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J. A. de Azcárraga and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some
Applications in Physics†

O. Babelon, D. Bernard and M. Talon Introduction to Classical Integrable Systems†

F. Bastianelli and P. van Nieuwenhuizen Path Integrals and Anomalies in Curved Space†

D. Baumann and L. McAllister Inflation and String Theory
V. Belinski and M. Henneaux The Cosmological Singularity†

V. Belinski and E. Verdaguer Gravitational Solitons†

J. Bernstein Kinetic Theory in the Expanding Universe†

G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems†

N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space†
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Preface

Give thanks to God, who made necessary things simple, and complicated
things unnecessary.

Gregory Skovoroda, Ukrainian Thinker, 1722–1794

There is always another way to say the same thing that doesn’t look at
all like the way you said it before. I don’t know what the reason for this
is. I think it is somehow a representation of the simplicity of nature?
Perhaps a thing is simple if you can describe it fully in several different
ways without immediately knowing that you are describing the same
thing.

Richard Feynman, Nobel Lecture, 1965

Theories of the known, which are described by different physical ideas
may be equivalent in all their predictions and are hence scientifically
indistinguishable. However, they are not psychologically identical when
trying to move from that base into the unknown. For different views
suggest different kinds of modifications which might be made and hence
are not equivalent in the hypotheses one generates from them in ones
attempt to understand what is not yet understood. I, therefore, think
that a good theoretical physicist today might find it useful to have a
wide range of physical viewpoints and mathematical expressions of the
same theory available to him.

Richard Feynman, Nobel Lecture, 1965

Formulations of General Relativity. Facing this title the prospective reader

should be thinking, what is there to formulate general relativity (GR)? GR can

be formulated in one sentence: GR action functional is the integral of the scalar

curvature over the manifold. Everything else that is there to say about GR is

the consequence of the Euler–Lagrange equations one obtains by extremising

this action, together with the action for matter fields. How can there be a book

about ‘formulations’? And why plural? Is there not just the usual Einstein–

Hilbert formulation as stated previously?

A more sophisticated reader will know that there are several equivalent for-

mulations of general relativity. There is the usual metric formulation, and then

there is an equivalent formulation in terms of tetrads. But this is all well known.

GR is about physical consequences of the dynamical postulate that fixes the

theory. There may be several equivalent ways to define the dynamics. But this



xiv Preface

does not change the physics. So, one formulation is sufficient to unravel all the

physics predicted by the theory. The usual metric formulation is by far the most

studied and best understood. Why bother about developing any other equivalent

formulation? And then why write a book about such unnecessary alternatives?

This is when the two quotes included previously from the Richard Feynman

Nobel lecture become relevant. The first is about an empirical observation that

theories that are relevant for describing the world around us tend to admit many

different equivalent, but not obviously so, reformulations. The example Feynman

has in mind is classical electrodynamics, not gravity. Feynman also notices that

there is a deep link between the ‘simplicity’ of a theory, and the availability

of many different, not manifestly equivalent, descriptions. He goes further and

proposes this as the criterion of simplicity. This suggests that one can never fully

appreciate the simplicity and beauty of GR without absorbing all the different

available formulations of this theory.

The second quote is a different, but not unrelated, thought. There may be

equivalent formulations of a theory, all leading to the same physical predictions.

But such reformulations may be inequivalent if one decides to generalise. The

example of most relevance for Feynman is the Hamiltonian and Lagrangian

description of classical mechanics. The quantum generalisation of the Hamilto-

nian description leads to the usual operator formalism for quantum theory. The

generalisation of the Lagrangian description leads to path integrals, which is

arguably one of Feynman’s main contributions to physics. These two equivalent

formulations of classical mechanics are certainly not equivalent in terms of the

new structures that can be generated from them. The same may well apply to

gravity. We do not yet know which of the many available formulations of gravity

will lead to the next big step in the quest for understanding the world around us.

So, the purpose of this book is to describe all the ‘equivalent’ formulations of

general relativity that are known to the author, and that also put the geometry of

differential forms and fibre bundles at the forefront of the description of gravity.

What is meant by a ‘formulation’ here is a Lagrangian description, in which the

dynamical equations are obtained by extremising the corresponding action. This

gives us the most economic way of defining the theory.

Some of these equivalent formulations will likely be known to many readers.

In particular, this is the already mentioned formulation in terms of tetrads. If

this was the complete list, there would be no good reason to write this book.

What is much less known, and what really motivated this author to embark on

the present project, is that there are some special features of GR in four spacetime

dimensions. These special features are related to coincidences that occur precisely

in four dimensions. Thus, in any dimension the Riemann curvature can be viewed

as a matrix mapping antisymmetric rank-two tensors again into such tensors.

And in four dimensions one also has the Hodge star operator that maps antisym-

metric rank-two tensors into such tensors. One can ask how these two operations

are related or compatible. It is then a simple to check but deep fact that a
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metric is Einstein if and only if these two operations commute. This fact leads to

a whole series of chiral formulations of four-dimensional GR that have no analogs

in higher spacetime dimensions. It is the development of these formulations, and

contrasting them with the more known ones, that will occupy us for the large part

of this book. There is no coherent account of these developments in the literature,

certainly not in any book on GR. It is our desire to make such a coherent account

available that was one of the main motivations for writing this monograph.

Another motivation for writing this exposition was our desire to promote the

formalism(s) for GR that place the differential forms rather than metrics at the

forefront. Differential forms are arguably the simplest and most natural geometric

objects that can be placed on a smooth manifold, and are certainly simpler

objects than a metric. It turns out to be possible to describe GR using the

powerful calculus of differential forms and fibre bundles, which is largely due to

Élie Cartan (see Chapter 1 for more on this). This book is in particular aimed

at giving an exposition of the possible formalisms that achieve this.

A related theme is that of spinors and spinorial description. As is well known,

and as we will also emphasise in the book, spinors and differential forms are

essentially the same thing, with the Dirac operator being intimately related to

the exterior derivative operator. This means that as soon as differential forms are

being used as variables to describe the theory, the description has an interesting

spinor translation. Viewed in this way, the kinetic operators arising in the field

equations of formulations that use differential forms are various versions of the

Dirac operator. This becomes especially pronounced in the so-called first-order

formulations where field equations are first order in derivatives. This spinor

aspect of gravity (and, as we shall see, Yang–Mills theory too), absent in the

usual metric description, is another unifying theme of this book. In addition, the

spinor description of gravity simplifies link to some recent developments in the

field of scattering amplitudes, as we will touch on.

The more familiar of formalisms that use differential forms rather than metrics

is that of tetrad (or vielbein, or moving frame or soldering form) introduced by

Cartan. Historically, this formalism was first discovered in the context of two

dimensions by the French mathematician Jean-Gaston Darboux (Cartan’s PhD

supervisor) in the late nineteenth century. It is particularly powerful in this

context, as the two 1-forms that encode the metric information can be combined

into a single complex-valued one-form on the manifold. This is related to the

fact that any 2-manifold is a complex manifold. There is no direct analog of

such a complexification trick in four dimensions because there is no longer a

unique choice of an almost complex structure. But one gets a computationally

powerful formalism in four dimensions via chiral formulations referred to above.

These formulations, in the case of Lorentzian signature, bring into play complex-

valued objects and in a certain sense provide the analog of the complexification

trick that works so well in two dimensions. They also make a link to the twistor

description of gravity, as we shall learn.
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Our final introductory remark is about Einstein’s cornerstone idea that gravity

is geometry. At the time when Einstein formulated his theory, the only geometry

available to him was the Riemannian geometry of metrics, described via the ten-

sor calculus of Ricci and Levi-Civita. Einstein learned this mathematics guided

by his friend and classmate Marcel Grossmann. It is thus no surprise that GR

was formulated in the language of Riemannian geometry and tensor calculus. It is

still being developed and also taught to graduate students in that way. However,

already at the time of Einstein’s formulation of GR, Élie Cartan was developing

a very different type of geometry, the geometry in which the key role was played

by differential forms and connections. His works, and works of those around him,

strongly influenced the subject of differential geometry, and it is now far more

rich and sophisticated than it was 100 years ago. The Riemannian geometry is

now only its relatively small corner. This discussion is related to the theme of

the present book because various different formulations of GR that we develop

place various different geometric constructions at the forefront. In particular, the

geometry of fibre bundles plays a much more important role than it does in the

usual description of GR. It is thus certainly true that gravity continues to be

geometry in the developments on this book, it is only that the word geometry

is being understood more broadly than in the metric GR context. We do not

yet know which of these ‘geometries’ is more fundamental than others, but a

good researcher will certainly want to keep his/her mind open and learn all the

available options.

The target audience for this book are postgraduate students interested in

gravity, as well as already established researchers. To give encouraging words

to the first audience, the author would like to recall his own experience as a

student. This author remembers very distinctly that it was easiest to study,

understand and prepare for exams on classical mechanics by reading Vladimir

Arnold’s book on the subject. And Paul Dirac’s book played a similar role for

quantum mechanics. Both books present their respective subjects in a beautiful

and logical way, and both are inspired by mathematics. The moral here is that

there are some students that learn best by understanding the overall logic of the

formalism first, and only then embark on applications and problem solving. This

is certainly not a universal way to learn, and most likely not the way to approach

the subject for the first time. But it was important to the present author in his

time as a student to have accounts of the usual subjects that concentrate more

on the overall logic and the mathematical formalism, rather than on concrete

problems that can be solved. The author hopes that there are similar minds

out there, and that the present exposition will help such students to understand

what GR is about.

In terms of the specialised knowledge that is required to understand this book,

we do not assume any more than is usually assumed for graduate-level courses.

Familiarity with concepts of differential geometry is desirable, but the aspects

of this subject that are required to understand the present text are reviewed
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in the first chapter. So, a good graduate student should be able to follow this

exposition without too much difficulty.

Thus, this book is mainly about different possible formalisms for doing calcu-

lations with GR, rather than about different possible physical consequences of

this theory. So, this book certainly does not compete with the standard textbook

expositions of GR, and the student must also study these more standard sources

to understand the physics as predicted by general relativity. Excellent books on

this subject that became the standard sources are General Relativity by R. Wald

and Spacetime and Geometry: An Introduction to General Relativity by S. Carroll

for GR in general and Physical Foundations of Cosmology by V. Mukhanov for

applications to cosmology.

For the experienced researchers, the author suggests this book as a source on

aspects of GR that are important about this theory, especially in four spacetime

dimensions, but are not covered in any standard book on the subject. Thus,

the book can be used as a compendium on different available formalisms for

GR, as well as on some less standard aspects of geometry that are required to

develop these formulations. Additional motivations for why different formulations

of GR may lead to new developments and/or new generalisations are given in

the concluding chapter.

We end by explaining why it is the quote from Gregory Skovoroda that we

chose to be an epigraph for this whole exposition. First, the author is a Ukrainian,

and it gives him a distinct pleasure to be able to quote Skovoroda, who was a

deep thinker years ahead of his times, and who is still relevant today. He is almost

unknown in the West, and maybe one of the readers will remember the name,

and read his texts.

Second, we aim here to explain only simple, but in our view important things

about GR in four spacetime dimensions. There is much more that can be said,

and there is a great wealth of physical phenomena that the theory predicts and

describes, and that we omit. Not because they are unimportant – on the contrary,

they are the reason why physicists learn the subject. But rather because they

are unnecessary to understand the overall logic of the theory. It is this overall

logic and the facts likely needed to ‘move to the unknown’ that will concern us in

the present book. And so we focus here only on things necessary to understand

the overall logic of gravity, and hence only on things simple. We hope the reader

will take this as a word of encouragement to follow the development of different

formalisms described here.

Finally, I would like to thank my collaborators, from whom I learned a lot and

without whose insights this book would not exist. Thanks in particular to Joel

Fine, Yannick Herfray, Carlos Scarinci and Yuri Shtanov. Thanks also go to my

family for their support to ‘papa’ working on his ‘kniga’.





Introduction

[The tensor calculus] is the debauch of indices.
Élie Cartan, from Introduction to ‘Lecons sur la Geometrie des

Espaces de Riemann’, 1928

In 1907, while still working as a clerk in a patent office in Bern, Albert Einstein

had what he later referred to as ‘the happiest thought’ of his life. He realised

that a freely falling observer does not experience gravity, and thus, effects of

gravity are indistinguishable from those arising in an accelerating frame. These

ideas were developed in two papers he published in 1908 and 1911. In these

papers, Einstein argued that the rules of special relativity must continue to

be applicable in an accelerated reference frame. This, in particular, led him

to analyse experiences of an observer performing experiments on a rotating

turntable. Einstein concluded that the ratio of the circumference of a circle to

its diameter would be different from π. What this meant for Einstein was that if

effects of gravity are those of a non-inertial coordinate system, and the geometry

in the later is different from the Euclidean one, then gravity is geometry.

Einstein then searched for a mathematical description of this idea. On the

return in 1912 to his alma mater ETH Zurich, he turned for help to his friend

and classmate, now a professor of mathematics, Marcel Grossmann. Grossmann

directed Einstein’s attention to Riemannian geometry, the only one developed at

that time, which had its origins in Gauss’ work on the intrinsic geometry of two-

surfaces in three-dimensional space. Bernhard Riemann lay the foundation of the

subject in his famous 1854 Göttingen habilitation lecture, ‘On the hypotheses

that underlie geometry’. In this lecture he described the way to extend the

Gauss’ notion of curvature to an ‘n-ply extended magnitude’. Thus, by the time

Einstein studied this subject, it was far from being new. Einstein learned it in the

form described in the 1900 exposition by Gregorio Ricci and Tulio Levi-Civita,

‘Methods of the absolute differential calculus and their applications’. In a joint

1913 paper with Grossmann, Einstein described ‘an outline’ of a new gravity

theory using precisely this language. The final version of the new theory of gravity

was developed by late 1915, still using the language of tensor calculus. By this

time Einstein was already in Berlin, and this work appeared single-authored.

It is this 1915 theory that is now known as Einstein’s general relativity (GR).

Even to this day it is taught and applied using the nineteen-century language of

tensor calculus.
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Figure I.1 Bernhard Riemann

Bernhard Riemann was born on 17 September 1826 in Breselenz, a village in

the kingdom of Hanover. His father was a poor Lutheran pastor. Riemann was the

second of six children, shy and of not very strong health. His mother died when

he was 20, and his brother and three of his sisters all died young, as eventually

did he. Riemann exhibited exceptional mathematical skills, such as calculation

abilities, from an early age, but suffered from a fear of speaking in public.

Even though Riemann was very gifted in mathematics, he planned to study

theology and become a pastor, like his father. In 1846, his father gathered enough

money to send him to Göttingen to study theology. However, once there, Riemann

started attending mathematics lectures by Gauss. The latter recommended that

Riemann give up his theological work and go into mathematics. After gaining

his father’s approval, Riemann transferred to Berlin in 1847, and returned to

Göttingen in 1849. He defended his doctoral dissertation in 1851, on what we

now call Riemann surfaces. He held his first lectures in 1854. His habilitation

lecture founded the field of Riemannian geometry. In 1859, following Dirichlet’s

death, who had occupied Gauss’ chair since 1855, Riemann became the head of

mathematics at Göttingen.

In 1862, Riemann married Elise Koch and they had a daughter. He fled

Göttingen in 1866 when the armies of Prussia and Hanover clashed there. He

died in Italy the same year from tuberculosis. Riemann was a dedicated Christian,

and saw his life as a mathematician as another way to serve God. During his life,

he held closely to his Christian faith and considered it to be the most important

aspect of his life. At the time of his death, he was reciting the Lord’s Prayer with

his wife and died before they finished saying the prayer.

Roughly around the same time, a French mathematician Élie Cartan was

developing a very different type of geometry. In Cartan’s work on differential

geometry, the notions of differential forms and fibre bundles, both of which he



Introduction 3

to a large extent established, played a central role. Both of these will play a

crucial role in this book too. Also, in 1913, constructing linear representations of

Lie groups, Cartan discovered spinors. This will be important in our exposition

as well. It was realised much later, in a 1954 book, The Algebraic Theory of

Spinors, by another French mathematician (and one of the founding members

of the Bourbaki group) Claude Chevalley, that spinors and differential forms are

very closely related. We will explain this fact in due course.

Cartan was led to the notion of differential forms in his 1901 work developing

a geometric approach to partial differential equations. What Cartan was after

was a formalism that is invariant under arbitrary changes of variables. Cartan’s

main tool for this was the calculus of differential forms. Cartan then worked on

problems of group theory, and in particular, as we already mentioned, discovered

the spinor representations of the orthogonal groups in 1913.

Theory of Lie groups is intimately related to geometry. It is thus no surprise

that Cartan turned to the latter. He was also motivated by Einstein’s theory of

gravity that came to prominence in 1919. It is in Cartan’s works of the 1920s

that his most important contributions to differential geometry were developed.

Cartan’s main realisation was that it is fruitful and necessary to consider other

‘bundles’ apart from the tangent bundle, and other ‘connections’ apart from the

Levi–Civita connection. We put the words bundles and connections in quotes

because these notions were only beginning to be understood in Cartan’s works.

In particular, Cartan himself, while working with different bundles extensively,

never explicitly defined what is now known as a (principal) fibre bundle. Cartan

was also responsible for a notion of what is now known as the (principal) con-

nection, and in particular realised that such a connection is best described as a

(Lie algebra valued) 1-form. Cartan was thus able to disassociate the notion of

the connection and parallel transport from the very restricted form these take

in the context of affine connections in the tangent bundle. This led him to the

discovery of many new types of geometry, thus finding probably the most fruitful

generalisation of Riemannian geometry. This was searched by many around the

same time, in particular by Hermann Weyl, but it was Cartan who achieved this

goal. As a bonus of his general programme on connections, Cartan was also able

to give a very powerful and simple description of Riemannian geometry, in his

1925 paper, ‘La géométrie des espaces de Riemann’. In the preface to his 1928

book, Leçons Sur la Géométrie des Espaces de Riemann, he stated his aim was

that of bringing out the simple geometrical facts that have often been hidden

under a debauch of indices. It is this description of Riemannian geometry that

we will present under the name of ‘tetrad’ formalism for GR.

Élie Cartan was born on 9 April 1869 in Dolomieu (near Chambéry), a region

Rhône-Alpes of France. His father was a blacksmith. The family was very poor,

and it would be impossible for Élie to get good education if not for his talent for

mathematics that was spotted early. Already at primary school, Élie impressed
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Figure I.2 Élie Cartan

his teachers. One of them later said: ‘Élie Cartan was a shy boy, but his eyes

shone with an unusual light of great intelligence’. Still, Cartan could have never

become a great mathematician if not for a young school inspector, and later

important politician, Antonin Dubost. Dubost was visiting the school where the

young Élie was taught and was impressed with young boy’s talent. He encouraged

Élie to participate in a competition for state funds that would enable him to study

in a Lycée. Élie’s school teacher M. Dupuis prepared him for the competitive

examinations that were held in Grenoble. An excellent performance allowed Élie

to study in good schools, and then later to study at the École Normale Supérieure

(ENS) in Paris.

At ENS, Cartan became a student of Gaston Darboux, the inventor of the

moving frame method, which Cartan later largely developed. Cartan’s friend,

Arthur Tresse, was studying under Sophus Lie in Leipzig, and told Cartan about

the remarkable work of Wilhelm Killing on the classification of finite groups of

continuous transformations. Cartan then set to complete Killing’s work, and

corrected some important mistakes and omissions in it. This became Cartan’s

doctoral dissertation. In one way or another, Cartan’s whole scientific career

revolved around the questions related to Lie groups and their geometry.

Cartan was a lecturer at the University at Montpellier during 1894–1896, and

a lecturer at the University of Lyons, where he taught from 1896–1903. In 1903,

he married Marie-Louise Bianconi (1880–1950), the daughter of a professor of

chemistry there. The family moved to Paris in 1909, where Cartan was appointed

professor first at the Sorbonne and later at ENS. The Cartans had four children.

The eldest son, Henri, became a renowned mathematician. The second son, Jean,
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a composer of fine music, died of tuberculosis in 1932 at the age of 25. Their

third son, Louis, became a physicist. He was a member of the Resistance fighting

in France against the occupying German forces, and was arrested and executed by

the Nazis in 1943. Cartan was 75 when he learned of his third son’s fate, and this

was a devastating blow for him. The fourth child of the family was a daughter,

Hélène, who became a teacher of mathematics.

Cartan died in Paris in 1951 at the age of 82. Cartan’s obituary by Chern and

Chevalley opens with the words: ‘Undoubtedly one of the greatest mathematicians

of this century, his career was characterized by a rare harmony of genius and

modesty’.

Cartan’s more general connections were rediscovered by physicists only much

later, in the 1954 work by Yang and Mills. Every known interaction in nature

is now described by a gauge field or connection, of precisely the type that was

first introduced by Cartan in his differential geometry work of the 1920s. Of

course, Cartan did not write the Yang–Mills field equations, as his motivations

were entirely different from those of particle physicists of the 1950s. It was thus

Cartan who developed mathematics that is necessary to formulate gauge theories,

and that can also be used to describe gravity. It is rather unfortunate that the

theory of gravity is usually taught in the nineteenth-century language of tensor

calculus and not in the twentieth-century language of principal connections in

fibre bundles. Not only this second language is more clear – the debauch of

indices is no longer there – but it is also more computationally efficient due

to its usage of differential forms, and brings gravity closer in form to all the

other interactions. We hope this book will serve to promote Cartan’s language

of differential forms and connections as the most appropriate one, not just for

Yang–Mills theory, but also for gravity.

It must be admitted that for someone who was raised on notions of indices and

tensor calculus, absorbing Cartan’s geometric ideas is a rather difficult task. This

is in particular manifested by the fact that Cartan’s work on differential geometry

was recognised to be of importance only late in his life. Quoting Cartan’s obituary

by Shiing-Shen Chern and Claude Chevalley, written in 1951, Cartan’s ‘death

came at a time when his reputation and the influence of his ideas were in full

ascent’. However, even in 1938, Hermann Weyl, in reviewing one of Cartan’s

books, wrote: ‘Cartan is undoubtedly the greatest living master in differential

geometry. . . . I must admit that I found the book, like most of Cartan’s papers,

hard reading. . . . ’ This sentiment was shared by many geometers at the time.

The situation has changed however. Differential geometry is now taught, at

least to mathematicians, in a way that incorporates Cartan’s geometric ideas

from the start. It is time that this powerful language is also taken on board by

(gravitational) physicists.

Having given praise to Cartan’s ideas, it should be said that the tetrad for-

malism is described in most standard textbooks on GR, often under the name
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of ‘non-coordinate bases’, see, e.g., Sean Carroll’s 2019 book and/or Geometry,

Topology and Physics, by Mikio Nakahara (2000). This formalism, however, is

described only as secondary to the usual metric one. In particular, the spin

connection, which is the central object that the tetrad formalism introduces, is

considered to be only an object derived from the usual Christoffel connection.

Also, the conceptual change that the tetrad formalism brings with itself, namely

the fact that it works with a vector bundle different from the tangent bundle, is

rarely emphasised, while this is the central point. Moreover, the presentation of

the tetrad formalism in GR literature in fact avoids introducing any other bundle.

The presentation of the tetrad formalism to be given in this book is different from

the standard treatment in GR texts and is closer to the ones appearing in the

mathematical literature.

Moreover, while a description of the tetrad formalism can often be found in the

GR literature, it is rarely given any significance. Indeed, the usual attitude is that

it is only a reformulation of GR, and, moreover, one that increases the number

of field components that one has to work with, from 10 metric components in

four dimensions in metric GR, to 16 tetrad components. This is clearly in the

direction of loss of economy, and this appears to be a clear reason against using

the tetrads. Furthermore, the tetrad formalism uses two different types of indices,

the spacetime indices for vectors and forms on a manifold, and ‘internal’ indices

for objects valued in the vector bundle on which the tetrad formalism is based.

The usual attitude is that this leads to a notational nightmare. Why then use a

formalism with two types of indices, if in the metric GR it is possible to work with

only spacetime indices? Thus, the usual attitude to tetrads in the GR community

is that this is a cumbersome formalism, which brings with it nothing new, and

is therefore not worth the effort. It is nevertheless admitted that spinors can

only be coupled to gravity by using the tetrads. But one is rarely interested in

gravity effects caused by spinor matter, usually an effective description of matter

using perfect fluids is completely sufficient to extract interesting physics. So, even

though spinors do require tetrads, one rarely needs spinors in GR.

Yet another seemingly compelling reason to ignore tetrads is the description

of the linearised excitations of the gravitational field. These carry spin two.

As such, it appears to be natural to describe them by rank two tensors. The

linearised dynamics is then readily available by either linearising the Einstein

equations, or by looking for a second-order differential operator that is invariant

under the linearised diffeomorphisms. Both procedures uniquely lead to the same

linearised dynamics. The attitude of the particle physics community is then

that Einstein’s theory gives a nonlinear completion of this linearised description,

which is moreover to a very large extent unique. This point of view has been

advocated in Weinberg’s 1972 book, Gravitation and Cosmology. From this point

of view it appears to be unnatural to use any other object to describe gravity

other than the metric.
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Both arguments against the usage of tetrads actually underestimate the power

of the formalism of differential forms. Yes, the tetrad carries more components,

but the amount of gauge has also increased. And it is often the case in mathemat-

ics that a formalism that uses more independent functions allows for a simpler

description. That this is the case with the tetrad formalism is manifested by

the fact that the gravitational action in the tetrad formalism is just quartic in

the basic fields, while the Einstein–Hilbert metric action is non-polynomial in the

metric. Thus, the tetrad formalism gives an algebraically simpler description of

the gravitational field. And working with objects with different types of indices

is not a problem once an appropriate formalism is developed. Indeed, having

fields with two different types of indices does not cause any problems in the

treatment of the Yang–Mills theory. Finally, for the description of the linearised

dynamics, it turns out that not only does the tetrad formalism not make things

more complicated, on the contrary, the usage of differential forms brings with

it simpler differential operators as compared to those that arise in the metric

formalism. In fact, using differential forms, one achieves a description of the spin

two linearised fields that is analogous to the description of Maxwell’s theory, as

we shall see in Chapter 8. There is no such analogy when one works with the

metric variables. So, all in all, the formalism of differential forms does introduce

simplifications in GR ranging from the full nonlinear dynamics to the linearised

treatment. So, it is brushed aside in the usual GR texts for the wrong reasons,

as we hope will become clear from the treatment in this book.

As we have already said in the preface, this book is more than just about the

tetrad formalism. Its unifying theme is the formalisms for GR (in particular, GR

in four spacetime dimensions) that are based on vector valued differential forms.

Towards the end of the book, we will develop an even more exotic alternative,

in which gravity in four dimensions will be seen to arise as the dimensional

reduction of a theory of ‘pure’ differential forms, i.e., differential forms valued in

R, in seven dimensions. The development of all these different formulations would

be impossible without Cartan’s ideas and the example of the tetrad formalism,

historically the first description of GR in terms of differential forms. This explains

the considerable attention given to Cartan’s type of differential geometry in this

book. To put it provocatively, this book attempts to develop the theory of gravity

using the twentieth-century differential geometry of Cartan, forgetting Einstein’s

theory of GR formulated using the nineteenth-century language of tensor calculus

as much as possible.
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Aspects of Differential Geometry

The purpose of this chapter is to review, in a concise manner, aspects of

differential geometry that will be used in this book. It should be noted that

the presentation here is more a list of things that are important rather than a

pedagogical introduction to the subject. It is likely to be usable by those seeing

this material for the first time only if accompanied by reading other texts. At the

same time, the material here is standard and is covered in many books, so there

is no shortage of more pedagogical sources. The books we like are The Geometry

of Physics by Theodore Frankel (2012) and Geometry, Topology and Physics

by Mikio Nakahara (2003). We have also taken some material from Dubrovin,

Novikov and Fomenko’s (1985) Modern Geometry, and some definitions are from

the book by C. H. Taubes (2011) called Differential Geometry. Our presentation

of differential forms is from R. Bott and L. W. Tu’s (1982) Differential Forms in

Algebraic Topology. Finally, an invaluable source on many aspects of Riemannian

geometry is Besse’s (1987) Einstein Manifolds. The only slightly original part

in this chapter is our discussion of spinors in relation to differential forms. It

is original just in the sense of not being covered in the standard books on

differential geometry. Instead, it is standard in other books, in particular texts

on Clifford algebras.

1.1 Manifolds

The arena of differential geometry is a differentiable (or smooth) manifold. The

formalism to be described is important for two distinct reasons. First, it allows

one to deal with ‘topologically nontrivial’ manifolds, which are, loosely speaking,

manifolds that look like copies of Rn only locally, but not necessarily globally.

Second, the formalism allows one to define objects to be placed on manifolds in a

coordinate-independent manner. It is this second reason that is more important

for the treatment of a theory like GR, rather than the first, because for physics
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purposes one is usually (but not always) happy to study the theory in a setting

of trivial topology.

1.1.1 Cartography

The definition of a manifold is an abstraction of that originally described by

Gauss’ process of a cartographic representation of the Earth’s surface. The

process is as follows: the surface of the Earth is decomposed into sufficiently

small regions. The regions are numbered, partially overlapping and each region

is assigned to a group of cartographers. Each group produces a map of its region,

with the map drawn on a paper. For each map, two coordinates can be used to

identify every point. The collection of maps forms an atlas. And where regions

are overlapping, there exists a clear rule that describes how points on one map

correspond to points on another.

1.1.2 Topological Manifold

In this spirit, a topological n-dimensional manifold is a topological space1 M such

that every point has a neighbourhood U homeomorphic2 to an open subset in R
n.

The neighbourhoods U with a map ψU : U → R
n are called coordinate charts.

Any topological manifold can be represented as a union of a finite, or countable,

set of coordinate charts U , and a set of coordinate charts U that cover M is

called an atlas on M . Two topological manifolds are said to be homeomorphic if

there is a homeomorphism between them.

1.1.3 Smooth or Differentiable Manifold

A topological manifold M is called differentiable or smooth, if the transition

function for overlapping regions ψU′ ◦ψ−1
U : ψU(U

′ ∩U) → ψU′(U ′ ∩U) is a map

between open regions of Rn with partial derivatives of all orders. Two smooth

1 A topological space is a set X with an additional notion of neighbourhoods defined on it.
This is an assignment to each element (point) x of X a non-empty collection of subsets of
X called neighbourhoods of x. These are required to satisfy the following axioms: (i) each
point belongs to every one of its neighbourhoods; (ii) every subset of X containing a
neighbourhood of x is also a neighbourhood of x; (iii) the intersection of two
neighbourhoods of x is again a neighbourhood of x; (iv) every neighbourhood N of x
contains a neighbourhood M of x such that N is a neighbourhood of every point in M . To
this, one usually adds the Hausdorff assumption or axiom: for every two distinct points x
and y of X there exist neighbourhoods of x and y that are disjoint from each other. Given
the structure of neighbourhoods, there results the notion of open sets: A subset U of X is
called open if it is the neighbourhood of all points in U .

2 A homeomorphism is a continuous, one-to-one and onto (i.e., bijective) map between two
topological spaces, whose inverse is also continuous. A map f : X → Y between two
topological spaces is called continuous if for every x ∈ X and every neighbourhood N of
f(x) there is a neighbourhood M of x such that f(M) ⊆ N .
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manifolds are said to be diffeomorphic if there exists a diffeomorphism between

them, i.e., a smooth homeomorphism with a smooth inverse.

1.1.4 Alternative Definition

The definition of smooth manifolds as given starts with the notion of a topological

manifold, and adds a smooth structure. It is however possible to start directly

with a smooth structure, and induce the topological structure from the smooth

one. Thus, one can start directly in the world of smooth manifolds, and avoid

talking about topological manifolds at all, which is what we will always do here.

This proceeds as follows. One starts by defining a notion of an atlas on M ,

which is a collection {Uα, ψα}α∈I of coordinate charts such that (i) M is covered

by the set of charts {Uα}α∈I ; (ii) for each α, β ∈ I the image ψα(Uα∩Uβ) is open

in R
n, with an understanding that the empty set is open; and (iii) the map

ψβ ◦ ψ−1
α : ψα(Uα ∩ Uβ) → ψβ(Uα ∩ Uβ)

is C∞ with C∞ inverse.

This gives M a topology by saying that a subset V ⊆ M is open if, for each

α, ψα(V ∩ Uα) is an open subset of Rn. This can be checked to give M topology

in the sense that this equips M with the notion of open sets such that (i) M

and empty set are open; (ii) an arbitrary union of open sets is open; and (iii) a

finite intersection of open sets is open. These properties, as well as the fact that

with this topology the maps ψα become homeomorphisms, are proven in lecture

notes by N. Hitchin, entitled Differentiable Manifolds.

1.1.5 Constructions of Manifolds

The basic constructions of manifolds are submanifolds of Rn, submanifolds of

manifolds, products of manifolds, open subsets of manifolds, quotients of mani-

folds that are manifolds and the Grassmanians, see Taubes (2011, chapter 1) for

more details.

We will only explain the submanifolds of Rn construction.

Theorem 1.1 Let F : U → R
m be a C∞ function on an open set U ⊆ R

n+m and

take c ∈ R
m. Assume that for each a ∈ F−1(c) the derivative DFa : Rn+m → R

m

is surjective (which is the same as assuming that it has maximal rank m). Then

F−1(c) has the structure of an n-dimensional smooth manifold.

We note that the value c for which at every point of F−1(c) the matrix of

partial derivatives of F has the maximal rank is called a regular value. A proof

of this theorem is given, e.g., in Hitchin (2010) lectures.

Example 1.2 Consider the unit sphere in R
n+1 given by

Sn = {x ∈ R
n+1 :

n+1∑
a=1

(xa)2 = 1}.
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We define F : Rn+1 → R by

F (x) =
n+1∑
i=a

(xa)2.

The previous theorem guarantees that F−1(1) is a manifold if 1 is a regular value

of F. To check this we consider the matrix of partial derivatives

∂F

∂xa
= 2xa.

This has rank one as long as not all xa are identically zero, which is true for

points on Sn. So, Sn is a manifold.

Example 1.3 It is instructive to also see an example when the conditions

of the rank theorem are not satisfied. Let us consider the cone in R
1,n

given by

Cn = {x ∈ R
1,n : −(x0)2 +

n∑
a=1

(xa)2 = 0}.

We similarly construct the function

F (x) = −(x0)2 +

n∑
a=1

(xa)2.

Its matrix of derivatives is

∂F

∂xa
= (−2x0, 2x1, . . . , 2xn).

This has rank one as long as not all of xa are zero. However, this is not sat-

isfied for all of the points on Cn = F−1(0). Indeed, the tip of the cone is

at the origin of R
1,n, where all the coordinates vanish, and the conditions of

the rank theorem are not satisfied. We can thus say that 0 is not a regular

value of F (x). Thus, the cone is not a smooth manifold because the conditions

of the rank theorem fail at its tip. It is also intuitively clear that the tip is

not a smooth point, and we see that this intuition is captured by the rank

theorem.

Example 1.4 Here is an example of a more nontrivial submanifold in R
3 – a

torus. This is defined as a set of points

T 2 = {x ∈ R
3 : ((x2

1 + x2
2)

1/2 − 1)2 + x2
3 = 1}.

Again, the application of rank theorem shows this to be a manifold. This is a

torus of revolution, which is made explicit by the following parametrisation by

two angle coordinates

(ψ,ϕ) → (x1 = (1 + cosψ) cosϕ, x2 = (1 + cosψ) sinϕ, x3 = sinψ).
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1.1.6 One More Manifold Example

Here is one more instructive example: The set of straight lines in the plane.

Example 1.5 Let X be the set of straight lines in the plane R
2. Each such line

can be described by an equation

Ax+By + C = 0,

with (A,B,C) and (λA, λB, λC), λ �= 0 describing the same line.

Let U0 be the set of non-vertical lines. These are lines for which B �= 0. Each

such line has the equation of the form

y = mx+ c,

where m, c are uniquely defined. This gives us the coordinate chart

ψ0 : U0 → R
2; line → (m, c) ∈ R

2.

Let U1 be the set of non-horizontal lines. These are lines with A �= 0. Every

such line is described by an equation of the type

x = m̃y + c̃.

So, we have another coordinate chart and the coordinate map

ψ1 : U1 → R
2, line → (m̃, c̃) ∈ R

2.

Let us now consider the overlap U0 ∩ U1. These are lines y = mx+ c that are

not horizontal, i.e., m �= 0. This gives

ψ(U0 ∩ U1) = {(m, c) ∈ R
2 : m �= 0},

which is an open subset of R2, as is required. We can also describe explicitly the

change of coordinates as one goes from U0 to U1. Indeed, when m �= 0, the line

y = mx+ c can be written as x = m−1y − cm−1. We thus have

ψ1 ◦ ψ−1
0 (m, c) = (m−1,−cm−1).

Away from m = 0 this is a smooth map with a smooth inverse. This gives the

set of lines in R
2 the structure of a smooth manifold.

1.2 Differential Forms

Differential forms are one of the most primitive objects that can be defined

on a smooth manifold. These objects play a very important role in differential

geometry. Our presentation here follows closely the book by R. Bott and L. W. Tu

(1982) titled Differential Forms in Algebraic Topology, but with some differences

in notation.
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1.2.1 Differential Forms on R
n

We start by defining differential forms on R
n. Let xa, a = 1, . . . , n be the Carte-

sian coordinates on R
n. We define Λ• to be the algebra over R generated by

objects dxa with the relations

dxadxb = −dxbdxa. (1.1)

Note that we omit the wedge product symbol, as being implied. In physics

terminology, the objects dxa are anti-commuting.

As a vector space Λ• has basis

1, dxa, dxadxb,

a < b

dxadxbdxc,

a < b < c

. . . , dx1dx2 . . . dxn,
(1.2)

and is of dimension

dimΛ• = 2n. (1.3)

We define differential forms on R
n to be elements of

Λ•(Rn) = {C∞ functions on R
n} ⊗R Λ•. (1.4)

Here ⊗ is the tensor product, whose definition is given in (1.16). This means

that each such form can be uniquely written as

ω =
∑

a1<···<aq

fa1...aqdx
a1 . . . dxaq ,

where fa1...aq are smooth functions that are called components of the differential

form ω. The algebra of differential forms is naturally graded

Λ•(Rn) = ⊕n
q=0Λ

q(Rn), (1.5)

where elements of Λq(Rn) are called q-forms on R
n. We shall often omit the

argument in Λq(Rn) if no confusion can arise as to what space the differential

forms live on. An alternative expression for a degree q form is

Λq 
 ω =
1

q!
faa...aqdx

a1 . . . dxaq ,

where the summation convention is implied.

1.2.2 Wedge Product of Forms

We can define the wedge product ω ∧ τ or simply ωτ of differential forms

ω =
∑

fa1...aqdx
a1 . . . dxaq and τ =

∑
gb1...bpdx

b1 . . . dxbp to be

ωτ =
∑

fa1...aqgb1...bpdx
a1 . . . dxaqdxb1 . . . dxbp .
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1.2.3 Exterior Derivative

The space Λ•(Rn) comes naturally equipped with a differential operator

d : Λq → Λq+1 (1.6)

that is defined by two properties: (i) if f ∈ Λ0 then df = (∂f/∂xa)dxa; (ii) if

ω =
∑

fa1...aqdx
a1 . . . dxaq then dω =

∑
dfa1...aqdx

a1 . . . dxaq .

Example 1.6 If ω = xdy then dω = dxdy.

The operator d is called exterior differentiation, or exterior derivative, and is

the ultimate extension of the operators of gradient, curl and divergence of vector

calculus, as the following example shows.

Example 1.7 On R
3 the spaces Λ0 and Λ3 are 1-dimensional, and the spaces

Λ1,Λ2 are 3-dimensional. Thus, the following identifications are possible

{functions}
f

�
↔

{0-forms}
f

�
↔

{3-forms}
fdxdydz

and

{vector fields}
(f1, f2, f3)

�
↔

{1-forms}
f1dx+ f2dy + f3dz

�
↔

{2-forms}
f1dydz + f2dzdx+ f3dxdy

Then, on functions we have

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

On 1-forms we have

d(f1dx+ f2dy + f3dz)

=

(
∂f3
∂y

− ∂f2
∂z

)
dydz +

(
∂f1
∂z

− ∂f3
∂x

)
dzdx+

(
∂f2
∂x

− ∂f1
∂y

)
dxdy.

On 2-forms we have

d(f1dydz + f2dzdx+ f3dxdy) =

(
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

)
dxdydz.

This means that

d(0-forms) = gradient,

d(1-forms) = curl,

d(2-forms) = divergence.

It can be checked that d is an antiderivation, i.e.,

d(ωτ) = (dω)τ + (−1)deg(ω)ωdτ.
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Note that this is the ordinary product rule at the level of functions. It can also

be checked that, in view of the fact that the partial derivatives commute, the

operator d squares to zero

d2 = 0.

1.2.4 De Rham Complex

The space Λ•(Rn) equipped with the operator of exterior derivative is called the

de Rham complex on R
n. The kernel of d are closed forms, while the image of d

are exact forms. On R
3 the notion of closed forms subsumes the vector calculus

terminology of irrotational and solenoidal vector fields, while the notion of exact

forms generalises that of gradient and curl vector fields.

The de Rham complex may be viewed as a God-given set of differential

equations, with solutions being closed forms. For example, on R
2, finding a

closed 1-form fdx+gdy is equivalent to solving the differential equation ∂g/∂x−
∂f/∂y = 0. Since exact forms are automatically closed, they constitute ‘trivial’

or ‘uninteresting’ solutions. A measure of the size of the space of ‘interesting’

solutions is the definition of the de Rham cohomology: The q-th de Rham coho-

mology of Rn is the vector space

Hq(Rn) = {closed q-forms}/{exact q-forms}.

For more on de Rham cohomology and the technology needed to compute it, see

the Bott–Tu book (1982).

1.2.5 Pullback of Differential Forms

We would now like to extend the notion of differential forms and d from R
n to

an arbitrary manifold. To this end, we need to understand how these notions

are compatible with coordinate transformations between charts. To start with,

let us introduce the notion of a pullback of a differential form. Thus, given a

smooth map

f : Rm → R
n

there is a natural notion of pullback on functions. Indeed, given g ∈ Λ0(Rn) its

pullback f∗(g) ∈ Λ0(Rm) is defined as

f∗(g) = g ◦ f.

We then extend this notion of pullback so that it commutes with the exterior

differentiation. This defines f∗ on forms uniquely

f∗(
∑

ga1...aqdy
a1 . . . dyaq ) =

∑
(ga1...aq ◦ f)d(ya1 ◦ f) . . . d(yaq ◦ f),
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so that

f∗ : Λq(Rn) → Λq(Rm).

The proof that with this definition the pullback commutes with the exterior

differentiation is an exercise in chain rule. In practice, the pullback is computed

by the simple change of coordinates.

Example 1.8 Let ω = xdy − ydx ∈ Λ1(R2), and let the map f : S1 → R
2 be

given by x = cos(ϕ), y = sin(ϕ). Then

f∗(ω) = cos(ϕ)d(sin(ϕ))− sin(ϕ)d(cos(ϕ)) = dϕ.

1.2.6 Differential Forms on a Manifold

Having defined the notion of pullback of forms on R
n, we are ready to define

differential forms on an arbitrary smooth manifold M . Thus, a differential form

on M is a collection of forms ωU on R
n for each coordinate chart U , compatible

in the following sense: If U,U ′ have a common overlap U ′ ∩U then the pullback

of ωU′ to the coordinate chart U coincides with ωU

(ψU′ ◦ ψ−1
U )∗(ωU′) = ωU .

Example 1.9 Consider the space S2. This is a manifold that can be covered

by two coordinate charts each diffeomorphic to R
2. Concretely, we take one

coordinate chart to be given by the stereographic projection from the north pole

from the sphere to the equatorial plane. We will identify the equatorial plane R2

with the complex plane C. Then, if θ, ϕ are the usual spherical coordinates on

the sphere, the complex coordinate of a point corresponding to the point θ, ϕ is

ψN : S2/{N} → C, z =
cos(θ/2)

sin(θ/2)
eiϕ.

Let us now consider a 1-form on C

ωN = 2
zdz̄ + z̄dz

(1 + |z|2)2 = d
|z|2 − 1

|z|2 + 1
.

Its pullback to S2 is therefore given by

ψ∗
N(ωN) = d cos θ = dx3,

where x1, x2, x3 are the coordinates of the embedding of S2 into R
3. The form

ωN is a good 1-form in UN = S2/{N}, which moreover vanishes at z = 0 (south

pole).

Let us now consider the second coordinate chart. It is taken to be the stere-

ographic projection from the south pole to the equatorial plane. If we again

identify R
2 with C, this coordinate map is

ψS : S2/{S} → C, w =
sin(θ/2)

cos(θ/2)
eiϕ.
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It is easy to see that w = 1/z̄. This is a map ψN→S from C with origin removed

to C, and is the change of chart coordinate transformation in this case. Let us

define the 1-form ω in the chart S to be given by

ωS = −2
wdw̄ + w̄dw

(1 + |w|2)2 ,

i.e., the same formula as that for ωN but in terms of the coordinate w, and

with an extra minus sign. The form ωS is a good form on US = S2/{S},
which moreover vanishes at w = 0 (north pole). It is now easy to check

that

ψ∗
N→S(ωS) = ωN ,

and so the 1-form we have described is a globally defined 1-form on S2.

Example 1.10 Let us now give an illustrative example of the fact that not

every differential form that behaves well in some coordinate chart extends to a

well-defined form on the whole manifold. Let us again consider the situation of

S2. Consider the north pole coordinate chart and the complex coordinate z on

it as in the previous example. Consider the following 1-form

ωN =
i

2

zdz̄ − z̄dz

1 + |z|2 . (1.7)

This is a good form on S2/{N}, vanishing at z = 0 (south pole). In order

for this 1-form to be well-defined on the whole of S2, there should be a well-

defined 1-form ωS on the coordinate chart (S2/{S}, ψS), whose pullback under

the coordinate transformation w = 1/z̄ should match ωN everywhere apart

from the south and north poles. Because ωS should match ωN we can guess

an expression for it by performing the coordinate transformation z = 1/w̄.

This gives

ωS =
i

2

(1/w̄)d(1/w)− (1/w)d(1/w̄)

1 + 1/|w|2 =
i

2

wdw̄ − w̄dw

|w|2(1 + |w|2) .

We want this to be defined everywhere in the coordinate chart (S2/{S}, ψS), in

particular at the north pole that corresponds to w = 0. However, it is clear that

this 1-form is not defined at w = 0. So, there exists no globally defined 1-form

on S2 that agrees with (1.7) on the coordinate chart (S2/{N}, ψN). In fact, the

object (1.7) does arise naturally, but corresponds to a connection in a certain

line bundle over S2 rather than a 1-form.

Now that we have the notion of differential forms on M , and given that the

operator of exterior differentiation commutes with pullbacks, it is clear that d

extends to a well-defined operator on differential forms on M . In particular, on

overlaps U ′ ∩U , the operator d can be computed in either of the two coordinate

systems and is coordinate-independent.
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1.3 Integration of Differential Forms

One of the most important reasons to be interested in differential forms is the

fact that they can be naturally integrated over (oriented) submanifolds. More

precisely, a differential form of degree q can be naturally integrated over a

submanifold of dimension q, closed or with boundary. A related reason why

differential forms are important is the generalised Stokes’ theorem stating that

the integral of an exact form dω is equal to the integral of ω over the boundary.

This is the ultimate generalisation of the integral theorems of vector calculus.

1.3.1 Orientation

Differential forms can only be integrated over oriented submanifolds, so we first

need to discuss the notion of an orientation. Our discussion follows closely the

one in book by Theodore Frankel (2012) called Geometry of Physics.

Let us first discuss an orientation of a vector space V . Let ea ∈ V, a = 1, . . . , n

be a basis of vectors in V . Any other basis e′a ∈ V is obtained from ea by

a GL(n,R) transformation e′a = ma
beb,m ∈ GL(n,R). The determinant of m

is either positive or negative. If it is positive one says that e′a has the same

orientation as ea, if it is negative one says that the orientation is opposite. It

is clear that the set of all possible bases is split into two subsets of opposite

orientation. We can arbitrarily pick a basis from one of this two subsets and call

it the positive orientation. To orient a vector space means to choose a basis that

is said to have the positive orientation.

Let us now discuss orientation of manifolds. We can orient each tangent space

TxM over a coordinate chart U by choosing a basis in the space of coordinate

vector fields ∂/∂x1, . . . , ∂/∂xn and saying that it provides the positive orientation.

We can do so over all the coordinate charts. The key issue is whether a global

choice of orientation is possible, i.e., whether the Jacobians of the coordinate

transformations over the overlaps are all of positive determinant. If it is possible

to choose orientation of the charts in such a way, then we say that the manifold

is orientable. If it’s not possible, we say that the manifold is non-orientable. An

example of a non-orientable manifold is the Möbius strip. It is clear that if M

is connected and orientable, then there are just two different ways to orient it.

The same discussion applies to submanifolds of M . Indeed, they are manifolds

in themselves (possibly with a boundary but we will consider this later), and so

they can be orientable or not, and if orientable, there are exactly two possible

orientations to a connected submanifold.

Another situation arises if we have a submanifold N ⊂ M of codimension

exactly one, i.e., the situation of a hypersurface. In this case, there is a notion of

a transverse vector field n along N . It is a vector field that is nowhere tangent to

N , in particular it is nowhere zero. One then says that a hypersurface N ⊂ M

is two-sided in M it is possible to choose if there exists a transverse vector field
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along N . In general, if N is a two-sided hypersurface in an orientable manifold

M then it is itself orientable.

1.3.2 Integration of a Form

One first defines the integral of a p-form ω = ω(x)dx1∧· · ·∧dxp over an oriented

region (U, o) ⊂ R
p, where o is an orientation, i.e., a choice of a positively oriented

basis. This is done as follows∫
(U,o)

ω =

∫
(U,o)

ω(x)dx1 ∧ · · · ∧ dxp := o[x]

∫
U

ω(x)dx1 . . . dxp, (1.8)

where the integral on the right-hand side is the usual repeated integral in R
p, and

o[x] = o[∂1, . . . , ∂n] = ±1 is the orientation of the basis of the coordinate vector

fields ∂1, . . . , ∂n. We have reinstated the wedge product symbol in the previous

formulas to make the passage from the integral of a differential form to the usual

repeated integral clear. It is clear that the integral so defined changes the sign if

the orientation is reversed ∫
(U,−o)

ω = −
∫
(U,o)

ω. (1.9)

Another property of the integral so defined is that it is independent of the

coordinate system used to evaluate it.

We then define the integral of a differential form over an oriented

parametrised subset of a manifold M . This is defined as follows. An oriented

parametrised p-subset of M is a triple (U, o, F ) consisting of an oriented region

(U, o) of Rp together with a differentiable map F : U → M . We then define∫
(U,o,F )

ω :=

∫
(U,o)

F ∗ω. (1.10)

In other words, the differential form is pulled back to R
p via the parametrisation

map, and then the integral is evaluated as a repeated integral over R
p, taking

the orientation into account. It is easy to check that, in the case of curves and

surfaces in R
3, this definition leads to the familiar vector calculus formulas for

line and surface integrals. It can also be checked that the integral so defined is

in fact independent of parametrisation.

Not every submanifold N ⊂ M can be covered by a single parametrised subset,

because the topology of N may be nontrivial. In this case, one defines the

integral by covering N with patches each of which can be parametrised, and

moreover patches that overlap only along edges and vertices. One then defines

the integral of a form over N to be given by the sum of the integrals over the

patches. This does not depend on how the surface is decomposed into a collection

of parametrisable patches. We refer the reader to the book by Frankel (2012)

for more details.
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1.3.3 Stokes’ Theorem

A manifold with boundary is a slight generalisation of the concept of a manifold.

Every point of a manifold has an open neighbourhood diffeomorphic to a ball in

R
n. For a manifold with boundary this is true everywhere apart from points of

the boundary. This is a special set of points denoted by ∂M that is required to be

a manifold itself. In particular, ∂M does not have a boundary, or the boundary

of a boundary is zero. Second, every point of the boundary has a neighbourhood

that is diffeomorphic to a half-ball in R
n, i.e., the set |x| < ε, xn ≤ 0. It is clear

that a manifold with empty boundary is just the concept of the manifold as we

have previously defined it.

To state the Stokes’ theorem for an integral of a p-form ω over a p-dimensional

submanifold N ⊂ M with boundary we need to define a canonical notion of the

orientation of a boundary ∂N when an orientation of N is given. This is done

as follows. Let e2, . . . , en span the tangent space to ∂N at some point x ∈ ∂N .

Let n be the tangent vector to N at x that is transverse to ∂N and points out of

N . Then e2, . . . , en is called positively oriented when n, e2, . . . , en is a positively

oriented basis of vectors in TxN according to the orientation of N chosen. With

this choice of the orientation of ∂N we have

Theorem 1.11 Let N ⊂ M be a compact, i.e., having the property that every

cover of N by open subsets has a finite subcover, oriented p-dimensional subman-

ifold with boundary ∂N in a manifold M . Let ω be a continuously differentiable

(p− 1)-form on M . Then ∫
N

dω =

∫
∂N

ω. (1.11)

1.4 Vector Fields

In differential geometry, vector fields get encoded into the operators of directional

derivatives on functions. This gives a coordinate-free definition. However, in the

spirit of the definition of the differential forms as given before, let us first state

a definition in a coordinate chart.

1.4.1 Definition

One first defines the tangent space to M at a point p, denoted by TpM , to

be the vector space over R spanned by the operators of partial derivatives

∂/∂x1, . . . , ∂/∂xn, where x1, . . . , xn are local coordinates in some coordinate

chart U to which point p belongs. Then a smooth vector field on U is a linear

combination

vU = va ∂

∂xa
,
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with summation convention implied. This way of defining vector fields encodes

them into operators of directional derivatives on function.

In a different coordinate chart ya = ya(x) the vector field is given by push-

forward, with the relation between the coordinate vector fields given by the

chain rule

∂

∂xa
=

∂yb

∂xa

∂

∂yb
.

A smooth vector field on M can then be viewed as a collection of vector fields on

charts U that agree on overlaps U ′ ∩ U . A vector field on M is an object in the

tangent space to M denoted by TM . We will give a coordinate-free definition of

vector fields in Section 1.4.4, after some examples are considered.

1.4.2 Push-Forward of Vector Fields

Let us develop the notion of push-forward of vector fields further. Thus, if φ :

M → N is a diffeomorphism from manifold M to manifold N , the push-forward

maps vector fields on M to those on N , is defined by the chain rule, and is

denoted by φ∗ : TM → TN . Note, however, that the push-forward is a subtle

notion because in general it is not possible to identify a vector field on N that is

a push-forward of a given vector field on M . For example, the map φ : M → N

may not be surjective. In this case one can at most define the push-forward vector

field on the image of the map. Another situation where the push-forward is not

generally defined is when φ is not injective. In this case there is more than one

choice of a push-forward at any given point in the image. In the situation of a

surjective map φ, a vector field X ∈ TM is called projectable if φ∗(Xx) ∈ TyN

is independent of a choice x ∈ φ−1(y), y = φ(x). This is precisely the condition

that guarantees that the push-forward of X ∈ TM as a vector field on N is

well-defined. This discussion makes it clear that the notion of a push-forward of

vector fields is much more complicated and subtle than the notion of the pullback

of functions and forms. This is one more reason to say that differential forms are

more fundamental objects than vector fields.

An equivalent way of stating the definition of the push-forward is to use the

already available notion of the pullback on functions. Thus, if f ∈ C∞(N) is a

function on N , then φ∗(f) ∈ C∞(M) is its pullback. The push-forward vector

field φ∗(v) ∈ TN is defined via the following relation

v(φ∗(f)) = φ∗(v)(f). (1.12)

This is the same as the (implicit) definition by the chain rule. Indeed, if ya are

coordinates on N and ya = ya(x) is the map φ : M → N , then φ∗(f)(x) =

f(y(x)), and we have

v(φ∗(f)) = va ∂

∂xa
f(y(x)) = va ∂y

b

∂xa

∂

∂yb
f(y) = (φ∗(v))

b ∂

∂yb
f(y) = φ∗(v)(f).
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1.4.3 Example

Example 1.12 Let θ, φ be the usual spherical coordinates on S2. Consider the

following vector field on S2

v =
∂

∂φ
.

This is a globally defined vector field, as will be clear from considerations that

follow later in this example. Consider the stereographic projection map

ψN : S2/{N} → C, z =
cos(θ/2)

sin(θ/2)
eiϕ.

Let us find the push-forward of v with respect to this map. We have

vN =
∂

∂φ
=

∂z

∂φ

∂

∂z
+

∂z̄

∂φ

∂

∂z̄
= iz

∂

∂z
− iz̄

∂

∂z̄
. (1.13)

Here z, z̄ are interpreted as the local coordinates on C.

Let us now take the other coordinate chart and consider its stereographic

projection

ψS : S2/{S} → C, w =
sin(θ/2)

cos(θ/2)
eiϕ.

In this coordinate chart the vector field v is given by the same expression

v = ∂/∂φ, and its push-forward is

vS = iw
∂

∂w
− iw̄

∂

∂w̄
, (1.14)

which is the same expression as (1.13) with with w in place of z.

Now the overlap UN ∩US is all of the sphere without the north and south poles.

On the overlap we have w = 1/z̄. Let us find the push-forward of the vector field

(1.13) under this map. We have

ψN→S
∗ vN = iz

(
∂w

∂z

∂

∂w
+

∂w̄

∂z

∂

∂w̄

)
− iz̄

(
∂w

∂z̄

∂

∂w
+

∂w̄

∂z̄

∂

∂w̄

)
.

The only nonvanishing derivatives here are ∂w/∂z̄ and its complex conjugate.

We get

ψN→S
∗ vN = −iz

1

z2

∂

∂w̄
+ iz̄

1

z̄2

∂

∂w
= −iw̄

∂

∂w̄
+ iw

∂

∂w
= vS.

This coincides with the vector field in (1.14), which shows that the vector field

given in two different coordinate charts by (1.13) and (1.14) defines a globally

well-defined vector field on S2.
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1.4.4 Vector Fields as Derivations

Our definition of vector fields shows that they map smooth functions on M to

smooth functions on M . Explicitly, in local coordinates

v(f)(x) = va(x)
∂f

∂xa
(x).

It is clear that this map satisfies the Leibnitz property

v(fg) = fv(g) + gv(f).

In fact, any linear transformation with this property (called a derivation of the

algebra C∞(M)) is a vector field:

Lemma 1.13 Let v : C∞(M) → C∞(M) be a linear map that satisfies the

property v(fg) = fv(g) + gv(f). Then v is a vector field.

A proof is simple and instructive, so we will spell it out. By linearity v(cf) =

cv(f), where c is a constant, and by Leibnitz property v(cf) = cv(f) + fv(c),

which means that v(c) = 0. Now, near a point with coordinates pa any f(x) can

be written as

f(x) = (xa − pa)ga(x) + c,

where ga(x) are some functions that satisfy

ga(p) =
∂f

∂xa
(p).

We now apply a derivation v to f written in this form. Using the Leibnitz property

this gives

v(f) = v(xa)ga + (xa − pa)v(ga).

Evaluating this at x = p we get

v(f)(p) = v(xa)(p)
∂f

∂xa
(p).

Defining now v(xa)(p) := va we see that indeed any derivation is of the form

v = va ∂

∂xa
,

which coincides with our previous definition of vector fields.

The characterisation of vector fields as derivations can be used as an alterna-

tive way of defining them. The advantage of this definition is that it is clearly

coordinate-independent.
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1.4.5 Lie Bracket of Vector Fields

The previous characterisation of vector fields as derivations can be used to show

that the commutator [v, u] of two derivations is again a derivation and thus a

vector field. Indeed, we have

uv(fg) = u(v(f)g + fv(g)) = u(v(f))g + v(f)u(g) + u(f)v(g) + fu(v(g)),

vu(fg) = v(u(f)g + fu(g)) = v(u(f))g + u(f)v(g) + v(f)u(g) + fv(u(g)),

and so

(uv − vu)(fg) = (u(v(f))− v(u(f)))g + f(u(v(g))− v(u(g))),

which means that the Leibnitz property is satisfied and uv − vu =: [u, v] is a

vector field. The vector field [u, v] is called the Lie bracket of u, v.

1.4.6 Interior Product

Vector fields are objects that can naturally be paired with the differential forms.

This gives rise to the notion of interior product

iv : Λq(M) → Λq−1(M).

In components this is given by

(ivω)a1...aq−1
= vaωaa1...aq−1

. (1.15)

In particular, the interior product of a vector field with a 1-form is a function

ivθ ≡ θ(v), where θ ∈ Λ1, v ∈ TM .

The interior product can also be defined recursively. Thus, given a differential

form

ω =
1

q!
ωa1...aq

dxa1 . . . dxaq

we define

ivω =
1

q!
ωa1...aq

(ivdx
a1) . . . dxaq + · · ·+ (−1)q−1 1

q!
ωa1...aq

dxa1 . . . (ivdx
aq ).

This means that we successively apply the operator iv to all 1-form factors in ω,

taking into account the arising signs. All terms in the previous expression are

equal, and so the sum computes to

ivω =
1

(q − 1)!
va1ωa1...aq

dxa2 . . . dxaq .

This clearly agrees with the component definition (1.15) stated previously.
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Example 1.14 Considering again our previous example of S2 manifold, let us

compute the pairing of 1-form

ω =
i

2

(
dz̄

z̄
− dz

z

)
with vector field

v = iz
∂

∂z
− iz̄

∂

∂z̄
,

with both being given by their expressions on the coordinate chart S2/{N}. It
is computed using the rules

dz

(
∂

∂z

)
= 1, dz̄

(
∂

∂z̄

)
= 1,

with the other two possible pairings being zero. This gives ω(v) = 1, which is of

course the expected pairing dφ(∂/∂φ) = 1.

Example 1.15 Here is a more nontrivial example of usage of the interior product.

Let

ω = dxdy, v = x
∂

∂x
+ y

∂

∂y
.

Then

ivω = xdy − ydx.

The way this is computed is that iv is applied to every factor in dxdy, taking

into account the arising signs. In other words iv(dxdy) = (ivdx)dy − dx(ivdy).

1.4.7 Coordinate-Free Definition of Forms

The fact that there is a natural pairing between vector fields and 1-forms means

that the space of 1-forms can be identified with the space of linear functionals

on vector fields

θ : TM → R, v → θ(v) ≡ ivθ.

Given that we have a coordinate-independent definition of vector fields as deriva-

tions, this gives a coordinate-independent definition of 1-forms. In view of the

possibility of this definition, the space of 1-forms is often denoted by T ∗M , and

referred to as the cotangent space to M .

1.5 Tensors

We have so far encountered differential forms as well as vector fields as ana-

lytical objects on manifolds. These are examples of more general objects called

tensors.



26 Aspects of Differential Geometry

1.5.1 Tensor Product

Let V,W be two finite-dimensional vector spaces over R. We are going to define

a new vector space V ⊗ W with the property that if v ∈ V,w ∈ W then there

is a product v ⊗ w ∈ V ⊗W . The property of the tensor product ⊗ is that it is

bilinear

(λv1 + μv2)⊗ w = λv1 ⊗ w + μv2 ⊗ w, (1.16)

v ⊗ (λw1 + μw2) = λv ⊗ w1 + μv ⊗ w2.

So, the tensor product V ⊗W is the vector space of all finite linear combinations

of symbols like v⊗w. Two such expressions are regarded as equal if they can be

transformed one into another by a sequence of operations (1.16).

If ei ∈ V, i = 1, . . . , n, fj ∈ W, j = 1, . . . ,m are a basis for V,W , it is clear

that the vectors ei ⊗ fj form a basis for V ⊗W , and so the dimension the tensor

product space is dim(V ⊗ W ) = dim(V )dim(W ). It is important to remember

that a typical element of V ⊗W can only be written as a sum∑
i,j

aijei ⊗ fj ,

and not as a pure product v ⊗ w.

1.5.2 Tensors

At a point p ∈ M of the manifold we have previously defined the vector spaces

TMp of vectors (derivations) and 1-forms (covectors) T ∗Mp. We can take the

tensor product of r copies of the tangent space and s copies of the cotangent

space. An element t of this tensor product is called a tensor of type (r, s)

t ∈ TMp ⊗ TMp ⊗ T ∗Mp ⊗ T ∗Mp ≡ T r,sMp.

If coordinates are chosen, then such a tensor can be expanded in coordinate bases

in TMp, T
∗Mp

t = t
a1...ar
b1...br

∂

∂xa1
⊗ · · · ⊗ ∂

∂xar
⊗ dxb1 ⊗ · · · ⊗ dxbs , (1.17)

where summation convention is implied.

Having defined tensors at a point, we can extend this definition to the whole

of the manifold. As with differential forms and vectors, there are two possible

definitions. One is the coordinate one, in which a tensor is a collection of objects

like (1.17) in each coordinate chart that match on coordinate chart overlaps.

Another, coordinate-free definition arises if we remember that vectors can be

naturally paired with 1-forms, and 1-forms can be naturally paired with vectors.

Then a tensor t ∈ T r,sM on M can be defined as a multi-linear functional

t ∈ T r,sM : T ∗M × · · · × T ∗M × TM × · · · × TM → C∞(M). (1.18)
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In other words, a tensor of type (r, s) can be viewed as a machine into which one

has to insert r 1-forms and s vector fields to get a function on M . This definition

is clearly coordinate-independent.

It is worth remembering that type (1, 0) tensors are vector fields, and type

(0, 1) tensors are 1-forms (covector fields). The type (0, 0) tensors are defined to

be functions.

Example 1.16 There exists a (1, 1) tensor that in every coordinate system

has components 1, 0. Its components are denoted by δab , which is known as the

Kronecker delta. The tensor itself is then

δ = δab
∂

∂xa
⊗ dxb.

The Jacobians arising under changes of coordinates cancel, and this tensor can

be given by δab in any coordinate system.

Because vectors can be naturally paired with covectors, there exists on tensors

a naturally defined operation of contraction, which maps a tensor of type (r, s)

into a tensor of type (r − 1, s− 1). This arises by pairing one of the vector slots

with one of the covector slots. It is important to keep in mind that in general

the position of the slots matter, and so, e.g., contraction of the first vector slot

with the first covector slot gives a tensor different from the one that arises by

contracting the second vector slot with the first covector slot. Given a tensor of

type (r, s) there are in general nm different tensors of type (r−1, s−1) that can

be obtained by contraction.

Example 1.17 Taking the tensor δ of type (1, 1) as an example, there is the

only possible contraction. This contraction produces a function on M , whose

value is constant and equal to the dimension of M .

1.5.3 Differential Forms as Tensor Fields

Having defined tensors we can see that the previously defined differential forms

are just special type of tensors. Thus, a rank q differential form is a completely

antisymmetric tensor of type (0, q). Indeed, we have defined differential forms

as elements of vector space generated by anti-commuting objects dxa, with a

general form of rank q given by

Λq 
 ω =
1

n!
ωa1...aq

dxa1 . . . dxaq , (1.19)

with the summation convention implied. Given that the coordinate q-forms

dxa1 . . . dxaq are completely antisymmetric in a1, . . . , a1, the form components

ωa1...aq
are also completely antisymmetric. There is then a natural correspon-

dence under which q-forms go into tensors of type (0, q)
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1

n!
ωa1...aq

dxa1 . . . dxaq → 1

n!
ωa1...aq

dxa1 ⊗ · · · ⊗ dxaq ,

where we just added the tensor product symbols. It is clear that this sends a

form of rank q into a tensor of type (0, q) that is completely antisymmetric. In

the opposite direction, a tensor of type (0, q) that is completely antisymmetric

gives a q-form obtained by replacing every occurrence of the tensor product

with the wedge product (or, as in this book, simply omitting the tensor product

symbol with the wedge product symbol implied). With this in mind, we will

not make any difference between the antisymmetric rank (0, q) tensors and

differential forms.

1.6 Lie Derivative

1.6.1 One-Parameter Groups of Diffeomorphisms

Definition 1.18 A one-parameter group of diffeomorphisms of a manifold M is

a smooth map

φ : M × R → M

such that (introducing the notation φt(x) = φ(x, t)): (i) φt : M → M is a

diffeomorphism; (ii) φ0 = id; (iii) φs+t = φs ◦ φt.

It is important that this definition requires that the map φt : M → M exists

for all t ∈ R. It is also possible to introduce a related notion of an integral

curve of a vector field v though a point p ∈ M . This can also be described

as a family of maps φt defined for some range of parameter t, with this range

typically depending on the point p through which the integral curve is drawn.

The maps satisfy φ0 = id and φt+s = φt ◦ φs wherever they are defined. On

compact manifolds integral curves can be extended to one-parameter groups of

diffeomorphisms (see Section 1.6.2 for the corresponding theorem).

We will see that one-parameter groups of diffeomorphisms generate vector

fields (as their velocity vector field, see Section 1.6.2), and vice versa, at least

on compact manifolds, vector fields generate one-parameter groups of diffeomor-

phisms. So, vector fields can be viewed as infinitesimal versions of one-parameter

groups of diffeomorphisms.

1.6.2 Velocity Vector Field

Let φt be a one-parameter group of diffeomorphisms, and let f be a function on

M . Then f(φt(x)) is a smooth function of t. Differentiating with respect to t at

t = 0 we get

∂

∂t
f(φt(x))

∣∣∣
t=0

= vx(f).
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This is a tangent vector at x as can be seen from the fact that it satisfies the

Leibnitz property. This follows from the Leibnitz rule for the derivative with

respect to t and φ0(x) = x. In local coordinates we have

φt(x
1, . . . , xn) = φ(y1(x, t), . . . , yn(x, t))

and

∂

∂t
f(y1, . . . , yn)

∣∣∣
t=0

=
∂f

∂ya

∣∣∣
y=x

∂ya

∂t

∣∣∣
t=0

= va(x)
∂f

∂xa
,

which corresponds to the vector field

v = va(x)
∂

∂xa
.

Here

va(x) =
∂ya

∂t

∣∣∣
t=0

.

The vector we have obtained this way is the velocity vector of the curve φt(x)

at point x. We, however, have the orbits of φt covering the whole of M , and we

can compute this velocity vector at any point. This gives us the velocity vector

field corresponding to a one-parameter group of diffeomorphisms of M .

It is clear that to define the notion of the velocity vector field of a map φt :

M → M we only need φt to be defined for small values of t. So, the velocity vector

fields can be defined in situations more general than those of one-parameter

groups of diffeomorphisms, as we will now see.

1.6.3 Integral Curves

We now explain how one can go in the opposite direction and, given a vector

field, construct a map φt : M → M (not necessarily defined for all t ∈ R) that

satisfies properties φt = id and φt+s = φt ◦ φs.

Definition 1.19 An integral curve of a vector field v is a smooth map φ :

(α, β) ⊂ R → M such that the velocity vector field of this curve coincides with

v along this curve.

Example 1.20 Let M = R
2 with coordinates (x, y) and let v = ∂/∂x. We

are looking for an integral curve for this vector field in the form (x(t), y(t)). Its

velocity vector field is given by

dx

dt

∂

∂x
+

dy

dt

∂

∂y
.

We thus get the following equations for the integral curves of ∂/∂x:

dx

dt
= 1,

dy

dt
= 0,



30 Aspects of Differential Geometry

whose solution is

(x(t), y(t)) = (t+ a1, a2).

Thus, the integral curves are horizontal lines.

We now have the following theorem.

Theorem 1.21 Given a vector field v on M and a point a ∈ M there exists a

maximal integral curve of v through a.

A proof is the generalisation of the previous example, see, e.g., N. Hitchin’s

lectures on differential geometry. We now allow the point a to vary. This produces

the following theorem.

Theorem 1.22 Let v be a vector field on M and for (t, x) ∈ R×M , let φ(t, x) =

φt(x) be the maximal integral curve of v through x. Then (i) the map (t, x) →
φt(x) is smooth; (ii) φt ◦ φs = φt+s wherever the maps are defined; (iii) if M

is compact then φt(x) is defined on R ×M and gives a one-parameter group of

diffeomorphisms of M .

A proof is given in N. Hitchin’s lectures. This theorem can be rephrased by

saying that vector fields generate integral curves viewed as maps φt : M → M

satisfying φt ◦ φs = φt+s wherever the maps are defined. Further, on compact

manifolds these extend to one-parameter groups of diffeomorphisms.

1.6.4 The Lie Bracket of Vector Fields Revisited

We have just seen that a vector field gives rise to a one-parameter family of maps

φt : M → M that have this vector field as its velocity. If we consider the natural

action of this diffeomorphism on a function f , and evaluate its derivative at zero,

we get the action of this vector field on f

∂

∂t
f(φt)

∣∣∣
t=0

= v(f).

An alternative way of stating this relation is to say that we are differentiating

with respect to t the function φ∗
t (f) obtained as the pullback of f with respect

to φt

∂

∂t
φ∗
t (f)

∣∣∣
t=0

= v(f). (1.20)

We can also consider the action of the diffeomorphism φt on some other vector

field u. In the context of Lie derivative, the convention is to always consider the

pullback φ∗
t (u), which is defined as the push-forward with respect to the inverse

map φ−1
t . A simple calculation shows that this pullback satisfies

φ∗
t (u(f)) = φ∗

t (u)(φ
∗
t f).
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This can be differentiated with respect to t at t = 0 keeping in mind (1.20).

We get

v(u(f)) = u̇(f) + u(v(f)),

which implies that

Lvu ≡ u̇ = vu− uv = [v, u]. (1.21)

This gives the Lie bracket [v, u] the interpretation of the infinitesimal change of

u with respect to the diffeomorphism generated by v. The operator Lv is called

the Lie derivative with respect to a vector field v. In coordinates the components

of the Lie bracket vector field are given by

[v, u]a = vb ∂u
a

∂xb
− ub ∂v

a

∂xb
≡ vb∂bu

a − ub∂bv
a. (1.22)

1.6.5 Lie Derivative of 1-Forms

Let us now repeat a similar calculation, but for 1-forms. Thus, we again take the

one-parameter group of diffeomorphisms φt that corresponds to a vector field v.

We take a 1-form θ and consider its pullback φ∗
t (θ) with respect to φt. We now

pair the 1-form θ with an arbitrary vector field u. There is a simple relation

between this pairing and the pairing of the pullback objects

φ∗
t (θ(u)) = φ∗

t (θ)(φ
∗
t (u)).

We then derive this with respect to t and set t = 0. This gives

v(θ(u)) = θ̇(u) + θ(u̇). (1.23)

Because we already know (1.21) we can get θ̇.

Let us derive a convenient formula for θ([u, v]). We have, in coordinates

θ([v, u]) = θa(v
b∂bu

a − ub∂bv
a) = vb∂b(θau

a)− ub∂b(θav
a) + ubva(∂bθa − ∂aθb).

This can be rewritten as

θ([v, u]) = v(θ(u))− u(θ(v))− iuivdθ, (1.24)

where we have used the interior product. We now combine this with (1.23)

and notice that the terms v(θ(u)) cancel on both sides. We also rewrite

u(θ(v)) = iudivθ and θ̇(u) = iuθ̇, and cancel the iu on all sides of this equation.

We get

Lvθ ≡ θ̇ = divθ + ivdθ. (1.25)

The formula we have derived is known as the Cartan’s magic formula.

It is a good exercise to rewrite this formula in components. We have

(Lvθ)a = ∂a(θbv
b) + vb(∂bθa − ∂aθb) = vb∂bθa + θb∂av

b. (1.26)
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Let us derive another property of the Lie derivative Lv. Let us apply it to a

1-form that is given by the exterior derivative of a function

Lvdf = divdf + ivddf = divdf = dLvf.

We thus see that the Lie derivative commutes with the operator of exterior

differentiation, which is one of its most important properties. This property

extends to Lie derivative of arbitrary degree forms, which will be discussed in

Section 1.6.7.

1.6.6 The Practical Way of Computing the Lie Derivative

Let us again use the formula (1.26) for the components of the Lie derivative of

a 1-form. Let us multiply this formula by dxa on both sides. We have

(Lvθ)adx
a = (vb∂bθa)dx

a + (θb∂av
b)dxa = (Lvθa)dx

a + θbd(Lvx
b).

Indeed, to write the last term on the right-hand side we have used Lvx
b =

va∂ax
b = vb. We can thus write this formula as

Lvθ = Lv(θadx
a) = (Lvθa)dx

a + θbd(Lvx
a). (1.27)

This gives us an efficient practical rule for computing the Lie derivative of

one forms: write 1-form in a coordinate basis as θ = θadx
a, and then apply

the Lie derivative first to the components θa viewed as functions, and then to

the coordinate 1-forms dxa. The latter can be computed using the fact that the

Lie derivative commutes with the exterior derivative, and thus the Lie derivative

must be applied again to just functions – the coordinate functions xa. One can

check that the similar rule can be used also for vector fields, and indeed for any

tensors. This gives the most practical way of computing the Lie derivative of

concretely specified tensors.

1.6.7 Lie Derivative of Differential Forms

Cartan’s magic formula that expresses the Lie derivative of a 1-form in terms of

the operations of exterior differentiation and interior product extends to forms

of arbitrary degree.

Theorem 1.23 The Lie derivative Lvω of a p-form ω is given by

Lvω = d(ivω) + ivdω. (1.28)

A nice proof of this fact is given in N. Hitchin’s differential geometry lecture

notes. Cartan’s formula (1.28) immediately shows that the Lie derivative on

forms commutes with the exterior derivative.
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1.7 Integrability Conditions

This section discusses the classical question of conditions of integrability of a

given distribution of vector fields. We follow Theodore Frankel’s (2012) book,

Geometry of Physics, to which the reader is referred to for more details and

proofs.

1.7.1 Distributions and Their Integrability Condition

Given a smooth nonvanishing vector field on R
n one can always, at least locally,

find a smooth family of integral curves, which have the given vector field as

their tangent. The classical question is if the same extends to more than one

vector field, i.e., if, given a smooth family of k-planes in R
n it is possible to find

an integral surface, which is a surface everywhere tangent to the planes. The

answer is in general no.

Definition 1.24 A k-dimensional distribution Δk on M assigns in a smooth

fashion to each x ∈ M a k-dimensional subspace Δk(x) of the tangent space

TxM . An k-dimensional integral manifold of Δk is an k-dimensional subman-

ifold of M that is everywhere tangent to the distribution. The distribution

Δk is said to be (completely) integrable if locally there are coordinates

x1, . . . , xk, y1, . . . , yn−k for M of dimension n such that the coordinate slices

y1 = constant, . . . , yn−k = constant are k-dimensional integral submanifolds of

Δk. Such a coordinate system is called a Frobenius chart for M .

Definition 1.25 The distribution Δ is said to be in involution if [Δ,Δ] ⊂ Δ,

i.e., if the Lie bracket of any two vector fields from Δ is again in Δ.

Theorem 1.26 The distribution Δ is integrable if and only if it is involutive,

i.e., in involution.

The proof in one direction is easy. If the distribution is integrable then the

integral curve of any vector field in the distribution is in the integral manifold,

and it is easy to show using the definition of the Lie derivative that uses pullback

that the Lie bracket of two such vector fields is again tangent to the integral

manifold. To prove the theorem in the other direction one uses a reformulation of

the integrability condition in terms of differential forms, see the book, Geometry

of Physics, by Frankel (2012).

If a distribution Δ is integrable, then the integral manifolds define a foliation

of M , and each connected integral manifold is called a leaf of the foliation.

1.7.2 Distributions and 1-Forms

Let θ be a 1-form that does not vanish at a point x ∈ M . The annihilator

or null space of θ at x is the (n − 1) dimensional subspace of TxM of vectors
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v : θ(v) = 0. The classical literature on this subject writes θ = 0 for this null

space. It is also common to refer to θ as a Pfaffian, and θ = 0 is called a Pfaffian

equation. If θ1, . . . , θr are r = n−k linearly independent 1-forms θ1∧· · ·∧θr �= 0

on some open subspace of M , then the intersection of their null spaces forms an

n − r = k dimensional distribution Δk. In other words, v ∈ Δk if and only if

θ1(v) = · · · = θr(v) = 0. Note that there is no claim that every distribution can

be globally defined by r Pfaffians. We now have the following theorem.

Theorem 1.27 The following conditions are locally equivalent.

1. Δ is in involution, that is, [Δ,Δ] ⊂ Δ.

2. dθi vanishes when restricted to Δ.

3. There are 1-forms λij such that dθi = λij ∧ θj.

4. dθi ∧ Ω = 0, where Ω = θ1 ∧ · · · ∧ θr.

The proof is easy, and is based on (1.24), see Frankel (2012, chapter 6). Thus,

a distribution Δk can locally be described either by k linearly independent vector

fields v1, . . . , vk, that span Δk at each point, or by exhibiting r = n− k linearly

independent 1-forms θ1, . . . , θr whose common null space is Δk. The distribution

is involutive if either [Δ,Δ] ⊂ Δ or if dθ vanishes on vector fields from Δ. We

know that an integrable distribution is involutive. The statement in the opposite

direction, i.e., that an involutive distribution is locally completely integrable

is known as the Frobenius theorem. For a proof, see Theodore Frankel’s

book (2012).

1.8 The Metric

A metric on a manifold M is a smoothly varying inner product on the tangent

spaces TMx. Because the inner product is a (symmetric) bilinear form, we want

the metric to take values in T ∗Mx ⊗ T ∗Mx at each point, i.e., to be a (0, 2)

tensor. Moreover, this tensor must be symmetric. In local coordinates this can

be written as

g ≡ ds2 = gab dx
a ⊗ dxb, (1.29)

where we introduced a new notation ds2 (the squared interval), whose meaning

will become clear in Section 1.8.1.

If there is such a tensor defined on M , the vector space TM of vectors

becomes an inner product space. Indeed, using g we can define an inner product

(a symmetric bilinear pairing) of two vectors v, w ∈ TMp

(v, w) := gabv
awb.

This metric pairing of vectors v, w gives a real number per point of M . As with

any inner product, this can be used to define the notions of norm and (when the

inner product is positive definite) angle between vectors. Note that the metric
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does not in general need to be positive-definite, even though the cases when it

are easier to analyse. This case is thus more studied.

1.8.1 Length of Curves

The metric plays a distinguished role in differential geometry because this is the

object that is required to be able to compute length of curves onM . Thus, if xa(t)

is any parametrised curve γ, then the length of any segment γ[α,β] : t ∈ [α, β] is

defined to be

l(γ[α,β]) :=

∫
dt

√
gab

dxa

dt

dxb

dt
. (1.30)

This is easily seen to be curve reparametrisation invariant. However, in order for

the square root to be defined, one needs to make some assumption about the met-

ric definiteness, e.g., assuming it to be positive definite makes the length of any

curve well-defined. A metric g on M that is everywhere positive-definite is called

a Riemannian metric on M . The fact that a metric g defines an infinitesimal

squared interval (from which the length of any curve is obtained by integration)

justifies the notation ds2 for it in (6.223).

1.8.2 Pullback Metric

Given a map between two manifolds f : M → N , and a metric in N , we can pull

it back to get a metric in M . The pullback metric is easiest to derive working

in some coordinate patch for both M,N . Thus, if x are coordinate on M and

y = f(x) are coordinates on N then

f∗(gabdy
a ⊗ dyb) = gab

∂fa

dxc

∂f b

dxd
dxc ⊗ dxd = g′

cddx
c ⊗ dxd.

It is important that the map f : M → N does not need to be invertible. In

particular, this map can be the inclusion map from M to a submanifold M ⊂ N .

In this case the metric arising on M is called the induced metric.

Example 1.28 The length of a curve formula (1.30) can be understood in

induced metric terms. Indeed, a parametrised curve xa(t) can be thought of as

a map from R (or a segment thereof) to M . This gives rise to a pullback metric

on R given by

f∗(g) = gab
∂xa

dt

∂xb

dt
dt2.

We can then compute the length of any segment of R in this metric by taking

the square root of the squared interval and integrating, which is precisely what

the formula (1.30) does.
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Example 1.29 Let us consider R3 with its standard flat metric

ds2
R3

= dx2 + dy2 + dz2.

Consider the unit sphere in R
3 given by the surface x2+y2+z2 = 1. This surface

can be explicitly parametrised by the spherical coordinates

x = sin θ cosφ, y = sin θ sinφ, z = cos θ, (1.31)

which gives the inclusion map S2 → R
3. The pullback metric is then easily

computed to be

ds2
S2 = dθ2 + sin2 θdφ2. (1.32)

Example 1.30 Let us now consider the Minkowski space R1,2 in 2+1 dimensions,

with the metric given by

ds2
R1,2

= dt2 − dx2 − dy2.

Let us consider the surface H
2, which is one of the two sheets (e.g., upper) of

the two-sheeted hyperboloid t2 − x2 − y2 = 1. This surface is known as the

hyperbolic plane. Let us introduce an analog of the sphere inclusion map (1.31)

by parametrising

x = sinh θ cosφ, y = sinh θ sinφ, t = cosh θ. (1.33)

The metric induced on H
2 is then

ds2
H2 = dθ2 + sinh2 θdφ2, (1.34)

which is just the metric (1.32) with the trigonometric functions replaced by the

hyperbolic ones.

A different model for H2 is possible by introducing the stereographic projection

from the point (−1, 0, 0) coordinates. We project on the plane t = 0, and the

complex coordinate that on R
2 that corresponds to a point on H

2 is easily seen

to be

z =
sinh(θ/2)

cosh(θ/2)
eiφ. (1.35)

It can then be checked by an explicit computation that in these coordinates

ds2
H2 =

4|dz|2
(1− |z|2)2 . (1.36)

1.8.3 Isometries

Definition 1.31 A diffeomorphism f : M → N between two manifolds equipped

with a metric is called an isometry if f∗gN = gM .
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Example 1.32 Let us consider the upper-half plane M = {(x, y) ∈ R
2 : y > 0}

with the metric

ds2 =
dx2 + dy2

y2
. (1.37)

Let us use the complex coordinate w = x + iy. Consider the following transfor-

mations on M

f(w) =
aw + b

cw + d
, (1.38)

where a, b, c, and d are real and ad − bc > 0. These are known as Möbius

transformations. We have

df(w) ≡ f∗(dw) = (ad− bc)
dw

(cw + d)2

and

f∗y = y ◦ f =
1

2i

(
aw + b

cw + d
− aw̄ + b

cw̄ + d

)
=

ad− bc

|cw + d|2 y. (1.39)

This means that

f∗g = (ad− bc)2
dwdw̄

|(cw + d)2|2
|cw + d|4

(ad− bc)2y2
=

dwdw̄

y2
= g. (1.40)

So, Möbius transformations are isometries of this Riemannian metric on the

upper-half plane.

Example 1.33 Our other example of an isometry is one linking the metric in

(1.36) with (1.37). Consider a map

z = −w − i

w + i
. (1.41)

This can be checked to map the upper-half plane in the w-coordinate to the unit

disc in the z coordinate. Let us then compute the pullback of the metric (1.36)

under this map. We have

dz = −2i
dw

(w + i)2

and

1− |z|2 = −2i(w − w̄)

|w + i|2 =
4y

|w + i|2 .

This means that

4|dz|2
(1− |z|2)2 =

16|dw|2
|(w + i)2|2

|w + i|4
16y2

=
|dw|2
y2

. (1.42)

This shows that the pullback of (1.36) under the map in question is (1.37), and

this is an isometry. The description (1.37) is known as the upper-half plane model

of the hyperbolic plane.
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1.9 Lie Groups and Lie Algebras

In this section we review basic facts about (matrix) Lie group and Lie algebras.

In general, the notion of the group is important because symmetries form groups.

Lie groups arise when symmetries are of continuous nature. We will follow the

book by Taubes (2011) closely.

1.9.1 Definition of a Group

Definition 1.34 A group is a set G with a special element e (called the identity)

and two operations:

• Multiplication μ : G×G → G, μ(g, h) = gh ∈ G.

• Inverse σ : g → g−1, σ(g) = g−1, gg−1 = g−1g = e.

The multiplication is required to be associative (gh)k = g(hk) and multiplication

of any group element g by the identity element is required to return g, i.e.,

ge = eg = g.

Definition 1.35 A Lie group is a group with the structure of a smooth

manifold such that both the multiplication and the inverse are smooth maps.

As we will discuss in section 1.9.6, Lie groups naturally act on themselves by

left or right multiplication. Each of these actions preserves structures on G, and

is thus a symmetry. So, Lie group is a manifold that is at the same time a set

of transformations that acts on this manifold by symmetries. This is why a Lie

group can be thought of as a manifold with a lot of symmetry.

1.9.2 The General Linear Group GL(n,R)

This is the principal and most important example of a Lie group, as all other

Lie groups can be realised as subgroups of a sufficiently large general linear

group.

Let M(n,R) denote the space of n × n matrices with real entries. Using the

matrix elements as coordinates we can view this space as a copy of Rn2
. Matrices

can be multiplied

μ : M(n,R)×M(n,R) → M(n,R), μ(m,m′) = mm′,

and the multiplication map is smooth (being linear in both arguments). There

are two important special functions on M(n,R):

• Det(m) – this is a polynomial of degree n.

• Tr(m) – this is a linear function.

Definition 1.36 Let GL(n,R) be the subset of invertible matrices in M(n,R),

i.e., m ∈ GL(n,R) if and only if Det(m) �= 0.

It is clear that GL(n,R) as defined is an open subset of M(n,R), and is thus

a smooth manifold of dimension dim(GL(n,R)) = n2. The multiplication of
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matrices restricts to GL(n,R) as a smooth map. The inverse map is also smooth,

because for any n it is given by the ratio of a polynomial by the determinant. So,

we deduce that GL(n,R) forms a Lie group, known as the general linear group.

This group plays the key role not only as a ‘manifold with a lot of symmetry’, but

also as the group that naturally acts in the tangent space to every point of every n-

dimensional manifold. This is because the (invertible) coordinate transformations

act on vectors and covectors by the matrix of the Jacobian of the coordinate

transformation. This matrix is nondegenerate and belongs to GL(n,R). For this

reason one often refers to GL(n,R) as the structure group of an n-dimensional

manifold. We will discuss this point when we describe fibre bundles.

1.9.3 Subgroups of GL(n,R)

Definition 1.37 A subgroup H of group G is a subset that contains the identity

e, is mapped into itself by the inverse map, and is closed under the multiplication.

We can then obtain Lie groups by taking subgroups of other Lie groups. Indeed,

a subgroup of a Lie group that is also a submanifold is a Lie group. Let us apply

this strategy to GL(n,R) and determine interesting Lie subgroups that this group

contains.

The group SL(n,R) ⊂ GL(n,R) is defined to be the subgroup of the general

linear group consisting of matrices of determinant one

SL(n,R) = {m ∈ GL(n,R) : Det(m) = 1}.

This is a subgroup because Det(mm′) = Det(m)Det(m′). One proves that this

is also a submanifold using the rank theorem, see Taubes (2011) for the proof.

The orthogonal group O(n,R) ⊂ GL(n,R) is defined to be

O(n,R) = {m ∈ GL(n,R) : mmT = 1}.

This is a subgroup because, given m,m′ ∈ O(n,R) we have (mm′)(mm′)T =

mm′(m′)TmT = 1. One again shows that this is a submanifold of GL(n,R) using

the rank theorem, see Taubes (2011). The dimension of O(n,R) is n(n− 1)/2.

The determinant of any matrix in O(n,R) satisfies (Det(m))2 = 1 and so

Det(m) = ±1. One then defines the set of orthogonal matrices with unit deter-

minant to be the special orthogonal group

SO(n,R) = {m ∈ O(n,R) : Det(m) = 1}.

This is clearly a subgroup. As a manifold O(n,R) splits into two connected com-

ponents, and the special orthogonal group is just one of these two connected

components. So, it is also a Lie group. Its dimension is the same as that of

O(n,R), and is equal to n(n− 1)/2.
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1.9.4 Complex Lie Groups

One can define Lie groups similar to those defined previously over R but working

over C instead. One starts by defining the group GL(n,C), which is defined as

the open subset of invertible Det(m) �= 0 matrices in the space M(n,C) of n×n

matrices with complex entries. Viewing C as R
2, we can coordinatise GL(n,C)

by 2n2 real coordinates.

There is, however, another definition of GL(n,C) that shows how this group

actually arises naturally when working over R. The idea of this definition is

to start with what is called an almost complex structure on R
2n, and then

consider all matrices in M(2n,R) that commute with the chosen almost complex

structure. It is instructive to see how GL(n,C) arises in this ‘real’ fashion.

An almost complex structure is defined as an 2n× 2n matrix that squares to

minus the identity matrix

J ∈ M(2n,R) : J2 = −1.

We now define MJ to be the set of 2n× 2n matrices that commute with J

MJ = {m ∈ M(2n,R) : mJ = Jm}.

We then define GJ to be the set of invertible matrices with this property. This

is a group by virtue of mm′J = mJm′ = Jmm′ and Jm−1 = m−1J .

To see how n × n complex matrices can arise in this setup we note that the

eigenvalues of J are ±i. The matrices commuting with J preserve the eigenspaces.

Because the matrix J we start from is real and acts on the real vector space

of dimension 2n, the eigenvectors come in complex conjugate pairs: if v is an

eigenvector of eigenvalue +i, i.e., Jv = iv, then v̄ is an eigenvector of eigenvalue

−i, i.e., Jv̄ = −iv̄. Let v1, . . . , vn be a set of linearly independent eigenvectors

of J of eigenvalue +i. Then any m that commutes with J preserves the space

spanned by v1, . . . , vn. Its action is thus of the form

mvi = mC

ijvj ,

where mC

ij ∈ C are a set of n× n complex numbers. So, we get an identification

between real 2n × 2n matrices m that commute with J and n × n complex

matrices mC. Under this identification Det(m) = |Det(mC)|2. This means that

invertible Det(m) �= 0 real matrices from MJ correspond to invertible complex

matrices, i.e., elements of GL(n,C).

We will now define some naturally arising subgroups of GL(n,C) that are also

submanifolds. But it should always be kept in mind that any of these complex

groups can be viewed in a ‘real’ way, as a subgroup of the group of matrices that

commute with an almost complex structure.

The group SL(n,C) is defined as the subgroup of matrices from GL(n,C) of

determinant one. This gives a submanifold in R2n2
because one is a regular value

of the determinant, as can be checked. The real dimension of SL(n,C) is 2(n2−1).
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The unitary group U(n) is defined to be the subgroup of unitary matrices

U(n) = {m ∈ M(n,C) : mm† = 1},

where m† = m̄T is the Hermitian conjugation (i.e., complex conjugate trans-

posed). This is a group because (mm′)(mm′)† = mm′(m′)†m† = 1 and

m−1(m−1)† = 1. This is a submanifold again by applying the rank theorem.

The real dimension of this group is the dimension of GL(n,C) which is 2n2

minus the dimension of the space of Hermitian matrices, which is n2. So, the

dimension of the unitary group is n2.

The determinant of any matrix in U(n) satisfies |Det(m)|2 = 1, which implies

that it is a pure phase. The special unitary group is defined to be the group of

matrices in U(n) of determinant one

SU(n) = {m ∈ U(n) : Det(m) = 1}.

This is clearly a subgroup, and is a submanifold by a simple application of the

rank theorem. Its dimension is n2 − 1.

1.9.5 Classical Lie Groups

The Lie groups that we have just discussed are all examples of classical Lie

groups. These arise as subgroups of GL(n,R) or GL(n,C) that preserves some

structure on the space R
n or C

n where it naturally acts. Let us describe this

structure case by case.

The groups SL(n,R) and SL(n,C) arise as those preserving the volume form

dx1 ∧ · · · ∧ dxn on R
n or dz1 ∧ · · · ∧ dzn on C

n.

The orthogonal group O(n,R) arises as the group of transformations from

GL(n,R) that preserve the quadratic form

(x1)2 + · · ·+ (xn)2

on R
n. Indeed, introducing a column x with entries xa we can write the previous

quadratic form as xTx. Then GL(n,R) acts on such columns by multiplication

x → mx, and the condition for the quadratic form to be invariant is mTm = 1,

which is what defines O(n,R).

The orthogonal group admits a generalisation called O(r, s) that preserves the

indefinite quadratic form

(x1)2 + · · ·+ (xr)2 − (xr+1)2 − · · · − (xr+s)2.

The group U(n) arises as the subgroup of GL(n,C) that preserves the Hermi-

tian form

z̄1z1 + · · ·+ z̄nzn

on C
n. Indeed, we can write the previous Hermitian form as z†z, where z is a

column with za as entries. Then m ∈ GL(n,C) acts on z as z → mz and the
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condition for the Hermitian form to be preserved is precisely m†m = 1, which

defines the unitary group U(n).

This group admits a generalisation U(r, s) that replaces the previous Hermitian

form with an indefinite one

z̄1z1 + · · ·+ z̄rzr − z̄r+1zr+1 − · · · − z̄r+szr+s. (1.43)

The last classical group that we have not yet encountered is the symplectic

group Sp(n,R) and this is defined as the subgroup of GL(2n,R) that fixes the

standard symplectic form

dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

on R
2n, where xa, ya, a = 1, . . . , n are the coordinates on R

2n. This 2-form can

be encoded into an antisymmetric 2n× 2n matrix I, and then Sp(n,R) arises as

the subgroup of GL(2n,R) that preserves this matrix mT Im = I.

1.9.6 Group Actions on Manifolds

Groups, and Lie groups in particular, can act on manifolds. If this action pre-

serves some geometric structure on the manifold in question (e.g., metric), then

one says that this action describes a symmetry (in the case when a metric is

preserved one talks of isometries). Lie groups then give continuous symmetries.

Lie groups naturally act on themselves by symmetry operations, and this is going

to be important for what follows.

Definition 1.38 Let M be a manifold and G a Lie group. A left action of G on

M is a map

λ : G×M → M

such that λ(μ(g, h), x) = λ(g, λ(h, x)) and λ(e, x) = x.

An equivalent way of stating this definition is to say that a (left) action of G

on M is a homomorphism from G to the group of diffeomorphisms of M . Then

λg : M → M is a diffeomorphism satisfying λgh = λg ◦ λh and λe = id.

There are many examples of such actions that can be constructed. The simplest

examples we can consider is the action of GL(n,R) on R
n or onM(n,R). Both are

examples of left actions. In the second case one can act with GL(n,R) matrices

also on the right, which would give an example of a right action. Another basic

example is the left action of G on itself.

1.9.7 Classification of Actions

The following is a standard terminology in relation to an action of G on M .

• The action of G on M is called effective if any nontrivial element acts

nontrivially somewhere, i.e., if λg = id implies g = e.
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• The action of of G on M is called free if there are no fixed points, i.e., if

λg(x) = x for some x then g = e.

• of G on M is called transitive if any two points of M can be connected by

the action of G, i.e., if ∀x, y ∈ M there exists g ∈ G : λg(x) = y. This means

that there is a single orbit of the action of G on M .

