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BASELINE PERFORMANCE OF THE GPU 3 STIRLING ENGINE 

by L. G. Thieme and R. C. Tew, Jr. 

N-ASA Lewis Research Center 
Clevelaad. Ohio 44135 

ABSTRACT 

The NASA Lewis Research Center has converted a 10 horsepower 
single-cylinder rhombic-drive S t i r l i n g  engine t o  a research configur- 
a t ion  t o  obtain da t a  f o r  va l ida t ion  of S t i r l i n g  computer simulations. 
The engine w a s  o r ig ina l ly  b u i l t  by General Motors Research Laboratories 
f o r  t he  U.S. Army i n  1965 as pa r t  of a 3 kW engine-generator s e t ,  
designated the  GPU 3 (Ground Power Unit). This report  presents  test 
r e s u l t s  f o r  a range of hea ter  gas temperatures, Bean compression-space 
pressures,  and engine speeds with both helium and hydrogen as the  
working f l u i d s .  Also shown a r e  i n i t i a l  da t a  comparisons -aith the  
NASA-Lewis computer s i au l a t ion  predict ions.  

INTRODUCTION 

This  work was done i n  support of the  U.S. Deparzment of Energy's 
(DOE) S t i r l i n g  Engine Highway Vehicle Systems Program. The Lewis 
Research Center, through Interagency Agreement EC-77-A-31-1040 v i t h  
DOE, is responsible f o r  pro jec t  management of t h i s  e f f o r t  under t he  
progranrmatic d i rec t ion  of the  DOE Division of  Transportation Energy 
Conservation. 

As pa r t  of the  NASA Lewis Research Center (LeRC) in-house 
technology program, a 10 HP single-cylinder rhombic-drive S t i r l i n g  
engine has been obtained and restored t o  operat ing condition. The 
engine w a s  o r ig ina l ly  b u i l t  by General Xotors Research Laboratories 
f o r  t he  Army i n  1965 as part  of a 3  kwengine-generator s e t ,  designated 
the B U  3 (Ground Power Unit). 

One of t h e  pr inc ipa l  ob jec t ives  of t h i s  engine t e s t i n g  is t o  
obta in  and publish de t a i l ed  engine performance da ta  which can be used 
with t h e  engine dimensions necessary f o r  modeling t o  develop S t i r l i n g  
simulation techniques. The da t a  w i l l  a l s o  be used f o r  modification 
and va l ida t ion  of the NASA LeRC S t i r l i n g  computer simulation. To 
obtain t h i s  data ,  the engine w a s  converted t o  a research configuration. 
The engine-driven accessories  from the o r i g i n a l  GPY 3 package were 
removed and extensive instrumentation added, 

Baseline t e s t s  were then run t o  map the  engine over a range of 
hea ter  gas temperatures, mean compression-space pressures  and engine 
speeds with both helium and hydrogen as the working f l u i d s .  Tes ts ,  



however, were limited t o  the  lower power l eve l s  d tz  t o  use of the 
o r ig ina l  a l te rnator  and a resistance load bank which were not capable 
of absorbing the f u l l  engine output power. 

This report presents selected resu l t s  from these t e s t s  t o  
ident i fy  the experimental trends of the data that; were taken. Also 
shorn are i n i t i a l  iata  comparisons with the NASA-LeRC simulation 
predict ions. 

In i t ia l  results with the engine tes ted  as par t  of the  o r ig ina l  
GPU 3 package and a descript ion of the or fg inal  engine components and 
systems are given i n  reference 1. 

A dynamometer f a c i l i t y  is now being prepared which w i l l  allow 
engine ampping a t  the  higher p e r  levels .  Motoring tests v i l l  a l s o  
be n m  t o  a id  i n  determining the  mechanical losses.  

