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Preface 

This second edition of Volume 2 of Engineering Surveying deals with those more 
advanced aspects of surveying which generally occur in the final year of degree or 
diploma courses in engineering. To reinforce a clear understanding of the concepts 
involved, numerous worked examples, carefully selected for the purpose, are presented 
after each topic within the chapter. Finally, student exercises complete with answers are 
supplied for private study purposes. 

Chapter 1 has been greatly extended to provide a detailed treatment of the study of 
errors in surveying observations, the effect of their combination and propagation and 
the various procedures used to produce a statistically-viable result. The chapter 
commences with a description of the errors involved, their distribution and the basic 
statistical techniques used in their treatment. The work then proceeds to the 
application of least squares in the adjustment and strength analysis of control 
networks. Theory and application are dealt with, using both classical and matrix 
algebra, and areas such as unit variance weighting, optimization and pre-survey 
analysis are covered. In conclusion, a fully-worked example of the adjustment and 
strength analysis of a control network is supplied to facilitate comprehension of the 
theory involved. 

Chapter 2 dealing with control surveys, covers a wide variety of topics relevant to the 
basic methodology of position fixing. Included in the treatment are resection/intersec-
tion, trigonometric levelling, the theory and application of scale factors, convergence of 
meridians, and (f-T) corrections, etc. The importance of fiectromagnetic distance-
measurement is clearly evident by the detailed treatment it receives. 

Chapter 3 deals with the broad principles of aerial and terrestrial photogrammetry 
as befits the engineer, who is more likely to be a user of the end product, rather than a 
practitioner of the technique. To this end, the elementary theory and methods of 
obtaining three-dimensional data from aerial photographs is dealt with in detail. This 
approach not only enables the engineer to utilize the techniques, where necessary, but 
also provides an introduction to and basic understanding of the subject. It also enables 
the reader to appreciate the specifications required for vertical air photography, which 
are provided in full at the end of the chapter. 

Chapter 4 deals with the application of field astronomy to position fixing and as such 
introduces the reader to spherical trigonometry and its application to certain 
engineering situations. The main difficulty experienced by students is in understanding 



the concept of time. This topic is, therefore, dealt with at length using the simple 
concept of clock diagrams. 

Throughout the presentation, the accent is on a qualitative and intuitive understand-
ing of the basic concepts of the material. 

The book should prove useful to technician and undergraduate students of surveying 
and civil, mining and municipal engineering, as well as those studying for the various 
professional examinations which include this subject. 
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Errors and adjustments 

The basic task in surveying is the establishment of three-dimensional control which is 
usually achieved by linear and angular measurement. Such measurements must 
inevitably contain errors; thus statistical techniques are employed not only to 
distribute these errors but also to assess the reliability of the final accepted value, within 
specified confidence limits. 

1.1 CLASSIFICATION OF ERRORS 

(1) Mistakes are sometimes called gross errors, but should not be classified as errors at 
all. They are blunders, often resulting from fatigue or the inexperience of the surveyor. 
Typical examples are: omitting a whole tape length when measuring distance, sighting 
the wrong target in a round of angles, reading '6' on a levelling staff as '9' and vice versa. 
Mistakes are the largest of the errors likely to arise, therefore great care must be taken 
to obviate them. 
(2) Systematic errors can be constant or variable throughout an operation and are 
generally attributable to known circumstances. The value of these errors can be 
calculated and applied as a correction to the measured quantity. They can be the result 
of natural conditions, examples of which are: refraction of light rays, variation in the 
speed of electromagnetic waves through the atmosphere, expansion or contraction of 
steel tapes due to temperature variations. In all these cases, corrections can be applied 
to reduce their effect. Such errors may also be produced by instruments, e.g. 
maladjustment of the theodolite or level; index error in spring balances; ageing of the 
crystals in electromagnetic distance-measuring (EDM) equipment. 

There is the personal error of the observer who may have a bias against setting a 
micrometer or in bisecting a target, etc. Such errors can frequently be self-
compensating; for instance, a person setting a micrometer too low when obtaining a 
bearing will most likely set it too low when obtaining the second bearing, and the 
resulting angle will be correct. 

Systematic errors, in the main, conform to mathematical and physical laws; thus it is 
argued that appropriate corrections can be computed and applied to reduce their effect. 
It is doubtful, however, whether the effect of systematic errors is ever entirely 
eliminated, largely due to the inability to obtain an exact measurement of the quantities 
involved. Typical examples are: the difficulty of obtaining group refractive index 
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2 Errors and adjustments 

throughout the measuring path of EDM distances; the difficulty of obtaining the 
temperature of the steel tape, based on air temperature measurements with 
thermometers. Thus, systematic errors are the most difficult to deal with and therefore 
they require very careful consideration prior to, during, and after the survey. 
(3) Random errors are those variates which remain after all other errors have been 
removed. They are beyond the control of the observer and result from the human 
inability of the observer to make exact measurements, for reasons already indicated 
above. 

Random variates are assumed to have a continuous frequency distribution called 
normal distribution and obey the law of probability. A random variate xh which is 
normally distributed with a mean μ and standard deviation σ, is written in symbol form 
as Ν(μ,σ2). It should be fully understood that it is random errors alone which are 
treated by statistical processes. 

1.1.2 Basic concept of errors 

The basic concept of errors in the data captured by the surveyor may be likened to 
target shooting. 

In the first instance, let us assume that a skilled marksman used a rifle with a bent 
sight, which resulted in his shooting producing a scatter of shots as at A in Figure 1.1. 

Figure 1.1 

That the marksman is skilled (or reliable) is evidenced by the very small scatter which 
illustrates excellent precision. However, as the shots are far from the centre, caused by 
the bent sight (systematic error), they are completely inaccurate. Such a situation can 
arise in practice when a piece of EDM equipment produces a set of measurements all 
agreeing to within a few millimetres (high precision) but, due to an operating fault and 
lack of calibration, the measurements are all incorrect by several metres (low accuracy). 

If the bent sight is now corrected, i.e. systematic errors minimized, the result is a 
scatter of shots as at B. In this case, the shots are clustered near the centre of the target 
and thus high precision, due to the small scatter, can be related directly to accuracy. The 
scatter is of course due to the unavoidable random errors. 

If the target is now placed face down, the surveyors' task would be to locate the most 
probable position of the centre based on an analysis of the position of the shots at B. 
From this analogy several important facts emerge, as follows. 
(a) Scatter is an 'indicator of precision'. The wider the scatter of a set of results about 

the mean, the less reliable they will be compared with results having a small scatter. 
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(b) Precision must not be confused with accuracy; the former is a relative grouping 
without regard to nearness to the truth, whilst the latter denotes absolute nearness 
to the truth. 

(c) Precision may be regarded as an index of accuracy only when all sources of error, 
other than random errors, have been eliminated. 

(d) Accuracy may be defined only by specifying the bounds between which the 
accidental error of a measured quantity may lie. The reason for defining accuracy 
thus is that the absolute error of the quantity is generally not known. If it were, it 
could simply be applied to the measured quantity to give its true value. The error 
bound is usually specified as symmetrical about zero. Thus the accuracy of 
measured quantity x is x ± εχ, where εχ is greater than or equal to the true but 
unknown error of x. 

(e) Position-fixing by the surveyor, whether it be the co-ordinate position of points in a 
control network, or the position of topographical detail, is simply an assessment of 
the most probable position and, as such, requires a statistical evaluation of its 
reliability. 

1.2 FURTHER DEFINITIONS 

(1) True value of a measurement can never be found, even though such a value exists. 
This is evident when observing an angle with a one second theodolite; no matter how 
many times the angle is read, a slightly different value will be obtained. 
(2) True error (εχ) similarly can never be found, for it consists of the true value {X) 
minus the observed value (x), i.e. 

X — x = εχ 

(3) Relative error is a measure of the error in relation to the size of the measurement. 
For instance, a distance of 10 m may be measured with an error of +1 mm, whilst a 
distance of 100 m may also be measured to an accuracy of ± 1 mm. Although the error 
is the same in both cases, the second measurement may clearly be regarded as more 
accurate. To allow for this, the term relative error (Rx) may be used, where 

Rx = εχ/χ 

Thus, in the first case x — 10 m, εχ = ± 1 mm, therefore Rx = 1/10 000; while in the 
second case Rx = 1/100 000, clearly illustrating the distinction. Multiplying the relative 
error by 100, gives the percentage error. 'Relative error' is an extremely useful definition, 
and is commonly used in expressing the accuracy of linear measurement. For example, 
the relative closing error of a traverse is usually expressed in this way. The definition is 
clearly not applicable to expressing the accuracy to which an angle is measured, 
however. 
(4) Most probable value (MPV) is the closest approximation to the true value that can 
be achieved from a set of data. This value is generally taken as the arithmetic mean of a 
set, ignoring at this stage the frequency or weight of the data. For instance, if A is the 
arithmetic mean, X the true value, and εη the errors of a set of n measurements, then 

n 

where [ε„] is the sum of the errors. As the errors are equally as likely to be + or —, then 
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for a finite number of observations [ε„]/η will be very small and A % X. For an infinite 
number of measurements, it could be argued that A = X. 
(N.B. The square bracket is Gaussian notation for 'sum of.) 
(5) Residual is the closest approximation to the true error and is the difference between 
the MPV of a set, i.e. the arithmetic mean, and the observed values. Using the same 
argument as before, it can be shown that for a finite number of measurements, the 
residual r is approximately equal to the true error ε. 

1.3 PROBABILITY 

Consider a length of 29.42 m measured with a tape and correct to ±0.05 m. The range 
of these measurements would therefore be from 29.37 m to 29.47 m, giving 11 
possibilities to 0.01 m for the answer. If the next bay was measured in the same way, 
there would again be 11 possibilities. Thus the correct value for the sum of the two bays 
would lie between 11x11 = 121 possibilities, and the range of the sum would be 
2 x ±0.05 m, that is, between — 0.10 m and +0.10 m. Now, the error of — 0.10 m can 
occur only once, that is when both bays have an error of —0.05 m; similarly with 
+0.10. Consider an error of —0.08, this can occur in three ways: ( — 0.05 and —0.03), 
(-0.04 and -0.04) and (-0.03 and -0.05). Applying this procedure through the 
whole range can produce Table 1.1, the lower half of which is simply a repeat of the 
upper half. If the decimal probabilities are added together they equal 1.0000. If the 

TABLE 1.1 

Error 

-0.10 
-0.09 
-0.08 
-0.07 
-0.06 
-0.05 
-0.04 
-0.03 
-0.02 
-0.01 

0 
0.01 
etc. 

Occurrence 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
10 
etc. 

Probability 

1/121 = 0.0083 
2/121 = 0.0165 
3/121 = 0.0248 
4/121=0.0331 
5/121 = 0.0413 
6/121 = 0.0496 
7/121 = 0.0579 
8/121 = 0.0661 
9/121 = 0.0744 

10/121 = 0.0826 
11/121=0.0909 
10/121 = 0.0826 
etc. 

above results are plotted as error against probability the histogram of Figure 1.2 is 
obtained, the errors being represented by rectangles. Then, in the limit, as the error 
interval gets smaller, the histogram approximates to the superimposed curve. This 
curve is called the normal probability curve. The area under it represents the probability 
that the error must lie between ±0.10 m, and is thus equal to 1.0000 (certainty) as 
shown in Table 1.1. 

More typical bell-shaped probability curves are shown in Figure 1.3; the tall thin 
curve indicates small scatter and thus high precision, whilst the flatter curve represents 
large scatter and low precision. Inspection of the curve reveals: (i) positive and negative 
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errors are equal in size and frequency; (ii) small errors are more frequent than large; (iii) 
very large errors seldom occur. 

The curve can also be used to indicate the probability of an error falling within 
certain limits. In Figure 1.3 the shaded portion represents the probability of an error 
falling within the limits ± 1. The shaded portion represents 68.3% of the total area; thus 
the error of ± 1 is likely to occur roughly seven times out of a set often. This particular 
area has a special significance, as shown later. 

As already illustrated, the area under the curve represents the limit of relative 
frequency, i.e. probability, and is equal to unity. Thus tables of standard normal curve 
areas can be used to calculate probabilities provided that the distribution is the 
standard normal distribution, i.e. iV(0, l2). If the variable x is Ν(μ, σ2) then it must be 
transformed to the standard normal distribution using Z = (x — μ)/σ, where Z has a 
probability density function equal to (2n)~1,2e~z2/2. 

If x is ΛΓ(5,22) then Z = (x - 5)/2, and when x = 9 then Z = 2. 

Figure 1.3 
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The equation of the normal probability distribution curve is 

y = hn~lf2e-^ 

where y = probability of an occurrence of an error ε, h = index of precision, 
e = exponential function. 

1.4 INDICES OF PRECISION 

It is important to be able to assess the precision of a set of observations, and several 
standards exist for doing this. The most popular is standard deviation (σ), a numerical 
value indicating the amount of variation about a central value. 

In order to appreciate the concept upon which indices of precision devolve, one must 
consider a measure which takes into account all the values in a set of data. Such a 
measure is the deviation from the mean (x) of each observed value (xf), i.e. (xf — x), and 
one obvious consideration would be the mean of these values. However, in a normal 
distribution the sum of the deviations would be zero; thus the 'mean' of the squares of 
the deviations may be used, and this is called the variance (σ2). 

(1) σ2 = t (*« - * ) > (LI) 

Theoretically σ is obtained from an infinite number of variates known as the 
population. In practice, however, only a sample of variates is available and S is used as an 
unbiased estimator. Account is taken of the small number of variates in the sample by 
using (n — 1) as me divisor, which is referred to in statistics as the Bessel correction; 
hence, variance is 

(2) S2 = t (*i " xf/n ~ 1 (1.2) 

As the deviations are squared, the units in which variance is expressed will be the 
original units squared. To obtain an index of precision in the same units as the original 
data, therefore, the square root of the variance is used, and this is called standard 
deviation (S), thus 

(3) 
fn _ V12 

Standard deviation = 5 = ± < £ (xf - x)2/n - 1 > (1.3) 

Standard deviation is represented by the shaded area under the curve in Figure 7.3, 
and so establishes the limits of the error bound within which 68.3% of the values of the 
set should lie, i.e. seven out of a sample of ten. 

Similarly, a measure of the precision of the mean (x) of the set is obtained using the 
standard error (5X), thus 

C n Ϊ 1 / 2 

(4) Standard error = Sx- = ± I £ (xf - x)2/n(n - 1H = S/n112 (1.4) 

Standard error therefore indicates the limits of the error bound within which the 
'true' value of the mean lies, with a 68.3% certainty of being correct. 

It should be noted that S and 5X- are entirely different parameters. The value of S will 
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not alter significantly with an increase in the number (n) of observations, the value of Sx-, 
however, will alter significantly as the number of observations increases. It is important 
therefore that to describe measured data both values should be used. 

Although the weighting of data has not yet been discussed, it is appropriate here to 
mention several other indices of precision applicable to weighted (w,·) data 

(5) Standard deviation (of weighted data) 

= SW=± | Σ wf(xf - x)2/n-1Γ2 (1.5) 

(6) Standard deviation of a single measure of weight wf 

= sWt = ± {info - *)2M" - 1 ) } 1 / 2 = sw/K)1/2 (1-6) 

(7) Standard error (the weighted mean) 

f n In M / 2 1/ n \ l / 2 

= Sw = ±{Σ>ι(χ , -*>7.Σ ("i>(*-1)j = s~ (Σχ™i) (L7) 

N.B. The conventional method of expressing sum of has been used for the various 
indices of precision, as this is the format used in texts on statistics, and therefore 
more easily recognizable. However, for the majority of the expressions the neater 
Gaussian square bracket format has been used. 

1.5 WEIGHT 

Weights are expressed numerically and indicate the relative precision of quantities 
within a set. The greater the weight the greater the precision of the observation to which 
it relates. Thus an observation with a weight of two may be regarded as twice as reliable 
as an observation with a weight of one. Consider two mean measures of the same angle: 
A = 50° 50' 50" of weight one, and B = 50° 50' 47" of weight two. This is equivalent to 
three observations, 50", 47", 47", all of equal weight, and having a mean value of 

(50" + 47" + 47")/3 = 48" 

Therefore the mean value of the angle = 50° 50' 48". 
Inspection of this exercise shows it to be identical to multiplying each observation a 

by its weight w, and dividing by the sum of the weights [w], i.e. 

• u* A A fliwi + a 2 ^ 2 + · · * + anwn [aw] 
weighted mean = Am = -L-Ji =—= ^-5- = V ^ r (1.8) 

w
x
 + vv

2
 + · · · + w„ [w] 

Weights can be allocated in a variety of ways, such as (i) by personal judgement of the 
prevailing conditions at the time of measurement; (ii) by direct proportion to the 
number of measurements of the quantity, i.e. w ccn; (iii) by the use of variance and co-
variance factors. This last method is recommended and in the case of the variance factor 
is easily applied as follows: equation (1.4) shows 
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St-S/n1'2 

that is, error is inversely proportional to the square root of the number of measures. 
However, as w oc n, then 

wocl/Sf (1.9) 
i.e. weight is proportional to the inverse of the variance. 

It is important always to consider weights in this way, particularly in, say, the least 
square adjustment of dissimilar quantities, such as angles and distances. If weights were 
ignored, then one is assuming that the error in an angle is directly in ratio to the error in 
length, i.e., say, 1" to 1 ft, or 1" to 1 m. Thus if a set of datta was adjusted using its 
lengths in feet, then simply converting them to metres would result in a different set of 
adjusted values. (See Section 1.12.3). 

1.6 REJECTION OF OUTLIERS 

It is not unusual, when taking repeated measurements of the same quantity, to find at 
least one which appears very different from the rest. Such a measurement is called an 
outlier, which the observer intuitively feels should be rejected from the sample. 
However, intuition is hardly a scientific argument for the rejection of data and a more 
statistically-viable approach is required. 

As already indicated (in Section 1.4), standard deviation S represents 68.3% of the 
area under the normal curve and is therefore representative of 68.3% confidence limits. 
It follows from this that 

±1.96 S represents 95% confidence limits (0.95 probability) 
±2.57 S represents 99% confidence limits (0.99 probability) 
±3.29 S represents 99.9% confidence limits (0.999 probability) 
Thus, any random variate xf, whose residual error {xt — x) is greater than ± 3.29 S, 

must lie in the extreme tail ends of the normal curve and should therefore be ignored, i.e. 
rejected from the sample. In practice, this has not proved a satisfactory rejection 
criterion due to the limited size of the samples. Logan (Survey Review, No. 97, July 
1955) has shown that the appropriate rejection criteria are relative to sample size, as 
follows: 

Sample size 

4 
6 
8 

10 
20 

Rejection criteria 

1.5 S 
2.0 S 
2.3 5 
2.5 S 
3.0 S 

A similar approach to rejection is credited to Chauvenet. If a random variate xf, in a 
sample size n has a deviation from the mean x greater than a l/2n probability, it should 
be rejected. For example, if n = 8, then l/2n = 0.06 (94% or 0.94) and the probability of 
the deviate is 1.86 S. Thus, an outlier whose residual error or deviation from the mean 
was greater than 1.86 S would be rejected. This approach produces the following table: 
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Sample size 

4 
6 
8 

10 
20 

Rejection criteria 

1.53 S 
1.73 S 
1.86 S 
1.96 5 
2.24 5 

It should be noted that successive rejection procedures should not be applied to the 
sample. 

1.7 STUDENTS f-DISTRIBUTION 

It was shown in Section 1.3 that in order to transform a Ν(μ, σ2) distribution one uses 
Z = (x — μ)/σ. However, if S is used as an unbiased estimator of σ, then the distribution 
produced is not the standard normal but is Student's i-distribution with (n — 1) degrees 
of freedom (DF). As the sample size approaches thirty, then Student's i-distribution 
approaches the standard normal. 

The term degrees of freedom refers to the number of measurements in a sample that 
are free to vary. For instance, in the measurement of a quantity n times, the first 
measurement defines the quantity, the remaining measures (n — 1) are additional 
redundant measures taken to confirm the validity of the first. Hence there are (n — 1) 
DF. Another way to consider it is, if a quantity was measured, say, six times and the 
mean obtained, then one could vary the first five measurements but the sixth would be 
fixed relative to the first five measures and the mean, hence there are five, i.e. (n — 1), DF. 

If dealing with n equations containing m independent variables, the number of 
degrees of freedom would be (n — m). 

Tables of areas under standard normal curve are available to compute probability, 
but not under the i-distribution curve due to the variation in the number of DF. Thus i-
tables tabulate values of i corresponding to a particular area, and i is the ratio of the 
difference between the measured mean value and the hypothesized mean, compared 
with the standard error of the mean, i.e. 

ί = ( χ - μ ) / 5 χ - (1.10) 

Thus it can be seen that the i-distribution should be used when the sample size is less 
than 30 and σ is unknown. Some applications will now be outlined. 

1.7.1 Confidence intervals 

The i-distribution may be used to calculate the confidence interval of the population 
mean μ, as follows: 

Example 1.1. The angle subtended by a subtense bar was measured 16 times, the mean 
value obtained was 2° 48' 34.86" with a standard deviation of 3.62". Calculate the 95% 
and 99% confidence intervals of the mean. 

n = l6 x = 34.86" S = 3.62" 
.·. sx. = S/ni = 0.91" 
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From the transformation: t = (34.86 - μ)/0.9Γ 

.'. Confidence limits for μ are 34.86 ± 0.9li 

From ί-tables (see Appendix, Table A.l) 

i0.05 for 15 DF = 2.13 (95% probability) 
io.oi for 15 DF = 2.95 (99% probability) 
.*. Confidence limits for the mean value are 

2° 28' 34.86" ± 1.93" at 95% probability 
and 2C 48' 34.86" ± 2.68" at 99% probability 

An alternative way of expressing the above is that the probability that x would lie 
outside 2° 48' 32.93" and 2° 48' 36.79" is 0.05 or 5%. 

If one assumes a normal distribution then 1.965x- represents 95% probability and 
confidence limits for μ are 2° 48' 34.86 ± 1.78". 

1.7.2 Testing hypotheses 

In all tests of significance it is assumed at the outset that there is no significant difference 
between the distributions under test; this is called the null hypothesis. 

1.7.2.1 Single-sample problem 

As already shown in the previous example, for a i-distribution with 15 DF the 
probability of a value lying outside the limits ±2.13 is 0.95 (95%). These limits are the 
5% significance limits and are utilized in hypothesis testing. Consider the following 
example: 

Example 1.2. An angle in a test network has been proven to be 58° 35' 24.5" (μ). To 
check for possible movement of the network the angle was check-measured nine times 
and this produced a mean value of 58° 35' 27.3" (x) with a standard deviation 2.2". Is 
there a significant difference between the population and sample means, thereby 
indicating possible movement of the stations observed ? 

(a) Null hypothesis assumes no difference between the sample and assumed 
population means. 

(b) Sx- = S/n> = 2.2/3 = 0.73". 
(c) t = (x - μ)/5χ- = (27.3 - 24.5)/0.73 = 3.84. 
(d) From ί-tables (see Appendix, Table A.l): For a i-distribution with eight DF the 1% 

significance limits are + 3.36. 
(e) The value of t = 3.84 lies outside the 1% level, thus there is a significant difference 

between the two means and the null hypothesis is therefore rejected. 
It would appear that movement is taking place in the network; however, it would 

be unwise to assume this without further measurements and independent investiga-
tion. In all such situations one should never discount personal knowledge, 
experience and judgement. 
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1.7.2.2 Two-sample problems 

When surveying, one is frequently faced with the problem of assessing two sets of 
observations of varying size, or captured by different observers, to see if they are 
representative of the same population. However, prior to testing this hypothesis one 
should test the variances for significance using the F-test. 

Thus, if there are two samples of size n1 and n2, means x1 and x2 and standard 
deviations St and S2, the procedure is as follows: 

(a) Set up the null hypothesis that there is no difference between the two means, i.e. 
Xi ^ x 2 · 

(b) Find the combined standard deviation S of the two samples from 

t._\(n1-l)S1 + in1-l)S2}i 
S - \ („, - l) + („a - l) j ( U 1 ) 

(c) Obtain the standard error using 

Sx- = s(- + - Y (1.12) 

(d) Then t = \x1 — x2|/Sx- gives a distribution with {(ηχ — 1) + (n2 — 1)} DF. 
(e) Now obtain t from tables with {(nt - 1) + (n2 - 1)} DF at the 5% and/or 1% level 

of significance. 
(f) If computed t > t from tables, then at 1% level there is conclusive evidence of a 

significant difference between xx and x2. At 5% level, there is reasonable evidence. If 
there is no significant difference the null hypothesis is accepted. 

1.8 ^-DISTRIBUTION 

The F-distribution is used to compare the variances of two samples using their ratio. 
For instance, if the variances were taken from the same population and were equal, then 
the F ratio equal to Sj/Sj with (Sx > 52) would be 1. Tables are available that give F 
values at various levels of significance. Consider the following example: 

Example 13. Two surveyors, A and B, measure the same angle using the same 
theodolite. A measures the angle six times with a standard deviation of ±6.8". B 
measures it 14 times with a standard deviation of + 4.9". Is there a significant difference 
in the ability of the two observers ? 

(a) Null hypothesis: 5A = 5B. 
(b) F = SpSl = 6.82/4.92 = 1.93. 
(c) Test significance using F-tables with 5 and 13 DF 

1% significance level F = 4.86 (see Appendix, Table A.2) 
5% significance level F = 3.03 (see Appendix, Table A3) 

(d) F(1.93) is not significant (i.e. greater than 3.03) at the 5% level and so the null 
hypothesis is accepted that there is no significant difference between the observers. 



12 Errors and adjustments 

1.9 CHI-SQUARED DISTRIBUTION 

'Chi-squared' is written as χ2 and is a test of frequency between sets of values to see if the 
variation is significant, χ2 represents the sum of the squares of independent, random 
variates x and must therefore be a random variable itself. It is said to have a Chi-squared 
distribution. 

1.9.1 Goodness of fit 

In testing a sample for bias one assesses the difference between observed (0) and 
expected (E) frequencies. Consider the following example: 

Example 1.4. Five different types of EDM equipment are tested on a calibration base 
of known length. Each instrument measured the distance an equal number of times and 
the frequency with which each instrument obtained the known length was noted as 
follows: 

Instrument 

Observed frequency (0) 

Expected frequency (E) 

A 

8 

8 

B 

11 

8 

C 

5 

8 

D 

13 

8 

E 

3 

8 

1.9.2 Contingency tables 

In the above example the frequencies were classified according to only one criterion, the 
number of'true' measurements obtained. If a second criterion was introduced, such as 
observation under entirely different temperature conditions, then two criteria are 

(d) At the 5% level there is no significant difference, so the null hypothesis is accepted, 
and it can be argued that there is no significant difference in the performance of the 
instruments. 

(c) From χ2 distribution tables (see Appendix, Table A.4) using (5 — 1) DF 
1% significance level χ2 = 13.28 
5% significance level χ2 = 9.49 

(a) Null hypothesis: There is no difference between the O and E values. 

Is there any significant difference in the performance of the instruments ? 
If there was no bias, one would 'expect' each instrument to obtain the same 

frequency, which from an average of the O values is eight. 
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present, as shown below. 
Contingency table 

Instrument 

Frequency (25°C) 
Frequency (0°C) 

Total 

A 

8 
4 

12 

B 

11 
12 

23 

C 

5 
12 

17 

D 

13 
18 

31 

E 

3 
9 

12 

Total 

40 
55 

95 

The above table having two rows and five columns is known as a 2 x 5 contingency 
table. The χ2 test is used to test the hypothesis that temperature and the frequency of 
measurements are independent. 

(a) Null hypothesis: Frequency is independent of temperature. 
(b) Considering the 25°C temperature one would expect the following relationship to 

be valid 

Frequency of A Total frequency at 25° 
Total frequency Grand total 

i.e. 8/12 = 40/95 

Thus, if EA is the expected frequency of A at 25°C 

We have £A/12 = 40/95 
.*. EA = (40 x 12)/95 = 5 

Thus, if R = row total, C = column total, T = grand total then: Expected 
frequency = (Rx C)/T; using this formula the expected frequencies are calculated 
at 25°C. The expected frequencies at 0°C can then be obtained by subtraction from 
the totals, as shown below: 

Instrument 

Frequency {25°C) 
Frequency (0°C) 

Total 

£A 

5 
7 

12 

EB 

10 
13 

23 

Ec 

7 
10 

17 

ED 

13 
18 

31 

EE 

5 
7 

12 

Total 

40 
55 

95 

(c) Using both tables the χ2 value is obtained as follows 

χ2 = (8 - 5)2/5 + (11 - 10)2/10 + (5 - 7)2/7 + (13 - 13)2/13 + (5 - 3)2/3 
+ (4 - 7)2/7 + (12 - 13)2/13 + (12 - 10)2/10 + (18 - 18)2/18 + (9 - 7)2/7 

= 6.14 

(d) When using contingency tables the number of DF employed is (R — 1)(C — 1) = 
(2 - 1)(5 - 1) » 4 DF. 

Thus, from χ2 tables (see Appendix, Table A.4) using 4 DF 

1% level, χ2 = 13.28 and 5% level, χ2 = 9.49 
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Therefore, χ2 = 6.14 is not significant at the 5% and the null hypothesis is accepted. 
Thus instrument performance is not relative to temperature. 

It should be noted in both the above examples that χ2 is significant only if it is greater 
than the values given at 5% or 1% levels. Such tests are called one-tailed. 

1.9.3 Comparison of variances 

The χ2 test may also be used to test the hypothesis that the population variance equals a 
sample variance, i.e. σ2 = S2. This naturally involves knowing whether σ is significantly 
greater or significantly less than S and therefore needs investigation at each tail of the 
distribution curve. This is called a two-tailed test and we cannot therefore use the one-
tailed χ2 tables for 'goodness of fit'. 

In order to test the hypothesis that σ = S, the value of χ2 is computed using 
χ2 = (n - l)S2/<72 (1.13) 

and tested using χ2 distribution tables with (n — 1) DF. 

Example 1.5. A gyro-theodolite was damaged in a tunnelling accident and was 
subsequently repaired and modified slightly in the process. In the past, repeated 
calibration measurements on a base line of known azimuth had produced a standard 
deviation of + 8". In order to check the modified instrument, 20 observations were 
taken on the base and a standard deviation of 12" obtained. Had the repairs and 
modifications significantly altered the performance of the instrument ? 
(a) Null hypothesis: σ = S. 
(b) χ2 = (n - l)S2Ax2 = (20 - 1) x 122/82 = 42.75. 
(c) From χ2 tables (see Appendix, Table A.4) for variances with 19 DF 

1% significance level, χ2 = 6.844 and 38.582 
5% significance level, χ2 = 8.907 and 32.852 

The value of χ2 = 42.75 is significant at the 1% level and there is conclusive evidence 
that σ φ S. Thus the null hypothesis is rejected and it would appear that the instrument 
performance has been affected (reduced) by the repairs and modifications. 

If the above question was reworded to ask (i) 'Had the repairs and modifications 
significantly improved performance', or (ii)'... significantly reduced performance', then 
although we are still testing the hypothesis σ = 5, it is tested against the 'alternative 
hypothesis' (i) σ < S or (ii) σ > S. In this case the test is one-tailed, and one-tailed χ2 

tables for variance are used. 

1.10 COMBINATION OF ERRORS 

Much data in surveying is obtained indirectly from various combinations of observed 
data, for instance the co-ordinates of a point are a function of the length and bearing of 
a line. As each measurement contains an error, it is necessary to consider the combined 
effect of these errors on the derived quantity. 

The general procedure is to differentiate with respect to each of the observed 
quantities in turn and sum them to obtain their total effect. Thus if a = /(x, y9z9...)9 
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1.10.1 Errors affecting addition or subtraction 

Consider a quantity A(f) = a + b where a and b are affected by standard errors σα and 
ab9 then 

(d(a + b) } 2 \d{a + b) ) 2
 2 2 , * , i 

{-^—-°aj + j - 1 - ^ ° > j = °l + °ϊ ··· °Λ = ±(oi + σ$ (1.16) 
As subtraction is simply addition with the signs changed, the above holds for the error 
in a difference. 

If σα = ah = (j, then σΑ = ±σ(η)* (1.17) 

Equation (1.17) should not be confused with equation (1.4) which refers to the mean, not 
the sum as above. 

Example 1.6. If three angles of a triangle each have a standard error of ± 2", what is the 
total error (στ) in the triangle? 

στ = ±(22 + 22 + 22)* = ±2(3)* = ±3.5" 

Example 1.7. In measuring a round of angles at a station, the third angle c closing the 
horizon is obtained by subtracting the two measured angles a and b from 360°. If angle 
a has a standard error of ± 2" and angle b a standard error of ± 3", what is the standard 
error of angle c? 

c ± oc = 360° - (a ± σα) - (b ± ab) 
= 360° - (a ± 2") - (b ± 3") 

since c = 360° — a — b 
then ±(jc = ±σα ±ab = ±2" ± 3" 
and ac= ±(22 + 32)*=±3.6" 

σ2 = 

which is the general equation for the variance of a function. Equation (1.15) is very 
important and is used extensively in surveying despite its statistical limitations. For 
instance, in the process of partial differentiation with respect to x, y and z are held 
temporarily constant, while a is assumed to be a junction of x only. This may not be so 
in practice. In addition, equation (1.15) produces only an approximate answer, which is 
generally regarded as sufficiently accurate for the purpose. 

In the derivations which follow, it is understood that the sample variance S2 

generally replaces the population variance a2. 

(1.15) 

If it is required to find the standard error in a due to standard errors in x, y and z, etc. 
the following form is used 

each containing errors <5x, by, δζ,... then the total error in a will be 

(1.14) 
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Example 1.8. The standard error of a mean angle derived from four measurements is 
± 3"; how many measurements would be required, using the same equipment, to halve 
this error? 

From equation (1.4) am = ±-4 .'. as = 3 x 4* = ±6" 

i.e. the instrument used had a standard error of ±6" for a single observation; thus for 
am = ±1.5", when as = ±6" 

Example 1.9. If the standard error of a single triangle in a triangulation scheme is 
±6.0", what is the permissible standard error per angle? 

From equation (1.17) στ = σρ(η)^ 

where στ is the triangular error, σρ the error per angle, and n the number of angles. 
στ ±6.0" 
(*)* (3)* 

±3.5" 

1.10.2 Errors affecting a product 

Consider A(f) = (axbxc) where a, b and c are affected by standard errors. The 
variance 

1.10.3 Errors affecting a quotient 

Consider A(f) = α/fr, then the variance 
2 ^(aft-1) ] 2 , VW-1) A2 (aaV (aba\ 2 

"6 IW I ' \b 

2 Ί ϊ 

^ = ± H ( - ) + - r } (119a) 

fl*'-)2 _._ D2\ i = ±-\R2
a + Rfr (1.19b) 

(1.18a) 

The terms in brackets may be regarded as the relative errors Ra, Rb, Rc giving 

(1.18b) 
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1.10.4 Errors affecting powers and roots 

The case for the power of a number must not be confused with multiplication, since 
a3 = a x a x a, with each term being exactly the same. 

Thus if A(f) = an, then the variance 

^σΧ = (ηαη-ισα)
2 Λ σΑ = ±(ηαη~ισα) (1.20a) 

Alternatively RA = ^i = ^ - ^ = n^ = nRa (1.20b) 

Similarly for roots, if the function is A(f) = α1/π, then the variance 

The same approach is adopted to general forms which are combinations of the 
above. Examples can be found throughout both this volume and Volume 1. 

1.11 ADJUSTMENT OF OBSERVATIONS BY THE METHOD OF 
LEAST SQUARES 

In the establishment of two- or three-dimensional control networks, the basic 
measurements are angles and distances. Generally speaking more data is observed than 
is strictly necessary in order to provide checks on errors and enable a more statistically-
viable 'adjustment' and strength analysis to be carried out. The additional data 
observed are referred to as redundant measurements. 

Modern instrumentation combined with professional skills enables the capture of 
the above field data to almost perfect precision, and very high accuracy. Nevertheless, 
whatever adjustment procedure is adopted, distortion of the shape of the network will 
occur due to adjustment changes in the observed angles and distances. That is, the 
angles and distances computed from the final accepted co-ordinates will differ from 
those originally observed. It follows therefore, that as 'adjustment' is necessary to 
produce a geometrically correct figure, only those methods of adjustment which 
produce minimal changes in the observations, should be used. 'Least squares 
adjustment' is such a method. 

It should be noted, however, that least squares is by no means the ideal procedure 
(Schofield 1979), for the resultant changes to the observed data are frequently at 
variance with the concept of normally distributed variates and the common sense logic 
of the observer. Indeed, it could be argued that the words 'distorting procedures' could 
be used in place of'adjustment procedures'. However, of all the adjustment procedures 
available, 'least squares' has the advantages of affecting minimal changes in the data, 
whilst providing a statistically-viable method that is universally applicable to all types 
of network. It is also relatively straightforward to apply and provides a strength 
analysis of the final network. 

In order to consider more closely what is meant by a strength analysis of the network, 
it should be realized that three networks are involved. In the first instance there is the 
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network as set out on the ground, this is the true (but unknown) network. Observation 
of this network for location, shape and size produces the second network which, due to 
observational errors, will be different from the true network. Finally, there is the 
'adjusted' network which will certainly be different from the observed network and may 
even be more different from the true network. It is this final network whose strength (or 
reliability) is analysed, the analysis being based on its differences from the observed 
network. 

Thus, in practice the emphasis should always be on observational procedures to 
minimize errors rather than sophisticated procedures to 'adjust' and analyse those 
errors. 

The method of least squares has been in use now for over 150 years and is credited to 
Gauss, although in some instances Laplace and Markov have also been given credit. 
However, the writings of all three were investigated (Plackett 1969) and Gauss was 
justified as the definitive creator. Nevertheless, in the realm of statistics the basic 
theorem in the subject is referred to as the Gauss-Markov theorem and this states that, 
in the case of independent observations of equal weight, the least squares estimates are 
linear unbiased estimates with minimum variance. In surveying literature, the principle 
of least squares is shown derived for observations of normal distribution and usually 
expressed as 'the most probable value or best linear unbiased estimate of an 
observation is the one for which the sum of the squares of the weighted residuals is a 
minimum, i.e. 

[wr2] = minimum 

or in matrix terms, the quadratic form 

rTWr = minimum 

where r is a vector of residual errors and W a diagonal 'weight' matrix of the inverse of 
the variances of the observations. 

Surveyors tend to use the phrase 'least squares produces the most probable value'; 
however, least squares is simply a mathematical relationship between the original 
observations and their adjusted values. Statisticians, however, use minimum variance 
as a criterion of the performance of an estimator, as it describes more clearly the values 
produced. A minimum variance estimator is one for which the estimated unknowns 
have a smaller variance than any other estimator produced. An example of this is the 
arithmetic mean of a set of observations. 

It is worthy of note, that although the principle of least squares is easily derived from 
the equation for the normal distribution curve, it has been shown (Sunter 1966) that the 
method gives estimations of minimum variance regardless of the distribution. 
However, if the data is normally distributed, then a least squares solution will supply 
the most probable value. From the surveying point of view this is important, for the 
data used for angles and distances would inevitably be the mean of a set of 
observations. Thus, whilst the individual variables of the set may not be normally 
distributed, the 'central limit theorem' shows that the mean value will be. Hence, it 
could be argued that all data used in the least squares solution of a surveying network 
would be normally distributed. 

1.11.1 Principle of least squares 

The equation for the probability curve is given by y = hn~^e 
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where e is an exponential function, h is the index of precision and y is the probability of 
the occurrence of an error ε. 

Let n~* = A then y = Ah e~h^ 

Differentiating with respect to h 

^ =-A{e-*v + h(-2hs2 <T*V)} = A <T*V(1 - 2fcV) 
ah 

^ = 0 i.e. 1 - 2fcV = 0 .*. ε2 = - j - 2 
dÄ 2/ι2 

1 1 1 
2fc[ + 2fcf + ' " + 2h2 

For maxim»., £ - 0 i.e. 1 - 2*V - 0 , . ^ - , „ 

Considering errors ε2 + β| + · · · ε2 = ^ + —y + ■ · · + 2 

then [ε2] [±] 
and since ft represents precision, the accuracy of the observations will increase as h 
increases. However, as h increases, l/2h2 decreases, the maximum accuracy will be 
achieved when 

[M- [ε2] = a minimum (122) 

Put into words: the most probable value of a quantity is the one for which the sum of 
the squares of the errors (residuals) is a minimum. This is the principle of least squares as 
it is generally understood by surveyors; its more rigorous definition has already been 
stated. 

Two basic methods exist for the adjustment of observations by this technique, 
namely: 

(a) The 'indirect method' which uses observation equations, and 
(b) the 'direct method' which uses condition equations. 

The indirect method has as many observation equations as there are angles and 
distances in the network; thus, for large networks data handling can become a problem 
on the computer. The direct method has fewer equations, equal in fact to the number of 
conditions to be satisfied. Nevertheless, the indirect method of variation of co-
ordinates is now universally used because of the ease with which it can be applied to any 
type of network; thus, a single program suffices for all requirements. Also, in complex 
networks with many redundancies it is extremely difficult, if not impossible, to 
formulate satisfactory conditional equations. 

1.11.2 Method of observation equations 

As the aim of field observations is to produce the true or most probable value (MPV) of 
that measurement, it follows that provided that the measurements contain only 
accidental errors, the adjustment should bring about minimal changes in their value. 
For instance, in the adjustment of an angle, the degrees and minutes would remain 
unaltered and only the seconds would change. Thus to carry the whole of the quantity, 
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i.e. the degrees, minutes and seconds, into the adjustment, simply results in the added 
labour of manipulating difficult quantities. The method recommended here is therefore 
to assume a value for the quantity and by least squares ascertain the correction to that 
quantity that will produce the MPV. It follows that if the value assumed is as close as 
possible to the MPV, then the size of the correction will be correspondingly smaller. 
From the first sentence it can be reasoned that the best value for the assumed value 
would be the measured value itself. A simple station adjustment will now be solved to 
illustrate the technique. 

Figure 1.4 

Figure 1.4 illustrates the observations taken to surrounding stations from 0, the 
following mean values being recorded 

x = 25° 18' 30" 
y = 40° 20' 25" 
z = 30° 30' 35" 

(x + y) = 65° 38' 52" 
(y + z) = 70°5V02" 

(x + y + z) = 96° 09' 31" 
It is required, by a least squares adjustment, to find the most probable values for x, y 
and z. 

Redundant observations 

Step 1—assume values (A) for the required quantities. Let them equal the measured 
values 

Ax = 25° 18' 30" 
Ay = 40° 20' 25" 
ΑΨ = 30° 30' 35" 

Step 2-formulate the observation equations. By applying a correction v to the assumed 
values one obtains the MPV 
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Ax + vx = MPV of x 
Ay + v2 = MPV of y 
Az + v3 = MPV of z 

Denoting the observed values as Q, it should be obvious that the difference between the 
MPV and the observed value is the residual error r, i.e. 

(Ax + vt) — Qx = r1 (error in angle x) 
MPV — observed value = residual error 

Thus substituting the assumed values from Step 1 and the observed values from the 
question, one gets 

25° 18' 3a" + vx - 25° 18' 30" = rx Λ v1 = rx 

similarly v2 = r2 and v3 = r3, as indicated by the question. 

Also (Ax + v1) + (Ay + v2) - Qix+y) = r4 
i.e. (25° 18' 30" + vx) + (40° 20' 25" + v2) - 65° 38' 52" = r4 

.'. vx + v2 + 3" = r4 
Similarly for (y + z) (40° 20' 25" + v2) + (30° 30' 35" + i;3) - 70° 51' 02" = r5 

.'. i>2 + i>3 - 2 " = r 5 

and for (x + y + z) 
(25° 18' 30" + i;J + (40° 20' 25" + v2) + (30° 30' 35" + v3) - 96° 09' 31" = r6 

.*. i>! + t>2 + t>3 - 1" = r 6 

These then are the observation equations summarized below 

»I = r l 

v2 = r2 
V$ = 7*3 

Ό1+Ό2 + 3" = r4 

v2+v3- 2" = r5 

I>1 + !>2 + *>3 - 1" = r 6 

Siep 3—formulate the normal equations. The least square condition that 

[r2] = [rr] = a minimum 

must be expressed in terms of the corrections, i.e. 

[vv] = a minimum 

If P — \_vv~\, the condition for making it a minimum becomes 

From the observation equations 

Equating to zero, eliminating the unwanted factor of 2 and collecting like terms gives 
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dP 
Τ - = V2 + (»! + Ό2 + 3") + (»2 + »a - 2") + (l?! + I?2 + V3 - 1") 
ov2 

= 2vl + 4i?2 + 2i>3 = 0 

J - = »3 + (»2 + »3 - 2") + (»1 + »2 + »3 - Π 

= ϋι + 2t>2 + 3v3 - 3" = 0 

2^! + 4v2 + 2i;3 = 0 

i;x H- i2t;2 + 3i;3 = 3" 

These equations are simple enough to be solved by standard methods of substitution 
giving: v1 = —I", v2 = — 0.25" and v3 = 1.5". These values are now applied to the 
assumed values to give the MPV. 

MPV οϊχ = Αχ + νί= 25° 18' 30" - 1" = 25° 18' 29.00" 
MPV of y = Ay + v2 = 40° 20' 25" - 0.25" = 40° 20' 24.75" 
MPV of z = Az + i>3 = 30° 30' 35" + 1.5" = 30° 30' 36.50" 

The MPV may now be rounded off to one second commensurate with the precision of 
the field data. 

Students should carefully note the following: 

(1) The normal equations possess symmetry, in that the coefficients of row 1 are repeated 
in column 1, and row 2 in column 2, as shown by the arrows. 

(2) Although it is advisable to use observed values for the assumed values, it is not 
mandatory. Assuming a different value would result in a different correction giving 
ultimately the same MPV. 

(3) As the error r has not been utilized in the process it may hereafter be ignored. The 
observation equations are thus expressed as 

v1=0 
v2 = 0 
v3=0 

Vi + v2 + 3" = 0 i.e. vx + v2 = — 3" 
v2+v3 = 2" 

ι̂ + v2 + v3 = 1" 
Treated and written in this way makes them very easy to handle when applied in a 
mechanical solution using the general equations for least squares. 

1.11.3 General equations for least squares adjustment 

Expressing the observation equations in general terms 

Similarly 

These then are termed the normal equations and are summarized as follows: 

3»! + 2v2 + i>3 = - 2 " 



These reduce to the general form for normal equations as follows 

[ad\v1 + [ab~]v2 + [ac]v3 = [aß] \ 
\aV\vx + [bb]v2 + | » 3 = [bQ] (1.23) 
[ac\vl + [ftc>2 + [cc]v3 = [cß] J 

Note once again the symmetry. If the student now commits this simple expression to 
memory, it will greatly facilitate the solution of typical least squares problems. 

1.11.4 Use of general equations 

Considering the problem previously outlined, the observation equations are formed in 
the usual way and are restated as follows 

v1=0 
v2 = 0 
v3=0 

Vl+v2 = - 3 " 
v2 + v3 = 2" 

vt + v2 + v3 = 1" 
where the coefficient of v1 is a, of v2 is b and of v3 is c thus 

df_ 
dvi 

dv2 

df_ 
dv3 

Repeating for r2 * · * rn will only change the coefficients to a2b2c2 and anbncn. Thus 
summing the results and expressing the sum of the squares in the usual manner, i.e. [r2] 
as [rr] one gets 

From least squares [rr] = a minimum. Thus, squaring rx gives 

i.e. MPV — Observed value = Residual 

and 

aiv1 + b1v2 + c\v3 -Qi=rl 

a2v1 + b2v2 + c2v3 -Q2 = r2 

Wi + Kv2 + cnv3 -Qn = rn 
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differentiate and equate to zero for a minimum 

[rr~\ = [aa]v\ + 2[ab]viv2 + 2[ac]vlv3 - 2[αβ]ι;1 + [bb]v\ 
+ 2 | » 2 ! > 3 - 2[ί>β>2 + [cc]v2

3 - 2[cQ]v3 + [ ß ß ] 

As [rr] =f{vl9v2,v3)f 

2[aa]v1 + 2[ab~]v2 + 2[ÖC]I?3 - 2[αβ] = 0 

2[afo]i;1 + 2[bb]v2 + 2 [ » 3 - 2[feß] = 0 

2[ac]v1 + 2[bc]v2 + 2[cc>3 - 2[cß] = 0 
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avt = 0 
hv2 = 0 
cv3 = 0 

(1.24a) 
(1.24b) 
(1.24c) ^ 3 — v V. 

άνχ + hv2 = — 3" | 
5̂ 2 + α;3 = 2" 

άνχ + &;2 + ci;3 = 1" J (1.24f) 
and a = b = c = 1. 

It is simply a matter now of substituting the coefficients into the general equation 
(1.23) as follows: 
(1) \aa\ means 'the sum of the squares of the a coefficients' and is obtained from 

observation equations (1.24a), (1.24d) and (1.24f) thus 

[ad\ = (1 x 1) + (1 x 1) + (1 x 1), (shown with a single dot) = 3 

(2) \ßb~] means 'the sum of the product of the a and b coefficients'—and can only be 
obtained from equations (1.24d) and (1.24f). For instance, if equation (1.24a) was 
written in full the coefficients of b and c would be zero, whilst in equation (1.24b) a 
and c would be zero. Thus it is only necessary to choose those equations in which a 
and b together have a value other than zero 

[ab] = (1 x 1) + (1 x 1) = 2 

where the single and double dots are together. 
(3) [ac] similarly can only be obtained from equation (1.24f), shown by the single dot 

and bar together 

[ac] = (1 x 1) = 1 

(4) \_aQ~\ is the 'sum of the product of the a and Q coefficients', the Q coefficients being 
the numerical values shown bracketed and commonly called the absolute terms. It 
can be seen that as the absolute terms are zero in the first three equations, then these 
equations may be ignored. Thus [aQ\ can only be obtained from equations (1.24d) 
and (1.24f). 

[ α ρ] = (1χ_3" ) + (1χ1") = - 2 " 

Thus the first line of the block of normal equations is 

3v1 + 2v2 + t>3 = -2" 

which, due to the symmetry of the equations, can be written as 

3i;x + 2f?2 +v3 = -2" 
2Vl 

In exactly the same way, the remainder of the coefficients of the normal equations can 
be seen at a glance: 
(5) [bft] from equations (1.24b, d,e and f) = (1 x 1) + (1 x 1) 4- (1 x 1) + (1 x 1) = 4. 
(6) [ftc] from equations (1.24e and f) = (1 x 1) + (1 x 1) = 2. 
(7) [fcß] from equations (1.24d, e and f) = (1 x - 3") + (1 x 2") + ( l x 1") = 0. \ 
These are also repeated vertically giving 

3ι;! + 2ι;2+ ν2 = -2" 
2vx + 4i;2 + 2v3 = 0 

vx + 2i;2 

Q terms 
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(8) Finally, [cc\ = 3, from equations (1.24c, e and f), and \cQ\ = 3", from equations 
(1.24e and f). 

The complete block of normal equations is therefore 

3v1 + 2v2 + v3 = — 2" 
2vx + 4v2 + 2v3 = 0 

v1 + 2v2 + 3i?3 = 3" 
Comparison of these equations shows them to be identical to those previously 

produced from the basic technique. Students should master the mechanical method, 
which enables them to go direct from observation equations to normal equations. 
When writing the observation equations, there is no need to letter the coefficients a, ft, c, 
etc., these are easily visualized. 

1.11.5 General equations incorporating weights 

Up to now the weight of each observation has been ignored in order to facilitate 
comprehension. However, any least squares adjustment is completely sterile without 
the inclusion of the relative weights of the observations. Even when all the observations 
are of equal precision and correlation free, thereby having unit weight, the concept of 
weighting should still be considered. 

Without showing the derivation, the effect of weights (w) is 

-H-[wvv] = ~2 = a minimum 

Thus [waa]^ + [νναί?]ι;2 + [wacjt^ + · · · [wanji;,, = [wag] 
[wM>>2 4- [wfcc>3 + · · · [wbn]vn = [wfcQ] (1.25) 

[wccji^ + · · · [wcn]i;n = [wcß] 

Consider now the original problem with weights incorporated 

x = 25° 18'30" wt 4 
y = 40° 20' 25" wt 4 
z = 30° 30' 35" wt 4 

(x + y) = 65° 38' 52" wt 3 
()> + z) = 70o51O2"wt2 

(x + y + z) = 96°09'31"wtl 
Values for x, y and z are assumed and observation equations found in exactly the 

same manner as before as shown in Section 1.112. These are now written, with the 
weights, as follows 

Όχ = 0 wt 4 (1.26a) 
i> 2 =0wt4 (1.26b) 
i ; 3 = 0 w t 4 (1.26c) 

Vl + t;2 = - 3 " w t 3 (1.26d) 
v2 + v3 = 2" wt 2 (1.26e) 

Vi + v2 + v3 = 1" wt 1 (1.26f) 
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From equation (1.25) 

[wad] = (4 x 1 x 1) + (3 x 1 x 1) + (1 x 1 x 1) = 8 (from equations (1.26a,d,f)) 
[wab] = (3 x 1 x 1) + (1 x 1 x 1) = 4 (from equations (1.26d,f)) 
\wac\ = ( l x l x l ) = 1 (from equation (1.26f)) 

[waQ] = (3 x 1 x -3") + (1 x 1 x 1") = - 8 " 
(from equations (1.26d and f) as Q = 0 in (1.26a)) 

The remainder of the block should be attempted by the student, giving 

8 ^ + 4v2 + v3 = - 8 " 
4i?! + 10t;2 + 3v3 = - 4 " 

vt + 3v2 + 7v3 = 5" 

These equations are solved and the values of vx = — 0.97", v2 = —0.31", v3 = +0.98" 
applied to the appropriate assumed value in the usual way. 

A method favoured in surveying for the solution of large blocks of normal equations 
is Choleski's decomposition method. However, as the solution would inevitably be 
carried out on existing computer programs, it will not be dealt with here. 

1.11.6 Matrix methods 

The format, used to date to express the observation equations in their general form, has 
been unconventional deliberately in order to facilitate easier understanding and 
manipulation. A more conventional approach will now be adopted to illustrate the 
application of matrices. 

Observation equations (from Section 1.113) 

021 "l + ^22^2 + * · · + *2*Vn " #2 = r 

The above array of m rows and n columns varies from the initial format of Section 
1.113, in that the coefficients a, b, c, etc. are replaced by α ,̂ and Q by q to conform with 
vector notation. 

Thus a = coefficients of the observation equations 
v = corrections 
q = absolute terms 
r = the residual 

In matrix form r = Av — q (127) 

where r = column vector of m residuals 
A = an m x n matrix of coefficients 
v = column vector of n corrections 
q = column vector of m absolute terms 

A least squares solution is obtained by minimizing the quadratic form rTWr, i.e. 
rTWr = 0, where W is an m x m diagonal matrix of weights 
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rTWr = (Av - q)TW(Av - q) 
= (vTAT - qT)W(Av - β ) 
= ϋτ(4τΗ^)ι; - vT(ATWq) - (qTWA)v - qTWq 

d(rTWr)/dv = 2(ATWA)v - {ATWq) - (qTWA)T = 0 
2(ATWA)v = (>4TWi) + ( i4T^^) = 2(ΑΓ^β) 

Thus, the normal equations are 
and the solution for v is 

(ATWA)v = ATWq 
v = (ATWA)-1ATWq 

(1.28) 
(1.29) 

In equation (1.29), (ATWA)~1 is called the 'variance-covariance' (var-cov) matrix, 
the application of which is dealt with in Section 1.13.1. 

The previous example will now be worked by matrix methods. 

(1) The observation equations are formulated in the usual way and are as in equations 
(1.26), i.e. 

Vl = 0 wt 4 
v2 = 0 wt 4 
i>3 = 0 wt 4 

Vi +v2 = - 3 " w t 3 
1̂2 + u3 == 2" Wt 2 

i?i + t;2 + i>3 = 1" wt 1 

(2) From the observation equations the matrices are formed as follows 

A* = 6 Λ 3 

r l 
0 
0 
1 
0 

Ll 

0 
1 
0 
1 
1 
1 

On 
0 
1 
0 
1 
l-i 

l » i = 

r4 
0 
0 
o 
o 

0 
4 
0 
0 
0 

0 
0 
4 
0 
0 

0 
0 
0 
3 
0 

0 
0 
0 
0 
2 

0 
0 
0 
0 
0 

L0 0 0 0 0 1-1 

qT=(0 0 0 - 3 " 2" 1") 

where A contains the coefficients (all unity) of vit v2, v3, q contains the absolute terms 
and W the weights. 

(3) 

3(A
TWA)3 = 

Γ8 4 11 
4 10 3 

.1 3 7 
ziÄ'Wq), = 

Γ-8 
- 4 

5 

The above are the normal equations, as in Section 1.11.5. 

MTWA)3
1 = 

0.16 -0.06 0.01 
-0.06 0.14 -0.05 

0.01 -0.05 0.16 

v={ATWA)-1ATWq 
.·. t>r=(-0 .97 -0.31 0.98) 

i.e. Vl = -0.97", v2 = -0.31", v3 = +0.98". 

The answers, of course, are identical to those obtained by the classical methods. 
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1.11.7 Method of condition equations (direct method) 

In this method condition equations are formed, based on the conditions of adjustment 
to be satisfied. In order to reduce the number of normal equations, each condition 
equation is multiplied by an undetermined multiplier called a correlative or Lagrangian 
multiplier. The resultant condition equations are then combined in the least squares 
condition and after differentiation, expressed as a linear function of the correlative. 
Thereafter back substituting into the condition equations produces a set of correlative 
normal equations equal in number to the number of conditions. The equations are 
solved to find the values of the correlatives, which can then be expressed in terms of the 
corrections. 

The method will now be illustrated in detail, using the problem which has been 
solved already by the previous method. Thus, restating the problem 

x = 25° 18' 30" 
y = 40° 20' 25" 
z = 30° 30' 35" 

(x + y) = 65° 38' 52" 
(j; + z) = 70°51'02" 

( x + j ; + z) = 96o09'31" 

Examination of Figure 1.4 clearly indicates the conditions of adjustment as 

x + y = (χ + y) 
y + z = (y + z) 

x + y + z = {x + y + z) 

However, these conditions are only true of the MPV, thus corrections vl9 v2,..., v6 are 
applied to give 

x + vt + y + v2 = {x + y) + Vj. 
y + v2 + z + v3 = (y + z) + vs 

x + vt + y + v2 + z + v3 = (x + y + z) + v6 

In this method it is important to use just the right number of conditions. Using too 
few would produce errors, while using too many would produce excessive 
computation. A rule to decide the correct number is 

Number of directly-observed quantities — Number of independent unknowns 
= Number of conditions required 

In the above case: number of directly observed quantities = 6; number of independent 
unknowns = 3, i.e. x, y, z; therefore the number of conditions = 3; thus all the above 
conditions must be used. 

When using the method of correlatives, the following should be noted: (i) corrections 
are applied to all the quantities involved; (ii) these corrections apply to the observed 
values direct; one does not assume values. Substituting in the conditions of adjustment, 
we have 

x + vi + y + v2 = (x + y) + VA. 
MPV MPV MPV 

.·. 25° 18' 30" + Vl + 40° 20' 25" + v2 = 65° 38' 52" + i?4 
giving vl + v2-V4 + 3" = 0 (1.30) 
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Similarly for the two remaining conditions 

40° 20' 25" + v2 + 30° 30' 35" + t>3 = 70° 51' 02" + v5 

'. v2 + v3 - v5 - 2" = 0 (1.31) 
and 25° 18' 30" + vx 4- 40° 20' 25" 4- v2 4- 30° 30' 35" + v3 = 96° 09' 31" + t;6 

.*. vl + v2 + v3-v6-l" = 0 (1.32) 
Each condition equation is now multiplied by a correlative fe 

fei(i?i + ι?2-ι>4 + 3") = 0 
k2(v2 + v3-v5- 2") = 0 

M»l + »2 + »3 " ^6 - 1") = 0 
To facilitate reduction, each of the correlative equations are multiplied by — 2; they are 
then combined in the least squares principle to give the following function 

v\ + vl 4- vl 4- vl 4- v\ 4- vl - 2^(νχ 4- v2 - V4 + 3") - 2k2(v2 + v3 - v5 - 2") 
— 2k3(vx + v2 4- v3 — v6 — 1") = a minimum 

Differentiating with respect to each variable in turn and equating to zero, we have 

2vx - 2fex - 2fe3 = 0 / . vx = fex 4- fe3 
2v2 - 2fex - 2fe2 - 2fe3 = 0 .*. v2 = fei 4- fe2 + fe3 

2i;3 - 2fe2 - 2fc3 = 0 .'. v3 = fe2 + fe3 
2t;4 + 2kx = 0 .*. i?4 = -fei 
2u5 4-2fc2 = 0 .*. ι>5 = -fe2 
2u6 +2fe3 = 0 .*. v6 = -fe3 

The correlative functions are now substituted back into the conditional equations. 

Substituting in vx + v2 — v^ + 3" = 0 

gives (fci + fe3) + (fex + fe2 + fe3) - (-fei) 4- 3" = 0 
.'. 3fcx + fe2 4- 2fc3 + 3" = 0 

Similarly v2 4- v3 — v5 — 2" = 0 
/ . (kx 4- fe2 4- fc3) + (fe2 4- fe3) - (-fe2) - 2" = 0 

.*. fe1 + 3fc2 + 2 fc 3 -2" = 0 
and v1 4- v2 4- v3 — v6 — 1" = 0 

.'. (fex 4- fc3) 4- (kx + fe2 + fe3) + (fe2 + fe3) - (-fe3) - Γ = 0 
.·. 2kx + 2fe2 4- 4fc3 - 1" = 0 

Collecting the correlative normal equations together 

3kt 4- fe2 4- 2fc3 + 3" = 0 
fei + 3fe2 4- 2fc3 - 2" = 0 

2kx 4- 2fe2 4- 4fe3 - 1" = 0 
note the symmetry. 

On solution, fex = —1.75", fe2 = 0.75", fe3 = 0.75". These values are now substituted 
in the above functions, to obtain the values of the corrections 

Vl=kx+k3 = - 1 " Ü4 = - * I = +1-75" 
v2 = kx 4- fe2 4- fc3 = -0.25" v5 = -k2 = -0 .75" 
v3 = k2 4- fe3 =4-1.50" v6 = -fe3 = -0.75" 
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These corrections are now applied to the appropriate observed value to give the MPV 

x = 25° 18' 30" + i?! = 25° 18' 29" 
y = 40° 20' 25" + v2 = 40° 20' 24.75" 
z = 30° 30' 35" + v3 = 30° 30' 36.50" 

(x + y) = 65° 38' 52" + v4 = 65° 38' 53.75" 
(y + z) = 70° 51' 02" + v5 = 70° 51' 1.25" 

(x + y + Z) = 96° 09' 31" + Ό6 = 96° 09' 30.25" 

The MPV can now be rounded off to the nearest second commensurate with the field 
data. 

Note that: (i) the MPV of x, y and z are identical to the values obtained from the 
observation equation method; (ii) the MPV above fulfil all the conditions of adjustment 
specified; (iii) in this particular problem there is no great advantage in using condition 
equations instead of observation equations; (iv) the order in which the condition 
equations are set down is immaterial; and (v) students should now study both methods 
and note the differences in procedure. 

1.11.8 General form (correlatives) 

Writing the condition equations in a general form 

a1v1 + a2v2 · · · + anvn + qi=0 
fe^i + b2v2 · · · + bnvn + q2=0 
clv1 +c2v2-' + cnvn + qz = 0 

Each equation is then multiplied by an unknown correlative and may be written 

kl(a1v1 + a2v2 + · · · + anvn + qt) + k2(b1vl + b2v2 +-- + bHvn + q2) 
+ Mci*>i + c2v2 +'" + cnvn+qz) = Q 

According to the principle of least squares, [vv] = a. minimum. However, the minimum 
value is also a function of the conditional equations. Thus, as multiplying the 
correlatives by —2 will not affect the minimum value and will facilitate reduction, the 
total function may be written 

F = v\ + v2 + · · · + vl - 2k1{alv1 + a2v2 + · · · + anvn + qt) 
— 2k2(b1vl + b2v2 + · · · + bnvn + q2) 
-2k3(civ1 + c2v2 +-" + cnvn + q3) 

= a minimum 

Differentiating each variable in turn and equating to zero 

dF 
-— = 2vt — 2k1a1 — 2k2bl — 2k3Ci = 0 
ov1 

~— = 2v2 — 2k1a2 — 2k2b2 — 2k3c2 = 0 
ov2 

dF 
— = 2vn- 2fc1ä„ - 2k2bn - 2k3cn = 0 
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The above equations reduce to vY = /c^i + k2bl 4- k3cl 

v2 = k1a2 4- k2b2 4· k3c2 

vn = Mn + k2bn 4- k3cn 

Substituting these values into the original condition equations and substituting K for k 
simply to emphasize the format, gives the general form for correlative normal equations 

(1.33) 

It is important to note the symmetry of the equations. The student can see that these 
equations are identical to the previous ones derived for the observation equation 
method with the correction v replaced by the correlative K. 

