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Preface

This book is intended for people who are not primarily algebraists, but nonethe-
less get involved in the subject through other areas — having backgrounds, in
say, engineering, physics, geometry or analysis. Readers of this book may have
different starting levels, backgrounds and goals.

Chapters 1-2 form a unit for an undergraduate course: Vectors, the scalar
product; complex numbers, a geometrical interpretation of the imagi-
nary unit i = v/~=1.

Chapters 3—7 guide the reader through bottlenecks and provide necessary
building blocks: Bivectors and the exterior product. Pauli spin ma-
trices and Pauli spinors. Quaternions and the fourth dimension. The
cross product is generalized to higher dimensions.

Chapters 8-10 aim to serve readers with different backgrounds: Electromag-
netism, special relativity, Dirac theory. The Dirac equation is formu-
lated with complex column spinors, spinors in minimal left ideals and
considering spinors as operators.

Chapters 11-13 discuss physical applications of spinors: In the case of an
electron, Fierz identities are sufficient to reconstruct spinors from their
physical observables, but this is not the case for the neutrino. Boome-
rangs are introduced to handle neutrinos. A new class of spinors is
identified by its bilinear observables: the flag-dipole spinors which re-
side between Weyl, Majorana and Dirac spinors.

Chapters 14-15 are more algebraic than the previous chapters. Clifford al-
gebras are defined for the first time. Finite fields. Isometry classes of
quadratic forms and their Witt rings. Tensor products of algebras and
Brauer groups are discussed.

Chapters 16—19 view Clifford algebras through matrix algebras: Clifford al-
gebras are given isomorphic images as matrix algebras, Cartan’s peri-
odicity of 8, spin groups and their matrix images in lower dimensions,
scalar products of spinors with a chessboard of their automorphism
groups, Mobius transformations represented by Vahlen matrices.

Chapters 20—23 discuss miscellaneous mathematical topics. A one-variable
higher-dimensional generalization of complex analysis: Cauchy’s inte-
gral formula is generalized to higher dimensions. Multiplication rule
of standard basis elements of a Clifford algebra and its relation to
Walsh functions. Multivector structure of Clifford algebras and the

vil



viii Preface

non-existence of k-vectors, k > 2, in characteristic 2. In the last chap-
ter, we come into contact with final frontiers science: an exceptional
phenomenon in dimension 8, triality, which has no counterpart in any
other dimension.

The first parts of initial chapters are accessible without knowledge of other
parts of the book — thus a teacher may choose his own path for his lectures
on Clifford algebras. The latter parts of the chapters are sometimes more
advanced, and can be left as independent study for interested students.

Introduction of the Clifford algebra of multivectors and spinors can be mo-
tivated in two different ways, in physics and in geometry:

(i) In physics, the concept of Clifford algebra, as such or in a disguise, is
a necessity in the description of electron spin: Spinors cannot be con-
structed by tensorial methods, in terms of exterior powers of the vector
space.

(ii) In geometry, information about orientation of subspaces can be encoded
in simple multivectors, which can be added and multiplied. Physicists
are familiar with this tool in the special case of one-dimensional sub-
spaces of oriented line-segments, which they manipulate by vectors (not
by projection operators, which lose information about orientation).
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Mathematical Notation
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linear space

field

division ring (typically R, C, H)

division ring of quaternions

division algebra of octonions

d x d matrix algebra over F

matrix algebra over Cen(D) with entries in D
double ring IF x IF of the field F

direct sum Mat(d,F) ® Mat(d, F) ~ Mat(d, 2F)

an algebra

the center of an algebra A

R, C, H, %R, or 2H

n-dimensional real linear space

n-dimensional Euclidean space

n-dimensional complex linear space
n-dimensional module over H

real quadratic space (p for positive and ¢ for negative)
Clifford algebra of RP+?

quadratic form

Clifford algebra of the quadratic form @; x% = Q(x)
Clifford algebra of the Euclidean space R3
Clifford algebra of the Euclidean space R™ = R™°
Clifford algebra of the Minkowski space R!:3
Clifford algebra of the Minkowski space R3!
grade involute of u € C4(Q) = C£+(Q) & CL~(Q)
reverse of u € C4(Q); x=x for x€V
Clifford-conjugate of u € C{(Q); X = —x for x€ V
complex conjugate of u (in chapter 2 also %)
primitive idempotent of Cfp 4

spinor space (minimal left ideal of C¢p 4)

left ideal S @ § or companion of U € SO(8)
{0,1,...,n =1} or {1,e¥2"/n . . . ¢i27(n=1)/n}
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1

Vectors and Linear Spaces

Vectors provide a mathematical formulation for the notion of direction, thus
making direction a part of our mathematical language for describing the physi-
cal world. This leads to useful applications in physics and engineering, notably
in connection with forces, velocities of motion, and electrical fields. Vectors
help us to visualize physical quantities by providing a geometrical interpreta-
tion. They also simplify computations by bringing algebra to bear on geometry.

1.1 Scalars and vectors

In geometry and physics and their engineering applications we use two kinds
of quantities, scalars and vectors. A scalar is a quantity that is determined
by its magnitude, measured in units on a suitable scale. ! For instance, mass,
temperature and voltage are scalars.

A vector is a quantity that is determined by its direction as well as its mag-
nitude; thus it 1s a directed quantity or a directed line-segment. For instance,
force, velocity and magnetic intensity are vectors.

We denote vectors by boldface letters a, b, r, etc. [or indicate them by arrows,
a, 5, 7, etc., especially in dimension 3]. A vector can be depicted by an arrow,
a line-segment with a distinguished end point. The two end points are called
the initial point (tail) and the terminal point (tip):

1. length (of the line-segment OA)
A 2. direction
— attitude (of the line OA)
— orientation (from O to A)

0

The length of a vector a is denoted by [a|. Two vectors are equal if and only

1 In this chapter scalars are real numbers (elements of R}).



2 Vectors and Linear Spaces

if they have the same length and the same direction. Thus,
a=b <= |aj]=|b|] and atth.

Two vectors have the same direction, if they are parallel as lines (the same
attitude) and similarly aimed (the same orientation). The zero vector has
length zero, and its direction is unspecified. A unit vector u has length one,
|lu] = 1. A vector a and its opposite —a are of equal length and parallel, but
have opposite orientations.

1.2 Vector addition and subtraction

Given two vectors a and b, translate the initial point of b to the terminal
point of a (without rotating b). Then the sum a+b is a vector drawn from the
initial point of a to the terminal point of b. Vector addition can be visualized
by the triangle formed by vectors a,b and a+b.

b b

a a+b a a

Vector addition b

Vector addition is commutative, a4+ b = b+a, as can be seen by inspection of
the parallelogram with a and b as sides. It is also associative, (a+b)+c =
a+(b+c), and such that two opposite vectors cancel each other, a+(—a) = 0.
Instead of a+ (—b) we s1mply write the dlﬂ'erence as a— b. Note the order

in BA OA 0_1)3 when a—OA and b= OB

0 b B

Vector subtraction
Remark. To qualify as vectors, quantities must have more than just direction



1.3 Multiplication by numbers (scalars) 3

and magnitude — they must also satisfy certain rules of combination. For in-
stance, a rotation can be characterized by a direction a, the axis of rotation,
and a magnitude a = |a|, the angle of rotation, but rotations are not vectors
because their composition fails to satisfy the commutative rule of vector addi-
tion, a+b = b+4a. The lack of commutativity of the composition of rotations
can be verified by turning a box around two of its horizontal axes by 90°:

P i C 90°

-~
90°

The terminal attitude of the box depends on the order of operations. The axis
of the composite rotation is not even horizontal, so that neither a+b nor b+a
can represent the composite rotation. We conclude that rotation angles are not
vectors — they are a different kind of directed quantities. 1

1.3 Multiplication by numbers (scalars)

Instead of a+a we write 2a, etc., and agree that (—1)a = —a, the opposite of
a. This suggests the following definition for multiplication of vectors a by real
numbers A €R: the vector Aa has length |Aa| = |A||a] and direction given by
(for a # 0)

Aafta if A>0,

datla if A<O.

Numbers multiplying vectors are called scalars. Multiplication by scalars, or
scalar multiplication, satisfies distributivity, A(a +b) = Aa+ Ab, (A4 p)a =
Aa + pa, associativity, (Au)a = A(ua), and the unit property, la = a, for all
real numbers A, 4 and vectors a,b.

1.4 Bases and coordinates

In the plane any two non-parallel vectors e, e; form a basis so that an arbitrary
vector in the plane can be uniquely expressed as a linear combination a =
a,e; + ages. The numbers ay, as are called coordinates or components of the
vector a with respect to the basis {e;,ez}.

When a basis has been chosen, vectors can be expressed in terms of the
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coordinates alone, for instance,
e = (1,0), ez = (0, 1), a= ((11,(12).

If we single out a distinguished point, the origin O, we can use vectors to label

—_
the points A by a = OA. In the coordinate system fixed by O and {e;, ez}
we can denote points and vectors in a similar manner,

point A = (a1, as), vector a = (a1, az),

since all the vectors have a common initial point O.
In coordinate form vector addition and multiplication by scalars are just
coordinate-wise operations:

(a1,a3) + (b1, b2) = (a1 + b1, a2 + b2),
)\((11, az) = (/\al, )\(12).

Conversely, we may start from the set R x R = {(z,y) | z,y € R}, and
equip it with component-wise addition and multiplication by scalars. This
construction introduces a real linear structure on the set R? = R x R making
it a 2-dimensional real linear space R2. The real linear structure allows us to
view the set R? intuitively as a plane, the vector plane R2. The two unit points
on the axes give the standard basis

e = (1,0), ey = (0, 1)

of the 2-dimensional linear space RZ.

In our ordinary space a basis is formed by three non-zero vectors e;,es, es
which are not in the same plane. An arbitrary vector a can be uniquely
represented as a linear combination of the basis vectors:

a=aye; + azey + azes.

The numbers ay, ag, a3 are coordinates ? in the basis {ei, e, es}. Conversely,
coordinate-wise addition and scalar multiplication make the set

RxRxR={(z,94,2) | z,y,z €R}

a 3-dimensional real linear space or vector space R3. In a coordinate system
fixed by the origin O and a standard basis {e1,e2,es} a point P = (z,y, 2)
and its position vector

—
OP =ze; +yey + zes

have the same coordinates. 3

2 Some authors speak about components of vectors and coordinates of points.
3 Since a vector beginning at the origin is completely determined by its endpoints, we will
sometimes refer to the point r rather than to the endpoint of the vector r.
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1.5 Linear spaces and linear functions

Above we introduced vectors by visualizing them without specifying the grounds
of our study. In an axiomatic approach, one starts with a set whose elements
satisfy certain characteristic rules. Vectors then become elements of a math-
ematical object called a linear space or a vector space V. In a linear space
vectors can be added to each other but not multiplied by each other. Instead,
vectors are multiplied by numbers, in this context called scalars. *

Formally, we begin with a set V' and the field of real numbers R. We associate
with each pair of elements a,b € V a unique element in V, called the sum and
denoted by a+b, and to each a € V and each real number X € R we associate
a unique element in V| called the scalar multiple and denoted by Aa. The set
V is called a linear space V over R if the usual rules of addition are satisfied
for all a,b,ceV

at+b=Db+a commutativity
(a+b)+c=a+(b+c) associativity
a+0=a zero-vector 0
a+(—a)=0 opposite vector —a

and if the scalar multiplication satisfies

A(a+b)=2Xa+ )b
(A+pwa=2ra+pua
(An)a = A(ua) associativity

la=a unit property

} distributivity

for all A\, € R and a,b € V. The elements of V' are called vectors, and the
linear space V 1is also called a vector space. The above axioms of a linear space
set up a real linear structure on V.

A subset U of a linear space V is called a linear subspace of V if it is closed
under the operations of a linear space:

a+beU for a,beU,
AaeU for A€eR,aeU.

For instance, R? is a subspace of R3,
A function L : U — V between two linear spaces U and V is said to be
linear if for any a,b e U and A € R,

L(a+b) = L(a) + L(b) and
L(ia) = AL(a).

4 Vectors are not scalars, and scalars are not vectors. Vectors belong to a linear space V,
and scalars belong to a field F. In this chapter F = R.
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Linear functions preserve the linear structure. A linear function V — V is
called a linear transformation or an endomorphism. An invertible linear func-
tion U — V is a linear isomorphism, denoted by U ~ V. 3

The set of linear functions U — V is itself a linear space. A composition
of linear functions is also a linear function. The set of linear transformations
V — V is a ring denoted by End(V). Since the endomorphism ring End(V)
is also a linear space over R, it is an associative algebra over R, denoted by
EndR(V). 6

1.6 Linear independence; dimension

A vector b € V is said to be a linear combination of vectors a;,ay,...,ax if
it can be written as a sum of multiples of the vectors a;, as, ..., ag, that is,

b =MXa; + Azas + -+ -+ A\par  where )\I,Az,...,)\kER.

A set of vectors {a;,as,...,ar} is said to be linearly independent if none of the
vectors can be written as a linear combination of the other vectors. In other
words, a set of vectors {ai,as,...,ar} is linearly independent if Ay = Ay =
...= A = 0 is the only set of real numbers satisfying

A1a; + Agag + - -+ Agag = 0.
In a linear combination

b =M a; + das + -+ Apag

of linearly independent vectors aj,as,...,ar the numbers Ay, Ag, ..., Ax are
unique; we call them the coordinates of b.
Linear combinations of {a;,ay,...,ax} C V form a subspace of V; we say

that this subspace is spanned by {a;,ag,...,ar}. A linearly independent set
{a1,as,...,ax} C V which spans V is said to be a basis of V. All the bases
for V have the same number of elements called the dimension of V.

QUADRATIC STRUCTURES

Concepts such as distance or angle are not inherent in the concept of a linear
structure alone. For instance, it is meaningless to say that two lines in the
linear space R? meet each other at right angles, or that there is a basis of

5 Finite-dimensional real linear spaces are isomorphic if they are of the same dimension.

6 A ring R is a set with the usual addition and an associative multiplication R X R =+ R
which is distributive with respect to the addition. An algebra A is a linear space with a
bilinear product A x A = A.
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equally long vectors e;, ez in R2. The linear structure allows comparison of
lengths of parallel vectors, but it does not enable comparison of lengths of non-
parallel vectors. For this, an extra structure is needed, namely the metric or
quadratic structure.

The quadratic structure on a linear space R™ brings along an algebra which
makes it possible to calculate with geometric objects. In the rest of this chapter
we shall study such a geometric algebra associated with the Euclidean plane
R

1.7 Scalar product
We will associate with two vectors a real number, the scalar product a-b € R of
a,b € R2, This scalar valued product of a = aje; + ase; and b = bye; + baes
is defined as

in coordinates a-b=aib; +azb;

geometrically a-b =|a||bjcosp
where ¢ [0 < ¢ < 180°] is the angle between a and b. The geometrical

construction depends on the prior introduction of lengths and angles. Instead,
the coordinate approach can be used to define the length

la| =+/a- a,
which equals |a] = y/a? + a2, and the angle given by
a-b
|a||b]
Two vectors a and b are said to be orthogonal, if a-b = 0. A vector of
length one, |a] = 1, is called a unit vector. For instance, the standard basis
vectors e; = (1,0), ea = (0,1) are orthogonal unit vectors, and so form an

orthonormal basis for R?.
The scalar product can be characterized by its properties:

cos p =

(a+b)-c=a-c+b-c
(Aa) -b = A(a-b)
a-b=b-a symmetric
a-a>0 for a#0 positive definite.

} linear in the first factor

Symmetry and linearity with respect to the first factor together imply bilin-
earity, that is, linearity with respect to both factors. The real linear space R?
endowed with a bilinear, symmetric and positive definite product is called a
Euclidean plane R2.
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All Euclidean planes are isometric * to the one with the metric/norm

r=ze; +ye; — |r| = /22 + 2.

In the rest of this chapter we assume this metric structure on our vector plane
R2.

Remark. The quadratic form r = ze; + yes — |r|> = z2 + y? enables us to
compare lengths of non-parallel line-segments. The linear structure by itself
allows only comparison of parallel line-segments. 1

1.8 The Clifford product of vectors; the bivector

It would be useful to have a multiplication of vectors satisfying the same axioms
as the multiplication of real numbers — distributivity, associativity and commu-
tativity — and require that the norm is preserved in multiplication, |ab| = |a||b]|.
Since this is impossible in dimensions n > 3, we will settle for distributivity and
associativity, but drop commutativity. However, we will attach a geometrical
meaning to the lack of commutativity.

Take two orthogonal unit vectors e; and ey in the vector plane R2. The
length of the vector r = ze; + yes is |r| = /22 + y%. If the vector r is
multiplied by itself, rr = r?, ® a natural choice is to require that the product
equals the square of the length of r,

r? =|r|%
In coordinate form, we introduce a product for vectors in such a way that
(ze1 + yes)” = 22 + 42
Use the distributive rule without assuming commutativity to obtain
z%e? + y?el + zy(ere; + ezer) = 2% + 4.

This is satisfied if the orthogonal unit vectors e, ez obey the multiplication
rules

2 _ o2 — 1 = =1
°1 =€z which correspond to le1 = fes|
ejegs = —egeq] e 1 e
Use associativity to calculate the square (e1e2)2 = —e%e% = —1. Since the

square of the product ejes is negative, it follows that ejes is neither a scalar

7 An isometry of quadratic forms is a linear function f : V — V' such that Q'(f(a)) = Q(a)
forallag V.

8 The scalar product a- b is not the same as the Clifford product ab. Instead, the two
products are related by a-b = 1(ab + ba).
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nor a vector. The product is a new kind of unit, called a bivector, represent-
ing the oriented plane area of the square with sides e; and e;. Write for short
€12 — ejeq.

€2

€12 —__]

We define the Clifford product of two vectors a = aye; + ases and b = bye; +
baes to be ab = a1by +azba+(a1b2 —azbi)eis, asum of a scalar and a bivector.

1.9 The Clifford algebra C/;

The four elements

1 scalar
e, e vectors
el bivector

form a basis for the Clifford algebra Cf; ° of the vector plane R2, that is,
an arbitrary element

u =1ug +uje; +uzez + ujze12 in Cly

is a linear combination of a scalar ug, a vector uje; + uses and a bivector

10
ujze)2.

Example. Compute ejejs = ejejez = ez, ejze; = ejege; = —e%eg = —e2,
eze;z = ezeje; = —ejes = —e; and ejse; = ejed = e;. Note in particular
that e;s anticommutes with both e; and e,. ]

The Clifford algebra Cfs is a 4-dimensional real linear space with basis elements

9 These algebras were invented by William Kingdon Clifford (1845-1879). The first an-
nouncement of the result was issued in a talk in 1876, which was published posthumously
in 1882. The first publication of the invention came out in another paper in 1878.

10 The Clifford algebra C¢, of R™ contains O-vectors (or scalars), 1-vectors (or just vec-
tors), 2-vectors, ..., n-vectors. The aggregates of k-vectors give the linear space C{, a

multivector structure C€, = R R" @ /\2 R"d...& A"R".
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1, e1, e3, e15 which have the multiplication table

el €2 €12

el 1 e19 e
e |—e2 1 —e;
€12 —e9 e -1

1.10 Exterior product = bivector part of the Clifford product
Extracting the scalar and bivector parts of the Clifford product we have as
products of two vectors a = aje; + ase; and b = bie; + beey

a-b=aib +asbs, the scalar product ‘a dot b’,

aAb = (a1by — azbi1)erz, the exterior product ‘a wedge b’.
The bivector a Ab represents the oriented plane segment of the parallelogram

with sides a and b. The area of this parallelogram is |a;bs —azb1|, and we will
take the magnitude of the bivector aAb to be this area |aAb] = |a1bs —azby|.

y

! Area = ]a1b2 — a2b1|
. — — | "

1 z

The parallelogram can be regarded as a kind of geometrical product of its

sides:
a

a

The bivectors a A b and b A a have the same magnitude but opposite senses
of rotation. This can be expressed simply by writing

aAb=-bAa.
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Using the multiplication table of the Clifford algebra C£2 we notice that the
Clifford product

(a1e1 + azez)(brey + baez) = a1by + azbz + (a1ba — aszbi)e;s

of two vectors a = aje; + azes and b = bje; + boes is a sum of a scalar
a-b = a1b1 + azbz and a bivector aAb = (a1bs — azbi)e;2. ! In an equation,

ab=a-b+aAb. (a)
The commutative rule a-b = b - a together with the anticommutative rule
aAb=—b Aa implies a relation between ab and ba. Thus,

ba=a-b-aAb. (d)

Adding and subtracting equations (a) and (b), we find
1 1
a-b= 5(ab+ba) and aAb= E(ab—ba).

Two vectors a and b are parallel, a || b, when they commute, ab = ba, that
is, aAb =0 or ajbs = azb;, and orthogonal, alb, when they anticommute,
ab = —ba, that is, a-b = 0. Thus,

ab=ba <= al|lb <= aAb=0 <= ab=a-b,
ab=-ba <= alb <= a-b=0 <= ab=aAb.

1.11 Components of a vector in given directions

Consider decomposing a vector r into two components, one parallel to a and
the other parallel to b, where a }f b. This means determining the coefficients
a and S in the decomposition r = aa+ Bb. The coeflicient o may be obtained
by forming the exterior product r Ab = (aa+ fb) Ab and using bA b = 0;
this results in r Ab = a(aAb). Similarly, aAr = f(a Ab). In the last two
equations both sides are multiples of e;2 and we may write, symbolically, 12

rAb g aAr
a= = .
aAb

T aAb’

11 The bivector valued exterior product a A b = (ajbz — azb1)ey2, which represents a plane
area, should not be confused with the vector valued cross product ax b = (a1b2 —azb;)es,
which represents a line segment.

12 As an element of the exterior algebra AR? the bivector a A b is not invertible. As an
element of the Clifford algebra C£; a non-zero bivector a A b is invertible, but since the
multiplication in C£; is non-commutative, it is more appropriate to write

a=(rAb)(aAb)~! and f=(aAr)(aAnb)”l.

However, since rAb, aAr and a Ab commute, our notation is also acceptable.
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The coefficients & and 3 could be obtained visually by comparing the oriented
areas (instead of lengths) in the following figure:

r=aa+ b rAb
b v\\
aAb
r
Gb
alAr
0 aa :
Ezercise 5

1.12 Perpendicular projections and reflections

Let us calculate the component of a in the direction of b when the two vectors
diverge by an angle , 0 < ¢ < 180°. The parallel component a is a scalar
multiple of the unit vector b/|b]:
b b
ay; = |al cosp— = |a||b]cos p—.
In other words, the parallel component aj is the scalar product a-b =

|a||b|cos ¢ multiplied by the vector b=! = b/|b|?, called the inverse ® of
the vector b. Thus,

= (a-b)— a ayL

> b
a

The last formula tells us that the length of b is irrelevant when projecting into
the direction of b.
The perpendicular component a; is given by the difference
aj=a—3a =a— (a-b)b‘1
=(ab—a-b)b~!=(aAb)b~ L

13 The inverse b~! of a non-zero vector b € R2 C C#, satisfies b~1b = bb=! =1 in the
Clifford algebra Cf2. A vector and its inverse are parallel vectors.
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Note that the bivector ej2 anticommutes with all the vectors in the ejes-plane,
therefore
(aAb)b~!=—-b"}(aAb)=b ! (bAa)=—(bAa)b~l.
The area of the parallelogram with sides a, b 1s seen to be
laib| = |aAb| = |a||b|sine
where 0 < ¢ < 180°.

The reflection of r across the line a is obtained by sending r =) +r to
r' =1 —ry, where r = (r-a)a~!. The mirror image r’ of r with respect to
a is then

r=(r-a)a”! —(rAa)a!
=(r-a—rAa)al
=(a-r+aAr)a?
= ara~!

and further

r = (2a-r—ra)a~!
a-r

=2——a-r.
a2

The formula r' = ara™! can be obtained directly using only commutation

properties of the Clifford product: decompose r = r|| + ry, where ar||a’1 =
rjaa~! =y, while ar;a™!

The composition of two reflections, first across a and then across b, is given
by

=-rjaa~!=-r,.

r—r' =ara~! 5 r” =br'b-! =b(ara~!)b~! = (ba)r(ba)~!.

PII

The composite of these two reflections is a rotation by twice the angle between
a and b. As a consequence, if a triangle ABC with angles «, 3, is turned
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about its vertices A, B,C by the angles 2¢, 28,2y in the same direction, the
result is an identity rotation.
Ezercises 6,7

1.13 Matrix representation of Cly

In this chapter we have introduced the Clifford algebra Cf; of the Euclidean
plane R?. The Clifford algebra Cf; is a 4-dimensional algebra over the reals
R. It is isomorphic, as an associative algebra, to the matrix algebra of real
2 x 2-matrices Mat(2,R), as can be seen by the correspondences

10
1_(0 1>’
(1 0 (01
“=\o 10 2T\1 o)
(0 1
e X -1 0 .

However, in the Clifford algebra Cf; there is more structure than in the matrix
algebra Mat(2,R). In the Clifford algebra C¢; we have singled out by definition
a privileged subspace, namely the subspace of vectors or 1-vectors R% C Cls.
No similar privileged subspace is incorporated in the definition of the matrix
algebra Mat(2,R). *

For arbitrary elements the above correspondences mean that
up+uy uz+ u12>

ug + uie; + uzez + uizen
Ug — U1z U — U

and
%[(a +d)+ (a—d)e; + (b+ c)ea + (b — c)era] ~ (Z 3) .

In this representation the transpose of a matrix,
a b\' _fa ¢
c d) ~\b d)’

u = ug + uje; + ugez — uizer?

corresponds to the reverse

14 For instance, we might choose u; = V2e1 + ej2, uz = e3. This also results in the
commutation relations u? =1, u% = 1, ujuz + ugu; = 0, which define a different
representation of C¢; as Mat(2,R).
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of u = ug + ujer + ugey + ujzerz in Cfz. The complementary (or adjoint)

matrix
(d "’) [:(ad—bc)(z 3)_1 for ad—b6¢0]

— a
corresponds to the Clifford-conjugate 1°
U = ug — uie; — Uzey — Ujge13.

The reversion and Clifford-conjugation are anti-involutions, that is, involutory
anti-automorphisms,

1 £n
1]

8 s
e &
e' ez
i
SIS
ISR

We still need the grade involute

@t = up — ure; — uzey + Urzer

for which 4 =4~ = a".
Exercises

1. Let a=e3 —ej3, b =e; +e3, ¢ =1+ ep. Compute ab, ac. What did you
learn by completing this computation?

2. Let a=ey+eqs, b= %(1 + e;1). Compute ab, ba. What did you learn?

3. leta=1+e;, b=—1+4+e;1, c=e; +ey. Compute ab, ba, ac, ca, bc and
cb. What did you learn?

4. Let a = %(1 +e1), b=-e; + e;z. Compute a2, b2.

5. Let a=e; —2e;, b=e; +e3, r = be; — e;. Compute a, 3 in the
decomposition r = aa + Sb.

6. Let a = 8e; — ez, b = 2e; + e3. Compute aj, a; .

7. Let r = 4e; — 3e;, a = 3e; — ez, b = 2e; + es. Reflect first r across a
and then the result across b.

8. Show that for any u € Cf, uu = 4u € R, and that u is invertible, if

u@ # 0, with inverse
~1_ U
u = —.
uil
9. Let u=1+e; + e13. Compute u~!. Show that
! = a(ud)"! # (ui) 14, vl = (du)"ld # 4(du)"! and
™l = @(ud)" # (ui)"ta, vt = (du)"la £ G(au) L

15 In some countries a vector u = uje; + uzez € R? is denoted by @ in handwriting, but
this practice clashes with our notation for the Clifford-conjugate.
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10. Consider the four anti-involutions of Mat(2,R) sending

a b ¢ a ¢ a -—c d b d -b

cd)] ° \bd)'\-b d)' \c a)’\= a)
Define two anti-automorphisms ¢, § to be similar, if there is an
intertwining automorphism v such that a4y = 483. Determine which ones of

these four anti-involutions are similar or dissimilar to each other. Hint:
keep track of what happens to the matrices

1 0 01 0 -1
0 -1/’ 1 0/’ 1 0
with squares I, I, and —1.

Remark. In completing the exercises, note that an arbitrary element of Cf
is most easily perceived when written in the order of increasing indices as

up + uie; + uzey + ujzeps. |

Solutions

1. ab=ac=1-e; + e3 — e13; one can learn that ab=ac % b=c.

2. ab =0, ba = ey + ej3; one can learn that ab =0 ba = 0 (and also that

ba=a#Hb=1).

3.ab=ba=0, ac=14+e;1+es+es ca=1+e; +e;—eqz,
be=1—e; —e; +e3, cb=1—e; — ey — ejs; one can learn that
ab=ba=0%ac=0or ca=0.

.al=ga, b>=0.

. r=2a+ 3b.

cay= 6e; + dez, a; = 2e) — 4ey.

. ¥ =ara~! = 5e;, r’ =br'b™! = 3e; + 4e,.

cuti=uu=ul—u?—ultud, eR

u™l=1-—e; — ey and (u@t)~ 4 = d(iu)"! =1+ 3e; — 4e; — 5e;2 and

d(fdu)~! = (uit) "1 = 1 + 3e; + 4e; — eya.

10. Only two of the anti-involutions are similar,

(0 )= 7)o )-(00)

as can be seen by choosing the intertwining automorphism

(2 D50 ) C D5

for which ay = ~vp.

© 00 =N OO
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Complex Numbers

The feature distinguishing the complex numbers from the real numbers is that
the complex numbers contain a square root of —1 called the imaginary unit
i = v/—1. ! Complex numbers are of the form

z=z+1y

where z,y € R and ¢ satisfies i? = —1. The real numbers z,y are called the
real part = Re(z) and the imaginary part y = Im(2). To each ordered pair
of real numbers z,y there corresponds a unique complex number z + iy.

A complex number z + iy can be represented graphically as a point with
rectangular coordinates (z,y). The zy-plane, where the complex numbers are
represented, is called the complex plane C. Its z-axis is the real azis and y-axis
the imaginary azis.

A complex number z = z + iy has an opposite —z = —z — iy and a complez
conjugate Z = x — iy, ? obtained by changing the sign of the imaginary part.

Im
z=z+yi
i..
1 Re
—z=—-z—1y =z —1y

1 Electrical engineers denote the square root of —1 by j = +/-1.
2 In quantum mechanics the complex conjugate is denoted by z* = & — 1y.

18
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The sum of two complex numbers is computed by adding separately the real
parts and the imaginary parts:

(214 i) + (22 +1y2) = (21 + z2) + i(y1 + v2)-

Addition of complex numbers can be illustrated by the parallelogram law of
vector addition.
The product of two complex numbers is usually defined to be

(z1 + 1) (22 + iy2) = 122 — yiy2 + i(z192 + n122),
although this result is also a consequence of distributivity, associativity and
the replacement 2 = —1.
Examples. 1. i3 =—i, i*=1 ® =i 2. (14+4)?=2i 1
The product of a complex number 2 = z + iy and its complex conjugate

Z = z — iy is a real number zZ = z2 + y?. Since this real number is non-zero
for z # 0, we may introduce the inverse

or in coordinate form
1 z-uy
c+iy z2+y?

Division is carried out as multiplication by the inverse: z1/2; = 2125 L
If we introduce polar coordinates 7, ¢ in the complex plane by setting z =
rcosy and y = rsinyp, then the complex number z = z+ iy can be written as

z=r(cos p +isinyp).

This is the polar form of z. 3 The distance r = /22 + y? from z to 0 is
denoted by |z| and called the norm of z. Thus *

2| = Vzz.

The real number ¢ is called the phase-angle or argument of z [sometimes all
the real numbers ¢ + 2mk, k € Z, are assigned to the same phase-angle].

The familiar addition rules for the sine and cosine result in the polar form
of multiplication,

7129 = r1recos(ip1 + p2) + isin(p1 + p2)],

3 Electrical engineers denote the polar form by r/¢.
4 The scalar product Re(21%2) is compatible with the norm |z|. Incidentally, Im(z;z2}
measures the signed area of the parallelogram determined by z; and z;.
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of complex numbers
z1 =ri(cospy +ising;) and z3 = ro(cos g2 + isinps).
Thus, the norm of a product is the product of the norms,
|z122] = |1]]zl,

and the phase-angle of a product is the sum of the phase-angles (mod 2).
The exponential function can be defined everywhere in the complex plane by
22 28 2
exp(z)=1+z+?+g-+...+ﬁ

We write e* = exp(z). The series expansions of trigonometric functions result

+...

in Euler’s formula
€' = cosp + isinp
which allows us to abbreviate z = r(cos ¢ + isinp) as z = re'®.

Im Im

z=z+1y z=re'¥

e

z Re Re
The exponential form of multiplication seems natural:

(r1€791)(r2e9?) = (ri7q)ei(¥rte3),
Powers and roots are computed as
(re*?)* = rmein?  and  Vreiw = frefe/ntiZtkin L e,

Examples. (1+4)~'={(1-i), Vi=xg(1+i), ¢7/2=i. 1

2.1 The field C versus the real algebra C

Numbers are elements of a mathematical object called a field. In a field numbers
can be both added and multiplied. The usual rules of addition

a+b=b+a commutativity
(a+bd)+c=a+(b+c) associativity
a+0=a zero 0

a+(—a)=0 opposite —a of a
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are satisfied for all numbers a,b, ¢ in a field F. The multiplication satisfies

g‘zb:bl‘; - Z;i I;cc } distributivity

(ab)e = a(be) associativity

la=a unity 1

aa"l =1 inverse a=! of a # 0
ab = ba commutativity

for all numbers a, b, ¢ in a field F. The above rules of addition and multiplica-
tion make up the azioms of a field F.

Examples of fields are the fields of real numbers R, complex numbers C,
rationals Q, and the finite fields F, where ¢ = p™ with a prime p. °

It is tempting to regard R as a unique subfield in C. However, C contains
several, infinitely many, subfields isomorphic to R; choosing one means intro-
ducing a real linear structure on C, obtained by restricting a in the product
CxC —C, (a,b) = ab to be real, a € R. Such extra structure turns the field
C into a real algebra C.

Definition. An algebra over a field F is a linear space A over F together with
a bilinear ® function A x A — A, (a,b) = ab. ” 1

To distinguish the field C from a real algebra C let us construct C as the
set R x R of all ordered pairs of real numbers z = (z,y) with addition and
multiplication defined as

(z1,31) + (22,%2) = (€1 + 22,11 + 32) and
(z1,91) (22, 32) = (2122 — Y192, Z192 + T2y1)-
The set R x R together with the above addition and multiplication rules makes
up the field C. The imaginary unit (0, 1) satisfies (0,1)2 = (—1,0).
Since (z1,0) + (22,0) = (21 + 22,0) and (z1,0)(z2,0) = (z122,0), the real
field R is contained in C as a subfield by R — C, z — (z,0). If we restrict
multiplication so that one factor is in this distinguished copy of R,

(X, 0)(z,y) = (Az, Ay),

then we actually introduce a real linear structure on the set R? = R x R. This

5 The finite fields Fq, where ¢ = p™ with a prime p, are called Galois fields GF(p™).

6 Bilinear means linear with respect to both arguments. This implies distributivity. In other
words, distributivity has no independent meaning for an algebra.

7 Note that associativity is not assumed.
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real linear structure allows us to view the field of complex numbers intuitively
as the complex plane C. &

The above construction of C as the real linear space R? brings in more
structure than just the field structure: it makes C an algebra over R. ° We
often identify R with the subfield {(z,0) | z € R} of C, and denote the
standard basis of R? by 1 =(1,0), i = (0,1) in C.

A function « : C — C is an automorphism of the field C if it preserves addition
and multiplication,

a(z1 + z2) = a(z1) + a(z2),

a(z122) = a(z1)e(z),
as well as the unity, (1) = 1. A function a : C — C is an auiomorphism of

the real algebra C if it preserves the real linear structure and multiplication (of
complex numbers),

a(z1 + z2) = a(z1) + a(z2), a(Az) =Xa(z), X ER,
a(2122) = a(z1)a(z),
as well as the unity, (1) = 1.

The field C has an infinity of automorphisms. In contrast, the only auto-
morphisms of the real algebra C are the identity automorphism and complex
conjugation.

Theorem. Complex conjugation is the only field automorphism of C which is
different from the identity but preserves a fixed subfield R.

Proof. First, note that (i) = +i for any field automorphism a of C, since
a(i)? = a(i?) = a(-1) = —1. If o : C = C is a field automorphism such that
a(R) C R, then a(z) = z for all z € R, because the only automorphism of
the real field is the identity. It then follows that, for all = + iy with z,y € R,

afz +iy) = a(2) + a(i)aly) = 2 + alily
where a(i) = i. The case a(i) =i gives the identity automorphism, and the
case a(i) = —i gives complex conjugation. ]

The other automorphisms of the field C send a real subfield R onto an iso-
morphic copy of R, which is necessarily different from the original subfield R.
However, any field automorphism of C fixes point-wise the rational subfield Q.

8 The geometric view of complex numbers is connected with the structure of C as a real
algebra, and not so much as a field.

9 In the above construction we introduced a field structure into the real linear space R? and
arrived at an algebra C over R, or equivalently at a field C with a distinguished subfield
R.
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Example. It is known that there is a field automorphism of C sending v/2 to
—1/2 and v/2 to i¥/2, but no one has been able to construct such an automor-
phism explicitly since its existence proof calls for the axiom of choice. ]

If a field automorphism of C is neither the identity nor a complex conjugation,
then it sends some irrational numbers outside R, and permutes an infinity of
subfields all isomorphic with R. Related to each real subfield there is a unique
complex conjugation across that subfield, and all such automorphisms of finite
order are complex conjugations for some real subfield. The image o(R) under
such an automorphism « of a distinguished real subfield R is dense in C [in the
topology of the metric |z| = \/zZ given by the complex conjugation across R].
This can be seen as follows: An automorphism o must satisfy a(rz) = ra(z)
when r € Q. So if there is an irrational £ € R with ¢t = a(z) ¢ R, and nec-
essarily ¢ ¢ Q + iQ, the image a(R) of R contains all numbers of the form
a(r + sz) =r+ st with r,s € Q. This is a dense set in C.

The above discussion indicates that there is no unique complex conju-
gation in the field of complex numbers, and that the field structure of C
does not fix by itself the subfield R of C. The field injection R — C is an extra
piece of structure added on top of the field C. If a privileged real subfield R
is singled out in C, it brings along a real linear structure on C, and a unique
complex conjugation across R, which then naturally imports a metric structure
to C.

Our main interest in complex numbers in this book is C as a real algebra,
not so much as a field.

2.2 The double-ring *R of R

There is more than one interesting bilinear product (or algebra structure) on
the linear space R%. For instance, component-wise multiplication

(-’Bl,yl)(xz,yz) = (131132,3/13/2)

results in the double-ring 2R of R. The only automorphisms of the real algebra
2R are the identity and the swap

R = 2R, (A, p) = swap(\, ) = (u, ).
The swap acts like the complex conjugation of C, since
swapla(l,1) + b(1,-1)] = a(1,1) — b(1, -1).

The multiplicative unity 1 = (1,1) and the reflected element j = (1,—1) are
now related by j% = 1.
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Alternatively and equivalently we may consider pairs of real numbers (a,b) €
R? as Study numbers
atib, =1, j#1.
Study numbers have Study conjugate (a + jb)~ = a — jb, Lorentz squared
norm (a + jb)(a — jb) = a% — b2, and the hyperbolic polar form a + jb =

p(cosh x + jsinhy) for a? — b2 > 0. 1° In products Lorentz squared norms
are preserved and hyperbolic angles added. Study numbers have the matrix

. a b
a+]b_(b a)'

representation

Ezxercise 4

2.3 Representation by means of real 2 x 2-matrices

Complex numbers were constructed as ordered pairs of real numbers. Thus we
can replace

z=z+1iy in C by (;) in R2?
making explicit the real linear structure on C. The product of two complex
numbers ¢ = a + ib and z,
cz = az — by + i(bz + ay),
can be replaced by / factored as
az—by\ (a —b z\ f(a b z -y 1
bx+ay) \b a y) \b a y z 0/°

One is thus led to consider representing complex numbers by certain real 2 x 2-
matrices in Mat(2,R): 1

C — Mat(2, R), a+ib-—)(‘; _ab)

10 The linear space R? endowed with an indefinite quadratic form (a,b) — a2 — b? is the
hyperbolic quadratic space R!»1. The Clifford algebra of R1:! is C#¢1,1 which has Study
numbers as the even subalgebra 0[1'.,1'

11 In this matrix representation, the complex conjugate of a complex number becomes the
transpose of the matrix and the (squared) norm becomes the determinant. The norm is
preserved under similarity transformations, but ‘transposition = complex conjugation’ is
only preserved under similarities by orthogonal matrices.
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The multiplicative unity 1 and the imaginary unit 7 in C are represented by

the matrices
1 0 0 -1
e )

However, this is not the only linear representation of C in Mat(2,R). A sim-
ilarity transformation by an invertible matrix U, det U # 0, sends the repre-
sentative of the imaginary unit J to another ‘imaginary unit’ J' = UJU ! in
Mat(2, R).

Example. Choosing U = ((1) }), we find J' = i '_'f), and the matrix repre-

sentation z + iy — (’;y ;_z_z) 1

GEOMETRIC INTERPRETATION OF i =+/—1

In the rest of this chapter we shall study introduction of complex numbers by
means of the Clifford algebra Cf; of the Euclidean plane R2. This approach
gives the imaginary unit i = /=1 various geometrical meanings. We will see
that ¢ represents

(i) an oriented plane area in R?,
(ii) a quarter turn of RZ.

The Euclidean plane R? has a quadratic form
r=ze; +yes = |r|? =22 + ¢,
We introduce an associative product of vectors such that
r’=r? or (zes+ye)? =244
Using distributivity this results in the multiplication rules
e?=el=1

, ejeg = —ejze;.

The element e;es satisfies

(ere2)? = -1

and therefore cannot be a scalar or a vector. It is an example of a bivector, the
unit bivector. Denote it for short by e1s = eje,.
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2.4 C as the even Clifford algebra CfF

The Clifford algebra C¢; is a 4-dimensional real algebra with a basis {1, e;, e, e15}.
The basis elements obey the multiplication table

€1 e e

e1 1 €12 (5]
€9 —e12 1 —-el
€12 —en el -1

The basis elements span the subspaces consisting of 12

1 R scalars
e;,es R?  vectors
2 .
e12 A°R? bivectors.

Thus, the Clifford algebra Cf; contains copies of R and R?, and it is a direct
sum of its subspaces of elements of degrees 0,1,2:

2
ct=RoR*® \R%.
The Clifford algebra is also a direct sum Cly = C€} @® CL; of its

even part CfF =R /\2 R2?,
odd part Cf; =RZ

The even part is not only a subspace but also a subalgebra. It consists of
elements of the form z + ye;2 where z,y € R and e?, = —1. Thus, the even
subalgebra Cf} = R® A’ R? of Cf; is isomorphic to C. The unit bivector e;3
shares the basic property of the square root i of —1, that is i = —~1, and we
could write i = ejo. It should be noted, however, that our imaginary unit e
anticommutes with e; and e; and thus e;; anticommutes with every vector

in the ejey-plane: 13

rej; = —ejor for r=ze; +yes and ej; = ejes.

12 In higher dimensions the Clifford algebra C£, of R™ is a sum of its subspaces of k-vectors:
Cln =ROR" G A’R"®...d» A"R".

13 In a complex linear space, or complex algebra, where scalars are complex numbers, the
imaginary unit commutes with all the vectors, ir = ri.
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r

rejs

e1' = —rejs

2.5 Imaginary unit = the unit bivector

Multiplying the vector r = ze; + yes by the unit bivector e;s gives another
vector rejs = res — ye; which is perpendicular to r. The function r — re;s is
a left turn, and the effect of two left turns [e12-e12] is to reverse direction [—1];
or, in a more picturesque way, is a U-turn. The statement ‘e, = —1 is just
an arithmetic version of the obvious geometric fact that the sum of two right
angles, 90° +90°, is a straight angle, 180°. In the vector plane R? the sense of
rotation depends on what side the vector r = ze; +ye; is multiplied by e;; so
that the rotation r — ejsr = ye; —xes is clockwise and r — re;; = —ye; +zres
is counter-clockwise.

In the complex plane C = R /\2 R? both the rotations sending z = z+ye;s
to ejpz and zejp are counter-clockwise. Multiplying a complex number z =
z + yejs by the unit bivector ejs results in a left turn, ze1s = —y + zejs,
and the effect of two left turns [ejs - e12] is direction reversal [—1]; that is a
half-turn in the complex plane C:

—z = ze%z - Z€]2

!

—2 7

The square root of —1 has two distinct geometric roles in R?: it is the
generator of rotations, i = ejes € CQ,L, and 1t represents a unit oriented plane
area e; Aes € /\2 R2 14

A complex number z =z + ye;2 ER@ /\2 R? is a sum of

~ areal number £ = Re(z) and
—~ a bivector yejz = e12Im(z).

14 In an n-dimensional vector space R™ rotations can be represented by multiplications
in Clifford algebras C{,, while certain simple elements of the exterior algebra AR"™ =

ROR*@®AZR"@--- @ A" R" represent oriented subspaces of dimensions 0,1,2,...,n.
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2.6 Even and odd parts

The Clifford algebra Cf; of R? contains both the complex plane C and the
vector plane R? so that

R? is spanned by e; and e,
C is spanned by 1 and e;3.

The only common point of the two planes is the zero 0. The two planes are both
parts of the same algebra Cf;. The vector plane R? and the complex field C are
incorporated as separate substructures in the Clifford algebra Cfy = C£F ®CL5
so that the complex plane C is the even part C£F and the vector plane R? is
the odd part Cf.

y Im
r = ze; + yes z=z+yt
e r ey = i+
ell z 1 Re
Vector plane R? = C¢, Complex plane C = C£F

The names even and odd mean that the elements are products of an even or
odd number of vectors. Parity considerations show that

— complex number times complex number is a complex number,
— vector times complex number is a vector,

— complex number times vector is a vector, and

— vector times vector is a complex number.

The above observations can be expressed by the inclusions

cereey ceef,

Cty CLF C Cey,

cedce; c ey,

Cey Cly; C CeF.
By writing (Cf)o = C£f and (Cf;); = C£;, this can be further condensed to
(Cl3);(Cla)k C (CLy)j4k, where j, k are added modulo 2. These observations

are expressed by saying that the Clifford algebra C¢; has an even-odd grading
or that it is graded over Z, = {0,1}. 1®

15 We have already met a Z;-graded algebra, namely the real algebra C = R @ iR with even
part R = Re(C) and odd part R = i Im(C}.
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2.7 Involutions and the norm

The Clifford algebra Cfs has three involutions similar to complex conjugation
in C. For an element u = (u)o + (u); + (u)s € Cly, (u)x € A\*R?, we define

grade involution @ = (u)g — (uh + (u)s,
reversion &t = (u)o + (u)1 — (u)2,
Clifford-conjugation % = (u)e — (u)1 — (u)2.

The grade involution is an automorphism, v = 44, while the reversion and
the Clifford-conjugation are anti-automorphisms, uv = %it, W0 = v4.

For a complex number z = z + ye;s the complex conjugation z — z =
z — yejs 1s a restriction of the Clifford-conjugation u — % in C¢; and also of
the reversion u — @ in C#,. Likewise, the norm |z| = /2% + y? in C, obtained
as the square root of zz = z2 + y2, is a restriction of the norm |u| = \/{uii)o
in Cls.

A complex number is a product of its norm r = |z| and its phase-factor
cosp + ejasiny, where £ = rcosyp and y = rsing. The expression z =
r(cos ¢ + e1asinp) can be abbreviated as z = rexp(ej2¢), and read as ‘r in
phase .’

2.8 Vectors multiplied by complex numbers

The product of a vector r = ze; + ye; and a unit complex number el =
cos ¢ + isin ¢, where for short i = e;s, is another vector in the e;e;-plane:

rcosy +risinp = re'’.

The vector ri = ze; — ye; is perpendicular to r so that a rotation to the left
by m/2 carries r to ri.

Since the unit bivector 1 anticommutes with every vector r in the e;es-
plane, the rotated vector could also be expressed as

rcosp +rising =rcosyp — irsinp = e~ **r.

Furthermore, we have cos¢ +ising = (cos £ + isin £)? and thus the rotated

vector also has the form s~lrs where s = €'#/2 and s~! = e~%/2. The ro-
tation of r to the left by the angle ¢ will then result in rz = z7!r = s~ !rs
where z = €l%, 271 = e~ and 52 = z. There are two complex numbers s and
—s which result in the same rotation s~!rs = (—s)~1r(—s). In other words,
there are two complex numbers which produce the same final result but via

different actions.
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s = ei‘p/z rz

—s = e—-i(21r—<p)/2 - ei<p/2e—i1r

ei1r =1 14

2T —

2.9 The group Spin(2)

The unit complex numbers z € C, |z| = 1, form the unit circle S! = {z €
C | |2| = 1}, which with multiplication of complex numbers as the product
becomes the unitary group U(1) = {z € C | zz = 1}. A counter-clockwise
rotation of the complex plane C by an angle ¢ can be represented by complex
number multiplication:

¢ +iy — (cosp+ isingp)(z +1iy), cosp+ising € U(1).

A counter-clockwise rotation of the vector plane R? by an angle ¢ can be
represented by a matrix multiplication:

(z) R (c?scp —s1n<p) (z), (c?sgo —smgo) € 50(2)
y sing cosg y sing cosyp
where SO(2) = {R € Mat(2,R) | R'TR = I, det R = 1}, the rotation group.

The rotation group SO(2) is isomorphic to the unitary group U(1).
Rotations of R? can also be represented by Clifford multiplication: 16

ze; + yez — (cos g + e sin g)‘l(zel + yez)(cos % + ej2sin %)

where cos £ + eypsin € € Spin(2) = {s € Cf} | s5 = 1}, the spin group.
The fact that two opposite elements of the spin group Spin(2) represent the
same rotation in SO(2) is expressed by saying that Spin(2) is a two-fold 17
cover of SO(2), and written as Spin(2)/{£1} ~ SO(2). Although SO(2) and
Spin(2) act differently on R?, they are isomorphic as abstract groups, that is,

16 We use this particular form to represent the rotation because the expression ze; + ye; —
(cos £+e1z sin g)—l (ze1+yez)(cos £+eiz sin £) can be generalized to higher dimensions.
The expression ze; + yez — (ze; + yez)(cosy + €12 sin ) is not generalizable to higher-
dimensional rotations.

17 You are already familiar with two-fold covers: 1. A position of the hands of your watch
corresponds to two positions of the Sun. 2. A rotating mirror turns half the angle of
the image. 3. Circulating a coin one full turn around another makes the coin turn twice
around its center,
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Spin(2) ~ SO(2). 18
Ezercise 6

History

Imaginary numbers first appeared around 1540, when Tartaglia and Cardano
expressed real roots of a cubic equation in terms of conjugate complex num-
bers. The first one to represent complex numbers by points on a plane was
a Norwegian surveyor, Caspar Wessel, in 1798. He posited an imaginary axis
perpendicular to the axis of real numbers. This configuration came to be known
as the Argand diagram, although Argand’s contribution was an interpretation
of i = /=1 as a rotation by a right angle in the plane. Complex numbers got
their name from Gauss, and their formal definition as pairs of real numbers is
due to Hamilton in 1833 (first published 1837).

Exercises
1. (3+4d)7Y, V3 +4i, V=4, V=1, log(—1+1).
2. Let 2z, = 27%/" £k =1,2,..., n—1. Compute
(T—=2)(1—22) - (1 = zn-1).
3. An ordering of a field F is an assignment of a subset P C [F such that

(i) 0¢ P,
(ii) for all non-zero a € I either a € P or —a € P, but not both,
(iii) a+ b€ P and ab€ P for all a,b€ P.

