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Preface

Give thanks to God, who made necessary things simple, and complicated
things unnecessary.
Gregory Skovoroda, Ukrainian Thinker, 1722-1794

There is always another way to say the same thing that doesn’t look at
all like the way you said it before. I don’t know what the reason for this
is. I think it is somehow a representation of the simplicity of nature?
Perhaps a thing is simple if you can describe it fully in several different
ways without immediately knowing that you are describing the same
thing.

Richard Feynman, Nobel Lecture, 1965

Theories of the known, which are described by different physical ideas
may be equivalent in all their predictions and are hence scientifically
indistinguishable. However, they are not psychologically identical when
trying to move from that base into the unknown. For different views
suggest different kinds of modifications which might be made and hence
are not equivalent in the hypotheses one generates from them in ones
attempt to understand what is not yet understood. I, therefore, think
that a good theoretical physicist today might find it useful to have a
wide range of physical viewpoints and mathematical expressions of the
same theory available to him.

Richard Feynman, Nobel Lecture, 1965

Formulations of General Relativity. Facing this title the prospective reader
should be thinking, what is there to formulate general relativity (GR)? GR can
be formulated in one sentence: GR action functional is the integral of the scalar
curvature over the manifold. Everything else that is there to say about GR is
the consequence of the Euler-Lagrange equations one obtains by extremising
this action, together with the action for matter fields. How can there be a book
about ‘formulations’? And why plural? Is there not just the usual Einstein—
Hilbert formulation as stated previously?

A more sophisticated reader will know that there are several equivalent for-
mulations of general relativity. There is the usual metric formulation, and then
there is an equivalent formulation in terms of tetrads. But this is all well known.
GR is about physical consequences of the dynamical postulate that fixes the
theory. There may be several equivalent ways to define the dynamics. But this
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does not change the physics. So, one formulation is sufficient to unravel all the
physics predicted by the theory. The usual metric formulation is by far the most
studied and best understood. Why bother about developing any other equivalent
formulation? And then why write a book about such unnecessary alternatives?

This is when the two quotes included previously from the Richard Feynman
Nobel lecture become relevant. The first is about an empirical observation that
theories that are relevant for describing the world around us tend to admit many
different equivalent, but not obviously so, reformulations. The example Feynman
has in mind is classical electrodynamics, not gravity. Feynman also notices that
there is a deep link between the ‘simplicity’ of a theory, and the availability
of many different, not manifestly equivalent, descriptions. He goes further and
proposes this as the criterion of simplicity. This suggests that one can never fully
appreciate the simplicity and beauty of GR without absorbing all the different
available formulations of this theory.

The second quote is a different, but not unrelated, thought. There may be
equivalent formulations of a theory, all leading to the same physical predictions.
But such reformulations may be inequivalent if one decides to generalise. The
example of most relevance for Feynman is the Hamiltonian and Lagrangian
description of classical mechanics. The quantum generalisation of the Hamilto-
nian description leads to the usual operator formalism for quantum theory. The
generalisation of the Lagrangian description leads to path integrals, which is
arguably one of Feynman’s main contributions to physics. These two equivalent
formulations of classical mechanics are certainly not equivalent in terms of the
new structures that can be generated from them. The same may well apply to
gravity. We do not yet know which of the many available formulations of gravity
will lead to the next big step in the quest for understanding the world around us.

So, the purpose of this book is to describe all the ‘equivalent’ formulations of
general relativity that are known to the author, and that also put the geometry of
differential forms and fibre bundles at the forefront of the description of gravity.
What is meant by a ‘formulation’ here is a Lagrangian description, in which the
dynamical equations are obtained by extremising the corresponding action. This
gives us the most economic way of defining the theory.

Some of these equivalent formulations will likely be known to many readers.
In particular, this is the already mentioned formulation in terms of tetrads. If
this was the complete list, there would be no good reason to write this book.

What is much less known, and what really motivated this author to embark on
the present project, is that there are some special features of GR in four spacetime
dimensions. These special features are related to coincidences that occur precisely
in four dimensions. Thus, in any dimension the Riemann curvature can be viewed
as a matrix mapping antisymmetric rank-two tensors again into such tensors.
And in four dimensions one also has the Hodge star operator that maps antisym-
metric rank-two tensors into such tensors. One can ask how these two operations
are related or compatible. It is then a simple to check but deep fact that a
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metric is Einstein if and only if these two operations commute. This fact leads to
a whole series of chiral formulations of four-dimensional GR that have no analogs
in higher spacetime dimensions. It is the development of these formulations, and
contrasting them with the more known ones, that will occupy us for the large part
of this book. There is no coherent account of these developments in the literature,
certainly not in any book on GR. It is our desire to make such a coherent account
available that was one of the main motivations for writing this monograph.

Another motivation for writing this exposition was our desire to promote the
formalism(s) for GR that place the differential forms rather than metrics at the
forefront. Differential forms are arguably the simplest and most natural geometric
objects that can be placed on a smooth manifold, and are certainly simpler
objects than a metric. It turns out to be possible to describe GR using the
powerful calculus of differential forms and fibre bundles, which is largely due to
Elie Cartan (see Chapter 1 for more on this). This book is in particular aimed
at giving an exposition of the possible formalisms that achieve this.

A related theme is that of spinors and spinorial description. As is well known,
and as we will also emphasise in the book, spinors and differential forms are
essentially the same thing, with the Dirac operator being intimately related to
the exterior derivative operator. This means that as soon as differential forms are
being used as variables to describe the theory, the description has an interesting
spinor translation. Viewed in this way, the kinetic operators arising in the field
equations of formulations that use differential forms are various versions of the
Dirac operator. This becomes especially pronounced in the so-called first-order
formulations where field equations are first order in derivatives. This spinor
aspect of gravity (and, as we shall see, Yang-Mills theory too), absent in the
usual metric description, is another unifying theme of this book. In addition, the
spinor description of gravity simplifies link to some recent developments in the
field of scattering amplitudes, as we will touch on.

The more familiar of formalisms that use differential forms rather than metrics
is that of tetrad (or vielbein, or moving frame or soldering form) introduced by
Cartan. Historically, this formalism was first discovered in the context of two
dimensions by the French mathematician Jean-Gaston Darboux (Cartan’s PhD
supervisor) in the late nineteenth century. It is particularly powerful in this
context, as the two 1-forms that encode the metric information can be combined
into a single complex-valued one-form on the manifold. This is related to the
fact that any 2-manifold is a complex manifold. There is no direct analog of
such a complexification trick in four dimensions because there is no longer a
unique choice of an almost complex structure. But one gets a computationally
powerful formalism in four dimensions via chiral formulations referred to above.
These formulations, in the case of Lorentzian signature, bring into play complex-
valued objects and in a certain sense provide the analog of the complexification
trick that works so well in two dimensions. They also make a link to the twistor
description of gravity, as we shall learn.
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Our final introductory remark is about Einstein’s cornerstone idea that gravity
is geometry. At the time when Einstein formulated his theory, the only geometry
available to him was the Riemannian geometry of metrics, described via the ten-
sor calculus of Ricci and Levi-Civita. Einstein learned this mathematics guided
by his friend and classmate Marcel Grossmann. It is thus no surprise that GR
was formulated in the language of Riemannian geometry and tensor calculus. It is
still being developed and also taught to graduate students in that way. However,
already at the time of Einstein’s formulation of GR, Elie Cartan was developing
a very different type of geometry, the geometry in which the key role was played
by differential forms and connections. His works, and works of those around him,
strongly influenced the subject of differential geometry, and it is now far more
rich and sophisticated than it was 100 years ago. The Riemannian geometry is
now only its relatively small corner. This discussion is related to the theme of
the present book because various different formulations of GR that we develop
place various different geometric constructions at the forefront. In particular, the
geometry of fibre bundles plays a much more important role than it does in the
usual description of GR. It is thus certainly true that gravity continues to be
geometry in the developments on this book, it is only that the word geometry
is being understood more broadly than in the metric GR context. We do not
yet know which of these ‘geometries’ is more fundamental than others, but a
good researcher will certainly want to keep his/her mind open and learn all the
available options.

The target audience for this book are postgraduate students interested in
gravity, as well as already established researchers. To give encouraging words
to the first audience, the author would like to recall his own experience as a
student. This author remembers very distinctly that it was easiest to study,
understand and prepare for exams on classical mechanics by reading Vladimir
Arnold’s book on the subject. And Paul Dirac’s book played a similar role for
quantum mechanics. Both books present their respective subjects in a beautiful
and logical way, and both are inspired by mathematics. The moral here is that
there are some students that learn best by understanding the overall logic of the
formalism first, and only then embark on applications and problem solving. This
is certainly not a universal way to learn, and most likely not the way to approach
the subject for the first time. But it was important to the present author in his
time as a student to have accounts of the usual subjects that concentrate more
on the overall logic and the mathematical formalism, rather than on concrete
problems that can be solved. The author hopes that there are similar minds
out there, and that the present exposition will help such students to understand
what GR is about.

In terms of the specialised knowledge that is required to understand this book,
we do not assume any more than is usually assumed for graduate-level courses.
Familiarity with concepts of differential geometry is desirable, but the aspects
of this subject that are required to understand the present text are reviewed
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in the first chapter. So, a good graduate student should be able to follow this
exposition without too much difficulty.

Thus, this book is mainly about different possible formalisms for doing calcu-
lations with GR, rather than about different possible physical consequences of
this theory. So, this book certainly does not compete with the standard textbook
expositions of GR, and the student must also study these more standard sources
to understand the physics as predicted by general relativity. Excellent books on
this subject that became the standard sources are General Relativity by R. Wald
and Spacetime and Geometry: An Introduction to General Relativity by S. Carroll
for GR in general and Physical Foundations of Cosmology by V. Mukhanov for
applications to cosmology.

For the experienced researchers, the author suggests this book as a source on
aspects of GR that are important about this theory, especially in four spacetime
dimensions, but are not covered in any standard book on the subject. Thus,
the book can be used as a compendium on different available formalisms for
GR, as well as on some less standard aspects of geometry that are required to
develop these formulations. Additional motivations for why different formulations
of GR may lead to new developments and/or new generalisations are given in
the concluding chapter.

We end by explaining why it is the quote from Gregory Skovoroda that we
chose to be an epigraph for this whole exposition. First, the author is a Ukrainian,
and it gives him a distinct pleasure to be able to quote Skovoroda, who was a
deep thinker years ahead of his times, and who is still relevant today. He is almost
unknown in the West, and maybe one of the readers will remember the name,
and read his texts.

Second, we aim here to explain only simple, but in our view important things
about GR in four spacetime dimensions. There is much more that can be said,
and there is a great wealth of physical phenomena that the theory predicts and
describes, and that we omit. Not because they are unimportant — on the contrary,
they are the reason why physicists learn the subject. But rather because they
are unnecessary to understand the overall logic of the theory. It is this overall
logic and the facts likely needed to ‘move to the unknown’ that will concern us in
the present book. And so we focus here only on things necessary to understand
the overall logic of gravity, and hence only on things simple. We hope the reader
will take this as a word of encouragement to follow the development of different
formalisms described here.

Finally, I would like to thank my collaborators, from whom I learned a lot and
without whose insights this book would not exist. Thanks in particular to Joel
Fine, Yannick Herfray, Carlos Scarinci and Yuri Shtanov. Thanks also go to my
family for their support to ‘papa’ working on his ‘kniga’.






Introduction

[The tensor calculus] is the debauch of indices.
Elie Cartan, from Introduction to ‘Lecons sur la Geometrie des
Espaces de Riemann’, 1928

In 1907, while still working as a clerk in a patent office in Bern, Albert Einstein
had what he later referred to as ‘the happiest thought’ of his life. He realised
that a freely falling observer does not experience gravity, and thus, effects of
gravity are indistinguishable from those arising in an accelerating frame. These
ideas were developed in two papers he published in 1908 and 1911. In these
papers, Einstein argued that the rules of special relativity must continue to
be applicable in an accelerated reference frame. This, in particular, led him
to analyse experiences of an observer performing experiments on a rotating
turntable. Finstein concluded that the ratio of the circumference of a circle to
its diameter would be different from 7. What this meant for Einstein was that if
effects of gravity are those of a non-inertial coordinate system, and the geometry
in the later is different from the Euclidean one, then gravity is geometry.

Einstein then searched for a mathematical description of this idea. On the
return in 1912 to his alma mater ETH Zurich, he turned for help to his friend
and classmate, now a professor of mathematics, Marcel Grossmann. Grossmann
directed Einstein’s attention to Riemannian geometry, the only one developed at
that time, which had its origins in Gauss’ work on the intrinsic geometry of two-
surfaces in three-dimensional space. Bernhard Riemann lay the foundation of the
subject in his famous 1854 Gottingen habilitation lecture, ‘On the hypotheses
that underlie geometry’. In this lecture he described the way to extend the
Gauss’ notion of curvature to an ‘n-ply extended magnitude’. Thus, by the time
Einstein studied this subject, it was far from being new. Einstein learned it in the
form described in the 1900 exposition by Gregorio Ricci and Tulio Levi-Civita,
‘Methods of the absolute differential calculus and their applications’. In a joint
1913 paper with Grossmann, Einstein described ‘an outline’ of a new gravity
theory using precisely this language. The final version of the new theory of gravity
was developed by late 1915, still using the language of tensor calculus. By this
time Einstein was already in Berlin, and this work appeared single-authored.
It is this 1915 theory that is now known as Einstein’s general relativity (GR).
Even to this day it is taught and applied using the nineteen-century language of
tensor calculus.
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Figure I.1 Bernhard Riemann

Bernhard Riemann was born on 17 September 1826 in Breselenz, a village in
the kingdom of Hanover. His father was a poor Lutheran pastor. Riemann was the
second of six children, shy and of not very strong health. His mother died when
he was 20, and his brother and three of his sisters all died young, as eventually
did he. Riemann exhibited exceptional mathematical skills, such as calculation
abilities, from an early age, but suffered from a fear of speaking in public.

FEven though Riemann was very gifted in mathematics, he planned to study
theology and become a pastor, like his father. In 1846, his father gathered enough
money to send him to Géttingen to study theology. However, once there, Riemann
started attending mathematics lectures by Gauss. The latter recommended that
Riemann give up his theological work and go into mathematics. After gaining
his father’s approval, Riemann transferred to Berlin in 1847, and returned to
Gottingen in 1849. He defended his doctoral dissertation in 1851, on what we
now call Riemann surfaces. He held his first lectures in 1854. His habilitation
lecture founded the field of Riemannian geometry. In 1859, following Dirichlet’s
death, who had occupied Gauss’ chair since 1855, Riemann became the head of
mathematics at Gottingen.

In 1862, Riemann married Elise Koch and they had a daughter. He fled
Gottingen in 1866 when the armies of Prussia and Hanover clashed there. He
died in Italy the same year from tuberculosis. Riemann was a dedicated Christian,
and saw his life as a mathematician as another way to serve God. During his life,
he held closely to his Christian faith and considered it to be the most important
aspect of his life. At the time of his death, he was reciting the Lord’s Prayer with
his wife and died before they finished saying the prayer.

Roughly around the same time, a French mathematician Elie Cartan was
developing a very different type of geometry. In Cartan’s work on differential
geometry, the notions of differential forms and fibre bundles, both of which he
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to a large extent established, played a central role. Both of these will play a
crucial role in this book too. Also, in 1913, constructing linear representations of
Lie groups, Cartan discovered spinors. This will be important in our exposition
as well. It was realised much later, in a 1954 book, The Algebraic Theory of
Spinors, by another French mathematician (and one of the founding members
of the Bourbaki group) Claude Chevalley, that spinors and differential forms are
very closely related. We will explain this fact in due course.

Cartan was led to the notion of differential forms in his 1901 work developing
a geometric approach to partial differential equations. What Cartan was after
was a formalism that is invariant under arbitrary changes of variables. Cartan’s
main tool for this was the calculus of differential forms. Cartan then worked on
problems of group theory, and in particular, as we already mentioned, discovered
the spinor representations of the orthogonal groups in 1913.

Theory of Lie groups is intimately related to geometry. It is thus no surprise
that Cartan turned to the latter. He was also motivated by Einstein’s theory of
gravity that came to prominence in 1919. It is in Cartan’s works of the 1920s
that his most important contributions to differential geometry were developed.
Cartan’s main realisation was that it is fruitful and necessary to consider other
‘bundles’ apart from the tangent bundle, and other ‘connections’ apart from the
Levi-Civita connection. We put the words bundles and connections in quotes
because these notions were only beginning to be understood in Cartan’s works.
In particular, Cartan himself, while working with different bundles extensively,
never explicitly defined what is now known as a (principal) fibre bundle. Cartan
was also responsible for a notion of what is now known as the (principal) con-
nection, and in particular realised that such a connection is best described as a
(Lie algebra valued) 1-form. Cartan was thus able to disassociate the notion of
the connection and parallel transport from the very restricted form these take
in the context of affine connections in the tangent bundle. This led him to the
discovery of many new types of geometry, thus finding probably the most fruitful
generalisation of Riemannian geometry. This was searched by many around the
same time, in particular by Hermann Weyl, but it was Cartan who achieved this
goal. As a bonus of his general programme on connections, Cartan was also able
to give a very powerful and simple description of Riemannian geometry, in his
1925 paper, ‘La géométrie des espaces de Riemann’. In the preface to his 1928
book, Legons Sur la Géométrie des Espaces de Riemann, he stated his aim was
that of bringing out the simple geometrical facts that have often been hidden
under a debauch of indices. It is this description of Riemannian geometry that
we will present under the name of ‘tetrad’ formalism for GR.

Elie Cartan was born on 9 April 1869 in Dolomieu (near Chambéry), a region
Rhone-Alpes of France. His father was a blacksmith. The family was very poor,
and it would be impossible for Elie to get good education if not for his talent for
mathematics that was spotted early. Already at primary school, Elie impressed
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Figure 1.2 Elie Cartan

his teachers. One of them later said: ‘Elie Cartan was a shy boy, but his eyes
shone with an unusual light of great intelligence’. Still, Cartan could have never
become a great mathematician if not for a young school inspector, and later
important politician, Antonin Dubost. Dubost was visiting the school where the
young Elie was taught and was impressed with young boy’s talent. He encouraged
Elie to participate in a competition for state funds that would enable him to study
in a Lycée. Elie’s school teacher M. Dupuis prepared him for the competitive
examinations that were held in Grenoble. An excellent performance allowed Elie
to study in good schools, and then later to study at the Ecole Normale Supérieure
(ENS) in Paris.

At ENS, Cartan became a student of Gaston Darbouz, the inventor of the
moving frame method, which Cartan later largely developed. Cartan’s friend,
Arthur Tresse, was studying under Sophus Lie in Leipzig, and told Cartan about
the remarkable work of Wilhelm Killing on the classification of finite groups of
continuous transformations. Cartan then set to complete Killing’s work, and
corrected some important mistakes and omissions in it. This became Cartan’s
doctoral dissertation. In one way or another, Cartan’s whole scientific career
revolved around the questions related to Lie groups and their geometry.

Cartan was a lecturer at the University at Montpellier during 1894—1896, and
a lecturer at the University of Lyons, where he taught from 1896-1903. In 1903,
he married Marie-Louise Bianconi (1880-1950), the daughter of a professor of
chemistry there. The family moved to Paris in 1909, where Cartan was appointed
professor first at the Sorbonne and later at ENS. The Cartans had four children.
The eldest son, Henri, became a renowned mathematician. The second son, Jean,
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a composer of fine music, died of tuberculosis in 1932 at the age of 25. Their
third son, Louis, became a physicist. He was a member of the Resistance fighting
in France against the occupying German forces, and was arrested and executed by
the Nazis in 1948. Cartan was 75 when he learned of his third son’s fate, and this
was a devastating blow for him. The fourth child of the family was a daughter,
Hélene, who became a teacher of mathematics.

Cartan died in Paris in 1951 at the age of 82. Cartan’s obituary by Chern and
Chevalley opens with the words: ‘Undoubtedly one of the greatest mathematicians
of this century, his career was characterized by a rare harmony of genius and
modesty’.

Cartan’s more general connections were rediscovered by physicists only much
later, in the 1954 work by Yang and Mills. Every known interaction in nature
is now described by a gauge field or connection, of precisely the type that was
first introduced by Cartan in his differential geometry work of the 1920s. Of
course, Cartan did not write the Yang—Mills field equations, as his motivations
were entirely different from those of particle physicists of the 1950s. It was thus
Cartan who developed mathematics that is necessary to formulate gauge theories,
and that can also be used to describe gravity. It is rather unfortunate that the
theory of gravity is usually taught in the nineteenth-century language of tensor
calculus and not in the twentieth-century language of principal connections in
fibre bundles. Not only this second language is more clear — the debauch of
indices is no longer there — but it is also more computationally efficient due
to its usage of differential forms, and brings gravity closer in form to all the
other interactions. We hope this book will serve to promote Cartan’s language
of differential forms and connections as the most appropriate one, not just for
Yang-Mills theory, but also for gravity.

It must be admitted that for someone who was raised on notions of indices and
tensor calculus, absorbing Cartan’s geometric ideas is a rather difficult task. This
is in particular manifested by the fact that Cartan’s work on differential geometry
was recognised to be of importance only late in his life. Quoting Cartan’s obituary
by Shiing-Shen Chern and Claude Chevalley, written in 1951, Cartan’s ‘death
came at a time when his reputation and the influence of his ideas were in full
ascent’. However, even in 1938, Hermann Weyl, in reviewing one of Cartan’s
books, wrote: ‘Cartan is undoubtedly the greatest living master in differential
geometry. ...I must admit that I found the book, like most of Cartan’s papers,
hard reading. ...’ This sentiment was shared by many geometers at the time.
The situation has changed however. Differential geometry is now taught, at
least to mathematicians, in a way that incorporates Cartan’s geometric ideas
from the start. It is time that this powerful language is also taken on board by
(gravitational) physicists.

Having given praise to Cartan’s ideas, it should be said that the tetrad for-
malism is described in most standard textbooks on GR, often under the name
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of ‘non-coordinate bases’, see, e.g., Sean Carroll’s 2019 book and/or Geometry,
Topology and Physics, by Mikio Nakahara (2000). This formalism, however, is
described only as secondary to the usual metric one. In particular, the spin
connection, which is the central object that the tetrad formalism introduces, is
considered to be only an object derived from the usual Christoffel connection.
Also, the conceptual change that the tetrad formalism brings with itself, namely
the fact that it works with a vector bundle different from the tangent bundle, is
rarely emphasised, while this is the central point. Moreover, the presentation of
the tetrad formalism in GR literature in fact avoids introducing any other bundle.
The presentation of the tetrad formalism to be given in this book is different from
the standard treatment in GR texts and is closer to the ones appearing in the
mathematical literature.

Moreover, while a description of the tetrad formalism can often be found in the
GR literature, it is rarely given any significance. Indeed, the usual attitude is that
it is only a reformulation of GR, and, moreover, one that increases the number
of field components that one has to work with, from 10 metric components in
four dimensions in metric GR, to 16 tetrad components. This is clearly in the
direction of loss of economy, and this appears to be a clear reason against using
the tetrads. Furthermore, the tetrad formalism uses two different types of indices,
the spacetime indices for vectors and forms on a manifold, and ‘internal’ indices
for objects valued in the vector bundle on which the tetrad formalism is based.
The usual attitude is that this leads to a notational nightmare. Why then use a
formalism with two types of indices, if in the metric GR it is possible to work with
only spacetime indices? Thus, the usual attitude to tetrads in the GR community
is that this is a cumbersome formalism, which brings with it nothing new, and
is therefore not worth the effort. It is nevertheless admitted that spinors can
only be coupled to gravity by using the tetrads. But one is rarely interested in
gravity effects caused by spinor matter, usually an effective description of matter
using perfect fluids is completely sufficient to extract interesting physics. So, even
though spinors do require tetrads, one rarely needs spinors in GR.

Yet another seemingly compelling reason to ignore tetrads is the description
of the linearised excitations of the gravitational field. These carry spin two.
As such, it appears to be natural to describe them by rank two tensors. The
linearised dynamics is then readily available by either linearising the Einstein
equations, or by looking for a second-order differential operator that is invariant
under the linearised diffeomorphisms. Both procedures uniquely lead to the same
linearised dynamics. The attitude of the particle physics community is then
that Einstein’s theory gives a nonlinear completion of this linearised description,
which is moreover to a very large extent unique. This point of view has been
advocated in Weinberg’s 1972 book, Gravitation and Cosmology. From this point
of view it appears to be unnatural to use any other object to describe gravity
other than the metric.
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Both arguments against the usage of tetrads actually underestimate the power
of the formalism of differential forms. Yes, the tetrad carries more components,
but the amount of gauge has also increased. And it is often the case in mathemat-
ics that a formalism that uses more independent functions allows for a simpler
description. That this is the case with the tetrad formalism is manifested by
the fact that the gravitational action in the tetrad formalism is just quartic in
the basic fields, while the Einstein—Hilbert metric action is non-polynomial in the
metric. Thus, the tetrad formalism gives an algebraically simpler description of
the gravitational field. And working with objects with different types of indices
is not a problem once an appropriate formalism is developed. Indeed, having
fields with two different types of indices does not cause any problems in the
treatment of the Yang—Mills theory. Finally, for the description of the linearised
dynamics, it turns out that not only does the tetrad formalism not make things
more complicated, on the contrary, the usage of differential forms brings with
it simpler differential operators as compared to those that arise in the metric
formalism. In fact, using differential forms, one achieves a description of the spin
two linearised fields that is analogous to the description of Maxwell’s theory, as
we shall see in Chapter 8. There is no such analogy when one works with the
metric variables. So, all in all, the formalism of differential forms does introduce
simplifications in GR ranging from the full nonlinear dynamics to the linearised
treatment. So, it is brushed aside in the usual GR texts for the wrong reasons,
as we hope will become clear from the treatment in this book.

As we have already said in the preface, this book is more than just about the
tetrad formalism. Its unifying theme is the formalisms for GR (in particular, GR
in four spacetime dimensions) that are based on vector valued differential forms.
Towards the end of the book, we will develop an even more exotic alternative,
in which gravity in four dimensions will be seen to arise as the dimensional
reduction of a theory of ‘pure’ differential forms, i.e., differential forms valued in
R, in seven dimensions. The development of all these different formulations would
be impossible without Cartan’s ideas and the example of the tetrad formalism,
historically the first description of GR in terms of differential forms. This explains
the considerable attention given to Cartan’s type of differential geometry in this
book. To put it provocatively, this book attempts to develop the theory of gravity
using the twentieth-century differential geometry of Cartan, forgetting Einstein’s
theory of GR formulated using the nineteenth-century language of tensor calculus
as much as possible.



1
Aspects of Differential Geometry

The purpose of this chapter is to review, in a concise manner, aspects of
differential geometry that will be used in this book. It should be noted that
the presentation here is more a list of things that are important rather than a
pedagogical introduction to the subject. It is likely to be usable by those seeing
this material for the first time only if accompanied by reading other texts. At the
same time, the material here is standard and is covered in many books, so there
is no shortage of more pedagogical sources. The books we like are The Geometry
of Physics by Theodore Frankel (2012) and Geometry, Topology and Physics
by Mikio Nakahara (2003). We have also taken some material from Dubrovin,
Novikov and Fomenko’s (1985) Modern Geometry, and some definitions are from
the book by C. H. Taubes (2011) called Differential Geometry. Our presentation
of differential forms is from R. Bott and L. W. Tu’s (1982) Differential Forms in
Algebraic Topology. Finally, an invaluable source on many aspects of Riemannian
geometry is Besse’s (1987) Finstein Manifolds. The only slightly original part
in this chapter is our discussion of spinors in relation to differential forms. It
is original just in the sense of not being covered in the standard books on
differential geometry. Instead, it is standard in other books, in particular texts
on Clifford algebras.

1.1 Manifolds

The arena of differential geometry is a differentiable (or smooth) manifold. The
formalism to be described is important for two distinct reasons. First, it allows
one to deal with ‘topologically nontrivial’ manifolds, which are, loosely speaking,
manifolds that look like copies of R™ only locally, but not necessarily globally.
Second, the formalism allows one to define objects to be placed on manifolds in a
coordinate-independent manner. It is this second reason that is more important
for the treatment of a theory like GR, rather than the first, because for physics
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purposes one is usually (but not always) happy to study the theory in a setting
of trivial topology.

1.1.1 Cartography

The definition of a manifold is an abstraction of that originally described by
Gauss’ process of a cartographic representation of the Earth’s surface. The
process is as follows: the surface of the Earth is decomposed into sufficiently
small regions. The regions are numbered, partially overlapping and each region
is assigned to a group of cartographers. Each group produces a map of its region,
with the map drawn on a paper. For each map, two coordinates can be used to
identify every point. The collection of maps forms an atlas. And where regions
are overlapping, there exists a clear rule that describes how points on one map
correspond to points on another.

1.1.2 Topological Manifold

In this spirit, a topological n-dimensional manifold is a topological space* M such
that every point has a neighbourhood U homeomorphic? to an open subset in R”.
The neighbourhoods U with a map ¢y : U — R™ are called coordinate charts.
Any topological manifold can be represented as a union of a finite, or countable,
set of coordinate charts U, and a set of coordinate charts U that cover M is
called an atlas on M. Two topological manifolds are said to be homeomorphic if
there is a homeomorphism between them.

1.1.3 Smooth or Differentiable Manifold

A topological manifold M is called differentiable or smooth, if the transition
function for overlapping regions vy o ;' : Yy (U ' NU) — ¥y (U' NU) is a map
between open regions of R™ with partial derivatives of all orders. Two smooth

L A topological space is a set X with an additional notion of neighbourhoods defined on it.
This is an assignment to each element (point) z of X a non-empty collection of subsets of
X called neighbourhoods of z. These are required to satisfy the following axioms: (i) each
point belongs to every one of its neighbourhoods; (ii) every subset of X containing a
neighbourhood of z is also a neighbourhood of z; (iii) the intersection of two
neighbourhoods of z is again a neighbourhood of z; (iv) every neighbourhood N of x
contains a neighbourhood M of x such that N is a neighbourhood of every point in M. To
this, one usually adds the Hausdorff assumption or axiom: for every two distinct points x
and y of X there exist neighbourhoods of z and y that are disjoint from each other. Given
the structure of neighbourhoods, there results the notion of open sets: A subset U of X is
called open if it is the neighbourhood of all points in U.

A homeomorphism is a continuous, one-to-one and onto (i.e., bijective) map between two
topological spaces, whose inverse is also continuous. A map f: X — Y between two
topological spaces is called continuous if for every € X and every neighbourhood N of
f(x) there is a neighbourhood M of x such that f(M) C N.

V]
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manifolds are said to be diffeomorphic if there exists a diffeomorphism between
them, i.e., a smooth homeomorphism with a smooth inverse.

1.1.4 Alternative Definition

The definition of smooth manifolds as given starts with the notion of a topological
manifold, and adds a smooth structure. It is however possible to start directly
with a smooth structure, and induce the topological structure from the smooth
one. Thus, one can start directly in the world of smooth manifolds, and avoid
talking about topological manifolds at all, which is what we will always do here.

This proceeds as follows. One starts by defining a notion of an atlas on M,
which is a collection {U,, %q }acr 0f coordinate charts such that (i) M is covered
by the set of charts {U, }uer; (ii) for each «, 8 € I the image 9, (U, NUp) is open
in R™, with an understanding that the empty set is open; and (iii) the map

¢6 o¢;l : ¢a(Ua mUB) - ¢B(Ua mUB)

is C* with C* inverse.

This gives M a topology by saying that a subset V' C M is open if, for each
a, ¥, (V NU,) is an open subset of R™. This can be checked to give M topology
in the sense that this equips M with the notion of open sets such that (i) M
and empty set are open; (ii) an arbitrary union of open sets is open; and (iii) a
finite intersection of open sets is open. These properties, as well as the fact that
with this topology the maps 1, become homeomorphisms, are proven in lecture
notes by N. Hitchin, entitled Differentiable Manifolds.

1.1.5 Constructions of Manifolds

The basic constructions of manifolds are submanifolds of R™, submanifolds of
manifolds, products of manifolds, open subsets of manifolds, quotients of mani-
folds that are manifolds and the Grassmanians, see Taubes (2011, chapter 1) for
more details.

We will only explain the submanifolds of R™ construction.

Theorem 1.1 Let F': U — R™ be a C™ function on an open set U C R™*™ and
take c € R™. Assume that for each a € F~'(c) the derivative DF, : R"*™ — R™
is surjective (which is the same as assuming that it has mazimal rank m). Then
F~'(c) has the structure of an n-dimensional smooth manifold.

We note that the value ¢ for which at every point of F~!(¢) the matrix of
partial derivatives of F' has the maximal rank is called a regular value. A proof
of this theorem is given, e.g., in Hitchin (2010) lectures.

Example 1.2 Consider the unit sphere in R"*! given by

n+1

St={zeR" > () =1}.

a=1
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We define F': R"™ — R by

Fla)=) (")

i=a

The previous theorem guarantees that F~!(1) is a manifold if 1 is a regular value
of F. To check this we consider the matrix of partial derivatives

oF
= 2x°.
oxe .

This has rank one as long as not all x* are identically zero, which is true for
points on S™. So, S™ is a manifold.

Example 1.3 It is instructive to also see an example when the conditions
of the rank theorem are not satisfied. Let us consider the cone in R"
given by

C"={zeR"™:—(2°) + Z($a>2 =0}.

We similarly construct the function

Its matrix of derivatives is

OF

oxe
This has rank one as long as not all of x* are zero. However, this is not sat-
isfied for all of the points on C* = F~'(0). Indeed, the tip of the cone is
at the origin of RY'™, where all the coordinates vanish, and the conditions of
the rank theorem are not satisfied. We can thus say that 0 is not a regular
value of F'(z). Thus, the cone is not a smooth manifold because the conditions
of the rank theorem fail at its tip. It is also intuitively clear that the tip is
not a smooth point, and we see that this intuition is captured by the rank
theorem.

= (—22° 22", ...,22").

Example 1.4 Here is an example of a more nontrivial submanifold in R? — a
torus. This is defined as a set of points

T°={z eR®: ((a} +23)"* —1)* + 23 = 1}.

Again, the application of rank theorem shows this to be a manifold. This is a
torus of revolution, which is made explicit by the following parametrisation by
two angle coordinates

(¥, 0) = (21 = (1 4 cosp) cos @, xy = (1 + cos ) sin p, x3 = sin).
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1.1.6 One More Manifold Example

Here is one more instructive example: The set of straight lines in the plane.

Example 1.5 Let X be the set of straight lines in the plane R?. Each such line
can be described by an equation

Ax + By + C =0,

with (A, B,C) and (AA, AB, AC), A # 0 describing the same line.
Let U, be the set of non-vertical lines. These are lines for which B # 0. Each
such line has the equation of the form

Yy = mx + ¢,
where m, ¢ are uniquely defined. This gives us the coordinate chart
o 2 Uy — R?; line — (m,c) € R*.

Let U; be the set of non-horizontal lines. These are lines with A # 0. Every
such line is described by an equation of the type

T =my+cC.
So, we have another coordinate chart and the coordinate map
d)l :UléRQ, line_)(ﬁl76)€R2.

Let us now consider the overlap U, N U,. These are lines y = mx + ¢ that are
not horizontal, i.e., m # 0. This gives

WUy NUy) = {(m,c) € R* : m # 0},

which is an open subset of R?, as is required. We can also describe explicitly the
change of coordinates as one goes from U, to U;. Indeed, when m # 0, the line
y = mx + ¢ can be written as x = m~'y — em ™. We thus have

y oby(mye) = (m™ —em™1).

Away from m = 0 this is a smooth map with a smooth inverse. This gives the
set of lines in R? the structure of a smooth manifold.

1.2 Differential Forms

Differential forms are one of the most primitive objects that can be defined
on a smooth manifold. These objects play a very important role in differential
geometry. Our presentation here follows closely the book by R. Bott and L. W. Tu
(1982) titled Differential Forms in Algebraic Topology, but with some differences
in notation.
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1.2.1 Differential Forms on R™

We start by defining differential forms on R™. Let *,a = 1,...,n be the Carte-
sian coordinates on R". We define A® to be the algebra over R generated by
objects dx® with the relations

dz*dz® = —dz"dz”. (1.1)

Note that we omit the wedge product symbol, as being implied. In physics
terminology, the objects dz® are anti-commuting.
As a vector space A® has basis

1, dz®, dzodx®, dxodxzbdxc, ..., dx‘dxz?...dz™,

a<b a<b<e (12)
and is of dimension
dim A® = 2", (1.3)
We define differential forms on R™ to be elements of
A*(R™) = {C™ functions on R"} @z A°. (1.4)

Here ® is the tensor product, whose definition is given in (1.16). This means
that each such form can be uniquely written as

w= E fal‘_‘aqu“l oo dxte,

a1 <---<agqg

where f,, ., are smooth functions that are called components of the differential

form w. The algebra of differential forms is naturally graded
A*(R™) = @7_(A*(R"), (1.5)

where elements of A?(R") are called g-forms on R". We shall often omit the
argument in A?(R™) if no confusion can arise as to what space the differential
forms live on. An alternative expression for a degree g form is

1
AN >w=—f,  odz®t. .. dx",
gife
where the summation convention is implied.

1.2.2 Wedge Product of Forms

We can define the wedge product w A 7 or simply w7 of differential forms
W= fay.agdr® ...dz*t and 7 = Y gy, p,dx" ... dz" to be

WT = E fay.aqey .opdx® . dateda® .. dx®.
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1.2.3 Exterior Derivative
The space A*(R™) comes naturally equipped with a differential operator
d: AT — AT (1.6)
that is defined by two properties: (i) if f € A° then df = (9f/0z*)dz®; (ii) if
W= fay..agdr® ...dx" then dw = ) df,, a,dz ... dz".
Example 1.6 If w = xzdy then dw = dxdy.

The operator d is called exterior differentiation, or exterior derivative, and is
the ultimate extension of the operators of gradient, curl and divergence of vector
calculus, as the following example shows.

Example 1.7 On R3 the spaces A° and A3 are 1-dimensional, and the spaces
A', A? are 3-dimensional. Thus, the following identifications are possible

{functions} ~ {0-forms} ~ {3-forms}
f ~ f < fdxdydz
and

{vector fields} ~ {1-forms} o {2-forms}
(f1: far f5) < fide+ fody+ fadz < fidydz + fadzdz + fadzdy

Then, on functions we have

_of,  of,  Of
df = axdx—k aydy+ 6zdz'
On 1-forms we have
d(fidz + fody + f3dz)
(04 _oh oh _of, o _on
= < ay 9 ) dydz + ( 92 O ) dzdx + < 7 By ) dxdy.

On 2-forms we have
d(frdydz + fadzdz + fodady) = (w + O O

This means that

d(0-forms) = gradient,
d(1-forms) = curl,
d(2-forms) = divergence.

It can be checked that d is an antiderivation, i.e.,

d(wT) = (dw)T + (—1)%*ewdr.
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Note that this is the ordinary product rule at the level of functions. It can also
be checked that, in view of the fact that the partial derivatives commute, the
operator d squares to zero

d*> = 0.

1.2.4 De Rham Complex

The space A*(R™) equipped with the operator of exterior derivative is called the
de Rham complex on R™. The kernel of d are closed forms, while the image of d
are exact forms. On R? the notion of closed forms subsumes the vector calculus
terminology of irrotational and solenoidal vector fields, while the notion of exact
forms generalises that of gradient and curl vector fields.

The de Rham complex may be viewed as a God-given set of differential
equations, with solutions being closed forms. For example, on R?, finding a
closed 1-form fdx+ gdy is equivalent to solving the differential equation dg/dz —
0f /0y = 0. Since exact forms are automatically closed, they constitute ‘trivial’
or ‘uninteresting’ solutions. A measure of the size of the space of ‘interesting’
solutions is the definition of the de Rham cohomology: The ¢-th de Rham coho-
mology of R™ is the vector space

HY(R") = {closed g¢-forms}/{exact g-forms}.

For more on de Rham cohomology and the technology needed to compute it, see
the Bott—Tu book (1982).

1.2.5 Pullback of Differential Forms

We would now like to extend the notion of differential forms and d from R" to
an arbitrary manifold. To this end, we need to understand how these notions
are compatible with coordinate transformations between charts. To start with,
let us introduce the notion of a pullback of a differential form. Thus, given a
smooth map

f:R™ 5 R"

there is a natural notion of pullback on functions. Indeed, given g € A°(R™) its
pullback f*(g) € A°(R™) is defined as

f(g)=gof.

We then extend this notion of pullback so that it commutes with the exterior
differentiation. This defines f* on forms uniquely

O Gayagdy®™ o dy* ) = (Gay.aq © £)AWay 0 ) - d(Yag © f),
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so that
o AYR™) — AY(R™).

The proof that with this definition the pullback commutes with the exterior
differentiation is an exercise in chain rule. In practice, the pullback is computed
by the simple change of coordinates.

Example 1.8 Let w = zdy — ydr € A*(R?), and let the map f : S* — R? be
given by & = cos(p),y = sin(¢). Then

[ (w) = cos(p)d(sin(p)) — sin(p)d(cos(p)) = dep.

1.2.6 Differential Forms on a Manifold

Having defined the notion of pullback of forms on R", we are ready to define
differential forms on an arbitrary smooth manifold M. Thus, a differential form
on M is a collection of forms wy on R™ for each coordinate chart U, compatible
in the following sense: If U, U’ have a common overlap U’ N U then the pullback
of wyr to the coordinate chart U coincides with wy

(Q/JU/ ¢} @bal)*(ww) = Wy-

Example 1.9 Consider the space S2. This is a manifold that can be covered
by two coordinate charts each diffeomorphic to R?. Concretely, we take one
coordinate chart to be given by the stereographic projection from the north pole
from the sphere to the equatorial plane. We will identify the equatorial plane R?
with the complex plane C. Then, if 6, ¢ are the usual spherical coordinates on
the sphere, the complex coordinate of a point corresponding to the point 6, ¢ is
> cos(0/2)
Yy S?/{N} = C, z:me‘p.
Let us now consider a 1-form on C
 jzdZ+zdz 2P -1
I FD N FE

Its pullback to S? is therefore given by
PYy(wy) = dcos = dus,

where x,x,, 15 are the coordinates of the embedding of S? into R3. The form
wy is a good 1-form in Uy = S?/{N}, which moreover vanishes at z = 0 (south
pole).

Let us now consider the second coordinate chart. It is taken to be the stere-
ographic projection from the south pole to the equatorial plane. If we again
identify R? with C, this coordinate map is

sin(0/2)

s S?/{S} — C, w:mew.
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It is easy to see that w = 1/z. This is a map ¥n_,s from C with origin removed
to C, and is the change of chart coordinate transformation in this case. Let us
define the 1-form w in the chart S to be given by

wdw + wdw
(L+ [w[?)?”

i.e., the same formula as that for wy but in terms of the coordinate w, and
with an extra minus sign. The form wg is a good form on Us = S?/{S},
which moreover vanishes at w = 0 (north pole). It is now easy to check
that

Wg = —

7/’7Vas(ws) = WnN,

and so the 1-form we have described is a globally defined 1-form on S2.

Example 1.10 Let us now give an illustrative example of the fact that not
every differential form that behaves well in some coordinate chart extends to a
well-defined form on the whole manifold. Let us again consider the situation of
S2. Consider the north pole coordinate chart and the complex coordinate z on
it as in the previous example. Consider the following 1-form

izdz— zdz

_ Lzez—dz 1.7
2 14|22 (17)

wWN
This is a good form on S?/{N}, vanishing at z = 0 (south pole). In order
for this 1-form to be well-defined on the whole of S2, there should be a well-
defined 1-form wg on the coordinate chart (S?/{S},1s), whose pullback under
the coordinate transformation w = 1/z should match wy everywhere apart
from the south and north poles. Because wg should match wy we can guess
an expression for it by performing the coordinate transformation z = 1/w.
This gives

i (1/w)d(1/w) — (1w)d(1/@) i wdi — wdw

2 L4+ 1/|wf? 2wl (Lt fwl?)

Ws

We want this to be defined everywhere in the coordinate chart (S?/{S},¢s), in
particular at the north pole that corresponds to w = 0. However, it is clear that
this 1-form is not defined at w = 0. So, there exists no globally defined 1-form
on S? that agrees with (1.7) on the coordinate chart (S?/{N},¢¥x). In fact, the
object (1.7) does arise naturally, but corresponds to a connection in a certain
line bundle over S? rather than a 1-form.

Now that we have the notion of differential forms on M, and given that the
operator of exterior differentiation commutes with pullbacks, it is clear that d
extends to a well-defined operator on differential forms on M. In particular, on
overlaps U’ NU, the operator d can be computed in either of the two coordinate
systems and is coordinate-independent.
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1.3 Integration of Differential Forms

One of the most important reasons to be interested in differential forms is the
fact that they can be naturally integrated over (oriented) submanifolds. More
precisely, a differential form of degree ¢ can be naturally integrated over a
submanifold of dimension ¢, closed or with boundary. A related reason why
differential forms are important is the generalised Stokes’ theorem stating that
the integral of an exact form dw is equal to the integral of w over the boundary.
This is the ultimate generalisation of the integral theorems of vector calculus.

1.3.1 Orientation

Differential forms can only be integrated over oriented submanifolds, so we first
need to discuss the notion of an orientation. Our discussion follows closely the
one in book by Theodore Frankel (2012) called Geometry of Physics.

Let us first discuss an orientation of a vector space V. Let e, € Via=1,...,n
be a basis of vectors in V. Any other basis e/, € V is obtained from e, by
a GL(n,R) transformation e, = m,’e,,m € GL(n,R). The determinant of m
is either positive or negative. If it is positive one says that e/ has the same
orientation as e,, if it is negative one says that the orientation is opposite. It
is clear that the set of all possible bases is split into two subsets of opposite
orientation. We can arbitrarily pick a basis from one of this two subsets and call
it the positive orientation. To orient a vector space means to choose a basis that
is said to have the positive orientation.

Let us now discuss orientation of manifolds. We can orient each tangent space
T,M over a coordinate chart U by choosing a basis in the space of coordinate
vector fields 9/0x", ..., 0/dx™ and saying that it provides the positive orientation.
We can do so over all the coordinate charts. The key issue is whether a global
choice of orientation is possible, i.e., whether the Jacobians of the coordinate
transformations over the overlaps are all of positive determinant. If it is possible
to choose orientation of the charts in such a way, then we say that the manifold
is orientable. If it’s not possible, we say that the manifold is non-orientable. An
example of a non-orientable manifold is the Mobius strip. It is clear that if M
is connected and orientable, then there are just two different ways to orient it.
The same discussion applies to submanifolds of M. Indeed, they are manifolds
in themselves (possibly with a boundary but we will consider this later), and so
they can be orientable or not, and if orientable, there are exactly two possible
orientations to a connected submanifold.

Another situation arises if we have a submanifold N C M of codimension
exactly one, i.e., the situation of a hypersurface. In this case, there is a notion of
a transverse vector field n along V. It is a vector field that is nowhere tangent to
N, in particular it is nowhere zero. One then says that a hypersurface N C M
is two-sided in M it is possible to choose if there exists a transverse vector field
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along N. In general, if N is a two-sided hypersurface in an orientable manifold
M then it is itself orientable.

1.3.2 Integration of a Form

One first defines the integral of a p-form w = w(z)dz' A- - -Adz? over an oriented
region (U, 0) C R?, where o is an orientation, i.e., a choice of a positively oriented
basis. This is done as follows

/ w= / w(z)dz' A« Adx? = o[z] / w(x)dx' ... dz", (1.8)
(U,0) (U,0) U

where the integral on the right-hand side is the usual repeated integral in R?, and
o[z] = 0[0y,...,0,] = £1 is the orientation of the basis of the coordinate vector
fields 0y, ..., 0,. We have reinstated the wedge product symbol in the previous
formulas to make the passage from the integral of a differential form to the usual
repeated integral clear. It is clear that the integral so defined changes the sign if

the orientation is reversed
/ w=— / w. (1.9)
(U,—o) (U,0)

Another property of the integral so defined is that it is independent of the
coordinate system used to evaluate it.

We then define the integral of a differential form over an oriented
parametrised subset of a manifold M. This is defined as follows. An oriented
parametrised p-subset of M is a triple (U, o0, F') consisting of an oriented region
(U, 0) of R? together with a differentiable map F': U — M. We then define

/ w = / Frw. (1.10)
(U,o0,F) (U,0)

In other words, the differential form is pulled back to R? via the parametrisation
map, and then the integral is evaluated as a repeated integral over R?, taking
the orientation into account. It is easy to check that, in the case of curves and
surfaces in R®, this definition leads to the familiar vector calculus formulas for
line and surface integrals. It can also be checked that the integral so defined is
in fact independent of parametrisation.

Not every submanifold N C M can be covered by a single parametrised subset,
because the topology of N may be nontrivial. In this case, one defines the
integral by covering N with patches each of which can be parametrised, and
moreover patches that overlap only along edges and vertices. One then defines
the integral of a form over N to be given by the sum of the integrals over the
patches. This does not depend on how the surface is decomposed into a collection
of parametrisable patches. We refer the reader to the book by Frankel (2012)
for more details.
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1.3.3 Stokes’ Theorem

A manifold with boundary is a slight generalisation of the concept of a manifold.
Every point of a manifold has an open neighbourhood diffeomorphic to a ball in
R™. For a manifold with boundary this is true everywhere apart from points of
the boundary. This is a special set of points denoted by M that is required to be
a manifold itself. In particular, 9M does not have a boundary, or the boundary
of a boundary is zero. Second, every point of the boundary has a neighbourhood
that is diffeomorphic to a half-ball in R", i.e., the set |z| < €,2™ < 0. It is clear
that a manifold with empty boundary is just the concept of the manifold as we
have previously defined it.

To state the Stokes’ theorem for an integral of a p-form w over a p-dimensional
submanifold N C M with boundary we need to define a canonical notion of the
orientation of a boundary N when an orientation of N is given. This is done
as follows. Let ey, ..., e, span the tangent space to N at some point x € JN.
Let n be the tangent vector to IV at x that is transverse to N and points out of
N. Then ey, ..., e, is called positively oriented when n,e,, ..., e, is a positively
oriented basis of vectors in T, N according to the orientation of N chosen. With
this choice of the orientation of N we have

Theorem 1.11 Let N C M be a compact, i.e., having the property that every
cover of N by open subsets has a finite subcover, oriented p-dimensional subman-
ifold with boundary ON in a manifold M. Let w be a continuously differentiable

(p — 1)-form on M. Then
/dw:/ w. (1.11)
N aN

1.4 Vector Fields

In differential geometry, vector fields get encoded into the operators of directional
derivatives on functions. This gives a coordinate-free definition. However, in the
spirit of the definition of the differential forms as given before, let us first state
a definition in a coordinate chart.

1.4.1 Definition

One first defines the tangent space to M at a point p, denoted by T,M, to
be the vector space over R spanned by the operators of partial derivatives
8/0z',...,0/0z", where z',... z" are local coordinates in some coordinate
chart U to which point p belongs. Then a smooth wvector field on U is a linear
combination

Vy =0

Oxe’
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with summation convention implied. This way of defining vector fields encodes
them into operators of directional derivatives on function.

In a different coordinate chart y* = y“(x) the vector field is given by push-
forward, with the relation between the coordinate vector fields given by the
chain rule

o oy 0
dx*  Oxo dyb”
A smooth vector field on M can then be viewed as a collection of vector fields on
charts U that agree on overlaps U’ NU. A vector field on M is an object in the
tangent space to M denoted by T M. We will give a coordinate-free definition of
vector fields in Section 1.4.4, after some examples are considered.

1.4.2 Push-Forward of Vector Fields

Let us develop the notion of push-forward of vector fields further. Thus, if ¢ :
M — N is a diffeomorphism from manifold M to manifold N, the push-forward
maps vector fields on M to those on NN, is defined by the chain rule, and is
denoted by ¢, : TM — TN. Note, however, that the push-forward is a subtle
notion because in general it is not possible to identify a vector field on N that is
a push-forward of a given vector field on M. For example, the map ¢ : M — N
may not be surjective. In this case one can at most define the push-forward vector
field on the image of the map. Another situation where the push-forward is not
generally defined is when ¢ is not injective. In this case there is more than one
choice of a push-forward at any given point in the image. In the situation of a
surjective map ¢, a vector field X € TM is called projectable if ¢.(X,) € T,N
is independent of a choice x € ¢! (y),y = ¢(z). This is precisely the condition
that guarantees that the push-forward of X € TM as a vector field on N is
well-defined. This discussion makes it clear that the notion of a push-forward of
vector fields is much more complicated and subtle than the notion of the pullback
of functions and forms. This is one more reason to say that differential forms are
more fundamental objects than vector fields.

An equivalent way of stating the definition of the push-forward is to use the
already available notion of the pullback on functions. Thus, if f € C*(N) is a
function on N, then ¢*(f) € C>(M) is its pullback. The push-forward vector
field ¢.(v) € TN is defined via the following relation

v(@7(f)) = . (v)(f) (1.12)

This is the same as the (implicit) definition by the chain rule. Indeed, if y* are
coordinates on N and y* = y*(x) is the map ¢ : M — N, then ¢.(f)(z) =
f(y(x)), and we have

) Loyt 0

06" (1) = 05 F0(a) = v 5 2 1) = (6005 55 0) = 6.(0) ().
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1.4.3 Example

Example 1.12 Let 0, ¢ be the usual spherical coordinates on S?. Consider the
following vector field on S?

0
0¢’
This is a globally defined vector field, as will be clear from considerations that

follow later in this example. Consider the stereographic projection map

e _ cos(0/2) "
Yy S?/{N} = C, z—me .

v =

Let us find the push-forward of v with respect to this map. We have

0 8z8+828 ‘23 128 (1.13)
v = e—_— = —— _—— = 17— — —_—. .
YT 09 0002 990z 0z 0z
Here z, Z are interpreted as the local coordinates on C.
Let us now take the other coordinate chart and consider its stereographic
projection
sin(6/2) .
:82/{S} = C = —"—Le¥.
Vs atl ’ v (:05(6‘/2)6
In this coordinate chart the vector field v is given by the same expression
v = 0/0¢, and its push-forward is
.0 ._0
vg = lw— — iw——
s ow ow’
which is the same expression as (1.13) with with w in place of z.
Now the overlap Uy NUg is all of the sphere without the north and south poles.
On the overlap we have w = 1/Z. Let us find the push-forward of the vector field
(1.13) under this map. We have

owo  owo
0z Ow 0z Ow

(1.14)

_s(0wo 000
lz 0z 0w 0z 0w/’

The only nonvanishing derivatives here are dw/9z and its complex conjugate.
We get

YN 7Syy =iz (

1 0 Lz 10 . 1

———+tiz——— = —lw— +iw— = vs.
Pow TR ow ow ' ow 0
This coincides with the vector field in (1.14), which shows that the vector field
given in two different coordinate charts by (1.13) and (1.14) defines a globally

well-defined vector field on S2.

,¢N—>S

« Uy = —1
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1.4.4 Vector Fields as Derivations

Our definition of vector fields shows that they map smooth functions on M to
smooth functions on M. Explicitly, in local coordinates

o)) = v (@) 2 (),

It is clear that this map satisfies the Leibnitz property

v(fg) = fu(g) + gv(f)-

In fact, any linear transformation with this property (called a derivation of the
algebra C'*>°(M)) is a vector field:

Lemma 1.13 Let v : C®°(M) — C>°(M) be a linear map that satisfies the
property v(fg) = fv(g) + gv(f). Then v is a vector field.

A proof is simple and instructive, so we will spell it out. By linearity v(cf) =
cv(f), where c is a constant, and by Leibnitz property v(cf) = cv(f) + fv(c),
which means that v(c¢) = 0. Now, near a point with coordinates p* any f(z) can
be written as

f(x) = (xa - pa)ga(m) +c,
where g,(x) are some functions that satisfy

0.0 = 2L (p).

We now apply a derivation v to f written in this form. Using the Leibnitz property
this gives

v(f) = v(@)ga + (&° — p")v(ga)-
Evaluating this at x = p we get

o)) =0 () 52 ().

Defining now v(z*)(p) := v* we see that indeed any derivation is of the form

0
Oxa’

v ="

which coincides with our previous definition of vector fields.

The characterisation of vector fields as derivations can be used as an alterna-
tive way of defining them. The advantage of this definition is that it is clearly
coordinate-independent.
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1.4.5 Lie Bracket of Vector Fields

The previous characterisation of vector fields as derivations can be used to show
that the commutator [v,u] of two derivations is again a derivation and thus a
vector field. Indeed, we have

w(fg) = u(v(f)g + fo(g)) = u(v(f)g +v(fHulg) + u(f)v(g) + fulv(g)),
vu(fg) = v(u(f)g + fulg)) = v(u(f))g + u(f)v(g) + v(fulg) + fo(ulg)),

and so

(uv —vu)(fg) = (w(v(f)) = v(u(f)))g + fu(v(g)) = v(u(g))),

which means that the Leibnitz property is satisfied and wv — vu =: [u,v] is a
vector field. The vector field [u,v] is called the Lie bracket of u,wv.

1.4.6 Interior Product

Vector fields are objects that can naturally be paired with the differential forms.
This gives rise to the notion of interior product

iyt AU (M) — ATH(M).
In components this is given by

(to)ay..aq_y = V" Waay..aq_; - (1.15)

q—1

In particular, the interior product of a vector field with a 1-form is a function
i,0 = 0(v), where 0 € A*,v € TM.
The interior product can also be defined recursively. Thus, given a differential

form
_ 1 dz™ ... dz®
W= Wayagdr™ . da
we define
. 1 . aq a q—1 1 ay ; a
lyw = —!wal_,_aq(zvdaﬁ ).o.o.dz® 4+ (—1) —!wal_“aqu oo (t,dz®a).

This means that we successively apply the operator i, to all 1-form factors in w,
taking into account the arising signs. All terms in the previous expression are
equal, and so the sum computes to

v4 1w dz®? ...dz".

= (q_ 1)' ay...aq

This clearly agrees with the component definition (1.15) stated previously.
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Example 1.14 Considering again our previous example of S? manifold, let us
compute the pairing of 1-form

with vector field

with both being given by their expressions on the coordinate chart S?/{N}. It
is computed using the rules

0 (0
dz (82) =1, dz (82) =1,

with the other two possible pairings being zero. This gives w(v) = 1, which is of
course the expected pairing d¢(9/0¢) = 1.

Example 1.15 Here is a more nontrivial example of usage of the interior product.

Let
0

w = dxdy, v:z%+ya—y.

Then
Tyw = xdy — ydx.

The way this is computed is that i, is applied to every factor in dxdy, taking
into account the arising signs. In other words i, (dzdy) = (i,dx)dy — dz(i,dy).

1.4.7 Coordinate-Free Definition of Forms

The fact that there is a natural pairing between vector fields and 1-forms means
that the space of 1-forms can be identified with the space of linear functionals
on vector fields

0:TM — R, v— 0(v) =1i,0.

Given that we have a coordinate-independent definition of vector fields as deriva-
tions, this gives a coordinate-independent definition of 1-forms. In view of the
possibility of this definition, the space of 1-forms is often denoted by T* M, and
referred to as the cotangent space to M.

1.5 Tensors

We have so far encountered differential forms as well as vector fields as ana-
lytical objects on manifolds. These are examples of more general objects called
tensors.
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1.5.1 Tensor Product

Let V, W be two finite-dimensional vector spaces over R. We are going to define
a new vector space V' ® W with the property that if v € V,w € W then there
is a product v ® w € V ® W. The property of the tensor product ® is that it is
bilinear

(Avy 4 pv) @ w = Av; @ W + Py @ w, (1.16)
v (Awy + pwy) = Av @ wy + pv ® ws.

So, the tensor product V ® W is the vector space of all finite linear combinations
of symbols like v ® w. Two such expressions are regarded as equal if they can be
transformed one into another by a sequence of operations (1.16).

Ife,eVii=1,...,n,f;, € W,j =1,...,m are a basis for V,W, it is clear
that the vectors e; ® f; form a basis for V@ W, and so the dimension the tensor
product space is dim(V @ W) = dim(V)dim(W). It is important to remember
that a typical element of V' ® W can only be written as a sum

E a;j€e; Q fja
i,

and not as a pure product v ® w.

1.5.2 Tensors

At a point p € M of the manifold we have previously defined the vector spaces
T M, of vectors (derivations) and 1-forms (covectors) T*M,. We can take the
tensor product of r copies of the tangent space and s copies of the cotangent
space. An element t of this tensor product is called a tensor of type (r,s)

teTM,® TM,®T*M,®T*M, =T"*M,.

If coordinates are chosen, then such a tensor can be expanded in coordinate bases
in TM,, T*M,

@dz" ® - @ da®, (1.17)

ay...ar 8
t= tbl...br 3$a1 ® T ® 81'0'7‘

where summation convention is implied.

Having defined tensors at a point, we can extend this definition to the whole
of the manifold. As with differential forms and vectors, there are two possible
definitions. One is the coordinate one, in which a tensor is a collection of objects
like (1.17) in each coordinate chart that match on coordinate chart overlaps.
Another, coordinate-free definition arises if we remember that vectors can be
naturally paired with 1-forms, and 1-forms can be naturally paired with vectors.
Then a tensor t € T™*M on M can be defined as a multi-linear functional

teT M :T*Mx - xT*MxTM x - x TM — C®(M). (1.18)
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In other words, a tensor of type (r, s) can be viewed as a machine into which one
has to insert r 1-forms and s vector fields to get a function on M. This definition
is clearly coordinate-independent.

It is worth remembering that type (1,0) tensors are vector fields, and type
(0,1) tensors are 1-forms (covector fields). The type (0,0) tensors are defined to
be functions.

Example 1.16 There exists a (1,1) tensor that in every coordinate system
has components 1,0. Its components are denoted by 67, which is known as the
Kronecker delta. The tensor itself is then

0
§ =6 — ®da’.
b Oz
The Jacobians arising under changes of coordinates cancel, and this tensor can
be given by J; in any coordinate system.

Because vectors can be naturally paired with covectors, there exists on tensors
a naturally defined operation of contraction, which maps a tensor of type (r, s)
into a tensor of type (r — 1, s — 1). This arises by pairing one of the vector slots
with one of the covector slots. It is important to keep in mind that in general
the position of the slots matter, and so, e.g., contraction of the first vector slot
with the first covector slot gives a tensor different from the one that arises by
contracting the second vector slot with the first covector slot. Given a tensor of
type (r, s) there are in general nm different tensors of type (r—1,s—1) that can
be obtained by contraction.

Example 1.17 Taking the tensor ¢ of type (1,1) as an example, there is the
only possible contraction. This contraction produces a function on M, whose
value is constant and equal to the dimension of M.

1.5.3 Dafferential Forms as Tensor Fields

Having defined tensors we can see that the previously defined differential forms
are just special type of tensors. Thus, a rank ¢ differential form is a completely
antisymmetric tensor of type (0,q). Indeed, we have defined differential forms
as elements of vector space generated by anti-commuting objects dx®, with a
general form of rank g given by

1
A'>w=—w,

{Way..agdx™t .. da, (1.19)
n:

1
with the summation convention implied. Given that the coordinate g¢-forms
dx™ ...dzx% are completely antisymmetric in ay,...,a;, the form components

w are also completely antisymmetric. There is then a natural correspon-

dence under which g-forms go into tensors of type (0, q)
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1

1
o] maquc‘” Loodx® — —walmaqdl’“l Q- ®dr*,

Wq T
n:

1
where we just added the tensor product symbols. It is clear that this sends a
form of rank ¢ into a tensor of type (0, ¢) that is completely antisymmetric. In
the opposite direction, a tensor of type (0, ¢q) that is completely antisymmetric
gives a ¢-form obtained by replacing every occurrence of the tensor product
with the wedge product (or, as in this book, simply omitting the tensor product
symbol with the wedge product symbol implied). With this in mind, we will
not make any difference between the antisymmetric rank (0,q) tensors and
differential forms.

1.6 Lie Derivative
1.6.1 One-Parameter Groups of Diffeomorphisms

Definition 1.18 A one-parameter group of diffeomorphisms of a manifold M is
a smooth map

¢ MxR— M

such that (introducing the notation ¢,(z) = é(z,t)): (i) ¢, : M — M is a
diffeomorphism; (ii) ¢g = id; (iil) Psry = D5 © Py.

It is important that this definition requires that the map ¢, : M — M exists
for all ¢ € R. It is also possible to introduce a related notion of an integral
curve of a vector field v though a point p € M. This can also be described
as a family of maps ¢; defined for some range of parameter ¢, with this range
typically depending on the point p through which the integral curve is drawn.
The maps satisfy ¢, = id and ¢y, = ¢, 0 ¢, wherever they are defined. On
compact manifolds integral curves can be extended to one-parameter groups of
diffeomorphisms (see Section 1.6.2 for the corresponding theorem).

We will see that one-parameter groups of diffeomorphisms generate vector
fields (as their velocity vector field, see Section 1.6.2), and vice versa, at least
on compact manifolds, vector fields generate one-parameter groups of diffeomor-
phisms. So, vector fields can be viewed as infinitesimal versions of one-parameter
groups of diffeomorphisms.

1.6.2 Velocity Vector Field

Let ¢; be a one-parameter group of diffeomorphisms, and let f be a function on
M. Then f(¢(x)) is a smooth function of ¢. Differentiating with respect to ¢ at
t =0 we get

0
il @da))| = u(f).

t=0
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This is a tangent vector at x as can be seen from the fact that it satisfies the
Leibnitz property. This follows from the Leibnitz rule for the derivative with
respect to t and ¢y(z) = 2. In local coordinates we have

ozt 2™) = oy (x,t), ...,y (2, 1))

and
8 1 n _ 8f aya __.a 6f
TRACRERSELIR) Ml et B v B G et
which corresponds to the vector field
“ 0
v =v"(x) pyve
Here
apy — W
vi(z) = Ot li=o’

The vector we have obtained this way is the velocity vector of the curve ¢, (x)
at point x. We, however, have the orbits of ¢, covering the whole of M, and we
can compute this velocity vector at any point. This gives us the velocity vector
field corresponding to a one-parameter group of diffeomorphisms of M.

It is clear that to define the notion of the velocity vector field of a map ¢, :
M — M we only need ¢; to be defined for small values of t. So, the velocity vector
fields can be defined in situations more general than those of one-parameter
groups of diffeomorphisms, as we will now see.

1.6.3 Integral Curves

We now explain how one can go in the opposite direction and, given a vector
field, construct a map ¢; : M — M (not necessarily defined for all ¢ € R) that
satisfies properties ¢, = id and ¢;,, = ¢; 0 @,.

Definition 1.19 An integral curve of a vector field v is a smooth map ¢ :
(o, 8) C R — M such that the velocity vector field of this curve coincides with
v along this curve.

Example 1.20 Let M = R? with coordinates (z,y) and let v = 9/0z. We
are looking for an integral curve for this vector field in the form (x(t),y(t)). Its
velocity vector field is given by

dv 0 dy 0

dt 0x  dt Oy’

We thus get the following equations for the integral curves of 9/dx:
d d

z dy

dat a =
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whose solution is

(@(t),y(t)) = (t + a1, a2).
Thus, the integral curves are horizontal lines.
We now have the following theorem.

Theorem 1.21 Given a vector field v on M and a point a € M there exists a
mazimal integral curve of v through a.

A proof is the generalisation of the previous example, see, e.g., N. Hitchin’s
lectures on differential geometry. We now allow the point a to vary. This produces
the following theorem.

Theorem 1.22 Let v be a vector field on M and for (t,x) € Rx M, let ¢(t,x) =
@¢(x) be the mazimal integral curve of v through x. Then (i) the map (t,z) —
oi(x) is smooth; (ii) ¢, 0 ¢, = ¢y, wherever the maps are defined; (i) if M
is compact then ¢.(x) is defined on R x M and gives a one-parameter group of
diffeomorphisms of M.

A proof is given in N. Hitchin’s lectures. This theorem can be rephrased by
saying that vector fields generate integral curves viewed as maps ¢, : M — M
satisfying ¢, o ¢, = ¢y, wherever the maps are defined. Further, on compact
manifolds these extend to one-parameter groups of diffeomorphisms.

1.6.4 The Lie Bracket of Vector Fields Revisited

We have just seen that a vector field gives rise to a one-parameter family of maps
¢, : M — M that have this vector field as its velocity. If we consider the natural
action of this diffeomorphism on a function f, and evaluate its derivative at zero,
we get the action of this vector field on f

0
af(éﬁt) . =v(f).

An alternative way of stating this relation is to say that we are differentiating
with respect to ¢ the function ¢;(f) obtained as the pullback of f with respect

to ¢,

o . B
S| =), (1.20)

=0

We can also consider the action of the diffeomorphism ¢, on some other vector
field u. In the context of Lie derivative, the convention is to always consider the
pullback ¢7(u), which is defined as the push-forward with respect to the inverse
map &; *. A simple calculation shows that this pullback satisfies

¢; (u(f)) = &7 (w) (¢} f)-
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This can be differentiated with respect to ¢t at ¢ = 0 keeping in mind (1.20).
We get

v(u(f)) = a(f) + u(v(f)),
which implies that
L,u=10=vu—uv=[v,ul. (1.21)

This gives the Lie bracket [v,u] the interpretation of the infinitesimal change of
u with respect to the diffeomorphism generated by v. The operator L, is called
the Lie derivative with respect to a vector field v. In coordinates the components
of the Lie bracket vector field are given by
» Ou® » OV”

90 % ot = VP Ou® — uPGyv”. (1.22)

1.6.5 Lie Derivative of 1-Forms

Let us now repeat a similar calculation, but for 1-forms. Thus, we again take the
one-parameter group of diffeomorphisms ¢, that corresponds to a vector field v.
We take a 1-form 6 and consider its pullback ¢;(0) with respect to ¢,. We now
pair the 1-form 6 with an arbitrary vector field u. There is a simple relation
between this pairing and the pairing of the pullback objects

¢y (0(u)) = 7 (6)(¢7 (w)).
We then derive this with respect to ¢t and set t = 0. This gives
v(0(u) = O(u) + 6(x). (1.23)

Because we already know (1.21) we can get 6.
Let us derive a convenient formula for 6([u,v]). We have, in coordinates

O([v,u]) = 0, (v°0pu® — u’dpv*) = V0, (0,u") — u’dy(0,v") + u’v* (90, — 0a0s).
This can be rewritten as
O([v,u]) = v(0(w)) — w(B(v)) — iyi,db, (1.24)

where we have used the interior product. We now combine this with (1.23)
and notice that the terms v(6(u)) cancel on both sides. We also rewrite
u(A(v)) = i,di,0 and 6(u) = i,6, and cancel the i, on all sides of this equation.
We get

L£,0=0=di,0+i,do. (1.25)

The formula we have derived is known as the Cartan’s magic formula.
It is a good exercise to rewrite this formula in components. We have

(ﬁvﬁ)a = aa(ﬁbvb) + ’Ub(abea — 6a9b) = Ub(‘?bﬁa + 0b6avb. (126)
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Let us derive another property of the Lie derivative £,. Let us apply it to a
1-form that is given by the exterior derivative of a function

Lodf = diydf + iyddf = di,df = dLC,f.

We thus see that the Lie derivative commutes with the operator of exterior
differentiation, which is one of its most important properties. This property
extends to Lie derivative of arbitrary degree forms, which will be discussed in
Section 1.6.7.

1.6.6 The Practical Way of Computing the Lie Derivative

Let us again use the formula (1.26) for the components of the Lie derivative of
a 1-form. Let us multiply this formula by dx® on both sides. We have

(L£,0),dz* = (v°0,0,)dz® + (0,0,0°)dz® = (L,0,)dx* + O,d(L,z").

Indeed, to write the last term on the right-hand side we have used L£,2° =
v20,x® = v’. We can thus write this formula as

L0 = L,(0.dz") = (£,0,)dz" + 0,d(L,2"). (1.27)

This gives us an efficient practical rule for computing the Lie derivative of
one forms: write 1-form in a coordinate basis as § = 6,dz*, and then apply
the Lie derivative first to the components 6, viewed as functions, and then to
the coordinate 1-forms dz®. The latter can be computed using the fact that the
Lie derivative commutes with the exterior derivative, and thus the Lie derivative
must be applied again to just functions — the coordinate functions x*. One can
check that the similar rule can be used also for vector fields, and indeed for any
tensors. This gives the most practical way of computing the Lie derivative of
concretely specified tensors.

1.6.7 Lie Derivative of Differential Forms

Cartan’s magic formula that expresses the Lie derivative of a 1-form in terms of
the operations of exterior differentiation and interior product extends to forms
of arbitrary degree.

Theorem 1.23 The Lie derivative L,w of a p-form w is given by
Low = d(i,w) + i,dw. (1.28)

A nice proof of this fact is given in N. Hitchin’s differential geometry lecture
notes. Cartan’s formula (1.28) immediately shows that the Lie derivative on
forms commutes with the exterior derivative.
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1.7 Integrability Conditions

This section discusses the classical question of conditions of integrability of a
given distribution of vector fields. We follow Theodore Frankel’s (2012) book,
Geometry of Physics, to which the reader is referred to for more details and
proofs.

1.7.1 D:istributions and Their Integrability Condition

Given a smooth nonvanishing vector field on R™ one can always, at least locally,
find a smooth family of integral curves, which have the given vector field as
their tangent. The classical question is if the same extends to more than one
vector field, i.e., if, given a smooth family of k-planes in R™ it is possible to find
an integral surface, which is a surface everywhere tangent to the planes. The
answer is in general no.

Definition 1.24 A k-dimensional distribution A; on M assigns in a smooth
fashion to each x € M a k-dimensional subspace A(z) of the tangent space
T,M. An k-dimensional integral manifold of A, is an k-dimensional subman-
ifold of M that is everywhere tangent to the distribution. The distribution
A, is said to be (completely) integrable if locally there are coordinates

zt, .2k gt o, y"F for M of dimension n such that the coordinate slices

y' = constant,...,y" * = constant are k-dimensional integral submanifolds of

Aj. Such a coordinate system is called a Frobenius chart for M.

Definition 1.25 The distribution A is said to be in involution if [A;A] C A,
i.e., if the Lie bracket of any two vector fields from A is again in A.

Theorem 1.26 The distribution A is integrable if and only if it is involutive,
i.e., in involution.

The proof in one direction is easy. If the distribution is integrable then the
integral curve of any vector field in the distribution is in the integral manifold,
and it is easy to show using the definition of the Lie derivative that uses pullback
that the Lie bracket of two such vector fields is again tangent to the integral
manifold. To prove the theorem in the other direction one uses a reformulation of
the integrability condition in terms of differential forms, see the book, Geometry
of Physics, by Frankel (2012).

If a distribution A is integrable, then the integral manifolds define a foliation
of M, and each connected integral manifold is called a leaf of the foliation.

1.7.2 Distributions and 1-Forms

Let 6 be a 1-form that does not vanish at a point x € M. The annihilator
or null space of § at z is the (n — 1) dimensional subspace of T,, M of vectors
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v : 6(v) = 0. The classical literature on this subject writes # = 0 for this null
space. It is also common to refer to 6 as a Pfaffian, and § = 0 is called a Pfaffian
equation. If 64, ...,0, are r = n— k linearly independent 1-forms 6; A--- A6, #£ 0
on some open subspace of M, then the intersection of their null spaces forms an
n —r = k dimensional distribution Aj. In other words, v € A, if and only if
0:(v) =--- =6,.(v) = 0. Note that there is no claim that every distribution can
be globally defined by r Pfaffians. We now have the following theorem.

Theorem 1.27 The following conditions are locally equivalent.

1. A s in involution, that is, [A, A] C A.

2. df; vanishes when restricted to A.

3. There are 1-forms X\;; such that df; = \i; N\ 0;.
4. dO; NQ =0, where Q =60, A---AD,.

The proof is easy, and is based on (1.24), see Frankel (2012, chapter 6). Thus,
a distribution Ay can locally be described either by k linearly independent vector
fields vy, ..., v, that span A, at each point, or by exhibiting » = n — k linearly
independent 1-forms 6, ..., 0, whose common null space is A;. The distribution
is involutive if either [A, A] C A or if df vanishes on vector fields from A. We
know that an integrable distribution is involutive. The statement in the opposite
direction, i.e., that an involutive distribution is locally completely integrable
is known as the Frobenius theorem. For a proof, see Theodore Frankel’s
book (2012).

1.8 The Metric

A metric on a manifold M is a smoothly varying inner product on the tangent
spaces T'M,,. Because the inner product is a (symmetric) bilinear form, we want
the metric to take values in T*M, ® T*M, at each point, i.e., to be a (0,2)
tensor. Moreover, this tensor must be symmetric. In local coordinates this can
be written as

g =ds® = g, dz® ® da®, (1.29)

where we introduced a new notation ds® (the squared interval), whose meaning
will become clear in Section 1.8.1.

If there is such a tensor defined on M, the vector space TM of vectors
becomes an inner product space. Indeed, using g we can define an inner product
(a symmetric bilinear pairing) of two vectors v, w € T'M,

(v, W) = gapv w’.

This metric pairing of vectors v, w gives a real number per point of M. As with
any inner product, this can be used to define the notions of norm and (when the
inner product is positive definite) angle between vectors. Note that the metric
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does not in general need to be positive-definite, even though the cases when it
are easier to analyse. This case is thus more studied.

1.8.1 Length of Curves

The metric plays a distinguished role in differential geometry because this is the
object that is required to be able to compute length of curves on M. Thus, if 2(t)
is any parametrised curve ~, then the length of any segment v, g : t € [o, f] is

defined to be
dx® dzb
(Vi) == /dt\/ oo~ ar (1.30)

This is easily seen to be curve reparametrisation invariant. However, in order for
the square root to be defined, one needs to make some assumption about the met-
ric definiteness, e.g., assuming it to be positive definite makes the length of any
curve well-defined. A metric g on M that is everywhere positive-definite is called
a Riemannian metric on M. The fact that a metric g defines an infinitesimal
squared interval (from which the length of any curve is obtained by integration)
justifies the notation ds? for it in (6.223).

1.8.2 Pullback Metric

Given a map between two manifolds f : M — N, and a metric in N, we can pull
it back to get a metric in M. The pullback metric is easiest to derive working
in some coordinate patch for both M, N. Thus, if  are coordinate on M and
y = f(x) are coordinates on N then

af*oft

= Gab dre @dﬁﬂc ® dz? = g/ ,dz° ® dz*.

[ (gardy® @ dy®)

It is important that the map f : M — N does not need to be invertible. In
particular, this map can be the inclusion map from M to a submanifold M C N.
In this case the metric arising on M is called the induced metric.

Example 1.28 The length of a curve formula (1.30) can be understood in
induced metric terms. Indeed, a parametrised curve z%(t) can be thought of as
a map from R (or a segment thereof) to M. This gives rise to a pullback metric
on R given by

dx® Ox®
*(9) = Gap—— ——dt>.
f(9) = ga dt dt
We can then compute the length of any segment of R in this metric by taking
the square root of the squared interval and integrating, which is precisely what
the formula (1.30) does.
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Example 1.29 Let us consider R® with its standard flat metric
dsis = da’® + dy* + dz°.

Consider the unit sphere in R?® given by the surface x? +1%+ 2% = 1. This surface
can be explicitly parametrised by the spherical coordinates

x =sinfcos¢p, y=sinfsing, 2z =cosbh, (1.31)

which gives the inclusion map S? — R3. The pullback metric is then easily
computed to be

ds%s = d#” + sin® 6d¢°. (1.32)

Example 1.30 Let us now consider the Minkowski space R*? in 241 dimensions,
with the metric given by

dslio = dt* — da® — dy*.

Let us consider the surface H?, which is one of the two sheets (e.g., upper) of
the two-sheeted hyperboloid t? — 22 — y? = 1. This surface is known as the
hyperbolic plane. Let us introduce an analog of the sphere inclusion map (1.31)
by parametrising

x =sinhfcos¢, y =sinhfsing, = coshd. (1.33)
The metric induced on H? is then

dsZ, = df? + sinh’ 0d¢?, (1.34)

H2 —

which is just the metric (1.32) with the trigonometric functions replaced by the
hyperbolic ones.

A different model for H? is possible by introducing the stereographic projection
from the point (—1,0,0) coordinates. We project on the plane t = 0, and the
complex coordinate that on R? that corresponds to a point on H? is easily seen

to be
_sinh(60/2) |
= con(8/2) (1.35)

It can then be checked by an explicit computation that in these coordinates

4|dz|?
R

(1.36)
1.8.3 Isometries

Definition 1.31 A diffeomorphism f : M — N between two manifolds equipped
with a metric is called an isometry if f*gn = gur-
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Example 1.32 Let us consider the upper-half plane M = {(x,y) € R* : y > 0}
with the metric

_dx? +dy?
==
Let us use the complex coordinate w = x + iy. Consider the following transfor-
mations on M

ds® (1.37)

aw +b
= cva

where a,b,c, and d are real and ad — bc > 0. These are known as Mobius
transformations. We have

(1.38)

. dw
and
1 faw+b aw+b ad — be
y = = — - = . 1.
Fy=yef 2i<cw+d cw+d> lcw +dj2”? (1.39)
This means that
_ 4 _
g = (ad — be)® dwdw lcw + d] _ dwdw _ ’. (1.40)

((cw +d)*|* (ad — be)?y*  y?
So, Mdbius transformations are isometries of this Riemannian metric on the
upper-half plane.

Example 1.33 Our other example of an isometry is one linking the metric in
(1.36) with (1.37). Consider a map

w—1
Cw+i
This can be checked to map the upper-half plane in the w-coordinate to the unit
disc in the z coordinate. Let us then compute the pullback of the metric (1.36)
under this map. We have

(1.41)

d
dz = —2i
(w+1)?
and
1_|Z‘2:_2i(w —.u*)) _ 4y' .
lw+i* |w+if?
This means that
4ldzl*>  16|dw|’ |w+i]*  |dw]? (1.42)
(T—=1[22)2  J(w+0)2]> 16y 92 ° '

This shows that the pullback of (1.36) under the map in question is (1.37), and
this is an isometry. The description (1.37) is known as the upper-half plane model
of the hyperbolic plane.
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1.9 Lie Groups and Lie Algebras

In this section we review basic facts about (matrix) Lie group and Lie algebras.
In general, the notion of the group is important because symmetries form groups.
Lie groups arise when symmetries are of continuous nature. We will follow the
book by Taubes (2011) closely.

1.9.1 Definition of a Group

Definition 1.34 A group is a set G with a special element e (called the identity)
and two operations:

« Multiplication 4 : G x G = G, u(g,h) = gh € G.

-1 1

e Inversec:g— g%, o(g)=9g", ggt=glg=e

The multiplication is required to be associative (gh)k = g(hk) and multiplication
of any group element g by the identity element is required to return g, i.e.,

ge =€eg =4g.

Definition 1.35 A Lie group is a group with the structure of a smooth
manifold such that both the multiplication and the inverse are smooth maps.

As we will discuss in section 1.9.6, Lie groups naturally act on themselves by
left or right multiplication. Each of these actions preserves structures on G, and
is thus a symmetry. So, Lie group is a manifold that is at the same time a set
of transformations that acts on this manifold by symmetries. This is why a Lie
group can be thought of as a manifold with a lot of symmetry.

1.9.2 The General Linear Group GL(n,R)

This is the principal and most important example of a Lie group, as all other
Lie groups can be realised as subgroups of a sufficiently large general linear
group.

Let M(n,R) denote the space of n x n matrices with real entries. Using the
matrix elements as coordinates we can view this space as a copy of R, Matrices
can be multiplied

w:M(n,R) x M(n,R) = M(n,R), wim,m’) = mm/’,

and the multiplication map is smooth (being linear in both arguments). There
are two important special functions on M (n,R):

« Det(m) — this is a polynomial of degree n.
o Tr(m) — this is a linear function.

Definition 1.36 Let GL(n,R) be the subset of invertible matrices in M (n,R),
i.e., m € GL(n,R) if and only if Det(m) # 0.

It is clear that GL(n,RR) as defined is an open subset of M (n,R), and is thus
a smooth manifold of dimension dim(GL(n,R)) = n?. The multiplication of
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matrices restricts to GL(n,R) as a smooth map. The inverse map is also smooth,
because for any n it is given by the ratio of a polynomial by the determinant. So,
we deduce that GL(n,R) forms a Lie group, known as the general linear group.
This group plays the key role not only as a ‘manifold with a lot of symmetry’, but
also as the group that naturally acts in the tangent space to every point of every n-
dimensional manifold. This is because the (invertible) coordinate transformations
act on vectors and covectors by the matrix of the Jacobian of the coordinate
transformation. This matrix is nondegenerate and belongs to GL(n, R). For this
reason one often refers to GL(n,R) as the structure group of an n-dimensional
manifold. We will discuss this point when we describe fibre bundles.

1.9.3 Subgroups of GL(n,R)

Definition 1.37 A subgroup H of group G is a subset that contains the identity
e, is mapped into itself by the inverse map, and is closed under the multiplication.

We can then obtain Lie groups by taking subgroups of other Lie groups. Indeed,
a subgroup of a Lie group that is also a submanifold is a Lie group. Let us apply
this strategy to GL(n, R) and determine interesting Lie subgroups that this group
contains.

The group SL(n,R) C GL(n,R) is defined to be the subgroup of the general
linear group consisting of matrices of determinant one

SL(n,R) = {m € GL(n,R) : Det(m) = 1}.

This is a subgroup because Det(mm') = Det(m)Det(m’). One proves that this
is also a submanifold using the rank theorem, see Taubes (2011) for the proof.
The orthogonal group O(n,R) C GL(n,R) is defined to be

O(n,R) = {m € GL(n,R) : mm™ = 1}.

This is a subgroup because, given m,m’ € O(n,R) we have (mm/')(mm/)T”
mm/(m')"m” = 1. One again shows that this is a submanifold of GL( R) using
the rank theorem, see Taubes (2011). The dimension of O(n,R) is n(n — 1)/2.

The determinant of any matrix in O(n,R) satisfies (Det(m))? = 1 and so
Det(m) = £1. One then defines the set of orthogonal matrices with unit deter-
minant to be the special orthogonal group

SO(n,R) = {m € O(n,R) : Det(m) = 1}.

This is clearly a subgroup. As a manifold O(n,R) splits into two connected com-
ponents, and the special orthogonal group is just one of these two connected
components. So, it is also a Lie group. Its dimension is the same as that of
O(n,R), and is equal to n(n —1)/2.
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1.9.4 Complex Lie Groups

One can define Lie groups similar to those defined previously over R but working
over C instead. One starts by defining the group GL(n,C), which is defined as
the open subset of invertible Det(m) # 0 matrices in the space M (n,C) of n xn
matrices with complex entries. Viewing C as R?, we can coordinatise GL(n,C)
by 2n? real coordinates.

There is, however, another definition of GL(n,C) that shows how this group
actually arises naturally when working over R. The idea of this definition is
to start with what is called an almost complex structure on R?", and then
consider all matrices in M (2n,R) that commute with the chosen almost complex
structure. It is instructive to see how GL(n, C) arises in this ‘real’ fashion.

An almost complex structure is defined as an 2n x 2n matrix that squares to
minus the identity matrix

JeM?2n,R):J> = —1.
We now define M; to be the set of 2n x 2n matrices that commute with J
M;={me M(2n,R) : mJ = Jm}.

We then define G; to be the set of invertible matrices with this property. This
is a group by virtue of mm/'J = mJm’ = Jmm/ and Jm~' =m~1J.

To see how n x n complex matrices can arise in this setup we note that the
eigenvalues of J are +i. The matrices commuting with J preserve the eigenspaces.
Because the matrix J we start from is real and acts on the real vector space
of dimension 2n, the eigenvectors come in complex conjugate pairs: if v is an
eigenvector of eigenvalue +i, i.e., Jv = iv, then v is an eigenvector of eigenvalue

—i, i.e., Jv = —iv. Let vy,...,v, be a set of linearly independent eigenvectors
of J of eigenvalue +i. Then any m that commutes with J preserves the space
spanned by vy, ...,v,. Its action is thus of the form

_ C
muv; = mij'Uj7

where m‘fj € C are a set of n x n complex numbers. So, we get an identification
between real 2n x 2n matrices m that commute with J and n x n complex
matrices m®. Under this identification Det(m) = |Det(m®)|®. This means that
invertible Det(m) # 0 real matrices from M correspond to invertible complex
matrices, i.e., elements of GL(n,C).

We will now define some naturally arising subgroups of GL(n, C) that are also
submanifolds. But it should always be kept in mind that any of these complex
groups can be viewed in a ‘real’ way, as a subgroup of the group of matrices that
commute with an almost complex structure.

The group SL(n,C) is defined as the subgroup of matrices from GL(n,C) of
determinant one. This gives a submanifold in R?*"* because one is a regular value
of the determinant, as can be checked. The real dimension of SL(n, C) is 2(n*—1).



1.9 Lie Groups and Lie Algebras 41

The unitary group U(n) is defined to be the subgroup of unitary matrices
U(n) ={m € M(n,C) : mm' =1},

where m! = m7 is the Hermitian conjugation (i.e., complex conjugate trans-
posed). This is a group because (mm/)(mm/)t = mm/(m/)'m! = 1 and
m~Y(m~1)T = 1. This is a submanifold again by applying the rank theorem.
The real dimension of this group is the dimension of GL(n,C) which is 2n?
minus the dimension of the space of Hermitian matrices, which is n?. So, the
dimension of the unitary group is n2.

The determinant of any matrix in U(n) satisfies |Det(m)|?> = 1, which implies
that it is a pure phase. The special unitary group is defined to be the group of
matrices in U(n) of determinant one

SU(n) = {m € U(n) : Det(m) = 1}.

This is clearly a subgroup, and is a submanifold by a simple application of the
rank theorem. Its dimension is n? — 1.

1.9.5 Classical Lie Groups

The Lie groups that we have just discussed are all examples of classical Lie
groups. These arise as subgroups of GL(n,R) or GL(n,C) that preserves some
structure on the space R™ or C" where it naturally acts. Let us describe this
structure case by case.