Once again these equations can be used mechanically to produce the normal 
equations direct from the condition equations. The condition equations are obtained as 
has already been shown and are as follows: 

1̂ + *>2 - H + 3" = 0 
v2 4- v3 — v5 — 2" = 0 

vl + v2+v3-v6- 1" = 0 

If the student now multiplies each equation by a correlative they will appear as follows: 

Kifai +v2-v4 + 3") = 0 
K2(v2 +v3-v5- 2") = 0 

K*(vi + v2 + v3 - v6 - 1") = 0 

(1.34a) 
(1.34b) 
(1.34c) 

From the original derivation (see page 30) it can be seen that all the coefficients of 
equation (1.34a) are a, of equation (1.34b) are b, and of equation (1.34c) are c. The 
equations will therefore be rewritten purely to facilitate the explanation of the method 

K1{alv1 4- a2v2 - a^v^ + 3") = 0 (1.35a) 
K2(b2v2 + b3v3 - b5v5 - 2") = 0 (1.35b) 

K3(clv1 + c2v2 + c3v3 - c6v6 - V) = 0 (1.35c) 

where a = & = c = l , in this case. 
Taking the terms of the general equation in turn 

Κγ{αά\ = KX{(1 x 1) + (1 x 1) + ( - 1 x -1 ) } = 3KX 

obtained from equation (1.35a) only, i.e. the sum of the squares of the a coefficients. 

K2[ab~] = K2{{\ x 1)} = \K2 

obtained from equations (1.35a) and (1.35b) by simply multiplying the coefficients of the 
like terms, which in this case is a2 x b2. 

K3{ac-] = K3{{\ x 1) + (1 x 1)} = 2K3 

obtained from equations (1.35a) and (1.35c), i.e. ax x ci + a2 x c2. 
As the equations are symmetrical the student can immediately write down the first 

row and column 

3Kt + K2 4- 2K3 + 3" = 0 
* i 

2Kt 

^ι[α α] 
K^ab) 

K2[ab~\ 
K2[bb) 
K 2 [>] 

^3[ac] 
K 3 |> ] 
K3[cc] 

i i = 0 
42 = 0 
i 3 = 0 j 
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The student should now complete the set for himself according to the 'general form' by 
visual inspection, without the need to write them in the above detailed manner. The 
complete set should, of course, be 

3Kt + K2 + 2K3 + 3" = 0 
Kx + 3K2 + 2K3 - 2" = 0 

2Kt + 2K2 + 4K3 - 1" = 0 

The condition equations can now be used to give the relationship of v to K. By 
reference to equations (1.34) it is seen that vl is related to Kx in equation (1.34a) and K3 
in equation (1.34c), therefore vx = Κγ + K3. Similarly, v2 appears in all three equations, 
therefore v2 = Kx + K2 + K3\ v3 appears in equations (1.34b) and (1.34c) and is thus 
related to K2 + K3, and so on. The student should complete the rest and compare his 
results with those previously obtained in Section 1.11.7. 

1.11.9 General equations incorporating weights 

χ{£]+*{£]+*-°? (U6) 

*,[£] +g,-o 
Note that in this case, it is the reciprocals of the weights which are used. However, as 
weights are an indication of relative accuracy they may be multiplied by an appropriate 
constant, C, to give a more manageable and similar equation to the ones already 
outlined. Thus as (1/w) x C = W, the equation may be written 

K^Wad] + K2\Wab~\ + K3\Wac] + qx = 0 
etc. 

To clarify the situation, consider three quantities x, y, z, with respective weights as 
shown in Table 1.2. 

TABLE 1.2 

Quantity 

X 

y 
z 

w 

1 
2 
4 

1/w 

1 
1 
2 
1 
4 

c 

4 
4 
4 

W = (1/w) x C 

4 
2 
1 

The previous weight example will now be restated and worked using correlatives 
x = 25° 18' 30" wt 4 
y = 40° 20' 25" wt 4 
z = 30° 30' 35" wt 4 

(x + y) = 65° 38' 52" wt 3 
(y + z) = 70° 51' 02" wt 2 

(x + y + z) = 96°09'31"wtl 
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As the ratio of the reciprocal of the weights is to be used, then the multiplying constant 
C will, in this case, be the common factor 12. However, ignoring the weights at this 
stage, the condition equations are obtained as before 

K1(v1 + u 2 - t? 4 + 3") = 0 
K2{v2 + v3-v5- 2") = 0 

K3(vx + v2 + v3 - v6 - 1") = 0 
As the inclusion of weights can sometimes cause confusion, the approach illustrated in 
Table 1.3 should be used. 

TABLE 13 

v w= (1/w) x C 

v, 3 = ^x12 
v2 3 = i x 12 
v3 3 = i x 12 
vA 4 = 3-xl2 
t,5 6 = i x 12 
v6 12 = 1 x 12 

a 

1 
1 

- 1 

b 

1 
1 

- 1 

c 

1 
1 
1 

- 1 

[ ] = 

Waa 

3 
3 
0 
4 
0 
0 

10 

Wab 

0 
3 
0 
0 
0 
0 

3 

Wac 

3 
3 
0 
0 
0 
0 

6 

Wbb Wbc 

0 
3 
3 
0 
6 
0 

12 

0 
3 
3 
0 
0 
0 

6 

Wcc 

3 
3 
3 
0 
0 

12 

21 

Normal equations 

\0Kt + 3K2 + 6K3 + 36" = 0 
12K2 + 6K3 - 24" = 0 

21X3 - 12" = 0 

N.B. The absolute terms are multiplied by C = 12 to balance the equation. 
On solution, Kx = -5.17, K2 = 2.65, K3 = 1.29. 

Now the relationship of the residuals to the correlatives is obtained in exactly the 
same way as in Section 1.11.7, and then multiplied by 1/w as follows 

Vi = — (Kx + K3) = i(-5.17 + 1.29) = -0.97" 
w i 

v2 = — CKi + &2 + K3) = £(-5.17 + 2.65 + 1.29) = -0.31" w2 

»3 = — (*2 + K3) 
w3 

v^U-Kt) 

Vs = U-K2) 

v.-±(-K3) 

= H2.65 + 1.29) 

= i( + 5.17) 

= i(-2.65) 

= (-1.29) 

= 0.99" 

= 1.72" 

= -1.33" 

= -1.29" 
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These corrections are now applied to the observed values, i.e. (x + vt)9 (y + v2), 
(z + v3), (x + y) + v4, (y + z) + v4 and (x + y + z) + v6, to obtain the most probable 
values. The values will satisfy the least squares condition and the conditions of 
adjustment. 

Method 

(1) The data entered in the first two columns are self explanatory. 
(2) Enter the coefficients of the rows of condition equations in the appropriate columns. 
(3) Complete the rest of the columns as their headings indicate, i.e. 

Waa = 3 x 1 x 1 = 3 Wab = 3 x 1 x 0 = 0 
Wac = 3 x 1 x 1 = 3 etc. 

(4) Complete the above set of normal equations on the basis of its symmetry, i.e. row 1 
in column 1, etc. 

(5) The relationship of v to K is obtained from the condition equations in exactly the 
same way as shown in Section 1.11.7, then multiplied by 1/w. 

The application of these techniques to station adjustment, levelling circuits and the 
adjustment of network figures, are dealt with in great detail in the section on Worked 
examples, starting on p. 48. 

1.11.10 Matrix methods (direct) 

Rewriting the condition equations of Section 1.11.8 in more conventional terms gives 

«u^i +al2v2 +'- + alnvn = qi 

a2iv1+a22v2 +'- + a2nvn = q2 

Ami"l + "ml»! + ' * * + ClmnVn = qm 

which in matrix terms is Av = q (1.37) 

Introducing the weight matrix W and the vector of correlatives fe, minimizing the 
quadratic form vTWv gives 

y = W~lATk (1.38) 

which on substituting in equation (1.37) produces the normal equations 

(AW~1AT)k = q (1.39) 

The normal equations are solved for k which is back-substituted in equation (1.38) to 
give v. Alternatively, both steps may be combined using 

v = W-lAT(AW-1AT)-1q (1.40) 

Using matrices the previous example would be as follows: 

(1) Condition equation coefficients and absolute terms, as in Section 1.11.9, are 

Vi 

Γ1 
0 

LI 

v2 
1 
1 
1 

t>3 

0 
1 
1 

v* 
- 1 

0 
0 

"5 

0 
- 1 

0 

»6 

01 
0 

- l j 
3#1 

-3" 
2" 
1" 
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(2) Weights are 

,\ν* = 

0 
4 
0 
0 
0 
0 

(3) Now, the matrices are treated as in equation (1.39) 

eWf1 = 

0.25 0 0 0 0 0 
0 0.25 0 0 0 0 
0 0 0.25 0 0 0 
0 0 0 0.33 0 0 
0 0 0 0 0.5 0 
0 0 0 0 0 1 

(AW-%AT) = 

(AW-lAT 
) ~ l q = 

0.83 0.25 0.501 
0.25 1.00 0.50 

.0.50 0.50 1.75 J 
Γ 1.48 -0.19 -0.37 

-0.19 1.19 -0.29 
L-0.37 -0.29 0.76 

Γ-3" 
2" 
1" 

= fe 

Now 
fcr = [-5.19 2.66 

v= W~1ATk 

L.z/y I — rCj /C2 ^ 3 

T n1 — = [-0.98" -0.31" 0.99" 1.71" -1.33" -1.29"] 
The above values for vl9 v2 * -v6 are now applied to the observed values as shown 
previously. 

1.12 VARIATION OF CO-ORDINATES 

The 'variation of co-ordinates' method of adjustment, which is basically a least squares 
method using observation equations, is virtually the standard method of network 
adjustment. The reasons for this are 
(a) It does not rely on the formulation of conditions of adjustment, which may be 

difficult, if not impossible, to formulate in a complex network containing many 
redundancies. 

(b) The technique can be applied to all types of network, i.e. triangulation, trilateration, 
triangulateration and traversing, hence a single computer program can be used. 

(c) It affords a complete strength analysis of the final 'adjusted' network. 
The method is an iterative process, which computes the necessary co-ordinate 

corrections (δΕ, δΝ) to be applied to a set of provisional co-ordinates, in order to 
render the network geometrically correct. 

1.12.1 Observation equations 

The above method requires the formation of an observation equation for each and 
every mean observation comprising the network. These equations take the following 
form. 

4 
0 
0 
0 
0 
0 

0 
0 
4 
0 
0 
0 

0 
0 
0 
3 
0 
0 

0 
0 
0 
0 
2 
0 

0 
0 
0 
0 
0 
1 
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(1) Length equations 

Consider the length ij in the network with an observed value of Oi}. From the 
provisional co-ordinates of i and j , a, computed value of Cu may be obtained. 

As the provisional co-ordinates off and; will be adjusted by amounts δΕ and δΝ, so 
the computed distance will change by an amount <5/y. This final adjusted distance 
should equal the most probable value, i.e. the observed distance plus its residual 
correction (v). Thus we have 

Cy + SltJ = Ol7 + vu 

and ölij = (Oij - Cy) + vu ( L 4 1 ) 

Now as Ifj = (Ej - Ed2 + (Nj - Nt)
2 

ölu = (Ej - Ei){ÖEj - i£ f ) / / y + (Nj - Nt)Wj - SNMkj 
but as (Ej — E^flij = sin ay and (Nj — JV,·)/^ = cos afJ- where a0· = the bearing of line ij 
then equation (1.41) may be expressed as 

— δΕι sin (Xij — δΝ( cos ocu + ÖEj sin α0· + SNj cos α0· — (0 — C)y = i?y 
(1.42) 

which is the observation equation for length ij. 

(2) Bearing equation 

If (Xij is the bearing of a line ij, then commencing from the same initial argument as 
above, we have 

ioy = (Οα - CJy + i>«, (1.43) 

Now as tan a,, = (£,· - £,·)/(Ν7· - ΛΓ*) 
sec2 (Xij doiij = [(ty - Ν,·)(<5£,. - <5£f) - (Ej - E^JV,· - ^ ) ] / ^ . - Nt)

2 

.·. Axy = (Nj- Ni)(ÖEj - OEi)/l2 - (Ej - Ε,ΜίΛΓ, - ίΑΓ,)/^ 

then substituting in equation (1.43) we have the observation equation for the bearing a0 

of line ij, as follows 

-<5£f(cos otij/lij) + SNi(sin Oy/Jy) + <5£,(cos ay/Jy) 
- SNjisin au/h) - (Oa - CJy = i?^ (1.44) 

(3) Angle equation 

As an angle (0) is the difference of two bearings then the observation equation for a 
clockwise angle jik is 

-ÖEj(cos otij/lij) + SNj(sin α0//0) + 5£f[(cos Oy/Zy) - (cos aik//ifc)] 
+ iJVf[(-sin ay//y) + (sin aik//ifc)J ■+ SEk(cos ccik/lik) 

-SNk(sm<xik/lik)-(0-C)jik = Vjik (1.45) 

In all the above observation equations 

/y = horizontal length of line ij 
ay = bearing of line ij 

SEi, SNt = co-ordinate corrections to Et and iVf of point i 



Errors and adjustments 37 

Thus in matrix form we have v = Ax — b 

i i s a n m x n matrix, x a column vector of n terms, v and b are column vectors of m terms 

m = the number of observed angles and/or lengths 
n = twice the number of points to be adjusted 

As already shown (Section 1.11.6), minimizing the quadratic form vTWv produces the 
normal equation 

(ATWA)x = ATWb 

and is solved for x, as follows 
x = (ATWA)~lATWb 

1.12.2 Procedure 

The procedure involved in the application of the 'variation of co-ordinates' method to 
network adjustment is as follows: 

(1) Obtain provisional co-ordinates for each nodal point of the network. This may be 
done by scaling them from a plan or computing them from the observed field data. 

(2) Using the provisional co-ordinates compute the angles or bearings and/or lengths 
of the observed data. These are the C values which, with their appropriate observed 
(0) values, produce the b vector of m (O — C) terms. 

(3) Formulate observation equations for each and every observation. 
(4) Estimate a priori weights for the observations using the inverse of the variances and 

form a diagonal weight matrix W of size mxm. 
(5) Solve the above matrices to obtain the x vector of co-ordinate corrections (δΕ, δΝ). 

The corrections are applied to the provisional co-ordinates as the first iteration. 
(6) The adjusted co-ordinates now replace the provisional co-ordinates and the whole 

process repeated (only the weights remain fixed), until the x vector of co-ordinate 
corrections is sensibly zero. 

If the provisional co-ordinates were computed from observed data in the first 
instance, they would be relatively close to their final positions, and one iteration would 
suffice (assuming the observed data contained only random errors of observation). 
More than two iterations might be indicative of either poor field data or input errors. 

where a = the coefficient of the observation equation 
x = the co-ordinate corrections <5£, δΝ 
b = the (0 - C) term 
v = the residual error 

The observation equations can be expressed in general form as 

Vij = residual correction to length ij 
vaij = residual correction to bearing α0· of line ij 
vjik = residual correction to horizontal angle jik 
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1.12.3 Weights 

The coefficients of the observation equations are in radians, thus as all units must be 
compatible, the (0 — C) term for the angles and their weights must also be in radians, 
with the result that the residual corrections v will be in radians. 

For example, if the estimated standard error of the mean measured angles (0) is ± 3" 
then 

We = 1/S2 = 1/32 sec"2 = 1/2.115 x lO"10 rad"2 = 4.727 x 109 rad"2 

If the distance standard error (St) is, say, ± 3 mm then 

Wx = 1/S2 = 1/0.0032 m"2 = 1.111 x 105 m"2 

Alternatively, the weight of the angles may be left in sec"2 provided that the 
coefficients of the angle observation equations are changed to seconds, by multiplying 
throughout by p = (180 x 3600)/π, thus 

We = 1/32 sec"2 = 1.111 x 10"1 sec"2 

In this case the (0 — C) terms and residuals will be in seconds of arc. 
Estimating the weight of an observation is perhaps the most difficult aspect of the 

adjustment process. Whilst it is not too critical to the adjustment process, which in any 
case only considers the relative weights of the data, it is highly critical to the strength 
analysis. 

In the past, attempts have been made to estimate the standard error of angles, by 
measuring an angle many times and computing its standard error. However, such a 
process does not consider centring errors nor variable measuring conditions 
throughout the network, and should be regarded with caution. Similarly, with lengths, 
one has frequently to rely on the manufacturer's statement of accuracy for the 
particular piece of EDM equipment used. 

An alternative approach to the weighting of the observed data is to use a 
dimensionless quantity called unit variance (Ashkenazi 1970). 

1.12.4 Unit variance method of weighting 

Weights are related to variance in the following manner 

Wt = σ2/σ2 (1.46) 

Thus, in a network of inter-related dissimilar quantities σ\ will be unity if the 
estimates of the standard errors of the data are correct, i.e. W{ = l/σ2. This fact can be 
used to assess the validity of the initial a priori estimates of standard errors or to 
compute a posteriori estimates based on the residual corrections to the observed data. 

Unit variance (or the variance of an observation of unit weight) is computed from 

a2
0 = vTWv/(m-n) (1.47) 

To obtain the value of the vector v one would substitute the final values for the x 
vector of co-ordinate adjustments into the final equation v = Ax — b. However, as the 
final iteration should result in a value for x of zero, then v = — b. 

The application of this procedure will now be outlined with respect to a 
triangulateration. Inevitably in such a network the number of angles exceeds the 
number of lengths, thus making them statistically stronger: 
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(a) Estimate the standard error S0 for the angles and adjust the network using the 
angles ONLY. Note the value of G\. A small departure from unity, say 0.5 < 
al < 2.0 (Ashkenazi et al 1978) indicates an incorrect estimate for Se. 

(b) The correct value for Se is now obtained by multiplying Se by the computed value 
for σ0 i.e. S'e = S0 x σ0. Using S'e will now produce a value of unity for the 
recomputed σ\. 

(c) Now, enter the lengths (along with the angles) into the computation, using an 
estimated St value. This will result in a further change in the value of σ^. It is restored 
to unity by altering the standard error of the lengths only as in (b). 

Thus, using this approach one produces a statistically-viable estimate of the 
standard errors (and hence weights) of the observed data for this particular network. 

The method has its limitations; for instance, if one enters the lengths first rather than 
the angles, one would obtain different values for the standard errors. Also, if another 
network of a different shape, but with the same number of angles and lengths, was 
measured by the same observer using the same equipment under the same conditions, 
then different standard errors would result. Thus, wherever possible all sources of 
information should be analyzed to support the unit variance method. 

It should be further pointed out that because of the small number of degrees of 
freedom (DF) in such a network this method is not satisfactory for traverse networks. 
For instance, in a basic network with no redundancies there are only three DF, i.e. 
(m — n) = 3. 

1.13 STRENGTH ANALYSIS 

The strength or reliability of a network is a function of the precision of the observations, 
expressed through the weight matrix W, and its shape expressed through the A matrix 
of observation equations. 

In order to analyse the strength of the final adjusted network it is necessary to 
produce what is called the variance-covariance matrix. 

1.13.1 Variance-covariance matrix (σ^) 

The 'var-cov' matrix contains the variances and covariances of the eastings and 
northings of the nodal points of the adjusted network. The variances are the terms on 
the main diagonal, whilst the off-diagonal terms are the covariances. Covariance is a 
measure of correlation and is zero if the random variables are completely independent. 
The matrix is a square symmetric matrix of size n and is derived from equation (1.29) as 
follows 

axx = a2
0{ATWAy 

XtX2 4 
01 

(1.47) 

The var-cov matrix is fundamental to the strength analysis of the adjusted network, 
and as shown is a function of the weights (or precision) of the field data and the shape of 
the network, as defined by the A matrix. As a correct estimate of weights is necessary for 
a correct estimate of network reliability, it follows that a\ would be unity and may be 
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dropped from the equation. In the case of a traverse network, σ\ should be taken as 
unity, for the reasons stipulated in Section 1,12,4. If an incorrect value is used for σ% then 
the var-cov matrix will be incorrect, resulting in an erroneous strength analysis. 

1.13.2 Absolute (point) error-ellipse 

The square roots of the diagonal elements of the var-cov matrix are the standard errors 
of the eastings and northings of the nodal points of the adjusted network, i.e. ±σΕη9 
±σΝη, However, the control point in question may have a standard error greater than 
σΕ or σΝ, in some other direction (φ). This dimension is referred to as the 'semi-major 
axis of the error-ellipse' (±tfmax), and the semi-minor axis (±<rmin) would be at right-
angles to it. The various dimensions are illustrated geometrically in Figure 1.5, and are 
derived from the var-cov matrix as follows 

i^max 
±<7 m i n 

_2 \2 , Jl 

=j« + o - a« - <)2 + O * Ϊ1*2 }* 

where σηΛΧ and cmin are in effect the eigenvalues of the var-cov matrix. 
The bearing φ of the semi-major axis is obtained from 
ίζηφ = σΧιΧ2/(σΙ&χ-σΙί) 

(1.48) 
(1.49) 

(1.50) 

+ σΝ 

Figure 1.5 
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The following check on the computation may be obtained from 

^Lx^min = σ1°12 ~ σΙιΧ2 (1-51) 
In one-dimensional statistics, plus and minus one standard deviation (±σ) 

represents a probability of 68.3%. However, the probability for the joint event falling 
within the error-ellipse is only 39.4%. Typical values are 

p% 

σ 

39.4 

1.000 

50.0 

1.177 

90.0 

2.146 

95.0 

2.447 

99.0 

3.035 

The error-ellipse may be defined as the 'confidence limits of a point', as it indicates the 
standard error in the position of the adjusted control point in the network. The bearing 
(φ) of the semi-major axis is also significant for interpretation purposes. If normal to the 
direction to the fixed origin of the network it implies predominant angular error, if on 
the same bearing to the fixed origin the predominant error is linear. 

The main limitation of the error-ellipse is that it is not an invariant quantity. Simply 
changing the origin of the network for example, will alter the error-ellipse values. 
However, for a relatively small engineering network the resultant changes will not be 
significant. Nevertheless, it is advisable also to compute the a posteriori standard errors 
of the adjusted angles, bearings and distances, which are invariant. 

1.13.3 Standard error of the adjusted angle (±σΘ) 

This quantity can be obtained from the coefficients of the observation equation for the 
angle and the appropriate elements of the var-cov matrix. For instance, it can be seen 
that there are six coefficients in the observation equation (1.45) for angle jik, i.e. 
αίί,αί2''' al6. The three points jik defining the angle, each have an easting and 
northing, i.e. six values and will be defined by the appropriate 6 x 6 elements of the 
var-cov matrix, thus 

*0 = [ o l l «12 *13 *15 «lö] 
σΧ2Χι °l2 

xtx6 

^ . 

1— —η 

αχ1 
«12 
«13 
«14 
«15 
«16 

(1.52) 

1.13.4 Standard error of the adjusted bearing ( ± σ ) 

In a manner similar to the above, the observation equation for the bearing of a line ij 
has only four coefficients (equation (1.44)) and is combined with the appropriate 4 x 4 
elements of the var-cov matrix. 

*l = [α 11 H2 * 1 3 «14] 'x2xt 

σχ,χ2 

XAX2 

X2XA 

Jx* 

«11 

« 1 2 

« 1 3 

« 1 4 

(1.53) 
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1.13.5 Standard error of the adjusted length (±σβ) 

The observation equation for length ij has four coefficients (equation (1.42)), say 
«21' " «24> a n d wiU be combined with the same 4 x 4 coefficients of the var-cov matrix 
defining the eastings and northings of the same two points i and;, as in the case of the 
bearing ij. 

= [«21 «22 *23 *24 j 
' * 2 * 1 

* 4 * 1 

' * 1 * 2 
^.2 

*4*2 

*1*4 

X2*4 

'^ 
^ J 

r— —1 

« 2 1 

« 2 2 

« 2 3 

« 2 4 

(1.54) 

The application of the variation of co-ordinates method will now be illustrated fully, 
through the computation of a traverse network. The traverse used was computer-
simulated with unnaturally large standard errors, nevertheless, it clearly illustrates the 
procedures involved and serves as a model for readers wishing to develop the method 
(Schofield 1979). 

Example 1.10. Figure 1.6 illustrates a link traverse between fixed points W, X, Y and Z. 
The mean reduced field data is as follows: 

Mean horizontal angles 

W X A 
X A B 
ABC 
BCD 
C D Y 
D Y Z 

' " 

89 59 13 
180 01 05 
180 02 26 
180 00 31 
179 57 52 
90 01 24 

X A 
A B 
B C 
C D 
D Y 

Mean reduced lengths 

(m) 

999.769 
1000.318 
1000.716 
1000.151 
999.372 

Fixed co-ordinates 
£ w 1000.000 m 
Ex 1000.000 m 
EY 6000.000 m 
E7 6000.000 m 

N w 

Nx 

NY 

Nz 

8000.000 m 
5000.000 m 
5000.000 m 
8000.000 m 

Standard error in length = ±0.588 m 
Standard error in angle = ± 120" 

w& £Z 

A 

Figure 1.6 

'

 Y 
 Y 
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Procedure 
(1) Using the necessary portions of the above data, the provisonal co-ordinates of A, B, 
C and D were calculated in the usual way: 

£ A 1999.769 m 
EB 3000.087 m 
Ec 4000.803 m 
ED 5000.953 m 

NA 5000.228 m 
NB 5000.141 m 
Nc 4999.345 m 
ND 4998.399 m 

(2) The above co-ordinates were computed from X to D using angles X, A, B and C, 
and lengths XA, AB, BC and CD; thus, as the co-ordinates are now used to compute 
values for the angles and distances (C-values), they will be identical to the observed 
values (0-values) except in the case of angles D and Y and length DY The (0 — C) 
values will therefore be an l l x l column vector ft, i.e. 

\J - (0 0 0 0 0 0 0 0 0.001927 0.323925 -0.001195) 

given in the order: angle—length—angle—length—etc. 

(3) Using the observation equations for angles and lengths the A matrix of coefficients 
is formulated. As there are eight stations each having a co-ordinate correction δΕ and 
SN and 11 observed values, the initial matrix will be 11 x 16. However, since points W, 
X, Y and Z are to be held fixed then their coefficients are set to zero and the final A 
matrix will be 11 x 8, as shown overleaf. 

(4) Using the standard errors of the angles and lengths the weights are formed as 
follows 

Angle weight = W0 = 1/1202 sec"2 = 2 954 526 rad"2 

Length weight = WL = 1/0.5882 m 2 = 2.892 313 m" 2 

The square diagonal W matrix of size 1 1 x 1 1 will therefore have the above values as the 
coefficients of the main diagonal, in the same order as the field data of the A matrix, i.e. 
angle—length—angle etc. 

W = 

2 954 526 
0 
0 
0 

0/1.1 

0 
2.892 313 

0 
0 

Ο1Ί.2 

0 
0 

2 954 526 
0 

Ο1Ί.3 

0 
0 
0 

2.892 313 

Ο1Ί.4 

O1.11 

O2.11 

O3.11 

O4.11 

2 954 526 

(5) Using x = (ATWA)~1ATWb, the least squares solution produces the column vector 
x of size 8 x 1 , containing the first corrections to the co-ordinates of points A, B, C and 
D in the following order <5£A, δΝΑ, δΕΒ, δΝΒ, <5£c, <5ATC, δΕΏ, δΝΌ 

xT = [ -0 .065,0 .136, -0 .131 ,0 .401 , -0 .196,0 .792, -0 .261 ,1 .302] 

Now, using the corrected co-ordinates of the first iteration the whole process is 
repeated. A new vector of (O — C) terms will this time produce values for all 11 
coefficients. A new A matrix is produced but the W matrix remains constant. The 
second iteration produced the following x vector 

xT = [0 ,0 ,0 ,0 ,0 .001 ,0 ,0 .001 ,0 ] 
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and the final adjusted co-ordinates are 

Point E N 

A 1999.704 5000.363 
B 2999.957 5000.542 
C 4000.607 5000.137 
D 5000.693 4999.701 

(6) The residuals are now obtained as shown in Section 1.12.4, i.e. v = — b, and applied 
to the observed data to give the final adjusted angles and lengths: 

Stations 

W X 
XA 

X A 
AB 

A B 
BC 

B C 
CD 

C D 
DY 

D Y 

A 

B 

C 

D 

Y 

Z 

Residuals 
V 

-27.97" 
-0.065 m 
-26.85" 
-0.065 m 
-25.72" 
-0.065 m 
-24.61" 
-0.065 m 
-23.49" 
-0.065 m 
-22.36" 

Final angles 
and lengths 

89° 58' 45" 
999.704 m 
180° OO' 38" 
1000.253 m 
180° 02' 00" 
1000.651 m 
180°00'06" 
1000.086 m 
179° 57' 29" 
999.307 m 
90° 01' 02" 

ν/σ 

0.233 
0.111 
0.224 
0.111 
0.214 
0.111 
0.205 
0.111 
0.196 
0.111 
0.186 

The final column of the above table is in effect 'rejection criteria'. It is widely 
acknowledged in surveying literature that if the residual of an observation is greater 
than three times the standard error, that observation should be rejected and re-
observed, i.e. v > 3 σ. Thus it is obvious that the final column contains dimensionless 
numbers. Those equal to three or above indicate that the observation should be 
rejected. If equal to two or thereabouts, the observation is suspect. These values should 
be used as a guide to the relative precision of the observed data. 

In addition, a useful check on the normal equations is obtained from ATWb = 0. 

(7) To assess the reliability of the adjusted data the variance-covariance matrix is 
obtained from the final iteration by using 

axx = {ATWAyl 

and assuming σ%= \. This now produces an 8 x 8 symmetrical matrix as shown over-
leaf. The variances of the eastings and northings of each point A to D are on the main 
diagonal. The off-diagonal terms are the covariances; for instance, 4.3992 & — 5 relates 
the EA to the Nk as shown. 

(8) From the var-cov matrix one obtains the standard errors of the co-ordinates and 
by equations (1.48), (1.49) and (1.50), the error-ellipse values as shown: 
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Stations 

A 
B 
C 
D 

Standard errors 
of co-ordinates 

σΕ (mm) σΝ (mm) 

±526 ±401 
±644 ±606 
+644 +606 
±526 ±401 

σΠ1ΕΧ ( m m) 

±526 
+644 
±644 
+ 526 

σπιίη ί111111) 

±401 
+ 606 
+606 
+401 

</>max (<*eg) 

90 
90 
90 
90 

In this particular example, the axes of the error-ellipses are identical to the standard 
errors of the co-ordinates. 

(9) Now, using the appropriate terms of the A matrix and var-cov matrix in equations 
(1.52) and (1.54), the standard errors of the adjusted angles and lengths are obtained 

Standard errors 

W X A 
X A B 
ABC 
BCD 
C D Y 
D Y Z 

of angles 
(sec) 

± 82.8 
+ 100.7 
+108.6 
+ 108.6 
+ 100.7 
± 82.8 

X A 
A B 
B C 
C D 
D Y 

Standard errors 
of lengths 

(mm) 

+ 525.9 
+ 525.9 
+ 525.9 
±525.9 
+ 525.9 

Whilst the above method has been outlined showing the observation equations, the 
(0 — C) values and the weights of the ANGLES in radians, the reader is reminded of 
the earlier comment regarding this matter. That is, provided that the coefficients of the 
angle observation equation is changed to seconds, the (0 — C) values and the weights 
may be left in seconds. Further to this, if we expand the normal equations 

ATWAx = ATWb 
ATW^W^Ax = ATW^W^B 

{W±A)T(W±A)x = {W±A)T{W*b) 

the matrices are conveniently formed by multiplying the coefficients of each 
observation equation by the reciprocal of the corresponding a priori standard errors 
(l/σ). Thus, if as above, the units are metres and sexagesimal seconds-of-arc then a 
standard error of ± 2 sec would result in the angle observation equation being 
multiplied by 1/2 = 0.5. Similarly a standard error in length of +10 mm, the 
appropriate equation is multiplied by 1/0.010 = 100. It must be emphasized that 
without the inclusion of weighting the resultant least squares adjustment would be 
completely sterile and meaningless. 

1.14 PRE-SURVEY ANALYSIS 

It is possible to carry out a strength analysis of a network prior to its observation from 
the configuration of the network and the proposed precision of the measurements. Foi 
instance, if the proposed positions of the survey stations are drawn on a plan and their 

 Y 
 Y 
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relative co-ordinates scaled therefrom, the coefficients of the observation equations can 
be computed and the A matrix produced. Now, knowing the equipment available, an 
estimate of the precision of the field data can be made and the weight matrix W, 
produced. Thereafter the variance-covariance matrix can be obtained from 

axx = (ATWA)-1 

as σΐ will obviously be unity in this situation. 
If the strength analysis indicates that the initial estimates will not meet the accuracy 

specifications, one may alter the configuration of the network and/or the type of 
equipment proposed and/or the observation technique, until the specifications are met. 
In this way, the surveyor will know the best positions for his survey stations, the 
necessary equipment required and the observational technique to adopt, prior to 
commencing the survey. 

This approach would lead to the economic design of networks, to best meet the 
accuracy specifications and functional requirements. 

1.15 NETWORK OPTIMIZATION 

Using the same approach as in Section 1.14, it should theoretically be possible to 
optimize surveys, i.e. assess the minimum number of angles and lengths required in a 
network in order to meet the accuracy specifications. However, in practice, it is 
doubtful if this is a viable proposition. 

In the first instance, traverse networks cannot be optimized, nor can they be analysed 
with any degree of reliability. 

Similarly, trilateration networks cannot be optimized nor therefore can they be 
analysed. It is a common concept in surveying that the greater the number of redundant 
measures the stronger the network. However, as one reduces the number of lengths in a 
trilateration, the network appears to get stronger. The standard errors and error-
ellipses are zero when the minimum number of lengths is used. For instance, if only 
three sides of a triangle are measured, a triangle will always be formed without apparent 
error. Because of this, it is therefore doubtful that triangulateration can be successfully 
treated. Thus, optimization of engineering networks may not be a practical operation. 

WORKED EXAMPLES 

Example 1.11. The same angle was measured by two different observers using the same 
instrument, as follows: 

Observer A Observer B 
o f t / o r rr 

86 34 10 86 34 05 
33 50 34 00 
33 40 33 55 
34 00 33 50 
33 50 34 00 
34 10 33 55 
34 00 34 15 
34 20 33 44 

» 
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Calculate: (a) The standard deviation of each set. 
(b) The standard error of the arithmetic means. 
(c) The most probable value (MPV) of the angle. (KP) 

Observer A 
o ι n 

Observer B 
O I II 

86 34 10 
33 50 
33 40 
34 00 
33 50 
34 10 
34 00 
34 20 

10 
-10 
-20 

0 
-10 
10 
0 
20 

100 
100 
400 
0 

100 
100 
0 

400 

86 34 05 
34 00 
33 55 
33 50 
34 00 
33 55 
34 15 
33 44 

7 
2 

-3 
-8 
2 

-3 
17 

-14 

49 
4 
9 
64 
4 
9 

289 
196 

Mean = 86 34 00 0 1200 = [r2] 86 33 58 0 624 = [r2] 

(a) (i) Standard deviation ([r2] = Σ(χ,· - x)2) 

/1>21 \* /1200V 

(b) (i) Standard error = Sx- = ± ^ f = ± ^ = ±4.6" 

n - 1 

m 
8* 

(a) (ii) SB = ± 
/624"\* 

9.4 

/624"Y 
= ±9.4" 

( b ) ( i i ) S x - B = ± ^ - = ± 3 . 3 " 

(c) As each arithmetic mean has a different precision exhibited by their 5X- values, they 
must be weighted accordingly before they can be meaned to give the MPV of the 
angle 

1 1 
Weight of A oc -2- = — = 0.047 

Weight of B oc - J - = 0.092 

The ratio of the weight of A to the weight of B is 1:2 

_ r Λ t (86° 34' 00" + 86° 33' 58" x 2) 
.·. MPV of the angle = 

= 86° 33' 59" 

As a matter of interest, the following point could be made here: Any observation whose 
residual is greater than 2.3S should be rejected (see Section 1.6). As 2.35^ = 30.2" and 
2.3SB = 21.6", all the observations should be included in the set. This test should 
normally be carried out at the start of the problem. 

r r2 r r2 
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Example 1.12. Discuss the classification of errors in surveying operations, giving 
appropriate examples. 

In a triangulation scheme, the three angles of a triangle were measured and their 
mean values recorded as 50° 48' 18", 64° 20' 36" and 64° 51' 00". Analysis of each set 
gave a standard deviation of ±4" for each of these means. At a later date, the angles 
were re-measured under better conditions, yielding mean values of 50° 48' 20", 
64° 20' 39" and 64° 50' 58". The standard deviation of each value was ±2". Calculate 
the most probable values of the angles. (KP) 

The angles are first adjusted to 180°. Since the angles within each triangle are of equal 
weight, then the angular adjustment within each triangle is equal. 

50° 48'18" + 2" = 50° 48'20" 50° 48'20" + 1" = 50° 48'21" 
64° 20' 36" + 2" = 64° 20'38" 64° 20'39" + 1" = 64° 20'40" 
64° 51'00"+ 2"= 64° 51'02" 64° 50'58" + 1" = 64° 50'59" 

179° 59' 54" 180° 00' 00" 179° 59' 57" 180° 00' 00" 

Weight of the first set = ŵ  = 1/42 = — 
16 

Weight of the second set = vv2 = 1/22 = -

Thus vvx = 1, when w2 = 4. 

(50° 48' 20") + (50° 48' 21" x 4) 
Λ MPV = - '—± = 50° 48' 20.8" 

Similarly, the MPV of the remaining angles are 

64° 20' 39.6" 64° 50' 59.6" 

These values may now be rounded off to single seconds. 

Example 1.13. A base line of ten bays was measured by a tape resting on measuring 
heads. One observer read one end while the other observer read the other—the 
difference in readings giving the observed length of the bay. Bays 1, 2 and 5 were 
measured six times; bays 3,6 and 9 were measured five times and the remaining bays 
were measured four times, the means being calculated in each case. If the standard 
errors of single readings by the two observers were known to be 1 mm and 1.2 mm, what 
will be the standard error in the whole line due only to reading errors? (LU) 

Standard error in reading a bay = Ss = (l2 + 1.22)* = ± 1.6 mm 

Consider bay 1, this was measured six times and the mean taken; thus the standard 
error of the mean is 

„ Ss 1-6 

**- = ;?= 6F=±°-6mm 

This value applies to bays 2 and 5 also. Similarly for bays 3, 6 and 9 
1.6 

S; = -^= ±0.7 mm 



Errors and adjustments 51 

1.6 
For bays 4, 7, 8 and 10 Sx- = - j - = ±0.8 mm 

These bays are now summed to obtain the total length. Therefore the standard error of 
the whole line is 

(0.62 +0.62 + 0.62 +0.72 +0.72 +0.72 +0.82 +0.82 +0.82 +0.82)* = ±2.3 mm 

Example 1.14 

(a) A base line was measured using electronic distance-measuring (EDM) equipment 
and a mean distance of 6835.417 m recorded. The instrument used has a manufacturer's 
quoted accuracy of 1/400 000 of the length measured ± 20 mm. As a check the line was 
re-measured using a different type of EDM equipment having an accuracy of 
1/600 000 ± 30 mm; the mean distance obtained was 6835.398 m. Determine the most 
probable value of the line. 
(b) An angle was measured by three different observers, A, B and C. The mean of each 
set and its standard error is shown below. 

Observer 
Mean angle 

A 89 54 36 ±0.7 
B 89 54 42 ±1.2 
C 89 54 33 ±1.0 

Determine the most probable value of the angle. (KP) 

(7 6835 V J * 
(a) Standard error, 1st instrument SXi = ± < I j + (0.020)2 > 

= ±0.026 m 

(Y 6835 V J* 
Standard error, 2nd instrument 5x-2 = ± < f j + (0.030)2 > 

= ±0.032 m 

These values can now be used to weight the lengths and find their weighted means as 
shown below. 

1st instrument 
2nd instrument 

Length, L 
(m) 

0.417 
0.398 

s* 
+ 0.026 
±0.032 

Weight ratio Weight, W 

1/0.0262 = 1479 1.5 
l/0.0322= 977 1 

[W~\ = 2.5 

LxW 

0.626 
0.398 

1.024 -VW 

.·. MPV = 6835 + l-^- = 6835.410 m 

 Y 



52 Errors and adjustments 

(b) 

Mean angle 
Observer ° 

A 89 54 36 
B 89 54 42 
C 89 54 33 

±0.7 
+ 1.2 
±1.0 

Weight ratio 

1/0.72 = 2.04 
1/1.22 = 0.69 
l/ l2 =1 

m-

Weight, W 

2.96 
1 
1.45 

= 5.41 

LxW 

6" x 2.96 = 17.8" 
12" x 1 = 12" 
3" x 1.45 = 4.35" 

34.15 

.·. MPV = 89° 54' 30" + ^ ^ - = 89° 54' 36" 
5.41 

The student's attention is drawn to the method of finding the weighted mean in both 
these examples, although since the advent of the pocket calculator there is no need to 
refine the weights down from the weight ratio, particularly in (b). 

Example 1.15. In an underground correlation survey, the sides of a Weisbach triangle 
were measured as follows: 

Wx W2 = 5.435 m Wx W = 2.844 m W2W = 8.274 m 
Using the above measurements in the cosine rule, the calculated angle WWl W2 = 
175° 48' 24". If the standard error of each of the measured sides is 1/20 000, calculate 
the standard error of the calculated angle in seconds of arc. (KP) 
From Figure 1.7, by the cosine rule c2 = a2 + b2 — lab cos W1 

8-274 

Figure 1.7 

Using equation (1.15) from Section 1.10 and differentiating with respect to each variable 
in turn 

cSc 
2cbc = 2ab sin W1 δ W1 thus δ W1 = ± -

"absin Wx 

Similarly a2 = c2 - b2 + lab cos Wx 

Ιαδα = lb cos Wxda - lab sin W1SWl 

laba — lb cos Wxba _ δα(α — b cos Wx) 
1 ~ lab sin Wx ~ ab sin Wx 

but, since angle Wt « 180°, cos Wx « — 1 and (a + b)ι « c 

1 ab sin Wx 

 Y » » 
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now b2 = a2 — c2 + lab cos Wx 

and 2bbb = 2a cos W f̂? - 2ab sin WJiWi 

<5fc(b — a cos Wi) (5frc 

ab sin Wl ~~ab sin J^ 

Making <5ΜΊ, δα, ob and 5c equal to the standard deviations gives 

c 

where 

σ«,, 

σ„ 

σ» 

<7c 

σ». 

af> sin 

5.435 
"20 000 = 

_ 2.844 
"20 000 = 

_ 8.274 
"20 000 = 

W,* 

= ±2.7 

= ±1.4 

= ±4.1 

+ σ̂  + 

xlO"4 

xlO"4 

xlO"4 

8.274 x 206 265 x 
■̂ 5.435 

= +770" 

x 2.844 

= +0°12'50" 

sin 175c 

*tr 

10- 4 

' 48' 24" 
-(2.72 + 1.42+4.12)i 

This is a standard treatment for small errors, and nothing is to be gained by further 
examples of this type here. The student can find numerous examples of its application in 
Volume 1 of Engineering Surveying and throughout the remainder of this book. 

Example 1.16. From a station P, the angles subtended by points Q, JR, S and T were 
measured by two observers A and B. The results are tabulated below. 

Observer 
Angle 

A 
A 
A 
B 
B 

QPR 
RPS 
SPT 
QPS 
RPT 

16 02 51 
40 34 08 
22 11 04 
56 37 01 
62 45 09 

In order to apportion weights to their observations, a separate test was carried out, in 
which both A and B measured a given angle a large number of times. The analysis of the 
test showed that the standard error of B was twice that of A. Apply appropriate weights 
to the observations and determine the most probable value of the angles to the nearest 
0.1". (LU) 

As the weights are inversely proportional to the square of the standard error, if B has 
a weight of 1, then A will have a weight of 4, thus 

o o o
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QPR = x = 16° 02' 51" wt4 
RPS = y = 40° 34' 08" wt 4 
SPT = z = 22°l l '04"wt4 
ßPS = (x + y) = 56° 37' 01" wt 1 
RPT = (y + z) = 62° 45' 09" wt 1 

Adopting the above observed values as the assumed values of x, y and z, the 
observation equations may be formed 

16° 02' 51" + ^ = 16° 02' 51" 

MPV observed value 

.*. vl = 0 wt 4 
i.e. by comparing the MPV with the observed value the difference is the error. 

Similarly v2 = 0 wt 4 v3 = 0 wt 4 
But 16° 02' 51" + ι?λ +40° 34' 08" + v2 = 56° 37' 01" Λ v1+v2 = 2" wt 1 
and 40°34Ό8" + ι?2+22°11/04" + ι;3=62ο45'09" .'. v2 + v3= - 3 " w t l 

Assembling the observation equations vt = 0 wt 4 
t?2 = 0 wt 4 
t;3 = 0 wt 4 

ÜJ + Ü2 = 2" wt 1 
t?2 + i?3 = — 3" Wt 1 

The coefficients of vl9v2,v3, are a, b, c, respectively, and all equal 1. Substituting 
directly in equation (1.21) gives the normal equations 

5i?! + i?2 = 2" 
!>! + 6v2 + t;3 = — 1" 

t;2 + 5t>3 = - β ^ 

These equations are easily solved by simple algebra 

i;1==0.4" t;2 = -0 .1" i;3 = ~0.6" 

Thus the MPV are QPR = 16° 02' 51" + 0.4" = 16° 02' 51.4" 
RPS = 40° 34' 08" - 0.1" = 40° 34' 07.9" 
SPT = 22° 11' 04" - 0.6" = 22° 11' 03.4" 

Example 1.17. A straight line ABCD was measured as a whole and in sections. Due to 
variations in accuracy, the measurements have been assigned weights as shown below. 

AB 
BC 
CD 
AC 
AD 

Measured length 
(m) 

39.231 
120.716 
61.256 

159.935 
221.218 

Weight 

3 
2 
2 
1 
1 

Find by the method of least squares, the most probable lengths of AB, BC and CD to the 
nearest 0.0001 m. (LU) 
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AB = x = 39.231 wt 3 
BC = y = 120.716 wt 2 
CD = z = 61.256wt2 
AC = (x + y) = 159.935 wtl 
AD = (x + y + z) = 221.218 wt 1 

Taking the observed values of x, y and z as the assumed values, the first three 
observation equations are 

i?! = 0 wt 3 v2 = 0 wt 2 v3 = 0 wt 2 

Similarly t̂  + i;2 = — 12 mm wt 1 

Vi + v2 + v3 = 15 mm wt 1 

By inspection the normal equations are 

5vi+2v2 + v3 = 3 mm 2vl +4v2 + vz = 3 mm νγ +ι>2 + 3ι>3 = 15 mm 

On solution vx = -0.0003 m v2 = -0.0004 m v3 = 0.0052 m 
.*. MPV of AB = 39.231 - 0.0003 = 39.2307 m 

BC = 120.716 - 0.0004 = 120.7156 m 
CD = 61.256 + 0.0052 = 61.2612 m 

Note. Examples 1.16 and 1.17 could equally well have been solved by condition 
equations with negligible difference in time. The latter method provides a check in the 
fulfilment of the stipulated conditions, but the student may find it slightly more difficult 
to form the conditional equations. It is also worth noting that the majority of these 
problems have the corrections quoted to an accuracy greater than the initial field data; 
the final values, however, should be rounded to the same accuracy as the field data. 

Example 1.18. The measured differences in level in metres between four stations A, B, 
C and D (Figure 1.8) are given in the following Table, together with the estimated 
weights of the values. Determine, by the method of least squares, the most probable 
values of the differences in level to the nearest 0.0001 m. 

From 

A 
B 
C 
D 
D 

To 

B 
C 
D 
A 
B 

Rise 

5.977 
8.550 

Fall 

2.877 
11.665 
5.678 

Weight 

3 
1 
2 
1 
3 

(LU) 

& & 

Figure 1.8 
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To simplify matters, assume an arbitrary value of 100.000 m for station A. In all 
levelling network adjustments the station from which the levelling commences is 
assumed to be correct. It is therefore required to find the levels of B, C and D only. 

Using the first three observed differences in level, the assumed levels for B, C and D 
are 

B = 105.977 m C = 114.527 m and D = 111.650 m 

Observation equations are now formed for each line of the net as follows: 

Most probable level of B — Most probable level of A 
= Observed difference in level 

i.e. B+vt-A = 5.977 
.*. 105.977 + v1- 100.000 = 5.977 

.·. Vl = 0 wt 3 

Similarly C + O2-(B + V1) = 8.550 
.·. 114.527 + v2 - 105.977 - vt = 8.550 

.'. v2 — i>i = 0 wt 1 
and D + v3 - (C + v2) = -2.877 

.·. 111.650 + v3 - 114.527 - v2 = -2.877 
.'. v3 — v2 = Owt 2 

and A - (D + v3) = -11.665 
.·. 100:000- 111.650 - t>3 = 11.665 

.*. v3 = 15 mm wt 1 

and B + vx-(D + v3) = - 5.678 
.*. 105.977 + Vl - 111.650 - v3 = -5.678 

.'. vx — v3 = — 5 mm wt 3 
Collecting observation equations for easy inspection 

vx = 0 wt 3 v3 = 15 mm wt 1 
v2 — vx = 0 wt 1 v1 — v3 = — 5 mm wt 3 
3̂ ~" v2 = 0 Wt 2 

Normal equations by inspection of the observation equations and equation (1.25) are 
7vx — v2 — 3i?3 = —15 mm 

— i?! 4- 3t;2 — 2v3 = 0 
- 3 1 ^ - 2v2 + 6i?3 = 30 mm 

On solution v1 = 2.3 mm v2 = 6.2 mm v3 = 8.2 mm 

.*. Levels of A = 100.000 m 
B = 105.977 + 0.0023 = 105.9793 m 
C = 114.527 + 0.0062 = 114.5332 m 
D = 111.650 + 0.0082 = 111.6582 m 

.*. Most probable differences in level are A-
B-
C-
D-

-B = 
-C = 
-D = 
- A = 

5.9793 m 
8.5539 m 

- 2.8750 m 
-11.6582 m 

Sum = zero (check) 
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Since D — B = — 5.6789 m, this also checks with the sum of the second and third 
values given above. 

Note. The following important points in relation to level networks should be carefully 
observed: 

(1) As errors in levelling are though to follow the laws already outlined they will be 
proportional to the square root of the length of line levelled, i.e. σ oc {L)\ However, 
as weights oc (l/σ2) then for lines of levelling w oc (1/L), i.e. the weight is inversely 
proportional to the length of the line levelled. 

(2) The problem could have been just as easily worked out by the method of condition 
equations, in which case the conditions would have been 

(a) Circuit ABCDA should close to zero. 
(b) Circuit BCDB should close to zero. 
(c) Circuit ABDA should close to zero. 

However, the rule for deciding the number of conditions has already been 
outlined, i.e. 

Number of directly-observed quantities = 5 (lines AB, BC, DC, DA, DB) 
Number of independent unknowns = 3 (stations B, C, D) 

.'. Number of above conditions required = 2 

Example 1.19. Angles 'closing the horizon' were measured about a station as follows 

w = 70° 05' 31.6" 
x = 164° 23' 39.8" 
y= 96° 50'51.6" 
z = 28° 39' 50.0" 

(w + x) = 234° 29' 03.4" 
(y + z) = 125° 30' 38.2" 

Find, by the method of least squares, the most probable values of angles w, x, y and z. 
(KP) 

This problem is indicated in Figure 1.9 and shows that there is a condition to be 
fulfilled, namely that the MPV of w+x+y+z= 360°. From this condition it can 
therefore be seen that if the MPV of w, x and y were known, then the MPV of z must be 
360° — (w + x + y). Thus z may be regarded as a 'dependent' quantity and the values of 

w + x ) Figure 1.9 
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w, x and y only need be found. In this way the number of normal equations is reduced 
from four to three. 

The assumed values of w, x and y are taken as equal to the above observed values and 
therefore the first three observation equations will be 

vx = 0 v2 = 0 v3 = 0 
.'. MPV of z = 360° - (w + vx + x + v2 + y + v3) = 28° 39' 50.0" 
Substituting the assumed values for w, x and y gives Vl + v2 + v3 = + 7" 
Similarly w + vx + x + i>2 = 234° 29' 03.4" 
Substituting assumed values for w and x gives t̂  + t;2 = — 8" 

(y + z) = y + v3 + 360° - (w + ^ + x + t>2 + y + t>3) = 125° 30' 38.2" 
Substituting assumed values for w, x and y gives vi + v2=

: 10.4" 
Normal equations direct from observation equations and general equation (1.23) in 

the usual way are 
4vt +3v2 + v3 = +9.4" 
3vt +4v2 + v3 = +9.4" 
vt + v2 +2v3 = +7.0" 

On solution vx = 0.98" v2 = 0.98" i;3 = 2.52" 
.*. MPV of w = 70° 05' 31.6" + 0.98" = 70° 05' 32.6" 

x = 164° 23' 39.8" + 0.98" = 164° 23' 40.8" 
y= 96° 50'51.6" + 2.52" = 96° 50'54.1" 
z = 360° - the MPV of w, x and y = 28° 39' 52.5" 

Example 1.20. The measured angles of a geodetic quadrilateral ABCD are given below, 
together with their log sines, differences in log sines for 1", and their respective weights. 

Number 

1 
2 
3 
4 
5 
6 
7 
8 

Measured 

CAD 
BAC 
DBA 
CBD 
ACB 
DCA 
BDC 
ADB 

angle 
o 

35 
56 
46 
46 
31 
30 
71 
42 

' 

05 
06 
16 
14 
22 
28 
54 
32 

» 

09 
57 
00 
08 
49 
41 
02 
02 

Log sin 

Ϊ.759 519 0 
1.919 165 2 
1.858 877 0 
1.858 651 2 
1.716 600 8 
1.705 186 3 
1.977 960 7 
1.829 963 4 

Difference in log 
sin for \" 

0.000 0317 
0.000 014 2 
0.000 020 2 
0.000 020 2 
0.000 034 6 
0.000 035 8 
0.000 006 9 
0.000 023 0 

Weight 

2 
2 
1 
1 
2 
2 
3 
3 

Derive the normal equations to determine, by least squares, the most probable values 
of the angles. The solution of the equations is not required, but the steps that would 
need to be taken after the solution, to obtain corrections to the angles must be stated. 
Note £ log sin odds - £ log sin evens = - 0.000 008 6 (LU) 

For the benefit of the student, this problem will be solved: (1) assuming no weights; 
(2) in its original form including the weights, by the direct method using correlatives. 
Modern practice would be to use the method of variation of co-ordinates and would 
require a computer. 
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A 

U 

1X7 6Λ</ 
D C Figure 1.10 

(1) It is necessary to obtain the correct number of condition equations required. By 
reference to Figure 1.10 the number of directly-observed quantities is eight; the number 
of independent unknowns is four. This latter statement should now be carefully 
considered. In any triangulation scheme, one works from a base line AB to fix the co-
ordinate position of the other points. Thus to fix C and D, one would require their 
eastings and northings giving four independent unknowns. The number of condition 
equations required is then 8 — 4 = 4. 

As shown in Chapter 2, there are eight conditions of adjustment for a crossed-
quadrilateral, not all of which are independent. The four most independent of the 
conditions are 

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 360° 
2 + 3 - 6 - 7 = 0 
1 + 8 - 4 - 5 = 0 

log sin 1 + log sin 3 + log sin 5 + log sin 7 
— (log sin 2 + log sin 4 + log sin 6 + log sin 8) = 0 

This latter condition is called the side condition and is frequently stated as: £ log sin of 
the odd angles = £ log sin of the even angles (refer to Chapter 2 for its derivation). As 
the crossed-quadrilateral is a 'unique' figure, the above conditions are the standard 
conditions always used in its adjustment. 

Assuming corrections vl- - v8, for angles 1 · · 8, the condition equations are 
derived as 

1 + ι ? ! + 2 + ι;2 + 3 + ι;3+4 + ι;4 + 5 + ι ; 5 +6 + ι ; 6 +7 + ι;7 + 8 + ι ; 8 - 360° = 0 

Substituting the observed values for angles 1 ,2 , . . . , 8, then 

v i + v2 + v3 + f4 + v5 + v6 + v7 + v8 — 12" = 0 

Similarly v2 + v3 — v6 — v7 + 14" = 0 
vx + v8 - v4 - vs + 14" = 0 

3171?! - 142t;2 + 202i;3 - 202t;4 + 346t;5 - 358i;6 + 69t;7 - 230r8 - 86 = 0 

This latter equation is obtained as follows. If angle 1 was corrected by say + V, then the 
correction to its log sin would be +0.000 031 7, as shown in the question. Thus, in 
general terms a correction of v'[ to angle 1 would result in a correction of d^v^ to its 
log sin, where dx is the difference in the log sin for a change of v1 in the angle. The side 
condition is therefore written 

log sin 1 + dlvl + log sin 3 + d3v3 + log sin 5 + d5v5 + log sin 7 + d7v7 

— (log sin 2 + d2v2 + log sin 4 + d4v4 + log sin 6 + d6v6 + log sin 8 + d8v8) 
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However, as the £ log sin 'odds' — £ log sin 'evens' = E, then the above equation 
may be rewritten 

d1vl — d2v2 + d3v3 — d4v4 + d5v5 — d6v6 + άΊνΊ — d8v8 ± E = 0 

Substituting for d and E from the question, gives the condition equation quoted on 
p. 59. 

For convenience, the condition equations are rewritten here multiplied by their 
appropriate correlative, etc. 

K1(V1+V2+V3+V4 + VS+V6+V7 + OS-12") = 0 (1.55a) 
Κ2{ν2+υ3-ν6-νΊ + 14") = 0 (1.55b) 
K3(v1+v8-V4-v5 + l4") = 0 (1.55c) 

JK4(317t?1-142i;2 + 202t;3-202t;4 + 346i?5-358i?6+69t;7-230t?8-86) = 0 (1.55d) 

Then by direct inspection, as shown in Section 1.11.8, the normal equations are 

SKX + 0 + 0 + 2K4 - 12" = 0 
0 + 4K2 + 0 + 349X4 + 14" = 0 

0 4- 0 + 4X3 - 57K4 + 14" = 0 
2Kl + 349X2 - 51K3 + 507 802K4 - 86 = 0 

The final value of 507 802 is of course the sum of the squares of the coefficients of 
equation (1.55d). Students should be very careful with negative quantities; for instance 
K2\bd~] is obtained from the product of the coefficients of equations (1.55b and d) as 

(1 x -142) + (1 x 202) + ( - 1 x -358) + ( - 1 x 69) = 349 

The student should study Section 1.11.8 carefully whilst deducing the normal 
equations. Also from the condition equations, it can be seen that 

vx = Kl + K3 + 317K4 i?5 = Kx - K3 + 346K4 
v2 = K1+K2- 142X4 v6 = Kl-K2- 358K4 
v3 = Kl + K2 + 202X4 v7 = K1-K2+ 69K4 

Vt = K1-K3- 202K4 v8 = Kl+K3- 230K4 

(2) Weights (tabular form, refer to Table 1.4) 

(a) The condition equations are obtained in exactly the same way as in method (1) 
(see equations (1.55a to d)). 

(b) Their coefficients are entered vertically in the appropriate column. 
(c) The coefficients are then collected according to the appropriate heading, row by 

row. 
(d) The relationship of the correction v to the correlate K is obtained in the usual 

way from the condition equations and is, of course, identical to that in method 
(1), but must be multiplied by the inverse of its weight, as shown in Section 
1.11.9. 

Example 1.21. A part of a triangulation scheme consists of a polygon ABCDE within 
which is a station F. The measured angles are given below, together with the log sins of 
the outer angles. 
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Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Measured angle 

BAF 
FBA 
CBF 
FCB 
DCF 
FDC 
EDF 
FED 
AEF 
FAE 
AFB 
BFC 
CFD 
DFE 
EFA 

o 

38 
83 
42 
60 
56 
37 
40 
86 
70 
23 
57 
77 
86 
52 
86 

' 

44 
48 
34 
11 
02 
44 
06 
53 
05 
48 
27 
14 
13 
59 
05 

" 

54 
01 
30 
18 
45 
14 
22 
52 
48 
13 
01 
17 
02 
48 
57 

Log sin 

Ϊ.796 505 5 

T.830 303 0 

T.918 808 3 

Ϊ.809 024 3 

Ϊ.973 2518 

Ϊ.997 452 5 

T.938 3517 

T.786 780 4 

Ϊ.999 363 1 

Ϊ.605 954 4 

Log sin difference 
for 1" 

0.000 002 6 
0.000 000 2 
0.000 002 3 
0.000 001 2 
0.000 0014 
0.000 002 7 
0.000 002 5 
0.000 000 1 
0.000 000 8 
0.000 004 8 

2=1.3278929 1.327 9021 

Derive the normal equations required for a least squares solution, assuming equal 
weights for all angles. The solution of the equations is not required. (LU) 

From Figure 1.11, the conditions of adjustment are 
Angles 1 + 2 + 11 = 180° 

3 + 4 + 12 = 180° 
5 + 6 + 13 = 180° 
7 + 8 + 14 = 180° 

9 + 10 + 15 = 180° 
11 + 12 + 13 + 14 + 15 = 360° 

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = (2n- 4)90° = 540' 

£ log sins 'odd' = £ log sins 'even' 

To find the number of conditions required 

Figure 1.11 
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Number of directly-observed quantities = 15 
Number of independent unknowns = 8 

EXERCISES 

7.7. Explain the meaning of the terms random error and systematic error, and show by 
example how each can occur in normal surveying work. 

A certain angle was measured ten times by observer A with the following results, all 
measurements being equally reliable 

74° 38' 18", 20", 15", 21", 24", 16", 22", 17", 19", 13" 

(the degrees and minutes remained constant for each observation.) 
The same angle was measured under the same conditions by observer B with the 

following results 

74° 36' 10", 21", 25", 08", 15", 20", 28", 11", 18", 24' 

.*. Number of conditions required = 7 

Take any line, say AB, as a base; then the number of points to be fixed is four, i.e. C, D, E 
and F, each with an easting and northing value, giving eight independent unknowns. 
One may now select any seven of the eight conditions stipulated, but must include the 
side condition. Thus omitting the first condition, the following observation equations 
are formed as in the previous problem 

Ki(i>3+i>4 + t>12 + 5") = 0 
K2(v5+v6+vi3 + l") = 0 
K3(v1 + vs + vl4 + 2") = 0 

K4(v9 + vi0 + v15-2") = 0 
K5Kl+t;i2+t>13+l>14 + l>15+5") = 0 

Κβ(νι +ν2 + ν3+ν4 + ν5+ν6 + νΊ + ν8 + ν9 + νί0-3") = 0 
K1(26v1-2v2 + 23v3-l2v4 + l4v5-21v6 + 25v1-vs + Sv9-48vi0-92) = 0 

Normal equations, using general equation (1.33) 

3K1+0+0+0 + K5+2K6 + l l i i 7 + 5" = 0 
0 + 3Κ2+0+0 + Κ5+2Κ6-13ΚΊ + 1" = 0 
0+0 + 3K3+0 + K5+2ie6 + 24A:7+2" = 0 
0+0+0 + 3Κ4 + Κ5+2Κ6--40Κ7-2" = 0 

K^^+Ks+Kt + SKs+O + O + S" = 0 
2Κί+2Κ2 + 2Κ3 + 2Κ4+0 + 10Κ6 + 6ΚΊ-3" = 0 

1 1 Κ 1 - 1 3 Χ 2 + 2 4 Κ 3 - 4 0 Α : 4 + 0 + 6Κ 6 + 5272Α: 7 ~92 = 0 

Although this completes the problem as stated, the student should also attempt to 
derive the relationship between v and K, e.g. 

vx = K6 + 26ΚΊ v2 = K6- 2ΚΊ νί0 = K4 + K6 - 4SK7 ν4 = Κχ + Κ6 - \2ΚΊ 
etc. 