It is customary to call P the set of positive numbers, and the set

—P = {—a | a € P} the set of negative numbers. The statement a —b € P
is also written @ > b (and a —b € PU {0} is written a > b). Show that the
field C cannot be ordered.

4. Two automorphisms «, B of an algebra are similar if there exists an
intertwining automorphism v such that a+y = v8. The identity
automorphism is similar only to itself.

a) Show that the two involutions of the real algebra C are dissimilar, and
that the two involutions of the real algebra ?R are dissimilar.

b) Show that the two involutions (), ) = (1, A) and B(A, p) = (i, A) are
similar involutions of the real or complex algebra 2C [that is, find an
intertwining automorphism + of 2C such that ay = /).

5. A rotation is called rational if it sends a vector with rational coordinates to

18 Both SO(2) and Spin(2) are homeomorphic to S*.
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another vector with rational coordinates. Determine all the rational
rotations of R2. Hint: R € SO(2) \ {—I} can be written in the form
R=(I+A)(I—A)™! where AT = —A.

6. Write @t = (u)o + (u)1 — (u)s for u = (u)o + (u)1 + (u)2 € Cts,
(u)x € A¥R2. Let Pin(2) = {u € Cl, | iu =1},
R? - R?, x — R(x) = uxu~!, and O(2) = {R € Mat(2,R) | RTR = I}.
Show that Pin(2)/{+1} ~ O(2) and Pin(2) ~ O(2).

7. Show that a 2-dimensional real algebra with unity 1 is both commutative
and associative. Hint: First show that there is a basis {1,a} such that
a’=oal, a €R.

8. Show that a 2-dimensional real algebra with unity 1 and no zero-divisors
[ab = 0 implies @ = 0 or b = 0] is isomorphic to C.

Solutions

1. 1(3-4d), £(2+1), £144, V=i = {i,+¥ —il},
log(—1+¢) = Llog2 + i3F + i2nk.

2. Note that the roots of £" —1 =0 are 2z =¢€'?"*/* k=0,1,...,n—1.
Therefore ( — z0)(z — z1)(z — 22) - - (€ — zn—1) = 2™ — 1. Define
f(z) =(z — z1)(z — 22) - - - (z = 2n—1) which equals

fla) = " -1

z-—1
and f(z) =z""'+...+z+1 in general. Compute f(1) =n.
3. In an ordered field non-zero numbers have positive squares, and the sum of
such squares is positive, and therefore non-zero. The equality i2 + 1 =0 in
C can also be written as i2 + 12 = 0, which excludes the inequality
2 + 12 > 0. Consequently, it is impossible to order the field C.
4. b) Choose v(\, ) = (M, 1) or y(M ) = (A fi) to find ey = v8.

for z#1
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3
Bivectors and the Exterior Algebra

There are other kinds of directed quantities besides vectors, most notably bivec-
tors. For instance, a moment of a force, angular velocity of a rotating body,
and magnetic induction can be described with bivectors. In three dimensions
bivectors are dual to vectors, and their use can be circumvented. Scalars, vec-
tors, bivectors and the volume element span the exterior algebra A R3, which
provides a multivector structure for the Clifford algebra Cf€3 of the Euclidean
space R3.

3.1 Bivectors as directed plane segments

In three dimensions bivectors are oriented plane segments, which have a di-
rection and a magnitude, the area of the plane segment. Two bivectors have
the same direction if they are on parallel planes (the same attitude) and are
similarly oriented (the same sense of rotation).

Vector (directed line segment)

Q 1. magnitude (length of PQ)
2. direction
— attitude (line PQ)

P — orientation (toward the point Q)

Bivector (directed plane segment)

R Q 1. magnitude (area of OPQR)
2. direction
— attitude (plane OPQ)
— orientation (sense of rotation)

33
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Bivectors are denoted by boldface capital letters A, B, etc. ! The area or
norm of a bivector A is denoted by |A|. Two bivectors A and B in parallel
planes have the same attitude, and we write A || B. Parallel bivectors A and
B can be regarded as directed angles turning either the same way, A 11 B, or
the opposite way, A 1} B. If two plane segments have the same area and the
same direction (= parallel planes with the same sense of rotation), then the
bivectors are equal:

A=B <= |A|=|B|] and A{tB

joys

A bivector A and its opposite —A are of equal area and parallel, but have
opposite orientations. A unit bivector A has area one, |A] = 1.

The shape of the area is irrelevant.

Representing a bivector as an oriented parallelogram suggests that a bivector
can be thought of as a geometrical product of vectors along its sides. With this
in mind we introduce the exterior product aAb of two vectors a and b as the
bivector obtained by sweeping b along a.

/ 7 /

The bivectors a Ab and b A a have the same area and the same attitude but
opposite senses of rotations. This can be simply expressed by writing

aAb=-bAa.

3.2 Addition of bivectors

The geometric interpretation of bivector addition is most easily seen when
the bivectors are expressed in terms of the exterior product with a common

1 In handwriting, bivectors can be distinguished by an angle on top of the letter, j‘l, ﬁ .
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vector factor. In three dimensions this is always possible because any two
planes will either be parallel or intersect along a common line. 2 Thus let
A = aAc and B = b A c; then the bivector A + B is defined so that
A+B=aAc+bAc=(a+b)Ac. The geometric significance of this can be
depicted as follows:

) by,

By decomposing the vectors a and b into components parallel and perpendic-
ular to a+ b, 3 so that

a:a||+aJ_ and b:b“—}-bl

where b; = —a,, we are able to reduce the general addition of bivectors in
three dimensions to the addition of coplanar bivectors. This is evident in the
equality

aAc+bAc=(a+b)Ac=(ay+bj)Ac=a;Ac+bjAc.

3.3 Basis of the linear space of bivectors

Bivectors can be added and multiplied by scalars. This way the set of bivectors
becomes a linear space, denoted by /\2 R3. A basis for the linear space /\2 R3
can be constructed by means of a basis {e;,ez,e3} of the linear space R3.
The oriented plane segments of the coordinate planes, obtained by taking the
exterior products

e; Aes, e; Aes, ez Aes,

2 The two bivectors are first translated in the affine space R? so that they induce opposite
orientations to their common edge, that is, the terminal side of A = a A ¢ is opposite to
the initial side of B = (-c) A b,

3 A depiction of addition of bivectors does not require a metric, or perpendicular compo-
nents. It is sufficient that one component of both a and b is parallel to a + b, so that
the two components sum up to a + b, while the other component can be any non-parallel
component.
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form a basis for the linear space of bivectors /\2 R3.
€3

b — (WANGE

o

s

€2
e ey N\ey

An arbitrary bivector is a linear combination of the basis elements,
B = Bize; Aey+ Bise; Aes + Bazey Aes,

and such linear combinations form the space of bivectors /\2 R3. ¢ The con-
struction of bivectors calls only for a linear structure, and no metric is needed.

The scalar product on a Euclidean space R? extends to a symmetric bilinear
product on the space of bivectors \*IR3,

X1°¥Y1 X1-Y2

<X1 AX2, Y1 AY2> = .
X2:°Y1 X2-Y¥2

In particular, <a A b,aA b> = |a]?|b|? — (a- b)?. The norm or area of B =
Bisey A es + Biszep A ez + Bazeqg A es is seen to be

|B| = /<B,B> = \/sz + B}; + B;.

3.4 The oriented volume element

The exterior product a A b A ¢ of three vectors a = aje; + aze; + ases,
b = bie; + byey + bzez and ¢ = cie; + cye; + czes represents the oriented
volume of the parallelepiped with edges a, b, c:

a az ag
aAbAc=|b by b3 le;AeyAes.
(&) Cy C3

It is an element of the 1-dimensional linear space of 3-vectors /\3 R? with basis
e; A ez A es. The exterior product is associative,

(aAb)Ac=aA (bAc),

4 In three dimensions all bivectors are simple, that is, they are exterior products of two
vectors, B = x Ay for some x,y € R%. This is no longer true in four dimensions; for
instance e; A ez 4+ e3 A e4 is not simple.
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and antisymmetric,

aAbAc=bAcAa=cAaAb
=-cAbAa=-aAcAb=-bAaAc
for a,b,c € R3.
The exterior product of the orthogonal unit vectors ej, ez, e3 € R? is the

unit oriented volume element e; Aes Aesg € /\3 R3. The norm or volume |V|
of a 3-vector ®

V=VeiAes Aes
is [V|=|V|, that is, |[Vei AesAez]=V for V >0 and |Ve; Aex Aeg|= -V
for V < 0.

More formally, the scalar product on R3 extends to a symmetric bilinear
product on A®R3 by

X1-°¥Y1 X1°YyY2 X1°'Y3
<X AXa2AX3,y1AYy2Ays>=|X2-y1 Xz2'y2 X2-Y3
X3-°yY1 X3'y2 X3-Y¥y3

giving the norm as |V]|=+/<V,V>.

3.5 The cross product

Let a = aje; + azes + azes and b = bie; + byey + bzes. The bivector
aAb = (azbs — asbz)ex Aes + (azby — arbs)es A eq + (a1bs — azbi)er Aey

can be expressed as a ‘determinant’

esNes eshe e Aep
aAb= ay as as
by b2 b3

It is customary to introduce a vector with the same coordinates. Thus, we
define the cross product

axb= (azb3 - asbz)el + (a3b1 - albg)ez + (albz - azbl)es

of a and b. The cross product can also be represented by a ‘determinant’

€1 ey €3
axb= a1 Qay das
by by b3

5 V is a real number, positive or negative, while V is a 3-vector. The usual volume is |V|.
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The direction of axb is perpendicular to the plane of aAb and the length/norm
of a x b equals the area/norm of aA b,

|a x b| = |aAb| = |a]|b|sin¢p

where ¢, 0 < ¢ < 180°, is the angle between a and b.

In spite of the resemblance between the determinant expressions for the ex-
terior product a A b and the cross product a x b there is a difference: the
exterior product does not require a metric while the cross product requires or
induces a metric. The metric gets involved in positioning the vector a x b
perpendicular to the bivector a A b.

3.6 The Hodge dual

Since the vector space IR3 and the bivector space /\2 R3 are both of dimension
3, they are linearly isomorphic. We can use the metric on the vector space R3
to set up a standard isomorphism between the two linear spaces, the Hodge
dual sending a vector a € R3 to a bivector xa € A\°R3, defined by

bA*a=(b-a)e; AeyAes forall beR3,

The Hodge dual depends not only on the metric but also on the choice of
orientation - it is customary to use a right-handed and orthonormal basis

{e1, ez, es}.
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Vector a and its dual bivector A = aejs3

Thus, we have assigned to each vector
3
a=ae; + azex + azes ER

a bivector
2
A =xa=ajes ANes+asesAe; +ase; Aes € /\]Rs.

Using the induced metric on the bivector space /\2 R3 we can extend the Hodge
dual to a mapping sending a bivector A € /\2 R? to a vector xA € R3, defined
by
2
BA*A =<B,A>e;AezAes forall Be AR

Using duality, the relation between the cross product and the exterior pro-
duct can be written as ¢
aAb=x(axb),
ax b==x(aAb).

6 In terms of the Clifford algebra C¢3 the relation between the exterior product and the
cross product can be written as

aAb=(ax b)eps,
axb= —(a/\ b)elzs.

The metric gets involved in multiplying by ej23 = ejezes. Using the Clifford algebra
C{3 the Hodge dual can be computed as xu = iej23. This gives rise to the Clifford dual
defined as uejz3 for u € Cf3. Later we will see that in actual computations the Clifford
dual is more convenient than the Hodge dual (although in three dimensions the Hodge
dual happens to be symmetric/involutory).
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3.7 The exterior algebra and the Clifford algebra

The exterior algebra AR3 of the linear space R? is a direct sum of the

subspaces of | with basis

scalars R 1
vectors R2 ey, ep, e3
. 2
bivectors A“R3 e; Aez, e1Aes, e;Aes

volume elements /\3 R3 ejAe;Aes

We also write R = A°R3 and R? = A\'R3. Thus, AR3 is a direct sum of its
subspaces of homogeneous degrees 0,1,2, 3:

2 3
/\IR3=IR®R3®/\R3@/\IR3.

The dimensions of R, R3, A’R3, A’ R3 and AR® are 1,3,3,1 and 23 = 8,
respectively.
The exterior algebra /\R3 is an associative algebra with unity 1 satisfying

e;Ne; = —e; Ae; for i#£]
e;Ne; =0

for a basis {e;,es,es} of the linear space R®. The exterior product of two
homogeneous elements satisfies
i+] i J
aAbe AR® for ac AR? be AR®

The product of two elements u and v in the Clifford algebra Cf3 of the
Euclidean space R3 is denoted by juxtaposition, uv, to distinguish it from
the exterior product u A v. An orthonormal basis {e1, ez, e3} of the Euclidean
space R3 C Cl5 satisfies 7

eje; = —eje; for i#£j

eje; =1

7 These rules were invented by W.K. Clifford in 1882. In an earlier paper Clifford 1878 had
considered an associative algebra of dimension 8 with the rules e;e; = -1 for i =1,2,3.
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and generates a basis of Cf3, corresponding to a basis of AR3,
Cis | AR3
111

€1, €2, €3 | €1, €3, €3

€€z, e,e3, €3 | €; A €2, € A €3, €2 Aeg

ejezez | ey Aex Aes

The above correspondences induce an identification of the linear spaces Cf3
and AR3, and we shall write

2 3
Cls =]R63]R369/\]R369/\]R3.

This decomposition introduces a multivector structure into the Clifford algebra
Cf3. The multivector structure 1s unique, that is, an arbitrary element u € Cé3
can be uniquely decomposed into a sum of k-vectors, the k-vector parts (u)g

of u,
k

u = (u) + (u)y + (u)2 + (u)s where (u)g € /\]Ra.

3.8 The Clifford product of two vectors
A new kind of product called the Clifford product of vectors a and b is obtained
by adding the scalar a-b and the bivector aA b:

ab=a-b+aAb.

The commutative rule a-b = b - a together with the anticommutative rule
aAb = —bAa implies a relation between ab and ba. Thus,

ba=a-b—aAb.

Two vectors a and b are parallel, a || b, when their product is commutative,
ab = ba, and perpendicular, a 1 b, when their product is anticommutative,
ab = —ba.

Note that if a is decomposed into components parallel, a|, and perpendic-
ular, a;, to b, then ab=2ab+a,b=a-b+aAb.
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a-b = i(ab+ba)
aAb=1(ab - ba)
a-b = |a||b|cosyp

|a Ab|=|a|b]sin¢p

a

Compute the product abba to get a’b? = (a-b)2 — (a A b)? and use
(aAb)? = —|aADb|? to obtain the identity

a’b? = (a-b)? +|anb]%

3.9 Even and odd parts
The Clifford algebra is, like the exterior algebra, a direct sum of two of its
subspaces,

the even part R@ A’R3,

the odd part ~ R3® A’R®.
For both algebras the even part is also a subalgebra. The even subalgebra
(ARt =Ro /\2 R3 of AR? is commutative, but the even subalgebra C£3 =

R& /\2 R3 of Cf3 is not commutative; instead it is isomorphic to the quaternion
algebra: H ~ C£}. The odd parts are denoted by C¢; and (AR3)~.

3.10 The center

The center of an algebra consists of those elements which commute with all the
elements of the algebra. The center Cen(Cls) = R@ /\3 R3 of Cl3 is isomorphic
to C, and the center of AR? is Cen(AR%) =R & /\2 R3 @ /\31R3.

3.11 Gradings and the multivector structure
The exterior products of homogeneous elements satisfy the relations
i+j i ki
aAbe /\]R3 for aE/\]R3 and b e/\IRS.
Such a property of an algebra is usually referred to by saying that the algebra

is graded over the index group Z. We shall refer to this property of the exterior
algebra A\ R3 as the dimension grading, because simple homogeneous elements
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represent subspaces of specified dimension. The homogeneous elements in A R?
satisfy

i J
aAb=(-1)"bra for a€ AR® be AR?

that is, the exterior algebra A R3 is graded commutative. 8

The Clifford products of even and odd subspaces satisfy the inclusion rela-
tions

cereer ceer, cerees cee,
Cl7CeY C Cl7, Cl3Ce; C Cet.

These relations can be summarized by saying that the Clifford algebra C£3 has
an even-odd grading, or that it is graded over the index group Z, = {0, 1}.

The exterior algebra /A R? is also even-odd graded.

The Clifford algebra C{3 is not graded over Z. However, we can reconstruct
the exterior product from the Clifford product in a unique manner. We shall
refer to the dimension grading of the associated exterior algebra by saying that
the Clifford algebra has a multivector structure. Recall that R and R® have,
by definition, unique copies in C£3. The exterior product of two vectors equals
the antisymmetric part of their Clifford product,

] 2
xAy= §(xy —¥x) € /\]R"1 for x,y € R3,

whence the space of bivectors /\2 R? has a unique copy in Cf3. The subspace
of 3-vectors /\3 R3 can be uniquely reconstructed within C£3 by a completely
antisymmetrized Clifford product
3
1 3
XAyAz= g(xyz+yzx+zxy—zyx—xzy—yxz) € /\]R

of three vectors x,y,z € R3.
Thus, we have established a linear isomorphism sending A R3 to Cf; defined

8 The graded opposite algebra of A R? is the linear space AR? with a new product uowv
defined by

(wo +u1)o(vo+v1) =vo Aup +vo Aup +v1 Aug — v1 Ay

for ug, v € (AR®)t and uy,v1 € (AR®)~. Since AR? is graded commutative, that is
uov =uAuw, the graded opposite of AR? is just A R3.
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for k-vectors:

ARS | cts
a = a€R
x = x€eR3
XAy = ixy-yx)e \N’R?
XAyAz = %(xyz+yzx+zxy——zyx—xzy—yxz)E/\:SIR3

There is another construction of the subspace of 3-vectors /\3 R3, obtained by
using the reversion, xAy Az = 1(xyz—zyx) € N’ R3 for x,y,z € R3, related
to the following recursive construction, via an intermediate step in /\2 R3:

3 2
xAB=:(xB+Bx) e \R® for x€R? Be \R®

NG

3.12 Products of vectors and bivectors, visualization

A vector a € R3 and a bivector B € AR? can be multiplied to give a 3-vector
aAB = BAae A\*R3 The exterior product of a vector and a bivector can
be depicted as an oriented volume:

|
{ a |
t |
| a {
Jmm - Lo-—1-
// ///_B
aAnB BAa

The orientation is obtained by putting the arrows in succession. The commu-
tativity of the exterior product aA B = B A a means that the screws of aA B
and B A a can be rotated onto each other (without reflection).

A vector x € R3 and a bivector B € A’R3 can also be multiplied so that
the result is a vector BL x € R3. Consider a vector x tilted by an angle ¢ out
of the plane of a bivector B. Let a be the orthogonal projection of x in the
plane of B. Then |a| = |x|cosp. The right contraction of the bivector B by
the vector x is a vector y = B L x in the plane of B such that

(i) lyl=IBllal,
(i) yLa and aAyttB.
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By convention, we agree that

xdB=-BLlx,

that is, the left and right contractions have opposite signs.
x

y:BLx

[The inverse vector a~! of a has a geometrical meaning in this figure: it gives
the area of the rectangle, |B| = |a=!]|]y]|.]

Write xy = a and x; = x —x)). Then x1B =x)B and xAB =x, B so
that

x| = (x4B)B™! parallel component

xL = (xAB)B! perpendicular component

where B-! = B/B?, B? = —|BJ2.

3.13 Contractions and the derivation
The Clifford product of two vectors a and b is a sum of a scalar a-b and a
bivector aA b,

ab=a-b+aAb,

so that the terms on the right hand side can be recaptured from the Clifford
product:

1
2
The product of a vector a and a bivector B is a sum of a vector and a 3-vector:

a-b (ab + ba), aAb:—;-(ab—ba).

aB=alB+aAB
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where
1
2

In general, the Clifford product of a vector x € R? and an arbitrary element

1
aJBzi(aB—Ba), aAB = -(aB + Ba).

u € Cf3 can be decomposed into a sum of the left contraction and the exterior
product as follows: °

xu=xJdu+xAu
where we can write, in the case where u is a k-vector in /\k R3,
xdu= L(xu— (-1)Fux) € A* ' R?,
xAu=L(xu+(-1)*ux) € AR,
The exterior product and the left contraction by a homogeneous element, re-
spectively, raise or lower the degree, that is,
i+j j—i
anbe AR}, albe A\R®
for a€ \'R3 and b e \ R3.
The left contraction can be obtained from the exterior product and the Clif-
ford product as follows:
udv= [u A (’06123)]6;213.

This means that the left contraction is dual to the exterior product. The left
contraction can be directly defined by its characteristic properties

1) ny =Xy,

2) xJd(uAv)=(xJu)Av+aA(xdv),

3) (uAv)dw=ul(vdw),
where x,y € R? and u,v,w € AR3. Recalling that & = (—1)*u for u € A\*R3,
the second rule can also be written as

xd(uAv) = (xdu)Av+ (=1)Fun (xdv),

when u € /\k R3. The second rule means that the left contraction by a vector is
a derivation of the exterior algebra A R3. It happens that the left contraction
by a vector is also a derivation of the Clifford algebra, that is,

xd(uw) = (xJu)v+d(xdv) for x€R? u,v € Cls.

9 A scalar product on R* C AR3 induces a contraction on A R® which can be used to
introduce a new product xu = xJu+x Au for x € R® and u € AR3, which extends by
linearity and associativity to all of A R3. The linear space A R? provided with this new
product is the Clifford algebra C¢3.
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3.14 The Clifford algebra versus the exterior algebra

Both the Clifford algebra Cf3 and the exterior algebra A\ R3 contain a copy
of R3, which enables application of calculations to the geometry of R3. The
feature distinguishing Cf3 from AR3 is that the Clifford multiplication of
vectors preserves the norm, |ab| = |a||b| for all a,b € R3, whereas |aAb| <
|a||b|. The equality |ab| = ]a]|b| enables more calculations to be carried out
in R, most notably rotations become represented as operations within one
algebra, the Clifford algebra Cls.

Historical survey
The exterior algebra AR® of the linear space R?* was constructed by Grass-
mann in 1844. Grassmann’s exterior algebra /\R3 has a basis

1

e, €3, €3

e; ANez, e;1 Aez,ea Aeg
ej ANey Aeg

satisfying the multiplication rules
eiNej=—e;jAe; for i#j,
e; Ne; = 0.

Clifford introduced a new product into the exterior algebra; he kept the first
rule

eje; = —eje; for i #j,
that is e;e; = e; A e;, but replaced the second rule by

ee; =1 in 1882, and
e;e; = —1 in 1878.

These two algebras generated are Clifford’s geometric algebras
Cly = C[s)o ~ Mat(2, (C) and Cfo’;; ~HoH

of the positive definite and negative definite quadratic spaces R3 = R3? and
R%3, respectively.

Exercises

1. Find the area of the triangle with vertices (1, -4, —6), (5,—4,—2) and
(0,0,0).
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2. Find the volume of the parallelepiped with edges a = 2e; — 3es + 4eg3,
b =e; + 2e; —e3, c = 3e; — ey + 2es.

3. Compute the square of the volume element eq23 = ejezes (square with
respect to the Clifford product).

4. Show that e;ss commutes with e;, es, es.

5. Find the inverse of the bivector B = 3e12 + ea3 (inverse with respect to
the Clifford product).

6. Let a=2e; + 3es + Teg and B = 4ey, + He13 — ez3. Compute a AB and
alB.

7. Let a = 3e; + 4es + Tes and B = Tej; + e13. Compute the perpendicular
and parallel components of a in the plane of B.

8. Show that the Clifford product of a bivector B € A’ R3 and an arbitrary
element u € Cf3 can be decomposed as

Bu=Blu+ %(Bu—uB)+B/\u.
9. Reconstruct the dot product a-b with the help of the cross product a x b
and the exterior product aAb. Hint: a x (a xb) = (a-b)a— a’b.
Define the right contraction by u L v = eJ,3[(e123u) A v] for u,v € Cfa.

10. Show that the following properties — the characteristic properties — of the
right contraction hold:

1) xLy=x-y,
2) (uAv)Lx=uA(vlx)+ (ulx)AD,
3) uL(vAw)=(uLv)Lw,
for x,y € R? and u,v,w € AR3.
11. Show that aLb e A"/ IR3 for ae A'R3 and b e A’ R3.
12. Show that (udv)Lw =ud(vLw).
13. Show that udv = *(x"1(v) A @) and ul v =% 1(7 A *(u)).
14. Show that

ux=ulx+uAx
where, for a k-vector u € A\*R3,
ulx = L(ux — (=1)*xu) € A" ' RS,
uAx = L(ux+ (-1)*xu) € /\k+1 R3,
15. Show that uAv—vAu € A°R3 and uv —vu € R3® A’R3.
Let a € R3, BEA2R3, u=1+a+ B.
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16. The exterior inverse of u is uM~1) =1 - a— B + aa AB with some
o € R. Determine o. Hint: use power series or u A u(=1) =1,

17. The exterior square root of u is u*(1/2) =1 4 %a+ %B + BaAB with
some B € R. Determine 8. Hint: ur(1/2) A A (1/2) = 4,

18. Show that 1Ju=u for all u € AR

Solutions

1. a=e; —4ey; — Gez, b = be; — 4e; — 283, aAb = 16e,3 + 28e,3 — 16e,3,

tlanb|=1v/162 + 287 + 162 = 18.

2. aAbAc=—Teys, laAbAc|=T.
3. edpy=—1.
5. B2=-10, |B|= V10, B~1 = —1—10-(3812 + ea3).
6. aAB = llej23, alB = —4Te; + 15es + Tes.
7. a3 = —0.9es5 + 6.3e3, ay = 3e; +4.9e; + 0.7eg3.
9. Take a wedge product with b to obtain (a x (a x b)) Ab=(a-b)(aAb),
and
ab— (ax (axb))Ab for aftb
aAb
(the division is carried out in the Clifford algebra Cfs, or it is just a ratio
of two parallel bivectors).
16. a=2.
17. B = —%.

18. 1du=(1A1)du=11(14u) and so the contraction by 1 is a projection
with eigenvalues 0 and 1. The only idempotents of AR2 are 0 and 1, and
so 1Ju =20 or 1Ju=u, identically. The latter must be chosen, since
1d(x-y)=11(xJdy)=(1Ax)Jy =xdy=x -y # 0 for some x,y € R3.
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Pauli Spin Matrices and Spinors

. . . . 2 - - .
In classical mechanics kinetic energy %mv2 = £—, p = m7, and potential

energy W = W(F) sum up to the total energy !

2
E=2 1w
2m

Inserting differential operators for total energy and momentum,

E= ih—2 and p= —ihV,

ot
into the above equation results in the Schrodinger equation 2
oY h?
= —— Vi + W
"o 2m v+ WY,

a quantum mechanical description of the electron. The Schrédinger equation
explains all atomic phenomena except those involving magnetism and relativity.

The wave function ¥ is complex valued, ¥(F,t) € C. The square norm |¢|?
integrated over a region in space gives the probability of finding the electron
in that region. 3

The Stern & Gerlach experiment, in 1922, showed that a beam of silver atoms
splits in two in a magnetic field [there were two distinct spots on the screen,
instead of a smear of silver along a line]. Uhlenbeck & Goudsmit in 1925 pro-
posed that silver atoms and the electron have an intrinsic angular momentum,
the spin. The spin interacts with the magnetic field, and the electron goes up
or down according as the spin is parallel or opposite to the vertical magnetic
field.

1 This holds in a conservative system.

2 The Schrodinger equation arose out of the hypothesis that if light has both wave and
particle properties, then perhaps particles might have wave properties such as interference
and diffraction.

3 This is the Born interpretation.

50
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In an electromagnetic field E, B with potentials V, A the Schrodinger equa-

tion becomes 4

8 -
ma—'f = %[(—ihv —eA)%)y — eV, (1)

or after ‘squaring’

-3'/’_ 1 22 242 4 A A
ihor = 5—[~h*V + €2 A% + ihe(V - A+ A - V)] — eV,

This equation does not yet involve the spin of the electron. The differential
operator, known as the generalized momentum,

R=p—eA where P=—ihV
is such that its components mx = px — eAy satisfy the commutation relations
T Ty — mom = iheBs (permute 1,2,3 cyclically).

Pauli 1927 introduced the spin into quantum mechanics by adding a new
term into the Schrédinger equation. The Pauli spin matrices

a=(14) ==(0 ) »=(3 )

o109 = i03  (permute 1,2,3 cyclically)

satisfy

and the anticommutation relations

00k + 0k0; = 25jkI.
Applying the above commutation and anticommutation relations, and tem-
porarily using the old-fashioned notation

7% = 01m + 097y + o373,

we may see that

(- %)% = 2 — he(& - B)

where
P =p?+e2A’—e(p-A+A-P).

p
2 in equation (1)

Pauli replaced 7% by (¢ - )
W1, 3
th— = —[n° — he(d - B)]¢ — eV
Y = L[ = he(@ - )l - eV
4 A Schrodinger equation with W = 0 is brought into this form by a gauge transformation
P, 1) = o(7, 1)) | when eV = ﬁ%% and e = EVa.
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This Schrodinger-Pauli equation describes the spin by virtue of the term

he -

—(& - B).

5 @ - B)

The matrix & - B operates on two-component column matrices with entries in

C. The wave function sends space-time points to Pauli spinors

¢(F;t)= ($:>’ ¢1,'/)2€(C,

that is, it has values in the complex linear space C2.

The Schrodinger-Pauli equation in the Clifford algebra C¢3. The mul-
tiplication rules of the Pauli spin matrices 01,032,003 € Mat(2,C) imply the
matrix identity

(7-B)? = (B} + B + B3)I.

Thus, we may regard the set of traceless Hermitian matrices as a Euclidean
space R3 with an orthonormal basis {01,072, 03}.

The length (of the representative) of a vector B is preserved under a simi-
larity transformation U(& - E)U ~1 by a special unitary matrix U € SU(2),

SU(2) = {U € Mat(2,C) |UTU = I, detU = 1}.

In this way, not only vectors but also rotations becorne represented within the
matrix algebra Mat(2,C). In fact, each rotation R € SO(3) becomes repre-
sented by two matrices +U € SU(2), and we say that SU(2) is a two-fold
covering of SO(3):
L SU(2)
—— _{‘:m.

Pauli spinors could also be replaced by square matrices with only the first
column being non-zero,

_(¥1 O
¢_(¢2 0); ¢1;¢2€C-

Such square matrix spinors form a left ideal S of the matrix algebra Mat(2, C),
that is, for U € Mat(2,C) and ¢ € S we also have Uy € S. ®

The matrix algebra Mat(2, C) is an isomorphic image of the Clifford algebra
Ct3 of the Euclidean space R3. Thus, not only vectors in R and rotations in

50(3)

5 The left ideal can be written as S = Mat(2,C)f, where f = %(I + o03) is an idempotent
satisfying f2 = f. The idempotent is primitive and the left ideal is minimal.
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S0(3) have representatives in C£3, but also spinor spaces or spinor represen-
tations of the rotation group SO(3) ® can be constructed within the Clifford
algebra Cf3. 7
In the notation of the Clifford algebra Cf3 we could describe Pauli’s achieve-
ment by saying that he replaced 72 = #-F by @2 =7 - R+ A AT = n — heB
and came across the equation
8¢v 1
"5t = am.
where B € R3 C Cf5 and ¥(F,t) € S =Clsf, f = 3(1+es). All the arguments
and functions now have values in one algebra, which will facilitate numerical
computations.
In this chapter we shall study more closely the Clifford algebra C£3 and the
spin group Spin(3), and reformulate once more the Schrodinger-Pauli equation
in terms of C{3.

7? — heBlp — eV

4.1 Orthogonal unit vectors, orthonormal basis
The 3-dimensional Euclidean space R® has a basis consisting of three ortho-
gonal unit vectors ey, ey, es. The Clifford algebra Cé3 of R3 is the real asso-
ciative algebra generated by the set {e;, es, es} satisfying the relations
ef=1, e¥=1, e}=1,
ejes = —ege;, eje3 = —ege;, €3€e3 = —ezes.

The Clifford algebra C¢; is 8-dimensional with the following basis:

1 the scalar

ej, ey, €3 vectors

ejes, eje3, ezes bivectors

eieseg a volume element.

We abbreviate the unit bivectors as e;; = e;e;, when ¢ # j, and the unit
oriented volume element as ejz3 = ejeszes. An arbitrary element in Cl3 is a
sum of a scalar, a vector, a bivector and a volume element, and can be written
as a + a+ bejss + Beyz3, where o, € R and a,b € R3.

Example. Compute the product ejse;13. By definition ejze13 = (ere2)(eres)

6 Actually, spinor representations are representations of the universal covering group
SU(2) ~ Spin(3) of SO(3). The spinor representations cannot be reached by tensor
methods, as irreducible components of tensor products of antisymmetric powers of R3.

7 The orthogonal group O(3) also has a non-trivial covering group Pin(3) residing within
Cls.
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and by associativity (ejez)(e1es) = ejezejes. Use anticommutativity, ejes =
—ege;, and substitute e’f’ =1 to get ejesejes = —e%eze;; = —es3. ]

Imaginary units. The three unit bivectors e;e;, e;es, eses represent unit
oriented plane segments as well as generators of rotations in the coordinate
planes, and share the basic property of the imaginary unit, (e;e;)? = —1 for
i # j. The oriented volume element ejese; also shares the basic property of
the imaginary unit, (ejeze3)? = —1, and furthermore it commutes with all
the elements in Cf3. The unit oriented volume element ejejes represents the
duality operator, which swaps plane segments and line segments orthogonal to
the plane segments. 1

4.2 Matrix representation of C{3

The set of 2 x 2-matrices with complex numbers as entries is denoted by
Mat(2,C). Mostly we shall regard this set as a real algebra with scalar multi-
plication taken over the real numbers in R although the matrix entries are in
the complex field C. The Pauli spin matrices

(01 (0 —i (1 0
1=l1 0/ 2T\ o) BT\ -1

satisfy the multiplication rules

02=02=02=1 and
0102 = i03 = —0207,
0301 = {02 = —0103,
0'20'3:i0'1 = —0309.

They also generate the real algebra Mat(2,C). The correspondences e; ~ oy,
ey ~ 0y, es =~ o3 establish an isomorphism between the real algebras, Cf3 ~
Mat(2, C), with the following correspondences of the basis elements:

Mat(2,(C) Cfg

I 1

01, 02, 03 e;, ez, eg
0102, 0103, 0203 €32, €13, €23
010203 €123

Note that ej; = —ej; for i # j. The essential difference between the Clifford
algebra Cf; and its matrix image Mat(2, C) is that in the Clifford algebra Cf3
we will, in its definition, distinguish a particular subspace, the vector space R3,
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in which the square of a vector equals its length squared, that is, r?> = |r|2. No
such distinguished subspace has been singled out in the definition of the matrix
algebra Mat(2,C). Instead, we have chosen the traceless Hermitian matrices
to represent R3, and thereby added extra structure to Mat(2, C). 8

4.3 The center of C/3

The element e;23 commutes with all the vectors e;, ey, es and therefore with
every element of Cf3. In other words, elements of the form

T+ 0
-'B+y81232( 0 y x+iy)

commute with all the elements in Cf3. The subalgebra of scalars and 3-vectors

3
R® AR®={z +yeiss | z, y € R}

is the center Cen(Cl3) of Cfs, that is, it consists of those elements of C¢3 which
commute with every element of Cf3. Note that 010203 = il. Since €3, = —1,
the center of Cf3 is isomorphic to the complex field C, that is,

3
Cen(Cts) =R A\R*~C.

4.4 The even subalgebra Cf{3
The elements 1 and e = ejes, €13 = ejes, €33 = eseg are called even,
because they are products of an even number of vectors. The even elements
are represented by the following matrices:
w+iz x4+
w+ze23+ye31+ze12:(. .y).
ic—y w-—iz
The even elements form a real subspace
2
IRGB/\]R3= {w + zey3 + yes1 + ze12 | w, z,y,z € R}

~ {wl + zioy + yioy + zies | w,z,y,2z € R}

8 We could also have chosen, for the representatives of the anticommuting (and therefore
orthogonal) unit vectors in R3, the following matrices:

_1/3 5 _fo —i _ 1/ 5 -3
ME=T\s —3i)r T\ o) ®WTZ\-3 -5/

that is, u; = %(501 + 30102), ua = 02, uz = %(503 — 30203). These matrices are
non-Hermitian and satisfy u;u; + ugu, = 28,1
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which is closed under multiplication. Thus, the subspace R & /\2 R3 is a sub-
algebra, called the even subalgebra of C£s. We will denote the even subalgebra
by even(Cf3) or for short by C£}. The even subalgebra is isomorphic to the
division ring of quaternions H, as can be seen by the following correspondences:

H ce

i —e23
J —e31
k —e1s

Remark. The Clifford algebra C£3 contains two subalgebras, isomorphic to C
[the center] and H [the even subalgebra], in such a way that [temporarily we
denote these subalgebras by their isomorphic images|

1. ab=baforaeC and beH,
2. Cf3 is generated as a real algebra by C and H,
3. (dimC)(dimH) = dimCf3.

These three observations can be expressed as

CQH ~ Cts. 1

4.5 Involutions of C/{3

The Clifford algebra C£3 has three involutions similar to complex conjugation.
Take an arbitrary element

u = (uo + (uhy +(u)2 + (u)s in Cfs,
written as a sum of a scalar (u)o, a vector (u)q, a bivector (u); and a volume
element (u)3. We introduce the following involutions:
% = (u)o — (u)1 + (u)2 — (u)s,  grade involution,
% = (u)o + (u)1 — (u)2 — (u)3,  reversion,
% = (u)o — (u)1 — (u)2 + (u)s,  Clifford-conjugation.

Clifford-conjugation is a composition of the two other involutions: 4 = 4~ =

~

The correspondences o1 ~ €1, 03 ~ es, 03 ~ ez fix the following represen-
tations for the involutions:

u:(a b>, a,b e, deC,
c d

- s —c* - a* c* o d -—b
Y=o o ) v= o d* )’ U= — a )’
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where the asterisk denotes complex conjugation. We recognize that the reverse
i is represented by the Hermitian conjugate u! and the Clifford-conjugate @
by the matrix u~!detu € Mat(2,R) [for an invertible u].

The grade involution is an automorphism, that is,

uv = i,
while the reversion and the conjugation are anti-automorphisms, that is,

v=791 and TV = vu.

The grade involution induces the even-odd grading of Cf3 = C & C¢3 .
The reversion can be used to extend the norm from R3 to all of Cls by
setting

Jul? = (uil)o.

The norm of

u = up + ure; + uzez + uzegz + uize€i12 + uize13 + uzseas + ui23€123
can be obtained from

[uf? = Juol? + |u1)? + Jual? + Jua)?® + |u1a|? + Jura|? + Juaa|? + |u1as|?.
The norm satisfies the inequality

luv| < V2|ullv] for wu,v € Cls.
The conjugation can be used to determine the inverse

ul=

gll 1]

of u € Cf3, uit # 0. The element ui = #u is in the center R ® /\3 R3 of Cts,
so that division by it is unambiguous.

4.6 Reflections and rotations

In the Euclidean space R® the vectors r and ara™! = 2(a-r)a™! — r are
symmetric with respect to the axis a [use the definition of the Clifford product,
ar + ra = 2a - r]. The opposite of ara™!, the vector

1 a-r

—ara” =r—2-——-4,
a

is obtained by reflecting r across the mirror perpendicular to a [reflection
across the plane aejs3).
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AV

—ara

Two successive reflections in planes perpendicular to a and b result in a
rotation r — bara~!b~! around the axis which is perpendicular to both a
and b. Indeed, r can be decomposed as r = rp+ry where T and r; are
parallel and perpendicular, respectively, to the plane of a and b. The per-
pendicular component r; remains invariant under both the reflections while
the two successive reflections together rotate the parallel component ry in the
plane of a and b by twice the angle between a and b.

Consider a vector a = aje; + aze, + azes and the bivector aej93 = ajex3 +
ases; + aze1s dual to a. The vector a has positive square

a’ =|a|?, where |a|=1/a}+ a2+ a2,

but the bivector ae;s3 has negative square
(ae123)2 = —|al%.
It follows that

a .
exp(aeqq3) = cosa + ez —sina

where o = |a|. A spatial rotation of the vector r = ze; + yep + zes around
the axis a by the angle « is given by

r—ara™!, a= exp(%aelzg).

The sense of the rotation is clockwise when regarded from the arrow-head of
a. The axis of two consecutive rotations around the axes a and b is given by
the Rodrigues formula

, _a’ +b'+a xb a

here a’ = —
C ——T—_a,—b"—— where a_atani.
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This result is obtained by dividing both sides of the formula

exp(%ce123) = exP(%beua) exp(%aelzs)

by their scalar parts and then by inspecting the bivector parts.

4.7 The group Spin(3)
The Clifford algebra Cf3 of R3 can be employed to construct the universal
covering group for the rotation group SO(3) of R3. A vector x € R3 can be
rotated by the formula
R? 5 R?, x — p(s)x = sxs~?
where s is an element of the group
Spin(3) = {s€Cl3 |5s =1, 55 =1}.

The group Spin(3), called the spin group, is a two-fold covering group of the
rotation group SO(3).

In the matrix formulation provided by the Pauli spin matrices, the spin group
Spin(3) has an isomorphic image, the special unitary group

SU(2) = {s € Mat(2,C) | sTs = I, dets = 1}.

For an element s € SU(2) the function x — p(s)x = sxs' is a rotation of the
Euclidean space of traceless Hermitian matrices,

{x € Mat(2,C) | trace(x) = 0, x! = x} ~R3.

Every element in SO(3) can be represented by a matrix in SU(2). There are
two matrices s and —s in SU(2) representing the same rotation R = p(+s) €
SO(3). In other words, the group homomorphism p : Spin(3) — SO(3) is
surjective with kernel {31}. This can be depicted by a sequence

1 — {£1} — Spin(3) £ S0(3) — 1

which is exact, that is, the image of a homomorphism coincides with the kernel
of the successive homomorphism.

The spin group Spin(3) is a universal cover of the rotation group SO(3),
that is, the Lie group Spin(3) is simply connected. ® The group SO(3) is
doubly connected. 1°

9 A Lie group is simply connected if it is connected and every loop in the group can be
shrunk to a point.

L0 Rotations in SO(3) can be represented by vectors a € R3, |a| < w. Each rotation, |a] < =,
has a unique representative, and each half-turn, |a| = , is represented twice, +a. A loop
connecting the identity and a half-turn does not shrink to a point.
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4.8 Pauli spinors

In the non-relativistic theory of the spinning electron one considers column
matrices, the Pauli spinors

¢=(¢1>E(C2 where ,1- € C.
V2

An isomorphic complex linear space is obtained if one replaces Pauli spinors
by the square matriz spinors
¥ 0
o=
Y2 0

where only the first column is non-zero. The fact that only the first column is
non-zero can be expressed as

¥ € Mat(2,C)f where f:((l) g)

We shall regard the correspondences e; ~ o1, es ~ 03, ez ~ 03 as an
identification between Cf3 and Mat(2,C). If we multiply ¥ € Mat(2,C)f on
the left by an arbitrary element u € Cf3 = Mat(2,C), then the result is also of

the same type:
(Un u12> (¢1 0) _ (<P1 0)
uz1 uzz ) \¢2 0 w2 0/
Such matrices, with only the first column being non-zero, form a left ideal S
of Cl3, that is,

up € S forall uelCls and Y €5 CCls.

This left ideal S of Cés contains no left ideal other than S itself and the zero
ideal {0}. Such a left ideal is called minimal in Cfs.
As a real linear space, S has a basis {fo, f1, f2, fa} where

fo=3(1 +e3) ~ ((1) 0>,

0
0 0
fi=3(e3+e) =~ (i 0>,
0 0
f2= %(831 —e) = (_1 0) )
fa=1i(e12 +eas) =~ i 0
2 - 0 0/°

The element f = fy is an idempotent, that is, f2 = f.
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]F:fCEsf:{((c) 8) cE(C}

of Cf3 is a subring with unity f, that is, af = fa for a € F. None of the
elements of FF is invertible as an element of C¢3, but for each non-zero a € F
there is a unique & € F such that ab = f. Thus, F is a division ring with
unity f [this follows from the idempotent f being primitive in Cl3). As a 2-
dimensional real division algebra F must be isomorphic to C. The isomorphism
F ~ C is seen by the equation fZ = —f; relating the basis elements {fo, f3}
of the real algebra F.

The subset

Comment. The multiplication of an element i of the real linear space S on
the left by an arbitrary even element u € C£3, expressed in coordinate form in

the basis {fo, f1, f2, fa},
utp = (ug + ure23 + uzess + uzess) (vofo + vafi + 2 fs + ¥afa),

corresponds to the matrix multiplication

up —U1 —Uuy —us Yo
’l“,b ~ Uy Up us —Us ".bl
uz —uz U W (23
uz  uz —UuU; U Y3

The square matrices corresponding to the left multiplication by even elements
constitute a subring of Mat(4,R); this subring is an isomorphic image of the
quaternion ring HL 1

The minimal left ideal

s=cur={(}, o)

has a natural right FF-linear structure defined by

SxF—S, (,A) = A

¢1)¢2 € (C}

We shall provide the minimal left ideal S with this right F-linear structure,
and call it a spinor space. !

The map Cfz3 — Endy S, u — 7(u), where 7(u) is defined by the relation
T(u)y = uy, is a real algebra isomorphism. Employing the basis {fo, —f2} for
the F-linear space S, the elements 7(e;), T(es), 7(es) will be represented by

the matrices o, 049, 03. In this way the Pauli matrices are reproduced.

11 Note that multiplying a matrix ¥ in S, a left ideal, on the left by A € F does not result
in a left F-linear structure.
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There is a natural way to introduce scalar products on the spinor space
S C C{3. First, note that for all ¥, € S the product

. vi Ys (1 0 _ (dler+dier O
“\0 0 w2 0 0 0
falls in the division ring F (z — z* means complex conjugation). To show that
the map

SxS—F, (¥,0) = dp

defines a scalar product we only have to verify that the reversion ¢ — ¥ is
a right-to-left F-semilinear map. For all ¥ € S, A € F we have ()™ = ¢
where the map A — ) is an anti-involution of the division algebra F (actually
complex conjugation).

Multiplying a spinor % € S C Cf3 by an element s € Cf3 is a right F-
linear transformation S — S, 1% — sv. The automorphism group of the scalar
product is formed by those right F-linear transformations which preserve the
scalar product, that is,

(s9)"(sp) = forall y,p€S.

The automorphism group of the scalar product Py is seen to be the group
{s € Cf3 | 5s = 1} which is isomorphic to the group of unitary 2 x 2-matrices,

U(2) = {s € Mat(2,C) | s's = I}.

We can also use the Clifford conjugate v — @ of Cf3 to introduce a scalar
product for spinors. In this case, the element

0 0\ [e 0)_ 0 0
¢'<P—(_¢2 ¢1)(<P2 0)—(¢1<P2—¢2901 0)

does not appear in the division ring F = fCfl3f. However, we can find an
invertible element a € Cf3 so that ayp €F, e.g. a =e; or a = e3y. The map

SxS—F, (¥,0) = ap
defines a scalar product. Writing
0 1
=(50)
we find that agp ~ 7(¢)TJ7(p). Hence, the automorphism group {s € Cf3 |

s = 1} of the scalar product atp is the group of symplectic 2 x 2-matrices,

Sp(2,C) = {s € Mat(2,C) | s"Js = J}.
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4.9 Spinor operators

Up till now spinors have been objects which have been operated upon. Next we
will replace such passive spinors by active spinor operators. Instead of spinors

[t O
1l]_(tbz 0>EC£3f

in minimal left ideals we will consider the following even elements:

¢1 _';b; ) +
¥ = 2even(y) = . ) ece,
w=( i) ecy
also computed as ¥ = 1 + 9 for ¥ € Cfsf. Classically, the expectation values
of the components of the spin have been determined in terms of the column
spinor 9 € C? by computing the following three real numbers:

s1=9loy, sy =9logy, s3=logy.
In terms of 1 € C43f this computation could be repeated as
s1=2yerPlo, 2= 2Avervdo, s3 = 2(vesio.

However, in terms of ¥ € CZ;' we may compute s = sjej + spes + szes directly
as -
s = \I’e3\I’.

Since ¥ acts here like an operator, we call it a spinor operator. It should be
emphasized that not only did we get all the components of the spin vector s
at one stroke, but we also got the entity s as a whole.

Remark. The mapping CfF — R3 ¥ — Wo3¥' = Wes¥ is the KS-
transformation (introduced by Kustaanheimo & Stiefel 1965) for spinor regu-
larization of Kepler motion, and its restriction to norm-one spinor operators
¥ satisfying v =1 (or equivalently ¥¥' = I) results in a Hopf fibration
S3 — S? (the matrix Uos ¥t is both unitary and involutory and represents a
reflection of the spinor space with axis ).

The above mapping should not be confused with the ‘Cartan map’, see Car-
tan 1966 p. 41 and Keller & Rodriguez-Romo 1991 p. 1591. A ‘Cartan map’
C? x C? = Cl3, (v,p) = 2¢e1p, where C? = Cl3f, sends a pair of square
matrix spinors to a complex 4-vector zg + x,

P11 — a2
zo = — (Y12 — ¥2p1), x=| (1 + 2p2)
— (Y12 + Y201)

When 1 = ¢, x2 = 0. ]
Note also that trace(yy!) = 2(1&1;)0 = ¥¥ which equals ¥¥ = det(¥).
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In operator form the Schrodinger-Pauli equation

ov 1 he
ih— = U — — —eVV
] 5t o 5 B‘Ile3 eV

shows explicitly the quantization direction e3 of the spin. The explicit occur-
rence of es is due to the injection C? — Clsf, ¥ — ¥; technically 2 even(§¢) =
Bes. If we rotate the system 90° around the y-axis, counter-clockwise as seen
from the positive y-axis, then vectors and spinors transform to

B'=uBu™! and ¥ =u¥ where u= exp(%ew),

and the Pauli equation transforms to

: v’ 1 129! he sITY '
Zh—g—t——%ﬂw—%B\I’es—CV\I’.
If this equation is multiplied on the right by u~!, then es goes to e; = uezu™?!,

and the equation looks like

ov” | he -
. — ‘I’” _ B,‘I’” _ \Il”
ih ot om 2m e~ eV,
where ¥” = yuW¥u~!. Both the transformation laws give the same values for

observables, that is, ¥'es¥’ = ¥"e, ¥".

Exercises

1. Compute the square of a 4+ be;z3 where a,b € R3,

2. Compute p?, ¢? and pq for p= (1 +e3) and ¢ = 3(1 —es).

3. Compute the squares of 1(1 + es) & (1 — es)er2.

4. Find all the four square roots of cos ¢ + e;2sin . Hint: ejzes = ezeqs.

5. Find the exponentials of -7 (1 — e3)e;s. Hint: e;2 and ej23 commute [or

g = 3(1 — e3) is an idempotent satisfying ¢ = ¢].
. Let u=a +a+ bejzs+ Berss [a,8 €R and a,b € R3]. Compute ui.
7. Find the inverse of u = a + a + beys3 + Be1s. Hint: ui is of the form
z + yejas, T,y ER.
8. Find the exponential of u = o + a + beys3 + Be;23. Hint: compute
(a + bejas)?.
9. Show that each non-zero even element in C[ is invertible.
10. Show that uii € R @ R3 for all u € Cfs.
11. Show that |uaii| = |uf?|a] for a € R3, ue R A’R3.
12. Show that the norm on Cf3, defined by |u|? = (uit)o, agrees with the

(2]
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norm given by |u|? = <u,u> where the symmetric bilinear product is
determined by

<a,f>=aff for a,B€ER,
<a,b>=a-b for a,beR?

and by
X1-¥y1 ... X1-Yk
<XA L AXEIAN L AYE> =
Xe*Yr ... Xk Yk

in /\k R3, k> 2. [One also needs to assume orthogonality of the
components in Cfs = RGR3@® A’R3 @ A*R3)]

13. Show that the reflection across the plane of the bivector A is obtained by
r—r =—-ArA-l

14. Let x,y,z € R3. Compute (xyz); and (xyz)s. Hint: use reversion.

Solutions

1. (a+bejzs)’ =a-a—b-b+2(a-b)es.