1.9.8 Group Homomorphisms

We have already encountered one example of a group homomorphism–that from

G to the group of diffeomorphisms on M . Here we consider group homomor-

phisms in more generality and derive one important statement about the kernel

of such homomorphisms.

Definition 1.39 A group homomorphism from group G to another group G′ is

a map ψ : G → G′ that is compatible with the product on both G,G′. In other

words, the map ψ is required to satisfy ψ(gh) = ψ(g)ψ(h).

Definition 1.40 A subgroup N ⊂ G is called normal if ∀g ∈ G, gNg−1 ⊂ N .

Definition 1.41 Given a group G and its subgroup H ⊂ G, the space G/H is

defined to be the set of equivalence classes g ∼ gh, h ∈ H. This set is called the

(left) coset of H in G.

Cosets of the typeG/H play a very important role in group theory, and whenG

is a Lie group, geometry. For now, let us consider the special case when H ⊂ G

is a normal subgroup. This situation is special because in this case, the coset

G/N is a group itself. Indeed, consider two arbitrary elements of the coset G/N .

They are of the form gn, g′n′, where n, n′ ∈ N . We now want to see if their

multiplication can be defined. To do so, we use the normal property of N to

rewrite ng′ = g′n′′ for some n′′ ∈ N . This means that gng′n′ = gg′n′′n′, which

means that the product of two equivalence classes gn, g′n′ is the equivalence class

of the product gg′, which defines the product of equivalence classes and makes

G/N into a group. We have thus proved a simple but important theorem.

Theorem 1.42 When N is a normal subgroup G/N is a group.

An important source of normal subgroups comes by considering group homo-

morphisms ψ : G → G′. We then have

Theorem 1.43 The kernel Kerψ of a group homomorphism ψ : G → G′ is a

normal subgroup of G, and G′ = G/Kerψ.

1.9.9 Orbits of Group Action

Definition 1.44 Let G act on a manifold M (or, for purposes of this definition,

any set M). The orbit of a point x ∈ M under the action of G is a set of all
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points in M that can be obtained from x by the G action, i.e., Ox = {y ∈ M :

λg(x) = y}.

It is easy to see that the group action on any of its orbits is transitive, i.e.,

any point can be connected to any other point by the group action.

Definition 1.45 Let G act on M . The stabiliser of a point x ∈ M is the set

Hx ⊂ G such that λh(x) = x, ∀h ∈ Hx.

It is easy to check that the set Hx is a subgroup of G, called the stabiliser

subgroup of a point. We then have the following important statement:

Theorem 1.46 Let G act on M , and let Ox be the orbit of a point x ∈ M ,

and let Hx be the stabiliser at that point. Then the coset G/Hx is canonically

isomorphic to the orbit Ox.

This means that, given an action of G on some manifold M (or more generally

a set M), the orbits of this action can be canonically identified with group

cosets. This effectively means that if G acts on M then the orbits of this action

can be thought of as sitting inside the group. All symmetric spaces, i.e., spaces

where some Lie group acts by symmetries, are then coset spaces. The simplest

examples are: the two-dimensional sphere S2 = SO(3)/SO(2) and the hyperbolic

plane H2 = SL(2,R)/SO(2).

1.9.10 Lie Algebras

Definition 1.47 Lie algebra is a vector space L equipped with a bilinear map

L× L → L, (A,B) → [A,B]

called Lie bracket. This is required to be antisymmetric [A,B] = −[B,A], and

satisfy Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

The basic examples of Lie algebras are the following.

• Vector fields on a manifold with the Lie bracket of vector fields as the Lie

bracket form a Lie algebra. Jacobi identity can be checked by an explicit

calculation.

• The space M(n,R) of n × n matrices forms Lie algebra with the Lie bracket

given by the commutator [A,B] = AB −BA. The Jacobi identity is trivial to

verify.

As we will see in Section 1.9.15, there is a relation between these two examples.

Another useful definition is
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Definition 1.48 A subspace of Lie algebra L that is closed under the Lie bracket

is called a (Lie) subalgebra of L.

1.9.11 Homomorphism of Lie Algebras

Definition 1.49 A homomorphism between two Lie algebras L,L′ is a linear

map φ : L → L′ that is compatible with the Lie bracket on L,L′, i.e.,

φ([A,B]) = [φ(A), φ(B)].

Example 1.50 The vectors in R
3 form a Lie algebra with Lie bracket given by

the vector product

(x,y) → [x,y] = x× y.

Jacobi identity can be checked by an explicit calculation, or using x× (y× z) =

y(x · z)− z(x · y).
The other relevant Lie algebra is that of anti-Hermitian 2 × 2 matrices of

zero trace. The matrix commutator of any two matrices has zero trace, so

the zero trace condition is preserved by the commutator. The commutator of

two Hermitian or anti-Hermitian matrices is anti-Hermitian. This is why it’s

anti-Hermitian matrices that make up a Lie algebra. Any such matrix can be

written as

φ(x) = − i

2
σixi,

where xi ∈ R
3. This also gives the map from R

3 to the space of tracefree anti-

Hermitian 2× 2 matrices. Using [σi, σj ] = 2iεijkσk we have

[φ(x), φ(y)] =

(
i

2

)2

xiyj2iεijkσk = − i

2
εijkxiyjσk = φ(x× y).

This shows that the map φ is a homomorphism of Lie algebras.

1.9.12 Lie Algebra of a Lie Group: Left-Invariant Vector Fields

Every Lie group G is a manifold, and G itself acts on this manifold by the left

action.

Definition 1.51 The left action of G on itself is a homomorphism G → Diff(G)

from the group into the group of diffeomorphisms of the manifold G. In other

words, this is a map λ : G×G → G given by the left multiplication λg(g
′) = gg′.

We note that this action is free and transitive, with the whole of G being one

single orbit.

One can define a special subset of all the vector fields on the group manifold –

the vector fields that are invariant with respect to the action of the group.
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Definition 1.52 A vector field X on G is called left-invariant if its push-forward

with respect to the left action of G on itself coincides with X, i.e., if ∀g ∈ G we

have λg∗(X) = X.

We now define the Lie algebra Lie(G) of G to be the vector space of all

left-invariant vector fields on G. The Lie bracket is given by the Lie bracket

of vector fields, and it is clear that the Lie bracket of two left-invariant vector

fields is also left-invariant. We will explicitly check this for matrix groups in

Section 1.9.15. This characterisation of the Lie algebra is available for any Lie

group. However, this characterisation is often not the most convenient to work

with in practice. This is why we need the following alternative descriptions.

1.9.13 Description in Terms of the Tangent Space at the Identity

We note that every vector field on the group manifold can be restricted to the

identity element, where it gives some vector in TeG. In particular, left-invariant

vector fields can be restricted in this way. In the opposite direction, given a vector

in TeG, we can use the left action to push-forward this vector to every point on

the group manifold. What we obtain is by construction a left-invariant vector

field on G.

Thus, there is a bijective correspondence between the space of left-invariant

vector fields on G and the vector space TeG. This also makes it clear that the Lie

algebra of any Lie group has the same dimension as the group manifold. However,

the Lie bracket on this description of the Lie algebra is not intrinsically defined.

Indeed, the only way to compute it is to transport two given vectors in TeG to

the whole of the group, compute their Lie brackets, and then restrict the result to

TeG. An alternative description that allows to compute the Lie bracket directly

is needed, and will be available for matrix groups.

1.9.14 Description in Terms of One-Parameter Subgroups

Definition 1.53 A one-parameter subgroup of G is a homomorphism R → G

from the real line to the group. Concretely, this is a one-parameter family gt ∈ G

of group elements satisfying g0 = e and gs+t = gsgt.

Now, using the left action, we see that every one-parameter subgroup of G

gives rise to a one-parameter group of diffeomorphisms of G. In turn, we know

that one-parameter groups of diffeomorphisms generate vector fields. It is easy to

check that the vector field that results in this way from a one-parameter subgroup

of G is left-invariant. We will do this check when we consider matrix groups.

In the opposite direction, given a left-invariant vector field, we already know

that vector fields generate their integral curves. Every integral curve of a left-

invariant vector field is obtained by the left action of some one-parameter sub-

group of G. Again, we will explicitly check this for matrix groups in section 1.9.15.
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So, we have a bijective correspondence between left-invariant vector fields and

one-parameter subgroups of G. This provides the third description of the Lie

algebra of G namely, as the set of one-parameter subgroups of G. Again, the

Lie bracket is implicit in this description, as one needs to convert the two one-

parameter subgroups into left-invariant vector fields, compute their Lie bracket,

and then convert the result into a one-parameter subgroup. All these steps can

be explicitly described for matrix groups, as we now discuss.

1.9.15 Matrix Groups

Various classical groups that we discussed previously are matrix groups, i.e.,

subgroups of GL(n,R). More generally, every finite-dimensional Lie group can

be described as an appropriate subgroup of a matrix group of a sufficiently

large dimension. To do this, one just needs to consider some representation

of the group, for example the so-called adjoint representation, which arises by

considering the action of the group on its Lie algebra. We will not consider

representations here.

The first concept that we need to define for matrix groups is that of the

exponential map. This is defined via the notion of the matrix exponent. Thus,

for any matrix A ∈ M(n,R), we define

eA =

∞∑
k=0

1

k!
Ak = I+A+

1

2
A2 + · · · .

The matrix exponent has some important properties. First of all we have

etAesA = e(t+s)A, and e−A = (eA)−1.

The second property means that eA is an invertible matrix, i.e., eA ∈ GL(n,R).

The first property means that etA is a one-parameter subgroup of GL(n,R).

Theorem 1.54 All one-parameter subgroups of GL(n,R) are of the type etA for

some A ∈ M(n,R).

To prove this theorem, let φt ∈ GL(n,R) be a one-parameter subgroup of

GL(n,R). Denote by A the derivative of φt at t = 0, i.e.,

A :=
d

dt
φt

∣∣∣
t=0

.

The we have

d

dt
φt =

d

ds
φs+t

∣∣∣
s=0

=
d

ds
φs

∣∣∣
s=0

φt = Aφt.

This means that φt satisfies the differential equation dφt/dt = Aφt. The solution

of this differential equation that passes through the identity at t = 0 is

φt = etA.
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Now that we have an explicit characterisation of the one-parameter subgroups

of GL(n,R) as matrix exponents, we can provide also an explicit description of

the Lie algebra of this group in terms of left-invariant vector fields, as well as

the description in terms of the tangent space at the identity. We first need to

compute explicitly the left-invariant vector field that arises as the velocity vector

field of the one-parameter group of diffeomorphisms generated by etA. These are

obtained as follows

d

dt
f(getA)

∣∣∣
t=0

=
∂f

∂gi
j

(gA)ij , (1.44)

and so, the corresponding vector field is

ξA = (gA)ij
∂

∂gi
j

. (1.45)

The derivation (1.44) requires some explanation. What is done in (1.44) can be

understood as the translation of the vector corresponding to A at the identity

of the group manifold to an arbitrary point g using the left action of G on itself.

This is why the resulting vector field is left-invariant.

We thus see that left-invariant vector fields on GL(n,R) are in correspondence

with matrices A ∈ M(n,R), via (1.45). We can now compute the Lie bracket of

two left-invariant vector fields

[ξA, ξB] = (gA)ij
∂gk

m

∂gi
j

Bm
l

∂

∂gk
l

− (gB)kl

∂gi
s

∂gk
l

As
j

∂

∂gi
j

(1.46)

= (gA)ijB
j
l

∂

∂gi
l

− (gB)klA
l
j

∂

∂gk
j

= (gAB − gBA)ij
∂

∂gi
j

= ξ[A,B].

We thus see that we have a homomorphism of the Lie algebra of left-invariant

vector fields on GL(n,R) into the matrix Lie algebra, with the Lie bracket of

vector fields going into the commutator of matrices.

We can now summarise what we have learned about the three different

descriptions of the Lie algebra of GL(n,R). The description in terms of left-

invariant vector fields is that given by ξA given by (1.45). Evaluating these vector

fields at the identity we get vectors Ai
j(∂/∂g

i
j) that are in correspondence with

matrices A ∈ M(n,R). The description in terms of one-parameter subgroups

is via g = etA. Again, every one-parameter subgroup is in correspondence

with a matrix A. So, in all cases a Lie algebra element is in correspon-

dence with a matrix A, and the Lie bracket can be computed as the matrix

commutator (1.46).

1.9.16 Explicit Description of Lie Algebras

of Some Classical Groups

Classical groups have beed previously defined as various subgroups of GL(n,R).

We have just understood that the Lie algebra of GL(n,R) can be described as

the Lie algebra of n× n real matrices, with the Lie bracket given by the matrix
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commutator. We can obtain a similar explicit description of the Lie algebras of

the classical groups.

The group SL(n,R) consists of matrices of determinant one. The corresponding

Lie algebra is that of matrices of trace zero. It is easy to see that the space of

matrices of vanishing trace is closed under the operation of matrix commutator,

because the commutator of any two matrices automatically has zero trace.

The group O(n,R) is the group of matrices satisfying mTm = id. Taking

m = etA and differentiating the relation mTm = id at t = 0 we get AT + A = 0.

This means that the Lie algebra of the orthogonal group is that of antisymmetric

matrices. The space of antisymmetric matrices is closed under the operator of

taking the commutator.

The group SU(n) is the group of complex unitary matrices of unit determinant.

We already know that the condition of unit determinant translates at the Lie

algebra level to the condition that the matrices are tracefree. Let us see the

consequences of the unitarity condition. This is the condition m†m = id. Taking

m = etA and differentiating m†m = id at t = 0 we get A† + A = 0, which is the

condition that the matrix A is anti-Hermitian. Thus, the Lie algebra of SU(n)

consists of tracefree anti-Hermitian matrices.

1.10 Cartan’s Isomorphisms

This section is just a quick look at this rather vast (and important) subject. For

more details see the book, Spinors and Calibrations, by F. Reese Harvey (1990).

Orthogonal groups have spinor representations. Those come with various in-

ner products. This means that the spin groups (which arise as covers of the

orthogonal groups) are always subgroups of various classical groups preserving

the relevant inner product on the space of spinors. In lower dimensions the

spin groups coincide with various classical groups, and this is why the Cartan’s

isomorphisms arise. The most important of these isomorphisms (for physics)

are that between the rotation group in three dimensions and the special unitary

group in two dimensions, and that between the Lorentz group in four dimensions

and the complex special linear group in two dimensions.

1.10.1 The Isomorphism SO(3) = SU(2)/Z2

Let us consider the space of anti-Hermitian 2× 2 matrices with zero trace. Any

such matrix is of the form

x = i

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (1.47)

In other words, any such matrix is of the form x = iσixi, where σi are the Pauli

matrices. The previous matrix has the property that

det(x) = (x1)2 + (x2)2 + (x3)2,
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which is the squared interval in R
3. So, we have an isomorphism between the

space of anti-Hermitian 2 × 2 matrices of zero trace and R
3, with the norm

squared of an R
3 vector (x1, x2, x3) being represented by the determinant of the

corresponding 2× 2 matrix.

Now, the group SU(2) acts on the space of anti-Hermitian matrices of zero

trace via

g ∈ SU(2), x → gxg†. (1.48)

Because g ∈ SU(2) this action preserves the determinant. Remembering that

there is an isomorphism between the space of anti-Hermitian matrices of zero

trace and R
3, we get a group homomorphism τ : SU(2) → O(3). Because the

arising transformations are orientation preserving, this is in fact a homomor-

phism into SO(3). This homomorphism has a nontrivial kernel consisting of

e,−e ∈ SU(2). Thus, we get SO(3) = SU(2)/Z2.

1.10.2 Description of the Isomorphism SO(1, 3) = SL(2, C)/Z2

This is very similar to the previous section, except that the restriction to trace

zero matrices is dropped. Thus, let us consider the space of anti-Hermitian 2× 2

matrices. Any such matrix is of the form

x = i

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (1.49)

We also have

det(x) = −(x0)2 + (x1)2 + (x2)2 + (x3)2,

which is the squared interval in R
1,3. This gives an isomorphism between the

points in Minkowski space R
1,3 and anti-Hermitian 2 × 2 matrices, with the

squared interval being represented by the determinant.

Consider now the following action of SL(2,C) on anti-Hermitian matrices

g ∈ SL(2,C), x → gxg†. (1.50)

This maps anti-Hermitian matrices into themselves, and preserves the

determinant. The transformations that one generates this way are orientation-

preserving, and moreover, preserve the orientation of time. This gives a group

homomorphism

τ : SL(2,C) → SO+(1, 3) (1.51)

from the group of special complex linear transformations in two dimensions

to what is known as the restricted Lorentz group (consisting of orientation-

preserving orthogonal transformations that also preserve the orientation of

time). The kernel of τ is again a copy of Z2, the one generated by ±e ∈ SL(2,C).

The group SL(2,C)/Z2 is known as PSL(2,C). So, we get the isomorphism
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PSL(2,C) = SO+(1, 3). (1.52)

This isomorphism plays a very important role in physics, as it in particular

provides a description of the spinor representations of the Lorentz group. Very

concretely, these are the two-component columns of complex numbers on which

the group SL(2,C) acts by matrix multiplication.

1.11 Fibre Bundles

The logic we follow in this section is to first define the most general notion of

a fibre bundle without any Lie group action in the fibres. Already this setup

allows a connection and curvature to be defined. Only then do we add the extra

structure of a group acting in the fibres. We first define principal fibre bundles,

and then discuss vector bundles, in particular vector bundles associated with

principal bundles.

1.11.1 Definition

The notion of a fibre bundle is an abstractisation of the commonly encountered

geometric setup where a manifold E is foliated by submanifolds, with each leaf of

the foliation diffeomorphic to some given manifold F . One calls the set of leaves

of the foliation the base space B.

In this geometric setup the base space B arises as the quotient space. This is

not what is most convenient to have a workable definition. For this reason, the

standard definition of the fibre bundle contains the base space built into it.

Definition 1.55 A fibre bundle (or simply bundle) is a triple (E,B, π), where

E,B are topological manifolds and π : E → B is a map. The space E is called the

total space, the space B is the base, and the map π is called the projection

of the bundle. It is moreover required that for every e ∈ E there is an open

neighbourhood U ⊂ B of π(e) (which is called a trivialising neighbourhood) so

that there is a homeomorphism φ : π−1(U) → U×F , where F is another smooth

manifold, such that the projection π agrees with the projection on the first factor.

This means that for every b ∈ B the preimage π−1(b) is homeomorphic to F and

is called the fibre over b. A fibre bundle is often denoted as

F −→ E
π−→ B.

This mimics short exact sequences and represents the fact that the image of

the first map, i.e., the fibres, are in the kernel of the second (projection) map.

Another common notation for the bundle is π : E → B. A smooth fibre bundle

arises when all E,B, and F are smooth manifolds, and all the maps are smooth.

Example 1.56 The simplest (trivial) example of a fibre bundle is the product

(B × F,B, π) where the projection π is that on the first factor.
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Before we consider examples of nontrivial bundles, let us state two more

important definitions.

Definition 1.57 A bundle (E′, B′, π′) is a subbundle of (E,B, π) provided E′

is a subspace of E, B′ is a subspace of B, and π′ = π|E′ : E′ → B′.

Definition 1.58 A cross section (or simply section) of a bundle (E,B, π) is a

map s : B → E such that s(b) ∈ π−1(b).

1.11.2 Examples of Nontrivial Bundles

We give two examples, without proving that they really correspond to nontrivial

bundles. Another basic example to have in mind is that of the Hopf fibration. It

is treated in due course in Section 1.13.

Example 1.59 The tangent bundle over Sn, denoted (T, Sn, π) is a subbundle

of the product bundle (Sn × R
n+1, Sn, π), whose total space is defined by the

relation (p, x) ∈ T if and only if the Euclidean inner product (p|x) = 0. An

element (p, x) ∈ T is called a tangent vector to Sn at p ∈ Sn ⊂ R
n+1. The fibre

π−1(p) is of dimension n. A cross section of the tangent bundle is called a tangent

vector field on Sn.

Example 1.60 The bundle of (orthonormal) k-frames over Sn denoted by

(E,Sn, π) is a subbundle of the product bundle (Sn×(Sn)k, Sn, π) where the total

space E is the subspace of Sn×(Sn)k consisting of (unit) vectors (p, v1, . . . , vk) ∈
Rn+1 × (Rn+1)k such that (p|vi) = 0 and (vi|vi) = δij . In other words, this

is the subspace of k orthonormal tangent vectors to Sn. A cross section of

this bundle is called a field of k-frames. The existence of a nowhere vanish-

ing field of k-frames is a difficult problem, and in general, there is no such

existence.

1.11.3 Restrictions and Pullbacks of Bundles

Definition 1.61 Let (E,B, π) be a fibre bundle, and let A be a subset of B.

We can then define a new bundle E|A with A as the base, defined as (E′, A, π′),

where E′ = π−1(A) and π′ = π|E′ .

The other definition concerns a case when we have a map f : B′ → B, and a

bundle over B. In this case we can define the pullback bundle f∗E over B′. The

fibre of f∗E over b′ ∈ B′ is just the fibre of f(b′) ∈ B in E.

Definition 1.62 Let (E,B, π) be a fibre bundle and f : B′ → B be a map. The

pullback bundle f∗E has B′ as the base, the subspace of all pairs (b′, e) ∈ B′×E

such that f(b′) = π(e) as the total space, and the map (b′, e) → b′ as the

projection π′.
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1.11.4 Connections in Fibre Bundles: Ehresmann Connection

The setup of the fibre bundle is the minimal geometric setup that allows the

notion of a connection to be defined. The connection that arises in this setting

is known as the Ehresmann connection. When a bundle is given more struc-

ture (e.g., principal bundles or vector bundles that we consider in Sections 1.12

and 1.14, respectively), the Ehresmann connection becomes the more familiar

connections that we have in those settings. It is, however, very important to

understand that there is a rather minimal geometric structure that is required

for a connection to be defined.

A fibre bundle (E,B, π) is a manifold that comes with a preferred subset in the

set of all vector fields X ∈ TE. Indeed, vector fields can be pushed forward with

the projection map. While this push-forward is in general ill-defined (because the

projection map is not injective), the notion of vector fields that are in the kernel

of the projection map is well-defined. One then calls such vector fields vertical.

Alternatively, vertical vector fields are those tangent to the fibres. Let us denote

the set of vertical vector fields by V ⊂ TE. We now note that, given an arbitrary

vector field X ∈ TE, there is in general no way to represent this vector field as

a sum of its vertical part and the remainder. A connection is then defined as a

rule that provides such a decomposition. This motivates the following definition.

Definition 1.63 An Ehresmann connection on E is a smooth subbundle H

of TE, called the horizontal bundle of the connection, which is complementary

to V , in the sense that it defines a direct sum decomposition TE = H ⊕ V . In

other words, a connection is a rule that for each point e ∈ E defines a vector

subspaceHe ⊂ TeE, called the horizontal subspace of the connection at e. The set

of horizontal subspaces He is required to depend smoothly on e, and horizontal

vectors should be complementary to vertical He ∩ Ve = {0}. Any tangent vector

X ∈ TeE should be representable as the sum of its vertical and horizontal parts

TeE = Ve ⊕He, X = XV +XH .

This notion of the connection is extremely useful, for it immediately allows

several things to be defined. First, it allows us to define horizontal lifts of curves

γ(t) ∈ B on the base. Indeed, consider a curve on the base that passes through

point x = γ(0). Select a point p ∈ π−1(x) in the fibre over the point x. The

horizontal lift of γ through p is a curve γ̃(t) in the total space E such that for

every t the tangent vector to the curve lies in H, i.e. dγ̃/dt ∈ Hγ̃(t), and the

curve γ̃(t) projects to γ(t) for every t. This should be compared to the notion of

an integral curves of a vector field on a manifold. In general, the horizontal lift

of a curve γ(t) can be shown to exist for sufficiently small t.

1.11.5 Curvature

The other important and natural notion that can be defined for an Ehresmann

connection is that of the curvature. This notion can be motivated by considering
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the horizontal lifts along two different paths that start and end at the same points

on the base. In general, the horizontal lifts starting at the same point will fail to

end at the same point. This failure of the horizontal lifts along different paths

to agree is measured by the curvature.

Another way to motivate the definition of the curvature is to think about the

Lie bracket of two horizontal vector fields. In general, the resulting vector field

will fail to be horizontal. This would signal the fact that the horizontal distribu-

tion is not integrable, i.e., that the notion of the horizontal vector fields does not

arise from some foliation of the total space E by submanifolds (diffeomorphic to

B). The horizontal distribution is only integrable (and thus defines submanifolds

diffeomorphic to B through every point of E) when the Lie bracket of two

horizontal vector fields is again horizontal. This is precisely what is measured by

the curvature of the connection, with curvature being zero being equivalent to

the horizontal distribution being integrable.

With these remarks in mind we define the curvature of the Ehresmann

connection as a two form on the total space E with values in the vertical

subbundle V of TE. The curvature is given by

R(X,Y ) = [XH , YH ]V , R ∈ Λ2(E, V ),

where R(X,Y ) is the contraction of the 2-form R with the vector fields X,Y ,

XH , YH are the horizontal parts of X,Y , [X,Y ] stands for the Lie bracket of

vector fields, and the result of the Lie bracket is projected onto the vertical

subspace.

1.11.6 Connection as a 1-Form

Given that a connection is an object that provides a decomposition of the tangent

bundle TE into vertical and horizontal subbundles, we can encode a connec-

tion into a 1-form with values in the space of vertical vector fields. Indeed, let

v ∈ End(TE) be an endomorphism of the tangent bundle that maps any vector

field X into its vertical part

ω : X → ω(X) := XV ,

and is the identity map on the space of vertical vector fields. We can encode

such an endomorphism into a 1-form with values in V , i.e., ω ∈ Λ1(E, V ), so

that the pairing of this 1-form with X is ω(X). This 1-form is required to satisfy

ω(XV ) = XV . The horizontal vector fields are then those in the kernel of the

map ω

H = {X ∈ TE : ω(X) = 0}.

Concretely, the object ω is a linear map that acts in each TeE, smoothly depends

on the point e, and sends each tangent vector to its vertical part.
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1.11.7 Metric in the Total Space Defines a Connection

Let us now consider a frequently encountered situation when there is a (Rieman-

nian) metric in the total space of the bundle, i.e., a symmetric and (positive)

definite element of T ∗E ⊗ T ∗E. In this situation, there is a natural Ehresmann

connection that is such that the horizontal vector fields are those metric orthog-

onal to the vertical ones

H = {X ∈ TE : (X|YV ) = 0, ∀YV ∈ V ⊂ TE}.

This is the situation encountered in Kaluza–Klein theory, where certain compo-

nents of the metric in the total space of the bundle receive the interpretation

of a connection. We will consider an example of the setup of this sort when we

study the Hopf fibration in the next section.

1.12 Principal Bundles

The notion of a principal bundle arises when we have an additional structure

of a Lie group acting in the fibres, and when, moreover, this action is free and

transitive so that each fibre is diffeomorphic to the group.

1.12.1 Definition and Examples

A principal G-bundle is a bundle (E,B, π) with fibres copies of a Lie group G.

The formal definition is as follows.

Definition 1.64 A principal G-bundle is a bundle (E,B, π) with extra structure

of a smooth right action of G on E by diffeomorphisms, i.e., a map Rg : E → E

with the property that the identity element in G acts as the identity map, and

Rh ◦ Rg = Rgh. It is usual in this context to write Rgp = pg. This map is

required to leave the projection π invariant, i.e., π(pg) = π(p), and thus act

on fibres. Moreover, the action of G on the fibres is required to be free and

transitive, so that each fibre is an orbit of this action, and is a copy of the group

G. Concretely, this means that the trivialising maps can be chosen to commute

with theG action. In other words, for every p ∈ E there is an open neighbourhood

U of π(p) ∈ B such that there is a smooth map φ : π−1(U) → U × G that has

the property that if φ(p) = (π(p), h(p)) then φ(pg) = (π(p), h(p)g).

Example 1.65 The canonical example of a principal H bundle is the bundle

(G,G/H, π), where the total space is the group manifold G, the base is the group

coset B = G/H, and the projection is the map from G to the set of its right H

cosets g ∼ gh. The fibres of this bundle are copies of H, with H acting on G as

g → gh, and preserving the fibres.

Example 1.66 Another prototypical example of a principal bundle is the frame

bundle of a smooth manifold M denoted by FM . The fibre over a point x ∈ M
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is the set of all frames (i.e., ordered bases of the tangent space TxM). The general

linear group GL(n,R) acts freely and transitively on these frames, which makes

this into a principal GL(n,R) bundle.

Example 1.67 Yet another example arises in the situation when there is a

metric on M . In this case one can consider the bundle of orthonormal frames on

M . This is a principal O(n,R) bundle over M . The orthogonal group acts freely

and transitively on the space of orthonormal frames.

Example 1.68 An example that connects the orthonormal frame principal

bundle with the coset (G,G/H, π) bundle is the bundle of orthonormal frames

on the sphere Sn. The sphere is the group coset Sn = SO(n + 1)/SO(n), and

the bundle of oriented orthonormal frames on Sn is the principal SO(n) bundle

whose total space is the group manifold SO(n + 1). To see this explicitly, we

view the sphere Sn as the space of unit vectors in R
n+1. A point in the oriented,

orthonormal frame bundle consists of an (n + 1)-tuple of orthonormal vectors

(x, v1, . . . , vn) in R
n+1. The projection is that onto the first element. We can

identify this (n + 1)-tuple of vectors with a matrix in SO(n + 1), with these

vectors as columns.

1.12.2 Coordinate (Cocycles) Definition

It is possible to give another, equivalent definition of a principal bundle that views

such a bundle as glued from copies of the trivial bundle over suitable cover of

the base B by coordinate charts. This definition is sometimes more convenient in

practice, as it allows some explicit constructions of principal bundles. It proceeds

as follows.

Let us start with a finite cover of the base B by open coordinate charts U .

The data that is needed for this construction of the bundle is a set of principal

bundle transition functions. These are defined for any pair U, V of coordinate

charts that have a nontrivial overlap. They are denoted by gUV ∈ G and have

the following properties: (i) gUU is the constant map to the identity in G; (ii)

g−1
UV = gV U ; and (iii) if U, V,W are any three coordinate charts with U ∩V ∩W �=
0, then the condition gUV gV W gWU = 1 must hold. This set of constraints on the

transition functions is called the cocycle constraints. Given such transition

functions, the principal bundle is constructed as the quotient of the set of trivial

bundles U × G by the equivalence relation that puts (x, g) ∈ U × G equivalent

to (x′, g′) ∈ U ′ ×G if and only if x = x′ and g = gUU′(x)g′.

This gluing construction clearly produces a principal bundle in the sense of

our coordinate-free definition. Let us also see how to go from the coordinate-free

construction to the construction with transition functions just described. For

this purpose, one stars by selecting a cover of the base B by coordinate charts U .

For every coordinate chart we have a trivialising map φU : E|U → U ×G. Now,

given an intersection of two coordinate charts, we get the composition of maps
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φU ◦ φ−1
V which maps U ∩ V to G. These are our transition functions gUV . They

satisfy all the cocycle constraints, and thus provide the coordinate description

of the same bundle.

Example 1.69 Principal U(1) bundles over S2 can be constructed using the

cocycle definition as follows. We cover the base S2 with two coordinate charts,

the north N and south S hemisphere. Both of these are mapped into the complex

plane by the stereographic projection. On the intersection of the two charts the

complex coordinate z of, say, the north chart N is different from zero. Let us

form the map g : N ∩ S → U(1) as g : z → z/|z|. We then fix an integer m

and take the transition function for our principal U(1) bundle over S2 to be

gm : N ∩ S → U(1). There are no triple intersections in this case, and so there

are no triple intersection constraint to satisfy.

1.12.3 Connections in Principal Bundles

A connection in an arbitrary fibre bundle (E,B, π) is a horizontal distribution

Hp ⊂ TE at every point of p ∈ E. In a principal bundle we have a group G

acting on E by the right action and preserving the fibres. It is natural to demand

that the horizontal distribution is invariant under this action, in the sense that

the horizontal vectors at p pushed forward using the right action are horizontal

vectors at Hλgp, i.e., Rg∗(Hp) = Hpg. Such a connection is called a principal

(Ehresmann) connection, or simply a connection in a principal bundle.

Now, since each fibre is a copy of the group manifold, the space of vertical

vectors at each p ∈ E can be identified with the Lie algebra g of G. As we have

previously noted, a connection can be described as a 1-form ω in the total space.

If a tangent vector at p is inserted into ω, it returns a vertical vector. But we have

identified vertical vectors at p with the Lie algebra of G. This means that we can

encode the connection into a 1-form that is Lie algebra valued ω ∈ Λ1(E, g).

For the construction that follows, it will be convenient to identify the Lie

algebra g with the space of left-invariant vector fields on the group manifold.

So, it will be convenient to have the group G act on the fibres from the right,

while considering the realisation of g by left-invariant vector fields. With this

realisation of g in mind, we can make the identification of the vertical tangent

space Vp at any point p ∈ E more concrete. Thus, each vertical tangent vector

in Vp is the restriction of some left-invariant vector field on G, and in this way

each tangent vector from Vp is identified with an element of g. The Ehresmann

connection in general is a linear map from TpE to Vp which is identity on Vp,

and after the identification we just made, the corresponding 1-form ω has the

property that ω with a left-invariant vector field inserted into it returns the same

left-invariant vector field.

This 1-form ω representing the Ehresmann connection is not going to be

invariant under the right action of the group G in the fibres, but is going to have
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certain simple transformation properties instead. To describe these, we note that

the right action of the group on itself gives rise to a nontrivial action of G on

its Lie algebra, realised as the space of left-invariant vector fields. This is the

adjoint action. For example, for matrix groups, the left-invariant vector fields

are those of the form

ξA = (gA)ij
∂

∂gi
j

, A ∈ M(n,R),

and pushing forward such a vector field using the right action Rhg = gh produces

a left-invariant vector field

Rh∗ξA = ξAh

with

Ah = Adh−1A = h−1Ah.

We can now state the transformation property of the 1-form ω ∈ Λ1(E, g) that

represents a connection. Given that the connection is a projector that maps an

arbitrary vector field into its vertical part, and that this projector commutes

with the right action of G on E, we form a linear map that is the composition

of this projector with the map from the space of vertical vector fields to the Lie

algebra realised as the space of left-invariant vector fields. This linear map is

our 1-form ω. When acting on it with the right action, the projection onto the

vertical vectors commutes with the right action, while the right action of the

group on the space of left-invariant vector fields is the adjoint action. So, we get

the following property that must be satisfied by ω

R∗
hω = Adh−1ω.

Conversely, any 1-form ω ∈ Λ1(E, g) with this property and the property that

when a left-invariant vector field is inserted it is returned defines an Ehresmann

connection in a principal G-bundle.

1.12.4 Coordinate Description of Principal Connections

All this can be described very concretely in coordinates. Thus, we choose some

coordinate chart U ⊂ B, and the corresponding trivialisation in which E|U =

U×G. Then the 1-form on G with values in g that is left-invariant and transforms

under the right action by the adjoint representation is

g−1dg.

This form maps left-invariant vector fields into the corresponding Lie algebra

elements. Thus, for any connection ω, its restriction to the fibres must coincide

with g−1dg. Then any form that is equivariant with respect to the right action

and coincides with g−1dg on the fibres can be written as
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ω = g−1dg + g−1Ag, (1.53)

where A ∈ Λ1(B, g) is a Lie algebra valued 1-form on the base. It is in order to be

able to give this coordinate description of the connection that we have identified

the Lie algebra with the left-invariant vector fields on G, while using the right

action of G on E to define the principal bundle.

It is important to emphasise that while the description in terms of a Lie algebra

valued 1-form on the base makes in general sense only locally, in a coordinate

chart, the description of the connection as a Lie algebra valued form on the total

space is global, and independent of any coordinates that can be chosen.

1.12.5 Coordinate Description of Horizontal and Vertical Vector

Fields

Now that we wrote the connection 1-form ω as (1.53) in a trivialisation, we can

work out explicitly what the horizontal subbundle of TE is. Let us consider the

case of matrix groups, and let

X = ai
j

∂

∂gi
j

+ aμ ∂

∂xμ
(1.54)

be an arbitrary vector field in TE. Here both ai
j and aμ are functions of xμ, gi

j .

When the Ehresmann connection is described by the corresponding 1-form ω,

the horizontal vector fields arise as those in the kernel of ω. So, the component

functions ai
j , a

μ of a horizontal vector field satisfy

(g−1a)ij + (g−1aμAμg)
i
j = 0.

From this we see that the horizontal vector fields are those of the form

XH = −(aμAμg)
i
j

∂

∂gi
j

+ aμ ∂

∂xμ
. (1.55)

These horizontal vector fields are preserved by the right action of G on the fibres

when aμ is a set of functions on the base only, i.e., g-independent. The vector

field obtained can also be referred to as the horizontal lift of an arbitrary vector

field aμ(∂/∂xμ) from the base into the total space. The horizontal lift explicitly

depends on the connection components Aμ (that are matrix valued). Similarly,

the vertical projection of X in (1.54) is given by

XV = (a+ aμAμg)
i
j

∂

∂gi
j

. (1.56)

1.12.6 Change of Trivialisation as Gauge Transformations

The given previously coordinate description of the connection is based on a triv-

ialisation of the bundle over a coordinate chart on the base. Every trivialisation

of a principle bundle comes from a cross section, and vice versa, if a principal
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bundle admits a global cross section, this implies that the bundle is trivial. Let

us see this. If s : B → E is a section, then we can parametrise a point in E as the

set of pairs (x, s(x)g), x ∈ B, g ∈ G. This provides a global identification between

E and B×G. In the opposite direction, if we have a trivialisation over U , which

is a map φ : E|U → U ×G, the preferred section is given by s(x) = φ−1(x, 1).

Given a trivialisation and the corresponding section s : B → E of the bundle

E, we can understand the 1-form on the base A ∈ Λ1(B, g) in (1.53) as the

pullback of the connection 1-form ω with respect to s, i.e.,

A = s∗(ω).

This raises the question of what happens if a trivialisation is changed. As we

shall see, this corresponds to what in physics is called gauge transformations.

We can go from one trivialisation corresponding to section s(x) to another

s′(x) by the right action

s′(x) = s(x)h(x),

where h(x) ∈ G is a function from the base into the group. Then the trivialisa-

tion that corresponds to s′(x) is obtained by the parametrisation (x, s′(x)g) =

(x, s(x)h(x)g). The change of trivialisation thus corresponds to replacing g →
h(x)g, i.e., to the left local action of h(x) on the group manifold. Let us see the

effect of this transformation on the connection. We have

ωh = (h(x)g)−1d(h(x)g) + (h(x)g)−1A(h(x)g) = g−1dg + g−1Ahg,

where

Ah = h−1(x)dh(x) + h−1(x)Ah(x). (1.57)

We thus see that ωh preserves its form (1.53), but with the 1-form on the base

A being replaced with the 1-form Ah. The 1-form Ah is said to be obtained from

A by a gauge transformation.

1.12.7 Curvature as a 2-Form

The curvature of a connection was described as an antisymmetric map R : H ×
H → V from the space of horizontal vector fields to the vertical ones. It can be

given a further characterisation in the case of principal bundles. Thus, consider

the 2-form

R = dω +
1

2
[ω, ω] ∈ Λ2(E, g). (1.58)

In the case of matrix groups this becomes simply

R = dω + ωω, (1.59)
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where the wedge product in the second term is implied. This 2-form vanishes on

vertical vector fields. This is easiest to see in a trivialisation. Indeed, for matrix

groups we have

R = d(g−1dg + g−1Ag) + (g−1dg + g−1Ag)(g−1dg + g−1Ag) (1.60)

= g−1(dA+AA)g − g−1dgg−1dg − g−1dgg−1Ag − g−1Adg

+ g−1dgg−1dg + g−1dgg−1Ag + g−1Adg = g−1R(A)g,

where

R(A) = dA+AA (1.61)

is the curvature 2-form on the base. This form clearly vanishes when a vertical

vector field is inserted into it.

1.12.8 Relation to Curvature Defined as Measure

of Non-Integrability

It is an instructive exercise to relate the definition (1.61) of the curvature to the

definition that was given earlier, where curvature appeared as a measure of non-

integrability of the horizontal distribution. Thus, let us compute the quantity

[XH , YH ]V for two vector fields X,Y of the form (1.54). Using (1.55) we have

XH = −(aμAμg)
i
j

∂

∂gi
j

+ aμ ∂

∂xμ
, YH = −(bμAμg)

i
j

∂

∂gi
j

+ bμ
∂

∂xμ
.

The Lie bracket of these two vector fields computes to

[XH , YH ] = (bνAνa
μAμg)

i
j

∂

∂gi
j

− (aν(∂νb
μ)Aμg + aμbν(∂μAν)g)

i
j

∂

∂gi
j

+ aμ∂μb
ν ∂

∂xμ
− (a ↔ b).

This expression contains derivatives of aμ, bμ. However, when we take the vertical

projection using (1.56) these derivatives cancel out and we get

[XH , YH ]V = −aμbν (Rμνg)
i
j

∂

∂gi
j

, (1.62)

where

Rμν = ∂μAν − ∂νAμ +AμAν −AνAμ. (1.63)

These are just of course the components of the curvature 2-form

R = (1/2)Rμνdx
μdxν ,

with R given by (1.61). This shows that the curvature as computed using (1.61) is

indeed the measure of non-integrability of the horizontal distribution as defined

by the connection.
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1.13 Hopf Fibration

The purpose of this section is to describe an example that illustrates most of

the previous constructions. The Hopf fibration describes the three-sphere S3 as

a nontrivial S1 bundle over S2.

1.13.1 Construction of the Hopf Fibration

The Hopf fibration has a spinor origin. Consider the special unitary group SU(2)

in two dimensions. This group naturally acts on columns

ψ =

(
α

β

)
, α, β ∈ C.

The action is by the matrix multiplication

SU(2) 
 m : ψ → mψ.

We will refer to this as the spinor representation of SU(2).

We have the following Hermitian inner product on the space of spinors

|ψ|2 = ψ†ψ = |α|2 + |β|2.

This inner product is invariant under the SU(2) action. In fact, it is invariant

under a larger group U(2), but we are after SU(2) here.

Because C
2 = R

4 the space of unit |ψ|2 = 1 spinors is nothing else but the

three-sphere S3 ⊂ R
4. If we take a unit spinor |ψ|2 = 1 and act on it with SU(2)

it will remain a unit spinor. This means that the space of unit spinors is an orbit

of SU(2). It is not hard to see that the space of unit spinors with β �= 0 can be

parametrised as

ψ =
eiφ√

1 + |z|2

(
z

1

)
, φ ∈ [0, 2π), z ∈ C. (1.64)

One can then check that the SU(2) action on unit spinors is transitive and

without fixed points. This means that that the points in this orbit are in one-to-

one correspondence with SU(2) group elements. This also means that the group

SU(2) is isomorphic to S3 as the manifold. Thus, we can view (1.64) as providing

a set of coordinates on S3.

The three-sphere S3 is going to be the total space of the bundle we are about

to construct. The other elements that we need to define a bundle is the projection

map to the base. This is designed as follows. Consider the map from the space

of unit spinors to R
3 given by

vψ = ψ†σψ.

Here σ = (σ1, σ2, σ3) are the usual Pauli matrices. A simple computation gives

vψ =

(
2Re(z)

1 + |z|2 ,
−2Im(z)

1 + |z|2 ,
|z|2 − 1

1 + |z|2
)
.
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In particular, it is clear that |v|2 = 1, and so this is a vector lying on the unit

S2 ⊂ R
3. Thus, we have constructed a map

π : S3 → S2, π : R4 ⊃ S3 
 ψ → vψ ∈ S2 ⊂ R
3.

Explicitly, we see that the vector v is independent of the coordinate φ. The

projection map π : S3 → S2 is the map that ‘forgets’ about the φ coordinate

and maps the z coordinate to the corresponding point on S2, with φ, z viewed

as coordinates on S3. Here we can both view the base space S2 of fibration as a

set of one-dimensional submanifolds parametrised by φ, or as the target of the

projection map π.

1.13.2 Metric in the Total Space and the Corresponding Ehresmann

Connection

The sphere S3 comes with its round metric, which is the restriction of the flat

metric in R
4 to S3. Viewing R

4 = C
2 the flat metric takes the form

ds2 = |dα|2 + |dβ|2.

Using the parametrisation (1.64) we write

α =
zeiφ√
1 + |z|2

, β =
eiφ√

1 + |z|2
. (1.65)

In this parametrisation, the metric on S3 evaluates to

ds2 =

(
dφ+

i

2

zdz̄ − z̄dz

1 + |z|2
)2

+
|dz|2

(1 + |z|2)2 . (1.66)

This is a metric in the total space of the bundle, which is S3 in our case. As

we know, a (Riemannian) metric in the total space defines a connection. The

corresponding horizontal distribution is metric orthogonal to the vertical one.

Vertical vector fields in this bundle are those of the form

XV = a(φ, z)
∂

∂φ
. (1.67)

Let us find vector fields that are metric orthogonal to vertical. We look for

horizontal vector fields in the form

X = a
∂

∂φ
+ b

∂

∂z
+ b̄

∂

∂z̄
, (1.68)

where a is a real valued function, and b is a complex valued function in the total

space. Taking the metric pairing of a vertical vector field a′(∂/∂φ) with what we

want to be a horizontal one and setting the result to zero gives

a′
(
a+

i

2

zb̄− z̄b

1 + |z|2
)

= 0. (1.69)
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We thus see that horizontal vector fields are those of the form

XH = − i

2

zb̄− z̄b

1 + |z|2
∂

∂φ
+ b

∂

∂z
+ b̄

∂

∂z̄
. (1.70)

If we want these vector fields to be invariant with respect to the action of S1 on

the fibres, the function b must be φ-independent, i.e., function on S2 only.

We can also see that the 1-form that encodes this horizontal subbundle is

given by

ω̃ = dφ+
i

2

zdz̄ − z̄dz

1 + |z|2 , (1.71)

with the horizontal vector fields being those that satisfy ω̃(XH) = 0. We note

that the metric on the three-sphere can be written as

ds2
S3 = ω̃2 +

1

4
ds2

S2 , ds2
S2 =

4|dz|2
(1 + |z|2)2 , (1.72)

where we also identified the standard metric on the two-sphere of radius one.

1.13.3 Hopf Fibration as a Principal Bundle

Hopf fibration is also an example of a principal bundle. Indeed, the fibres of

the fibration (S3, S2, π) are copies of S1 ∼ U(1). Let us parametrise the group

manifold U(1) as

U(1) 
 g = eiφ. (1.73)

We have this group acting on the total space of the bundle by ψ → gψ. It

is clear that the projection map π commutes with the U(1) action because

vgψ = vψ.

Let us also understand what connections in this principal bundle are. First, we

note that for b = b(z, z̄) the horizontal distribution (1.70) is φ-independent, and

so is U(1)-invariant. Thus, it gives rise to a connection in the principal bundle.

To describe this connection in coordinates, we note that the canonical 1-form

g−1dg on the group manifold U(1) is

g−1dg = idφ. (1.74)

This makes it natural to identify the Lie algebra of U(1) with the vector space

iR of imaginary numbers. A general connection in this principal bundle is then

of the form

ω = g−1dg + g−1Ag = idφ+A, (1.75)

where A is some Lie algebra valued form on the base. In our case A is a pure

imaginary 1-form on S2 (locally). Comparing to (1.71) we see that there is a

canonical geometric connection in the Hopf bundle given by ω = iω̃, with ω̃
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being real and given by (1.71). In other words, the canonical U(1) connection in

the Hopf bundle is given by the following pure imaginary 1-form

ω = idφ+
1

2

z̄dz − zdz̄

1 + |z|2 . (1.76)

1.14 Vector Bundles

A vector bundle is a fibre bundle with an additional structure of a vector space

for fibres. We follow C. H. Taubes’ 2011 book, Differential Geometry, in this

section.

1.14.1 Definition

A vector bundle (E,B, π) is a fibre bundle with the structure of a finite-

dimensional (real) vector space for each fibre π−1(x), x ∈ B, such that the

trivialisation maps can be chosen to be linear maps φ : π−1(U) → U × R
k.

In other words, it is required that the trivialisation map from a fibre π−1(x) can

be chosen to be a linear isomorphism between the vector spaces π−1(x) and R
k.

The dimension k is called the rank of the vector bundle. The simplest example

of a vector bundle is the trivial bundle B × R
k.

As for any fibre bundle, there is a notion of sections of a vector bundle. A

section is a map ψ : B → E that respects the projection π(ψ(x)) = x. Given

that fibres of a vector bundle have the structure of a vector space, every vector

bundle has a preferred section, the zero section.

1.14.2 Cocycles Definition

A vector bundle can also be given a cocycles definition, similar to what we saw for

the principal bundles. To see how this comes about, let us consider the trivialising

maps φU , φV over two different but overlapping neighbourhoods U, V . Over the

overlap U ∪ V we have

φU ◦ φ−1
V : (U ∩ V )× R

k → (U ∩ V )× R
k.

This map is linear and thus satisfies

φU ◦ φ−1
V (x, v) = (x, gUV v)

for some GL(k,R) valued function gUV : U ∩ V → GL(n,R). These are called

the transition functions for the vector bundle. Similarly to what we had for

principal bundles, these transition functions satisfy

gUU = I, gV U = g−1
UV , gUV gV W gWU = I.

In the opposite direction, given a set of trivial bundles U × R
k over the

neighbourhoods U , and a set of transition functions satisfying the previous
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cocycle properties, one can construct a vector bundle by identifying the points

of the trivial bundles with the cocycles, similar to what was done in the principal

bundle case.

1.14.3 The Tangent and Cotangent Bundles as Vector Bundles

It is not hard to see that what we have previously defined as the tangent bundle

(even prior to the definition of the notion of a bundle) is an example of a vector

bundle. Indeed, let us recall how this was defined. Given a pair of coordinate

neighbourhoods U, V , there are two maps ψU : U → R
n, ψV : V → R

n. The

transition function ψUV = ψU ◦ψ−1
V maps ψU(U ∪V ) → ψV (U ∪V ), both subsets

of Rn. The differential of this map ψUV ∗ is a map from ψU(U ∪ V ) to GL(n,R),

and is the matrix of the Jacobian of the corresponding coordinate transformation.

So, we set gUV = ψUV ∗. The cocycle conditions are satisfied by the chain rule.

The tangent space above each point is spanned by the coordinate vector fields

∂1, . . . , ∂n, and the corresponding trivial bundles TU = U×R
n are glued together

by the transition functions gUV , which follow from the chain rule. This shows that

the tangent bundle over a manifold, as it was previously defined, is an example

of a vector bundle. In fact, the definition of a general vector bundle could be

motivated by the example of the tangent bundle.

In a similar vein, the cotangent bundle T ∗M is as well an example of a vector

bundle, with transition functions given by the inverse of those for the tangent

bundle.

A section of the tangent bundle TM is called a vector field, and a section of

the cotangent bundle T ∗M is called a 1-form.

1.14.4 Structure Group

There is an extra structure that can be added to a fibre bundle, and this structure

brings general fibre bundles closer to the principal and vector bundles. This is

the structure of a group that acts on the fibres so that the matching between

overlapping local trivialisation charts is a group transformation. Often this group

is a part of the definition of the fibre bundle, see e.g., Nakahara (2003), and is

called the structure group of the bundle. But, as we have seen in the section

on fibre bundles, it is not necessary to have this structure and one can develop a

meaningful theory even in its absence. The structure group is naturally present

in the case of principal bundles, where the fibre is a group itself. Structure group

is also present in the case of vector bundles, where it is, most generally, the

general linear group GL(n,R). However, the structure group of a vector bundle

may also be a subgroup of GL(n,R), as in the case of associated vector bundles.

1.14.5 From Vector Bundles to Principal Bundles

There are two general constructions that relate vector bundles with principal

bundles. One such construction is from a vector bundle E, to the principal frame
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bundle FE, which is also often denoted by PGl(E). Its fibre is the space of frames

of E, and given that any two frames can be mapped one into another by a

GL(n,R) transformation, this space can be identified with a copy of the general

linear group. In case there is a metric in the fibres of E, one can consider the

space of orthonormal frames of E. This is a principal bundle whose fibre is the

orthogonal group.

1.14.6 From Principal Bundles to Associated Vector Bundles

It is also possible to go in the opposite direction, starting from a principal

G-bundle and defining the notion of the associated vector bundle. This is a

vector bundle whose fibre is any linear representation of G. We thus first need

to define the notion of a representation. Let V denote the vector space R
n or

C
n. Denote by Gl(V ) either GL(n,R) of GL(n,C). A representation ρ of G is

a group homomorphism from G to Gl(V ), i.e., a map that sends the identity

element in G into the identity matrix in Gl(V ), and is compatible with the

group multiplication ρ(gg′) = ρ(g)ρ(g′).

Let π : P → B with the principal G-bundle over base B. Then one defines a

new bundle, denoted by P×ρV , which is the quotient of P×V by the equivalence

relation

(p, v) ∼ (pg, ρ(g−1)v).

In other words, the group G acts on P × V , and the space P ×ρ V is the space

of orbits of this action.

To see that this is indeed a vector bundle, we need to specify the projection, as

well as check the vector space properties of the fibre. First, the projection sends

the equivalence class of (p, v) to π(p). This is well-defined, and it is clear that

the base of the new bundle is the same as base of the principal bundle. The

multiplication by real or complex number λ sends the equivalence class of (p, v)

to that of (p, λv). The zero section is the equivalence class of (p, 0) ∈ P × V .

We can also add sections of P ×ρ V by adding the corresponding equivalence

classes. The trivialisation of the new bundle is obtained as follows. First, let

φ : P |U → U × G be a trivialisation of P over neighbourhood U . Denote by

ψ : P → G the function that is the composition of φ with the projection

onto the second factor. We can then define φV : (P ×ρ V )|U → U × V as

the map that sends the equivalence class of (p, v) to (π(p), ρ(ψ(p))v). This

is well-defined because (pg, ρ(g−1)v) gets sent to (π(pg), ρ(ψ(pg))ρ(g−1)v) =

(π(p), ρ(ψ(p))v) because ρ(ψ(pg))ρ(g−1) = ρ(ψ(pg)g−1) = ρ(ψ(p)). Finally, if

gUV are the principal bundle transition function arising as φU ◦ φ−1
V , then the

associated bundle transitions functions are ρ(gUV ).

Example 1.70 This example shows how to recover the original vector bundle as

the bundle associated with its bundle of frames. Thus, let E be a vector bundle

with fibre V , and FE be its principal bundle of frames. Let ρ be the defining
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representation of GL(n,R). Then the associated bundle FE ×ρ V is canonically

isomorphic to E. To see this, we view a section of FE as the set of elements

(e1, . . . , en) that span the fibre of E at every point, i.e., a frame. We can then

define a function f : FE × V → E that sends e = (e1, . . . , en) and v ∈ V to

f(e, v) = viei, with summation convention implied. This map is invariant with

respect to the G action on FE × V , and this shows that the quotient FE ×ρ V

is sent by f to E.

What is important about the associated bundle construction is that, given a

vector bundle E, all bundles obtained from E via various algebraic operations,

such as ⊗nE,ΛpE,Symp(E), can be viewed as arising from the frame bundle

FE via the associated bundle construction. Thus, all these vector bundles can

be studied at once by focusing on the one principal frame bundle. Because of

this, all tensor bundles arise as vector bundles associated to the frame bundle of

a Riemannian manifold.

1.14.7 Covariant Derivatives

Given a vector bundle E, a covariant derivative is an operation that maps

sections of the bundle to 1-form valued sections

∇ : C∞(M ;E) → C∞(M ;E ⊗ T ∗M). (1.77)

Moreover, this map satisfies several properties. First, it respects the vector

structure of the fibres ∇(s + s′) = ∇s + ∇s′. Second, it obeys the analog of

the Leibnitz’s rule

∇(fs) = f∇s+ s⊗ df, ∀f ∈ C∞(M).

The simplest covariant derivative is a version of the exterior derivative, as can

be seen in a trivialisation. Indeed, let x → (x, f1(x), . . . , fn(x)) be a section of

the bundle M × R
n. Then

x → (x, df1, . . . , dfn)

is a covariant derivative. It is also easy to verify that the space of covariant

derivatives is an affine space, as the difference ∇−∇′ of two covariant derivatives

is a linear map. Thus, if a ∈ Hom(E) ⊗ T ∗M is a 1-form valued map of E into

itself, then ∇+ a is also a covariant derivative.

As an example one can consider the situation when E → M is a subbundle of

the trivial bundle M×R
n. Let Π ∈ Hom(M×R

n;E) be the fibrewise orthogonal

projection in R
n onto E. Then ∇s = Πds is a covariant derivative.

For instance, one can consider the tangent bundle to the unit sphere Sn in R
n+1.

This is the set of points |x|2 = 1 in R
n+1, and the tangent space at every point

is the set of vectors v ∈ R
n+1 orthogonal to x, i.e., xT v = 0. The orthogonal

projection to the tangent space is Π = I − xxT , which is a (n + 1) × (n + 1)
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matrix. The covariant derivative is then ∇s = Πds. For example, let us consider

a constant vector e ∈ R
n+1. A section of the tangent bundle is obtained by

projecting this vector to lie in TSn, i.e., s = Πe = e − x(xT e). Its covariant

derivative is ∇s = (xxT − I)dx(xT e), because (xxT − I)x = 0.

1.14.8 Coordinate Expression for a Covariant Derivative

Let ei ∈ V be a basis of the vector space V . Then any section s of the vector

bundle V is of the form si(x)ei, where s
i(x) are functions on the base. Using the

Leibnitz rule satisfied by the covariant derivative, the covariant derivative of this

section is

∇s = dsiei + si∇ei = (dsi +Ai
js

j)ei, (1.78)

where we introduced the 1-form valued connection coefficients Ai
j defined via

∇ei := Aj
iej . (1.79)

We will often write (1.78) as

∇si = dsi +Ai
js

j . (1.80)

1.14.9 Covariant Exterior Derivative and Curvature

We have introduced the covariant derivative as a map (1.77). This derivative

admits an extension that acts on differential forms with values in E, and maps

C∞(M ;E ⊗ ΛpT ∗M) → C∞(M ;E ⊗ Λp+1T ∗M). This extension is called the

exterior covariant derivative, is denoted by the symbol d∇, and will play an

important role in what follows. It is defined to satisfy the following rules: (i) If ω

is a p-form and s is a section of E, then d∇(sω) = ∇s ∧ ω + sdω; (ii) it is linear

d∇(ω1 + ω2) = d∇ω1 + d∇ω2.

While d2 = 0, it is not in general true that d2
∇ = 0. However, d2

∇ defines a

section of C∞(M ; End(E) ⊗ Λ2T ∗M), i.e., a 2-form on the base with values in

the space of endomorphisms of the fibre. This is because d2
∇w = F∇∧w for every

differential form w with values in E. Let us verify this. Consider the result of

application of d2
∇ to the product of a section s and a differential form ω. We have

d2
∇(sω) = d∇(d∇s ∧ ω) + d∇(sdω)

= d2
∇s ∧ ω − d∇s ∧ dω + d∇s ∧ dω = (d2

∇s) ∧ ω.

Here we have used d∇ω = dω and d2 = 0. When ω = f is a function we see

that d2
∇(sf) = (d2

∇s)f , which implies that d2
∇ is an algebraic operator, and so

d2
∇w = F∇ ∧w.

As we have see in (1.78), in a trivialisation every exterior covariant derivative

is of the form

d∇ = d+A, A ∈ End(E)⊗ T ∗M. (1.81)
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A simple computation then shows that the corresponding curvature 2-form is

F∇ = dA+A ∧A ∈ End(E)⊗ Λ2T ∗M. (1.82)

1.14.10 Principal Connections and Covariant Derivatives

Let E be a vector bundle with fibre V that is associated with a principal

G-bundle P via the construction E = P ×ρ V , where ρ is some representation of

G. Let ω be a principal connection on P . Then it defines a covariant derivative

on E as follows. Let us view a section s of E as a G equivariant map s̃ : P → V .

This is the map that makes the following diagram commute

P P × V

M E

(id,s̃)

π ∼

s

Concretely, s̃ is a vector valued function on P with the property R∗
g s̃ = ρ(g−1)s̃.

Every such function defines a section of E = P ×ρ V . The (exterior) covariant

derivative ∇s is defined to be the horizontal projection (ds̃)H of ds̃. Alternatively,

for every vector field v ∈ TM , let vH be the horizontal lift to TP . We then define

the covariant derivative ∇vs of s to be the section of E that corresponds to the

equivariant vector field vH s̃.

Let us work all this out in a trivialisation. For simplicity, let us only consider

a GL(n,R) principal bundle of frames and the associated bundle corresponding

to the defining representation. Let ei be a basis of V and s = vi(x)ei be a

section of E. We then define the following equivariant vector valued function

on P

s̃i = (g−1)ijs
j ,

where gi
j are the coordinates along the fibres of P . This function is indeed equiv-

ariant in the sense of satisfying R∗
hs̃ = ρ(h−1)s̃. We then apply the horizontal

vector field (1.55) to this ‘function’, getting again an equivariant function of the

same type

XH((g
−1)ijv

j(x)) = aμ(g−1)ij(∂μv
j +Aj

μ kv
k).

This defines the associated covariant derivative as

∇μv
i = ∂μv

i +Ai
μ jv

j .

1.15 Riemannian Geometry

In this section, we follow the book by M. Nakahara (2003), Geometry, Topology

and Physics. Our coordinates now carry Greek indices, as is standard in the

physics literature.
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1.15.1 Affine Connection, Connection Coefficients

A covariant derivative in the tangent bundle is called an affine connection.

Thus, it is a map ∇ : TM → TM⊗T ∗M , satisfying the Leibnitz rule appropriate

for vector bundle covariant derivatives. We can also view this covariant derivative

as a map ∇ : TM × TM → TM satisfying

∇X(Y + Z) = ∇XY +∇XZ, (1.83)

∇(X+Y )Z = ∇XZ +∇Y Z, (1.84)

∇(fX)Y = f∇XY, (1.85)

∇X(fY ) = X(f)Y + f∇XY. (1.86)

Affine connections can be characterised in coordinates as follows. Let eμ =

∂/∂xμ be the coordinate vector fields. Then define symbols Γλ
νμ via

∇μeν ≡ ∇eμeν = eλΓ
λ
νμ. (1.87)

The covariant derivative of an arbitrary vector field is then

∇μ(X
νeν) = (∂μX

ν)eν +Xν∇μeν = (∂μX
λ + Γλ

νμX
ν)eλ. (1.88)

In the physics literature, this formula is usually written omitting the basis

vectors as

(∇μX)λ ≡ ∇μX
λ = ∂μX

λ + Γλ
νμX

ν , (1.89)

where the meaning of ∇μX
λ is that of the objects (∇μX)λ that arise as the

components in ∇μX = (∇μX)λeλ.

The introduced covariant derivative can be extended to arbitrary tensors by

requiring

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2). (1.90)

Moreover, this relation must also hold when some of the indices are contracted.

This immediately allows to extend ∇ to a connection in the cotangent bundle

T ∗M . Indeed, we must have

X(ω(Y )) = ∇X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY ). (1.91)

Writing everything in coordinates, this gives

∇μων = ∂μων − ωαΓ
α
νμ. (1.92)

1.15.2 Curvature and Torsion

Given an affine connection in TM , there are two natural tensors that can be

defined. One of them is the curvature that exists for a covariant derivative d∇.

This exists in any vector bundle. The other is the torsion, and this exists only
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for a covariant derivative in T ∗M , which the derivative in TM produces. The

torsion can be defined as the difference between the exterior covariant derivative

d∇ω and dω, for a 1-form ω ∈ T ∗M .

In terms of the operator ∇ : TM × TM → TM that we introduced previously,

the curvature and torsion have the following definitions

T (X,Y ) := ∇XY −∇Y X − [X,Y ], (1.93)

R(X,Y, Z) := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

It can be checked that both operations are multi-linear in all the entries, and are

thus tensors. We also note that one often writes

R(X,Y, Z) := R(X,Y )Z. (1.94)

The tensor R is called Riemann curvature tensor. In components, one defines

the following objects

T λ
μν := dxλ(T (eμ, eν)) = Γλ

νμ − Γλ
μν = −2Γλ

[μν], (1.95)

and

Rκ
λμν := dxκ(R(eμ, eν)eλ) (1.96)

= ∂μΓ
κ
λν − ∂νΓ

κ
λμ + Γη

λνΓ
κ
ημ − Γη

λμΓ
κ
ην .

1.15.3 The Ricci Tensor and the Scalar Curvature

Given the curvature tensor of type (1, 3) one can perform a contraction to

produce the Ricci tensor given by

Ric(X,Y ) := dxμ(R(eμ, Y )X). (1.97)

In components

Ricμν = Ric(eμ, eν) = Rλ
μλν . (1.98)

Contracting further with a metric produces the scalar curvature

R := gμνRic(eμ, eν) = gμνRμν . (1.99)

1.15.4 Levi–Civita Connection

Theorem 1.71 The fundamental theorem of (psuedo-) Riemannian

geometry. On a (pseudo-) Riemannian manifold (M, g) there exists a unique

torsion free affine connection that is compatible with g, i.e., one with ∇μgλκ = 0.

This connection is called the Levi–Civita connection.

A proof is by an explicit computation. The connection coefficients of the Levi–

Civita connection are called the Christoffel symbols, and are given by

Γκ
μν =

1

2
gκλ(∂μgλν + ∂νgλμ − ∂λgμν). (1.100)
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1.15.5 Bianchi Identities

Let R be the Riemann tensor defined with respect to the Levi–Civita connection.

Then the following identities hold

R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0, (1.101)

(∇XR)(Y, Z)V + (∇Y R)(Z,X)V + (∇ZR)(X,Y )V = 0.

In components, these read

Rκ
λμν +Rκ

μνλ +Rκ
νλμ = 0, (1.102)

∇κR
ξ
λμν +∇μR

ξ
λνκ +∇νR

ξ
λκμ = 0.

1.16 Spinors and Differential Forms

In this section we describe some basic facts about Clifford algebras. In particular,

we explicitly describe the isomorphism between a Clifford algebra of a vector

space and its exterior algebra. This gives a concrete realisation of any Clifford

algebra as the exterior algebra equipped with a special product. The product

is given by the difference of the exterior and interior products. This allows for

a concrete and efficient description of modules of the Clifford algebra – spinors.

Spinors will be seen to be special types of elements of the exterior algebra, i.e.,

special types of differential forms. We follow the book by F. Reese Harvey (1990),

called Spinors and Calibrations, closely in this section.

1.16.1 Clifford Algebras

Let V be a vector space (over R), and let (·, ·) be a symmetric bilinear form on

V , i.e., a metric. The Clifford algebra Cl(V ) associated with this bilinear form

is defined as the quotient of the tensor algebra
∑∞

r=0 ⊗rV by the ideal generated

by all elements of the form v ⊗ v − (v, v)1. In other words, this is the algebra

generated by V subject to the relations

v · v = −(v, v)1, (1.103)

or, in polarised form

v · w + w · v = −2(v, w)1. (1.104)

We note that Clifford algebra generalises the notion of the exterior algebra Λ•V .

Indeed, when the bilinear form in question is zero, the Clifford algebra reduces

to the exterior algebra.

Even when the bilinear form in question is not zero, there is a relation between

the Clifford algebra and the exterior algebra, as is described by the following

theorem.

Theorem 1.72 Clifford algebra Cl(V ) is isomorphic (as a vector space, not as

an algebra) to the exterior algebra Λ•V . Moreover, under this isomorphism the

Clifford product is explicitly described as
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x · u = x ∧ u− ixu, (1.105)

where · denotes the Clifford product, x ∈ V and u ∈ Λ•V ∼= Cl(V ). The operation

ix is the interior product ix : Λ•V → Λ•V defined as the adjoint of the wedge

product under the bilinear form in question, i.e.,

(x ∧ u, v) = (u, ixv), x ∈ V, ∀u, v ∈ Λ•V. (1.106)

To prove the first statement of the theorem one notes that each tensor can be

expressed as a skew tensor modulo relations (1.104), and skew tensors generate

Λ•V . To prove the second statement one computes

x · (x · u) = x · (x ∧ u− ixu) = −x ∧ ixu− ix(x ∧ u) = −(x, x)u.

This shows that indeed, V viewed as sitting inside Λ•V gives rise to operators

on Λ•V that satisfy the Clifford algebra defining relations. The Clifford product

is extended to arbitrary elements of Λ•V by linearity. Indeed, let v = v1∧· · ·∧vp
be an element of Λ•V . We can write this as a tensor

v =
1

p!

∑
σ

signσvσ(1) ⊗ · · · ⊗ vσ(p). (1.107)

Then, if we rewrite the Clifford product (1.105) as

x · u = (Ex − Ix)u, (1.108)

where Ex := x∧ and Ix := ix are the exterior and interior products respectively,

the Clifford algebra element corresponding to v becomes the following operator

on Λ•V

v =
1

p!

∑
σ

signσ(Evσ(1)
− Ivσ(1)

) ◦ · · · ◦ (Evσ(n)
− Ivσ(p)

). (1.109)

This gives an explicit description of the Clifford algebra Cl(V ) as the exterior

algebra Λ•V equipped with the product (1.109). In other words, if we denote the

isomorphism Cl(V ) ∼= Λ•V by φ, then an element v ∈ Λ•V corresponds in Cl(V )

to an operator φ(v) given by the right-hand side of (1.109), and the Clifford

product is v · u = φ(v)u.

1.16.2 The Groups Spin and Pin

Let Cl∗(V ) denote the multiplicative group of invertible elements of the Clifford

algebra Cl(V ). This is the group generated by non-null vectors u ∈ V . For such

vectors, the inverse is given by u−1 = −u/(u, u), as follows from the Clifford

algebra defining relation u · u = −(u, u)1.

Definition 1.73 The Pin group is the subgroup of Cl∗(V ) generated by unit

vectors in V .

Definition 1.74 The spin group is defined as the subgroup of even elements in

Pin, i.e., Spin = Pin ∪ Cleven(V ). Concretely
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Spin = {a ∈ Cl∗(V ) : a = u1 . . . u2r, uj ∈ V, |uj | = 1}.

The following construction relates the groups Pin and Spin to the orthogonal

transformations of V . First, let us introduce an involution of Cl(V ) that is an

identity on the space of even elements, and reverses the sign of odd elements. It

is generated by x̃ = −x on V . With this in mind, we define the twisted adjoint

representation of Cl∗(V ) on Cl(V ) via

Ãdax := ãxa−1. (1.110)

We then have the following theorem.

Theorem 1.75 The twisted adjoint action (1.110) of Cl∗(V ) on Cl(V ) is

orthogonal. Moreover, this action gives rise to two isomorphisms

O(V ) = Pin/Z2, SO(V ) = Spin/Z2. (1.111)

A proof is given in Harvey’s 1990 book, in chapter 10. In particular, this the-

orem says that the Spin group is a double cover of the special orthogonal group.

A more explicit description of the Spin group is possible in terms of reflections,

but we will not need it. See the book by Harvey (1990) for more details.

1.16.3 The Split Case Cl(p, p)

There is a general theory of classification of Clifford algebras depending on the

dimension and the signature. See, e.g., the book by Harvey (1990), chapter 11.

However, this theory can be circumvented in the split case, when an explicit

description is possible in terms of the exterior algebra. Furthermore, this explicit

description can be used to describe other signatures, by realising Cl(r, s) with

r + s = 2p as subalgebras of the complexification Cl(p, p) ⊗R C. It is here that

we will explicitly see that spinors are differential forms.

The representation of Clifford algebra acting on itself by the Clifford multi-

plication is not irreducible. An explicit and beautiful description of irreducible

representations is available in the split signature case. Consider the space R
p of

half the dimension. Let xa be the Cartesian coordinates on this space. Consider

the exterior algebra Λ•(Rp). The operation of multiplication by objects dxa

increases the degree of a differential form, while the operation of insertion of

a vector field ∂/∂xa lowers the degree. This suggests that we define

(aa)† := dxa, aa := i∂/∂xa . (1.112)

These creation-annihilation operators satisfy the following relations

(aa)†(ab)† = −(ab)†(aa)†, aaab = −abaa, (1.113)

aa(a
b)† + (ab)†aa = δba.

This is the Clifford algebra in dimension 2p, which corresponds to the metric of

spit signature (p, p). Indeed, it is generated by objects of the form X = v+θ, v ∈
R

p, θ ∈ R
p∗, with the defining relations being
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X1X2 +X2X1 = 2g(X1, X2)I, (1.114)

where the metric is

g(v1 + θ1, v2 + θ2) =
1

2
(θ1(v2) + θ2(v1)). (1.115)

Introducing the linear combinations V = (v + θ)/2, U = (v − θ)/2 diagonalises

the metric and gives |v + θ|2 = |V |2 − |U |2, which shows that this is a metric of

signature (p, p).

This Clifford algebra admits a representation on differential forms from

Λ•(Rp∗) defined by

(v + θ)ω = ivω + θω. (1.116)

This gives a representation of the Clifford algebra because

(v + θ)(v + θ)ω = iv(ivω + θω) + θ(ivω + θω) (1.117)

= iv(θω) + θivω = (ivθ)ω = g(v + θ, v + θ)ω.

This means that differential forms in dimension p, i.e., the space Λ•(Rp) is

the space of spinors of the pseudo-orthogonal group SO(p, p). This is a fact

of fundamental importance, and in particular gives one of the easiest ways to

explicitly construct the spinor representations of many orthogonal groups. In

particular, the Weyl representations of SO(p, p) are the spaces of even and odd

degree differential forms. The Lie algebra so(p, p) is realised in this formalism as

the span of all operators quadratic in the creation-annihilation operators (1.112).

Example 1.76 Let us see explicitly how the spinor representations of SO(2, 2)

are differential forms in R
2. To this end, we introduce a pair of creating anni-

hilation operators a1, a
†
1 and a2, a

†
2, with the usual anti-commutation relations

aia
†
j + a†

jai = δij and all other pairs anti-commuting. The Lie algebra of SO(2, 2)

is spanned by all elements of degree two in the Clifford algebra (commutators of

γ-matrices in the physics terminology), and these are all the quadratic operators

one can construct from a1, a
†
1 and a2, a

†
2.

Let us consider the following operators

H = a1a
†
1 − a2a

†
2, E+ = a1a

†
2, E− = a2a

†
1. (1.118)

It is easy to check that the following sl(2) commutation relations hold

[E+, E−] = H, [H,E±] = ±2E±. (1.119)

This gives us one copy of sl(2) Lie algebra. One can form the second copy of

sl(2) in the following way

H̄ = a1a
†
1 + a2a

†
2 − 1 ≡ a1a

†
1 − a†

2a2, Ē+ = a1a2, Ē− = a†
2a

†
1.
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Again we get the usual sl(2) commutation relations

[Ē+, Ē−] = H̄, [H̄, Ē±] = ±2Ē±. (1.120)

Together, the six operators we have constructed span the Lie algebra so(2, 2).

And it is not hard to check that all barred operators commute with unbarred

ones, so we have two commuting copies of sl(2). So we get an explicit realisation

of the Lie algebra so(2, 2) as two commuting Lie algebras sl(2,R).

Let us now discuss its action on spinors. The Weyl representations are formed

by forms of even and odd degrees. The forms of odd degree are spanned by

dx1, dx2. The action of the first copy of sl(2) is as follows:

Hdx2 = (a1a
†
1 − a2a

†
2)dx

2 = dx2, Hdx1 = (a1a
†
1 − a2a

†
2)dx

1 = −dx1,

E−dx
2 = a2a

†
1dx

2 = −dx1, E+dx
1 = a1a

†
2dx

1 = −dx2,

while the second copy acts trivially on these states. So, the state dx2 is the spin

up, and dx1 is the spin down state for the first copy of sl(2).

The even degree forms are spanned by 1 and dx1dx2. The first copy of sl(2)

acts trivially, while the action of the second copy is

H̄ 1 = (a1a
†
1 − a†

2a2) 1 = 1, H̄dx1dx2 = (a1a
†
1 − a†

2a2)dx
1dx2 = −dx1dx2,

Ē− 1 = a†
2a

†
1 1 = −dx1dx2, Ē+dx

1dx2 = a1a2dx
1dx2 = −1.

Thus, the state 1 is the spin up, and dx1dx2 is spin down for the second copy of

sl(2).
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Metric and Related Formulations

In this chapter we describe the standard metric formulation of general relativity

(GR). We attempt to be as concise as possible, covering in detail aspects of the

formalism that are not already available in the standard sources.

2.1 Einstein–Hilbert Metric Formulation

This section covers the standard Einstein–Hilbert formulation.

2.1.1 Affine Connection and Riemann Curvature

For the convenience of the reader, we start by collecting all the useful formu-

las related to Riemannian geometry from the previous chapter. This fixes our

conventions. For the covariant derivatives in TM,T ∗M we have

∇μv
ν = ∂μv

ν + Γν
ρμv

ρ, ∇μvν = ∂μvν − Γα
νμvα. (2.1)

The torsion-free metric Christoffel connection components are given by

Γρ
μν =

1

2
gρσ (∂μgνσ + ∂νgμσ − ∂σgμν) . (2.2)

A simple, but very useful, consequence of this formula is obtained by contraction

Γρ
μρ =

1

2
gρσ (∂μgρσ + ∂ρgμσ − ∂σgμρ) =

1

2
gρσ∂μgρσ =

1√−g
∂μ

√
−g. (2.3)

The Riemann curvature tensor components are

Rσ
ρμν = ∂μΓ

σ
ρν − ∂νΓ

σ
ρμ + Γα

ρνΓ
σ
αμ − Γα

ρμΓ
σ
αν . (2.4)

We have

(∇μ∇ν −∇ν∇μ)v
ρ = Rρ

αμνv
α, (2.5)

(∇μ∇ν −∇ν∇μ)vρ = −Rα
ρμνvα.
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The contractions of the curvature tensor are

Rμν = Rλ
μλν , R = gμνRμν . (2.6)

The two Bianchi identities read

Rσ
ρμν +Rσ

μνρ +Rσ
νρμ = 0, (2.7)

∇αR
σ
ρμν +∇μR

σ
ρνα +∇νR

σ
ραμ = 0.

The differential Bianchi identity (2.7) can be contracted to produce another very

useful consequence. Contracting the indices αρ we get

∇αRασμν = ∇μRνσ −∇νRμσ. (2.8)

A further contraction produces

∇αRαμ =
1

2
∇μR. (2.9)

2.1.2 Einstein–Hilbert Action

GR differs from all other physical theories in the fact that from the metric and

its first derivatives it is impossible to built a (covariantly transforming under

diffeomorphisms) scalar whose square could play the role of the Lagrangian

density. Indeed, the components Γρ
μν of the affine connection that are built from

the first derivatives of the metric can be made to vanish (at a point) by a choice

of a coordinate system, and so no covariant scalar of the schematic form ΓΓ can

be constructed. The simplest scalar that arises in Riemannian geometry is the

Ricci scalar, and this involves second derivatives of the metric. A Lagrangian

linear in the Ricci scalar is then possible, and can lead to second-order field

equations, as will be explicitly verified in Section 2.2.1. So, we write

SEH[g] =
1

16πG

∫ √
−g(R− 2Λ), (2.10)

where the coordinate volume element is omitted, g is the determinant of the

metric, which we assume to have Lorentzian signature. The quantity G is the

Newton’s constant, and Λ is the cosmological constant. The latter can be set to

zero if desired. The sign in front of the action is signature-dependent, and is fixed

by an argument in Section 2.2.2. We use conventions in which metric signature

is mostly plus.

2.1.3 Einstein Equations

Taking into account

δ
√
−g = −1

2

√
−ggμνδg

μν (2.11)



80 Metric and Related Formulations

we have the following expression for the first variation of the Einstein–Hilbert

action

δSEH =
1

16πG

∫ √
−g

(
Rμν −

1

2
gμν(R− 2Λ)

)
δgμν . (2.12)

Vanishing of the expression in the brackets here is the vacuum Einstein equations

(with nonzero Λ)

Rμν −
1

2
gμν(R− 2Λ) = 0. (2.13)

Taking the trace of this equation, and assuming we are in four dimensions gives

R = 4Λ and Rμν = Λgμν . Metrics satisfying the latter equation are referred to

as Einstein.

2.2 Gamma–Gamma Formulation

The following discussion follows Landau–Lifschitz’s book (1987), Field Theory,

chapter 93, closely.

2.2.1 Action Rewritten in Terms of Christoffel Symbols

To convince oneself that the previous variational principle leads to sensible

second order field equations, one can rewrite the Einstein–Hilbert Lagrangian

as a quantity of the type ΓΓ, plus a surface term. Schematically∫ √
−gR =

∫ √
−g ΓΓ +

∫
∂μ(

√
−gwμ), (2.14)

where wμ is a vector field constructed from the metric and its first derivatives.

The last term is a surface term, does not affect the extremisation problem that

leads to the field equations, and can thus be ignored for the problem of deriving

the latter. And the quantity ΓΓ contains only the first derivatives of the metric.

It will be explicitly obtained later in this subsection. This argument shows that

the field equations obtained from the Einstein–Hilbert Lagrangian are sensible

equations of the second order in derivatives.

Let us derive this ΓΓ formulation explicitly. We have
√
−gR =

√
−ggμρ (∂νΓ

ν
μρ − ∂μΓ

ν
νρ + Γα

μρΓ
ν
αν − Γα

νρΓ
ν
αμ) . (2.15)

Integrating by parts in the first two terms, and omitting the surface terms, we

get
√
−ggμρ∂νΓ

ν
μρ=̂− ∂ν(

√
−ggμρ)Γν

μρ, (2.16)
√
−ggμρ∂μΓ

ν
νρ=̂− ∂μ(

√
−ggμρ)Γν

νρ,

where =̂ means modulo surface terms. The quantity ∂ν(
√−ggμρ) can be rewritten

in terms of the Christoffel symbol and the metric. Indeed, we have

∂ν

√
−g =

√
−gΓρ

νρ, ∂νg
μρ = −Γμ

νσg
σρ − Γρ

νσg
μσ. (2.17)
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The last relation is just a rewriting of the fact that the covariant derivative of

gμρ vanishes. Overall, we have

√
−gR =̂

√
−g

(
− Γσ

νσg
μρΓν

μρ + (Γμ
νσg

σρ + Γρ
νσg

μσ)Γν
μρ

+Γσ
μσg

μρΓν
νρ− (Γμ

μσg
σρ + Γρ

μσg
μσ)Γν

νρ + gμρ(Γα
μρΓ

ν
αν − Γα

νρΓ
ν
αμ)

)
.

Taking into account the arising cancellations we have

√
−gR=̂

√
−ggρσ(Γμ

νρΓ
ν
μσ − Γμ

ρσΓ
ν
νμ). (2.18)

This shows that an action that is manifestly quadratic in first derivatives of the

metric is possible, at the expense of this action not having manifest transforma-

tion properties as far as diffeomorphisms are concerned. The action reads

SΓΓ[g] =
1

16πG

∫ √
−g (gρσ(Γμ

νρΓ
ν
μσ − Γμ

ρσΓ
ν
νμ)− 2Λ) . (2.19)

2.2.2 Fixing the Sign in Front of the Action

The formulation (2.19) is a convenient starting point for the analysis that fixes

the sign in front of the action. Our desire is to have the Lagrangian given by

kinetic minus potential energy. The kinetic energy term is the one involving the

time derivatives. It is most convenient to perform the analysis by fixing a gauge.

We thus set the mixed temporal-spatial components of the metric to zero g0i = 0.

We only keep the time derivatives. The only terms surviving in the kinetic term

are then

−1

4
g00ġijg

ikgjlġkl +
1

4
g00(gij ġij)

2. (2.20)

The last term here can be set to zero by fixing the gauge in which the deter-

minant of the spatial metric is constant. This leaves the first term, which we

write as

−1

4
g00(ġij)

2. (2.21)

This is nonnegative in the mostly plus signature (−,+,+,+), which fixes the

sign in front of the Einstein–Hilbert action for this signature. The action would

require a minus sign in front in the mostly minus signature.

2.2.3 Lagrangian in Terms of the Metric

We can further rewrite the Lagrangian (2.19) by substituting in it the explicit

expression for the Christoffel symbol in terms of the derivatives of the metric.

An explicit calculation gives the following identities

√
−g gρσΓμ

νρΓ
ν
μσ =

√
−g ∂μg

ρα∂νgσα

(
1

4
gμνδσρ − 1

2
gμσδνρ

)
,
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where we have used gμαgνβ∂ρgαβ = −∂ρg
μν , and

√
−g gρσΓμ

ρσΓ
ν
νμ = −

√
−g

(
∂νg

μν∂μ ln(
√
−g) + gμν∂μ ln(

√
−g)∂ν ln(

√
−g)

)
,

where we used Γν
νμ = ∂μ(ln

√−g). Integrating by parts in the first term in the

previous expression we have∫ √
−g gρσΓμ

ρσΓ
ν
νμ =

∫ √
−ggμν∂μ∂ν(ln

√
−g).

Overall, neglecting a surface term, the action (2.19) written in terms of the metric

becomes

S[g] =
1

16πG

∫ √
−g

[
∂μg

ρα∂νgσα

(
1

4
gμνδσρ − 1

2
gμσδνρ

)
− gμν∂μ∂ν(ln

√
−g)− 2Λ

]
.

(2.22)

2.2.4 Linearisation on the Minkowski Background

The action (2.22) is a possible starting point for the gravitational perturbation

theory. Thus, let us set Λ = 0 and consider gμν = ημν + hμν , where ημν is the

(constant) Minkowski metric. If we are to keep only the terms of second order

in hμν in the action, then in the first term in (2.22) only the terms involving

the derivative can depend on hμν . All other occurrences of the metric must be

replaced with the Minkowski metric. In the second term in (2.22), we integrate

by parts and then use

δ ln
√
−g =

h

2
, δ∂μ(

√
−ggμν) =

1

2
∂μh η

μν − ∂μh
μν . (2.23)

Here δgμν = hμν , h = ημνhμν , and we used δgμν = −hμν .

The Einstein–Hilbert action to second order in the expansion in ημν is then

S(2)
EH[h] =

1

32πG

∫ [
1

2
hμν�hμν + ∂μh

μρ∂νhνρ − ∂μh
μν∂νh− 1

2
h�h

]
, (2.24)

where and � := ∂μ∂μ. The first term here is the kinetic term for the gravitons,

while all other terms can be set to zero by a choice of gauge. This computation of

the linearised action can also serve to fix the sign in front of the action. Indeed,

in the mostly plus signature the kinetic term for a scalar φ is −(∂μφ)
2, which

is φ�φ neglecting a surface term. It can be checked that S(2)
EH[h] is invariant

(modulo surface terms) under the linearised diffeomorphisms

δξhμν = ∂μξν + ∂νξμ. (2.25)

2.2.5 Inverse Densitiesed Metric as an Independent Variable

A further rewriting of the action (2.22) is possible in the important case Λ = 0.

When this is the case we can introduce the combinations

√
−ggμν = σμν , σμν =

1√−g
gμν , (2.26)
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so that σμρσνρ = δμν . The fact that this is a natural variable for GR directly fol-

lows from the first-order Palatini formalism that will be described in Section 2.4.

In terms of these variables the Lagrangian becomes

S[σ] =
1

16πG

∫ [
∂μσ

ρα∂νσσα

(
1

4
σμνδσρ − 1

2
σμσδνρ

)
+

1

2
σμνωμων

]
, (2.27)

where

ωμ = ∂μ(ln
√
−g) =

1

2
σαβ∂μσ

αβ. (2.28)

All the formulas are valid in four dimensions. The action (2.27) was in particular

derived in Cheung and Remmen (2017), where it is argued to be a convenient

starting point for the flat space gravitational perturbation theory. If one sets

σμν = ημν − hμν then its inverse is given by the simple geometric series σμν =

ημν + hμν + h2
μν + · · · . This produces the most economic known perturbative

expansion of the Λ = 0 Einstein–Hilbert action. Every order of this expansion

contains the same number of terms, after the last term in (2.27) is taken care of

by a gauge-fixing, see Cheung and Remmen (2017). This should be compared to

the perturbative expansion of the Einstein–Hilbert action in the usual variables

gμν = ημν + hμν . The expansion in the Einstein–Hilbert case contains a rapidly

increasing number of terms at every order, see, e.g., the appendix of the paper

Goroff and Sagnotti (1986) for the expansion up to quartic order in hμν . The

arising quartic order Lagrangian occupies half a page.

2.3 Linearisation

The purpose of this section is to obtain formulas for linearisation of the Einstein–

Hilbert action around an arbitrary background. This helps to understand what

type of kinetic operator for gravitational perturbations arises in the metric

formulation. In perturbation theory, the GR Lagrangian expands to produce a

series of Lagrangians, one for every order in the perturbation. We want the terms

in the Lagrangian at each order to involve covariant derivatives with respect

to the background connection. For this purpose the covariant Einstein–Hilbert

action is a better starting point for perturbation theory than (2.22).

2.3.1 Linearisation of the Connection and Curvature

We have the following formula for the linearisation of the Christoffel symbol

δΓρ
μν =

1

2
gρσ (∇μδgνσ +∇νδgμσ −∇σδgμν) . (2.29)

Here gμν is the background metric, and ∇ is the covariant derivative with respect

to the background metric. This formula is checked by explicit verification.

For the linearisation of the Riemann curvature we have

δRσ
ρμν = ∇μδΓ

σ
ρν −∇νδΓ

σ
ρμ. (2.30)
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Together with (2.29) this implies

δRμν =
1

2
gρσ (∇ρ∇μδgνσ +∇ρ∇νδgμσ −∇ρ∇σδgμν −∇ν∇μδgρσ) .

The last term here is not manifestly μν symmetric, but its antisymmetric part

is a multiple of Rρσ
μνδgρσ and so vanishes.

2.3.2 Lichnerowicz Laplacian

The Lichnerowicz Laplacian Δ(2) on (0, 2) tensors is defined as

Δ(2)hμν := −∇α∇αhμν − 2Rμρνσh
ρσ +Rμ

ρhρν +Rν
ρhρμ. (2.31)

The reason for this particular combination of the usual Laplacian corrected with

curvature dependent terms becomes clear if we introduce two further Laplacians,

one on vectors and one on functions

Δ(1)ξμ := −∇α∇αξμ +Rμ
αξα, (2.32)

Δ(0)φ := −∇α∇αφ.

We then have

Δ(1)∇μφ = −∇α∇α∇μφ+Rμα∇αφ

= −∇μ∇α∇αφ+Rβ
α
α
μ∇βφ+Rμα∇αφ = −∇μ∇α∇αφ = ∇μΔ

(0)φ.

Thus, one can either first take the gradient of a function to produce a 1-form

and then apply the Laplacian Δ(1), or first apply the Laplacian to the scalar

and then take the gradient. These operations commute. One can rephrase this

by saying that the Laplacians Δ(0), Δ(1) are intertwined by the operator ∇μ

mapping scalars into (0, 1) tensors.

The Lichnerowicz Laplacian on (0, 2) tensors is introduced with similar idea

in mind. Thus, we can apply the Laplacian Δ(1) to a vector ξν , and then take

the covariant derivative, and symmetrise to produce a symmetric (0, 2) tensor.

This is the same as applying the Laplacian Δ(2) to ∇μξν +∇νξμ, modulo some

curvature dependent terms that vanish when the background is Einstein. Thus,

we have the following identity

Δ(2)(∇μξν +∇νξμ) = ∇μΔ
(1)ξν +∇νΔ

(1)ξμ + 2(∇αRμν −∇μRνα −∇νRμα)ξ
α.

(2.33)

It is proved by explicit verification. The terms involving the curvature vanish

when the background is Einstein Rμν = Λgμν , and so we have the desired

intertwining property of Δ(1), Δ(2). It should be kept in mind, however, that

this now holds only on Einstein backgrounds, unlike the intertwining property

of Δ(0), Δ(1) that is true in general.
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2.3.3 Linearised Ricci and Lichnerowicz Operator

Let us now rewrite the Linearised Ricci tensor in terms of the Lichnerowicz

operator just introduced. Denoting δgμν := hμν , g
μνhμν = h and δRμν = Rμν(h)

we have

2Rμν(h) = −∇α∇αhμν +∇α∇μhνα +∇α∇νhμα −∇μ∇νh. (2.34)

In the second term here we can commute the covariant derivatives to write it as

∇α∇μhνα = ∇μ∇αhνα −Rβ
ν
α
μhβα −Rβ

α
α
μhνβ (2.35)

= ∇μ(δh)ν −Rαμβνh
αβ +Rμ

αhαν ,

where we have introduced an operator

(δh)μ := ∇νhμν (2.36)

that maps symmetric (0, 2) tensors into (0, 1) tensors. Thus, we have

∇α∇μhνα +∇α∇νhμα = ∇μ(δh)ν +∇ν(δh)μ − 2Rαμβνh
αβ +Rμ

αhαν +Rν
αhαμ.

(2.37)

We already recognise the curvature terms appearing in the Lichnerowicz Lapla-

cian. Overall, we have

2Rμν(h) = Δ(2)hμν +∇μ(δh)ν +∇ν(δh)μ −∇μ∇νh. (2.38)

Thus, on traceless h = 0 and transverse (δh)μ = 0 tensors the linearised Ricci is

(half) of the Lichnerowicz operator.

Now using

∇α(∇αξμ +∇μξα) = ∇α∇αξμ +Rμ
αξα = −Δ(1)ξμ + 2Rμ

αξα (2.39)

and the intertwining property (2.33) together with the assumption that the

background is Einstein Rμν = Λgμν we see that

Rμν(∇ξ +∇ξ) = Λ(∇μξν +∇νξμ), (2.40)

which verifies that the linearised Einstein equations are automatically satisfied

by metric perturbations that are pure diffeomorphisms.

2.3.4 Second Variation of the Einstein–Hilbert Action

Applying to (2.12) the variation the second time we get

δ2SEH =
1

16πG

∫ √
−g δgμν

(
δRμν −

1

2
gμνg

ρσδRρσ

)
−

√−g

2
δgμνδgρσ

(
gμνRρσ +Rμνgρσ − 1

2
(R− 2Λ)(2gμρgνσ + gμνgρσ)

)
.
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On an Einstein background in four dimensions Rμν = Λgμν . Let us also divide

the second variation by two to get the second-order action, and replace δgμν =

hμν , g
μνhμν = h. We also use δgμν = −hμν . We get

S(2)[h] =
1

32πG

∫ √
−g

[
−hμνRμν(h) +

1

2
hR(h) + Λ(hμνhμν −

h2

2
)

]
,

where R(h) = gμνRμν(h). Let us rewrite this action in terms of the metric. We

have

R(h) = Δ(0)h+∇μ∇νhμν . (2.41)

This gives

S(2)[h] =
1

32πG

∫ √
−g

[
−1

2
hμνΔ(2)hμν + (δh)μ(δh)μ + h∇μ∇νhμν (2.42)

+
1

2
hΔ(0)h+ Λ(hμνhμν −

h2

2
)

]
.

We note that the kinetic terms here are just the covariantisations of those

appearing in the flat space second-order Lagrangian (2.24), with, importantly,

the flat space Laplacian on rank two tensors being replaced by the Lichnerowicz

Laplacian.

2.4 First-Order Palatini Formulation

In the first-order formulation one introduces an independent connection field

into the game, to convert the Lagrangian into first order in derivatives form.

The Lagrangian is

SPalatini[g,Γ] =
1

16πG

∫
dDx

√
−g (gμνRμν(Γ)− 2Λ) . (2.43)

The Ricci tensor present in (2.43) is formed out of the Riemann curvature

Rμν(Γ) := Rσ
μσν . In Palatini formalism the affine connection is assumed to

be torsion-free, i.e., to satisfy the symmetry

Γμ
νρ = Γμ

ρν . (2.44)

The Ricci curvature Rμν(Γ) is not automatically symmetric, but the symmetric

part is selected in (2.43) when Rμν gets contracted with the symmetric metric.

Variation of (2.43) with respect to the affine connection gives an equation

that implies that ∇ρg
μν = 0, i.e., that the connection is metric-compatible. The

solution to this equation is the usual expression (2.2) for Γ in terms of the

derivatives of the metric. Substituting this solution into the action one gets back

the second-order Einstein–Hilbert action.

We also note that in the case Λ = 0, if one views
√−ggμν as the basic variable

of the theory, the action (2.43) is cubic in the fields. This has been emphasised
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by Deser (1970), who used this cubic formulation to reconstruct GR from the

linear Fierz–Pauli theory and hence prove its uniqueness. The inverse densitiesed

metric has already been used in (2.27) to rewrite the action of GR in a way

that is minimally nonlinear. The action (2.27) can be obtained from (2.43) by

integrating out the Γ field, as was explicitly shown in Cheung and Remmen

(2017). This reference also derives Feynman rules for GR in the cubic first-order

formulation (2.43).

2.5 Eddington–Schrödinger Affine Formulation

Instead of “integrating out” from (2.43) the affine connection to get back the

Einstein–Hilbert action one can integrate out the metric field. Indeed, varying

the Palatini action with respect to the metric one gets an equation that is trivially

solved

gμν =
1

Λ
R(μν)(Γ). (2.45)

This can then be substituted into the action to get a second-order pure affine

formulation

SES[Γ] =
1

8πGΛ

∫
d4x

√
−det(R(μν)(Γ)). (2.46)

The trick of integrating out the metric is possible in any dimension, and we wrote

the four-dimensional version here. The field equation that results by varying

this action with respect to the connection implies that the metric defined in

(2.45) is compatible with the connection. The definition of the metric (2.45) then

becomes the Einstein equation. We note that this purely affine formulation is only

available with a nonzero cosmological constant. Note also that (in any dimension)

the coefficient in front of the Eddington–Schrödinger action is dimensionless. In

four dimensions we have (GΛ)−1 ∼ 10120, a very large number.

While the action (2.46) appears to be a natural construct, the pure affine

formalism brings with it arbitrariness that is not present in the metric formalism.

This has been emphasised in particular by Pauli, see Goenner (2014), section 8.2.

Thus, the tensor Rμν is not automatically symmetric even for a symmetric affine

connection. It can be split into its symmetric and antisymmetric parts, and these

can be separately used in constructing the Lagrangian. The elementary building

blocks are then

L0 =
√

−det(R(μν)(Γ)), L1 =
√

ε̃μνρσ ε̃αβγδR(μα)R(νβ)R[ργ]R[σδ],

L2 = ε̃μνρσR[μν]R[ρσ],

where ε̃μνρσ is the densitized antisymmetric tensor that exists without any back-

ground structure on the manifold. The previous blocks are all densities of weight

one, and can be integrated over the manifold. However, one can also consider

their ratios. The most general Lagrangian is then
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L = L0 f

(
L1

L0

,
L2

L0

)
(2.47)

for an arbitrary function f of two variables. The case f = 1 gives GR, but other

choices are possible. A general theory from this class has been studied in Hejna

(2006), where it was shown that it is equivalent to a nonlinear Einstein–Proca

system. This ambiguity that arises in writing down the most general Lagrangian

is a drawback of all “pure connection” formulations, as we will see in the following

chapters.