The groups SL(n,R) and SL(n, C) arise as those preserving the volume form
dz* A+~ Adx™ on R™ or dz' A--- Adz™ on C™.

The orthogonal group O(n,R) arises as the group of transformations from
GL(n,R) that preserve the quadratic form

(@) 4 (@)’

on R™. Indeed, introducing a column z with entries * we can write the previous
quadratic form as z7x. Then GL(n,R) acts on such columns by multiplication
x — mz, and the condition for the quadratic form to be invariant is m¥m = 1,
which is what defines O(n, R).

The orthogonal group admits a generalisation called O(r, s) that preserves the
indefinite quadratic form

(.’El)2 4+ (xr)Z _ (xr+1)2 . (xr+s)2.

The group U(n) arises as the subgroup of GL(n, C) that preserves the Hermi-
tian form

2121++2nzn

on C". Indeed, we can write the previous Hermitian form as zfz, where z is a
column with 2% as entries. Then m € GL(n,C) acts on z as z — mz and the
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condition for the Hermitian form to be preserved is precisely mm = 1, which
defines the unitary group U(n).

This group admits a generalisation U(r, s) that replaces the previous Hermitian
form with an indefinite one

Fla o FT R E T g, (1.43)

The last classical group that we have not yet encountered is the symplectic
group Sp(n,R) and this is defined as the subgroup of GL(2n,R) that fixes the
standard symplectic form

dz' ANdy' + -+ dz™ A dy”

on R2", where z%,y%,a = 1,...,n are the coordinates on R?"*. This 2-form can

be encoded into an antisymmetric 2n X 2n matrix I, and then Sp(n,R) arises as
the subgroup of GL(2n,R) that preserves this matrix m” Im = I.

1.9.6 Group Actions on Manifolds

Groups, and Lie groups in particular, can act on manifolds. If this action pre-
serves some geometric structure on the manifold in question (e.g., metric), then
one says that this action describes a symmetry (in the case when a metric is
preserved one talks of isometries). Lie groups then give continuous symmetries.
Lie groups naturally act on themselves by symmetry operations, and this is going
to be important for what follows.

Definition 1.38 Let M be a manifold and G a Lie group. A left action of G on
M is a map

AiGxM—=M
such that A(u(g,h),z) = Mg, A(h,x)) and A(e,x) = .

An equivalent way of stating this definition is to say that a (left) action of G
on M is a homomorphism from G to the group of diffeomorphisms of M. Then
Ag : M — M is a diffeomorphism satisfying A;, = A; o A, and A, = id.

There are many examples of such actions that can be constructed. The simplest
examples we can consider is the action of GL(n,R) on R™ or on M (n,R). Both are
examples of left actions. In the second case one can act with GL(n,R) matrices
also on the right, which would give an example of a right action. Another basic
example is the left action of G on itself.

1.9.7 Classification of Actions
The following is a standard terminology in relation to an action of G on M.

e The action of G on M is called effective if any nontrivial element acts
nontrivially somewhere, i.e., if A, = id implies g = e.
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e The action of of G on M is called free if there are no fixed points, i.e., if
Ay(x) = x for some x then g =e.

e of G on M is called transitive if any two points of M can be connected by
the action of G, i.e., if Vo,y € M there exists g € G : A\,(z) = y. This means
that there is a single orbit of the action of G on M.

1.9.8 Group Homomorphisms

We have already encountered one example of a group homomorphism—that from
G to the group of diffeomorphisms on M. Here we consider group homomor-
phisms in more generality and derive one important statement about the kernel
of such homomorphisms.

Definition 1.39 A group homomorphism from group G to another group G’ is
a map ¢ : G — G’ that is compatible with the product on both G,G’. In other
words, the map 1) is required to satisfy ¢(gh) = ¥(g)1(h).

Definition 1.40 A subgroup N C G is called normal if Vg € G,gNg~* C N.

Definition 1.41 Given a group G and its subgroup H C G, the space G/H is
defined to be the set of equivalence classes g ~ gh, h € H. This set is called the
(left) coset of H in G.

Cosets of the type G/H play a very important role in group theory, and when G
is a Lie group, geometry. For now, let us consider the special case when H C G
is a normal subgroup. This situation is special because in this case, the coset
G/N is a group itself. Indeed, consider two arbitrary elements of the coset G/N.
They are of the form gn, g'n’, where n,n’ € N. We now want to see if their
multiplication can be defined. To do so, we use the normal property of N to
rewrite ng’ = ¢g’n” for some n” € N. This means that gng'n’ = gg'n”n’, which
means that the product of two equivalence classes gn, ¢'n’ is the equivalence class
of the product gg’, which defines the product of equivalence classes and makes

G/N into a group. We have thus proved a simple but important theorem.
Theorem 1.42 When N is a normal subgroup G/N is a group.

An important source of normal subgroups comes by considering group homo-
morphisms ¥ : G — G’. We then have

Theorem 1.43 The kernel Ker, of a group homomorphism ¢ : G = G’ is a
normal subgroup of G, and G' = G /Ker,,.

1.9.9 Orbits of Group Action

Definition 1.44 Let G act on a manifold M (or, for purposes of this definition,
any set M). The orbit of a point 2 € M under the action of G is a set of all
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points in M that can be obtained from z by the G action, i.e., O, = {y € M :
Ag(7) =y}

It is easy to see that the group action on any of its orbits is transitive, i.e.,
any point can be connected to any other point by the group action.

Definition 1.45 Let GG act on M. The stabiliser of a point x € M is the set
H, C G such that A\, (z) = z,Vh € H,.

It is easy to check that the set H, is a subgroup of G, called the stabiliser
subgroup of a point. We then have the following important statement:

Theorem 1.46 Let G act on M, and let O, be the orbit of a point x € M,
and let H, be the stabiliser at that point. Then the coset G/H, is canonically
isomorphic to the orbit O,.

This means that, given an action of G on some manifold M (or more generally
a set M), the orbits of this action can be canonically identified with group
cosets. This effectively means that if G acts on M then the orbits of this action
can be thought of as sitting inside the group. All symmetric spaces, i.e., spaces
where some Lie group acts by symmetries, are then coset spaces. The simplest
examples are: the two-dimensional sphere S? = SO(3)/SO(2) and the hyperbolic
plane H? = SL(2,R)/SO(2).

1.9.10 Lie Algebras

Definition 1.47 Lie algebra is a vector space L equipped with a bilinear map
LxL—L, (A,B) — [A, B]

called Lie bracket. This is required to be antisymmetric [A, B] = —[B, 4], and
satisfy Jacobi identity

[A,[B,C] + [B,[C, A + [C, [A, B]] = 0.

The basic examples of Lie algebras are the following.

e Vector fields on a manifold with the Lie bracket of vector fields as the Lie
bracket form a Lie algebra. Jacobi identity can be checked by an explicit
calculation.

e The space M (n,R) of n x n matrices forms Lie algebra with the Lie bracket
given by the commutator [A, B] = AB — BA. The Jacobi identity is trivial to
verify.

As we will see in Section 1.9.15, there is a relation between these two examples.
Another useful definition is
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Definition 1.48 A subspace of Lie algebra L that is closed under the Lie bracket
is called a (Lie) subalgebra of L.

1.9.11 Homomorphism of Lie Algebras

Definition 1.49 A homomorphism between two Lie algebras L, L’ is a linear
map ¢ : L — L' that is compatible with the Lie bracket on L, L’ i.e.,

¢([A; B]) = [¢(A), (B)]-

Example 1.50 The vectors in R?® form a Lie algebra with Lie bracket given by
the vector product

(X>Y) - [X’Y] =xXXYy.

Jacobi identity can be checked by an explicit calculation, or using x X (y X z) =
y(x-2) - 2(x-y).

The other relevant Lie algebra is that of anti-Hermitian 2 x 2 matrices of
zero trace. The matrix commutator of any two matrices has zero trace, so
the zero trace condition is preserved by the commutator. The commutator of
two Hermitian or anti-Hermitian matrices is anti-Hermitian. This is why it’s
anti-Hermitian matrices that make up a Lie algebra. Any such matrix can be
written as

where ¢ € R3. This also gives the map from R? to the space of tracefree anti-
Hermitian 2 x 2 matrices. Using [0*, 7] = 2ie”*c* we have

o) 6] = (5 ) a2t = ~Lerayat = oxx )

This shows that the map ¢ is a homomorphism of Lie algebras.

1.9.12 Lie Algebra of a Lie Group: Left-Invariant Vector Fields

Every Lie group G is a manifold, and G itself acts on this manifold by the left
action.

Definition 1.51 The left action of G on itself is a homomorphism G — Diff(G)
from the group into the group of diffeomorphisms of the manifold G. In other
words, this is amap A : G x G — G given by the left multiplication X, (¢’) = g¢’.

We note that this action is free and transitive, with the whole of G being one
single orbit.

One can define a special subset of all the vector fields on the group manifold —
the vector fields that are invariant with respect to the action of the group.
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Definition 1.52 A vector field X on G is called left-invariant if its push-forward
with respect to the left action of G on itself coincides with X, i.e., if Vg € G we
have A\ .(X) = X.

We now define the Lie algebra Lie(G) of G to be the vector space of all
left-invariant vector fields on G. The Lie bracket is given by the Lie bracket
of vector fields, and it is clear that the Lie bracket of two left-invariant vector
fields is also left-invariant. We will explicitly check this for matrix groups in
Section 1.9.15. This characterisation of the Lie algebra is available for any Lie
group. However, this characterisation is often not the most convenient to work
with in practice. This is why we need the following alternative descriptions.

1.9.13 Description in Terms of the Tangent Space at the Identity

We note that every vector field on the group manifold can be restricted to the
identity element, where it gives some vector in T,G. In particular, left-invariant
vector fields can be restricted in this way. In the opposite direction, given a vector
in T,G, we can use the left action to push-forward this vector to every point on
the group manifold. What we obtain is by construction a left-invariant vector
field on G.

Thus, there is a bijective correspondence between the space of left-invariant
vector fields on G and the vector space T,G. This also makes it clear that the Lie
algebra of any Lie group has the same dimension as the group manifold. However,
the Lie bracket on this description of the Lie algebra is not intrinsically defined.
Indeed, the only way to compute it is to transport two given vectors in 7T.G to
the whole of the group, compute their Lie brackets, and then restrict the result to
T.G. An alternative description that allows to compute the Lie bracket directly
is needed, and will be available for matrix groups.

1.9.14 Description in Terms of One-Parameter Subgroups

Definition 1.53 A one-parameter subgroup of G is a homomorphism R — G
from the real line to the group. Concretely, this is a one-parameter family g, € G
of group elements satisfying go = e and g,,; = ¢.9:.

Now, using the left action, we see that every one-parameter subgroup of G
gives rise to a one-parameter group of diffeomorphisms of G. In turn, we know
that one-parameter groups of diffeomorphisms generate vector fields. It is easy to
check that the vector field that results in this way from a one-parameter subgroup
of G is left-invariant. We will do this check when we consider matrix groups.

In the opposite direction, given a left-invariant vector field, we already know
that vector fields generate their integral curves. Every integral curve of a left-
invariant vector field is obtained by the left action of some one-parameter sub-
group of G. Again, we will explicitly check this for matrix groups in section 1.9.15.
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So, we have a bijective correspondence between left-invariant vector fields and
one-parameter subgroups of GG. This provides the third description of the Lie
algebra of G namely, as the set of one-parameter subgroups of G. Again, the
Lie bracket is implicit in this description, as one needs to convert the two one-
parameter subgroups into left-invariant vector fields, compute their Lie bracket,
and then convert the result into a one-parameter subgroup. All these steps can
be explicitly described for matrix groups, as we now discuss.

1.9.15 Matrix Groups

Various classical groups that we discussed previously are matrix groups, i.e.,
subgroups of GL(n,R). More generally, every finite-dimensional Lie group can
be described as an appropriate subgroup of a matrix group of a sufficiently
large dimension. To do this, one just needs to consider some representation
of the group, for example the so-called adjoint representation, which arises by
considering the action of the group on its Lie algebra. We will not consider
representations here.

The first concept that we need to define for matrix groups is that of the
exponential map. This is defined via the notion of the matrix exponent. Thus,
for any matrix A € M(n,R), we define

— 1 1
A k 2
= —A=T4+A+-A%+---.
et =) o +HA+ AT
k=0
The matrix exponent has some important properties. First of all we have

eltAesA e(t+s)A7 and e A — (eA)q.

The second property means that e? is an invertible matrix, i.e., ¢4 € GL(n, R).
The first property means that e*4 is a one-parameter subgroup of GL(n, R).

Theorem 1.54 All one-parameter subgroups of GL(n,R) are of the type e for
some A € M(n,R).

To prove this theorem, let ¢, € GL(n,R) be a one-parameter subgroup of
GL(n,R). Denote by A the derivative of ¢, at t = 0, i.e.,

d
A= —
dt¢t

t=0
The we have

d

d d
%Qst = £¢s+t 0 = %Qﬁs :0¢z :A¢t~

This means that ¢, satisfies the differential equation d¢,/dt = A¢,. The solution
of this differential equation that passes through the identity at ¢ = 0 is

¢y = et

s= s
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Now that we have an explicit characterisation of the one-parameter subgroups
of GL(n,R) as matrix exponents, we can provide also an explicit description of
the Lie algebra of this group in terms of left-invariant vector fields, as well as
the description in terms of the tangent space at the identity. We first need to
compute explicitly the left-invariant vector field that arises as the velocity vector
field of the one-parameter group of diffeomorphisms generated by e*4. These are
obtained as follows

of

G| = 56y, (1.44)
and so, the corresponding vector field is
€4 = (94)' 5 (1.45)
dg';

The derivation (1.44) requires some explanation. What is done in (1.44) can be
understood as the translation of the vector corresponding to A at the identity
of the group manifold to an arbitrary point g using the left action of G on itself.
This is why the resulting vector field is left-invariant.

We thus see that left-invariant vector fields on GL(n,R) are in correspondence
with matrices A € M (n,R), via (1.45). We can now compute the Lie bracket of
two left-invariant vector fields

- dg* 0 g’ 0
= (gA)"; = Bm — (¢B)* S A* 1.4
[gAagB} (g ) J aglj lagkl (g ) lagkl Jagij ( 6)
o D L0
= (gA) jB]lagil — (gB)klAlj agkj = (gAB — gBA) J@ = g[A’B]-

We thus see that we have a homomorphism of the Lie algebra of left-invariant
vector fields on GL(n,R) into the matrix Lie algebra, with the Lie bracket of
vector fields going into the commutator of matrices.

We can now summarise what we have learned about the three different
descriptions of the Lie algebra of GL(n,R). The description in terms of left-
invariant vector fields is that given by 4 given by (1.45). Evaluating these vector
fields at the identity we get vectors A%;(9/dg’;) that are in correspondence with
matrices A € M(n,R). The description in terms of one-parameter subgroups
is via ¢ = e'4. Again, every one-parameter subgroup is in correspondence
with a matrix A. So, in all cases a Lie algebra element is in correspon-
dence with a matrix A, and the Lie bracket can be computed as the matrix
commutator (1.46).

1.9.16 Ezxplicit Description of Lie Algebras
of Some Classical Groups

Classical groups have beed previously defined as various subgroups of GL(n,R).
We have just understood that the Lie algebra of GL(n,R) can be described as
the Lie algebra of n x n real matrices, with the Lie bracket given by the matrix
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commutator. We can obtain a similar explicit description of the Lie algebras of
the classical groups.

The group SL(n, R) consists of matrices of determinant one. The corresponding
Lie algebra is that of matrices of trace zero. It is easy to see that the space of
matrices of vanishing trace is closed under the operation of matrix commutator,
because the commutator of any two matrices automatically has zero trace.

The group O(n,R) is the group of matrices satisfying m”m = id. Taking
m = e** and differentiating the relation m”m = id at t = 0 we get A7 + A = 0.
This means that the Lie algebra of the orthogonal group is that of antisymmetric
matrices. The space of antisymmetric matrices is closed under the operator of
taking the commutator.

The group SU(n) is the group of complex unitary matrices of unit determinant.
We already know that the condition of unit determinant translates at the Lie
algebra level to the condition that the matrices are tracefree. Let us see the
consequences of the unitarity condition. This is the condition m'm = id. Taking
m = et4 and differentiating m'm = id at t = 0 we get A" + A = 0, which is the
condition that the matrix A is anti-Hermitian. Thus, the Lie algebra of SU(n)
consists of tracefree anti-Hermitian matrices.

1.10 Cartan’s Isomorphisms

This section is just a quick look at this rather vast (and important) subject. For
more details see the book, Spinors and Calibrations, by F. Reese Harvey (1990).

Orthogonal groups have spinor representations. Those come with various in-
ner products. This means that the spin groups (which arise as covers of the
orthogonal groups) are always subgroups of various classical groups preserving
the relevant inner product on the space of spinors. In lower dimensions the
spin groups coincide with various classical groups, and this is why the Cartan’s
isomorphisms arise. The most important of these isomorphisms (for physics)
are that between the rotation group in three dimensions and the special unitary
group in two dimensions, and that between the Lorentz group in four dimensions
and the complex special linear group in two dimensions.

1.10.1 The Isomorphism SO(3) = SU(2)/Z,

Let us consider the space of anti-Hermitian 2 x 2 matrices with zero trace. Any
such matrix is of the form

3 1 2
x=i< v,y ) (1.47)

! +ix? —x

In other words, any such matrix is of the form x = io’z?, where o’ are the Pauli
matrices. The previous matrix has the property that

det(x) = (') + (22)* + (2*)?,
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which is the squared interval in R3. So, we have an isomorphism between the
space of anti-Hermitian 2 x 2 matrices of zero trace and R3, with the norm
squared of an R? vector (z', 2%, 23) being represented by the determinant of the
corresponding 2 X 2 matrix.

Now, the group SU(2) acts on the space of anti-Hermitian matrices of zero
trace via

g € SU(2), x — gxg'. (1.48)

Because g € SU(2) this action preserves the determinant. Remembering that
there is an isomorphism between the space of anti-Hermitian matrices of zero
trace and R3, we get a group homomorphism 7 : SU(2) — O(3). Because the
arising transformations are orientation preserving, this is in fact a homomor-
phism into SO(3). This homomorphism has a nontrivial kernel consisting of
e,—e € SU(2). Thus, we get SO(3) = SU(2)/Z,.

1.10.2 Description of the Isomorphism SO(1,3) = SL(2,C)/Z,

This is very similar to the previous section, except that the restriction to trace
zero matrices is dropped. Thus, let us consider the space of anti-Hermitian 2 x 2
matrices. Any such matrix is of the form
0 3 102
x—i(“’” v ) (1.49)

' +iz? 2% -2
We also have
det(x) = —(2°)? + (¢')* + (2°)* + (2°)?,

which is the squared interval in R%:3. This gives an isomorphism between the
points in Minkowski space R!® and anti-Hermitian 2 x 2 matrices, with the
squared interval being represented by the determinant.

Consider now the following action of SL(2,C) on anti-Hermitian matrices

g € SL(2,C), x — gxg'. (1.50)

This maps anti-Hermitian matrices into themselves, and preserves the
determinant. The transformations that one generates this way are orientation-
preserving, and moreover, preserve the orientation of time. This gives a group
homomorphism

7:SL(2,C) — SO™(1,3) (1.51)

from the group of special complex linear transformations in two dimensions
to what is known as the restricted Lorentz group (consisting of orientation-
preserving orthogonal transformations that also preserve the orientation of
time). The kernel of 7 is again a copy of Z,, the one generated by +e € SL(2, C).
The group SL(2,C)/Z, is known as PSL(2,C). So, we get the isomorphism
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PSL(2,C) = SO*(1,3). (1.52)

This isomorphism plays a very important role in physics, as it in particular
provides a description of the spinor representations of the Lorentz group. Very
concretely, these are the two-component columns of complex numbers on which
the group SL(2,C) acts by matrix multiplication.

1.11 Fibre Bundles

The logic we follow in this section is to first define the most general notion of
a fibre bundle without any Lie group action in the fibres. Already this setup
allows a connection and curvature to be defined. Only then do we add the extra
structure of a group acting in the fibres. We first define principal fibre bundles,
and then discuss vector bundles, in particular vector bundles associated with
principal bundles.

1.11.1 Definition

The notion of a fibre bundle is an abstractisation of the commonly encountered
geometric setup where a manifold F is foliated by submanifolds, with each leaf of
the foliation diffeomorphic to some given manifold F'. One calls the set of leaves
of the foliation the base space B.

In this geometric setup the base space B arises as the quotient space. This is
not what is most convenient to have a workable definition. For this reason, the
standard definition of the fibre bundle contains the base space built into it.

Definition 1.55 A fibre bundle (or simply bundle) is a triple (E, B, ), where
E, B are topological manifolds and 7 : F — B is a map. The space FE is called the
total space, the space B is the base, and the map 7 is called the projection
of the bundle. It is moreover required that for every e € E there is an open
neighbourhood U C B of 7(e) (which is called a trivialising neighbourhood) so
that there is a homeomorphism ¢ : #=*(U) — U x F, where F is another smooth
manifold, such that the projection 7 agrees with the projection on the first factor.
This means that for every b € B the preimage 7—*(b) is homeomorphic to F and
is called the fibre over b. A fibre bundle is often denoted as

F—FE-5 B.

This mimics short exact sequences and represents the fact that the image of
the first map, i.e., the fibres, are in the kernel of the second (projection) map.
Another common notation for the bundle is 7 : £ — B. A smooth fibre bundle
arises when all E, B, and F' are smooth manifolds, and all the maps are smooth.

Example 1.56 The simplest (trivial) example of a fibre bundle is the product
(B x F, B, m) where the projection 7 is that on the first factor.
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Before we consider examples of nontrivial bundles, let us state two more
important definitions.

Definition 1.57 A bundle (E’, B’,n’) is a subbundle of (E, B, r) provided E’
is a subspace of E, B’ is a subspace of B, and ' = 7|g : &' — B'.

Definition 1.58 A cross section (or simply section) of a bundle (E, B, 7) is a
map s : B — E such that s(b) € 77(b).

1.11.2 Examples of Nontrivial Bundles

We give two examples, without proving that they really correspond to nontrivial
bundles. Another basic example to have in mind is that of the Hopf fibration. It
is treated in due course in Section 1.13.

Example 1.59 The tangent bundle over S™, denoted (T, 8™, ) is a subbundle
of the product bundle (S™ x R™*! S™ 1), whose total space is defined by the
relation (p,z) € T if and only if the Euclidean inner product (p|z) = 0. An
element (p,z) € T is called a tangent vector to S™ at p € S™ C R™*!. The fibre
7~ !(p) is of dimension n. A cross section of the tangent bundle is called a tangent
vector field on S™.

Example 1.60 The bundle of (orthonormal) k-frames over S™ denoted by
(E, S™, ) is a subbundle of the product bundle (S™x (S™)*, S, 7) where the total
space E is the subspace of S™ x (S™)* consisting of (unit) vectors (p,vy,...,v;) €
R x (R™1)* such that (p|v;) = 0 and (v;|v;) = d;;. In other words, this
is the subspace of k orthonormal tangent vectors to S™. A cross section of
this bundle is called a field of k-frames. The existence of a nowhere vanish-
ing field of k-frames is a difficult problem, and in general, there is no such
existence.

1.11.3 Restrictions and Pullbacks of Bundles

Definition 1.61 Let (F, B, w) be a fibre bundle, and let A be a subset of B.
We can then define a new bundle E|4 with A as the base, defined as (E’, A, 7’),
where E' = n71(A) and 7’ = 7|p.

The other definition concerns a case when we have a map f: B’ — B, and a
bundle over B. In this case we can define the pullback bundle f*E over B’. The
fibre of f*E over b’ € B’ is just the fibre of f(b') € B in E.

Definition 1.62 Let (F, B, 7) be a fibre bundle and f : B — B be a map. The
pullback bundle f*F has B’ as the base, the subspace of all pairs (b',e) € B'x E
such that f(b') = w(e) as the total space, and the map (¥,e) — b as the
projection 7’.
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1.11.4 Connections in Fibre Bundles: Ehresmann Connection

The setup of the fibre bundle is the minimal geometric setup that allows the
notion of a connection to be defined. The connection that arises in this setting
is known as the Ehresmann connection. When a bundle is given more struc-
ture (e.g., principal bundles or vector bundles that we consider in Sections 1.12
and 1.14, respectively), the Ehresmann connection becomes the more familiar
connections that we have in those settings. It is, however, very important to
understand that there is a rather minimal geometric structure that is required
for a connection to be defined.

A fibre bundle (E, B, ) is a manifold that comes with a preferred subset in the
set of all vector fields X € T'E. Indeed, vector fields can be pushed forward with
the projection map. While this push-forward is in general ill-defined (because the
projection map is not injective), the notion of vector fields that are in the kernel
of the projection map is well-defined. One then calls such vector fields vertical.
Alternatively, vertical vector fields are those tangent to the fibres. Let us denote
the set of vertical vector fields by V' C T'E. We now note that, given an arbitrary
vector field X € TFE, there is in general no way to represent this vector field as
a sum of its vertical part and the remainder. A connection is then defined as a
rule that provides such a decomposition. This motivates the following definition.

Definition 1.63 An Ehresmann connection on F is a smooth subbundle H
of TE, called the horizontal bundle of the connection, which is complementary
to V, in the sense that it defines a direct sum decomposition TE = H @ V. In
other words, a connection is a rule that for each point e € E defines a vector
subspace H, C T, FE, called the horizontal subspace of the connection at e. The set
of horizontal subspaces H. is required to depend smoothly on e, and horizontal
vectors should be complementary to vertical H, NV, = {0}. Any tangent vector
X € T.F should be representable as the sum of its vertical and horizontal parts
T.E=V.,®H., X =X, + Xy.

This notion of the connection is extremely useful, for it immediately allows
several things to be defined. First, it allows us to define horizontal lifts of curves
~(t) € B on the base. Indeed, consider a curve on the base that passes through
point z = ~(0). Select a point p € 7~ !(z) in the fibre over the point z. The
horizontal lift of v through p is a curve 4(t) in the total space E such that for
every t the tangent vector to the curve lies in H, i.e. d¥/dt € Hsq, and the
curve (t) projects to y(t) for every t. This should be compared to the notion of
an integral curves of a vector field on a manifold. In general, the horizontal lift
of a curve y(t) can be shown to exist for sufficiently small ¢.

1.11.5 Curvature

The other important and natural notion that can be defined for an Ehresmann
connection is that of the curvature. This notion can be motivated by considering
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the horizontal lifts along two different paths that start and end at the same points
on the base. In general, the horizontal lifts starting at the same point will fail to
end at the same point. This failure of the horizontal lifts along different paths
to agree is measured by the curvature.

Another way to motivate the definition of the curvature is to think about the
Lie bracket of two horizontal vector fields. In general, the resulting vector field
will fail to be horizontal. This would signal the fact that the horizontal distribu-
tion is not integrable, i.e., that the notion of the horizontal vector fields does not
arise from some foliation of the total space E by submanifolds (diffeomorphic to
B). The horizontal distribution is only integrable (and thus defines submanifolds
diffeomorphic to B through every point of E) when the Lie bracket of two
horizontal vector fields is again horizontal. This is precisely what is measured by
the curvature of the connection, with curvature being zero being equivalent to
the horizontal distribution being integrable.

With these remarks in mind we define the curvature of the Ehresmann
connection as a two form on the total space E with values in the vertical
subbundle V' of TE. The curvature is given by

R(X,Y)=[Xu,Yuly, ReAN(E,V),

where R(X,Y) is the contraction of the 2-form R with the vector fields X,V
Xy, Yy are the horizontal parts of X,Y, [X,Y] stands for the Lie bracket of
vector fields, and the result of the Lie bracket is projected onto the vertical
subspace.

1.11.6 Connection as a 1-Form

Given that a connection is an object that provides a decomposition of the tangent
bundle T'E into vertical and horizontal subbundles, we can encode a connec-
tion into a 1-form with values in the space of vertical vector fields. Indeed, let
v € End(TFE) be an endomorphism of the tangent bundle that maps any vector
field X into its vertical part

w:X = wX) =Xy,

and is the identity map on the space of vertical vector fields. We can encode
such an endomorphism into a 1-form with values in V, ie., w € A'(E, V), so
that the pairing of this 1-form with X is w(X). This 1-form is required to satisfy
w(Xy) = Xyv. The horizontal vector fields are then those in the kernel of the
map w

H={XeTF:w(X)=0}

Concretely, the object w is a linear map that acts in each T, F, smoothly depends
on the point e, and sends each tangent vector to its vertical part.
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1.11.7 Metric in the Total Space Defines a Connection

Let us now consider a frequently encountered situation when there is a (Rieman-
nian) metric in the total space of the bundle, i.e., a symmetric and (positive)
definite element of T*E ® T*E. In this situation, there is a natural Ehresmann
connection that is such that the horizontal vector fields are those metric orthog-
onal to the vertical ones

H={XeTE:(X|Yy)=0, VY, €V CTE}

This is the situation encountered in Kaluza—Klein theory, where certain compo-
nents of the metric in the total space of the bundle receive the interpretation
of a connection. We will consider an example of the setup of this sort when we
study the Hopf fibration in the next section.

1.12 Principal Bundles

The notion of a principal bundle arises when we have an additional structure
of a Lie group acting in the fibres, and when, moreover, this action is free and
transitive so that each fibre is diffeomorphic to the group.

1.12.1 Definition and Examples

A principal G-bundle is a bundle (E, B, w) with fibres copies of a Lie group G.
The formal definition is as follows.

Definition 1.64 A principal G-bundle is a bundle (E, B, w) with extra structure
of a smooth right action of G on E by diffeomorphisms, i.e., amap R, : E - E
with the property that the identity element in G acts as the identity map, and
R, o R, = R, It is usual in this context to write R,p = pg. This map is
required to leave the projection 7 invariant, i.e., m(pg) = 7(p), and thus act
on fibres. Moreover, the action of G on the fibres is required to be free and
transitive, so that each fibre is an orbit of this action, and is a copy of the group
G. Concretely, this means that the trivialising maps can be chosen to commute
with the G action. In other words, for every p € F there is an open neighbourhood
U of w(p) € B such that there is a smooth map ¢ : 7=} (U) — U X G that has

the property that if ¢(p) = (7(p), h(p)) then ¢(pg) = (7(p), h(p)g).

Example 1.65 The canonical example of a principal H bundle is the bundle
(G,G/H, ), where the total space is the group manifold G, the base is the group
coset B = G/H, and the projection is the map from G to the set of its right H
cosets g ~ gh. The fibres of this bundle are copies of H, with H acting on G as
g — gh, and preserving the fibres.

Example 1.66 Another prototypical example of a principal bundle is the frame
bundle of a smooth manifold M denoted by F M. The fibre over a point x € M
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is the set of all frames (i.e., ordered bases of the tangent space T, M ). The general
linear group GL(n,R) acts freely and transitively on these frames, which makes
this into a principal GL(n,R) bundle.

Example 1.67 Yet another example arises in the situation when there is a
metric on M. In this case one can consider the bundle of orthonormal frames on
M. This is a principal O(n,R) bundle over M. The orthogonal group acts freely
and transitively on the space of orthonormal frames.

Example 1.68 An example that connects the orthonormal frame principal
bundle with the coset (G,G/H,n) bundle is the bundle of orthonormal frames
on the sphere S™. The sphere is the group coset S™ = SO(n + 1)/SO(n), and
the bundle of oriented orthonormal frames on S™ is the principal SO(n) bundle
whose total space is the group manifold SO(n + 1). To see this explicitly, we
view the sphere S™ as the space of unit vectors in R™*!. A point in the oriented,
orthonormal frame bundle consists of an (n 4+ 1)-tuple of orthonormal vectors
(z,v1,...,v,) in R*". The projection is that onto the first element. We can
identify this (n + 1)-tuple of vectors with a matrix in SO(n + 1), with these
vectors as columns.

1.12.2 Coordinate (Cocycles) Definition

It is possible to give another, equivalent definition of a principal bundle that views
such a bundle as glued from copies of the trivial bundle over suitable cover of
the base B by coordinate charts. This definition is sometimes more convenient in
practice, as it allows some explicit constructions of principal bundles. It proceeds
as follows.

Let us start with a finite cover of the base B by open coordinate charts U.
The data that is needed for this construction of the bundle is a set of principal
bundle transition functions. These are defined for any pair U, V' of coordinate
charts that have a nontrivial overlap. They are denoted by gy € G and have
the following properties: (i) gyy is the constant map to the identity in G; (ii)
gov = gvu; and (iii) if U, V, W are any three coordinate charts with UNV NW #
0, then the condition gyv gyvwgwy = 1 must hold. This set of constraints on the
transition functions is called the cocycle constraints. Given such transition
functions, the principal bundle is constructed as the quotient of the set of trivial
bundles U x G by the equivalence relation that puts (z,g) € U x G equivalent
to (2/,¢') € U’ x G if and only if x = 2’ and g = gy (z)g’.

This gluing construction clearly produces a principal bundle in the sense of
our coordinate-free definition. Let us also see how to go from the coordinate-free
construction to the construction with transition functions just described. For
this purpose, one stars by selecting a cover of the base B by coordinate charts U.
For every coordinate chart we have a trivialising map ¢y : E|y — U x G. Now,
given an intersection of two coordinate charts, we get the composition of maps
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¢u o ¢y' which maps U NV to G. These are our transition functions gy . They
satisfy all the cocycle constraints, and thus provide the coordinate description
of the same bundle.

Example 1.69 Principal U(1) bundles over S? can be constructed using the
cocycle definition as follows. We cover the base S? with two coordinate charts,
the north N and south S hemisphere. Both of these are mapped into the complex
plane by the stereographic projection. On the intersection of the two charts the
complex coordinate z of, say, the north chart N is different from zero. Let us
form the map g : NNS — U(1) as g : z — z/|z|. We then fix an integer m
and take the transition function for our principal U(1) bundle over S? to be
g™ : NN S — U(1). There are no triple intersections in this case, and so there
are no triple intersection constraint to satisfy.

1.12.3 Connections in Principal Bundles

A connection in an arbitrary fibre bundle (E, B, 7) is a horizontal distribution
H, C TE at every point of p € E. In a principal bundle we have a group G
acting on F by the right action and preserving the fibres. It is natural to demand
that the horizontal distribution is invariant under this action, in the sense that
the horizontal vectors at p pushed forward using the right action are horizontal
vectors at H,,,, i.e., Ry.(H,) = H,,. Such a connection is called a principal
(Ehresmann) connection, or simply a connection in a principal bundle.

Now, since each fibre is a copy of the group manifold, the space of vertical
vectors at each p € FE can be identified with the Lie algebra g of G. As we have
previously noted, a connection can be described as a 1-form w in the total space.
If a tangent vector at p is inserted into w, it returns a vertical vector. But we have
identified vertical vectors at p with the Lie algebra of G. This means that we can
encode the connection into a 1-form that is Lie algebra valued w € A'(F, g).

For the construction that follows, it will be convenient to identify the Lie
algebra g with the space of left-invariant vector fields on the group manifold.
So, it will be convenient to have the group G act on the fibres from the right,
while considering the realisation of g by left-invariant vector fields. With this
realisation of g in mind, we can make the identification of the vertical tangent
space V,, at any point p € E' more concrete. Thus, each vertical tangent vector
in V, is the restriction of some left-invariant vector field on G, and in this way
each tangent vector from V), is identified with an element of g. The Ehresmann
connection in general is a linear map from 7,E to V, which is identity on V,,
and after the identification we just made, the corresponding 1-form w has the
property that w with a left-invariant vector field inserted into it returns the same
left-invariant vector field.

This 1-form w representing the Ehresmann connection is not going to be
invariant under the right action of the group G in the fibres, but is going to have
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certain simple transformation properties instead. To describe these, we note that
the right action of the group on itself gives rise to a nontrivial action of G on
its Lie algebra, realised as the space of left-invariant vector fields. This is the
adjoint action. For example, for matrix groups, the left-invariant vector fields
are those of the form

&4 = (gA)’ A€ M(n,R),

9
J aglj )
and pushing forward such a vector field using the right action R;,g = gh produces
a left-invariant vector field

Rh*é-A = gAh
with
A" = Ad, 1A = h~"Ah.

We can now state the transformation property of the 1-form w € A*(E, g) that
represents a connection. Given that the connection is a projector that maps an
arbitrary vector field into its vertical part, and that this projector commutes
with the right action of G on F, we form a linear map that is the composition
of this projector with the map from the space of vertical vector fields to the Lie
algebra realised as the space of left-invariant vector fields. This linear map is
our 1-form w. When acting on it with the right action, the projection onto the
vertical vectors commutes with the right action, while the right action of the
group on the space of left-invariant vector fields is the adjoint action. So, we get
the following property that must be satisfied by w

Riw=Ad,-1w.

Conversely, any 1-form w € A'(E,g) with this property and the property that
when a left-invariant vector field is inserted it is returned defines an Ehresmann
connection in a principal G-bundle.

1.12.4 Coordinate Description of Principal Connections

All this can be described very concretely in coordinates. Thus, we choose some
coordinate chart U C B, and the corresponding trivialisation in which E|, =
U xG. Then the 1-form on G with values in g that is left-invariant and transforms
under the right action by the adjoint representation is

g tdg.

This form maps left-invariant vector fields into the corresponding Lie algebra
elements. Thus, for any connection w, its restriction to the fibres must coincide
with g7*dg. Then any form that is equivariant with respect to the right action
and coincides with g~'dg on the fibres can be written as
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w=g~'dg+g ' Ay, (1.53)

where A € A'(B, g) is a Lie algebra valued 1-form on the base. It is in order to be
able to give this coordinate description of the connection that we have identified
the Lie algebra with the left-invariant vector fields on G, while using the right
action of G on E to define the principal bundle.

It is important to emphasise that while the description in terms of a Lie algebra
valued 1-form on the base makes in general sense only locally, in a coordinate
chart, the description of the connection as a Lie algebra valued form on the total
space is global, and independent of any coordinates that can be chosen.

1.12.5 Coordinate Description of Horizontal and Vertical Vector
Fields

Now that we wrote the connection 1-form w as (1.53) in a trivialisation, we can
work out explicitly what the horizontal subbundle of TE is. Let us consider the
case of matrix groups, and let

rar 2 (1.54)

X
“ OxH

= ai,'i,
Jaglj

be an arbitrary vector field in TE. Here both a’; and a* are functions of z*, ¢;.
When the Ehresmann connection is described by the corresponding 1-form w,
the horizontal vector fields arise as those in the kernel of w. So, the component
functions a’;, a* of a horizontal vector field satisfy

(97"a)"; + (97 "a"Aug)'; = 0.
From this we see that the horizontal vector fields are those of the form
0 0

+ at

Xy = —(a“Aug)Z]’@ FvE

(1.55)

These horizontal vector fields are preserved by the right action of G on the fibres
when a* is a set of functions on the base only, i.e., g-independent. The vector
field obtained can also be referred to as the horizontal lift of an arbitrary vector
field a*(9/0z") from the base into the total space. The horizontal lift explicitly
depends on the connection components A, (that are matrix valued). Similarly,
the vertical projection of X in (1.54) is given by

Xy =(a+a"A,g);

0
—. 1.56
dg'; ( )

1.12.6 Change of Trivialisation as Gauge Transformations

The given previously coordinate description of the connection is based on a triv-
ialisation of the bundle over a coordinate chart on the base. Every trivialisation
of a principle bundle comes from a cross section, and vice versa, if a principal
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bundle admits a global cross section, this implies that the bundle is trivial. Let
us see this. If s : B — FE is a section, then we can parametrise a point in F as the
set of pairs (z, s(z)g),z € B,g € G. This provides a global identification between
E and B x G. In the opposite direction, if we have a trivialisation over U, which
is amap ¢ : E|y = U x G, the preferred section is given by s(z) = ¢~ (=, 1).

Given a trivialisation and the corresponding section s : B — FE of the bundle
E, we can understand the 1-form on the base A € A'(B,g) in (1.53) as the
pullback of the connection 1-form w with respect to s, i.e.,

A = s*(w).

This raises the question of what happens if a trivialisation is changed. As we
shall see, this corresponds to what in physics is called gauge transformations.

We can go from one trivialisation corresponding to section s(z) to another
s'(z) by the right action

where h(z) € G is a function from the base into the group. Then the trivialisa-
tion that corresponds to s’(z) is obtained by the parametrisation (z,s'(z)g) =
(z,s(x)h(x)g). The change of trivialisation thus corresponds to replacing g —
h(x)g, i.e., to the left local action of h(z) on the group manifold. Let us see the
effect of this transformation on the connection. We have

W" = (h(x)g) " d(h(x)g) + (h(x)g) ' A(h(z)g) = g~'dg + g A"y,
where
A" = h7H(z)dh(z) + h~ ' (z)Ah(z). (1.57)

We thus see that w” preserves its form (1.53), but with the 1-form on the base
A being replaced with the 1-form A". The 1-form A" is said to be obtained from
A by a gauge transformation.

1.12.7 Curvature as a 2-Form

The curvature of a connection was described as an antisymmetric map R : H x
H — V from the space of horizontal vector fields to the vertical ones. It can be
given a further characterisation in the case of principal bundles. Thus, consider
the 2-form

1
R:dw+§[w,w] € N*(E,g). (1.58)
In the case of matrix groups this becomes simply

R = dw + ww, (1.59)
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where the wedge product in the second term is implied. This 2-form vanishes on
vertical vector fields. This is easiest to see in a trivialisation. Indeed, for matrix
groups we have

R=d(g~'dg+g ' Ag) + (¢7'dg + 97" Ag)(9~'dg + g~ Ag) (1.60)
=g ' (dA+ AA)g — g 'dgg~'dg — g~ 'dgg~" Ag — g~ Adg
+9 'dgg~tdg + g 'dgg Tt Ag + g~ Adg = g~ ' R(A)g,
where
R(A) = dA + AA (1.61)

is the curvature 2-form on the base. This form clearly vanishes when a vertical
vector field is inserted into it.

1.12.8 Relation to Curvature Defined as Measure
of Non-Integrability

It is an instructive exercise to relate the definition (1.61) of the curvature to the
definition that was given earlier, where curvature appeared as a measure of non-
integrability of the horizontal distribution. Thus, let us compute the quantity
[X#, Yy|y for two vector fields X, Y of the form (1.54). Using (1.55) we have

0 0 0 0

+ at — YH = f(b”Aug)ij@ + b”@
J

Xy = *(CLMAMQ)Zj@ D’

The Lie bracket of these two vector fields computes to

0 .0
[XH,YH] = (bVAVaHAHg)Zjaii — (a”(ayb”)Aug + a“b”(@ﬂAu)g)lja 9
9 9%

, 0
—i—a“a#b @ — (a < b)

This expression contains derivatives of a*, b*. However, when we take the vertical
projection using (1.56) these derivatives cancel out and we get

;0
[XH; YH]V = 7a“bu (R,uug) ]'871-7 (]‘62)
g’
where
R, =0,A, -0A,+A,A —AA,. (1.63)

These are just of course the components of the curvature 2-form
R=(1/2)R,, dx"dx",

with R given by (1.61). This shows that the curvature as computed using (1.61) is
indeed the measure of non-integrability of the horizontal distribution as defined
by the connection.
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1.13 Hopf Fibration

The purpose of this section is to describe an example that illustrates most of
the previous constructions. The Hopf fibration describes the three-sphere S* as
a nontrivial S* bundle over S2.

1.13.1 Construction of the Hopf Fibration

The Hopf fibration has a spinor origin. Consider the special unitary group SU(2)
in two dimensions. This group naturally acts on columns

1”(;) a,BeC.

The action is by the matrix multiplication
SU(2) > m : ¢ — ma.

We will refer to this as the spinor representation of SU(2).
We have the following Hermitian inner product on the space of spinors

[WI* =T = + |B]*.

This inner product is invariant under the SU(2) action. In fact, it is invariant
under a larger group U(2), but we are after SU(2) here.

Because C* = R* the space of unit |¢|> = 1 spinors is nothing else but the
three-sphere S* C R*. If we take a unit spinor [¢|*> = 1 and act on it with SU(2)
it will remain a unit spinor. This means that the space of unit spinors is an orbit
of SU(2). It is not hard to see that the space of unit spinors with 8 # 0 can be
parametrised as

ip
1/}:\/16_‘_7<i>, ¢ €[0,2m),z € C. (1.64)

One can then check that the SU(2) action on unit spinors is transitive and
without fixed points. This means that that the points in this orbit are in one-to-
one correspondence with SU(2) group elements. This also means that the group
SU(2) is isomorphic to S? as the manifold. Thus, we can view (1.64) as providing
a set of coordinates on S3.

The three-sphere S? is going to be the total space of the bundle we are about
to construct. The other elements that we need to define a bundle is the projection
map to the base. This is designed as follows. Consider the map from the space
of unit spinors to R? given by

Here o = (o', 0?,0%) are the usual Pauli matrices. A simple computation gives

v - 2Re(z) —2Im(z) |z]* -1
MRS R R R EA
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In particular, it is clear that |v|> = 1, and so this is a vector lying on the unit
5% C R3. Thus, we have constructed a map

T8 = 5% T:R*D8*35¢9 v, €8 CR.

Explicitly, we see that the vector v is independent of the coordinate ¢. The
projection map 7 : S — 52 is the map that ‘forgets’ about the ¢ coordinate
and maps the z coordinate to the corresponding point on S?, with ¢, 2z viewed
as coordinates on S3. Here we can both view the base space S? of fibration as a
set of one-dimensional submanifolds parametrised by ¢, or as the target of the
projection map 7.

1.13.2 Metric in the Total Space and the Corresponding Ehresmann
Connection

The sphere S? comes with its round metric, which is the restriction of the flat
metric in R* to S®. Viewing R* = C? the flat metric takes the form

ds® = |daf’ + |dB]*.
Using the parametrisation (1.64) we write

i¢ i$
¢ f=— (1.65)

VItzP VIt

In this parametrisation, the metric on S* evaluates to

) i zdz — zdz\* |dz|?
— —_ . 1.
s (d(‘”z T+ 2P ) MECFSERE (1.66)

This is a metric in the total space of the bundle, which is S® in our case. As

we know, a (Riemannian) metric in the total space defines a connection. The

corresponding horizontal distribution is metric orthogonal to the vertical one.
Vertical vector fields in this bundle are those of the form

9]
Xy = JZ)=—- 1.67
Let us find vector fields that are metric orthogonal to vertical. We look for
horizontal vector fields in the form

0 o -0
X=a—4+b—+b— 1.68
“96 'z TPz (1.68)
where a is a real valued function, and b is a complex valued function in the total
space. Taking the metric pairing of a vertical vector field a’(9/9¢) with what we

want to be a horizontal one and setting the result to zero gives

i 2b—zb
a’( 422 Z>0. (1.69)

Tt
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We thus see that horizontal vector fields are those of the form

izb—2b O 0 0
Xy = b— b—. 1.70
" 21+|z\28¢+ HAFE (1.70)
If we want these vector fields to be invariant with respect to the action of S* on
the fibres, the function b must be ¢-independent, i.e., function on S? only.
We can also see that the 1-form that encodes this horizontal subbundle is
given by
izdz — Zzdz

gy iz
W=t ST

(1.71)

with the horizontal vector fields being those that satisfy &(Xg) = 0. We note
that the metric on the three-sphere can be written as

4|dz|?
(1+12[2)?’

where we also identified the standard metric on the two-sphere of radius one.

ds?gii = (.:}2 + stzg, d3252 = (172)

1.13.3 Hopf Fibration as a Principal Bundle

Hopf fibration is also an example of a principal bundle. Indeed, the fibres of
the fibration (S%,52, ) are copies of S' ~ U(1). Let us parametrise the group
manifold U(1) as

U(l) 3 g =€". (1.73)

We have this group acting on the total space of the bundle by v — gv. It
is clear that the projection map 7 commutes with the U(1) action because
Vgp = Vi

Let us also understand what connections in this principal bundle are. First, we
note that for b = b(z, z) the horizontal distribution (1.70) is ¢-independent, and
so is U(1)-invariant. Thus, it gives rise to a connection in the principal bundle.
To describe this connection in coordinates, we note that the canonical 1-form
g~ 'dg on the group manifold U(1) is

g tdg = id. (1.74)

This makes it natural to identify the Lie algebra of U(1) with the vector space
iR of imaginary numbers. A general connection in this principal bundle is then
of the form

w=g tdg+g 'Ag =idp + A, (1.75)

where A is some Lie algebra valued form on the base. In our case A is a pure
imaginary 1-form on S? (locally). Comparing to (1.71) we see that there is a
canonical geometric connection in the Hopf bundle given by w = iw, with @
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being real and given by (1.71). In other words, the canonical U(1) connection in
the Hopf bundle is given by the following pure imaginary 1-form
1zdz — zdz

=id T 1.
w 1¢+2 uPE (1.76)

1.14 Vector Bundles

A vector bundle is a fibre bundle with an additional structure of a vector space
for fibres. We follow C. H. Taubes’ 2011 book, Differential Geometry, in this
section.

1.14.1 Definition

A vector bundle (E,B,w) is a fibre bundle with the structure of a finite-
dimensional (real) vector space for each fibre 7='(x),x € B, such that the
trivialisation maps can be chosen to be linear maps ¢ : 7= *(U) — U x R*.
In other words, it is required that the trivialisation map from a fibre 7!(x) can
be chosen to be a linear isomorphism between the vector spaces 7~1(x) and R*.
The dimension k is called the rank of the vector bundle. The simplest example
of a vector bundle is the trivial bundle B x R*.

As for any fibre bundle, there is a notion of sections of a vector bundle. A
section is a map ¢ : B — F that respects the projection w(¢(x)) = x. Given
that fibres of a vector bundle have the structure of a vector space, every vector
bundle has a preferred section, the zero section.

1.14.2 Cocycles Definition

A vector bundle can also be given a cocycles definition, similar to what we saw for
the principal bundles. To see how this comes about, let us consider the trivialising
maps ¢y, ¢y over two different but overlapping neighbourhoods U, V. Over the
overlap U UV we have

duody' : (UNV)xRF - (UNV) xR"
This map is linear and thus satisfies
du o ¢y (x,v) = (2, guvv)
for some GL(k,R) valued function gyv : U NV — GL(n,R). These are called
the transition functions for the vector bundle. Similarly to what we had for
principal bundles, these transition functions satisfy

gov =1 gvuv =95y, Juvgvwgwu =1L

In the opposite direction, given a set of trivial bundles U x R* over the
neighbourhoods U, and a set of transition functions satisfying the previous
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cocycle properties, one can construct a vector bundle by identifying the points
of the trivial bundles with the cocycles, similar to what was done in the principal
bundle case.

1.14.3 The Tangent and Cotangent Bundles as Vector Bundles

It is not hard to see that what we have previously defined as the tangent bundle
(even prior to the definition of the notion of a bundle) is an example of a vector
bundle. Indeed, let us recall how this was defined. Given a pair of coordinate
neighbourhoods U, V', there are two maps ¢y : U — R™, ¢y : V — R"™. The
transition function 1y = ¥y oty maps Yy (UUV) — by (UUV), both subsets
of R™. The differential of this map v, is a map from ¢, (U U V) to GL(n,R),
and is the matrix of the Jacobian of the corresponding coordinate transformation.
So, we set gyv = Yyv.. The cocycle conditions are satisfied by the chain rule.
The tangent space above each point is spanned by the coordinate vector fields
Oi,...,0,, and the corresponding trivial bundles TU = U xR" are glued together
by the transition functions gyv, which follow from the chain rule. This shows that
the tangent bundle over a manifold, as it was previously defined, is an example
of a vector bundle. In fact, the definition of a general vector bundle could be
motivated by the example of the tangent bundle.

In a similar vein, the cotangent bundle T M is as well an example of a vector
bundle, with transition functions given by the inverse of those for the tangent
bundle.

A section of the tangent bundle T'M is called a vector field, and a section of
the cotangent bundle T*M is called a 1-form.

1.14.4 Structure Group

There is an extra structure that can be added to a fibre bundle, and this structure
brings general fibre bundles closer to the principal and vector bundles. This is
the structure of a group that acts on the fibres so that the matching between
overlapping local trivialisation charts is a group transformation. Often this group
is a part of the definition of the fibre bundle, see e.g., Nakahara (2003), and is
called the structure group of the bundle. But, as we have seen in the section
on fibre bundles, it is not necessary to have this structure and one can develop a
meaningful theory even in its absence. The structure group is naturally present
in the case of principal bundles, where the fibre is a group itself. Structure group
is also present in the case of vector bundles, where it is, most generally, the
general linear group GL(n,R). However, the structure group of a vector bundle
may also be a subgroup of GL(n,R), as in the case of associated vector bundles.

1.14.5 From Vector Bundles to Principal Bundles

There are two general constructions that relate vector bundles with principal
bundles. One such construction is from a vector bundle F, to the principal frame
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bundle F'E, which is also often denoted by Pgix). Its fibre is the space of frames
of F, and given that any two frames can be mapped one into another by a
GL(n,R) transformation, this space can be identified with a copy of the general
linear group. In case there is a metric in the fibres of F, one can consider the
space of orthonormal frames of E. This is a principal bundle whose fibre is the
orthogonal group.

1.14.6 From Principal Bundles to Associated Vector Bundles

It is also possible to go in the opposite direction, starting from a principal
G-bundle and defining the notion of the associated vector bundle. This is a
vector bundle whose fibre is any linear representation of G. We thus first need
to define the notion of a representation. Let V' denote the vector space R™ or
C™. Denote by GI(V) either GL(n,R) of GL(n,C). A representation p of G is
a group homomorphism from G to GI(V), i.e., a map that sends the identity
element in G into the identity matrix in GI(V), and is compatible with the
group multiplication p(gg’) = p(g9)p(g’).

Let m : P — B with the principal G-bundle over base B. Then one defines a
new bundle, denoted by P x,V, which is the quotient of P x V' by the equivalence
relation

(p,v) ~ (pg, p(g~")v).

In other words, the group G acts on P x V, and the space P x, V is the space
of orbits of this action.

To see that this is indeed a vector bundle, we need to specify the projection, as
well as check the vector space properties of the fibre. First, the projection sends
the equivalence class of (p,v) to mw(p). This is well-defined, and it is clear that
the base of the new bundle is the same as base of the principal bundle. The
multiplication by real or complex number A sends the equivalence class of (p,v)
to that of (p, \v). The zero section is the equivalence class of (p,0) € P x V.
We can also add sections of P x, V by adding the corresponding equivalence
classes. The trivialisation of the new bundle is obtained as follows. First, let
¢ : Ply — U x G be a trivialisation of P over neighbourhood U. Denote by
¥ : P — @G the function that is the composition of ¢ with the projection
onto the second factor. We can then define ¢V : (P x, V)|y — U x V as
the map that sends the equivalence class of (p,v) to (w(p), p(¢»(p))v). This
is well-defined because (pg, p(g~')v) gets sent to (mw(pg), p(¥(pg))p(g~)v) =

(w(p), p(4h(p))v) because p(1(pg))p(9~") = p(1b(pg)g™") = p(¢(p)). Finally, if
guy are the principal bundle transition function arising as ¢y o ¢, then the

associated bundle transitions functions are p(gyv ).

Example 1.70 This example shows how to recover the original vector bundle as
the bundle associated with its bundle of frames. Thus, let E be a vector bundle
with fibre V', and F'E be its principal bundle of frames. Let p be the defining
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representation of GL(n,R). Then the associated bundle F'E x, V is canonically
isomorphic to E. To see this, we view a section of F'E as the set of elements
(e1,...,e,) that span the fibre of E at every point, i.e., a frame. We can then
define a function f : FE x V — FE that sends e = (e;,...,e,) and v € V to
f(e,v) = v'e;, with summation convention implied. This map is invariant with
respect to the G action on F'E x V, and this shows that the quotient FE x,V
is sent by f to E.

What is important about the associated bundle construction is that, given a
vector bundle F, all bundles obtained from FE via various algebraic operations,
such as ®,F, A’E,Sym”(E), can be viewed as arising from the frame bundle
FE via the associated bundle construction. Thus, all these vector bundles can
be studied at once by focusing on the one principal frame bundle. Because of
this, all tensor bundles arise as vector bundles associated to the frame bundle of
a Riemannian manifold.

1.14.7 Covariant Derivatives

Given a vector bundle E, a covariant derivative is an operation that maps
sections of the bundle to 1-form valued sections

V : C®(M;E) — C=(M; E® T" M). (1.77)

Moreover, this map satisfies several properties. First, it respects the vector
structure of the fibres V(s + s’) = Vs + Vs'. Second, it obeys the analog of
the Leibnitz’s rule

V(fs)= fVs+s®df, VfeC=>(M).

The simplest covariant derivative is a version of the exterior derivative, as can
be seen in a trivialisation. Indeed, let x — (z, fi(z),..., f.(x)) be a section of
the bundle M x R™. Then

x = (z,dfy,...,df,)

is a covariant derivative. It is also easy to verify that the space of covariant
derivatives is an affine space, as the difference V—V’ of two covariant derivatives
is a linear map. Thus, if ¢ € Hom(F) ® T*M is a 1-form valued map of E into
itself, then V + a is also a covariant derivative.

As an example one can consider the situation when E — M is a subbundle of
the trivial bundle M x R™. Let 1T € Hom(M x R™; E) be the fibrewise orthogonal
projection in R™ onto E. Then Vs = Ilds is a covariant derivative.

For instance, one can consider the tangent bundle to the unit sphere S™ in R™***.
This is the set of points |z[*> = 1 in R™™, and the tangent space at every point
is the set of vectors v € R"*! orthogonal to z, i.e., zTv = 0. The orthogonal
projection to the tangent space is II = I — zz”, which is a (n + 1) x (n + 1)
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matrix. The covariant derivative is then Vs = Ilds. For example, let us consider
a constant vector e € R A section of the tangent bundle is obtained by
projecting this vector to lie in T'S™, ie., s = Ile = e — x(z"e). Its covariant
derivative is Vs = (zz” —I)dz(z"e), because (zaz” — D)z = 0.

1.14.8 Coordinate Expression for a Covariant Derivative

Let e; € V be a basis of the vector space V. Then any section s of the vector
bundle V is of the form s’(x)e;, where s*(x) are functions on the base. Using the
Leibnitz rule satisfied by the covariant derivative, the covariant derivative of this
section is

Vs =ds'e; + s'Ve, = (ds' + A';s7 )e;, (1.78)
where we introduced the 1-form valued connection coefficients A’; defined via
Ve, := Alse;. (1.79)

We will often write (1.78) as
Vs' =ds' + A';s’. (1.80)

1.14.9 Covariant Exterior Derivative and Curvature

We have introduced the covariant derivative as a map (1.77). This derivative
admits an extension that acts on differential forms with values in F, and maps
C=(M;E ® APT*M) — C*°(M;E @ AP™*T*M). This extension is called the
exterior covariant derivative, is denoted by the symbol dy, and will play an
important role in what follows. It is defined to satisfy the following rules: (i) If w
is a p-form and s is a section of E, then dy(sw) = Vs Aw + sdw; (ii) it is linear
dy (W + wy) = dywy + dyws.

While d* = 0, it is not in general true that di, = 0. However, d3, defines a
section of C*°(M;End(F) ® A*T*M), i.e., a 2-form on the base with values in
the space of endomorphisms of the fibre. This is because d3,tv = Fy Ato for every
differential form to with values in E. Let us verify this. Consider the result of
application of d2, to the product of a section s and a differential form w. We have

d3 (sw) = dy(dys Aw) + dy(sdw)
=disAw—dys Adw + dys Ad, = (d%s) A w.

Here we have used dyw = dw and d> = 0. When w = f is a function we see
that d% (sf) = (d%s)f, which implies that d% is an algebraic operator, and so
diro = Fy Ato.

As we have see in (1.78), in a trivialisation every exterior covariant derivative
is of the form

dy=d+A, AcEnd(E)®T M. (1.81)
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A simple computation then shows that the corresponding curvature 2-form is

Fy =dA+ AN A € End(E) @ A°T* M. (1.82)

1.14.10 Principal Connections and Covariant Derivatives

Let E be a vector bundle with fibre V' that is associated with a principal
G-bundle P via the construction £ = P x, V, where p is some representation of
G. Let w be a principal connection on P. Then it defines a covariant derivative
on F as follows. Let us view a section s of F as a G equivariant map §: P — V.
This is the map that makes the following diagram commute

p- 19 pyy

ﬁl JN

M —— F

Concretely, 5 is a vector valued function on P with the property R;3 = p(g~')5.
Every such function defines a section of E = P x, V. The (exterior) covariant
derivative Vs is defined to be the horizontal projection (d$) g of d3. Alternatively,
for every vector field v € T M, let vy be the horizontal lift to TP. We then define
the covariant derivative Vs of s to be the section of E that corresponds to the
equivariant vector field vy8§.

Let us work all this out in a trivialisation. For simplicity, let us only consider
a GL(n, R) principal bundle of frames and the associated bundle corresponding
to the defining representation. Let e; be a basis of V and s = vi(z)e; be a
section of E. We then define the following equivariant vector valued function
on P

5= (g7
where g;7 are the coordinates along the fibres of P. This function is indeed equiv-
ariant in the sense of satisfying R;s = p(h™')s. We then apply the horizontal

vector field (1.55) to this ‘function’, getting again an equivariant function of the
same type

Xu((g")'07 () = a*(g71) (8,07 + A, 0").
This defines the associated covariant derivative as

Vuvi = (%vi + A:”.vj.

1.15 Riemannian Geometry

In this section, we follow the book by M. Nakahara (2003), Geometry, Topology
and Physics. Our coordinates now carry Greek indices, as is standard in the
physics literature.
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1.15.1 Affine Connection, Connection Coefficients

A covariant derivative in the tangent bundle is called an affine connection.
Thus, itisamap V : TM — TM®T*M, satisfying the Leibnitz rule appropriate
for vector bundle covariant derivatives. We can also view this covariant derivative
asamap V:TM x TM — TM satisfying

VxY+2)=VxY +VxZ, (
VixivyZ =VxZ+VyZ, (1.84
VixY = fVxY, (
Vx(fY) = X(f)Y + fVxY. (

Affine connections can be characterised in coordinates as follows. Let e, =
0/0zx" be the coordinate vector fields. Then define symbols I'*,,, via

Ve, =V,e, = exl*,,.. (1.87)
The covariant derivative of an arbitrary vector field is then
V.(X%e,) = (9,X")e, + X"V,e, = (0, X +T7,,X")ex. (1.88)

In the physics literature, this formula is usually written omitting the basis
vectors as

(VX)) =V, X =9,X +T*,,X", (1.89)

where the meaning of V,X?* is that of the objects (V,X)* that arise as the
components in V, X = (V,X)*e,.

The introduced covariant derivative can be extended to arbitrary tensors by
requiring

Moreover, this relation must also hold when some of the indices are contracted.
This immediately allows to extend V to a connection in the cotangent bundle
T*M. Indeed, we must have

X(w(Y)) = Vx (@) = (Vxw)(Y) + w(VxY). (1.91)
Writing everything in coordinates, this gives

Vuw, = 0,w, —w,I'%,,. (1.92)

1.15.2 Curvature and Torsion

Given an affine connection in T'M, there are two natural tensors that can be
defined. One of them is the curvature that exists for a covariant derivative dy .
This exists in any vector bundle. The other is the torsion, and this exists only
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for a covariant derivative in T* M, which the derivative in T M produces. The
torsion can be defined as the difference between the exterior covariant derivative
dyw and dw, for a 1-form w € T*M.

In terms of the operator V : TM x T™ — T™ that we introduced previously,
the curvature and torsion have the following definitions

T(X,Y):=VyxY —VyX — [X,Y], (1.93)
R(X,KZ) = vayZ — VYVXZ — V[X,Y]Z.

It can be checked that both operations are multi-linear in all the entries, and are
thus tensors. We also note that one often writes

R(X,Y,Z) = R(X,Y)Z. (1.94)

The tensor R is called Riemann curvature tensor. In components, one defines
the following objects

T, =dz*(T(e,e,)) =1, -1, = -2 (1.95)

[wv]?

and

Ry, = dx"(R(e,, e.)en) (1.96)
== QLF”AV - al,F”M + F")\l,].—wnu - ].—w)\u].—wm,.

1.15.83 The Riccti Tensor and the Scalar Curvature

Given the curvature tensor of type (1,3) one can perform a contraction to
produce the Ricci tensor given by

Ric(X,Y) :=dz"(R(e,,Y)X). (1.97)
In components

Ric,, = Ric(e,,e,) = R* .. (1.98)
Contracting further with a metric produces the scalar curvature

R := g" Ric(e,,e,) = ¢"' R, (1.99)

1.15.4 Levi—Civita Connection

Theorem 1.71 The fundamental theorem of (psuedo-) Riemannian
geometry. On a (pseudo-) Riemannian manifold (M, g) there exists a unique
torsion free affine connection that is compatible with g, i.e., one with V ,g,, = 0.
This connection is called the Levi—Civita connection.

A proof is by an explicit computation. The connection coefficients of the Levi—
Civita connection are called the Christoffel symbols, and are given by

1
7gﬁ)\(8ug>\u + aug/\u - a)\guu)- (1100)

re, = 5
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1.15.5 Bianchi Identities

Let R be the Riemann tensor defined with respect to the Levi-Civita connection.
Then the following identities hold

R(X,Y)Z+R(Z,X)Y + R(Y,Z)X =0, (1.101)
(VxR)(Y,2)V + (VyR)(Z,X)V + (VzR)(X,Y)V =0.
In components, these read
R*\uw + R px + R\, = 0, (1.102)
VR sy + VR sk + VR s = 0.

1.16 Spinors and Differential Forms

In this section we describe some basic facts about Clifford algebras. In particular,
we explicitly describe the isomorphism between a Clifford algebra of a vector
space and its exterior algebra. This gives a concrete realisation of any Clifford
algebra as the exterior algebra equipped with a special product. The product
is given by the difference of the exterior and interior products. This allows for
a concrete and efficient description of modules of the Clifford algebra — spinors.
Spinors will be seen to be special types of elements of the exterior algebra, i.e.,
special types of differential forms. We follow the book by F. Reese Harvey (1990),
called Spinors and Calibrations, closely in this section.

1.16.1 Clifford Algebras

Let V be a vector space (over R), and let (-,-) be a symmetric bilinear form on
V, i.e., a metric. The Clifford algebra CI(V') associated with this bilinear form
is defined as the quotient of the tensor algebra "2/ ®"V by the ideal generated
by all elements of the form v ® v — (v,v)1. In other words, this is the algebra
generated by V subject to the relations

v-v=—(v,v)l, (1.103)

or, in polarised form

veow4w-v=—-2v,w)l. (1.104)

We note that Clifford algebra generalises the notion of the exterior algebra A*V.
Indeed, when the bilinear form in question is zero, the Clifford algebra reduces
to the exterior algebra.

Even when the bilinear form in question is not zero, there is a relation between
the Clifford algebra and the exterior algebra, as is described by the following
theorem.

Theorem 1.72 Clifford algebra C1(V) is isomorphic (as a vector space, not as
an algebra) to the exterior algebra A*V. Moreover, under this isomorphism the
Clifford product is explicitly described as
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Tou=2TAu—i.u, (1.105)

where - denotes the Clifford product, z € V andu € A*V =2 CI(V'). The operation
iy 1S the interior product i, : A*V — AV defined as the adjoint of the wedge
product under the bilinear form in question, i.e.,

(x AN u,v) = (u,i,v), x €V, Yu,veA'V. (1.106)

To prove the first statement of the theorem one notes that each tensor can be
expressed as a skew tensor modulo relations (1.104), and skew tensors generate
A*V. To prove the second statement one computes

- (x-u)=a-(rAu—1iu) =—cANiu—i(vAu) =—(z,z)u.

This shows that indeed, V' viewed as sitting inside A*V gives rise to operators
on A*V that satisfy the Clifford algebra defining relations. The Clifford product
is extended to arbitrary elements of A*V by linearity. Indeed, let v = v; A--- A,
be an element of A*V. We can write this as a tensor

1 .
v= ] Z Sign_ v,(1) ® -+ @ Vp(p)- (1.107)

Then, if we rewrite the Clifford product (1.105) as
z-u=(E, —I,)u, (1.108)

where E, := zA and I, := 1, are the exterior and interior products respectively,
the Clifford algebra element corresponding to v becomes the following operator
on A*V

1 :
v=2 > sign, (B, =1, o) 0o (B =L, ). (1.109)

This gives an explicit description of the Clifford algebra CI(V') as the exterior
algebra A*V equipped with the product (1.109). In other words, if we denote the
isomorphism CI(V) 2 A*V by ¢, then an element v € A*V corresponds in CI(V)
to an operator ¢(v) given by the right-hand side of (1.109), and the Clifford
product is v - u = ¢(v)u.

1.16.2 The Groups Spin and Pin

Let Cl*(V') denote the multiplicative group of invertible elements of the Clifford
algebra CI(V'). This is the group generated by non-null vectors u € V. For such
vectors, the inverse is given by u™' = —u/(u,u), as follows from the Clifford

algebra defining relation v - u = —(u, u)1.

Definition 1.73 The Pin group is the subgroup of Ci*(V) generated by unit
vectors in V.

Definition 1.74 The spin group is defined as the subgroup of even elements in
Pin, i.e., Spin = Pin U Cl=v** (V). Concretely
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Spin={acCl*(V):a=uy...us, u; €V, |u;|=1}

The following construction relates the groups Pin and Spin to the orthogonal
transformations of V. First, let us introduce an involution of CI(V') that is an
identity on the space of even elements, and reverses the sign of odd elements. It
is generated by & = —z on V. With this in mind, we define the twisted adjoint
representation of ClI*(V) on CI(V) via

Ad,z = dza™". (1.110)
We then have the following theorem.

Theorem 1.75 The twisted adjoint action (1.110) of CI*(V) on CU(V) is
orthogonal. Moreover, this action gives rise to two isomorphisms

O(V) = Pin/Z,,  SO(V) = Spin/Z,. (1.111)

A proof is given in Harvey’s 1990 book, in chapter 10. In particular, this the-
orem says that the Spin group is a double cover of the special orthogonal group.
A more explicit description of the Spin group is possible in terms of reflections,
but we will not need it. See the book by Harvey (1990) for more details.

1.16.3 The Split Case Cl(p,p)

There is a general theory of classification of Clifford algebras depending on the
dimension and the signature. See, e.g., the book by Harvey (1990), chapter 11.
However, this theory can be circumvented in the split case, when an explicit
description is possible in terms of the exterior algebra. Furthermore, this explicit
description can be used to describe other signatures, by realising Cl(r, s) with
r + s = 2p as subalgebras of the complexification Cl(p,p) Qg C. It is here that
we will explicitly see that spinors are differential forms.

The representation of Clifford algebra acting on itself by the Clifford multi-
plication is not irreducible. An explicit and beautiful description of irreducible
representations is available in the split signature case. Consider the space R? of
half the dimension. Let z* be the Cartesian coordinates on this space. Consider
the exterior algebra A®(R?). The operation of multiplication by objects dz®
increases the degree of a differential form, while the operation of insertion of
a vector field 9/0x* lowers the degree. This suggests that we define

(a*)t := da*, Qo 7= Tp)pz0- (1.112)
These creation-annihilation operators satisfy the following relations
(@) (@) = —=(a")(a")',  awa, = —ayaa, (1.113)
aq(a®)t + (a®)ta, = 7.
This is the Clifford algebra in dimension 2p, which corresponds to the metric of

spit signature (p, p). Indeed, it is generated by objects of the form X = v+40,v €
RP 6 € RP*, with the defining relations being



76 Aspects of Differential Geometry

X1X2+X2X1 :29(X1,X2)H, (1114)
where the metric is
1
g(’l}l + 91,'[}2 + 92) = 5(91(’[)2) + 92(U1)). (1115)

Introducing the linear combinations V' = (v 4 6)/2,U = (v — 6)/2 diagonalises
the metric and gives |v + 0]* = |V|? — |U|?, which shows that this is a metric of
signature (p,p).

This Clifford algebra admits a representation on differential forms from
A*(RP*) defined by

(v+ 0w = i,w + w. (1.116)
This gives a representation of the Clifford algebra because

(v+0)(v+ 0w = iy (i,w + Ow) + (i, w + Ow) (1.117)
=iy (0w) + Oipw = (i,0)w = g(v + 0,0 + O)w.

This means that differential forms in dimension p, i.e., the space A*(RP) is
the space of spinors of the pseudo-orthogonal group SO(p,p). This is a fact
of fundamental importance, and in particular gives one of the easiest ways to
explicitly construct the spinor representations of many orthogonal groups. In
particular, the Weyl representations of SO(p, p) are the spaces of even and odd
degree differential forms. The Lie algebra so(p, p) is realised in this formalism as
the span of all operators quadratic in the creation-annihilation operators (1.112).

Example 1.76 Let us see explicitly how the spinor representations of SO(2,2)
are differential forms in R?. To this end, we introduce a pair of creating anni-
hilation operators a,,al and as.,al, with the usual anti-commutation relations
aia; + a;r-ai = §,;; and all other pairs anti-commuting. The Lie algebra of SO(2,2)
is spanned by all elements of degree two in the Clifford algebra (commutators of
~-matrices in the physics terminology), and these are all the quadratic operators
one can construct from a,al and a,,al.

Let us consider the following operators
H = a,al — asal, E, = ayal, E_ = ayal. (1.118)
It is easy to check that the following s1(2) commutation relations hold
[E.,E_]=H, [H,E.] = £2F,. (1.119)

This gives us one copy of s/(2) Lie algebra. One can form the second copy of
51(2) in the following way

H = alal + agag —1= alaJ{ — a;ag, E+ = a0, E_ = a;a{.
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Again we get the usual 5/(2) commutation relations
[E,,E_]=H, [H,E.] = £2F,. (1.120)

Together, the six operators we have constructed span the Lie algebra so(2,2).
And it is not hard to check that all barred operators commute with unbarred
ones, so we have two commuting copies of s1(2). So we get an explicit realisation
of the Lie algebra s0(2,2) as two commuting Lie algebras sl(2,R).

Let us now discuss its action on spinors. The Weyl representations are formed
by forms of even and odd degrees. The forms of odd degree are spanned by
dx',dz?. The action of the first copy of sl(2) is as follows:

Hdz? = (a1a} — aqal)dz? = da?, Hdz' = (a1a} — ayal)da’ = —da*,
E_da? = apalda® = —da', E dx' = ajabdzt = —da?,

while the second copy acts trivially on these states. So, the state dz? is the spin
up, and dz' is the spin down state for the first copy of sl(2).

The even degree forms are spanned by 1 and dxz'dz?. The first copy of sl(2)
acts trivially, while the action of the second copy is

H1=(aya} —abay)1 =1, Hdz'dz® = (ayal — alay)dz'da® = —dx*dx?,

E_1=alal1l = —dz'da?, E,dx'dr* = ayaydxdx® = —1.

Thus, the state 1 is the spin up, and dz'dz? is spin down for the second copy of

sl(2).
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Metric and Related Formulations

In this chapter we describe the standard metric formulation of general relativity
(GR). We attempt to be as concise as possible, covering in detail aspects of the
formalism that are not already available in the standard sources.

2.1 Einstein—Hilbert Metric Formulation

This section covers the standard Einstein—Hilbert formulation.

2.1.1 Affine Connection and Riemann Curvature

For the convenience of the reader, we start by collecting all the useful formu-
las related to Riemannian geometry from the previous chapter. This fixes our
conventions. For the covariant derivatives in TM,T*M we have

Vot =00 + 17,07, Vv, =0,v, —T'Y, ,0,. (2.1)

The torsion-free metric Christoffel connection components are given by

1
Fp;w = 59’10 (augva + augua - 8aguu) . (22)
A simple, but very useful, consequence of this formula is obtained by contraction
1 1 1
= ggw (aug/w + 0pGuo — 809#9) = §gpaaugﬂcf = ﬁau\/ —-g. (2'3>
The Riemann curvature tensor components are
Rdmw = 8MFUPV - avrapu + Papvraau - Fapuraow' (2'4)
We have

(V,V, =V, V,)v* = R’,0", (2.5)

(V.V, =V, V, v, =—R%,,,0,.
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The contractions of the curvature tensor are
R,, =R .\, R=g"R,,. (2.6)
The two Bianchi identities read

R? ppw + R pp + R = 0, (2'7)
Vol + ViR o + VR o = 0.

The differential Bianchi identity (2.7) can be contracted to produce another very
useful consequence. Contracting the indices ap we get

VRawpw =V, Ryo — YV R,y (2.8)

A further contraction produces

1
VRay = 5V,R. (2.9)

2.1.2 Einstein—Hilbert Action

GR differs from all other physical theories in the fact that from the metric and
its first derivatives it is impossible to built a (covariantly transforming under
diffeomorphisms) scalar whose square could play the role of the Lagrangian
density. Indeed, the components I'?,,,, of the affine connection that are built from
the first derivatives of the metric can be made to vanish (at a point) by a choice
of a coordinate system, and so no covariant scalar of the schematic form I'T" can
be constructed. The simplest scalar that arises in Riemannian geometry is the
Ricci scalar, and this involves second derivatives of the metric. A Lagrangian
linear in the Ricci scalar is then possible, and can lead to second-order field
equations, as will be explicitly verified in Section 2.2.1. So, we write

Senls) = 15 [ VAR 20, (2.10)

where the coordinate volume element is omitted, g is the determinant of the
metric, which we assume to have Lorentzian signature. The quantity G is the
Newton’s constant, and A is the cosmological constant. The latter can be set to
zero if desired. The sign in front of the action is signature-dependent, and is fixed
by an argument in Section 2.2.2. We use conventions in which metric signature
is mostly plus.

2.1.3 FEinstein Equations

Taking into account

1
0V=9 = =5V =99,,09" (2.11)
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we have the following expression for the first variation of the Einstein—Hilbert
action

1 1
- _ _ _ HY
3en = 1 [ V70 (Bow = jom(R-20) 5. (212

Vanishing of the expression in the brackets here is the vacuum Einstein equations
(with nonzero A)

1
Taking the trace of this equation, and assuming we are in four dimensions gives
R = 4A and R,, = Ag,,. Metrics satisfying the latter equation are referred to
as Einstein.

2.2 Gamma—Gamma Formulation

The following discussion follows Landau-Lifschitz’s book (1987), Field Theory,
chapter 93, closely.

2.2.1 Action Rewritten in Terms of Christoffel Symbols

To convince oneself that the previous variational principle leads to sensible
second order field equations, one can rewrite the Einstein—Hilbert Lagrangian
as a quantity of the type I'T', plus a surface term. Schematically

[var= [ v=arr+ [a.v=gu, (2.14)

where w* is a vector field constructed from the metric and its first derivatives.
The last term is a surface term, does not affect the extremisation problem that
leads to the field equations, and can thus be ignored for the problem of deriving
the latter. And the quantity I'T’ contains only the first derivatives of the metric.
It will be explicitly obtained later in this subsection. This argument shows that
the field equations obtained from the Einstein—Hilbert Lagrangian are sensible
equations of the second order in derivatives.
Let us derive this I'T" formulation explicitly. We have

vV—gR =+—gg"" (0,17, — 0,7, + T, IV0, —T%,,17,,.). (2.15)
Integrating by parts in the first two terms, and omitting the surface terms, we
get

Vv 799;“)81/]-—”’#;1& - 81/(\/ *gg“p)FVW, (216)
\% _gg'upauryup£ - au( \% _ggup)l‘wl’p’
where = means modulo surface terms. The quantity 9, (v/—gg"*) can be rewritten
in terms of the Christoffel symbol and the metric. Indeed, we have

au V9=V _gI“pr7 aygup = _Fuudgop - FPVUgNU_ (217)



2.2 Gamma—Gamma Formulation 81

The last relation is just a rewriting of the fact that the covariant derivative of
g** vanishes. Overall, we have

V—gR= \/jg( 70Ty + (T g™” + 17,0 g" )17,
00 T = (D00 + Do )T+ 97 (DT = T, T,
Taking into account the arising cancellations we have
V—gR=\/—gg"”” (T* I ., = T*,,T",,.). (2.18)

This shows that an action that is manifestly quadratic in first derivatives of the
metric is possible, at the expense of this action not having manifest transforma-
tion properties as far as diffeomorphisms are concerned. The action reads

1

Serldl = 1606

/\/TQ(g”U(F”VpF“W —T%,,T%,,) —2A). (2.19)

2.2.2 Fixing the Sign in Front of the Action

The formulation (2.19) is a convenient starting point for the analysis that fixes
the sign in front of the action. Our desire is to have the Lagrangian given by
kinetic minus potential energy. The kinetic energy term is the one involving the
time derivatives. It is most convenient to perform the analysis by fixing a gauge.
We thus set the mixed temporal-spatial components of the metric to zero go; = 0.
We only keep the time derivatives. The only terms surviving in the kinetic term
are then

—Zgoogijg "9 g + 1900(9 79i5)°. (2.20)

The last term here can be set to zero by fixing the gauge in which the deter-
minant of the spatial metric is constant. This leaves the first term, which we
write as

1 .
=29 (G:)". (2.21)

This is nonnegative in the mostly plus signature (—,+,+,+), which fixes the
sign in front of the Einstein—Hilbert action for this signature. The action would
require a minus sign in front in the mostly minus signature.

2.2.3 Lagrangian in Terms of the Metric

We can further rewrite the Lagrangian (2.19) by substituting in it the explicit
expression for the Christoffel symbol in terms of the derivatives of the metric.
An explicit calculation gives the following identities

1 1
Vv -9 gparuupry,ug =V —g (%gpaaugoa <4gul’5; — 29y05;> s
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where we have used ¢"*¢"?0,9.s = —0,9"", and
V _ggpdrupo_ruu“ =—Vv—g (6119#’/8# ln( V _g) + guuaﬁt ln(\/ _g)au ln(\/ _g)) )

where we used I',,,, = 0,,(In/—g). Integrating by parts in the first term in the
previous expression we have

/ V=g9g" ", I, = / V=99""9,0,(In/=g).

Overall, neglecting a surface term, the action (2.19) written in terms of the metric
becomes

1
ya po prgo T _posSv o\ v /[ _
S[g ].6 G/ |: ,U«g avgaa( 5 29 6;)) g auav(ln g) 2A °
(2.22)

2.2.4 Linearisation on the Minkowski Background

The action (2.22) is a possible starting point for the gravitational perturbation
theory. Thus, let us set A = 0 and consider g,, = 1., + h,., where 7,, is the
(constant) Minkowski metric. If we are to keep only the terms of second order
in h,, in the action, then in the first term in (2.22) only the terms involving
the derivative can depend on h,,. All other occurrences of the metric must be
replaced with the Minkowski metric. In the second term in (2.22), we integrate
by parts and then use

1
dln\/—g = g, 00, (v —g9"") = §8Mh17‘“’ — 0,h*. (2.23)

Here 69,, = by, h = n*"h,,, and we used dg"” = —h*".
The Einstein-Hilbert action to second order in the expansion in 7, is then

1
) gn| m 9 h,, — 8,h*8,h — =h[] 2.24
S =5 G/[ WOy, + b0 by = 0,1 O,h — OB, (2:24)

where and O := 0*0,,. The first term here is the kinetic term for the gravitons,
while all other terms can be set to zero by a choice of gauge. This computation of
the linearised action can also serve to fix the sign in front of the action. Indeed,
in the mostly plus signature the kinetic term for a scalar ¢ is —(9,¢)?, which
is ¢J¢ neglecting a surface term. It can be checked that Sg})l[h] is invariant
(modulo surface terms) under the linearised diffeomorphisms

Och,, = 0,6 + 0.8, (2.25)

2.2.5 Inverse Densitiesed Metric as an Independent Variable

A further rewriting of the action (2.22) is possible in the important case A = 0.
When this is the case we can introduce the combinations

1
\/jgglw = O.AW7 Ouw =

ﬁgw, (2.26)
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so that o#?c,, = 6*. The fact that this is a natural variable for GR directly fol-
lows from the first-order Palatini formalism that will be described in Section 2.4.
In terms of these variables the Lagrangian becomes

1 1 1 1
Slo] = 16-C / [(’LU”“@VJM <40”"6§ - 20‘“’6Z> + 50“”0@@, . (2.27)

where

1
Wy = (“)u(ln \/—g) = anﬁa‘LJaB. (228)

All the formulas are valid in four dimensions. The action (2.27) was in particular
derived in Cheung and Remmen (2017), where it is argued to be a convenient
starting point for the flat space gravitational perturbation theory. If one sets
ot = n* — h* then its inverse is given by the simple geometric series 0, =
Nuw + Py + hfw + ---. This produces the most economic known perturbative
expansion of the A = 0 Einstein—Hilbert action. Every order of this expansion
contains the same number of terms, after the last term in (2.27) is taken care of
by a gauge-fixing, see Cheung and Remmen (2017). This should be compared to
the perturbative expansion of the Einstein—Hilbert action in the usual variables
9y = Nuw + Ry The expansion in the Einstein-Hilbert case contains a rapidly
increasing number of terms at every order, see, e.g., the appendix of the paper
Goroff and Sagnotti (1986) for the expansion up to quartic order in h,,. The
arising quartic order Lagrangian occupies half a page.

2.3 Linearisation

The purpose of this section is to obtain formulas for linearisation of the Einstein—
Hilbert action around an arbitrary background. This helps to understand what
type of kinetic operator for gravitational perturbations arises in the metric
formulation. In perturbation theory, the GR Lagrangian expands to produce a
series of Lagrangians, one for every order in the perturbation. We want the terms
in the Lagrangian at each order to involve covariant derivatives with respect
to the background connection. For this purpose the covariant Einstein—Hilbert
action is a better starting point for perturbation theory than (2.22).

2.3.1 Linearisation of the Connection and Curvature

We have the following formula for the linearisation of the Christoffel symbol

1
5T?,, = Egpa (V900 + VibGue — Vodg,w) - (2.29)

Here g,,, is the background metric, and V is the covariant derivative with respect
to the background metric. This formula is checked by explicit verification.
For the linearisation of the Riemann curvature we have

5Rop,u,u = vu(srzy - VV(SF;IJ«' (230)
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Together with (2.29) this implies
1
5R[J.U = igpd (va,uéguo + vpvuagua - vacrég,u.u - vuvuégpv) .

The last term here is not manifestly ur symmetric, but its antisymmetric part
is a multiple of R"?,,6g,, and so vanishes.

2.3.2 Lichnerowicz Laplacian

The Lichnerowicz Laplacian A® on (0,2) tensors is defined as
APh,, = —V*Vh, — 2R,,0h" + R, h,, + R, h,,. (2.31)

The reason for this particular combination of the usual Laplacian corrected with
curvature dependent terms becomes clear if we introduce two further Laplacians,
one on vectors and one on functions

AWE, = —VV,E, + R, (2.32)
A = —VoV, .

We then have

A(l)v“(b = —Vavavu(b + Ruava¢
= —V,VVao + R%.%, V50 + RaVe = —V,VVa¢ = V,A0 .

Thus, one can either first take the gradient of a function to produce a 1-form
and then apply the Laplacian A(M, or first apply the Laplacian to the scalar
and then take the gradient. These operations commute. One can rephrase this
by saying that the Laplacians A® A®M are intertwined by the operator V,
mapping scalars into (0, 1) tensors.

The Lichnerowicz Laplacian on (0,2) tensors is introduced with similar idea
in mind. Thus, we can apply the Laplacian A™ to a vector &,, and then take
the covariant derivative, and symmetrise to produce a symmetric (0,2) tensor.
This is the same as applying the Laplacian A® to V&, + V,&,, modulo some
curvature dependent terms that vanish when the background is Einstein. Thus,
we have the following identity

A(Q)(v,ufu + VV§M> = VMA(I)&/ + VVA(Ugu + Q(VaR,uu - VuRua - vuRua>€a-
(2.33)

It is proved by explicit verification. The terms involving the curvature vanish
when the background is Einstein R,, = Ag,,, and so we have the desired
intertwining property of A®, A® It should be kept in mind, however, that
this now holds only on Einstein backgrounds, unlike the intertwining property
of A® A® that is true in general.
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2.3.3 Linearised Ricct and Lichnerowicz Operator

Let us now rewrite the Linearised Ricci tensor in terms of the Lichnerowicz
operator just introduced. Denoting dg,, = h,,,¢"**h,, = h and R, = R,.(h)
we have

2R, (h) = =V*V,h, +V°V , hyo + ViV, by — V,V, A (2.34)
In the second term here we can commute the covariant derivatives to write it as
VoV, he =V, Vo — R°, % hso — R°,*uhus (2.35)
= V,(0h), — Rapsh® + R,%ha,
where we have introduced an operator
(0h), :=V"h,, (2.36)
that maps symmetric (0,2) tensors into (0, 1) tensors. Thus, we have

VOV ha + VOV, e = V. (0h), + Vo (6R), — 2R, h™ + R, “hey + Ry “ha,..
(2.37)

We already recognise the curvature terms appearing in the Lichnerowicz Lapla-
cian. Overall, we have

2R, (h) = A®h,, +V,(6h), + V,(5h), — V.V, h. (2.38)

Thus, on traceless h = 0 and transverse (dh),, = 0 tensors the linearised Ricci is
(half) of the Lichnerowicz operator.
Now using

Vi (Vabu+Viba) = VOV, + R, 60 = —AVE, + 2R, %, (2.39)

and the intertwining property (2.33) together with the assumption that the
background is Einstein R,, = Ag,, we see that

R (VE+VE) = AV, + V..E), (2.40)

which verifies that the linearised Einstein equations are automatically satisfied
by metric perturbations that are pure diffeomorphisms.