2. p? = p and ¢? = ¢, that is, p and ¢ are idempotents; and pg = 0 [and so
there are zero-divisors in the Clifford algebra CZa].

. e3 [this shows that vectors can have square roots].

. *(cos £ + ejzsin £), tes(cos £ + ejosin £).

. e3 [this shows that vectors also have logarithms].

a?—pf%—a-a+b-b+2(aff—a-b)es.

. Denote r = v/(a + beyz3)2 €ER® A\’R3, v = (a +bejzs)/r, v = 1. Then
exp(u) = exp(a + Beya3)[2(1 + v) exp(r) + (1 — v) exp(—7)] when r # 0.
When 7 = 0: exp(u) = exp(a + fei23)(1 + a + bejas).

10. u = a+a+bejsa+ Peiss, uii =a?+ 4% +a?+b?+2(aa+b+axb)

which is in R @ R3. Direct proof:

(u))” = 4it = uit
which implies uii € R @ R3, since the reversion sends bivectors and
3-vectors to their opposites.
13. Decompose r into components parallel, r), and perpendicular, ry, to A,
and note that A anticommutes with vectors in its plane,
A(ry+ry) = (- +rL)A. Then
A(l‘” + rJ_)A—l = (—I‘" + r_|_)AA—1 = —r'.
14. First, (xyz)~ = zyx and (xyz)~ = (xyz)1 — (xyz)s. Therefore,
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(xyz)1 = 1(xyz + zyx) and (xyz)s = }(xyz — zyx), and also
(xyz)1 = (y-2z)x — (2 -xX)y + (x-y)z and (xyz)s = xAyAz.
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5

Quaternions

We saw in the chapter on Complex Numbers that it is convenient to use the real
algebra of complex numbers C to represent the rotation group SO(2) of the
plane R2. In this chapter we shall study rotations of the 3-dimensional space
R3. The composition of spatial rotations is no longer commutative, and we
need a non-commutative multiplication to represent the rotation group SO(3).
This can be done within the real algebra of 3 x 3-matrices Mat(3,RR), or by
the real algebra of quaternions, H, invented by Hamilton.

The complex plane C is a real linear space R?, and multiplication by a
complex number ¢ = a+1b, that is, the map C — C, z — ¢z, may be regarded

. . . -b . .
as a real linear map with matrix a ) operating on (z) in R2. The

a
b
complex plane is also a real quadratic space R%°, in short IR?, with a quadratic
form

CoR, z=z+iy—zz=22+4%
and norm |z| = +/zZ. Multiplication of complex numbers preserves the norm,
that is, |cz| = |¢||2| for all ¢, z € C, and so multiplication by ¢ is a rotation of
R? if, and only if, |¢] = 1. Conversely, any rotation of R? can be represented
by a unit complex number ¢, |¢| =1, in C. The unit complex numbers form a
group
U(l)={ceClecc=1},

called the unitary group, which is isomorphic to the rotation group SO(2) =
{U € Mat(2,R) | UTU = I, detU = 1}, that is, U(1) ~ SO(2). The unitary
group U(1) can be visualized as the unit circle

S'={e+iyeCla®+y* =1}

67
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of the complex plane C.

Im

Similarly, the algebra of quaternions H may be used to represent rotations
of the 3-dimensional space R3. It will turn out that quaternions are also con-
venient to represent the rotations of the 4-dimensional space R*.

Quaternions as hypercomplex numbers

Quaternions are generalized complex numbers of the form ¢ = w+iz + jy+ k=
where w, z,y, z are real numbers and the generalized imaginary units i, j, k
satisfy the following multiplication rules:

2=j2=k2= -1,

ij=k=—ji, jk=1i=—kj, ki=j=—ik.
Note that the multiplication is by definition non-commutative. One can

show that quaternion multiplication is associative. The above multiplication
rules can be condensed into the following form:

2= =k =ijk=—1

where in the last identity we have omitted parentheses and thereby tacitly
assumed associativity.
The generalized imaginary units will be denoted either by 4, j, k or by 1, j, k.
They have two different roles: they act as generators of
rotations, that is, they are bivectors, or
translations, that is, they are vectors.

This distinction is not clear-cut since bivectors are dual to vectors in R3.
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5.1 Pure part and cross product

A quaternion ¢ = w + 1z + jy + kz is a sum of a scalar and a vector, called
the real part, Re(q) = w € R, and the pure part, Pu(q) = iz + jy + kz € R3.
The quaternions form a 4-dimensional real linear space H which contains the
real axis R and a 3-dimensional real linear space R? so that H =R ®R3. We
denote the pure part also by a boldface letter so that ¢ = gg + q where go € R
and q = ig; +jg2 +kga € R3. The real linear space R@®R3 with the quaternion
product is an associative algebra over R called the quaternion algebra H. The
product of two quaternions @ = ag + a and b = by +b can be written as

ab=agby —a-b+asb+aby+axb.

A quaternion ¢ = ¢o + q is pure if its real part vanishes, ¢gg = 0, so that
¢ = q € R3. A product of two pure quaternions a = ia; + jas + kasz and
b = ib; + jbs + kb3 is a sum of a real number and a pure quaternion:

ab=-a-b+axb

where we recognize the scalar product a-b = a1b; + agbs + asbs and the cross
product a xb = i(02b3 - a3b2) +j(£13b1 - a1b3) + k(a1b2 - agbl).

The vector space R® with the cross product a x b is a real algebra, that is,
it i1s a real linear space with a bilinear map

R3® xR® > R3, (a,b) —» a xb.
The cross product satisfies two rules
axb=-bxa,
ax(bxc)+bx(cxa)+ecx(axb)=0,

the latter being called the Jacobi identity; this makes R? with the cross product
a Lie algebra. In particular, the cross product is not associative, a x (b x ¢) #
(axb)xe.

We can reobtain the cross product of two pure quaternions a,b € R? as the
pure part of their quaternion product: a x b = Pu{ab).

5.2 Quaternion conjugate, norm and inverse

The conjugate ¢ of a quaternion ¢ = w+ iz + jy + kz is obtained by changing
the sign of the pure part:

§=w-—iz — jy—kz.

We shall also refer to § as the quaternion conjugate of q. The conjugation is
an anti-automorphism of H; ab = ba for a,b € H.
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A quaternion ¢ multiplied by its conjugate ¢ results in a real number ¢ =
w? + 22 + y? + 22 called the square norm of ¢ = w + iz + jy + kz. The norm
lg| of ¢ is given by |¢] = +/¢7 so that

lw+ iz + jy + kz| = Vw? + 22 + 42 + 22.

The norm of a product of two quaternions a and b is the product of their
norms — as an equation, |abl = |a||b| for a, b € H - which turns H into a
normed algebra.
The inverse ¢~
more explicitly by

1 1

of a non-zero quaternion q is obtained by ¢~ = g/|q|? or
1 _ w—ir—jy—kz
w+iz+jy+ ks w?+z24y2+ 22
In particular, ab = 0 implies a = 0 or b = 0, which means that the quaternion
algebra is a division algebra (or that the ring of quaternions is a division ring).

5.3 The center of H

The set of those elements in H which commute with every element of H forms
the center of H,

Cen(H) = {w € H | wg = qw for all ¢ € H}.

The center is of course closed under multiplication. The center of the division
ring H is isomorphic to the field of real numbers R. In contrast to the case
of the complex field C, the real axis in H is the unique subfield which is the
center of H.

5.4 Rotations in three dimensions
Take a pure quaternion or a vector
r=ir+jy+kz€R3 where H=Rg@RS

of length |r| = /22 + y2 + 22. For a non-zero quaternion a € H, the expression

ara~! is again a pure quaternion with the same length, that is,

ara”eR® and |ara”!| = |r|.
In other words, the mapping
R®* 5 R3 r—are!

is a rotation of the quadratic space of pure quaternions R3. Each rotation in
S0(3) = {U € Mat(3,R) | UTU = I, detU = 1} can be so represented,
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and there are two unit quaternions a and —a representing the same rotation,
ara~! = (—a)r(—a)~!. In other words, the sphere of unit quaternions,

SP={geH]|lql =1},

is a two-fold covering group of SO(3), that is, SO(3) ~ $3/{+1}.

A rotation has three parameters in dimension 3. In other words, SO(3) and
S? are 3-dimensional manifolds. The three parameters are the angle of rotation
and the two direction cosines of the axis of rotation.

To find the axis of this rotation we take a unit quaternion a, |a| = 1, and write
it in the form a = €®? where a € R3. Note that

a a . «
¢*? = cos — + —sin —
2« 2
where o = |a|. The rotation r — ara~! turns r about the axis a by the

angle a. The sense of the rotation is counter-clockwise when regarded from
the arrow-head of a.

The composite of two consecutive rotations, first around a by the angle
a = |a] and then around b by the angle 8 = |b], is again a rotation around
some axis, say c. The axis of the composite rotation can be found by inspection
of the real and pure parts of the formula e®/2 = eP/2¢8/2, Divide both sides by
their real parts and substitute

¢' = Stan 1, where = |c|,
v 2
to obtain the Rodrigues formula
, a+b —a xb’
c =—
l1—a' b

5.5 Rotations in four dimensions

The mapping H — H, ¢ — agb™!, where a,b € H are unit quaternions |a| =
|b] = 1, is a rotation of the 4-dimensional space R* = H. In other words, the
real linear mapping

H—-H ¢-agb™!, where a,b€H and |a|=|b]=1,

is a rotation of R*. Each rotation in SO(4) can be so represented, and there
are two elements (a,b) and (—a,—b) in $3x.S3 representing the same rotation,
that is, agb~! = (—a)q(—b)~!. In other words, the group S x S2 is a two-fold
covering group of SO(4), that is,

- S3 x §3

- {(1’ 1)7 (_17 —1)} '

S0(4)
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A rotation in dimension 4 can be represented by a pair of unit quaternions,
and so it has six parameters, in other words, dim SO(4) = dim(52 x $2) = 6.
A rotation has two completely orthogonal invariant planes; both the invariant
planes can turn arbitrarily; this takes two parameters. Fixing a plane in R*
takes the remaining four parameters: three parameters for a unit vector in
53, plus two parameters for another orthogonal unit vector in $2%, minus one
parameter for rotating the pairs of such vectors in the plane.

5.6 Matrix representation of quaternion multiplication

The product of two quaternions ¢ = w+iz+jy+kz and u = ug+iug +jus+kus
can be represented by matrix multiplication:

w -z -y -z Ug Vo
T w -z Y ui _ 51
Yy oz w -z uy | | e
z -y x w Uus Vs

where qu = v. Swapping the multiplication to the right, that is, ug = v', gives
a partially transformed matrix:

w -z -y -z Ug vp
r w oz -y up | |
y -z w oz uz | | v
z Yy -z w u3 A

Let us denote the above matrices respectively by Ly and R, that is,
Ly(u) =qu (=v) and R,(u) =ug (=v').
We find that !
LiL;Ly = -1 and RiRjRx=1.
The sets {L, € Mat(4,R) | ¢ € H} and {R,; € Mat(4,R) | ¢ € H} form two
subalgebras of Mat(4,R), both isomorphic to H. For two arbitrary quaternions
a,b € H these two matrix representatives commute, that is, Lo Ry = RpL,. Any

real 4 x 4-matrix is a linear combination of matrices of the form L,Ry. The

above observations together with (dimH)? = dim Mat(4,R) imply that
Mat(4,R) ~ H® H,

or more informatively Mat(4,R) = HQ H*. 2

1 Note that RiTRjTRI =-1I.

2 For unit quaternions a,b € H such that |a| = |b| = 1 we may choose Ls € Q@ and R, € Q”

or alternatively Ls € @* and R, € Q. For a discussion about the meaning of @ and Q*,
see the chapter on The Fourth Dimension.
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Take a matrix of the form U = L, R, in Mat(4,R). Then UTU = |a|?|b|?I,
but in general U 4+ UT # al. Take a matrix of the form V = L, + R, in
Mat(4,R). Then V + VT = 2(Re(a) + Re(b))I, but in general V'V # BI.
Conversely, if U € Mat(4,R) is such that U+ UT = ol and UTU = SI then
the matrix U belongs either to H or to H*.

Besides real 4 x 4-matrices, quaternions can also be represented by complex

2 x 2-matrices:
w+iz+jy+kz~ (1.1;+1z zz+.y) .
it—y w-—iz
The orthogonal unit vectors i,J,k are represented by matrices obtained by
multiplying each of the Pauli matrices o1,09,03 by i =+/-1:

= (0 0) = (5% 0) = (5 0

5.7 Linear spaces over H

Much of the theory of linear spaces over commutative fields extends to HL
Because of the non-commutativity of H it is, however, necessary to distinguish
between two types of linear spaces over H, namely right linear spaces and left
linear spaces.

A right linear space over Hl consists of an additive group V and a map

VxH-SV, (x,A)—>x\

such that the usual distributivity and unity axioms hold and such that, for all
A p€eH and x€eV,

(xA)p = x(Ap).
A left linear space over H consists of an additive group V' and a map
Hx V=V, (Ax)—Xx

such that the usual distributivity and unity axioms hold and such that, for all
Mp€H and xe 'V,

A(ux) = (Ap)x.

A mapping L : V — U between two right linear spaces V and U is a right
linear map if it respects addition and, for all x € V, A € H, L(xA) = (L(x))A.

Comment. In the matrix form the above definition means that

(@)= ED-1C D ED
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Remark. Although there are linear spaces over H, there are no algebras
over H|, since non-commutativity of H precludes bilinearity over H: A(zy) =

(Az)y # (2A)y = z(\y) # z(yA) = (zy)) 1

5.8 Function theory of quaternion variables

The richness of complex analysis suggests that there might be a function theory
of quaternion variables. There are several different ways to generalize the
theory of complex variables to the theory of quaternion functions of quaternion
variables, f : H — H. However, many generalizations are uninteresting, the
classes of functions are too small or too large. In the following we will first
eliminate the uninteresting generalizations.

First, consider quaternion differentiable functions such that

f'(q) = lim(f(g+ k) — f(g)]h™", where g¢,h€H,
exists. The derivative f’(q) is a real linear function
R* 5 R*:h— f'(g)h

corresponding to multiplication by a quaternion a € H on the left, f'{(¢)h = ah
for h € H = R*. However, since ah # ha the only quaternion differentiable
functions are the affine right H-linear functions

f(¢) =ag+b where a,bel

We conclude that the set of quaternion differentiable functions reduces to a
small and uninteresting set.

Second, if we consider power series in a quaternion variable ¢ = w+iz +jy+
kz, then we get the set of all power series in the four real variables w, z, y, z.
For instance, the coordinates are first-order functions

w = }(g —igi — jgj — kek),

z = }(g—igi +jgj +kek)i™,

y = (g +igi — jgj + kgk)j~?,

z= %(q +igi + jgj — kgk)k™?,
and so the set of power series in ¢, with left and right quaternion coefficients,
is the set of all power series in the real variables w,z,y,z. This set is too big
to be interesting.

Third, we could consider power series in ¢ with real coefficients, that is,

functions of type f(g) = ao + a1¢ + asq® + ... where ag,ai,as,... are real.
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Restrict such a function to the complex subfield C C H, and send z = = + iy
to f(z) = u+iv, where u = u(z,y) and v = v(z, y). Decompose the quaternion
¢ into real and vector parts, ¢ = go + q, and note that q/|q| is a generalized
imaginary unit, (q/|q])? = ~1. Then

f(g0 + q) = u(qo, lal) + %v(%, la)-

So this generalization just rotates the graph of C —» C, z — f(z), or rather
makes i = i sweep all of S2 = {r € R® | |r| = 1}, and thus gives only (a
subclass of) axially symmetric functions.

Fourth, we could consider functions which are conformal almost everywhere
in R*. This leads to Mobius transformations of R*, or its one-point compact-
ification R* U {oo}. The Mobius transformations are compositions of the four
mappings sending ¢ to

agh™! a,b € 8% rotations
g+b beH translations
g A>0 dilations
(¢l+c)"! ceH transversions.

A nice thing about quaternions is that all Mobius transformations of R* can
be written in the form (ag + b)(cqg +d)~!, where a,b,¢,d € H.

Fifth, we could focus our attention on a generalization of the Cauchy-Riemann
equations,

af f 0f L Of .
—a—+ 3z 3 +ka =0 where f:H—H

Using the differential operator

a .0 0

V:x +ka—z

3z +J 3_:!/
the above equation can be put into the form

Of O GV £V xE=0
ow Ow

where f = fo+f with fo : H - R and f : Hl — R®. This decomposes into
scalar and vector parts

0fo
Bw

There are three linearly independent first-order solutions to these equations

—V-f=0 and §-+Vfo+fo=0.
ow

g = T —iw, ¢y =y —jw, ¢; = z —kuw.
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Higher-order homogeneous solutions are linear combinations of symmetrized
products of g, gy, q;. For instance, the symmetrized product of degrees 2,1,0
with respect to ¢,qy,q. 1s seen to be

ay + 19yl + aya2 = 3(2® — w?)y — bwzyi + (v® — 3wz?)j.

This already shows that the last alternative results in an interesting class of
new functions, to some extent analogous to the class of holomorphic functions
of a complex variable.

Historical survey

Hamilton invented his quaternions in 1843 when he tried to introduce a product
for vectors in R3 similar to the product of complex numbers in C. The present-
day formalism of vector algebra was extracted out of the quaternion product
of two vectors, ab = —a-b + a x b, by Gibbs in 1901.

Hamilton tried to find an algebraic system which would do for the space
R3 the same thing as complex numbers do for the plane R2. In particular,
Hamilton wanted to find a multiplication rule for triplets a = ayi + as) + ask
and b = byi + byj + b3k so that |ab| = |a||b|, that is, a multiplicative product
of vectors a,b € R3. However, no such bilinear products exist (at least not
over the rationals), since 3 x 21 = 63 # n?+n2 +n2 for any integers ni, ns, n3
though 3 = 12412412 and 21 = 12422442 (no integer of the form 4%(8b+7),
with @ > 0, b > 0, is a sum of three squares, a result of Legendre in 1830).

Hamilton also tried to find a generalized complex number system in three
dimensions. However, no such associative hypercomplex numbers exist in three
dimensions. This can be seen by considering generalized imaginary units i and
j such that i? = j2 = —1, and such that 1,i,j span R3. 3 The product must
be of the form ij = a + i + jy for some real «, 8, 4. Then

i(ij) = ia — B+ (ij)y =ia = B+ (¢ +iB+i7)y
=—f+ay+i(a+ )+,
whereas by associativity i(ij) = 1%j = —j which leads to a contradiction since
4% > 0 for all real ¥.

Hamilton’s great idea was to go to four dimensions and consider elements of
the form ¢ = w+iz + jy + kz where the hypercomplex units i, j, k satisfy the
following non-commutative multiplication rules

2= =k =1,

ij:k:—ji,jk:i:—kj,ki:j:—ik

3 Actually, it is not necessary to assume that j2 = —1. The computation shows that there
is no embedding C C R3, where R? is an associative algebra.
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Hamilton named his four-component elements quaternions. Quaternions form
a division ring which we have denoted by H in honor of Hamilton.

Cayley in 1845 was the first one to publish the quaternionic representation of
rotations of R® = R3 r — ara—!, but he mentioned that the result was known
to Hamilton. Cayley, in 1855, also discovered the quaternionic representation
of 4-dimensional rotations:

R* > ]R4, q— aqb"l,

where we have identified R* =

The differential operator V = i— 9

0
P +.la +ka

his symbol for nabla was turned 30°. The first one to study solutions of

of  .of .of . Of
3w T3, Hi5, kg,
was Fueter 1935.

is due to Hamilton, although

=0, where f:H — H,

Comment

The quaternion formalism might seem awkward to a physicist or an engineer,
for two reasons: first, the squares of i,j,k are negative, i2 = j2 = k? = —
and second, one invokes a 4-dimensional space which is beyond our ability of
visualization.

Exercises

1. Let u be a unit vector in R3, |u| = 1. Show that R®* 5 R3, x s uxu isa
reflection across the plane ut.

2. Determine square roots of the quaternion ¢ = ¢go + q.

3. Hurwitz integral quaternions ¢ = w + iz + jy + kz are Z-linear
combinations of i, j,k and %(1 + 1+ j+ k), that is, either all w, z,y,z are

integers or of the form n+ 1. Show that |g|? is an integer, and that the set
{w+iz+jy+ke|wz,y2€Z or wz,yz€EZ+1}

is closed under multiplication
4. Clearly, ab = ba implies e%e® = ¢**?, but does e®e® = e*t® imply ab = ba?

5. Denote
a b\ _
c d) —
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Show that
a b —l_l add — bde cbb—dba\~
c d ~ A \ béc—aed daa— cab

for a non-zero A = |a|?|d|? + |b]?|c|* — 2Re(a&d b).

. Verify that only one of the matrices

_ 1 _ 1 j
“‘(j k) and b‘(z‘ k)

is invertible.

. Does an involutory automorphism of the real algebra Mat(2, H) necessarily

send a diagonal matrix of the form

(a 0) where a€H
0 a

to a diagonal matrix?

. Suppose A (# R) is a simple real associative algebra of dimension < 4

with center R. Show that A is H or Mat(2,R).

. Suppose A (# R) is a simple real associative algebra with center R and

an anti-automorphism z — a(z) such that £ + a(z) €R and za(z) € R.
Show that A is H or Mat(2,R).

10. Show that all the subgroups of Qg = {*1,+i,+j,+k} are normal, that is,

11

for a subgroup H C Qg and elements g € Qs, h € H, ghg™' € H.

. Take two vectors a,b in R®, such that |a| = |b|, and a = €®, b =¢P in

S53. Determine the point-wise invariant plane of the simple rotation
g — agb~! of R*.

Solutions

2.

If ¢ = 0, then there is only one square root, 0. If q =0, go > 0, then there
are two square roots, +./go. If ¢ =0, ¢o < 0, then there is an infinity of
square Toots, 1/—go u, where u is a unit pure quaternion u € R® C H],

|[a] = 1. If q # 0, then there are two square roots,

q
1(lal + q0) + T 1(lg] - q0)

and its opposite.

. Hint: consider the quaternions a = 3w and b = 4xj, or the matrices

0 -1 0 ¢
a_37r(1 0> and b_47r(z, 0).
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6. a is mvertible, but b is not.

11. If @ = b~!, the point-wise invariant plane is at in R2. Otherwise the
point-wise invariant plane is spanned by a 4+ b and
la]|b] — ab = |ajlb] +a-b—ax b.
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The Fourth Dimension

In this chapter we study the geometry of the Euclidean space R*. The purpose
is to help readers to get a solid view, or as solid a view as possible, of the first
dimension beyond our ability to visualize. This is an important intermediate
step in scrutinizing higher dimensions. We start by reviewing regular figures
in lower dimensions.

6.1 Regular polygons in R?

The equilateral triangle, the square, the regular pentagon, ..., are regular poly-
gons. We shall also call them a 3-cell, 4-cell, 5-cell, ..., denoted by {3}, {4}, {5},
..., respectively. Therefore, we call a regular p-gon a p-cell, denoted by {p}.
As p grows toward infinity, we get in the limit an oo-cell, where the line is
divided into line segments of equal length. As a degenerate case we get a 2-cell,
which is bounded by 2 line segments in the same place. The interior angle of a
regular p-gon at a vertex is (1 — 2/p)m.

6.2 Regular polyhedra in R?

A regular polyhedron is a convex polyhedron bounded by congruent regular
polygons, for instance, by p-gons. The number of regular p-gons meeting at a
vertex is the same, say ¢; it satisfies

q(l —%)w < 2m,

because the sum of angles of faces meeting at a vertex cannot exceed 2w. The

above inequality can also be written in the form
1 n 1 > 1
p q° 2

80
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The same result is obtained by inspection of the topological properties of a
regular polyhedron: the numbers Ny, N1, Ny of vertices, edges and faces satisfy
the Euler formula:

No—-— N1+ Ny =2,

On the other hand, each edge of a regular polyhedron is a boundary of two
faces, each with p sides, so that 2N; = pNj; and a vertex is a meeting point
of ¢ edges, each with 2 end points, so that ¢Ng = 2N;. The above inequality
is a consequence of the Euler formula and the equation

qNo = 2N; = pN,.

A\

3,3 34 4,3

A regular polyhedron (p,q > 3) must satisfy the foregoing inequality, and so
only a few pairs p, ¢ are possible. These regular polyhedra are called Platonic
solids, or p, g-cells with Schldfli symbols {p, ¢}. There are five Platonic solids.

— =

Name {r,q} No N Ny
Tetrahedron {3,3y 4 6 4
Octahedron {3,4} 6 12 8
Cube 43 8 12 6

Icosahedron {3,5} 12 30 20
Dodecahedron {5,3} 20 30 12

When ¢ = 2 in the above inequality we get a dihedron with Schiafli symbol
{p,2}. A dihedron is bounded by two regular polygons positioned in the same
place.

When a plane is covered by regular polygons so that at each vertex there
meet ¢ regular p-gons, we are solving the equation

1 1 1

p g 2
There are three solutions to the above equation; they have Schlafli symbols



82 The Fourth Dimension

{4,4}, {3,6} and {6,3} corresponding to tilings of the plane by squares, equi-
lateral triangles and regular hexagons. These regular tilings are called tessel-
lations.

6.3 Regular polytopes in R*

A polyhedron is regular if its faces and vertices (= parts of the polyhedron near
a vertex point) are regular. A regular polyhedron with Schlifli symbol {p, ¢}
has p-cells as faces and g-cells as vertices. A vertex is regular, if a plane cuts
off a regular polygon whose central normal passes through the vertex.

A regular vertex

A polytope is a higher-dimensional analog of a polyhedron. A polytope is
regular if its faces and vertices are regular. A 4-dimensional regular polytope
with p, g-cells as faces must have ¢, r-cells as vertices. This drops the number
of 4-dimensional regular polytopes from 52 = 25 to 11. The sum of the solid
angles of the faces meeting at a vertex cannot exceed 4m. As a consequence,
there remain six possible combinations of p,¢ and ¢,r. A closer inspection
shows that all these six combinations are in fact 4-dimensional regular poly-
topes; we shall call them p, ¢, r-cells with Schlafli symbols {p, ¢, }.

{pa,r} Ny N1 Ny N3 Face Vertex

{3,3,3} 5 10 10 5 Tetrahedron Tetrahedron
{3,3,4} 8 24 32 16 Tetrahedron Octahedron
{4,3,3} 16 32 24 8 Cube Tetrahedron
{3,4,3} 24 96 96 24 Octahedron Cube

{3,3,5} 120 720 1200 600 Tetrahedron  Icosahedron
{5,3,3} 600 1200 720 120 Dodecahedron Tetrahedron

There are the regular simplex {3, 3,3} and the hypercube {4, 3, 3}, also called
a tesseract. There is the octahedron analog {3, 3,4}, a dipyramid with octahe-
dron as a basis. There are the analogs of the icosahedron and the dodecahedron,
{3,3,5} and {5,3,3}; and there is an extra regular polytope {3,4, 3}.

The 3-dimensional space can be filled with cubes, a configuration with
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Schlafli symbol {4,3,4}. The 4-dimensional space can be filled with hyper-
cubes, dipyramids and the extra regular polytope, configurations with Schlafli
symbols {4,3,3,4}, {3,3,4,3} and {3,4,3,3}.

In a higher-dimensional space, n > 4, there are only the regular simplex,
dipyramid and hypercube, and it can only be filled with hypercubes.

6.4 The spheres

A circle with radius r in R? has circumference 27rr and area mr2. A sphere with

radius r in R? has surface 4nr? and volume $7r3. A hypersphere with radius r

in R? has 3-dimensional surface 27?r® and 4-dimensional hypervolume gmird.

For lower-dimensional spheres we have the following table:

n | surface | volume

2 2r
2mr e
472 gmrd

2m2pd %7r2r4

8.2.4 | 8 2.5
smer® | gl

Tt W N

If the volume of the sphere in R" is denoted by w,r™ then its surface is
nw, "~ 1. Observe a rule mw,,7™~! = 2xr - w,r™® between the surface in di-
mension m = n+2 and the volume in dimension n. This leads to the recursion

y _ 27mwy,
n42 — n+ 9
and the formula
7‘.11/2
Wy = ——=—

(n/2)!
which can be computed for odd n by recalling that (1/2)! = /7/2.

6.5 Rotations in four dimensions

Let A be an antisymmetric 4 x 4-matrix, that is, A € Mat(4,R), AT =
—A. Then the matrix e represents a rotation of the 4-dimensional Euclidean
space R*. In general, a rotation of R* has two invariant planes which are
completely orthogonal; in particular they have only one point in common.
The antisymmetric matrix A has imaginary eigenvalues, say +ia and +if,
the eigenvalues of the rotation matrix e are unit complex numbers e*** and
e*#  and the invariant planes turn by angles o and 3 under e4. First, assume
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that o > # > 0 (and « < 7). Each vector is turned through at least an angle
B and at most an angle a. In the case § = 0 we have a simple rotation leaving
one plane point-wise fixed. If 8/« is rational, then e!4 = I for some ¢ > 0. If
B/a is irrational, then e # I for any ¢ > 0.

By the Cayley-Hamilton theorem e4 is a linear combination of the matrices
I, A, A% and A3 so that

e = hol + hiA + hyA? + haA®

and direct computation shows that

ho = a21 2(oﬂcosﬁ—ﬁzcoscx),
hy = Ez—i?(f‘ﬁisinﬂ— %Zsina),
hy = m(cosﬂ—cosa),

hs = &—Zi—ﬂz(%sinﬂ— ésina).

Letting o now approach # and computing the coefficients in the limit give

lim e = I(cosa + 2 sin a)
a—f 2

+§(-g—sina - %cos a)
2

+—

£ (3ane)

+2—:(—;-sina— %cosa).

Observe that in the limit A2 = —a?I, which cancels some terms and results in

lim e? = Icosa + =sina.
a—f o

These rotations with only one rotation angle a have a whole bundle of invariant
rotation planes. In fact, every point of R* stays in some invariant plane, but
not every plane of R? is an invariant plane of e4.

If a rotation U of R? has rotation angles a and f we shall denote it by
U(a, B). Consider the set J = {U(a, ) € SO(4) | « = B} and the relation
‘~’1in the set J' = J\ {I,-1},

U~Ve=UVeJ,

which can be seen to be an equivalence relation. The equivalence class of a
matrix U € J’ is the set {X € J' | X ~ U}. This equivalence class together
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with the center {I,—I} of the rotation group SO(4) forms a subgroup of
SO(4), denoted in the sequel by the letter Q. Also (F\ Q)U {I,-I} is a
subgroup of SO(4); denote it by Q*. Observe that UV = VU for U € @ and
V € @Q*. 1t can be shown that @) and @Q* are isomorphic to the group of unit
quaternions S® = {g € H | |¢| = 1}.

Each rotation L € SO(4) of R* can be written in the form L = UV, where
U €@, VeQ*. Therotation angles of L are a4+ when the rotation angles
of U and V are a and 8. A pair of completely orthogonal planes, both with
a fixed sense of rotation, induces a pair of senses of rotations for all pairs of
completely orthogonal planes. There are two classes of such pairs of oriented
planes: those of the type @ and those of type Q*.

Furthermore, we have an isomorphism of algebras,

H~{X|A>0,¢€Q}u{0},

Q

[
© LS

which we shall regard as an identification. Introduce the algebra
H*={A¢|A>0,¢g€Q"}uU{0}.

and observe an isomorphism of algebras, H ~ H*.

6.6 Rotating ball in R*

A rotating ball in R® has an axis of rotation, like the axis going through the
North and South Poles, and a plane of rotation, like the plane of the equator. A
rotating ball in R* has two planes of rotation, which are completely orthogonal
to each other in the sense that they have only one point in common. Let the
angular velocities in these planes be bivectors wy and wy. The total angular
velocity 1s a bivector w = wy + wg. The velocity v of a point x on the surface
of the ball is

v=xJdw +xJws.
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Assume that ¢ is the angle between the direction x and the plane of w;. Then

Iv] = |x|v/|w1[?(cos )2 + w2 |?(sin p)?.
Therefore, the local angular velocity |v|/|x| is always between |w;| and |ws|.
If |wq1| = |ws|, then every point on the sphere is rotating at the same veloc-

ity and furthermore every point is travelling along some great circle, that is,
everybody is living on an equator!

6.7 The Clifford algebra C¢,
The Clifford algebra Cf; of R* with an orthonormal basis {e;, ez, es3, eq} is
generated by the relations

el=el=el=ej=1 and eje;=—e;e; for i#j.

It is a 16-dimensional algebra with basis consisting of

scalar 1
vectors ejp,es, ez, ey
bivectors ejs,e13, €14, €23, €24, €34
3-vectors ej23, €124, €134, €234
volume element e;534

where e;; = e;je; for i # j and ej334 = ejeseze,.
An arbitrary element u € Cly is a sum of its k-vector parts:
k
u = (u)o + (u)s + (u)s + (u)s + (u)s where (u)x € AR™
There are three important involutions of Cly4:
%= (u)o — (u)1 + (u)2 — (u)3 + (u)s grade involution
@ = (u)o + (u)1 — (u)2 — (u)s + (u)4 reversion
2 = (u)g — (u)1 — (u)z + (u)3 + (u)s Clifford-conjugation.
The Clifford algebra €44 is isomorphic to the real algebra of 2 x 2-matrices
Mat(2,H) with quaternions as entries,

(0 —i (0 —j (0 —k (01
=\ 02T\ 0 )%\ 00T o)

6.8 Bivectors in A\?R*C Cly

The essential difference between 3-dimensional and 4-dimensional spaces is
that bivectors are no longer products of two vectors. Instead, bivectors are
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sums of products of two vectors in R*%. In the 3-dimensional space R® there
are only simple bivectors, that is, all the bivectors represent a plane. In the
4-dimensional space R* this is not the case any more.

Example. The bivector B = e;; + e34 € /\2 R* is not simple. For all simple
elements the square is real, but B?2 = —2 + 2e;334 ¢ R. 1

If the square of a bivector is real, then it is simple. !

Usually a bivector in /\2 R* can be uniquely written as a sum of two simple
bivectors, which represent completely orthogonal planes. There is an excep-
tion to this uniqueness, crucial to the study of four dimensions: If the simple
components of a bivector have equal squares, that is equal norms, then the
decomposition to a sum of simple components is not unique.

Example. The bivector e e; + ezeq can also be decomposed into a sum of
two completely orthogonal bivectors as follows:

1 1
eje) + ezeq = -2'(61 +e3)(exs +eq) + 5(61 — e3)(ez2 — eq). 1

6.9 The group Spin(4) and its Lie algebra
The group Spin(4) = {s € C£} | s§ = 1} is a two-fold covering group of the
rotation group SO(4) so that the map

R* 5 R?, x — sxs™!, where s € Spin(4),
is a rotation, and each rotation can be so represented, the same rotation being
obtained by s and —s. The Lie algebra of Spin(4) is the subspace of bivectors
/\2 R* with commutator product as the product. The two sets of basis bivectors

1(e2s + e1q) 1(e2s — e14)
t(es1+e2q) and I(ess —e2q)
%(612 + esq4) %(612 — eaq)

in AZR* C C¢4 both span a Lie algebra isomorphic to the subspace A\’ R3 C
Cts3 with basis {}ess, Tea1, 1e12}, that is, they satisfy the same commutation
relations. In other words, the Lie algebras

2 2
1 1
5(1 — €1234) /\Iﬁl4 and -2-(1 + e1234) /\]R‘1

1 Although the square of a 3-vector is real, it need not be simple. For instance, V =
e123 +e456 € A° RS is not simple [this can be seen by computing Ve; V1, i =1,2,...,6,
and observing that they are not all vectors].
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are both isomorphic to /\2 R3. The two subspaces %(1 + e1234) /\2 R? of Cl,
annihilate each other, and consequently,

/2\]R4 ~ /:’\IRS @ /:’\IRS.
At the group level this means the isomorphism
Spin(4) ~ Spin(3) x Spin(3)
where Spin(3) ~ $% ~ SU(2).

6.10 The mapping F — (1+F)(1 - F)~! for F € \’R*
The exponential eF/2 € Spin(4) of a bivector F € A’R* corresponds to the
rotation e € SO(4), where A(x) = F L x, for x € R*. Every rotation of
R* can be so represented, and the two elements +eF/? represent the same
rotation.

The exterior exponential eF =1+ F + 1F AF of a bivector F € /\2 Risa
multiple of an element in Spin(4), that is,

eF .

1eF] € Spin(4).
Up to a sign, every element in Spin(4) can be so represented, except +ejga4.
The exterior exponential e¥ of the bivector F corresponds to the rotation
(I + A)(I — A)™!; every rotation of R* can be so represented, except —1I.

The above observations raise the question: What is the rotation correspond-
ing to (1 + F)(1 — F)~! € Spin(4)?7 This is an interesting and non-trivial
question in dimension 4. 2 Here follows the answer.

Let F € /\2 R?. The antisymmetric function induced by F is denoted by
A, that is, A(x) = FLx for all x € R%. Write s = (1 + F)(1 — F)~.
The rotation induced by s € Spin(4) is denoted by U € SO(4), that is,
U = (I +A)(I — A)~'. In other words, U(x) = sxs~! for all x € R% The
following cases can be distinguished:

I+A ) 2

: 2m3 _
) FeA'R thenU—(I_A

I+ A\?
(ii) If F € A2R* is simple, then U = (5—’_3%;2 :
(iii) If F € A?R? is isoclinic, then U = TJ_r_ﬂ.

2 It is also a non-trivial question in dimension 5. In dimension 6, (1+ F)(1 — F)~1 ¢
Spin(s6).
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(iv) In the case of an arbitrary F € /\2 R* we cannot express U as a rational
function of A [although U still has the same eigenplanes as A]. Instead,

A*+ B* - 2A?B? + 6A? —2B% + 1+ 4A(A2 - B2 + 1)

A4+ B4 -2A2B2 242 - 92B%2 4 | ’
where B(x) = (Fej2sa) L x, the dual of A. The denominator of U is a
multiple of the identity I. 2

U=

Summary

There are three different kinds of rotations in four dimensions depending on
the values of the rotation angles a, # satisfying # > a > 3> 0. Let R:R* —
R* be a rotation and a a non-zero vector with iterated images b = R(a),
¢ = R(b), d = R(c). In general, a,b,c,d are linearly independent, that is,
aAbAcAd#D0. In the case of a simple rotation with 8 = 0, only the vectors
a, b, ¢ are linearly independent, that is, aAbAc# 0 but aAbAcAd=0.In
the case of an isoclinic  rotation with o = 3, only the vectors a, b are linearly
independent, that is, aAb# 0 but aAbAc=0and aAbAd=0.
In general, a rotation of R? has six parameters, computed as

(B+2-1)+2=6.

The number 3 comes from picking up a unit vector a; the number 2 comes
from picking up a unit vector b in the orthogonal complement of a; the unit
bivector ab = a A b fixes a plane but the same plane is obtained by rotating
a and b in the plane of a A b, thus subtract 1; then finally add 2 for the two
rotation parameters/angles o and 8. On the other hand, an isoclinic rotation
has three parameters, computed as

B-1)+1=3.

The number 3 comes from picking up a unit vector a in S3; but in an isoclinic
rotation a stays in a plane or a great circle S, so subtract 1; and finally add
1 for the rotation/angle o = 3.

A simple bivector, an exterior product of two vectors, corresponds to simple

3 In dimension 5 the rotation U is given by the same expression, when

B(x):(FFAF)L

|IFAF|
The denominator is no longer a multiple of I, although it still commutes with the numer-
ator by virtue of AB = BA.

4 An isoclinic rotation with equal rotation angles corresponds to a multiplication by a quater-
nion.
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rotation turning only one plane. A simple bivector multiplied by one of the
idempotents %(1 + ej234) corresponds to an isoclinic rotation. An isoclinic
rotation has an infinity of rotation planes, and in fact, each vector is in some
invariant rotation plane of an isoclinic rotation.

The two-fold cover Spin(4) of SO(4) has three different subgroups isomor-
phic to Spin(3), each with a Lie algebra

2 2 2
1 1

3 4 4

/\]R , 5(1 + e1234) /\]R , -2'(1 — €1234) /\]R .

There i1s an automorphism of Spin(4) which swaps the last two copies of
Spin(3), but there is no automorphism of Spin(4) swapping the first copy
of Spin(3) with either of the other two copies.

Exercises

1. Compute the squares of %(1 + ey + e3q > e1234).

2. Take a vector a € R* and a bivector B = ae; + fesq € /\2 R%. Show that
BaB € R%.

3. Compute exp(ae;z + Sesq).

4. Let a=aje; + azey + azez and b = bje; + byes + bzes. Compute
A = ae;33 and B = be;j3. Determine %(1 + e1234)A and %(1 - e1234)B,
and show that these bivectors commute.

5. Compute C = %(l + eiz3q)A + %(l — e1234)B, and express exp(C) using
la] and |b|. What are the two rotation angles of the rotation
R* 5 R%, x — cxc™! where ¢ = exp(C)?

6. Consider the Lie algebra /\2 R* with the commutator product
(a,b] = ab — ba, and its three subalgebras spanned by

V: %823, %831, %812
I : %(823 - 814), %(931 - 324), %(812 — e34)
Iy: %(ezs + 814), %(e31 + e24), %(912 + e34),

each isomorphic to /\2 R3. Show that there is no automorphism of the Lie
algebra /\2 R* which permuts V,Z;,Z; cyclically or swaps V for Z; or Zs.

7. In two dimensions we can place 4 circles of radius r inside a square of side
4r, and put a circle of radius (v/2 — 1)r in the middle of the 4 circles. In
three dimensions we can place 8 spheres of radius r inside a cube of side
4r, and put a sphere of radius (v/3 — 1)r in the middle of the 8 circles. In
n dimensions we can place 2" spheres of radius r inside a hypercube of
side 4r, and put a sphere of radius (y/n — 1)r in the middle of the 2"
spheres.
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Dimensions 2 and 3 differ topologically: in dimension 3 one can see the
middle sphere from outside the cube. Let the dimension be progressively
increased. In some dimension the middle sphere actually emerges out of
the hypercube. In some dimension the middle sphere becomes even bigger
than the hypercube, in the sense that its volume is larger than the volume
of the hypercube. Determine those dimensions.

Solutions

1.
3.
5.

€1234, €12 + €34.

cos a cos  + ejg sin a cos B + e3zq cosasin B + eja34 sin a sin 3.

The rotation angles are o = (|a| + |b|)/2 and 8 = (|a] — |b|)/2 and
s1n|b|)

1 1
5(1 + e1234) (cos|a| + — al s1n|a|) —(1 — e1234) (cos|b| + =

=cosacosf} — ejgassinasinf

o — fe1zsq
of — B2

. In dimension 9 the middle sphere touches the surface of the hypercube,
and in dimension 10 it emerges out of the hypercube. In dimension 1206
the volume of the middle sphere is larger than the volume of the hypercube.

+C (sin & cos B + e1234 cos asin §).
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7
The Cross Product

The cross product is useful in many physical applications. It measures the
angular velocity w = 7 x U about O of a body moving at velocity 7 at the

p051t10n P 7= OP It is used to describe the torque # x F about O of a
force F acting at 7. It also gives the force F=qixB acting on a charge ¢
moving at velocity ¥ in a magnetic field B.

The usefulness of the cross product in three dimensions suggests the following
questions: Is there a higher-dimensional analog of the cross product of two
vectors in R3? If an analog exists, is it unique?

The first question is usually responded to by giving an answer to a modified
question by explaining that there is a higher-dimensional analog of the cross
product of n—1 vectors in R®. However, such a reply not only does not answer
the original question, but also gives an incomplete answer to the modified
question. In this chapter we will give a complete answer to the above questions
and their modifications.

7.1 Scalar product in R3
The linear space R3 can be given extra structure by introducing the scalar
product or dot product

a-b=ab + azbs + agbs

for vectors a = aje; + azes + azes and b = bie; + byes + bzez in R3. The

scalar product is scalar valued, a-b € R, and satisfies
(a+b)-c=a-c+b-c
(Aa) b= A(a-b) }
a-b=b-.a symmetric
a-a>0 for a#0 positive definite.

linear in the first factor

92
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Linearity with respect to the first argument together with symmetry implies
that the scalar product is linear with respect to both arguments, that is, it
is bilinear. The symmetric bilinear scalar valued product gives rise to the
quadratic form

IRs—-)]R, a:a1e1+a2e2+a3e3—+a-a:-a%+a§+a§,

which makes the linear space R3 into a quadratic space R3. The quadratic
form is positive definite, that is, a -a = 0 implies a = 0, which allows us to
introduce the length ! |a| = \/a-a of a vector a € R3. The real linear space
R3 with a positive definite quadratic form on itself is called a Euclidean space
R3. The length and the scalar product satisfy

|a+b| < |a] + |b| triangle inequality
|a-b| < |a]|b] Cauchy-Schwarz inequality

where the latter inequality gives rise to the concept of angle. The angle ¢
between two directions a and b is obtained from
_a-b
T Talel
Thus, we can write the scalar product in the form
a-b = |a||b|cos,

a formula which is usually taken as a definition of the scalar product, although
this requires prior introduction of the concepts of length and angle.

7.2 Cross product in R3
In the Euclidean space R3 it is convenient to introduce a vector valued product,
the cross product a x b € R3 of a,b € R3, with the following properties:
(axb) La, (axb)Lb orthogonality
|a x b] = |a]|b|sin¢ length equals area
a,b,axb right-hand system.

In other words, the vector a x b is perpendicular to a and b, its length is
equal to the area of the parallelogram with a and b as edges, and the vectors

1 The function R® —+ R, a —+ |a| is a norm satisfying |[M\a| = |A|Jal, |]a + b| < |a| + |b],
|a] = 0 = a = 0. Since this norm can be obtained from a scalar product, it satisfies the
parallelogram law |a 4+ b|? 4 |a — b|? = 2/|a|? + 2|bJ?.
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a,b and a x b are oriented according to the right hand rule.

axb

a

The above definition results in the following multiplication rules:

e] Xep; =ez3=—ey Xeg,
ey X ez =e] = —e3 X ey,
ez X e —ey = —e; Xes.

It is convenient to write the cross product in the form
ey ey e3
axb=|a, ay a3
bi by b3
The cross product is uniquely determined by
(axb)-a=0, (axb)-b=0  orthogonality
|]a x b|? = |a]?|b]? — (a- b)? Pythagorean theorem
together with the right hand rule. The Pythagorean theorem can be written
using the Gram determinant as

2 |a-a a-b
laxbl" =, b-b(
which in coordinate form means Lagrange’s identity
2 2 2
az as as a4y a1 as
by b3 b3 b by by

= (af + a3 + a3) (6] + b3 + b3) — (a1b1 + azb; + asbs)’.
The cross product satisfies the following rules for all a, b, c € R3:

axb=-bxa antisymmetry
(axb)-c=a-(bxe) interchange rule.

The antisymmetry of the cross product has a geometric meaning: the lack of
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symmetry measures how much the two directions diverge. The cross product
is not associative, a x (b x ¢) # (a x b) x ¢, which results in an inconvenience
in computation, because parentheses cannot be omitted.

The cross product is dual to the exterior product of two vectors:

axb= —(a A b)e123.

Taking the exterior product of a x (a x b) = a(a-b) — |a|?’b and b one finds

that
_(ax(axb))Ab

a-b= D for al{b,

that is, the scalar product can be recaptured from the cross product [you can
also replace A by X in the above formula].

7.3 Cross product of n — 1 vectors in R"

We can associate to three given vectors a,b,c in R* a fourth vector
e e ez ey

a az as ag

by by b3 by

Ci €3 (€3 (4

axbxec=

which is orthogonal to the factors a,b,c and whose length is equal to the
volume of the parallelepiped with a,b, ¢ as edges, that is,

a-a a-b a-c
laxbxc?=|b-a b-b b-c
c-a ¢'b c-c

The cross product a x b x ¢ of three vectors a,b, ¢ in R* is completely anti-
symmetric and obeys the interchange rule slightly modified:

(axbxc)-d=-a-(bxcxd)

where d € R%. The oriented volume of the 4-dimensional parallelepiped with
a,b,c,d as edges is the scalar

det(a,b,c,d)=(axbxc)-d

multiplied by (the unit oriented volume) ej234.

2 The cross product is antisymmetric, a X b = —b X a, and satisfies the Jacobi identity
ax (bxc)+bx(cxa)+cx(axb)=0, which makes the linear space R?, with cross
product on R®, a non-associative algebra, called a Lie algebra. The Jacobi identity can
be verified using a x (b x c) = (a-c)b— (a-b)c.
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The cross product of three vectors in R* is dual to the exterior product:
axbxc=—(aAbAc)eiss

where the latter product is computed in the Clifford algebra C£,.

In a similar manner we can introduce in n dimensions a cross product of
n — 1 factors. The result is a vector orthogonal to the factors, and the length
of the vector is equal to the hypervolume of the parallelepiped formed by the
factors.

7.4 Cross product of two vectors in R
Is there a cross product in n dimensions with just two factors? If we require
the cross product to be orthogonal to the factors and have length equal to the
area of the parallelogram, then the answer is no, unless n =3 or n="7.

The cross product of two vectors in R? can be defined in terms of an ortho-
normal basis e1, ez, ...,e7 by antisymmetry, e; X e; = —e; X e;, and

€] Xex=e4, €2 Xe4q—=e1, €4 Xe] =ey,
ey Xez3=e;5 e€3Xe;—=ez, e Xey=e3,

ey Xep—=e3, € Xezg—=e7, €3 Xey—=e1.
The above table can be condensed into the form
€ X €11 = €43

where the indices are permuted cyclically and translated modulo 7.
This cross product of vectors in R7 satisfies the usual properties, that is,

(axb)-a=0,(axb)-b=0  orthogonality
|]a x b|2 = |a|?|b]? — (a - b)? Pythagorean theorem

where the second rule can also be written as |a x b| = |a||b|sin <(a, b). Unlike
the 3-dimensional cross product, the 7-dimensional cross product does not
satisfy the Jacobi identity, (a x b) x ¢+ (b x c¢) xa+(c xa) x b # 0, and
so it does not form a Lie algebra. However, the 7-dimensional cross product
satisfies the Malcev identity, a generalization of Jacobi, see Ebbinghaus et al.
1991 p. 279.

In R3 the direction of a x b is unique, up to two alternatives for the ori-
entation, but in R” the direction of a x b depends on a 3-vector defining the
cross product; to wit,

axb=—(aAb)dv [#—(aAb)v]
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depends on

3
7
Vv = e124 + €335 + €346 + €457 + €561 + €672 + €713 € /\IR .

In the 3-dimensional space a x b = ¢ x d implies that a,b,c,d are in the
same plane, but for the cross product a x b in R7 there are also other planes
than the linear span of a and b giving the same direction as a x b.

The 3-dimensional cross product is invariant under all rotations of SO(3),
while the 7-dimensional cross product is not invariant under all of SO(7), but
only under the exceptional Lie group G, a subgroup of SO(7). When we let
a and b run through all of R”, the image set of the simple bivectors aAb is a
manifold of dimension 2-7-3 =11 > 7in /\2 R7, dim(/\2 R7) = 17(7-1) =21,
while the image set of a x b is just R”. So the mapping

aAb—oaxb=—-(aAb)dv

is not a one-to-one correspondence, but only a method of associating a vector
to a bivector.