A point to note in the adjustment of any polygon is that the angles at the centre point 
are not used in the side condition. 
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Determine the standard deviation for each observer and the relative weightings. 
(ICE) 

(Answer: ±3.4"; ±6.5". A:B is 9:2) 

1.2. Derive from first principles an expression for the standard error in the computed 
angle Wx of a Weisbach triangle, assuming a standard error of aw in the Weisbach angle 
W, and equal proportional standard errors in the measurement of the sides. What facts, 
relevant to the technique of correlation using this method, may be deduced from the 
reduced error equation ? (KP) 

(Answer: see Volume 1) 

1.3. What is the difference between an error and a mistake ? How is weighting applied to 
observations? 

Four bench marks A, B, C and D were established by precise levelling, the backsights 
and foresights being kept equal in length. The Table shows the readings obtained, the 
distances and the number of times the levelling was carried out. If the level of A was 
27.091 m AOD, find the probable values of the other points (a) not weighted and (b) 
weighted. (LU) 

Line 

AtoB 
B to C 
C to D 
Dto B 
C to A 

Change 
(m) 

rise 6.254 
rise 5.316 
rise 4.639 
fall 9.970 
fall 11.558 

Distance 
(km) 

distance 
distance 
distance 
distance 
distance 

4 
5 
3 
6 
6 

Levelled 
(number of times) 

once 
twice 
once 
twice 
twice 

(Answer: (a) B = 33.339 m; C = 38.655 m; D = 43.302 m; (b) 33.337 m; 38.655 m; 
43.301 m) 

1.4. The differences of level between four triangulation stations A, B, C and D as 
determined by trigonometric levelling are shown below together with the relative 
weights of the observations. The reduced level of A = 108.32 m. Calculate the most 
probable values of the reduced levels of stations B9 C and D. (ICE) 

Line 

AtoB 
B to C 
C to D 
Dto A 
B to D 

Difference of 
(m) 

18.50 
-11.42 

5.93 
-12.95 

-5.64 

level Weight of observation 

1 
2 
3 
1 
3 

(Answer: 126.84 m, 115.36 m and 121.25 m) 

7.5. From a station O, the angles to five other stations P, ß, R, S and T were observed as 
tabulated below; certain groups of angles were read again, the weights to be assigned to 
the observations being as given in the Table. 
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Angle 

POQ 
QOR 
ROS 
SOT 
TOP 
POS 
SOP 

Number 

1 
2 
3 
4 
5 
6 
7 

Angle magnitude 
O 1 II 

54 27 34 
73 21 43 
86 17 22 
79 14 35 
66 38 47 

214 06 38 
145 53 26 

Weight 

2 
2 
2 
2 
2 
3 
5 

Find the most probable values of the angles to the nearest second. (LU) 

(Answer: hint: 5 is a dependent quantity; examination of normal equations quickly 
shows vl = v2 = v3 = — 1"; .'. i;4 = 1") 

1.6. Part of a triangulation scheme consists of a triangle ABC with a central point D. 
The measured angles are given below together with the log sins of the outer angles. 
State the conditions of adjustment of the figure. Thereafter select the exact number of 
conditions needed, and derive the normal equations required for a least square 
adjustment of the figure using the method of correlatives. Do not attempt to solve the 
equations but derive the linear relationship between the correlatives and the residual 
errors. (KP) 

Number Angle Angle magnitude Log sins Difference for 1" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

DAB 
ABD 
CBD 
BCD 
ACD 
CAD 
ADB 
BDC 
ADC 

23 
67 
37 
24 
17 
10 
89 

118 
152 

02 
43 
10 
12 
12 
38 
13 
37 
08 

45.4 
16.1 
55.4 
01.0 
50.8 
08.3 
57.6 
05.7 
56.7 

1.592 697 6 

1.781288 2 

1.471 208 5 

1.966 305 9 

1.612 707 0 

1.266 144 3 

49.5 
8.6 

27.8 
46.8 
68.0 

112.1 

Sum= 1.845 194 3 1.845 157 2 

(Answer: five conditions—answer will vary according to the conditions chosen) 

1.7. Five triangulation stations ABC DE are in the form of a quadrilateral ABCD with 
an internal station E. The measured angles are as follows: 

Angle 

EAB 
ABE 
EBC 
BCE 
ECD 
CDE 
EDA 
DAE 
BEA 
CEB 
DEC 
AED 

Measured value 

30 
44 
61 
55 
58 
45 
33 
30 

104 
63 
76 

116 

59 
41 
21 
19 
01 
54 
16 
25 
19 
18 
03 
17 

14 
11 
56 
07 
51 
45 
36 
22 
38 
58 
41 
43 

Log sin 

1.711678 0 
1.847 094 8 
1.943 343 6 
1.915 045 6 
1.928 566 5 
1.856 292 6 
1.739 321 0 
1.704 473 7 

Difference for V 

0.000 003 5 
0.000 002 1 
0.000 0012 
0.000 001 5 
0.000 0013 
0.000 002 0 
0.000 003 2 
0.000 003 6 

» » » 

» » » 
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Derive the normal equations required to determine the errors in the observed values 
by the method of least squares. Assume all readings to be of equal weight and neglect 
spherical excess. The equations need not be solved. (LU) 

(Answer: six conditions—answer will vary according to the conditions chosen) 
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Control surveys 

The establishment of three-dimensional control networks for major construction 
schemes, such as tunnels, bridges, hydroelectric schemes, etc., is generally carried out 
by: 

(1) Triangulation. 
(2) Trilateration. 
(3) A combination of (1) and (2). 
(4) Electromagnetic distance-measurement (EDM) traversing. 

In modern engineering surveying, triangulation, once the most popular technique, is 
rapidly being replaced by EDM traversing. This latter method is proving just as 
accurate and far more economical. Trilateration, although theoretically sound, is not 
so widely used, due probably to lack of easy checks and more tedious computations. 
The third possibility (3) is being used quite extensively to afford greater control of scale 
error in triangulation. 

2.1 TRIANGULATION 

Although the areas involved in construction are relatively small compared with 
national surveys (resulting in the term microtriangulation) the accuracy required in 
establishing the control surveys is frequently of a very high order, e.g. long tunnels or 
dam deformation measurements. 

The principles of the method are illustrated by the typical basic figures shown in 
Figure 2.1. If all the angles are measured, then the scale of the network is obtained by the 
measurement of one side only, i.e. the base line. Any error therefore, in the measurement 
of the base line will result in scale error throughout the network. Thus, in order to 
control this error, check-base lines should be measured at intervals. The scale error is 
defined as the difference between the measured and computed check base. Using the 
base line and adjusted angles the remaining sides of the triangles may be found and 
subsequently the co-ordinates of the control stations. 

Triangulation is best suited to open, hilly country, affording long sights, well clear of 
intervening terrain. In urban areas, roof-top triangulation is used, in which the control 
stations are situated on the roofs of accessible buildings. 

67 
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Figure 2.1 (a) Chain of simple triangles, (b) braced quadrilaterals and (c) polygons with central points 

2.1.1 Shape of the triangle 

The sides of the network are computed by the sine rule. From triangle ABC in Figure 
2.1(a) 

log b = log c + log sin B1 — log sin Ci 

The effect on side b of errors in the measurement of angles B and C is found in the usual 
way. Consider an error Sb in side b due to an angular error SB in the measurement of 
angle B, then 

Sb 
— = SB cot B 
b 

Similarly for an error SC in angle C 

— = -SCcotC 

(α) 

(b) 

(c) 
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If we regard the above errors as standard errors and combine them the result is 

% = {(σΒ cot B)2 + (ac cot C)2}> 
b 

Further, assuming equal angular errors, i.e. σΒ = ac = σ rad, then 

^ = *(cot2 B + cot2 C)i (2.1) 

Equation (2.1) indicates that as angles B and C approach 90°, the effect of angular 
error on the computed side b would be a minimum. Thus the ideal network for Figure 
2.1(a) would be to have very small angles opposite the sides which do not enter into the 
scale error computation, i.e. sides BC, AD, CE and DF. Such a network would not, 
however, be a practical proposition due to the very limited ground coverage, and the 
best compromise is the use of equilateral triangles where possible. If small angles are 
inevitable and cannot be fixed so as not to enter the scale computation, they should be 
measured with extra precision. 

Assuming now that B = C = 60° and σ" = ± 1", then as cot 60° = 3 ~* and σ rad « 
1/200 000 

°* 1 / 2 \ * 1 
b 200 000 \3J 245 000 

After n triangles the error will be tf times the error in each triangle 

" b 245 000 

Thus, after say nine triangles, the scale error would be approximately 1/82 000 This 
result indicates the need for maximum accuracy in the measurement of the base line and 
angles, as well as the need for regular check bases and well-conditioned triangles. 

It can be shown that when the angles are adjusted, equation (2.1) becomes 

γ = (j{f(cot2 B + cot B cot C + cot2 C)}* 

which theoretically shows no improvement in the scale error if B = C. 

2.1.2 General procedure 
(1) Reconnaissance of the area, to ensure the best possible positions for stations and 

base lines. 
(2) Construction of the stations. 
(3) Consideration of the type of target and instrument to be used and also the method 

of observation. All of these depend on the precision required and the length of sights 
involved. 

(4) Observation of angles and base-line measurements. 
(5) Computation—base-line reduction, station and figural adjustment, co-ordinates of 

stations by direct methods. 

A general introduction to triangulation has been presented, aspects of which will 
now be dealt with in detail. 
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2.1.3 Catenary base lines 

In order to achieve the accuracy required, base lines are measured using either steel or 
invar types in catenary, or EDM equipment. As EDM equipment becomes more 
sophisticated and accurate, the use of catenary methods will obviously become less 
popular. In fact the remarkable accuracies claimed by such short-range equipment as 
the Kern Mekometer would appear to render catenary methods obsolete. Nevertheless, 
catenary methods are still in use, and a thorough investigation of their associated 
systematic errors can only be beneficial to the student. 

Figure 2.2 illustrates the technique of measuring in catenary. The tape is suspended 
clear of the ground over the two measuring heads. The required tension is applied either 

Straining rod 

Anchor rod 

advance tr ipod 
arrying ^. A 
l e a s u r i n g ^ y \ 

2 

Figure 22 

by means of a spring balance attached to a ranging rod or by weights suspended over a 
pulley while the other end is anchored. Both ends of the tape are read off simultaneously 
against index marks on the measuring heads, at the exact instant the required tension is 
reached. The procedure is repeated several times until a sufficient sample of reliable 
results is obtained. To eliminate systematic errors, the temperature, tension, difference 
in height of the measuring heads, and if necessary the mean level of the line above 
Ordnance Datum (OD) are taken. Each bay of the line is then reduced to the horizontal 
as described in Sections 2.1.3.1 to 2.1.3.7 following. 

2.1.3.1 Standardization 

During a period of use, a tape will gradually alter in length for a variety of reasons. The 
amount of change can be found by having the tape standardized at either the National 
Physical Laboratory (NPL) (invar) or the Department of Trade and Industry (DTI) 
(steel), or by comparing it with a reference tape kept purely for this purpose. The tape 
may then be specified as being 30.003 m at 20°C and 10 kg straining mass (tension), or 
as 30 m exactly at a temperature other than standard. 

N.B. The tension applied to a tape should be expressed in newtons (N), the SI unit of 
force. The spring balances used in the field, however, are graduated in kilograms 
(kg), a unit of mass; hence the use of the term straining mass. 

Example 2.1. A distance of 220.450 m was measured with a steel band of nominal 
length 30 m. On standardization the tape was found to be 30.003 m. Calculate the 
correct measured distance, assuming the error is evenly distributed throughout the 
tape. 

yr Spring balance 

/^\*£l ^ / M e a s u r i n g heads. 
Applied 
tension 
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Error per 30 m = 3 mm 
.*. Correction for total length = ( ~"~~ I x 3 mm = 22 mm /220.450\ 

.·. Correct length is 220.450 + 0.022 = 220.472 m 

Student notes 
(1) Figure 2.3 shows that when the tape is too long, the distance measured appears too 

short, and the correction is therefore positive. The reverse is the case when the tape 
is too short. 

(2) When setting out a distance with a tape the rules in (1) are reversed. 
(3) It is better to compute Example 2.1 on the basis of the correction (as shown), rather 

than the total corrected length. In this way fewer significant figures are used. 

Tape too long-recorded measure (22m) too short 

fa 0 1,0 20 
2 2 m 

Length measured 

L 30 m 

0 1|0 2,0 3J> 
> 

JiQ. 

3 

. .ώ 
Tape too short-recorded measure UOm) too long 

Figure 2.3 

Example 2.2. A 30-m band standardized at 20°C was found to be 30.003 m. At what 
temperature is the tape exactly 30 m ? Coefficient of expansion of steel = 0.000 011/°C. 

Expansion per 30 m per °C = 0.000 011 x 30 = 0.000 33 m 
Expansion per 30 m per 9°C = 0.003 m 
.·. Tape is 30 m at 20°C - 9°C = 11°C 
Alternatively, using equation (2.2) where Δί = (ts — ta\ then 

ta KL + ts ^0.000 011 x30J + 2U C 

where ta = actual temperature and is = standard temperature. 
This then becomes the standard temperature for future temperature corrections. 

2.1.3.2 Temperature 

Tapes are usually standardized at 20°C. Any variation above or below this value will 
cause the tape to expand or contract, giving rise to systematic errors. The difficulty of 
obtaining the true temperature of the tape resulted in the use of invar tapes. Invar is a 
nickel-steel alloy with a very low coefficient of expansion. 

Coefficient of expansion of steel K = 11.2 x 10"6 per °C 
Coefficient of expansion of invar K = 0.5 x 10"6 per °C 
Temperature correction Ct — KLAt (2.2) 
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where L = measured length (m) and Δί = difference between the standard and field 
temperatures (°C). 

The sign of the correction is in accordance with the rule specified in (1) of the student 
notes mentioned earlier. 

The effect of an error in the measurement of temperature can be obtained by 
differentiating equation (2.2) 

SCt = KLÖAt 

thus if L = 30 m, SAt = 2°C and K = 11 x 10"6/°C 

ÖCt = 11 x 10~6 x 30 x 2 = 0.000 66 m 

which in 30 m = 1 in 45 000. 

2.1.3.3 Tension 

Generally the tape is used under standard tension, in which case there is no correction. 
It may, however, be necessary ih certain instances to apply a tension greater than 
standard. From Hooke's law 

stress = strain x a constant 

This constant is the same for a given material and is called the modulus of elasticity 
(£). Since strain is a non-dimensional quantity, then E has the same dimensions as 
stress, i.e. N/mm2. 

Direct stress _ AT CT 

Corresponding strain A L 

AT 
Λ C r = L x — (2.3) 

AT is normally the total stress acting on the cross section but as the tape would be 
standardized under tension, then AT in this case, is the amount of stress greater than 
standard. Therefore AT is the difference between field and standard tension. This value 
is normally measured in the field in kg and should be converted to newtons (N) for 
compatibility with the other units used in the formula, i.e. 1 kgf = 9.806 65 N. 

E is modulus of elasticity in N/mm2; A is cross-sectional area of the tape in mm2; L is 
measured length in m; and CT is the extension and thus correction to the tape length in 
m. As the tape is stretched under the extra tension, the correction is positive. 

Errors in tensioning can arise due to (i) index-error of the spring balance; (ii) reading 
error; (iii) graduation—balances are generally graduated to 0.2 kg only. From 
equation (2.3) 

. „ LOT 
T AE 

Assuming a tensioning error of ST = 0.5 kg, A = 3 mm2, E = 210 x 103 N/mm2 

(210 kN/mm2) and L = 30 m 

30 x 0.5 x 9.81 
·'· SCT = . „ n in. = 1 in 128 000 T 3 x 210 x 103 
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It can be seen from the derived equation that 6CT is directly proportional to ST and 
inversely proportional to A. Thus any increase in the tensioning error or decrease in the 
cross-sectional area will result in a directly proportional increase in SCT. Also as shown 
in the next Section, errors in the tension affect the sag correction. 

2.1.3.4 Sag 

When a tape is suspended between two measuring heads, A and J3, both at the same 
level, the shape it takes up is a catenary (Figure 2.4). If C is the lowest point on the curve, 

Figure 2.4 

then on length CB there are three forces acting, namely the tension T at 5, T0 at C and 
the mass of portion CB, where w is the mass per unit length and s is the arc length CB. 
Thus CB must be in equilibrium under the action of these three forces. Hence 

Resolving vertically 
Resolving horizontally 

T sin Θ = ws 
T cos Θ = T0 

tan Θ = ws 

For a small increment of the tape 

dx 
~ds' 

x ■ 

= cos Θ = (1 + tan2 

■J('-w)* 

When x = 0, 5 = 0, Λ 

Θ)-

K 

< - ( , ♦ 

= 0 

w2s2 

.'. X 

- i 
= 1 

wV 

in 

X = S — 
6Γ0

2 

The sag correction for the whole span ACB = Cs = 2(s — x) = 2 —=- J 
V67o / 

but s = L/2 

i.e. T c o s ö « T Ä T0 

C.= 
w2L3 w2I? 
24T2 24Γ2 for small values of Θ (2.4) 
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where w = mass per unit length (kg/m) 
T = straining mass (kg) 
L = recorded length (m) 

Cs = correction (m) 
N.B. In equation (2.4) care must be taken to ensure that T and w are in compatible 

units; thus T may remain in kg. 
As w = W/L, where Wis the total mass of the tape, then by substitution in equation 

(2.4) 
_ W2L 

24T2 (2.5) 

Although this equation is correct, the sag correction is proportional to the cube of the 
length. 

Equations (2.4) and (2.5) apply only to tapes standardized on the flat and are always 
negative. When a tape is standardized in catenary, i.e. it records the horizontal distance 
when hanging in sag, no correction is necessary provided the applied tension, say TA, 
equals the standard tension 7 .̂ Should the tension TA exceed the standard, then a sag 
correction is necessary for the excess tension (TA — Ts) and 

In this case the correction will be positive, in accordance with the basic rule. The sag y of 
the tape may also be found as follows: 

ay ws 
— = sin Θ « tan Θ — —, when Θ is small 
as T0 Cws . ws2 

If y is the maximum sag at the centre of the tape, then 
L wll 

S = 2 and y = W (27) 

Equation (2.7) enables w to be found from field measurement of sag, i.e. 
87> 

W~ L2 

which on substitution in equation (2.4) gives 
8y2 

C.—-£ (2.8) 

Equation (2.8) gives the sag correction by measuring sag y and is independent of w 
and T. The effect of error in tension can be obtained by differentiating equation (2.4) as 
follows: 
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Assuming ST = 0.5 kgf, w = 0.03 kgf/m, T = 10 kgf and L = 30 m, then 

q x 3 0 3 x 0 . 0 3 2 x 0 . 5 N 

24 x 103 <5Q = - ( ———. I = 1 in 30000 

This error will be compounded with the error in tension (p. 72), whilst errors in 
obtaining the weight and cross-sectional area of the tape should also be considered. 

2.1.3.5 Slope 

If the difference in height of the two measuring heads is h, the slope distance L and the 
horizontal equivalent D, then by Pythagoras 

D = (L2- h2^ (2.9a) 

Prior to the use of pocket calculators the following alternative approach was 
generally used, due to the tedium of obtaining square roots 

.•..-*-*Μ.-5Μ.-£-έ) 
OL + 8L3 Slope correction Ch = D - L = - ( — + 7̂3 ) (2.9b) 

The use of Pythagoras (equation (2.9a)) is advocated due to the small error that can 
arise when using only two terms of the above expansion on long lines measured by 
EDM. 

Considering errors in the measurement of h 

c^ höh , t. . 
oCh = (error directly proportional to h) 

M-i 

If L = 30 m, h = 0.500 m and Sh = 0.002 m, then 

_ 0.500x0.002 Λ . Λ Λ Λ Λ Λ Λ SCh = — = 1 in 900 000 

2.1.3.6 Altitude 

If the surveys are to be connected to the national grid (NG), the distances will need to be 
reduced to the common datum of that system, namely mean sea level (MSL). 
Alternatively, if the engineering scheme is of a local nature, distances may be reduced to 
the mean level of the area. This has the advantage that setting out distances on the 
ground are, without sensible error, equal to distances computed from co-ordinates in 
the mean datum plane. 

Consider Figure 2.5, in which a distance L is measured in a plane situated at a height 
H above MSL. 

By similar triangles M = — — x L 
R -+- H 

„ r w , RL , / , R \ LH 
.'. Correction CM = L — M = L— „ = L\ 1 R+H \ R+H R+H 
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centre Figure 2.5 

As H is negligible compared with R in the denominator 

C M = ^ (2.10) 

The correction is negative for surface work but may be positive for tunnelling or 
mining work below MSL. By differentiating equation (2.10) it is seen that the error in 
CM is directly proportional to the error in H. 

2.1.3.7 Scale factor (SF) 

This correction is required only when the survey is connected to the national grid. All 
distances measured on the ground should be reduced to MSL and then multiplied by 
the SF for the area, to transform them to grid distances on the transverse Mercator 
projection (see Section 2.12). Grid distances are divided by the SF to give distances at 
MSL. An approximate equation for SF is given in Section 2.14. 

2.2 ELECTROMAGNETIC DISTANCE-MEASUREMENT (EDM) 

Distance-measurement by electromagnetic means has virtually replaced the method of 
measuring base lines using steel or invar tapes. The advent of EDM equipment has 
completely revolutionized all surveying procedures and resulted in a change of 
emphasis and technique, by reason of the fact that distance can now be measured 
quickly and accurately, regardless of terrain conditions. Examples of resultant 
procedures are 

(a) The easy inclusion of many more base lines in triangulation for the greater control 
of scale error. 

(b) The use of trilateration in which all the sides of the network are measured. 
(c) The combination of triangulation with trilateration resulting in a procedure called 

triangulateration which produces very strong networks. 
(d) Traversing on a grandiose scale and with much greater control of swing errors. 
(e) Setting-out and photogrammetric control by polar co-ordinates from a single 

position. 
(f) Off-shore position fixing by such techniques as the Tellurometer Hydrodist System. 
(g) Three-dimensional trilateration from ground to air by, say, the Tellurometer 

Aerodist System. 
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EDM has not only resulted in new techniques, it has also enhanced the accuracy of 
linear measurement which is now commensurate with the most accurate forms of 
angular measurement. For instance, the Kern Mekometer quotes an accuracy of 
±(0.2 mm + 3.10"6D) for distances (D) up to 2.5 km. 

The latest developments in instrumentation have integrated electronic digital 
theodolites with EDM units, thereby providing a single instrument, called a total 
station, capable of performing most surveying and setting-out tasks with economy in 
manpower, time, speed and reliable accuracy, plus the provision of a data bank. The 
automatic recording units of these instruments can transfer all data, including point 
identification, on to punched or magnetic tape or electronic data logger for subsequent 
interfacing with micro or main frame computers. The computers may in turn be 
interfaced to a plotter for the automatic production of plans. 

2.2.1 Classification of EDM instruments 

Equipment in use at the present time falls into three broad categories of operational 
range 

(a) Short-range, electro-optical instruments which use amplitude modulated light, 
either white light or infra-red for measuring distances up to 5 km. 

(b) Medium-range, microwave or electro-optical with ranges up to 25 km. 
(c) Long-range radio-wave instruments capable of ranges up to and beyond 100 km. 

The engineer is generally concerned only with the short-range equipment which is 
simple to use and provides a digital readout of the slope distance measured. This is the 
most basic output supplied and is common to all the wide variety of instruments 
available. Further refinements are the output of horizontal and vertical distances from 
some instruments, which sense the angle of inclination and apply appropriate 
corrections to the slope distance. 

2.2.2 Measuring principle 

Although there is a wide variety of equipment available the basic principle of operation 
is the same. Electromagnetic waves are transmitted from the instrument to a retro-
reflector, which instantly returns them to the transmitting instrument. The instrument 
measures the time taken for the waves to travel this double path. Then, from distance 
(D) = velocity (V) x time (t), the slant distance between the instrument and reflector is 
obtained. 

However, as the velocity of light (C) is equal to 299 792.5 ± 0.4 km/s (in vacuo), t is 
extremely small. Indeed for D = 1 km, t would be 6 x 10~6 s and to resolve D to 1 mm 
would require a time interval measurement of 6 x 10 "12 s. To facilitate this, recourse is 
made to a technique called phase measurement, which measures the amount by which 
the reflected wave is out of phase with the transmitted wave, when it is received back at 
the instrument (Figure 2.6). 

Any periodic phenomenon which oscillates regularly between maximum and 
minimum values may be analysed as a simple harmonic motion. With reference to 
Figure 2.6, if P moves in a circle with a constant angular velocity W, the radius vector R 
makes a phase angle φ with the x-axis. A graph of the y values equal to R sin φ plotted 
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Instrument 
Reflector 

I 

Double path measurement = 2D 
Instrument 

Figure 2.6 

against φ produces the sine wave illustrated. When φ = π/2 the plotted point is at B, for 
π at C, 1.5π at D and 2π (360°) back to A, completing a single wavelength (A). The time 
taken for R to make one complete revolution or cycle is the period of the oscillation and 
is represented by T seconds. Thus since R moves with a constant angular velocity, the 
phase angle φ may be used to measure time or any fraction of time. The number of 
revolutions per second at which the radius vector rotates is called the frequency / and is 
related to the wavelength λ by the equation 

V = fk (2.11) 

where λ = the wavelength in m, / = the frequency of the energy in hertz and V = the 
velocity of electromagnetic energy in m/s. 

The velocity of electromagnetic energy in vacuo is designated by C and V= C/n, 
where n is the atmospheric index of refraction. 

With reference to Figure 2.6, it can be seen that the distance measured from 
instrument to reflector and back is 

2D = Νλ + δλ (2.12) 

where N = an integer number of wavelengths (X) and δλ = a fraction of the 
wavelength = (φ/2π)λ. 

EDM instruments measure only the fraction of the wavelength, they do not measure 
the number of wavelengths. This is obtained by transmitting energy of lower frequency 
and larger wavelength. For example, in Figure 2.6, using λΑ the double-path 
measurement is 3.75 wavelengths. The instrument, however, will simply record the 
phase angle or phase shift measurement of 0.75, i.e. the difference in phase of the 
outgoing and reflected incoming waves. 

If the distance is now measured using λΒ, which is four times greater than λΑ, the 
phase is 0.95. As the relationship of A to B is known then 0.95 x 4 = 3.80 and gives the 
whole number of wavelengths = 3. The smaller wavelength will give a more accurate 
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measurement of the remaining portion of the distance, thus total distance = 3 + 
0.75 = 3.75/1,4 and knowing the value of λΑ in units of length, the distance is ascertained. 
This then is the basic principle of EDM measurement called 'phase comparison' and 
may be expressed from equation (2.12) as 

ϋ = Ν(λ/2) + ^(λ/2) (2.13) 
2π 

from which it can be seen that A/2 may be considered as the basic measuring unit. 
Implicit in the above explanation is the assumption that λ is constant and known. 

However, in most EDM instruments (with the exception of the Kern Mekometer 3000) 
this is not so, only the frequency / is known. However, this is related to λ as follows: 

The group refractive index ng of the atmosphere through which the measuring beam 
passes is defined as the ratio of the velocity of electromagnetic energy in vacuo (C), over 
the velocity in the atmosphere (K), i.e. 

ng = C/V thus as V = fk Λ λ = C/fng 

and λ/2 = C/2fng (2.14) 
Substituting in equation (2.13) produces the distance-measuring equation 

D = N£~ + t^T + * (2.15) 
2fng 2n2fng 

where k = the instrument and prism constants. 
The instrument constant is the difference between the instrument centre, as set up 

vertically over the survey station, and its measuring centre which is set at a different 
position in the instrument. The prism constant is the added distance which the beam 
travels through the prism on its way back to the transmitter. Both these constants are 
automatically corrected for in the measuring process. However, for precise work, or 
when a non-standard prism is used, it will be necessary to determine the constants 
experimentally. 

Equation (2.15) also illustrates the importance of group refractive index in the 
measuring process and thus the need to take meteorological readings of temperature 
and atmospheric pressure, to achieve accurate distance measurements. 

2.2.3 Reduction of EDM lines 

All EDM instruments measure slant length, i.e. the distance from instrument to prism, 
which must be reduced to the horizontal equivalent, or perhaps its grid equivalent at 
mean sea level. The corrections are as follows: 

(1) Atmospheric effects 
The velocity of electromagnetic waves is affected by the atmospheric conditions 
through which they travel during the measuring process. Thus, from equation (2.11), as 
the frequency / is fixed, the wavelength λ will vary directly as V and the distance 
recorded by the instrument will require a correction, i.e. 

V= C/n, 
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In practice it is impossible to obtain group refractive index (ng) for the atmosphere 
throughout the path of the measuring beam. An assessment is therefore made, based on 
temperature and pressure measurements at the instrument and prism (humidity is 
insignificant in the case of light wave instruments). The correction, in parts per million 
(ppm) of the distance measured is then taken from a nomogram supplied with the 
equipment. In some cases the atmospheric correction may be dialled into the 
instrument and the measured length automatically corrected. 

(2) Slope correction 
For the lengths generally encountered in engineering, the slope length, corrected for 
atmospheric conditions, is reduced to the horizontal by Pythagoras or by the cosine of 
the vertical angle. For maximum accuracy, the vertical angle should be corrected for 
the effects of curvature and refraction (refer Section 2.8). 

In some cases the equipment automatically corrects for the vertical angle and 
displays the horizontal and vertical distances. The vertical angle used, however, is not 
always corrected for curvature and refraction. Where it is corrected, the correction is 
based on standard atmospheric conditions which may be different from those 
prevailing at the time of measurement. Where maximum accuracy is required, these 
facts should be considered. 

(3) Altitude correction 
Where the survey is reduced to a common datum, such as mean sea level or mean site 
level, the altitude correction (equation (2.10)) is applied as in Section 2.1.3. 

(4) Local scale factor (LSF) 
If the survey is to be connected into the national grid the horizontal lengths at MSL 
must be multiplied by the LSF (refer Section 2.14). 

The above corrections are generally all that is required for the majority of lengths 
encountered in engineering surveys. However, for lengths in excess of 10 km it may be 
necessary to adopt the following approach: 

(5) Chord/arc correction 
Because the distance is measured {Figure 2.7) in one long length D, reduction to MSL 
gives the chord distance K, which must then be transformed to its equivalent spheroidal 
distance S. In triangle ABE using the cosine rule 

± {R+Htf + iR+Htf-D2 

cos ώ = ψ 2(R + H2)(R+H1) 

but cos φ = 1 - 2 sin2(</>/2), and sin(0/2) = K/2R 

\2R2) 2(R+H2)(R+Hi) 

from which 

and, if h, equal to the difference in level (H2 — HJ of A and B, is substituted 

K = R P - (H2 - H^jD + (H2 - Η ρ η ί 
L {R+H^R+HJ J 
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E = Earth's centre 

(D-h)(D + h) 

m+m 
Θ3 90s 

Now s in - 1 0 = 0 + — + — 

(2.16) 

(for small values of φ) 

.'. S = K + I 2 I (further terms are negligible) (2.17) 

Equation (2.17) may be further refined to allow for the fact that the electromagnetic 
waves travel in a curved path of radius greater than that of the Earth. 

For radio waves it has been suggested that 4R/3 should be used giving 

S = K + ( ^ τ τ | (2.18) 

(2.19) 

43R' 

and for light waves: 

Figure 2.7 

Φ s . _.κ 
then — = — = sin — 

2 2R 2R 

S1D \2R~) " 2R + SR3 x 3! + 32Ä$x5! 

S _ K K3 K5 

" 2Ä ~ 2R + 48R3 + 3840R5 
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The value of 38 for light waves is dependent upon the coefficient of refraction at the 
time of measuring (see Section 2.8.3). For lines of up to 10 km in length, the chord/arc 
corrections are less than 1 mm. 

The above reduction may also be carried out as follows: 

(a) Reduce D to the horizontal Di9 using Pythagoras; 
(b) Using Du reduce it to K at mean sea level using equation (2.10) where 

H = —2~~ 

this is now the chord length K; 
(c) To K add the chord/are correction, i.e. K3/24R2, refined as necessary for curvature, 

giving S. 

2.2.4 Sources of error 

Sources of error in the measurement of distance by EDM can be split into three basic 
categories, namely: 

(1) Zero errors, or errors independent of the distance measured, 
(2) Cyclic errors, or errors which vary in a periodic fashion with distance measured, 

and 
(3) Scale error, or error proportional to the distance measured. 

These in turn may be split into non-instrumental and instrumental. 
An examination of the basic measuring equation (2.15) shows the main error sources 

to be: 

(a) The modulation frequency (/), 
(b) The group refractive index (ng), 
(c) The measurement of the phase angle (0), and 
(d) The additive constant (fe), 

where (a) and (b) form the main sources of instrumental and non-instrumental scale 
error, (c) the main instrumental source of cyclic error and (d) the main cause of zero 
error. 

Other error sources which contribute to the final accuracy of the measurement 
include centring errors, pointing errors and errors in the additional field data necessary 
to reduce the measured slope length to its final horizontal length on a projection. 

The standard error of distance (σ0) measured by EDM is frequently quoted as 

±σ0=±[Α2+Β2γ 
where A = zero error for EDM and B = proportional error for EDM in ppm of the 
distance measured. 

An average value for most short-range equipment is ±(5 mm + 5 ppm). 
However, if the distance is to be reduced to the horizontal on, say, the national grid, a 

more correct value for standard error would be 
±σ0 = ±[A2 + B2 + E2 + F2 + G2]* 

where E = errors due to slope reduction, F = error due to reduction to MSL and G = 
error due to reduction to the grid by the application of LSF. 



Control surveys 83 

It is thus important to examine all the error sources, not only for the better utilization 
of the equipment but also, in network adjustment, for the correct weighting of the 
distances in relation to the angles. 

2.2.4.1 Modulation frequency (f) 

As previously shown, the frequency / is directly related to the wavelength λ; thus, error 
in the modulation frequency will result in a proportional error in the distance 
measured. 

The modulation frequency is fixed by means of a quartz crystal oscillator which 
ensures that the frequency remains stable to within ±5ppm over an operational 
temperature range of — 20°C to + 50°C. The modulation frequency can, however, vary 
from its nominal value due to incorrect factory setting, ageing of the crystal and lack of 
temperature stabilization. Factory setting of the frequency should be within ±1 x 10 ~6 

of the nominal value. Ageing of the crystals will result in frequency errors of about 
1 x 10"6 per year, gradually decreasing with time (Hodges 1975). Since most 
instruments have crystals which operate at ambient temperature they claim no warm-
up delay. However, tests have shown (Hodges 1975) that for precise work a warm-up 
period should be allowed if errors are not to be incurred. 

The recommended method of determining the scale factor of an instrument is by 
measuring the modulation frequency direct, using an electronic frequency counter 
tuned to one of the standard frequencies, such as Droitwich (call sign MSF) on 
200 kHz, which are continuously broadcast. 

The alternative is to compare the instrument with another whose modulation 
frequency is known to be accurate. The procedure is to measure both long and short 
base lines (say to 1.5 km and 100 m) with both instruments at the same time. The 
difference in the measured length of the short line determines the difference in the zero 
constant for the two instruments. Then the measurements of the long lines are corrected 
accordingly and any residual discrepancy is attributed to the modulation frequency. 
Care must be taken to ensure equal instrument heights and the procedure repeated 
several times to ensure a precise mean value. Meteorological effects are common to 
both instruments and therefore need not be considered. 

The correction for frequency error is equal to 

Nominal frequency — Actual frequency 1 6 

Nominal frequency 
x 106 ppm (2.20) 

If it is suspected that frequency errors exist, the instrument should be returned to its 
manufacturer for adjustment. 

2.2.4.2 Refractive index (ng) 

The ratio between the velocity of light in vacuo and the atmospheric velocity is 
expressed by the atmospheric refractive index n. This value is a constant dependent 
primarily an atmospheric temperature and pressure and frequently expressed as 
(1 + 10~6N). 

It is unfortunate that various instruments adopt different values for N. For instance 
the modulation frequency chosen for the Tellurometer CD6 results in a correct direct 
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readout of distance when N is 274 (i.e., n = 1.000 274). This corresponds to the 
reasonably normal conditions at sea level in temperate countries of 1013 mb of 
atmospheric pressure and ambient temperature of 20°C. However, for the Wild DI10 a 
value of N = 282 is used. Such considerations are important when writing computer 
programs for EDM reduction and when using the nomograms supplied with the 
equipment. For instance at 760 mm/Hg and 20°C the DI 10 nomogram correction is 
+ 8 mm, whilst the CD6 correction is zero. Thus nomograms supplied with various 
instruments are not interchangeable. 

The refractive index of the dry atmosphere at standard temperature and pressure 
(0°C and 760 mm/Hg) is given by the Barrel and Sears (1939) formula adopted by the 
International Association of Geodesy (IAG) in 1963. Strictly speaking the formula 
applied only in the visible range and is not corrected for dispersion effects. 

(No - 1) x 106 = 287.604 + 1.6288A"2 + 0.0136/T4 (2.21) 
where λ = the wavelength of the electromagnetic wave in micrometres (μιη) and No = 
absolute refractive index. 

When the light is not homogeneous, as in the case of visible light and infra-red EDM 
instruments, the value for group refractive index (ng) should be used and is equal to 

(ng - 1) x 106 = 287.604 + (3 x 1.6288)/T2 + (5 x 0.0136)/T4 

For λ = 0.90 μιη, ng = 1.000 293 7, whilst for λ = 0.93 μπι, ng = 1.000 293 3. 
The refractive index of the dry atmosphere is proportional to barometric pressure 

and inversely proportional to absolute temperature, the effect of water vapour 
generally being regarded as negligible for light-wave instruments. Of the three possible 
sources of error, temperature has the greatest influence. For instance, a 1 ppm increase 
in ng9 and hence a 1 ppm change in the measured distance, will result from a change of 
— 1°C in temperature, + 3.4 mb in atmospheric pressure and — 26 mb in water vapour 
pressure (Hodges 1980). 

In the general situation the atmospheric correction is taken from nomograms, tables 
or special refractive index slide rules. However, if maximum accuracy is required the 
atmospheric correction must be computed from first principles. Manufacturers 
generally quote the formula used in the construction of the nomogram, which is in itself 
an approximate formula based on an average value for humidity. It has been shown 
(Curl 1975) that using the formula or nomogram can result in an error of approximately 
0.7 ppm compared with computing from first principles. This fact is also significant in 
those instruments which permit the dialling-in of refractive index from the instrument 
panel. 

The importance of the atmospheric correction is indicated above and is clearly 
dependent on the accuracy with which temperature and pressure, along the line of 
measurement, can be obtained. Generally one assumes that the mean of meteorological 
readings taken at the instrument and reflector, represents average meteorological 
conditions along the wave path. Hodges (1975) indicates that on a 3-km test line, the 
error in the above assumption was +2°C and —2 mm Hg. Furthermore, laboratory 
calibration of the barometers showed a further error of —4 mm Hg, producing a 
combined error of 12 mm in 3 km. Thus, if this error is to be kept to a minimum it is 
imperative that all thermometers and barometers used should be carefully calibrated 
both before and after measuring. At the present time there is no easy solution to this 
difficult problem of accurately assessing meteorological conditions over the actual 
measuring path. It is imperative therefore if error from this source is to be minimized 
that the following procedure be adopted: 
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(a) Temperature and pressure measurement should be taken at each end of the 
measured line. 

(b) The above measurements should be taken as high as possible (at least three metres 
above the ground) to avoid ground radiation effects and to reflect properly the mid-
line meteorological conditions. 

(c) The above measurements should be synchronized with the EDM measurements. 
(d) If possible, mid-line meteorological readings should be taken. 
(e) Thermometer and barometers should be of the highest quality and carefully 

calibrated against a reliable standard, before and after use. 
(f) Ground grazing lines should be avoided. 

A further effect of refraction is that of bending the measuring beam. This is negligible 
in engineering surveys, about 3 mm in 20 km (Hodges 1980), and will not be considered 
further. 

2.2.4.3 Phase measurement error (0) 

As already shown, the measurement of the phase difference between the transmitted 
and received waves enables the fractional part of the wavelength to be determined. 
Thus, errors in the measurement of phase difference will produce errors in the measured 
distance. Phase errors are cyclic and not proportional to the distance measured, and 
may be non-instrumental and/or instrumental. 

The non-instrumental cause of phase error is by spurious signals from reflective 
objects illuminated by the beam. Normally the signal returned by the reflector will be 
sufficiently strong to ensure complete dominance over spurious reflections. However, 
care should be exercised when using vehicle reflectors or Scotchlite for short-range 
work. 

The main cause of phase error is instrumental and derives from two possible sources. 
In the first instance if the phase detector were to deviate from linearity around a 
particular phase value, the resulting error would repeat each time the distance resulted 
in that phase. Excluding gross malfunctioning, the phase readout is reliably accurate, so 
maximum errors from this source should not exceed two or three millimetres. The more 
significant source of phase error arises from electrical cross-talk, or spurious coupling, 
between the transmit and receive channels. This produces an error which varies 
sinusoidally with distance and is inversely proportional to the signal strength. 

Cyclic errors in phase measurement can be determined by observing to a series of 
positions distributed over a full wavelength. A bar or rail accurately divided into 10-cm 
intervals over a distance of 10 m would cover the requirements of most short-range 
instruments. Details of such an arrangement are given in Hodges (1968). A micrometer 
on the bar capable of very accurate displacements of the reflector of ±0.1 mm over 
20 cm would enable any part of the error curve to be more closely examined. 

The error curve plotted as a function of the distance should be done for strong and 
weakest signal conditions and may then be used to apply corrections to the measured 
distance. For the majority of short-range instruments the maximum error will not 
exceed + 5 mm. 

2.2.4.4 Additive constant (k) 

The additive constant is equal to the eccentricity of the optical and physical centres of 
both instrument and prism. Zero error consists of changes in the additive constant and 
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is not proportional to distance. The claimed accuracy of any EDM measurement 
cannot be better than that with which the additive constant is known. 

Non-instrumental sources of zero error are centring of the instrument and reflector 
above the survey stations, and incorrect pointing of the instrument. Provided care is 
exercised when centring, and checked throughout the measuring process to avoid drift 
due to tripod settlement, this random error should not exceed ± 1 mm. The pointing 
error results from beam divergence causing the beam diameter to be greater than the 
reflector. As a result, the reflector samples only a portion of the radiated energy, the 
particular portion depending on the pointing of the instrument. It is a characteristic of 
the light-emitting diode that small time delays exist between the radiations from 
different areas of the collimated beam. The additive constant will therefore depend to 
some extent on the exact alignment of the instrument relative to the reflector. This error 
is most likely to occur at distances of less than 50 m. The telescope cannot be used for 
pointing since the visual aiming point will not coincide with the maximum return 
signal. However, since the signal must be reduced to prevent overloading, pointing can 
be done by using the signal monitor meter. 

The instrumental errors corresponding to centring and pointing are mechanical 
misalignment and telescope misalignment. Mechanical misalignment results in the 
instrument not rotating about a true vertical axis when correctly levelled. Telescope 
misalignment will of course result in pointing error and subsequent zero error for the 
reasons already outlined. 

In addition to the systematic errors detailed above, normally-distributed random 
errors due to electrical noise occur in the system. As this error is inversely related to 
signal strength, it will be small on reasonably strong signals. However, on weak signals 
it may be very significant. This error may be reduced by using more reflectors to 
increase the signal where necessary, or by taking the average of a number of readings (n) 
and thereby reducing the error by a factor of n1. 

Finally, an error of a few millimetres may be caused by a too powerful signal. Most 
instruments have aperture-reduction facilities to preclude this source of error. 

The additive constant (fe) can be determined using three points A, B and C in line, and 
measuring the distances AB, BC and AC. If D is the measured length and L the true 
length then 

DAB
 = LAB + k 

"BC
 = LBC + k 

DAC
 = LAB + LBC + k 

which on solution gives DAB + DBC — DAC = k (2.22) 

Greater accuracy will be obtained by measuring many more sections d1,d2" · dn and 
the sum length D, resulting in 

k = D- £ dJ{n-\) (2.23) 
i = l 

A more rigorous approach is to measure all combinations of the lengths 
(Schwendener 1972) and adjust by least squares to get the most probable value for k. 

The additive constant should always be determined for a definite instrument 
reflector combination. 
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2.2.4.5 Measurement of vertical angles 

The errors considered above refer to the slant length of the line. However, as the 
reduced horizontal distance is ultimately required, one must consider the errors 
resulting from the reduction processes. 

The most probable method of reducing to the horizontal is by means of the vertical 
angle (Θ), the appropriate correction (c) being equal to L — L cos 0, where L is the 
corrected slant length. 

From this equation Sc/δθ = L sin Θ 
and <50" = 6c x 206 265/L sin Θ (2.24) 

For L = 1000 m, Θ = 5° 45' and Sc = 1 mm, then δθ = 2.06" which implies that 
under the specified conditions one would need to measure the vertical angles very 
carefully indeed. The use of a 1" theodolite is therefore imperative and, if one accepts a 
standard error of the vertical angle for one double-face observation of ±4.5" to ±6", 
then at least two double-face observations are required. Further examples assuming the 
same measured distance are for θ = Γ, δθ = 11.8", and for Θ = 20°, δθ = 0.6". The 
measurement of the vertical angles is therefore very critical and all possible error 
sources must be considered including corrections for curvature and refraction (refer 
Section 2.8.3). 

If the reduction is carried out using the difference in height (h) of the two measuring 
sources, the first term of the correction may be used for a comparable analysis, i.e. 

c = h2/2L 

and öc/öh = h/L (2.25] 
Then for L = 1000 m, the equivalent of Θ = 5° 45' is h = 100 m and for öc = 1 mm as 
previous, oh = 10 mm. This order of accuracy could be generally obtained by normal 
levelling procedures. Further examples are for h = 1 m, oh = 1 m and for h = 10 m, 
oh = 0.1 m indicating a direct increase in precision with increase in height. Thus it can 
be seen that obtaining height differences is not as critical as obtaining vertical angles. It 
should be noted that whilst h2/2L has been used in the error analysis, Pythagoras 
should be used to reduce the slant length to the horizontal. 

Errors in the measurement of the vertical angle can be classified as either 
instrumental or non-instrumental. The instrumental causes are well documented and 
have been covered in Volume 1. The main non-instrumental cause is the difficulty of 
assessing the effect of refraction on the measured angle. The effect of centring errors is 
negligible, a combined centring error of instrument and target of ± 50 mm would 
produce an error of only ± 1" on a vertical angle of 5° over a distance of 1000 m (Curl 
1975). Similarly, in the measurement of reciprocal angles it is necessary to measure 
instrument and target heights to obtain true reciprocity. An error of ± 5 mm in any one 
of these heights would produce an error of ± 1" under the conditions already specified. 

Due to the difficulty of obtaining a truly representative model of the atmospheric 
conditions through which the line of sight passes, it is doubtful if the high accuracies 
required of the vertical angles is ever achieved. It is therefore reasonable to assume that 
there will be a fall-off in the accuracy of the measured slope distance when reduced to 
the horizontal. This fall-off will be substantially reduced if levels rather than vertical 
angles are used. However, since it is quicker, easier and much more economical to use 
vertical angles then every precaution should be adopted in their measurement. 
Wherever possible simultaneous reciprocal angles should be observed. It should 
always be born in mind that those instruments which automatically reduced the 
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measured distance to the horizontal, do so using vertical angles which are completely 
uncorrected for refraction, or corrected using a standard value for the coefficient of 
refraction, which may be very different to the prevailing value at the time of 
measurement. 

2.2.4.6 Reduction to the national grid projection plane 

Many engineering networks are connected to the OS national grid; a process which 
involves reducing the horizontal lengths of the network to mean sea level (MSL) and 
then to the projection using local scale factors (LSF). 

Reduction to MSL is carried out using 

€Μ = ψ (2.10) 

where CM = the altitude correction, H = the mean height of the line above MSL or the 
height of the measuring station above MSL and R = mean radius of the Earth 
(6.38 x 106 m). 

Differentiating equation (2.10) gives 6C = LSH/R (2.26) 

and for L = 1000 m, öC = ±1 mm, then δΗ = ±6.38 m. As Ordnance Survey tertiary 
bench marks are guaranteed to ± 10 mm, and the levelling process is of more than 
comparable accuracy, then the errors from this source may be ignored. 

Reduction of the horizontal distance to MSL theoretically produces the chord 
distance, not the arc or spheroidal distance. However, the chord/arc correction is 
negligible at distances of up to 10 km and will not therefore be considered further. 

To convert the spheroidal distance to grid distance it is necessary to calculate the 
LSF and multiply the spheroidal distance by it. The LSF changes from point to point. 
In the worst case it changes from one side of a 10-km square to the other by about 6 
parts in 100 000 (Ordnance Survey 1950). Thus the value for the middle of the square 
would be in error by approximately 1 in 30 000. 

For details of scale factors, their derivation and application, refer to Section 2.14. 
The following approximate formula for scale factors will now be used for error 

analysis, Le. 

F = F0{l + (E2J2R2)} (2.27) 

where Em = the NG easting of the mid-point of the line—4 000 000 m 
F0 = the scale factor at the central meridian = 0.999 60127 
R = the mean radius of the Earth (6.38 x 106 m) 

Then the scale factor correction is C = LF0{1 + {E^/IR2)} - L 

and SC/SEm = LF0(EJR2) (2.28) 

Then for L = 1000 m, SC = ± 1 mm and Em = 120 km, SEm = ±333 m; thus the 
accuracy of assessing one's position on the NG is not critical. Now, differentiating with 
respect to R 

SC/SR = LF0El/R3 (2.29) 

and for the same parameters as above, SR = ± 18 km. The value for R = 6.38 x 106 m 
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is a mean value for the whole Earth and is accurate to about 10 km between latitudes 
30° and 60°, while below 30° a more representative value is 6362 km. 

It can be seen therefore that reduction to MSL and thereafter to NG will have a 
negligible effect on the reduced horizontal distance. 

2.2.4.7 Eccentricity errors 

These errors may arise from the manner in which the EDM equipment is mounted on 
a theodolite and the type of prism used. 

(1) Consider telescope-mounted EDM used with a tilting reflector which is offset the 
same distance, h, above the target as the centre of the EDM is above the line of sight 
of the telescope (Figure 2.8). 

Figure 2.8 

In this case the measured distance S is equal to the distance from the centre of the 
theodolite to the target and the eccentricity e is self-cancelling at instrument and 
reflector. Hence D and AH are obtained in the usual way without further correction. 

(2) Consider now telescope-mounted EDM with a non-tilting reflector, as in Figure 
2.9. 

Figure 2.9 



90 Control surveys 

The measured slope distance S will be greater than S' by length AB = h tan a. If a 
is negative, S will be less than S' by h tan a. 

Thus if S is used in the reduction to the horizontal D will be too long by AF = 
h sin a when a is positive, and too small when a is negative. 

If we assume an approximate value of h = 115 mm then the error in D when 
a = 5° is 10 mm, at 10° it is 20 mm and so on to 30° when it is 58 mm. The errors in 
AH for the above vertical angles are 1 mm, 14 mm and 33 mm, respectively. 

(3) Instruments mounted on a yoke on the theodolite are generally used with non-
tilting reflectors and offset target (Figure 2.10). As shown, there is no eccentricity 
error as the measuring centre of the EDM unit coincides with the axis of tilt. 

If used with a tiltable reflector there will be an eccentricity error e = h tan a on 
the slope distance as in the previous example. However, as in this case the prism is 
tilting, the slope distance will be too small when a is positive and vice versa. 

(4) If yoke-mounted EDM is used with a reflector, the centre of which is also the target 

Figure 2.10 

(Figure 2.11), then eccentricity error results because the measured angle of elevation 
a is not that of the measured distance S. 

In triangle ABC h/sin Θ = S/sin(90° - a) 

.'. sin Θ = h cos a/5 

Thus, having obtained a value for 0, the horizontal distance D is obtained from 

D = S c o s ( a - 0 ) (2.30a) 

when a is positive. 
For an angle of depression, i.e. when a is negative 

D = Scos(a + 0) (2.30b) 

(5) When the EDM unit is co-axial with the telescope line of sight and observations are 
direct to the centre of the reflector, there are no eccentricity corrections. 
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Figure 2.11 

WORKED EXAMPLES 

Example 23. A base line was measured in catenary in four lengths giving 30.126, 
29.973, 30.066 and 22.536 m. The differences of level were respectively 0.45, 0.60, 0.30 
and 0.45 m. The temperature during observation was 10°C and the straining mass 
15 kg. The tape was standardized as 30 m, at 20°C, on the flat with a straining mass of 
5 kg. The coefficient of expansion was 0.000 011 per °C, the mass of the tape 1 kg, the 
cross-sectional area 3 mm2. E = 210 x 103 N/mm2 (210 kN/mm2), gravitational 
acceleration g = 9.806 65 m/s2. 

(a) Quote each equation used and calculate the length of the base. 
(b) What tension should have been applied to eliminate the sag correction ? (LU) 

(a) As the field tension and temperature are constant throughout, the first three 
corrections may be applied to the base as a whole, i.e. L = 112.701 m. 

Tension 

V_/y 
LAT 112.701x10x9.806 65 
~ÄE~ 3 x 210 x 102 +0.0176 

Temperature 

C, = LKAt = 112.701 x 0.000 011 x 10 = 

Sag 

LW2 112.701 x l 2 

C.= 

Slope 

24Γ2 24 x 152 

C» = 2T = 2^30 (°·452 + °·602 + °·3°2) + 272Τ516 

-0.0124 

-0.0210 

-0.0154 

+0.0176 -0.0488 
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Therefore Total correction = —0.0312 m 
Hence Corrected length = 112.701 - 0.0312 = 112.6708 m 
N.B. In the slope correction the first three bays have been rounded off to 30 m, the 

resultant 2nd order error being negligible. 

(b) To find the applied tension necessary to eliminate the sag correction, equate the 
two equations 

AT W2 

AE 24T2 

where AT is the difference between the applied and standard tensions, i.e. (TA — Ts). 

. (TA-TS) W2 

2 AE 24TA 

. - AEW2
 Λ ··· Ϊ? - 7?TS - - ^ - = 0 

Substituting for Ts, W, A and E, making sure to convert 7̂  and W to newtons 
gives T} - 49T2 - 2 524 653 = 0 
Let TA = (T + x) 

then (Γ + x)3 - 49(T + x)2 - 2 524 653 = 0 

49T2(l + |Γ
,) - 2 524 653 = 0 

Expanding the brackets binomially 

M 1 + TI " 4 9 7 \ 1 + ~ ) " 2 524 653 = ° 
.*. T3 + 3T2x - 49T2 - 9STx - 2 524 653 = 0 

2 524 6 5 3 - Γ3 +49Γ2 

x = 3T2 - 98T 
assuming T = 15 kgf = 147 N, then x = 75 N 

.·. at the first approximation TA = (T + x) = 222 N 

Example 2.4. A base line was measured in catenary with a tape of nominal length 30 m. 
The tape measured 30.015 m when standardised in catenary at 20°C and 5 kg straining 
mass. If the mean reduced level of the base was 30.50 m OD, calculate its true length at 
mean sea level. 

Given: mass per unit length of tape = 0.03 kg/m (w); density of steel = 7690 kg/m3 

(p); coefficient of expansion = 11 x 10"6 per °C (K); E = 210 x 103 N/mm2; gravita-
tional acceleration g = 9.806 65 m/s2; radius of the Earth = 6.4 x 106 m (R). (KP) 



Control surveys 93 

Bay Measured length 
(m) 

Temperature 
(°C) 

Straining mass 
(kg) 

Difference in level 
(m) 

1 30.050 
2 30.064 
3 30.095 
4 30.047 
5 30.041 

Standardization 

21.6 
21.6 
24.0 
24.0 
24.0 

5 
5 
5 
5 
7 

0.750 
0.345 
1.420 
0.400 

Error/30 m = 0.015 m 
Total length of base = 150.297 m 

150.297 
.'. Correction = ——— x 0.015 = 

30 

Temperature 

Bays 1 and 2 Ct = 60 x 11 x 10"6 x 1.6 = 0.0010 m 

Bays 3, 4, 5 Ct = 90 x 11 x 10"6 x 4 = 0.0040 m 

(2nd order error negligible in rounding off bays to 30 m) 

Tension 

LAT 

+ 0.0752 

+0.0050 

Bay 5 only \-/ΓΓ 

AE 
, changing AT to newtons 

where cross-sectional area 

0.03 

A = 

x 106 = 4 mm2 

V^sf ' 

7690 

_ 30 x 2 x 9.81 

" 4 x 210 x 103 

Slope 

C„ = 
1 

2L 2 x 30 
(0.7502 + 0.3452 + 1.4202 + 0.4002) = 

The 2nd order error in rounding off to 30 m is negligible in 
this case also. However, care should be taken when many 
bays are involved, as their accumulative effect may be 
significant. 

Sag 

Bay 5 only C.= z-V 
U2 Ti) 24 

303 x 0.032 

24̂  
1_ 

5T 71 

+0.0007 

-0.0476 

+0.0006 
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Altitude 

LH _ 150 x 30.5 

~R~~ 6.4 xlO6 CM = — = ^ ^ = -0.0007 

+0.0815 -0.0483 

Therefore Total correction = +0.0332 m 
Hence Corrected length = 150.297 + 0.0332 = 150.3302 m 

Example 2.5. (a) A standard base was established by accurately measuring with a steel 
tape the distance between fixed marks on a level bed. The mean distance recorded was 
24.984 m at a temperature of 18°C and an applied tension of 155 N. The tape used had 
recently been standardized in catenary and was 30 m in length at 20°C and 100 N 
tension. Calculate the true length between the fixed marks given: total mass of the 
tape = 0.90 kg; coefficient of expansion of steel = 11 x 10~6 per °C; cross-sectional 
area = 2 mm2; E = 210 x 103 N/mm2; gravitational acceleration = 9.807 m/s2. 

(b) At a later date the tape was used to measure a 30-m bay in catenary. The 
difference in level of the measuring heads was 1 m, with an error of 3 mm. Tests carried 
out on the spring balance indicated that the applied tension of 100 N had an error of 
2 N. Ignoring all other sources of error, what is the probable error in the measured bay? 

(KP) 
(a) If the tape was standardized in catenary, then when laid on the flat it would be 

too long by an amount equal to the sag correction. This amount, in effect, then becomes 
the standardization correction 

LW2 30 x (0.90 x 9.807)2 _ _ 
Error per 30 m = -—=- = K———z = 0.0097 m 

24TS
2 24 x 1002 

0.0097x24.984 Λ _ 
.·. Correction = — = 0.0081 m 

30 

24.984x55 _ _ 
Tension = -—————T = 0.0033 m 

2 x 2 1 0 x l 0 3 

Temperature = 24.984 x 11 x 10~6 x 2 = -0.0006 m 

.*. Total correction = 0.0108 m 

.*. Corrected length = 24.984 + 0.011 = 24.995 m 

h2 

(b) Effect of levelling error Ch = — 

e „ hxSh 1x0.003 ΛΛΛΛ< 
. · · * * - — - - 3 0 — a O O O l m 

LW2 

Effect of tensioning error Sag Cs = ^Arr2 24T2 

LW2 

.·. <5Cs = - — 3 < 5 r 

30 x (0.9 x 9.807)2 x 2 Λ Λ Λ Λ , 
.'. scs = -v^—ττ^Γ = 0.0004 m 

12 x1003 



Control surveys 95 

Tension 

.'. 5CT = 

.'. Total 

CT~ AE 

L x δ(ΑΤ) 
AxE 2x 

error = 0.0006 m 

30x2 
210 x103 = 0.0001 m 

Example 2.6. A 30-m invar reference tape was standardized on the flat and found to be 
30.0501 m at 20°C and 88 N tension. It was used to measure the first bay of a base line in 
catenary, the mean recorded length being 30.4500 m. 

Using a field tape, the mean length of the same bay was found to be 30.4588 m. The 
applied tension was 88 N at a constant temperature of 15°C in both cases. 

The remaining bays were now measured in catenary, using the field tape only. The 
mean length of the second bay was 30.5500 m at 13°C and 100 N tension. Calculate its 
reduced length given: cross-sectional area = 2 mm2; coefficient of expansion of 
invar = 6 x 10 ~7 per °C; mass of tape per unit length = 0.02 kg/m; difference in height 
of the measuring heads = 0.5 m; mean altitude of the base = 250 m OD; radius of the 
Earth = 6.4 x 106 m; gravitational acceleration = 9.807 m/s2; Young's modulus of 
elasticity = 210 kN/mm2. (KP) 
To find the corrected length of the 1st bay using the reference tape. 

Standardization 

Error per 30 m = 0.0501 m 
Λ Correction for 30.4500 m = 
Temperature = 3 0 x 6 x l 0 " 7 x 5 = 

303 x (0.02 x 9.807)2 

Sag = 2Ä^W = 

+ 0.0508 -0.0057 

Therefore Total correction = +0.0451 m 
Hence Corrected length = 30.4500 + 0.0451 = 30.4951 m 

(using reference tape). Field tape corrected for sag, measures 30.4588 — 0.0056 = 
30.4532 m. 

Thus the field tape is measuring too short by 0.0419 m (30.4951 — 30.4532) and is 
therefore too long by this amount. Therefore field tape is 30.0419 m at 15°C and 88 N. 

To find length of 2nd bay. 

Standardization 

Error per 30 m = 0.0419 

30.5500 
.'. Correction = ——— x 0.0419 = +0.0427 

Temperature = 3 0 x 6 x l 0 ~ 7 x 2 = -0.000 04 

+0.0508 
-0.0001 

-0.0056 
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^ . 30 x12 
Tension = - — — - — — T = 2 x 210 x 103 

_ 303 x (0.02 x 9.807)2 _ 
a g _ 24 x 1002 ~ 

0.5002 

° p e ~ 2 x 30.5500 ~ 

A l . Λ 30.5500x250 
Altitude = ———— τ — = 

6.4 x 106 

+ 0.0436 -0.0177 

Therefore Total correction = +0.0259 m 
Hence Corrected length of 2nd bay = 30.5500 + 0.0259 = 30.5759 m 

N.B. Rounding off the measured length to 30 m is permissible only when the resulting 
error has a negligible effect on the final distance. 

Example 2.7. A copper transmission line of 12 mm diameter is stretched between two 
points 300 m apart, at the same level with a tension of 5 kN, when the temperature is 
32°C. It is necessary to define its limiting positions when the temperature varies. 
Making use of the corrections for sag, temperature and elasticity normally applied to 
base-line measurements by a tape in catenary, find the tension at a temperature of 
— 12°C and the sag in the two cases. 

Young's modulus for copper is 70 kN/mm2, its density 9000 kg/m3 and its coefficient 
of linear expansion 17.0 x 10"6/°C (LU) 

In order first of all to find the amount of sag in the above two cases using equation 
(2.7), one must find (a) the mass per unit length and (b) the sag length, of the wire. 

(a) w = area x density = nr2p 
= 3.142 x 0.0062 x 9000 = 1.02 kg/m 

(b) at 32°C, the sag length of wire = LH + I — ^ ) 

where L is itself the sag length. Thus the first approximation for L of 300 m must be 
used. 

o , t „™ /3003x(1.02x9.807)2\ 
.·. Sag length = 300 + ^ ^ = 304.5 m 

. . „™ /304.53x(1.02x9.807)2\ 
Second approximation = 300 + I —— 2 1 

\ 24 x 5000 / 

= 304.71 m = Lj 

wLj (1.02 x 9.807) x 304.712 „„ „„ 
.'. Sag = y, = — - = = 23.22 m B yi 8Γ 8x5000 

+0.0009 

-0.0043 

-0.0041 

-0.0093 
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EXERCISES 

2.1. A tape of nominal length 30 m was standardized on the flat at the NPL, and found 
to be 30.0520 m at 20°C and 44 N of tension. It was then used to measure a reference 
bay in catenary and gave a mean distance of 30.5500 m at 15°C and 88 N tension. As the 
mass of the tape was unknown, the sag at the mid-point of the tape was measured and 
found to be 0.170 m. 