Another drawback of the pure affine formulation is the very large number

of field components one has to deal with. Indeed, in four dimensions we have

4×10 = 40 components in Γμ
ρ
ν as compared to only 10 components in gμν . This

makes the pure affine formalism not very useful in practice.

2.6 Unification: Kaluza–Klein Theory

One can consider Einstein’s theory in spacetime dimensions higher than four, and

dimensionally reduce it to 4D by e.g., assuming that the fields are independent of

all but four spacetime coordinates. This is the Kaluza–Klein idea. The resulting

theory contains 4D Einstein’s gravity, but also contains other fields. Importantly,

if we interpret the original higher-dimensional space as the total space of the

fibre bundle, with the dimensional reduction giving the projection map, then

the fact that there is a metric in the total space of the bundle implies that

there is a natural connection that gets induced, by the requirement that the

horizontal vector fields are those metric orthogonal to vertical ones. This means

that the dimensionally reduced theory naturally contains gauge fields. This is

one of the most attractive ideas towards unifying gravity with other forces in

nature. However, we refrain its quantitative discussion until the next chapter,

where the frame formalism will allow us to simplify computations that must be

made to see what kind of dimensionally reduced Lagrangian arises.



3

Cartan’s Tetrad Formulation

We now come to the first key chapter of this book, where the customary metric

geometry of a typical exposition of general relativity (GR) gives in to a more

powerful geometric description, with differential forms and fibre bundles playing

the key role.

The book, Einstein Gravity in a Nutshell, by Anthony Zee quotes (p. 787)

Einstein, a year before his death, speaking to a group of John Wheeler’s students.

Einstein in particular made a comment: ‘There is much reason to be attracted

to a theory with no space, and no time. But nobody has any idea how to build

it up’.

The question of why there is a nontrivial metric field apparently filling all of

the universe is perhaps one of the most interesting questions to which physics

currently gives no answer. General relativity describes the dynamics of such a

metric field, but it does not explain why this field is nonzero rather than zero. In

fact, GR starts by postulating that this field is nondegenerate, and thus cannot

even be formulated for zero metrics. Neither can it be formulated perturbatively

around the zero metric. The metric is thus essentially nonzero in GR. This

fact has often been pointed out as the reason for various theoretical problems

with GR, in particular, its worse than desired behaviour as a quantum theory

(non-renormalisability).

It should be clear that a metric description of geometry has no chance of

answering the question as to why a metric exists in the first place. In such

a description the metric is simply postulated from the very beginning. Hence,

developing a formalism where some other geometrical objects plays central role,

and metric arises only as a secondary objects is a necessary step in the direction

of explaining why it exists. This is probably the strongest theoretical motivation

for developing alternative geometric viewpoints on gravity.

The point of view that we take on gravity in this book is that it is a

dynamical theory of a collection of differential forms rather than a dynamical
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theory of metrics. The possibility of a metric interpretation then appears to be

somewhat of an accident. To study gravity not coupled to any matter fields and

to solve its field equations one never needs the metric interpretation. It is only

when matter coupled to gravity is introduced, that the matter is seen to follow

the geodesics of a certain metric constructed from the collection of differential

forms that the theory is about. This is how the metric interpretation arises.

This is, of course, profoundly different from the usual viewpoint on GR. The

metric GR is based on the equivalence principle that is built into its formalism

by requiring that all matter couples to the same metric. It can then be seen to be

natural that this very metric is the main dynamical variable of the theory. In the

viewpoint advocated in the previous paragraph, the equivalence principle would

not be automatic, because in principle, different species of matter may couple

differently to the collection of differential forms that describe the gravitational

field. This means that there can exist some theories of gravity and matter that

are mathematically consistent, but which would violate the equivalence principle

and thus would not be of any physical interest. We will not need to worry about

such issues for quite a while because in most of the theories we consider in

what follows the metric is apparent, and the most natural matter coupling is

the coupling to this metric. But there will be examples where the questions of

matter coupling become quite nontrivial. This is when the previous remarks will

become relevant.

While gravity is seen as a dynamical theory of a collection of differential

forms in all the formulations to be developed in the rest of this book, most of

them (if not all) still fall short of answering the question of why the metric

is nonzero. Thus, in most of these formulations the postulate of nonvanishing

(nondegenerate) metric is replaced by a similar nondegeneracy assumption.

So, most of the formulations we develop, while providing a new geometric

viewpoint on GR and leading to simplifications in the structure of Einstein

equations, do not answer the fundamental ‘Why nonzero metric’ question. But

these formulations do suggest even more exotic alternatives to which we will

turn in the last chapter, and which may have the potential to answer this

question.

In addition, the formulations that are based on differential forms make gravity

look much more similar to Yang-Mills gauge theories, where the dynamical

variables are also collections of differential forms. In fact, we will see that gravity

can be viewed as the ordinary sort of gauge theory, with fibre bundles and

gauge fields playing central roles. The main difference between gravity and gauge

theories of the more familiar sort is the existence of an object that links the

geometry of the fibres with that of the tangent space. It is this object that encodes

the metric, and it is this object whose presence makes the gravity theory so

profoundly different from the usual gauge theory. In this chapter we will develop

the series of formulations that all become possible thanks to Cartan’s idea of a

frame field.
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3.1 Tetrad, Spin Connection

There are two conceptually very different points of view on the tetrad. One that is

followed in many textbooks of GR goes under the name of ‘non-coordinate bases’,

see, e.g., the book by Sean Carroll (2019) entitled Spacetime and Geometry:

An Introduction to General Relativity, appendix J. We will briefly describe this

viewpoint first, mainly to make it clear that this is not what is later adopted.

We then proceed to develop Cartan’s point of view.

3.1.1 Non-Coordinate Bases

In this viewpoint one never introduces any bundles apart from the tangent and

cotangent (and more generally tensor) bundles over the manifold. This is what

makes this approach so logically different from that of Cartan. We present the

material of this subsection for completeness only. It can be skipped by readers

not interested in this viewpoint on the frame.

In Riemannian geometry, one usually works with coordinate bases in the

space of vector fields and 1-forms. A coordinate basis of vector fields is rarely

orthonormal. The idea is then that one can choose a not necessarily coordinate

basis of vectors eI ∈ TM , where I is simply an index that enumerates them.

These vectors can be chosen to be orthonormal in the sense that

g(eI , eJ) = ηIJ , (3.1)

where ηIJ is the flat metric of desired signature. As we discuss later, there may

in fact be a difficulty in choosing an everywhere nonvanishing set of vectors that

satisfy the orthonormality condition (3.1), on some manifolds there simply do

not exist everywhere nonvanishing vector fields (S2 is an example). But we will

ignore this subtlety for now, working in a single coordinate chart. One can then

expand the coordinate basis ∂μ in terms of the new basis ∂μ = eIμeI , where eIμ is

a collection of 4× 4 coefficient functions. We can rewrite the metric in terms of

the objects eIμ. Indeed,

gμν = g(∂μ, ∂ν) = g(eIμeI , e
J
ν eJ) = eIμe

J
ν g(eI , eJ) = eIμe

J
νηIJ , (3.2)

where in the last step we have used (3.1). This shows that eIμ is the ‘square root’

of the metric, and completely encodes the latter.

One can then encode the operation of covariant differentiation in non-

coordinate bases. This proceeds as follows. We write any vector as TM 

v = vIeI . We then have

∇(vIeI) = (∂vI)eI + vI∇eI . (3.3)

If we introduce the connection coefficients

∇eI = ωJ
IeJ , (3.4)
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we have ∇v = (∂vI + ωI
Jv

J)eI , which we can write as

∇vI = ∂vI + ωI
Jv

J . (3.5)

On the other hand we have vIeI = vμ∂μ = vμeIμeI , from which vI = vμeIμ. We

also have ∇ρ(v
μ∂μ) = (∂ρv

μ + Γμ
νρv

ν)∂μ. Comparing these two expressions we

see that Γμ
νρe

I
μ = ∂ρe

I
ν + ωI

ρ Je
J
ν . This can be rewritten as

Γμ
νρ = eμI ∂ρe

I
ν + eμIω

I
ρ Je

J
ν , (3.6)

where we introduced the inverse objects eμI : eμI e
J
μ = δJI , e

μ
I e

I
ν = δμν . This relates

the non-coordinate base connection coefficients ωI
ρJ to the Christoffel symbols.

This relation can also be rewritten as

∂ρe
I
ν − Γμ

νρe
I
μ ≡ ∇ρe

I
ν = −ωI

ρ Je
J
ν . (3.7)

This means that

0 = ∇ρgμν = ∇ρ(e
I
μe

J
νηIJ) = (ωI

ρKeKμ eJν + eIμω
J
ρKeKν )ηIJ . (3.8)

We now contract this with eμLe
ν
M to get

ωI
ρLηIM + ωI

ρMηIL = 0, (3.9)

which means that the connection coefficients ωI
J take values in the Lie algebra

of the Lorentz group of the appropriate signature. From (3.6) we also see that

the vanishing of the torsion Γμ
[νρ] = 0 is equivalent to

deI + ωI
J ∧ eJ = 0, (3.10)

which is an equation written in terms of the wedge product and the exterior

derivative. Here we think of the coefficients eIμ as components of a differential

form eI := eIμdx
μ.

The viewpoint described does not necessitate introducing any other bundles

apart from the tangent/cotangent bundles. However, the fact that the connection

coefficients ωI
J are naturally Lie algebra valued strongly suggests that we are in

fact dealing with a principal connection here, even if this fact is not apparent from

our description. The viewpoint of Cartan, which we are to develop now, puts a

certain associated vector bundle at the forefront of the description. Importantly,

it also leads to a set of natural generalisations of Riemannian geometry that are

hard to come up with in the usual tensorial formalism.

3.1.2 Geometric Structures

One of Cartan’s key ideas is that a ‘geometric structure’ on a manifold (e.g.,

metric, but other examples are possible, see what follows) can be efficiently

encoded in a collection of differential forms. This proceeds as follows. First, we

need a ‘local model’ for our desired geometric structure. Thus, let V = R
n

and GL(V ) = GL(n,R). Let T be the space of certain type tensors for V .
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For example, it can be the space T = S2V ∗ of symmetric rank (0, 2) tensors,

or T = Λ2V ∗ the space of antisymmetric (0, 2) tensors. Another important

example is T = V ⊗ V ∗ = End(V ), the space of linear maps on V . Let ψ ∈ T

be a tensor and Gψ ⊂ GL(V ) be the subgroup preserving ψ. For example, if

Q ∈ S2V ∗ is a (nondegenerate) symmetric tensor then GQ = O(V,Q), the

group of orthogonal transformations preserving Q. When ω ∈ Λ2V ∗ is a (non-

degenerate) antisymmetric tensor, the stabiliser subgroup is Gω = Sp(V, ω), the

symplectic group. For J ∈ V ⊗V ∗ such that J2 = −Id, the group GJ = GL(m,C)

where n = 2m.

Let us now fix, in each case, a canonical tensor of the corresponding type. In

the case of symmetric tensors Q can be chosen to be a flat metric of the desired

signature. For the case of antisymmetric tensors this can be chosen to be

ω =

(
0 Im

−Im 0

)
, (3.11)

where Im is the n×n identity matrix. For the case of an almost complex structure

J ∈ V ⊗ V ∗, it can be chosen to be given again by (9.79), but now interpreted

as an element of V ⊗ V ∗ rather than Λ2V ∗.

Let us now consider a manifold M of dimension n. Our desire is to encode a

geometric structure on M , modelled on one of the previously described tensors,

into a collection of differential forms. To this end we first define a notion of

coframe or soldering form. A coframe at x ∈ M on M with values in V is

an isomorphism

e : TxM → V. (3.12)

Concretely, a soldering form is (locally, in a coordinate chart) a 1-form on M

with values in V , i.e., the object eI = eIμdx
μ already encountered in the previous

subsection.

The general linear group GL(V ) acts transitively on the space of coframes at a

point. Concretely, let us define a right action of GL(V ) on a coframe via e → g−1e,

g ∈ GL(V ). Let F ∗M be the principal GL(V ) bundle of coframes on M . Let us

now consider some geometric structure on M , e.g., a metric or a nondegenerate

2-form, or an almost complex structure. In each case, let us fix in V a canonical

object of the corresponding type, as previously discussed. There arises a notion

of a coframe adapted to the geometric structure chosen, which is a coframe such

that the geometric structure in question gets mapped into the canonical one by

the coframe mapping. For example, in the case of a metric, an adapted coframe is

the one for which the map (3.12) is an isometry between the metric in M chosen

and the canonical fixed metric in V . For the example of a 2-form, an adapted

frame is one for which the map (3.12) is a symplectic map, so that the original

2-form in M is the pullback of the canonical 2-form in V . For the example of

an almost complex structure, an adapted frame is the one that satisfies e(Jv) =

JV e(v), where JV is the canonical almost complex structure in V .
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What makes this construction interesting is that there are in general many

coframes that are adapted to a given geometric structure. Indeed, a coframe

mapping (3.12) can be followed by a transformation in V that preserves

the canonical object in V . There is then the notion of a bundle of adapted

coframes, which is a principal Gψ ⊂ GL(n,R) bundle for one of the Gψ

groups discussed previously. Thus, in the case of a metric we have the prin-

cipal O(V ) bundle of orthonormal coframes. In the case of a 2-form we

get the principal Sp(V ) bundle of symplectic coframes. In the case of an

almost complex structure we get an GL(m,C), n = 2m bundle of coframes

that preserve the eigenspace decompositions of J and JV . Thus, a geomet-

ric structure reduces the principal GL(V ) coframe bundle F ∗M to one of

the principal bundles of the adapted coframes. This motivates the following

definition

Definition 3.1 AG-structure onM is a reduction of the principal GL(V ) bundle

F ∗M of coframes to a principal G-bundle, G ⊂ GL(V ).

As we have seen, concretely a G-structure is encoded in a collection of

V -valued differential forms on M . The original geometric structure on M in

many cases arises as simply the pullback of a canonical tensor in V under

the coframe map (3.12). This viewpoint on geometric structures unifies many

different types of geometries. In particular, as we have seen, geometry of metrics,

symplectic geometry, and complex geometry are all treated from a uniform

viewpoint.

3.1.3 Tetrad as the Soldering Form

We see that there are two conceptually very different perspectives on the tetrad

formulation of gravity. One of them brings to forefront the frame field, which

is a non-coordinate basis of vectors in TM that are orthonormal with respect to

the given metric. One can then define the dual coframe which is a collection of

1-forms that are orthonormal. All tensors can then be decomposed in such

frames and/or coframe and one can set up the operation of covariant differ-

entiation that introduces the connection coefficients ωI
J . This point of view

does not bring into play any other bundles apart from the already available

tangent bundle. And this is the point of view that is most often described in

relation to the tetrad formalism. This is not the point of view that will be

adopted here.

One problem with the point of view just discussed is that it brings with itself

a difficulty that many manifolds do not admit nowhere vanishing vector fields.

The simplest example where there are no such vector fields is S2. Manifolds

admitting a global section of the frame bundle are called parallelisable, and

this property is rare. All Lie groups are parallelisable, but not all manifolds of

interest are Lie groups.
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This difficulty is avoided if one takes Cartan’s viewpoint on the frame. This

other viewpoint introduces a new vector bundle E over space(time) manifold M ,

with fibres copies of V = R
n. This vector bundle is a priori unrelated to the

tangent or cotangent bundles. The tetrad, soldering form, or a coframe is then

an object that ties this bundle E to the tangent bundle. It is for this reason that

the tetrad is referred to as the soldering form, because it solders an abstract

vector bundle over the spacetime to the tangent bundle. Vector bundles such as

E can be equipped with a connection, and it is this connection that will play the

central role in our description of gravity, rather than the Levi–Civita connection

on TM . All in all, the emphasis shifts from objects intrinsically defined on the

manifold (tensors) to certain differential forms with values in E. This does make

gravity look more similar to Yang–Mills theory, because the latter also starts

by introducing a bundle over spacetime, with dynamical objects being those

naturally living in this bundle. The difference between Yang–Mills theory and

gravity is then simply in the fact that the latter comes with an object that ties

the vector bundle in question to the tangent bundle–the soldering form.

From now on we will only develop the description of (pseudo-) Riemannian

geometry, leaving the other examples (symplectic, complex) behind. But it should

be kept in mind that they can be developed in parallel with the Riemannian

geometry case.

With the previous remarks in mind, we introduce a vector bundle V ↪→ E →
M , whose fibres V have a metric 〈·, ·〉, are of dimension n, and are copies of

R
p,q, p+q = n, depending on the desired signature. One requires this new bundle

to be isomorphic to the tangent bundle TM . The tetrad, soldering form, vielbein,

or coframe1 is then the object that provides this isomorphism

e : TM → E. (3.13)

Locally, the tetrad is a collection of n linearly independent 1-forms

eI = eIμdx
μ, I = 1, . . . , n,

with the map from TM to E being e : v → eI(v) = eIμv
μ. We will refer to indices

I, J, . . . as ‘internal’ indices, to signify the fact that they are indices that refer to

a vector bundle E that has in principle nothing to do with the natural bundles

that are defined on M , such as the tangent and cotangent bundle.

Given a tetrad, the metric on M is defined to be the pullback of the metric

on E

g(v, u) := 〈e(v), e(u)〉, or gμν = eIμe
J
νηIJ , (3.14)

1 The terms ‘tetrad’ and ‘veilbein’ both have the drawback that they refer explicitly to four
dimensions. In three dimensions the same fields are usually referred to as triads or
dreibeins; in higher dimensions, the term ‘veilbein’ is used. We will ignore this and use the
same term in all dimensions.
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where ηIJ is the metric on fibres V . We note that there are many different choices

of tetrad that lead to the same metric. Indeed, the tetrad can be locally Lorentz

rotated eI → ΛI
Je

J ,ΛI
J ∈ O(p, q) without any change in the metric. This is why

the (co-) frame bundle is an O(p, q) principal bundle.

3.1.4 Spin Connection

Having defined the tetrad, we can introduce the spin connection. It starts its

life as a metric connection on the vector bundle E, or as a connection that is

associated to a connection in the principal O(p, q) bundle. That is, locally, this

is an object ωI
J that is 1-form valued and defines the covariant derivative on

sections of E

dωV I := dV I + ωI
JV

J . (3.15)

The metric property is

0 = dωηIJ = ωI
KηKJ + ωJ

KηIK , (3.16)

where we assumed that the components of the inverse metric ηIJ are constants.

This is just the statement that the object ωI
J is valued in the Lie algebra of

O(p, q), i.e., valued in the Lie algebra of the corresponding Lorenz group. In the

simplest case of Riemannian signature ηIJ = δIJ and the spin connection is a

1-form with values in antisymmetric n× n matrices.

3.1.5 Torsion-Free Spin Connection

When one has a tetrad eI at one’s disposal, one can introduce the following

Λ2(M)⊗ E valued object called torsion

T I := dωeI ≡ deI + ωI
Je

J . (3.17)

Note that d here is the exterior derivative and the wedge product of forms is

implied in the second term.

Lemma 3.2 Given a tetrad, there exists a unique metric torsion-free connection.

Explicitly, it is given by

ωI
μJ = eρIeσJ(−Cμρσ + Cρσμ + Cσμρ), Cμρσ := eμI∂[ρe

I
σ]. (3.18)

The proof is by explicit verification. The object eμI is the inverse tetrad defined

via eμI e
J
μ = δJI and eμI e

I
ν = δμν . The internal indices are raised and lowered with

the internal metric ηIJ and its inverse. To convince oneself that such a statement

can be true one can first count the number of equations in dωeI = 0 versus the

number of unknowns. The number of equation is the dimension of the space of

2-forms n(n− 1)/2 times n, while this is also the number of components in the
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connection ωI
μJ . The formula (3.18) is an analog of the Christoffel formula in

Riemannian geometry.

3.1.6 Relation to the Christoffel Connection

In the tetrad formalism the Christoffel connection arises simply as the pullback of

the spin connection from E to TM . This is expressed as follows. Given uI = eIμu
μ

we define the connection on TM via

eIμ∇uμ = dωuI . (3.19)

A quick calculation then gives

eIσΓ
σ
νμ = ∂μe

I
ν + ωI

μJe
J
ν . (3.20)

Note that we can rewrite this relation as

0 = ∇ω
μe

I
ν := ∂μe

I
ν + ωI

μJe
J
ν − Γσ

νμe
I
σ. (3.21)

Here we have introduced a new ‘total’ covariant derivative ∇ω that acts on

both the spacetime index and internal index of eIν . The relation (3.20) is then

interpreted as the statement that the total covariant derivative of the tetrad

is zero. Note that (3.21) immediately implies that the connection on TM that

appears in ∇ω is the Christoffel connection for the metric gμν = eIμe
J
νηIJ . Indeed,

we can act on gμν so defined with ∇ω and the result is zero because both eIμ and

ηIJ are killed by ∇ω.

Let us also note that the equation ∇ω
μe

I
ν = 0 can be taken as defining both

the spin connection and the Levi–Civita connection. Indeed, we can take the

antisymmetric in μν part of this equation and recover the torsion-free condition.

Having solved it, we then get the Levi–Civita connection algebraically from the

spin connection and the partial derivatives of the tetrad. An alternative way of

reaching the same conclusion is by counting equations. There are n3 equations

in ∇ω
μe

I
ν = 0, and we can use them to find n×n(n−1)/2 components of the spin

connection and n× n(n+ 1)/2 components of Γμ
νρ.

3.1.7 Curvature of the Spin Connection vs. Riemann Curvature

Having established a relation between the torsion-free spin and Levi–Civita

connections, we are ready to establish a link between their respective curvatures.

The curvature of the spin connection is defined via

2dω
[μd

ω
ν]u

I := Rμν
I
Ju

J . (3.22)

This gives, in form notations

RI
J = dωI

J + ωI
KωK

J . (3.23)
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We can now obtain a relation to the Riemann curvature as follows. Since the

‘total’ covariant derivative ∇ω kills the tetrad we have

0 = 2∇ω
[μ∇ω

ν]e
I
ρ = Rμν

I
Je

J
ρ −Rα

ρμνe
I
α, (3.24)

and thus

Rα
ρμν = Rμν

I
Je

α
I e

J
ρ . (3.25)

This gives a very efficient way of computing the Riemann curvature! Indeed,

given a metric, we only need to choose the corresponding tetrad, and then

compute the spin connection from the zero-torsion condition. There are only

24 components of the spin connection to compute in four dimensions, which are

all compactly stored in six 1-forms. This should be compared to 40 components

of the Christoffel symbol, for which no good storing device exists. The curvature

of the spin connection is then obtained by simple operations of exterior differ-

entiation and wedge product, and this leads directly to the components of the

Riemann curvature tensor, as the relation (3.25) tells us.

The easiest way to find the Ricci curvature and Ricci scalar using the tetrad

formalism is to convert all indices of Rμν
I
J not to the spacetime indices as in

(3.25), but to internal indices. Thus, introducing the object

RMN
I
J := Rμν

I
Je

μ
MeνN , (3.26)

we can get the internal indices Ricci tensor as

RIJ = RMI
M

J , (3.27)

so that Rμν = RIJe
I
μe

J
ν and the Ricci scalar as

R = RIJη
IJ . (3.28)

3.1.8 Examples

We now spell out some examples of Riemann curvature computations using the

frame formalism.

Example 3.3 Let us consider one of the simplest possible applications of the

frame formalism, which is the computation of the curvature of the two-sphere.

The metric is given by

ds2 = R2(dθ2 + sin2 θdφ2), (3.29)

which leads to the following frame 1-forms, or a ‘dyad’

eθ = Rdθ, eφ = R sin θdφ. (3.30)

The two torsion-free equations to solve are deθ + ωθ
φe

φ = 0, deφ + ωφ
θe

θ = 0,

which become

ωθ
φdφ = 0, cos θdφdθ = ωφ

θdθ, (3.31)
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and immediately give

ωφ
θ = cos θdφ. (3.32)

Since the Lie algebra of SO(2) is one-dimensional, there is only this 1-form that

constitutes the full spin connection. Its curvature is given by

Rφ
θ = − sin θdθdφ =

1

R2
eφeθ. (3.33)

This immediately gives the only independent component of the Riemann curva-

ture Rφθ
φ
θ = 1/R2, and thus Rθθ = 1/R2 and Rφφ = 1/R2. The Ricci scalar is

then

R =
2

R2
. (3.34)

Example 3.4 Let us now redo the previous example using the complexified

formalism. To this end, we first map the 1-forms (3.30) to 1-forms on R
2 using

the stereographic projection (from the north pole). The map from S2 to R
2 = C

is explicitly given by

x+ iy ≡ z =
cos(θ/2)

sin(θ/2)
eiφ. (3.35)

The inverse map C → S2 is given by

cos θ =
|z|2 − 1

|z|2 + 1
, e2iφ =

z

z̄
. (3.36)

We can now pull back the 1-forms (3.30) with this map. We get

dθ = − d|z|2
|z|(|z|2 + 1)

, sin θdφ =
i(zdz̄ − z̄dz)

|z|(|z|2 + 1)
. (3.37)

This gives for the unit R = 1 sphere metric

ds2 =
4dzdz̄

(1 + |z|2)2 . (3.38)

To find the spin connection for this metric, it is convenient to work with the

complexified frame. To introduce this, let us write the torsion-free conditions

dex + ωx
ye

y = 0, dey + ωy
xe

x = 0. (3.39)

Let us introduce

e := ex + iey. (3.40)

Then the complex linear combination of the two equations in (3.39) gives

de + iωy
xe = 0. Thus, if we now introduce the notation ω := ωy

x there is one

complex equation

de+ iωe = 0 (3.41)

to solve instead of two real equations (3.39).
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For the metric (3.38) the complexified 1-form e is

ds2 = eē, e =
2dz

1 + |z|2 . (3.42)

We can now easily solve (3.41) for the spin connection

ω = − i(zdz̄ − z̄dz)

1 + |z|2 . (3.43)

Note that if we pull it back to S2 we get ω = −(1 + cos θ)dφ, which does not

coincide with (3.32), nor should it.

We can now compute the curvature using this complex formalism. We have

dω =
1

2i
eē, (3.44)

where now of course the wedge product of forms appears on the right-hand side.

Let us see how to extract the scalar curvature from here. We have (1/2i)eē = eyex,

and so what the equation (3.44) says is that Ry
x = eyex, which immediately

implies that Rxx = Ryy = 1 and the scalar curvature is equal to R = 2, as we

have previously determined without using the complexified frame.

It is clear that the described complex version of the tetrad formalism in two

dimensions, whose main formulas are ds2 = eē and (3.41) as well as the rule

dω =
R/2

2i
eē (3.45)

for reading the scalar curvature R from the curvature of ω is more efficient than

the real formalism because it halves the number of equations that need to be

written down. We will describe a similar formalism in four dimensions in the

chapter on chiral descriptions of GR.

Example 3.5 We now note that the two sets of equations, namely (3.41) and

(3.44) can be put together into a single matrix-valued equation. For this purpose,

let us introduce a 1-form with values in 2× 2 anti-Hermitian matrices

θ :=
i

2

(
ω e

ē −ω

)
. (3.46)

One then easily checks that both equations in question arise as the components

of a single matrix-valued equation

dθ + θθ = 0. (3.47)

Thus, the U(1) spin connection together with the frame field on S2 combines

into a flat SU(2) connection. This construction has its origin in the fact that

S2 = SU(2)/U(1), and thus there is a natural flat su(2)-valued 1-form on S2 given

by the corresponding Maurer–Cartan 1-form g−1dg, with g being a representative

of a point x ∈ S2 realised as the coset S2 = SU(2)/U(1).
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This construction can be trivially generalised to constant scalar curvature

2-manifolds other than S2. For example, there exists a similar SL(2,R) connec-

tion on the two-dimensional hyperbolic space H2. The construction of combining

the two Cartan equations (3.41) and (3.44) into a single equation requiring some

connection to be flat has an analog in 3D, as we will see in the next chapter.

Example 3.6 Let us now consider a much more involved example of a static,

spherically symmetric Lorentzian signature metric in four dimensions

ds2 = −f2dt2 + g2dr2 + r2(dθ2 + sin2 θdφ2). (3.48)

Here functions f, g depend on the radial coordinate only. The most natural tetrad

is then

et = fdt, er = gdr, eθ = rdθ, eφ = r sin θdφ. (3.49)

Let us start the process of determining the spin connection. We have det =

f ′drdt, and the equation to solve is

det + ωt
re

r + ωt
θe

θ + ωt
φe

φ = 0. (3.50)

The last two terms here will involve de and dφ, which are not present in the first

term. So, the simplest possibility for this equation to be satisfied is to assume

that ωt
θ and ωt

φ are actually zero, and that ωt
r only has the dt component. This

gives

ωt
r =

f ′

g
dt. (3.51)

The next equation to consider is

der + ωr
te

t + ωr
θe

θ + ωr
φe

φ = 0. (3.52)

The first two terms here are zero in view of the already known solution for ωt
r.

The simplest possibility to have this equation satisfied is to assume that ωr
θ ∼ dθ

and ωr
φ ∼ dφ.

The next equation is

deθ + ωθ
te

t + ωθ
re

r + ωθ
φe

φ = 0. (3.53)

The first term here is deθ = drdθ. We have already assumed that ωt
θ = 0, and

so there is no second term. We have also assumed that ωr
θ ∼ dθ, and this is

precisely the structure needed for the third term to cancel the first. Thus, the

simplest option is to assume that ωθ
φ ∼ dφ. We then find

ωθ
r =

1

g
dθ. (3.54)

The last equation reads

deφ + ωφ
te

t + ωφ
re

r + ωφ
θe

θ = 0. (3.55)
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The first term is a sum of two deφ = sin θdrdφ + r cos θdθdφ. We have already

assumed previously that ωt
φ = 0, so the second term does not contribute. And

we can then read off the last two connection 1-forms

ωφ
r =

1

g
sin θdφ, ωφ

θ = cos θdφ. (3.56)

This finishes the most laborious process of any curvature computation – the

determination of the connection.

We can now find the six components of the curvature 2-form. We have

Rt
r = dωt

r + ωt
θω

θ
r + ωt

φω
φ
r =

(
f ′

g

)′

drdt,

Rt
θ = ωt

rω
r
θ = − f ′

g2
dtdθ, Rt

φ = ωt
rω

r
φ = − f ′

g2
sin θdtdφ,

where we have used ωt
θ = 0, ωt

φ in all three equations, and also used the fact

that ωr
θ = −ωθ

r, and ωr
φ = −ωφ

r to write the last two formulas. The other

three curvature components are

Rθ
r = dωθ

r + ωθ
tω

t
r + ωθ

φω
φ
r =

(
1

g

)′

drdθ,

Rφ
r = deφr + ωφ

tω
t
r + ωφ

θω
θ
r

=

(
1

g

)′

sin θdrdφ+
1

g
cos θdθdφ+ cos θdφ

1

g
dθ =

(
1

g

)′

sin θdrdφ,

Rφ
θ = deφθ + ωφ

tω
t
θ + ωφ

rω
r
θ

= − sin θdθdφ− 1

g2
sin θdφdθ = − sin θ

(
1− 1

g2

)
dθdφ.

We can rewrite what we have found as follows

Rt
r = − 1

fg

(
f ′

g

)′

eter, Rt
θ = − f ′

rfg2
eteθ, Rt

φ = − f ′

rfg2
eteφ,

Rθ
r = − 1

gr

(
1

g

)′

eθer, Rφ
r = − 1

gr

(
1

g

)′

eφer, Rφ
θ =

1

r2

(
1− 1

g2

)
eφeθ.

We can now form components of the Ricci tensor. It is this state where most care

is needed in order not to commit a sign mistake coming from raising-lowering

the indices. One should take into account that raising-lowering the index t gives

a minus sign. This in particular means that Rt
r = Rr

t, and similarly for the

other components of the curvature involving t. We then have

Rtt = Rrt
r
t +Rθt

θ
t +Rφt

φ
t =

1

fg

(
f ′

g

)′

+
2f ′

rfg2
,
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Rrr = Rtr
t
r +Rθr

θ
r +Rφr

φ
r = − 1

fg

(
f ′

g

)′

− 2

gr

(
1

g

)′

,

Rθθ = Rtθ
t
θ +Rrθ

r
θ +Rφθ

φ
θ = − f ′

rfg2
− 1

gr

(
1

g

)′

+
1

r2

(
1− 1

g2

)
.

The Rφφ component of Ricci is the same as Rθθ in view of the spherical symmetry,

and so carries no new information.

If we now want the Ricci flat Schwarzschild solution we set all the three

obtained components of Ricci to zero. The sum of the first two equations thus

gives immediately

f ′

f
+

g′

g
= 0, (3.57)

which means that fg = const. This constant must be unity if we demand that

the metric approaches the Minkowski metric at r → ∞. Then the last equation

gives

d(1− f2)

1− f2
+

dr

r
= 0, (3.58)

which implies

1− f2 =
r+
r
, (3.59)

where r+ is a constant of integration. We get the Schwarzschild solution. The

difference of the first two equations, which is the equation that we did not yet

use, is satisfied automatically.

3.1.9 Spin Connection vs. Levi–Civita Connection

It is worth emphasising the principal difference between the spin and Levi–Civita

connections. The latter is a connection in the tangent bundle. Connections in

a tangent bundle can be viewed as those associated with principal GL(n,R)

connections. However, as soon as the torsion-free condition Γμ
[νρ] = 0 is imposed

this connection can no longer be interpreted as a Lie algebra valued 1-form.

This is the technical reason why it is rather difficult to work with the Levi–

Civita connection, at least as compared to the spin connection. The latter is

a principal connection, and is a 1-form with values in the Lie algebra of the

corresponding Lorentz group. The former is not a principal connection, and is not

a 1-form in any natural way. The powerful machinery of exterior differentiation

and differential forms is only available in the case of the principal O(p, q) bundle

spin connection.

However, having only a connection in a vector bundle E over M does not say

anything about the geometry of M . It is for this reason that an additional object

is introduced, which is the soldering form, viewed as a map e : TM → E. This

object ties objects in E to objects in TM . In particular, both the metric and



104 Cartan’s Tetrad Formulation

the Levi–Civita connections on TM arise this way, as pullbacks of objects from

E. The presence of this object is the main distinguishing feature of a theory of

geometry as compared to a gauge theory.

3.2 Einstein–Cartan First-Order Formulation

We now have all the necessary ingredients to describe the Einstein–Cartan tetrad

formulation. It has different versions, and here we describe the version in which

the action is written in terms of differential forms. We will only give this action in

four dimensions. The story in 2+1 dimensions will be described in the following

chapter. A generalisation to n > 4 dimensions is straightforward, but will not

be needed. The action is a functional of tetrad e and spin connection ω that are

treated as independent variables. It reads

SEC[e, ω] =
1

32πG

∫
εIJKL eIeJ

(
RKL(ω)− Λ

6
eKeL

)
. (3.60)

Here RIJ(ω) = RK
M(ω)ηML is the curvature 2-form of the Lorentz (spin)

connection with one of its indices raised using the internal metric ηIJ . The

wedge product of forms is implied in (3.60). The integrand is a top form, and

thus to evaluate the integral a choice of orientation of M needs to be made. The

object εIJKL is a completely antisymmetric tensor in Λ4V ∗. It takes values ±1,

and an orientation of V = R
4 needs to be chosen to fix this tensor, by requiring

that it takes value +1 in the orientation chosen. A convenient choice of this

orientation that ties it to the orientation of M is described in Section 3.3.1.

When one varies (3.60) with respect to the connection, one obtains the equa-

tion dω(eIeJ) = 0, which implies dωeI = 0, i.e., the zero-torsion condition. As

we already know, this is an algebraic equation for the spin connection, and can

be solved uniquely in terms of the derivatives of eI , see (3.18). Substituting this

solution into the action (3.60) brings us back to the Einstein–Hilbert action.

Varying the action (3.60) with respect to the frame one gets

εIJKLe
JRKL =

Λ

3
εIJKLe

JeKeL, (3.61)

which is the Einstein equation in the tetrad formalism.

We note that the Einstein–Cartan action (3.60) is polynomial in the fields,

and contains just up to quartic terms. This is true even for Λ �= 0, in contrast to

the case of the Palatini action (2.43), which is only polynomial (with the choice

of the inverse densitiesed metric as the main variable) for Λ = 0. This, as well

as the necessity of tetrads when spinors are present, are the two reasons why

the tetrad formulation can be considered superior to the formulation in terms of

the metric.

However, one drawback of the Einstein–Cartan formulation as compared

to the metric description is more complicated character of its Hamiltonian
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formulation obtained via the 3 + 1 split. It is known that in this case there

are second-class constraints, see, e.g., Holst (1996) for the Hamiltonian analysis.

This should be contrasted with the Arnowitt-Deser-Misner (ADM) formalism,

shown in Arnowitt et al. (1960) where no second-class constraints appear. The

appearance of second-class constraints in the Einstein–Cartan formalism is

not surprising because 24 ‘momentum’ variables of the connection have been

introduced in addition to the 16 ‘configuration’ variables. The extra variables

are then eliminated by second-class constraints. A formalism that shares all

the good features of Einstein–Cartan but does not suffer from the problem of

second-class constraints is the chiral first-order formalism to be described in the

next chapter.

3.3 Teleparallel Formulation

In the previous chapter we have seen that the GR Lagrangian can be rewritten

in the ΓΓ form, modulo surface terms, see (2.19). A similar rewriting is possible

for the Einstein–Cartan Lagrangian (3.60). Let us carry out this exercise. It will

suggest a different way of thinking about GR that goes under the name of telepar-

allel gravity. The action we are going to derive is not written in terms of wedge

product of differential forms. Thus, the geometry of fibre bundles and differential

forms that we previously emphasised as important for the interpretation of the

tetrad formalism plays no role in this section. Our description here is very brief,

and the reader is directed to Heisenberg (2018) for a more thorough discussion

on encoding gravity into torsion or non-metricity.

3.3.1 Torsion-Squared Form of the Gravitational Lagrangian

Recalling the definition of the curvature, and integrating by parts, we can rewrite

the action (3.60) as

S[e, ω] =
1

32πG

∫
εIJKL

(
−2deIeJωKL + eIeJωK

MωML − Λ

6
eIeJeKeL

)
.

The idea now is to substitute here the explicit solution (3.18) for the spin

connection in terms of derivatives of the tetrad. But for this solution deI =

−ωI
Je

J . Substituting this we get

S[e] =
1

32πG

∫
εIJKL

(
2ω(e)IMeMeJω(e)KL + eIeJω(e)KMω(e)ML− Λ

6
eIeJeKeL

)
,

where ω(e) is the torsion-free spin connection given by (3.18).

Let us now rewrite the previous action in index notations, making the space-

time indices of all the forms explicit. We will be using the following identity

dxμdxνdxρdxσ = ε̃μνρσd4x.
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Here ε̃μνρσ is a densitiesed completely antisymmetric tensor that in any coordi-

nate system has components ±1. Its value is +1 for the ordering of μνρσ that

coincides with the orientation of M chosen. The quantity d4x is the coordinate

volume element. We also have the identities

εIJKLε̃
μνρσeIμe

J
ν e

K
ρ eLσ := 24e, (3.62)

which is essentially the volume element of the metric defined by the tetrad

e =
√

−g(e).

Here g(e) is the determinant of the metric (3.14) defined by the tetrad. In writing

the identity (3.62) we assumed that the orientation that defines εIJKL is chosen

so that this identity is true. Another useful identity is

1

2
εIJKLε̃

μνρσeIμe
J
ν = 2e e[ρKeσ]

L . (3.63)

It is proved by multiplying both sides with eKρ eLσ .

We now rewrite the first term in the action using

eMeJ = −1

4
εMJRSεRSPQe

P eQ. (3.64)

This gives

2εIJKLω
I
MeMeJωKL = −1

2
εIJKLω

I
MεMJRSεRSPQe

P eQωKL

= −2eεMJRSεIJKLe
[μ
R eν]S ω

I
μMωKL

ν .

Now using

εMJRSεIJKL = −
(
δMI (δRKδSL − δRL δ

S
K) + δMK (δRL δ

S
I − δRI δ

S
L) + δML (δRI δ

S
K − δRKδSI )

)
Using these identities the action becomes

S[e] =
1

8πG

∫
e
(
−e[μKeν]Lω

K
μ MωML

ν − Λ
)
, (3.65)

where we have used ωM
μM = 0. The next step is to substitute the solution

(3.18).

To make the next step, let us introduce the torsion

T I
μν = 2∂[μe

I
ν]. (3.66)

This is the torsion of the zero connection, and should be contrasted with the

torsion of the frame-compatible spin connection, which is zero. If we define the

version of the torsion T I
μν with all indices replaced by internal indices T I

JK =

eμJe
ν
KT I

μν we can rewrite the torsion-free spin connection in terms of the objects

T I
JK . We have

2eμSω
I
μ J = TSJ

I + T I
JS + TJS

I . (3.67)



3.4 Pure Connection Formulation 107

This gives ωI
I
J = T I

JI and

ωL
K

MωK
ML =

1

4

(
−TLMKT LMK + 2TMLKT LKM

)
.

This gives the final expression for the GR Lagrangian in terms of the derivatives

of the tetrad

S[e] =
1

16πG

∫
e

(
−1

4
TLMKT LMK +

1

2
TMLKT LKM + T I

KIT JK
J − 2Λ

)
,

where T is the torsion given by (3.66). This form of the Lagrangian should be

compared to the conceptually similar rewriting (2.19) of the Lagrangian in the

metric formulation.

3.3.2 Weitzenbock Connection

Given that we can rewrite the gravitational Lagrangian in the torsion-squared

form, there arises the possibility of trading torsion for the curvature. Thus, one

introduces the so-called Weitzenbock connection defined via

∂μe
I
ν −W ρ

νμe
I
ρ = 0. (3.68)

As this relation shows, the connection W ρ
μν is designed to parallel trans-

port the frame field. This is an affine connection that has nonzero torsion

T I
μν = 2eIρW

ρ
νμ, but zero curvature Rρ

σμν(W ) = 0. Thus, the curvature has

been traded for torsion in this formulation. Teleparallel gravity allows for a two-

parameter family of modifications in which the relative coefficients in front of

the different torsion squared terms are changed as compared to the Lagrangian

that describes GR. More details on this and other aspects of teleparallel gravity

is available in Aldrovandi and Pereira (2013) and Heisenberg (2018).

3.4 Pure Connection Formulation

Given that it is possible to ‘integrate out’ the metric variable from Palatini

Lagrangian (2.43) to obtain the pure affine formulation (2.46), one can ask

whether a similar trick is possible with the Einstein–Cartan formulation. The

field equations one gets for the tetrad are algebraic in any dimension, so this is

always possible in principle. In 3D it is possible to obtain a closed-form expression

for the corresponding pure connection Lagrangian, see the next chapter. In 4D

the equation one needs to solve is (3.61). At present it is not known how to

solve this equation for eI in a closed form. However, a perturbative solution

(around constant curvature background) is possible, see Zinoviev (2005) and

Basile et al. (2016). It is also possible to ‘integrate out’ the frame field in a

closed form using a trick with Lagrange multiplier fields, see Section 3.7.2.
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We now describe this solution. For simplicity, we only treat the Riemannian

case so that there are no subtle signs coming from the internal metric ηIJ . The

constant curvature background corresponds to

RIJ(ω) =
Λ

3
eIeJ . (3.69)

Denoting by eI , ωIJ the background and by δeI , aIJ the perturbations we have

the following linearisation of (3.61)

εIJKLe
JdωaKL =

2Λ

3
εIJKLe

JeKδeL, (3.70)

whose solution is

δeI =
3

2Λ
f̂ I
Je

J , f̂ I
J := f I

J − 1

6
δIJf, (3.71)

where we introduced the linearised curvature f IJ
KL := 2dω

[μa
IJ
ν] e

μ
KeνL and

f I
J = f IK

JK , f = f I
I . Note that the linearised ‘Ricci’ tensor f I

J does not need

to be symmetric.

The linearisation of the action (3.60), evaluated on the solution (3.71) gives

S(2)[a] =
3

32πGΛ

∫
e(δIKδJM − δIMδJK)f̂K

I f̂M
J +

Λ

3
εIJKLe

IeJaK
MaML, (3.72)

where e := (1/24)εIJKLe
IeJeKeL is the volume form for eI . The last term here

can be rewritten in a convenient form. Thus, one uses the background condition

(3.69) to replace the wedge product of two e’s with the curvature. The term

εIJKLR
IJaK

MaML is then rewritten by replacing aML = (1/4)εMLPQεPQRSa
RS,

and decomposing the product of two of the ε’s. We get

εIJKLR
IJaK

MaML = RIMaM
JεIJKLa

KL = (1/2)(dωdω)aIJεIJKLa
KL. (3.73)

Integrating by parts we can then replace the last term in (3.72) with

−εIJKLd
ωaIJdωaKL = −(e/4)εIJKLε

MNPQf IJ
MNf

KL
PQ .

Thus, the last term in (3.72) can also be rewritten in the form curvature squared.

The final result for the linearised action can be written very compactly as Basile

et al. (2016)

S(2)[a] = − 3

64πGΛ

∫
eCKL

IJ [a]CIJ
KL[a], (3.74)

where the Weyl-like tensor is defined as

CIJ
KL[a] := f IJ

KL − (δI[KfJ
L] − δJ[Kf I

L]) +
f

3
δI[KδJL]. (3.75)

Note that in Euclidean signature the action (3.74) has a definite sign. This is

similar to Eddington–Schrödinger action (2.46), but in contrast to the Einstein–

Hilbert action. The previous manipulations can be simplified by starting with
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the MacDowell–Mansouri action instead, as in Basile et al. (2016). In that case

there is no need for integration by parts manipulations, and the linearised action

(3.74) results immediately. We will describe this Section 3.5.1.

3.5 MacDowell–Mansouri Formulation

The idea in MacDowell and Mansouri (1977) is to combine the spin connec-

tion ωIJ of the Einstein–Cartan formalism together with the tetrad eI into a

connection for the gauge group SO(1, 4) or SO(2, 3), depending on the sign of

the cosmological constant. The Lie algebra of these groups splits as the sum of the

Lorentz subalgebra plus an additional four-dimensional part. The frame receives

the interpretation of the component of the connection in this four-dimensional

part. A similar idea can be put to use in 3D gravity, where it leads to its Chern–

Simons formulation in Witten (1988) and, when the cosmological constant is

zero, in Poincaré gauge theories of gravity, see, e.g., Hehl (2012).

The connection that combines the spin connection and the tetrad is an example

of the Cartan connection, as is explained in Wise (2010). Cartan geometry

changes the nature of the object that ties together an abstract fibre bundle and

the manifold. In the previous discussion this role has been played by the soldering

form. In the Cartan’s case this role is played by a 1-form in a principal H bundle

P over M that is valued not in the Lie algebra of H (as would be appropriate

for a principal connection), but rather in the Lie algebra of a bigger Lie group

G of which H is a Lie subgroup. Moreover, the mapping TpP → g is required to

be an isomorphism. Thus, this connection provides a local identification of the

total space of an H bundle over M with the group manifold G; see Wise (2010)

for more details.

There are two versions of this formulation. In the original formulation of Mac-

Dowell and Mansouri (1977), the basic field is an SO(1, 4) or SO(2, 3) connection,

but the Lagrangian is only invariant under the four-dimensional Lorentz group.2

Invariance under SO(1, 4) or SO(2, 3) is explicitly broken. In the version of Stelle

and West (1980) the symmetry breaking from SO(1, 4) or SO(2, 3) to SO(1, 3) is

dynamical, due to an auxiliary vector field, often referred to as the compensator

in the literature.

3.5.1 MacDowell–Mansouri Version

The curvature of an SO(1, 4) or SO(2, 3) connection has two parts. First, there

is the part valued in the Lie algebra of the Lorentz group SO(1, 3). It is given by

FIJ = RIJ(ω)− Λ

3
eIeJ . (3.76)

2 Supergravity can also be described along the same lines, by replacing the gauge group that
gives pure gravity with a supergroup, see MacDowell and Mansouri (1977).
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Second, there is the remaining part, which is just a multiple of the torsion tensor

dωeI . The four-dimensional MacDowell–Mansouri action is

SMM[e, ω] = − 3

64πGΛ

∫
εIJKLF IJFKL. (3.77)

Using (3.76) we get the Einstein–Cartan action (3.60) plus a topological term.

The action (3.77) thus differs from (3.60) by a total derivative term, and leads

to the same field equations. However, it has many advantages over the Einstein–

Cartan action. First, its value on maximally symmetric backgrounds F IJ = 0 is

zero. Second, in relation to the problem of evaluating the gravitational action

on, e.g., asymptotically anti-de Sitter (AdS) spaces, the usual Einstein–Hilbert

or Einstein-Cartan actions diverge on such backgrounds and require renormal-

isation. This is usually done by adding to the action certain boundary terms

that also diverge as one approaches the AdS boundary. The difference between

the divergent bulk and boundary actions is then the renormalised action, see,

e.g., de Haro et al. (2001). The action (3.77) vanishes on exact AdS and is finite

on asymptotically AdS solutions. Moreover, the difference between the Einstein–

Cartan and MacDowell–Mansouri actions is a total derivative, or equivalently

a boundary term. Thus, the boundary terms needed for the renormalisation on

asymptotically AdS backgrounds are automatically included in (3.77).

Another advantage of (3.77) over (3.60) is that it is very easy to linearise this

action on maximally symmetric backgrounds. Indeed, we have

S(2)
MM[δe, a] = − 3

64πGΛ

∫
εIJKL

(
dωaIJ − 2Λ

3
eIδeJ

)(
dωaKL − 2Λ

3
eKδeL

)
,

where, as in the previous subsection, δeI , aIJ are the perturbations of the tetrad

and the spin connection respectively. Substituting here the solution (3.71) gives

the pure connection linearised action (3.74) with very little work. Indeed, the

combination that appears in the previous linearised action evaluates to

dωaIJ − 2Λ

3
e[I ∧ δeJ] =

1

2

(
f IJ
KL − 2δ[IM f̂J]

N

)
eM ∧ eN =

1

2
CIJ

MN [a]e
M ∧ eN ,

and the result (3.74) follows immediately.

In the MacDowell–Mansouri formulation the fields of the first-order formu-

lation (3.60) have been unified into a single connection field, but now the

Lagrangian (3.77) is no longer manifestly of the first order. Schematically, it

is of the type F 2. However, the two-derivative term in (3.77) is, modulo total

derivative terms, a term with no derivatives. This is why (3.77) is equivalent to

the first-order Einstein–Cartan Lagrangian.

A final remark is that it is possible to put (3.77) into a manifestly first-

order form by ‘integrating in’ a 2-form field, as in BF-type formulations that

we consider in Section 3.7. This manifestly first-order form of the MacDowell–

Mansouri theory has been studied by Freidel and Starodubtsev (2005).
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3.5.2 Stelle–West Version

The action (3.77) can be rewritten in manifestly SO(1, 4) or SO(2, 3) invariant

form by introducing an extra field. Let us denote the five-dimensional indices by

lowercase latin letters, so that SO(1, 4) or SO(2, 3) Lie algebra-valued objects

are of the form vab = v[ab]. Let us introduce a new field va. This field is required

to have unit norm |v|2 = ±1, depending on the sign of the cosmological constant.

Let us consider the following action

S[A, v] = − 3

64πGΛ

∫
εabcdeFab(A)Fcd(A)ve. (3.78)

Here Aab is a SO(1, 4) or SO(2, 3) connection, and Fab(A) is its curvature. The

action is manifestly invariant under the large group. Choosing va to point in

a particular direction breaks the symmetry down to the Lorentz group, and

reproduces (3.77). The unit norm constraint can be explicitly added to the action

with a Lagrange multiplier, see Section 3.5.3.

To couple gravity in this form to matter one just has to note that the frame is

readily recovered as the covariant derivative dAva (with respect to the connection

Aab) of the vector va. This allows to convert, e.g., the Dirac Lagrangian to an

explicitly SO(1, 4) or SO(2, 3) invariant form by replacing all occurrences of eI

with ∇va.

3.5.3 Pure SO(1, 4) or SO(2, 3) Connection Formulation

The idea of this formulation is to integrate out the vector field va of the

Stelle–West formulation. The corresponding Lagrangian has been described

in West (1978). A similar procedure has been considered in Freidel and

Starodubtsev (2005) in a related context, but with the curvature squared action

(3.78) replaced by a BF-type action containing an additional auxiliary 2-form

field Bab.

Let us add to (3.78) a Lagrange multiplier term to enforce the constraint. For

definiteness, we consider the case of positive Λ so that the relevant constraint is

|v|2 = 1. The action is

S[A, v, μ] = − 3

64πGΛ

∫
εabcdeFab(A)Fcd(A)ve − μ

2
(|v|2 − 1). (3.79)

Varying this action with respect to v gives

1

4
ε̃μνρσεabcdeFab

μνFcd
ρσ ≡ X̃a = μ̃va, (3.80)

where we introduced a convenient notation, and μ̃ d4x = μ. The Lagrange

multiplier can now be solved from the constraint and reads

μ̃ =

√
|X̃|2. (3.81)
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The resulting pure connection action West (1978) is the integral of the Lagrange

multiplier

S[A] = − 3

64πGΛ

∫ √
|X̃|2. (3.82)

This action, however, is not very useful for a perturbative expansion. Indeed, one

typically wants to expand around a maximally symmetric background, which in

this case corresponds to Fab = 0. We cannot expand the square root around

zero, and so (3.82) is not useful as a starting point for gravitational perturbation

theory. But the action (3.79) one step before the pure connection action, and

especially its MacDowell–Mansouri version (3.77) in which the de Sitter symme-

try is explicitly broken to Lorentz is very convenient for developing perturbation

theory, as we saw previously.

3.6 Dimensional Reduction

We postponed the treatment of the Kaluza–Klein dimensional reduction to this

chapter because it is much easier to perform the required connection computa-

tions using the frame formalism. We will only consider here the original case of

4 + 1 dimensional space and reduction to four spacetime dimensions. We follow

C. Pope’s Lectures on Kaluza–Klein in this section.

3.6.1 Metric Parametrisation and the Spin Connection

With anticipation that the metric should be parametrised in such a way as

to make the corresponding frame as simple as possible, we choose the 4 + 1

dimensional metric in the following form

dŝ2 = e2αφds2 + e2βφ(dz +A)2. (3.83)

Here α, β are constants that will be chosen later, the quantity ds2 is the four-

dimensional metric, z is the coordinate along the fifth dimension, and A is a

1-form on the four-dimensional manifold. The hatted quantities refer to the five-

dimensional spacetime. The corresponding (co-)frame is then given by

êI = eαφeI , êz = eβφ(dz +A). (3.84)

We now assume that all fields depend just on the four coordinates of M . We

then solve for the components of the spin connection from the equations

dêI + ω̂I
J ê

J + ω̂I
z ê

z = 0, dêz + ω̂z
I ê

I = 0. (3.85)

It is easiest to solve the second equation first. We get

ω̂z
I = βe−αφ∂Iφê

z +
1

2
e(β−2α)φFIJ ê

J . (3.86)
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Here ∂Iφ = eμI ∂μφ, and FIJ = eμI e
ν
JFμν , where Fμν = 2∂[μAν] is the field strength.

One then substitutes this solution into the first equation and obtains

ω̂IJ = ωIJ + αe−αφ(∂Jφ êI − ∂Iφ êJ)− 1

2
e(β−2α)φF IJ êz. (3.87)

3.6.2 Curvature, Action, and Field Equations

Let us now compute the components of the curvature, the dimensionally reduced

action and finally the field equations.

It is convenient to make some choices regarding the constants α, β first. We

would like the dimensionally reduced Lagrangian to reproduce the Einstein–

Hilbert Lagrangian plus terms for the other fields. The volume element for the

5D metric dŝ2 is √
−ĝ = e(4α+β)φ

√
−g. (3.88)

On the other hand, the 5D Ricci scalar is a multiple of two copies of the inverse

frame times the curvature of the 5D spin connection. The curvature of the 5D

spin connection is a sum of the curvature of the 4D spin connection and other

terms. The two copies of the inverse frame give a factor of e−2αφ times the 4D

inverse frame. This means that we will have a factor of e(2α+β) multiplying the

4D Einstein–Hilbert action, and so we want to set β = −2α. The other choice

one makes is to make sure that the coefficient in front of the kinetic term for

the scalar field to be canonical, namely −(1/2)
√−g(∂μφ)

2. This can be shown

to require α2 = 1/12.

The computation of the curvature 2-forms is quite technical and we just quote

the result from C. Pope’s lectures. The components of the Ricci tensor in the

tetrad basis are

R̂IJ = e−2αφ

(
RIJ − 1

2
∂Iφ∂Jφ− αηIJ�φ

)
− 1

2
e−8αφFI

KFJK , (3.89)

R̂zI =
1

2
eαφ∇J

(
e−6αφFIJ

)
,

R̂zz = 2αe−2αφ�φ+
1

4
e−8αφF 2,

where F 2 = FIJF
IJ . Therefore the 5D Ricci scalar is R̂ = ηIJR̂IJ + R̂zz is given

by

R̂ = e−2αφ

(
R− 1

2
(∂φ)2 − 2α�φ

)
− 1

4
e−8αφF 2, (3.90)

and so the dimensionally reduced Lagrangian, modulo a surface term, is

L =
√

−ĝR̂ =
√
−g

(
R− 1

2
(∂φ)2 − 1

4
e−6αφF 2

)
. (3.91)
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3.6.3 Consistent Truncation

If we could set φ = const we would have obtained 4D GR coupled to Maxwell

theory. However, one of the 5D field equations prevents us from doing this. Indeed,

assuming the 5D cosmological constant to be zero we have the equation R̂zz = 0,

which reads

�φ = − 1

8α
e−6αφF 2. (3.92)

This means that the electromagnetic field strength serves as the source for the

scalar field, and so it is not consistent to set φ = const when F 2 �= 0. Thus, the

dimensionally reduced theory is not just GR coupled to Maxwell, it is necessarily

a scalar tensor theory of gravity coupled to electromagnetism. It is a general

feature of dimensional reduction that parameters determining the ‘volume’ or

more generally ‘shape’ of the space one reduces on become (typically massless)

fields in the dimensionally reduced theory. One does not see such fields in nature,

which is one of the most serious problems of this approach to gravity/gauge

theory unification.

3.7 BF Formulation

We now describe another formulation that is related to the tetrad formalism. A

formulation of this type is also possible in the chiral context of Chapter 5, and will

play an important role. As in the case of MacDowell–Mansouri formalism, there

is a conceptual change occurring in this description, which is in the nature of the

object that ties the bundle and manifold geometries. Thus, there is no longer the

soldering form e : TM → E that ties the vector bundle to the tangent bundle.

Instead, its role is played by a 2-form field BIJ that maps antisymmetric rank

(2, 0) tensors (also known as bivectors) into the Lie algebra of the orthogonal

group, i.e., objects in Λ2V ∗. The vector bundle E with a connection ωI
J on it is

still present in this formalism.

3.7.1 Formulation with Lagrange Multiplier Fields

The idea of BF-type formulations is to replace the wedge product εIJKLe
K ∧ eL

of two tetrads in the Einstein–Cartan action with a new 2-form field BIJ .

The kinetic term of the Einstein–Cartan action then takes the form BIJR
IJ ,

where RIJ = RIJ(ω) is the curvature. If this was the only term in the action, the

theory would coincide with the so-called BF theory, where the acronym stands

for the fact that it is usual to label the 2-form field of this theory using letter

B and the curvature of the connection using letter F . However, this is not the

only term in the action, in particular because in 4D not every 2-form field BIJ

is of the required form. So, one adds a set of constraints on the 2-form field to

guarantee that it ‘comes from a tetrad’. In 4D this has been first considered by
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Pietri and Freidel (1999), and so we will refer to the corresponding model by the

initials of these authors.3 The higher dimensional version has been developed in

Freidel et al. (1999).

Consider the following action

SFdP[B,ω,Ψ] =
1

16πG

∫
BIJR

IJ(ω)− 1

2

(
ΨIJKL +

Λ

6
εIJKL

)
BIJBKL. (3.93)

The Lagrange multiplier field ΨIJKL is required to be tracefree ΨIJKLεIJKL = 0.

When BIJ = (1/2)εIJKLe
K ∧ eL the action (3.93) reduces to (3.60).

Varying (3.93) with respect to the Lagrange multiplier field ΨIJKL we get the

constraint

BIJ ∧BKL ∼ εIJKL. (3.94)

As is shown in Freidel et al. (1999), Theorem 1, this equation implies that BIJ is

either the wedge product of two frame fields, or the dual of such a wedge product

BIJ = ±eI ∧ eJ or BIJ = ±1

2
εIJKLe

K ∧ eL. (3.95)

The second set of solutions to the constraints (3.94) is what gives GR, because

the action then reduces to (3.60). The first set of solutions gives the so-called

Holst term; see Holst (1996). After integrating out the spin connection it becomes

a total derivative.

The Lorentz group SO(1, 3), in whose Lie algebra the 2-forms fields BIJ are

valued, is not simple. The general invariant metric on the Lie algebra is an

arbitrary linear combination of two metrics δ[IKδJ]
L and εIJKL. In (3.94) we have

imposed the tracelessness of ΨIJKL with respect to a particular metric from this

class. It is also possible to consider a more general tracefree constraint, as was first

studied in Capovilla et al. (2001). This removes the degeneracy present in (3.95)

and gives a single solution, which is a linear combination of the two solutions in

(3.95). The action evaluated on the solution is then the Einstein–Cartan action

with the addition of the Holst term.

Thus, classically, the theory (3.93), or its version Capovilla et al. (2001) where

one imposes a more general tracefree condition on ΨIJKL, describes GR in

the sense that all solutions of GR are also solutions of this theory. It is also

interesting to note that the theory (3.93) with nonzero Λ actually contains not

more solutions than those of GR. Indeed, the field equations arising from (3.93)

are as follows

RIJ(ω) =

(
ΨIJKL +

Λ

6
εIJKL

)
BKL, (3.96)

dωBIJ = 0, (3.97)

BIJBKL ∼ εIJKL. (3.98)

3 Plebánski (1977) has considered essentially the same model before, as his paper also
contains an action that includes both the self-dual and anti–self-dual sectors.
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We then note that while the second and third of these equations are solved by

BIJ = ±eIeJ and ω being the torsion-free connection, the first of the equations is

in conflict with the Bianchi identity. Indeed, it would say that ±RKLIJ = ΨIJKL+

(Λ/6)εIJKL, where RKLIJ := (1/2)eμKeνLRμν
IJ(ω). The antisymmetrisation of

the left-hand side of this relation vanishes, while that of the right-hand side

is nonzero. Thus, there are no solutions to the theory (3.93) coming from the

unwanted first set of solutions (3.95) of the constraints (3.94). All solutions of

(3.93) with Λ �= 0 are also solutions of GR.

The formulation (3.93) is the starting point of the so-called spin foam model

quantisation of gravity; see Perez (2013).

3.7.2 Pure Connection Formulation Revisited

While it appears to be difficult to ‘integrate out’ the tetrad field from the

Einstein–Cartan action (3.60), it is trivial to integrate out the 2-form field BIJ

from (3.93). Indeed, let us introduce a notation for the matrix that appears in

front of the BB-term, and add a Lagrange multiplier that fixes the trace of this

matrix

S[B,ω,M, μ] =
1

16πG

∫
BIJR

IJ(ω)− 1

2
M IJKLBIJBKL+

μ

2
(M IJKLεIJKL − 4Λ),

(3.99)

where μ is a new Lagrange multiplier field. For simplicity, we carry out all

manipulations in the case of Euclidean signature where εIJKLεIJKL = +24, but

similar considerations apply to the Lorentzian signature case. It is trivial to

integrate out the B-field. The resulting Lagrangian is

S[ω,M, μ] =
1

32πG

∫
(M−1)IJKLR

IJRKL + μ(M IJKLεIJKL − 4Λ).

We now proceed to integrate out the matrix M . Its field equation is

M−1XM−1 = με. (3.100)

Here we suppressed the indices and introduced a 4-form valued matrix

XIJKL := RIJ ∧RKL. (3.101)

The equation (3.100) is interpreted as an equation in the space of 6×6 symmetric

matrices. Its solution has first been spelled out in Mitsou (2019) and reads

M−1 = ±√
μ
√
ε
(√

εX
√
ε
)−1/2 √

ε. (3.102)

Both X and μ here are 4-form valued, with X being a 4-form with additional

values in the space of 6 × 6 matrices. To make sense of a relation like (3.102)

one can introduce an arbitrary volume form on the manifold, and obtain an

actual matrix by dividing XIJKL by the introduced volume form. Similarly, μ
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can be written as a function times the same volume form. One then sees that

the relation (3.102) is homogeneity degree zero in this volume form, and so it

does not matter which volume form is used to make sense of it, as all 4-forms

are related by multiplication by a nowhere zero function.

The Lagrange multiplier field μ is then obtained from the constraint Tr(Mε) =

4Λ. Taking the plus branch in (3.102) this gives

√
μ =

1

4Λ
Tr

√√
εX

√
ε =

1

4Λ
Tr

√
εX, (3.103)

which fixes M in terms of X completely. In the last expression we took into

account that the trace is cyclic even in the presence of the square root. The

latter is proved as follows

Tr(
√
NM) = Tr(N−1

√
NMN) = Tr(

√
N−1NMN) = Tr(

√
MN),

where we used the fact that the similarity transformation commutes with the

matrix square root N−1
√
MN =

√
N−1MN . Substituting this back into the

action we get the closed form pure connection action

S[ω] =
1

128πGΛ

∫ (
Tr

√
εX

)2

. (3.104)

Some comments are in order. First, we note that, interestingly, the object
√
ε

that appears in the intermediate stages of the previous derivation properly exists

as a real matrix only in the Lorentzian signature. Indeed, we have in general

ε2 = 4σ I, (3.105)

where σ = ±1 and equals minus one in the Lorentzian case. We have introduced

I
IJ

KL := δ[IKδJ]
L , (3.106)

which is the identity operator on the space of antisymmetric 4 × 4 tensors. We

can search for the square root of ε in the space of linear combinations of the

matrix ε and the identity matrix
√
ε = α I+ β ε. (3.107)

Squaring both sides gives that α, β must satisfy

α2 + 4σβ2 = 0, 2αβ = 1, (3.108)

which is only possible for real α, β for σ = −1. So, in the case of the Euclidean

signature the object
√
σ is complex. However, this does not cause any problems

because in all the final expressions only the matrix ε itself always appears.

Our second comment is about the value of the action (3.104) on the background

(3.69). We have

XIJKL =

(
Λ

3

)2

eIeJeKeL =

(
Λ

3

)2

e εIJKL, (3.109)
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which means that the background value of X is a multiple of the ε. This gives√√
εX

√
ε =

2Λ

3

√
e I. (3.110)

We will need the result in this form Section 3.7.3. Substituting all this into

(3.104) gives the correct (Λ/8πG)
∫
e for the action on the maximally symmetric

background.

Our final comment here is that the action (3.104) is only defined perturbatively

around the maximally symmetric background X ∼ ε. In this case the matrix that

appears under the square root is close to the identity matrix, and the square root

can be defined in the sense of a perturbative expansion in powers of deviations

of the matrix from the identity. For a general matrix X the square root has

many different branches. These can be seen by diagonalising the matrix εX

and then taking the square roots of the eigenvalues. The first problem that

one can encounter is that some of the eigenvalues may be negative. One will

obtain a complex action in this case. The second problem is that even if the

eigenvalues are all nonnegative, the square root of each of the eigenvalues has

two branches. While it does not matter which branch is chosen if the same choice

is followed for all the eigenvalues (because one takes the square of the trace of

the square root in the action), one can also take the positive branch for some

of the eigenvalues and the negative branch for some others. The resulting action

is of course very different from the one where one only takes say the positive

branch for all the eigenvalues. The similar problems occur in the chiral pure

connection action to be written down in Chapter 5, except that in that case it

can be guaranteed that the eigenvalues of the matrix of the square root are all

nonnegative and the action is real. We will discuss this in due course. But the

problem of different individual branches is present also in the chiral formulation.

Moreover, analysing some explicit solutions one can convince oneself that it is not

consistent to restrict one’s attention only to the uniformly positive branch. The

situation is more complex, and we will return it in the chapter on the chiral pure

connection formalism. This discussion illustrates that, as it stands, the action

(3.104) is only perturbatively defined.

3.7.3 Linearised Pure Connection Action

In this subsection we perform the exercise of linearising the action (3.104) around

the maximally symmetric background. Our goal is to compare the result with

(3.74).

We need some preparation. First, we have

δXIJKL = dωaIJRKL +RIJdωaKL. (3.111)

Using

dω
[μa

IJ
ν] =

1

2
f IJ
KLe

K
μ eLν (3.112)
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the first variation of X can be rewritten as

δX =
Λ

6
e(εf + fε). (3.113)

We also need an expression for the second variation of this matrix

δ2XIJKL = 2(aa)IJRKL + 2RIJ(aa)KL + 2dωaIJdωaKL. (3.114)

Here (aa)IJ = aI
MaMJ . We will not attempt to transform this expression any

further for now.

Let us now write √√
εX

√
ε

√√
εX

√
ε =

√
εX

√
ε, (3.115)

and vary this expression. We use the fact (3.110) that the background value of

the matrices on the left-hand side is a multiple of the identity. This gives

δ

√√
εX

√
ε =

3

4Λ
√
e

√
ε δX

√
ε, (3.116)

from where we get an expression for the trace

Tr
(
δ
√
εX

)
=

√
eTr(f). (3.117)

We now vary the expression (3.115) the second time to get

4Λ

3

√
e δ2

√√
εX

√
ε+ 2δ

√√
εX

√
ε δ

√√
εX

√
ε =

√
ε δ2X

√
ε. (3.118)

We need the integral of the first term on the left-hand side. Let us consider the

integral of the trace of the right-hand side∫
Tr

(√
ε δ2X

√
ε
)
=

∫
εIJKL(4R

IJ(aa)KL + 2dωaIJdωaKL). (3.119)

Integrating by parts in the second term we have

2

∫
εIJKLd

ωaIJdωaKL = −2

∫
εIJKLa

IJdωdωaKL

= −4

∫
εIJKLa

IJRK
MaML.

But we have already see in (3.73) that the quantities εIJKLa
IJRK

MaML and

εIJKLR
IJ(aa)KL are equal. This means that the integral in (3.119) vanishes.

Thus, under the integral sign we have∫ √
eTr

(
δ2
√√

εX
√
ε

)
= − 3

2Λ

∫
Tr

(
δ

√√
εX

√
ε δ

√√
εX

√
ε

)
= −2

(
3

4Λ

)3 ∫
1

e
Tr (ε δXε δX) = − 3

16Λ

∫
eTr(4f2 + εfεf),
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where we have used (3.116) to get the first expression in the second line and

(3.113) to get the last expression. The quantity Tr(εfεf) can be computed by

expanding the product of the ε tensors. This gives

Tr(εfεf) = 4f IJ
KLf

KL
IJ − 16fIJf

IJ + 4f2, (3.120)

where fJ
I := fKJ

KI , f = f I
I . Overall, this gives∫ √

eTr

(
δ2
√√

εX
√
ε

)
= − 3

2Λ

∫
e

(
f IJ
KLf

KL
IJ − 2fIJf

IJ +
1

2
f2

)
.

We are now ready to assemble the pieces of the linearised action. The second-

order action is half the second variation and we get

S2[a] =
1

128πGΛ

∫
Tr

(
δ
√
εX

)
Tr

(
δ
√
εX

)
+Tr

√
εX Tr

(
δ2
√
εX

)
= − 3

64πGΛ

∫
e

(
f IJ
KLf

KL
IJ − 2fIJf

IJ +
1

3
f2

)
,

which coincides with (3.74). This proves that (3.104) reproduces the linearised

pure connection action that can be obtained from the Einstein–Cartan formalism.

It is thus is a good starting point for gravitational perturbation theory around

Λ �= 0 background.

3.7.4 Modifications of GR in BF Formalism

An interesting class of modifications of GR can be obtained by changing the

constraint on the second line in (3.99). The constraint present in the GR action

(3.99) fixes a certain specific gauge-invariant function of the matrix M to be

constant. However, there are many gauge-invariant functions of 6× 6 symmetric

matrices M that can be written down, e.g., Tr(M 2) or traces of higher powers,

and, e.g., det(M). Such a change causes the theory to be modified rather dramat-

ically, a generic modified theory of this type turns out to be a bi-metric theory

of gravity. Such modifications have first been studied in Smolin (2009), and then

in papers by Speziale (2010), Lisi et al. (2010), Beke (2011), Beke et al. (2012),

and Alexander et al. (2014). It was shown in Alexandrov and Krasnov (2009)

that such theories in general propagate 2 + 6 degrees of freedom, which is the

generic propagating content of a bi-metric theory of gravity.

3.7.5 Field Redefinitions

In view of the discussion in the previous section, it is perhaps surprising that

one can modify the constraint on the second line in (3.99) nontrivially without

changing the theory Krasnov (2018). To see how this becomes possible, let us

first rewrite the action (3.99) in an index-free notation. We have

S[B,ω,M, μ] =
1

16πG

∫
BtR− 1

2
BtMB +

μ

2
(Tr(εM)− 4Λ). (3.121)
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Here we think about objects B,R as columns on which matrices such as M, ε

can act, and t is the transpose. Let us now carry out a field redefinition that

replaces B by a mixture of B and R

B = GB̃ +HR. (3.122)

The action in terms of the new 2-form field B̃ will contain the R2 terms. The

idea is to choose the (not necessarily symmetric) matrices G,H in such a way

that these terms are just multiples of the two topological invariants that can be

formed of R, namely ∫
RtR,

∫
RtεR. (3.123)

Thus, we will require the R2 term of the action in terms of B̃ to be∫
RtTR, T = t1I+ t2 � . (3.124)

where � = 1
2
ε. This is a convenient numerical factor because �2 = I. Equating the

matrix arising in the R2 term of the new Lagrangian to T we get the following

equation

Ht − 1

2
HtMH = T. (3.125)

We will also require that the BR term of the new Lagrangian keeps its canonical

form. This gives another equation

Gt −GtMH = I. (3.126)

We now note that the equation (3.125) tells us that H is a symmetric matrix.

So, we drop the transpose symbol from it from now on. We also note that one can

rewrite the second equation as I−MH = (Gt)−1, and the first as I−(1/2)MH =

H−1T . We assumed that all matrices are invertible. Taking the difference of these

equations gives 1 + (Gt)−1 = 2H−1T , from which we can write

H = 2T (1 + (Gt)−1)−1. (3.127)

Substituting this into the first equation we get the solution for Gt, and then the

solution for H. So, the solutions of equations (3.125) and (3.126) are given by

H = 2T (I+ (Gt)−1)−1, (Gt)−2 = I− 2MT. (3.128)

We now have to be careful again because the matrix (Gt)−2 on the left-hand side

of the second equation is not necessarily symmetric, and so it is not clear how

to take the square root to get G itself. However, we can rewrite the right-hand

side of the second equation as

I− 2MT = T−1/2(I− 2T 1/2MT 1/2)T 1/2, (3.129)



122 Cartan’s Tetrad Formulation

where we made some choice of a symmetric square root T 1/2 of the symmetric

matrix T , and also assumed that T is invertible. We now note that the matrix

that appears in the above expression (3.129) in brackets is symmetric, and so

the notion of its square root makes sense. Thus, we can take the square root of

I− 2MT as

(I− 2MT )1/2 = T−1/2(I− 2T 1/2MT 1/2)1/2T 1/2. (3.130)

This gives the final solution for Gt, H

Gt = T−1/2(I− 2T 1/2MT 1/2)−1/2T 1/2, (3.131)

H = T 1/2(I+ T 1/2MT 1/2)−1T 1/2.

We note that the expression for H is symmetric, as it should be. Finally, the

coefficient matrix of the B̃2 term, given by M̃ = GtrMG is given by

M̃ = T−1/2(I− 2T 1/2MT 1/2)−1/2(T 1/2MT 1/2)(I− 2T 1/2MT 1/2)−1/2T−1/2,

which is manifestly symmetric as it should be. But now the three terms in the

middle only contain the matrix T 1/2MT 1/2 and the identity matrix, and so they

commute. Therefore, we can also write

M̃ = T−1/2(T 1/2MT 1/2)(I− 2T 1/2MT 1/2)−1T−1/2, (3.132)

or more compactly

I+ 2T 1/2M̃T 1/2 = (I− 2T 1/2MT 1/2)−1, (3.133)

from which the matrix M in terms of M̃ can be explicitly expressed as

M = M̃(I+ 2TM̃)−1, (3.134)

which finally eliminates the square root of T from the expressions. Formally

expanding the inverse on the right-hand side in powers of TM̃ it can be seen

that the right-hand side is symmetric, as it should be, in spite of T and M̃ not

commuting.

All in all, we learn that there is a two-parameter t1,2 family of Lagrangians all

giving a classically equivalent description of GR. They are all of BF-type and

can be written as

S[B,A,M ] =
1

16πG

∫
BtF− 1

2
BtMB +RtTR+

μ

2

(
Tr
[
εM(I+ 2TM)−1

]
− 4Λ

)
,

(3.135)

with T = 0 corresponding to the original Lagrangian (3.121). Note that we have

omitted the tildes from all the quantities in the above Lagrangian (3.135). The

action (3.135) is still of the BF type with a constraint for the matrix appearing

in front of the BB term. However, this constraint has changed considerably as

compared to what it is in the standard action (3.99). In particular, as we shall
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see in the next subsection, while it is impossible to ‘integrate out’ the matrix

M from (3.99), it is possible to obtain a Lagrange multiplier-free formulation

starting with (3.135).

3.7.6 Formulation with a Potential for the 2-Form Field

One of the purposes of the manipulations of the previous subsection is that

it turns out to be possible to ‘integrate out’ the matrix M from the action

(3.135) to obtain a pure BF -type action with a potential for the 2-form field.

It is perhaps surprising that such a formulation is at all possible, because in

the original Lagrangian (3.121) there is a Lagrange multiplier field that imposes

a constraint on the 2-form field, so some components of the B-field are non-

dynamical. And it is not possible to integrate out the Lagrange multiplier fields

from (3.121). However, after the field redefinitions, it will be possible to eliminate

all the Lagrange multiplier fields from (3.135), with all the components of the

redefined 2-form field becoming dynamical. It is far from obvious that such a

formulation of GR should be possible.

Let us carry out this exercise. The field equation that arises by varying (3.135)

with respect to M is

(I+ 2TM)XB(I+ 2MT ) = με. (3.136)

We introduced a 4-form valued matrix XB := BBt constructed from the 2-form

field. This equation can be rewritten as

(T + 2TMT )T−1XBT
−1(T + 2TMT ) = με. (3.137)

Following Mitsou (2019), the solution for the symmetric matrix T + 2TMT is

given by

T + 2TMT = ±√
μ
√
ε (
√
ε T−1XBT

−1
√
ε)−1/2

√
ε. (3.138)

Taking the plus-branch solution, this gives

2M =
√
μT−1

√
ε(
√
ε T−1XBT

−1
√
ε)−1/2

√
εT−1 − T−1, (3.139)

and

2M(1 + 2TM)−1 = T−1 − 1
√
μ

1√
ε
(
√
ε T−1XBT

−1
√
ε)1/2

1√
ε
. (3.140)

Taking the trace of the product of this matrix with ε we determine μ

√
μ =

Tr
√√

ε T−1XBT−1
√
ε

Tr(T−1ε)− 8Λ
, (3.141)

which determines M completely. We now substitute the result into the action to

obtain
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S[B,ω] =
1

16πG

∫
BtF+

1

4
BtT−1B − (4Tr(T−1ε)− 32Λ)−1

(
Tr
√
ε T−1XBT−1

)2
.

(3.142)

We have used the cyclicity of the trace to convert two factors of
√
ε into a single

copy of ε. It is clear that this action depends on the existence of T−1, where T

is given by (3.124). Explicitly, this tensor is given by

T−1 =
t1

t21 − σt22
− t2 �

t21 − σt22
, (3.143)

where again � = 1
2
ε and σ = ±1 is the signature-dependent sign. Thus, T−1

exists provided t21 �= σt22. This is always the case for real t1, t2 and Lorentzian

signature.

The action (3.142) is of the BF -type plus a potential for the B-field. The

potential consists of two terms. One is quadratic in the B field. In fact, the

first two terms in the action (3.142) correspond to a topological theory with no

propagating degrees of freedom. The last term is what breaks the topological

symmetry and gives rise to a theory with degrees of freedom. This potential is

non-polynomial, and of the same type as arises in considerations (3.104) of the

pure connection formulation. As we have already remarked, it is far from obvious

that such a formulation of GR is at all possible.

As the last step in this line of developments, one can solve the equation

dωBIJ = 0, which is the Euler–Lagrange equation arising by varying (3.142)

with respect to the spin connection. The number of equations here is 4 × 6,

which matches the number of unknowns in ωI
μJ . Thus, when BIJ is suitably non-

degenerate, one expects the solution for ω(B) to exist. One can then substitute

this solution back into (3.142) and obtain a second order in derivatives theory

for the 2-form field BIJ . So far, nobody has carried out this exercise, but a

similar procedure is possible and has been done in detail in the chiral case to be

considered in Chapter 5.
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General Relativity in 2+1 Dimensions

The purpose of this section is to describe the subtleties of the tetrad formalism

for general relativity (GR) in the case of gravity in 2+1 spacetime dimensions.

We describe both the Einstein–Cartan formalism in this case, as well as the

Chern–Simons formulation. We then describe the pure connection formal-

ism, which in this number of dimensions can be obtained in closed form

directly from the tetrad formulation. As is well-known, and as will also be

apparent from our considerations of this chapter, there are no propagating

degrees of freedom in 2+1 gravity. This follows, e.g., from the fact that the

Weyl tensor is identically zero in this number of dimensions, or from the fact

that all solutions of Einstein equations in 2+1 have constant curvature. We also

develop a very convenient index-free notation that is possible by identifying

the Lie algebra of the Lorentz (orthogonal) group with 2 × 2 anti-hermitian

matrices.

4.1 Einstein–Cartan and Chern–Simons Formulations

Let us start by reviewing some basic facts about 3D gravity.

4.1.1 Einstein–Cartan Frame Formalism in 3D

Let ei, i = 1, 2, 3 be a frame field so that the 3D metric is

ds2 = ei ⊗ ejηij , (4.1)

where ηij is either ηij = diag(1, 1, 1) or ηij = diag(−1, 1, 1) depending on the

desired signature. There are subtle differences between the two signature cases.

For definiteness, let us consider the all-plus signature case.
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For the Riemannian signature we raise and lower indices with the metric δij ,

and the SO(3) spin connection is the set of 1-forms wij = w[ij]. The antisymmetry

is the statement that the connection is δij-metric compatible. Let f ij be the

curvature

f ij = dwij + wikwk
j . (4.2)

We then write the following action

S[e, w] = −1

4

∫
M

(
eif jk − Λ

3
eiejek

)
εijk. (4.3)

The orientation implied here is that of the 3-form eiejekεijk. The minus sign in

front of the action is the usual choice for the all-plus signature. We work in units

in which the 3D Newton’s constant satisfies 4πG = 1. Varying this action with

respect to w we get the torsion-free condition

dwe
i ≡ dei + wi

je
j = 0. (4.4)

It says that the connection w is the unique e-compatible connection. Substituting

this connection into (4.3) we find

S[e, w(e)] = −1

4

∫
M

(R− 2Λ)vg, (4.5)

where R is the Ricci scalar of the metric, and the integration is carried out with

respect to the metric volume element vg.

Varying the action with respect to the frame field we get

f ij = Λeiej , (4.6)

which says that the curvature of an Einstein metric in three dimensions is

constant. Thus, there are no propagating degrees of freedom in 2+1 dimensional

gravity.

The connection matrix wij being antisymmetric, we can write

wij = εikjwk, (4.7)

which defines the new connection 1-forms wi. We then have for the curvature

f ij = εikjfk, f i = dwi +
1

2
εijkwjwk. (4.8)

Thus, the exceptional feature of this number of dimensions is that the spin

connection and the tetrad can both be thought of as R
3 valued 1-forms. In

particular, this allows them to be mixed in a Cartan connection in a particularly

simple way, see the next section.
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4.1.2 Matrix Notations

It is very convenient to get rid of the internal i, j, . . . indices at the expense of

making all objects 2× 2 matrix valued. To this end, we use the isomorphism of

the Lie algebras so(3) = su(2). The Lie algebra generators are

τi = − i

2
σi, (4.9)

where σi are the usual Pauli matrices. We have

Tr(τiτj) = −1

2
δij , [τi, τj ] = εij

kτk. (4.10)

The index of ε here is raised with the δij metric.

We then form a matrix-valued connection

w := wiτi. (4.11)

In what follows we will always denote a matrix-valued object by a bold-face

letter. The matrix valued curvature f := f iτi is computed as

f = dw +ww. (4.12)

We also form anti-hermitian frame field 1-forms

e := eiτi, (4.13)

in terms of which the metric is

ds2 = −2Tr(e⊗ e). (4.14)

In terms of the matrix-valued fields the torsion-free condition (4.4) takes the

form

dwe ≡ de+we+ ew = 0. (4.15)

The field equation obtained by varying the action (4.3) with respect to e takes

the form

f = −Λee. (4.16)

In the described index-free notation the action takes the form

S[e,w] = −
∫
M

Tr

(
ef +

Λ

3
eee

)
. (4.17)

In what follows, we will mainly consider the Λ < 0 case. We set for simplicity

Λ = −1. (4.18)

A different value of |Λ| can always be reinstalled by rescaling the frame field.

We note that in case of Lorentzian signature metrics the relevant Lorentz

group SO(1, 2) is isomorphic to SL(2,R)/Z2. This means that a similar index-free
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notation is also possible in this case, except that one has to work with real 2× 2

tracefree matrices instead. We will leave details of the corresponding formalism

as an exercise to the reader.

4.1.3 Chern–Simons Formulation

The two sets of equations ∇e = 0, f = ee can be combined as the real and

imaginary parts of a single complex-valued equation by introducing the complex

tracefree 2× 2 matrix-valued field

a := w + ie. (4.19)

The field equations of 3D gravity then combine into the statement that the

curvature of the SL(2,C) connection a is zero

0 = f(a) ≡ da+ aa. (4.20)

These are the field equations following from the so-called Chern–Simons La-

grangian. Alternatively, we can write the Einstein–Cartan Lagrangian (4.17)

(with Λ = −1), modulo a surface term, as

S[e,w] = −1

2
Im

∫
M

CS[a], (4.21)

where

CS[a] := Tr

(
ada+

2

3
aaa

)
(4.22)

is the Chern–Simons 3-form for a.

4.1.4 Topological Term

It is possible to add to (4.17) also the real part of the Chern–Simons functional

of a with an arbitrary coefficient, see Witten (1988), section 2.3. When written

in terms of e,w this reads

Re

∫
M

CS[a] =

∫
M

(CS[w]− Tr(e dwe)) . (4.23)

It is not hard to check that this term does not affect the field equations, in the

sense that a linear combination of the two resulting field equations still says that

the connection is metric-compatible.

4.1.5 Quantum Theory

Even though this book is about classical theory, it is appropriate to give some

comments on the quantum case. Because the theory of 3D gravity is topolog-

ical, one expects to be able to construct the corresponding quantum theory.
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This is because one is dealing with a problem in quantum mechanics rather than

in quantum field theory, and so the theory should exist. This is in contrast with

the situation in higher dimensions where problems with (non-) renormalisability

signal that the quantum theory is not well-defined. The easiest case is that of

Λ = 0. In this case, for Riemannian signature, the theory becomes what is known

as SU(2) BF theory. It is one-loop exact, and the partition function can be

explicitly computed. It reduces to the Ray–Singer torsion for the operator ∇,

see, e.g., Birmingham et al. (1991).

The case of nonzero Λ is much harder, as the theory is no longer one-loop

exact. In spite of this, the quantum version of the Riemannian signature Λ > 0

gravity is known. It is based on the quantum group SUq(2) (at root of unity); see

Reshetikhin and Turaev (1991). The partition function on a given 3-manifold M

is constructed by choosing a simplicial decomposition of M , and then decorating

the arising simplicial complex with certain combinatorial data. The arising state

sum is independent of the chosen simplicial decomposition and is a topological

invariant of M . At least in part of the literature, this construction is referred

to as the Turaev–Viro model. Another way of seeing why the Λ > 0 case is

understood is by noticing that in this case the Lagrangian can be represented

as the difference of two Chern–Simons Lagrangians for w ± e. The quantum

Chern–Simons theory for the gauge group SU(2) is understood, and in a precise

sense the Λ > 0 3D gravity partition function is the product of two CS partition

functions; see, e.g., Roberts (1997) for a nice proof.

As far as we are aware, there is no complete construction of the much more

difficult Λ < 0 quantum theory, even though there is some recent progress in this

direction; see, e.g., Blau and Thompson (2016) and references therein.

4.2 The Pure Connection Formulation

In this section we review the pure connection description of 3D gravity. As far

as we are aware, the pure connection formulation of 3D gravity was first worked

out in Peldan (1992), starting from the Hamiltonian point of view. A simpler

description, directly at the level of the Lagrangian, appears in section 3.4 of

Peldan (1994). We will only give the Lagrangian description.

We consider the case of negative cosmological constant Λ = −1, and consider

pure gravity. The idea is to start with the first-order Einstein–Cartan action

(4.17), and solve the equation f = ee for e as a function of f , substituting the

result back into the action. To describe the solution, we introduce the notion

of definiteness and sign of a connection. We follow Herfray et al. (2017) in this

section.

4.2.1 Definite Connections

Let w be a set of 2 × 2 anti-hermitian matrix-valued 1-forms on M , i.e., an

SU(2) connection. Let f = dw + ww be the curvature 2-forms. Let us pick an
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orientation on M . Then, for any volume form v in the fixed orientation class, we

define a map from the set of 1-forms to the Lie algebra

φf : T
∗M → su(2), φf (α) := α ∧ f/v. (4.24)

This is a map from the three-dimensional space T ∗M to the three-dimensional

Lie algebra su(2). We call a connection w definite or nondegenerate if this map

is an isomorphism.

For a definite connection, we can construct a certain invariant from its curva-

ture. Thus, consider

λ(f) :=
4

3
Tr (φf ⊗ φf (f)) . (4.25)

The notation here is that φf acts on both form indices of f , and we have a

product of three Lie algebra elements under the trace. Note that the sign of λ(f)

is invariantly defined. Indeed, if we change the orientation by sending v → −v,

the sign of (4.25) does not change. A connection w is definite if and only if its

curvature satisfies λ(f) �= 0.

In this book we are mainly interested in the case when λ(f) < 0. This corre-

sponds to the negative cosmological constant case Λ < 0. We will refer to such

connections as negative definite. In this case, the connection defines a frame field

ef such that

f = ef ∧ ef . (4.26)

In order to see that f satisfying this equation indeed corresponds to λ(f) < 0,

we can substitute (4.26) into (4.25) and compute the sign. This computation is

easy if we first compute the action of φf with f given by (4.26) on the frame

fields. Thus, let us write α = αiei for some choice of the coefficients αi. Using

e = eiτ i and the algebra of τ i we can write the curvature as f = (1/2)εijkeife
j
f τ

k.

To compute φf let us divide in (4.24) by the volume form for the frame field eif ,

which is given by ve = (1/6)εijkeiejek. We get the following result for the map φf

φf (α) = αiτ i. (4.27)

In other words, if the curvature is as in (4.26) and we divide by the frame volume

form in (4.24), then the map φf takes the frame eif into the generator τ i. It is

then easy to see that λ(f) for f as in (4.26) and with the volume form for ef

used in the definition of φf equals to minus one λ(f) = −1.

To prove that for λ(f) < 0 the curvature can be written in the form (4.26) we

will describe the corresponding frame field explicitly in the next subsection.

4.2.2 The Pure Connection Formulation

Consider a negative definite connection w. The volume form

vf :=
√

−λ(f) v, (4.28)
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which is in the fixed orientation class, does not depend on the choice of the volume

form v used in its construction. It is thus invariantly defined by the negative

definite connection w and the fixed orientation of M . The pure connection

formulation gravity action is just the total volume

S[w] =

∫
vf . (4.29)

We can now describe ef that solves (4.26). It is obtained via the following

construction

iξef = (f ∧ iξf − iξf ∧ f)/2vf , ∀ξ ∈ TM. (4.30)

The matrix on the right-hand side is anti-hermitian, as the commutator of two

anti-hermitian matrices. The frame ef defines the metric ds2f := −2Tr(ef ⊗ ef ),

which is of Riemannian signature. The frame ef has the property that

vf = −2

3
Tr(efefef ). (4.31)

Note that the action (4.29) is just the value of the first-order action (4.17) on

the solution (4.30) of (4.26).

4.2.3 The First Variation and Euler-Lagrange Equations

The expression (4.31) makes it clear that the first variation of the pure connection

action is given by

δS[w] = −
∫

2Tr(δefefef ) = −
∫

Tr(δ(efef )ef ) (4.32)

= −
∫

Tr(δf ef ).

This shows that the critical points of the pure connection action are connections

satisfying the following second-order partial differential equation (PDE)

dwef = 0, (4.33)

with dw given by (4.15). This equation says that the connection w is the unique

torsion-free metric connection compatible with the frame ef . The equation (4.26)

that defines ef then becomes the statement that the metric constructed from ef

is of constant negative curvature. This shows that (4.29) is indeed the pure

connection formulation of 3D gravity (with negative Λ).
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The ‘Chiral’ Formulation of General Relativity

We now come to what is possibly the least familiar description. The original

idea was proposed on the physics side in a paper by Plebánski (1977). Related

structures were discovered about the same time by mathematicians in Atiyah

et al. (1978). This description of gravity was later rediscovered in Capovilla et al.

(1991), in the authors’ search for a Lagrangian formulation for Ashtekar’s new

Hamiltonian formulation of general relativity (GR); see Ashtekar (1987). There

were also much earlier related ideas, as we review in the historical remarks section

at the end of this chapter.

The fundamental reason for the existence of ‘chiral’ formulations of 4D GR

is the fact that the Lie algebra of the four-dimensional ‘Lorentz’ groups1 is

not simple.2 It is interesting to note that this is the only dimension when this

phenomenon occurs.3 We have the following ‘accidental’ isomorphisms

so(4) = su(2)⊕ su(2),

so(1, 3) = sl(2,C)⊕ sl(2,C), (5.1)

so(2, 2) = sl(2,R)⊕ sl(2,R).

In turn, these isomorphisms are related to the fact that the Hodge operator in

four dimensions maps 2-forms into 2-forms, and defines the decomposition of the

space of 2-forms into its eigenspaces of self-dual (SD) and anti–self-dual (ASD)

forms. Indeed, the Lie algebra so(n) of the orthogonal group can be realised as

the matrix algebra of antisymmetric matrices. In four dimensions, antisymmetric

matrices can be split into their SD and ASD parts, and this is why the first

of relations in (5.1) arises. A similar mechanism is at play for other signatures.

1 When we refer to ‘Lorentz’ group in quotes we always mean one of the appropriate
(pseudo-) orthogonal groups, considering all possible signatures at the same time.

2 In the Lorentzian case so(1, 3), strictly speaking, this is only true at the level of the
complexified Lie algebra.

3 The dimension two is also special because in it the ‘Lorentz’ groups are abelian.
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The accidental isomorphisms (5.1) mean that the decomposition of the Riemann

curvature tensor into its ‘Lorentz’ irreducible pieces (which is possible in any

dimension) in four dimensions is related to the SD/ASD decomposition. This

is what is ultimately responsible for the formulations that we describe in this

chapter.

5.1 Hodge Star and Self-Duality in Four Dimensions

We start with a quick reminder of the Hodge operator in four dimensions. Then,

after describing the Riemann curvature decomposition that becomes possible in

4D, we return to the Hodge star and discuss some of its important properties

in much more detail.

Given a metric and choosing an orientation, we can form the Hodge star

operator that sends 2-forms into 2-forms

∗ : Bμν → ∗Bμν =
1

2
εμν

ρσBρσ. (5.2)

This operator squares to a multiple of the identity

(∗)2 = 1

4
εμν

ρσερσ
αβ = σδα[μδ

β
ν], (5.3)

where σ = ±1 = (−1)p is the sign depending on the signature of Rp,q, p+ q = 4.

Note that the object δα[μδ
β
ν] is the identity operator on the space of 2-forms. This

means that the eigenvalues of ∗ in the case of Euclidean and split signatures are

±1, and in the case of Lorentzian signature ±i. Correspondingly, the space of

2-forms can be decomposed into eigenspaces of the Hodge star

Λ2 = Λ+ ⊕ Λ−, (5.4)

where in the case of Lorentzian signature it is the space Λ2
C
of complexified

2-forms that admits such a decomposition. To fix our conventions, the eigenvec-

tors of Hodge are 2-forms satisfying

Λ± 
 Bμν :
1

2
εμν

ρσBρσ = ±
√
σBμν , (5.5)

where
√
σ is defined to be either 1 or i depending on the signature, and the

projectors on the spaces Λ± are

P±
μν

ρσ =
1

2

(
δρ[μδ

σ
ν] ±

1

2
√
σ
εμν

ρσ

)
. (5.6)

5.2 Decomposition of the Riemann Curvature

In any dimension, the Riemann curvature tensor can be decomposed into pieces

that take values in spaces of (finite-dimensional) irreducible representations of

the Lorenz group. These pieces are the scalar curvature, the tracefree part of

Ricci curvature, and the Weyl curvature. The metric is called Einstein if the
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tracefree part of its Ricci curvature vanishes, in other words if Rμν ∼ gμν . The

proportionality coefficient is called by physicists the cosmological constant, and

by mathematicians the scalar curvature. It must be a constant by one of the

Bianchi identities, so its constancy is not an independent Einstein equation.

But if one wants to fix this constant to a particular value, this constitutes an

independent equation.

In four dimensions, something very special happens. As we have already said,

the Lorentz group is not simple, and this is related to self-duality. So, there

exists yet another decomposition of the Riemann curvature, specific only to four

dimensions and related to self-duality, and this decomposition is related to the

scalar/Ricci/Weyl decomposition. This makes it possible to impose the Einstein

condition in a particularly elegant and efficient manner.

As we already discussed, the special property of 4D is that the Hodge star

maps 2-forms into 2-forms ∗ : Λ2 → Λ2, and introduces the decomposition of the

space of 2-forms into SD and ASD parts (5.4).