The 3-dimensional cross product is the pure/vector part of the quaternion
product of two pure quaternions, that is,

axb=Im(ab) for a,beR3>CH.

In terms of the Clifford algebra Cf3 ~ Mat(2,C) of the Euclidean space R3
the cross product could also be expressed as

axb= —<abelz3>1 for a,b € R3 C Cl3.

In terms of the Clifford algebra Cfy 3 ~ H xH of the negative definite quadratic
space R%3 the cross product can be expressed not only as

axb= —(abe123>1 for a,b c RO’S C C'eO,3

but also as 3

axb= (ab(l — 8123)>1 for a,be RO:3 C CZO,S-

Similarly, the 7-dimensional cross product is the pure/vector part of the
octonion product of two pure octonions, that is, axb = (aob);. The octonion
algebra O is a norm-preserving algebra with unity 1, whence its pure/imaginary
part is an algebra with cross product, that is, a x b = %(a ob—boa) for
a,beR”" C O =R@R’. The octonion product in turn is given by

aob=afl+ab+af—-—a-b+axb

3 This expression is also valid for a,b € R® C Cf3, but the element 1 — 125 does not pick
up an ideal of C¢;. Recall that C{3 is simple, that is, it has no proper two-sided ideals.
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fora=a+a and b=F+b in R®R’. If we replace the Euclidean space R7
by the negative definite quadratic space R%?, then not only

aob=af+ab+af+a-b+axb
for a,b € R®R%7, but also
aob={(ab(l —v))o,

3
where v = e124 + e235 + €346 + €57 + ese1 + es72 + er13 € AR

7.5 Cross products of £ vectors in R"

If one reformulates the question about the existence of a cross product of two
vectors in R", and also allows n — 1 factors, then one is led to a more general
problem on the existence of a cross product of k factors in R". If we were
looking for a vector valued product of k factors in R™, then we should first
formalize our problem by modifying the Pythagorean theorem, a candidate
being the Gram determinant. A natural thing to do is to consider a vector
valued product a; x ap X - -+ X a; satisfying

ayxagx---xag)-a=0 orthogonality
g
|]ai x ag x --- x ag|? = det(a; -a;)  Gram determinant

where the second condition means that the length of a; x a; x ... x a; equals
the volume of the parallelepiped with a;,a,,...,a; as edges.

The solution to this problem is that there are vector valued cross products
in

3 dimensions with 2 factors
7 dimensions with 2 factors
n  dimensions with n —1 factors
8 dimensions with 3 factors

and no others — except if one allows degenerate solutions, when there would

also be in all even dimensions n, n € 2Z, a vector product with only one factor

(and in one dimension an identically vanishing cross product with two factors).
The cross product of three vectors in R® can be expressed as

axbxc=(aAbAc)d(w—ves)=((aAbAc)(l- e s)W)
where

w = —(e124 + €235 + €346 + €457 + €561 + €672 + €713)€12..7

= e1236 — €1257 — €1345 + €1467 + €2347 — €2456 — €3567

and w € A'R7 c A\*RS.
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The trivial cross product with one factor in an even number of dimensions
rotates all vectors by 90°. Thus, let n be even and let a be the only factor
of a trivial cross product with value b, |b| = |a], b-a = 0. This can be
accomplished by

b=adl (eleg +ezes+ ...+ e,,._le,,).

Exercises

1. Show that the cross product a x r can be represented by a matrix
multiplication Ar = a x r, where

0 —az as z
Ar = as 0 —al1 y
—az a4 0 z

2. Express the rotation matrix e# in terms of I, A and A?. Hint: use the
Cayley-Hamilton theorem, A3 + |a|?A = 0.

3. Express the rotated vector er as a linear combination of r, a x r and

(a-r)a. Hint: A%r= (a-r)a— a’r.

4. Compute the square of w = —ve 3 7 € /\4 R7.
5. Show that 2(1+ w) is an idempotent of C¢7 ~ Mat(8, C).

Solutions
2

A . A
2. e =TI+ —sina+ (1 - cosa), where a = a|
i 1 —cosa

— (a-r)a.

3. eAr=cosar+ El%‘ia><r+
4. w2 =17+ 6w.
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8

Electromagnetism

The Maxwell equations can be formulated with vectors or more advanced no-
tation like tensors, differential forms or Clifford bivectors. In these advanced
formalisms the Maxwell equations become more uniform and easier to manip-
ulate; for instance, relativistic covariance is more apparent. However, the cost
of the convenience is that one has to master new concepts in addition to scalars
and vectors; and antisymmetric tensors have to be untangled for physical in-
terpretation.

8.1 The Maxwell equations

The electric field E and the magnetic induction B act on a charge ¢ moving
at velocity ¥ by the Lorentz force

ﬁ = q(E + 7 x E)
The electric displacement D and the magnetic intensity H are related to E
and B by the constitutive relations
D=¢E, B=uH.

J. C. Maxwell brought together the following four equations in 1864:

V~ﬁ=p fs.l—idé':Q Gauss’ law
VxH=J feﬁ-dﬂzI Ampére’s law
V-B=0 fs. B.di=0 no magnetic sources
VXE‘:—%—?—‘ %CE-"-ddz —%f- Faraday’s law

100
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Maxwell also complemented Ampere’s law by a new term, which observed time-
dependence. Ampeére had developed a mathematical formulation for producing
magnetism by electricity, a phenomenon detected by @rsted ! in 1820, but his
law is not valid in a time-varying situation: take the divergence of both sides
to obtain

V- (VxH)=0=vV-J

which violates charge conservation. 2 Maxwell corrected this equation into the
form

V-(Vxﬁ):O:V-f+%,
applied Gauss’ law, and got
=~ = 0D

This predicted the existence of a displacement current @D/8t, which was first
detected experimentally by H. Hertz in 1888, when he radiated electromagnetic
waves by a dipole antenna. The electromagnetic field is now described by the

Mazwell equations 3
- - 0D -
V-B=0 VxE+£—O
= 5=

These equations are linear, and the last two equations with a vanishing right-
hand side are homogeneous.

If e, are constants, so that they do not depend on position, then the
medium is homogeneous. If €, u are scalars, and not matrices or tensors, then
the medium is isotropic. * In a medium that is uniform in space, i.e. homo-
geneous and isotropic, and stationary ® in time, the Maxwell equations can be

1 In the paper of 1820, @rsted’s name is printed as 6rsted, because the printer had no @.
2 Charge conservation requires that the continuity equation

9p
v.Jl=-—=
at

holds for the charge density p and the current density J in R3.

3 We use S units: [E]= ¥, [B]= X3, [D]= 5, [H]= 2.

4 In the case that the material is non-isotropic, D; = ¢;;E,, B; = p;H,, where the
matrices are symmetric €;;, = £;;, Li; = fiyi.

5 Stationary means that € and g do not depend on time. In an explosion ¢ and p are time
dependent.
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expressed in terms of £ and B alone:

. 10E -

P
v.E=L VxB— ——" =
g’ % c? ot wJ,
- . OB
.B=0 VxE+-—=
v ’ X +3t 0,

where 1/¢? = eu. These equations hold in a vacuum. In a vacuum it is cus-
tomary toset e =1, p=1.

8.2 The Minkowski space-time R3!

The electromagnetic quantities depend on time ¢ € R and position x = z1e; +
Toey + z3ez € R3. Position and time can be united into a single entity

T = z1e) + z2e3 + z3e3 + cley,
a vector in a 4-dimensional real linear space R* = R3 x R. In this linear space
we introduce a metric (or a quadratic form)
2, .2
i+ zy+ z§ — c*t?

which makes it a quadratic space, called the Minkowski space-time R31,
In the Minkowski space-time it is customary to set z* = ¢t = —z4 and agree
that the indices are raised and lowered as follows:

! =z, .'c2=:c2, 23 =23 and z*= —z4.

With this convention the quadratic form z% + z2 + 2% — c?t? becomes

zf + x% + :cg - zﬁ =zlz, + 2220 + 2323 + 22y = 2%,
where in the last step we have used the summation convention.

Examples. 1. The two densities p and J can be combined into a single
quantity

J=J+cpes in R3!
with four components J!,J% J3 J* = ¢p = —J; and the quadratic form
JE+J2+ JE - JZ.
2. We can combine the two potentials V and A in R3 into a single quantity
with four components A!, A%, A% and A* = 1V = —A,, a space-time vector

- 1
A=A+ >-Ves in R¥!
C

with a quadratic form A% + A2 + A3 — A2.
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8.3 Antisymmetric tensor of the electromagnetic field

H. Minkowski combined the two vectors E and B into a single quantity, a
4 x 4-matrix with entries F*# given by

(F'4, F*, ) = (1Ey, LBy, L By),

4

(F23’F317F12) = (_Bla _B2a _BS)
and antisymmetry, F®# = —FP% so that
0 —Bs B, 1iE
Bs 0 -B; 1iE,

—B, B 0 i1p,
1 1 1
-i1p, -ip, -1E3 0

(Fo9) =

The matrix entries F*? are coordinates of an antisymmetric tensor of rank 2,
namely the electromagnetic field in space-time R31,

With this change of notation from E,B to F*® we can write the Maxwell
equations in a vacuum:

3F14 aF24 aF34 _ ﬁ (aFZI 3 aFIS) _ 3F14 _ Jl
Oxt Oz2 9z3  ce’ Oz? oz ozt K
0F3? Qr'3 ogF?% OF3 OF* dF3?
Ozt + 0xz2 + 0z® 0 ( 9z  0z3 ) 8zt 0, .
The last displayed equation can also be written as
3F34 3F42 3F23
(e * 55) + ey =
e Oz3 Oz,
by employing antisymmetry and the lowering convention z4 = —z*.

Using the summation convention the Maxwell equations for F*? can be
condensed to

§Fe8
i
5aa pJ”,
OFP Lo OF*F 0
04 Ozp dzy
d further adopting the notations 8, = i and 9% = i to
an rther adopting 1 o= 53 = oo

8o FP = nJb,
8 FPY 4+ 9P 1™ 4 §YFP = 0,
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Similarly, D and H can be combined to a second-rank antisymmetric tensor

0 —H3 Hz CD1

H3 0 —H1 CDZ
—Hz H1 0 CD3
—CD1 —CD2 —CD3 0

(6°°) =

Using G*? the general Maxwell equations (non-homogeneous, non-isotropic,
time-varying) can be written in tensor/index form, due to Minkowski:

8,GP = JF
GFPY 4 §PFrv>x 4 YFP =

Ezercises 1ab,2ab,3a

8.4 Electromagnetic potentials

Because of V - B = 0 there exists, in a contractible region, a vector-potential
A such that

B=VxA.
If this equation is substituted into Faraday’s law, we get
- 9 .
VxE=—-——(Vx A
x B = -2 (v x 3)
or

- 04

V x (E + Et—) = 0.
This curl-free quantity is up to a sign the gradient of a scalar, called the electric
potential V,
0A
at
We have shown that E and B can be expressed in terms of the potentials V
and A as follows:

E+ -VV.

E:—VV—%, B=vVxA.
ot

Combine the two potentials V' and A in R3 into a single quantity with four
components A!, A%, A% and A* = 1V, a space-time vector

A=A+ %Ve4 € R31L,
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The above equations mean that F*? can be expressed in terms of the potential
A% as follows:

ol 041 _0al ol oal

(91‘1 31‘4 - 31?4 31‘1 T
04 A aA® oA?
T 922 8z3  Ozy Ozs’

which can be condensed to

FoB = _(5AP — 8P A%).

F32

We can now verify that §%*FPY 4+ 98 FY® 4 9 F*# = 0 by computing
*(OPAY — 0V AP) + BP(O7A™ — 82 AY) + 87 (8% AP — 3P A*) = 0.

Ezercises 2¢,3b

8.5 Gauge transformations

The vector-potential A is not unique, since we can add to it, without changing

physics, any vector with a vanishing curl. Adding to A a curl-free vector,
=/ - —

the gradient of a scalar &, gives us A = A+ V&. In order to keep £ =

—VV — 3A/dt we also change V to V',

~ 0A
E=-VV' — —
v ot
0, -
—_— 1 _
=-VV 5 (A+ Vo)
a0\ OA
— ! oY
- V(V t 5 ) at’
which implies V! =V — §¢/3t. The change of potentials
A =44ve,
0P
L —_——_—
V=V
is called a gauge transformation. In coordinate form this means
A% = A%+ 3—¢ = A* 4§
0z o
or swapping the sign of the time component
0P
A;:Aa+m‘—a=Aa+6a¢

The fact that E, B remain unchanged in a gauge transformation is called
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gauge invariance. In quantum electrodynamics gauge invariance is used to
deduce the existence of a zero-mass carrier for the electromagnetic field.

8.6 The Lorenz condition for potentials

The two homogeneous Maxwell equations guaranteed existence of potentials
for the electromagnetic field. Now we shall find out conditions imposed on the
potentials by the remaining Maxwell equations. Substitute & = —VV — 3;{‘/ ot
into V- E = p/e to obtain

A N
alv A=

in a vacuum. Substitute £ = —VV —8A/0t and B = V x 4 into V x B —
L8E /8t = pJ, and use the identity V x (V x A) = V(V-A4) — V24, to obtain

- - 18%A
. — it — 2 —— ——
V(vA+ ggr) -Vt g

The last two displayed equations couple V and A.
Although the curl of Ais designated to B, we are still at liberty to choose
the divergence of A, which ensures the choice

—Viy -

16V -
9 =ud.

10V _

V-A+;2-~—a-{—0

called the Lorenz condition. ¢ In coordinate form,
0A*
Oz
When the Lorenz condition is satisfied, the above two second-order differen-
tial equations, which coupled V' and A, can be decoupled

=0 or 8,A%*=0.

16%V p
2y . —_°C
ViV c? Ot2 e’
- 184 -
2 —
A-Gmm =+

into wave equations with the d’Alembert operator VZ — & ;’: = 0%08,.

6 The Lorenz condition/gauge was discovered by the Danish physicist Ludwig Lorenz in
1867, and not by the Dutch physicist H. A. Lorentz, who demonstrated covariance of the
Maxwell equations under Lorentz transformations in 1903. See J. van Bladel: Lorenz or
Lorentz? IEEE Antennas and Propagation Magazine 33 (1991) p. 69 and The Radiosci-
entist 2 (1991) p. 55.
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ELECTROMAGNETISM IN CLIFFORD ALGEBRAS

In the rest of this chapter we shall discuss electromagnetism in terms of the
Clifford algebras. Clifford algebras automatically take care of the manipulation
of indices. The Clifford algebra approach allows various degrees of abstraction
which gradually become more and more distant from classical vector analysis.

We reformulate the Maxwell equations first in terms of the Clifford algebras
Cf3 ~ Mat(2,C) of the Euclidean space R? and then in terms of the Clifford
algebra Cl3; ~ Mat(4,R) of the Minkowski space R%!. In the Euclidean
space R3 we shall deal with the vector E and the bivector §8123, and in the
Minkowski space R3! we shall deal with the bivector

1= —
F= EEe4 — Be123.

8.7 The vector E and the bivector §e123

The work W done by an electric field E in moving a charge ¢ along a path C
is given by the line integral

W=q| E-dC
C

We conclude that the electric field E is a vector, because it is integrated along

a path.
Similarly, the magnetic induction B is integrated over a surface S in order

¢=/§-d§.
S

Since we are integrating over a surface, we conclude that we are actually dealing
with the bivector Bejss = Biess + Bses; + Bsejs, rather than the vector
B = Bie; + Byey + Bses.

to get the magnetic flux:

8.8 Differentiating vectors and bivectors
Differentiate the vector E, in R3 C Cf3, to find
VE=V-E+VAE
= V-E+e123(V X E)
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where VxE = —elza(VAE). Differentiate the bivector Be;a3 to find V(Eelzg) =
VA (36123) + Vv (Be123) where

VA (56123) =e123(V - B'),
VJ(§e123) = e123(V A E) =-Vx E

8.9 Single equation in C/3

Recall the Maxwell equations in a vacuum:

VEZP,

OF - .
_— - B=-J
ot v x '
8B .
-a—t'+VXE—0,
vV-B=0.

Multiply the last two equations by ej23, use the following replacements VAE =
(V X E)e123, A\ (Belza) =-VxBand VA (Belza) = (V . B)e123, and you
will get

0 V-E:p

aE - -
1 73-? + VJ(Be123) =-J
2 %(§6123)+VAE-"=0
3 VA (56123) = 0.

The numbers on the left indicate the dimension degrees of the equations. Sum-
ming up these four equations we get (use VE=V-E+VA E)

d = 4 - - - -
E(E‘+Be123)+VE+VJ(Be123)+V/\(Be123) =p—J.
Use VF=VJdF+ VAF to find
0 Lo -
(5{+V)(E+BeIZ3)=P_J7

and we have condensed all the Maxwell equations into a single equation in terms
of the Clifford algebra Cf3. Taking the grade involute of both sides results in

bs] Lo -
(E - V)(—E + Be123) =p+J.

The potentials V and A, a scalar and a vector, can be united into a para-
vector V + A. Differentiate the paravector V + A by the paravector differential
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0
operator, — + V,

T Ot
(g-t-+V)(V+A) = %—‘t{+ %’;-+vv+vﬁ,
where VA=V - A+ (V x A)e;zs, and you will get
(%+vxv+M=—E+§qm
Taking the grade involute of both sides results in
(%—va—m=E+§qm

8.10 The use of the Clifford algebra C/; 1

Consider the Clifford algebra Cfs ~ Mat(2,C) as a subalgebra of the Clifford
algebra Cf3; generated by e, ez, e3, e4 with the relations

The Clifford algebra Cfs; is isomorphic, as an associative algebra, with the
algebra of real 4 x 4-matrices Mat(4,R). In the Clifford algebra Cf3; we
consider the electromagnetic bivector 7

2
1~ -
F=-FEe,—B R3!
- €4 €123 € /\
and the space-time current vector
J =J+cpes e R®L

From F we can find E by E = cey I F, and from J we can find J by
J= (I Nes)est.
We introduce the differential operator

For a function f:R3! — Cl3, we have 0f = A f+ 81 f, where A f is the
raising differential and 01 f is the lowering differential.

7 If we use the orthonormal basis {eg,e;,ez,e3} with ef = e% = e% =1 and eg = -1,
that is, ep = e4, then we find by reordering the indices that egj2s = —ej234 and F =
%Ee,, ~ (Bes)eizas = %Eeo + (Beg)eoi2a-
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Compute the raising differential
10 1= -
OANF = (V - e4———) A (—Ee4 — Be123)
c Ot ¢ .
1 - — 10B
= 28123(V x E)es — e123(V - B) — €134 7 =
Define G = cl-je4 - H e123 and compute the lowering differential

14 - -
BJ G= (V - 642-6—5) 4 (cDe4 —_‘H8123)

- ~ D -
=c(V-D)e4+VxH—%T=cpe4+J.

The Maxwell equations now have a particularly succinct form &
041G =17
OAF =0
corresponding to
V-ﬁ:p, —VJ(ﬁelza)—%g=f,
—VA(Beys)=0, VAE+ Q(Eem) =0.

ot

8.11 Single equation in a vacuum, Cf3;

In a vacuum the Maxwell equations can be further compressed into a single
equation
0F =17,

which decomposes into two parts, 3AF =0 and 0 1F = J. Also, 3AA = —F
and the Lorenz condition 8- A =0 imply

J0A = —F.

8.12 The energy-momentum tensor

Marcel Riesz in 1947 wrote the energy-momentum tensor in the form

1
Ty = —§<e,,Fe,,F)0.

8 The 3D formulation differs from this 4D formulation in the sense that G and F are
bivectors in AZR%!.
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D. Hestenes 1966 p. 31 introduced the vectors
1
T, = -iFe,,F

for which T,, = T, -e, = e, - T,, and also the mapping Tx = —%FxF
where (Tx)* = T*,z”. ® The energy-momentum tensor is symmetric, that
is, Tyy = Ty or gTTg~1 = T, where guv = €, - €,, and traceless, that is,
T#,=0.10

Note that the Poynting vector T4 = E x B + %(E-'z + B?)ey is not a space-
time vector, in the sense that it does not transform properly under Lorentz
transformations, but rather it is just the last column of the energy-momentum
matrix T = (T#,) which transforms as 7' = LTL™!.

ELECTROMAGNETISM IN DIFFERENTIAL FORMS

Electromagnetism can also be formulated with differential forms, based on
Grassmann’s exterior algebra. In this context it is customary to invoke the
dual space

*={f:V > R|f linear}

of the real linear space V = R3!. Instead of vectors and bivectors, in V and
/\2 V, one considers 1-forms and 2-forms, in V* and /\2 V.

In theoretical physics one applies differential forms to electromagnetism, but
in electrical engineering one uses almost exclusively the vector analysis of Gibbs
and Heaviside. !!
laws, 12 and so it is convenient for them to place all vectors in V = R%! [and
disregard the dual space V*]. However, a theory without the dual space V*
cannot be generalized to curved space-times. In a curved space-time it is not
possible to differentiate vector valued functions, only differential forms can be
differentiated [in general relativity vectors are differentiated covariantly].

Although differential forms are not of practical value for electrical engineers,

Electrical engineers are not interested in transformation

9 Juvet & Schidlof 1932 p. 141 gave Tyy = Fu,%Fop + ;g“,,Fa,gF"‘ﬁ but did not consider
Tx = ——FxF compare this to Bolinder p. 469 in Chisholm & Common (eds.) 1986.
10 The tracelessness of TH, = -——(e“FeyF)o is an accident in dimension 4, since e*Fey, = 0,

and in general e#ae, = (n — 2k)a for a € AFRR.

11 As far as the author knows the only university where electrical engineers have used dif-
ferential forms in teaching is Helsinki University of Technology, see lecture notes Lin-
dell & Lounesto 1995.

12 For instance, the space-time position x = & + cte; and the current density J = J+ cpey
transform differently under the Lorentz group; one transforms contravariantly and the
other covariantly. In tensor calculus elements of V' are called vectors and elements of the
dual space V* are called covectors.
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we shall close this chapter with a short discussion on the formulation of electro-
magnetism with differential forms, see Lindell 1995. But first some observations
about functions with values in AV =Cl3;.

8.13 Using only raising or lowering differentials

Since the current density J integrates over a surface S,

?{f~d.§‘= -1,
S

we can replace it by a bivector Je €123, and since the charge density p integrates
over a 3-volume, we can replace it by a 3-vector pejss. Similarly, we can regard
Hasa vector, but replace the vector D by a bivector Dejas.

The two Maxwell equations with a source-term on the right hand side can
be rewritten in the form

VA (.56123) = pejss, _VAH- %(ﬁelzg) = Jejas.
Take the Hodge dual
*G =~ée1234 = —cﬁelzg - ﬁe4 and
*J = Jej234 = cpeias + (Jeias)ey,
and compute the raising differential

1 . .
IN*G = (V — e4zg—t) A (—cDe123 - He4)

—

— - aD
= —¢(V - D)eizs — e123(V x H)es + 57 ©1284-

The Maxwell equations can now be expressed in terms of the raising differential
alone:
OA+*G = — %],
OAF =0.
Dually, we can write down the Maxwell equations using only the lowering
differential:
041G =17,
01«F = 0.

These equations are invariant under the general linear group GL(4,R), and
the solutions are independent of the choice of metric. 13

13 In the absence of a metric it is customary to invoke the dual algebra A V* of the exterior
algebra A V' and take exterior differentials of differential forms rather than differentials
of multivector valued functions.
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8.14 The constitutive relations

The constitutive relations of the medium are
D=¢E +aB,
H=pE +u'B.

Here ¢,a,3 and u~! are 3 x 3-matrices. To find the rules imposed on them,

write the above equations in coordinate form:

KA __ 1 kAuy
G —ixn“Fm,.

14

Then, if x***" is an irreducible tensor, ¥ we must have

Xn)\;w — _XAn;w, Xm\;w - _XnAVy,
XnA/w — X;w)uc

)
xlEr]l =0,

where the brackets [ ] mean complete alternation of indices. The second re-
lation implies €7 = ¢, uT = p and o = —B7 and the third relation im-
plies trace(a) = trace(8), which together with the former implies trace(a) =
trace() = 0. These considerations can be condensed into saying that the in-
dices of the constitutive tensor x**#* = x¥ can be arranged into a Young
tableau

The irreducible tensor x has 20 components, where 20 = n2(n? — 1) for
n = 4. In chiral media the tensor x need not be irreducible, and the number
of components may rise to 36.

8.15 The derivative and the exterior differential
Let U and V be real linear spaces with norms. The derivativeof f: U — V
at x € U is a linear function
f(x):U—=V, h— f(x)h
such that
f(x+h) - f(x) = f'(x)h+ || h || e(x, h)

where ¢(x,h) — 0 as h — 0. The linear function f'(x) : U — V can be
identified with an element of U* ® V.

14 The factor x need not be a tensor. For instance, magnetic saturation and hysteresis are
not expressible with a tensor x.
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Consider now a function fi: V. — A V™. Its derivative at x,
flxyevee AV,

is no longer an element of the dual exterior algebra A V* C @V*. The alter-
nation, which antisymmetrizes tensor product of vectors, is a linear function
projecting A V* out of ®V* so that

uAu=Alt(u®v) for wu,v E/\V*.
We define the exterior differential of f: V — AV* at x by 1°
d A f(x) = Ali(f'(x)).

Next, we will replace vector valued functions V — V by 1-forms V —
V*, and bivector valued functions V — A’V by 2-forms V — A’V*. The
electromagnetic bivectors F and G are replaced by 2-forms F and G. The
current vector J is replaced by a 1-form J.

The exterior differential raises the degree. The dual of the exterior differen-
tial, called the contraction differential d1 f = x"1d Axf, '® lowers the degree.
In differential forms the Maxwell equations look like

diG = J,
dAF =0.

8.16 General linear covariance of the Maxwell equations

Using the differential forms we may find the most general expression of the
Maxwell equations:

AAN*G =—-%J
dANF=0

These equations include only the exterior differential, and no contraction differ-
ential, so that a metric is not involved. This makes the equations independent
of any coordinate system. The metric gets involved by the constitutive relations
of the medium

G = x(F)

and the Hodge dual.
This form of the Maxwell equations is not only relativistically covariant,

15 The exterior differential is usually denoted by df.
16 The contraction differential is commonly called the co-differential and denoted by 6 f.
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under the Lorentz group O(3,1), !7 but also covariant under any linear trans-
formation of space-time coordinates, that is, under the general linear group
GL(4,R). This general linear covariance of the Maxwell equations, and their
independence of metric/medium, were recognized by Weyl 1921, Cartan 1926
and van Dantzig 1934.

Historical Survey

The Maxwell equations have been condensed into a single equation using com-
plex vectors (Silberstein 1907), complex quaternions (Silberstein 1912/1914,
Lanczos 1919), spinors (Laporte & Uhlenbeck 1931, Bleuler & Kustaanheimo
1968) and using Clifford algebras (Juvet & Schidlof 1932, Mercier 1935, M.
Riesz 1958). Marcel Riesz 1947 wrote the energy-momentum tensor in the
form T,, = —3(e Fe, F)y.

Exercises
Metric z? + z2 + 23 — z3:
1. Recall that (F4, F?% F3) = (LEy, 1y, LE3) and

(F23, F31, F1%) = (—B;,— By, —B3). Compute the matrices
a) F%s, b) F,”, and the vector
c) v2F,P for (vi,v?,v3 v*) = (v1,vs,v3,¢).
Metric —z2 + 2% + 22 + z3:

. . 10 8 0 0

In this metric 8% = (—EE, 52’ 3y’ 5)
2. Replace E and B by F*# = —FP* 5o that

(FOI, FOZ, FOS) = (—-}:-El, —%Eg, —%E3) and

(F23, F3 F'?) = (- By, — B2, —Bs), and determine
a) the antisymmetric matrix F®°,
b) the Maxwell equations in terms of F®#,
c) F%P in terms of A®,

18

17 The Maxwell equations describe massless particles, photons, and as such they are con-
formally covariant, as was demonstrated by Cunningham and Bateman in 1910. The
conformal transformations are not linear in general, that is, they are not in GL(4,R).

18 For simplicity we have omitted the factor

which makes both sides of the equation of the Lorentz force, f# = u®F,#, u® = yv*,

properly transforming space-time vectors.
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d) v*F,? for (v°,v},v?,v3) = (c,v1,vs, v3).

Metric =3 — z2 — 22 — z2:

19 0 0 0
PrA i v v
3. Replace E and B by F®f = —FP 5o that
(FO', F%2 F9) = (-1F!' -1F? -1F3) and
(F23, F31 F1%) = (-B!,-B?,—B3), and determine
a) the Maxwell equations in terms of F,
b) F*? in terms of A®.
[Note that A! = A, = —A;, A2 = Ay = ~Ay, A3 = A, = —A; but
A’ =1V = 4]
4. Electrical engineers use the pairs E, H and D, B. The constitutive
relations sending E,I—T to 5,§ are then
D=¢E+aH,
B =8E + iH.

In this metric 8% = (

Show that p=p, @ =ap, 8= —pf and é =¢ — aup.

Solutions
la.
0 -B3 B, -lpg
Bs 0 -B; -ip,
o —_ [
=1 _g, B 0 -ip
~1F, -1E, -1B; 0
b.

0 -Bs B, lp
Bs 0 -B; lp
-B;, Bi 0 lE
g, 1B, lE3 0

(Fo’) =

c. The space-component is E + % x B and the time-component %17 - E.

2a.
0 —%El —%Eg —%E3

ip 0 —B B
apy _ | s£1 3 2
(F*F) = i1F, B3 0 -B;

%Eg -B, B, 0

b. 8o F*F = puJB, §*FPY 4 §PFY* L JYFoP =),
c. FoP = (52 AP — 9P A%).
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d. The time-component is -‘1_;17 -E and the space-component E+9xB.

3a. 8, FF =pJP  §*FPY 4+ 9B F1™ 4 gV FoF = .
b. FoP = g2 AP — 9P A>,
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Lorentz Transformations

According to the Galilean principle of relativity the laws of classical mechanics
are the same for all observers (moving at constant velocity with respect to each
other). More precisely, the laws of classical mechanics remain the same under
Galilean transformations

direct inverse
=z —vt z=2z + vt
=t t=1t

relating two frames (z,t) and (z’,¢') moving at relative velocity v. The equa-
tions on the left show that the origin of the second frame z’ = 0 corresponds
to uniform motion z = vt in the first frame. There is no privileged inertial
frame or absolute rest for moving bodies, but time is preserved, that is, time
1s absolute.

The Galilean principle or invariance does not govern all of physics, most
notably electromagnetism and in particular light propagation. For instance,
the wave equation

af 19f 0

822 2o
is not preserved in a Galilean change of variables (z,t) — (2',t'). The wave
equation is instead invariant under another transformation, named after H.A.
Lorentz. In 1887, Michelson & Morley carried out an experiment which indi-
cated that light travels at the same velocity independent of the motion of the
source. In 1905, Einstein took the constancy of the velocity of light as a postu-
late, and showed that this postulate, together with the principle of relativity, is
sufficient for deriving the kinematical formulas of Lorentz. In so doing, Einstein
had to revise the notion of time, and abandon the concept of absolute time.
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9.1 Lorentz transformations in one space dimension
The simplest modification of the Galilean transformation, preserving linearity
and the implication z’ = 0 = = = v, is obtained by multiplying with a factor
¥:
' =y(z - vt), z =(z' + vt')

where v is independent of z and ¢ but may depend on v. We require that v is
the same in both equations since the inverse transformation should be identical
to the direct one except for a change of v to —w.

In computing 4 we use the observation of equal velocity of light. Consider a

light-signal travelling at velocity ¢ in both frames, so that = ¢t and z’ = ¢t’,
which substituted into the right-hand side of the previous equations results in

z' = 5y(ct — vt), z = v(ct' + vt')
or, substituting ' = ct’ and z = ct also into the left-hand side,
et = ~(c - v)t, ct =(c+v)t',

a formula admitting explicitly a transformation of time. Divide the two equa-
tions

¢ e=v)
Yletv) e
which gives the factor
_ 1
7= : o2
2

Next, compute the transformation of the time coordinate of events. Substi-
tute 2’ = y(z — vt) into z = y(z' + vt'),

z =y (z — vt) + yot',

use the explicit form of 4, and solve for ¢',

Similarly, compute the inverse transformation,
v

t=v{t + =z).

1t + =2')

The fact that time is also transformed is referred to as the relativity of time.
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Summarizing, we have the following transformation laws for the space and
time coordinates

direct inverse
z—ut z' + vt
z = ——
112
c2
tl v I

v2 u2
Tz T ez

known as the Lorentz transformation. Lorentz transformations preserve the
quadratic form z? — ¢?t2 = &/ 2 _¢%'? and orthogonality of events; two events
z1,ct; and zg,cty are said to be orthogonal if ziz —c?t1t5 = 0. In particular,
time and space are orthogonal.

It should be noted that time and space do not diverge by 90°, that is, they
are not ‘perpendicular’ or ‘rectangular’. If we draw space-time coordinates
z, ct on paper so that the time-axis is ‘perpendicular’ to the space and perform
a Lorentz transformation, then the transformed coordinate-axes z’,ct’ are no
longer ‘rectangular’ (but they are orthogonal, by definition).

Ctl
z=ct
ct

Write the direct Lorentz transformation in matrix form:
Y\ 1 1 - z
') e\t 1 ct)’
(4

This resumes the composition of Lorentz transformations into multiplication

A
LF;( l" 1")'
1 — sy

The composition of two Lorentz transformations at velocities vy and vy results

of matrices:
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in a Lorentz transformation L, = L,,L,, at velocity
_ v+

= Tra

a formula known as the relativistic composition of parallel velocities.

9.2 The Minkowski space-time R%!
1,2 .3

Space-time events can be labelled by points (z!,z2, 23 z%) or vectors x =
zle; +z2ey+z3e3 + z%e4 in the Minkowski space-time R3!. Indices are raised
and lowered according to

! =1z, 1‘22132, x3=z3, i =ct = —z4.

The Minkowski space-time R3! has a quadratic form sending a vector x € R3:1
to a scalar which we shall denote by x2,

2 2 2 2 2
X*=zi+Ty+z3—24.

Solutions to the equation
gl 4zi4+zi=22 or x?=0

form the null-cone or light-cone.

Light-cone and light-like vectors

The set of non-zero vectors, or space-time intervals, x € R31 can be divided
into

x2 >0, space-like vectors,

x? < 0, time-like vectors,

x2? =0, null vectors or light-like vectors.
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The set of time-like and light-like vectors can be divided into future oriented
z* > 0, and past oriented z* < 0 [recall that z% = ¢t = —24].

Planes passing through the origin can be divided into time-like, light-like
and space-like according as they intersect the light-cone along two, one or zero
light-like vectors.

Space-like unit vectors x? = 1 form a connected hyperboloid, and time-like
unit vectors x? = —1 form a two-sheeted hyperboloid. Future oriented time-
like unit vectors correspond to observers; ! an observer travelling at velocity

7 € R3 is associated to the time-azis

U+ ceq
V= where vZ= —1.

27

9.3 Lorentz boost at velocity 7 € R3

Let us review how a space-time event (F,t) of an observer O is seen by another,
O’, moving at velocity ¥ with respect to O.

]

O = Observer
To do this we first decompose 7 € R? into components. ¥ = 7 + ¥, which are
parallel 7 = (¥ - 17):”2- and perpendicular ¥; =¥ —7) to ¢. The transformed
v

. . -/ = =/ =/
space-time event is (7,t') where 7 = T +TL and

1 " -
Flll = (Tll—vt), rll =T,
-5
.
=t (t- 55
1-5 ¢
[+4

This transformation is called a boost at velocity ¥.

The scalar 7 — c2t2, where 7> = |F|2, remains invariant under a boost. A
boost leaves untouched the perpendicular component 7, , but alters the parallel
component ;.

1 We consider only inertial observers; inertial = free of forces (no acceleration).
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A boost at velocity ¥ = v1e; + vzey + vzez can be represented by matrix
multiplication #'® = L*gzf or ¢’ = Lz where

1 Vv 1 1%&
et ()
1-%¢ 1-% v
and
0 0 0 (31
10 0 0 wv
V= 0 0 0 w3

v1 vy vy O

A boost is a special case of a Lorentz transformation, which can in general
also rotate the space R3.

9.4 Lorentz transformations of the electromagnetic field

The electromagnetic field E, B experiences a boost at velocity 7 as

L 1 L L

E| = —-—1 = (EL+7x B), EI’I = B,
-z

= 1 = TxE = =

Bi: — (B_L— 2 ), BI’IzB”.
T

A boost of the electromagnetic field leaves invariant two scalars

E*—?B? and E- E,
called Lorentz invariants. 2

A Lorentz transformation of the electromagnetic field can be written in coor-
dinate form as F'*g = L%, F*,(L™")"s or concisely as matrix multiplication
F' = LFL~'. The matrix F = (F%g) satisfies gF 'g~! = —F, where

100 0
lo10 o
910 0 1 o

00 0 —1

F is said to be Minkowski-antisymmetric.

2 The Lorentz invariants remain the same also under rotations of R?, and therefore under
the special Lorentz group SO(3,1). This can be seen by squaring F = Ees — Bejas ¢
F2=FIF+FAF=E?-B2— Z(E . E)e1234. The scalar part remains invariant under
L € 0(3,1) and the 4-volume part remains invariant under L € SL({4,R). Note that
0(3,1) N SL{4,R) = SO(3,1), SL(4,R)/Z; ~ S04+(3,3) and A’ L € 504(3,3) acts on
AZR3! > R3S,



124 Lorentz Transformations

9.5 The Lorentz group 0O(3,1)

A matrix L satisfying LgLT = g 3 is said to be Minkowski-orthogonal or a
Lorentz transformation. The Lorentz transformations form the Lorentz group

0(3,1) = {L € Mat(4,R) | LgLT =g}

A Lorentz transformation has a unit determinant: det L = +1. The subgroup
with positive determinant,

S0(3,1) = 0(3,1) N SL(4,R),

is called the special Lorentz group. The special Lorentz group SO(3,1) has
two components. The component connected to the identity I is denoted by
S04(3,1); it preserves orientations of both space and time. The other compo-
nent SO(3,1) \ SO4+(3,1) reverses orientations of both space and time.

The Lorentz group O(3,1) has four components; these form three two-
component subgroups preserving space orientation, time orientation or space-
time orientation. Time-orientation—preserving Lorentz transformations form
the orthochronous Lorentz group O4(3,1). A restricted or special orthochronous
Lorentz transformation L € SO4(3,1) preserves space-time orientation (orien-
tation of both space and time); its opposite —L € SO(3,1)\ SO4(3,1) reverses
space-time orientation, while gL reverses time orientation, and —gL € 04(3,1)
reverses space orientation, —gL € 04(3,1) \ SO4(3,1).

The Lorentz transformations, which stabilize a time-like vector, form a sub-
group O(3), the orthogonal group of R3 = R3.0. The Lorentz transformations,
which stabilize a space-like vector, form a subgroup O(2,1), the small Lorentz
group of R%1. The Lorentz transformations, which stabilize a light-like vector,
form a subgroup isomorphic to the group of rigid movements of the Euclidean
plane R2.

Any special orthochronous Lorentz transformation L € SO4(3,1) can be
written as an exponential L = e4 of a Minkowski-antisymmetric matrix

0 bs —b2 a
—b3 0 b1 as

A= bz —b1 0 as
ay asz as 0
which satisfies gATg~! = —A. The matrix A can be characterized by two

vectors @ = ae; + ases + ages and i;: bie; + boes + bses in R3. If 5= 0,
then L is a boost at velocity

|d] = ctanhlal.

3 Note the resemblance between LgLTg~! = I and the condition of orthogonality RRT = I
of a matrix R, R € O(n).
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If @ =0, then L € SO(3) is a rotation of the Euclidean space R? around the
axis b by the angle |b|. Boosts and rotations are special cases of simple Lorentz
transformations.

9.6 Simple Lorentz transformations

A special orthochronous Lorentz transformation L € SO4+(3,1), L # I, has
one or two light-like vectors as eigenvectors. If there are two light-like eigenvec-
tors, then they span a time-like eigenplane, which is preserved by the Lorentz
transformation; there is also a space-like eigenplane, which is completely ortho-
gonal to the time-like eigenplane. ¢ A special orthochronous Lorentz trans-
formation is called simple, if it turns vectors only in one eigenplane, leaving
the other eigenplane point-wise invariant. Disregarding the case L = I, a spe-
cial orthochronous Lorentz transformation L = e4, where A is characterized
as before by &',I_; € R3, is simple if and only if @ - b=0. A simple Lorentz
transformation is called

hyperbolic, |d] > |

elliptic, @] < |

parabolic, |d|=|
A hyperbolic Lorentz transformation is a boost for an observer, whose time-axis
is in the time-like eigenplane of the Lorentz transformation. An elliptic Lorentz
transformation is a rotation of the Fuclidean space R3, which is orthogonal
to an observer, whose time-axis is orthogonal to the space-like eigenplane of
the Lorentz transformation. A parabolic Lorentz transformation has only one
light-like eigenvector; it is of the form

L=I+A+%A2, since A3 =0,

and has only one eigenplane, which is light-like and tangent to the light-cone
along the light-like eigenvector. A non-parabolic Lorentz transformation can be
written as a product of two commuting simple transformations, one hyperbolic
and the other elliptic.

LORENTZ TRANSFORMATIONS IN CLIFFORD ALGEBRAS

Lorentz transformations can be described within the Clifford algebras Cfs ~
Mat(2,C), Cls1 ~ Mat(4,R) and Cé; 3 ~ Mat(2, H).

4 Completely orthogonal planes have only one point in common, the origin O. For two
vectors X,y in completely orthogonal planes, the scalar product x-y = z1y1 + z2y2 +
T3ys — T4y4 vanishes: x -y = 0.
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9.7 In the Clifford algebra Cf3 ~ Mat(2, C)

Events in time and space can be labelled by sums of scalars and vectors,
z=ct+ &,

in R@®R3 C Cf3. A paravector z = z° + z'e; + 22e3 + z3e3 can be provided
with a quadratic form

zi=ct? -2 =gl —2? — 22— 23

making R @ R3 isometric to the Minkowski time-space R13. ® This quad-
ratic form is preserved in a special orthochronous Lorentz transformation L €
SO+ (l ) 3) s

L:ROR* S ROR3 z— L(z)=szxé"?,

where s is in the spin group ®
$pin, (1,3) = {s €Clz|ss =1} ~ SL(2,C).

The time-space event z = ¢t + £ € R @ R? and the electromagnetic field
F = E — Bejss € R3 ® A’R3 behave slightly differently under restricted
Lorentz transformations:

¢’ = L(z) = sz571,

F' = sFs1,

The spin group $piny (1, 3) is a two-fold covering of the special orthochronous
Lorentz group SO, (1,3). In other words, there are two elements +s in the
group $piny (1,3) inducing the same Lorentz transformation L in SO4(1,3).
This can be expressed by saying that the kernel of the group homomorphism

p:8ping(1,3) = SO,.(1,3), s— L=p(s)

consists of two elements {+1} € $pin(1,3) [the kernel is the pre-image of the
identity element I € SO4(1,3)].
Every element s in the spin group $piny(1,3) is of the form

1,. =
s = exp 5(0 + be123)

where @ and b are vectors in R3. The minus sign in front of the exponential

5 The raising and lowering conventions are different in R @ R® and R!3. In R!:3
(«°,2',22,2%) = (wo,—z1,—z2,—x3) whereas in R C R @ R® there is a prescribed
metric such that (z!,22,2%) = (21,23, z3).

6 The groups $piny(1,3) C C4; and Spin (1,3) C C{y1,3 are isomorphic, and so are their
Lie algebras R® @ A2 R® and AZR!3,
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is needed, 7 because not all the elements in the two-fold cover $pin,(1,3) of
504(1,3) can be written as exponentials of para-bivectors in R* @ A’ R3. In
the case @ = 0 the Lorentz transformation is a rotation of R3, and in the case
b = 0 we have a boost at velocity &

B

¥ = tanh @ = — tanh|dl.

o

For any s € $piny(1,3) the product s3 is a boost, that is, s§ € R @ R3.
Since (s8)o > 0, there is a unique square root of u = s5, a boost such that
Vu = a(l +u), a@> 0. Squaring both sides and using u% = 1 results in

_ l14+u ‘
V= V2(1 + (uo)

Write b; = +/s5. The product r = bl'ls satisfies #r = 1 and #r = 1, and so
it is a rotation, r € Spin(3). A special orthochronous Lorentz transformation
can be uniquely decomposed into a product of a boost and a rotation,

&= blr,

called the polar decomposition. Similarly computing by = v/§s and r = sb;'l,
we find that s = rby with the same rotation r, that is,

§ = byr = rby.

Both the decompositions have as a factor the same rotation r € Spin(3) =
{s € Ct3 | s5 = 1}, but the boosts are different: b, # by.

9.8 In the Clifford algebra Cf3; ~ Mat(4,R)
A boost b € R@® R3ey, at velocity 7 € R3, can be computed by

b = exp(des/2), @& = artanh(¥/c),

and results in

b_1+7(1+1784) y= 1
V2(T+7) 1_2_:’

obtained also by taking a square root of b2 = y(1 + ves).
The restricted Lorentz group SO4(3,1) has a double cover

Spin, (3,1) = {s e cf, | s5 = 1}.

7 If |d] = |I;| and &@-b =0 then (@ + ge123)2 =0, and for a non-zero F = & + bej,3 there
is no para-bivector B € R3 @ /\2 R3 such that B = —ef.
8 The first tanh-function is evaluated in the Clifford algebra C/¢3.
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Under a Lorentz transformation induced by s € Spin, (3,1) the space-time
vector x transforms according to x’ = sxs~! and the electromagnetic bivector
F = %E‘e4 — Bejy3 transforms according to F/ = sFs~1.

9.9 In the Clifford algebra C¢; 3 ~ Mat(2, H)

Consider the Lorentz group of the Minkowski time-space R in the Clifford
algebra C{; 3 which is isomorphic, as an associative algebra, to the real algebra
of 2 x 2-matrices Mat(2, H) with quaternions as entries. The Clifford algebra
Cf 3 is generated as a real algebra by the Dirac gamma-matrices o, ¥1, 2, ¥3
satisfying

vw=Lv=rn=¥=-1 and vy =-wy for p#wv
In this case the Lorentz groups O(1,3), SO(1,3), SO4+(1,3) are doubly
covered by
Pin(1,3) = {s € C4f; UCLT 5 | 55 = %1},
Spin(1,3) = {s € Cf} 3 | s5 = 1},
Spin, (1,3) = {s € Cff 5| s5 = 1} ~ SL(2,C).
A Lorentz transformation L € O(1,3) is given by L(x) = sx§~! in general,
but a special Lorentz transformation L € SO(1,3) corresponds to an even
s and can also be written as L(x) = sxs~!. The group homomorphism p :
Pin(1,3) — O(1,3) is fixed by L = p(s), L(x) = sx5~!, and its kernel is
{x1}, that is, each L € O(1,3) has two pre-images +s in Pin(1,3).
An element s € Spin_(1,3) has a unique polar decomposition

s = b7 = rby,

where the boosts are different,

b = \/870570—1 and be = \/'ygg'yo_ls,

but the rotation is the same, r = b7's = sb; 1.

Penrose & Rindler 1984. On pp. 31-32 the authors give a geometric inter-
pretation for Lorentz transformations, reviewed here in terms of the Clifford
algebra Cf; 3. Take four distinct light-like vectors a, b, ¢, d such that a-b =1
and c-d = 1. The bivector aAb represents a time-like plane, since (aAb)2 =
(a-b)2—a?b? = 1; the bivector aAb belongs to Spin(1,3)\ Spin, (1,3) and
represents a Lorentz transformation, which reverses the space-time orientation.
Therefore, the product

s=(aAb)(cAd)
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is in Spin_(1,3). Let the light-like eigenvectors of the corresponding Lorentz
transformation be 1; and l,, and choose 1; -1 = 1 so that (I; Als)?2 = 1. The
bivector 1) Al; anticommutes with a Ab and ¢ A d, that is, it is the unique
‘normal’ to aAb and cAd. The bivector F = log(s) in A’R3 is determined
up to a multiple of 2my123(11 Al2). The square root ¢ + ¥ryo123 = VF? is
such that F = £(¢ + ¥v0123)ls Alz; it is determined up to a sign; choosing
¢ > 0, the Lorentz transformation L = p(s) has velocity v = tanh(2¢) and

eigenvalues
e:h2¢ — 1 v )
ViFv

The planes aAb and ¢ Ad ‘differ’ in the sense that (a Ab)s = ¢ Ad and
s(c Ad) = aAb by asum of an elliptic angle ¥ about the plane 1; A1y and
a hyperbolic angle ¢ in the plane 1; Al,. Indicating the transformed light-like

vectors by primes,
a' =sas™!, b'=sbs”!, ¢ =scs!, d' =sds7!,

we find that ¢/ Ad’ = s(c Ad)s”! = (aAb)(c Ad)(aAb)l, that is, the
Lorentz transformation reflects the plane ¢ A d across the plane a Ab. But,
s(anb)s™! = (c'Ad’)(aAb)(c'Ad’)~! and (cAd)(aAb)(cAd)~! = s~1(aAb)s,
that is, the inverse of s(a A b)s™!. Take a square root of the inverse of s,

1

7—;:

u==
within Spin_ (1,3), and find that
vau"'=c¢ and wbu"l=d,
a kind of ‘half’ of the reflection above. 1

Jancewicz 1988. On pp. 252-256 the author shows how to decompose a non-
simple bivector F into simple components. He defines

a + Bro12s = (¢ + PYyo123)” = F?
and sets 62 = a® + 2. Then he gives the simple components
F
Fio2= %—(5 + o F Byo123)
for F = F; + F5 so that F? > 0 and F? < 0, that is, F; is hyperbolic or

time-like and F is elliptic or space-like. Observing that

F 2
(¢ + 1/)70123) -
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enables us to work out the decomposition in another way:

- ¥ 4 p,- TP
¢ + VY0123 & + Y0123

Hestenes & Sobczyk 1984 p. 81 note that ¢ = F?, ? = —F% and

F,

Fl,= s[FIF+/(FIF) — (FAF)]
(their formula 4.16 concerns only the positive definite case). 1

Hestenes 1966. The author gives on pp. 52-53 a method to find out s €
Spin, (1, 3) from the coordinates L*, of a special orthochronous Lorentz trans-
formation L(x) = sxs~!, L € SO4(1,3). Recall that L(y,) = v,L*,, and
deduce

L#y =9* - Lw) = (¥*57.8)0.

To compute s in terms of L¥, define first

L=LPyyy =LF + L)y Ny €ERSD /Z)\Rlﬂ". (1)
It follows that
L=Llw)" =snsy".
In computing 4,37, note that in general e, ue” = (n — 2k)@ for u € \*R",
and deduce that for s = (s)o + (s)2 + (s)4
187" = 4[(s)o — (s)4].
Therefore,
L = 4s[(s)o — (s)4]-
Since 5s = 1, LL = 16[(s)o — (s)4]?, and
L

s§=t-——.

LL

Substituting (1) this gives s explicitly as a function of L¥,. This construction
is an accident in dimension n = 4, because only then does the sum e,ue”
vanish for a bivector u € A2R". ]
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Historical survey

In 1881, A.A. Michelson carried out, for the first time, measurements intended
to determine the motion of the Earth relative to an absolute, imaginary ‘light
medium’. For this purpose he measured the velocity of light in different direc-
tions. Michelson & Morley repeated the experiment in 1887 and came to the
conclusion that light travels at the same velocity independent of the motion of
the source with respect to the ‘light medium’.