Given: cross-sectional area of tape = 2 mm2; Young's modulus of elasticity = 
200 x 103 N/mm2; coefficient of expansion = 11.25 x 10"6 per °C; and difference in 
height of measuring heads = 0.320 m. Find the horizontal length of the bay. If the error 
in the measurement of sag was ±0.001 m, what is the resultant error in the sag 
correction ? What does this resultant error indicate about the accuracy to which the sag 
at the mid-point of the tape was measured ? (KP) 

{Answer: 30.5995 m and ±0.000 03 m) 

2.2. The three bays of a base line were measured by a steel tape in catenary as 30.084, 
29.973 and 25.233 m, under respective pulls of 7, 7 and 5 kg, temperatures of 12°, 13° 
and 17°C and differences of level of supports of 0.3, 0.7 and 0.7 m. If the tape was 
standardized on the flat at a temperature of 15°C under a pull of 4.5 kg, what are the 
lengths of the bays? 30 m of tape is exactly 1kg with steel at 8300 kg/m3, with a 
coefficient of expansion of 0.000 011 per °C and E = 210 x 103 N/mm2. (LU) 

{Answer: 30.057 m, 29.940 m and 25.194 m) 

2.3. The details given below refer to the measurement of the first 30-m bay of a base 
line. Determine the correct length of the bay reduced to mean sea level. 

With the tape hanging in a catenary at a straining mass of 10 kg and at a mean 
temperature of 13°C, the recorded length was 30.0247 m. The difference in height 
between the ends was 0.456 m and the site was 500 m above MSL. The tape had 
previously been standardized in catenary at a straining mass of 7 kg and a temperature 
of 16°C, and the distance between zeros was 30.0126 m. 

R = 6.4 x 106 m; mass of tape per m = 0.02 kg; sectional area of tape = 3.6 mm2; 
E = 210 x 103 N/mm2; temperature coefficient of expansion of tape = 0.000 011 per 
°C. (ICE) 

{Answer: 30.0364 m) 

2.4. The following data refer to a section of base line measured by a tape hung in 
catenary. 

At - 12°C there will be a reduction in Lt of 

(L^At) = 304.71 x 17.0 x 10~6 x 44 = 0.23 m 

.·. L2 = 304.71 - 0.23 = 304.48 m 

From equation (2.7) yicc Ll 

Similarly, yr oc 1/7; 

(L2\
2 „ „„(304.48)2 

τ2 = r,i—) = 5 0 0 0 ( ̂ τ Ι ) = 5009 Ν ΟΓ 5·°°9 kN 
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Bay 

1 
2 
3 
4 
5 

Observed length 
(m) 

30.034 
30.109 
30.198 
30.075 
30.121 

Mean temperature 
(°Q 

25.2 
25.4 
25.1 
25.0 
24.8 

Reduced levels of index marks 
(m) 

293.235 
293.610 
294.030 
294.498 
294.000 

293.610 
294.030 
294.498 
294.000 
293.355 

Length of tape between 0 and 30 m graduations when horizontal at 20°C and under 
5 kg straining mass is 29.9988 m; cross-sectional area of tape = 2.68 mm2; straining 
mass used in the field = 10 kg; temperature coefficient of expansion of tape = 11.16 x 
10~6 per °C; elastic modulus for material of tape = 20.4 x 104 N/mm2; mass of tape 
per metre length = 0.02 kg; mean radius of the Earth = 6.4 x 106 m. Calculate the 
corrected length of this section of the line. (LU) 

(Answer: 150.507 m) 

2.3 FIGURAL ADJUSTMENT BY EQUAL SHIFTS 

The next step in the computational procedure is that of adjusting the figures in order to 
make them geometrically correct. The method indicated here is a semi-rigorous 
approach termed equal shifts. 

(1) Simple triangle. The condition of adjustment of a plane triangle is that all three 
angles should equal 180°. As the sides increase in length, beyond about 20 km, the 
triangle becomes spheroidal in shape and the sum of the angles is equal to 
(180° + spherical excess). 

Area of triangle 

(for practical purposes) 

Legendre's theorem then stipulates that if one-third of the spherical excess is deducted 
from each angle, the triangle may be treated as a plane triangle for the computation of 
side lengths. In calculating the co-ordinates, however, the spheroidal angles are again 
used. 

(2) Braced quadrilateral. Conditions of adjustment (Figure 2.12) 

Spherical excess E" = ^ — x 2 0 6 2 6 5 (2·31) 

Angles 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 
1 + 2 + 3 + 4 
3 + 4 + 5 + 6 
5 + 6 + 7 + 8 
7 + 8 + 1 + 2 
1 + 2 
3 + 4 

= 360° 
= 180° 
= 180° 
= 180° 
= 180° 
= 5 + 6 
= 7 + 8 

Side condition: £ log sins of the odd angles = £ log sins of the even angles. 
As many of the above conditions are dependent upon each other, only four are used 

in the actual adjustment. The 'method of adjustment' is: (i) adjust angles 1-8 to equal 
360° ;(ii) adjust angles (1 + 2) to equal (5 + 6) ;(iii) adjust angles (3 + 4) to equal (7 + 8); 
(iv) side condition. 
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Figure 2.12 

Proof of side condition 

From Figure 2.12 it is required to calculate length CD from base AB. 
This may be done via route BC or AD as follows 

AB BC 

Now 

sin 4 sin 1 

BC 

BC = 
AB sin 1 

sin 4 

DC 
sin 6 sin 3 

·. DC = 
BC sin 3 AB sin 1 sin 3 

sin 6 sin 4 sin 6 

Similarly via XD DC = 
AB sin 2 sin 8 

sin 7 sin 5 

As there can be only one length for DC, then cancelling AB gives 

sin 1 sin 3 sin 2 sin 8 
sin 4 sin 6 sin 7 sin 5 

Cross-multiplying and takings logs 

log sin 1 + log sin 3 + log sin 5 + log sin 7 
= log sin 2 + log sin 4 + log sin 6 + log sin 8 

The method of adjustment will now be illustrated using the following mean observed 
angles in Figure 2.12. 

Number Observed angles 1st correction 2nd correction 

1 
2 
3 
4 
5 
6 
7 
8 

50 42 27 -1 
66 47 54 -1 
41 24 32 -1 
21 05 06 -1 
74 13 36 -1 
43 16 49 -1 
18 36 14 -1 
43 53 30 -1 

50 
66 
41 
21 
74 
43 
18 
43 

42 
47 
24 
05 
13 
16 
36 
53 

26Ϊ 
53/ 
3Π 
05/ 
351 
48/ 
13| 
29/ 

117 

62 

117 

62 

30 

29 

30 

29 

19 

36 

23 

42 

1 
1 
2 
1 

-1 
-1 
-1 
-2 

50 
66 
41 
21 
74 
43 
18 
43 

42 
47 
24 
05 
13 
16 
36 
53 

27 
54 
33 
06 
34 
47 
12 
27 

360 00 08 360 00 00 360 00 00 

(a) The first step in the method of adjustment is clearly seen. 
(b) The second step shows that the difference between angles (1 + 2) and (5 + 6) is 4", 

i.e. 1" per angle which is added to the smaller sum and subtracted from the larger. 

■8 0 

o o o o o o o o o o o o o o o 



100 Control surveys 

(c) The third step is identical to the above, the corrections of 2" and 1" have been 
arbitrarily made to prevent the introduction of decimals of a second (correction per 
angle = 1.5"). 

The three steps have produced corrected angles which satisfy the first seven 
conditions of adjustment. It is now necessary to find the log sins of these angles and 
to compare their sums. This can be done very quickly on a pocket calculator. 

1 2 3 4 5 6 7 
Angles Log sin Log sin Difference Final values 
° ' " (odd) (even) for 10" arc

1 
2 
3 
4 
5 
6 
7 
8 

50 
66 
41 
21 
74 
43 
18 
43 

42 
47 
24 
05 
13 
16 
36 
53 

27 
54 
33 
06 
34 
47 
12 
27 

Ϊ.888 698 

1.820 485 

1.983 329 

1.503 810 

1.963 374 

1.556 004 

1.836 046 

1.840 913 

0.000 017 
9 
24 
55 
6 
22 
62 
22 

1" 
V 
[" 
[" 
[" 
1" 
1" 
1" 

50 
66 
41 
21 
74 
43 
18 
43 

42 
47 
24 
05 
13 
16 
36 
53 

28 
53 
34 
05 
35 
46 
13 
26 

1.196 322 1.196 337 0.000 217 360 00 00 
1.196 322 

0.000015 

.'. Adjustment = ^- x 10" = 0.7" % 1" 
217 

(d) Column 5 represents the changes in the log sins of the angles for a change of 10" in 
the angle. These values are easily obtained by increasing the value of the angle by 
10" and the finding of its log sin on the pocket calculator. The difference of the two 
log sin values is the difference for 10" change in the angle. 

Normally the differences for 1" of arc are used, but in this case 10" differences are 
used in order to facilitate understanding of the principles. 

(e) Summing columns 3 and 4 shows a difference of 15 (0.000 015) which must be 
adjusted. The necessary angular correction (0.7") is obtained by dividing 15 by the 
sum of column 5, i.e. 217 (0.000 217) as shown. This may be explained as follows: if 
one alters all the angles by 10", the total change in the log sins would be 0.000 217. 
However, the change required is only 0.000 015, which by proportion represents an 
angular change of jpf x 10" = 0.7". 

(f) The log sins of the corrected angles are now easily found using columns 5 and 6, to 
give the corrections to columns 3 and 4. 

(g) If any angle is greater than 90°, then a positive correction to the angle would require 
a negative correction to its log sin. Thus the difference value in column 5 should 
have a negative sign which is applied in the summing of this column and 
throughout. 

(h) It is worth noting that the accuracy of a triangulation figure is expressed by the 
magnitude of the difference in the sum of log sins, i.e. 0.000 015. Compensating 
errors can occur in angles tending to indicate excellent closure; such errors would, 
however, substantially unbalance the side equation. 

Although the above method can be done quite easily on a pocket calculator, the 
following approach (Smith 1982) has been produced specifically for a pocket calculator. 

o o o 
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The method precludes the use of logarithms and differences for 1" or 10", and is as 
follows: in the side condition assume v is the correction per angle, then 

sin(l + v) sin(3 + v) sin(5 + v) sin(7 +v) = sin(2 -f v) sin(4 + v) sin(6 + v) sin(8 + v) 

Now sin(l +v) = sin 1 cos t;+cos 1 sin v which, as v is very small, =sin 1 + cos lv 

(sin 1 +cos It;)(sin 3+cos 3t;)(sin 5 H-cos 5i;)(sin 7+cos lv) 

(sin 2 + cos lv) (sin 4+cos 4v) (sin 6 + cos 6v) (sin 8 + cos Sv) 

Expanding to first order only 
(sin 1 sin 3 + sin 1 cos 3v -I-cos 1 sin 3v) (sin 5 sin 7 + sin 5 cos lv+cos 5 sin lv) 

(sin 2 sin 4 4- sin 2 cos 4Ü + cos 2 cos 4u) (sin 6 sin 8 + sin 6 cos 8t; + cos 6 sin 8i?) 

sin 1 sin 3 sin 5 sin 7 + sin 1 sin 3 sin 5 sin 7u(cot 1 -hcot 3 +cot 5 H-cot 7) 
sin 2 sin 4 sin 6 sin 8 + sin 2 sin 4 sin 6 sin 8t?(cot 2 +cot 4-hcot 6 +cot 8) 

Let sin 1 sin 3 sin 5 sin 7 = A cot 1 +cot 3 +cot 5 +cot 1 = B 
sin 2 sin 4 sin 6 sin 8 = C cot 2 + cot 4+cot 6 -hcot 8 = D 

then the above expansion can be re-arranged and expressed thus 

„ _ 206 265{A - C) 
V AB + CD 

If v" is positive, then A > C and v" is subtracted from the 'odd' angles and added to the 
'even'. If v" is negative, then A < C and v" is added to 'odd' and subtracted from 'even'. 

All the digits as displayed on the pocket calculator are significant and should be 
carried through the computation. 

The previous example is now re-worked using this method for the side condition, and 
it is shown in Table 2.3 overleaf. 

(a) Each triangle to equal 180°, i.e. I, I I . . . V in Figure 2.13(c). 
(b) Central angles to equal 360°. 
(c) Side condition using the base angles only, i.e. 1,2, . . . , 10 in Figure 2.13(c). 

(3) Polygon with central point. The basic triangulation figures are shown in Figure 2.13. 

Conditions of adjustment 

Figure 2.13 

(a) (b) (c) 
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Method of adjustment 

(a) Adjust each triangle to 180°. 
(b) (i) Adjust the central angles to 360°. 

(ii) Readjust the triangles to 180° using the two base angles in each triangle 
only. 

(c) Side condition adjustment using the base angles only. 

Steps (b)(i) and (ii) are in fact only one step, for a correction of say +10" to each of the 
central angles would automatically give a correction of — 5" to each base angle of the 
triangle. The side condition would then be carried out in exactly the same manner 
already described, in each case excluding the angles at the centre point. 

2.4 SATELLITE STATIONS 

In Figure 2.14 it is required to find the angles measured to A, B and C from D, or 
alternatively the bearings DA9 DB and DC. If D is an 'up-station', e.g. church spire, 
lightning conductor or tall structure, etc., or the lines of sight are blocked by natural or 

Figure 2.14 ' 

man-made obstacles, then it is necessary to establish a satellite station S nearby, from 
which the angles to A, B, C and D are measured. These measured angles about S are 
then reduced to their equivalent about D. This is best illustrated as follows: if the line 
SD is assumed to be due N, then it can be seen that the bearing of DB is greater than that 
of SB by the amount δΒ. Thus the measured bearing SB is increased by δΒ to give the 
required bearing DB. 

If working directly in angles, then regarding ABSD as a crossed quadrilateral, it can 
be seen that 

AÖB = A§B +δΒ-δΑ (with S due south of D) 

Students should draw the following and verify for themselves 

Satellite station (S) 
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S due west of D ADB = A§B -δΒ-δΑ 

S due east of D ADB = ASB + δΒ + δΑ 

S due north of D ADB = A§B - δΒ + δΑ 

The method of solving the problem is determined largely by the data supplied. If the 
angles at A and B to D are given, then one can find an approximate value for ADB from 
(180° - DAB - DBA), and then use the sine rule with length AB to find LA and LB. 
Then by the sine rule in ADAS 

δ"Α = ί^- χ 206 265 (2.32) 

To assess the effect of errors in the measured quantities on δΑ, differentiate with 
respect to each in turn 

dA I L 

This indicates: 

(1) That the fractional error in δΑ is directly proportional to the fractional error in I and 
L. Thus if δΑ = 600" ± 1", I = 10 m and L = 10 km, then / need only be measured to 
the nearest 0.017 m and L to 17 m, i.e. 1 in 600. 

(2) That the error in δΑ is proportional to cot θ δθ δΑ, thus the angle Θ should be as 
large as possible and angle δΑ as small as possible, making I as small as possible. The 
accuracy to which one measures 0, i.e. <50, varies with the value of 0. If it is very large, 
then cot 0 is very small and 0 need be measured with only normal accuracy. 

The sum effect of the standard errors is 

2.5 RESECTION AND INTERSECTION 

Using these techniques, one can establish the co-ordinates of a point P, by observations 
to at least three known points. 

2.5.1 Intersection 

This involves sighting in to P from known positions (Figure 2.15). If the bearings of the 
rays are used, then using the rays in combinations of two, the co-ordinates of P are 
obtained as follows: 

In Figure 2.16 it is required to find the co-ordinates of P, using the bearings a and β to 
P from known points A and B whose co-ordinates are EA, NA and EB, NB. 

PL = EP- EA AL = NP- NA 

PM = EP- EB MB = NP- NB 

Now as PL = AL tan a 
then EP- EA = (NP - NA) tan a (1) 
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Figure 2.15 

Figure 2.16 

Similarly PM = MB tan ß 

then EP- EB = (NP - NB) tan ß 

Subtracting (7) from (2) gives 

EB- EA = (NP - NA) tan oc-(NP- NB) tan ß 
= NP tan a — NA tan a — NP tan ß + NB tan /? 

.*. iVP(tan a - tan ß) = EB- EA+ NA tan a - NB tan 0 

Thus 

Similarly 

Subtracting 

Thus 

NP = 
EB — EA+ NA tan a — NB tan /? 

tan a — tan /? 

NP 
NP 

NA = (Ep-EA)cotoc 
NB = (EP- EB) cot ß 

NB- NA = (EP - EA)cot 0L-(EP- EB) cot ß 

NB- NA+ EA cot a - EB cot j8 
£ P = 

cot oc — cot ß 

(2) 

(2.33a) 

(2.33b) 

Using equations (2.33a) and (2.33b) the co-ordinates of P are computed. It is assumed 
that P is always to the right of A-+B, in the equations. 

If the observed angles into P are used (Figure 2.15) the equations become 

EP = 
NB ~ NA + EA cot ß + EB cot a 

cot a + cot /? 
- EB + NA cot ß + NB cot a 

cot a + cot ß 

The above equations are also used in the direct solution of triangulation. 

(2.34a) 

(2.34b) 

2.5.2 Resection 

This involves the angular measurement from P out to the known points (Figure 2.17). 
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Where only three known points are used a variety of analytical methods is available for 
the solution of P. 

(a) The following approach is referred to as the 'analytical method' (from Figure 2.17). 

Let BAP = 0, then BCP = (360° -α-β-φ)-θ = Ξ-θ 

where φ is computed from the co-ordinates of stations A, B and C; thus S is known. 

(3) 

Thus, knowing 0 and (S — 0), the triangles can be solved for lengths and bearings AP, 
BP and CP, and three values for the co-ordinates of P obtained if necessary. 

The method fails, as do all three-point resections, if P lies on the circumference of a 
circle passing through A, B and C and thereby has an infinite number of positions. 
(b) This second approach is presented to illustrate the diversity of methods available. 
A, B and C (in Figure 2.18) are fixed points whose co-ordinates are known, and the co-
ordinates of the circle centres Ox and 02 are 

Figure 2.18 

Figure 2.17 

From APAB PB = BA sin 0/sin α 
From APBC PB = BC sin(5 - 0)/sin ß 

Equating (7) and (2) 
s in (S-ö ) BAsinß Λ Λ — . „ = ^ . = Q (known) 

sin 0 £C sin a 

(sin S cos 0 — cos S sin 0)/sin 0 = Q 

sin S cot 0 — cos S = Q 

.'. cot 0 = (Ö + cos 5)/sin S 

then 

(1) 
(2) 
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El = \{EA + EB + (NA - NB) cot a} 
Νί=^{ΝΑ-^ΝΒ-(ΕΑ-ΕΒ)οοΙ(χ} 
E2 = \{EB + EC + (NB-NC) cot ß) 
N2 = ±{NB + Nc - (EB - Ec) cot ß) 

Thus the bearing a of 0X —► 0 2 is obtained in the usual way, i.e. 

a = t a n - 1 { ( £ 2 - ^ i ) / ( N 2 - i V 1 ) } 

then EP = EB + 2{(EB — £x) sin a — (NB — Nx) cos a} sin a (2.35a) 
NP = NB + 2{(EB - £ i ) sin a - (iVB - JVJ cos a} cos a (2.35b) 

(c) Dr T. L. Thomas of Imperial College offers the following solution for a three-point 
resection; from Figure 2.17 

ZV ZW > V 

where V = ΔΕί cot a - AE2 cot(a + β) + (JVC - NB) 
W = AiVi cot a - AN2 cot(a + i?) + (£B - Ec) 
X = AE1AE2 + ANlAN2 

Y=AElAN2-AN1AE2 

Z = Xcotu- Xcot(a + β) + Y + Ycot acot(a + j?) 

Δ£χ = £ ! , - £ „ AE2 = EC-EA ΑΝ^Ν,-Ν,, AN2 = NC-NA 

2.5.3 Semigraphic solution of resection/intersection 

Where more than three points are used, a semigraphic solution may be used. This 
approach is fast becoming obsolete due to the almost universal use of machine 
computation. 

The principle of an intersection is shown in Figure 2.19. As one cannot plot the whole 
of the ray at a large scale, only the area about the point of intersection is plotted. In 
order to fix the direction of the rays, the double cutting points Elf E2, and Nl9 N2, are 
required. 

Procedure 

(1) Obtain provisional co-ordinates for the point of intersection by scaling from a plan 
or using only two rays in equations (2.33a) and (2.33b). This value P' is plotted in the 
centre of the graph paper. 
(2) From the scale of the plot and the size of the paper, it is now possible to fix the 
northing value of the top and bottom of the paper and the easting value of the left and 
right hand sides, i.e. Nt, Nb,Eh Er. 

(3) When the quadrant or reduced bearing of the ray is less than 45°, the best cut is 
obtained on the east-west axis, i.e. £x, E2. If greater than 45° it is obtained on the north-
south axis, i.e. Ni9 N2. 

(4) Assuming a is less than 45° then 

E1=EA+ AA1 =EA+ Α±Εγ tan a 

.·. El = EA + (NA - Nt) tan a (2.36a) 
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L^Sheet of graph 
^τ paper 

Figure 2.19 

Similarly E2 = EA + {NA - Nb) tan a (2.36b) 

If the bearing of the ray is west the sign before the brackets is negative, i.e. 
EA — (NA ~ Nt)tan a> e t c · Assuming β is greater than 45° then 

N1=NB- BBX =NB- B1Ni cot β 

.'. Nx = NB + (Et - EB) cot β. (2.37a) 

Similarly N2 = NB- (Er - EB) cot β (2.37b) 

If the bearing of the ray in this case is north, the sign before the brackets is positive, i.e. 
NB + (Et-EJcotß. 

(5) Double cuts are calculated in this way for all the rays, which are then plotted and 
their mean point of intersection scaled off to give the co-ordinates of P. 

(6) In the case of a resection, the bearing of, say, PA is obtained using the co-ordinates 
of A and the provisional co-ordinates of P. By adding the observed angles to the 
bearing PA, the remaining bearings are obtained. These bearings are then reversed and 
the computation treated as for an intersection. 

2.6 TRILATERATION 

Trilateration, based exclusively on measured horizontal distances, has gained 
acceptance because of the advent of EDM instrumentation. The geometric figures used 
are similar to those employed in triangulation, although not as standardized due to 
greater control of scale error. It was originally considered that trilateration would 
supersede triangulation as a method of control due to the scale error factor. However, 
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subsequent results have shown that the system is liable to a rapid accumulation of 
azimuth error, thereby requiring a dense system of azimuth control points. 

The fact that there is no horizontal angle measurement required in trilateration 
would appear to make it more rapid and thus, at first glance, more economical than 
triangulation. However, much depends on the length of line involved and the accuracy 
requirements. 

All EDM equipment measures slope distance, which therefore needs to be reduced to 
the horizontal at some datum level. This requires then not only the measurement of 
slope length, but also the relative levels of the control points and instrument heights, or 
the measurement of vertical angles. 

EDM instruments are calibrated for the velocity of electromagnetic waves under 
certain standard meteorological conditions. Thus actual meteorological conditions 
along the measuring path need to be known in order to correct the measured distance. 
At the present time this is not a practical proposition and one has to be content with the 
measurement of temperature and pressure at each end of the line being measured. For 
the best possible results under these conditions one requires carefully calibrated 
thermometers and barometers hung as high as possible by the instruments and read at 
the same instant of measurement. In order to comply with this latter requirement some 
form of inter-communication is necessary. 

Similar precautions are also required when measuring the vertical angles. In order to 
achieve the accuracy required one needs to use highly precise theodolites preferably 
with automatic vertical circle indexing. Ideally, simultaneous reciprocal observations 
are necessary. If vertical angles are possible at only one end of the line, then corrections 
for curvature and refraction must be applied. Also depending on the terrain and 
accuracy requirement it may be necessary to consider the effect of 'deviation of the 
vertical' on the angles measured. 

It would appear therefore that not only is trilateration possibly less economical than 
triangulation but on consideration of the above error sources (Chrzanowski and 
Wilson 1967) it may also prove less accurate. There appears to be conflicting evidence 
on this point (Burke 1971), although (Hodges 1967) has shown conclusively that angles 
computed through a trilateration are as accurate as those measured with a 1" 
theodolite on the same control net. 

A further reason why trilateration has not superseded triangulation must be in the 
superior internal checks given by triangulation. For instance, a triangle with three 
angles measured has an angle check whereas with three sides measured there is none; a 
braced quadrilateral with angles observed has four conditions (three angles, one side) to 
be satisfied, whereas with the sides there is only the single condition that the computed 
total angle at one corner equals the sum of the two computed component angles. 

Network design is therefore especially critical in trilateration. In order to obtain 
sufficient redundancy for checks on the accuracy, the geometric figures become quite 
complicated. For instance, to obtain the same redundancy as a triangulation braced 
quadrilateral, a pentagon with all ten sides measured would have to be used. Indeed, 
experts in trilateration analysis have proposed the use of the hexagon, with all sides 
measured (20 giving 10 checks) as the basic network figure. However, from the practical 
viewpoint, pentagons and hexagons with all stations intervisible are difficult to 
establish in the field. Thus, from the logistic viewpoint, trilateration would require as 
much organization as triangulation. 

The network may be computed by the method of variation of co-ordinates as already 
indicated (Chapter 1), or the following less rigorous approaches used: 
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(1) The simplest approach is to derive the angles of the figures from the lengths using 
the half-angle equation 

A ( s(s — a) V 
tan - = - — , w , where 2s = (a + b + c) (2.38) 

2 \(s-b)(s-c)J 

These angles are then used to calculate bearings around the network. In this way a 
closed traverse is produced and adjusted to give the final co-ordinates. Alternatively, 
the co-ordinates may be found directly using equations (2.34). If the survey is to be tied 
into the national grid, the lengths would need to be reduced to the spheroid and used in 
the above manner to produce 'provisional' co-ordinates. The provisional co-ordinates 
would be used to compute (t — T) and scale factor (SF) corrections (refer to Sections 
2.11,2.14 and 2.15) which would be applied to the angles and lengths respectively to 
produce their grid equivalents. These values used in the direct equations (2.34) would 
give the grid co-ordinates of the points. 

(2) Direct co-ordination of the control points can be made, without the use of angles. 
To find the co-ordinates of C, given the co-ordinates of A and B, and the length of the 
sides a, b, c of the triangle 

2.6.1 Triangulateration 

As its name implies, triangulateration is simply the combining of triangulation and 
trilateration to produce a control system in which all the angles and sides are measured. 

From the accuracy point of view, the system should be very strong, possessing all the 
advantages of both systems from which it is derived. The improvement in the 

and 

where A, B and C are in clockwise order, and 

If the survey is to be tied into the national grid, the SF would need to be found from 
'provisional co-ordinates' and applied to the spheroidal lengths to give the grid lengths. 
These latter lengths are then used in the formula to give the grid co-ordinates. 

Dr T. L. Thomas (1971) offers the following alternative equations for trilateration 
computation 

a2 - b2 2Δ 
Ec = \{EA + EB) + - ^ r - (EA ~EB)-^2 WA ~ NB) 

Nc = h(NA + NB) + a~^Jl· WA ~ NB) + ^<EA - EB) 

(2.39a) 

(2.39b) 

A = {s(s-a)(s-b){s-cp 

AE = EB- EA AN = NB- NA c2 = AE2 + AN2 

AE AN ^ (b2 + c2 - a2) , 
p = — q = fc = h = (b2 - k2Y 

c c 2c 
Then 

Checks 

Ec = EA+pk- qh Nc = NA + qk+ ph 

a2 = {Ec-EB)2 + {Nc-NB)2 

b2 = (Ec-EA)2 + (Nc-NA)2 

It is assumed in the above that C is to the left of AB. 
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redundancy checks for a braced quadrilateral and a central point pentagon are shown 
below: 

Quadrilateral 

No. of directions 
No. of sides 
No. of checks 

Triangulation 

12 
1 
4 

Trilateration 

0 
6 
1 

Triangulateration 

12 
6 
9 

Pentagon 

No. of directions 
No. of sides 
No. of checks 

20 
1 
6 

0 
10 
4 

20 
10 
15 

Whilst it is generally acknowledged that triangulateration is more accurate than the 
previously-mentioned systems, one must consider whether or not it is economically 
justified. The logistics of the system will certainly not be equal to sum of the previous 
two methods, for once one has set up at the observation station and established 
targets/reflectors on the stations to be observed, a skilled surveyor could acquire all the 
necessary field data with little extra time and effort. The use of electronic 'total stations' 
makes the prospect even more viable and may justify the initial high capital 
expenditure involved. Further, as there would be little or no accumulation of scale and 
azimuth error, ill-conditioned figures could be utilized, thereby reducing the recon-
naissance time. 

It should be possible through pre-survey analysis to optimize the system so that 
every station in the network need not be occupied thus further improving the viability. 
The adjustment of such a network containing dissimilar quantities presents no 
difficulty if computer facilities are available. Using the variation of co-ordinates 
method, all the data can be adjusted en masse to produce the corrected co-ordinates of 
the network plus a complete error analysis and an a posteriori weighting of the field 
data. 

It is thus evident that triangulateration is to be preferred over the use of triangulation 
or trilateration and thus seems to be modern practice. However, it is unlikely to 
supersede traversing because of the basic difference between the two systems and the 
accuracy/economy factor. 

2.7 TRAVERSING 

Since the advent of EDM equipment, traversing has emerged as the most popular 
method of establishing control networks not only in engineering surveying but also in 
geodetic work. In underground mining it is the only method of control applicable, 
whilst in civil engineering it lends itself ideally to surveys and dimensional control of 
route type projects such as highway and pipeline construction. 

Traverse networks are, to a large extent, free of the limitations imposed on the other 
systems and compared with them, have the following advantages: 

(a) Much less reconnaissance and organization required in establishing a single line of 
easily accessible stations compared with the laying-out of well-conditioned 
geometric figures. 
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(b) In conjunction with (a), the limitations imposed on the other systems by 
topographic conditions do not apply to traversing. 

(c) The extent of observations to only two stations at a time is relatively small and 
flexible as to fluctuating atmospheric conditions compared with the extensive 
angular and/or linear observations at stations in the other systems. It is thus much 
easier to organize. 

(d) Traverse networks are free of the strength of figure considerations so characteristic 
of triangular structures. Thus once again the organizational requirements are 
further reduced. 

(e) Scale error does not accrue as in triangulation, whilst the use of longer sides, easily 
measured with EDM equipment, reduces azimuth swing errors. 

(f) Traverse stations can usually be chosen so as to be easily accessible, as well as 
convenient for the subsequent densification of lower order control. 

(g) Traversing permits the control to closely follow the route of a highway, pipeline or 
tunnel etc., with the minimum number of stations. 

From the accuracy point of view it has been shown (Chrzanowski and Konecny 
1965, and Adler and Schmutter 1971) that traversing is superior to triangulation and 
trilateration and, in some instances, even to triangulateration. However, it must be said 
that these findings are disputed by Phillips (1967). Nevertheless, it can be argued that, 
from the accuracy point of view, traversing compares more than favourably with the 
other methods. 

Thus, from a consideration of all the above statements it is obvious that from the 
logistical point of view, traversing is far superior to all the other methods and offers at 
least equivalent accuracy. Refer to Volume 1 for further details on traversing. 

2.8 TRIGONOMETRICAL LEVELLING 

Trigonometrical levelling is used where difficult terrain precludes the use of 
conventional spirit levelling. The method is generally less accurate than spirit levelling, 
although in stable atmospheric conditions results comparable with precise levelling 
have been obtained. 

2.8.1 Single observations 

The principles of the method are shown in Figure 2.20. If the spheroidal distance D 
between stations A and B is known, the difference in height may be computed using the 
observed vertical angle. Refraction of the line of sight through the atmosphere to B 
results in the telescope pointing to E. Thus the observed vertical angle of elevation 
(measured from the horizontal) is a, the angle of refraction is f and the angle due to the 
curvature of the Earth's surface is c. Treating ABA' as a plane right-angled triangle (the 
chords to the arcs have been omitted from the Figure) 

Difference in height of A and B = A'B — H = D tan φ 

where φ = α + (c — f) (2.40a) 
.'. H = D tan[a + (c - f)] (2.40b) 

The term (c — f) is the combined correction for curvature and refraction, and is 
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E 

expressed in angular terms above. When expressed linearly (see Volume 1) the equation 
becomes 

H = D tan a + (c - r) (2.40c) 

Similarly, considering the angle of depression ß9 measured from B to A, as in Figure 
2.21, and treating AB'B as the plane right-angled triangle 

Difference in height of B and A = B'A = H = D tan φ 

where φ = β — c + f= β — (c — f) 

.'. expressed angularly H = D tan[/? — (c — r)] 

or expressed linearly H = D tan β — (c — r) 

The difference in height of the instrument and signal has not been considered in the 
above analysis. Correction for this variation is most easily made by means of a simple 
sketch as in Figure 2.22 

hT = height of theodolite and hs = height of signal 
.'. Difference in height AB = H — hs + hT = H — (hs — hT) 

:. H = D tan a + (c - r) - (hs - hT) (2.42a) 
Similarly in the observation from B to A {Figure 2.23) 

Difference in height BA = H + h's- h'T = H + (h's- h'T) 

;. H = D tan ß - (c - r) + (Ä; - h'T) (2.42b) 

Figure 2.20 

(2.41a) 

(2.41b) 

(2.41c) 
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B' 

Figure 2.21 

2.8.2 Reciprocal trigonometrical levelling 

If the above observations from A and B are carried out simultaneously, the technique is 
called reciprocal trigonometric levelling, and the effect of curvature and refraction is 
considered to be eliminated. Thus summing equations (2.40a) and (2.41a) gives 
2φ = (a + β) and H = D tan φ. 

,H-D«»{±1) (2.43a) 

The correction for the variations in the theodolite and signal heights is made by 
taking the mean of the values involved, noting that one of the corrections is - (hs — hT), 
thus 

Figure 2.22 
Figure 2.23 
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tf = D t a n ( ^ + 
(*; - h'T) - (hs - hT) 

(2.43b) 

An alternative approach to the problem of variation in instrument and signal 
heights, is to adjust the observed angles to the values that would have been obtained, 
had the instrument and signal been the same height. From Figure 2.24, assuming the 
general case of the signal being taller than the theodolite, the correction e must be 
subtracted from the observed angle a, to give the adjusted angle a0. This value is used in 
equation (2.43a) in place of a. 

Figure 2.24 

Assuming CF » CE « D, then 

(K - hT
s 

e = D 
x 206 265 (2.44) 

A similar sketch would show that for angles of depression ß the correction is added to 
give ß0. Finally, in the event of both angles a and ß being angles of depression, the basic 
equation becomes 

H = D tan 
o c - ß 

(2.45) 

2.8.3 Curvature and refraction 

In the case of single observations, corrections must be made for curvature and 
refraction. Whilst curvature is directly related to distance D and radius of the Earth R, 
refraction varies chiefly with temperature. Therefore for most accurate results several 
sets of reciprocal observations are carried out over the working area in order to arrive 
at a mean value for the coefficient of refraction K, which can then be used in the 
adjustment of single observations. 

K is a measure of the curvature of the line of sight and is the ratio of the radius of 
curvature of the Earth R, to the radius of curvature of the line of sight Rs, therefore 
K = R/Rs. For instance, if K = 1, then R = Rs, and from the observational point of 
view, the Earth appears flat. The average value for K is 0.14, although substantially 
different values are obtained in unusual conditions, such as over icecaps. It should be 
noted that an alternative method for defining K exists, resulting in an average value of 
0.07. 
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Considering the correction in angular terms, then from Figure 2.20 

c = 9/2 (2.46) 

and f=Kc = K(0/2) (2.47) 

From equations (2.40b) and (2.41b), as H and D are common, then 

a + (c - f) = ß - (c - f) .*. If = a - ß + 2c 

Substituting for c from equation (2.46) gives f = \{9 + a - ß) (2.48) 

When a and ß are both angles of depression f = ^(0 — a — /?). Substituting r = Κ(θ/2) 
into equation (2.48) gives 

0 + a - ß 
* = θ

 Ρ (2.49) 

iV.B. The angles a and /? in equations (2.48) and (2.49) are first corrected for variation in 
instrument and signal heights—see Worked example 2.13, p. 121. 

Considering the correction in linear terms (Figure 2.20) 

c = FA' = D2/2R (2.50a) 

where all the units are the same. Taking JR = 6372 km and quoting D in km, then c in 
m is 

1000D2 

c = ——— = 0.0785D2 m (2.50b) 
2 x 6372 ' 

The linear value of r = BE « Df rad but f = Κ(θ/2) and Θ = D/R, thus f = KD/2R. 

KD2 

.*. Linear r = BE = Df= —— (2.51) 

D2 D2X D2 

Combining the two (c - r) = — - — = ^ (1 - K) (2.52) 

where K is obtained from equation (2.49). If K = 0.14 is used, the equation 
approximates to 0.0674D2 m, where D is in km. 

Thus these angular and/or linear values for c and r are used in the appropriate 
equations for single observations. 

WORKED EXAMPLES 

Example 2.8. The mean values of the angles A, B and C of a triangle as measured in a 
major triangulation were as follows, with the weights shown: A 50° 22' 32.5", 5; B 
65° 40' 47.5", 3; C 63° 56' 46.5", 6. The length of the side BC was 37.5 km and the radius 
of the Earth 6267 km. 

Calculate: (a) the spherical excess; (b) the probable values of the spherical angles. 
(LU) 

, '' , . , „ hab sin C x 206 265 
(a) Spherical excess E = — R2 
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From the sine rule b = a sin B/sin A 

a2 sin B sin C 
.·. E" = - . , x 206 265 = 3.9" 

2K2 sin 4 

(b) Sum of adjusted spheroidal angles should equal 180° + £", i.e. 180° 00' 03.9". 

Angle 

A 

B 

C 

Sum 

Mean value 
0 / // 

50 22 32.5 

65 40 47.5 

63 56 46.5 

180 00 06.5 

03.9 

Weight 

5 

3 

6 

Reciprocal 
weight 

^ x 3 0 = 6 

^ x 3 0 = 10 

έ χ 3 0 = 

Sum= 21 

Correction 

- 2 . 6 x 6 
- ^ - = - 0 . 7 " 

Z 1 6 x l 0 

21 

- 2 · 6 χ 5 

= -0.6" 
21 

Sum= -2.6" 

Corrected 
angles 
o / // 

50 22 31.8 

65 40 46.2 

63 56 45.9 

180 00 03.9 

.*. Correction = — 2.6" 

Example 2.9. Four triangulation stations are in the form of a triangle ABC, within 
which lies the fourth station D. The measured angles with the log sins of the outer 
angles are given below. Adjust the angles to the nearest second by the method of equal 
shifts. 

Number Measured angle Log sin Difference in LS 
o , „ f ( ) rV 

1 
2 
3 
4 
5 
6 
7 
8 
9 

BAD 
ABD 
DBC 
BCD 
ACD 
CAD 
ADB 
BDC 
CDA 

26 
20 
35 
30 
26 
39 

132 
114 
113 

31 
57 
05 
28 
59 
57 
30 
26 
03 

32 
35 
09 
41 
46 
26 
50 
04 
06 

1.649 915 6 
1.553 532 9 
1.759 519 0 
1.705 186 3 
1.656 989 0 
1.807 680 7 

0.000 004 2 
55 
32 
36 
41 
25 

(LU) 
Refer to Figure 2.13(a) and use the method outlined in Section 2.3(3), p. 101. 
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Number Angles 
First Corrected Central 
corin angles angles 

Second Corrected 
corfn angles 

ABD 

CAD 

26 31 32 
20 57 35 
132 30 50 

1 
1 
1 

33 
36 
51 

Sum 

BCD 

Sum 

3 
4 
8 

179 59 57 

35 05 09 
30 28 41 
114 26 04 

179 59 54 

2 
2 
2 

11 
43 
06 

26 59 46 
39 57 26 

113 03 06 

- 6 40 
- 6 20 
- 6 00 

132 

114 

113 

30 

26 

03 

51 

06 

00 

-0.5 
-0.5 

1 

-0.5 
-0.5 

1 

-0.5 
-0.5 

1 

32.5 
35.5 
52 

10.5 
42.5 
7 

39.5 
19.5 
1 

Sum 180 00 18 359 59 57 

As the correction to the central angles is 1", this automatically gives a correction of 
— 0.5" to each of the base angles of the triangles to restore them to 180°. 

Side condition 
Number Log sin 

(odd) 

Side condition 
Number Log sin Difference 

(even) V 
Correction Final angles 

1 1.649 915 6 

3 1.759 519 0 

5 1.656 989 0 

Sum Ϊ.066 423 6 

399 9 

Difference = 237 

2 

4 

6 

1.553 532 9 

1.705 186 3 

1.807 680 7 

Ϊ.066 399 9 

^ 237 
But — 

231 

42 -1 
55 1 
32 
36 1 
41 
25 

231 

of 1" « 1" 

I 26 
L 20 
I 35 
L 30 
I 26 
I 39 

31 
57 
05 
28 
59 
57 

31.5 
36.5 
09.5 
43.5 
38.5 
20.5 

The central angles are as shown at the end of the second correction. The final angles 
shown may now be rounded off to the nearest second. 

Figure 2.25 

1 
2 
7 

5 
6 
9 

o o o o o o o o o o 

o o o o 
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Example 2,10, In the triangulation network shown in Figure 2,25 all the angles have 
been observed and the sides DH and GC measured as base and check base respectively, 
with the following results: 

ADHO 
O 1 II 

15 = 79 47 05 
# = 58 32 35 
0 = 41 40 05 

DH = 426.58 m 

AHGO 
o 

# = 77 
(5 = 36 
0 = 66 

' 

28 
02 
28 

" 

58 
38 
48 

AGCO 

0 = 82 22 17 
( 5 = 7 1 29 47 
0 = 26 08 17 

GC = 486.83 m 

Adjust the observed angles by 'equal shifts' to give a consistent figure. 

The requirement in this question is that the figure should be adjusted so that the 
'computed' value of the check base equals the 'measured' value. 

First, adjust each triangle. Summing the angles of each triangle gives: DHO = 
179° 59' 45", HGO = 180° 00' 24" and GCO = 180° 00' 21". There is thus a correction 
per angle of 5", = 8" and — 7" per triangle, respectively. The corrected angles are now as 
follows: 

ADHO AHGO AGCO 
O I II O I II O I II 

D = 79 47 10 # = 77 28 50 (5 = 82 22 10 
# = 58 32 40 (5 = 36 02 30 (5=71 29 40 
0 = 41 40 10 0=66 28 40 O = 26 08 10 

By the sine rule through Figure 2.25, the computed value for 

_ HD sin HDO sin GHO sin GÖC 

sin HOD sin OGH sin OCG 

Taking logs 

log 426.58 = 2.630 001 
log sin 79° 47'10" = 1.993 063 
log sin 77° 28' 50" = 1.989 548 
log sin 26° 08'10" = 1.643 951 

X = 2.256 563 

Difference 
for 10" 

3.7 
4.7 

42.8 

o / // 

log sin 41 40 10 =1.822 712 
log sin 36 02 30 = 1.769 653 
log sin 71 29 4 0 = 1.976 943 

Σ = Ϊ-569 308 

Difference 
for 10" 

23.7 
29.0 

7.2 

.'. Log GC = 2.687 255 = 486.69 m (computed) 
Log GC = 2.687 378 = 486.83 m (measured) 

Difference = 0.000 123 
This difference must be adjusted among the six angles used in the computation so 

that the final log value of GC (computed) would equal that of GC (measured). 

(ICE) 

GC 

o o o 
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Sum of differences for 10" = 111.1 
/123\ .'. Correction per angle = I —— j x 10" = 11" 

As the final log value of GC (computed) needs to be increased, then inspection of the log 
computation shows that angles HDO, GHO and GOC would be adjusted by +11" each, 
whilst HOD, OGH and OCG are adjusted by — 11" each. The three angles not used in 
the computation remain as shown in the first correction. 

Example 2.11. In a triangle ABC, AB = 5205.0 m, AC = 5113.8 m and the angles B 
and C were 55° 0Γ 05" and 62° 04' 20", respectively. Station A could not be occupied 
and observations were taken from satellite station P, 11.1 m from A and inside the 
triangle. Instrument readings at P were: on A, 0° 00' 00"; on C, 148° 28' 40"; on B, 
211° 31' 10". Calculate the angular error in the triangle. (LU) 

As the theodolite is a clockwise-measuring instrument, the instrument readings at P 
serve to fix the relative positions of A, B and C (Figure 2.26), as well as the following 
angular values: APC = 148° 28' 40", CPB = 63° 02' 30", BPA = 148° 28' 50". 

Figure 2.26 

By the sine rule in AAPC 

„ AP sin APC „Λ, „ „ 11.1 sin 148° 28'40" 
a" = x 206 265 = f < < „ n x 206 265 

AC 5113.8 

= 234" = 0° 03' 54" 

Similarly in ΔΑΡΒ 

„ AP sn BPA „ ^ Λ « 11.1 sin 148° 28'50" 
0" = x 206 265 = —— x 206 265 

AB 5205.0 

= 230" = 0° 03' 50" 

CAB = CPB - a." - Θ" 
= 63° 02' 30" - 03' 54" - 03' 50" = 62° 54' 46" 

Angular error 180° - (Ä + 6 + €) 
180° - (62° 54' 46" + 55° 01' 05" + 62° 04' 20") 
+ 11" 
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Example 2.12. (a) Define the Coefficient of Refraction K, and show how its value may 
be obtained from simultaneous reciprocal trigonometric levelling observations. 

(b) Two triangulation stations A and B are 2856.85 m apart. Observations from A to 
B gave a mean vertical angle of +01° 35' 38", the instrument height being 1.41 m and 
the target height 2.32 m. If the level of station A is 156.86 m OD and the value of K for 
the area is 0.16, calculate the reduced level of B (radius of Earth = 6372 km). (KP) 

(a) Refer to Section 2.8.3. 
(b) This part will be answered using both the angular and the linear approaches. 

Angular method 

Difference in height of AB = H = D tan[a + (c — f)] where c = 0/2 and 

D 2856.85 
Θ = - = ^ ζ ^ — = 0.000 448 rad 

R 6 372 000 

.·. c = 0.000 224 rad 
f = Κ(θ/2) = 0.16 x 0.000 224 = 0.000 036 rad 

.·. (c - f) = 0.000188 rad = 0° 00' 38.8" 
.·. H = 2856.85 tan(01° 35' 38" + 0° 00' 38.8") = 80.03 m 

From Figure 2.22 

RL of B = RL of A + hT + H - hs 

= 156.86 + 1.41 + 80.03 - 2.32 = 235.98 m 

Linear method 

H = D tan a + (c - r) 

/D2\ 2856.852 

(c - r) = [ — 1(1 - K) = £0%nfS ^ x 0.84 = 0.54 m v \2RJ 2 x 6 3 7 2 000 

D tan a = 2856.85 tan(01° 35' 38") = 79.49 m 
.·. H = 79.49 + 0.54 = 80.03 m 

Example 2.13. Two stations A and B are 1713 m apart. The following observations 
were recorded: height of instrument at A 1.392 m, and at B 1.464 m; height of signal at 
A 2.199 m, and at B 2 m. Elevation to signal at B 1° 08r 08", depression angle to signal at 
A 1° 06' 15". If 1" at the Earth's centre subtends 30.393 m at the Earth's surface, 
calculate the difference of level between A and B and the refraction correction.(LU) 

From equation (2.43b) H = D ^(~) + ^ ~ ^> ~ & ~ ^ 

Using the alternative approach (equation (2.44)) 

where hT = height of instrument at A; hs = height of signal at B; h'T = height of 
instrument at B; h's = height of signal at A. 

/ (Γ08Ό8") + ( Γ 0 6 Ί 5 " ) \ (2.199 - 1.464) - (2.000 - 1.392) 

= 33.490 + 0.064 = 33.55 m 

where 



Example 2.14. Two points A and B are 8 km apart and at levels of 102.50 m and 
286.50 m OD, respectively. The height of the target at A is 1.50 m and at B 3.00 m, while 
the height of the instrument in both cases is 1.50 m. If 31 m on the Earth's surface 
subtends 1" of arc at the Earth's centre and the effect of refraction is one seventh that of 
curvature, predict the observed angles from A to B and B to A. (KP) 
With reference to Figure 2.20, it is required to find a, the observed angle, given the value 
for φ. 

Difference in level A and B = H = 286.50 - 102.50 = 184.00 m 

.·. by radians φ" = ~ x 206 265 = 4744" = 1° 19' 04" J ψ 8000 
8000 Angle subtended at the centre of the Earth 0" = —— = 258" 

.*. Curvature correction c = 0/2 = 129" and f = c/1 = 18" 
Now H = Z) tan 0 
where φ = α + (c — f) 

.·. a = φ - (CA - r
A) = 4744" - (129" - 18") = 4633" = 1° 17' 13" 

Similarly from equation (2.41) φ = β — (c — f) 

:. β = φ + (c - f) = 4855" = 1° 20' 55" 
The observed angle a must be corrected for variation in instrument and signal 

heights. Normally the correction is subtracted from the observed angle to give the truly 
reciprocal angle. In this example, a is the truly reciprocal angle, thus the correction 
must be added in this reverse situation 

and also 

Refraction correction 
where 

r = i(0 + a- j?) 
0" = 1713.0/30.393 = 56.4" 

.·. f = i(56.4" + (1° 06' 54.8") - (Γ 07' 43.5")) = 3.8" 
f 3.8" _ 

K~JJ2 "28^2" = 0 ,14 

1713.0 
.*. β = (1° 06' 15") + (Or 28.5") = Γ 07' 43.5" 

.. H = 1713 tanl I = 33.55 m 

Correction to angle of depression 

1.392 - 2.000 
e" = τ^ττ^ x 206 265 = -73.2" 

1713.0 
.*. a = (1° 08' 08") - (0Γ 13.2") = 1° 06' 54.8" 

Correction to angle of elevation 

Control surveys 122 



Control surveys 123 

e" = [(hs - hT)ID] x 206 265 = [(3.00 - 1.50)/8000] x 206 265 = 39" 

.·. a = 4633" + 39" = 4672" = 1° 17' 52" 

Example 2.15. A gas drilling-rig is set up on the sea bed 48 km from each of two survey 
stations which are on the coast and several kilometres apart. In order that the exact 
position of the rig may be obtained, it is necessary to erect a beacon on the rig so that it 
may be clearly visible from theodolites situated at the survey stations, each at a height 
of 36 m above the high water mark. 

Neglecting the effects of refraction, and assuming that the minimum distance 
between the line of sight and calm water is to be 3 m at high water, calculate the least 
height of the beacon above the high water mark, at the rig. Prove any equations used. 

Calculate the angle of elevation that would be measured by the theodolite when 
sighted on to this beacon, taking refraction into account and assuming that the error 
due to refraction is one seventh of the error due to curvature of the Earth. Mean radius 
of Earth = 6273 km. (ICE) 

From Figure 2.27 

ϋγ = (2/^jRp (equation (2.50a), see Volume 1 for proof) 
.·. D1 = (2 x 33 x 6 273 000)* = 20.35 km 
.·. D2 = 48 - />! = 27.65 km 

Λ since D2 = (2h2R)^ 
/i2 = 61 m, and to avoid grazing by 3 m, height of beacon = 64 m 

Coast 

r/»*/ 

Figure 2.27 

From Figure 2.20 

Difference in height of beacon and theodolite = 64 — 36 = 28 m; observed vertical 
angle α = φ — (c — r) for angles of elevation, where 

28 x 206 265 
φ" = = 120.3" ψ 48 000 

c = 0/2 

where 0" = 
48 \ 

6"273/ 
x 206 265 = 1578.3" 
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.·. c = 789.2" and r = c/7 = 112.7" 

.·. a = 120.3" - 789.2" + 112.7" = -556.2" = - 0 ° 09' 16" 

The negative value indicates a to be an angle of depression, not elevation, as quoted in 
the question. 

Example 2.16. The co-ordinates of station P are to be found from a semi-graphic 
solution of an intersection. Considering only two of the rays, calculate the values of the 
double cutting points, given: bearing AP = S 05° 20' 20" E; bearing BP = N 
84° 10' 30" E; co-ordinates of A = E 3500.05 m, N 5085.38 m; co-ordinates of B = E 
1054.66 m, N 2980.08 m; provisional co-ordinates of P = E 3640 m, N 3720. Co-
ordinates of graph paper: top edge = N 3800 m and bottom edge = N 3600 m; left-
hand edge = E 3600 m and right-hand edge = E 3800 m. (KP) 

E3800 

N3800 

N3600 

Figure 2.28 

From Figure 2.28 

CAX = ANt = 5085.38 - 3800 = 1285.38 m 
DA2 = AN2 = 1485.38 m 
AC = ANX tan Θ = 1285.38 tan 05° 20' 20" = 120 121 m = AEA 

AD AN 2 tan Θ 138.812 m = AEA 

Therefore, double cutting points Ax and A2 

At=EA+ AEA = 3500.05 + 120.12 = E 3620.17 m 
A2 = EA + AEA\ = 3500.05 + 138.81 = E 3638.86 m 

Similarly for B 

FB1 = AEBi = 3600 - 1054.60 = 2545.40 m 
GB2 = AEB[ = 2745.34 m 

.·. BF = AEB] cot φ = 2545.34 cot 84° 10' 30" = 259.668 m = ANBi 

BG = AEB cot φ = 280.071 m = ANB 
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Double cuts Bl and B2 

Bi=NB + ANBi = 2980.08 + 259.668 = N 3239.75 m 
B2 = NB + ANB = N 3260.15 m 

EXERCISES 

2.5. A polygon ABC DE A with a central station O forms part of a triangulation scheme. 
The angles in each of the figures which form the complete network are being adjusted, 
and in this case the angles in each of the triangles DOE and EOA have already been 
adjusted and need no further correction. 

Making use of the information given in the Table below, use the method of equal shifts 
to determine the correction that must be applied to each of the remaining angles. (ICE) 

Triangle Angle Observed value Log sin Log sin difference 
for 1" 

AOB 

BOC 

COB 

OAB 
OBA 
AOB 
OBC 
OCB 
BOC 
OCD 
ODC 
COD 

40 
64 
75 
37 
71 
71 
24 
51 

103 

17 
11 
30 
22 
10 
26 
51 
48 
19 

57 
20 
52 
27 
50 
22 
25 
47 
33 

1.810 755 7 
1.954 355 6 

1.783 201 4 
1.976 139 0 

1.623 615 4 
1.895 4214 

25 
10 

28 
7 

46 
17 

Adjusted values 

DOE 

EOA 

ODE 
OED 
DOE 
OEA 
OAE 
EOA 

67 
51 
61 

116 
15 
48 

18 
02 
39 
47 
08 
04 

59 
00 
01 
40 
02 
18 

1.965 036 2 
1.890 707 1 

1.950 671 4 
1.416 766 2 

(Answer: OAB 4.8"; OBA -
12.8"; ODC 2.2"; COD 0") 

5.8"; AOB -8.0"; OBC 14.8"; OCB 4.2"; BOC 2.0"; OCD 

2.6. A bridge is to be built across a river where it is approximately 1.5 km wide and a 
survey station has been established on each bank to mark the centre line. 

Excluding the use of electronic devices, describe how the distance between these two 
stations can be determined to a high degree of accuracy. Outline the calculations 
involved and quote the relevant equations at each stage. (ICE) 

(Answer: Triangulation; braced quadrilateral; base line; figural adjustment) 

2.7. In order to demonstrate how a triangulation is adjusted by the method of equal 
shifts, consider a figure which consists of a triangle ABC with a central (internal) point 
D and in which the following fictitious angles are given as Observed angles': 
BAD = ABD = CBD = BCD = ACD = 30° 00'; ADB = BDC = CD A = 120° 00'; 
CAD = 33° 00'. 
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Although the error in AADC is so large that a gross mistake appears to have been 
made, adjust the angles of triangulation (to the nearest minute) to give a consistent 
figure. What are the five equations of condition to which the adjusted angles must 
conform? (ICE) 

(Answer: BAD = CBD = 30° 21'; ACD = 29° 21'; ABD = BCD = 29° 19'; CAD = 
31° 19'; ADB = BDC = 120° 20'; CDA = 119° 20') 

2.8. The details given below refer to observations made at a satellite station 0, in order 
to determine the angle at an inaccessible station A in a triangle ABC. Compute the 
angle BAC. 

Length OA = 9.435 m; bearing of side OA = 0° 00' 00"; length AB 2925 m; bearing 
of side OJ5 = 78°46'00"; length AC 3426 m; bearing of side OC = 100° 12' 00"; 
log sin 1" = 6.685 575. (ICE) 

{Answer: BAC = 21° 24' 26") 

N.B. . An = 206 265". Throughout the author has avoided the use of sin 1", and 
sin 1 

converted radians to seconds using 206 265, the number of seconds in one radian. 

2.9. Describe the difference between the techniques of reciprocal levelling and 
reciprocal trigonometrical levelling, and discuss the conditions under which each is 
most effectively used. 

The horizontal distance between two stations P and Q is 5951.30 m. A theodolite at P 
is sighted onto a beacon adjacent to station Q at the same time as a theodolite at Q 
sights onto a beacon adjacent to station P. The following measurements are obtained: 
angle of elevation recorded at P = 01° 19' 38"; angle of depression recorded at Q = 
01° 21' 01"; height of beacon at P = 2.85 m; height of beacon at Q = 2.36 m; height of 
instrument at P — 1.36 m; height of instrument at Q = 1.47 m. 

Determine the difference of level between the two stations and the coefficient of 
atmospheric refraction. Assume the radius of the Earth is 6.37 x 106 m. (ICE) 

(Answer: 139.18 m, 0.14) 

2.10. The distance between two points A and B was 6336 m. B was 150 m above A. 
Calculate the angles observed from A and B with a theodolite assuming the instrument 
and signal heights to be equal and the effect of refraction to be one seventh that of 
curvature. Take the radius of the Earth as 6336 km. (LU) 

(Answer: Α = Γ 19' 54", B = 1° 22' 50") 

2.9 THE SPHEROID 

As engineering schemes grow in size and complexity so too must the surveying 
operations associated with the control of such schemes. This is already apparent in the 
motorway surveys extending for many kilometres. However, commensurate with the 
increase in scale of these surveys is the effect of the Earth's curvature. As the Earth may 
be regarded as flat only for surveys of limited extent, very large schemes require the use 
of spheroidal co-ordinates and projections. 
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2.9.1 The spheroid of reference 

In order to compute surveys in spheroidal co-ordinates, i.e. latitude (φ) and longitude 
(/I), one must reference the co-ordinates to an arbitrarily defined geometrical figure, 
commonly called the spheroid of reference. 

In this context the Earth may be considered as comprising three surfaces: 

(a) The physical surface: this is the actual ground surface of the Earth, which, although 
a physical reality, is mathematically non-definable. Because of this, it cannot be used 
as a datum on which to compute position. 

(b) The geoid: consider a series of interconnecting channels cut through the continents, 
which permit the entry of the sea into them. These waters, flowing freely under 
gravity and neglecting tidal effects, would form a near spheroidal-shaped 
equipotential surface called the geoid (meaning 'Earth-shaped'). This surface is 
everywhere normal to the direction of gravity, but because of variations of mass 
within the Earth, it is an irregular surface, requiring an infinite number of 
parameters to define it mathematically. It follows that this mean sea level surface 
also cannot be used as a basis for the computation of position. It is worth noting that 
levelling and astronomical observations are related to the direction of gravity by the 
plate bubbles of the instruments used, and so are referred to the geoid. 

(c) The spheroid of reference: had the Earth been more spherical in shape, the ideal 
mathematical figure on which to compute the position of widely separated points 
would have been the sphere. However, geodetic observations for the figure of the 
Earth have shown that the polar radius is smaller than the equatorial radius, by 
about 20 km. Thus the simplest mathematically-definable figure which best fits the 
shape of the Earth, is the one produced by rotating an ellipse about its minor axis, 
and is called an oblate spheroid. Such a figure when used as a basis for the 
computation of position, is termed a spheroid of reference. 

Figure 2.29 shows the relationship of the three surfaces to each other over a small 
section of the Earth's surface. At point A, normals to the spheroid and geoid are shown. 
The angle δ between these two directions is termed the deviation of the vertical, and is a 
measure of how much the two surfaces are out of coincidence. For instance, had δ = 0, 
then the two surfaces in question would be parallel, and assuming no vertical 

Normal to the geoid (direction of gravity) 

Figure 2.29 
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Both normal 
coincident 

Normal to 
spheroid 

+- Normal to 
geoid 

Earth's centre 

Figure 2.30 

separation between the two, the surfaces would coincide or fit together. Thus the best 
fitting spheroid for use in any country is the one giving minimum values for the 
deviation of the vertical, throughout the country in question. 

It is the work of the geodetic surveyor to find the best fitting spheroid of reference for 
any country. The procedure, reduced to its simplest elements, may be outlined as 
follows. Figure 2.30 shows a meridional section of the geoid and spheroid (the geoid is 
grossly exaggerated). The angle which the normal to the geoid makes with the Equator 
is the astronomical latitude φΑ, in the meridional plane POE. Similarly, the geodetic or 
spheroidal latitude φ0 is formed by the normal to the spheroid. In the same way a 
distinction exists between the astronomical and geodetic longitudes λΑ and XG. Thus the 
astronomical co-ordinates of a point differ from the geodetic or spheroidal co-
ordinates by the components, in their respective planes, of the deviation of the vertical. 
For example, φΑ — φβ = δφ, whilst in the case of the respective longitudes the 
deviation is δλ cos φ. 

It is required to find the best fitting spheroid between A and B. To do this, let us 
assume the astronomical and geodetic co-ordinates are equal at the origin A, that is the 
deviations of the vertical are zero. A ground survey from A to B will enable the geodetic 
co-ordinates of B to be calculated using an assumed spheroid of reference. These values 
may then be compared with the astronomical co-ordinates observed at B9 including 
astronomical and geodetic azimuth, and values for the deviation obtained. If the origin 
and spheroid assumptions are in error, then systematic deviations of the vertical will be 
noted as the survey proceeds. As previously stated, the best fitting spheroid of reference 
will be the one giving minimum deviation values throughout. The survey stations at 
which these comparisons are made are termed Laplace stations. 

Computations on the spheroid for very long lines are extremely complicated and 
beyond the scope of this book. However, for lines less than about 40 km, semi-rigorous 
methods may be used, as described in the following sections. 

2.10 COMPUTATION ON THE SPHEROID 

2.10.1 Convergence of meridians 

On the spheroid, directions are referred to the meridian (line of longitude) through the 
point concerned. Considering Figure 2.31, A and B are two points on the Earth's 
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P N. Hemisphere 

Figure 2.31 

surface, P is the pole and BC an extension of line AB: the azimuth of AB is ocA and the 
azimuth of BA is ocB where ocB = OLA + 180° + Δα (ΒΡ' parallel to AP). 

Thus, because of the convergence of meridians AP and BP, the reverse and forward 
azimuths of AB differ not by 180°, as in plane surveying, but by 180° + Δα. For most 
practical work 

Δα = Αλ sin φηί (2.53) 
where Αλ = difference in longitude from A to B, 
and cj)m = mean latitude of A and B = %(φΑ + φΒ) 

A correction for convergence is essential when checking the bearing of a line by 
astronomy or gyro-theodolite. Its effect is zero at the Equator and increases with 
increase in latitude, and is a maximum if the line runs due east-west. 

2.10.2 Azimuth and bearing 

The azimuth of a line is its direction relative to true north, i.e. relative to the meridian 
circle passing through it. The bearing of a line is its direction relative to the meridian 
circle passing through the origin of the survey. 

Thus from Figure 2.31, the bearing of BC is aA, assuming A is the origin of the survey 
and ABC a straight line, while its azimuth Az is ocA + Δα. This fact is very important in 
the following computations on the spheroid. 