2.3.4 Second Variation of the Einstein—Hilbert Action

Applying to (2.12) the variation the second time we get

1 1
52SEH - m/ vV —g 5,9“” (5R,uu - 29,uugp05Rpa>
— 1
_ gég“”égf"’ (guvaa +RuGpe — i(R —2M)(29,p900 + gwgm)) )
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On an Einstein background in four dimensions R, = Ag,,. Let us also divide
the second variation by two to get the second-order action, and replace dg,, =
hyw, 9" h,, = h. We also use 6g"” = —h*". We get

SOh] = L/\ﬁ_g W R (B) + SRR(R) + AR, — D)
327G w 2 R
where R(h) = ¢"R,,,(h). Let us rewrite this action in terms of the metric. We
have

R(h) = A©h + V*V"h,,. (2.41)
This gives
1 1
(2) — — _ e A2) W N vid
S [h] 327rG/\/ g { 2h A®h,, + (0h)*(8h), + hV*V"h,,  (2.42)
L (0) % h?
+§hA h+A(R*h,, — ?)

We note that the kinetic terms here are just the covariantisations of those
appearing in the flat space second-order Lagrangian (2.24), with, importantly,
the flat space Laplacian on rank two tensors being replaced by the Lichnerowicz
Laplacian.

2.4 First-Order Palatini Formulation

In the first-order formulation one introduces an independent connection field
into the game, to convert the Lagrangian into first order in derivatives form.
The Lagrangian is

1
SPalatini[gv F] = w /de\/ —g (g’wRW(F) - 2A) . (243)

The Ricci tensor present in (2.43) is formed out of the Riemann curvature
Ry (
be torsion-free, i.e., to satisfy the symmetry

I') := R°,,,. In Palatini formalism the affine connection is assumed to

I =T, (2.44)

The Ricci curvature R, (I') is not automatically symmetric, but the symmetric
part is selected in (2.43) when R, gets contracted with the symmetric metric.

Variation of (2.43) with respect to the affine connection gives an equation
that implies that V,g*” = 0, i.e., that the connection is metric-compatible. The
solution to this equation is the usual expression (2.2) for I' in terms of the
derivatives of the metric. Substituting this solution into the action one gets back
the second-order Einstein—Hilbert action.

We also note that in the case A = 0, if one views \/—gg"” as the basic variable
of the theory, the action (2.43) is cubic in the fields. This has been emphasised
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by Deser (1970), who used this cubic formulation to reconstruct GR from the
linear Fierz—Pauli theory and hence prove its uniqueness. The inverse densitiesed
metric has already been used in (2.27) to rewrite the action of GR in a way
that is minimally nonlinear. The action (2.27) can be obtained from (2.43) by
integrating out the I' field, as was explicitly shown in Cheung and Remmen
(2017). This reference also derives Feynman rules for GR in the cubic first-order
formulation (2.43).

2.5 Eddington—Schrédinger Affine Formulation

Instead of “integrating out” from (2.43) the affine connection to get back the
Einstein—Hilbert action one can integrate out the metric field. Indeed, varying
the Palatini action with respect to the metric one gets an equation that is trivially
solved
1
G = XR(W)(F)- (2.45)

This can then be substituted into the action to get a second-order pure affine

formulation
1 /

The trick of integrating out the metric is possible in any dimension, and we wrote
the four-dimensional version here. The field equation that results by varying
this action with respect to the connection implies that the metric defined in
(2.45) is compatible with the connection. The definition of the metric (2.45) then
becomes the Einstein equation. We note that this purely affine formulation is only
available with a nonzero cosmological constant. Note also that (in any dimension)
the coefficient in front of the Eddington—Schrédinger action is dimensionless. In
four dimensions we have (GA)™' ~ 10'%°, a very large number.

While the action (2.46) appears to be a natural construct, the pure affine
formalism brings with it arbitrariness that is not present in the metric formalism.
This has been emphasised in particular by Pauli, see Goenner (2014), section 8.2.
Thus, the tensor R, is not automatically symmetric even for a symmetric affine
connection. It can be split into its symmetric and antisymmetric parts, and these
can be separately used in constructing the Lagrangian. The elementary building
blocks are then

Ly = \/—=det(R,,) (1)), Ly = \/er7eb R, 0 R, p) Ry Rioe),
Ly = " Ry, R,

pols

where €7 is the densitized antisymmetric tensor that exists without any back-
ground structure on the manifold. The previous blocks are all densities of weight
one, and can be integrated over the manifold. However, one can also consider
their ratios. The most general Lagrangian is then
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L, L,
L=Lyf (LO, LO> (2.47)
for an arbitrary function f of two variables. The case f =1 gives GR, but other
choices are possible. A general theory from this class has been studied in Hejna
(2006), where it was shown that it is equivalent to a nonlinear Einstein—Proca
system. This ambiguity that arises in writing down the most general Lagrangian
is a drawback of all “pure connection” formulations, as we will see in the following
chapters.

Another drawback of the pure affine formulation is the very large number
of field components one has to deal with. Indeed, in four dimensions we have
4 x 10 = 40 components in I ,#,, as compared to only 10 components in g,,,. This
makes the pure affine formalism not very useful in practice.

2.6 Unification: Kaluza—Klein Theory

One can consider Einstein’s theory in spacetime dimensions higher than four, and
dimensionally reduce it to 4D by e.g., assuming that the fields are independent of
all but four spacetime coordinates. This is the Kaluza—Klein idea. The resulting
theory contains 4D Einstein’s gravity, but also contains other fields. Importantly,
if we interpret the original higher-dimensional space as the total space of the
fibre bundle, with the dimensional reduction giving the projection map, then
the fact that there is a metric in the total space of the bundle implies that
there is a natural connection that gets induced, by the requirement that the
horizontal vector fields are those metric orthogonal to vertical ones. This means
that the dimensionally reduced theory naturally contains gauge fields. This is
one of the most attractive ideas towards unifying gravity with other forces in
nature. However, we refrain its quantitative discussion until the next chapter,
where the frame formalism will allow us to simplify computations that must be
made to see what kind of dimensionally reduced Lagrangian arises.



3

Cartan’s Tetrad Formulation

We now come to the first key chapter of this book, where the customary metric
geometry of a typical exposition of general relativity (GR) gives in to a more
powerful geometric description, with differential forms and fibre bundles playing
the key role.

The book, FEinstein Gravity in a Nutshell, by Anthony Zee quotes (p. 787)
Einstein, a year before his death, speaking to a group of John Wheeler’s students.
Einstein in particular made a comment: ‘There is much reason to be attracted
to a theory with no space, and no time. But nobody has any idea how to build
it up’.

The question of why there is a nontrivial metric field apparently filling all of
the universe is perhaps one of the most interesting questions to which physics
currently gives no answer. General relativity describes the dynamics of such a
metric field, but it does not explain why this field is nonzero rather than zero. In
fact, GR starts by postulating that this field is nondegenerate, and thus cannot
even be formulated for zero metrics. Neither can it be formulated perturbatively
around the zero metric. The metric is thus essentially nonzero in GR. This
fact has often been pointed out as the reason for various theoretical problems
with GR, in particular, its worse than desired behaviour as a quantum theory
(non-renormalisability).

It should be clear that a metric description of geometry has no chance of
answering the question as to why a metric exists in the first place. In such
a description the metric is simply postulated from the very beginning. Hence,
developing a formalism where some other geometrical objects plays central role,
and metric arises only as a secondary objects is a necessary step in the direction
of explaining why it exists. This is probably the strongest theoretical motivation
for developing alternative geometric viewpoints on gravity.

The point of view that we take on gravity in this book is that it is a
dynamical theory of a collection of differential forms rather than a dynamical
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theory of metrics. The possibility of a metric interpretation then appears to be
somewhat of an accident. To study gravity not coupled to any matter fields and
to solve its field equations one never needs the metric interpretation. It is only
when matter coupled to gravity is introduced, that the matter is seen to follow
the geodesics of a certain metric constructed from the collection of differential
forms that the theory is about. This is how the metric interpretation arises.

This is, of course, profoundly different from the usual viewpoint on GR. The
metric GR is based on the equivalence principle that is built into its formalism
by requiring that all matter couples to the same metric. It can then be seen to be
natural that this very metric is the main dynamical variable of the theory. In the
viewpoint advocated in the previous paragraph, the equivalence principle would
not be automatic, because in principle, different species of matter may couple
differently to the collection of differential forms that describe the gravitational
field. This means that there can exist some theories of gravity and matter that
are mathematically consistent, but which would violate the equivalence principle
and thus would not be of any physical interest. We will not need to worry about
such issues for quite a while because in most of the theories we consider in
what follows the metric is apparent, and the most natural matter coupling is
the coupling to this metric. But there will be examples where the questions of
matter coupling become quite nontrivial. This is when the previous remarks will
become relevant.

While gravity is seen as a dynamical theory of a collection of differential
forms in all the formulations to be developed in the rest of this book, most of
them (if not all) still fall short of answering the question of why the metric
is nonzero. Thus, in most of these formulations the postulate of nonvanishing
(nondegenerate) metric is replaced by a similar nondegeneracy assumption.
So, most of the formulations we develop, while providing a new geometric
viewpoint on GR and leading to simplifications in the structure of Einstein
equations, do not answer the fundamental ‘Why nonzero metric’ question. But
these formulations do suggest even more exotic alternatives to which we will
turn in the last chapter, and which may have the potential to answer this
question.

In addition, the formulations that are based on differential forms make gravity
look much more similar to Yang-Mills gauge theories, where the dynamical
variables are also collections of differential forms. In fact, we will see that gravity
can be viewed as the ordinary sort of gauge theory, with fibre bundles and
gauge fields playing central roles. The main difference between gravity and gauge
theories of the more familiar sort is the existence of an object that links the
geometry of the fibres with that of the tangent space. It is this object that encodes
the metric, and it is this object whose presence makes the gravity theory so
profoundly different from the usual gauge theory. In this chapter we will develop
the series of formulations that all become possible thanks to Cartan’s idea of a
frame field.
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3.1 Tetrad, Spin Connection

There are two conceptually very different points of view on the tetrad. One that is
followed in many textbooks of GR goes under the name of ‘non-coordinate bases’,
see, e.g., the book by Sean Carroll (2019) entitled Spacetime and Geometry:
An Introduction to General Relativity, appendix J. We will briefly describe this
viewpoint first, mainly to make it clear that this is not what is later adopted.
We then proceed to develop Cartan’s point of view.

3.1.1 Non-Coordinate Bases

In this viewpoint one never introduces any bundles apart from the tangent and
cotangent (and more generally tensor) bundles over the manifold. This is what
makes this approach so logically different from that of Cartan. We present the
material of this subsection for completeness only. It can be skipped by readers
not interested in this viewpoint on the frame.

In Riemannian geometry, one usually works with coordinate bases in the
space of vector fields and 1-forms. A coordinate basis of vector fields is rarely
orthonormal. The idea is then that one can choose a not necessarily coordinate
basis of vectors e; € T M, where I is simply an index that enumerates them.
These vectors can be chosen to be orthonormal in the sense that

gler,es) =, (3.1)

where 7;; is the flat metric of desired signature. As we discuss later, there may
in fact be a difficulty in choosing an everywhere nonvanishing set of vectors that
satisfy the orthonormality condition (3.1), on some manifolds there simply do
not exist everywhere nonvanishing vector fields (S? is an example). But we will
ignore this subtlety for now, working in a single coordinate chart. One can then
expand the coordinate basis 0, in terms of the new basis 9, = e/ .e;, where e/, is
a collection of 4 x 4 coefficient functions. We can rewrite the metric in terms of
the objects el. Indeed,

m
g,uu - g(a/,u au) = g(eielv 656]) = eieig(elveJ) = e/ieinIJa (32)

where in the last step we have used (3.1). This shows that e,i is the ‘square root’
of the metric, and completely encodes the latter.

One can then encode the operation of covariant differentiation in non-
coordinate bases. This proceeds as follows. We write any vector as TM >
v = vle;. We then have

V(v'er) = (Ov")er + v’ Vey. (3.3)
If we introduce the connection coefficients

Vel :waeJ, (34)
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we have Vv = (9v! + w’ ;v7)er, which we can write as
Vol = ov" +w’ v’ (3.5)

On the other hand we have v'e; = v*0, = v*ele;, from which v’ = v*e]. We
also have V,(v*9,) = (9,v* + I'*,,v")d,. Comparing these two expressions we
see that T, el = 0,e + w! je;. This can be rewritten as

" o ® I w, I J
I, =efo,e, +cfw, se,, (3.6)
where we introduced the inverse objects e} : efe’ = 07, efe] = oL. This relates

the non-coordinate base connection coefficients w’; to the Christoffel symbols.
This relation can also be rewritten as

8061[/ - F#upefb = Vpe,IJ = _ngei- (3'7)
This means that
0=V,9 = V(e eins) = (w, e, € + e w) e, ). (3.8)
We now contract this with ef e}, to get

wy i+ wh i =0, (3.9)

which means that the connection coefficients w’; take values in the Lie algebra
of the Lorentz group of the appropriate signature. From (3.6) we also see that
the vanishing of the torsion I'*,,; = 0 is equivalent to

de’ +w'; nel =0, (3.10)

which is an equation written in terms of the wedge product and the exterior
derivative. Here we think of the coefficients efL as components of a differential
form e := e da*.

The viewpoint described does not necessitate introducing any other bundles
apart from the tangent/cotangent bundles. However, the fact that the connection
coefficients w?! ; are naturally Lie algebra valued strongly suggests that we are in
fact dealing with a principal connection here, even if this fact is not apparent from
our description. The viewpoint of Cartan, which we are to develop now, puts a
certain associated vector bundle at the forefront of the description. Importantly,
it also leads to a set of natural generalisations of Riemannian geometry that are
hard to come up with in the usual tensorial formalism.

3.1.2 Geometric Structures

One of Cartan’s key ideas is that a ‘geometric structure’ on a manifold (e.g.,
metric, but other examples are possible, see what follows) can be efficiently
encoded in a collection of differential forms. This proceeds as follows. First, we
need a ‘local model’ for our desired geometric structure. Thus, let V = R"
and GL(V) = GL(n,R). Let T be the space of certain type tensors for V.
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For example, it can be the space T = S?V* of symmetric rank (0,2) tensors,
or T = A?V* the space of antisymmetric (0,2) tensors. Another important
example is T = V ® V* = End(V), the space of linear maps on V. Let ¢ € T
be a tensor and G, C GL(V) be the subgroup preserving 1. For example, if
Q € S?V* is a (nondegenerate) symmetric tensor then Ggo = O(V,Q), the
group of orthogonal transformations preserving Q. When w € A?V* is a (non-
degenerate) antisymmetric tensor, the stabiliser subgroup is G,, = Sp(V,w), the
symplectic group. For J € V®@V* such that J? = —Id, the group G; = GL(m,C)
where n = 2m.

Let us now fix, in each case, a canonical tensor of the corresponding type. In
the case of symmetric tensors ) can be chosen to be a flat metric of the desired
signature. For the case of antisymmetric tensors this can be chosen to be

w= ( fj’.m Ig ) (3.11)

where I,, is the n xn identity matrix. For the case of an almost complex structure
J € V® V™, it can be chosen to be given again by (9.79), but now interpreted
as an element of V' ® V* rather than A?V*.

Let us now consider a manifold M of dimension n. Our desire is to encode a
geometric structure on M, modelled on one of the previously described tensors,
into a collection of differential forms. To this end we first define a notion of
coframe or soldering form. A coframe at * € M on M with values in V is
an isomorphism

e: T,M — V. (3.12)

Concretely, a soldering form is (locally, in a coordinate chart) a 1-form on M
with values in V, i.e., the object e’ = efldaz“ already encountered in the previous
subsection.

The general linear group GL(V') acts transitively on the space of coframes at a
point. Concretely, let us define a right action of GL(V') on a coframe via e — g~ e,
g € GL(V). Let F*M be the principal GL(V) bundle of coframes on M. Let us
now consider some geometric structure on M, e.g., a metric or a nondegenerate
2-form, or an almost complex structure. In each case, let us fix in V' a canonical
object of the corresponding type, as previously discussed. There arises a notion
of a coframe adapted to the geometric structure chosen, which is a coframe such
that the geometric structure in question gets mapped into the canonical one by
the coframe mapping. For example, in the case of a metric, an adapted coframe is
the one for which the map (3.12) is an isometry between the metric in M chosen
and the canonical fixed metric in V. For the example of a 2-form, an adapted
frame is one for which the map (3.12) is a symplectic map, so that the original
2-form in M is the pullback of the canonical 2-form in V. For the example of
an almost complex structure, an adapted frame is the one that satisfies e(Jv) =
Jye(v), where Jy is the canonical almost complex structure in V.
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What makes this construction interesting is that there are in general many
coframes that are adapted to a given geometric structure. Indeed, a coframe
mapping (3.12) can be followed by a transformation in V that preserves
the canonical object in V. There is then the notion of a bundle of adapted
coframes, which is a principal G, C GL(n,R) bundle for one of the G,
groups discussed previously. Thus, in the case of a metric we have the prin-
cipal O(V) bundle of orthonormal coframes. In the case of a 2-form we
get the principal Sp(V) bundle of symplectic coframes. In the case of an
almost complex structure we get an GL(m,C),n = 2m bundle of coframes
that preserve the eigenspace decompositions of J and Jy. Thus, a geomet-
ric structure reduces the principal GL(V) coframe bundle F*M to one of
the principal bundles of the adapted coframes. This motivates the following
definition

Definition 3.1 A G-structure on M is a reduction of the principal GL(V) bundle
F*M of coframes to a principal G-bundle, G C GL(V).

As we have seen, concretely a G-structure is encoded in a collection of
V-valued differential forms on M. The original geometric structure on M in
many cases arises as simply the pullback of a canonical tensor in V under
the coframe map (3.12). This viewpoint on geometric structures unifies many
different types of geometries. In particular, as we have seen, geometry of metrics,
symplectic geometry, and complex geometry are all treated from a uniform
viewpoint.

3.1.3 Tetrad as the Soldering Form

We see that there are two conceptually very different perspectives on the tetrad
formulation of gravity. One of them brings to forefront the frame field, which
is a non-coordinate basis of vectors in T'M that are orthonormal with respect to
the given metric. One can then define the dual coframe which is a collection of
1-forms that are orthonormal. All tensors can then be decomposed in such
frames and/or coframe and one can set up the operation of covariant differ-
entiation that introduces the connection coefficients w?;. This point of view
does not bring into play any other bundles apart from the already available
tangent bundle. And this is the point of view that is most often described in
relation to the tetrad formalism. This is not the point of view that will be
adopted here.

One problem with the point of view just discussed is that it brings with itself
a difficulty that many manifolds do not admit nowhere vanishing vector fields.
The simplest example where there are no such vector fields is S2. Manifolds
admitting a global section of the frame bundle are called parallelisable, and
this property is rare. All Lie groups are parallelisable, but not all manifolds of
interest are Lie groups.
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This difficulty is avoided if one takes Cartan’s viewpoint on the frame. This
other viewpoint introduces a new vector bundle E over space(time) manifold M,
with fibres copies of V' = R™. This vector bundle is a priori unrelated to the
tangent or cotangent bundles. The tetrad, soldering form, or a coframe is then
an object that ties this bundle E to the tangent bundle. It is for this reason that
the tetrad is referred to as the soldering form, because it solders an abstract
vector bundle over the spacetime to the tangent bundle. Vector bundles such as
FE can be equipped with a connection, and it is this connection that will play the
central role in our description of gravity, rather than the Levi—Civita connection
on TM. All in all, the emphasis shifts from objects intrinsically defined on the
manifold (tensors) to certain differential forms with values in E. This does make
gravity look more similar to Yang—Mills theory, because the latter also starts
by introducing a bundle over spacetime, with dynamical objects being those
naturally living in this bundle. The difference between Yang—Mills theory and
gravity is then simply in the fact that the latter comes with an object that ties
the vector bundle in question to the tangent bundle-the soldering form.

From now on we will only develop the description of (pseudo-) Riemannian
geometry, leaving the other examples (symplectic, complex) behind. But it should
be kept in mind that they can be developed in parallel with the Riemannian
geometry case.

With the previous remarks in mind, we introduce a vector bundle V — E —
M, whose fibres V' have a metric (-,-), are of dimension n, and are copies of
R?9 p+q = n, depending on the desired signature. One requires this new bundle
to be isomorphic to the tangent bundle T'M . The tetrad, soldering form, vielbein,
or coframe! is then the object that provides this isomorphism

e:TM — E. (3.13)
Locally, the tetrad is a collection of n linearly independent 1-forms
elzeidz“, I=1,...,n,

with the map from T'M to E being e : v — e (v) = e/ v*. We will refer to indices
I,J,... as ‘internal’ indices, to signify the fact that they are indices that refer to
a vector bundle E that has in principle nothing to do with the natural bundles
that are defined on M, such as the tangent and cotangent bundle.

Given a tetrad, the metric on M is defined to be the pullback of the metric
on

g(v,u) = (e(v),e(u)),  or g =e.eln, (3.14)

I The terms ‘tetrad’ and ‘veilbein’ both have the drawback that they refer explicitly to four
dimensions. In three dimensions the same fields are usually referred to as triads or
dreibeins; in higher dimensions, the term ‘veilbein’ is used. We will ignore this and use the
same term in all dimensions.
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where 77 ; is the metric on fibres V. We note that there are many different choices
of tetrad that lead to the same metric. Indeed, the tetrad can be locally Lorentz
rotated e — Af;e’, AT ; € O(p, q) without any change in the metric. This is why
the (co-) frame bundle is an O(p, ¢) principal bundle.

3.1.4 Spin Connection

Having defined the tetrad, we can introduce the spin connection. It starts its
life as a metric connection on the vector bundle E, or as a connection that is
associated to a connection in the principal O(p, ¢) bundle. That is, locally, this
is an object w’; that is 1-form valued and defines the covariant derivative on
sections of

dVhi=dvi +w' V7. (3.15)
The metric property is
0 — dwnIJ — wIKnKJ +WJK7]IK, (316)

where we assumed that the components of the inverse metric '’ are constants.
This is just the statement that the object w!; is valued in the Lie algebra of
O(p, q), i.e., valued in the Lie algebra of the corresponding Lorenz group. In the
simplest case of Riemannian signature '/ = ¢’/ and the spin connection is a
1-form with values in antisymmetric n X n matrices.

3.1.5 Torsion-Free Spin Connection

When one has a tetrad e/ at one’s disposal, one can introduce the following
A*(M) ® E valued object called torsion

Th = dve’ =de’ +w' je’. (3.17)

Note that d here is the exterior derivative and the wedge product of forms is
implied in the second term.

Lemma 3.2 Given a tetrad, there exists a unique metric torsion-free connection.
Explicitly, it is given by

wﬁJ =e"e(—Clpo + Coop + Copp), Chpo == ewalpeé]. (3.18)

The proof is by explicit verification. The object e is the inverse tetrad defined
via efe] = 0] and efe] = % The internal indices are raised and lowered with
the internal metric 77;; and its inverse. To convince oneself that such a statement
can be true one can first count the number of equations in d“ef = 0 versus the
number of unknowns. The number of equation is the dimension of the space of
2-forms n(n — 1)/2 times n, while this is also the number of components in the
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connection w ;. The formula (3.18) is an analog of the Christoffel formula in
Riemannian geometry.

3.1.6 Relation to the Christoffel Connection

In the tetrad formalism the Christoffel connection arises simply as the pullback of
the spin connection from E to T'M. This is expressed as follows. Given u! = eiu“
we define the connection on T'M via

e, Vu" = d“u’. (3.19)
A quick calculation then gives
e, I7,, = due, +w, e, (3.20)
Note that we can rewrite this relation as

0=V¥e, :=due, +w, e, — T, e, (3.21)

13 vp=o®

Here we have introduced a new ‘total’ covariant derivative V* that acts on
both the spacetime index and internal index of el. The relation (3.20) is then
interpreted as the statement that the total covariant derivative of the tetrad
is zero. Note that (3.21) immediately implies that the connection on T'M that
appears in V¢ is the Christoffel connection for the metric g, = eiei nrs- Indeed,
we can act on g, so defined with V and the result is zero because both ei and
Ny are killed by V«.

Let us also note that the equation Vie/ = 0 can be taken as defining both
the spin connection and the Levi-Civita connection. Indeed, we can take the
antisymmetric in pr part of this equation and recover the torsion-free condition.
Having solved it, we then get the Levi-Civita connection algebraically from the
spin connection and the partial derivatives of the tetrad. An alternative way of
reaching the same conclusion is by counting equations. There are n® equations
in V¢e] = 0, and we can use them to find n x n(n —1)/2 components of the spin
connection and n x n(n + 1)/2 components of T .

3.1.7 Curvature of the Spin Connection vs. Riemann Curvature

Having established a relation between the torsion-free spin and Levi-Civita
connections, we are ready to establish a link between their respective curvatures.
The curvature of the spin connection is defined via

2de du’ == R, ju’. (3.22)

v]
This gives, in form notations

RIJ = deJ + CUIKOJKJ. (323)
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We can now obtain a relation to the Riemann curvature as follows. Since the
‘total’ covariant derivative V¢ kills the tetrad we have

0=2V; Vier = R," el — R*,.€ (3.24)

v] prvCan
and thus

«@ _ I o, J
R% ., = R, se7e,.

(3.25)
This gives a very efficient way of computing the Riemann curvature! Indeed,
given a metric, we only need to choose the corresponding tetrad, and then
compute the spin connection from the zero-torsion condition. There are only
24 components of the spin connection to compute in four dimensions, which are
all compactly stored in six 1-forms. This should be compared to 40 components
of the Christoffel symbol, for which no good storing device exists. The curvature
of the spin connection is then obtained by simple operations of exterior differ-
entiation and wedge product, and this leads directly to the components of the
Riemann curvature tensor, as the relation (3.25) tells us.

The easiest way to find the Ricci curvature and Ricci scalar using the tetrad
formalism is to convert all indices of R,,”; not to the spacetime indices as in
(3.25), but to internal indices. Thus, introducing the object

RJ\/[NIJ = RuulJeﬁ/Iequ (326)

we can get the internal indices Ricci tensor as
Ry = R, (3.27)

so that R,, = R;,ele; and the Ricci scalar as

R= R]JT]IJ. (328)

3.1.8 Examples

We now spell out some examples of Riemann curvature computations using the
frame formalism.

Example 3.3 Let us consider one of the simplest possible applications of the
frame formalism, which is the computation of the curvature of the two-sphere.
The metric is given by

ds* = R*(d0* + sin® 0d¢?), (3.29)
which leads to the following frame 1-forms, or a ‘dyad’
e’ = Rdf, e? = RsinOdg. (3.30)
The two torsion-free equations to solve are de? + w? e? = 0,de? + w?pe? = 0,
which become

wydp =0,  cosOdpdd = w?,do, (3.31)
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and immediately give
w?y = cos fdg. (3.32)

Since the Lie algebra of SO(2) is one-dimensional, there is only this 1-form that
constitutes the full spin connection. Its curvature is given by

. 1

R?y = —sinfdfdo = ﬁe%@. (3.33)
This immediately gives the only independent component of the Riemann curva-
ture Ryp®y = 1/R?, and thus Ry = 1/R? and R4 = 1/R?. The Ricci scalar is
then
2

R= ik (3.34)
Example 3.4 Let us now redo the previous example using the complexified
formalism. To this end, we first map the 1-forms (3.30) to 1-forms on R? using
the stereographic projection (from the north pole). The map from S? to R? = C
is explicitly given by

. cos(6/2) i
x+zyfzfsin(9/2)e . (3.35)
The inverse map C — S? is given by
[z]> =1 vig  ?
0= o= Z 3.36
cos EEE, 7 (3.36)
We can now pull back the 1-forms (3.30) with this map. We get
d|z)? . i(zdz — zdz)
g = ————, sinfdp = ——F—=. (3.37)
l2I(z1* + 1) l2I(z1* +1)
This gives for the unit R = 1 sphere metric
4ddzdz
ds® = ————. 3.38
g CEREaE 333

To find the spin connection for this metric, it is convenient to work with the
complexified frame. To introduce this, let us write the torsion-free conditions

de® + w” e’ =0, de¥ + w?,e* = 0. (3.39)
Let us introduce
e:=e" +iev. (3.40)

Then the complex linear combination of the two equations in (3.39) gives
de 4+ iwY,e = 0. Thus, if we now introduce the notation w := w?, there is one
complex equation

de +iwe =0 (3.41)

to solve instead of two real equations (3.39).
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For the metric (3.38) the complexified 1-form e is

2dz
2 _ > _
ds® = ee, e = TW (342)
We can now easily solve (3.41) for the spin connection
i(zdz — zdz)
= —— 3.43

Note that if we pull it back to S? we get w = —(1 + cos8)de, which does not
coincide with (3.32), nor should it.
We can now compute the curvature using this complex formalism. We have

dw = iea (3.44)
where now of course the wedge product of forms appears on the right-hand side.
Let us see how to extract the scalar curvature from here. We have (1/2i)eé = eve®,
and so what the equation (3.44) says is that RY, = eYe,, which immediately
implies that R,, = R,, = 1 and the scalar curvature is equal to R = 2, as we
have previously determined without using the complexified frame.

It is clear that the described complex version of the tetrad formalism in two
dimensions, whose main formulas are ds* = e€ and (3.41) as well as the rule

dw = ——ee (3.45)

for reading the scalar curvature R from the curvature of w is more efficient than
the real formalism because it halves the number of equations that need to be
written down. We will describe a similar formalism in four dimensions in the
chapter on chiral descriptions of GR.

Example 3.5 We now note that the two sets of equations, namely (3.41) and
(3.44) can be put together into a single matrix-valued equation. For this purpose,
let us introduce a 1-form with values in 2 x 2 anti-Hermitian matrices

0 = % ( 2’ fw ) (3.46)

One then easily checks that both equations in question arise as the components
of a single matrix-valued equation

df + 00 = 0. (3.47)

Thus, the U(1) spin connection together with the frame field on S? combines
into a flat SU(2) connection. This construction has its origin in the fact that
S? = SU(2)/U(1), and thus there is a natural flat su(2)-valued 1-form on S? given
by the corresponding Maurer—Cartan 1-form g~'dg, with g being a representative
of a point x € S? realised as the coset S* = SU(2)/U(1).
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This construction can be trivially generalised to constant scalar curvature
2-manifolds other than S?. For example, there exists a similar SL(2,R) connec-
tion on the two-dimensional hyperbolic space H?. The construction of combining
the two Cartan equations (3.41) and (3.44) into a single equation requiring some
connection to be flat has an analog in 3D, as we will see in the next chapter.

Example 3.6 Let us now consider a much more involved example of a static,
spherically symmetric Lorentzian signature metric in four dimensions

ds® = —f2dt* + g*dr® + r*(d6? + sin® 0d¢?). (3.48)

Here functions f, g depend on the radial coordinate only. The most natural tetrad
is then

el = fdt, e =gdr, €’ =rdf, e®=rsinfdo. (3.49)

Let us start the process of determining the spin connection. We have de* =
f'drdt, and the equation to solve is

de' +w' e +w'ge’ +w'ye? = 0. (3.50)

The last two terms here will involve de and d¢, which are not present in the first
term. So, the simplest possibility for this equation to be satisfied is to assume
that w'y and w', are actually zero, and that w?, only has the dt component. This
gives

Wt = f—dt. (3.51)
g
The next equation to consider is
de” +w"e' + w"pe’ +w”ye? = 0. (3.52)

The first two terms here are zero in view of the already known solution for w?,.
The simplest possibility to have this equation satisfied is to assume that w”y ~ df
and w”, ~ do.

The next equation is

de’ +w’e’ + wlre” +w?ye? = 0. (3.53)

The first term here is de’ = drdf. We have already assumed that w?y = 0, and
so there is no second term. We have also assumed that w”y ~ df, and this is
precisely the structure needed for the third term to cancel the first. Thus, the
simplest option is to assume that w’; ~ d¢. We then find

1
w?,. = =dé. (3.54)
9

The last equation reads

de® + w?,et + w®,.e” + w?e? = 0. (3.55)



102 Cartan’s Tetrad Formulation

The first term is a sum of two de® = sin8drd¢ + r cos fdfdg. We have already
assumed previously that w’, = 0, so the second term does not contribute. And
we can then read off the last two connection 1-forms

1
w?, = ;sin 0do, w?y = cos Odg. (3.56)

This finishes the most laborious process of any curvature computation — the
determination of the connection.
We can now find the six components of the curvature 2-form. We have

N/
R, = duw', + w0, +w'yw?, = (f) drdt,
g

Ry =w'wj = —%dtd@, Ry =wh'w'y = —% sin Odtdo,

where we have used w'y = 0,w’, in all three equations, and also used the fact
that wy = —w?,, and w"y, = —w?, to write the last two formulas. The other
three curvature components are

1 /
R, =du’, + Wt +wyw?, = <g) drdé,
R?, = de®, + w?wt, + w?euw?,
1\ . 1 1 1\ .
= () sin @drd¢ + — cos 8dfd¢p + cos 0dp—df = () sin @drde,
g g g g

R?y = de®y + w?,wly + w?,w'y

1 1
= —sin6dfd¢p — E sin 0d¢df = — sin 6 (1 — g2> dfde.

We can rewrite what we have found as follows

t 1 f, lt t ' t t ' t
RT:_]T — ) e'e., Ryg=-— e'ep, R'y=——"=¢€"¢ey,
g\ g r r

1 /1y 1 /1y 1 1
R, =—— () ee,, R®, =-—— () ee,, Ry == (1 - 2> e®ey.
ar \g gr \g r g

We can now form components of the Ricci tensor. It is this state where most care
is needed in order not to commit a sign mistake coming from raising-lowering
the indices. One should take into account that raising-lowering the index t gives
a minus sign. This in particular means that R, = R",, and similarly for the
other components of the curvature involving t. We then have

1 N\2f
Ry =R+ Rﬁtet + R¢t¢t = E ({7) + Tfj;za
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L\ 2 /1y
Rrr:Rtrtr+R9r9r+R¢T¢T: (f) () R

fa\g) gr\y

S 1\ 1 1
Roo = Rip'o + Roo"o + Ryo®s = — - (= —(1-=).
00 0 6 1 0 o1 P60 6 ngg gr \g +7,2 92

The R, component of Ricci is the same as Ry in view of the spherical symmetry,
and so carries no new information.

If we now want the Ricci flat Schwarzschild solution we set all the three
obtained components of Ricci to zero. The sum of the first two equations thus
gives immediately

/ !
Fi9 (3.57)
[y

which means that fg = const. This constant must be unity if we demand that
the metric approaches the Minkowski metric at 7 — oo. Then the last equation
gives

d(1—f?) dr
St =0 (3.58)
which implies
1-f2= %* (3.59)

where 7, is a constant of integration. We get the Schwarzschild solution. The
difference of the first two equations, which is the equation that we did not yet
use, is satisfied automatically.

3.1.9 Spin Connection vs. Levi—Civita Connection

It is worth emphasising the principal difference between the spin and Levi-Civita
connections. The latter is a connection in the tangent bundle. Connections in
a tangent bundle can be viewed as those associated with principal GL(n,R)
connections. However, as soon as the torsion-free condition I'*[,,; = 0 is imposed
this connection can no longer be interpreted as a Lie algebra valued 1-form.
This is the technical reason why it is rather difficult to work with the Levi-
Civita connection, at least as compared to the spin connection. The latter is
a principal connection, and is a 1-form with values in the Lie algebra of the
corresponding Lorentz group. The former is not a principal connection, and is not
a 1-form in any natural way. The powerful machinery of exterior differentiation
and differential forms is only available in the case of the principal O(p, ¢) bundle
spin connection.

However, having only a connection in a vector bundle E over M does not say
anything about the geometry of M. It is for this reason that an additional object
is introduced, which is the soldering form, viewed as a map e : TM — E. This
object ties objects in E to objects in TM. In particular, both the metric and
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the Levi—Civita connections on T'M arise this way, as pullbacks of objects from
E. The presence of this object is the main distinguishing feature of a theory of
geometry as compared to a gauge theory.

3.2 Einstein—Cartan First-Order Formulation

We now have all the necessary ingredients to describe the Einstein—Cartan tetrad
formulation. It has different versions, and here we describe the version in which
the action is written in terms of differential forms. We will only give this action in
four dimensions. The story in 2+ 1 dimensions will be described in the following
chapter. A generalisation to n > 4 dimensions is straightforward, but will not
be needed. The action is a functional of tetrad e and spin connection w that are
treated as independent variables. It reads

1 A
SEc[e,W] = %/EIJKL ele‘] <RKL(CU) - 6€K6L> . (360)
Here R"(w) = R¥p(w)n™* is the curvature 2-form of the Lorentz (spin)

connection with one of its indices raised using the internal metric n’7. The
wedge product of forms is implied in (3.60). The integrand is a top form, and
thus to evaluate the integral a choice of orientation of M needs to be made. The
object €75 is a completely antisymmetric tensor in A*V*. It takes values +1,
and an orientation of ¥V = R* needs to be chosen to fix this tensor, by requiring
that it takes value +1 in the orientation chosen. A convenient choice of this
orientation that ties it to the orientation of M is described in Section 3.3.1.

When one varies (3.60) with respect to the connection, one obtains the equa-
tion d“(efe’) = 0, which implies d“e’ = 0, i.e., the zero-torsion condition. As
we already know, this is an algebraic equation for the spin connection, and can
be solved uniquely in terms of the derivatives of e, see (3.18). Substituting this
solution into the action (3.60) brings us back to the Einstein-Hilbert action.

Varying the action (3.60) with respect to the frame one gets

J pKL A J_ K _L
€rjrre’ R*" = §€IJKL€ e*e’, (3.61)
which is the Einstein equation in the tetrad formalism.

We note that the Einstein-Cartan action (3.60) is polynomial in the fields,
and contains just up to quartic terms. This is true even for A # 0, in contrast to
the case of the Palatini action (2.43), which is only polynomial (with the choice
of the inverse densitiesed metric as the main variable) for A = 0. This, as well
as the necessity of tetrads when spinors are present, are the two reasons why
the tetrad formulation can be considered superior to the formulation in terms of
the metric.

However, one drawback of the Einstein—Cartan formulation as compared
to the metric description is more complicated character of its Hamiltonian
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formulation obtained via the 3 4+ 1 split. It is known that in this case there
are second-class constraints, see, e.g., Holst (1996) for the Hamiltonian analysis.
This should be contrasted with the Arnowitt-Deser-Misner (ADM) formalism,
shown in Arnowitt et al. (1960) where no second-class constraints appear. The
appearance of second-class constraints in the Einstein—Cartan formalism is
not surprising because 24 ‘momentum’ variables of the connection have been
introduced in addition to the 16 ‘configuration’ variables. The extra variables
are then eliminated by second-class constraints. A formalism that shares all
the good features of Einstein—Cartan but does not suffer from the problem of
second-class constraints is the chiral first-order formalism to be described in the
next chapter.

3.3 Teleparallel Formulation

In the previous chapter we have seen that the GR Lagrangian can be rewritten
in the I'T form, modulo surface terms, see (2.19). A similar rewriting is possible
for the Einstein—Cartan Lagrangian (3.60). Let us carry out this exercise. It will
suggest a different way of thinking about GR that goes under the name of telepar-
allel gravity. The action we are going to derive is not written in terms of wedge
product of differential forms. Thus, the geometry of fibre bundles and differential
forms that we previously emphasised as important for the interpretation of the
tetrad formalism plays no role in this section. Our description here is very brief,
and the reader is directed to Heisenberg (2018) for a more thorough discussion
on encoding gravity into torsion or non-metricity.

3.3.1 Torsion-Squared Form of the Gravitational Lagrangian

Recalling the definition of the curvature, and integrating by parts, we can rewrite
the action (3.60) as

1 A
Sle,w] = %/EUKL <—2deIeJoJKL +eledwt Mt — GeIeJeKeL) )

The idea now is to substitute here the explicit solution (3.18) for the spin
connection in terms of derivatives of the tetrad. But for this solution de! =
—w! ;e’. Substituting this we get

1

A
Sle] =50 |Gt <2w(e)IMeMer(e)KL + eelw(e)® yw(e)Mt — 6eIeJeKeL) ,

where w(e) is the torsion-free spin connection given by (3.18).
Let us now rewrite the previous action in index notations, making the space-
time indices of all the forms explicit. We will be using the following identity

dztdz’ dxPdz’ = e ds.
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Here é#¥7? is a densitiesed completely antisymmetric tensor that in any coordi-
nate system has components +1. Its value is +1 for the ordering of urpo that
coincides with the orientation of M chosen. The quantity d*z is the coordinate
volume element. We also have the identities

erixL€ e eler el == 2e, (3.62)
which is essentially the volume element of the metric defined by the tetrad
e=+/—g(e).

Here g(e) is the determinant of the metric (3.14) defined by the tetrad. In writing
the identity (3.62) we assumed that the orientation that defines €; ;. is chosen
so that this identity is true. Another useful identity is

1
§€1JKL€“VPG€ZL€Z = 2e e&?ez]. (3.63)

It is proved by multiplying both sides with e e’
We now rewrite the first term in the action using

M J 71 MJRS

eMe? = — 1€ P epspgele?. (3.64)
This gives
21w’ et e Wt = —%GIJKLWIMEMJRSGRSPereQwKL
= _266A4JRSGIJKL6[£€;]W‘ILIwwllf'L.
Now using
MRS ek = — (5?4(511355 — 0F05) + OM (68T — 6F6T) + oM (6F6 — 5,13615))

Using these identities the action becomes

1 v
Sle] = 5G| ¢ (76[KHGL]wawiWL — A) , (3.65)
where we have used w)), = 0. The next step is to substitute the solution
(3.18).
To make the next step, let us introduce the torsion
T, = 206, (3.66)

This is the torsion of the zero connection, and should be contrasted with the
torsion of the frame-compatible spin connection, which is zero. If we define the
version of the torsion 77, with all indices replaced by internal indices 77 ;x =
el T, we can rewrite the torsion-free spin connection in terms of the objects
T ;%. We have

2ebwy, ;= Tss' + T ys +Tis' (3.67)
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This gives w;’; = T!;; and

1
wy S pwpMt = = (—TLMKTLMK + 277WLKTLKM) .

4

This gives the final expression for the GR Lagrangian in terms of the derivatives
of the tetrad

1
167G | ©

1 1
Sle] = (—47dLMKTLMK + iTMLKTLKM + T T, — 21\) ,

where T is the torsion given by (3.66). This form of the Lagrangian should be
compared to the conceptually similar rewriting (2.19) of the Lagrangian in the
metric formulation.

3.3.2 Weitzenbock Connection

Given that we can rewrite the gravitational Lagrangian in the torsion-squared
form, there arises the possibility of trading torsion for the curvature. Thus, one
introduces the so-called Weitzenbock connection defined via

el —W?,,el = 0. (3.68)

As this relation shows, the connection W, is designed to parallel trans-
port the frame field. This is an affine connection that has nonzero torsion
7., = 2e[W?,,, but zero curvature R’,,, (W) = 0. Thus, the curvature has
been traded for torsion in this formulation. Teleparallel gravity allows for a two-
parameter family of modifications in which the relative coefficients in front of
the different torsion squared terms are changed as compared to the Lagrangian
that describes GR. More details on this and other aspects of teleparallel gravity
is available in Aldrovandi and Pereira (2013) and Heisenberg (2018).

3.4 Pure Connection Formulation

Given that it is possible to ‘integrate out’ the metric variable from Palatini
Lagrangian (2.43) to obtain the pure affine formulation (2.46), one can ask
whether a similar trick is possible with the Einstein—Cartan formulation. The
field equations one gets for the tetrad are algebraic in any dimension, so this is
always possible in principle. In 3D it is possible to obtain a closed-form expression
for the corresponding pure connection Lagrangian, see the next chapter. In 4D
the equation one needs to solve is (3.61). At present it is not known how to
solve this equation for e’ in a closed form. However, a perturbative solution
(around constant curvature background) is possible, see Zinoviev (2005) and
Basile et al. (2016). It is also possible to ‘integrate out’ the frame field in a
closed form using a trick with Lagrange multiplier fields, see Section 3.7.2.
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We now describe this solution. For simplicity, we only treat the Riemannian
case so that there are no subtle signs coming from the internal metric 7;;. The
constant curvature background corresponds to

A
R (w) = gejej. (3.69)

Denoting by e’,w’’ the background and by de’,a’” the perturbations we have
the following linearisation of (3.61)

2A
E]JKLBdeaKL = ?E[JKLGJQK(S@L, (370)
whose solution is
I 3 £I J £1 I 1 I
de =oxdies fJ::fJ—ééJf, (3.71)
where we introduced the linearised curvature fi} := 2d¥a/ieje; and
P = fIE f = fI. Note that the linearised ‘Ricci’ tensor f} does not need

to be symmetric.
The linearisation of the action (3.60), evaluated on the solution (3.71) gives

Ape A A
§@[g] = —3 / e(6157, — a1 sy R 4 Ao el ek L, (3.72)

T 32rGA 3 ’

where e := (1/24)e;;xe’e’e® el is the volume form for e’. The last term here
can be rewritten in a convenient form. Thus, one uses the background condition
(3.69) to replace the wedge product of two e’s with the curvature. The term
L is then rewritten by replacing a™* = (1/4)eM*“F?epgrsa®,
and decomposing the product of two of the €’s. We get

IJ, K M
ergr R a” ya

E]JKLRIJGKMG,]WL = RIIWG,MJEIJKLGJKL = (1/2) (dwdw)aljﬁj,]KLaKL. (373)
Integrating by parts we can then replace the last term in (3.72) with

w IJ qw KL __ MNPQ pIJ KL
_GIJKLd a d a = _(6/4)€IJKL6 fMN PQ -

Thus, the last term in (3.72) can also be rewritten in the form curvature squared.
The final result for the linearised action can be written very compactly as Basile
et al. (2016)

3
Sl = - oy [ eCRHalCE, ol (3.74)
where the Weyl-like tensor is defined as
f
Ciilal = fil = Oy = i fiy) + 50101 (3.75)

Note that in Euclidean signature the action (3.74) has a definite sign. This is
similar to Eddington—Schrédinger action (2.46), but in contrast to the Einstein—
Hilbert action. The previous manipulations can be simplified by starting with
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the MacDowell-Mansouri action instead, as in Basile et al. (2016). In that case
there is no need for integration by parts manipulations, and the linearised action
(3.74) results immediately. We will describe this Section 3.5.1.

3.5 MacDowell-Mansouri Formulation

The idea in MacDowell and Mansouri (1977) is to combine the spin connec-
tion w’’ of the Einstein—Cartan formalism together with the tetrad e’ into a
connection for the gauge group SO(1,4) or SO(2,3), depending on the sign of
the cosmological constant. The Lie algebra of these groups splits as the sum of the
Lorentz subalgebra plus an additional four-dimensional part. The frame receives
the interpretation of the component of the connection in this four-dimensional
part. A similar idea can be put to use in 3D gravity, where it leads to its Chern—
Simons formulation in Witten (1988) and, when the cosmological constant is
zero, in Poincaré gauge theories of gravity, see, e.g., Hehl (2012).

The connection that combines the spin connection and the tetrad is an example
of the Cartan connection, as is explained in Wise (2010). Cartan geometry
changes the nature of the object that ties together an abstract fibre bundle and
the manifold. In the previous discussion this role has been played by the soldering
form. In the Cartan’s case this role is played by a 1-form in a principal H bundle
P over M that is valued not in the Lie algebra of H (as would be appropriate
for a principal connection), but rather in the Lie algebra of a bigger Lie group
G of which H is a Lie subgroup. Moreover, the mapping 7, P — g is required to
be an isomorphism. Thus, this connection provides a local identification of the
total space of an H bundle over M with the group manifold G; see Wise (2010)
for more details.

There are two versions of this formulation. In the original formulation of Mac-
Dowell and Mansouri (1977), the basic field is an SO(1,4) or SO(2, 3) connection,
but the Lagrangian is only invariant under the four-dimensional Lorentz group.?
Invariance under SO(1,4) or SO(2, 3) is explicitly broken. In the version of Stelle
and West (1980) the symmetry breaking from SO(1,4) or SO(2, 3) to SO(1, 3) is
dynamical, due to an auxiliary vector field, often referred to as the compensator
in the literature.

3.5.1 MacDowell-Mansourt Version

The curvature of an SO(1,4) or SO(2,3) connection has two parts. First, there
is the part valued in the Lie algebra of the Lorentz group SO(1, 3). It is given by

F' = R"Y(w) — %616‘1. (3.76)

2 Supergravity can also be described along the same lines, by replacing the gauge group that
gives pure gravity with a supergroup, see MacDowell and Mansouri (1977).



110 Cartan’s Tetrad Formulation

Second, there is the remaining part, which is just a multiple of the torsion tensor
d“e’. The four-dimensional MacDowell-Mansouri action is

3
SMM[G,W] = —M/EIJKL]:IJ]:KL. (377)

Using (3.76) we get the Einstein—Cartan action (3.60) plus a topological term.

The action (3.77) thus differs from (3.60) by a total derivative term, and leads
to the same field equations. However, it has many advantages over the Einstein—
Cartan action. First, its value on maximally symmetric backgrounds F77 = 0 is
zero. Second, in relation to the problem of evaluating the gravitational action
on, e.g., asymptotically anti-de Sitter (AdS) spaces, the usual Einstein—Hilbert
or Einstein-Cartan actions diverge on such backgrounds and require renormal-
isation. This is usually done by adding to the action certain boundary terms
that also diverge as one approaches the AdS boundary. The difference between
the divergent bulk and boundary actions is then the renormalised action, see,
e.g., de Haro et al. (2001). The action (3.77) vanishes on exact AdS and is finite
on asymptotically AdS solutions. Moreover, the difference between the Einstein—
Cartan and MacDowell-Mansouri actions is a total derivative, or equivalently
a boundary term. Thus, the boundary terms needed for the renormalisation on
asymptotically AdS backgrounds are automatically included in (3.77).

Another advantage of (3.77) over (3.60) is that it is very easy to linearise this
action on maximally symmetric backgrounds. Indeed, we have

3 2A 2A
Siilde, a] = *m/ﬁzua (dwa” - 36156‘]> (d“’aKL - 3eKdeL> ,

where, as in the previous subsection, de’, a’’ are the perturbations of the tetrad
and the spin connection respectively. Substituting here the solution (3.71) gives
the pure connection linearised action (3.74) with very little work. Indeed, the
combination that appears in the previous linearised action evaluates to

d“a" — %e” Ade’l = % ( = 251[54]31{,}) eMAeN = %C]I\ZN[a]eM Aev,
and the result (3.74) follows immediately.

In the MacDowell-Mansouri formulation the fields of the first-order formu-
lation (3.60) have been unified into a single connection field, but now the
Lagrangian (3.77) is no longer manifestly of the first order. Schematically, it
is of the type F2. However, the two-derivative term in (3.77) is, modulo total
derivative terms, a term with no derivatives. This is why (3.77) is equivalent to
the first-order Einstein—Cartan Lagrangian.

A final remark is that it is possible to put (3.77) into a manifestly first-
order form by ‘integrating in’ a 2-form field, as in BF-type formulations that
we consider in Section 3.7. This manifestly first-order form of the MacDowell-
Mansouri theory has been studied by Freidel and Starodubtsev (2005).
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3.5.2 Stelle—West Version

The action (3.77) can be rewritten in manifestly SO(1,4) or SO(2,3) invariant
form by introducing an extra field. Let us denote the five-dimensional indices by
lowercase latin letters, so that SO(1,4) or SO(2,3) Lie algebra-valued objects
are of the form v® = [, Let us introduce a new field v*. This field is required
to have unit norm |v|? = +1, depending on the sign of the cosmological constant.
Let us consider the following action

3
S =~ gy [ P AT (A (3.78)

Here A° is a SO(1,4) or SO(2,3) connection, and F*(A) is its curvature. The
action is manifestly invariant under the large group. Choosing v® to point in
a particular direction breaks the symmetry down to the Lorentz group, and
reproduces (3.77). The unit norm constraint can be explicitly added to the action
with a Lagrange multiplier, see Section 3.5.3.

To couple gravity in this form to matter one just has to note that the frame is
readily recovered as the covariant derivative d4v® (with respect to the connection
A) of the vector v®. This allows to convert, e.g., the Dirac Lagrangian to an
explicitly SO(1,4) or SO(2,3) invariant form by replacing all occurrences of e’
with Vo®.

3.5.3 Pure SO(1,4) or SO(2,3) Connection Formulation

The idea of this formulation is to integrate out the vector field v* of the
Stelle-West formulation. The corresponding Lagrangian has been described
in West (1978). A similar procedure has been considered in Freidel and
Starodubtsev (2005) in a related context, but with the curvature squared action
(3.78) replaced by a BF-type action containing an additional auxiliary 2-form
field B*®.

Let us add to (3.78) a Lagrange multiplier term to enforce the constraint. For
definiteness, we consider the case of positive A so that the relevant constraint is
|[v|* = 1. The action is

3 1%
S[A =—— PA)FU A — S (o) - 1). 3.79
v =~ gy [ e AF A = B -1, @19
Varying this action with respect to v gives
1 ~UvVpo a C v ~
16“ P €abcdefu,ljfpg = Xa = UVq, (380)
where we introduced a convenient notation, and jd*z = u. The Lagrange

multiplier can now be solved from the constraint and reads

fi=1/|X2 (3.81)
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The resulting pure connection action West (1978) is the integral of the Lagrange

multiplier
3 ~
— 2
S[A] = e A/V|X| . (3.82)

This action, however, is not very useful for a perturbative expansion. Indeed, one
typically wants to expand around a maximally symmetric background, which in
this case corresponds to F*® = (. We cannot expand the square root around
zero, and so (3.82) is not useful as a starting point for gravitational perturbation
theory. But the action (3.79) one step before the pure connection action, and
especially its MacDowell-Mansouri version (3.77) in which the de Sitter symme-
try is explicitly broken to Lorentz is very convenient for developing perturbation
theory, as we saw previously.

3.6 Dimensional Reduction

We postponed the treatment of the Kaluza—Klein dimensional reduction to this
chapter because it is much easier to perform the required connection computa-
tions using the frame formalism. We will only consider here the original case of
4 4+ 1 dimensional space and reduction to four spacetime dimensions. We follow
C. Pope’s Lectures on Kaluza—Klein in this section.

3.6.1 Metric Parametrisation and the Spin Connection

With anticipation that the metric should be parametrised in such a way as
to make the corresponding frame as simple as possible, we choose the 4 + 1
dimensional metric in the following form

d§* = e29ds® + 2 (dz + A)>. (3.83)

Here o, 8 are constants that will be chosen later, the quantity ds? is the four-
dimensional metric, z is the coordinate along the fifth dimension, and A is a
1-form on the four-dimensional manifold. The hatted quantities refer to the five-
dimensional spacetime. The corresponding (co-)frame is then given by

el = el &* = e’?(dz + A). (3.84)

We now assume that all fields depend just on the four coordinates of M. We
then solve for the components of the spin connection from the equations

dé' + @' e + 67 =0, de* +&* e =0. (3.85)

It is easiest to solve the second equation first. We get

1
L:)Z] = ﬂeiad)aj(béz —+ 56<B?2a)¢F[JéJ. (386)
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Here 0r¢ = €40,.¢, and F;; = effe4F,,,, where F,,, = 20|, A,; is the field strength.
One then substitutes this solution into the first equation and obtains

1
W =Wl +aem (9 el — 9'peT) — eI R, (3.87)

3.6.2 Curvature, Action, and Field Equations

Let us now compute the components of the curvature, the dimensionally reduced
action and finally the field equations.

It is convenient to make some choices regarding the constants «, 3 first. We
would like the dimensionally reduced Lagrangian to reproduce the Einstein—
Hilbert Lagrangian plus terms for the other fields. The volume element for the
5D metric d§? is

/,g — e(4a+ﬂ>¢\/fg. (3.88)

On the other hand, the 5D Ricci scalar is a multiple of two copies of the inverse
frame times the curvature of the 5D spin connection. The curvature of the 5D
spin connection is a sum of the curvature of the 4D spin connection and other
terms. The two copies of the inverse frame give a factor of e72%? times the 4D
inverse frame. This means that we will have a factor of e?**+#) multiplying the
4D Einstein—Hilbert action, and so we want to set § = —2«. The other choice
one makes is to make sure that the coefficient in front of the kinetic term for
the scalar field to be canonical, namely —(1/2)\/—¢(9,¢)?. This can be shown
to require a? = 1/12.

The computation of the curvature 2-forms is quite technical and we just quote
the result from C. Pope’s lectures. The components of the Ricci tensor in the
tetrad basis are

. 1 1

Ry =e?¢ (RIJ - §al¢aJ¢ - OZUIJDQf’) - 5678Q¢FIKFJK7 (3.89)
N 1

R, = §ea¢vJ (676Q¢F1J) )

N 1

R.. = 20e?*?0¢ + Zefsa‘PFQ,

where F2 = F;;F'7. Therefore the 5D Ricci scalar is R = n’'R;; + R.. is given
by

. 1 1
R=¢2¢ (R — 5(89%))2 — 2aD¢) — 1678Q¢F2, (3.90)
and so the dimensionally reduced Lagrangian, modulo a surface term, is

L=+\/—gR=\=g <R - %(8@5)2 - ieﬁwF?) . (3.91)
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3.6.3 Consistent Truncation

If we could set ¢ = const we would have obtained 4D GR coupled to Maxwell
theory. However, one of the 5D field equations prevents us from doing this. Indeed,
assuming the 5D cosmological constant to be zero we have the equation R.. = 0,
which reads

1
Op = ——e 82?2, 3.92
0= 5" (3.92)

This means that the electromagnetic field strength serves as the source for the
scalar field, and so it is not consistent to set ¢ = const when F? # 0. Thus, the
dimensionally reduced theory is not just GR coupled to Maxwell, it is necessarily
a scalar tensor theory of gravity coupled to electromagnetism. It is a general
feature of dimensional reduction that parameters determining the ‘volume’ or
more generally ‘shape’ of the space one reduces on become (typically massless)
fields in the dimensionally reduced theory. One does not see such fields in nature,
which is one of the most serious problems of this approach to gravity/gauge
theory unification.

3.7 BF Formulation

We now describe another formulation that is related to the tetrad formalism. A
formulation of this type is also possible in the chiral context of Chapter 5, and will
play an important role. As in the case of MacDowell-Mansouri formalism, there
is a conceptual change occurring in this description, which is in the nature of the
object that ties the bundle and manifold geometries. Thus, there is no longer the
soldering form e : TM — FE that ties the vector bundle to the tangent bundle.
Instead, its role is played by a 2-form field B?’ that maps antisymmetric rank
(2,0) tensors (also known as bivectors) into the Lie algebra of the orthogonal
group, i.e., objects in A2V*. The vector bundle E with a connection w’; on it is
still present in this formalism.

3.7.1 Formulation with Lagrange Multiplier Fields

The idea of BF-type formulations is to replace the wedge product €; ;5 eX A ek
of two tetrads in the Einstein—Cartan action with a new 2-form field B;;.
The kinetic term of the Einstein—Cartan action then takes the form B;;R!’,
where R = R'’(w) is the curvature. If this was the only term in the action, the
theory would coincide with the so-called BF theory, where the acronym stands
for the fact that it is usual to label the 2-form field of this theory using letter
B and the curvature of the connection using letter F'. However, this is not the
only term in the action, in particular because in 4D not every 2-form field B!’
is of the required form. So, one adds a set of constraints on the 2-form field to
guarantee that it ‘comes from a tetrad’. In 4D this has been first considered by
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Pietri and Freidel (1999), and so we will refer to the corresponding model by the
initials of these authors.® The higher dimensional version has been developed in
Freidel et al. (1999).

Consider the following action

1 1 A
Sde[B,OJ, \I/] = m /B[JRIJ(OJ) — 5 (WIJKL + 6€IJKL> BIJBKL. (393)
The Lagrange multiplier field /XL ig required to be tracefree W/7KL¢, ;) = 0.

When B;; = (1/2)er5x.e® A e” the action (3.93) reduces to (3.60).
Varying (3.93) with respect to the Lagrange multiplier field ¥/7X% we get the
constraint

B' A BXE ~ KL (3.94)

As is shown in Freidel et al. (1999), Theorem 1, this equation implies that B'7 is
either the wedge product of two frame fields, or the dual of such a wedge product

1
BIJ::lZGI/\CJ or BIJ ::|:§6”KL6K/\6L. (395)

The second set of solutions to the constraints (3.94) is what gives GR, because
the action then reduces to (3.60). The first set of solutions gives the so-called
Holst term; see Holst (1996). After integrating out the spin connection it becomes
a total derivative.

The Lorentz group SO(1,3), in whose Lie algebra the 2-forms fields B'7 are
valued, is not simple. The general invariant metric on the Lie algebra is an
arbitrary linear combination of two metrics 5%6? and €7 ;. In (3.94) we have
imposed the tracelessness of WT7XL with respect to a particular metric from this
class. It is also possible to consider a more general tracefree constraint, as was first
studied in Capovilla et al. (2001). This removes the degeneracy present in (3.95)
and gives a single solution, which is a linear combination of the two solutions in
(3.95). The action evaluated on the solution is then the Einstein—Cartan action
with the addition of the Holst term.

Thus, classically, the theory (3.93), or its version Capovilla et al. (2001) where
one imposes a more general tracefree condition on W!/XL describes GR in
the sense that all solutions of GR are also solutions of this theory. It is also
interesting to note that the theory (3.93) with nonzero A actually contains not
more solutions than those of GR. Indeed, the field equations arising from (3.93)
are as follows

A
R (w) = (lll”KL + GeUKL> Bk, (3.96)
d*B'7 =0, (3.97)
B1sBkr ~ €15kL- (3.98)

3 Plebénski (1977) has considered essentially the same model before, as his paper also
contains an action that includes both the self-dual and anti—self-dual sectors.
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We then note that while the second and third of these equations are solved by
B! = tele’ and w being the torsion-free connection, the first of the equations is
in conflict with the Bianchi identity. Indeed, it would say that +R¥ %!/ = WI/KL 1
(A/6)e’ 7KL where RXE .= (1/2)er¥ et R, (w). The antisymmetrisation of
the left-hand side of this relation vanishes, while that of the right-hand side
is nonzero. Thus, there are no solutions to the theory (3.93) coming from the
unwanted first set of solutions (3.95) of the constraints (3.94). All solutions of
(3.93) with A # 0 are also solutions of GR.

The formulation (3.93) is the starting point of the so-called spin foam model
quantisation of gravity; see Perez (2013).

3.7.2 Pure Connection Formulation Revisited

While it appears to be difficult to ‘integrate out’ the tetrad field from the
Einstein—Cartan action (3.60), it is trivial to integrate out the 2-form field B'”
from (3.93). Indeed, let us introduce a notation for the matrix that appears in
front of the BB-term, and add a Lagrange multiplier that fixes the trace of this
matrix

1
S[B,W,M, ILL] = /B]JRIJ(W)f iMlJKLBIJBKL‘F %(MIJKLGIJKL — 4A),

(3.99)

1
167G

where p is a new Lagrange multiplier field. For simplicity, we carry out all
manipulations in the case of Euclidean signature where e//%%¢; ., = +24, but
similar considerations apply to the Lorentzian signature case. It is trivial to
integrate out the B-field. The resulting Lagrangian is

1

Slw, M, p] = G

/(Mfl)IJKLRIJRKL +,LL(MIJKLEIJKL _ 4A)

We now proceed to integrate out the matrix M. Its field equation is
M7'XM™" = pe. (3.100)
Here we suppressed the indices and introduced a 4-form valued matrix
XTIEL .— RI7 N REE, (3.101)

The equation (3.100) is interpreted as an equation in the space of 6 x 6 symmetric
matrices. Its solution has first been spelled out in Mitsou (2019) and reads

M~ =+ /v/e (Vex/e) * e (3.102)

Both X and p here are 4-form valued, with X being a 4-form with additional
values in the space of 6 x 6 matrices. To make sense of a relation like (3.102)
one can introduce an arbitrary volume form on the manifold, and obtain an
actual matrix by dividing X?/KL by the introduced volume form. Similarly, p
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can be written as a function times the same volume form. One then sees that
the relation (3.102) is homogeneity degree zero in this volume form, and so it
does not matter which volume form is used to make sense of it, as all 4-forms
are related by multiplication by a nowhere zero function.

The Lagrange multiplier field u is then obtained from the constraint Tr(Me) =
4A. Taking the plus branch in (3.102) this gives

1 1
Vi = HTm/\/éxﬁ = S TrVeX, (3.103)

which fixes M in terms of X completely. In the last expression we took into
account that the trace is cyclic even in the presence of the square root. The
latter is proved as follows

Tr(VNM) = Te(N"'VNMN) = Tr(VN-'NMN) = Tr(vVMN),

where we used the fact that the similarity transformation commutes with the
matrix square root N~'vMN = +/N-L1MN. Substituting this back into the
action we get the closed form pure connection action

Sl = ﬁ/(m«ﬁ)? (3.104)

Some comments are in order. First, we note that, interestingly, the object /e
that appears in the intermediate stages of the previous derivation properly exists
as a real matrix only in the Lorentzian signature. Indeed, we have in general

€ =4dol, (3.105)
where 0 = +1 and equals minus one in the Lorentzian case. We have introduced
I gy = 0iL67, (3.106)

which is the identity operator on the space of antisymmetric 4 x 4 tensors. We
can search for the square root of € in the space of linear combinations of the
matrix € and the identity matrix

Ve=al+ Be. (3.107)

Squaring both sides gives that «, 8 must satisfy
o’ + 403> =0, 206 =1, (3.108)
which is only possible for real o, 8 for o = —1. So, in the case of the Euclidean

signature the object /o is complex. However, this does not cause any problems
because in all the final expressions only the matrix e itself always appears.

Our second comment is about the value of the action (3.104) on the background
(3.69). We have

% A
XIIKL _ <3) eled oKl — (3> el /KL (3.109)
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which means that the background value of X is a multiple of the e. This gives

JVex e = %\/EI[. (3.110)

We will need the result in this form Section 3.7.3. Substituting all this into
(3.104) gives the correct (A/87G) [ e for the action on the maximally symmetric
background.

Our final comment here is that the action (3.104) is only defined perturbatively
around the maximally symmetric background X ~ e. In this case the matrix that
appears under the square root is close to the identity matrix, and the square root
can be defined in the sense of a perturbative expansion in powers of deviations
of the matrix from the identity. For a general matrix X the square root has
many different branches. These can be seen by diagonalising the matrix eX
and then taking the square roots of the eigenvalues. The first problem that
one can encounter is that some of the eigenvalues may be negative. One will
obtain a complex action in this case. The second problem is that even if the
eigenvalues are all nonnegative, the square root of each of the eigenvalues has
two branches. While it does not matter which branch is chosen if the same choice
is followed for all the eigenvalues (because one takes the square of the trace of
the square root in the action), one can also take the positive branch for some
of the eigenvalues and the negative branch for some others. The resulting action
is of course very different from the one where one only takes say the positive
branch for all the eigenvalues. The similar problems occur in the chiral pure
connection action to be written down in Chapter 5, except that in that case it
can be guaranteed that the eigenvalues of the matrix of the square root are all
nonnegative and the action is real. We will discuss this in due course. But the
problem of different individual branches is present also in the chiral formulation.
Moreover, analysing some explicit solutions one can convince oneself that it is not
consistent to restrict one’s attention only to the uniformly positive branch. The
situation is more complex, and we will return it in the chapter on the chiral pure
connection formalism. This discussion illustrates that, as it stands, the action
(3.104) is only perturbatively defined.

3.7.3 Linearised Pure Connection Action

In this subsection we perform the exercise of linearising the action (3.104) around
the maximally symmetric background. Our goal is to compare the result with

(3.74).
We need some preparation. First, we have
SXTIEL — qugl REE 4 RITgw oKL, (3.111)
Using

1
v ay = > KLEn €L (3.112)
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the first variation of X can be rewritten as
0X = %e(&f + fe). (3.113)
We also need an expression for the second variation of this matrix
FPXEE = 2(aa)" R*Y + 2R" (aa)** + 2d*a"’ d“a™". (3.114)

Here (aa)’’ = aja™’. We will not attempt to transform this expression any
further for now.
Let us now write

VVexveylVex ve = vex ve, (3.115)

and vary this expression. We use the fact (3.110) that the background value of
the matrices on the left-hand side is a multiple of the identity. This gives

o/ eX e = %\/Eﬁdxﬁ, (3.116)

from where we get an expression for the trace
Tr (5\/6X) = VeTi(f). (3.117)

We now vary the expression (3.115) the second time to get

BVer\Vexve o/ VexvesyVexve= verx e a1)

We need the integral of the first term on the left-hand side. Let us consider the
integral of the trace of the right-hand side

/Tr (Ved*X\/e) = /EUKL(4R”(aa)KL +2d¥a"d¥a™"). (3.119)
Integrating by parts in the second term we have
2/€IJKdeaIdeaKL = _2/6[JKLa1dedwaKL

= _4/61JKLG/IJRKMG/ML.

ML and

But we have already see in (3.73) that the quantities €;;xra’ R¥ a
ersxr R (aa)®L are equal. This means that the integral in (3.119) vanishes.

Thus, under the integral sign we have

[ ven (syvexve) = - [ (sy/vexvesy/vex ve)

3

i 3
2<4A) /ETr(eéXeéX):fm—A eTr(4f? + efef),
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where we have used (3.116) to get the first expression in the second line and
(3.113) to get the last expression. The quantity Tr(efef) can be computed by
expanding the product of the e tensors. This gives

Tr(efef) = 4f L FEE — 164, f77 + 4f2, (3.120)

where f{ := fE/, f = f]. Overall, this gives

J ven (5\/m ) — (fm =2 4 f2>.

We are now ready to assemble the pieces of the linearised action. The second-
order action is half the second variation and we get

S?[a) = ﬁ /Tr (5\/5) Tr (5\/5) + TrvVeX Tr (52\/6?>

647rGA

which coincides with (3.74). This proves that (3.104) reproduces the linearised
pure connection action that can be obtained from the Einstein—Cartan formalism.

1J 1.,
= (fKL 1J _2fIJf +3f>a

It is thus is a good starting point for gravitational perturbation theory around
A # 0 background.

3.7.4 Modifications of GR in BF Formalism

An interesting class of modifications of GR can be obtained by changing the
constraint on the second line in (3.99). The constraint present in the GR action
(3.99) fixes a certain specific gauge-invariant function of the matrix M to be
constant. However, there are many gauge-invariant functions of 6 x 6 symmetric
matrices M that can be written down, e.g., Tr(M?) or traces of higher powers,
and, e.g., det(M). Such a change causes the theory to be modified rather dramat-
ically, a generic modified theory of this type turns out to be a bi-metric theory
of gravity. Such modifications have first been studied in Smolin (2009), and then
in papers by Speziale (2010), Lisi et al. (2010), Beke (2011), Beke et al. (2012),
and Alexander et al. (2014). It was shown in Alexandrov and Krasnov (2009)
that such theories in general propagate 2 + 6 degrees of freedom, which is the
generic propagating content of a bi-metric theory of gravity.

3.7.5 Field Redefinitions

In view of the discussion in the previous section, it is perhaps surprising that
one can modify the constraint on the second line in (3.99) nontrivially without
changing the theory Krasnov (2018). To see how this becomes possible, let us
first rewrite the action (3.99) in an index-free notation. We have

_ 1 tp_lpe H _
S[B,w, M, ] = 16WG/BR S BMB + (Tr(eM) - 40). (3.121)
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Here we think about objects B, R as columns on which matrices such as M, e
can act, and t is the transpose. Let us now carry out a field redefinition that
replaces B by a mixture of B and R

B=GB+ HR. (3.122)

The action in terms of the new 2-form field B will contain the R? terms. The
idea is to choose the (not necessarily symmetric) matrices G, H in such a way
that these terms are just multiples of the two topological invariants that can be

formed of R, namely
/RtR, /RteR. (3.123)

Thus, we will require the R? term of the action in terms of B to be
/RtTR, T=t1+t*. (3.124)

where x = %e. This is a convenient numerical factor because x* = I. Equating the
matrix arising in the R? term of the new Lagrangian to T we get the following
equation

1
H'~ SH'MH=T. (3.125)

We will also require that the BR term of the new Lagrangian keeps its canonical
form. This gives another equation

G'—G'MH =1 (3.126)

We now note that the equation (3.125) tells us that H is a symmetric matrix.
So, we drop the transpose symbol from it from now on. We also note that one can
rewrite the second equation as I— M H = (G*)™', and the first as [— (1/2)M H =
H~'T. We assumed that all matrices are invertible. Taking the difference of these
equations gives 1 4+ (G*)™' = 2H T, from which we can write

H=2T(1+(G)™")L (3.127)

Substituting this into the first equation we get the solution for G*, and then the
solution for H. So, the solutions of equations (3.125) and (3.126) are given by

H=2TO+(G)™)™,  (G)2=1-2MT. (3.128)

We now have to be careful again because the matrix (G*)~2 on the left-hand side
of the second equation is not necessarily symmetric, and so it is not clear how
to take the square root to get G itself. However, we can rewrite the right-hand
side of the second equation as

1—-2MT =T 21— 27> MT*)T"/?, (3.129)
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where we made some choice of a symmetric square root T%/2 of the symmetric
matrix T, and also assumed that T is invertible. We now note that the matrix
that appears in the above expression (3.129) in brackets is symmetric, and so
the notion of its square root makes sense. Thus, we can take the square root of
I—2MT as

(I—2MT)"? =T~ Y21 - 2T/ >MT"/?)"/>T/2, (3.130)
This gives the final solution for G*, H
G' =T V3 —2TY2MT )~ /2T/2, (3.131)
H — Tl/Q(]I + T1/2MT1/2)_1T1/2.

We note that the expression for H is symmetric, as it should be. Finally, the
coefficient matrix of the B? term, given by M = G'"MG is given by

M _ T—l/Q(H _ 2T1/2MT1/2)_1/2(Tl/QMTl/Q)(H _ 2711/21\4111/2)—1/211—1/27

which is manifestly symmetric as it should be. But now the three terms in the
middle only contain the matrix T'/2MT'/? and the identity matrix, and so they
commute. Therefore, we can also write

M =T Y>(TY2MTY?) (1 — 272 MTY?) 1712, (3.132)
or more compactly
I+ 2TY2MTY? = (I— 272 MTY?) 1, (3.133)
from which the matrix M in terms of M can be explicitly expressed as
M = M1+ 2TM)™*, (3.134)

which finally eliminates the square root of T from the expressions. Formally
expanding the inverse on the right-hand side in powers of TM it can be seen
that the right-hand side is symmetric, as it should be, in spite of 7" and M not
commuting.

All in all, we learn that there is a two-parameter ¢, » family of Lagrangians all
giving a classically equivalent description of GR. They are all of BF-type and
can be written as

1
167G

1
S[B, A, M] = B'F—SB'MB+RTR +g (Tr [GM(H + 2TM)‘1} - 4A) ,

(3.135)

with 7' = 0 corresponding to the original Lagrangian (3.121). Note that we have
omitted the tildes from all the quantities in the above Lagrangian (3.135). The
action (3.135) is still of the BF type with a constraint for the matrix appearing
in front of the BB term. However, this constraint has changed considerably as
compared to what it is in the standard action (3.99). In particular, as we shall
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see in the next subsection, while it is impossible to ‘integrate out’ the matrix
M from (3.99), it is possible to obtain a Lagrange multiplier-free formulation
starting with (3.135).

3.7.6 Formulation with a Potential for the 2-Form Field

One of the purposes of the manipulations of the previous subsection is that
it turns out to be possible to ‘integrate out’ the matrix M from the action
(3.135) to obtain a pure BF-type action with a potential for the 2-form field.
It is perhaps surprising that such a formulation is at all possible, because in
the original Lagrangian (3.121) there is a Lagrange multiplier field that imposes
a constraint on the 2-form field, so some components of the B-field are non-
dynamical. And it is not possible to integrate out the Lagrange multiplier fields
from (3.121). However, after the field redefinitions, it will be possible to eliminate
all the Lagrange multiplier fields from (3.135), with all the components of the
redefined 2-form field becoming dynamical. It is far from obvious that such a
formulation of GR should be possible.

Let us carry out this exercise. The field equation that arises by varying (3.135)
with respect to M is

(I+2TM)X5(1+ 2MT) = pie. (3.136)

We introduced a 4-form valued matrix Xz := BB? constructed from the 2-form
field. This equation can be rewritten as

(T + 2TMT)T Xz T~ (T + 2T MT) = pie. (3.137)

Following Mitsou (2019), the solution for the symmetric matrix T + 2T MT is
given by
T+2TMT = +\/pe(VeT ' XpT '/e) /?\/e. (3.138)

Taking the plus-branch solution, this gives

2M = \/uT'Ve(VeT ' XpT "e) 2\ /eI =T, (3.139)
and
L1
VAVE

Taking the trace of the product of this matrix with ¢ we determine p

R R e140

1
2M(1+2TM) " =T"" — (ﬁT‘lXBT‘I\E)l/Q\%. (3.140)

which determines M completely. We now substitute the result into the action to
obtain



124 Cartan’s Tetrad Formulation

1 t } trp—1p 1.\ -1 \/ﬁQ
7TG/B F+ $B'T™'B — (4Tx(I"'e) - 324) (ﬂ eT—X 5T ) .
(3.142)

S[B,w] = 16

We have used the cyclicity of the trace to convert two factors of /€ into a single
copy of €. It is clear that this action depends on the existence of T~!, where T
is given by (3.124). Explicitly, this tensor is given by

¢ /
Y L S (3.143)

3 —ot: 2 —otd’

where again x = %e and 0 = %1 is the signature-dependent sign. Thus, T~*
exists provided ¢? # ot2. This is always the case for real t,,¢, and Lorentzian
signature.

The action (3.142) is of the BF-type plus a potential for the B-field. The
potential consists of two terms. One is quadratic in the B field. In fact, the
first two terms in the action (3.142) correspond to a topological theory with no
propagating degrees of freedom. The last term is what breaks the topological
symmetry and gives rise to a theory with degrees of freedom. This potential is
non-polynomial, and of the same type as arises in considerations (3.104) of the
pure connection formulation. As we have already remarked, it is far from obvious
that such a formulation of GR is at all possible.

As the last step in this line of developments, one can solve the equation
d* B!’ = 0, which is the Euler-Lagrange equation arising by varying (3.142)
with respect to the spin connection. The number of equations here is 4 x 6,
which matches the number of unknowns in w/ ;. Thus, when B'’ is suitably non-
degenerate, one expects the solution for w(B) to exist. One can then substitute
this solution back into (3.142) and obtain a second order in derivatives theory
for the 2-form field BY’. So far, nobody has carried out this exercise, but a
similar procedure is possible and has been done in detail in the chiral case to be
considered in Chapter 5.
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General Relativity in 241 Dimensions

The purpose of this section is to describe the subtleties of the tetrad formalism
for general relativity (GR) in the case of gravity in 2+1 spacetime dimensions.
We describe both the Einstein—Cartan formalism in this case, as well as the
Chern-Simons formulation. We then describe the pure connection formal-
ism, which in this number of dimensions can be obtained in closed form
directly from the tetrad formulation. As is well-known, and as will also be
apparent from our considerations of this chapter, there are no propagating
degrees of freedom in 241 gravity. This follows, e.g., from the fact that the
Weyl tensor is identically zero in this number of dimensions, or from the fact
that all solutions of Einstein equations in 2+1 have constant curvature. We also
develop a very convenient index-free notation that is possible by identifying
the Lie algebra of the Lorentz (orthogonal) group with 2 x 2 anti-hermitian
matrices.

4.1 Einstein—Cartan and Chern—Simons Formulations

Let us start by reviewing some basic facts about 3D gravity.

4.1.1 Einstein—Cartan Frame Formalism in 3D
Let €', = 1,2,3 be a frame field so that the 3D metric is
ds* =e' ® e'n,;, (4.1)

where 7,; is either n,; = diag(1,1,1) or n;; = diag(—1,1,1) depending on the
desired signature. There are subtle differences between the two signature cases.
For definiteness, let us consider the all-plus signature case.
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For the Riemannian signature we raise and lower indices with the metric d,;,
and the SO(3) spin connection is the set of 1-forms w* = w!”). The antisymmetry
is the statement that the connection is d;;-metric compatible. Let f“ be the
curvature

7 = dw" + w*w,’. (4.2)

We then write the following action

Sle,w] = 7%/ (eifj’c - geiejek) €ijk- (4.3)
M

The orientation implied here is that of the 3-form e‘e’e*e¢;;;,. The minus sign in
front of the action is the usual choice for the all-plus signature. We work in units
in which the 3D Newton’s constant satisfies 4G = 1. Varying this action with
respect to w we get the torsion-free condition

dye' =de' +w';e? = 0. (4.4)

It says that the connection w is the unique e-compatible connection. Substituting
this connection into (4.3) we find

Sle, w(e)] = —i/M(R— 20),, (4.5)

where R is the Ricci scalar of the metric, and the integration is carried out with
respect to the metric volume element v,.
Varying the action with respect to the frame field we get

f9 = Ae'el, (4.6)

which says that the curvature of an Einstein metric in three dimensions is
constant. Thus, there are no propagating degrees of freedom in 241 dimensional
gravity.

The connection matrix w® being antisymmetric, we can write

w = e*iy*, (4.7)

which defines the new connection 1-forms w?. We then have for the curvature
i = I R ff=duw' + ie”kw’wk. (4.8)

Thus, the exceptional feature of this number of dimensions is that the spin
connection and the tetrad can both be thought of as R*® valued 1-forms. In
particular, this allows them to be mixed in a Cartan connection in a particularly
simple way, see the next section.
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4.1.2 Matrix Notations

It is very convenient to get rid of the internal i, 7,... indices at the expense of
making all objects 2 x 2 matrix valued. To this end, we use the isomorphism of
the Lie algebras so(3) = su(2). The Lie algebra generators are

where o; are the usual Pauli matrices. We have
1

The index of € here is raised with the 6% metric.
We then form a matrix-valued connection

w = w'r,. (4.11)

In what follows we will always denote a matrix-valued object by a bold-face
letter. The matrix valued curvature f := f'r; is computed as

f=dw+ww. (4.12)
We also form anti-hermitian frame field 1-forms
e:=e¢'r, (4.13)
in terms of which the metric is
ds* = —2Tr(e®e). (4.14)

In terms of the matrix-valued fields the torsion-free condition (4.4) takes the
form

dwe = de + we + ew = 0. (4.15)

The field equation obtained by varying the action (4.3) with respect to e takes
the form

f = —Aee. (4.16)
In the described index-free notation the action takes the form
Sle,w] = — /M Tr (ef + geee) . (4.17)
In what follows, we will mainly consider the A < 0 case. We set for simplicity
A=-1. (4.18)

A different value of |A| can always be reinstalled by rescaling the frame field.
We note that in case of Lorentzian signature metrics the relevant Lorentz
group SO(1, 2) is isomorphic to SL(2, R)/Z,. This means that a similar index-free
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notation is also possible in this case, except that one has to work with real 2 x 2
tracefree matrices instead. We will leave details of the corresponding formalism
as an exercise to the reader.

4.1.3 Chern—Simons Formulation

The two sets of equations Ve = 0,f = ee can be combined as the real and
imaginary parts of a single complex-valued equation by introducing the complex
tracefree 2 x 2 matrix-valued field

a:=w+ie. (4.19)

The field equations of 3D gravity then combine into the statement that the
curvature of the SL(2,C) connection a is zero

0=f(a) =da+ aa. (4.20)

These are the field equations following from the so-called Chern—Simons La-
grangian. Alternatively, we can write the Einstein—-Cartan Lagrangian (4.17)

(with A = —1), modulo a surface term, as
1
Sle,w| = —fIm/ CS|a], (4.21)
2 M
where
2
CSla] :=Tr (ada + 3aaa) (4.22)

is the Chern—Simons 3-form for a.

4.1.4 Topological Term

It is possible to add to (4.17) also the real part of the Chern—Simons functional
of a with an arbitrary coefficient, see Witten (1988), section 2.3. When written
in terms of e, w this reads

Re/M CSla] = /M (CS[w] — Tr(edye)). (4.23)

It is not hard to check that this term does not affect the field equations, in the
sense that a linear combination of the two resulting field equations still says that
the connection is metric-compatible.

4.1.5 Quantum Theory

Even though this book is about classical theory, it is appropriate to give some
comments on the quantum case. Because the theory of 3D gravity is topolog-
ical, one expects to be able to construct the corresponding quantum theory.
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This is because one is dealing with a problem in quantum mechanics rather than
in quantum field theory, and so the theory should exist. This is in contrast with
the situation in higher dimensions where problems with (non-) renormalisability
signal that the quantum theory is not well-defined. The easiest case is that of
A = 0. In this case, for Riemannian signature, the theory becomes what is known
as SU(2) BF theory. It is one-loop exact, and the partition function can be
explicitly computed. It reduces to the Ray—Singer torsion for the operator V,
see, e.g., Birmingham et al. (1991).

The case of nonzero A is much harder, as the theory is no longer one-loop
exact. In spite of this, the quantum version of the Riemannian signature A > 0
gravity is known. It is based on the quantum group SU,(2) (at root of unity); see
Reshetikhin and Turaev (1991). The partition function on a given 3-manifold M
is constructed by choosing a simplicial decomposition of M, and then decorating
the arising simplicial complex with certain combinatorial data. The arising state
sum is independent of the chosen simplicial decomposition and is a topological
invariant of M. At least in part of the literature, this construction is referred
to as the Turaev—Viro model. Another way of seeing why the A > 0 case is
understood is by noticing that in this case the Lagrangian can be represented
as the difference of two Chern-Simons Lagrangians for w £+ e. The quantum
Chern—Simons theory for the gauge group SU(2) is understood, and in a precise
sense the A > 0 3D gravity partition function is the product of two CS partition
functions; see, e.g., Roberts (1997) for a nice proof.

As far as we are aware, there is no complete construction of the much more
difficult A < 0 quantum theory, even though there is some recent progress in this
direction; see, e.g., Blau and Thompson (2016) and references therein.

4.2 The Pure Connection Formulation

In this section we review the pure connection description of 3D gravity. As far
as we are aware, the pure connection formulation of 3D gravity was first worked
out in Peldan (1992), starting from the Hamiltonian point of view. A simpler
description, directly at the level of the Lagrangian, appears in section 3.4 of
Peldan (1994). We will only give the Lagrangian description.

We consider the case of negative cosmological constant A = —1, and consider
pure gravity. The idea is to start with the first-order Einstein—Cartan action
(4.17), and solve the equation f = ee for e as a function of f, substituting the
result back into the action. To describe the solution, we introduce the notion
of definiteness and sign of a connection. We follow Herfray et al. (2017) in this
section.

4.2.1 Definite Connections

Let w be a set of 2 x 2 anti-hermitian matrix-valued 1-forms on M, i.e., an
SU(2) connection. Let f = dw + ww be the curvature 2-forms. Let us pick an
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orientation on M. Then, for any volume form v in the fixed orientation class, we
define a map from the set of 1-forms to the Lie algebra

¢r : T"M — su(2), oe(a) :=anf/v. (4.24)

This is a map from the three-dimensional space T*M to the three-dimensional
Lie algebra su(2). We call a connection w definite or nondegenerate if this map
is an isomorphism.

For a definite connection, we can construct a certain invariant from its curva-
ture. Thus, consider

A(B) = 3 Tr (6 @ 6el). (4.25)

The notation here is that ¢¢ acts on both form indices of f, and we have a
product of three Lie algebra elements under the trace. Note that the sign of A(f)
is invariantly defined. Indeed, if we change the orientation by sending v — —uv,
the sign of (4.25) does not change. A connection w is definite if and only if its
curvature satisfies A(f) # 0.

In this book we are mainly interested in the case when A\(f) < 0. This corre-
sponds to the negative cosmological constant case A < 0. We will refer to such
connections as negative definite. In this case, the connection defines a frame field
er such that

f= er N €g. (426)

In order to see that f satisfying this equation indeed corresponds to A(f) < 0,
we can substitute (4.26) into (4.25) and compute the sign. This computation is
easy if we first compute the action of ¢; with f given by (4.26) on the frame
fields. Thus, let us write o = a’e’ for some choice of the coefficients a’. Using
e = e'7" and the algebra of 7% we can write the curvature as f = (1/2)e7*eieir".
To compute ¢¢ let us divide in (4.24) by the volume form for the frame field e,
which is given by v, = (1/6)€*ele’e*. We get the following result for the map ¢y

de(a) = o'’ (4.27)
In other words, if the curvature is as in (4.26) and we divide by the frame volume
form in (4.24), then the map ¢; takes the frame el into the generator 7°. It is
then easy to see that A(f) for f as in (4.26) and with the volume form for e;
used in the definition of ¢¢ equals to minus one A(f) = —1.

To prove that for A(f) < 0 the curvature can be written in the form (4.26) we
will describe the corresponding frame field explicitly in the next subsection.

4.2.2 The Pure Connection Formulation

Consider a negative definite connection w. The volume form

ve = /= A(f) v, (4.28)
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which is in the fixed orientation class, does not depend on the choice of the volume
form v used in its construction. It is thus invariantly defined by the negative
definite connection w and the fixed orientation of M. The pure connection
formulation gravity action is just the total volume

Slw] = /vf. (4.29)

We can now describe ef that solves (4.26). It is obtained via the following
construction

The matrix on the right-hand side is anti-hermitian, as the commutator of two
anti-hermitian matrices. The frame e defines the metric ds? := —2Tr(ef ® ef),
which is of Riemannian signature. The frame e¢ has the property that

2
Vg = —gTr(efefef). (431)

Note that the action (4.29) is just the value of the first-order action (4.17) on
the solution (4.30) of (4.26).

4.2.3 The First Variation and Fuler-Lagrange Equations
The expression (4.31) makes it clear that the first variation of the pure connection

action is given by

5Sfw] = — / 2 Tr(Sererer) = — / Tr(5(eser)er) (4.32)

= —/Tr(6fef).

This shows that the critical points of the pure connection action are connections
satisfying the following second-order partial differential equation (PDE)

dyer =0, (4.33)

with d,, given by (4.15). This equation says that the connection w is the unique
torsion-free metric connection compatible with the frame e;. The equation (4.26)
that defines e; then becomes the statement that the metric constructed from e¢
is of constant negative curvature. This shows that (4.29) is indeed the pure
connection formulation of 3D gravity (with negative A).
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We now come to what is possibly the least familiar description. The original
idea was proposed on the physics side in a paper by Plebdnski (1977). Related
structures were discovered about the same time by mathematicians in Atiyah
et al. (1978). This description of gravity was later rediscovered in Capovilla et al.
(1991), in the authors’ search for a Lagrangian formulation for Ashtekar’s new
Hamiltonian formulation of general relativity (GR); see Ashtekar (1987). There
were also much earlier related ideas, as we review in the historical remarks section
at the end of this chapter.