When the Levi–Civita connection is metric and torsion-free, the Riemann

curvature Rμνρσ is symmetric Rμνρσ = Rρσμν , and can be viewed as a symmetric

Λ2 ⊗Λ2–valued matrix. Decomposing this matrix into its Λ± components we get

the following block form

Riemann =

(
A B

BT C

)
. (5.7)

Here A is the SD–SD part, C is the ASD–ASD part, and both are symmetric as

Λ2 ⊗ Λ2 matrices, while B is the SD–ASD part

A := P+RiemannP+, C := P−RiemannP−, B := P+RiemannP−,

where P± are the SD/ASD projectors. These parts satisfy a set of properties that

are signature-dependent and that we summarise as

Theorem 5.1 In the case of Euclidean and split signatures the tensors A,B,

and C are real. For Lorentzian signature the tensors A and C are complex and

complex conjugates of each other C = A, and B is Hermitian BT = B. In all

cases the Bianchi identity εμνρσRμνρσ = 0 implies that traces of A and C are

equal, and equal to the scalar curvature Tr(A) = Tr(C) = R/2. The tracefree

parts of A and C encode the self- and anti–self-dual parts of the Weyl curvature

A = P+RiemannP+ = P+

(
Weyl +

R

6
I

)
P+, (5.8)

C = P−RiemannP− = P−

(
Weyl +

R

6
I

)
P−.

Here I is the identity tensor in Λ2⊗Λ2. The SD–ASD part B encodes the tracefree

part of Ricci curvature in the sense that B = 0 if and only if the tracefree part

of Ricci is zero.
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Let us prove these statements. First, let us show that the condition B = 0 is

equivalent to the Einstein condition, and also equivalent to the statement that

Riemann commutes with the Hodge operator. To this end, it is convenient to

do the calculation of the SD–ASD projection of Riemann in an index-free way,

using the SD/ASD projectors (5.6) that can be written as

P± =
1

2

(
I± 1√

σ
∗
)
. (5.9)

We then have

4B = 4P+ RiemannP− = Riemann− 1

σ
∗ Riemann∗ (5.10)

+
1√
σ
∗ Riemann− 1√

σ
Riemann ∗ .

The first line of the right-hand side here is a symmetric 6 × 6 matrix, and the

second line is antisymmetric. In case of the Lorentzian signature the second line

is also purely imaginary. Thus, in the Lorentzian case the matrix on the right-

hand side is Hermitian, which is what we stated previously about B block of

(5.7). In any case, the condition that P+ RiemannP− vanishes is equivalent to

Riemann =
1

σ
∗ Riemann ∗ and ∗ Riemann = Riemann ∗ . (5.11)

But it is clear that these two equations are equivalent. Indeed, by taking the

left Hodge dual of the first equation one obtains the second equation and vice

versa. So, we see that B = 0 is equivalent to the second equation in (5.11). This

equation can be rephrased as follows. Let us think about the Riemann curvature

as a map Rμν
ρσ : Λ2 → Λ2. Then the second equation in (5.11) is the statement

that this map commutes with the Hodge star. This proves

Lemma 5.2 The SD–ASD part B of the Riemann curvature vanishes if and

only if the Riemann curvature commutes with the Hodge star.

Let us now prove that this commutativity of Riemann and Hodge is equivalent

to the Einstein condition. To this end we need the formula

εμνρσε
αβγδ = 24σ δα[μδ

β
ν δ

γ
ρ δ

δ
σ]. (5.12)

Here εμνρσ is the volume form, and indices are raised with the metric. Using this

we get

1

4σ
εμν

ρσRρσγδε
γδαβ = Rμν

αβ +Rδα[μδ
β
ν] − 2δα[μR

β
ν] + 2δβ[μR

α
ν]. (5.13)

Thus, the first equation in (5.11) is equivalent to

Rδα[μδ
β
ν] − 2δα[μR

β
ν] + 2δβ[μR

α
ν] = 0. (5.14)
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This, on the other hand, is equivalent to the tracefree part of Ricci being zero.

Indeed, if the tracefree part of Ricci is zero, then this equation is satisfied

by inspection. On the other hand, taking the contraction of say μα we get

Rδβν −4Rβ
ν = 0, which is just the tracefree Ricci condition. Thus, we have proved

Theorem 5.3 In four dimensions a metric is Einstein if and only if the Riemann

tensor viewed as an endomorphism of Λ2 commutes with the Hodge star.

Together with Lemma 5.2 this implies that the Einstein condition is equivalent

to vanishing of the SD–ASD part of the Riemann curvature B = 0.

It is also easy to prove that the traces of the SD–SD and ASD–ASD parts of

Riemann are equal. Indeed, we have

Tr (P±RiemannP±) = Tr (P±Riemann) (5.15)

=
1

2

(
δρ[μδ

σ
ν] ±

1

2
√
σ
εμν

ρσ

)
Rμν

ρσ =
1

2
R,

where we have used the Bianchi identity R[μνρσ] = 0.

In a similar way, it is easy to prove that the SD–SD and ASD–ASD parts of

Riemann are composed of just the Weyl curvature and the scalar part. Indeed,

we have

4A = 4P+ RiemannP+ = Riemann +
1

σ
∗ Riemann∗ (5.16)

+
1√
σ
∗ Riemann +

1√
σ
Riemann∗

=

(
I+

1√
σ
∗
)(

Riemann +
1

σ
∗ Riemann∗

)
.

We note that while the left-hand side is clearly SD with respect to both pair

of indices, the last expression on the right-hand side is only explicitly SD with

respect to the first pair. It can of course be equivalently rewritten with the SD

projector on the second pair of indices instead of the first, or on both sides. On

the other hand, we have

Rμν
αβ +

1

4σ
εμν

ρσRρσγδε
γδαβ = 2Rμν

αβ +Rδα[μδ
β
ν] − 2δα[μR

β
ν] + 2δβ[μR

α
ν] (5.17)

Further, in four dimensions, the Weyl curvature tensor is

Cμνρσ = Rμνρσ − (gμ[ρRσ]ν − gν[ρRσ]μ) +
R

3
gμ[ρgσ]ν , (5.18)

and so

Rμν
αβ +

1

4σ
εμν

ρσRρσγδε
γδαβ = 2Cμν

αβ +
R

3
δα[μδ

β
ν]. (5.19)

These manipulations prove the first formula in (5.8). Similar transformations are

used to prove the second formula. This concludes the proof of Theorem 5.1.
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While in the previous proof it may appear that all matrices A,B, and C are

Λ2⊗Λ2 valued and thus 6×6, the spaces Λ± are in fact three-dimensional, and so

A,B, and C are in fact 3× 3 matrices. This will be made explicit in Section 5.5

when we discuss the SD/ASD decomposition of the Lie algebra of the ‘Lorentz’

groups.

The idea of the chiral formulation is then that it is sufficient to have access to

only one row of the matrix (5.7) to impose the Einstein condition. We will later

show that the two rows of (5.7) can be given the interpretation of the curvatures

of the SD and ASD parts of the spin connection. It then becomes possible to

impose the Einstein condition working with only one of the chiral parts of the

spin connection.

5.3 Chiral Version of Cartan’s Theory

As we have seen in the previous section, in four dimensions it is enough to

have access only to the SD part of the Riemann curvature with respect to

a pair of indices, rather than to the full Riemann curvature, to impose the

Einstein equations. Let us now see what this leads to in the context of the

tetrad formalism. In Einstein–Cartan formulation the Riemann curvature is

encoded into the curvature RIJ(ω) of the spin connection ωIJ . We can take

its SD part with respect to the ‘internal’ indices IJ using the SD projector.

We define

RIJ
+ (ω) := P IJ

+ KLR
KL(ω), (5.20)

where

P IJ
+ KL :=

1

2

(
δ[IKδJ]

K +
1

2
√
σ
εIJKL

)
. (5.21)

It is clear that when ωIJ is the torsion-free metric spin connection the object

RIJ
+ (ω) encodes exactly one of the two rows of the matrix (5.7), and thus we only

need RIJ
+ to write down Einstein equations.

There exists a simple action principle that realises this idea. Consider the

following action

Schiral[e, ω] =

√
σ

8πG

∫
eIeJP

IJ
+ KL

(
RKL(ω)− Λ

6
eKeL

)
. (5.22)

Expanding the SD projector we see that the only difference between (5.22) and

(3.60) is that we have added to the Einstein–Cartan action what is called the

Holst term eIeJF
IJ with an imaginary (in Lorentzian signature) coefficient. How-

ever, we can clearly do this without changing the dynamics of the theory. Indeed,

when the connection has zero torsion, this term becomes a total derivative. This

can be easily seen by considering the squared torsion term dωeIdωeI . Integrating

by parts here one gets a multiple of the Holst term.
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Thus, the action (5.22) gives an equivalent starting point to (3.60) for the

purpose of obtaining the field equations. However, it clearly involves just half

of the curvature of the spin connection. Further, we can use the fact that the

Lorentz group Lie algebra is not simple, and rewrite the SD part of the curvature

as the curvature of the SD part of the spin connection. This is possibly precisely

because the Lie algebra can be written (5.1) as the sum of two commuting

sub-algebras. Thus, if we write

ωIJ = (ωIJ)+ + (ωIJ)− (5.23)

then

RIJ
+ (ω) = RIJ(ω+), (5.24)

and we can write the action (5.22) as

Schiral[e, ω
+] =

√
σ

8πG

∫
(eIeJ)+

(
RIJ(ω+)−

Λ

6
(eIeJ)+

)
, (5.25)

where the index ‘plus’ next to the 2-form eIeJ denotes the SD projection with

respect to the internal indices (eIeJ)+ = P IJ
+ KLe

keL. We thus obtain a first-

order formulation of GR that is similar to (3.60), but in which only half of the

spin-connection coefficients are present. This gives a significantly more economic

formalism. Indeed, in the Einstein–Cartan case (3.60), the Lagrangian depends

on 24 connection components per spacetime point. This is better than the case

of Palatini theory (2.43), where in addition to the 10 metric components there

are also 40 components of the affine connection. But this is nevertheless quite a

few components to carry around in explicit calculations. What was achieved by

passing to (5.25) is that now, in addition to the 16 components in the tetrad, the

Lagrangian depends on just 12 connection components. One could object that

the connection is now complex, and so its real and imaginary parts continue to

comprise the same 24 components. But this is not the right interpretation. The

Lagrangian depends on the 12 components of the SD connection ω+ holomor-

phically, as no complex conjugate connection ever appears. Also, in Euclidean

signature, no complexification has happened, and we indeed just halved the

number of the connection components with the SD projection trick.

The ‘chiral’ formulation (5.25) thus keeps the main advantage of the Einstein–

Cartan formulation of GR – it is polynomial in the fields, with at most quartic

terms appearing in the action. It is also much more economical than the Einstein–

Cartan formulation, because it depends only on 16 + 12 field components per

spacetime point, as compared to 16+24 components in the Einstein–Cartan case.

This makes (5.25) much better suited for explicit, e.g., perturbative calculations.

One complication is that one needs to deal with the issue of reality conditions

in the Lorentzian case. However, at least for perturbative calculations, these are

not difficult to impose. One just imposes the condition that the tetrad is real.

The correct reality conditions on the connection are then imposed automatically
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by the field equations. Further, loop calculations are customarily performed in

Euclidean signature, and then one does not need to worry about reality condi-

tions at all as all fields are real. We will come back to perturbative considerations

in this formalism in Chapter 8.

The final remark is that, unlike in the full Einstein–Cartan formulation, in the

chiral theory (5.25) the Hamiltonian analysis does not lead to any second-class

constraints. This is directly linked to the halving of the number of ‘momentum’

variables introduced in this first-order theory. The Hamiltonian analysis of (5.22)

directly leads to Ashtekar’s new Hamiltonian formulation of GR; see Ashtekar

(1987). For all these reasons, the chiral tetrad formulation (5.25) should be viewed

as superior to the usual tetrad formalism.

There exists a good Yang–Mills analogy for the passage from (3.60) to (5.25).

Let us describe it. The usual Yang–Mills Lagrangian (in Lorentzian signature) is

LY M = − 1

4g2
(F a

μν)
2, (5.26)

where F a
μν = ∂μA

a
ν−∂νA

a
μ+fa

bcA
b
μA

c
ν is the field strength and Aa

μ is a Lie algebra

valued connection 1-form. However, one can always add to this Lagrangian the

Pontryagin density for the connection Aa
μ, which is εμνρσF

a
μνF

a
ρσ. This term is

a total divergence that does not change the field equations one obtains by

extremising the action. Further, we can always adjust the coefficient in front

of this term so that the original term in the Lagrangian and the Pontryagin

term combine into

Lchiral = − 1

2g2
P μνρσ

+ F a
μνF

a
ρσ = − 1

2g2
(F a

+μν)
2, (5.27)

where P+ is the SD projector (5.9).

The analogy with (3.60) and (5.25) arises when one writes down the first-order

versions of the two Lagrangians (5.26) and (5.27). In both cases one ‘integrates

in’ a 2-form field, but in the chiral case this field is SD. Thus, let us consider the

following two actions

S[B,A] =

∫
Ba

μνF
aμν + g2(Ba

μν)
2. (5.28)

Integrating out the 2-form field Ba
μν one gets back the Lagrangian (5.26). This

gives us a first-order formalism for Yang–Mills. Interestingly, there is just a cubic

interaction vertex in this formalism, at the expense of having both B and A fields

propagating. The chiral first-order action, on the other hand, is given by

Schiral[B
+, A] =

∫
B+ a

μν F aμν +
g2

2
(B+ a

μν )2. (5.29)

Here B+ a
μν is a SD Lie algebra valued 2-form field. The field equation for B+

is B+ a
μν = −(1/g2)F+ a

μν , i.e., B+ is a multiple of the SD projection of the field

strength. Substituting this back into the action one obtains (5.27).
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The actions (5.28) and (5.29) are both good first-order actions, but the chiral

action contains just half of the B variables of the first. Indeed, the non-chiral

version contains six times the dimension of the Lie group components of Ba
μν .

This is to be compared with the number of components in B+ a
μν , which is three

times the dimension of the Lie group, because the dimension of the space of

SD forms is three. The action (5.28) is not so useful as the starting point

for perturbation theory because it contains six components of Bμν for four

components of Aμ. As we will see in Chapter 8 on perturbative descriptions, the

2-form field Bμν of the formulation (5.28) has a nonvanishing propagator with

itself, which complicates the perturbation theory. This is directly related to the

fact that too many components have been ‘integrated in’ in passage from (5.26)

to (5.28).

As it will become clear in Chapter 8, one would like the mismatch between the

numbers of components in the connection and the auxiliary 2-form field to be

one, which is the number of functions appearing in gauge transformations. This

is not the case in the non-chiral version (5.28). However, in the chiral version of

the first-order formalism we have three components of B+
μν for four components

of Aμ, and the mismatch is indeed the desired one. It then turns out that the

chiral version can be very elegantly gauge-fixed and provides a very nice and

powerful perturbation theory. In particular, in the chiral version of the first-

order perturbation theory the propagator of the 2-form field with itself vanishes,

which simplifies calculations considerably.

The difference between the full Einstein–Cartan description (3.60) and its

chiral version (5.25) is analogous to the difference between (5.28) and (5.29). As

in the Yang–Mills case, the chiral action is a better starting point for perturbation

theory, the same is true for the case of chiral formalism for GR; see Chapter 8.

The final remark we make about the chiral action (5.25) is that when Λ �= 0

the frame field can in principle be integrated out (at least perturbatively), with

the result being a pure connection action for the SD part of the spin connection

only. We postpone discussing this until one of the following chapters.

5.4 Hodge Star and the Metric

To motivate the next step we recall that in the case of Einstein–Cartan formalism

it was possible to pass to the BF-type formalism, in which the wedge product

of two tetrads eI ∧ eJ was replaced by the 2-form field BIJ , and a Lagrange

multiplier term was added to the action to guarantee that the 2-form field comes

from the tetrad. We shall repeat this trick for the chiral first-order action (5.25).

This will change the nature of the object that solders the ‘internal’ and the

tangent bundles in a profound way. To understand the geometry arising, we

need to develop properties of the Hodge star in four dimensions in more detail.

This will eventually lead to the so-called Plebański formalism for GR, which is

a very powerful version of the chiral first-order description (5.25).
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5.4.1 Hodge Star on Middle Degree Forms is Conformally Invariant

We start by stating a simple but profound

Lemma 5.4 The Hodge operator on middle degree forms (and in particular the

Hodge operator on 2-forms in four dimensions) is conformally invariant.

In other words, if we change gμν → Ω2gμν then εμν
ρσ is unchanged. We only

check this in four dimensions, the case of higher (even) dimensions is completely

analogous. To verify this we note that the volume 4-form εμνρσ transforms as

the square root of the determinant of the metric εμνρσ → Ω4εμνρσ. Then εμν
ρσ =

gραgσβεμναβ, and the inverse metric transforms as gμν → Ω−2gμν , from which

the assertion follows.

5.4.2 Hodge Star Determines the (Conformal) Metric

Lemma 5.4 states that a conformal metric, which is metric modulo conformal

rescalings, determines the Hodge star operator. The following theorem shows

that in four dimensions the converse is also true.

Theorem 5.5 In four dimensions, the knowledge of the Hodge star operator, and

thus the knowledge of the split (5.4) of the space of 2-forms into the eigenspaces

of the Hodge star is equivalent to the knowledge of the conformal metric.

This is the fact of the fundamental importance for our purposes as it will

become clear from the following exposition. Because of its importance, we

will present two proofs, one conceptual one constructive. The conceptual proof

will explain why this can be true. In physics literature, a proof of this theorem

(in its Euclidean signature version) has been given in Dray et al. (1989).

To do the conceptual proof, we need to build up a bit more knowledge about

the split (5.4) of the space of 2-forms into its SD/ASD subspaces in different

signatures. The first fact is that we can take the wedge product of a couple of

2-forms to get the top form. This means that the wedge product gives us the

natural conformal metric in the space Λ2

〈B1, B2〉∧ := B1B2/ε, (5.30)

where ε is an arbitrary top form onM . To divide by a top form we need to assume

that a nowhere-vanishing top form exists, or, in other words, the manifold is

orientable. We will always assume this in this book. Different choices of ε are

related by multiplication by a nowhere-vanishing function, and so the wedge

product metric is only a conformal metric, i.e., is defined modulo multiplication

by a function. We note that the wedge product metric on the six-dimensional

space of 2-forms is of split signature (3, 3), which can easily be checked by taking

a basis for this space. This is independent of any metric one may put on the

manifold M itself.



142 The ‘Chiral’ Formulation of General Relativity

Given the conformal metric (5.30) and a split (5.4) we can ask what the wedge

product metric reduces to on Λ±. This is easiest to see in the case of Rp,q with

the usual flat metric. Then a convenient basis in Λ+ in each signature case, in

the orientation e1234, is as follows

Σ1
E = e41 − e23, Σ2

E = e42 − e31, Σ3
E = e43 − e12, (5.31)

Σ1
L = ie41 − e23, Σ2

L = ie42 − e31, Σ3
L = ie43 − e12,

Σ1
S = e41 − e23, Σ2

S = e42 + e31, Σ3
S = e43 + e12,

where E,L, and S stand for Euclidean, Lorentzian, and Split, respectively. In

formulas (5.31) the notation eijk... stands for eiejek and so on. It is now easy to

see what the conformal metric on Λ+ in each case is. Dividing by (twice) the

volume form ε = 2e1234 we have

〈Σi
E,Σ

j
E〉∧ = δij , 〈Σi

L,Σ
j
L〉∧ = iδij , 〈Σi

S,Σ
j
S〉∧ = ηij , (5.32)

where ηij = diag(+1,−1,−1). Thus, the space Λ+ in the Euclidean case can be

characterised by saying that the wedge product metric on it is definite (positive

definite in the right orientation), in the split case the wedge product metric on

Λ+ is indefinite, and in the Lorentzian case the wedge product metric on Λ+ is

complex. We also note that in all the cases the space Λ+ is wedge product metric

orthogonal to Λ−. Moreover, in the Lorentzian case Λ− = Λ+, where the overline

denotes the complex conjugation. In other words, the complex conjugates of

elements in Λ+ are in Λ−.

We have checked these statements for the case of a flat metric on R
p,q, but it

is clear that these statements about the reduction of the wedge product metric

to Λ+ hold more generally. Indeed, one should just use an orthonormal set of

1-forms for a given metric in place of e1,2,3,4 in (5.31) to see that (5.32) holds

for an arbitrary metric. And since an arbitrary basis in Λ+ in each signature

case is given by an GL(3) transformation (GL(3,C) transformation in the case

of Lorentzian signature) of the orthonormal basis (5.31), we see that indeed the

signature of the restriction of the wedge product metric to Λ+ only depends on

the metric signature.

With these results about Λ2(Rp,q), p + q = 4 in mind, we can characterise

the split (5.4) further, depending on the signature. This will also make the

formulation of Theorem 5.5 more precise.

Euclidean Signature. In this case, the Hodge operator is the same as the split

of the space of 2-forms into a couple of three-dimensional orthogonal subspaces

Λ±, such that the wedge product metric is positive definite on Λ+ and negative

definite on Λ−. Indeed, this is true for the Hodge operator coming from any

Euclidean signature metric on M . It is also clear that the knowledge of such a

split is equivalent to the knowledge of the Hodge operator. This is because, given

such a split, one can decompose any form into its Λ± parts and then the Hodge

simply acts by ±1 on Λ±.
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The space of such splits is the Grassmanian SO(3, 3)/SO(3)×SO(3), where the

stabiliser subgroup is the group mixing the forms in Λ±, respectively, without

changing the restrictions of the wedge product metric to these spaces. Now, to

show that this Grassmanian is the same as the space of Euclidean signature

(conformal) metrics in R
4, we need the exceptional isomorphism

SO(3, 3) ∼ SL(4,R). (5.33)

These are groups belonging to two different series of classical groups, i.e.,

orthogonal D and special linear A, whose Lie algebras are represented by the

same rank three simply laced Dynkin diagram A3 = D3. These groups coincide

(modulo Z2). We will give a proof of this fact Section 5.5.4. We therefore have

the isomorphism

SO(3, 3)/SO(3)× SO(3) ∼ SL(4,R)/SO(4), (5.34)

where we have used SO(4) = SO(3) × SO(3)/Z2, which will be proved Section

5.5.2. The space of Euclidean signature metrics modulo conformal rescalings is

on the right-hand side of this relation. The left-hand side is the Grassmanian of

three-planes in six-dimensional space of signature (3, 3) such that the restriction

of the metric on the plane is definite. This is just the space of splits (5.4) in the

case of this signature, which proves the Theorem 5.5 for this case.

Split Signature. The proof of the Theorem 5.5 in this case is analogous. The

only difference is that now the split (5.4) is into a couple of three-dimensional

subspaces with indefinite metric of opposite signature. Such a split characterises

the Hodge operator for this signature completely. The space of such splits is the

Grassmanian SO(3, 3)/SO(1, 2)× SO(2, 1), which, using the exceptional isomor-

phism (5.33) is the same as

SO(3, 3)/SO(1, 2)× SO(2, 1) ∼ SL(4,R)/SO(2, 2), (5.35)

the right-hand side being the space of conformal metrics of signature (2, 2) in

four dimensions. Here we have used the isomorphisms SO(2, 2) = SL(2,R) ×
SL(2,R)/Z2 and SO(1, 2) = SL(2,R)/Z2. Both these facts will be proven

Section 5.5. This proves the theorem in this case.

Lorentzian Signature. The split (5.4) in this case is the split of the real six-

dimensional space with metric of signature (3, 3) into two complex conjugate

orthogonal subspaces. Such a split is the same as an almost complex structure

on the space of 2-forms, compatible with the wedge product metric. The elements

of SO(3, 3) that commute with such an almost complex structure belong to

SO(3,C), and these mix the 2-forms belonging to Λ+ without changing the

complex metric that the wedge product metric restricts to in this space. Thus,

the space of such splits is the Grassmanian SO(3, 3)/SO(3,C), which in view of

(5.33) is the same as
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SO(3, 3)/SO(3,C) ∼ SL(4,R)/SO(1, 3), (5.36)

because SO(3,C) = SO(1, 3), which will be demonstrated Section 5.5.1. The

right-hand side in this relation is the space of real Lorentzian signature metrics

in four dimensions modulo conformal rescalings, which proves the Theorem 5.5

for this signature.

We note that the Theorem 5.5 is only true in four dimensions. Indeed, let

us consider the case of six dimensions. Then the Hodge star on middle degree

forms, which are 3-forms in this case, is the same as the decomposition of

the 6 ∗ 5 ∗ 4/6 = 20 dimensional space of 3-forms into two orthogonal subspaces.

The space of such splits is the Grassmanian SO(10, 10)/SO(10) × SO(10). This

space has dimension 20 ∗ 19/2 = 190 minus 2 ∗ 10 ∗ 9/2 = 90, and so is

100-dimensional. On the other hand, the space of metrics in six dimensions

is 6 ∗ 7/2 = 21-dimensional. Thus, the space of splits of Λ3 into two orthog-

onal subspaces is much bigger than the space of metrics, and so there are

splits that do not come from the Hodge operator. There is therefore no rela-

tion between the space of splits of the space of middle forms and metrics in

higher dimensions.

5.4.3 Urbantke Metric

We now want to give a different proof of Theorem 5.5. Given a basis in Λ+, this

other construction presents the metric explicitly. Thus, let us assume that we

are given a decomposition (5.4) of Λ2 into two orthogonal (with respect to the

wedge product metric) subspaces Λ±. Let Σi, i = 1, 2, 3 be a basis in Λ+. Then

the (conformal) metric gΣ such that its Hodge operator has Span(Σi) as its Λ+

is explicitly given by the following formula

gΣ(u, v)εΣ ∼ εijkiuΣ
iivΣ

jΣk. (5.37)

At this stage the proportionality coefficient in this formula is left unspecified,

even though later we shall see that in each signature case there is a specific

number that is most natural here. The object εΣ is the volume form for the

metric gΣ. In the physics literature the metric (5.37) is known as the Urbantke

metric; see Urbantke (1984). Geometrically, the metric (5.37) arises as the unique

conformal metric that makes the triple of 2-forms Σi self-dual. We will prove this

statement in Sections 5.4.4 and 5.4.5.

It is clear that the formula (5.37) defines a symmetric tensor, but it is not clear

what the signature of the metric arising this way is. The aim of the following

discussion is to establish this for the three different ways that the split (5.4) may

arise. We will start with the Lorentzian signature case, and then comment on

changes one has to do to accommodate the other two signatures.

Given a three-dimensional subspace Λ+ in the space of 2-forms, and a basis

Σi ∈ Λ+ we can always use a GL(3) transformation to make this basis orthonor-

mal. We will make this statement more precise in each signature case.
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Lorentzian Signature. Given a three-dimensional subspace Λ+ ⊂ Λ2
C
that

is wedge product metric orthogonal to the complex conjugate subspace

〈Λ+,Λ+〉∧ = 0, we can always use a GL(3,C) rotation to choose a basis

Σi, i = 1, 2, 3 of Λ+ that satisfies

Lorentzian case : ΣiΣj = 2iδijε and ΣiΣj = 0. (5.38)

Here ε is a real top form on the manifold. We shall refer to such a basis of Λ+ as

orthonormal. An example of an orthonormal basis for Λ+ defined by a Lorentzian

signature metric is given by (5.31).

Euclidean and Split signature. Given a three-dimensional subspace Λ+ ⊂ Λ2

on which the wedge product metric is definite in the Euclidean case, and indef-

inite in the split case, and using a GL(3,R) rotation, we can always choose a

basis Σi, i = 1, 2, 3 of Λ+ that satisfies

Euclidean case : ΣiΣj = 2δijε, Split case : ΣiΣj = 2ηijε, (5.39)

where ε is a top form. Again, we shall refer to such a basis of Λ+ as orthonormal.

5.4.4 A Constructive Proof of Theorem 5.5: Lorentzian Case

The discussion that follows is for the Lorentzian case, we will discuss Euclidean

and split versions in the following subsection. Given a triple of 2-forms satisfying

(5.38), we shall prove that (i) there is a natural Lorentzian signature metric

defined by Σi; (ii) the 2-forms Σi are SD in this metric; and (iii) this metric

coincides with that given by (5.37). As they stand, these statements are a bit

vague, they will be made precise in Theorem 5.6.

To proceed with the proof, as the first step, we split the 2-forms Σi into their

real and imaginary parts

Σi = Si + iP i. (5.40)

In view of (5.38) the forms Si, P i satisfy

SiSj = 0, P iP j = 0, SiP j = δijε. (5.41)

Now, since P 1P 1 = 0 this 2-form must be simple, and so P 1 = e4e1 for some

1-forms e4, e1. Similarly, S1 is a simple 2-form, and we can write S1 = −e2e3.

Since S1P 1 = ε we have ε = e1e2e3e4 and the basis e1,2,3,4 is nondegenerate. We

note that the forms e4,1 and e2,3 are defined modulo unimodular transformations

mixing e4 and e1, and similarly transformations mixing e2 and e3, as such

transformations do not change e4e1 and e2e3.

Now, the form P 2 is also simple P 2P 2 = 0, and is orthogonal to both S1 and

P 1. This means that it can be written in the form

P 2 = (αe4 + βe1)(γe2 + δe3) (5.42)
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for some (real) coefficients α, β, γ, and δ. Similarly the simple 2-form S2 can be

written as

S2 = −(ρe2 + σe3)(μe4 + νe1) (5.43)

for some coefficients μ, ν, ρ, and σ. From S2P 2 = ε = e1234 we must have

(βμ−αν)(γσ−δρ) = −1. We can now define the new basis 1-forms ẽ4 = αe4+βe1,

ẽ1 = μe4 + νe1, ẽ2 = γe2 + δe3, ẽ3 = ρe2 +σe3. These are unimodular transforma-

tions provided αν−βμ = 1 and γσ−δρ = 1. In this new basis we have P 1 = ẽ4ẽ1,

S1 = −ẽ2ẽ3 and P 2 = ẽ4ẽ2, S2 = −ẽ3ẽ1. We have thus proved that P 1, S1, P 2,

and S2 can always be mapped to this form. We will omit the tildas on the symbols

of these 1-forms from now on.

We now come to the last pair P 3 and S3. They are both simple, and both

orthogonal to all the 2-forms P 1, S1, P 2, and S2. There are two different possi-

bilities. Either P 3 ∼ e4e3 and S3 ∼ e1e2 or P 3 ∼ e1e2 and S3 ∼ e4e3. In the

first of these possibilities, it is the 2-forms P i, i = 1, 2, 3 that all share a common

1-form, while in the second case, these are the 2-forms Si that share a common

factor.

Let us now write the obtained solutions in a canonical form. There is still

some freedom remaining after fixing the 2-forms P 1, S1, P 2, and S2. Indeed, we

can rescale e1,2 → λe1,2 and e3,4 → λ−1e3,4 without changing P 1, S1, P 2, and S2.

These rescalings allow to put the coefficient in front of P 3 and S3 to plus minus

unity. This allows us to present the four arising cases as

Case A± P 1 = e4e1, S1 = −e2e3, (5.44)

P 2 = e4e2, S2 = −e3e1,

P 3 = σe4e3, S3 = −σe1e2,

where σ = ±1 and

Case B± S1 = e4e1, P 1 = −e2e3, (5.45)

S2 = e4e2, P 2 = −e3e1,

S3 = σe4e3, P 3 = −σe1e2,

where we have relabelled e4 → e3, e1 → e2 and e3 → −e4, e2 → −e1 to write the

second case forms. Note that this does not change the ε form. The case B is of

course the same solution with S and P forms interchanged. As we have already

mentioned, in the case A the 2-forms P i all share a common factor, while in the

case B the 2-forms Si do.

Having obtained the four different possible canonical expressions for the

2-forms Σi satisfying (5.38) we can understand the metric that these forms

define. It is clear that in all the four cases the 1-form e4 is special, and so there

is a natural metric

ds2Σ = −(e4)2 + (e1)2 + (e2)2 + (e3)2. (5.46)



5.4 Hodge Star and the Metric 147

The four different cases that we have seen arising previously are then as follows.

The case A+ corresponds to the 2-forms Σi being self-dual, and coinciding with

the basis of forms listed in (5.31). The case A− corresponds to Σi still begin SD

with respect to the metric that they define, but with Σ3 being minus what it is

in the canonical basis (5.31). The case B+ forms are ASD, and B− forms differ

from B+ in the sign of Σ3. We also note that the B+ case forms can be obtained

as −i times the canonical basis of ASD 2-forms, given by (5.31) with the plus

sign in front of the second terms.

These four different cases can be differentiated with the help of the Urbantke

formula. Thus, let us see what the metric gΣ given by

gΣ(u, v)εΣ =
i

6
εijkiuΣ

iivΣ
jΣk (5.47)

is in each of the four cases. In this formula, the orientation εΣ is assumed to be

that in ΣiΣj = 2iδijεΣ. In the case A+ this formula reproduces the metric (5.46).

In the case A− the only difference is that Σ3 is minus what it is in the case

A+, and it is clear that this gives an additional minus sign on the right-hand

side of (5.47), so that one obtains the metric of signature (+,−,−,−). In the B

cases, one multiplies the right-hand side in (5.47) by (−i)3 = i as compared to

the A cases, and so the metric obtained from (5.47) in both B cases is purely

imaginary.

We can summarise the previous discussion as

Theorem 5.6 Let Σi be a triple of 2-forms satisfying ΣiΣj = 2iδijεΣ, where εΣ
is a real top form, and ΣiΣj = 0. Then either the triple Σi gives a real metric gΣ
via (5.47), or iΣi does. So, we multiply the 2-forms Σi by the imaginary unit to

get a real metric via (5.47) if necessary. This metric is of Lorentzian signature.

The triple of 2-forms Σi that gives a real metric via (5.47) is self-dual in the

orientation εΣ.

We also see that there arises the notion of a sign of a triple Σi. Indeed, this

arises as the sign that is necessary to put in front of the right-hand side of (5.47)

to get the metric of signature (−,+,+,+). Given a triple that satisfies all the

conditions of the previous theorem, both signs are possible. In particular, if one

has a triple Σi that gives the metric of signature (−,+,+,+) via (5.47) with

no additional sign necessary, then the triple −Σi will require an extra sign to get

the desired signature.

This notion of the sign of a triple Σi can be given a more invariant meaning.

To this end, we can use the metric defined by Σi to raise one of the indices of

Σi and convert these objects into endomorphisms of T ∗M . Then, as it is easy to

check, in the case that Σi are given by their standard expressions in (5.31) the

resulting three endomorphisms satisfy the imaginary quaternion algebra

Σ1Σ2 = Σ3, Σ2Σ3 = Σ1, Σ3Σ1 = Σ2. (5.48)
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On the other hand, in the case when Σ3 is given by minus what it is in (5.31),

the algebra of endomorphisms defined by Σi is with an extra minus sign on the

right-hand side

Σ1Σ2 = −Σ3, Σ2Σ3 = −Σ1, Σ3Σ1 = −Σ2. (5.49)

Yet another way of stating the origin of this sign is as follows. The object Σi

can be viewed as a map between two naturally oriented spaces. Either this map

preserves the orientation, in which case it is given by its canonical expression

as in (5.31), or it reverses it, in which case Σ3 is minus what it is in (5.31).

The reason why both spaces mapped one into another by Σ : C3 → Λ+ ⊂ Λ2
C

are oriented is as follows. The space C
3 can be identified with the Lie algebra

sl(2), and this is naturally oriented. This is because one can take the triple

e1, e2, [e1, e2] as providing the positive orientation, for any e1, e2 ∈ su(2). In our

case this means that we take 123 as the positive orientation. On the other hand,

the space Λ+ also carries a natural orientation, because we can use the metric to

convert SD 2-forms ω1,2 ∈ Λ+ into endomorphisms of T ∗M , and then take the

positive orientation of Λ+ to be ω1
μ
ν , ω2

μ
ν , ω1

μ
ρω2

ρ
ν − ω2

μ
ρω1

ρ
ν . This explains why

both the source and the target of the map Σ is oriented, and why Σ can be both

orientation preserving (case A+) and orientation changing (case A−).

Note that the self-duality of Σi with respect to the metric they define versus

anti–self-duality, is fixed by the sign on the right-hand side of ΣiΣj = 2iδijεΣ.

Indeed, the statement in Theorem 5.6 is that Σi are SD with respect to the

metric they define in the orientation εΣ. One could then take complex conjugate

objects instead, and they would satisfy Σ
i
Σ

j
= −2iεΣ, and be wedge product

orthogonal to their complex conjugates. These objects satisfy all the conditions

of the Theorem 5.6, and are thus SD with respect to the metric they define and

in orientation −εΣ. But being SD in orientation −εΣ is the same as being ASD

in orientation εΣ. So, everything is consistent.

This also gives another way of looking at the cases B± in the proof. Indeed,

the 2-forms ±iΣi, where Σi is the canonical SD forms as in (5.31) satisfy all

the assumptions of Theorem 5.6. This is why these solutions to the equations

ΣiΣj = 2iδijεΣ and ΣiΣj = 0 must appear together with the solutions ±Σi. This

explains the case B± solutions that were found previously.

We have thus proved that the knowledge of the split of the space of 2-forms

into two orthogonal subspaces of half the dimension, as appropriate for the

Lorentzian signature, determines the conformal metric. In fact, we have proved

a stronger statement in Theorem 5.6. Indeed, we have shown that given an

orthonormal basis in the space Λ+, which can always be chosen by an GL(3,C)

transformation, there is a natural Lorentzian signature metric given by (5.47).

Thus, this construction also fixes the conformal class of the metric, which was

left undetermined by the conceptual proof.

There is an interesting twist to the previous story which is that the formula

(5.47) also defines a metric even in the case that a triple Σi is not orthonormal,
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and just spans a three-dimensional subspace of Λ2 that is wedge product orthog-

onal to its complex conjugate. We will come to this point in one of the following

chapters, where it will be seen that this is related to the possibility of ‘deforming’

the Einstein condition in a nontrivial way.

5.4.5 A Constructive Proof of Theorem 5.5:

Euclidean and Split Cases

A similar proof of the fact that the knowledge of the split of the space of 2-forms

into two subspaces of half the dimension, together with a basis in one of the

spaces, determines the metric, can be given in the Euclidean and split signature

cases. Everything is real in this case, so the proof is somewhat simpler. So, let us

start with a triple of 2-forms Σi such that ΣiΣj = 2δijεΣ in the Euclidean case,

or ΣiΣj = 2ηijεΣ in the split case. As in the Lorentzian case, we see that the

triple Σi defines an orientation εΣ. Our task is now to prove that such a triple

defines a metric of appropriate signature, and with respect to this metric and in

orientation εΣ the triple Σi is SD.

Let us carry out the proof in the Euclidean case. It will then be clear what

is necessary to change to get the split signature case. The most important first

step is to form complex linear combinations

Σ± = Σ1 ± iΣ2. (5.50)

These complex 2-forms are simple

Σ+Σ+ = Σ−Σ− = 0, (5.51)

and are thus decomposable. Thus, we can write

Σ+ = sm, Σ− = s̄m̄, (5.52)

where m, m̄ and s, s̄ are some complex 1-forms spanning T ∗M , with s̄ being the

complex conjugate of s and m̄ being the complex conjugate of m. Of course,

s,m are only defined modulo unimodular transformations that do not change

the wedge product sm. The forms m, m̄ and s, s̄ span T ∗M because we have

Σ+Σ− = 4εΣ. On the other hand Σ+Σ− = −mm̄ss̄.

For future reference, when the triple Σi is as given by (5.31) we have

Σ+ = (e4 − ie3)(e1 + ie2), Σ− = (e4 + ie3)(e1 − ie2), (5.53)

and so m = e1 + ie2, s = e4 − ie3.

The next bit of information comes from the fact that Σ3 is wedge product

orthogonal to both Σ±. It is also a real 2-form. This means that it is of the form

Σ3 =
a

2i
ss̄+

b

2
sm̄− b

2
ms̄+

d

2i
mm̄ (5.54)
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for some coefficients a, d ∈ R and b ∈ C. We can then compute

Σ3Σ3 = −1

2
(ad− |b|2)mm̄ss̄. (5.55)

However, we must have Σ3Σ3 = 2εΣ and so we have ad − |b|2 = 1. This in

particular means that a and d are always of the same sign.

The 2-form Σ3 in (5.54) can be written in matrix form as

Σ3 =
1

2i

(
s m

)( a ib

−ib d

)(
s̄

m̄

)
. (5.56)

The matrix that appears here is Hermitian. We also know that it is unimodular.

Such a Hermitian unimodular matrix can always be written as the product(
a ib

−ib d

)
= ±gg†, g ∈ SL(2,C). (5.57)

The presence of the sign on the right-hand side reflects the fact that a and d

can be of both signs. The determinant condition on the left-hand side implies

|det(g)|2 = 1. But we can always multiply g by a phase (without changing gg†)

to achieve that det(g) is real and positive, and thus that g is unimodular.

So, we have shown that Σ3 can always be written as

Σ3 = ± 1

2i

(
(αs+ βm)(αs̄+ βm̄) + (γs+ δm)(γs̄+ δm̄)

)
(5.58)

for some coefficients α, β, γ, δ ∈ C satisfying αδ − βγ = 1. We can then define

αs + βm in (5.58) to be the new s and γs + δm to be the new m, as this does

not change the forms Σ±. Thus, we learn that we can always represent the triple

Σ±,Σ3 as

Σ+ = sm, Σ− = s̄m̄, Σ3 = ± 1

2i
(ss̄+mm̄). (5.59)

Having achieved this representation of the triple Σi the metric is

ds2Σ = ss̄+mm̄. (5.60)

This is a metric of Riemannian all plus signature, and the 2-forms Σi are SD

with respect to this metric, in the orientation εΣ. It is also not hard to check that

this metric can also be obtained by the Urbantke formula, which in the case of

this signature reads

gΣ(u, v)εΣ =
1

6
εijkiuΣ

iivΣ
jΣk. (5.61)

We can state the previous considerations as

Theorem 5.7 Let Σi be a triple of real 2-forms satisfying ΣiΣj = 2δijεΣ. Then

the metric defined by the Urbantke formula (5.61) is real, and of Riemannian
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signature. The triple Σi is self-dual with respect to this metric, and in the orien-

tation εΣ.

As in the Lorentzian case, we see that there is a subtlety that a triple Σi

satisfying ΣiΣj = 2δijεΣ carries the additional information of a sign, which is

the sign that is necessary to put on the right-hand side of (5.61) to obtain the

metric of signature all plus. If a triple Σi gives the all plus signature metric via

(5.61), then the triple −Σi will give the signature all minus, and an extra sign

would be needed in (5.61) to flip this back to all plus. We similarly see that

the case in which there is the minus sign in Σ3 in (5.59) gives the all minus

signature metric via (5.61), and so this triple carries the negative sign. As in the

Lorentzian case, this sign has the geometric origin in the fact that the map Σ is

a map between two naturally oriented spaces, and can therefore be orientation-

changing as well as orientation-preserving.

In the split signature case, the proof is completely analogous, with some sign

changes. The main difference is that in this case the relevant combinations of

Σ1,Σ2 that are simple are real: Σ± = Σ1 ± Σ2. Indeed, when Σ1Σ1 = 1,Σ2Σ2 =

−1,Σ3Σ3 = −1, and we have Σ+Σ+ = Σ−Σ− = 0. The Euclidean signature case

proof works with a few changes, the main one being that it uses real coefficients

everywhere. In this case we want to put Σ± into the form

Σ± = (e4 ± e3)(e1 ± e2), (5.62)

and Σ3 into the form

Σ3 = ∓1

2
((e4 + e3)(e4 − e3) + (e1 + e2)(e1 − e2)) , (5.63)

where both signs are possible. Once this is achieved, the metric is

ds2 = −(e4 + e3)(e4 − e3)− (e1 + e2)(e1 − e2), (5.64)

which is the metric of split signature. The metric can also be obtained via the

Urbantke formula (5.61). We state all this as a

Theorem 5.8 Let Σi be a triple of real 2-forms satisfying ΣiΣj = 2ηijεΣ. Then

the metric defined by the Urbantke formula (5.61) is real, and of split signature.

The triple Σi is self-dual with respect to this metric, in the orientation εΣ.

5.5 The ‘Lorentz’ Groups in Four Dimensions

The purpose of this section is to remind the reader some facts about different

signature ‘Lorentz’ groups in four dimensions, and also explain the origin of the

‘accidental isomorphisms’ (5.1). We have already covered this material to some

extent in Chapter 1, but here we present a more complete treatment including

the discussion of all three different possible signatures.
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5.5.1 Lorentzian Signature

Let us start our discussion with the Lorentz group proper, i.e., the group

SO+(1, 3) of special (i.e., determinant one) pseudo-orthogonal transformations

(i.e., living invariant the metric in R1,3) that also preserve the time orientation.

This group is doubly covered by the complex special linear group SL(2,C), as

the following construction explains.

Let us fix some Cartesian coordinate system x4, x1, x2, x3 in R
1,3, so that the

distance squared from a point with this coordinates to the origin, equals −(x4)2+

(x1)2 + (x2)2 + (x3)2. The reason why we use x4 rather than x0 notation is that

we want to be uniform in our treatment of all the signatures. Let us form the

following 2× 2 matrix

xL = i

(
x4 + x3 x1 − ix2

x1 + ix2 x4 − x3

)
. (5.65)

Note that

xL = i

(
x4
I+

3∑
i=1

σixi

)
, (5.66)

where σi, i = 1, 2, 3 are the usual Pauli matrices. It is our desire to write xL as

(5.66) that explains the sign choices in (5.65). We note that the matrix xL given

by (5.65) is i times a Hermitian matrix, and so is anti-Hermitian. Moreover, every

2 × 2 anti-Hermitian matrix can be written in the form (5.65) for some choice

of x4, xi. This is clear from (5.66) and the fact that I, σi provide a basis in the

space of 2 × 2 Hermitian matrices. We also note that the distance squared can

be written as the determinant of (5.65)

det(xL) = ηIJx
IxJ . (5.67)

Thus, we have constructed a map

ψL : R1,3 → AHerm(2) (5.68)

from Minkowski space to the space AHerm(2) of anti-Hermitian 2× 2 matrices.

This map is an isomorphism. The Minkowski metric is given by the pullback of

the determinant with this map; see (5.67).

We now consider the following action of SL(2,C) on the space of anti-Hermitian

2× 2 matrices

xL → gxLg
†, g ∈ SL(2,C). (5.69)

This maps the space of anti-Hermitian matrices to itself. Also, this map preserves

det(xL). Thus, pulling this map back with ψL (5.68), we get an action of SL(2,C)

on R
1,3 that is distance preserving. This gives a map from the group SL(2,C)

to the group O(1, 3) of pseudo-orthogonal transformations of R
1,3. It can be
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checked by an explicit computation that this map is actually into SO+(1, 3). We

will denote this map by ψL as well, with a slight abuse of notation

ψL : SL(2,C) → SO+(1, 3). (5.70)

It is also clear that this map is a group homomorphism.

It is clear that matrices ±I ∈ SL(2,C) get mapped to I ∈ SO(1, 3). Thus, the

kernel of ψL is Z2, and we have constructed the double cover

SO+(1, 3) = SL(2,C)/Z2. (5.71)

Example 5.9 As an example, let us consider the transformation generated by

g =

(
et/2 0

0 e−t/2

)
∈ SL(2,C). (5.72)

A simple computation shows that the pullback of this transformation on

AHerm(2) with ψL gives the following pseudo-orthogonal transformation on R
1,3

x4 → x̃4 = cosh(t)x4 + sinh(t)x3, (5.73)

x3 → x̃3 = sinh(t)x4 + cosh(t)x3.

The determinant of the corresponding O(1, 3) matrix is clearly +1, and it pre-

serves the time direction because the coefficient in front of x4 is always positive.

It is clear from the previous construction that the concrete isomorphism (5.71)

depends on the choice of coordinates x4, xi. However, all possible coordinate

choices are related by Lorentz, and thus, SL(2,C) transformations. So, if we

base the previous isomorphism (5.71) construction on a different choice of the

coordinate system x̃L = GxLG
†, G ∈ SL(2,C), then we get two different embed-

dings of SL(2,C) into SO+(1, 3) that are related by conjugation

x̃L → g̃x̃Lg̃
†, xL → gxLg

† ⇒ g̃ = GgG−1. (5.74)

So, while there is no canonical embedding SL(2,C) → SO+(1, 3), different such

embeddings are conjugate to each other inside SL(2,C).

The constructed isomorphism (5.71) also gives the isomorphism

SO(3) = SU(2)/Z2. (5.75)

Indeed, one should just restrict the previous construction to matrices (5.65) with

x4 = 0. It is clear that these are tracefree (anti-) Hermitian matrices. Only the

SU(2) subgroup of SL(2,C) acts on this space preserving it, and so we get (5.75).

5.5.2 Euclidean Signature

Let us spell out an analog of the previous construction for the Euclidean

signature. We take the Cartesian coordinates on R
4 to be x4, xi, and construct

a 2× 2 matrix
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xE = i

(
ix4 + x3 x1 − ix2

x1 + ix2 ix4 − x3

)
. (5.76)

This matrix can be viewed as an analytic continuation of xL with x4 → ix4. It

has the property that its determinant correctly reproduces the squared interval

det(xE) = δIJx
IxJ . (5.77)

We note that the matrix xE is of the form

xE =

(
α −β∗

β α∗

)
, α, β ∈ C, (5.78)

and that every matrix of the form (5.78) can be represented as (5.76). Thus, we

have effectively endowed R
4 with a complex structure and represented it as C2,

and also written the squared interval on it as |α|2 + |β|2. There are of course

many different ways of identifying R
4 with C

2, and this ambiguity is related to

the ambiguity of choosing the coordinates in the construction (5.76). We will

return to this ambiguity when discussing twistors in Chapter 9.

We now note that the Hermitian conjugate of (5.78) is given by

x†
E =

(
α∗ β∗

−β α

)
, (5.79)

while the inverse is given by

x−1
E =

1

|α|2 + |β|2
(

α∗ β∗

−β α

)
. (5.80)

Thus, there is a relation between the Hermitian conjugation and inverse

x†
E = det(xE)x

−1
E . (5.81)

In particular, unit vectors det(xE) = 1 correspond to unitary matrices x−1
E = x†

E.

It is also clear that every 2 × 2 matrix with property (5.81) can be written in

the form (5.78). Thus, we have constructed an isomorphism

ψE : R4 → H, H := {x ∈ Mat(2,C) : xx† = det(x)I}. (5.82)

At the end of this Section we shall explain that the space H so defined is actually

the space of quaternions. This justifies the notation. As remarked previously,

unit elements in H are (special) unitary 2× 2 matrices.

We can now define an action of SU(2)×SU(2) on H. This is the action of unit

quaternions on H from left and right. It is given by

xE → gLxEg
−1
R , gL,R ∈ SU(2). (5.83)

It is clear that this action preserves the space H, and that it also preserves the

determinant. Pulling this map back with ψE we get an action of SU(2)×SU(2) on

R
4 that preserves the distance squared, and thus is an orthogonal transformation.
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It can be checked that only orthogonal transformations of determinant +1 arise

this way, and so we actually get a map into SO(4). Again abusing the notation

slightly, we denote this map by ψE

ψE : SU(2)× SU(2) → SO(4). (5.84)

As in the Lorentz group case, this map is a double cover, with the element

(−1,−1) ∈ SU(2) × SU(2) being sent to the identity element in SO(4). So, we

get the isomorphism

SO(4) = SU(2)× SU(2)/Z2. (5.85)

As in the Lorentz group case, there is no canonical map of this sort, with different

maps being based on different coordinate choices. Different possible maps of this

sort are related by the conjugation inside SU(2)× SU(2).

Finally, let us explain why the set of complex 2 × 2 matrices satisfying

xx† = det(x)I is the same as the space H of quaternions. As is well-known and

easy to check, the matrix representation of the quaternion q = a+ bi+ cj + dk

is given by (
a+ ib c+ id

−c+ id a− ib

)
. (5.86)

These are precisely matrices of the form (5.78), which proves the claim.

5.5.3 Split Signature

In the split signature case we choose coordinates x4, x1, x2, x3 so that the squared

interval is −(x4)2 − (x1)2 + (x2)2 + (x3)2, and associate to any point in R
2,2 the

matrix

xS =

(
x4 + x3 x1 − x2

x1 + x2 x4 − x3

)
. (5.87)

This can be viewed as an analytic continuation ix2 → x2 on (5.65), and removing

the factor of i from in front of the matrix. This is a 2× 2 real matrix. It is clear

that every such matrix can be written in the form (5.87). The squared interval

is (minus) the determinant. We could have kept the factor of i in front of the

matrix in order it to be the case that the interval is the determinant. However,

this would mean having to work with imaginary rather than real matrices. While

this is possible, it does not seem natural given that everything can be chosen

to be real in this case. We could have also changed the metric, but this is not

natural either because it is the metric that naturally arises from the Urbantke

formula with the basis as in (5.31). This justifies our choices.

The group SL(2,R)× SL(2,R) acts on the space of real 2× 2 matrices via

xS → gLxSg
−1
R , gL,R ∈ SL(2,R). (5.88)
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This action preserves the squared interval, and gives a map from SL(2,R) ×
SL(2,R) to O(2, 2), which is actually into SO(2, 2). This map has a nontrivial

kernel Z2, and so we get the isomorphism in the split signature case

SO(2, 2) = SL(2,R)× SL(2,R)/Z2. (5.89)

It is possible to get yet another isomorphism for free from the previous con-

struction. Thus, we can set x4 = 0 and consider tracefree real matrices. The

subgroup of SL(2,R)×SL(2,R) that preserves this space is the diagonal SL(2,R).

On the other hand, the subgroup of SO(2, 2) that acts on the plane x4 = 0 is

SO(1, 2). This gives the isomorphism

SO(1, 2) = SL(2,R)/Z2. (5.90)

5.5.4 Isomorphism SO(3, 3) ∼ SL(4,R)

Let us also prove the isomorphism between the pseudo-orthogonal group of

split signature in dimension six, and the real special linear group in dimension

four. This isomorphism has played an important role in the conceptual proof of

Theorem 5.5.

Let us consider the space Λ2
R

4 of bivectors BIJ in dimension four. The wedge

product makes this into a metric space

〈B1, B2〉∧ = εIJKLB
IJ
1 BKL

2 . (5.91)

As we already know, this metric on Λ2
R

4 is of split signature (3, 3). This creates

a map

ψ : Λ2
R

4 → R
3,3. (5.92)

The group SL(4,R) naturally acts on R
4, and thus there is also the natural

action on Λ2
R

4

SL(4,R) 
 G : Λ2
R

4 → Λ2
R

4, BIJ → (GB)IJ = GI
KGJ

LB
KL.

Because det(G) = 1, this action preserves the metric 〈GB1, GB2〉∧ = 〈B1, B2〉∧.
Thus, the push-forward of the action of SL(4,R) on Λ2

R
4 to R

3,3 is an isometry,

and we get a map

ψ : SL(4,R) → SO(3, 3). (5.93)

It is clear that this map has a nontrivial kernel, because both G = I,−I result

in trivial action on R
3,3. Thus, we obtain the double cover

SO(3, 3) = SL(4,R)/Z2 (5.94)

that was used in the proof of Theorem 5.5. The relation (5.94) is usually referred

to in the literature as the twistor isomorphism, for its complexified version has

a direct link to twistor theory. This will be explained in Chapter 9.
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5.5.5 Lie Algebras: Lorentz Group

Let us now describe how the discussed previously isomorphisms become realised

at the Lie algebra level. We will see that this is related to the SD/ASD decom-

positions.

We start our discussion with the Lorentz group O(1, 3). This is the group of

4×4 matricesmI
J that preserve the Minkowski bilinear formmI

KmJ
Lη

KL = ηIJ .

As before, our convention is that it is the direction x4 that is timelike. In index-

free notations the defining property of O(1, 3) reads mηmT = η, where mT is

the transpose. In infinitesimal form m = exp tX and we get Xη + ηXT = 0

or XI
KηKJ + XJ

KηIK = 0. Thus, the Lie algebra of Lorentz group can be

parametrised by 4 × 4 antisymmetric matrices XIJ := XI
KηKJ . A convenient

basis in the space of such matrices is (XMN)IJ = ηMIηNJ − ηMJηNI ,M,

N = 1, 2, 3, 4. Then the matrices (XMN)IJ are as follows. First, we have three

antisymmetric matrices X12, X23, and X31

X12 := −K3 =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎠ , X23 := −K1 =

⎛⎜⎜⎝
0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

⎞⎟⎟⎠ ,

X31 := −K2 =

⎛⎜⎜⎝
0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞⎟⎟⎠ .

Then, we have three symmetric matrices X41, X42, and X43

X41 := −P 1 =

⎛⎜⎜⎝
0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0

⎞⎟⎟⎠ , X42 := −P 2 =

⎛⎜⎜⎝
0 0 0 0

0 0 0 −1

0 0 0 0

0 −1 0 0

⎞⎟⎟⎠ ,

X43 := −P 3 =

⎛⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 −1

0 0 −1 0

⎞⎟⎟⎠ .

The corresponding matrix Lie algebra is

[Ki,Kj ] = εijkK
k, [Ki, P j ] = εijkP

k, [P i, P j ] = −εijkK
k. (5.95)

The Lie algebra acts on vectors from R
1,3 via matrix multiplication xI → XI

Jx
J .

We also note that the described Lorentz group Lie algebra so(1, 3) can be ob-

tained as the complexification of the Lie algebra of rotations so(3). Indeed, (5.95)

is just the Lie algebra over R with generators Ki, P i = iKi, where Ki are the

usual generators of so(3).
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Let us now see how the isomorphism (5.71) manifests itself at the Lie algebra

level. Any element of SL(2,C) can be written in the exponential form as

g = exp

(
− i

2
σiξi

)
∈ SL(2,C), ξi ∈ C

3. (5.96)

Then, at the infinitesimal level, the Lie algebra of SL(2,C) is composed of

tracefree complex 2×2 matrices, of which a basis (over C) is provided by (−i/2)σi.

A Lie algebra element −(i/2)σiξi acts on anti-Hermitian matrices xL via

xL → −(i/2)σiξixL + xL(i/2)σ
iξ∗i . (5.97)

Pulling back this action with ψL to R
1,3 gives a concrete realisation of the

corresponding Lie algebra isomorphism in (5.1).

It is easy to check that the generators Ki of rotations in this representation

are given by anti-Hermitian matrices Ki = −(i/2)σi, and generators of boosts

are the Hermitian matrices P i = (1/2)σi. It is easy to check that (5.95) is indeed

satisfied. Thus, a general so(1, 3) Lie algebra element X = Kiai +P ibi that acts

on R
1,3 via xI → XI

Jx
J gets represented as a tracefree complex 2 × 2 matrix

−(i/2)σiξi ∈ sl(2,C) with

ξi = ai + ibi. (5.98)

The push-forward of the Lie algebra action on R
1,3 via ψL is the action (5.97) on

anti-Hermitian matrices xL, as is not hard to check by an explicit verification.

Another way in which the Lorentz Lie algebra isomorphism in (5.1) can be

made concrete is as follows. Let us consider the complexification of the Lorentz

Lie algebra so(1, 3) and introduce

Li :=
1

2
(Ki − iP i), Ri :=

1

2
(Ki + iP i). (5.99)

Using (5.95) it is easy to check that

[Li, Rj ] = 0, [Li, Lj ] = εijkL
k, [Ri, Rj ] = εijkR

k. (5.100)

So, indeed, the complexification of the so(1, 3) Lie algebra is given by two

commuting sl(2,C) Lie algebras. For real elements of so(1, 3) we can write

Kiai + P ibi =
1

2
(Ki − iP i)(ai + ibi) +

1

2
(Ki + iP i)(ai − ibi) = Liξi +Riξ∗i ,

(5.101)

where ξi is given by (5.98). We note that in the representation of the Lie algebra

by 2 × 2 complex matrices the generator Li is correctly reproduced when we

take Ki = −(i/2)σi and P i = (1/2)σi. The generator Ri is then its Hermitian

conjugate and we have have Li = −(i/2)σi, Ri = (i/2)σi. The formula (5.101)

and the corresponding action this generates on R
1,3 is the so(1, 3) counterpart

of the sl(2,C) formula (5.97).
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Finally, we rewrite the generators Li, Ri in terms of the matrix generators

XMN and observe that there is a relation to the SD/ASD decomposition. We

have

L1 =
1

2
(−X23 + iX41), L2 =

1

2
(−X31 + iX42), L3 =

1

2
(−X12 + iX43),

or, more compactly

Li =
i

2

(
X4i − 1

2i
εijkX

jk

)
= i(P+X)4i, (5.102)

where

(P+X)MN =
1

2

(
XMN +

1

2i
εMN

RSX
RS

)
(5.103)

is the SD projection. Here we have used ε4ijk = −εijk. Similarly, we have

Ri = −i(P−X)4i. It is thus clear that the decomposition (5.100) is the

decomposition of the algebra parametrised by 4×4 anti-symmetric matrices into

its SD and ASD pieces. Up to a multiple of i and possibly a sign, the generator

Li, Ri are extracted as the 4i components of the SD, ASD projections of the real

generators XMN .

5.5.6 Lie Algebras: Euclidean Case

Let us also work out explicitly the Euclidean signature case. In this case, there

is no need to complexify the Lie algebra so(4) to exhibit the two commuting

subalgebras, so things are bit easier.

The Lie algebra so(4) is composed of antisymmetric matrices XI
J . As gener-

ators we can similarly take (XMN)IJ = δMIδNJ − δMJδ
NI . We can also define

Ki = −(1/2)εijkX
jk and P i = −X4i, with the commutational relations being

[Ki,Kj ] = εijkK
k, [Ki, P j ] = εijkP

k, [P i, P j ] = εijkK
k. (5.104)

Thus, the only difference with (5.95) is the absence on the sign on the right-hand

side of the last commutator. We can now form two mutually commuting sets of

generators

Li =
1

2
(Ki − P i), Ri =

1

2
(Ki + P i), (5.105)

with commutation relations being as in (5.100). A general Lie algebra element

can be written as

Kiai + P ibi =
1

2
(Ki − P i)(ai − bi) +

1

2
(Ki + P i)(ai + bi) = LiξLi +RiξRi ,

with

ξLi = ai − bi, ξRi = ai + bi. (5.106)
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This decomposition of the Lie algebra is clearly related to the SD–ASD decom-

position of the space of 4× 4 antisymmetric matrices because

Li =
1

2

(
X4i − 1

2
εijkX

jk

)
= (P+X)4i, (5.107)

where (P+X)MN is the SD projection of the antisymmetric matrix XMN . Once

again, we use the orientation convention ε4ijk = −εijk. Similarly, for the right

generators we have Ri = −(P−X)4i. So, up to a sign, the generators of the two

mutually commuting su(2) Lie algebras are the 4i components of the SD and

ASD projections of the generators XMN .

It is also worth spelling out the 2 × 2 realisation of the previous Lie algebra.

It is not hard to check that under the map (5.84), and the corresponding map

of Lie algebras, the transformation

xE → − i

2
σiξLi xE + xE

i

2
σiξRi (5.108)

corresponds to the transformation xI → XI
Jx

J .

The split signature case is analogous to that of Euclidean signature, with the

exception of all relevant matrices being real. It is left to the reader as an exercise.

5.6 The Self-Dual Part of the Spin Connection

Recall from the previous chapter that we introduced the spin connection ωI
J

as a connection in a vector bundle E with fibres copies of Rp,q. This bundle is

required to be in the same topological class as the tangent bundle TM , and the

frame, or soldering form eI , is the object that provides this isomorphism.

The spin connection gives rise to a connection in Λ2E, which is the second

antisymmetric power of the bundle E. Sections of Λ2E are objects of the type

XIJ = X [IJ], and the covariant derivative acts on them as

dωXIJ = dXIJ + ωI
KXKJ + ωJ

KXIK . (5.109)

In four dimensions the bundle Λ2E splits into a direct sum of bundles

Λ2E = Λ+E ⊕ Λ−E, (5.110)

and the spin connection induces connections on Λ±E. We shall refer to these

connections as the SD and ASD parts of the spin connection. Our task in this

section is to develop a convenient way to work with these connections.

Because the spin connection preserves both the metric in E and the εIJKL

tensor, the covariant derivative in E commutes with the decomposition in (5.110).

In other words, we can first project a section XIJ and then compute its covariant

derivative, or first compute the derivative and then project. Also, we expect

the connections in Λ±E to be related to the SD/ASD projections of the spin

connection, i.e., objects (P±ω)
IJ . The specific relations are signature-dependent,

as we shall now see.
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5.6.1 Lorentzian Case

It is easiest to understand the connections arising in Λ±E by an explicit compu-

tation. Thus, let us compute the 41 component of the SD projection of dωXIJ .

We have

2i(P+d
ωX)41 = idωX41 − dωX23 (5.111)

= +i(dX41 + ω4
2X

21 + ω4
3X

31 + ω1
2X

42 + ω1
3X

43)

− (dX23 + ω2
4X

43 + ω2
1X

13 + ω3
4X

24 + ω3
1X

21).

This can be rewritten as

d(iX41 −X23) +A2
L(iX

43 −X12)−A3
L(iX

42 −X31), (5.112)

where

A2
L = iω42 − ω31, A3

L = iω43 − ω12, (5.113)

where the indices of ωI
J are raised with the Minkowski metric ηIJ =

diag(1, 1, 1,−1). The other 4i components of (P+DX)IJ are computed similarly.

Thus, if we introduce

Ai
L := 2i(P+ω)

4i (5.114)

and

Xi := 2i(P+X)4i, (5.115)

then we have

2i(P+d
ωX)4i = dXi + εijkA

jXk. (5.116)

This explicitly shows that the connection on Λ+E is a (complexified) SO(3)

connection (5.114), with the covariant derivative acting on 4i components of the

SD tensors (P+X)IJ via (5.116). It is also clear that a SD tensor is completely

characterised by its 4i components, because the ij components are related to the

4i components by self-duality. Indeed, for any SD tensor XIJ
+

0 = 2i(P−X+)
4i = iX4i

+ +
1

2
εijkX

jk
+ , (5.117)

which gives the desired relation. To summarise, we learn that the connection

induced by the spin connection in Λ+E is an SO(3,C) connection arising as the

SD projection (5.114) of the spin connection. This is of course not surprising in

view of the isomorphism (5.1).

Let us also note that we have based the identification (5.114) of the SD

part of the spin connection with an SO(3,C) connection on a concrete choice

of basis in the fibres of E. This is similar to our previous discussion of the

isomorphism (5.71) and the corresponding isomorphism of Lie algebras. While

the concrete isomorphism ψL that was constructed via anti-Hermitian matrices



162 The ‘Chiral’ Formulation of General Relativity

(5.65) was basis-dependent, different choices of basis gave results that are con-

jugate in SL(2,C). Similarly here, while the identifications (5.114) and (5.115)

are basis-dependent, different choices of basis give results that are conjugate

in SO(3,C).

5.6.2 Euclidean Case

The Euclidean case reasoning is completely analogous. We have

2(P+d
ωX)41 = dωX41 − dωX23 = (5.118)

+dX41 + ω4
2X

21 + ω4
3X

31 + ω1
2X

42 + ω1
3X

43

−(dX23 + ω2
4X

43 + ω2
1X

13 + ω3
4X

24 + ω3
1X

21).

This can be rewritten as

d(X41 −X23) +A2
E(X

43 −X12)−A3
E(X

42 −X31), (5.119)

where

A2
E = ω42 − ω31, A3

E = ω43 − ω12. (5.120)

More generally, if we introduce

Ai
E := 2(P+ω)

4i (5.121)

and

Xi := 2(P+X)4i, (5.122)

then we have

2(P+d
ωX)4i = dXi + εijkA

jXk. (5.123)

Thus, again the connection on Λ+E is an SO(3) connection given by the SD

projection (5.121) of the spin connection. Again, the specific identification (5.121)

is basis-dependent, but different choices of basis give conjugate results, and in

this sense are immaterial.

The case of the split signature is analogous, except that it is an SO(1, 2)

connection that arises in this case. The formula for the covariant derivative in

this case coincides with (5.123), with the only subtlety being that the indices on

εijk are lowered with the indefinite metric ηij .

5.6.3 The Curvature

Because the covariant derivative dω commutes with the SD/ASD decomposition

of E, the curvature of the connection arising on Λ+E coincides with the SD
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projection of the curvature RIJ(ω). Let us derive the relation between the cur-

vature of Ai
L,E,S introduced Sections 5.6.1 and 5.6.2, and this projection.

Let us do the Lorentzian signature computation. All other signatures are

analogous. We have

2i(P+R)41 = iR41 −R23 = i(dω41 + ω4
2ω

21 + ω4
3ω

31) (5.124)

− (dω23 + ω2
4ω

43 + ω2
1ω

13).

This can be rewritten as

d(iω41 − ω23) + (iω42 − ω31)(iω43 − ω12) = dA1
L +A2

LA
3
L. (5.125)

Thus, we have

2i(P+R)4i = F i(AL), (5.126)

where the curvature of an SO(3) connection is given by

F i(A) = dAi +
1

2
εijkA

jAk. (5.127)

In the Euclidean and split cases we have instead 2(P+R)4i = F i(AE,S). Thus,

we see that the curvature of the connection on Λ+E can be identified with

the curvature of the corresponding AL,E,S connections – SO(3,C) connection

in the Lorentzian case, SO(3,R) connection in the Euclidean case and SO(1, 2)

connection in the split case. This is of course as expected in view of the

isomorphisms (5.1).

5.7 The Chiral Soldering Form

The last bit of geometry that we need to understand the construction of the

‘chiral’ Plebański formulation of GR is the notion of what can be referred to as

the chiral soldering form. This object is fundamental in this description of GR,

and can be introduced in complete parallel to how the tetrad was introduced

previously. Thus, let us remind the reader that the tetrad was viewed as an

object that fixes the isomorphism between an abstract vector bundle with fibres

copies of Rp,q and the tangent bundle TM . Similarly, we now introduce a vector

bundle whose fibres are three-dimensional and that is required to be globally

in the same topological class as the bundle of SD 2-forms on M . We then

introduce an object Σ that gives this isomorphism. This object encodes all

information about the metric. A connection is then introduced in this bundle,

and there is an analog of the torsion-free condition that fixes the connection

in terms of Σ. It then turns out that this Σ-determined connection is closely

related to the SD part of the spin connection that we have studied in the

previous section.
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5.7.1 The Chiral Soldering Form

With the previous remarks in mind, we introduce a vector bundle F ↪→ S → M

with fibres F being copies of R3,R1,2 in the case of the Riemannian and split

signatures, and copies of C3 in the case of the Lorentzian signature. The fibres

are assumed to be equipped with a metric that is (positive) definite in the case

of the Riemannian signature setup, indefinite in the case of split signature, and

complex in the case of the Lorentzian signature. One requires the bundle S to

be isomorphic to the bundle of SD 2-forms on M . We note that the topological

type of the bundle Λ+ of SD 2-forms on M with respect to some metric (of a

given signature) is metric-independent.

The object to which we refer as the chiral soldering form is then defined as

the map that provides the isomorphism between S and a three-dimensional sub-

bundle Λ+ ⊂ Λ2. Thus, we define Σ to be a vector bundle map

Σ : S → Λ2. (5.128)

In components, if Xi is a section of S then Σ(X) = ΣiXjδij ∈ Λ2, where

δij is the metric in the fibres. In the case of the Lorentzian signature setup

it is the space of complexified 2-forms that appears on the right-hand side of

this map.

An additional and very important property that the map Σ is required to

satisfy is the compatibility between the wedge product metric in Λ2 and the

metric in S. Indeed, we can pull back the wedge product conformal metric in Λ2

to S. This leads to the following important definition

Definition 5.10 A chiral soldering form Σ is said to satisfy the constraints if

the pullback of the wedge-product metric on Λ2 to S coincides with the metric

〈·, ·〉 that exists on the fibres of S

Σ(X)Σ(Y )/ε ∼ 〈X,Y 〉, X, Y ∈ S. (5.129)

In this formula, ∼ stands for proportional, and ε is a top form. It is clear that

this condition is a geometric way of stating the orthonormality conditions on Σi

as appear in (5.38) and (5.39).

In the case of the Lorentzian signature we also want to impose appropriate

‘reality’ conditions on Σ.

Definition 5.11 A complex-valued chiral soldering form Σ is said to satisfy the

reality conditions if ΣΣ = 0, where Σ denotes the map Σ followed by the complex

conjugation, and Trδ(ΣΣ) = 6iεΣ, where δ is the metric in E and εΣ is a real

4-form.

The discussion of the previous sections shows that a chiral soldering form Σ

that satisfies the constraints, and in the case of the Lorentzian signature satisfies

the reality conditions, encodes a metric of appropriate signature. The metric is
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explicitly given by (5.47), where one may have to multiply Σ by i to get a real

rather than imaginary metric in the case of the Lorentzian signature, and by

(5.61) in the other two cases.

The purpose of the condition (5.129) is to make sure that the object Σ describes

just the metric, together with an orthonormal frame for S, and does not contain

any additional geometric information. This can be verified by a count of variables

present in Σ. This starts its life like a collection of three 2-forms. A 2-form in

four dimensions needs 6 numbers (per point) to be specified. Thus, Σ carries

18 numbers per point of M . The condition (5.129) is then the statement that

a certain symmetric 3 × 3 matrix constructed from Σ is proportional to the

given matrix, the metric. This is five conditions, because the proportionality

coefficient is left unspecified. We then have 18 − 5 = 13 = 10 + 3, which is the

number of components of a metric in four dimensions, plus three Euler angles

describing a rotation that is needed to bring an orthonormal basis in the fibre

to a given one.

The count in the previous paragraph is similar to that in the case of the tetrad.

A tetrad is a collection of 16 components, and we have 16 = 10+ 6, which is the

number of components in the metric plus the dimension of the ‘Lorentz’ group

that maps an orthonormal frame into a given one. So, we learn that the chiral

soldering form Σ, subject to the conditions (5.129), carries less components than

a tetrad.

The count is slightly more involved in the case of Lorentzian signature. In this

case the 2-forms Σi are complex, and so carry 18 complex parameters per point.

The conditions (5.129) are 5 complex conditions, which gives us 13 complex

parameters. We then impose the reality conditions, which are 10 real conditions.

This cuts the dimension of the parameter space in Σ down to 10 real describing

a real metric plus 3 complex, this being the dimension of the Lorentz group.

Thus, in this case, Σ, after all the constraints and reality conditions are imposed,

carries the same number of parameters as the tetrad.

5.7.2 Relation to the Tetrad

The Theorems 5.6–5.8 show that there is a relation between a soldering form

Σ that satisfies the constraints (and satisfies reality conditions in the case of

the Lorentzian signature) and a tetrad for the metric defined by Σ. Indeed, the

arguments in the proofs of Theorems 5.6–5.8 show that the object Σ can always

be written in a canonical form in terms of a tetrad for the metric it defines. This

is the form (5.31), with possibly the sign in front of Σ3 changed, and possibly

all Σi multiplied by the imaginary unit in the Lorentzian signature case and Σi

replaced by ASD forms Σi.

We then note that the basic 2-forms (5.31) can be obtained from the SD

projections of the 2-forms eIeJ , where eI is the tetrad, with respect to the

‘internal’ indices IJ . Indeed, we have
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(P+ee)
IJ =

1

2

(
eIeJ +

1

2
√
σ
εIJKLe

KeL
)
, (5.130)

where, as before, σ is the sign with
√
σ = i for the Lorentzian signature and√

σ = 1 for the other two cases. It is then easy to see that the 4i components

of this SD projection gives use the basic 2-forms (5.31). Indeed, we have, in the

Euclidean and split cases

2(P+ee)
4i = e4ei − 1

2
εijke

jek = Σi
E,S, (5.131)

and in the Lorentzian case

2i(P+ee)
4i = ie4ei − 1

2
εijke

jek = Σi
L. (5.132)

Here the indices on εijk are lowered with the metric δij in the Euclidean and

Lorentzian cases and metric ηij = diag(1,−1,−1) in the split case. In all cases

the assumed orientation of εIJKL is ε1234 = +1. We have also used ε4ijk = −εijk.

Thus, in all cases, the basic SD 2-forms (5.31) are just multiples of 4i components

of the SD projections of 2-forms eIeJ . This is, of course, not surprising, because

the SD projections of 2-forms eIeJ are SD as 2-forms, and thus span Λ+.

We note that this is very similar to the discussed decomposition of the Lie

algebra of the ‘Lorentz’ groups into its SD/ASD parts. Indeed, we have seen

that one way to understand the accidental isomorphisms (5.1) is by carrying

out the SD/ASD decomposition of the space of 4 × 4 antisymmetric matrices

that in all signature cases parametrises the Lie algebra. Similarly, an object

(ee)IJ it is IJ antisymmetric, and its SD/ASD projection becomes possible, and

related to Σi.

So, we have established that the canonical, i.e., as in (5.31), chiral soldering

form Σi can be identified with the appropriate multiples of the 4i components of

the SD projection of the form eIeJ , where eI is the tetrad for the metric that Σi

defines. There remains a subtlety that in each case the form Σ3, as comes from

solving the constraints (and reality conditions in the Lorentzian case), may be

minus of what it is in (5.31), and that in the Lorentzian case the forms Σi may

be given by ±i times the canonical ASD 2-forms.

5.7.3 The Torsion-Free Condition

Let us now introduce a metric connection in S. We will denote it by Ai, so that

it defines a covariant derivative on sections Xi of S via

dAXi = dXi + εijkA
jXk, (5.133)

where again the indices on εijk are lowered using the appropriate metrics, which

is δij in the case of the Euclidean and Lorentzian signatures, and ηij in the split

signature case.
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We can then introduce the torsion

dAΣi = dΣi + εijkA
jΣk, (5.134)

which is a 3-form with values in S. We can require the torsion to be zero, which

gives a set of algebraic equations on Ai in terms of derivatives of Σi. One easily

checks that the number of equations here is the same as the number of unknowns.

It is not hard to prove that there is unique solution to this equation, which can

be exhibited explicitly. We state this as

Theorem 5.12 When the chiral soldering form satisfies the constraints (and

satisfies the reality conditions in the Lorentzian case), there is a unique torsion-

free connection satisfying dAΣ = 0.

In fact, in one of the following chapters we will see that a more general

statement is possible, and there is a unique solution of the torsion-free equation

for Ai, provided that the chiral soldering form satisfies some nondegeneracy

condition. The statement of the Theorem 5.12 is in complete parallel with the

statement of Lemma 3.2 in the case of tetrads.

Let us spell out the Lorentzian signature proof. We use the metric defined by

Σi and take the Hodge dual of the torsion-free condition, which is a 3-form with

values in S. Then, using the self-duality of Σi we get the following equation

εijkΣ
j
μ
νAk

ν =
1

2i
εμ

νρσdνΣ
i
ρσ. (5.135)

Let us rewrite this equation as

JΣ(A) =
1

2i
∗(dΣ), (5.136)

where we introduced an operator

JΣ : Λ1 ⊗ S → Λ1 ⊗ S, JΣ : Ai
μ → εijkΣ

j
μ
νAk

ν . (5.137)

To solve (5.136) we need to find the inverse of JΣ. For this we can use the fact

that when Σi satisfies the constraints and reality conditions, they are of the

form determined by the Theorem 5.6. This means that the objects Σi
μ
ν satisfy

the algebra of quaternions

Σi
μ
ρΣj

ρ
ν = −δijδμ

ν + εijkΣ
k
μ
ν . (5.138)

This is true in the case A+. In the case A−, there is a minus sign in front of the

second term on the right-hand side. In cases B, there is an extra factor of ±i

in the second term. For definiteness, we assume the relation (5.138). The other

cases can be treated analogously.

Thus, assuming that (5.138) holds, a simple computation gives

J2
Σ = 2I+ JΣ. (5.139)
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This means that

J−1
Σ =

1

2
(−I+ JΣ). (5.140)

This solves the torsion-free equation, explicitly determines Ai in terms of the

derivatives of Σi, and thus proves the theorem.

A further characterisation of the torsion-free connection Ai is possible. Thus,

when Σi are as in (5.131) and (5.132), this connection can be explicitly described

in terms of the SD part of the spin connection studied in the previous section.

Let us state this as

Theorem 5.13 When Σi are given by the SD projections of the forms eIeJ ,

the torsion-free connection Ai is given by the SD part of the torsion-free spin

connection ωIJ .

The proof follows easily by combining facts established in the previous section.

Thus, we know from (5.116) and (5.123) that for Ai given by the SD projec-

tion of the spin connection, the A-covariant derivative coincides with the SD

projection of the spin connection covariant derivative. Thus, we have, in the

Lorentzian case

dAΣi = 2i(P+d
ωee)4i = 0, (5.141)

where the last equality is the consequence of the torsion-free condition for the

spin connection dωeI = 0. In the Euclidean and split cases the only difference is

that there is no factor of i on the right-hand side of of the first equality here.

Let us also find an analog of this statement for the situation when Σ3 is minus

what it is in (5.31). It is not hard to check that this just changes some signs

in the solution for Ai. Thus, we have the components A1,2 both change signs

as compared to the solution for the case when Σi is as in (5.31). This happens

for all the signatures. It is clear also that the curvature components F 1,2 change

signs as compared to what they are in the ‘canonical’ case (5.31). We do not

discuss the case of Σi being related to ASD 2-forms because we will later show

that this case does not arise in the full Plebański setup.

5.7.4 An Example of Curvature Computation Using the Chiral

Formalism

The described chiral formalism is a powerful computational tool, as the following

example aims to demonstrate. The idea of this formalism is to encode a given

metric into a collection of orthonormal SD 2-forms as in (5.31). One computes the

connection Ai from the torsion-free condition, and then its curvature gives access

to the SD part of the curvature of the spin connection, i.e., effectively to the SD

projection of the Riemann curvature with respect to one pair of indices. As we

know, for all signature cases this is sufficient to impose the Einstein condition.



5.7 The Chiral Soldering Form 169

In the case of the Lorentzian signature one gets all of the Riemann curvature

this way, because the ASD part is the complex conjugate of the SD one.

Let us see how this works on the example of the Lorentzian signature spheri-

cally symmetric metric (3.48) whose tetrad is given by (3.49). We label t = 4, r =

1, θ = 2, and φ = 3. The basis of the Lorentzian signature SD 2-forms (5.31) is

then

Σ1 = ifgdtdr − r2 sin θdθdφ, Σ2 = ifrdtdθ − gr sin θdφdr, (5.142)

Σ3 = ifr sin θdtdφ− grdrdθ.

The torsion-free connection Ai is computed quite straightforwardly. Thus, we

have

dΣ1 = −2r sin θdrdθdφ. (5.143)

This must be equal to

dΣ1 = −A2Σ3 +A3Σ2. (5.144)

Given that there is no dt on the right-hand side of (5.143) it is natural to expect

that A2 ∼ dφ and A3 ∼ dθ. The most natural guess is then

A2 = −1

g
sin θdφ, A3 =

1

g
dθ, (5.145)

which fulfils (5.144). Let us now consider dΣ2. We have

dΣ2 = i(fr)′drdtdθ − gr cos θdθdφdr. (5.146)

This should be equal to

dΣ2 = −A3Σ1 +A1Σ3. (5.147)

Assuming that A3 is correctly given by (5.145), which will prove to be right, it

suggests that A1 has terms dt and dφ. The relevant equation is satisfied for

A1 =
if ′

g
dt+ cos θdφ. (5.148)

One can then check that the equation DΣ3 = 0 is satisfied with the connection

given by (5.145) and (5.148). We note that this connection is of course the same

as the SD part of the spin connection determined in (3.51), (3.54) and (3.56). If

one wishes, the full spin connection is recoverable in this case of the Lorentzian

signature by extracting the real and imaginary parts of the connection Ai. We

note that the spin connection is computed by the chiral method with less steps

required, and also that the connection information is stored more compactly,

into three complex 1-forms as compared to six real 1-forms in the tetrad method.

These are the early signs of the superiority of the chiral method as compared to

the tetrad method.
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The main advantage of the chiral method becomes manifest when one com-

putes the curvatures and writes the Einstein condition. The curvature compo-

nents are given by

F 1 = −i

(
f ′

g

)′

dtdr −
(
1− 1

g2

)
sin θdθdφ, (5.149)

F 2 = − if ′

g2
dtdθ +

(
1

g

)′

sin θdφdr,

F 3 = − if ′

g2
sin θdtdφ+

(
1

g

)′

drdθ.

At this step, the calculations are still very similar to those of the tetrad method;

it’s just that the result is more compactly stored as three complex 2-forms as

compared to six real 2-forms. It is in the process of extracting the Einstein con-

dition that the real power of the chiral method becomes manifest. In the tetrad

method, one needed to form the Ricci tensor, which involved some laborious and

prone to sign error manipulations. In the chiral method we simply require that

the curvature is SD as a 2-form, i.e., that it is linear combination of the 2-forms

Σi. Comparison with Σi then shows that each F i can only be proportional to

the corresponding Σi. One also easily extract the equations necessary for this to

happen

− (f ′/g)′

1− 1/g2
=

fg

r2
,

f ′/g2

(1/g)′
=

fr

gr
. (5.150)

The second of these equations immediately gives the correct

f ′

f
+

g′

g
= 0, (5.151)

which implies that fg = conts, which can be set to unity by rescaling the time

coordinate. The first equation can then be written as

(1− f2)′′ =
2

r2
(1− f2), (5.152)

whose solution is

1− f2 =
r+
r

± r2

l2
, (5.153)

where r+, l
2 are constants of integration. All in all, we see that the Schwarzschild–

de Sitter solution presents itself more readily via the chiral method as compared

to the tetrad method. The chiral method also gives directly the useful combina-

tions of the Einstein equations obtained via the tetrad method.

The equations in (5.150) have been obtained from the requirement that the

curvature F i is SD as a 2-form. In the language of the curvature decomposition

(5.7) this is the statement that the SD–ASD part of the Riemann curvature

B = 0. This gives 9 out of 10 equations in general. There is one more equation,
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which is the statement that the scalar curvature is equal to a multiple of the

cosmological constant. Let us see what this equation is via the chiral method. If

the statement that the curvature F i is SD is written as F i = M ijΣj , for some

matrix M ij , then the scalar curvature can be extracted by simply computing the

trace of this matrix. In the case of the spherical symmetry under consideration,

when the equation (5.150) is satisfied, the matrix M ij is given by

M ij = −diag

(
(f ′/g)′

fg
,

f ′

fg2r
,

f ′

fg2r

)
. (5.154)

When fg = 1 this simplifies to

M ij = −1

2
diag

(
(f2)′′,

(f2)′

r
,
(f2)′

r

)
. (5.155)

For the solution (5.153) this becomes

M ij = diag

(
r+
r3

± 1

l2
,− r+

2r3
± 1

l2
,− r+

2r3
± 1

l2

)
. (5.156)

We see that

Tr(M) = ± 3

l2
. (5.157)

This must be equal to the cosmological constant and so

Λ

3
= ± 1

l2
, (5.158)

which identifies the constant of integration l as the radius of curvature of the

relevant constant curvature space.

All in all, we hope that our presentation demonstrates that the Schwarzschild

solution of GR is obtained much more easily with the help of the chiral formalism.

5.8 Plebański Formulation of GR

Plebański’s formulation (1977) of GR is based on the previously described geo-

metric constructions. As we know from (5.25) it is possible to write a first-order

Lagrangian for GR that contains only the SD part of the spin connection. This

Lagrangian also only depends on the tetrad in the combination (P+ee)
IJ , where

P+ is the SD projector. As our previous discussion shows, the SD part of the

spin connection can be encoded by an SO(3), SO(3,C), or SO(1, 2) connection,

depending on the signature. The relevant formulas are (5.114) and (5.121). We

have also seen that the SD part of the wedge product of two tetrads is naturally

encoded in an so(3), so(3,C), or so(1, 2) valued 2-form Σi. The relevant formulas

are (5.131) and (5.132).

The idea now is to write a first-order action of BF-type with Σi and Ai

as the basic fields. However, not every Lie algebra–valued 2-form Σi is the
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SD projection of the wedge products of tetrads for some metric. However, we

can add to the action a Lagrange multiplier term that will impose conditions

that would guarantee that this is the case. This is completely analogous to the

BF-type formalism that was developed for the full non-chiral theory earlier. The

constraints that need to be imposed on Σi have also been previously discussed

in this chapter. Thus, any Lie algebra–valued 2-form that satisfies the condition

(5.129), as well as reality conditions in the Lorentzian case, is the SD projection

of the wedge product of two copies of the tetrad, as discussed in Section 5.7.2.

This gives all the required ingredients to state an action whose Euler–Lagrange

equations are as desired.

The Plebański action reads

SPleb[Σ, A,Ψ] =
1

8πG
√
σ

∫
ΣiFi −

1

2

(
Ψij +

Λ

3
δij

)
ΣiΣj . (5.159)

Here the index on F i is lowered with the metric δij in the Lorentzian and

Euclidean cases, and ηij in the split case. Also, in the case of the split signature,

one must use the metric ηij in place of δij in the second term in (5.159). Note

that in the case of the Lorentzian signature, all fields here need to be taken to

be complex-valued, and so this action is not manifestly real. We will return to

this point.

Varying this action with respect to the Lagrange multiplier field Ψij , which is

required to be tracefree, we get the constraint

ΣiΣj ∼ δij (5.160)

in the cases of the Euclidean and Lorentzian signatures, and ΣiΣj ∼ ηij in the

split signature case. These are the already discussed constraints (5.129). As the

discussion of the previous sections shows, in Euclidean and split signatures, this

constraint implies that Σi can be written in terms of the SD projection of the

wedge product of two tetrads eIeJ as (5.131), with possibly Σ3 being minus of

what it is in the case of the SD projection of eIeJ .

In Lorentzian signature, all fields are complex-valued, and one must impose

appropriate reality conditions. It is sufficient to impose the reality conditions on

the metric-like field Σi, as the appropriate reality condition on the connection

then gets imposed automatically by the field equations. The conditions on the

2-form field are discussed previously

ΣiΣj = 0, Re
(
ΣiΣi

)
= 0. (5.161)

The first of these equations gives nine conditions, which guarantee that conformal

class of the metric (5.47) is real, while the last condition gives the reality of the

volume form.

If one wishes, the previous Lorentzian signature reality conditions can be

imposed with Lagrange multiplier terms added to the action. However, this

makes the formalism less elegant, and so we will refrain from doing so in this
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book, always imposing the reality conditions (5.161) on complex solutions of the

theory (5.159) to select those that admit a real interpretation.

In the Lorentzian case, as Theorem 5.6 shows, the conditions (5.160), together

with the reality conditions (5.161), imply that Σi is related to the SD projection

of the wedge product of two tetrads eIeJ , for the metric defined by Σ; see (5.132).

There is also a possibility that Σ3 is minus what it is in the canonical case of

the SD projection of eIeJ . Another possibility that arises only in the Lorentzian

case is that Σi can be −i times the canonical ASD 2-form. In all the cases,

the chiral soldering form Σi defines a conformal metric of Lorentzian signature,

via the Urbantke formula (5.47). The volume form εΣ is then extracted from

ΣiΣj = 2iεΣδ
ij .

The other field equations that follow from (5.159) are as follows

dAΣi = 0, Fi =

(
Ψij +

Λ

3
δij

)
Σj . (5.162)

The first of these equations is the previously studied torsion-free condition. To-

gether with the fact that Σi is the SD projection of the wedge product of two

tetrads for the metric defined by Σ, this equation implies that the connection Ai

is a multiple of the 4i component of the SD projection of the spin connection;

see Theorem 5.13. This, in turn, implies that the curvature of Ai is a multiple of

the 4i component of the SD projection of the curvature of the spin connection; see

(5.126). Then, as we know from (5.7), the Einstein condition is equivalent to the

condition that F i is SD as a 2-form, which is precisely what the second equation

in (5.162) says. The second equation in (5.162) also identifies the Lagrange

multiplier field Ψij with the SD part of the Weyl curvature tensor when all

field equations are satisfied. It also correctly imposes the equation that the trace

of the matrix that appears on the right-hand side of the second equation in

(5.162) is equal to the cosmological constant. These considerations explain why

Plebański formalism gives a correct description of GR.

We have verified that Plebański formalism gives the correct description in the

case when the solution of the constraints (5.160) is taken to be the canonical

solution (5.31). But it is also possible that Σ3 is minus what it is in (5.31). In

this case, as we previously discussed, the torsion-free SO(3) connection is still

related to the SD part of the spin connection, and its curvature is still related

to the SD part of the curvature of the spin connection. This means that even

in this case the second equation in (5.162) gives the correct Einstein equations,

modulo the subtlety that the sign in front of the cosmological constant should

be changed.

Let us also discuss the subtlety that, in the Lorentzian signature case, the

solution of the constraints (5.160) together with the reality conditions (5.161)

may be −i times the canonical ASD 2-forms for the metric defined by Σ. In this

case the torsion-free connection Ai will be a multiple of the 4i component of the

ASD projection of the spin connection. Its curvature will then be a multiple of
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the 4i component of the ASD projection of the curvature of the spin connection.

So, the second equation in (5.162) does impose the correct Einstein condition

even in this case, by requiring the ASD projection of the curvature of the spin

connection to be ASD as a 2-form. However, in this case the second equation in

(5.162) cannot be satisfied with real Λ. Indeed, it would be satisfied with real Λ

in the case in which one had the basic ASD 2-forms Σi in place of Σi. However,

in the case under discussion one has iΣi on the right-hand side of the second

equation in (5.162). This is clearly impossible for real Λ. So, we learn that the

case B as discussed in the proof of Theorem 5.6 cannot arise as the solution of

Plebański field equations with real Λ.

We remark that the Plebański formulation, as well as the related formulation

(3.93), is cubic in the fields, even with nonzero cosmological constant. This is

the only known formulation of GR with Λ �= 0 that is cubic. However, there is

a drawback that it is not easy to couple fermions to gravity in this formulation.

One can, of course, always couple matter to the metric defined by Σi, but this

gives a very involved description. One would like to be able to couple matter

directly to the fields present in (5.159), but in the case of fermions, this is not

easy. The only known way of doing this is described in Capovilla et al. (1991)

and uses further Lagrange multipliers.

5.9 Linearisation of the Plebański Action

The purpose of this section is to study the linearisation of the chiral Einstein–

Cartan action (5.25), which we describe as the Plebański action (5.159) with the

constraints ΣiΣj ∼ δij assumed to be satisfied. As we have already said on several

occasions, the chiral trick eliminates half of the spin connection components

and thus leads to a more economic description. In this section we will start to

appreciate this economy at the level of perturbation theory. We will also carry out

the exercise of integrating out the perturbations of the 2-form field of Plebański

formalism, and thus obtain the second-order chiral pure connection action. This

leads to a useful result on an arbitrary Einstein background.

5.9.1 Action to Second Order in Perturbations

Let us start with a background configuration of fields Σi, Ai, and Ψij satisfying

the Plebanski field equations (5.162). We then add a small perturbation to the

fields Σi and Ai. When Σi satisfies the constraints ΣiΣj ∼ δij , the Plebański

Lagrangian reduces to

L = ΣiFi −
Λ

6
ΣiΣi. (5.163)

Its first variation is given by

δL = δΣiFi +ΣiδFi −
Λ

3
δΣiΣi. (5.164)
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However, the perturbation δΣi is not free here, because the linearisation of the

constraints ΣiΣj ∼ δij must hold. We will deal with this later.

Let us also give the expression for the second-order perturbation. We can write

the result as

δ2L = δ2Σi(Fi −
Λ

3
Σi) + 2δΣiδFi +Σiδ2Fi −

Λ

3
δΣiδΣi. (5.165)

The reason why δ2Σi appears is that the object Σi is supposed to satisfy the

constraints and so is not varied freely. Another way to see this is to remember

that the object Σi, when it satisfies the constraints, can be written as the SD

part of the wedge product eIeJ for some frame, and we are really varying this

frame rather than Σi itself. It is then clear that there is also the second-order

part in its variation. It is, however, more efficient to work out this second-order

part from the constraints ΣiΣj ∼ δij rather than work with the SD projector;

see Section 5.9.3.

Taking into account that the variations of the curvature are

δF i = dAδAi, δ2F i = [δA, δA]i ≡ εijkδAjδAk, (5.166)

and that the background satisfies the Plebański field equations (5.162) we can

write the second variation as

δ2L = Ψijδ
2ΣiΣj + 2δΣid

Aai +Σi[a, a]
i − Λ

3
δΣiδΣi, (5.167)

where Ψij is the SD part of the Weyl curvature on the background (which can

be zero), and we denoted δAi ≡ ai.

5.9.2 Alternative Second-Order Action

One can always add to the Plebański Lagrangian a constant multiple of the term

F iFi. This is a total derivative term, whose integral is a multiple of the Pon-

tryagin number for the corresponding SO(3) bundle. We can then adjust the

coefficient in front of this term so that the Plebański action vanishes on the

background F i = (Λ/3)Σi. This is similar to what was done in the context of

the full Einstein–Cartan theory when the action was rewritten in MacDowell–

Mansouri form (3.77). The similar chiral Lagrangian reads

L′ = − 3

2Λ

(
F i − Λ

3
Σi

)(
Fi −

Λ

3
Σi

)
. (5.168)

Indeed, opening the brackets reproduces (5.163) plus a multiple of the Pontryagin

term.

The benefit of using the Lagrangian (5.168) for the linearisation rather than

(5.163) is that each of its two factors vanishes on the background F i = (Λ/3)Σi,
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which means that on this background there is no need in δ2 terms. Indeed, we

have

δ2L′ = − 3

Λ

(
δF i − Λ

3
δΣi

)(
δFi −

Λ

3
δΣi

)
− 3

Λ
ΨijΣ

j

(
δ2F i − Λ

3
δ2Σi

)
.

(5.169)

On a background with Ψij = 0 the term in the second line is absent, which results

in a particularly simple form of the second-order action, to be derived Sections

5.9.4. Such backgrounds are known as gravitational instantons. They can exist

only in Euclidean and split signatures, and correspond to Einstein metrics for

which the SD half of the Weyl curvature vanishes. We will consider these metrics

in more details in the next chapter.

5.9.3 Implications of the Metricity Constraints

Let us decompose the perturbation δΣi into the basis of SD and ASD 2-forms

δΣi = φijΣj + hijΣ̄j . (5.170)

Here φij and hij are general 3 × 3 matrices. The matrix φij can be further

decomposed into its trace, skew, and symmetric tracefree parts

φij = hδij − εijkξk + ψij , (5.171)

where ψij is symmetric tracefree and the sign is for future convenience. No such

decomposition of hij is meaningful because the two indices in this matrix are

really of different types, one refers to a basis in the space of SD 2-forms, while

the other is the index that labels the ASD ones. So, the matrix hij is not further

decomposed.

The first variation of the metricity constraints ΣiΣj ∼ δij reads

δΣ(iΣj) ∼ δij , (5.172)

which should be read as the equation that says that the tracefree part of the

left-hand side must vanish.