CPU 3 PROJECT OBJECTIVES 

Thc GPU 3 S t i r l i n g  engine t e s t  program a t  the  LeRC has the  
following objectives. The f i r s t  is t o  obtain and publish deta i led  
engine performance data. This data along with the engine dimensions 
necessary f o r  mdel ing  should a s s i s t  5x1 the developatent of S t i r l i n g  
simulation techniques. 

The second object ive is t o  val idate,  document, and publish the 
NASA-LeRC computer mdel .  This model is described i n  reference 2. 
Testing t o  provide the required data  w i l l  include the following: 
mapping the  engine at various speeds, pressures, and temperatures 
(heater gas and cooling w a t e r  i n l e t ) ,  t e s t s  with advanced instrumentation 
f o r  dynamic cycle seasurements, and spec i f i c  parametric tests such as 
determining the e f fec t  of dead volume variat ion.  

Finally, the  engine w i l l  provide a test bed fo r  evaluation of 
new system and component concepts from the  supporting S t i r l i n g  engine 
technology programs. 

APPARATUS AND PROCEDURE 

GPU 3 S t i r l i n g  Engine 

Figure 1 is a photograph of the  GPU 3 (Ground Power Unit) 
S t i r l i n g  engine as most recently tested a t  the  NASA-LeRC. The engine 
was obtained from the U.S. Army Mobility Equipment Research and 
Development Center (MERDC) a t  Fort Belvoir, Virginia. A second 
ident ica l  engine w a s  also obtained through laan from the Smfthsonian 
Ins t i tu t ion .  This second engine so f a r  has been used as  a source of 
spare par ts  for  the  Amy engine. 



Both engines were o r i g i n a l l y  p a r t  of i d e n t i c a l  3 kW engine- 
generator  s e t s  b u i l t  by General Motors Research Laboratories i n  
1965 f o r  t he  U.S. Army. These u n i t s  were completely self-contained 
and capable of  operat ion using a va r i e ty  of  f u e l s  over a broad range 
of ambient conditions.  They w e r e  designed f o r  using hydrogen as 
the  working f l u i d .  

The GPU 3 engine is a single-cylinder displacer-type engine with 
a rhornbic dr ive  and s l i d i n g  rod s e a l s .  It is capable of producing a 
maximum of approximately 10 bhp with hydrogen working f l u i d  at 1000 p s i  

3 mean compression-space pressure.  The p is ton  swept volume is 7.3 i n  . 

GPU 3 Test  Setup 

The test setup f o r  t he  i n i t i a l  base l ine  t e s t i n g  of the  B U  3 is 
shown i n  f i gu re  2. For these  runs,  the following changes were made 
t o  convert the engine t o  a research configuration. Where necessary, 
new p a r t s  (power p i s ton ,  cooler-regenerator car t r idges ,  d i sp lacer  
sha f t )  were made and o thers  ( fue l  nozzle) reworked t o  allow 
successful  operation. A l l  engine-driven accessor ies  were removed 
with t h e  exception of t he  o i l  pump. Air, water,  f ue l ,  and working 
f l u i d  were provided from t h e  f a c i l i t y .  Dimensional measurements, 
flow tests of the  hea t  exchangers, and volume measurements of  t he  
working space w e r e  completed. The cont ro l  system of t h e  o r i g i n a l  GPU 
3 u n i t  was replaced with manual controls .  F ina l ly ,  instrumentation 
w a s  added t o  allow obtaining an energy balance, engine temperature 
p ro f i l e s ,  working space gas temperatures and dynamic pressures  and an 
attempt t o  measure ind ica ted  work. 

The o r i g i n a l  GPU 3 a l t e r n a t o r  and a separa te  res i s tance  load 
bank were used t o  absorb the  engine output power. The a l t e r n a t o r  was 
ca l i b r a t ed  t o  def ine its ef f ic iency  a t  var ious speeds and output 
voltages.  Since the  o r i g i n a l  GPU 3 package was designed fo r  a 3 kU 
output,  t h e  a l t e r n a t o r  w a s  not capable of t h e  maximum output of t he  
engine. Thus, these tests were l imited by the  method of power 
absorption. Spec i f i ca l l y ,  t h e  r e s t r i c t i o n s  were maximum a l t e r n a t o r  
cur ren t ,  a l t e rna to r  ca l i b r a t i on  range, and load bank capacity.  