The fundamental reason for the existence of ‘chiral’ formulations of 4D GR
is the fact that the Lie algebra of the four-dimensional ‘Lorentz’ groups!® is
not simple.? It is interesting to note that this is the only dimension when this
phenomenon occurs.> We have the following ‘accidental’ isomorphisms

s0(4) = su(2) & su(2),
s0(1,3) = sl(2,C) @ sl(2,0), (5.1)
50(2,2) = sl(2,R) & sl(2,R).

In turn, these isomorphisms are related to the fact that the Hodge operator in
four dimensions maps 2-forms into 2-forms, and defines the decomposition of the
space of 2-forms into its eigenspaces of self-dual (SD) and anti-self-dual (ASD)
forms. Indeed, the Lie algebra so(n) of the orthogonal group can be realised as
the matrix algebra of antisymmetric matrices. In four dimensions, antisymmetric
matrices can be split into their SD and ASD parts, and this is why the first
of relations in (5.1) arises. A similar mechanism is at play for other signatures.

I When we refer to ‘Lorentz’ group in quotes we always mean one of the appropriate
(pseudo-) orthogonal groups, considering all possible signatures at the same time.

2 In the Lorentzian case so(1,3), strictly speaking, this is only true at the level of the
complexified Lie algebra.

3 The dimension two is also special because in it the ‘Lorentz’ groups are abelian.
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The accidental isomorphisms (5.1) mean that the decomposition of the Riemann
curvature tensor into its ‘Lorentz’ irreducible pieces (which is possible in any
dimension) in four dimensions is related to the SD/ASD decomposition. This
is what is ultimately responsible for the formulations that we describe in this
chapter.

5.1 Hodge Star and Self-Duality in Four Dimensions

We start with a quick reminder of the Hodge operator in four dimensions. Then,
after describing the Riemann curvature decomposition that becomes possible in
4D, we return to the Hodge star and discuss some of its important properties
in much more detail.

Given a metric and choosing an orientation, we can form the Hodge star
operator that sends 2-forms into 2-forms

1
x:B,, =B, = §€MVPUBP0" (5.2)
This operator squares to a multiple of the identity
1 leg «@ «@
(x)? = Zem,” €0 = 05[M5f]7 (5.3)

where o0 = £1 = (—1)? is the sign depending on the signature of R»% p + g = 4.
Note that the object 5[0‘155] is the identity operator on the space of 2-forms. This
means that the eigenvalues of * in the case of Euclidean and split signatures are
+1, and in the case of Lorentzian signature +i. Correspondingly, the space of

2-forms can be decomposed into eigenspaces of the Hodge star
AN =ATo A, (5.4)

where in the case of Lorentzian signature it is the space A2 of complexified
2-forms that admits such a decomposition. To fix our conventions, the eigenvec-
tors of Hodge are 2-forms satisfying

1 led
A*>B,,: 6w By = +v/0B,,, (5.5)

where /o is defined to be either 1 or i depending on the signature, and the
projectors on the spaces AT are

1 1
+ po __ o o
P =1 <5@ N ) | (5.6)

5.2 Decomposition of the Riemann Curvature

In any dimension, the Riemann curvature tensor can be decomposed into pieces
that take values in spaces of (finite-dimensional) irreducible representations of
the Lorenz group. These pieces are the scalar curvature, the tracefree part of
Ricci curvature, and the Weyl curvature. The metric is called Einstein if the
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tracefree part of its Ricci curvature vanishes, in other words if R, ~ g,.,. The
proportionality coefficient is called by physicists the cosmological constant, and
by mathematicians the scalar curvature. It must be a constant by one of the
Bianchi identities, so its constancy is not an independent Einstein equation.
But if one wants to fix this constant to a particular value, this constitutes an
independent equation.

In four dimensions, something very special happens. As we have already said,
the Lorentz group is not simple, and this is related to self-duality. So, there
exists yet another decomposition of the Riemann curvature, specific only to four
dimensions and related to self-duality, and this decomposition is related to the
scalar/Ricci/Weyl decomposition. This makes it possible to impose the Einstein
condition in a particularly elegant and efficient manner.

As we already discussed, the special property of 4D is that the Hodge star
maps 2-forms into 2-forms * : A2 — A2, and introduces the decomposition of the
space of 2-forms into SD and ASD parts (5.4).

When the Levi-Civita connection is metric and torsion-free, the Riemann
curvature R, ,, is symmetric R, o = Rpop0,
A% @ A?—valued matrix. Decomposing this matrix into its A* components we get
the following block form

and can be viewed as a symmetric

Riemann = < ;T g > . (5.7)

Here A is the SD-SD part, C' is the ASD—-ASD part, and both are symmetric as
A? ® A? matrices, while B is the SD—ASD part

A= P,Riemann P,, C :=P_RiemannP_, B := P,RiemannP_,

where P, are the SD/ASD projectors. These parts satisfy a set of properties that
are signature-dependent and that we summarise as

Theorem 5.1 In the case of Euclidean and split signatures the tensors A, B,
and C are real. For Lorentzian signature the tensors A and C are complex and
complex conjugates of each other C = A, and B is Hermitian BT = B. In all
cases the Bianchi identity e*"*°R,,,,, = 0 tmplies that traces of A and C are
equal, and equal to the scalar curvature Tr(A) = Tr(C) = R/2. The tracefree
parts of A and C' encode the self- and anti—self-dual parts of the Weyl curvature

R
A = P,Riemann P, = P, (Weyl + 6H> P, (5.8)

C = P_Riemann P_ = P_ <Weyl + Ig]l) P_.
Here 1 is the identity tensor in A2QA%. The SD-ASD part B encodes the tracefree

part of Ricci curvature in the sense that B = 0 if and only if the tracefree part
of Ricci is zero.
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Let us prove these statements. First, let us show that the condition B = 0 is
equivalent to the Einstein condition, and also equivalent to the statement that
Riemann commutes with the Hodge operator. To this end, it is convenient to
do the calculation of the SD—ASD projection of Riemann in an index-free way,
using the SD/ASD projectors (5.6) that can be written as

p* = % (]Ii JE*) . (5.9)

We then have
1
4B = 4P* Riemann P~ = Riemann — — x Riemannx (5.10)
o

+ % * Riemann — %Riemann * .
The first line of the right-hand side here is a symmetric 6 x 6 matrix, and the
second line is antisymmetric. In case of the Lorentzian signature the second line
is also purely imaginary. Thus, in the Lorentzian case the matrix on the right-
hand side is Hermitian, which is what we stated previously about B block of
(5.7). In any case, the condition that P* Riemann P~ vanishes is equivalent to

1
Riemann = — * Riemann * and #* Riemann = Riemann * . (5.11)
o

But it is clear that these two equations are equivalent. Indeed, by taking the
left Hodge dual of the first equation one obtains the second equation and vice
versa. So, we see that B = 0 is equivalent to the second equation in (5.11). This
equation can be rephrased as follows. Let us think about the Riemann curvature
as amap R,,”” : A> — A% Then the second equation in (5.11) is the statement
that this map commutes with the Hodge star. This proves

Lemma 5.2 The SD-ASD part B of the Riemann curvature vanishes if and
only if the Riemann curvature commutes with the Hodge star.

Let us now prove that this commutativity of Riemann and Hodge is equivalent
to the Einstein condition. To this end we need the formula

€uvpr €™’ = 240 676057682, (5.12)

Here €,,,, is the volume form, and indices are raised with the metric. Using this
we get

1 leg «@ [e% «@ «@ @
ypa Ryor5€°* = R,,*" + RS{,00 — 260, R, + 20, RS (5.13)

Thus, the first equation in (5.11) is equivalent to

a 8 a pB B pa _
R&?,6%) — 267, RE + 200, RS = 0. (5.14)
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This, on the other hand, is equivalent to the tracefree part of Ricci being zero.
Indeed, if the tracefree part of Ricci is zero, then this equation is satisfied
by inspection. On the other hand, taking the contraction of say pa we get
R6P —4RP = 0, which is just the tracefree Ricci condition. Thus, we have proved

Theorem 5.3 In four dimensions a metric is Einstein if and only if the Riemann
tensor viewed as an endomorphism of A*> commutes with the Hodge star.

Together with Lemma 5.2 this implies that the Einstein condition is equivalent
to vanishing of the SD-ASD part of the Riemann curvature B = 0.

It is also easy to prove that the traces of the SD-SD and ASD—-ASD parts of
Riemann are equal. Indeed, we have

Tr (P*Riemann P*) = Tr (P*Riemann) (5.15)

1 o 1 leg v 1
- § (6{1‘51’] + 2\/E€HVP ) R* po = §R>
where we have used the Bianchi identity R, ,, = 0.

In a similar way, it is easy to prove that the SD-SD and ASD—-ASD parts of
Riemann are composed of just the Weyl curvature and the scalar part. Indeed,

we have
1
4A = 4P* Riemann Pt = Riemann + — * Riemannsx (5.16)
o

1 1
+ — x Riemann + —Riemannx

\/g \/E
= H—&——l x| [ Rie —l—fl * Rie *
lemann lemann .
\/» a. a.

We note that while the left-hand side is clearly SD with respect to both pair
of indices, the last expression on the right-hand side is only explicitly SD with
respect to the first pair. It can of course be equivalently rewritten with the SD
projector on the second pair of indices instead of the first, or on both sides. On
the other hand, we have

[e3 1 o (e} [e3 (e [e% je3
Ry 4 € Roons €™ = 2R, + RO, 07 — 200, R)) + 200, Ry (5.17)

Further, in four dimensions, the Weyl curvature tensor is

R
Cp.llpff = R,uz/po - (g,u[pRa]l/ - gu[pRo]y.) + ggu[pgv]ua (518)
and so
af3 1 po yéa af R a ¢B
RHV + @euu Rpa’y<5€ = QC;U/ + gélﬂéul (519)

These manipulations prove the first formula in (5.8). Similar transformations are
used to prove the second formula. This concludes the proof of Theorem 5.1.
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While in the previous proof it may appear that all matrices A, B, and C are
A?® A? valued and thus 6 x 6, the spaces A* are in fact three-dimensional, and so
A, B, and C are in fact 3 x 3 matrices. This will be made explicit in Section 5.5
when we discuss the SD/ASD decomposition of the Lie algebra of the ‘Lorentz’
groups.

The idea of the chiral formulation is then that it is sufficient to have access to
only one row of the matrix (5.7) to impose the Einstein condition. We will later
show that the two rows of (5.7) can be given the interpretation of the curvatures
of the SD and ASD parts of the spin connection. It then becomes possible to
impose the Einstein condition working with only one of the chiral parts of the
spin connection.

5.3 Chiral Version of Cartan’s Theory

As we have seen in the previous section, in four dimensions it is enough to
have access only to the SD part of the Riemann curvature with respect to
a pair of indices, rather than to the full Riemann curvature, to impose the
Einstein equations. Let us now see what this leads to in the context of the
tetrad formalism. In Einstein—Cartan formulation the Riemann curvature is
encoded into the curvature R'’(w) of the spin connection w’’. We can take
its SD part with respect to the ‘internal’ indices IJ using the SD projector.
We define

RY(w) i= P, R¥" (w), (5.20)
where
P = o () + et (5.21)
+ KL - 2 KYK Qﬁ KL | - .

It is clear that when w!’/ is the torsion-free metric spin connection the object
R'’(w) encodes exactly one of the two rows of the matrix (5.7), and thus we only
need R’’ to write down Einstein equations.

There exists a simple action principle that realises this idea. Consider the
following action

o A
Senirarl€, w] = % /eIeJPJIrJKL <RKL(W) - 6€K6L> . (5.22)

Expanding the SD projector we see that the only difference between (5.22) and
(3.60) is that we have added to the Einstein-Cartan action what is called the
Holst term e;e; F'/ with an imaginary (in Lorentzian signature) coefficient. How-
ever, we can clearly do this without changing the dynamics of the theory. Indeed,
when the connection has zero torsion, this term becomes a total derivative. This
can be easily seen by considering the squared torsion term d“e’d“e;. Integrating
by parts here one gets a multiple of the Holst term.
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Thus, the action (5.22) gives an equivalent starting point to (3.60) for the
purpose of obtaining the field equations. However, it clearly involves just half
of the curvature of the spin connection. Further, we can use the fact that the
Lorentz group Lie algebra is not simple, and rewrite the SD part of the curvature
as the curvature of the SD part of the spin connection. This is possibly precisely
because the Lie algebra can be written (5.1) as the sum of two commuting
sub-algebras. Thus, if we write

W = (1), + (). (5.23)
then
R () = RM(w,), (5.24)
and we can write the action (5.22) as
o A
Suiles’] = o [erer)s (R¥@) =G ), (529

where the index ‘plus’ next to the 2-form e’e’ denotes the SD projection with
respect to the internal indices (e’e”), = P{’x e*e”. We thus obtain a first-
order formulation of GR that is similar to (3.60), but in which only half of the
spin-connection coefficients are present. This gives a significantly more economic
formalism. Indeed, in the Einstein—Cartan case (3.60), the Lagrangian depends
on 24 connection components per spacetime point. This is better than the case
of Palatini theory (2.43), where in addition to the 10 metric components there
are also 40 components of the affine connection. But this is nevertheless quite a
few components to carry around in explicit calculations. What was achieved by
passing to (5.25) is that now, in addition to the 16 components in the tetrad, the
Lagrangian depends on just 12 connection components. One could object that
the connection is now complex, and so its real and imaginary parts continue to
comprise the same 24 components. But this is not the right interpretation. The
Lagrangian depends on the 12 components of the SD connection w' holomor-
phically, as no complex conjugate connection ever appears. Also, in Euclidean
signature, no complexification has happened, and we indeed just halved the
number of the connection components with the SD projection trick.

The ‘chiral’ formulation (5.25) thus keeps the main advantage of the Einstein—
Cartan formulation of GR — it is polynomial in the fields, with at most quartic
terms appearing in the action. It is also much more economical than the Einstein—
Cartan formulation, because it depends only on 16 + 12 field components per
spacetime point, as compared to 16424 components in the Einstein—Cartan case.
This makes (5.25) much better suited for explicit, e.g., perturbative calculations.
One complication is that one needs to deal with the issue of reality conditions
in the Lorentzian case. However, at least for perturbative calculations, these are
not difficult to impose. One just imposes the condition that the tetrad is real.
The correct reality conditions on the connection are then imposed automatically
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by the field equations. Further, loop calculations are customarily performed in
Euclidean signature, and then one does not need to worry about reality condi-
tions at all as all fields are real. We will come back to perturbative considerations
in this formalism in Chapter 8.

The final remark is that, unlike in the full Einstein—Cartan formulation, in the
chiral theory (5.25) the Hamiltonian analysis does not lead to any second-class
constraints. This is directly linked to the halving of the number of ‘momentum’
variables introduced in this first-order theory. The Hamiltonian analysis of (5.22)
directly leads to Ashtekar’s new Hamiltonian formulation of GR; see Ashtekar
(1987). For all these reasons, the chiral tetrad formulation (5.25) should be viewed
as superior to the usual tetrad formalism.

There exists a good Yang-Mills analogy for the passage from (3.60) to (5.25).
Let us describe it. The usual Yang-Mills Lagrangian (in Lorentzian signature) is

Lyy = _%QQ(F;V)Za (5.26)
where F}, = 0, A% —0, A%+ f*, . A" A is the field strength and A¢ is a Lie algebra
valued connection 1-form. However, one can always add to this Lagrangian the
Pontryagin density for the connection Af,, which is €,,,,F}, F},. This term is
a total divergence that does not change the field equations one obtains by
extremising the action. Further, we can always adjust the coefficient in front
of this term so that the original term in the Lagrangian and the Pontryagin

term combine into

Lo = =5z P P B, = =55 (P (5.27)
where P, is the SD projector (5.9).

The analogy with (3.60) and (5.25) arises when one writes down the first-order
versions of the two Lagrangians (5.26) and (5.27). In both cases one ‘integrates
in’ a 2-form field, but in the chiral case this field is SD. Thus, let us consider the
following two actions

S[B, A] = /BZVF‘”‘” +9%(B2). (5.28)

Integrating out the 2-form field B, one gets back the Lagrangian (5.26). This
gives us a first-order formalism for Yang—Mills. Interestingly, there is just a cubic
interaction vertex in this formalism, at the expense of having both B and A fields
propagating. The chiral first-order action, on the other hand, is given by

2
Seniea[ BT, A] = / BheFom 4 %(Bjj)?. (5.29)
Here B is a SD Lie algebra valued 2-form field. The field equation for B*

is B * = —(1/g°)F", ie., B" is a multiple of the SD projection of the field
strength. Substituting this back into the action one obtains (5.27).
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The actions (5.28) and (5.29) are both good first-order actions, but the chiral
action contains just half of the B variables of the first. Indeed, the non-chiral
version contains six times the dimension of the Lie group components of B, .
This is to be compared with the number of components in B},*, which is three
times the dimension of the Lie group, because the dimension of the space of
SD forms is three. The action (5.28) is not so useful as the starting point
for perturbation theory because it contains six components of B,, for four
components of A,. As we will see in Chapter 8 on perturbative descriptions, the
2-form field B, of the formulation (5.28) has a nonvanishing propagator with
itself, which complicates the perturbation theory. This is directly related to the
fact that too many components have been ‘integrated in’ in passage from (5.26)
to (5.28).

As it will become clear in Chapter 8, one would like the mismatch between the
numbers of components in the connection and the auxiliary 2-form field to be
one, which is the number of functions appearing in gauge transformations. This
is not the case in the non-chiral version (5.28). However, in the chiral version of
the first-order formalism we have three components of B}, for four components
of A,,
chiral version can be very elegantly gauge-fixed and provides a very nice and
powerful perturbation theory. In particular, in the chiral version of the first-
order perturbation theory the propagator of the 2-form field with itself vanishes,
which simplifies calculations considerably.

The difference between the full Einstein-Cartan description (3.60) and its
chiral version (5.25) is analogous to the difference between (5.28) and (5.29). As
in the Yang—Mills case, the chiral action is a better starting point for perturbation
theory, the same is true for the case of chiral formalism for GR; see Chapter 8.

The final remark we make about the chiral action (5.25) is that when A # 0
the frame field can in principle be integrated out (at least perturbatively), with
the result being a pure connection action for the SD part of the spin connection
only. We postpone discussing this until one of the following chapters.

and the mismatch is indeed the desired one. It then turns out that the

5.4 Hodge Star and the Metric

To motivate the next step we recall that in the case of Einstein—Cartan formalism
it was possible to pass to the BF-type formalism, in which the wedge product
of two tetrads e’ A e’ was replaced by the 2-form field B/, and a Lagrange
multiplier term was added to the action to guarantee that the 2-form field comes
from the tetrad. We shall repeat this trick for the chiral first-order action (5.25).
This will change the nature of the object that solders the ‘internal’ and the
tangent bundles in a profound way. To understand the geometry arising, we
need to develop properties of the Hodge star in four dimensions in more detail.
This will eventually lead to the so-called Plebanski formalism for GR, which is
a very powerful version of the chiral first-order description (5.25).
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5.4.1 Hodge Star on Middle Degree Forms is Conformally Invariant

We start by stating a simple but profound

Lemma 5.4 The Hodge operator on middle degree forms (and in particular the
Hodge operator on 2-forms in four dimensions) is conformally invariant.

In other words, if we change g,, — Q%g,, then €,,”" is unchanged. We only
check this in four dimensions, the case of higher (even) dimensions is completely
analogous. To verify this we note that the volume 4-form €,,,, transforms as
the square root of the determinant of the metric €,,,, — Q*€4,,0. Then €,,77 =
9°*9°P€,,08, and the inverse metric transforms as g — Q2¢g*”, from which
the assertion follows.

5.4.2 Hodge Star Determines the (Conformal) Metric

Lemma 5.4 states that a conformal metric, which is metric modulo conformal
rescalings, determines the Hodge star operator. The following theorem shows
that in four dimensions the converse is also true.

Theorem 5.5 In four dimensions, the knowledge of the Hodge star operator, and
thus the knowledge of the split (5.4) of the space of 2-forms into the eigenspaces
of the Hodge star is equivalent to the knowledge of the conformal metric.

This is the fact of the fundamental importance for our purposes as it will
become clear from the following exposition. Because of its importance, we
will present two proofs, one conceptual one constructive. The conceptual proof
will explain why this can be true. In physics literature, a proof of this theorem
(in its Euclidean signature version) has been given in Dray et al. (1989).

To do the conceptual proof, we need to build up a bit more knowledge about
the split (5.4) of the space of 2-forms into its SD/ASD subspaces in different
signatures. The first fact is that we can take the wedge product of a couple of
2-forms to get the top form. This means that the wedge product gives us the
natural conformal metric in the space A2

(B1,B2)s = B1Bs /e, (5.30)

where € is an arbitrary top form on M. To divide by a top form we need to assume
that a nowhere-vanishing top form exists, or, in other words, the manifold is
orientable. We will always assume this in this book. Different choices of € are
related by multiplication by a nowhere-vanishing function, and so the wedge
product metric is only a conformal metric, i.e., is defined modulo multiplication
by a function. We note that the wedge product metric on the six-dimensional
space of 2-forms is of split signature (3, 3), which can easily be checked by taking
a basis for this space. This is independent of any metric one may put on the
manifold M itself.
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Given the conformal metric (5.30) and a split (5.4) we can ask what the wedge
product metric reduces to on A*. This is easiest to see in the case of R? with

the usual flat metric. Then a convenient basis in AT in each signature case, in

1234

the orientation e'*3*, is as follows

1 41 23 2 42 31 3 43 12
Yp=et—e¥, Y=Y e, Tip=e"—e? (5.31)
1 _ . 41 23 2 _ . 42 31 3 _ . 43 12
Y =it —e™”, X =ie" —e, Xy =i —e",
1 41 23 2 42 31 3 43 12
Yg=e" —e”, Yi=eT4e, Eg=eT+e,

where F, L, and S stand for Euclidean, Lorentzian, and Split, respectively. In
formulas (5.31) the notation €% stands for e’e’e* and so on. It is now easy to
see what the conformal metric on A* in each case is. Dividing by (twice) the

1234

volume form € = 2¢e we have

<Zj‘aa E%>A = 5“’ <EiLv EJL>A = iaij’ <Egv Eé‘>A = 77”7 (5'32)

where ™ = diag(+1,—1,—1). Thus, the space AT in the Euclidean case can be
characterised by saying that the wedge product metric on it is definite (positive
definite in the right orientation), in the split case the wedge product metric on
AT is indefinite, and in the Lorentzian case the wedge product metric on A is
complex. We also note that in all the cases the space A* is wedge product metric
orthogonal to A~. Moreover, in the Lorentzian case A~ = A+, where the overline
denotes the complex conjugation. In other words, the complex conjugates of
elements in A* are in A~

We have checked these statements for the case of a flat metric on R”¢, but it
is clear that these statements about the reduction of the wedge product metric
to AT hold more generally. Indeed, one should just use an orthonormal set of
1-forms for a given metric in place of e'*** in (5.31) to see that (5.32) holds
for an arbitrary metric. And since an arbitrary basis in A* in each signature
case is given by an GL(3) transformation (GL(3,C) transformation in the case
of Lorentzian signature) of the orthonormal basis (5.31), we see that indeed the
signature of the restriction of the wedge product metric to A™ only depends on
the metric signature.

With these results about A?(RP%),p 4+ ¢ = 4 in mind, we can characterise
the split (5.4) further, depending on the signature. This will also make the
formulation of Theorem 5.5 more precise.

Euclidean Signature. In this case, the Hodge operator is the same as the split
of the space of 2-forms into a couple of three-dimensional orthogonal subspaces
A%, such that the wedge product metric is positive definite on A* and negative
definite on A~. Indeed, this is true for the Hodge operator coming from any
Euclidean signature metric on M. It is also clear that the knowledge of such a
split is equivalent to the knowledge of the Hodge operator. This is because, given
such a split, one can decompose any form into its A* parts and then the Hodge
simply acts by £1 on A*.
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The space of such splits is the Grassmanian SO(3, 3)/SO(3) x SO(3), where the
stabiliser subgroup is the group mixing the forms in A*, respectively, without
changing the restrictions of the wedge product metric to these spaces. Now, to
show that this Grassmanian is the same as the space of Euclidean signature
(conformal) metrics in R*, we need the exceptional isomorphism

SO(3,3) ~ SL(4,R). (5.33)

These are groups belonging to two different series of classical groups, i.e.,
orthogonal D and special linear A, whose Lie algebras are represented by the
same rank three simply laced Dynkin diagram Az; = Ds. These groups coincide
(modulo Z,). We will give a proof of this fact Section 5.5.4. We therefore have
the isomorphism

SO(3,3)/S0(3) x SO(3) ~ SL(4, R) /SO(4), (5.34)

where we have used SO(4) = SO(3) x SO(3)/Z,, which will be proved Section
5.5.2. The space of Euclidean signature metrics modulo conformal rescalings is
on the right-hand side of this relation. The left-hand side is the Grassmanian of
three-planes in six-dimensional space of signature (3, 3) such that the restriction
of the metric on the plane is definite. This is just the space of splits (5.4) in the
case of this signature, which proves the Theorem 5.5 for this case.

Split Signature. The proof of the Theorem 5.5 in this case is analogous. The
only difference is that now the split (5.4) is into a couple of three-dimensional
subspaces with indefinite metric of opposite signature. Such a split characterises
the Hodge operator for this signature completely. The space of such splits is the
Grassmanian SO(3,3)/SO(1,2) x SO(2,1), which, using the exceptional isomor-
phism (5.33) is the same as

SO(3,3)/S0(1,2) x SO(2,1) ~ SL(4,R)/SO(2,2), (5.35)

the right-hand side being the space of conformal metrics of signature (2,2) in
four dimensions. Here we have used the isomorphisms SO(2,2) = SL(2,R) x
SL(2,R)/Z, and SO(1,2) = SL(2,R)/Z,. Both these facts will be proven
Section 5.5. This proves the theorem in this case.

Lorentzian Signature. The split (5.4) in this case is the split of the real six-
dimensional space with metric of signature (3,3) into two complex conjugate
orthogonal subspaces. Such a split is the same as an almost complex structure
on the space of 2-forms, compatible with the wedge product metric. The elements
of SO(3,3) that commute with such an almost complex structure belong to
SO(3,C), and these mix the 2-forms belonging to AT without changing the
complex metric that the wedge product metric restricts to in this space. Thus,
the space of such splits is the Grassmanian SO(3,3)/SO(3, C), which in view of
(5.33) is the same as
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SO(3,3)/S0(3,C) ~ SL(4,R)/SO(1, 3), (5.36)

because SO(3,C) = SO(1,3), which will be demonstrated Section 5.5.1. The
right-hand side in this relation is the space of real Lorentzian signature metrics
in four dimensions modulo conformal rescalings, which proves the Theorem 5.5
for this signature.

We note that the Theorem 5.5 is only true in four dimensions. Indeed, let
us consider the case of six dimensions. Then the Hodge star on middle degree
forms, which are 3-forms in this case, is the same as the decomposition of
the 6 x 5% 4/6 = 20 dimensional space of 3-forms into two orthogonal subspaces.
The space of such splits is the Grassmanian SO(10,10)/SO(10) x SO(10). This
space has dimension 20 % 19/2 = 190 minus 2 % 10 * 9/2 = 90, and so is
100-dimensional. On the other hand, the space of metrics in six dimensions
is 6% 7/2 = 21-dimensional. Thus, the space of splits of A* into two orthog-
onal subspaces is much bigger than the space of metrics, and so there are
splits that do not come from the Hodge operator. There is therefore no rela-
tion between the space of splits of the space of middle forms and metrics in
higher dimensions.

5.4.3 Urbantke Metric

We now want to give a different proof of Theorem 5.5. Given a basis in A%, this
other construction presents the metric explicitly. Thus, let us assume that we
are given a decomposition (5.4) of A? into two orthogonal (with respect to the
wedge product metric) subspaces A*. Let X' i = 1,2,3 be a basis in AT. Then
the (conformal) metric g5 such that its Hodge operator has Span(X¢) as its AT
is explicitly given by the following formula

gs(u,v)es ~ %4, 34, NI¥F, (5.37)

At this stage the proportionality coefficient in this formula is left unspecified,
even though later we shall see that in each signature case there is a specific
number that is most natural here. The object €5 is the volume form for the
metric gs. In the physics literature the metric (5.37) is known as the Urbantke
metric; see Urbantke (1984). Geometrically, the metric (5.37) arises as the unique
conformal metric that makes the triple of 2-forms X* self-dual. We will prove this
statement in Sections 5.4.4 and 5.4.5.

It is clear that the formula (5.37) defines a symmetric tensor, but it is not clear
what the signature of the metric arising this way is. The aim of the following
discussion is to establish this for the three different ways that the split (5.4) may
arise. We will start with the Lorentzian signature case, and then comment on
changes one has to do to accommodate the other two signatures.

Given a three-dimensional subspace AT in the space of 2-forms, and a basis
¥t e AT we can always use a GL(3) transformation to make this basis orthonor-
mal. We will make this statement more precise in each signature case.
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Lorentzian Signature. Given a three-dimensional subspace AT C A2 that
is wedge product metric orthogonal to the complex conjugate subspace
(A*,AT), =0, we can always use a GL(3,C) rotation to choose a basis
Mt 4 =1,2,3 of AT that satisfies

Lorentzian case : '’ = 2i§”¢ and X'%7 = 0. (5.38)

Here € is a real top form on the manifold. We shall refer to such a basis of A as
orthonormal. An example of an orthonormal basis for A* defined by a Lorentzian
signature metric is given by (5.31).

Euclidean and Split signature. Given a three-dimensional subspace AT C A2
on which the wedge product metric is definite in the Euclidean case, and indef-
inite in the split case, and using a GL(3,R) rotation, we can always choose a
basis ¥*,4 = 1,2,3 of A" that satisfies

Euclidean case : ¥'%7 = 26%¢, Split case : 'Y = 2ne, (5.39)

where € is a top form. Again, we shall refer to such a basis of A* as orthonormal.

5.4.4 A Constructive Proof of Theorem 5.5: Lorentzian Case

The discussion that follows is for the Lorentzian case, we will discuss Euclidean
and split versions in the following subsection. Given a triple of 2-forms satisfying
(5.38), we shall prove that (i) there is a natural Lorentzian signature metric
defined by ¥7; (ii) the 2-forms ¥* are SD in this metric; and (iii) this metric
coincides with that given by (5.37). As they stand, these statements are a bit
vague, they will be made precise in Theorem 5.6.

To proceed with the proof, as the first step, we split the 2-forms 3? into their
real and imaginary parts

Y= S +iP. (5.40)

In view of (5.38) the forms S, P* satisfy

Si8i =0, PPl =0, SiPI = §e. (5.41)

Now, since P!P! = 0 this 2-form must be simple, and so P* = ele! for some

1-forms e, e!'. Similarly, S! is a simple 2-form, and we can write S' = —e?e3.
1,2,3,4

Since S'P! = ¢ we have € = e'e?e®e* and the basis e is nondegenerate. We
note that the forms e** and e%* are defined modulo unimodular transformations
mixing e* and e', and similarly transformations mixing e?> and €2, as such
transformations do not change e*e’ and e?e3.

Now, the form P? is also simple P?P? = 0, and is orthogonal to both S* and

P*'. This means that it can be written in the form

P? = (ae* + Bet)(ve? + de?) (5.42)
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for some (real) coefficients «, 3,7, and §. Similarly the simple 2-form S? can be
written as

S? = —(pe* + oe®)(ue* + ve') (5.43)

1234 we must have

for some coefficients u,v,p, and o. From S%?P? = ¢ = ¢
(Bu—av)(yo—dp) = —1. We can now define the new basis 1-forms é* = ae®+fe’,
et = pe* +vel e? = ve? + e, €3 = pe? + oe. These are unimodular transforma-
tions provided av— By = 1 and yo —dp = 1. In this new basis we have P! = &*¢?,
St = —¢2¢® and P? = ¢%*¢%,5% = —¢%¢'. We have thus proved that P!, St P2,
and S? can always be mapped to this form. We will omit the tildas on the symbols
of these 1-forms from now on.

We now come to the last pair P?® and S3. They are both simple, and both
orthogonal to all the 2-forms P!, S*, P?, and S?. There are two different possi-
bilities. Either P? ~ e%*e® and S® ~ ele? or P? ~ ele? and S% ~ ee3. In the
first of these possibilities, it is the 2-forms P?,7 = 1,2, 3 that all share a common
1-form, while in the second case, these are the 2-forms S* that share a common
factor.

Let us now write the obtained solutions in a canonical form. There is still
some freedom remaining after fixing the 2-forms P!, S', P?, and S2. Indeed, we
can rescale e? — Aeb? and e** — A ~le®* without changing P!, S', P2, and S2.
These rescalings allow to put the coefficient in front of P? and S® to plus minus
unity. This allows us to present the four arising cases as

Case A+ P'=c¢el, St = —e%e?, (5.44)
P? = ¢*e?, S? = —ee’,
P? = gete?, S3 = —ge'e?,
where o = £1 and
Case B+ S'=¢'e', Pt = —¢€%¢’, (5.45)
5% = ele?, P? = —¢e?e!,
93 = ge'ed, P? = —gele?,

where we have relabelled e* — €3,e! — €? and e3> — —e?,e? — —e! to write the
second case forms. Note that this does not change the € form. The case B is of
course the same solution with S and P forms interchanged. As we have already
mentioned, in the case A the 2-forms P? all share a common factor, while in the
case B the 2-forms S* do.

Having obtained the four different possible canonical expressions for the
2-forms ¥* satisfying (5.38) we can understand the metric that these forms
define. It is clear that in all the four cases the 1-form e* is special, and so there
is a natural metric

ds? = —(e*)? + (e")? + (€*)* + (%), (5.46)
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The four different cases that we have seen arising previously are then as follows.
The case A+ corresponds to the 2-forms ¢ being self-dual, and coinciding with
the basis of forms listed in (5.31). The case A— corresponds to X* still begin SD
with respect to the metric that they define, but with X3 being minus what it is
in the canonical basis (5.31). The case B+ forms are ASD, and B— forms differ
from B+ in the sign of 33. We also note that the B+ case forms can be obtained
as —i times the canonical basis of ASD 2-forms, given by (5.31) with the plus
sign in front of the second terms.

These four different cases can be differentiated with the help of the Urbantke
formula. Thus, let us see what the metric g5 given by

g (u, v)es, = %eijkiUEiinjEk (5.47)

is in each of the four cases. In this formula, the orientation ey is assumed to be
that in ¥*%7 = 2i§*ex. In the case A+ this formula reproduces the metric (5.46).
In the case A— the only difference is that X% is minus what it is in the case
A+, and it is clear that this gives an additional minus sign on the right-hand
side of (5.47), so that one obtains the metric of signature (+, —, —, —). In the B
cases, one multiplies the right-hand side in (5.47) by (—i)® = i as compared to
the A cases, and so the metric obtained from (5.47) in both B cases is purely
imaginary.

We can summarise the previous discussion as

Theorem 5.6 Let X% be a triple of 2-forms satisfying X'%7 = 216" ey, where ex
is a real top form, and X'%7 = 0. Then either the triple ¥ gives a real metric gs,
via (5.47), or iX" does. So, we multiply the 2-forms %' by the imaginary unit to
get a real metric via (5.47) if necessary. This metric is of Lorentzian signature.
The triple of 2-forms X that gives a real metric via (5.47) is self-dual in the
orientation es,.

We also see that there arises the notion of a sign of a triple ¥¢. Indeed, this
arises as the sign that is necessary to put in front of the right-hand side of (5.47)
to get the metric of signature (—,+,+,+). Given a triple that satisfies all the
conditions of the previous theorem, both signs are possible. In particular, if one
has a triple ¥* that gives the metric of signature (—,+,+,+) via (5.47) with
no additional sign necessary, then the triple —X* will require an extra sign to get
the desired signature.

This notion of the sign of a triple ¥¢ can be given a more invariant meaning.
To this end, we can use the metric defined by X! to raise one of the indices of
3% and convert these objects into endomorphisms of T*M. Then, as it is easy to
check, in the case that X' are given by their standard expressions in (5.31) the
resulting three endomorphisms satisfy the imaginary quaternion algebra

nIN? = 33, DIEDILIE ¥yt = %2 (5.48)
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On the other hand, in the case when X? is given by minus what it is in (5.31),
the algebra of endomorphisms defined by X! is with an extra minus sign on the
right-hand side

niy? — _y3 PIEDIIES S Iyt = %2 (5.49)

)

Yet another way of stating the origin of this sign is as follows. The object X*
can be viewed as a map between two naturally oriented spaces. Either this map
preserves the orientation, in which case it is given by its canonical expression
as in (5.31), or it reverses it, in which case ¥* is minus what it is in (5.31).
The reason why both spaces mapped one into another by ¥ : C* — At C A2
are oriented is as follows. The space C® can be identified with the Lie algebra
51(2), and this is naturally oriented. This is because one can take the triple
e',e?, [e', €?] as providing the positive orientation, for any e', e € su(2). In our
case this means that we take 123 as the positive orientation. On the other hand,
the space AT also carries a natural orientation, because we can use the metric to
convert SD 2-forms w'? € AT into endomorphisms of T*M, and then take the
positive orientation of A* to be w.”,w2", w, w2 — w2fw.”. This explains why
both the source and the target of the map X is oriented, and why ¥ can be both
orientation preserving (case A+) and orientation changing (case A—).

Note that the self-duality of X% with respect to the metric they define versus
anti-self-duality, is fixed by the sign on the right-hand side of Y%7 = 2id¥ey.
Indeed, the statement in Theorem 5.6 is that X! are SD with respect to the
metric they define in the orientation ex. One could then take complex conjugate
objects instead, and they would satisfy ¥ % = —2iex, and be wedge product
orthogonal to their complex conjugates. These objects satisfy all the conditions
of the Theorem 5.6, and are thus SD with respect to the metric they define and
in orientation —ex. But being SD in orientation —ey is the same as being ASD
in orientation ex. So, everything is consistent.

This also gives another way of looking at the cases B# in the proof. Indeed,
the 2-forms +i%i, where ¥ is the canonical SD forms as in (5.31) satisfy all
the assumptions of Theorem 5.6. This is why these solutions to the equations
Yi¥7 = 2i6Y ey, and L7 = 0 must appear together with the solutions £X7. This
explains the case B+ solutions that were found previously.

We have thus proved that the knowledge of the split of the space of 2-forms
into two orthogonal subspaces of half the dimension, as appropriate for the
Lorentzian signature, determines the conformal metric. In fact, we have proved
a stronger statement in Theorem 5.6. Indeed, we have shown that given an
orthonormal basis in the space A*, which can always be chosen by an GL(3,C)
transformation, there is a natural Lorentzian signature metric given by (5.47).
Thus, this construction also fixes the conformal class of the metric, which was
left undetermined by the conceptual proof.

There is an interesting twist to the previous story which is that the formula
(5.47) also defines a metric even in the case that a triple ¥’ is not orthonormal,
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and just spans a three-dimensional subspace of A? that is wedge product orthog-
onal to its complex conjugate. We will come to this point in one of the following

chapters, where it will be seen that this is related to the possibility of ‘deforming
the Einstein condition in a nontrivial way.

5.4.5 A Constructive Proof of Theorem 5.5:
Fuclidean and Split Cases

A similar proof of the fact that the knowledge of the split of the space of 2-forms
into two subspaces of half the dimension, together with a basis in one of the
spaces, determines the metric, can be given in the Euclidean and split signature
cases. Everything is real in this case, so the proof is somewhat simpler. So, let us
start with a triple of 2-forms Y% such that Y%7 = 26%ey in the Euclidean case,
or Y7 = 2n¥ey, in the split case. As in the Lorentzian case, we see that the
triple X* defines an orientation es;. Our task is now to prove that such a triple
defines a metric of appropriate signature, and with respect to this metric and in
orientation ey, the triple X* is SD.

Let us carry out the proof in the Euclidean case. It will then be clear what
is necessary to change to get the split signature case. The most important first
step is to form complex linear combinations

E =%l +in% (5.50)
These complex 2-forms are simple
Tt =372 =0, (5.51)
and are thus decomposable. Thus, we can write
¥ = sm, ¥~ = 5m, (5.52)

where m,m and s, § are some complex 1-forms spanning 7* M, with 5 being the
complex conjugate of s and m being the complex conjugate of m. Of course,
s, m are only defined modulo unimodular transformations that do not change
the wedge product sm. The forms m,m and s,5 span T*M because we have
Y *tY~ = 4e5. On the other hand XY~ = —mmss.

For future reference, when the triple X¢ is as given by (5.31) we have

Yt = (e* —ie?)(e! +ie?), Y7 = (e* +ie?)(e! —ie?), (5.53)

and so m = el +1ie?,s = et — ied.
The next bit of information comes from the fact that ¥* is wedge product
orthogonal to both ¥*. It is also a real 2-form. This means that it is of the form
b b d
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for some coefficients a,d € R and b € C. We can then compute

1
Y = —i(ad — |b]*)mmss. (5.55)
However, we must have ¥*¥? = 2ey and so we have ad — |b|> = 1. This in

particular means that a and d are always of the same sign.
The 2-form ¥? in (5.54) can be written in matrix form as

23:%(3 m)<_alb1§><§l> (5.56)

The matrix that appears here is Hermitian. We also know that it is unimodular.
Such a Hermitian unimodular matrix can always be written as the product

a ib\ +
( 4 ) = *+gg', g € SL(2,C). (5.57)

The presence of the sign on the right-hand side reflects the fact that a and d
can be of both signs. The determinant condition on the left-hand side implies
|det(g)|?> = 1. But we can always multiply g by a phase (without changing gg')
to achieve that det(g) is real and positive, and thus that g is unimodular.
So, we have shown that 33 can always be written as
1 _ _
3= +o ((as + Bm) (@5 + Bm) + (vs 4+ 0m) (V5 + om)) (5.58)
for some coefficients «, 8,7, € C satisfying ad — Sy = 1. We can then define
as + pm in (5.58) to be the new s and vs + dm to be the new m, as this does
not change the forms ¥*. Thus, we learn that we can always represent the triple
33 as
1
¥t = sm, YT = 3m, ¥ = :I:;(SE + mm). (5.59)
i

Having achieved this representation of the triple X* the metric is
ds3 = 85 + min. (5.60)

This is a metric of Riemannian all plus signature, and the 2-forms X* are SD
with respect to this metric, in the orientation es. It is also not hard to check that
this metric can also be obtained by the Urbantke formula, which in the case of
this signature reads

1 .. o
gs(u,v)es = 66”’“%2%”2}]2’“. (5.61)
We can state the previous considerations as
Theorem 5.7 Let X% be a triple of real 2-forms satisfying XY = 26%es. Then
the metric defined by the Urbantke formula (5.61) is real, and of Riemannian
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signature. The triple ¥¢ is self-dual with respect to this metric, and in the orien-
tation €s.

As in the Lorentzian case, we see that there is a subtlety that a triple X°
satisfying Y*¥7 = 20¥ey carries the additional information of a sign, which is
the sign that is necessary to put on the right-hand side of (5.61) to obtain the
metric of signature all plus. If a triple ¥¢ gives the all plus signature metric via
(5.61), then the triple —3* will give the signature all minus, and an extra sign
would be needed in (5.61) to flip this back to all plus. We similarly see that
the case in which there is the minus sign in X% in (5.59) gives the all minus
signature metric via (5.61), and so this triple carries the negative sign. As in the
Lorentzian case, this sign has the geometric origin in the fact that the map X is
a map between two naturally oriented spaces, and can therefore be orientation-
changing as well as orientation-preserving.

In the split signature case, the proof is completely analogous, with some sign
changes. The main difference is that in this case the relevant combinations of
¥, %2 that are simple are real: ¥* = ¥! 4+ 32, Indeed, when X3! = 1, 3232 =
—1,33%% = —1, and we have X7+ = X3~ = 0. The Euclidean signature case
proof works with a few changes, the main one being that it uses real coefficients
everywhere. In this case we want to put X% into the form

YE = (e* £ e®)(e! £ e?), (5.62)
and X2 into the form
2 =g (¢ + )~ ) + (& + (et — ), (5.63)
where both signs are possible. Once this is achieved, the metric is
ds® = —(e* +e*)(e* —e?) — (e +e%)(e! —€?), (5.64)

which is the metric of split signature. The metric can also be obtained via the
Urbantke formula (5.61). We state all this as a

Theorem 5.8 Let X be a triple of real 2-forms satisfying X'%7 = 2nes. Then
the metric defined by the Urbantke formula (5.61) is real, and of split signature.
The triple X is self-dual with respect to this metric, in the orientation €.

5.5 The ‘Lorentz’ Groups in Four Dimensions

The purpose of this section is to remind the reader some facts about different
signature ‘Lorentz’ groups in four dimensions, and also explain the origin of the
‘accidental isomorphisms’ (5.1). We have already covered this material to some
extent in Chapter 1, but here we present a more complete treatment including
the discussion of all three different possible signatures.
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5.5.1 Lorentzian Signature

Let us start our discussion with the Lorentz group proper, i.e., the group
SO*(1,3) of special (i.e., determinant one) pseudo-orthogonal transformations
(i.e., living invariant the metric in R"?) that also preserve the time orientation.
This group is doubly covered by the complex special linear group SL(2,C), as
the following construction explains.

Let us fix some Cartesian coordinate system z?, z*, 2%, 2% in R"3, so that the
distance squared from a point with this coordinates to the origin, equals —(x*)*+
(21)? + (2%)? 4+ (2*)%. The reason why we use z* rather than 2° notation is that
we want to be uniform in our treatment of all the signatures. Let us form the
following 2 x 2 matrix

4 3 1.2
xL:i< rohrow ) (5.65)

' +ix? 2t —=2

Note that

3
rp =1 (:17411 + Zoif) , (5.66)
=1

where 0,7 = 1,2,3 are the usual Pauli matrices. It is our desire to write x; as
(5.66) that explains the sign choices in (5.65). We note that the matrix x; given
by (5.65) is i times a Hermitian matrix, and so is anti-Hermitian. Moreover, every
2 x 2 anti-Hermitian matrix can be written in the form (5.65) for some choice
of z*, xz'. This is clear from (5.66) and the fact that I, 0’ provide a basis in the
space of 2 x 2 Hermitian matrices. We also note that the distance squared can
be written as the determinant of (5.65)

det(x.) = na'z’. (5.67)
Thus, we have constructed a map
¥y, : RY — AHerm(2) (5.68)

from Minkowski space to the space AHerm(2) of anti-Hermitian 2 x 2 matrices.
This map is an isomorphism. The Minkowski metric is given by the pullback of
the determinant with this map; see (5.67).

We now consider the following action of SL(2, C) on the space of anti-Hermitian
2 x 2 matrices

x;, — gx.9, g € SL(2,C). (5.69)

This maps the space of anti-Hermitian matrices to itself. Also, this map preserves
det(xy). Thus, pulling this map back with +;, (5.68), we get an action of SL(2, C)
on R*® that is distance preserving. This gives a map from the group SL(2,C)
to the group O(1,3) of pseudo-orthogonal transformations of R"3. It can be
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checked by an explicit computation that this map is actually into SO*(1, 3). We
will denote this map by v;, as well, with a slight abuse of notation

Yr : SL(2,C) — SO (1, 3). (5.70)

It is also clear that this map is a group homomorphism.
It is clear that matrices +1 € SL(2,C) get mapped to I € SO(1, 3). Thus, the
kernel of v, is Z,, and we have constructed the double cover

SO*(1,3) = SL(2,C)/Zs,. (5.71)

Example 5.9 As an example, let us consider the transformation generated by
e’? 0

g= ( 0 et ) € SL(2,C). (5.72)

A simple computation shows that the pullback of this transformation on
AHerm(2) with 1, gives the following pseudo-orthogonal transformation on R*3

x* — &' = cosh(t)z* + sinh(t)z?, (5.73)

x® — 7° = sinh(¢)z* + cosh(t)z®.

The determinant of the corresponding O(1,3) matrix is clearly +1, and it pre-
serves the time direction because the coefficient in front of z* is always positive.

It is clear from the previous construction that the concrete isomorphism (5.71)
depends on the choice of coordinates z*,x¢. However, all possible coordinate
choices are related by Lorentz, and thus, SL(2,C) transformations. So, if we
base the previous isomorphism (5.71) construction on a different choice of the
coordinate system %, = Gx,G', G € SL(2,C), then we get two different embed-
dings of SL(2, C) into SO* (1, 3) that are related by conjugation

xp = gxrg',  xp—gxpgt = §=GgG. (5.74)

So, while there is no canonical embedding SL(2,C) — SOT(1, 3), different such
embeddings are conjugate to each other inside SL(2,C).
The constructed isomorphism (5.71) also gives the isomorphism

SO(3) = SU(2)/Zo. (5.75)

Indeed, one should just restrict the previous construction to matrices (5.65) with
z* = 0. It is clear that these are tracefree (anti-) Hermitian matrices. Only the
SU(2) subgroup of SL(2, C) acts on this space preserving it, and so we get (5.75).

5.5.2 Fuclidean Signature

Let us spell out an analog of the previous construction for the Euclidean
signature. We take the Cartesian coordinates on R* to be z*, z%, and construct
a 2 X 2 matrix
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4 3 12
xE:i<1x troow o ) (5.76)

' +iz? izt — 2B

This matrix can be viewed as an analytic continuation of x; with z* — iz*. It
has the property that its determinant correctly reproduces the squared interval

det(xp) = 62" x”. (5.77)

We note that the matrix xy is of the form

xE:<g _aﬂ ) a,BeC, (5.78)
and that every matrix of the form (5.78) can be represented as (5.76). Thus, we
have effectively endowed R* with a complex structure and represented it as C2,
and also written the squared interval on it as |a|*> + |B|?. There are of course
many different ways of identifying R* with C2, and this ambiguity is related to
the ambiguity of choosing the coordinates in the construction (5.76). We will
return to this ambiguity when discussing twistors in Chapter 9.
We now note that the Hermitian conjugate of (5.78) is given by

xh, = ( 35 i ) (5.79)

while the inverse is given by

o 1 a* 6*
= (o n ) (>:50)

Thus, there is a relation between the Hermitian conjugation and inverse

xh, = det(xp)x3". (5.81)

In particular, unit vectors det(xz) = 1 correspond to unitary matrices x5' = x5,.

It is also clear that every 2 x 2 matrix with property (5.81) can be written in
the form (5.78). Thus, we have constructed an isomorphism

g R* — H, H := {x € Mat(2,C) : xx' = det(x)I}. (5.82)

At the end of this Section we shall explain that the space H so defined is actually
the space of quaternions. This justifies the notation. As remarked previously,
unit elements in H are (special) unitary 2 x 2 matrices.

We can now define an action of SU(2) x SU(2) on H. This is the action of unit
quaternions on H from left and right. It is given by

Xp — 9rXpdn gr.r € SU(2). (5.83)

It is clear that this action preserves the space H, and that it also preserves the
determinant. Pulling this map back with 1 we get an action of SU(2) x SU(2) on
R* that preserves the distance squared, and thus is an orthogonal transformation.
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It can be checked that only orthogonal transformations of determinant +1 arise
this way, and so we actually get a map into SO(4). Again abusing the notation
slightly, we denote this map by ¥

¥p : SU(2) x SU(2) — SO(4). (5.84)

As in the Lorentz group case, this map is a double cover, with the element
(—=1,—1) € SU(2) x SU(2) being sent to the identity element in SO(4). So, we
get the isomorphism

SO(4) = SU(2) x SU(2)/Z. (5.85)

As in the Lorentz group case, there is no canonical map of this sort, with different
maps being based on different coordinate choices. Different possible maps of this
sort are related by the conjugation inside SU(2) x SU(2).

Finally, let us explain why the set of complex 2 x 2 matrices satisfying
xx! = det(x)I is the same as the space H of quaternions. As is well-known and
easy to check, the matrix representation of the quaternion ¢ = a + bi + ¢j + dk
is given by

a+ib c+id
( —c+id a—ib ) (5.86)

These are precisely matrices of the form (5.78), which proves the claim.

5.5.83 Split Signature

In the split signature case we choose coordinates x*, z!, 2%, 23 so that the squared
interval is — (%)% — (21)% + (22)? + (23)?, and associate to any point in R?? the
matrix

4 3 1,2
XS:(I+I v ) (5.87)

o+ 22 2t — 2P

This can be viewed as an analytic continuation iz? — z2 on (5.65), and removing
the factor of i from in front of the matrix. This is a 2 x 2 real matrix. It is clear
that every such matrix can be written in the form (5.87). The squared interval
is (minus) the determinant. We could have kept the factor of i in front of the
matrix in order it to be the case that the interval is the determinant. However,
this would mean having to work with imaginary rather than real matrices. While
this is possible, it does not seem natural given that everything can be chosen
to be real in this case. We could have also changed the metric, but this is not
natural either because it is the metric that naturally arises from the Urbantke
formula with the basis as in (5.31). This justifies our choices.
The group SL(2,R) x SL(2,R) acts on the space of real 2 x 2 matrices via

Xg — gLXSggl, Jdr.r S SL(Z,R) (588)



156 The ‘Chiral’ Formulation of General Relativity

This action preserves the squared interval, and gives a map from SL(2,R) x
SL(2,R) to O(2,2), which is actually into SO(2,2). This map has a nontrivial
kernel Z,, and so we get the isomorphism in the split signature case

SO(2,2) = SL(2,R) x SL(2,R)/Z. (5.89)

It is possible to get yet another isomorphism for free from the previous con-
struction. Thus, we can set z* = 0 and consider tracefree real matrices. The
subgroup of SL(2,R) x SL(2, R) that preserves this space is the diagonal SL(2, R).
On the other hand, the subgroup of SO(2,2) that acts on the plane z* = 0 is
SO(1,2). This gives the isomorphism

SO(1,2) = SL(2,R) /Z,. (5.90)

5.5.4 Isomorphism SO(3,3) ~ SL(4,R)

Let us also prove the isomorphism between the pseudo-orthogonal group of
split signature in dimension six, and the real special linear group in dimension
four. This isomorphism has played an important role in the conceptual proof of
Theorem 5.5.

Let us consider the space A?R* of bivectors B7 in dimension four. The wedge
product makes this into a metric space

(By, Bo) s = €15k By By (5.91)

As we already know, this metric on A?R* is of split signature (3, 3). This creates
a map

P A2RY — R3S, (5.92)

The group SL(4,R) naturally acts on R*, and thus there is also the natural
action on A%R*

SL(4,R) > G : A°R* —» A’R*,  B" — (GB)" = G'xG’ . B*".

Because det(G) = 1, this action preserves the metric (GB;, GBs), = (By, Ba) .
Thus, the push-forward of the action of SL(4,R) on A?R* to R*® is an isometry,
and we get a map

¢ : SL(4,R) — SO(3,3). (5.93)

It is clear that this map has a nontrivial kernel, because both G = I, —I result
in trivial action on R33. Thus, we obtain the double cover

SO(3,3) = SL(4,R)/Zs (5.94)

that was used in the proof of Theorem 5.5. The relation (5.94) is usually referred
to in the literature as the twistor isomorphism, for its complexified version has
a direct link to twistor theory. This will be explained in Chapter 9.
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5.5.5 Lie Algebras: Lorentz Group

Let us now describe how the discussed previously isomorphisms become realised
at the Lie algebra level. We will see that this is related to the SD/ASD decom-
positions.

We start our discussion with the Lorentz group O(1,3). This is the group of
4 x4 matrices m’ ; that preserve the Minkowski bilinear form m?! xm?”  n*t = n'/.
As before, our convention is that it is the direction z* that is timelike. In index-
free notations the defining property of O(1,3) reads mnm”™ = n, where m” is
the transpose. In infinitesimal form m = exptX and we get Xn+nXT =0
or X1gn®) + X7xn'® = 0. Thus, the Lie algebra of Lorentz group can be
parametrised by 4 x 4 antisymmetric matrices X7/ := X7 n¥/. A convenient
basis in the space of such matrices is (XMN)!/ = pMIpNJ _ pnMIpNI NT
N = 1,2,3,4. Then the matrices (X*V)!; are as follows. First, we have three

antisymmetric matrices X2, X3, and X3!

0 1 0 0 0 0 0 0
-1 0 0 0 0 0 1 0
12 . o3 23 . _ gl _
XTi= oK 0 0 0 O X K 0 -1 0 0 |’
0 0 0 O 0 0 0 O
0 0 -1 0
) 00 0 O
X31 = _KZ —
10 0 O
00 0 O
Then, we have three symmetric matrices X!, X*2, and X*?
0 0 0 -1 0 0 0 O
0 0 0 O 0 0 0 -1
X41 = —PIZ X42 = —P2:
0 0 0 O ’ 0 0 0 O ’
-1 0 0 O 0 -1 0 O
0 0 O 0
0 0 O 0
X4 = _p? =
00 0 -1
00 -1 0
The corresponding matrix Lie algebra is
[K', K] = €9, K", [K' Pl =, P~ [P, P]=—el K" (5.95)

The Lie algebra acts on vectors from R"? via matrix multiplication z' — X7 ;z7.
We also note that the described Lorentz group Lie algebra so(1,3) can be ob-
tained as the complexification of the Lie algebra of rotations so(3). Indeed, (5.95)
is just the Lie algebra over R with generators K¢, P* = iK', where K’ are the
usual generators of s0(3).
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Let us now see how the isomorphism (5.71) manifests itself at the Lie algebra
level. Any element of SL(2,C) can be written in the exponential form as

g = exp (—;Ulfi) € SL(2,0), & e C (5.96)

Then, at the infinitesimal level, the Lie algebra of SL(2,C) is composed of
tracefree complex 2 x 2 matrices, of which a basis (over C) is provided by (—i/2)c".
A Lie algebra element —(i/2)0"¢; acts on anti-Hermitian matrices x;, via

Pulling back this action with 7, to RY® gives a concrete realisation of the
corresponding Lie algebra isomorphism in (5.1).

It is easy to check that the generators K of rotations in this representation
are given by anti-Hermitian matrices K = —(i/2)o?, and generators of boosts
are the Hermitian matrices P* = (1/2)0". It is easy to check that (5.95) is indeed
satisfied. Thus, a general so(1, 3) Lie algebra element X = K'a, + P'b; that acts
on RY? via 2! — X! ;27 gets represented as a tracefree complex 2 x 2 matrix
—(i/2)c'¢; € sl(2,C) with

& = a; +ib;. (5.98)

The push-forward of the Lie algebra action on R"? via 1)y, is the action (5.97) on
anti-Hermitian matrices x;, as is not hard to check by an explicit verification.

Another way in which the Lorentz Lie algebra isomorphism in (5.1) can be
made concrete is as follows. Let us consider the complexification of the Lorentz
Lie algebra so(1,3) and introduce

) 1 ) ) ) 1 ) )
L'= (K —iPY),  R'=(K'+iP"). (5.99)

Using (5.95) it is easy to check that
(LI, R] =0, [L\,[7]=¢7,L*,  [R',R]=¢".R" (5.100)

So, indeed, the complexification of the so(1,3) Lie algebra is given by two
commuting sl(2, C) Lie algebras. For real elements of s0(1,3) we can write

) ) 1 X . 1 . ) ) )
(5.101)

where ¢, is given by (5.98). We note that in the representation of the Lie algebra
by 2 x 2 complex matrices the generator L’ is correctly reproduced when we
take K* = —(i/2)o" and P* = (1/2)o". The generator R’ is then its Hermitian
conjugate and we have have L* = —(i/2)o*, R* = (i/2)c’. The formula (5.101)
and the corresponding action this generates on R"? is the so(1,3) counterpart
of the sl(2,C) formula (5.97).
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Finally, we rewrite the generators L‘, R* in terms of the matrix generators
XMN and observe that there is a relation to the SD/ASD decomposition. We
have
1

1 1
Ll:*(*X23+iX4l),L2:* 5

2 2

or, more compactly

(*X31+1X42), LS (*X12+iX43),

i = % <X4z _ QiezijJk> = i(P+X>4Z’ (5102)

where

1
,EMNRsXRS) (5103)

1
PXIMsz XMN
(P = 5 (x4 5

is the SD projection. Here we have used e** = —¢e¥*, Similarly, we have
R* = —i(P_X)*. It is thus clear that the decomposition (5.100) is the
decomposition of the algebra parametrised by 4 x 4 anti-symmetric matrices into
its SD and ASD pieces. Up to a multiple of i and possibly a sign, the generator
L, R" are extracted as the 4i components of the SD, ASD projections of the real
generators XMV,

5.5.6 Lie Algebras: Fuclidean Case

Let us also work out explicitly the Euclidean signature case. In this case, there
is no need to complexify the Lie algebra so(4) to exhibit the two commuting
subalgebras, so things are bit easier.

The Lie algebra so(4) is composed of antisymmetric matrices X’ ;. As gener-
ators we can similarly take (XMN)!; = §MI§N ; — 6™ ;6NT. We can also define
K'=—(1/2)€" ;X% and P* = —X*, with the commutational relations being

[K', K] = ¢, K*, [K' P/ =¢€7,P* [P P/]=¢e’ K" (5.104)

Thus, the only difference with (5.95) is the absence on the sign on the right-hand
side of the last commutator. We can now form two mutually commuting sets of
generators

) 1 ) ) ) 1 ) )
L= (K =P, R (K P, (5.105)

with commutation relations being as in (5.100). A general Lie algebra element
can be written as

. . 1 . 1 . . .
K'a; + P'b;, = i(K’ — PY(a; — b;) + §(K1 + P (a; +b,) = L'€"F + REF,
with
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This decomposition of the Lie algebra is clearly related to the SD—ASD decom-
position of the space of 4 x 4 antisymmetric matrices because

L'= % (X“ — ;eiijj’“> = (P.X)", (5.107)
where (P, X)M¥ ig the SD projection of the antisymmetric matrix X, Once
4k — ek Similarly, for the right
generators we have R* = —(P_X)*. So, up to a sign, the generators of the two
mutually commuting su(2) Lie algebras are the 4i components of the SD and
ASD projections of the generators X™M¥,

It is also worth spelling out the 2 x 2 realisation of the previous Lie algebra.
It is not hard to check that under the map (5.84), and the corresponding map
of Lie algebras, the transformation

again, we use the orientation convention €

Xp — —%U’fiLxE + XE%U%ZR (5.108)

corresponds to the transformation 2! — X! ;27.
The split signature case is analogous to that of Euclidean signature, with the
exception of all relevant matrices being real. It is left to the reader as an exercise.

5.6 The Self-Dual Part of the Spin Connection

Recall from the previous chapter that we introduced the spin connection w?;
as a connection in a vector bundle £ with fibres copies of R??. This bundle is
required to be in the same topological class as the tangent bundle T'M, and the
frame, or soldering form e, is the object that provides this isomorphism.

The spin connection gives rise to a connection in A2E, which is the second
antisymmetric power of the bundle E. Sections of A?FE are objects of the type
X!/ = XUl and the covariant derivative acts on them as

d° X" =dX" + W' X5 4wl XTE (5.109)
In four dimensions the bundle A2E splits into a direct sum of bundles
NE=A"E® AN FE, (5.110)

and the spin connection induces connections on A*E. We shall refer to these
connections as the SD and ASD parts of the spin connection. Our task in this
section is to develop a convenient way to work with these connections.
Because the spin connection preserves both the metric in E and the ¢
tensor, the covariant derivative in E commutes with the decomposition in (5.110).

I1JKL

In other words, we can first project a section X7 and then compute its covariant
derivative, or first compute the derivative and then project. Also, we expect
the connections in A*FE to be related to the SD/ASD projections of the spin
connection, i.e., objects (Piw)’’. The specific relations are signature-dependent,
as we shall now see.
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5.6.1 Lorentzian Case

It is easiest to understand the connections arising in A*E by an explicit compu-
tation. Thus, let us compute the 41 component of the SD projection of dvX’.
We have

21(P+d°JX)41 =id“ X" — v X% (5.111)
— +l(dX4l + w42X21 + w43X31 + w12X42 + w13X43)
_ (dXQJ +(A}24X43 +W21X13 +OJ34X24 + OJ31X21).
This can be rewritten as
d(iX41 — X23) + Ai(iX43 — X12) — A‘z(iX42 — X31)7 (5.112)
where
Ai = iw*? — w3, Ai = iw®® — w'? (5.113)

where the indices of w!; are raised with the Minkowski metric n'/ =
diag(1,1,1, —1). The other 4i components of (P, DX)!’ are computed similarly.
Thus, if we introduce

Al = 2i(Pyw)" (5.114)
and
X' :=2i(P, X)", (5.115)
then we have
2i(P d*X)" = dX' + ¢, A X" (5.116)

This explicitly shows that the connection on ATE is a (complexified) SO(3)
connection (5.114), with the covariant derivative acting on 4 components of the
SD tensors (P, X)™ via (5.116). It is also clear that a SD tensor is completely
characterised by its 4i components, because the ij components are related to the
44 components by self-duality. Indeed, for any SD tensor X1’

) ) 1. )
0= 20(P_X, )" = XY + e XY, (5.117)

which gives the desired relation. To summarise, we learn that the connection
induced by the spin connection in AT E is an SO(3,C) connection arising as the
SD projection (5.114) of the spin connection. This is of course not surprising in
view of the isomorphism (5.1).

Let us also note that we have based the identification (5.114) of the SD
part of the spin connection with an SO(3,C) connection on a concrete choice
of basis in the fibres of E. This is similar to our previous discussion of the
isomorphism (5.71) and the corresponding isomorphism of Lie algebras. While
the concrete isomorphism v, that was constructed via anti-Hermitian matrices
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(5.65) was basis-dependent, different choices of basis gave results that are con-
jugate in SL(2,C). Similarly here, while the identifications (5.114) and (5.115)
are basis-dependent, different choices of basis give results that are conjugate
in SO(3,C).

5.6.2 FEuclidean Case

The Euclidean case reasoning is completely analogous. We have

AP, d“X) = d* X" — 4 X = (5.118)
+dX41 + w42x21 + (.AJ43X31 + w12X42 + CL)13X43
_(dX23 + w24x43 + UJ21X13 + W34X24 + w31X21).

This can be rewritten as
d(X*" — X2) 4+ A3(X" — X1?) — A3(X*? — X3, (5.119)
where
A3 = w*? — W A3 =W — w2 (5.120)

More generally, if we introduce

Al = 2(PLw)" (5.121)
and
X" :=2(P. X)", (5.122)
then we have
2P d*X)" =dX' + €, AV XF. (5.123)

Thus, again the connection on ATE is an SO(3) connection given by the SD
projection (5.121) of the spin connection. Again, the specific identification (5.121)
is basis-dependent, but different choices of basis give conjugate results, and in
this sense are immaterial.

The case of the split signature is analogous, except that it is an SO(1,2)
connection that arises in this case. The formula for the covariant derivative in
this case coincides with (5.123), with the only subtlety being that the indices on
€% are lowered with the indefinite metric 7;;.

5.6.3 The Curvature

Because the covariant derivative d* commutes with the SD/ASD decomposition
of E, the curvature of the connection arising on ATFE coincides with the SD
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projection of the curvature R'/(w). Let us derive the relation between the cur-
vature of A} j ¢ introduced Sections 5.6.1 and 5.6.2, and this projection.

Let us do the Lorentzian signature computation. All other signatures are
analogous. We have

21(P, R)* =iR" — R® = i(dw" + w'w®" + w'3w?) (5.124)

— (dw®® + W?w* + W W),
This can be rewritten as
d(iw' — w?) + (iw* — W) (" — w'?) = dA] + A3 A3. (5.125)
Thus, we have
2i(P,R)" = F'(AyL), (5.126)
where the curvature of an SO(3) connection is given by
Fi(A) = dA + %eijkAjAk. (5.127)

In the Euclidean and split cases we have instead 2(P,R)* = F*(Ag ). Thus,
we see that the curvature of the connection on ATE can be identified with
the curvature of the corresponding A g s connections — SO(3,C) connection
in the Lorentzian case, SO(3,R) connection in the Euclidean case and SO(1,2)
connection in the split case. This is of course as expected in view of the
isomorphisms (5.1).

5.7 The Chiral Soldering Form

The last bit of geometry that we need to understand the construction of the
‘chiral’ Plebanski formulation of GR is the notion of what can be referred to as
the chiral soldering form. This object is fundamental in this description of GR,
and can be introduced in complete parallel to how the tetrad was introduced
previously. Thus, let us remind the reader that the tetrad was viewed as an
object that fixes the isomorphism between an abstract vector bundle with fibres
copies of RP? and the tangent bundle T'M. Similarly, we now introduce a vector
bundle whose fibres are three-dimensional and that is required to be globally
in the same topological class as the bundle of SD 2-forms on M. We then
introduce an object 3 that gives this isomorphism. This object encodes all
information about the metric. A connection is then introduced in this bundle,
and there is an analog of the torsion-free condition that fixes the connection
in terms of . It then turns out that this Y-determined connection is closely
related to the SD part of the spin connection that we have studied in the
previous section.
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5.7.1 The Chiral Soldering Form

With the previous remarks in mind, we introduce a vector bundle F' — S — M
with fibres F' being copies of R3 R%? in the case of the Riemannian and split
signatures, and copies of C? in the case of the Lorentzian signature. The fibres
are assumed to be equipped with a metric that is (positive) definite in the case
of the Riemannian signature setup, indefinite in the case of split signature, and
complex in the case of the Lorentzian signature. One requires the bundle S to
be isomorphic to the bundle of SD 2-forms on M. We note that the topological
type of the bundle A™ of SD 2-forms on M with respect to some metric (of a
given signature) is metric-independent.

The object to which we refer as the chiral soldering form is then defined as
the map that provides the isomorphism between S and a three-dimensional sub-
bundle A* € A%. Thus, we define ¥ to be a vector bundle map

S5 A2 (5.128)

In components, if X* is a section of S then ¥(X) = X'X74,; € A?, where
d;; is the metric in the fibres. In the case of the Lorentzian signature setup
it is the space of complexified 2-forms that appears on the right-hand side of
this map.

An additional and very important property that the map X is required to
satisfy is the compatibility between the wedge product metric in A? and the
metric in S. Indeed, we can pull back the wedge product conformal metric in A2
to S. This leads to the following important definition

Definition 5.10 A chiral soldering form X is said to satisfy the constraints if
the pullback of the wedge-product metric on A? to S coincides with the metric
(+,-) that exists on the fibres of S

SX)S(Y) /e~ (X,Y), X, YeES. (5.129)

In this formula, ~ stands for proportional, and € is a top form. It is clear that
this condition is a geometric way of stating the orthonormality conditions on X°
as appear in (5.38) and (5.39).

In the case of the Lorentzian signature we also want to impose appropriate
‘reality’ conditions on .

Definition 5.11 A complex-valued chiral soldering form 3 is said to satisfy the
reality conditions if ¥ = 0, where ¥ denotes the map ¥ followed by the complex
conjugation, and Trs;(XX) = 6iex;, where ¢ is the metric in E and €5 is a real
4-form.

The discussion of the previous sections shows that a chiral soldering form X
that satisfies the constraints, and in the case of the Lorentzian signature satisfies
the reality conditions, encodes a metric of appropriate signature. The metric is
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explicitly given by (5.47), where one may have to multiply ¥ by i to get a real
rather than imaginary metric in the case of the Lorentzian signature, and by
(5.61) in the other two cases.

The purpose of the condition (5.129) is to make sure that the object X describes
just the metric, together with an orthonormal frame for S, and does not contain
any additional geometric information. This can be verified by a count of variables
present in Y. This starts its life like a collection of three 2-forms. A 2-form in
four dimensions needs 6 numbers (per point) to be specified. Thus, ¥ carries
18 numbers per point of M. The condition (5.129) is then the statement that
a certain symmetric 3 X 3 matrix constructed from > is proportional to the
given matrix, the metric. This is five conditions, because the proportionality
coefficient is left unspecified. We then have 18 — 5 = 13 = 10 + 3, which is the
number of components of a metric in four dimensions, plus three Euler angles
describing a rotation that is needed to bring an orthonormal basis in the fibre
to a given one.

The count in the previous paragraph is similar to that in the case of the tetrad.
A tetrad is a collection of 16 components, and we have 16 = 10 + 6, which is the
number of components in the metric plus the dimension of the ‘Lorentz’ group
that maps an orthonormal frame into a given one. So, we learn that the chiral
soldering form ¥, subject to the conditions (5.129), carries less components than
a tetrad.

The count is slightly more involved in the case of Lorentzian signature. In this
case the 2-forms X' are complex, and so carry 18 complex parameters per point.
The conditions (5.129) are 5 complex conditions, which gives us 13 complex
parameters. We then impose the reality conditions, which are 10 real conditions.
This cuts the dimension of the parameter space in % down to 10 real describing
a real metric plus 3 complex, this being the dimension of the Lorentz group.
Thus, in this case, X, after all the constraints and reality conditions are imposed,
carries the same number of parameters as the tetrad.

5.7.2 Relation to the Tetrad

The Theorems 5.6-5.8 show that there is a relation between a soldering form
Y that satisfies the constraints (and satisfies reality conditions in the case of
the Lorentzian signature) and a tetrad for the metric defined by . Indeed, the
arguments in the proofs of Theorems 5.6-5.8 show that the object X can always
be written in a canonical form in terms of a tetrad for the metric it defines. This
is the form (5.31), with possibly the sign in front of %3 changed, and possibly
all X* multiplied by the imaginary unit in the Lorentzian signature case and 3
replaced by ASD forms X°.

We then note that the basic 2-forms (5.31) can be obtained from the SD
IoJ

projections of the 2-forms e’e’, where e is the tetrad, with respect to the

‘internal’ indices I.J. Indeed, we have
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1 1
P 1 _ 2 1.0 J K _L 5.130
(Pyee) 2(66—}—2\/56 xret et ), ( )
where, as before, o is the sign with /o = i for the Lorentzian signature and
Vo = 1 for the other two cases. It is then easy to see that the 4i components
of this SD projection gives use the basic 2-forms (5.31). Indeed, we have, in the
Euclidean and split cases

) . 1 . ) )
2(Pyee)” =e'e’ — Eeljkejek = Y% (5.131)
and in the Lorentzian case
) . 1 . . .
2i(Pee) =ie'e’ — ieljkejek =3, (5.132)

Here the indices on €;;, are lowered with the metric d;; in the Euclidean and
Lorentzian cases and metric 7;; = diag(1, —1, —1) in the split case. In all cases
the assumed orientation of /7K1 is 234 = +1. We have also used €*7*F = —¢ii*,
Thus, in all cases, the basic SD 2-forms (5.31) are just multiples of 4¢ components
of the SD projections of 2-forms efe”. This is, of course, not surprising, because
the SD projections of 2-forms efe” are SD as 2-forms, and thus span A*.

We note that this is very similar to the discussed decomposition of the Lie
algebra of the ‘Lorentz’ groups into its SD/ASD parts. Indeed, we have seen
that one way to understand the accidental isomorphisms (5.1) is by carrying
out the SD/ASD decomposition of the space of 4 x 4 antisymmetric matrices
that in all signature cases parametrises the Lie algebra. Similarly, an object
(ee)™” it is IJ antisymmetric, and its SD/ASD projection becomes possible, and
related to X°.

So, we have established that the canonical, i.e., as in (5.31), chiral soldering
form %? can be identified with the appropriate multiples of the 4i components of
the SD projection of the form e’e”’, where e is the tetrad for the metric that X°
defines. There remains a subtlety that in each case the form X3, as comes from
solving the constraints (and reality conditions in the Lorentzian case), may be
minus of what it is in (5.31), and that in the Lorentzian case the forms X* may
be given by +i times the canonical ASD 2-forms.

5.7.3 The Torsion-Free Condition

Let us now introduce a metric connection in S. We will denote it by A?, so that
it defines a covariant derivative on sections X¢ of S via

dAXT = dX + € AXE, (5.133)

where again the indices on €% are lowered using the appropriate metrics, which
is 0;; in the case of the Euclidean and Lorentzian signatures, and 7;; in the split
signature case.
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We can then introduce the torsion
dAY = d¥' + €, ATSF, (5.134)

which is a 3-form with values in S. We can require the torsion to be zero, which
gives a set of algebraic equations on A’ in terms of derivatives of ¥.?. One easily
checks that the number of equations here is the same as the number of unknowns.
It is not hard to prove that there is unique solution to this equation, which can
be exhibited explicitly. We state this as

Theorem 5.12 When the chiral soldering form satisfies the constraints (and
satisfies the reality conditions in the Lorentzian case), there is a unique torsion-
free connection satisfying d*% = 0.

In fact, in one of the following chapters we will see that a more general
statement is possible, and there is a unique solution of the torsion-free equation
for A?, provided that the chiral soldering form satisfies some nondegeneracy
condition. The statement of the Theorem 5.12 is in complete parallel with the
statement of Lemma 3.2 in the case of tetrads.

Let us spell out the Lorentzian signature proof. We use the metric defined by
Y% and take the Hodge dual of the torsion-free condition, which is a 3-form with
values in S. Then, using the self-duality of ¥¢ we get the following equation

0 j v 1 vpo i
€ jr20, Ak = 5 € 7d,3,. (5.135)
Let us rewrite this equation as
1
Js(A) = Z*(dZ), (5.136)

where we introduced an operator
JZ : A1 (9 S — Al X S, JE : AL — GIJ]CE{LVA& (5137)

To solve (5.136) we need to find the inverse of Jy. For this we can use the fact
that when X° satisfies the constraints and reality conditions, they are of the
form determined by the Theorem 5.6. This means that the objects /" satisfy
the algebra of quaternions

SLPTY = —698,Y 4 €, Tk (5.138)

This is true in the case A+. In the case A—, there is a minus sign in front of the
second term on the right-hand side. In cases B, there is an extra factor of +i
in the second term. For definiteness, we assume the relation (5.138). The other
cases can be treated analogously.

Thus, assuming that (5.138) holds, a simple computation gives

J2 =20+ Js. (5.139)
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This means that
1

This solves the torsion-free equation, explicitly determines A* in terms of the
derivatives of X, and thus proves the theorem.

A further characterisation of the torsion-free connection A¢ is possible. Thus,
when ¢ are as in (5.131) and (5.132), this connection can be explicitly described
in terms of the SD part of the spin connection studied in the previous section.
Let us state this as

Theorem 5.13 When X° are given by the SD projections of the forms ele”,
the torsion-free connection A® is given by the SD part of the torsion-free spin
connection w'’.

The proof follows easily by combining facts established in the previous section.
Thus, we know from (5.116) and (5.123) that for A’ given by the SD projec-
tion of the spin connection, the A-covariant derivative coincides with the SD
projection of the spin connection covariant derivative. Thus, we have, in the
Lorentzian case

dAY = 2i(P,d“ee)" =0, (5.141)

where the last equality is the consequence of the torsion-free condition for the
spin connection d“e’ = 0. In the Euclidean and split cases the only difference is
that there is no factor of i on the right-hand side of of the first equality here.

Let us also find an analog of this statement for the situation when %2 is minus
what it is in (5.31). It is not hard to check that this just changes some signs
in the solution for A®. Thus, we have the components A2 both change signs
as compared to the solution for the case when X7 is as in (5.31). This happens
for all the signatures. It is clear also that the curvature components F'*? change
signs as compared to what they are in the ‘canonical’ case (5.31). We do not
discuss the case of X¢ being related to ASD 2-forms because we will later show
that this case does not arise in the full Plebanski setup.

5.7.4 An Example of Curvature Computation Using the Chiral
Formalism

The described chiral formalism is a powerful computational tool, as the following
example aims to demonstrate. The idea of this formalism is to encode a given
metric into a collection of orthonormal SD 2-forms as in (5.31). One computes the
connection A from the torsion-free condition, and then its curvature gives access
to the SD part of the curvature of the spin connection, i.e., effectively to the SD
projection of the Riemann curvature with respect to one pair of indices. As we
know, for all signature cases this is sufficient to impose the Einstein condition.
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In the case of the Lorentzian signature one gets all of the Riemann curvature
this way, because the ASD part is the complex conjugate of the SD one.

Let us see how this works on the example of the Lorentzian signature spheri-
cally symmetric metric (3.48) whose tetrad is given by (3.49). We label t = 4,r =
1,60 = 2, and ¢ = 3. The basis of the Lorentzian signature SD 2-forms (5.31) is
then

vt =ifgdtdr — r*sin 0d0d, Y2 =ifrdtdd — grsin Ododr, (5.142)
Y3 = ifrsin0dtde — grdrdd.

The torsion-free connection A? is computed quite straightforwardly. Thus, we
have

d¥' = —2rsin 0drdfde. (5.143)
This must be equal to
d¥t = —A*Y? + A% (5.144)

Given that there is no d¢ on the right-hand side of (5.143) it is natural to expect
that A% ~ d¢ and A® ~ df. The most natural guess is then

A? = —g sin 0d¢, A® = éd@, (5.145)

which fulfils (5.144). Let us now consider d¥?. We have
d¥? =i(fr)'drdtdf — gr cos dOdodr. (5.146)
This should be equal to
d¥? = —A*Y! 4 A'SP. (5.147)

Assuming that A? is correctly given by (5.145), which will prove to be right, it
suggests that A' has terms dt and d¢. The relevant equation is satisfied for

s gl
Al = %dt + cos 0dg. (5.148)
One can then check that the equation DX3 = 0 is satisfied with the connection
given by (5.145) and (5.148). We note that this connection is of course the same
as the SD part of the spin connection determined in (3.51), (3.54) and (3.56). If
one wishes, the full spin connection is recoverable in this case of the Lorentzian
signature by extracting the real and imaginary parts of the connection A*. We
note that the spin connection is computed by the chiral method with less steps
required, and also that the connection information is stored more compactly,
into three complex 1-forms as compared to six real 1-forms in the tetrad method.
These are the early signs of the superiority of the chiral method as compared to
the tetrad method.
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The main advantage of the chiral method becomes manifest when one com-
putes the curvatures and writes the Einstein condition. The curvature compo-
nents are given by

F'= (f/) dtdr — (1 — 1) sin 0dfd¢, (5.149)
) g°

oY dtd9+( ) sin Odeodr,
9 g

= —ismﬁdtd(b—l— ( ) drd®.
g? g

At this step, the calculations are still very similar to those of the tetrad method;
it’s just that the result is more compactly stored as three complex 2-forms as
compared to six real 2-forms. It is in the process of extracting the Einstein con-
dition that the real power of the chiral method becomes manifest. In the tetrad
method, one needed to form the Ricci tensor, which involved some laborious and
prone to sign error manipulations. In the chiral method we simply require that
the curvature is SD as a 2-form, i.e., that it is linear combination of the 2-forms
3¢ Comparison with X¢ then shows that each F* can only be proportional to
the corresponding X¢. One also easily extract the equations necessary for this to

happen
/ 2
(D TR T ) 5.150)
1-1/g (1/g)  gr
The second of these equations immediately gives the correct
f/ /
— + = =0, 5.151

which implies that fg = conts, which can be set to unity by rescaling the time
coordinate. The first equation can then be written as

(1—f)" = %(1 - /), (5.152)

whose solution is
T
1—f —T:I:Z—Q, (5.153)
where 7, [? are constants of integration. All in all, we see that the Schwarzschild—
de Sitter solution presents itself more readily via the chiral method as compared
to the tetrad method. The chiral method also gives directly the useful combina-
tions of the Einstein equations obtained via the tetrad method.

The equations in (5.150) have been obtained from the requirement that the
curvature F* is SD as a 2-form. In the language of the curvature decomposition
(5.7) this is the statement that the SD-ASD part of the Riemann curvature
B = 0. This gives 9 out of 10 equations in general. There is one more equation,
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which is the statement that the scalar curvature is equal to a multiple of the
cosmological constant. Let us see what this equation is via the chiral method. If
the statement that the curvature F? is SD is written as I = M%Y7, for some
matrix M®, then the scalar curvature can be extracted by simply computing the
trace of this matrix. In the case of the spherical symmetry under consideration,
when the equation (5.150) is satisfied, the matrix M% is given by

o f'/9)" I /'
MY = d1ag< Fq ’ngT’fgi’r)' (5.154)

When fg =1 this simplifies to

TR o 2y
MZ] - __ 2\ . 1
2dlaug ((f ), i (5.155)
For the solution (5.153) this becomes
b 1 ry 1 T4 1 T4 1
We see that
3
Tr(M) = il—Q. (5.157)
This must be equal to the cosmological constant and so
A 1
4= 1
3 2k (5.158)

which identifies the constant of integration [ as the radius of curvature of the
relevant constant curvature space.

All in all, we hope that our presentation demonstrates that the Schwarzschild
solution of GR is obtained much more easily with the help of the chiral formalism.

5.8 Plebanski Formulation of GR

Plebaniski’s formulation (1977) of GR is based on the previously described geo-
metric constructions. As we know from (5.25) it is possible to write a first-order
Lagrangian for GR that contains only the SD part of the spin connection. This
Lagrangian also only depends on the tetrad in the combination (P, ee)!/, where
P, is the SD projector. As our previous discussion shows, the SD part of the
spin connection can be encoded by an SO(3),SO(3,C), or SO(1,2) connection,
depending on the signature. The relevant formulas are (5.114) and (5.121). We
have also seen that the SD part of the wedge product of two tetrads is naturally
encoded in an s0(3),50(3,C), or so(1,2) valued 2-form ¥*. The relevant formulas
are (5.131) and (5.132).

The idea now is to write a first-order action of BF-type with ¥¢ and A’
as the basic fields. However, not every Lie algebra—valued 2-form X° is the



172 The ‘Chiral’ Formulation of General Relativity

SD projection of the wedge products of tetrads for some metric. However, we
can add to the action a Lagrange multiplier term that will impose conditions
that would guarantee that this is the case. This is completely analogous to the
BF-type formalism that was developed for the full non-chiral theory earlier. The
constraints that need to be imposed on X¢ have also been previously discussed
in this chapter. Thus, any Lie algebra—valued 2-form that satisfies the condition
(5.129), as well as reality conditions in the Lorentzian case, is the SD projection
of the wedge product of two copies of the tetrad, as discussed in Section 5.7.2.
This gives all the required ingredients to state an action whose Euler-Lagrange
equations are as desired.
The Plebanski action reads

1 ) 1 A o
SA U] = —— — DIKE A/ SR S I 313 3V 1
SPleb[ s 41y ] 87TG\/E/ 7 2( ij + 361]> (5 59)

Here the index on F* is lowered with the metric d;; in the Lorentzian and
Euclidean cases, and 7;; in the split case. Also, in the case of the split signature,
one must use the metric 7;; in place of J;; in the second term in (5.159). Note
that in the case of the Lorentzian signature, all fields here need to be taken to
be complex-valued, and so this action is not manifestly real. We will return to
this point.

Varying this action with respect to the Lagrange multiplier field ¥,;, which is
required to be tracefree, we get the constraint
Y%~ ¢ (5.160)

in the cases of the Euclidean and Lorentzian signatures, and X*¥7 ~ 1% in the
split signature case. These are the already discussed constraints (5.129). As the
discussion of the previous sections shows, in Euclidean and split signatures, this
constraint implies that X* can be written in terms of the SD projection of the
wedge product of two tetrads e’e’ as (5.131), with possibly 3* being minus of
what it is in the case of the SD projection of efe”.

In Lorentzian signature, all fields are complex-valued, and one must impose
appropriate reality conditions. It is sufficient to impose the reality conditions on
the metric-like field 3%, as the appropriate reality condition on the connection
then gets imposed automatically by the field equations. The conditions on the
2-form field are discussed previously

2% =0, Re(T'T) =0. (5.161)

The first of these equations gives nine conditions, which guarantee that conformal
class of the metric (5.47) is real, while the last condition gives the reality of the
volume form.

If one wishes, the previous Lorentzian signature reality conditions can be
imposed with Lagrange multiplier terms added to the action. However, this
makes the formalism less elegant, and so we will refrain from doing so in this
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book, always imposing the reality conditions (5.161) on complex solutions of the
theory (5.159) to select those that admit a real interpretation.

In the Lorentzian case, as Theorem 5.6 shows, the conditions (5.160), together
with the reality conditions (5.161), imply that ¥* is related to the SD projection
of the wedge product of two tetrads e’e”, for the metric defined by 3; see (5.132).
There is also a possibility that 33 is minus what it is in the canonical case of
the SD projection of e’e’. Another possibility that arises only in the Lorentzian
case is that X' can be —i times the canonical ASD 2-form. In all the cases,
the chiral soldering form ¥* defines a conformal metric of Lorentzian signature,
via the Urbantke formula (5.47). The volume form ey is then extracted from
YN = 2iex0Y.

The other field equations that follow from (5.159) are as follows

. A ;
d*y' =0, Fi = (‘I’ij + 35@-) 27 (5.162)

The first of these equations is the previously studied torsion-free condition. To-
gether with the fact that X is the SD projection of the wedge product of two
tetrads for the metric defined by X, this equation implies that the connection A°
is a multiple of the 4¢ component of the SD projection of the spin connection;
see Theorem 5.13. This, in turn, implies that the curvature of A* is a multiple of
the 4i component of the SD projection of the curvature of the spin connection; see
(5.126). Then, as we know from (5.7), the Einstein condition is equivalent to the
condition that F'? is SD as a 2-form, which is precisely what the second equation
in (5.162) says. The second equation in (5.162) also identifies the Lagrange
multiplier field ¥,;; with the SD part of the Weyl curvature tensor when all
field equations are satisfied. It also correctly imposes the equation that the trace
of the matrix that appears on the right-hand side of the second equation in
(5.162) is equal to the cosmological constant. These considerations explain why
Plebanski formalism gives a correct description of GR.