In terms of the decomposition (5.170) the equation (5.172) simply says that

ψij = 0. (5.173)

All other irreducible components of δΣi are not constrained to this order in

perturbation.

The second variation of the metricity constraints produces

δ2Σ(iΣj) + δΣiδΣj ∼ δij . (5.174)

The second-order perturbation of Σi can also be decomposed into the basis of

SD and ASD 2-forms, similar to (5.170). The previous equation then implies

that the ψij part of δ2Σi can be expressed in terms of the components of δΣi.
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The are no other consequences of the metricity conditions to this order in the

perturbation. The variations of the metricity constraints can be considered to

third- and fourth-order where they imply more relations between δ2Σi and δΣi.

However, this will not be of interest to us here because we are just after the

second-order terms.

The equation (5.174) implies that when projected on a symmetric tracefree

part, the tensor δ2Σ(iΣj) can be replaced with minus the tensor δΣiδΣj . However,

precisely such projections appear in both (5.167) and (5.169). This gives the

following expressions for the second-order Lagrangians

δ2L = −
(
Ψij +

Λ

3
δij

)
δΣiδΣj + 2δΣid

Aai +Σi[a, a]
i, (5.175)

and

δ2L′ = − 3

Λ

(
dAai − Λ

3
δΣi

)(
dAai −

Λ

3
δΣi

)
− 3

Λ
ΨijΣ

i[a, a]j − 3

Λ
ΨijδΣ

iδΣj .

(5.176)

We will soon see that the form (5.176) is particularly useful on the background

Ψij = 0, while the form (5.175) is useful on an arbitrary Einstein background.

Let us also note that we can rewrite (5.176) as

δ2L′ = −
(
Ψij +

Λ

3
δij

)
δΣiδΣj + 2δΣid

Aai − Λ

3
ΨijΣ

i[a, a]j − 3

Λ
dAaidAai.

(5.177)

It is clear that integrating by parts in the last term in (5.177) and combining

with the term before last gives the last term in (5.175). This explicitly shows that

the previous second-order Lagrangians are equivalent modulo a surface term.

5.9.4 Pure Connection Lagrangian on an Instanton Background

The Lagrangians (5.176) and (5.177), together with the decomposition (5.170)

of δΣi into irreducible components and the fact that the Ψij component in

(5.171) vanishes, give a starting point for chiral perturbation theory. This can

be developed on both Λ = 0 and Λ �= 0 backgrounds. These two cases behave

rather differently in terms of gauges that are available for gauge-fixing of the

SO(3) and the diffeomorphism symmetry, and so need to be treated separately.

We will consider the gravitational perturbation theory in more detail in one of

the following chapters.

In the Λ �= 0 case, the Lagrangians (5.175) and (5.176) can also be used as

the starting point for integrating out the linearised 2-form field to produce a

chiral pure connection description. The exercise of integrating out the 2-form

field is possible at the fully nonlinear level, and the next chapter deals with
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the resulting formalism. However, we can see some of the arising simplifications

already here.

Let us consider a gravitational instanton background on which Ψij = 0. We

then take the second-order Lagrangian in the form (5.176). It takes the sim-

ple form

δ2L′ = − 3

Λ
(dAai − Λ

3
δΣi)2. (5.178)

We also know that the first-order perturbation of the 2-form field is of the form

δΣi = (hδij − εijkξk)Σj + hijΣ̄j . (5.179)

We note that this is a decomposition of so(3) valued 2-form field into its irre-

ducible with respect to Lorentz group components. The matrix φij in (5.170)

is so(3) × so(3)-valued, which is the tensor product of spin one representation

of SO(3) with itself. This decomposes into spin two, spin one, and spin zero

representations. The consequence of the metricity equation (5.172) is that the

spin two component here vanishes.

A similar decomposition is available for the object dAai, which is also an

so(3)-valued 2-form. It also decomposes in 9 + 9 components; in general, all of

them nonvanishing. When we substitute these decompositions into (5.178), the

irreducible components of dAai pair with similar irreducible components of δΣi

and then get squared. There are no mixed terms because different irreducible

components cannot couple to each other. In this way, we get a sum over all

irreducible components of dAai − (Λ/3)δΣi squared, where in each component

apart from the spin two there is both parts coming from dAai and from δΣi.

There is no spin two component in the δΣi, and so this component of the dAai

is just squared in the previous action and does not couple to δΣi.

The procedure of integrating out δΣi is then extremely simple. The equation

for each irreducible component of δΣi will just say that it is equal to 3/Λ times

the corresponding component of dAai. Substituting this into the Lagrangian

(5.178) we see that most of the terms vanish. The only nonvanishing term is the

spin two part of dAai squared. To write the resulting Lagrangian, we just need

to understand the constants arising in the projection in the spin two part. The

relevant formula is

dAai
∣∣∣
2
=

1

2
Σ(i μνdA

μa
j)
ν

∣∣∣
tf
Σj , (5.180)

where tf stands for the projection on the tracefree part. To check this, formula

one uses (5.138). The square of this part (computed by taking the wedge product

and contracting the SO(3) indices) is given by(
dAai

∣∣∣
2

)2

=
1

2
Pijkl(Σ

i μνdA
μa

j
ν)(Σ

k ρσdA
ρ a

l
σ)ε, (5.181)
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where ε is the volume form and

Pijkl = δi(kδl)j −
1

3
δijδkl (5.182)

is the projector on the symmetric tracefree part. Thus, overall, the second-order

chiral pure connection action (defined as the second variation divided by two) is

given by

S(2)[a] = − 3

16πGΛ

∫
1

2
Pijkl(Σ

i μνdA
μa

j
ν)(Σ

k ρσdA
ρ a

l
σ). (5.183)

We note that in the Euclidean signature, this has a definite sign, similar to what

we observed in the non-chiral case; see (3.74). As in the non-chiral case, the

linearised pure connection action is of the Weyl curvature–squared type, where

the Weyl curvature is extracted from the curvature of the linearised connection.

This action leads to a very nice gauge-fixing procedure and then gravitational

perturbation theory, to which we will return in Chapter 8.

5.9.5 Pure Connection Action on an Arbitrary Einstein Background

We repeat the exercise of integrating out the perturbation of the 2-form field, but

now on an arbitrary Einstein background. The most convenient starting point

in this case is (5.175). We now need the full decomposition of the dAai into

irreducible components, of which we only needed the spin two-part previously.

The full decomposition reads

dAai = (dAa)Σi − 1

2
εijk(dAa)jΣk + dAai

∣∣∣
2
+ (dAa)ij−Σ̄j , (5.184)

where we introduced the following notations

(dAa) :=
1

6
Σi μνdA

μai ν , (dAa)i :=
1

2
εijkΣ

j μνdA
μa

k
ν , (dAa)ij− :=

1

2
Σ̄j μνdA

μa
i
ν

(5.185)

for the different irreducible components. All these formulas are checked by

projecting the left-hand side in (5.184) on the corresponding irreducible

components and checking that the coefficients agree.

Using the decomposition (5.184), we get

δΣidAai/2ε = 3h(dAa)− ξi(d
Aa)i − hij(d

Aa)ij−.

If we rewrite the first term in (5.175) as MijδΣ
iδΣj it computes to

MijδΣ
iδΣj/2ε = (h2 + ξiξi)Tr(M)−Mijξ

iξj − hikhjkMijδkl.

In both formulas, we, for simplicity, consider the case of the Euclidean signature.

In the Lorentzian signature, there is an extra factor of the imaginary unit on the

right-hand side of both formulas.
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Overall, the second variation of the Lagrangian in the form (5.175) becomes

δ2L/2ε = −(h2 + ξiξi)Tr(M) +Mijξ
iξj + hikhjkMijδkl + 6h(dAa) (5.186)

− 2ξi(d
Aa)i − 2hij(d

Aa)ij− +
1

2
Σi μνεijka

j
μa

k
ν .

It is now trivial to integrate out the components of the 2-form field perturbation.

We get the following second-order pure connection action (defined as the second

variation divided by two)

S(2)[a] =
1

8πG

∫
9

Λ
(dAa)2 − (dAa)i(Ψ− (2Λ/3)I)−1

ij (dAa)j (5.187)

− (dAa)ik− δkl(Ψ + (Λ/3)I)−1
ij (dAa)jl− +

1

2
Σi μνεijka

j
μa

k
ν ,

where we replaced the matrix M with its expression in terms of Ψ and Λ.

When Ψ = 0 the factor of Σi in the last ‘mass’ term here can be replaced

with the curvature. This term then becomes a multiple of dAaidAai modulo

a surface term. Decomposing this linearised curvature into its irreducible pieces

and carrying out cancellations, one reproduces the action (5.183). This procedure

is however not available on a nontrivial background, where it is M−1
ij F j that

would appear instead. The resulting term cannot be reduced to the commutator

of two covariant derivatives.

The linearised action (5.187) is very interesting because there exists a gauge in

which all of the first line equals zero. Also in this gauge the last ‘mass’ term for

the connection is positive definite (in the Euclidean signature). We will establish

all these facts when we treat the chiral pure connection perturbation theory in

Chapter 8. This means that when the matrix of the curvatures (Ψ + (Λ/3)I)

is negative-definite, the linearised action is positive-definite. The fact that this

holds in such generality and in particular is independent of the ASD as part of

the Weyl curvature is rather remarkable. This can be shown to lead to a stronger

than previously available result about the rigidity of Einstein metrics; see Fine

et al. (2019).

5.10 Coupling to Matter

As we discussed, a drawback of Plebański formalism, shared by any BF-type

description, is that the coupling to matter is not straightforward. Thus, it is

not easy to write an action that would still use wedge products of differential

forms and that would produce the desired coupling. It is possible to do this

using additional Lagrange multiplier fields, as in Capovilla et al. (1991), but the

procedure is not simple. However, there is a simple prescription for how Plebański

field equations need to be modified in the presence of an arbitrary stress-energy

tensor, as we now explain. Thus, while it is in general not easy to write down

an action that describes matter coupling, it is easy to add the ‘right-hand side’
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to Plebański–Einstein equations to incorporate effects of stress-energy tensor of

matter.

Thus, let us assume that the matter distribution is described by a given stress-

energy tensor Tμν . The stress-energy tensor can be decomposed into its trace

and tracefree parts

Tμν = T 0
μν +

T

4
gμν . (5.188)

We then form the following 2-form with values in S

T i
μν := Σi

[μ
ρT 0

ρν]. (5.189)

This 2-form is purely ASD. Indeed, this can be confirmed by projecting it onto

the basis of SD 2-forms. We have

Σi
[μ

ρT 0
ρν]Σ

jμν = T 0
ρν

(
δijgρν + εijkΣ

kρν
)
= 0. (5.190)

where we have used the algebra (5.138). Thus, if we add a multiple of T i
μν to

the right-hand side of Plebański equations (5.162) we are adding an ASD part

to F i that encodes the tracefree part of Tμν . This is exactly what the tracefree

part of the Einstein equations in the presence of matter is. Indeed, we know that

the SD–ASD component of the Riemann curvature is essentially the tracefree

part of Ricci. And Einstein equations say that the tracefree part of Ricci must

be a multiple of the tracefree part of the stress-energy tensor of matter. This is

precisely what happens when we add (5.189) on the right-hand side of Plebański

equations. We will also need to change the trace part of the SD–SD projection

of the Riemann. This can be done by adding to the right-hand side of (5.162) a

multiple of TΣi.

To complete the story, we just need to work out the correct coefficients. This

is done as follows. The standard form of Einstein equations is

Rμν −
1

2
(R− 2Λ)gμν = 8πGTμν . (5.191)

In four dimensions, taking the trace gives

R = 4(Λ− 2πGT ). (5.192)

This means that we get the correct trace part by shifting Λ → Λ − 2πGT . The

correct coefficient in front of the ASD 2-form T i is determined by working out

some examples. We get

Fi =

(
Ψij +

Λ− 2πGT

3
δij

)
Σj + 8πGTi, (5.193)

where T i is given by (5.189) and the index is lowered with the metric δij in

the Lorentzian signature case (the only one relevant for physics). Because of the

role it plays, it is natural to refer to the 2-form T i
μν as the ASD part of the

stress-energy 2-form.
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5.10.1 Example: Perfect Fluid

Let us carry out the exercise of determining the ASD part of the stress-energy

2-form for an ideal fluid with stress-energy tensor Tμν = (ρ + P )uμuν + Pgμν ,

where uμ is the velocity four-vector uμu
μ = −1, and ρ, P are the energy and

pressure densities respectively.

Let eI be a frame for the metric. We can then decompose the velocity four-

covector uμ into the frame covectors eIμ

uμ =
1√

1− |u|2
(e0μ + uie

i
μ). (5.194)

This parametrises the unit timelike vector uμ by its spatial projection

ui/
√
1− |u|2. Here |u|2 = uiujδ

ij . The tracefree part of the stress-energy

tensor is given by T 0
μν = (ρ + P )(uμuν + (1/4)gμν), and the trace T = 3P − ρ.

We use Σi
μν = 2ie0[μe

i
ν] − εijke

j
[μe

k
ν]. A long computation gives

Ti =
(ρ+ P )

4(1− |u|2)
(
−(1 + |u|2)δij + 2uiuj − 2iεijku

k
)
Σ̄j , (5.195)

where

Σ̄i = ie0ei +
1

2
εijke

jek (5.196)

is a convenient basis of ASD 2-forms.

5.11 Historical Remarks

The basic objects of Plebański’s formulation of GR are SD two-forms. These

objects have appeared in the GR literature a lot before Plebánski (1977). In fact,

Petrov’s famous classification of ’spaces defining gravitational fields’, see Petrov

(2000) for a reprint of the original paper, already uses SD (and ASD) bivectors

in a key way. Thus, the theorem proved by Petrov states that the gravitational

field (a solution of vacuum Einstein equations) can be classified according to

algebraic types of a complex symmetric 3 × 3 matrix obtained as a complex

linear combination of the diagonal and off-diagonal blocks of the Riemann tensor

viewed as a symmetric tensor in the linear space of bivectors. SD (and ASD)

bivectors then naturally appear as principal bivectors of the Riemann tensor. A

completely analogous but more modern treatment that forms the 3×3 matrix in

question as the complex linear combination of the ‘electric’ and ‘magnetic’ parts

of the Weyl tensor was given in Jordan et al. (2009), which was a reprint of the

original paper Jordan published in the 1960s. Again, the SD and ASD bivectors

are central in these considerations.

It was then remarked in Taubes (1966) that the 3× 3 complex matrix encod-

ing the Weyl curvature can be computed directly, i.e., avoiding computing the

Riemann curvature first. This can be done by elementary operations of differen-

tiation of SD complex linear combinations of the components of the torsion-free
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spin connection. This encodes 24 real components of the spin connection in

12 complex components of a SD connection. The 3× 3 matrix of Weyl curvature

components is then computed as the curvature of this SD connection.

The SD 2-forms first appeared in a pioneering paper in Cahen et al. (1967).

This paper uses the null tetrad formalism and also provides a link to the spinor

formalism of Penrose (1960). Thus, the spinor formalism combines the 24 real

rotation coefficients into 12 complex Newmann–Penrose spin coefficients of New-

man and Penrose (1962), which is similar to what happens in the SD formalism.

The paper Cahen et al. (1967) for the first time writes equations for the SD

connection 1-forms as those in terms of exterior derivatives of the SD 2-forms.

It also clearly states that the isomorphism between the Lorentz group SO(1, 3)

and the complexified rotation group SO(3,C) is what is at the root of the SD

formalism. Finally, the Einstein equations are very clearly stated in this paper, as

the condition that the curvature of the SD connection is SD. Another exposition

of the formalism for GR based on differential forms and self-duality is that of

Israel (1970).

Yet another presentation of the SD formalism for GR appeared in Brans (1974).

This reference is very close in spirit to our exposition. One important new point

in this reference is the emphasis it places on the role played by the Hodge duality

operator, which is interpreted as defining the complex structure in the space of

2-forms. Similar to Cahen et al. (1967), (vacuum) Einstein equations are stated

here, as the condition that the curvature of the SD connection is SD.

The SD (chiral) formalism for general relativity was taken further by Plebánski

(1977). The Plebański paper uses spinor notations, but it can be easily translated

into more easily readable SO(3) notations used here and in, e.g., Brans (1974).

The main novelty of Plebański’s work is that for the first time the main object

of the theory is taken to be not a metric from whose tetrads the SD 2-forms are

constructed, but rather a triple of 2-forms satisfying certain additional equations.

These equations guarantee that the 2-forms in question are obtained from tetrads,

and thus provide a link to the usual metric formulation. Plebánski (1977) also

gave a remarkably simple action principle realising these ideas. The basic dynam-

ical field in this action is a triple of 2-forms, and no metric ever appears. Later,

Ashtekar’s new Hamiltonian formulation of general relativity (1987) was found

by Jacobson and Smolin (1988) to be just the phase space version of Plebański’s

theory.

5.12 Alternative Descriptions Related to Plebański Formalism

The purpose of this section is to perform similar type of transformations to

those we have done in the context of the BF-type description of the non-chiral

theory. Thus, we will see that there is a very natural way of modifying GR in

the Plebański description. We will also see that it is possible to perform field

redefinitions and rewrite GR in a seemingly modified theory form. One can then
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integrate out the Lagrange multiplier fields completely, obtaining a Lagrangian

that depends only on Σi and Ai. One can even integrate out the connection field

and obtain a second-order formalism with the Σi as the only field.

5.12.1 Chiral Modifications of GR

We proceed in exact parallel to what was done in the non-chiral case. We first

replace the matrix that appears in front of ΣiΣj term in (5.159) by a 3 × 3

symmetric matrix M ij . We then add a Lagrange multiplier that imposes the

condition that the trace of M ij is Λ. We get

S[Σ, A,M, μ] =
1

8πG
√
σ

∫
ΣiFi −

1

2
MijΣ

iΣj +
μ

2
(f(M)− Λ) . (5.197)

This action describes GR when the SO(3)-invariant function f(M) is taken to be

fGR = Tr(M). (5.198)

However, one can consider other gauge-invariant functions f(M) here. In partic-

ular, one can consider any function of the three independent invariants of M for

which one can take Tr(M),Tr(M 2), and Tr(M3). What is very surprising about

the theories one gets this way is that they continue to propagate exactly the

same number of degrees of freedom as GR. Thus, no new propagating degrees of

freedom is introduced by these modifications, which is a very strong statement

because it seems to be in conflict with GR uniqueness theorems. We will come

back to these chiral modifications of GR in the following chapters.

5.12.2 Field Redefinitions

The goal of this subsection is to repeat the field redefinitions trick that was

already used in the non-chiral context, and thus rewrite the GR action in the

form (5.197) with a nontrivial function f(M). But, in spite of the new f(M)

being different from (5.198), the new action will still describe unmodified GR.

Consider the transformation

Σi = GijΣ̃j +H ijFj , (5.199)

where Gij , H ij are arbitrary at this stage 3 × 3 matrices, and Σ̃ is the new

2-form field. This transformation will map the first two terms in the Lagrangian

(5.197) to

L → Σ̃tGtF + F tHtF − 1

2
(Σ̃tGt + F tHt)M(GΣ̃ +HF ), (5.200)

where we used the matrix notations with, e.g., MijΣ
iΣj ≡ ΣtMΣ. Collecting the

similar terms in the previous expression we rewrite it as
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L → F t

(
Ht − 1

2
HtMH

)
F + Σ̃t (Gt −GtMH)F − 1

2
Σ̃t(GtMG)Σ̃. (5.201)

We now demand that after the transformation (5.199) the Lagrangian is still of

BF-type, i.e., the matrix appearing in front of Σ̃iF j is a multiple of the identity

matrix. If we don’t want to change the coefficient in front of the action, we should

demand this multiple to be unity

Gt −GtMH = I. (5.202)

We will also demand that the newly generated term quadratic in the curvature

is a multiple of the Pontryagin number for the SO(3) bundle in question. Thus,

we demand also that the matrix in front of F iF j is a constant multiple of the

identity

Ht − 1

2
HtMH = tI, (5.203)

where t is an arbitrary parameter, and real, if we specialise the formalism to the

cases of Euclidean or split signatures.

We are now going to solve the equations (5.203) and (5.202) for H and G in

terms of M . First, the equation (5.203) tells us that H is a symmetric matrix,

so we will drop the transpose symbol on H from now on. Assuming that G and

H are invertible, we can rewrite the two equations (5.202) and (5.203) as

I−MH = (Gt)−1, I− 1

2
MH = tH−1. (5.204)

We can then subtract twice the second equation from the first to get a relation

between G and H

H = 2t(I+ (Gt)−1)−1, (5.205)

where we again assumed that I + (Gt)−1 is invertible. We then substitute this

to, e.g., the first equation in (5.204) to obtain a simple equation involving

just G

(Gt)−2 = I− 2tM. (5.206)

This tell us that G is also a symmetric matrix, and gives this matrix as one of

the two branches of the square root

G = (I− 2tM)
−1/2

. (5.207)

We can now concentrate on the last ΣΣ term in (5.201). It is clear that the

matrix in front of ΣiΣj transforms to

M̃ = M (I− 2tM)
−1

. (5.208)

We note for future use that the inverse of this is M = M̃
(
I+ 2tM̃

)−1

.
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All in all we learn that the field redefinition (5.199) with symmetric matrices

G and H that depend on M according to (5.207) and (5.205) transform the

Lagrangian in (5.197) into a Lagrangian of the same type

ΣiFi −
1

2
MijΣ

iΣj +
μ

2
(f(M)− Λ) = Σ̃iFi −

1

2
M̃ijΣ̃

iΣ̃j (5.209)

+
μ

2

(
f
(
M̃(I+ 2tM̃

)−1
)
− Λ) + tF iFi.

The only change in the new Lagrangian is that the function f(M) became

modified, and that a constant multiple of the topological term Tr(F ∧ F ) has

been added.

Thus, we learn that there is a one-parameter group of transformations acting

on the space of theories of the type (5.197), with all functions f(M) belonging

to the family

ft(M) ≡ f(Mt), Mt = M(I+ 2tM)−1 (5.210)

corresponding to (classically) physically equivalent theories. At the quantum

level adding to the Lagrangian a topological term is not innocuous, as the

example of the θ-term in QCD teaches us. So, we can only be sure about the

classical equivalence of theories related by (5.210). Note that we can alternatively

write M−1
t = M−1 + 2tI, from which the fact that the transformation M → Mt

forms a one-parameter group (Mt1
)t2 = Mt1+t2

is obvious.

5.12.3 GR as BF Theory Plus Potential

We now use the result (5.210) to derive a new formulation of GR discovered in

Herfray and Krasnov (2015). This is done by integrating out the auxiliary matrix

M from the Lagrangian (5.197) with the defining function (5.210). We also note

that the matrix M ij cannot be integrated out from the Lagrangian with f(M)

given by (5.198), because this Lagrangian depends on M ij linearly. In contrast,

the effect of the previous field redefinitions is to produce a nonlinear dependence

of the Lagrangian on M ij , so that it can be integrate out by solving its field

equation.

As before, let us introduce the notation

Σi ∧ Σj := XΣ. (5.211)

This is a 3× 3 symmetric matrix valued in 4-forms. The equation for M is then

XΣ = μ(I+ 2tM)−2, (5.212)

which can be solved for M

2tM =
√
μ(XΣ)

−1/2 − I, (5.213)
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where we assumed that XΣ is invertible and one of the two branches of the square

root is taken. This gives

M(I+ 2tM)−1 =
1

2t

(
I−

√
XΣ

μ

)
. (5.214)

We should now find μ from the constraint that the trace of the previous matrix

is Λ. This gives

√
μ =

Tr
√
XΣ

3− 2tΛ
, (5.215)

and so

M =
1

2t

(
Tr

√
XΣ

3− 2tΛ
(XΣ)

−1/2 − I

)
. (5.216)

Thus, we can rewrite the action (5.197) with the defining function (5.210) and

with the matrix M integrated out as

S[Σ, A] =

∫
ΣiFi −

1

4t(3− 2tΛ)

(
Tr

√
ΣiΣj

)2

+
1

4t
ΣiΣi. (5.217)

The description of GR (5.217) was discovered in Herfray and Krasnov (2015).

The presented here derivation via field redefinitions was spelled out in Krasnov

(2018).

Let us discuss the effect of the field redefinition (5.199) on the metric. On-shell

the curvature 2-forms become linear combinations of the 2-forms Σi. This is true

in the case of GR, see (5.162), as well as for the modified theories. Because the

conformal class of the metric is fixed by demanding that the 2-forms Σi span the

space of SD 2-forms, the conformal class is unchanged by the field redefinition

(5.199). However, this transformation does have the effect on the volume form

that fixes a representative in the conformal class. In particular, the volume form

that corresponds to an Einstein metric is constructed differently in the Plebański

case and the formulation (5.217). This is explained in more details in Herfray

and Krasnov (2015).

5.13 A Second-Order Formulation Based on the 2-Form Field

The action (5.217) can be used as the starting point for one more transformation.

Thus, one can integrate out the connection field and produce a second-order

formulation with the 2-form field Σi as the only field. We now describe this.

5.13.1 Parametrisation

For simplicity, we perform the following analysis in the case of the Euclidean

signature. We now change the name of the 2-form field from Σi to Bi to signify
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the fact that the triple of 2-forms Bi no longer has to satisfy the simplicity

(metricity) constraints, as these constraints no longer follow from the action

(5.217).

A general 2-form field Bi then defines a conformal metric in which the triple of

Bi’s is SD. We can always introduce an orthonormal basis in the space Λ+ of SD

2-forms of the corresponding metric. Let us denote these orthonormal 2-forms

by Σa, where we introduced a new internal index a = 1, 2, 3. Because Bi are SD

by construction, they can be expanded in the basis Σa. We have

Bi = biaΣ
a, (5.218)

where bia are some collection of 3 × 3 coefficients, and Σa are assumed to be

orthonormal ΣaΣb ∼ δab. It is convenient to give the two indices of bia ∈ GL(3)

transformation different names as it helps bookkeeping at later stages.

While the objects Bi are given, the objects bia and Σa are defined only modulo

certain ambiguities. Indeed, we can always conformally rescale both bia and Σa

so that their product remains unchanged. This is the reflection of the fact that

in general, only the conformal class of the metric is defined by the triple of

2-forms Bi. Second, we can always perform an SO(3) rotation of the basis of

Σa’s Σa → Λa
bΣ

b. The 2-forms Bi are unchanged if we simultaneously rotate

the coefficients bia. Thus, we have parametrised the 18 components of a triple

of 2-forms Bi by nine components of bia plus 18 − 5 = 13 components of Σa

satisfying the metricity condition ΣaΣb ∼ δab. But there is also a four-parameter

redundancy in this parametrisation, one of conformal rescalings and three of

SO(3) rotations. Thus, overall there is 13 + 9 − 4 = 18 parameters in this

parametrisation, as it should be.

5.13.2 A Torsion-Free Connection for an Arbitrary Triple

of 2-Forms

We now pose and solve the problem of finding an SO(3) connection such that

the torsion dABi vanishes. We know from previous considerations that when Bi

satisfy BiBj ∼ δij , this connection coincides with the SD part of the metric spin

connection. However, we now make no assumption about Bi and want to solve

for Ai in terms of the SD part of the spin connection, as well as derivatives of

the objects bia.

It is quite easy to find the connection with the required property. The torsion-

free equation is, explicitly

d(biaΣ
a) + εijkA

jbkaΣ
a = 0. (5.219)

Introducing the torsion-free metric connection γa, satisfying

dγΣa = dΣa + εabcγ
bΣc = 0 (5.220)
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we can rewrite (5.219) as

dγbiaΣ
a + εijkA

jbkaΣ
a = 0, (5.221)

where we introduced

dγbia = dbia − εcbaγ
bbic. (5.222)

To solve this equation we define

Ai = biaA
a. (5.223)

The torsion-free condition becomes

dγbiaΣ
a + det(b)(b−1)aiεabcA

bΣc = 0. (5.224)

We now multiply this equation with bi
a, where the indices are raised-lowered

with the Kronecker delta metrics, dualise on the spacetime indices, and use the

self-duality of Σa. We get

Σb
μ
νbi

adγ
νb

i
b = det(b)εabcΣ

b
μ
νAc

ν . (5.225)

We can rewrite this in an index-free way as

JΣ(A) = t, (5.226)

where JΣ is the operator (5.137) and

taμ :=
1

det(b)
Σb

μ
νbi

adγ
νb

i
b. (5.227)

Thus, we have Aa = J−1
Σ (t), with the inverse J−1

Σ given by (5.140). We will not

need an explicit expression for this connection.

5.13.3 An Alternative Derivation

An alternative procedure for finding the torsion-free connection for Bi is possible.

We follow Freidel (2008) in this section. The procedure in this section relates the

sought torsion-free connection to the SD part of the metric spin connection and

derivatives of the objects bia and is more convenient in some computations.

The idea is to relate the sought connection Ai to a connection in a different

SO(3) bundle. Thus, we introduce a new GL(3) connection ωa
b according to the

definition

dAbiaX
a = biad

ωXa. (5.228)

Explicitly

ωa
b = (b−1)aiA

i
jb

j
b + (b−1)ai db

i
b, (5.229)

where Ai
j = εikjA

k.
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We can now find ωa
b from the properties it must satisfy. First, we have

0 = dABi = biad
ωΣa, (5.230)

and so the new connection still has zero torsion dωΣa = 0. However, this connec-

tion does not coincide with the unique torsion-free connection γa
b because this

connection has zero torsion dγΣa = 0 and is also metric dγδab = 0. In contrast,

the connection we are looking for has zero torsion but is metric for a metric that

is different from δab

0 = daδij = biab
j
bd

ωmab, (5.231)

where mab is the inverse metric to mab = δijb
i
ab

j
b. Thus, the metricity condition

for ωa
b is instead dωmab = 0.

We look for the connection ωa
b in the form of a sum of the torsion-free metric

connection γa
b and some GL(3)-valued 1-form ρa

b

ωa
b = γa

b + ρa
b. (5.232)

We can find the object ρa
b from the equations it must satisfy. First, the torsion-

free condition gives

ρa
bΣ

b = 0. (5.233)

Second, the metricity condition gives

dγmab + ρa
cm

cb + ρb
cm

ac = 0. (5.234)

The last equation implies

ρ(ab) =
1

2
dγmab, (5.235)

where ρab := macρ
c
b and we have used macd

γmcdmdb = −dγmab. To find the

antisymmetric part of ρab we use the torsion-free condition. We have

(
1

2
dγmab + ρ[ab])Σ

b = 0. (5.236)

Writing ρ[ab] = εacbρ
c, dualising on the spacetime indices, and using the self-

duality of Σa, we can rewrite this equation as

1

2
Σb

μ
νdγ

νmab = εabcΣ
b
μ
νρc

ν . (5.237)

Recalling the definition (5.137), we can rewrite this in an index-free way as

JΣρ =
1

2
Σ dγm, (5.238)

where Σ dγm is an object in Λ1 ⊗ so(3). The object ρa
μ is then given by

ρ =
1

2
J−1
Σ Σ dγm, (5.239)
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where J−1
Σ is explicitly given by (5.140). Using the algebra (5.138) of Σ’s we get,

explicitly

ρμa =
1

2
Σb

μ
νdγ

ν(mab −
m

2
δab), (5.240)

where m = Tr(m) = δabmab. This solves the problem of determining the connec-

tion ωa
b. Explicitly

ωa
b = γa

b +
1

2
macdγmcb +macεcdbρ

d, (5.241)

where the vector valued 1-form ρa is given by (5.240). These formulas can be

used to explicitly compute the kinetic term BiFi in terms of the SD part of the

spin connection for the metric defined by Bi as well as derivatives of the objects

bia. Details are worked out in Freidel (2008). Using this in (5.217) gives a second-

order description of GR with the 2-form Bi as the only field. It is somewhat

surprising that such a description is possible, because the 2-form field Bi is an

object of a very different nature as compared to the metric. Nevertheless, we see

that it can also be made dynamical and describe GR.



6

Chiral Pure Connection Formulation

The purpose of this chapter is to derive and develop the chiral pure connection

formulation of general relativity (GR). This formalism is singled out from all the

other ways of thinking about gravity because it leads to a remarkably simple

linearised description of gravitons. Because of this it likely has a lot of yet

unexplored potential, and so we will develop it in more detail than for other

formulations. We will also present the related pure connection description of

gravitational instantons.

6.1 Chiral Pure Connection Formalism for GR

The Plebańksi action (5.159) serves as a starting point for many chiral reformula-

tions of four-dimensional GR. In particular, it is possible to obtain the chiral pure

connection formulation starting from it, as we now demonstrate. The procedure

for doing this is completely analogous to that already adopted in the non-chiral

case. The chiral case is, however, much simpler in many respects, as we shall

now see.

6.1.1 The Connection Formalism with Lagrange Multiplier Fields

We first integrate out the 2-form field Σi of the Plebański formulation. This

results in the action

S[A,Ψ] =
1

16πG
√
σ

∫ (
Ψij +

Λ

3
δij
)−1

F iF j . (6.1)

This action, which is an intermediate step towards the pure connection formu-

lation Section 6.1.2, is itself a useful variational principle for GR. It depends on

just 12 + 5 variables. Even though it appears to be second-order in derivatives,

this is an illusion. The most natural backgrounds on which this action can be

expanded are maximally symmetric. On such backgrounds, Ψij = 0 (zero
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Weyl curvature), and the part of the linearised action that is quadratic

in derivatives is just dAδA
idAδA

i. Integrating by parts and replacing the

commutator of covariant derivatives with a curvature, one reduces this to a

term not containing derivatives.

The action (6.1) exists even with Λ = 0, but in this case it is not possi-

ble to expand it around a Ψij = 0 background. Still, one can solve Λ = 0

Einstein equations in this formalism, as we will later demonstrate. This action

is surprisingly similar to the MacDowell–Mansouri action (3.77) in that it is

obtained as the wedge product of two copies of the curvature, contracted with

some appropriate tensor. The similarity becomes even more pronounced if one

compares to the action (3.78) that contains a dynamical field in front of the

curvature squared term.

We can also rewrite the action (6.1) in a form containing an additional

Lagrange multiplier

S[A,M,μ] =
1

16πG
√
σ

∫
Tr(M−1FF ) + μ (f(M)− Λ) , (6.2)

where for GR the function f(M) is given by the trace (5.198), and Tr(M−1FF ) =

M−1
ij F iF j . Note the perfect similarity between this action and (3.79). The

action (6.2) is, of course, also the action (5.197) with the 2-form field integrated

out. This action describes GR as well as the chiral modified theories obtained

by changing f(M). It is also a good starting point for developing the chiral

connection perturbation theory, as we will see.

6.1.2 The Chiral Pure Connection Lagrangian

To go to the pure connection formulation we now integrate out M ij from (6.2).

Its Euler–Lagrange equation reads

M−1XM−1 = μI, (6.3)

where we introduced the matrix of wedge products of the two copies of the

curvature

Xij ≡ Xij
F := F iF j . (6.4)

This is a symmetric 3× 3 matrix with values in 4-forms. The equation for M is

solved by

M =

√
X

μ
. (6.5)

As usual, the Lagrange multiplier μ is found from the constraint it imposes

√
μ =

Tr
√
X

Λ
, (6.6)
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so that

M−1 =
Tr

√
X

Λ
X−1/2. (6.7)

The pure connection action becomes the integral of the Lagrange multiplier

S[A] =
1

16πGΛ
√
σ

∫ (
Tr

√
X
)2

. (6.8)

This action was first obtained in Krasnov (2011). It is the most economic pure

connection formulation of GR available. Indeed, it must be compared to the

action (3.82) that depends on the 4 × 10 components of the connection, and

to the action (3.104) that depends on the 24 components. In contrast, (6.8)

depends on just 12 components of the SO(3) connection. It is thus comparable

to the usual metric formulation with its 10 components in economy. Moreover, it

turns out that the perturbation theory in this chiral pure connection formalism

can be set up in such a way that only 8 out of the 12 components propagate,

2 of them being the physical polarisations of the graviton, the remaining 3 + 3

being unphysical gauge variables. This is more economical than GR in the metric

formalism. But this perturbation theory only exists around Λ �= 0 backgrounds,

because of the presence of 1/Λ in front of the action.

6.1.3 The Split Signature Modification

In the case of the Split signature the previous discussion needs to be slightly

modified because it is the metric ηij rather than the identity metric δij that

must be used in all the formulas. In particular, in the split signature the function

fGR = Tr(M) computes the trace of the matrix M with respect to η rather

than with respect to the identity matrix. This means that the equation (6.3)

will contain η rather than the identity matrix on the right-hand side. The

procedure of solving this equation becomes more involved because η does not

necessarily commute with the other matrices appearing in this equation. However,

we understand how to solve this equation from the non-chiral case discussion. It

is clear that some factors of
√
η will be introduced in the process of the solution.

In particular, the solution for M gets modified to

M−1 =
√
μ
√
η(
√
ηX

√
η)−1/2√η. (6.9)

The Lagrange multiplier gets modified to

√
μ =

Tr
√
ηX

Λ
, (6.10)

so that

M−1 =
Tr

√
ηX

Λ

√
η(
√
ηX

√
η)−1/2√η. (6.11)
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Thus, the chiral pure connection action relevant for the split signature case is

Ssplit[A] =
1

16πGΛ

∫ (
Tr
√

ηX
)2

. (6.12)

We will later see that the necessity of introducing the factor of η under the

square root in the split signature case makes perfect sense because it makes the

argument of the square root a positive definite matrix so that the square root

exists in real matrices. We also note that the matrix
√
η does not exist as a real

matrix, only as complex. This, however, does not create any difficulty because

only the original real matrix η appears in the final action.

6.1.4 The Metric

In any pure connection formalism the metric is constructed algebraically from

the curvature of the relevant connection. Let us see how it arises in the chiral

case. The easiest way to see this is to recall that in the Plebański formalism

the metric is constructed from the 2-form fields Σi via the Urbantke formula

(5.47). In the process of integrating out the 2-form fields we have solved their

field equations as

Σi = (M−1)ijFj . (6.13)

If we substitute here the expression for M (6.7), as arises in the process of solving

its field equations, we obtain the following explicit expression for the 2-form fields

Σi
F =

Tr
√
X

Λ
(X−1/2)ijFj . (6.14)

It is easy to see that the 2-form fields Σi so constructed satisfy the constraints

ΣiΣj ∼ δij . Thus, the metric of the chiral pure connection formalism is the

Urbantke metric

gΣ(u, v)εΣ =

√
σ

6
εijkiuΣ

iivΣ
jΣk (6.15)

for the 2-forms Σi given by (6.14).

We note, however, that this metric can be described more explicitly, and in

particular directly in terms of the curvature 2-forms. Indeed, by construction, the

Urbantke metric (5.47) is one in which the triple of 2-forms Σi becomes self-dual

(SD) (in an appropriate orientation). However, since the Urbantke metric is to

make Σi
F SD, and these 2-forms are given by a linear combination of the 2-forms

F i, the metric will also make the curvature 2-forms SD. Thus, the conformal

class of the metric can be obtained as the unique conformal class that makes

the triple of 2-forms F i SD. In other words, the conformal class of the metric

can be obtained directly from the curvature 2-forms by inserting them into the

Urbantke formula. Thus, we have for the conformal metric

gF (u, v) ∼
√
σεijkiuF

iivF
jF k. (6.16)



196 Chiral Pure Connection Formulation

Let us now discuss the volume form. As we have seen in the previous chapter,

the appropriate volume form can be obtained as 6
√
σεΣ = ΣiΣi. Applying this

to the 2-form fields (6.14), we get the following volume form

εF =
1

2
√
σΛ2

(
Tr

√
X
)2

. (6.17)

Again, we see that one does not need to construct Σi
F2-forms and the volume

form can be constructed directly from the curvature. We then note that, as for

all previously discussed pure connection actions, the action is just a multiple of

the total volume

S[A] =
Λ

8πG

∫
εF . (6.18)

In the split signature case there are some modifications to the previous discus-

sion. The factors of η that need to be introduced modify the previous formulas

as follows

Σi
F =

Tr
√
ηX

Λ

(√
η(
√
ηX

√
η)−1/2√η

)ij
Fj . (6.19)

This satisfies Σi
FΣ

j
F ∼ ηij . Again, we can avoid the need for computing Σi

F by

noticing that the metric is such that it makes Σi
F SD. But this means that the

metric also makes F i SD, and so it can be computed directly from the curvature

2-forms, by using the Urbantke formula. The split signature volume form is

obtained as

εF =
1

2Λ2

(
Tr
√
ηX

)2

, (6.20)

and the action is still given by a multiple of the total volume.

6.1.5 Field Equations

The first variation of the chiral pure connection action (in Euclidean and

Lorentzian signatures) is given by

δS[A] =
1

16πGΛ
√
σ

∫
Tr

√
X Tr(X−1/2δX), (6.21)

where

δXij = 2F (idAδAj). (6.22)

This means that the Euler–Lagrange equations following from the chiral pure

connection action are

dA
(
Tr

√
X(X−1/2)ijFj

)
= 0. (6.23)

However, noting the relation (6.14) we can rewrite the arising field equations as

dAΣi
F = 0. (6.24)
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Thus, the field equations one obtains by extremising the action just state that the

connection coincides with the unique torsion-free connection for the 2-form fields

Σi
F constructed from the connection. This makes it clear how Einstein equations

arise in this formalism. The field equations of the pure connection description are

second-order partial differential equations for the connection components. Then,

given a solution, the metric constructed from Σi
F is guaranteed to be Einstein

because on solutions of (6.24) the curvature F i coincides with the SD part of the

curvature of the spin connection for the metric constructed from Σi
F . On the other

hand, by the very construction of the metric the curvature 2-forms F i are SD as

the 2-forms. The self-duality of the curvature 2-forms is the Einstein condition.

6.1.6 Lorentzian Signature Reality Conditions

The previously described formalism works for the SO(3) and SO(1, 2) connec-

tions, but is needs additional discussion for the case of SO(3,C) connections

appropriate for the Lorentzian signature. Indeed, in this case we want to impose

the reality conditions on the Σi 2-forms. These conditions are of two types. First,

one imposes nine conditions ΣiΣj = 0 that guarantee that the conformal class

of the metric is that of a real Lorentzian one. But because Σi
F and F i are linear

combinations of each other, these reality conditions can be stated directly as

conditions on the curvature

F iF j = 0. (6.25)

The last condition is that the volume form as constructed from the Σi is real.

This condition translates to

Re
(
Tr

√
X
)2

= 0. (6.26)

Again, this is a condition directly on the curvature of the connection, as is

appropriate for a pure connection formalism.

6.1.7 (Gauge) Invariances of the Pure Connection Action

The action (6.8) is gauge and diffeomorphism invariant. It is a useful exercise

to verify this explicitly, as some convenient for future use identities will result

from this exercise. Let us first discuss the diffeomorphisms. Whenever we are

discussing the action of diffeomorphisms on a connection, we can modify the

usual Lie derivative Cartan formula Lξ = iξd + diξ by adding to it a gauge

transformation with the parameter iξA. This gives a very convenient for practical

applications formula for the transformation of the connection under diffeomor-

phisms

δξA
i = iξF

i. (6.27)
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The SO(3) gauge transformations, on the other hand, are given by the usual

δφA
i = dAφi. (6.28)

6.1.8 Action in Terms of a Homogeneity Degree One Function

To discuss the invariance of the action, it is very convenient to write the pure

connection action (6.8) in a more general form

S[A] =
1

16πGΛ
√
σ

∫
g(X), (6.29)

where g(X) is some SO(3)-invariant function of the 3 × 3 symmetric matrix

Xij = F iF j . In addition, in order for the action to make sense (note that Xij is

the matrix with values in 4-forms), the function g(X) must be homogeneous of

degree one in its argument. The chiral pure connection GR action (6.8) is clearly

of this form with

gGR(X) =
(
Tr

√
X
)2

, (6.30)

but also any of the chiral modifications of GR is of this form. So, our discussion

is going to be more general than is necessary for the purposes of GR, but it is

easier to follow this more general discussion.

6.1.9 Diffeomorphism Invariance

For purposes of this and the next subsection we set the coefficient in front of the

action to unity. The first variation of the action (6.29) is

δS[A] = 2

∫
∂g

∂Xij
F idAδAj . (6.31)

Let us first discuss its diffeomorphism invariance. To do this we need a much

more concrete way of working with the 4-form-valued matrices than we required

before. So, we introduce the densitiesed ε-symbol via

dxμdxνdxρdxσ = ε̃μνρσd4x, (6.32)

where d4x is the coordinate volume form. This symbol takes values ±1 in any

coordinate system. Using this symbol we can rewrite the first variation of the

action as

δS[A] =

∫
∂g

∂X̃ij
ε̃μνρσF i

μνd
A
ρ δA

j
σ, (6.33)

where we introduced a densitiesed 3× 3 matrix

X̃ij :=
1

4
ε̃μνρσF i

μνF
j
ρσ. (6.34)
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We now substitute (6.27) for the variation. This means that we need to com-

pute dA
[μξ

αFαν]. This can be transformed using the Bianchi identity dA
[μF

i
ρσ] = 0.

We have

ξαdA
[μF

i
ν]α = −1

2
ξαdA

αF
i
μν . (6.35)

Another identity that we need is

ε̃μνρσF (i
μνF

j)
ασ = δραX̃

ij . (6.36)

This identity follows from the fact that the quantity F (i
μνF

j)
ασ antisymmetrised

in three indices μνσ is in fact completely antisymmetric, and thus proportional

to the ε-tensor. Thus, the left-hand side must be a multiple of X̃ij , and so the

formula (6.36) results.

The previous two identities mean that

ε̃μνρσF (i
μνd

A
ρ δξA

j)
σ = X̃ijdαξ

α + F (i
μν

1

2
ξαdA

αF
j)
ρσ (6.37)

= X̃ijdαξ
α +

1

4
ξαdA

α (ε̃
μνρσF (i

μνF
j)
ρσ) = dA

α (ξ
αX̃ij).

Thus, integrating by parts we have

δξS[A] = −
∫

ξαX̃ijdA
α

∂g

∂X̃ij
. (6.38)

The right-hand side here is zero by the homogeneity of g(X). Indeed, the Euler

relation for g(X) reads

∂g

∂X̃ij
X̃ij = g. (6.39)

Differentiating this identity one time we get

X̃ij∂α

∂g

∂X̃ij
= 0. (6.40)

The partial derivative here can be replaced with the covariant derivative

because the function g(X) is SO(3) invariant. Indeed, this gauge invariance

means that

∂g

∂X̃ij
εiklφkX̃ lj = 0 (6.41)

for any gauge parameter φi. These are precisely the terms that need to be added

to the usual derivative in (6.40) to convert it to the covariant derivative. This

establishes the diffeomorphism invariance.

The fact that the action is diffeomoprhism-invariant implies that not all field

equations arising from the variational principle are independent. Let us derive

the corresponding relations. The field equations one obtains from (6.29) are

dA

(
∂g

∂Xij
F j

)
= 0. (6.42)
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Using Bianchi identity this can be rewritten as

dA

(
∂g

∂Xij

)
F j = 0. (6.43)

Let us multiply this 3-form with the 1-form iξF
i. Using the identity

iξF
(iF j) =

1

2
iξ(F

iF j) =
1

2
iξX

ij (6.44)

we have

iξF
idA

(
∂g

∂Xij

)
F j =

1

2
iξX

ijdA

(
∂g

∂Xij

)
. (6.45)

But the right-hand side here is zero by the covariant derivative version of the

homogeneity consequence (6.40). This shows that there are four relations between

the field equations, as a consequence of the diffeomorphism invariance of the

theory

iξF
iE i = 0, (6.46)

where E i = 0 are the field equations and E i is a Lie algebra-valued 3-form.

6.1.10 SO(3) Invariance

Let us also demonstrate the invariance under the SO(3) gauge rotations. We

have

δφS[A] = 2

∫
∂g

∂Xij
F idAdAφj = 2

∫
∂g

∂Xij
F iεjklF kφl (6.47)

= 2

∫
∂g

∂Xij
εjklXikφl = 0.

The last equality is the direct consequence of the gauge invariance of the

function g.

Let us also discuss the relations between the field equations that arise as the

consequence of gauge invariance. Let us consider the exterior covariant derivative

of the 3-forms E i whose vanishing gives the field equations. We have

dAE i = dAdA

(
∂g

∂Xij
F j

)
= εiklF k

(
∂g

∂X lm
Fm

)
(6.48)

= εiklXkm ∂g

∂X lm
= 0,

again as consequence of the gauge invariance of g.

6.1.11 Definite, Semi-Definite Connections

and the Sign of a Connection

The procedure of deriving the pure connection action (6.8) was formal in the

sense that we did not concern ourselves with the question of which branch of the

square root of the matrix X to take, and even whether the square root exists
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in real matrices (for the Euclidean and split signature) at all. Our goal is now

to discuss this, and thus make sense of the so-far formal manipulations. To this

end, we need to introduce some notions that help to simplify the discussion that

follows.

Let us start by considering an SO(3) connection, as is appropriate for

describing the Euclidean signature. We compute its curvature 2-forms, and then

the corresponding matrix X. This matrix is definite if all 3 of its eigenvalues

are nonvanishing and of the same sign. Following a related discussion in Fine

et al. (2014) we will call an SO(3) connection definite if the corresponding

matrix X is definite at all points of M . We note that a definite connection

gives M an orientation, which is the orientation in which all eigenvalues of X

are positive.

Let us now recall that in the chiral pure connection formalism, the metric is

defined by requiring that the curvature 2-forms F i become SD, and that the

volume form is given by (6.17). We also know that the signature of the arising

metric is controlled by the restriction of the wedge product metric to the three-

dimensional subspace in Λ2 spanned by the 2-forms F i. Namely, if the matrix

X is definite, then the arising conformal metric is of the Euclidean signature. If

the matrix X is indefinite, then the metric is of the split signature. This shows

that a definite connection on M defines a Euclidean signature metric on M .

Another important notion that we need is that of a sign of a connection. Let

us assume that an SO(3) connection is definite, so that it defines an orientation

of M and a Euclidean signature conformal metric on M via

g(u, v)F ∼ εijkiuF
iivF

jF k/μ, (6.49)

where μ is an arbitrary 4-form in the orientation defined by the connection. The

connection is said to be positive if no additional sign is needed in this formula to

render a metric of the all plus signature. The connection is said to be negative

if one needs an extra minus sign in the Urbantke formula to result in an all plus

metric. We will later see that the sign of the connection correlates with the sign

of the cosmological constant in that positive connections are those relevant for

describing the Λ > 0 geometries and negative connections are relevant for Λ < 0.

Definite connections are easiest to work with, but we shall soon see that

the set of definite connections is too small and does not cover most of the

examples of interest. For this reason we introduce a weaker notion of semi-definite

connections. An SO(3) connection is called semi-definite if M is split into open

regions in each of which the matrix X is definite. Moreover, since each region of

definiteness receives an orientation in which X is positive-definite, we will also

require that for a semi-definite connection these orientations agree. Thus, a semi-

definite connection gives M an orientation. We will later see that this is the most

interesting situation, as connections coming from ‘general’ Einstein metrics are

semi-definite. A semi-definite connection defines a Euclidean signature metric in

each open region of definiteness.
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Finally, we can extend the notion of a sign of a connection to the semi-definite

case as well. There is a sign in each region of definiteness, which is what is

required for the Urbantke metric computed from the curvature to have the

signature all plus. In principle, each region could carry a different sign, and

we will later see that there are actually examples of semi-definite connections

with different signs in different regions of definiteness.

Semi-definite connections are ‘almost’ definite, and so are easiest to work with.

However, we shall later see that not all SO(3) connections are semi-definite. There

are phenomena of two types that do occur to prevent an SO(3) connection from

being semi-definite. First, it can be that the matrix X is degenerate at all points

of M . This actually occurs even for some Einstein manifolds; see next section.

Second, the matrix X can be definite in some regions of M and indefinite in some

others. Third, it may be that X is definite in all open regions of definiteness, but

then the orientations that these regions receive by requiring X to be positive-

definite do not match. As we shall demonstrate in the next section, all of these

in general do occur for a general SO(3) connection, but not for an Einstein

connection, i.e., a connection that comes from an Einstein metric. So, we will

eventually need to discuss all these possibilities in order to define the action.

Let us now discuss analogs of the previously introduced notions for the split

and Lorentzian signatures. In the case of the split signature, we call an SO(1, 2)

connection definite if the corresponding matrix X is of indefinite signature every-

where on M . Such a connection gives M an orientation in which X is of the same

signature as η. However, there is no sign of a connection in this case, as both

signs that could be used in the Urbantke formula would result in the same split

signature. Similarly, a semi-definite SO(1, 2) connection splits M into regions in

which X is of indefinite signature. Each region defines an orientation and these

are required to match.

In the Lorentzian signature case we are dealing with SO(3,C) connections.

Such a connection is said to satisfy the reality conditions if the conformal metric

g(u, v)F ∼ i εijkiuF
iivF

jF k, (6.50)

is of Lorentzian signature. There is no longer a notion of definiteness because the

matrix X in this case is generally complex. But we can still have connections that

are semi-definite in the sense thatM splits into regions whereX is nondegenerate.

But there is no longer an orientation that such connections can define. As a result,

there is also no notion of a sign of a connection. But one can still demand that

there exists a global choice of orientation of M so that the Urbantke formula

with the right-hand side divided by the corresponding 4-form produces a fixed

Lorentzian signature metric over M .

6.1.12 Towards a Non-Perturbative Definition of the Action

We can now come to a discussion of how the action (6.8) obtained by formal

manipulations can be made sense of. Our first remark is that the action is
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certainly defined perturbatively, as means of producing a perturbative expansion

around some given background. As we shall see in the details in Chapter 8, the

most natural background for this chiral pure connection theory is the maximally

symmetric one.1 On this background, the matrix X is a multiple of the identity,

and so its square root is clearly defined. One can expand the square root of X

in powers of deviations of X from the identity. With this in mind, all formal

manipulations performed previously make sense. In fact, the action (6.8) can

be expanded around an arbitrary Einstein background and this expansion is

not ambiguous. So, the pure connection action (6.8) is definitely well-defined

perturbatively.

Let us now consider the question whether the action (6.8) makes sense beyond

perturbation theory. In the following sections we will see examples of solving the

field equations (6.24), and these examples indicate that the theory makes sense

beyond a perturbative expansion. However, these examples also reveal that it is in

general inconsistent to limit oneself to just one of the branches of the square root

in (6.8). We now turn to a discussion of this. In particular, our goal is to establish

that in the case of the Euclidean setup, the action (6.8) is bounded from below.

We only discuss the case of the Euclidean signatures. The Lorentzian case

needs to be treated separately because of the issues with the reality conditions.

But it is the Euclidean signature action that usually participates in the gravita-

tional path integral, and so establishing its boundedness is particularly relevant.

The discussion in the previous section shows that the chiral pure connection

functional (6.8) is well-defined on definite SO(3) connections. In this case, the

prescription is to take the positive branch of the square root of the positive-

definite matrix X, and to take the integral in the orientation defined by the

connection, so as to get a positive result (volume). However, explicit examples

show that in most of the situations of interest the connection is not definite

everywhere, and is only semi-definite, i.e., M is covered by open regions of

definiteness. These examples also show that it is in general not correct to take

the positive branch of the square root everywhere on M , and once one crosses

from one region of definiteness to another, there must be a change in the branch

of the square root.

That this is expected can be easily seen by considering SO(3) connections that

come from Einstein metrics. In this case, we know from the Plebański formalism

that

F i =

(
Ψij +

Λ

3
δij
)
Σj . (6.51)

Thus, the corresponding matrix X is

X ∼
(
Ψ+

Λ

3
I

)2

. (6.52)

1 In fact, in the chiral case there is no difference between the maximally symmetric and a
more general instanton background, see more on this in Section 6.3.
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We then see that this is a definite matrix everywhere apart from the places where

one of the eigenvalues of the SD part of Weyl matrix Ψ exactly balances the Λ

term. When this happens, the corresponding eigenvalue of X vanishes, and the

matrix is degenerate. In a ‘general’ Einstein metric, however, this happens across

hypersurfaces in M that split the manifold into open regions of definiteness of

X, or possibly also at isolated singularities. We also see that for such a ‘general’

Einstein SO(3) connection an orientation can be chosen (consistently over all

of M) so that almost everywhere the eigenvalues λ1,2,3 of X are positive, and√
X exists as a real matrix. Thus, we see that ‘general’ Einstein connections are

semi-definite.

We should now discuss the meaning of ‘general’ in the previous paragraph.

There exist Einstein metrics for which the matrix Ψ + (Λ/3)I is everywhere

degenerate. The easiest example is, of course, flat space R
4, where the connec-

tion and thus the previous matrix are zero everywhere. The simplest example

with nonzero scalar curvature is S2 × S2. In such cases, the metric cannot be

reconstructed from the curvature of the SD part of the spin connection. It is clear

that these Einstein manifolds cannot be treated via the chiral pure connection

formalism. So, ‘generic’ Einstein manifolds for us will be those for which the

curvature of at least one chiral half of the spin connection (i.e., either SD or

anti–self-dual) at a general point of M spans a three-dimensional subspace in

Λ2 and thus, allows the metric to be reconstructed from it. So, we restrict our

attention to the Einstein metrics with a semi-definite chiral spin connection that

can be described by the present formalism.

Let us now return to the question of which branch of the square root to take in√
X. The previous discussion shows that one should not restrict one’s attention

to only the positive branch of the square root because the branch of
√
X that

one wants to reproduce is given by

√
X ∼ Ψ+

Λ

3
I, (6.53)

and the matrix on the right-hand side does not have to be definite. Thus, one

certainly wants to keep not just the positive branch of
√
X in defining the action.

In finding explicit solutions of the theory (6.8) it is usually easy to decide on

this from the requirement that the fields are continuous. So, when one crosses

from one region of definiteness to another, the branch of the square root must

change appropriately. However, if one is given a definite connection in only an

open region of M , it is a priori not known which branch of the square root to

take to compute the action. The most we can say at the moment is that given a

connection that is definite in some open region of M , whatever branch is taken,

the matrix
√
X is real.

The previous discussion is important because it allows us to conclude that

on semi-definite connections, the action (6.8) is bounded. Thus, assume that we

are given a semi-definite SO(3) connection, i.e., a connection for which the the
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manifold M is split into open regions where the matrix X is definite. We do

not yet know which branch of the square root in
√
X to take in which region,

but we know that in any branch this matrix is real, and so is its trace. This

means that on such connections the action (6.8) is of a definite sign, positive for

positive Λ, and negative for negative Λ. This is in contrast with the Euclidean

Einstein–Hilbert action that is never definite.

We can now repeat this discussion for an SO(1, 2) connection. In this case,

we want the matrix X to be indefinite almost everywhere. The easiest case is

when the matrix X is of the same indefinite signature everywhere on M . This is

the analog of the definite SO(3) connections in the SO(1, 2) setting. In this case,

one knows that the metric it defines is of the split signature. Moreover, such a

connection determines an orientation of M by requiring the signature of X to

be the same as that of η. The action is also well-defined because one has an

additional factor of η multiplying X under the square root in (6.20). The matrix

ηX is positive-definite, and the square root can be taken in real matrices. The

action then has a definite sign.

If the connection is not indefinite of the same signature everywhere, but only

splits M into open regions where X is of a given indefinite signature, one still

knows that it defines a split signature metric in every of these regions. One also

knows that in all regions for any choice of the branch of the square root of the

positive definite matrix ηX, the matrix
√
ηX is real, and so the action again has

a definite sign.

This establishes that on semi-definite connections that split M into regions of

definiteness, the action is well-defined and is positive or negative depending on

the sign of Λ. This is the case for both SO(3) or SO(1, 2) connections. In these

cases, there also exists a Euclidean or split signature metric almost everywhere

on M .

Let us now discuss the cases when the connection is not semi-definite. Let us

first consider the situations when the matrix X is nondegenerate almost every-

where on M , apart from possibly-hypersurfaces splitting M into open regions

(smaller dimension singularities where X becomes degenerate are, of course, also

possible). The first possibility is then that the matrix X is definite in some

regions and indefinite in some others. If this is the case for an SO(3) connection,

we would conclude that this connection defines a split signature metric in regions

where X is indefinite. We would then be able to define the action in these regions

by taking the square root of ηX rather than X, as is appropriate for the split

signature. There is similarly a possibility that for an SO(1, 2) connection there

are some regions where X is definite rather than indefinite. In this case, one just

treats these regions as appropriate for the Euclidean signature, and uses
√
X

rather than
√
ηX in the action. So, this situation is easy to deal with.

Another possibility is that for, e.g., an SO(3) connection, the manifold M

splits into open regions where the matrix X is definite, but the orientations

that are required to make X positive-definite do not match. The most natural
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option in this case is to fix an orientation of M and to compute the action

(6.8) as the integral of the top form εF in the given orientation. The orientation

of the form εF , however, will not agree with the fixed orientation, and so the

integral becomes a sum of positive and negative contributions. In this case, we

can no longer conclude that the action has a fixed sign. An analogous situation

is possible in the SO(1, 2) setting. In this case, the orientations required to make

X to be of the same signature as η may not agree. Again, the action would be

given by a sum of positive and negative contributions, and thus not have a fixed

sign. Thus, we can only conclude that the action has a sign on semi-definite

connections.

6.1.13 Not All Connections Are Semi-Definite

The following argument shows that the situations we worried about at the end

of the previous subsection actually do arise. Thus, let us consider an SO(3)

connection that is the SD part of the spin connection for some Euclidean metric,

but not necessarily an Einstein one. In this case, we can decompose the curvature

2-forms F i into the basis of SD and ASD 2-forms

F i = M ijΣj +N ijΣ̄j , (6.54)

where Σ̄i are the ASD 2-forms. Let us now compute the corresponding matrix

X. We have

X ∼ M2 −N2, (6.55)

where we used the fact that the wedge product metric on ASD 2-forms is negative

of that on the SD 2-forms. We thus see that the matrix X is given by the

difference of two positive-definite contributions, one that is the square of the SD

plus scalar part of the Riemann curvature, and the other that is the square of the

tracefree part of the Ricci. Since the metric we start from is completely arbitrary,

nothing prevents the Ricci part from winning over the other part. Moreover, this

can happen in some regions of the manifold, while in some other regions it can

be M2 that wins. So, it seems that nothing prevents the matrix X from being

positive-definite in some regions and negative-definite in others. This is the case

when we said the action becomes a sum of positive and negative contributions

and thus not of a fixed sign.

Another possibility is that in a certain region some of the eigenvalues of X

are of one sign and some of the other. Thus, the matrix X can be definite in

some regions and indefinite in some others. In this case the metric that such

a connection would define would be of split signature in regions where X is

indefinite. This possibility seems also to be allowed by the relation (6.55).

So, we conclude that connections constructed from the ‘general’ Euclidean

signature metrics do not have to be semi-definite. One can define the action (6.8)

even on such connections, but then the action can have any sign.
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6.1.14 The Action on Semi-Definite Connections

is Bounded from Above

Let us now consider a semi-definite SO(3) connection. This means that M is

split into open regions where X is definite and we can choose an orientation

of M such that X is everywhere positive-definite. As we know, in this case the

action (6.8) is nonnegative (for positive Λ). We shall now see that in this case,

the action is also bounded from above.

We divide the 4-form valued matrix X by an arbitrary 4-form ε in orientation

that makesX positive-definite. This convertsX into an ordinary positive-definite

3 × 3 matrix. It then has positive eigenvalues λ1,2,3 and there exist real square

roots
√
λ1,

√
λ2, and

√
λ3. These, however, can be of both signs. The Lagrangian

density is given by

L = (
√

λ1 +
√

λ2 +
√

λ3)
2 = λ1 + λ2 + λ3 + 2

√
λ1λ2 + 2

√
λ2λ3 + 2

√
λ3λ1.

(6.56)

The quantity Lε is to be integrated over all regions of definiteness. Note again

that the quantities
√
λi can be of either sign. We now use the inequalities

λi + λj ≥ 2
√
λiλj (6.57)

that follow from (
√
λi −

√
λj)

2 ≥ 0 to conclude

L ≤ 3(λ1 + λ2 + λ3), (6.58)

with the equality holding if and only if all eigenvalues are equal. This means that

on semi-definite connections

0 <

∫
M

(
Tr

√
X
)2

≤ 3

∫
M

Tr(FF ), (6.59)

with the equality holding if and only if X is a multiple of the identity matrix. The

right-hand side in this inequality is a topological number that depends only on

the SO(3) bundle over M that is taken. In order to be able to reproduce Einstein

metrics via this formalism, this bundle must be in the same topological class as

the bundle of SD 2-forms on M . In this case, the quantity on the right-hand side

of (6.59) can be expressed as a specific linear combination of the signature of M

and its Euler characteristic.

There is a similar bound for semi-definite connections of the SO(1, 2) setup,

but there is no longer such a bound when the connection is not semi-definite. So,

we conclude that on general connections, the action (6.8) is not bounded from

either above or below. It is thus not usable for doing, e.g., lattice simulations of

Euclidean quantum gravity in the SO(3) connection formalism. The only option

for doing such simulations would be to change the definition of the action so that

all regions contribute to it positively. This is the case on semi-definite connections,

and one could then argue that the total action must always be the total volume
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as defined by the connection, and thus of a fixed sign. This would make the

action bounded from below, and allow Monte-Carlo–type studies. It is, however,

far from clear that this would give a sensible definition of the theory. But this

option can be tried.

6.1.15 Choice of the Branch of the Square Root

We have discussed the general properties of the action (6.8) that are independent

of a choice of the square root that one has to make to compute it. We now need

to discuss this choice.

As we already discussed and as is clearly seen from examples, it is inconsistent

to restrict one’s attention to only the positive branch of the square root. As we

shall now discuss, for each sign of the cosmological constant, there are in fact

just two possible branches that can arise and that should be decided between.

However, as we shall also see, it is unfortunately not possible to decide which

branch of the square root to take just by looking at the matrix X. On the other

hand, such a decision is easy to make when considering the problem of finding

a solution of GR using this formalism. The rule is that when one crosses from

one region of definiteness of X to another, the branch should change so that all

fields remain continuous. But if one is just given a connection that is definite in

some open region, there is no way to tell which branch of the square root must

be taken, as we shall see from examples. Thus, the only way to define, e.g., a

state sum model in this formalism would be to take both branches into account,

hoping that the ‘correct’ branch will win in the state sum. Whether anything

like this happens, however, is far from clear.

In order to proceed with our discussion, we first need to understand better

the possible configurations that the matrix on the right-hand side of (6.51) can

take. It is convenient to factor out Λ and consider the matrices of unit trace of

the form

Ψ

Λ
+

1

3
I. (6.60)

This is a symmetric matrix that can be diagonalised by an SO(3) transformation.

Let us denote the eigenvalues by x, y, 1− x− y.

In all the examples we are aware of the behaviour of the sign of the determinant

of the matrix Ψ/Λ+(1/3)I correlates with the sign of the cosmological constant.

Thus, in the case of positive Λ this matrix always has a positive determinant,

which corresponds to the shaded region in the previous figure (i.e., regions I, II).

In the case of negative Λ, one can certainly have examples with this matrix

taking values in region I. For example, we have all negative scalar curvature

instantons. In all other Λ < 0 examples we are aware of, it is the region III in

the previous figure that plays role. Thus, there is an example of asymptotically

hyperbolic space in which one of the eigenvalues of Ψ/Λ + (1/3)I changes sign
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Figure 6.1 The space of diagonalisable 3× 3 symmetric matrices of unit trace
(modulo conjugation) can be visualised on the plane. The x and y are two
of the eigenvalues, while the third one is given by 1 − x − y. The central
triangular-shaded region (labelled region I) is one where all eigenvalues are
less than unity. The other shaded region x < 0, y < 0 (region II) is one where
the largest eigenvalue takes values bigger than unity and the matrix continues
to have a positive determinant. Region III is where only one of the eigenvalues
is negative and the matrix has negative determinant.

and one crosses from region I to region III. There is also an example where one

always remains in region III, with two eigenvalues of Ψ/Λ + (1/3)I changing

sign simultaneously to remain in region III.

For concreteness, let us restrict the following discussion to the case of matrices

of positive determinant, i.e., regions I and II in Figure 6.1. Region III can be

analysed analogously. The subspace of matrices with all eigenvalues positive is

represented by the triangular-shaded region in the figure. Indeed, both x and

y and 1 − x − y must be greater than zero, which gives this triangular region.

Its boundaries are places where one of the eigenvalues goes to zero. The point

x = y = 1/3 is the ‘central’ point where all eigenvalues are the same and the

matrix is a multiple of the identity.

When two of the eigenvalues are negative, without loss of generality, we can

parametrise the matrices by the two negative eigenvalues, so that 1 − x − y is

positive. We note that this is also automatically the eigenvalue largest in modulus

because

(1− x− y)2 − x2 = (1− y)(1− y − 2x) > 1 ∀x, y < 0, (6.61)

and similarly for the difference (1−x− y)2− y2. We also note that in this region

of the parameter space

(1− x− y)2 − x2 − y2 = 1− 2(x+ y) + 2xy > 1 ∀x, y < 0. (6.62)
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Let us now reconsider the procedure of integrating out the Lagrange multiplier

fields from (6.1) or (6.2). For our purposes, it will be more convenient to think

about integrating out Ψ from (6.1). Let us assume that the matrix X has been

diagonalised and has three positive eigenvalues λ1,2,3. We then know that the

solution for Ψ + (Λ/3)I in terms of X will be such that the former is diagonal

when the latter is diagonal. Thus, the procedure of finding the pure connection

action is that of integrating out the parameters x and y from

Q({λi};x, y) :=
λ1

x
+

λ2

y
+

λ3

1− x− y
. (6.63)

Differentiating Q with respect to x and y and setting the results to zero we get

two equations

λ1

x2
=

λ3

(1− x− y)2
,

λ2

y2
=

λ3

(1− x− y)2
, (6.64)

from which we read

λ1

x2
=

λ2

y2
. (6.65)

As we have already discussed, for Λ > 0 two of the eigenvalues of (Ψ/Λ)+(1/3)I

can be demanded to be of the same sign (so that its determinant is positive),

and so we have

y =

√
λ2

λ1

x, (6.66)

where the positive branch of the square root is taken. We now substitute this into

any of the two equations and get a quadratic equation for x, with the solutions

being

x =

√
λ1√

λ1 +
√
λ2 ±

√
λ3

, (6.67)

where the two different solutions correspond to the two possible signs in the

denominator. Here the square root always stands for the positive branch thereof.

This is, of course, the already familiar solution for M/Λ with M given by (6.7).

We now clearly see that there are only two possible solutions that give (Ψ/Λ) +

(1/3)I in the desired region of the parameter space, i.e., a matrix of positive

determinant.

Let us now discuss which of the two solutions in (6.67) to take. First of all, if we

take the positive branch, then for any values of λ1,2,3, we are in the triangular-

shaded region of the parameter space where all three eigenvalues are positive

(and necessarily less than one). Thus, the positive branch of the square root

always lands us on the solution where eigenvalues are not too big as compared

to the cosmological constant. To get a solution that corresponds to the region

II of the parameter space we need to have
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λ3 −

√
λ1 −

√
λ2 > 0. (6.68)

If this inequality is satisfied, then there is also the second branch of the square

root of X that becomes available, corresponding to the negative sign in (6.67).

So, one could hope that the right prescription is to take the positive branch of

the square root when (6.68) is not satisfied, and the negative branch when (6.68)

holds. However, this prescription does not pass the test of explicit examples.

Thus, in Section 6.2 we consider an example of the so-called Page metric where

the manifold is split into two regions of definiteness, and so one must change

the branch of the square root of X as one goes from one region to the other.

And at the same time (6.68) is always satisfied. This shows that there exists no

criterion that would allow us to select a branch of the square root just by looking

at the matrix X. The positive branch is always available and must be considered.

But when (6.68) is satisfied (with λ3 being the largest eigenvalue), then also the

second branch becomes available and must be considered. The best one can do

in forming a state sum is then to take both possible branches into account.

In the case Λ < 0, we have a similar situation, but it is now that regions

I and III of the parameter space play role. One must decide which of the

two possible branches of
√
X to take just having access to the positive defi-

nite matrix X. Again, it is not possible to decide on this just by knowing X.

In a concrete solution, this decision is taken by demanding that all fields are

continuous across a surface on which one or two eigenvalues of X vanish. But

without such continuity considerations, the best one can do is to allow both

possible branches of the square root (i.e., those giving
√
X in regions I and III)

to contribute.

6.2 Example: Page Metric

The purpose of this section is to treat an example of a nontrivial positive scalar

curvature Einstein metric known as Page metric. We will present the metric in

the frame formalism and then show how to obtain it via the pure connection

route. This metric gives a very good illustration of issues arising when selecting

an appropriate branch of the square root as discussed in the previous section.

6.2.1 Page Metric

Let us consider a metric of the form

ds2 = g2(Q−2dr2 + σ2
2 + σ2

3) +
4Q2

g2
σ2
1 (6.69)

where σi are the usual 1-forms on S3

dσi = −1

2
εi

jkσj ∧ σk (6.70)
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given by

σ1 = dψ + cos θdφ,

σ2 = cosψdθ + sinψ sin θdφ, (6.71)

σ3 = − sinψdθ + cosψ sin θdφ,

where we used a somewhat unconventional numbering of the 1-forms and

g2(r) = 1− r2, Q2 =
λ

3
r4 + r2(1− 2λ) + 1− λ, (6.72)

with λ being the (dimensionless) cosmological constant.

For λ ≤ 1/4 and λ ≥ 3/4 the equation Q2(r2) = 0 has real roots r2− ≤ r2+.

The function Q2(r2) is then nonnegative in the regions r2 ≤ r2− and r2 ≥ r2+. We

would like the metric (6.69) to describe a compact manifold, and so we would

like this metric to be cut off by the ‘horizon’ at some value of r. It is clear that

this can only be the smaller root r2−, so that the range of r2 is then r2 ∈ [0, r2−].

In order for the function g2 to be nonnegative in this region, we must require

r2− ≤ 1. It is then not hard to check that the allowed region of λ for which the

smaller root r2− is less or equal to unity is λ ∈ [3/4, 1].

It is instructive to see what happens to (6.69) at both ends of this interval.

When λ = 3/4 we have

Q2
∣∣∣
λ=3/4

=
1

4
(1− r2)2, (6.73)

and the metric takes the following form

ds2
∣∣∣
λ=3/4

=
4dr2

1− r2
+ (1− r2)(σ2

1 + σ2
2 + σ2

3). (6.74)

Introducing a new coordinate r = cos(θ), the metric takes the form

ds2
∣∣∣
λ=3/4

= 4dθ2 + sin2(θ)(σ2
1 + σ2

2 + σ2
3). (6.75)

The metric

σ2
1 + σ2

2 + σ2
3 = (dψ + cos θdφ)2 + dθ2 + sin2 θdφ2 (6.76)

should be compared with the metric (1.72) on three-sphere in Hopf coordinates.

Rewritten in terms of ψ, θ, and φ coordinates the Hopf metric becomes

ds2
S3 =

(
dψ +

1

2
(1 + cos θ)dφ

)2

+
1

4
(dθ2 + sin2 θdφ2). (6.77)

Thus, we see that

σ2
1 + σ2

2 + σ2
3 = 4ds2

S3 (6.78)

if the ψ coordinate is taken with period 4π rather than 2π. Indeed, writing

dψ/2 in brackets in (6.77) in place of dψ changes the period of ψ to 4π.
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This ψ coordinate can then be combined with φ into a new coordinate and the

Hopf metric on unit S3 takes the form of the quarter of (6.76). The metric (6.75)

is then clearly four times the metric on the four-sphere of unit radius.

On the other end of the interval, when λ = 1, the root r2− becomes zero, and

the metric completely degenerates. Let us now consider intermediate values of λ.

Then, the metric is cut off at the horizons located at ±r−. Near these horizons,

e.g., near the one located at r = r−, introducing the coordinate ε = r− − r

we have

Q2 = (−2r−ε)

(
2

3
r2− + (1− 2λ)

)
. (6.79)

Then, near this horizon the metric takes the following form

ds2 =
dε2

ξ2ε
+ 4ξ2εσ2

1 + (1− r2−)(σ
2
2 + σ2

3), (6.80)

where

1

ξ2
=

1− r2−
(−2r−)(2r2−/3 + 1− 2λ)

. (6.81)

Or, introducing a new coordinate R = 2
√
ε/ξ we get

ds2 = dR2 + ξ4R2σ2
1 + (1− r2−)(σ

2
2 + σ2

3). (6.82)

With the period of the ψ being 4π, there is no conical singularity at the horizon

if ξ2 = 1/2. This fixes the value of λ to be, numerically

λ ≈ 0.933, (6.83)

with the corresponding value of r− being

r− ≈ 0.281. (6.84)

Thus, the radial coordinate of a complete metric in the family (6.69) ranges in

r ∈ [−0.281, 0.281], with the value of λ given by (6.83).

Having fixed the metric, we can proceed with the determination of the SD

connection. The SD 2-forms are

Σ1 = 2drσ1 − g2σ2σ3,

Σ2 = g2Q−1drσ2 − 2Qσ3σ1, (6.85)

Σ3 = g2Q−1drσ3 − 2Qσ1σ2.

The SD part of the Levi–Civita connection is given by

A1 = ασ1, A2 = βσ2, A3 = βσ3, (6.86)

where

α = 1−
(
Q2

g2

)′

− 2Q2

g4
, β =

Q

g2

(
1− (g2)′

2

)
. (6.87)
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Figure 6.2 Plot of the different eigenvalues of the curvature endomorphism
matrix for the Page metric. Two of the eigenvalues cross zero. Thus, the
corresponding connection is only semi-definite.

The curvature is given by

F i = M ijΣj , M ij = diag(M1,M2,M3), (6.88)

where

M1 =
1

2
α′ =

λ

3
+

2(4λ− 3)

3(1− r)3
, M2 = M3 =

Q

g2
β′ =

λ

3
− 1(4λ− 3)

3(1− r)3
. (6.89)

It is clear that the first of the curvature matrix eigenvalues remains positive,

while the two other eigenvalues pass through zero. Thus, it is clear that the

SD connection for the Page metric is definite in a large region near the horizon

r = −r−, where all three eigenvalues of the curvature matrix Ψ + (Λ/3)I are

positive. There is then a surface in the manifold, topologically an S3, occurring

at a fixed value of r, where two of the eigenvalues become zero. They change

signs on the opposite side of this surface, with the connection again being definite

in some region near the other horizon r = r−. This behaviour of the curvature

matrix is illustrated in Figure 6.2.

We can now relate this example to our previous discussion as to which branch

of the square root of the matrix X to take. First, the matrix X ∼ M2 is the

square of the matrix M . We have seen that the branch of
√
X in which the

smaller in modulus eigenvalues
√
λ1 and

√
λ2 need to be taken negative becomes

possible when the inequality (6.68) is satisfied. In our case
√
λi ∼ Mi, the largest

in modulus eigenvalue is M1, and so

M1 −M2 −M3 = −λ

3
+

4(4λ− 3)

3(1− r)3
. (6.90)
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One can check that this is positive for all r ∈ [−r−, r−], and equal to unity when

M2 = M3 = 0. Thus, in the case of the Page metric, the inequality (6.68) is

satisfied throughout M , both in the region when Ψ + (Λ/3)I is positive-definite

and in the region when two of its eigenvalues changed signs. This gives an explicit

example of a situation when it is impossible to decide which branch of the square

root of X should be taken just by looking at the matrix X itself. Both branches

are possible throughout M , and both are actually realised.

6.2.2 Page Metric via the Pure Connection Route

In this section we would like to obtain the Page metric by solving equations for

the connection. Thus, we start with a connection of the form (6.86), with some

functions α and β that only depend on the radial coordinate. The curvatures

read

F 1 = α′dxσ1 − (α− β2)σ2σ3,

F 2 = β′dxσ2 − β(1− α)σ3σ1, (6.91)

F 3 = β′dxσ3 − β(1− α)σ1σ2,

where x is the coordinate with respect to which the derivatives of α and β

are taken. The matrix Xij , which is defined only modulo multiplication by an

arbitrary function, can be taken to be

Xij = diag(1, c, c), (6.92)

where

c :=
ββ′(1− α)

α′(α− β2)
. (6.93)

The equations we need to solve are

dA
(
Tr

√
X (X−1/2)ijFj

)
= 0. (6.94)

As one can check, there is only a single independent field equation that we get

in this case, which can be taken to be the equation for i = 2. Dividing this by

β, which we thus assume to be nonzero (this can be checked to be true for the

Page metric everywhere except at the ends) we can write(
1 + 2

√
c√

c

)′

(1− α) + α′(1 + 2
√
c)

(
1− 1√

c

)
= 0. (6.95)

Here,
√
c is some choice of the square root, and our aim is in particular to clarify

how things depend on this choice. This equation can be solved for α as a function

of
√
c. Let us therefore introduce a new coordinate

x :=
√
c. (6.96)
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We have

α′

1− α
=

1

x(x− 1)(1 + 2x)
, (6.97)

and thus,

1− α = K1x

(
1

(1− x)(1 + 2x)2

)1/3

, (6.98)

where K1 is the integration constant. Knowing α(
√
c) we can find β(

√
c) from

(6.93). The equation to be solved reads

1

2
(β2)′ +

x

(x− 1)(1 + 2x)
β2 =

αx

(x− 1)(1 + 2x)
, (6.99)

with the solution being

β2 = α− K1

(1− x)1/3(1 + 2x)2/3
+

K2

(1− x)2/3(1 + 2x)1/3
, (6.100)

where K2 is another integration constant. This solves the problem of finding the

connection, albeit in terms of a not very geometric coordinate
√
c.

To be able to recover the Page metric in its form (6.69) we need to write down

the metric defined by the connection (6.86). We look for the metric in the form

ds2 = N2dx2 + a2
1σ

2
1 + a2

2σ
2
2 + a2

3σ
2
3 , (6.101)

whose SD 2-forms are

Σ1 = Na1dxσ1 − a2a3σ2σ3, etc. (6.102)

We want the curvatures (6.91) to be multiples of these 2-forms. This gives the

following set of equations

α′

Na1

=
α− β2

a2a3

,
β′

Na2

=
β(1− α)

a3a1

,
β′

Na3

=
β(1− α)

a1a2

. (6.103)

The last two equations imply that a2 = a3 and

a1 = N
β(1− α)

β′ . (6.104)

The first equation then gives

a2
2 = a2

3 = N2 (α− β2)β(1− α)

α′β′ . (6.105)

This shows that the sought metric is in the conformal class

ds2 ∼ α′(β′)2dx2 + α′β2(1− α)2σ2
1 + ββ′(α− β2)(1− α)(σ2

2 + σ2
3),

where at this stage x is an arbitrary coordinate with respect to which the

derivatives of α and β are taken. The conformal factor is fixed by requiring

that its volume form is given by (6.17), which in our case is

1

λ2

(√
α′(α− β2) + 2

√
ββ′(1− α)

)2

σ1σ2σ3dx, (6.106)
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where λ is the (dimensionless) cosmological constant. This fixes the metric to be

λds2 =
(√

α′(α− β2) + 2
√

ββ′(1− α)
)(√ α′

α− β2

β′

β(1− α)
dx2

+

√
α′

α− β2

β(1− α)

β′ σ2
1 +

√
α− β2

α′ (σ2
2 + σ2

3)

)
. (6.107)

Now using ββ′(1 − α) = cα′(α − β2) together with c = x2 and (6.97) we

can rewrite everything in terms of x, α, and β. The metric takes the following

form

λds2 =
α− β2

β2(1− x)2(1 + 2x)
dx2 +

β2(1− α)2(1 + 2x)

x2(α− β2)
σ2
1 (6.108)

+ (α− β2)(1 + 2x)(σ2
2 + σ2

3).

Taking into account (6.98) and (6.100) gives the metric explicitly, as a function of

the radial coordinate x. However, one still needs to fix the constants of integration

to obtain a complete metric.

Let us now see how the radial coordinate of the Page metric (6.69) arises. In

the Page metric, the product of the coefficients in front of dr2 term, and in front

of σ2
1 is equal to four. Thus, we can introduce a new radial coordinate from the

condition

(1− α)dx

x(1− x)
= ±2dr, (6.109)

where any choice of the sign can be taken. In the case of Page metric, the quantity

x is the ratio of two eigenvalues of Ψ + (Λ/3)I, and decra closed manifold the

decreasing x corresponds to increasing r, and motivated by this, we take the

negative sign. Taking into account (6.98) gives

K1

λ

(
1 + 2x

1− x

)1/3

= 2(const− r), (6.110)

where an arbitrary integration constant appears. In the case of the Page metric,

this constant is unity, and K1 = 2λ2/3(4λ− 3)1/3, and we make the same choice.

We are free to do this, as at this stage, this is just a definition of a new radial

coordinate, which we can choose any way we like. This gives x = M2/M1, with

M1 and M2 given by (6.89). To fix the metric completely we choose K2 to be

equal what it is for the Page metric, i.e., K2 = λ1/3(4λ−3)2/3. With these choices

we get

(α− β2)(1 + 2x) = λ(1− r2), β2 =
Q2

(1− r)2
, (6.111)

(1− α)2(1 + 2x)2

x2
= 4λ2(1− r)2,

and the Page metric is reproduced.
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6.3 Pure Connection Description of Gravitational Instantons

Gravitational instantons are Euclidean signature Einstein metrics whose Weyl

curvature is chiral, i.e., only one of the two halves of the Weyl curvature is

nonvanishing. The chiral formalism developed in this and the previous chapter

encodes the metric in a triple of 2-forms that reconstruct the metric from the

requirement that they are to become SD with respect to it. In particular, in the

chiral pure connection description, the metric is encoded into the curvature of an

SO(3) connection. We will now see that this formalism allows for a very simple

description of the ASD Einstein metrics, i.e., the metrics for which the SD part

of the Weyl curvature is vanishing.

6.3.1 Perfect Connections

We restrict our attention to the Euclidean signature. Thus, we consider an SO(3)

connection on a vector bundle that is in the same topological class as the bundle

of SD 2-forms for some metric on M . The topological class of this bundle is

independent of the metric, and is the property of M itself.

Definition 6.1 An SO(3) connection is called perfect if its curvature satisfies

F iF j ∼ δij .

Given a perfect connection, let us define a set of Lie algebra valued 2-forms

Σi
F :=

3

Λ
F i. (6.112)

These 2-forms satisfy Σi
FΣ

j
F ∼ δij by the perfectness of the connection. They also

satisfy dAΣi
F = 0 by the Bianchi identity for the curvature. Thus, we can apply

to such 2-forms the general statements of the previous chapter and conclude

that Σi
F define a metric and, moreover, the connection Ai is the SD part of

the spin connection for that metric. But then the definition of Σi
F becomes the

statement that the curvature of the SD part of the spin connection is SD as

the 2-form, which is the Einstein condition, and moreover, the SD part of the

Weyl curvature tensor vanished. Thus, perfect connections describe ASD Einstein

metrics of nonzero scalar curvature.

Thus, in the previous description of gravitational instantons, the only equa-

tions that need to be solved are F iF j ∼ δij , which are first-order partial differ-

ential equations (PDEs) on an SO(3) connection. A solution to this first-order

PDEs is then automatically a solution to second-order chiral pure connection

PDEs (6.23) that give Einstein connections. This is all similar to what happens

in the instanton sector of the Yang–Mills theory.

6.3.2 Analogy with Self-Dual Yang–Mills Theory

SD Yang–Mills theory is a modification of the full Yang–Mills theory that keeps

only the so-called SD solutions of the Yang–Mills theory field equations. The

field equations of the SD Yang–Mills theory read
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F+ = 0, (6.113)

where the plus denotes the SD projection of the Yang–Mills field strength. This

equation says that at most, the ASD part of the field strength is nonvanishing.

A Yang–Mills theory connection that satisfies this first order in derivatives field

equation also satisfies the full Yang–Mills theory second-order field equation

dμ
AF

a
μν = 0, by Bianchi identity. Indeed, F+ = 0 means that the curvature 2-form

is ASD and thus, F a
μν = −(1/2)εμν

ρσF a
ρσ. But this means that the Yang–Mills

theory field equation is satisfied by the Bianchi identity for F a
μν .

Next, one can show that on a closed manifold the Yang–Mills action is bounded

from above by the Pontryagin number for the corresponding gauge bundle. In-

deed, the action is

SYM[A] = −1

4

∫
(F a

μν)
2 = −1

4

∫
(F a

+μν)
2 + (F a

−μν)
2. (6.114)

It is then clear that

SYM[A] ≤ 1

4

∫
(F a

+μν)
2 − (F a

−μν)
2 =

1

2

∫
F aF a, (6.115)

with the equality if and only if the connection is a Yang–Mills instanton F+ = 0.

Thus, Yang–Mills instantons are global maxima of the Yang–Mills action.

The analogy with gravitational instantons is clear. Perfect SO(3) connections

are those satisfying the first-order perfectness PDEs. They are automatically

solutions of the second-order PDEs (6.23) and thus, are, in particular, Einstein

connections. Moreover, as we have seen in (6.59), these connections are also

global maxima of the chiral pure connection action. All these statements exactly

mimic what happens in the case of Yang–Mills instantons.

6.3.3 Action Principle for Perfect Connections

There is a simple action principle that gives the desired pure connection descrip-

tion of instantons field equations. The action is given by

Sinst[A,Ψ] =

∫
ΨijFiFj , (6.116)

where Ψij is a symmetric tracefree matrix. Varying with respect to Ψij we get

the desired perfectness condition for the connection. Varying with respect to the

connection we get the field equations for the Lagrange multiplier fields

dA(ΨijFj) = 0. (6.117)

It is interesting to note that this gives a polynomial in the fields action principle

with at most quintic interaction. Also, because the action is linear in one of the

fields one knows from general principles that the corresponding quantum theory

is one-loop exact. Indeed, it is easy to convince oneself that it is impossible to con-

struct any diagrams with more than one loop in such a theory. As was discussed

in Krasnov (2017b), this quantum theory is, in fact, quantum finite in that the
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divergences that are possible at one loop are removed by field redefinitions. This

gives an interesting and rare example of a gravitational theory that is quantum

finite.

Another remark is that we can rewrite the action (6.116) in the general form

(6.2) with

finst(M) = Tr(M−1). (6.118)

Thus, given that a general f(M) corresponds to a modified theory of gravity,

with see that there is a specific choice in which the effect of modification is to

allow only the ASD Einstein solutions to the GR field equations.

Yet another remark is that it is possible to think about the full GR in formu-

lation (6.1) as the instanton theory (6.116) plus additional interactions. Indeed,

let us expand the action (6.1) in powers of Ψ. We have

S[A,Ψ] =
3

16πGΛ
√
σ

∫ (
δij −

3Ψij

Λ
+

∞∑
n=2

(
−3

Λ

)n

(Ψn)ij

)
F iF j .

The first term here is topological; the second term is the instanton action (6.116),

while all other terms introduce additional interactions among the fields already

present in the instanton theory.

6.3.4 Example: Fubini-Study Metric

Let us see how the pure connection formalism can be used to obtain the Fubini–

Study metric on CP 2. We first describe the metric in the usual formalism, and

then show how it arises by solving the equations F iF j ∼ δij .

Fubini–Study metric is Kähler, which, in particular, means that it can be

written in the form

ds2 =
∂2K

∂ζA∂ζ̄Ā
dζAdζ̄Ā, (6.119)

where ζA, A = 1, 2 are the complex coordinates and

K =
6

Λ
log

(
1 +

Λ

6
(|ζ1|2 + |ζ2|2)

)
(6.120)

is the Kähler potential. Introducing the radial coordinate r and the Euler angles

ψ, θ, φ via

ζ1 = r cos(θ/2)ei(ψ+φ)/2, ζ2 = r sin(θ/2)ei(ψ−φ)/2 (6.121)

with the range ψ ∈ [0, 4π], r ∈ [0,∞] and the usual range for the spherical angles

θ, φ the metric can be written in the following form

ds2 =
dr2

Q2
+

r2

4Q2
σ2
1 +

r2

4Q
(σ2

2 + σ2
3) , (6.122)
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where σ1,2,3 are the standard 1-forms on S3 given by (6.71) and

Q = 1 +
Λr2

6
. (6.123)

6.3.4.1 Chiral Half of the Spin Connection: SD

We would now like to confirm that the above metric is an instanton in the sense

of one of its chiral halves of the spin connection being perfect. We will see that

this is only true for one of the two chiral halves. So, we compute both the SD

and the ASD parts of the spin connection. Alternatively, this can be phrased

by saying that we compute the SD connection first with the standard choice of

the orientation, and then by reversing the orientation. Reversing the orientation

makes the ASD forms SD.

Let us start with the orientation choice we have been using previously. The

basis of SD 2-forms is

Σ1 =
r

2Q2
drσ1 −

r2

4Q
σ2σ3, Σ2 =

r

2Q3/2
drσ2 −

r2

4Q3/2
σ3σ1, (6.124)

and similarly for Σ3. Starting with an ansatz

A1 = ασ1, A2 = βσ2, A3 = βσ3 (6.125)

one finds

α =
r2Λ

4Q
, β = 0. (6.126)

This means that the only nonvanishing curvature component is

F 1 = α′drσ1 − ασ2σ3. (6.127)

This is SD when α′/α = 2/Qr, which is satisfied. We have

F 1 = ΛΣ1, F 2 = F 3 = 0. (6.128)

We see that the metric (6.122) is Einstein, and we also see that the Weyl

curvature in Ψ22 + (Λ/3) and Ψ33 + (Λ/3) exactly cancels the contribution from

the scalar curvature Ψ22 = Ψ33 = −Λ/3. Because two of the curvature 2-forms

vanish, one cannot recover the metric from the curvature and so we cannot

describe the Fubini–Study metric using the chiral pure connection formalism

with this orientation.

6.3.4.2 Chiral Spin Connection: ASD

We now compute the ASD part of the spin connection, or the SD connection

but with the ‘wrong’ choice of the orientation. So, we instead take the following

basis of 2-form

Σ1 =
r

2Q2
drσ1 +

r2

4Q
σ2σ3, Σ2 =

r

2Q3/2
drσ2 +

r2

4Q3/2
σ3σ1, (6.129)
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and similarly for Σ3. In this case, the connection functions are found to be

α = 1− Λr2

12Q
, β =

1√
Q
. (6.130)

The first component of the curvature is then

F 1 = α′drσ1 + (β2 − α)σ2σ3, (6.131)

which is SD if

α′

β2 − α
=

2

rQ
, (6.132)

which can be checked to be satisfied. One then has F 1 = −(Λ/3)Σ1, which is

the correct Plebański equation with Ψ11 = 0 in this orientation. Similarly, the

second curvature component is

F 2 = β′drσ2 + β(α− 1)σ2σ3. (6.133)

This is SD if

β′

β(α− 1)
=

2

r
, (6.134)

which can again be checked to be satisfied. Overall, we have in this orientation

F i = −Λ

3
Σi. (6.135)

Thus, the Fubini–Study metric is an instanton in the sense of one of the two

halves of its spin connection being perfect.

6.3.5 Pure Connection Description of Fubini–Study

We now show how to recover the Fubini–Study metric using the connection

formalism. We start with the ansatz (6.125). The curvature components are

given in (6.131) and (6.133) and the equations F iF j ∼ δij take the form

α′(β2 − α) = ββ′(α− 1). (6.136)

This integrates to

β2 = κ(1− α)2 + 2α− 1, (6.137)

where κ is the integration constant. We have already computed the metric de-

scribed by connection (6.125) in our discussion of the Page metric; see (6.107). Be-

cause we are now matching the curvature components to the basis of SD 2-forms

in the ‘wrong’ orientation, the signs in terms α − β2 and 1 − α in (6.107) must

be reversed. If we take α as the radial coordinate, we get the following metric

−(Λ/3)ds2 =
β2 − α

β2(α− 1)2
dα2 +

β2(α− 1)2

β2 − α
σ2
1 + (β2 − α)(σ2

2 + σ2
3).
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For a general value of κ this is what is known as the Taub-Newman-Unti-

Tamburino (Taub–NUT) metric, and can be put in the standard Taub–NUT

form by an appropriate choice of the radial coordinate. For κ = 1 this metric

gives us the metric on the four-sphere. Indeed, in this case β2 = α2 and the

metric reduces to

(Λ/3)ds2 =
dα2

α(1− α)
+ α(1− α)(σ2

1 + σ2
2 + σ2

3).

Introducing a new coordinate

α =
1

2
(1 + cos θ) (6.138)

the metric becomes

(Λ/3)ds2 = dθ2 +
1

4
sin2 θ(σ2

1 + σ2
2 + σ2

3), (6.139)

which is the metric on the unit four-sphere.

For κ = 0 we obtain the Fubini–Study metric. Indeed, in this case the metric is

(Λ/3)ds2 =
dα2

(2α− 1)(1− α)
+ (2α− 1)(1− α)σ2

1 + (1− α)(σ2
2 + σ2

3).

Introducing a new coordinate

α = 1− Λr2

12Q
, (6.140)

where Q is given by (6.123) the metric becomes (6.122).

6.4 First-Order Chiral Connection Formalism

The chiral pure connection action (6.8) leads to a second order in derivatives field

equations. It also contains the difficulty of defining the square root in the action.

As we have discussed, this action is certainly defined perturbatively around any

given background. One can also use this formulation to explicitly solve Einstein

equations, as we have demonstrated on the example of the Page metric. However,

the necessity to worry about how to choose a branch of the square root of the

matrix X makes this formalism not ideal. Also, the pure connection formalism

is only available when the cosmological constant is nonzero.

In this section we will advocate a first-order version of the chiral pure connec-

tion formalism. The field equations that it leads to are first-order in derivatives

and as the result there are extra fields as compared to the pure connection case.

But there are no awkward matrix square roots to deal with, and in this sense, the

new formalism is much easier to deal with. We will also see that the procedure

of solving Einstein equations in this first-order formalism is in some cases much

simpler than that in the second-order one. Finally, the new formalism is available
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even when Λ = 0, and is still more economic that the Plebański description

because the 2-form fields of the latter have been integrated out.

6.4.1 The Action and Field Equations

The new formalism is the middle point between the Plebański action with all

fields Σi, Ai,Ψij present, and the pure connection action that contains only the

Ai field. It is obtained by integrating out the 2-form field Σi from Plebański

action. The most convenient form of the resulting action has already been stated

in (6.2), which we repeat

S[A,M,μ] =
1

16πG
√
σ

∫
Tr(M−1FF ) + μ (f(M)− Λ) . (6.141)

This is a functional of a connection and two Lagrange multiplier fields, a symmet-

ric 3×3 matrix M ij , and another 4-form valued μ, which imposes the constraint

that some gauge-invariant function of M ij (e.g., the trace in the case of GR) is

not dynamical.