Voigt in 1887 was the first to recognize that the wave equation

of 108%*f -0
0z? 2012 ~
is invariant with respect to the change of variables
=z —ut,
t'=t-14,

where also time is transformed. Voigt’s formulas are not identical for direct
and inverse transformations; symmetry was restored later by introducing the
factor y/1 —v?/c2. This factor was first encountered in another connection:
FitzGerald and Lorentz 1892 gave independently an explanation of the Michel-
son & Morley experiment by suggesting that moving bodies are contracted in
the direction of motion by the ratio /1 — v?/c2.

The Lorentz transformations of space-time events were introduced by Larmor
in 1900, while the relativistic covariance of the Maxwell equations was demon-
strated by H.A. Lorentz 1903 ® (and conformal covariance by Cunningham
1909/1910 and Bateman 1910).

In 1905 1° Einstein supplemented the principle of relativity by postulating the
principle of independence of the velocity of light (of the motion of the source).
These two principles led Einstein to a revision of the notion of time and enabled
him to deduce the kinematical transformation laws of Lorentz; his predecessors
had obtained the transformation laws by considering transformations which do
not change the form of the Maxwell equations.

9 Poincaré noticed that restricted Lorentz transformations of space-dimension 1 form a
group SO4(1,1) consisting of the elements

coshx sinhx
sinhx coshx
where x € R.

10 A. Einstein: Zur Elektrodynamik bewegter Korper. Ann. Physik 17 (1905), 891-921. In
this paper Einstein compared the same phenomenon when observed in two different frames:
a magnet moving near a closed conductor and a closed conductor moving near a magnet.
In another paper of 1905 Einstein gave a relation between mass and energy, which was
later popularized as the formula E = mc?, written today as E = mc?/y/1—v2/c? or
E? = m2c 4 p2c2.
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Later Einstein reformulated the principle of relativity so that it embraces
not only mechanical but also electromagnetic phenomena:

the laws of physics have the same form in all reference frames]

When this Einsteinian principle of relativity i1s applied to the Maxwell equa-
tions, one is compelled to conclude that the velocity of light is the same in all
reference frames. In other words, the principle of constancy of the velocity of
light becomes superfluous as an amendment to the principle of relativity. The
principle of relativity and knowledge of the Maxwell equations are enough to
deduce the transformation laws of Lorentz.

Nowadays the terms ‘relativistic’ and ‘relativity’ almost invariably refer to
the Einsteinian principle.

Questions

1. How many light-like eigenvectors does a Lorentz transformation have?

2. Are all L € SO4(3,1) of the form L = exp(A), gATg~ = —A?

3. Are all s € Spin (3, 1) of the form s = exp(B/2), B € A R31?

4. A special orthochronous Lorentz transformation can be written as a
product of a boost and a rotation, in two different orders. In the two
expressions, which factor is the same: the boost or the rotation?

5. Are all the special orthochronous Lorentz transformations products of two
commuting transformations, one hyperbolic and one elliptic?

Let B € A’R31,

6. s R¥' 3x s uxu~!, u=14+B+ %B A B, a Lorentz transformation?
7. Do the Lorentz transformations induced by exp(B/2) and
1+ B+ 3BAB, B%#1, have the same eigenvectors?
8. Does (1 + B)(1 — B)~! represent a Lorentz transformation?
9. Do the Lorentz transformations induced by exp(B/2) and
(1+ B)(1 —B)~!, B% # 1, have the same eigenvectors?

Answers

1. In general two, parabolic has one, +I have all of them.

2. Yes. 3. No. 4. Rotation. 5. No (parabolic are not).

6. Yes, if B2 £ 1.

7. Yes, because both the Lorentz transformations are functions (= power
series with real coefficients) of A, A(x) = BL x; namely ¢4 and
(I + A)(I — A)~1, respectively.
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8. Yes, if B2 # 1 (but this is no longer true in dimension 6).
9. No, because the latter Lorentz transformation is not a rational function of
A alone (but also of AT).

Exercises

1. Derive the composition rule for non-parallel velocities,

1 2
Uy = —F=-[01 + Ty + 1— 3 2,

1 + _1_1
Hint: use the inverse Lorentz transformation

oy = (Fay + V1t2) + P2y,

2

o <
[\

1-

tz—v—-t2+m-

2. Show that ¥, = tanh(2log(b})) where by = /5535, sh = s15; € R® R3
and s; =exp(3d1), ¥, = tanh(d;).

3. Show that the composite of two boosts is a hyperbolic transformation.

4. Consider a time-space event z = ct + & in R@® R? corresponding to
Yy =&+ cteq in R3. Define s = exp(@/2) and u = exp(des/2) for a € R3.
Show that the boost §zs~1 = s~ 1z5 corresponds to the boost uyu~?!.

5. Show that for u € Spin, (3, 1), when decomposed into a product of a
boost and a rotation, u = b1r = rbs, the rotation-factor » € Spin(3) can
be obtained by normalizing (u A e4)e4 L

6. Take a bivector F = deq + beyss € A’ R3! such that |d@] = |5]. Consider
the antisymmetric linear transformation R3! — R3! x — Ax = (Fx);.
Show that (A3x) || x.

7. Take a non-simple bivector F € /\2 R3! with simple components

F =F; +F;, F2>0, FZ <0. Show that

FxF
3,

R¥ 5 R x 2

is a Lorentz transformation, a reflection across the plane of F;.

8. Show that (¢ + ¢‘)’o123)(5 +a-— ,3'70123) = 24¢.

9. Show that as topological spaces Spin_ (1,3) ~R3 x 3.

10. Show that as groups $pin, (3,1) ~ Spin, (3,1) ~ SL(2,C) and
S504(3,1) ~ SO(3,C) = {R € Mat(3,C) | RRT =1, det R = 1}.

11. Show that for u € Spin, (3, 1) there is a square root in Spin, (3,1) given
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by

_ u+1
Vi V2(1+ {u)o + (u)a)

Hint: for s € Spin, (3,1), s> +1=s? + 55 = (s + 5)s = 2((s)o + (s)4)s.
Therefore, (a + Be1234)v/u = u+1 with o, € R.
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10
The Dirac Equation

The Schrodinger equation describes all atomic phenomena except those involv-
ing magnetism and relativity. The Schrédinger-Pauli equation takes care of
magnetism by including the spin of the electron.

The relativistic phenomena can be taken into consideration by starting from
the equation E?/c? — p?> = m2c2. Inserting energy and momentum operators
into this equation, results in the Klein-Gordon equation

2( 132+32+32+32
c29t2  fz? 9z 0z
which treats time and space on an equal footing. Dirac 1928 linearized the
Klein-Gordon equation, or replaced it by a first-order equation,
0 0
oty treg—

1
ih( =
To Oz, Ozq
The above Dirac equation implies the Klein-Gordon equation provided the
symbols «, satisfy the relations

) =mcy,

+’73 )1/1 mey.

=1, ¥=v=v=-1,
YuY = =YY for p#wv

Dirac found a set of 4 x 4-matrices satisfying these relations, namely, the
following Dirac matrices:

0o o

0 0

-1 0 |

0 -1

0 -1 0 0 0 i 0 0 -1 0
-1 0 _fo o —io _fo o o 1
0 o)"‘/z—(o —i 00)’73—(1 0o 0 0)'
0o o i 0 0 0 0 -1 0 0

In terms of the Pauli spin-matrices o} the Dirac gamma-matrices v, can be

-2

(=)

]
TN

2
2

—

OO0 OO 0O -

OO0 CO=O
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expressed as !

0 I 0 — ok 0 — 0k

Writing 2o = ct, the Dirac equation can be condensed into the form
ihy* 0,9 = mey
0

where 9, = ——. 2 An interaction with the electromagnetic field F#¥ is in-

OzH
cluded via the space-time potential (A%, A, A%, A%) = (1V, A;, Ay, A,) of F#

by employing the replacement iho#* — ihd* — eA*. This leads to the conven-
tional Dirac equation

Yu (1hO# — e AF )9 = meyp

where the wave function is a column spinor, that is,

(41

V2

Y3
Ya

The Dirac equation takes into account the relativistic phenomena and also spin;

it describes spin-% particles, like the electron.

Y(z) = €C* with ¢, €C.

10.1 Bilinear covariants

The Dirac adjoint 3 of a column spinor ¢ € C* is a row matrix
Pl =(vi ¥5 —¥3 —¥i).

A column spinor 4(x) and its Dirac adjoint ¥f(x)yo can be used to define four
real valued functions

JH(x) = ¢t (x) 107" ¥(x)
which are components of a space-time vector, the Dirac current,
I(x) = yuJH(x).
Under a Lorentz transformation

x' =sxs™!, se€Spin,(1,3),

1 The above matrix representation is called the Pauli-Dirac representation (although it

should be called the Pauli-Dirac basis).
2 Note that y#8, = ~,3"* where 9% = 5—2—;.
3 The Dirac adjoint of 1 is often denoted by ¥, but we have reserved this bar-notation for

the Clifford-conjugation.
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the Dirac spinor transforms according to
W=sly o P(X)= s g(sxsT)
and the Dirac current according to
V=51Js or JV(x)=s"1J(sxs71)s.

Thus, the Dirac current is covariant under the Lorentz transformations. The
components J¥# = ytygy#1 are called bilinear 4 covariants.

The physical state of the electron is determined by the following 16 bilinear
covariants:

= ¢l = Yt + Y32 — Yivs — Yivs,

JE = glyrty,

SH = iy ep, Y = yhyY F iyhyY
K# = ¢lygiy®12y,y,

92 — ¢T7070123¢, 70123 — 70717273

Their integrals over space give expectation values of the physical observables.

The quantity J° = ¢ty, J° > 0, integrated over a space-like domain gives
the probability of finding the electron in that domain. ® The quantities J* =
ViyvovE e (k = 1,2,3) give the current of probability J = vk J¥; they satisfy
the continuity equation

1900 o1t
c Ot azk

The Dirac current J is a future-oriented vector, J2 > 0. ® The time-component
up = 7o - u of the unit vector u = J/vJI2, J% # 0, gives the probable velocity

of the electron,
1

y2
1-&

Ug —

The bivector § = 75*7,, 7 is usually interpreted as the electromagnetic
moment density, while it gives the probability density of the electromagnetic
moment of the electron.

4 The quantities ¥!4py#1) are actually quadratic in ¥. Also their polarized forms ¥!yov* ¢
are not bilinear but rather sesquilinear, while anti-linear in .

5 Or rather the probability multiplied by the (negative of the) charge of the electron. In the
case of a large number of particles J° can be interpreted as the charge density.

6 Recall that J2 = (J%)2 — (J1)? — (J?)2 - (J3)2.

7 This is a shorthand notation for S = % v SHYyu = ZM<V SHyup.



138 The Dirac Equation

The vector K = K#v, is space-like, and such that K? = —J2. It is ortho-
gonal to J, K -J = 0, and gives the direction of the spin of the electron, the
spin vector %hK/\/_—W, K? # 0. Note that K* = ¢lyoy*iv0123%.

The first and last of the bilinear covariants were combined into a single
quantity by de Broglie:

I Q = Q1 + Q270123 I

Note that Qs = —9tyoy0123%.

SPINORS IN IDEALS

Here we shall take a new view on spinors and regard them as elements of
minimal left ideals, 8 first in matrix algebras, then in complexified Clifford
algebras, and finally in real Clifford algebras.

10.2 Square matrix spinors

Usually the wave function is a column spinor 1 € C*, but we shall also regard
it as a 4 x 4-matrix with only the first column being non-zero; that 1s, ¢ €
Mat(4,C)f where f is the primitive idempotent °

1 0 0O
1 1 . 0 0 0O
0 0 0O
More explicitly, a Dirac spinor might appear as a column spinor or as a square
matriz spinor: 1°
¢1 ¢1 0 0 0
Py v, 0 0 0
= = t(4
¥ vs €C* o Ys 0 0 0 € Mat(4,C)f
P4 vs 0 0 O

8 We shall reject ideal spinors later in favor of spinor operators.
9 The factors %(1 + ) and %(1 + i712) are energy and spin projection operators.
10 We replace column spinors by square matrix spinors in order to be able to get everything
— vectors, rotations and spinors — represented within one mathematical system, namely
the Clifford algebra.
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where o € C. In the latter case ¢ = 91 f1 + Vo fo + Y3 fa + ¥4 fs expressed in
a basis of the complex linear spinor space S = (C ® C¢y 3)f,

fi =31+ +im12 + i7012) =/

f2 = (s + 723 — Yo1s +iv028) = —msf,
fa= (¥ — Y03 + im123 — iv0123) = —yosf,
fa = (m — 172 — Yo1 + i702) = -v0f.

We write 12 = v172 [# im172] and Y0123 = Yo117273-

10.3 Real structures and involutions

Although we have an isomorphism of real algebras C® Mat(4,R) ~ C® Cfy 3,
the complex conjugations are not the same in C® C¢; 3 and C ® Mat(4,R) ~
Mat(4,C). In the matrix algebra Mat(4,C) we take complex conjugates of
the matrix entries u* = (ujx)* = (uj,), whereas in the complexified Clifford
algebra C®C¥{; 3 complex conjugation has no effect on the real part C¢; 3, and
we have u* = (a +1b)* = a —ib for a,b € Cf; 3. Thus there are two different
complex conjugations (real parts) in the algebra CQ®C¢; 3 ~ Mat(4, C). This is
referred to by saying that there are two different real structures ! in the same
complex algebra.

To make this point more explicit, the following table lists some correspon-
dences of involutions.

(C®C€1,3 I Mat(4,(C)

complex conjugate u* '701311*’70_113
Y013%*Yg15 u* complex conjugate
grade involute i Yo123%Y5123
reverse i ‘)’1:«3“1-‘)’1_:«31
Clifford-conjugate 7 Yozt ¥op
Y13iy5 u' transpose
Yot vy ! ul = «*T  Hermitian conjugate
a* Youly;!  Dirac adjoint

An element u = (u)o + (u)1 + (u)s + (u)s + (u)s € Cf; 3, decomposed in

11 Not to be confused with the complez structure of an even-dimensional real linear space, a
real linear transformation J such that J2 = —1.
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dimension degrees (u); € /\k R13, has three important involutions:

% = (u)o — (u)1 + (u)2 — (u)a + (u)s,  grade involution,

@t = (u)o + (u)1 — (u)2 — (u)s + (u)s,  reversion,

%= (u)o — (u)1 — (u)2 + (u)a + (u)4,  Clifford-conjugation.
The reversion and Clifford-conjugation are anti-automorphisms satisfying uv =

U1, U0 = Vi, whereas the grade involution is an automorphism 4o = 9. These
three involutions are extended to C ® C¢; 3 as complex linear functions, that
is, for A € C and u € Cl; 3 we have (Au)" = A, (Au)” = A, (Au)” = Ag,
whereas the complex conjugation is by definition anti-linear: (Au)* = A*u.
Complex conjugation is of course an automorphism, (uv)* = u*v* for u,v €

C®Cls.

10.4 Comparison of real parts/structures

Note that the real part and the complex conjugate of a Dirac spinor depend
on the decomposition (in the real structure) singling out the real part. For

¥ € Mat(4,C)f:

Re(1) 0 0 0 5 0 0 0

| Re(2) 0 0 0 . |vs 000

Re(¥)=1 Re(ys) 0 0 0]° ¥ =lu 0 0 0
Re(y4) 0 0 0 ¥, 0 0 0

For ¢ € (C®Cly 3)f [viewed as a matrix]:

$1 —¢3 0 0 0 —43 0 0

1% ¥ 00 oo w 0o
=2 v w ool ¥YTlo w00

Y —¢3 0 0 0 —¢5 0 0

The Dirac spinor 1 might appear as a column spinor 1 € C* or else as a square
matrix spinor ¢ € Mat(4, C)f or as a Clifford algebraic spinor ¢ € (C®Cly3) f
where the last two differ in their real structures.

Important Note. To indicate in what real structure the real part and the
complex conjugate are taken we write

Re(¢) in Mat(4,C)f and  ¢* in Mat(4,C)f
or

Re(v) in C®Cl 3 and ¥* in C®Cl 3.

Other contextual indicators are the Hermitian conjugation [either v, is a row
spinor or else it is in Mat(4, C)] and for instance the reversion [the composite
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of the reversion and the complex conjugation 1/~1* in C-® Cf 3 corresponds to
¥y in Mat(4, C)].

The reader should also observe that the real part Re(y) in C® C¢; 3 carries
the same information as the original Dirac spinor ¥ € C* [in contrast to Re(t))
in Mat(4, C)f]. 1

Ezercises 1,2,3,4,5

10.5 Bilinear covariants via algebraic spinors

For a column spinor ¢ € C* the Dirac adjoint is a row matrix
Pl = (¥ 5 —v3 —¥i)

but for a square matrix spinor ¥ € Mat(4,C)f the Dirac adjoint is a square
matrix

1 ¥ —v¥3 ¥
0 0 0 0
ta, — ta—1
"p 70 - 70/‘11 ‘YO - 0 0 0 0
0 0 0 0

with only the first row being non-zero.
The components of the Dirac current can be computed as follows for column
spinors, square matrix spinors and Clifford algebraic spinors

Ju = Plyovu ¥ e C
= trace(¥1y0yu¢) ¥ € Mat(4,C) f
= trace(7, %% v0) = K1 ¥¥'0)o
= 4 Wbd")o Y€ (COCha)f
where the factor 4 appeared because
1000
f=:i-(1+‘Yo+i’712+i‘Yo12)= g 8 8 8
0 0 00

has scalar part %, that is, (f)o = 1, while trace(f) = 1. The current vector is
the resultant

I =Ty = v 4y v0)o ¥ € Mat(4,C)f
= 7 (Yu - (4% 70))o = 7 <Yu, T y0>
= (4o Ju=-3

= (499* ) ¥ € (C®Cl a)f.
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Similarly 1 € C* carries a real bivector S with components

Su = ¢t70i7;w¢ (’Y;w =YW #F i'y,,'y.,)

for which S,, =—v,, 1S and S = % " . In various formalisms
S = Py0ivuy pect
= trace(¥!yoivuu ) ¥ € Mat(4,C) f
= trace(iy, Y1 v0) = 4(ivuw ¥t yo)o
= Hivu PP Yo $ € (C®Cls)f
S = 37" S = 57 4w i o) 4 € Mat(4,C) f
= 37 (i 4 (4991 %0))o S = =Y '8
= M <=y, 4Py > <u,v> = (i dv)g
= (~idyyply0)2 = —i(49yty0)2
= —i(4y9*)s ¥ € (CQCla)S.

The Dirac adjoint ¥4y of a column spinor ¢ € C* corresponds to ¥* of an
algebraic spinor ¢ € (C ® C¢; 3)f. The current vector J and the bivector S
are examples of bilinear covariants listed below for a column spinor ¥ € C*
and for an algebraic spinor ¥ € (C® Cly 3)f.

= ¢lyey = 4P P)o = 4¥d* o
Ju = Pl y7u = 44" %)

Suv = Vit = 4  ivwdlo Vv = VuVo F VW
K, = 9100701237, = 44" 70125740 K=K,y
Q2 = — ¥ y0v0123% = —4(¥*Yo123%)0 Y0123 = Y0Y17273-

Later we shall need the following aggregate of bilinear covariants Z = Q, +J +
i8S + iKv0123 + (2270123

SPINORS AS OPERATORS

Here we shall view spinors as new kinds of objects: rather than being some-
thing which are operated upon they are regarded as active operators. The
big advantage is that the physical observables, which were earlier calculated
component-wise, can now be obtained at one stroke.
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10.6 Spinor operators ¥ € C[f,s

We will associate to a Clifford algebraic spinor ¢ € (C® Cf;,3)f [viewed here
as a matrix] the mother spinor [this will be the mother of all real spinors]

Y1 —¢; 0 0
Y2 Y1 0 0
®=4R =2
W=21y w00
Ya =3 0 0
and the spinor operator
Y1 —Y3 Y3 Y
Y2 Yl Ya —Y3
¥ = even(®) =
(@) Y Yy -
Ya —Y3 Y2 Y
From the mother spinor ® € C[l,s%(l +70) we may reobtain the original Dirac
spinor
1 .
¥ = <I>Z(1 +iy12) €E(CQCls)f
[that is, the square matrix spinor, not the column spinor], and from the spinor

operator ¥ we may reobtain the mother spinor ® = ¥(1++) and the original
Dirac spinor

1 1 ,
lﬁ = \1’5(1 + 70)5(1 + 1‘)/12) (S ((C ® 0[1,3)f.
Note that the spinor operator is invertible if

[9a[* + [al” — [9sl” — [Yal* # 0 and  2Im(yies + ¢594) # 0,
or equivalently W # 0, the inverse being
-1l i
LA

Multiplication by i = v/—1 corresponds to right multiplication by the bivec-
tor

i 0 0 0

o =i 0 o0
Yo = 0 0 i 0 ’

0 0 0 —i

that is, i) = 9yoy; for ¥ € C*. In other words, the real part of i), ¢ €
(C®Cly 3)f, is the mother spinor ®+,7y; whose even part is the spinor operator

U271, 4Re(even(iv))) = ¥ypy.
Decompose the mother spinor ® € Cf; 31(1 + o) into even and odd parts
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=P+ P, = (Qo + @1)%(1 + ‘)’0) = %(Qo + @1‘)’0) + %(Ql + Qo')’o). It follows
that & = ®;40 and ®; = Po7y. Taking the real part [in C ® C¢; 3] of the
Dirac equation (10 — eA)y = my) results in

O®vy2v1 — eAD = md,
which decomposes into even and odd parts [® = even(®), ®; = odd(®)]
%oy —eA®o=m®;1  [®1 = Pov0),
3@1‘)’21 - eA<I>1 = m<I>0 [¢0 = q)l“/o].

Therefore, the even part of the mother spinor, the spinor operator, satisfies the

equation 12

P99 — eA¥ = m¥y, I

where ¥ : RY® — Cf} ;. In this Dirac-Hestenes equation the role of the Dirac
column spinors is taken over by real even multivectors, which are not in any
proper left ideal of the Clifford algebra C#¢; 3.

Comments. 1. Under a Lorentz transformation x — sx§~!, s € Pin(1,3),
x € R3] a Dirac spinor ¢ € Mat(4,C)f ~ (C® Cl1 3)f transforms according
to ¢ — s, and a spinor operator ¥ € C[{s transforms like this:

¥ — s¥ when s € Spin(1,3),
¥ — s¥y when s € Pin(1, 3)\Spin(1, 3).

This can be seen by the definition ¥ = 4Re(even(y)) and using ¢ = ¢f,
f=3(1+7)3(1+in2).

Note that the so-called Wigner time-reversal is not represented by any s €
Pin(1, 3)\Spin(1, 3).
2. The Dirac-Hestenes equation has been criticized on the basis that it is
not Lorentz covariant because of an explicit appearance of the two basis ele-
ments 9 and <;2. This criticism does not hold. The Dirac-Hestenes equation
is Lorentz covariant in two different ways: first, we can regard 49 and 72
as constants and transform ¥ to s¥; secondly, we can transform g, ¥12 to
570571, sy12s™! and ¥ to s¥s~!, s € Spin, (1,3).
3. In curved space-times spinor fields/bundles [functions with values in a mini-
mal left ideal of a Clifford algebra] exist globally only under certain topological
conditions: the space-time must be a spin manifold [have a spinor structure]. It
has been argued that since even multivector functions exist on all oriented man-
ifolds, the theory of spin manifolds is superfluous. This argument is misplaced
since v and 412 do not exist globally.

12 Note that 4Re(even(xy)) = xT+p for x € R,
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However, the physical justification of the theory of spin manifolds could be
questioned on the following basis: why should we need to know the global
properties of the universe if we want to explore the local properties of a single
electron?

4. The explicit occurrence of v and 412 is due to our injection C* — § =
(C® Cty,3)f. In curved manifolds it is more appropriate to use abstract rep-
resentation modules as spinor spaces and not minimal left ideals [nor the even
subalgebras] of Clifford algebras. The injection ties these spaces together in a
manner that singles out special directions in R3. ]

10.7 Bilinear covariants via spinor operators

Write as before ¥ = 4 Re(even(v)) [real part taken in C ® C¢; 3]. Because of
the identities 13

Y = Q) + Q20123

Uy ¥ =7,
Uy¥ =8, Uy03¥ = —S7o123,
Uy3¥ = K, Uy012¥ = K123,

we call ¥ a spinor operator. In the non-null case 22 # 0 the element W
operates like a Lorentz transformation composed with a dilation [and a duality
transformation]. In coordinate form

Q1 + Q270128 = ¥¥ = VY,

Ju= (‘i"‘/n‘I"YO)O = (‘i"Y#‘I’) Yo,

Suy = _(‘i'7nV‘I"Yl2>0 = (‘i"Y;u/‘I’) * 12,
Ky = (7, ¥73)0 = (¥7012374 ¥) - Yo12-

For later convenience we introduce P = Q + J, Q = Q1 + Q3%0123, and
Q =S + Kv0123. We have the following identities:

Y(1+7)¥ =P, (1 +7)712¥ = Q,
(1 +9)7;5% = Qs (ijk cycl.,, Q3= Q),
Y(1+7)(1+im2)¥ =2 [=P+iQ].

Hestenes 1986 p. 334 gives P,—Q and Z in (2.26), (2.27) and (2.28).
Exzercises 6,7,8

13 The Dirac-Hestenes equation ¥4, —eA¥ = m¥~g contains ~21,70 explicitly. It follows
that ~p,y12 must be explicit in J = Uy ¥, S = ¥yo V.
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10.8 Higher-dimensional analogies for spinor operators

In the case of the Minkowski space-time R!3 the spinor space is a minimal left
ideal (C®C#y,3)f induced by the primitive idempotent f = 1(1470)3(1+iv12).
In the primitive idempotent we have projection operators for energy -;—(1 +90)
and spin %(1 + éy12). In other words, spin is quantized in the +3-direction or
more precisely in the 7;72-plane.

In the case of a higher-dimensional space-time, say R1:®> with an orthonormal
basis {¥0,71,---,7s}, the spinor space is a minimal left ideal (C ® Cl1,5)f
induced, for instance, by the primitive idempotent

1 1 ) 1 .
f= 5(1 + '70)5(1 + ’5’7’12)5(1 + i¥34).

The spin is quantized in the 7;92-plane and the 4374-plane. The procedure of
taking the real part and the even part does not result in an invertible operator,
since 4 Re(even(f)) = 3(1 — v1234). In other words, for a spinor in a minimal
left ideal ¢ € (C ® Cfy1,5)f the ‘spinor operator’ is also in a left ideal, ¥ =
4Re(even(y)) € C£f53(1 — ¥1234). We conclude that there is no analogy for
spinor operators in higher dimensions.

Appendix 1: Discussion on the role of i = /-1 in QM

Are there superfluous complexr numbers in the present formulation of quantum
mechanics? Is it possible to get rid of some complex numbers in QM? To
answer these questions, we present analogies which become step by step closer
to the present situation in quantum mechanics.

Analogy # 1. Consider someone who uses only the line y = z in the complex
plane C, that is, someone who does not use all the complex numbers z = z+ 1y,
but instead restricts himself to complex numbers of the form z+iz. This person
could equally well restrict himself to the real axis and consider instead only the
real part £ = Re(z + iz). In terms of the picture

Im y==z

z+iy=z+ix while y==z

Re

z

this would mean a projection from the line y = z onto the real axis y = 0 with
no information lost.
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This analogy/picture could be criticized by arguing that the product w of
two complex numbers of the form z + iz is not of the same type, that is,
Re(w) # Im(w). ]
Analogy # 2. The sums and products of matrices of type

1{z =
X=3 ( )
provide an isomorphic image for addition and multiplication of the reals z € R.

It is of course more economical to use just the real numbers z € R instead of
the real 2 x 2-matrices X € Mat(2, R). 1

Analogy # 3. If we have a complex matrix
1 <z+iy —y+iz)
S=- . ,
2\y—iz z+41y
then the real part, multiplied by two, Z = 2Re(S), that is,

=(5 7)
y z
obeys the same addition and multiplication rules as S and carries the same
information as S [contained in the pair (z,y)]. Note that for a complex number
z

z = z + iy we have § = (I — 03), where the matrix f = %(I — 03) is an

idempotent satisfying f? = f. ]
Situation in QM. In the present formulation of quantum mechanics one uses
column spinors 1 € C*, which could be replaced without loss of generality by
spinors in a minimal left ideal of the complex Clifford algebra ¢ € (CQ C¢1 3)f,
f= %(1 + 'yo)%—(l + #y12). Spinors in minimal left ideals ¥ € (CQ Ct3)f
can be replaced without reduction of information by spinor operators ¥ =
4Re(even(y)) € Cli"’s. No information is lost in this replacement, because the
original spinor can be recovered as ¥ = ¥f, f = %(l +'yo)%(l + 712)- 1

Appendix 2: Real ideal spinors ¢ € Cf; 3 3(1 — 703)

This appendix is included mainly for historical reasons. The concept of a spinor
operator ¥ € Cli"’s was introduced by Hestenes 1966. In his invention he used
as an intermediate step the real ideal spinor

1 1
6=7 5(1 —03) ECly 3 '2-(1 — %Yo3)

and not the mother spinor ® € Cl1 3 3(1+70), ® = 4Re(¢), ¢ € (CRCly 3)f.
The ideal spinor contains the same information as the mother spinor, since
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® = ¢(1 + 7). Note that ¢ = ®3(1 — y03) or ¢ = 2Re(9)(1 — vo3) which
implies ¢v291 = 2 Re(i))(1 — vo3), and so the Dirac equation has the form

0¢v21 = (eA + m)g, PEClh3 %(1 — Yo3).

In contrast to the mother spinor ®, the real ideal spinor ¢ satisfies ¢vg123 =
¢7v21, and so we could rewrite the Dirac equation in the same way as Hestenes
1966:

O¢yo123 = (A + m)¢.

Comments. The ideal spinors might be useful in conjunction with conformal
transformations of the Dirac equation. Decompose the ideal spinor ¢ = ¢o+ ¢,
into its even and odd parts and separate the parts,

dboYo123 = eAdo +mé1, o = even(¢) € CLf 5 3(1 — vo3),
0¢170123 = eAd1 + mdo, ¢1 =o0dd(4) € CL] 4 3(1 = v03),

which can be put into the matrix form

(‘70123 0 ) ( 0 3) (¢0 0)

0 —vo123 -0 0 $1 0
_ 0 A\[(¢o O 1 0 0 0
“e(—A 0)(¢1 0)+m(0 —1) (¢1 0>’

where we have used the fact that the matrix

('70(1)23 _72123) commutes with (_Oa g) and (j? 8)

and takes the role of an overall commuting imaginary unit +/—1. ]
Exzercises 9,10

Historical survey

Pauli 1927 and Dirac 1928 presented their spinor equations for the description
of the electron spin. Juvet 1930 and Sauter 1930 replaced column spinors by
square matrix spinors, where only the first column was non-zero. Marcel Riesz
1947 was the first one to consider spinors as elements in a minimal left ideal of a
Clifford algebra (although the special case of pure spinors had been considered
earlier by Cartan in 1938).

Giirsey 1956-58 rewrote the Dirac equation with 2 x 2 quaternion matrices
in Mat(2,H) [Lanczos 1929 had used pairs of quaternions, see Gsponer & Hurni
1993}. Kustaanheimo 1964 presented the spinor regularization of the Ke-
pler motion, the KS-transformation, which emphasized the operator aspect
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of spinors. This led David Hestenes 1966-74 to a reformulation of the Dirac
theory, where the role of spinors [in columns C* or in minimal left ideals of the
complex Clifford algebra C® Cf; 3 ~ Mat(4,C)] was taken over by operators
in the even subalgebra Cfi"’s of the real Clifford algebra C¢; 3 ~ Mat(2, H).

Exercises

1. Show that for u € C® Cf; 3 the real part Re(u) corresponds to
3 (u + 013" ¥513) € Mat(4,C).

2. Show that if u € C® C{, 3 satisfies the condition u = u é—(l + i712) then
u = Re(u)(1 + iy12) and iu = uyam.

3. Show that Im(’l,b) = Re(’l,b)‘)’lg mC ®C£1,3.

4. Show that the charge conjugate )¢ = —iy2¢* of the Dirac spinor
¥ € Mat(4,C)f corresponds to ¢ = Py € (C®Cl3)f.

5. Show that although for ¢ € Mat(4,C)f, Re(¢) € Mat(4,C)f, for a
non-zero ¥ € (C® Cl13)f, Re(v) & (CQCly 3)f.

6. Show that in terms of the ideal spinor ¢ = ® %(1 —703) €ECly 3 %(1 — %03),
where ® = 4Re(v)), the bilinear covariants can be expressed as

Q= (¢d70)0 = (68) - 73,

Ju = <$"/n¢70)0 = ($7n¢) “73

Sy = _($7yV¢7123)0 = —($Yu$)3 - Y128,
K, = —{(¢7o1257u9N123)0,

Qs = —($Y01236%0)0

and the aggregates P =Q+4J and Q = S + Kvo123 as

709 = ¢3¢ = P,
708 = 7136 = —QY0123, Q = ¢v1239.

[Hestenes 1986 p. 334 gives P in (2.26) and —@Q in (2.27) ]

7. Show that ¢4, ¢4, $16, ¢mé, 724, $724 all vanish.

8. Show that for a different choice of sign in ¢ = ® 2(1 — Yo3), namely
@ = ®1(1+ v3), we have pyp = P = —py3¢ and
P3P = —QY0128 = —PYop-

9. Show that ¢ =& -é—(l — 7s).

10. Show that ¢ = ¥ %(1 + ‘)’0)(1 - ‘)’03).
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11

Fierz Identities and Boomerangs

Fierz identities are quadratic relations between the bilinear covariants (or phys-
ical observables) of a Dirac spinor. They are used to recover the original Dirac
spinor from its bilinear covariants, up to a phase. The Fierz identities are suffi-
cient to examine the non-null case, when either 1yt # 0 or ¥!yov0123% # 0.
However, they are insufficient for the null case when both !y = 0 and
¥ 90701239 = 0. In this chapter, we introduce a new object called the boome-
rang, which enables us to study also the null case.

11.1 Fierz identities

The bilinear covariants satisfy certain quadratic relations called Fierz identi-
ties [see Holland 1986 p. 276 (2.8)]

JZZQ%+Q§, K?2=-J?
J.K=0, JAK = —(Q2 + Q170123)S.

In coordinate form the Fierz identities are as follows [see Crawford 1985 p. 1439

(1.2)]

JuJ# = Q2 + Q2 JuJ#P =—K, K*#
JuK#* =0, JuKy — KuJy = —Q2Su + Q1(x8)
where (%S)u = —%€“uaﬁsaﬁ (with €123 = 1) or xS = Sv0123 [in general,

*v = §90123 given by u A*xv = <u, v>Y AN AY2AY3].

In the non-null case  # 0 the Fierz identities result in [Crawford 1985 p. 1439
(1.3) and 1986 p. 356 (2.14)]

SLI=MK, SLK =Q,J
(701235) L) = Q]K, (“/01235) LK = Q]J

152
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S1S=0Q%-Q2 (Y01238) 4 S = 2Q; 9,
and
JS = —(Q2 + y0123) K, KS = —(Q3 + Q140123)J
SJ = (2 — Q1y0123)K, SK = (Q2 — Q170123)J
8% = (Q2 - Q1’7012:«3)2 = Qg - Q% — 21020123
S~1 = ~S(Q — Qyy0125)2/(2F + B)? = KSK/(Q] + 03)2.
In the index-notation some of these identities look like
Ju S = —Q KV, Ju (xS = 1 KY
S1S=—18,,8% =0} - Q2
(%8) 18 = =2 (%S) w S** = F€uvapSH’ 5P = —20,Qs.

Note also that in general SLK = —K 18, v123(SAK) = (10123S) L K =
—(*S) LK=KI (*S), ’)’0123(5 A S) = (701235) 18 = —(*S) 1S and that
(JIS)AS=3TI(SAS).

Fierz identities via spinor operators. By direct computation we can see
that

32 = (Uyo¥)(Ty0¥) = Ty Wy ¥ = Ty (Q + Qov0123) 70 ¥
= ¥(Q — Davo123)Y0%0 ¥ = (1 — Q2Y0123) V¥
= (@1 — Qav0123) (1 + V2y0123) = N2 + Q2
which gives one of the Fierz identities. Computing in a similar manner we find
JK = (Uy¥)(Ty3F) = Uy U ¥ya¥ = Uyo(Q1 + Dayo123)73 ¥
= U(Q — Q270123) 7013 ¥ = — (1 — Q270123) ¥y012372 ¥
= —(2 — D2790123) Y0123 ¥712¥ = —(Q2 + D170123) S.

Since the result is a bivector, we find that JAK = —(22 + Q170123)S and
J-K=0. 1
Ezercise 1

11.2 Recovering a spinor from its bilinear covariants

Let the spinor 1 have bilinear covariants €y, J, S, K, Q, [a scalar, a vector,
a bivector, a vector, a scalar]. Take an arbitrary spinor n such that 7*¢ # 0
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in C® Cf 3 or equivalently nfyo1) # 0 in Mat(4,C). Then the spinor ¢ is
proportional to

Y~ Zn where IZ = Q +J + 1S + iKvyo123 + Q270123 I

that is, ¢ and Zpy differ only by a complex factor. The original spinor ¢ can
be recovered by the algorithm [see Takahashi 1983, and Crawford 1985, who
also gave a proof in the non-null case Q # 0]

_ 1
N =i Zn)o = 5V 2Zn
) 4 1
L Iy -2 O |
€ 7 (T ¥ho = % 7' 0¥
1 —ta
[For the choice n = f we get simply

1
N=\/(Zf)o=5\/Q1+J"70—S—"712"K"73
e_iazﬂ_

[’

which are not the same N, e~'* as those for an arbitrary 5.] Once the spinor
1 has been recovered, we may also write

N = 4(7*¥)ol = In'y09|

e AT _ 10
[(7*¥Yol — InTyodpl”

A spinor v is determined by its bilinear covariants €, J, S, K, 3 up to a

phase-factor e~**, and
Z =M +J+18 4+ K123 + Q270123

projects/extracts out of 5 the relevant part parallel to 1.

Recovery via mother spinors & € Ch 3 %(1 + 70). Take two arbitrary
elements in the real Clifford algebra, a,b € Cl s, in such a way that ¢ =
(a+ib)f, f=2(1+7)3(1 + 712)- Then ¢¢* =0 and

U* = (a+ib)f(d — ib) = afd + bfb + i(bfa — afb)
= 1(agd + bgb — bgyi2d + agyizb + i(agyizd + bgm12b + bgd — agh))

where we have written g = %( 1 ++p). Next, we introduce a real spinor, called
the mother spinor [for all real spinors]

1
@ = (a—byi2)(1+7) € Cls5(1+ Y0)-
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Compute ®® = 0 and
P = 4(a — by12)g9(a + 7125) = 4(agd + agyi2b — bgv128 + b_qE)
to find
1
2

Recall that Z = 4¢1,Z* is sufficient to reconstruct the original Dirac spinor
and conclude that the real mother spinor ® € Cf; 3 %(1 + 7o) carries all the
physically relevant information of the Dirac spinor 1. In fact,

®® = 4Re(4¢*), and similarly %Qmé = 4Tm(y9*).

Yv=20 i(l + i‘ylg) and @ = 4Re(¢)

where the real part is taken in the decomposition C ® C¢; 3 [and not in the
decomposition C ® Mat(4,R)].

Write as before Z = P + iQ) where P = Q2+ J and @ = S + K~p123. We
will show how to recover the real mother spinor ® from its bilinear covariants

[§=9=3(1+):
N= 56— Quaao, o= (@) Aosia

1
gy (P = Qm2)e™%g
[the same N as for the choice f € C® Cf;3] or for an arbitrary spinor 5 €

czl,Sg; 17@ # 0)

P =

~ 1, . -
N = \/3(Pr—Qmuallo, €% = L () Avos)es
1
®= W(Pﬂ - Qnmaz)e™* %y

[ € (C®Cl3)f and n=2Re(n’) result in the same numerical value for N].
Note that the role of i = /=1 is played by multiplication by y27; on the right
hand side, that is, ®y2y1 = 4Re(i9)).

Ezercises 2,3,4

11.3 Fierz identities and the recovery of spinors

It might be interesting to know if given multivectors 2, J, S, K, Q, [a scalar,
a vector, a bivector, a vector, a scalar] are bilinear covariants for some spinor.
The answer is postponed to the next section in the case Q; = 0 = Q5. Writing
Q = Q1 + Q290123, we are left with the remaining case €2 # 0, in which we can
say that the multivectors are bilinear covariants essentially if they satisfy the
Fierz identities.
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If the multivectors ©,, J, S, K, Q5 satisfy the Fierz identities, then their
aggregate
Z =M +J 418 + K123 + Q2790123
can be factored as [see Crawford 1985 p. 1439 (2.2)] !
Z = (Q1 +J + Qyo123) (1 + i(Q1 + Q2v0123) " Kvo123)-

This factorization is valid only in the non-null case Q # 0. Using this factor-
ization Crawford proved that if the multivectors Qy, J, S, K, Q, satisfy the
Fierz identities [and J° > 0 with 4(7*Zn)o = n'y0Zn > 0 for all non-zero
spinors 7], then Qi, J, S, K, Q5 are bilinear covariants for some spinor ¥, for
instance,

_ 1
v=_5Zn N =V(itZne =5V v02n

[and two such spinors 3 obtained by distinct choices of 5 differ only in their
phases].

Hamilton 1984 p. 1827 (4.2) mentioned how v determines Z = 493! yq, see
also Holland 1986 p. 276 (2.9), Keller & Rodriguez-Romo 1990 p. 2502 (2.3b)
and Hestenes 1986 p. 334 (2.28).

11.4 Boomerangs

Definition. If the multivectors 4, J, S, K, Q3 [ascalar, a vector, a bivector,
a vector, a scalar] satisfy the Fierz identities, then their aggregate Z = Q; +
J + 1S + iK40123 + Q270123 is called a Fierz aggregate. 1

Definition. A multivector Z = Q4 +J+iS+iK~0123 42270123, which is Dirac
self-adjoint Z* = Z, is called a boomerang, if its components Q,, J, S, K, Q»
are bilinear covariants for some spinor ¢ € C*. 1

Both in the non-null case @ # 0 and in the null case & = 0 a spinor ¥
is determined up to a phase-factor by its aggregate of bilinear covariants Z =
Q1 +J+iS+iKvo123+Q270123 [as ¢ = gye~**Zn], which in turn is determined
by the original spinor % via the formula Z = dpy* = 4pptyo [thus we have a
boomerang, which comes back].

If Z is a boomerang so that Z = 4441~y then Z2 = 4Q;Z where Q; = (Z)o,
because

1 In Crawford’s factorization Z = (2 + J)(1 + 127 Kvp123) the first factor P = Q + J
is Dirac self-adjoint, }5_' = P. Writing I' = 1 + 1KQ 4123, we can write Crawford’s
factorization as Z = PI'*, and note that PI'* = I'P # PI'. Crawford 1985 posed an open
problem of decomposing Z into a product of two commuting Dirac self-adjoint factors.
This problem is solved at the end of this chapter.
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= ATy 4pptyo = 169(3T o)t vo
= 16 trace(yTyo) 1ot yo [since ¢tyoyp = trace(yivyoe)f)
= 16 trace(vip! vo) Y1t vo = trace(4yyT o) 4ypept~o.

Conversely if Q; # 0 then Z% = 4Q,Z ensures a boomeranging Z. If Z is a
Fierz aggregate and Q # 0, then it boomerangs back to Z. Crawford’s results
say that in the non-null case 2 # 0 we have a boomeranging Z if and only if Z
is a Fierz aggregate. However, in the null case Q = 0, there are such Z which
are Fierz aggregates but still do not boomerang [for instance Z = J, J2 = 0,
J £0].

If @ =0 and J, S, K satisfy the Fierz identities, then for a spinor con-
structed by

P = Zn where Z =J+iS + iK7yo123

we have in general Z ;é 44p* (the Fierz identities are reduced to J2 = K2 = 0,
J.K = JAK = 0 which impose no restriction on S). Even if the Fierz
identities were supplemented by all the conditions presented in section 12.2
(in the non-null case these conditions are consequences of the Fierz identities)
these extended identities would not result in a boomeranging Z. To handle also
the null case @ = 0 we could replace the Fierz identities by the more restrictive
conditions

2% =402, ZywZ =4J,2, Zivy Z = 45,, 7,
ZI.‘)’0123‘)’,‘Z = 4.[{“2, Z70123Z = —4QZZ
[see Crawford 1986 p. 357 (2.16)], but this would result in a tedious checking

process. If Z = J 4 iS + iK~p123 is a boomerang, then Z% = 0, and so each
dimension degree vanishes,

(2% =32 -S1S —K?

(Z%)1 = +270123(S AK) K in the plane of S
(Z%)y = +i270123(J AK) J and K are parallel
(Z%)3 = +i2I A S J in the plane of S
(Z%)g=-SAS S is simple.

The bivector part implies that J and K are parallel, the 4-vector part implies
that S is simple, and the vector and 3-vector parts imply that J and K are
in the plane of S. Altogether we must have

| Z = J(1+is + ihyo123) |
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where A is a real number and s is a space-like vector orthogonal to J, J-s = 0.
We again compute Z% = J%(1 + (s + h+o123)?) = 0 and conclude that either

1. J2=0 or else
2. (s + hyo123)® = —1.

Neither condition alone is sufficient to force Z to become a boomerang [Z is
not even a Fierz aggregate if J? # 0]. However, such a Z is a boomerang if
both conditions are satisfied simultaneously.

Counter-examples. 1. In the case Q; = 0, the element Z = J — Q370123,
J2 =Q2 > 0, is such that Z2 =0, but Z is not a Fierz aggregate.

2. Z=J+1iS with J2> 0, S = 4p123Js, J-s = 0, s> = —1, is not aFierz
aggregate, and Z2 # 0, but we have Zv123Z = 0.

3. Z=J+4iS+iK~yp123 where J2=K? =0, J-K=0, JAK =0, SAS#£0,
is a Fierz aggregate but does not satisfy 22 =0, Zv0123Z = 0.

4. 7 = J(l + is + ih‘)’0123) with J2 = 0, J.s =0, (S + h‘)’0123)2 :,é -1, is
a Fierz aggregate and satisfies Z2 = 0 and Zv0123Z = 0, but still we do not
have a boomeranging Z. |

Throughout this chapter we assume that ,, J, S, K, Q; are real multivectors
or equivalently that Z = Q; +J + 1S + iK~o123 + Q270123 is Dirac self-adjoint
[Z* = Z or in matrix notation y0Ztyo = Z]. This implies that n'yyZn [=
4(71* Zn)o) is a real number for all spinors 7.

For a boomerang Z we have n49Zn > 0, for all spinors 7, and also J° > 0
[the grade involute 7 of Z is such that (Z)o-'yo < 0 and 4(17"‘217)0 = 17770217 <
0].

Theorem. Let Z be such that nf~yyZn > 0 for all spinors 7, and that J° > 0.
Then the following statements hold.

1. Z is a boomerang if and only if Zy°Z* = 4J°Z or equivalently
ZZ'y0 = 4J°2Z.

2. In the non-null case  # 0, Z is a boomerang if and only if it is a Fierz
aggregate.

3. In the null case @ =0, Z is a boomerang if and only if
Z = J(1 +is + ihvo123) where J is a null-vector, J2 = 0, s is a space-like
vector, s < 0 or s = 0, orthogonal to J, J-s =0, and & is a real number

such that h = £v/1+5s2, |h] < 1. ]

The condition Z4°Z* = 4J°Z could also be written with an arbitrary time-
like vector v as follows: ZvZ* = 4(v-J)Z.
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11.5 Decomposition and factorization of boomerangs

Write

P =+ J+ Q70123 Q@ =S + Ky123 = S — y0123K
¥=1- iJK—l’)’olzs =1- iKJ—l‘yolzg [when Q # 0]
so that Z = P +iQ) = PX. Then PY = ¥ P and we have found a solution

to the open problem posed by Crawford 1985 p. 1441 ref. (10). [Crawford’s
second factor in (4.1),

1+i(Q1 + Q2v0123) " Kyo12s = 1 — i(Q2 — Q1y0123) 'K
=1—4S"1J =1+41:J718,
did not commute with P unless Q3 = 0.] In the case Q; # 0 there is another

factorization
Z= P(l +iﬁQ) - P-;—(l +iﬁQ)2

where the factors commute and are Dirac self-adjoint, but in this factorization
the second factor is not an idempotent (even though it behaves like one when
multiplied by P).

11.6 Multiplication by the imaginary unit : = /-1
We have found that i) = ¢y291 (# ¥y0123) corresponds to ®vy2y1 = 4Re(i9))
and further to ¢y271 = ®v2715(1 — Y03). In the non-null case Q # 0 write
§= ‘)’0123JK—1 = J(K‘yom;;)—l =-Q-1§ = Q8§-1
k= —(Qg + 9170123)—11{ =JS1=_8§J°L
[Using pe, = v, ¥, p? = Q} + Q} Hestenes 1986 p. 333 (2.23) gives s =
Yo123€3€0, Boudet 1985 p. 719 (2.6) gives —s = eje;.] Note that
s = U(—y2)¥ ™ = Uyyy ¥l /\2 RS [simple bivector]
k=¥(—v012) ! = Uyo12373 ¥~ € RM2 @ A’ R13

and s> = —1, k2 = —1 and sk = ks. Both s and k play the role of the
imaginary unit (multiplication on the left side):

i = s =k = Pram # Y012 Dirac spinor
s® = k® = Dyamy mother spinor

5¢ = k¢ = dyay1 = dy0123 # é(—v012) ideal spinor
s¥ = k¥yy = Uyyyy spinor operator
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and P = sQ = kQ. [Hestenes 1986 p. 334 (2.24) reports s¥ = ¥v,y; and also
5¢ = ¢yam = ¢‘)’0123-]

Question

Do the conditions Z2 = 0 and Zvp123Z = 0 imply that Z is a Fierz aggregate?

Exercises
1. Compute K2, when K = U~3¥.
Show that

2. Im(¢) = Re(¢)712 in (C@ Cll,g.

3. 13y ® = 4Re(ym19¥) = —4Im(¢y129) [no complex conjugation]
3872® = 4Re(Yy29) = 4Im(719).

4. Qi = 20 P, Q:Q; =22,Qx (ijk cycl) for Qx = 2(®7:®)70123
[P, @1,Q2,Q3 = Q span a quaternion algebra when Q4 # 0].

Show that for Z = 4¢¢*, where ¢ € (C® Cty 3)f, the following hold:

Zy°Z =4J°Z (#0 for ¥ #0).

P‘yOP =2JP = —Q'yOQ.

P‘)’OQ~: Q‘)’QP. .

even(Z2)Z =0, odd(2)Z = 0.

9. 2Z2=0 = P2 =-Q? PQ=QP [no complex conjugation].

10. 22 =0, 22 =40 Z = P?=20,P, PQ =20Q.

11. Z2Z=0 = PP =QQ, PQ=—QP.

12. ZZ =0, Z2*Z = 4Qy0123Z = PP = 2Qyv0123P, PQ = 2Q370123Q.

Write

® N o

K =Q; +iKyo123 + Qav0123, S = Q1 +18 + Q270123
I = P(Q + Q27y0123) 71, T = K(4 + Q27v0123) !

and show that:

13. ¥ = S(Ql + 92‘70123)_1 =1-—1s.

14. T =1 — ik, =1 + ik=1- i(Q] + 92‘70123)—1‘)/0123K.

15. Z=KY =YK =TS = SI*.

16. Z =1IS = ST = IIK = KM [no complex conjugation needed]
= [P = PI™* [this is Crawford’s factorization]
[= PT only if Q3 = 0 since then T = T'*].
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12
Flags, Poles and Dipoles

The classification of spinors is commonly based on representation theory, irre-
ducible representations of the Lorentz group SO+ (1, 3). Thus, one customarily
speaks about Dirac, Majorana and Weyl spinors. In this chapter spinors are
classified in a new way by their bilinear covariants, multivectors of observables.
The new classification is geometric, since it is based on multivectors, and phys-
ical, since it is based on observables. The classification reveals new spinors,
called flag-dipole spinors, which reside between the Weyl, Majorana and Dirac
spinors.

