (X Vf) is the set of all points x of X such that f(x) € X¢ Vi.
But this is easily seen to be Fliffyi\(V}). For every i, except 4\, ..., im,

FTHVD) = X (because Vi = Si).

Sincef; is continuous foreach t € 7, FH(F&.) isopeninX forf = 1,...,m.
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Therefore

1 (X Vs) = [ELOX) M eeenfipNVin),

which is open in X since it is the intersection of finitely many open sets.
Hence, by Proposition 7, { is continuous.

Proposition 21 is extremely important in the study of product spaces.
Note that its proof would not have gone through if we had defined a sub-
basis of the product topology to consist of sets of the form Xf Wi, where
Vi is open in Sj, since we could not have been sure then that Flj fr¥(ii))
was an open subset of X. (Note, howewver, with this topology that each
projection is still continumis.) Proposition 21 is, in fact, another good
reason why the product topology was defined as it was.

Example 20. Let R be the space of real numbers with the absolute value
topology, and let R2be the plane with product topology from R. Define
f:R — R2by

) = @nx,3x+ I

for each x € R. Then f\(x¥) = sin x and f2(x) = 3x + 1L for each x € R.
Sineef{ andf2are both continuous functions from R into R, /is continuows.

EXERCISES

1. Suppose that {Si}, i € I, is any countable family of sets, and that Si = ¢4
for some i. Prove XF Si = ¢

2. A function £ from a space X, r to a space ¥, r is said to be open if £(¥) is
open in ¥ whenever W is an open subset of X. Prove that the projection pi
from the product space Xr Si, ¥ into Si, 7j is open for each i G I.

3 Prove that the product space of a countable family of spaces, each with the
trivial topology, has the trivial topology.

4. BEach of the sets involved in the following is to be considered as a subspace
of the space R of real numbers with the absolute value topology. Sketch each
of the following spaces.

HBIXBI b EuBXmq 9 O BXR
d &|lx> @ X §x||x is an imteger greater than 11}

5 Let C= {(% N2+ y2= 1} C R2 with the Pythagorean topology.
Deseribe
a) CX@; b) CX @1]; ¢ CX @.)1).

6. Prove that the set U in Example 17 is not an element of the product topology.

7. Let X, r be any space, and let X X X have the product topology. The

diagonal A of X X X is defined by A = {(x, %) Nx& X}. Prove that X is
homeomorphic to A

8. Let {Si, 7}, i & I, be a countable family of spaces, and let P be a permuta~
tion of I. Prove that the product spaces Xi Si and Xi Spa) are homeomonphic.
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That is, the order in which the components are used in the product does not
affect the topological character of the product space.

9 Consider the space N described in Exercise 6 of Section 31 and Exercise 5

of Section 4.4. Prove or disprove: The product space N X N is homeomorphic
to N.
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5
THE SEPARATION AXIOMS

S1 76 AND Ji-SPACES

Propositions 12 and 13 of Chapter 2, and Section 2.3, Exercise 1 furnish
us with examples of “deparatiion” properties for metric spaces. A “Separa-
tion” property really does imply separation in the following sense: Given
any two nonintersecting subsets A and B of a topological space X, where
A and B are subsets of a certain type, there are other nonintersecting
subsets U and V of X, generally open sets, such that AC Uand BC V
{Fig. 5.1). In other words, being separated in a topological space is a bit
stronger than merely being disjoimt. There are various degrees of separa-
tion. As we saw in Chapter 2, it is possible to separate disjoint closed
subsets of a metric space in a rather strong way. But not all topological
spaces are metric spaces; hence not all topological spaces have strong
separation properties. Although most important topological spaces are at
least T2 (see below), many are not.

v Figure 5.1

Many topologists will not even consider a topological space which is
not T'g, and some won’T touch anything which is not at least normal. But
since it is hoped that the reader has not yet developed personal prejudices,
at least in the area of topology, and since, too, the reader has not yet
begun to specialize to the point where he feels justified in throwing out
whatever does not fall in his sphere of interest, we shall even study some
of the lesser separation axioms. The first separation axiom follows.

Definition 1. A topological space X, r is said to be T if given any
two distinet points x and y of X, there is a neighborhood of at least
one which does not contain the other.

9
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space each one-point subset is closed, whereas this is not necessarily true
in a pseudometric space. In fact, it is definitely false with a pseudometric
space unless the pseudometric is a metric. For if x and y are distinct points
such that D(x,y) = O, then every open set which contains x contains y,
and every open set which contains y contains x; hence x and y cannot be
separated. Therefore {X, y) is a subset of Cl{x} and Cl{y}, and it follows
that Clfx} 2 {x} and Cl{y} # {y}. A pseudometric space, them, is
generally not even TQ.

A slightly stronger separation property than Tp is given by the
followiing,.

Definition 2. A space X, r is said to be Tj if for any two distinct
points x and y of X, there is a neighborhood of x which does not con-
tain y and a neighborhood of y which does not contain x.

Proposition 2. A space X, r is Txif and only if for each x € X

CH{x} = {x}.

Pvaoff. Suppose X is TV, and suppose there is x € X such that z € Cl{x},
z 22 x. Then every neighborhood of z must contain x. Hence there is no
neighborhood of z which excludes x, a contradiction since X is assumed to
be TV. Therefore Cifx} = {x} for all x € X.

Now assume that Cl{x} = {x} for each x € X and that y and z are
distinet points of X. If every neighborhood of memmnms then

teClyy} = bk

hence y = 2z, a contradictiom. Therefore there is a neighborhood of y
which excludes z. Similarly, there is a neighborhood of z which does not
contain y; hence X is T

Corullary. A space X, r is T\ if and only if every one-point subset of
X is closed.

The proof is left as an exercise.

Example 3. Every metric space is TV since every one-point subset of a
metric space is closed (Chapter 2, Proposition 5).

Example 4. Let N be the set of positive integers with the topology defined
by making every finite subset of N closed (&ection 3.1, Exercise 6). Then
every one-element subset of N is closed; hence N is a Ty/space. Suppose
x and y are two distinct positive integers. Then any neighborhood of
either x or y contains all but finitely many positive integers. Therefore,
while it is possible to find a neighborhood of x which excludes ¥ and a
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neighborhood of y which excludes x, it is not possible to find a neighborheod
U of x and a neighborhood ¥ of y such that U fi ¥ = ¢

It should be clear from the definitions that any T\space is also a
Tyspace. In Example I the reader can find an example of a space which
is Tg but is not Tx

EXERCISES

1. Prove the corollaries to Propositions 1 and 2

2. Suppose X is any fimite set. Prove that the only topology on X which makes
X into a T\space is the discrete topology. If X is a set of n elements, what
is the fewest number of members a topology can have which makes X into
a To-space?

& Let X be any set and D be a pseudometric on X. Define a relation R on X
by x R y if D(x, y) = O, for any x,y G X.

a) Prove that R is an equivalence relation on X.
b) Let X have the topology induced by D (deefiming open sets as if D were

a metric). For each x € X, let x denote the R-equivalence class of x.

Define D(x, ¥) = D(x, ), for any x, ¥y € X.

i) Prove that D is a metric for X/R.

ii) Prove that the topology induced on X/IR, considered merely as the
set of equivalence classes, is the same as the identification topology
on X/IR.

iii) Find a natural one-one correspondence between the open sets of X, D
and the open sets of X/I®, D.

¢) Suppose X, t is any topological space. Find an equivalence relation R on

X such that the identification space X/R is To and there is a natural

one-one correspondence between the open sets of X and the open sets

of X/R.

4. Let X = (1,2 3}. Find all topologies on X which are either T or T).

5 Suppose a space X with topology ¥ is Tg or T\. Prove that if +' is any topol-
ogy on X which is finer than r, then the space X, #’ is also Tg or T\.

6. a) Prove that every subspace of a T\space is T\.
b) Prove that every subspace of a Tg-space is To-
¢) Prove that the product space of a countable family of nonempty To-
spaces is Tg if and only if each component space is Tg. Prove the cor-
responding statement for Ti-spaces.

7. Prove that if a space X is homeomorphic to a space ¥ and X is Te(TY), then
¥ is also.

8 Prove that a space X, r is To if and only if distinct one-point subsets of X
have distinct closures.
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9. Proowe: arr difgpneone: 2 sypwe X iis T iff aard] axilky iff esxeanyy pocsymer s bisgyrene off
X is Te. Does this statement become true if X contains more than two
points? Prove or disprove the corresponding statement with T\ substituted
for T and with the added assumption that X contains at least three points.

10, Pxowe arr dligaone: AN sgpraee X iis T\ iff sard] aidfy i {@fF° = gtffar eeadh xS X

52 TYSPACES

A still stronger separation property than being either T or T\ is the
followiing.
Definition 3. A space X, r is said to be T2 if given any two distinct

points x and y of X, there are open sets U and V such that x € U,
yeVjand Un WV = & A T¥space is often called a Hausdorff spaze.

Example 5. Every metric space is a Tz-space (Section 2.3, Exercise I).

Example 6. Let X be any set which is totally ordered by a relation <.
Let 8§ be the family of all subsets of X of the form {&\x < a} or {x \a < x},
for all a & X. Then $ is a subbasis for a topology on X called the order
topology induced by <. The set X with the order topology is always T2
For suppose a and b are distinct points of X. Since X is totally ordered,
we may assume a < b. If there is ¢ € X such that a < ¢ < & then

fxllx <t ad  {yfle <y}

are disjoint neighborhoods of a and b, respectively. If thereisnocé& X
such that a < ¢ < b, then

llx <b} sl {ylla <y}
are disjoint neighborhoods of a and & respectively.

Note that for the set R of real numbers, the order topology (ffor which
the family of open intervals forms a basis) and the absolute value topology
are the same.

Proposition 3

a) Any subspace of a TRspace is T2

b) Let ¥ = Xf Xi;, t be the product space of the countable family of
nonempty spaces {¥3,ri}, t € 1. Then ¥ is T2if and only if each
Xiis T2

Proof

a) Suppose W is @ suibspace of the TRsymee X, and let x andl y be
distinct points of W. Then there are open sets U and ¥ in X such



96 The Separation Axioms 8.2

thatxe U,y 6 V,and UNV = & Butx e UnW, y eW nW,
and

WnNnWn@nw) = W@NHNW=snif = 4.

Therefore U O\W and ¥ fi W are disjoint neighborhoods in W of x
and y, respectivelly. Hence W is T2

b) Assume that each X\, rtis T2, and let x and #be distinet points of
E. We will use #and y; to denote the ith coordinate of x and y,
respectivelly. Since x #* y9x{ »* yi for at least one £ & Z, say for ¥".
Therefore there are open sets Ui» and Wy in Xy such that

i &l yir & Vs and Up AVY = 8.

Set U = X/ Hi, where Hi — Xi;, i if, and Hiy =  : and set
V = Xt Gi, where Gi = i% ¢ and = Pv. Then I7and
V are neighborhoods of 3 and y, respectivelly. Since any point of
U differs from any point of ¥ at least in the i*th coordinaie,
Un V= & Therefore ¥ is T2

By Proposition 20, Chapter 4, each Xi;, j is homeomorphic to a sub-
space of ¥ (regardless of whether ¥ is T2). If F is T'2, then every subspace
of F is T2 by (@). Therefore if ¥ is T'2, each X, 7; is homeomorphic to a
T2space, and hence is T2 (Exercise 1).

Example 7. The reader might conjecture from Proposition 3 that if X,
is a T2space and if R is an equivalence relation on X, then the identifica~
tion space X/R is also T2 This is not true. For example, let R2be the
plane with the Pythagorean topology. Let E be the equivalence relation
defined by the partition

e Iy 0, {@ | 0}ye {x |

Here {(x, ¥) \y < 0) is opem, whereas {{x, ) ||y > O} is not open. There-
fore RY/E is homeomorphic to the set X = {0, I} with the topology
{X, & {08}, which is not T2 Since the identification mapping from R®
onto R%/E is continuous, we have also shown that the property of being
T2 is not preserved by continuous functions (@lthough, of course, it is
preserved by homeomorphisms).

EXERCISES

1L. Suppose that the space X, r is homeomorphic to the space F, ¥ and that X is
T2 Prove that F is T2

2. Prove that a space X, r is T2if and only if, given any two distinct points
x and y of X, there is a neighborhood U of x such that y & Cl U.

0}
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Prove that a space X, r is T2if and only if the diagonal A = {(x, %) |2 € X}
is a closed subset of the product space X XXX.

Suppose that X, r is a TYspace and that A C X. Prove that z & Cl A if and
only if x E A, or each neighborhood of x contains infinitely many points
of A

5 Assume that / is a function from a set X onto a T)¥space F, ¥. Assume

further that X is given the topology , defined by taking a subset U of X to
be open if U = /=1(), where ¥ is an open subset of F. Is X with this
topology necessarily T2?

6 Suppose / is a function from a Thspace X, r onto a space F, ¥’ such that / is

7

¥

one-one and f=1 is continuous. Prove that F is a Ty/space.

Let X be a set partially ordered by <. Define S to be the collection of subsets
of X of the form f||x < a} or {y|la < ¥}, for all a& X. Is S necessarily
the subbasis for a topology on X? If it is a subbasis for a topology * on X,
is X, r a T¥space?

Suppose X is a Tyspace. Is it necessarily true that given any subbasis S for
the topology on X and any two distinct points x and y of X, there are disjoint
members U and ¥ of § with x € U and ¥ € F? Answer this question with
subbasis replaced by basis.

53 73 AND REGULAR SPACES

Definition 4. A space X, r is said to be Tigif given any closed subset F
of X and any point x of X which is not in F, there are open sets U and
Vsuch thatx & U, FC ¥, and UD ¥ = & (Fig- 5.2). A space X, +
is said to be regular if X is both T% and Tx. (The author is quite aware
of the lack of uniformity in the literature about what constitutes a
7¥ or aregular space. In some places, T@3and regular are synonymmous.
In others, Tx is assumed as part of Ts, and in still others, T3does not
imply TY. The author has therefore felt justified in making the
definition to suit himssil)

Figure 5.2 Figure 5.3

We first state and prove a very important criterion for being TY.
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Proposition 4. A space X, r is T3if and only if given any x &€ X and
any neighborhood U of x, there is a neighborhood ¥ of x such that
Cl ¥ C U (Fig. 5.3).

Proof. Suppose that X is T@ and that ¥/ is a neighborhood of x. Then
X — U is aclosed subset of X which does not contain x. Therefore there
are open sets W and F suchthat X — UCW,xEV,and WHV — &
Since X — UCW, X — W C U. Moreowar, since W NV = ¢&; we have
FCX —WCU. Butthen X — W is a closed set which contains ¥;
hence

VcClV X — W .

Suppose instead that given any x € X and any neighborhood U of x,
there is a neighborhood F of x such that Cl1 ¥ C U. Letx & X, and let F
be any closed subset of X which does not contain x. Then X — F is a
neighborhood of x; hence there is a neighborhood ¥ of x such that
CIFCX —F. Then X — CIl F is an open set which contains F, and ¥
is an open set which contains x. Since ¥ C C1 V,

X—-ClPHnF=0.

Therefore X — Cl ¥ and ¥ are suitable open sets for “Separatimg” ¥ and
x; hence X is T3

Example 8 Any metric space X, D is regular. Although this has been
proved previously, we may prove it again using Proposition 4. For if
x € X, and if U is any neighborhood of x, then U contains a D-p-neigh-
borhood of x for some positive number p. Choose a number g such that
0 < g < p. Then the D-g-msjgliborhod of x is a subset of the D-p-neigh-
borhood of x, and

CIN(x, @) C {v ID@, ®) < g} CN(x, p) = {wl|D(w, x) < p} CU.

Therefore X, D is 7¥. We have already seen that any metric space is Tx;
hence any metric space is regullar.

Example 9. If X is any set of more than one point, then if X is given the
trivial topology, X is Tgin a vacuous sort of way. For the only closed
nonempty subset of X is X itselff, and it follows that there is no point of
X in X — X. It is to avoid such cases as this that one usually requires
a space to be regular rather than merely T@. We also see from this example
that Tgdoes not imply T2 However, if every one-point subset of X is a
closed subset of X, then X is T2if X is Tg

We now give an example of a space which is T2but not T3, or regular.
This demonstrates that regularity is a stronger separation property than
merely being T2
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Example 10. Let R be the set of real numbers. We will define a topology
on R by giving an open neighborhood systerm. If x is any real number
other than 0, let 3x be the family of all open intervals which contain x.
If x — 0, we will let S1be the family of all sets of the form

—p, ) = {I/n|| is a positive integer},

where 0 < p. The collection of 9x for all x &€ R gives an open neighbor-
hood system for a topology r on R (Chapter 3, Proposition 7). It is easily
verified that R, r is T2 (Exercise 1).

We now show that X is not T@ Take x = Oand F = {I/n]\nis a
positive integer}. F is a closed subset of R, 7, since there is no point y of
R such that each neighborhood of y contains a point of F, except those
points in F itselff. (Note that in the usual topology for R, each neighbor-
hood of 0 would contain points of F; thus 0 would be in Cl F. We have,
however, purposely excluded the points of F from the neighborhoods of 0.)
Suppose V is a neighborhood of 0 of the form

(=p, P) — {1/t [|In is a positive integer}

(any neighborhood of O contains such a neighborhood because of the
manner in which the Rx define the topology r). Then (—p, p) contains
infimitely many of the 1/n. Hence any open set U which contains F would
have to overlap V (Fig. 5.4)); thus we could not find an open set U which
contains F such that 80D V = & Therefore R, r is not T3

\ % U
§ 0 § g %
Figure 54

We now investigate how the property of being regular or T3 behaves
with respect to the derived topological spaces.

Proposition 5

a) Every subspace of a regular space is regular.

b) Suppose ¥ = Xj Xi is the product space of the (eountable) family
of nonempty spaces {Xi, n§}, { € I. Then ¥ is regular if and only
if each Xi, n; is a regular space.

Proof

a) Suppose W is a subspace of a regular space X, r. Let F be closed
in Wand x € W — F. Since F is closed in W, F = W fi E‘, where
F’ is a closed subset of X. Then x € X — F'. #Simee X is Tg
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there are open sets U and V in X such that
x @, FEYv, and UnV=¢

Then W N U and W N V are disjoint subsets of W which are open
in W such that xe WN U and FEW N V. W is therefore T%.
By Section 5.1, Exercise 6, W is also T, since X is Tx. Therefore
W is regular.

b) Suppese exch X, 7\ is @ regular space. By Exercise Goff Section 21,
F is T\. Suppose that x € ¥ and that U is a neighborhood of x.
We lose no generality in assuming that U is a basis element for the
product topology, since any neighborhood of x contains a neigh-
borhood of x which is a basis element. Then U = Xj Ui, where
each Uj is open in X. Each Uj is therefore a neighborhood in Xj
of x4 the.ith coordinate of x and Ui — Xi except for i9..., im
Since each Xi is T3, there is an open neighborhood Vi. of ., j =
1, ..., m, such that

i, € V’} cCl V'} = U,-j

Foreachie 7, set = X{, i i} and let the W be as above,
jy—0L,...,m. Then

1eXV,<ccl(X1f,-)CXClv,-cU.
I I I

By Proposition 4, then, ¥ is 7¥. Hence F is regular.

If F is regular, then since each Xj, 7j is homeomorphic to a sub-
space of F, and each subspace of F is regular, each Xj is regular.

As with Tyspaces, it is not true that if X, r is regular and R is an
equivalence relation on X, then the identification space X/R is regular
(Exercise 2). Howewarr, the following is true.

Proposition 6. If X, r is a regular space and F is a closed subset of X,
then if R is the equivalence relation defined by the partition

wiketreERN U | 1 lye 0yl

the identification space X/R is 72~ (Note that this identification has
the effect of shrinking F to a point. See Figs. 5.5 and 5.6.)

Pyooff. Suppose x and y are distinet points of X/R, where x and ¥ denote
the equivalence classes of x and y, respectivelly. If x and y are not in F,
then since X is regular and hence also T2, there are open sets U and V
in X — F such that

xelU} vyey, and UnvV=¢
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b:¢ X/R
Figure 55 Figure 5.6

The sets U and  may be chosen in X — F, since X — F is a T¥subspace
of X, and since a subset of X — F, an open set, is open in X — F if and
only if it is open in X. Then U — {w\u & U} and V = {v|lv& ¥} are
open disjoint subsets of X/R such that x€ Uand y & =

If either x & E, or y & F, then the other point could not be in F. FoF
if x and y are both in F, then x = y = F, contradicting x 2¢ y. Suppose
x = F. Then there are open subsets UJ and V of X such that

x=FCU, y/ew, and rmV = ¢.

It follows that U = fwi\weUl} and ¥ = {y |lve ¥} are disjoint open
subsets of X/R such that x € W and y € V. Therefore X/R is TY.

¥ oxC Figure 5.7

Example 11. In Example 14 of Chapter 4, a circle is obtained by identify-
ing 0 and 1Lin [ 1}. Since {0, 1} is a closed subset of [ 1, we know that
the circle is at least a Tspace. Since the circle is a subspace of a metric
space B2, and any metric space is regular, we have the stronger result that
a circle is a regular space. The torus C X C (Fig. 5.7), where C is a circle,
is regular since it is the product of regular spaces. The torus is also seen
to be regular because it is a subspace of R%.

EXERCISES

1L T vegardi to Exeumple 170,
a) verify that the family of Jlx forms an open neighborhood system for a
topology on R;
b) show that R with this topology is T2
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Example 12. Any space X, r of more than one point with the trivial
topology is T'¢ (there are no nonempty disjoint closed subsets of X), but
is not normall, since no one-point subset of X is closed. Any metric space
is normal (Propositions 5 and 13 of Chapter 2).

Note that any space with the discrete topology has all of the separation
properties introduced so far.
We now prove another criterion for a space to be T4

Proposition 7. A space X, v is T4if and only if given any closed subset
F of X and any open subset U of X with F C U, there is an open set
¥V such that

EcVcClvcu

(Note the similarity between this proposition and Proposition 4 re-
garding Tyspaces. Note also the difference, namely, F is a set rather
than a point. This difference helps us explain the rather bad “hered-
itary” properties of normal spages.)

Proafi. Suppose X is T4 F is a closed subset of X, and U is an open set
which contains F. Then X — U is a closed set and (X— U) NF = &
Hence there are open sets W and ¥ such that

X—-UCW, FQW, and WnV=ge

Then FCVW CCIV W (gimce X — UC W and W NV = ). There-
fore V has the desired properties.

Suppose now that given any closed set F and any open set U which
contains F, there is an open set ¥ such that FCVCCIVC U. Let F
and F' be any two disjoint closed subsets of X. Then X — F is an open
set which contains Ff. By hypothesis, then there is an open set V such that

FfCcVCcClVCX-—FE

Hence X — Cl V is an open set which contains F and is disjoint from V.
Therefore X is 7Y

It would be very nice to have an analog of Propositions 3 and 5 for
normal spaces. Unfortunately, not only is it false that the product of
normal spaces is normal; it is even false that every subspace of a normal
space is normall. Examples of normal spaces for which some subspace is
not normal are somewhat sophisticated for this text. The following ex-
ample, however, gives a regular space which is not normal, but which is
the product of normal spaces.

Example 13. Let R be the set of real numbers with the topology 7 as
described in Example 11 of Chapter 3. Let R2be given the product topol-
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(x, y) 0.0)
(0, 0)

Figure 5.9 Figure 5.10

ogy. Then a typical basic neighborheod of (x, y) & R2is as shown in
Fig. 59. We know that R, r is normal (Exercise ). Each basic neigh-
borhood U of (%, ¥) is not only opem, but also closed. For if (x', ¥f) is any
point of R2 — U, then it is readily seen that there is a basic neighborhood
of (¢, y") contained entirely in R2 — UJ; hence R2— U is opemn, and thus
U is closed. Therefore C1U = U. Hence, by Proposition 4, R2is Fs.
R2is Tj since each one-point subset of R2is closed. Alternately, R, r is
regular; thus R2with the product topology is regular by Proposition 5.
Let ¥ = {(x,¥) [ly + x = 0}. Then the subspace topology of ¥ is
discrete, since if (x,y) € ¥, there is a basic neighborhood U of {x, ¥) such

that
Un¥= {1}

(Fig. 5.10). Since ¥ is a closed subset of X, each subset of ¥ is a closed
subset of X (gimce a subset of ¥ is closed in ¥ if and only if it is closed in X,
but every subset of F is closed in F). Let

F = {(x,¥) |x + y = 0and x is rational}
and
Fir= {(x,¥) |lx + y = 0 and x is irrational}.

Since F and F are subsets of F, they are closed. Also, F n F' = 6. If
R2is T4, there must then be open sets U and V¥ such that

FcW, FCEV, ad UNV=§

Although a rigorous argument of the impossibility of such sets will not
be given here, it can be made fairly clear why there cannot be such sets.
For if (%, y) € F, then there would be a basic neighborheod of (x, ¥) con-
tained in U. There are, however, points of F” “drbitrarily close” to (x, y).
Hence some basic neighborhood contained in W of a point in F’ would be
bound to overlap with the basic neighborhood of (¥, ¥) in U. Therefore
U n V¥ could not be ¢&



54 Ta- and Niormal Spaces 105

Although we do not have that every subset of a normal space is
normall, we do have the weaker statement which follows.

Proposition 8 If F is a closed subset of a normal space X, r then the
subspace F is normail.

Prooff. Since X is Tx, ¥ is Txbecause every subspace of a T\space is T
Since ¥ is closed, a subset F of ¥ is closed in ¥ if and only if F is closed
in X. Therefore if F and F” are disjoint closed subsets of F, they are also
disjoint closed subsets of X. There are thus open sets U and ¥ such that

F, FEv and UnV =&
But then
FCENU, FCENY,

and ¥ n U and F N V¥ are disjoint subsets of F which are open in F.
Therefore ¥ is T¢; hence F is normall.

Proposition 9. If the product space Xj Xi of the family of nonempty
spaces {Xi, 0}, & I, is normal, then Xi;, 7j is normal for each i € L.

Prooff. If Xj Xi is normal, then X/ Xi is Tx. But then each Xi, #j is
homeomorphic to a closed subspace of X/ Xi (Exercise 6). Such a subspace
then is normal by Proposition 8 Hence Xi;, 7j is normal (Exercise 5).

EXERCISES

L Prove that the set R of real numbers with the topology described in
Example 11 of Chapter 3 is normal.

2. Prove that a space X, r is T4 if and only if given any two disjoint closed sub-
sets F and Ff of X, there are open sets 1) and ¥ such that

FCQw, F'CW, ad CLUACIV =4

& Suppose X, t is a normal space and F is a closed subset of X. Let X/F be
the identification space formed by identifying all the points of F with one
another; more figuratively, X/F is the identification space obtained by
squashing F to a point @@s in Proposition 6). Prove that X/F is normall

4. Prove that every subspace of a metric space is normal. Thus if we were to
find a normal space which had a subspace which was not normal, we would
know such a space was not a metric space.

& Prove that the property of being normal is preserved by homeomorphisms
but not by continuous functions.

6 We saw in Proposition 20, Chapter 4, that if Xi Xi is the product space of
the family of nonemipty spaces {Xi,r}, i € [, then each Xi, #i is homeo-



108 The Separation Axiioms 5.5

morphic to asubspace of Xr X¥;. Prove that if X/ X% is T, each X%, r2is homeo-
morphie to a closed subspace of Xi Xi.

7. Are any of the spaces given in Exercise 6, Section 5.3, normal besides that
given in (€)?

8 Review the proof of Proposition & Discuss why an analogous proof will not
hold for normal spaces. That is, try to find out what goes wrong in attempting
to apply to normality the techniques which gave us the “lereditary” “prop-
erties of the other separation axioms.

9. Suppose X, r and ¥, r' are normal and / is a continuous function from a
subspace A of X into ¥. Let Z = X U Y have the topology " defined by
using r U r’ as a basis. Prove that the identification space formed from Z
using/f, that is, by setting x equivalent to/{(¢), is normal.

55 NORMALITY AND THE EXTENSION OF FUNCTIONS

One of the central and most difficult questions in all of topology is that of
function extensioms. Specifically, suppose that ¥ is a subspace of a space
X, ¢ and that f is a continuous function from Y into some space Z, r".
Does there exist a function F from X into Z such that F is continuous and
F(y) = §(y) for each y € Y7 That is, is there a continuous function

F:X,t—>Z,1r

such that F |¥ = /? The answer is sometimes yes and sometimes no.
For most instances, the answer is not knowm.

Example 14, If Y is a subspace of X, r and 1 is the identity function on ¥,
then 1 is a continuous function from ¥ into X. Of course ¢ can be extended
to the identity function I for all of X. In this case, I is an extemsion of i
since 11¥ = i. This is a rather trivial and therefore uninteresting type
of extensiom.

A function may have several extensions. For if we let X = {1, 2}
with the discrete topology and ¥ = {1}, then I' defined by 7(1) = 1,
I'(2) = 1, is an extension of i which is different from I.

Example 15. Let X be the closed interval [{) 1] with the usual absolute
value topology, and let ¥ = Z = {0, 1} with the subspace topology
(which is the discrete topology in this case).. Let i be the identity function
on ¥. Then i is continuous as a function from ¥ to Z. Although we can-
not prove it at this time (we will be able to do so later in the boalk), £ can-
not be extended to a continuous function from [ 1 into Z. We may see
this informally as follows: If there were a continuous funetion F from X
onto Z (@s there would have to be if  could be extended]), then, since {0}
and {1} are both open subsets of X, F=1{{0}) and F~1({1}) would both
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be open subsets of X; moreowar,

X =F=\Eop uFTLE) and  FI{OY M P = &

Thus X = [0 1] would be expressible as the union of two disjoint, non-
empty, open subsets. The reader should try to express [ I as the union
of two such subsets in order to see the intuitive difficulties of such a de-
compasiitim.

Topological spaces which are T4 are, however, bound up essentially
with some very important extension properties. In fact, T{spaces can
be characterized by certain of their extension properties. This is proved
in the following propositiom, one of the most important propositions in

topology..

Proposition 10 {Urysofin's lemma). A topological space X, r is T4 if
and only if given any disjoint nonempty closed subsets A and B of X,
there is a continuous function / from X into Z = [) 1] (with the
absolute value topology) such that

f(@ =0 foranyac A and fi() = 1 for any b & B.

Before proving this propesitiom, we note that it is indeed a proposition
dealing with function extensioms. Explicitly, if X, r is a T)/space and ¥
is a subspace of X which can be expressed as the union of two disjoint
nonempty closed subsets of X, then the function g: ¥ — [, 1 such that

g@d) =0 foralla€E A and gb) =1 forallbe B

can be extended to a continuous function f: X — [ 1]. Although this
may appear as a rather modest result about function extensions because
of the restrictions that have been placed upon ¥ and g) very general and
important results flow from Urysohn’S lemma. We shall mention a few
of these after the proof.

Proof (Propoesition 10). Suppose X has the property described and A and
B are any two disjoint nonempty subsets of X. Then there is a continuous
function / from X into Z = [0 1] such that

/() =0 forallac A and J(®) =1 forallb&B.

Now U' = {x||0 < x < I/2} and Vf= {||1/2 < x < 1} are disjoint
open subsets of Z; therefore, since / is continuous, U = f~1(U") and
V = f=1(¥*) are disjoint open subsets of X. But A C U and B C V, and
hence X is T4

Suppose now that X is T4 Recall that a space X, v is T4if and only
if given any closed subset F of X and any open set U which contains F,
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there is an open set W which contains F such that
FCV CcClVv cw

(Proposition 7). Suppose A and B are disjoint nonempty closed subsets
of X (Fig. 5.11). Consider the set of rational numbers gsuch that0 < ¢ < 1
and gq is of the form g — n/2k, where
n and k are positive integers. For
example, 1/2, 3/22= 3/4, and 5/23
= 5/8 are such rational numbers.
With each such rational g we will
associate an open subset U(g) of X

such that
9,
2 Bm U@ = &
3 if g < ¢, then Cl U(g) C U(g). Figure 5.11
Since X is T4-and A and B are disjoint closed subsets of X, there are

disjoint open sets U and W such that A C Uand B CW. Welet U — U(©)
and X — B = U(I). Using Proposition 7, we can find an open set, which

we let be U@), such that

Cl W) c U(3) ¢ €1 Ud) c Wx).
Similarly, we can find U(2) and EA§) such that

crie) c WD) € eLld) c L)
c1 i) c W) c €1 ¥ ¢ ).

We will continue finding the U(g) by induction on k, the exponent of 2
in g = n/2k Note that we have already defined U(g) for k = 1 and
k=2

Assume we have defined U(g) for k. We now define U(g) for k+ 1
(@nd thus for n = 1, 3, ..., 2k¥l = 1). Note that the definition of U(g)
needs to be given only for odd n; for if n were evem, the numerator and
denominator of g eould be divided by 2. Because the U(g) have already
been constructed for g = n/2k n odd, we have

ay () €0 (o)

Eiiveenis 0dd, 1 U((a — 1)/(2kF)) = C1U({(n — 1)72)//2%), whichhas al-
ready been definedl]. We therefore can find an open set, which we let be

and
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U(n/2k*H) such that
Cl Ui — 1)/2kH) ¢ Un/2kE1) € Cl Um/2kHY) € Ul(n + 1)/2K5)
(Fig. 5.12). We thus have an inductive definition of U(q) for each g as

described. By constructiom, the collection of U(g) have properties (1)
through (@) given above.

0(3)

.

U(3)

v ('QL:T:) Figure 512

We now define a function £ from X into Z = [ 1] such that/{@) = 0
for all a€ A and f(b) = 1 for all be B. If x € X} define f(x) = 1, if
% € B. If x is not in B, then x & U(I). For each x not in B, define

f(x) — greatest lower bound {g \g = n/2k and x € U(g)}

(this set of real numbers has a lower bound, 0, and hence has a greatest
lower bouwnd]). Certainly 0 < fi(x) <11. If x € A, then x € 8(@); there-
fore /(0) = 0. We now prove that £ is continuous.

Suppose F(xg) = yo.=First, assume that y@is neither 0 nor 1. Then,
given any positive number p, there are rationals g and ¢ of the form n/2k

such that
¥ € @ af) C @ “* P, ¥ + )

(that is, the set of “Binary” Tationals is dense in [ 1}. Alternately, any
real number can be approximated to an arbitrary degree of accuracy by
a rational of the form n/2K). Then (Fig. 5.13) V = U(g") — €1 U(g) is a
neighborhood of x), and

f(\VQ € @W =p, y'00+ P)-

If yQis either O or 1, then the corresponding neighborhoods of 0 and 1,
respectively, are [ ¢") and (g, 1J; but the argument is the same. What we
have shown is that, given any neighborhood H of 2§ (@amy neighborhood
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{(z, Y)ly=1}

Figure 5.14
{(=, »ly=0}

Proofi. Let pi be the projection into the tth coordinate from Rfh into R
[diefimed by pi(xy - - -, £ - -.,xp) = %} Then, setting fi = pi<7, f=is a
continuous function from A into R. Each fi therefore has a continuous
extension Fj to all of X. Define

Fix) Fo(2)) =Fn{9)

for each x & X. Then F is an extension of /: moreower, F is continuous,
by Proposition 21 of Chapter 4.

Example 16. Let R be the space of real numbers with the absolute value
topology and R2be the plane with the product topology. Both of these
spaces are normal. Let Z C R be the set of integers, and let Z2C R2be
the set of points of R2of the form (m, n), where m and n are integers. The
subspace topology on both Z and Z2is the discrete topology, and hence
any funetiiom/ from Z into Z2is continuous. Both Z and Z2are of the same
cardinality; thus we have a one-one function / from Z onto Z%, and 7 is
continuouss. By the corollary to Proposition 11, then / has a continuous
extension F from R into R2 The reader might find from a little experi-
mentation that this is a case where the proof that F exists is much simpler
than trying to construct a specific F.

Example 17. A continuous funetion from the interval [0 I] into any
space X, t is called a path in X. The space [0 1] X [0 1] (with the product
topology) is a normal space, and

={& | =Ayde | =0 yy=

is a closed subset of [, 1] X [ 1. If / is any continuous function from A
into R2, then / has a continuous extension F (Fig. 5.14). Technically,
this means that any two paths in R2are homotopic (Chapter 11).

EXERCISES

1. Ukiing ety Pigpesition 110, prowe tine followdng: Suppose A antl B sne diigjobnt
closed subsets of a normal space X, ¥ and / is a continuous function from AU B

13 L
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into Rmsuch that / || A and 7 ||B are each constant functions. Then £ has a
continuous extension F to all of X.

2 Any space which can be substituted for R in Proposition 11 is called an
ahsolute retragf. Which of the following are definitely absolute retracts?
Which could not possibly be absolute retracts?

a) Rt), with the product topology from the space R of real numbers with the
absolute value topology
b) I, with the product topology, where I = [0, 1
¢) any finite set with the discrete topology
d) (@, 1) with the usual topology
€) R2— {(0, 0)} with the Pythagorean topology
2 Which of the following statements about absolute retracts are true?

a) If X, z is an absolute retract and x and y are any points of X, then there
is a continuous funetiamns from [ 1 into X such that {x, y} C/({0, 1.

b) The product space of a countable family of nonempty spaces is an absolute
retract if and only if each component space is an absolute retract.

4. Prove that the set of binary rationals as deseribed in the proof of Proposi-
tion 10 is dense in the space of real numbets.

5 A space X is said to be completely normal (sametimes called T§) if every
subspace of X is normal. Prove that X is completely normal if and only if
X is Ti and given any two subsets A and B of X such that CLAfiB =
An ClB = § there exist disjoint open sets UJ and V such that AC U
and BC V.
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CONVEERGENCE

61 THE NEED FOR A GENERALIZED NOTION OF CONVERGENCE

The reader will recall that we have already discussed convergence of
sequences in metric spaces in Chapter 2. He may therefore suspect that
extending the theory of convergence to general topological spaces will
merely consist of rewording the definition of a convergent sequence in
terms of a general space. For example, we might say: A sequence {sp},
n & N, in a space X, r converges to a limit y in X if every neighborhood
of y contains all but finitely many of the sp.