The field equations that one obtains by varying the action are as follows

dA(M−1F ) = 0, M−1XM−1 = μ
∂f

∂M
, (6.142)

where X = FF . The first of these equations should be viewed as a first-order

differential equation on M , while the second determines X in terms of M and

can then, in principle, be integrated to obtain the connection. We will later

see that this interpretation is actually a good strategy for solving the system

of equations (6.142) system of equations in many examples. In the case of GR,

the matrix of partial derivatives of f(M) appearing on the right-hand side of

the second equation is equal to the identity matrix. We note that (6.142) is a

very compact and elegant way of writing Einstein equations. We also note that

nothing prevents us from setting Λ = 0 in the action (6.141).

When Λ �= 0, the matrix M can be solved for from the second equation, and

the solution substituted to the first, resulting in the pure connection description.

But the idea is not to do this too soon, and instead solve the first equation in

(6.142) treating the components of M as independent fields. If this is possible

then X can be solved for in terms of M from the second equation, from where the

connection can be determined. So, in cases that this programme can be realised,

we get an efficient strategy for solving Einstein equations. Of course, in general,

things are not so simple and what one gets is a coupled system of first-order

differential equations for both M and the connection. But there are examples in

which this strategy works, as we shall now describe.

6.5 Example: Bianchi I Connections

In this section, we consider the example of spatially homogeneous anisotropic

universes with flat spatial slices, the so-called Bianchi I setup.
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6.5.1 Connections and Curvature

We consider the Lorentzian signature GR and start with the following ansatz for

the connection

A1 = ih1(τ)dx
1, etc. (6.143)

Here, hi(τ) are three functions of an arbitrary time coordinate τ , while xi are

the Cartesian coordinates on the spatial slices (surfaces of homogeneity). The

corresponding curvature 2-form is

F 1 = iḣ1dτdx
1 − h2h3dx

2dx3, etc. (6.144)

where an overdot denotes derivative with respect to τ . Calculating the wedge

product, we obtain

F iF j = 2iδijXihεc, (6.145)

where εc = dx1dx2dx3dτ is the coordinate volume form, no summation is implied

in this formula, h = h1h2h3, and

Xi =
ḣi

hi

. (6.146)

If we now define Xij = F iF j/ε with

ε = 2ihεc, (6.147)

then Xij = diag (X1, X2, X3).

6.5.2 Evolution Equations in the Pure-Connection Parametrisation

There is no difficulty in considering the most general class of theories at least in

the first steps. The reason for the choice (6.147) of the volume form defining the

matrix Xij is that the pure-connection formulation equation (6.42) reduces to

the system (
∂g

∂Xi

)·

= g(X)− ∂g

∂Xi

∑
j

Xj , (6.148)

which is a system of first-order differential equations for Xi. Specialising to the

case of the function g(X) given by (6.30), it is not hard to obtain the familiar

GR solution. We will, however, obtain the solution in a simpler way working in

the formulation with auxiliary fields.

An alternative form of equations (6.148) is obtained by multiplying these

equations by h = h1h2h3 and using definition (6.146). Equations (6.148) then

reduce to (
∂g

∂Xi

h

)·

= g(X)h. (6.149)

This form is convenient for analysing the case of arbitrary g(X).
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We note that the field equations (6.149) can be obtained both directly by

substituting the ansatz for the connection into (6.42), or from an action principle.

Indeed, on our ansatz the action (6.29) reduces to

S ∼
∫

dτg(X1, X2, X3)h. (6.150)

The variation of this action with respect to, e.g., h1 is

δS ∼
∫

dτ
∂g

∂X1

(
δḣ1

h1

− X1

h1

δh1

)
h+ g(X)

δh1

h1

h. (6.151)

This gives the following equation of motion(
∂g

∂X1

h2h3

)·

h1 = g(X)h− ∂g

∂X1

X1h, (6.152)

which can be rewritten as (6.149).

6.5.3 The Metric

Before we begin our analysis of the evolution equations, it is useful to compute

the metric determined by the connection. The easiest way is to directly look for

a metric that makes the curvature forms (6.144) SD.

We are looking for the metric in the Bianchi I form

ds2 = −N2(τ)dτ 2 +
∑
i

a2
i (τ)

(
dxi

)2
. (6.153)

This means that the basis of SD 2-forms is

Σ1 = iNa1dτdx
1 − a2a3dx

2dx3, etc. (6.154)

We now require that the curvature 2-forms are proportional to the corresponding

Σi’s. This gives

ḣ1

Na1

=
h2h3

a2a3

, etc., (6.155)

from which we get

a2
1

N2
=

h2
1

X2X3

, etc. (6.156)

Another equation for determining the metric is obtained by fixing the metric

volume form

εm = Na1a2a3dx
1dx2dx3dτ = Na1a2a3εc. (6.157)

By our prescription, this should be equal to a multiple of g(X):

2iΛ2εm = g(FF ), (6.158)
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where Λ is the cosmological constant and for the case of GR the function g(X)

is given by (6.30). Using (6.145), we get

Λ2Na1a2a3 = g(X)h. (6.159)

Combining this equation with (6.156), we have

N2 =

(
g(X)X1X2X3

Λ2

)1/2

. (6.160)

If we require that the metric be real, and that the signature of the τ coordinate

be negative, then the final expression for the metric is

Λds2 =
√

|g(X)X1X2X3|
[
−dτ 2 +

∏
j

X−1
j

∑
k

h2
kXk

(
dxk

)2]
. (6.161)

Note that this metric is time-reparametrisation invariant, as it should be.

6.5.4 Solution in the General Case

One of the miracles of the pure-connection formulation of gravity under consid-

eration is that it allows one to write the general solution to the problem at hand

for an arbitrary theory, i.e., for an arbitrary choice of the function g(X). This

becomes possible by using a clever choice of the time variable.

We begin with solution for the case of general g(X) and then specialise to GR.

Solution of GR in which one works in the physical time from the beginning is

also possible, but is more involved and will not be considered. Details can be

found in Herfray et al. (2016b). Let us consider the evolution equations in the

form (6.149). By using time-reparametrisation freedom, it is always possible to

choose the time variable τ in such a way that

g(X)h = const. (6.162)

The geometric significance of this choice is that this is the time coordinate in

which the metric volume form is proportional to the coordinate volume form, i.e.,√
det g = Na1a2a3 = const. This is clear from (6.159).

With this choice, equation (6.149) can be integrated to give an implicit solution

for X(τ):

∂g(X)

∂Xi

= g(X) (τ − τi) , (6.163)

where τi are arbitrary integration constants. The homogeneity of the function

g(X) implies another relation ∑
i

Xi (τ − τi) = 1. (6.164)
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Equations (6.163) and (6.146) give a complete solution to the problem for an

arbitrary theory from our class. We now give some general analysis of the solution

obtained, and then specialise to GR.

6.5.5 De Sitter Solution

Consider τ → ∞, and assume that g(X)τ remains constant as τ → ∞. Then

equation (6.163) implies that all derivatives ∂g(X)/∂Xi become mutually equal.

The symmetry of the function g(X), in turn, implies that all Xi become equal

to each other in this limit. Relation (6.164) then gives the solution

Xi ≈
1

3τ
as τ → ∞. (6.165)

The homogeneity of g(X) then justifies the assumption f(X)τ → const that we

made in deriving this solution.

The corresponding metric describes the de Sitter spacetime. Indeed, we have

g(X) = g0/τ , where g0 is a constant. Then, by rescaling the spatial coordinates,

we can always choose the solution in the form hi = τ 1/3. Then metric (6.161)

becomes

ds2 =

√
3f0
Λ2

(
−dτ 2

9τ 2
+ τ 2/3dr2

)
=

√
3f0
Λ2

(−dt2 + e2tdr2) , (6.166)

where τ = e3t is the time coordinate change, and dr2 =
∑

i (dx
i)

2
. This is nothing

but the de Sitter metric, which is thus the solution of theory with any g(X).

6.5.6 Integration Constants

Without loss of generality, one can shift the time variable so that∑
i

τi = 0. (6.167)

Second, apart from the trivial case τi = 0 for all i, which gives the de Sitter

solution, by the remaining freedom of time rescaling, which does not violate

(6.162), we can achieve the condition∑
i

τ 2
i = 2. (6.168)

This normalization is convenient because squaring (6.167) we can rewrite (6.168)

as

τ1τ2 + τ2τ3 + τ3τ1 = −1. (6.169)

Without loss of generality, we can arrange the integration constants so that

τ3 ≤ τ2 ≤ τ1. (6.170)
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Because of condition (6.167), we have τ3 < 0 < τ1. When τ2 = τ1, we have

τ2 = τ1 = 1/
√
3 and τ3 = −2/

√
3. This is the largest absolute value that τ3 can

reach. In the opposite extreme τ2 = τ3 we have τ2 = τ3 = −1/
√
3 and τ1 = 2/

√
3,

which is the largest value τ1 can reach. All in all, we have

τc ≤ τ1 ≤ 2τc, −τc ≤ τ2 ≤ τc, −2τc ≤ τ3 ≤ −τc, (6.171)

where τc = 1/
√
3.

6.5.7 The Case of GR

We have, in general,

g(X) = ΛTr(M−1X), (6.172)

and therefore, ∂g/∂X = ΛM−1. Thus, the solution (6.163) becomes

M1 =
Λ

g(X)(τ − τ1)
, etc. (6.173)

Here g(X) needs to be determined from the constraint f(M) = Λ. In the case of

GR this gives

g(X) =
∑
i

1

τ − τi
=

3τ 2 − 1∏
i(τ − τi)

≡ s1, (6.174)

which gives

M1 =
Λ

s1(τ − τ1)
, etc. (6.175)

This determines the auxiliary matrix M completely. We now determine the com-

ponents of the matrixX in terms of those ofM using the equationsM−1XM−1 =

μI. This gives Xi = μM2
i . The Lagrange multiplier μ is determined from (6.172),

which gives μ = g(X)/Λ2. Overall, we have

X1 =
1

s1(τ − τ1)2
=

(τ − τ2)(τ − τ3)

(3τ 2 − 1)(τ − τ1)
, etc. (6.176)

The quantities XGR
i have simple poles at τ = τi, and all blow up as τ → ±1/

√
3,

which corresponds to the Kasner singularity. This behaviour is illustrated in

Figure 6.3.

6.5.8 Solution for the Metric

Let us also write the corresponding metric components; see (6.161). We have

g(X) = s1 and so

g(X)X1X2X3 =
1

(3τ 2 − 1)2
,

g(X)X1

X2X3

=
(3τ 2 − 1)2

(τ − τ1)4
, (6.177)



230 Chiral Pure Connection Formulation

Figure 6.3 Plots of the components of the matrix X.

and similarly for the other components. All expressions are manifestly positive,

so taking the square root, we have

N2 =
1

Λ(3τ 2 − 1)
, a2

1 = h2
1

3τ 2 − 1

Λ(τ − τ1)2
. (6.178)

In the time interval τ ∈ (−τc, τc), τc = 1/
√
3, instead of taking the modulus

of expressions to get nonnegative metric components, we reverse the sign of the

cosmological constant Λ. This is the correct interpretation, as this time interval

corresponds to a solution of GR with negative cosmological constant.

We now study this solution in more detail, and, in particular, integrate the

equations for hi near the singularity.

6.5.9 Behaviour Near the Poles

When all three integration constants are different, the function s1(τ) has three

simple poles at τ = τi, and two simple zeros at τ = ±τc. Let us analyse the

behaviour near the poles.

Consider, for example, the limit τ → τ1. In this case, we have s1 ∼ 1/(τ−τ1) →
∞. Solution (6.176) behaves as

X1 ≈
1

τ − τ1
, X2 ∼ X3 ∼ τ − τ1. (6.179)

This is an integrable behaviour, with h1 → 0 and h2 and h3 finite as τ → τ1. We

thus see that all Xi change sign at τ = τ1.

Let us determine the behaviour of the components (6.160) of the canonical

metric (6.161) at this point. Integrating the first equation in (6.179), we obtain

h1 ∼ τ − τ1, (6.180)
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while h2 and h3 tend to constants. So, the significance of the point τ = τ1
is in the fact that one of the connection components h1 passes through

zero there.

Now, using this behaviour, we see that the metric lapse function as well as the

scale factors (6.160) are finite and regular as τ → τ1. So, the τ = τ1 is just a

special point where one of the components of the connection goes to zero.

It is also interesting to analyse what happens with the components of the

matrix F iF j of curvature wedge products at this point. We know that, e.g.,

F 1F 1 = 2iX1hεc, where εc is the coordinate volume element. Thus, we see

that F 1F 1 remains finite at τ = τ1 because the pole in X1 is cancelled by

the zero in h1 (recall h = h1h2h3). We also see that the other two compo-

nents, F 2F 2 and F 3F 3, vanish at τ = τ1. We have an order two zero at this

point, so that the matrix M that is proportional to the square root of X

has order one zero in its components M2,M3 ∼ τ − τ1. This is the already

familiar pattern from our consideration of the Page metric, in which two of the

eigenvalues of
√
X change sign so that the sign of the determinant of this matrix

is unchanged. In terms of our previous discussion illustrated by Figure 6.1, the

matrix M/Λ starts in region I for large positive τ and crosses to region II for

τc < τ < τ1.

It is also interesting to consider what happens near τ = τ2. Let us consider

the components of the matrix M given by (6.175), which we write as

M1

Λ
=

(τ − τ2)(τ − τ3)

3τ 2 − 1
,
M2

Λ
=

(τ − τ1)(τ − τ3)

3τ 2 − 1
,
M3

Λ
=

(τ − τ1)(τ − τ2)

3τ 2 − 1
.

We see that M1/Λ changes sign at the singularity τ = τc and is negative ‘on the

other side’ of the singularity. The quantities M2/Λ,M3/Λ both change signs at

τ = τ1 and then change signs again at the singularity, so they are both positive as

τ → τc from the left. Thus, we have one of the eigenvalues of M/Λ negative and

two positive, which means that the determinant ofM/Λ is negative in the interval

τ ∈ (−τc, τc). At τ = τ2 both M1/Λ and M3/Λ change sign, but the determinant

of M/Λ remains negative. This means that the matrix M/Λ remains in region

III of Figure 6.1 for all τ ∈ (−τc, τc).

6.5.10 Behaviour Near the Singularity

At the singularity τ = τc = 1/
√
3, the function s1 has a simple zero. Thus, we

have

X1 ≈ − (τc − τ2)(τc − τ3)

2
√
3(τ1 − τc)(τ − τc)

, etc, g(X) ∼ τ − τc. (6.181)

Integrating (6.146), we get

h1 ∼ (τ − τc)
− (τc−τ2)(τc−τ3)

2
√

3(τ1−τc) , etc. (6.182)
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We thus see that the lapse function (6.178) diverges, while the scale factors

behave as

a2
i ∼ (τ − τc)

pi , (6.183)

where

p1 = 1− (τc − τ2)(τc − τ3)√
3(τ1 − τc)

, etc. (6.184)

These exponents satisfy

p1 + p2 + p3 = 1, p1p2 + p2p3 + p3p1 = 0. (6.185)

From (6.178) we see that the physical time near the singularity is t ∼ √
τ − τc,

and thus the behaviour (6.183) is the usual Kasner one,

a2
i ∼ t2pi , (6.186)

with the correct exponents (6.185).

Note that the components of the gauge field (6.182) all diverge at the singu-

larity, so this is a true singularity not only of the canonical metric (6.161) but

also of the fundamental gauge field.

6.6 Spherically Symmetric Case

The purpose of this section is to solve the Lorentzian signature spherically

symmetric problem with negative cosmological constant. Again, we use the mixed

first-order version of the chiral pure connection formulation.

6.6.1 Equations

We take the following spherically symmetric ansatz for the connection

A1 = ia(R)dt+ cos(θ)dφ, A2 = −b(R) sin(θ)dφ, A3 = b(R)dθ. (6.187)

The curvatures are

F 1 = −ia′dtdR+ (b2 − 1) sin(θ)dθdφ,

F 2 = −iab dtdθ + b′ sin(θ)dφdR, (6.188)

F 3 = −iab sin(θ)dtdφ+ b′dRdθ,

where the primes denote the derivative with respect to the radial coordinate, at

this stage arbitrary. The diagonal X matrix can then be taken to be

X1 =
a′

a
, X2 = X3 =

bb′

b2 − 1
. (6.189)
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The field equations dA(M−1F ) = 0 can be written in the following form

(M−1
1 a(b2 − 1))

′
=

g(X)

Λ
a(b2 − 1), (6.190)

(M−1
2 a(b2 − 1))

′
=

g(X)

Λ
a(b2 − 1),

where we manipulated the equations to map them into a form in which the

right-hand side is the same. Here

g(X)

Λ
= Tr(M−1X) = M−1

1

a′

a
+M−1

2

(b2 − 1)′

b2 − 1
. (6.191)

6.6.2 Solution

We now choose the radial coordinate so that

g(X)a(b2 − 1) = Λ. (6.192)

The solution for the matrix M is then immediately written down

M−1
1 =

g(X)

Λ
(R+R1), M−1

2 =
g(X)

Λ
(R+R2), (6.193)

where R1,2 are integration constants. We remark that we want the solution with

Λ < 0, so that there is an asymptotic region at spatial infinity.

6.6.3 Metric

The metric is computed from the requirement that the curvature 2-forms (6.188)

are SD, and that the metric volume form is a constant multiple of the coordinate

volume form. This last condition follows from our choice of the radial coordinate

(6.192). Let us give some details of this calculation. We look for the metric in

the standard spherically symmetric form

ds2 = −f2dt2 + g2dR2 + r2dω2, (6.194)

where r = r(R) and dΩ2 is the standard area element on the unit S2. The basis

of SD 2-forms for this metric is

Σ1 = ifgdtdR− r2 sin θdθdφ,

Σ2 = ifrdtdθ − gr sin θdφdR, (6.195)

Σ3 = ifr sin θdtdφ− grdRdθ.

We now demand that our curvature 2-forms are proportional to the corresponding

Σi’s. This gives the following equations

a′

fg
=

b2 − 1

r2
,

ab

fr
=

b′

gr
. (6.196)
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These can be rewritten as

fg =
X1ar

2

b2 − 1
,

f

g
=

ab2

X2(b2 − 1)
, (6.197)

and give

f2 =
X1a

2b2r2

X2(b2 − 1)2
, g2 =

X1X2r
2

b2
. (6.198)

Another equation we need is that for the volume form. This we get by demanding

that g(FF ) = 2iΛ2ε, where ε is the metric volume form ε = fgr2εc, and where

εc = sin θdRdθdφdt is the coordinate volume element. The quantity g(FF )

evaluates to g(FF ) = 2ig(X)a(b2 − 1)εc. Thus, we get

Λ2fgr2 = g(X)a(b2 − 1). (6.199)

Taking the square of this and substituting the expressions for f2 and g2 we get

r8 =
g(X)2(b2 − 1)4

X2
1Λ4

⇒ r2 =

√
|g(X)|(b2 − 1)2

|X1|Λ2
. (6.200)

We thus get the following metric

|Λ|ds2 =
√

|g(X)|(b2 − 1)2

|X1|

(
− X1a

2b2

X2(b2 − 1)2
dt2 +

X1X2

b2
dR2 + dΩ2

)
,

where as usual dΩ2 is the metric on the unit sphere.

6.6.4 Solving for the Connection Components

We now specialise to the case of GR. We have the condition Tr(M) = Λ. And so

we take the trace of M as obtained in (6.193) to get

1 =
1

g(X)

(
1

R+R1

+
2

R+R2

)
≡ 3R+ 2R1 +R2

g(X)(R+R1)(R+R2)
. (6.201)

It is now convenient to shift the radial coordinate so as to impose

2R1 +R2 = 0. (6.202)

We now take R1 ≡ R̄ to be the single parameter of the solution. This gives

g(X) =
3R

(R+ R̄)(R− 2R̄)
, (6.203)

and thus a complete solution to the problem of determining the matrix M

M1 =
Λ(R− 2R̄)

3R
, M2 =

Λ(R+ R̄)

3R
. (6.204)

We can now find the components of the matrix X. We have M−1XM−1 =

μI, from which X = μM2. But we can also write the original equation as
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M−1X = μM and then take the trace. Using ΛTr(M−1X) = g(X) we get as

before μ = g(X)/Λ2. So, the final expressions for the quantities X1 and X2 are

X1 =
(R− 2R̄)

3R(R+ R̄)
, X2 =

(R+ R̄)

3R(R− 2R̄)
. (6.205)

We now integrate the relations (6.189) to obtain the components of the connec-

tion

a = K1

R+ R̄

(3R)2/3
, b2 − 1 = K2

R− 2R̄

(3R)1/3
, (6.206)

where K1,2 are integration constants. This gives a complete solution to the

problem, modulo the issue of fixing (or interpreting) the integration constants

K1,2 and R̄.

6.6.5 A Relation Between K1 and K2

There is a relation between the integration constants K1,2 that follows from our

gauge-fixing condition g(X)a(b2−1) = Λ. Indeed, substituting the g(X) that we

have found in (6.203), as well as the connection components, we get

K1K2 = Λ. (6.207)

6.6.6 Fixing K1,2 from the Asymptotics

Let us fix K1,2 from the large R asymptotics of the metric as found previously.

We have X1, X2 = 1/3R asymptotically, and g(X) = 3/R. So, for large R the

metric reads (
|Λ|
3

)
ds2 = −K2

1

R2/3

34/3
dt2 +

dR2

(3R)2
+ |K2|

R2/3

31/3
dΩ2. (6.208)

We would like this to be the usual (asymptotically) hyperbolic metric

ds2 = l2
(
−r2dt2 +

dr2

r2
+ r2dΩ2

)
, (6.209)

with

Λ

3
= − 1

l2
. (6.210)

This means that asymptotically at least

K2
1

R2/3

34/3
= r2, |K2|

R2/3

31/3
= r2, (6.211)

and therefore,

K2
1 = 3|K2|. (6.212)
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Using (6.207) this gives

|K1| =
(
3

l

)2/3

, |K2| =
(
3

l4

)1/3

, (6.213)

and thus

R2 = r6l4. (6.214)

There are two possible branches here R = ±r3l2, with only one of these

branches giving the desired Anti-de Sitter-Schwarzschild metric, see the next

section.

6.6.7 The Final Metric

The conformal factor in the metric computes to
√

(3R)4/3K2
2 = 3r2, which

immediately gives the correct angular part of the metric. For the other terms,

after numerous cancellations, we get the following metric

ds2 = l2
(
−b2dt2 +

dr2

b2
+ r2dΩ2

)
. (6.215)

In particular, it is seen that (6.214) is the relation that is valid everywhere.

We can now fix the components of the connection completely. In terms of the

radial coordinate r the functions a and b2 take the form

a = sign(K1)

(
±r +

R̄

r2l2

)
, b2 − 1 = sign(K2)

(
r2 ∓ 2R̄

l2r

)
.

Here, the two possible signs are those of the two branches in R = ±r3l2. We

see that the sign of K2 must be chosen to be plus in order for the function

b2 to behave as r2 for large r. This means that we must take K1 to be nega-

tive (because K1K2 = Λ is negative). But then if we want the function a to

behave asymptotically as r we need to take the R = −r3l2 branch. This finally

gives

a = r − R̄

r2l2
, b2 = 1 + r2 +

2R̄

l2r
. (6.216)

This becomes the usual Euclidean Schwarzschild–AdS metric if we further replace

r → r/l and identify

R̄ = −Ml, (6.217)

where M is the black hole mass. The fact that we need both R, R̄ negative to get

the familiar solution correlates with the fact that we are considering the negative

Λ case.
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6.6.8 Behaviour of the Matrix M

It is interesting to consider the behaviour of the matrix M in the solution we

have obtained. With the previous identifications we have

M1

Λ
=

1

3

(
1− 2M

r3l

)
,

M2

Λ
=

1

3

(
1 +

M

r3l

)
. (6.218)

This means that asymptotically for large r the matrix M/Λ is in the region I of

its parameter space; see Figure 6.1. But at r = (2M/l)1/3 one of its eigenvalues

changes sign, and the matrix crosses to region III of the parameter space. It is

also interesting that for negative M , the behaviour would be different, and we

would have two of the eigenvalues of M/Λ changing sign instead. But in this case

there is no horizon and one has a ‘naked’ singularity at r = 0. It is interesting

that the expected behaviour of matrix M/Λ (in the sense of taking values in

regions I and III of the parameter space for Λ < 0) correlates with positive

mass and no naked singularity condition.

6.7 Bianchi IX and Reality Conditions

The purpose of this section is to analyse the so-called Bianchi IX model using

the first-order connection formalism (6.142). The Bianchi IX setup gives a very

good illustration to the problem of imposing Lorentzian signature case reality

conditions. In all the setups studied so far the problem of imposing the Lorentzian

signature reality conditions was trivial, as it was always relatively straightforward

to select the desired conditions. In particular, the same reality conditions worked

for any modified theory of the type (6.2). We shall now analyse an example

where this problem becomes nontrivial, and where it is no longer obvious which

reality conditions to impose in the connection formalism. The correct reality

conditions in the case of GR are the ones that require the metric constructed

from the connection to be real Lorentzian. But we shall explicitly see that the

compatibility of these conditions with the dynamics of the model is nontrivial.

If one changes the theory changing f(M), one changes the dynamics, and the

modified dynamics is in general no longer compatible with the conditions that

the metric constructed from the connection is real. This means that there is, in

general, no sensible Lorentzian signature interpretation of the modified theories

of the type (6.2), and these modified theories exist only in the Euclidean or split

signatures. The analysis in Section 6.7.4 also illustrates how subtle the chiral

connection formalism Lorentzian signature reality conditions are even in the

case when they can be imposed, which is in the case of GR.

The novelty of the present setup as compared to all the cases considered

previously is that the corresponding GR solution has the SD half of the Weyl
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curvature complex, while in all the situations considered before this chiral

half of the Weyl curvature was real. It is in such setups that the problem of

the connection formalism Lorentzian sector reality conditions becomes highly

nontrivial.

6.7.1 Ansatz for the Bianchi IX Model

By using the gauge symmetry, we can present the connection 1-forms for

Bianchi IX model in the following form:

A1 = h1σ1, A2 = h2σ2, A3 = h3σ3, (6.219)

where σ1,2,3 are again the canonical 1-forms on S3 given in (6.71) and satisfying

dσ1 = −σ2σ3, etc. The functions q1,2,3(t) are complex-valued, and part of the

motivation for the exercise in this section is to understand which reality condi-

tions need to be imposed on them. The curvature 2-forms of this connection are

F 1 = ḣ1 dtσ1 −H1 σ2σ3, (6.220)

as well as cyclic permutations. Here we have introduced the notation

H1 := h1 − h2h3 (6.221)

and similarly with cyclic permutation of indices. The nonzero exterior products

are

F 1F 1 = 2ḣ1H1 dtσ1σ2σ3, (6.222)

and similarly for the other diagonal components of the matrix F iF j .

6.7.2 The Metric

We know that the reality conditions that we want to impose on the components

of the connection must guarantee that the metric constructed from the curvature

of this connection is real Lorentzian. So, let us compute the metric. We look for

the metric in the following Lorentzian signature form:

g = −N2(t)dt2 + a2
1(t)(σ1)

2 + a2
2(t)(σ2)

2 + a2
3(t)(σ3)

2. (6.223)

The basis of SD 2-form for the previous metric is given by

Σ1 = iNa1dtσ1 − a2a3σ2σ3, (6.224)

and similarly for the other components. We want the curvatures (6.220) to be

proportional to the basic 2-forms Σi, which gives the equations

Na1

a2a3

=
ḣ1

iH1

, (6.225)
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together with cyclic permutations. Because the left-hand side of these equations

is real for a real Lorentzian metric, we see that the quantities, ḣi/Hi, i = 1, 2, 3,

should be purely imaginary.

6.7.3 Dynamics of the Model

We can obtain the dynamical equations for this model by substituting the ansatz

(6.219) for the connection into the first-order action (6.141). If we defineXi : q̇iHi

and take the matrix M ij to be diagonal with diagonal entries Mi we get the

following action

S[h,M, μ] =
1

i

∫ [∑
i

ḣiHi

Mi

+ μ

(∑
i

Mi − Λ

)]
dt. (6.226)

We have set 16πG = 1 here. Let us now define the generalised momenta

pi =
∂L

∂ḣi

=
Hi

Mi

. (6.227)

It is interesting to note that in this model, we see quite explicitly that the

interpretation of the auxiliary field entries of the matrix M ij is that of certain

functions on the phase space of the system. They are essentially the inverses of

the canonical momenta of the system. The action takes the following Hamiltonian

form:

S[h, p, μ] =
1

i

∫ [∑
i

piḣi + μ

(∑
i

Hi

pi

− Λ

)]
dt. (6.228)

This is an action for a system with three configurational variables hi, with the

Hamiltonian that is a constraint. We also note that for this setup the action one

obtains would be the same for any of the modified theories of the type (6.2).

The only thing that changes is the phase space constraint that is imposed. We

emphasise that at this stage all fields are complex-valued, with reality conditions

still to be imposed.

Action (6.228) generates the Hamiltonian equations of motion for hi and pi :

ḣ1 = μ
H1

p2
1

, ṗ1 = μ

(
1

p1

− h2

p3

− h3

p2

)
, (6.229)

and similarly with cyclic permutations of indices 1, 2, and 3, as well as the

constraint ∑
i

Hi

pi

= Λ. (6.230)

In a modified theory, both the evolution equations as well as the constraint would

be modified.
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6.7.4 Analysis of the Reality Conditions

We require the metric to be real and using (6.225), this implies that the quantities

N2a2
i

Na1a2a3

=
ḣi

iHi

=
μ

ip2
i

(6.231)

should be real and positive. The simplest possible realisation of this is to take pi

all real and μ imaginary, on the positive imaginary semiaxis.

After the variation of (6.228) with respect to μ, without loss of generality,

one can set μ = i (this is achieved by redefinition of time t). After this, the

Hamiltonian equations of motion (6.229) take the form

ḣ1 =
iH1

p2
1

, ṗ1 = i

(
1

p1

− h2

p3

− h3

p2

)
, (6.232)

and similarly with cyclic permutation of indices 1, 2, and 3.

We now show that the reality of pi is compatible with the equations of motion

(6.232), i.e., that these reality conditions are preserved in time. While this is as

expected because we know we are dealing with GR for which the metric can be

chosen to be real, this is far from obvious in the chiral connection formulation

under consideration. To check that the reality conditions are compatible with

the dynamics we set

hi = xi + iyi, i = 1, 2, 3. (6.233)

Then the reality of pi, as well as the requirement that this reality is preserved

by the time evolution, by virtue of the second equation in (6.232) results in the

additional constraints

1

p1

− x2

p3

− x3

p2

= 0, (6.234)

and similarly with cyclic permutation of indices 1, 2, and 3. The resulting system

of equations can be solved and xi determined in terms of pi

x1 =
p2p3

2

(
− 1

p2
1

+
1

p2
2

+
1

p2
3

)
etc. (6.235)

After this, the imaginary parts of the first set of equation in (6.232) as well as

the second set of equations give evolution equations for yi and pi :

ẏ1 =
x1 − x2x3 + y2y3

p2
1

, (6.236)

ṗ1 =
y2
p3

+
y3
p2

, (6.237)

and similarly with cyclic permutation of indices. In addition, the real part of the

first equation in (6.232) gives

ẋ1 =
−y1 + x2y3 + x3y2

p2
1

. (6.238)
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This set of equations can be seen to be satisfied identically in view of the

equations (6.236) and the relations (6.235). Indeed, differentiating, e.g., the first

of the relations (6.235) and then using the second set of equations in (6.236)

one obtains precisely the right-hand side of the equation (6.238). Thus, these

equations are not independent and can be dropped. We should note, however,

that the fact that the arising overdetermined system of equations is consistent

is highly nontrivial. This would not be the case for modified theories.

Finally, the constraint (6.230) can also be split into its real and imaginary

parts. The real part gives

x1 − x2x3 + y2y3
p1

+ (cyclic permutations) = Λ, (6.239)

where it is understood that the quantities xi should be replaced with their

expressions (6.235) in terms of pi. The imaginary part of the constraint gives

y1 − x2y3 − x3y2
p1

+ (cyclic permutations) = 0. (6.240)

This can be rewritten as

y1(
1

p1

− x2

p3

− x2

p3

) + y2(
1

p2

− x1

p3

− x3

p3

) + y3(
1

p3

− x1

p2

− x2

p1

) = 0,

which is satisfied by virtue of equations (6.234).

All in all, with the reality conditions imposed the model reduces to the set of

six first-order equations for the real quantities, yi and pi, as well as the constraint

(6.239). The arising system of equations is highly nontrivial and cannot be solved

in an explicit form, so we refrain from analysing it any further.

Attempting the previous analysis for a modified theory from the same class

shows that the dynamics of the model is no longer consistent with the reality

conditions (real pi) one would like to impose. To verify this explicitly one can,

e.g., take f(M) = det(M). It is not impossible that there exists a modified set

of reality conditions that is compatible with the dynamics, but it is clear that

these must be a model, and thus function f(M)-dependent. But even if this

is the case, these reality conditions, while dynamics compatible, will no longer

be the conditions that the metric is real. The physical interpretation, if any, is

then unclear. This discussion makes it clear that the modified gravity theories

obtained by changing f(M) only exist for Euclidean and split signatures, but

do not admit a Lorentzian interpretation.

6.8 Connection Description of Ricci Flat Metrics

The purpose of this section is to show that the first-order connection formalism

described previously extends also to the Λ = 0 case. In this case, one cannot inte-

grate out the matrix of auxiliary fields M ij , and has to use the mixed first-order



242 Chiral Pure Connection Formulation

formalism with both M and the connection fields present. One, however, still

gets a useful and powerful description.

6.8.1 Action, Field Equations, Metric

Since the matrix M ij has to be tracefree in this case, it makes sense to write in

its place the traceless matrix Ψij from the start. The action reads

S[A,Ψ] =
1

16πG
√
σ

∫
Tr(Ψ−1FF ). (6.241)

The corresponding field equations are

dA(Ψ−1F ) = 0, Ψ−1XΨ−1 ∼ I, (6.242)

where as before the 3× 3 matrix X is given by Xij = F iF j .

In this formalism, the metric is determined from the curvature of the con-

nection as follows. First, the conformal class is the one that makes the triple of

curvatures F i SD. When Λ �= 0 we can also determine the volume form explicitly

in terms of the curvatures. This is not possible in the case Λ = 0. The best we

can do is to have a formula for the volume form, which involves both Ψ and the

curvature. This formula is easy to derive. Indeed, we want the volume form to

be ε such that ΣiΣi = 6
√
σε. We also have Σi = Ψ−1

ij F j . This means that we can

obtain the volume form as

ε =
1

6
√
σ
Tr(Ψ−1XΨ−1). (6.243)

Let us present an example that illustrates the usage of this formalism.

6.8.2 Schwarzschild Solution

Let us see how the familiar Schwarzschild solution is obtained using this for-

malism. The ansatz for the connections remains unchanged as compared to

that in Section 6.6.1, and so is the analysis of the curvature. However, in the

analysis of the metric we can only determine its conformal class now and get

relations (6.198). We can no longer match the metric volume form to a multiple

of Tr(M−1X) because this quantity is now zero. Indeed, it is still true that X =

μM2. But now we should set Tr(M) = 0. So, we have Tr(M−1X) = μTr(M) = 0.

But this means that the right-hand side of the equations (6.191) for the matrix

M becomes zero. This means that the equations dA(M−1F ) = 0 take the form

(M−1
1 a(b2 − 1))′ = 0, (M−1

2 a(b2 − 1))′ = 0, (6.244)

with the solution being

M1 = R1a(b
2 − 1), M2 = R2a(b

2 − 1), (6.245)
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where R1 and R2 are integration constants. The condition of zero trace gives

R1 + 2R2 = 0. (6.246)

Denoting R2 = R̄ we thus have R1 = −2R̄. We also have X = μM2, which gives

X1 = μ(R)4R̄2a2(b2 − 1)2, X2 = μ(R)R̄2a2(b2 − 1)2, (6.247)

where μ(R) is some function of the radial coordinate. Recalling the definitions

(6.189) we have

a′

a
=

4bb′

b2 − 1
, (6.248)

which integrates to

a = κ(b2 − 1)2, (6.249)

where κ is another constant of integration. In principle, this gives a complete

solution of the problem.

Let us now determine the metric. On the solutions we should have Σ = M−1F .

But we should also have ΣiΣj = 2iδijε, where ε is the metric volume form.

Evaluating Σ1Σ1 = 2iM−2
1 X1a(b

2−1)εc, where εc is the coordinate volume form,

we see that

μ(R)a(b2 − 1) = fgr2, (6.250)

which is the desired relation that fixes the metric completely. Indeed, substituting

fg = X1ar
2/(b2 − 1) from (6.198) the previous relation becomes

μ(R)a(b2 − 1) =
X1ar

4

b2 − 1
. (6.251)

Substituting X1 from (6.247) we get

a =
1

2R̄r2
. (6.252)

This implies

X1 =
a′

a
= −2

r

dr

dR
. (6.253)

We can now fix all of the metric components. Using (6.198) and (6.247) we have

f2 =
4a2b2r2

(b2 − 1)2
, g2 =

X2
1r

2

4b2
=

1

b2

(
dr

dR

)2

. (6.254)

We can also substitute r2 = 1/2R̄a and then (6.249) into the first of these

relations. We get

f2 =
2κ

R̄
b2. (6.255)
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The metric is thus

ds2 = −2κ

R̄
b2dt2 +

dr2

b2
+ r2dΩ2. (6.256)

This means that if we want to have the usual fg = 1, asymptotically we have to

set κ = R̄/2. With this choice

b2 − 1 = ± 1

R̄r
, (6.257)

where both signs are possible. In the usual Schwarzschild solution a = (b2−1)′/2.

This is always possible to achieve by changing t → −t if necessary. We obtain

this relation if we take the negative sign in (6.257). We then identify

1

R̄
= 2M (6.258)

to get

a =
M

r2
, b2 = 1− 2M

r
. (6.259)

This illustrates that the Λ = 0 case can also be treated via the pure connection

formalism, with appropriate modifications to account for the fact that it is no

longer possible to solve for X in terms of M completely, as there remains the

freedom in choosing μ(R). This does not affect the final metric that is fixed

completely by an appropriate choice of the radial coordinate.

6.8.3 Eguchi-Hanson Metric

As another example of the Λ = 0 connection formalism, let us obtain the Eguchi–

Hanson instanton. We work in the Euclidean signature. We start with a bi-axial

ansatz

A1 = ασ1, A2 = βσ2, A3 = βσ3, (6.260)

where σi are the already familiar 1-forms (6.71) on the three-sphere, and α and

β are functions of some radial coordinate R. The curvatures are given by

F 1 = α′dRσ1 + (β2 − α)σ2σ3, F 2 = β′dRσ2 + β(α− 1)σ3σ1, (6.261)

and similarly for F 3. It is easiest to obtain the field equations by substituting this

ansatz into the action (6.241), and then vary with respect to the independent

functions. In general, this procedure is not guaranteed to produce the correct

field equations, and so its result has to be compared to the correct equations.

But in this case the procedure works. The traceless matrix Ψ can be taken to be

of the form Ψ = diag(−2ψ,ψ, ψ), where ψ = ψ(R). This produces the following

Lagrangian

L ∼ ψ−1

(
−1

2
α′(β2 − α) + (β2)′(α− 1)

)
. (6.262)
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Varying this with respect to ψ produces

−1

2
α′(β2 − α) + (β2)′(α− 1) = 0. (6.263)

Varying with respect to α, β produces two more equations

(ψ−1)′

ψ−1
= −3

2

α′

α− 1
,

(ψ−1)′

ψ−1
= − 3(β2)′

β2 − α
. (6.264)

We see that these two equations imply (6.263), and so it is sufficient to consider

just the last two equations. The first of this is solved to produce

ψ = κ(α− 1)3/2, (6.265)

where κ is an integration constant, while the first and second combined imply

1

2

α′

α− 1
=

(β2)′

β2 − α
. (6.266)

This can be solved for β as a function of α

β2 = 2− α+K
√
α− 1, (6.267)

where K is another constant of integration.

We now determine the metric. We look for it in the form

ds2 = f2dR2 + g2σ2
1 +

r2

4
(σ2

2 + σ2
3), (6.268)

where r is the new radial coordinate. The basis of ASD 2-forms for this metric

is

Σ̄1 = fgdRσ1 +
r2

4
σ2σ3, Σ̄2 =

fr

2
dRσ2 +

gr

2
σ3σ1, (6.269)

and similarly for Σ̄3. We find the metric by requiring the curvatures (6.261) to

be proportional to the above ASD 2-forms. We use the ASD rather than the

SD 2-forms because the solution we want to exhibit is hyper-Kähler, which, in

particular, means that the SD part of its spin connection is identically zero. This

is why we work with the ASD part of the spin connection rather than the SD.

Matching the ASD basic 2-forms to the curvatures gives

α′

β2 − α
=

4fg

r2
,

β′

β(α− 1)
=

f

g
. (6.270)

We obtain one more equation by matching the volume forms. The metric volume

form ε = fgr2/4εc, where εc = dRσ1σ2σ3 must match the form in (6.243). This

gives

3

4
fgr2 =

1

4ψ2
α′(β2 − α) +

1

ψ2
(β2)′(α− 1). (6.271)
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Using the first equation in (6.270) as well as (6.266) we get

r2

2
=

∣∣∣∣β2 − α

ψ

∣∣∣∣ . (6.272)

Substituting here the solution (6.267) we get

r2

2
=

∣∣∣∣K − 2
√
α− 1

κ(α− 1)

∣∣∣∣ . (6.273)

The other two metric functions are then

f2 =
r2

16

(α′)2

β2(α− 1)2
, g2 =

r2β2(α− 1)2

(β2 − α)2
, (6.274)

which determines the metric completely.

Eguchi–Hanson instanton corresponds to the case K = 0. This gives

α = 1 +
a

r4
, β2 = 1− a

r4
, ψ =

4a

r6
, (6.275)

where we redefined the constant of integration
√
a := κ/4 to match the usual

form of the Eguchi–Hanson metric. The metric is then given by

ds2 =
1

β2
dr2 +

r2β2

4
σ2
1 +

r2

4
(σ2

2 + σ2
3). (6.276)

For a = 0 this is the usual metric on R × S3 = R
4. However, when a �= 0 the

absence of conical singularity at r+ = a1/4 can be seen to require that the period

of ψ is 2π rather than 4π. This means that for a �= 0 the metric is asymptotically

that of R4/Z2.

6.8.4 Linearisation Around an Einstein Background

The action (6.241) is also interesting because it produces a useful perturbative ex-

pansion around an arbitrary Einstein background. Indeed, taking the Lagrangian

L = Ψ−1FF , where the trace is implied, we have, using index-free notations

δL = −Ψ−1δΨΨ−1FF + 2Ψ−1FδF, (6.277)

and

δ2L = 2Ψ−1δΨΨ−1δΨΨ−1FF − 4Ψ−1δΨΨ−1FδF + 2Ψ−1δFδF + 2Ψ−1Fδ2F.

(6.278)

We now specialise to an Einstein background F = ΨΣ. Defining the second-order

Lagrangian L(2) as half the second variation we get

L(2) = 2Tr(δΨΨ−1δΨ)ε− 2(Ψ−1δΨ)(ij)Σ
idAaj +Ψ−1

ij dAaidAaj + εijkΣ
iajak,

(6.279)
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where ai := δAi and ε is the metric volume form appearing via ΣiΣj = 2εδij . For

simplicity we work in the Euclidean signature here.

We now want to integrate out the perturbation of the Lagrange multiplier

field Ψ. The required manipulations become trivial in a special very useful gauge

Σiμνaν i = 0, dAμai
μ = 0. (6.280)

The first of these conditions fixes the diffeomorphism freedom, while the second

is the usual Lorentz gauge for the SO(3) gauge rotations. We will motivate this

gauge in the chapter on gravitational perturbation theory. In this gauge, the

decomposition (5.184) of the covariant derivative of the connection perturbation

into irreducible pieces simplifies greatly. There is no spin zero and no spin one

part. We then simply have

dAai = (dAa)ij2 Σ
j + (dAa)ij−Σ̄j . (6.281)

Here (dAa)ij2 is the spin two part of the covariant derivative, which is symmetric

traceless, and (dAa)− is the ASD part. In particular, we have ΣidAaj = 2(dAa)ij2 ε

in this gauge. We can then rewrite the linearised Lagrangian as

L(2) = 2Tr((δΨ− (dAa)2)Ψ
−1(δΨ− (dAa)2))ε

− 2Tr((dAa)2Ψ
−1(dAa)2)ε+Ψ−1

ij dAaidAaj + εijkΣ
iajak.

It is now trivial to integrate out δΨ. The remaining Lagrangian is further sim-

plified by writing

Ψ−1
ij dAaidAaj = 2Tr((dAa)2Ψ

−1(dAa)2)ε− 2Tr((dAa)−Ψ
−1(dAa)−)ε.

This means that the spin two part (dAa)2 cancels out and we get

L(2) = −2(dAa)ik−Ψ−1
ij (dAa)jk− ε+ εijkΣiajak. (6.282)

This result is essentially the same as the previously derived linearised action

(5.187) in the Λ �= 0 case, after the gauge condition (6.280) is imposed. It is

remarkable that such a simple linearised Lagrangian is also available in the

Λ = 0 case.

6.9 Chiral Pure Connection Perturbation Theory

We now return to Λ �= 0 setup. The purpose of this section is to perform

the linearisation of the chiral pure connection action around an instanton back-

ground. Our goal is in particular to reproduce (5.183) as the relevant linearised

action. The difference with the previous treatment is that we start directly

with the action in terms of connections and linearise, rather than with the

linearised Plebański action from which later the perturbations of the 2-form

field is integrated out. The following manipulations give a good illustration of

how the chiral connection description of gravity works.
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We work with the action in the form (6.29). We will not specialise to the case

of GR until the very end of the calculation, thus showing that any member of the

class of theories obtained by ‘deforming’ g(X) has the same linearisation around

instantons.

We work on an instanton background for which the connection is perfect

F iF j ∼ δij . The metric is obtained by defining Σi = (3/Λ)F i, where Λ is the

cosmological constant. The metric is then the one that makes Σi SD and with

the volume form ε such that ΣiΣj = 2δijε. The first variation of the action is

given by (6.31). The second variation is given by

δ2S[A] =

∫
4

∂g

∂Xij∂Xkl
(F idAaj)(F kdAal) + 2

∂g

∂Xij
(dAaidAaj + F iεjklakal),

(6.283)

where ai := δAi. On an instanton background the matrix of curvature wedge

products Xij ∼ δij . On such a background, there are certain statements that

can be made about the matrices of partial derivatives of the function g, for any

function g(X). First, the matrix of first derivatives must be proportional to the

identity matrix

Xij ∼ δij ⇒ ∂g

∂Xij
∼ δij . (6.284)

This follows from SO(3) invariance of the function g(X). This means that the

second line in the linearised action (6.283) is a multiple of∫
dAaidAai + F iεijkajak =

∫
aidAdAai + F iεijkajak (6.285)

=

∫
aiεijkF jak + F iεijkajak = 0,

where to obtain the first equality we integrated by parts. This means that we

only need to consider the first line in (6.283).

We can also constrain the form of the matrix of second derivatives of g(X).

This follows from the fact that g(X) is a homogeneity degree one function. The

corresponding Euler relation gives

∂g

∂Xij
Xij = g(X). (6.286)

Differentiating this relation with respect to Xkl we obtain

∂g

∂Xij∂Xkl
Xij = 0. (6.287)

This means that on the instanton background the matrix of second derivatives of

g(X) is a symmetric endomorphism from the space of symmetric 3× 3 matrices

to itself. Moreover, it is constructed from the identity matrix only, and it maps

tracefree matrices again to such matrices. Thus, it can only be a multiple of the

projector on symmetric tracefree matrices
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∂g

∂Xij∂Xkl
∼ Pijkl, (6.288)

where the projector Pijkl is given by (5.182). This implies that for any g(X) the

linearisation of the pure connection action is given by

δ2S[A] ∼
∫

Pijkl(Σ
idAaj)(ΣkdAal), (6.289)

which matches the previous GR result (5.183). The overall coefficient in front of

this linearised action is, of course, theory-specific, and in the case of GR is as in

(5.183). This argument, in particular, shows that for any g(X) the theory (6.29)

has exactly the same dynamical content as GR.
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Deformations of General Relativity

In this chapter we look in more details at ‘deformations’ of general relativity

(GR), a class of theories obtained by changing the function f(M) in (5.197) or

(6.2). We already have some understanding of these theories from the analysis

in the previous chapter. Thus, we have seen that many results are completely

general and do not depend on which function f(M) is chosen. In particular, we

know that all theories from this class have the same linearisation (6.289) around

instanton backgrounds, and thus have the same dynamical content. The main

goal of this chapter is to describe what can be called the ‘geometrically natural’

modified theory. We also compute a solution of the Bianchi I setup for this

particular modified theory to see that its behaviour is even simpler than in the

case of GR. It would be very interesting to find a geometric interpretation of

this particular chiral modification of Euclidean signature GR, which is, at the

moment, an open problem.

7.1 A Natural Modified Theory

We have defined chiral modified gravity theories as those described by the action

(5.197) with function f(M) being an arbitrary gauge invariant function of a 3×3

matrix M ij . The field equations of such a theory are

dA(M
−1F ) = 0, M−1FFM−1 = μ

∂f

∂M
. (7.1)

The second equation can in general be solved for M in terms of the matrix FF ,

and the solution substituted into the first equation, which then gives a second-

order partial differential equation (PDE) on the connection. We have seen that

GR can be described in this fashion, as well as the self-dual theory (6.118) whose

only solutions are the gravitational instantons. In the latter case, though, the

second equation just implies FF ∼ I and cannot be solved for the matrix M ,

which in this case is an inverse of a tracefree matrix.
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We have also seen that in general such a modified theory admits metric inter-

pretation. The conformal class of the metric is determined from the Urbantke

formula (6.16). While there is in general an ambiguity in the choice of the

conformal factor, there is always a natural choice, which is to require that the

action (5.197) is a multiple of the total volume. Thus, one can in general choose

εF = Tr(M−1FF ). The formula (6.17) shows that this is indeed the correct

procedure in the case of GR.

7.1.1 Geometrically Natural Conformal Factor

As we now explain, there is another procedure for choosing a geometrically

natural conformal factor in the Urbantke formula. Indeed, we can require that

the left-hand side in (6.16) is the metric times its volume form, and this is equal

to the right-hand side. Thus, we set

gU(ξ, η)εU =
σ

6
εijkiξF

i ∧ iηF
j ∧ F k, (7.2)

where εU is the metric volume form, and where σ = ±1 is the sign of the

connection that is required to obtain a metric of some desired signature, e.g.,

all plus. We will only discuss the case of the Euclidean signature as we already

know that there are problems with a physical interpretation of the Lorentzian

modified theories.

7.1.2 A Computation

As we discussed, any modified theory comes with its natural choice of the volume

form εF = Tr(M−1FF ) so that the action is the total volume. Let us now see

which choice of f(M) gives the same volume form as the geometrically natural

choice (7.2).

Any metric in the conformal class of (7.2) makes the triple of curvature 2-forms

anti-self dual, in the orientation in which the matrix X ∼ FF is positive-definite.

Let us choose some metric g in this conformal class, and introduce a canonical

orthonormal basis Σi in the space of SD 2-forms for the metric g. Explicitly, given

a frame basis, Σi’s are the forms that are given by (5.31). They in particular

satisfy ΣiΣj = 2εgδ
ij , where εg is the metric volume form, positively oriented in

the orientation provided by the connection.

Then the curvature 2-forms can be expanded in the basis of Σi as

F i = σ
(√

X
)ij

Σj , (7.3)

where σ = ±1 is the sign of the definite connection, and
√
X is the positive-

definite matrix square root of the positive-definite matrix X. We stress that the

relation (7.3) can be written for an arbitrary choice of metric g in the conformal

class of the Urbantke metric. This relation can also be used as an alternative
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definition of the sign of the definite connection. The decomposition (7.3) follows

using the algebra of Σ’s. Indeed, we have

F iF j = σ2
√
X

ik√
X

jl
(2)δklεg = 2Xijεg. (7.4)

We now use (7.3) with Σi’s being those for the Urbantke metric (7.2). Thus, we

now take X = XU with respect to the volume form of the metric gU. Substituting

(7.3) into (7.2) and using the algebra of Σ’s we get the relation εU = (detXU)
1/2εU ,

from which we conclude that

detXU = 1. (7.5)

As we already remarked, for any function f(M) in (5.197), or g(X) in (6.29),

we can use the volume form ε∗ = g(X)ε to define X via FF = 2Xε. One then

has ε∗ = g(X)ε∗ and hence g(X) = 1. This immediately allows us to translate

the condition (7.5) into a choice of the function g(X). Thus, the condition (7.5)

derived previously corresponds to a homogeneous degree one function

gU(X) = (detX)
1/3

. (7.6)

We then note that for this function

∂f

∂X
=

1

3
(detX)

1/3
X−1, (7.7)

and so the field equations of this theory become

dA

(
(detX)

1/3
X−1F

)
= 0. (7.8)

It is not hard to see that these are the field equations of the theory (5.197)

with

fU(M) = det(M). (7.9)

Indeed, in this case the relation between M and FF becomes

M−1FFM−1 = μ det(M)M−1, (7.10)

from which we get

FF = μ det(M)M. (7.11)

We can then fix μ and thus M completely from the requirement that det(M) = Λ.

Taking the determinant of both sides gives det(FF ) = μ3(det(M))4, and so

M =

(
Λ

det(FF )

)1/3

FF, (7.12)

which is homogeneity degree zero in FF and so it does not matter which volume

form is chosen to extract a matrix from the 4-form valued matrix FF . Substi-

tuting this into the action gives
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S[A] = 3

∫ (
det(FF )

Λ

)1/3

, (7.13)

which is in the form (6.29) with a multiple of the function (7.6) as the defining

function.

All in all, we see that the geometrically natural choice of the conformal factor

for the Urbantke metric (7.2) corresponds to the modified theory of the form

(5.197) with fU(M) = det(M).

7.1.3 Modified Bianchi I

To illustrate the behaviour of the modified theory, we now study the behaviour

of the spatially homogeneous anisotropic Bianchi I solution in the deformed case.

Our main conclusion here is that this particular modified theory is in fact simpler

than GR!

All considerations are those of Section 6.5, with appropriate modifications to

make the metric signature Euclidean. This just requires removing the factor of

imaginary unit from (6.143). All other formulas are unchanged. In particular, we

have the general solution (6.173)

M1 =
1

g(X)(τ − τ1)
, etc. (7.14)

where now g(X) = Tr(M−1X). The function g(X) needs to be determined from

the constraint f(M) = 1. We specialise to the case f(M) = det(M), which we

will see is completely solvable. The constraint gives

g−3 = (τ − τ1)(τ − τ2)(τ − τ3), (7.15)

and thus

M1 =
(τ − τ2)

1/3(τ − τ3)
1/3

(τ − τ1)2/3
, etc. (7.16)

We can also find the components of the matrix X. The relation between M

and X for f(M) = det(M) becomes

M−1XM−1 = μM−1 ⇒ X = μM. (7.17)

From this we also get g(X) = 3μ, and thus find μ. This finally gives

X1 =
1

3(τ − τ1)
, etc. (7.18)

Notably, this is a much simpler solution that (6.176) in the case of GR. In

particular, it is trivial to integrate and find the connection components. Indeed,

recalling that X1 = h′
1/h1 we have

h1 = K1(τ − τ1)
1/3, etc., (7.19)

where Ki are integration constants.
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It is now straightforward to compute the metric. Its general expression is given

by (6.161). We have

g(X)X1X2X3 =

(
1

3

)3

((τ − τ1)(τ − τ2)(τ − τ3))
−4/3

, (7.20)

and

g(X)
X1

X2X3

= 3(τ − τ2)
2/3(τ − τ3)

2/3(τ − τ1)
−4/3. (7.21)

This gives the following metric

3−1/2ds2 =
1

9
((τ − τ1)(τ − τ2)(τ − τ3))

−2/3
dτ 2 (7.22)

+ (τ − τ1)
1/3(τ − τ2)

1/3(τ − τ3)
1/3

3∑
i=1

K2
i (dx

i)2

(τ − τi)1/3
.

This should be contrasted with the similar solution (6.178) in the case of GR,

which is significantly more complicated because function hi obtained by integrat-

ing (6.176) are considerably more involved than (7.19). The metric arising as the

solution of the modified theory is not Einstein, and has singularities at τ = τi.

Nevertheless, the connection components (7.19) just have zeroes at these points,

and so it is only the metric interpretation that becomes problematic at these

points. There is a real solution for all the connection components for all τ .
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Perturbative Descriptions of Gravity

Spin one particles are described by gauge fields, which are 1-forms with values

in some internal space, or rank one tensors. Gravitons are spin two particles,

and so it seems very natural to describe them by rank two tensors. This seems

to suggest that the metric formulation of gravity is the most natural one, and

any other formalism only introduces unnecessary complications. The purpose

of this chapter is to challenge this conclusion. In particular, we will see that

formalisms that are based on collections of differential forms, in fact, lead to

simpler perturbative descriptions of gravitons than is possible using the metric.

But in order to see this most clearly, we will need to introduce the language of

spinors.

We start with some motivating remarks. First, we note that when one deals

with objects with two different type of indices, such as, e.g., the tetrad, choosing a

background to expand the theory about gives an object that serves to identify the

indices of different types. For example, the background tetrad eI0μ can be thought

of as an object that identifies the internal index I with the spacetime index μ.

Indeed, with the help of eI0μ all objects with mixed indices can be converted into

objects with just indices of one of the two types. The same happens in any of the

formalisms that are based on objects with mixed types of indices. This argument

shows that, at least at the level of perturbative description, the formalism that

are based on objects with two different types of indices are in no way inferior to

the metric formalism with its sole type of indices.

To motivate the necessity of introduction of spinors, we recall that the latter

are fundamental representations of the Lorentz group. And in order to under-

stand what happens in a certain formalism, it is often necessary to decompose the

objects arising into irreducible representations. In some cases the use of tensors is

sufficient to describe such representations, e.g., in the metric formalism, the two

irreducible Lorentz representations that are present in the metric perturbation

hμν are the traceless and the trace part of this rank two tensor. However, for

more complicated objects, such as, e.g., a connection, such tensor description is
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insufficient, and the most adequate language for decomposing the field into its

irreducible Lorentz representations is that of spinors.

Spinors are also essential for the purpose of understanding what types of

differential operators are present in a formalism. This is because every operator

is composed of differential operators of the first order, and then the language of

spinors allows for a very efficient classifications of the arising possibilities.

For all these reasons the language of spinors is indispensable for understanding

more conceptual aspects of any formalism. At the same time, this language is not

always the one most efficient for explicit computations. Tensor symbolic manip-

ulation is usually a more powerful option. So, it is usually best to have both the

spinorial and the usual tensor descriptions of the same objects available, as well

as an efficient dictionary that allows us to switch between the two descriptions.

We will start this chapter by developing some aspects of this dictionary.

The organisation of the remainder of this chapter is as follows: We define the

irreducible representations of Lorentz group and show that there are two types

of first-order differential operators that arise naturally in this context. We then

briefly discuss the standard metric perturbation theory, and also present the

chiral version of the Yang–Mills perturbation theory, in order to be able to later

contrast this story with what happens in the case of gravity.

The main goal of this chapter is to explore alternatives to the standard metric

perturbation theory. We first develop the chiral version of the first-order pertur-

bation theory, which uses a very different representation of the kinetic term for

the spin two field. In this formalism the spin two particle is still described by

a rank two tensor field, but the diffeomorphism invariant kinetic term is built

from very different first-order operators. We then develop an even more drastic

departure from the usual formalism where the chiral half of the spin connection

is used instead. This gives by far the most economic description, but one that

works only around non-flat backgrounds, e.g., constant curvature ones. We will

see that the use of the chiral connection as the main variable for gravity leads

to dramatic simplifications also around arbitrary Einstein backgrounds.

The main outcome of our analysis in this chapter is the conclusion that in

its chiral versions, the gravitational perturbation theory behaves in complete

parallel with chiral Yang–Mills perturbation theory. The latter, as we shall see, is

the simplest and most conceptually clear way of doing Yang–Mills perturbative

calculations. It is this parallel with Yang–Mills, invisible in the usual metric

version of the gravity perturbation theory, which serves as a strong justification

to take the chiral formulations of gravity seriously.

8.1 Spinor Formalism

The standard source on the spinor formalism is the book, Spinors and Space

Time, by Penrose and Rindler (1986). The main difference between this source
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and our presentation is that we use the metric of signature mostly plus, which

necessitates the usage of anti-Hermitian rather than Hermitian matrices to repre-

sent vectors in R
1,3. At the same time we would like our tetrad to be a hermitian

object. This leads to a certain minus sign in the formalism that requires some

practice to get used to. There are also some deviations in normalisations as

compared to Penrose and Rindler.

8.1.1 Spinors in R1,3

The description of 4D spinors is analogous for all three different signature cases.

We only describe the Lorentzian signature case. As we already know from (5.65),

the four coordinates of R1,3 can be collected into an anti-hermitian matrix

x = i

(
x4 + x3 x1 − ix2

x1 + ix2 x4 − x3

)
(8.1)

so that

det(x) = −x2
4 + x2

1 + x2
2 + x2

3. (8.2)

is the usual norm of a vector in R
1,3. The double cover SL(2,C) of the Lorentz

group acts in the space of such matrices via

x → gxg†, g ∈ SL(2,C). (8.3)

The spinors are introduced as the two different types of irreducible representa-

tions of the double cover SL(2,C) of the Lorentz group. We define the unprimed

λA spinors as two-component columns (with complex entries) on which SL(2,C)

acts by multiplication from the left

λA → gA
BλB. (8.4)

This is an irreducible representation of SL(2,C). We shall refer both to the

representation itself and to the space in which such spinors take value as S+.

The other irreducible representation is referred to as that of primed spinors

λA′ . These are again two-component columns on which SL(2,C) acts by multi-

plication from the left, but this time with the complex conjugate group element

λA′ → (g∗)A′B
′
λB′ . (8.5)

We shall refer to primed spinors as taking values in S−. From the definition of

the representations S+, S− it is clear that the complex conjugation of a spinor

in S+ is an S− spinor (S+)
∗ = S−.

8.1.2 Raising and Lowering Spinor Indices

The next notion we need is that of a bilinear form in the space of spinors. For

S+ spinors, this is defined as



258 Perturbative Descriptions of Gravity

〈λη〉 := (ελ)Tη = −λT εη, (8.6)

where the 2⊗ 2 matrix η is given by

ε =

(
0 1

−1 0

)
. (8.7)

The row (ελ)T can be referred to as the spinor λA with its index raised, so that

the spinor contraction takes the form 〈λη〉 = λAηA.

It is clear from the definition of the spinor pairing (8.6) that it is antisymmetric

〈λη〉 = −〈ηλ〉. In index notations, this can be written as

λAηA = −λAη
A, (8.8)

and so we have the famous rule that raising one spinor index in an expression

and simultaneously lowering the index it is contracted with gives the minus sign.

The reason for the choice of signs as in (8.6) is that using the index notation

it can be written as

λAηA = −λT εη = −λAε
ABηB. (8.9)

On the other hand, by (8.8) this is equal to −λAη
A and so we have the rule

εABηB = ηA, (8.10)

which is the standard spinor index raising rule in the literature.

We also introduce the operator of lowering a spinor index. This is required to

be such that first raising an index of a spinor and then lowering it back produces

the original spinor. It is clear from (8.6) that the required operation is obtained

by multiplying the row λA by the matrix ε from the right and than taking the

transpose. This means that the lowering operation in index notations is written

as

λAεAB = λB. (8.11)

To check that all the definitions are consistent, we write

εABλBεAC = λC , (8.12)

and so we must have

εABεAC = IC
B. (8.13)

Using the definition of the lowering operation, we can also write this as

εABεAC = εC
B, (8.14)

from which we learn that the epsilon tensor with first lower and second upper

index is the identity matrix. This is indeed true in the matrix representation.

Indeed, the left-hand side equals to (ε)T ε = I.
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We can also check that the matrix εAB with both indices lowered is represented

as the same matrix ε. Indeed, according to the previous definitions

εCD = εABεACεBD. (8.15)

In matrix notations the right-hand side is (ε)T εε = ε, which shows that everything

is consistent.

The same definitions and properties hold for the primed spinors. In this case,

the spinor metric is the object εA
′B′

and the same raising lowering conventions

hold.

8.1.3 Transformation Properties of the Spinors with Raised Indices

We can work out how the spinors with their index raised transform. Because for

any SL(2,C) matrix g we have gT ε = εg−1, we see that

λT ε → λT gT ε = λT εg−1, (8.16)

and so the spinor with its index raised transforms by multiplication by g−1 from

the right. For the primed spinors, the definitions are analogous, and a primed

spinor with its index raised λA′
(which is a row) transforms by multiplying it

with (g∗)−1 from the right.

8.1.4 Matrix x as a Bi-Spinor

Let us now interpret the matrix x as a bi-spinor. In view of its transformation

property (8.3), it is clear that this matrix should be interpreted as a bi-spinor

xAA′ with two lower spinor indices of opposite type. Let us also compute the

matrix with both spinor indices raised xAA′
. In matrix notations it is the matrix

εxεT . We have

εxεT = i

(
x4 − x3 −x1 + ix2

−x1 − ix2 x4 + x3

)
= det(x)x−1. (8.17)

This implies that we can write the Minkowski space interval as

1

2
xAA′xAA′

= −x2
4 + x2

1 + x2
2 + x2

3. (8.18)

8.1.5 Spinor Soldering Form

We now introduce objects eAA′
μ via

xAA′
= i

√
2eAA′

μ xμ, (8.19)

so that the objects eAA′
μ are Hermitian and we have

−eAA′μe
AA′
ν = ημν . (8.20)
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The minus sign here is unavoidable if one insists on using Hermitian objects

(which is convenient) and insists on the mostly plus signature, which is con-

venient for quantum field theory purposes. One way to accept this seemingly

unnatural sign is to introduce the notion of natural spinor contraction. The

unprimed indices are contracted naturally, as in λAηA, while for the primed

indices the natural contraction is the opposite λA′ηA′
. The metric is then repro-

duced as the natural contraction of the two copies of the soldering form

eAμ A′eνA
A′

= ημν . (8.21)

The explicit matrix representation of the objects eAA′
μ with both upper indices

follows from (8.19) and the expression (8.17) for the matrix xAA′
. We have

e4 =
1√
2

(
1 0

0 1

)
, e1 =

1√
2

(
0 −1

−1 0

)
, (8.22)

e2 =
1√
2

(
0 i

−i 0

)
, e3 =

1√
2

(
−1 0

0 1

)
,

We will also introduce the inverse of the soldering form eμ
AA′ via the relation

eAA′
μ eμ

BB′ = −εB
AεB′A

′
. (8.23)

The sign here has the same origin as in (8.20) and is dictated by the desire to

have eμ
AA′ to be equal to the object eAA′

μ with its indices raised and lowered with

the available metrics.

8.1.6 The Basis of SD and ASD Forms

Let us now introduce the following 2-forms constructed from eAA′
μ

ΣAB
μν := eA[μA′eBν]

A′
. (8.24)

Alternatively, in the form notation, this definition becomes

ΣAB =
1

2
eAA′eBA′

. (8.25)

The choice of sign and the coefficient in this definition is dictated by the desire

to have a very simple expression for this object in the fully spinor notation when

the indices μν are converted into spinor indices via the inverse soldering form.

Indeed, a simple computation gives

ΣAB
MM′NN′ := ΣAB

μν eμ
MM′e

ν
NN′ = εM

(AεN
B)εM′N′ . (8.26)

This is a natural and easy to remember expression, which motivates the definition

(8.24).

It is instructive to compute explicitly the matrix representation of the 2-forms

ΣAB
μν for various μν. For the matrices ΣAB

4i we have
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Σ41 =
1

2
(e4εe

T
1 − e1εe

T
4 ) =

1

2

(
−1 0

0 1

)
, (8.27)

Σ42 =
1

2
(e4εe

T
2 − e2εe

T
4 ) =

1

2

(
i 0

0 i

)
,

Σ43 =
1

2
(e4εe

T
3 − e3εe

T
4 ) =

1

2

(
0 1

1 0

)
,

which are all symmetric matrices as could have been expected from (8.26). The

other components of ΣAB
μν follow from self-duality, e.g., ΣAB

23 = −iΣi
41. That this

relation holds can of course be also checked explicitly by computing ΣAB
23 in the

matrix form.

We will introduce the basis in the space of anti–self-dual (ASD) 2-forms as

minus the complex conjugation of the self-dual (SD) ones

Σ̄A′B′
μν := eAA′

[μ eν]A
B′
. (8.28)

Note that in this definition the unprimed spinors are naturally contracted, which

gives some motivation for this choice of sign. In the form notations the definition

(8.28) becomes

Σ̄AB =
1

2
eAA′

eA
B′
. (8.29)

8.1.7 Useful Identities

Given the previous definitions, a useful set of identities relating the soldering

forms and the objects ΣAB
μν , Σ̄A′B′

μν can be derived. We first note an identity for

the wedge product of two soldering forms

eAA′
eBB′

= εA
′B′

ΣAB − εABΣ̄A′B′
. (8.30)

To prove this identity we note that the 2-form on the left must be decomposable

into its SD and ASD parts. The coefficients are then checked by contracting both

sides with εAB, εA′B′ .

Another useful identity is that for a product of two soldering forms contracted

in one of the spinor indices. We have

eAμ A′eBA′
ν = −1

2
ημνε

AB +ΣAB
μν . (8.31)

The second term follows from the definition (8.24), while the coefficient in the

first term is checked by contracting both sides with εAB and taking note of (8.20).

The complex conjugate of the identity (8.31) gives

eAA′
μ eνA

B′
=

1

2
ημνε

A′B′
+ Σ̄A′B′

μν . (8.32)
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Using this last relation we can also derive a useful for the following identity

Σ̄A′B′
μ
ρΣ̄C′D′

ρ
ν =

1

2
ημ

νεA
′(C′

εD
′)B′

+
1

2

(
Σ̄A′(C′

μ
νεD

′)B′
+ Σ̄B′(C′

μ
νεD

′)A′
)
.

(8.33)

This is the spinor analog of (5.138), but for the ASD 2-forms. We will need this

identity when we discuss Euclidean twistors and their relation to almost complex

structures.

8.2 Spinors and Differential Operators

Using the spinor soldering form eAA′
μ and its inverse, any tensor object can be

converted into a purely spinorial one. And for any formalism where there are also

objects of mixed type with spacetime and internal indices, a nonvanishing such

object provided by the background around which everything is expanded can be

used to identify the internal and spacetime indices. Thus, at the end indices of

all types can be converted into the spinor ones. This, together with simple repre-

sentation theory of the Lorentz group, provides a very efficient way of describing

what happens in each formalism. In preparation for such a discussion, for the spe-

cific formalisms we have previously described, we need to introduce some impor-

tant first-order differential operators that arise naturally in the spinor context.

8.2.1 Irreducible Representations of the Lorentz Group

Each irreducible representation of the Lorentz group can be obtained by ten-

soring copies of its fundamental spinor representations. The spinor indices of

each type are then symmetrised to remove all the traces and thus produce an

irreducible representation. Thus, an irreducible representation of Lorentz group

is characterised by two integers, the numbers of copies of unprimed and primed

spinor representations used to build the representation under consideration. We

will refer to irreducible representations of Lorentz as Sk
+ ⊗ Sn

−. This is an irre-

ducible representation of dimension (k + 1)(n+ 1).

We then introduce a convenient notion of the total spin of an object taking

value in an irreducible representation as

spin(Sk
+ ⊗ Sn

−) := (k + n)/2. (8.34)

This is the total number of fundamental spinor representations used to build

Sk
+ ⊗ Sn

−, divided by two. Note that since k + n is an integer, the spin is either

an integer of half-integer.

8.2.2 Spin-Increasing Differential Operator

There is a very simple and natural first-order differential operator that maps an

object of some spin to an object whose spin is larger by one. Indeed, acting on
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a spinor object with ∂μ and converting the spacetime index into a pair MM ′

adds one unprimed and one primed spinor index. The resulting collections of

unprimed and primed spinor indices can then be symmetrised (to extract the

irreducible part). Thus, we get maps

Sk
+ ⊗ Sn

−

Sk+1
+ ⊗ Sn+1

−

d(k,n)

where the representation that the operator acts on is indicated as its subscript.

Explicitly

ψA1...AkA′
1...A

′
n
→ ∂(A′(AψA1...Ak)A′

1...A
′
n), (8.35)

where there is a double symmetrisation on the right-hand side. There can also be

a numerical coefficient in the definition of such operators. We will discuss various

possible choices in the following sections. We denote the operator that acts on

functions (spin zero) as d(0,0) ≡ d. Note that the operator d thus introduced is

not nilpotent

d(k+1,n+1)d(k,n) �= 0, (8.36)

and that an infinite collection of integer spin spaces C∞(M), S+ ⊗ S−, . . . , S
k
+ ⊗

Sk
−, . . . gets created by the action of d’s on the functions. Each of the operators

g(k,n) has an adjoint, which is a first-order differential operator lowering the spin

by one.

8.2.3 Dirac Operators

Apart from operators that change the spin, we can introduce a set of operators

that just change an unprimed index to a primed one or the reverse. These are

the Dirac operators

Sk
+ ⊗ Sn

− Sk+1
+ ⊗ Sn−1

−

δ(k,n)

where our convention is that the operators δ increase the number of unprimed

indices while lowering the number of primed. Explicitly, an operator of this type

acts as

ψA1...AkA′
1...A

′
n
→ ∂(A

A′
ψA1...Ak)A′

1...A
′
n−1A

′ , (8.37)

where there can also be a numerical coefficient different from identity on the

right-hand side. Similarly to the operators d already introduced, the δ’s are not

nilpotent

δ(k+1,n−1)δ(k,n) �= 0. (8.38)
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C∞(M)

S+ ⊗ S− S2
+

S2
+ ⊗ S2

− S3
+ ⊗ S− S4

+

spin 0

spin 1

spin 2

d

δ

d(1,1) d(2,0)

δ(2,2) δ(3,1)

Figure 8.1 The diagram of irreducible representations of Lorentz group and
related differential operators.

We denote δ ≡ δ(1,1). Each of the operators δ(k,n) has an adjoint that is a first-

order differential operator acting by increasing the number of primed indices by

one and respectively lowering the number of unprimed ones. We will work out

the corresponding expressions when we need them.

8.2.4 The Diagram of Spaces

The whole set of spaces generated from the spin zero by the action of d’s and δ’s

can be drawn as an infinite triangular diagram, (see Figure 8.1). Here we show

just the first three rows of it, i.e., drawing the spaces of spin not higher than 2.

We also show only the chiral half of the diagram, i.e., the spaces Sk
+ ⊗ Sn

− with

k ≥ n. As we shall see, these are the spaces relevant for our chiral descriptions.

We would now like to study the operators appearing in the diagram in Figure

8.1 and understand their relations with various Laplacians that arise on the

nodes.

8.2.5 The Operators d and δ: Spinor Computation

Given an object vAA′ in S+ ⊗ S−, the operator δ is given by

(δv)AB = ∂(A
A′
vB)A′ . (8.39)

This operator has an adjoint with respect to the inner product on both spaces.

This is computed from ∫
(δv)ABφ

AB =

∫
vA

A′(δ∗φ)A
A′
, (8.40)

where on the right-hand side the indices are in different positions as is required

in the metric contraction of two vectors (8.21). The adjoint reads

(δ∗φ)AA′ = −∂B
A′φAB. (8.41)
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We then have

(δ∗δv)AA′ = −∂B
A′
1

2
(∂A

B′
vBB′ + ∂B

B′
vAB′). (8.42)

This can be simplified by using the following identity

∂A
B′
vBB′ − ∂B

B′
vAB′ = εAB∂E

B′
vE

B′ . (8.43)

This identity arises by noting that the left-hand side is antisymmetric in AB and

thus must be a multiple of εAB. The coefficients are then checked by contracting

both sides with εAB. Using the identity (8.43) we have

(δ∗δv)AA′ = −∂B
A′∂B

B′
vAB′ +

1

2
∂AA′∂B

B′
vB

B′ . (8.44)

On the other hand, because partial derivatives commute, the two copies of the

operator ∂AA′ contracted in any pair of indices produce the box operator. For

the case at hand the relevant identity is

∂B
A′∂B

B′
=

1

2
εA′B

′�, (8.45)

where � := ∂A
A′∂A

A′
. Finally, we get

(δ∗δv)AA′ = −1

2
�vAA′ +

1

2
∂AA′∂B

B′
vB

B′ . (8.46)

This can be rewritten as

2δ∗δ = −�(1,1) − dd∗, (8.47)

where the d∗ is the operator that maps vectors into scalars d∗v = −∂B
B′
vB

B′ .

8.2.6 The Operators d and δ: Tensor Computation

The computation of the previous section can be carried out in much simpler way

by using the tensor notations. To this end, we will need to recall that the basis

of SD 2-forms Σi, where we now use SO(3) notations, is the map from the space

of SD 2-forms Λ2 to the the space R
3, and the later can be identified with the

space of symmetric rank two unprimed spinors. Thus Λ+ ∼ S2
+. Using this fact

we can alternatively define the operator δ as follows. Given a 1-form vμ we define

(δv)i = Σiμν∂μvν , (8.48)

where Σi
μν are the already familiar SD 2-forms defined in, e.g., (5.31). We note

that in order for this operator to agree with its spinor version we would need to

put a coefficient of 1/
√
2 in front. However, the previous normalisation is simpler,

and we will stick to it from now on. So, (8.39) and (8.48) differ in normalisation.
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If we use the metric δij in S2
+ and the spacetime metric in S+⊗S−, we can obtain

the adjoint of this operator from

(φ, δv) ≡
∫

φiΣiμν∂μvν =

∫
vμΣ

iμν∂νφ
i ≡ (δ∗φ, v), (8.49)

where we integrated by parts. Thus,

(δ∗φ)μ = Σi
μ
ν∂νφ

i. (8.50)

We now consider the operator δ∗δ on S+ ⊗ S−. We have

(δ∗δv)μ = Σi
μ
ν∂νΣ

iρσ∂ρvσ. (8.51)

We now use the identity

Σi
μνΣ

i
ρσ = ημρηνσ − ημσηνρ − iεμνρσ (8.52)

that follows from the definition of Σi’s. This identity gives

(δ∗δv)μ = ∂μ∂
νvν − �vμ, (8.53)

which agrees with (8.47) up to normalisation. In spite of having to carry around

the objects Σi
μν , the tensor computation is completely algorithmic and is easier

to follow. For this reason we will mostly work with the tensor versions of the

operators d, δ introduced previously. But it is important to have in mind their

spinor interpretation, otherwise, it is hard to understand the specific ways that

the objects Σi
μν , ∂μ and the fields are contracted.

Another illuminating computation is that of the operator δδ∗ on S2
+. We have

(δδ∗φ)i = Σiμν∂μΣ
j
ν
ρ∂ρφ

j . (8.54)

This is simplified using the identity (5.138) and we get

(δδ∗φ)i = −�φi. (8.55)

An obvious, but very important, property of the two operators d, δ is that

their composition gives zero

δd = 0. (8.56)

This is an obvious consequence of the previous definitions and the fact that the

partial derivatives commute. Thus, the image of d is contained in the kernel of

δ, and we have the usual cohomology setup. This means that the space S+ ⊗S−

admits an orthogonal decomposition into elements of the form df , of the form

δ∗φ, and harmonic elements, i.e., those that satisfy (δ∗δ + dd∗)v = 0. This is

an analog of the usual Hodge decomposition of Λ1, but applied to a slightly

different complex.
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8.2.7 The Operator d(1,1)

To motivate the discussion that follows let us also carry out a similar exercise for

the operator d(1,1). The space S2
+ ⊗ S2

− can be identified with the space of rank

two symmetric tracefree tensors. Thus, we can define d(1,1) as

(d(1,1)v)μν := ∂(μvν) −
1

4
ημν∂

αvα, (8.57)

where we again work in tensor notations to simplify the computations that need

to be done. The adjoint operator is then given simply by

(d∗
(1,1)h)μ = −∂νhμν , hμν ∈ S2

+ ⊗ S2
−. (8.58)

We now compute d∗
(1,1)d(1,1). The result is

2d∗
(1,1)d(1,1) = −�(1,1) +

1

2
dd∗, (8.59)

where �(1,1) is the � operator on vectors. This representation of �(1,1) is reminis-

cent of the representation in terms of d, δ in (8.47). However, unlike the latter, the

representation does not come with a cohomological orthogonal decomposition of

vectors into those of form dμf and dνhμν because d(1,1)d �= 0.

8.2.8 Box Operator and Arrows of the Operator Diagram

The results of the previous sections can be summarised qualitatively as follows.

Consider a node of the diagram in Figure 8.1, and the corresponding � opera-

tor. In terms of the first-order operators the � operator can be represented in

many different ways. Thus, we saw that the operator �(1,1) on vectors can be

represented in terms of the operator δ and its adjoint (8.47), or in terms of the

operator d(1,1) and its adjoint (8.59), as well as the operators d, d∗. This means

that if we want to describe propagating particles of spin one, we could base this

description either on the first-order operator δ that does not change the spin of

the field, or on d(1,1), which increases the spin. One can see that the � operator

on every node of the diagram 8.1 can be obtained by going to the neighbouring

node lying to the right, left, or below with either δ, δ∗, or d and coming back,

plus terms in which one goes to the neighbouring node lying above with d∗ and

coming back. Thus, for a node of the diagram that does not lie on the edge

there are three different representations of the �. In particular, there are two

qualitatively different ways to represent the � operator on every node, one is in

terms of operators δ, δ∗ that do not increase the spin, and another in terms of

the operators d, d∗ that increase the spin by one. In both cases there are always

terms involving the operators d∗, d that decrease the spin by one.

From the different available representations of the � operator for each node,

the one that uses operators δ, δ∗ is based on the operator of the exterior dif-

ferentiation of forms. This is clearly the case for the operator δ, see (8.48).



268 Perturbative Descriptions of Gravity

Indeed, this definition can be rephrased by saying that one takes the exterior

derivative of a 1-form and then takes the SD part of the arising 2-form, thus pro-

ducing an object in S2
+. In contrast, there is no exterior derivative interpretation

of the operators d, d∗ (apart from the trivial case when these operators act on

functions). This conclusion is true in general, i.e., the operators δ, δ∗ acting on

any node can be reformulated in terms of the exterior derivative, while there is

no such interpretation of the operators d, d∗. In other words, the Dirac operator

is always a version of the exterior derivative operator. This general statement is

supported with more examples of explicit construction of operators δ, δ∗ in the

following sections.

8.2.9 Choices to Make When Describing a Particle of Given Spin

There are several choices to make if we want to describe particles of a given

spin. First, we want to use some field, which is in an irreducible representation

of Lorentz group, or can be decomposed into a collection of such representations.

Then, when a choice of representations is made, there is another choice as to what

representation of the � operator should appear in the linearised description. As

we discussed previously, there are essentially two inequivalent choices. In one

such choice the � operator is built from δ, δ∗ and this is related to the exterior

derivative operator, while there is no such relation to the exterior derivative for

the representation of � that uses d, d∗.

For example, in our usual description of gauge theory we make a choice to

describe spin one particles using fields taking values in S+ ⊗ S− representation

(i.e., vectors, or 1-forms). The operator that is used in the usual description

is the one that is related to the exterior derivative operator, and is the gauge

invariant operator δ∗δ. The gauge invariance of this is the consequence of the

fact that δd = 0. To be precise, here we are referring to the chiral version of

the usual description of gauge theory, which is one in terms of the action (5.29).

Integrating out the SD 2-form field from this action, one produces the Lagrangian

(F+)
2, the kinetic operator appearing in which is precisely δ∗δ. We could have

decided to use instead the representation (8.59) of � in terms of the operator

d(1,1) and its adjoint. However, the gauge invariance would be harder to realise

in this description, and this is the reason why it is not what we usually use. In

other words, for gauge theory, the relevant kinetic operator is the one arising

by going to the right of the diagram 8.1 and then back, and not to the bottom

and then back.

We thus see why it is unnatural to use the d(1,1) operator for describing spin

one particles. But what about the choice of which irreducible representation to

use? The irreducible representation S2
+ is also of spin one, and so it seems that

it can be possible to use a field taking values in that representation instead. The

answer as to viability of such a description is again provided by the formulation

(5.29), where the auxiliary 2-form field in fact takes values in the space S2
+. One

then sees that only one of the two possible helicities of the spin one particle can be
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described by the field taking values in S2
+. The other helicity gets projected away

once the operator δ is applied to the gauge field. This becomes very pronounced

in the so-called spinor helicity formalism. So, the representation space that sits

at the edge of the diagram 8.1 can only describe one of the two helicities one

wants to describe. For this reason it cannot be used for the description of both

helicities, even though we do have a simple representation of the � operator in

terms of δ, δ∗ on these edge nodes.

Let us now descend one row lower in the diagram and discuss possible descrip-

tions of spin two particles. In the usual metric description everything is based on

the sum of two irreducible representations, namely S2
+ ⊗ S2

−, where symmetric

tracefree tensors of rank two live, as well as the trivial representation for the trace

part. Then in the usual description the kinetic operator on gravitons is built from

the operator d(2,2) going down the diagram, and its adjoint. This in very clear

from the fact that the gravitational Lagrangian can be written in the ΓΓ form,

see (2.19), and the linearised Christoffel symbol is constructed from the objects

of the type ∂ρhμν , where the spin of the field hμν is clearly increased by one

by taking the derivative. One can then understand the reason why the kinetic

operator for gravitons is not a square of some first-order differential operator.

Indeed, we cannot write the kinetic operator on gravitons, which we saw in

(2.38) to be a version of Lichnerowitz Laplacian, as some first-order differential

operator times its adjoint. This is in contrast to the kinetic operator in the spin

one case, where such representation as δ∗δ is possible, see (8.53). The reason for

this impossibility to write the desired kinetic operator as a square is the fact

that the combination of two operators d(1,1) and d(2,2) is not zero. Indeed, the

operator d(1,1) is used in metric gravity to represent the effect of diffeomorphisms,

in that the change of the metric perturbation taking value in S2
+ ⊗ S2

− under an

infinitesimal diffeomorphism by a vector v field taking values in S+ ⊗ S− is

d(1,1)v. The fact that d(2,2)d(1,1)v �= 0 means that we cannot construct the kinetic

term with desired gauge invariance as the simple d∗
(2,2)d(2,2). A more complicated

construction is necessary, and this is what is achieved by the operator (2.38) that

appears by linearising the Ricci scalar.

Thus, in the usual metric description of gravity we have made two choices. One

was to describe spin two particles using the representation S2
+⊗S2

− (together with

the trivial representation of Lorentz). The other was to base the kinetic term on

the operator d(2,2) and its adjoint. Already at this point there is an alternative,

which is to construct the kinetic term from the operator δ(2,2) instead.1 Thus,

for the space S2
+ ⊗ S2

−, there are only two inequivalent representations of the �
operator that we could use. As we have argued previously, the operators that do

not increase the spin of the field are versions of the Dirac operator that are based

1 We could also use the Dirac operator that goes to the left of the diagram into the
representation S+ ⊗ S3

−, but this is just the complex conjugate of the operator δ(2,2) and so
this possibility does not produce anything new.
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on the exterior derivative operator. We will see this explicitly for the operator

δ(2,2) in Section 8.5. Thus, we anticipate that there is a different description of

gravitons, based on δ(2,2) rather than the usual description with d(2,2). In Section

8.5 we will see that this alternative is just the linearised description following

from the chiral Plebanski formalism.

However, for the description of the spin two particles there arises another

alternative. Thus, there are now several different irreducible representations of

Lorentz group having spin two. These are the spaces S2
+⊗S2

− on which the usual

metric description is based, as well as the spaces S3
+⊗S− and S4

+. The last of these

spaces lies at the edge of the diagram, and we argued that these spaces are unsuit-

able for describing both helicities. This leaves us with the possibility that spin two

particles can also be described by a field taking values in S3
+ ⊗S−, plus possibly

some other irreducible representation of lower spin. This is indeed true. This

description arises as the linearisation of the chiral pure connection formalism.

All the claims made will be substantiated by the discussion in the following

sections. However, already at this stage we see that there are many different

alternatives arising in the description of the spin two. The standard metric

formalism makes a choice, but this choice is far from being unique. Other

choices can be made, and are in no way less natural than the choice of the

metric description. In fact, we will see that the choice to base everything on

the operator δ(2,2) in the metric description provides great simplifications. Even

more simplicity can be achieved if one instead chooses to describe gravitons

using the representation S3
+ ⊗ S−.

We now build some intuition about operators appearing in the diagram 8.1.

These are then used in alternative descriptions of spin two particles that we

argued should be contemplated.

8.2.10 Operators d(2,0) and δ(3,1)

Before we start the discussion of the operator δ(2,2), we consider the simpler case

of operator δ(3,1) and related to it operators. We have seen that the upper two

rows of the diagram 8.1 give us two operators whose composition δd is zero. This

gives us a complex of operators that is important in the standard description

of particles of spin one. We will now see that essentially the same story repeats

itself for the operators connecting the spaces S2
+, S

3
+ ⊗ S− and S4

+, i.e., another

triple of spaces lying near the edge of the diagram 8.1. This triple of spaces plays

role in the chiral connection description of gravity, as we shall see later.

First, we need to fix the forms and normalisations of the operators d(2,0)

and δ(3,1). We build the operator d(2,0) that increases the spin as the operator

that takes a derivative of an object φi ∈ S2
+ followed by the projection on the

representation S3
+ ⊗ S−. The relevant projector from the space of S2

+ valued 1-

forms to S3
+⊗S− is constructed from the operator JΣ that was already introduced

in (5.137). Thus, we have
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P(3,1) :=
2

3

(
I− 1

2
JΣ

)
. (8.60)

Using (5.139) one easily checks that this is a projector P 2
(3,1) = P(3,1). Using

(5.138) one can also check explicitly that this projector annihilates the S2
+ valued

1-forms of the form Σi
μ
νξν , which is the way that the irreducible representation

S+ ⊗ S− sits inside the space S2
+ ⊗ Λ1 ∼ S2

+ ⊗ S+ ⊗ S−.

Using the projector (8.60) we define

(d(2,0)φ)
i
μ :=

√
3

2
(∂μφ

i)(3,1) =

√
2

3

(
gμνδ

ij +
1

2
εijkΣk

μν

)
∂νφj . (8.61)

In the second equality we have spelled out the projector explicitly. We have

introduced a prefactor in front for future convenience. The adjoint operator is

given by

(d∗
(2,0)a)

i = −
√

3

2
∂μai

μ, (8.62)

where ai
μ ∈ S3

+ ⊗ S−. Now, an easy calculation using the algebra (5.138) gives

d∗
(2,0)d(2,0) = −�(2,0). (8.63)

It is our desire to have no extra numerical factors in this relation that has led to

the inclusion of
√
3/2 in the definition of d(2,0).

We now bring in the second operator, namely δ(3,1). This operator can be

defined as

(δ(3,1)a)
ij := (Σiμν∂μa

j
ν)(4,0) = P ijkl(Σkμν∂μa

l
ν), (8.64)

where Pijkl is the projector on symmetric tracefree tensors given by (5.182). The

adjoint is given by

(δ∗(3,1)ψ)
i
μ = Σj

μ
ν∂νψ

ij . (8.65)

It is easy to check that the S+ ⊗ S− part of the right-hand side here vanishes

for ψij symmetric and tracefree, and so the right-hand side is automatically in

S3
+ ⊗ S− and no explicit projector is necessary.

To check that the normalisation of δ(3,1) is well chosen, we compute δ(3,1)δ
∗
(3,1)

as it acts on ψij ∈ S4
+. A straightforward computation gives

δ(3,1)δ
∗
(3,1) = −�(4,0), (8.66)

which confirms our choice of the pre factor in (8.64).

The most important fact about δ(3,1) is that its kernel contains the image of

d(2,0)

δ(3,1)d(2,0) = 0. (8.67)
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Thus, we are once again in the cohomology setup, in exact analogy to the complex

formed by the operators d, δ. This means that elements of S3
+ ⊗ S− admit an

orthogonal decomposition into elements of the form d(2,0)φ, those of the form

δ∗(3,1)ψ, as well as harmonic elements that are in the kernel of the Box-type

operator δ∗(3,1)δ(3,1) + d(2,0)d
∗
(2,0). An explicit calculation of this operator gives

δ∗(3,1)δ(3,1) + d(2,0)d
∗
(2,0) = −�(3,1). (8.68)

To do this computation, we have used the fact that for S2
+ valued 1-forms that

are in S3
+ ⊗ S−, we have

ai
μ + εijkΣj

μ
νak

ν = 0, (8.69)

which is just the expression of the fact that the projection onto the space S+⊗S−

vanishes. The relevant projector is P(1,1) = (1/3)(I+JΣ), which immediately gives

the relation (8.69). This allows us to conclude that on S3
+ ⊗ S−

Σi
μ
νaj

ν = Σj
μ
νai

ν − εijkak
μ, (8.70)

which is a relation that one has to use in the computation leading to (8.68).

8.2.11 The Space S2
+
⊗ S2

− and Related Operators

The space S2
+⊗S2

− is one used to describe gravitons in the usual metric formalism.

The operator d(1,1) mapping vectors to symmetric tracefree tensors is a familiar

one. In the standard metric story, one is not considering ‘chiral’ objects that

can be built using Σi
μν , and, therefore, the only other operator that is usually

part of this story is d(2,2), which maps the spin two field into a spin three

object. If one allows the description to become chiral one gets access to another

operator, namely δ(2,2). As we have already said, this operator appears naturally

in the linearisation of the Plebanski formalism. Let us define and understand this

operator in some details. As in the previous sections we do all the computations

in tensor notations, as this is much more algorithmic and better suited for

computations than the spinor notation.

The space S2
+ ⊗ S2

− behaves in a much more complicated way than it was

in the case for S− ⊗ S+ and S3
+ ⊗ S−. The primary reason for this is the

absence of the cohomological decomposition for S2
+⊗S2

−. Indeed, the two natural

operators that lead to and then from S2
+ ⊗ S2

−, namely d(1,1) and δ(2,2), have the

property δ(2,2)d(1,1) �= 0. Thus, no cohomological decomposition of the type ‘exact,

co-exact, and harmonic’ is possible in the case of S2
+ ⊗ S2

−, unlike S− ⊗ S+ and

S3
+ ⊗ S−. It is this fact that is behind the increased complexity of the usual

perturbation theory based on S2
+ ⊗ S2

−, as compared to the perturbation theory

based on S+ ⊗ S− and S3
+ ⊗ S−.

To define δ(2,2) we note that from the object hμν ∈ S2
+⊗S2

− we can construct an

R
3 valued 2-form Σi

[μ
αhν]α. It can be checked that this 2-form is purely ASD. This

will be explained in details in Section 8.5, when we consider the linearisation of
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Plebanski theory. We can thus obtain a first-order differential operator by taking

the exterior derivative of this 2-form, and then dualising the arising 3-form into

a 1-form. We obtain an element of S2
+ ⊗ Λ1. This can then be further projected

onto S3
+ ⊗ S−. This results in the following definition

(δ(2,2)h)
i
μ :=

√
6 (Σiαβ∂αhβμ)(3,1) = 2

√
2

3

(
gμνδ

ij +
1

2
εijkΣk

μν

)
(Σjαβ∂αhβν),

(8.71)

where we spelled out the projector. This can be further simplified by making use

of the following identity

εijkΣj
μνΣ

k
ρσ = −2Σi

μ[ρησ]ν + 2Σi
ν[ρησ]μ. (8.72)

This identity can be proven, e.g., by replacing both Σ’s with 2iΣi
μν = εμν

αβΣi
αβ

and then using the decomposition of the product of two ε’s into products of the

metric tensor. At the same time, if one knows that such an identity must be true,

the coefficient on the right-hand side can be checked by contracting νρ and using

the algebra of Σ’s. Using (8.72) in the second term of (8.71) gives

(δ(2,2)h)
iμ =

√
6

(
Σiαβ∂αhβμ − 1

3
Σi

μ
α∂νhνα

)
. (8.73)

The adjoint operator is easier to write, and it is given by

(δ∗(2,2)a)μν =
√
6Σi

(μ
α∂αa

i
ν). (8.74)

To compute the adjoint we have used (8.69). Here we only needed to symmetrise

the result on the right-hand side, as it is automatically tracefree as follows from

Σi
μ
νai

ν = 0.

The choice of the numerical coefficient in (8.71) is justified by the following

property that can be checked by an explicit computation

d(2,0)δ = δ(2,2)d(1,1). (8.75)

In other words, the box connecting the spaces S+⊗S−, S
2
+⊗S2

−, S
2
+, and S3

+⊗S−

in the diagram 8.1 commutes.

Having defined the relevant operators, we can compute the second-order

operator δ∗(2,2)δ(2,2). A simple computation, using the previous definitions, gives

δ∗(2,2)δ(2,2) = −6�(2,2) − 8d(1,1)d
∗
(1,1). (8.76)

Another useful result is a computation of the operator δ∗(2,2)δ(2,2), which is a

�-type operator on S3
+ ⊗ S−. We get

δ∗(2,2)δ(2,2) = −6�(3,1) − 4d(2,0)d
∗
(2,0). (8.77)

These results will be useful in our discussion of the chiral version of the metric

perturbation theory in Section 8.5.
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8.3 Minkowski Space Metric Perturbation Theory

We now develop different versions of the spin two perturbation theory, starting

from the usual metric description, which we present very briefly.

We have derived the linearisation of the Einstein–Hilbert action in (2.24).

Working in units 32πG = 1 the linearised Lagrangian reads

L(2) =
1

2
hμν�hμν + ∂μh

μρ∂νhνρ − ∂μh
μν∂νh− 1

2
h�h. (8.78)

This can be further simplified by a choice of gauge. We choose the gauge-fixing

term to be

Lg.f. = −(∂νhμν −
1

2
∂μh)

2, (8.79)

where h := ημνhμν is the trace part of the perturbation. Adding this to the

linearised Lagrangian, we get

L(2) + Lg.f. =
1

2
hμν�hμν −

1

4
h�h, (8.80)

which is diagonal in the metric perturbation and can be easily inverted to find

the propagator.

To invert the kinetic term, we couple the gauge-fixed Lagrangian to a current

by adding Jμνhμν . We then solve for hμν in terms of Jμν in the momentum space,

with the result being

hμν =
1

k2

(
Jμν −

1

2
ημνη

ρσJρσ

)
. (8.81)

Substituting this to the Lagrangian and remembering that there is a factor of i

in front of the Lorentzian signature action gives us the following propagator

〈hμνhρσ〉 = − i

2k2
(ημρηνσ + ημσηνρ − ημνηρσ). (8.82)

This is the so-called de Donder gauge propagator.