We have verified that Plebanski formalism gives the correct description in the
case when the solution of the constraints (5.160) is taken to be the canonical
solution (5.31). But it is also possible that ¥* is minus what it is in (5.31). In
this case, as we previously discussed, the torsion-free SO(3) connection is still
related to the SD part of the spin connection, and its curvature is still related
to the SD part of the curvature of the spin connection. This means that even
in this case the second equation in (5.162) gives the correct Einstein equations,
modulo the subtlety that the sign in front of the cosmological constant should
be changed.

Let us also discuss the subtlety that, in the Lorentzian signature case, the
solution of the constraints (5.160) together with the reality conditions (5.161)
may be —i times the canonical ASD 2-forms for the metric defined by X. In this
case the torsion-free connection A* will be a multiple of the 4i component of the
ASD projection of the spin connection. Its curvature will then be a multiple of
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the 4i component of the ASD projection of the curvature of the spin connection.
So, the second equation in (5.162) does impose the correct Einstein condition
even in this case, by requiring the ASD projection of the curvature of the spin
connection to be ASD as a 2-form. However, in this case the second equation in
(5.162) cannot be satisfied with real A. Indeed, it would be satisfied with real A
in the case in which one had the basic ASD 2-forms ¥¢ in place of ¥¢. However,
in the case under discussion one has iXi on the right-hand side of the second
equation in (5.162). This is clearly impossible for real A. So, we learn that the
case B as discussed in the proof of Theorem 5.6 cannot arise as the solution of
Plebanski field equations with real A.

We remark that the Plebariski formulation, as well as the related formulation
(3.93), is cubic in the fields, even with nonzero cosmological constant. This is
the only known formulation of GR with A # 0 that is cubic. However, there is
a drawback that it is not easy to couple fermions to gravity in this formulation.
One can, of course, always couple matter to the metric defined by 3¢, but this
gives a very involved description. One would like to be able to couple matter
directly to the fields present in (5.159), but in the case of fermions, this is not
easy. The only known way of doing this is described in Capovilla et al. (1991)
and uses further Lagrange multipliers.

5.9 Linearisation of the Plebanski Action

The purpose of this section is to study the linearisation of the chiral Einstein—
Cartan action (5.25), which we describe as the Plebaniski action (5.159) with the
constraints X'Y7 ~ §% assumed to be satisfied. As we have already said on several
occasions, the chiral trick eliminates half of the spin connection components
and thus leads to a more economic description. In this section we will start to
appreciate this economy at the level of perturbation theory. We will also carry out
the exercise of integrating out the perturbations of the 2-form field of Plebanski
formalism, and thus obtain the second-order chiral pure connection action. This
leads to a useful result on an arbitrary Einstein background.

5.9.1 Action to Second Order in Perturbations

Let us start with a background configuration of fields X%, A%, and ¥% satisfying
the Plebanski field equations (5.162). We then add a small perturbation to the
fields X% and A’. When X satisfies the constraints X¢¥7 ~ §%, the Plebanski
Lagrangian reduces to

) A,
L=XY'F, — EE’Zi. (5.163)
Its first variation is given by



5.9 Linearisation of the Plebariski Action 175

However, the perturbation §%° is not free here, because the linearisation of the
constraints Y'¥7 ~ 6 must hold. We will deal with this later.

Let us also give the expression for the second-order perturbation. We can write
the result as

. A . , A,
0L = O8I (F, — 5% + 205'0F, + B'5°F, - 50565, (5.165)

The reason why §2X¢ appears is that the object X? is supposed to satisfy the
constraints and so is not varied freely. Another way to see this is to remember
that the object X%, when it satisfies the constraints, can be written as the SD
part of the wedge product e’e’ for some frame, and we are really varying this
frame rather than ¢ itself. It is then clear that there is also the second-order
part in its variation. It is, however, more efficient to work out this second-order
part from the constraints XY ~ §% rather than work with the SD projector;
see Section 5.9.3.
Taking into account that the variations of the curvature are

SF' = d*6 A", §2F' = [0A,6A]" = €5 AT5 A¥, (5.166)

and that the background satisfies the Plebaniski field equations (5.162) we can
write the second variation as

. . A
L =W, 8550 + 208d a’ + Sila, o] — FOX6E, (5.167)

where U¥ is the SD part of the Weyl curvature on the background (which can
be zero), and we denoted 6A" = a'.

5.9.2 Alternative Second-Order Action

One can always add to the Plebanski Lagrangian a constant multiple of the term
F*F;. This is a total derivative term, whose integral is a multiple of the Pon-
tryagin number for the corresponding SO(3) bundle. We can then adjust the
coefficient in front of this term so that the Plebanski action vanishes on the
background F* = (A/3)X*. This is similar to what was done in the context of
the full Einstein—Cartan theory when the action was rewritten in MacDowell-
Mansouri form (3.77). The similar chiral Lagrangian reads

L'=-3¢ (F 32) (F 3&). (5.168)

Indeed, opening the brackets reproduces (5.163) plus a multiple of the Pontryagin
term.

The benefit of using the Lagrangian (5.168) for the linearisation rather than
(5.163) is that each of its two factors vanishes on the background F* = (A/3)%%,
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which means that on this background there is no need in §? terms. Indeed, we
have

277 3 i i 3 j 2 i 2\i
S2L == (6Fi - i?:az 5F, — i;(s& Sy, (82F - i;é ¥ ).
(5.169)

On a background with ¥¥ = 0 the term in the second line is absent, which results
in a particularly simple form of the second-order action, to be derived Sections
5.9.4. Such backgrounds are known as gravitational instantons. They can exist
only in Euclidean and split signatures, and correspond to Einstein metrics for
which the SD half of the Weyl curvature vanishes. We will consider these metrics
in more details in the next chapter.

5.9.3 Implications of the Metricity Constraints
Let us decompose the perturbation §%° into the basis of SD and ASD 2-forms
8% = ¢S, + hVY,. (5.170)
Here ¢ and h* are general 3 x 3 matrices. The matrix ¢ can be further
decomposed into its trace, skew, and symmetric tracefree parts
¢ = h§ — €IR¢, 4 ahi (5.171)

where 1% is symmetric tracefree and the sign is for future convenience. No such
decomposition of h* is meaningful because the two indices in this matrix are
really of different types, one refers to a basis in the space of SD 2-forms, while
the other is the index that labels the ASD ones. So, the matrix h% is not further
decomposed.

The first variation of the metricity constraints X¢%7 ~ §% reads

X% ~ 5, (5.172)

which should be read as the equation that says that the tracefree part of the
left-hand side must vanish.
In terms of the decomposition (5.170) the equation (5.172) simply says that

P = 0. (5.173)

All other irreducible components of §X° are not constrained to this order in
perturbation.
The second variation of the metricity constraints produces

§2RUND) 4 5N ~ 5. (5.174)
The second-order perturbation of X¢ can also be decomposed into the basis of

SD and ASD 2-forms, similar to (5.170). The previous equation then implies
that the ¥ part of §°X% can be expressed in terms of the components of §X¢.
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The are no other consequences of the metricity conditions to this order in the
perturbation. The variations of the metricity constraints can be considered to
third- and fourth-order where they imply more relations between §2%% and §X°.
However, this will not be of interest to us here because we are just after the
second-order terms.

The equation (5.174) implies that when projected on a symmetric tracefree
part, the tensor 622X can be replaced with minus the tensor §%6%7. However,
precisely such projections appear in both (5.167) and (5.169). This gives the
following expressions for the second-order Lagrangians

and

A A . . S
62_[// = —% <dAal — 3621) (dAai — 3622> — %\Pi]‘zl[CLa]] — %\]:1”62162‘7
(5.176)

We will soon see that the form (5.176) is particularly useful on the background
Ui = (, while the form (5.175) is useful on an arbitrary Einstein background.
Let us also note that we can rewrite (5.176) as

’ A i . A i ;3 i
62[/ = — (\IJ” + 36”> 0% 52:] + 252161’4& — 5\11”2 [a,a]] — KdAa dACli.

(5.177)

It is clear that integrating by parts in the last term in (5.177) and combining
with the term before last gives the last term in (5.175). This explicitly shows that
the previous second-order Lagrangians are equivalent modulo a surface term.

5.9.4 Pure Connection Lagrangian on an Instanton Background

The Lagrangians (5.176) and (5.177), together with the decomposition (5.170)
of %% into irreducible components and the fact that the ¥%¥ component in
(5.171) vanishes, give a starting point for chiral perturbation theory. This can
be developed on both A = 0 and A # 0 backgrounds. These two cases behave
rather differently in terms of gauges that are available for gauge-fixing of the
SO(3) and the diffeomorphism symmetry, and so need to be treated separately.
We will consider the gravitational perturbation theory in more detail in one of
the following chapters.

In the A # 0 case, the Lagrangians (5.175) and (5.176) can also be used as
the starting point for integrating out the linearised 2-form field to produce a
chiral pure connection description. The exercise of integrating out the 2-form
field is possible at the fully nonlinear level, and the next chapter deals with
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the resulting formalism. However, we can see some of the arising simplifications
already here.

Let us consider a gravitational instanton background on which ¥% = 0. We
then take the second-order Lagrangian in the form (5.176). It takes the sim-
ple form

3 A

PL = T (dha’ — 8. (5.178)

We also know that the first-order perturbation of the 2-form field is of the form
68" = (hdY — €%, + hYY;. (5.179)

We note that this is a decomposition of so(3) valued 2-form field into its irre-
ducible with respect to Lorentz group components. The matrix ¢ in (5.170)
is 50(3) X so(3)-valued, which is the tensor product of spin one representation
of SO(3) with itself. This decomposes into spin two, spin one, and spin zero
representations. The consequence of the metricity equation (5.172) is that the
spin two component here vanishes.

A similar decomposition is available for the object d“a’, which is also an
s50(3)-valued 2-form. It also decomposes in 9 + 9 components; in general, all of
them nonvanishing. When we substitute these decompositions into (5.178), the
irreducible components of d*a® pair with similar irreducible components of §%°
and then get squared. There are no mixed terms because different irreducible
components cannot couple to each other. In this way, we get a sum over all
irreducible components of d4a* — (A/3)6%* squared, where in each component
apart from the spin two there is both parts coming from d“a® and from §%°.
There is no spin two component in the 6%, and so this component of the d*a’
is just squared in the previous action and does not couple to §X°.

The procedure of integrating out 63 is then extremely simple. The equation
for each irreducible component of §%¢ will just say that it is equal to 3/A times
the corresponding component of d4a’. Substituting this into the Lagrangian
(5.178) we see that most of the terms vanish. The only nonvanishing term is the
spin two part of d*a’ squared. To write the resulting Lagrangian, we just need
to understand the constants arising in the projection in the spin two part. The
relevant formula is

) 1. ) )
da’| = -x0mdlal)| X, (5.180)
2 2 BV oler
where ¢ f stands for the projection on the tracefree part. To check this, formula
one uses (5.138). The square of this part (computed by taking the wedge product
and contracting the SO(3) indices) is given by

) 2 1 ) )
(d*‘al 2) = SPun(Edal) (B dal e, (5.181)
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where € is the volume form and
1
Pijri = 6ix01); — g(sij(;kl (5.182)

is the projector on the symmetric tracefree part. Thus, overall, the second-order
chiral pure connection action (defined as the second variation divided by two) is
given by

S®a] = —ijA /%Pijkl(Ei“”dﬁaﬂ)(Ek”"dfai,). (5.183)
We note that in the Euclidean signature, this has a definite sign, similar to what
we observed in the non-chiral case; see (3.74). As in the non-chiral case, the
linearised pure connection action is of the Weyl curvature—squared type, where
the Weyl curvature is extracted from the curvature of the linearised connection.
This action leads to a very nice gauge-fixing procedure and then gravitational
perturbation theory, to which we will return in Chapter 8.

5.9.5 Pure Connection Action on an Arbitrary Einstein Background

We repeat the exercise of integrating out the perturbation of the 2-form field, but
now on an arbitrary Einstein background. The most convenient starting point
in this case is (5.175). We now need the full decomposition of the d*a’ into
irreducible components, of which we only needed the spin two-part previously.
The full decomposition reads

) ) 1 .. ) .
d*a' = (@'Y — JeM(d), B+ d M|+ (d10)US;, (5.184)

2

where we introduced the following notations
1., . 1. ) . 1-. )
(d*a) := gEle;‘ail,, (d*a)' = §ezjk21 “wdtay, (d*a)¥ = 523 “dial,
(5.185)

for the different irreducible components. All these formulas are checked by
projecting the left-hand side in (5.184) on the corresponding irreducible
components and checking that the coefficients agree.
Using the decomposition (5.184), we get
§¥'d*a’ /2e = 3h(d*a) — &(d*a)’ — h;(d*a)™.
If we rewrite the first term in (5.175) as M,;0%0%7 it computes to

In both formulas, we, for simplicity, consider the case of the Euclidean signature.
In the Lorentzian signature, there is an extra factor of the imaginary unit on the
right-hand side of both formulas.
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Overall, the second variation of the Lagrangian in the form (5.175) becomes
§2L/2e = —(h* 4+ £'&)Tr(M) + M, ;& gﬂ + h*h7* M;6,1 + 6h(d*a)  (5.186)

—2¢,(d*a)" — 2h,;(d*a)” + 2”“’ ”kaj ak

It is now trivial to integrate out the components of the 2-form field perturbation.
We get the following second-order pure connection action (defined as the second
variation divided by two)

§Pa) = o—= / 1 (@1a)* = (d"a) (¥ — (20/3)1);;' (d"a)’ (5.187)
— (@%a)26u (¥ + (A3 ()2 + 5 ST e aal,

where we replaced the matrix M with its expression in terms of ¥ and A.
When ¥ = 0 the factor of X in the last ‘mass’ term here can be replaced
with the curvature. This term then becomes a multiple of d*a‘d*a; modulo
a surface term. Decomposing this linearised curvature into its irreducible pieces
and carrying out cancellations, one reproduces the action (5.183). This procedure
is however not available on a nontrivial background, where it is MiglF J that
would appear instead. The resulting term cannot be reduced to the commutator
of two covariant derivatives.

The linearised action (5.187) is very interesting because there exists a gauge in
which all of the first line equals zero. Also in this gauge the last ‘mass’ term for
the connection is positive definite (in the Euclidean signature). We will establish
all these facts when we treat the chiral pure connection perturbation theory in
Chapter 8. This means that when the matrix of the curvatures (¥ + (A/3)I)
is negative-definite, the linearised action is positive-definite. The fact that this
holds in such generality and in particular is independent of the ASD as part of
the Weyl curvature is rather remarkable. This can be shown to lead to a stronger
than previously available result about the rigidity of Einstein metrics; see Fine
et al. (2019).

5.10 Coupling to Matter

As we discussed, a drawback of Plebanski formalism, shared by any BF-type
description, is that the coupling to matter is not straightforward. Thus, it is
not easy to write an action that would still use wedge products of differential
forms and that would produce the desired coupling. It is possible to do this
using additional Lagrange multiplier fields, as in Capovilla et al. (1991), but the
procedure is not simple. However, there is a simple prescription for how Plebanski
field equations need to be modified in the presence of an arbitrary stress-energy
tensor, as we now explain. Thus, while it is in general not easy to write down
an action that describes matter coupling, it is easy to add the ‘right-hand side’
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to Plebanski-Einstein equations to incorporate effects of stress-energy tensor of
matter.

Thus, let us assume that the matter distribution is described by a given stress-
energy tensor T,,. The stress-energy tensor can be decomposed into its trace
and tracefree parts

T
T = T0, + S G (5.188)

We then form the following 2-form with values in S
TZV = ZfM”TI?V]. (5.189)
This 2-form is purely ASD. Indeed, this can be confirmed by projecting it onto
the basis of SD 2-forms. We have
ST, 5 =T, (67 + €7, 84) =0. (5.190)

pv]

where we have used the algebra (5.138). Thus, if we add a multiple of T}, to
the right-hand side of Plebariski equations (5.162) we are adding an ASD part
to F* that encodes the tracefree part of T,,,. This is exactly what the tracefree
part of the Einstein equations in the presence of matter is. Indeed, we know that
the SD-ASD component of the Riemann curvature is essentially the tracefree
part of Ricci. And Einstein equations say that the tracefree part of Ricci must
be a multiple of the tracefree part of the stress-energy tensor of matter. This is
precisely what happens when we add (5.189) on the right-hand side of Plebaniski
equations. We will also need to change the trace part of the SD-SD projection
of the Riemann. This can be done by adding to the right-hand side of (5.162) a
multiple of T3

To complete the story, we just need to work out the correct coefficients. This
is done as follows. The standard form of Einstein equations is

1
R, — §(R —2M)g,, = 87GT,,,. (5.191)
In four dimensions, taking the trace gives
R =4(A — 27GT). (5.192)

This means that we get the correct trace part by shifting A — A — 27rGT. The
correct coefficient in front of the ASD 2-form T is determined by working out
some examples. We get

A —27GT |
F = (qu + 3”51.].) S + 87GT,, (5.193)

where T is given by (5.189) and the index is lowered with the metric ¢;; in
the Lorentzian signature case (the only one relevant for physics). Because of the
role it plays, it is natural to refer to the 2-form T}, as the ASD part of the
stress-energy 2-form.
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5.10.1 Example: Perfect Fluid

Let us carry out the exercise of determining the ASD part of the stress-energy
2-form for an ideal fluid with stress-energy tensor T,, = (p + P)u,u, + Pg,.,
where u, is the velocity four-vector u,u* = —1, and p, P are the energy and
pressure densities respectively.

Let e’ be a frame for the metric. We can then decompose the velocity four-
covector u,, into the frame covectors efL

1 .

u, = —————=(e,, + u;e’)). 5.194

H W( w H) ( )

This parametrises the unit timelike vector wu, by its spatial projection
wi/v/1— |u]?2. Here |u]* = wu;0Y. The tracefree part of the stress-energy
tensor is given by T/, = (p + P)(u,u, + (1/4)g,.), and the trace T = 3P — p.

We use X, = 2ie} e} — ¢ ;xef,er). A long computation gives

(p+P)

T,=— -T2
boA( = u?)

where
_ ) 1 . )
' = 16061 + gfl]'kejek (5196)

is a convenient basis of ASD 2-forms.

5.11 Historical Remarks

The basic objects of Plebanski’s formulation of GR are SD two-forms. These
objects have appeared in the GR literature a lot before Plebanski (1977). In fact,
Petrov’s famous classification of ’spaces defining gravitational fields’, see Petrov
(2000) for a reprint of the original paper, already uses SD (and ASD) bivectors
in a key way. Thus, the theorem proved by Petrov states that the gravitational
field (a solution of vacuum Einstein equations) can be classified according to
algebraic types of a complex symmetric 3 x 3 matrix obtained as a complex
linear combination of the diagonal and off-diagonal blocks of the Riemann tensor
viewed as a symmetric tensor in the linear space of bivectors. SD (and ASD)
bivectors then naturally appear as principal bivectors of the Riemann tensor. A
completely analogous but more modern treatment that forms the 3 x 3 matrix in
question as the complex linear combination of the ‘electric’ and ‘magnetic’ parts
of the Weyl tensor was given in Jordan et al. (2009), which was a reprint of the
original paper Jordan published in the 1960s. Again, the SD and ASD bivectors
are central in these considerations.

It was then remarked in Taubes (1966) that the 3 x 3 complex matrix encod-
ing the Weyl curvature can be computed directly, i.e., avoiding computing the
Riemann curvature first. This can be done by elementary operations of differen-
tiation of SD complex linear combinations of the components of the torsion-free
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spin connection. This encodes 24 real components of the spin connection in
12 complex components of a SD connection. The 3 x 3 matrix of Weyl curvature
components is then computed as the curvature of this SD connection.

The SD 2-forms first appeared in a pioneering paper in Cahen et al. (1967).
This paper uses the null tetrad formalism and also provides a link to the spinor
formalism of Penrose (1960). Thus, the spinor formalism combines the 24 real
rotation coefficients into 12 complex Newmann—Penrose spin coefficients of New-
man and Penrose (1962), which is similar to what happens in the SD formalism.
The paper Cahen et al. (1967) for the first time writes equations for the SD
connection 1-forms as those in terms of exterior derivatives of the SD 2-forms.
It also clearly states that the isomorphism between the Lorentz group SO(1,3)
and the complexified rotation group SO(3,C) is what is at the root of the SD
formalism. Finally, the Einstein equations are very clearly stated in this paper, as
the condition that the curvature of the SD connection is SD. Another exposition
of the formalism for GR based on differential forms and self-duality is that of
Israel (1970).

Yet another presentation of the SD formalism for GR appeared in Brans (1974).
This reference is very close in spirit to our exposition. One important new point
in this reference is the emphasis it places on the role played by the Hodge duality
operator, which is interpreted as defining the complex structure in the space of
2-forms. Similar to Cahen et al. (1967), (vacuum) Einstein equations are stated
here, as the condition that the curvature of the SD connection is SD.

The SD (chiral) formalism for general relativity was taken further by Plebanski
(1977). The Plebaniski paper uses spinor notations, but it can be easily translated
into more easily readable SO(3) notations used here and in, e.g., Brans (1974).
The main novelty of Plebanski’s work is that for the first time the main object
of the theory is taken to be not a metric from whose tetrads the SD 2-forms are
constructed, but rather a triple of 2-forms satisfying certain additional equations.
These equations guarantee that the 2-forms in question are obtained from tetrads,
and thus provide a link to the usual metric formulation. Plebédnski (1977) also
gave a remarkably simple action principle realising these ideas. The basic dynam-
ical field in this action is a triple of 2-forms, and no metric ever appears. Later,
Ashtekar’s new Hamiltonian formulation of general relativity (1987) was found
by Jacobson and Smolin (1988) to be just the phase space version of Plebanski’s
theory.

5.12 Alternative Descriptions Related to Plebarnski Formalism

The purpose of this section is to perform similar type of transformations to
those we have done in the context of the BF-type description of the non-chiral
theory. Thus, we will see that there is a very natural way of modifying GR in
the Plebanski description. We will also see that it is possible to perform field
redefinitions and rewrite GR in a seemingly modified theory form. One can then
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integrate out the Lagrange multiplier fields completely, obtaining a Lagrangian
that depends only on X¢ and A?. One can even integrate out the connection field
and obtain a second-order formalism with the X¢ as the only field.

5.12.1 Chiral Modifications of GR

We proceed in exact parallel to what was done in the non-chiral case. We first
replace the matrix that appears in front of Y%7 term in (5.159) by a 3 x 3
symmetric matrix M*%. We then add a Lagrange multiplier that imposes the
condition that the trace of M is A. We get

1 N T
-_ T AW . —
S[S, A, M, ] = SﬂGﬁ/z F— gM S0+ 2 (f(M) = 4). (5.197)

This action describes GR when the SO(3)-invariant function f(M) is taken to be
for = Tr(M). (5.198)

However, one can consider other gauge-invariant functions f(M) here. In partic-
ular; one can consider any function of the three independent invariants of M for
which one can take Tr(M), Tr(M?), and Tr(M?). What is very surprising about
the theories one gets this way is that they continue to propagate exactly the
same number of degrees of freedom as GR. Thus, no new propagating degrees of
freedom is introduced by these modifications, which is a very strong statement
because it seems to be in conflict with GR uniqueness theorems. We will come
back to these chiral modifications of GR in the following chapters.

5.12.2 Field Redefinitions

The goal of this subsection is to repeat the field redefinitions trick that was

already used in the non-chiral context, and thus rewrite the GR action in the

form (5.197) with a nontrivial function f(M). But, in spite of the new f(M)

being different from (5.198), the new action will still describe unmodified GR.
Consider the transformation

Y =GYY; + HYF;, (5.199)

where G/, H are arbitrary at this stage 3 x 3 matrices, and ¥ is the new
2-form field. This transformation will map the first two terms in the Lagrangian
(5.197) to

- 1 =~ -
L—S'G'F + F'H'F — S(S'G' + F'H')M(GE + HF), (5.200)

where we used the matrix notations with, e.g., M;;X¥7 = X*M¥. Collecting the
similar terms in the previous expression we rewrite it as
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1 ~ 1- ~
L— F* (Ht — 2H‘MH) F+XY'(G'-G'MH)F — iZt(GtMG)Z. (5.201)

We now demand that after the transformation (5.199) the Lagrangian is still of
BF-type, i.e., the matrix appearing in front of $¢FJ is a multiple of the identity
matrix. If we don’t want to change the coeflicient in front of the action, we should
demand this multiple to be unity

G'—G'MH =1 (5.202)

We will also demand that the newly generated term quadratic in the curvature
is a multiple of the Pontryagin number for the SO(3) bundle in question. Thus,
we demand also that the matrix in front of F*F7 is a constant multiple of the
identity

1
H' — thMH =t (5.203)

where t is an arbitrary parameter, and real, if we specialise the formalism to the
cases of Euclidean or split signatures.

We are now going to solve the equations (5.203) and (5.202) for H and G in
terms of M. First, the equation (5.203) tells us that H is a symmetric matrix,
so we will drop the transpose symbol on H from now on. Assuming that G and
H are invertible, we can rewrite the two equations (5.202) and (5.203) as

1
I-MH=(G")", I- MH=tH" (5.204)

We can then subtract twice the second equation from the first to get a relation
between G and H

H = 2t(I+ (G, (5.205)

where we again assumed that I+ (G*)~' is invertible. We then substitute this
to, e.g., the first equation in (5.204) to obtain a simple equation involving
just G

(GH)2 =1 - 2tM. (5.206)

This tell us that G is also a symmetric matrix, and gives this matrix as one of
the two branches of the square root

G=(I-2M)">. (5.207)

We can now concentrate on the last ¥¥ term in (5.201). It is clear that the
matrix in front of X*¥7 transforms to

M =M (I—2tM)™". (5.208)

-~ -~ —1
We note for future use that the inverse of this is M = M (H + 2tM) .
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All in all we learn that the field redefinition (5.199) with symmetric matrices
G and H that depend on M according to (5.207) and (5.205) transform the
Lagrangian in (5.197) into a Lagrangian of the same type

BT - AU B

TR, — 5 My T+ %(f(M) —A) = $°F, - SN, (5.209)
1% ~ - i

+5 (f (M(H+2tM) ) —A) +tFF,.

The only change in the new Lagrangian is that the function f(M) became
modified, and that a constant multiple of the topological term Tr(F A F') has
been added.

Thus, we learn that there is a one-parameter group of transformations acting
on the space of theories of the type (5.197), with all functions f(M) belonging
to the family

fi(M)=f(M,),  M,=M®I+2tM)™" (5.210)

corresponding to (classically) physically equivalent theories. At the quantum
level adding to the Lagrangian a topological term is not innocuous, as the
example of the f-term in QCD teaches us. So, we can only be sure about the
classical equivalence of theories related by (5.210). Note that we can alternatively
write M, ' = M~" + 2tI, from which the fact that the transformation M — M,
forms a one-parameter group (M, ), = M, 1., is obvious.

5.12.3 GR as BF Theory Plus Potential

We now use the result (5.210) to derive a new formulation of GR discovered in
Herfray and Krasnov (2015). This is done by integrating out the auxiliary matrix
M from the Lagrangian (5.197) with the defining function (5.210). We also note
that the matrix M% cannot be integrated out from the Lagrangian with f(M)
given by (5.198), because this Lagrangian depends on M¥ linearly. In contrast,
the effect of the previous field redefinitions is to produce a nonlinear dependence
of the Lagrangian on M%, so that it can be integrate out by solving its field
equation.
As before, let us introduce the notation

YIAY = X5 (5.211)
This is a 3 x 3 symmetric matrix valued in 4-forms. The equation for M is then
X5 = p(l+2tM)~2, (5.212)

which can be solved for M

2AM = /(X)) H? 1, (5.213)
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where we assumed that Xy, is invertible and one of the two branches of the square
root is taken. This gives

v = 3 (1= 32), 5211

We should now find p from the constraint that the trace of the previous matrix
is A. This gives

Tr XE
VE= g (5.215)

and so

T2t

1 (g‘r_\/ﬁ(xg)_uz _ ]1) . (5.216)

Thus, we can rewrite the action (5.197) with the defining function (5.210) and
with the matrix M integrated out as

1

S[S, A] = /EF -~ G

(Tr\/E"EJ')Q + %zfzi. (5.217)
The description of GR (5.217) was discovered in Herfray and Krasnov (2015).
The presented here derivation via field redefinitions was spelled out in Krasnov
(2018).

Let us discuss the effect of the field redefinition (5.199) on the metric. On-shell
the curvature 2-forms become linear combinations of the 2-forms X%, This is true
in the case of GR, see (5.162), as well as for the modified theories. Because the
conformal class of the metric is fixed by demanding that the 2-forms ¢ span the
space of SD 2-forms, the conformal class is unchanged by the field redefinition
(5.199). However, this transformation does have the effect on the volume form
that fixes a representative in the conformal class. In particular, the volume form
that corresponds to an Einstein metric is constructed differently in the Plebanski
case and the formulation (5.217). This is explained in more details in Herfray
and Krasnov (2015).

5.13 A Second-Order Formulation Based on the 2-Form Field

The action (5.217) can be used as the starting point for one more transformation.
Thus, one can integrate out the connection field and produce a second-order
formulation with the 2-form field ¢ as the only field. We now describe this.

5.13.1 Parametrisation

For simplicity, we perform the following analysis in the case of the Euclidean
signature. We now change the name of the 2-form field from ¥ to B? to signify
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the fact that the triple of 2-forms B® no longer has to satisfy the simplicity
(metricity) constraints, as these constraints no longer follow from the action
(5.217).

A general 2-form field B? then defines a conformal metric in which the triple of
B¥’s is SD. We can always introduce an orthonormal basis in the space AT of SD
2-forms of the corresponding metric. Let us denote these orthonormal 2-forms
by X, where we introduced a new internal index a = 1,2, 3. Because B* are SD
by construction, they can be expanded in the basis 3*. We have

B =b%°, (5.218)

where b. are some collection of 3 x 3 coefficients, and X* are assumed to be
orthonormal ¥¢X° ~ §°°. Tt is convenient to give the two indices of b, € GL(3)
transformation different names as it helps bookkeeping at later stages.

While the objects B are given, the objects b’ and ¥* are defined only modulo
certain ambiguities. Indeed, we can always conformally rescale both b’ and %*
so that their product remains unchanged. This is the reflection of the fact that
in general, only the conformal class of the metric is defined by the triple of
2-forms B*. Second, we can always perform an SO(3) rotation of the basis of
Y*’s 3% — A¢X®. The 2-forms B* are unchanged if we simultaneously rotate
the coefficients b’. Thus, we have parametrised the 18 components of a triple
of 2-forms B® by nine components of b’ plus 18 — 5 = 13 components of :°
satisfying the metricity condition 3°Y* ~ §°. But there is also a four-parameter
redundancy in this parametrisation, one of conformal rescalings and three of
SO(3) rotations. Thus, overall there is 13 + 9 — 4 = 18 parameters in this
parametrisation, as it should be.

5.13.2 A Torsion-Free Connection for an Arbitrary Triple
of 2-Forms

We now pose and solve the problem of finding an SO(3) connection such that
the torsion d*B* vanishes. We know from previous considerations that when B’
satisfy B*BJ ~ 0% this connection coincides with the SD part of the metric spin
connection. However, we now make no assumption about B* and want to solve
for A® in terms of the SD part of the spin connection, as well as derivatives of
the objects b?.

It is quite easy to find the connection with the required property. The torsion-
free equation is, explicitly

d(b',2%) + € j AT 2 = 0. (5.219)
Introducing the torsion-free metric connection v*, satisfying

A0 = d8 + €,.7"S° = 0 (5.220)
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we can rewrite (5.219) as
A7 X% + € AT 2 =0, (5.221)
where we introduced
d'b', = db’ — €, Y . (5.222)
To solve this equation we define
At =b', A (5.223)
The torsion-free condition becomes
d'b' 2% + det(b) (b)) eape APXE = 0. (5.224)

We now multiply this equation with b;*, where the indices are raised-lowered
with the Kronecker delta metrics, dualise on the spacetime indices, and use the
self-duality of %*. We get

S8 b dIb = det(b)e®, Bb,” A°. (5.225)

We can rewrite this in an index-free way as

Js(A) =t, (5.226)
where Jy is the operator (5.137) and
1 )
0= ——%° Vb, db,. .22
# det(p) T T T (5.227)

Thus, we have A® = J5'(t), with the inverse Jg' given by (5.140). We will not
need an explicit expression for this connection.

5.13.3 An Alternative Derivation

An alternative procedure for finding the torsion-free connection for B* is possible.
We follow Freidel (2008) in this section. The procedure in this section relates the
sought torsion-free connection to the SD part of the metric spin connection and
derivatives of the objects b% and is more convenient in some computations.

The idea is to relate the sought connection A’ to a connection in a different
SO(3) bundle. Thus, we introduce a new GL(3) connection w®, according to the
definition

dAb X = b d“ X, (5.228)
Explicitly
wiy = (b71)F ALY, + (D7) idb', (5.229)

where A*; = ¢} ; A"
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We can now find w®, from the properties it must satisfy. First, we have
0=d*B" =b',d“%", (5.230)

and so the new connection still has zero torsion d“>* = 0. However, this connec-
tion does not coincide with the unique torsion-free connection v*, because this
connection has zero torsion d"X% = 0 and is also metric d"§*® = 0. In contrast,
the connection we are looking for has zero torsion but is metric for a metric that
is different from 52

0=d*6% = b b7 yd“m*, (5.231)

where m® is the inverse metric to mg, = ;;b'a07,. Thus, the metricity condition
for w?, is instead d“m2® = 0.

We look for the connection w®, in the form of a sum of the torsion-free metric
connection ¥%, and some GL(3)-valued 1-form p*,

w“b = ’Yab + pab. (5232)

We can find the object p®, from the equations it must satisfy. First, the torsion-
free condition gives

Pl = 0. (5.233)
Second, the metricity condition gives
d'm® + p* .m° + p’.m* = 0. (5.234)
The last equation implies

1
p(ab) = §d7mab, (5235)

where p., = ma.p% and we have used m,.d"m“my = —d"mg,. To find the
antisymmetric part of p,, we use the torsion-free condition. We have

1
(id"’mab + p[ab])Eb =0. (5236)

Writing prae) = €acsp®, dualising on the spacetime indices, and using the self-
duality of X, we can rewrite this equation as

%Ebu”d;’mab = €ape X’V 5. (5.237)
Recalling the definition (5.137), we can rewrite this in an index-free way as
Jsp = %E d"m, (5.238)
where ¥ d"m is an object in A' ® so(3). The object p is then given by

1
p=gJs'Bdm, (5.239)
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where Jg;! is explicitly given by (5.140). Using the algebra (5.138) of ¥’s we get,
explicitly
m

1
pua = §Ebuud3(mab - 55,1;,), (5240)

where m = Tr(m) = §**my;,. This solves the problem of determining the connec-
tion w?,. Explicitly

1
wh =%+ 5mdTme, + mecanp?, (5.241)

where the vector valued 1-form p® is given by (5.240). These formulas can be
used to explicitly compute the kinetic term B®F; in terms of the SD part of the
spin connection for the metric defined by B* as well as derivatives of the objects
b’ . Details are worked out in Freidel (2008). Using this in (5.217) gives a second-
order description of GR with the 2-form B? as the only field. It is somewhat
surprising that such a description is possible, because the 2-form field B* is an
object of a very different nature as compared to the metric. Nevertheless, we see
that it can also be made dynamical and describe GR.
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Chiral Pure Connection Formulation

The purpose of this chapter is to derive and develop the chiral pure connection
formulation of general relativity (GR). This formalism is singled out from all the
other ways of thinking about gravity because it leads to a remarkably simple
linearised description of gravitons. Because of this it likely has a lot of yet
unexplored potential, and so we will develop it in more detail than for other
formulations. We will also present the related pure connection description of
gravitational instantons.

6.1 Chiral Pure Connection Formalism for GR

The Plebanksi action (5.159) serves as a starting point for many chiral reformula-
tions of four-dimensional GR. In particular, it is possible to obtain the chiral pure
connection formulation starting from it, as we now demonstrate. The procedure
for doing this is completely analogous to that already adopted in the non-chiral
case. The chiral case is, however, much simpler in many respects, as we shall
now see.

6.1.1 The Connection Formalism with Lagrange Multiplier Fields

We first integrate out the 2-form field 3% of the Plebanski formulation. This
results in the action

—1
S[A, U] = (\I/”+ 5”> FiFi. (6.1)

167rGf /
This action, which is an intermediate step towards the pure connection formu-
lation Section 6.1.2, is itself a useful variational principle for GR. It depends on
just 12 4+ 5 variables. Even though it appears to be second-order in derivatives,
this is an illusion. The most natural backgrounds on which this action can be
expanded are maximally symmetric. On such backgrounds, ¥¥ = 0 (zero
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Weyl curvature), and the part of the linearised action that is quadratic
in derivatives is just d,0A'd, 0A'. Integrating by parts and replacing the
commutator of covariant derivatives with a curvature, one reduces this to a
term not containing derivatives.

The action (6.1) exists even with A = 0, but in this case it is not possi-
ble to expand it around a ¥¥ = 0 background. Still, one can solve A = 0
Einstein equations in this formalism, as we will later demonstrate. This action
is surprisingly similar to the MacDowell-Mansouri action (3.77) in that it is
obtained as the wedge product of two copies of the curvature, contracted with
some appropriate tensor. The similarity becomes even more pronounced if one
compares to the action (3.78) that contains a dynamical field in front of the
curvature squared term.

We can also rewrite the action (6.1) in a form containing an additional
Lagrange multiplier

S[A, M, ] = ﬁ /Tr(M-lFF) +u(F(M) = A), 6.2)

where for GR the function f(M) is given by the trace (5.198), and Tr(M~'FF) =
M ;'F'Fi. Note the perfect similarity between this action and (3.79). The
action (6.2) is, of course, also the action (5.197) with the 2-form field integrated
out. This action describes GR as well as the chiral modified theories obtained
by changing f(M). It is also a good starting point for developing the chiral
connection perturbation theory, as we will see.

6.1.2 The Chiral Pure Connection Lagrangian

To go to the pure connection formulation we now integrate out M% from (6.2).
Its Euler-Lagrange equation reads

M7'XM~" = ul, (6.3)

where we introduced the matrix of wedge products of the two copies of the
curvature

X9 = X4 .= FF, (6.4)

This is a symmetric 3 X 3 matrix with values in 4-forms. The equation for M is

solved by
X
M= /—. (6.5
\ )

As usual, the Lagrange multiplier p is found from the constraint it imposes

vi- X (6.6)
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so that

TVE L

71_
M= =X (6.7)

The pure connection action becomes the integral of the Lagrange multiplier

S[A] = Trf (6.8)

167rGAf /
This action was first obtained in Krasnov (2011). It is the most economic pure
connection formulation of GR available. Indeed, it must be compared to the
action (3.82) that depends on the 4 x 10 components of the connection, and
to the action (3.104) that depends on the 24 components. In contrast, (6.8)
depends on just 12 components of the SO(3) connection. It is thus comparable
to the usual metric formulation with its 10 components in economy. Moreover, it
turns out that the perturbation theory in this chiral pure connection formalism
can be set up in such a way that only 8 out of the 12 components propagate,
2 of them being the physical polarisations of the graviton, the remaining 3 + 3
being unphysical gauge variables. This is more economical than GR in the metric
formalism. But this perturbation theory only exists around A # 0 backgrounds,
because of the presence of 1/A in front of the action.

6.1.3 The Split Signature Modification

In the case of the Split signature the previous discussion needs to be slightly
modified because it is the metric n,;; rather than the identity metric §,; that
must be used in all the formulas. In particular, in the split signature the function
far = Tr(M) computes the trace of the matrix M with respect to n rather
than with respect to the identity matrix. This means that the equation (6.3)
will contain 7 rather than the identity matrix on the right-hand side. The
procedure of solving this equation becomes more involved because 7 does not
necessarily commute with the other matrices appearing in this equation. However,
we understand how to solve this equation from the non-chiral case discussion. It
is clear that some factors of /7 will be introduced in the process of the solution.
In particular, the solution for M gets modified to

= ViVIIX ) (6.9)

The Lagrange multiplier gets modified to

Tr F

Vi = (6.10)

so that

a = I R (6.11)
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Thus, the chiral pure connection action relevant for the split signature case is

Soie[A] = ﬁ/(ﬂ\/ﬁ()z. (6.12)

We will later see that the necessity of introducing the factor of n under the
square root in the split signature case makes perfect sense because it makes the
argument of the square root a positive definite matrix so that the square root
exists in real matrices. We also note that the matrix /n does not exist as a real
matrix, only as complex. This, however, does not create any difficulty because
only the original real matrix 1 appears in the final action.

6.1.4 The Metric

In any pure connection formalism the metric is constructed algebraically from
the curvature of the relevant connection. Let us see how it arises in the chiral
case. The easiest way to see this is to recall that in the Plebanski formalism
the metric is constructed from the 2-form fields 3% via the Urbantke formula
(5.47). In the process of integrating out the 2-form fields we have solved their
field equations as

S = (M~)IF,. (6.13)

If we substitute here the expression for M (6.7), as arises in the process of solving
its field equations, we obtain the following explicit expression for the 2-form fields

i Tr\/)?
e =

It is easy to see that the 2-form fields ¢ so constructed satisfy the constraints

(XY E,. (6.14)

39 ~ 69, Thus, the metric of the chiral pure connection formalism is the
Urbantke metric

gs(u,v)es = %eijkquiiijZk (6.15)
for the 2-forms X' given by (6.14).

We note, however, that this metric can be described more explicitly, and in
particular directly in terms of the curvature 2-forms. Indeed, by construction, the
Urbantke metric (5.47) is one in which the triple of 2-forms %¢ becomes self-dual
(SD) (in an appropriate orientation). However, since the Urbantke metric is to
make X% SD, and these 2-forms are given by a linear combination of the 2-forms
F*, the metric will also make the curvature 2-forms SD. Thus, the conformal
class of the metric can be obtained as the unique conformal class that makes
the triple of 2-forms F* SD. In other words, the conformal class of the metric
can be obtained directly from the curvature 2-forms by inserting them into the
Urbantke formula. Thus, we have for the conformal metric

gr(u,v) ~ oe%i, F'i,FIF*. (6.16)
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Let us now discuss the volume form. As we have seen in the previous chapter,
the appropriate volume form can be obtained as 61/cex = XX Applying this
to the 2-form fields (6.14), we get the following volume form

€ Trv X ) 6.17

Again, we see that one does not need to construct X% 2-forms and the volume
form can be constructed directly from the curvature. We then note that, as for
all previously discussed pure connection actions, the action is just a multiple of

the total volume
A
= — . .1
] SWG/GF (6.18)

In the split signature case there are some modifications to the previous discus-
sion. The factors of 1 that need to be introduced modify the previous formulas
as follows

i Try/nX
S = =5 (ValvaX i)~ E. (6.19)
This satisfies ¥4, %7 ~ 1. Again, we can avoid the need for computing X% by
noticing that the metric is such that it makes 3% SD. But this means that the
metric also makes F* SD, and so it can be computed directly from the curvature

2-forms, by using the Urbantke formula. The split signature volume form is
obtained as

en = 2—;2 (ﬂﬁ)27 (6.20)

and the action is still given by a multiple of the total volume.

6.1.5 Field Equations

The first variation of the chiral pure connection action (in Euclidean and
Lorentzian signatures) is given by

6S[A] = / TrvX Tr(X ~Y25X), (6.21)

167TGAf

where
§XY = 2FUdAsAD. (6.22)

This means that the Euler-Lagrange equations following from the chiral pure
connection action are

A (Tr\/)?(X’l/Q)iij) = 0. (6.23)
However, noting the relation (6.14) we can rewrite the arising field equations as

d*Yt = 0. (6.24)
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Thus, the field equations one obtains by extremising the action just state that the
connection coincides with the unique torsion-free connection for the 2-form fields
Yt constructed from the connection. This makes it clear how Einstein equations
arise in this formalism. The field equations of the pure connection description are
second-order partial differential equations for the connection components. Then,
given a solution, the metric constructed from X% is guaranteed to be Einstein
because on solutions of (6.24) the curvature F* coincides with the SD part of the
curvature of the spin connection for the metric constructed from X%. On the other
hand, by the very construction of the metric the curvature 2-forms F* are SD as
the 2-forms. The self-duality of the curvature 2-forms is the Einstein condition.

6.1.6 Lorentzian Signature Reality Conditions

The previously described formalism works for the SO(3) and SO(1,2) connec-
tions, but is needs additional discussion for the case of SO(3,C) connections
appropriate for the Lorentzian signature. Indeed, in this case we want to impose
the reality conditions on the X¢ 2-forms. These conditions are of two types. First,
one imposes nine conditions %7 = 0 that guarantee that the conformal class
of the metric is that of a real Lorentzian one. But because X%, and F* are linear
combinations of each other, these reality conditions can be stated directly as
conditions on the curvature

F'Fi =0. (6.25)

The last condition is that the volume form as constructed from the Y is real.
This condition translates to

Re (Tr\/)?)2 —0. (6.26)

Again, this is a condition directly on the curvature of the connection, as is
appropriate for a pure connection formalism.

6.1.7 (Gauge) Invariances of the Pure Connection Action

The action (6.8) is gauge and diffeomorphism invariant. It is a useful exercise
to verify this explicitly, as some convenient for future use identities will result
from this exercise. Let us first discuss the diffeomorphisms. Whenever we are
discussing the action of diffeomorphisms on a connection, we can modify the
usual Lie derivative Cartan formula £, = i.d + di; by adding to it a gauge
transformation with the parameter i A. This gives a very convenient for practical
applications formula for the transformation of the connection under diffeomor-
phisms
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The SO(3) gauge transformations, on the other hand, are given by the usual

S AT = d ¢’ (6.28)

6.1.8 Action in Terms of a Homogeneity Degree One Function

To discuss the invariance of the action, it is very convenient to write the pure
connection action (6.8) in a more general form

S = gz | 900 (6:29)

where ¢g(X) is some SO(3)-invariant function of the 3 x 3 symmetric matrix
X% = F'FJ. In addition, in order for the action to make sense (note that X" is
the matrix with values in 4-forms), the function g(X) must be homogeneous of
degree one in its argument. The chiral pure connection GR action (6.8) is clearly
of this form with

gor(X) = (Tr\/)?)Q, (6.30)

but also any of the chiral modifications of GR is of this form. So, our discussion
is going to be more general than is necessary for the purposes of GR, but it is
easier to follow this more general discussion.

6.1.9 Diffeommorphism Invariance
For purposes of this and the next subsection we set the coefficient in front of the
action to unity. The first variation of the action (6.29) is

- Jg i JA G Ad
0S[A] 72/78XUF d?0A7. (6.31)

Let us first discuss its diffeomorphism invariance. To do this we need a much
more concrete way of working with the 4-form-valued matrices than we required
before. So, we introduce the densitiesed e-symbol via

dz*dz’ dxPdz” = e’ d*x, (6.32)

where d*z is the coordinate volume form. This symbol takes values &1 in any
coordinate system. Using this symbol we can rewrite the first variation of the
action as

5S[A] = %EWMF;VCZ;‘MQ (6.33)

where we introduced a densitiesed 3 x 3 matrix

~ 1 o
XY = ZE‘“’”’FZ Y (6.34)

pv= po*
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We now substitute (6.27) for the variation. This means that we need to com-
pute dﬁgaFw]. This can be transformed using the Bianchi identity d[’szﬂ,] =0.
We have

) 1 )
a JA 11 _ a JA 1
§4d{, Fyy, = —55 dyF,,. (6.35)
Another identity that we need is
evrrFU D) =50 X, (6.36)

This identity follows from the fact that the quantity F{! F7) antisymmetrised

prs aoc

in three indices pvo is in fact completely antisymmetric, and thus proportional
to the e-tensor. Thus, the left-hand side must be a multiple of X%, and so the
formula (6.36) results.

The previous two identities mean that

. ) ~ . 1 .
& FlLd ) 0eAD) = XUdoE" + Fl, o€l F)) (6.37)
~ 1 o ~
= X7da£" + 280 d3 (@ FLED) = dy(€7XY),
Thus, integrating by parts we have
<. 4 Og
— a yvij JA
JeS[A] /{ X"d %

The right-hand side here is zero by the homogeneity of g(X). Indeed, the Euler
relation for g(X) reads

(6.38)

9 ..
—— X" =gq. 6.39
BT g (6.39)
Differentiating this identity one time we get
S0
xiig, 24—y, (6.40)
0Xu

The partial derivative here can be replaced with the covariant derivative
because the function g(X) is SO(3) invariant. Indeed, this gauge invariance
means that
99

0Xii
for any gauge parameter ¢‘. These are precisely the terms that need to be added
to the usual derivative in (6.40) to convert it to the covariant derivative. This
establishes the diffeomorphism invariance.

eFlgh XU =0 (6.41)

The fact that the action is diffeomoprhism-invariant implies that not all field
equations arising from the variational principle are independent. Let us derive
the corresponding relations. The field equations one obtains from (6.29) are

a9
4 (axw FJ) = 0. (6.42)
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Using Bianchi identity this can be rewritten as

dg v
d* FI=0. 6.43
(5‘Xij > ( )
Let us multiply this 3-form with the 1-form 4. F". Using the identity
o 1 o 1 -
i FUFD = iiE(FZFJ) = XY (6.44)
we have
o dg A dg
i 1A _ - ij JA
ZgF d (8){”) F’ = 2’L§X Id <8XZJ) . (645)

But the right-hand side here is zero by the covariant derivative version of the
homogeneity consequence (6.40). This shows that there are four relations between
the field equations, as a consequence of the diffeomorphism invariance of the
theory

i FiE =0, (6.46)

where £ = 0 are the field equations and £° is a Lie algebra-valued 3-form.

6.1.10 SO(3) Invariance

Let us also demonstrate the invariance under the SO(3) gauge rotations. We
have

6sS[A] =2 / a??w' Fid*d*¢’ =2 / %Fiejlekqbl (6.47)
0 . _
— 2 aTgijejklxquﬁl _ O

The last equality is the direct consequence of the gauge invariance of the
function g.

Let us also discuss the relations between the field equations that arise as the
consequence of gauge invariance. Let us consider the exterior covariant derivative
of the 3-forms £* whose vanishing gives the field equations. We have

; 99 ;i : 9g
Agi . JA JA 7 — ikl Tk m
dAE = d*d (a JF) R (a lmF) (6.48)
. Jg
__ ikl yvkm _
=X 3 — =0,

again as consequence of the gauge invariance of g.

6.1.11 Definite, Semsi-Definite Connections
and the Sign of a Connection

The procedure of deriving the pure connection action (6.8) was formal in the
sense that we did not concern ourselves with the question of which branch of the
square root of the matrix X to take, and even whether the square root exists
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in real matrices (for the Euclidean and split signature) at all. Our goal is now
to discuss this, and thus make sense of the so-far formal manipulations. To this
end, we need to introduce some notions that help to simplify the discussion that
follows.

Let us start by considering an SO(3) connection, as is appropriate for
describing the Euclidean signature. We compute its curvature 2-forms, and then
the corresponding matrix X. This matrix is definite if all 3 of its eigenvalues
are nonvanishing and of the same sign. Following a related discussion in Fine
et al. (2014) we will call an SO(3) connection definite if the corresponding
matrix X is definite at all points of M. We note that a definite connection
gives M an orientation, which is the orientation in which all eigenvalues of X
are positive.

Let us now recall that in the chiral pure connection formalism, the metric is
defined by requiring that the curvature 2-forms F* become SD, and that the
volume form is given by (6.17). We also know that the signature of the arising
metric is controlled by the restriction of the wedge product metric to the three-
dimensional subspace in A? spanned by the 2-forms F*. Namely, if the matrix
X is definite, then the arising conformal metric is of the Euclidean signature. If
the matrix X is indefinite, then the metric is of the split signature. This shows
that a definite connection on M defines a Euclidean signature metric on M.

Another important notion that we need is that of a sign of a connection. Let
us assume that an SO(3) connection is definite, so that it defines an orientation
of M and a Euclidean signature conformal metric on M via

) F .jyu "u . ) .
g(u,v) €k Fli,F F" (6.49)

where 4 is an arbitrary 4-form in the orientation defined by the connection. The
connection is said to be positive if no additional sign is needed in this formula to
render a metric of the all plus signature. The connection is said to be negative
if one needs an extra minus sign in the Urbantke formula to result in an all plus
metric. We will later see that the sign of the connection correlates with the sign
of the cosmological constant in that positive connections are those relevant for
describing the A > 0 geometries and negative connections are relevant for A < 0.

Definite connections are easiest to work with, but we shall soon see that
the set of definite connections is too small and does not cover most of the
examples of interest. For this reason we introduce a weaker notion of semi-definite
connections. An SO(3) connection is called semi-definite if M is split into open
regions in each of which the matrix X is definite. Moreover, since each region of
definiteness receives an orientation in which X is positive-definite, we will also
require that for a semi-definite connection these orientations agree. Thus, a semi-
definite connection gives M an orientation. We will later see that this is the most
interesting situation, as connections coming from ‘general’ Einstein metrics are
semi-definite. A semi-definite connection defines a Euclidean signature metric in
each open region of definiteness.
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Finally, we can extend the notion of a sign of a connection to the semi-definite
case as well. There is a sign in each region of definiteness, which is what is
required for the Urbantke metric computed from the curvature to have the
signature all plus. In principle, each region could carry a different sign, and
we will later see that there are actually examples of semi-definite connections
with different signs in different regions of definiteness.

Semi-definite connections are ‘almost’ definite, and so are easiest to work with.
However, we shall later see that not all SO(3) connections are semi-definite. There
are phenomena of two types that do occur to prevent an SO(3) connection from
being semi-definite. First, it can be that the matrix X is degenerate at all points
of M. This actually occurs even for some Einstein manifolds; see next section.
Second, the matrix X can be definite in some regions of M and indefinite in some
others. Third, it may be that X is definite in all open regions of definiteness, but
then the orientations that these regions receive by requiring X to be positive-
definite do not match. As we shall demonstrate in the next section, all of these
in general do occur for a general SO(3) connection, but not for an Einstein
connection, i.e., a connection that comes from an Einstein metric. So, we will
eventually need to discuss all these possibilities in order to define the action.

Let us now discuss analogs of the previously introduced notions for the split
and Lorentzian signatures. In the case of the split signature, we call an SO(1, 2)
connection definite if the corresponding matrix X is of indefinite signature every-
where on M. Such a connection gives M an orientation in which X is of the same
signature as 7. However, there is no sign of a connection in this case, as both
signs that could be used in the Urbantke formula would result in the same split
signature. Similarly, a semi-definite SO(1,2) connection splits M into regions in
which X is of indefinite signature. Each region defines an orientation and these
are required to match.

In the Lorentzian signature case we are dealing with SO(3,C) connections.
Such a connection is said to satisfy the reality conditions if the conformal metric

g(u,v)p ~i€%i, Fli,FIF*, (6.50)

is of Lorentzian signature. There is no longer a notion of definiteness because the
matrix X in this case is generally complex. But we can still have connections that
are semi-definite in the sense that M splits into regions where X is nondegenerate.
But there is no longer an orientation that such connections can define. As a result,
there is also no notion of a sign of a connection. But one can still demand that
there exists a global choice of orientation of M so that the Urbantke formula
with the right-hand side divided by the corresponding 4-form produces a fixed
Lorentzian signature metric over M.

6.1.12 Towards a Non-Perturbative Definition of the Action

We can now come to a discussion of how the action (6.8) obtained by formal
manipulations can be made sense of. Our first remark is that the action is
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certainly defined perturbatively, as means of producing a perturbative expansion
around some given background. As we shall see in the details in Chapter 8, the
most natural background for this chiral pure connection theory is the maximally
symmetric one.’ On this background, the matrix X is a multiple of the identity,
and so its square root is clearly defined. One can expand the square root of X
in powers of deviations of X from the identity. With this in mind, all formal
manipulations performed previously make sense. In fact, the action (6.8) can
be expanded around an arbitrary Einstein background and this expansion is
not ambiguous. So, the pure connection action (6.8) is definitely well-defined
perturbatively.

Let us now consider the question whether the action (6.8) makes sense beyond
perturbation theory. In the following sections we will see examples of solving the
field equations (6.24), and these examples indicate that the theory makes sense
beyond a perturbative expansion. However, these examples also reveal that it is in
general inconsistent to limit oneself to just one of the branches of the square root
in (6.8). We now turn to a discussion of this. In particular, our goal is to establish
that in the case of the Euclidean setup, the action (6.8) is bounded from below.

We only discuss the case of the Euclidean signatures. The Lorentzian case
needs to be treated separately because of the issues with the reality conditions.
But it is the Euclidean signature action that usually participates in the gravita-
tional path integral, and so establishing its boundedness is particularly relevant.

The discussion in the previous section shows that the chiral pure connection
functional (6.8) is well-defined on definite SO(3) connections. In this case, the
prescription is to take the positive branch of the square root of the positive-
definite matrix X, and to take the integral in the orientation defined by the
connection, so as to get a positive result (volume). However, explicit examples
show that in most of the situations of interest the connection is not definite
everywhere, and is only semi-definite, i.e., M is covered by open regions of
definiteness. These examples also show that it is in general not correct to take
the positive branch of the square root everywhere on M, and once one crosses
from one region of definiteness to another, there must be a change in the branch
of the square root.

That this is expected can be easily seen by considering SO(3) connections that
come from Einstein metrics. In this case, we know from the Plebanski formalism
that

) A
F' = (\IJ” + 35”) ;. (6.51)
Thus, the corresponding matrix X is

X ~ (\I/ + /;}1>2 . (6.52)

I In fact, in the chiral case there is no difference between the maximally symmetric and a
more general instanton background, see more on this in Section 6.3.
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We then see that this is a definite matrix everywhere apart from the places where
one of the eigenvalues of the SD part of Weyl matrix ¥ exactly balances the A
term. When this happens, the corresponding eigenvalue of X vanishes, and the
matrix is degenerate. In a ‘general’ Einstein metric, however, this happens across
hypersurfaces in M that split the manifold into open regions of definiteness of
X, or possibly also at isolated singularities. We also see that for such a ‘general’
Einstein SO(3) connection an orientation can be chosen (consistently over all
of M) so that almost everywhere the eigenvalues A, , 3 of X are positive, and
VX exists as a real matrix. Thus, we see that ‘general’ Einstein connections are
semi-definite.

We should now discuss the meaning of ‘general’ in the previous paragraph.
There exist Einstein metrics for which the matrix ¥ + (A/3)I is everywhere
degenerate. The easiest example is, of course, flat space R*, where the connec-
tion and thus the previous matrix are zero everywhere. The simplest example
with nonzero scalar curvature is S? x S2. In such cases, the metric cannot be
reconstructed from the curvature of the SD part of the spin connection. It is clear
that these Einstein manifolds cannot be treated via the chiral pure connection
formalism. So, ‘generic’ Einstein manifolds for us will be those for which the
curvature of at least one chiral half of the spin connection (i.e., either SD or
anti-self-dual) at a general point of M spans a three-dimensional subspace in
A? and thus, allows the metric to be reconstructed from it. So, we restrict our
attention to the Einstein metrics with a semi-definite chiral spin connection that
can be described by the present formalism.

Let us now return to the question of which branch of the square root to take in
VX . The previous discussion shows that one should not restrict one’s attention
to only the positive branch of the square root because the branch of v/X that
one wants to reproduce is given by

VX ~ U+ %]1, (6.53)
and the matrix on the right-hand side does not have to be definite. Thus, one
certainly wants to keep not just the positive branch of v/X in defining the action.
In finding explicit solutions of the theory (6.8) it is usually easy to decide on
this from the requirement that the fields are continuous. So, when one crosses
from one region of definiteness to another, the branch of the square root must
change appropriately. However, if one is given a definite connection in only an
open region of M, it is a priori not known which branch of the square root to
take to compute the action. The most we can say at the moment is that given a
connection that is definite in some open region of M, whatever branch is taken,
the matrix VX is real.

The previous discussion is important because it allows us to conclude that
on semi-definite connections, the action (6.8) is bounded. Thus, assume that we
are given a semi-definite SO(3) connection, i.e., a connection for which the the
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manifold M is split into open regions where the matrix X is definite. We do
not yet know which branch of the square root in v/X to take in which region,
but we know that in any branch this matrix is real, and so is its trace. This
means that on such connections the action (6.8) is of a definite sign, positive for
positive A, and negative for negative A. This is in contrast with the Euclidean
Einstein—Hilbert action that is never definite.

We can now repeat this discussion for an SO(1,2) connection. In this case,
we want the matrix X to be indefinite almost everywhere. The easiest case is
when the matrix X is of the same indefinite signature everywhere on M. This is
the analog of the definite SO(3) connections in the SO(1, 2) setting. In this case,
one knows that the metric it defines is of the split signature. Moreover, such a
connection determines an orientation of M by requiring the signature of X to
be the same as that of 1. The action is also well-defined because one has an
additional factor of n multiplying X under the square root in (6.20). The matrix
nX is positive-definite, and the square root can be taken in real matrices. The
action then has a definite sign.

If the connection is not indefinite of the same signature everywhere, but only
splits M into open regions where X is of a given indefinite signature, one still
knows that it defines a split signature metric in every of these regions. One also
knows that in all regions for any choice of the branch of the square root of the
positive definite matrix 7.X, the matrix v/7X is real, and so the action again has
a definite sign.

This establishes that on semi-definite connections that split M into regions of
definiteness, the action is well-defined and is positive or negative depending on
the sign of A. This is the case for both SO(3) or SO(1,2) connections. In these
cases, there also exists a Euclidean or split signature metric almost everywhere
on M.

Let us now discuss the cases when the connection is not semi-definite. Let us
first consider the situations when the matrix X is nondegenerate almost every-
where on M, apart from possibly-hypersurfaces splitting M into open regions
(smaller dimension singularities where X becomes degenerate are, of course, also
possible). The first possibility is then that the matrix X is definite in some
regions and indefinite in some others. If this is the case for an SO(3) connection,
we would conclude that this connection defines a split signature metric in regions
where X is indefinite. We would then be able to define the action in these regions
by taking the square root of nX rather than X, as is appropriate for the split
signature. There is similarly a possibility that for an SO(1,2) connection there
are some regions where X is definite rather than indefinite. In this case, one just
treats these regions as appropriate for the Euclidean signature, and uses v X
rather than /nX in the action. So, this situation is easy to deal with.

Another possibility is that for, e.g., an SO(3) connection, the manifold M
splits into open regions where the matrix X is definite, but the orientations
that are required to make X positive-definite do not match. The most natural
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option in this case is to fix an orientation of M and to compute the action
(6.8) as the integral of the top form ex in the given orientation. The orientation
of the form ey, however, will not agree with the fixed orientation, and so the
integral becomes a sum of positive and negative contributions. In this case, we
can no longer conclude that the action has a fixed sign. An analogous situation
is possible in the SO(1, 2) setting. In this case, the orientations required to make
X to be of the same signature as 77 may not agree. Again, the action would be
given by a sum of positive and negative contributions, and thus not have a fixed
sign. Thus, we can only conclude that the action has a sign on semi-definite
connections.

6.1.13 Not All Connections Are Semi-Definite

The following argument shows that the situations we worried about at the end
of the previous subsection actually do arise. Thus, let us consider an SO(3)
connection that is the SD part of the spin connection for some Euclidean metric,

but not necessarily an Einstein one. In this case, we can decompose the curvature
2-forms F* into the basis of SD and ASD 2-forms

F'= MY%; + NS, (6.54)

where %7 are the ASD 2-forms. Let us now compute the corresponding matrix
X. We have

X ~ M?— N?, (6.55)

where we used the fact that the wedge product metric on ASD 2-forms is negative
of that on the SD 2-forms. We thus see that the matrix X is given by the
difference of two positive-definite contributions, one that is the square of the SD
plus scalar part of the Riemann curvature, and the other that is the square of the
tracefree part of the Ricci. Since the metric we start from is completely arbitrary,
nothing prevents the Ricci part from winning over the other part. Moreover, this
can happen in some regions of the manifold, while in some other regions it can
be M? that wins. So, it seems that nothing prevents the matrix X from being
positive-definite in some regions and negative-definite in others. This is the case
when we said the action becomes a sum of positive and negative contributions
and thus not of a fixed sign.

Another possibility is that in a certain region some of the eigenvalues of X
are of one sign and some of the other. Thus, the matrix X can be definite in
some regions and indefinite in some others. In this case the metric that such
a connection would define would be of split signature in regions where X is
indefinite. This possibility seems also to be allowed by the relation (6.55).

So, we conclude that connections constructed from the ‘general’ Euclidean
signature metrics do not have to be semi-definite. One can define the action (6.8)
even on such connections, but then the action can have any sign.
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6.1.14 The Action on Semi-Definite Connections
is Bounded from Abowve

Let us now consider a semi-definite SO(3) connection. This means that M is
split into open regions where X is definite and we can choose an orientation
of M such that X is everywhere positive-definite. As we know, in this case the
action (6.8) is nonnegative (for positive A). We shall now see that in this case,
the action is also bounded from above.

We divide the 4-form valued matrix X by an arbitrary 4-form € in orientation
that makes X positive-definite. This converts X into an ordinary positive-definite
3 x 3 matrix. It then has positive eigenvalues A, 53 and there exist real square
roots v/ A1, v A2, and v/A;. These, however, can be of both signs. The Lagrangian
density is given by

L=/ M+ VA + V)2 =M+ A+ As + 2000 + 20000 + 20/ A\
(6.56)

The quantity Le is to be integrated over all regions of definiteness. Note again
that the quantities v/A; can be of either sign. We now use the inequalities

XA > 200N, (6.57)
that follow from (v/A; — \/A;)? > 0 to conclude
L <3+ Az + As), (6.58)

with the equality holding if and only if all eigenvalues are equal. This means that
on semi-definite connections

0 </ (Tr\/f)2 < 3/ Te(FF), (6.59)

with the equality holding if and only if X is a multiple of the identity matrix. The
right-hand side in this inequality is a topological number that depends only on
the SO(3) bundle over M that is taken. In order to be able to reproduce Einstein
metrics via this formalism, this bundle must be in the same topological class as
the bundle of SD 2-forms on M. In this case, the quantity on the right-hand side
of (6.59) can be expressed as a specific linear combination of the signature of M
and its Euler characteristic.

There is a similar bound for semi-definite connections of the SO(1,2) setup,
but there is no longer such a bound when the connection is not semi-definite. So,
we conclude that on general connections, the action (6.8) is not bounded from
either above or below. It is thus not usable for doing, e.g., lattice simulations of
Euclidean quantum gravity in the SO(3) connection formalism. The only option
for doing such simulations would be to change the definition of the action so that
all regions contribute to it positively. This is the case on semi-definite connections,
and one could then argue that the total action must always be the total volume
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as defined by the connection, and thus of a fixed sign. This would make the
action bounded from below, and allow Monte-Carlo—type studies. It is, however,
far from clear that this would give a sensible definition of the theory. But this
option can be tried.

6.1.15 Choice of the Branch of the Square Root

We have discussed the general properties of the action (6.8) that are independent
of a choice of the square root that one has to make to compute it. We now need
to discuss this choice.

As we already discussed and as is clearly seen from examples, it is inconsistent
to restrict one’s attention to only the positive branch of the square root. As we
shall now discuss, for each sign of the cosmological constant, there are in fact
just two possible branches that can arise and that should be decided between.
However, as we shall also see, it is unfortunately not possible to decide which
branch of the square root to take just by looking at the matrix X. On the other
hand, such a decision is easy to make when considering the problem of finding
a solution of GR using this formalism. The rule is that when one crosses from
one region of definiteness of X to another, the branch should change so that all
fields remain continuous. But if one is just given a connection that is definite in
some open region, there is no way to tell which branch of the square root must
be taken, as we shall see from examples. Thus, the only way to define, e.g., a
state sum model in this formalism would be to take both branches into account,
hoping that the ‘correct’ branch will win in the state sum. Whether anything
like this happens, however, is far from clear.

In order to proceed with our discussion, we first need to understand better
the possible configurations that the matrix on the right-hand side of (6.51) can
take. It is convenient to factor out A and consider the matrices of unit trace of
the form

v o1
A + §H' (6.60)
This is a symmetric matrix that can be diagonalised by an SO(3) transformation.
Let us denote the eigenvalues by z,y,1 —z — y.

In all the examples we are aware of the behaviour of the sign of the determinant
of the matrix W/A 4 (1/3)I correlates with the sign of the cosmological constant.
Thus, in the case of positive A this matrix always has a positive determinant,
which corresponds to the shaded region in the previous figure (i.e., regions I, IT).
In the case of negative A, one can certainly have examples with this matrix
taking values in region I. For example, we have all negative scalar curvature
instantons. In all other A < 0 examples we are aware of, it is the region I1] in
the previous figure that plays role. Thus, there is an example of asymptotically
hyperbolic space in which one of the eigenvalues of ¥/A + (1/3)I changes sign
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Figure 6.1 The space of diagonalisable 3 x 3 symmetric matrices of unit trace
(modulo conjugation) can be visualised on the plane. The z and y are two
of the eigenvalues, while the third one is given by 1 — x — y. The central
triangular-shaded region (labelled region I) is one where all eigenvalues are
less than unity. The other shaded region z < 0,y < 0 (region II) is one where
the largest eigenvalue takes values bigger than unity and the matrix continues
to have a positive determinant. Region 171 is where only one of the eigenvalues
is negative and the matrix has negative determinant.

and one crosses from region I to region I11. There is also an example where one
always remains in region III, with two eigenvalues of W/A + (1/3)I changing
sign simultaneously to remain in region I71.

For concreteness, let us restrict the following discussion to the case of matrices
of positive determinant, i.e., regions I and I7 in Figure 6.1. Region I1] can be
analysed analogously. The subspace of matrices with all eigenvalues positive is
represented by the triangular-shaded region in the figure. Indeed, both x and
y and 1 — x — y must be greater than zero, which gives this triangular region.
Its boundaries are places where one of the eigenvalues goes to zero. The point
x =y = 1/3 is the ‘central’ point where all eigenvalues are the same and the
matrix is a multiple of the identity.

When two of the eigenvalues are negative, without loss of generality, we can
parametrise the matrices by the two negative eigenvalues, so that 1 — x — y is
positive. We note that this is also automatically the eigenvalue largest in modulus
because

l—z—y)?’-2>=1-y)(1—y—22)>1 Yo,y <0, (6.61)

and similarly for the difference (1 —xz — y)? — y?. We also note that in this region
of the parameter space

l-—z—y)—a2>—y’=1-2(@+y)+2zy>1 Va,y < 0. (6.62)
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Let us now reconsider the procedure of integrating out the Lagrange multiplier
fields from (6.1) or (6.2). For our purposes, it will be more convenient to think
about integrating out ¥ from (6.1). Let us assume that the matrix X has been
diagonalised and has three positive eigenvalues A; 5 ;. We then know that the
solution for ¥ + (A/3)I in terms of X will be such that the former is diagonal
when the latter is diagonal. Thus, the procedure of finding the pure connection
action is that of integrating out the parameters z and y from

QMY = 3+ (6.63)
Differentiating @@ with respect to x and y and setting the results to zero we get
two equations

)\1 A3 & A3

a8 - 6.64
2 (l-z—y)? 2 (Q-z—y)? (669
from which we read
A1 Ao

As we have already discussed, for A > 0 two of the eigenvalues of (U/A)+ (1/3)I
can be demanded to be of the same sign (so that its determinant is positive),
and so we have

Az
A1
where the positive branch of the square root is taken. We now substitute this into

any of the two equations and get a quadratic equation for x, with the solutions
being

y= x, (6.66)

. VA
VAL VA £V

where the two different solutions correspond to the two possible signs in the
denominator. Here the square root always stands for the positive branch thereof.
This is, of course, the already familiar solution for M/A with M given by (6.7).
We now clearly see that there are only two possible solutions that give (U/A) +
(1/3)I in the desired region of the parameter space, i.e., a matrix of positive
determinant.

Let us now discuss which of the two solutions in (6.67) to take. First of all, if we
take the positive branch, then for any values of A, 53, we are in the triangular-
shaded region of the parameter space where all three eigenvalues are positive

(6.67)

(and necessarily less than one). Thus, the positive branch of the square root
always lands us on the solution where eigenvalues are not too big as compared
to the cosmological constant. To get a solution that corresponds to the region
1T of the parameter space we need to have
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Vs = VA =V > 0. (6.68)

If this inequality is satisfied, then there is also the second branch of the square
root of X that becomes available, corresponding to the negative sign in (6.67).
So, one could hope that the right prescription is to take the positive branch of
the square root when (6.68) is not satisfied, and the negative branch when (6.68)
holds. However, this prescription does not pass the test of explicit examples.
Thus, in Section 6.2 we consider an example of the so-called Page metric where
the manifold is split into two regions of definiteness, and so one must change
the branch of the square root of X as one goes from one region to the other.
And at the same time (6.68) is always satisfied. This shows that there exists no
criterion that would allow us to select a branch of the square root just by looking
at the matrix X. The positive branch is always available and must be considered.
But when (6.68) is satisfied (with A; being the largest eigenvalue), then also the
second branch becomes available and must be considered. The best one can do
in forming a state sum is then to take both possible branches into account.

In the case A < 0, we have a similar situation, but it is now that regions
I and III of the parameter space play role. One must decide which of the
two possible branches of v/ X to take just having access to the positive defi-
nite matrix X. Again, it is not possible to decide on this just by knowing X.
In a concrete solution, this decision is taken by demanding that all fields are
continuous across a surface on which one or two eigenvalues of X vanish. But
without such continuity considerations, the best one can do is to allow both
possible branches of the square root (i.e., those giving VX in regions I and IIT )
to contribute.

6.2 Example: Page Metric

The purpose of this section is to treat an example of a nontrivial positive scalar
curvature Einstein metric known as Page metric. We will present the metric in
the frame formalism and then show how to obtain it via the pure connection
route. This metric gives a very good illustration of issues arising when selecting
an appropriate branch of the square root as discussed in the previous section.

6.2.1 Page Metric

Let us consider a metric of the form

4 2
ds®* = g*(Q%dr* + o5 + 03) + gcz o2 (6.69)

where o, are the usual 1-forms on S3

1 .
do; = *iﬁijkaj Aoy (6'70)
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given by

o, = dy 4 cos0dg,
0y = cosdl + sin sin 0d g, (6.71)
o3 = —sinydf + cos 1 sin Odo,

where we used a somewhat unconventional numbering of the 1-forms and
A
@) =1-1% Q? = §r4+r2(1—2)\)+1—)\, (6.72)

with A being the (dimensionless) cosmological constant.

For A < 1/4 and A > 3/4 the equation Q*(r*) = 0 has real roots r? < r3.
The function Q?(r?) is then nonnegative in the regions 7> < 72 and 7* > r3. We
would like the metric (6.69) to describe a compact manifold, and so we would
like this metric to be cut off by the ‘horizon’ at some value of r. It is clear that
this can only be the smaller root 72, so that the range of r? is then r* € [0, 72].
In order for the function g? to be nonnegative in this region, we must require
r2 < 1. It is then not hard to check that the allowed region of A for which the
smaller root r2 is less or equal to unity is A € [3/4,1].

It is instructive to see what happens to (6.69) at both ends of this interval.
When A = 3/4 we have

1
2 =—(1—-r?7? 6.73
o 7= (6.73)
and the metric takes the following form
4dr?
ds® =y (1 =72 (0] + 05+ 03). (6.74)
A=3/4 1 —1r2

Introducing a new coordinate r = cos(f), the metric takes the form

ds?

= 4d0* + sin*(0) (o} + 02 + 03). (6.75)

A=3/4
The metric
0?2 + 03 + 02 = (dyp + cos 0dg)? + db? + sin® Od¢p? (6.76)

should be compared with the metric (1.72) on three-sphere in Hopf coordinates.
Rewritten in terms of v, 6, and ¢ coordinates the Hopf metric becomes

1 |
ds?s = <d1/) + 5(1 + cos Q)dqﬁ) + Z(dGQ + sin® Od¢?). (6.77)
Thus, we see that

o} + 05+ 05 =4ds3s (6.78)

if the ¥ coordinate is taken with period 47 rather than 27. Indeed, writing
di/2 in brackets in (6.77) in place of di changes the period of ¢ to 4.
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This v coordinate can then be combined with ¢ into a new coordinate and the
Hopf metric on unit S* takes the form of the quarter of (6.76). The metric (6.75)
is then clearly four times the metric on the four-sphere of unit radius.

On the other end of the interval, when A = 1, the root r2 becomes zero, and
the metric completely degenerates. Let us now consider intermediate values of A.
Then, the metric is cut off at the horizons located at +r_. Near these horizons,

e.g., near the one located at r = r_, introducing the coordinate ¢ = r_ — r
we have
2
Q* = (—2r_e) (37"2_ +(1- 2)\)> . (6.79)
Then, near this horizon the metric takes the following form
o deé? 22 2\ 2 2
ds :EJF% eo; + (1 —r2)(o; + 03), (6.80)
where
1 1—r?
— = - . 6.81
& (=2r.)(2r2/3+1-2X) ( )
Or, introducing a new coordinate R = 2/€/£ we get
ds* = dR* + £'R?0% + (1 — r? ) (03 + 73). (6.82)

With the period of the ¥ being 47, there is no conical singularity at the horizon
if €2 = 1/2. This fixes the value of A to be, numerically

A~ 0.933, (6.83)
with the corresponding value of r_ being
r_ ~0.281. (6.84)

Thus, the radial coordinate of a complete metric in the family (6.69) ranges in
r € [—0.281,0.281], with the value of A given by (6.83).
Having fixed the metric, we can proceed with the determination of the SD
connection. The SD 2-forms are
El = 2d7"0’1 — 920'20'3,
¥ = ¢g*Q 'dro, — 2Qos0;, (6.85)
¥ = g*Q 'dros — 2Qo 0.
The SD part of the Levi-Civita connection is given by
Al = 01, A2 = B0—27 A3 = ﬂ0'3, (686)

where

a1<QQ>I2Q2, ﬂ%<1(92)/>. (6.87)

g2 g* g
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Figure 6.2 Plot of the different eigenvalues of the curvature endomorphism
matrix for the Page metric. Two of the eigenvalues cross zero. Thus, the
corresponding connection is only semi-definite.

The curvature is given by

Fi=M9%, MY = diag(M,, M,, My), (6.88)

1 A 24X-3 A 1(4X-3

It is clear that the first of the curvature matrix eigenvalues remains positive,
while the two other eigenvalues pass through zero. Thus, it is clear that the
SD connection for the Page metric is definite in a large region near the horizon
r = —r_, where all three eigenvalues of the curvature matrix ¥ + (A/3)I are
positive. There is then a surface in the manifold, topologically an S, occurring
at a fixed value of r, where two of the eigenvalues become zero. They change
signs on the opposite side of this surface, with the connection again being definite
in some region near the other horizon r = r_. This behaviour of the curvature
matrix is illustrated in Figure 6.2.

We can now relate this example to our previous discussion as to which branch
of the square root of the matrix X to take. First, the matrix X ~ M? is the
square of the matrix M. We have seen that the branch of /X in which the
smaller in modulus eigenvalues v/A; and v/A, need to be taken negative becomes
possible when the inequality (6.68) is satisfied. In our case v/\; ~ M, the largest
in modulus eigenvalue is M;, and so
A 44X -3)

Ml—MZ_MQ,:_*

330 (6.90)
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One can check that this is positive for all » € [—r_,r_], and equal to unity when
M, = Mz = 0. Thus, in the case of the Page metric, the inequality (6.68) is
satisfied throughout M, both in the region when ¥ + (A/3)I is positive-definite
and in the region when two of its eigenvalues changed signs. This gives an explicit
example of a situation when it is impossible to decide which branch of the square
root of X should be taken just by looking at the matrix X itself. Both branches
are possible throughout M, and both are actually realised.

6.2.2 Page Metric via the Pure Connection Route

In this section we would like to obtain the Page metric by solving equations for
the connection. Thus, we start with a connection of the form (6.86), with some
functions a and S that only depend on the radial coordinate. The curvatures
read

F' = ddro, — (a — B?)oy0s,
F? = f'droy — (1 — a)osoy, (6.91)
.F‘3 = 5'(13;03 — 6(1 — 06)0'10'27

where z is the coordinate with respect to which the derivatives of a and S

are taken. The matrix X, which is defined only modulo multiplication by an
arbitrary function, can be taken to be

X" = diag(1,¢c,c), (6.92)
where
_BB(l-a)
= 7@/(@ — ) (6.93)

The equations we need to solve are
a4 (Tr\/i (X*”?)”Fj) ~0. (6.94)

As one can check, there is only a single independent field equation that we get
in this case, which can be taken to be the equation for i = 2. Dividing this by
B, which we thus assume to be nonzero (this can be checked to be true for the
Page metric everywhere except at the ends) we can write

(3 0onenafig)n o

Here, 1/c is some choice of the square root, and our aim is in particular to clarify
how things depend on this choice. This equation can be solved for « as a function
of /c. Let us therefore introduce a new coordinate

x = /e (6.96)
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We have

o 1
I—a 2(@—1)1+22) (6.97)

and thus,

1 1/3
l—a-Kao|—o 6.98

o=t (iar) (04
where K, is the integration constant. Knowing «(1/c) we can find §(y/c) from
(6.93). The equation to be solved reads

1, 5 ox
5(5)+

B = (z—1)(1+22)’

(x —1)(1 + 22) (6.:99)

with the solution being

/821017 Kl KZ

T —2) AL+ 22)7 T (1—2)2(1 + 20)1/%"

(6.100)

where K, is another integration constant. This solves the problem of finding the
connection, albeit in terms of a not very geometric coordinate /c.
To be able to recover the Page metric in its form (6.69) we need to write down
the metric defined by the connection (6.86). We look for the metric in the form
ds® = N*dx® + a0} + a505 + a0, (6.101)
whose SD 2-forms are

¥ = Nadzo, — asa30,03, ete. (6.102)

We want the curvatures (6.91) to be multiples of these 2-forms. This gives the
following set of equations

o a— (32 B8 B(l —«) B’ B(l—a)

= = = . 6.103
Na1 Q203 ’ NG/Q a3a1 ’ Na3 1G9 ( )
The last two equations imply that a, = a3 and
1—
a = Nu. (6.104)
p
The first equation then gives
2
_ 1 —
@2 = o2 = n2la=f)8U = 0) (6.105)

O/B/
This shows that the sought metric is in the conformal class
ds* ~ o/ (B')*dx® + o/ B*(1 — a)07 + BB’ (a = B°)(1 — a) (03 + 03),

where at this stage x is an arbitrary coordinate with respect to which the
derivatives of « and [ are taken. The conformal factor is fixed by requiring
that its volume form is given by (6.17), which in our case is

% (\/m + QWY 010005da, (6.106)
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where ) is the (dimensionless) cosmological constant. This fixes the metric to be

o oA

Ads® = (%a/(a - 8%+ 2B (1 - a)) ( pp—cETG _a)de
+ ﬁwaf + O‘;/m (2 +a§)> . (6.107)

Now using S8'(1 — a) = co/(a — B?) together with ¢ = 2? and (6.97) we
can rewrite everything in terms of x,«, and 8. The metric takes the following
form

a—f o, BPl—a)?(1422) ,
S +2x)dx + (o= ) o3 (6.108)

+ (a = B%) (1 + 2z) (05 + 03).

Ads? =

Taking into account (6.98) and (6.100) gives the metric explicitly, as a function of
the radial coordinate z. However, one still needs to fix the constants of integration
to obtain a complete metric.

Let us now see how the radial coordinate of the Page metric (6.69) arises. In
the Page metric, the product of the coefficients in front of dr? term, and in front
of 0% is equal to four. Thus, we can introduce a new radial coordinate from the
condition

(1 - a)dz _

+24 1
=] r, (6.109)

where any choice of the sign can be taken. In the case of Page metric, the quantity
x is the ratio of two eigenvalues of ¥ + (A/3)I, and decra closed manifold the
decreasing x corresponds to increasing r, and motivated by this, we take the
negative sign. Taking into account (6.98) gives

A

é 14 2x
1—=x

1/3
> = 2(const — 1), (6.110)

where an arbitrary integration constant appears. In the case of the Page metric,
this constant is unity, and K; = 2X?/3(4\ — 3)'/%, and we make the same choice.
We are free to do this, as at this stage, this is just a definition of a new radial
coordinate, which we can choose any way we like. This gives © = M,/M,, with
M, and M, given by (6.89). To fix the metric completely we choose K, to be
equal what it is for the Page metric, i.e., K, = AY/3(4A—3)?/3. With these choices
we get

(=B (1 +2z) =A1—7?), B*=

(1 - a)?(1 + 2z)?

(6.111)

=4N(1 —r)?,

and the Page metric is reproduced.
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6.3 Pure Connection Description of Gravitational Instantons

Gravitational instantons are Euclidean signature Einstein metrics whose Weyl
curvature is chiral, i.e., only one of the two halves of the Weyl curvature is
nonvanishing. The chiral formalism developed in this and the previous chapter
encodes the metric in a triple of 2-forms that reconstruct the metric from the
requirement that they are to become SD with respect to it. In particular, in the
chiral pure connection description, the metric is encoded into the curvature of an
SO(3) connection. We will now see that this formalism allows for a very simple
description of the ASD Einstein metrics, i.e., the metrics for which the SD part
of the Weyl curvature is vanishing.

6.3.1 Perfect Connections

We restrict our attention to the Euclidean signature. Thus, we consider an SO(3)
connection on a vector bundle that is in the same topological class as the bundle
of SD 2-forms for some metric on M. The topological class of this bundle is
independent of the metric, and is the property of M itself.

Definition 6.1 An SO(3) connection is called perfect if its curvature satisfies
FiFI ~ §Y,

Given a perfect connection, let us define a set of Lie algebra valued 2-forms

Y= %F’. (6.112)
These 2-forms satisfy X437 ~ % by the perfectness of the connection. They also
satisfy d4¥% = 0 by the Bianchi identity for the curvature. Thus, we can apply
to such 2-forms the general statements of the previous chapter and conclude
that X% define a metric and, moreover, the connection A’ is the SD part of
the spin connection for that metric. But then the definition of X% becomes the
statement that the curvature of the SD part of the spin connection is SD as
the 2-form, which is the Einstein condition, and moreover, the SD part of the
Weyl curvature tensor vanished. Thus, perfect connections describe ASD Einstein
metrics of nonzero scalar curvature.

Thus, in the previous description of gravitational instantons, the only equa-
tions that need to be solved are F'F7 ~ §% which are first-order partial differ-
ential equations (PDEs) on an SO(3) connection. A solution to this first-order
PDEs is then automatically a solution to second-order chiral pure connection
PDEs (6.23) that give Einstein connections. This is all similar to what happens
in the instanton sector of the Yang—Mills theory.

6.3.2 Analogy with Self-Dual Yang—Mills Theory

SD Yang-Mills theory is a modification of the full Yang-Mills theory that keeps
only the so-called SD solutions of the Yang—Mills theory field equations. The
field equations of the SD Yang—Mills theory read
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F, =0, (6.113)

where the plus denotes the SD projection of the Yang—Mills field strength. This
equation says that at most, the ASD part of the field strength is nonvanishing.
A Yang-Mills theory connection that satisfies this first order in derivatives field
equation also satisfies the full Yang-Mills theory second-order field equation
dy F, = 0, by Bianchi identity. Indeed, F'; = 0 means that the curvature 2-form
is ASD and thus, F, = —(1/2)¢,,”" F;,. But this means that the Yang-Mills
theory field equation is satisfied by the Bianchi identity for F};,.

Next, one can show that on a closed manifold the Yang—Mills action is bounded
from above by the Pontryagin number for the corresponding gauge bundle. In-
deed, the action is

1 1
SYM[A] = 71 /(F‘;Lzu)Q = 71 /(Fi;w)Z + (Ff ,uu)Q' (6114)
It is then clear that
1 a 2 a 2 1 a a
Syml[A] < 1 (F+,u,u) — (Fﬂw) =5 FeFe, (6.115)

with the equality if and only if the connection is a Yang—Mills instanton F; = 0.
Thus, Yang—Mills instantons are global maxima of the Yang—Mills action.

The analogy with gravitational instantons is clear. Perfect SO(3) connections
are those satisfying the first-order perfectness PDEs. They are automatically
solutions of the second-order PDEs (6.23) and thus, are, in particular, Einstein
connections. Moreover, as we have seen in (6.59), these connections are also
global maxima of the chiral pure connection action. All these statements exactly
mimic what happens in the case of Yang—Mills instantons.

6.3.3 Action Principle for Perfect Connections

There is a simple action principle that gives the desired pure connection descrip-
tion of instantons field equations. The action is given by

Sinst[A7 \I’] :/\IﬂjFiFj; (6.116)

where ¥¥ is a symmetric tracefree matrix. Varying with respect to ¥¥ we get
the desired perfectness condition for the connection. Varying with respect to the
connection we get the field equations for the Lagrange multiplier fields

d* (V9 F;) = 0. (6.117)

It is interesting to note that this gives a polynomial in the fields action principle
with at most quintic interaction. Also, because the action is linear in one of the
fields one knows from general principles that the corresponding quantum theory
is one-loop exact. Indeed, it is easy to convince oneself that it is impossible to con-
struct any diagrams with more than one loop in such a theory. As was discussed
in Krasnov (2017b), this quantum theory is, in fact, quantum finite in that the
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divergences that are possible at one loop are removed by field redefinitions. This
gives an interesting and rare example of a gravitational theory that is quantum
finite.

Another remark is that we can rewrite the action (6.116) in the general form
(6.2) with

Sinse (M) = Tr(M™1). (6.118)

Thus, given that a general f(M) corresponds to a modified theory of gravity,
with see that there is a specific choice in which the effect of modification is to
allow only the ASD Einstein solutions to the GR field equations.

Yet another remark is that it is possible to think about the full GR in formu-
lation (6.1) as the instanton theory (6.116) plus additional interactions. Indeed,
let us expand the action (6.1) in powers of ¥. We have

smm=mﬂiﬁ/<%_ s (D) e )FW

The first term here is topological; the second term is the instanton action (6.116),
while all other terms introduce additional interactions among the fields already
present in the instanton theory.