Actually, however, not only will we find it necessary to generalize the
notion of convergence of a sequence, but we will also have to generalize
the very notion of a sequence as well. The purpose of this section is to
illustrate this point. We begin by proving a proposition concerning se-
quences in metric spaces.

Proposition 1. Let A be a subset of a metric space X, D. Then
y & CI A if and only if there is a sequence {§,}}, n & AT, such that

sp ¥y and shG A
for each n & N.

Proof. Supposey & Cl A. Then ify & A, let {sp},n & N, be the sequence
defined by sp = y for alln & N. Then

Sh=>y and $he A

for all n & N. Suppose y € Cl A — A. By Proposition 12, Chapter 3,
Cl A = A U A’y therefore y 6 A”. Then each neighborhood of y con-
tains at least one element of A. Let Up be the D-1/n-neighborhood of y
for each positive integer n. For each n, select sp & Up A A. The sequence
{sn}, n & N, thus obtained converges to y, and each sp is in A.

On the other hand, suppose y is such that there is a sequence {sp},
n & N, such that sp — y}and sp & A for each n & N. Since sp —y, each
neighborhood of y contains all but finitely many of the sp. Therefore each
neighborhood of y contains some point of A. By Proposition 13, Chapter 3,
theny & Cl A.

113
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If the notion of a sequence were sufficient for the study of general
topological spaces, we would expect that this proposition relating closures
and sequences generalizes to arbitrary topological spaces. That is, if
A C X, where X, r is a topological space, then y € Cl A if and only if, ete.
There are a number of reasons why we would like this proposition to
generalize. The fact is, though, that it does not generalize using sequences.
This is shown by the following examplle.

Example L. Let X be the set of all functions from the set R of real numbers
into R. We make no assumption about the continuity of these functioms.
We will define a topology on X by specifying an open neighborhood system.
Suppose / is any element of X. Let F be any finite subset of R and p be
any positive real number. Define

U@, F,p) = {9 € X |lbx) —A=)]l < p for all x & F}.

Let 91/ be the set of all {/(/, E, p) for all finite subsets F of R and all
positive numbers p. Note that for a given/f, /(f, F, p) depends on both F
and p; hence U(/, E, p) is not a p-nmeighborhood in the metric sense.

We will now show that this definition of S/ for each f & X gives us an
open neighborhood system for a topology on X. In accordance with
Proposition 7 of Chapter 3, we must show that (i) through @v) of Defi-
nition 5, Chapter 3 are satisfied.

Statements (i) and (i) are clearly satisfied.

iii) Suppose U(f, Fi,ix) and [(f, F2, p%) are any two members of
9/. Then

) U min(py, F min(pi,

is an element of @/ which js contained in U(f.FyR|)n
U(h,E2 p2)- Eor suppose

g U(f,F,UF, min(p,, oM, F, Umein(pi,
we may assume PI < p2 It follows that

4E® = {6) < pi € p2
for each foreach  x @&nd each x & F2. Therefore

g€ P1) N p2). V(, Fpi) n
iv) Suppose U(f, £, p) 6 Byand & U(f, F, p). Let
=,

and

Q=P~ Ife) — gRI) i= 1,...,n.
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Set p’ = min(gy, ..., qn). Then

U(g, E, p¥)C U, F, p)

(Exercise 1). Therefore the 31/ do form an open neighborhood
system for a topology on X_.

Let A be the set of all elements £ in X such that/(&) = 0 or 1 for any
x 6 R, and f(x) = O for at most countably many x & R. Suppose g is the
function defined by g{x) = 0 for all x & R. We will show that g & CI A.
For let U(g, F, p) be any basic neighborhood of g. Let h be the function
defined by h(x) = Ofor x € F and h(x) = 1if x @ F. Then

heAm U, F, p).

Therefore any neighborhood of g meets A; hence g & Cl A.

Suppose there is a sequence {/p}, n g\V, such that fn & A for each
n €N, and fpn—g. Let Bp— {&||fax) = 0}. Each By is a countable
subset of R; hence U By is also a countable subset of R. Since R is un-
countablle, we can find ze R — Up Bp. Let F= {£} and p = 1/2.
Consider U(g,F,p). Then no matter what n is, z & Bp, and hence

fa@) = 1. Therefore
iz — g(2)| = L

There is no positive integer n, them, for which & U(g, F}p). But
U(g, Ej p) is a neighborhood of g; thus if fp g, U(g, F, p) would have
to contain all but finitely many of thefp. It is impossible then thatfp — g.

What we have here, then, is a topological space for which Proposition 1.
of this chapter does not hold. What are we to do? There are two alter-
natives, either (1) we can restrict ourselves merely to sequences and say
that Proposition I has no generalizatiom, or (2) we can try to generalize
the notion of a sequence in such a way that Proposition 1.can be generalized
to any topological space. It is this latter alternative that we choosz.

EXERCISES

L In Example 1, prove @v) in the proof that the 3/ form an open neighborhood
systemn.

2. A topological space X, r is said to be first countable if there is an open neigh-
borhood system for r such that 9 is a countable collection for each x & X.
a) Prove that every metric space is first countahblie.

b) Prove that Proposition 1 holds for any topological space which is first
countable. Thus the space in Example 1 is not first countable.
¢) Prove that any subspace of a first countable space is first countablle.
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d) Prove that the product space of a countable family of nonempty spaces is
first countable if and only if each component space is first countabile.

e) Which of the spaces mentioned in Section 53, Exercise 6 are first
countable?

3 Do you think that the following might be an appropriate generalization of
sequences? Let I be any set. Then an I-sequence in a space X, r will be a
funection s from I into X. We will denote the Z-sequence by {3, ¢ € 7, where
§i denotes s(@). We will say that {&3}, i € 7, converges to y if any neighbor-
hood of y contalns all but fimitely many of the § For example, suppose
I = ©, 1) and s is the identity function on I considered as a function from 7
into the space of real numbess. Does {sj}, i € I, converge to 1L according to
our definition of convergence of a I-sequence? Does it seem as though it
should if this is a suitable generalization of the notion of & sequence?

4. Let X be any uncountable set. For each x € X, define
Sx= {NC X ||xE N and M excludes at most countably many points of X}.

Prove that the collection of x forms an open neighborhood system for a
topology on X. Does Proposition ILapply to X with this topology?

5. Find two distinct topologies on the set R of real numbers such that the only
sequences which converge relative to each of the topologies are those sequences
which are constant from some term on, and these sequences converge only
to their constant value. (ke Exercise 4 and the notion of convergence in-
troduced in the first paragraph of this chapter) Since the two topologies
have the same convergent sequences converging to the same limits, sequences
alone are inadequate to characterize either topology.

62 NETS

Note that the positive integers form a partially ordered set (im this case,
totally ordered) such that if n and n* are any integers, there is an integer m
with n < m and »* < m. Since all partial orderings share the properties
of 4ess than or equal to,” denoted by <, we will use < to denote any
partial ordering. The set of positive integers do have other properties
which are not shared by every partially ordered set; for example, the
positive integers are totally ordered, well-ordered, and countablle. But in
any generalizatiom, experience and the problem to be solved indicates
which properties must be generalized and which are incidental to the
question at hand. The experience and labor of many mathematicians over
many years leads us to the following definitiom.

Definition 1. Let I be any partially ordered set. (Recall that < is
used to designate any partial orderimg.) I is said to be a directed set
(@@more accurately, an upward directed set) if given any 7 and any j in Z,
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Y < WW C ¥). If X is finite, then P(X) is finite as well, and hence it
is quite possible to have a finite directed set.
If x € X, set

P(X, @) = {WePRX) NxeWWi)..

Then P(X, x) is also a directed set (diirected by < just as P{X) is}. One
possible function s from P(X, x) into X would be a selection function
where, if W € P(X, %), then s(TF) € W. Such a selection function would
then give a net in X, W g P(X, x).

If X,  is a topological space, then we might set

T(X, x) = {U]||U is a neighborhood of x}.

The set T(X, x) is also a directed set [iim fact, a directed subset of P(X, x)].
Using a selection function s: T(X,x) — X, where s(U) & U for each
U e T(X, x)ywe get anet &6, U € T(X, x)9in X. We might suspect that
this net converges to x, since it has the property of being in every neigh-
borhood of x residually (Exercise 2).

Example 4. Let {§},n € N, be the sequence in the set R of real numbers
defined by sp = (—I)f. If R is given any topology whatsoewvar, then {sp},
n € Nj has the property of being in every neighborhood of 1 cofinally.
This sequence is also in every neighborhood of —I1 cofinally, but it is
residually in every neighborhood of both 1 and —1 if and only if every
neighborhood of 1 is a neighborhood of —1 and every neighborhood of
—1 is a neighborhood of 1L

EXERCISES

1. Which of the following sets with the orderings as given are directed sets?
a) the set of positive integers partially ordered by “divides””
b) the interval [} 1] ordered by <
¢) the interval (@ 1) ordered by <
d) the set {1, 2, 3 4}, where the order is defined by the relation

R = {1.1), @2, @3), &9, @.3)}.

2. Prove the assertion in Example 3 that §&4} has the property of being in any
neighborhood of x residually. Using this example, make a tentative definition
of what we mean by saying that a net converges to an element y of a space X, ~.

3 Suppose I and ¥ are sets which are directed by < and <, respectively.
Suppose @, 1) and (§, ) are elements of IXX Y. Define

&0 <)
ift Xjand it <Y. Prove that [ X I' with the relation < as defined is a
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directed set. You must prove that 7 X I’ is both partially ordered and
directed.

4, Let {sr}, n € N, be a sequence in the set of integers with the property that
if m £ n, sm€< sp. Which of the following properties must such a sequence
have residually? cofinally? neither cofinally nor residually?

a) Theeppopeetyyobibetiggoddy; 1)) Thiee ety off Hedig peositiee;

¢) Theeppopertyythiadtssrn< ny; ) Thtee pruggeetty ttiett Soiss ppiime.
Buppose {sr}, m € N, is the sequence defined by sp = 4n + 1. Which of the
properties (@) through (d) does this sequence have residually? cofinally?

8. Prove that a net {3}, i € I, has a property P cofinally if and only if for any
i £ I, there is an element k of I such that i < k and skhas property P.

6. The following define functions from [0, 1] into R2 and hence define nets in
R2. If R%has its usual topology, indicate any peints to which you feel the
nets should converge. Explain informally the reasons for your answers in

each case.

a) fil) = @, 2 b) f®) = (/(x+ 1), 22) Q) ) = (cowx;, Sinx)

63 SUBSEQUENCES AND SUBNETS

Fundamental in any study of either sequences or nets is the coneept of a
subsequence, or its generalizatiom, a submet.

Definition 2. Suppose &3} i € I, is a net in a set X. Let J be a di-
rected set and k a function from J to I such that

i) ifi <, then k() < kif);

ii) if 7, i € I, then there isj € J such that i < k(j) and i < k(j).
That is, k is order-preserving, and considered as a net in I, k is cofinal
in I. Then the composition s from J into X is said to be a subnet
of the net {&}, i € I. The subnet s¥k is usually written as {s)}},jj € 4.

Note that each 8 is also an § for some i (gpecifically, for i = kf),
and that the skj have the property of being cofinal (but not necessarily
residuall) in the set of &

Example 5 Let {sp}, n € N, be any sequemce. Let 2N be the set of
positive even integers, and let k be the identity mapping from 2N into N.
We first verify that k has properties (i) and (i) of Definition 2.
i) If m and n are positive even integers and m < n, then K{m) = m
and kin) = n.
ii) Given any integer n, there is a positive even integer greater than n;
therefore there is m € 2N such that

n < k(m) = m.
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The funetion s<k is therefore a subnet of {$}, n & N. In the case
where a subnet is a sequence, it is customary to call such a subnet
a subsequence; thus s¥k is a subsequence of {sp}, nENV. Ex-
plicitly, m & 27, is the same as {s2}, n eNV. A subse-
guence of a sequence is a sequence in its own right, and a subnet
of a net is itself a net.

Example 6. Let X, r be any topological space, and let x € X. Suppose
P(X,x) is as defined in Example 3. Let s be any selection function from
P(X, x) into X ; that is, s() & W for each W € P(X, x). Then {sw},
W & PCXx), is a net in X. Let T(X, x) be (@s in Example 3 also) the set
of neighborhoods of x. Then

T(X,x) CP(X, 0.

Let k be the identity mapping from T(X, x) into P(X, x). Then sk does
not define a subnet of {siw}, VE & P(X, x), unless {x} is itself a neighbor-
hood of x. For if {x} is not opem, then {x} & T(X, x); hence there is no
U & T(X, %) such that {x} < k(@) as is required by (i) of Definition 2.

Example 7. Let {35}, n € N}be any sequence. Let k be a function from
N into N defined by

kn) =n forn < 10, k{in) = 10 for alln > 1Q.

Then s<k satisfies (i) of Definition 2, but not @i). On the other hand, if
we define k™:N —N by

K{mn) —n if niseven, ') = 2 if nis odd,
then sk’ satisfies (i), but not (@), of Definition 2.

Example 8 Let {sf}, t € 7, be a net where I is the set of real numbers
greater than or equal to 1. Let k be the function from the directed set
I X I (diirected as in Section 6.2, Exercise 3) defined by k(, i') = #".
We verify that k satisfies (i) and (i) of Definition 2.
) If Glyid) < @u, i), then §) < ig3and i2 < &= Since all of the
numbers concerned are greater than or equal to 1,

kG, 79 = w2 € His, w) = fue

ii) If i and 1" are any real numbers greater than or equal to 1, i* < i,
then i < i2and i* < 2; hence i < K& D) and i < &G, i). There-
fore s«k is a subnet of {$:}, i € I. Note that here the set which
“indexes” the subnet is actually “ficher” than the original index set.

We now prove some of the fundamental properties of subnets.
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Proposition 2. Suppose a net %} i & Z, has a property P cofinally.
Then there is a subnet {skj}, j € J, of {sy}, i € Z, which has the prop-

erty P residually.

Preof. Lettdébe the set of all j & 7 such that sy has property P, and let &
be the identity map from J into I. If J has the order induced from 7,
then J is at least a partially ordered set. Since the property P is cofinall,
given any j, € J C I, there is j* & I such that j € i < and
sy* has property P. Therefore

Fed j<y, and [ K

hence J is a directed set. Since kc:J —f is the identity mapping, k is
certainly order-preserving. Since P is cofinall, k also satisfies (i) of Defini-
tion 2. For if i and " are any elements of Z, there isj & 7 such that i < j,
i £ and sy has P, and hence

j i < k@), and "< k().

Therefore 5%k is a subnet of {s}, i & . By definition of each  has
the property P; thus .ij @ 4, has the property P residually.

Proposition 3. Suppose a net {s3j, f & Z, has a property P residually.
Then every subnet of {3}, & Z, also has the property P residually.

Proof. Since {sj}}, & Z, has P residually, there is zp& I such that if
ip < 1, then § has P. Suppose {sty}, j &/, is a subnet of {sj}, i & I.
Applying (@) and @i) of Definition 2, we can findjg € J such that ify§ < j,
then ip < k(j). Hence if j§ < jj, 8 has the property P. The net {siy},
j & 4, therefore has the property P residually.

Corolllary. A net {sj}}, i & Z, has a property P residually if and only if
every subnet of {§}}, i G Z, has the property P residually.

Proaf. Each net is a subnet of itself (Exercise 1); hence if each subnet of
{sB, i & 1, has P residually, then {sy}}, { & Z, does also. The converse is
Proposition 3.

EXERCISES

1L Prove that every net is a subnet of itself. [Hint: Use J = 1 and let k be the
identity mapyiing]

2. Prove the converse of Proposition 2. That is, if a subnet {sij},j & J, of the
net {sy}, t € I, has a property residually, then {sf, { & I, has the property
cofinally.
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3 Let I and J be directed sets and {8 and {ti} be nets indexed by I and J,
respectively, in some set X. Let I X J be directed as in Section 6.2, Exercise 3
Define a function s X tfrom I X J into X X X by (¢ X G, j) = @&, t).

a) Prove that s X & defines a net in X X X.

b) Prove that if $3%i& I, and {&j},j & /, both have a property P resid-
ually or cofinally, then {8, tj)}, @,j) & I X J, has the property P in the
same way that both nets have it.

¢) Suppose M and M" are directed sets and k and K are functions from M
and M’ into I and J, respectively, such that s¥k and t5% are subnets of
£ i6 I and {j},j & J. Define the obvious function

KXK' :MX M IXJ.

Prove that (8 X ©)=(@ X ki) is a subnet of {(s i)}, G.j)E I X J.

4. Find an example of a net which has a property P cofinally, but such that no
subseguence of the net has the property residually. This in turn will be ac-
complished if we find a net no subnet of which is a subsequence. To find such
a net, consider Example 1 of this chapter. Let g & X be the function which
is identically 0, and let T (X, g) be the set of all neighborhoods of g. Let 8 be
a selection function from T(X, g) into X. Prove that the net {&f}j V & T(X, g)
has the property of being in every neighborhood of g residually, but that no
subsequence of this net has the property; in fact, prove that there are nmo
subsequences of {sy}, V& T(X, g), at all.

5 Find a net in the set N of positive integers which has the property cofinally
of being equal to every positive integer. Describe explicitly the subnet of
this net which is residually equal to 3

64 CONVERGENCE OF NETS

Thus far we have primarily studied the idea of a net in an arbitrary set
without regard to any topological structure that might be on the set. But
just as, in Chapter 2, we were interested in the convergence of sequences
in metric spaces, so now we are interested in finding a notion of con-
vergence for nets in general topological spaces which generalizes the notion
of convergence of sequences. We note that the criterion for convergence
of a sequence in a metric space can be restated: A sequence {sp}, n & N,
converges to y if and only if given any neighborhood U of y, then {sy},
n € N, is residually in . We therefore make the following definitiom.

Definition 3. Let X, r be any topological space, and suppose 3}t & 7,
is a net in X. Then {ss}j, i & I, is said to converge to a point y of X if
{si}, t & I, is residually in every neighborhood of y. If {sd}, 1 & I,
converges to y, we write § —y. In other words, s; —y if given any
neighborhood U of y, there is iQ & I such that if ip < 1, § & U. The
point y is called the limit of {sg}, 1 & I.
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Example 9. If X is any topological space, x € X, and T{X,x) is the
directed set of neighborhoods of x, then for any selection function
s: T(X, x) —X, the net §&&h, U & T(X, x), converges to z. For let ¥ be
any neighborhood of x. Then since & & U for each U & T(X, x) and
V< Umeans UCVF,if F < I, sy & F.

Example 10. Again consider Example 1. We have seen that no sequence
of elements of A converges to g¢¢ We now show that there is a net {&3,
i & 7, such that § —g and § & A for each i 6 I. Let T(X, g) be as
defined previouslly. We wish to prove the existence of a selection function
s from T(X, g) into X such that

s e hA foreach W & T(X, p).

This will be accomplished if we show that for any finite subset F of R,
the set of real numbers, and for any positive number p,

U@ E,p) A &é&

(fior the family of U(g, F, p) is Rg, and hence any neighborhood of g con-
tains a neighborhood of this formn). This was already done, however, in
proving that #& Cl A. Therefore the net {sw}, W & T(X, g), where
sw &1 N A, converges to g. We thus see that even though no sequence
of elements of A converges to g G Cl A, there is a net of elements of A
which converges to g. We seem therefore to be well on our way to gen-
eralizing Proposition 1L

The reader may feel that at least sequences are sufficient for doing
whatever has to be done pertaining to the ordinary space R of real numbers
(that is, R with the absolute value metric), and that nets are only of use
in dealing with “screwball”*topological spaces such as that given in Ex-
ample 1. This is not at all the case, but to help convince the reader that
nets are of great value even in real analysis, we give the following example. *

a=xp) bb=xn
r |
E xx d2 =3 Xy =

Figure 61

Example 11. Let [, b] be a closed interval in R, the space of real numbers
with the absolute value metric. A partition P of [, & is a finite collection
of points

= a < X < 32 < === xp=i < Xp= b

* Actually, Riemann integrals can be adequately handled entirely in terms of
sequences, but the use of nets is more elegant. Many important notions, how-
ever, depending on the concept of convergence cannot be handled adequately
without appeal to something more general than sequences.
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(Fig. 6.1). The mesh of P, denoted by m(P), is defined to be
max(x; — %itdh i = 0,...,n — 1

where n is the number of points in the partition);

thus the maximum mesh of any partition of [, b] would be b — a. Suppose
Pi and P2are two partitions of [, b]. Then P xis said to be finer than P
if P2CHPi; if P2CHA,, then m(Px) < m(PP), since Pj has at least as
many points as P2 Set Px < P2if Pj is finer than P2 If we let @ denote
the family of all partitions of [@, b], the reader can show that < makes @
into a directed set.
Let £ be any function from [a, & into R. For any partition P, say
P consists of
xp=a < x{ < === zp i < XP= Db,
define
=il
s¢/, s(f, _ P)am) Yj f(— xi)
i=
and

&, P) = Z — ;). f(xi+-

1=

Then &, —) and s(f, —) define nets in R, that is,

WHEFY, PEP, and {&i/P)), P

If the former net converges, its limit is called the upper Riemann integral
of f over [, B]; if the latter net converges, its limit is called the lower
Riemann integral of £ over [, b]. If both nets converge to a common limit,
this limit is called the Riemann integral of £ over [, b], commonly denoted
by $(6) dx.

Admittedly, this example has been somewhat sketchy. The interested
reader, however, can find this topic developed at length in most books in
real analysis. It should indicate, though, that nets do furnish a powerful
and effective tool in defining and studying a concept known to the reader
from elementary calculus.

We now prove some of the more fundamental properties of the con-
vergence of nets.

Proposition 4. Suppose {&%, i € Z, is a net in X such that {&}, 1 & Z,
is residually constant; that is, there is y € X and i9& I such that if
ip< i, §§ = y. Then § —y.

Preafi. Since any neighborhood of y contains y, {si}, i € Z, is residually in
any neighborhood of 3} hence £33} 1 € 7, converges to y.
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Proposition 5. If sy—y, then every subnet of {&}, ¥ & Z, also con-
verges to y.

Proef. Since §—y, {8y}, i € 7, has the property of being in every neigh-
borhood of y residually. Them, by Proposition 3, every subnet of {sy},
{ & 7, also has the property of being in every neighborhood of y residually.
Therefore every subnet of {8}, f & 7, converges to y.

Proposition 6. If every subnet of a net {sj}}, i € 7, has a subsubnet
which converges to y, then sy—% This is to say that if {8y}, & 7,
does not converge to 7, then there is a subnet of {sj}}, ¥ & 7, no subnet
of which converges to y.

Proof. Since {§}, 1 & Z, does not converge to y, there is a neighborhood U
of y such that there does not exist any i@ €& 7 such that i® < i implies
syg U. LetJ = {j € I \sj & U}, and let k be the identity mapping from
J into 7. Then sk is a subnet of {s}, f € I (Exercise 1). But each

is not an element of U. Therefore there cannot be a subnet of J&d,
which converges to y.

We now prove the long-awaited generalization of Proposition 1.

Proposition 7. If A is any subset of a topological space X, r, then
ze00IAM
if and only if there is a net {syf}, i & Z, such that
S§i—x and S§icA foreach igl.

Proof. Suppose first there is a net {8y}, i & Z, such that
§—>x and syc A foreach T 1.

Then each neighborhood of x contains at least one point of A. There-

fore x & Cl A.
Suppose x & Cl A. Let T(X, x) be the directed set of neighborhoods
of x, and let s be a selection function from T(X, x) into X such that

s(W) eW n A for each W & T(X, x).

We know that such a selection function exists because x & Cl A ; hence
every neighborhood of x contains some point of A. Then the net {{},
W e T(X, x), converges to x (Example 9).

Proposition 7 strengthens our opinion that we have not only general-
ized sequences properly, but have also generalized the notion of con-

vergence propenily.
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It was shown that any sequence which converges in a metric space
converges to a unique limit (Proposition 6, Chapter 3). We might then
wonder, In what types of spaces do convergent nets have unique limits?
The next proposition answers this questiam.

Proposition 8. A space X, r is T2if and only if given any convergent
net {83, 1 & Z, in X, the limit of 8343} i & 7, is unique.

Proaf. Suppose X, r is T2, but that there is some net {331 & 7, in X such
that {&%, 1 & /, converges to distinct points £and y. Since X is Tg, there
are neighborhoods 47and F of x and y, respectively, such that U n ¥V = ¢
Since §j —% and st =y, {s3)j, 1 & /, is residually in both {7 and F¥. There-
fore there are  and 7 such that i < i implies ${ & U and #, < i implies
§ & F. Since [ is a directed set, there is7 & 7 such that zp < j and ig X j=
Therefore sy & I7 D ¥, a contradictiom.

Suppose X, r is not T2 Then there are distinct points x and y of X
such that every neighborhood of x meets every neighborhood of y. Let
T(X, x) and T(X, y) be the directed sets of neighborhoods of x and y.
Then T(X, x) X T(X, y) is a directed set [dimseted by defining (UyV) <
W'yv*" if U'C U and F’' C F as in Section 6.2, Exercise 3]. Since U n
F & ¢ for each (£7, ¥) & T(X, &) X T(X, y), there is a selection function

s T(K, 9 X (X, y) =X
such that s([/, ¥) ¢ U fi F. Then

{0 (NG F) € T(X, y), xy)
is a net in X which converges to both x and y (Fig. 6.2).

v

Figure 6.2

Example 12. Lest it seem peculiar to the reader that a net should be able
to converge to several poimts, let him remember that if X is a set with the
trivial topology, then any sequence {sp}, n & Nyin X converges to every
point of X. For if x & X, then the only neighborhood of x is X, and every
sequence in X is residually in X. Admittedly, however, the nicest spaces
are those where convergent nets have unique limits. This is why many
topologists restrict their attention only to spaces which are at least T2
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EXERCISES
L In Proposition 6, prove that s5kis a subnet of {s;}, i G L.

2

8

Suppose X, D is a metric space and &, 1 & 7, is a net in X.

a) Suppose § —>x. Prove that a subsequence of {sf}, 1 & J, converges to z.

b) Prove that if every subsequence of §:3 converges to x, then §; —x.

¢) Prove (@) and (b) when it is merely assumed that X, f is a first countable
space (Section 6.1, Exercise 2).

Let X be a set. Suppose a “fule” of convergence is given which satisfies

i) § —>x implies every subnet of {331 & 7, converges to x, and

ii) if a net {sg}, { € 7, is residually constantly equal to y, then sF— ¥.

Define a subset A of X to be closed if and only if for each net &3, i & 7,
such that § & Aforeachi & 7and § -y, ¥y € A.

a) Show that the set of closed subsets of X defines a topology ¥ on X.

b) Show that each net which converges according to the original rule of
convergence also converges with respect to f.

¢) Show that some net which did not converge with respect to the original
rule might still converge with respect to r.

Prove that the only nets which converge in a space with the discrete topology
are nets which are residually constant.

Let N be the set of positive integers. Diseuss the convergence of nets in N
when N is given each of the following topologjes.

a) {0} } {N, 03}

b) t = {UC N AU contains all but fimitely many elements of N}

¢) the subspace topology from R with the absolute value topology

Let N, the set of positive integers, have the topology in Problem 5(b). Show
that every net in N has a convergent subnet.

. Suppose X is any set and * and t are two possible topologies for X. Prove

that ¥ C ¢ if and only if every net in X which converges with respect to r
also converges with respect to +'.

Find a criterion in terms of nets for a space to be Ti. Do likewise for To-

65 LINVETPOINTSS

Definition 4. Let {si},i & Z, be any net in a space X, r. A pointy of X
is said to be a limit point of {§}, { & Z, (mot to be confused with limit)
if {si}, i € Z, is cafinally in every neighborhood of y. That is, y is a
limit point of {§j}, i & Z, if given any neighborhood U of ¥ and any
elements i and if of Z, there is iff & I such that i < i¥, ¥ < z”, and
=< U.

Note that if §j —, then y is a limit point of {&%, 1 & I. On the other

hand, a net need not converge to a limit point, as the following example
demonstiraties.
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Example 13. Let R be the space of real numbers with the absolute value
topology. Let {sp}, n € N, be the sequence in R defined by sp = (—Dh
If n is odd, then sp = —1, and if n is evem, sp = 1. Then {sp}, n €N,
has both —1L and 1 as limit points. For if U is any neighborhood of 1 and
m and m! are any two elements of N, then there is an even integer m"
greater than both m and m’, and § € U. Thus Lis a limit point of {sp},
n € N; similarly, —1 is also a limit point. We note that even though the
space involved is T'z/ a net, here a sequence, may have a number of dif-

ferent limit poinis.

Howevar, {sp}, n € N, does not converge to either 1 or —1L For sup-
pose sp — L. Since R is T'g, we may find neighborhoods U and ¥ of 1 and
—1, respectivelly, such that U fi ¥ = ¢ Then {sp}, n € Nyis residually in
Uya contradiction to the fact that {sp}, n € N, is cofinally constantly —IL
and —1&UW/. Similarly, sp /A —1L

We note, howewer, that if we let Nf represent the set of positive even
integers, N" represent the set of positive odd integers, and k' and k" be
the identity mappings from N” into N and N into N, respectively, then
s¥K and $k" are subsequences of {§}, n € N, which converge to 1 and
—1, respectivelly. We might conjecture then that even though a net need
not converge to one of its limit points, some subnet of that net might. We
prove this conjecture in the next propositiom.

Proposition 9. Let Xyr be a topological space and £ ¢ € 7, be a net
in X. Then y is a limit point of {sf}, t € 7, if and only if {&3},i € 7,
has a subnet which converges to y.

Proof. Suppose {&J}, i € 7, has a subnet which converges to y. Then there
is a directed set J and a function k from J into [ as in Definition 2 such
that sok is a subnet of 33 i€ I, and —y. Suppose U is any neigh-
borhood of y. Then {sky},j € J, is residually in U, that is, there is jip
such that jo < j implies 8ij € U. Suppose i and " are any two elements
of I. Then since I is directed, there is i & [ such that i < {”and i < i".
But k(j6) is an element of /7, and {skj},j )/, is cofinal in {&},i & I. We
can therefore find j* € J such that

ko) € Hf) and i < k().

Since k is order-preserving, jo < j; hence skj>€ U. Since < is transitive,
i < k(@) and ' € k("). In sum then, given i and 1" in 7, we have found
k@) € I such that

i <k@), <k@), and sk.eU.
Therefore {st}, i € /, is cofinally in U, and hence y is a limit point of

{&} ce



130 Convergence 6.6

2 Prove the corollary to Proposition 9
3 Let {§}, i € I be a net in a space X, r and let A be the set of limit points of

{si}, i € I. Prove that {stli € 1} U A is a closed subset of X.
4. Find all the limit points of each of the following sequences.

a) sp = 1/n in the set of real numbers with the order topology

b) sp = (—)nin the set of real numbers witiththe ttheairbeipdltenology

¢) sp — (—1)nin the set of real numbers witilihthe dilberelisctepeltagology

d) spn = n in the set of real numbers with the absolute value topology

Let X, r be a space with the property that any net in X which has a limit
point converges to that limit point. Discuss the various possibilities for the

topology on X.
Let R be the set of real numbers with the absolute value topology. A sequence
{sr}, n E N, is said to be bounded if there are nsall numberss m andl M sucth

that m < sp< M for all n & N. Prove thhatanyabyuhdaddesysegeenioe B inf
has a limit point. Prove that every convergent sequence in R is bounded,
but that not every bounded sequence is convergemi.

7. Prove or disprove: There exists a sequence of real numbers which has every
real number as a limit point. Prove or disprove: There exists a net of real

numbers which has R as its set of limit points.

6.6 CONTINUITY AND CONVERGENCE

The following proposition relates the convergence of nets and the con-
tinuity of functimms. It is a gemeralization of Proposition 10 of Chapter 2,
thus strengthening the assation that nets are a good generalization of

sequences.
Proposition 10. Let / be a function from a space X, r to a space ¥, .
Then [ is continuous if and only if for every net {s3,% € I, in X such
that 8j —>x, the net {fi(s2}, i € I, in ¥ converges to §(%).

Proof. Suppose [ is contimuouws, but also suppose there is a net {si}, 1 € I,
in X such that sz =>x, but {f(sp)}, i € I, does not converge to f(x). Then
there is a subnet of {f(s?}, i € I, no subnet of which converges to f{x)

(Proposition 6). Let

g} 165

be such a subnet. Then there is a neighborhood V of  for which {/(sfg)},
j € J, is residually not in  But since f is continuouut since /isis. amghwou
borhood of x. Since 8i >z, {s,}, ¢ € I, is residuallfsth ¢ (V)is Basid{smll, in
j & Js asubnet of {s1}, i € 7, which is not residually in =7 (¥). There-
fore {si} had Esyubsetswhidt dods mabesmodrgorterye teonfradichivadic

to Proposition 5.
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Suppose for each net {s3}, & I, in X such that st —x, /&) —f(%),
but / is not contimuous. Then there is a neighborhood ¥ of /(%) such that
for no neighborhood U of x do we have f(U) € V. Let T(X, x) be the
directed set of all neighborhoods of x. Let $be a selection function from
T(X, x) into X such that & V for all U & T(X, x). Then sy — x,
but f(sy) HH&), a contradictiom.

We now use Proposition 10 to prove several results about nets in
derived topological spaces.

Proposition 11. Let X, r be any space and R be an equivalence rela-
tion on X. For each x & X, let x denote the equivalence class of x.
Then if § —>x in X, § —> x in the identification space X/®&.

Proof. The function defined by x —x is continuouss. We then apply
Proposition 10.

Proposition 12. Suppose {53, i € Z, is a net in the product space
Xj Xj. We will denote the%th coordinate of § by sj; thus {s}}, i & I,
will be a net in Xj;.. Then

(memember we have restricted our attention in this text to the product
of countably many spaces) if and only if

4-> Y,

Proof. Suppose § —y. Then the projection mapping from Xj Xj into
Xi;, T} is continuous. Therefore, by Proposition 10,

Pi(si) = sB—> pAy) =

Suppose s —>yj for eachj € J. Let U be a typical basic neighborhood
for y in the product topology. Then U = Xj Wj, where each Wj is an
open subset of Xj; in particullar, each Wj is a neighborhood of yj. Also
Wj = Xj for each j € J, except finitely many, say j\, ---,jp. For each
j&d, except ju ...,jn, st € Wj. Forji}... ,jn we can find i{7...,p
in I such that if ig < 1, s\ye Wig g = L,...,m Since / is directed, we
can find, using induction if necessary, i & I such that if ip < 1, s{y ¢ Wj ,
g=1,...,n. Thusifip < i, s{ € Wjforeachj /4, and hence if < iy

$i & X Wj.

Therefore .1 & 1, is residually in Xj Wj. Since Xj Wj was a typical
basic neighborhood and every neighborhood of y contains such a basic
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neighborhood, {3} i & , is residually in every neighborhood of y; there-
fore § — y.

It is not true that if F is a subspace of X, 8%} 1 & 7, converges in X,
and §; € F for each i & 7, then {3, i € 7, considered as a net in ¥ also
converges. This is not even true for sequences, as we see from the follow-

ing exampille.

Example 14. Let R be the set of real numbers with the absolute value
topology. Then the sequence defined by sp — L/n converges to 0 in R,
but does not converge at all in the subspace (0, 1), since (@, 1) does not
contain the limit 0. The following is true, however.

Proposition 13

a) If 8{—7in X and Y is a subspace of X such that §{ & ¥ for each ©
and y & F, then § —y in F also.

b) If § yimX and F is a closed subspace of X, then if each § ¢ F,
then y € F as well, and sf —y in E.

Proef. The proof of (@) is left as an exercise. Statement (b) follows im-
mediately from (&) and Proposition 7.

EXERCISES

1. Prove Proposition 13

2. Let {Xj, #j}, j & 4, be a countable family of nonempty spaces, and consider
the product Xj Xj of the sets {Xj},j & J. How much of Proposition 12 is
true if X/ Xj is given a topology coarser than the product topology? How
much of Proposition 12 is true if X/ Xj is given a topology finer than the
product topology?

3 Prove that a function / from a space X, f onto a space F, ' is a homeo-
morphism if and only if a net {8}, i € 7, converges to 4 & X if and only if
i & 1, converges to f(x) in F.
4. Using the results of this chapter, prove that if / is a continuous function from
X, r into F, ¥, thenf(Cl 4) C CI/(i4) for any A C X.
& Also using methods from this chapter, prove Proposition 21, Chapter 4.

6. Suppose £ is a continuous function from X, r into F, ¥'. Let {sf},1 & 7, be a
net in X, and suppose H is the set of limit points of this net. Prove that/{(td)
is a set of limit points for {ffed)}, 1 & 1. Is it necessarily a complete set of
limit points for {/(&)}, £ & Z, or might there be others as well? [Hint: Con-
sider the sequence defined by sn = 1/n in (@, 1), and the identity function
from (@, 1) into the space of real numbens.]

7. Let X/R be an identification space of a space X. Discuss the conditions R
must satisfy for the following to hold: For any net {s;}, 1 € Z, in X which
converges to a point x) {8}, ¢ G 1, the identification net in X/IR converges
only to x.
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67 FILTERS

There is an alternative approach to the concept of convergence in a general
topological space through the notion of a filter. While the study of filters
is of great importance in point set topology, we will accomplish much of
what filters might be useful for by using nets. Nevertheless, we will
introduce the notion of a filter now and study some of its basic properties
for two reasons: (1) the notion of a filter is sufficiently important that
anyone studying even introductory point set topology should at least know
what a filter is; and (2) the reader should come to realize that, even in
mathematics, there may be many means to the same end. A proposition
in mathematics may have many prooffs, and different machinery can be
developed to accomplish the same task. We will in this section try to
stress the relations between nets and filters and the analogies in their use.
We would expect that since nets and filters are both designed for the study
of convergence, there will have to be many theorems about filters com-
pletely analogous to theorems stated in terms of nets.