Dirac spinors describe the electron, and for them Q # 0. Weyl and Majorana
spinors describe the neutrino. Weyl spinors are eigenspinors of the helicity
projection operators %(1 % 7o123), and their bilinear covariants satisfy = 0,
S = 0, K # 0. Majorana spinors are eigenspinors of the charge conjugation
operator, ! with eigenvalues &1, and their bilinear covariants satisfy Q =
0, S # 0, K = 0. [Weyl and Majorana spinors are usually introduced by
properties of matrices, see Benn & Tucker 1987 and Crumeyrolle 1990.]

The flag-dipole spinors satisfy 2 = 0 [and cannot be Dirac spinors] and
S # 0, K # 0 [and so they are neither Weyl nor Majorana spinors]. Unlike
Weyl and Majorana spinors, the flag-dipole spinors do not form a real linear
subspace, because they are characterized by a quadratic constraint. There-
fore the superposition principle is violated, and the flag-dipole spinors cannot
describe fermions. It has been conjectured (G. Trayling, Windsor) that the
flag-dipole spinors are related to the quark confinement.

1 The charge conjugation operator C is conventionally defined by C(3) = —iv9* for ¥ €
Ct.
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12.1 Classification of spinors by their bilinear covariants

In the following we shall present a classification of spinors 1 based on properties
of their bilinear covariants 2, J, S, K, 5, collected as

Z = +J+1S + iKyo123 + Q270123

In other words, we classify the boomerangs Z = 4y
Recall that Z = P+iQ, P=Q; +J+ Qay0123, @ =S+ K~o123.

Dirac spinors of the electron:

1. Q1 #0, Q#0: Using P2 = 20:P = —Q? we find the relationship
P = £(-1Q%)//(-3Q?)0 where the sign is given by J° > 0 (and coincides
with the sign of Q). P = kQ, where k = —(Q2 + Q17y0123) K, i) = k.

2. Q9 #0, Q=0: P is a multiple of 5}1—1(91 + J) which looks like a proper
energy projection operator and which commutes with the spin projection opera-
tor %(1 - iK‘yOlgg/Ql). Z = +J+iS+1iKyp123 = (Ql +J)(1 - i’)’0123K/Ql),
S = ‘)’ouaJK/Ql. P = 70123(‘+1KQ’ k= ‘)’0123K/Ql. In this class the Yvon-
Takabayasi angle § gets only two values, 0 and 7; and the charge superselec-
tion rule applies.

3. U1 =0, Q #0: Using P2 = 20, P we find that P is nilpotent: P? = 0.

7 = J+iS+iK‘yo]23+Qz’)’0123, S= —JK/Qz. P= _QLQKQ = :f:KQ/V -K?
(opposite to the sign of €3), k& = —K/Q,.

Singular spinors with a light-like pole/current:

4. U3 =0, =0, K#0, S#0: Flag-dipole spinors. Z =J + iJs — ih~123J,
J2 =0, s is a space-like vector, s2 < 0, orthogonal to J, J-s =0, S = Js
(=JAs), K=hJ, 2 = 1+s?2 <1 (hrea, h #0). P=17J, Q =
J(s + hvyo123), (1+is+1ihyo123)Z = 0. Note that %(1 —is —thvo123)¥ = ¢ and
(14is+ihyor23)9 = 0. Z* = Z and Z2 = 0 imply Z = J(1+is+ihyo123) etc.
Let ¢ = ﬁZn, then Z = 4¢¢~* implies (S+h‘)’0123)2 =—1. P = (s+hv0123)Q,
iy = (s + hyor23) 9.

5 Q=Qy =K =0, S#0: Flag-pole spinors for which Z = J + iJs is a
pole J plus aflag S=Js (=JAs), J-s=0, s2=—1. P=5sQ, iy = si.
The flag-pole spinors are eigenspinors of the charge conjugation operator with
eigenvalues A € U(1), thus C(¢) = M\, |A|=1.

— Write Ky = Uy ¥, Sg = Uv;; ¥ (ijk cycl.) with K3 =K, S3=S. Then
Ki=J, Ky=Kz=0and S; =0, Sy =Js; (= J/\Sz), S3 = Js3 where
S3 = s, S%:—l, s2-s3 = 0.

— Given an arbitrary Dirac spinor ¢ with covariants J, K (and with K, S3)
we may construct, as special cases of flag-pole spinors, two Majorana spinors
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Py = %(1& + 1¢), which are seen to be eigenspinors of the charge conjugation
C(¥+) = +v+, and whose bilinear covariants Ji, Sy satisfy K- Jx = 0,
K-Sy=-QJs and J=J,+J_, S=8S,+S_. [Note that I3 = (I +K;)
and St = (S F Sav0123).] The charge conjugations of ity are C(iyy) =
—iYpy # Y- and C(i-) = iy # £y,

6. Q3 =Qy=8=0, K#0: Weyl spinors (of massless neutrinos) are eigen-
spinors of the chirality operator yp123%+ = +iy. Z = J Fivyo123J, J =
+K, h = 41, 93 = (1 F 1")’0123)¢:t. Note that even(¢i) = ’lﬁi-%(l :F‘)’03),
odd(y4) = 1/’:tg(li‘roa) P = £v0123Q.

— Write K = \Il'yk\Il S, = \Il'y,J\II as before. Then K; = Ky =0, S; = Js;
(=J Asy), Sa=Jsz (=J Asy) where s?=s3=—1, s;-55=0.

~— Given an arbitrary Dirac spinor ¢ with covariants J, K we may construct
two Weyl spinors ¥+ = (1 F iy0123)¢ with covariants Jy = (3 + K),
K+ = (K 4 J). Weyl spinors are pure: 1ﬁ:{:‘)’0123‘yy¢:{: =0 [no complex con-
Jugatlon for arbltrary Dirac spinors ¢1/1 =0, ¢'y,,¢ 0, qb'yousqb = 0 though
PYurt # 0, Pyo1287u% # 0 (and also gt = 0, Pyor287u% = 0, 01289 = 0,
though ¥v,¥ #0, ¥y ¢ # 0)]. C(¥4) is of helicity h = F1 with covariants
Ji, K.

In addition to the above six classes there are no other classes based on distinc-
tions between bilinear covariants. This can be seen by the following reasoning,.
First, we always have J # 0, because J° > 0. Secondly, @ # 0 implies
S # 0 and K # 0. Thirdly, @ = 0 implies Z = J(1 + i(s + hyo123)) where
(s+h+yo123)2 = —1 so that we have a non-vanishing J(s+Av0123) = S+ K7o0123-

Comments:

For classes 1,2 the element ;uli—lZ 1s a primitive idempotent in C® C¢; 3.

Classes 1,2,3 are Dirac spinors for the electron. A spinor operator ¥ has
a unique (up to a sign) polar decomposition ¥ = +/Qu, u € Spin,(1,3). In
particular, writing Ky = ¥y, ¥ we have an orthogonal basis {J, K;, K3, K3}
(K3 = K) of R13.

Class 4 consists of flag-dipole spinors with a flag S on a dipole of two poles
J and K. Class 5 consists of flag-pole spinors with a flag S on a pole J. Class
6 consists of dipole spinors with two poles J and K.

In classes 4,5,6 the vectors J, Ky, Kz, K3 no longer form a basis but col-
lapse into a null-line J (also S;, S, Sz intersect along J). The even elements
J(y0 — sy12 — hy3) and ¥ differ only up to a complex factor  — yv12 (on the
right).

In addition to the electron (classes 1,2,3) the massless neutrino (class 6)
has also been discussed by Hestenes [1967 p. 808 (8.13) and 1986 p. 343] who
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quite correctly observed that J4 = %\II('yo + 73)&1; note also that \ili'y,,‘lli =
(¥4 -J£)(y0F73). Hestenes has not discussed classes 4 and 5. Holland in Found.
Phys. 1986, pp. 708-709, does not discuss classes 3,4,5,6 with a nilpotent Z,
Z?% = 0, but focuses on a nilpotent 1, 12 = 0.

Majorana spinors ¥ € C€} 3 3(1 F y01) are not stable under the U(1)-gauge
transformation ¥ — We*112 ¢ C[l"’a %(1 F Yo1)-

Given a Weyl spinor 1 with bilinear covariants J, K we can associate to
it two Majorana spinors ¥+ = (4 &+ ¢¢) with Penrose flags Z3 = %(J F
iS270123)- 2

The number of parameters in the sets of bilinear covariants (or spinors with-
out U(1)-gauge) is seen to be

class no. 1 2
parameters 7 6

3 4 5 6
6 5 4 3
If the U(1)-gauge is taken into consideration, then the number of parameters
will be raised by one unit in all classes except in class 5 of Majorana spinors
[Weyl spinors with U(1)-gauge and Majorana spinors both have four param-
eters and can be mapped bijectively onto each other — which enables Penrose
flags also to be attached to Weyl spinors].

The Weyl and Majorana spinors can be written with spinor operators in the

form

1
¥5(1+v0u) (¥ e ce )

where u = ++v3 for Weyl spinors and u = +7v; for Majorana spinors. The
flag-pole spinors can be written in a similar form with u = ; cos ¢ + 3 sin ¢.
It is easy to see that all elements of the form \Il%(l + You), ¥ € Cfta are
flag-dipole spinors, when u is a spatial unit vector, u-y = 0, u? = —1, which
is not on the 43-axis or in the y;1+y,-plane. About the converse the following
has been presented:

Conjecture (C. Doran, 1995): All the flag-dipole spinors can be written in
the form ¥1(1+ you), where ¥ € Cf} 5, u € R?, u?=-1. ]

When u varies in the unit sphere $? in R® (orthogonal to 75), the flag-dipole
spinor sweeps around the ‘paraboloid’ ¥W¥ = (. If the conjecture is true, it
would be nice to know the relation between s, h and u. [Clearly, h = u-v3.]

2 Our flag-pole Z = J + 1S is invariant under rotations ¥ — We®712, whereas the Penrose
flags Z4+ = %(J F iS20123) make a 720° turn under a rotation of 360°.
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12.2 Projection operators in End(C¢; 3)

Write as before P = Q) +J 4+ Q390123, @ =S +K90123, Z =P+ i@ = PX =
TP, Y¥=1- i‘yolgsJK—l. Then

1 1
4—QIZ¢—¢, ﬁPlﬁ—% when Q; # 0
%21& =1, when  # 0.
Define for u € C€1,3 (01‘ ueCe® Cf])s)

1
Py(u) = 2—91(91 +J £ Qoy0123)u, U #0

1
Te(u) = 5(u £ 01230 K um), T € End(Clg)-

Then
Pi(d) =9 Pi(®)=9 Pi(¢)=¢
P_(4)=0 P_(®)=0 P_(¢)=0
Ty(W)=v T4(P)=¢2 Zi(d)=¢ T o)=Y
S_($)=0 T_(@)=0  T_(§=0 £_(¥) = 0.

In general, for u € Cfy 3, P(u) = P+(u), Ti(u) = T4(u) and Pi(Z(u)) =
Y4 (P4 (u)), that is, P+ and X3 are commuting projection operators. For an
arbitrary 1 in Cly 3 1(1+ 7o) [or in Cly 3%(1 — vo3)] the spinor Py (4 (7))
is parallel to ® [or to @], that is, the bilinear covariants of P (Z4(n)) are
proportional to P, Q. However, for an arbitrary u € Cfy,3, P+(Z4(u)) €
Cl1,3 5(1+ %) [or Py(E4(u)) € Clr 3 5(1 — 03)]-

Define

1 _
Ti(u) = E(U F Y0123 K~ uy0123)

where I stands for ideal spinor. Then for an arbitrary u € Cf; 3 we have

T4+(Z4(v)) € Cl 3 1(1 — v0s), and Py (Z4(Z] (u))) is an ideal spinor parallel

to ¢ (with bilinear covariants proportional to P, Q). Furthermore, E{L(qS) =@,

0l (¢) =0, and L are projection operators commuting with Py, Tyx.
Define (O stands for spinor operator)

1
P2 (u) = 2_91((91 + Qa7v0123)u £ Juvo), u € le',s,

which are projection operators commuting with ..
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Exercise. (Inspired by Crawford 1985) Define
1
Ty (u) = -2'(11 F (Q2 + Q170123) " Kuyia)

and show that T'y+ are projection operators commuting with 4 [but not with
Py unless Q5 = 0; recall here the factorization of Crawford]. Show that
Pi(T4+(®)) = @, P+(T4+(¢)) = ¢. How would you define T'y for a spinor
operator W7

[Answer: T2 (u) = 1(uF (22 + Qiv0128) " Kuyor2) for u € Ctf 5] 1

Remark. Define I'y for an ideal spinor ¢ (I stands for ideal):
1 1
Th(u) = 5(" + (Q2 + Q170123) " Kuvo123), u€Cl3 5(1 — Yos)-

In the special case 23 = 0 of type 2 these take the form

1 1 1
T4 (u) = = (u F Y0123~ Kuvo123), u € Cl 3 (1 — yo3),
2 0 2
and commute with Py [this special case was also observed by Hestenes 1986
p. 336 (2.32)]. ]

12.3 Projection operators for Majorana and Weyl spinors

Treat first the general case (class 4) € = 0 = Q3, K # 0 # S. Recall that
(1 +is + ih‘)’mzs)ﬁb =0 or iy = (S + h‘)’0123)¢. Define

1
2§ (u) = -2—(u % (s + hvo123)um2).

Then Ef(@) =9, Ef(d)) = ¢. Majorana and Weyl spinors are now the limiting
cases

1 1
¥ (uw) = '2'(" + suviz), =¥ (u) = -2—(u + Yo123u712).
Exzercises 1,2,3,4,5
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12.4 Charge conjugate ¢ = C(9)

The charge conjugate spinor ¢ = —iy9* sits in C* 2 or in the same minimal
left ideal Mat(4,C)f; it satisfies

7 (8 + eAu)the = mije.

Charge conjugation is an anti-linear operation, that is, C(iyy) = —iC(¢)). Other
characteristics of charge conjugation are qbz'ym/zc = —Yly9 and ¢£707“¢c =
+¢t')’0')’/1¢' .

In the notation of C ® C4; 3 we have ¢ = —i'yz'yo]gwp*'y(','llg = 9™y, which
also sits in the minimal left ideal (C® C¢; 3)f, while 41 swaps the signs of both
factors of the primitive idempotent f = (1 + 70)3(1 + i7172). The bilinear
covariants are transformed as follows under the charge conjugation

(Bec)o = —($*¥)o (as above)
($evuvc)o = +H{¥* 7ut)o (as above)
(Beivmvc)o = (Y i ¥)o

(Yeivo12amutc)o = —(y* 0123Yu¥)o

(YEv0123%c )0 = —(¥*Y0123%)o

and :h.bCTZEA: —?' =P +AiQ = —Q1 + J + i85 + 170123K — 7012322, since
dpcp = W (Vi) = Wy = —4(Pyr)"T

The charge conjugate of the mother spinor is
q)c = &7‘)’1 = 4Re(1,z*‘y]);

it satisfies ®c € Cf1,33(1 + 70), and has the same properties as were listed
above for the charge conjugation. The charge conjugate of the ideal spinor is
$c = ¢m1 = By (1 — 403). Its bilinear covariants are (as above)

dcyode = —P, dcyade = Qo123
dcy3de = —P, dcvode = —Qo123.

The charge conjugate of the spinor operator is ¥¢ = Wy;y9 = even(<i>'yl),
where Q‘)’l = (q)o — <I>0'yo)'y].

Exercise. Show that the operator form of a Majorana spinor %(1/1 + c) is

3 In this case the complex conjugate is

* __ — 2
P = ¢§, for = vs |-
¥y Pa
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U3 (1F v01) € ClE 5 3(1 F vo1)- |

The Wigner time-reversal is 47 = —iy13¢* € Mat(4,C) f or 7 = Y123%*y1 €
(C®Ct1 3)f and the parity involution of space is ¥p = yo9. So

VT = M239" ™1 ¥p = Y0¥ Ye =9 Dirac
&7 = y128071 ®p = 7P P = oy mother
é1 = Y1236 ép =109 bc = o ideal
Ur = 7y123¥m Up =y ¥q;? ¥Ye =¥y operator

and Y7pc = Yo123%. Note that charge conjugation C anticommutes with both
parity involution P and time-reversal 7T .
Ezercises 6,7,8,9,10

Appendix: Crumeyrolle’s spinoriality transformation

Crumeyrolle introduced a number of spinoriality groups to be able to treat the
complicated situations with spinors. However, one relevant problem remained
unsolved: how can the usual bilinear covariants be obtained from Crumeyrolle’s
spinors? The bilinear covariants of Crumeyrolle’s spinors mix the Dirac cur-
rent vector J and the electromagnetic moment bivector S. A solution to this
problem can be given by a variation of Crumeyrolle’s spinoriality group. In
this appendix it is shown how to extract the standard bilinear covariants (see
the standard textbooks on quantum mechanics, like Bjorken & Drell 1964) from
Crumeyrolle’s or Cartan’s pure spinors.

Crumeyrolle considered the complexification C® Cf; 3 of the Clifford alge-
bra Cf;,5 of the Minkowski space R13. In the complex linear space C ® R!3
Crumeyrolle picked up a maximal totally null subspace spanned by the ortho-
gonal null vectors

1 1 .
5(70 —73) and '2'(71 - i73).

Denote the product of these vectors by

1 1 .
V= §(’Yo - ‘73)'2'(‘71 —i72)

which is the volume element of the totally null subspace. Crumeyrolle chose
as his spinor space the minimal left ideal (C® Cf;,3)v of the complex Clifford
algebra CQ® C{; 3. The difficulty with this choice is that the bilinear covariants
of such a spinor are not directly related to those of a column spinor in standard
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textbooks on quantum mechanics. * To overcome this difficulty, first note that
the element

1 1 .
9=V = 5(1=703)5(1+imn2)
is a primitive idempotent generating Crumeyrolle’s spinor space, that is,
((C ® Cfl 3)V = (C@ Cfl 3) g.

Unfortunately, g = 1(1 — y03)3(1 + #712) is an even element and does not
contain as a factor the energy projection’ operator (1 + 40). The physical
observables are obtained from column spinors sitting in C* which are related
to Clifford algebraic spinors sitting in ((C ® Cly 3)f, where

f= (1+70) (1+i‘712)-

In order to move from the spinor space (C ® C¢ 3)g to the spinor space
(C® Cty 3)f we must find a transformation law for spinors 4 € (C ® C4; 3)g
and ¢y € (C® Cl;3)f. 5 This transformation law is a slight variation of
Crumeyrolle’s spinoriality transformation.

Before giving our variation of the spinoriality transformation let us recall
that 14 is a sum of two Weyl spinors

1 . —
5(1 + 170128) g € C6 39 C

1 .
5(1 — iY0128)1hg € Cf 3 ® C

so that the components are of homogeneous parity [the correspondence between
the even/odd parts and the negative/positive helicities is irrelevant, since it
could be swapped by a different choice of g, for instance, by ¢ = 1(1+703)3(1+
im12) for which g = yo1v with v = £(v0 +73)5(m — in2)]-

Our variation of the spinoriality transformation is carried out by the element

z= %(1 + 73)

4 The bilinear covariants of Crumeyrolle’s spinors either vanish identically or else, as in
Crumeyrolle 1990 p. 229 formula 24, mix the Dirac current J and the electromagnetic
moment S.

5 Recall that, for instance, J, = 4(1}}1“11;;)0. In contrast, these bilinear covariants of

3¢ vanish: 4(1/-;;'7,,¢g)0 = 0. However, 34 does carry all the information of J: J, =

DTt -0

6 For Crumeyrolle the spinoriality group meant a number of things, with different adjectives
added as specification. First, it is the subgroup of those s € Spin(1,3) for which sv = +v,
see Crumeyrolle 1990 p. 145. Secondly, it is the group of invertible elements z in CQC{; 3
such that the primitive idempotents g and zgz~! determine the same minimal left ideal
(C®Ct3)g = (CRCl3)g’, see p. 277. Thirdly, it is, if normalized, the intersection of
the previous group with Spin(1,3), see p. 281.
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for which g = zf2~! or f = z"!gz. The latter rule gives us a relation between
Crumeyrolle’s nilpotent induced spinors 14 and idempotent induced spinors ¢y
(directly related to the standard column spinors like those in Bjorken & Drell
1964),

Yy =gz,

(Earlier we wrote 1 = 1y but here it is necessary to indicate to which minimal
left ideal the spinor belongs.)

Now we can compute the spinor operator ¥ = even(4 Re(¢;)) and the bi-
linear covariants, for instance, J = \Il'yo\il. For later convenience note that
¥ = Oper(ypy) where

1
Oper(yy) = §(even(4 Re(vy)) + odd(4 Re(¢7)) o).
Recall the aggregate of bilinear covariants
Z = 49}

and note that 44y 1,5}‘ = 44f; 701Z}. Our variation of the spinoriality group is the
group of those elements z in Cf; 3 or C® Cf;,3 which preserve the aggregate
Z under the transformation 1y — ¥yz~!. Crumeyrolle’s spinoriality groups
preserve the ideals whereas our spinoriality groups preserve the physical ob-
servables. The spinoriality groups are seen to be the following (see Lounesto
1981 p. 733):

| Clha C®Chgs
Z=4y9; | 5p(22) U(22)
Z =405 | Sp4)  U(4)

where, as an example, the Lie algebra of Sp(4) ~ Spin(5) is spanned by the
elements

Y15 Y25 73

Y125 Y13, V23
Y012, 7013, Y023
Yo123-

For those z in Cf; 3 which preserve Z = 41/1f701,5;, under the replacement
¥y — ¥yz7!, that is z € Sp(4), we may find that the spinor operator is
preserved under the following transformations:

1

Y= 5wk

(even(4 Re(spyw™1)) + odd(4 Re(syw=1))v0)
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where w = zZ, that is,

_ 1 -1
v = <w)()Oper(¢fw ).

To put all this in a nutshell: our variation of

spinoriality transformation preserves bilinear covariants

However, this preservation should be distinguished from our use of the par-
ticular element z = 715(1 + v3) € Sp(4) to retrieve the aggregate of bilinear

covariants Z = 44y 1,5; by sending 4 to gz = ;.

Exercises

1. Recall that ¥ysy; = sV~ + hvp123¥. How would you define Zg for a
spinor operator ¥?

2. Recall that ¢+9123 = ¢y21. How would you define another pair Eg for an
ideal spinor ¢7

3. Show that up to a unit complex factor e72%:
¥~ (1 + Iy — S112 — Kvs + Qa70123), when N = /(Zf)o # 0.

4. Show that the operator form of a Weyl spinor is ¥1 5(1 F 703)-

5. Show that Weyl spinors %(1 F iv0123)%¥ correspond to even and odd parts
of the ideal spinor ¢ = ¢g + ¢;.

Write W = 44y, 7 note that y3% = 0, and show that

6. W = —(Q1 + iQ2)Y0123 Where Qx = 1(®75®)v0123 or Qx = ¥(1+70)7;; ¥
(ijk cycl.).

7. W=K - 870123 where K =K + tK3 and S = S; + iS;, where as before
Ki = Uy ¥, Sp = ;¥ (ijk cycl.).

8. W2=0.

9. WZ =0.

10. ZW = 44 W and so the 3-vector part vanishes:
(ZW)s =-JA (701238) +iSAK 4+ 901230 K+iIKAS =0.

11. Show that 44y} = 0.

12. Write ¥y = Oper(¢y) and ¥y = Oper(1)g). Show that
\I’f‘)’o\I/f = 2\1’9‘)’0\1’9.

13. Write ¥y = even(4 Re(yy)) = Oper(y;) and
¥, = even(4 Re(tg)) # Oper(tg). Show that ¥, U, =0, Uyy12¥, =0 and
\Ilg'yo\llg =J+ K where J = \Ilf'yo\llf and K = \Ilf73\Ilf

7 9= (Ye)* # (e



12.4 Charge conjugate ¢ = C(v)) 173
Solutions

1. £§°(u) = %(U + suyo12 & hyo123uyi2) for u € Cli",a.

2. 2§ (u) = 5(uF (s + hyo123)uv0123), u € Cl1 3 5(1 — Y03).

4. Hint: compute the even part of 4Re(%(1 F 1Y0123)%) in the decomposition
C® CK1,3.
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13
Tilt to the Opposite Metric

Physicists usually go from C¢; 3 ~ Mat(2,H) to its opposite algebra Cf3; ~
Mat(4,R) by replacing v, by iy, [within Mat(4,C)]. However, such a tran-
sition to the opposite metric does not make sense within the space-time R*,
because it calls for iR* which is outside of R%. We will instead regard the
linear space R* as one and the same space-time, endowed with two different
metrics or quadratic structures, R1'® and R31,

Let the basis {¥0,71,72,73} of the space-time R!:® generating C¢; 3 corre-
spond to the basis {eo, e1, ez, es} of the space-time R*! generating Cf3 1,

ee=-1,el=el=el=1 [e, # xiv]

So the vectors A%yy + Aly; + A%y, + A%y3 and Alep + Ale; + A%ey + Ade3
correspond to each other but have opposite squares

(AO"/O + Al"/l + A2‘72 + A3“/3)2 — (AO)Z _ (A1)2 _ (A2)2 . (A3)2,

(A°eo + Ale1 + A282+ A3e3)2 - _(AO)Z + (AI)Z + (A2)2 + (AS)Z.
We shall go further and regard A%y + Aly; + A%y2 + A%y3 € R13 C C4y 3 and
A%y + Ale; + A%ey + A%e3 € R3! C Cf3 ;1 as one and the same vector A € R*

embedded in two non-isomorphic algebras C¢; 3 and Cf3; which are identified
as linear spaces by the correspondences

Chs Cls,
1 1
Y €u

Yu AV {exAe, (=eue, for p#v)

[Note that 59 = 4° and Ao = A% in Cf; 3 whereas in Cf31 we have eg = —e®

and Ag = —A° and that the numerical values of A® are the same in Cfy 3 and
Cls1.]

174
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The products in the Clifford algebras C¢; 3 and Cf3; are related to each
other by (all the terms in this table are computed in Cf; 3)

Clis | Cls,y
ab | boag + boay + br1ag — braq

where ag = even(a) and a1 = odd(a). For a € Cf1 3 we may sometimes
emphasize that opp[a] € Cf3y (or the other way round). In this notation, the
products in the (graded) opposite algebras are related by !

opp[ab] = boag + boa; + byag — bya;.

In this chapter we shall study the Maxwell equations and the Dirac equation
in opposite metrics, in the quadratic spaces R1:3 and R%!. In particular, we
do not consider curved space-times, only flat space-times. In a flat space-time
it is also possible to differentiate multivector fields, not only differential forms;
we will focus on differentiating multivector fields.

THE MAXWELL EQUATIONS IN OPPOSITE METRICS

There are a few changes of sign in the Maxwell equations in the quadratic
spaces R¥! and R1:3.

13.1 The Maxwell equations in R3:!
We use the following definitions for the potential A, the current J, the differ-
ential operator J, and the electromagnetic field F:

Aa:(%‘/’Al‘aAyaAz), Aaz(—%‘/,Ax,Ay,Az)

J* = (Pc;Jx;Jy:Jz); Jaz(_pC,Jr;Jy’Jz)
aa:(_%%,%,%,%)’ aa:(%%a%a%a%)
(FOI’FOZ’Foa) = (_%Era_%Ey"‘%Ez)

(F28, F3 F'?) = (-B,,—By,—B,).

This leads to the d’Alembert operator

1 82
o —72 _
0%, =V 292
and the equation
30 AP = —pJP.

1 The symbol ‘opp’ is not a function of one or two variables; it is rather an indicator signaling
that all the computations in the brackets will be computed in the opposite algebra.
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The equations

GOA — GLAO = "‘Z&A aa;c :%E,,
31A2"32A1:az v 33yA$_Bz,...
give
F*P = (9% AP — 8P A%),
and
et = Bt LBk LB =17 Bz £
8Pt =128 2B — 2B, =uJt,

give the Maxwell equations

OaF*P = puJP.
In the Clifford algebra Cf3; we have
9= —eo%% + 613% +82% +8358;
F = —1E;eq — LEyeo; — 1E,e93 — Bres3 — Byes; — B,ery

= %E-:eo — Eelgs
A =1Veg+ Ase; + Ayey + Aes
J =cpeg+ Jze1 + Jyea + J €3

and the equations

3A = eol( %%Az - '%%) + .o + el?(b%Ay — -aa—yAz_)

which lead to

O0A =—-F, OF=puJ, O0*A=—ul
| |

The computations can be related to Gibbs’ vector algebra as follows (here
e=1 pu=1):
OF = (V E)eo + (V A E)eo + V x B - (V . E)elgg — eo%’;eo - 60-38%6123
=(V. Eleg+V x B — —— — (V- Beizs + (V x E)egia + %%60123
= pep + J =J
A =V_. A + (V X A)elzs + (VV)eo — 80%‘:60 — eo%'?
= —Fey + Bejss = —F

where in the last step we used —eg %’t‘ = %’t‘ eg.
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13.2 The Maxwell equations in R:3
We use the following definitions for the potential A, the current J, the differ-
ential operator 3, and the electromagnetic field F:
A* = (Lv, A, Ay AL), Aqg = (LV,-A;,—Ay,—A,)
J* = (pe, Jz, Jy, J2), Jo = (pe, —Jz, = Jy,—J3)
= (o2 o —%) %=1 5 5y
(0, 9, P = (A, 15, -1,
(F23, F3! F12) = (—B,,—B,, —B,).
This leads to the d’Alembert operator
1 8

0%0y = 29 V2
and the equations
%0, AP = pJP.
The equations
A - T A° = %‘%Ax + %% =-1E,
NA? - 9%A' = —Z A, + %Ax = —B,,
give
F*P = 5% AP — 0P A%,
and
0uF=0= L Br+ F2 + B =4V B= f =
doFot=-12E 4 2B 2B, =puJt,
give the Maxwell equations
0, F*P = pJP.

In the Clifford algebra C¢; 3 we have
0= ’Yo%% —71% —72%—73585
F = —1E;v0 — 1Eyv02 — 1E.v03 — Bov2s — Byya1 — B:m12
A= Vvt Aen+Aym+ A
J=cpyo+Iem+Iy12 + Joys
and the equations
OA = yor(3 3¢ As + 35 ) o+ M- F Ay + £ 4s)
OF = yo(Z 2Bty (—5HEE - &By+ £B.)+. ..

NEE
+

g

NE;
+

Q|
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which lead to

6A=F, OF=pup), 8*A=ud

13.3 Comparison of R3! and R!3

The equation dA = +F has opposite signs in opposite metrics. This means
that the raising part 8 A A = *+F has opposite signs in opposite metrics,
whereas the lowering part 0 4 A = 0 is independent of metric. The Maxwell
equations OF = uJ have the same signs in both metrics. This means that
the lowering part 0 {F = uJ is invariant under the metric swap (and that in
both metrics § AF = 0). The above unexpected results are consequences of
our definition: the differential operator 0 experiences a sign change under the
metric swap, that is,

opp[d] = -0

SPINORS AND OBSERVABLES IN R3!
In the rest of this chapter we shall study the Dirac equation, spinors and
observables in R®!. Qur special concern will be the behavior of spinors under
the transition to the opposite metric.

Since going to the opposite algebra interchanges left and right ideals, we
will study real ideal spinors ¢ € 051,3%(1 — 403) in conjunction with their
opposite-reverses

¢ = oppld] € czs,lé(l + e03)

(both ¢ and the opposite of its reverse ¢ are in left ideals). Clearly, opp[d] =
opp[¢]”.

For instance, the Dirac equation for the real ideal spinors, 8¢y21 = eAd+mg,
¢ € C£1,3%(1 — %o03), is transformed by the opposite-reversion to Béegl =
eAé +m¢, ¢ € Cla, %(1 + ep3), 2 and further by grade involution to

3?821 = CA? —_ mé

However, this is not a nice formula, because we have to explain the occurrence
of the grade involution in the last term. There are even more interpretational
difficulties for the opposite-reverses 1 = opp[#] [of Dirac spinor 3 = vi(1+

2 Note that ¢ € 011’3-;-(1 — 703) is in a graded minimal left ideal of C£; 3 ~ Mat(2, H),

which is also an ungraded minimal left ideal, while ¢ € C€3’1-;-(1 + ep3) is in a graded
minimal left ideal of Cf3; ~ Mat(4,R), which is not an ungraded minimal left ideal [the
minimal left ideals of Cf3,1 are not graded].
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70)3(1 + i712)] and & = opp[®] [of mother spinor & = ®1(1+ 7)), since
Y& (CoC 1)1(1 + ieg) and @ is not in any proper left ideal of Cf3,. An
obvious attempt for a possible solution would be to study 7 = 1,b (1 — ieg),
but then (like evaluating 4y9* = Z in the case Rb 3) for the aggregate of
observables

L1 , . -
41_77_} = 5(91 —iJ — iS + Kep123 + Qs€0123), Ny = 0,

and we would have the inconvenience of an extra factor 1. This shortcoming
could be circumvented by multiplying 5 by V2, but then the relation to the
original Dirac spinor 3 would be irrational. Again there is an obvious solution:
multiply # by 1 — i, which has absolute value V2, and study instead the flip
of the opposite-reverse, that is, the tilted spinor

= (1 ijg5(1 — ieo) = Y3 (1 ~earz)(1 = e12), ¥ = oppld),
for which
499" = Q — i3 — iS + Keoyas + Qae0123, ]é:lé* =
The opposite-reverse of 9y = ¢ is Yeg = . Therefore, we find
(L+9)p=9(1 —deo) =Y +if = (1+i)h, + (1 -39,
[, = even(y), ¥, = odd(¢)] which implies 1 = 9, —i%,, or since iy = pey2,
v=v,-¥,e12  (p=opp[f], ¥ECOCly).

Similarly, we define the tilted spinor for the mother of all real spinors ® and
for the real ideal spinor ¢:

=0, - %e12= (1 —eng)(l-ew),  &=opp[&],

t\D

%(1 — eo12)(1 — e12), ¢ = opp[g].

Of course, for the spinor operator ¥ = ¥ (= opp[‘il])
The transition back from ¢ € (C ® Cf3 1)3(1 - zeo)%(l —iepp) to ¢ €
(C ® Cly,3)3(1 + 7o) 5(1 + im12) is given by tlltlng again,

¥ = opp[ o] — opp[¥y]m2, P EC®Clay,

$=¢,— 912 #¢

since 3 3 )
opp[ o] — opp[¥1]712 = (¥0)” — opp[(—¥,€12) 712
= 1o — (—712%1) Y12 = Yo — Y1712M2.
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13.4 The Dirac equation in R3!

The opposite-reverse Dirac equation

dpen = eAg—md, € Cls, %(1 + e03),
splits into even and odd parts [¢, = even(¢), ¢, = odd(g)]
0¢,en = eAd, —mg,
d¢,en = eAd, +m¢,.
Recalling that 150 = ¢, and Ql = ¢,e2 we find
0o = eA goe12 —m ¢y
0¢1=eAdiers—mgo
which added together result in

1
39=eAge12—mf, fECK:;’l 5(1-{-603).

Similarly, the flip of the opposite-reverse, or simply tilted, Dirac spinor %
obeys

3?:ieAﬁ1€—m3€, ye(C@Cfs)])%(l—ieo)%(l—ielg),

a formula found essentially in Benn & Tucker 1987 p. 284 (and p. 256). So the
tilted mother spinor ® =4Re(¢)) = ¥(1 — eq12) > obeys

1
8P =cAdejs—mQ, ] 6053,15(1—8012),

which decomposed into even and odd parts (and recalling that g = — $1e012,
@1 = — ®pepy2) results in the Dirac-Hestenes equation in the opposite metric,

|0Wesn — eA ¥ =mTe |

where ¥ :R3! — CfF,.

13.5 Bilinear covariants in R3!
Recall that for 1/’1 € ((C ®CZ3,1)%(1 - 180)%(1 — iE]z)

4%@* =y —iJ —iS + Kegi23 + Q2€0123, yi’/’l* = 0.

Compute the bilinear covariants in the opposite metric R3:!:

3 Note that $ = ¢(1 — ej23) and ¢ = g%(1+e03).



18.6 Fierz identities in R3! 181
Q0 =4(P" o
Ju =4 ¥ ie, ¥)o (J° =—Jo)
Su = —4( P i Yo
K, = —4( ¢ eo123e, o
Qy = —4(,121*8012314)0-

(Observe that the coordinates J# of J have the same numerical values in C¢; 3
and Cf3 ;. In contrast, the coordinates J, are opposite in Cf; 3 and Cf3.)

13.6 Fierz identities in R3!
The Fierz identities in the opposite metric are
—(9} +93), K?=-J?
J.-K=0, JAK = —(Q2 + ep123(4)S.
Note also that S% = (Q — ep123$1)2.

Exercise. Derive the real theory from the mother of all real tilted spinors
4Re(lév) = &= Q%(l - 6012) € 6[3’1 %(1 - 6012). ]

13.7 Decomposition of boomerangs in R3!
Write for ¢ € (C® Cl31) 1 (1 —ieg) 3 (1 —iers)

-

K = + Keg12s + Q2€0123, L=-J-8

S = Q1 — 1S + Qaeo23, L =1-ieo123IK™!

P =Q; —iJ + Qaep123, II=1-4J(Q + Q2e0123)

I'= K(Q + Q2e0123) 7!

[Z, K, P,TI, T are not the same as those in the case of R1:® but instead as a
sample Z in C® Cf3; is obtained by sending Z in C® Cf; 3 to even(Z) —
i0dd(Z)]. Then
Z=K+iL=KE=$K =K = KII* (# KII unless Q; = 0)
=Pr=3YP=IIS= SI*
=TP =PI (nocomplex conjugation)

=I‘(1+’2512 )
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K? =204K = -2, KL =LK =20\1L
I = P( + Q2ep123) 7%, T = S(h + Q2e0123) L.

13.8 Multiplication by i =/—1 in CQ Cls
Write
7= (1 — Qae0123) 1T = —e0123SK™! = Ve ¥ !
s =ep123J K1 = (2 + Qaep123) 'S = Ye, ¥1.
Then K=jL=3sL, [I=1—-ij and X =1—-1is. Also

11/1 = _1’1,9 = ,gf gz 19 = ¢e0 # ¢e0123 tilted Dirac
JP =350 = Peix = Peg tilted mother
]f = 32& = iS 12= ¢e0123 # ¢e0 tilted ideal
s¥ = VYeyp (but j¥er=-Y) operator.

13.9 Some differences between Cf; 3 and Cls;

Compute as a sample in Cf3

22=0, -L

=1
it

Deo

N = N =

Qeaij = —Keo123.
Note that
<P'yoj5'yo>0 = (Q'on'yo)o >0 fornonzero Y e€CQChgs
while
(KeoKeg)o = (LeoLeg)o 30 for non-zero 3 €C® Cls;
(KepKeg')o # (LeoLey Yo > 0

so that it is possible that K = 0 while L # 0 (this happens in the case
Q) = Qy =0, K =0 of Majorana spinors).
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13.10 Charge conjugate in R3!
The charge conjugate of the tilted Dirac spinor is obtained as follows:
e = 1&"‘71 take opposite-reverse 1, = ¥"e; and tilt
Yo = (1 - i)y er§(1 —ieg) = (1 — i)™ 3(1+ ieo)e
= [(1 + )9 5(1 — ieo)l*er = —i[(1 — )P 3(1 — ieo)]"es
= —iy"‘el = —lb*elelz = —lé"‘eg or

= —y*erep = *en; € (C® Cla1)3(1 —ieo)3(1 —iera).

NUMERICAL EXAMPLE

Start from C{; 3. Take a column spinor
4+ 3i

[ 1+6i
¥= 540 | €C"

24

Then Z = 4¢3ty
25 22 -21i —26—-7i —11-2i

-4 22 4+ 214 37 —-17—-28: —-8-—-11¢
- 26 -7 17— 28¢ -29 —-1241
11-2¢ 8-11i —12—-14 -5

= +J + 1S + iKv0123 + Q270123
where
Q=28
J = 9640 + 5641 + 522 + 3643
S = 60401 — 12702 — 8703 — 36412 — 40713 + 2093
K =68+ + 68v1 + 447y + 1293
Q9 = —-36.

In the opposite algebra Cf3 1 we must first fix the matrix representation, for
instance, using the Pauli spin matrices oy,

e_iO e__OO'k
°=\o0 —i/’ k—crkO



184 Tilt to the Opposite Metric
corresponding to the tilted primitive idempotent

[ = 5(1 = ieo) (1 — iez)

=3 0 2( ieyy
and the tilted spinor basis

1 . .
I1=Z(1—1eo—1612—6012) =f
1 . .
fa= Z(e13 — €23 — 1€013 — €023) =esf
1 . .
fa= Z(ea + ieg3 — i€123 + €0123) =e3f
1 . .
I4 = Z(el —iey + ieg; + eg2) =e I
Then the tilted spinor is
443
| 1+6i
? ]l 2-5¢
1—24

and the boomerang Z = 41/’)%7(—ieo) = 41é’1£)'fie°
25 22-217 T7-26i 2-11
22 + 21: 37 28 —17: 11—8i
—-7—26f —28—-1T7i -29 —-12 4
-2—-11¢ -11-81 —-12-—: -5
=Q; —1J —iS + Kegi23 + Q2€0123

=1

where
Ql = 28
J = 96eq + 56e, + 52e; + 36e3
S= 60601 — 12802 - 8803 - 36612 - 40813 + 20623
K = 68eq + 68e; + 44eq + 12e3
Q, = —-36.
Note that for u € C® Cls, v* = eouTeo_l.
Note that Z for R:3 and Z for R3! are related via a similarity transfor-
mation by 715(I+ 70).

Summary

To realize the transition to the opposite metric we use the rules

opp[d] = —3 and opp[ab] = boag + beay + br1ag — biaz
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and apply reversion to get the tilted spinors also in left ideals. Thus, the two
sides of A = F in RL3 are transformed as

opp[0A]” = —(—8)A = A
opp[F]" = F = —-F

and so we have JA = —F in R31. The two sides of OF = J in R are
transformed as

opp[dF]~ = (-9)F = oF

oppd]" =J =17
and so we have §F = J in R%!, The terms of 0¥y, — eA¥ = m¥~, in RL3
are transformed as

Opp[a\I")’zl] = ( )‘I’ézl = a\iezl
opp[A¥]” = AV = A\il
opp[¥y0]” = ¥&o = Peo

and so we have 8¥ey —eA¥ = m¥e, in R3!. [Earlier in this chapter we wrote
¥ for ¥.] Note in particular that the Dirac-Hestenes equation has the same
form in both metrics, only the spinor operators are reversed. For complex ideal
spinors the situation is more complicated, an extra flip is needed to complete
the metric tilt.

In our differential operator

0 7] d 0
3—e°67+e ?9_1+e2.67+e33z3
we have used an orthonormal basis, but this formula gives the same d for any
basis {eo,ej, ez, e3} for R®! when e* - e, = §¥, that is, when {eo,e;, e, es}
and {e’, e!,e? e3} are reciprocal. In this sense our differential operator is not
only Lorentz covariant but also invariant under all of GL(4,R).

Note that the raising differential 3 A f is metric dependent and therefore it
is not related to the exterior differential d A f [in a metric inpendent way]. In
general, in dimension n, not necessarily n = 4, the lowering differential 9 1 f
is metric independent and related to the exterior differential by

0df =f[dA(flw")] 1w

for an n-volume w € A" V such that w*dw =1 for w* € A" V*. The relation
(84f)dw = dA (fJ w*) requires identification of multivector-valued functions
with differential forms, which is possible only in flat spaces, while multivectors
cannot be differentiated on curved spaces. Such an identification can be carried
out by lowering the coordinate-indices of a multivector by means of the metric
tensor g,, (or raising the indices of a differential form by the inverse g#*).
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Exercises

Show that

1. Yeo ¥ =1J. 2. ¥e, ¥ =8.

3. ¥(1—ieg)(l—iey2) ¥ =K +ilL. 4. gegp=—L.
5. Yo =—tv1e012, P1=—Yoeo12.

6. ¥, +¥,e12 € (C®Cls1)3(1 +ieo).

Write flip(u) = ug — uje;2 and recall that the opposite-reverse of Ay is Alﬁ
(for a vector A). Show that

7. ﬂlp(A’ib) = —Alﬁelz [:> Bg = CAlbelz — m?]

8. Ay and AP = 4Re(Av)) correspond to A¥+y, = even(A®), and in the
opposite algebra to —A Yey.

9. 4¢c Ve = —4(y {p*)*. [This means that J, S are preserved under charge
conjugation while Q, K, Q2 swap their signs — as in R13. This should be
contrasted with Crumeyrolle (1990 p. 135, 1. -9), who considers charge
conjugation in conjunction with a scalar product of spinors induced by the
reversion (composed with complex conjugation), in which case S, K are
preserved and Qy, J, Qs swap signs. Crumeyrolle’s numerical results are
not directly related to the Bjorken & Drell formulation of the Dirac theory,
as he induces spinor spaces by totally isotropic subspaces of C ® R!. To
relate the results one must permute the primitive idempotents by an
algebra automorphism of the Clifford algebra in such a way that dimension
grades are mixed. The next exercise gives a hint on how the scalar product
of spinors induced by the reversion (composed with complex conjugation)
can be used to find the bilinear covariants.)

10. K, = 4(@*e,, %) - e3 (find similar formulas for Jy, Su.).

In the next exercise we have a scalar product of spinors induced by the reversion

alone without composing it with complex conjugation.

11. Take a Majorana spinor ¢ e with bilinear covariants J, S = J A s.
Then the Weyl spinor u = (1 + i€e0123) ¥ has charge conjugate
uc =3(1- ieg123) P SO that % = u+ uc. Show that

I(u+uc) =0 (3.1.21)
s(u+uc) = —(u+ uc) (3.1.25)
4(iversiic) = 3 J (3.1.28)
Re(4iuei3it) = -1 8 (3.1.29)
4yperzfpeoizs =T +S (3.1.30/31)
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The numbering on the right refers to Benn & Tucker 1987 pp. 113-116. Try
to work out a translation to their notation, and discuss the physical
relevance of the connection between the Majorana and Weyl spinors. Hint:
uc = it*e 3 while u = %(1 + ie0123)l/1. Benn & Tucker use the scalar
product of spinors

(¢, p) > espp€ F(C®Clsy) f ~C.
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14
Definitions of the Clifford Algebra

In this chapter we shall for the first time give a formal definition of the Clif-
ford algebra. There are several definitions, suitable for different purposes. In
mathematics, definitions serve as premises for deductions; in physics, however,
definitions are more or less secondary and serve as characterizations. We shall
review Clifford’s original definition, its basis-free variation given as a deforma-
tion of the exterior algebra, definition by the universal property, which does not
guarantee existence, and the definition as an ideal of the tensor algebra. The
construction of Chevalley, where Clifford algebra is regarded as a subalgebra
of the endomorphism algebra of the exterior algebra, is postponed till the dis-
cussion on characteristic 2. The definitions by the multiplication table of the
basis elements, and by index sets, are postponed till the chapter on the Walsh
functions. The definition of Clifford algebras as group algebras of extra-special
groups will be omitted.

14.1 Clifford’s original definition

Grassmann’s exterior algebra AR™ of the linear space R™ is an associative
algebra of dimension 2". In terms of a basis {ej, ez, ..., e,} for R" the exterior
algebra AR™ has a basis

1
€, e2,...,€,4
e; ANeg, epANes,...,egNey,eaANes,...,ea_1Aey,

etANesA...Ae,.

188
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The exterior algebra has a unity 1 and satisfies the multiplication rules
eiANej=—ejANe; for i#j,
e;Ne; =0.

Clifford 1882 kept the first rule but altered the second rule, and arrived at
the multiplication rules

e;e; = —eje; for i#j,
e;e; = 1.
This time {ej,es,...,en} is an orthonormal basis for the positive definite

Euclidean space R™. An associative algebra of dimension 2" so defined is the
Clifford algebra C¢,.
Clifford had earlier, in 1878, considered the multiplication rules

eje; = —e;e; for i#£j,
eje; = —1

of the Clifford algebra Cfy, of the negative definite space R%™.

14.2 Basis-free version of Clifford’s definition

Here we consider as an example the exterior algebra AR* of the 4-dimensional
real linear space R%. Provide the linear space R* with a quadratic form

Qx) = 2 — 2} - 2} - 23
and associate to ) the symmetric bilinear form
1
<x,y>=5[Q(x +y) - Qx) - Q)]

This makes R* isometric with the Minkowski space-time RY:3. Then define the
left contraction ulv € AR!3 by

(a) xJdy =<x,y>
(d) xJd(uAv)=(xJu)Av+aA(xdv)
(¢) (uAv)dw=ud(vdw)

for x,y € RY? and u,v,w € ARY3. ! The identity (b) says that x operates
like a derivation and the identity (c) makes AR!? a left module over \R'3.
Then introduce the Clifford product of x € R and u € AR by the formula

xu=xdu+xAu

1 Recall th’?t 4 is the grade involute of u € AV, defined for a k-vector u € A¥V by
4= (-1)"u.
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and extend this product by linearity and associativity to all of A R!3. Provided
with the Clifford product (the linear space underlying) the exterior algebra
AR becomes the Clifford algebra C¢, 3.

14.3 Definition by generators and relations

The following definition is favored by physicists. It is suitable for non-degenerate
quadratic forms, especially the real quadratic spaces R?:9.

Definition. An associative algebra over F with unity 1 is the Clifford algebra
C£(Q) of a non-degenerate @ on V if it contains V and F =F -1 as distinct
subspaces so that

(1) x? = Q(x) for any x € V
(2) V generates C{(Q) as an algebra over F
(3) C¢(Q) is not generated by any proper subspace of V. ]

The third condition (3) guarantees the universal property [see below], and di-
mension 2". Using an orthonormal basis {e1, e, ..., e,} for R”9, generating
Clp 4, the condition (1) can be expressed as

(L.a) e?=1,1<i<p, e=-1,p<i<n, eej=—eje;, i<j,

while condition (3) becomes eje;...e, # %1, as in Porteous 1969. Condition
(3) is needed only in signatures p—¢ = 1 mod 4 where (eiez...e,)? = 1. The
relations (1.a) without (3) also generate a lower-dimensional non-universal
algebra of dimension 2”~! in any signature p — ¢ = 1 mod 4 in which all
the basis elements e; commute with e, = eies...e,. No similar non-
universal algebra exists in even dimensions, and so it is correct to introduce the
Clifford algebra of the Minkowski space-time without condition (3). However,
in arbitrary dimensions it is controversial to omit condition (3).

The above definition gives a unique algebra only for non-degenerate (non-
singular) quadratic forms . In particular, the definition is not good for a
degenerate (), for which ejez...e, = 0, as is shown by the following two
counter-examples where ) = 0.

1. Define for x,y € V, dimV = n, the product xy = 0. This makes the direct
sum F @ V an associative algebra with unity 1. It is of dimension n + 1.

2. Introduce a product in AR® by e;e; = e; Ae; for all i,j = 1,2,3 and
ejesez = 0. Thus the subspace R & R /\2 R3 of /\R3 1s a 7-dimensional
associative algebra with unity, generated by R and R3.