6.3.4 Example: Fubini-Study Metric

Let us see how the pure connection formalism can be used to obtain the Fubini—
Study metric on CP?. We first describe the metric in the usual formalism, and
then show how it arises by solving the equations F*F7 ~ §%.
Fubini-Study metric is K&hler, which, in particular, means that it can be
written in the form
82

ds® = R

d¢hd¢?, (6.119)

where (4, A = 1,2 are the complex coordinates and
6 A 12 212
K = flog (1+ (¢ P + 1) (6.120)
is the Kéhler potential. Introducing the radial coordinate r and the Euler angles
¥,0,¢ via
¢! =rcos(0/2)e VT2 ¢? = rsin(g/2)e!V=9)/2 (6.121)

with the range ¢ € [0,4x],r € [0, 00] and the usual range for the spherical angles
0, ¢ the metric can be written in the following form

2 2
dr T 2

- FrIEi g

(02402, (6.122)
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where 0, 5 3 are the standard 1-forms on S® given by (6.71) and

A 2
O=1+ %. (6.123)

6.3.4.1 Chiral Half of the Spin Connection: SD

We would now like to confirm that the above metric is an instanton in the sense
of one of its chiral halves of the spin connection being perfect. We will see that
this is only true for one of the two chiral halves. So, we compute both the SD
and the ASD parts of the spin connection. Alternatively, this can be phrased
by saying that we compute the SD connection first with the standard choice of
the orientation, and then by reversing the orientation. Reversing the orientation
makes the ASD forms SD.

Let us start with the orientation choice we have been using previously. The
basis of SD 2-forms is

r 2 ,’,2
El — TdeT‘Ul 4@0-20-37 ¥ = 2@3/2 d"’O’Q - W03017 (6124)
and similarly for ¥3. Starting with an ansatz
A' = ac?, A? = Bo,, A3 = Bo, (6.125)
one finds
r2A

This means that the only nonvanishing curvature component is

F' = d'dro, — aos0s. (6.127)
This is SD when o' /o = 2/Qr, which is satisfied. We have

= AY?, F?=F3=0. (6.128)

We see that the metric (6.122) is Einstein, and we also see that the Weyl
curvature in U224 (A/3) and ¥* + (A/3) exactly cancels the contribution from
the scalar curvature U?? = U3 = —A /3. Because two of the curvature 2-forms
vanish, one cannot recover the metric from the curvature and so we cannot
describe the Fubini—Study metric using the chiral pure connection formalism
with this orientation.

6.3.4.2 Chiral Spin Connection: ASD

We now compute the ASD part of the spin connection, or the SD connection
but with the ‘wrong’ choice of the orientation. So, we instead take the following
basis of 2-form

r 72 r?
»= Tcydrgl + @0203, 2= 2@3/2 dros + 4Q3/2 329301, (6]‘29)
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and similarly for X3. In this case, the connection functions are found to be

Ar? 1
a=1——, 8= . 6.130
5 5 (6.130)
The first component of the curvature is then
Fl = a'dral + (ﬂ2 - CE)0'20'3, (6131)
which is SD if
o' 2
- = — 6.132
e (6132)

which can be checked to be satisfied. One then has F* = —(A/3)X', which is
the correct Plebariski equation with ¥!' = 0 in this orientation. Similarly, the
second curvature component is

F2 = 6’d7’0’2 + 5(0{ - 1)020'3 (6133)
This is SD if

g 2

- = - 6.134

Blaa—1) ¢’ ( )

which can again be checked to be satisfied. Overall, we have in this orientation
) A_.

F = —gza (6.135)

Thus, the Fubini-Study metric is an instanton in the sense of one of the two
halves of its spin connection being perfect.

6.3.5 Pure Connection Description of Fubini—Study

We now show how to recover the Fubini-Study metric using the connection
formalism. We start with the ansatz (6.125). The curvature components are
given in (6.131) and (6.133) and the equations F*F7 ~ §% take the form

o' (87 —a) = B8 (a—1). (6.136)
This integrates to
B =k(l — )’ +2a —1, (6.137)

where x is the integration constant. We have already computed the metric de-
scribed by connection (6.125) in our discussion of the Page metric; see (6.107). Be-
cause we are now matching the curvature components to the basis of SD 2-forms
in the ‘wrong’ orientation, the signs in terms o — 82 and 1 — o in (6.107) must
be reversed. If we take « as the radial coordinate, we get the following metric
Bg_a 2 62(04_1)2 2

_(A/3>d82 = /32(04 _ 1)2d04 + 52 —a oy + (62 - a)(ag +U§)'
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For a general value of k this is what is known as the Taub-Newman-Unti-
Tamburino (Taub-NUT) metric, and can be put in the standard Taub-NUT
form by an appropriate choice of the radial coordinate. For x = 1 this metric
gives us the metric on the four-sphere. Indeed, in this case 82 = o? and the
metric reduces to

(A/3)ds* = oz(fajoz) +a(l —a)(o} + 02 +03).
Introducing a new coordinate
a= %(1 + cosf) (6.138)
the metric becomes
(A/3)ds* = db* + isin2 0(o} + o5 +02), (6.139)

which is the metric on the unit four-sphere.
For k = 0 we obtain the Fubini-Study metric. Indeed, in this case the metric is

do?

A= e -a)

+(2a—-1)(1—-a)oi + (1 —a)(os + 03).

Introducing a new coordinate

Ar?

where @ is given by (6.123) the metric becomes (6.122).

6.4 First-Order Chiral Connection Formalism

The chiral pure connection action (6.8) leads to a second order in derivatives field
equations. It also contains the difficulty of defining the square root in the action.
As we have discussed, this action is certainly defined perturbatively around any
given background. One can also use this formulation to explicitly solve Einstein
equations, as we have demonstrated on the example of the Page metric. However,
the necessity to worry about how to choose a branch of the square root of the
matrix X makes this formalism not ideal. Also, the pure connection formalism
is only available when the cosmological constant is nonzero.

In this section we will advocate a first-order version of the chiral pure connec-
tion formalism. The field equations that it leads to are first-order in derivatives
and as the result there are extra fields as compared to the pure connection case.
But there are no awkward matrix square roots to deal with, and in this sense, the
new formalism is much easier to deal with. We will also see that the procedure
of solving Einstein equations in this first-order formalism is in some cases much
simpler than that in the second-order one. Finally, the new formalism is available



224 Chiral Pure Connection Formulation

even when A = 0, and is still more economic that the Plebanski description
because the 2-form fields of the latter have been integrated out.

6.4.1 The Action and Field Equations

The new formalism is the middle point between the Plebanski action with all
fields 3%, A%, ¥'¥ present, and the pure connection action that contains only the
A? field. It is obtained by integrating out the 2-form field X! from Plebariski
action. The most convenient form of the resulting action has already been stated
in (6.2), which we repeat

S[A, M, ] = ﬁ /Tr(M’lFF) o (f(M) = A). (6.141)

This is a functional of a connection and two Lagrange multiplier fields, a symmet-
ric 3 x 3 matrix M¥ | and another 4-form valued p, which imposes the constraint
that some gauge-invariant function of M (e.g., the trace in the case of GR) is
not dynamical.

The field equations that one obtains by varying the action are as follows

of
Nwa
where X = FF. The first of these equations should be viewed as a first-order
differential equation on M, while the second determines X in terms of M and
can then, in principle, be integrated to obtain the connection. We will later
see that this interpretation is actually a good strategy for solving the system
of equations (6.142) system of equations in many examples. In the case of GR,
the matrix of partial derivatives of f(M) appearing on the right-hand side of
the second equation is equal to the identity matrix. We note that (6.142) is a
very compact and elegant way of writing Einstein equations. We also note that
nothing prevents us from setting A = 0 in the action (6.141).

When A # 0, the matrix M can be solved for from the second equation, and
the solution substituted to the first, resulting in the pure connection description.
But the idea is not to do this too soon, and instead solve the first equation in
(6.142) treating the components of M as independent fields. If this is possible
then X can be solved for in terms of M from the second equation, from where the
connection can be determined. So, in cases that this programme can be realised,

ANMT'F)=0, MT'XM'= (6.142)

we get an efficient strategy for solving Einstein equations. Of course, in general,
things are not so simple and what one gets is a coupled system of first-order
differential equations for both M and the connection. But there are examples in
which this strategy works, as we shall now describe.

6.5 Example: Bianchi I Connections

In this section, we consider the example of spatially homogeneous anisotropic
universes with flat spatial slices, the so-called Bianchi I setup.
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6.5.1 Connections and Curvature

We consider the Lorentzian signature GR and start with the following ansatz for
the connection

A" = ihy (7)dz", etc. (6.143)

Here, h;(T) are three functions of an arbitrary time coordinate 7, while z* are
the Cartesian coordinates on the spatial slices (surfaces of homogeneity). The
corresponding curvature 2-form is

F' = ihdrdz" — hohsdz®da®, etc. (6.144)

where an overdot denotes derivative with respect to 7. Calculating the wedge
product, we obtain

FiFI = 259X, he,, (6.145)
where €, = dz'dx?dz3dr is the coordinate volume form, no summation is implied
in this formula, h = hihyhs, and

hi
X, = (6.146)

k3

=

If we now define X% = F*FJ /e with
¢ = 2ihe,, (6.147)
then XU = diag <X17X2,X3).

6.5.2 FEvolution Equations in the Pure-Connection Parametrisation

There is no difficulty in considering the most general class of theories at least in
the first steps. The reason for the choice (6.147) of the volume form defining the
matrix X% is that the pure-connection formulation equation (6.42) reduces to
the system

(aig(i) =9(X) = fi;xj, (6.148)

which is a system of first-order differential equations for X;. Specialising to the
case of the function g(X) given by (6.30), it is not hard to obtain the familiar
GR solution. We will, however, obtain the solution in a simpler way working in
the formulation with auxiliary fields.

An alternative form of equations (6.148) is obtained by multiplying these
equations by h = hyhyhs and using definition (6.146). Equations (6.148) then
reduce to

( aii h) = g(X)h. (6.149)

This form is convenient for analysing the case of arbitrary g(X).
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We note that the field equations (6.149) can be obtained both directly by
substituting the ansatz for the connection into (6.42), or from an action principle.
Indeed, on our ansatz the action (6.29) reduces to

S ~ /dTg(X17X27X3)h. (6.150)
The variation of this action with respect to, e.g., h; is
dg (6h, X, ohy
0SS~ [ d — ——6h, | h X)—h. 6.151
[ irax. (h s ) TS, (6-151)
This gives the following equation of motion
g ' dg
——hshs | hy =g(X)h — X.h 6.152
(3X1 2 3) 1 g( ) X, 1, ( )

which can be rewritten as (6.149).

6.5.3 The Metric

Before we begin our analysis of the evolution equations, it is useful to compute
the metric determined by the connection. The easiest way is to directly look for
a metric that makes the curvature forms (6.144) SD.

We are looking for the metric in the Bianchi I form

ds® = —N*(r)dr* + > a3(r) (dz')” . (6.153)

This means that the basis of SD 2-forms is
¥ =iNaydrdz' — ayasdr’dx’®, ete. (6.154)

We now require that the curvature 2-forms are proportional to the corresponding
3#¥s. This gives

hi  hahs

= , te., 6.155
Na1 Qao03 e ( )
from which we get
ai hi
— = tc. .1
N XX etc (6.156)

Another equation for determining the metric is obtained by fixing the metric
volume form

€m = Najasasdrtdr?da®dr = Najasase.. (6.157)
By our prescription, this should be equal to a multiple of g(X):
2iA%¢,, = g(FF), (6.158)
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where A is the cosmological constant and for the case of GR the function g(X)
is given by (6.30). Using (6.145), we get

A’ Na,azas = g(X)h. (6.159)

Combining this equation with (6.156), we have

g( X)X, X0 X5\ "?
N2 — (()[\1223 . (6.160)

If we require that the metric be real, and that the signature of the 7 coordinate
be negative, then the final expression for the metric is

Ads® = /]g(X) X, X X5 ldﬁ +[ XD nix. (dx’“)gl . (6.161)
j k
Note that this metric is time-reparametrisation invariant, as it should be.

6.5.4 Solution in the General Case

One of the miracles of the pure-connection formulation of gravity under consid-
eration is that it allows one to write the general solution to the problem at hand
for an arbitrary theory, i.e., for an arbitrary choice of the function g(X). This
becomes possible by using a clever choice of the time variable.

We begin with solution for the case of general g(X) and then specialise to GR.
Solution of GR in which one works in the physical time from the beginning is
also possible, but is more involved and will not be considered. Details can be
found in Herfray et al. (2016b). Let us consider the evolution equations in the
form (6.149). By using time-reparametrisation freedom, it is always possible to
choose the time variable 7 in such a way that

g(X)h = const. (6.162)

The geometric significance of this choice is that this is the time coordinate in
which the metric volume form is proportional to the coordinate volume form, i.e.,
V/det g = Najasas = const. This is clear from (6.159).

With this choice, equation (6.149) can be integrated to give an implicit solution
for X (7):

dg(X)
0X;

=g9(X)(t—7), (6.163)

where 7; are arbitrary integration constants. The homogeneity of the function
g(X) implies another relation

ZXZ- (r—7) =1 (6.164)
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Equations (6.163) and (6.146) give a complete solution to the problem for an
arbitrary theory from our class. We now give some general analysis of the solution
obtained, and then specialise to GR.

6.5.5 De Sitter Solution

Consider 7 — oo, and assume that ¢g(X)7 remains constant as 7 — oo. Then
equation (6.163) implies that all derivatives dg(X)/0X; become mutually equal.
The symmetry of the function g(X), in turn, implies that all X; become equal
to each other in this limit. Relation (6.164) then gives the solution

1
X, = 3, 8 T oo (6.165)

The homogeneity of g(X) then justifies the assumption f(X)7 — const that we
made in deriving this solution.

The corresponding metric describes the de Sitter spacetime. Indeed, we have
9(X) = go/7, where g, is a constant. Then, by rescaling the spatial coordinates,
we can always choose the solution in the form h; = 7'/3. Then metric (6.161)
becomes

2
ds? = | /%{) <_§; n Tz/sdrz) — /%{’ (—df? + > dr?), (6.166)

where 7 = € is the time coordinate change, and dr? = _. (dz*)*. This is nothing

i

but the de Sitter metric, which is thus the solution of theory with any g(X).

6.5.6 Integration Constants

Without loss of generality, one can shift the time variable so that

> m=o. (6.167)

7

Second, apart from the trivial case 7; = 0 for all ¢, which gives the de Sitter
solution, by the remaining freedom of time rescaling, which does not violate
(6.162), we can achieve the condition

d =2 (6.168)

k3

This normalization is convenient because squaring (6.167) we can rewrite (6.168)
as

T1Te + ToT3 + 7371 = — L. (6.169)
Without loss of generality, we can arrange the integration constants so that

T3 < To < Ty (6.170)
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Because of condition (6.167), we have 73 < 0 < 7. When 7, = 71, we have
7 =1 = 1/4/3 and 73 = —2/+/3. This is the largest absolute value that 75 can
reach. In the opposite extreme 7, = 75 we have 7, = 73 = —1/\/§ and 7, = 2/\/57
which is the largest value 7, can reach. All in all, we have

7. <71 <271, 1. <1 <17, =27, <713 < —7, (6.171)

where 7, = 1//3.

6.5.7 The Case of GR
We have, in general,
g(X) = ATr(M~'X), (6.172)

and therefore, 9g/0X = AM~'. Thus, the solution (6.163) becomes

A
M= —— > e 6.173
JrTelcEry (o17)
Here g(X) needs to be determined from the constraint f(M) = A. In the case of
GR this gives

1 3r2—1
X) = = = 6.174
g( ) ;T_Ti Hi(T_Ti) 51, ( )
which gives
A
My=——— et (6.175)
51(7— — 7_1)

This determines the auxiliary matrix M completely. We now determine the com-
ponents of the matrix X in terms of those of M using the equations M1 XM~ =
ul. This gives X; = pM?. The Lagrange multiplier u is determined from (6.172),
which gives u = g(X)/A?. Overall, we have

1 (1= 1) (T —73)

X = si(t—1)? - B —U(r=mn) etc. (6.176)

The quantities XS® have simple poles at 7 = 7;, and all blow up as 7 — +1/+/3,
which corresponds to the Kasner singularity. This behaviour is illustrated in
Figure 6.3.

6.5.8 Solution for the Metric

Let us also write the corresponding metric components; see (6.161). We have
g(X) = s, and so

1 g(X)X, (37 —1)°

(37_2 — 1)27 X2X3 o (T — 7-1)4 ’

g(X) X1 X X5 = (6.177)
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Figure 6.3 Plots of the components of the matrix X.

and similarly for the other components. All expressions are manifestly positive,
so taking the square root, we have

2 _
N7 1 0 = 2 3T =1

A(3T> —1)’ ~ MG (6.178)

In the time interval 7 € (—7,,7.), 7. = 1/V/3, instead of taking the modulus
of expressions to get nonnegative metric components, we reverse the sign of the
cosmological constant A. This is the correct interpretation, as this time interval
corresponds to a solution of GR with negative cosmological constant.

We now study this solution in more detail, and, in particular, integrate the

equations for h; near the singularity.

6.5.9 Behaviour Near the Poles

When all three integration constants are different, the function s;(7) has three
simple poles at 7 = 7;, and two simple zeros at 7 = +7.. Let us analyse the
behaviour near the poles.
Consider, for example, the limit 7 — 7,. In this case, we have s, ~ 1/(7—71,) —
00. Solution (6.176) behaves as
Xim . Xy~ Xyt (6.179)

T —T1

This is an integrable behaviour, with A; — 0 and h, and hs finite as 7 — 7,. We

thus see that all X; change sign at 7 = 7.
Let us determine the behaviour of the components (6.160) of the canonical
metric (6.161) at this point. Integrating the first equation in (6.179), we obtain

hl ~T — T, (6180)
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while h, and hs tend to constants. So, the significance of the point 7 = 7
is in the fact that one of the connection components h; passes through
zero there.

Now, using this behaviour, we see that the metric lapse function as well as the
scale factors (6.160) are finite and regular as 7 — 7. So, the 7 = 7, is just a
special point where one of the components of the connection goes to zero.

It is also interesting to analyse what happens with the components of the
matrix F*FJ of curvature wedge products at this point. We know that, e.g.,
F'F' = 2iX, he., where ¢, is the coordinate volume element. Thus, we see
that F'F' remains finite at 7 = 7, because the pole in X, is cancelled by
the zero in hy (recall h = hjhohs). We also see that the other two compo-
nents, F2F? and F?F?, vanish at 7 = 7,. We have an order two zero at this
point, so that the matrix M that is proportional to the square root of X
has order one zero in its components M,, M3 ~ 7 — 1;. This is the already
familiar pattern from our consideration of the Page metric, in which two of the
eigenvalues of v/ X change sign so that the sign of the determinant of this matrix
is unchanged. In terms of our previous discussion illustrated by Figure 6.1, the
matrix M/A starts in region I for large positive 7 and crosses to region I for
Te < T < Tq.

It is also interesting to consider what happens near 7 = 7,. Let us consider
the components of the matrix M given by (6.175), which we write as

M, _ (T =) (T —73) M, (tr—m)(T —73) M, (1—m)(T—72)

A 3r2 -1 A 3r2 -1 A 3r2—1

We see that M, /A changes sign at the singularity 7 = 7. and is negative ‘on the
other side’ of the singularity. The quantities My/A, M3/A both change signs at
7 = 7, and then change signs again at the singularity, so they are both positive as
7 — 7, from the left. Thus, we have one of the eigenvalues of M /A negative and
two positive, which means that the determinant of M /A is negative in the interval
T € (=7, Te). At T = 7 both M; /A and Mj;/A change sign, but the determinant
of M/A remains negative. This means that the matrix M/A remains in region
IIT of Figure 6.1 for all 7 € (—7,, 7).

6.5.10 Behaviour Near the Singularity

At the singularity 7 = 7. =1/ V/3, the function s, has a simple zero. Thus, we
have

(Te — 1)(1e — 73)

2V3(r — 1) (T — 72) ’

Integrating (6.146), we get

X~ -

etc, g(X)~1 -1 (6.181)

_ (te=T9)(1c—73)

hy ~ (1 —71.) 2V3i-7e) _ etc. (6.182)
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We thus see that the lapse function (6.178) diverges, while the scale factors
behave as

ai ~ (1 — 71", (6.183)
where
(re =) (1 — 73)
=1- , etc. 6.184
D1 \/g(Tl — TC) ( )
These exponents satisfy
prtpatps=1, p1P2 + paps + psp1 = 0. (6.185)

From (6.178) we see that the physical time near the singularity is ¢ ~ /7 — 7,
and thus the behaviour (6.183) is the usual Kasner one,

a? ~ 2P, (6.186)

with the correct exponents (6.185).

Note that the components of the gauge field (6.182) all diverge at the singu-
larity, so this is a true singularity not only of the canonical metric (6.161) but
also of the fundamental gauge field.

6.6 Spherically Symmetric Case

The purpose of this section is to solve the Lorentzian signature spherically
symmetric problem with negative cosmological constant. Again, we use the mixed
first-order version of the chiral pure connection formulation.

6.6.1 Equations
We take the following spherically symmetric ansatz for the connection
A" =ia(R)dt + cos(0)dp, A*> = —b(R)sin(0)dg, A*> = b(R)d6. (6.187)
The curvatures are
F' = —id'dtdR + (b* — 1) sin(0)d0d,

F? = —iabdtdf + ' sin(0)dodR, (6.188)
F® = —iabsin(0)dtde + b'dRd0,

where the primes denote the derivative with respect to the radial coordinate, at
this stage arbitrary. The diagonal X matrix can then be taken to be

a b/
a

X: X:X: .
1 ’ 2 3 b271

(6.189)
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The field equations d*(M~'F) = 0 can be written in the following form

(M a(0* - 1)) = @mﬁ —1), (6.190)
(5 a(t? ~ 1)) = 8o 1),

where we manipulated the equations to map them into a form in which the
right-hand side is the same. Here

9(X) (b —1)

_ 1 _oag—1 a’ —1
T_Tr(M X)=M; E+M2 o1 (6.191)
6.6.2 Solution
We now choose the radial coordinate so that

g(X)a(b® — 1) = A. (6.192)

The solution for the matrix M is then immediately written down

X X

i =gy, =Ry Ry s

where R, » are integration constants. We remark that we want the solution with
A < 0, so that there is an asymptotic region at spatial infinity.

6.6.3 Metric

The metric is computed from the requirement that the curvature 2-forms (6.188)
are SD, and that the metric volume form is a constant multiple of the coordinate
volume form. This last condition follows from our choice of the radial coordinate
(6.192). Let us give some details of this calculation. We look for the metric in
the standard spherically symmetric form

ds* = —f2dt* + ¢g°dR® + r*dw?, (6.194)

where r = r(R) and dQ? is the standard area element on the unit S?. The basis
of SD 2-forms for this metric is

SU— ifgdtdR — r* sin 0d0ds,
¥? = ifrdtdd — grsin 0dpdR, (6.195)
Y% =ifrsinOdtdy — grdRd6.

We now demand that our curvature 2-forms are proportional to the corresponding
Y ¥s. This gives the following equations

a b2 -1 ab
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These can be rewritten as

X, ar? f ab?
_ S ar 1
fg b2_1? g Xz(b2—1)7 (6 97)
and give
X1a?b*r? X, X,r?

Another equation we need is that for the volume form. This we get by demanding
that g(FF) = 2iA%¢, where € is the metric volume form € = fgr?e., and where
€. = sin@dRdOd¢dt is the coordinate volume element. The quantity g(FF)
evaluates to g(FF) = 2ig(X)a(b* — 1)e.. Thus, we get

A fgr® = g(X)a(b® — 1). (6.199)

Taking the square of this and substituting the expressions for f2? and g% we get

s _ 9P -1 eI~ 1)

= =yt 6.200
" XA " X, A2 (6:200)

We thus get the following metric

|Alds® =

PO 17 (X XK
X FACEC Y

where as usual d§2? is the metric on the unit sphere.

6.6.4 Solving for the Connection Components

We now specialise to the case of GR. We have the condition Tr(M) = A. And so
we take the trace of M as obtained in (6.193) to get

1 1 2 3R+2R, + R,
1= + = . 6.201
g(X) <R+R1 R+R2> g(X)(R+ R,)(R+ Ry) ( )
It is now convenient to shift the radial coordinate so as to impose
2R, + R, = 0. (6.202)

We now take R, = R to be the single parameter of the solution. This gives
3R
9(X) = = =,
(R+ R)(R—2R)
and thus a complete solution to the problem of determining the matrix M

A(R —2R) AR+ R)

_ My = ——F=. 6.204
3R : 3R (6.204)
We can now find the components of the matrix X. We have M~ XM~1 =
pl, from which X = pM?. But we can also write the original equation as

(6.203)

M1:
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M='X = uM and then take the trace. Using ATr(M~'X) = g(X) we get as
before p = g(X)/A?. So, the final expressions for the quantities X; and X, are

(R—2R) _ (RER)

= SRR I * = SR =200 (6.205)

1

We now integrate the relations (6.189) to obtain the components of the connec-
tion
R+R ) R—2R

a=K ——+

GRS 1= Kagprrs (6.206)

where K, are integration constants. This gives a complete solution to the
problem, modulo the issue of fixing (or interpreting) the integration constants
KLQ and R

6.6.5 A Relation Between K, and K,

There is a relation between the integration constants K , that follows from our
gauge-fixing condition g(X)a(b*—1) = A. Indeed, substituting the g(X) that we
have found in (6.203), as well as the connection components, we get

6.6.6 Fixing K, . from the Asymptotics

Let us fix K, from the large R asymptotics of the metric as found previously.
We have X, X, = 1/3R asymptotically, and g(X) = 3/R. So, for large R the
metric reads

|A‘ 2 2 R2/3 2 dR2 R2/3 2
( ds®* = —K; 1/ dt” + W + |K2|Wd9 . (6.208)
We would like this to be the usual (asymptotically) hyperbolic metric
2 2 2 2 dr2 2 2
ds* =1 | =r*dt” + — +r7dQ" |, (6.209)
r
with
A 1
- =——. 21
3 B (6.210)
This means that asymptotically at least
R2/3 R2/3
12 34/3 = 7"2, |K2|31T = Tza (6211)

and therefore,

K? = 3|K,|. (6.212)
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Using (6.207) this gives
3\ 2/3 3\ /3
K| = (l> s K= <l4) , (6.213)

R? = rS1*, (6.214)

and thus

There are two possible branches here R = Z4r3[%, with only one of these
branches giving the desired Anti-de Sitter-Schwarzschild metric, see the next

section.

6.6.7 The Final Metric

The conformal factor in the metric computes to /(3R)4/3K2 = 3r% which
immediately gives the correct angular part of the metric. For the other terms,
after numerous cancellations, we get the following metric

d 2
ds? = 2 (—b"‘dt2 + b% + erQQ) . (6.215)
In particular, it is seen that (6.214) is the relation that is valid everywhere.
We can now fix the components of the connection completely. In terms of the
radial coordinate r the functions a and b? take the form

a = sign(K;) (:l:r + 7“52> , b® —1=sign(K,) (7»2 F 122]:) .
Here, the two possible signs are those of the two branches in R = £73[2. We
see that the sign of K, must be chosen to be plus in order for the function
b* to behave as r? for large r. This means that we must take K, to be nega-
tive (because KK, = A is negative). But then if we want the function a to
behave asymptotically as r we need to take the R = —r3I? branch. This finally
gives

R 2R
¥ =14r"+"— (6.216)

r2[2’ 12r’
This becomes the usual Euclidean Schwarzschild—AdS metric if we further replace
r — r/l and identify

a=7Tr—

R=—MI, (6.217)

where M is the black hole mass. The fact that we need both R, R negative to get
the familiar solution correlates with the fact that we are considering the negative
A case.
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6.6.8 Behaviour of the Matrizc M

It is interesting to consider the behaviour of the matrix M in the solution we
have obtained. With the previous identifications we have

M, 1 2 M, 1 M
L) Rl ems

This means that asymptotically for large r the matrix M/A is in the region I of
its parameter space; see Figure 6.1. But at r = (2M/1)'/3 one of its eigenvalues
changes sign, and the matrix crosses to region I11 of the parameter space. It is
also interesting that for negative M, the behaviour would be different, and we
would have two of the eigenvalues of M /A changing sign instead. But in this case
there is no horizon and one has a ‘naked’ singularity at » = 0. It is interesting
that the expected behaviour of matrix M/A (in the sense of taking values in
regions I and TII of the parameter space for A < 0) correlates with positive
mass and no naked singularity condition.

6.7 Bianchi IX and Reality Conditions

The purpose of this section is to analyse the so-called Bianchi IX model using
the first-order connection formalism (6.142). The Bianchi IX setup gives a very
good illustration to the problem of imposing Lorentzian signature case reality
conditions. In all the setups studied so far the problem of imposing the Lorentzian
signature reality conditions was trivial, as it was always relatively straightforward
to select the desired conditions. In particular, the same reality conditions worked
for any modified theory of the type (6.2). We shall now analyse an example
where this problem becomes nontrivial, and where it is no longer obvious which
reality conditions to impose in the connection formalism. The correct reality
conditions in the case of GR are the ones that require the metric constructed
from the connection to be real Lorentzian. But we shall explicitly see that the
compatibility of these conditions with the dynamics of the model is nontrivial.
If one changes the theory changing f(M), one changes the dynamics, and the
modified dynamics is in general no longer compatible with the conditions that
the metric constructed from the connection is real. This means that there is, in
general, no sensible Lorentzian signature interpretation of the modified theories
of the type (6.2), and these modified theories exist only in the Euclidean or split
signatures. The analysis in Section 6.7.4 also illustrates how subtle the chiral
connection formalism Lorentzian signature reality conditions are even in the
case when they can be imposed, which is in the case of GR.

The novelty of the present setup as compared to all the cases considered
previously is that the corresponding GR solution has the SD half of the Weyl
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curvature complex, while in all the situations considered before this chiral
half of the Weyl curvature was real. It is in such setups that the problem of
the connection formalism Lorentzian sector reality conditions becomes highly
nontrivial.

6.7.1 Ansatz for the Bianchi IX Model

By using the gauge symmetry, we can present the connection 1-forms for
Bianchi IX model in the following form:

Al = hlal, A2 = h20'2, A3 = h30'37 (6219)

where 0, 53 are again the canonical 1-forms on S* given in (6.71) and satisfying
do, = —0,03, etc. The functions ¢, » 3(f) are complex-valued, and part of the
motivation for the exercise in this section is to understand which reality condi-
tions need to be imposed on them. The curvature 2-forms of this connection are

Flzh.ldto'l_Hla'ga'g, (6220)
as well as cyclic permutations. Here we have introduced the notation
Hl = hl — h2h3 (6221)

and similarly with cyclic permutation of indices. The nonzero exterior products
are

F'F' = 2h, H, dto,04073, (6.222)

and similarly for the other diagonal components of the matrix F*F7.

6.7.2 The Metric

We know that the reality conditions that we want to impose on the components
of the connection must guarantee that the metric constructed from the curvature
of this connection is real Lorentzian. So, let us compute the metric. We look for
the metric in the following Lorentzian signature form:

g=—N(t)dt* + ai(t)(01)* + a3(t)(02)* + a5(t)(03)*. (6.223)
The basis of SD 2-form for the previous metric is given by
El = iNaldtal — A2030203, (6224)

and similarly for the other components. We want the curvatures (6.220) to be
proportional to the basic 2-forms X%, which gives the equations

Nal h1
QAo03 1H1 ’

(6.225)
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together with cyclic permutations. Because the left-hand side of these equations
is real for a real Lorentzian metric, we see that the quantities, h,/H;, i = 1,2, 3,
should be purely imaginary.

6.7.3 Dynamics of the Model

We can obtain the dynamical equations for this model by substituting the ansatz
(6.219) for the connection into the first-order action (6.141). If we define X; : ¢; H;
and take the matrix M¥ to be diagonal with diagonal entries M; we get the
following action

We have set 167G = 1 here. Let us now define the generalised momenta

_or_n

dt. (6.226)

Di (6.227)
It is interesting to note that in this model, we see quite explicitly that the
interpretation of the auxiliary field entries of the matrix M™ is that of certain
functions on the phase space of the system. They are essentially the inverses of
the canonical momenta of the system. The action takes the following Hamiltonian
form:

dt. (6.228)

Slh,p, p] = %/ lZpihi +u <Z Ip{ —A>

i

This is an action for a system with three configurational variables h;, with the
Hamiltonian that is a constraint. We also note that for this setup the action one
obtains would be the same for any of the modified theories of the type (6.2).
The only thing that changes is the phase space constraint that is imposed. We
emphasise that at this stage all fields are complex-valued, with reality conditions
still to be imposed.

Action (6.228) generates the Hamiltonian equations of motion for h; and p; :

: H 1 hy h
hy :up%, L= p ( -2 3>, (6.229)
1

and similarly with cyclic permutations of indices 1,2, and 3, as well as the
constraint

> LIgyY (6.230)

P

In a modified theory, both the evolution equations as well as the constraint would
be modified.
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6.7.4 Analysis of the Reality Conditions
We require the metric to be real and using (6.225), this implies that the quantities

N?a? h; i

3

Na,asas iH; E (6.231)
should be real and positive. The simplest possible realisation of this is to take p;
all real and p imaginary, on the positive imaginary semiaxis.

After the variation of (6.228) with respect to u, without loss of generality,
one can set p = i (this is achieved by redefinition of time t). After this, the
Hamiltonian equations of motion (6.229) take the form

ih:%, p1=i<1—h2—h3>, (6.232)
b1
and similarly with cyclic permutation of indices 1, 2, and 3.

We now show that the reality of p; is compatible with the equations of motion
(6.232), i.e., that these reality conditions are preserved in time. While this is as
expected because we know we are dealing with GR for which the metric can be
chosen to be real, this is far from obvious in the chiral connection formulation
under consideration. To check that the reality conditions are compatible with
the dynamics we set

hi =z, +iy,,  i=1,23. (6.233)

Then the reality of p;, as well as the requirement that this reality is preserved
by the time evolution, by virtue of the second equation in (6.232) results in the
additional constraints

77777 =0, (6.234)

and similarly with cyclic permutation of indices 1, 2, and 3. The resulting system
of equations can be solved and x; determined in terms of p;

D2Ps3 1 1 1 )

x = -+ =+ etc. (6.235)
b2 < pi i pi

After this, the imaginary parts of the first set of equation in (6.232) as well as

the second set of equations give evolution equations for y; and p; :

Ty — T3 + YoUs

gy = : 6.236
pr=24 % (6.237)
P D2

and similarly with cyclic permutation of indices. In addition, the real part of the
first equation in (6.232) gives

Y1+ TaYs + Ty

I = 6.238
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This set of equations can be seen to be satisfied identically in view of the
equations (6.236) and the relations (6.235). Indeed, differentiating, e.g., the first
of the relations (6.235) and then using the second set of equations in (6.236)
one obtains precisely the right-hand side of the equation (6.238). Thus, these
equations are not independent and can be dropped. We should note, however,
that the fact that the arising overdetermined system of equations is consistent
is highly nontrivial. This would not be the case for modified theories.

Finally, the constraint (6.230) can also be split into its real and imaginary
parts. The real part gives

T1 — a3 + YolUs
b1

+ (cyclic permutations) = A, (6.239)

where it is understood that the quantities x; should be replaced with their
expressions (6.235) in terms of p;. The imaginary part of the constraint gives

Y1 — T2Y3 — T3Y>

+ (cyclic permutations) = 0. (6.240)
Y4
This can be rewritten as
1 T x 1 T 1 T T
T B e R (et S S}
D1 P3 D3 P2 3 Ps 3 D2 P1

which is satisfied by virtue of equations (6.234).

All in all, with the reality conditions imposed the model reduces to the set of
six first-order equations for the real quantities, y; and p;, as well as the constraint
(6.239). The arising system of equations is highly nontrivial and cannot be solved
in an explicit form, so we refrain from analysing it any further.

Attempting the previous analysis for a modified theory from the same class
shows that the dynamics of the model is no longer consistent with the reality
conditions (real p;) one would like to impose. To verify this explicitly one can,
e.g., take f(M) = det(M). It is not impossible that there exists a modified set
of reality conditions that is compatible with the dynamics, but it is clear that
these must be a model, and thus function f(M)-dependent. But even if this
is the case, these reality conditions, while dynamics compatible, will no longer
be the conditions that the metric is real. The physical interpretation, if any, is
then unclear. This discussion makes it clear that the modified gravity theories
obtained by changing f(M) only exist for Euclidean and split signatures, but
do not admit a Lorentzian interpretation.

6.8 Connection Description of Ricci Flat Metrics

The purpose of this section is to show that the first-order connection formalism
described previously extends also to the A = 0 case. In this case, one cannot inte-
grate out the matrix of auxiliary fields M%, and has to use the mixed first-order
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formalism with both M and the connection fields present. One, however, still
gets a useful and powerful description.

6.8.1 Action, Field Equations, Metric

Since the matrix M*% has to be tracefree in this case, it makes sense to write in
its place the traceless matrix U from the start. The action reads

1
AV = ——— [ Te(V'FF). .241
SV = e [ TTER) (6:241)

The corresponding field equations are
d*(U'F) =0, UIXU ~ L (6.242)

where as before the 3 X 3 matrix X is given by X% = F'FJ,

In this formalism, the metric is determined from the curvature of the con-
nection as follows. First, the conformal class is the one that makes the triple of
curvatures F'* SD. When A # 0 we can also determine the volume form explicitly
in terms of the curvatures. This is not possible in the case A = 0. The best we
can do is to have a formula for the volume form, which involves both ¥ and the
curvature. This formula is easy to derive. Indeed, we want the volume form to
be € such that X'%; = 64/ce. We also have X; = \If[lej. This means that we can
obtain the volume form as

1
6o

Let us present an example that illustrates the usage of this formalism.

Tr(U' XU, (6.243)

€ =

6.8.2 Schwarzschild Solution

Let us see how the familiar Schwarzschild solution is obtained using this for-
malism. The ansatz for the connections remains unchanged as compared to
that in Section 6.6.1, and so is the analysis of the curvature. However, in the
analysis of the metric we can only determine its conformal class now and get
relations (6.198). We can no longer match the metric volume form to a multiple
of Tr(M~'X) because this quantity is now zero. Indeed, it is still true that X =
pM?. But now we should set Tr(M) = 0. So, we have Tr(M ' X) = pTr(M) = 0.
But this means that the right-hand side of the equations (6.191) for the matrix
M becomes zero. This means that the equations d*(M ' F') = 0 take the form

(M;'a(b®* — 1)) =0, (M 'a(b®* — 1)) =0, (6.244)
with the solution being

Ml = Rla(b2 — 1), MQ = Rga(bz — 1), (6245)
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where R, and R, are integration constants. The condition of zero trace gives
Denoting R, = R we thus have R, = —2R. We also have X = uM?, which gives
X, = p(R)AR?*a*(b* — 1), X, = p(R)R?a*(b* — 1)?, (6.247)

where p(R) is some function of the radial coordinate. Recalling the definitions
(6.189) we have

a 4bb’

- .24

TR (6.248)
which integrates to

a=k(b>—1)% (6.249)

where k is another constant of integration. In principle, this gives a complete
solution of the problem.

Let us now determine the metric. On the solutions we should have ¥ = M ~'F.
But we should also have ¥¥7 = 2id“¢, where € is the metric volume form.
Evaluating 3! = 2iM; ? X, a(b? — 1)e,, where ¢, is the coordinate volume form,
we see that

p(R)a(b* — 1) = fgr?, (6.250)

which is the desired relation that fixes the metric completely. Indeed, substituting
fg=Xyar?*/(b> — 1) from (6.198) the previous relation becomes

X 4
w(R)a(b? — 1) = 2147 (6.251)
b2 —1
Substituting X; from (6.247) we get
o= 2 (6.252)
-~ 2Rr?’ ’
This implies
a’ 2 dr
X, =2 =22 2
T rdR (6:253)
We can now fix all of the metric components. Using (6.198) and (6.247) we have
4a?b*r? X221 (dr\?
2 _ p_ A LA 6.254
F=w- 97w " » <dR) (6:254)

We can also substitute r*> = 1/2Ra and then (6.249) into the first of these
relations. We get

2K
2= . 6.255
r== (6:255)



244 Chiral Pure Connection Formulation

The metric is thus

26 5 ., dr? 9 g
This means that if we want to have the usual fg = 1, asymptotically we have to
set k = R/2. With this choice

ds? = —

1
2
b’ —1= iﬁ’ (6.257)
where both signs are possible. In the usual Schwarzschild solution a = (b*—1)/2.
This is always possible to achieve by changing t — —t if necessary. We obtain
this relation if we take the negative sign in (6.257). We then identify

1
= =2M 6.258
- (6.255)

to get

o= o 2 (6.259)

T r
This illustrates that the A = 0 case can also be treated via the pure connection
formalism, with appropriate modifications to account for the fact that it is no
longer possible to solve for X in terms of M completely, as there remains the
freedom in choosing p(R). This does not affect the final metric that is fixed

completely by an appropriate choice of the radial coordinate.

6.8.3 Eguchi-Hanson Metric

As another example of the A = 0 connection formalism, let us obtain the Eguchi—
Hanson instanton. We work in the Euclidean signature. We start with a bi-axial
ansatz

Al = aoy, A? = Bo,, A3 = Bos, (6.260)

where o; are the already familiar 1-forms (6.71) on the three-sphere, and « and
[ are functions of some radial coordinate R. The curvatures are given by

Fl = Oé/dRo'l + (52 — 06)0'20'3, F2 = /BldRO'Q + B(a — 1)03017 (6261)

and similarly for 3. It is easiest to obtain the field equations by substituting this
ansatz into the action (6.241), and then vary with respect to the independent
functions. In general, this procedure is not guaranteed to produce the correct
field equations, and so its result has to be compared to the correct equations.
But in this case the procedure works. The traceless matrix W can be taken to be
of the form ¥ = diag(—2¢,, 1)), where ¢ = ¢(R). This produces the following
Lagrangian

L~y (;aw —a)+ () (a - 1>> - (6.262)



6.8 Connection Description of Ricci Flat Metrics 245

Varying this with respect to ¢ produces

_%O/(gz —a)+ (B (a—1)=0. (6.263)

Varying with respect to «, 8 produces two more equations
)y _ 3 o D
Pt 2a—1’ vt B2—a’
We see that these two equations imply (6.263), and so it is sufficient to consider
just the last two equations. The first of this is solved to produce

(6.264)

Y = r(a—1)*2, (6.265)
where & is an integration constant, while the first and second combined imply

1 Ck, B (ﬁ2)/

a1 F-o (6.266)
This can be solved for £ as a function of «
B=2—a+Kva—1, (6.267)
where K is another constant of integration.
We now determine the metric. We look for it in the form
ds* = f2dR* + g°0} + 7j(ag +02), (6.268)

4

where r is the new radial coordinate. The basis of ASD 2-forms for this metric
is

72 fr

S = fgdRoy + -0u05, £* = “LdRos + I 51, (6.269)

2 2
and similarly for ¥3. We find the metric by requiring the curvatures (6.261) to
be proportional to the above ASD 2-forms. We use the ASD rather than the
SD 2-forms because the solution we want to exhibit is hyper-Kéahler, which, in
particular, means that the SD part of its spin connection is identically zero. This
is why we work with the ASD part of the spin connection rather than the SD.
Matching the ASD basic 2-forms to the curvatures gives
o« Mg _ B _ T (6.270)

8% —« r2 Blaa—=1) g
We obtain one more equation by matching the volume forms. The metric volume
form € = fgr?/4e., where ¢, = dRo,05,05 must match the form in (6.243). This
gives

ot = e (= o)+ (Y (a - 1) (6.271)
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Using the first equation in (6.270) as well as (6.266) we get
B —«a

7,.2

— 272
= (6:272)
Substituting here the solution (6.267) we get
2 K—-2ya—-1
L2 =ve- (6.273)
2 kla—1)
The other two metric functions are then
2 2 232(q — 1)2
f2 — L (a) , 92 — T /8 (Oé ) , (6.274)
16 B2(a — 1)2 (82 — a)?
which determines the metric completely.
Eguchi-Hanson instanton corresponds to the case K = 0. This gives
a 5 a
a:1+ﬁ, 5:1—T—4, w—rﬁ, (6.275)

where we redefined the constant of integration /a := k/4 to match the usual
form of the Eguchi-Hanson metric. The metric is then given by

2/82 2 ) 9

ds’ Ed +— T+ Z(GQ +03). (6.276)

For a = 0 this is the usual metric on R x $% = R*. However, when a # 0 the

1/4

absence of conical singularity at r, = a'/* can be seen to require that the period

of ¢ is 2m rather than 47. This means that for a # 0 the metric is asymptotically
that of R*/Z,.

6.8.4 Linearisation Around an Einstein Background

The action (6.241) is also interesting because it produces a useful perturbative ex-
pansion around an arbitrary Einstein background. Indeed, taking the Lagrangian
L = U~'FF, where the trace is implied, we have, using index-free notations

0L = U SWU ' FF 4+ 20 F§F, (6.277)
and

8L = 20 ' SUU LUV FF — 40~ 6OV FSF + 20§ FSF + 20 ' F§F
(6.278)

We now specialise to an Einstein background F' = ¥3. Defining the second-order
Lagrangian L® as half the second variation we get

L® = 2Tr (WU 6W)e — 2(0100),y S'd e’ + ¥, d a’d e’ + €55 a’ a*
(6.279)
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where a' := § A’ and ¢ is the metric volume form appearing via 2'%7 = 2¢5%. For
simplicity we work in the Euclidean signature here.

We now want to integrate out the perturbation of the Lagrange multiplier
field ¥. The required manipulations become trivial in a special very useful gauge

Sa,, =0,  d%a =0. (6.280)

The first of these conditions fixes the diffeomorphism freedom, while the second
is the usual Lorentz gauge for the SO(3) gauge rotations. We will motivate this
gauge in the chapter on gravitational perturbation theory. In this gauge, the
decomposition (5.184) of the covariant derivative of the connection perturbation
into irreducible pieces simplifies greatly. There is no spin zero and no spin one
part. We then simply have

d*a’ = (d*a)§¥7 + (d*a)"%;. (6.281)
Here (d“a)y is the spin two part of the covariant derivative, which is symmetric

traceless, and (d“a)_ is the ASD part. In particular, we have Y'd*a’ = 2(d“a)¥ e

in this gauge. We can then rewrite the linearised Lagrangian as

LO) = Te((50 — (d4a),) U~ (30 — (d*a),))e
—2Tr((d%a). 0" (d%a))e + U dha'd*a’ + €55 a a".

It is now trivial to integrate out 0W¥. The remaining Lagrangian is further sim-
plified by writing

U tda'dda? = 2Tx((d%a), ¥ " (d%a)z)e — 2Tx((d%a) -V~ (d"a)_)e.
This means that the spin two part (d“a), cancels out and we get
L® = —2(d*a)* W ! (d"a) e + ¢7*T'a’a". (6.282)

This result is essentially the same as the previously derived linearised action
(5.187) in the A # 0 case, after the gauge condition (6.280) is imposed. It is
remarkable that such a simple linearised Lagrangian is also available in the
A =0 case.

6.9 Chiral Pure Connection Perturbation Theory

We now return to A # 0 setup. The purpose of this section is to perform
the linearisation of the chiral pure connection action around an instanton back-
ground. Our goal is in particular to reproduce (5.183) as the relevant linearised
action. The difference with the previous treatment is that we start directly
with the action in terms of connections and linearise, rather than with the
linearised Plebanski action from which later the perturbations of the 2-form
field is integrated out. The following manipulations give a good illustration of
how the chiral connection description of gravity works.
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We work with the action in the form (6.29). We will not specialise to the case
of GR until the very end of the calculation, thus showing that any member of the
class of theories obtained by ‘deforming’ g(X) has the same linearisation around
instantons.

We work on an instanton background for which the connection is perfect
F'F7 ~ §%. The metric is obtained by defining ¢ = (3/A)F*, where A is the
cosmological constant. The metric is then the one that makes ¥* SD and with
the volume form e such that X?¥7 = 20%¢. The first variation of the action is
given by (6.31). The second variation is given by

dg

0X

(d*a'd*a’ + Fie*akal),
(6.283)

where a' := §A. On an instanton background the matrix of curvature wedge
products X% ~ §%. On such a background, there are certain statements that
can be made about the matrices of partial derivatives of the function g, for any
function g(X). First, the matrix of first derivatives must be proportional to the
identity matrix

99
0Xii
This follows from SO(3) invariance of the function g(X). This means that the
second line in the linearised action (6.283) is a multiple of

X~ = ~ 8%, (6.284)

/dAaidAai + FieFalak = /aidAdAai + Fie*alak (6.285)
= /aieiijja'C + Fic*gigrk =0,

where to obtain the first equality we integrated by parts. This means that we
only need to consider the first line in (6.283).

We can also constrain the form of the matrix of second derivatives of g(X).
This follows from the fact that g(X) is a homogeneity degree one function. The
corresponding Euler relation gives

09 ..
— X" = g(X). 6.286
X0 9(X) ( )
Differentiating this relation with respect to X*' we obtain
dg g
99 xu—y, 2
OXIQXH 0 (6.287)

This means that on the instanton background the matrix of second derivatives of
9(X) is a symmetric endomorphism from the space of symmetric 3 x 3 matrices
to itself. Moreover, it is constructed from the identity matrix only, and it maps
tracefree matrices again to such matrices. Thus, it can only be a multiple of the
projector on symmetric tracefree matrices
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__ 99
0X WYX H

where the projector P, is given by (5.182). This implies that for any g(X) the
linearisation of the pure connection action is given by

~ P, (6.288)

62S[A] ~ /Pijkl(ZidAaj)(Edeal), (6.289)

which matches the previous GR result (5.183). The overall coefficient in front of
this linearised action is, of course, theory-specific, and in the case of GR is as in
(5.183). This argument, in particular, shows that for any g(X) the theory (6.29)
has exactly the same dynamical content as GR.
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Deformations of General Relativity

In this chapter we look in more details at ‘deformations’ of general relativity
(GR), a class of theories obtained by changing the function f(M) in (5.197) or
(6.2). We already have some understanding of these theories from the analysis
in the previous chapter. Thus, we have seen that many results are completely
general and do not depend on which function f(M) is chosen. In particular, we
know that all theories from this class have the same linearisation (6.289) around
instanton backgrounds, and thus have the same dynamical content. The main
goal of this chapter is to describe what can be called the ‘geometrically natural’
modified theory. We also compute a solution of the Bianchi I setup for this
particular modified theory to see that its behaviour is even simpler than in the
case of GR. It would be very interesting to find a geometric interpretation of
this particular chiral modification of Euclidean signature GR, which is, at the
moment, an open problem.

7.1 A Natural Modified Theory

We have defined chiral modified gravity theories as those described by the action
(5.197) with function f(M) being an arbitrary gauge invariant function of a 3 x 3
matrix M. The field equations of such a theory are

of
IR
The second equation can in general be solved for M in terms of the matrix F'F,
and the solution substituted into the first equation, which then gives a second-
order partial differential equation (PDE) on the connection. We have seen that
GR can be described in this fashion, as well as the self-dual theory (6.118) whose
only solutions are the gravitational instantons. In the latter case, though, the
second equation just implies F'/F' ~ I and cannot be solved for the matrix M,
which in this case is an inverse of a tracefree matrix.

du(M7'F)=0, M 'FFM'=yp (7.1)
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We have also seen that in general such a modified theory admits metric inter-
pretation. The conformal class of the metric is determined from the Urbantke
formula (6.16). While there is in general an ambiguity in the choice of the
conformal factor, there is always a natural choice, which is to require that the
action (5.197) is a multiple of the total volume. Thus, one can in general choose
er = Tr(M~'FF). The formula (6.17) shows that this is indeed the correct
procedure in the case of GR.

7.1.1 Geometrically Natural Conformal Factor

As we now explain, there is another procedure for choosing a geometrically
natural conformal factor in the Urbantke formula. Indeed, we can require that
the left-hand side in (6.16) is the metric times its volume form, and this is equal
to the right-hand side. Thus, we set

gu(&, ey = %eijkigFi Ni,F7 N FP (7.2)
where ey is the metric volume form, and where ¢ = +£1 is the sign of the
connection that is required to obtain a metric of some desired signature, e.g.,
all plus. We will only discuss the case of the Euclidean signature as we already
know that there are problems with a physical interpretation of the Lorentzian
modified theories.

7.1.2 A Computation

As we discussed, any modified theory comes with its natural choice of the volume
form e = Tr(M~*FF) so that the action is the total volume. Let us now see
which choice of f(M) gives the same volume form as the geometrically natural
choice (7.2).

Any metric in the conformal class of (7.2) makes the triple of curvature 2-forms
anti-self dual, in the orientation in which the matrix X ~ F'F' is positive-definite.
Let us choose some metric g in this conformal class, and introduce a canonical
orthonormal basis >° in the space of SD 2-forms for the metric g. Explicitly, given
a frame basis, X’s are the forms that are given by (5.31). They in particular
satisfy X'%7 = 2¢,6%, where ¢, is the metric volume form, positively oriented in
the orientation provided by the connection.

Then the curvature 2-forms can be expanded in the basis of X! as

Fi=o (\/Y) Uy, (7.3)

where ¢ = +1 is the sign of the definite connection, and v/X is the positive-
definite matrix square root of the positive-definite matrix X. We stress that the
relation (7.3) can be written for an arbitrary choice of metric g in the conformal
class of the Urbantke metric. This relation can also be used as an alternative
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definition of the sign of the definite connection. The decomposition (7.3) follows
using the algebra of ¥’s. Indeed, we have

FiFi = o*VX VX' (2)6"e, = 2X Ve, (7.4)

We now use (7.3) with X%’s being those for the Urbantke metric (7.2). Thus, we
now take X = Xy with respect to the volume form of the metric gy. Substituting
(7.3) into (7.2) and using the algebra of X’s we get the relation e, = (det X)) %€y,
from which we conclude that

det Xy = 1. (7.5)

As we already remarked, for any function f(M) in (5.197), or g(X) in (6.29),
we can use the volume form ¢* = g(X)e to define X via FF = 2Xe. One then
has € = g(X)e* and hence g(X) = 1. This immediately allows us to translate
the condition (7.5) into a choice of the function g(X'). Thus, the condition (7.5)
derived previously corresponds to a homogeneous degree one function

gu(X) = (det X)'/?. (7.6)

We then note that for this function
of _1
X 3

and so the field equations of this theory become

(det X)"/® X1, (7.7)

da ((detX)l/?’X’lF) —0. (7.8)

It is not hard to see that these are the field equations of the theory (5.197)
with

fu(M) = det(M). (7.9)
Indeed, in this case the relation between M and F'F becomes
M 'FFM ™' = pdet(M)M ™1, (7.10)
from which we get
FF = pdet(M)M. (7.11)

We can then fix  and thus M completely from the requirement that det(M) = A.
Taking the determinant of both sides gives det(FF) = p?(det(M))*, and so

M = ((M(Am)l/s FF, (7.12)

which is homogeneity degree zero in F'F' and so it does not matter which volume
form is chosen to extract a matrix from the 4-form valued matrix FF. Substi-
tuting this into the action gives
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S[A] = 3/ (de“AFF)y/B, (7.13)

which is in the form (6.29) with a multiple of the function (7.6) as the defining
function.

All in all, we see that the geometrically natural choice of the conformal factor
for the Urbantke metric (7.2) corresponds to the modified theory of the form
(5.197) with fy (M) = det(M).

7.1.3 Modified Bianchi I

To illustrate the behaviour of the modified theory, we now study the behaviour
of the spatially homogeneous anisotropic Bianchi I solution in the deformed case.
Our main conclusion here is that this particular modified theory is in fact simpler
than GR!

All considerations are those of Section 6.5, with appropriate modifications to
make the metric signature Euclidean. This just requires removing the factor of
imaginary unit from (6.143). All other formulas are unchanged. In particular, we
have the general solution (6.173)

1
M =—", etc. 7.14
eIy 1y
where now g(X) = Tr(M~'X). The function g(X) needs to be determined from
the constraint f(M) = 1. We specialise to the case f(M) = det(M), which we

will see is completely solvable. The constraint gives
g =(r—1)(T—7)(T —73), (7.15)

and thus
(T — 12)Y3(1 — 73)Y/3

(1 —1)2/3

M, = , ete. (7.16)

We can also find the components of the matrix X. The relation between M
and X for f(M) = det(M) becomes
M7*XM™? =M™ = X = uM. (7.17)
From this we also get g(X) = 3u, and thus find p. This finally gives

1
Xi=—- te. 1
3oy etc (7.18)

Notably, this is a much simpler solution that (6.176) in the case of GR. In
particular, it is trivial to integrate and find the connection components. Indeed,
recalling that X, = h/ /h, we have

h1 = Kl(’r — 71)1/3, etC., (719)

where K; are integration constants.
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It is now straightforward to compute the metric. Its general expression is given
by (6.161). We have

9(X) X, X, X, = (;) (r—m)(r—m)r—m) ™™, (120)
and
g9(X) X);;(g =3(1 — )3 (1 — )3 (1 — ) VA (7.21)

This gives the following metric

325" = L (7~ )7 - m)(r - 7)) (122)

2
—‘r(T—Tl)l/S(T— )1/3 _ 1/32 fiix L
1=1
This should be contrasted with the similar solution (6.178) in the case of GR,
which is significantly more complicated because function h; obtained by integrat-
ing (6.176) are considerably more involved than (7.19). The metric arising as the
solution of the modified theory is not Einstein, and has singularities at 7 = 7;.
Nevertheless, the connection components (7.19) just have zeroes at these points,
and so it is only the metric interpretation that becomes problematic at these
points. There is a real solution for all the connection components for all 7.
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Perturbative Descriptions of Gravity

Spin one particles are described by gauge fields, which are 1-forms with values
in some internal space, or rank one tensors. Gravitons are spin two particles,
and so it seems very natural to describe them by rank two tensors. This seems
to suggest that the metric formulation of gravity is the most natural one, and
any other formalism only introduces unnecessary complications. The purpose
of this chapter is to challenge this conclusion. In particular, we will see that
formalisms that are based on collections of differential forms, in fact, lead to
simpler perturbative descriptions of gravitons than is possible using the metric.
But in order to see this most clearly, we will need to introduce the language of
spinors.

We start with some motivating remarks. First, we note that when one deals
with objects with two different type of indices, such as, e.g., the tetrad, choosing a
background to expand the theory about gives an object that serves to identify the
indices of different types. For example, the background tetrad e/ .. can be thought
of as an object that identifies the internal index I with the spacetime index pu.
Indeed, with the help of e/ .. all objects with mixed indices can be converted into
objects with just indices of one of the two types. The same happens in any of the
formalisms that are based on objects with mixed types of indices. This argument
shows that, at least at the level of perturbative description, the formalism that
are based on objects with two different types of indices are in no way inferior to
the metric formalism with its sole type of indices.

To motivate the necessity of introduction of spinors, we recall that the latter
are fundamental representations of the Lorentz group. And in order to under-
stand what happens in a certain formalism, it is often necessary to decompose the
objects arising into irreducible representations. In some cases the use of tensors is
sufficient to describe such representations, e.g., in the metric formalism, the two
irreducible Lorentz representations that are present in the metric perturbation
h,. are the traceless and the trace part of this rank two tensor. However, for
more complicated objects, such as, e.g., a connection, such tensor description is
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insufficient, and the most adequate language for decomposing the field into its
irreducible Lorentz representations is that of spinors.

Spinors are also essential for the purpose of understanding what types of
differential operators are present in a formalism. This is because every operator
is composed of differential operators of the first order, and then the language of
spinors allows for a very efficient classifications of the arising possibilities.

For all these reasons the language of spinors is indispensable for understanding
more conceptual aspects of any formalism. At the same time, this language is not
always the one most efficient for explicit computations. Tensor symbolic manip-
ulation is usually a more powerful option. So, it is usually best to have both the
spinorial and the usual tensor descriptions of the same objects available, as well
as an efficient dictionary that allows us to switch between the two descriptions.
We will start this chapter by developing some aspects of this dictionary.

The organisation of the remainder of this chapter is as follows: We define the
irreducible representations of Lorentz group and show that there are two types
of first-order differential operators that arise naturally in this context. We then
briefly discuss the standard metric perturbation theory, and also present the
chiral version of the Yang—Mills perturbation theory, in order to be able to later
contrast this story with what happens in the case of gravity.

The main goal of this chapter is to explore alternatives to the standard metric
perturbation theory. We first develop the chiral version of the first-order pertur-
bation theory, which uses a very different representation of the kinetic term for
the spin two field. In this formalism the spin two particle is still described by
a rank two tensor field, but the diffeomorphism invariant kinetic term is built
from very different first-order operators. We then develop an even more drastic
departure from the usual formalism where the chiral half of the spin connection
is used instead. This gives by far the most economic description, but one that
works only around non-flat backgrounds, e.g., constant curvature ones. We will
see that the use of the chiral connection as the main variable for gravity leads
to dramatic simplifications also around arbitrary Einstein backgrounds.

The main outcome of our analysis in this chapter is the conclusion that in
its chiral versions, the gravitational perturbation theory behaves in complete
parallel with chiral Yang—Mills perturbation theory. The latter, as we shall see, is
the simplest and most conceptually clear way of doing Yang—Mills perturbative
calculations. It is this parallel with Yang—Mills, invisible in the usual metric
version of the gravity perturbation theory, which serves as a strong justification
to take the chiral formulations of gravity seriously.

8.1 Spinor Formalism

The standard source on the spinor formalism is the book, Spinors and Space
Time, by Penrose and Rindler (1986). The main difference between this source
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and our presentation is that we use the metric of signature mostly plus, which
necessitates the usage of anti-Hermitian rather than Hermitian matrices to repre-
sent vectors in R3. At the same time we would like our tetrad to be a hermitian
object. This leads to a certain minus sign in the formalism that requires some
practice to get used to. There are also some deviations in normalisations as
compared to Penrose and Rindler.

8.1.1 Spinors in R'3

The description of 4D spinors is analogous for all three different signature cases.
We only describe the Lorentzian signature case. As we already know from (5.65),
the four coordinates of R'® can be collected into an anti-hermitian matrix

x:i(x4+z3 xlix?) (8.1)

T, +iry x4 — x5
so that
det(x) = —2 + 27 + 23 + 2. (8.2)

is the usual norm of a vector in R"*. The double cover SL(2,C) of the Lorentz
group acts in the space of such matrices via

X — gxg', g € SL(2,C). (8.3)

The spinors are introduced as the two different types of irreducible representa-
tions of the double cover SL(2, C) of the Lorentz group. We define the unprimed
A4 spinors as two-component columns (with complex entries) on which SL(2, C)
acts by multiplication from the left

)\A —>gAB)\B. (84)

This is an irreducible representation of SL(2,C). We shall refer both to the
representation itself and to the space in which such spinors take value as S, .
The other irreducible representation is referred to as that of primed spinors
Aar. These are again two-component columns on which SL(2,C) acts by multi-
plication from the left, but this time with the complex conjugate group element

A = (g7) ™ Agr. (8.5)

We shall refer to primed spinors as taking values in S_. From the definition of
the representations S, S_ it is clear that the complex conjugation of a spinor
in S, is an S_ spinor (S,)* = S5_.

8.1.2 Raising and Lowering Spinor Indices

The next notion we need is that of a bilinear form in the space of spinors. For
S, spinors, this is defined as
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(An) = (eN)n = —\Ten, (8.6)

where the 2 ® 2 matrix 7 is given by

e—<_01 é) (8.7)

The row (eA)” can be referred to as the spinor A4 with its index raised, so that
the spinor contraction takes the form (An) = An,.

It is clear from the definition of the spinor pairing (8.6) that it is antisymmetric
(A7) = —(n\). In index notations, this can be written as

AMna = =Aan?, (8.8)

and so we have the famous rule that raising one spinor index in an expression
and simultaneously lowering the index it is contracted with gives the minus sign.

The reason for the choice of signs as in (8.6) is that using the index notation
it can be written as

Mna=-ATen = =B, (8.9)
On the other hand, by (8.8) this is equal to —A4n* and so we have the rule
P =nt, (8.10)

which is the standard spinor index raising rule in the literature.

We also introduce the operator of lowering a spinor index. This is required to
be such that first raising an index of a spinor and then lowering it back produces
the original spinor. It is clear from (8.6) that the required operation is obtained
by multiplying the row A4 by the matrix e from the right and than taking the
transpose. This means that the lowering operation in index notations is written
as

Meas = Ap. (8.11)
To check that all the definitions are consistent, we write
e*PAgeac = Ao, (8.12)
and so we must have
e*Beje =15, (8.13)
Using the definition of the lowering operation, we can also write this as
*Pese = e”, (8.14)

from which we learn that the epsilon tensor with first lower and second upper
index is the identity matrix. This is indeed true in the matrix representation.
Indeed, the left-hand side equals to (€)Te = 1.
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We can also check that the matrix €, g with both indices lowered is represented
as the same matrix e. Indeed, according to the previous definitions

ecp = € Peacepp. (8.15)

In matrix notations the right-hand side is (€)% ee = €, which shows that everything
is consistent.

The same definitions and properties hold for the primed spinors. In this case,
the spinor metric is the object e’
hold.

and the same raising lowering conventions

8.1.3 Transformation Properties of the Spinors with Raised Indices

We can work out how the spinors with their index raised transform. Because for

any SL(2,C) matrix g we have g¢ = g™, we see that
MNe—Aghe=ATeg™, (8.16)

and so the spinor with its index raised transforms by multiplication by g~ from
the right. For the primed spinors, the definitions are analogous, and a primed
spinor with its index raised A4 (which is a row) transforms by multiplying it
with (¢*)~! from the right.

8.1.4 Matrix x as a Bi-Spinor

Let us now interpret the matrix x as a bi-spinor. In view of its transformation
property (8.3), it is clear that this matrix should be interpreted as a bi-spinor
X 44+ With two lower spinor indices of opposite type. Let us also compute the
matrix with both spinor indices raised xA44", In matrix notations it is the matrix
exeT. We have

exel =1 ( O ) = det(x)x". (8.17)

—z, —izy  z*+ x4
This implies that we can write the Minkowski space interval as

1 /
§xAA/xAA = -2+ 2+ 2]+ a3 (8.18)

8.1.5 Spinor Soldering Form

We now introduce objects efA/ via
AAl _ Aa!
x4 = 1\/56# at, (8.19)
so that the objects eﬁA, are Hermitian and we have

—eAA/HefA/ = Nuv- (820)
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The minus sign here is unavoidable if one insists on using Hermitian objects
(which is convenient) and insists on the mostly plus signature, which is con-
venient for quantum field theory purposes. One way to accept this seemingly
unnatural sign is to introduce the notion of natural spinor contraction. The
unprimed indices are contracted naturally, as in A“n,, while for the primed
indices the natural contraction is the opposite A A/nA/. The metric is then repro-
duced as the natural contraction of the two copies of the soldering form
e;‘Are,,AA/ = - (8.21)
The explicit matrix representation of the objects e;‘A, with both upper indices
follows from (8.19) and the expression (8.17) for the matrix x#4". We have

50 mn () e
(4 0) em (i)

We will also introduce the inverse of the soldering form e, ,, via the relation

AA p A, A
e ey = —eglep . (8.23)

The sign here has the same origin as in (8.20) and is dictated by the desire to
have e’} ,, to be equal to the object eﬁ‘A/ with its indices raised and lowered with
the available metrics.

8.1.6 The Basis of SD and ASD Forms

Let us now introduce the following 2-forms constructed from e;‘A/
uar = efLA/ef]A/. (8.24)

Alternatively, in the form notation, this definition becomes

1 /
TAB _ ZpA B4

2
The choice of sign and the coefficient in this definition is dictated by the desire

. (8.25)

to have a very simple expression for this object in the fully spinor notation when
the indices pv are converted into spinor indices via the inverse soldering form.
Indeed, a simple computation gives

AB . YAB u v _ _ (A_ B
Yy nnt = L e e = exen®ernr. (8.26)

This is a natural and easy to remember expression, which motivates the definition
(8.24).

It is instructive to compute explicitly the matrix representation of the 2-forms
¥45 for various puv. For the matrices ¥7,” we have
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1 1 -1 0

241 = 5(6466{ — 61661) = 5 ( 0 1 ) 5 (827)
1 1 i 0

Yo = 5(64665 — eycel ) = 5 ( 0 i ) ,
1 170 1

243 = 5(64665 — 63661) = 5 ( 1 O ) 5

which are all symmetric matrices as could have been expected from (8.26). The
other components of X7 follow from self-duality, e.g., ¥4° = —i¥},. That this
relation holds can of course be also checked explicitly by computing Y52 in the
matrix form.
We will introduce the basis in the space of anti-self-dual (ASD) 2-forms as

minus the complex conjugation of the self-dual (SD) ones

= A ! / /

500 =ef ey (8.28)
Note that in this definition the unprimed spinors are naturally contracted, which

gives some motivation for this choice of sign. In the form notations the definition
(8.28) becomes

= 1 ’ !
Y4B = QeAA ea? . (8.29)

8.1.7 Useful Identities

Given the previous definitions, a useful set of identities relating the soldering
forms and the objects Z;‘VB, i;‘LB/ can be derived. We first note an identity for
the wedge product of two soldering forms

/ / ! ! = A! !
eAA eBB — EA B EAB _ EABEA B . (830)

To prove this identity we note that the 2-form on the left must be decomposable
into its SD and ASD parts. The coefficients are then checked by contracting both
sides with €5, €4/p5/.

Another useful identity is that for a product of two soldering forms contracted
in one of the spinor indices. We have

/ 1
enael = _577“”6‘”3 + 342 (8.31)
The second term follows from the definition (8.24), while the coefficient in the
first term is checked by contracting both sides with €45 and taking note of (8.20).
The complex conjugate of the identity (8.31) gives

I ! 1 ! ! = ! !
e;‘A e al = 577“,,6‘4 B4 Zf}uB ) (8.32)
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Using this last relation we can also derive a useful for the following identity
1

7A// 70/ / v ]_ VA/ C/ ’ / 7A/ C/ v / ’ = /C/ v /A/
sAE puer =3¢ ( eD)B+§<E (@ PB4 $BC veD) )

(8.33)

This is the spinor analog of (5.138), but for the ASD 2-forms. We will need this
identity when we discuss Euclidean twistors and their relation to almost complex
structures.

8.2 Spinors and Differential Operators

Using the spinor soldering form e;“‘/ and its inverse, any tensor object can be
converted into a purely spinorial one. And for any formalism where there are also
objects of mixed type with spacetime and internal indices, a nonvanishing such
object provided by the background around which everything is expanded can be
used to identify the internal and spacetime indices. Thus, at the end indices of
all types can be converted into the spinor ones. This, together with simple repre-
sentation theory of the Lorentz group, provides a very efficient way of describing
what happens in each formalism. In preparation for such a discussion, for the spe-
cific formalisms we have previously described, we need to introduce some impor-
tant first-order differential operators that arise naturally in the spinor context.

8.2.1 Irreducible Representations of the Lorentz Group

Each irreducible representation of the Lorentz group can be obtained by ten-
soring copies of its fundamental spinor representations. The spinor indices of
each type are then symmetrised to remove all the traces and thus produce an
irreducible representation. Thus, an irreducible representation of Lorentz group
is characterised by two integers, the numbers of copies of unprimed and primed
spinor representations used to build the representation under consideration. We
will refer to irreducible representations of Lorentz as S% ® S™. This is an irre-
ducible representation of dimension (k + 1)(n + 1).

We then introduce a convenient notion of the total spin of an object taking
value in an irreducible representation as

spin(S§ ® S™) == (k +n)/2. (8.34)

This is the total number of fundamental spinor representations used to build
Sk ® S™, divided by two. Note that since k 4+ n is an integer, the spin is either
an integer of half-integer.

8.2.2 Spin-Increasing Differential Operator

There is a very simple and natural first-order differential operator that maps an
object of some spin to an object whose spin is larger by one. Indeed, acting on
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a spinor object with 8, and converting the spacetime index into a pair MM’
adds one unprimed and one primed spinor index. The resulting collections of
unprimed and primed spinor indices can then be symmetrised (to extract the
irreducible part). Thus, we get maps

Sk ® s
d(k,n)

ShH g g+t

where the representation that the operator acts on is indicated as its subscript.
Explicitly

wAl,..AkA’lmAg - a(A’(AwAyHAk)A’I...AQL)v (8.35)

where there is a double symmetrisation on the right-hand side. There can also be
a numerical coefficient in the definition of such operators. We will discuss various
possible choices in the following sections. We denote the operator that acts on
functions (spin zero) as d(o,0) = d. Note that the operator d thus introduced is
not nilpotent

d(k+1,n+1)d(k,n) # 07 (836)
and that an infinite collection of integer spin spaces C>*(M), S, ®S_,..., 5" ®
S* ... gets created by the action of d’s on the functions. Each of the operators

9(k,n) has an adjoint, which is a first-order differential operator lowering the spin
by one.

8.2.3 Dirac Operators

Apart from operators that change the spin, we can introduce a set of operators
that just change an unprimed index to a primed one or the reverse. These are
the Dirac operators

5(k,n)

St @ Sn ShH g gnt

where our convention is that the operators § increase the number of unprimed
indices while lowering the number of primed. Explicitly, an operator of this type
acts as

A/
¢A1.4.AkA’1“.Afn — Oa ’l/)Al.A.Ak)A’T.‘A;LilA’v (8.37)

where there can also be a numerical coefficient different from identity on the

right-hand side. Similarly to the operators d already introduced, the §’s are not
nilpotent

O(k+1.n-1)0(k,m) 7 0 (8.38)
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C* (M) spin 0
d
St ®S5- % S3 spin 1
d(1,1) d(2,0)
PP L RN DAL L ) spin 2

Figure 8.1 The diagram of irreducible representations of Lorentz group and
related differential operators.

We denote 6 = §(1,1). Each of the operators ¢, has an adjoint that is a first-
order differential operator acting by increasing the number of primed indices by
one and respectively lowering the number of unprimed ones. We will work out
the corresponding expressions when we need them.

8.2.4 The Diagram of Spaces

The whole set of spaces generated from the spin zero by the action of d’s and ¢’s
can be drawn as an infinite triangular diagram, (see Figure 8.1). Here we show
just the first three rows of it, i.e., drawing the spaces of spin not higher than 2.
We also show only the chiral half of the diagram, i.e., the spaces S% ® S™ with
k > n. As we shall see, these are the spaces relevant for our chiral descriptions.

We would now like to study the operators appearing in the diagram in Figure
8.1 and understand their relations with various Laplacians that arise on the
nodes.

8.2.5 The Operators d and §: Spinor Computation
Given an object v44/ in S, ® S_, the operator § is given by
(6’U>AB = 8(AA/’UB)A/. (839)

This operator has an adjoint with respect to the inner product on both spaces.
This is computed from

/(5U)AB¢AB = /v“A/(éw)A*“’, (8.40)

where on the right-hand side the indices are in different positions as is required
in the metric contraction of two vectors (8.21). The adjoint reads

(6" @) anr = =0 a1 Pap. (8.41)
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We then have

1 ! /
((5*(5U)AA/ = —8BA/§(8AB Upnp’ + 8BB UAB’)- (842)

This can be simplified by using the following identity
8AB,UBB/ — aBB/UAB/ = GABaEB/’UEB/. (843)

This identity arises by noting that the left-hand side is antisymmetric in AB and
thus must be a multiple of €45. The coefficients are then checked by contracting
both sides with €*”. Using the identity (8.43) we have

’ ]_ /
(5*5U)AA’ = 783‘4/833 Vap/ -+ iaAAlaBB UBB/. (844)

On the other hand, because partial derivatives commute, the two copies of the
operator 44/ contracted in any pair of indices produce the box operator. For
the case at hand the relevant identity is

1

aBAlaBB/ = §€A/B/D, (845)
where O := 04 ,,8,4". Finally, we get
* 1 1 B' B
((5 6U)AA’ = —§|:]’UAA/ + 581414/83 vopr. (846)
This can be rewritten as
2070 = =0 1y — dd™, (8.47)
where the d* is the operator that maps vectors into scalars d*v = —055 VB .

8.2.6 The Operators d and §: Tensor Computation

The computation of the previous section can be carried out in much simpler way
by using the tensor notations. To this end, we will need to recall that the basis
of SD 2-forms X*, where we now use SO(3) notations, is the map from the space
of SD 2-forms A? to the the space R®, and the later can be identified with the
space of symmetric rank two unprimed spinors. Thus A ~ S2. Using this fact
we can alternatively define the operator ¢ as follows. Given a 1-form v, we define

(0v)" = X" ,v,, (8.48)

are the already familiar SD 2-forms defined in, e.g., (5.31). We note
that in order for this operator to agree with its spinor version we would need to

v

where ZL

put a coefficient of 1//2 in front. However, the previous normalisation is simpler,
and we will stick to it from now on. So, (8.39) and (8.48) differ in normalisation.
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If we use the metric 6/ in S% and the spacetime metric in S, ® S_, we can obtain
the adjoint of this operator from

(6.60) = / FTY, 0, = / 0, S0, = (6°,v), (8.49)
where we integrated by parts. Thus,
(6" 6), = $L7 00" (8.50)
We now consider the operator 6*4 on S, ® S_. We have
(6*0v), = X,79,%5"70,,. (8.51)
We now use the identity
S = Do — Muallp — 1€uvpe (8.52)
that follows from the definition of %*’s. This identity gives
(6"6v), = 0,0"v, —Ov,,, (8.53)

which agrees with (8.47) up to normalisation. In spite of having to carry around
the objects Efw, the tensor computation is completely algorithmic and is easier
to follow. For this reason we will mostly work with the tensor versions of the
operators d,§ introduced previously. But it is important to have in mind their
spinor interpretation, otherwise, it is hard to understand the specific ways that
the objects ¥?,,0, and the fields are contracted.

Another illuminating computation is that of the operator 66* on S?. We have

(86* )" = X" 9,57 °0,¢7. (8.54)
This is simplified using the identity (5.138) and we get
(86* )" = —¢". (8.55)

An obvious, but very important, property of the two operators d,d is that
their composition gives zero

5d =0. (8.56)

This is an obvious consequence of the previous definitions and the fact that the
partial derivatives commute. Thus, the image of d is contained in the kernel of
0, and we have the usual cohomology setup. This means that the space S, ® S_
admits an orthogonal decomposition into elements of the form df, of the form
0*¢, and harmonic elements, i.e., those that satisfy (6*d + dd*)v = 0. This is
an analog of the usual Hodge decomposition of A, but applied to a slightly
different complex.
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8.2.7 The Operator d 1

To motivate the discussion that follows let us also carry out a similar exercise for
the operator d;,1). The space S? ® S? can be identified with the space of rank
two symmetric tracefree tensors. Thus, we can define d(; 1) as

1
(d1,1)0) o = 000y — anaavm (8.57)

where we again work in tensor notations to simplify the computations that need
to be done. The adjoint operator is then given simply by

( Zl,l)h)u = _ayh’uu; huu S Si ® Si (858)

We now compute d{; ;)d 1) The result is

1
2d¢y 1 day = —Uay + §dd*, (8.59)

where Oy 1) is the O operator on vectors. This representation of [ ; is reminis-
cent of the representation in terms of d, § in (8.47). However, unlike the latter, the
representation does not come with a cohomological orthogonal decomposition of
vectors into those of form d,, f and d”h,,, because d(; 1yd # 0.

8.2.8 Box Operator and Arrows of the Operator Diagram

The results of the previous sections can be summarised qualitatively as follows.
Consider a node of the diagram in Figure 8.1, and the corresponding U] opera-
tor. In terms of the first-order operators the [ operator can be represented in
many different ways. Thus, we saw that the operator [l ;) on vectors can be
represented in terms of the operator ¢ and its adjoint (8.47), or in terms of the
operator d(;,1, and its adjoint (8.59), as well as the operators d, d*. This means
that if we want to describe propagating particles of spin one, we could base this
description either on the first-order operator § that does not change the spin of
the field, or on d(;,1y, which increases the spin. One can see that the [J operator
on every node of the diagram 8.1 can be obtained by going to the neighbouring
node lying to the right, left, or below with either d,*, or d and coming back,
plus terms in which one goes to the neighbouring node lying above with d* and
coming back. Thus, for a node of the diagram that does not lie on the edge
there are three different representations of the . In particular, there are two
qualitatively different ways to represent the [ operator on every node, one is in
terms of operators §,0* that do not increase the spin, and another in terms of
the operators d, d* that increase the spin by one. In both cases there are always
terms involving the operators d*, d that decrease the spin by one.

From the different available representations of the [J operator for each node,
the one that uses operators d,d* is based on the operator of the exterior dif-
ferentiation of forms. This is clearly the case for the operator §, see (8.48).
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Indeed, this definition can be rephrased by saying that one takes the exterior
derivative of a 1-form and then takes the SD part of the arising 2-form, thus pro-
ducing an object in S?. In contrast, there is no exterior derivative interpretation
of the operators d,d* (apart from the trivial case when these operators act on
functions). This conclusion is true in general, i.e., the operators ¢,6* acting on
any node can be reformulated in terms of the exterior derivative, while there is
no such interpretation of the operators d, d*. In other words, the Dirac operator
is always a version of the exterior derivative operator. This general statement is
supported with more examples of explicit construction of operators 9, * in the
following sections.

8.2.9 Choices to Make When Describing a Particle of Given Spin

There are several choices to make if we want to describe particles of a given
spin. First, we want to use some field, which is in an irreducible representation
of Lorentz group, or can be decomposed into a collection of such representations.
Then, when a choice of representations is made, there is another choice as to what
representation of the (0 operator should appear in the linearised description. As
we discussed previously, there are essentially two inequivalent choices. In one
such choice the [0 operator is built from ¢, d* and this is related to the exterior
derivative operator, while there is no such relation to the exterior derivative for
the representation of [J that uses d, d*.

For example, in our usual description of gauge theory we make a choice to
describe spin one particles using fields taking values in S, ® S_ representation
(i.e., vectors, or 1-forms). The operator that is used in the usual description
is the one that is related to the exterior derivative operator, and is the gauge
invariant operator 6*0. The gauge invariance of this is the consequence of the
fact that dd = 0. To be precise, here we are referring to the chiral version of
the usual description of gauge theory, which is one in terms of the action (5.29).
Integrating out the SD 2-form field from this action, one produces the Lagrangian
(F.)?, the kinetic operator appearing in which is precisely §*0. We could have
decided to use instead the representation (8.59) of O in terms of the operator
d1,1) and its adjoint. However, the gauge invariance would be harder to realise
in this description, and this is the reason why it is not what we usually use. In
other words, for gauge theory, the relevant kinetic operator is the one arising
by going to the right of the diagram 8.1 and then back, and not to the bottom
and then back.

We thus see why it is unnatural to use the d(; 1) operator for describing spin
one particles. But what about the choice of which irreducible representation to
use? The irreducible representation S? is also of spin one, and so it seems that
it can be possible to use a field taking values in that representation instead. The
answer as to viability of such a description is again provided by the formulation
(5.29), where the auxiliary 2-form field in fact takes values in the space S%. One
then sees that only one of the two possible helicities of the spin one particle can be
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described by the field taking values in S% . The other helicity gets projected away
once the operator § is applied to the gauge field. This becomes very pronounced
in the so-called spinor helicity formalism. So, the representation space that sits
at the edge of the diagram 8.1 can only describe one of the two helicities one
wants to describe. For this reason it cannot be used for the description of both
helicities, even though we do have a simple representation of the [ operator in
terms of 9, 6* on these edge nodes.

Let us now descend one row lower in the diagram and discuss possible descrip-
tions of spin two particles. In the usual metric description everything is based on
the sum of two irreducible representations, namely 53 ® S?, where symmetric
tracefree tensors of rank two live, as well as the trivial representation for the trace
part. Then in the usual description the kinetic operator on gravitons is built from
the operator d(; 2y going down the diagram, and its adjoint. This in very clear
from the fact that the gravitational Lagrangian can be written in the I'T" form,
see (2.19), and the linearised Christoffel symbol is constructed from the objects
of the type 0,h,,, where the spin of the field h,, is clearly increased by one
by taking the derivative. One can then understand the reason why the kinetic
operator for gravitons is not a square of some first-order differential operator.
Indeed, we cannot write the kinetic operator on gravitons, which we saw in
(2.38) to be a version of Lichnerowitz Laplacian, as some first-order differential
operator times its adjoint. This is in contrast to the kinetic operator in the spin
one case, where such representation as 6*J is possible, see (8.53). The reason for
this impossibility to write the desired kinetic operator as a square is the fact
that the combination of two operators d(; 1y and d( ) is not zero. Indeed, the
operator d; 1y is used in metric gravity to represent the effect of diffeomorphisms,
in that the change of the metric perturbation taking value in S3 ® S? under an
infinitesimal diffeomorphism by a vector v field taking values in S, ® S_ is
d(1,1yv. The fact that d(2 2)d(1,1yv # 0 means that we cannot construct the kinetic
term with desired gauge invariance as the simple d{, ,)d(2 2). A more complicated
construction is necessary, and this is what is achieved by the operator (2.38) that
appears by linearising the Ricci scalar.

Thus, in the usual metric description of gravity we have made two choices. One
was to describe spin two particles using the representation S ®.5? (together with
the trivial representation of Lorentz). The other was to base the kinetic term on
the operator d(, ) and its adjoint. Already at this point there is an alternative,
which is to construct the kinetic term from the operator ¢, ) instead.! Thus,
for the space S7 ® S?, there are only two inequivalent representations of the [J
operator that we could use. As we have argued previously, the operators that do
not increase the spin of the field are versions of the Dirac operator that are based

1 We could also use the Dirac operator that goes to the left of the diagram into the
representation S ® S2 , but this is just the complex conjugate of the operator d(2,2) and so
this possibility does not produce anything new.
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on the exterior derivative operator. We will see this explicitly for the operator
0(2,2) in Section 8.5. Thus, we anticipate that there is a different description of
gravitons, based on §» o) rather than the usual description with d(s 2). In Section
8.5 we will see that this alternative is just the linearised description following
from the chiral Plebanski formalism.

However, for the description of the spin two particles there arises another
alternative. Thus, there are now several different irreducible representations of
Lorentz group having spin two. These are the spaces 53 ® 5 on which the usual
metric description is based, as well as the spaces S% ®S_ and S}. The last of these
spaces lies at the edge of the diagram, and we argued that these spaces are unsuit-
able for describing both helicities. This leaves us with the possibility that spin two
particles can also be described by a field taking values in S% ® S_, plus possibly
some other irreducible representation of lower spin. This is indeed true. This
description arises as the linearisation of the chiral pure connection formalism.

All the claims made will be substantiated by the discussion in the following
sections. However, already at this stage we see that there are many different
alternatives arising in the description of the spin two. The standard metric
formalism makes a choice, but this choice is far from being unique. Other
choices can be made, and are in no way less natural than the choice of the
metric description. In fact, we will see that the choice to base everything on
the operator d(2) in the metric description provides great simplifications. Even
more simplicity can be achieved if one instead chooses to describe gravitons
using the representation S% ® S_.

We now build some intuition about operators appearing in the diagram 8.1.
These are then used in alternative descriptions of spin two particles that we
argued should be contemplated.

8.2.10 Operators d2,0) and ds 1)

Before we start the discussion of the operator d(, 2y, we consider the simpler case
of operator d(3,1) and related to it operators. We have seen that the upper two
rows of the diagram 8.1 give us two operators whose composition dd is zero. This
gives us a complex of operators that is important in the standard description
of particles of spin one. We will now see that essentially the same story repeats
itself for the operators connecting the spaces S3,5% ® S_ and 5%, i.e., another
triple of spaces lying near the edge of the diagram 8.1. This triple of spaces plays
role in the chiral connection description of gravity, as we shall see later.

First, we need to fix the forms and normalisations of the operators ds
and d(z,1). We build the operator d(, 0, that increases the spin as the operator
that takes a derivative of an object ¢’ € S3 followed by the projection on the
representation S7 ® S_. The relevant projector from the space of S? valued 1-
forms to S ®S_ is constructed from the operator Js, that was already introduced
in (5.137). Thus, we have
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2 1
Psy i= = (11 - J2> : (8.60)

Using (5.139) one easily checks that this is a projector P,y = P1). Using
(5.138) one can also check explicitly that this projector annihilates the S3 valued
I-forms of the form 3¢, which is the way that the irreducible representation
S, ® S_ sits inside the space ST ® A" ~ 57 ® S, ® S_.

Using the projector (8.60) we define

; 3 . 2 1 .
(e d) = \@@m@,l) - \/; <gmw T Zewszw) oY, (861)

In the second equality we have spelled out the projector explicitly. We have
introduced a prefactor in front for future convenience. The adjoint operator is
given by

* i 3 i
(diz000)" = _\/;auaw (8.62)

where a!, € S5 ® S_. Now, an easy calculation using the algebra (5.138) gives
d(2,0)d(2,0) = ~Uez,0)- (8.63)

It is our desire to have no extra numerical factors in this relation that has led to
the inclusion of /3/2 in the definition of d(s ).

We now bring in the second operator, namely d(3 1. This operator can be
defined as

(bana)? = (2% 0,al) (4,0 = P* (X" 0,a),), (8.64)

where P, is the projector on symmetric tracefree tensors given by (5.182). The
adjoint is given by

(003,1y ), = 22,70, (8.65)

It is easy to check that the S, ® S_ part of the right-hand side here vanishes
for 1" symmetric and tracefree, and so the right-hand side is automatically in
S ® S_ and no explicit projector is necessary.