For points in the southern hemisphere (Figure 2.32) it can be seen that the azimuth 
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S. Hemisphere 

Figure 2.32 

2.10.3 Latitude and longitude by the method of mean latitudes 

Many methods exist for finding the latitude and longitude of points on the Earth's 
surface, all of which vary with the length of line involved and the accuracy required. If 
working on the sphere, spherical trigonometry may be used, but large errors can result 
due to the difficulty of finding the sines and tangents of the very small angles subtended 
at the centre of the sphere by the relatively short lines on the Earth's surface. The 
method of mean latitudes for short lines under 40 km is recommended for all such 
questions set in engineering examinations. 

Consider line AB on the Earth's surface (Figure 2.33). As AB is relatively short, the 
meridians and parallels may be represented as straight lines forming a rectangular grid. 
The dotted line represents the mean position, with a mean azimuth of am = (<xA + Δα/2). 
Thereafter, the right-angle triangle ABC may be solved by plane trigonometry for the 
sides AC and BC, representing the difference in latitude (Αφ) and longitude (Αλ). 

On the spheroid it can be shown that 

Αλ 
L sin am 

vm cos φη 
(2.54) 

Parallel of lat 

Parallel of lat 

of longitude of longitude Figure 2.33 
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and Αφ = 
L COS OL· 

(2.55) 

where am is the mean of the forward and reverse azimuths, ignoring 180°, and vm and pm 

are the values of the principle radii of curvature of the spheroid at the mean latitude. 
For work of limited extent, the surface of the sphere that best fits the spheroid at that 
point may be used, i.e. R = (vp)K 

Thus, from Figure 2.34(a) Length AB = AXR cos φΜ 

which is equivalent to side CB in Figure 2.33. 

Figure 2.34 

Δα 
CB = L sin( ocA + —- ) = L sin am .'. Δ/LR cos φΜ = L sin aw 

Αλ = 
L sin α„, 

(rad) 
R cos 0„ 

Similarly (Figure 2.34(b)) Length ΧΓ = ΛΔφ 
which is equivalent to AC in Figure 2.33. 

AC = L cos am .*. L cos am = RAφ 

L cos aw 
Αφ = 

R 
- (rad) 

(2.56a) 

(2.56b) 

The following examples will illustrate the various applications of the above data. 

WORKED EXAMPLES 

Example 2.17. The latitudes and longitudes of two stations A and B are given below, 

(α) (b) 
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together with the distances on the Earth's surface corresponding to 1" of latitude and 
longitude. Determine the azimuths of the lines AB and BA, and the distance AB. (LU) 

Station 

A 
B 

Latitude 
O / II 

N 5 4 52 30 
N 5 4 51 42 

Longitude 

W 2 08 05 
. W 2 02 33 

Latitude 
O 1 

54 50 
54 55 

Distance 

1" latitude 

30.44 m 
30.44 m 

on EartKs surface 

1" longitude 

17.57 m 
17.53 m 

Student Note. As the meridians and parallels form a rectangular grid defining the 
north-south and east-west directions, the student may find it easier to use the 
quadrantal bearing system in the solution of these problems. 

From Figure 2.35 

Average latitude = φΜ = N 54° 52' 06" Αφ = 48" Αλ = 05' 32" 

Therefore Αφ in terms of linear distance on the Earth's surface using the table provided 
in the question 

Αφ = 48" x 30.44 m = 1461.12 m 

Similarly for Αλ, but one must first interpolate in the Table to find the value of 1" 
longitude at latitude φΜ. 

.·. at 54° 52' 06" 1" longitude = 17.57 m - ~ x 126" = 17.55 m 
6

 300" 

.·. Αλ = 332" x 17.55 = 5826.60 m 

In plane triangle ABC 

_J Δα\ Αλ 5826.60 
tan M ocB + 

2 ) Αφ 1461.12 

.'. (αβ + Δα/2) = N 76° 20' 22" W = am 

now Δα = Αλ sin φΜ = 332" sin 54° 52' 06" = 04' 32" 

.·. αβ = 76° 20' 22" - 02' 16" = N 76° 18' 06" W 

.*. Azimuth of BA at B (measured clockwise from due north) = 283° AY 54" 
Azimuth BA at A = N (αβ + Δα) W = N 76° 22' 38" W 

.·. Azimuth AB at A = S 76° 22' 38" E = 103° 37' 22" 

Length AB = Αφ sec am = 1461.12 sec 76° 20' 22" = 6186.75 m 

These problems frequently take the form of calculating the latitude and longitude of 
station B, given the latitude and longitude of A and the azimuth and distance AB. It is 
obvious then that the mean latitude is unknown and so the value for the convergence of 
meridians Δα cannot be computed. The solution therefore takes the form of successive 
approximations. 

Example 2.18. A triangulation station P has a latitude of 45° 05' 00" N and longitude 
90° 10' 11" W, and the distance from P to the next station Q is 7600 m. The azimuth of 
the line PQ at P is 140° 30'04" and the Table below gives the lengths a and b in metres on 

o o o 
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αβ+Δα 

A 

Figure 

Δλ 

\ \ 

\ 

2.35 

C 

ΔΦ 

B 

A 

P 
~~\ Azimuth . 
1 ) Δ λ 

^ k + ^ 

\ X \ x \ X \ \ \ \ \ \ 
Q 

Figure 2.36 

K 

Δ<£ 

*αρ+Δα 

the Earth's surface corresponding to changes of 1" in latitude and longitude, 
respectively. Determine to the nearest second the latitude and longitude of Q and the 
azimuth of QP at Q. (LU) 

Latitude Length a 
(m) 

Length b 
(m) 

45 00 00 
45 05 00 

30.384 12 
30.384 57 

21.558 21 
21.526 98 

Refer to Figure 2.36; first approximation 

Azimuth of PQ = Az = 140° 30' 04" 

ap = 50° 30' 04" 

= Lcos«P 

a 

where value for a is taken at φρ. 

7600 cos 50· 30· 04-
ψ 30.384 57 

φη = φp-^- = (45° 05' 00") - 80" = 45° 03' 40" north 

LsinaD 
but Αλ" = — £ 

where value for b is at φ} 

and b- 21.558 21 - ( 0 · 0 3 1 ^ : 2 2 0 " ^ 21.535 31m 
300" 

• A / l = 7600sin(50°30'04") = 2 7 2 4 „ 
21.535 31 

.'. Convergence = Δα = Αλ sin φΜ = 272.4 sin 45° 03' 40" = 192.8" 

o o o 
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Final approximation ocp + — = 50° 30' 04" = 50° 31' 40" 
Δα 
2 

. . L cos(ap + Δα/2) 
Δφ = 

where a is abstracted for $m. 

0.000 45 x 220" 
a = 30.38412 + — = 30.384 45 m 

300 

7600 cos 50° 31'40" 
ψ 30.384 45 

It can now be seen that the change in Αφ is negligible 

.·. ΔΑ" = 
L sin(ap + Δα/2) 

b 

where the value for b is as in the first approximation. 

• A A = 7600 sin 50° 31'40» 

21.535 31 

Normally Δα would be recomputed using the final values for Αλ and φ„ 
.·. Latitude Q = 45° 05' 00" N - 02' 39" = 45° 02' 21" N 

and Longitude Q = 90° 10' 11" W - 04' 32" = 90° 05' 39" W 
Azimuth at Q = 90° + (α, + Δα) = 140° 30' 04" + 192.8" = 140° 33' 17" 

.·. Azimuth QP at Q = 140° 33' 17" + 180° = 320° 33' 17" 

Example 2.19. A straight line AB which forms part of a land boundary is to be set out. 
The geographical co-ordinates of A and B are as follows: 

Point 

A 
B 

Latitude 
O f ft 

34 40 28 S 
34 44 05 S 

Longitude 
O 1 II 

148 12 02 E 
148 04 20 E 

The line is to be set out from A and B simultaneously so that the two parts may join 
somewhere between the points. Calculate the azimuth of each part of the line and 
describe briefly the method which should be used in setting out these azimuth angles. 
Assume that the mean radius of the Earth is 6.37 x 106 m. (ICE) 

In Figure 2.37 as the boundary is in the southern hemisphere the convergence is 
negative. 

From Figure 2.34a it is seen that length 

.*. Δα = ΔΤ sin </>m = 462" sin 34° 42' 16" = 263" = 4' 23" 

.*. in Figure 2.37 A „ 462" x 6.37 x 106 x cos 34° 42' 16" Λ Λ ^ Λ 

AC = ^ τ ^ τ ^ = 11730 m 
206 265 
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Figure 2.37 

Similarly, in Figure 2.34(b) Length Αφ = Αφ" x R 

.'. in Figure 2.37 
„ „ 6.37 x 106 x 217" ^nM 
BC = = 6700 m 

206 265 
N.B. That in both cases Αλ and Αφ are brought to radians. 

A ,^ AC 11730 _ _ , _ 
.*. in AABC tan(aß - Δα/2) = — = -τ^τ = 6 0 1 5 3 2 

.'. <xB = 60° 15' 32" + 2' 11" = 60° 17' 43" = Azimuth BA at B 

.*. Azimuth BA at A = ocB - Δα = N 60° 13' 20" E 

.*. Azimuth AB at A = S 60° 13' 20" W = 240° 13' 20" 

Example 2.20. A ten-leg traverse from A to K was run alongside a motorway, running 
almost due east. The traverse was oriented by a gyro-theodolite at A, and the bearing of 
the final bay JK was computed as 87° 43' 02". A similar observation gave the azimuth 
of JK at K as 87° 50' 48". The total departure AK, from co-ordinates, was 12 545 m and 
the mean latitude N 52° 20' 20". Determine the angular adjustments to the traverse leg 
bearings. Radius of the Earth = 6.37 x 106 m. (KP) 

Convergence of meridians = Δα" = Αλ" sin φΜ 

From Figure 2.34(a) Αλ" = ^ — - x 206 265 
Kcos0 m 

L tan φ„ 12 545 tan 52° 20' 20" 
= Ψηί χ 2 0 6 2 6 5 = x 206 265 = 526" = 08' 46" 

R 6.37 x 106 

Azimuth of JK by gyro-theodolite = 87° 50' 48" = bearing JK + Δα 

.'. True bearing of JK = 87° 50' 48" - 08' 46" = 87° 42' 02" 

Computed bearing of JK = 87° 43' 02" 

.'. Error = +01 ' 00" 

Hence correction = — 6" per angle, which is distributed accumulatively on the bearings 
as follows: first bearing —6", second bearing —12", third bearing —18", . . . , 10th 
bearing —60". 
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2.11 SETTING OUT PARALLELS OF LATITUDE 

The location of land boundaries along parallels of latitude has frequently formed 
examination questions in the past. Two methods are available. 

2.11.1 Tangent method 

In Figure 2.38 tangent AF is established from A by turning off an angle of 90° from true 
north. Offsets such as ED and FB are set off from the tangent in the direction of the 

Figure 2.38 

meridian, i.e. at angles of (90° — Δα), to locate the parallel at D, B, etc. The equation for 
the calculation of the offsets may be deduced using Napier's rules in the right-angled 
spherical triangle PC A 

sin(90° - PÄC) = tan p tan(90° - c) 

ΙΪΑΒ = L, then the angular value for p = L/2R, c = co-latitude (90 — φ) and PÄC = 
(90° - Θ) 

.·. sin 0 = tan(L/2K) tan[90° - (90° - φ)~\ 

which, as angles θ and p are small, may be written Θ = 
Ltan φ 

2R 

As length AB « AF, then BF = ΑΒΘ = LB = 
L2 tan φ 

2R 
(2.57) 

For offsets on the spheroid, R = v. 
It can be seen that offsets are proportional to the distance L, along the tangent, 

squared. 
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2.11.2 Chord method 

In Figure 2.38 a chord ACB to the parallel of latitude, is established from A by turning 
off an angle of (90° - 0) from true north. From Worked example 2.20 (p. 135) 

Δα = 
Ltan φ 

but 

R 

θ = 
Ltan φ 

2R 
θ = 

Δα 
(2.58) 

Thus as Δα is calculated using a specific length L, the measurement of this distance 
from A along the line of sight will fix B on the parallel of latitude. 

Intermediate points defining the parallel may be fixed by offsets from the chord. In 
Figure 2.38, CD is the maximum offset. Corresponding offsets equidistant each side of 
CD will be equal in length. The offset equation is as follows: 

(\\ tan </>N 

CD = CE-ED 
Δα 

I i - 2R 

= h 
L t a n 0 \ //2tan</> 

2R J \ 2R 

/ i ( L - / J t a n ^ 
2R 

(2.59a) 

Equation (2.59a) is the general equation for offsets, but as CD is the maximum offset, 
then Ιγ = L/2, and 

Maximum offset 
\L{L - L/2) tan φ L2 tan φ 

2R SR 
(2.59b) 

Further chords may be established in a manner similar to setting out a simple curve, 
as shown in Figure 2.39. 

p 

N 

<J> 

L j U - ^ ^ 1 ' ^ Tangent 
Figure 2.39 
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WORKED EXAMPLES 

Example 2.21. Prove that a great circle arc of length D (small compared with the 
Earth's radius) joining two points of equal latitude φ, has azimuths at its ends differing 

from 90° or 270° by a given by: sin a = I — I tan φ, where R is the radius of the Earth. 

Show also that the maximum offset Δ from the great circle to the line of latitude is 
given by 

D2 

A = —— tan φ 
SR Ψ 

From a position of latitude 42° N a great circle is to be set out to a position 12 km 
eastward and of the same latitude as the starting point. What should be the azimuth of 
the line at the start, and what would be the maximum distance from the great circle to 
the line of latitude? Take the radius of the Earth as 6390 km. (LU) 

Refer to Section 2.10 for the ans\yer to the first part. 

/ ΔαΝ 

Azimuth of the line at the start = I 90° - —-

Δα L tan λ 12 tan 42° x 206 265 Λ m All where — = — = ——— = 174" 
2 2R 2 x 6390 

.*. Azimuth = 89° 57' 06" 

Λ 122tan42° 
and maximum offset Δ = ——τ^τζ- = 2.536 m 

8 x 6390 

Example 2.22. A 3-km length of the line of latitude 51° 30' N is to be set out with 
boundary stones at 1-km intervals. 

Given that 1" of longitude subtends 18.986 m at the Earth's surface in latitude 
51° 30', calculate the data required and state how you would set out the boundary 
knowing true north at the start of the line. (LU) 

Chord method 
Difference in longitude = Αλ = 3000/18.986 = 158" 
Convergence Δα = Αλ sin φη = 158" sin 51° 30' = 124" 

From true north at the start, turn ofT an angle of (90° - Δα/2) = 89° 58' 58" and set 
out markers at 1-km intervals for 3 km. The offsets, to fix boundary stones at 1 and 
2 km on the parallel, will be equal, as they are equidistant each side of the maximum 
offset. 

From Figure 2.34(a), if Αλ = 1", then AB = 18.986 m, thus by radians 

R cos φΑλ = 18.986 m 

18.986x206 265 rf%MOAO 

.'· R = ττ^κ,— = 6 290 848 m 
cos 51° 30' 

1000(3000 - 1000) tan 51° 30' Λ ^ 
= 0.200 m 

2 x 6 2 9 0 848 

.*. Offset at 1 and 2 km from equation (2.59a) 
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Tangent method 
From true north, turn off an angle of 90° to establish the line of the tangent. 

\\ tan φ 
Offset at 1 km = 

ZK 

1ΠΠΠ2 tan S1° W 
= 0.100 m 2 x 6 290 848 

Offset at 2 km = 0.400 m 
Offset at 3 km = 0.900 m 
These offsets would be set off in the direction of the meridian, i.e. at angles of 

(90 — Δα) from the tangent. 
L tan^ l x tan 51° 30' ^r ^rc Λ Λ„, .'. Δα at 1 km = = , ^ n A n x 206 265 = 0.04" 

R 6 290 848 
at 2 km Δα = 0.08", and at 3 km Δα = 0.12". 

2.12 TRANSVERSE MERCATOR PROJECTION 
Having defined the position of points by their spheroidal co-ordinates φ and A on a 
spheroid of reference, a map must be compiled on a plane surface. To this end, a 
projection must be adopted which best suits the requirements of the country to be 
mapped. 

A map projection is a means of representing the lines of latitude and longitude of the 
spheroidal Earth on a flat sheet of paper. The lines so produced form what is called a 
graticule. Since it is impossible to represent a curved surface on a plane, there is no such 
thing as the perfect projection. However, certain projections fulfil certain requirements. 

In the case of the British Isles, the Ordnance Survey (OS) adopted as their spheroid of 
reference Airy's spheroid, which has the following dimensions: 

Equatorial semi-axis = 6 377 563.4 m 
Polar semi-axis = 6 356 256.9 m 
In the case of the projection, the prime requirement of the OS was that at any point 

on the projection the scale was the same in all directions. The result of this requirement 
is that small areas on the ground retain their true shape on the map, and angles 
calculated from rectangular co-ordinates correspond, almost exactly, with angles 
observed on the ground. Such projections are termed orthomorphic. With this in mind, 
plus the fact that it is eminently suited to a country having its greatest extent in a north-
south direction, the transverse Mercator projection (TMP) was adopted. 

The TMP is a cylindrical projection as illustrated in Figure 2.40. The cylinder is in 
contact with the Earth along a meridian of longitude, and lines of latitude and 
longitude are projected onto the cylinder from a point source at the Earth's centre. 
Orthomorphism is achieved by stretching the scale along the meridians to keep pace 
with the increasing scale along the parallels. By opening up the cylinder and spreading 
it out flat the lines of latitude and longitude form a graticule of complex curves 
intersecting at right angles, the central meridian being straight. 

It is obvious from Figure 2.40 that scale, i.e. the ratio of distance on the ground to that 
on the projection, would be correct only along the meridian where the cylinder and 
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P' Figure 2.40 

Earth are in contact. Thus the projection scale factor along the meridian of contact 
would be unity. As scale factor varies as the square of the distance from the central 
meridian, it can be shown that at about 270 km east or west the scale factor is 1.000 90. 

The central meridian adopted for the British Isles is longitude 2° W. The intersection 
of this meridian with the parallel of latitude 49° N is the true point of origin of the 
projection. However, in order to reduce the scale error at the extreme east and west 
edges of the country, the scale at the central meridian was arbitrarily reduced by the 
factor of 2499/2500. This has the effect of making the scale 0.04% too small at the 
central meridian, and 0.04% too large near the east and west coasts. The apparent result 
of reducing the scale at the central meridian is to reduce the diameter of the projection 
cylinder, as shown in Figure 2.41. Thus, at the central meridian the scale factor is 
0.999 60127, and 180 km east and west of the central meridian it is unity. 

2.13 THE NATIONAL GRID 

It was recommended by the Davidson Committee, set up in 1935 to study OS maps and 
plans, that a national grid (NG) should be superimposed on all OS maps. This had the 
effect of providing a single reference system for the whole country, on which the 
position of a point may be defined by 'plane rectangular co-ordinates'. The origin of the 
national grid was established 400 000 m west and 100 000 m north of the true origin, 
with the result that the co-ordinates of a point are always positive, and so defined by its 
easting and northing. 

(a) (b) 

Figure 2.41 



Control surveys 141 

1300 

100 200 300 400 

Kilometres Easting 

700 
False origin of 
national grid 

Figure 2.42. National reference system of Great Britain showing 100-km squares, the figures used to 
designate them in the former system, and the letters which have replaced the figures. (Courtesy 
Ordnance Survey, Crown Copyright Reserved) 

As shown in Figure 2.42, the grid is simply a series of lines parallel and at right angles 
to the central meridian of the TMP. Thus at the central meridian, grid north and true or 
geographical north, are the same. To the east and west of the central meridian, however, 
grid and true north will differ by a variable amount due to the convergence of the 
meridians to the central meridian. 
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2.14 SCALE FACTORS 

The origins of scale factors having been fully expounded, it simply remains to define 
them more specifically, thus 

F = G/S (2.60) 
where F = local scale factor (LSF) 

G = grid distance (as computed from NG co-ordinates) and 
S = distance on the spheroid at MSL 

Figure 2.43 shows the relationship of these various distances and serves to explain the 
application of LSF. 

A semi-rigorous formula for F may be deduced as follows. Scale error (SE) is the 
difference between the scale factor at any point (F) and that at the central meridian (F0), 
and varies as the square of the distance from the central meridian. Thus, SE = K(AE)2 

where ΔΕ is the difference in eastings of the point in question and the central meridian, 
i.e. ΔΕ = (E - 400 000) m. 

.·. F = F0 + SE = 0.999 601 27 + K(AE)2 

(F0 is the LSF at the central meridian and equals 0.999 601 27). Considering a point 
180 000 m east or west of the central meridian, its value for F is unity, thus 

1.000 000 00 = 0.999 601 27 + K(180 000)2 Λ K = 1.228 x 10"1 4 

and hence F = 0.999 601 27 + [1.228 x 10"1 4 x (E - 400 000)2] (2.61) 
Thus the value of F for a point whose NG co-ordinates are E 638 824 m, N 309 912 m is 

F = 0.999 60127 + (1.228 x 10"1 4 x 238 8242) = 1.000 301 6 
The OS recommend that for very accurate work the LSF should be computed at each 

Figure 2.43 
Centre of spheroid 
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end of the line and in the middle, and the mean value obtained from Simpson's rule. 
However, for all practical purposes it is sufficient to compute the LSF at the midpoint 
of the line. 

It is very important to realize that the scale factor relates only to distances on the 
spheroid at MSL and grid distances on the projection. Thus horizontal distances on the 
ground must first be reduced to their equivalent at MSL before the application of LSF 
to convert them to grid distances. The application of the altitude correction formula 
has already been illustrated in Section 2.1.3.6. 

2.14.1 Application of scale factors 
Grid to ground distance 

Any distance calculated from NG co-ordinates will be grid distance. If this distance is to 
be set out on the ground it must: 

(a) Be divided by the LSF to give the spheroidal distance at MSL, i.e. S = G/F. 
(b) Have the altitude correction applied to give the horizontal ground distance. 

Consider two points, A and B, whose co-ordinates are 

A: E 638 824.076 N 307 911.843 
B: E 644 601.011 N 313 000.421 

.*. AE = 5 776.935 Λ AN = 5 088.578 

Grid distance = (ΔΕ2 + ΔΛΓ2)* = 7698.481 m = G 

Mid-easting of AB = E 641712 m 
.·. F = 1.000 318 8 (from equation (2.61)) 

.·. Spheroidal distance at MSL = S = G/F = 7696.027 m 

Now assuming AB at a mean height (H) of 250 m above MSL, the altitude correction 
Cmis 

„ SH 7696x250 Λ#ΪΛ< 
C - = ^ = T 3 8 4 W = + a 3 0 1 m 

.*. Horizontal distance at ground level = 7696.328 m 

Ground to grid distance 
When connecting surveys to the national grid, horizontal distances measured on the 
ground must be: 

(a) Reduced to their equivalent on the spheroid at MSL. 
(b) Multiplied by the LSF to produce the equivalent grid distance, i.e. G = S x F. 

Consider now the previous problem worked in reverse 

Horizontal ground distance = 7696.328 m 
Altitude correction Cm = —0.301m 

.·. Spheroidal distance S at MSL = 7696.027 m 
F = 1.000 318 8 

.'. Grid distance G = Sx F = 7698.481 m 
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The above computations are greatly simplified if the LSF and altitude corrections 
are combined to give an adjusted LSF at mean elevation. This may be carried out as 
follows (Figure 2.41(b)) 

LSF at the central meridian *v Grid distance R 
Spheroidal distance R 

/. h0 = R(l - F0) 
and at any position on the spheroid 

h = R(l - F) (2.62) 
Referring to Figure 2.41(a), it can be seen that when F < 1, the spheroid is above the 
projection plane and h is positive; when F > 1, the spheroid is below the projection 
plane and h is negative. Consider once again line AB whose value for F is 1.000318 7 
(Figure 2.44). Height of projection plane above or below MSL at the mid-point of 
AB = h = R(l - F) = 6 384100(1 - 1.000 318 7) = -2034.6 m. 

Ground surface 

Fat MSL =1.000 318 7 
F at the projection plane = 1.000 000 0 

.*. Difference AF =0.000 318 7 
Then by proportion, F at 250 m above MSL, i.e. Fa is 

AFxH 
Fn = F± 

= 1.000 318 7 -
.*. F =1.000 279 5 

0.000 318 7x250 
2034.6 

(2.63) 

Hence 

Figure 2.44 
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Doubts about the sign of this correction to F may be resolved by considering Figure 
2.44. The point in question has an LSF of 1.000 318 7 at MSL, thus the projection plane 
must lie above MSL. Now as the ground is 250 m above MSL, it approaches closer to 
the projection plane and so closer to unity, hence the correction to 1.000 318 7 is 
negative, giving 1.000 279 5. Consider now the central meridian where the LSF at MSL 
is 0.999 6. If the ground is above MSL it is further from the projection plane, and so the 
LSF at ground level is further removed from unity; thus again the correction to F is 
negative. If the area in question was below MSL, as occurs in mining and tunnelling, the 
correction would be positive. 

Whilst it is important to understand the principles, these considerations can be 
eliminated by combining equations (2.62) and (2.63) to give 

Fa = F(l - H/R) (2.64) 
where H is the ground height relative to MSL, and is positive when above and negative 
when below MSL. 

. - . F . - 1.000 318 7 ( l - ^ ö ) = 1-000 279 5 

It is only necessary to apply LSFs to surveys that are to be connected to the national 
grid, and in the reverse case, i.e. when setting out distances on the ground are required 
from NG co-ordinate values. Also it is sufficient to use an LSF for an area, the extent of 
the area depending on the accuracy required. 

An alternative approach to the use of scale factors in engineering surveys can be 
found in Schofield (1973). 

2.15 CONVERGENCE OF MERIDIANS 

This topic has already been discussed; however, with particular reference to the 
national grid it may be further outlined. 

The central meridian on the transverse Mercator projection (longitude 2° W), and 
the grid line 400 000 m east of the false origin, are coincident. East and west of the 
central meridian, all other meridian lines converge on the central meridian, i.e. they 
converge towards and meet at the North Pole. However, the grid lines are all parallel to 
the central meridian, hence the clockwise angle at any point between the direction of 
the grid lines (grid north) and the meridian lines (true north) is defined as the 
convergence of meridians (Δα). 

Δα = Αλ sin φτη 

From Figure 2.34(a) Αλ = L/R cos φτη 

L tan ώ„ 
··· Δα = — ^ (2.65) 

where L is the distance from the central meridian. 
These approximate equations for Δα will give values correct to 25", with φγη taken 

from a map to the nearest 05'. For example, the NG co-ordinates of a station are E 
626 238, N 302 646. If the latitude is N 52° 34', calculate the convergence of meridians, 
taking R = 6 384100 m. 
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L = 626 238 - 400 000 = 226 238 m 

Δα" = 
226 238 tan 52° 34' 

6 384100 
Δα = 2° 39' 09" 

x 206 265 = 9549" 

2.16 THE (t- T) CORRECTION 

The transverse Mercator projection is orthomorphic, thus angles measured on the 
ground need not be altered when used in the plane of projection. However, when long 
lines of sight are involved, a small correction, called the (i — T) correction, is required. 

Lines observed on the ground are curved due to the spheroidal shape of the Earth, 
and will always be concave to the central meridian as shown in Figure 2.45. Thus, the 

N 
4 

Figure 2.45 

line AB observed on the ground will have the direction AX, whilst on the projection it is 
the straight line AB shown dotted. The difference between these two directions is called 
the (t — T) correction. From this it can be seen that where long lines are involved, the 
angle between OS stations observed on the ground will differ slightly from the 
equivalent angle computed from NG co-ordinates. 

The equation for correcting the bearing of line AB is 
(tA - TJ = (2AEA + AEB)(NA - NB)K 

where ΔΕ = NG easting - 400 000, expressed in km 
JV = NG northing expressed in km 
A — station at which the correction is required 
B = station observed 
X = 845xl0"6 

(2.66) 
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A maximum value for the (t — T) correction would be about ±7"; it is zero for points 
having equal northings and increases with distance from the central meridian. 

The application of the (t — T) correction and convergence of meridians is clearly 
illustrated in the following worked examples. 

WORKED EXAMPLES 

Example 2.23. The national grid co-ordinates of two points, A and B, are A: EA 
238 824.076, NA 307 911.843; and B: EB 244 601.011, NB 313 000.421 

Calculate (1) The grid bearing and length of AB. 
(2) The azimuth of ÄB and Έΐ. 
(3) The ground length AB. 

Given (a) Mean latitude of the line = N 54° 00'. 
(b) Mean altitude of the line = 250 m AOD. 
(c) Local radius of the Earth = 6 384100 m. (KP) 

(1) £4 = 238 824.076 NA = 307 911.843 
EB = 244 601.011 NB = 313 000.421 

AE = 5776.935 AN = 5088.578 
Grid distance = (ΔΕ2 + ΔΛΓ2)* = 7698.481 m 

Grid bearing ÄB = tan"1 - ^ = 48° 37' 30" 
AN 

(2) In order to calculate the azimuth, i.e. the direction relative to true north, one must 
compute (a) the convergence of meridians at A and B(Aoc) and (b) the (t — T) 
correction at A and B (Figure 2.46). 

(a) Convergence of meridians at A = Δα̂ , = LA tan φ 
R 

where LA = Distance from the central meridian 
= 400 000 -EA = 161175.924 m 

.*
Similarly Δα£ = 1 5 5 Λ ? ^ 1 5 4 ° x 206 265 = 6911" = 1° 55' 1V 

J B 6 384100 
(b) (tA-TA)=(2AEA+AEB)(NA-NB)K 

= 477.751 x -5.089 x 845 x 10"6 = -2.05" 
N.B. The eastings and northings are in km. 

(tB - TB) = (2Δ£β + AEA)(NB - NA)K 
= 471.974 x 5.089 x 845 x 10"6 = +2.03" 

Although the signs of the (t - T) correction are obtained from the equation the student 
is advised always to draw a sketch of the situation. 
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Θ = Grid bearing 
φ - Azimuth 

Figure 2.46 

Referring to Figure 2.46 

Azimuth AB = φΑ = ΘΑ — AocA — (tA — TA) 
= 48°37 ,30" - 1 ° 5 9 ' 2 7 " 02" = 46° 38' 01" 

Azimuth BA = φΒ = ΘΒ — Δαβ + (tB— TB) 
= (48° 37' 30" + 180°) - 1° 55' 11" + 2" 
= 226° 42' 21" 

(3) To obtain ground length from grid length one must obtain the LSF adjusted for 
altitude. 

Mid-easting of AB = 241 712.544 m = E 

LSF = 0.999 601 + [1.228 x 10"1 4 x (E - 400 000)2] = F 

:. F = 0.999 908 

The altitude is 250 m OD, i.e. H = +250. LSF Fa adjusted for altitude is 

Fa = F[ 1 - — ) = 0.999 908(1 - , J ^ ^ 
R \ 6 384100 

= 0.999 869 

.*. Ground length AB = Grid length -=- Fa 

.·. AB = 7698.481/0.999 869 = 7699.483 m 

Example 2.24. As part of the surveys required for the extension of a large underground 
transport system, a base line was established in an existing tunnel and connected to the 
national grid via a wire correlation in the shaft and precise traversing therefrom. 
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Thereafter the azimuth of the base was checked by gyro-theodolite using the reversal 
point method of observation as follows: 

Reversal 
points 

Ί 
r2 

r3 

U 

Horizontal circle 
readings 
o / 

330 
338 
330 
338 

20 
42 
27 
22 

» 

40 
50 
18 
20 

Remarks 

Left reversal 
Right reversal 
Left reversal 
Right reversal 

Horizontal circle reading of the baseline = 28° 32' 46" 
Convergence of meridians = 0° 20' 18" 
(t - T) correction = 0° 00' 04" 
NG easting of baseline = 500 000 m 

Prior to the above observations, the gyro-theodolite was checked on a surface base 
line of known azimuth. The following mean data were obtained 

Known azimuth of surface base = 140° 25' 54" 
Gyro azimuth of surface base = 141° 30' 58" 

Determine the national grid bearing of the underground base line. (KP) 

Refer to Volume 1 for information on the gyro-theodolite. 
Using Schuler's mean 

Nt = i(rx + 2r2 + r3) = 334° 33' 24" 
N2 = i(r2 + 2r3 + r4) = 334° 29' 54" 
.·. N=(N1+ N2)/2 = 334° 31' 39" 

Horizontal circle reading of the base = 28° 32' 46" 
Λ Gyro azimuth of the base line = 28° 32' 46" - 334° 31' 39" 

= 54° 01'07" 

However, observations on the surface base show the gyro-theodolite to be 'over-
reading' by (141° 30' 58" - 140° 25' 54") = 1° 05' 04". 

.'. True azimuth of base line φ = Gyro azimuth — Instrument constant 
= 54° 0 1 ' 0 7 " - 1 ° 05'04" 
= 52° 56' 03" 

Now by reference to Figure 2.47, the sign of the corrections to give the NG bearing can 
be seen, i.e. 

Azimuth φ = 52° 56'03" 
Convergence of meridians Δα = — 0° 20' 18" 
{t- T) = -0°00 '04" 

.'. NG bearing Θ = 52° 35'41 
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Figure 2.47 

EXERCISES 

2.11. Explain the meaning of the term convergence of meridians. Show how this factor 
has to be taken into account when running long survey lines by theodolite. 

From a point A in latitude 53° N, longitude 2° W, a line is run at right angles to the 
initial meridian for a distance of 31680 m in a westerly direction to point B. 

Calculate the true bearing of the line at B, and the longitude ofthat point. Calculate 
also the bearing and distance from B of a point on the meridian of B at the same latitude 
as the starting point A. The radius of the Earth may be taken as 6273 km. (LU) 
(Answer: 269° 37' 00"; 2° 28' 51" W; 106.5 m) 

2.12. Two points, A and B, have the following co-ordinates: 

Latitude 

A 52 21 14 N 
B 52 24 18 N 

Longitude 
O / II 

93 48 50 E 
93 42 30 E 

Given the following values: 

Latitude 1" of latitude 

52° 20' 30.423 45 m 
52° 25' 30.423 87 m 

1" of longitude 

18.638 16 m 
18.603 12 m 

find the azimuths of B from A and of A from B, also the distance AB. (LU) 

{Answer: 308° 23' 36", 128° 18' 35", 9021.9 m) 
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2.13. At a terminal station A in latitude N 47° 22' 40", longitude E 0°41'10", the 
azimuth of a line AB of length 29 623 m was 23° 44' 00". 

Calculate the latitude and longitude of station B and the reverse azimuth of the line 
from station B to the nearest second. (LU) 

Latitude Γ of longitude 1" of latitude 

47° 30' 20.601 m 30.399 
47° 35' 20.568 m 30.399 

(Answer: N 47° 37' 32"; E 0° 50' 50"; 203° 51' 08") 

2.14. A boundary is to be a line 60 km in length along the 45° parallel of latitude. 
Calculate the data for setting out boundary markers at 30-km intervals and describe 
the method of setting out. 

Assume that 30.45 m on a great circle subtends 1" at the Earth's centre, that the mean 
radius of the Earth is 6367 km and log R (in metres) = 6.803 935. (LU) 
(Answer: Chord method; setting out angle = 89° 43' 48", maximum offset 282.7 m) 
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Aerial photogrammetry 

As the word 'photogrammetry' implies, it means measurements from photographs, and 
in the case of aerial photogrammetry it is measurements from aerial photographs. 

The major use of aerial photogrammetry is in the preparation of contoured plans 
from the aerial photographs. With the aerial camera in the body of the aircraft, 
photographs are taken along prearranged flight paths, with the optical axis of the 
camera pointing vertically down (Figure 3.4). Such photographs are termed vertical 
photographs and are the only type that will be considered here. 

The essential processes involved in the production of a contoured plan or digital 
ground model from aerial photographs are: 

(a) Photography. 
(b) Ground control. 
(c) Restitution system. 

3.1 PHOTOGRAPHY 

Basically the photographs are taken using dimensionally-stable film in precision-built 
cameras (Figure 3.1). It is important that all topographic detail must be clearly 
reproduced and therefore recognizable on the photograph, and that the geometric 
relationships between the ground objects and the photo images are rigorously 
maintained. These conditions are governed largely by the atmospheric conditions 
prevailing at the time of photography, aircraft movement, the characteristics of the 
camera and film, the scale used, and the eventual processing of the film. 

The choice of photographic materials and the subsequent processing of the film are 
the province of highly-experienced photographers who utilize their professional skills 
and knowledge to reduce distortions to a minimum. In general, the most popular film 
used is panchromatic which produces the well-known black-and-white photographs 
used in the map-making process. This film is in 120-m lengths and has speed ratings in 
the region of 200 to 400 ASA. 

Colour film may replace panchromatic where interpretation of detail is also of 
importance. For instance, in black-and-white photography the variation and 
distinguishability of shades between the extremes of black and white is in the region of 
200, whereas in colour photography this number increases to 5000. Also, infra-red 
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Magazine 

Vacuum-backed platen 

Between-lens shutter 

Figure 3.1 

photography is widely used for the clearer detection of coastlines, rivers, drainage 
patterns, changes in the vitality of vegetation due to growth patterns or disease, and 
other phenomena such as the amount of pollutants in bodies of water. 

Cameras used for air survey, as with all other survey equipment, are precision-built, 
and their lenses are of such high quality that aberrations are practically negligible. As is 
shown diagrammatically in Figure 3.2, lenses may be classified broadly as 

(a) Normal-angle (60°) - Principal distance (f) = 82.5 mm 
(b) Wide-angle (90°) - Principal distance (f) = 152.4 mm 
(c) Super-wide-angle (125°) - Principal distance (f) = 305.0 mm 

Normal-angle lenses are not now in common use, and the super-wide-angle is limited 
to small-scale mapping. From the engineering point of view the most popular lens is the 
wide-angle combined with a format size of 230 mm x 230 mm. It is the camera which 
produces the fundamental geometry of the air photo; that of a central perspective 
projection with the lens as origin. 

After the lens system, the next major consideration is the shutter which, ideally, 
should be capable of exposing the total film format for the required interval at the same 
instant of time. In addition, image movement, caused largely by the apparent 
movement of the ground relative to the aircraft, must also be reduced to negligible 
proportions. To attain such efficiency, a shutter of the rotating-disc type situated 
between the lens elements (Figure 3.1) is used, and the complete camera is mounted in 
an anti-vibration holder. 
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Wide-angle 

1 

Super-wide-angle 

Figure 3.2 

The aerial camera is capable of shutter speeds ranging from l/50th to l/2000th sec, 
the speeds most commonly used in practice being from l/100th to l/1000th sec. 

Film-flattening devices available are low-pressure vacuum systems, and physical 
flattening by pressure pads acting against the film. The complete cycling time of the 
camera is in the region of 1.5 to 2 seconds. Maximum distortions, after careful 
calibration of the camera, are in the region of 3 to 10 μιη. 

The so-called 'camera constants' obtained from the calibration process are: 

(a) The position of the principal point. 
(b) The focal length of the lens. 
(c) The pattern and magnitude of distortion over the effective photographic field. 

3.2 GEOMETRY OF THE AERIAL PHOTOGRAPH 

Before one can appreciate the need for ground control and a restitution system, one 
requires a knowledge of the errors present in the air photograph. These errors are 
largely caused by tilt in the plane of the film at the instant of exposure, and displacement 
of object position due to ground relief. It should be understood that a photograph is not 
a plan, except where the terrain is absolutely flat and level and the photograph axis is 
truly vertical. 

3.2.1 Definitions 

Because of the pitch and roll of aircraft in flight it is rare for a truly vertical photograph 
to be taken. Figure 3.3 illustrates a near-vertical photograph with the optical axis tilted 
at Θ to the vertical. In practice, Θ is usually less than 3°. The definitions of commonly-
used terms are as follows: 
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Figure 3.3 

Photo axis: the right-angled x — y axis formed by joining the opposite fiducial marks 
of the photograph. This is the axis from which photo co-ordinates are measured. The 
x-axis approximates to the direction of flight. 

Optical axis: the line LpP from the lens centre and at 90° to the plane of the 
photograph. 

Principal distance: the distance Lp = / , from the lens to the plane of the photograph. 
Alternatively the principal distance may be referred to as the focal length. 

Vertical axis: the line LvV following the direction of gravity and thus at 90° to a level 
datum plane. 

Tilt: the angle Θ formed by the vertical and optical axes (see also principal line, below). 
Principal point (PP): the point p where the optical axis cuts the photograph, and 

coincides with the origin of the photo axes. 
Plumb point: the point v where the vertical axis cuts the photograph. 
Isocentre: the point i, where the bisector of the angle of tilt cuts the photograph. 
Principal line: the line vip in the plane of the photograph giving the direction of 

maximum tilt of the photograph. It is therefore at the angle Θ to the horizontal. 
Plate parallels: the lines at 90° to the principal line which are similar to strike lines in 

geology, i.e. they are level lines. 
Isometric parallel: the plate parallel passing through the isocentre and forming the axis 

of tilt of the photograph. 
Flying height: the vertical height of the lens above ground at the instant of exposure of 

the film, and is equal to (H — h), where H is the height of the lens above datum 
(usually MSL) and h is the mean height of the terrain. 
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M a c p b 
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Ground 
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Figure 3.4 

VAw/ 

Swing: the angle s measured in the plane of the photograph, clockwise from the +y 
axis to the plumb point. It defines the direction of tilt relative to the photo axes. 

The main sources of error in the air photo will now be outlined. 

3.2.2 Scale and its variation due to ground relief 

In Figure 3.4 the scale of a photograph is the ratio of the distance on the ground to its 
imaged distance on the photograph. Hence, by similar triangles 

Scale = 
ab 

AB 
ι 
H 

At point C, it is obvious that the scale Sc = f/(H — hc). Thus scale S varies with relief 
throughout the photograph and for any elevation (h) is given by 

S = f 
H-h 

(3.1) 

3.2.3 Scale and its variation due to tilt 

Figure 3.5 assumes flat terrain and indicates i as the axis of tilt; thus the scale at the 
isocentre is common to both a tilted and a truly vertical photograph 

. / 
H 

(a) Scale at isocentre 

(b) Scale at principal point 

c _ U - LVl 

S'~U~LV 

s =Lp = f 

" LP H sec Θ 
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Lv f sec Θ 
(c) 

(d) 

(e) 

Scale at plumb point 

Scale at random point a 

Sv LV H 

La Lv2 Lv1 + id 2 
a=:LÄ==Iv= LV 

/ + ai sin Θ 
= Ή 

Let ai = ya, the distance from the isocentre, then Sa 

Scale at random point b 

Let ib = yb, then 

Lb Lv3 Lv1 — idx 
b = LB=iy= Lv 

/ - yb sin Θ 

_ / + ya sin Θ 

H 

f — ib sin Θ 
= Ή 

Thus it can be seen that the scale continually varies along the principal line with 
distance from the isocentre. By definition, however, the scale along a plate parallel at a 
particular point will be constant providing the ground is level. The basic equation 
considering ground relief h is therefore 

S = 
f ± y sin Θ 

(3.2) 
H-h 

By substituting the appropriate distance from the isocentre for points v, i and p, the 
equations shown in (a) to (c) are obtained. For example, consider p 

_f-ip sin Θ 
Sp~ H 

where ip = yp = f tan(0/2) 

Figure 3.5 
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Hence S,= 
/ - / tan(fl/2) sin Θ f~ j ^ } 2 ^ ™ ^ 

H H 

f - / [ 2 sin2(0/2)] / [ l - 2 sin2(0/2)] / cos Θ 

H H H 

f 
" Sp HSQCO 

Similarly for v; yv = vp — ip = /[tan Θ — tan(0/2)], which on substitution reduces to 
the equation already given in (c). Note that on the lower side of the tilted photograph 
the formula is + ve, and vice versa. Scale change along the principal line can be found by 
differentiating the basic equation with respect to y, i.e. 

dS _ sin Θ 

3.2.4 Image displacement due to ground relief 

Figure 3.6 shows an untilted photograph of undulating terrain. Point A, if projected 
orthogonally onto a plan, would appear at B. Its true position on the photograph is 
therefore at b, and distance ab is the displacement resulting from the height of A above 
datum. By similar triangles 

Figure 3.6 
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va f va 

VB H " f 

va{H - Ah) = vbH = {va - ab)H m H 

va — ab H — Ah 

.'. vaH — vaAh = vaH — abH 

Λ ab = vaAh/H (3.3) 

From equation (3.3) it can be seen that any increase in flying height would reduce the 
amount of displacement ab, which in turn is directly proportional to the height Ah of 
the object. It can also be seen that if Ah and H remain constant, displacement will 
increase with distance va from the plumb point. This latter point is important in the 
construction of mosaics, and may result in the central portions only of the photograph 
being used. 

From Figure 3.6 it can be clearly seen that LV is parallel to AB and both are vertical. 
Thus LABV forms a plane containing v, b and a, showing the displacement ba as being 
radial from the vertical LV&tv, which in a near-vertical photograph is the plumb point. 

3.2.5 Image displacement due to tilt 

Considering point a in Figure 3.7, whose distance from the isocentre on the tilted 
photograph is ia, and on the untilted ia1, then the displacement Δί due to tilt is given by 

Δί = ia — ia1 

At _ ia — ia1 Λ'αΛ ί^Λ _ (fcosec ^ 
ia ia \ ia) \CaJ \ Ci + ia 

but, as CLi = CiL = (90° - Θ/2), then Ci = CL = f cosec Θ 

At f cosec Θ f cosec Θ + ia — f cosec Θ ia 

ia f cosec Θ + ia f cosec Θ + ia f cosec Θ + ia 

• A t = (fa)2
 = (fa)2 sin 0 

/ cosec Θ + ia f + ia sin Θ 

Similarly for point b on the upper side of the photograph, it can be shown that 

(ib)2 sin Θ 
At = 

f — ib sin Θ 

v sin Θ 
.*. the general equation is Δί = :—- (3.4) 

/ ± y sin Θ 

where y is the distance from the isocentre measured along the principal line. For any 
point off the principal line, the situation is as shown in Figure 3.8. 

It can be seen that ia = id cos φ and ia1 = idx cos φ. Therefore the displacement 
ddx = Δίΐ5 projected on to the principal line gives 

but 

thus 
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Figure 3.7 

_ y2 sin Θ cos φ 
1 / ± y sin Θ cos φ 

and, if Θ is small then y sin 0 cos (/> is negligible, compared with / 

v2 sin Θ cos ^ 

· ' · * ' " — 7 — 
The equation shows that displacement is proportional to the distance from the 

isocentre squared, and will therefore be greatest at the edges of the photograph. It 
shows also that increasing the focal length of the camera will help to reduce the 
displacement. 

As shown in Section 3.2.6 following, angles measured about the isocentre on a tilted 
photograph are equal to their corresponding angles on the ground. It follows, therefore, 
that image displacement due to tilt must be radial from the isocentre. 

3.2.6 Angular ratios on a tilted photograph 

From the geometry of plane surfaces it can be shown that any line on the tilted 
photograph in Figure 3.9 would intersect its corresponding line on the ground, along 
the perspective axis. 

Considering the angle PIA = ß on the ground, and its equivalent pia = a on the 
photograph, about the isocentre, then in right-angled triangles BiC and BIC 

tan a = BC/Bi tan ß = BC/BI .'. tan α/tan ß = BI/Bi 

but, in ABU ΒΪΙ = Bli = 90° - Θ/2 .'. BI = Bi 

(y cos φ)2 sin Θ 
At = Atx cos φ = f ± y cos φ sin Θ 

*. the general equation becomes 

and tan a = tan ß (3.7) 

Figure 3.8 

(3.5) 

(3.6) 
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Figure 3.9 

Consider now a similar construction through the plumb points v and V and any other 
point on the ground similar to A with the two lines meeting on the perspective axis. In 
right-angled triangles 

BvC and BVC 

tan a BV 
tan ß Bv 

Similarly at p 

tan a = BC/Bv 

= cos Θ 

tan a = BC/Bp 

tan ß = BC/BV 

tan ß = BC/BP 

tan (x BP 
ή = -ττ- = s e c Θ 

tan β Βρ 

(3.8) 

(3.9) 

This latter ratio is particularly important when considering radial line plotting, which 
assumes the angles about the principal point on the photograph are equal to their 
equivalents on the ground. This is, of course, only true for the isocentre. 

In addition to the complications already outlined, further displacements may result 
due to variation in flying height, refraction of the rays of light (particularly near the 
body of the aircraft), camera and photographic errors, etc. It can now be clearly seen 
that a photograph is not a plan, except where the axis of the photograph is truly vertical 
and the ground is flat and level. 

3.2.7 Combined effect of tilt and relief 

As already shown, displacement due to tilt and relief are not radial from any one point 
on the photograph. Figure 3.10 shows ab as the top and bottom of a tall structure. The 
height displacement ab is radial from the plumb point v, whilst the tilt displacements 
aal and bbx are radial from the isocentre. Note the reverse direction of displacement on 
the upper side of the photograph. 

The treatment of such effects is to: (i) eliminate tilt displacement by a mathematical 
or optical rectification of the photograph, i.e. reduce the tilted photograph to its 
horizontal equivalent; (ii) consider height displacement on the rectified photograph— 
for instance, after rectification the equivalent position of the plumb point v is at vx (see 
also Figure 3.7) from which the height displacement a1bl is radial. 
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Figure 3.10 

3.2.8 To find the x and / tilts of a photograph 

Given the focal length of the camera and the co-ordinates of the plumb point, the x and 
y tilts may be found as follows (from Figure 3.11(b)): 

. _ ab vc vc pv . _ 
sin 0X = — = — = — x — = sin 0 cos S 

ap ap pv ap 

sin 9y = sin 0 cos S Thus for tilts in the y direction (9y) 

Now from Figure 3.11(a) 

cos S = ^„/pi; and pv = f tan 0 (see Figure 3.3) 

.'. sin 0V = sin 0 χ „ 
* / tan 0 

. Ω yv cos0 
= sin 0 x — x ——-

f sin0 

sin 0y = 
yv cos 0 

(3.10) 

(3.11) 

(a) 
Figure 3.11 

(b) 
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Similarly sin θχ = sin Θ cos(90° - S) = sin Θ sin S 

But sin S = xv/pv 

Y COS Θ 

Thus for tilts in the x direction (θχ) sin θχ = -^—-— (3.12) 

Putting 5 = 0° in equation (3.10) gives 9y = Θ; therefore, all lines parallel to the 
principal line have the same maximum tilt. Putting S = 90°, gives 9y = 0; therefore, all 
lines at 90° to the principal line (i.e. plate parallels) are horizontal. 

3.2.9 Ground co-ordinates from a tilted photograph of flat terrain 

In Figure 3.12 consider point a whose photo co-ordinates xa and ya are measured about 
the fiducial axes; also known are the flying height H, the focal length / , the tilt 9 and the 
swing S. It is first necessary to obtain the co-ordinates of a relative to the principal line 

axes, with the isocentre as origin (tilt displacement radial from isocentre), i.e. x'a, y'a. 
Figure 3.12(b) illustrates the rotational effects where the angle between the respective 
axes is a = 180° + S. The amount of translation necessary is pi = f tan(0/2). Assuming 
a parallel through p, an examination of Figure 3.12 (a) shows that the angle between the 
x axes is a. Then from Figure 3.12(b) 

x'a = pr — qr = xa cos a — ya sin a and y'a = an + mr — ya cos a + xa sin a 

To obtain the general form for these equations, substitute (180° + S) for a and add 
the translation amount pi = / tan(0/2) to obtain the new origin at i, then 

x' = —x cos S + y sin S (3.13) 

/ = - x sin S - y cos S + / tan(0/2) (3.14) 

where x and y are the photo co-ordinates measured about the fiducial axes. 
Equation (3.2), for scale on a tilted photograph, can now be applied to the reduced 

Figure 3.12 

(α) (b) 
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co-ordinates to give the ground co-ordinates X and Y as follows: 

X = Kx' and Y = Ky' where K = H/(f - y sin Θ) 

3.2.10 Ground co-ordinates from a tilted photograph of rugged 
terrain 

The data in this case are exactly the same as in Section 3.3.1, plus the elevations h of the 
points in question. 

As the effect of ground relief is radial from the plumb point, then the rotation and 
translation is this time relative to v, where pv = f tan Θ, then 

x' = —x cos S + y sin S (3.15) 

y = -x sin S - y cos S + / tan 0 (3.16) 

Thus, from Figure 3.13, the new co-ordinates of a are 

y'a = vr and x'a = ra 

Figure 3.13 

Mathematical rectification for each point is now carried out by considering 
horizontal planes passing through the plate parallels of the points in question. For 
example, in the case of point a, the horizontal plane through it is qra, and the rectified 
co-ordinates are therefore 

y'a = q.r = y'acos 0 a n d χ'ά = r a = χ α 
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The new focal length appropriate to the plane of rectification is now 

/ i = Lq = Lv — qv = / sec Θ — y'a sin Θ 

We now have an untilted photograph of ground point A with a new focal length / i . It 
now only remains to multiply the photo co-ordinates by their appropriate scale as in 
Section 3.2.2, giving 

Example 2.25. Two points A and B situated 10 and 40 m, respectively, above datum, 
are imaged on a near-vertical aerial photograph, taken from an altitude of 2000 m with 
a camera of focal length 152 mm. The photo co-ordinates of the points about the 
fiducial axes are measured by a comparator as follows: 

x y 
(mm) (mm) 

a +50.00 +100.00 
b -100.00 +80.00 

If the tilt and swing of the photograph are 2° and 20°, respectively, calculate the 
horizontal ground distance AB. 

x'a = - 50 cos 20° + 100 sin 20° = -12.78 mm 
y'q/= - 50 sin 20° - 100 cos 20° + 152 tan 2° = -105.76 mm 
x'l = 100 cos 20° + 80 sin 20° = +121.33 mm 
yl = 100 sin 20° - 80 cos 20° + 152 tan 2° = - 35.66 mm 

Rectified co-ordinates 

K = xa = —12.78 mm 
yl = y'a cos 2° = -105.70 mm 
xb = xb = +121.33 mm 
yl = y'b cos 2° = - 35.64 mm 

New focal length per point 

fia = / sec Θ - y'a sin Θ = 152 sec 2° + 105.76 sin 2° = 155.78 mm 
flb = / sec Θ - y'b sin Θ = 152 sec 2° + 35.66 sin 2° = 153.33 mm 

Ground co-ordinates 
x:(H - h.) -12.78(2000-10.00) 

ΧΛ Ja Ϊ5578 = "163.26m 

jg(g - h.) -105.70x1990 n , n ~ m 
Y* J - - = Ϊ5578 1 3 5 ° - 2 6 m 

xl{H-hb) 121.33(2000-40.00) ^ „ n 0 S m 
XB = —Jb " Ϊ5Ϊ33 =+1550.95m 

yl{H - hb) -35.64x1960 
YB JT~= 153.33 =- 4 5 5 - 5 8 m 
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Ground distance 
D = (AX2 + Δ72)* = (1714.212 + 849.682)± = 1933.64 m 
The above example serves to illustrate the need for a restitution system to correct 

photo measurements for the effects of tilt and relief displacement. 

3.3 GROUND CONTROL 

The establishment of ground control points, which are clearly distinguishable on the air 
photographs, is very important to the photogrammetric process. 

The minimum number of points required per photograph comprises two plan points 
to control scale and three height points to control level in the spatial model. It is 
important to realize that ground control, fixed by normal survey methods, should be 
more accurate than that attainable by the photogrammetric restitution system used. 

An indication of the distribution, location and accuracy of the control points would 
be provided by the photogrammetrist after stereoscopic examination of the 
photographs and annotated on the photographs. It is obvious from this that the control 
points must consist of detail already clearly visible on the photographs. 

The type of detail chosen must be consistent with the photogrammetric measuring 
process of placing a floating dot on the stereo-model. For instance, for 1/2500 scale 
mapping, the photo-scale would be in the region of 1/10 000. If the diameter of the 
floating dot within the plotter was 40 μπι, then the target would need to be 400 mm in 
diameter in order to accommodate the floating dot without being obscured by it. Thus 
an appropriate control point might be the centre of a large manhole cover and not the 
fine points normally associated with control stations. Similarly, for height control the 
points chosen should lie in flat, horizontal ground free from vegetation. Steep slopes or 
peaks should be avoided to reduce the large height errors that would result from bad 
positioning of the floating dot. 

The amount of control required depends largely on the scale and accuracy of the 
finished plan. For engineering plans at 1/500 scale, it is usual to supply at least two 
points per photo to control scale and orientation and three to control level. 

3.3.1 Pre-marked control 

In the production of large scale engineering plans the control points are generally pre-
marked targets. Their locations are indicated from initial photography and then, when 
established, the area is re-flown. A popular type of target used consists of a large white 
cross of durable material with arms in the region of 2 m long and 0.25 m wide. The size, 
however, is very much a function of photo scale, as already shown, and must be large 
enough to be clearly visible on the photographs and small enough to form a suitable 
area for the floating dot. Although pre-marking is more expensive than the use of 
existing detail, they may be so constructed as to be used for the control of setting-out, at 
a later stage. 

3.3.2 Accuracy requirements 

General rules quoted for the accuracy of fixing ground control are 
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(a) for large-scale engineering plans ±0.02%// 
(b) for medium-scale engineering plans ±0.03%// 
(c) for small-scale topographic plans ±0.05%// 

where H is the flying height and related to the accuracy of the photogrammetric plotter. 
The specifications apply to both planimetric position and height control. Thus for 
1/10 000 photography using a wide-angle camera (f = 150 mm), H would be 1500 m 
and ground control fixed to an accuracy of ±0.3 m in case (a) above. Based on this 
information, an appropriate survey procedure could be instituted. 

Normal survey procedures will also be used to complete detail on the plan which 
may have been obscured on the photographs by cloud, glare, shadow, trees or other 
factors. 

3.3.3 Aerial triangulation 

For mapping at smaller scales and lower accuracies, the process of aerial triangulation 
may be used. This procedure provides control direct from the photographs, thereby 
reducing the amount, and thus cost, of ground control fixed by normal survey 
techniques. Aerial triangulation may be used to establish two- or three-dimensional 
control points, either by analogue methods in precision plotters, or by purely analytical 
processes. Radial-line plotting and slotted template assemblies are graphical and 
mechanical methods, respectively, of two-dimensional aerial triangulation, in which 
the minor control points are fixed in position, relative to only two ground control 
points, one at each end of the strip (refer to Section 3.5.3). 

In the analogue process, each stereo model is connected to the next, thus forming a 
strip of model co-ordinates. Each strip is then connected to the next, ultimately forming 
a set of block co-ordinates. Due to error propagation in the process, strip and block 
adjustment of the co-ordinates are necessary before they are transformed to fit the 
ground control. 

Aerial triangulation forms a very important aspect of photogrammetry but is 
mentioned here only very briefly as it is beyond the scope of this book. 

3.4 FLIGHT PLANNING 

The flight specifications for a particular project will vary with the type of project. For 
instance, photography required for interpretation purposes will not require the same 
detailed planning as that required for large-scale mapping. 

The main factors to consider are the directions of the flight lines, the overlaps, scale 
and flying height. Some of the factors cannot be obtained until the flight has 
commenced. For instance, the heading direction and the time interval between 
exposures can only be calculated when the wind velocity at the time of flight is known. 
One also needs some idea of the number of photographs required in order to decide on 
the number of magazines of films to take. A plot of the flight lines would also serve to 
indicate the appropriate turns to utilize for changing magazines. The flying height of 
the aircraft is dependent on many factors ranging from aircraft capabilities, terrain 
conditions, and survey requirements, to the type of restitution (or plotting) system to be 
adopted. Flight planning is thus a skilled procedure requiring careful planning at all its 
various stages. 
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3.4.1 Direction of flight lines 

Generally the area is flown parallel to the longest side to give the minimum number of 
strips. In this way the number of turns and run-ins, which are non-productive, are 
reduced to a minimum. 

If large areas having different levels exist, such as mountain ranges or plateaux, the 
area may be flown parallel to these in order to avoid rapid variation in scale. 

Each photograph in a strip overlaps the previous one by 60%, thus the new ground 
covered on each photograph is 40%. The purpose of the overlap is to permit 
stereoscopic viewing of the area. Each strip overlaps the previous one by 20 to 30% 
(Figure 3.14), thus complete coverage of the area is obtained. 

1st Photograph 

Figure 3.14 

The overlapping, which is automatically controlled by an intervalometer on the air 
camera, is illustrated more clearly in Figure 3.15. The distance B between each 
photograph in the air is called the air base, while its equivalent on the photograph, b, is 
called the photo base. Due to the overlap, both of the principal points of the adjacent 
photographs will appear on the central photograph. The photo bases are in fact the 
direction of flight of the aircraft. 

Care must be exercised when flying over steadily-rising ground, as failure to do so 
may result in the complete loss of the overlap required in both forward and lateral 
directions (Figure 3.16). The loss of forward overlap may be overcome by decreasing 
the exposure interval, whilst to ensure lateral overlap the flight lines must be based on 
the minimum lateral overlap over the highest ground. 

The flight may also be affected by cross-winds (Figure 3.17) causing the aircraft to 
drift off the planned course. The triangle ABC may be solved to give the value of Θ, and 
the craft is corrected on to course AD at a specific air speed, the wind velocity causing it 
to 'crab' the planned course AC at a different speed called the ground speed. Thus if the 
camera is not squared to the direction of flight the photographs will be crabbed, as 
shown, with resultant gaps in the coverage. This adjustment is carried out by the 'drift-
ring setting', which rotates the camera through Θ about the vertical axis of the camera 
mount. Modern viewers and air cameras have largely eliminated this problem. 
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3.4.2 Scale and flying height 

The scale of the photography will depend upon the map compilation techniques used. 
For simple graphical or mechanical radial line methods, the photograph scale is usually 
greater than the map scale, in order to reduce the effect of compilation errors. If the map 
is to be produced by stereo-plotters, the photo scale is usually smaller. For example, 
1/12 500 photography is frequently used to produce 1/2500 plans. As already shown, 
the flying height H is a function of the scale, thus using a normal wide-angle camera 
(/ = 152 mm) for 1/12 500 photography gives 

f/H = 1/12 500 = 0.152/ii .*. H = 1900 m 
Where there is great variation in ground relief or the area contains many tall 

buildings, the flying height may need to be increased. One of the limitations of radial-
line plotting is that variation in ground relief must not exceed if/10. Thus, if this 
method of plotting is to be used, H will be related to variation in ground levels. 

The method of heigh ting may also control the flying height. Many stereo-plotters are 
given a C-factor which relates flying height to the minimum contour interval. Thus a 
machine with a C-factor of 2000 would use photography taken at a height of 2000 times 
the contour interval adopted. 

Image movement, caused by the camera being in motion at the instant of exposure, 
can greatly affect the quality of the photograph. It can be reduced by flying higher, at 
slower speeds and using faster shutter speeds. As there is an acceptable limit to image 
movement, it will have an effect on the value of the flying height. 

Where very hilly ground is encountered (Figure 3.18\ or high urban construction 
with narrow streets, the use of a wide-angle lens at flying height H may result in much 
ground detail being obscured, i.e. dead ground at B and C. It may also be difficult to 
handle this photography stereoscopically. However, the use of a narrow-angle lens {If) 
at twice the flying height (2H) would produce equivalent photography at the same scale. 
Also, all three points A, B and C are imaged on the normal-angle photography, whereas 
B and C are not imaged on the wide-angle. This situation may therefore be a 
contributory factor in deciding flying height. 
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The above examples serve to illustrate the complications involved in deciding 
appropriate flight data. 

3.4.3 Costing the project 

The number of photographs needed to cover an area will be required not only to cost 
the work, but also to estimate the amount of film required, and the points at which the 
film magazines should be changed. If possible, the magazines should be changed in the 
turns. 

Consider an area 200 km by 100 km to be flown at an average scale of 1/10 000. At 
this scale the area is 20 m by 10 m. The photography has a format size of 230 mm x 
230 mm, of which 60% is overlapped; thus the new ground covered at this scale is 40% 
of 230 mm = 92 mm. 

Therefore the number of photographs per strip = 20 000 -τ- 92 mm = 218, plus say 
two each end to ensure complete coverage, i.e. a total of 222. 

In the same way the number of strips, assuming a 30% lateral overlap = 10 000 -r-
(70% of 230 mm) = 63 strips. 

.*. Total number of photographs = 222 x 63 = 13 986 
In all, it can be seen that careful planning is needed to ensure a satisfactory and 

economic completion of a project. The necessary flight maps must be carefully prepared 
for use by the navigator, who, with the aid of modern viewers and cameras, can 
concentrate on the execution of the project. 