Definition 5. Let X be any set. A collection @ of nonempty subsets of
X is said to be a filter on X if

DN X))
ii) if A and B are in @&, then A n B is also in &;
iii) if A € @ and A C B, then B € @.

If X, r is a topological space and ¢ is a filter on X, then & is said to
converge to x, denoted by & — x, if every neighborhood of x is a member
of @&. @ is said to have & as a limit point if every neighborhood of x
meets every member of @&. That is, @ —x if given any neighborhood
Uof x, U e @& #is a limit point of & if given any neighborhood ¥ of
x,and any A €@, then UM A % ¢

Example 15. If X is any set and Y is any nonempty subset of X, then the
family & of all subsets of X which contain ¥ is a filter on X. We verify that
@ satisfies Definition & Since ¥  ¢; each set which contains ¥ is non-
empty.
i) Since ¥ C ¥, ¥ € @; hence @ & ¢
ii) If Aand Barein @, then YC A and Y CB;thus Y C A n B,
and therefore A DB € 4.

iii) If A € @ythen ¥ C A. Therefore if A C B, then Y C A C B, and
thus B € &. Hence & is a filter on X.

If X, r is a space and x € X, then T(X, x), the family of all neighbor-
hoods of x, is not a filter on X, since given any neighborhood U of x, it is
not necessarily true that any subset of X which contains U is also a neigh-
borhood of x. If we let T*(X, x) be the family of all subsets A of X such
that A contains a neighborhood of x, then T*(X, x) is a filter on x. Moue-
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over, since T(X, x) C T*(X, x),
™X,x) - x.
(Compare this to Examples 3, 6, and 9.)

Example 16. Let X be any set and let ) be a nonempty collection of non-
empty subsets of X with the property that if B and B” are in @ then there
exists B & ®such that B” ¢ B m Bf. Let

e={A|BCA, Bca

Then G is a filter on X (Exercise I). & is said to be the filter generated by
Wwand W is said to be a basis for the filter &

Example 17. Suppose {s3}j, i & Z, is a net in a set X. Let @be the family
of all subsets of the form Bj = {sj (| < i), for allj € I. Then the family
W is a nonempty collection of nonempty subsets of X having the property
that if Bj and By are members of 3 then there is B}’ & @such that

By C Bj fi Bj/

(Exercise 2). ®thus forms the basis for a (unique) filter @ as in Example
16; specifically,

a= {A||BjC A for some j g I}.
@ is said to be the filter generated by the net {s;%},% & 7.

Proposition 14. Let {s},1 G J, be anet in a space X, r and let @be the
filter generated by {s3},1 & 7. Then

a) @ —x if and only if sf — x;

b) G has £ as a limit point if and only if z is a limit point of {s}, % & L.

Proaf

a) Suyppose §F—>x. Then given ey meigiboteed O of x, tiare is
j 811 such that Bj (wsing the notation of Example 17) is a subset
of U. Since Bj C U}U & @ Therefore every neighborhood of x is
in &, and hence & —x.
Suppose G — x. Then given any neighborhood U of x, there isj € I
such that Bj C U. Hence ifj < i, §§ € U. Thus {§}, i 7, is
residually in every neighborhood of x, and therefore X.

The proof of (b) is left as an exercise.

In Example 17 we associated a filter with any net. In order for this
association to be at all meaningfull, Proposition 14 was a necessity. For if
Proposition 14 were not true, then a net might converge without the
corresponding filter convergiing, or we might have net and filter converging
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to different poimts. But if nets and filters are merely to be different ap-
proaches to the same concept,, this would be intolerablle. We now show that
starting with a filter @, we can associate a net with @€ which has the same
convergence properties as @.

Let @be a filter on a set X. We will construct a net based on @ @is
a collection of nonempty subsets of X. If A and B are in @, let

A<B if Be A.

Tt is easy to verify that this makes @into a directed set. Since each A ¢ @
is a nonempty set, we can find a selection function s from the directed
set @into X such that s(A) € A. Then {33}, A ¢ @ isanet in X called a
net based on @-

Proposition 15, @—> y if and only if every net {sa}, A & @, based on
@also converges to y.

Proof. Suppose &€ —y and {54}, A € @, is a net based on @ Let U be
any neighborhood of y; since @ =y, Uc @ Then if 7 < 4, A € U, for
any i €lG. Hence if U < A, sA&g A C U; therefore {33}, A ¢ @, is
residually in U. Thus sA —Z

Suppose @ 4»y. Then there is a neighborhood U of y which is not a
member of @ If A € @, select sA 6 A — U; such a selection is always
possiblle, for if A — U = @, then A € U, which would make U a member
of @ Then {s4}, A & @, is a net based on @which does not converge to y.

Proposition 16, Suppose @is a filter on a space X, +. Then x is a limit
point of @if and only if there is a filter & such that @C @ and a" — x.

Proof. Suppose x is a limit point of ¢&. Let
= {ANU| A & & and U is a neighborhood of x}.

Then 38 is the basis for a filter @ on X (Exercise 3). Since ADUE U
for each A € @ and any neighborhood U of x, U & @". Therefore every
neighborhood of x is a member of @, and thus @ —x. It remains to be
shown that @ C @. This follows at once from the fact that X is a neigh-
borhood of x; hence if A € @ A N X = A is a member of 83, and hence
of &".

Suppose on the other hand that there is a filter @" such that ¢ € @’
and & —=>x. Let U be any neighborhood of x and A be an element of d.
Then U and A are both members of @; hence

AnUesa@a

by (i) of Definition 5 Since AN U g &, then A N U % §. Therefore,
given any neighborhood U of x, and any member A of @, A n U 2 §. Hence
x is a limit point of @
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Comparing Proposition 16 with Proposition 9, we find that the filter
analog of a subnet is afiner filter, where a filter @ is finer than a filter & if
ecga.

EXERCISES

1. Prove that @ in Example 16 is a filter.

2 Prove in Example 17 that there is By € ®such that B € Bj fi By-.
In Proposition 16, prove 3V is a filter basis.

Prove (b) in Proposition 14.

Suppose / is a function from a space X, r into a space ¥, " and & is a filter
on X.

8) Set /(@ = {/(A) ||A £ @}. Prove that /(&) is the basis for a filter @'
onY.
b) Prove that / is continuous if and only if given any filter @ on X such that
& — x, @' [fikee filter for which /(@) is a basis] —(x).
6 Suppose A is asubset of X, . Prove x € Cl A if and only if there is a filter @
on X such that @ —»x and A € Q.

7. Prove that a space X, r is T2 if and only if any convergent filter on X con-
verges to a unique limit.

8 Which of the following are filters? Which are filter bases? For those which
are neither filters nor filter bases, indicate which properties are lacking.

a) the family of subsets of a set X which contain ¥ C X
b) the set of all closed half-planes in R2 which contain (0, 0)
¢) the set of all open half-planes of R2
d) the union of two filters on a set X
9, State and prove the filter analogs of Propositions 4 and 5 of this chapter.

10. Find a criterion in terms of filters for a space to be Til

SN T )

68 ULTIRMNETS ANID WILTHRAHILTHERS

There is another concept involving nets which will prove useful in the
discussion of compact spaces; this concept is that of an ultramet. Actually,
the filter analog of an ultranet is more natural, since it is a bit difficult to
motivate the notion of an ultranet, except to say that it works. We there-
fore introduce the concept of an ultrafilter first and then pass to the net
analog.

Definition 6. An ultrafilter on a set X is a maximal filter on X. That
is, a filter @ on a set X is an ultrafilter on X if given any filter @' finer
than @ (e, @ C &), ¢ = &.
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Example 18. Let X be any set and x &€ X. Then the family of all subsets
of X which contain x forms an ultrafilter @ on X. For if @' is any filter
finer than Gland A’ € &%, then either x & A” or x & A”. Now if x € A",
then A’e@ Ifx& A\thenxEX — A hence X — U ERC @'. But
then

AnE—-AY=pea,

a contradiction to the fact that each member of @ is nonempty. Therefore
x is an element of each member of &*; hence &' C @&, and consequently

e =@a.

Proposition 17. A necessary and sufficient condition that a filter & on
a set X be an ultrafilter is that given any subset A of X, either

A et or X —-—Aght.

Proaff. Suppose @ is a filter on X with the property that either Aor X — A
is a member of & for any A C X. Suppose @’ is a filter on X which is finer
than @& To prove that @ = @&f, it will suffice to prove that each element
of @* is also an element of &. Let A" e &”. If A’ € @, we are done. If
A’ & &, then

X—-Aeace.

But then A" and X — A’ are both members of @'\ hence
AnX—A)=6

is a member of @", a contradictimm.

Suppose now that @& is an ultrafilter on X, but there is a subset A of X
such that neither A nor X — A is a member of &. We will find a filter &’
on X which is strictly finer than @. If AnB  ¢for each B € &, then
we can take

= {AnB|Bcdad}
as a filter basis for a filter @&’ which is strictly finer than & (gimce A € &
but A & @&).

Suppose, however, that A N Bx = ¢for some Bxe @&. We will show
that

X=—AnB ¢
for every B € @&. Suppose (X — A) n Bz = ¢-for some BRE @ Then

B,AaB2= (BinBHAdd)u (BinBd)nA A
@i nBn 4) «C@?‘ U@g%ﬁ)‘@(_ o
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a contradiction since Bi N B2 is a member of @ and hence must be non-
empty. Therefore
D= {(X— A nB|BEa}

is a basis for a filter € on X which is strictly finer than € (@imce @ con-
tains X — A).

Proposition 18. If X is any set, then every filter € on X is contained
in an ultrafilter.

Proof. Consider the family 8 of all filters & on X such that @C @.
% can be partially ordered by “i§ finer tham.”>Suppose @ = {&3%, k € K,

is a chain in . We now show that
s

D= {B||B e &f for some k EK}

is a basis for a filter @' on X. First, ®is certainly a nonempty collection
of nonempty sets, since each &kis a nonempty collection of nonempty sets.
Suppose B and B* are members of & Then andBB’ e= @, fiorssonee
£and A in X. But @ is a chain, and hence either GxC @&, or &k C @
assume the latter. Then B and B’ are both in @ and thus B n B' € €&
Hence

BAB &M

Therefore ®is a basis for a filter @' on X. Moweowsr, @ is clearly finer
than any member of . Hence @" is an upper bound in O for %L

Each chain in % thus has an upper bound. Applying Zorn’3 lemma,
9 therefore contains a maximal element @ Then @is an ultrafilter which
contains @

Proposition 19. Suppose f is any function from a set X onto a set ¥
and @is an ultrafilter on X. Let f(@) be the filter basis as described in
Section 6.7, Exercise 5, and let @ be the filter on ¥ that it determimnes.
Then @ is an ultrafilter on F.

Proef. Suppose A € ¥. In order to show that @ is an ultrafilter, we must
show that either A or ¥ — A is a member of @ (Proposition 17). Since
@ is an ultrafilter on X, eithar/=1(A) or f~1(¥F — A) — X —F=~1(A) is
a member of @ If /~1(A) € @ then

firdwy) = A d@) c .
If X —f=1(A), then ¥ — A & @. Therefore @ is an ultrafilter on F.

Proposition 20. If @is an ultrafilter on a space X, r and y is a limit
point of & then @ —y.
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Proaf

b) Suppose A C F. Then {5}, i ¢ is residually in either/=1(A) or
X =§=XA). Therefore {fie)}, i € 7, is residually in either A or
F — A, and is hence an ultranet in F.

¢) Let U be any neighborhood of y. Since {si}, i & 7, is an ultranet,
it is residually in either U or X — U. Since # is a limit point of
{si}, i & I, the net could not be residually in X — {7. Therefore
{e}, i € 7, is residually in {7; hence s —y.

a) Let {&},i & 7, be any net in a set X and let &be the filter generated
by {sc}, i € /. By Proposition 18, @ C &, where @& is an ultra-
filter. We first show that {s}, i g 7, is cofinally in A for each
Ac@ Let Ac@ If &%, ig 1, is not cofinally in A, then
{sa i € 1, is residually in X — A. But then

X—=AgaecCce.

Therefore A and X — A are both elements of @, an impossibility;
hence 9 i & 7, is cofinally in A. Let

J={t,A)|icl Ac @@, and stc A}.

Since @ and 7 are both directed sets (@ is directed by letting
A < A'if A’ C A), J is directed. Define k: J — I by k(i, A) = 1.
Then sk is easily verified to be a subnet of {s¥},7 € /. By defini-
tion of s ok, s o kis residually in each A ¢ @. But @ is an ultrafilter
and hence contains any subset of X or its complement. Thus sk
is residually in any subset of X or its complement, and is therefore
an ultranet in X.

EXERCISES

N

In Proposition 22, verify in the proof of (a) that s5kis asubnet of {s;},1 & .

. Prove (b) of Proposition 21. Show that the converse of (b) is false.
. a) Let {s;}, 1 & Z, be a net in X, and suppose @ is the filter generated by

{s8hig I Is {si},i G I, then a net based on @ Is it the only net based
on @

b) Suppose @ is a filter on a set X and {84}, A & & is a net based on &.
Is @ necessarily the filter which {s2}, A & @ generates?

. Which of the following sequences in R, the set of real numbers, are ultranets?

Note that the property of being an ultranet is independent of the topology
on R. r

a) sp= 1/n b) sh=n ¢) sn= I/m> d) sn= (=Dh
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5. a) Prove that a functiom/ from a space X, r to a space ¥, t"is continuous if
and only if given any ultranet {sj, 1 € I, such that —¥, 7(s) —F(¥)-
b) Prove that f: X, r — ¥, t" is continuous if and only if given any ultrafilter

@ in X such that & —¥, the filter generated by f(&) converges to 7(%).

6. Prove or disprove: A space X, r is 7% if and only if every convergent ultranet
in X converges to a unique limit.

7. Let N be the set of positive integers and % be the set of subsets of N con-
taining all but finitely many elements of N. Prove that $ is a filter. Prove
that any ultrafilter containing ¥ is nontriwiill, and hence there exists a non-
trivial ultrafilter on N.



7
COVERING PROPERTIES

7.L. OPEN COVERS AND REFINEMENTS

Some of the most important aspects of certain types of topological spaces
can be expressed as covering properties. The nice definitions given in this
chapter were not always used in the study of topology. As is usually the
case with a new discipliine, those who pioneered in topology thought cer-
tain properties were important for a space to have. The best means of
expressing those properties, best from the point of view of most elegant
and most workablle, were only developed from years of experience. The
student should be sophisticated enough to realize that areas of mathe-
matical study are not born full-grown but, as with human infants, require
a period of growth of many years before reaching maturity.

Compactness, the most important covering property, was once defined
as follows: A space X, r is compact if for every infinite subset A C X, there
is at least one y € X such that given any two neighborhoods U and U’ of
¥y, Un A and U' D A have the same cardinality. Even the novice in
topology will realize that this is a rather cumbersome definitiom. As more
begcame known about the property that this definition was intended to
gonvey, equivalent expressions of it became knowm. Compactness is now
defined as a covering property.* Certain other concepts valuable in the
study of topological spaces can also be best expressed as covering properties.

A cover of a space X, r is exactly what its name implies, a collection of
subsets of X which cover X, that is, whose union is X. Usually, however,
we wish the members of the cover to be sets of a particular form, generally,
open sets. We therefore state the followimgg.

Definition 1. Let X, r be a topological space. An open cover of X is a
gollestion {Ui}, ¢ € 1, of open subsets of X such that

UUi=X.
r

Let {Ui}, ¢ &I be an open cover of the space X, r. A collection

* Thg gld definition of compactness, however, is actually not equivalent to the
definitien 6f compactness as a covering property.
142
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{Vi}, y € J, is said to be an open subcover of {Uj},i € 7, if
{¥sjlvi€ 3} € {ti<|*E B}

(tthat is, each Vj is a Ui) and {Vj}, j € J, is itself an open cover of X.
The collection {Vj}, j € J, is said to be a refinement of {Uij}, % € I, if
{¥y}JiE 4 is an open cover, and for each Wj, there is Ui such that
Vi C Ui

Note that an open subcover is a refinement, but a refinement is not
necessarily an open subcowar.

Example 1. Let R be the set of real numbers with the topology induced
by the absolute value metric. Then

{N(x, 9 |x € R},
that is, the set of all 4-msjdithortoods in R, is an open cover of R. The set

{N(n, 9 ||n is an integer}
is an open subcover of {N(x, 4) ||x € R}. The set

{N(x, D) Ix € R)

is a refinement of {N(x, 4) ||x € R}, since every I-msighiborhood is con-
tained in some 4-msighborhood. In fact, every L-neegjitboriood in R is
contained in a 4-mjgihorhood of an integer; hence {N(x, 1) {|x € &} is a
refinement of {N(n, 4) ||n is an integer}, even though the cardinality of
{N(x, ) ||I¢ & R} is greater than that of {Ni(n, 4) [|n an integer}.

Example 2. Let X be a set with the discrete topology. Then {{x} ||x € X}
is an open cover of X. Moreowsr, this open cover has no proper subcower,
nor any proper refinement. If X has the trivial topology, then the only
open covers of X are (X, @} and {X}. (See Exercise 1)

Example 3. Let N be the set of positive integers with the topology deter-
mined by calling a subset U of N open if U contains all but at most finitely
many elements of X. Let {Ui}, 7 € I, be any open cover of N. Pick any
. Then Uj eontains all but at most finitely many of the positive integers;
say Uj excludes nif - ..,np. Since {Ui}, ¢ € /, is an open cover, every
element of N is in at least one of the Ui, and hence there are at most p
other members of {Ui}, i € I, say Uiy - -, Uipsuch that

N = Ui U Ui, U ===U Uip.

Thus {Ujf Ujy, ..., Uip} is a finite open subcover of {Ui}, ie 7. We
therefere see that every open cover of N (with the prescribed topology)
has a finite open subcowsr.
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EXERCISES

1. Prove the assertions made in Example 2.

2. Let R2be the coordinate plane with the topology induced by the Pythagorean
metric. Which of the following are open subcovers of

N Dl e 2 w | & e
Which are refimements of

(@ ¥).3) || & y) EERDY?

In the event a collection is not a subcowesr, or not a refinement, explain which
properties are lacking.
a) {N((m, n), &) |m and n are integers}
b) {N((@ 0), p) ||p a positive real numbesr}
©) {N((x, ¥), 1) |l x and y are rational}
d {N{x, ), §) [Ix and y are rational}
e) the family of all sets of the form {(x, ¥) || sx —a|\ \}y —bB\ < 1}, where
(@, b) is any point of R®

f) the family of all subsets of R2

3 Prove that R2 with the Pythagorean topology has a countable cover con-
sisting of p-neighborhoods. Prove that the set of real numbers with the order
topology has a countable cover consisting of intervals of the form (—p, p),
where p > Q.

4. Suppose the open interval (@, 1) is given the absolute value topology. Form
{Udsn -~ 1,2, 3 ... ,where Un = (I/(n + 1), 1). Prove that {f/,},nG N,
is an open cover of (@ 1I). Show that no fimite number of the Uncover (@ 1),
even though any fimite number of the Unmay be omitted and what remains
still give an open cover of (@ I).

5. Suppose ¥ is a topology on the set N of positive integers with the property
that any open cover of N has an open subcover which contains at most two
elements. Describe all possibilities for r.

7.2 COUNTABILITY PROPERTIES

One would rightly suspect that covering properties take the following
general form: If {Ui}, i € 7, is any open cover of a space X, r, then there
is an open subcover (or refinement) of {Ui}, i € I, satisfying some special
condition. One of the most natural conditions the subcover might satisfy
is a cardinality conditiom. Such a cardinality condition is given in the
following definitiom.

Definition 2. A space X, r is said to be a Lindeldf space if every open
eover of X has a countable open subcowsr.
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Example 4. The space presented in Example 3 is certainly a Lindelof
space, since every open cover of N not only has a countable subcower, but
even has a finite subcowar.

In order to discuss Lindelof spaces more completely, more terminology
is needed.

Definition 3. Let X, r be a topological space. X is said to be first count-
able if there is an open neighborhood system for ¢ such that fix is
countable for each x &€ M. (See Section 6.1, Exercise 2) X is said to
be second countable if there is a basis for r which consists of countably
many sets. X is said to be separable if X contains a countable dense
subset. (For the definition of a dense subset, see Section 3.6).

Example 5. Let R be the set of real numbers with the absolute value
topology r. For each x € R, let

dx = {N(x, I/n) ||n a positive integer}.

It is easily verified that the collection of fLXforms an open neighborhood
system for 7. Howewer, each @x is countable; hence R is first countablle.
{Aetually, from Section 3.3, Exercise 6, we have the more general result
that any metric space is first countattite) The set of rational numbers forms
a countable dense subset of R, and hence R is also separablle. Proposition &
will tell us that R is second countable as well, and therefore is Lindelof

(Proposition 3).

Example 6. Let X be any uncountable set with the discrete topology. For
each x € X, set 9x= {{z}}. Then the collection of 9x forms an open
neighborhood system for the discrete topology on X. Thus X is first
countablie. Since Cl A = A for every A C X (since every subset of X is
closed), the only dense subset of X is X itself. But X is uncountalbile, and
hence there is no countable dense subset of X; X is therefore not separablle.
X is neither second countable, nor Lindelof (Exercise 6).

Proposition L. Any second countable space is first countabile.

Preoff. Let X, v be any second countable space, and let @be a countable
basis for +. Then the collection of sets of the form

%= {B & @|x € B} forall xeX

forms an open neighborhood system for r (Chapter 3, Proposition 6).
Since @@ is countable, each Fx is also countablle. Therefore X is first
countablk.

Proposition 2. Any second countable space is separablle.
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Proof. Let X, r be a second countable space, and let @be a countable basis
for r. For each B € @ select x € Then {x# ||B € ®} is a countable
subset of X. The proof that it is also dense is left as an exercise.

Proposition 3. Any second countable space is Lindelof.

Proof. Let X, r be a second countable space with @as a countable basis.
Suppose {Ui}, i € I, is any open cover of X. We select a subcover of {Ui},
i € 7, as follows: Number the elements of @ sequentially, that is, B,
B2, ...,Bp, ... Select Bg from @ if there is a member Ui of the open
cover such that B C Ui. For each Bl selected, choose one Uj for which
Bk C U and call it Uky Since the collection of Bikselected must be count-
able, the collection of Uk{is also countablle. It remains to be shown that

{Uk{|| Bs was selected}

is actually a subcover of {Ui}, i € I. Since {Ui}, 7 € I, is an open cover
of X and each Uj is the union of elements of @ the collection of selected
Bk actually forms a refinement of {Ui}, 7 € I; therefore {Uk{\Bk was
selected} is an open subcover of {Ui}, t € 1.

For general topological spaces, no other implications hold between
Lindelof, first and second countable, and separablie, other than those
given in Propositions 1, 2, and 3.

The following proposition describes how these properties behave with
respect to subspaces and product spaces.

Proposition 4

a) Any subspace of a first countable space is first countablie.

b) Every subspace of a second countable space is second countahblke,
and hence is also separable.

¢) Every closed subspace of a Lindelof space is Lindelof; however, it
is not true that every subspace of a Lindelof space is necessarily
Lindelof.

d) The product space of a countable family of nonempty spaces is
second countable if and only if each component space is second
countablle. (This is an example of a proposition which does not
generalize to the product of an arbitrary family of spags)

e) The product of a countable family of nonempty Lindelof spaces
is not necessarily Lindelof, but if a product space is Lindelof and
each compomnent space is T\, then each component space is also
Lindelof.

f) Any open subspace of a separable space is separabilke.

g) The product of a countable family of nonempty spaces is separable
if and only if each component space is separabie.
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The next proposition shows that in metric spaces, the properties of
being Lindelof, separable, and second countable are all equivalemt. We
have already seen that any metric space is first countable. Example 6 to-
gether with Exercise 6 furnishes an example of a metric space which is not
second countahlle.

Proposition 5 If X, D is a metric space, then the following statements
are equivalent:

a) X is Lindelef. b) X is separablle. ¢) X is second countable.

Proaf. Since it has already been shown in Propositions 2 and 3 that any
second countable space is both separable and Lindeloff, it will suffice to
show that if X is either separable or Lindeloff, then X is second countahle.

Statement (b) implies statement (¢). Suppose X is separable and let
{¥n ||In € N} be a countable dense subset of X_ Let B(n, m) = N(xp, I/m),
where m and n are in N. We shall show that

@"" {B(n, m) "’m,,mE N}

is a basis for the metric topology on X. Let U be any open subset of X
and let x be any point of U. Since U is opem, there is a positive number p
such that Nz, p) C U. Choose any integer m > 2/p. Since N(x, 1/2m)
is open and {xp\n & N} is dense, there is some

xp € N(x, 1/2m)

(Proposition 14, Chapter 3). Then x € N(xp, 1/m). Since m > 2/p,
I/m < p/2; thus N(xp, Iym) C N(xfp). Therefore N{xp, I/m) C U as
well. But then U is the union of members of @ [flor x was an arbitrary
element of U and N(xp, 1/m) € @ Since U was an arbitrary open set, @
is a basis for the metric topology. Moreover @is countable, and hence X

Cl N(a, p/4)

Statement (@) implies statement (b). Suppose X is Lindelof. Choose
some p > 0, and let E be a maximal subset of X having the property that
D(a, b) > p for all a,bEE. Such a maximal subset can be shown to

A

NN
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exist by Zorn’s lemma. For each a €17, consider
N@,p/2) and V=X —\ {ClIN(a,p/4) |la €E}

(Fig. 7.1). V is open (Exercise 2). Then {V} U {N(a,p/2) [aEE} is a
covering of X by open sets. Since X is Lindeloff, there is a countable sub-
covering. But if N(a, p/2) were omitted from the original cover for any
a € E, the remaining sets would fail to cover X since none of them would
contain a. Therefore {N(a, p/2) ||a € E} must itself be countable; hence
E is countablle.

Carry out the construction described above for p = I/m, n =
1,23, ..., and get {En}, n € N, where Ep is the set corresponding to
p = 1/n; that is, Ep is a maximal set having the property that D(a}b) >
1/ for any a,bE Ep. Let § = Ujy Ep. Since § is the union of countably
many countable sets, S is countablle. We now show that S is dense in X.

Suppose x € X and g > 0; we will show that there is z € S such that
z € N(x, 9). Take n > 1/q. Then there is z € En such that z & N(x, g).
For if not, then x has the property that D{xyw) > 1/n for each w € Ep,
but x & Epj and thus Ep would not be maximal. If U is any nonempty
open subset of X, choose x & U and ¢ > 0 such that N(x, ) C U. Then
N(x, g), and hence U, contains an element of S. Therefore S is dense
(Proposition 14, Chapter 3).

Corollary. The space R of real numbers with the absolute value
topology is second countable (Example 5) as is the product space Rh

for any n (Proposition 4d).

We close this section with a proposition that will be needed in the
proof of a key result in a later chapter.

Proposition 6. A T3 Lindelof space is T4

Proof. Let X, r be a T's Lindelof space and let A and B be disjoint closed
subsets of X_ If x & A, then X — B is a neighborhood of x. Since X is
Tg there is a neighborhood Ux of x such that Cl UxC X — B (Chapter 5,
Proposition 4). Similarly, if x € B, there is a neighborhood Ux of x such
that Cl UxC X — A. If x is not an element of either A or B, then X —
(A U B) is a neighborhood of x; hence we may find a neighborhood Ux of
x such that ClUxC X — (AUB) (@nd thus ClUxD (AUB) = ¢)
The family of Uxfor each x & X is an open cover for X_ Since X is Lindeloff,
this cover has a countable subcover {U¥p|ln = 1,2, 3, ...}

Let Uj, U3 - - . be the U (relizbeled for convemience) which meet A,
and let Fi, V2, ... be the Uxy which meet B. Then for each positive
integer n, Cl Up fi B = ¢tand Cl Vpn A = §; moreover A C Uat Upand
B C Ua Vp. Define Wj = Uxand set ¥Yx= Vx— Cl Wx. Let W=
U2— Cl¥x and ¥2= V2— (ClWxUCIWZ. Suppose Wp and ¥p
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have been defined. Then set
Wil = (Cl Bpa CLY Qly-,- uCbE By —==u Ol F)

and
Yorl = Vil — @ Wy uCl  U---UCIW, ;). W2U===t

Wy is always an open set since

wee N (X — (Culm X~ ([@FriLpy= CI F, X)
- = Bl QU-—CLEFRy_p9gY F, _X);

hence Wp is the intersection of two open sets, and is therefore opem. Similar
reasoning shows that ¥p is open for each n.

Set H = UV Wpand K — Uy Yp. Since H and K are the union of
open sets, they are opem. Suppose a £iA. Then a € Uy for some n, and

But for any k, Cl ¥kC Cl Vkand Cl Vkn A = & Therefore a & Cl ¥k
for any k.  We have then that a € Wj. Therefore A C Uat I5, = H.
Similarly, B C K. In order to show that X is T4, we now have merely to
prove that H n K = &.

Suppose x € H n K. Then x € Wp n ¥Ymfor some m and n. Suppose
m > n. Then

x € ¥Ym= V= (CIWY U ===t Cl Wp U ===t C1W i);

hence x could not be in Cl Wp, a contradiction. On the other hand, if
m < n, then

XE Wp= Up— (Cl ¥xU ===p Cl ¥mU ===y Cl Fp_1).

Thus x & ClI Fpy, again a contradictiom. Therefore H and K are disjoint
open subsets of X, which contain A and B, respectivelly, and hence

X is TY.

Example 7. Let R be the set of real numbers with the topology r as
described in Example 11 of Chapter 3. The set @ of rational numbers is a
dense subset of R since any basis element of r [i.e., an interval of the form
e, 5)] contains a rational number. Therefore R is separable. R is also
first countable [fior each x € R, set = {pdx + 1/n) [n € NN. R can-
not be second countable, however, For if R were second countablle, then
the product space R2would also be second countable and hence Lindelef.
But product space R2 was shown in Example 13 of Chapter 5 to be T3,
but not 7Y. If R2were Lindelof and T3 then by Proposition 6 it would
have to be 7Y.
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EXERCISES

1L Prove that the set {xp || B € @) in Proposition 2is dense in X.
2. The following refer to the proof of Proposition &

a) Prove that there is a maximal subset E as claimed.
b) Prove that the set

= U{CIN(e, 4N=€I- X |

is open. There are a number of possible approaches to this problem. One
approath, for example, is to show that given any w & WV, N(w, I) inter-
sects Cl N(a, p/4) for at most fimitely many a € E. This means that there
is p* > Osuch that N(w, p") does not intersect any of the Cl N(a, p/4).

3 Prove (@) of Proposition 4.
4. By Proposition 4(g), R2as described in Example 7 is separable. Let

4={xf| + =0C y=0rC

Prove that A is a monseparable subspace of R2. Is A closed? Is . Lindelof?
Give another proof that R2 is not Lindelof without appealing to Proposi-
tion 6

5 A point x of a space X, tis said to be a condensation potnt of a subset A of X
if each neighborhood of x meets A in uncountsbly many points. Let A=
denote the set of condensation points of A. Suppose X is a Lindelof space.
Prove that if A is uncountable, then A= £ ¢: [[MHint: Try to construct a
countable open cover of X each of whose members contains countably many
of the elements of A, and hence arrive at the contradiction that Ais countalil: )

6 Let X be an uncountable set with the discrete topology. Prove that the
collection of  as described in Example 6forms an open neighborhood system
for the discrete topology. Find a metric on X which induces the discrete
topology. Prove that X is not Lindelof, and hence that X is neither separable
nor second countable (Proposition 5).

7. Let X be the set of continuous funections from the space R of real numbers
with the absolute value topology into itself. For each /€ X and p > Q,
define

=  awur| |f@p= | < peeNig) € 1< pforall G

The family of N(f, p) for allf € X and all p > Oforms the basis for a topology
ron X. Try to determine if X, r is second countable. Let

¥ — {f € X || has derivatives of all orders at each x € X}.

Is ¥ a second countable subspace of X?
8, Prove directly, that is, without using Proposition 6 that the space R of real

numbers with the usual absolute value metric topology is second countable.
[#Aint: Prove that {N(x, @) |lg > @ g and x rational} gives a countable basisi]
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7.3 COMPACTNESS

The most important of all covering properties is compactness. As was
pointed out earlier in this chapter, compactness was not originally viewed
as a covering property, but it is through the use of coverings that com-
pactness can be stated in its most workable formn. Compactness is, like
Lindelof, a cardinality conditiom.

Definition 4. A space X, r is said to be compact if given any open cover
{Uj}, i € 7, of X, there is a finite subcover of {Uj},i € 7.

Suppose X, r is any space and A C X. An open cover of A is a col-
lection {Ui}, ¢ & 7, of open subsets of X whose union includes A.
Equivallently, {Ui}, ¢ & 7, is an open cover of A if {Uin A}, d e 7,
is an open cover of the subspace A. A is said to be compact if every
open cover of A has a finite subcower. Equiwvallentlly, A is compact if
the subspace A is compactt.

Note that in order for a space to be Lindeloff, any open cover had to
have a countable subcowvar. In order for a space to be compact, any open
cover has to have a finite subcovar. Certainly then, any compact space is
also Lindelof.

Example 8 The open interval (@ 1) with the absolute value topology is
Lindelof since it is a subspace of a second countable space R. The interval
@©, 1) is not compact, as we see from Section 7.1, Exercise 4. Another
example of a Lindelof space which is not compact is any countably infinite
set with the discrete topology.

An example of a compact space is the space presented in Example 3.

Proposition 7. The subspace [0 1] of the space R of real numbers with
the absolute value topology is compactt.

Preaf. Let {Ui}, ¢ & 7, be an open cover of [ 1], where each Uj is open
in R. Let

T = {x &[0 1] ||finitely many of the Uj cover [0, x)}.

Then T 24 ¢band 1Lis an upper bound for T. Therefore T has a least upper
bound, say u. If w= 1, we are done (gimce finitely many of the Uj cover
[, 1), and hence at most one more of the Ui will be needed to get a finite
cover of [0, 1]). Suppose then 0 < u < 1. Then either u& Tor u ¢ T.

Case 1. u& T. Then finitely many of the Ujf say Ujy -.., Uin cover
[® u). There is, however, Uy such that u & Up; therefore

W’i" ) Ui§~ vew U’Q}
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Figure 7.2

is an open cover of [ wj. It is then clear (Fig. 7.2) that u could not be an
upper bound for T.

Case 2 u & T. Then there is Uj such that u & U} and finitely many of
the Ui do not cover [0, 4) — Uj. Therefore u is not the least upper bound
for T.

Both cases have led to contradictions; hence it could not be that
0 < u < L. Therefore u — 1, and hence [[B, 1] is compactt.

We now derive some important criteria for compactmess.

Proposition & Let X, r be any topological space. Then X is compact if
and only if given any family {F{}, { € I, of closed subsets of X such
that the intersection of any finite number of the F{ is nonempty,
fl7 Fi 7 &

Proef. Suppose X is compact and let {Fj},t € 1, be any family of closed
subsets of X such that fl/ Fi = & Set Uj = X — Fiforeachi & I. Then

X-@I\Fi= X=¢>:X<=ULIJ((K=F9 = t}JJUI@u

Each Uj is the complement of a closed set and hence is opem. Therefore
{Uj}, i € I, is an open cover of X. But X is compact; hence there are
fimitely many of the Uj, say U, - - ., UZy, which cover X. Then

We have proved that if X is a compact space, then given any family {F3},
1€ 1, of closed subsets of X whose intersection is empty, the intersection
of some finite family of Fj is empty.

Suppose X has the property that if the intersection of any family
{FJ, t € 1, of closed subsets of X is empty, the intersection of finitely
many of the P is empty. Suppose {Ui}, t & 7, is any open cover of X.
Then X = Uf Ui. Therefore setting Ft= X — Uj} {Fi}, i, is a
family of closed subsets of X whose intersection is empty. Hence we can
find finitely many of the Fi, say F}, ... , Fip, such that

F-'i.! Neeen F*m:

Then {Ujy, -.., Ui} is a finite subcover of {Ui}, i € I. Therefore X is
compacit..
Proposition 9. A space X, r is compact if and only if every net in X has
a limit poimit.
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Prooff. Suppose X is compact and let {xf}, 1 & 7, be any net in X. Define
Bj = Ir < z). Then {ClBj}, j € J, has the property that the inter-
section of any finite family of the C1  is nonempty. Since X is compactt,
by Proposition 8, flj Cl Bj 2 ¢& Choose y in this intersection. We now
show that y is a limit point of {xf},i € 7. Since & Cl foranyj & 7,
any neighborhood U7 of y therefore contains at least one point of Bj. Sup-
pose U is a neighborhood of ¥ and j and §’ are elements of 7. Since 7 is
directed, there is j* & 7 such that j < j* and §’ < j*.. But y & Cl B},
and hence there is j such that

x--& 7 m Bjr.

Thenj < j,j* <Jj, and xj & U. Therefore {2f}, i € 7, is cofinally in U;
hence y is a limit point of {xf},i & 7.

Suppose, on the other hand, that X has the property that every net in
X has a limit point. Let {fV}, % & 7, be any family of closed subsets of X
such that the intersection of fimitely many of the ¥y is always nonempty.
Let J be the set of finite intersections of the B/ Then J is partially ordered
by <, where A < B if B C A; moreovar, J is then a directed set. Since
each member of J is nonempty, we can define a selection function S from
J into X such that s(A) € A for each A € J. Therefore {sg}, Acdis
anet in X, and hence has a limit point y. Consider any of the P/ If A EJ
and Fi < A, then A C P/ Thus for each of the Fg the net {s3}, U & J,
is residually in #y/ Since Zis a limit point of {sa}, 4 & J, some subnet of
{sa}, A g &/, converges to y (Proposition 9, Chapter 6). But since {s3},
A & J, is residually in ¥y, such a subnet would be residually in ?:for each i
{(Prapesition 3, Chapter 6). Then by Propeosition 13, Chapter 6, y 7\ for
each i; hence y & fly 7/ Therefore flf Fx 2 ¢¢ By Proposition 8 then
X is comjpacit.