The interaction vertices obtained by naively expanding the Einstein–Hilbert

action in powers of the metric perturbation quickly become very complicated,

see, e.g., the appendix of Goroff and Sagnotti (1986). Some simplifications can

be achieved by using a nonlinear parametrisation, e.g., treating the inverse

densitiesed metric as the basic field; see Cheung and Remmen (2017). However,

whatever the choice of the parametrisation of the metric field, there are vertices

of arbitrarily high order, which makes calculations difficult. A way out is to

introduce an additional auxiliary field by going to the first-order formalism. One

version of the first-order formalism is that of Palatini in which the auxiliary field

is an independent affine conneciton. In this case, using the inverse densitiesed

metric as the basic field, one can render theory to be cubic; see Cheung and

Remmen (2017). Also, by a shift of the Γρ
μν field one can achieve a situa-

tion where only the metric–metric and connection–connection propagators are
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different from zero; see Cheung and Remmen (2017). The structure of the arising

cubic vertices, however, is quite complicated. Our goal in the remaining sections

of this chapter is to develop simpler alternatives.

8.4 Chiral Yang–Mills Perturbation Theory

In preparation for the discussion in the following sections, we first develop the

chiral version of the Yang–Mills perturbation theory. This will serve as a point

of comparison for the developments in the gravity case. We shall see that the

Yang–Mills case is very simple and beautiful. Our goal in the sections to follow

will be to come as close as possible to this description.

8.4.1 Lagrangian and Perturbative Expansion

Our starting point will be the first-order chiral formalism for Yang–Mills (5.29).

We will parametrise the SD 2-form field as B+a = Σiφia, where Σi is the usual

basis of SD 2-forms and φia is the new set of fields. The Lagrangian reads

L = ΣiμνφiaF a
μν + 2g2(φia)2 = 2Σiμνφia∂μA

a
ν + 2g2(φia)2 +ΣiμνφiafabcAb

μA
c
ν .

(8.83)

The first line is the kinetic term, while the second line gives the only present

cubic interaction.

We can immediately note that the kinetic term of the Lagrangian (8.83) is

composed of the operator δ that we introduced in (8.48). This operator is gauge-

invariant, and upon integrating the auxiliary field φia out, one gets δ∗δ as the

gauge-invariant kinetic term for the spin one particles.

8.4.2 Gauge-Fixing: Tensor Calculation

To determine the gauge-fixing that is required in order to invert the kinetic

term and obtain propagators let us integrate out the auxiliary field φia from the

quadratic part of the Lagrangian. We have

Σiμν∂μA
a
ν + 2g2φia = 0, (8.84)

and thus

L(2) = − 1

2g2
(Σiμν∂μA

a
ν)

2 = − 1

2g2
((∂μA

a
ν)

2 − (∂μAa
μ)

2), (8.85)

which is the standard result for the spin one kinetic term. It is then clear that

we must add to this Lagrangian the following gauge-fixing term

Lg.f. = − 1

2g2
(∂μAa

μ)
2. (8.86)
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We can represent it in the first-order form by introducing a new auxiliary field φa

Lg.f. = 2φa∂μAa
μ + 2g2(φa)2. (8.87)

We can then note that the gauge-fixed Lagrangian can be described very effi-

ciently by ‘enlarging’ the auxiliary field Σiφia in (8.83). Indeed, we can write the

gauge-fixed Lagrangian as

L(2) + Lg.f. = 2Φaμν∂μA
a
ν +

g2

2
(Φaμν)2, (8.88)

where we introduced a new combination

Φaμν := Σiμνφia + ημνφa. (8.89)

We note that we can even write the interaction using the new field Φaμν . Indeed,

the object fabcAb
μA

c
ν is μν symmetric, and so one can enlarge Σiμνφia in it into

Φaμν for free. Thus, we can write

L(3) = ΦaμνfabcAb
μA

c
ν . (8.90)

In Section 8.4.5 we will see that the object Φaμν has a very simple and natural

spinor interpretation.

8.4.3 Propagators

Having gauge-fixed the kinetic term, let us carry out the exercise of computing

the propagators. Our goal is in particular to see that the propagator of the

auxiliary field φia with itself is zero.

To simplify the calculation we will only add the current for the auxiliary

field φia, and not for φa introduced previously. Thus, we consider the following

Lagrangian

L = 2Σiμνφia∂μA
a
ν + 2g2(φia)2 + 2φa∂μAa

μ + 2g2(φa)2 + JaμAa
μ + J iaφia.

(8.91)

We now integrate out the auxiliary fields. The equation for φia gets modified to

Σiμν∂μA
a
ν + 2g2φia +

1

2
J ia = 0. (8.92)

This gives the Lagrangian with auxiliary fields integrated out

L = − 1

2g2

(
Σiμν∂μA

a
ν +

1

2
J ia

)2

− 1

2g2
(∂μAa

μ)
2 + JaμAa

μ (8.93)

= − 1

2g2
(∂μA

a
ν)

2 − 1

2g2
J iaΣiμν∂μA

a
ν −

1

8g2
(J ia)2 + JaμAa

μ.

We now integrate out the connection by going to the momentum space. The

momentum space Lagrangian becomes
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L = − 1

2g2
Aa

μ(−k)k2Aa
μ(k)−

i

2g2
J ia(−k)ΣiμνkμA

a
ν(k) (8.94)

− 1

8g2
J ia(−k)J ia(k) + Jaμ(−k)Aa

μ(k).

Extremising with respect to Aa
μ gives

Aa
μ =

1

k2

(
− i

2
J iaΣi

μ
νkν + g2Ja

μ

)
. (8.95)

This gives the following Lagrangian in terms of currents only

L =
1

2g2k2

(
i

2
J ia(−k)Σi

μ
αkα + g2Ja

μ(−k)

)(
− i

2
J ia(k)Σiμβkβ + g2Jaμ(k)

)
− 1

8g2
J ia(−k)J ia(k).

The connection to connection and connection to auxiliary field terms here are

g2

2k2
Jaμ(−k)Ja

μ(k)−
i

2k2
J ia(−k)ΣiμνkμJ

a
ν (k). (8.96)

The remaining terms are

1

8g2k2
J ia(−k)ΣiμνkνJ

ja(k)Σj
μ
ρkρ −

1

8g2
J ia(−k)J ia(k) = 0, (8.97)

where we have used (5.138). Thus, there are only the connection–connection

propagator

〈Aa
μ(−k)Ab

ν(k)〉 =
g2

ik2
δabημν , (8.98)

as well as the connection to auxiliary field propagator

〈φia(−k)Ab
μ(k)〉 =

1

2k2
δabΣi

μ
νkν . (8.99)

The cubic vertex is also extremely simple in this version of perturbation theory

and is given by

〈φiaAb
μA

c
ν〉 = 2ifabcΣi

μν . (8.100)

8.4.4 Non-Chiral Version

The fact that there is no propagator of the auxiliary field with itself is directly

related to the fact that the chiral version of the first-order formalism is used

rather than the non-chiral. Let us see this explicitly. Thus, we work out also

the propagators for the version of the theory where the auxiliary 2-form field is

arbitrary antisymmetric rank two tensor. The corresponding Lagrangian is

L = BaμνF a
μν + g2(Ba

μν)
2. (8.101)
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The kinetic term is

L(2) = 2Baμν∂μA
a
ν + g2(Ba

μν)
2. (8.102)

We now do the gauge-fixing as before, see (8.86) and add currents for both fields

L(2) + Lg.f. = 2Baμν∂μA
a
ν + g2(Ba

μν)
2 − 1

2g2
(∂μAa

μ)
2 + JaμνBa

μν + JaμAa
μ.

Extremising with respect to the auxiliary field gives

Ba
μν = − 1

g2

(
∂[μA

a
ν] +

1

2
Ja
μν

)
. (8.103)

The Lagrangian with the auxiliary field integrated out is

L = − 1

g2

(
∂[μA

a
ν] +

1

2
Ja
μν

)2

− 1

2g2
(∂μAa

μ)
2 + JaμAa

μ (8.104)

= − 1

2g2
(∂μA

a
ν)

2 − 1

g2
Jaμν∂μA

a
ν −

1

4g2
(Jaμν)2 + JaμAa

μ.

We now integrate out the connection field by going to the momentum space. We

get

Aa
μ =

1

k2

(
−iJa

μ
νkν + g2Ja

μ

)
. (8.105)

This gives the following Lagrangian of the currents

L =
1

2g2k2
(iJaμν(−k)kν + g2Jaμ(−k))

(
−iJa

μ
ν(k)kν + g2Ja

μ(k)
)

(8.106)

− 1

4g2
Jaμν(−k)Ja

μν(k).

The connection to connection and connection to the auxiliary field terms here

are

g2

2k2
Jaμ(−k)Ja

μ(k)−
i

k2
Jaμ(−k)Ja

μ
νkν , (8.107)

while the auxiliary field terms are

1

2g2k2
Jaμν(−k)kνJ

a
μ
ρkρ −

1

4g2
Jaμν(−k)Ja

μν(k). (8.108)

There is no cancellation here and the propagator of the auxiliary field with itself

is different from zero. This makes the non-chiral perturbation theory much more

complicated, which is a very compelling reason to prefer the chiral version.

8.4.5 Spinor Interpretation

The previous chiral story has a very simple and natural spinor interpretation.

To see it, we translate the kinetic term in (8.83) into spinor notations. This is

simple given the spinor expression (8.26) for the 2-forms Σi. We have
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L(2) = 2εM
AεN

Bφa
ABεM′N′∂MM′

AaNN′
+ 2g2(φa

AB)
2. (8.109)

The kinetic term here can be simplified with the result being

L(2) = 2φaAB∂AM′Aa
B

M′
+ 2g2(φa

AB)
2. (8.110)

Integrating out the auxiliary field we get an extremely simple form of the gauge

field kinetic term

L(2) = −1

2
(∂(AM′Aa

B)
M′

)2. (8.111)

This form of the Lagrangian makes the gauge invariance obvious. Indeed, we

have the identity

∂AM′∂B
M′

= −1

2
εAB�, (8.112)

and then in computing the effect of the gauge transformation the antisymmetric

εAB is killed by the symmetrisation present in the Lagrangian.

As we know from the previous discussion, this Lagrangian is gauge-fixed

by replacing the combination Σaμνφia with (8.89). The spinor version of this

replacement is

εM
AεN

Bφa
ABεM′N′ → εM

AεN
Bφa

ABεM′N′ − φaεMNεM′N′ (8.113)

= εM
AεN

Bφa
ABεM′N′ − 1

2
φaεABε

ABεMNεM′N′ ,

where we rewrote the last term in a suggestive way. This expression can also be

rewritten as

(φa
AB + φaεAB)

(
εM

(AεN
B) − 1

2
εMNε

AB

)
εM′N′ = (φa

AB + φaεAB)εM
BεN

AεM′N′ ,

(8.114)

where we have used the Schouten identity

εMNε
AB = εM

AεN
B − εM

BεN
A. (8.115)

Thus, if we introduce a new spinor field

Φa
AB := φa

AB + φaεAB (8.116)

that does takes values in a reducible representation S+ ⊗S+ = S2
+ ⊕C∞, we can

write the gauge-fixed Lagrangian as

L(2) + Lg.f. = 2ΦaAB∂BM′Aa
A

M′
+ 2g2(Φa

AB)
2. (8.117)

Integrating out the new auxiliary field produces

L(2) + Lg.f. = −1

2

(
∂BM′Aa

A
M′
)2

, (8.118)

where the difference with (8.111) is that there is no symmetrisation anymore.
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This can be interpreted as follows. What appears in the gauge-fixed kinetic

term is the Dirac operator

δ : g⊗ S+ ⊗ S− → g⊗ S+ ⊗ S+, (8.119)

where the primed index of Aa
MM′ is changed into an unprimed index with the

Dirac operator ∂N
M′

. Upon integrating out the auxiliary field Φa
AB we then get

the Dirac operator squared, which is a multiple of the � operator. This is the

conceptual explanation of the mechanism that is at play in the gauge-fixed of the

chiral version of the Yang–Mills perturbation theory. In other words, gauge-fixed

is achieved by simply adding a new, antisymmetric in the AB component to the

auxiliary field φa
AB; see (8.116). This removes the symmetry of this auxiliary field

and produces a gauge-fixed operator that is just the usual Dirac operator acting

on the space of spinors valued in g ⊗ S+. In the next section we will see that

a very similar mechanism is at play in the chiral versions of the gravitational

perturbation theory.

8.5 Minkowski Space Chiral First-Order Perturbation Theory

The goal of this section is to develop the chiral version of the first-order pertur-

bation theory for gravity. Thus, we use the tetrad formalism, in which the action

is polynomial in the fields. However, the non-chiral version of this formalism

carries too many connection field components, similar to the non-chiral version

of the Yang–Mills first-order perturbation theory we considered in Section 8.4.4.

This has the effect that the auxiliary field (2-form field in the case of non-

chiral Yang–Mills theory, spin connection in the case of non-chiral gravity) will

have a nonvanishing propagator with itself. This produces complications and the

resulting perturbation theory is far from being the most efficient one. The usage

of chiral variables solves this problem in both Yang–Mills theory and gravity,

as we shall see. This makes the chiral version of the gravitational perturbation

theory preferable, and we only develop this chiral version.

We perform calculations mostly using tensor notations, and only at the end

translate everything into the language of spinors for interpretation. Our starting

point for the chiral first-order flat space perturbation theory is the Plebanski

action (5.159), which we write as

Schiral[h,A] =
4

i

∫
ΣiF i, (8.120)

where we have put Λ = 0, 32πG = 1 and it is understood that the constraint

ΣiΣj ∼ δij is imposed to imply that Σi is constructed from the metric

denoted schematically by h as one of the arguments of the action functional. We

should keep in mind that Σi is not an independent variable, and only the first

and second perturbations of Σi are nonzero. The SO(3) indices are raised and
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lowered with the Kronecker delta, metric, and so we can always keep them in

the upper position.

We now expand the action (8.120) working around the background de-

scribed by Σi corresponding to the flat metric and the zero connection.

Expanding the action by replacing Σi with Σi + δΣi + (1/2)δ2Σi and keeping

the quadratic, cubic, and quartic terms, we get

Schiral[h, a] =
4

i

∫
δΣidai +

1

2
εijkΣiajak +

1

2
εijkδΣiajak +

1

2
δ2Σidai (8.121)

+
1

4
εijkδ2Σiajak.

Thus, we have a quartic formulation of GR as is appropriate for a version of the

tetrad formalism. We now need to understand how to gauge-fix and invert the

kinetic term. To do this, it is necessary to understand the gauge invariances that

we want to gauge-fix.

8.5.1 Linearised Gauge Invariance

The linearised (i.e., second-order) Lagrangian is invariant under the following

symmetries. The diffeomorphisms act only on the metric perturbation

δξδΣ
i = diξΣ

i. (8.122)

The linearised action is clearly invariant under this transformation by inte-

gration by parts in the first term. The gauge transformations act on both

fields

δφδΣ
i = εijkΣjφk, δφa

i = dφi. (8.123)

Substituting this into the linearised action produces∫
εijkΣjφkdai + εijkΣidφjak (8.124)

which vanishes by integration by parts in one of the two terms.

8.5.2 Parametrisation of the Perturbation of the 2-Form Field

Let us now discuss implications of the metricity constraints and devise a con-

venient parametrisation of the object δΣi. As we have already discussed in

(5.172), the metricity constraints imply that the spin two part of the pertur-

bation of the 2-form field vanishes. This means that this perturbation is of the

form

δΣi =
1

4
(hδij + εijkξk)Σ

j +
1

4
hijΣ̄j , (8.125)
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where the reason for the factors of 1/4 will become clear in Section 8.5.3. We

now show that a general 2-form of this type can be written as

δΣi
μν = Σi

[μ
αhν]α, (8.126)

where hμν is an arbitrary, i.e., not necessarily symmetric, tensor. Here, again,

there is some freedom in the choice of the numerical coefficient. The choice we

made makes hμν transform under linearised diffeomorphisms in the standard way;

see Section 8.5.3.

To establish (8.126) as the correct parametrisation we can compute both the

SD and ASD parts of this 2-form by projecting it onto Σj , Σ̄j . We get

ΣjμνδΣi
μν = ΣjμνΣi

μ
αhνα = (δijηνα − εjikΣkνα)hνα (8.127)

= δijh+ εijkΣkμνhμν .

This shows that the SD part of δΣi is of the form (8.125) with h in both

expressions matching and ξi = Σiμνhμν . Note that h is the same object in both

expressions if there is a factor of 1/4 in (8.125). For the ASD part we have

Σ̄jμνδΣi
μν = Σ̄jμνΣi

μ
αhνα. (8.128)

This expression cannot be simplified any further. The only thing we know about

the contractions Σ̄jμνΣi
μ
α is that for every i and j this is a symmetric in να

tensor. Thus, in the ASD projection only the symmetric part of hμν contributes.

Again, we see that the ASD part of δΣi is as in (8.125) with

hij = Σi
α
μΣ̄jανhνμ. (8.129)

This establishes (8.126) as a convenient parametrisation of the first-order pertur-

bation of the 2-form field.

8.5.3 The Action of Gauge on the Tensor hμν

Let us also spell out the action of the gauge transformations on the field hμν . For

the diffeomorphisms (8.122) we have

δξδΣ
i
μν = 2d[μξ

αΣi
αν] = 2Σi

[μ
α∂ν]ξα. (8.130)

Comparing with (8.126) we see that the corresponding transformation of the

tensor hμν is

δξhμν = 2∂μξν , (8.131)

where no symmetrisation is taken. This shows that the symmetric part of our

tensor hμν is just the usual metric perturbation. This explains our choice of

having no extra numerical factor in (8.126).

Let us also compute the effect of SO(3) rotations (8.123). We have

δφhμν = Σk
μνφ

k, (8.132)
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which is just the shift of the SD part of the antisymmetric part of hμν . We

also note that the expression (8.126) is independent of the ASD part of the

antisymmetric part of hμν .

8.5.4 The Linearised Action in Terms of the Tensor hμν

We now compute the linearised part of the action, which is the first two terms

in (8.121) in terms of the parametrisation (8.126). We have

δΣidai =
1

2
Σi

μ
αhνα∂ρa

i
σdx

μdxνdxρdxσ =
1

2
Σi

μ
αhνα∂ρa

i
σε

μνρσd4x.

This expression can be further simplified as follows. Using self-duality, we have

Σi
μ
α =

1

2i
εμ

αβγΣi
βγ . (8.133)

This implies that

1

2
εμνρσΣi

μ
αhνα =

i

2

(
Σiρσh− Σiραhα

σ +Σiσαhα
ρ
)
, (8.134)

where we have expanded the product of two ε tensors into the sum of products

of copies of the metric tensor.

Similarly, for the second term in the linearised action we have

1

2
εijkΣiajak =

1

4
εμνρσεijkΣi

μνa
j
ρa

k
σd

4x =
i

2
εijkΣiμνaj

μa
k
νd

4x, (8.135)

where we again used self-duality of the Σi
μν forms.

Overall, the linearised Lagrangian becomes

L(2) = 2
(
Σiμνh− Σiμαhα

ν +Σiναhα
μ
)
∂μa

i
ν + 2εijkΣiμνaj

μa
k
ν . (8.136)

8.5.5 Form Notations

The expression (8.136) for the arising Lagrangian is combersome and hides what

is happening. The meaning of all transformations can be clarified by rewriting

everything in the differential form notation. Thus, we give the perturbation

2-form δΣi a new name

(Σh)i :=
1

2
Σi

μ
αhναdx

μdxν . (8.137)

We can then rewrite the kinetic term as

(Σh)idai = −d(Σh)iai = −〈�d(Σh), a〉d4x, (8.138)

where we integrated by parts, � is the Hodge star on forms and the angle

brackets denote the metric pairing with respect to the spacetime as well as the

internal index. This way of rewriting already exhibits clearly the transformation

properties. Thus, under the diffeomorphisms the 2-form (Σh)i transforms as
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δξ(Σh)
i = diξΣ

i. (8.139)

This makes it obvious that the kinetic term is diffeomorphism invariant. Under

SO(3) rotations the perturbation 2-form transforms as

δφ(Σh)
i = εijkΣjφk. (8.140)

This means that

δφ � d(Σh)i = �εijkΣjdφk = −i(JΣ(dφ))
i, (8.141)

where JΣ is the operator on S2
+ ⊗ Λ1 introduced in (5.137). The convenience

of this notation becomes clear if we similarly rewrite the potential term of the

Lagrangian. Indeed, we have

1

2
εijkΣiajak = − i

2
〈JΣ(a), a〉dx4. (8.142)

Overall, the Lagrangian becomes

L(2) = 4i〈�d(Σh), a〉 − 2〈JΣ(a), a〉. (8.143)

The invariance under gauge rotations now becomes clear. Indeed, in the first

term, we only need to vary the 2-form part, because the variation of the connec-

tion produces dφi, which vanishes against the d present in the 2-form part by

integration by parts. In the second term, we only need to vary one of the two

occurrences of ai and multiply the result by a factor of two, because this term

is symmetric in both copies of the connection perturbation. So, we get

δφL
(2) = 4i〈δφ � d(Σh), a〉 − 4〈JΣ(δφa), a〉 (8.144)

= 4〈JΣ(dφ), a〉 − 4〈JΣ(dφ), a〉 = 0.

8.5.6 Solving for the Connection

Even though we consider the first-order formalism, and the eventual perturbation

theory will have two independent fields in it, it is a good exercise to integrate

out the connection perturbation from the linearised Lagrangian. We will later

see that essentially the same calculation is needed in the process of finding the

propagators.

We can rewrite the Lagrangian (8.143) as

L(2) = 2〈ã, a〉 − 2〈JΣ(a), a〉, (8.145)

where we introduced

ã := 2i � d(Σh). (8.146)

The equation obtained by varying the Lagrangian with respect to the connection

reads

ã = 2JΣ(a), (8.147)
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which is easily solved by using the fact that the inverse of JΣ is given by

J−1
Σ =

1

2
(−I+ JΣ). (8.148)

It is then clear that the Lagrangian expressed solely in terms of hμν is

L(2) =
1

2
〈ã, J−1

Σ (ã)〉 = −2〈�d(Σh), J−1
Σ (�d(Σh))〉. (8.149)

This form of writing the Lagrangian makes all the invariances manifest. Indeed,

it is explicitly invariant under diffeomorphisms because d(Σh) is invariant. And

under gauge rotations δ � d(Σh) = −iJΣ(dφ) and then varying only the second

slot J−1
Σ is cancelled by JΣ and the result is zero by integration by parts. We

will soon see that the spin two kinetic operator in (8.149) is constructed from

the already familiar to us operator δ(2,2) that is of Dirac type.

8.5.7 Index Notation Calculation

Let us now compute the second-order Lagrangian (8.149) explicitly, using the

index notation. However, even prior to the computation, we can anticipate the

result. We know that the resulting Lagrangian is going to be diffeomorphism

invariant. We also know that it is invariant under shifts of the antisymmetric

part of hμν by an arbitrary SD 2-form, as this is how the SO(3) rotations

act. It is also invariant under shifts by an arbitrary ASD 2-form, because the

object (Σh)i only depends on the SD part of h[μν]. So, the Lagrangian (8.149) is

invariant under shifts of hμν by an arbitrary antisymmetric tensor, and is thus

h[μν] independent. The only Lagrangian that is constructed from h(μν) and is

diffeomorphism invariant is the usual linearised metric Lagrangian (8.78).

To verify this expectation by an explicit calculation we use index notations.

We then have

ãi
μ := Σi

μ
ν∂νh+Σiαβ∂αhβμ − Σi

μ
α∂βhαβ. (8.150)

To find the connection ai
μ we need to compute the action of JΣ on (8.150).

This is given by

JΣ(ã)
i
μ = εijkΣj

μ
α
(
Σk

α
β∂βh+Σkρσ∂ρhσα − Σk

α
β∂σhβσ

)
(8.151)

= εijkεjksΣs
μ
β(∂βh− ∂σhβσ)

− (Σi
μ
ρησα − Σi

μ
σηρα − Σiαρησ

μ +Σiασηρ
μ)∂ρhσα.

Here we have again used the identity (8.72). The expression (8.151) becomes

Σi
μ
ν∂νh− Σi

μ
α∂βhαβ +Σiαβ∂βhμα +Σiαβ∂μhαβ, (8.152)

which gives

ai
μ =

1

4
(Σiαβ∂β(hμα + hαμ) + Σiαβ∂μhαβ). (8.153)
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As a check, we note that this expression is invariant under the action of diffeo-

morphisms given by (8.131). Also, under the gauge transformations (8.132) the

connection undergoes gauge transformation δφa
i
μ = ∂μφ

i as it should.

Given that we know that the antisymmetric part of hμν is not going to enter

the second-order Lagrangian, the simplest way to compute it is to assume that

hμν is symmetric from the start. With this assumption, the expression for the

connection perturbation becomes

ai
μ = −1

2
Σiαβ∂αhβμ. (8.154)

This is a remarkably simple expression for the linearised SD connection in terms

of the metric perturbation.

8.5.8 Computation of the Linearised Action in Terms of hμν

We now substitute the found solution (8.153) for the connection perturbation

into the linearised Lagrangian to obtain the second-order linearised Lagrangian

in terms of hμν only. Again, we can view this manipulation as a necessary step

for the computation of the propagators in what follows.

We first perform the computation without making the assumption that hμν is

symmetric. The result is that the second-order Lagrangian in terms of hμν can

be written in terms of the symmetric part of hμν only, and so we could make an

assumption that hμν is symmetric from the start. However, it is a useful exercise

to perform the more complicated calculation without the symmetry assumption.

The easiest way to do this calculation is to note that when ai
μ is determined by

hμν the two terms in (8.136) become multiples of each other, and so it is enough

to compute only one of them. It is easier to compute the first term. So, we write

the second-order Lagrangian as

L(2) = 〈ã, a〉 = 1

4
(Σi

μ
α∂αh+Σiαβ∂αhβμ − Σi

μ
α∂βhαβ) (8.155)

(Σiρσ∂σ(hνρ + hρν) + Σiρσ∂νhρσ)η
μν .

We then use

Σi
μνΣ

i
ρσ = ημρηνσ − ημσηνρ − iεμνρσ (8.156)

to obtain

L(2) = −1

2
(∂ρh(μν))

2 + (∂νh(μν))
2 + hμν∂

μ∂νh+
1

2
(∂μh)

2, (8.157)

which only depends on the symmetric part of hμν as expected.

An alternative way of doing the same computation is by making the symmetry

assumption on hμν from the start, since we know the antisymmetric part cannot

enter the final result. In this case we can use the simpler form of the connection

(8.153) and compute the Lagrangian as a multiple of the second quadratic in the

connection term. We then have
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L(2) = −2εijkΣiμνaj
μa

k
ν =

1

2
Gμναβρσ∂αhβμ∂ρhσν , (8.158)

where we introduced

Gμναβρσ := −εijkΣiμνΣjαβΣkρσ (8.159)

This can be evaluated using the identity (8.72) as well as (8.156). This again

gives (8.157) but with symmetric hμν assumed from the start. Note that we

have obtained a remarkably simple expression (8.158) for the linearised metric

Lagrangian. All of the complications of different possible tensor contractions have

been hidden into the tensor (8.159).

Another important outcome of the previous calculation is that we have also

represented the kinetic term of spin two particles using the first-order differential

operator (8.153) giving ai
μ from hμν . Recalling the discussion of Section 8.2, we

see that we are essentially dealing with the operator δ(2,2) here; compare (8.71)

with (8.153). This shows that indeed linearised chiral first-order perturbation

theory for gravity realises the spin two particles kinetic term in a completely

different way as compared to the usual metric formalism. The spin-preserving

Dirac operator δ(2,2) is used instead of the spin-increasing operator d(2,2) of the

usual metric story. This has been made possible by the use of chiral objects

such as Σi
μν .

8.5.9 Gauge-Fixing I: Symmetric hμν

We now want to invert the kinetic term, adding gauge-fixing terms as necessary.

We will consider two different gauge-fixing procedures. One is following the usual

metric formalism route. Thus, we have seen that the Lorentz transformations act

on the tensor hμν by shifting its antisymmetric part. This means that there exists

a gauge in which this tensor is symmetric. Let us work out the details.

Since we are going to gauge-fix Lorentz transformations by demanding hμν

to be symmetric, and impose the standard metric formalism gauge-fixing condi-

tion to gauge-fix diffeomorphisms, we will only need to fix the gauge after the

connection has been integrated out. So, the first few steps can be carried out

without worrying about the gauge-fixing. We add currents for both hμν and ai
μ

and attempt to integrate out these fields from the action obtaining a functional

of the currents. So, we consider

L(2) = 2
(
Σiμνh− Σiμαhα

ν +Σiναhα
μ
)
∂μa

i
ν + 2εijkΣiμνaj

μa
k
ν (8.160)

+ Jμνhμν + Jμiai
μ.

Varying this with respect to the connection we get a modification of the equation

(8.147)

Σi
μ
ν∂νh+Σiαβ∂αhβμ − Σi

μ
α∂βhαβ +

1

2
J i
μ = 2(JΣ(a))

i
μ. (8.161)
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This equation is solved as before with the solution being

ai
μ =

1

4
(Σiαβ∂β(hμα + hαμ) + Σiαβ∂μhαβ + (J−1

Σ (J))iμ), (8.162)

where for now we do not make the symmetry assumption for hμν . Substituting

this back into the Lagrangian, we get

L(2) = −1

2
(∂ρh(μν))

2 + (∂νh(μν))
2 + hμν∂

μ∂νh+
1

2
(∂μh)

2 (8.163)

− 1

4
hμν(Σ

iμα∂αJ
iν +Σiνα∂αJ

iμ +Σiμν∂αJ i
α) + Jμνhμν

− 1

16
((J i

μ)
2 + εijkΣiμνJ j

μJ
k
ν ).

The last step is to integrate out the metric perturbation. It is here that we

need to make our gauge-fixing assumptions. First, we clearly need to gauge-fix the

diffeomorphism symmetry. Because the arising metric Lagrangian is as standard,

it is easiest to fix this gauge in the standard way as well, by adding to the

Lagrangian the standard de Donder gauge-fixing term (8.79) for the symmetric

part of hμν . In fact, this term can be added in a first-order form, by adding a

new auxiliary field ξμ with one spacetime index, as well as a quadratic term (ξμ)
2.

Indeed, we can instead add

Lg.f. = 2ξμ(∂νh(μν) −
1

2
∂μh) + (ξμ)

2. (8.164)

Integrating out ξμ results in (8.79). Moreover, we can think of ξμ as a new

component of the connection ai
μ that we need to add in order to gauge-fix the

diffeomorphisms. This interpretation becomes particularly clear in the spinor

formalism. But for now, it is sufficient for our purposes just to add the gauge-

fixing term (8.79). The resulting (partially) gauge-fixed Lagrangian is

L(2) + Lg.f. =
1

2
h(μν)�h(μν) −

1

4
h�h− 1

2
h(μν)Σ

iμα∂αJ
iν + Jμνhμν

− 1

4
hμνΣ

iμν∂αJ i
α − 1

16
((J i

μ)
2 + εijkΣiμνJ j

μJ
k
ν ),

where � := ∂μ∂μ. For this Lagrangian we can find the symmetric part of the

metric perturbation in terms of the currents. As for the antisymmetric part, there

is clearly no kinetic term for it, and so it cannot be determined unless we fix

a gauge. The simplest possibility is to just gauge-fix the antisymmetric part of

hμν to be zero. In this case, going to the momentum space, the equation for hμν

(assumed symmetric) is

−k2hμν +
k2

2
ημνh− i

2
Σi

(μ
αkαJ

i
ν) + Jμν = 0, (8.165)

where we assumed the current Jμν to be symmetric. Taking the trace, one solves

for the trace part of the metric perturbation
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h = − 1

k2

(
i

2
ΣiαβkαJ

i
β + ηαβJαβ

)
, (8.166)

so that

hμν =
1

k2
Jμν −

i

2k2
Σi

(μ
αkαJ

i
ν) −

1

2k2
ημν

(
i

2
ΣiαβkαJ

i
β + ηαβJαβ

)
. (8.167)

Substituting this back into the Lagrangian gives

L(2) =
1

2k2

(
Jμν(−k) +

i

2
Σi

(μ
αkαJ

i
ν)(−k)

)(
Jμν(k)−

i

2
Σi

(μ
αkαJ

i
ν)(k)

)
− 1

4k2

(
− i

2
ΣiαβkαJ

i
β(−k) + ηαβJαβ(−k)

)(
i

2
ΣiαβkαJ

i
β(k) + ηαβJαβ(k)

)
− 1

16
(J i

μ(−k)J iμ(k) + εijkΣiμνJ j
μ(−k)Jk

ν (k)),

where we have explicitly indicated the momentum dependence. Expanding the

squares here we get the sought propagators. The metric–metric propagator is

represented by the following terms

1

2k2
Jμν(−k)Jμν(k)− 1

4k2
ηαβJαβ(−k)ημνJμν(k). (8.168)

This results in the usual metric propagator given by (8.82). The metric–

connection terms are

− i

2k2
Jμν(−k)Σi

(μ
αkαJ

i
ν)(k)−

i

4k2
(ηαβJαβ(−k))(ΣiμνkμJ

i
ν(k)). (8.169)

This results in the propagator

〈hμνa
i
μ〉 = − 1

2k2
Σi

(μ
αkαην)ρ +

1

4k2
ημνΣ

i
ρ
αkα. (8.170)

Finally, the connection–connection terms are

1

16k2
(ΣiμαkαJ

iν(−k) + ΣiναkαJ
iμ(−k))(Σj

μ
βkβJ

j
ν(k)) (8.171)

− 1

16k2
(ΣiαβkαJ

i
β(−k))(ΣiμνkμJ

i
ν(k))

− 1

16
(J i

μ(−k)J iμ(k) + εijkΣiμνJ j
μ(−k)Jk

ν (k)).

Let us simplify the second term in the first line. We have

ΣiναkαJ
iμ(−k)Σj

μ
βkβJ

j
ν(k) = ΣjναkαJ

iμ(−k)Σi
μ
βkβJ

j
ν(k)

+ εijkεklmΣlναΣmμβkαJ
i
μ(−k)kβJ

j
ν(k)

= ΣiαβkαJ
i
β(−k)ΣiμνkμJ

i
ν(k)+k2εijkΣkμνJ i

μ(−k)J j
ν(k)

+ 2εijkkαΣi
α
νJ j

ν(k)k
βJk

β (−k).
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There are several cancellations and we get the following connection–connection

current terms

1

8k2
εijkΣjμνkμJ

k
ν (k)k

αJ i
α(−k). (8.172)

This results in the connection–connection propagator

〈ai
μa

j
ν〉 = − i

8k2
εijk(kαΣk

αμkν − kαΣk
ανkμ). (8.173)

To summarise, in this version of the perturbation theory we have two propagating

fields: a symmetric tensor hμν as well as a connection ai
μ. There are three different

propagators, connecting all three different possible pairs of fields.

8.5.10 Gauge-Fixing II: Lorentz Gauge

We will now work out details of a different gauge-fixing procedure. Instead of

demanding hμν to be symmetric to gauge-fix the Lorentz symmetry, we will

use an asymmetric gauge-fixing condition. We continue to set the ASD part

of the antisymmetric part of hμν to zero by a suitable chiral half of Lorentz

transformation. But we will fix the SD chiral half of Lorentz in a different way,

simply by adding the Lorentz gauge-fixing term hi∂μai
μ to the action. Here hi is a

new field, varying with respect to which imposes the sharp gauge-fixing condition

∂μai
μ = 0. With this choice of gauge-fixing, both the diffeomorphism and (chiral

half of) Lorentz symmetry are fixed with a condition that involves derivatives.

The procedure of integrating out the fields has to be repeated from scratch

because we now have a new connection involving term in the Lagrangian. The

Lagrangian to consider is now

L(2) = 2
(
Σiμνh− Σiμαhα

ν +Σiναhα
μ
)
∂μa

i
ν + 2εijkΣiμνaj

μa
k
ν (8.174)

+ 2hi∂μai
μ + Jμνhμν + Jμiai

μ,

where the coefficient of two in the new term is for future convenience. The

equation that we need to solve for ai
μ is

Σi
μ
ν∂νh+Σiαβ∂αhβμ − Σi

μ
α∂βhαβ − ∂μh

i +
1

2
J i
μ = 2(JΣ(a))

i
μ, (8.175)

with the solution being

ai
μ =

1

4

(
Σiαβ∂β(hμα + hαμ) + Σiαβ∂μhαβ + ∂μh

i − εijkΣj
μ
ν∂νh

k + (J−1
Σ (J))iμ

)
.

(8.176)

Note that this only depends on the SD part of the antisymmetric part of hμν the

ASD part drops out as before. We now substitute this back into the Lagrangian,

which we write as

L(2) =

(
Σi

μ
ν∂νh+Σiαβ∂αhβμ − Σi

μ
α∂βhαβ − ∂μh

i +
1

2
J i
μ

)
aiμ. (8.177)
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Many of the terms are as before, and we only need to work out the terms involving

the new hi field. The terms quadratic in this field give simply −(1/4)(∂μh
i)2. The

terms linear in this field give

−1

2

(
Σiαβ∂β(hμα + hαμ) + Σiαβ∂μhαβ +

1

2
(−J i

μ + εijkΣj
μ
νJk

ν

)
∂μhi.

Thus, the action with the connection perturbation integrated out is

L(2) = −1

4
(∂ρhμν + ∂ρhνμ)∂

ρhμν +
1

2
(∂μh)

2 − 1

4
(∂μh

i)2

+
1

4
(∂νhμν + ∂νhνμ)

2 + hμν∂
μ∂νh− 1

2
(∂νhμν + ∂νhνμ)Σ

iμα∂αh
i

− 1

2
Σiαβ∂μhαβ∂

μhi +
1

4
(J i

μ − εijkΣj
μ
νJk

ν )∂
μhi

− 1

4
hμν(Σ

iμα∂αJ
iν +Σiνα∂αJ

iμ +Σiμν∂αJ i
α) + Jμνhμν

− 1

16
((J i

μ)
2 + εijkΣiμνJ j

μJ
k
ν ),

where we grouped terms in a suggesting way. We now add a gauge-fixing term

that we choose to be a modification of the de Donder gauge

Lg.f. = −
(
1

2
(∂νhμν + ∂νhνμ)−

1

2
∂μh− 1

2
Σi

μ
ν∂νh

i

)2

. (8.178)

The gauge-fixed Lagrangian becomes

L(2) + Lg.f. = −1

4
(∂ρhμν + ∂ρhνμ)∂

ρhμν +
1

4
(∂μh)

2 − 1

2
(∂μh

i)2

− 1

2
Σiαβ∂μhαβ∂

μhi +
1

4
(J i

μ − εijkΣj
μ
νJk

ν )∂
μhi

− 1

4
hμν(Σ

iμα∂αJ
iν +Σiνα∂αJ

iμ +Σiμν∂αJ i
α) + Jμνhμν

− 1

16
((J i

μ)
2 + εijkΣiμνJ j

μJ
k
ν ).

The final step is to integrate out the metric perturbation, which is no longer

assumed to be symmetric, but whose antisymmetric part only has the SD part.

To integrate out hμν let us split the problem into two parts. We have already

solved the problem of integrating out the symmetric part of hμν , and this remains

unmodified. So, we write

hμν = h(μν) +
1

4
Σi

μνΣ
iρσhρσ, (8.179)

and also write the corresponding current as

Jμν = J̃μν +
1

2
Σi

μνJ
i, (8.180)

where J̃μν is symmetric. Integrating out the symmetric part then gives the result

as in the previous section with J̃μν in place of Jμν . The result is collected in
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(8.168), (8.169), and (8.172). Let us work out the terms following from integrating

out the antisymmetric part of hμν . These terms are

−1

2
(∂μh

i)2 − 1

2
Σiμν∂αhμν∂

αhi +
1

4
(J i

μ − εijkΣj
μ
νJk

ν )∂
μhi (8.181)

−1

4
hμνΣ

iμν∂αJ i
α +

1

2
J iΣiμνhμν .

Varying with respect to Σiμνhμν we get

�hi =
1

2
∂μJ i

μ − J i, (8.182)

which we can solve for hi

hi =
1

k2

(
J i − i

2
kμJ i

μ

)
. (8.183)

Varying with respect to hi gives

�hi +
1

2
Σiμν�hμν −

1

4
∂μJ i

μ +
1

4
εijkΣjμν∂μJ

k
ν = 0. (8.184)

Using (8.182) we can write this equation as

Σiμν�hμν = 2J i − 1

2
∂μJ i

μ − 1

4
εijkΣjμν∂μJ

k
ν , (8.185)

which we can solve for Σiμνhμν . Substituting everything into the Lagrangian we

get the following current–current terms

− 1

2k2
J i(−k)J i(k) +

i

4k2
J i(−k)(kμJ i

μ(k) + εijkΣjμνkμJ
k
ν (k))

− 1

8k2
εijkkαJ i

α(−k)ΣjμνkμJ
k
ν (k).

We note that the last term here precisely cancels the similar term (8.172)

obtained by integrating out the symmetric part of hμν . Thus, in this version

of the gauge-fixed theory, there is no connection–connection propagator, which

simplifies calculations considerably. Thus, this version of the theory is preferable

to the one where hμν is required to be symmetric.

Moreover, the terms containing J i combine nicely with the already existing

terms in (8.168) and (8.169). Let us work out how the propagator for hμν gets

modified. Variation of the Lagrangian with respect to J i inserts a factor of

(1/2)Σiμνhμν . This, together with the fact that the exponent of the generating

function contains −(i/2)(J i)2, implies the following two-point function〈
1

2
Σiμνhμν

1

2
Σjρσhρσ

〉
= − i

k2
δij , (8.186)

which in turn implies

〈h[μν]h[ρσ]〉 = − i

4k2
Σi

μνΣ
i
ρσ. (8.187)
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On the other hand we have

Σi
μνΣ

i
ρσ = ημρηνσ − ημσηνρ − iεμνρσ. (8.188)

Combining with (8.82), this gives

〈hμνhρσ〉 = − i

4k2
(3ημρηνσ + ημσηνρ − 2ημνηρσ − iεμνρσ) . (8.189)

The appearing coefficients are hard to understand in tensor notations. This

propagator takes a much simpler form in spinor notations.

8.5.11 Calculation of the Second-Order Perturbation of the 2-Form

Field

Interaction vertices contain the second-order perturbation of the 2-form field,

and so we need to find an expression for this in terms of the tensor hμν that we

use to parametrise the first-order perturbation. This computation is somewhat

laborious, even though the final answer is very simple. It seems to be most easily

done using the spinor formalism. We use the definition (8.25). Replacing the

frame with eAA′
+ δeAA′

, we have to replace the 2-form field with ΣAB + δΣAB +

(1/2)δ2ΣAB where

δΣAB = δe(AA′
eB)

A′ δ2ΣAB = δeAA′
δeBA′ . (8.190)

We can represent the perturbation of the frame as a linear combination of the

frame 1-forms

δeAA′
= hAA′

BB′eBB′
. (8.191)

Also, whenever there is a wedge product of two copies of the frame, we can

decompose this into the SD and ASD basic forms. The relevant expression is

(8.30), with SD forms given by (8.25) and ASD forms given by (8.29). Using this

we get

δΣAB = −ΣM(AhB)A′
MA′ − Σ̄A′B′h(AA′B)B′

(8.192)

and

δ2ΣAB = −ΣMNhAA′
M

B′
hB

A′NB′ + Σ̄M′N′
hAA′N

M′hB
A′NN′ . (8.193)

Before we rewrite these expressions any further, let us discuss how these objects

depend on the ‘gauge’ part of hAA′
BB′ . As we already know from the previous

discussion, the antisymmetric part of this rank two tensor is pure gauge. In spinor

notations, the SD part of this antisymmetric part is represented by h(AA′B)
A′ ,

while the ASD part is represented by hA(A′
A

B′). It is clear that the first variation

δΣAB is independent of hA(A′
A

B′). The second variation depends on this part of

the perturbation. But we can always make an ASD SO(3) transformation to set

this part to zero. We will always assume that this has been done.
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The expression (8.192) can be seen to match (8.125). To see this we must

parametrise hAA′
BB′ by a tensor hμν . We use the parametrisation

hAA′
MM′ = −1

2
hμνe

μAA′
eνMM′ , (8.194)

where eμAA′
is the inverse frame and the numerical factor is needed to match

(8.125). Indeed, using the identity (8.31) we have

hBA′
MA′ = −1

2
hμνe

μBA′
eνMA′ = −1

2
hμν

(
1

2
ημνεBM − 1

2
ΣμνB

M

)
. (8.195)

Therefore, the first term in ΣM(AhB)A′
MA′ is (1/4)ΣABh, which matches (8.125).

The second term can be seen to be the one corresponding to the term with εijk

in (8.125), but developing the formalism further to allow the precise numerical

matching is not important for us.

Let us now express the second variation of the 2-form field in terms of hμν ,

which is not assumed to be symmetric. The parametrisation (8.194), together

with the identity (8.31) gives

hAA′
(M

B′
hB

A′N)B′ =
1

4
hμνhρσΣ

μρABΣνσ
MN , (8.196)

hAA′N
(M′hB

|A′N|N′) =
1

4
hμνhρσΣ

μρABΣ̄νσ
M′N′ .

This means that

δ2ΣAB =
1

4
hμνhρσΣ

μρAB
(
ΣMNΣνσ

MN − Σ̄M′N′
Σ̄νσ

M′N′

)
. (8.197)

On the other hand, the object in brackets is just a multiple of the identity tensor

in the space of antisymmetric matrices

ΣMN
αβ Σνσ

MN − Σ̄M′N′
αβ Σ̄νσ

M′N′ = 2δν[αδ
σ
β]. (8.198)

The coefficient in this formula can be checked by, e.g., multiplying it by Σαβ
AB and

using

ΣMN
αβ Σαβ

AB = 2ε(A
MεB)

N , (8.199)

which is easily derivable from the definition (8.24). Thus, overall we get

δ2ΣAB
αβ =

1

2
hμαhνβΣ

μνAB. (8.200)

This formula can be finally be converted to SO(3) notations that we are using

in our perturbation theory

δ2Σi
μν =

1

2
hμαhνβΣ

iαβ. (8.201)
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This, together with the propagators computed previously, gives all the ingredients

required to compute amplitudes using the perturbative expansion (8.121) of the

action.

Fixing the numerical coefficient in (8.201) was somewhat painful. However, if

one expects such a relation to be true, then the overall coefficient can be verified

using that

δ2Σ(iΣj) + δΣiδΣj ∼ δij (8.202)

must hold. This is much simpler calculation, using the already known identi-

ties for the 2-forms Σi, in particular (8.134), and confirms that the numerical

coefficient in (8.201) is correct.

8.6 Chiral Connection Perturbation Theory

We now work out the chiral connection perturbative description of gravity. As

we already know, this is obtained by starting with the Plebanski description and

integrating out the 2-form field. There are two versions of this formalism. In one,

we integrate out all the auxiliary fields, including the Lagrange multiplier field

Ψij . This results in the pure connection description (6.8). This action is non-

polynomial in the curvature of the connection, and so its perturbative expansion

produces an infinite number of terms, which are quite difficult to work out at

increasing orders of perturbation theory.

In the other version we leave the field Ψij in the game. This gives the first-order

formalism with two independent fields, Ai
μ,Ψ

ij and the Lorentzian signature

action given by

S[A,Ψ] =
2

i

∫
(M−1)ijF iF j , (8.203)

with the matrix M given by M = Ψ + (Λ/3)I. We have again set 32πG = 1.

The matrix M−1 can then be expanded in powers of Ψ. This again produces a

description with vertices of arbitrary valency. But in this version of the theory

the vertices are at least straightforward to work out. We will develop the first-

order version of the chiral connection perturbation theory, as this is also the

version that exhibits direct similarities with the chiral Yang–Mills theory and

chiral metric perturbation theory considered previously.

The main outcome of our analysis in this section is the realisation that the

connection version of the perturbation theory is significantly simpler than that

in terms of the metric. The main reason for this is that we necessarily have to

develop the theory on a curved background. On a curved background, the trans-

formation properties of the gauge field differ from those on a flat background. The

new feature is that not only the metric, but also the connection field, transform

nontrivially under diffeomorphisms. Moreover, the transformation rule for the

connection can be rewritten so as to not involve the derivatives of the parameter
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of the transformation. It thus becomes trivial to gauge-fix the components of

the connection that are pure gauge. We will see that this corresponds to the

components taking values in S+ ⊗ S− subspace of S2
+ ⊗ S+ ⊗ S−. This implies

that there exists a gauge in which only the S3
+⊗S− component of the connection

propagates. This results in an extremely simple perturbation theory, directly

analogous to the chiral perturbation theory for Yang–Mills theory.

8.6.1 Second-Order Lagrangian

We first work out the perturbation theory around a constant curvature back-

ground, and then make comments about the more general case. The constant

curvature background is described by a field configuration in which F i = (Λ/3)Σi,

and we expand the connection Lagrangian (8.203) around this background. The

background profile for the field Ψij is trivial. The first variation of the Lagrangian

in (8.203) is

δL =
2

i
Tr(−M−1δMM−1FF +M−12FδF ), (8.204)

where δM = δΨ := ψ. The second-order Lagrangian is the second variation

divided by two. Using the fact that the background value of M−1 = (3/Λ)I, we

have

S(2) =
6

iΛ

∫
Tr(ψ2ΣΣ− 2ψΣdAa+ dAadAa+ F [a, a]). (8.205)

The last two terms here vanish by integration by parts∫
dAa

idAa
i =

∫
aidAdAa

i =

∫
aiεijkF jak = −

∫
F iεijkajak, (8.206)

and so we have simply

L(2) =
6

Λ

(
2(ψij)2 − 2ψijΣiμνdA

μa
j
ν

)
, (8.207)

where we have used the self-duality of Σi
μν and dA

μ is the covariant derivative

with respect to the background connection. Integrating out the auxiliary field

ψij , we immediately reproduce (5.183).

8.6.2 Gauge Transformations

Let us now spell out the action of gauge transformations. First, since the back-

ground value of the Lagrange multiplier field is zero, its perturbation does not

transform under either SO(3) rotations or diffeomorphisms. The transformations

of the connection are as follows

δφa
i = dAφ

i, δξa
i = iξF

i, (8.208)
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where we corrected the diffeomorphism by a suitable gauge transformation to

eliminate the derivative of the parameter ξμ from the transformation law. We

see that the Lagrangian (8.207) is invariant under both transformations. Indeed,

for gauge transformations we the commutator of two covariant derivatives, which

produces a copy of the background curvature

δφΣ
iμνdA

μa
j
ν = ΣiμνdA

μd
A
ν φ

j =
Λ

6
ΣiμνεjklΣk

μνφ
l (8.209)

=
2Λ

3
εjilφl.

This gets contracted with ψij that is symmetric, and so gives zero. For the

variation under diffeomorphisms, we have analogously

δξΣ
iμνdA

μa
j
ν = ΣiμνdA

μ (ξ
αΣj

αν) = ΣiμνΣj
αν∇μξ

α. (8.210)

Here we have used the fact that the ‘total’ covariant derivative of the objects

Σi
μν vanishes

∂ρΣ
i
μν + εijkAjΣk

μν − Γα
μρΣ

i
αν − Γα

νρΣ
i
μα = 0, (8.211)

where Γα
μν are the Christoffel symbols of the background metric. Using this, we

can rewrite

dA
μ (ξ

αΣi
αν) = Σi

αν∂μξ
α + ξα(∂μΣ

i
αν + εijkAj

μΣ
i
αν)

= Σi
αν∂μξ

α + ξα(Γρ
αμΣ

i
ρν + Γρ

νμΣ
i
αρ) = Σi

αν∇μξ
α + Γρ

νμξ
αΣi

αρ,

and the last term vanishes when contracted with Σiμν in (8.210). But then

according to (5.138), the contraction ΣiμνΣj
αν of two Σ’s is proportional to

either the Kronecker δij or the antisymmetric tensor εijk, and so vanishes when

contracted with ψij in the Lagrangian.

8.6.3 Gauge-Fixing

Under diffeomorphisms the connection perturbation transforms as

δai
μ =

Λ

3
ξαΣi

αμ. (8.212)

Let us now recall that in spinor terms the connection perturbation takes values in

the space S2
+⊗S+⊗S−. This has two irreducible components S3

+⊗S− and S+⊗S−.

The elements of S+ ⊗ S− are precisely of the form ξαΣi
αμ. This means that the

diffeomorphisms shift the S+ ⊗ S− component of the connection perturbation.

A possible gauge-fix is to set this component of the connection to zero.

To see the most efficient way to gauge-fix SO(3) rotations we work out the

Lagrangian with ψij integrated out. This is given by

L = − 3

2Λ

(
δikδjl + δilδjk −

2

3
δijδkl

)
(ΣiμνdA

μa
j
ν)(Σ

kρσdA
ρ a

l
σ). (8.213)
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Let us assume that the connection is gauge-fixed to be in S3
+⊗S−. The derivative

in dA
[μa

i
ν] is the exterior covariant derivative with respect to the background

connection. Because antisymmetrisation is taken, it can be replaced for free

with the total covariant derivative with respect to both the background SL(2,C)

connection as well as the affine one. After this is done, the objects Σiμν can be

taken under the derivative sign for free, as they are killed by the total covariant

derivative. For the terms resulting from δijδkl part of the projector on spin two

this means that ΣiμνdA
μa

i
ν = ∇A

μ (Σ
iμνai

ν) = 0, where ∇A is the total derivative,

as the combination in brackets extracts the S+ ⊗ S− part that vanishes.

To compute the term that is produced by the δilδjk part of the projector we

note that in general

ΣiμνdA
μa

j
ν = ΣjμνdA

μa
i
ν + εijkεklmΣlμνdA

μa
m
ν . (8.214)

But for connections in S3
+ ⊗ S− we have

εklmΣlμνam
ν = −ak

μ, (8.215)

compare (8.70). This means that for such connections

ΣiμνdA
μa

j
ν = ΣjμνdA

μa
i
ν − εijk∇Aμak

μ, (8.216)

and so

L = − 3

2Λ
(2(ΣiμνdA

μa
j
ν)(Σ

iρσdA
ρ a

j
σ)− (∇Aμai

μ)
2)

= − 3

Λ

(
(∇A

μa
i
ν)

2 − (∇Aμaiν)(∇A
ν a

i
μ)− iεμνρσdA

μa
i
νd

A
ρ a

i
σ − 1

2
(∇Aμai

μ)
2

)
.

We have again replaced the covariant derivatives dA with the total derivatives

∇A, for later convenience. We now integrate by parts in the second and third

terms. For the second term

(∇Aμaiν)(∇A
ν a

i
μ) =̂− aiν∇Aμ∇A

ν a
i
μ (8.217)

= −aiν∇A
ν ∇Aμai

μ − aiν(−Rρ
μ
μ
νa

i
ρ + εijkF jμ

νa
k
μ)

=̂(∇Aμai
μ)

2 − aiν

(
Rρ

νa
i
ρ −

Λ

3
εijkΣj

ν
μak

μ

)
.

where =̂ means modulo surface terms. We now use that for our constant curvature

background Rμν = Λgμν , where gμν is the background metric. We also use that

for connections in S3
+ ⊗ S−, we have JΣ(a) = −a. This finally gives

(∇Aμaiν)(∇A
ν a

i
μ)=̂(∇Aμai

μ)
2 − 4Λ

3
(ai

μ)
2. (8.218)

For the third term in the Lagrangian we have

iεμνρσdA
μa

i
νd

A
ρ a

i
σ =̂− iεμνρσai

νd
A
μd

A
ρ a

i
σ (8.219)

= −Λ

6
iεμνρσai

νε
ijkΣj

μρa
k
σ = −Λ

3
ai
νε

ijkΣjνσak
σ =

Λ

3
(ai

μ)
2,
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where we have used the self-duality of Σi
μν as well as the fact that the connection

is in S3
+ ⊗ S− to get the last equality. Overall, this gives

L = − 3

Λ
((∇A

μa
i
ν)

2 − 3

2
(∇Aμai

μ)
2 + Λ(ai

μ)
2). (8.220)

This makes it clear that the most convenient gauge-fixing term is

Lg.f. = − 9

2Λ
(∇Aμai

μ)
2, (8.221)

where it is understood that the connection should be taken in S3
+ ⊗ S−.

8.6.4 Spinor Interpretation

The previous gauge-fixing procedure can be understood most clearly using the

language of spinors. To see this, let us start by converting the Lagrangian (8.207)

into the spinor notations. The symmetric tracefree matrix ψij in spinor notations

is simply a generic element ψABCD ∈ S4
+. As we will verify later in this section,

there is an overall factor of two that must be added in the process of spinor

conversion. This has to do with the fact that there is a factor of
√
2 that appears

when the objects Σi
μν are converted to ΣAB

MM′NN′ . Overall, using (8.26) we get

L(2) =
12

Λ

(
2ψABCDψABCD − 2ψABCD∇AM′aCDB

M′
)
, (8.222)

where we replaced the covariant derivative with the total derivative with respect

to both the Lorentz and affine connections. This is necessary, as in spinor no-

tations, all indices are converted to spinor ones and are on the same footing.

Integrating out the auxiliary field gives an extremely simple spinor form of the

spin two kinetic term in the connection formalism

L(2) = − 6

Λ

(
∇(AM′aBCD)

M′
)2

. (8.223)

This form of the Lagrangian should be compared to that in the case of the chiral

formulation of Yang–Mills theory, see (8.111). There is perfect analogy. The only

difference is that there is no Lie algebra index in the case of gravity, and that

the number of unprimed spinor indices has increased from one in the case of the

Yang–Mills theory to three in the case of gravity, as is appropriate for a spin

two field.

In order to do a check that the used normalisation is correct, we compute the

leading term in the Lagrangian (8.223), the one that contains the � operator.

The coefficient in front can be computed by simply removing the symmetrisation

from the indices ABCD in (8.223). We then use that∇AM′∇AN′
= 1

2
εM′N

′�+· · ·
where dots stand for the curvature terms. The presence of the fact of 1/2 in this

relation shows that the overall coefficient is indeed correct as it reproduces −3/Λ

present in (8.220).
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The spinor form of writing the Lagrangian makes all the gauge symmetries

manifest. Indeed, the Lagrangian is explicitly independent of the S+ ⊗ S− com-

ponent of the connection, as the symmetrisation on the three unprimed spinor

indices of aABCM′ is taken to project the connection onto S3
+ ⊗ S−. Second, the

gauge invariance is also obvious in the spinor formalism due to the identity

2∇(AM′∇B)
M′

φCD =
(
∇AM′∇B

M′ −∇B
M′∇AM′

)
φCD (8.224)

∼ Σ(C|E|
ABM′

M′
φE

D) = 2εA
(CφB

D),

where we replaced the commutator of covariant derivatives with the curvature

and used the fact that on the background the curvature is proportional to the

Σi 2-form. The precise proportionality factor in the relation on the second line

is of no importance for us and so no attempt was made to fix it. Under the

projection on S4
+ the expression (8.224) vanishes, which shows that the action is

also invariant under gauge rotations.

The form (8.223), together with the analogy with the chiral formulation of

Yang–Mills theory suggests a natural way that the gauge symmetry must be fixed.

Indeed, recall that in the case of the Yang–Mills Lagrangian (8.111), the gauge

was fixed simply by removing the symmetrisation and converting the operator

S+ ⊗ S− → S2
+ present in the non gauge-fixed Lagrangian to the Dirac operator

S+⊗S− → S+⊗S+. It is clear that the same gauge-fixing can be carried out in the

case of gravity. Indeed, the operator present in (8.223) is one that carries out the

map S3
+⊗S− → S4

+. This map is degenerate because the dimensions of the spaces

do not match, the dimension of the source is 8 while the dimension of the target

is 5. The mismatch is precisely the number of gauge generators. The gauge-fixing

can then be carried out by changing the operator to one S3
+ ⊗ S− → S3

+ ⊗ S+.

This is a version of the Dirac operator, as is also the case in the chiral Yang–Mills

formalism.

Let us verify that this gives the required gauge-fixing. We start by replacing

the auxiliary field ψABCD ∈ S4
+ in (8.222) with a new field

ψABCD → ΨABCD := ψABCD + εA(BφCD) (8.225)

that takes values in S3
+ ⊗ S−. Here φAB is the auxiliary field required for gauge-

fixing in the first-order formalism. The additional terms generated by this replac-

ing are

Lg.f. =
12

Λ

(
8

3
φABφAB + 2φAB∇M

M′aABM
M′
)
. (8.226)

Integrating out φAB gives

Lg.f. = − 9

2Λ

(
∇M

M′aABM
M′
)2

, (8.227)
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which is the correct gauge-fixing term (8.221). Thus, the gauge-fixed first-order

Lagrangian is

L(2) + Lg.f. =
12

Λ

(
2ΨABCDΨABCD − 2ΨABCD∇AM′aCDB

M′
)
, (8.228)

where now the auxiliary field ΨABCD ∈ S3
+ ⊗ S+ is only symmetric in the last

three indices.

8.6.5 Propagators

We now want to verify that as in all chiral formalisms considered before there is

no propagator of the auxiliary field with itself. We now work on a (constantly)

curved background and so cannot use the momentum space representation in this

computation. Still, the required conclusion can be seen by formal manipulations

in position space. There is no simple way of doing this computation in tensor

notations, so we have to use spinors on this occasion. We start by adding to the

Lagrangian the sources for both fields ΨABCD, aABCC′ .

L =
12

Λ

(
2ΨABCDΨABCD − 2ΨABCD∇AM′aCDB

M′
)

(8.229)

+ JABCDΨABCD + JABCC′
aABCC′ .

Extremising with respect to the auxiliary field ΨABCD gives

ΨABCD =
1

2
∇AM′aBCD

M′ − Λ

32
JABCD. (8.230)

Substituting back into the Lagrangian gives

L = − 6

Λ

(
∇AM′aBCD

M′ − Λ

16
JABCD

)2

+ JABCC′
aABCC′ . (8.231)

Opening the brackets and integrating by parts gives

L =
3

Λ
aABCC′

(−� + Λ)aABCC′ +
3

4
aABCC′∇D

C′
JDABC (8.232)

− 3Λ

128
(JABCD)

2 + JABCC′
aABCC′ .

Extremising with respect to the connection gives

(−� + Λ)aABCC′
= −Λ

6

(
JABCC′

+
3

4
∇D

C′
JDABC

)
. (8.233)

Substituting this into the Lagrangian gives

L = − Λ

12(−� + Λ)

(
JABCC′

+
3

4
∇D

C′
JDABC

)2

− 3Λ

128
(JABCD)2,

where we formally inverted the operator −� + Λ. Expanding the brackets gives

the propagators. There is clearly the propagator for the connection with itself,
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and connection to the auxiliary field. The auxiliary field to itself terms can be

seen to cancel out, and so there is no 〈ΨABCDΨMNRS〉 propagator as could have

been expected by analogy with the chiral Yang–Mills perturbation theory story.

8.6.6 Chiral Connection Perturbation Theory on an Arbitrary

Einstein Background

In the previous sections, we have worked out the connection perturbation theory

on a constant curvature background. Recall now that in (5.187) we have worked

out the pure connection kinetic term on an arbitrary Einstein background. This

is a significantly more complicated second-order action, which on a constant cur-

vature background, by integration by parts manipulations, becomes the simple

(5.183). However, no such simplification is possible on a general background and

(5.187) is the simplest available form of the second-order action.

The transformation properties of the connection on a general background are

as follows. First, we have the usual rule δφa
i = dAφi for the gauge rotations. For

the diffeomorphisms, we again can write δξa
i = iξF

i, where F i is the background

curvature. Using the fact that on an Einstein background the curvature is SD as

a 2-form we have

δξa
i =

(
Ψij +

Λ

3
δij
)
iξΣ

j . (8.234)

Let us now assume that the matrix Ψ+(Λ/3)I is nondegenerate. If this is the case,

we can use the transformations (8.234) to set to zero the S+ ⊗ S− component of

the connection perturbation. The diffeomorphisms now act in a more complicated

fashion, changing both the S3
+⊗S− and S+⊗S− parts of the connection, while in

the constant curvature case there was no action on the S3
+⊗S− part. Nevertheless,

the gauge in which the S+ ⊗ S− part is set to zero is possible.

In this gauge the scalar first-order operator

(dAa) =
1

2
ΣiμνdA

μa
i
ν =

1

2
∇μ(Σ

iμνai
ν) = 0.

Thus, in this gauge the first term in (5.187) is zero. Also in this gauge, the

combination

(dAa)i =
1

2
εijkΣjμνdA

μa
k
ν =

1

2
∇μ(ε

ijkΣjμνak
ν) = −1

2
∇μai

ν

because for connections in S3
+ ⊗ S− we have a = −JΣ(a). This means that if

we gauge-fix Lorentz rotations using the Lorentz gauge ∇μai
μ = 0 the second

term of (5.187) is also zero. This leaves only the the last two terms of (5.187)

nonvanishing. It is also clear that the object (dAa)ij = (1/2)Σ̄j μνdA
μa

i
ν is essen-

tially the operator δ∗(2,2) acting on the connection with the result lying in the

space S2
+ ⊗S2

−. Indeed, we have S2
+ ⊗S2

− = Λ+ ⊗Λ−, and this is precisely where

the object (dAa)ij takes values. Thus, on an arbitrary Einstein background we
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have an efficient representation of the spin two kinetic term, schematically of

the form δ(2,0)M
−1δ∗(2,0), where M = Ψ+(Λ/3)I is the matrix of the background

curvature. There is also the ‘mass term’, which is the last term in (5.187). Note

that this representation of the spin two second-order Lagrangian is possible even

on Λ = 0 backgrounds, as long as Ψij �= 0. This is the case, for example, on the

background of a Schwarzschild black hole. This means that there likely exists

a rather simple chiral pure connection version of the Schwarzschild black hole

perturbation theory, which is still to be worked out.



9

Higher-Dimensional Descriptions

This chapter develops what can be called higher-dimensional descriptions of

4D general relativity (GR). There are two considerations that motivate our

constructions.

Recall from the discussion of the Kaluza–Klein mechanism that one can obtain

4D GR (coupled to other fields) by the dimensional reduction of a theory whose

dynamics is described by the higher-dimensional version of the Einstein–Hilbert

action. This mechanism can be anticipated to be much more general in that

it can be expected that if one starts with a higher-dimensional theory that is

diffeomoprhism-invariant and has local degrees of freedom, then dimensional

reduction to 4D will generically give rise to a theory of massless spin two par-

ticles interacting with other fields. In other words, nothing forces us to fix the

higher-dimensional theory to be one described by the Einstein–Hilbert action.

There are other diffeomoprhism invariant theories, as we shall see in this chap-

ter, and they generically lead to 4D theories possessing the essential features

of GR.

The second consideration relates to conformal invariance. It is well known that

the equations describing 4D massless particles of arbitrary spin are conformally

invariant. For example, Maxwell’s equations are

dF = 0, d∗F = 0,

where ∗F is the Hodge dual of the field strength F . As we have discussed in

the chapter on chiral descriptions of GR, in four dimensions the Hodge star on

2-forms only depends on the conformal class of the metric, and is invariant under

arbitrary conformal rescalings. This means that Maxwell’s equations only depend

on the conformal class of the metric. This implies that symmetries of Maxwell’s

equations are not just the isometries of the background metric, but the larger

set of conformal isometries, i.e., transformations that may, in general, multiply

the metric by an arbitrary conformal factor. Thus, the group of symmetries

of Maxwell’s equations in the Minkowski space is not the Poincare group of
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translations plus Lorentz transformations, but the larger conformal group of

the Minkowski space.

These statements have a spinor translation. In the spinor language the 2-form

F is described by its self-dual (SD) and anti–self-dual (ASD) parts, which are

elements of S2
+ and S2

−, respectively; see the previous chapter for our spinor

conventions. For a real 2-form in the Minkowski space, the ASD part of F is

the complex conjugate of its SD part. Maxwell’s equations are then coded into

a single complex equation

∇B
A′φAB = 0, (9.1)

where ∇AA′ is the covariant derivative operator and φAB ∈ S2
+ is the SD part of

the field strength. The original Maxwell’s equations arise as the real and imagi-

nary part of this complex equation. Moreover, the equation (9.1) is conformally

invariant because it only depends on the decomposition of the space of 2-forms

into SD and ASD parts, which is conformally invariant.

The equation (9.1) has an immediate generalisation to the case of higher spins.

For example, the spin two version of this equation is ∇D
A′ψABCD = 0, where

ψABCD ∈ S4
+ is the rank four spinor encoding the SD part of the Weyl curvature.

This equation is also conformally invariant.

The group of conformal transformations of the Minkowski space acts on its

coordinates x4, x1, x2 and x3 nonlinearly. This is similar to the action of the

conformal group in two dimensions, which is most conveniently described as the

group of fractional linear transformations

z → az + b

cz + d
, (9.2)

where z ∈ C ∼ R
2. The parameters a, b, c, and d are elements of a matrix

g ∈ SL(2,C). The conformal group is the quotient subgroup PSL(2,C) in which

the elements g and −g are identified. Similarly, as we shall see in this Chapter,

the conformal group in four dimensions can be realised as the group of fractional

linear transformations in which all entries of the formula (9.2) are replaced by

2× 2 matrices.

In two dimensions, the action of the conformal group PSL(2,C) = SO(1, 3) can

be linearly realised by considering a larger space, the four-dimensional Minkowski

space. One realises the compactified complex plane as the space of future-directed

null rays through the origin of R
1,3. In other words, the compactified R

2 is

the two-sphere that arises as the projectivised light cone in R
1,3. The action

of the conformal group on R
1,3 is the usual linear action of the Lorentz group

in the Minkowski space. The nonlinearity present in (9.2) then has its origin in

the projectivisation needed to pass from the light cone in R
1,3 where the action

is linear to its projective version.

One can similarly realise the action of the 4D conformal group as the group

of linear transformations of a bigger space. Thus, the Minkowski space can
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be realised as the projectivised light cone in a six-dimensional space, where

the conformal group acts linearly. However, the orthogonal groups in 6D are

isomorphic to various real forms of the complex special linear group SL(4,C)

in four dimensions. This is the twistor isomorphism already discussed in (5.94).

This implies that it is most convenient to think about the projectivised light-cone

in 6D as the space of two-planes in an auxiliary four-dimensional space called

the twistor space. The action of the conformal group is then just the natural

action of a suitable real form of SL(4,C) on C
4.

We thus have two seemingly different considerations, indicating that it may

be beneficial to introduce a higher-dimensional space to describe 4D gravity. In

this chapter we shall see that they are not unrelated.

9.1 Twistor Space

We have motivated the twistor space as the geometric construction that gives the

linear version of the action of the conformal group in the Minkowski space. With

suitable modifications, this construction exists for all three possible signatures

in four dimensions. For this reason, we start our description in the complexified

setting, and then discuss relevant reality conditions that reduce everything to a

space of desired signature.

9.1.1 The Twistor Space of C
4

The complexified version of the twistor space is simplest to describe. The idea

is to realise the four-dimensional complex space M = C
4 as the space of certain

geometric objects in some other space T = C
4. The geometric objects in question

are two-planes through the origin.

It is customary in the twistor literature to use the capital letter Z to refer to

coordinates in the twistor space Z ∈ T = C
4. Every two-plane through the origin

of T can be characterised by two (non-colinear) vectors Z1, Z2 ∈ C
4. Having two

such vectors, one can form the bi-vector Z1 ∧ Z2. The space of bi-vectors is

the six-dimensional space Λ2
C

4. If ei, i = 1, . . . , 4 is a basis in C
4, then the

corresponding basis in the space of bi-vectors is ei ∧ ej , i < j, and a general

bi-vector is of the form

Y =
1

2
yijei ∧ ej , (9.3)

with the summation implied. The coefficients yij = y[ij] form the so-called

Plücker coordinates in the six-dimensional space of bi-vectors. The bi-vectors

corresponding to two-planes are those that satisfy Y ∧ Y = 0, or, in terms of

coordinates

y12y34 + y31y24 + y14y23 = 0. (9.4)
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Bi-vectors satisfying this equation are called simple, or decomposable. This is

an equation for a null surface (quadric)

Q = {Y ∈ Λ2
C

4 : Y ∧ Y = 0} (9.5)

in the space of bi-vectors C6 = Λ2
C

4.

Two simple bi-vectors that differ by an overall scale correspond to the same

two-plane in T. This means that the space of two-planes through the origin

of T can be described as the space of simple bi-vectors Y modulo rescaling,

or equivalently as the projectivised quadric Q, the projective version PQ of

Q. This is precisely analogous to the realisation of compactified R
2 as the

projectivised quadric (light cone) in four-dimensional Minkowksi space. The

space of the planes through the origin of T = C
4 is called the Grassmanian

Gr2(C
4). We thus see that using Plücker coordinates, the Grassmanian Gr2(C

4)

of two-planes though the origin of T is the projective quadric of complex

dimension 4 in C
6, i.e., Gr2(C

4) = PQ. We want to identify ‘our’ space

with it

M = PQ = Gr2(C
4). (9.6)

9.1.2 Action of the Conformal Group

There is a natural action of the complex general linear group GL(4,C) on T = C
4.

If Z = ziei is a vector in T then g : zi → gi
jz

j . This induces the action on the

space of bi-vectors g : Y → Yg. In coordinates, this reads

g : yij → gi
kg

j
ly

kl. (9.7)

Because Yg∧Yg = det(g)Y ∧Y the group GL(4,C) preserves the quadric (9.5). If

we pass to the projective quadric PQ, one finds that it is the group SL(4,C) that

acts on PQ effectively and transitively. This means that PQ is a group coset.

Indeed, the stabiliser of the plane that is the span of, e.g., e3, e4 is the subgroup

of matrices of the form

P =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

∗ ∗ 0 0

∗ ∗ 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎠ ∈ SL(4,C)

⎫⎪⎪⎬⎪⎪⎭ , (9.8)

where a star denotes a nonzero entry. This means that the projective quadric

PQ is the coset

PQ = Gr2(C
4) = SL(4,C)/P. (9.9)

The group SL(4,C) acts on PQ by multiplication from the left. This is the

conformal group of the complexified Minkowski space PQ = C
4.
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9.1.3 Coordinatisation of Gr2(C
4)

We now describe an explicit set of coordinates on the Grassmanian Gr2(C
4)

and verify that the action of the conformal group is a generalised version of

the fractional linear transformations (9.2). We will also understand why it was

natural, see (8.1), to put the coordinates of the Minkowski space together into a

2× 2 matrix.

Consider a two-plane spanned by twistors Z1, Z2 ∈ C
4. We can take arbitrary

linear combinations of Z1 and Z2 without changing the plane. We thus have a

group GL(2,C) at our disposal to put the twistors Z1 and Z2 into some convenient

form. There are 4 + 4 (complex) parameters needed to specify Z1 and Z2, and

using GL(2,C) we can set four of them to desired values. One can then see that

for a generic two-plane we can put Z1 and Z2 into the form

Z1 = αe1 + γe2 + e3, Z2 = βe1 + δe2 + e4. (9.10)

In other words, using GL(2,C) we can set two of the 8 parameters of Z1 and Z2

to zero and two others to the identity. It is convenient to put the two columns

Z1 and Z2 into a 2× 4 matrix

Y =

⎛⎜⎜⎝
α β

γ δ

1 0

0 1

⎞⎟⎟⎠ , (9.11)

which we also denote by Y . The conformal group SL(4,C) acts on Y by matrix

multiplication from the left. To describe this action explicitly we use the block

matrix notation and rewrite

Y =

(
x

I

)
, x :=

(
α β

γ δ

)
, (9.12)

and

g =

(
A B

C D

)
, (9.13)

where A,B,C, and D are 2× 2 complex matrices. We then have

Y → Yg = gY =

(
Ax+B

Cx+D

)
∼
(

xg

I

)
, (9.14)

where we have put the result into the form (9.11) by a GL(2,C) transformation

and

xg = (Ax+B)(Cx+D)−1. (9.15)

This shows that the conformal group SL(4,C) acts on M = C
4 = Gr2(C

4) by

matrix fractional linear transformations.
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It is instructive to describe various subgroups of the conformal group. First,

the subgroup of transformations that preserve the origin x = 0 is B = 0, which

we have already seen in (9.8). Of these, the transformations with C = 0 are

complexified Lorentz rotations combined with dilatations

x → AxD−1. (9.16)

When det(A) = det(D) = 1 this is the already familiar to us action of the

complexified Lorentz group. When A = λI, D = λ−1
I, λ ∈ C this is a dilatation.

More generally, the transformations with C = 0, B �= 0 act as

x → AxD−1 +BD−1, (9.17)

which is a complexified Lorentz rotation (together with dilatation) plus com-

plexified translation. Finally, the transformations with C �= 0 are the special

conformal transformations. All this exactly parallels the usual conformal action

(9.2) on S2 ∼ C. We thus see that the generalisation required to go from 2D to 4D

is to replace complex numbers by 2×2 matrices. In the following sections we will

see that various different signatures that we can have in 4D correspond to various

‘reality’ conditions imposed on the complex matrices x, exactly reproducing the

already familiar story from Section 5.5. In particular, in the case of R
4 the

required 2 × 2 matrices will be those that correspond to quaternions. Thus,

the generalisation that is required to go from R
2 to R

4 is to replace C by H,

and the conformal group SL(2,C) by SL(2,H), as we shall see in Section 9.2.

9.1.4 Twistor as Two Spinors

The subgroup of matrices with B,C = 0 and det(A) = det(D) = 1 is the com-

plexified Lorentz group sitting inside the conformal group SL(4,C). With respect

to this Lorentz group the fundamental representation T of SL(4,C) becomes

reducible and splits into two C
2 representations, the spinor representations of

the Lorentz group. Let us therefore coordinatise T = C
2 ⊕C

2 by two-component

columns π, ω ∈ C
2, so that a twistor in T can be represented as a bi-spinor

Z =

(
π

ω

)
, π =

(
π1

π2

)
, ω =

(
ω1

ω2

)
. (9.18)

The action of the complexified Lorentz group on π, ω is

π → Aπ, ω → Dω. (9.19)

The discussion of spinors in the previous chapter allows us to interpret π and ω

as the two spinors of different types π ≡ πA, ω ≡ ωA′ , with their spinor indices

down.

We then have the spinor index–raising operation, which from a column π

produces a row (επ)T , and similarly from the column ω the row (εω)T . The

action of Lorentz group on the spinors with indices raised is
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(επ)T → (εAπ)T = πTAT εT = πT εTA−1 = (επ)TA−1, (9.20)

where we have used the relation AT ε = εA−1, which is true for any A ∈
SL(2,C). We similarly have (εω)T → (εω)TD−1. This means that the matrix

x transforming as (9.16) should be interpreted as a bi-spinor with its primed

index raised

x ≡ xA
A′
. (9.21)

We will require this interpretation in the following sections.

9.1.5 Twistor Space as the Coset

The action of SL(4,C) on T is the simple action of a matrix group on columns.

Given that to get to M = PQ we pass to the projective version of the space

of bi-vectors, it makes sense to consider also the projective version PT of the

space T. This is the space of lines through the origin of T, which can also

be described as the Grassmanian Gr1(C
4). This space is called the projective

twistor space.

The projective version PT of the space T is also a group coset. Indeed, the

stabiliser of the line in the direction of the vector e4 is the subgroup of matrices

of the form

R =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

⎞⎟⎟⎠ ∈ SL(4,C)

⎫⎪⎪⎬⎪⎪⎭ . (9.22)

This gives

PT = Gr1(C
4) = SL(4,C)/R. (9.23)

9.1.6 Twistor Double Fibration

Both PQ and PT arise as the quotients of the complex special linear group in four

dimensions by the so-called parabolic subgroups P and R. There is a smaller

parabolic subgroup that is the intersection of P and R. This is the subgroup of

matrices of the form

Q =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

∗ ∗ 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

⎞⎟⎟⎠ ∈ SL(4,C)

⎫⎪⎪⎬⎪⎪⎭ . (9.24)

The group coset SL(4,C)/Q has complex dimension five, and is the so-called

flag manifold. A point in this space is a two-dimensional projective plane in T,

together with a line in this plane. Both PQ and PT arise as bases of fibrations
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with SL(4,C)/Q as the total space of the bundle. We have the following double

fibration playing central role in twistor theory:

SL(4,C)/Q

PT = SL(4,C)/R PQ = SL(4,C)/P

η τ (9.25)

9.1.7 Geometric Interpretation

The realisation of complexified Minkowski space as the Grassmanian of two-

planes in C
4 can be phrased in geometric terms as follows. The projective twistor

space is PT = CP 3, the complex projective space of dimension three. The two-

planes through the origin in T are nothing else but the complex lines in the

projective twistor space. Thus, we can say that points in complexified Minkowski

space are lines in the projective twistor space.

What is then the Minkowski space interpretation of points in the projective

twistor space? A point in PT is a line Z in T through the origin. There are

different two-planes in T that share this line. To specify a two-plane sharing a

given line Z we need to prescribe another twistor Z̃. Adding to Z̃ any multiple of

Z does not change the plane, so we only need to specify three complex parameters,

modulo an overall scale. This shows that the space of two-planes sharing a given

line is two-dimensional. Thus, to every point in PT, there corresponds a set of

points in the complexified Minkowski space of complex dimension two. Let us

call these sets of points α-planes. Thus, we can say that a point in the projective

twistor space is an α-plane in the complexified Minkowski space.

Overall, we have the following correspondence

lines in projective twistor space ⇔ points in M, (9.26)

points in projective twistor space ⇔ α−planes in M.

Let us work out a coordinate description of this. A line in PT is a two-plane

in T, and for a two-plane that is the span of vectors (9.10), this is a set of points

ω1Z1 + ω2Z2 =

(
xω

ω

)
, (9.27)

where ω1,2 are complex parameters. We thus see that a line in projective twistor

space that corresponds to a 2 × 2 matrix x is the line where the coordinates π

and ω on T satisfy

π = xω. (9.28)

We can also write this in spinor notations as

πA = xA
A′
ωA′ . (9.29)
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In the twistor literature this is called the incidence relation.

In the opposite direction, let us start from a line in T in the direction of some

twistor Z represented by a pair of spinors (π, ω) ∈ C
2⊕C

2. We are interested in all

two-planes in T that share this line. Let us take some other twistor Z̃ = (π̃, ω̃)

not collinear with Z. We then form the 2 × 4 matrix representing the plane

spanned by Z and Z̃ (
π π̃

ω ω̃

)
. (9.30)

Mixing a and ã with an GL(2,C) transformation (that acts on Y by multiplica-

tion from the right) this can be put into the form (9.11) with

x =

(
π1 π̃1

π2 π̃2

)(
ω1 ω̃1

ω2 ω̃2

)−1

. (9.31)

To see what this means, let us first work out the α-plane that corresponds to the

line in T, which in turn corresponds to the origin of the complexified Minkowski

space. As we can see from (9.29), this is the line π = 0 and ω arbitrary, which

by rescaling can always be fixed to be

ω =

(
ξ

1

)
. (9.32)

Here ξ ∈ C. So we have

x =

(
0 π̃1

0 π̃2

)(
ξ ω̃1

1 ω̃2

)−1

=
1

ω̃1 − ξω̃2

(
π̃1 −π̃1ξ

π̃2 −π̃2ξ

)
(9.33)

=
1

ω̃1 − ξω̃2

(
π̃1

π̃2

)(
1 −ξ

)
.

The two-component row here is just what we defined in (8.6) to be the two-

component spinor ω with its index raised

( 1 −ξ ) = (εω)T (9.34)

This shows that the α-plane through the origin of the Minkowski space is the set

of 2× 2 matrices

xA
A′

=
π̃Aω

A′

[ω̃ω]
, (9.35)

where [ω̃ω] := ω̃A′ωA′
is the spinor pairing. This should be interpreted as the

α-plane corresponding to the twistor (0, ω) with the spinor ω thus being fixed.

The twistor (π̃ and ω̃) is changing and gives a two-parameter surface in the

complexified Minkowski space.
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For a general twistor (π and ω), we can always represent the matrix (9.31) as

x =

(
π1 π1

π2 π2

)(
ω1 ω̃1

ω2 ω̃2

)−1

+

(
0 π̃1 − π1

0 π̃2 − π2

)(
ω1 ω̃1

ω2 ω̃2

)−1

.

In spinor notations this can be written as

xA
A′

= x0A
A′

+
(π̃A − πA)ω

A′

[ω̃ω]
, x0A

A′
:=

πA(ω
A′ − ω̃A′

)

[ω̃ω]
. (9.36)

This represents a point x0A
A′

on the α-plane in question, plus a two-parameter

set of vectors giving other points on the same plane, parametrised by the spinor

π̃A − πA.

9.1.8 Conformal Metric on M

Generic two-planes in T only intersect at the origin. However, there are two-

planes that intersect along a line in T. As we have just described, these corre-

spond to points of the Minkowski space that lie on the same α-plane, the α-plane

that corresponds to the line in T in question. This means that we can introduce

a natural conformal metric on the complexified Minkowski space. We define this

metric so that points in the Minkowski space that lie on the same α-plane are

null-separated.

Such a metric can be easily described using the Plücker coordinates on Gr2(C
4).

Indeed, we have described Gr2(C
4) as the projective quadric PQ in C

6. The

tangent space to a point Y ∈ Q consists of bi-vectors dY satisfying dY ∧ Y = 0.

There is then a natural conformal metric given by

ds2 ∼ dY ∧ dY. (9.37)

This gives a top form on C
4, which we divide by an arbitrary volume form to ob-

tain a number. Alternatively, using the index notation we have ds2 = εijkldy
ijdykl,

where εijkl is some completely antisymmetric tensor on C
4.

The metric (9.37) has the desired properties. Indeed, let us consider a point

in the Minkowski space that is represented by two-plane in T with Plücker

coordinate Y ∈ Λ2
C

4. Let us then consider a nearby two-plane Y + dY , with

dY small. In order for this bi-vector to represent a two-plane, we must have

dY ∧Y = 0. There are then two possibilities. If dY is decomposable dY ∧dY = 0,

then dY ∧ Y implies that bi-vectors dY and Y share a vector. This means that

two-planes represented by Y and Y + dY share a line and the two Minkowski

points Y and Y + dY are on the same α-plane. We wanted α-planes to be null,

and dY ∧ dY = 0 guarantees that. On the other hand, dY does not have to

be decomposable. In this case, the two-planes Y and Y + dY do not share

a line and the corresponding Minkowski space points do not lie on the same

α-plane.
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It is instructive to work out the metric (9.37) explicitly, using the parametri-

sation (9.12). We have

dY = (dαe1 + dγe2) ∧ e4 + e3 ∧ (dβe1 + dγe2), (9.38)

where dα, dβ, dγ, and dδ are components of the matrix dx. Therefore,

dY ∧ dY ∼ dαdδ − dβdγ = det(dx). (9.39)

This is the familiar metric from Section 5.5 on R
4 of various signatures expressed

as the determinant of a 2 × 2 matrix x. This immediately confirms that the α-

planes of the origin (9.35), and general (9.36), are totally null. Indeed, the matrix

xA
A′

in (9.35) has zero determinant, and so all points it represents are null-

separated from the origin. In (9.36), the second term is a matrix with zero

determinant, so all points on this α-plane are null-separated from x0.

In words, we see from (9.36) that a general α-plane in M is parametrised by a

twistor (π, ω) and points on it can be represented as the sum of two null vectors,

one given by the product of spinor πA times an arbitrary primed spinor, and the

other as the product of an arbitrary unprimed spinor times ωA′
.

9.1.9 Split Signature Version

We now work out the different possible real versions of the previous description.

The split signature case is easiest. Indeed, we know from Section 5.5 that the

matrix x must be real. The most natural way to realise this setup is to have all

spaces under consideration to be real. Thus, in this case, T = R
4 and the space

of bi-vectors is Λ2
R

4. The projective quadric PQ is real four-dimensional. The

conformal metric (9.37) is real of a split signature. The conformal group is

SL(4,R).

Let us note that in the present real setting, the projective twistor space

PT = RP 3 is real three-dimensional. This, in particular, shows that the projec-

tive twistor space cannot be viewed as the total space of some fibre bundle over

M , because PT is of lower dimension than M . We make this comment because in

Section 9.2 we will see that in the case of Euclidean signature, it will be possible

to interpret the projective twistor space as the total space of a bundle over M .

The only natural fibre bundle over M that we have in the split signature setting

is the five-dimensional bundle with fibres being all α-planes that pass through a

given point of M . Such a fibre can be parametrised by a primed spinor ω up to

scale, and thus by a copy of RP 1.

9.1.10 Minkowski Space Version

We now work out the reality conditions to obtain the real Minkowski space

version of the twistor space. We know from Section 5.5 that the relevant reality

condition in this case and that the matrix x is anti-Hermitian. There is an
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involution on the space of two-planes in T that gives this, but this involution

does not come from an involution on T. This makes the Minkowski space version

of twistor space somewhat harder to describe as compared to the other two

signatures.

For an anti-Hermitian matrix x, the matrix Y (9.11) is of the form

Y
R1,3 =

⎛⎜⎜⎝
iα iβ

iβ∗ iδ

1 0

0 1

⎞⎟⎟⎠ , α, δ ∈ R, β ∈ C. (9.40)

The corresponding bi-vector is

Y = (iαe1 + iβ∗e2 + e3) ∧ (iβe1 + iδe2 + e4), (9.41)

and the corresponding Plücker coordinates are

y12 = |β|2 − αδ, y31 = iβ, y14 = iα, (9.42)

y23 = −iδ, y24 = iβ∗, y34 = 1.

We thus see that

y12, y34 ∈ R, y14, y23 ∈ iR, y24 = −y∗
31. (9.43)

Our task now is to find a subgroup of SL(4,C) that preserves these conditions.

Let us consider a Lie algebra matrix X ∈ sl(4,C). Its action on a bi-vector

ei ∧ ej is

ei ∧ ej → Xi
kek ∧ ej + ei ∧Xj

kek. (9.44)

This corresponds to the following 6 × 6 matrix acting on columns of Plücker

coordinates

ρ(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

z1
1 + z2

2 0 z2
4 −z1

3 −z2
3 −z1

4

0 z3
3 + z4

4 z3
1 −z4

2 z4
1 z3

2

z4
2 z1

3 z1
1 + z4

4 0 −z4
3 z1

2

−z3
1 −z2

4 0 z2
2 + z3

3 −z2
1 z3

4

−z3
2 z1

4 −z3
4 −z1

2 z3
3 + z1

1 0

−z4
1 z2

3 z2
1 z4

3 0 z2
2 + z4

4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Here ρ(X) is the representation of the sl(4,C) matrix X on bi-vectors, and we

have ordered the basis as e12, e34, e14, e23, e31, and e24. For example, the first row

of this matrix follows from

e1 ∧ e2 → (z1
1e1 + z1

3e3 + z1
4e4) ∧ e2 + e1 ∧ (z2

2z2 + z2
3e3 + z2

4e4)

= (z1
1 + z2

2)e12 + z2
4e14 − z1

3e23 − z2
3e31 − z1

4e24.
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The other rows are obtained similarly. On the other hand, we can rewrite the

reality conditions in (9.43) by introducing a matrix

θ =

⎛⎝ I 0 0

0 −I 0

0 0 −σ1

⎞⎠ , σ1 =

(
0 1

1 0

)
, (9.45)

so that

y∗ = θy. (9.46)

The matrices ρ(X) that commute with this involution are those that satisfy

(ρ(X)y)∗ = θρ(X)y, which gives

θρ(X) = ρ(X)∗θ. (9.47)

An explicit calculation shows that this is equivalent to the following conditions

z1
1 + z4

4 ∈ R, z2
2 + z3

3 ∈ R,

z1
1 + z2

2 ∈ R, z3
3 + z4

4 ∈ R,

(z1
1 + z3

3)∗ = z2
2 + z4

4,

as well as

z1
3, z2

4, z3
1, z4

2 ∈ iR,

(z1
2)∗ = −z4

3, (z2
1)∗ = −z3

4, (z2
3)∗ = −z1

4, (z3
2)∗ = −z4

1.

It is not hard to see that this implies that the matrix X ∈ sl(4,C) is of the form

X =

(
A B

C −A†

)
, (9.48)

where B and C are arbitrary anti-Hermitian 2 × 2 matrices and A is arbitrary,

but satisfying Tr(A) ∈ R in order to have Tr(X) = 0.

Let us now understand what kind of condition on X can produce matrices

of this type. It is not hard to see that (9.48) are precisely those matrices that

satisfy

FX +X†F = 0, (9.49)

where

F =

(
0 I

I 0

)
, (9.50)

with I being the 2×2 identity matrix. On the other hand, the matrices satisfying

(9.49) are precisely those that leave invariant the following quadratic form on T

|Z|2Mink := Z†FZ. (9.51)
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Indeed, the action of Lie algebra of SL(4,C) on this inner product is

Z†FZ → Z†FXZ + (XZ)†FZ = Z†(FX +X†F )Z, (9.52)

which equals zero in view of (9.49). Thus, the real quadratic form (9.51) remains

invariant under transformations of the form (9.48), and in turn, transformations

of this form are precisely those that leave invariant the quadratic form (9.51).

The eigenvalues of F are ±1, which shows that the signature of the Hermitian

quadratic form (9.51) is (2, 2). Thus, the conformal group of Minkowski space

is SU(2, 2), the group of transformations of C4 preserving the Hermitian form

(9.51), which is of signature (2, 2).

It is also interesting to give the coordinate description of the twistor space in

this case. If we consider the action of X of the form (9.48) on columns (9.18) we

see that π → Aπ, ω → −A†ω, where A ∈ sl(2,C). According to our discussion

in (8.4), (8.5) the two-component column π should be given the interpretation

of an unprimed spinor with lower index, while ω should be given interpretation

of a primed spinor with an upper index; see (8.16). Thus, in the Minkowski case,

the spinor interpretation of a twistor four-component column is

Z =

(
πA

ωA′

)
. (9.53)

The quadratic form (9.51) is then

|Z|2Mink = π∗
A′ωA′

+ πAω
∗A, (9.54)

where we have used the fact that the complex conjugate of a spinor is the spinor

of opposite chirality. This in particular shows that the quadratic form (9.51)

is zero on two-planes in T that represent points in M . Indeed, on such planes

πA = xAA′ωA′
, and, therefore, π∗

A′ = −xAA′ω∗A, where we have used the anti-

Hermiticity of xAA′ . This shows that |a|2Mink vanishes on the two-planes that

corresponds to points in the real Minkowski space. This can be used as an alter-

native characterisation of such two-planes. The ‘real’ points in the Grassmanian

of two-planes in T are those that are null with respect to (9.51), with the meaning

of ‘real’ being that they correspond to points in the real Minkowski space.

We also note that, like in the split signature case, the (projective) twistor

space of the Minkowski space M is not a fibre bundle over M . Points of the

projective twistor space–lines in T–corresponding to a given point in M–2-plane

in T–are those contained in the given two-plane. Because in the Minkowski case

the real two-planes in question are totally null with respect to the Hermitian

inner product on T; these are the null lines in T. However, a given null line in

T is contained in more than one null two-plane. This means that there is no

well-defined projection from PT to M and PT is not a fibre bundle with M as

the base.

There is, however, a natural bundle over M even in this setting, which is the

Minkowski signature version of the fibration τ in (9.25). Indeed, we can consider
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the bundle whose fibres are α-planes though a given point in M . The fibre can

be coordinatised by primed spinors up to scale, and is thus a copy of CP 1 in

this case. This is the Minkowski signature version of the coset SL(4,C)/Q from

(9.25), which in this signature has real dimension six.

9.2 Euclidean Twistors

We now develop the Euclidean version of the twistor story. We dedicate a separate

section to this material, because there are many aspects that are not shared by

the split and Minkowski cases. The main distinguishing feature of the Euclidean

case is that the twistor space turns out to have the fibre bundle structure–it is the

total space of the primed spinor bundle over M , as we shall soon see. Another

specialty of the Euclidean setting is that many constructions are obtained by

directly generalising those that are already familiar from the case of S2 ∼ CP 1

by replacing complex numbers C with quaternions H.

9.2.1 Euclidean Signature Conformal Group

We know from Section 5.5 that that matrix x parametrising two-planes in T

must be of the form

x =

(
α β

−β∗ α∗

)
. (9.55)

Equivalently, we can say that the matrix x must take values in the space of

quaternions x ∈ H. Then the conformal group is just the group SL(2,H) of 2× 2

matrices with quaternionic entries.

To define the group SL(2,H), let us consider a 2× 2 quaternionic matrix

g =

(
A B

C D

)
, A,B,C,D ∈ H. (9.56)

We can then viewA,B,C, andD either as unitary 2×2 matrices or as quaternions.

In the first interpretation we get a 4 × 4 matrix g, whose determinant can be

expressed as

det(g) = det(A)det(D − CA−1B), (9.57)

where on the right-hand side we interpret A,B,C, and D as 2× 2 matrices. On

the other hand, the determinant of a unitary 2 × 2 matrix is the norm squared

of the corresponding quaternion. This means that we can define the determinant

of a 2× 2 quaternionic matrix as

det(g) = |A|2|D − CA−1B|2, (9.58)

where now A,B,C, and D are viewed as quaternions. This makes it clear that

for quaternionic 2 × 2 matrices det(g) ≥ 0. Having defined the determinant we
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can define the group SL(2,H) as the group of unimodular 2 × 2 matrices with

quaternionic entries. Such a group acts on H by fractional linear transformations,

and this is the realisation of the conformal group of R4. As already mentioned,

this is the direct generalisation of the situation in 2D, with complex numbers

replaced by quaternions, and complex unimodular 2 × 2 matrices replaced by

quaternionic such matrices.

The group SL(2,H) can be interpreted as the subgroup of SL(4,C) that com-

mutes with some involution of the twistor space T = C
4. To see this interpreta-

tion, let us think about twistors as a pair of spinors Z = (π and ω). We then

have the following involution on Euclidean signature spinors

π̂ := επ∗, ω̂ := εω∗, (9.59)

where ε is the antisymmetric matrix (8.7) and star denotes the complex

conjugation. We note that because ε2 = −I the involution squares to minus

the identity.

ˆˆ= −id. (9.60)

Then, using the fact that for unitary matrices Aε = εA∗ we can see that unitary

transformations commute with the involutions defined

Aπ̂ = (Aω)∧, Dω̂ = (Dω)∧, A,D ∈ SU(2). (9.61)

We now define an involution on T

Ẑ =

(
π

ω

)∧

:=

(
π̂

ω̂

)
. (9.62)

It is easy to check that SL(2,H) transformations commute with the involution

defined

g

(
ξ

η

)∧

=

(
g

(
ξ

η

))∧

, g ∈ SL(2,H). (9.63)

Thus, we see that it is the -̂involution (9.62) on T that gives us the desired

Euclidean signature real form of the conformal group.