The f u e l  flow measurement w a s  made with two ex te rna l  tanks. h e  
tank w a s  used t o  supply f u e l  during s t a r t u p  and while e s t ab l i sh ing  a 
d a t a  point.  The second tank w a s  used while d a t a  were being taken. Its 
weight was recorded before and a f t e r  each d a t a  point t o  determine the  
amount of f u e l  used. The f u e l  f o r  these  tests was No. 1 d i e s e l  fue l .  

Test Method 

Each curve of these tests was run a t  constant mean compression- 
space pressure,  hea te r  tube gas temperature, and cooling water flow, 
A t  each point the load was adjusted t o  e s t a b l i s h  the  des i red  speed. 



The combustion air flow was set t o  approximately maintain a constant  
air-f  ue l  r a t i o .  

The hea t e r  tube gas temperature was measured with themocouple 
probes i n s t a l l e d  ins ide  three  of the  f o r t y  hea ter  tubes and spaced 
circumferent i a l l y  around t h e  hea ter  head. The maximum reading of these 
three thermocouples was cont ro l led  t o  the desired temperature by 
ad jus t ing  the  f u e l  flow wi th  a needle valve. The cooling water inlet 
temperature was not cont ro l led  and varied about 10" F over t he  
s e r i e s  of tests. 

After  each engine start up, a reference point (1300° F hea ter  gas 
temperature, no load, 3000 rpm) w a s  f i r s t  es tabl ished t o  v e r i f y  
proper engine cperat ion and t o  allow the  engine t o  reach opera t ing  
temperatures. Each point  w a s  then maintained f o r  15 minutes a f t e r  
reaching desired conditions with a l l  s teady-state  da t a  being recorded 
three  times during t h i s  period. The f u e l  flow was determined f o r  t h i s  
15 minute i n t e rva l .  

The t e s t  matrix range f o r  both the  helium and hydrogen runs was 
as follows: mean compression-space pressure 200-1000 p s i ,  hea t e r  tube 
gas temperature 1100-1300° F, and engine speed 1000 t o  3500 rpm. 

RESULTS AND DISCUSS ION 

The curves shown i n  t h i s  repor t  were se lec ted  t o  i den t i fy  t h e  
experimental t rends of the  d a t a  t h a t  were taken. A l l  da t a  w i l l  be 
published a t  a l a t e r  date .  

Figure 3 shows engine output and brake spec i f i c  f u e l  consumption 
(BSFC) vs. engine speed as a function of mean compression-space 
pressure. The working f l u i d  is helium at  a heater  tube gas 
temperature of 1200" F. The engine output was  determined by measuring 
output power of t he  a l t e r n a t o r  and dividing t h i s  by the a l t e r n a t o r  
eff ic iency.  

The incomplete curves a t  t he  higher pressure l eve l s  i nd ica t e  t he  
l imi t ing  e f f e c t  of the a l t e r n a t o r  and load bank. The a l t e r n a t o r  
output current  increased with decreasing speed and eventually reached 
i ts maximum allowed value. This poict then determined the range of 
speeds f o r  a given pressure a t  which the engine could be operated. 

For a constant pressure,  t he  engine output and brake thermal 
e f f i ~ i e n c y  tend t o  decrease a t  t he  higher speeds. This is primari ly  
due t o  the increasing flow losses  through the heat exchangers. A t  
the lower speeds, the  conduction losses  become a s ign i f i can t  
percentage of the heat input and cause the e f f ic iency  t o  decrease. 
Thus, t he  e f f ic iency  tends t o  maximize (minimum BSFC) a t  some 
intermediate speed a s  shown i n  the  f igure.  