Corollary. A space X, r is compact if and only if every ultranet in X
CONVErgEs.

Proof. 1f X is compact and {si}, i & I, is an ultranet in X, then 3
i &€ 7, has a limit point. But an ultranet converges to any of its limit
points (Proposition 22, Chapter 6). Convenselly, if every ultranet in X
converges and {8}, i € 7, is any net in X, then some ultranet is a subnet
of {si}, &€ 7 (Proposition 22, Chapter 6). Therefore ¥ 1 & 7, has a
subnet which converges to some point ¥\ hence y is a limit point of {&3,
i &€ 7 (Proposition 9, Chapter 6). Then X is compact by Proposition 9.

Example 9. We give another proof now that [ 1] with the absolute value
topology is compact. Since 0 1] is second countable or metric, we will
have shown [0, I is compact if we show that every sequence in [0, I has
a limit point. Suppose {sp}, n € N, is a sequence in [ 1]}
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Case 1. {sp}, n & N, is monotonically increasing, that is,
S~ _

Then {sp|ln & V} has a least upper bound u, 0 € u < L. If T is any
neighborhoeod of u, it is readily shown that {sp}, n & N, is residually in U,
and hence sp —>u. Therefore u is a limit point of {sa}, neb\W.

Case 2. {sp}, n € Al, is monotonically decreasing, that is,
81 > 82> = P Sa P

Then In € N} has a greatest lower bound », 0 < v < 1, moreover
sp—>v. Therefore v is a limit point of {sp}, n € N.

Case 3. If {3}, n &€ N, is either monotonically increasing or decreasing
from some point on, that is, for all but finitely many elements, then the
exceptional elements can be discarded without penalty, and Case 1 or
2 applied.

Case 4. {sp}, n & A, is neither monotonically increasing nor mono-
tonically decreasing from some point on. Then {sp}, w& N, is “Cofinallly”~
increasing (the quotation marks here indicate that we are applying a
property informally to the sequence as a whole, rather than to individual
members); hence there is a monotonically increasing subsequence of {sp},
n & N. By Case L, this subsequence converges to a point u of [ 1. But
then u is a limit point of {sp},n & N.

Every sequence in [ 1] has a limit point, and therefore [ 1 is

compagcit.

EXERCISES

1L Prove that the set J in Proposition 9is a directed set.

2 Prove that the sequences in Example 9 converge as claimed. Formalize the
argument in Case 4.

3 In Example 9 it is asserted that because [ 1 is second countablie, we need
only consider sequences. Prove: A second countable space X, r is compact if
and only if every sequence in X has a limit point.

4. Prove that a space X, r is compact if and only if every filter on X has a limit
point. Prove that X is compact if and only if every ultrafilter on X converges.

& Let X, « be aspace and let @be a basis for . Prove that X is Gampact if and
only if every cover of X by members of @has a finite subcoveir.

6 Decide which of the following spaces are compact.
) tine ylkane B2wiitlh tine topolagy wihich hes fior £ sultbasis

8= {UNU = R2— L, where L is any straight line}
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b) the plane R2, whete an open set is any set of the form R2 —C, where C
contains at most countably many points of R2, and ¢is open

¢) the subspace of rational numbers in the usual space of real numbers
d) the space in Example 1, Chapter 6

7. In Section 6.5, Exercise 6 the notion of a bounded sequence in R, the usual
space of real numbers, was introduced. Let {s;}, nE N, be a bounded
sequence in R, and let 41 be the set of limit points of {§},n & N. Prove that
AU {sn||n € N} is compact.

8 Prove that the union of finitely many compact subsets of any space is com-
pact. Is the intersection of two compact subsets necessarily compact?

9. Prove or disprove: Let X be an infinite space with the property that the
only compact subspaces of X are finite subspaces. Then X has the discrete
topology.

7.4 THE DERIVED SPACES AND COMPACTNESS.
THE SEPARATION AXIOMS AND COMPACTNESS

It is not necessarily true that any subspace of a compact space is compact.
For examplle, (0, 1) is not compact (Example 8), whereas [[@ 1] is compact
{Proposition 7). We do though have some information about which sub-
spaces of a compact space are compact.

Proposition 10. Any closed subset of a compact space is compactt.

Proof. Let A be a closed subset of a compact space X, r, and suppose {Ui},
i € 1, is any open cover of A. Then since A is closed, X — A is open;
hence {X — A} U {Ui ||i € I} is an open cover of X. Since X is compaet,
X — A together with finitely many of the {%, say ¥, ..., Ujpform a
cover of X. Therefore {Ufy ..., Ujf] is a finite subcover of A, and hence
A is compactt.

A partial converse to Proposition 10 is given by

Proposition 11. Any compact subset of a T2 space is closed.

Figure 7.3

Proof. Let A be a compact subset of a T¥space X, r (Fig. 7.3) and suppose
xE& X — A. We must find a neighborhood of x which does not meet A



158 Cevering Properties 74

Proof. Let {{/#} i € 1, be any open cover of ¥. Since £ is continuouss,
{F(Uj)}yi € I, is an open cover of X. Since X is compact, we can find
finitely many 5} say Uiy - .., Uip, such that {f=1{Uh), ...

is an open cover of X. But then {Uiy ..., Ujr} is a finite open subcover
of {H, i € I. Therefore ¥ is compacit.

Since any homeomorphism is continuouss, we have the followiing,.

Corollary. If X, 1 is compact, then any space homeomorphic to X is
compait.

Example 11. Proposition 11 enables us to find many more compact spaces.
For examplle, if X, 7 is a compact space, R is an equivalence relation on
X, and X/R is the identification space, then X/R is compact, since the
identification mapping from X onto X/R is continuouss. Since the circle
is an identification space derived from [[8 1] (Chapter 4, Example 14), the
circle is compactt. The next proposition will give us even more compact
Spaces.

Proposition 13  (Tychonoff theorem). Let Xj Xi be the product space
of the countable family of nonempty spaces {Xi, w3}, € L. Then
Xj Xi is compact if and only if each component space is compaatt..

Praafl. Suppose X/ X§ is compactt. Since the projection map
pn %{(Xi i—A>XXii

is continuous and onto for each 7 € I, X is compact for each i € I (Prop-
osition 12).

Suppose each X is compact. Let {sy}, j € J, be any ultranet in
X¢ Xi with the ith coordinate of §j being denoted by §j(). Then

tpi(sp)} = fex60}> J€d,

is an ultranet in Xi by Proposition 22, Chapter 6. Therefore {$(@} con-
verges in X by the corollary to Proposition 9 of this chapter. But then
{s;}, i € I, converges in Xf Xi by Proposition 12 of Chapter 6. Therefore
Xf Xi is compact by the corollary to Proposition 9.

Example 12. We have already seen that the closed interval [ 1] and the
circle C are compacit. Using Proposition 13, we can now say that ({0, 1])H
is compact for any n. Then cylinder C X [ 1, the torus C X C, and the
cube (0, 1J)3 are all examples of compact spaces (Figs. 7.4, 7.5, and 7.6).

Often one of the hardest steps in proving that some function is a
homeomorphism is showing that its inverse is continuous. The next
proposition affords us some relief in certain special (though importamit)
instances.
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Proposition 14. Let / be a continuous one-one function from a compact
space X, r onto a T¥space F, r*. Then £ is a homeomaompthiism.,

Proof. We must show that /=* is contimuouss. We use Proposition 8,
Chapter 4. Suppose F is any closed subset of X. Since F is closed, F is
compact (Proposition 10); hence f(F) is compact (Proposition 12). Then
(P is a compact subset of a TY¥space and is therefore closed (Proposi-

tion 11). But
m = rink).

We have therefore shown that if F is any closed subset of X, (Z-1)"*(¥)
is a closed subset of F. Therefore f~1 is continuous; hence / is a homeo-
morphhismn.

Because of the great importance of the Tychonoff theorem (Praposition
13), we now present another proof which does not depend on the material
of Chapter 6. We first prove another criterion for compactmess.

Proposition 15. A space X, r is compact if and only if there is a sub-
basis $ such that whenever 8 is a cover of X consisting of elements of
8, then @Gcontains a finite subcover of X.

Proof. If X is compact, then r itself serves as a subbasis for r having the
required property.

Suppose now that X has a subbasis $ having the property stated; we
now prove that X is compact. Let @ be any collection of open sets which
does not contain a finite subcover of X. We will show that @ cannot be a
cover of X, and, hence, indirectly show that any open cover of X contains
a finite subcowar.

Let & be the collection of all @C r such that @ C @but no finite sub-
set of @covers X. The set 3 is nonempty since @ & I, moreowar, C is a
partial ordering of &

Assume X is any chain in &, C. Then the union of the members of X
is easily shown to be a member of & and is an upper bound for X. There-
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fore, by Zorn’s Lemma, JC contains a maximal element 9. Since & C 9,
if we show that 9lLis not a cover of X, then & itself will not be a cover of X.
Suppose then that 9L is a cover of X. Then each x & X is in some
member of 9, assume x & M & 9. Now $ is a subbasis for v and M is a
member of r, hence we can find finitely many members Si, ..., Spof §
such that
g ESi A =—fl SHC M.

Suppose that no §iis amember of 8, = 1,...,n. Then &vr — 9
fori =1, ...,n Because 9is a maximal element of 3¢, LU {Si} must
contain a finite subcover of X (or it would be a member of 3¢ which prop-

erly contains 9). Comnsegquently, for i — 1, ..., n, we can find a finite
subset 9i of 9 such that §3 together with the elements of %, forms a

finite open cover of X. But since Sx D ===fi Sp C M, it follows that

tay u(§ m>

forms a finite cover of X. This, however, is a contradiction, since 9L
contains no finite subcover of X. This contradiction stems from the
assumption that no  is a member of 9(; $hierefonemissumé Shatherefde
forsome =1,...ij=1,..., n

The argument above shows that given any & X for which we have
some € x@&H, tiere it some membber € Sfor wiiclhh € €M It
follows then that N 9T covers the sa@@lpuntion tieXaatpstdoesof Khisat
if M is a cover of X, then $ M Fis also a cover of X. But $ M Jis a sub-
set of 8, and thus contains a finite subcover of X. Therefore $ A 9, and
hence 91, cannot be a cover of X since 3 contains no finite subcover of X.

We have shown then that any collection of open subsets of X which
does not contain a finite subcover of X fails to cover X. Therefore X is

compact.

Proposition 16  (Fychonoff product theorem, proof of which does not
use nets or filters). If {X5 7}, € is a nonempty family of non-
empty compact spaces, then the product space X£X, r is also compagt.

Proof. The set
$= | er, € {pT\U)] ET- E

forms a subbasis for the product topology r (recall that pi is the projection
into the ith compumemnt). Let @ be any collection of members of $ which
does not contain a finite subcover of X£X:, and for each i & I, set

{U|Uer, ppd=C7¢@er"pT EG}.
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No finite subset of @i can cover Xj3; for, othemwise,
Ue {pri nue

would be a subeallection of @ which covers X, and from which we could
obtain a finite subcover. Since no finite subset of &} covers X%, but Xj is
compact, it follows that @i fails to cover Xj for each 1 & I. Therefore for
i1 & I we can find

X -U | J.e xi— U

Let x be that point of XfX; with Xj as found in the previous semtence as
its #th coordinate. Then x is a point of X which is not in the union of
members of @&. Consegpently, @ does not form a cover of X. It follows
then that any collection of members of the subbasis $ which covers X/X;
contains a finite subcover of X/X%; hence by Proposition 15, X/X, is
compact.

EXERCISES

1. Decide which of the following spaces are compact. If practicable, sketch a
picture of the space. The set R of real numbers, the plane R2yor any sub-
space of these spaces will be assumed to have the usual metric topology:.
Products will have the product topologyy.

a) @D X[ 1]
b) CX R, where C = {(z,%) X2+ y2= I} C R2
©) {@xy. )2+ y2+ 22 = 1} C RB
d {@y) X2+ y2< B} CR2
e) N X C, where N is the set of positive integers
) {1L2 345 XC, withCasin @
2 Prove that any subset of N in Example 3 is compagt.

& There is a continuous function from [ 1 onto [ 1 X [® 1], Prove that
this function cannot be one-one.

4. Tt was shown that the product of normal spaces need not be normal. Prove
that the product of compact normal spaces is normall.

5 Let / be the function from |§ 1 onto [ I (with the absolute value topology)
defined by fi(x) = sin (/) if x # 0, f(:) = Oif x = 0. Prove that / is not
continuows. ([Hint: Suppose / is a continuous funection from a eerpact space
X onto a compact space ¥. Define Gf = {(, ¥) |y = f(¥)}. Prove that if
/ is continuows, then Gf is a closed subset of the product space X X F. The
easiest way to effect this proof is through the use of Propesition 10, Chap-
ter & Then Gf is a closed subset of a compact T¥space if X and Y are beth
compact and T2 (@s in the case in this problem). Therefore what ean be
said about Gy7]
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6 Prove that every compact metric space is separable.

7. Suppose X, D is anmy metric space. A subset ¥ of X is said to be bounded if
¥ C N(x, p) for some x € X and p > 0. Prove that any compact subset of
a metric space is both closed and bounded.

8 Suppose X, t is a first countable space such that X is T4and every compact
subset of X is closed. Prove that X is T% [[Hint: Show that every convergent
sequence in X has a umique limit.]

@ Let Xj D be a compact metric space and let {si}, n & N, be a sequence in X
such that given any p > 0, there is m & W such that if m < nand m < n',
then D(sp), 859 < p. Prove that {sp}, n&NV, converges in X. Prove that
this is not necessarily true if the assumption that X is compact is removed.

10. Prove or disprove: Suppose X and ¥ are both compact Thspaces and / is
a function from X into ¥. Then / is continuous if and only if / considered
as a subspace of X X ¥ is compact.

11. Suppose X, ¥ is a space having the property that whenever a subset A of
X is compagt, then X — A is also compact. Which of the following properties
must X also have,

a) T2 b) Ti ¢) Every subset of X is compact.



8
MORE ABOUT COMPACTNESS

81 COMPACTNESS IN RhH

The product space Rh of the space R of real numbers with the absolute
value topology with itself n times, better known as Euclidean n-spaze, is
perhaps the most important topological space of all {or, more accurately,
family of spaces, since there is a space for each positive integer n). Com-
pact subsets of R therefore hold a special place among compact sets and
warrant a special section to study them.

We have already seen that [0, 1] C R is compact. Thus any subspace
of Rfhomeomorphic to [0, 1] is compact. More generally, any continuous
image of [ 1 in R is compactt. Using the various propositions already
proved, we can find many compact subsets of Rf. Howewer, Rf has many
properties not shared by all topological spaces. We would therefore expect
there to be certain criteria for compactness which are more peculiar to Rh.
Proposition 2 gives such a criterion. Preparatory to Proposition 2, we
first prove the followiing.

Proposition L. Suppose x = (i, ---,xp) and y = ---,¥Yp) are
any two points of Rfi. Define D(x, y) = may(x; — i\, i = 1, ..., n)
(cf- Examples 3 and 6 of Chapter 2). Then D is a metric on Rf. More-
over, the topology induced on Rh by D is the same as the product
topology on R

Proof. The proof that D is actually a metric is straightforward and is left
as an exercise. Let r be the product topology on Rfh and ¢’ be the topology
induced by D. In order to prove r — r”, we will use Corollary 1, Proposi-
tion ) Chapter 8 Suppose x = (xi, - .., xp) & Rh. Set

N = an N(xi;, B9 | where pi > 0,
N@E&p) = (i —pi, Xi+P) CR,i=1, n}
and

0 = | #N\Oix,p) p 9
where N"(x, p) is the D-p-msighivorhood of x in R™}.

163
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Then taking the collection of all 3+ and the collection of &' for all &
we get open neighborhood systems for r and  respectively.
Suppose € 91,. Th#a3l* Then

i);(]lN(xi; p) N*=X N(xi,p)

and hence is a member of 3. (For a picture of a typical N* in R, the
reader should see Fig. 4, Chapter 2.) Suppose N € 3. Then

N = i, i
i§ ILN(m. P,

where pf > 0,i = 1, ..., n. Set p — min(pi, ..., pr)y= Then N'(z,p) €
S0’ and A"(x, p) C V. Therefore by Corollary 1, Proposition 9, Chapter 3,
r=r".

Proposition 2. A subset A of is said to be bounded if there is a
positive number p such that A C N"(0, p), where O is the origin in Rf
and N"(D, p) is the D-p-mighiborhood of O described in Proposition 1L
A subset A of R is compact if and only if A is closed and bounded.

Prooff. Proposition I has shown that Rfh with the product topology is a
metrie space (with metric D as in Proposition 1). In Section 7.4, Exer-
cise 7, it was shown that any compact subset of any metric space is closed
and boundedl.

0, p)

/

/ // 7/

(—p, 0) (p. 0)
CINO,p) // Figue &1

0,—p)

Suppose A is a closed, bounded subset of Rf (Fig. 8.1). Them, since
A is bounded, A C N*(0, p) for some positive number p; hence

A C CIN'(Of p).
Now

cl (o, ) ).
cCl ACK iL‘L p) ﬁ\li([—)p pl. B X Cl
But [—p, pl is compact since it is homeomorphic to [ 1}; hence

X CEY(,p)
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is compact since it is the product of a family of compact spaces (Proposi-
tion 13, Chapter 7). Therefore A is a closed subset of a compact T 2space
(@ny metric space is T3, and hence A is compact (Corollary 1, Proposi-
tion 11, Chapter 7).

CorolBary. The closure of any bounded subset of Rf is compact..
Proof. Suppose A is bounded. Then

AN, p) CCONN(@, p + 1).

Therefore C1 A C N'(0, p + 1). Cl A is closed, and thus Cl A is closed
and bounded, and is therefore compmctt.

The next proposition is true in any compact metric space, but has its
application primarily in the study of real functions.

Proposition 3. Let X, D be any compact metric space and suppose
{Ui}, i € I, is an open cover of X. Then there is a positive number p
such that Nz, p) C Uj for some 4, for any x € X. That is, there is
p > 0 such that the p-neighiborhood of any point in X is a subset of
at least one of the U{. Such a number p is called a Lebesgue number of
the cover, and is dependent on the cover for its value.

Proof. Each element x of X is contained in at least one U, since {Ui},
i € I, is a cover of X. Since each Uj is also opem, for each x € X, we may
select px > O such that N{x,px) € Uj for at least one of the Uj which
contain x. Since a selection has been made for each x, {N(x, p¥/2)}, x € X,
is itself an open cover of X (in fact, it is a refinement of the original coven).
Since X is compact, we can find a finite number of the elements of X, say
X\, « - -, %, such that

NGz, p2/2), ..., 282}

is an open cover of X. Let

p = min(X/2, - -, px)D.

We now show that p is a Lebesgue number for {Ui}, i € I. If x € X, then
x & N(xj;, px/2) for some 1L < j < n. If z & N{x, p), then

D@z, %) < Dz, x) + D(x, xf) < p + /2 € p¥-
Therefore
Nz, p) € N(xj, pX) C Ui
for some 1.

We recall that the definition of continuity of a function from one
metrie space to another can be expressed: A function /: X, D — ¥, D' is
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Proof. Choose any p > 0. Then {N(y, p/2)},y & ¥, is an open cover of F.
Since £ is continuouss, {f=1M(y, p/2))}, y € F, is an open cover of X.
Let g be the Lebesgue number of this cover in accordance with Proposi-
tion 3. It is left as an exercise to prove that this g has the desired property
that

Ve, C p) )c
for each x € X.

Corollwry. Any funetion from a closed, bounded subset of R into any
metrie space is uniformly continuous. In particular, any function from
a closed interval fa, b] € R is uniformly continuous.

EXERCISES

1. The following refer to the proof of Proposition L

a) Prove that D is a metric.
b) Prove that the collection of all 3x and the collection of all ®lx, are open
neighborhood systems for ¥ and +*, respectively.
2. Complete the proof of Proposition 4.

3 A function £ from a space X, r into the space of real numbers is said to be
bounded above if fix) < M for some number M and each x & X. What would
we mean if we said that / was bounded bglowf Prove that if X is compact
and f is continuows, then / is bounded above and below. Prove that if M =
least upper bound {fix) ||x € X} and m = greatest lower bound {fix) ||x € X},
/ is continuows, then there are w and y in X such that fiw) = M and
fiy) = m.

4. Which of the functions defined below from R into R are uniformly continuous?
8) fix) = x4+ 2, forallxE R
b) fix) = x4+ 7, forall xE R

4 % sin (W/x), x 0
<t 3T Vo ifx=0

5 Let X, D; ¥, D and Z, D" be metric spaces. Decide which of the following
statements are true. If a statement is true, prove it; if false, find a counter-
examplie.

a) If the function / from X to ¥ and the function g from ¥ to Z are both
uniformly continuous, then fog: X —Z is also uniformly continuous.

b) Suppose X and F are both the set of real numbers and D and Df are the
absolute value metric. Then if / and g are uniformly continuous functions

from X to F, then /4 g defined by (7+ g)(®) = fice) + g(x) is also uni-
formly continuous.

¢) If 7 is a homeomorphism from X onto F and £ is uniformly continuouss,
then =1 is also uniformly continuous.
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6 AA\metticcsppees XX , D isssabtl tbo Hee tétiélyy boamddeliif giiresn aaryy 7p > 00, thee
open cover {N(x, p)}f x € X, has a finite subcoverr. Prove that any bounded
subset of Rm (with the metric described earlier) is totally bounded. Prove
that a compact subset of X, D is closed and totally bounded. Show that a
subset of X, D may be closed and totally bounded yet not be compact.

82 LOCAL COMPACTNESS

There are times when a topological space possesses some property “locally””
which it does not have taken as a wholle. For examplle, a second countable
space has a countable basis for its topology. A space X, r may not be
second countablle, but could still have the property that there is an open
neighborhood system for r such that for any x € X, i coumtable; wee
called such a space first countable. In a sense, a first countable space is
a space which is locally second countablle. Similarly, a space may not be
compactt, but still have the property that each point is contained in each
member of an “dppropriate” Tamily of compact sets.

N(z, p)

Cl N(z, p/2)

Example 3. Let R2be the coordinate plane with the Pythagorean metric
topology. Then R2is not compagit, since it is not bounded (Proposition 2).
If x € R2and U is any neighborhood of x, then there is p > 0 such that
NGty p) C U. Then

N(x}pf2) C CI N(x, p/2) C N(x, p) C U

(Fig. 8.3). But Cl N(xyp/2) is a closed, bounded subset of R%yand hence
is compact. We have therefore proved that if x € R2and U is any neigh-
borhood of 2§ then there is a compact set A [lrere Cl N(x, p/2)] such that
x €& A® [fvere N(x, p/2)]) C A C U. A similar property could be proved for
R n finite.

This example inspires the following definition of local compactness.
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Definition 2. A space X, r is said to be locally compaet if given any
% € X and any neighborhood U of x, there is a compact set A such that

xe A>CACU

Thus RPN is locally compact. The criterion for local compactness is

much simpler for T2spaces, as we see from the next propositiom..
Proposition 5. Let X, r be a Twspace. Then X is locally compact if
and only if given any x & X, there is a compact set A such that x & A®.
(n other words, the existence of one compact subset A of X such that
x & A® assures us that given any neighborhood U of x, there is a
compact set A* such that x & A"D¢cid’'cC 1)

Proof. Suppose X is locally compact and x € X. Since X is a neighborhood
of x, there is a compact set A such that

xXEACACX.

Suppose instead that given any x & X, there is at least one compact set A
with x & A®. Let U be any neighborhood of x. Then A®f U is a neigh-
borhood of x and is a subset of U; hence we lose no generality in assuming
that U is already a subset of A®. Now A is compact and T2, and hence the
subspace A is Ts (Corollary 2, Proposition 11, Chapter 7); moreover,
UDA= U (simce UC A®C A) is a nonempty subset of A which is
open in A. Therefore there is ¥, open in both A and in X, such that

xeVCClV@mA) CUCA®

(Proposition 4, Chapter 5). Since A is a compact subset of a T)spage,
A is closed; thus

ClV @in X) = CI V (in A).
Then as a closed subset of a compact Tyspace, Cl V is compact. Therefore
teV=WCClVCU,

and Cl V is compact; hence X is locally compaet.

Corollary, Any compact TWspace X, r is locally compacit.
Proof. X is a compact neighborhood of any x € X_
Example 4, The space X given in Example 10, Chapter 7 is only T\, but

is still locally compact. For if x € X, then any neighborhood U of X is
compact. Therefore x € U= U>C U and 47 is compact; hence X is

locally compactt.
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Example 5. Let Q be the subspace of rational numbers in the space R of
real numbers with the absolute value topology. Then Q is not locally
compazt. Let x € Q and suppose A is a compact subset of Q such that
x & A® (Fig. 8.4). Then A contains infinitely many elements of Q. There
is (@, B) CR such that x &€ (a, ) DQ C A®. Choose an irrational number
te (a, b). We will now construct an open cover of A which has no finite
subcovar. For each q € A, set

et _[{w"R\q <
~ g,if g < AM{z&R\z <3,ifg <
Then {U(g) n A), g € A, is an open cover of A which has no finite sub-
coverr. The proof of this fact is left as an exercise.

We see then that no element of Q can be contained in the interior of
any compact subset of Q. Therefore @ is an example of a metric space in
which not every closed bounded subset is compactt. For examplie, [0, 1] D Q
is a closed, bounded subset of @, but could not be compact; for if it were
compagct, then 4 would be contained in the interior, (@, 1) N Q, of a com-
pact subset of Q.

We saw in Chapter 7 that any compact TY¥space was Ty, Since local
compactness is a weaker property than compactmess, we should expect
weaker results from local compactness than from compactmess, as is the
case with the followiing.

Proposition 6. Any locally compact Tyspace X, r is TY.

Prodif. We apply Proposition 4 of Chapter 5 If x € X and U is any
neighborhood of x, then there is a compact set A such that x& A®C A CW.
Since A is compactt, A is closed, and hence Cl (A°) C A. Setting V = #*,
we have x € W C Cl V C U) where V is a neighborhood of x; therefore
Xis TV

We see from Example 5 that a subspace of a locally compact space
need not be locally compact. We do, however, have the following prop-
osition regarding subspaces of locally compact spaces.

Proposition 7. If a space X, r is T2 and locally compact, then so is
every open or closed subspace.

Prooff. Suppose U is an open subspace of X and x € U. Then any neigh-
borheod ¥ of x in U is also a neighborhood of x in X. Therefore there is a
compact set A such that x €24*C A FK C/AU. Hence U is locally com-
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pact. Note that this part of the proof did not depend on the fact that X
was T'2; thus we have shown that any open subspace of any locally compact

space is locally compactt.
Suppose F is a closed subspace of X and x € F. Let A be any compact

set such that x & A*C A. Since X is Tg, A is closed. Then Fn A is a
closed subset of the compact set A and hence is compact. But F fi A C E;
hence we also have x s (AN PH*in FC ANFCE. Since Fis T2 F is
locally compact by Proposition 5.

We now prove an even stronger result.

Proposition 8 A subspace F of a locally compact T)space X, r is
locally compact if and only if it is the intersection of an open set and
a closed set.

Prooff. Suppose Y is a locally compact subspace of X (Fig. 8.5). We will
prove that ¥ is open in Cl F; hence ¥ — U D Cl E, where U is an open
subset of X. Suppose y € ¥; we must find a neighborhood of y (in Cl ¥)
which is a subset of F. Since F is locally compactt, there is a set U’ open
in ¥ such that y € U9and Cl U in F is compact. Then U'= ¥ NV,
where V¥ is open in X. Furthermare, Cl U* in F = FACKF A V) is
compact, and hence is closed. Now

FnFoEnGldant-y;
hence CI{(¥ N V) C F. But

CHYFm ¥ T @(E m V).

For if ze ClLE NV and W is any neighbor-
hood of 2¢V fi W is a neighborhood of z. Since
z € Cl E, every neighborhood of z meets F,
and thus

&y av = Waqy nwy £ &

But then every neighborhood of z meets ¥ 11 ¥ as well; hence

ze QY N V).

Figure 85

Therefore Cl FNnV c E Thus Cl Fn Fis a neighborhood of Zin Gl F
such that ClIFn FefY.

It is left as an exercise to show that the intersection of a closed subset
and an open subset of X is locally compact.

We now investigate the behavior of locally compact spaces with regard
to continuous functioms. The following example shows that local compact-
ness, unlike compactmesss, is not preserved by continuous functioms.
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0 00 V\/ \
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0, —1)

Figure 8.6

Example 6. Let A = {—1} and B = {x||0 < x} (Fig. 86). Let X =
A U B be given the absolute value topology. Then X is the intersection
of a closed subset of R, the usual space of real numbers, with an open
subset of R [fior example, X = ({—1} U x |0 < x}) A (R — {0})]; hence
X is locally compact. Define a function / from X into R2 (with the Py-
thagorean topology) by

= i €
= , gi)n 1/%9), if x € B.

Then / 1A and f 1B are both continuous, and A and B are both closed
subsets of X; thus/f is continuous (Proposition 1L, Chapter 4). Let F be
the image of / considered as a subspace of R2. The function / is a con-
tinuous, one-one function from X onto ¥. But ¥ is not locally compact.
This can be seen from the fact that (0, 0) is not contained in the interior
of any compact subset of ¥. This in turn follows from the fact that each
neighborhood U in F of (0, 0) contains a sequence which does not have a
limit point in Cl1 U.

A function £: X, r — ¥, r’ is said to be open if whenever U is an open
subset of X, f(U') is open in ¥ (cf- Section 4.6, Exercise 2). With the added
assumption of openness, a continuous function will preserve local com-
pactness.

Proposition 9. 1f/ is a continuous, open function from a space X, r onto
a space F, ¢, then if X is locally compact, F is also.

Proof. Suppose ¥ € F and U is a neighborhood of y. We must find a
compact subset A of F such that y &€ A2C A C U. Lety = §i(%) for some
x € X. By the continuity of /, there is a neighborhood V of x such that
f(F¥) C U. Since X is locally compactt, there is a compact set B such that
x € B*C B CVW. Then

fitw) = yeH(BB°) CH(B) U

Buty(§&8®) is opem, since £ is open; and/f(B) is compact, since B is compact
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and / is continuous. Therefore

y y ¢ C Cf(B)CU, B(B) ¢ u,

and hence ¥ is locally compagtt.
We now use Proposition 9 to study the relation between local compact-
ness and product spaces.

Proposition 10. Suppose Xj Xi is the product space of the countable
family of nonempty spaces {Xi, #{}, 26 7. Then Xj Xi is locally
compact if and only if each component space is locally compact and
all of the component spaces except at most finitely many are compact.

Proof. Suppose X¢ X is locally compagcit. Then the projection
Pi x)i( Xy =X

is continuous, onto, and open (Section 4.6, Exercise 2) for each i & 7.
Therefore by Proposition 9, each Xi is locally compact. We must also
show that all but at most finitely many of the Xi are compact. Let A be
any compact subset of X¢ Xi such that some point y of Xj Xi is in 4%
Then there is a basic neighborhood X¢ Vi of y such that Vi = Xj for all
but at most finitely many ¢ and

)1( Vi CA® CAL.

We therefore see that pi(d) = Xi for all but at most finitely many i.
Since pi is continuous and A is compact, Xj is compact for all but at most
finitely many z

Suppose each X is locally compact, and all but finitely many of the
X are compact. Let y & X/ Xi} and let yi be the zth coordinate of y. If
U is any neighborhood of y, then U contains a basic neighborhood of y
of the form Xf Wjy where Wj is open in Xj for each i & 7 and ¥i = X for
all z & 7, except for at most finitely many, say zf, - . . ,zn. Since each Xj
is locally compagcit, for each z & 7 there is a compact subset A of X such
that yi & A®>C Ai C V{ There are at most finitely many more i & 7, other
than #, . . ., zp, say iR, - - -, iR} such that Xipt], . . ., Xip are not com-
pact. For any i not in {#, -. -, Z, Zti, - - - » A}, We may let Aj = Xi.
Then

C (X Ai)mx MeEX K. ¢ XFt

But Xj Aj is the product of compact sets and is therefore compact (Prop-
osition 13, Chapter 7). Hence Xj Xj is locally compact.
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EXERCISES

1L In Example 6 show that each neighborhood U of (@ 0) in ¥ contains a
sequence which does not converge to any point of Cl U(in ¥). Why does this
prove that (@ 0) is not contained in the interior @im F) of any compact sub-
set of ¥?

2. Prove that any subspace which is the intersection of a closed subset and an
open subset of a locally compact T)space is locally compact, thus completing
the proof of Proposition 8 [[#int: Use Proposition 7]

3. Provide the details for Example 5 In particular, show that {U(g) fi A},
g E A, is an open cover of A which has no finite subcover.

4, Which of the following subspaces of the plane R2 with the Pythagorean
topology are locally compact?

b) {C, %) [|x and y are both rational}

o) {f, v) ||x and y are both integers}

d) R2— Uw {C]IC is a circle of radius 1/n with center (W)}, where N is
the set of positive integers

© R2— {(x,») ||x2+ y2< Lor£= Qor I, and y —Qor 1}

& If X, r is a space and R is an equivalence relation on X, is the identification
mapping from X onto X/R, the identification space, necessarily open? If X
is locally compact, must X/R be locally compact? Give examples to prove
your points.

6. Is the union of finitely many locally compact subspaces of any space always
a locally compact subspace? Is the intersection of two locally compact sub-
spaces locally compact?

7. Suppose X, t is a locally compact T)space which is second countablle. Prove
that X is the union of countably many compact subsets A\, A2, ..., AR, ..=
such that ApC A%l Example: R2 = Uw Dp, where Dp = CI N((0, 0), ).

8 Find an example of a compact space which is not locally compact.

83 COMPACTIFICATIONS

Compact spaces are perhaps the most important of all topological spaces.
It is therefore of interest to know if and how any given space can be
embedded as a subspace of a compact space. If any space X, r can be em-
bedded as a subspace W of a compact space F, r*, then X can be embedded
as a dense subspace of some compact space. For W is a dense subspace
of Cl W¥; this follows from Propositions 13 and 14 of Chapter 3. But Cl W
is a closed subset of a compact space and hence is compact. We there-
fore restrict our attention to considering whether or not a given space
can be embedded as a dense subspace of a compact space. Accordingly,
we make the following definitiom.
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Proposition 11. Let X, r be any T2 space. Then the Alexandroff com-
pactification F of X is a topological space and is a compactification
of X in the sense of Definition 3.

Proof. If X is already compact, the proposition is trivial. Suppose X is
not compact. If y € F, set

9, = {U|Uisopenin ¥ and y € U},

that is, Sy is the family of all neighborhoods of y. We will show that the
collection of 9y forms an open neighborhood system for +”, a topology on F
in which the open sets are those described in Definition 4. Since, if y € X,
the neighborhoods of ¥ in F are the same as the neighborhoods of y in X
we need only consider the case when y = P, the ideal point. We now
verify Definition & of Chapter 3 for Sip.

i) Since any one-point subset {x} of X is compact, X — {} is a

neighborhood of P; therefore ®lp 2 &

ii) By assumption, P € U for each U & $p.

iii) Suppose U and U are neighborhoods of P. Then ¥ — U= K
and ¥ — [ = Kf, where K and Kf are compact subsets of X_.
Then

(F— Qu(F—-UJ=F-— UnAU)=KUK'Z

But K UK’ is compact since it is the union of two compact
sets (Section 7.3, Exercise 8). Therefore U f) U’ is a neighbor-
hood of P.

iv) Suppose U is any neighborhood of P and z 6 U. If z = P, then
zelW €9y and UCW. If zexXX, then U = {P} is an open
subset of X; for X — U is compact, and X is T2. Therefore X = U
is closed; hence

X-X-p=v-{#
is open in X, and hence also in F. Therefore
80— {P}CU and U= {F} e &

The verification of (v) is left as a simple exercise. Therefore the
collection of 0 forms an open neighborhood system for a topelegy r‘ on F
which is precisely the family of open sets defined for F.

Sinee every neighborhood of any point in ¥ meets X, X is dense in F.
It remains to be shown that F is compact. Let {Ui}, ¢ € , be any open
eover of F. Then P E Uj for some i, say ¥. Since Ui* is & neighborhood
of P, F — Ui» is a compact subset of X and {Ui}, { € ARy P PR FEKAT
of F — U5. Then finitely many of the Ui, say Uiy -: ., Uip, cover
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¥ — Uij/; hence
M’ w- ~-ay m
is a finite subcover of {Ui}, i & I. Therefore ¥ is compact.

Example 8. The one-point compactification of (@, 1) as in Example 7 is
the circle. Note that (O, 1) also has a two-point compactification [0 I}
The one-point compactification of the space R of real numbers (with the
usual topology) is again a circle, since R is homeomorphic to (@, 1). It is
given as an exercise to prove that homeomorphic spaces have homeo-
morphic one-point compactifications. Usually the ideal point for the space
of real numbers is taken to be ¢ov.

Example 9. If X is an infinite set with the discrete topology and P is an
ideal point for the one-point compactification ¥ of X, then the neighbor-
hoods of P will be all subsets of ¥ which contain all but finitely many
points of Xysince the finite subsets of X are the only compact subsets of X.

Note that X is always an open subset of its one-point compactifficatiomn,
since X is open in X. This implies that the subset containing only the
ideal point of any one-point compactification is closed. We thus see that
if X is Tgj then its one-point compactification is at least Tj. We now
investigate conditions under which a one-point compactification is T2

Proposition 12. The Alexandroff compactification of any space X, r is
T2if and only if X is T2 and locally compacit.