3.5 RADIAL-LINE PLOTTING 

Due to the errors and distortions inherent in the air photo, some form of restitution 
system must be used to produce a plan. In general terms the accuracy of the restitution 
system used is directly proportional to its cost. Enlargement from photo scale to plan 
scale would also result in a proportional enlargement of existing errors, unless these 
had been minimized by an appropriate restitution system. Thus large-scale plans, most 
frequently used by the engineer, may require the most precise restitution, and therefore 
entail higher costs. A broad classification of available systems is: 

(a) Precise —reads to 0.01 mm—enlarges x 8 
(b) Topographic—reads to 0.01 mm—enlarges x 4 
(c) Approximate—reads to 0.4 mm—enlarges x 2 
(d) Direct —reads to 0.4 mm—enlarges x 0.1 
Radial-line plotting falls into the latter category and is a simple direct method of 

mapping from single photographs. 
As already shown, the effects of tilt and relief cause displacement of the image points 

from their true plan positions: 
(a) Tilt displacement is radial from the isocentre. 
(b) Relief displacement is radial from the plumb point. 
However, provided that tilt and ground relief are limited, image displacement may be 

assumed radial from the easily-located principal point of the photograph. 
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Provided that the above limitations prevail, the method produces quite reasonable 
results and could usefully be employed by the engineer for updating existing plans and 
producing reconnaissance plans for initial project investigation. 

3.5.1 Principles 

The method assumes that angles to points of detail on the photograph measured about 
the principal point (PP) are equal to their equivalent angles on the ground. However, as 
already shown in the analysis of the photograph, this assumption is incorrect due to 
height and tilt displacements. 

Consider now three truly vertical photographs (Figure 3.19). As there is no tilt, the 
plumb point will coincide with the principal point, and the height displacement of the 
chimney imaged at a1, a2 and a3, will be radial from the principal point. Thus, trisection 
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Figure 3.19 

of the chimney from each of the photographs gives the position of the chimney as on the 
orthogonal projection of a plan. If one had chosen any other point on the photograph, 
such as X, then two positions for the chimney would be obtained, which is of course 
unacceptable. The method then is very similar to plane table resection. 

In practice, however, practically every photograph would contain tilt, which renders 
no position on the photograph 'angle true'. It is obvious then that the principal point 
may be used only when the effects of height and tilt displacement are kept within 
acceptable limits. It can be shown that these limits are achieved when 'tilt is limited to 
no more than 2° and the variation in ground relief is never more than 10% of the flying 
height'. This statement is called the Arundel assumption, Arundel being the place where 
the method was thoroughly tried and tested. 

3.5.2 Proof of the Arundel assumption 

Consider first the effects of tilt, and assume that a plotting error of less than 0.5 mm is 
negligible. 

Figure 3.20 shows point a on a tilted photograph. If it was plotted by radial-line 
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Figure 3.20 

methods using the isocentre i, it would be fixed in its true position at bh i.e. corrected for 
tilt. In Section 3.2.5 equation (3.6) shows that the tilt displacement abt is 

ia2 sin Θ cos φι 
ab< = j 

However, as p is to be used for radial line plotting then bt would be fixed at b, with a 
resultant plotting error of btb. As the amount of tilt will generally be less than 3°, then 
ipa Ä φι 

.'. ipx = ip sin φι — f tan(0/2) sin φ{ 

ipx x abi 
From similar triangles b{b = 

ia 

But tan(0/2) = 

/ tan(0/2) sin φί x ia2 sin Θ cos φί 

ia xf 

= ia sin Θ tan(0/2) sin φ{ cos φί 

sin(0/2) 
cos(0/2) 

and sin Θ = 2 sin(0/2) cos(0/2) and 
which on substitution gives b{b = ia\ sin(20f)2 sin2(0/2) 

ίαθ2 sin 2φ( 

sin φι cos φι = \ sin 2φ{ 

and, as Θ is small, 2 sin2(0/2) « θ2/2 btb = 

From this equation, the error is a maximum when φ = 45°, which with a 230 mm x 
230 mm format would give a maximum value for ia of 162 mm. If a value of 2° for tilt is 
assumed then substituting in the equation gives btb = 0.05 mm. Thus, provided that tilt 
is limited to less than 2°, the error resulting from using the PP is negligible. 

Considering now the effect of ground relief. In this case if a was plotted by radial line 
methods using the plumb point v, it would be fixed at bv9 i.e. corrected for height 
displacement. Equation (3.3) in Section 3.2.4 shows that 

abv = av(Ah/H) 
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However, if plotted from p, it would be fixed at b, with a resultant error of bbv. From 
similar triangles 

vp2x abv 
bbv = 

av 

but vp2 = pv sin φν (assuming vpa « </>„), thus vp2 = f tan 0 sin 0υ 

/ tan 0 sin φνΑη 

' **' H 

which shows that the maximum value for bbv occurs when φΌ = 90°. Assuming then 
that 0 = 2° (fixed by previous analysis), / = 152 mm and bbv > 0.5 mm 

ΔΛ _ bbv _ 0.5 _ 1 
Έ " / tan Θ " 152 x 0.035 ~ IÖ 

Thus, for negligible plotting error when using the PP, the ground relief should not 
exceed 10% of the flying height. These two factors (termed the Arundel assumption) are 
the limitations of the radial-line method. 

3.5.3 Preparation of photographs 

The following steps are necessary in the preparation of the photographs. 

(1) Base lining 

The PP of each photograph is located in the usual way, pricked through and identified 
using a suitable symbol. The PP in the overlap areas are now located, i.e. the position 
of P2 on photograph 1 for instance. If these points fall on points of detail easily located 
on common photographs, then they are simply pricked through. If they fall in 
featureless terrain or on water, they are best transferred under a stereoscope, using 
some form of floating mark. Two small pieces of transparent plastic sheet with identical 
crosses on, are ideal. Assuming one wants to transfer P2 to photograph 1: both 
photographs are assembled under the stereoscope to form a stereo model. One mark iŝ  
placed precisely over P2 on photograph 2, whilst the other mark is moved about the 
required area on photograph 1 until both marks appear to fuse into one. The mark on 
photograph 1 is now moved in the x-direction until the fused mark appears to rest on 
the ground; this then is the position of P2 on photograph 1. The procedure is reversed 
when transferring Px t© photograph 2. When all the PP are located they are joined up 
to form base lines, and will appear as the PP in Figure 3.21. 

(2) Minor control points (MCP) 

MCP are easily-identifiable points of detail on the photographs, such as road 
intersections, fence corners, etc. and are selected in the positions shown in Figure 3.21. 
The distance of the MCP from the PP should be roughly equal to the mean length of the 
base lines appearing on that print, to ensure good intersection. If possible they should 
be at the mean height of the terrain and clearly visible on three consecutive 
photographs. 
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(3) Ground control points (GCP) and tie points (TP) 

Horizontal ground control points are now located, pricked through and identified by 
drawing a triangle round them. 

Where a block of strips is concerned, further points known as tie points (TP) will be 
required in the lateral overlap in order to connect adjacent strips. The first two and last 
two photographs in the strip have specially selected TP which are sometimes called 
major points. The TP should occur at every fourth PP and may be the already-fixed 
MCP. 
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(4) Scale point (ScP) 

The ScP is chosen to fix the scale of the whole strip and should be a point situated at the 
mean height of the strip. It may be an MCP, or even a GCP, if they meet the 
requirement. 

When all these points have been fixed, short radials from the central PP of each 
photograph are drawn through them. This completes the preparation of the 
photographs, which will appear as in Figure 3.21. 

3.5.4 Construction of the radial-line plot 

Due to the many factors already discussed, it should be realized that all of the 
photographs in the strip are at slightly different scales. The first step, therefore, is to 
produce a strip of photographs at a 'common' scale, as follows. 

A strip of stable plastic drawing material is placed over the first photograph and the 
following data traced: the exact position of px and ScP only, plus radials through the 
remaining detail and the base line. The plot will appear as shown in Figure 3.22 (a). The 
first photograph is removed and the sheet oriented over the second photograph by 
overlying the drawn base over the base p\p2 on the photograph. In this position it is 
moved back and forth until the radial through ScP intersects the plotted position of 
ScP. The sheet is held, and p2 and the remaining radials are marked off. The sheet now 
appears as in Figure 3.22(b). It is now placed over the third photograph correlated to 
the appropriate base p'2p3, and moved back and forth until the radials ft, ft' trisect the 
intersections ft, ft'. The sheet is held and the remaining detail taken off as shown in 
Figure 3.22(c). The procedure is continued to the end of the strip thereby forming a 
'principal point traverse' to a common but unknown scale. The scale will be the 
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relationship of distance Pi-ScP on the photograph to its equivalent on the ground, and 
as ScP is at the mean height of the terrain it will be roughly the mean scale of all the 
photographs in the strip. 

The next step is to bring the strip to a known scale, namely the compilation scale of 
the plan being prepared. This is easily carried out using the three-point method. 
Assume the strip when completed appears as in Figure 3.23 (a). GC points A and B have 
been joined by a straight line and a further point C selected, to form a well-conditioned 
triangle. A second strip is now accurately gridded to the scale required and the GC 
plotted thereon at Ap and Bp. This strip is overlain on the first strip with Ap over A, line 
ApBp aligned with B and the radial is drawn through C. The strip is now moved to put 
Bp over B, aligned with A and a second radial drawn through C; this gives the correct 
scaled position Cp. The procedure is repeated using all three points in turn and radials 
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drawn through the PP. These trisections give the PP in their correct scaled positions 
(Figure 3.23 (ft)), the procedure being repeated to give the positions of the MCP, etc. 

The plotting of detail may now be carried out by placing photograph 1 under the 
gridded sheet with its PP under p1 and the base aligned. Radials are then drawn from px 

through all the important points of detail. Similarly, photograph 2 is placed under p2 

and intersecting radials drawn to locate the points in question. The remaining detail, 
between these accurately-located points of detail, may now be drawn in freehand, by 
interpolating from the appropriate photograph. 

3.5.5 Block adjustment 

If there is more than one strip involved they will need to be fixed relative to each other at 
the correct scale. 

The main grid is constructed and all GCP plotted thereon. The first strip with GCP 
at Ap and Bp is adjusted to the main grid. The second strip is then adjusted to the first 
using the major TP in the lateral overlap and so on with subsequent strips. Generally, 
discrepancies between the remaining TP will be found which, if small (< 1 mm), may be 
adjusted by a simple equal shifts movement of the strips. If the discrepancies are 
excessive they are measured in terms of easting and northing differences. These values 
are algebraically summed and meaned. The strips are then uniformly shifted through 
this mean value in order to give agreement. 

The description of block adjustment has been kept to a minimum, as it is inevitably 
carried out by the mechanical method of slotted templates. 

3.6 SLOTTED-TEMPLATE ASSEMBLY 

Slotted templates is a semi-mechanical method of producing a radial-line plot, the 
principles being identical to those already outlined. 

3.6.1 Preparation of template 

The photographs are prepared in exactly the same way as for radial-line plotting, with 
the exception of TP and ScP. The MCP in the lateral overlap are sufficient to tie in 
adjacent strips. 

The photograph is then covered with a sheet of cellulose acetate, the PP marked and 
the radials scribed with a fine needle. A hole is then punched out precisely on the PP, 
which enables the template to be placed over a stud in a slotted template cutter, and 
slots cut precisely on the scribed radials. The corners of the template are then rounded 
off to facilitate easy movement. Considering photograph 2 of Figure 3.21, its template 
would appear as in Figure 3.24(a). 

3.6.2 Template assembly 

A plotting board is now accurately gridded, the ground control plotted on it and fine 
pins fixed vertically in the GCP. Studs are now placed over these pins as shown in 
Figure 3.24(b). The studs are of different colours to denote GCP, MCP and PP. 
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When laying the templates to the plotting board it is usual to start with the strip 
having the most GCP. This enables the scale and azimuth of the assembly to be fixed to 
the greatest degree of accuracy. Considering the photographs in Figure 3.21, the slot 
representing GCP A would be placed over the appropriate stud fixed to the board. A 
stud is now placed in each remaining slot and PP hole, the slot studs being free to move 
along the slot. The slots of the second template are placed over the appropriate studs of 
the first, the remaining slots being again filled with studs. The procedure is continued 
until a second GCP is reached. It is unlikely that the appropriate slot will fit over the 
GC stud pinned to the board. Thus the whole assembly may have to be squeezed 
together or gently stretched apart, the studs moving accordingly in their slots. Thus all 
the studs take up their correct scaled positions in the strip, by reason of the fact that 
they are free to move along the trisecting slots of the templates (Figure 3.25). 

The scale having now been fixed, the remaining strips are similarly laid down to the 

Figure 3.25 
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GC and MCP in the lateral overlap. The whole assembly is then allowed to settle, pins 
implanted in the empty studs and then the templates removed. 

The main advantage of this method is that it eliminates the tedious scaling and block 
adjustments required in graphical radial-line methods. 

3.6.3 Errors 

Errors may result in the buckling of templates when forcing them into position, the 
main reasons being: (i) bad photograph preparation; (ii) inaccurate template cutting; 
(iii) mis-plotting of ground control; (iv) mis-computation of ground control; (v) mis-
identification of points; (vi) excessive tilt in the photograph, in which case it may have 
to be rectified and a new template prepared; (vii) excessive ground relief, which may 
result in having to use the plumb point in place of the principal point. 

3.6.4 Radial-line plotter 

The radial-line plotter (Figure 3.26) is an extremely simple instrument, affording 
approximate restitution of the air photo. It works on exactly the same principle of 
graphical intersection already described. 

Binocular eyepiece 

Figure 3.26 Radial-line plotter 

The photographs are baselined and mounted about their respective principal points 
on the horizontal plates of the instrument. The photographs are then rotated until the 
baselines are co-linear and are then fixed to the plates ready for stereoscopic viewing 
(refer to Section 3.7). As shown, each photograph is overlapped by a cursor which 
rotates about the principal point. When viewed through the stereoscope, the radial 
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lines intersect to form a cross on the three-dimensional stereo model of the overlap area 
of the photographs. Movement of the plotting pencil will cause the cross to traverse a 
selected piece of detail, which is thus plotted on to the plan which is being updated. 

The machine has limited enlargement facilities (x 0.5 to x 2) and does not cater for 
tilt. Nevertheless, as an approximate restitution system it requires no prior knowledge 
or training, is relatively cheap, and affords an answer much simpler and speedier than 
do graphical methods. 

3.6.5 Sketchmaster 

It is convenient at this stage to mention another simple instrument which could easily 
be utilized by the engineer for the updating of existing plans from air photographs. Such 
an instrument is the Sketchmaster (Figure 3.27), which is a simple reflecting plotter 
affording an approximate rectification of a single air photo. 

Figure 3.27 Zeiss Sketchmaster 

It consists essentially of a photo holder and viewing prism, which can be moved in the 
vertical and horizontal planes by rack-and-pinion mechanism. The photo holder is on a 
ball-and-socket arrangement, thereby affording universal movement. When viewed 
through the prism eyepiece, the photograph can be seen overlapping the plan. The 
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above-mentioned degrees of movement enable the overlapping image of the 
photograph to be scaled to that of the plan. However, as the scale of the photograph 
will not be uniform throughout, small areas will need to be dealt with in turn. In this 
way the photographic detail can be transferred by hand directly on to the existing plan. 

3.7 STEREOSCOPY 

To date, only the production of planimetric detail has been dealt with; stereoscopy, the 
process of seeing in three dimensions, enables the vertical dimension to be obtained. 
The application of stereoscopy to air survey will now be illustrated by relating the 
human sight processes to that of the air camera producing overlapping pairs of 
photographs. 

3.7.1 Stereoscopy in air survey 

Consider first a simplified explanation of the seeing processes when looking down at a 
survey arrow sticking in the ground (Figure 3.28). The arrow is viewed simultaneously 

62 mm) 

Image formed 
on retina 

jmm; ^^m Figure 3.28 

from two different positions, the two images fusing together to form a three-
dimensional image in the mind. The angles ax and oc2 are termed the angles of 
convergence, and may be defined as the ability of the eyes to rotate simultaneously in 
their sockets. The ability to focus for varying distance is called accommodation, while 
the aperture control variation of the pupil of the eye is called adaptation. The angles βλ 

and β2 are called the parallactic angles and are a function of the stereoscopic perception 
of height, i.e. 

Λ = /0»i - ßi) = / (« i " OL2) 

Commonsense tells us that if a person was taken to a height of, say, 2000 m, the 
parallactic angles would be so small as to render height perception impossible. The 
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'horizontal parallaxes' of the survey arrow are shown on the retina of the eye. That 
these are a function of the parallactic angles is obvious from the diagram. 

As commonsense has shown, in the determination of height there is a definite 
relationship of the eye or air base to the flying height. Thus when flying, the eye 
separation must be greatly increased as shown in Figure 3.29. The identical situation of 
human viewing to air survey can now be clearly seen. 
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Figure 3.29 

If the negatives are now printed as photographs (positives), and viewed simulta-
neously, so that the left eye sees only the left photograph and the right eye only the right 
photograph, then a three-dimensional image will form in the mind. The above 
condition can be most easily obtained by viewing the photographs under a stereoscope, 
as in Figure 3.30. The 3-D image formed is termed a stereo model, and the two 
photographs used are termed stereo pairs. Generally speaking the stereo model is 
exaggerated and this can be useful in the heighting process, particularly where the 
terrain is relatively flat. Photography can, however, be planned to increase or reduce 
this effect. If the value of/ is fixed, then from the base/height ratio, it can be seen that to 
halve the flying height would double the impression of height. It can also be shown that 
increasing the viewing distance of the stereoscope produces a proportionate increase in 
the impression of height. 

3.7.2 Parallax 

As already shown, stereoscopic height is a function of the parallactic angles, which are 
in turn a function of the horizontal parallaxes. As the angles occur in space, they cannot 
be measured on an aerial photograph. However, the horizontal parallaxes can be used 
to ascertain vertical heights. 
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Eyes of viewer 

Stereoscope mirrors 

Right photo 

Vertically exaggerated 
stereo model as seen 
by the viewer 

^^~ -zm Figure 330 

Figure 3.31 illustrates a stereo pair of photographs in plan and elevation, on which it is 
intended to measure the parallax of A (PA). By definition the parallax of a point is its 
apparent movement, parallel to the eye base, when viewed from two different positions. 
Thus A appears at ax when viewed from Ll5 and at a2 when viewed from L2. By 
overlapping the two photographs, the apparent movement of A is shown as αγα'2, i.e. 
L ^ is parallel to L2a2. It is thus shown that the parallax of A is the 'algebraic difference 
of the x-ordinates'. 

.·. PA = αγά2 = [x1 - ( - x 2 ) ] = (*i + *2) 
N.B. The x-ordinates are always measured parallel to the photo base and not the 
fiducial axes. Whilst this indicates that the parallax of a point could easily be measured 
from the photograph using a simple ruler, in fact it is the difference in parallax between 
points which is measured, as will be shown later. 

3.7.3 Basic parallax equation 

This is easily deduced from Figure 3.31 in which triangles LXL2A and a2Lla1 are similar 

L\L2 

H-h 

but a'2ax = PA L1p1 = f 

fB 

and L^L2 = B 

··· PA = (H-hA) 
(3.17) 

As shown in Figure 3.31, equation (3.17) assumes absolutely vertical photographs 
taken at exactly the same flying height. This state of affairs rarely exists; thus, heights 
obtained using this formula are frequently termed crude heights. 
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Left photo 
Right photo 

Figure 3.31 

From the scale of the photograph it is known that 

Scale = b/B = f/(H-h) 

where b is the mean photo base (bl + b2)/2, and h is the mean height of the terrain. 

b(H - h) 
/ . B = 

f 
which on substitution into equation (3.17) gives 

_ b(H - h) 
A~ H-hA 

as (H — h) is the mean flying height, it is frequently written 
bH„ 

H-h, 
(3.18) 

However, as previously stated, it is normal practice to measure the difference in 
parallax (ΔΡ) between two points, using an instrument called a parallax bar. Thus, 
considering two points A and C 

fB fB 
H-hA ~ -<- H-hc 

and Pr = 

Λ (H-hA) = fB/PA and (H-hc) = fB/Pc 

.·. (H -hc)-(H-hA) = hA-hc = AhAC 

(PA ~ PcS 

= fB(\/Pc-\/PA) = fB 
PAPC 



Aerial photogrammetry 185 

but PA — Pc = &PAC = difference in parallax between A and C. 

but since 

Hence 

MAC = 

&hAC = 

/ B ΔΡ, AC 

PA PC 

PA + &PAC 

fB ΔΡ, 
PAC + ΔΡΑ 

(H-hA)APAC 

PA + kPAC 

In relatively flat terrain APAC in the denominator is negligible. 

(H-hA)APAC 
Hence ΔηΛΓ = 

(3.19) 

(3.20) 

An inspection of the basic equation (3.17) shows that as hA increases, then PA must also 
increase; thus an important rule of parallax heigh ting is: the higher the point, the 
greater its parallax. 

3.7.4 Measurement of parallax 

Parallax heighting is usually carried out with the aid of a parallax bar (Figure 3.32). 
This instrument is essentially a rod, carrying two glass plates with fine dots etched on 
them. The smaller pair of dots is used when the stereo model is viewed under 

■ ^ \ 

Left-hand 
-glass plate 

Bar 

Clamp 

Right-hand 
glass plate 

~7 
Micrometer Figure 3.32 

magnification. The left plate can be moved anywhere along the bar and clamped in 
position; the right plate can be moved only by manipulation of the micrometer. 
Parallax measurements are made to an accuracy of 0.01 mm. 

The heighting procedure is as follows. First the photographs are set with their bases 
co-planar for viewing under the stereoscope (Figure 3.31). It is important therefore that 
the bar is kept parallel to the base (piP2) when measuring. Consider now the 
measurement of height AC in Figure 3.33. The bar is set to mid-run on the micrometer 
and the right-hand dot (RHD) is placed over the image a2, the left-hand plate is 
undamped and the left-hand dot (LHD) placed over av When viewed through the 
stereoscope the two dots will have fused into one, and appear to be resting on the point 
A in the stereo model. The parallax bar is read equal to MA. This is not a measure of the 
distance a1a2, for the micrometer could have been set to any reading prior to the 
operation. The LHD now remains clamped in this position on the bar for all future 
heighting operations on this pair of photographs. It is now moved to cl9 and as the 
separation has not yet been altered, the RHD will be at d, causing the fused image to 
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Right-hand photo 

Figure 3.33 

appear floating in space at D. While looking through the stereoscope the RHD is 
moved by manipulating the micrometer until the floating dot appears resting on the 
ground at C, in which case the RHD will, as Figure 3.33 shows, be over c2 on the 
photograph; the reading Mc is noted. As parallax has already been defined it should be 
obvious that the individual readings are meaningless. However, as L ^ and L ^ are 
parallel to L2a2 and L2c2, respectively, it can be seen that the 'difference' in the bar 
readings (Mc — MA) is equal to the 'difference' in parallax (PA — P c = APAC), which in 
turn is a function of the 'difference' in height of A and C {AhAC) and can be computed 
using equation (3.19). 

3.7.5 Basic procedure 

Assuming that it is required to find the levels of a grid of points in the stereoscopic 
overlap of a pair of photographs, one must commence from a GCP of known level, as 
follows: 

(a) Using the basic parallax formula (PA = fB/H — hA) calculate the parallax PA of 
ground control point A whose level hA is known. fB and H will also be known (refer 
to Section 3.7.6). 

(b) Obtain a parallax bar reading on the image points ax and a2 of ground control 
point A. 

(c) Now obtain a bar reading on point C. The difference between the readings on A and 
C will be equal to APAC. 

(d) As PA is known, then Pc = PA± APAC (+ ve if C is higher than A and - ve if lower). 
Whether or not C is higher than A may be detected from an examination of the 
stereo model and/or the bar readings. 

(e) Now calculate the level of point C, i.e. hc, from the basic formula P c = fB/H - hc. 
Alternatively, one may calculate AhAC = (H — hA)APAC/PA + APAC and knowing 
the level of A thereby obtain the level of C. 

(f) This process is now continued. For example, a bar reading on point D will give 
APAD, from which hn or Ah4D can be obtained as showh in (d) and (e) above. 
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3.7.6 Error in the parallax equation 

The following analysis is not intended to give an indication of the accuracy to which 
parallax heights can be obtained, but rather to give an indication of the accuracy to 
which the various components of the parallax equations should be measured. 

(1) Parallax measurement (ΔΡ) 

The precision required of the bar readings may be indicated as follows: with the aid of a 
simple sketch, it can be seen that the parallax of principal point px is equal to the photo 
base length b2, while the parallax of p2 is bx (see Figure 334). Thus the parallax of the 
principal points is b which, substituted into equation (3.20), gives 

Aft H^ 

Δ Ρ * b 
(3.21) 

L
2 P i / L iP i 

Figure 3.34 

Consider 230 mm x 230 mm photography from a height of 3000 m with a 60% 
overlap, in which case b « 92 mm. 

Aft _ 3000 
" AP~~92~ 

« 33 m/mm 

As 3000 m is the ceiling for most air surveys and ±0.03 mm an average for parallax 
bar error, then the heighting error would be less than 1 m, i.e. 33 x 0.03 = 0.99 m. 

(2) Flying height (H) 

Error in the value of if has greater critical effect on the equations than any of the other 
components. It can be shown that proportional error in the flying height, i.e. 

(5(Aft) 2δΗ0 

Aft Hn 
(3.22) 

where H0 is the flying height above the ground. 
Thus, if the difference in parallax heighting requires an accuracy of 1 in 100, then the 

flying height would need to be accurate to 1 in 200. For Aft = 100 m, and so accurate to 
1 m, and H0 = 2000 m, it would need to be accurate to 10 m. Such an accuracy is not 
possible from altimeter readings and the following approach is usually adopted. 
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Consider two points, A and C, whose levels are known. They may be points of detail 
on a plan or GCP whose photo images are a and c. Let the mean level of the points 
equal h0 and the scaled distance between the photo image points equal /, then if the 
actual distance between the ground points is L we have l/L = photo scale = f/H — h0, 
from which 

H = fL/l + h0 (3.23) 
If a and c are positioned symmetrically about the PP, then the effects of tilt and height 

differences between them are small. 
This procedure should be carried out for as many pairs of points as possible in each 

photograph and the mean value adopted. 

(3) Focal length (f) 

In this case the proportional error in the parallax height differences is directly 
proportional to the proportional error in the focal length, i.e. 

«M-*± (324) 
Ah / [ } 

Thus, if as in the previous case height differences of 100 m were required to an 
accuracy of 1 m, then / = 152.4 mm would need to be accurate to 1.5 mm, which is well 
within the limits of a calibrated camera. 

(4) Air base (B) 

As above ——— = 
Ah 

SB 

~ B 
(3.25) 

If / = 150mm, and H = 3000 m, then B = 1840 m for a 60% overlap. Thus, a 
proportional error of 1 in 100 for Ah = 100 m would be equivalent to an error of 
18.4 m in B. 

A value for the air base may be obtained by measuring the distance between 
consecutive principal points from a radial line plot, and then applying the scale of the 
plot to this distance. 

Alternatively, if two GCP (A and C) whose distance apart is known, appear in the 
overlap area of a pair of photographs, their co-ordinates may be carefully measured 
using the photo base as the x-axis and line at right-angles as the y-axis, i.e. xa, ya and 
xc, yc. One also requires the parallax of the two points then 

XA = Bxjpa YA = Bya/pa 

XB = Bxb/pb YB = Byb/pb 

where X and Y are the ground co-ordinates of the two points. 

Horizontal distance = DAB = [(XA - XB)2 + (YA - YB)2~\^ 

Then, substituting for X and 7, and re-arranging gives 

DAB 
B = 

l\Pa Pb) {Pa Pb) J 

(3.26) 

As cautioned in the first sentence, the preceding analysis should not be regarded as an 
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indication of the accuracy of parallax heighting. The reason for this is the fundamental 
one, of the theory being at variance to the practical situation. That is, the basic parallax 
formula is derived on the assumption that the photographs are perfectly vertical and 
possess no tilt, and that there is no variation in flying height, a situation which rarely 
exists in practice. For this reason, the uncorrected heights obtained from parallax 
measurements are termed crude heights. 

3.7.7 Parallax height corrections 

The import of the problem of uncorrected parallax heights is clearly illustrated by the 
following statement taken from 'Heights from Parallax Measurements' by Prof. E. H. 
Thompson {Photogrammetric Record, Vol. I, No. 4, Oct. 1954), The necessity for the 
adjustment of crude heights is forcibly brought home when one considers that, with 
wide-angle photographs taken from an altitude of 18 000 ft (4900 m) over country with 
height differences of a few hundred feet, it is as accurate to assume the ground to be flat 
as to trust parallax readings uncorrected for tilt'. 

The convention adopted for tilts is to denote rotation of each camera about three 
mutually-perpendicular axes, X, Y and Z, as ω, φ and K, respectively, as shown in 
Figure 3.35. Translations along each axis are bx, by and bz, respectively. 

(1) Tip (δφ) 

Pitching of the aircraft from nose to tail would cause rotation about the y-axis (δφ) as 
shown in Figure 3.36. The result of this tilt is to image points 3 and 4 at 3' and 4' with 

Figure 3.35 Co-ordinate axes of the camera, show- a 
ing six degrees of freedom Figure 3.36 
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resultant error in the parallax measurement of 3b and 4a. As shown, parabolic 
deformation of the stereo model takes place and the error in ground heights of any 
point can be shown to be equal to (X2 + Ζ2)δφ/Β. 

(2) Tilt (δω) 

Tilting of the aircraft from wing-tip to wing-tip would cause rotation about the x-axis 
(<5ω), as shown in Figure 3.37. The result of this tilt is to displace points 2 and 3 radially 
from PP1. The displacement of 2 is in the ̂ -direction, hence its parallax measurement is 
unaffected. The parallax measurement of point 3 will be in error by distance 3ft which 
will distort the height by an amount equal to ΧΥδω/Β. This expression represents a 
rectangular hyperboloidal deformation of the stereo model. 

(3) Swing ((5k) 

Swing error is eliminated by careful baselining of the photographs. Error in this process 
will result in a raising and lowering of each half of the stereo model, as shown in Figure 
3.38. 

Figure 3.37 Figure 3.38 

(4) Variation in flying height (Φ) 

Variation in the heights of the camera at adjacent exposures, tilts the air base (Φ) and so 
tilts the stereo model about the y-axis, as shown in Figure 3.39. 

The combined effect of all the above errors in each photograph comprising a stereo 
pair is to transform the stereo model into a hyperbolic paraboloid. It may be shown to 
first order, that if the tilts are small and ground relief not excessive, the error in parallax 
heights may be expressed in terms of the photo co-ordinates (x, y) of the image point of 
the left-hand photograph as 

oh - £ [ < * - K2)y -4>t(f + x2/f) + Φι(ί + (x- bf/f) 

xy , „ , , 
+ w1 -j - w2(x - b)y/f 

Φχζ 

Ύ 
(3.27) 
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(3.28) 
which is more easily expressed as 

oh = a0 + axx + a2y + a3xy + a4x
2 

The first four terms represent a hyperbola and the last a parabola. 
The method therefore of correcting crude heights requires five GCP, whose levels (ht) 

are known, distributed throughout the overlap area, as shown in Figure 3.40. The 
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Figure 3.39 Figure 3.40 

parallax heights (Äj) of the five points are found taking, say, point 1 as datum and 
hi — h[ = öht. The centre of the photo base pxp2 is taken as the origin for the x, y co-
ordinate system and the co-ordinates of all five points scaled from the left-hand 
photograph and inserted in the five equations, i.e. 

h1 — h\ = oh1 = a0 + a1xl + a2yi + a^x^y^ + a4xj 

h2 — h2 = bh2 = a0 + aix2 + a2y2 + «3X2^2 + a&\ 

h5 - h'5 = öh5 =a0+ axx5 + a2y5 + a3xsy5 + a±x\ 

The equations are then solved for the coefficients a0, ai... a4. Thereafter, the crude 
height (W) of any point in the overlap may be corrected (<5/i), using the above coefficients 
and its photo co-ordinates in equation (3.28). 

The whole process can be quickly and easily carried out using an appropriate 
computer program. 

3.8 RESTITUTION SYSTEMS 

Restitution is the fundamental problem in photogrammetry and involves establishing 
the photographs (or diapositives) in exactly the same positions as they had at the time 
of flight, and thereafter relating the correctly-formed stereo model to ground control. 

Approximate methods of restitution have already been dealt with. The remaining 
methods may be either analogue, using universal or precision plotters, or analytical, 
using precise photo co-ordinates measured in a comparator. 

The problem may be illustrated as follows. Figure 3.41 shows two photographs in a 
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Projection plane 

Figure 3.41 

horizontal plane projecting images of a single point A on to a parallel plane. Because 
the projection system has not been properly oriented ax and a2 intersect at Ax and A2 

instead of coinciding at A. The discrepancy between A1 and A2 may be expressed in co-
ordinate terms as δχ and Sy, and are called the x and y parallax. 

The δχ value is eliminated by lowering the projection plane in the Z direction (bz) 
until the two points are imaged at A\ and A2, separated only by öy. 

y-parallax is eliminated by moving the projectors through the five degrees of 
freedom, i.e. bz, by, φ, ω, K as illustrated in Figure 335. This procedure, known as 
relative orientation, is carried out over six standard points distributed throughout the 
stereo model, and when complete it establishes the projectors in their correct relative 
positions. Failure to achieve correct relative orientation will result in a distorted model 
and will have a particular effect on the accuracy of height measurements. 

The above model must now be correctly scaled and oriented to the ground co-
ordinate system. This process is called absolute orientation and can only be achieved by 
the use of ground control. 

The first step is the scaling of the model based, in its simplest form, on the known 
distance between two ground control points. This is achieved by altering the separation 
of the projectors in the x-direction, i.e. bx translation. 

The second step is the levelling of the spatial model by rotating it about its X and Y 
axis, i.e. φ and co, until it conforms to the height data of at least three GCP. 

When this process is completed the plotting of detail, spot heighting and contouring 
can commence. Alternatively, the three-dimensional co-ordinates of points can be 
measured to produce a digital ground model (DGM). 

It should be noted that the accuracy of restitution and thus the final plan is 
dependent on the accuracy of the ground control and its correct identification. 

The method of restitution of the light rays comprising the model may be by optical 
projection or by the use of space rods forming a mechanical analogue of the light rays. 
Measurements to an accuracy of 10 μπι can be made on 230 mm x 230 mm 
photography, whilst enlargement from photograph to stereo model is a function of the 
ratio Z/f. To illustrate this, consider some technical details of the Wild A8 plotter 

Principal distance (/) 
Dimensions of floating dot 

98 mm to 215 mm 
0.07 mm for 6 x magnification 
0.045 mm for 8.5 x magnification 
300 mm z 
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Thus, for photography at 1/10 000 scale using / = 152 mm, we have 

Model scale 1/10 000 x Z/f ~ 1/5000 
Enlargement of model to plot x 4 = 1/1250 
Measurement accuracy on photo = 10 μιη 
Accuracy of point on plot =0.1 mm 

The above comments relate entirely to plan and DGM production by analogue 
methods, which are the most economical for such purposes. However, analytical 
photogrammetry is also worthy of mention. In this process photo co-ordinates are 
measured precisely to an accuracy of 1 or 2 μιη using instruments called comparators or 
stereo comparators. The relative and absolute orientation of the photo co-ordinates is 
done mathematically by computer. The co-ordinates produced are more accurate than 
those obtained by analogue methods and are particularly useful in aerial triangulation. 

3.9 MOSAICS AND ORTHOPHOTOMAPS 

Although the principal end product of photogrammetry, as far as the engineer is 
concerned, is a plan or DGM, other types of plan are available in the form of mosaics or 
orthophotomaps. 

(1) Uncontrolled mosaic 

An uncontrolled mosaic is formed by matching up the photographs, usually at contact 
scale, to get the best possible fit. No account is taken of displacements due to tilt and 
ground relief, nor is the assembly fitted to any form of ground control. 

(2) Controlled mosaic 

In this case the photographs are first corrected for tilt in an optical rectifier and all 
brought to the same scale. The prints are then carefully assembled and fitted to the 
ground control. A more cohesive picture is produced in this case, but the effects of 
displacement due to ground relief are still present. 

(3) Orthophotograph 

An orthophotograph is one that has been mechanically corrected for tilt and relief 
displacements using an orthoprojector or orthophotoscope linked directly to a stereo 
plotter. In this way the correctly oriented stereo model is exposed and photographed in 
small slits (4 mm x 2 mm) at true map position and correct scale. The end product is a 
contoured photograph to correct scale containing very small errors of position and 
height. Although not quite as accurate as the line drawn plan, it can be produced much 
more quickly and will contain all the land form detail not usually shown on a plan. This 
latter point is the reason why the mosaic or orthophoto may be preferred, in some 
instances, to a plan. For example, in flood control, geological investigation or irrigation 
works, the ability actually to see the areas involved could be extremely useful. 

3.10 SPECIFICATION FOR VERTICAL AIR PHOTOGRAPHY 

Although engineers will not generally be involved in the practice of photogrammetry, 
they will most certainly be involved with the end products. To this end they will be 
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required to draw up appropriate contracts for the work to be done and will therefore 
need to stipulate the necessary specifications. 

The following specification was originally prepared by the British Air Survey 
Association, examined and adopted by the Royal Institution of Chartered Surveyors, 
and is reproduced here verbatim. 

SECTION ONE: Summary of requirements and materials 
to be delivered 

1.1 Area 

1.1.1 The area or route to be photographed stereoscopically measures 
approximately square kilometres or line kilometres and is 
defined as follows. 

EITHER On the contract map or photomosaic attached as Annexure of 
the specification document, 

OR By the geographical, grid, of other reference co-ordinates as listed 
below and/or indicated in the sketch in Annexure 

related to datum/projection. 

1.2 Scale of photography and focal length of lens (see Section 
Three) 

1.2.1 

EITHER The nominal scale of the photography shall be 1 / 

OR The photography shall be flown from a computed altitude or altitude 
for each block as follows: 

metres above mean sea level 
metres above mean sea level 
metres above mean sea level 

1.2.2 The camera shall have a lens of nominal focal length mm 
and a nominal negative format of 230 mm χ 230 mm or of 

mmx mm. 

1.3 Photography (see Section Four) 

1.3.1 The film used shall be 

EITHER Black-and-white aerial, panchromatic, 

OR Black-and-white aerial, infra-red. 
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1.3.2 The photography shall be of an image quality and geometric quality 
suitable for photogrammetric mapping or photomosaicing or general 
interpretation. 

1.4 Film negatives 
1.4.1 

EITHER All films exposed on the contract shall be retained by the producer for 
a period of not less than years and then they will be 

OR All films exposed on the contract shall be delivered to the client or 
user. 

1.4.2 Each processed film shall be kept in roll form on a spool and in a metal 
or plastics container as supplied by the film manufacturer. Rejected 
negatives shall not be removed from the roll. 

1.5 Other material to be delivered (see Section Five) 
Delete items not required 

1.5.1 An index plot and/or a photoindex supplied in the form of 
sets of transparencies 
sets of negatives 
sets of paper prints 

1.5.2 sets of paper contact prints. 

1.5.3 One copy of all film reports (see Clause 6.4). 

1.5.4 Other products 

SECTION TWO: Cameras and associated equipment 

This section refers to 230 mm χ 230 mm-format metric cameras only. 
Other cameras used shall be specified separately. 

2.1 Camera 

2.1.1 A metric survey camera shall be used, fitted .with a lens that is 
designed to give a residual radial distortion not exceeding 15 
micrometers within 100 millimetres of the principal point. The film 
shall be held in the intended image plane during exposure to 
maintain sharp focus and hold image distortion within the limits 
specified in Clause 4.5. 
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2.1.2 The format of the negative and the focal length of the lens unit(s) 
shall be as specified in Clause 1.2.2. 

2.1.3 The lens shall be corrected for the spectral range of the film used. 

2.2 Calibration 

2.2.1 Each camera lens unit to be used on the contract shall have been 
calibrated, tested and certified by the camera manufacturer or by a 
calibration centre recognised internationally or approved by the 
camera manufacturer. The certificate will show that the camera has 
been calibrated within twelve months at commencement of the 
photography. 

2.2.2 The producer shall hold a valid calibration certificate and shall supply 
a copy to the client or user on request. 

2.2.3 The calibration certificate shall contain the following information: 

- name and address of the calibration centre 
- date of calibration 
- camera manufacturer's serial number of the lens unit 
- calibrated focal length (principal distance) of the lens unit 
- radial distortion in micrometres at intervals not exceeding 10 mm 

along each of the four semi-diagonals referred to the axis of best 
symmetry 

- distances between fiducial marks - sides and diagonals, or their 
co-ordinates in a rectangular reference system 

- position of the principal point of autocollimation or of best 
symmetry with respect to the fiducial centre 

- radial and tangential resolution figures for the lens unit issued by 
the manufacturer, at the time of manufacture or after optical 
readjustments of the lens unit 

- measured reseau co-ordinates (if any) in a rectangular reference 
system. 

2.2.4 The measured distortion shall fall within the limit defined by the 
manufacturer for the lens type. 

2.2.5 If, during the course of the contract, any damage to the camera is 
suspected that is liable to affect the calibration, the camera shall be 
recalibrated. 

2.2.6 If, up to six months after completion of this contract, significant 
changes in calibration are found, the producer shall inform the client 
or user. 

2.3 Camera mounting 

The camera shall be installed in a mounting which attenuates the 
effects of aircraft vibration. 



Aerial photogrammetry 197 

2.4 Filters 
2.4.1 

EITH ER Only optical filters provided by the lens manufacturer or meeting the 
same optical specification shall be used, 

OR Filters as specified below shall be used: 

2.4.2 The light fall-off in cameras having an angle of view larger than 60 
degrees shall be compensated by a graded filter. 

2.5 Camera windows 

2.5.1 Any camera window used shall be checked by the calibration centre 
to ensure that it will not adversely affect lens resolution and distortion 
and that it is substantially free from veins, striations and other 
inhomogeneities. 

2.5.2 The camera window shall be mounted in material eliminating 
mechanical stress to the window. 

SECTION THREE: Flying and photographic coverage 

3.1 Photographic coverage 

3.1.1 The area shall be covered by approximately straight runs (strips) of 
near-vertical photographs at the approximate altitude required in 
Clause 1.2.1. 

3.1.2 The direction of flight lines shall 

EITHER Be selected by the contractor and a copy of the flight plan shall be 
supplied to the client on request, 

OR Conform to the flight plan attached as Annexure of the 
specification document. 

3.1.3 The forward overlap (forelap) between successive exposures in each 
run shall be between 55 and 65 per cent, except where specified 
otherwise. 

3.1.4 The lateral overlap (sidelap) between adjacent strips should normally 
be: 

- between 20 and 40 per cent for flying heights of less than 1500 m 
above mean ground level 

-between 15 and 35 per cent for flying heights of 1500m and 
above. 

Where ground heights within the area of overlap vary by more than 
10 per cent of the flying height, a reasonable variation in the stated 
overlaps shall be permitted, provided that the forward overlap does 
not fall below 55 per cent and the lateral overlap does not fall below 
10 per cent or exceed 45 per cent. 
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In extreme terrain relief, where the lateral overlap specified above is 
impossible to maintain in straight and parallel flight lines, the 'gaps' 
created by excessive relief shall be filled by short runs flown between 
the main runs and parallel to them. 

3.1.5 Where a run crosses a shoreline, the forward overlap shall be 
increased to a nominal 90 per cent subject to the constraints imposed 
by the camera cycle time. The increase in overlap shall include at least 
three photo-centres on land. 

3.1.6 Runs that would fall along a shoreline may be repositioned to reduce 
the proportion of water covered, provided that the coverage extends 
beyond the limit of any land feature by at least 10 per cent of the run 
width, despite the increased lateral overlap. 

3.1.7 Where the ends of runs of photography join the ends of other runs 
flown in the same general direction, there shall be an overlap of at 
least two stereoscopic models, which if the scales of photography are 
different shall be at the smaller photo-scale. 

3.1.8 Crab shall not exceed 5 degrees when measured between the base 
line and a line parallel to the frame of the negative, nor create 
stereoscopic gaps in the photography. 

3.1.9 Tilt should not normally exceed 2 degrees. Isolated exposures with 
up to 4 degrees may be permitted. 

3.1.10 Where a few exposures in a long run are rejected because of cloud, 
quality or inadequate overlap they may be replaced by a short run, 
provided that an overlap of at least two stereoscopic models is 
supplied at both ends. 

3.2 Flying conditions 

3.2.1 Photography may be taken at any suitable solar altitude above 15 
degrees, except where specified otherwise below: 

Minimum solar altitude degrees 
Maximum solar altitude degrees. 

3.2.2 Photography shall be flown only in conditions when the visibility 
does not significantly impair the tone reproduction in the negative. 
Relevant detail shall not be lost as a result of atmospheric haze or 
dust. 

3.2.3 

EITH ER Photography shall be substantially free from cloud, dense shadow or 
smoke. Isolated areas of cloud, dense shadow or smoke shall not be 
cause for rejection of the photography provided that the intended use 
is not impaired, 

OR Photography shall be completely free of cloud, dense shadow or 
smoke, 
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OR 

3.2.4 Special conditions related to timing or season for photography as 
specified below: 

SECTION FOUR: Aerial f i lm and image quality of negative 

4.1 Aerial f i lm 

4.1.1 The type of aerial film to be used shall be as specified in Clause 1.3.1. 

4.1.2 The emulsion shall be coated on a stable-base film. 

4.1.3 The conditions of the film stock to be used shall be such that when 
exposed film is processed 

- i t shall be free of stains, discolouration, or brittleness that can be 
attributed to ageing or improper storage; and 

- the fog density (emulsion only) shall not exceed a value of 0.2 
using the same developer, time and temperature as will be used 
on the contract except for film nominally rated at a speed in 
excess of 250 EAFS (Effective Aerial Film Speed) which shall 
not exceed a value of 0.4. 

4.2 Exposure 

4.2.1 A shutter speed shall be chosen that meets the requirements of 
minimal image movement, at an adequate lens aperture for the 
prevailing illumination conditions. 

4.2.2 The calculated forward image movement shall not normally exceed 
30 micrometres. 

Up to 60 micrometres shall be acceptable in cases of very low subject 
luminance and/or photography at scales of 1/5000 and larger. 

Up to 90 micrometres shall be acceptable in cases of extremely low 
subject luminance and/or photography at scales of 1/2000 and 
larger. 

4.3 Filter 

4.3.1 The contractor shall select filters to provide suitable tone repro-
duction, except where the filters to be used are specified below: 
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4.4 Processing and drying 

4.4.1 Equipment used for processing and drying of the film shall be 
capable of achieving consistent negative quality specified under 
Clauses 4.5 and 4.6 below without causing deformation of the film. 

4.4.2 Processing and drying of the film shall be carried out without 
affecting its dimensional stability. In any negative, the differential 
lengths between any pairs of fiducial marks shall not exceed 0.03 per 
cent and the overall scale change shall not exceed 0.08 per cent. 

4.4.3 The residual thiosulphate content of processed film shall not exceed 
20 milligrammes per square metre. 

4.4.4 All processed negatives should be substantially free of blisters, 
bubbles, inclusions, coating lines, stress or static marks, bar marks, 
pin-holes, abrasions, streaks, stains, chemical marks, drying marks or 
scratches, on both the emulsion side and the base side, apparent 
either in diffuse or specular light. 

Some tolerances shall be allowed where processing has to be carried 
out in sub-standard conditions, provided that the intended purpose 
of the negatives is not impaired. 

4.5 Metr ic quality of negatives 

The original negatives or contact diapositives produced from them 
shall not contain residual y-parallaxes after relative orientation in 
excess of 20 micrometres anywhere in the model. 

4.6 Image quality of negatives 

4.6.1 The density and contrast of all negatives shall be such that 
commercially available grades of paper, covering log exposure 
ranges of 0.6 up to 1.6 can be used to produce prints with detail in 
dark and bright areas of interest. Suitable dodging methods shall be 
permitted. 

4.6.2 The fog density (emulsion only) of the negatives shall not normally 
exceed a value of 0.2 measured in an area clear of any exposure to 
light, except for film nominally rated at a speed in excess of 250 EAFS 
which shall not exceed 0.4. 

4.6.3 Useful minimum shadow detail should not normally have a density of 
less than 0.2 above base-plus-fog, except in the corners of super-
wide-angle photographs where a minimum density of 0.1 above 
base-plus-fog shall be acceptable. 

4.6.4 The maximum density in useful areas of the negatives shall not 
exceed 1.5 above base-plus-fog, other than in small areas of high 
reflectance where a maximum density of 2.0 shall be permissible. In 
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exceptional cases, where very dense spots caused by specular 
reflection of the sun from highly-reflective objects occur, they shall 
be accepted. 

4.6.5 All fiducial marks shall be clearly visible and sharp on every negative. 

4.6.6 The camera panel of instruments recorded on the film should be 
clearly legible on all processed negatives. Failure of instrument 
illumination during a sortie shall not be cause for rejection of the 
photography except where specified below: 

SECTION FIVE: Photographic products 

5.1 Index plots and/or photoindices 

An index plot and/or photoindex shall be supplied as specified in 
Clause 1.4.1 to show the relative positions of all accepted 
photography. 

The index plots and/or photoindices shall contain the following 
information: 

- base map references 
- area designation 
- period of photography 
- scale of index 
- scale of photography 
- indication of North 
- camera type and focal length of lens unit 
- contractor's name 
- approximate geographical or grid co-ordinates. 
- film numbers and run (strip) numbers at both edges of each sheet 

and where changes occur within a sheet 
- photo numbers. 

5.1.1 Index plots, where required, shall indicate the position and number of 
sufficient exposures to facilitate the approximate positioning of 
intervening exposures. 

5.1.2 Photo indices, where required, shall be prepared using the first and 
last and every alternate print. The prints shall be trimmed to the edge 
of the photographic image, and the photo number shall be visible on 
the first and last prints and on every fifth print used. 

5.2 Paper prints 

Contact prints shall be made on an automatic dodging printer on 
medium-weight resin-coated paper or double-weight fibre-based 
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paper on which ink and pencil can be used on both sides unless 
otherwise specified below: 

Sets of prints to be produced away from the contractor's laboratory 
may be made on a manual dodging printer. 

5.3 Diapositives 

Where required diapositives shall be produced on a stable-base film 
using an automatic dodging printer unless otherwise specified 
below: 

5.4 Duplicate negatives 

5.4.1 Where required, duplicate negatives shall be supplied 

EITHER Produced via an intermediate positive to produce a conventional 
wrong-reading image when viewed emulsion up, 

OR Produced on direct duplicating film to produce a right-reading image 
when viewed emulsion up. 

5.4.2 The duplicate negatives shall be produced on a stable-base film with 
tone reproduction (density distribution) as close to that of the 
original negatives as is reasonably feasible. 

5.4.3 The negatives shall be produced using an automatic dodging printer 
unless otherwise specified below. 

SECTION SIX: Documentation and annotation 

6.1 Film annotation 

The following information shall be supplied as leaders at the start and 
the end of each film: 

-start or end (as appropriate) 
- project number and/or area designation 
- where parts of more than one project or area are recorded on the 

film, all areas shall be mentioned 
- f i lm number 
-year(s), month(s) and day(s) of photography 
- nominal scale(s) of photography 
- type of camera 
- t h e principal distance or calibrated focal length of the lens unit. 
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6.2 Negative numbering (photo numbering) and print 
annotation 

Numbering of negatives shall be carried out using heat foil or 
indelible ink, or other methods. The numbers shall be printed in a neat 
and clearly legible type. The height of type shall be approximately 3 
millimetres. 

Each negative to be used shall be provided with the following 
annotation, using heat foil or indelible ink or titling strips or other 
methods, which shall appear on all the contact prints: 

- producer's identification 
- project number and/or area designation 
- f i lm number and photo number 
-year(s), month(s) and day(s) of photography 
-altitude above mean sea level or height above ground level 
- nominal scale of photography 
- principal distance or calibrated focal length of the lens unit. 

6.3 Film container annotation (label) 

The outside of each film container shall clearly show: 

- project number and/or area designation 
- where parts of more than one project or area are recorded on the 

film, all areas shall be mentioned 
-year(s), month(s) and day(s) of photography 
- run numbers and photo numbers 
- nominal scale(s) of photography 
- camera type 
- focal length of the lens unit. 

6.4 Film report 

A report shall be included in the film container with each film giving 
the following information: 

- contractor's identification 
- f i lm number 
- camera type and number, lens type, number and focal length 
- filter type and number 
-magazine number(s) or cassette and cassette-holder unit 

number(s) 
- f i lm type and manufacturer's emulsion number 
- lens aperture and shutter speed (exposure time) 
- run number and flight direction 
-year(s), month(s) and day(s) of photography 
- aircraft type and identification 



204 Aerial photogrammetry 

- names of pilot(s), navigator and photographer 
- start and end times for each run in local time 
- photo numbers of all offered photography 
- computed altitude above mean sea level (true altitude) 
- nominal scale of photography 
- weather conditions - cloud type, degree of haze 
- degree of turbulence 
- date of processing 
- method of development 
- developer used and dilution 
- time and temperature of development or film transport speed 
- length of film processed 
-general comment on quality. 

6.5 Other documentation as specified below: 

{Reproduced by kind permission of the copyright holders, the RICS and BASA) 

3.11 APPLICATIONS OF P H O T O G R A M M E T R Y IN 
ENGINEERING 

Apart from its many applications in civil engineering, photogrammetry is widely used 
in forestry, town planning, architecture and even dentistry and medicine. Only the 
more prominent applications in civil engineering will be considered here. 

(1) Highway optimization 

In the well-mapped UK it is possible to reduce the area required for a new route into a 
relatively small band. Aerial photographic interpretation will serve as a very useful aid 
in this initial decision. The examination of stereo pairs can supply an enormous amount 
of information to the trained eye, such as—geology of the area, main soil types, faults, 
land-slip areas, areas presenting drainage problems, location of borrow and quarry 
sites, major obstacles, expensive land, best grades, etc. 

The photographs in glass plate form (diapositives) are then oriented in stereo 
plotters, which have rotary digitizers attached to their lead screws. The operator scans 
the stereo model with the floating dot obtaining the x, y and z machine co-ordinates of 
the area. These values appear as a permanent record on an electric typewriter, in 
addition to being punched on card or tape. The computer converts these machine co-
ordinates to full-scale ground co-ordinates by a comparison with certain ground 
control points supplied. The computer now has in its memory store a mathematical 
model of the ground commonly called a digital terrain model The engineer now 
supplies certain parameters to the computer, such as the co-ordinates of the route, 
limiting grades, lengths of vertical and horizontal transition curves and typical cross-
section templates. From this data the computer selects the best route, supplies earth-
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work quantities, plots cross-sections and longitudinal sections along the centre line of 
the proposed route and produces mass-haul diagrams. Further optimization may now 
be carried out from this data enabling the computer to supply final quantities 
(compensated for bulking and compaction) including a differentiation of the various 
types of material and quantities for top-soil stripping, respreading and seeding. Final 
drawings of plans, long sections and cross-sections are supplied, along with all the 
necessary setting-out data. Even perspective views of the proposed route at regular 
intervals are supplied, which, if flashed rapidly on a screen, give the impression of 
travelling the proposed route. 

(2) Traffic engineering 

Photographs may be used in land use studies to enable travel patterns to be estimated 
and predicted. 

Time-lapse photography of a traffic route can provide information such as traffic 
speeds and density, concentration of traffic for selected time periods, en route travel 
time and the relative productivity of the various route segments. This technique is 
called the sky-count technique, although the tedium of actually counting the cars on the 
photographs has been eliminated by using electronic scanners capable of sensing 
vehicles on infra-red photography. 

Traffic management, broadly aimed at improving traffic flow, can be aided in many 
ways by air photographs. The photographs provide a visual inspection of a large area at 
a glance and can be taken to show on- and off-peak flows, normal and congested routes, 
non-utilization of streets, parking characteristics, junction studies, effect of public 
transport on traffic flows, etc. They may also be used to produce traffic density contour 
maps, and to provide a permanent inventory of roads, streets and car parks. 

(3) Remote sensing 

Remote sensing is the most recent development in the field of air survey. However, all 
aerial photographs are in effect examples of remote sensing, in that they can detect the 
nature of an object without actually touching it. 

All photographs portray detail by a comparison of the visible light reflected from 
various objects. This light comprises electromagnetic energy with wavelengths from 
0.4 μιη to 0.7 μιη. Energy whose wavelength is less than 0.4 μιη is called ultra-violet, and 
above 0.7 μιη infra-red. The camera is capable of recording energy within the 0.3 μιη to 
1.2 μιη range, but above this upper value special equipment is required. 

In colour photography, each distinctive colour is a function of the light reflected by 
the objects, which is in turn a function of the energy absorption and reflection 
characteristics. Thus, as blue has different reflection characteristics to red, it is possible 
to distinguish between them. However, by sensing in the infra-red spectrum it is 
possible to distinguish different objects having the same colour, due to the variable 
energy reflection characteristics. This is particularly impressive in the field of ecology, 
where healthy and diseased vegetation will appear as different colours on infra-red 
colour film (false colour), even though to the human eye apparently identical. 

To record energy in the 1 μιη to 20 μιη band, thermal infra-red line-scanning devices 
are used. These devices record variation in energy due to variation in temperature. The 
terrain is sensed from the air, a strip at a time, and a thermal image built up. A typical 
example of its use is in river pollution where pollutants having different temperatures 
are recorded as shades varying from white through to black. Correlation with the 
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various origins of these pollutants enables a more detailed analysis of the river to be 
made. This form of sensing can operate day or night, but cannot penetrate atmospheric 
cloud conditions. Other prospective uses of this technique are the detection of various 
rock and soil types, and assessment of the moisture content of various soils. 

Using side-scanning airborne radar it is possible to build up terrain images over a 
wide area at a single scan. As radar functions in the spectral range of 0.5 mm to 1 m, it is 
operable day or night under any sort of weather conditions. Image detail is built up on 
the basis of the time differences between the reflected electromagnetic waves. For 
instance, the travel time from a point directly below the aircraft would be less than that 
from the edge of the line scan. These time differences are converted to amplitude video 
signals and imaged on one line of a cathode ray tube. In this way a terrain picture is 
built up in a manner similar to existing TV pictures. 

Thus, using these devices, it is possible to operate under any weather conditions, at 
day or night, and still differentiate between any sort of detail having different reflection 
characteristics. The possible applications of these techniques in engineering are 
therefore multifarious. 

WORKED EXAMPLES 
Example 3.1. A rectangular area 100 km x 50 km is to be mapped from aerial 
photographs. The camera has a film format of 230 mm x 230 mm and a focal length of 
152 mm. If the area is flown at a mean altitude of 3040 m, the forward overlap is 60% 
and the lateral overlap 30%, calculate: 

(a) the number of photographs required to cover the area, adding two to each end of 
the strip to ensure coverage; 

(b) the interval between successive exposures if the ground speed was 130 km/h; 
(c) the amount of image blur for a shutter speed of 1/300 s. (KP) 

(a) Scale of photography = f/H = 152/3 040 000 = 1/20 000 
Length of area at scale = 100 000/20 000 = 5 m = 5000 mm 
Effective cover per photograph = 40% of 230 mm = 92 mm 
.*. Number of photographs per strip = 5000/92 = 54.3 « 55 
.*. Number of photographs required = 55 + 4 = 59 
Width of area at scale = Half length = 2500 mm 
Effective cover per strip = 70% of 230 mm = 161 mm 
.·. Number of strips = 2500/161 = 15.5 « 16 
.*. Total number of photographs = 16 x 59 = 944 

(b) A new photograph is taken every 40% of the ground cover per photograph. Thus 
92 mm is equivalent to 92 x 20 000 mm = 1840 m on the ground. This length is, in 
effect, the air base B. 

Ground speed = 130 km/h = 36 m/s 
.*. Interval between exposures = 1840/36 = 51.1 s 

(c) Ground covered in 1/300 s = 36 000/300 = 120 mm 
.·. Image blur on the photograph = 120/20 000 = 0.006 mm 

Example 3.2. Define the terms plumb point and isocentre in connection with photo-
grammetry. Show that the angle subtended by two points at the isocentre of a 
photograph is equal to the corresponding ground angle. 
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A photograph taken with a 254-mm focal length camera has a tilt of 7°. Find the 
distances in mm from the photograph principal point to the plumb point and to the 
isocentre. (LU) 

For the answer to the first part of the question refer to Sections 3.2.1 and 3.2.6. 

Refer to Figure 3.3 (p. 155). 
Distance from principal to plumb point=pv=f tan 0 = 254 tan 7° = 31.19 mm 
Distance from principal to isocentre=pi=f tan(0/2)= 15.54 mm 

Example 3.3. Prove that the angle a on a photograph, between any line through the 
principal point and the line of greatest tilt, is related to the corresponding horizontal 
angle ß on the ground by 

tan ß = tan a cos Θ 

where Θ is the angle of tilt of the camera. 
On a photograph taken with a 250-mm focal length camera, the following are the co-

ordinates of the photograph plumb point v, and the images a and b of ground points A 
a n d ß . 

Point 

V 

a 
b 

X 

(mm) 

-27.8 
-8 .0 
96.1 

y 
(mm) 

13.0 
57.2 
20.4 

What would be the horizontal angle subtended by A and B at the ground principal 
point? (LU) 

For the answer to the first part refer to Section 3.2.6, equation (3.9). 
It must be remembered that photo co-ordinates are measured from the fiducial axes 

with p as origin (Figure 3.42). 

.*. Distance pv = / tan Θ = (27.82 + 13.02)* = 30.7 mm 
.*. 250 tan 0 = 30.7 

.·. 0 = 7° 00' 

From Figure 3.42 φ1 = tan"1 13/27.8 = 25° 04' 
0 2 = tan"1 57.2/8.0 = 82° 02' 

.·. α ι = φ2 - φχ = 56° 58' 

-y Figure 3.42 
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The equivalent angle on the ground is now obtained from 

tan ßi = tan OLX COS 0 = tan 56° 58' cos 7° .'. ßx = 56° 46' 
Similarly φ3 = tan"1 20.4/96.1 = 12° 0 0 \ \ <χ2 = φ3+φ1 = 37° 04' 
but tan β2 = tan a2 cos Θ .'. β2 = 36° 52' 

.·. Angle APB on the ground = 180° - (β1 + β2) = 86° 22' 

Example 3.4. From a radial line plot, the distance between the ground principal points 
of two consecutive air photographs is found to be 654 m. The 254-mm focal length 
camera was vertical for each photograph and the aircraft maintained level flight. If the 
parallax of a point A is 93.60 mm, find the height of the aircraft above A. Find also the 
reduced levels of points B and C, whose differences in parallax from that at A are 
+ 0.36 mm and —0.20 mm, respectively. The reduced level at A is known to be 29.96 m 
AOD. (LU) 

The problem is illustrated in Figure 3.31. From similar triangles L1AL2 and Εγαχα!2 

m , . Bf 654 x 254 
(H - hA) = —- = ———— = 1775 m v PA 93.6 

which is the height of the aircraft above A. 
Equation (3.19) lends itself ideally to this particular problem 

AB PA + APAB 93.6 + 0.36 

.·. RL of B = 29.96 + 6.80 = 36.76 m AOD 

«. ·ι i Λ, (H-hA)APAC 1775 x (-0.20) 
Similarly AhAC = ^ — — = M r

 v
 Λ ^ ' = - 3.80 m 

y AC PA+ APAC 93.6 - 0.20 
.'. RL of C = 29.96 - 3.80 = 26.16 m AOD 

Example 3.5. Explain what is meant by parallax in relation to aerial photographs. 
How would you measure the parallax of a point appearing on two overlapping 
photographs if your only equipment was a millimetre rule? 

On the overlap of a pair of vertical aerial photographs taken at a height of 2500 m 
above sea level with a 152-mm focal length camera, are shown two points A and B. 
Point A is the centre of a bridge in the valley while B is a point on a pass through a range 
of hills. In order to estimate the amount of rise between these two points, parallax bar 
measurements were taken as follows: 

Point A—mean reading 11.43 mm 
Point B—mean reading 5.90 mm 
The mean level of the valley containing the principal points of the photographs is 

82 m AOD, whilst a BM on a bridge near point A was 74.55 m AOD. 
If the respective photograph bases are 89.1 mm and 91.4 mm, calculate the height of 

B above A. (KP) 
Refer to Section 3.7.2 for the answer to the first part of the question. 