For a given speed the  engine 01 -,ut and e f f i c i ency  both increase 
with increasing pressure l e v e l .  However, the  spacing betveen t h e  
curves shows t h a t  a s  t he  pressure increases ,  t he  r e l a t i v e  gain i n  
power and pa r t i cu l a r ly ,  t he  r e l a t i v e  gain i n  e f f i c i ency  decrease.  
This can be a t t r i b u t e d  i n  p a r t  t o  the  e f f e c t  of hea t  t r a n s f e r  
l imi ta t ions  a t  t h e  cold end 3f t h e  engine. For a f ixed  speed, t he  
compression space gas temperature increases  with pressure.  For 
example, t he  compression space gas temperature rcse  from 195" F a t  
400 p s i ,  3000 rpm t o  247' F a t  1000 ps i ,  3000 rpm. Thus, t h e  Carnot 
e f f ic iency  based on the gas temperatures is l e s s  f o r  the  higher  
pressure l eve l s  although t h e  hea te r  gas temperature and cooling water 
i n l e t  temperature remain t h e  same. 

A s imi l a r  s e c  of curves was run a t  1300' F heater  gas temperature. 
However, the a l t e r n a t o r  and laad  bank l imi t a t i on  would no t  allow 
operat ion a t  t h i s  temperature at t5e maximum engine pressure of 
1000 ps i .  The 1200' F curves were included i n  t h i s  repor t  as they 
ind i ca t e  the  highest  power of 5.25 hp obtained with helium. The 
minimum BSFC measured was 0.99 lb/bhp-hr which corresponds t o  13.9 
percent brake thermal e f f i c i ency  . 

Test da ta  were taken t o  determine the  e f f e c t  of  varying hea te r  
tube gas temperature. For a constant  mean compression-space pressure,  
curves were run a t  hea te r  gas temperatures of 1100, 1200, and 1300' F. 
Figure 4 shows engine output and BSFC at these  temperatures f o r  helium 
at  400 ps i .  Similar  sets of curves were obtained f o r  helium a t  
800 p s i  and hydrogen at 400 ps i .  %'he l im i t a t i on  on power absorption 
due t o  t h e  a l t e r n a t o r  and load bank precluded hydrogen operat ion a t  t he  
800 p s i  pressure leve l .  

Hydrogen results f o r  engine output and 3SFC vs .  engine speed a s  
a funct ion of mean compression-space pressure a r e  shown i n  f i gu re  5. 
The heater  gas temperature is 1300' F. 

These da ta  were taken over less of a pressure range t'nan were the  
helium da ta  due t o  t he  higher power output with hyclrogen a t  a 
given pressure.  This causes t h e  l imi t ing  a l t e r n a t o r  values t o  be 
reached a t  a lower pressure l eve l .  

The maximum engine output with hydrogen was 6.0 hp a t  600 p s i ,  
3500 rpm. The minimum BSFC was 0.81 lb/bhp-hr a t  400 p s i ,  2500 rpm. 
This corresponds t o  a brake thermal e f f i c i ency  of 16.9 percent.  

Note t h a t  t h e  hydrogen power curves a r e  more l i n e a r  with speed 
and peak out a t  a much higher speed than do the corresponding helium 
curves. This is an ind ica t ion  of the  lower flow losses  associated 
with hydrogen compared t o  helium. 



Figure 6 gives two examples of an energy balance on the  engine 
operating with helium. Both points  a r e  f o r  a hea ter  gas temperature of 
1200' F and an  zngine speed of 3000 rpm. The f i r s t  is f o r  an engine 
output of 1.4 hp a t  400 p s i  mean compression-space pressure while  
the other  is f o r  an engine output of 5.2 hp a t  1000 ps i .  

The bargraphs ind ica te  t h a t  more than 97 percent of a l l  hea t  
input was accounted f o r  a t  these  two points.  The range of input 
energy accounted f o r  i n  t he  majority of the hea t  balances f o r  a l l  
points  run during these t e s t s  was 93 percent o r  grea te r .  