Proof. Suppose X is compact. Then the Alexandroff compactification
of X is X itself. Now X is T2if X is T2 and locally compact; on the
other hand, if X is T2, then X is T2 and is also locally compact by the
corollary to Proposition 5 Assume that X is not compact, and let ¥ be
the Alexandroff compactification of X. If F is T'g) then X is Tg/since X
is a subspace of E. Now F is T2 and compact and is therefore locally
compact. But X is an open subspace of F; hence X is locally compact
{Proposition 7).

On the other hand, suppose X is T2 and locally compacit. Let x and y
be distinct points of E. If x and y are both in X, then since X is T2 there
are neighborhoods U and V¥ of x and y, respectively, suchthat Un V = &
Suppose x = P. Then y € X, and hence there is a compact subset A of X
such that y & A*C A. We have then that ¥ — A is a neighborhood of
x = P and that A®is a neighborheod of y with

A°N(F— A) =8
Therefore F is T2

Corollary 1. If X, r is a locally compact Tzspace, then the one-point
compactification of X is normail.
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Proefi. Any compact Tzspace is both Tx and P4 (Corollary 3, Prop-
osition 11, Chapter 7).

Corollary 2. Any locally compact Tyspace X, r is regullar.

Pvoaff. The one-point compactification of X is normal, and hence is also
regular. Since X is a subspace of a regular space, X is regullar.

Note that we had already proved Corollary 2 previously (Proposi-
tion 6), but that the use of compactifications gives a simplle, elegant proof
for the result. Note too that since we have found examples of 72apaces
which are not locally compact (e.g., as in Example 5), we therefore have
the one-point compactifications of such spaces as examples of compactiifica-
tions of Tgzspaces which are not T2

EXERCISES

1L Verify that the circle is the one-point compactification of @ 1) (Example 8).

2. Prove that if a T space X, r is homeomorphic to a space X #’, then the
one-point compactifications of these spaces are homeomouphic. Show that two
spaces niight have homeomorphic one-point compactifications even though
the spaces are not homeomorphic to one anotheir.

& Describe the one-point compactifications of each of the following subspaces
of R2 with the usual Pythagorean topology. Where practicablle, sketch the

compactiificatiom.

a) {@ | €0y /=0} X0, (My= 10} =02@ .. F 123,
9 {&y) + -« yx 1§ d) {= d {@& <BU{O D}
e {@ |-1<y<1k 2< 1

4. Which of the following are compactifications of {(2, + < 1} with
the Pythagorean topology? Each of the following spaces is to be considered
as a subspace of Euclidean n-space R for an appropriate n.

8 {@y, )\w2+y2+z2=1}y W€ | H + 1,002y
0 {&y) 1} x2+ y2< @ {z,y, A2+ <1} +<L
o {@y | k<Lyg<y

6. Suppose £ is a continuous function from a T)/space t into a T2space ¥,
Can £ necessarily be extended to a continuous function from the one-point com-
pactification of X into F? Suppase/ can be extended to a continuous func-
tion F from Z, the one-point compactification of X, into ¥. Is/A(Z) necessarily
a compactification of f(X)? Is/(Z) necessarily the one-point compactification
of f(X) if it is a compactification?

7. Suppssefis a continuous function from X, ¥ onto F, ¥, and let A" and ¥ be
the one-point compactifications of X and F, respectively. Define F: X' — F
by F(x) = f{x) if x € X, and/{(P) = P", where P and P’ are the ideal points
of X and F, respectively. Is F necessarily continuous?
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8 a) Describe the two-point compactification of the open interval (@ 1) with its
usual topology. How can this two-point compactification be defined
rigorously, that is, constructed from (@, 1).

b) Sketch the one-, two-, three-, and four-point compactifications of (@, 1) U
@3yhu @>5).

84 SEQUENTIAL AND COUNTABLE COMPACTNESS

There are certain properties which a space can have which are related to,
but do not have the full force of, compactmess. We have already seen one
such property, local compactimesss. The purpose of this section is to intro-
duce two other such properties, sequential compactness and countable

compatiness.

Definition 5. A space X, r is said to be countably compact if any count-
able open cover of X has a finite subcowar. X is said to be sequentially
compact if every sequence in X has a convergent subsequence.

Any space which is compact is clearly countably compact. Also, since
any open cover of a Lindelof space has a countable subcowar, a countably
compact Lindelof space is compact.

Proposition 13 will give another criterion for countable compactmess.

Proposition 13. Let X, r be any space. Suppose B C X; then a point
x € X is said to be an accumulation point of B if every neighborhood
of x contains infinitely many points of B. Then X, r is countably com-
pact if and only if every countably infinite subset of X has at least one
accumulation point.

Proaf. Suppose that B is a countably infinite subset of X, but that B does
not have an accumulation poiint, and assume X countably compact. Select
XiIX2, - - ., Xh, - - -, a sequence of distinct points of B. Set

Ap= rnll==¥ and 0 X An

Given any point ¥ &€ X, y is not an accumulation point of B; hence there
is a neighborhood Uy of y such that Uy N B contains at most finitely many
elements. Therefore xp & Uy for at most finitely many n. If n is suf-
ficiently large, then Uy A Ap = ¢; and therefore Uy C Cp. Set Vp = C=
Then {Fp},n € N, is a countable open cover of X. But since X is countably
compact, there is a finite subcower, say {W ..., Wn}, of {Vi}, n e N.
Now xjyuli is not an element of Cx U —==<tJ Ciyy; hence xmytj cannot be an
element of W\ U ===ty Vi, a contradiction since VA U ==y V= X.
Consequently, if X is countably compact, B must have an accumulation
poimt.
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Suppose now that every countably infinite subset of X has an ac-
cumulation point, but suppose that we can find a countable open cover
{Un}, n € N, for which there is no finite subcowar. Then for any n € N,
X— U?=j Uj # & Pick xi € X — Uj; suppose x & Unj. Then pick

x3eX (U -=U Upj).
Suppose ¥k has been chosen and xk & Upic=Choose
thti € X — (Eli U —==l Un).

By the manner in which they were chosen, these points must all be distinct;
thus the set

B= {xkllk=1,2,..}

is a eountably infinite subset of X. Then B has an accumulation point y,
and ¥y € Up for some n. But if K’ is large enough, n < nje; hence xk € Un
for k > K. Hence Upis a neighborheod of y which meets B in only finitely
many elements, contradicting the fact that y is an accumulation point
of B. There must therefore be a finite subcover of {Un}fn & X, and hence
X is countably compact.

Proposition 14. If a space X, r is sequentially compaet, it is countably
compact.

Prooff. Suppose a space X, r is sequentially compact and B is any countable
infinite subset of X. Then we can find a sequence {sp}, n & X, where
sp € B for each n, and no two sp are equal. Then {sp}, n & N, has a con-
vergent subsequence; consequently, {sp}, n & X, has a limit point y
(Proposition 9, Chapter 6). But then y is accumulation point of B. Hence
X is countably compact by Proposition 13.

The reader may have already noted that the famous Bolzamo-Weiier-
strass theorem from real analysis is really a statement that any compact
subset of R or R2(tthat is, a closed, bounded subset) is sequentially compeactt.

The reader should also note that the distinction between countably
eompact and sequentially compact is hairline thin. For in any countably
compact space, any sequence either takes some value infinitely oftem, or
else the set of points in the sequence is an infinite set and hence has an
aceumulation point. This does not imply, however, that a sequence has a
subsequence which converges, but only that it has a subnet which con-
verges, and the distinction in this case is fine indeed (a@lithough we are
justified in saying that any first countable space is sequentially compact
if and only if it is countably compaetf). In “nice”topological spaces,
sequential and countable compactness are equivalent; examples showing
that countable compactness does not imply sequential compactness are
rather esoteric.
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One of the nicest types of topological space is the metric space. We
have already seen that in a metric space the properties of being second
countable, Lindel6f, or separable are all equivalent. We now will show
that in a metric space the properties of being countably compact, se-
quentially compact, or compact are equivalent. We do this in two prop-
ositions.

Proposition 15. Any countably compact metric space X, D is separable.

Proof. For any positive number p, there is a maximal subset E, of X
such that for any a, b € E,,, D(a, b) > p. The proof will closely follow the
lines of the proof that (a) implies (b) in Proposition 5, Chapter 7. If E,
were infinite for any p > 0, then it would have an accumulation point y.
But then N(y, p/2) would contain infinitely many points of E,; hence any
two of these points would be closer together than p, a contradiction.
Therefore E, is finite for each p. However, given any z € X,

N(z,p) NE, # ¢,

or we would have a contradiction to the maximality of E,.
Take E,;» for each positive integer n. Then Uy E;,, is a countable
dense subset of X, and hence X is separable.

Corollary 1. Any countably compact metric space is compact.

Proof. By Proposition 5, Chapter 7, any separable metric space is Lindelof.
But any countably compact Lindel6f space is compact.

Since any sequentially compact metric space is countably compact
(Proposition 14), we have the following.

Corollary 2. Any sequentially compact metric space is compact.

Propesition 16. If X, D is any metric space, then the following state-
ments are equivalent:

a) X is compact.
b) X is countably compact.
¢) X is sequentially compact.

Proof. It remains to be shown that if X is countably compact, then X is
sequentially compact. Suppose that X is countably compact and {s,},
n € N, is a sequence in X. If s, = y for infinitely many n, then a subse-
quence of {s,}, n € N, converges to y (Exercise 1). Suppose then that no
value is assumed by the s, more than a finite number of times; in fact, we
lose no generality in assuming that the s, are all distinct. Since {s, | n € N}
is an infinite set, it has an accumulation point y. Set U, = N(y, 1/n) for
eachn € N. Then U, n {s,} is infinite for each n € N. Choose

$n, € {81.} N (]l.
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Choose s;2 € {sp} n UZ)ni < n2 In generall, choose
sikE {8} N Ula =i < nk

Then {Spj, - - -, SHE - - -} is a subseguence of {sp}, n & Nywhich converges
to 7: hence X is sequentially compact.

There are a number of other properties which are in some way related
to compagtimess, for example, metacenpactness, pseudocompactness, and the
very important property of paracompactness. We shall examine this latter
concept briefly in Section 105

EXERCISES

1. Prove that if a sequence assuries some value infimitely many times, then a
subsequence of the sequence converges to that value.

2. Prove that in first countable spaces, countable compactness and sequential
compactness are equivallent.

3 Suppose / is a continuous function from a space X, ¥ onto aspace ¥, +'. Prove
that if X is countably compact, then ¥ is also. Prove that if X is sequentially
compact, then ¥ is also.

4. Prove that a closed subset of a countably compact or sequentially compact
space is also countably or sequentially compact.

5. Suppose £ is a continuous function from a countably compact space X, r into
the space R of real numbers with the absolute value topology. Prove that
there are numbers m and M such that m < fi(x) < M for all x € X, that is,
prove that £ is bounded.

6. Let X be any set and suppose r and ' are two possible topologies on X.
Suppose Xy r is compact and r* is coarser than ¥. Is X, r compact? Suppose
X, r is countably compact or sequentially compact and t* is coarser than r.
Is X, r necessarily countably compact or sequentially compact?

7. Find an example of a separable metric space which is not countably compact.
Is it possible to have a nomseparable metric space which is countably
compact?

8. Need the set of acoummuliation points of any set be closed? Need a set together
with it acoumullation points be closed? Prove that any set together with its
acoummlistion points is closed provided the space is T2
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Proof. Suppose [0, 1] is disconnected. Then [0, 1] = U U V, where U and
V are disjoint, nonempty, open subsets of [0, 1]. Supposeu € Uandv € V.
We may assume u < v (relabeling U and V, if necessary). Let S be the
set of numbers s such that s < uor [u, s) C U. Then 8 has 1 as an upper
bound, and hence 8 has a least upper bound a with 0 < a < 1. Since
0,1]=Uu V,eitherac€ Uora & V. Suppose a € U. Since U is open,
there is p > 0 such that (¢ — p, a + p) C U. Then

la —p/2,a+p/21CU

(Fig. 9.1); hence a 4+ p/2 € S. This contradicts the assumption that a is
an upper bound for 8. Suppose a € V. Then there is p > 0 such that
(@ — p,a-+p)CV, and thus ¢ — p/2 is an upper bound for S, con-
tradicting the assumption that a is the least upper bound. Therefore
[0, 1] is not disconnected; hence [0, 1] is connected.

a—p/2 a+p/2

U .
Figure 9.1

Note that since connectedness has been defined in a negative way,
that is, a space is connected if it is not disconnected, most proofs that a
space is connected are by contradiction: a space is assumed to be dis-
connected and a contradiction is proved.

Connectedness, like compactness, is a property which is preserved by
continuous functions.

Proposition 2. Suppose f is a continuous function from a space X, 7
onto a space Y, 7. If X is connected, then so is Y.

Proof. Assume Y is not connected. Then ¥ = U U V, where U and V
are nonempty, disjoint, open subsets of ¥. Then f~(U) and f~*(V) are
disjoint, nonempty (since f is onto) subsets of X whose union is X. But
since f is continuous, f ' (U) and f*(V) are also open subsets of X; there-
fore X is disconnected, a contradiction. Hence ¥ must be connected.

Corollary 1. Any closed interval in R, any closed line segment in R?,
and, in general, any image of [0, 1] under a continuous function is
connected.

Corollary 2. If X, 7 is any connected space and R is an equivalence re-
lation on X, then the identification space X /R is connected.

Proof. The identification mapping from X onto X/R is continuous.
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Example 2. Since a circle in R? (with the Pythagorean topology) can be
thought of as an identification space formed from [0, 1], the circle is also
connected.

We now give some more criteria for connectedness.

Proposition 3. Let X, 7 be any topological space. Then the following
statements are equivalent.

a) X is connected.

b) X cannot be expressed as the umion of two disjoint, nonempty,
closed subsets.

¢) The only subsets of X which are open and closed are X and ¢.

d) If A is any subset of X other than X or ¢, then Fr A = ¢.

e) Let ¥ = {0, 1} have the diserete topology. Then there is no con-
tinuous funetion from X onto Y.

Proof. Statement (a) implies statement (b). Suppose X = A U B, where
A and B are disjoint, nonempty, closed subsets of X. Then X — A = B
and X — B = A are both the complements of closed sets, and hence are
open. Thus X = A U B is also the expression of X as the union of two
disjoint, nonempty, open subsets of X. Hence X is not connected.

Statement (b) implies statement (¢). Suppose 4 is a subset of X which
is both open and closed, but that A is neither X nor ¢. Then X — A is
also open and closed, and nonempty. Thus

X=(X—AUA

is the expression of X as the union of two disjoint, nonempty, closed sub-
sets, contradicting (b).

Statement (¢) implies statement (d). If A is a subset of X other than
Xor¢,andFr A = ¢, thensince C1 4 = A° U Fr 4, wehave C1 4 = A°,
On the other hand, A° C A and A CCl 4, and hence A = 4° = Cl 4;
thus A is both open and closed in X. Therefore if (¢) holds, there can be
no subset A of X, other than X or ¢, such that Fr A = ¢.

Statement (d) implies statement (a). Suppose X = U U V, where U
and V are disjoint, open, nonempty subsets of X. Then U and V are also
closed. Therefore

U=U0U°=ClU.
But Fr U = Cl U — U° (Proposition 12, Chapter 3); hence
FrU=U—U=¢,

a contradiction of (d).



186 Connectedness 21

Statement (a) implies statement (€). Suppose there is a continuous
function from X onto ¥ = {0, 1}. Then since X is connected, ¥ must be
also, which is not the case.

Statement (¢) implies statement (a). Suppose X is discommected.
Then X = U U ¥, where U and V are nonempty, disjoiint, open subsets
of X. Define g: X —>¥ by g(x) = 0,ifx & 7, and by ¢gf@) = L,ifx& V.
Then §=1({0}) = U and §=*({1}) = ¥; hence g is continuous, a con-
tradiction of (g).

We now see why the extension F in Example 1% of Chapter % cannot
be continuous.

Example 3. There are a number of ways that we can show that the space
N in Example 3 of Chapter 7 is connected. For exampie, let A be any
subset of N. Suppose A is infinite, but not all of N. Since a subset of N is
closed if and only if it is finite, the only closed set which contains A is N}
hence Cl A = N. Then

FrA=N—AS¢

since A & N. Suppose A is finite but nonempty. Then A is closed and
thus C1 A = A. But since A excludes infinitely many elements of N,
A® = ¢ hence Fr A = A # & By (d) of Proposition 3, N is connected.

Proposition 4. Suppose X, r is a space such that X = U U F, where U
and ¥ are disjoint, opem, nonempty subsets of X. Let A be any con-
nected subspace of X. Then either AC ¥V or AC F.

Proaff. fAMU ¢and AMV 2, then AmUand A MV are non-
empty, disjoint subsets of A which are open in A. But

A==t (4 W) w((#mn P);
thus A is not connectedt. Therefore either A (1 U = éand hence A ¢ F,
or AmF¥F = ¢and hence A C U.

Example 4. Let R be the space of real numbers with the absolute value
topology. Then the removal of any point y from R disconnects R into two
“fays, ” open half-lines

H¥f= xeR|ly<x} and H~= {xeR|x<y).

The removal of y also disconnects any interval which contains y as any-
thing but an endpoint. For if, say, [, b] contains y in its interior and
fa, b] — {y} is connected, then Ja, b] — {y} must lie entirely in either
H¥ or H=, an impossibiliby.
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EXERCISES

LL. Find another proof that the space N in Example 3 is connected.

2. Prove that each of the following subspaces of the space of real numbers with

the absolute value topology is disconnected.

a) any finite subset

b)) @HUEGHUG 18

©) {x||xis irrational}

d) &||x = 1/m, where n is a positive integer or x = @}

2 Modify the proof of Proposition 1 to show that (@ 1), and hence R, is
connected.

4. A space X, r is said to be totally disconnected if X is not connected and the
only connected subspaces of X are ¢ and subspaces which consist of only
one point. Prove that each of the following spaces are totally disconnected.
a) the subspace of rational numbers in the usual space of real numbers
b) any diserete space of more than one point
¢) the set of real numbers with the topology described in Chapter 3, Ex-

ample 11

5 Suppose A and B are connected subspaces of a connected space X }r. Show
by producing an example that the following need not be connected.
a) ADB b) AUB ¢c) rA d A~

6. Let X be a space with the property that given any x G X and any neighbor-
hood U of xythere is a neighborhood V¥ of x such that Cl V is a proper subset
of 1. Prove that X is connected. Would X necessarily be connected if Cl ¥
is replaced by V in the first sentence?

9.2 FORRHERRESES FORFRCODNNETEBNESSS

In this section we continue to investigate criteria for determining if a
space is connected.

If the reader did Exercise 5 of Section 9.1 and his example for (b) was
correct, it must have been that A N B = ¢ as we see from the next

propositiem.

Proposition 5 If X, r is a space and X = Uy Ai, where {Af}, i € I,
is a collection of connected subspaces of X, then if flj A} & & X itself
is connected.

Proof. Suppose X = U U V, where U and V¥ are disjoint open subsets of
X. Then for each %, either Ai C U or Aj C V (Proposition 4). If some
AiC Uy then since flj Ai # 6, some element from each Aj must be in
U, and hence every Ajisin U. Therefore we would have U/ 4= KccPU
and ¥V = ¢ Similarly, if some AiC V¥, then X C Vand U = ¢ We have
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therefore shown that X could not be expressed as the union of two dis-
joint, nonempty, open subsets; hence X is connected.

Example 5. We have seen that the space B of real numbers with the
absolute value topology is connected (Section 9.1, Exercise 3). Any
straight line in Euclidean n-space is homeomorphic to the real line K.
This implies that R" is connected for any n, since R" is the union of all
straight lines in R™ which pass through the origin. The family of such lines
therefore fulfills the hypotheses of Proposition 5.

Proposition 6. Let X, 7 be a space such that any two elements x and
y of X are contained in some connected subspace of X. Then X is
connected.

Proof. Let x be a fixed element of X. For any y € X, let C(z, y) be a
connected subspace of X which contains x and y. Then {C(z, ¥)}, y € X,
is a family of connected subspaces of X whose union is X and whose inter-
section is nonempty (since the intersection at least contains z). Prop-
osition 5 tells us that X is connected.

y OII

ﬁa/
o °%

Figure 9.2

Example 6. Any closed line segment in Euelidean n-space R" is homeo-
morphic to the closed interval [0, 1], and is hence a connected subspace
of R". Using this fact, we can show that R* — {P}, where P is any point
of R™ and 2 < n, is connected. For suppose @ and @’ are any two points
of R* — {P}. Choose

Q' e R" — {P}

such that P € QQ”" U Q"Q’ (Fig. 9.2). Then @@ U Q"'Q’ is connected by
Proposition 5, that is, it is the union of the connected subspaces

QQ", Q"
Q" NQ"Y = Q") # ¢

Therefore @ and @’ are in the same connected subspace of R* — {P}.
By Proposition 6, then R* — {P} is connected.

and
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We have already seen that since [, 1] is connected, any homeomorphic
image of [0, 1], for example, a closed line segment in Rf, is connected.
More generally, of course, any continuous image of [ 1] is connectedl.
The continuous images of [ I] form an important class of spaces known
as paths. More formally, we make the following definitiom.

Definition 2. Let X, r be any space. A subspace ¥ of X is said to be a
path in X if there is a continuous function from [0 1] (with the absolute
value topology) onto F. X is said to be path connected if, given any
two points x and y in X, there is a path in X containing x and y.
Suppose X = RMyEuclidean m-space. A subset W of Rfhis said to
be polygonally connected if given any two points x and y in W, there
are points
xp=x,x{f ..., xp=A, xp=y

such that Uj=] Xi=p%t C Wywhere Xj~[xi is the closed segment joining
x i and Xj (Fig. 9.3).

Zp=Y

N AN
VAR

Figure 23 Figure 9.4

Any subset of RPiwhich is path connected is not necessarily polygomally
connected. For example, the circle

{(x, 1} CR?  y)\x2+ y2=1}C

is path connected (it is itself a path), but it is not polygomnally connectedl.
On the other hand, any subspace of Rf which is polygonally connected is
path connected (Exercise 1). Paths can actually be rather exotic, and may
not look anything like i), Il. For example, it can be shown that ({0, I])h
is a path for any finite n.

The next example gives a connected subspace of R2which is not path
connected.
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Figure 9.5 Figure 2.6

Example 7. Let

Y {9y =n ), 306 6)J0F u {©,0)} C

(Fig. 9.4). We shall see from Proposition 11 that ¥ is connected. If P is
any point in ¥ other than (0, 0), then there is no path in ¥ which contains
(0, 0) and P. For if there were such a path, it would be possible to show
that the function f from the space of nonnegative real numbers in R for
which Y is the graph is continuous. But £ is not continuous (Section 7.4,
Exercise 5). Also see Exercise 2 below.

Proposition 7. If X, r is a path-connected space, then X is connected.

Praef. Suppose X is path connected and x € X. For each /& X, let
P(x, ¥) be a path which contains x and y. Then

o PWHtywe kYelland n y) Ny X}

Therefore X is connected by Proposition 6.

Recall that a subset W of Euclidean n-space R is convex if, given any
paints x and y of W, the closed segment xy is a subset of W. We note
that the basic neighborhoods in R, considered as the n-fold product of R,
are convex subsets of Rt (Fig. 9.5). The “open balls” of the form

{(xly .-y xn)lliéﬂ-l-.._._.__ff_w<

where p > 0, are also convex subsets of Rh. Of course any convex subset
of Rh is polygonally connected, and hence path connected, and therefore
connected (in a very “strong” way).

We now prove a theorem that has wide use in analysis.

Prepositiok & Let U be a connected open subset of Rf. Then ¥ is
polygenally connected.

Proof. Choose u € U. Let A = {a & U ||a can be polygonally connected
to u in U} (Fig. 9.6) and B — U — A. Then A is open. For since U is
open, given any a € A, there is a basic product neighborhood V of a such
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5. Let R? be the plane with the Pythagorean metric. Prove that B2 — C, where
C is any countable set, is polygonally connected. In particular, prove that

R? — {(z,y) | z and y are rational}

is polygonally connected. [Hint: Through any point in B? — C, there is a
line which does not intersect C.]

6. Which of the following subspaces of R? are connected? Indicate clearly how
you arrived at your conclusion.

a) {(z,y) |y = (I/n)z, = = 1,2,3,...}
b) {(z, y) | either z or y, but not both, is irrational}
) {(z,9) |z # 1}
d) {(z,» |z = 1} U {0, 1}

7. Suppose X, 7 is a space such that X = A; U --- U A,, where each A; is con-
nected and A; 1 N A; # ¢, 1t = 2,...,n Is X necessarily connected?

8. Suppose A is a compact subspace of Euclidean n-space R*, n > 2. Prove
that B* — A need not be connected.

9. Prove directly (that is, do not refer to Corollary 2 to Proposition 11 of the
next section) that if X is connected, then the one-point compactification of
X is also connected.

9.3 CONNECTEDNESS AND THE DERIVED SPACES

We have already seen that if X, 7 is a connected space, then any identifi-
cation space derived from X is also connected. In this section we investi-
gate the behavior of connectedness as regards subspaces and product
spaces.

It is, of course, false that any subspace of a connected space is con-
nected. The following proposition gives a criterion for determining whether
or not a subspace of a given space is connected.

Proposition 10. If A is a subspace of the space X, 7, then A is con-
nected if and only if A cannot be expressed as S U T, where S and T
are nonempty subsets of X and

SNCIT=CISNT = ¢.

{Note that no demand is made that 8 and T be open or closed in A.)

Pr ¢ U A is not connected, then A = S U T, where S and T are dis-
joint, nonempty subsets of A which are open and closed in A. Suppose

xreSNCIT.

Then since SC A, € ANCIT=CIT in A (Chapter 4, Proposition
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L3

\

4) = T. Thereforex € SN T = ¢, a contradiction. Then SN Cl T =¢;
similarly, C18 N T = ¢.

Suppose that A = SU T, where C1SNT =8NCIT = ¢, and S
and T are nonempty. Then

ClSin4A=A4nCIS=E8uT)nClS
=l8nNCIYU (T NClIS) =Sue¢ =S

7

Figure 9.7

Therefore S is closed in A; similarly, T is closed in A. Hence A is dis-
connected.

Corollary. Two subsets S and T of a space X, 7 are said to be mutually
separated if
ClSNT=8nCIT = ¢.

Suppose S and T are mutually separated subsets of X and A is a
connected subspace of S U T. Then either A C S,or 4 C T.

The proof of this corollary is left as an exercise.
Example 8. Let R? be the plane with the Pythagorean topology,

S={y |22+ < 1}
and

T={@=y|k—22+y* <1}

(Fig. 9.7). Then C1SNT =CITNS = ¢. Therefore SU T is a dis-
connected subspace of R2. Note, however, that

CISNnCIT = {(1,0)} = ¢.
Proposition 11. Suppose A is a connected subspace of X, 7 and
AcyccQla.
Then Y is also a connected subspace of X.

Proof. 1f7Y is disconnected, then ¥ = S U T, where S and 7' are mutually
separated (Proposition 10). Since 4 is connected, either A C Sor A C T,
by the corollary to Proposition 10. Suppose A CS. Then Cl A C C1 S;
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hence FCCIA CCIS. But then since Y =8SUT, TCCIS. Since
T nClS = ¢ we have arrived at a contradiction. Therefore ¥ is con-
nected.

Corollary 1. If aspace X, r contains a connected dense subspace, then
X is connected.

Preaf. Suppose A is a connected dense subspace of X. Then ClA — X
is connected by Proposition 11

Corollary 2. If X, r is connected, then any compactification ¥ of X is
connected.

Proof. If F is a compactification of X, then X is a dense connected sub-
space of F; therefore ¥ is connected, by Corollary 1

Example 9. We see that the space ¥ in Example 7 is connected as follows:
Set A =¥ — {(0,0)}, and define a function h from {x||0 < x} CR

into R2by
h(x) = (x, sin (I/x)).

Then h is easily seen to be continuous; in fact, h is a homeomorphism onto
its image A. Therefore, since {x \0 < x} is connected, A is connected.
Now (0, 0) is in Cl A since every neighborhood of (0, 0) contains infinitely
many points of A (cf. Fig. 94). Then A C ¥ C Cl A; hence, by Proposi-
tion 11, F is connected.

y
(uh 1‘2)
A,
WX W,
A
U |4 %
(Ol 0) '(vlr '72)
Figure 9.8 Figure 9.9

Example 10. Consider the graph F of the equation r = 1 — 1/A, A > 1,
in polar coordinates (considered as a subspace of R2with the usual topol-
ogy) (Fig. 9.8). It may be verified that

ClE=FU{Q A |r=1}

(@gain in polar coordineitess) Thus F together with any set of points on the
unit circle forms a connected subspace of R2.
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We now investigate connectedness and product spaces.

Proposition 12. The product space X X% of the countable family of
nonempty spaces

X7, ©El,
is connected if and only if each X5 is connected.

Proaf. Suppose each X1 is connected, but X Xi = U U V, where U and
V are disjoint, opem, nonempty subsets of Xf X Choose u & U and
v € V (Fig. 9.9). Since U is open, there is a basic neighborhood X¢ Wi of
u such that Xj Wi C U, Wj is open in Xz, and Wj = X, except for
ti, - . = in- Define ¢ = ¥ (the zth coordinate of v) if £ # #if ..., zp, but
€ = wjifi = if, ..., zn. Then

=@ ..., %..)EXWiCU.

Define ¢!l by letting ¢} = ¥ if & 2 if, ..., zp; ¢l = if i = #i) and
¢} = ujifi — iz ..., zn. Generally, define ¢t by setting

ci Wy §# sy Ty and ¢ iE, t— imd, =——

Then ch = y.
Let

Am= {x ||xijpis arbitrary, X = vl - .- xip=
and otherwise, Xj = M.

Themc®-1 € AgpLin Amy, L < m < n\v = ch€ Ap. Ay, ..., Apforma
“¢hain” from U to V, for, since cth& ApD Apyi

ApQ AR\ & @

We now show that each Aj is connected.

Define a function gm from X3ponto as follows: g(xip) is the point
of Apm with zath coordinate X\ zwtith coordinate wint], - - -, zath co-
ordinate wjjp; and for all other & the zth coordinate Not only is gm
continuous, but also it is a homeomorphism (siince it is the inverse of the
projection from Apmonto X5m Since each Xfipis connected, each Ap is
also connected. But then Anis connected (Section 9.2, Exercise 7).
But U=y Am meets both of the disjoint, nonempty, open sets U and F,
a contradiction of Proposition 4. Therefore ¥ must be connected.

If X/ Xi is connected, then since the projection mapping pi from
Xj Xi onto Xj is continuous, Xj is also connected.
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EXERCISES

1. Prove the corollary to Proposition 10.

2. a) Prove that a space X, 7 is connected if and only if given any continuous
function f from X into R, the space of real numbers with the absolute value
topology, then if @ and b are in f(X) and c is a real number such that
a < ¢ < b, there is y € X such that f(y) = ¢.

b) Use (a) to prove that any connected normal space which contains at least
two points contains at least ¢ points, where ¢ is the cardinality of [0, 1].
¢) Prove that any connected separable metric space X, D has either at most
one point, or exactly ¢ points. [Hint: By (b), if X has 2 points, it has at
least ¢ points. Take a countable dense subset S = {s.|n & N}. Each
point of X is the limit of some sequence of elements of S, and each sequence
of elements of S has at most one limit. How many sequences of elements

of S are there?]

3. Determine whether each of the spaces below is connected or disconnected.
a) {(z,y) |y = 1/} U {(z,y) | y = 0} C R? with the usual topology
b) {(z,y) |22+ y2 < 1} U (z,y) | £ = 1} C R? with the usual topology
¢) the metric space described in Example 5 of Chapter 2
d) the plane R? with the topology described in Example 5 of Chapter 3

4. A subset A of a space X, 7 is said to disconnect X if X — A is disconnected.
We say that A is a minimal disconnecting subset of X if X — A is discon-
nected, but X — B is not disconnected, where B is any proper subset of A.

a) Describe some minimal disconnecting subsets for Euclidean n-space, B".
b) If z € X and {z} is a minimal disconnecting subset of X, then z is said to

be a cut point of X.

i) Prove that if f is a homeomorphism from a space X, = onto a space ¥, 77,
then if z is a cut point of X, f(x) is a cut point of Y.

ii) Prove that a circle, closed interval, open interval, and half-open in-
terval are not homeomorphic in pairs. [Hint: Examine the cut points
of each.]

5. A connected subset A of a space X is said to be irreducibly connected about
BC A if A is the smallest connected set which contains B. For example,
{0, 1] is irreducibly connected about {0, 1} in the usual space R of real num-
bers. Find sets about which the following subspaces of R2 are irreducibly
connected. If no such set exists, write none.

a) {#y]|0<z<1,y =0} b) {z,9]|0<z<1,0<y< 1}
o) {(z,y) |22+ 4 =1} d) {9 |22 +y*> 1}

94 COMPONENTS. LOCAL CONNECTEDNESS

A disconnected space may, of course, have connected subspaces. The
structures of the maximal connected subspaces of any space are indis-
pensable in any description of the entire structure of the space. Un-
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fortunately, even knowing completely the structure of every maximal
connected subset of a space does not determine the structure of the space
as a whole, as we see from the following.

Example 11. Let Q be the space of rational numbers with the absolute
value topology. Then Q is totally disconnected (Section 9.1, Exercise 4);
hence the maximal connected subsets of Q are the one-point subsets. If Q
were to have the discrete topology, then it would still be true that the
maximal connected subsets of Q are the one-point subsets. Note however
that relative to the metric topology, each one-point subspace of Q is closed
in Q, but not open; but that with respect to the discrete topology, each
one-point subset of Q is both open and closed. But clearly we cannot tell
which topology Q has just by knowing that each maximal connected sub-
space of Q is a subspace of exactly one point.

Definition 3. Let X, r be any space. A maximal connected subspace of
X is said to be a component of X_

Thus the components of Q as in Example 11 are the one-point sub-
spaces of Q; this is true with respect to either the discrete or the absolute-
value topology on Q.

Example 12. In Example 8 S and T are the components of the subspace
S U T of RZ In Example 4, H= and H are the components of R — {x}.

It has not yet been shown that each element of a space X, r is actually
contained in a component of X; that is, although it is clear that each
x 8 X is contained in at least one connected subspace of X, i.e., {x}, we
must show that there is a maximal connected subspace of X which con-
tains x. This is easily done, however. For let {4y}, i € I, be the family of
all connected subspaces which contain x. Then U# Ay is a connected sub-
space which contains x (Pruposition 5), and Uy Ay is clearly a maximal
connected subspace of X which contains x.

We saw in Example 11 that a component may or may not be open.
The following shows, though, that a component is always closed.

Proposition 13. A component A of a space X, r is closed.

Preoafi. By Proposition 11, Cl A is also connected. But A CCl A and A
is a maximal connected subspace of X; hence A = Cl A. Therefore A is
closed.

Proposition 14. Let {4}}, ¢ € I, be the set of components of a space
X, r. (We see from Example 11 that {4}, ¢ € I, need not be a finite
set.) Then X = Uy Ay, and if i % jj, then Ay n Ay = &

Proof. Since each x £ X is in some component of X (at least one connected
subspace of X contains x, hence a maximal connected subspace of X con-
tains #), Uy 4y = X.
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If i # j, but Ai 0 Aj then A} u Aj is a connected subspace of X
which contains both A} and Aj, a contradiction to the maximality of
both A} and Aj.

Just as we could in a sense localize the notion of compacimess, we can
also localize connectedimess. As we shall see, spaces which are locally
connected have particularly nice compamemnits.

Definition 4. A space X, r is said to be locally connected if there is an
open neighborhood system for r such that for each ie=l X, S0 consists
of connected subspaces. Equivalently, X is locally connected if given
any x & X and any neighborhood U of xythere is a connected neigh-
borhood WV of x such that ¥ C U (Exercise 1).

Example 13. If X is any space with the discrete topology, then for each
x €1X, if we set 9 = {{x}}, we obtain an open neighborhood system for
the discrete topology. Each subspace {x} is, of course, connected. Thus,
even though X is totally disconnected, X is still locally connected.

Example 14. Euclidean n-space Rf has a basis for its topology which
consists of convex, and therefore connected, subspaces (¢f. the remarks
preceding Proposition 8). But if a space has a basis which consists of
connected subspaces, it is certainly locally connected (Proposition 6,
Chapter 3).

Euclidean n-space is thus both connected and locally connected.
We now give an example of a space which is connected, but not locally
connected.

Example 15. The space
Y= | = sin (1/4x0 <y 0,3, 0 < x} U {(C

is connected as we saw in Example 9. But it is not locally connected. As
a matter of fact, if 0 < p < 1, then N ((0, 0), p) has an infinite number of
components (Fig. 9.10). The space ¥, howewver, is the image of a locally
connected space under a continuous function; hence we see that local
connectedness is not generally preserved by a continuous functiom. Spe-
cifically, let

A = {(x, ) lly = sin (I/%), 0 < x}
and

B = {1,0).
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x € C°T a contradiction, since C*ft FrC = & Therefore ¢ ¢ F%, and
hence x € Fr ¥; thus FrC C Fr ¥.

Statement (c) implies statement (b). Suppose C is a component of Uy
an open subspace of X. Then

C mAFe C & UHFkr U;

hence CNFrC = & @@ince U= U® and UNFr U = ¢)). Therefore
C ¢ C%. But CDC Cyand hence C = C=. Therefore C is open.

Statement (b) implies statement (a). Suppose U is any neighborhood
of x EIX. Let WV be the component of UJ which contains x. Then V is
open; hence V is a connected neighborhood of x which is a subset of U.
Therefore X is locally connected.

Note that in a locally connected space X Tr;Tthe components of X are
both open and closed. We immediately have the following corolilary.

Corolilary. A compact, locally connected space X, v has at most finitely
many companents.