This shows that it is not possible to replace condition (3) by the requirement
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that only parallel vectors commute. We could include arbitrary quadratic forms
@ by requiring instead of condition (3) that the product of any set of linearly
free vectors in V should not belong to F. However, even this would leave
some ‘ambiguity’ in the definition by generators and relations. The above
definition results in a unique algebra only ‘up to isomorphism’. Here are two
more examples to clarify the meaning of this statement:

3. The multiplication table of the exterior algebra A R? with respect to the
basis {1, e1, ez, e1 Aep} is

A | e e ey ANep
e 0 e1hey 0
€3 —e; Aey 0 0

e N €9 0 0 0

Introduce a second product on A R? with multiplication table

/.\ (53] ()] e /\ €9
e; 0 etAey+b —be;
es | —e;Aey—b 0 —bey
el Aey —bey —be,y —b% — 2bey A e

where b > 0. Denote the second product by uAv. Rearrange the multiplication
table of the second product into the form

A e €s e Aey+b
e 0 etANey+b 0
ey —ej Aey —b 0 0

e Ney+b 0 0 0

which shows that we have generated a new exterior algebra AR? on RZ, differ-
ent from A R? but isomorphic with A RZ%. In other words, we have introduced
a linear mapping o : AR? & AR? for which a(e;) = e;, i = 1,2, and
a(e; Aex) = e; Aey = e; Aey + b so that it is the identity on R?, pre-
serves even-odd grading and gives an isomorphism between the two products,
a(u Av) = a(u) A afv).

4. An orthonormal basis e, e; for R? satisfying e;e; + eje; = 26;; gener-
ates the Clifford algebra Cl; = Cfy o with basis {1, e1, ez, e13} where ej2 =
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eie; (= e; A ez). We have the following multiplication table for Cfy:

€1 €3 €12

e1 1 €12 (D]
e | ez 1 —e
€12 —ey el -1

Introduce a second product on Cf3 with multiplication table

€1 €2 €12
e 1 ez + b €9 — be1
€9 —ej12 — b 1 —e1 — b82
€12 —e9 — be1 e — beg -1 - b2 — 2b812

The anticommutation relations e;e; +e;je; = 20;; are also satisfied by the new
product, and one may directly verify associativity. As the real number b varies
we have a family of different but isomorphic Clifford algebras on RZ.

14.4 Universal object of quadratic algebras
The Clifford algebra C£(Q) is the universal associative algebra over F generated
by V with the relations x? = Q(x), x € V.

Let @ be the quadratic form on a linear space V over a field IF, and let A
be an associative algebra over F with unity 14. A linear mapping V — A,
X — px such that

(px)?=Q(x)-14 forall xeV

is called a Clifford map. The subalgebra of A generated by F=F-14 and V
(or more precisely by the images of F and V' in A) will be called a quadratic
algebra. 2 The Clifford algebra C£(Q) is a quadratic algebra with a Clifford
map V — C€(Q), x — yx such that for any Clifford map ¢ : V — A there
exists a unique algebra homomorphism v : C£(Q) — A making the following
diagram commutative:

v L ceq)
N LY Px = 'w(')’x)
A

This definition says that all Clifford maps may be obtained from v : V — C4(Q)
which is thereby universal.

2 The term quadratic algebra is commonly used for something else: in a quadratic algebra
each square z? is linearly dependent on z and 1.
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The definition by the universal property is meaningful for an algebraist who
knows categories and morphisms up to the theory of universal objects. A
category contains objects and morphisms between the objects. Invertible mor-
phisms are called isomorphisms. In a category there is an initial (resp. final)
universal object U, if for any object A, there is a unique morphism o : U — A
(resp. A — U). The universal objects are unique up to isomorphisin. In many
categories there exists trivially the final universal object, which often reduces
to 0. The Clifford algebra is the initial universal object in the category of
quadratic algebras.

Example. Consider the category of quadratic algebras on RP:9, In this cate-
gory the initial universal object is the Clifford algebra Cf; ; of dimension 2"
and the final universal object is 0. Between these two objects there are no
other objects, when p — ¢ # 1 mod 4. However, there are four objects in this
category, when p — ¢ = 1 mod 4; between Cf, ; and 0 there are two algebras
both of dimension 2"~1; in one we have the relation e e;...e, = 1 and in the
other ejez...e, = —1; these two algebras are not isomorphic in the category
of quadratic algebras (the identity mapping on R?:Y does not extend to an
isomorphism from one algebra to the other); however, they are isomorphic as
associative algebras (in the category of all real algebras). 1

The above definition of Clifford algebras is most suitable for an algebraist who
wants to study Clifford algebras over commutative rings (and who does not
insist on injectivity of mappings F — A and V — A). However, this approach
does not guarantee existence, which is given by constructing the Clifford alge-
bra as the quotient algebra of the tensor algebra (which in turn is regarded by
algebraists as the mother of all algebras).

14.5 Clifford algebra as a quotient of the tensor algebra

Chevalley 1954 p. 37 constructs the Clifford algebra C¢(Q) as the quotient
algebra ®V/I(Q) of the tensor algebra ®V with respect to the two-sided ideal
I(Q) generated by the elements x®x—Q(x) where x € V. See also N. Bourbaki
1959 p. 139 and T.Y. Lam 1973 p. 103. The tensor algebra approach gives a
proof of existence by construction — suitable for an algebraist who is interested
in rapid access to the main properties of Clifford algebras over commutative
rings.

In characteristic zero we may avoid quotient structures by making the exterior
algebra AV concrete as the subspace of antisymmetric tensors in ®V. For
example, if x,y € V, then x Ay = -;—(x Ry —-y®x)€E /\2 V. More generally,
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a simple k-vector x; Axa A...AX; is identified with 3

1 .
Alt(x1 Rx2Q...Q0 xk) = F Z 51gn(7r) Xr(1) ®x,,(2) ®...0 Xr(k) s
T

where the linear operator Alt : @V — AV, called alternation, is a projection
operator Alt(®V) = AV satisfying u Av = Alt(u ® v).

Similarly, we may obtain an isomorphism of linear spaces AV — C£(Q) by
identifying simple k-vectors with antisymmetrized Clifford products

. . . 1 .
X1 AXo A AXE O X AX AL AXE = FZ s1gn(7r)x,,(1)x,,(2)...x,,(k)
o

thus splitting the Clifford algebra C£(Q) into fixed subspaces of k-vectors
/\’c V C C4(Q). Any orthogonal basis e, es, ..., e, of V gives a correspon-
dence

e, Nei, A...Aej, > e, Nej, Ao Ne;, =€ €, ...e;,

of bases for AV and C4(Q).

Exercises

1. Show that the subspace Alt(®V) of ®V is not closed under the tensor

product.
2. Show that A® B —B® A = 1(AB — BA) for bivectors A,B € A\? V.

Bibliography

E. Artin: Geometric Algebra. Interscience, New York, 1957, 1988.

N. Bourbaki: Algébre, Chapitre 9, Formes sesquilinéaires et formes quadratiques. Her-
mann, Paris, 1959.

C. Chevalley: Theory of Lie Groups. Princeton University Press, Princeton, NJ, 1946.

C. Chevalley: The Algebraic Theory of Spinors. Columbia University Press, New
York, 1954.

W.K. Clifford: Applications of Grassmann’s extensive algebra. Amer. J. Math. 1
(1878), 350-358.

W.K. Clifford: On the classification of geometric algebras; pp. 397-401 in R. Tucker
(ed.): Mathematical Papers by William Kingdon Clifford, Macmillan, London, 1882.
Reprinted by Chelsea, New York, 1968. Title of talk announced already in Proc.
London Math. Soc. 7 (1876), p. 135.

J. Helmstetter: Algébres de Clifford et algébres de Weyl. Cahiers Math. 25, Mont-
pellier, 1982.

LR. Porteous: Clifford Algebras and the Classical Groups. Cambridge University
Press, Cambridge, 1995.

3 Another alternative is to omit the factor 2. This gives in all characteristics a correspon-

! .
dence between the exterior product and tﬁe antisymmetrized tensor product.



15
Witt Rings and Brauer Groups

Quadratic forms can be classified by their Witt classes in Witt rings (of con-
cerned fields). This is a slightly coarser classification than the one given by the
Clifford algebras (of quadratic forms).

Associative algebras with unity can be studied by means of Brauer groups
(of fields); for this one needs to know tensor products of algebras. These topics
will be discussed in this chapter.

15.1 Quadratic forms

A quadratic form on a linear space V over a field F is a map @ : V — F such
that for any A€F and x e V

Q(x) = N’ Q(x)
and such that the map
VxV-oF (xy)-Qx+y)-Qx) - Qy)

is bilinear, that is, linear in both arguments. A linear space with a quad-
ratic form on itself is called a quadratic space. A quadratic form obeys the
parallelogram law

RQ(x+y) +Q(x—-y) =2Q(x) +2Q(y).

In characteristic # 2 the quadratic form may be recaptured from its sym-
metric bilinear form

Blx,y) = 5[Q0x +¥) - Q(x) - Q)

since Q(x) = B(x,x). In characteristic # 2 the theory of quadratic forms is
the same as the theory of symmetric bilinear forms, but in characteristic 2 there

195
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are quadratic forms which are not induced by any symmetric bilinear form.

Example. Consider the 2-dimensional space F2 over F; = {0,1}. For the
quadratic form @ : F3 — F2, x = (z1,z2) — 712 there is no symmetric
bilinear form B such that Q(x) = B(x,x). However, there is a bilinear form
B, not symmetric, such that Q(x) = B(x, x), namely B(x,y) = z1yz, but the

matrix
01
Blei,ej) = (0 0)

cannot be symmetrized by adding an alternating matrix with entries in Fy =
{0,1}. 1
Remark. We shall not be concerned with characteristic 2, or non-symmetric
B, except at the end of this book when considering the relation between the

exterior algebra and the Clifford algebras. The role of non-symmetric B will
be described in Chevalley’s construction C£(Q) C End(A V). ]

A non-zero vector x is null or isotropic if Q(x) = 0. A quadratic form is
anisotropic if Q(x) = 0 implies x = 0, and isotropic if Q(x) = 0 for some
x # 0. A bilinear form is non-degenerate if B(x,y) =0 for all y € V' implies
x = 0. An anisotropic quadratic form is always non-degenerate.

A 2-dimensional isotropic but non-degenerate quadratic space is known as
the hyperbolic plane. A hyperbolic plane has a quadratic form y;y2 or equiv-
alently z? — z3 (choose y; = z; + 22 and ya = z; — 3 in characteristic
# 2).

A subspace with a vanishing quadratic form is totally isotropic. In a non-
degenerate quadratic space with a totally isotropic subspace S, there is another
totally isotropic subspace S’ such that SNS’ = {0} and dimS = dimS’. A
non-degenerate quadratic space is neutral or hyperbolic if it is a direct sum of
two totally isotropic subspaces (necessarily of the same dimension). A neutral
quadratic space is even-dimensional.

Examples. 1. A Euclidean space R™ has an anisotropic (and positive defi-
nite) quadratic form on itself, i.e.; x # 0 implies x - x > 0. This enables us to
introduce the norm or length |x] = +1/x-x of x € R".

2. The real quadratic space RP9 is non-degenerate and for non-zero p,g¢ also
isotropic (indefinite). The dimension of its maximal totally isotropic subspace
is p or ¢ according as p < ¢ or p > g, respectively. This number is called the
isotropy inder (or Witt index) of R?:9.

3. The quadratic form z} + 23 on F? is non-degenerate but isotropic, since
12 + 22 = 0 mod 5. It is also neutral.

4. The quadratic forms z% + 2z3 and z? + 3z2 are anisotropic on FZ. ]
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Two quadratic spaces (V,Q) and (V',Q’) are isometric if there is a linear
isomorphism L : V — V' such that @'(Lx) = Q(x), or equivaiently, in char-
acteristic # 2,

B'(Lx,Ly) = B(x,y) forall x,y€V.

We will express the isometry as (V,Q) ~ (V’/,Q’) or simply Q ~ @’. A self-
isometry (or automorphism) of @ on V is a linear isomorphism L :V — V
such that Q(L(x)) = Q(x) for all x € V; these self-isometries of @ form the
orthogonal group O(V, Q).

Two vectors X,y such that B(x,y) = 0 are said to be orthogonal (in the
case of a symmetric B). If a quadratic space is a direct sum of two subspaces,
(V1,@1) ® (V2, Q2), such that B(x;,x2) =0 for all x; € V} and x3 € Vo, it is
an orthogonal sum denoted by V3 L V5 or Q1 L Q».

There is also, for two quadratic spaces (V1,Q1) and (V2,@2), the tensor
product V1 ®V3 of dimension (dim V;)(dim V), with a quadratic form satisfying

Q(x1 ® x2) = Q1(x1)Q2(x2)

for decomposable elements x; ® x5 with x; € V} and x2 € V5.

The symmetric matrix B(e;,e;) can be diagonalized (in characteristic # 2);
as a consequence any quadratic form is isometric to a diagonal form dyz? +
daz3 + ...+ d,z? for some dy,ds,...,d, € F. We shall write

(d1,da,...,d,) to denote dyz? +dozd + ... +d,22.

The orthogonal sum and the tensor product appear in diagonal form as

(al,...,am) L(bl,...,bn):(al,...,am,bl,...,bn),
(al,...,am)®(b1,...,bn)=(albl,...,a,-bj,...,ambn).

Examples. 1. The real quadratic space RP? is neutral and an orthogonal
sum of p copies of hyperbolic planes R!:! each with a quadratic form (1,—1).
2 The hyperbolic plane over F, charF # 2, is isometric with ziz2 and
-3 ~(1,-1).

3. In Fs, (1) % (2) since 2 ¢ FY', the set of non-zero squares, but (2) ~ (3)
since 2z% = 3(2z1)%.

4. The quadratic forms (1,2) and (1,3) are isometric on F2 as can be seen
by the identity z? + 223 = z? + 3(222)? mod 5 and the linear isomorphism
(z1,22) = (21,222).

5. The quadratic forms (1,1) and (1,—1) are isometric on F? since 2% —z% =
z1 + (222)% 1
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15.2 Witt rings

Two quadratic spaces V,@ and V', @’ are said to be in the same Witt class if
Q@ L (—Q’) is neutral. A non-degenerate quadratic space is an orthogonal sum
V = Vi L Vj, of an anisotropic subspace V, and a neutral subspace V. The
anisotropic part V; is unique up to isometry. It follows that V' and V' are in
the same Witt class iff Q4 L (—Q}) is neutral, or equivalently iff @, ~ Q.
This results in a correspondence

UVitt class of V =V, ® V}, «— isometry class of V, I

exactly one anisotropic isometry class being included in each Witt class.

Examples. Let the ground field be Fs.

1. From the orthogonal sum (1) L (1,2) ~ (1,1, 2) we can cancel the hyperbolic
plane (1,1) to extract the anisotropic part (2). So the sum (1) L (1,2) is in
the Witt class of (2).

2. From the tensor product (1,2) ® (3) ~ (3,23 = 1) there is nothing to
cancel since (3, 1) ~ (1, 2) is anisotropic. So (1,2) ® (3) is in the Witt class of
(1,2). i
The orthogonal sum L and the tensor product ® provide the set of all the
Witt classes over F with a ring structure yielding the Witt ring W (F).

The opposite of @ is represented by —@Q in W(F). The neutral quadratic
forms, in particular (0), represent the zero of W (F). The 1-dimensional form
(1) corresponds to the multiplicative unity of W(F). The zero (0) and the
unity (1) are the only idempotents in W (F). The even-dimensional quadratic
forms induce an ideal of W (F).

Examples. 1. The Witt ring W (IFs) contains four anisotropic isometry classes
(0), (1), (2), (1,2). The addition and multiplication tables of W (Fs) are

Ll @ ) e | @ 1Yy

(M [ @ (L2 (2 L @ (L2
2 (L2 (O @) @@ @O 14,2
L@ @O O L)L) L2 (0

The Witt ring W(Fs) is isomorphic to the group algebra Z,[Fy /F5']; and the
additive group of W(Fs) is Zy x Zs, but as a ring W (Fs) % 2Zy = Zz x Zs.

2. The 1-dimensional line F5 with quadratic form (2) has the quadratic field
extension ]Fs(\/i) ~ o5 as its Clifford algebra. The Clifford algebras of both
(1) and (—1) split as the double-ring 2Fs = F5 x Fs. Therefore, as algebras

1 Denoting the Clifford algebra of the n-dimensional quadratic space p(1) L q{—1) by
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3. The Witt ring W (F7) contains four anisotropic isametry classes (0), (1),
(1, 1), <1, 1, 1), and W(IF7) ~ Zs. 1

The finite fields F,. The Witt ring of F,, ¢ = p™, charp # 2, contains four
anisotropic isometry classes

(0), (1), (s), (1,5) where s¢TF{ for p=1mod 4,
(0), (1), (1, 1), (1,1,1) for p=3 mod4.

The corresponding Witt rings are W (Fy) ~ Zo[F}/FY], ¢ = 1 mod 4, and
W(Fy) ~ Z4, ¢ = 3mod 4. All quadratic forms over the finite fields are
isotropic in dimensions n > 3.

The real field R. A field F is ordered if there is a subset P C F (of positive
numbers) such that for all a,b € P also a+ b,ab € P, and, for all a € F
exactly one of a € P, a =0, and —a € P holds. The statement a — b € P is
also written a > b. An ordered field F has an absolute value F — P, z — |z|
defined by setting |0] =0, |z| ==z for z > 0, and |z| = —z for —z > 0.

In an ordered field, F® C P. If all the positive numbers have square roots,
then there is a unique ordering with P = F2. The following holds for any
ordered field F such that P = FO, but we shall only consider the real field R.

There exist exactly two anisotropic forms on R", namely the positive definite
(1,1,...,1) and the negative definite (—1,—1,...,—1). 2 A non-degenerate
quadratic form on R” is isometric to

2 2 2 2 -
e P ol e . T p+qg=n,

which we abbreviate as p(l) 1 ¢(—1). The real quadratic space with this
quadratic form is denoted by IR?:9. The integer p — ¢ is called the signature of
RP:9,

The signature map sending R?*9 to p—q gives a ring isomorphism W (R) ~ Z.
As a consequence, the Clifford algebras of non-degenerate real quadratic spaces
can be listed by the symbols C¥¢, 4, denoted more fully by C¢, 4(IR™) = C£(RP9)
or CL(p(1) L ¢(-1),R").

The complex field C. The Witt ring of C contains only two anisotropic
isometry classes, namely (0) and (1), and W(C) ~ Z;. We only have to
distinguish between even- and odd-dimensional spaces over C.

Ezercises 1,2

C2p,q(F™), this example shows that the notion C£p 4 does not reach all the Clifford algebras
over arbitrary fields F.

2 The real linear space R™ with the positive definite quadratic form n(1) = (1,1,...,1) is
the Euclidean space R™.
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15.3 Algebras

An algebra A over a field F is a linear (that is a vector) space A over F
together with a bilinear map A x A = A, (a,b) — ab, the algebra product.
Bilinearity means distributivity (a + b)e = ac + be, a(b+ ¢) = ab+ ac and
(Aa)b = a(Ab) = A(ab) for all a,b,c€ A and A €F.

Examples. 1. The 2-dimensional real linear space R? together with the pro-
duct (z1,11)(22,y2) = (2122 — y1y2, T1y2 + z2y1) results in the real algebra of
complex numbers C.

2. The double-ring *F of a field F has a product (a1,b1)(az, ba) = (aiaz, b1by)
making it a 2-dimensional algebra over the subfield denoted by F(1,1) =
{(XAA) | A € F}.

3. The matrix algebra of real 2 x 2-matrices Mat(2,R) is a 4-dimensional real
associative algebra with unity I.

4. The real linear space R3? together with the cross product a x b is a (non-
associative) Lie algebra. |

An algebra is without zero-divisors if ab = 0 implies a = 0 or b = 0. In a
division algebra D the equations az = b and ya = b have unique solutions
z,y for all non-zero a,b € D. A division algebra is without zero-divisors, and
conversely, every finite-dimensional algebra without zero-divisors is a division
algebra. If a division algebra is associative, then it has a multiplicative unity
and each non-zero element admits a unique inverse (on both sides).

An algebra with a multiplicative unity is said to admit inverses if each non-
zero element admits an inverse.

Examples. 1. The quaternions H form a real associative but non-commutative
division algebra with unity 1.
2. Define the following product for pairs of quaternions:

(z1,11) © (z2,y2) = (2122 — J2y2, Y221 + Y1Z2).

This makes the real linear space H x H a real algebra, the Cayley algebra of
octonions Q. The Cayley algebra is non-associative, ao (boc) # (aob) oc, but
alternative, (aoa)ob=ao(aob), ao(bob) = (aob)ob. It is a division algebra
with unity 1.

3. Consider a 3-dimensional real algebra with basis {1,4,j} such that 1 is
the unity and i2 = j2 = —1 but ij = ji = 0. The algebra is commutative,
non-associative and non-alternative. It admits inverses, but the inverses of the
elements of the form zi+yj are not unique, (zi+yj)~! = A(yi —zj) — %ﬁ%
It has by definition zero-divisors, and cannot be a division algebra. 1

An isomorphism or anti-isomorphism of algebras A and B is a linear isomor-
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phism f: A — B such that
flzy) = f(@)f(y) or flzy) = f(v)f(z),

respectively. An automorphism or anti-automorphism of an algebra A is an
isomorphism or anti-isomorphism A — A, respectively. An automorphism or
anti-automorphism f of A such that f(f(z)) =« for all z € A is an involution
or an anti-involution, respectively.

The only algebra automorphisms of C, regarded as a real algebra, are the
identity and the complex conjugation z — Z.

The only automorphisms of the real algebra 2R are the identity and the swap

R — 2R, (A, p) = swap(\, p) = (i, A).
The swap acts like the complex conjugation of C, since
Swa’p[)‘(l) 1) + /1(1, —1)] = )‘(1) 1) - “(1) _1)

Two automorphisms or anti-automorphisms a, 3 of an algebra A are said
to be similar if there is an automorphism v of A such that ay = 4. If no
such v exists then a and g are said to be dissimilar.

The identity automorphism is similar only to itself. Consequently, the two
involutions of the real algebra C are dissimilar, and the two involutions of the
real algebra 2R are dissimilar.

Ezercises 3,4

15.4 Tensor products of algebras, Brauer groups

The tensor product of two algebras A and B over a field T is the linear space
A ® B made into an algebra with the product satisfying

(a®b)(a’ @ b') = (aa’) @ (bb')

for a,a’ € A and b ¥ € B. This algebra is also denoted by A ® B or, to
emphasize the ground field, by A ®r B.

In the special case of finite-dimensional associative algebras with multiplica-
tive unity, the statement C' = A® B can be tested by the following conditions
posed on the subalgebras A and B of C:

(i) ab=ba for any a € A and b € B,

(i) C is generated as an algebra by A and B,

(i) dimC = (dim A)(dim B).
Examples. 1. C Qg H ~ Mat(2,C) the real matrix algebra of 2 x 2-matrices
with complex numbers as entries.
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2. Mat(p,R) ® Mat(q,R) ~ Mat(pg, R).
3. Mat(p,R) ® Mat(q, C) ~ Mat(pq, C). 1
Ezercises 5,6

A two-sided ideal T of an algebra A is a subalgebra such that ta € T and
at €T forallt € T and a € A. An algebra A is called simple if it has no two-
sided ideals other than 0 and A. The center Cen(A) of an algebra A consists
of the elements commuting with all the elements of A:

Cen(A) = {c € A | ac = ca for all a € A}.

An algebra with multiplicative unity 1 is called central if Cen(A) =F -1 ~F.
A finite-dimensional central simple associative F-algebra A with multiplicative
unity is isomorphic to Mat(d,D) for some suitable division ring D (and division
algebra over F).

The opposite A°PP of an algebra A is the linear space A with a new product

opplab] of a,b € A given by opp[ab] = ba. Two central simple associative F-
algebras A and B are in the same Brauer class if A ® B°PP ~ Mat(d,F) for
some integer d. The tensor product of algebras induces a product for Brauer
classes, making the set of Brauer classes a group, called the Brauer group Br(F)
of the field F.
Examples. Br(R) ~ {R,H}, Br(C) ~ {C}, Br(Fs) ~ {Fs}. 1
An algebra A is graded over Zy = {0,1} if it is a direct sum of two subalgebras
A= Ay ® Ay so that A;A; C Aiy; [the indices are added modulo 2]. For two
graded algebras A = Ao @ A1 and B = By & B; the graded tensor product
AQ® B is the linear space A® B provided with the product determined by the
formula

(e @ b)(d' ® V') = (~1)"(aa’) ® (b))

for homogeneous o’ € A; and b € B;. The graded opposite A°"P of a graded
algebra A = Ag ® A; is the linear space A with a new product opp[ad] of
a,b € A given by opp[ab] = (—1)*ba for homogeneous elements a € A; and
b € B;.

Exercises

1. Determine the addition and the multiplication tables of the anisotropic
isometry classes (0), (1), (1,1), (1,1,1) of W(F).

2. Identify as matrix algebras all the Clifford algebras of non-degenerate
quadratic forms over Fj.



15.4 Tensor products of algebras, Brauer groups 203

3. Show that the two involutions a(A, u) = (u,A) and B(A, u) = (, A) are
similar involutions of the real or complex algebra 2C.
4. Consider the four anti-involutions of Mat(2,R) sending

o) e (Ga) (G7) () (L7)

Determine which ones of these four anti-involutions are similar or
dissimilar to each other. Hint: keep track of what happens to the matrices

G N

with squares I, I, and —1.
5. Show that CQg C~Cao C.
6. Show that H ®g H ~ Mat(4, R).

Solutions

1.
L@ @y Ly
1 146y 4L (0

(L1 (L4 () (1)
(LLL | (0 (1) (1,1)
® | (O @1y Ly
(1) n L1 1,51
(L1) [ LD (0 (L1)
(LLY [(LLY L1 (1)

2. A non-degenerate quadratic form (aq,as,...,a,) over Fs is isometric to
p(1) L ¢(2) where the numbers p and ¢ mean, respectively, occurrences of
1,4 and 2,3 in aj,as,...,a,. The Clifford algebra C£(p(1) L ¢{2),Fz¢) is
isomorphic, as an associative algebra, to the matrix algebra

Mat(2"/2, Fs) p and ¢ even
Mat(2"/2, ) p and ¢ odd
2Mat (2"~ 1)/2 Fs) p odd, ¢ even
Mat(2("~1)/2 F5(v/2)) p even, ¢ odd.

For instance, C£((1,2),F2) ~ Mat(2,Fs) by the correspondences

(1 0 o (02
=\ -1 T 10
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of an orthogonal basis {e1, ez} of (1,2) on F2.
3. Choose (X, 4) = (X, 4) or Y\, 1) = (A, i) to find ay = 74,
4. Only two of the anti-involutions are similar,

()= 7). ()=

as can be seen by choosing the intertwining automorphism

a by _ 1 (1 -1 a b\ 1 1 1
(0 a)=m0 ) C )7
for which ay = 8.
5. We must have 1 ® 1 ~ (1,1) and may choose i ® i ~ (1,—1) or
i®i~ (—1,1). If we choose the latter, we may still choose 1 ® i =~ (3, 1),
i®1~(i,—i) or 1Qi~ (i,—i), i®1~(i,i) or opposites of both.
6. Choose for a = ag + ia; + jaz + kas, b = by + by + jby + kbs in H the
matrix representations

apy —a; —as —as bo bl bz b3

O I po | 701 b0 —bs b
_ ) —_ )

az a3 ay —a1 =by b3 b —b

as —ap a ap —b3 —bg b1 bo

and check that the matrices commute and form two isomorphic images of
the ring M.

Bibliography

M.-A. Knus: Quadratic Forms, Clifford Algebras and Spinors. Univ. Estadual de
Campinas, SP, 1988.

T.Y.Lam: The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973,
1980.

E. Witt: Theorie der quadratischen Formen in beliebigen Korpern. J. Reine Angew.
Math. 176 (1937), 31-44.



16

Matrix Representations and Periodicity of 8

The Clifford algebra C£(Q) of a quadratic form @ on a linear space V' over
a field F contains an isometric copy of the vector space V. In this chapter we
will temporarily forget this special feature of the Clifford algebra C£(Q). Then
the Clifford algebra of a non-degenerate quadratic form is nothing but a matrix
algebra or a direct sum of two matrix algebras. We have already identified the
following Clifford algebras:
Cly ~ Mat(?,R), Cépp ~ H,
Clz ~ Mat(3, (C), C[0,3 ~HoH,
Cly ~ Mat(2,]HI), Cfayl ~ Mat(4,RR), Clz~ Mat(2,IHI).
We will find a general pattern for matrix images of Clifford algebras C¢, 4 of
non-degenerate quadratic spaces RP9. We will see that Cf, ; are isomorphic
to real matrix algebras with entries in R,C,H orin 2R=R @R, ’H=Hao H,
that is, their matrix images are
Mat(d,R), Mat(d,C), Mat(d,H) or
?Mat(d,R) = Mat(d,?R), *Mat(d,H) = Mat(d, 2H).

REVIEW OF MATRIX IMAGES OF Cl, 4, p+¢<5

The quadratic space RP? is an n-dimensional real vector space R®, n =p+q,
with a non-degenerate symmetric scalar product

X-y=2ziy1 +...+ZpYp — Tp41Up+1 — - - — TptqYptq-

The scalar product induces the quadratic form

— g2 2 2 2
X-Xx=x1+...+Z, T, — .- — Ty,

A real associative algebra with unity 1 is the Clifford algebra Cf, , on RP9

205
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if it contains R?? and R =R -1 ¢ RP? as subspaces so that RP'? generates
Cly 4 as a real algebra and

X" =X-X

for all x € R?4, Furthermore, we require that Cf, 4 is not generated by any
proper subspace of R?:9.

The identity x> = x - x has a polarized form xy + yx = 2x -y. In an
orthonormal basis e, es,...,e, of R?? this means

eie; + eje; = 2g;;

where g;; =e;-ej or g;; = 1,i<p, gis =—1,i> p, and g;; = 0,1 # j. The
above identity is a condensed form of the relations

e? =1, 1<i<p, e?=—1,p<i§n, eie; = —eje;, i < J.

1

The requirement that no proper subspace of R?¢ generates Cf, 4 results in the
constraint ejez...e, # x1, needed only in the case p — ¢ = 1 mod 4.

The Clifford algebra Cf, 4, p+ ¢ = n, is of dimension 2”. If the constraint
ejey...e, # *1 is omitted, then the resulting algebra could be of dimension
2" or 2”1, the lower value being possible only if p—¢ = 1 mod 4. In the lower-
dimensional case we have ejey...e, = %1, the algebra itself being isomorphic
to the two-sided ideal %( 1+ e12.n)Cl, 4. For instance, the negative definite
quadratic space R%3 has an 8-dimensional Clifford algebra Cfy3 ~ H & H,
which is a direct sum of two ideals %(1 + e123)Cly 3, both isomorphic to the
4-dimensional quaternion algebra H.

16.1 The Euclidean spaces R"

In the positive definite case, p = n, ¢ = 0, of the Euclidean space we abbreviate
R™° to R" and its Clifford algebra Cly o to Cly. In the Euclidean case we can
speak of the length |x| of a vector x € R given by |x|? = x-x. !

The Euclidean plane R2. Consider the Euclidean plane R2. The Clifford
algebra Cf; of R? is generated by an orthonormal basis e, ez of R%2. We have
the multiplication rules

e?=1¢ei=1 ding ¢ lei] =1, |ez] =1

eley = —ege;  COTTesponding to o ) o
Using eje; = —eqe; and associativity we find (ejez)? = —e?e? which implies
(e1ez)? = —1. This indicates that ejey is neither a scalar nor a vector, but a

1 In the negative definite case we can also speak of the length |x| of x € R®™ given by
[x]? = -x - x.
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new kind of unit, called a bivector. The Clifford algebra Cf; is 4-dimensional
with a basis consisting of

1 a scalar
ej, e vectors
eje; a bivector.

Write for short e;; = eje;. The Clifford algebra C£; has the following multi-
plication table:

e €2 €12

e 1 €12 e
ez | —ejs 1 —ei
el —es el -1

The Clifford algebra Cf, of the Euclidean plane R? is isomorphic, as an asso-
ciative algebra, to the matrix algebra of real 2 x 2-matrices Mat(2,R). This is

seen by the correspondences

Cty | Mat(2,R)
10
1 1)
1 0 0 1
e il —1/0\1 0
0 1
c12 (—1 0)

It should be emphasized that the Clifford algebra Cf; has more structure than
the matrix algebra Mat(2,R). The Clifford algebra C¢; is the matrix algebra
Mat(2,IR) with a specific subspace singled out (and a quadratic form on that
subspace making it isometric to the Euclidean plane R?). ]

The 3-dimensional Euclidean space R3. Consider the 3-dimensional Eu-
clidean space R3. The Clifford algebra Cf3 is generated by an orthonormal
basis {e1,ez2,e3} of R3. This time there are three linearly independent bivec-
tors ejs,ei1s, ess, each being a square root of —1. In addition, there is the
volume element ej23 = ejeses which squares to —1 and commutes with all
the vectors e, ez, e3 and thereby also with all the elements of the algebra Cés.
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The Clifford algebra Cf3 is 8-dimensional over R and has a basis consisting of

1 a scalar

e, ez, eg vectors

e12, €13, €23 bivectors

€123 a volume element.

The Clifford algebra Cf; is isomorphic, as a real associative algebra, to the
matrix algebra Mat(2, C) of 2x 2-matrices with entries in C. The isomorphism
Cl3 ~ Mat(2,C) of real associative algebras is fixed by the correspondences

(01 (0 —i (1 0
=10/ 2T\ oo ) BT\ 1)

The matrices above are known as Pauli spin matrices. The multiplication of
the unit vectors, ejezes = ejs3, results in the correspondence

€123 = 0 i/’

As noted above, the volume element ejz3, such that e?y,; = —1, commutes
with all the elements of the algebra Cf3; that is, it belongs to the center of
C¢3. This enables us to view Cf3 as a complex algebra isomorphic, as an asso-
ciative algebra, to the matrix algebra of complex 2 x 2-matrices Mat(2,C). 11

The 4-dimensional Euclidean space R*®. The Clifford algebra Cf4 of the
Euclidean space R* is isomorphic, as an associative algebra, to the real algebra
Mat(2,H) of 2 x 2-matrices with entries in the division ring of quaternions HL.
Using an orthonormal basis {e;,es, e3,es} of R* we can find the correspon-

dences
_ {0 —2 _ (0 —j {0 -k
e = Z. 0 3 ey = j 0 ) €3 = k 0
_ (1 0
e4 = 0 —1/°

The Clifford algebra Cf; is of dimension 16 and has a basis consisting of

1 a scalar

e1, €3, €3, €4 vectors

e12, €13, €14, €23, €324, €34 bivectors

€123, €124, €134, €234 3-vectors

€1234 a 4-volume element.

An arbitrary element v = (u)o + (u)1 + (u)2 + (u)s + (u)s in Cf4 is a sum
of a scalar (u)o, a vector (u)y, a bivector (u)s, a 3-vector (u)s and a volume
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element (u)4.

Split complex numbers R & R. The Clifford algebra C¢; of the Euclidean
line R! =R is spanned by 1,e; where e = 1. Its multiplication table is

1 e
111 e
e {e 1

The Clifford algebra C¢; is isomorphic, as an associative algebra, to the double-
field R @ R of split complez numbers. The product of two elements (aj,az)
and (B1,02) in R®R is defined component-wise:

(@1, 02)(B1, B2) = (a1, @2f32).

The isomorphism C¢; ~ R @ R can be seen by the correspondences

C[l RpR
11(1,1)
el (1’ _1)
The Clifford algebra Cf; ~ R& R is a direct sum of two ideals spanned by the
idempotents (1 +e;) ~ (1,0) and 3(1—e1) ~(0,1). 1

The 5-dimensional Euclidean space R®. The Clifford algebra Cfs of RS is
isomorphic to 2Mat(2, H) = Mat(2, 2H), as can be seen by the correspondences

o (89 6) e (28 )~ (83 60)
(

“=(%3 &%>%:(&% WJ>

The Clifford algebra Cf; has two central idempotents

1 _/(1,0) (0,00 1 _[(0,1) (0,0)
ke = (gl (1)) 20229 = ((00) o)

which both project out of C#; an isomorphic copy of Mat(2, H), that is, %(1 +
e12345)Cfs ~ Mat(2,H). An isomorphic copy of %(1 + e12345)Cl5 is constructed
within another subspace of Cf5 in the following counter-example.

Counter-ezample. Consider the subspace of scalars, vectors and bivectors R &
R® ® A’ R of dimension 1+ 5+ 15(5 — 1) = 125, Introduce in this subspace
a new product u o v defined by (one of the following)

uov = (uv(l £ e12345))o,1,2
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where (w)o,1,2 = (w)o + (w)1 + (w)2. This new product is associative and
satisfies

xox = |x|* for x€eR.
However, e; cej 0oezoeq 0e5 = +1. As a sample, this new product satisfies

ejoe; =ej3 e 0e3 =€y, €p0e12 = —1, ejn0e3 =e;3
e} 0 ex3 = Fey5, €12 0 €34 = es.

The multiplication table of this new product is given by the following matrices

(0 =i (0 —j (0 —k

a=x(i ) @mx(G 7)) w2 (i V)
1 0 0 1

e4—:t(0 _1), es—:t(l 0>

This serves as a counter-example to a belief that the Clifford algebra would be
uniquely generated by its subspaces R and R™. 1

The 3-dimensional anti-Euclidean space R%3

The anti-Euclidean space R%3 has a negative definite quadratic form sending
a vector x = z1e; 4+ z2e; + z3e3 to the scalar

24,2 .2
x-x = —(zi + x5 + 23).
An orthonormal basis {e1, ez, e3} of R%3 obeys the multiplication rules
e?=el=el=-1 and
eje; = —eze;, ejez = —eze|, eze3z = —egey.
These relations are satisfied by the unit quaternions
i=e, j—e; k=ej

in H. The rule ijk = —1, or ejeseg = —1, means that the real algebra
H =R @®R%3 is generated by a proper subspace R%? of R%3, In other words,
each quaternion can be expressed in the form z = z¢ + z1e; + z2e; + z3e1€9
where e3 = eje;. This matter is expressed by saying that H is an algebra of
the quadratic form

2,2, .2
z1e1 + Loey + zaez — —(z7 + 3 + z3)

although it is not the Clifford algebra Cfy 3. The 8-dimensional Clifford algebra
Cly 3 is isomorphic, as an associative algebra, to the direct sum H @ H. This
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can be seen by the correspondences

C[o’:; He H
1 (1,1)
e}, ez, e3 (Z,—) ]’_ )1 (k’ k)
€23, €31, €12 (1,1 ( ) (k k)
eiss | (-1,1)

The Clifford algebra Cfy 3 of R%3 is the universal object in the category of
algebras of the quadratic form

2 2 2
ri1e; + roes + r3e3 — —(.1:1 + x5+ 1'3)

or for short in the category of quadratic algebras. 2 If there are other objects
in this category, they are quotients of the universal object with respect to a
two-sided ideal. This gives us two other algebras of dimension 4; in one of them
we have the relation ejeses = 1 and in the other ejezes = —1. These two
algebras of dimension 4 are linearly isomorphic to R @ R%3, In the category
of quadratic algebras these two algebras of dimension 4 are not isomorphic
with each other, which means that the relations ejezes = 1 and ejeses = —1
prevent the identity mapping on R%2 being extended to an isomorphism in this
category. However, in the category of all associative algebras these two algebras
of dimension 4 are isomorphic with each other (and with the quaternion algebra
H = R @ R%3). The isomorphism can be seen by the mappings

e —>eq, e > ey and e3 — —es3. ]

16.2 Indefinite metrics RP¢

The hyperbolic plane R!. The hyperbolic plane is the linear space R2
endowed with a quadratic form

(u,v) = uv
which by change of variables u = =1 + 22, v = 21 — 22 is seen to be
2 2
(x]_, 12) - zl - 12.

Thus the hyperbolic plane is indefinite, neutral and has the Lorentz signature
R, The Clifford algebra C¢; 1 of R is isomorphic, as an associative algebra,

2 The term quadratic algebra is customarily used for something else: in a quadratic algebra
z? is linearly dependent on = and 1.
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to the matrix algebra Mat(2,R) by the correspondences
Ct 1 | Mat(2,R)

10
(o 7)
1 0 0 1
ever| (3 %) (5 o)
01
€12 (1 0)

Note that the Clifford algebras C¢;,1 and Cfs ~ Mat(2,IR) are isomorphic as
associative algebras but non-isomorphic as quadratic algebras. ]

The Minkowski space-time R3!. The elements of an orthonormal basis

{e1,es,e3,e4} of R3! anticommute, e,e, = —e,e,, and have unit squares,
e? = e2 = e = 1, e2 = —1. The basis vectors are often given the following

representation by complex 4 x 4-matrices:

ey =€k = 0 o for k=1,2,3 and eqg= —e*= ! 0,
or 0 0 —

where we recognize the 2 x 2 Pauli spin matrices o1, 02, 03. It is possible to
represent Cf3 1 by real matrices as follows:

_f{os O I 0 on — 0 o3
e = 0 —o3 ! 2= 0 oy ’ 3= o3 0 !
_ —i0'2 0
“T\ 0 o)

This implies Cf3; ~ Mat(4,R). ]

The Minkowski time-space RY3. In the signature R!'3 one usually gives
the following representation by complex 4 x 4-matrices:

1 0
— A0 —
Yo =7 —(0 _1), and

o= =yt = (;’k “(‘)”‘), for k =1,2,3.
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In addition to the above matrix representation one can represent the Clifford
algebra C{; 3 by the following 2 x 2-matrices with quaternion entries:

_ (1 0

70_0_1,

_ {0 4 _ (0 _ (0 &k
M= i 0/’ Y2 = i 0)’ Y3 = E o)

Since the Clifford algebra C¢; 3 and the matrix algebra Mat(2,H) of 2 x 2-
matrices with entries in H are both real algebras of dimension 16, the above cor-
respondences establish an isomorphism of associative algebras, that is, C¢; 3 ~

Mat (2, H).
A short look at physics: A vector u = ugy® +uyy* + uzy? + usy® with square
u? = u? — u? — u3 — u2 can be time-like 4> > 0, null 4 = 0, or space-like

u? < 0. A time-like vector or non-zero null vector can be future oriented ug > 0
or past oriented 1y < 0. A time-like future oriented unit vector u, u? = 1,
gives the velocity v < ¢ of a real particle by

1
02

-5 !
Physicists might want to observe that the Clifford algebras Cf3;, ~ Mat(4,R)
and Cf; 3 ~ Mat(2,H) are not isomorphic as associative algebras, even though
both of them have the same complexification Mat(4, C) with the same complex
structure but with different real structures (= different real subalgebras). The
complexified Clifford algebras C® Cf; 3 ~ C® Cf31 have a 4-dimensional
irreducible left ideal (8-dimensional real subspace). As a graded left ideal
this ideal is also irreducible. The real algebra C¢{; 3 has an 8-dimensional
irreducible left ideal, which is also graded. However, the real algebra Cf3; has
a 4-dimensional irreducible ideal, which is not graded (that is Cf3; does not
have primitive idempotents sitting in CZ_{I), and an 8-dimensional irreducible

Ug =

graded ideal.

THE TABLE OF CLIFFORD ALGEBRAS

The Clifford algebra Cf, 4, where p — ¢ # 1 mod 4, is a simple algebra of
dimension 2", where n = p + ¢, and therefore isomorphic with a full matrix
algebra with entries in R, C, or H. The Clifford algebra C{, 4, where p— ¢ =

1 mod 4, is a semi-simple algebra of dimension 2" so that the two central
idempotents %(1 + ejey...e,) project out two copies of a full matrix algebra

with entries in R or H. To put it slightly differently, the Clifford algebra C¢, 4
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has a faithful representation as a matrix algebra with entries in R, C, H or
RoOR, H® H. In the rings ‘R=R®R and 2H = Hg H the multiplication
is defined component-wise:

(al, az)(bl, bg) = (albl, azbz).

16.3 Matrix representation Clp;; q41 ~ Mat(2,C/p o)

Let {e;,ez,...,e,} be an orthonormal basis of R??, n = p + q, generating
the Clifford algebra Cf, 4. The 2 x 2-matrices

e 0 . 01 0 -1
(0 _ei) fori=1,2,...,n, (1 0), (1 0)

anticommute and generate the Clifford algebra Cf,41,4+1. In other words, the
Clifford algebra Cfy41,441 is isomorphic, as an associative algebra, to the al-
gebra of 2 x 2-matrices with entries in the Clifford algebra C¢, ;. This can be
condensed by writing Cfy41 441 ~ Mat(2,C4, o).

Examples. Recall that C¢; ~ 2R = R® R by setting e; ~ (1,—1). This
implies the isomorphism Cfl; 1 ~ 2Mat(2,R). Recall that Cf 3 ~ ?H = H ¢ H
which implies C¢; 4 ~ ?Mat(2, H). Recall that C¢; 3 ~ Mat(2, H) which implies

Cl2,4 ~ Mat(4,IHI). |

Supplement an orthonormal basis {e;,e2,...,e,} of R”? with two more
anticommuting basis vectors e; and e_ such that e2 =1 and €2 = -1 to
form an orthonormal basis of RP+1:9+1, The generators ej,es,...,e,, ey, e

of Clp41,441 correspond to the generators

e,-:(ei 0 ) fori=1,2,...,n,

0 —e;

(o1 {0 -1
“+=\10/)0 7\ o

of Mat(2,C¥¢, 4), so that the element a € Cf, 4 is represented by a matrix

a~a0
“\0 a

where the hat means the grade involution @ = @y — a1 with ao = even(a) and
a1 = odd(a). There is another possibility to embed C¢p, 4 into Mat(2,Clp q),
so that a € C4, 4 is represented by

a 0
a1=a0+a1e+e_ ~ (0 a)
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which is just a multiple of the identity matrix. Since o’ = ag + a1e4e_ com-

mutes with
1 0 01
%(1+e+e—): (0 0>’ (e+_e—): (0 0>

%(e++e-):((1) g) %(l—e+e_):(g ‘;)

we have the correspondence Mat(2,Cl, q) >~ Clp41,9+1, given by

(¢ a)=2o o) (0 o)+<(3 o)+ (5 3)

~a'l(l+ere ) +bi(ey —e_)+c'i(ey +e) -i: d'3(1—eje.)
=al(l+eje ) +bi(es — e_z +éel(er+e)+di(1- e+e__)A
=1(1+ere_)a+ 3(es —e )b+ 2(ey +e_)c+ 2(1 —eqe_)d.

[

To put all this in another way: The Clifford algebra Cfp41,441 contains an
isomorphic copy of Cf, ; generated by the elements e} = e;eje_, where ¢ =
1,2,...,n = p+gq, in such a way that each element of C{, , commutes with
every element of a copy of Cf;; generated by e; and e_, and further that
Cl,, and Cl;; together generate all of Clpi1 q41. These considerations can
be condensed by writing

| Cfp,q ® Cfl,l ~ C£p+1,q+1 I

where Cf;; ~ Mat(2,R).
Symmetry Cfp 4 ~ Clg41,,—1. Take an orthonormal basis {e1,e2,...,en} of
R?:¢ where p > 1 and set

ei=e; and e/ =eje; for i>1.

The elements e where i = 1,2,...,n anticommute with each other so that
e/? = e? and e/?> = —e? for i > 1. Therefore, the subset {e},e),...,e},} of
Cly 4 is a generating set for Cly41,p—1. This proves the isomorphism

l Ce q= C£q+1,p_1J

when p > 1.

Examples. Recall that Cf3 ~ Mat(2, C), which by symmetry implies C¢; 5 ~
Mat(2,C). Recall that Cf3; ~ Mat(4,R), which implies Cfy > ~ Mat(4,R).
From Cfy 4 ~ Mat(2,H) we can first deduce Cf 5 ~ Mat(4,H) (by adding a
hyperbolic plane) which implies Cfs ~ Mat(4, H). 1
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16.4 Periodicity of 8

Table 1, of Clifford algebras, contains or continues with two kinds of peri-
odicities of 8, namely for algebras of the same dimension Cl, , ~ Clp_4 44
where p > 4, and for algebras of different dimension C¢, 154 ~ Mat(16,C¢, o).
Let us first prove Clp g4 ~ Cly_4 444 where p > 4. Take an orthonormal basis
{e1,es,...,ep,} of R?? and set

e; =e;h for i=1,23,4,
e =e; for i>4,
where h = ejezezes. Then the subset {e},e,... e} } of Cfp 4 is a generating

set for Clp_4 g44, Which implies the isomorphism
Clp,g = Clp—4,9+4
where p > 4. These isomorphisms are due to Cartan 1908 p. 464.

Examples. Recall that Clg ~ Mat(4,H), which implies Cf3 4 ~ Mat(4, H).
From Cf3 ~ Mat(2,C) deduce first Cfs; ~ Mat(4,C), which implies Cfg 5 ~
Mat(4,C). From Cl3> ~ Mat(4,R) we first deduce Cf33 ~ Mat(8,R); then
by Cf3,3 ~ Cf4,2 and Cf4,2 ~ Cfo’s we find Cfo’s ~ Mat(S,R). From Cfa,a ~
Mat(8,R) we find Cly 4 ~ Mat(16,R) and also Cfg ~ Mat(16,IR) and Clp g =~

Mat(16, R). 1
Next, prove Clp48 .4 =~ Mat(16,Cfp o) by showing that Cfp g1 ~ Mat(16,C¢p 4).
Take an orthonormal basis {e1,es,...,en,€n41,...,€n48} of RPITE where

n = p-+ ¢ and set

e =ejent1...€q48 for i=1,2,...,n=p+q.
Then the subset {e},e5,...,e,} of Cf, 448 generates a subalgebra isomorphic
to Clp 4. The subalgebra generated by en41,...,en4s is isomorphic to Clg g ~

Mat(16,R). These two subalgebras commute with each other element-wise and
generate all of Cép 448, which shows that

Cly g8 =~ Clp o ® Mat(16, R) ~ Mat(16, Cf, 4)

Similarly, Clpsq ~ Clp q ® Mat(16,R) ~ Mat(16,Cf, ;). These isomorphisms
are due to Cartan 1908.

Example. Note that Cfy 1 ~ C which implies Cfs; ~ Mat(16, C). Recall that
Cl,1 ~ Mat(2,R) and so Cf; 9 ~ Mat(32,R). I
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Table 1. Clifford Algebras Cf, 4, p+¢ < 8.

P70 7 65432101 2347567
pt+g

0 R

1 C R

2 H R2) R(2)

3 H  C(2) R(2) C(2)

4 H(2) H(2) R(4) R(4) H(2)

5 C(4) H(2) C(4) *R(4) C(4) 2H(2)

6 R(8) H(4) H(4) R(8) R(8) H(4) H(4)

7 2R(8) C(8) 2H(4) C(8) R(8) C(8) 2H(4) C(8)

A(d) means the real algebra of d x d-matrices Mat(d,A) with entries in the
ring A =R, C, H, ’R, 2H.

16.5 Complex Clifford algebras and their periodicity of 2
Complex quadratic spaces C* have quadratic forms
2424 +2L

The type of their Clifford algebras C£(C") depends only on the parity of n.
Denote £ = |n|. In even dimensions C£(C") ~ Mat(2¢,C) and in odd dimen-
sions C£(C") ~ 2Mat(2¢, C).

Table 2. Complex Clifford Algebras C¢(C™*), n < 8.

S

O T W RO
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~~
V-
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Exercises
1. Show that Ce}, ~ Cly 41 and CL} = CLY o~ Clon_s.
2. Show that all the algebra isomorphisms presented in this chapter are

special cases of the following:

CL(V1 ® V2,0Q1 L @2) ~ CL(V1,AQ1) ® CL(V2, Q3),
(x,¥) 2 x0w+1QYy,

where @) is non-degenerate and V3 is even-dimensional, dim V, = 2k,
w € A* Vs, w?=XeR)\{0}.
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17
Spin Groups and Spinor Spaces

We have already met in some lower-dimensional special cases the spinor spaces,
minimal left ideals of Clifford algebras, and the spin groups, which operate on
spinor spaces. In this chapter we shall study the general case of R?9.