As the level of point A is known sufficiently accurately, then its parallax may be 
calculated from equation (3.18) 
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p _ bHo 
A~H-hA 

, b,+b2 89.1+91.4 nn^c where b = 1 „ 2 = = 90.25 mm 2 2 
tf0 = 2500 - 82 = 2418 m H = 2500 m 

90.25x2418 ηΛΛ„ 
A 2500 - 74.55 

K = 74.55 m 

PB = PA + Δ Ρ ^ , where ΔΡ^Β is the difference in parallax = 11.43 — 5.90, and is added 
as B is obviously higher than A. 

.'. Ρ β = 89.97 + 5.53 = 95.50 mm 
bH 

But since PB = ——°-— then hB = 214.9 m AOD 
H -hB 

.*. Height of B above A = 214.9 - 74.55 = 140.4 m 

Example 3.6. When an aircraft in level flight takes two successive vertical 
photographs, its height above a ground station A is HA. The parallax of A on the 
photographs is PA, and the parallax of a ground point B, a height h above A, is 
(PA + ΔΡ). Show that the height of B above A may be obtained approximately from the 
equation 

ΔΡ / ΔΡ 

In a pair of vertical photographs the parallax of a point A of known height 112.82 m 
above MSL is 91.4 mm. The changes of parallax to two points P and Q are -1.25 mm 
and +0.87 mm, respectively. Find the heights of P and Q above MSL if the camera 
focal length is 254 mm and the air base is 722 m. 

If all of the ground was at the same level as A, what would be the percentage overlap 
for 230 mm x 230 mm photographs? (LU) 

By reference to Figure 3.31 and taking the height of the aircraft above A as HA 

then PA = J--
HA 

Similarly, as B is height h above A, then 

ΗΛ 
(PA + ΔΡ) 

fB fB 
But HA-(HA-h) = J—- J 

PA PA + ΔΡ A x A 

■ U-fB(l P* V ff (PA+AP-PA\ 

• Η-Ρ;{1-}ΤΪΑΡ)-ΗΑ{ PA + AP ) 
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„ fB rr fB 254x722 _ _ 
PA = 7Γ- HA = -^- = —wr- A — = 2006 m 

HA PA 91.4 

It is required to find first the length of ground covered on a 230 mm x 230 mm 
format 

„ , / Format size , Scale = — = ;— (see Figure 3.4) 
HA Equivalent ground 
254 230 

2006 G 

.·. G = 1817 m 

The air base = 722 m which is also the effective cover (see Worked example 3.1). 

. · . Effective cover = ^ y x 722 = 40% .·. Overlap = 60% 

Example 3.7. Clearly define what is meant by parallax on a pair of overlapping vertical 
aerial photographs. 

The following table gives parallax bar readings on several points in the stereoscopic 
overlap of a pair of photographs: 

From 

which, expanded binomially to the first term only, gives 
PA 

AP ( AP\ 

Height of P above MSL = 112.82 - 28.48 = 84.34 m 

Similarly 

Height of Q above MSL = 112.82 + 19.86 = 132.68 m 

/0.87V 0.87N 
^ = 2 0 0 6 x ( ^ — ^ l - — j = 19.86 m 

=-28.48 m 

The height of P below 
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Photograph Mean bar readings 
points (mm) Remarks 

a 6.85 
b 11.31 
px 5.98 PP of photograph 1 
c 2.62 

If the length of the photograph bases on photographs 1 and 2 are 88.30 mm and 
84.28 mm, respectively, then without using any further data, calculate the parallax of 
the above points. 

Thereafter, find the reduced levels of the points A, B and C, given the following 
information: focal length of lens, / = 150 mm; flying height above datum, H = 500 m; 
mean ground level, h = 224.68 m. (The parallax bar used gave increased readings as the 
distance between the dots increased.) (KP) 

This final statement in the question may require some explanation. It should be 
obvious from an examination of Figure 3.33 that as the distance between the dots 
increases so the level of the point decreases. Some parallax bars are graduated to give 
increased readings as the distance between the dots increases (Glauser bars), thus on 
this type of bar an increased reading indicates a decrease in level and so a decrease in 
parallax. The American or direct bar gives reduced readings as the distance between the 
dots increases; thus on this type of bar a decrease in reading indicates a decrease in 
level. 

Figure 3.34 shows that the parallax of p1 = b2, similarly the parallax of p2 would be 
&!, where b1 and b2 are the respective photograph bases. 

.'. Parallax of px = 84.28 mm 

Δ Ρ ρ α = (5 .98- 6.85) = - 0 . 8 7 m .·. PA = 84.28 - 0.87 = 83.41 
APP b = (5.98 - 11.31) = -5.33 mm PB = 84.28 - 5.33 = 78.95 
APPiC = (5.98 - 2.62) = +3.36 mm Pc = 84.28 + 3.36 = 87.64 

From the type of bar used it is obvious that points A and B are lower than Pl9 thus 
their parallax is less and the difference must be subtracted. 

b = bl t * 2 = 86.29 mm 
2 

b{H - h) 86.29(500 - 224.68) ft„ ΑΛ and from PA = -±-—-1 = \—— = 83.41 mm A H - hA 500 - hA 

hA = 215Alm 

Similarly hB = 199.08 m and hc = 228.92 m 

Example 3.8. In a pair of overlapping air photographs, the following co-ordinate 
measurements to the top of an electric pylon were obtained: 

Top of pylon (ί) χ y 
(mm) (mm) 

Photograph 1 82.45 52.00 
Photograph 2 -74.88 48.84 
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The origin of the above co-ordinates is the PP, the axis being formed by the fiducial 
marks of the photographs. The relevant photograph base on each photograph is at an 
angle of 80° and 258°, respectively, measured clockwise from the +y axis. 

Thereafter parallax bar measurements were taken as follows: top of pylon 35.63 mm 
and bottom of pylon 41.89 mm. 

If the focal length of the camera lens was 152 mm, the flying height 2000 m, the 
photograph bases 92.84 and 90.16 mm, respectively, and the mean level of the terrain 
112 m OD, calculate the approximate height of the pylon. (KP) 

From Figure 3.43 

Photograph 1 

and 

Photograph 2 

Pih = Picjcos 10° = 82.45/cos 10° = 83.72 mm 
M i = PiCi tan 10° = 82.45 tan 10° = 14.54 mm 

'. ί ^ = ttcx - M i = 52.00 - 14.54 = 37.46 mm 

M i = hh sin 10° = 37.46 sin 10° = 6.50 mm 
. ρχαχ = ρ ^ ! + b1ai = 83.72 + 6.50 = 90.22 mm 

b2c2 = t2c2 tan 12° = 48.84 tan 12° = 10.39 mm 
b2p2 = p2c2 - b2c2 = 74.88 - 10.39 = 64.49 mm 
a2p2 = b2p2 cos 12° = 64.49 cos 12° = 63.08 mm 

Parallax of top of pylon Pt = 90.22 + 63.08 = 153.30 mm 

Photo 1 + 

P, 

i 

, t , 
l \ 
1 \ . 

80° bji^oT 

10° c i 

Photo 2 

t? 

12°A 
i \ b 2 12° 

62 V ^ 
J%2 

pn 
-^258° 

Figure 3.43 

From bar measurements 

APtb = 41.89 - 35.63 = 6.26 mm 

.*. Parallax of bottom of pylon Pb = 153.30 - 6.26 = 147.04 mm 

From the basic parallax formula Pt = b(H — h)/(H — ht) 

Similarly 

, . > , , - 2 0 0 0 - [ 9 U ( 2 ^ 3 - " 2 ) ] - 8 7 3 m O D 

_ Γ91.5(2000- 112)1 _ 
~ L 147.04 J ~ hh = 2000 825 m OD 

Height of pylon = 48 m 
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3.12 TERRESTRIAL PHOTOGRAMMETRY 

This form of photogrammetry utilizes photographs taken from a ground station. The 
instrument used is called a photo theodolite and comprises a precision camera 
integrated with a theodolite. The theodolite enables the direction of the principal axis of 
the camera to be found, relative to a base line. 

3.12.1 Principle 

At each station the camera is carefully centred and levelled such that the principal axis 
of the camera is horizontal and the plane of the photograph vertical. The plan position 
of a ground point can then be fixed analytically, graphically or instrumentally from the 
terrestrial photograph. Figure 3.44 indicates the position of a point A relative to the 
fiducial axes of the photograph. The horizontal axis x is called the horizon line, while the 
vertical axis y is called the principal line. 

Photo 

Lp = Focal length =f 

L = Lens centre 

Figure 3.44 

The horizontal and vertical angles, Θ and </>, respectively, may be defined as follows 

or 

- » " 7 

or 
/ 

cos Θ 

.'. tan φ = 

t a n 0 = 

-yasm6 

— ya cos Θ 

7 

(3.29a) 

(3.29b) 

(3.29c) 
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μ Principal line 

Figure 3.45. (a) Plan view, and (b) elevation. 

3.12.2 Method of intersection 

In this method {Figure 3.45) the camera axis is oriented at any angle to the base line 
LXL2, photographs being taken from both ends of the base line. The position of a point 
A may be fixed graphically by plotting the base line to the scale required. The direction 
of the principal axis of each camera station is drawn with the horizon line plotted at 
right angles to the axis. The x co-ordinates of the points are plotted and drawn through 
to intersect at A. The level of the point relative to the principal plane can be found by 
similar triangles (Figure 3.45(b)) 

but from Figure 3.45(a) 

LXA L1a1 

Liai = (xl+f2)t 
LtA x ya 

Y* = (3.30) 

These simple techniques have largely been replaced by stereoscopic methods. 

3.12.3 Stereoscopic methods 

To facilitate stereoscopic viewing the photographs are taken from each end of a base 
line with the principal axis at 90° to the base (Figure 3.46). The base should be of such 

XA 

~7\ 
/ \ 

1« 1A >j/ 
S\PifVai 

k. Base line 
B 

^ 2 P2 

L2 Figure 3.46. Plan view. 

(α) 

(b) 
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length as to give a well-conditioned intersection of rays, and accurately measured to 
reduce the propagation of errors from this source. 

From Figure 3.46, triangles LlAL2 and djL·^ are similar 

·'· ZA/L\L2 =L1p1/ala
,
2 

.'. ΖΑ=ψ (3.31) 
t A 

where PA is the parallax of A. 

Similarly XA/ZA = xJf .'. XA = = ^ (3.32) .*. XA 

LXA 

zAya 

ZAxx 

f 
zA 

f 
(fr< From Figure 3.45(b) YA/ya = -^- = -j- (from Figure 3.46) 

.'. ΥΑ = ^γΆ (3.33) 

Note that in equation (3.31),?^ = [xx — ( — x2)~\ = (xi + x2);ifAwastotherightofP2 
then PA = (xx — x2), whilst if it was to the left of Pl9 then PA = (x2 — x j . 

Apart from this analytical solution, the photographs can be oriented in some of the 
larger universal plotters (Wild A7) and plans produced in this way. 

3.12.4 Application 

The method was originally devised for topographic surveys of very rugged terrain, and, 
as such, was widely utilized in Switzerland. The following instances of its use will serve 
to indicate present-day applications: 

(a) Survey of sheer rugged faces in quarries, dam sites, etc. It was used to survey the face 
of Edinburgh Castle. 

(b) Short-base methods are used to make road-accident plans. 
(c) These latter methods have been used for wriggle surveys in tunnels (Snowy 

Mountains, Mersey Tunnel). 
(d) Recording architectural details for the restoration of ancient buildings. 
(e) It has been used in many scientific projects, such as stereoscopic photographs of 

objects in an intensely hot state which require measuring. 
(f) It has even been used to produce contoured plans of animals for husbandry 

purposes. 

WORKED EXAMPLES 

Example 3.9. In order to determine the focal length of a camera a ground photograph 
was taken at station O of two markers P and Q whose images appear on a print and 
have the co-ordinates shown in the Table below. The horizontal angle subtended by P 
and Q at the camera was found to be 32° 50'. 

The camera was then set up at each end of a base line AB of length 350.52 m and 
photographs were taken of a signal X. The angles between the optical axis of the 
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camera and the base line were 64° 20' and 48° 30' at A and B9 respectively. The co-
ordinates of the images of X on the prints are shown below: 

Distance from Distance from 
Station Object on print principal line horizon line 

(mm) (mm) 

0 
0 
A 
B 

P 
Q 
X 
X 

+ 57.15 
-27.94 
-23.37 
-70.10 

+47.75 
-19.05 

The optical axis of the camera was horizontal throughout and the RL of A was 35.78 m. 
The height of the camera at A and B was 1.3 m. 

Calculate the reduced levels of B and X, and the distance of X from the base 
line. (ICE) 

From Figure 3.47(a) 

(a + ß) = 32° 50' 

tan a + tan/? (27.94//) + (57.15//) 
tan(a + fl - 1 _ ^ g ^ β = χ _ ( 2 7 . 9 4 / / ) ( 5 7 , 1 5 / / ) = tan 32 50 

Λ ^ 5 · 0 9 ^ , =0.645 28 
1 - (1596.71/f2) 

.·. 0.645 28 / 2 - 85.09/ - 1030.36 = 0 

.*. / = 143 mm 

From Figure 3.47(b) 

ΘΑ = tsin-1(2331/l43) = 9° 17" ΘΒ = tan"1(70.1/143) = 26° 07' 

.'. lii\AAXB A = 73° 37' B = 22° 23' X = 84° 00' 

AB sin B Λ^Λ^Α Λ _ AB sin Ä 
AX = ——x— = 134.21m and BX = — - — ^ = 338.14 m 

sin X sin A .*. Perpendicular distance of X from AB = AX sin ,4 = 128.76 m 

From Figure 3.47(c) (3.34) 
yA sin 0^ 

tan<^ = ^ A-

.·. ^ = tan"1(47.75 sin 9° 170/23.37 = 18° 15' 
.·. XX' = AX tan φΑ = 44.24 m 

= 35.78 + 1.30 = 37.08 
= 37.08 +44.24 = 81.32 m 

φΒ = tan"1!-19.05 sin 26° 070/70.10 = - 6 ° 49' 
.·. XX' = BX tan φΒ = -40.45 

Level of principal plane = 
.*. Level of point X ■■ 

Similarly from B 

As the level of X from A is 81.32 m, 
The level of B = 81.32 + 40.45 = 121.77 m then 
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Figure 3.47 

•^Principal line 

(c) 

Example 3.10. In order to determine the area of a plot of ground PQRS, a distinctive 
pole was placed at each of the four corners of the plot. The poles are clearly visible on 
230 mm x 230 mm ground photographs taken of the plot from each end of a base line 
213.36 m long. For each photograph the optical axis of the camera was horizontal and 
was set at right-angles to the base line. The base line ran in an east-west direction and 
the plot was to the north of it. The focal length of the camera lens was 152 mm. 

The information given below shows the x co-ordinates of the images of the four poles 
measured from the two photographs: 

Pole 
Photograph 1 (west) x co-ordinate 
measured from principal point 
(mm) 

Photograph 2 (east) x co-ordinate 
measured from principal point 
(mm) 

P 
Q 
R 
S 

8.3 
71.6 

106.1 
11.0 

-56.0 
14.0 
20.7 

-74.4 

Calculate the area of the plot in square metres. 

From Section 3.12.3, equations (3.31) and (3.32), respectively 

Z = fB/P and X = Zx/f 

To find the ground co-ordinates of the poles 

(ICE) 

and 
Similarly 

ZP = 153 x 213.36/(8.3 4- 56.0) = 507.68 m (north of base station 1) 
XP = 507.68 x 8.3/153 = 27.51 m (east of base station 1) 

Q = north 566.74 m, east 265.15 m 
R = north 382.25 m, east 264.15 m 
S = north 382.25 m, east 27.51 m 

The co-ordinates give a figure as shown in Figure 3.48. 

125.43 +184.49 
.*. Area = x 237.64 = 36 825 m2 

(a) 

(b) 

2 
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125-43 

Ί 237-64 

184-49 

Figure 3.48 

EXERCISES 

3.1. Describe the method of producing a minor control plot from a set of overlapping 
aerial photographs. Assuming that two ground control points appear towards each end 
of the run, how are these used to adjust the scale of the plot? 

Describe also how slotted templates are prepared and used, and how scale 
adjustment is effected in this case. (LU) 

3.2. Explain how a stereoscopic pair of vertical aerial photographs having negligible 
tilt distortion are base lined, and how they are positioned for viewing under a 
stereoscope. 

Explain how a particular contour could be located using a parallax bar and establish 
from first principles the parallax equation on which this work is based. (ICE) 

3.3. It is proposed to map an area of 30 km x 12 km to a scale of 1/20 000 by strip 
photography from the air, using a camera fitted with a lens of focal length 152 mm and 
giving prints 230 mm square. The operating speed of the plane is to be 200 km/h and 
provision is to be made for 60% longitudinal overlap of prints and 25% lateral overlap. 

Find (a) the average height above ground at which the plane must operate; (b) the 
time interval between exposures in any one run; (c) the minimum number of 
photographs required. (LU) 

(Answer: (a) 3040 m, (b) 33.1 s and (c) 5705) 

3.4. Explain why the heights of buildings, trees, etc. appear to be exaggerated when a 
pair of vertical air photographs is viewed stereoscopically. 

A factory chimney 122 m high appears at the principal point of a truly vertical 
photograph. On the next photograph, taken shortly after, and also truly vertical, the 
base of the chimney is on the x axis and 83.82 mm to the left of the principal point. Each 
of the photographs is 203 mm x 203 mm. 

Given that the flying height of the aircraft above the ground was 792 m, and that the 
focal length of the camera lens was 127 mm, determine: (a) the distance of the top of the 
chimney from the y axis on the second photograph, and (b) the percentage overlap 
between the two photographs. (ICE) 

(Answer: (a) 91.2 mm and (b) 58.7%) 

3.5. The following table illustrates a schedule of parallax bar readings on three points, 
A, B and C. 
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Reading 

1st 
2nd 
3rd 
4th 

A 

6.98 
6.99 
6.96 
6.99 

B 

5.56 
5.58 
5.55 
5.55 

C 

7.82 
7.84 
7.79 
7.83 

Point A is a ground control station whose level is 184.00 m OD. The photographs were 
taken at a height of 3500 m above MSL, using a 150-mm focal length lens. On the 
photographs, the photo base lines measured 84.20 mm and 86.28 mm, respectively, 
while the mean height of the terrain in the overlap was 120 m OD. 

Calculate the approximate reduce levels of B and C. (The parallax bar used gave 
reduced readings as the distance between the measuring plates increased.) (KP) 
(Answer: 122 m and 216 m OD) 

3.6. Derive the expression for the parallax of a point which appears on a pair of 
overlapping air photographs. 

The operating speed of an aircraft engaged on an aerial survey was 200 km/h. If the 
flying height was 2000 m above datum, and exposures were taken at intervals of 20 s 
using a camera of focal length 254 mm, find the length of the air base. 

Hence, determine the height of a tower which appears on consecutive photographs if 
the difference in parallax measurements for the base and top of the tower was 1.51 mm. 
The base of the tower was known (from ground-control survey) to be 15.00 m above 
datum. 

What was the scale of the photographs, assuming that the average level of the terrain 
was at datum? (KP) 
(Answer: 1111.2 m; 21m; 1 in 7874) 

3.7. A photo-theodolite having a focal length of 150 mm is used to take a photograph 
at each end of a base line AB 250 m long. In each case the optical axis of the camera is 
horizontal and the height of instrument is constant. The horizontal angles between the 
optical axis and the base line as measured at A and B are 60° and 48°, respectively. 

The co-ordinates (related to the principal point of each print) of two points P and Q 
whose images appear on the prints are shown below: 

Print at A 
Print at B 

Co-ordinates 
(mm) 

X 

-10.8 
-24.8 

y 

0 
-2 .0 

ofP 

X 

17.6 
36.0 

Co-ordinates of Q 
(mm) 

y 

8.4 
Not measured 

Calculate the horizontal distance and the difference of level between P and Q and 
also the difference of level between A and B. (ICE) 
(Answer: PQ = 90.50 m; 13.46 m; 3.02 m) 

3.8. What are the advantages and disadvantages of the use of a photo-theodolite in 
surveying? 
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Two stereo photographs have been taken from the ends of a base line PQ 60.00 m 
long with a camera having a lens of 165 mm focal length. A well-defined point R 
appears in both photographs and in each case it is to the right of the vertical cross-hair. 
In the photograph from P the horizontal and vertical measurements from the cross-
hairs are 45.72 mm and 6.10 mm, respectively, while the corresponding measurements 
on the other photograph are 4.32 mm and 3.05 mm. 

Establish the plan position of R relative to P and Q, and determine the difference in 
level between the camera axis at P and at Q. (ICE) 
(Answer: ZR = 239.13 m; XR from P = 66.26 m; XR from Q = 6.26 m; difference in 
level = 4.42 m) 
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Field astronomy 

Astronomical observations are generally used to find the azimuth of a line relative to 
the true meridian and to find the latitude and longitude of a point. In this way surveys 
may be located and oriented on the Earth's surface, the position of control points for 
small-scale mapping established and azimuth controlled in large-scale traversing. 

4 1 SPHERICAL TRIGONOMETRY 

The computation of astronomical observations requires the use of spherical 
trigonometry. 

A spherical triangle is more clearly defined by assuming the Earth to be a perfect 
sphere and considering lines on its surface. It is important to realize that all three sides 
of a spherical triangle must be arcs of great circles. A great circle is one which has as its 
centre the centre of the sphere, and a radius equal to the radius of the sphere. Thus, on 
the Earth's surface the Equator and all meridians of longitude are great circles, while all 
parallels of latitude are small circles. In Figure 4.1 therefore, PAB is a spherical triangle 
but PCD is not a spherical triangle. As great circles are circles of maximum radii, it 
follows that the shortest distance between two points on the Earth's surface is the arc of 
a great circle joining the two points. 

As in plane triangles the spherical triangle has three sides and three angles, and the 
method of defining these quantities is as follows (see Figure 4.2): 

(a) The angles X, Yand Z are measured normal to the planes subtending them; they do 
not necessarily sum to 180°. 

(b) The sides x, y and z are defined by the angles which they subtend at the centre of the 
sphere. Thus the 'length' of side y is angle XOZ. 

The following spherical trigonometry equations are all the student requires for the 
solution of astronomy problems: 

(1) Given three sides x, y and z {Figure 4.2), and required to find the angles; or, given 
two sides and the included angle and required to find the remaining side; use the 
cosine rule 

cos x = cos y cos z 4- sin y sin z cos X (4.1) 

221 
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(τΐΓΐΤ_ Jo . 

\ I I I 

v Latitude 

— J Equator 

Figure 4.1 
Figure 4.2 

(2) Given two angles and a side opposite and required to find the remaining opposite 
side; or, given two sides and an angle opposite and required to find the remaining 
opposite angle; use the sine rule 

sin X sin Y sin Z 

sinx siny sinz 
(4.2) 

(3) Given two angles and the included side and required to find a side; or, given two 
sides and the included angle and required to find an angle; use the four-parts rule 

sin X cot Y = sin z cot y — cos z cos X (4.3) 

(4) Napier's rules are used in the solution of right-angled spherical triangles (Figure 
43(a)). Excluding the right-angle, the five remaining parts are defined as the two 
sides x and y forming the arms of the right-angle, and the complements of the 
remaining three parts. 

The five parts are entered in consecutive clockwise order in the circle (Figure 43 (b)). 
Any part may now be defined as the middle part, the parts on either side are then the 
adjacent parts; the remaining two parts the opposite parts. Then Napier's rule may be 
written 

sme of mid-part = product of cosines of opposite parts 
or = product of tangents of adjacent parts 

e.g. sin(90° - X) = cos x cos(90° - Y) = cos x sin Y 
or sin(90° - X) = tan y tan(90° - z) = tan y cot z 

(4.4) 
(4.5) 

(a) (b) Figure 4.3 
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The first three equations, i.e. (4.1) to (4.3), can also be used to solve a right-angled 
spherical triangle, but the application of Napier's rule is simpler. Similarly, any triangle 
can be split into two right-angled triangles and solved using Napier's rule. 

The application of these equations to the solution of spherical triangles can result in 
ambiguities; generally, however, sufficient information is given defining the position of 
the celestial body observed to enable these ambiguities to be resolved. 

The application of spherical trigonometry to engineering problems, other than 
astronomy, will now be illustrated in the following Worked examples. 

WORKED EXAMPLES 

Example 4.1. A submarine cable is to be laid by the shortest route from a station M (lat 
34° 55' S, long 56° 10' W) to another station T (lat 33° 56' S, long 18° 28' E). Taking the 
Earth to be a sphere such that 31 m on the surface of the Earth subtends 1" of arc at the 
centre, determine: (a) the length of cable in kilometres (ignoring differences in level); (b) 
the direction in which the cable-laying vessel should set out from M; (c) the most 
southerly latitude reached. (LU) 

Referring to Figure 4.4 

Length of side MP = t = (90° - 34° 55') = 55° 05' (co-latitude of M) 
Length of side TP =m = (90° - 33° 56') = 56° 04' (co-latitude of T) 
AngleMPT = P = (56° 10' + 18° 28') = 74° 38' (difference in longitude) 

(a) By the cosine rule 

cos p = cos t cos m + sin t sin m cos P 
= cos 55° 05' x cos 56° 04' + sin 55° 05' x sin 56° 05' x cos 74° 38' 

.·. p = cos"1 0.499 82 = 60° 00' or 300° 00' 

.*. Length of cable p = 60° x 3600 x 31 m = 6696 km 

N.B. It is obvious from the difference in longitude that 300° 00' cannot be the 
required value. 

(b) To find angle M using the sine rule 

sin M sin P . , sin 56° 04' x sin 74° 38' 
— = — .'. sin M = :—τχτ-τ^ 
sin m sin p sin 60 00 

.·. M = sin"1 0.923 79 = 67° 29' or 112° 31' 

.*. Direction in which to set out = S 67° 29' E 

The above ambiguity is resolved from the fact that the three angles of the triangle 
should add to 180° + the spherical excess, and that the angle at T will be somewhat 
similar to that at M. As the spherical excess will not be great the angle cannot be 
112° 31'. 

(c) In right-angled triangle MDP, it is necessary to find side DP; i.e. at the most 
southerly point D, the angle formed is a right-angle. Entering the components in 
Figure 4.5 

sin DP = cos(90° - PMD) cos(90° - i) 
= sin PMD sin t = sin 67° 29' x sin 55° 05' 

.*. DP = sin"1 0.757 48 = 49° 14' or 130° 46' 
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Equator 

Great 
circle 

P (South Pole) 

(a) 

Figure 4.4 

(b) 

Figure 4.5 

i.e. DP is the co-latitude (90° - lat) of D, and is obviously 49° 14' 
.*. Most southerly latitude = (90° - 49° 14') S 

= 40° 46' S 

Example 4.2. Three stations A, O and C have reduced levels of 646.2, 457.2 and 
364.2 m, respectively, and a sextant records the angle AOC as 55° 20' 20". If the distance 
from A to O is 405.4 m and from O to C 731.5 m, both measured horizontally, determine 
the difference of azimuth between the lines OA and OC. (LU) 

It may be remembered from Volume 1 that the sextant measures the angle in the 
plane AOC, i.e. Θ = length of side AC in spherical triangle APC (Figure 4.6). 

Taking O as datum, angles bA and bC can be calculated thus supplying the lengths of 
the two remaining sides AP and PC. The angle required from a solution of the spherical 
triangle is φ, the horizontal angle between the planes A OP and COP; this is the angle 
which would have been obtained by a theodolite. Thus 

AA' = (646.2 - 457.2) = 189.0 m CC = (457.2 - 364.2) = 93.0 m 

bC = tan"1! J ^ | = 7° 14' 44" - ^ - 7 · 1 4 ' < 
V731.5/ 

C Figure 4.6 
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By the cosine rule 

cos AC - cos(90° - δΑ) cos(90° + SC) 
cos P = 

sin(90° - ÖA) sin(90° + SC) 

_ cos(55° 20' 20") - cos(65° 00' 17") cos(97° 14' 44") 
" sin(65° 00' 17") sin(97° 14' 44") 

/ . cos P = 0.691 813 

N.£. cos 97° 14' 44" = —cos 82° 45' 16", thus changing the sign in the above equation. 

.·. P = 46° 13' 34" 

the other possible value for P lies in the fourth quadrant and is of course not acceptable. 

Example 4.3. A pipeline is to be set out (see Figure 4.7) between three pegs A, B and C 
on the ground. The pipe is to be laid to rising grades of 1 in 20 from A to B and 1 in 50 
from B to C. The horizontal angle ABC was measured by theodolite as 45° 30' 30". 

Calculate the angle to which the pipe must be bent. (KP) 

A 

Figure 4.7 

This problem is practically the reverse of the previous one. In this case the horizontal 
angle φ is known, and Θ is the one required 

SA = co t - 1 20 = 2° 51' 45" SC = c o t - 1 50 = 1° 08' 45" 
By the cosine rule 

cos AC = cos AP cos PC + sin AP sin PC cos P 
= cos(90° + SA) cos(90° - Sc) + sin(90° + SA) sin(90° - Sc) cos φ 
= cos 92° 51' 45" x cos 88° 51' 15" + sin 92° 51' 45" x sin 88° 51' 15" 

x cos 45° 30' 30" 
= -0.000 999 + 0.699 792 = 0.698 793 

.*. Side AC = Θ = 44° 40' 12" (the angle of bend of the pipe) 

Example 4.4. Explain why a ship travelling in open sea between two ports usually 
navigates along the arc of the great circle on which poth ports are situated. 
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If a ship sails along the great circle joining two places each of latitude 45° north, show 
that the highest latitude L reached during the voyage is given by cot L = cos(D/2), 
where D is the difference between the longitudes of the two places. 

Calculate the shortest distance measured along the Earth's surface between New 
York (lat 40° 35' N, long 74° 00' W) and Cape Town (lat 33° 56' S, long 18° 26' E). The 
radius of the Earth may be taken as 6370 km. (LU) 

Latitude 45° N 

(a) (b) Figure 4.8 

The reason why a ship on the open sea usually follows the arc of the great circle on 
which two ports are situated is that a great circle, being a circle of maximum radius, is 
the shortest distance between two points. By Napier's rule in Figure 4.8 

sin(90° - D/2) = tan PC x tan(90° - ΛΡ) 

But PC = (90° - L) and AP = 45° 
.'. cos(Z)/2) = tan(90° - L) tan 45° = cot L 

From the latitude and longitude of the two places given it is possible to obtain two sides 
and the included angle of spherical triangle APB in Figure 4.9. It is required to calculate 
side AB. 

Θ = (74° 00' + 18° 26') = 92° 26' 
AP = (90° - 40° 35') = 49° 25' 
BP = (90° + 33° 56') = 123° 56' 

By the cosine rule 
cos AB = cos 49° 25' x cos 123° 56' + sin 49° 25' x sin 123° 56' x cos 92° 26' 

.*. cos AB = -0.389 908 
.·. AB = -67° 03' 04" = 112° 56' 56" = Δ 

<?/ 
New York As 

N& 

»B Cape Town Figure 4.9 
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Shortest distance between N e w York and C a p e T o w n = RA rad 

6370 X 406 616" 

• 206 265 

N,B. 1 radian = 206 265''. 

= 12 557 k m 

It is very important to familiarize oneself with the fo l lowing definitions and to 
understand them thoroughly . 

(1) Celestial sphere 

This is the first and basic concept ion in a s t r o n o m y (Figure 4.10). T h e Earth is a s sumed 
to be stat ionary and situated at the centre of a sphere of infinite radius. This is termed 
the celestial sphere, and all the heavenly bodies are imagined as fixed to its surface as it 
apparently rotates from east t o west (clockwise l ook ing south in the northern 
hemisphere). 

Observer's horizon 
plane normal to 
Ζ-Nadir 

Nadir 

Plane of the celestial equator, 
normal to PN PS-

Figure 4.10 

(2) Celestial poles and equator 

In Figure 4.10 the celestial poles P^y and are s imply extens ions of the Earth's north 
and south poles , while the celestial equator is an extens ion of the Earth's Equator. It 
fo l lows that the centre of the Earth, O, is a l so the centre of the celestial sphere. 

4 . 2 D E F I N I T I O N S O F T E R M S I N A S T R O N O M Y 
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(3) Zenith (Z) 

Figure 4.10 shows an observer on the Earth's surface in latitude 30° N. If a plumb line to 
the centre of the Earth (direction of gravity) is extended upwards it will cut the celestial 
sphere at Z. This is the observer's position on the celestial sphere. 

If the line is extended downwards it will cut the sphere at the observer's nadir. This 
term may hereafter be ignored. 

(4) Horizon plane (NESW) 

This plane is normal to the observer's zenith (Figure 4.10), passing through the centre of 
the Earth. As the Earth's size is insignificant relative to the celestial sphere, it may be 
regarded as a point 0. Thus the observer's horizon may be regarded as the plane from 
which the vertical angles to the heavenly bodies are measured by theodolite. 

(5) Celestial meridians 

Celestial meridians are more easily understood if one regards them as extensions of the 
meridians of longitude on the Earth's surface. SZN in Figure 4.10 represents the 
observer's celestial meridian. The plane of the celestial meridian is always normal to the 
observer's horizon. Where a celestial meridian passes through a star or other heavenly 
body, it is generally termed the declination circle of the star. 

(6) Prime vertical 

The celestial equator cuts the horizon plane at the east (E) and west (W) cardinal points. 
The celestial meridian passing through EZW is the prime vertical. 

(7) Transit or culmination 

Figure 4.10 shows four stars A, B, C and D revolving from east to west about the polar 
axis. If these stars were viewed from outside the north celestial pole PN, the apparent 
motion of the stars is clockwise. It is anticlockwise when viewed from outside the south 
pole Ps. Star A, only a few degrees from the pole, describes a small circle entirely above 
the observer's meridian and is thus visible for 24 hours a day. Stars B and C do, for some 
period of the day, set below the observer's horizon and are therefore not visible during 
that period, while star D is never visible to an observer in the northern hemisphere. 
Stars such as A, which never set, are called circum-polar stars. 

Considering star B, when it arrives on the observer's meridian at Bl9 it is said to 
culminate or transit (there is a fine distinction between the two terms which may 
reasonably be ignored; hereafter the term transit is preferred). When the star crosses the 
meridian from east to west, as at Bl9it is called upper transit, and lower transit when it 
crosses from west to east, as at B2. 

It is worth noting here that the interval of time elapsing between two successive 
upper or lower transits of a star is called a sidereal day. Similarly for the Sun it would be 
a solar day. 

(8) Elongation 

If the celestial sphere of Figure 4.10 is viewed from the outside through the pole, it will 
appear as in Figure 4.11. The star S is shown moving clockwise around the pole P. At Sw 

it reaches its greatest angular distance from the observer's meridian PZ. In this position 
it is said to be at elongation and an observation from Z at this instant will form the right-
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S2 

Figure 4.11 

angled spherical triangle PZSW. As the star is in the western hemisphere it is said to be 
at western elongation. Its continued motion around the pole will eventually result in its 
eastern elongation at SE. 

At Su when the star is on the same side of the pole as the observer, it is at upper 
transit; at S2 it is at lower transit (see B1 and B2, Figure 4.10). Referring to Figure 4.14, it 
can be seen that if φ > δ the star would revolve around P and Z, thus making it 
impossible to obtain a tangential sight from within the circle of the star's motion. 

Summary 

To summarize, it can be seen that the celestial sphere contains a system of parallels and 
meridians identical to the lines of latitude and longitude on the Earth. The declination 
circles through the stars and zenith of the observer are similar to the lines of longitude. 
The small circles described by the stars are similar to the parallels of latitude. These 
facts are very important when considering the co-ordinate position of a star. 

4.2.1 Celestial co-ordinate systems 
(1) Declination and right-ascension system 

In the same way that a position on the Earth's surface may be fixed by its latitude and 
longitude, so the position of a star on the celestial sphere may be fixed by its declination 
(δ) and right ascension (RA). 

From Figure 4.12 it can be seen that the declination of a star is measured from the 
plane of the celestial equator along the meridian arc or declination circle through the 
star in question; it is analogous to latitude on the Earth. Hence the declinations are 
measured north and south of the equator. Arc PNSN is thus the co-declination of the 
star and is (90° — δΝ). If the declination had been south (<5S) then the co-dec would be 
PNSS equal to (90° + Ss). It is easy to see that the reverse is the case in the southern 
hemisphere. 

While the position of the star on the declination circle is now fixed, the position of the 
circle itself needs locating. This is done by means of the RA which is the horizontal 
angle between a reference circle and the declination circle in question (Figure 4.12), and 
is similar to the longitude on Earth. The point on the celestial sphere chosen for 
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reference is called the First Point of Aries (T) which is a purely imaginary point. At the 
vernal (or spring) and autumn equinoxes the Sun is directly over the Equator. A line 
from the centre of the Earth through the centre of the Sun, at these times, would cut the 
Equator at T. The RA is measured in the direction opposite to the motion of the stars 
from 0° to 360° or 0 to 24 h. 

It should be noted that neither the declination nor the RA can be measured by an 
observer, but are obtained from a current edition of the Star Almanac for Land 
Surveyors (HMSO, published annually). 

Plane of the 
celestial equator 

Figure 4.12 

(2) Hour-angle and declination system 

An alternative system of co-ordinates is obtained by substituting the hour angle (h) of a 
star for the RA in (1). 

The hour angle of a star is the angle from the declination circle of the observer to the 
declination circle of the star. In Figure 4.12, if PNStPs is considered as the observer's 
declination circle, the star will transit at Ŝ  and the hour angle h will be 0° or 0 h. When 
the star reaches SN, then h will have a value, say 45° or 3 h west of the observer's 
meridian. It is generally measured in units of time, east or west of the observer's 
meridian. For example, h equal to 3 h east, would be equivalent to 21 h measured in the 
direction of the star's motion. It should be carefully noted that measurement of the hour 
angle commences from upper transit and that upper transit occurs when the star is on 
the same side of the pole as the zenith of the observer. 

(3) Altitude and azimuth system 

The final system of fixing a star is direct measurement of its altitude (H) and azimuth 
(A) (Figure 4.13). 

The altitude of the star S is the vertical angle H measured from the observer's horizon 
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plane along the declination circle of the star. The arc ZS is therefore the co-altitude of 
the star equal to (90° - H). 

The azimuth of the star is the angle PZS. The student may prefer to visualize this as 
the observer at Z looking towards the true north at P. The azimuth will then be the 
bearing ZS equal to A ° as azimuths are measured clockwise from north, i.e. its quadrant 
bearing is north-east. If the star had been the other side of the observer's meridian, its 
quadrant bearing would be north-west and its azimuth (360° — A). 

An observer in the southern hemisphere (Zs) looking towards the south pole (Ps) 
would be looking due south, i.e. 180°. Thus the star at S in the east would have an 
azimuth of (180° - A), whilst a star in the west would be (180° + A). 

N Hemisphere 

Figure 4.13 

4.2.2 The astronomical triangle 

The reader is now in a position to visualize the elements of the spherical triangle as 
shown in Figure 4.14. 

To facilitate understanding of the triangle, the reader should remember that the 
zenith Z and the observer's horizon form a pair, while the pole P and the Equator also 
form a pair. Thus considering line ZS, as Z is present the observer's horizon must be 
present, and from the horizon to S is the measured altitude, therefore ZS is the co-
altitude (90° — H). Similarly with PS, as P is present—the Equator must also be. The 
element measured from the Equator to S is the declination, therefore PS is the co-
declination (90° — <5). Finally with ZP, the element from the Equator to the observer at 
Z is of course latitude, therefore ZP is the co-latitude (90° — φ). The remaining two 
elements have already been defined; the azimuth of the star, i.e. angle A, is always at Z, 
and the hour angle h always at P. It can be seen that S is to the east of ZP, thus its 
azimuth is east of ZP, and its hour angle h east of PZ. 

Basically, field astronomy now consists of obtaining sufficient elements of the 
astronomical triangle to enable the remainder to be calculated. 
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IM. Pole 

Figure 4.14 

4.3 TIME IN ASTRONOMY 

If the altitude of a star is measured, this altitude is fixed only for the instant of time at 
which it was measured. It follows then that this time must be recorded. In the United 
Kingdom the time would be measured in terms of Greenwich mean time (GMT) or, as it 
is now called, Universal time (UT). However, the star's motion is measured in sidereal 
time (ST) while the actual Sun is measured in apparent time (AT). These time systems 
will be dealt with in detail to attempt to clarify this topic. 

A good-class radio for the reception of Greenwich time signals is a very important 
piece of equipment when carrying out astronomical observations. Whilst the 
Greenwich pips are well recognized in the UK, the radio should be capable of clearly 
receiving the radio time signals transmitted from stations throughout the world. 

A quartz and atomic clock records time to an accuracy greater than l/1000th sec/day 
and is therefore used to provide international time and frequency standards. However, 
such is the accuracy of atomic time, that it varies from UT which is based on the slightly 
irregular rotation of the Earth, but which nevertheless forms the basis of astronomical 
observations. The time signals transmitted by radio are at the rate of atomic time 
approximately corrected to UT by step adjustments of exactly one leap second. The 
correction applied is the last second on 30 June or 31 December, as appropriate, and 
the resulting emitted time signal is called co-ordinated Universal time (UTC). The 
maximum discrepancy between UTC and UT will never be greater than 0.7 sec. 

The above discrepancy between UTC and UT, and referred to as DUT1, is 
transmitted in simple code form along with the time signals. Utilizing this code enables 
the surveyor to obtain UT to 0.1 sec. For greater accuracy, reference should be made to 
the Time Service Circulars (published weekly by the Royal Greenwich Observatory) 
where the difference is given in milliseconds. Similar information can be obtained from 
the Bureau Internationale de FHeure (BIH). 

As indicated above, UT = UTC ± DUT1 where DUT1 is indicated by emphasizing 
seven consecutive seconds markers, following the minute marker. 
For a POSITIVE correction 
A NEGATIVE correction is 

DUTl = (rcx0.1)sec 
DUTl = (mx0.1)sec 

where (1 < n < 7) 
where (9 < m < 15) 
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i.e., the negative value is indicated by emphasizing the 9th to the (8 + m)th second. The 
form of emphasizing may be by lengthening, doubling, splitting, or altering the tone of 
the signal. If DUTl is zero, then naturally there will be no emphasized seconds markers. 
The UK emissions from Rugby (call sign MSF on frequency 2.5 MHz, 120 m 
wavelength) use double pulses, limited to the first 15 seconds markers of each minute, 
with a maximum of 7 at any one time. It should be realized that the above coding 
system applies only to primary time signals and not to secondary systems such as 
telephones. 

Thus, when observing a star the observer requires the UT of the instant it crosses the 
cross-hair of the theodolite. To obtain this he requires a chronometer, probably of the 
quartz crystal type. The instant the star is bisected, the observer starts a stopwatch. He 
then moves to the chronometer and at the instant of taking the reading, he stops the 
stopwatch. Thus, the chronometer time of the instant he bisected the star is 

(Chronometer time — Stopwatch interval) 

Then from his radio, he obtains UT = UTC ± DUTl which is, at the instant of 
transmission, compared with the chronometer. Any difference is the chronometer error, 
which is applied to the chrono time of the observation to get the equivalent UT 
i.e. UT = (Chrono time — Stopwatch interval ± Chrono error) 

Time problems are much simplified with the aid of a time diagram. An examination 
of Figure 4.11 shows that moving Z to the outside of the circle in no way alters the line 
of the meridian PZ. Similarly, moving the star Sw to the periphery in the line PSW 

would not alter the direction of the star from P. Thus a time diagram can be constructed 
with P at the centre and the heavenly bodies, including T, on the circumference. The 
observer's meridian and Greenwich meridian can be denoted by Z and G, respectively, 
on the circumference. 

4.3.1 Sidereal day 

A sidereal day commences on any particular meridian when the First Point of Aries (T) 
is at upper transit there, i.e. it is zero hours (0 h) local sidereal time (LST). If the 
particular meridian in question had been Greenwich, the time would be 0 h GST. The T 
now moves clockwise round the Equator (northern hemisphere) returning to upper 
transit 24 sidereal hours later. Thus a sidereal day is the interval between two successive 
transits of the T. 

Figure 4.15 shows T defining LST in relation to the observer's meridian PZ. The 
star's declination circle PS is now added defining the position of the star, the angle ZPS 
is the star's western hour angle (HA). The angle from T to 5, measured anticlockwise, is 
by definition of the Right Ascension (RA). It can thus be seen that 

Sidereal time = HA + RA (4.6) 

When the star is at upper transit it will be on PZ 

Λ Sidereal time of transit = Star's RA (4.7) 

Figure 4.16 clearly shows that when the star's HA is easterly, then 

LST = RA - HA (4.8) 
There is no need to commit these equations to memory if the definitions already 

outlined are clearly understood and a time diagram is used. 
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4.3.2 Solar day 

An apparent solar day may similarly be defined as the interval between successive upper 
transits of the actual Sun (A). However, when the Sun is at upper transit we call it noon 
or 12 h; thus the commencement of a solar day at 0 h will need to be measured from the 
antipodes of the observer's meridian, i.e. Z'. This statement is very important and 
should be carefully noted. (Figure 4.15 with 0 h sidereal time at Z, should not be 
confused with Figure 4.17 having 0 h solar time at Z\) 

Oh Figure 4.17 

The movement of the actual Sun is irregular for a variety of reasons, and using it as a 
timekeeper would result in days of varying length. Consequently, there has been 
evolved the conception of a mean Sun (M) which travels round the Equator at a uniform 
rate and therefore transits on any meridian at equal intervals of time. The interval 
between two successive transits of the mean Sun on the antipodal meridian is called a 
mean solar day. 

Figure 4.17 indicates local mean time (LMT) and local apparent time (LAT), both 
measured from the antipodes of the observer in the direction of the Sun's motion. It is 
important to note, however, that the local hour angle of the Sun (LHA) is still measured 
from the observer's meridian as shown. In order to fix the position of M relative to A, 

Figure 4.15 
Figure 4.16 
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the interval between mean and apparent time, called the equation of time (ET), is used. 
By definition then 

ET = LMT - LAT (4.9) 

If, for instance, LMT is 4 h and LAT 4 h 10 m, then ET = —10 min, indicating that 
M is behind A by 10 m. The position of A relative to M varies throughout the year with 
the result that the ET ranges from maximum values of +14 m 20 s to —16 m 20 s. In 
order to avoid the use of positive and negative signs, the Star Almanac replaces ET with 
a quantity called E, such that 

E = 12 h - ET (4.10) 

Therefore, in this case E = 12 h — (— 10 m) = 12 h 10 m 

It can clearly be seen from the diagram that 

LHA = LMT + 12 h - ET = 4 h + 12 h - ( - 1 0 m) = 16 h 10 m 

.*. LHA = LMT + £ (4.11) 

It is appropriate at this point to mention a quantity R analogous to E, which is also 
tabulated in the Star Almanac and may be defined as 

K = R A M S ± 1 2 h (4.12) 

where RAMS is the right ascension of the mean Sun. This quantity is used to relate 
instants of mean time to sidereal time, or vice versa. This is illustrated by Figure 4.18; 
assume for instance that the LMT = 4 h, and R = 18 h, then from equation (4.12) 
RAMS = 6 h. Then Z'M = 4 h fixes the position of M, and as RA is measured 
anticlockwise from T, then T is fixed relative to M at that instant. Thus LST, which is in 
effect the LHA of T, can be easily seen to be 22 h. This should more properly be 
expressed as 

L S T a t 4 h L M T = 22h 

This example, then, indicates that 

LST or (LHA T) = LMT + RAMS + 12 h = LMT + R (4.13) 

In finding RAMS from JR, it is generally best to add 12 h when R < 12 h, and subtract 
when R > 12 h. In fact, it is immaterial; for instance, if R = 11 h, then RAMS = 
11 + 12 = 23 h, or 11 — 12 = — 1 h = 24 — 1 = 23 h. As negative time is unknown then 
simply adding 24 h will give the correct result. 

The student should note that the inclusion of the Greenwich meridian in no way 
alters the basic approach. Had the local meridian ZZ' been Greenwich CG' in Figure 
4.18, then equation (4.13) would be written 

GST = GMT + R 

which is perhaps more appropriate, as R is tabulated against GMT (UT) in the Star 
Almanac. 

4.3.3 Effect of longitude on time 

In order to eliminate the need for equations the student is required to use his 
imagination in the following manner. Imagine you are situated at the centre of the 
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Z' 
Figure 4.19 

Figure 4.18 

celestial sphere P looking out towards the Greenwich meridian G (Figure 4.19). The 
Sun S is approaching the meridian £, east of Greenwich. When it is overhead at E the 
time there is noon; it has not yet reached G of Wand so the time there is still early 
morning. In fact, if the longitude of E was 45° E and that of W 30° W, then as 
360° = 24 h, it would be 9 h (or 9 a.m.) at G and 7 h (or 7 a.m.) at W. As the Sun reaches 
G, 3 h later, it is now noon at G, 15 h (or 3 p.m.) at E and 10 h (or 10 a.m.) at W. Finally 
when the Sun reaches W, it will be 2 p.m. at G and 5 p.m. at E. This commonsense 
approach may be used regardless of the form the heavenly body takes. Also from the 
diagram, when the Sun reaches S, the LHA, for an observer on the meridian PW, is 
WPS, and the GHA is GPS, thus 

West longitude = Greenwich HA — Local HA 
As this holds for any body, it follows that 

West longitude = GMT - LMT 
= GAT - LAT 
= GST - LST 

It is obvious from the diagram that for east longitude the reverse is the case. The above 
equations are not meant to be memorized—a time diagram will soon indicate the 
situation. 

Standard time is the official time of a country or zone of a country. If, for instance, E in 
Figure 4.19 was the east coast of the United Kingdom, G Greenwich and W the west 
coast, then, as above, when it is 12 h at G, it would be 15 h at E and 10 h at W; thus all 
the clocks throughout the country would be showing different times. Britain therefore 
adopted the time at Greenwich as the standard time for the country. Finding the 
standard time from GMT (UT) is a straightforward application of longitude. For 
instance, the time at, say, 30° E, would be 2 h ahead of GMT. 

4.3.4 Time intervals 

All heavenly bodies have an apparent rotation around the Earth of 360° in 24 h, thus 
15° = 1 h 
15' = 1 m 
15" = 1 s (permitting easy conversion) 
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However, if the body in question was Y or a star, the hours in question would be 
sidereal hours. If the body was M o r i they would be mean or apparent solar hours, 
respectively. 

If T and M started at the same instant, from the same point, on their journey around 
the Earth, Y would arrive back 3 m 55.91 s earlier than M. Each day Y would get 
further ahead until by the end of one year it would have completed one more rotation 
than M. 

It is this difference in time, gradually accumulating during the year, which is tabulated 
as R in the Star Almanac. 

Various time problems will now be considered in detail. 

WORKED EXAMPLES 

Example 4.5. Find the GST at 20 h 00 m 00 s GMT on 17 November 1965, if the value 
for R is 3 h 20 m 30 s. What would be the equivalent LST for a place on longitude 
60° W? 

(a) Construct a time diagram showing the Greenwich meridian GG (G is the 
antipodes) (Figure 4.20). 

(b) From the antipodes G turn off 20 h GMT to fix position M (mean Sun). 
(c) As R = 3 h 20 m 30 s, then RAMS = R + 12 h = 15 h 20 m 30 s. This is the angular 

distance, measured anticlockwise, from Y to M thus fixing the relative position of Y 
at this instant. 

(d) From the diagram, GST is the angular distance, measured clockwise, from upper 
transit G to Y = 23 h 20 m 30 s. This is obtained as follows 

as GGM = 20 h then GM = 4 h 
Y G ' M 1 5 h 2 0 m 3 0 s 

thus YG' measured anticlockwise = 11 h 20 m 30 s 
.'. GMG Y = YG' + 12 h = 23 h 20 m 30 s 

This problem can be done much quicker by simply using GST = GMT + R, but 
time diagrams, even for relatively easy problems, lead to a better understanding of time 
in astronomy. 

If the student now adds the local meridian of 4 h west and measures clockwise to Y 
from this point, then LST is obviously 19 h 20 m 30 s. 

Example 4.6. Find the GHA of the Sun at GMT 11 h 00 m 00 s on 17 October 1965, if 
the appropriate value for E was 12 h 14 m 36.6 s. What is the LHA at 45° E? 

If E = 12 h 14 m 36.6 s, then the 'equation of time' ET = —14 m 36.6 s. The minus 
sign indicates that M is behind A. Thus the time diagram (Figure 4.21) can be 
constructed as follows: 

366 sidereal days = 365 mean solar days 

»A · , i u 365x24 t , 
24 sidereal hours = ———— mean solar hours 

366 

This may be written as 

= 23 h 56 m 04.09 s (mean solar time) 

1 sidereal hour = 1 solar hour — 9.83 s 
or 1 solar hour = 1 sidereal hour + 9.86 s 
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Figure 4.20 Figure 4.21 

First construct the Greenwich meridian GG'. Then 

GMT defines the position of M (measured clockwise from antipodes) = 11 h. 
ET defines the position of A relative to M, and the GHA from G clockwise to the actual 

Sun A is easily deduced as 23 h 14 m 36.6 s. 

From Figure 4.21 

ZG = 3h (45° east) 
AG = 12 h - 11 h 14 m 36.6 s (G'A) = 0 h 45 m 23.4 s 

.·. ZA = LHA = 2 h 14 m 36.6 s (i.e. ZG - AG) 

Using formula GHA = GMT + E = 23 h 14 m 36.6 s 
and LHA = LMT + E = 14 h + 12 h 14 m 36.6 s 

= 2 h 14 m 36.6 s 

N.B. In this last equation LMT is measured from Z'. 

The reverse operation of finding GMT given GHA is not quite as simple as the 
equation indicates, for E is tabulated against GMT in the Star Almanac. It is necessary 
therefore to carry out successive approximation for E. As in most engineering 
examinations the correct value for E will be quoted; the operation is just the reverse of 
the above. In any event, taking E from the Star Almanac for 12 h on the date in question 
produces only a small error. 

Example 4.7. An observer in longitude 105° E observed the Sun at upper transit. The 
instant of transit was recorded by chronometer as LMT 12 h 08 m 25 s on 17 March 
1965, and the value of £ from the Star Almanac was 11 h 51 m 25 s. Find the error of the 
chronometer. 

Construct GG\ then using longitude 7 h E fix Z relative to G, and subsequently the 
antipodes Z' (Figure 4.22). From E, the value of ET is + 08 m 35 s, thus M is ahead of A9 

and A is on Z as it is at upper transit. 

.*. LMT is 12 h 08 m 35 s (and the chronometer is slow by 10 s) 

Example 4.8. Find the LST at LMT 8 h 00 m 00 s on 17 March 1965, in longitude 30° 
W if the appropriate R value is 11 h 37 m 26 s. 

Draw a diagram showing GG\ and locate ZZ' from longitude (2 h W) {Figure 4.23). 
LMT is measured from Z', thereby fixing the position of M. R = 11 h 37 m 26 s, 
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G' G' 

Figure 4.22 Figure 4.23 

therefore RAMS = 23 h 37 m 26 s, which is measured anticlockwise from T, thus fixing 
T by measuring clockwise from M. Now LST is measured clockwise from the observer 
to T, i.e. ΖΎ 

.*. ZT = 19 h 37 m 26 s i.e. ZZ' + Z'M - ΎΜ = 12 h + 8 h - 22 m 34 s 

Using equation (4.13) LST = LMT + R = 19 h 37 m 26 s 

Example 4.9. The GST at GMT (UT) 0 h is 14 h 00 m 00 s. Find the LMT of the transit 
of T in longitude (a) 120° E and (b) 120° W. 

(a) Draw a diagram and indicate ZZ' relative to GG (Figure 4.24(a)). As GMT is 
0 h, then M will be over the antipodes at G. As GST is 14 h, measured clockwise from G, 
the position of T is now fixed relative to M. ΡΎ and PM can be imagined to be the 
hands of a watch fixed relative to each other. Then as T moves to Z (i.e. transits on the 
observer's meridian) a distance of 2 sidereal hours, M will move an equivalent amount 
of solar hours, creating Figure 4.24 (b). 

.*. As 2 sidereal hours = 2 - (2 x 9.8 s) = 1 h 59 m 40.4 s MT 
LMT = Z'M = Z'G + GM = 8 h + 1 h 59 m 40.4 s 

.·. LMT = 9h 59m 40.4s 

(a) (b) 

Figure 4.24 
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(a) (b) 
Figure 4.25 

(b) The diagram is drawn exactly as before, only the longitude changes (Figure 
4.25(a)). To transit Y at Z it may be moved clockwise through 18 sidereal hours or 
anticlockwise through 6 sidereal hours. Regardless of the direction, Y and M will 
appear in the same position on the diagram but two different answers will be obtained 
in the computation. This is because travelling through 18 h gives a change of 18 x 9.8 s 
to MT, but only 6 x 9.8 s if travelling in the opposite direction. The direction of travel 
must be such that the transit of Y will occur on the same day for which the information 
is required. 

Moving Y clockwise through 18 sidereal hours moves M clockwise through 17 h 
57 m 3.6 s solar time (Figure 4.25(b)). 

Therefore, as GMT is obviously 17 h 57 m 3.6 s, then from Figure 4.25(b) 

LMT = 9 h 57 m 3.6 s 

Explanation. In Figure 4.25 (a), as the GMT is 0 h, the LMT is 0 h — 8 h = 16 h on the 
previous day. Thus 16 h + 17 h 57 m 3.6 s = 9 h 57 m 3.6 s on the same day. 

Thus, when in doubt the student should find the LMT of the meridian, as above. 
Then using the sidereal interval (as an approximation) through which Y moves, 
clockwise or anticlockwise, decide which direction gives the transit on the required day. 

Example 4.10. If the GST is 14 h at 0 h GMT, find the LST in longitude 105° W at 
LMT 10 h. 

The student may at first glance find this problem rather confusing, but even with no 
set idea on how to commence it, by simply adding the data to the time diagram the 
answer will soon become clear. 

Commence with the Greenwich line GG as usual and then add the observer's 
meridian ZZ\ at 7 h W. As the GST is 14 h at 0 h GMT, this fixes Y and M relative to 
each other as shown (Figure 4.26(a)). What is now required is LST at LMT 10 h. Thus 
moving M anticlockwise through 7 h solar time will fix it so that Z'GM = 10 h = LMT 
(Figure 4.26(b)). It follows that Y will move back through 7 h solar time = 7 h + 1 m 
9 s = 7 h l m 9 s sidereal time. 

.'. LST = 23 h 58 m 51 s (measured clockwise from Z to Y) 
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N.B. If M was moved clockwise the distance would be 17 h and the sidereal interval a 
little more. From Figure 4.26(a) at the instant that GST = 14 h, LST = 7 h. Thus 
adding a sidereal interval of more than 17 h on to 7 h would give a value greater than 
24 h, thus moving into the next day. M must therefore move anticlockwise, as above. 

Example 4.11. If the GST is 9 h at GMT 0 h, find the LMT of transit of a star at 
longitude 120° east. The RA of the star is 14 h. 

Construct Greenwich and fix Z at 8 h each of G (Figure 4.27). 9 h GST measured 
clockwise from G fixes T. 14 h RA measured anticlockwise from T fixes S. 0 h GMT 
fixes M on the antipodes of G. S and M are now fixed relative to each other. By simple 
deduction from the diagram it can be seen that 5 needs to move 3 h anticlockwise or 
21 h clockwise to transit on Z. From the diagram, LMT (Z'M) is 8 h at that instant. 
Moving S through 21 h would give an LMT on 29 h, i.e. 5 h on the next day, thus S is 
moved back through 3 h to Z, and M will move back the equivalent amount in solar 
time, i.e. 2 h 59 m 31 s to M'. 

.·. LMT = Z'M' = 8 h - 2 h 5 9 m 3 1 s = 5h00m29s 

Example 4.12. If the GST is 15 h at GMT 0 h, find the LMT of the western elongation 
of a star in longitude 90° W, whose RA = 9 h and whose LHA = 4 h W. 

Fix GG' and ZZ' in the usual way (Figure 4.28). 15 h GST fixes Ύχ and 0 h GMT fixes 
M. At the instant of elongation the HA of the star is 4 h W, thus 4 h clockwise from Z 

Figure 4.26 

(a) (b) 

Figure 4.27 Figure 4.28 
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fixes the star at S. Also at this instant the RA is 9 h, measured clockwise from S; this 
fixes this position of the First Point of Aries at the instant of elongation at T2. The 
position of M at this instant is found by moving Tx forward to coincide with T2, a 
distance of 4h sidereal time; thus M moves forward 3h 59 m 20.8 s solar time. 
However, when GMT was 0 h, LMT (measured clockwise from Z') was 18 h, but as Z is 
west of Greenwich it must be 18 h on the preceding day. Thus the LMT calculated for 
elongation will be 

18 h + 3 h 59 m 20.8 s = 21 h 59 m 20.8 s 

still on the preceding day. It follows that for the star to elongate on the day required it 
must go round again another 24 h sidereal time. M will then go round another 23 h 
56 m 04.1 s solar time and the required LMT of elongation is 

21 h 59 m 20.8 s + 23 h 56 m 04.1 s = 21 h 55 m 24.9 s 

EXERCISES 

The student is advised to re-work the preceding examples without reference to the 
methods or diagrams given. In this way familiarity with the elements of the time 
diagrams will be attained. 

4.1. At a certain place the LMT was 17 h 10 m 20 s when the LST was 9 h 40 m 30 s. 
The Greenwich time signal revealed that the mean time was 1 h 20 m fast of GMT. (a) 
What is the longitude of the place? (b) What is the LST of LMN? (c) What is the GST of 
GMN? (LU) 

(Answer: (a) 20° E, (b) 4 h 29 m 19 s and (c) 4 h 29 m 32 s) 

N.B. LMN is local mean noon, or LMT 12 h. 

4.2. Define the First Point of Aries and show how its movement is related to that of the 
mean Sun. 

In order to determine the latitude of a survey station, a meridian observation at 
upper transit is to be made on a star of RA 2 h 06 m 30 s. The longitude of the station is 
93° 37' 03" W and the HA of the Ϊ with respect to the Greenwich meridian at GMN on 
the day on which the observation is to be made i s l l h 4 1 m l 9 s . Determine the GMT of 
transit. (ICE) 

(Answer: 8 h 39 m 32 s) 

4.3. Define the terms sidereal time, mean time, apparent time and equation of time. 
The Sun is observed to be at upper transit from a certain longitude when the GMT is 

known to be 4 h 10 m 04 s. Given that the equation of time at the instant of transit is 
known to be 11 m 41 s, the clock being ahead of the Sun, determine the longitude of the 
observing station. (ICE) 

(Answer: 120° 24' 15" E) 

Further problems on time occur in the following sections. 
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4.4 OBSERVATIONAL AND INSTRUMENTAL CORRECTIONS 

The observed quantities necessary for the solution of the astronomical triangle are: (i) 
the vertical angle to the star or the Sun; or (ii) the precise time of the instant of 
observation. 

In the case of the azimuth of a line, the horizontal angle between the line and the star 
(or the Sun) will also be required at the instant of observation. 

4.4.1 Observational corrections to the vertical angle 

(a) Refraction 

This phenomenon has already been discussed in Section 2.8.3. In astronomy the 
correction is usually taken as 

r = - 5 8 " c o t / / (4.14) 

where H = observed altitude. 
However, as r varies with temperature and pressure a more accurate value can be 

obtained from Star Almanac tables using 

r = fxr0 (4.15) 

where r0 is a correction under standard conditions of 100.5 kN/m2 and 7.2°C and / = a 
factor varying with measured temperature and pressure. The refraction correction is 
applied to all heavenly bodies. 

(b) Parallax 

This correction is applicable only to the Sun and corrects the vertical angle to that value 
which would be obtained had it been measured from the centre of the Earth. From 
Figure 4.29, maximum parallax δρ = tan(R/D) = 9" of arc; the parallax correction 
used is then 

δρ= +9" cot / / (4.16) 

Sun 

Earth Figure 4.29 

(c) Semi-diameter 

Accurate bisection of the Sun's centre is not possible due to its relatively large viewing 
size, unless the theodolite is fitted with a Roelof solar prism. The solar prism presents 
four images of the Sun, overlapping to give a cross-shaped image, the centre of which is 
the Sun's centre. 