Proaf. Let {A}}, i G 7, be the family of components of X. Then {A}},
i &7, is an open cover of X, and hence finitely many of the A,, say
Ajjr..., Ajp cover X. But if i 2 j7Aj n Aj = ¢ therefore no Aj can
be omitted from {A%}, 7 € 7, such that the remaining components still
form a cover of X. The components A{js. .., A,pthen must be all of the
components of X.

We have seen that local connectedness is not preserved by continuous
functions. Like local compacimess, local connectedness is preserved by
continuous open mappings.

Proposition 16. If / is a continuous open function from a locally con-
nected space X, r onto a space F, v, then F is locally connectedl.

Praeff. Suppose y € F and U is any neighborhood of y. Since / is onto,
there is x € X such that f(x) = y. Then f=1{U) is a neighborhood of z.
Since X is locally connected, there is a connected neighborhood V of x.
Since £ is both continuous and open, f(V) is a eonnected neighborhood of y
with/(¥) C U. Therefore F is locally connected.

Proposition 17 illustrates another property of local connectedness
which is similar to the corresponding property of local compactness
{Chapter 8, Proposition 10).

Proposition 17. Let {X%, 7;}, € 7, be a countable family of nonempty
topological spaces. Then the product space X¢ Xtis locally connected
if and only if each X is locally connected and all but finitely many of
the X are connected.
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Proof. Suppose X# X is locally connected. Since the projection mapping
pi from X/ X onto X1 is open and continuouss, each X is locally connected.
Let U be any connected neighborhood of any point y of X/ X%. Then U
contains a basic neighborhood of y of the form X¢ ¥; where V; is open
in X3 and V; — X for all but at most finitely many i. Then pi(0) — X
for all but at most finitely many #. Since p; is continuous and connectedness
is preserved by continuous functioms, X is connected for all but at most
finitely many i.

Suppose that each X% is connected and all but finitely many of the Xg
are connected. Suppose y E Xf Xt and U is a neighborhood of y. Then
there is a basic neighborhood X/ V; of y which is contained in U, where V;
isopen in X aand Vi = X for all but at most finitely many t, say £]f. .., ip
For each &, k = L. .. ,n, there is a connected neighborhood of yik(the
#th coordinate of y) in X%4 call it Wik such that WikC Vik There are
at most finitely many more , say #,+i, - *, %3 such that

> ST
are locally connected, but not connected. For each of these ¢,
k=n+L...,k=m,
there is a connected neighborhood W of 9;, with U5} C Vi. For each

i rr-p HBeaB*--2 J

set Wi= X%. Set W = X/ W:. Then W is a neighborhood of ¥ and
W C Xf Vi C U. But W is the product of connected sets and is therefore
connected (Proposition 12). Therefore Xj X dis locally connected.

EXERCISES

IL Prove that the two definitions of local connectedness given in Definition 4
are equivalent.

2_ Prove that every open subspace of a locally connected space is locally
connected.

3 Prove that the components of the space Q of rational numbers with the

absolute value topology are the one-point subspaces. Prove that Q is not
locally connected.

4. Let X, t be any space. Define an equivalence relation E on X by letting xEy
if x and y are contained in some (ile same) connected subset of X. Show that
the E-equivalence elasses are the eomponents of X.

5 Decide which of the following spaces are locally connected. Also describe
the components of each space. Both R and R2 are assumed to have the usual
metric topologjies.

a) R2—C, where C is & compact subset of R2
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b {e | = w1 ¥52,3,.. yan= 12.3,..3C
) {&wWhy=xmn=12,..;o0%=0CR
D @M =xmn= and =0} Cl,2and ~ Q}C

e | =X| nnx=1)123m34yIBC.}U {GC
f) the space N in Example 3 of Chapter 7
6. A subset A of aspace X, r is said to be a path component of X if A is a maximal
path-eonnected subset of X (see Definition 2).
a) What is the relation between the path components of a space and the
components of the space?
b) What are the path components of the spaces deseribed in Examples 7
and 10?7
¢) Prove that for open subspaces of R, a path component is also a companent.
d) What would be meant by saying that a space is locally path connected?
Prove that each path component of a locally path-eonnected space is opemn.
7. Prove that if a space has only finitely many components, each component is
open. Thus it is not sufficient for a space to have only open components in
order for the space to be locally connected.

8. If X, r is locally connected, is the one-point compactification of X necessarily
locally connected? Explore conditions under which the one-point compactifi-
cation of a locally connected space will be locally connected.

95 CONNECTEDNESS ANID COMPACT 1:2-SPACES

Two of the most important properties in topology are compactness and
being T2; hence a compact Ty-space is doubly important. In this section
we study the properties of compact T)¥-spaces with regard to connectedness
and local connectediness. We first introduce some pertinent definitiomns.

Definition 5 A space X, r can be split between two of its points x and
y if there are disjoint open subsets U and ¥ of X such that x € U,
yeF,and X = UUFK

A compact connected Tzspace X, r is called a continuum. The
continuum X is said to be #rreducible about A C X if X is a minimal
continuum which contains A.

A point x of a space X, r (mot necessarily a continuum) is said to
be a cut point of X if X is connected but X — {#} is not connected.
Otherwise, x is said to be a noncut poiintt. See Section 9.3, Exercise 4.

Example 17. Evidently if a space X, r can be split between two points x and
y then x and y are in different components of X. Tt is not true, however,
that if x and y are in different components of X that X can necessarily be
split between them. Let

Y= {ow{&)yl | lL,or =y=)a@rR?= —1}CcR2
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Figure 211

(with the usual topology), where Cp = {(x,) |22+ y2= (1 — (I/n))3,
n=123 ... Then the components of ¥ are each Cp and the two
straight lines indicated in Fig. 9.11. It should be intuitively evident that
although (@, 1) and (0, —1) are in different components of ¥, nevertheless
F cannot be split between these two poinis.

Example 18. Any closed, bounded, and connected subset of Rf for any n
is a continuum_. Any path in a Tgspace is a continuum, since any sub-
space of a Tspace is T2 and compactness and connectedness are both
preserved by continuous functioms.

Every point of the closed interval [B, 1] except 0 or Lis a cut point of
[® 1}; thus {0, 1} is the set of noncut points of B, I]. It is easy to show
in fact that [ 1] is a continuum which is irreducible about {0, 1}. Sim-
ilarly, if P and Q are any two points of Rf, then the closed segment PQ
is a continuum irreducible about {P, Q}.

Proposition 18. Let X, 7 be a compact PRapace and {A%}, i« /,be a
family of closed subsets of X such that {4&%}, i € Z, is directed by <
where A} < Ay if Aj C Af(¢f. Definition 1 and Example 3 of Chap-
ter 6). Suppose that each A% has the property that it cannot be split
between x and y. Then 0/ At cannot be split between x and y.

/. Ry

Figure 912
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Proof. Let B = 1 A;. Suppose B= U UV, where U and V are dis-
joint, open (in B) subsets of B,andx € U and y € V. Now U and V are
also closed in B. But B is closed in X {Exercise 1); hence U and V are
closed in X. Sinee X is compact and T2, X is T,, and thus there are open
sets G and H such that UC G, VC H, and G n H = ¢ (Fig. 9.12).

For eachi € I, A; Z G U H, or otherwise we would have

re A;NG, ye A;n H, and (A, NG n(A;, NnH) = ¢;

that is, we could sphit A; between x and y. For each 4;, we can therefore
find x; € A; — (G U H). Sinee {A;}, 1 € I, is by assumption a directed
set, {x;}, 1€ I, is a net. Since X is compact, this net has a limit point z
(Proposition 9, Chapter 7). Since any neighborhood N of z contains
{z.},1 € I, cofinally, any neighborhood N of z meets {4}, ¢ € I, cofinally.
But then N meeis every A;. For given A;, there is A; C A; such that
N n A; # ¢ (remember that {4;},7 € I,is directed); hence N 1t 4; # ¢.
Therefore

2e€ClA; = A;

for each 1, and thus z € B = 1y A;. We therefore have that z € G U H;
hence G U H is a neighborhood of z. But G U H does not contain any of
the x;, contradicting the chotce of z as a limit point of {z;},z € I. It must
be then that B cannot be split between x and .

We have already seen that in a general topological space, the inter-
section of a family of connected subsets need not be connected. This is
not true even in a compact 7Tz-space, but the following is true.

Proposition 19. Suppose {A;}, i € I, is a family of closed connected
subsets of a compact Tyspace and {4}, 7 € I, directed by < as in
Proposition 18. Then [); A; is connected.

Proof. If x and y are in {17 A;, then each A; eannot be split between z
and y; therefore, by Proposition 18, {17 A; cannot be split between z and y.
Proposition 19 then follows at once from the following proposition.

Proposition 20. If X, 7 is a compact Ty-space and z and y are in X,
then X cannot be split between z and y if and only if x and y are in
the same component of X.

Proof. Let C, be the component of z in X and @, = {z | X cannot be split
between z and z}. We already know that C. C Q,. Suppose y €Q,. We
must show that y € C,. Consider the family {4}, ¢ € I, of closed subsets
of X such that A; cannot be split between x and y. This family in non-
empty, since Q. is a member. Then if {4,}, j€J, is a chain in {4;},
i € 1, by Proposition 18, M A;; cannot be split between r and y. Apply-
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ing Zorn’s lemma to the directed (and hence partially ordered) set {4},
1€ I, we can find a minimal closed subset B which cannot be split be-
tween z and y. We will now show that B is connected.

Suppose B is not connected. Then B = U U V, where U and V are
open and closed in B and nonempty, but UNV = ¢. lfreUandy €V,
then B splits between = and y, a contradiction. On the other hand, if =
and y are in U (or V) and U could be split between x and y, then B could
also be split between z and y; if U could not be split between x and y,
then B would not be minimal. Therefore B must be connected. But then
B CC;; hence y € C;. Then C; = Q.

Proposition 21. If X, 7 is a continuum and A C X, then there is a sub-
continuum Y of X which is irreducible about A. (As the name in-
dicates, Y is a subcontinuum of X if the subspace Y is itself a
continuum.)

The proof is left as an exercise.

Example 19. If P and Q are any two distinct points in R”, then
{P,Q} CCIN(P, p)

for a suitable p > 0. Now Cl N(P, p) is a continuum. There is therefore
a minimal (or irreducible) subcontinuum of Cl N(P, p) about {P,@Q}.
The closed segment PQ is an example in this case of such an irreducible
subcontinuum,

Proposition 22. A compact Ts-space X, 7 is locally connected if and
only if every open cover of X has a refinement consisting of a finite
number of eonnected sets.

Proof. Suppose X is locally connected and {U,}, ¢ € I, is an open cover
of X. Let {V,},j € J, be the family of components of the U;. Since X is
locally connected, {V;}, j €J, is an open cover of X (Proposition 15);
moreover, {V;},j € J, is a refinement of {U,}, ¢ € I. Since X is compact,
there is a finite subeover {V;,..., V;} of {V;}, j €J, and this finite
subcover is a refinement of {U;}, ¢ € I, by connected sets.

Conversely, suppose that every open cover of X has a finite refinement
by connected sets. Suppose U is a neighborhood of z € X. In order to
show that X is locally connected, we must find a connected neighborhood
V of x with V C U. Since X is T» and compact, X is T'5; hence there is a
neighborhood W of z such that W C CLW C U. Theset {U, X — C1 W}
is an open cover of X. There is therefore a refinement {H;, ..., H,} of
{U, X — C1 W} by open, connected subsets of X. Either

H;cU o H;CcX-—-ClW
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for i = 1,...,n by the definition of a refinement. Let x &€ Hi, Then
x € Hi C U. Therefore Hi is a connected neighborhood of x which is
contained in UJ. Hence X is locally connected.

A path is one of the most important types of continua but, as has
already been pointed out, paths can be rather peculliar. The purpose of
the next proposition is to help establish certain properties of paths. We
will then give without proof a proposition which completely characterizes
paths.

Propositien 23. If X, r is a compact Th-space and if / is a continuous
function from X onto a T¥space F, then if X is locally connected,
F is also.

The proof of this proposition is outlined in Exercise 4 below. As an
immediate consequence of Proposition 23, we have the following.

Corollary 1. Any path in a T2space is compact, connected, and locally
connected.

Example 20. The space F’ in Example 16 is connected and compaet, but
is not locally connected, and hence could not be a patth.

It can also be proved without much trouble (see Exercise 4) that any
path is also second countable; hence, as we shall prove in the next chapter,
any path in a T2space is a compact, connected, locally connected metric
space. As a matter of fact, although we will not prove it in this text, the
following is also true.

Proposition 24 (the Hahn-Mazurkiewicz theorem). A metric space is
compactt, connected, and locally connected if and only if it is a path.

This is a somewhat surprising result, since it implies that even spheres,
cubes, ete. and their counterparts in R for any n, are continuous images
of [0, 1 As a rule, the continuous functions from [0, IJ onto such spaces
are not one-one; for if they were, they would be homeomorphisms (Prop-
osition 14, Chapter 7), which, of course, is not generally true.

EXERCISES

IL. Prove that the set B in the proof of Proposition 18 is closed. [Mint: The
proof is extremely simplle}

2. Let X}« be any space. Define a relation E on X by xEy if X cannot be split
between x and y. Prove that E is an equivalence relation on X. An F-equiv-
alence class is said to be a guasi-compemant. Let x & IX;; denote the com-
ponent of x by Cxand the quasi-cemponent of x by Qx Proposition 20 states
that in a compact T2space Cx = Qx. Always CxC Qx=Find an example of
a space in which Cx & Qx.
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3 In Example 17, prove that F cannot be split between (@ 1) and (@, —1).

4. a) Prove that any continuous function from a compact T)space onto a
Tyspace is closed, that is, f{F) is closed if F is closed.

b) Prove that local connectedness is preserved by continuous closed functions.

¢) Use (b) to prove Proposition 23,

d) Use (@ to show that any path F, ¥ in a T)¥space is second countable.
[Hint: Let {Un}, n € N, be a countable basis for the usual metric topology
on [ 1, which is known to be second countablle. Then [ 1] — Upis
closed for each n. Prove that {F —/(0, I] — U}, n E N, is a basis
for ¥']

5. Prove Proposition 21.

6. Prove that any continuum is irreducible about its set of noncut points.

7. Find an example of a collection {*1,}, i € 7, of closed, connected subsets of
a space X, f such that {4,}, 1 € 7, is directed by < as in Proposition 18
but fl; Axis not connected.

8. Find an example of a continuum in R2 (with the usual topology) which is
irreducible about each of the following subsets of R2.

a) {(0,0), (1, 1), @, 0)}

b) {(& ¥) ||x and y are rational and x2+ y2 < 1}

9 {(, |[X=0;1¥x=0;2<yg

Even before they were found, how could we be certain that such continua

existed?

9. Suppose that X is a compact T¥space which is irreducibly connected about
two points a and b. Prove that if A and B are connected subsets of X each
of which contains a, then AC Bor BC A.
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METRIZABILITY. COMPLETE METRIC SPACE

1.1 METRIZABLE SPACES

This chapter is concerned with two topics pertaining to metric spaces.
The first question to be considered is, When is a space a metric space?
This of course is a very poor statement of the real issue, since we have
already defined what we mean by a metric space, that is, a set with a
metric D. We have seen, however, that metric spaces have a certain
topology induced by their metric. Suppose that instead of starting with a
set with a metric, we begin with a topological space Xyr. We might then
ask, Is there a metric D which can be defined on X such that the topology
induced by D is ¥? This is in fact a very profound questiom, and satis-
factory answers to it were not provided until comparatively recently. We
shall only partially answer the question in this text.

Definition 1. A space X, r is said to be metrizable if a metric D can be
defined on X such that the topology induced by D is . Otherwise, X
is said to be nonmetrizatbil.

The question now is, When is a space metrizable?

Example 1. As we have seen, a topology can be defined on the space R of
real numbers using the open intervals as a basis. This topology is the
same topology as is induced by the absolute value metric; hence the open
interval topology on R is metrizahle.

Example 2. If X, D is any metric space, then the produet space X X X can
be defined without direct reference to metric. The product topology on
X X X turns out to be the same topology, however, as is induced by the
metric D", defined by

"((Xu D'((x1, @M, ) = D(x1, 41 + y» = D(xu

Therefore if X is metrizablle, then X X X is also metrizablie. (See Prop-
osition 1, Chapter 8.)

Example 3. If N is the set of positive integers with the topology defined
by calling a set U open if U — N — F, where F is finite, then N is not
metrizablle. For any metrizable space must be normall, but N is not even T2=
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A theorem which tells us when a space is metrizable is called a metri-
zation theorem. One of the most important metrization theorems is
Urysohn’s metrization theorem.

Proposition 1. Let X, 7 be a Ty-space. Then the following statements
are equivalent:

a) X is regular and second countable.

b) X is separable and metrizable.

¢) X is homeomorphic to a subspace of the product space Xy [0, 1],
that is, the product of [0, 1] with itself countably infinitely many
times, where [0, 1} has the absolute value topology. The product
space Xy [0, 1] is known as the Hilbert cube.

As a first step toward proving Proposition 1, we prove the following.

Proposition 2. Let {X,, D,}, n € N, be a countable family of second
countable metric spaces. Then the product space Xy X, is second
countable and metrizable.

Proof. Since each X, is second countable, X' X,, is second countable by
Proposition 4, Chapter 7. We define a metric on Xy X, as follows: Let =
and y be any points of Xy X,,; denote the nth coordinates of x and y by
z, and y,, respectively. Define

Dy, yn) = min(Dn(xm Yn), 1)

It is easily proved that the metric D;, thus defined on X, is equivalent to
the metric D,, (¢f. Section 2.3, Exercise 6). Define

D, y) = L nlloa ).

By comparison with the series 2 _x(3)", we see that D(z, y) is defined for
each z and y in Xy X,. It can be verified in a straightforward fashion that
D is in fact a metric for Xy X,. What must now be shown is that the topol-
ogy induced on Xy X,, by D is the same as the product topology. We will
use Corollary 1, Proposition 9, Chapter 3.

Let y € Xy X, and let U be a basic neighborhood of y in the product
topology. Then U = Xy W,, where W, is open in X,, and W, = X, for
all but at most finitely many n, say ny, ..., fi;. Since W,, is open in X,
we can find positive numbers pi, - . . , p¢ such that

N(?/ni,Pi)CWni, i=1,...,L

Choose p = min(p,, ..., py)- Then if z€ N(y, p), z, € W, for each n;
hence z € U, and therefore N(y, p) C U.
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On the other hand, suppose N(y,p) is a D-p-meighivorhood of y.

Choose g € N such that
X @< p/2
n=g

and choose positive numbers pj, . . , Pg-i such that
pi 4 *=< 4 pg—i < g2

Let V = Xat #Hp, wheeeHp = M@n,pa),n = 1, ..., = L andHn = Xp
otherwise. Then ¥ is a basic neighborhood of y in the product topology,
and V € N(y,p). Therefore the product and metric topologies on Xm Xpn
are equivalent; hence Xy Xp is metrizabile.

Corollary. The Hilbert cube XN I is second countable and
metrizafblle.

It should be clear to the reader than any subspace of a metrizable
space is metrizable (wsing the same metric which makes the original space
into a metric spacs).

We now proceed to the proof of Proposition 1.

Proof (Proposition 1)

Statement {c¢) implies statement (b). This is true since any subspace
of a second countable metric space is both second countable (@md hence
separablie) and itself a metric space. Any metric space is regular and, in
metric spaces, separability and second countability are equivalent notions
{(Proposition 5, Chapter 7); hence (b) implies (@). The difficult part of
this proof then is to show that (@) implies (c).

Statement (@) implies statement (¢). Since X is second countable, X is
Lindelof (Chapter 7, Proposition 3). Since X is a regular Lindelof space, X
is normal (Proposition 6, Chapter 7). Let

&= {Balln= 1,23 ..}

be a countable basis for r. There are a countable number of ordered pairs
of the form (B, Bp) such that Cl BjnC Bjp (since X is regular, there is at
least one such pair). Since there are countably many such pairs, we will
enumerate them

{Uk P llh= 1,2, 3 , ,, where Uk= Bpkand Vit = B,]}.

Then C1  C Vi. UkhevéforEnCiciyautl Kk-an¥l are-didjoing ¢lejsid tsatesed
sets of X. Applying Urysohn’s lemma (Proposition 10, Chapter 5) to
Cl Uk and X = Wk, we can find a continuous function fk from X into
O, 1 such that fi{x) 0 for €& Cl U; and O forxeCl lfkaaad =1if
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a contradiction to 2 € N(z, p). Therefore 2’ € G; hence F(G) is an open
subset of Z, which completes the proof.

Proposition 1 is one of the most important metrization theorems in
topology, although there are many others. It does not, however, com-
pletely characterize metrizable spaces, since there are nonseparable metric
spaces (Example 6, Chapter 7); hence there are metrizable spaces which
cannot be homeomorphic to a subspace of the Hilbert cube.

Corollary. Any separable metric space X, D has a metrizable com-
pactification.

Proof. Since X is a separable metric space, X is homeomorphic to a sub-
space Z of the Hilbert cube. The Hilbert cube is, however, compact
(since it is the product of compaet spaces). Therefore C1Z is a closed
subset of a compact metric space, and is therefore itself a compact metric
space. But ClZ is a compactification of X ; hence the desired result.

Example 4. Note that Euclidean n-space R™ is a separable metric space
for each n, and that R" is hence embeddable as a subspace of the Hilbert
cube. Since R is homeomorphic to the open interval (0, 1) by some homeo-
morphism h, a speeific homeomorphism f of R* in the Hilbert cube might
be defined as follows: Let x = (z3,...,%,) be any point of R*. Set

fifx) = h(zi), k=1,...,n,
and
filz)y =0 fork > n.
Define

f@) = (h@), f22), .. ., fi(2), .. .).

It is easily verified that f is a homeomorphism from E" onto a subspace Z
of the Hilbert cube. It can also be confirmed that Cl Z is homeomorphic
to ({0, 1)™.

We can see from Example 7 of Chapter 8 that there can be more than
one metrizable compactification of R, and that hence there may be a
number of distinct embeddings of R (or R™) as a subspace of the Hilbert
cube.

Example 5. We stated after Proposition 22 of the last chapter that we
would prove that any path in a T»-space is a metric space. We do so now.
Any path in a T-space is a compact subspace of a T»-space and hence is
regular (in fact, it is normal). We also saw in the last chapter that any
path was second countable. By Proposition 1, then, any path is homeo-
morphic to a subspace of the Hilbert cube, which is a metric space; hence
any path is a metrie space.
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EXERCISES

1. Which of the following spaces are not homeomorphic to a subspace of the
Hilbert cube? If a given space is homeomorphic to a subspace of the Hilbert
cube, produce a homeomoipthisn.

a) the open interval (@, 11) with the absolute value topology

b) N, the space of positive integers with the discrete topology

¢) {0, I} with the trivial topology

d) {& ¥) |x2+ y2 = 4 C R2with the Pythagorean topology
2. The following refer to Proposition 2.

a) Prove that Dhis a metric on X which is equivalent to the metrie Dp.
b) Prove that D is a metrie for Xy Xn

3 Find necessary and sufficient conditions on a space X,  which make the one-
point compactification of X a separable metric space.

4. Prove or disprove each of the following statements.

a) If X and ¥ are each homeomorphie to a subspace of the Hilbert cube, then
the product space KX< F is also.
b) If Z is a subspace of X, ¥ and X is separable and metrizable, then Z is reg-
ular and second countalble.
¢) A locally compact Td¥space is metrizable if and only if it is second
countablie.
d) The continuous image of a separable metric space is a separable metric
space.
€) The product space of a countable family of compact separable spaces is
homeomorphic to & subspace of the Hilbert cube.
5 Show that there is no finite n such that (¥ 1])m could replace the Hilbert
cube in the statement of Proposition 1L
6. Define a sequence {&;}, n & N, in the Hilbert cube by letting s} = 1, and
Sy = 0if k # n, that is, by letting the nth coordinate of spbe 1L and every
other coordinate of snpbe Q. Since the Hilbert cube is compact, this sequence
has a limit point. Find a limit point of this sequence. Does the sequence
converge?
7. Suppose a space X has a dense metrizable subspace ¥. Is X necessarily

metrizable? For example, suppose D is a metric on ¥. For each x, y € X,
let an—>x and b —=»y, ap, bR & ¥. Define

D(x, y) = lim D(ax, br).

102 OAHHRY SEUENCESS

Preparatory to a discussion of complete metric spaces, we will investigate
a notion which the reader may have encountered as early as freshman
calculus, that of a Cauchy sequence (@lithough, as was the case with metric,
the terminology might have been differenit).
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Suppose X, D is any metric space and {sp},n & N, is any sequence in
X which converges to some point y of X. Then the following proposition
is true.

Proposition 3. Given any number p > 0, there is a positive integer
M such that if k and m are any two integers greater than B, then

D(sk, si) < p.

Proef. Since sp —y, we may find a positive integer M such that if n > M,
D($n,y) < p/2. Then if kand m are both integers greater than M, we have

D(sk, sn) < D(ekj y) + D@y, sr) < p/2 +p/2 = p.
This result inspires the following definitiom.

Definition L. Let X, D be a metric space. Then asequence {sp},n € N,
in X is said to be a Cauchy sequence if given any positive number p,
there is a positive integer M such that if m and k are integers greater
than M, then D(sk, sp) < B-

Proposition 3 states that if a sequence in a metric space converges,
then that sequence is a Cauchy sequence. It is not true, however, that
every Cauchy sequence in any metric space converges.

Example 6. Let {sp}, n & N, be the sequence in the space R of real
numbers (with the absolute value metric) defined by sp = I/m. Then
sp —0; hence {sp}, n € N, is a Cauchy sequence in R, or any subspace
of R which contains it. But {sp}, n € N, is therefore a Cauchy sequence
in R — {0} ; however, it does not converge in R — {0}.

When the reader first studied the structure of the space R of real
numbens, he may have taken as a basic axiom any one of the following:

A. Any nonempty subset W of ® which has an upper bound has a
least upper bound.

B. Any nonempty subset W of R which has a lower bound has a
greatest lower boumel.

C. Every Cauchy sequence in R converges.
We will now show that all three of these statements are equivalent relative

to R In Exercise 2, the reader is asked to show the equivalence of A and
B. Propositions 4 and 5 now prove that A and € are equivalent.

Proposition 4. Assume property A of the space R of real numbenrs.
Then a sequence {sp}, n € N, in R converges if and only if it is a
Cauchy sequence.

Proof. If {sp},n G Al, converges, it is a Cauchy sequence by Proposition 3.
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Suppose that {sp}, n & N, is a Cauchy sequence. Set p = L. Then
there is a positive integer M such that if k and m are integers greater than
M, [ — sl < I Let

T = ma{fsil, [l - -, lidil).
Then for any positive integer [s,| < + 1; hence < + L

1) < s, < 1(T+ )< sn< 1

T oeoe .|
E=—— - esrsseses ] et fadf oo e
=(P+D 0 e~ @2 @ni=@in b &-ibh-1 e
Figure 10.1 Figure 102
Divide [T + 1), T 4f L]jinto two intervals [—(T + 1), O]and [0, T + 1}
One of these intervals must contain infinitely many of the sp. Set the

left-hand endpoint of that interval equal to  and the right-hand end-
point of that interval equal to bil (Fig. 10.1). Divide [, &1] into

B, @x+b)/2] amid (@i +&)/2, &)

One of these intervals contains infinitely many of the sp. Set the left-hand
endpoint of that interval equal to azand the right-hand endpoint of that
interval equal to b2 Continuing in like manmner, suppose we have found
that the interval [@p_Y, &)_{{] contains infinitely many sp. Divide

ez, Brif
len=1, @n-1+ &i)/Z] anadd [(an—x+-6n-i))/3,@n-i]]

into

(Fig. 10.2). One of these intervals contains infimitely many of the sp. Set
the left-hand endpoint of that interval equal to ap and the right-hand
endpoint equal to by. By construction the following statements hold:

a) ap=il < apyn= 11,23, .

h) bp < tp=lm 1,2 3,......

&) W~ = @P(@+ W~ (R D)= (&¥ ""‘(lTr+l12 .
n= -

Let A = {ap||lwe N} and B = {bp||n & N} Since A is nonempty
and has an upper bound T + 1, A has a least upper bound, say a. Since
Bis nonempty and has a lower bound, B has a greatest lower bound, say b.
Thenap < a<b< bpforeachnGN. Ifa 2 b thenb—a > 0. But

b —a <bbp —aap = GP-WF+HI)

he
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for each n. If then b — a > 0, there is a positive integer M” such that
ifn > M,

GOh=UT+ 1) <b—a,

which is impossible; therefore a — b.
We now show that sp—>a. Let p > 0. Then there is an integer M x
such that n > M| implies by — ap < p/2. Consequently

sy bRl C N(a, p/2) = (@ — p/2, a + p/2).

Therefore N(a, p/2) contains infinitely many of the sp. Since {sp}, n € N,
is a Cauchy sequenee, there is a positive integer M such that if k and m
are greater than My — spi]l < p/2. Since N(a, p/2) contains infinitely
many sp, there is at least one integer m! > M such that spr& N(a, p/2).
Therefore if n > Mythen

e =&\ < [l = wf| + [kay =l < p/2 +p/2 = p.
Hence if n > M, then sp & N(a, p). Therefore sp —a.

Proposition 5. If property C is assumed for the space R of real num-
bers, then every nonempty subset W of R which has an upper bound
has a least upper bound; that is, property C implies property A.

Proof. Let W be a nonempty subset of R such that W has an upper
bound T. We can find a sequence {sy},n & N, such that (1) sp < $hyj for
each n; (2) sp € W for each n; and (3) given any w & W, there is a positive
integer M such that n > M implies w < sp. The construction of such a
sequence is left as an exercise. We now prove that this sequence must be
a Cauchy sequence.

Suppose {sp},n &€ N, is not a Cauchy sequence. Then for somep > 0
there is no integer M” such that if m and k are integers greater than ",
then [k — spil < p=By constructiom, if k < m, then & < sp]hence

[k = &, Sm &

Therefore there is an integer mj such that sgj — §f > p. There is an
integer m2 > mi such that sp — spj > p; therefore spR — si > 2p.
There is an integer rag > mgsuch that sp@ — spP > p, and hence spg =
8| > 3p. Continuing in like fashiom, we see that the set of sp, and hence
W, could not have an upper bound, contradicting the assumption that W
has an upper bound. Therefore {sp}, n & N, is a Cauchy sequence.

Sinee {sy},n € N, is a Cauchy sequence, it converges to some limit y.
1t is left as an exercise to prove that y is the least upper bound of W.



218 Metrizability. Complete Metric Space 10.3

Definition 2. A metric D on a set X is said to be complete if every
Cauchy sequence in X, D converges to a point of X. If D is a com-
plete metric on X, then X, 7) is said to be a complete metric spare.

The absolute value metric D on the space R of real numbers is a
complete metric on Ry thus R, D is a complete metric space. Note that
D is not a complete metric for the set Q of rational numbenrs.

We said that a metric space is complete if its metric is complete. Two
metric spaces may be homeomorphic as topological spaces, but one might
be a complete metric space and the other not. The following example
illustrates this poimt.

Example 7. Let N be the set of positive integers. Let D be the usual

absolute value metric on N, i.e., D(m,n) = [vyn —n\ for all m, n € N.

Then N, D is a complete metric space, since only Cauchy sequences in N

are those sequences which are constant from some point on (see Section

10.2, Exercise 6). The topology induced on N by D is the discrete topology.
Now define a metric Dfon N by

D'(m, n) = NI/m — V.

It is easily verified that D" is a metric on N which also induces the discrete
topology. Therefore, considered as topological spaces, N, D and N, D are
homeomorphic (the identity mapping being an explicit homeomengiitsn)).
Howewer, Dtis not a complete metric space, since the sequence {sp},n € N,
in N defined by sp = n for each n E N is a Cauchy sequence, but does
not convenge.

The following terminelogy proves useful in the discussion of complete
metric spaces.

Definition 3. Let A be a subset of a metric space X, D. The diameter
of A is defined to be the least upper bound of

{D(x, y)\
We denote the diameter of A by d(4).

Example 8. If A = {(x,%) |x2+ y2= 1} C R% with the Pythagorean
metrie, then d(4) = 2 (Fig. 10.3). If B = {(x}y) IM < 2,]W < I} C R,
then d(B) = V20 (Fig. 10.4).

Proposition 6. If A is a subset of the metric space X, D then
d(A) = d(Cl A).
Pvoofi. Let p be any positive number. We will show that
d(Cl A) < d(A) + p.
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d(4)=2 }
(—1,0) (0,0) (1,0)
A

Figure 10.3 | Figure 10.4

\\\\&\

/

Suppose x and y are in Cl A. Then both N(x, p/2) and N(y, p/2) meet A.
Choose

¥ 6N(c, p/2) NA
and
y'eN(#p/2) D A,

Then

B@, P < D(x, x) + D', y) < D(x, x) + D, i) + Dy, )
< p/2 + d(A) + p/2 = d{A) +p.

Therefore d(Cl A) < d(4). But since A C Cl 4, d(A) < d(Cl A); hence
d(A) = d(Cl A).

We now use Proposition 6 to prove an important criterion for com-
pleteness.

Proposition 7. A metric space X, D is complete if and only if given a
countable family {Ap}, n & N, of closed, nonempty subsets of X such
that

AiD A2D *=<D ApD === and d(An) =0,

flw Ap 2 &

Proof. Suppose X, D is a complete metric space. For each n &N, choose
ap & Ap. Suppose p > 0. Then there is an integer M such that n > M
implies d(Ap) < p/2. If k and m are both integers greater than M, then
ak and amare both elements of Am+iShence, since d(AMzti) < p/2,

D(ak, an) < p-

We therefore see that {ap}, n & X, is a Cauchy sequence. Since X, D is
assumed to be a complete metric space, the sequence {dp}, n € N, con-
verges to some point y. Then for any n, {ap, apti, - - -} is also a sequence
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which converges to y. But Apis closed and

for each n; therefore y € Ap (@ince y € Cl Apand Cl Ap = Ap). Since n
was arbitrary, y € ¥ Ap; therefore Pat Ap 2 6.

Conveisely, suppose that given any decreasing sequence A 3 A2D =
of closed, nonempty subsets of X such that

d@ab») —0, Ml =
N

Let {§},n € X, be a Cauchy sequence in X. Set
= |k > n} and An= ClBp

for all n &€ N. Then {Ap}, n € N, fulfills the necessary conditions, and
hence fly Ap 24 6. Choose y € Ova Ap. We now show that sp —>y.

Letp > 0. Then there is an integer M such thatifn > M,d(Bp) < p.
By Proposition 6, d(Ap) < p as well. Then D(sp,y) < p for all n > AMf;
that is, if n > M, then sp € N(y, p). Therefore sp —y.

As we have seen, not every metric space is complete. The next prop-
osition enables us to say that any compact metric space is complette.

Proposition 8. If a metric space X, D is compact, then D is compliette.

Proeff. Suppose we have a decreasing sequence Aj D A2D ===of closed,
nonempty subsets of X. Them, by Proposition 8, Chapter 7, fijx Ap 2 6.
Therefore, by Proposition 7, D is compliete.

Corolllary. Any separable metric space X, D is homeomorphic to a
dense subspace of a complete metric space.

Preaf. By the corollary to Proposition 1, X has a metrizable compactiifii-
cation Z, D". But Z, D" is a complete metric space by Proposition 8.

It is not true that any subspace of a complete metric space is neces-
sarily complete (eg., the rational numbers form an incomplete subspace
of the real numbens)). We do, however, have the following.

Proposition 9. Any closed subspace ¥ of a complete metric space X, D
is a complete metric space.

Preof. Suppose {sy}, nEiW, is a Cauchy sequence in ¥. Then {sn},
n € N, is also a Cauchy sequence in X; hence sp—>y, for some y € X.
But theny € Cl ¥ = ¥, and thus {sp},n € X, converges in ¥.

Suppose {Xp, Dp}, n € X, is a countable family of nonempty metric
spaces. Then a metric D can be defined for Xy Xp as in Proposition 2
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The following proposition gives a necessary and sufficient condition for
Xw Xp, Dj to be complete.

Proposition 10, Xp Xp, D, is a complete metric space if and only if each
component space Xpy Dpis a complete metric space.

Proof. First suppose that Xp, Dpis a complete metric space for each n,
and that {sp}, n & N, is a Cauchy sequence in Xy Xp. If we denote the
kth coordinate of sp by sp(k), then it is easily verified that {sp(®)}, n 6 V,
is a Cauchy sequence in Xk. Therefore {sp(k)}, n € N, converges in Xk
The convergence of {sp}, n&NV, then follows from Proposition 12,
Chapter 6.

Suppose now that one of the Xp, Dp, say X1, DJf is not compliet.
Then there is a Cauchy sequence {sp(1)}, n € N, in X x which does not
converge. Select a point ap from each Ap,n > 2. Then the sequence

{my) waEN, in )A?Km,

defined by setting the first coordinate of sp equal to sp(l) and the nth
coordinate of sp equal to apt n £ 1, (ithat is, {5}, n & N, is a constant
sequence in all but the first coordimate) is a Cauchy sequence which could
not converge in X§ Xy, since it does not converge in the first coordimatie.

Corollary. The Hilbert cube is a complete metric space.

Proof 1. Since [0, Iwith the absolute value metric is compact, it is a com-
plete metric space; hence the Hilbert cube Xg [® 1] is a complete metric
space by Proposition 10.

Proof 2. The Hilbert space is a compact metric space, and hence is com-
plete by Proposition 8.

We have already seen that any separable metric space is homeomorphic
to a dense subspace of a complete metric space. Actually, the following
stronger result is true.