To check that the normalisation of 3 1) is well chosen, we compute 6(3,1)d(; ;)
as it acts on 9" € S%. A straightforward computation gives

0310031y = ~Ua,0) (8.66)

which confirms our choice of the pre factor in (8.64).
The most important fact about 631, is that its kernel contains the image of

dy2,0)
d,1d(2,0) = 0. (8.67)
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Thus, we are once again in the cohomology setup, in exact analogy to the complex
formed by the operators d,d. This means that elements of 5% ® S_ admit an
orthogonal decomposition into elements of the form d, )¢, those of the form
0731y, as well as harmonic elements that are in the kernel of the Box-type
operator (3 1)0(s,1) + d2,0)d{3,)- An explicit calculation of this operator gives

0(3,1)03.1) + d2,0)d(5,0) = —Oiz,0)- (8.68)

To do this computation, we have used the fact that for S? valued 1-forms that
are in S% ® S_, we have

al, + €*%ival =0, (8.69)

which is just the expression of the fact that the projection onto the space S, ®S_
vanishes. The relevant projector is Py 1) = (1/3)(I+Jx), which immediately gives
the relation (8.69). This allows us to conclude that on S ® S_
iV § o Nju.i ijk k
¥, al, =% a, — ' ay, (8.70)

which is a relation that one has to use in the computation leading to (8.68).

8.2.11 The Space ST ® S? and Related Operators

The space ST ®S5? is one used to describe gravitons in the usual metric formalism.
The operator d;,;) mapping vectors to symmetric tracefree tensors is a familiar
one. In the standard metric story, one is not considering ‘chiral’ objects that
can be built using EZ and, therefore, the only other operator that is usually
part of this story is d(s), which maps the spin two field into a spin three
object. If one allows the description to become chiral one gets access to another
operator, namely 02 »). As we have already said, this operator appears naturally
in the linearisation of the Plebanski formalism. Let us define and understand this
operator in some details. As in the previous sections we do all the computations
in tensor notations, as this is much more algorithmic and better suited for
computations than the spinor notation.

The space S7 ® S? behaves in a much more complicated way than it was
in the case for S_ ® S, and S? ® S_. The primary reason for this is the
absence of the cohomological decomposition for S ®S? . Indeed, the two natural
operators that lead to and then from Si ® S?, namely d(1,1) and 62 0y, have the
property d(2.2)d1,1) 7 0. Thus, no cohomological decomposition of the type ‘exact,
co-exact, and harmonic’ is possible in the case of 57 ® 52, unlike S_ ® S, and
S? ® S_. It is this fact that is behind the increased complexity of the usual
perturbation theory based on S? ® S?, as compared to the perturbation theory
based on Sy ® S_ and S% ® S_.

To define 0, 5) we note that from the object h,, € ST ®S5? we can construct an
R3 valued 2-form qu"hl,]a. It can be checked that this 2-form is purely ASD. This
will be explained in details in Section 8.5, when we consider the linearisation of

v



8.2 Spinors and Differential Operators 273

Plebanski theory. We can thus obtain a first-order differential operator by taking
the exterior derivative of this 2-form, and then dualising the arising 3-form into
a 1-form. We obtain an element of S? ® A'. This can then be further projected
onto S% ® S_. This results in the following definition

) ) 2 A R .
(5(272)]1); — \/é(zlaﬁaahﬁu)(&l) = 2\/; (gm’(;’bﬂ + 2€Z]k2ﬁy> (Zﬂaﬁaahgu),
(8.71)

where we spelled out the projector. This can be further simplified by making use
of the following identity

ez‘jkEZWZ’;U = —222[;)770], + QZf,[pT]a]M- (8.72)

This identity can be proven, e.g., by replacing both ¥’s with 2%/ = € PEl,
and then using the decomposition of the product of two €’s into products of the
metric tensor. At the same time, if one knows that such an identity must be true,
the coeflicient on the right-hand side can be checked by contracting vp and using
the algebra of ¥’s. Using (8.72) in the second term of (8.71) gives

) ) 1.
(bayh)™ = V6 (21(*53&% — 32;&3”%) . (8.73)
The adjoint operator is easier to write, and it is given by

(5?2,2)a);w = \/ézé#aaaaiy (874)

To compute the adjoint we have used (8.69). Here we only needed to symmetrise
the result on the right-hand side, as it is automatically tracefree as follows from
¥ival, = 0.

The choice of the numerical coefficient in (8.71) is justified by the following
property that can be checked by an explicit computation

d(g’())(s = 6(2‘2>d<1,1). (875)

In other words, the box connecting the spaces S; ®S_, 57 ®5%,5%, and ST ®S_
in the diagram 8.1 commutes.

Having defined the relevant operators, we can compute the second-order
operator d(, 5)0(2,2). A simple computation, using the previous definitions, gives

5?272)6(22) = —6|:|<272) - 8d<171)dj(k1’1). (876)

Another useful result is a computation of the operator 47, 5 d(2), which is a
O-type operator on S% ® S_. We get

62‘2’2)(5(22) = _6|:|<3’1) - 4d<2’0)d>(k270>. (877)

These results will be useful in our discussion of the chiral version of the metric
perturbation theory in Section 8.5.
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8.3 Minkowski Space Metric Perturbation Theory

We now develop different versions of the spin two perturbation theory, starting
from the usual metric description, which we present very briefly.
We have derived the linearisation of the Einstein-Hilbert action in (2.24).

Working in units 327G = 1 the linearised Lagrangian reads

1 1
L® = §hWth + 0,h**0"h,, — 0,h*" 0, h — ihDh. (8.78)
This can be further simplified by a choice of gauge. We choose the gauge-fixing
term to be
1
Lg'f' - —(8yhuy - §6Mh)2, (879)

where h := n*"h,, is the trace part of the perturbation. Adding this to the
linearised Lagrangian, we get

1 1
L® + Lys. = Sh* Oy, — 2hOh, (8.80)

which is diagonal in the metric perturbation and can be easily inverted to find
the propagator.
To invert the kinetic term, we couple the gauge-fixed Lagrangian to a current

by adding J#"h,, . We then solve for h,, in terms of J,, in the momentum space,
with the result being

1 1
h,, = = <JW — 277W7)”"JM> . (8.81)

Substituting this to the Lagrangian and remembering that there is a factor of i
in front of the Lorentzian signature action gives us the following propagator

i
_%(nupnuo + NpoTvp — ny,l/npa)- (882)

This is the so-called de Donder gauge propagator.

<hMVhPU> =

The interaction vertices obtained by naively expanding the Einstein—Hilbert
action in powers of the metric perturbation quickly become very complicated,
see, e.g., the appendix of Goroff and Sagnotti (1986). Some simplifications can
be achieved by using a nonlinear parametrisation, e.g., treating the inverse
densitiesed metric as the basic field; see Cheung and Remmen (2017). However,
whatever the choice of the parametrisation of the metric field, there are vertices
of arbitrarily high order, which makes calculations difficult. A way out is to
introduce an additional auxiliary field by going to the first-order formalism. One
version of the first-order formalism is that of Palatini in which the auxiliary field
is an independent affine conneciton. In this case, using the inverse densitiesed
metric as the basic field, one can render theory to be cubic; see Cheung and
Remmen (2017). Also, by a shift of the I'*,, field one can achieve a situa-
tion where only the metric-metric and connection—connection propagators are
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different from zero; see Cheung and Remmen (2017). The structure of the arising
cubic vertices, however, is quite complicated. Our goal in the remaining sections
of this chapter is to develop simpler alternatives.

8.4 Chiral Yang—Mills Perturbation Theory

In preparation for the discussion in the following sections, we first develop the
chiral version of the Yang-Mills perturbation theory. This will serve as a point
of comparison for the developments in the gravity case. We shall see that the
Yang-Mills case is very simple and beautiful. Our goal in the sections to follow
will be to come as close as possible to this description.

8.4.1 Lagrangian and Perturbative Expansion

Our starting point will be the first-order chiral formalism for Yang—Mills (5.29).
We will parametrise the SD 2-form field as BT® = X¢¢**, where X' is the usual
basis of SD 2-forms and ¢ is the new set of fields. The Lagrangian reads

L — Eiuyd)iaF:‘U + 292 (¢ia)2 — 22iuu¢iaaﬂAg + 292 (d)ia)Z + Ei,uuqsiafabcAl;A’cj.
(8.83)

The first line is the kinetic term, while the second line gives the only present
cubic interaction.

We can immediately note that the kinetic term of the Lagrangian (8.83) is
composed of the operator ¢ that we introduced in (8.48). This operator is gauge-
invariant, and upon integrating the auxiliary field ¢ out, one gets 6*d as the
gauge-invariant kinetic term for the spin one particles.

8.4.2 Gauge-Fixing: Tensor Calculation

To determine the gauge-fixing that is required in order to invert the kinetic
term and obtain propagators let us integrate out the auxiliary field ¢** from the
quadratic part of the Lagrangian. We have

E“‘”@,ﬁlﬁ +2¢%¢" =0, (8.84)
and thus
1 iy a 1 a a
LO =~ g EOAY = =5 S (@A) - @47, (83)

which is the standard result for the spin one kinetic term. It is then clear that
we must add to this Lagrangian the following gauge-fixing term

1
Lys = ——

a.f. oW (0" A5)2. (8.86)
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We can represent it in the first-order form by introducing a new auxiliary field ¢*
Ly = 290" A5, + 2¢°(4°)*. (8.87)

We can then note that the gauge-fixed Lagrangian can be described very effi-
ciently by ‘enlarging’ the auxiliary field 3*¢* in (8.83). Indeed, we can write the
gauge-fixed Lagrangian as

2
L 4 L. =209, A + %(@W){ (8.88)

where we introduced a new combination
QU = NP kY (8.89)

We note that we can even write the interaction using the new field ®*#¥. Indeed,
the object f“”CAfLAf, is pv symmetric, and so one can enlarge Y% ¢ in it into
e for free. Thus, we can write

L® = e fore Al Ac (8.90)

In Section 8.4.5 we will see that the object ®**¥ has a very simple and natural
spinor interpretation.

8.4.3 Propagators

Having gauge-fixed the kinetic term, let us carry out the exercise of computing
the propagators. Our goal is in particular to see that the propagator of the
auxiliary field ¢** with itself is zero.

To simplify the calculation we will only add the current for the auxiliary
field ¢, and not for ¢* introduced previously. Thus, we consider the following
Lagrangian

L — 22iyu¢iaaMAZ+292(¢ia)2 +2¢aauAZ +292(¢a)2+Ja;LAZ+Jia¢ia-
(8.91)

We now integrate out the auxiliary fields. The equation for ¢** gets modified to

) ) 1 .
TP, A +2¢° " + §J” =0. (8.92)
This gives the Lagrangian with auxiliary fields integrated out
1 P a 1 ia ’ 1 mw oAa2 ap Aa
_ 1 a Aa 2 1 Jiaziuua Aa 1 Jia 2 JauAa
——ng(uu)—ff MV—TQQ( )+ T

We now integrate out the connection by going to the momentum space. The
momentum space Lagrangian becomes
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1 P ,
L= fTQZAZ(fk)kZAZ(k) - Q—gQJZ“(—k)E’“”k#Aﬁ(k) (8.94)

b

52 (SR R) + T (k) A (k).

Extremising with respect to A}, gives

a ]‘ l ta\i v a
Al = = (2J ¥k, +g2JH) . (8.95)
This gives the following Lagrangian in terms of currents only
1 i, . i, .
_ ia i a ia iupB a
1 )
— —J"(=k)J"“(k).
sz (R )
The connection to connection and connection to auxiliary field terms here are
92 ap a 1 ia T a
@J (—Fk)J; (k) — %J (—k)Z*vEk, J2 (k). (8.96)
The remaining terms are
1 ) , , , 1 . ,
87k J (k) S ke, J (k)2 Pk, — 8—L(]2JZ“(—I<:)J”(I<:) =0, (8.97)

where we have used (5.138). Thus, there are only the connection—connection
propagator

2
a g Q.
(AL (=R AL(R)) = 250" D (8.98)
as well as the connection to auxiliary field propagator
: 1 .
(0" (=k)AL(R)) = 55075, o (8.99)

The cubic vertex is also extremely simple in this version of perturbation theory
and is given by

(@ A% AC) = 2ifes, . (8.100)

8.4.4 Non-Chiral Version

The fact that there is no propagator of the auxiliary field with itself is directly
related to the fact that the chiral version of the first-order formalism is used
rather than the non-chiral. Let us see this explicitly. Thus, we work out also
the propagators for the version of the theory where the auxiliary 2-form field is
arbitrary antisymmetric rank two tensor. The corresponding Lagrangian is

L =B F +g*(B2)% (8.101)
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The kinetic term is

L® =2B"9, A% + gZ(BZD)Z. (8.102)
We now do the gauge-fixing as before, see (8.86) and add currents for both fields
1
L® 4 Ly; =2B"9,A* + ¢*(B%,)* — 2—92(6“142)2 + JM B, + JAL.
Extremising with respect to the auxiliary field gives
a 1 a 1 a
B[LV = 772 8[#"41/] + ij}“, . (8103)
The Lagrangian with the auxiliary field integrated out is
1 a 1 a ’ 1 nw o Aa\2 ap pAa
_ 1 a Aa 2 1 Ja,uua Aa 1 Jn.,u,u 2 Ja,uAa
——ng(uu)—E MV—TQQ( )” + e

We now integrate out the connection field by going to the momentum space. We
get

Aa

1 M av a
=z (CUk g7 ) (8.105)

This gives the following Lagrangian of the currents

1 c Tauv a, : Jav a
L= 257k (iJ* (=k)k, + g* J*(—k)) (—1JH (k)k, +g2JM(k)) (8.106)
1
- fggJ““”(—k)J[ZV(k)-
The connection to connection and connection to the auxiliary field terms here
are
g° i
@J“”(—k)Jj(k) — EJ““(—k)JS"kV, (8.107)
while the auxiliary field terms are
1 1
YTE JM(=k)k, J;, k, — ngJ““”(—k)ij(k). (8.108)

There is no cancellation here and the propagator of the auxiliary field with itself
is different from zero. This makes the non-chiral perturbation theory much more
complicated, which is a very compelling reason to prefer the chiral version.

8.4.5 Spinor Interpretation

The previous chiral story has a very simple and natural spinor interpretation.
To see it, we translate the kinetic term in (8.83) into spinor notations. This is
simple given the spinor expression (8.26) for the 2-forms 3‘. We have



8.4 Chiral Yang—Mills Perturbation Theory 279

L® = 2y en 0% penynr MM ANN L 26247 )2, (8.109)
The kinetic term here can be simplified with the result being
L® = 26489 0 ALM 4 267(6% )% (8.110)

Integrating out the auxiliary field we get an extremely simple form of the gauge
field kinetic term

1 .
L® = 2 (B A5 ). (8.111)

This form of the Lagrangian makes the gauge invariance obvious. Indeed, we
have the identity

/ 1
Oarr 0™ = —§eABD, (8.112)

and then in computing the effect of the gauge transformation the antisymmetric
€ap is killed by the symmetrisation present in the Lagrangian.

As we know from the previous discussion, this Lagrangian is gauge-fixed
by replacing the combination X***¢,, with (8.89). The spinor version of this
replacement is

A B ia A B a a
€ EN d)ABeM,N, — €pfT EN d)ABe]W,N’ — ¢ EMNENM N (8113)
1
A B La a AB
=en N PhpEnn — 5@5 €EABE T EMNEM/ N/,

where we rewrote the last term in a suggestive way. This expression can also be
rewritten as

(¢%p + ¢"€an) (GM(AGNB) - ;EJWNEAB> en'nt = ($hp + ¢a€AB)€MB€NA€M’N’7
(8.114)

where we have used the Schouten identity
euner? = eyten® — ey Pen?. (8.115)

Thus, if we introduce a new spinor field
PlUp = ¢ + Pean (8.116)

that does takes values in a reducible representation S, ® S, = S% @ C>, we can
write the gauge-fixed Lagrangian as

L® 4 L, = 2080, A% + 262(®4,)° (8.117)
Integrating out the new auxiliary field produces
1 72
L® Ly = -3 (8BIVI’A?4M ) ) (8.118)

where the difference with (8.111) is that there is no symmetrisation anymore.
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This can be interpreted as follows. What appears in the gauge-fixed kinetic
term is the Dirac operator
0:gR5,. ®S_—>g®R 5,18, (8.119)
where the primed index of A%,,,, is changed into an unprimed index with the
Dirac operator y™ " Upon integrating out the auxiliary field ®%; we then get
the Dirac operator squared, which is a multiple of the [ operator. This is the
conceptual explanation of the mechanism that is at play in the gauge-fixed of the
chiral version of the Yang—Mills perturbation theory. In other words, gauge-fixed
is achieved by simply adding a new, antisymmetric in the AB component to the
auxiliary field ¢4 5; see (8.116). This removes the symmetry of this auxiliary field
and produces a gauge-fixed operator that is just the usual Dirac operator acting
on the space of spinors valued in g ® S;. In the next section we will see that
a very similar mechanism is at play in the chiral versions of the gravitational
perturbation theory.

8.5 Minkowski Space Chiral First-Order Perturbation Theory

The goal of this section is to develop the chiral version of the first-order pertur-
bation theory for gravity. Thus, we use the tetrad formalism, in which the action
is polynomial in the fields. However, the non-chiral version of this formalism
carries too many connection field components, similar to the non-chiral version
of the Yang—Mills first-order perturbation theory we considered in Section 8.4.4.
This has the effect that the auxiliary field (2-form field in the case of non-
chiral Yang-Mills theory, spin connection in the case of non-chiral gravity) will
have a nonvanishing propagator with itself. This produces complications and the
resulting perturbation theory is far from being the most efficient one. The usage
of chiral variables solves this problem in both Yang—Mills theory and gravity,
as we shall see. This makes the chiral version of the gravitational perturbation
theory preferable, and we only develop this chiral version.

We perform calculations mostly using tensor notations, and only at the end
translate everything into the language of spinors for interpretation. Our starting
point for the chiral first-order flat space perturbation theory is the Plebanski
action (5.159), which we write as

1

4 -
Schiral[h7A] = T/ElFly (8120)

where we have put A = 0,327G = 1 and it is understood that the constraint
3i¥I ~ Y is imposed to imply that X¢ is constructed from the metric
denoted schematically by h as one of the arguments of the action functional. We
should keep in mind that ¥* is not an independent variable, and only the first
and second perturbations of ¥’ are nonzero. The SO(3) indices are raised and
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lowered with the Kronecker delta, metric, and so we can always keep them in
the upper position.

We now expand the action (8.120) working around the background de-
scribed by X corresponding to the flat metric and the zero connection.
Expanding the action by replacing X¢ with X% + 6%% 4+ (1/2)62%" and keeping
the quadratic, cubic, and quartic terms, we get

4 R R 1o 1oy
Senirat [, a] = 7/521da’ + ie”kzlafa’“ - 56”"’62’(#@’“ + 5522%5@1 (8.121)
1
1o o
+ 16”'“522%17(1’“.

Thus, we have a quartic formulation of GR as is appropriate for a version of the
tetrad formalism. We now need to understand how to gauge-fix and invert the
kinetic term. To do this, it is necessary to understand the gauge invariances that
we want to gauge-fix.

8.5.1 Linearised Gauge Invariance

The linearised (i.e., second-order) Lagrangian is invariant under the following
symmetries. The diffeomorphisms act only on the metric perturbation

The linearised action is clearly invariant under this transformation by inte-
gration by parts in the first term. The gauge transformations act on both
fields

505" = €9F3 gk dya’ = de'. (8.123)
Substituting this into the linearised action produces
/e“kquSkdai + €775 e a” (8.124)

which vanishes by integration by parts in one of the two terms.

8.5.2 Parametrisation of the Perturbation of the 2-Form Field

Let us now discuss implications of the metricity constraints and devise a con-
venient parametrisation of the object dX¢. As we have already discussed in
(5.172), the metricity constraints imply that the spin two part of the pertur-
bation of the 2-form field vanishes. This means that this perturbation is of the
form

1 iy iy A
08" = 2 (h6" + )T 4 ST, (8.125)
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where the reason for the factors of 1/4 will become clear in Section 8.5.3. We
now show that a general 2-form of this type can be written as

8%, =2 “hya, (8.126)

where h,, is an arbitrary, i.e., not necessarily symmetric, tensor. Here, again,
there is some freedom in the choice of the numerical coefficient. The choice we
made makes h,,, transform under linearised diffeomorphisms in the standard way;
see Section 8.5.3.

To establish (8.126) as the correct parametrisation we can compute both the
SD and ASD parts of this 2-form by projecting it onto %7, ¥7. We get

SR, = DS R, = (690 — SRS, (8.127)
= §9h + eI,

This shows that the SD part of 6X% is of the form (8.125) with kA in both
expressions matching and &' = ¥**h,,. Note that h is the same object in both
expressions if there is a factor of 1/4 in (8.125). For the ASD part we have

SIERL = SIS, (8.128)

This expression cannot be simplified any further. The only thing we know about
the contractions ij‘“’Ei"‘ is that for every ¢ and j this is a symmetric in va
tensor. Thus, in the ASD projection only the symmetric part of h,, contributes.
Again, we see that the ASD part of 6X¢ is as in (8.125) with

R = X! FSI R, (8.129)

This establishes (8.126) as a convenient parametrisation of the first-order pertur-
bation of the 2-form field.

8.5.3 The Action of Gauge on the Tensor h,,

Let us also spell out the action of the gauge transformations on the field h,,. For
the diffeomorphisms (8.122) we have

5§5wa = 2dm§a2fw] = 2Efu“6,,]§a. (8.130)

Comparing with (8.126) we see that the corresponding transformation of the
tensor h,, is

Sehp = 20,6, (8.131)

where no symmetrisation is taken. This shows that the symmetric part of our
tensor h,, is just the usual metric perturbation. This explains our choice of
having no extra numerical factor in (8.126).

Let us also compute the effect of SO(3) rotations (8.123). We have

Sshuy = X5 6", (8.132)
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which is just the shift of the SD part of the antisymmetric part of h,,. We
also note that the expression (8.126) is independent of the ASD part of the
antisymmetric part of A, .

8.5.4 The Linearised Action in Terms of the Tensor h,,

We now compute the linearised part of the action, which is the first two terms
in (8.121) in terms of the parametrisation (8.126). We have

S 1_. ) 1_. )
0X'da’ = EZLthapaf,dx“dm”dxpdx“ = iZLthapaf,e“”P”d‘lx.

This expression can be further simplified as follows. Using self-duality, we have

e 1 [e %
s = 56 szm_ (8.133)
This implies that
1 ; 1o ; i
SIS By = 5 (T0Th = D h,T + S0, (8.134)

where we have expanded the product of two € tensors into the sum of products
of copies of the metric tensor.
Similarly, for the second term in the linearised action we have

| 1 o 1 .., .
ie”kZlajak = Ze“””"e”’“ZLVa;a(’jd‘lx = ieljkEl“”aiaﬁd‘lx, (8.135)

where we again used self-duality of the ¥ forms.
Overall, the linearised Lagrangian becomes

L® =2(S"h — B*#h," 4+ X" ho) O,al, + 267554 al af. (8.136)

8.5.5 Form Notations

The expression (8.136) for the arising Lagrangian is combersome and hides what
is happening. The meaning of all transformations can be clarified by rewriting
everything in the differential form notation. Thus, we give the perturbation
2-form 6% a new name

) 1. . 5
(Bh)' = §ZLahVad$”d:L‘ . (8.137)
We can then rewrite the kinetic term as
(Xh)'da’ = —d(Xh)'a’ = —(xd(XZh),a)d*, (8.138)

where we integrated by parts, x is the Hodge star on forms and the angle
brackets denote the metric pairing with respect to the spacetime as well as the
internal index. This way of rewriting already exhibits clearly the transformation
properties. Thus, under the diffeomorphisms the 2-form (3h)? transforms as
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8¢ (Bh)" = di Y. (8.139)
This makes it obvious that the kinetic term is diffeomorphism invariant. Under
SO(3) rotations the perturbation 2-form transforms as
§s(Xh)" = €K ¢, (8.140)
This means that
8y * d(Xh)" = %e7*31dg* = —i(Jx(de)), (8.141)
where Jy is the operator on S3 ® A" introduced in (5.137). The convenience
of this notation becomes clear if we similarly rewrite the potential term of the
Lagrangian. Indeed, we have
1 i
ie”kElaJak = —%(Jg(a), a)dz®. (8.142)
Overall, the Lagrangian becomes
L® = 4i(xd(Xh),a) — 2(Js(a), a). (8.143)

The invariance under gauge rotations now becomes clear. Indeed, in the first
term, we only need to vary the 2-form part, because the variation of the connec-
tion produces d¢!, which vanishes against the d present in the 2-form part by
integration by parts. In the second term, we only need to vary one of the two
occurrences of a‘ and multiply the result by a factor of two, because this term
is symmetric in both copies of the connection perturbation. So, we get

5 L® = 4i(5, % d(Xh),a) — 4(Js(64a), a) (8.144)
= 4(Jx(d9), a) — 4(Jx(d¢), a) = 0.

8.5.6 Solving for the Connection

Even though we consider the first-order formalism, and the eventual perturbation
theory will have two independent fields in it, it is a good exercise to integrate
out the connection perturbation from the linearised Lagrangian. We will later
see that essentially the same calculation is needed in the process of finding the
propagators.

We can rewrite the Lagrangian (8.143) as

L<2) = 2<da (1> - 2<JE(0“)’ (1>7 (8145)
where we introduced
a:=2ixd(Zh). (8.146)

The equation obtained by varying the Lagrangian with respect to the connection
reads

= 2Jy(a), (8.147)
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which is easily solved by using the fact that the inverse of Jy is given by

1
It is then clear that the Lagrangian expressed solely in terms of h,, is
1
L® = §<a, J5H@)) = —2(xd(Zh), J5 (xd(Xh))). (8.149)

This form of writing the Lagrangian makes all the invariances manifest. Indeed,
it is explicitly invariant under diffeomorphisms because d(2h) is invariant. And
under gauge rotations § x d(Xh) = —iJg(d¢) and then varying only the second
slot J5' is cancelled by Jy and the result is zero by integration by parts. We
will soon see that the spin two kinetic operator in (8.149) is constructed from
the already familiar to us operator d, -y that is of Dirac type.

8.5.7 Index Notation Calculation

Let us now compute the second-order Lagrangian (8.149) explicitly, using the
index notation. However, even prior to the computation, we can anticipate the
result. We know that the resulting Lagrangian is going to be diffeomorphism
invariant. We also know that it is invariant under shifts of the antisymmetric
part of h,, by an arbitrary SD 2-form, as this is how the SO(3) rotations
act. It is also invariant under shifts by an arbitrary ASD 2-form, because the
object (Xh)* only depends on the SD part of hy,,;. So, the Lagrangian (8.149) is
invariant under shifts of h,, by an arbitrary antisymmetric tensor, and is thus
hi.. independent. The only Lagrangian that is constructed from h(,,, and is
diffeomorphism invariant is the usual linearised metric Lagrangian (8.78).

To verify this expectation by an explicit calculation we use index notations.
We then have

i, = X0 0,h + 500, — S50 hag. (8.150)

To find the connection a, we need to compute the action of Jy on (8.150).
This is given by
Je(a)!, = 7" (SEP0sh + 70, hoe — X607 hsy ) (8.151)
= eijkejksziﬁ(aﬁh —0%hg,)
_ (ZLPT]JQ _ Eionpa _ Eiozp?,]o'H + Ziaanpu)aphaa-
Here we have again used the identity (8.72). The expression (8.151) becomes
S0,k — 80 hag + 5P Oshya + BP0, hag, (8.152)

which gives

) 1 ) )
aj, = 1 (5705 (hyo + hay) + B Ouhas)- (8.153)

w
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As a check, we note that this expression is invariant under the action of diffeo-
morphisms given by (8.131). Also, under the gauge transformations (8.132) the
connection undergoes gauge transformation 6¢aft = 0,¢" as it should.

Given that we know that the antisymmetric part of h,, is not going to enter

ny
the second-order Lagrangian, the simplest way to compute it is to assume that
Py

connection perturbation becomes

is symmetric from the start. With this assumption, the expression for the

) 1_.
@), = —5 =" Db, (8.154)

©

This is a remarkably simple expression for the linearised SD connection in terms
of the metric perturbation.

8.5.8 Computation of the Linearised Action in Terms of h,,

We now substitute the found solution (8.153) for the connection perturbation
into the linearised Lagrangian to obtain the second-order linearised Lagrangian
in terms of h,, only. Again, we can view this manipulation as a necessary step
for the computation of the propagators in what follows.

We first perform the computation without making the assumption that b, is
symmetric. The result is that the second-order Lagrangian in terms of h,, can
be written in terms of the symmetric part of h,, only, and so we could make an
assumption that h,, is symmetric from the start. However, it is a useful exercise
to perform the more complicated calculation without the symmetry assumption.
The easiest way to do this calculation is to note that when a!, is determined by
h,. the two terms in (8.136) become multiples of each other, and so it is enough
to compute only one of them. It is easier to compute the first term. So, we write
the second-order Lagrangian as

1 . . .
L® = (a,a) = Z(E;‘laah + Emﬂ&lh[gu — E;“@ﬁhm) (8.155)
(ziﬁo‘aa(hyp + hpy) + Zipa‘ayhpa)npu.
We then use
Zzuzza = NupMvoe — NuoTlvp — ie[,bl/po’ (8156)
to obtain
1 1
L = 2 @phun)? + (0 ) + @b+ 5 (0,1)°, (8.157)

which only depends on the symmetric part of h,, as expected.

An alternative way of doing the same computation is by making the symmetry
assumption on h,, from the start, since we know the antisymmetric part cannot
enter the final result. In this case we can use the simpler form of the connection
(8.153) and compute the Lagrangian as a multiple of the second quadratic in the
connection term. We then have
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o ) 1
L® = —Ze”kE”‘VafLa’j = iG“”O‘Bp"aahﬁﬂﬁphw, (8.158)
where we introduced
GHrabro .— _cikyyinvyjaByikps (8.159)

This can be evaluated using the identity (8.72) as well as (8.156). This again
gives (8.157) but with symmetric h,, assumed from the start. Note that we
have obtained a remarkably simple expression (8.158) for the linearised metric
Lagrangian. All of the complications of different possible tensor contractions have
been hidden into the tensor (8.159).

Another important outcome of the previous calculation is that we have also
represented the kinetic term of spin two particles using the first-order differential
operator (8.153) giving a/, from h,,,. Recalling the discussion of Section 8.2, we
see that we are essentially dealing with the operator d(» ) here; compare (8.71)
with (8.153). This shows that indeed linearised chiral first-order perturbation
theory for gravity realises the spin two particles kinetic term in a completely
different way as compared to the usual metric formalism. The spin-preserving
Dirac operator d(2 ) is used instead of the spin-increasing operator d oy of the
usual metric story. This has been made possible by the use of chiral objects
such as ¥/, .

8.5.9 Gauge-Fixing I: Symmetric h,,

We now want to invert the kinetic term, adding gauge-fixing terms as necessary.
We will consider two different gauge-fixing procedures. One is following the usual
metric formalism route. Thus, we have seen that the Lorentz transformations act
on the tensor h,, by shifting its antisymmetric part. This means that there exists
a gauge in which this tensor is symmetric. Let us work out the details.

Since we are going to gauge-fix Lorentz transformations by demanding h,,
to be symmetric, and impose the standard metric formalism gauge-fixing condi-
tion to gauge-fix diffeomorphisms, we will only need to fix the gauge after the
connection has been integrated out. So, the first few steps can be carried out
without worrying about the gauge-fixing. We add currents for both h,, and ai
and attempt to integrate out these fields from the action obtaining a functional
of the currents. So, we consider

L® =2 (80 h — X, " + X7 ho*) 0,a!, + 269559 0] a (8.160)
+ T by, + TP

Varying this with respect to the connection we get a modification of the equation
(8.147)

. . ) 1 .. )
S 0,h+ B 00hg, — X0 hap + 3= 2(Js(a)),. (8.161)
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This equation is solved as before with the solution being

a; = Z(Zzaﬁaﬁ(hua + hap,) + Zlaﬁauhaﬁ + (JX_]I(J))L)’ (8'162)

where for now we do not make the symmetry assumption for h,,. Substituting
this back into the Lagrangian, we get

1 y y 1
L® = _g(aph(;w))Q + (a h(w))2 + hwaua h+ §(auh)2 (8'163)
1 ; . . . , .
_ Zhuy(zzuaaajzu + Ezuaanzu + Zzuuan;) + Jp,uh;“/

— () L),

The last step is to integrate out the metric perturbation. It is here that we
need to make our gauge-fixing assumptions. First, we clearly need to gauge-fix the
diffeomorphism symmetry. Because the arising metric Lagrangian is as standard,
it is easiest to fix this gauge in the standard way as well, by adding to the
Lagrangian the standard de Donder gauge-fixing term (8.79) for the symmetric
part of h,,. In fact, this term can be added in a first-order form, by adding a
new auxiliary field £, with one spacetime index, as well as a quadratic term (£,)?.
Indeed, we can instead add

Lt = 260 by — 50,1 + (6. (8.164)
Integrating out £, results in (8.79). Moreover, we can think of &, as a new
component of the connection aL that we need to add in order to gauge-fix the
diffeomorphisms. This interpretation becomes particularly clear in the spinor
formalism. But for now, it is sufficient for our purposes just to add the gauge-
fixing term (8.79). The resulting (partially) gauge-fixed Lagrangian is

1 1 1 . .
L® 4 Lys. = 5h* Oy = 3hOh = Shiuy B0, T + J* by,

4
1 iy Qo Ti 1 7 J ipy Tj
— ZhWZ“‘ 0*J., — E((J“)Z + ek yim JiJf),
where [0 := 0#0,. For this Lagrangian we can find the symmetric part of the

metric perturbation in terms of the currents. As for the antisymmetric part, there
is clearly no kinetic term for it, and so it cannot be determined unless we fix
a gauge. The simplest possibility is to just gauge-fix the antisymmetric part of
h,. to be zero. In this case, going to the momentum space, the equation for h,,
(assumed symmetric) is

2

ks + Tk %zguakaj;) +J,, =0, (8.165)

where we assumed the current J,, to be symmetric. Taking the trace, one solves
for the trace part of the metric perturbation
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1
h=— k2< Sk JY 41 Jaﬁ>, (8.166)

so that

]‘ i i 1 1 ze 1 fe
h‘u,j == EJMD - 2k E k Ju) k27]/,l.u <2Z BkaJﬁ +T] B‘]aﬁ) ° (8167)

Substituting this back into the Lagrangian gives

1

i, |
Lo — ﬁ@w(fk) + 2% eIl (— )) <Jw(k) - 22;;/%J;>(k)>

1 i, ) i, ,

- (gm%%(—m a0 ) (FE RT3 0 + 17 s
1, . . o .

L (TR + T k)T R)),

where we have explicitly indicated the momentum dependence. Expanding the
squares here we get the sought propagators. The metric-metric propagator is
represented by the following terms

1

S (—R)T(F) -

1
m?’]aﬁjag(—k)nwjg]wj(k). (8168)
This results in the usual metric propagator given by (8.82). The metric—
connection terms are

(0 T (—R)) (SR, TE(R)). (8.160)

_ (e R0, Koty (K) = 7

2k2
This results in the propagator

(hyay,) = @El Koty + 4k2 D . (8.170)
Finally, the connection—connection terms are
(S ke, J™ (—k) + Ei"“kaj“‘(fk))(E{f*kﬁJg(k)) (8.171)

16k2

1 (T R T (R (R, T (1)

‘E(Ji(—k)ﬂ(k) + e T (= k)T (k).
Let us simplify the second term in the first line. We have
S ko JH(—k) S P g JI (k) = X7 ko JH(—k) 5 P ks JI (K)
+ eijkeklmzluazmuﬁkaji(—k)k‘BJZ (k)
_ Emﬁkajé (—k)E“‘”k#Jﬁ (k-) +k2€ijk2k;w<]; (fk)Jﬁ (k')
+ 267R kLY T (kKD TE (—k).
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There are several cancellations and we get the following connection—connection
current terms

1 .., )
%e]kﬂ“‘ k,JE (kK> T (—k). (8.172)
This results in the connection—connection propagator
1 j l (%3 @ [e%
(a,al) = ~ gt (koS Ry, — koS8 k,). (8.173)

To summarise, in this version of the perturbation theory we have two propagating
fields: a symmetric tensor h,,, as well as a connection aj,. There are three different
propagators, connecting all three different possible pairs of fields.

8.5.10 Gauge-Firing II: Lorentz Gauge

We will now work out details of a different gauge-fixing procedure. Instead of
demanding h,, to be symmetric to gauge-fix the Lorentz symmetry, we will
use an asymmetric gauge-fixing condition. We continue to set the ASD part
of the antisymmetric part of h,, to zero by a suitable chiral half of Lorentz
transformation. But we will fix the SD chiral half of Lorentz in a different way,
simply by adding the Lorentz gauge-fixing term h’0%a;, to the action. Here A’ is a
new field, varying with respect to which imposes the sharp gauge-fixing condition
0*a;, = 0. With this choice of gauge-fixing, both the diffeomorphism and (chiral
half of) Lorentz symmetry are fixed with a condition that involves derivatives.

The procedure of integrating out the fields has to be repeated from scratch
because we now have a new connection involving term in the Lagrangian. The
Lagrangian to consider is now

L® =2 (E””’h — e Y 4 E“’"ha“) d.al + 26”’“2””@@5 (8.174)
+2h'0"a;, + J* hyy + Ty,
where the coefficient of two in the new term is for future convenience. The
equation that we need to solve for a, is
Ei”&,h + 2P0, hg, — ziaaﬂhaﬁ —J,h' + %JZL = 2(Jg(a))j” (8.175)
with the solution being

aL = Z (Emﬂaﬁ(hua + hau) + Emﬂauhaﬁ + auhl - ez]kziyal’hk + (JQI(J))L> ’

(8.176)

Note that this only depends on the SD part of the antisymmetric part of h,, the

ASD part drops out as before. We now substitute this back into the Lagrangian,
which we write as

i v i et 7 1 T
L@ — (2M Oh+X%0,hg, —°0%has — 00" + 2%) Ay, (8.177)
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Many of the terms are as before, and we only need to work out the terms involving
the new A‘ field. The terms quadratic in this field give simply —(1/4)(9,h%)?. The
terms linear in this field give

1 i i 1 1 17 | v [3
—5(2 703 (B + ha) + T, hap + 5 (T + € JE)onn,
Thus, the action with the connection perturbation integrated out is
1 1 1 ,
L® = —Z(aphm, +0,h,,)0° R + 5((‘3‘Lh)2 — Z(@th)2

1 1 . .
0Py + 01,0 040" h = 3 (0" By, D ) B0,
1., R ;
= 3B, hapdh + (T — T T) h
1 . o I .
= TP (EHC0LT + B0, T 4 BOT) 4 T D,

i ijksvipr 75 Tk
(JM)Q—&—EJ s gy,

— E(
where we grouped terms in a suggesting way. We now add a gauge-fixing term
that we choose to be a modification of the de Donder gauge

1 1 1., A
Lys =— (2(81’hw +0"h,,) — iauh — 22;"&,#) . (8.178)
The gauge-fixed Lagrangian becomes
1 1 1 .
L(Q) + Lg‘f‘ == —Z(éphul, + 8phl/“)8ph,uu + Z(QJL)Q - 5(6th)2

1., R .
= G0 (T = €TI0
1 , , . . ‘ ,
= (B0, T £ S0, T 4 SO 4 T b,
_1
16

The final step is to integrate out the metric perturbation, which is no longer

(i) + v J3 8.

assumed to be symmetric, but whose antisymmetric part only has the SD part.
To integrate out h,, let us split the problem into two parts. We have already
solved the problem of integrating out the symmetric part of h,,, and this remains
unmodified. So, we write
1 7 ipo
hpw = by + ZE’“’E P Rper s (8.179)

and also write the corresponding current as
7 1 io7i
Juw = Ju + §EWJ , (8.180)

where jm, is symmetric. Integrating out the symmetric part then gives the result
as in the previous section with J,, in place of J,,. The result is collected in
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(8.168), (8.169), and (8.172). Let us work out the terms following from integrating
out the antisymmetric part of h,,. These terms are

1 ) 1_. o1 o )
—5(8Mh1)2 — iEZ“VGQhW(?(’hl + Z(J; — e”’“Zi”J,’f)a“hz (8.181)
1 ipr Qo T 1 TINVIUY
—ZhWZ Mo J: + §J S .
Varying with respect to X***h,,, we get
) 1 ) )
On' = 58%]; - J', (8.182)
which we can solve for A’
Varying with respect to h' gives
A 1 A R
Oh' + iEZ”VDhW — Za”J; + Ze”’“E”‘”@Jf =0. (8.184)
Using (8.182) we can write this equation as
i i 1 Y £ 1 ijk§jpur k
Y*r0h,, =2J" — 56 J, = 1€ Xmo,Jd;, (8.185)
which we can solve for £%"h,,,. Substituting everything into the Lagrangian we
get the following current—current terms

1 . ) i ) ) o
— 5 RV T () + 5 T (k) (kT (k) + €29k, T (k)

—#e”’“k‘*‘];(—k)?“"kujf(k).
We note that the last term here precisely cancels the similar term (8.172)
obtained by integrating out the symmetric part of h,,. Thus, in this version
of the gauge-fixed theory, there is no connection—connection propagator, which
simplifies calculations considerably. Thus, this version of the theory is preferable
to the one where h,,, is required to be symmetric.

Moreover, the terms containing J¢ combine nicely with the already existing
terms in (8.168) and (8.169). Let us work out how the propagator for h,, gets
modified. Variation of the Lagrangian with respect to .J* inserts a factor of
(1/2)%#h,,,. This, together with the fact that the exponent of the generating
function contains —(i/2)(J*)?, implies the following two-point function

1. 1_. i
<22’“”h#,,22”'°hp0> = —ES”, (8.186)
which in turn implies
i

<h[l“’]h[P0']> = 747]&2;1/2;5 (8187)
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On the other hand we have

NS = Nuplvo — Mol — 1€upo- (8.188)
Combining with (8.82), this gives
i .
(huvh,o) = e BN + MuoNep — 20 Mpo — €4 po ) - (8.189)
The appearing coefficients are hard to understand in tensor notations. This
propagator takes a much simpler form in spinor notations.

8.5.11 Calculation of the Second-Order Perturbation of the 2-Form
Field

Interaction vertices contain the second-order perturbation of the 2-form field,
and so we need to find an expression for this in terms of the tensor h,, that we
use to parametrise the first-order perturbation. This computation is somewhat
laborious, even though the final answer is very simple. It seems to be most easily
done using the spinor formalism. We use the definition (8.25). Replacing the
frame with e44” + §eA4’, we have to replace the 2-form field with S4B + §LAB +
(1/2)62248 where

STAB = §e(AA'eB) |, 523 AB _ 5eAd 5eB (8.190)

We can represent the perturbation of the frame as a linear combination of the
frame 1-forms

set = pAN L peBB (8.191)

Also, whenever there is a wedge product of two copies of the frame, we can
decompose this into the SD and ASD basic forms. The relevant expression is
(8.30), with SD forms given by (8.25) and ASD forms given by (8.29). Using this
we get

SLAB — _yM@App)A’ 5 pAA’ BB (8.192)
and
52348 — —ZNINhAA/MBlhBA/NB/ =+ SM/N/h,AA/N]w/hBA/NN/. (8193)

Before we rewrite these expressions any further, let us discuss how these objects
depend on the ‘gauge’ part of hAA Lo, As we already know from the previous
discussion, the antisymmetric part of this rank two tensor is pure gauge. In spinor
notations, the SD part of this antisymmetric part is represented by h(44®)
while the ASD part is represented by A4 ;B Tt is clear that the first variation
5348 is independent of h44' ,B). The second variation depends on this part of
the perturbation. But we can always make an ASD SO(3) transformation to set
this part to zero. We will always assume that this has been done.
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The expression (8.192) can be seen to match (8.125). To see this we must
parametrise hAA oo by a tensor h,,. We use the parametrisation

/ 1 !/
hAA v = —§hwe”‘4‘4 €t (8.194)

where 44" is the inverse frame and the numerical factor is needed to match
(8.125). Indeed, using the identity (8.31) we have
BB = —%hwe““/e;m, = —%hw (;n*“’eBM - ;EWBM> . (8.195)

Therefore, the first term in SMARBA |, is (1/4)348h, which matches (8.125).
The second term can be seen to be the one corresponding to the term with e**
in (8.125), but developing the formalism further to allow the precise numerical
matching is not important for us.

Let us now express the second variation of the 2-form field in terms of h,,,
which is not assumed to be symmetric. The parametrisation (8.194), together
with the identity (8.31) gives

’ ’ 1
WA P hP anye = Zhuuhpaz“pABEWMNa (8.196)
/ 1 =
hAA N(]VI/hB\A/NlN’) — ZhHVhPUEHPABEVGM/N/'
This means that
1 N —
522AB — yh UzupAB EZWNEVU]MN _ EIM N EVU]W’N’ . 8.197
4 HvTTp

On the other hand, the object in brackets is just a multiple of the identity tensor
in the space of antisymmetric matrices

EgJNEWMN - E%N EVJM’N’ = 25{;55]- (8.198)

The coefficient in this formula can be checked by, e.g., multiplying it by $%% and
using

N2 = 2¢aMen), (8.199)

which is easily derivable from the definition (8.24). Thus, overall we get

1
§?ui0 = §hwh,,5§]“”AB. (8.200)
This formula can be finally be converted to SO(3) notations that we are using
in our perturbation theory

) ]‘ i
6T, = Shuaha T, (8.201)
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This, together with the propagators computed previously, gives all the ingredients
required to compute amplitudes using the perturbative expansion (8.121) of the
action.

Fixing the numerical coefficient in (8.201) was somewhat painful. However, if
one expects such a relation to be true, then the overall coefficient can be verified
using that

2RUND) 4 5NN ~ 5P (8.202)

must hold. This is much simpler calculation, using the already known identi-
ties for the 2-forms X¢ in particular (8.134), and confirms that the numerical
coefficient in (8.201) is correct.

8.6 Chiral Connection Perturbation Theory

We now work out the chiral connection perturbative description of gravity. As
we already know, this is obtained by starting with the Plebanski description and
integrating out the 2-form field. There are two versions of this formalism. In one,
we integrate out all the auxiliary fields, including the Lagrange multiplier field
Wi, This results in the pure connection description (6.8). This action is non-
polynomial in the curvature of the connection, and so its perturbative expansion
produces an infinite number of terms, which are quite difficult to work out at
increasing orders of perturbation theory.

In the other version we leave the field ¥/ in the game. This gives the first-order
formalism with two independent fields, A}, ¥* and the Lorentzian signature
action given by

S[A, 0] = ?/(M’l)“FiFj, (8.203)
with the matrix M given by M = ¥ + (A/3)I. We have again set 327G = 1.
The matrix M~! can then be expanded in powers of ¥. This again produces a
description with vertices of arbitrary valency. But in this version of the theory
the vertices are at least straightforward to work out. We will develop the first-
order version of the chiral connection perturbation theory, as this is also the
version that exhibits direct similarities with the chiral Yang-Mills theory and
chiral metric perturbation theory considered previously.

The main outcome of our analysis in this section is the realisation that the
connection version of the perturbation theory is significantly simpler than that
in terms of the metric. The main reason for this is that we necessarily have to
develop the theory on a curved background. On a curved background, the trans-
formation properties of the gauge field differ from those on a flat background. The
new feature is that not only the metric, but also the connection field, transform
nontrivially under diffeomorphisms. Moreover, the transformation rule for the
connection can be rewritten so as to not involve the derivatives of the parameter



296 Perturbative Descriptions of Gravity

of the transformation. It thus becomes trivial to gauge-fix the components of
the connection that are pure gauge. We will see that this corresponds to the
components taking values in Sy ® S_ subspace of S7 ® S, ® S_. This implies
that there exists a gauge in which only the S? ® S_ component of the connection
propagates. This results in an extremely simple perturbation theory, directly
analogous to the chiral perturbation theory for Yang-Mills theory.

8.6.1 Second-Order Lagrangian

We first work out the perturbation theory around a constant curvature back-
ground, and then make comments about the more general case. The constant
curvature background is described by a field configuration in which F* = (A/3)%¢,
and we expand the connection Lagrangian (8.203) around this background. The
background profile for the field U% is trivial. The first variation of the Lagrangian
in (8.203) is

5L = 2T (— M- 6MM~'FF + M~'2F5F), (8.204)
1

where §M = 0¥ := 1. The second-order Lagrangian is the second variation
divided by two. Using the fact that the background value of M~! = (3/A)L, we
have

6
S® = = / Tr(¢*SY — 2¢pXdaa + daadaa + Fla, a)). (8.205)
i
The last two terms here vanish by integration by parts
/dAaidAai = /aidAdAai = /aie”ija’C = —/Fieijkajak, (8.206)

and so we have simply

% (2(47)? — 205 d%al) | (8.207)

L® =
where we have used the self-duality of ¥, and df is the covariant derivative
with respect to the background connection. Integrating out the auxiliary field
¥ we immediately reproduce (5.183).

8.6.2 Gauge Transformations

Let us now spell out the action of gauge transformations. First, since the back-
ground value of the Lagrange multiplier field is zero, its perturbation does not
transform under either SO(3) rotations or diffeomorphisms. The transformations
of the connection are as follows

5¢ai = dA(ZSi, §5ai = Z'gFi, (8208)
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where we corrected the diffeomorphism by a suitable gauge transformation to
eliminate the derivative of the parameter £ from the transformation law. We
see that the Lagrangian (8.207) is invariant under both transformations. Indeed,
for gauge transformations we the commutator of two covariant derivatives, which
produces a copy of the background curvature

. N AL
6,51 dfjal, = Sl = RN of (8.209)

2A .
— 7€J’Ll l.
3¢
This gets contracted with 1% that is symmetric, and so gives zero. For the
variation under diffeomorphisms, we have analogously

5 ZiuudAaj — Ei“VdA(gan ) — Eiul’zj \v4 é’o‘. (8210)
3 w @y m av av ¥ M

Here we have used the fact that the ‘total’ covariant derivative of the objects
¥, vanishes

0,2, + et ATy —T° X, —T,,% =0, (8.211)

where I'*,,, are the Christoffel symbols of the background metric. Using this, we
can rewrite

d;‘(fazjlu) = fouaﬂ«ga + fa(aﬂziu + 6ZJkAzl«Ztllu)
=%, 0%+ ﬁa(I“’wE;,j + FPWEQP) =X V£ 417,65

ap?

and the last term vanishes when contracted with X% in (8.210). But then
according to (5.138), the contraction YL#*¥7 = of two ¥’s is proportional to
either the Kronecker 6 or the antisymmetric tensor €%, and so vanishes when
contracted with 1% in the Lagrangian.

8.6.3 Gauge-Fixing

Under diffeomorphisms the connection perturbation transforms as
i A ayi
bay, = 5 €5, (8.212)

Let us now recall that in spinor terms the connection perturbation takes values in
the space S? ®S, ®S_. This has two irreducible components S? ®S_ and S, ®S_.
The elements of S, ® S_ are precisely of the form {*% . This means that the
diffeomorphisms shift the S, ® S_ component of the connection perturbation.
A possible gauge-fix is to set this component of the connection to zero.

To see the most efficient way to gauge-fix SO(3) rotations we work out the
Lagrangian with 1" integrated out. This is given by

3

[ =—-
2A

2 ) )
<5ik5jz + 0udjn — 36ij5kl> (Ewudﬁai)(zkmd;ﬁai)' (8.213)
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Let us assume that the connection is gauge-fixed to be in 5% ®S_. The derivative
in dﬁtafj] is the exterior covariant derivative with respect to the background
connection. Because antisymmetrisation is taken, it can be replaced for free
with the total covariant derivative with respect to both the background SL(2, C)
connection as well as the affine one. After this is done, the objects ¥ can be
taken under the derivative sign for free, as they are killed by the total covariant
derivative. For the terms resulting from d,;6, part of the projector on spin two
this means that ¥*dtal, = V(X% a)) = 0, where V4 is the total derivative,
as the combination in brackets extracts the S, ® S_ part that vanishes.

To compute the term that is produced by the 6;,6;, part of the projector we
note that in general

S ddal = S dAal TR FIm S A, (8.214)

But for connections in S% ® S_ we have

mytalt = —ay, (8.215)
compare (8.70). This means that for such connections
inv JA § _ sipv JA i ijhxgAuk
Ydial, = XM dla;, — €7V a, (8.216)
and so
3 ipv JA j ipo JA A i \2
L= -+ Q2" d a))(577d)ay) = (VTa,)%)

2A
. . . ) . 1 .
—% ((Vﬁa,ﬂ)z — (VA“a“’)(Vfa;) — ie“”""dﬁa;d:‘as — 2(VA“a;f) )

We have again replaced the covariant derivatives d* with the total derivatives
V4, for later convenience. We now integrate by parts in the second and third
terms. For the second term
(VA*a™)(Vial) = — a" VAV a!, (8.217)
_ WWYT7ATA i v A ijk j k
= —a"V,;V™*a, —a" (=R, a, + €7 " a;)
P

ﬁ(VA“aL)Q —a” (R”,,al — 36”’“2{,“%’“‘) .

where = means modulo surface terms. We now use that for our constant curvature
background R,, = Ag,,, where g,, is the background metric. We also use that

for connections in S? ® S_, we have Jg(a) = —a. This finally gives
Ap . iv A i\~ Ap 1 \2 4A 7 \2
(V*#a™)(V5a,)=(V™*a,)” — ?(%) . (8.218)
For the third term in the Lagrangian we have
ieree dAal dial = — e al d A dAal (8.219)

A S Ao ,
_ s pvpo i ijkyg k __ " i ijkyjrve ko i\2
= 616 a, €’y a; = 3aue Yrrat = —(al)?,
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where we have used the self-duality of X! as well as the fact that the connection
is in 5% ® S_ to get the last equality. Overall, this gives

3 i 3 s s
L= —K((v;jay)2 — 5(vf‘“au)z + A(a},)?). (8.220)
This makes it clear that the most convenient gauge-fixing term is
9 7
Lyt = —ﬂ(V““au)Q, (8.221)

where it is understood that the connection should be taken in Si ®S_.

8.6.4 Spinor Interpretation

The previous gauge-fixing procedure can be understood most clearly using the
language of spinors. To see this, let us start by converting the Lagrangian (8.207)
into the spinor notations. The symmetric tracefree matrix ¢)* in spinor notations
is simply a generic element 7P € S%. As we will verify later in this section,
there is an overall factor of two that must be added in the process of spinor
conversion. This has to do with the fact that there is a factor of v/2 that appears

when the objects ¥/, are converted to ¥4, /. Overall, using (8.26) we get

12 '
L@ — T (QwABCDwABCD —opABODY i ), (8.222)

where we replaced the covariant derivative with the total derivative with respect
to both the Lorentz and affine connections. This is necessary, as in spinor no-
tations, all indices are converted to spinor ones and are on the same footing.
Integrating out the auxiliary field gives an extremely simple spinor form of the
spin two kinetic term in the connection formalism

6 N
L® =2 (Venrasen™) . (8.223)

This form of the Lagrangian should be compared to that in the case of the chiral
formulation of Yang—Mills theory, see (8.111). There is perfect analogy. The only
difference is that there is no Lie algebra index in the case of gravity, and that
the number of unprimed spinor indices has increased from one in the case of the
Yang—Mills theory to three in the case of gravity, as is appropriate for a spin
two field.

In order to do a check that the used normalisation is correct, we compute the
leading term in the Lagrangian (8.223), the one that contains the OJ operator.
The coefficient in front can be computed by simply removing the symmetrisation
from the indices ABC'D in (8.223). We then use that V 4, VAN = %EM/N/EH" =
where dots stand for the curvature terms. The presence of the fact of 1/2 in this
relation shows that the overall coefficient is indeed correct as it reproduces —3/A
present in (8.220).
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The spinor form of writing the Lagrangian makes all the gauge symmetries
manifest. Indeed, the Lagrangian is explicitly independent of the S, ® S_ com-
ponent of the connection, as the symmetrisation on the three unprimed spinor
indices of aspcar is taken to project the connection onto S? ® S_. Second, the
gauge invariance is also obvious in the spinor formalism due to the identity

OV (a2 V™ 6°P = (VAM,VBM’ - VBM/VAM/)(;SCD (8.224)

~ Z;C];ﬂ/M/¢ED) = 25A<C¢BD>a
where we replaced the commutator of covariant derivatives with the curvature
and used the fact that on the background the curvature is proportional to the
% 2-form. The precise proportionality factor in the relation on the second line
is of no importance for us and so no attempt was made to fix it. Under the
projection on S the expression (8.224) vanishes, which shows that the action is
also invariant under gauge rotations.

The form (8.223), together with the analogy with the chiral formulation of
Yang—Mills theory suggests a natural way that the gauge symmetry must be fixed.
Indeed, recall that in the case of the Yang—Mills Lagrangian (8.111), the gauge
was fixed simply by removing the symmetrisation and converting the operator
S, ®S_ — 87 present in the non gauge-fixed Lagrangian to the Dirac operator
S5, ®5_ — S, ®S5,. It is clear that the same gauge-fixing can be carried out in the
case of gravity. Indeed, the operator present in (8.223) is one that carries out the
map S% ®S_ — S}. This map is degenerate because the dimensions of the spaces
do not match, the dimension of the source is 8 while the dimension of the target
is 5. The mismatch is precisely the number of gauge generators. The gauge-fixing
can then be carried out by changing the operator to one ST ® S_ — S% ® S,.
This is a version of the Dirac operator, as is also the case in the chiral Yang—Mills
formalism.

Let us verify that this gives the required gauge-fixing. We start by replacing
the auxiliary field ¢*#“P € S1 in (8.222) with a new field

PABCD WABCD . _ wABCD + 6A(B¢CD) (8.225)

that takes values in S7 ® S_. Here ¢*7 is the auxiliary field required for gauge-
fixing in the first-order formalism. The additional terms generated by this replac-
ing are

12

8 .
Lys = N <3¢AB¢AB + 20V ypaaga ™ > . (8.226)

Integrating out ¢*f gives

L :72<VM a M/)2 (8.227)
.f. 5A M'GABM ) .
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which is the correct gauge-fixing term (8.221). Thus, the gauge-fixed first-order
Lagrangian is

12 /
L(Z) + Lg'f, = X (2\IIABCD\IJABCD — 2\]:IABCDVA]V[/G,CDBAJ ), (8228)

where now the auxiliary field U459 € S§% @ S, is only symmetric in the last
three indices.

8.6.5 Propagators

We now want to verify that as in all chiral formalisms considered before there is
no propagator of the auxiliary field with itself. We now work on a (constantly)
curved background and so cannot use the momentum space representation in this
computation. Still, the required conclusion can be seen by formal manipulations
in position space. There is no simple way of doing this computation in tensor

notations, so we have to use spinors on this occasion. We start by adding to the
\I,ABCD

Lagrangian the sources for both fields LAABCC!
12 /
L=— (Q\IlABCD\DABCD — 2UABCDY e ) (8.229)

ABCD ABcc'!
+J Vagep +J aaBcc!-

\I}ABCD

Extremising with respect to the auxiliary field gives
w A
Vagop = ivAM’aBCD - 372JABCD~ (8.230)
Substituting back into the Lagrangian gives
6 M’ A ’ ABCC!
L:*K VAM’aBCD —T6JABCD +J aapcc!- (8231)
Opening the brackets and integrating by parts gives
3 / 3 /
L = XG,ABCC (—D + A)aABCC’ + ZaABCC/vDC JDABC (8232)
3A /
- ﬁ(JABCD)Q + J4Pa,pocr
Extremising with respect to the connection gives
! A ! 3 !
(=04 A)a™PC = ~% (JABCC + EVDC JDABC) . (8.233)
Substituting this into the Lagrangian gives
A ;3 o ? 3A
I =— ABcc! | O ¢ ypaBc ) _ 98 raBcDy2
12(-0+A) (‘] Ve J s )

where we formally inverted the operator —[J 4+ A. Expanding the brackets gives
the propagators. There is clearly the propagator for the connection with itself,
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and connection to the auxiliary field. The auxiliary field to itself terms can be
seen to cancel out, and so there is no (PABCPYMNRS) Kropagator as could have
been expected by analogy with the chiral Yang—Mills perturbation theory story.

8.6.6 Chiral Connection Perturbation Theory on an Arbitrary
Einstein Background

In the previous sections, we have worked out the connection perturbation theory
on a constant curvature background. Recall now that in (5.187) we have worked
out the pure connection kinetic term on an arbitrary Einstein background. This
is a significantly more complicated second-order action, which on a constant cur-
vature background, by integration by parts manipulations, becomes the simple
(5.183). However, no such simplification is possible on a general background and
(5.187) is the simplest available form of the second-order action.

The transformation properties of the connection on a general background are
as follows. First, we have the usual rule §,a* = d*¢* for the gauge rotations. For
the diffeomorphisms, we again can write dca’ = i F*, where F" is the background
curvature. Using the fact that on an Einstein background the curvature is SD as
a 2-form we have

Let us now assume that the matrix U+ (A/3)I is nondegenerate. If this is the case,
we can use the transformations (8.234) to set to zero the S, ® S_ component of
the connection perturbation. The diffeomorphisms now act in a more complicated
fashion, changing both the ST ®.S_ and S, ® S_ parts of the connection, while in
the constant curvature case there was no action on the S% ®S_ part. Nevertheless,
the gauge in which the S, ® S_ part is set to zero is possible.

In this gauge the scalar first-order operator

Leimn i Lo i
(d*a) = SR d}al, = SV, (" a}) = 0.

Thus, in this gauge the first term in (5.187) is zero. Also in this gauge, the
combination

e Lo ey 1o, .
(d*a)' = Je*Sdlal = SV, (¢S al) = ~ S VHa,

because for connections in 5% ® S_ we have a = —Jx(a). This means that if
we gauge-fix Lorentz rotations using the Lorentz gauge V“afl = 0 the second
term of (5.187) is also zero. This leaves only the the last two terms of (5.187)
nonvanishing. It is also clear that the object (d*a)" = (1/2)%7"da}, is essen-
tially the operator 47, ,, acting on the connection with the result lying in the
space ST ® S2. Indeed, we have ST ® S? = At ® A~ and this is precisely where
the object (d“a)¥ takes values. Thus, on an arbitrary Einstein background we
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have an efficient representation of the spin two kinetic term, schematically of
the form &z 0)M =10, o), where M = W+ (A/3)I is the matrix of the background
curvature. There is also the ‘mass term’, which is the last term in (5.187). Note
that this representation of the spin two second-order Lagrangian is possible even
on A = 0 backgrounds, as long as W% = 0. This is the case, for example, on the
background of a Schwarzschild black hole. This means that there likely exists
a rather simple chiral pure connection version of the Schwarzschild black hole
perturbation theory, which is still to be worked out.



9

Higher-Dimensional Descriptions

This chapter develops what can be called higher-dimensional descriptions of
4D general relativity (GR). There are two considerations that motivate our
constructions.

Recall from the discussion of the Kaluza—Klein mechanism that one can obtain
4D GR (coupled to other fields) by the dimensional reduction of a theory whose
dynamics is described by the higher-dimensional version of the Einstein—Hilbert
action. This mechanism can be anticipated to be much more general in that
it can be expected that if one starts with a higher-dimensional theory that is
diffeomoprhism-invariant and has local degrees of freedom, then dimensional
reduction to 4D will generically give rise to a theory of massless spin two par-
ticles interacting with other fields. In other words, nothing forces us to fix the
higher-dimensional theory to be one described by the Einstein—Hilbert action.
There are other diffeomoprhism invariant theories, as we shall see in this chap-
ter, and they generically lead to 4D theories possessing the essential features
of GR.

The second consideration relates to conformal invariance. It is well known that
the equations describing 4D massless particles of arbitrary spin are conformally
invariant. For example, Maxwell’s equations are

dF =0, d'F=0

where *F is the Hodge dual of the field strength F'. As we have discussed in
the chapter on chiral descriptions of GR, in four dimensions the Hodge star on
2-forms only depends on the conformal class of the metric, and is invariant under
arbitrary conformal rescalings. This means that Maxwell’s equations only depend
on the conformal class of the metric. This implies that symmetries of Maxwell’s
equations are not just the isometries of the background metric, but the larger
set of conformal isometries, i.e., transformations that may, in general, multiply
the metric by an arbitrary conformal factor. Thus, the group of symmetries
of Maxwell’s equations in the Minkowski space is not the Poincare group of
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translations plus Lorentz transformations, but the larger conformal group of
the Minkowski space.

These statements have a spinor translation. In the spinor language the 2-form
F is described by its self-dual (SD) and anti-self-dual (ASD) parts, which are
elements of S and S?, respectively; see the previous chapter for our spinor
conventions. For a real 2-form in the Minkowski space, the ASD part of F' is
the complex conjugate of its SD part. Maxwell’s equations are then coded into
a single complex equation

VBA/(ﬁAB:O7 (91)

where V 44/ is the covariant derivative operator and ¢5 € S is the SD part of
the field strength. The original Maxwell’s equations arise as the real and imagi-
nary part of this complex equation. Moreover, the equation (9.1) is conformally
invariant because it only depends on the decomposition of the space of 2-forms
into SD and ASD parts, which is conformally invariant.

The equation (9.1) has an immediate generalisation to the case of higher spins.
For example, the spin two version of this equation is V? 4/¢spcp = 0, where
thapcp € S} is the rank four spinor encoding the SD part of the Weyl curvature.
This equation is also conformally invariant.

The group of conformal transformations of the Minkowski space acts on its
coordinates z*,z!,2? and x* nonlinearly. This is similar to the action of the
conformal group in two dimensions, which is most conveniently described as the
group of fractional linear transformations

az+b

— 2
ot d (9-2)

where z € C ~ R2. The parameters a,b,c, and d are elements of a matrix
g € SL(2,C). The conformal group is the quotient subgroup PSL(2,C) in which
the elements g and —g are identified. Similarly, as we shall see in this Chapter,
the conformal group in four dimensions can be realised as the group of fractional
linear transformations in which all entries of the formula (9.2) are replaced by
2 x 2 matrices.

In two dimensions, the action of the conformal group PSL(2,C) = SO(1, 3) can
be linearly realised by considering a larger space, the four-dimensional Minkowski
space. One realises the compactified complex plane as the space of future-directed
null rays through the origin of R*3. In other words, the compactified R? is
the two-sphere that arises as the projectivised light cone in R*3. The action
of the conformal group on R is the usual linear action of the Lorentz group
in the Minkowski space. The nonlinearity present in (9.2) then has its origin in
the projectivisation needed to pass from the light cone in R*® where the action
is linear to its projective version.

One can similarly realise the action of the 4D conformal group as the group
of linear transformations of a bigger space. Thus, the Minkowski space can
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be realised as the projectivised light cone in a six-dimensional space, where
the conformal group acts linearly. However, the orthogonal groups in 6D are
isomorphic to various real forms of the complex special linear group SL(4,C)
in four dimensions. This is the twistor isomorphism already discussed in (5.94).
This implies that it is most convenient to think about the projectivised light-cone
in 6D as the space of two-planes in an auxiliary four-dimensional space called
the twistor space. The action of the conformal group is then just the natural
action of a suitable real form of SL(4,C) on C*.

We thus have two seemingly different considerations, indicating that it may
be beneficial to introduce a higher-dimensional space to describe 4D gravity. In
this chapter we shall see that they are not unrelated.

9.1 Twistor Space

We have motivated the twistor space as the geometric construction that gives the
linear version of the action of the conformal group in the Minkowski space. With
suitable modifications, this construction exists for all three possible signatures
in four dimensions. For this reason, we start our description in the complexified
setting, and then discuss relevant reality conditions that reduce everything to a
space of desired signature.

9.1.1 The Twistor Space of C*

The complexified version of the twistor space is simplest to describe. The idea
is to realise the four-dimensional complex space M = C* as the space of certain
geometric objects in some other space T = C*. The geometric objects in question
are two-planes through the origin.

It is customary in the twistor literature to use the capital letter Z to refer to
coordinates in the twistor space Z € T = C*. Every two-plane through the origin
of T can be characterised by two (non-colinear) vectors Z,, Z, € C*. Having two
such vectors, one can form the bi-vector Z; A Z,. The space of bi-vectors is
the six-dimensional space A?C*. If e;,7 = 1,...,4 is a basis in C*, then the
corresponding basis in the space of bi-vectors is e; A e;,i < j, and a general
bi-vector is of the form

1 ..
Y = 5 y”ei A €5, (93)
with the summation implied. The coefficients y* = yl¥! form the so-called

Pliicker coordinates in the six-dimensional space of bi-vectors. The bi-vectors
corresponding to two-planes are those that satisfy Y AY = 0, or, in terms of
coordinates

y12y34 + y31y24 + y14 23 — 0 (94)
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Bi-vectors satisfying this equation are called simple, or decomposable. This is
an equation for a null surface (quadric)

Q={Y eAN’C*": Y AY =0} (9.5)

in the space of bi-vectors C® = A2C*.

Two simple bi-vectors that differ by an overall scale correspond to the same
two-plane in T. This means that the space of two-planes through the origin
of T can be described as the space of simple bi-vectors ¥ modulo rescaling,
or equivalently as the projectivised quadric @, the projective version PQ of
Q. This is precisely analogous to the realisation of compactified R? as the
projectivised quadric (light cone) in four-dimensional Minkowksi space. The
space of the planes through the origin of T = C* is called the Grassmanian
Gr,(C*). We thus see that using Pliicker coordinates, the Grassmanian Gr,(C*)
of two-planes though the origin of T is the projective quadric of complex
dimension 4 in CS%, ie., Gry(C*) = PQ. We want to identify ‘our’ space
with it

M = PQ = Gr,(CY). (9.6)

9.1.2 Action of the Conformal Group

There is a natural action of the complex general linear group GL(4,C) on T = C*.
If Z = Z'e; is a vector in T then g : 2* — g¢*;27. This induces the action on the
space of bi-vectors g : Y — Y. In coordinates, this reads

9:y7 = g'wg’ iy (9.7)

Because Y, Y, = det(g)Y AY the group GL(4, C) preserves the quadric (9.5). If
we pass to the projective quadric PQ, one finds that it is the group SL(4, C) that
acts on PQ effectively and transitively. This means that PQ is a group coset.
Indeed, the stabiliser of the plane that is the span of, e.g., es, e, is the subgroup
of matrices of the form

€SL(4,C) b, (9.8)

* ¥ X *
* ¥ X ¥
*x ¥ O O
¥ ¥ O O

where a star denotes a nonzero entry. This means that the projective quadric
PQ is the coset

PQ = Gr,(C*) = SL(4,C)/P. (9.9)

The group SL(4,C) acts on PQ by multiplication from the left. This is the
conformal group of the complexified Minkowski space PQ = C*.
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9.1.3 Coordinatisation of Gr,(C*)

We now describe an explicit set of coordinates on the Grassmanian Gry(C*)
and verify that the action of the conformal group is a generalised version of
the fractional linear transformations (9.2). We will also understand why it was
natural, see (8.1), to put the coordinates of the Minkowski space together into a
2 x 2 matrix.

Consider a two-plane spanned by twistors Z;, Z, € C*. We can take arbitrary
linear combinations of Z; and Z, without changing the plane. We thus have a
group GL(2, C) at our disposal to put the twistors Z, and Z, into some convenient
form. There are 4 4+ 4 (complex) parameters needed to specify Z; and Z,, and
using GL(2, C) we can set four of them to desired values. One can then see that
for a generic two-plane we can put Z; and Z, into the form

Zl = e, + Y€2 + €3, Z2 = 561 + 662 + €y. (910)

In other words, using GL(2,C) we can set two of the 8 parameters of Z; and Z,
to zero and two others to the identity. It is convenient to put the two columns
Z, and Z, into a 2 X 4 matrix

, (9.11)

L<

Il
o =2 Q
—_ o o9 @

which we also denote by Y. The conformal group SL(4,C) acts on Y by matrix
multiplication from the left. To describe this action explicitly we use the block
matrix notation and rewrite

() () e

and
A B
9<c D>, (9.13)
where A, B,C, and D are 2 X 2 complex matrices. We then have
B _( Ax+B Xq
o= (BB (%).

where we have put the result into the form (9.11) by a GL(2, C) transformation
and

x, = (Ax+ B)(Cx+ D). (9.15)

This shows that the conformal group SL(4,C) acts on M = C* = Gry(C*) by
matrix fractional linear transformations.
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It is instructive to describe various subgroups of the conformal group. First,
the subgroup of transformations that preserve the origin x = 0 is B = 0, which
we have already seen in (9.8). Of these, the transformations with C' = 0 are
complexified Lorentz rotations combined with dilatations

x — AxD™'. (9.16)

When det(A) = det(D) = 1 this is the already familiar to us action of the
complexified Lorentz group. When A = A, D = A7'I, A € C this is a dilatation.
More generally, the transformations with C' = 0, B # 0 act as

x = AxD™' 4+ BD™ ', (9.17)

which is a complexified Lorentz rotation (together with dilatation) plus com-
plexified translation. Finally, the transformations with C' # 0 are the special
conformal transformations. All this exactly parallels the usual conformal action
(9.2) on §? ~ C. We thus see that the generalisation required to go from 2D to 4D
is to replace complex numbers by 2 x 2 matrices. In the following sections we will
see that various different signatures that we can have in 4D correspond to various
‘reality’ conditions imposed on the complex matrices x, exactly reproducing the
already familiar story from Section 5.5. In particular, in the case of R* the
required 2 X 2 matrices will be those that correspond to quaternions. Thus,
the generalisation that is required to go from R? to R* is to replace C by H,
and the conformal group SL(2,C) by SL(2,H), as we shall see in Section 9.2.

9.1.4 Twistor as Two Spinors

The subgroup of matrices with B,C = 0 and det(A) = det(D) = 1 is the com-
plexified Lorentz group sitting inside the conformal group SL(4, C). With respect
to this Lorentz group the fundamental representation T of SL(4,C) becomes
reducible and splits into two C? representations, the spinor representations of
the Lorentz group. Let us therefore coordinatise T = C? & C? by two-component
columns 7,w € C2, so that a twistor in T can be represented as a bi-spinor

=(0) () em(T) e

The action of the complexified Lorentz group on 7, w is
T — Am, w — Duw. (9.19)

The discussion of spinors in the previous chapter allows us to interpret 7 and w
as the two spinors of different types m = m4,w = wy/, with their spinor indices
down.

We then have the spinor index-raising operation, which from a column 7
produces a row (em)”, and similarly from the column w the row (ew)”. The
action of Lorentz group on the spinors with indices raised is
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(em)" = (eAm)" = 7" ATe" =n"¢" A7 = (em)T A, (9.20)

where we have used the relation ATe = eA~!, which is true for any A €
SL(2,C). We similarly have (ew)T — (ew)TD~!. This means that the matrix
x transforming as (9.16) should be interpreted as a bi-spinor with its primed
index raised

x=x,". (9.21)

We will require this interpretation in the following sections.

9.1.5 Twistor Space as the Coset

The action of SL(4,C) on T is the simple action of a matrix group on columuns.
Given that to get to M = PQ we pass to the projective version of the space
of bi-vectors, it makes sense to consider also the projective version PT of the
space T. This is the space of lines through the origin of T, which can also
be described as the Grassmanian Gr;(C*). This space is called the projective
twistor space.

The projective version PT of the space T is also a group coset. Indeed, the
stabiliser of the line in the direction of the vector e, is the subgroup of matrices
of the form

* *x x 0
* *x x 0
R=9| o~ |est@o . (9.22)
* ok ok k
This gives
PT = Gr,(C*) = SL(4,C)/R. (9.23)

9.1.6 Twistor Double Fibration

Both PQ and PT arise as the quotients of the complex special linear group in four
dimensions by the so-called parabolic subgroups P and R. There is a smaller
parabolic subgroup that is the intersection of P and R. This is the subgroup of
matrices of the form

€SL(4,C) § . (9.24)

* ¥ O O
* O O O

O

Il
* % ¥ %
* % ¥ %

The group coset SL(4,C)/Q has complex dimension five, and is the so-called
flag manifold. A point in this space is a two-dimensional projective plane in T,
together with a line in this plane. Both PQ and PT arise as bases of fibrations
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with SL(4,C)/Q as the total space of the bundle. We have the following double
fibration playing central role in twistor theory:

SL(4,C)/Q

/ \ (9.25)

PT =SL(4,C)/R PQ =SL(4,C)/P

9.1.7 Geometric Interpretation

The realisation of complexified Minkowski space as the Grassmanian of two-
planes in C* can be phrased in geometric terms as follows. The projective twistor
space is PT = CP3, the complex projective space of dimension three. The two-
planes through the origin in T are nothing else but the complex lines in the
projective twistor space. Thus, we can say that points in complexified Minkowski
space are lines in the projective twistor space.

What is then the Minkowski space interpretation of points in the projective
twistor space? A point in PT is a line Z in T through the origin. There are
different two-planes in T that share this line. To specify a two-plane sharing a
given line Z we need to prescribe another twistor Z. Adding to Z any multiple of
Z does not change the plane, so we only need to specify three complex parameters,
modulo an overall scale. This shows that the space of two-planes sharing a given
line is two-dimensional. Thus, to every point in PT, there corresponds a set of
points in the complexified Minkowski space of complex dimension two. Let us
call these sets of points a-planes. Thus, we can say that a point in the projective
twistor space is an a-plane in the complexified Minkowski space.

Overall, we have the following correspondence

lines in projective twistor space < points in M, (9.26)

points in projective twistor space < a—planes in M.

Let us work out a coordinate description of this. A line in PT is a two-plane
in T, and for a two-plane that is the span of vectors (9.10), this is a set of points

i1 Zy 4wy Zy = < ’Z‘J ) , (9.27)

where w, » are complex parameters. We thus see that a line in projective twistor
space that corresponds to a 2 x 2 matrix x is the line where the coordinates 7
and w on T satisfy

T =XWw. (9.28)
We can also write this in spinor notations as

TaA = XAA/LUAI. (929)
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In the twistor literature this is called the incidence relation.

In the opposite direction, let us start from a line in T in the direction of some
twistor Z represented by a pair of spinors (7, w) € C2*@C?. We are interested in all
two-planes in T that share this line. Let us take some other twistor Z = (7, @)
not collinear with Z. We then form the 2 x 4 matrix representing the plane

(

Mixing a and & with an GL(2,C) transformation (that acts on ¥ by multiplica-
tion from the right) this can be put into the form (9.11) with

~ ~ -1
x:<7r1 7?)(”1 ‘i“) . (9.31)
Ty To W  Wo
To see what this means, let us first work out the a-plane that corresponds to the
line in T, which in turn corresponds to the origin of the complexified Minkowski

spanned by Z and Z

v M

) . (9.30)

space. As we can see from (9.29), this is the line 7 = 0 and w arbitrary, which
by rescaling can always be fixed to be

_ (¢
w = ( . ) . (9.32)
Here € € C. So we have

(0 m N[ @) 1 T~
=0 )1 2) wa(n 28)  ow
1 T
:@15052(7?2)(1 =)

The two-component row here is just what we defined in (8.6) to be the two-
component spinor w with its index raised

(1 —¢)=(ew)” (9.34)

This shows that the a-plane through the origin of the Minkowski space is the set
of 2 X 2 matrices

i Faw? (9.35)
AT ew] '
where [@w] := @w? is the spinor pairing. This should be interpreted as the

a-plane corresponding to the twistor (0,w) with the spinor w thus being fixed.
The twistor (7 and @) is changing and gives a two-parameter surface in the
complexified Minkowski space.
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For a general twistor (7 and w), we can always represent the matrix (9.31) as

~ —1 ~ ~ —1
T T w1 Wi + 0 T — T w; Wp
X = N - - .
To To Wa Wy 0 To — To Wy  Wo
In spinor notations this can be written as

ﬁ-A_TrAWA, / TalW™ —w
A

L oxoaN = ¥ (9.36)

XAA, = XOAA/ + po

[ww]

This represents a point x, 44" on the a-plane in question, plus a two-parameter
set of vectors giving other points on the same plane, parametrised by the spinor

TaA—TAp.

9.1.8 Conformal Metric on M

Generic two-planes in T only intersect at the origin. However, there are two-
planes that intersect along a line in T. As we have just described, these corre-
spond to points of the Minkowski space that lie on the same a-plane, the a-plane
that corresponds to the line in T in question. This means that we can introduce
a natural conformal metric on the complexified Minkowski space. We define this
metric so that points in the Minkowski space that lie on the same a-plane are
null-separated.

Such a metric can be easily described using the Pliicker coordinates on Gry(C*).
Indeed, we have described Gr,(C*) as the projective quadric PQ in C°. The
tangent space to a point Y € @) consists of bi-vectors dY satisfying dY AY = 0.
There is then a natural conformal metric given by

ds? ~ dY A dY. (9.37)

This gives a top form on C*, which we divide by an arbitrary volume form to ob-
tain a number. Alternatively, using the index notation we have ds* = €;;,dy" dy*',
where €;;;,; is some completely antisymmetric tensor on C*.

The metric (9.37) has the desired properties. Indeed, let us consider a point
in the Minkowski space that is represented by two-plane in T with Pliicker
coordinate Y € A%C*. Let us then consider a nearby two-plane Y + dY’, with
dY small. In order for this bi-vector to represent a two-plane, we must have
dY NY = 0. There are then two possibilities. If dY is decomposable dY AdY = 0,
then dY A'Y implies that bi-vectors dY and Y share a vector. This means that
two-planes represented by Y and Y + dY share a line and the two Minkowski
points Y and Y + dY are on the same a-plane. We wanted a-planes to be null,
and dY A dY = 0 guarantees that. On the other hand, dY does not have to
be decomposable. In this case, the two-planes Y and Y + dY do not share
a line and the corresponding Minkowski space points do not lie on the same
a-plane.
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It is instructive to work out the metric (9.37) explicitly, using the parametri-
sation (9.12). We have

dY = (dae; + dyey) Aey + es A (dBer + dyes), (9.38)
where da, dfB, dy, and d§ are components of the matrix dx. Therefore,
dY NdY ~ dadd — dBdy = det(dx). (9.39)

This is the familiar metric from Section 5.5 on R* of various signatures expressed
as the determinant of a 2 x 2 matrix x. This immediately confirms that the a-
planes of the origin (9.35), and general (9.36), are totally null. Indeed, the matrix
X AA/ in (9.35) has zero determinant, and so all points it represents are null-
separated from the origin. In (9.36), the second term is a matrix with zero
determinant, so all points on this a-plane are null-separated from x.

In words, we see from (9.36) that a general a-plane in M is parametrised by a
twistor (7, w) and points on it can be represented as the sum of two null vectors,
one given by the product of spinor 7, times an arbitrary primed spinor, and the
other as the product of an arbitrary unprimed spinor times wA'

9.1.9 Split Signature Version

We now work out the different possible real versions of the previous description.
The split signature case is easiest. Indeed, we know from Section 5.5 that the
matrix x must be real. The most natural way to realise this setup is to have all
spaces under consideration to be real. Thus, in this case, T = R* and the space
of bi-vectors is A2R%. The projective quadric PQ is real four-dimensional. The
conformal metric (9.37) is real of a split signature. The conformal group is
SL(4,R).

Let us note that in the present real setting, the projective twistor space
PT = RP? is real three-dimensional. This, in particular, shows that the projec-
tive twistor space cannot be viewed as the total space of some fibre bundle over
M, because PT is of lower dimension than M. We make this comment because in
Section 9.2 we will see that in the case of Euclidean signature, it will be possible
to interpret the projective twistor space as the total space of a bundle over M.
The only natural fibre bundle over M that we have in the split signature setting
is the five-dimensional bundle with fibres being all a-planes that pass through a
given point of M. Such a fibre can be parametrised by a primed spinor w up to
scale, and thus by a copy of RP!.

9.1.10 Minkowski Space Version

We now work out the reality conditions to obtain the real Minkowski space
version of the twistor space. We know from Section 5.5 that the relevant reality
condition in this case and that the matrix x is anti-Hermitian. There is an
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involution on the space of two-planes in T that gives this, but this involution
does not come from an involution on T. This makes the Minkowski space version
of twistor space somewhat harder to describe as compared to the other two
signatures.

For an anti-Hermitian matrix x, the matrix Y (9.11) is of the form

i i
Yars — iﬁl* lg . a6eR,BEC. (9.40)
0 1
The corresponding bi-vector is
Y = (iae; +i8%es + €3) A (ife; + ides + e4), (9.41)

and the corresponding Pliicker coordinates are

Y12 = |B|2 - 04(5, Y31 = 153 Yia = i0l7 (942)
Yoz = —10, You =187, Yz = 1.
We thus see that
Y12, Ysa € R, Y14, Yoz € IR, You = —Y3;- (943)

Our task now is to find a subgroup of SL(4,C) that preserves these conditions.
Let us consider a Lie algebra matrix X € sl(4,C). Its action on a bi-vector
e; Nejis

es Ne; — XFep Nej + e A X Fey. (9.44)
This corresponds to the following 6 x 6 matrix acting on columns of Pliicker
coordinates
2t + 2,2 0 29t -2 —29° —zt
0 233 + 244 231 _242 241 232
p(X) _ Z42 2513 le + 244 0 _243 212
_2:31 _224 0 222 + 233 _221 234
_232 214 _234 _212 233 + le 0
_241 223 2521 243 0 222 + 244

Here p(X) is the representation of the s/(4,C) matrix X on bi-vectors, and we
have ordered the basis as €2, €34, €14, €23, €31, and eq4. For example, the first row
of this matrix follows from

er Nea — (21'er + 21%es + 21%es) Aeg +e1 A (22720 + 25°es + 22%ey)

1 2 4 3 3 4
= (2'1 + 2 )612 + 227€14 — 217€23 — 227 €31 — 21 €g4.
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The other rows are obtained similarly. On the other hand, we can rewrite the
reality conditions in (9.43) by introducing a matrix

I 0 0 0 1
0= 0 -I 0 , = ( 10 ) , (9.45)
0 0 —01
so that
y" = 0y. (9.46)

The matrices p(X) that commute with this involution are those that satisfy
(p(X)y)* = 0p(X)y, which gives

Op(X) = p(X)"0. (9.47)
An explicit calculation shows that this is equivalent to the following conditions

2+ 2t €R, 2% 4 23° €R,
le + 222 S R, 233 + 244 S R,

(21" +25°) = 2 + 2%,

as well as
2%, 25" 23", 24 € iR,
(212)* = 2,3 (221)* = 2t (223)* . (232)* = 2,
It is not hard to see that this implies that the matrix X € si(4,C) is of the form

X = ( e ) (9.48)

where B and C' are arbitrary anti-Hermitian 2 x 2 matrices and A is arbitrary,
but satisfying Tr(A) € R in order to have Tr(X) = 0.

Let us now understand what kind of condition on X can produce matrices
of this type. It is not hard to see that (9.48) are precisely those matrices that
satisfy

FX +X'F =0, (9.49)

F<§ g) (9.50)

with I being the 2 x 2 identity matrix. On the other hand, the matrices satisfying
(9.49) are precisely those that leave invariant the following quadratic form on T

where

\Z2,. = Z1FZ. (9.51)
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Indeed, the action of Lie algebra of SL(4, C) on this inner product is
Z'FZ - Z'FXZ+ (X2)'FZ = ZN(FX + X'F)Z, (9.52)

which equals zero in view of (9.49). Thus, the real quadratic form (9.51) remains
invariant under transformations of the form (9.48), and in turn, transformations
of this form are precisely those that leave invariant the quadratic form (9.51).
The eigenvalues of F' are £1, which shows that the signature of the Hermitian
quadratic form (9.51) is (2,2). Thus, the conformal group of Minkowski space
is SU(2,2), the group of transformations of C* preserving the Hermitian form
(9.51), which is of signature (2, 2).

It is also interesting to give the coordinate description of the twistor space in
this case. If we consider the action of X of the form (9.48) on columns (9.18) we
see that m — Am,w — —Afw, where A € sl(2,C). According to our discussion
in (8.4), (8.5) the two-component column 7 should be given the interpretation
of an unprimed spinor with lower index, while w should be given interpretation
of a primed spinor with an upper index; see (8.16). Thus, in the Minkowski case,
the spinor interpretation of a twistor four-component column is

7= ( i > (9.53)

w
The quadratic form (9.51) is then
|2 iy = o™+ waw™, (9.54)

where we have used the fact that the complex conjugate of a spinor is the spinor
of opposite chirality. This in particular shows that the quadratic form (9.51)
is zero on two-planes in T that represent points in M. Indeed, on such planes
74 = xanw?, and, therefore, T = —Xaaw™, where we have used the anti-
Hermiticity of x44/. This shows that |a|3,,,, vanishes on the two-planes that
corresponds to points in the real Minkowski space. This can be used as an alter-
native characterisation of such two-planes. The ‘real’ points in the Grassmanian
of two-planes in T are those that are null with respect to (9.51), with the meaning
of ‘real’ being that they correspond to points in the real Minkowski space.

We also note that, like in the split signature case, the (projective) twistor
space of the Minkowski space M is not a fibre bundle over M. Points of the
projective twistor space-lines in T—corresponding to a given point in M—2-plane
in T—are those contained in the given two-plane. Because in the Minkowski case
the real two-planes in question are totally null with respect to the Hermitian
inner product on T; these are the null lines in T. However, a given null line in
T is contained in more than one null two-plane. This means that there is no
well-defined projection from PT to M and PT is not a fibre bundle with M as
the base.

There is, however, a natural bundle over M even in this setting, which is the
Minkowski signature version of the fibration 7 in (9.25). Indeed, we can consider
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the bundle whose fibres are a-planes though a given point in M. The fibre can
be coordinatised by primed spinors up to scale, and is thus a copy of CP! in
this case. This is the Minkowski signature version of the coset SL(4,C)/Q from
(9.25), which in this signature has real dimension six.

9.2 Euclidean Twistors

We now develop the Euclidean version of the twistor story. We dedicate a separate
section to this material, because there are many aspects that are not shared by
the split and Minkowski cases. The main distinguishing feature of the Euclidean
case is that the twistor space turns out to have the fibre bundle structure—it is the
total space of the primed spinor bundle over M, as we shall soon see. Another
specialty of the Euclidean setting is that many constructions are obtained by
directly generalising those that are already familiar from the case of S? ~ CP*
by replacing complex numbers C with quaternions H.