Normally, the observation is to the Sun's lower limb A as in Figure 4.30, in which case 
the altitude will be too low by the semi-diameter. Observations to the upper limb B will 
similarly be too high. The value for semi-diameter varies from 16' 18" to 15' 45" and can 
be obtained from the Star Almanac. 
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Figure 4.31 

Figure 4.30 

It can also be seen that as the vertical cross-hair touches the left or right limb of the 
Sun, the horizontal angle will also require a semi-diameter correction. From Figure 
4.31, as the limb is observed tangentially, spherical triangle ZDO is right-angled at D. 

By Napier's rules sin δ = sin OD cosec ZO 

as δ is small ZO « ZD and δ = OD cosec ZD 

Hence, as ZD is the co-altitude, then 
δ — Semi-diameter x Secant altitude (4.17) 
In practice these corrections are eliminated by observing both limbs (A and B) on 

alternate faces of the instrument and taking the mean. 

(d) Vertical-axis error 

The error in the horizontal bearing of a line due to the axis of the instrument being 
inclined at e to the vertical is e tan H (see Volume 1). This effect is not eliminated by 
changing face and must be applied as a correction. 

The value of e is determined by reading the left (L) and right (R) ends of the plate 
bubble as viewed by the observer. 
Then e=(^L-^R)d/n 

where d is the value per division of the bubble, and n is the number of readings on the 
ends of the bubble. For instance 

Face left (FL) 
Face right (FR) 

If d = 20" 

(L) 
3.5 
2.0 

Σ5-5 

then 

(R) 
1.5") 

>bubble readings 
3.0J 
4.5 

(5.5 - 4.5)20" 
e = = j 

Thus, if the altitude H = 50° then the correction is +5" tan 50° 

4.5 METHODS OF DETERMINING LATITUDE 
4.5.1 Meridian altitudes of Sun or star 

This method requires the altitude of a body at the instant of transit on the observer's 
meridian. 

B 

A 
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If the Sun was used, the instant of transit would be attained by following the Sun 
through the theodolite until maximum elevation was obtained. This would give a 
single-face observation to the Sun's extreme limbs. To avoid this a rapid double-face 
observation could be made and the mean taken, ignoring the slight movement off 
transit. 

Alternatively, knowing the longitude of the station and the appropriate value for E, 
the UT (GMT) of transit can be computed, and observation carried out at this time. 

Now by constructing a section through the observer's meridian, the latitude of the 
observer is easily deduced. Figure 4.32 is a reproduction of Figure 4.10 in two parts, (a) 
represents the northern hemisphere and (b) the southern. The student should study 

Figure 4.32 

Figure 4.10 in conjunction with Figure 4.32. If the altitude H and declination δ are now 
shown on the diagram, it is easy to deduce the latitude φ = 90° — (H + δ). Frequently 
the altitude is specified as north or south; this infers that it is measured from the north 
or south direction or limb in the diagram. For instance, in Figure 4.32(a) the altitude is 
south, the declination south and the latitude north of the Equator. Refer to Worked 
example 4.13. 

4.5.2 Zenith pairs of stars 

The technique outlined in Section 4.5.1 can be used with a single star to obvious 
advantage. The centre of the star is bisected directly and the corrections for semi-
diameter and parallax eliminated. However, as theoretically only a single face pointing 
is possible, refraction and vertical collimation error of the instrument must be 
considered. Errors in these two corrections will produce subsequent error in the 
latitude. 

By using two stars at roughly the same altitude (zenith pair), these errors are 
cancelled. Consider two such stars Sx and S2 in Figure 4.33 

Using St φ = 90° - Ηί + δί 

Using S2 φ = Η2+δ2- 90° 

Adding 2φ = (δ1 + δ2) + (H2 - Η,) 

Now H2 and Ht are the observed altitudes corrected for vertical collimation error e 
and refraction r. As φ is a function of the difference of the two altitudes and the altitudes 
are similar, then the errors ex and e2 will be equal and thus cancel out. Similarly, as the 
observations will be close together, the errors er in the refraction corrections r, will be 

(α) (b) 
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Figure 4.33 

virtually equal and so cancel out. If the refraction corrections themselves are equal, i.e. 
ri = r2> t n e v will a l s o b e cancelled. 

The advantages of zenith pair observations to stars which transit in close succession 
are clearly seen. 

4.5.3 Close circumpolar stars 

This method involves observations of stars that are close to the poles. In the northern 
hemisphere this would be Polaris and in the southern hemisphere Octantis. 

The mean altitude H of several double face pointings is taken and the mean 
chronometer time deduced from the chronometer times of the instants of observation. 
From the latter it is possible to calculate the LHA of Polaris h, and the declination is 
taken from the Star Almanac. Then, using 

φ = H — p cos h + \p2 sin 1" sin2 h tan H 

where p is the co-declination in seconds, the latitude may be found. This equation is 
derived basically from the cosine rule. 

A rapid solution can be obtained using Pole Star Tables in the Star Almanac where 
the latter part of equation (4.18) is tabulated as a0, with corrections ax and a2, then φ = 
H + a0 + ax + a2. The table for a0 is entered with the argument LST. (Refer to Worked 
example 4.15.) 

WORKED EXAMPLES 

Example 4.13. A certain star is observed at upper transit to be at an altitude of 
51° 17' 47" in the southern sky. The RA of the star is 6 h 30 m 17 s and the declination 
11° 38' 55" S. If the GMT of the observation is 20 h 6 m 19 s and the value of R at this 
instant i s 8 h 10m33s , determine the latitude and longitude of the observer and the 
LMT of observation. (ICE) 

Construct a semicircle with the diameter as the north-south plane of observation (see 
Figure 4.34) and thus Z at 90° to this. Where one places north and south is immaterial. 
As the altitude H is south, the position of the star is fixed at S in the southern quadrant. 
As the declination δ is south, the position of the equator OQ is fixed. Then 

φ = 90° - δ - H 

where H is the observed altitude corrected for refraction r. 
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Figure 435 

.*. Altitude (H0) = 51° 17 47" 
r=-5S"cotH0= -46.5" 

.·. # = 51° 17'00.5" 

.·. Latitude φ = 90° - 11° 38' 55" - 51° 17' 00.5" 
= 27° 04' 04.5" N 

N.B. From Figure 4.34, Z is measured towards the north from OQ, hence it is a 
northern latitude. 

Construct a time diagram with the Greenwich meridian GG' (Figure 4.35). GMT 
20 h 6 m 19 s measured clockwise from G' will fix the position of M (mean Sun). JR = 8 h 
10 m 33 s, thus RAMS = R + 12 h = 20 h 10 m 33 s measured anticlockwise from Y to 
M, thus the relative position of T is fixed. 

RA of the stars is 6 h 30 m 17 s; measured anticlockwise from T fixes S. As S is at 
upper transit, then this position is the observer's meridian. From Figure 4.35 

MG = 24 h - GMT = 3 h 53 m 41 s 
GY = RAMS - 12 h - MG' = 4 h 16 m 52 s 

.·. GS = RA - GT = 2 h 13 m 25 s E = 33° 21' 15" E 

LMT is measured clockwise from S" to M = GMT + G'S' 
= 22 h 19 m 44 s 

Example 4.14. Zenith pair observations are used to find the latitude of an observer in 
the southern hemisphere. The necessary data are given below. 

Star Declination Observed altitude RA 

1 North 19 58 20 50 01 20 13 h 12 m 02.0 s 
2 South 61 07 00 48 55 30 13 h 20 m 02.0 s 

If the value of R at UT (GMT) 12 h is 16 h 35 m 20 s, determine the UT of transit of 
the stars on the observer's meridian east 60° 15' 15". What is the local standard time 
(LStT) if the standard meridian of the place is 15° 30' west of the observer? (KP) 

Figure 4.34 

o o o o o o 
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Figure 4.36 is constructed starting with the observer's horizon and Z, P and Q are 
constructed so that Z is in the southern hemisphere. The values for δ and H will fix the 
position of the stars as shown 

Refraction correction for S1 = -58" cot 50° 01' 20" = -49" 
Refraction correction for 52 = -58" cot 48° 55' 30" = - 5 1 " 
.·. Hx = 50° Or 20" - 49" = 50° 00' 31" 

and H2 = 48° 55' 30" - 5 1 " = 48° 54' 49" 
Then from Figure 4.36 

φχ = 90° - δί - Hi = 20° Öl' 09" S 
φ2 = δ2+Η2- 90° = 20° Or 49" S 

.·. φ = 20° Or 29" S (mean) 
Construct a time diagram as in Figure 4.37. First construct GG' then from the value 

of R the RAMS = 4 h 35 m 20 s, which fixes T relative to M at UT 12 h. The RA 
measured anticlockwise from T fixes Sv Sx can transit at Z by moving clockwise for 
roughly 4 h, or anticlockwise for roughly 20 h. As the UT is 12 h, moving anticlockwise 
will give an approximate UT of 8 h on the next day, thus Sx is moved clockwise. 
From the diagram SXZ = RA — RAMS — Longitude = 4 h 35 m 41 s 
If Si moves forward this amount, M will move the equivalent amount in solar time = 
4 h 34 m 56 s. 

.·. UT of transit of 5t = 16 h 34 m 56 s 
From the RA it can be seen that S2 will transit 8 min later than Si 

.·. UT of transit of S2 = 16 h 42 m 56 s 
If the UT is as above, then the LMT measured from Z' will obviously be greater by the 
longitude (4 h 01 m 01 s) 

.·. LMT of transit of Si = 20 h 35 m 57 s 
As the standard meridian (Std) is 1 h 02 m west of Z, the time there will be earlier by this 
amount. 

.·. LStT of transit of Si = 19 h 33 m 57 s 

Figure 4.36 

Figure 4.37 
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Example 4.15. An observer, at longitude 5° 15' 00" west, obtained the following mean 
field data to Polaris: mean observed altitude = 52° 46' 18"; mean chronometer time of 
observation = 11 h 56 m 04 s; chronometer fast on UT by 7h 36 m 04 s; mean 
barometer reading = 760 mm; mean temperature = 12.0°C. 

The remaining data required were taken from the Star Almanac for the date in 
question 

Corrected altitude = 52° 45' 32" = H 

(3) δ = 89° 08' 08", therefore co-declination = p = 0° 51' 52" 

Now, substituting in the given equation φ = 52° 12' 08" N 

Example 4.16. A star of declination 47° 20' 17" S is observed at upper transit at an 
altitude of 56° 48' 41" N. What will be the observed altitude at lower transit and what is 
the latitude of the place of observation? 

From this latitude what will be the observed altitude of the top of the Sun at transit, if 
the declination of the Sun is 22° 22' 25" S and the Sun's semi-diameter is 16' 18"? 

Explain why you could not use any of the observations alone to determine the 
azimuth of a survey line with any accuracy. What method would you use? (ICE) 

Figure 4.39 illustrates the situation with S at upper transit Sv The observed altitude 
corrected for refraction = 56° 48' 06" N. 

.·. φ = 90° - H + δ = 80° 32' 11" S 

S at lower transit is indicated by S2, thus 

SxOP = S2OP = (90° - δ) = 42° 39' 43" 
ZOP = (90° -φ)= 9° 27'49" 

.'. ZOS2 = 52° 07' 32 

Declination = 89° 08' 08" north R = 18 h 47 m 25.0 s 
RA = 2h04m 17s r0 = 44" / = 1.04 

Determine the latitude of the observer, given 
φ = H — p cos h + \p2 sin 1" sin2 h tan H 

(1) From a time diagram find the LHA of Polaris (Figure 4.38). 

From R RAMS = 6 h 47 m 25.0 s 
ZZ' is the observer's longitude 

UT = 11 h 56 m 04 s - 7 h 36 m 04 s = 4 h 20 m 00 s = GM 

RAMS measured from M fixes the position of T 
.'. TG = 12 h - UT - RAMS = 0 h 52 m 35 s 

GZ = Longitude = 0 h 21 m 00 s 
LHA = 24h - RA - TZ = 20h 42m 08 s 

= 3 h 17 m 52 s E = 49° 28' 00" E = h 
then 
or 

(2) Observed altitude = 52° 46' 18" 
r0xf= -46" 

(KP) 
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Figure 4.38 Figure 4.39 

and the altitude at lower transit = 90° - ZOS2 = 37° 52' 28" 

.·. Observed altitude = 37° 52' 28" + Refraction = 37° 53' 44" S 

Similarly, altitude to Sun's centre at upper transit is 

9O°-0+<5 s = 31°5O'14"N 

This value must now be brought to the observed value by applying the following 
corrections: semi-diameter = +16' 18"; refraction = + Γ 33"; parallax = —08". 

.*. Observed altitude at upper transit = 32° 07' 57" N, and 
Observed altitude at lower transit = 13° 15' 00" S 

EXERCISES 

4.4. The following Table gives data relating to a zenith-pair meridian observation for 
latitude: 

Star 

X 
Y 

Declination 
o / // 

18 42 38 S 
83 50 22 S 

Observed altitude 
o / n 

58 32 47 N 
56 21 18 S 

Level 

Object Eye 

6.2 3.8 
3.6 6.4 

Calculate the latitude of the observing station, taking the refraction correction as 
— 57" cot altitude, and one division of the bubble to be equal to 15". What is the 
advantage of observing stars which culminate on opposite sides of the zenith? (LU) 

(Answer: 50° 10'24" S) 

N.B. The level readings refer to the altitude bubble giving vertical circle index 

corrections of +18" (X) and — 21" (Y) from ( x d' 'I, where d is the value of one 

division of the bubble, and n the N° of readings. 

4.5. The right ascensions and declinations of two stars to be used to determine the 
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latitude of a place whose longitude is 30° 50' 39" E and whose approximate latitude is 
20° S are given below: 

Star RA Declination 

1 10 h 17 m 56.5 s 20 01 45 N 
2 10 h 30 m 43.8 s 61 30 00 S 

If the value of R at the previous Greenwich mean noon is 10 h 33 m 48.2 s determine the 
GMT of local transit of the stars. 

The maximum observed altitudes of stars 1 and 2 at transit are 49° 55' 23" and 
48° 34' 32", respectively. What is the latitude of the place? (LU) 
(Answer: 2 h 16 m 53.5 s; 2 h 29 m 38.7 s; 20° 03' 41" S) 

4.6. The following are the recorded meridian altitudes of six stars and their 
declinations: 

Star Meridian altitude Declination 
o n n o / ii 

*1 

* 7 

* 1 
X4 

x, 
Xe 

30 
30 
47 
47 
57 
57 

12 
41 
26 
25 
29 
00 

02 
57 
32 
42 
17 
27 

N 
S 
N 
S 
N 
S 

69 
8 
87 
7 
82 
17 

49 
59 
05 
45 
51 
20 

55 
10 
10 
20 
50 
20 

N 
S 
N 
N 
N 
N 

It may be assumed that the altitudes are free from instrumental errors. From these 
observations deduce the effects of refraction and compare your results with the usual 
values. (LU) 
(Answer: ±97", ±52", ±37") 
Hint: compare the mean latitude per pair with the individual latitude. 

4.6 DETERMINATION OF AZIMUTH 

Apart from the basic idea of orienting a base line of a survey relative to the meridian, the 
determination of azimuth as an aid to controlling azimuth error has become even more 
important with the increase in popularity of EDM traversing (see Chapter 2). 

All the methods used require the horizontal angle, between the base line and the 
observed body, combined with either the altitude or the time of observation. This 
enables the necessary elements of the astro-triangle to be found and used in a solution 
for the azimuth angle at Z (Figure 4.14). 

4.6.1 Ex-meridian observations to Sun or star, measuring 
'altitude' 

Considering first a Sun observation. The observer sets up the instrument at one end of 
the base line and bisects the reference object (RO) at the other end. The instrument is 

o o o 
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then swung to the Sun and the mean altitude H and horizontal angle from base line to 
Sun recorded. The mean value is recorded from at least three double-face readings to 
alternate limbs of the Sun. 

The time of the instant of observation is recorded, to the nearest minute, for the 
purpose of abstracting declination δ from the Star Almanac. Temperature and pressure 
are recorded for the computation of refraction. The observer's latitude φ is obtained 
from a map or by observation. Thus the three sides of the astro-triangle are known, i.e. 
co-altitude (co-alt), co-declination (co-dec) and co-latitude (co-lat), enabling a solution 
for angle Z by the cosine rule (see Worked example 4.17). 

The obvious advantages of using a star are that: (i) direct bisection is possible; (ii) no 
corrections for parallax or semi-diameter are necessary; (iii) time of observation is not 
required since declination is constant for that day; (iv) it is possible to observe at or near 
elongation, which can be shown to be the best condition for reducing the effect of errors 
in δ, Η or φ. 

4.6.2 Ex-meridian observations to Sun or star, measuring 'time' 

This technique is similar to the previous one; the exact chronometer time of the 
observation, however, replacing the measured altitude. A rough value for latitude may 
be necessary (to the nearest degree) for the computation of instrument corrections. 

From the UT of the observation and the longitude of the observer, the LHA h is 
computed, and the declination δ taken from the Star Almanac. The latitude φ is found 
as in the previous method and the astro-triangle solved by the four-parts formula using 
h, δ and φ. 

The advantages of using a star instead of the Sun have already been outlined. Error 
analysis shows that the effect of error in time is a minimum when angles S and δ are 90°. 
S will be 90° when the star is at elongation and δ approximates to 90° in the case of 
Polaris or Octantis. Thus observations to circumpolar stars near elongation are used 
when high precision is required. 

If Polaris is used and accuracy to 0.2' is acceptable, a rapid solution is possible from 
Pole Star Tables in the Star Almanac, where 

Azimuth of Polaris = (bQ + bx + b2) sec φ 

It is necessary to know the LST to take out b0i the latitude to take out bi9 and the 
month of the year, to take out b2. 

A further advantage of using Polaris is its relatively slow movement in space due to 
its small circle of motion around the pole in 24 sidereal hours. 

4.6.3 Star at or near elongation 

If it is intended to observe the star at the exact instant of elongation (Figure 4.11) then a 
right-angled spherical triangle is formed. In such a case, as δ and φ will be known prior 
to the observation, it is possible to pre-calculate the time, azimuth and altitude of the 
star, from 

sin φ . cos δ . , cos H 
sin H = ——- sin Z = sin h = -

sin δ cos φ cos φ 
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Using this data the instrument can be pre-set some minutes before elongation. 
However, since in theory elongation occurs for only an instant, and time is required for 
several double-face readings, it is generally preferred to observe stars near elongation 
using either of the methods already outlined. 

4.7 POSITION LINES 

The method of position lines is a semi-graphical technique for the determination of 
latitude and longitude. 

It requires the measurement of both time and altitude to at least two stars plus the 
approximate position of the observer. 

4.7.1 Principle 

Consider an observer measuring the altitude to a star whose position in space is fixed. If 
he now moves the instrument to an infinite number of positions such that the altitude 
remains the same, he will trace out a circle on the Earth's surface. This circle would have 
as its centre the position of the star projected vertically on to the Earth, and its angular 
radius equal to the co-altitude (Figure 4.40). If two stars are observed, two circles are 

CO-ALT 

Figure 4.40 

formed cutting at two places Zx and Z2, one of which is the observer's position, i.e. there 
are only two places on the Earth's surface where the respective co-altitudes will be the 
same at a given instant. As the approximate position of the observer is known, the 
correct position is easily defined. 

4.7.2 Method 

Considering position Zx only. The intersecting arcs in the immediate vicinity are 
plotted to a large scale thus appearing as straight lines called position lines. The lines 
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ZlSl and ZlS2 are the directions or azimuths of the stars relative to the observer at Zx 

and are normal to the position lines. 
Thus the altitude and times of the stars are measured, and using the approximate 

value for φ, LHA (h) and δ the astro-triangle is solved for azimuth and altitude. Each 
star now has a calculated and measured altitude, plus an azimuth from the 
approximate position; 

Next a meridian is drawn and a point Zc selected on it to define the approximate 
position of the observer. Using a protractor, the azimuths of the stars are turned off 
(ZcSl, ZCS2) (Figure 4.41). The position lines are drawn at 90° to the azimuths, at points 
fixed using Figure 4.42. This shows that if the observed altitude H0 is greater than the 

Observer's horizon 

Figure 4.41 Figure 4.42 

calculated altitude Hc, the true position of the observer Z0 is towards the star, measured 
from the approximate position Zc. This distance Z0ZC, which is a linear function of 
H0 — Hc, is then plotted to scale towards the star fixing point x in Figure 4.41. 
Assuming H0 < Hc, the intercept would be measured from Zc away from Sl9 fixing 
point y. Position lines are drawn through x and y to intersect at Z0, the observer's true 
position. This simple sketch as in Figure 4.42 will indicate quickly whether the intercept 
is measured towards or away from Zc. 

Distance ZCB is the difference in latitude (Δφ) between the approximate and true 
positions of the observer and is scaled directly from the construction. Distance BZ0 is 
the difference in longitude Αλ. As Αλ is a variable distance on the Earth's surface from 
Equator to the pole, it must be corrected as follows 

True Δλ = BZ0 sec φ 

Where three or four stars are used, the intersection of the position lines may give a 
triangle or quadrilateral of error, the required position lying at the centre of a circle 
inscribed within the figure. The student is now advised to consider the principles 
outlined, in conjunction with a careful study of the Worked examples. 

WORKED EXAMPLES 

Example 4.17. The mean values of a Sun observation for azimuth are: mean observed 
altitude = 38° 2Γ 55"; mean circle reading to Sun = 13° 0Γ 35"; mean circle reading to 
reference target (RT) = 64° 44' 27"; the difference of plate level readings from a double 
face observation = +0.3 (1 division = 20"); the latitude of the observer = 51° 25' 18" 
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N. From the Star Almanac the following additional data were taken: declination = 
3° Or 36" N; refraction = 01' 10"; parallax = 06". Find the azimuth of the line to the 
RT if the Sun was in the south-east at the instant of observation. 

What would be the effect on the azimuth of an error in the measured altitude? What 
does the resulting error equation indicate? (KP) 

Observed altitude = 38° 21' 55" 
Refraction = - 1 ' 10" 
Parallax = +6" 

.*. Corrected altitude = H = 38° 20' 51" 

The remaining elements of the astro-triangle are given, i.e. φ (latitude) and δ 
(declination), permitting its solution by the cosine rule. The student should draw the 
astro-triangle PZS and indicate its various elements. 

cos(co-dec) = cos(co-lat) cos(co-alt) + sin(co-lat) sin(co-alt) cos Z 

- _ sin δ - sin φ sin H _ sin 3° 0Γ 36" - sin 51° 28' 18" sin 38° 20' 51" 

"· COS " cos φ cos H ~ cos 51° 28' 18" cos 38° 20' 51" 
.·. 2 = 152°09'10" 

This is the angle PZS, but as the Sun is in the south-east it is also the azimuth of the Sun. 
Clockwise angle between Sun and RT = 51° 42' 52" 

.*. Azimuth to RT = 203° 52' 02" 

The effect of an error in altitude is obtained in the usual way by differentiating the 
basic equation with respect to H 

A sin δ — sin φ sin H 
cos Z = 

cos φ cos H 

cos φ cos H(—sin φ cos H) — (sin δ — sin φ sin H)(—cos φ sin H) δΗ 
.*. - s m Z d Z = 2— γ— 

cosz φ cos'* H 

__ —sin φ cos2 H + sin δ sin if — sin ^ sin2 if <5ff 
sin Z cos φ cos2 if 

From the cosine rule sin φ — sin δ sin H = cos <5 cos H cos S 

cos <5 cos H cos 5 <$H 

sin A cos </> cos2 H 

From the sine rule sin A cos φ = sin S cos <5 

c ^ cos δ cos H cos ΞδΗ „ 
.'. δΖ = —— Ϊ—= S sec ΗδΗ 

sin A cos 0 cos H 

This indicates that <5Z will be a minimum as S approaches 90°, i.e. Sun or star at 
elongation, and H is a low altitude. 

Example 4.18. From a place of longitude 80° 20' 15" W the star Polaris was observed in 
order to find the latitude of the place and the azimuth of a line from the instrument to a 
reference target (RT). The mean times and angles are given below: 
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Sight Horizontal angle Mean altitude Mean time GMT 

RT 
Polaris 

246 13 22 — 
63 41 16 42 31 40 05 h 01 m 43.6 s 

Also: declination of Polaris = 89° 04' 24" N; RA of Polaris = 1 h 55 m 49.2 s; R = 
(GST - GMT) = 18 h 17 m 18.0 s; refraction correction = - 1' 03". Calculate the 
latitude of the place and the azimuth of the line to the reference target. (LU) 

This problem gives the values of H and <5, and it is required to solve the astro-triangle 
for Z and φ. It is obvious then that a further element of the triangle is required, which 
must be LHA (h). 

Construct a time diagram (Figure 4.43) showing Z a t 5 h 2 1 m 2 1 s west. GMT fixes 
the position of M. R = 18 h 17 m 18 s, thus RAMS = 6 h 17 m 18 s measured in effect 
anticlockwise from T to M, fixes the relative position of T. RA of Polaris fixes the 
position of S; then LHA is ZS. 

Figure 4.43 

From Figure 4.43 TG = 12 h - (GMT + RAMS) = 0 h 40 m 58.4 s 
.*. LHA (h) = Longitude + TG + RA = 7 h 58 m 08.6 s E 

.*. Λ = 119° 32'01" Ε 

Corrected altitude = H = 42° 30' 37" 
Declination = δ = 89° 04' 24" 

Now by the sine rule 

sin h sin(90° 
sinZ = 

δ) sin h cos δ sin 119° 32' 09" cos 89° 04' 24" 

sin(90° - H) cos H sin 42° 30' 37" 

.·. Z = Γ 11' 35.6" (east, as indicated by the LHA) 

Clockwise angle from Polaris to RT = 182° 32' 06" 
.*. Azimuth of RT = 183° 43' 41.6" 

The latitude could now be found by using equation (4.18) for 'close circumpolar stars' 

o o o o o o 
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(Section 4.5.3). However, as the azimuth angle is available, the astro-triangle may be 
solved using 

x cos^X-Y) (Z 
tan*X + y) = coSUX+Y)Xtm{2 

This equation is generally used in conjunction with 

u x sin %X - Y) (Z 
t a n ^ - y ) = s i n ^ + y)xtanU 

when both sides x and y are required. 
Using the former gives 
tan Mco-alt + co-dec) = τ-~—37 x tan §(co-lat) 

cos %h + Z) 
tan 24° 12' 30" cos 60° 21' 52" t /ΛΛΟ ^ * = tan 4(90° - φ) cos59°10'16" * ψ} 

.·. (90° - φ) = 46° 54' 12" 
.·. Latitude φ = 43° 05' 48" N 

Example 4.19. From a theodolite station observations were made on each limb of the 
rising Sun and also on a reference target (RT). The latitude of the station had previously 
been determined as 50° 29' 25" N. The following Table gives the mean values of the 
observed readings: 

Sight Horizontal circle Observed altitude GMT 

Sun 215 44 55 30 43 45 15 h 32 m 18.6 s 
RT 043 31 15 — — 

The appropriate value of E was 11 h 59 m 20 s, the corrections for refraction and 
parallax were Γ 38" and 8", respectively, and the Sun's declination was 9° 00' 40" N. 

Calculate the longitude of the station and the azimuth of the line joining the station 
and the RT. (LU) 

Corrected altitude H = 30° 43' 45" - 1' 38" + 8" = 30° 42' 15" 
Latitude φ = 50° 29' 25" 

Declination δ = 9° 00'40" 
Thus knowing the three sides of the astro-triangle, the azimuth angle A2XZ and the 
LHA (h) may be found. By the cosine rule 

cos(90° - δ) = cos(90° - φ) cos(90° - H) + sin(90° - φ) sin(90° - H) cos A 

sin δ - sin φ sin H sin 9° 00' 40" - sin 50° 29' 25" sin 30° 42' 15" 
COS >4 ,==· = = 

cos φ cos H cos 50° 29' 25" cos 30° 42' 15" 
.·. cos A = - 0.433 829 and hence A = 115° 42' 39" 

This angle could obviously be measured east or west from north. However, as the 

o o o o o o 
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Figure 4.44 Figure 4.45 

question states a rising Sun observed from a northern latitude, then the Sun must be in 
the south-east {Figure 4.44). 

Λ Azimuth of RT = N a W = N 56° 31' 01" W = 307° 28' 59" 

A second application of the cosine rule will now give h 

cos h = sin H — sin φ sin <5/cos φ cos δ = 0.620 292 
.·. /i = 38°20'15" = 2 h 3 3 m 2 1 s E 

Now construct the time diagram (Figure 4.45) with GG' as the Greenwich meridian. 
GMT fixes the position of M (mean Sun). E = 11 h 59 m 20 s, therefore from equation 
(4.10) E = 12 h - ET. The ET = +40", thus M is ahead of A (actual Sun) by this 
amount. As the LHA (h) is east of the observer's meridian, this fixes the position of Z in 
the west, as shown 

.·. Longitude GZ = GM - AM + AZ 
= 3 h 32 m 18.6 s - 40 s + 2 h 33 m 21 s 
= 6 h 04 m 59.6 s W 
= 91° 14'46.3" W 

Example 4.20. The mean values of time, horizontal and vertical circle readings of an 
observation on Polaris are given in the table. The vertical angle has already been 
corrected for refraction. At the time of observation, R was 10 h 47 m 06.8 s and RA and 
declination of Polaris were 1 h 55 m 26.3 s and 89° 04' 52" N. 

Mean corrected Mean horizontal Mean time 
Sight vertical angle angle (GMT) 

Target 213 04 35 
Star 43 43 00 146 38 20 Oh 33 m 30.7s 

If the longitude of the station was assumed to be 21° 52' 40" W, find the azimuth of 
the line joining the theodolite station and the RT. (LU) 

δ and H are the only elements of the astro-triangle supplied directly, a further 
element is thus required which is obviously the LHA (h). Then from Figure 4.46: 
longitude fixes the position of Z and Z'; GMT fixes the position of M (mean Sun); R = 

o o o o o o 
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M G' 

Figure 4.46 
Figure 4.47 

10 h 47 m 06.8 s, therefore RAMS = 22 h 47 m 06.8 s, fixing T; RA fixes the position of 
S (Polaris). 

.·. YG' = 24 h - (RAMS + GMT) = 0 h 39 m 23.3 s 

and LHA (h) = ZS = 12 h - YG' - RA - Longitude 

= 8 h 01 m 40 s W = 120° 25' 00" W 

The resultant astro-triangle (Figure 4.47) can now be solved by the sine rule 

sin h sin(90° — δ) sin h cos <5 sin ,4 = 

.'. sin A = 

sin(90° - H) cos H 

sin 120° 25' 00" x cos 89° 04' 52" 
0.019 135 

cos 43° 43' 00" 

.*. A = 01° 05' 47" (west of north as defined by LHA) 

From the horizontal angles supplied, the reference target (RT) is 66° 26' 15" clockwise 
of the star (Figure 4A7). 

.'. Azimuth of RT = 66° 26' 15" - 01° 05' 47" = 65° 20' 28" 

Example 4.21. Two stars are observed at elongation from a station A in a northern 
latitude as follows: 

Star Declination Clockwise angle from AB 

Si 
S2 

+ 56 40 50 in the west 
+ 76 07 48 in the east 

20 10 19 
104 17 10 

Determine the azimuth of AB and then the latitude. (LU) 

As the latitude φ is not supplied, the azimuth per star cannot be found from sin Z = 
cos (5/cos φ, and meaned. The following method is adopted which, as it precludes φ9 is 
not adversely affected by error in φ and is thus more accurate. 

o o o o o o 



260 Field astronomy 

West East 

A Figure 4.48 

The situation is shown in Figure 4.48 

Now 
and 
but 

sin Ai = cos St /cos φ and sin A2 = cos <52/cos φ 
sin Ai/sin A2 = cos S1/cos b2 = K (a known constant) 

Ax +A2 = X 
sin 4̂j = sin(X — A2) = sin X cos ^ 2 ~ c o s X s i n Α2 

sin^i = KsinA2 

.'. X = sin X cot .42 — cos X 

cot yl, = 

But K = 

K + cos X 
sin AT 

cos 56° 40' 50" 
= 2.291453 

cos 76° 07' 48" 

and from Figure 4.48 

X = 104° 17' 10" - 20° 10' 19" = 84° 06' 51" 

2.291453+cos 84° 06'51" 
.'. cot A2 = sin 84° 06' 51" 

.·. A2 = 22° 33' 48" (the azimuth of S2) 
.*. Azimuth AB = 22° 33' 48" - 104° 17' 10" = 278° 16' 38" 

Example 4.22. From a place of approximate latitude and longitude 52° N and 1° W, it 
is intended to observe four stars to obtain a position line fix. The stars are each to have 
an altitude of about 50° and their azimuths are to be about 45°, 135°, 225° and 315°. If 
the time of observation is to be about 01 hours GMT when the approximate value of R 
(GST - GMT) will be about 8 h 34 m, calculate the declinations (δ) and right 
ascensions (RA) of the stars to the nearest degree and five minutes, respectively. 

The nearest star suitable for the south-eastern observation has a right ascension of 
11 h 12 m and a declination of 20° 44' N. At what approximate GMT will its altitude be 
50° and what will then be its approximate azimuth? 

Three-figure accuracy is considered to be adequate in this question. (LU) 
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225° 

Figure 4.49 

Figure 4.49 illustrates the azimuths of the four stars and shows that the solution of the 
astro-triangle will be identical for stars Si9 S4 and S2, S3. In addition the latitude and 
altitude are given, then 

By the cosine rule 

Stars Si and S4 

Stars S2 and S* 

sin δ = sin H sin φ + cos H cos φ cos A 

sin δ = sin 50° sin 52° + cos 50° cos 52° cos 45° 
.*. (5 = 19°N 

sin δ = sin 50° sin 52° + cos 50° cos 52° cos 135° 
.'. (5 = 62°N 

To find the RA the HA of the stars must first be computed. 

Stars Sl and S4 (using the four parts equation) 

sin A cot h = sin(90° - φ) cot(90° - H) - cos(90° - φ) cos A 

,
 cos 52° tan 50° - sin 52° cos 45° 

.'. coth =
 ;—— 

sin 45 

.·. h = 76° = 5 h 5 m E for Sx; W for S4 

Stars S7 and S coth

A = l h 5 5 m E f o r S 2 ; W for S3 

To find the RA construct a time diagram in the usual way (Figure 4.50). Longitude 
4 m W fixes Z relative to G. GMT measured clockwise from the antipodes fixes M. 
R = 8 h 34 m, thus RAMS = 20 h 34 m which serves to fix the position of T. For star 
Sl9 the LHA of 5 h 5 m east measured from Z fixes Sx. Then RA of St is the angle 
measured anticlockwise from T 

MZ = l l h 4 m 
.*. ZT = RAMS - M Z = 9h 30m 

.·. RA of Si = ZT + LHA = 14 h 35 m 

As the LHA of S4 is 5 h 5 m W 

then RA of S4 = 14 h 35 m - 10 h 10 m = 4 h 25 m 

Stars S2 and S3 can be fixed on the diagram using their respective HA 

.'. RA of S2 = 11 h 25 m RA of S3 = 7 h 35 m 

(α) (b) (C), 
(d) 
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r & Figure 4.50 

In the second part of the question the value of δ is changed for S2 

sin δ - sin H sin φ sin 20° 44' - sin 50° sin 52° 
cos A = 

cos 50° cos 52° cos H cos φ 

.·. A = 129° 

sin 50° - sin 20° 44' sin 52° 
Similarly cos h = 

cos 20° 44'cos 52° 
.·. /i = 2 h 0 5 m E 

The student should attempt a time diagram for himself using h = 2 h 05 m; RA = 
11 h 12 m; R = 8 h 34 m, giving 

GMT = 0 h 37 m 

Example 4,23, Observations were taken on four stars to determine the latitude and 
longitude of a station, whose assumed position was 50° 30' N, 104° 37' W. The azimuths 
and altitudes for the times of observation were calculated on the basis of the assumed 
position. These values are shown below together with the measured altitude. Correct 
the measured altitude using the refraction table. Plot on squared paper the position 
lines and hence estimate the latitude and longitude of the station. 

Star 
Calculated 
azimuth 

Calculated 
altitude 

Observed 
altitude 

1 
2 
3 
4 

042 
148 
245 
319 

15 
10 
45 
30 

53 27 41 
48 10 51 
49 21 24 
54 59 35 

53 
48 
49 
54 

28 30 
12 16 
22 03 
59 52 

Altitude 
Refraction, r" 

Altitude 
Refraction, r" 

47° 55' 48° 28' 49° 01' 49° 35' 50° 10' 50° 45' 51° 21' 
52 51 50 49 48 47 

51° 21' 51° 58' 52° 35' 53° 12' 53° 50' 54° 29' 55° 09' 
46 45 44 43 42 41 

(LU) 

o o o o o o o o 
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Figure 4.51 

Star 

1 
2 
3 
4 

Observed 
altitude 
O f 

53 
48 
49 
54 

28 
12 
22 
59 

" 

30 
16 
03 
52 

Refraction, 
r" 

- 4 3 
- 5 2 
- 5 0 
- 4 1 

Corrected 
observed 
altitude 
o / 

53 
48 
49 
54 

27 
11 
21 
59 

« 

47 
24 
13 
11 

Calculated 
altitude 
O 1 

53 
48 
49 
54 

27 
10 
21 
59 

" 

41 
51 
24 
35 

Difference 

+6 
+ 33 
- 1 1 
- 2 4 

Remarks 

Towards star 
Towards star 
Away from star 
Away from star 

These above differences are now plotted as outlined in Section 4.7.2 to give Figure 4.51 
from which 

Difference in latitude = ZCB = 18" 
.·. Latitude of observer = 50° 30' - 18" = N 50° 29' 42" (0) 

Difference in longitude = BZ0 sec φ = 24" sec 50° 29' 42" = 37" 
.*. Longitude of observer = 104° 37' - 37" = 104° 36' 23" W 

Students should note the method of solving the quadrilateral of error using a circle, 
the centre of which is Za. 

EXERCISES 

4.7. In order to determine the azimuth of a survey line XY9 a theodolite was set up at X, 
west of Greenwich, and an afternoon extra-meridian observation made on the Sun. 

Scale·. 1mm toT of arc 

^Azimuth lines 

Position lines 

o 
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Using the following data, determine the azimuth of the line. Corrected altitude of Sun's 
centre = 17° 38'11"; GMT of observation 15 h 18 m 14 s; Sun's declination at 
previous Greenwich mean midnight (GMM), 9° 46' 47.8" S, decreasing by 1327" per 
day; latitude of station X = 51° 32'25"N; horizontal angle from Sun to station 
Y = 55° 26' 28" (measured clockwise). (LU) 

(Answer: 282° 35' 48") 

4.8. Calculate the approximate GMT at which a star (declination 29° 50' N, RA 8 h 
38 m 36 s) will attain a corrected altitude of 30° on the east side of the meridian in 
latitude 52° 10' N and longitude 1 h 30 m E, when GST of GMM is 1 h 25 m 15 s. 

(LU) 

[Answer: 0 h 29 m 44 s) 

4.9. Using the equation (or any other one you may know) and information given 
below, compute the azimuth of RO from the observer's position: 

Mean observed altitude H of the Sun's lower limb in the eastern sky = 30° 5Γ 43"; 
latitude, φ = 51° 24' 00" N; declination, δ = 5° 30' 00" N and P = (90° - <5); 
correction for refraction = Γ14"; correction for semi-diameter = 15' 24"; correction 
for parallax = 07"; horizontal angle measured clockwise from RO to Sun = 
86° 40' 30". The equation is 

tan \A = [sec 5 sin(s — H) sin(s — φ) sec(s — P)]* 

where s = %(H + φ + P) (ICE) 

(Answer: 77° 10' 24") 

4.10. With the aid of a sketch explain how to determine whether a particular star will 
elongate when viewed from a particular latitude. 

A star of declination 61° 57' 24" N is observed at eastern elongation from a point A, 
which is at latitude 43° 58' 12" N. At elongation the horizontal clockwise angle from the 
star to a point B is 83° 12' 12". Compute the azimuth of B from A. (ICE) 

(Answer: 123° 59'23") 

4.11. The following observations were taken from a station of longitude 6° 30'00" 
west. 

Mean horizontal 
Sight angle Mean altitude GMT 

O / II O I II 

RO 246 18 32 — — 
Polaris 13 37 40 55 08 20 23 h 44 m 52.1s 

At the time of observation the value of R (taken from the Star Almanac) was 8 h 31 m 
21.4 s and the RA and declination of Polaris were 2 h 00 m 16.1 s and 89° 07' 03" N. 

Apply a refraction correction of 41" to the altitude and find the latitude of the station 
and the azimuth of the line from the station to the RO. (LU) 

(Answer: 52° 42' 04" N; 227° 08' 20") 
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4.12. From a station 0 in latitude 51° 38' 24" N the following observations were taken 
on the Sun, seen in the western sky. All corrections have been made and the readings 
apply to the Sun's centre at the instant of observation: mean corrected altitude = 
30° 19' 20"; mean horizontal circle reading on A = 00° 00' 00"; mean horizontal circle 
reading on Sun = 225° 02'39"; declination of Sun = 23° 18'24" N; GMT of 
observation = 16 h 39 m 29.4 s; E = 11 h 59 m 41.9 s. 

Find the longitude of O and the azimuth of OA. (LU) 

(Answer: 0° 00' 55.7" E; 14° 55' 51") 

4.13. The following data refer to observations on Arcturus, seen in the western sky, 
from a station O in latitude 51 ° 38' 24" N; mean corrected altitude = 47° 11' 05"; mean 
horizontal circle reading on A = 220° 36' 04"; mean horizontal circle reading on 
star = 80° 10' 10"; declination of star = 19° 23' 57" N; RA of star = 14 h 13 m 47.2 s; 
UT of observation = 23 h 02 m 15.4 s; R = 17 h 34 m 51.6 s. 

Find the longitude of O and the azimuth of OA. (LU) 

(Answer: 0° 00' 58.2" E; 339° 46' 10") 

4.14. The following are the relevant data for determining the position of a station from 
observations on four stars: 

Star 

1 
2 
3 
4 

Observed 
altitude 
O 1 

55 
66 
47 
49 

12 
48 
35 
08 

" 

11 
20 
56 
43 

Refraction 

40 
25 
53 
50 

Calculated 
azimuth 
O 1 

061 
129 
215 
326 

30 
30 
00 
40 

Calculated 
altitude 
o / 

55 
66 
47 
49 

11 
48 
35 
07 

» 

48 
23 
03 
39 

What is the correct latitude and longitude of the station if the assumed position is 
29° 20' N, 30° 00' E? (LU) 

{Answer: 29° 20' 10" N; 29° 59' 37" E) 
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TABLE A.l. Student's t-distribution 

t = 0 t 

vor DF 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
oo 

A = 0.05 

12.706 
4.303 
3.182 
2.776 
2.571 

2.447 
2.365 
2.306 
2.262 
2.228 

2.201 
2.179 
2.160 
2.145 
2.131 

2.120 
2.110 
2.101 
2.093 
2.086 

2.080 
2.074 
2.069 
2.064 
2.060 

2.056 
2.052 
2.048 
2.045 
2.042 

2.021 
2.000 
1.980 
1.960 

A = 0.01 

63.657 
9.925 
5.841 
4.604 
4.032 

3.707 
3.499 
3.355 
3.250 
3.169 

3.106 
3.055 
3.012 
2.977 
2.947 

2.921 
2.898 
2.878 
2.861 
2.845 

2.831 
2.819 
2.807 
2.797 
2.787 

2.779 
2.771 
2.763 
2.756 
2.750 

2.704 
2.660 
2.617 
2.576 

266 



1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

30 
40 
60 
120 
00 

4052 
98.5 
34.1 
21.2 
16.3 

13.7 
12.2 
11.3 
10.6 
10.0 

9.65 
9.33 
9.07 
8.86 
8.68 

8.53 
8.40 
8.29 
8.19 
8.10 

8.02 
7.95 
7.88 
7.82 
7.77 

7.56 
7.31 
7.08 
6.85 
6.63 

5000 
99.0 
30.8 
18.0 
13.3 

10.9 
9.55 
8.65 
8.02 
7.56 

7.21 
6.93 
6.70 
6.51 
6.36 

6.23 
6.11 
6.01 
5.93 
5.85 

5.78 
5.72 
5.66 
5.61 
5.57 

5.39 
5.18 
4.98 
4.79 
4.61 

5403 
99.2 
29.5 
16.7 
12.1 

9.78 
8.45 
7.59 
6.99 
6.55 

6.22 
5.95 
5.74 
5.56 
5.42 

5.29 
5.19 
5.09 
5.01 
4.94 

4.87 
4.82 
4.76 
4.72 
4.68 

4.51 
4.31 
4.13 
3.95 
3.78 

5625 
99.2 
28.7 
16.0 
11.4 

9.15 
7.85 
7.01 
6.42 
5.99 

5.67 
5.41 
5.21 
5.04 
4.89 

4.77 
4.67 
4.58 
4.50 
4.43 

4.37 
4.31 
4.26 
4.22 
4.18 

4.02 
3.83 
3.65 
3.48 
3.32 

5764 
99.3 
28.2 
15.5 
11.0 

8.75 
7.46 
6.63 
6.06 
5.64 

5.32 
5.06 
4.86 
4.70 
4.56 

4.44 
4.34 
4.25 
4.17 
4.10 

4.04 
3.99 
3.94 
3.90 
3.86 

3.70 
3.51 
3.34 
3.17 
3.02 

5859 
99.3 
27.9 
15.2 
10.7 

8.47 
7.19 
6.37 
5.80 
5.39 

5.07 
4.82 
4.62 
4.46 
4.32 

4.20 
4.10 
4.01 
3.94 
3.87 

3.81 
3.76 
3.71 
3.67 
3.63 

3.47 
3.29 
3.12 
2.96 
2.80 

5928 
99.4 
27.7 
15.0 
10.5 

8.26 
6.99 
6.18 
5.61 
5.20 

4.89 
4.64 
4.44 
4.28 
4.14 

4.03 
3.93 
3.84 
3.77 
3.70 

3.64 
3.59 
3.54 
3.50 
3.46 

3.30 
3.12 
2.95 
2.79 
2.64 

5982 
99.4 
27.5 
14.8 
10.3 

8.10 
6.84 
6.03 
5.47 
5.06 

4.74 
4.50 
4.30 
4.14 
4.00 

3.89 
3.79 
3.71 
3.63 
3.56 

3.51 
3.45 
3.41 
3.36 
3.32 

3.17 
2.99 
2.82 
2.66 
2.51 

6023 
99.4 
27.3 
14.7 
10.2 

7.98 
6.72 
5.91 
5.35 
4.94 

4.63 
4.39 
4.19 
4.03 
3.89 

3.78 
3.68 
3.60 
3.52 
3.46 

3.40 
3.35 
3.30 
3.26 
3.22 

3.07 
2.89 
2.72 
2.56 
2.41 

TABLE A.2. F-distribution (1% significance level) 
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TABLE A3. F-distrjbution (5% significance level) 

, 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

30 
40 
60 
120 
00 

161 
18.5 
10.1 
7.71 
6.61 

5.99 
5.59 
5.32 
5.12 
4.96 

4.84 
4.75 
4.67 
4.60 
4.54 

4.49 
4.45 
4.41 
4.38 
4.35 

4.32 
4.30 
4.28 
4.26 
4.24 

4.17 
4.08 
4.00 
3.92 
3.84 

200 
19.0 
9.55 
6.94 
5.79 

5.14 
4.74 
4.46 
4.26 
4.10 

3.98 
3.89 
3.81 
3.74 
3.68 

3.63 
3.59 
3.55 
3.52 
3.49 

3.47 
3.44 
3.42 
3.40 
3.39 

3.32 
3.23 
3.15 
3.07 
3.00 

216 
19.2 
9.28 
6.59 
5.41 

4.76 
4.35 
4.07 
3.86 
3.71 

3.59 
3.49 
3.41 
3.34 
3.29 

3.24 
3.20 
3.16 
3.13 
3.10 

3.07 
3.05 
3.03 
3.01 
2.99 

2.92 
2.84 
2.76 
2.68 
2.60 

225 
19.2 
9.12 
6.39 
5.19 

4.53 
4.12 
3.84 
3.63 
3.48 

3.36 
3.26 
3.18 
3.11 
3.06 

3.Q1 
2.'96 
2.93 
2.90 
2.87 

2.84 
2.82 
2.80 
2.78 
2.76 

2.69 
2.61 
2.53 
2.45 
2.37 

230 
19.3 
9.01 
6.26 
5.05 

4.39 
3.97 
3.69 
3.48 
3.33 

3.20 
3.11 
3.03 
2.96 
2.90 

2.85 
2.81 
2.77 
2.74 
2.71 

2.68 
2.66 
2.64 
2.62 
2.60 

2.53 
2.45 
2.37 
2.29 
2.21 

234 
19.3 
8.94 
6.16 
4.95 

4.28 
3.87 
3.58 
3.37 
3.22 

3.09 
3.00 
2.92 
2.85 
2.79 

2.74 
2.70 
2.66 
2.63 
2.60 

2.57 
2.55 
2.53 
2.51 
2.49 

2.42 
2.34 
2.25 
2.18 
2.10 

237 
19.4 
8.89 
6.09 
4.88 

4.21 
3.79 
3.50 
3.29 
3.14 

3.01 
2.91 
2.83 
2.76 
2.71 

2.66 
2.61 
2.58 
2.54 
2.51 

2.49 
2.46 
2.44 
2.42 
2.40 

2.33 
2.25 
2.17 
2.09 
2.01 

239 
19.4 
8.85 
6.04 
4.82 

4.15 
3.73 
3.44 
3.23 
3.07 

2.95 
2.85 
2.77 
2.70 
2.64 

2.59 
2.55 
2.51 
2.48 
2.45 

2.42 
2.40 
2.37 
2.36 
2.34 

2.27 
2.18 
2.10 
2.02 
1.94 

241 
19.4 
8.81 
6.00 
4.77 

4.10 
3.68 
3.39 
3.18 
3.02 

2.90 
2.80 
2.71 
2.65 
2.59 

2.54 
2.49 
2.46 
2.42 
2.39 

2.37 
2.34 
2.32 
2.30 
2.28 

2.21 
2.12 
2.04 
1.96 
1.88 

242 
19.4 
8.79 
5.96 
4.74 

4.06 
3.64 
3.35 
3.14 
2.98 

2.85 
2.75 
2.67 
2.60 
2.54 

2.49 
2.45 
2.41 
2.38 
2.35 

2.32 
2.30 
2.27 
2.25 
2.24 

2.16 
2.08 
1.99 
1.91 
1.83 
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TABLE A.4. Chi-square distribution (one-
tailed tests) 

Null hypothesis σ = σ0 
Alternative hypothesis σ > σ0 

Levels of significance 

DF 5 per cent 1 per cent 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

3.841 
5.991 
7.815 
9.488 
11.070 

12.592 
14.067 
15.507 
16.919 
18.307 

19.675 
21.026 
22.362 
23.685 
24.996 

26.296 
27.587 
28.869 
30.144 
31.410 

32.671 
33.924 
35.172 
36.415 
37.652 

38.885 
40.113 
41.337 
42.557 
43.773 

6.635 
9.210 
11.345 
13.277 
15.086 

16.812 
18.475 
20.090 
21.666 
23.209 

24.725 
26.217 
27.688 
29.141 
30.578 

32.000 
33.409 
34.805 
36.191 
37.566 

38.932 
40.289 
41.638 
42.980 
44.314 

45.642 
46.963 
48.278 
49.588 
50.892 

TABLE A.5. Chi-square distribution (one-
tailed tests) 

Null hypothesis σ — σ0 

Alternative hypothesis σ < σ0 

Levels of significance 

DF 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

5 per cent 

0.02 393 
0.103 
0.352 
0.711 
1.145 

1.635 
2.167 
2.733 
3.325 
3.940 

4.575 
5.226 
5.892 
6.571 
7.261 

7.962 
8.672 
9.390 
10.117 
10.851 

11.591 
12.338 
13.091 
13.848 
14.611 

15.379 
16.151 
16.928 
17.708 
18.493 

1 per cent 

0.03157 
0.0201 
0.115 
0.297 
0.554 

0.872 
1.239 
1.646 
2.088 
2.558 

3.053 
3.571 
4.107 
4.660 
5.229 

5.812 
6.408 
7.015 
7.633 
8.260 

8.897 
9.542 
10.196 
10.856 
11.524 

12.198 
12.879 
13.565 
14.256 
14.953 
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TABLE A.6. Chi-square distribution (two-tailed test) 

Null hypothesis σ = σ0 
Alternative hypothesis σ Φ σ0 

DF 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

0.03 982 
0.0506 
0.216 
0.484 
0.831 

1.237 
1.690 
2.180 
2.700 
3.247 

3.816 
4.404 
5.009 
5.629 
6.262 

6.908 
7.564 
8.231 
8.907 
9.591 

10.283 
10.982 
11.689 
12.401 
13.120 

13.844 
14.573 
15.308 
16.047 
16.791 

Levels 

5 per cent 

5.024 
7.378 
9.348 

11.143 
12.832 

14.449 
16.013 
17.535 
19.023 
20.483 

21.920 
23.337 
24.736 
26.119 
27.488 

28.845 
30.191 
31.526 
32.852 
34.170 

35.479 
36.781 
38.076 
39.364 
40.646 

41.923 
43.194 
44.461 
45.722 
46.979 

of significance 

0.04 393 
0.0100 
0.0717 
0.207 
0.412 

0.676 
0.989 
1.344 
1.735 
2.156 

2.603 
3.074 
3.565 
4.075 
4.601 

5.142 
5.697 
6.265 
6.844 
7.434 

8.034 
8.643 
9.260 
9.886 

10.520 

11.160 
11.808 
12.461 
13.121 
13.787 

/ per cent 

7.879 
10.597 
12.838 
14.860 
16.750 

18.548 
20.278 
21.955 
23.589 
25.188 

26.757 
28.300 
29.819 
31.319 
32.801 

34.267 
35.718 
37.156 
38.582 
39.997 

41.401 
42.796 
44.181 
45.558 
46.928 

48.290 
49.645 
50.993 
52.336 
53.672 



Index 

Absolute terms, 24 
Accommodation, 181 
Accuracy, 2-3 
Actual sun, 234 
Adaptation, 181 
Adjustments 

braced quadrilateral, 58-60, 99-102 
levelling networks, 55-57 
polygon, 60-63, 101-103 

Aerial photogrammetry, 152 
applications of, 204-206 
worked examples, 206-212 

Aerial photographs, 154 
definitions of, 154, 155 
geometry of, 156-163 

Aerial radar, 205-206 
Aerial triangulation, 167 
Air base, 168 
Air speed, 168 
Airy's spheroid, 139 
Altitude, 230 
Altitude correction, 75 
Amplitude video signals, 206 
Analytical solution, 106 
Angles of convergence, 181 
Angular radius, 253 
Angular ratios, 160 
Apparent motion, 228 
Apparent time, 232 
Arithmetic means, 3 
Arundel assumption, 172 
Astronomical triangle, 231 
Azimuth, 112, 211, 212, 129, 230, 251 

Base lining, 174 
Bessel correction, 6 
Block adjustment, 177 
Braced quadrilateral, 58 

adjustment of, 58-60, 99-102 

Camera, 153 
Cardinal points, 228 

Catenary base lines, 70 
worked examples, 91-98 

Celestial co-ordinates, 229 
Celestial equator, 227 
Celestial meridian, 228 
Celestial poles, 227 
Celestial sphere, 227 
C-factor, 170 
Chauvenet, 8 
Chi-squared, 12, 269 
Chord/arc correction, 80 
Chord distance, 79 
Chord method, 137 
Chronometer, 233 
Circumpolar stars, 228 
Classification of errors, 1 
Closing the horizon, 57 
Co-altitude, 231 
Co-declination, 231 
Coefficient of refraction, 115 
Co-latitude, 231 
Combination of errors, 14 
Combined effect of tilt and relief, 161 
Comparator, 165 
Confidence limits, 9 
Contingency table, 12 
Control surveys, 67 
Convergence of meridians, 128 
Correlatives, 29 
Correlative equations 

general form, 28-34 
incorporating weights, 32 
normal equations, 21 

Cosine rule, 221 
Costing, of projects, 171 
Crab, 168 
Culmination, 228 

Davidson Committee, 140 
Declination, 229 
Declination circle, 228 
Degrees of freedom, 9 

273 



274 Index 

Density contour maps, 205 
Dependent quantities, 57 
Determination of azimuth, 251 

by elongation, 252 
by measuring altitude, 251 
by measuring time, 252 
worked examples, 254, 263 

Deviation of the vertical, 127 
Diapositives, 204 
Digital terrain model, 204 
Direct co-ordination, 110 
Double cutting points, 107 
Drift ring, 168 
Dutl, 232 

Ecology, 205 
Electromagnetic distance measurement, 76 

additive constant, 85 
eccentricity errors, 89 
equipment, 77 
modulation frequency, 83 
phase error, 85 
principles of, 77 
refractive index, 83 
sources of error, 82 
use of, 76 

Elongation, 228 
Equal shifts, 98 

worked examples, 116-125 
Equation of time (ET) 234 
Equilateral triangles, 69 
Errors, 1 

affecting addition, 15 
affecting powers, 17 
affecting products, 16 
affecting quotient, 16 
affecting roots, 17 
affecting subtraction, 15 
classification of, 1 
combination of, 14 
personal, 1 
probable, 4 
residual, 3 
standard, 6 
systematic, 1 
true, 3 
worked examples, 48-63 

Error bound, 3 
Error-ellipse, 40 
Ex-meridian observations, 251 

F-distribution, 11,267 
Field astronomy, 221 

definition of terms, 227 
Figural adjustment, 58-63, 98-103 

worked examples, 116-125 
Film magazine, 152 
First Point of Aries, 230 
Flight lines, 168 
Flight planning, 168 
Floating dot, 186 

Flying height, 190 
Four-parts rule, 222 

General equations, 20 
incorporating weights, 25 

Geoid, 127 
Goodness of fit, 12 
Graticule, 139 
Great circle, 221 
Greenwich mean time (GMT), 232 
Grid distance, 142 
Grid north, 141 
Ground distance, 143 
Ground speed, 168 
Gyro-theodolite, 135, 149 

Half-angle formula, 110 
Highway optimization, 205 
Histogram, 4 
Hooke's law, 72 
Horizon line, 213 
Horizon plane, 228 
Hour angle, 230 
Hyperbolic deformation, 190 

Index of precision, 6 
Infra-red, 205 
Instrumental corrections, 243 
Interpretation, 205 
Intersection, 107 
In vacuo, 78 
Invar tapes, 70 
Image displacement, 158 

due to ground relief, 158 
due to tilt, 159 

Kern Mekometer, 79 

Land use studies, 205 
Lateral overlap, 168 
Least squares, 17 

general form, 23 
principle of, 18 
worked examples, 48-63 

Levelling networks, 55 
Local apparent time (LAT), 234 
Local mean time (LMT), 234 
Local sidereal time (LST), 233 
Logan, Dr, 8 

Machine co-ordinates, 205 
Map compilation, 170 
Matrix method, 26, 34 
Mean latitudes, 130 

worked examples, 131-135 
Mean sea level, 75 
Mean Sun, 234 
Methods of determining latitude, 244 

by close circumpolar stars, 246 
by meridian altitude, 244 
by zenith pair stars, 245 
worked examples, 246-250 



Microtriangulation, 67 
Mistakes, 1 
Mosaics, 193 
Most probable value, 3 

Nadir, 228 
Napier's rules, 222 
National grid (NG), 140 
Network optimization, 48 
Nomogram, 84 
Normal probability curve, 5 

Observational corrections, 243 
Observation equations, 19, 35, 37 

length, 36 
bearing, 36 
angle, 36 

Octantis, 246 
Orientation, 192 
Orthomorphic, 139 
Orthophoto, 193 
Outliers, 8 
Overlaps, 168 

Parabolic deformation, 190 
Parallactic angles, 181 
Parallax, 182 

bar, 185 
corrections, 189 
equation of, 183 
errors of, 187-190 
measurement of, 185 
principle of, 182 

Parallels of latitude, 129 
chord method, 137 
offsets, 136 
setting out of, 136 
tangent method, 136 
worked examples, 138-139 

Partial differential, 14 
Percentage error, 3 
Personal error, 2 
Perspective axis, 161 
Perspective views, 205 
Phase shift, 77 
Photo base, 168 
Photography, 152 

specifications, 192-204 
Photo theodolite, 213 
Polaris, 246 
Pole Star Tables, 246 
Pollution, 205 
Polygon, 60, 101 
Position lines, 253 

method of, 253 
principle of, 253 
worked example, 254-263 

Precision, 2-3 
Pre-survey analysis, 47 
Principal line, 155 
Prime vertical, 228 

Probability, 4 
Projection plane, 142 
Priposed route, 205 
Provisional co-ordinates, 37, 43, 107 

Radial-line plotting, 171 
base lining, 174 
block adjustment, 177 
construction of, 175 
gridded sheet, 176 
ground control points, 175 
limitations of, 174 
minor control points, 174 
plotter, 179 
preparation of photographs, 174 
principles of, 172 
principal point traverse, 176 
scale point, 175 
three point method, 176 
tie points, 177 

Reciprocal observations, 114 
Redundant measurements, 17 
Refraction, 115,243 
Refractive index, 115 
Reflection characteristics, 205 
Rejection criteria, 8 
Relative error, 3 
Resection, 105 
Restitution, 191 
Right ascension of the mean Sun, 234 
Road-accident plans, 215 
Roelof solar prism, 243 
Rotary digitizers, 204 

Sag, 73 
Satellite stations, 103 
Scale error, 67 
Scale factor, 142 
Scale point, 175 
Scale variations, 156 
Scatter, 2 
Semi-diameter, 243 
Semi-graphic, 107 
Sextant, 224 
Side condition, 98 
Sidereal day, 233 
Sidereal time, 233 
Sine rule, 222 
Simpson's rule, 143 
Sketchmaster, 180 
Sky-count technique, 205 
Slope, 75 
Slotted template, 177 
Small circle, 221 
Solar day, 234 
Spectral range, 205 
Spherical excess, 98 
Spherical triangle, 221 
Spherical trigonometry, 221 

worked examples, 223-227 

Index 275 



276 Index 

Spheroid, 127 
computation on, 128 
of reference, 127 

Spring equinox, 230 
Straining mass, 72 
Standard error, 6 

angle, 41 
bearing, 41 
length, 42 

Standard deviation, 6 
Standardization, 70 
Standard time, 235 
Star Almanac, 229 
Station adjustment, 19 
Stereo model, 182 
Stereo pairs, 171 
Stereo plotters, 168 
Stereoscope, 182 
Stereoscopy, 181 
Stereoscopic viewing, 181 
Student's i-distribution, 9, 266 
Strength analysis, 39 
Systematic errors, 1 

Tangent method, 136 
Tension, 72 
Temperature, 71 
Terrestial photogrammetry, 213 

application, 215 
worked examples, 215-219 

Thermal, 205 
Three-point method, 176 
Tie points, 176 
Tilt, 156, 159, 160-163 
Time intervals, 236 

worked examples, 237-242 

Time-lapse photography, 205 
Traffic engineering, 205 
Transit, 228 
Transverse Mercator, 139 
Traversing, 111 
Triangulateration, 110 
Triangulation, 67 
Trigonometrical levelling, 112 

curvature, 115 
reciprocal observations, 114 
refraction, 115 
single observation, 112 
worked examples, 121-124 

Trilateration, 108 
True error, 3 
True value, 3 
(f - T) correction, 110, 146 

worked examples, 116-125, 147-150 

Unit variance, 38 
Universal time (UT), 232 

Variance, 6 
comparison of, 14 
minimum, 18 

Variance-covariance, 39, 46 
Variation of co-ordinates, 35 
Vernal equinox, 230 
Vertical-axis error, 244 
Vertical photograph, 152 

Weights, 7, 38 
Wild DI 10, 84 
Wriggle surveys, 205 

Zenith, 228 