Proposition 11. Let X, D be any metric space. Then X may be em-
bedded as a dense subspace of a complete metric space ¥, D’ by an
embedding which preserves distances [t is, if h is the embedding of
X, then D(x, y) — D'(ti(x), h(y)) for any x and y in X],

We saw earlier that any topological space was homeomorphic to a
dense subset of a compact space. Here we have a somewhat analogous
theorem for metric spaces, compact spaces being the most important type
of topological space, and complete metric spaces being the most important
type of metric space. A space F, D’ as described in Proposition 11 is called
a completion of X, D.
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The proof of Proposition 11 in its entirety is long and cumbersome,
and little is to be gained by going through all the sordid detaills. There-
fore only an outline of the proof is presented here.

Outline of proof (Proposition 11). Let ¥' be the set of all Cauchy se-
quences in X. Two Cauchy sequences {sy},n & N, and {in}, n € Nywill
be considered to be equivalent if D(sp, tp) —>0. It must be verified that
we have thus defined a genuine equivalence relation on F'. Denote the
equivalence class of a sequence {$}, n & N, by {sp}"; denote the set of
equivalence classes by F. We define a metric D' on F by setting

B (e’ = lim D(s,, {Q")= limC

It must be shown that the required limit always exists and is independent
of the representatives of the equivalence classes. Moreowar, it must be
shown that D" is actually a metric. If x & X, then x can be identified
with the equivalence class of the constant sequence {sp = x},n € N. The
mapping thus defined in distance preserving is hence a homeomaomgthism.
By a method of diagonalizatiom, it can be shown that each Cauchy se-
quence in F converges, and that each element of F is the limit of a Cauchy
sequence each member of which is the class of a constant sequence. For
more details, the reader might see Theorem 2-72 in Hocking and Young,
Topology (Xdidison-Wesley, 1961).

EXERCISES

L. In Example 7, confirm that D" is a metric on M and that D’ induces the dis-
crete topology on N. Describe a completion of X, D; of N, D*.

2. Find a necessary and sufficient condition for a completion of a space X, D to
be compact. [Mint: Let R be the space of real numbers and let D be the
absolute value metric. Set D'(x, ¥) = min(D(x, ¥), 1) for all x, y € R. Then
D’ is a metric on R which is equivalent to D. Is D' a complete metric on R?
Describe the completion of R, D]

3. Prove Proposition 8 by means of Proposition 9, Chapter 7 and the definition
of a Cauchy sequence.

4. In the proof of Proposition 10, verify that each {sp@)j}, n € N, is really a
Cauchy sequence in A%.

5 Let £ be a continuous function from a metric space X, D into itself with the

property that
D(f(0),fy)) <

where 0< k < 1, for any X, y & XK. That is, / “ontracts” distances. Set
fl = £, 2 = §3f and, in general, fih = fSfi=1. Choose y & X. Consider the
sequence {sr}, nE N, defined by sn = friy).

a) Prove that §5,)}, m& N, is & Cauchy sequence.
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b) Prove that if D is complete, then £ has a unique fixed point, that is, that
there is one and only one z € X such that f(z) = z. [Hint: Let z be the
unique limit of {sp}, n € N. The sequence {/(sn)}, n E N, must have the
same limit as {$}, n € N, but f(@) is also the limit of {f(sn)}on E N.
Suppose z and z' are both fixed points of £, and show that this contradicts
the assumption thatt/is a contracting functimon}

¢) Show by example that if D is not complete, a contracting function may
not have any fixed points. If D is not complete, might a contracting
function have more than one fixed point?

6. A distance-preserving function is called an isometry. Prove that it is not
possible to isometrically embed a complete metric space X, D as a dense proper
subspace of another complete metric space F, D’. Prowve, howewar, that it
might be possible to embed X as a dense proper subspace of a complete metric
space F, D' if the embedding is not required to be an isometny.

7. A subset A of a metric space X, D is said to be tetally bounded if given any
positive number p, the open cover {N(x, p)}, x € A, of A has a finite sub-
coverr. Prove that a subspace of a complete metric space is compact if and
only if it is closed and totally bounded. (Cf. Exercise 6 of Section 8.1.)

104 BAIRE CATEGORY THEOREM

We now come to a theorem of great importance in mathematics, particu-
larly in the construction of existence proofs in analysis. An existence
proof is a proof which shows that something exists, or can be found at

least in theory, even if we cannot actually come up with a specific example
of what exists. For example, we may wish to know that such and such an
equation has a solution even if we cannot find the solutiom, or that such
and such a function exists even if we cannot at the moment construct an
example of the functiom. To know that something either can or cannot
be done either encourages us to try to do it, or saves us the time and effort
of trying. Unfortunately, there will always be intrepid unbelievers who
will insist upon trying to trisect angles with ruler and compass, square
circles, and solve quintic equations by radicals
We now state and prove the famous Baive Category Theorem.

Proposition 12. Let X, D be a nonempty complete metric space. Then
the following hold:

a) If X is expressed as the union of countably many subsets A}
A2 ...,Ap, ..., then at least one of the Ap is somewhere dense.
That is, for one of the Ap, Cl Ay contains an open subset of X.

b) If Ui, U2, ===are countably many dense open subsets of X, then
Ow Un is dense in X, that is, CliOa¢ Un) = X.
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¢

Figure 10.5
Cl B,

a) If (@) is fialse, then there iis 2 countable family {Awl},,n & N, of sulp-

sets of X such that X = U# Ap, but (Cl Ap)®= &for eachn & N.
For each n themn, Cl Ap # X. Select bx& X — Cl Ax. Since
X —Cl is opem, there is a positive number pi < Lsuch that

N@OuR|)CX — Cl Ak
Set By = X(6x,Pw/2) (Fig. 10.5). Then Cli#y C N(bi, pi); hence
CIBinClAl= ¢

Now Bj is a nonempty open subset of X, and therefore Bi Cl A2
Choose bc Bx—Cl A2 Since Bx — Cl A2 is open, there is
p2 > O such that N(b2, p?) @ Bx— CL A2 We lose no generality
in further requiring that p2 < Set B2= N(b2,p2/2). Then

BBy and ClB20 Cl A2 — ¢

Proceeding in like fashion, we can obtain a decreasing sequence of
open g, -neighborhoods Bx2)B2D =D 3 *** such that
CiBpnClAp=6and < 1/n. Then

CIBi 0 CIB2D <D CIBRD == and d(Br)-> 0.

Therefore by Proposition 7, R#%Q212Bp 2 ¢ Pick # € flg Bp.
Then x & Apfor some n, since Ug# Ap = X. But then

X& Cl Apn Cl B,

which is impossible, since Cl Ap and Cl By are disjoint. Therefore
{a) is proved.
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T = Cl N(z, p/2) Figure 10.6

b) Sipymese {043, m € N, issaacoourttdidée ffamijy of f déersee ogeem ssiizedts

of X. In order to prove that Rat Upis dense, it is sufficient to prove
that each neighborhood of any point of X meets Aat Up. Choose
any £ ¢ X and any p > 0; we will show that

Nz, p) A (m Uﬂ) 7 0.

(This suffices to prove statement (b), since the collection of p-neigh-
borhoods is a basis for the topology induced by D.) Set

T = ClN(z, p/2);

then T caNNfx0D). We now show that T A (Plat Up) ¢ Since T
is closed, the subspace T is itself a complete metric space (Prop-
osition 9). Set Ap = T — Up. Since

An=T—Un=Ta &= Uy,

the intersection of two closed subsets of X, Ap is closed in both
X and T.

Suppose Anis somewhere dense. Then thereist & T andg > 0
such that

NG, )N TCCLARMT = Ap.

Therefore N(¢, @) O (T — Ap) = ¢& Now te T = CI N(s; p/2)
(Fig. 106); hence N(t, @) meets N(x,/2) in some point z. We
may choose ¢' > 0such that

NG, dof) C N(t, @ D N(x, p/2).
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But since Up is dense, Ni(z, ") intersects Up, say, in 2. Then
ZeTalN(qC Apn

But Ap= T — Up, and hence 2' € T — Up\ that is, 2 ¢ Ty a
contradiction. Therefore Ap must be nowhere dense in 7.

By (@) then, T & Uy Ap (remember that T is a complete
metric space); thus there is s & T — Ugp Ap.  Therefore, since
Ap= T — Up,seTm (BN Up). Then T N (Rat Up) & ¢ and

hence

N(x, p) N (\0 Um) F -

This completes the proof of (b).

A topological space X, r which is the union of countably many subsets
each of which is nowhere dense in X is said to be of the first category.
Otherwise, X is said to be of the second category. Proposition 12 thus
states that every complete metric space is of the second categoty.

Example 9. Assign a positive integer n to each real number. Set
Ap = {x & R ||such that the positive integer n has been assigned to x}.

Then R = UAp- Since R with the absolute value metric is a complete
metric space, at least one of the Ap must be somewhere dense in R.
Actually, we can show that some Ay is dense in any closed intervall.

Note that since the subspace @ of rational numbers is countablle, we
could assign a different positive integer to each rational number, and thus
Q could be expressed as the union of countably many subsets of Q each of
which is nowhere dense in Q.

Example 10. The plane R2 with the Pythagorean metric is a complete
metric space. Any straight line L in R2is a closed subset of R2; moreowerr,
R2%2— L is an open dense subset of R2 If Lxand Lzare any two lines in
R2, then

R2—LYNnR2— L) = R2- (LjuLD.

By Proposition 11, however, (R2 — L) N (R2 — L2) is a dense subset of
R2 In general, we may remove countably many straight lines from the
plane and still have what remains a dense subset of R2 (tihough it may

not be opem).

Proposition 12 is used in existence proofs in the following ways. A
suitable complete metric space is first constructed. Suppose we wish to
prove that something exists which does not have a certain property P.
We express the set of elements of X which have P as the union of countably
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many nowhere dense subsets of X. Since this union could not be all of X
by Proposition 12(a), there must be some element of X which does not
have P. This approach is used to show that there is a continuous function
from the space of real numbers to the space of real numbers which is no-
where differentiable. If we wish to show that some element of X has a
given property @, we find countably many conditions such that if an ele-
ment of X satisfies all of the conditioms, then that element has Q. If the
countable family of conditions is such that the set of elements of X which
satisfy any one of the given conditions is an open dense subset of X, then
there is an element which satisfies them all, and hence has Q, by Prop-
osition 12(b). For examples and details of some existence theorems from
analysis which use Baire’S theorem, the reader is referred to Chapter 13,

Section 4.2 of Dugundjji, Topology (Allyn & Bacon, 1964).

EXERCISES

1L Use Proposition 12 to show that a complete metric space which is connected
must contain uncountably many points if it contains more than one.

2. Suppose at each point of R2 (with the Pythagorean metric) we draw a circle

with integral radius. Is it necessarily true that the set of circles with radius n
is somewhere dense in R2for at least one positive integer n?

3 Prove that the union of countably many nowhere dense, closed subsets of a
complete metric space can still be dense. Why is this not a contradiction to
Proposition 11{5)? [[fHint: Consider the rationals in the space of reals]

4. Prove that if X, D is a complete metric space, then the removal of countably
many closed, nondense subsets of X still leaves a dense subset of X. Does
this remain true if the subsets removed are not required to be closed?

5 The results obtained in Exercise 5 of Section 1.3 are also used in some im-
portant existence proofs. Indicate how an existence proof which uses these
results might be constructed.

6. Which of the following subspaces of the usual space R of real numbers are
of the second category?

a) The irrational numbers

b o< x< 1}

© {|lx = i/, n a positive integer, or x = Q}
HdE@HUBH

7. Suppose ¥ and Z are subspaces of some space X, f and ¥ and Z are both of
the second category. Decide whether each of the following must be of the
second categoiry.

8 XAY b) XUY ¢) the product space X X ¥ d X—Y¥

8. Prove that every locally compact metric space X, D can be given a metric
D’ such that D’ is equivalent to D and X, D’ is complete. Hence each locally
compact metric space is of the second category.
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105 PARACOMPACTNESS. COMPLETE REGULARITY

Paracompactness and complete regularity are topological notions of relatively
recent origim, but because they express properties of substantial significance
in important areas of modern mathematics, they are widely used in ad-
vanced mathematical literature today. It is beyond the scope of this text
to discuss these concepts in depth or give much insight into why they are
importamt, but since the reader is likely to encounter them in more ad-
vanced work in analysis or topology, we are including their definitions
and some of their elementary properties in this sectiom. We first treat

paracompaciimess.

Definition 4. An open covering {[/%}, i € 7, of a topological space X,
is said to be locally finite if each point of X has a neighborhood which
meets only finitely many of the Uf.

The space X, r is paracompact if X is T2 and if each open cover of X
has a locally finite open refinement. (For the definitions of open cover
and refinement, see Definition 1 of Chapter 7.)

Since a finite cover is necessarily locally finite, it follows that any
open cover of a compact space has a locally finite open refinement (@ny
finite subcover of the given open cover will do). Since Tis also necessary
for paracompactmess, we have:

Proposition 13. Any compact T¥space is paracompactt.

It is also true that any metrizable space is paracompact though we
will not offer any proof of this fact. In fact, paracompactness and metriza-
bility are very closely related as we will see shortly.

It is not necessarily true that the product of even two paracompact
spaces is paracompact, nor is it true that every subspace of a paracompact
space need be paracompact. We do, howewer, have the followiing.

Proposition 14. Every closed subspace of a paracompact space is

paracompactt..

Prooff. Suppose that A is a closed subspace of the paracompact space
X and {Ui}, i ¢ I, is an open cover of A. Then since each Uj is open
in A, we have Ui = A n Vi, where Vj is an open subset of X, for each

teI. Also
{Mlief}u{X— A}

forms an open cover of X, and, hence has a locally finite open refinement
{Wi}, ke K. It follows now that {A N Wk}, k € K, is a locally finite
open refinement of {Ui}, ¢ € I. Therefore A is paracompact.



230 Metrizability. Complete Metric Space 10.5

(where Vx.is the set corresponding to {75.). Then Gyis an open set which
contains y but does not meet ¥/. Let
v=VU

e Gy.

Then V is an open set which contains F’ but does not meet U. Therefore
X is normall.

Local finiteness and paracompactness are both strongly related to
metrizability. We will not review the various metrizability theorems, but
will content ourselves with presenting without proof a theorem due to the
Russian mathematician Smirnov, who is renowned for his work on
metrizability. Two eminent American topologists, John Hocking and
Gail Young;, cite this theorem as “the most natural metrization theorem””
they have seen. We first introduce a definitiom.

Definition 5. A space X is locally metrizable if each point x & X has a
neighborhood which is metrizable (as a subspacs).

Proposition 17. A locally metrizable T 2space is metrizable if and only
if it is paracompact.

The topological concept of completely regular has particular impor-
tance in that branch of mathematics known as functional analysis. As
with paracompactness, we will content ourselves with presenting the
definition and certain basic facts pertinent to this concept.

Definition 6. A space X is said to be completely regular (zometimes
Tgj) if given any & € X and any closed subset F of X)x & F, there is
a continuous function f: X —[0, 1] such that f(x) = 0 and f(y) = 1
forally e F.

The space X is said to be Tychonoff if X is T\ and completely reguillar.

Tychonoff spaces lie between regular and normal spaces in that normal
implies Tychomafff, and Tychomoff implies regular. Regular does not
necessarily imply completely regular, nor does Tychonoff necessarily imply
normal. We will soon see, though, that Tychonoff and normal spaces are
rather closely related.

Proposition 17. A completely regular space X is Ty

Pvooff. Suppose F is a closed subset of X and x € X — F. Then there is
a continuous function f: X — [0, 1] such that f{x) = 0 and f(y) = 1 for
ally e F. Now [0 %) and (J, 1] are disjoint open subsets of [ 1IJ which
contain 0 and 1, respectively; hence by the continuity of 7, 7/=1([0, }))
and /= 1((; 1) are disjoint open subsets of X which contain x and E,
respectivelly. Therefore X is T@.
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We have already seen that every locally compact T zspace is regular
(Proposition 6 of Chapter 8). We now prove the following stronger result.

Proposition 18. Every locally compact T 2space X is Tychanafff.

Prooff. Since X is T2, X is T\. We now show that X is completely reguliar.
Let ¥ be the one-point compactification of X. Then ¥ is a compact
Tyspace (Proposition 12 of Chapter 8) and hence is normal. Suppose F
is a closed subset of X and x € X — F. Then {x} and F are both disjoint
closed subsets of the normal space ¥ ; hence there is a continuous function
[ ¥ - [0, 1] such that §i(x) = 0 and §(y) = Lfor all y € F(by Urysohn’s
lemma). By taking /|| X: X — [) 1] we obtain a function which proves
the complete regularity of X.

We leave the proof of the following proposition to the reader.
Proposition 19. Any normal space is a Tychonoff space.
Since a compact T2-space is normal, we also have

Corollany. Any compact Tzspace is Tycthamafff.

In fact, compact Tgspaces can be shown to characterize Tychomoff
spaces in the following sense.

Proposition 20. A space X is Tychomoff if and only if it is homeomorphic
to a subspace of a compact Tgzspace.

We make no attempt to prove Proposition 20. We note, however,
that if we found a Tychomnoff space which is not normal, then Proposition
20 tells us that we have found a nonnormal subspace of a normal space.

Proposition 21.

a) Every subspace of a completely regular space is completely regular;
hence every subspace of a Tychonoff space is Tyuthanofff.

b) If {Xn}, n & N, is a countable family of completely regular spaces,
then the product space XpXnis also completely regular; hence the
product of a countable family of Tychomoff spaces is Tychaomafff.

Proof. We prove (b) and leave (@) as an exercise. Let Fthea closed sub-
set of XpXp and x € XpXpn — F. Since XpXp — F is open and contains
x, there is a basic neighborhood XpWy which contains x and fails to meet
F. All but finitely many Wp are equal to Xpn. Suppose WhjJ ..., Wgt
are those Wp & Xp. Fori= 1 Xpn. — W) is a closed subset of
X 1. which does not contain xj., then nfth coordinate of x. For each
i = 1, ....£t, we therefore have a function

g% M4



232 Metrizability. Complete Metric Space 10.5

such that gi(xp) = 0 and giy) = 1 for each y & Xp. — Wn. Define
/: XnXn = [0, 1] by setting

o) == max{} oppw) 1= 1, ...,

where pj. is the projection into the #ljth compomemt. We leave it to the
reader to demonstrate that £ is continuows, f(x) = 0 and §(y) — 1 for all
y & F (in fact, for all y & XpXpn — XpWy). This establishes that XaXn is
completely regular.

The importance of completely regular spaces rests partly on the fol-
lowing property.

Definition 7. Let X be a topological space and let C(X, R) denote the
set of continuous funections from X into R, the usual space of real
numbers. We say that C(X, R) separates points if given any distinct
real numbers r and s and two distinct points x and y of X, there is an
elememitf of C(X, R) such that fi(x) = r and f(y) = s.

Proposition 22. If X is Tychomif, then C(X, R) as described in Defini-
tion 7 above separates points.

Complete regularity is also related to metrizability, but we will not
develop this aspect of the concepit.

EXERCISES

1. Prove Proposition 19.
2. Prove Proposition 22,
3. Prove (@) of Proposition 2L

4. Prove that both paracompactness and complete regularity are topological
properties, that is, they are preserved by homeomampthismes.

5, Prove that if X is completely regular and F and F' are disjoint subsets of X
such that F is closed and Ff is compact, then there is a continuous function
/1 X — [0, 1] such that f(F) = 0 and/{F) = L

6. Prove that any locally compact T¥space that is the union of a countable
number of compact sets is paracompact.

7. As a corollary of Exercise 6 show that any locally compact Th/space is para-
compact if it is second countable.

8. Prove that the product of a compact T¥space and a paracompact space is
paracompact.



11
INTRODUCTION TO HOMOTOPY THEORY

111 HOMOTOPIC FUNCTIONS

Good mathematical terminology is generally intuitively appealing. For
example, consider this statementt: The unit disk

¥ = {9 |x2+ y2< I} € R2

(with the usual topology) can be contracted to (@, 0); that is, F is a con-
tractible space (Fig. 11.1). Most likely, the reader has not encountered the
notion of a contractible space before, but having studied the topology
of F, he might feel that such a statement fits in with his notions about F.

Figure 11.1 Figure 11.2

The word contractible implies the idea of shrinkability, that somehow
we can reduce F to something smaller; in particullar, contractible to (@, 0)
implies that F can in some reasonable way be shrunk down to (@, 0). One
of the most obvious ways to contract the disk F is to slide its points along
radii toward the center @,0). One such “dontracting function,”call it
j /2, of the disk into itself could be described as follows: For each (¥, y) & F,
lety I/, y) be the point of F on the segment (0, 0)(x, y¥) midway between
(x, y) and (@, 0) (Fig. 11.2). It is easily seen thattyif is continuous. We
may further note that if 0 < r < 1, we may define jy: ¥ — ¥ by letting

233
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J(xfy) be the point on (0, 0)(x, ¥) which is 1/rth of the distance from (0, 0)
to (x,¥). Then jiis the identity mapping on E, and j® maps all of ¥
into (0, 0).

For each r € [, 1], we have a continuous function jy from ¥ into ¥.
We can therefore define a function’y Trom ¥ X [ 1] into ¥ by

(e, ¥, v )
for each (xty) € Fand r € [@ 1. Thus
Px=id (X 1{3))  and = (¥ x {Op.

If we look at the images of j¥ in ¥ for each r & [0, 1], we note that as r
proceeds from L to 0, we gradually shrink ¥ to (@ 0). Looking at it from
the point of view of mappings, we are transforming the identity function
on ¥ into a constant function in a natural sort of way. An informal three-
dimensional representation of what is happening is given in Fig. 11.3.

JH

Xx {1}

Xx{r}

X% {0}

XX[0,1]

Figure 11.3 Figure 11.4

Throughout this chapter we will assume that the space R of real
numbers, the plane R%, and Euclidean n-space in general, have their
standard topologies unless it is specified otherwise. Any subsets of Rh
will be assumed to have the subspace topology from R

Look again at the function j: ¥ X [@ 1]— E. It is intuitively clear
that since jr is “¢lose to”Jy>provided r is close to r*, j is continuous. Of
course, the continuity of j can also be demonstrated quite rigorousdy.

To sum it all up then, for each r & [ 1} we have a function jjy from
F into F such that j\ is the identity function on F and j@is a constant
functiom. As r varies smoothly from 1 to 0,jr varies smoothly from j\ to
7@ This enables us to define a continuous function j: ¥ X [ 1] — F such
that j | (E X {r}) = j5. We have in a sense smoothly transformed the
identity function on F into a constant function. Thus we now have more
justification for calling F a contractible space.
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This notion of transforming one function continuously into another
is one of the most important ideas in topology. We express it formally in
the following definitiom.

Definition 1. Let/ and g be continuous functions from a space X, r into
a space ¥, r. Then f is said to be homotepic to g if there is a con-
tinuous function H from X X [, I] into ¥ such that

HIZx )=/ ad H|EXX {0} =g
The function H is said to be a homotopy between § and g (Fig. 11.4).

Intuitively again, / and g are homotopic if £ can be continuously
transformed into g. We see that the identity function on the unit disk is
homotopic to a constant functiom, that is, the function which maps the
entire unit disk into (@, 0).

Example 1. Reexamine Example 17 of Chapter 5. Note that any two
continuous functions from [@ 1 into R2 are homotopic. More.gemerally,
we can say that any two continuous functions from [0, 1] into any absolute
retract (Section 5.5, Exercise 2) are homotaopiiz.

The fact that two functions / and g are homotopic is generally far
easier to see intuitively than to express analytically; that is, it is often
evident that / and g are homotopic even when the actual writing out of
an explicit homotopy between f and g would require considerable laboi.

Example 2. We have already seen that the identity function j\ = i on
the unit disk ¥ is homotopic to the function j§ which maps all of ¥ into
©, 0). We could also show that i is homotopic to the function k: ¥ —>¥
defined by

kix,y) = @,

for any (%, y¥) & ¥. One argument to show that i is homotopie to k could
use functions similar to thejy previously used to show that { was homotopic
to j@. Still another method to produce a homotopy between i and k would
be to break [ I up into [@ 4 U H, I}. Let j be the homotopy between
ji = i andlypas defined earlier. Define

/ _ il »), 20, ifd <r<
m«x’y)")_{(O,r— ifh<r<l.

Geometrically, H first contracts ¥ to (0,0) and then slides it along the
segment (0, 0)(0, &) from (©, 0) to (0, $) (Fig. 11.5). Since

HiIX@3) and IF x i@,

sinege each continuous, and since  |H| X {4}) is well-defined, H is d6¥{J}) is w
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H(YX {3})
H(Y X (&)

Y=H(Yx{1})
tinuous by Proposition 11 Chapter 4. Since

HI|EX{) =i ad H|EFX{OY =k

H is a suitable homotopy between ¢ and k

Y %[0, 0]

Figure 11.5

Example 3. An arc is a homeomorphism from [[@ 1j into any space; thus
any arc isalso a path. Since any two paths in R2are homotopic, it is cer-
tainly true that any two arcs in R2 are homotopic. In particular, if a\
and agare distinct arcs in R2such that ai(0®) — aZ(©) and ai(D) = a2Q),
then aj and ag are homotapic. Suppose that P is some point in the area
bounded by the images of and a2 (Fig. 11.6), and that aj and a2 are
considered as ares in R2— {P}. Then and ag are not homotopic in
R2 — {P}, since the missing point would prevent us from transforming ax
continuously into a2 Intuitively, in order to transform ai into a2 we
would have to have a break at some stage of the transformation to get
past the barrier posed by the missing poimt.

In like manmer, removing a point
from the interior of the unit disk ¥ aifd)=ao(l)
prevents the identity map on ¥ from & (0, 1
being homotopic to a constant map.
We therefore see that any two given
functions from one space into an-
other are not necessarily homotoypic.
The next proposition shows that the ag@)=«i(®)
notion of homotopy enables us to
classify functions from one space into 210, 1)
another according to the functions to
which they are homotopic. Figure 116

Proposition 1. Let X, r and F, r* be topological spaces, and let ¥% de-
note the set of all continuous functions from X into F. (TThe reason
for the notation ¥X will be made clearer in the appendix.) Let ~denote
“i5 homotopic to,”that is, §f ~ g will mean that / is homotopic to g.
Then ~ is an equivalence relation on ¥X.
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Proef. If f 6 ¥X, then f ~ /. The explicit homotopy H: X X [0 I] — ¥
between f and / is given by fil(x, r) —§(x) for all x € X and r € [0, 1]
In order to verify that H is a suitable homotopy, we must show that

H|&EXx {I) = H||XXx ) =/
and that H is continuous. Now
H X x D = filgr, k=7 ()

forany x € and hence H | (X X {Up) —7, similarly, Hf | (Xx {0}) =/1.
Suppose U is any open subset of ¥. Then

(G4 (U)=r1g 1,

But since £ is continuous, f~X{U) is an open subset of X; thus/—4F7) X
@ 1] is an open subset of X [0, 1]. Therefore HXi¥@pikintibasefore H is continuc
Iff ~ thgthem~  Since f ~ g, there is a homotopy  8ince f ~ g, there is

H:XX [ 1] =

such that
H|(Xx{@)=4 and H|]EKAAW) = j.
Define 40, 1] —=F by
Hx, = 1 O¥) for any H(OE 1— and foE Hhyl]. G and |

Then H'(X X {0}) =fand | (X X {1}) = g. All we kayéldxndiP)te g. All
turn H upside dowm, or reverse its directiom, if you prefer. Then H" is a
suitable homotopy between g and /.

If f~ angmdgs then f~ Skntieerf A~~gg. haeeef is- ag, htimepdojsya homot:
H\. X X[@ 1] — ¥such that

| (X X HIEPES {1hand/ and (X X {@}0»={0}) =
Since ~ gthere isla,theradscpiomotdp [0, 1] —  such thatH2:X X [0, 1] —
| (X XHBPEXg{!) andy  Hpd (X XFDF{EOD = k

Define H:X X0, 1] —> by

_ WHax2), 0<r<h
B~ iz —1), h<r<d.

Note that, for all € X,

H(x, I) = 2 — IHHX2 - D)=DfE /(
H{x, 0) = H#z,0) = k(x);
H(x, ¥ = 0) =@a(zplie=1) -
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JX)=H@EX{1})

IX)=HEX{H)

H
5 _
= )
0
XX[0, 1] "
Figure 1.7

Therefore H is well-defined and will be a homotopy between f and k if it
is continuous. The proof of the continuity of H is left as an exercise.
Essentially what we have done is to “paste” H xand H 2 together to get a
new homeotopy between £ and k (Fig. 11.7).

We have therefore shown that ~ is an equivalence relation on ¥¥.

Definition 2. If / & ¥X, then the family of continuous functions from
X into ¥ which are homotopic to £ is called the homotopy class of £.

Because of Proposition 1, we can say the homotopy classes of ¥X
form a partition of ¥X.

Xx {1}

Figure 11.8

We close this section by noting that the question of whether two
functions in ¥% are homotopic is really a question of whether or not a
certain function can be extended. In particullar, we may define

hXx uUXx 1} » ¥

by h(x, 0) = fi(x) and h(x, 1) = g(x) for all x & X (Fig. 11.8). Then f
and g are homotopic if and only if h can be extended to a continuous
function H from X X [0, IJ — ¥ such that

HIEZX 0HUXX {1) = h
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5. Explain intuitively why the identity function on the unit circle X =
{C,y) |x2+ y2 = 1} is not homotopic to /: X =X where fZ) = (1, 0
for all z € X. Take a rubber band and pin the rubber band at one point to
a table. Then try to push the rubber band back along itself to the point at
which it is pinned.

1.2 LOOPS

It should be well known to the reader that one branch of mathematics
can often be used to give results in another branch. Algebra and geometry
are wedded in algebraic geometny, and calculus is a tool in differential
geometity. There is no branch of mathematics today which is really self-
contaimed. Ewen logic has started to draw heavily in recent years on
topological methods to obtain some of its most significant discoveries. It
must also have occurred to the reader that topology is highly geometric;
at the same time, topology often has its inspiration and applications in
real and complex analysis. What we are going to do now is to begin to
develop a method by which algebra can be used to express topological
propeitiess The method we will study is only one of several applications
of algebra to topology, and, in fact, we will study only a small part of the
method at that. Algebraic topology is both one of the oldest and one of
the newest areas of topological studies; the fundamental group dates back
to the early days of topology (c. 1900, which really was not so long ago),
while much of homology theory only dates back a few years, or less.

If X, r and F, t* are arbitrary spaces, there is not much algebraic
structure that might be given to either ¥%, the family of continuous
functions from X into ¥, or the homotopy equivalence classes of ¥X.
We therefore would like to find a suitable space X, r so that either ¥& or
the homotopy classes could be given an algebraic structure which could
help us to study E. The following definition proves usefull.

Definition 3. Let F, r' be any space and yQ& F. Then a continuous
function a from [0, 1 into F such that

a(0) = a(l) = yp

is said to be a loop in F with base point y@ (Fig. 11.9). Two loops a@
and aj in ¥ with base point y@ are said to be homotopic relative to y®
if there is a homotopy H between apand a\ such that for each r £ [0, 1,

H@O,r) = ¥(1,1) = y&;

that is, for each rE @ 1, H |[® 1 X {r} is a loop in F with base
point yp (Fig. 11.10). We will denote the set of all loops in F with
base point yby L(E, y§).
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yp=a(0)=a(l)

[0, 1]x[0, 1]

Figure 11.9 Figure 11.10

The following notation will occasionally prove useful: Let X, r and
F, #‘ be spaces, and let A and B be subspaces of X and F, respectively.
Then/: X, A — E, B will denote that the funetiomf from X to F has the
property that /(A) C B. Thus /: [0 1, {0, I} — F, y® would denote a
loop in F based on y@if / were continuauss.

Now L(F¥, yg) is a subset of the family Ff1i of all continuous functions
from @ 1] into ¥. The relation on L(F, y§) defined by “is homotopic
relative yg to,” which we will again denote by is seen to be an equiv-
alence relation on L(F, y§) by the same argument as was used in Prop-
osition 1. We will denote the set of homotopy (reative to yg) classes of
L(F, y§) by FI(E, y6). If a is any loop in F with base point y§, we will
denote the equivalence class of a by [B. We shall now determine an
algebraic structure on F;i(¥, y§); in particular, we shall make #Wi(¥, y§)
into a group.

We define an operation # on #i(F, y§) as follows: Suppose |li] and
Ne\ are elements of #Wi(KE, yf), that is, || and e\ are the homotopy
relative ypequivalence classes of the loops aj and a2 Define \ai\ # Nag\to
be the equivalence class of the loop ai # a2defined by

ai(@), 0<r <4,
ag2r — 1), £§<r<10L

We first verify that  # a2 is a bona fide element of L(F, y§). Now
ai # agis at least a function from [, I] into ¥. Note that  # a2is formed
by “doing around”’a) once and then going around aRonce. Also &4 # a2
is continuous because a\ # ag is continuous on both [0, §] and [B, 1} and
is well-defined at r = % since (@xBad@) = ai(l) = aA0) = yo. [[One
of the principal reasons that we restricted ourselves to L(F¥, ¥&) was so
that we could “ddd”functions in this way and have them well-defined.
If a) and a2both did not begin and end at y§, we would have no assurance
that aj # azwas well-defined at r = 3] Since

(@ #a0) = 0i©) = @ #aDQ) = a2()) = ¥,

@i #a() =
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we see that aj # ag is really an element of L(F, y§). We are therefore
justified in taking its homotopy equivalence class, which is an element of

TI(¥, y6). Defining
il # dagh= M # o)

we have a beginning on an operation on #i(¥, 2).

We are not sure yet, though, that # is really an operatiom. In defining
Mei\ # ey we made use of particular representatives of the equivalence
classes || and M\ In order to have a valid operation on Y&, y§),
howeverr, [[5j # ag] must be independent of the representatives we pick.
That is, the “Sum”’of two equivalence classes must depend only on the
equivalence classes we are adding and not on which loops we pick from each
class to compute the sum. Proposition 2 shows that # is a well-defined
operation on mi(¥, y§).

Proposition 2. If ai, a2, a3 and a4 are any elements of L(¥, y§) and
ad\ ~ 4B, then

ai kd2~ wz a2
Similarly, if az ~ a4, then

ai t a2~ ai if a4

Therefore
g Il # e = b1 #o0d]= [pB# ezl = ld # s
an
i # ] = el # ledt-
Proof. Since ;| ~ a3, theredis-ad®)niwiepis &rélaniveomyygielative to yO)
Hpxpg Y
between axand ag. Define H: [0 I] X [@ 1] — by
He, — s), f0o<MHEH ifo<r<i,
’ hegzr — 1), if <r< L a2
Then
we v = K020, f0< 1< 5,
HEN= logar —, it L il [EES| )
= (@ #a)(r) forany reE D, 1}

Similarly, H'(r, 1) = (@3# a(r) for any r € [0, 1J.
Also, HY

H® o 0,s) =P = yQ=) = agf5.02(). Figure 11.14
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Direct computation further shows that H' is well-defined for r = We
have yet to show that H' is continuous.

The continuity of ¥’ can be demonstrated in a formal argument, and
the reader is urged to provide such an argument in this case. In gemeral,
howeverr, an appeal to a “picture”’of the homotopy is much easier, and
usually just as convinciing. For example, Fig. 11.11 gives a picture of the
homotopy H'. Note how we continuously deform axinto dgwhile keeping
a2 fixed. The homotopy is continuous on [ X [0 1] and on [, I} X
[0, 1} and hence is continuous.

It is left as an exercise to prove that axijf a2~ ax# ad.

Corollary. If ay, ag, agd and d4 are in L(F, y§), and if ax ~ d3 and
d2 A d4, then
ai # a2~ as # ad

Therefore if [[ad] = |lad] and e2\= ad\in Ti(E, y§), then
lad] # Izl = lesl # |ag|.

Prooff, ai #a2~ a3#a2~ d3#ad-

Although it is not obvious at first glance, the operation # defined on
Wi(E, y6) is not necessarily commutative. In other words, there is no
particular reason for ax # d2 to always be homotopic to a2# ax.

We now have a set Mi(E, yg) with an operation # and we claim that
oti(¥, 26), # is a group. In order to prove this assertion, we must show
that # is an associative operatiom, that there is an identity in #i(E, y§)
with respect to # and that each element of #ndE, y§) has an inverse with
respect to #

We first prove the associativity of #

Proposition 3. If |lad], \ad\ and [@g\are any three elements of Fi(F, ¥6),
then

(il #e) #al = led] # () # s3]

Proof. It suffices to show that (@j #a?) #ad3~ ax# (@2#ad. By
definitiom,

(@i #aD) #ad(r) = g‘;gfa__ﬂ)g), ifiifL 0<<r r< <IL§,,

Therefore
@i(4r), if0 <

(@i #0) # 00DV = Vol = 1), if§ <r < 4,
bager — 1), fo<r<i



244 Introduction to Homotopy Theory 11.2

Similarly,
27, ifo0<r<
{ ar—2), f4<r<$
r—3), f§<r<L
Define

H, 9 ={atr —1—56), ifi(1+6) €1 <32+ 5),

[@i(4r/(1 +8), if0<r<il+s),
—41l-1/2—9) fHa2+8£r<L

Direct computation shows that H is a suitable homotopy between

@1 #a?) # @3 and ax# (@2# as). Actually, a convincing argument for the
suitability of  can be made from its picture alone (Fig. 11.12).

a) fap

0,0) “‘* - 3 % ©,1)
a1 \ 02\ as

(1,0—2 \* \\* 1,1

H az a

ay # ag Figure 11.12

The reader should have begun to realize by now that pictures are a
very useful way of arriving at homotogies. Sometimes a picture alone is
sufficient to convince one that a homotopy exists. Almost always, at any
rate, a picture helps to obtain an analytic expression of the homotopy.
Perhaps the reader has been brought up to believe that arguing from
pletures is a cardinal sin in mathematics; certainly there is no doubt that
pletures can be misleading if improperly used. Nevertheless, diagrams
intelligently employed can be indispensable tools in a mathematical argu-
ment. This is particularly true with regard to homotopy arguments for
two reasons. First, the notion of a homotopy is highly geometric (as is
mueh of topology); hence we should expect pictures to be apropes. Second,
agtually producing a homotopy analytically may be so cumbersome, while,
at the same time, producing a picture may be so easy and convimging,
that no reasonable person would demand the explicit analytic expressiom.
Let the reader then accustom himself to the use of pictures in homotopy
theory, while, at the same time, being sure that he understands the theory
and meaning behind any picture he uses, and would be able to produce an
analytic expression if necessamy.
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EXERCISES

1. In Proposition 2, prove a\ # a2~ aj #

2. Suppose the space F, ¢' is contractible to the point yg; let Adenote the funec-
tion which maps F onto yo. Let f be any continuous function from a space
X, ¢ into ¥. Prove that / is homotopic to k', where k" is the function which
maps all of X onto yo. Prove that #i(F, yg) contains only one element.