9.2.1 Fuclidean Signature Conformal Group

We know from Section 5.5 that that matrix x parametrising two-planes in T

must be of the form
x=( ¢ 2 (9.55)
_ﬂ* OZ*
Equivalently, we can say that the matrix x must take values in the space of
quaternions x € H. Then the conformal group is just the group SL(2, H) of 2 x 2

matrices with quaternionic entries.
To define the group SL(2,H), let us consider a 2 x 2 quaternionic matrix

A B
g<c D>’ A,B,C,D € H. (9.56)
We can then view A, B, C, and D either as unitary 2x2 matrices or as quaternions.
In the first interpretation we get a 4 x 4 matrix g, whose determinant can be
expressed as

det(g) = det(A)det(D — CA™'B), (9.57)

where on the right-hand side we interpret A, B,C, and D as 2 x 2 matrices. On
the other hand, the determinant of a unitary 2 x 2 matrix is the norm squared
of the corresponding quaternion. This means that we can define the determinant
of a 2 X 2 quaternionic matrix as

det(g) = |A]|D — CA™'BJ?, (9.58)

where now A, B,C, and D are viewed as quaternions. This makes it clear that
for quaternionic 2 x 2 matrices det(g) > 0. Having defined the determinant we
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can define the group SL(2,H) as the group of unimodular 2 x 2 matrices with
quaternionic entries. Such a group acts on H by fractional linear transformations,
and this is the realisation of the conformal group of R*. As already mentioned,
this is the direct generalisation of the situation in 2D, with complex numbers
replaced by quaternions, and complex unimodular 2 x 2 matrices replaced by
quaternionic such matrices.

The group SL(2,H) can be interpreted as the subgroup of SL(4, C) that com-
mutes with some involution of the twistor space T = C*. To see this interpreta-
tion, let us think about twistors as a pair of spinors Z = (7 and w). We then
have the following involution on Euclidean signature spinors

= em”, W= ew", (9.59)

where ¢ is the antisymmetric matrix (8.7) and star denotes the complex
conjugation. We note that because €2 = —I the involution squares to minus
the identity.

= —id. (9.60)

Then, using the fact that for unitary matrices Ae = e A* we can see that unitary
transformations commute with the involutions defined

A# = (Aw)", D& = (Dw)",  A,D eSU(2). (9.61)

We now define an involution on T

&

) . (9.62)

It is easy to check that SL(2,H) transformations commute with the involution

defined
() =((6)). sesam o

Thus, we see that it is the “involution (9.62) on T that gives us the desired
Euclidean signature real form of the conformal group.

Because the involution we have defined squares to minus the identity there are
no ‘real’ vectors in T. However, there are real bi-vectors. Indeed, any bi-vector
of the type

Y=ZANZ (9.64)
is real. Indeed, we have
Y=—ZANZ=ZNZ=Y. (9.65)

Thus, while there are no ‘real’ lines in T, there are real two-planes and thus real
points in M. In particular, we note that the matrix Y (9.11) that is constructed
from a unitary matrix x is
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B
“ (9.66)

|
7 N\
€ 3
[
&
N——

o
—p
1 0
0 1

where

~(5) () em

and is thus of the type (9.64) and corresponds to a real two-plane.

The form (9.64) of real two-planes implies that every twistor Z € T corre-
sponds to a unique real point ZAZ in the space of two-planes. This means that in
the case of Euclidean signature, we have a well-defined projection PT — M = R*.
In other words, the twistor space T is the total space of a bundle over the space
of real two-planes, which coincides with ‘our’ space M. Similarly, the projective
twistor space PT is the total space of a bundle over M. Each fibre of PT — M is
a copy of 5% ~ C, and consists of all lines in T that form the given real two-plane.
Explicitly, as we saw in (9.29), this is the set of twistors (7 and w) satisfying
74 = x4 w4, which is parametrised by the primed spinor w up to scale, i.e., by
a copy of C. Thus, we can say that the Euclidean signature twistor space is the
total space of the primed spinor bundle over M = R*. This fibred structure of
the twistor space is not a general feature, and holds only in Euclidean signature,
as we have seen from our previous discussion of the other two signatures.

9.2.2 FEuclidean Spinors

Before we can continue with further developments related to Euclidean signature
twistors, we need to establish some facts about Euclidean spinors. This is done
in complete analogy with the treatment in Section 8.1, but with the matrix x
changed accordingly. We have already encountered the matrix xz in (5.76). We
repeat it here for convenience

oA i3 2
XE—( rt+ird  ixl+ ) (9.68)

izt — 2?2 —z*—ix?®

Under Lorentz transformations, this matrix transforms as x — ngg}, Jr,9gr €
SU(2). Given that in general the spinors with their index raised transform by
multiplying them with ¢g=* from the right, this transformation property of x
implies that it should be interpreted as x AA,, i.e., a bi-spinor with the primed
index raised.

We can write the Euclidean norm squared as

|x|? := det(x) = 27 + 23 + 23 + 7. (9.69)
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We can alternatively write the metric on R* as

1
ds® = ETr(dxdef)7 (9.70)

where x' = (x”)* is the Hermitian conjugation. For future use, we note the

useful property
xx' = I|z|>. (9.71)

For any unitary matrix we have exe” = x*. This implies that the matrix x A
with its index A raised and A’ lowered, and then the two interchanged, is the
matrix x'. In other words, we can write (9.70) as

1 /
d52 = idxAA dI’A/A. (972)

This means that if we introduce the soldering form via
x4 = V2,4 1 (9.73)
then the metric of R* takes the form

S = €un e, (9.74)

The components of the soldering form are given by
1 -1 0 1 i 0
=m0 b)) emmle B) em
L_L(0iY 101
T2 \li o) T a1 0 )

We now compute the components of the ASD 2-forms given by

EA,B/MV = eaAley]AB/. (976)

We have

_ 1 1/1 0

Y= 5((664)T€1 — (ee1)Tey) = 3 < 0 —i > , (9.77)

_ 1 1/ -1 0

242 = 5((664)T€2 — (662)T€4) = 5 < O 71 ) 5

_ 1 1 0 —i

Y3 = 5((664)T€3 — (ee3)ey) = 3 < i o ) .
The other components follow from anti-self-duality (ASD), e.g., Yoy = =%,

which can of course be also checked explicitly. Finally, it can be checked that all
¥’s are real with respect to the involution (9.59)

€(S,) e =35, (9.78)
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All matrices £4'5" are also symmetric (£,,)" =3%,,. We will need these objects
in the following subsection when we describe almost complex structures on R*.

9.2.3 FEuclidean Twistors and Almost Complex Structures

As we have just seen, the Euclidean (projective) twistor space is naturally the
total space of a two-sphere bundle over M. This allows us to interpret the
projective twistor space PT as the bundle of almost complex structures over
M. This interpretation was first given in Atiyah et al. (1978), and we give some
details here.

Recall that an almost complex structure on M is an endomorphism J :
TM — TM of the tangent space that squares to minus the identity J? = —I.
Now, the twistor space of M = R* is the total space of the primed spinor bundle
over M. Given a primed spinor wAl, we can construct an endomorphism of the
tangent space from the ASD 2-forms $4'8 contracted with w4’ as well as &',
Thus, we first raise one of the indices of Z_]Z‘;Bl to convert it into an S?-valued
endomorphism iﬁ/B,”. We then contract with @4 wp

Jo)uw =~ = , 9.79
(T = F = (9.79)
where [0w] := @aw?’, and @, is the Euclidean conjugation (9.59) that maps
primed spinors to the same type spinors. We have [0w] := (ew)Tew* = wTw*, and

so this object is real. The factor of two in front is needed for the correct normal-
isation, and the factor of imaginary unit is needed to make the endomorphism
real. Indeed, we can rewrite (9.79) as

2 _

J, = o] (ew)"Sw, (9.80)

where here the object ¥ is with its first spacetime index down and second up to
create an endomorphism of 7M. We then have

(Jo)" = Ju, (9.81)
where we have used that [@w] is real and
((ew)"Ew)" = —w (D) € ew” = —w" Sew* = —(ew™) " Sw,

and we used (9.78) as well as the symmetry of 3. We also note that (9.79) only
depends on the spinor w up to scale, and so it is parametrised by a copy of CP*.
We now use (8.33), which is also valid in Euclidean signature, to obtain

I

Jodo = —ﬁ(eA'C'eD’B’ + AP BN G e = —1L (9.82)
ow
Thus, J, is indeed an almost complex structure on R*. Unlike the case of

two dimensions, in 4D there is no longer a unique almost complex structure.
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The bundle of such almost complex structures over R* is the (projective) primed
spinor bundle.

We can explicitly describe the eigenspaces of J,, as follows. First, we need the
following identity

iAlBlu”efcl = —eS(A/eBI>CI, (9.83)
which can be checked by an explicit computation using the definition of f];‘;Bl
as well as eHAA/e“BB' = —€4Be4B, the latter following from (9.74). We then act
with J,, on a 1-form of the type e4’ 74w 4/, where 74 is an arbitrary spinor. We

have

/ 1 Il VPR
(Jw),uyefc TeWe! = [L:JW] ( SA 5o S’B EA c )WA’WB/TFcLL)C/ (984)
= iefc’lﬂ'cwc/.

Thus, the 1-forms of the type efA/wAwA/ are the (1,0) forms. It can similarly be
checked that eA4' 7,0 are the (0,1) forms.

Given a real vector field (or a 1-form) on M, one often needs to decompose it
into its (1,0) and (0,1) parts. The following identity is the most useful way of
obtaining such a decomposition

~ B’ ~ B’
B’ wprw — Wyurw

ea® = o . (9.85)

This identity can be verified by checking that e LB as given in (9.85) returns
was, w4 when the contractions EA/BICUB/ and €4 BILZJB/ are computed. Since arbi-
trary spinor 1,/ can be decomposed into w4/, w4/, this means that eA/BInB/ =N,
which is the defining property of the €4/ B’ We can then insert the identity (9.85)

into the object ef}A/ to obtain

, 1 /. ’ / Al
et = ool (efL‘B wpw? — el wp ot ) , (9.86)

which is the desired decomposition of the 1-forms e;‘Al into (0,1) and (1, 0) parts.
Then, using £, = eﬁAlgAA/ any 1-form can be decomposed.

9.2.4 Fubini-Study Metric

It turns out that there is a natural metric as well as a compatible almost complex
structure in the Euclidean twistor space. As we shall soon see, in particular,
the existence of the latter is related to the fact that the twistor space has the
interpretation of the bundle of almost complex structures over R*. The reason
why a natural metric exists on the twistor space is more subtle. We will give a
7D explanation in the following sections.
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To see how a metric and an almost complex structure arise on the twistor space
of the complexified Minkowski space, we note that this twistor space is T = C*,
and its projective version is CP3. This space is a complex manifold, i.e., has
an integrable almost complex structure J. It also has a compatible Hermitian
metric, i.e., a metric that has the property g(J-,J-) = g(-,-). The metric in
question is the so-called Fubini—Study metric of the complex projective space.
Let us describe this metric in coordinates.

The space T = C* comes with its natural Hermitian metric

4
dsta =Y |dZ. . (9.87)

The projective twistor space PT = CP? can be coordinatised by projective
coordinates [Z,, Z1, Zs, Z,] ~ |21, 22, 23, 1]. In other words, let us introduce the
following set of coordinates on C*

Zi = Zit7 1= 1, 2, 3, Z4 =t (988)

It is then an exercise to check that the flat Hermitian metric (9.87) on C* takes

the following form in the previous coordinates

dsga = +Z‘ t|2l 7 + 1+5 |z

2
+ dsf,sl , (9.89)

where

Sz P+ 3, 1217 = 32, Zizdads;
(L4232 =)

2 .
dspg =

(9.90)

is the Fubini-Study metric on CP3.

The calculation we just performed allows us to view the sphere S7 C R® = C*
given by the equation ) _|Z,]*> =1 as a S' bundle over CP?. Indeed, we can
pull back the metric (9.87) to the sphere S7 by choosing

V 1+ Zz |Zi|27
where ¢ is a coordinate on S*. In this coordinates the metric (9.89) gives the
following form of the metric on S”

(9.91)

ds%r = (dy + a)® + dshg, (9.92)
where
S (2.dz — z.dz
o= L2z — 2idz) (9.93)
2 1+ 0w

is a U(1) connection on CP?. This explicitly realises S” as the total space of an S*
bundle over CP3. Note that the described construction is the direct generalisation
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of the construction of the Hopf fibration in Section 1.13. Indeed, if there is just
one complex coordinate z; = z, the described computation is identical to the one
performed in Section 1.13, and the Fubini—Study metric coincides with (quarter
of) the metric on the unit S? = CP*.

9.2.5 CP2 as an S? Bundle over S§*

We now perform a similar computation, but this time parametrise C* using the
previously developed twistor interpretation. Thus, we view C* = T as a C2
bundle over S*, viewing the latter as another copy of C2. Indeed, recall that the
(projective) twistor space is the bundle of a-planes through real points in M,
and all twistors that lie in a given real two-plane in T are of the form 7 = xw.
This gives a parametrisation of T = C* by two complex coordinates o and 3 in
x and two complex coordinates components of the column w.

Thus, we now have Z = (m,w). In terms of 7 and w the Hermitian metric
(9.87) reads

dsty = dr'dr + dw'dw, (9.94)

where we view 7 and w as two-component columns. Parametrising 7 as xw we
get

dsts = (whdx" + dw'x")(dxw + xdw) + dw'dw. (9.95)
Using the fact that x'x = |x|?I we can rewrite the previous equation as
dx'x xtdx dxtdx
ds?, = (1 2 dwt [l d —_— = ul.
sto= (o i) | (a0 + o 190 ) (0 i) ot g
(9.96)

We now parametrise w € C? projectively

w = tn, n:(i). (9.97)

We also restrict to the sphere S C C* given by the equation nfr + wiw = 1.
This gives [t]*(1 + |z]*)(1 4 |x|?) = 1, which allows to parametrise
i)
t= < . (9.98)
VI +[P) A+ [xP)

A straightforward computation then gives

x'dx . d|z|?
—_— = e ——— D .
dw—|—1+‘x|2w t(<1dw 2(1+Z|2)>77+ 77), (9.99)

where

xfdx — dxtx
Dnp:=(d+ A A=—— 9.100



326 Higher-Dimensional Descriptions

The 2 x 2 matrix A is anti-Hermitian, and will later be identified with a chiral
half of the spin connection on S*. This gives

T T
! (dwwwf‘lx") (d 4 Xdx > (9.101)

[ER+ [2P) e\ TR
— 4 idi (Dn)'n —u' Dy (Dn)'Dny ((Dn)*nJrn*Dn)Q’
ntn ntn 4(1 + |2]?)?
where we have used
(Dn)'n +n'Dn = d|2|*. (9.102)

The terms on the right-hand side of (9.101) can be rewritten as
i (D) — "D\ (D)) (0t = nnt)D
<dw+l( n)in—n n) L (D) ((n'n) 27777) n (9.103)
2 ' (n'n)
Overall, using the fact that dx'dx = |dx|?I we can write the metric on S7 in
these coordinates in the form (9.92) with
i (Dn)'n—n"Dn
= 104
a=; o , (9.104)

and

D)t ((n'n)L = nn') Dn |dx?
ds? 3 = ( + . 9.105
iy (1 + P (2109
The last term here is (quarter of) the metric on S* of unit radius. This represents
CP? as the total space of an S? ~ CP*' bundle over S*.

We can further rewrite the fibre part of the metric in (9.105) by introducing

the conjugate spinor 1) we have

1
n=en = < s ) : (9.106)
We then have
('L — " =iyt (9.107)
The spinor contraction appearing in the metric is then
7' Dn = (en*)' Dy = (en)" Dy = 0™ (D) ar, (9.108)
where we rewrote the result in spinor notations. Also, using ﬁA’ﬁ 4 = 0 we can
rewrite
(Dn)'i = i (Di) ar. (9.109)
We also have [7jn] = 5. Thus, we can rewrite the metric (9.105) more compactly
as
_ dx|?
dst = 7 4 19| (9.110)

0 I T (T )2
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where
r= (D), 7= (D) (9.111)

are complex-valued 1-forms on the total space of the CP3 — S* bundle, which
are complex conjugate to each other. We note that we could have replaced
Nar — war = tna in (9.110). Indeed, we have

w (Dw) ar =ty (d(tnar) + Aa® tnp) = 20" (D) ar, (9.112)

where we have used that the spinor contraction of nA/ with itself is zero, and
so there is no dt term. Then the numerator of the first term in (9.110) is
homogeneous of degree two in ¢, and the denominator is similarly homogeneous.
Thus, the first term in the metric can be written in terms of the spinor w,, € C?
but descends to a well-defined quadratic form on the projective space CP*.

9.2.6 Almost Complex Structures on the Twistor Space

We can now connect the calculation of the previous subsection culminating in
(9.110) with the description of the Euclidean twistor space as the total space of
the bundle of almost complex structures over M.

First, the complex projective space CP? is a complex manifold in that there
is an integrable almost complex structure that is also metric compatible. This
almost complex structure is easiest to describe in terms of the (1,0) and (0,1)
decomposition that it induces. These can be read off the metric, which must be
of the form that is a sum of (1,0) forms times their complex conjugates. The
(1,0) form in the fibre direction is readily read off from (9.110), and is given by
T = nA/DnA/. As we already discussed, this is not really a 1-form on CP3, but
rather 1-form transforming homogeneously under rescalings used to pass from
C* to CP3. In other words, it is a section of an appropriate line bundle over CP3.
It is essentially the 1-form dz on CP! corrected by basic terms coming from the
connection A.

The basic (1,0) forms can be identified from the second term of the metric
(9.110). Indeed, one can write |dx|* as a multiple of Tr(dxdx"). We can then use
dx' = ex"e”, and insert the decomposition of identity (9.85). This shows that
the numerator in the second term in (9.110) is a multiple of Tr(edxw(dxw)T).
However, the object dxw is a multiple of 1-form eHAA/cAJA/7 which we identified in
(9.84) as (1,0) forms with respect to the almost complex structure J,, given by
(9.79). Thus, the basic (1,0) 1-forms as read off from the metric (9.110) coincide
with those determined by J,.

This can be reinterpreted as follows. The Euclidean (projective) twistor space
is the total space of the CP! bundle over R*, which we interpreted as the bundle
of almost complex structures. Given that every point in the fibre CP! defines an
almost complex structure on R*, and that the fibre itself is a complex manifold,
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there is a natural almost complex structure that can be given to the twistor
space as the whole. Indeed, at every point of PT, we define the action of J as
the corresponding .J,, on basic vector fields, and the unique J on CP! on vertical
vector fields. As we just saw, this is precisely the construction that produces the
natural integrable almost complex structure on CP? viewed as the total space
of the primed spinor bundle over S*.

Any almost complex structure on the twistor space can be alternatively
described by the corresponding (3,0) form. The (1,0) forms wedged against this
must then produce zero, which serves to define the space of (1,0) forms. Let us
see what the (3,0) form is for the already described complex structure on CP?>.
Tt is given by the wedge product of three different (1,0) forms, i.e., by

QB0 deAA,wA/dxAB/wB/. (9.113)

Given that dx?4’ is a multiple of the soldering 1-form e“4’, the object
dx*4 dx 47" is just a multiple of the ASD 2-form S4'5’. Overall, we see that the
(3,0) form our our complex structure on CP? is given by

QB0 = wA/DwA/iB,C/wB/wC/, (9.114)

where we rewrote everything in terms of w € C2. This shows that Q9 is of
homogeneity degree four in w, and similarly to 7 only exists as a section of a line
bundle over CP3.

It turns out that there exists another natural almost complex structure on the
twistor space. Indeed, there is a choice that is made in the previous construction.
Thus, to construct the integrable almost complex structure on the projective
twistor space, we combined the unique almost complex structure in the fibre
CP! with the almost complex structure J, on the base. However, there are two
possible relative signs for this combination. The other possible choice is to say
that the (1,0) forms in the fibres are put together with the (0,1) basic forms
to form the space of (1,0) forms. This corresponds to reversing the sign of J,
when putting it together with the almost complex structure in the fibre. The
almost complex structure on the projective twistor space obtained this way is
not integrable. However, it is interesting, due to reasons that will become clear
in the following sections.

The (3,0) form defining this almost complex structure is given by

QB0 = %wA’DaA,iB’C’wB,wC,. (9.115)
[ww]?
The corresponding (3,0) form exists as an actual 3-form on CP?. Indeed, both
numerator and denominator here are of homogeneity 2 in both w and @, which
produces an actual 3-form on CP3. In Section 9.6 we shall see that both the
integrable (9.114) and non-integrable (9.115) almost complex structures arise
naturally from a geometric construction based on 3-form in seven dimensions.



9.8 Quaternionic Hopf Fibration 329

9.3 Quaternionic Hopf Fibration

The unprojectivised twistor space is C* = R®. There is naturally a seven-sphere
S7 C R® obtained by setting the radial coordinate in R® to unity. We have already
seen that we can view the seven-sphere as the total space of the circle bundle
over the projective twistor space CP3. In other words, because we can identify
C* = R8, there is a natural circle action on S” C R8, the seven-sphere is fibred
by copies of S*, and the space of such fibres is the complex projective space CP3.

In this section, we will see that there is another natural way to think about the
twistor space C*. This arises because we can instead identify R® = H?, viewing a
point in R® as a pair of quaternions. We then have a natural action of the group
of unimodular quaternions on S”. Unimodular quaternions form the group SU(2).
The orbits of this action are thus copies of three-sphere S3, and so S7 gets fibred
by copies of S3. The space of such orbits turns out to be a copy of S*. This
is the quaternionic Hopf fibration. It is the precise analog of the Hopf fibration
5% — S5? as was described in Section 1.13, with C replaced by H everywhere.
It is of interest to us because it gives yet another viewpoint on the Euclidean
twistor space, in particular the twistor space of the four-dimensional sphere S*.

9.3.1 The Hopf Projection

We now take R® = R* @ R*, and identify both copies of R* with 2 x 2 matrices
of the type (9.68). We consider the following codimension one surface

lal* + [p|* = 1. (9.116)

Here q, p are matrices of the type (9.68), and the norm is as given in (9.69). This
surface is clearly the round seven-sphere S7.

We now consider a map from this S7 to the sphere §* C R®. This projection,
explicitly, is

(a,p) = (2ap, p|> — [q*) € R®. (9.117)

However, in view of (9.116) it is clear that the right-hand side in (9.117) actually
lies on the surface S* C R®. It is also clear that the fibres of this projection are
copies of SU(2) = S3. Indeed, points

(a,p) ~ (ag,pg), g€ SU(2) (9.118)

are mapped to the same point on the base S*.
The following parametrisation of the projection gives a convenient set of
coordinates on the total space of this fibration

xh __h (9.119)

VIR T VIR

Here h € SU(2).
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9.3.2 Compatibility with the Twistor Description

An important point is that a choice has been made in writing formulas (9.117)
and (9.119). Indeed, it is clear that we can achieve the parametrisation (9.119)
by using the action (9.118) of SU(2) on R® = H?. The action that is used here
is multiplication from the right. We could have used the multiplication from the
left instead, with appropriate changes in (9.117). However, it is the action (9.118)
that is compatible with viewing the twistor space R® as the total space of the
primed spinor bundle over S4.

Let us see this. The Euclidean Lorentz group sits in the conformal group
SL(4,H) given by matrices of the form (9.56) as the subgroup B,C = 0 and A, D
being unit quaternions. This subgroup acts on two-columns with quaternionic
entries q, p as q — Aq, p — Dp. This allows us to parametrise the 2 x 2 unitary
matrices corresponding to q,p as

q=(m, —7), p = (w,—®), (9.120)

where 7 and w € C? are two-dimensional complex columns. Then the action of
the Euclidean Lorentz group on 7 and w is just that on unprimed 7 and primed
w spinors.

Note now that q and p in (9.119) are related as q = xp. In terms of the spinors
7 and w the relation q = xp becomes m = xw, as well as 7 = xw. But the second
relation follows from the first using the unitarity of x. On the other hand, the
relation m = xw is already familiar, describing the Euclidean twistor space as the
total space of the primed spinor bundle over M. So, the parametrisation of S7 by
X, h used in deriving the Hopf fibration is compatible with the description of the
twistor space R® as the total space of an R* = C? bundle over S*. This would not
be so had we used the left multiplication by unit quaternions on (9.118) to get
the projection to S*. Indeed, in that case, we would have q = px, which does not
lead to the right relation between 7 and w. This discussion is important because
it shows that the quaternionic Hopf fibration gives an alternative description of
the same twistor space as we considered before.

To make everything completely explicit, we take, as in (9.97), w = tn with

t = re’ . (9.121)
VI xR+ [2P)

Then p = (w, —®) is of the form as in (9.218) with

1 z -1 el 0
h= —— ) 9.122
1+|z|2(1 D00 ) (0122

which is unitary unimodular as required. This makes the relation between

parametrisations of S7 by x, h as in Hopf fibration and x, z, % as in its description
as 87 — CP? explicit.

Note that in (9.122) we see the right action of U(1) C SU(2) on quaternions.
We note that this right action on quaternions p,q parametrised by spinors 7
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and w as in (9.120) is compatible with the action of U(1) on 7 and w via 7 and
w — ¥, e¥w. Indeed, we have

(m —#) < e:) e?w > =(evr —(e¥m)" ). (9.123)

This discussion shows that the two projections we have constructed, namely
S7 — CP? and S™ — S*, are compatible in the sense that the action of U(1) that
fibres S” by copies of S' with the space of such fibres being CP? is the same as
the action of U(1) € SU(2), with SU(2) acting on quaternions q and p via right
multiplication.

In other words, this means that the two described ways of realising S” as the
total space of a circle bundle over the projective twistor space of S* coincide.
Indeed, on one hand, we have the already described construction of the total
space of an S* bundle over CP?, with the later viewed as an S? bundle over S*.
On the other hand, we have the Hopf fibration, which is an $% bundle over S*.
But S? can be viewed as an S! bundle over S?, using the usual Hopf fibration.
Combining the two, we have another description of S” as a circle bundle over an
S? bundle over S*. This gives two descriptions of the projective twistor space of
S*. We have realised them so that they coincide.

However, we also note that the right action of SU(2) on H? is not compatible
with the natural complex structure on this space that comes from parametrising
the quaternions as in (9.120) and then interpreting 7 and w as holomorphic
coordinates. Indeed, we see from (9.120) that the right action of SU(2) mixes
7 with 7 and w with @. Thus, it does not commute with the natural complex
structure on the space of pairs (m,w) € C*. This remark is going to be important
when we consider G, structures on S” in Section 9.6, because it explains why
non-integrable almost complex structure on the twistor space is related to the
quaternionic Hopf fibration.

9.3.3 Metric on the Total Space

We now compute the metric on S7 in terms of the coordinates x and h of the Hopf
fibration. The computation is straightforward, even though somewhat lengthy.
We have

1 1 1
dp=—-——dx*h+————dh
Py e P
1 1 1
dq = —~ —————d|x|’xh + ——————(dxh dh).
O e O e (B

Let us also write the corresponding Hermitian conjugates

1 1 1
dpl = = dxPh"' — ———_pldhh
(e A (e "D |

1 1 1
dgf = —-— = dIxPh*xt+ — = (b Ydx' — h=Y*dhh xH).
4= T e X G x)
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Here we have used the fact that At = h~! and that dh~! = —h~'dhh~'. We now
compute the pieces of the flat metric on R®

1 1 1 1 1

“Tr(dpdp') = = —————d|x|?d|x|* — =———Tr(h " *dhh~*dh

S dpdp') = § il — )

1 1 |z 11

“Tr(dqdq’) = = —————d|x|?d|x]? — = ———d|x]|?d|x]|?
1 1 1 1

+-——  Tr(dxdx)+=——— Tr(xdhh tdx" — dxdhg~'x'

2 (1 ) XX+ 5 ey T 9 x)
1 |x?

3 Ty T kb~ dh),

where we have taken into account some obvious cancellations. We now add these
two quantities to obtain the metric on S7, taking into account some obvious
simplifications

1

1 1 1
2 = —-— 2 2 _—— t
dsgr 10+ ‘X|2)2d|x| d|x|* + 2+ |X‘2)Tr(dxdx ) (9.124)
1 1 1
P — —L gyt — “1ty — 2T (R1! -1 )
+ 2T+ ) r(xdhh™'dx" — dxdhg™'x") 5 r(h~'dhh™'dh)

We now complete the square in the terms on the second line

1 1 1
————Tr(xdhh~'dx" — dxdhg~'x") — = Tr(h~'dhh~'dh
1 . 11 et ?
= T (hdh— = ——— b Y(dx'x — xTdx)h
2 2 (14 [x[?)
+ 1éTr(dex —x'dx)?
8 (1+[x[*)? '

The first term here is the desired metric together with the connection in the fibre.
The last term here is to be combined with the terms in the first line of (9.124).
To do this, it needs some rewriting. We have

Tr(dx'x — x'dx)? = —4Tr (dx"xx"dx) + d|x[*Tr(dx'x + x'dx) (9.125)
= —4|x|*Tr(dx"dx) + 2d|x|*d|x|*.

We have used dx'x = —x'dx + Id|x|* to get the first relation. It is clear that the
last term here cancels with the first term in (9.124). The other terms combine
into the final result

1 1

§WTr(dxde) (9.126)

d5257 =

2

1
h™'(xTdx — dex)h> .

1 1
——Tr(h'dh+ = +——
™ (17
The first term here is (a quarter of) the usual metric on S* in conformally flat
parametrisation. We can rewrite the second term more compactly by using the

previously encountered connection (9.100), which is an anti-Hermitian matrix



9.8 Quaternionic Hopf Fibration 333

Af = —A. We also introduce the Maurer—Cartan 1-form m and the connection
1-form W in the total space of the bundle

m := h~'dh, W :=m+h 'Ah. (9.127)

We can then write the metric on the total space of the S7 — S* Hopf fibration
as

1 )
ds’y = i <d5254 + Z(WZV) , (9.128)

where

4y, (dan)?

TR (9.129)

d8254 =
is the usual metric on the four-sphere. The objects W = Wit with ¢ = (—i/2)o"
are the generators of the Lie algebra of SU(2). The coordinates z*,u =1,...,4
are those on S* in conformally flat parametrisation.

9.3.4 Checking the Connection

We have seen the connection (9.100) appearing in two different constructions.
One was the description of CP3 as a two-sphere bundle over S*, the other
description of S7 as a three-sphere bundle over S*. These constructions are of
course related, because S? is itself an S bundle over S?, and so our description
of CP?® — S* is in fact inside the description of the Hopf fibration S7 — S*.

Let us now interpret the connection (9.100) as the chiral half of the spin
connection for the metric on S*. This connection acts naturally on the primed
spinors, and so it is the ASD part of the spin connection. To see this, we introduce
the matrix of ASD 2-forms

dx’ A dx
3= D (9.130)

where we indicated the wedge product explicitly. To see that this is the cor-
rect normalisation we note that the soldering form for the metric (9.129) is
el = 2dz’ /(1 + [x]?). On the other hand, computing (9.130) with x given by
(9.68) one gets X = 7'%° with, e.g., X! = 4(dx*dz® — dx'dx?) /(1 + |x|?)?. This is
the correctly normalised chiral 2-form for the metric (9.129). However, the sign
here is what in the previous chapters we called SD. At the same time, it is the
ASD 2-form in the orientation (4123), and so we will continue to refer to it as
ASD for the remainder of this chapter. We will not be writing a bar over ¥ from
now on to de-clatter notations.

The exterior derivative of (9.130) is given by

2
d¥ = ——— _d|x|?dx'dx. 9.131
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We then compute

1 1

AN A= s Ty

x'dx — dx'x)dx"dx — dx'dx(x'dx — dx'x)) .

We need to do some massaging of the right-hand side using the identity (9.71).
First, using this identity we can rewrite the expression in brackets here as

(Id|x|* — 2dx"x)dx"dx — dx'dx(2x"dx — Id|x|?). (9.132)

We now group the second and third terms here, and again use the same identity.
This gives for (9.132)

Ad|x[?dx! dx, (9.133)
and comparing with (9.131) we have

A+ AAS—SAA=0. (9.134)

9.3.5 Checking the FEinstein Condition

It is clear that we are in the Plebanski formalism setting for the four-sphere, and
thus we also expect to be able to recover the Plebanski version of the Einstein
equations, which is the statement that the curvature of the ASD connection A
is ASD as a 2-form. This is an instructive calculation because we are now using
2 x 2 matrix notations doing curvature calculations in 4D. This is similar to the
index-free formalism we have developed for 3D in Chapter 4.

Let us compute the curvature, which is given by F = dA + A A. The first term

gives
dA — _lédb{ﬁ(x*dx —dx'x) + ¥dxfdx (9.135)
2 (1+[x[?)? (1+1x[?)
1 2
= A+(1 ).
T A ()

The A A computation is again made simple by using the identity (9.71) to rewrite
the connection in a convenient form. We have

1 1
— T
1 1
_ 1 2 2
= A~ (9.137)

This immediately gives the expected Einstein equation

F=3. (9.138)
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9.4 Twistor Description of Gravitational Instantons

Previously we have described the twistor space of flat R* and conformally flat
S* manifolds. We have seen that the arising in this case twistor space is CP3,
a complex manifold. The purpose of this section is to explain that this can be
generalised to the more nontrivial setting of half-flat geometries in which one of
the two chiral halves of the Weyl curvature vanishes.

9.4.1 The Curved Twistor Space

We will only present the version of the story that works for Euclidean signature
metrics. As we have seen, the twistor space in this case is the total space of the
projective spinor bundle over M. Such a bundle can also be constructed for a
general Euclidean metric on M. Let 4’5" be the associated ASD 2-forms, and
A4’ the the ASD chiral half of the spin connection. We can then construct
the 3-form (9.114). This is a 3-form on the total space of the primed spinor
bundle over M, and descends to a 3-form of homogeneity degree four in w4’ on
the projectivised spinor bundle.

9.4.2 Twistor Space of an Instanton Is a Complex Manifold

We can declare the 3-form (9.114) to be (3,0), which then defines an almost
complex structure on the twistor space. The corresponding (1, 0) forms are those
whose wedge product with 239 is zero. These are the projective versions of the
1-forms

r=w Dy, e, (9.139)

where the last expression gives two different 1-forms for A =1, 2.

A natural question is then whether the almost complex structure so defined is
integrable. As the criterion of integrability we use the following statement: An
almost complex structure is integrable if and only if the restriction of the exterior
derivative on (1,0) forms to the space of (0,2) forms vanishes. This statement is
one of the alternative ways to state the Newlander—Niernberg theorem. This
then implies that d = 9+ 0. Thus, we need to compute the exterior derivative of
the previous (1,0) forms and project into the subspace of (0,2) forms. We have

d(wAlDwA/) = Dw* Dw +w* DDw /. (9.140)

The first term here is a (1,1) form, which can be seen by inserting in it the
decomposition (9.85) of the identity. To compute the second term, we use
DDwy = FA/B/wB/, where F/pr is the spinorial version of the curvature of
the ASD connection. On an Einstein background we have

A

FAB _ <\IIA/B/CID/ B 36A/<C/€D/>B/) S, (9.141)
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which is the Plebanski second equation and ¥4B'¢’P" is the spinor version of

the matrix ¥*. Now, the (0,2) part of the basic 2-form 24’2 is

A'B! OJAI(UBI o'p’ A "
= = by WerWpt. (9142)
(0,2) [Ow]?

This means that the (0,2) part of dr is a multiple of
\I'A,B,C,D,wA/wB/wC/wD/, (9143)
which vanishes for all w?’ if and only if ¥4'2'¢'2" = 0, which is the half-flatness
condition.
For the basic (1,0) forms we can use the covariant derivative and then the
torsion-free condition De44’ = 0. This gives

D(e* wy) = —e* Duw . (9.144)

Inserting here the decomposition of the identity (9.85) we see that there is no
(0,2) component. Thus, the almost complex structure defined by Q3% given by
(9.114) is integrable if and only if the ASD chiral half of the Weyl curvature van-
ishes WA'B'C'D" — (0. This means that the twistor space of a gravitational instan-
ton is a complex manifold. This fact has been used to construct new gravitational
instantons using deformation theory of complex manifolds; see Ward (1980).

9.4.3 Generalising Twistors

We have already understood that the projective twistor space of S* is CP?, which
is a complex manifold, and the complex structure on CP? can be understood
from the fact that CP? is naturally an S? fibre bundle over S*, with fibres
parametrising different almost complex structures on S*. But we have also seen
that CP? is itself naturally a base of the fibre bundle S” — CP? with circles
as fibres. The two constructions intersect via the quaternionic Hopf fibration
S7 — S4, which can be thought of as either S® bundle over S* or as a circle
bundle over the projective twistor space CP? of S*.

Thus, the twistor space CP? of S* can be viewed as sitting inside S” C C*.
This suggest that we can contemplate generalising the twistor theory. The usual
twistor space of a Euclidean space M is the total space of the (projective) primed
spinor bundle over M. It is interesting to consider a larger space, which is the
total space of an S* bundle over the usual twistor space.

The usual twistor theory puts emphasis on the complex analytic aspects of the
twistor construction, and also allows to use powerful theory of complex manifolds
and their deformations to produce new examples of ASD Einstein manifolds.
These aspects of twistor theory are well-described in, e.g., Introduction to Twistor
Theory in, e.g., Haggett and Tod (1994). See also Atiyah et al. (2017) for a more
recent account.

When we instead consider the total space of an S! bundle over the usual twistor
space, the complex analytic aspects of the usual twistor story are no longer at the
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forefront. In particular, the seven-dimensional total space of the bundle cannot
be a complex manifold. However, since the seven-dimensional space in question is
fibred by S* over the usual twistor space, all of the twistor constructions are still
relevant. Enlarging the space one just gets access to richer geometry. In particular,
as we shall see in the following sections, there is a beautiful geometry of 3-forms
in 7D, and bringing into play the total space of an S* bundle over the twistor
space gives access to this geometry. This geometry in particular explains why
the projective twistor space can naturally be endowed with a metric, something
that remains a puzzle if one stays in the context of usual 6D twistor theory.
The explanation of this is that there is a natural 3-form on the S* bundle over
the twistor space of a Euclidean 4-manifold M, and generic 3-forms in seven
dimensions define a metric.

Thus, going to 7D allows for geometric constructions not possible in the setting
of the usual 6D twistor theory, and also emphasises different geometric aspects
in the sense that the theory of complex manifolds no longer plays the dominat-
ing role. In particular, we shall see the first order Cauchy—Riemann equations
guaranteeing integrability of the almost complex structure on the twistor space
are replaced by certain other natural first-order differential equations in seven
dimensions.

9.5 Geometry of 3-Forms in Seven Dimensions

The purpose of this section is to describe the geometry of 3-forms in 7D. The
ultimate goal is to relate this geometry to the previous twistor constructions.

9.5.1 Stable 3-Forms

The beautiful geometry reviewed in this section has been known for more than
a century; see Agricola (2008) for the history. In particular the characterisation
of G via 3-forms is a result due to Engel from 1900.

Let us start with some linear algebra in R7. A 3-form C' € A3R7 is called
stable if it lies in a open orbit under the action of GL(7); see Hitchin (2000).
This notion gives a generalisation of nondegeneracy of forms and implies that
any nearby form can be reached by a GL(7) transformation. Thus, stable 3-forms
can also be called generic or nondegenerate.

For real 3-forms, there are exactly two distinct open orbits, characterised by
the sign of a certain invariant, see Section 9.5.4, each of which is related to a real
form of G5. The open orbit corresponding to the compact real form G, is what
plays role in relation to the quaternionic Hopf fibration S” — S*. For every such
C, there exists a set e, ..., e of 1-forms in which C is expanded in the following
canonical form:

C =" + %! + %% + 7%, (9.145)

where X%, i = 1,2, 3 are already familiar to us as Euclidean chiral 2-forms (5.31).
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The fact that is of central importance about stable 3-forms in seven dimensions
is that a stabiliser of such a form in GL(7) is isomorphic to the exceptional Lie
group G,. This group has dimension 14, and this number arises as the dimension
49 of GL(7) minus the dimension 35 of A*R". Thus, the space of stable 3-forms
is the homogeneous group manifold GL(7)/G..

We can then generalise the notion of stable forms to 3-forms on a seven-
dimensional differentiable manifold M. These are forms that are stable at every
point.

9.5.2 The Metric

The most fundamental fact about stable 3-forms in 7D is that they define a
metric. The latter is obtained as follows

1
go(&mve = 3ieC Ni,C A C, (9.146)

where we explicitly indicated the wedge product. The right-hand side here is the
top form, which is moreover £, n symmetric. This gives a symmetric pairing of two
vector fields up to scaling. The scale factor is then completely determined by the
requirement that ve on the left-hand side is the volume form of go. Moreover,
the sign of the volume form vs is uniquely fixed by the requirement that the
metric defined by (9.146) has specific (say, all plus) signature. In this way, a
3-form C defines both the metric go and an orientation.

It is then a simple computation that, for a 3-form presented in the canonical
form (9.145), the arising metric is

7
ge =y e'e, (9.147)
I=1

and the orientation is given by e'7. Given that G, is the stabiliser of (9.145),
it also stabilises the metric (9.147). This gives an embedding G, C O(7).

The form (9.145) corresponds to the compact real form G, of GS. The orbit
corresponding to the non-compact real form G5 C O(3,4) is the orbit of a 3-form
similar to (9.145) but with the signs in all three terms containing X* changed.
The formula (9.146) still defines a metric and an orientation at this time of
signature (3,4).

9.5.3 Relation to Urbantke Formula

The formula (9.146) is remarkable in particular because it provides an explana-
tion for why the Urbantke (5.47) formula in 4D exists. To see this, consider the
bundle of ASD 2-forms over a 4D Riemannian manifold. A general ASD 2-form
can be parametrised as Yy, and so y are the coordinates along the fibre. Here
Y% are the canonical ASD 2-forms (5.31). We then form the following 3-form in
the total space of this bundle

Cs = dy'dy’dy® + dy' o' + dy*S? + dy 3. (9.148)
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It is then easy to check that the metric (9.146) reduces on the fibres to a multiple
of the metric 6%. On the other hand, on the base, the formula (9.146) reduces
to the Urbantke formula (5.47).

The described 7D explanation of the 4D Urbantke formula makes one suspect
that there should be a relation between the 4D Plebanski formalism with
its SO(3) bundle of ASD 2-forms and the geometry of 3-forms in seven
dimensions. The rest of this chapter is devoted to exhibiting aspects of this
relation.

9.5.4 The Volume Functional

Given a stable 3-form, we construct the metric and the corresponding volume
form as described in (9.146). The volume form can be computed in two differ-
ent ways. First, one can compute the metric go times its volume form from
(9.145). One can then take the determinant of the right-hand side, which re-
sults in a quantity of homogeneity degree 21 in C. The left-hand side gives
(det(g))°/2. This means that the volume form +/det(g) is a quantity of homo-
geneity degree 7/3 in C. On the other hand, there is also an explicit formula for
this quantity

Comprer) (9.149)

Vo ~ (é’al..,a7gb1...b7gcl...C7Ca

1brer - 7breT

The number appearing as the proportionality coefficient in this formula is unim-
portant to us. The quantity €*1--%7 is the completely antisymmetric densitiesed
tensor available on any manifold without any additional structure such as a
metric. The invariant in brackets in the formula (9.149), of degree seven in C,
has been known since 1900, see Agricola (2008), and gives the stability criterion.
Thus, the 3-form C is stable if and only if this invariant is different from zero.
The sign of this invariant determines whether the form belongs to the compact
or non-compact real orbit.

One can integrate the volume form constructed from C' over M to get the
volume functional

S[C] = /M ve. (9.150)

As is explained in particular in Hitchin (2000), the first variation of the functional
(9.150) in C' has a simple form

5S[C] ~/ *C'ASC. (9.151)
M

The precise numerical coefficient in this equation is of no importance for us. The
4-form *C' can be shown to be given by the Hodge dual of C' computed with
respect to the metric defined by C. This means that for the 3-form (9.145) the
4-form *C' is given by

O = e 4 TR 47082 4 5083, (9.152)
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9.5.5 Complex Parametrisation

Let us give another form of the canonical expression for the 3-form (9.145). We
first rewrite it as

C=—c"(e”+e*+e%) +e’(e* —e®) + e(e*? — e%). (9.153)

We then notice that if we introduce complex-valued 1-forms

0' :=e' +ie*, 0> =¢€’+1ie*, 6’ =€’ +ie’ (9.154)

then
e 4 M 4 e = = %(9’191 + 0% + 0°6°) (9.155)

and
Re(0'60°0%) = e°(e* — e*) 4 (e** — €'), (9.156)

Im(0'6%6°) = €°(e*? — e3') — (e — ).
This means that we can rewrite
C = —e"w+ Re(0'60°6°), (9.157)
C = %ww + e Tm(0'6°6%).

While the form (9.145) makes manifest the SO(4) subgroup of G, preserving C,
the form (9.157) makes manifest the SU(3) subgroup. Both forms will be useful
in the calculations that follow.

9.5.6 Holonomy Reduction

The fundamental result Gray (1969) states: Let C € A*M be a 3-form on a
7-manifold. Then C is parallel with respect to the Levi—Civita connection of g¢
if and only if dC = 0 and d*C = 0. In other words, the condition of C' being
parallel with respect to the metric it defines is equivalent to the conditions of
C being closed and co-closed, where co-closedness is again with respect to the
metric it defines.

The next basic fact is that if a Riemannian manifold (M,g) has a parallel
3-form C, then the holonomy group of M is contained in G,. In particular, this
implies that the (M, g) is Ricci-flat. This is very interesting, because this means
that we can code Einstein’s equations in 7D as differential equations on an object
of a completely different nature from the metric, i.e., on a 3-form. The 3-form C
that is closed and co-closed then defines a metric algebraically, and this metric is
guaranteed to be Ricci-flat. Actually, having a C' that is parallel constraints the
Riemann curvature stronger than just requiring the Ricci part to be zero, but in
particular Ricci flatness is guaranteed.

Combining the result from Gray (1969) with the formula (9.151) for the first
variation of the functional S[C], we see that manifolds with holonomy contained
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in G, are critical points of S[C], provided one varies C' in a fixed cohomology
class 6C = dB, B € A>M. This variational characterisation is explored in depth
in Hitchin (2000).

9.5.7 Nearly Parallel G, Structures

Let us now instead assume that we have a 7-manifold M with a stable 3-form of
positive type and satisfying

dC = \"C, (9.158)

where *C' is the 4-form that is the Hodge dual of C' computed using the metric
defined by C' itself, and A is a constant. In this case, the 3-form C' is not closed,
but *C' is. Thus, the 3-form is not parallel in the sense of previous subsection. It
is instead called nearly parallel, because the departure of C' from being closed
is as small as possible.

Nearly parallel G, structures have in particular been studied in Friedrich et al.
(1997). The canonical example of such a structure is one on the seven-sphere;
see the next section. What is important for us is that the metric defined by
a nearly parallel G5 structure is automatically Einstein with a nonzero (and
positive) scalar curvature. Thus, the equation (9.158) can be viewed as encoding
the Einstein equations in seven dimensions (but similarly to the case of parallel
structures, giving in fact stronger equations). It is also important for us that
these equations can be obtained from a variational principle. Thus, we write the
following action Krasnov (2017a)

ﬂﬂ:%/aw+m%. (9.159)

Its critical points are precisely the 3-forms satisfying (9.158). This action can be
viewed as a 7D analog of the 3D Chern—Simons theory. The difference is that
it is not possible to write an interacting Abelian Chern—Simons theory in 3D,
while this is possible in 7D due to the availability of the degree seven invariant
whose cube root can be integrated over the manifold.

We will return to the equations (9.158) in the next section. We view (9.158) as
the natural set of first-order partial differential equations that can be written for
a 3-form in 7D. In Section 9.7 we will see that these equations can be thought of as
generalising the integrability of certain almost complex structure in 6D. So, they
are the main player in our envisaged 6D — 7D generalisation of twistor theory.

9.5.8 3-Forms That Correspond to the Same Metric

The counting of components shows that 3-forms contain more information than
just that of a metric. Indeed, to specify a metric in seven dimensions, we need
7 x 8/2 = 28 numbers, while the dimension of the space of 3-forms is 35. Thus,
there are seven more components in a 3-form. It can be shown that these
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correspond to components of a unit spinor ¥ : |¥|> = 1 so that the 3-form
in question can be represented as C,p. = ¥Tv,77.V. Here v,,a = 1,...,7 are
the 8 x 8 y-matrices for the metric g, the spinor ¥ is a real spinor of Spin(7),
and |U|? is a symmetric bilinear form on spinors available for Spin(7).

There is an alternative, very useful, characterisation of 3-forms that correspond
to the same metric. This uses a vector field rather than a unit spinor. The
expression we are after can be obtained by considering a rotation that mixes
directions 4, 3, i.e., let

(C)- (oo me(2) o

This rotation does not change the metric, but mixes the 2-forms X! and X2

(3)- (ot =) (%) o

So, under this rotation the 3-form C goes to
C — €™ + cos(20) (e’ L 4 e5%?) + sin(20) (e°X? — %) +e'%?
=7 + (1 —2sin*(0))(’2" + €°%?) + 2sin(f) cos(9) (e’ L2 — 581 + "33
= (1 —2sin*(0))C + 2sin”(0) (€*®" + e"2?) + 2sin(0) cos(0)(e’L? — 1),

where we wrote the result in a suggestive form. We now notice that the 3-forms
in the last two terms can be obtained as

e +e'%? = €" NirC, e"¥? — %! =i, C, (9.162)
where *C' is given by (9.152). Thus, if we take
a := sin(f)e” (9.163)

we see that the 3-form

C=(1-2|a))C+2aNi,C+2\/1—|af?i,*C (9.164)
corresponds to the same metric. Here i, is the operation of insertion of the vector
field dual (with respect to the metric defined by C) to the 1-form a. Even though
the fact that C' in (9.164) and C' define the same metric was shown only for the
1-forms of the special type (9.163), this fact holds in general, because any 1-form
can be aligned with €7 by rotation.

In the similar way, the transformation rule of the dual 4-form is shown to be

*C="*C—20Ni,"C —2y/1—|a2anC. (9.165)

The presence of the square root in these formulas signifies the fact that in the
transformation by a 1-form, the 1-form « cannot be taken with norm larger than
one, because this takes one out of the space of real 3-forms.
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9.6 G,-Structures on S7

The purpose of this section is to study G, structures on the seven-sphere
S7. There is a unique G, structure on S7 that comes from the embedding
S7 C R®. There is then a unique so-called Spin(7) structure on R®, which
projecting against the radial vector field gives the desired G5 structure on S”.
On the other hand, S” can be realised as the total space of the circle bundle over
CP3. We shall see that there are two natural ways that the circle bundle over
CP? can be mapped into the round S7 with its canonical G, structure. This
leads to two different G, structures on the circle bundle over CP3, or we can say,
two different G5 structures on S7. One of these will be related to the integrable
almost complex structure (ACS) on CP?, while the other one will give rise to
the non-integrable ACS.

9.6.1 Spin(7) Structure on R®

There is a 4-form in R® whose stabiliser in GL(8) is the group Spin(7). The group
Spin(7) acts naturally on R® as its spinor representation. The 4-form in question

is given by
2 1 1
O=) I - —yin - 3y 9.166
2:: 5 5 (9.166)
3 ~
=Y XIS+ da'de’ da?da® + da®dada®da’
i=1
where

S =datdet — datda®, ¥° =datda® — daidat, ¥ = datda® — dotda?,
B! = dzdz® — dabda”, 2 = dz¥dz® — da’dz®, ¥° = dadda” — datda®.
We note that
O =di* AC —*C, (9.167)

where C' is the canonical (9.145) 3-form on R” and *C is its dual (9.152). We
have indicated the wedge product explicitly to have a nicer looking expression.
This in particular shows that © is SD (in the orientation 12345678) with respect
to the standard flat metric on R®

‘0 =0. (9.168)

9.6.2 Canonical Nearly Parallel G, Structure on S”

We now introduce spherical coordinates on R®. Using homogeneity and the fact
that © is SD we have

O =r¥drNC+1r*"C, (9.169)
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where C is defined as i5,5,0 evaluated at r = 1, and as before *C' is the Hodge
dual of C' computed using the metric defined by C. Using the fact that © is a
closed form we deduce

ac = 4°C. (9.170)

As we have already mentioned, G, structures satisfying dC' = A\*C for some
constant A are called nearly parallel, and so we have obtained the canonical
nearly parallel G, structure on S”.

9.6.3 Two Different Maps ST — CP3 into the Canonical S

We now describe two distinct ways of mapping the seven-sphere viewed as the
circle bundle over the projective twistor space CP? into the previously desrcibed
canonical S7 with its canonical G, structure. Pulling back the canonical G,
structure on S7 via this map gives two different G, structures on S7.

To describe both maps, we realise S7 as the surface 7'r+wfw = 1 in C*, where
7w and w are both two-component spinors. We then need to describe a map from
a pair (7 and w) into R® with its canonical Spin(7) structure (9.166). There are
two such natural maps that are of importance for us.

In the first case we set

xt +iz® z® +ix”
W_(z2—|—ix6)’ “_<z4+ix8 : (9.171)
In other words, for this map we have
x
x> | [ Re(m)
2> |\ Re(w) )’
x

In the second map we instead make the real and imaginary parts of 7w to be

j = < EEB ) (9.172)

8

8 8 8 8

the coordinates of the first copy of R*, and those of w of the second copy of R*

in R8. We put
—x* +ix? —x8 4 ix”
T = ( ol — 2 ) , w= ( TR (9.173)

Here the specific complex linear combinations are motivated by the desire to have
the quaternion describing the first copy of R?, i.e., the Euclidean matrix x given
by (9.68) to be representable as x = (w, —7), and similarly for the quaternion
for the second copy of R*.

It is clear that the seven-sphere nfr4+w'w = 1 goes into the sphere ), (z')? =1
in both cases. Pulling back the 4-form (9.166) via these two different maps, and
evaluating the insertion of 9/Jr into © we get two different G, structures on the
seven-sphere.
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9.6.4 First Spin(7) Structure on R®
Let us compute O pulled back to (7 and w) € C* via the first map. We define

w = % Z drtdr + dw'dw = dx'dz® + do?dx® + dx*da” + dr*dx®,
as well as
0= idwTedwdwTedw = (dx' + idz®)(dx® + idx®)(dz® + idx")(dz* + idz®).
In these coordinates, the 4-form (9.166) can be checked to be
o= —%ww + Re(2). (9.174)
For future reference, we also rewrite w and ) in spinor notations

1 . 1 ,
w= -z (@t dry + do¥ dwoy), Q= cdrtdmade® doy. (9.175)
1

9.6.5 Second Spin(7) Structure on R®

To compute the second G, structure we parametrise

—xt+ix® izt 422 —z8 +ix"  ix® 428
q:= , qi= )

izt — 22  —2*—iz® ix® —2® —28% —i2”

so that q = (7, —7),p = (w, —&). We then have

s g (B 0T
= L= (AT
On the other hand, the 4-form (9.166) can be written as
©= —2Tr(—%2+2+ - %E*E* +XtE). (9.177)
Let us compute it in terms of 7 and w coordinates. We have
%Tr(dqqu dp'dp) = dr'drdw'dw — Re(dr” edm(dw” edw)*), (9.178)

1
§Tr(dqqu dq'dq) = dn'drdr’dn — drn”edn(dn” edrm)*.

The second result can be further simplified by noting that the second term is a
multiple of the first. To see this, we first rewrite things in spinor notation. We
have

drldn = —ditdr,, drnledn = —dridn,, (dn’edn)” = —dra*dn ,.
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Thus,

drledn(dn”edr)” = dnidn,d7Pdip = —daPdrdipdm 4. (9.179)
On the other hand

(diatdn® — daBdn?)dfpdn, = ditdr yd7Pdng — daPdr?dipdn ,.

But the left-hand side here is

(di?dn® — d7Bdr?)d#pdr , = e24daCdrodipdn, = —di?dnd7Pdrp.
This gives
daBdridapdny = 2dadm 2d7Bdrs, (9.180)
and thus
%Tr(qudq dq'dq) = 3da*dr ,d7Pdrmp. (9.181)

This means that we can write the 4-form (9.166) as
~ ]. ’ /
16 = S (dn*dia — do' disy)? + Re(dr dmadis™ dis ). (9.182)
We now note that © is of the already familiar form (9.174)
. 1 .
6 = —5aw + Re() (9.183)
with
- 1 ~A ~ A 1 A ~Al g
W= i(dﬂ' dm s — do™ dwar), Q= Zdﬂ' dmad™ diyr. (9.184)

This differs from (9.175) in the relative sign in the 2-form w and the use of &
rather than w in €.

9.6.6 Two Different Almost Complex Structures on RS

It is now clear that the difference between the two Spin(7) structures (9.175),
(9.184) stems from using two different almost complex structures on R®. Indeed,
in both cases the 4-form on R® is given by (minus half) the wedge product of
the Kéhler form squared plus the real part of the (4,0) form. Both of these are
fixed once the decomposition of R® into (1,0) and (0, 1) forms is given, which is
equivalent to specifying an almost complex structure.

In the case of (9.175), the almost complex structure is the standard one on
(m and w) € C* that views 7, w as holomorphic coordinates. In the case of (9.184)
the almost complex structure is instead the one with 7 and @ as the holomorphic
coordinates. Thus, the difference between these two cases is in the relative sign
with which the two almost complex structures on R* are put together. It can
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then be expected that upon taking the projectivisation (9.175) should give rise
to the integrable (9.114) almost complex structure on CP?, while (9.184) will
produce the non-integrable one (9.115). Calculations that follow will confirm this
expectation.

9.6.7 First G, Structure on S — CP?3

We now compute what (9.174) gives when we pass to the projective version of
C*. Thus, we parametrise

Zi=ti, Z'=t (9.185)

to pass to the projective space CP3. In these coordinates the Kéahler form
becomes

_l Iy )2 I i ]z n I~ i 2 i 351
w=3 (dtdt(l+Zz| )+tdtszz —tdtz,zdz + || Zdz dz>.

We now parametrise

e
R — (9.186)
VI 2P
so that r = 1 is the seven-sphere ) _|Z%|> = 1. We have
dat dr . 1 > dz?
— = —Fidyp — - —F—=—. 9.187
£ SIS (9.187)
A straightforward computation then gives
1 d
Sw= %(dw +a) + wes, (9.188)

where the U(1) connection a is given by (9.93) and wyg is the Kéahler form for
the Fubini-Study metric (9.90)

P Y, drd (14 3, 2)7) - %, e

= : 9.189
sy T+5, 1P (8-169)
On the other hand, we have
1 etiv dr . 1 > d2?
—Q0=—— | —+idyp — = =" ) dz'dz*d>.
rd 1+, 1772)? <r +idy 2145|212 zasaz

Given that there is the wedge product with dz'dz%dz® here, we can rewrite the

terms in the brackets as
1 el dr
—Q=—————— | — +1i(d dz'dz*d? .1
0= g (7 i+ o)) izt (2190

where a is again the connection (9.93).
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Combining these blocks into (9.174) and taking the interior product with the
vector field 9/0r we get the sought 3-form on S” of unit radius r =1

efdzldz?dz?

Cgqr = —(d Re————. 9.191
s7 (dip + a)wes + e(1+zi|zi|2)2 ( )
We can also restrict © to the seven-sphere and get the dual form
1 e"dztdz?dz?
* =—— — (d Im—————. 9.192
57 o WrsWrs (dy +a) m(1+zi|zi|2)2 ( )

It is instructive to compute dC' explicitly and check that it is a multiple of *C.
To do this we need the following relation

da = 2wrs, (9.193)
which in particular shows that wrg is closed. We also have

eV dzldz%dz? e Vdzldz2dz?
— = A(dY + o) lm—m—————.
TS SNEID A Ll (IS S FE

This immediately gives

dR (9.194)

dC = 4*C. (9.195)

9.6.8 Twistor Space Description

We now take the (9.174) and parametrise C* as the total space of the C? bundle
over S* via m = xw. Let us first compute the Kahler form in these coordinates.
We have

drldr + dw'dw = whdx'dxw + dw'x"dxw + widx'xdw + (1 + |x|*)dw’dw

dxtx xtdx
= (1 2 d T T d oA uA
e ) [ (et g5 ) (ot )

N dx'dx
W ———w]| .
(1+|x[?)?
We then go to the projectivised version parametrising w = tn with 1 as in (9.97)
and
i
t = re . (9.196)
VA +[xP)( A+ [2?)
This is the parametrisation that gives w7 4+ wtw = r2.
The analog of (9.99) becomes

xtdx dr d|z)?
d —w =t — +idYy — —mM8M8M—— D . 9.197
TR ((r*”” 2<1+|z|2>>”+ ”) (9.197)

Using this, after some algebra we get

1
w= 5((d777d7r + dw'dw) = rdr(dip + a) + rweps,
1
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where

1 TT 77*277
_ 1 9.198
wers = 5 <<1 TR T z|2> (9.198)

is the Kéahler form corresponding to the metric (9.110) and

_ n'Dn—(Dn)'n

2i(1 + |2]) (9.199)

is the already familiar U(1) connection.

Let us now compute the (4,0) form Q. Since dw”edw is proportional to dtdz
and this is wedged with drTedn, only the terms involving dx must be kept in
drTedr. In more details, we have

dw” edw = 2tdtn" edn (9.200)
and
dr”edmdw” edw = w” dx" edxw2tdtn” edn. (9.201)

Using x”e = ex', as well as dx'dx = (1 + [x]?)?2 we get

dt  rtetv
= = dnnTex 9.202
2t (1 + |22 41 = (9-202)
with
dt  dr . d|x|? d|z|?
—_= — dy — - . 9.203
R T Ry ey S T C O M (9.203)

We now note that we can replace dn with Dn in (9.202). Indeed, we have

dx'dx (dxn)Tedxn
Teyn =nt = 204
K e N (MR (9.204)

where we have used ex' = xTe. We also have

fdx — dx'x (xn)Tedxn
TedAn = e - . 9.205
AN = S T E 1T T W ( )

Thus, the 1-form nTeAn is a linear combination of two 1-forms dxn = dxAA,nA/,
while the 2-form 77 eXn is the wedge product of these two 1-forms. This means
that the wedge product of nTeAn with n”eXn vanishes

nTeAn AnTeXn =0 (9.206)

and so we can extend the exterior derivative in (9.202) into a covariant exterior
derivative for free. Thus, we have

dt rtetiv
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Projecting © on 0/0r vector field we get C' = i5/9,.0

1 diyp, T T
C = —(dy + a)weps + WRG (e*n"eDnn"en). (9.208)
We note that the 3-form (9.114) that corresponds to an integrable almost complex
structure on the twistor space has made its appearance here. Indeed, the real
part of e*¥ Q30 appears in the second term in C.
To get the dual 4-form, we note that we can rewrite
d|x|* d|z|*

idy) — - TeDyn"eSy = i(d TeDnyTes
(lw 2(1+ [xP) 2(1+|,22))776 0’ €Sy = i(dy +a)y”" eDyn” eXn,

where a is the connection (9.199). To see this, let us spell out the connection a.
We have

o = 1hdn — dn'n + 29 An
2intn

; (9.209)

with

xn)tdxn — (dxn)tx
nTA:(W) n (2n) n
2(1+ [x[?)

(9.210)

When we wedge this with n”eXn the term with dxn does not contribute. There-
fore, we can flip the sign in front of this term and write

d|X|2 T TITAU T
- Yn = ¥n. 211
( 21+ |xpp) ) TN Ty T (6.211)
Similarly, we have
d|z|? T n'dn —dn'n
- dn=1—"—" " "nTed 9.212
< 21+ =) ) T " 2qig ( )

because only dz term contributes when multiplied by dz ~ n”edn.
These considerations shows that the dual 4-form given by the restriction of ©
to r =1 is given by

(9.213)

1 4ip T D T Z
*C:_§WCP3WCP3+(d¢+a)Im (e i/l 77)

2(1+ [2%)

9.6.9 Calculation

It is instructive to compute the exterior derivative of the 3-form (9.208) to check
that the form is nearly parallel. One first checks that

da = 2weps (9.214)

as expected.
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We then compute
d(n"eDnn"eXn) = (Dn)"eDnn"eXn —n"eDn (Dn)"eXn —n"eDnn’ eSDn,

where we have used that DDn = Fn and F = ¥, as well as the fact that
>3 contracted with four copies of spinor n vanishes. This is because we have
$A'B RC'D" AN DB’ and copies of the spinor metric cause the spinor 7 to
contract with itself, which vanishes. Finally, we have used DY = 0.

The previous expression can be simplified by rewriting it in spinor notations.
We have

Dy Dnam® S5 ner — 0 DDy S5 ner — ™ Dnam® S/ Do
= Dy Dnam® Sp ner — 20 Dijar Dn® S e,

and then using

/ 1 / !
D?]A/D’I]B = —EEA/B D’I]c D’I]CI, (9215)

which holds due to antisymmetry in A’B’, finally gives

d(n"eDnn"exXn) = 2(Dn)"eDnn"eXn. (9.216)
We then have

1 .
d——————Re (e"n"eDnnTex
e

1 . d|z|? )
_ WRG (e‘“w (Qidw 1 lZIZZ) n"eDnn'eXn +e*(Dn)"eDn nTeZn> )

A spinor index notation calculation in Section 9.7 shows that the terms in
brackets can be rewritten as

e 2i(dy + a)nTeDnnTeXn, (9.217)
and so we have
4 1 e"nTeDnnTeXn
2(1+ |z?)? 2(1+ |2?)
This shows that we indeed have dC = 4*C with *C given by (9.213).

Re (e"n"eDnn"eSn) = 4(dy + a)Im (

9.6.10 Second G, Structure on S7

We now compute the G, structure on S” that is associated with the Hopf
fibration, in Hopf fibration coordinates. We first compute the 4-form © (9.184),
in Hopf coordinates. The arising G, structure is more involved than the first one
we studied, in particular due to the fact that it is not compatible with the natural
(integrable) almost complex structure on CP3. We present the computation for
completeness. We will not compute it here in the twistor space coordinates, as
the expression can be expected to be significantly more complicated than (9.208).
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We need to change our parametrisation of the Hopf projection (9.119) slightly,
to take into account the possibility of changing the radius of S7. Thus, we take

xh S (9.218)

so that r? is the radius squared of S7. In these coordinates we have

h T 1 T
dp = dr — = d|x|*h + —————dh
P e T s e T e
xh T 1 T
dq = dr — = d|x|*xh + ——————(dxh dh).
V= T e 2 e P gy ()

From this we get

1 r? 2

45T = ———dr*m — —————d|x|*m — Timm,
e ™ T T T e
where m = h~'dh and
2dr? r2d|x|? r2|x|?
45 — drhtAn 4 m— hiAh— — X hm
i T+ T+ xP) 1+ %)
7,.2
+ ————dIxPm + (1 + [x]))h ' Zh — r* (R Ahm + mh~ ' AR),
g e (L ) ( )

where A is given by (9.100) and X is as in (9.130). We can simplify the result
for ¥~ somewhat by using the relation

1

——d|x]?A = AA 3. 21
T +Ix] (9.219)

The last term here cancels a part of the second term on the second line in the
expression for X~ and further allows the connections 1-forms A and m to be
combined into the connection W see (9.127). We get

4" = dr*W +r*(S — WW) — 4%+, (9.220)
where we have have introduced a convenient notation
S:=h"'3h (9.221)

for the lift of ¥ to the total space of the bundle. As a check of the previous
computations, it is not hard to check that both forms X% are closed

st = 0. (9.222)

We now compute the contraction of © given by (9.177) with the vector field
0/0r, and set r = 1. This gives the sought-after G, structure on S in Hopf
coordinates. To compute it, we first rewrite (9.177) as

0= éTr(E* +¥Y7)2 - gTr(WZ*). (9.223)
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The contraction with the first term is very easy to compute. We have

16 2 f
gatose (ST +57)° = S Tr (W~ Ws). (9.224)

The other term gives

8-16 8 Am? 8 16 x|?
—Wza/argTr(EJr AYT)=Tr ((1—|—|x|2) - ng + 3(1+||X|2)2m3) ,
where A = h='Ah is the lift of the connection on the base to the total space
of the bundle, and terms containing d|x|?> drop out because Tr(Am) = 0 and
Tr(mm) = 0 as a contraction of a symmetric and antisymmetric tensors. We
now set 7 = 1 and rewrite everything in terms of W, A, thus eliminating m. We
have for our sought-after 3-form

2 . 2
8C =Tr |- W3+ WS+ — AW — A)? 9.225
S A +(1+|x|2)( ) (9.225)
8 16 |x|?
_Swo s+ 2 gy Ay
5 St S A e )

9.6.11 Simplification

The found expression (9.225) for the 3-form on S7 can be simplified further. To
this end, we will first write a different 3-form on S”, obtained by taking the frame
1-forms corresponding to the metric (9.128), and writing the canonical 3-form
(9.145). This gives

1
8C, = —2Tr (3W3 + WS) . (9.226)

The factor of eight on the left-hand side is due to the frame for the metric (9.128)
containing an additional factor of half as compared to the frame W% i =1,2,3
for S and e',e? e®, and e*, which is the frame for the metric (9.129). The

corresponding 4-form is
1
16*Cy = —2Tr (652 + W25> . (9.227)

These are, however, not the forms we are after, because dCj is not proportional
to *Cy. Indeed, we have

8dC, = —2Tr ((S — W)W? + (S — W?)S — W(SW — WS)) (9.228)
= —2Tr (SS + 2W25).

Here we have used the cyclicity of the trace, as well as

AW =S - WW,  dS=SW — WS, (9.229)
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which are the Plebanski field equations for objects on S4, lifted to the total space
of the bundle. Both can be easily checked using the definitions of these objects. It
is clear that the relative coefficient in the last expression in (9.228) is not correct
for the equation dCy ~ *Cy to be satisfied.

The 3-form on S” for which this equation is satisfied has been found in the
previous section. Our goal is now to relate C' to C, via (9.164). By symmetry,
the only 1-form that can be used for this purpose is a multiple of the form

d|x|? 2z, dz*

TR O rRP) (9:230)

With the relevant metric being the quarter of (9.129), the dual vector field is
equal to

of = (1+ |x|*)2z (9.231)

"ox,
We need to compute the insertions of o into A and ¥. To this end, let us write
x = z*0,, where o, are the 2 x 2 matrices that can be read off from (9.68). We
then have

1
_ v (ot i
A= Wx”dx (O—#UV - (7,/(7#) 5 (9232)
and
1
_ v (st i
Y= Wdz“dx (O'HO'V — O'DO'H) . (9233)
This immediately gives
i =4A, i 4A=0. (9.234)
This means that
, x/?
co N\ anﬁSCO = 802WTI'(WA) = 7802 Tr(W(A2 =+ |X|2S),

where ¢ is some coefficient to be worked out later, and we used (9.137) to write
the second equality. We also have

Goqt16"Cy = =8¢ Tr (;AS + WQA) .
The formula (9.164) then gives
- P
8C, = Tr [(—3W3 - 2WS> (1—8|x|*c?) (9.235)

— 162 W (AA + [x]2S) —/1 — 4c2[x]? 4¢ @AS + 2W2A>} .



9.7 3-Form Version of the Twistor Construction 355

This is to be compared to (9.225). We first note that the W.S terms work out
correctly. We now compare the W3 terms. Demanding equality gives
2 16 |x|? 1

2
—_— = 1—8 22 = — = —_— = = .
gL =8 = =5+ T xpe el = T

(9.236)

To match things further we note that there is no A® term in (9.235), while
there are such terms in (9.225). This can be matched by once again using the
identity (9.137). We can multiply this identity by A and take the trace. This
gives

_ d|x/|* _ 3 2

Using this identity, one can check that all the terms match provided we choose
the minus sign for ¢ in (9.236). Thus, finally, the 1-form to be used to write
(9.225) in the form (9.164) is

d|x|*
_ = do, 9.238
(E T (925
where ¢ is the conformal factor
prm (9.239)
T+ xP) '

All in all, the sought G, structure on S7 in Hopf coordinates is
2
8C =Tr 75(1 — 8|x|?p*)W? + 8(1 — |x|*)¢*W?Z2A (9.240)
8
—16¢°W A% — 2W S + g(l — |x[*)¢*AS| .

Only at the origin x = 0 where A = 0 this matches the ‘canonical’ form (9.226).
At a general point the metric that this 3-form defines is the same as the metric of
Cy given by (9.226), but the forms do not coincide. They are related via (9.164),
with the 1-form that needs to be used given by d¢.

9.7 3-Form Version of the Twistor Construction

The purpose of this section is to put everything we have learned together and
describe a generalisation of G, structure (9.208) on the circle bundle over CP?
to the circle bundle over the projective twistor space of a general gravitational
instanton M. We will then see that imposing the nearly parallel condition (9.158)
on the corresponding G, structure is equivalent to the condition of integrability
of the corresponding almost complex structure.
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9.7.1 G, Structure on the Circle Bundle Over the Twistor Space

We start with the G, structure inspired by (9.208), but with some changes. Thus,
we set

C = —(dy) + a)w + Re(e""Q), (9.241)
where

1
Q= ——n"eDnnTeln, 9.242
2(ntn)? (9:242)

and

1 T g tDn — (Dn)t
_ (TT U 77>7 oo 1D = (Dn)'n (9.243)

20 \(n'n)* ~ n'n 2i(nin)
with 7 = nTeDn are all objects on the projective twistor space. Thus, C is
a 3-form on a circle bundle over the projective twistor space of a general Rie-
mannian 4-manifold, with ¢ being the coordinate on S*, while z € CP* is the
coordinate on the fibres of the projective twistor space. The covariant derivative
D is with respect to an SU(2) connection on M and F is its curvature so that
DDn = Fn. The object X is a 2-form with values in the space of anti-Hermitian
2 X 2 matrices, which is assumed to be metric in the sense that the simplicity con-
dition (5.160) is satisfied. It is also assumed that the connection A is torsion-free

DY = 0. (9.244)

We now want to impose the nearly parallel condition on the 3-form C given by
(9.241), and show that it holds provided F = ¥, i.e., provided the 4D metric is
ASD Einstein. This generalises the previous twistor space of S* construction to
an arbitrary gravitational instanton. The calculations we have to do are similar
to those previously encountered, except that we are no longer allowed to use
arguments based on the explicit form of A.

9.7.2 Verification of da = 2w

The real 2-form w in (9.243) is defined so that da = 2w, which in particular
implies that w is closed. Let us verify this relation explicitly. It is easier to do
this calculation by changing to spinor index notations. We have

_ "' D = D
2i[1m]

(9.245)

where [fjn] := 7% 1. Therefore,
. DﬁAlDﬁA' + 'f}A,FA’B/nB’
i)
(DA nar + 4™ D)@ Digr — Dif™ ).

da (9.246)

2i[im]?
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The second term is simplified by noticing that the terms containing DﬁA/DﬁB/
and Dny Dngr are A’ B’ antisymmetric and hence vanish as causing the contrac-
tion of a spinor with itself. The remaining terms give

da = L (DI (Do — o D)) + LD (g
— T~ ATIB! — T]A/ B/ - A~ 1 .
i[im]? i[im]
1 ’ / AA/F /B/ !
= —— " Dijan” Dy + L2 _ g,
i[im] i[im]
where we used 7 = —nA D/, 7 = —i* Dfj s to recognise the 2-form w.

9.7.3 Computation of dC

The calculation of the exterior derivative of the remaining terms in C' proceeds
as in 9.6.9, with some changes related to inability to use the explicit form of A.
We carry it out using the spinor notations. We have

d(n"eDnn"eXn) = d(n™ Dnam® e ner)
= Dn* Dnam® S ner + 0 Fa® npm® Se® np
— 20" D D' S e,

where we have used (9.244). As before, the first and the third term here are
actually equal, and so we get

! ! ! ! ! ! !
2D Dnam® S ner + ' Far® npm© Ser” npr.

We then get
1 4
dWRe (e‘hwnTeDn nTeZn)
1 4iy [ o: DﬁElnE’ + ﬁE/DWE’ A’ B’ c’
= [7777]2Re e 2idy — Yo N Dnam” X ne
2

. i / ! ]. . ! / ! ’
-|-64”pD77A DnA/nB EB/C Ne! —+ 5641¢UA FA/B 773/170 ZC/D nD/:| .

The terms in brackets in the second line can be simplified by using antisymmetry
in E'A’ in the last term. We then have

~E' / 1 / Y
A Dnpm™® Dna = §D17A Dnyn® ng. (9.248)

This makes the last term in the second line a multiple of the first term in the
third line. This allows to rewrite the terms in brackets in the second line in terms
of the connection (9.245). It is clear that to get this combination we just need to
flip the sign in front of the last term in brackets in the second line. But adding
the term in the third line does exactly that. So, we have
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4ip

2(ntn)?

dRe (Q) = —4(dp + a)Im () + Re ( n"eFn nTeEn> .

9.7.4 Imposing the Nearly Parallel Condition

Combining the results of previous calculations, we get

4iyp
dC =4 (—;ww — (dy + a)Im(Q)) + Re (WnTan nTeEn) . (9.249)
It is clear that the only chance of having the nearly parallel condition dC = 4*C
satisfied is if nTeFnnTeXn = 0 for any 7. This will be the case if the 4D metric
is a gravitational instanton F' = ¥. Then the metric condition on ¥ reads
yA'B'RC'D | eAC" DB’ which then makes at least one pair of three copies
of the unhatted spinor 7 contract.

We also note that the instanton condition F' = ¥ also guarantees
wA=0, (9.250)

thus allowing to interpret w as a (1,1) form for the almost complex structure
defined by the decomposable 3-form Q as a (3,0) form. Indeed, the term in w
containing 77 gives zero when wedged with 2 because the latter contains a factor
of 7. The n'F'n term in w gives zero when wedged with Q in view of F' = 3.

Once F is set to be ¥ the calculation of the dual form *C is simple, because
the form (9.241) is given in the canonical form (9.157). The dual 4-form is then
given by

Cc* = —%ww — (d¢ + a)Im(2), (9.251)

which shows that the nearly parallel condition is satisfied for the 3-form (9.241)
on the circle bundle over the twistor space of an arbitrary gravitational instanton.

It is possible, and in fact suggested by the result in Herfray et al. (2016a), that
the previous construction can be made even more general and that the nearly
parallel condition imposed on an appropriate generalisation of (9.241) can be
equivalent to Einstein-like relation between F' and ¥ on M. We will, however,
refrain from attempting to demonstrate this here.

9.7.5 Integrability

Let us also show why the nearly parallel condition imposed on the 3-form (9.241)
implies integrability of the almost complex structure defined by declaring the
decomposable 3-form 2 to be the (3,0) form. With the dual 4-form *C being
given by (9.251), the nearly parallel condition for C given by (9.241) is equivalent
to two differential equations

da = 2w, dQ = 4dia N Q, (9.252)
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where we indicated the wedge product explicitly. We note that these two equa-
tions together imply w A © = 0. Indeed, this follows by taking the exterior
derivative of the second equation and using the first to replace da with w.

We now shows that the second of the equations in (9.252) is sufficient to
guarantee that the almost complex structure defined by €2 is integrable. Indeed,
a 1-form 6 is (1,0) if and only if

OAQ=0. (9.253)

Let us now take the exterior derivative of this equation, using the second equation
in (9.252)

dONQ+4i0NaNQ=0. (9.254)
But then by assumption 6 is (1,0), and so the second term vanishes and we get
do A Q = 0. (9.255)

This implies that df does not have a (0,2) part, which in turn implies that the
almost complex structure is integrable, by Newlander—Nirenberg theorem.

The fact that w A Q = 0 then implies that w is a (1,1) form, and the first
equation in (9.252) means that it is closed. The data w, € satisfying (9.252) then
define a K&hler metric. The metric arises as ¢(X,Y) = w(X,JY), where J is
the complex structure defined by €. This metric can be shown to coincide with
the one induced by (9.146) on the 1) = const slices. Moreover, this metric can
be shown to be Einstein with positive scalar curvature. These aspects of the
geometry under discussion are explained in, e.g., Sparks (2011).
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Concluding Remarks

Our journey took us from the usual formalism that views general relativity (GR)
as a dynamical theory of Riemannian geometry of metrics through a sequence of
formalisms based on connections and differential forms to more exotic 6D and
7D constructions. It is now time to attempt to summarise what has been learned.

In all formalisms related to Cartan’s tetrads, gravity becomes very similar to
the Yang—Mills gauge theory. The geometric structures that make this possible
are essentially invisible in the usual metric formulation. But gravity is different
from the Yang—Mills theory. From the geometric point of view the main difference
is presence in gravity of an object that solders the geometry of the manifold to
the geometry of whatever abstract bundle that is used. This geometric object is
different in different formalisms, see Table 10.1.

Thus, in all these descriptions there is a geometric object that ties the geometry
of an abstract fibre bundle over a manifold to the geometry of the tangent bundle.
The metric is then constructed from this object. There is no such soldering in
the Yang—Mills theory. We can therefore say that

Gravity Is Gauge Theory with Soldering

We have also seen that formalisms based on differential forms allow the equa-
tions of gravity to be rewritten in index-free notations. In 2D this is achieved
by introducing a complex linear combination of the pair of frame 1-forms, see
(3.40). In 3D this is achieved by constructing 1-forms with values in the Lie
algebra of the appropriate ‘Lorentz’ group, concretely 1-forms with values in
2 x 2 tracefree matrices, both for the frame field as well as for the connection, see
(4.11) and (4.13). Finally, in 4D the closest one gets to an index-free formalism
is via the chiral Plebainiski setup. For instance, the index-free relation (9.138)
is the Einstein equation describing the four-sphere. In general, however, when
there is also Weyl curvature present, 4D Einstein equations can’t be naturally
written in a completely index-free notation due to the presence of the matrix
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Table 10.1. Table of formalisms with objects that implement soldering

Formalism Soldering object
Cartan formalism Frame field or tetrad
BF formalism 2-form field valued in the Lie algebra of the Lorentz group

MacDowell-Mansouri formalism  De Sitter/Anti-De Sitter connection

Pure spin connection formalism  Curvature of the spin connection

Plebariski formalism Triple of self-dual 2-forms

Chiral pure connection formalism Curvature of the chiral part of the spin connection

U representing the chiral part of the Weyl curvature on the right-hand side
of Plebaniski equations (5.162). Thus, field equations of 4D gravity are like
those of the Yang—Mills theory in the sense that they can’t be written solely
in terms of wedge products of Lie algebra—valued differential forms. In the case
of the Yang-Mills theory, one needs the operation of the Hodge dual to write
d*F = 0. In the case of gravity, the analogous operation is the one required
to form the right-hand side of the Plebanski second equation in (5.162) from
Y%, Schematically, the Plebarniski equations are d,% = 0, which is written solely
in terms of wedge product of forms, as well as F' =*¥’ where the ‘Hodge
star’ in quotes is the operation that produces the Lie algebra-valued 2-form
(U9 + (A/3)6¥)37 from the Lie algebra—valued 2-form .

The analogy with the Yang—Mills theory becomes even more pronounced in the
pure connection formalism, where the field equations take the form d,**F’ = 0.
Now the ‘Hodge star’ is the operation (6.14) that is necessary to produce the Lie
algebra—valued 2-form 3% from the curvature 2-forms. In both Yang-Mills and
GR it is the presence of these ‘Hodge stars’ that prevents the equations to be
writable solely in terms of wedge products of differential forms.

In terms of the computational efficiency, we have seen that 4D chiral for-
malisms are clearly superior in terms of their economy. In these formalisms,
the connection components necessary for the computation of the curvature are
stored very compactly and computations required to write Einstein equations are
done with minimal effort. This is true both in the case of the original Plebaniski
description that works with 2-forms X% and connection A¢, as well as for the pure
connection formalisms that work with either solely A* or A® and the auxiliary
matrix M.

We have also seen that the description of the linearised gravity and the gravita-
tional perturbation theory simplifies greatly by the use of the chiral formalisms.
First, the usage of chiral objects brings with it completely new types of differen-
tial operators; see Figure 8.1. This allows us to write the familiar spin one and
spin two kinetic terms in a completely new way, see, e.g., (8.158) for how the
usual linearised Lagrangian for the spin two perturbation h,, gets compactly
rewritten by the use of the chiral 2-form fields >, .
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The propagators and interaction vertices also get simplified by the chiral
formalism. The gravitational action becomes polynomial in the fields in any
first-order formalism. However, all such formalisms apart from the chiral ones
introduce ‘too many’ auxiliary fields. This is manifested by the fact that the
two-point function of the auxiliary field with itself is nonzero in all but the chiral
formalisms. This is the case in the chiral description of Yang—Mills, see (8.98), as
compared to the non-chiral version, see (8.158), as well as in the chiral description
of GR as compared to standard GR, as we have verified in Section 8.5. The chiral
perturbation theory for GR that we have developed in this book may well hold a
lot of potential. It would be interesting to try to use it to simplify computations
ranging from quantum loops to the perturbative calculations that are necessary
to extract the gravitational wave signals.

In the last chapter we have developed an even more exotic viewpoint on
4D gravity, one that puts at the forefront the total space of the bundle of
two-component spinors over the four-dimensional manifold M in question. The
projective version of this bundle is known as the twistor space of M. The usual
twistor story emphasises the complex analytic aspects of the twistor space. This,
however, only works when the geometry of M is chiral in the sense that only one
of the two chiral halves of the Weyl curvature is nonzero.

We have seen that there exists a version of the twistor story that works in
the circle bundle over twistor space instead. This is a 7D manifold, and the
geometric data on M define a certain natural 3-form C' on it. There is then
a natural first-order differential equation that can be imposed on M, namely
dC = X*C, where ) is a constant. Such 3-forms are called nearly parallel and
define a 7D metric via (9.146). Moreover, this metric is automatically Einstein
with nonzero scalar curvature. Requiring that this equation is satisfied for the
3-form that is defined by the 4D data imposes Einstein-like equations on these
data. We have then seen that the usual twistor story with its integrable almost
complex structures lifts naturally to this 7D description. In particular, the first-
order Cauchy—-Riemann equation guaranteeing integrability of the almost com-
plex structure on the twistor space follows from the first-order nearly parallel
condition dC = \*C satisfied by the 3-form.

Importantly, the described 6D and 7D viewpoint on 4D gravity is crucially
based precisely on its chiral version, to which we devoted so much attention
in this book. This is manifested particularly strongly by the example of the
quaternionic Hopf fibration in Section 9.3. This example shows the chiral 4D
description of the four-sphere with its chiral 2-forms ¥ and the chiral connection
A arising from the geometry of the total space of the Hopf three-sphere bundle
over S*. A related point is the fact that the Urbantke formula (5.37) that
appears somewhat mysteriously in the chiral 4D descriptions gets explained by
the observation that it is the dimensionally reduced to 4D version of the formula
(9.146) for the metric defined by a generic 3-form in 7D; see (9.148).
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At the same time, the higher-dimensional descriptions that we developed suffer
from a very serious defficiency — they only work for the Euclidean version of the
4D gravity. This is the case for both the usual twistor description, which is only
capable of describing the half-flat Euclidean gravitational instantons, as well as
for the 7D description in terms of 3-forms that we developed. It is clear that if
there is any truth in the higher-dimensional perspective of the type described,
it should be possible to find also the version appropriate for the Lorentzian
signature.

Let us end this discussion by listing questions that, in the opinion of this
author, hold greatest potential to lead to a breakthrough in our understanding
of gravity. The first question was already mentioned in Chapter 3 introducing
formalisms based on differential forms. It is “Why nonzero metric?” To expand
on this, we now know that if there is a nonzero metric filling the universe, then
its low-energy dynamics can only be described by GR, at least in 4D. At the
same time, GR is unable to answer the question as to why such a nonzero metric
exists. The same is true about any of its reformulations described in this book,
even though re-formulations based on differential forms seem to come closer to
an eventual answer, because in these formulations one can at least talk about the
zero field configurations. So, it is clear that answering the ‘Why nonzero metric?’
question will require radically new ideas. It is possible that the puzzle of gravity
can only be solved by answering this question.

The second question that we believe is also of fundamental importance is
more well-posed, and so can probably be answered in the near future. This is the
question of interpretation of the Lorentzian signature Urbantke formula (5.47).
In our discussion following (9.148) we have seen that the Euclidean signature
Urbantke formula can be understood as being a consequence of (9.146) defining
a 7D metric from a stable 3-form. Thus, we have seen that assuming that the
7D manifold is fibred by three-dimensional submanifolds on which the 3-form is
nonzero does exhibit the 4D Urbantke metric as the one induced on the 4D slices
transverse to the fibres. The same interpretation exists for the split signature
metrics in 4D. This also follows from the 7D formula (9.146) except for C' lying
in the orbit of the different sign; thus the one for which the metric defined by C'
is of signature (3,4). However, there is no such interpretation to the Lorentzian
signature Urbantke that works with complex-valued 2-forms but still produces a
real-valued metric. It is clear that if there is an interpretation that is related to
3-forms in seven dimensions, it must involve complex-valued forms in some way.
We believe that finding such an interpretation, if it exists, holds potential for a
breakthrough in understanding of 4D Lorentzian signature gravity, as it would
point to a deeper geometric structure behind it.

We end this book by a provocative remark. GR is the unique low-energy theory
of interacting massless spin two particles. This statement holds independently of
any Lagrangian formulation that may be used to describe it. The usual metric
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formalism is by far the most explored one. But, in this book, we have seen
that, surprisingly, GR admits many non-obviously equivalent formulations. In
fact, GR appears to be the theory that admits by far many more reformulations
than any other known theory. This is one ‘empirical fact’” about GR that is
rarely emphasised, and that we believe becomes strikingly apparent from the
developments we have followed. We don’t know the significance of this fact, if
any, but it may be that gravity is trying to tell us something. It is possible that
the message is: ‘I am more than just an effective low-energy theory of massless
spin two particles; I hold the key to the puzzle of why the universe can be so
successfully described in geometric terms’.
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