A s  shown i n  t h e  f igure ,  t he  majority of the  energy lo s ses  a r e  
contained i n  t he  exhaust l o s ses  and the cycle heat  r e j e c t i o n  t o  t h e  
cooling water.  The cycle  heat  r e j ec t ion  was found by measuring the  
heat  flow t o  t h e  water passing through the  coolers  and subt rac t ing  
off the conduction losses .  The t o t a l  energy flow t o  the water system 
a l so  includes the  heat  l o s ses  t o  t he  buffer  space cooling water and 
nozzle cooling water which a r e  separate  systems from the water flow 
through the  coolers.  The heat l o s s  t o  t he  exhaust was subs t an t i a l  
f o r  these tests due t o  t he  high a i r - fue l  r a t i o  maintained (about 40/1 
for  the  poin ts  shown). This a l so  tended t o  have an adverse e f f e c t  on 
the ove ra l l  engine e f f i c i e n c i e s  measured i n  these runs. 

For any given heater  temperature, the conduction lo s ses  through 
the  engine a r e  approximately constant. Also, the  r ad i a t ion  and 
convection losses  and the  nozzle water l o s ses  tend t o  increase  much 
more slowly with pressure than does the  heat input from the  fue l .  
Consequently, these  losses  account f o r  a g rea t e r  percentage of the  
heat input a t  lower pressure l e v e l s  where :'e engine output is low. 
The bargraphs ind ica te  t h i s  as the percentage lo s s  due t o  conduction, 
rad ia t ion  and convection, and nozzle water l o s ses  at 400 p s i  is 
almost double t ha t  a t  1000 ps i .  Also, the heat t o  t he  buffer water 
gives some ' indication of t he  mechanical l o s ses  due t o  s e a l  f r i c t i o n  
i n  the  engine. The graphs show tha t  f o r  a constant speed these  
losses ,  too, a r e  a much l a rge r  percentage of the  hea t  input a t  t he  
lower pressure and a r e  espec ia l ly  s ign i f icant  when compared t o  t h e  
engine output. 

Comparisons of the measured engine output with hydrogen t o  t h a t  
predicted by t h e  NASA-LeRC computer simulation a r e  shown i n  f i gu re  7. 
The mean compression-space pressure is 300 p s i  and the hea ter  gas 
temperature is 1300' F. 

The inputs  t o  the computer program were the  measured values of 
hea ter  and cyl inder  metal temperatures, i n l e t  water temperature and 
flow r a t e ,  engine speed, mean compression-space pressure,  and engine 
temperature p r o f i l e s  f o r  conductio~l ca lcu la t ions .  The mechanical 
losses  were estimated from General Motors GPU motoring and engine 
performance da t a  given i n  reference 3. 



The curves i nd i ca t e  t ha t  t h e  predicted engine output is a t  most 
14 percent higher than the experimental values  f o r  each of t h e  four 
pc in t s  shown. The brake e f f ic iency  comparison which is not shown 
does no t  agree a s  w e l l ,  being a t  most 42 percent higher than t h e  
experimental values.  The e f f i c i ency  used f o r  t h e  comparison is 
defined a s  t he  brake power divided by the hea t  i n t o  t he  engine 
(excludes burner l o s se s ) .  The BSFC values  shown i n  t h e  previous da t a  
a r e  based on t h e  measured f u e l  flow. 

The po in t s  given i n  t h i s  and the  following f i gu re  represent  t h e  
i n i t i a l  d i r e c t  comparisons between the predicted values and t h e  
experimental da ta .  Comparisons t o  the remainder of the  da t a  arenow 
proceeding and w i l l  be used t o  help determine t h e  primary reasons f o r  
the d i f fe rences  between predict ion and experiment. 

Figure 8 shows comparisons of the  measured engine output with 
helium t o  t ha t  predicted by t h e  NASA-LeRC computer simulation. A 
complete curve is shown f o r  a mean compression-space pressure of  400 p s i  
and a hea te r  gas temperature of 1300" F. Also, two poin ts  are shown 
a t  600 p s i  fo r  the  same hea te r  gas temperature. 