Because the involution we have defined squares to minus the identity there are

no ‘real’ vectors in T. However, there are real bi-vectors. Indeed, any bi-vector

of the type

Y = Ẑ ∧ Z (9.64)

is real. Indeed, we have

Ŷ = −Z ∧ Ẑ = Ẑ ∧ Z = Y. (9.65)

Thus, while there are no ‘real’ lines in T, there are real two-planes and thus real

points in M . In particular, we note that the matrix Y (9.11) that is constructed

from a unitary matrix x is
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⎛⎜⎜⎝
α β

−β∗ α∗

1 0

0 1

⎞⎟⎟⎠ =

(
π −π̂

ω −ω̂

)
, (9.66)

where

π =

(
α

−β∗

)
, ω =

(
1

0

)
, (9.67)

and is thus of the type (9.64) and corresponds to a real two-plane.

The form (9.64) of real two-planes implies that every twistor Z ∈ T corre-

sponds to a unique real point Ẑ∧Z in the space of two-planes. This means that in

the case of Euclidean signature, we have a well-defined projection PT → M = R
4.

In other words, the twistor space T is the total space of a bundle over the space

of real two-planes, which coincides with ‘our’ space M . Similarly, the projective

twistor space PT is the total space of a bundle over M . Each fibre of PT → M is

a copy of S2 ∼ C, and consists of all lines in T that form the given real two-plane.

Explicitly, as we saw in (9.29), this is the set of twistors (π and ω) satisfying

πA = xA
A′
ωA′ , which is parametrised by the primed spinor ω up to scale, i.e., by

a copy of C. Thus, we can say that the Euclidean signature twistor space is the

total space of the primed spinor bundle over M = R
4. This fibred structure of

the twistor space is not a general feature, and holds only in Euclidean signature,

as we have seen from our previous discussion of the other two signatures.

9.2.2 Euclidean Spinors

Before we can continue with further developments related to Euclidean signature

twistors, we need to establish some facts about Euclidean spinors. This is done

in complete analogy with the treatment in Section 8.1, but with the matrix x

changed accordingly. We have already encountered the matrix xE in (5.76). We

repeat it here for convenience

xE =

(
−x4 + ix3 ix1 + x2

ix1 − x2 −x4 − ix3

)
. (9.68)

Under Lorentz transformations, this matrix transforms as x → gLxg
†
R, gL, gR ∈

SU(2). Given that in general the spinors with their index raised transform by

multiplying them with g−1 from the right, this transformation property of x

implies that it should be interpreted as xA
A′
, i.e., a bi-spinor with the primed

index raised.

We can write the Euclidean norm squared as

|x|2 := det(x) = x2
1 + x2

2 + x2
3 + x2

4. (9.69)
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We can alternatively write the metric on R
4 as

ds2 =
1

2
Tr(dxdx†), (9.70)

where x† = (xT )∗ is the Hermitian conjugation. For future use, we note the

useful property

xx† = I|x|2. (9.71)

For any unitary matrix we have εxεT = x∗. This implies that the matrix xA
A′

with its index A raised and A′ lowered, and then the two interchanged, is the

matrix x†. In other words, we can write (9.70) as

ds2 =
1

2
dxA

A′
dxA′A. (9.72)

This means that if we introduce the soldering form via

xA
A′

=
√
2eμA

A′
xμ (9.73)

then the metric of R4 takes the form

δμν = eμA
A′
eνA′A. (9.74)

The components of the soldering form are given by

e4 =
1√
2

(
−1 0

0 −1

)
, e3 =

1√
2

(
i 0

0 −i

)
, (9.75)

e1 =
1√
2

(
0 i

i 0

)
, e2 =

1√
2

(
0 1

−1 0

)
.

We now compute the components of the ASD 2-forms given by

Σ̄A′B′
μν = eAA′

[μ eν]A
B′
. (9.76)

We have

Σ̄41 =
1

2
((εe4)

T e1 − (εe1)
T e4) =

1

2

(
i 0

0 −i

)
, (9.77)

Σ̄42 =
1

2
((εe4)

T e2 − (εe2)
T e4) =

1

2

(
−1 0

0 −1

)
,

Σ̄43 =
1

2
((εe4)

T e3 − (εe3)
T e4) =

1

2

(
0 −i

−i 0

)
.

The other components follow from anti–self-duality (ASD), e.g., Σ̄23 = −Σ̄41,

which can of course be also checked explicitly. Finally, it can be checked that all

Σ̄’s are real with respect to the involution (9.59)

ε(Σ̄μν)
∗εT = Σ̄μν . (9.78)
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All matrices Σ̄A′B′
are also symmetric (Σ̄μν)

T = Σ̄μν . We will need these objects

in the following subsection when we describe almost complex structures on R
4.

9.2.3 Euclidean Twistors and Almost Complex Structures

As we have just seen, the Euclidean (projective) twistor space is naturally the

total space of a two-sphere bundle over M . This allows us to interpret the

projective twistor space PT as the bundle of almost complex structures over

M . This interpretation was first given in Atiyah et al. (1978), and we give some

details here.

Recall that an almost complex structure on M is an endomorphism J :

TM → TM of the tangent space that squares to minus the identity J2 = −I.

Now, the twistor space of M = R
4 is the total space of the primed spinor bundle

over M . Given a primed spinor ωA′
, we can construct an endomorphism of the

tangent space from the ASD 2-forms Σ̄A′B′
contracted with ωA′

as well as ω̂A′
.

Thus, we first raise one of the indices of Σ̄A′B′
μν to convert it into an S2

−-valued

endomorphism Σ̄A′B′
μ

ν . We then contract with ω̂A′ωB′

(Jω)μ
ν :=

2

i

Σ̄A′B′
μ

νω̂A′ωB′

[ω̂ω]
, (9.79)

where [ω̂ω] := ω̂A′ωA′
, and ω̂A′ is the Euclidean conjugation (9.59) that maps

primed spinors to the same type spinors. We have [ω̂ω] := (εω)T εω∗ = ωTω∗, and

so this object is real. The factor of two in front is needed for the correct normal-

isation, and the factor of imaginary unit is needed to make the endomorphism

real. Indeed, we can rewrite (9.79) as

Jω =
2

i[ω̂ω]
(εω∗)T Σ̄ω, (9.80)

where here the object Σ̄ is with its first spacetime index down and second up to

create an endomorphism of TM . We then have

(Jω)
∗ = Jω, (9.81)

where we have used that [ω̂ω] is real and(
(εω∗)T Σ̄ω

)∗
= −ωT ε(Σ̄)∗εT εω∗ = −ωT Σ̄εω∗ = −(εω∗)T Σ̄ω,

and we used (9.78) as well as the symmetry of Σ̄. We also note that (9.79) only

depends on the spinor ω up to scale, and so it is parametrised by a copy of CP 1.

We now use (8.33), which is also valid in Euclidean signature, to obtain

JωJω = − I

[ω̂ω]2
(εA

′C′
εD

′B′
+ εA

′D′
εC

′B′
)ω̂A′ωB′ ω̂C′ωD′ = −I. (9.82)

Thus, Jω is indeed an almost complex structure on R
4. Unlike the case of

two dimensions, in 4D there is no longer a unique almost complex structure.
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The bundle of such almost complex structures over R4 is the (projective) primed

spinor bundle.

We can explicitly describe the eigenspaces of Jω as follows. First, we need the

following identity

Σ̄A′B′
μ
νeCC′

ν = −eC(A′
μ εB

′)C′
, (9.83)

which can be checked by an explicit computation using the definition of Σ̄A′B′
μν

as well as eμAA′eμBB′
= −εA

BεA′B
′
, the latter following from (9.74). We then act

with Jω on a 1-form of the type eAA′
ν πAωA′ , where πA is an arbitrary spinor. We

have

(Jω)μ
νeCC′

ν πCωC′ =
i

[ω̂ω]
(eCA′

μ εB
′C′

+ eCB′
μ εA

′C′
)ω̂A′ωB′πCωC′ (9.84)

= ieCC′
μ πCωC′ .

Thus, the 1-forms of the type eAA′
ν πAωA′ are the (1, 0) forms. It can similarly be

checked that eAA′
ν πAω̂A′ are the (0, 1) forms.

Given a real vector field (or a 1-form) on M , one often needs to decompose it

into its (1, 0) and (0, 1) parts. The following identity is the most useful way of

obtaining such a decomposition

εA′B
′
=

ω̂A′ωB′ − ωA′ ω̂B′

[ω̂ω]
. (9.85)

This identity can be verified by checking that εA′B
′
as given in (9.85) returns

ωA′ , ω̂A′ when the contractions εA′B
′
ωB′ and εA′B

′
ω̂B′ are computed. Since arbi-

trary spinor ηA′ can be decomposed into ωA′ , ω̂A′ , this means that εA′B
′
ηB′ = ηA′ ,

which is the defining property of the εA′B
′
. We can then insert the identity (9.85)

into the object eAA′
μ to obtain

eAA′
μ =

1

[ω̂ω]

(
eAB′
μ ω̂B′ωA′ − eAB′

μ ωB′ ω̂A′
)
, (9.86)

which is the desired decomposition of the 1-forms eAA′
μ into (0, 1) and (1, 0) parts.

Then, using ξμ = eAA′
μ ξAA′ any 1-form can be decomposed.

9.2.4 Fubini-Study Metric

It turns out that there is a natural metric as well as a compatible almost complex

structure in the Euclidean twistor space. As we shall soon see, in particular,

the existence of the latter is related to the fact that the twistor space has the

interpretation of the bundle of almost complex structures over R
4. The reason

why a natural metric exists on the twistor space is more subtle. We will give a

7D explanation in the following sections.
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To see how a metric and an almost complex structure arise on the twistor space

of the complexified Minkowski space, we note that this twistor space is T = C
4,

and its projective version is CP 3. This space is a complex manifold, i.e., has

an integrable almost complex structure J . It also has a compatible Hermitian

metric, i.e., a metric that has the property g(J ·, J ·) = g(·, ·). The metric in

question is the so-called Fubini–Study metric of the complex projective space.

Let us describe this metric in coordinates.

The space T = C
4 comes with its natural Hermitian metric

ds2
C4

=
4∑

α=1

|dZα|2. (9.87)

The projective twistor space PT = CP 3 can be coordinatised by projective

coordinates [Z1, Z1, Z3, Z4] ∼ [z1, z2, z3, 1]. In other words, let us introduce the

following set of coordinates on C
4

Zi = zit, i = 1, 2, 3, Z4 = t (9.88)

It is then an exercise to check that the flat Hermitian metric (9.87) on C
4 takes

the following form in the previous coordinates

ds2
C4

= (1 +
∑
i

|zi|2)|t|2
[∣∣∣∣dtt +

∑
i z̄idzi

1 +
∑

i |zi|2

∣∣∣∣2 + ds2FS

]
, (9.89)

where

ds2FS :=

∑
i |dzi|2(1 +

∑
j |zj |2)−

∑
i,j z̄izjdzidz̄j

(1 +
∑

i
|zi|2)2

(9.90)

is the Fubini–Study metric on CP 3.

The calculation we just performed allows us to view the sphere S7 ⊂ R
8 = C

4

given by the equation
∑

α |Zα|2 = 1 as a S1 bundle over CP 3. Indeed, we can

pull back the metric (9.87) to the sphere S7 by choosing

t =
eiψ√

1 +
∑

i |zi|2
, (9.91)

where ψ is a coordinate on S1. In this coordinates the metric (9.89) gives the

following form of the metric on S7

ds2
S7 = (dψ + a)2 + ds2FS, (9.92)

where

a :=
i

2

∑
i(zidz̄i − z̄idzi)

1 +
∑

i
|zi|2

(9.93)

is a U(1) connection on CP 3. This explicitly realises S7 as the total space of an S1

bundle over CP 3. Note that the described construction is the direct generalisation
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of the construction of the Hopf fibration in Section 1.13. Indeed, if there is just

one complex coordinate z1 = z, the described computation is identical to the one

performed in Section 1.13, and the Fubini–Study metric coincides with (quarter

of) the metric on the unit S2 = CP 1.

9.2.5 CP 3 as an S2 Bundle over S4

We now perform a similar computation, but this time parametrise C
4 using the

previously developed twistor interpretation. Thus, we view C
4 = T as a C

2

bundle over S4, viewing the latter as another copy of C2. Indeed, recall that the

(projective) twistor space is the bundle of α-planes through real points in M ,

and all twistors that lie in a given real two-plane in T are of the form π = xω.

This gives a parametrisation of T = C
4 by two complex coordinates α and β in

x and two complex coordinates components of the column ω.

Thus, we now have Z = (π, ω). In terms of π and ω the Hermitian metric

(9.87) reads

ds2
C4

= dπ†dπ + dω†dω, (9.94)

where we view π and ω as two-component columns. Parametrising π as xω we

get

ds2
C4

= (ω†dx† + dω†x†)(dxω + xdω) + dω†dω. (9.95)

Using the fact that x†x = |x|2I we can rewrite the previous equation as

ds2
C4

= (1 + |x|2)
[(

dω† + ω† dx†x

1 + |x|2
)(

dω +
x†dx

1 + |x|2ω
)
+ ω† dx†dx

(1 + |x|2)2ω
]
.

(9.96)

We now parametrise ω ∈ C
2 projectively

ω = tη, η :=

(
z

1

)
. (9.97)

We also restrict to the sphere S7 ⊂ C
4 given by the equation π†π + ω†ω = 1.

This gives |t|2(1 + |z|2)(1 + |x|2) = 1, which allows to parametrise

t =
eiψ√

(1 + |z|2)(1 + |x|2)
. (9.98)

A straightforward computation then gives

dω +
x†dx

1 + |x|2ω = t

((
idψ − d|z|2

2(1 + |z|2)

)
η +Dη

)
, (9.99)

where

Dη := (d+A)η, A :=
x†dx− dx†x

2(1 + |x|2) . (9.100)
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The 2 × 2 matrix A is anti-Hermitian, and will later be identified with a chiral

half of the spin connection on S4. This gives

1

|t|2(1 + |z|2)

(
dω† + ω† dx†x

1 + |x|2
)(

dω +
x†dx

1 + |x|2ω
)

(9.101)

= dψ2 + idψ
(Dη)†η − η†Dη

η†η
+

(Dη)†Dη

η†η
− ((Dη)†η + η†Dη)2

4(1 + |z|2)2 ,

where we have used

(Dη)†η + η†Dη = d|z|2. (9.102)

The terms on the right-hand side of (9.101) can be rewritten as(
dψ +

i

2

(Dη)†η − η†Dη

η†η

)2

+
(Dη)†((η†η)I− ηη†)Dη

(η†η)2
. (9.103)

Overall, using the fact that dx†dx = |dx|2I we can write the metric on S7 in

these coordinates in the form (9.92) with

a =
i

2

(Dη)†η − η†Dη

η†η
, (9.104)

and

ds2
CP3 =

(Dη)†((η†η)I− ηη†)Dη

(η†η)2
+

|dx|2
(1 + |x|2)2 . (9.105)

The last term here is (quarter of) the metric on S4 of unit radius. This represents

CP 3 as the total space of an S2 ∼ CP 1 bundle over S4.

We can further rewrite the fibre part of the metric in (9.105) by introducing

the conjugate spinor η̂ we have

η̂ = εη∗ =

(
1

−z̄

)
. (9.106)

We then have

(η†η)I− ηη† = η̂η̂†. (9.107)

The spinor contraction appearing in the metric is then

η̂†Dη = (εη∗)†Dη = (εη)TDη = ηA′
(Dη)A′ , (9.108)

where we rewrote the result in spinor notations. Also, using η̂A′
η̂A′ = 0 we can

rewrite

(Dη)†η̂ = η̂A′
(Dη̂)A′ . (9.109)

We also have [η̂η] = η†η. Thus, we can rewrite the metric (9.105) more compactly

as

ds2
CP3 =

τ τ̄

[η̂η]2
+

|dx|2
(1 + |x|2)2 , (9.110)
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where

τ = ηA′
(Dη)A′ , τ̄ = η̂A′

(Dη̂)A′ (9.111)

are complex-valued 1-forms on the total space of the CP 3 → S4 bundle, which

are complex conjugate to each other. We note that we could have replaced

ηA′ → ωA′ = tηA′ in (9.110). Indeed, we have

ωA′
(Dω)A′ = tηA′

(d(tηA′) +AA′B
′
tηB′) = t2ηA′

(Dη)A′ , (9.112)

where we have used that the spinor contraction of ηA′
with itself is zero, and

so there is no dt term. Then the numerator of the first term in (9.110) is

homogeneous of degree two in t, and the denominator is similarly homogeneous.

Thus, the first term in the metric can be written in terms of the spinor ωA′ ∈ C
2

but descends to a well-defined quadratic form on the projective space CP 1.

9.2.6 Almost Complex Structures on the Twistor Space

We can now connect the calculation of the previous subsection culminating in

(9.110) with the description of the Euclidean twistor space as the total space of

the bundle of almost complex structures over M .

First, the complex projective space CP 3 is a complex manifold in that there

is an integrable almost complex structure that is also metric compatible. This

almost complex structure is easiest to describe in terms of the (1, 0) and (0, 1)

decomposition that it induces. These can be read off the metric, which must be

of the form that is a sum of (1, 0) forms times their complex conjugates. The

(1, 0) form in the fibre direction is readily read off from (9.110), and is given by

τ = ηA′
DηA′ . As we already discussed, this is not really a 1-form on CP 3, but

rather 1-form transforming homogeneously under rescalings used to pass from

C
4 to CP 3. In other words, it is a section of an appropriate line bundle over CP 3.

It is essentially the 1-form dz on CP 1 corrected by basic terms coming from the

connection A.

The basic (1, 0) forms can be identified from the second term of the metric

(9.110). Indeed, one can write |dx|2 as a multiple of Tr(dxdx†). We can then use

dx† = εxT εT , and insert the decomposition of identity (9.85). This shows that

the numerator in the second term in (9.110) is a multiple of Tr(εdxω(dxω̂)T ).

However, the object dxω is a multiple of 1-form eμA
A′
ωA′ , which we identified in

(9.84) as (1, 0) forms with respect to the almost complex structure Jω given by

(9.79). Thus, the basic (1, 0) 1-forms as read off from the metric (9.110) coincide

with those determined by Jω.

This can be reinterpreted as follows. The Euclidean (projective) twistor space

is the total space of the CP 1 bundle over R4, which we interpreted as the bundle

of almost complex structures. Given that every point in the fibre CP 1 defines an

almost complex structure on R
4, and that the fibre itself is a complex manifold,
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there is a natural almost complex structure that can be given to the twistor

space as the whole. Indeed, at every point of PT, we define the action of J as

the corresponding Jω on basic vector fields, and the unique J on CP 1 on vertical

vector fields. As we just saw, this is precisely the construction that produces the

natural integrable almost complex structure on CP 3 viewed as the total space

of the primed spinor bundle over S4.

Any almost complex structure on the twistor space can be alternatively

described by the corresponding (3, 0) form. The (1, 0) forms wedged against this

must then produce zero, which serves to define the space of (1, 0) forms. Let us

see what the (3, 0) form is for the already described complex structure on CP 3.

It is given by the wedge product of three different (1, 0) forms, i.e., by

Ω(3,0) ∼ τdxAA′
ωA′dxA

B′
ωB′ . (9.113)

Given that dxAA′
is a multiple of the soldering 1-form eAA′

, the object

dxAA′
dxA

B′
is just a multiple of the ASD 2-form Σ̄A′B′

. Overall, we see that the

(3, 0) form our our complex structure on CP 3 is given by

Ω(3,0) = ωA′
DωA′Σ̄B′C′

ωB′ωC′ , (9.114)

where we rewrote everything in terms of ω ∈ C
2. This shows that Ω(3,0) is of

homogeneity degree four in ω, and similarly to τ only exists as a section of a line

bundle over CP 3.

It turns out that there exists another natural almost complex structure on the

twistor space. Indeed, there is a choice that is made in the previous construction.

Thus, to construct the integrable almost complex structure on the projective

twistor space, we combined the unique almost complex structure in the fibre

CP 1 with the almost complex structure Jω on the base. However, there are two

possible relative signs for this combination. The other possible choice is to say

that the (1, 0) forms in the fibres are put together with the (0, 1) basic forms

to form the space of (1, 0) forms. This corresponds to reversing the sign of Jω

when putting it together with the almost complex structure in the fibre. The

almost complex structure on the projective twistor space obtained this way is

not integrable. However, it is interesting, due to reasons that will become clear

in the following sections.

The (3, 0) form defining this almost complex structure is given by

Ω̃(3,0) =
1

[ω̂ω]2
ω̂A′

Dω̂A′Σ̄B′C′
ωB′ωC′ . (9.115)

The corresponding (3, 0) form exists as an actual 3-form on CP 3. Indeed, both

numerator and denominator here are of homogeneity 2 in both ω and ω̂, which

produces an actual 3-form on CP 3. In Section 9.6 we shall see that both the

integrable (9.114) and non-integrable (9.115) almost complex structures arise

naturally from a geometric construction based on 3-form in seven dimensions.
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9.3 Quaternionic Hopf Fibration

The unprojectivised twistor space is C4 = R
8. There is naturally a seven-sphere

S7 ⊂ R
8 obtained by setting the radial coordinate in R

8 to unity. We have already

seen that we can view the seven-sphere as the total space of the circle bundle

over the projective twistor space CP 3. In other words, because we can identify

C
4 = R

8, there is a natural circle action on S7 ⊂ R
8, the seven-sphere is fibred

by copies of S1, and the space of such fibres is the complex projective space CP 3.

In this section, we will see that there is another natural way to think about the

twistor space C4. This arises because we can instead identify R
8 = H

2, viewing a

point in R
8 as a pair of quaternions. We then have a natural action of the group

of unimodular quaternions on S7. Unimodular quaternions form the group SU(2).

The orbits of this action are thus copies of three-sphere S3, and so S7 gets fibred

by copies of S3. The space of such orbits turns out to be a copy of S4. This

is the quaternionic Hopf fibration. It is the precise analog of the Hopf fibration

S3 → S2 as was described in Section 1.13, with C replaced by H everywhere.

It is of interest to us because it gives yet another viewpoint on the Euclidean

twistor space, in particular the twistor space of the four-dimensional sphere S4.

9.3.1 The Hopf Projection

We now take R
8 = R

4 ⊕ R
4, and identify both copies of R4 with 2× 2 matrices

of the type (9.68). We consider the following codimension one surface

|q|2 + |p|2 = 1. (9.116)

Here q,p are matrices of the type (9.68), and the norm is as given in (9.69). This

surface is clearly the round seven-sphere S7.

We now consider a map from this S7 to the sphere S4 ⊂ R
5. This projection,

explicitly, is

(q,p) → (2qp†, |p|2 − |q|2) ∈ R
5. (9.117)

However, in view of (9.116) it is clear that the right-hand side in (9.117) actually

lies on the surface S4 ⊂ R
5. It is also clear that the fibres of this projection are

copies of SU(2) = S3. Indeed, points

(q,p) ∼ (qg,pg), g ∈ SU(2) (9.118)

are mapped to the same point on the base S4.

The following parametrisation of the projection gives a convenient set of

coordinates on the total space of this fibration

q =
xh√

1 + |x|2
, p =

h√
1 + |x|2

. (9.119)

Here h ∈ SU(2).
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9.3.2 Compatibility with the Twistor Description

An important point is that a choice has been made in writing formulas (9.117)

and (9.119). Indeed, it is clear that we can achieve the parametrisation (9.119)

by using the action (9.118) of SU(2) on R
8 = H

2. The action that is used here

is multiplication from the right. We could have used the multiplication from the

left instead, with appropriate changes in (9.117). However, it is the action (9.118)

that is compatible with viewing the twistor space R
8 as the total space of the

primed spinor bundle over S4.

Let us see this. The Euclidean Lorentz group sits in the conformal group

SL(4,H) given by matrices of the form (9.56) as the subgroup B,C = 0 and A,D

being unit quaternions. This subgroup acts on two-columns with quaternionic

entries q,p as q → Aq,p → Dp. This allows us to parametrise the 2×2 unitary

matrices corresponding to q,p as

q = (π,−π̂), p = (ω,−ω̂), (9.120)

where π and ω ∈ C
2 are two-dimensional complex columns. Then the action of

the Euclidean Lorentz group on π and ω is just that on unprimed π and primed

ω spinors.

Note now that q and p in (9.119) are related as q = xp. In terms of the spinors

π and ω the relation q = xp becomes π = xω, as well as π̂ = xω̂. But the second

relation follows from the first using the unitarity of x. On the other hand, the

relation π = xω is already familiar, describing the Euclidean twistor space as the

total space of the primed spinor bundle over M . So, the parametrisation of S7 by

x, h used in deriving the Hopf fibration is compatible with the description of the

twistor space R8 as the total space of an R
4 = C

2 bundle over S4. This would not

be so had we used the left multiplication by unit quaternions on (9.118) to get

the projection to S4. Indeed, in that case, we would have q = px, which does not

lead to the right relation between π and ω. This discussion is important because

it shows that the quaternionic Hopf fibration gives an alternative description of

the same twistor space as we considered before.

To make everything completely explicit, we take, as in (9.97), ω = tη with

t =
reiψ√

(1 + |x|2)(1 + |z|2)
. (9.121)

Then p = (ω,−ω̂) is of the form as in (9.218) with

h =
1√

1 + |z|2

(
z −1

1 z∗

)(
eiψ 0

0 e−iψ

)
, (9.122)

which is unitary unimodular as required. This makes the relation between

parametrisations of S7 by x, h as in Hopf fibration and x, z, ψ as in its description

as S7 → CP 3 explicit.

Note that in (9.122) we see the right action of U(1) ⊂ SU(2) on quaternions.

We note that this right action on quaternions p,q parametrised by spinors π
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and ω as in (9.120) is compatible with the action of U(1) on π and ω via π and

ω → eiψπ, eiψω. Indeed, we have(
π −π̂

)( eiψ 0

0 e−iψ

)
=
(
eiψπ −(eiψπ)∧

)
. (9.123)

This discussion shows that the two projections we have constructed, namely

S7 → CP 3 and S7 → S4, are compatible in the sense that the action of U(1) that

fibres S7 by copies of S1 with the space of such fibres being CP 3 is the same as

the action of U(1) ⊂ SU(2), with SU(2) acting on quaternions q and p via right

multiplication.

In other words, this means that the two described ways of realising S7 as the

total space of a circle bundle over the projective twistor space of S4 coincide.

Indeed, on one hand, we have the already described construction of the total

space of an S1 bundle over CP 3, with the later viewed as an S2 bundle over S4.

On the other hand, we have the Hopf fibration, which is an S3 bundle over S4.

But S3 can be viewed as an S1 bundle over S2, using the usual Hopf fibration.

Combining the two, we have another description of S7 as a circle bundle over an

S2 bundle over S4. This gives two descriptions of the projective twistor space of

S4. We have realised them so that they coincide.

However, we also note that the right action of SU(2) on H
2 is not compatible

with the natural complex structure on this space that comes from parametrising

the quaternions as in (9.120) and then interpreting π and ω as holomorphic

coordinates. Indeed, we see from (9.120) that the right action of SU(2) mixes

π with π̂ and ω with ω̂. Thus, it does not commute with the natural complex

structure on the space of pairs (π, ω) ∈ C
4. This remark is going to be important

when we consider G2 structures on S7 in Section 9.6, because it explains why

non-integrable almost complex structure on the twistor space is related to the

quaternionic Hopf fibration.

9.3.3 Metric on the Total Space

We now compute the metric on S7 in terms of the coordinates x and h of the Hopf

fibration. The computation is straightforward, even though somewhat lengthy.

We have

dp = −1

2

1

(1 + |x|2)3/2 d|x|
2h+

1

(1 + |x|2)1/2 dh,

dq = −1

2

1

(1 + |x|2)3/2 d|x|
2xh+

1

(1 + |x|2)1/2 (dxh+ xdh).

Let us also write the corresponding Hermitian conjugates

dp† = −1

2

1

(1 + |x|2)3/2 d|x|
2h−1 − 1

(1 + |x|2)1/2h
−1dhh−1,

dq† = −1

2

1

(1 + |x|2)3/2 d|x|
2h−1x† +

1

(1 + |x|2)1/2 (h
−1dx† − h−1dhh−1x†).
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Here we have used the fact that h† = h−1 and that dh−1 = −h−1dhh−1. We now

compute the pieces of the flat metric on R
8

1

2
Tr(dpdp†) =

1

4

1

(1 + |x|2)3 d|x|
2d|x|2 − 1

2

1

(1 + |x|2)Tr(h
−1dhh−1dh),

1

2
Tr(dqdq†) =

1

4

|x|2
(1 + |x|2)3 d|x|

2d|x|2 − 1

2

1

(1 + |x|2)2 d|x|
2d|x|2

+
1

2

1

(1+ |x|2)Tr(dxdx
†)+

1

2

1

(1+ |x|2)Tr(xdhh
−1dx†− dxdhg−1x†)

− 1

2

|x|2
(1 + |x|2)Tr(h

−1dhh−1dh),

where we have taken into account some obvious cancellations. We now add these

two quantities to obtain the metric on S7, taking into account some obvious

simplifications

ds2
S7 = −1

4

1

(1 + |x|2)2 d|x|
2d|x|2 + 1

2

1

(1 + |x|2)Tr(dxdx
†) (9.124)

+
1

2

1

(1 + |x|2)Tr(xdhh
−1dx† − dxdhg−1x†)− 1

2
Tr(h−1dhh−1dh).

We now complete the square in the terms on the second line

1

2

1

(1 + |x|2)Tr(xdhh
−1dx† − dxdhg−1x†)− 1

2
Tr(h−1dhh−1dh)

= −1

2
Tr

(
h−1dh− 1

2

1

(1 + |x|2)h
−1(dx†x− x†dx)h

)2

+
1

8

1

(1 + |x|2)2Tr(dx
†x− x†dx)2.

The first term here is the desired metric together with the connection in the fibre.

The last term here is to be combined with the terms in the first line of (9.124).

To do this, it needs some rewriting. We have

Tr(dx†x− x†dx)2 = −4Tr
(
dx†xx†dx

)
+ d|x|2Tr(dx†x+ x†dx) (9.125)

= −4|x|2Tr(dx†dx) + 2d|x|2d|x|2.

We have used dx†x = −x†dx+ Id|x|2 to get the first relation. It is clear that the

last term here cancels with the first term in (9.124). The other terms combine

into the final result

ds2
S7 =

1

2

1

(1 + |x|2)2Tr(dxdx
†) (9.126)

− 1

2
Tr

(
h−1dh+

1

2

1

(1 + |x|2)h
−1(x†dx− dx†x)h

)2

.

The first term here is (a quarter of) the usual metric on S4 in conformally flat

parametrisation. We can rewrite the second term more compactly by using the

previously encountered connection (9.100), which is an anti-Hermitian matrix
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A† = −A. We also introduce the Maurer–Cartan 1-form m and the connection

1-form W in the total space of the bundle

m := h−1dh, W := m+ h−1Ah. (9.127)

We can then write the metric on the total space of the S7 → S4 Hopf fibration

as

ds2
S7 =

1

4

(
ds2

S4 +
∑
i

(W i)2

)
, (9.128)

where

ds2
S4 =

4
∑

μ(dx
μ)2

(1 + |x|2)2 (9.129)

is the usual metric on the four-sphere. The objectsW = W iτ i with τ i = (−i/2)σi

are the generators of the Lie algebra of SU(2). The coordinates xμ, μ = 1, . . . , 4

are those on S4 in conformally flat parametrisation.

9.3.4 Checking the Connection

We have seen the connection (9.100) appearing in two different constructions.

One was the description of CP 3 as a two-sphere bundle over S4, the other

description of S7 as a three-sphere bundle over S4. These constructions are of

course related, because S3 is itself an S1 bundle over S2, and so our description

of CP 3 → S4 is in fact inside the description of the Hopf fibration S7 → S4.

Let us now interpret the connection (9.100) as the chiral half of the spin

connection for the metric on S4. This connection acts naturally on the primed

spinors, and so it is the ASD part of the spin connection. To see this, we introduce

the matrix of ASD 2-forms

Σ :=
dx† ∧ dx

(1 + |x|2)2 , (9.130)

where we indicated the wedge product explicitly. To see that this is the cor-

rect normalisation we note that the soldering form for the metric (9.129) is

eI = 2dxI/(1 + |x|2). On the other hand, computing (9.130) with x given by

(9.68) one gets Σ = τ iΣi with, e.g., Σ1 = 4(dx4dx3 − dx1dx2)/(1+ |x|2)2. This is
the correctly normalised chiral 2-form for the metric (9.129). However, the sign

here is what in the previous chapters we called SD. At the same time, it is the

ASD 2-form in the orientation (4123), and so we will continue to refer to it as

ASD for the remainder of this chapter. We will not be writing a bar over Σ from

now on to de-clatter notations.

The exterior derivative of (9.130) is given by

dΣ = − 2

(1 + |x|2)3 d|x|
2dx†dx. (9.131)
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We then compute

AΣ− ΣA =
1

2

1

(1 + |x|2)3
(
(x†dx− dx†x)dx†dx− dx†dx(x†dx− dx†x)

)
.

We need to do some massaging of the right-hand side using the identity (9.71).

First, using this identity we can rewrite the expression in brackets here as

(Id|x|2 − 2dx†x)dx†dx− dx†dx(2x†dx− Id|x|2). (9.132)

We now group the second and third terms here, and again use the same identity.

This gives for (9.132)

4d|x|2dx†dx, (9.133)

and comparing with (9.131) we have

dΣ+A ∧ Σ− Σ ∧A = 0. (9.134)

9.3.5 Checking the Einstein Condition

It is clear that we are in the Plebanski formalism setting for the four-sphere, and

thus we also expect to be able to recover the Plebanski version of the Einstein

equations, which is the statement that the curvature of the ASD connection A

is ASD as a 2-form. This is an instructive calculation because we are now using

2× 2 matrix notations doing curvature calculations in 4D. This is similar to the

index-free formalism we have developed for 3D in Chapter 4.

Let us compute the curvature, which is given by F = dA+AA. The first term

gives

dA = −1

2

1

(1 + |x|2)2 d|x|
2(x†dx− dx†x) +

1

(1 + |x|2)dx
†dx (9.135)

= − 1

(1 + |x|2)d|x|
2A+ (1 + |x|2)Σ.

TheAA computation is again made simple by using the identity (9.71) to rewrite

the connection in a convenient form. We have

AA =
1

4

1

(1 + |x|2)2 (Id|x|
2 − 2dx†x)(2x†dx− Id|x|2) (9.136)

=
1

4

1

(1 + |x|2)2
(
2d|x|2(x†dx− dx†x)− 4|x|2dx†dx

)
=

1

(1 + |x|2)d|x|
2A− |x|2Σ. (9.137)

This immediately gives the expected Einstein equation

F = Σ. (9.138)
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9.4 Twistor Description of Gravitational Instantons

Previously we have described the twistor space of flat R
4 and conformally flat

S4 manifolds. We have seen that the arising in this case twistor space is CP 3,

a complex manifold. The purpose of this section is to explain that this can be

generalised to the more nontrivial setting of half-flat geometries in which one of

the two chiral halves of the Weyl curvature vanishes.

9.4.1 The Curved Twistor Space

We will only present the version of the story that works for Euclidean signature

metrics. As we have seen, the twistor space in this case is the total space of the

projective spinor bundle over M . Such a bundle can also be constructed for a

general Euclidean metric on M . Let ΣA′B′
be the associated ASD 2-forms, and

AA′B′
the the ASD chiral half of the spin connection. We can then construct

the 3-form (9.114). This is a 3-form on the total space of the primed spinor

bundle over M , and descends to a 3-form of homogeneity degree four in ωA′
on

the projectivised spinor bundle.

9.4.2 Twistor Space of an Instanton Is a Complex Manifold

We can declare the 3-form (9.114) to be (3, 0), which then defines an almost

complex structure on the twistor space. The corresponding (1, 0) forms are those

whose wedge product with Ω(3,0) is zero. These are the projective versions of the

1-forms

τ = ωA′
DωA′ , eAA′

ωA′ , (9.139)

where the last expression gives two different 1-forms for A = 1, 2.

A natural question is then whether the almost complex structure so defined is

integrable. As the criterion of integrability we use the following statement: An

almost complex structure is integrable if and only if the restriction of the exterior

derivative on (1, 0) forms to the space of (0, 2) forms vanishes. This statement is

one of the alternative ways to state theNewlander–Niernberg theorem. This

then implies that d = ∂+ ∂̄. Thus, we need to compute the exterior derivative of

the previous (1, 0) forms and project into the subspace of (0, 2) forms. We have

d(ωA′
DωA′) = DωA′

DωA′ + ωA′
DDωA′ . (9.140)

The first term here is a (1, 1) form, which can be seen by inserting in it the

decomposition (9.85) of the identity. To compute the second term, we use

DDωA′ = FA′B
′
ωB′ , where FA′B′ is the spinorial version of the curvature of

the ASD connection. On an Einstein background we have

FA′B′
=

(
ΨA′B′C′D′ − Λ

3
εA

′(C′
εD

′)B′
)
ΣC′D′ , (9.141)
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which is the Plebanski second equation and ΨA′B′C′D′
is the spinor version of

the matrix Ψij . Now, the (0, 2) part of the basic 2-form ΣA′B′
is

ΣA′B′
∣∣∣
(0,2)

=
ωA′

ωB′

[ω̂ω]2
ΣC′D′

ω̂C′ ω̂D′ . (9.142)

This means that the (0, 2) part of dτ is a multiple of

ΨA′B′C′D′
ωA′ωB′ωC′ωD′ , (9.143)

which vanishes for all ωA′
if and only if ΨA′B′C′D′

= 0, which is the half-flatness

condition.

For the basic (1, 0) forms we can use the covariant derivative and then the

torsion-free condition DeAA′
= 0. This gives

D(eAA′
ωA′) = −eAA′

DωA′ . (9.144)

Inserting here the decomposition of the identity (9.85) we see that there is no

(0, 2) component. Thus, the almost complex structure defined by Ω(3,0) given by

(9.114) is integrable if and only if the ASD chiral half of the Weyl curvature van-

ishes ΨA′B′C′D′
= 0. This means that the twistor space of a gravitational instan-

ton is a complex manifold. This fact has been used to construct new gravitational

instantons using deformation theory of complex manifolds; see Ward (1980).

9.4.3 Generalising Twistors

We have already understood that the projective twistor space of S4 is CP 3, which

is a complex manifold, and the complex structure on CP 3 can be understood

from the fact that CP 3 is naturally an S2 fibre bundle over S4, with fibres

parametrising different almost complex structures on S4. But we have also seen

that CP 3 is itself naturally a base of the fibre bundle S7 → CP 3 with circles

as fibres. The two constructions intersect via the quaternionic Hopf fibration

S7 → S4, which can be thought of as either S3 bundle over S4 or as a circle

bundle over the projective twistor space CP 3 of S4.

Thus, the twistor space CP 3 of S4 can be viewed as sitting inside S7 ⊂ C
4.

This suggest that we can contemplate generalising the twistor theory. The usual

twistor space of a Euclidean space M is the total space of the (projective) primed

spinor bundle over M . It is interesting to consider a larger space, which is the

total space of an S1 bundle over the usual twistor space.

The usual twistor theory puts emphasis on the complex analytic aspects of the

twistor construction, and also allows to use powerful theory of complex manifolds

and their deformations to produce new examples of ASD Einstein manifolds.

These aspects of twistor theory are well-described in, e.g., Introduction to Twistor

Theory in, e.g., Haggett and Tod (1994). See also Atiyah et al. (2017) for a more

recent account.

When we instead consider the total space of an S1 bundle over the usual twistor

space, the complex analytic aspects of the usual twistor story are no longer at the
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forefront. In particular, the seven-dimensional total space of the bundle cannot

be a complex manifold. However, since the seven-dimensional space in question is

fibred by S1 over the usual twistor space, all of the twistor constructions are still

relevant. Enlarging the space one just gets access to richer geometry. In particular,

as we shall see in the following sections, there is a beautiful geometry of 3-forms

in 7D, and bringing into play the total space of an S1 bundle over the twistor

space gives access to this geometry. This geometry in particular explains why

the projective twistor space can naturally be endowed with a metric, something

that remains a puzzle if one stays in the context of usual 6D twistor theory.

The explanation of this is that there is a natural 3-form on the S1 bundle over

the twistor space of a Euclidean 4-manifold M , and generic 3-forms in seven

dimensions define a metric.

Thus, going to 7D allows for geometric constructions not possible in the setting

of the usual 6D twistor theory, and also emphasises different geometric aspects

in the sense that the theory of complex manifolds no longer plays the dominat-

ing role. In particular, we shall see the first order Cauchy–Riemann equations

guaranteeing integrability of the almost complex structure on the twistor space

are replaced by certain other natural first-order differential equations in seven

dimensions.

9.5 Geometry of 3-Forms in Seven Dimensions

The purpose of this section is to describe the geometry of 3-forms in 7D. The

ultimate goal is to relate this geometry to the previous twistor constructions.

9.5.1 Stable 3-Forms

The beautiful geometry reviewed in this section has been known for more than

a century; see Agricola (2008) for the history. In particular the characterisation

of G2 via 3-forms is a result due to Engel from 1900.

Let us start with some linear algebra in R
7. A 3-form C ∈ Λ3

R
7 is called

stable if it lies in a open orbit under the action of GL(7); see Hitchin (2000).

This notion gives a generalisation of nondegeneracy of forms and implies that

any nearby form can be reached by a GL(7) transformation. Thus, stable 3-forms

can also be called generic or nondegenerate.

For real 3-forms, there are exactly two distinct open orbits, characterised by

the sign of a certain invariant, see Section 9.5.4, each of which is related to a real

form of GC

2 . The open orbit corresponding to the compact real form G2 is what

plays role in relation to the quaternionic Hopf fibration S7 → S4. For every such

C, there exists a set e1, . . . , e7 of 1-forms in which C is expanded in the following

canonical form:

C = e567 + e5Σ1 + e6Σ2 + e7Σ3, (9.145)

where Σi, i = 1, 2, 3 are already familiar to us as Euclidean chiral 2-forms (5.31).
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The fact that is of central importance about stable 3-forms in seven dimensions

is that a stabiliser of such a form in GL(7) is isomorphic to the exceptional Lie

group G2. This group has dimension 14, and this number arises as the dimension

49 of GL(7) minus the dimension 35 of Λ3
R

7. Thus, the space of stable 3-forms

is the homogeneous group manifold GL(7)/G2.

We can then generalise the notion of stable forms to 3-forms on a seven-

dimensional differentiable manifold M . These are forms that are stable at every

point.

9.5.2 The Metric

The most fundamental fact about stable 3-forms in 7D is that they define a

metric. The latter is obtained as follows

gC(ξ, η)vC =
1

3
iξC ∧ iηC ∧ C, (9.146)

where we explicitly indicated the wedge product. The right-hand side here is the

top form, which is moreover ξ, η symmetric. This gives a symmetric pairing of two

vector fields up to scaling. The scale factor is then completely determined by the

requirement that vC on the left-hand side is the volume form of gC . Moreover,

the sign of the volume form vC is uniquely fixed by the requirement that the

metric defined by (9.146) has specific (say, all plus) signature. In this way, a

3-form C defines both the metric gC and an orientation.

It is then a simple computation that, for a 3-form presented in the canonical

form (9.145), the arising metric is

gC =
7∑

I=1

eIeI , (9.147)

and the orientation is given by e1...7. Given that G2 is the stabiliser of (9.145),

it also stabilises the metric (9.147). This gives an embedding G2 ⊂ O(7).

The form (9.145) corresponds to the compact real form G2 of GC

2 . The orbit

corresponding to the non-compact real form G∗
2 ⊂ O(3, 4) is the orbit of a 3-form

similar to (9.145) but with the signs in all three terms containing Σi changed.

The formula (9.146) still defines a metric and an orientation at this time of

signature (3, 4).

9.5.3 Relation to Urbantke Formula

The formula (9.146) is remarkable in particular because it provides an explana-

tion for why the Urbantke (5.47) formula in 4D exists. To see this, consider the

bundle of ASD 2-forms over a 4D Riemannian manifold. A general ASD 2-form

can be parametrised as Σiyi, and so yi are the coordinates along the fibre. Here

Σi are the canonical ASD 2-forms (5.31). We then form the following 3-form in

the total space of this bundle

CΣ = dy1dy2dy3 + dy1Σ1 + dy2Σ2 + dy3Σ3. (9.148)
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It is then easy to check that the metric (9.146) reduces on the fibres to a multiple

of the metric δij . On the other hand, on the base, the formula (9.146) reduces

to the Urbantke formula (5.47).

The described 7D explanation of the 4D Urbantke formula makes one suspect

that there should be a relation between the 4D Plebanski formalism with

its SO(3) bundle of ASD 2-forms and the geometry of 3-forms in seven

dimensions. The rest of this chapter is devoted to exhibiting aspects of this

relation.

9.5.4 The Volume Functional

Given a stable 3-form, we construct the metric and the corresponding volume

form as described in (9.146). The volume form can be computed in two differ-

ent ways. First, one can compute the metric gC times its volume form from

(9.145). One can then take the determinant of the right-hand side, which re-

sults in a quantity of homogeneity degree 21 in C. The left-hand side gives

(det(g))9/2. This means that the volume form
√

det(g) is a quantity of homo-

geneity degree 7/3 in C. On the other hand, there is also an explicit formula for

this quantity

vC ∼
(
ε̃a1...a7 ε̃b1...b7 ε̃c1...c7Ca1b1c1

. . . Ca7b7c7

)1/3
. (9.149)

The number appearing as the proportionality coefficient in this formula is unim-

portant to us. The quantity ε̃a1...a7 is the completely antisymmetric densitiesed

tensor available on any manifold without any additional structure such as a

metric. The invariant in brackets in the formula (9.149), of degree seven in C,

has been known since 1900, see Agricola (2008), and gives the stability criterion.

Thus, the 3-form C is stable if and only if this invariant is different from zero.

The sign of this invariant determines whether the form belongs to the compact

or non-compact real orbit.

One can integrate the volume form constructed from C over M to get the

volume functional

S[C] =

∫
M

vC . (9.150)

As is explained in particular in Hitchin (2000), the first variation of the functional

(9.150) in C has a simple form

δS[C] ∼
∫
M

∗C ∧ δC. (9.151)

The precise numerical coefficient in this equation is of no importance for us. The

4-form ∗C can be shown to be given by the Hodge dual of C computed with

respect to the metric defined by C. This means that for the 3-form (9.145) the

4-form ∗C is given by

∗C = e1234 + e67Σ1 + e75Σ2 + e56Σ3. (9.152)
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9.5.5 Complex Parametrisation

Let us give another form of the canonical expression for the 3-form (9.145). We

first rewrite it as

C = −e7(e12 + e34 + e65) + e5(e41 − e23) + e6(e42 − e31). (9.153)

We then notice that if we introduce complex-valued 1-forms

θ1 := e1 + ie2, θ2 = e3 + ie4, θ3 = e6 + ie5 (9.154)

then

e12 + e34 + e65 := ω =
1

2i
(θ̄1θ1 + θ̄2θ2 + θ̄3θ3) (9.155)

and

Re(θ1θ2θ3) = e5(e41 − e23) + e6(e42 − e31), (9.156)

Im(θ1θ2θ3) = e5(e42 − e31)− e6(e41 − e23).

This means that we can rewrite

C = −e7ω +Re(θ1θ2θ3), (9.157)

∗C =
1

2
ωω + e7Im(θ1θ2θ3).

While the form (9.145) makes manifest the SO(4) subgroup of G2 preserving C,

the form (9.157) makes manifest the SU(3) subgroup. Both forms will be useful

in the calculations that follow.

9.5.6 Holonomy Reduction

The fundamental result Gray (1969) states: Let C ∈ Λ3M be a 3-form on a

7-manifold. Then C is parallel with respect to the Levi–Civita connection of gC
if and only if dC = 0 and d∗C = 0. In other words, the condition of C being

parallel with respect to the metric it defines is equivalent to the conditions of

C being closed and co-closed, where co-closedness is again with respect to the

metric it defines.

The next basic fact is that if a Riemannian manifold (M, g) has a parallel

3-form C, then the holonomy group of M is contained in G2. In particular, this

implies that the (M, g) is Ricci-flat. This is very interesting, because this means

that we can code Einstein’s equations in 7D as differential equations on an object

of a completely different nature from the metric, i.e., on a 3-form. The 3-form C

that is closed and co-closed then defines a metric algebraically, and this metric is

guaranteed to be Ricci-flat. Actually, having a C that is parallel constraints the

Riemann curvature stronger than just requiring the Ricci part to be zero, but in

particular Ricci flatness is guaranteed.

Combining the result from Gray (1969) with the formula (9.151) for the first

variation of the functional S[C], we see that manifolds with holonomy contained
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in G2 are critical points of S[C], provided one varies C in a fixed cohomology

class δC = dB, B ∈ Λ2M . This variational characterisation is explored in depth

in Hitchin (2000).

9.5.7 Nearly Parallel G2 Structures

Let us now instead assume that we have a 7-manifold M with a stable 3-form of

positive type and satisfying

dC = λ∗C, (9.158)

where ∗C is the 4-form that is the Hodge dual of C computed using the metric

defined by C itself, and λ is a constant. In this case, the 3-form C is not closed,

but ∗C is. Thus, the 3-form is not parallel in the sense of previous subsection. It

is instead called nearly parallel, because the departure of C from being closed

is as small as possible.

Nearly parallel G2 structures have in particular been studied in Friedrich et al.

(1997). The canonical example of such a structure is one on the seven-sphere;

see the next section. What is important for us is that the metric defined by

a nearly parallel G2 structure is automatically Einstein with a nonzero (and

positive) scalar curvature. Thus, the equation (9.158) can be viewed as encoding

the Einstein equations in seven dimensions (but similarly to the case of parallel

structures, giving in fact stronger equations). It is also important for us that

these equations can be obtained from a variational principle. Thus, we write the

following action Krasnov (2017a)

S[C] =
1

2

∫
CdC + 6λvC . (9.159)

Its critical points are precisely the 3-forms satisfying (9.158). This action can be

viewed as a 7D analog of the 3D Chern–Simons theory. The difference is that

it is not possible to write an interacting Abelian Chern–Simons theory in 3D,

while this is possible in 7D due to the availability of the degree seven invariant

whose cube root can be integrated over the manifold.

We will return to the equations (9.158) in the next section. We view (9.158) as

the natural set of first-order partial differential equations that can be written for

a 3-form in 7D. In Section 9.7 we will see that these equations can be thought of as

generalising the integrability of certain almost complex structure in 6D. So, they

are the main player in our envisaged 6D → 7D generalisation of twistor theory.

9.5.8 3-Forms That Correspond to the Same Metric

The counting of components shows that 3-forms contain more information than

just that of a metric. Indeed, to specify a metric in seven dimensions, we need

7× 8/2 = 28 numbers, while the dimension of the space of 3-forms is 35. Thus,

there are seven more components in a 3-form. It can be shown that these
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correspond to components of a unit spinor Ψ : |Ψ|2 = 1 so that the 3-form

in question can be represented as Cabc = ΨTγaγbγcΨ. Here γa, a = 1, . . . , 7 are

the 8 × 8 γ-matrices for the metric gC , the spinor Ψ is a real spinor of Spin(7),

and |Ψ|2 is a symmetric bilinear form on spinors available for Spin(7).

There is an alternative, very useful, characterisation of 3-forms that correspond

to the same metric. This uses a vector field rather than a unit spinor. The

expression we are after can be obtained by considering a rotation that mixes

directions 4, 3, i.e., let(
e3

e4

)
→

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)(
e3

e4

)
. (9.160)

This rotation does not change the metric, but mixes the 2-forms Σ1 and Σ2(
Σ1

Σ2

)
→

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)(
Σ1

Σ2

)
. (9.161)

So, under this rotation the 3-form C goes to

C → e567 + cos(2θ)(e5Σ1 + e6Σ2) + sin(2θ)(e5Σ2 − e6Σ1) + e7Σ3

= e567 + (1− 2 sin2(θ))(e5Σ1 + e6Σ2) + 2 sin(θ) cos(θ)(e5Σ2 − e6Σ1) + e7Σ3

= (1− 2 sin2(θ))C + 2 sin2(θ)(e567 + e7Σ3) + 2 sin(θ) cos(θ)(e5Σ2 − e6Σ1),

where we wrote the result in a suggestive form. We now notice that the 3-forms

in the last two terms can be obtained as

e567 + e7Σ3 = e7 ∧ i7C, e5Σ2 − e6Σ1 = i7
∗C, (9.162)

where ∗C is given by (9.152). Thus, if we take

α := sin(θ)e7 (9.163)

we see that the 3-form

C̃ = (1− 2|α|2)C + 2α ∧ iαC + 2
√
1− |α|2 iα∗C (9.164)

corresponds to the same metric. Here iα is the operation of insertion of the vector

field dual (with respect to the metric defined by C) to the 1-form α. Even though

the fact that C̃ in (9.164) and C define the same metric was shown only for the

1-forms of the special type (9.163), this fact holds in general, because any 1-form

can be aligned with e7 by rotation.

In the similar way, the transformation rule of the dual 4-form is shown to be

∗C̃ = ∗C − 2α ∧ iα
∗C − 2

√
1− |α|2 α ∧ C. (9.165)

The presence of the square root in these formulas signifies the fact that in the

transformation by a 1-form, the 1-form α cannot be taken with norm larger than

one, because this takes one out of the space of real 3-forms.
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9.6 G2-Structures on S7

The purpose of this section is to study G2 structures on the seven-sphere

S7. There is a unique G2 structure on S7 that comes from the embedding

S7 ⊂ R
8. There is then a unique so-called Spin(7) structure on R

8, which

projecting against the radial vector field gives the desired G2 structure on S7.

On the other hand, S7 can be realised as the total space of the circle bundle over

CP 3. We shall see that there are two natural ways that the circle bundle over

CP 3 can be mapped into the round S7 with its canonical G2 structure. This

leads to two different G2 structures on the circle bundle over CP 3, or we can say,

two different G2 structures on S7. One of these will be related to the integrable

almost complex structure (ACS) on CP 3, while the other one will give rise to

the non-integrable ACS.

9.6.1 Spin(7) Structure on R
8

There is a 4-form in R
8 whose stabiliser in GL(8) is the group Spin(7). The group

Spin(7) acts naturally on R
8 as its spinor representation. The 4-form in question

is given by

Θ =

3∑
i=1

ΣiΣ̃i − 1

6
ΣiΣi − 1

6
Σ̃iΣ̃i (9.166)

=

3∑
i=1

ΣiΣ̃i + dx4dx1dx2dx3 + dx8dx5dx6dx7,

where

Σ1 = dx4dx1 − dx2dx3, Σ2 = dx4dx2 − dx3dx1, Σ3 = dx4dx3 − dx1dx2,

Σ̃1 = dx8dx5 − dx6dx7, Σ̃2 = dx8dx6 − dx7dx5, Σ̃3 = dx8dx7 − dx5dx6.

We note that

Θ = dx8 ∧ C − ∗C, (9.167)

where C is the canonical (9.145) 3-form on R
7 and ∗C is its dual (9.152). We

have indicated the wedge product explicitly to have a nicer looking expression.

This in particular shows that Θ is SD (in the orientation 12345678) with respect

to the standard flat metric on R
8

∗Θ = Θ. (9.168)

9.6.2 Canonical Nearly Parallel G2 Structure on S7

We now introduce spherical coordinates on R
8. Using homogeneity and the fact

that Θ is SD we have

Θ = r3dr ∧ C + r4 ∗C, (9.169)
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where C is defined as i∂/∂rΘ evaluated at r = 1, and as before ∗C is the Hodge

dual of C computed using the metric defined by C. Using the fact that Θ is a

closed form we deduce

dC = 4∗C. (9.170)

As we have already mentioned, G2 structures satisfying dC = λ∗C for some

constant λ are called nearly parallel, and so we have obtained the canonical

nearly parallel G2 structure on S7.

9.6.3 Two Different Maps S7 → CP 3 into the Canonical S7

We now describe two distinct ways of mapping the seven-sphere viewed as the

circle bundle over the projective twistor space CP 3 into the previously desrcibed

canonical S7 with its canonical G2 structure. Pulling back the canonical G2

structure on S7 via this map gives two different G2 structures on S7.

To describe both maps, we realise S7 as the surface π†π+ω†ω = 1 in C
4, where

π and ω are both two-component spinors. We then need to describe a map from

a pair (π and ω) into R
8 with its canonical Spin(7) structure (9.166). There are

two such natural maps that are of importance for us.

In the first case we set

π =

(
x1 + ix5

x2 + ix6

)
, ω =

(
x3 + ix7

x4 + ix8

)
. (9.171)

In other words, for this map we have⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠ =

(
Re(π)

Re(ω)

)
,

⎛⎜⎜⎝
x8

x6

x7

x8

⎞⎟⎟⎠ =

(
Im(π)

Im(ω)

)
. (9.172)

In the second map we instead make the real and imaginary parts of π to be

the coordinates of the first copy of R4, and those of ω of the second copy of R4

in R
8. We put

π =

(
−x4 + ix3

ix1 − x2

)
, ω =

(
−x8 + ix7

ix5 − x6

)
. (9.173)

Here the specific complex linear combinations are motivated by the desire to have

the quaternion describing the first copy of R4, i.e., the Euclidean matrix x given

by (9.68) to be representable as x = (π,−π̂), and similarly for the quaternion

for the second copy of R4.

It is clear that the seven-sphere π†π+ω†ω = 1 goes into the sphere
∑

I(x
I)2 = 1

in both cases. Pulling back the 4-form (9.166) via these two different maps, and

evaluating the insertion of ∂/∂r into Θ we get two different G2 structures on the

seven-sphere.
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9.6.4 First Spin(7) Structure on R
8

Let us compute Θ pulled back to (π and ω) ∈ C
4 via the first map. We define

ω :=
1

2i

∑
α

dπ†dπ + dω†dω = dx1dx5 + dx2dx6 + dx3dx7 + dx4dx8,

as well as

Ω :=
1

4
dπT εdπdωT εdω = (dx1 + idx5)(dx2 + idx6)(dx3 + idx7)(dx4 + idx8).

In these coordinates, the 4-form (9.166) can be checked to be

Θ = −1

2
ωω +Re(Ω). (9.174)

For future reference, we also rewrite ω and Ω in spinor notations

ω = − 1

2i
(dπ̂AdπA + dω̂A′

dωA′), Ω =
1

4
dπAdπAdω

A′
dωA′ . (9.175)

9.6.5 Second Spin(7) Structure on R
8

To compute the second G2 structure we parametrise

q :=

(
−x4 + ix3 ix1 + x2

ix1 − x2 −x4 − ix3

)
, q :=

(
−x8 + ix7 ix5 + x6

ix5 − x6 −x8 − ix7

)
,

so that q = (π,−π̂),p = (ω,−ω̂). We then have

Σiτ i := Σ+ =
1

4
dq†dq =

1

4

(
dπ†dπ −(dπT εdπ)∗

dπT εdπ −dπ†dπ

)
, (9.176)

Σ̃i := τ iΣ− =
1

4
dp†dp =

1

4

(
dω†dω −(dωT εdω)∗

dωT εdω −dω†dω

)
.

On the other hand, the 4-form (9.166) can be written as

Θ = −2Tr(−1

6
Σ+Σ+ − 1

6
Σ−Σ− +Σ+Σ−). (9.177)

Let us compute it in terms of π and ω coordinates. We have

1

2
Tr(dq†dq dp†dp) = dπ†dπdω†dω − Re(dπT εdπ(dωT εdω)∗), (9.178)

1

2
Tr(dq†dq dq†dq) = dπ†dπdπ†dπ − dπT εdπ(dπT εdπ)∗.

The second result can be further simplified by noting that the second term is a

multiple of the first. To see this, we first rewrite things in spinor notation. We

have

dπ†dπ = −dπ̂AdπA, dπT εdπ = −dπAdπA, (dπT εdπ)∗ = −dπ̂Adπ̂A.
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Thus,

dπT εdπ(dπT εdπ)∗ = dπAdπAdπ̂
Bdπ̂B = −dπ̂BdπAdπ̂BdπA. (9.179)

On the other hand

(dπ̂AdπB − dπ̂BdπA)dπ̂BdπA = dπ̂AdπAdπ̂
BdπB − dπ̂BdπAdπ̂BdπA.

But the left-hand side here is

(dπ̂AdπB − dπ̂BdπA)dπ̂BdπA = εBAdπ̂CdπCdπ̂BdπA = −dπ̂AdπAdπ̂
BdπB.

This gives

dπ̂BdπAdπ̂BdπA = 2dπ̂AdπAdπ̂
BdπB, (9.180)

and thus

1

2
Tr(dq†dq dq†dq) = 3dπ̂AdπAdπ̂

BdπB. (9.181)

This means that we can write the 4-form (9.166) as

4Θ̃ =
1

2
(dπAdπ̂A − dωA′

dω̂A′)2 +Re(dπAdπAdω̂
A′
dω̂A′). (9.182)

We now note that Θ̃ is of the already familiar form (9.174)

Θ̃ = −1

2
ω̃ω̃ +Re(Ω̃) (9.183)

with

ω̃ =
1

2i
(dπ̂AdπA − dω̂A′

dωA′), Ω =
1

4
dπAdπAdω̂

A′
dω̂A′ . (9.184)

This differs from (9.175) in the relative sign in the 2-form ω and the use of ω̂

rather than ω in Ω.

9.6.6 Two Different Almost Complex Structures on R
8

It is now clear that the difference between the two Spin(7) structures (9.175),

(9.184) stems from using two different almost complex structures on R
8. Indeed,

in both cases the 4-form on R
8 is given by (minus half) the wedge product of

the Kähler form squared plus the real part of the (4, 0) form. Both of these are

fixed once the decomposition of R8 into (1, 0) and (0, 1) forms is given, which is

equivalent to specifying an almost complex structure.

In the case of (9.175), the almost complex structure is the standard one on

(π and ω) ∈ C
4 that views π, ω as holomorphic coordinates. In the case of (9.184)

the almost complex structure is instead the one with π and ω̂ as the holomorphic

coordinates. Thus, the difference between these two cases is in the relative sign

with which the two almost complex structures on R
4 are put together. It can
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then be expected that upon taking the projectivisation (9.175) should give rise

to the integrable (9.114) almost complex structure on CP 3, while (9.184) will

produce the non-integrable one (9.115). Calculations that follow will confirm this

expectation.

9.6.7 First G2 Structure on S7 → CP 3

We now compute what (9.174) gives when we pass to the projective version of

C
4. Thus, we parametrise

Zi = tzi, Z4 = t (9.185)

to pass to the projective space CP 3. In these coordinates the Kähler form

becomes

ω =
i

2

(
dtdt̄(1 +

∑
i

|zi|2) + t̄dt
∑
i

zidz̄i − tdt̄
∑
i

z̄idzi + |t|2
∑
i

dzidz̄i

)
.

We now parametrise

t = r
eiψ√

1 +
∑

i |zi|2
, (9.186)

so that r = 1 is the seven-sphere
∑

α |Zα|2 = 1. We have

dt

t
=

dr

r
+ idψ − 1

2

∑
i d|zi|2

1 +
∑

i
|zi|2 . (9.187)

A straightforward computation then gives

1

r2
ω =

dr

r
(dψ + a) + ωFS, (9.188)

where the U(1) connection a is given by (9.93) and ωFS is the Kähler form for

the Fubini–Study metric (9.90)

ωFS =
i

2

∑
i dz

idzi(1 +
∑

j |zj |2)−
∑

i,j z̄
izjdzidz̄j

(1 +
∑

i |zi|2)2 . (9.189)

On the other hand, we have

1

r4
Ω =

e4iψ

(1 +
∑

i
|zi|2)2

(
dr

r
+ idψ − 1

2

∑
i d|zi|2

1 +
∑

i
|zi|2

)
dz1dz2dz3.

Given that there is the wedge product with dz1dz2dz3 here, we can rewrite the

terms in the brackets as

1

r4
Ω =

e4iψ

(1 +
∑

i |zi|2)2
(
dr

r
+ i(dψ + a)

)
dz1dz2dz3, (9.190)

where a is again the connection (9.93).
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Combining these blocks into (9.174) and taking the interior product with the

vector field ∂/∂r we get the sought 3-form on S7 of unit radius r = 1

CS7 = −(dψ + a)ωFS +Re
e4iψdz1dz2dz3

(1 +
∑

i |zi|2)2 . (9.191)

We can also restrict Θ to the seven-sphere and get the dual form

∗CS7 = −1

2
ωFSωFS − (dψ + a)Im

e4iψdz1dz2dz3

(1 +
∑

i |zi|2)2 . (9.192)

It is instructive to compute dC explicitly and check that it is a multiple of ∗C.

To do this we need the following relation

da = 2ωFS, (9.193)

which in particular shows that ωFS is closed. We also have

dRe
e4iψdz1dz2dz3

(1 +
∑

i |zi|2)2 = −4(dψ + a)Im
e4iψdz1dz2dz3

(1 +
∑

i |zi|2)2 . (9.194)

This immediately gives

dC = 4∗C. (9.195)

9.6.8 Twistor Space Description

We now take the (9.174) and parametrise C
4 as the total space of the C

2 bundle

over S4 via π = xω. Let us first compute the Kähler form in these coordinates.

We have

dπ†dπ + dω†dω = ω†dx†dxω + dω†x†dxω + ω†dx†xdω + (1 + |x|2)dω†dω

= (1 + |x|2)
[(

dω† + ω† dx†x

1 + |x|2
)(

dω +
x†dx

1 + |x|2ω
)

+ω† dx†dx

(1 + |x|2)2ω
]
.

We then go to the projectivised version parametrising ω = tη with η as in (9.97)

and

t =
reiψ√

(1 + |x|2)(1 + |z|2)
. (9.196)

This is the parametrisation that gives π†π + ω†ω = r2.

The analog of (9.99) becomes

dω +
x†dx

1 + |x|2ω = t

((
dr

r
+ idψ − d|z|2

2(1 + |z|2)

)
η +Dη

)
. (9.197)

Using this, after some algebra we get

ω =
1

2i
((dπ†dπ + dω†dω) = rdr(dψ + a) + r2ωCP3 ,



9.6 G2-Structures on S7 349

where

ωCP3 =
1

2i

(
τ̄ τ

(1 + |z|2)2 +
η†Ση

1 + |z|2
)

(9.198)

is the Kähler form corresponding to the metric (9.110) and

a =
η†Dη − (Dη)†η

2i(1 + |z|2) (9.199)

is the already familiar U(1) connection.

Let us now compute the (4, 0) form Ω. Since dωT εdω is proportional to dtdz

and this is wedged with dπT εdπ, only the terms involving dx must be kept in

dπT εdπ. In more details, we have

dωT εdω = 2tdtηT εdη (9.200)

and

dπT εdπdωT εdω = ωTdxT εdxω2tdtηT εdη. (9.201)

Using xT ε = εx†, as well as dx†dx = (1 + |x|2)2Σ we get

Ω =
dt

2t

r4e4iψ

(1 + |z|2)2 η
T εdη ηT εΣη, (9.202)

with

dt

t
=

dr

r
+ idψ − d|x|2

2(1 + |x|2) −
d|z|2

2(1 + |z|2) . (9.203)

We now note that we can replace dη with Dη in (9.202). Indeed, we have

ηT εΣη = ηT ε
dx†dx

(1 + |x|2)2 η =
(dxη)T εdxη

(1 + |x|2)2 , (9.204)

where we have used εx† = xT ε. We also have

ηT εAη = ηT ε
x†dx− dx†x

2(1 + |x|2) η =
(xη)T εdxη

1 + |x|2 . (9.205)

Thus, the 1-form ηT εAη is a linear combination of two 1-forms dxη ≡ dxA
A′
ηA′ ,

while the 2-form ηT εΣη is the wedge product of these two 1-forms. This means

that the wedge product of ηT εAη with ηT εΣη vanishes

ηT εAη ∧ ηT εΣη = 0 (9.206)

and so we can extend the exterior derivative in (9.202) into a covariant exterior

derivative for free. Thus, we have

Ω =
dt

2t

r4e4iψ

(1 + |z|2)2 η
T εDη ηT εΣη. (9.207)
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Projecting Θ on ∂/∂r vector field we get C = i∂/∂rΘ

C = −(dψ + a)ωCP3 +
1

2(1 + |z|2)2Re
(
e4iψηT εDη ηT εΣη

)
. (9.208)

We note that the 3-form (9.114) that corresponds to an integrable almost complex

structure on the twistor space has made its appearance here. Indeed, the real

part of e4iψΩ3,0 appears in the second term in C.

To get the dual 4-form, we note that we can rewrite(
idψ − d|x|2

2(1 + |x|2) −
d|z|2

2(1 + |z|2)

)
ηT εDη ηT εΣη = i(dψ + a)ηT εDη ηT εΣη,

where a is the connection (9.199). To see this, let us spell out the connection a.

We have

a =
η†dη − dη†η + 2η†Aη

2iη†η
, (9.209)

with

η†Aη =
(xη)†dxη − (dxη)†xη

2(1 + |x|2) . (9.210)

When we wedge this with ηT εΣη the term with dxη does not contribute. There-

fore, we can flip the sign in front of this term and write(
− d|x|2
2(1 + |x|2)

)
ηT εΣη =

η†Aη

η†η
ηT εΣη. (9.211)

Similarly, we have(
− d|z|2
2(1 + |z|2)

)
ηT εdη =

η†dη − dη†η

2η†η
ηT εdη (9.212)

because only dz̄ term contributes when multiplied by dz ∼ ηT εdη.

These considerations shows that the dual 4-form given by the restriction of Θ

to r = 1 is given by

∗C = −1

2
ωCP3ωCP3 + (dψ + a)Im

(
e4iψηT εDη ηT εΣη

2(1 + |z|2)2
)
. (9.213)

9.6.9 Calculation

It is instructive to compute the exterior derivative of the 3-form (9.208) to check

that the form is nearly parallel. One first checks that

da = 2ωCP3 (9.214)

as expected.
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We then compute

d(ηT εDη ηT εΣη) = (Dη)T εDη ηT εΣη − ηT εDη (Dη)T εΣη − ηT εDη ηT εΣDη,

where we have used that DDη = Fη and F = Σ, as well as the fact that

ΣΣ contracted with four copies of spinor η vanishes. This is because we have

ΣA′B′
ΣC′D′ ∼ εA

′(C′
εD

′)B′
, and copies of the spinor metric cause the spinor η to

contract with itself, which vanishes. Finally, we have used DΣ = 0.

The previous expression can be simplified by rewriting it in spinor notations.

We have

DηA′
DηA′ηB′

ΣB′C
′
ηC′ − ηA′

DηA′DηB′
ΣB′C

′
ηC′ − ηA′

DηA′ηB′
ΣB′C

′
DηC′

= DηA′
DηA′ηB′

ΣB′C
′
ηC′ − 2ηA′

DηA′DηB′
ΣB′C

′
ηC′ ,

and then using

DηA′DηB′
= −1

2
εA′B

′
DηC′

DηC′ , (9.215)

which holds due to antisymmetry in A′B′, finally gives

d(ηT εDη ηT εΣη) = 2(Dη)T εDη ηT εΣη. (9.216)

We then have

d
1

2(1 + |z|2)2Re
(
e4iψηT εDη ηT εΣη

)
=

1

(1 + |z|2)2Re
(
e4iψ

(
2idψ − d|z|2

1 + |z|2
)
ηTεDη ηTεΣη +e4iψ(Dη)TεDη ηTεΣη

)
.

A spinor index notation calculation in Section 9.7 shows that the terms in

brackets can be rewritten as

e4iψ2i(dψ + a)ηT εDη ηT εΣη, (9.217)

and so we have

d
1

2(1 + |z|2)2Re
(
e4iψηT εDη ηT εΣη

)
= 4(dψ + a)Im

(
e4iψηT εDη ηT εΣη

2(1 + |z|2)2
)
.

This shows that we indeed have dC = 4∗C with ∗C given by (9.213).

9.6.10 Second G2 Structure on S7

We now compute the G2 structure on S7 that is associated with the Hopf

fibration, in Hopf fibration coordinates. We first compute the 4-form Θ (9.184),

in Hopf coordinates. The arising G2 structure is more involved than the first one

we studied, in particular due to the fact that it is not compatible with the natural

(integrable) almost complex structure on CP 3. We present the computation for

completeness. We will not compute it here in the twistor space coordinates, as

the expression can be expected to be significantly more complicated than (9.208).
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We need to change our parametrisation of the Hopf projection (9.119) slightly,

to take into account the possibility of changing the radius of S7. Thus, we take

q = r
xh√

1 + |x|2
, p = r

h√
1 + |x|2

, (9.218)

so that r2 is the radius squared of S7. In these coordinates we have

dp =
h

(1 + |x|2)1/2 dr −
r

2

1

(1 + |x|2)3/2 d|x|
2h+

r

(1 + |x|2)1/2 dh,

dq =
xh

(1 + |x|2)1/2 dr −
r

2

1

(1 + |x|2)3/2 d|x|
2xh+

r

(1 + |x|2)1/2 (dxh+ xdh).

From this we get

4Σ+ =
1

(1 + |x|2)dr
2m− r2

(1 + |x|2)2 d|x|
2m− r2

(1 + |x|2)mm,

where m = h−1dh and

4Σ− = dr2h−1Ah+
|x|2dr2

(1 + |x|2)m− r2d|x|2
(1 + |x|2)h

−1Ah− r2|x|2
(1 + |x|2)mm

+
r2

(1 + |x|2)2 d|x|
2m+ r2(1 + |x|2)h−1Σh− r2(h−1Ahm+mh−1Ah),

where A is given by (9.100) and Σ is as in (9.130). We can simplify the result

for Σ− somewhat by using the relation

1

(1 + |x|2)d|x|
2A = AA+ |x|2Σ. (9.219)

The last term here cancels a part of the second term on the second line in the

expression for Σ− and further allows the connections 1-forms A and m to be

combined into the connection W ; see (9.127). We get

4Σ− = dr2W + r2(S −WW )− 4Σ+, (9.220)

where we have have introduced a convenient notation

S := h−1Σh (9.221)

for the lift of Σ to the total space of the bundle. As a check of the previous

computations, it is not hard to check that both forms Σ± are closed

dΣ± = 0. (9.222)

We now compute the contraction of Θ given by (9.177) with the vector field

∂/∂r, and set r = 1. This gives the sought-after G2 structure on S7 in Hopf

coordinates. To compute it, we first rewrite (9.177) as

Θ :=
1

3
Tr(Σ+ +Σ−)2 − 8

3
Tr(Σ+Σ−). (9.223)
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The contraction with the first term is very easy to compute. We have

16

3r2
i∂/∂r2Tr(Σ

+ +Σ−)2 = −2

3
Tr (W 3 −WS) . (9.224)

The other term gives

−8 · 16
3r2

i∂/∂r2Tr(Σ
+ ∧ Σ−) = Tr

(
8Am2

(1 + |x|2) −
8

3
mS +

16

3

|x|2
(1 + |x|2)2m

3

)
,

where A = h−1Ah is the lift of the connection on the base to the total space

of the bundle, and terms containing d|x|2 drop out because Tr(Am) = 0 and

Tr(mm) = 0 as a contraction of a symmetric and antisymmetric tensors. We

now set r = 1 and rewrite everything in terms of W,A, thus eliminating m. We

have for our sought-after 3-form

8C = Tr

[
−2

3
W 3 +

2

3
WS +

8

(1 + |x|2)A(W −A)2 (9.225)

−8

3
(W −A)S +

16

3

|x|2
(1 + |x|2)2 (W −A)3

]
.

9.6.11 Simplification

The found expression (9.225) for the 3-form on S7 can be simplified further. To

this end, we will first write a different 3-form on S7, obtained by taking the frame

1-forms corresponding to the metric (9.128), and writing the canonical 3-form

(9.145). This gives

8C0 = −2Tr

(
1

3
W 3 +WS

)
. (9.226)

The factor of eight on the left-hand side is due to the frame for the metric (9.128)

containing an additional factor of half as compared to the frame W i, i = 1, 2, 3

for S3 and e1, e2, e3, and e4, which is the frame for the metric (9.129). The

corresponding 4-form is

16∗C0 = −2Tr

(
1

6
S2 +W 2S

)
. (9.227)

These are, however, not the forms we are after, because dC0 is not proportional

to ∗C0. Indeed, we have

8dC0 = −2Tr ((S −W 2)W 2 + (S −W 2)S −W (SW −WS)) (9.228)

= −2Tr (SS + 2W 2S) .

Here we have used the cyclicity of the trace, as well as

dW = S −WW, dS = SW −WS, (9.229)
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which are the Plebanski field equations for objects on S4, lifted to the total space

of the bundle. Both can be easily checked using the definitions of these objects. It

is clear that the relative coefficient in the last expression in (9.228) is not correct

for the equation dC0 ∼ ∗C0 to be satisfied.

The 3-form on S7 for which this equation is satisfied has been found in the

previous section. Our goal is now to relate C to C0 via (9.164). By symmetry,

the only 1-form that can be used for this purpose is a multiple of the form

α =
d|x|2

(1 + |x|2) =
2xμdx

μ

(1 + |x|2) . (9.230)

With the relevant metric being the quarter of (9.129), the dual vector field is

equal to

α� = (1 + |x|2)2xμ

∂

∂xμ

. (9.231)

We need to compute the insertions of α� into A and Σ. To this end, let us write

x = xμσμ, where σμ are the 2× 2 matrices that can be read off from (9.68). We

then have

A =
1

2(1 + |x|2)x
μdxν

(
σ†
μσν − σ†

νσμ

)
, (9.232)

and

Σ =
1

2(1 + |x|2)2 dx
μdxν

(
σ†
μσν − σ†

νσμ

)
. (9.233)

This immediately gives

iα�Σ = 4A, iα�A = 0. (9.234)

This means that

cα ∧ icα�8C0 = 8c2
d|x|2

(1 + |x|2)Tr(WA) = −8c2 Tr(W (A2 + |x|2S),

where c is some coefficient to be worked out later, and we used (9.137) to write

the second equality. We also have

icα�16∗C0 = −8cTr

(
1

3
AS +W 2A

)
.

The formula (9.164) then gives

8C̃0 = Tr

[(
−2

3
W 3 − 2WS

)
(1− 8|x|2c2) (9.235)

− 16c2W (AA+ |x|2S) −
√
1− 4c2|x|2 4c

(
2

3
AS + 2W 2A

)]
.
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This is to be compared to (9.225). We first note that the WS terms work out

correctly. We now compare the W 3 terms. Demanding equality gives

−2

3
(1− 8|x|2c2) = −2

3
+

16

3

|x|2
(1 + |x|2)2 ⇒ |c| = 1

1 + |x|2 . (9.236)

To match things further we note that there is no A3 term in (9.235), while

there are such terms in (9.225). This can be matched by once again using the

identity (9.137). We can multiply this identity by A and take the trace. This

gives

0 = Tr

(
d|x|2

(1 + |x|2)AA
)

= Tr (A3 + |x|2SA) . (9.237)

Using this identity, one can check that all the terms match provided we choose

the minus sign for c in (9.236). Thus, finally, the 1-form to be used to write

(9.225) in the form (9.164) is

− d|x|2
(1 + |x|2)2 = dφ, (9.238)

where φ is the conformal factor

φ :=
1

(1 + |x|2) . (9.239)

All in all, the sought G2 structure on S7 in Hopf coordinates is

8C = Tr

[
−2

3
(1− 8|x|2φ2)W 3 + 8(1− |x|2)φ2W 2A (9.240)

−16φ2WA2 − 2WS +
8

3
(1− |x|2)φ2AS

]
.

Only at the origin x = 0 where A = 0 this matches the ‘canonical’ form (9.226).

At a general point the metric that this 3-form defines is the same as the metric of

C0 given by (9.226), but the forms do not coincide. They are related via (9.164),

with the 1-form that needs to be used given by dφ.

9.7 3-Form Version of the Twistor Construction

The purpose of this section is to put everything we have learned together and

describe a generalisation of G2 structure (9.208) on the circle bundle over CP 3

to the circle bundle over the projective twistor space of a general gravitational

instanton M . We will then see that imposing the nearly parallel condition (9.158)

on the corresponding G2 structure is equivalent to the condition of integrability

of the corresponding almost complex structure.
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9.7.1 G2 Structure on the Circle Bundle Over the Twistor Space

We start with the G2 structure inspired by (9.208), but with some changes. Thus,

we set

C = −(dψ + a)ω +Re(e4iψΩ), (9.241)

where

Ω :=
1

2(η†η)2
ηT εDη ηT εΣη, (9.242)

and

ω :=
1

2i

(
τ̄ τ

(η†η)2
+

η†Fη

η†η

)
, a :=

η†Dη − (Dη)†η

2i(η†η)
, (9.243)

with τ = ηT εDη are all objects on the projective twistor space. Thus, C is

a 3-form on a circle bundle over the projective twistor space of a general Rie-

mannian 4-manifold, with ψ being the coordinate on S1, while z ∈ CP 1 is the

coordinate on the fibres of the projective twistor space. The covariant derivative

D is with respect to an SU(2) connection on M and F is its curvature so that

DDη = Fη. The object Σ is a 2-form with values in the space of anti-Hermitian

2×2 matrices, which is assumed to be metric in the sense that the simplicity con-

dition (5.160) is satisfied. It is also assumed that the connection A is torsion-free

DΣ = 0. (9.244)

We now want to impose the nearly parallel condition on the 3-form C given by

(9.241), and show that it holds provided F = Σ, i.e., provided the 4D metric is

ASD Einstein. This generalises the previous twistor space of S4 construction to

an arbitrary gravitational instanton. The calculations we have to do are similar

to those previously encountered, except that we are no longer allowed to use

arguments based on the explicit form of A.

9.7.2 Verification of da = 2ω

The real 2-form ω in (9.243) is defined so that da = 2ω, which in particular

implies that ω is closed. Let us verify this relation explicitly. It is easier to do

this calculation by changing to spinor index notations. We have

a =
η̂A′

DηA′ −Dη̂A′
ηA′

2i[η̂η]
, (9.245)

where [η̂η] := η̂A′
ηA′ . Therefore,

da =
Dη̂A′

DηA′ + η̂A′
FA′B

′
ηB′

i[η̂η]
(9.246)

− 1

2i[η̂η]2
(Dη̂A′

ηA′ + η̂A′
DηA′)(η̂B′

DηB′ −Dη̂B′
ηB′).
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The second term is simplified by noticing that the terms containing Dη̂A′
Dη̂B′

and DηA′DηB′ are A′B′ antisymmetric and hence vanish as causing the contrac-

tion of a spinor with itself. The remaining terms give

da =
1

i[η̂η]2
(Dη̂A′

η̂B′
(DηA′ηB′ − ηA′DηB′)) +

η̂A′
FA′B

′
ηB′

i[η̂η]
(9.247)

=
1

i[η̂η]2
η̂A′

Dη̂A′ηB′
DηB′ +

η̂A′
FA′B

′
ηB′

i[η̂η]
= 2ω,

where we used τ = −ηA′
DηA′ , τ̄ = −η̂A′

Dη̂A′ to recognise the 2-form ω.

9.7.3 Computation of dC

The calculation of the exterior derivative of the remaining terms in C proceeds

as in 9.6.9, with some changes related to inability to use the explicit form of A.

We carry it out using the spinor notations. We have

d(ηT εDη ηT εΣη) = d(ηA′
DηA′ηB′

ΣB′C
′
ηC′)

= DηA′
DηA′ηB′

ΣB′C
′
ηC′ + ηA′

FA′B
′
ηB′ηC′

ΣC′D
′
ηD′

− 2ηA′
DηA′DηB′

ΣB′C
′
ηC′ ,

where we have used (9.244). As before, the first and the third term here are

actually equal, and so we get

2DηA′
DηA′ηB′

ΣB′C
′
ηC′ + ηA′

FA′B
′
ηB′ηC′

ΣC′D
′
ηD′ .

We then get

d
1

2(η†η)2
Re

(
e4iψηT εDη ηT εΣη

)
=

1

[η̂η]2
Re

[
e4iψ

(
2idψ − Dη̂E′

ηE′ + η̂E′
DηE′

η̂F ′ηF ′

)
ηA′

DηA′ηB′
ΣB′C

′
ηC′

+e4iψDηA′
DηA′ηB′

ΣB′C
′
ηC′ +

1

2
e4iψηA′

FA′B
′
ηB′ηC′

ΣC′D
′
ηD′

]
.

The terms in brackets in the second line can be simplified by using antisymmetry

in E′A′ in the last term. We then have

η̂E′
DηE′ηA′

DηA′ =
1

2
DηA′

DηA′ η̂B′
ηB′ . (9.248)

This makes the last term in the second line a multiple of the first term in the

third line. This allows to rewrite the terms in brackets in the second line in terms

of the connection (9.245). It is clear that to get this combination we just need to

flip the sign in front of the last term in brackets in the second line. But adding

the term in the third line does exactly that. So, we have
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dRe (Ω) = −4(dψ + a)Im (Ω) + Re

(
e4iψ

2(η†η)2
ηT εFη ηT εΣη

)
.

9.7.4 Imposing the Nearly Parallel Condition

Combining the results of previous calculations, we get

dC = 4

(
−1

2
ωω − (dψ + a)Im(Ω)

)
+Re

(
e4iψ

2(η†η)2
ηT εFη ηT εΣη

)
. (9.249)

It is clear that the only chance of having the nearly parallel condition dC = 4∗C

satisfied is if ηT εFη ηT εΣη = 0 for any η. This will be the case if the 4D metric

is a gravitational instanton F = Σ. Then the metric condition on Σ reads

ΣA′B′
ΣC′D′ ∼ εA

′(C′
εD

′)B′
, which then makes at least one pair of three copies

of the unhatted spinor η contract.

We also note that the instanton condition F = Σ also guarantees

ω ∧ Ω = 0, (9.250)

thus allowing to interpret ω as a (1, 1) form for the almost complex structure

defined by the decomposable 3-form Ω as a (3, 0) form. Indeed, the term in ω

containing τ̄ τ gives zero when wedged with Ω because the latter contains a factor

of τ . The η†Fη term in ω gives zero when wedged with Ω in view of F = Σ.

Once F is set to be Σ the calculation of the dual form ∗C is simple, because

the form (9.241) is given in the canonical form (9.157). The dual 4-form is then

given by

C∗ = −1

2
ωω − (dψ + a)Im(Ω), (9.251)

which shows that the nearly parallel condition is satisfied for the 3-form (9.241)

on the circle bundle over the twistor space of an arbitrary gravitational instanton.

It is possible, and in fact suggested by the result in Herfray et al. (2016a), that

the previous construction can be made even more general and that the nearly

parallel condition imposed on an appropriate generalisation of (9.241) can be

equivalent to Einstein-like relation between F and Σ on M . We will, however,

refrain from attempting to demonstrate this here.

9.7.5 Integrability

Let us also show why the nearly parallel condition imposed on the 3-form (9.241)

implies integrability of the almost complex structure defined by declaring the

decomposable 3-form Ω to be the (3, 0) form. With the dual 4-form ∗C being

given by (9.251), the nearly parallel condition for C given by (9.241) is equivalent

to two differential equations

da = 2ω, dΩ = 4ia ∧ Ω, (9.252)
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where we indicated the wedge product explicitly. We note that these two equa-

tions together imply ω ∧ Ω = 0. Indeed, this follows by taking the exterior

derivative of the second equation and using the first to replace da with ω.

We now shows that the second of the equations in (9.252) is sufficient to

guarantee that the almost complex structure defined by Ω is integrable. Indeed,

a 1-form θ is (1, 0) if and only if

θ ∧ Ω = 0. (9.253)

Let us now take the exterior derivative of this equation, using the second equation

in (9.252)

dθ ∧ Ω+ 4iθ ∧ a ∧ Ω = 0. (9.254)

But then by assumption θ is (1, 0), and so the second term vanishes and we get

dθ ∧ Ω = 0. (9.255)

This implies that dθ does not have a (0, 2) part, which in turn implies that the

almost complex structure is integrable, by Newlander–Nirenberg theorem.

The fact that ω ∧ Ω = 0 then implies that ω is a (1, 1) form, and the first

equation in (9.252) means that it is closed. The data ω,Ω satisfying (9.252) then

define a Kähler metric. The metric arises as g(X,Y ) = ω(X, JY ), where J is

the complex structure defined by Ω. This metric can be shown to coincide with

the one induced by (9.146) on the ψ = const slices. Moreover, this metric can

be shown to be Einstein with positive scalar curvature. These aspects of the

geometry under discussion are explained in, e.g., Sparks (2011).
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Concluding Remarks

Our journey took us from the usual formalism that views general relativity (GR)

as a dynamical theory of Riemannian geometry of metrics through a sequence of

formalisms based on connections and differential forms to more exotic 6D and

7D constructions. It is now time to attempt to summarise what has been learned.

In all formalisms related to Cartan’s tetrads, gravity becomes very similar to

the Yang–Mills gauge theory. The geometric structures that make this possible

are essentially invisible in the usual metric formulation. But gravity is different

from the Yang–Mills theory. From the geometric point of view the main difference

is presence in gravity of an object that solders the geometry of the manifold to

the geometry of whatever abstract bundle that is used. This geometric object is

different in different formalisms, see Table 10.1.

Thus, in all these descriptions there is a geometric object that ties the geometry

of an abstract fibre bundle over a manifold to the geometry of the tangent bundle.

The metric is then constructed from this object. There is no such soldering in

the Yang–Mills theory. We can therefore say that

Gravity Is Gauge Theory with Soldering

We have also seen that formalisms based on differential forms allow the equa-

tions of gravity to be rewritten in index-free notations. In 2D this is achieved

by introducing a complex linear combination of the pair of frame 1-forms, see

(3.40). In 3D this is achieved by constructing 1-forms with values in the Lie

algebra of the appropriate ‘Lorentz’ group, concretely 1-forms with values in

2×2 tracefree matrices, both for the frame field as well as for the connection, see

(4.11) and (4.13). Finally, in 4D the closest one gets to an index-free formalism

is via the chiral Plebański setup. For instance, the index-free relation (9.138)

is the Einstein equation describing the four-sphere. In general, however, when

there is also Weyl curvature present, 4D Einstein equations can’t be naturally

written in a completely index-free notation due to the presence of the matrix
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Table 10.1. Table of formalisms with objects that implement soldering

Formalism Soldering object

Cartan formalism Frame field or tetrad
BF formalism 2-form field valued in the Lie algebra of the Lorentz group
MacDowell–Mansouri formalism De Sitter/Anti-De Sitter connection
Pure spin connection formalism Curvature of the spin connection
Plebański formalism Triple of self-dual 2-forms
Chiral pure connection formalism Curvature of the chiral part of the spin connection

Ψij representing the chiral part of the Weyl curvature on the right-hand side

of Plebański equations (5.162). Thus, field equations of 4D gravity are like

those of the Yang–Mills theory in the sense that they can’t be written solely

in terms of wedge products of Lie algebra–valued differential forms. In the case

of the Yang–Mills theory, one needs the operation of the Hodge dual to write

d∗F = 0. In the case of gravity, the analogous operation is the one required

to form the right-hand side of the Plebański second equation in (5.162) from

Σi. Schematically, the Plebański equations are dAΣ = 0, which is written solely

in terms of wedge product of forms, as well as F = ‘∗Σ’, where the ‘Hodge

star’ in quotes is the operation that produces the Lie algebra–valued 2-form

(Ψij + (Λ/3)δij)Σj from the Lie algebra–valued 2-form Σi.

The analogy with the Yang–Mills theory becomes even more pronounced in the

pure connection formalism, where the field equations take the form dA‘
∗F ’ = 0.

Now the ‘Hodge star’ is the operation (6.14) that is necessary to produce the Lie

algebra–valued 2-form Σi
F from the curvature 2-forms. In both Yang–Mills and

GR it is the presence of these ‘Hodge stars’ that prevents the equations to be

writable solely in terms of wedge products of differential forms.

In terms of the computational efficiency, we have seen that 4D chiral for-

malisms are clearly superior in terms of their economy. In these formalisms,

the connection components necessary for the computation of the curvature are

stored very compactly and computations required to write Einstein equations are

done with minimal effort. This is true both in the case of the original Plebański

description that works with 2-forms Σi and connection Ai, as well as for the pure

connection formalisms that work with either solely Ai or Ai and the auxiliary

matrix M ij .

We have also seen that the description of the linearised gravity and the gravita-

tional perturbation theory simplifies greatly by the use of the chiral formalisms.

First, the usage of chiral objects brings with it completely new types of differen-

tial operators; see Figure 8.1. This allows us to write the familiar spin one and

spin two kinetic terms in a completely new way, see, e.g., (8.158) for how the

usual linearised Lagrangian for the spin two perturbation hμν gets compactly

rewritten by the use of the chiral 2-form fields Σi
μν .
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The propagators and interaction vertices also get simplified by the chiral

formalism. The gravitational action becomes polynomial in the fields in any

first-order formalism. However, all such formalisms apart from the chiral ones

introduce ‘too many’ auxiliary fields. This is manifested by the fact that the

two-point function of the auxiliary field with itself is nonzero in all but the chiral

formalisms. This is the case in the chiral description of Yang–Mills, see (8.98), as

compared to the non-chiral version, see (8.158), as well as in the chiral description

of GR as compared to standard GR, as we have verified in Section 8.5. The chiral

perturbation theory for GR that we have developed in this book may well hold a

lot of potential. It would be interesting to try to use it to simplify computations

ranging from quantum loops to the perturbative calculations that are necessary

to extract the gravitational wave signals.

In the last chapter we have developed an even more exotic viewpoint on

4D gravity, one that puts at the forefront the total space of the bundle of

two-component spinors over the four-dimensional manifold M in question. The

projective version of this bundle is known as the twistor space of M . The usual

twistor story emphasises the complex analytic aspects of the twistor space. This,

however, only works when the geometry of M is chiral in the sense that only one

of the two chiral halves of the Weyl curvature is nonzero.

We have seen that there exists a version of the twistor story that works in

the circle bundle over twistor space instead. This is a 7D manifold, and the

geometric data on M define a certain natural 3-form C on it. There is then

a natural first-order differential equation that can be imposed on M , namely

dC = λ∗C, where λ is a constant. Such 3-forms are called nearly parallel and

define a 7D metric via (9.146). Moreover, this metric is automatically Einstein

with nonzero scalar curvature. Requiring that this equation is satisfied for the

3-form that is defined by the 4D data imposes Einstein-like equations on these

data. We have then seen that the usual twistor story with its integrable almost

complex structures lifts naturally to this 7D description. In particular, the first-

order Cauchy–Riemann equation guaranteeing integrability of the almost com-

plex structure on the twistor space follows from the first-order nearly parallel

condition dC = λ∗C satisfied by the 3-form.

Importantly, the described 6D and 7D viewpoint on 4D gravity is crucially

based precisely on its chiral version, to which we devoted so much attention

in this book. This is manifested particularly strongly by the example of the

quaternionic Hopf fibration in Section 9.3. This example shows the chiral 4D

description of the four-sphere with its chiral 2-forms Σ and the chiral connection

A arising from the geometry of the total space of the Hopf three-sphere bundle

over S4. A related point is the fact that the Urbantke formula (5.37) that

appears somewhat mysteriously in the chiral 4D descriptions gets explained by

the observation that it is the dimensionally reduced to 4D version of the formula

(9.146) for the metric defined by a generic 3-form in 7D; see (9.148).
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At the same time, the higher-dimensional descriptions that we developed suffer

from a very serious defficiency – they only work for the Euclidean version of the

4D gravity. This is the case for both the usual twistor description, which is only

capable of describing the half-flat Euclidean gravitational instantons, as well as

for the 7D description in terms of 3-forms that we developed. It is clear that if

there is any truth in the higher-dimensional perspective of the type described,

it should be possible to find also the version appropriate for the Lorentzian

signature.

Let us end this discussion by listing questions that, in the opinion of this

author, hold greatest potential to lead to a breakthrough in our understanding

of gravity. The first question was already mentioned in Chapter 3 introducing

formalisms based on differential forms. It is ‘Why nonzero metric?’ To expand

on this, we now know that if there is a nonzero metric filling the universe, then

its low-energy dynamics can only be described by GR, at least in 4D. At the

same time, GR is unable to answer the question as to why such a nonzero metric

exists. The same is true about any of its reformulations described in this book,

even though re-formulations based on differential forms seem to come closer to

an eventual answer, because in these formulations one can at least talk about the

zero field configurations. So, it is clear that answering the ‘Why nonzero metric?’

question will require radically new ideas. It is possible that the puzzle of gravity

can only be solved by answering this question.

The second question that we believe is also of fundamental importance is

more well-posed, and so can probably be answered in the near future. This is the

question of interpretation of the Lorentzian signature Urbantke formula (5.47).

In our discussion following (9.148) we have seen that the Euclidean signature

Urbantke formula can be understood as being a consequence of (9.146) defining

a 7D metric from a stable 3-form. Thus, we have seen that assuming that the

7D manifold is fibred by three-dimensional submanifolds on which the 3-form is

nonzero does exhibit the 4D Urbantke metric as the one induced on the 4D slices

transverse to the fibres. The same interpretation exists for the split signature

metrics in 4D. This also follows from the 7D formula (9.146) except for C lying

in the orbit of the different sign; thus the one for which the metric defined by C

is of signature (3, 4). However, there is no such interpretation to the Lorentzian

signature Urbantke that works with complex-valued 2-forms but still produces a

real-valued metric. It is clear that if there is an interpretation that is related to

3-forms in seven dimensions, it must involve complex-valued forms in some way.

We believe that finding such an interpretation, if it exists, holds potential for a

breakthrough in understanding of 4D Lorentzian signature gravity, as it would

point to a deeper geometric structure behind it.

We end this book by a provocative remark. GR is the unique low-energy theory

of interacting massless spin two particles. This statement holds independently of

any Lagrangian formulation that may be used to describe it. The usual metric
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formalism is by far the most explored one. But, in this book, we have seen

that, surprisingly, GR admits many non-obviously equivalent formulations. In

fact, GR appears to be the theory that admits by far many more reformulations

than any other known theory. This is one ‘empirical fact’ about GR that is

rarely emphasised, and that we believe becomes strikingly apparent from the

developments we have followed. We don’t know the significance of this fact, if

any, but it may be that gravity is trying to tell us something. It is possible that

the message is: ‘I am more than just an effective low-energy theory of massless

spin two particles; I hold the key to the puzzle of why the universe can be so

successfully described in geometric terms’.
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