3 Let ¥, t be any space, yo € F, and k the function which maps all of [ 1
onto ¥9. Prove that |[] is an identity for #i(F, yg) with respect to # That is,
prove that if || € #(F, yo), then

[t # & = kei| £ = lail.

[Hhint: Figures 1IL13 and MNIL.14 give pictures of the desired homotopies.
Express analytically what these pictures say graphiceailiy ]

k #a;
1 | k : k a
@ k k a;
0 a; 0 a)
Figure 1113 Figure 1114

4. Give an argument to show that if ¥ = {(r, y) \x2+ y2 = 1} C R2and P is
any point of F, then xi(F, P) contains infimitely many elements. [[Hint: Let
k be the loop which maps all of [0, 1] onto P, and let a\ be the loop which
“wraps” 0, 1] once around F (the identification of 0 and 1, if yon prefer).
Show that aj is not homotopic to k. Can a) #a\ be homotopic to ai? For
any positive integer n, define na) = a) jf == (mtimes) #a). Try to show
that for any positive integers n and m, na) is homotopic to ma\ if and only
if m=n]

5. Find an explicit homotopy between the loop a on the disk {&r, y) Nx2%
y2< 1} with base point (0, 1) defined by

(&, VT — @2)2), 0< x< 5,
20) = a4z VIi—@—@P), i<z<ti
@ —4 VI— & —9)), §<ae<1,

with the loop which maps [0 1] entirely into (@ 1). There are in fact in-
finitely many such homotopirs.
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11.3 THE FUNDAMENTAL GROUP

Thus far we have seen that Fi(Y, y§), if is a semigroup (tthat is, a set with
an associative operatiom) which also has an identity which we will denote
by N (Section 11.2, Exercise 3). It remains to be shown that each element
of #4i(E, y§) has an inverse with respect to . If a € L(¥, y§), we define
a=| by letting a=%(r) = a(lL — r) for each r ¢ [0, 1}. Then

a"k0) = a) = yp @l @&1)= d®)= yo.

Since a is continuous, a=} is also; hence a=| is an element of L(¥, y§).
Geometricallly, a=1 is a going around in the opposite direction (Fig. 11.15).

Yo Yo Figure 11.15

Proposition 4. If a € L(Y, y§), then
affa~l ~a=~l #a k
Therefore the inverse of M} in #n(F, ¥6) is \a N.
Praof. An explicit homotopy between k and a # a=1 is given by

a(2rl —s)), if0<r<
a(2Q =N —s)), f¥<r<L

The reader should confirm that this is indeed a suitable homotopy. The
geometric idea behind it is that we are starting at y§), then going out along
a to a certain point and finally coming back along a=, each time shortening
the distance we go until have pulled a # a=1 entirely back into y§. The
reader should also produce a homotopy to show a=1 #a ~ k

H(r, s) =

We therefore conclude that (Y, y§), # is a group with identity [ in
which M) & (Y, y§) has as its inverse \a=I\ We are therefore justified
in making the following definitiom.

Definition 4. Let ¥, t* be any space, and let yp& ¥ and iri(¥, y§), ¥
be as described abowe. Then

7Y, Yo, #
is called the fundamental group based on y@of the space E.



11.3 The Fumdismental Group 247

Of course it is all well and good to know that FTUF, y¢), # is a group.
This is a good beginning, but hardly any more than that. For to be of
much use in the study of topological spaces, FT(F¥, y§) must have certain
propexrties. First, #T(¥, y6) should be computtabik, at least for the majority
of spaces which might be of interest. Secomd, #{\%, y§) should tell us
something about the space E, r*;if it gives no information about the struc-
ture of F as a topological space, it clearly has no value in the study of
topology. Third, it is rather repugnant that #FT(F¥, y§) should depend on
the point of F on which it is based; in other words, FI(¥, y§) should
depend on F and 7* rather than on F, v/, and yg. Otherwise, we might get
different fundamental groups for the same space without any clear idea
of how to choose among them, and we would also be given the repugnant
implication that some point of ¥ was better, or at least in some way sig-
nificantly different tham, other points of E. Fourth, if there is a continuous
function/from ¥ onto a space Z)7¥, we would hope that there is naturally
associated with / a homomorphism from the fundamental group of F into
the fundamental group of Z. This would enable us to attack the difficult
problem of whether there is a continuous function from one space onto
another; most of all, however, we would expect that if groups are to be
associated with spaces, then homomorphisms of groups will be associated
with continuous functions from one space to the other.

All of the above considerations are very basic and very important. It
will be the goal of the remainder of this chapter to at least partly settle
each one of them. We first consider the question of the computation of
fundamental groups.

There are a number of theorems and techniques for computing funda-
mental groups of spaces. Many of these are beyond the scope of this book.
For most of the simpler spaces, howewver, it is not very difficult to com-
pute the fundamental group.

Example 4. Let F, t* be a space which is contractible to one of its points
y§. Then from Section 11.2, Exercise 2, we see that #[({, y§), #is a group
of precisely one elementt.

Example 5 Let
y= Rix,y)\x2+ y2=R2

and let ypbe any point of F. Let a be the loop which goes once around the
circle in the counterclockwise direction. Then a cannot be homotopic to k
(the function which takes all of (B I onto y§), since a cannot be “pulled
back”into y@without breaking (see Section 11.2, Exercise 4). For each
a & L(F, y§) and each integer n, define

=it (m times) #a, if n is positive,
ifn —0,
af# - #(—n)#a!, ifnisnegative.
a~1 # ===t (—n) #a~ly ifnisnegative.
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Example 7. Let
Y= {x 9.9 N2+ y2+22= 1} cR3 and ypEFE

If P is any point of ¥, we can show that F — {P} is homeomorphic to R2
and hence is a contractible space. For let P" be the point of ¥ antipodal
to P, and let p be the plane in R3tangent to F at P’ (Fig. 11.18). For
each w € ¥ — {P}, the line 4P, w) determined by P and w intersects p
in a unique point m Define h: ¥ — {P} —p by

= UP,w) by

for each w & ¥ — {P}. It is not hard to show that h is a homeomaipthism.

Now F is not contractible to any of its points (the intuitive argument
runs, “You can’? peel an orange without breaking its skin”}, but if a is any
loop in F and P is any point in F — a([0, 1J), then a is essentially a loop
in R%; hence a is homotopic to /& where N is the identity of FT(, y§)
(Fig. 11.19). Thus any loop in F based on y§
is homotopic to Kk, and therefore #FT(F, y§)
consists only of |

F is hence an example of a noncontractible
space which has a trivial fundamental group.
Note that if P and Q are any two points of F,
then F — {P, @} is homeomorphic to the space
E’ in Example 6 and thus has a fundamental
group isomorphic to the additive group of
integers.

The following proposition aids in the
computation of many fundamental groups:.

Figure 11.19

Proposition 5. Let X, r and F, r’ be spaces with base points z¢ and y,,
respectively. Then

THE X ¥, w))
is isomorphic to the direct sum of Fi(X, x§) and FI(F, y6),
(X, o) Yoy

That is, the fundamental group of the product space of two spaces is
the direct sum of the fundamental groups of the component spaces.

Proof. Suppose a € L(X X F, (6, ya)). Let px and py be the projections
of X x F into X and F, respectivelly. Then

px 00 6 L(X, x6)
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and
Py <a € L(¥, 26)-
Define
b 7 X X E, Ge,ye)) = mi(X, z6) @ mi(E, 26)
y

70d) = (o>ol, [PK=a)).

We will prove that / is the desired isomoupthizm.

We first show that / is well-defined, that is, that fi(Ya\) is independent
of the representative of \é} that is used. Suppose a ~ a'. Then there is a
homotopy

HRBIxBD o5 xBIi]->KXY, @)y

between a and a’. It camn, howewver, then be verified by straightforward
computation that px<H and py<H are suitable homotopies between
px=a and px=&’, and p¥=a and py=3a’, respectively. (Compare this to
Section 111, Exercise 4.) Therefore / is well-defined.

We now show that £ is onto: Suppose

Galiz la2) &m1 oo @ (Y, yO).
Define a € L{X X ¥, 8 ¥§)) by

oM = flai(2 o), if0<r< B, ifo<r<
(0,2 =1), if < <L

Then px <& ~ d\ and py <& ~ a2 (Exercise 1). Moreowar, a is easily seen
to be continuous (@ is continuous on both 0, and [ I and is well-
defined at r = J); also

a(0) = (@i©®), 26) = x6,¥6) = a(b),

and hence a is an element of L(X X ¥, (x,v§)). But /(la]) then is
(], \=2); thereffare/ is onto.
Now we show that / is one-one: Suppose fi(y@) — 7(ja’{). Then

(e, oy <8) = (voxoay, Py ).

Therefore there is a homotopy Hi between px=a and px < and a homo-
topy H2between py-a and py=a’. Define a homotopy
H:0 X @ 1] >*XXY

by
Higrse)= G 1s,9)

Direct computation shows that H is a homotopy between a and a‘; hence
M\ = N\ Therefore / is one-one.
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It remains to be shown that / is a homomarpthism. Suppose M\ and
'] are elements of #x{(X X F, (x§, 76)). Then

Misi #Im'D = /(e al) = (mk~@#a)l, o))

— (e #px=2d], pr<a # py <)) (this latter equality
follows at once from
the manner in which
the addition of loops
has been defined)

# lpx - bx=u¥ bt oy, a'])
al, |py - al\EX@xIPE Al -l =a’], |pK =2
[winere # is here “dd-
dition””in #j (X} x§)
@i €Y, yol

non

= oy #/(A:
Therefore / is a homomonphism, and, consequently, an isomotphiism.

-
Figure 11.20

Example & We have seen that the fundamental group of the circle ¥ in
Example 5 (relztive to any base point) is isomorphic to the additive group
of integers Z, 4f. The torus ¥ X ¥ then has a fundamental group which is
isomorphic to the direct sum of the additive group of integers with itself,
that is, Z @ Z, +. Note that Z@ZZ, + has two generatois, (0, 1) and
@,0). These correspond to the homotopy classes of the loops a and b
(@ctually the images of loops) in ¥ X F shown in Fig. 11.20. Note that
since the fundamental group of F does not depend on which base point
is used, neither does the fundamental group of F X F.

EXERCISES

L. The following refer to the proof of Propesition 5
a) Prove that pxSa~ and py¥a~ a2
b) Prove each of the equalities in the chain of equalities used to show that
/ is a homomoirpthitsm..
2. Aspace X, r is said to be simply connected if its fundamental group (with re-
spect to some base point) is trivial. The circle is an example of a space which
is connected but not simply connected. Which of the following spaces are
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simply connected? In all cases, compute the fundamental groups using the

given base point.

a) (@ 1) C R, using any base point

b) @ I) X F, with ¥ as in Example 5 and using any base point

¢ B 11X F, with ¥ as in Example 7 and using any base point

d {& ) Ix2+ y2 < 1} U {0, 1)} C RZ}with (@, 1) as base point

€) Yn, where n is any positive integer, F is as in Example 5 and any base
point is used

3. Suppose X, t and F, ¥’ are contractible to xg and yg, respectively (Seetion 111,
Exercise 3). Prove that the product space X X F is contractible and simply
connected.

4. Prove that the function H defined in Proposition 4 is a genuine homotopy
between a #a=kand k Find a homotopy between a=1 #a and k

& In the examples given in this section, the fundamental group has not de-
pended on the base point which was used to compute it. Actually the following
important proposition is true:

If F, t is arc-connected, and if yp and y\ are any two points of F, then
#i(F, yo) is isomorphic to m (F, ).

[Recall that an are in F is a homeomorphism from [ 1 into F, and that F
is said to be arc-eomnected if given any two distinet points x and y in ¥, there
is an arc h in F such that h(®) —x and h{l) = y.] Prove this propositiom.
[#int: An isomorphism can be defined as follows: Since F is arc-connected,
there is a homeomorphism j from [ I in F such that j{0) = yi and
j() = yo. Define j™ 1[0 1] - F by
FH) = (=)

for each r € [ I}. Defining j jf j=1 in the
“fiatural” way, it can be shown thatj #j=<11is
homotopic to k, where || is the identity of

#I(F, yo). Suppose || € 7i(F, y5). Define
[, y6) >, y) by

1(d) = U/#aiftjﬂ Figure 11.21

(Fig. 101.21). We know that/(|g]) is a well-defined element of 7i(¥, 3)). The
details showing that / is an isomorphism are straightforward, but should be
supplied carefully by the reader to check his understanding of homotopies and
the fundamental group]

Note that if a space is not arc-connected, then the fundamental group
might depend on the base point. For example, let

F={&x)lx=3U{x)y \»2+y2=13CR2

If a base point yp in {(x,¥) |x = 3} is chosen, then all of the loops based on
yo are also in {(x,y) \x = 3} since otherwise we would have a continuous
image of a connected space [} 0] which was not connected. Therefore if

]'—l
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two continuous functioms, it is continuous. Furthermone, 7(a) is a function
from [, I into ¥ such that

7@ = f(@(0)) = F(x6) = 26 = F@();
hence/{@) is indeed an element of L(Y, y§). For any M\ & #Ai(JX, x£), set
fe(he) = Wf@)l-

We first show that /% is well-defined, that is, that f5(Ja]) does not
depend on the representative of M used to compute it, but only on the
equivalence class. Suppose a ~ &', that is, [lo| = |l#']. Then there is a

homotopy
HioOx @ L 0 1 X g ]—X,xp
such that
HiROXx 0} =a and H|BOX {1} =a"

Define Hf = foH. Since H" is the composition of continuous functions, it
is contimuouss. Direct computation shows that H” is a homotopy between
/ea’ and f<a, and hence

if=al = ala) = V= = Adal).

Thereforef% is well-defined.
We now prove that/% is a homomomgthizmm. Suppose [l and |\ are any
elements of %§). Now a $Ba’ is defined by

a2r), ifo<r<
@#OM) g — 1), HE<r<L

Therefore fo (@ # a’) is the loop defined by

#(a2r)), fO<r< g
@'@r— 1)), ift <r<L

But this is precisely the definition of f<a #/-a". Then
Ta#a) = /(a) #£(&).
Therefore f5(I # o')) = AZal)EVidd]) #8ide])a # Sithice lal#dd's val #

have
el #1118 = rdlal) #rd).
Hence f% is a homomampthism.

The following example shows that/% may not be onto even whemn/ is.

Example 9. We have already seen that there is a continuous function /
from the interval [0, 1] onto a circle ¥. But [0 IJ is a contractible space
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and thus has a trivial homotopy group, whereas the homotopy group of ¥
is isomorphic to the additive group of integens. Thereforef; in this instance
is merely a function which takes the sole element (the identity) of
i@ 1)) onto the identity || of FH(¥); heneef; is clearly not onte.

The next two propositions show that the homomorphisms induced by
continuous functions behave fairly respectably in relation to the functions
that induce them.

Proposition 7. Suppose / is a continuous function from X, r into F, '
and g is a continuous function from F, ' into Z, r". Also suppose
that f(@§) = yRand g(¥6) = z. Then

@=hNs: Ti(Xyze) — Ti(Z, Zy) is the same as g¥ <f%.

That is, the composition of continuous functions gives a corresponding
composition of the homomorphisms that these functions induce.

Proof. Suppose a & L(X, x§). Then

@@ = @I Nexs o-f~s) = = i) =
Therefore
(M (lal) = (@ <) (|of).

Proposition 8. Suppose / and gare continuous functions from X, r into
E, " andf(x6) = 9(x6) = ¥ Then if / is homotopic to gy

fs = o
Proof. If fis homotopic to gylet H be a homotopy between £ and g. Define

(Ha)(r, (Hxa)(r, H(a(r), s) 9 =H@M, s

for each (r, s) € [0 11 X [0 1}. Then H#a is easily verified to be a homotopy
between f <u and g «a for any a & L(X, z§). Then j(a) ~ 7@ for any
a & L(Xyxg); hence

filal) = ge(lal)  for any M\ & (X, x¢).

If fundamental groups are to have much meaning topologjiaillly, then
homeomorphic spaces should have isomorphic fundamental groups. As
we have already seen, however, it is quite possible for two spaces which
are not homeomorphic to have isomorphic fundamental groups. We may
therefore suspect that there is a condition even weaker than homeo-
morphism which assures that two spaces have isomorphic fundamental
groupss. Experience has shown that this suspicion is indeed quite correct.
The following definition proves to be appropriatte.
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Definition 5. Let X, 7 and Y, 7’ be (arc-connected) spaces. Then X
and Y are said to have the same homotopy type, or to be homotopically
equivalent, if there are continuous functions

[ X-Y and gY - X

such that f-g is homotopic to the identity function 7y on Y and g-f is
homotopic to the identity function 7x on X.

Being of the same homotopy type is a weaker condition than being
homeomorphic, since X and Y would be homeomorphic if and only if
there were continuous functions f: X —» Y and ¢g: Y — X such that
fog =iy and gof = ix (hence f = ¢g~'). Of course, if two spaces are
homeomorphic, they are also of the same homotopy type.

Example 10. Let X, 7 be any contractible space and let Y, 7’ be a space
consisting of a single point P. Then X has the same homotopy type as Y.
Let z¢ be a point of X to which X can be contracted and let k be the
function on X which takes all of X into z¢ (Fig. 11.23). Then ix ~ k.
Let f: X — Y be defined by f(x) = P forallz € X, and g: Y — X be
defined by g(P) = z5. Then

feg=Fk~ iy
and
gof:'ix.

Therefore X and Y have the same homotopy type.
Note how apparently different two spaces of the same homotopy type
can be. ~

Example 11. Suppose W is a subspace of a space X, 7. Then a continuous
function f: X — W is said to be a retraction of X onto W if f| W = ip.
We call W a deformation retract of X if ix is homotopic to a retraction of
X onto W. For example, the letter O is a deformation retract of the letter
Q; here the retraction f could be deseribed by saying that f takes any
point in the tail of the @ into the point where the tail crosses the O part
of the Q, and leaves all other points fixed.
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If W is a deformation retract of Xythen W and X have the same
homotopy type. For convemiemce, set ix A\W = iw.= Let f be the con-
tinuous function from X into W which is homotopic to ix. Then

feiw=NW ~iw and iwF=7~ ix

Therefore W and X have the same homotopy type.

The following proposition is pure set theory and will be stated without
proof. It is of sufficiently wide application that the reader should already
be familiar with it; if such is not the case, he should supply a proof.

Proposition 9. Let / be a function from a set § into a set T. Then £ is
one-one and onto if and only if there is a function g from T into S
such thatt/<=@ is the identity mapping on T and g=f is the identity
mapping on 8, that is, f is one-one and onto if and only if it has a
two-sided inverse.

We use this immediately to prove the followiing;.

Proposition 10. Suppose two spaces X, r and ¥, rf have the same
homotopy type. Then #tj(X) is isomorphic to #ti(¥). (Recall that we
are assuming X and ¥ arc-commsttted]; hence their fundamental groups
are independent of the base poiinit.)

Proof. Since X and ¥ amreobftithessemie homotopy type, there are con-
tinuous functions f/XX—¥Yanddgg¥ —X such that f¥g ~ iy and
g=f ~ ix.=Applying Propositions 7 and 8, we have

[ E = iys and gE=fE = ixw

But ix% and iy% are the identity functions on FT(X) and Wj(Y), respec-
tively. It follows then from Proposition 9 that/% is one-one and onte, and
hence is an isomorphitsmmn.

It is not true that if two spaces have isomorphic fundamental groups
they are then of the same homotopy type (e.g., see Example 7). Never-
theless, homotopy equivalence does give a partition of the family of
topological spaces, just as homotopy gave a partition of the family of
continuous functions from one space into anothei.

Proposition 11.L dtethehphrlasese “fis aff the same homotopy type as” be
denoted byand tetdTlateffottertbte the family of all topological spaces.
Then 2~ is an equivalence relation on T.

Proaf. If X € T, then X ~ X_ Letf = g — ix=Thenfog — gof = ix}
therefore X~ X.
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space without any holes. On the other hand, it should be noted that al-
though the sphere also has a trivial fundamental group, it could hardly
be said not to have any holes. The hole in a sphere, however, is a higher-
dimensional hole, and is not one which can be registered by the funda-
mental group. Note that a torus has two types of holes and that its
fundamental group has two generators. We should not, howewver, try to
push this point too far, since it is only approximately true.

The fact that there are “higher-dimensional holes,” as well as the fact
that the fundamental group can give but rather limited informatiom, leads
us to hope that there are other algebraic structures which can be asso-
ciated with a space to supplement the information given by the funda-
mental group. Such is indeed the case. There are higher homotepy groups
[eswiously implied by using the notation instead of merely
homology groups, cohomology groups, and a long list of others, but these
will not be explored in this text.

EXERCISES

1L Supply an argument to prove more fully that O is a deformation retract of
Q (Example 11).

2. Classify each of the diagrams in Fig. 1124 (considered as subspaces of RY)
according to homotopy type.

ABCDERT

PT (1) 8 1B mpweun

3. In each of the following, decide whether or not the two spaces given are of
the same homotopy type.
a) a circle in R2and R2 — {(0, 0)}
b) the sphere in R8and a circle in R2
¢) a triangle and a circle in R2
d) R8and R2

4. In which of the following is the second space a deformation retract of the
first space? An intuitive argument may be all the reader will be able to give.
8 (&, | + -<3¥peand )|k gF = 1} andf \x2+ y2= 1
b) R2and {(0, 0)}
9 {&, | + yl Zray@{@ and {) ¥< 1< T

5. Suppose ¥ is a subspace of X, r such that ¥ — ix || IE can be extended to a
continuous function from X into 1E. Discuss the relation between #tji (&) and
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#i(X). Formulate a proposition which tells us when iw cannot be extended
to a continuous function from X into W. Let

W = {@)\s2+y2 = BYCX = {(x,y) a2+ y2< 1},

In this case can iy be extended to a continuous function from X into W?
How could we interpret this result geometrically?

6. Suppose X, r is a space with a contractible subspace A. Let X/A be the
identification space obtained by identifying all the points of A (@nd leaving
the other points of X as they are). What can be said about the relation of
#ti(X) to #NEK/A)? Give an argument for your assertion. Can you interpret
your statement geometrically?

7. We will call a continuous functiion/ from a space X, * into a space F, + trivial
if /3 takes all of m(X) onto the identity of Zi(F). Examine each of the follow-
ing and decide whether or not there is a nontrivial function from the first
space into the second. If there is a nontrivial functien, deseribe one.

a) a circle in R2and the open interval (@, I)

b) a circle in R2and R2 — {(0, O)}

©) acircle C in R2and the torus C X C

d) a torus and a circle in R2

¢) a space with fundamental group Z$ and a space with fundamental group
Z3, where Z5and Z3 represent the additive groups of integers modulo 5
and 3, respectively

8 If X and ¥ have the same homotopy type, which of the following situations
cannot occur?
a) X compact, but ¥ not compact
b) X connected, but ¥ disconnected
¢) X arcwise connected, but ¥ not arewise connected



APPENDIX ON INFINITE PRODUCTS

Let {Xi, 7, 1 € I, be any family of topological spaces indexed by some set I.
If 1 is countable, then we already have a definition of the product space of this
family. But J need not always be countable; thus if we are to consider product
spaces in their full generality, we need to have a product of uncountably many
spaces also.

Let R be the set of real numbers. Them, as we know, R X B = R2is the
set of all ordered pairs (x, y) where x and y are elements of R. To each ordered
pair &, y), we can associate a function ¢ from the set {1, 2} into R defined by
() = x and ¢(2) = y. For each (x, y) E R, there is a distinct function from
{1,2} into R, and for each function c: {I,2} — R, there is a unique point
(cQ), «(2)) of RZ.

If Xi and X2 are any two sets, then

Xy X X2 = {(®i, X2) ANxi€ Xi and X2 € X3}.

But we are able to show that Xi; X K2 can be associated in a natural way with
the set of all functions ¢ from {1, 2} into Xi U X2 which have the property that
¢(1) € X\ and ¢(2) € X2. Note that {1, 2} is the index set for the family of sets
{Xy, X2) of which we are taking the product. We therefore make the following
definitiom.

Definition 1. Let {Xi}, i € I, be any family of sets. Define the product of
the family {Xi}, t € I, to be the collection of all functions ¢ from I into
Uz Xi such that

@) € Xi foreach i€ I

The product of {Xi}, i € I, is denoted by Xz Xi. If ¢ € Xz Xi;, then c(i),
usually denoted by e, is called the ith coordinate of c. Xi is called the ith
component of the set Xz Xi..

Note that this definition of the product does not depend on the cardinality
of I. It should not cause the reader much work to show that where I is countable
between the old definition of Xz Xi and the new, there is a natural equivalemce.
We now use the considerations put forth in Chapter 4 concerning what prop-
erties the product topology should have to define a topology on Xz Xi if each Xi
is also a topological space.

261



262 Appendix

Definition 2. Let {Xi, r;}, i E1, be a family of spaces, and let Xi Xi be the
product set of the family of Xi as defined in Definition I.. Let

S = {Xi Vi||Vi —Xi for all but at most one i E [
and each Vj is an open subset of Xi].

Then S is a subbasis for a topology * on Xi Xi called the product topology.
The space Xr Xi;, t is called the product space of {Xi, ri},i & I. (Compare
this to Definition 7, Chapter 4.)

There is a natural function

P,-i:—)}( X X44 Xi;

defined by pi(¢) —¢&) for each i E I. We call pi the projection into the ith
COMpPanaIL.

The reader should promptly prove that the product topology is the coarsest
topology which makes each projection pi continuows.

The propositions and proofs in this text which deal with product spaces
have purposely been designed so that it would be easy to adapt them to the more
general notion of a product space (ovided that they are valid when generalized)..
We now give two examples of propositions and their proofs which generalize and
one example of a proposition which is not true when stated for the product of
uncountably many spaces.

Proposition 1. Let ¥ = Xr Xi be the product space of the family of non-
empty spaces {Xi, n}, 1 E I. Then ¥ is T2 if and only if each Xi is T2.
{(&ee Proposition 3, Chapter 5.)

Proof. Suppose each Xi is T2, and let x and ¥ be distinct points of ¥. We will
use 2§ and yi to denote the ith coordinate of x and ¥, respectively. Since x & y,
Xj » yi for at least one i € I, say for . Therefore there are open sets Ui* and
¥j-In X% such that

xp & Uiy yPEVH, and UimV =&

Set U = Xi Hi, where Hi = Xi, i if, and Hip = Up; and set ¥V = % G,
where @i = Xi, i % if,and G> = Wit7 Then U and V & neighborhoods of x
and vy, respectivelly, and since any point of UJ differs from any point of W at least
in the ith coordimate, U fi W = ¢£ Therefore ¥ is TY

By the generalization of Proposition 20, Chapter 4, each Xi, n; is homeo-
morphic to a subspace of ¥. Thus if ¥ is T2, then each Xi is also T2.

Proposition 2. Suppose £ is a function from a space X, r into the product
space Xi Xi, ¥'. Define ff X, ¥ — Xi, 7j by

i = pisxe) for each x EX,

where pi is the projection into the ith compoment. Then f is continuous if
and only if is continuous for each i € I. (Cf. Proposition 21, Chapter 4.)
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Proof. If f is continuous, then f; = fop; is the composition of two continuous
functions and therefore is continuous.

Suppose now that f; is continuous for each i € I. We first note that the
tth coordinate of f(z) is fi(z) for each x € X. A basis ® for 7’ consists of all sets
of the form X; V;, where V, is open in X; for each 2 € I and V; = X; for all but
finitely many 7. Suppose Xr V; is any member of ®, and V; = X;foreachi & I

except i1, . . ., im. Now f71(Xr V) is the set of all points z of X such that
flz) € X V..
I
But this is easily seen to be (1 f71(V;). For every i € I, except 1, .. ., im,

7Y (V) = X (because V; = X,). Since f; is continuous for each i € I, f{jl(Vi,-)
isopenin X,j = 1,...,m. Therefore

f_l()l( V;) = £ (Vi) NN fi, (Vi)

which is open in X since it is the intersection of finitely many open sets. Hence,
by Proposition 7, Chapter 4, f is continuous.

Proposition 3. Suppose {s;}, 1 €I, is a net in the product space X;X;.
Then s; — y if and only if 5] — y;, where y; is the jth coordinate of y and
{sl}, i €1, is defined to be {p;(s;)}, i€ 1.

The proof of Proposition 12 of Chapter 6 may be used verbatim.

Proposition 4 (Tychonoff). Let XrX: be the product space of the nonempty
family of nonempty spaces {X;, 7}, ¢t € I. Then X;X; is compact if and
only if each component space is compact.

The proof of Proposition 13 of Chapter 7 may be used verbatim; alternatively,
one may use the proof of Proposition 16.

The propositions we would expect not to generalize are those which deal
with the cardinality of a basis for the product topology. For example, Prop-
osition 4(d), Chapter 7, does not generalize, as the following example shows.

Example 1. Let I be an uncountable set, and let X; = {0, 1} for each 7 € I.
Give each X, the discrete topology. Then certainly each X is second countable.
But the product space X; X; is not second countable. This is true since the sub-
basis 8, as described in Definition 2 for the product topology on X; X, contains
uncountably many distinet members of the form Xy V;, where V; = X, except
for precisely one ¢ € I. The family of such members of $ can be shown to be a
minimal subbasis for the product topology; thus the product topology could not
be second countable. We could also prove that the product space X; X is not
second countable as follows: If X; X is second countable, then X; X; is Lindelsf,
and hence every open cover of Xr X; has a countable subcover. But the collection
of X; Vi, where V; = X;, except for precisely one i, is an open cover of Xr X;
which has no countable subcover.

The generalization of the notion of a product space also expands our horizons
as to the possible uses of product spaces.
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Example 2. Given spaces X, ¥ and ¥, ¥, then ¥¥ was used to denote the family of
all continuous functions from X into ¥ (f. Proposition 1, Chapter 11). Actually,
¥% more appropriately stands for the family of all functions from X into F, that
is, the product set ¥%. Since F is a space, ¥Y¥ can be given a topology as a product
space; the family of continuous functions from X into F is a subspace of this
space. This in turn leads to the possibility of putting topologies on the set of
homotopy equivalence classes of functions from X into F (using the identifica-
tion topology) and of even giving a topology to fundamental groups. In point
of fact, more important topologies than the product topology are used on ¥¥,
but having a generalized notion of product has awakened us to this possibility.

EXERCISES

1L If {Xi, #i}, § € 1, is a countable family of spaces, show that there is a natural
correspondence between the product space of this family as defined in this
appendix and the product space as defined previously. In other words, prove
that the product spaces formed in both ways are actually homeomorphhic.

2. Formulate and prove a generalization of Proposition 20, Chapter 4.

& Prove or disprove: The product of any family of nonempty first countable
spaces is first countablie.

4. Show that the product of a family of discrete spaces may not have the discrete
topology. Does the product of any family of spaces with the trivial topology
necessarily have the trival topology? Is it possible for an infimite product of
infinite spaces to have the discrete topology?

5 Prove that the product topology on ¥¥ (Example 2) is equivalent to the
topology generated by saying that any net {3 i € I, in ¥¥ converges to /
if and only if fi(x) —>F(x) for all x € X_
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Absolute retract, 112

Absolute value metric, 16
Accumulation point, 179
Alexandroff compacttificatiomn, 175
Are, 236

Arc-connected, 239

Associative operation, 13

Axiom of choice, 7

Baire category theorem, 223
Base point, 240
Basis, 44

of a filter, 134
Bolzano-Weierstrass theorem, 180
Bounded function, 167
Bounded subset, 162, 164

Cardinal number, 12

Cardinality, 9

Cartesian product, 2, 84

Category, first or second, 226

Cauchy sequence, 214

Chain, 7

Class, 12

Closed subset, 24, 41

Closure, 37, 56

Cofinal, 117

Cohomology groups, 259

Compact, countably, 179
locally, 169
sequentially, 179

Compact space, 152

Compact subset, 152

Alexandrafff, or one-point, 175
Complement, 1
Complete metric, 218
Completely normal, 112
Completely regular, 230
Complietiom, 221
Companent, 197
Component space, 85, 261
Composition of functions, 3
Condensation point, 151
Connected, 183

locally, 198

polygomally, 189

simply, 251
Connected subset, 183
Connected, path, 189
Continuity, 29, 70

and convergence, 130

uniform, 166
Contiinuom, 202

irreducible, 202
Contractiblle, 233, 239
Convergence, in a metric space, 26,

113

of filters, 133

of nets, 122
Convex, 190
Coordiinate, 85, 261
Countabile, 9, 145
Covering property, 142
Cube, 158
Cut point, 196, 202
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Cylinder, 158

Deformation retract, 256
De Morgan formulas, 2
Dense, 62
nowhere, G2
somewhere, 62
Derived set, 56
Diagamal,
Diameter of a set, 218
Direct sum, 14
Directed set, 116
Disconnected, 183
totally, 187
Disconnecting subset, 196
Daomaiin, 3

Element, 1
Embeddiing, 75,
Empty set, 1
Equivalence class, 8
Equivalence relation, 7
Equivalent metrics, 23
Euclidean n-space, 163
Existence proof, 226

Extension of a functiom, 106

Exteriar, 56

Filter, 133
basis for, 134
finer, 136
generated by a net, 134
ultra-, 136
Finite, 9
First countable, 115, 145
Frontier, 38, 55
Functiom, 2
bounded, 167
closed, 207
continuows, 29, 70
open, 89, 172
order-preserving, 119
selection, 118
Fundamental group, 246

Geometry, 77
Greatest lower bound, 6

Group, 13
fundamental, 246

Hahn-Mazurkiewicz theorem, 206
Half-plane, 48
Hausdorff space, 35
Higher hometopy groups, 259
Hilbert cube, 209
Homeamampthism, 75
Homology groups, 259
Homaemepthitm, 14
Homotaepic, 111

functions, 235
Homotopy, 235

relative, 240
Homotopy class, 238
Homotopy type, 256

Ideal in a ring, 51

Ideal point, 175

Identification mapping, 80

Identification space, 80

Identity, with respect to an operatiom,
13

Identity function, 32

Image, 3

Inelusion map, 74

Indices, 3

Infinite, 9

Interior, 43, 556

Intersectiom, 1

Invesse, with respect to an operation,
13

Inverse relation, 3

Irreducibly connected, 196

Isometiry, 223

Isomompthicm, 14

Least upper bound, 6
Lebesque number, 165
Limit, 26, 122
of a filter, 1X3

Limit point, 122, 133
Lindelof, 144

Locally compact, 169
Locally connected, 198
Locally metrizable, 230



Loop, 240
Lower bound, 5
greatest, 6

Mappiings, 3
Maximal, 6
Metacompactness, 182
Metrie, 16

complete, 218
Metric space, 16
Metrizable, 208
Metrizable, locally, 230
Minimal, 6
Mutually separated, 193

Neighborhood, 19, 60
Net, 117

based on a filter, 136
Noncut point, 202
Normal, 102

One-one, 3
One-point compactifiication, 175
Onto, 3
Open cover, 142
Open function, 89, 172
Open neighborhood systemn, 49
Open set, 21, 40
Open subcover, 143
Open in a subspace, 64
Operation, 13
Ordering, induced, 5
partial, 5
total, 5

Paracompaciness, 228
Partial ordering, &
Partition, 8 123
finer, 124
induced by equivalence relation, 8
mesh of, 124
Path, 111, 206
Path connected, 189
Permutation, 89
Point, 1
cut, 196, 202
Polygonally connected, 189

lmdex

Product set, 85, 261
Product space, 85, 261
Projection, 85, 262
Pseudocompactiness, 182
Pseudometitic, 92
Pythagorean metric, 16

Quasi-component, 206
Quotient space, 80
Quotient group, 82

Range, 3

Refinement, 143
Refinement, locally finite, 228
Reguiar, 97

Regullair, completely, 230
Relation, 2

Residual, 117
Restrictiom, 3
Retractiom, 266
Riemann integral, 124
Ring, 51

Rotatiem, 71

Same number of elements, 9
Second countable, 145
Separable, 145
Separate points, 232
Sequence, 3 26, 113
Set, 1L

partially ordered, 5
Split, 202
Subbasiiz, 46
Subcontinuwm, 205
Subcover, 143
Subgroup, 15
Subnet, 119
Subsequence, 119
Subset, 1

bounded, 162, 164
Subspace, 17, 65

To, 91
Ti,
T2 9%
Ts, 97
T4, 102
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Tietze’s extension theorem, 110
Topological space, 41
metrizable, 208
Topology, 40
coarser, 52
discrete, 40
finer, 52
identificatiom, 80
metric, 40
open interval, 45
order, 95
product, 85, 262
subspace, 65
torus, 101
trivial, 40
Total ordering, 5

Totally bounded, 223
Tychonoff space, 230
Tychonoff theorem, 158, 263

Ultrafilter, 136
Uncountalblle, 9
Union, 1
Upper bound, 5
least, 6
Urysohn’S lemma, 107
Urysohn’S metrization theorem,
209

Weak derived set, 56

Zorn’S lemma, 7, 149