The predicted engine output is within 57 percent of t he  
experimental values at 400 p s i  and i s  at most 22 percent higher at 
600 ps i .  Predicted brake e f f i c i ency  was a t  most 25 percent higher  
than the  experimental data .  

SUMMARY OF RESULTS 

The GPU 3 S t i r l i n g  engine has been converted t o  a research 
configuration. The engine w a s  mapped over a l imi ted  range at hea te r  
gas temperatures from 1100 t o  1300" F, mean compression-space 
pressures from 200 t o  1000 p s i ,  and engine speeds from 1000 t o  3500 rpm 
with both hydrogen and helium as  t h e  working f l u id s .  The following 
list is a summary of the  major r e s u l t s  from these  t e s t s .  

1. The maximum power obtained with hydrogen w a s  6.0 hp a t  600 p s i  
mean compression-space pressure and 1300" F hea te r  gas temperature. 
l'3e minimum BSFC was 0.81 lb/hp-hr. 

2. The maximum power obtained with helium was 5.25 hp a t  1000 p s i  
-man compression-space pressure and 1200" F hea te r  gas temperature. 
The minimum BSFC was 0.99 lb/hp-hr. 

3. Both engine output and e f f i c i ency  increased with increasing 
pressure leve l .  However, t he  r e l a t i v e  gain i n  power and, p a r t i c u l a r l y ,  
the  r e l a t i v e  gain i n  e f f ic iency  decreased a s  pressure increased. 



4. The maximum ef f ic iency  (minimum BSFC) f o r  a given pressure 
l e v e l  w a s  obtained a t  intermediate speeds with flow lo s se s  causing 
t h e  e f f i c i ency  t o  decrease a t  high speeds and conduction looses  
causing a decrease a t  t he  low speeds. 

5 .  The hydrogen power curves were more l i n e a r  with speed than 
were t he  corresponding helium curves giving an ind ica t ion  of t h e  
lower flow lo s se s  associated with hydrogen. 

6 .  I n i t i a l  comparisons between the  NASA-LeRC simulation 
predict ions and t h e  test da t a  showed t h a t  t h e  predicted engine output 
was a t  most 14 percent higher than experimental values  f o r  hydrogen 
and a t  most 22 percent higher than experimental ~ a l u e s  f o r  helium. 

CONCLUDING REMARKS 

The NASA-LeRC computer model modification and va l ida t ion  wi th  
t he  d a t a  is now underway. These comparisons w i l l  b e  used t o  he lp  
determine the  primary reasons f o r  t h e  d i f fe rences  between pred ic t ion  
and experiment. The de t a i l ed  d a t a  w i l l  be published along wi th  t h e  
engine dimensions necessary f o r  developing s imi l a r  computer simulations.  

Following completion of the  tests described i n  t h i s  r epo r t ,  t h e  
a l t e r n a t o r  t e s t  setup w a s  removed and replaced with a dynamometer 
f a c i l i t y .  This w i l l  al low completion of t h e  mapping over t h e  f u l l  
engine output range and a l s o  provide motoring c a p a b i l i t i e s  t o  v e r i f y  
mechanical losses .  
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Figure 4. - Helium engine performance as function of 
engine speed and heater gas temperature nH). 

1.4 hp 5.2 hp 
400 psi lam ps[ 

.-UNACCOMKD- 

-BUFFER WATER 
-ENGINE OUTPUT 

WORKING FLUID: 
HEUUM ' HEATER GAS TEMP: 
lzooa F 

ENGINE SPEED: 
3oal rPm 

Figure 6. - Energy balances for two mean compression- 
space pressures. 
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Fiure 7. - Comparison of predictions to test data. 
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Figure 8. - Comparison o! predictions to test data at huo mean compression- 
space pressures. 