SPIN GROUPS AND THE Two EXPONENTIALS

Review first the special case of the 3-dimensional Euclidean space R3.

17.1 Spin group Spin(3) and SU(2)

The traceless Hermitian matrices zo; + yos + zo3, with z, y, 2 € IR, represent
vectors T = zre; + ye; + ze3 € R3. The group of unitary and unimodular
matrices

SU(2) = {U € Mat(2,C) | UU = I, detU = I}
represents the spin group Spin(3) = {u € Clz juti =1, uu =1} or
Spin(3) = {u € C£ | uii = 1}.

Both these groups are isomorphic with the group of unit quaternions S3 = {¢q €
H | ¢¢ = 1}. For an element u € Spin(3) the mapping r — uri is a rotation
of R3. Every element of SO(3) can be represented in this way by an element
in Spin(3). In fact, there are two elements u and —u in Spin(3) representing
the same rotation of R3. This can be written as Spin(3)/{+1} ~ SO(3) and
one can say that Spin(3) is a double covering of SO(3).

219
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17.2 The Lipschitz groups and the spin groups

The Lipschitz group T’y 4, also called the Clifford group although invented by
Lipschitz 1880/86, could be defined as the subgroup in Cf, , generated by
invertible vectors x € R4, or equivalently in either of the following ways:

rqu = {S € Cep,q I Vx € Rp’q, Sx§—1 € ]RP:Q}
Tpe={s€Clf uCl | Vx €RPY, sxs~! € RP9}.

Note the presence of the grade involution s — §, and/or the restriction to
the even/odd parts C£E,. For s € T'pq, s5 € R. The Lipschitz group has a
normalized subgroup

Pin(p,q) = {s € T 4 | s5 = £1}.
The group Pin(p, ¢) has an even subgroup
Spin(p, ¢) = Pin(p,q) N Cf;',q.
The spin group Spin(p, ¢) has a subgroup

Spin, (p, q) = {s € Spin(p, q) | s5 = 1}.

Write Spin(n) = Spin(n,0), and note that Spin,(n) = Spin(n). Because
of the algebra isomorphisms C€}, ~ C£}, we have the group isomorphisms
Spin(p, ¢) ~ Spin(g, p). However, in general Pin(p, ¢) # Pin(q, p). In partic-
ular, Pin(1) ~ Zy x Z3 and Pin(0, 1) ~ Z4.

The groups Pin(p,q), Spin(p,q), Spin(p,q) are two-fold covering groups
of O(p,q), SO(p,q), SO4+(p,q). Although SO, (p, q) is connected, its two-fold
cover Spin, (p,q) need not be connected. However, the groups Spin(p, q),

P+ ¢ > 2, are connected with the exception of
Spin,(1,1) = {z+ye;z | 7,y € R; 2 —y* =1},
which has two components, two branches of a hyperbola. The group
Spin(1l,1) = {z + ye12 | 2,y € R; 22—y’ = +1}

has four components.

The groups Spin(n), n > 3, and Spin,(n—1,1) ~ Spin_(1,n—1), n > 4,
are simply connected and therefore universal covering groups of SO(n) and
SO4(n —1,1) ~ SO4(1,n — 1). However, the maximal compact subgroup of
S04 (3,3) is SO(3) x SO(3) which has a four-fold universal cover Spin(3) x
Spin(3). Consequently, Spin_ (3, 3) is not simply connected, but rather doubly
connected, and therefore not a universal cover of SO4(3,3).
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17.3 The two exponentials of bivectors
The Lie algebra of Spin,(p,q) is the space of bivectors /\ZJRP"’. For two
bivectors A,B € /\2 RP'? the commutator is again a bivector,
2
AB-BA € A\ RPe.
This can be seen by considering the reverse of

2 4
AB = (AB) + (AB); + (AB)s e R® A RP7 g A\ RP*

for which
(AB)” = (AB); — (AB)2 + (AB),

and on the other hand
(AB)” = BA = (-B)(—A) = BA.

The exponentials of bivectors generate the group Spin, (p, ¢).
In this section we consider two different exponentials of bivectors, the ordi-
nary or Clifford exponential

eB=1+B+%B2+éB3+...,

where B? = BB, and the exterior exponential
1 1
CABZ 1+B+§'BA2+-6BA3+...,
where B"? = B A B. The series of the exterior exponential is finite. The
ordinary exponential is always in the spin group, that is,
2
e® € Spin, (p,q) for Be [\RPY.

The exterior exponential is in the Lipschitz group, if it is invertible in the
Clifford algebra,

2
"B el,, for Be /ARPY suchthat e"Ber=B) g,
Note that e*B A erM=B) = 1 and so the exterior inverse of e’B is eM~B),
The reverse of s = B is 5= ¢"(~B) and so the exterior inverse s"(~1) of s

equals §. The ordinary inverse of s, in the Clifford algebra Cfs, is given by

where s§ € R.
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The Euclidean spaces R". The bivector B can be written as a sum
B=B;+Bs+...+B;

of at most £ = |n/2| simple bivectors B;, B; A B; = 0, which are mutually
completely orthogonal so that their planes have only one point in common,
B; AB; = B;B;, i # j. This decomposition is unique unless B} = B?.
Notwithstanding, the product
(14+B)A(1+Ba)A...A(1+By)=(14+B1)(1 +B3)...(1+By)

depends only on B and equals the exterior exponential e*B. The square norm
of e"B is seen to be |e"B|?2 = (1 - B2)(1 - B3)...(1 - B}).

The Cayley transform. An antisymmetric n x n-matrix A is sent by the Cayley
transform to the rotation matrix

U= (I +A)I - A)~! € SO(n).

There corresponds to A a bivector B € A?R" such that A(x) = B L x for all
x € RPY. If y = Ux, then y — Ax = x + Ax, or equivalently

y+y!/B=x+BLx. (1)

Next, compute s A (x +BLx)=sAx+sA(BLx) for s =e"B. Sum up
1 1

' k ' k+1

for k=10,1,2,...,£ to obtain sA(BLx)=sLx. Since sAx+sLx=sx, it
follows that s A (x + BL x) = sx. Similarly, sA(y+ydB)=sAy—sLy=
¥ As+yds=ys. Therefore, the equation (1) is equivalent to sx = ys or

U(x) = sxs™ 1.

This representation of rotations was first discovered by R. Lipschitz 1880/86.
Thus we have the following result: An antisymmetric n x n-matrix A and the
rotation matrix U = (I+A)(I - A)~! € SO(n) correspond, respectively, to the
bivector B € /\ZJR”, A(x) = BLx, and its exterior exponential s = ¢"B € '},
which is the unique element of I'}, with scalar part 1, inducing the rotation
U, U(x) = sxs~1. For every rotation U € SO(n), which does not rotate any
plane by a half-turn (all eigenvalues are different from —1), there is a unique
element s € T}, (s)o = 1, such that U(x) = sxs~!.
For an element s € I'}, 35 € R, 85 > 0. Therefore |s| = /53, and
s AB

B € Spin(n) for s=e
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Every element u € Spin(n), (u)o # 0, can be written in the form

e/\B

U= E ey

which corresponds to the rotation U = (I + A)(I — A)~! € SO(n). This should
be contrasted with the fact that every element in Spin(n) can be written in
the form ¢B/2, which corresponds to the rotation e in SO(n).

Lorentz signatures. In the Lorentz signatures the decomposition
B=B;+B;+...+ B,
still exists and can be used to test invertibility of e*B. The exterior exponential
"B =(14+B1)(1+B3)...(1+By)

is invertible in the Clifford algebra if B? # 1 for all i. In other words, e"B €
rf_,,ifall B} #1.

Indefinite metrics. Every isometry U of IRP, connected to the identity of
S04 (p,q), is an exponential of an antisymmetric transformation A of RP4,
U =eA, if and only if

RPY g Rn,O’ Ro,n’ Rn-—l,l or R],n—-l,

see M. Riesz 1958/93 pp. 150-152. In these Euclidean and Lorentz signatures
there is always a bivector B, B Lx = A(x) such that U(x) = eBxe™B, see M.
Riesz 1958/93 p. 160.

Given a bivector B one can, in general, find other bivectors F such that
eB = —eF and hence eBxe B = eFxe~F. The only exceptions concern the
following cases:

R} forall B
R>! and RY? forall B#0 such that B2 >0
R3»! and R!3® forall B#0 suchthat BZ2=0,

see M. Riesz 1958/93 p. 172.

To summarize with special cases: All the elements of the compact spin groups
Spin(n) are exponentials of bivectors [when n > 2]. Among the other spin
groups the same holds only for Spin (n —1,1) ~ Spin_(1,n - 1), n > 5.
In particular, the two-fold cover Spin,(1,3) ~ SL(2,C) of the Lorentz group
S04 (1,3) contains elements which are not exponentials of bivectors: take (yo+
)72 € ARY3, [(0+71)72]2 = 0, then —e+m)¥2 = —1 — (35 +91) 72 # €B
for any B € A°R'2. 1 However, all the elements of Spin,(1,3) are of the

1 In contrast, —el(e1tes)ez = ~1—(e1+es)ez = elertes)eatmess jy Spin, (4,1) = Sp(2,2).
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form +eB, B € A’R13. Therefore, the exponentials of bivectors do not form
a group.

Every element L of the Lorentz group SO4(1,3) is an exponential of an an-
tisymmetric matrix, L = e4, gATg~! = —A; a similar property is not shared
by 504(2,2). There are elements in Spin(2,2) which cannot be written in
the form +eB, B € /\2 R22; for instance Fejg34¢”®, B = €15 + 2e14 + a4,
B> 0, see M. Riesz 1958/93 p. 168-171. 2
Lower-dimensional spin groups. The dimension of the Lie group Spin(n) is
%n(n — 1). The groups Spin(n), n < 6, and Spin_(p,q), p+ ¢ < 6, are
identified in Table 1.

Table 1. Spin Groups Spin_ (p,q), p+¢ < 6.

N 0 1 9 3 4 5 6

{£1} 0(1) UQ) Sp@) Sp2) Sp(4) SU)
O(1) GL(1,R) Sp(2,R) Sp(2,C) Sp(2,2) SU*(4)

U(1) Sp(2,R) 25p(2,R) Sp(4,R) SU(2,2)

Sp(2) Sp(2,C) Sp(4,R) SL(4,R)

2Sp(2) Sp(2,2) SU(2,2)

Sp(4) SU*(4)

SU (4)

Sy TV W W N = O

Note that Spin, (p,q) = {s € C£f, | 85 = 1} for p+¢ < 5. In dimension 6 the
group {s € C¢f | 5 = 1} ~ U(4) has a proper subgroup Spin(6) =~ SU(4).
The groups Spin(7) and Spin(8) are not directly related to classical matrix
groups; their study will be postponed till the discussion on triality.

In the case of the complex quadratic spaces C"* we define the complex pin
group slightly differently: 3

Pin(n,C) = {s € C4(C") | s§ = 1; ¥x € C*, sx5~' € C"}.

2 Riesz also showed, by the same construction on pp. 170-171, that there are bivectors which
cannot be written as sums of simple and completely orthogonal bivectors; for instance
B =612 + 2e14 + €34 € AZR22.

3 The structures of square classes are different for R and C. In R* =R\ {0}, R* = £RU,
RY = {42 | A € RX}; so to pick up one representative out of each square class we set
55 = 1. In contrast, in C* = C\ {0}, C* = CP; so to pick up one representative out of
each square class we set 85 = 1.
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The complex spin groups Spin(n,C), n < 6, are seen to be as follows:

0 1 2 3 4 5 6
{£1} O(1,C) GL(1,C) Sp(2,C) 2Sp(2,C) Sp(4,C) SL(4,C)

We also define the Lipschitz group $I4;, for paravectors in R @ RP9 as
the group containing the products of invertible paravectors, or equivalently,

$Tyt1p={s ECly |V ERORPY, 525~ e RORPY}.

For any non-null paravector a € R @ R??, the mapping ¢ — aza™! is a spe-

cial orthogonal transformation of R @ RP*? with metric £ — zZ. Therefore
$Ty41p ~ T}y, Note that Tpy C $Tyy1, and 8T, , = T . The nor-
malized subgroup $pin(q + 1,p) = {s € $I'q41, | 55 = £1} is isomorphic to
Spin(g + 1,p).

IDEMPOTENTS, LEFT IDEALS AND SPINORS
Review first the Clifford algebra Cf3 of the Euclidean space R3.

17.4 Pauli spinors

In the non-relativistic theory of the electron, spinors are regarded as columns

(i;) where 1, 2 € C.

We shall instead introduce spinors as square matrices

~ (¥ O
¢_<¢2 0>'

If we multiply 1 on the left by an arbitrary element u in Cf3 we obtain another
element uy) = ¢ in Cf3 whose matrix is also of spinor type:

(Uu UIZ) (1/11 0) _ (<P1 0>
U1  U22 Y2 O w2 0)°
The spinors make up a left ideal S of Cls, that is,

forall u€Clz and % €S wealsohave uyp €S.

The left ideal S contains no left ideals of Cf3 other than the zero ideal {0}
and S itself. Such a left ideal is called minimal in Cls.

The element f = (1 + es) is an idempotent, that is, f2 = f, which is
primitive in Cf3, that is, it is not a sum of two annihilating idempotents,
f# fi + f2, fife = fofi = 0. The left ideal S = Cl3f can be provided with a
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right linear structure over the division ring D = fCl3f as follows: S xID — S,
(¥,A) = ¥A. With this right linear structure over D ~ C the left ideal S
becomes a spinor space.

17.5 Primitive idempotents and minimal left ideals

An orthonormal basis of R”? induces a basis of Cfp 4, called the standard
basis. Take a non-scalar element er, €% = 1, from the standard basis of C¢, ,.
Set e = %(l+eT) and f = %(l—eT), then e+ f =1 and ef = fe = 0. So
Clp,q decomposes into a sum of two left ideals Cf, o = Cly e @ Cly o f, Where
dimClp ge = dimCly o f = %Clp’q = 2"~1. Furthermore, if {er,,er,,...,er}
is a set of non-scalar basis elements such that

e%'. =1 and erer; =erer,

then letting the signs vary independently in the product %(1 + eTl)%(l +
er,)...3(1 % er,), one obtains 2% idempotents which are mutually annihi-
lating and sum up to 1. The Clifford algebra C¢, 4 is thus decomposed into
a direct sum of 2* left ideals, and by construction, each left ideal has diren-
sion 2"~*. In this way one obtains a minimal left ideal by forming a maximal
product of non-annihilating and commuting idempotents.

The Radon-Hurwitz number r; for ¢ € Z is given by

i]001 234567
n|0 1223333

and the recursion formula
riys =r; +4.

For the negative values of ¢ one may observe that r_; = —1 and r_; =
l—i4+ri_gfori>1.

Theorem. In the standard basis of Cfp , there are always k = ¢ — ry_, non-
scalar elements er,, e%l = 1, which commute, er,er; = er;er,, and generate a
group of order 2¥. The product of the corresponding mutually non-annihilating
idempotents,

1 1 1
f= -2-(1 +eT1)-2—(1 +er,)... 5(1 +er,),

is primitive in Cp 4. Thus, the left ideal S = C{, of is minimal in Cfp 4. 1
Examples. 1. In the case of R%7 we have k = 7 — r; = 4. Therefore the
idempotent f = %(l + e124)%(1 + e235)%(1 + e346)%(1 + e457) is primitive in
6£o’7 ~ 2Mat(8,]R).
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2. In the case of R%! we have k = 1—r_; =1 — (r7 — 4) = 2. Therefore the
idempotent f = 1(1+e1)3(1 + ezs) = (1 +e1 + ez3 + eq23) is primitive in
CzZ,l jnd ZMat(Q,R). 1
If e and f are commuting idempotents of a ring R, then ef and e+ f — ef
are also idempotents of R. The idempotents ef and e+ f —ef are a greatest
lower bound and a least upper bound relative to the partial ordering given by

e<f ifandonlyif ef = fe=e.

A set of commuting idempotents induces a lattice of idempotents.

Example. In the Clifford algebra Cl31, k=1—r_s =1—(r¢ —4) = 2. Since
2F = 4, Cf31 ~ Mat(4,R) and there are 22" = 16 commuting idempotents
in the lattice generated by the following four mutually annihilating primitive
idempotents:

H=3(1+e)
fa=3

fitfe+1fs fotfa+fa
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The lattice induced by the primitive idempotents f1, f2, fa, fa looks like a rhom-
bidodecahedron, see diagram. 1

17.6 Spinor spaces
For a primitive idempotent f € Cf, ; the division ring ID = fC¢, 4 f is isomor-
phic to

R for p—¢=0,1,2mod 8

C for p—¢=3mod4

H for p—¢=4,56mod8

and the map
SxD—S, (¥,A) =¥

defines a right ID-linear structure on the minimal left ideal S = C¢, qf. Pro-
vided with this right D-linear structure the minimal left ideal S becomes a
spinor space. 4

The spinor space provides an irreducible representation
Cl, o = Endp(S), u — y(u), vy(u)y =uy,

of C, 4. This representation is also faithful for all simple Clifford algebras
Clyq, P—q+# 1mod4.

Next, we construct a faithful representation for semi-simple Clifford algebras
Clyq, P— ¢ = 1 mod 4, which are direct sums of two simple ideals (1 +
e12..n)Clp 4. Take a primitive idempotent f and an idempotent e = f + f in
Cly 4 The ring E = eCly e is the direct sum E=D @D, D= {} | X € D},
isomorphic to the double ring D of the division ring D, more precisely,

RoR for p—¢=1mod8
He H for p— ¢ =>5mod8.

To find a faithful representation for a semi-simple Clifford algebra Cf, 4 with
p—q=1mod 4 take a left ideal S@® S where S = {4 | ¥ € S}. The map

S®S)XxE-S8S, (¥,)) = v

defines a right E-linear structure on S @ S. Provided with this right E-linear

4 Similarly, beginning with a minimal left ideal of the even subalgebra CZ',!"q we obtain an
even spinor space. The dimension of the even spinor space is lower than the dimension of
the spinor space, when p — g = 0 mod 4. In this case, even spinors are called semi-spinors.
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structure the left ideal S & S of Clp 4 becomes a double spinor space. ® The
double spinor space provides a faithful but reducible representation

Clpq = Endg(S @ 9), u—y(v), v(u)y = uy,

for a semi-simple Clp 4, p— ¢ = 1 mod 4.
In order to be able to consider faithful representations of simple and semi-
simple Clifford algebras at the same time, we adopt the following notation:
D is D or DeD

Sis S or S@8S

according as Cfp 4 is simple or semi-simple, respectively. Thus, the ring D is
isomorphic to R, C, H, 2R or ?H. In this way we have a faithful representation

Ctp ¢ — Endy S, u— Y(u), y(u)¥ = uy,

for all Cf,,. However, this representation is reducible in the cases p — ¢ =
1 mod 4.

Questions

1. Do the exponentials of bivectors form a group?

2. Do the exterior exponentials of bivectors form a group?

3. Are Spin, (p,q), p+4¢ >3, p,q# 2, universal covers of SO4(p,q)?

4. Are double spinor spaces needed to construct a faithful representation for

Clys?

Answers
1. No. 2. No. 3.No. 4. Yes.
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18
Scalar Products of Spinors and the Chesshoard

The Euclidean space R? has a scalar product x -y = 211 + £2v2 + 23ys with
the automorphism group O(3). Pauli spinors of R3 are of the form

¢=(¢1) where 11,92 €C
P2

and belong to a complex linear space C2. There are two kinds of scalar products
for Pauli spinors 1, ¢ € C?,

¥ To=vip1 +¥5p2 and

P ioap = Prpa — i,
which have automorphism groups U(2) and Sp(2,C) = SL(2,C), respectively.
The Minkowski space R3 has a scalar product

X Y =2ZoYo — 21} — T2Y2 — T3Y3
with the automorphism group O(1,3). Dirac spinors of R!3 belong to a com-
plex linear space C*. There is a scalar product of Dirac spinors 1, p € C?,
¥ e = Yie1 + Yipr — Pies — Yipa,

with the automorphism group U(2,2).
One might wonder about the following things:

(i) Why do spinors with complex entries arise in conjunction with the real
quadratic spaces R® and R!:3?
(i) If we consider generalizations to arbitrary RP:9, are the scalar products
of spinors still Hermitian or antisymmetric?
(iil) Are the scalar products of spinors definite or neutral for all RP:97
(iv) Is there a general pattern in higher dimensions for the changes from R®
to C? or from R!? to C%27

231
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We will answer these questions in the following general form: What is the
automorphism group of the scalar product of spinors in the case of the quadratic
space RP:97 The scalar products of spinors can be collected into two equivalence
classes when p andgq are kept fixed in RP:9. There are altogether
_8x8
T2
different kinds of scalar products of spinors when we let p and ¢ vary in R?9.
The situation is much simplified if we consider instead of the real quadratic
spaces RP'? their complexifications C ® RP*9. Then there remain only four
different types of scalar products of spinors to be considered.
The reader will notice that the unitary group U(2,2) can be adjoined to the
Minkowski space-times R1® and R3! in two different ways by

32

— complexifying, or
— adding one extra dimension (of positive signature),

which respectively result in

—~ C®R»3 and C® R, or

— R%3 and R*1.
In both cases U(2,2) is the automorphism group of the scalar product of
spinors. The latter case gives a hint of a relation to the conformal group

of the Minkowski space.

18.1 Scalar products on spinor spaces

We start with spinors 1, ¢ in spinor spaces S = Cf, ,f which are linear spaces
over division rings D = fCf, ,f. We will consider two cases:

(i) The minimal left ideals S = Cf, o f providing irreducible representations
for all Cfp 4; these representations are also faithful for simple CZ; 4.

(ii) The left ideals S ® S = Cfy 4¢, e = f + f, providing faithful represen-
tations for semi-simple Cép 4.

1 The Vahlen matrices of the Minkowski space are such that Mat(2,Cf; 3) ~ Cé 4 and
Mat(2,Cls,1) ~ Cls2, where the even subalgebras are isomorphic: CZ;",4 ~ C£4+’2 ~
Mat(4,C) or Cly3 ~ Cly ~ Mat(4,C). The (connected components of the) conformal
groups of R and R%1! are isomorphic to

50+(2,4) _ SO04+(4,2)  SU(2,2)
{I,-1} ~— {I,-I} ~ {£I, &I}

The automorphism group U(2,2) of the scalar product of Dirac spinors contains as a
subgroup the universal cover SU(2,2) of the conformal group of the Minkowski space.
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As before, let

D beeither D or ]DGBD,.
S beeither S or S@S

according as C{, 4 is simple or semi-simple, respectively.
Let B be either of the anti-automorphisms u — @ and u — @ of Cf, 4. The
real linear spaces

Py ={y € 5| B(¥) = +4},
Po={¢p€5[A(¥) =~}

have real dimensions 0, 1, 2 or 3 and
P=P,oP_ ={yeS|Bv)eS}

has real dimension 0, 1, 2 or 4 no matter how large the dimension of S is. To
prove this we may use periodicity, Cf, 4 ® Clog =~ Clp 18, and the fact that
for Cly s the dimension of P = Py is 1 (over R).

Define the real linear space

P={yeS|p)e S}

which has real dimension 1, 2, 3 or 4. For all 4, in S or S we have B(1)¢ in
P or P. There is an invertible element s in Cf, , with the property P C s~'D
and which is, in the case dim P # 0, such that for all A in D also A% = sf3(\)s~!
is in . 2 To prove that such an element s exists in every Cf, ; we may first
consider the lower-dimensional cases and then proceed by making use of the

fact that B(f) = f for

1 1 1
f= (1 + e1248) = (1 + 82358) (1 + easss) = (1 + e4578)

in Clp g, and therefore s =1 is such an element n C(o,g.

In the same way, there is an invertible element s in C{, 4 with the property
P = s~'D and which is moreover such that for all A in D also A7 = s#(\)s™?
is in D. Both the maps

Sx 8D, (%,¢) = { v

spp
are scalar products on S. Similarly, we may construct a scalar product on S.
The element s can be chosen from the standard basis of Cl, 4 [when f is
constructed by the standard basis of Cf, ,]. In particular, f(s) = +s, and so
the scalar product is symmetric or antisymmetric [on both S and S]. 3 The

2 The mapping A — A% is an (anti-)automorphism of the division ring D.
3 More precisely, the scalar product on S is D7 -symmetric or D” -skew, and the scalar
product on S is D? -symmetric or D? -skew.
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scalar product on S is more interesting; it is
symmetric or antisymmetric
non-degenerate
Clno with s«ZLp
Clon with sy
Clno, Clo1, Cloa, Clos with sy
Clon, Clio with 31;(,0.
The scalar product is definite or neutral except for Cfy 1, Cfy 2, Clo3 or Cl .
In these lower-dimensional exceptional cases neutrality is not possible, because
the spinor space S is 1-dimensional over D = C, H, 2H or 2R, respectively.
For a fixed Cf, 4, the neutral scalar products on S, induced by arbitrary
anti-automorphisms of C£, 4, can be collected into two equivalence classes, the

positive definite (for the choice s = 1) on {

neutral except on {

equivalence relation being

<¢7 <P>1 = <¢7 <P>2 <=3V e EndD 5'7 <U¢1 U90>1 = (/‘[1* ‘P)?

for all 1, € S. In each class there is a scalar product induced by such an anti-
automorphism of C¢, , (extending an orthogonal transformation of RP+?) that
does not single out any distinguished direction in R+, namely, the reversion
u — % or the Clifford-conjugation v — % of Cfp 4.

18.2 Automorphism groups of scalar products of spinors
Examples. 1. The Clifford algebra Cf3; is isomorphic to Mat(2,?R). The
idempotent f = %(l + el)%(l + eg3) is primitive in Cf3 1. The subalgebra
D = fCly1f is just the line {Af | A € R}; with unity f it is isomorphic to the
division ring R. The basis elements

fi=%(1+e +exs+ems)

fa= %(ez —ejpt+e3— e13)

of S =Cly:1f are such that

f:1f1=0, ]ilf2=0 and filf1=0, ]i1f2=f2
foi=0, fafa=0 Lfi=—f, faf2=0.

The products swﬁzp, s =1, and syp, s = ey, have values in I; they are scalar
products on S. The scalar product 1Z<p vanishes identically; its automorphism
group is the full linear group GL(2,R). The scalar product ey is antisym-
metric; its automorphims group is Sp(2,R). If we consider S = S ® S instead
of S, then the automorphism group of the scalar product s1Z<p becomes non-
degenerate (because of the swap) and the automorphism group of the scalar
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product sy splits: 2Sp(2,R) = Sp(2,R) x Sp(2,R).

2. The Clifford algebra Cf; 3 of the Minkowski space R!'? is isomorphic to
the real matrix algebra Mat(2,H). Take an orthonormal basis {vyo,v1,72, ¥3}
for R13. The idempotent f = %(l + 7o) is primitive in Cf; 3. As a real linear
space the minimal left ideal S = C{; 3f is 8-dimensional and the elements

hi = 3(1+ ), ha = £(—7123 + Y0123)
0= %(723 + Y023), d2= %(’71 - 701)
J1=g(rm +v031), G2 = 5(v2 = v02)

1

k1= 3(712 +v012), k2= (73— Y03)

form a basis for Sg. The set {h1,41,51,k1} is a basis for the real linear space
D = fCl 3f. As a ring D is isomorphic to the quaternion ring H, and the
right D-linear module Sp is two-dimensional with basis {h;, h3}. In the basis
{h1, ha} left multiplication by ~9, 1,42, 73 is represented by the following 2x 2-
matrices with quaternion entries:

(1 0

70— 0 _1 b

(0 i (0 (0 k
"= i 0 y Y2 = ] 0/’ Y3 = E 0/

The real linear spaces Py and P- have bases
P, P
{h1} {1, 51, ka}
{h2} {i2,J2, k2}
In the scalar products S x S =D, (¢,p) — sB(¢)p one can take s =1 for
sy and s = 193 for syp. Direct computation shows that
hihy =hy, hihy=0 1 hihy =0, hihy = hy
- - an - -
h2h1 = 0, h2h2 = —h1 h2h1 = hg, hghg = 0

4]

1

Both the scalar products have the automorphism group Sp(2,2). 1

The Tables 1 and 2 list automorphism groups of the scalar products on S; they
are nothing but the groups

{s€llpq|s5=1} and {s€Clq|s5=1}.

If the Clifford algebra Cf, , is semi-simple and if the automorphism group on
S is a direct product 2G = G x G, then the automorphism group on S is G.
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Table 1. Automorphism Groups of s1;<p on S in Clpq.

p—q
P+ -7 6 5 4 -3 -2 -1 0 1 2 3 4 5 6 7
0 o(1)
1 0(1,C) ?20(1)
2 So*(2) O(1,1) 0O(2)
3 GL(1,H) U(1,1) GL(2,R) U(2)
4 Sp(2,2) Sp(2,2) SP(4,R) Sp(4,R) Sp(4)
5 Sp(4,C) ?Sp(2,2) Sp(4,C) ?Sp(4,R) Sp(4,C) 2Sp(4)
6 Sp(8,R) Sp(4,4) Sp(4,4) Sp(8,R) Sp(8,R) Sp(4,4) Sp(8)
7 GL(8,R) U(4,4) GL(4,H) U(4,4) GL(8,R) U(4,4) GL(4,HH) U(8)
Table 2. Automorphism Groups of sgp on S in Cfp 4.
rP—q
P+ -7 6 -5 -4-3 -2 -1 0 1 2 3 4 5 6 71

0 o(1)

1 U(l) GL(1,R)

2 Sp(2) Sp(2,R) Sp(2,R)
3 28p(2) Sp(2,C) 2Sp(2,R) Sp(2,0)
4 Sp(4)  Sp(2,2) Sp(4,R) Sp(4,R) Sp(2,2)
5 U(4) GL2,H) U(2,2) GL(4,R) U(2,2) GL(2,H)

6 0(8) SO*(8) SO*(8) O(4,4) O(4,4) SO*(8) SO*(8)

7 20(8) 0(8,C) 250*(8) O(8,C) 20(4,4) 0(8,C) 250*(8) O(8,C)

Examples. 1. Cly 5, stpp: SO*(2) = {U € SO(2,C) | U*J = JU} =~ SO(2).
2. Cly, sPp: Sp(2,R) = {U € Mat(2,R) | UTJU = U} = SL(2,R).

3. Cts, syp: 2Sp(4) = Sp(4) x Sp(4), Sp(4)/{xI} ~ SO(5).

4. Cl 3, Sp(2,2) = U(2,2) N Sp(4,C), Sp(2,2)/{xI} ~ SO4(4,1). 1

Note that the group U(2,2) appears as an automorphism group of the scalar
product sy for Cly3 and Cls;. To explain the presence of U(2,2) in the
Dirac theory by the real Clifford algebras Cf, 4, we must add one dimension of
positive square to the Minkowski spaces R!3 and R3!.

There is another explanation: use complexifications C ® C¢, 4. For a fixed
n = p+ q we have the isomorphisms of algebras C® Cf, 4 ~ C¢(C"). Although
the complex linear space C* has a symmetric (= not sesquilinear) bilinear form
on itself, we may equip the spinor spaces of C® Cf, , with sesquilinear forms



18.2 Automorphism groups of scalar products of spinors 237
swﬁ*w and si*¢. These sesquilinear products have automorphism groups
{seC®Clq|s8" =1} and {s€CQCl,]|ss* =1}

For a fixed n = p + ¢ these groups depend on the values of p andg [although
the algebra C ® Cf, 4 is independent of p and ¢].

Table 3. Automorphism Groups of s¢*¢ in C* ® C¥, 4.

p—q
pron, 7 6 5 -4 3 2 -1 0 1 2 3 4 5 67

0 U(1)

1 GL(1,0) 2U(1)

2 U(,1) U(L,1) U2

3 GL(2,C) ?U(1,1) GL(2,C) ?U(2)

4 U(2,2) U(2,2) U2,2) U22) U4

5 GL(4,0C) 2U(2,2) GL(4,C) 2U(2,2) GL(4,C) 2U(4)

6 U(4,4) U(4,4) U(4,4) U(4,4) U449 U4 U(®B)

7 GL(8,C) 2U(4,4) GL(8,C) 2U(4,4) GL(8,C) 2U(4,4) GL(8,C) 2U(8)

Table 4. Automorphism Groups of sy*¢ in C* ® Cly 4.

pP—q
7 65 -4 -3 -2 - 9 4 7
% 7 6 -5 3 1 0 1 3 5 6

U(1)
2U(1) GL(1,C)
U@ U@1,1) UQ,1)
2U(2) GL(2,C) 2U(1,1) GL(2,C)
UMd) U@2,2 U2 U@22 U2
2U(4) GL(4,C) 2U(2,2) GL(4,C) 2U(2,2) GL(4,C)
U®B) U(4,4) U4,4) U4,4) U44) U4,4) U44)
2U(8) GL(8,C) 2U(4,4) GL(8,C) 2U(4,4) GL(8,C) 2U(4,4) GL(8,C)

=1 O U R W N = O

See Porteous 1969 p. 271 1l. 1-8. Note that complexification explains the oc-
currence of U(2,2) in conjunction with the Minkowski spaces.

In complexifications of real algebras we replaced the ground field R by C, a
field extension with an involution, the complex conjugation [to emphasize that
C comes with a complex conjugation we denote C or C*].

We could also tensor Cf, 4 by the real algebra 2R, a commutative ring with
an irreducible involution, the swap. See Porteous 1969 pp. 193, 251. This leads
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to the automorphism groups shown in Table 5 [isomorphic to the subgroup of
invertible elements in Cfp 4].

Table 5. Automorphism Groups for 2R ® C{, 4.

p—1q

p+q -7 6 5 4 -3 -2 -1 0 1 2 3 4 5 6 7

0 GL(1,R)
1 GL(1,CyPGL(1,R)

2 GL(1,H)GL(2,R) GL(2,R)

3 2GL(1,H)GL(2,CPGL(2,R)GL(2,C)

4 GL(2,H) GL(2,H)GL(4,R) GL(4,R)GL(2,H)

5 GL(4,C)?GL(2,H)GL(4,CPGL(4,R)GL(4,C)*GL(2, H)

6 GL(8,RGL(4,H) GL(4,H)GL(8,R) GL(8, H)GL(4,H) GL(4,H)

7 *GL(8,R)GL(8,C)*GL(4,H)GL(8, C¥GL(8, R)GL(8, C)>*GL(4,H)GL(8,C)

See Porteous 1969 p. 271 11. 11-18.

In the case of the complex Clifford algebras C£(C") we may further equip
the spinor space with a symmetric (= not sesquilinear) form on itself, sending
(1, ) to s or sy, see Table 6.

Table 6. Automorphism Groups for C*.

n spp n spp
0 0O(L,0) 0 01,0
1 20(1,0) 1 GL(1,C)
2 0(2,0) 2 Sp(2,C)
3 GL(2,C) 3 25p(2,C)
4 Sp(4,C) 4  Sp(4,C)
5 2Sp(4,C) 5 GL(4,C)
6 Sp(8,C) 6 O(8,C)
7 GL(8,0) 7 20(8,C)

See Porteous 1969 p. 271 1. 9.

As the last extension we consider the tensor product 2C ®c C*. The scalar
products of spinors are formed by reversion or Clifford-conjugation composed
with swap (no complex conjugation), see Table 7.
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Table 7. Automorphism Groups for 2C @ C™.

sy or sy

3

GL(1,C)
2GL(1,0)
GL(2,C)
2GL(2,C)
GL(4,C)
2GL(4,0)
GL(8,C)
2GL(8,0)

=1 U R W= O

See Porteous 1969 p. 271 1. 10.

18.3 Brauer-Wall-Porteous groups
As before, we consider only finite-dimensional associative algebras.

Central simple algebras over R are isomorphic to the real matrix algebras
Mat(d,R) and Mat(d,H). A tensor product of two matrix algebras with entries
in H is a matrix algebra with entries in R. This can be expressed by saying
that the Brauer group Br(R) of R is a two-element group {IR,IH}.

Tensor products of graded central simple algebras over R lead to the Brauer-
Wall group BW(R) of R; this is a cyclic group of eight elements,

{]R(Qu) R(v) R(2v) C(2v) H(2v) H(v) H(v) (C(l/)}
R(v)’ R(v) ' C(v) ' H(v)’ 2H(v)’ H(v)’ C(v)'R(v)]"
Here we use the abbreviation A(v) = Mat(v, A); the notation

4

B
means that B is the even subalgebra of A. The elements of BW(R) can be
represented by the graded algebras
Cfo,n
cef,

where n is taken modulo 8. This is just another way of expressing Cartan’s
periodicity of 8.

Graded algebras are algebras with an involution (= involutory automor-
phism). We could further consider tensor products in graded central simple
algebras with an anti-involution (= involutory anti-automorphism). When the
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involution and the anti-involution commute, this leads to the Brauer-Wall-
Porteous group BW P(R) of R; its elements are graded subgroups (of a graded
algebra A)

G

H

where G is the subgroup determinded by the anti-involution 8, G = {s € A |
B(s)s = 1}, and H is its even subgroup, H = BNG (B is the even part of A).

Table 8. Scalar Product s¢y in Cfp 4 and BW P(R).

P—q 0 1 2 3 4 5 6 7

¢=0 p+g
O(2v) 0 O(vv) O(v,v) SO*(2v) SO*(2v)
20(2v) 1 20(v,v) O(2v,C) 250*(2v) O(2v,C)
O(2v) 2 O(v,v) O(v,v) SO*(2v) SO*(2v)
Ui2v) 3 GL(2v, ]R) U(v,v) GL(v,H) U(v,v)
Sp(2v) 4 Sp(2v,R) Sp(2v,R) Sp(v,v) Sp(v,v)
2Sp(2v) 5 2Sp(2v,R) Sp(2v,C) 2Sp(l/ v) Sp(2v,C)
Sp(2v) 6 Sp(2v,R) Sp(2v,R) Sp(v,v) Sp(v,v)
Ui2v) 7 GL(2»,R) U(v,v) GL(v,H) U(v,v)

Table 9. Scalar Product sy in C¢, , and BW P(R).

p—q 0 1 2 3 4 5 6 7

p=0 ptg
O(2v) 0 O(vv) O(v,v) SO*(2v) SO*(w)
Ui2v) 1 GL(2v, IR) U(v,v) GL(yv,H) U(v,v)
Sp(2v) 2  Sp(v,R) Sp(2v,R) Sp(v,v) Sp(v,v)
*Sp(2v) 3 2519(2'/ R) Sp(2v,C) %Sp(v,v) Sp(2v,C)
Sp(2v) 4  Sp(2v,R) Sp(2v,R) Sp(v,v) Sp(v,v)
U2v) 5 GL(2v,R) U(v,v) GL(v,H) U(v,v)
O(2v) 6 O(y,v) O(v,v) SO*(2v) SO*(2v)
0(w) 7 20(v,v) O(2w,C) 2S0*(2v) O(2w,C)

The Brauer-Wall-Porteous group BW P(R) is a commutative group of 32
elements,

BWP(R) ~ {(z,y) € Zg x Zs | z,y € 2Z}.
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We see that the elements of BW P(R) are (graded) automorphism groups of
scalar products of spinors for C¢, 4,

{s€Clypq|sB(s) =1}

{sece,|sB(s) =1}
The even subgroup {s € C¢f, | s68(s) = 1} is isomorphic to {s € Cly4-1 |
sB(s) = 1}, obtained by taking a step to the North-East. Tensor products
of real graded central simple algebras with an anti-involution correspond to
movements of a bishop on the chessboard.

Recall that the Brauer group Br(C) of C is a one-element group {C}. The

Brauer-Wall group BW(C) of C is a group of two elements

{Mat(2,C) 2i(_:_

c 'ck
Thus, complex Clifford algebras have a periodicity of 2. The Brauer-Wall-
Porteous group BWP(C) of C is a cyclic group of eight elements; in other
words complex Clifford algebras with an anti-involution have a periodicity of
8, see Table 10.

Table 10. C£(C") and BWP(C).

n o spy n sy

0 O(2v,C) 0 O(2v,C)

1 20(2v,C) 1 GL(2v,C)
2 02,0 2 Sp(2v,C)

3 GL(2v,C) 3 2Sp(2v, C)
4 Sp(2v,C) 4 Sp(2v,C)

5 2Sp(2v, C) 5 GL(2v,C)
6 Sp(2v,C) 6 O(2v,C)

7 GL(2v,C) 7 20(2v,C)

The Brauer-Wall-Porteous group BW P(2R) of the double ring 2R with swap
is also a cyclic group of eight elements, see Table 11.

Table 11. R ® C¢, , and BWP(R).

P—q 0 1 2 3 4 5 6 7

GL(2v,R) GL(2v,R) GL(v,H) GL(v,H)
:GL(2v,R) GL(,C) 2GL(v,H) GL(2v,C)
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Tensoring Cf, ; by C*, the complex field with complex conjugation, results
in a Brauer-Wall-Porteous group isomorphic to Zy X Z,, see Table 12.

Table 12. C* ® Cf, , and BWP(C*).

As our last extension we tensor C£(C") by 2C (Table 13).

Table 13. 2C ®¢ C* and BW P(3C).

n sp and Py
0 GL(2v,C)
1 2GL(2v,C)

In total, we have the following Brauer-Wall-Porteous groups (of R and C
and their extensions with an irreducible involution).

RP4 BWP(R) ~ (Zs x Zs)/Z2
‘R@gR?Y BWP(’R) ~ Zsg
C*@RPY  BWP(C*) ~Zs x Zy
c BWP(C) ~Zg
2CecCr BWP(3C) ~ Z,.
It is convenient to be able to characterize the automorphism groups of scalar

products on spinor spaces S directly by making use of real dimensions of the
subspaces Py = {¢ € S| B()) = x4}, see Table 14.
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Table 14. Scalar products on S.

dimP; 0 1 2 3
dim P_
0 GL(v,R) O(v,v) 0O(2v,C)

1 Sp(2v,R) U(v,v) SO* (4v)
2 Sp(2v,Q)
3 Sp(2v, 2v)
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Mobius Transformations and Vahlen Matrices

Classical complex analysis can be generalized from the complex plane to higher
dimensions in three different ways: function theory of several complex variables
(commutative), higher-dimensional one-variable hypercomplex analysis (anti-
commutative), and conformal transformations (geometric). In this chapter we
study the third possibility: conformal transformations in n dimensions, n > 3.

A function f sending a region in R? = C into C is conformal at z, if it is
complex analytic and has a non-zero derivative, f'(z) # 0 (we consider only
sense-preserving conformal mappings). The only conformal transformations of
the whole plane C are affine linear transformations: compositions of rotations,
dilations and translations. The Mobius mapping

f(z) =

is affine linear when ¢ = 0; otherwise it is conformal at each z € C except
when z = —2. The M&bius mapping f sends C\ {-2} onto C\ {%}. If
we agree that f(—g) = oo and f(oo) = £, then f becomes a (one-to-one)
transformation of C U {00}, the complex plane compactified by the point at
infinity. ! These transformations are called M¢obius transformations of CU{oo}.
Mobius transformations are compositions of rotations, translations, dilations
and transversions. ? Mobius transformations send circles (and affine lines)

to circles (or affine lines). The derivative of a Mobius transformation is a

az+b

Zrd’ a,byc,deC, ad—bc#0,

composition of a rotation and a dilation.
By definition, a conformal mapping preserves angles between intersecting
curves. Formally, let D be a region in a Euclidean space R". A continuously

1 Mébius mappings f(z) = -z;’-_;% are defined almost everywhere in C. The set of Mobius
mappings can be used to compactify C, the compactification being CuU {00}
2 A transversion is a composition of an inversion in the unit circle, a translation and another

inversion. Thus, transversions are conjugate (by the inversion) to translations.

244
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differentiable function g : D — R” is conformal in D if there is a continuous
function A : D — R* =R\ {0} such that

<f'(x)a, f'(x)b> = <aA(x), bA(x)>

for all x € D and a,b € R". In higher-dimensional Euclidean spaces R,
n > 3, the only conformal mappings [sending a region in R" into R"] are
restrictions of Mdbius transformations of R™ U {0o0}. 3 The case n = 3 was
proved by Liouville 1850. The analogous statement for indefinite quadratic
spaces is also true by a theorem of Haantjes 1937.

19.1 Quaternion representation of conformal transformations of R*

Conformal transformations of R* can be represented by quaternion computa-
tion:

R*=H—-H, ¢— (ag+b)(cg+d)™!, a,bc,decH

In order to exclude constant functions we require the matrix

a b
c d
to be invertible, that is, |a|?|d|? + |b|?|c|> — 2 Re(a d b) # 0. This matrix rep-

resentation renders composition of non-linear conformal transformations into
multiplication of matrices.

19.2 Mo6bius transformations of R”

Mobius transformations might be sense-preserving with det f/(x) > 0 or sense-
reversing with det f/(x) < 0. The Mobius transformations form a group, the
full Mobius group, which has two components, the identity component being
the sense-preserving Mobius group. The full Mébius group of R" is generated
by translations, reflections and the inversion

-1
X=X = —,
X2
or equivalently, by reflections in affine hyperplanes and inversions in spheres
(not necessarily centered at the origin). The sense-preserving Mobius group is

generated by the following four types of transformations:

3 We shall often refer to Mabius transformations of the Euclidean space R"® whereby we
tacitly mean transformations of the compactification R™ U {c0}.
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rotations axa~! a € Spin(n)
translations x+Db b e R"
dilations x0 §>0

. X+ xZc
transversions c € R".

14 2x. c+ x2c?

Rewriting the transversion into the form (x~! + ¢)~!, one sees that it is a
composition of the inversion, a translation and the inversion. Using the multi-
plicative notation of the Clifford algebra C¢,, the transversion can further be
written in the form

x = x(ex + 1)L
This might suggest the following: Let a,b,c,d be in Cé,. If (ax+x)(cx+d)~?
is in R" for almost all x € R™ and if the range of
9(x) = (ax + b)(ex + d)~!

is dense in R", then g is a Mobius transformation of R™. Although this is
true, the group so obtained is too large to be a practical covering group of the
full MSbius group. * Therefore, we introduce:

Definition (Maass 1949, Ahlfors 1984). ® The matrix (Z z> € Mat(2,C¢y,)
fulfilling the conditions

(i) a,b,¢c,d€T'» U {0}

(ii) ab, bd, d¢, éa € R™

(iii) ad —b¢ € R\ {0}
is called a Vahlen matriz of the Mobius transformation g of R™ given by
9(x) = (ax + b)(cx +d)~L. ]
By condition (i) the diagonal entries of a Vahlen matrix are either even or

odd. Conditions (i) and (ii) imply that if the diagonal entries are even then
the off-diagonal entries must be odd, and if the diagonal entries are odd then

4 This group is the Vahlen group multiplied by the group generated by invertible matrices

of the form
a+ (el .n 0
( 0 ) , «,B€R.

a— Bé12..n
5 Vahlen 1902 originally wrote the second condition in the form
(i) @b, bd, de, ca € R™,

which gives an equivalent characterization of the Vahlen group.
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the off-diagonal entries must be even. Condition (iii) tells us that the pseudo-
determinant ad — b is real and non-zero, in particular, that the Vahlen matrix
is invertible.

The Vahlen matrices form a group under matrix multiplication, the Vahlen
group. The Vahlen group has a normalized subgroup where condition (iii) is
replaced by

(iii') ad — bé = £1.
The normalized Vahlen group is a four-fold, or rather double two-fold, covering

group of the full Mobius group of R"; the identity Mébius transformation is
represented by the following four matrices:

10 e12.n 0
i(o 1)’ i( 0 —éu...n)'

The sense-preserving Mobius group has a non-trivial two-fold covering group
formed by normalized Vahlen matrices with even diagonal (and odd off-diagonal)
and pseudo-determinant equal to 1. The full Mébius group has a non-trivial
two-fold covering group with two components, the non-identity component con-
sisting of normalized Vahlen matrices with odd diagonal (and even off-diagonal)
and pseudo-determinant equal to —1.

19.3 Opposite of a Euclidean space
Consider the (n—1)-dimensional real quadratic space R%"~! having a negative
definite quadratic form

x—-)x2=—xf—...—zn_1.

The sums of scalars and vectors are called paravectors. Paravectors span the
linear space R @ R%"~1, which we denote by
$R" =R@R>"1.

The linear space of paravectors, $R™, can be made isometric to the Euclidean
space R™ by introducing for z = 2o + x € R@® R%"~!, where 7o, € R and
x € RO"=1  a quadratic form

z=z0+x—-)z:E=:l:8—x2=z§+x%+...+zﬁ_1.

As an extension of the Lipschitz group Porteous 1969 pp. 254-259 introduced
the group of products of invertible paravectors, defined equivalently by

$I, = {s € Cly n_1 | Vz € $R", sz5~! € $R"}.

1

For a non-zero paravector a € $R"™ the mapping £ — aza™" is a rotation of
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$R". Thus, we have a group isomorphism $I', ~ I'}. Note that T'y ,_1 C $I,
and Tf, _; = $IF.

Vahlen originally considered the sense-preserving Mobius group of the para-
vector space $R™.

Definition (Vahlen 1902). ¢ The matrix (Z b) € Mat(2,Cly n—1) fulfilling

d
the conditions

(i) a,b,c,d € I U {0}
(i) ab, bd, dc, ca € $R"
(iil) ad—bé =1
is a Vahlen matriz, with pseudo-determinant or norm 1, of the sense-preserving
Mébius transformation g of $R" given by g(z) = (az + b)(cz + d)~ L. ]

These Vahlen matrices with norm 1 form a group, which is a non-trivial two-
fold cover of the sense-preserving Mdbius group of $R™.

19.4 Indefinite quadratic spaces
The full Mébius group of RP+? contains two components (if either p or ¢ is
even) or four components (if both p and ¢ are odd).

The identity component of the Mobius group of RP:? is generated by rota-
tions, translations, dilations and transversions which are represented, respec-
tively, as follows:

. a 0
axa~1 a € Spin, (p, q) (0 a)
x+b b € RP4 ((1) tl,)
)
x4 §>0 (\é— 1/(:/5)
x + x%c . 1 0
142x-c+x%c? ceR (c 1)'

On the right we have the Vahlen matrices of the respective Mobius transfor-
mations.

6 Maass 1949 and Ahlfors 1984 presented an equivalent characterization of Vahlen matrices
where the second condition was replaced by

(i) ab, bd, dé, éa € $R™.
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Theorem (J. Maks 1989). Consider four Vahlen matrices which represent a
rotation, a translation, a dilation and a transversion. A product of these four
matrices, in any order, always has an invertible entry in its diagonal (there are
4! = 24 such products).

Proof. To complete the proof of the fact that a product of a rotation, a transla-
tion, a dilation and a transversion, in any order, is such that its Vahlen matrix
always has an invertible entry in its diagonal, one can (or rather must) check
the claim for all the 24 orderings. For instance, in the product

(OGN ) ()
_ aVé + abe/Vé ab/ V5
( ac/Vé a/\/g)

the lower right-hand diagonal element a/+/8 is invertible. We leave the verifi-
cation of the remaining 23 orderings to the reader. ]

Counter-example (Maks 1989). In the general case (p # 0, ¢ # 0) J. Maks
1989 p. 41 gave an example of a Vahlen matrix where none of the entries is
invertible (and all are non-zero).

Consider the Minkowski space-time R3! and its Clifford algebra Cf3; ~
Mat(4,R) generated by e1, e, €3, e4 satisfying e = el=el=1el=-1.
Take a Vahlen matrix
1 ( 1+eiq e1+e4)

M=-
2\—e1+e l-—eq

By the theorem of Maks the matrix M cannot be a product of just one rotation,
one translation, one dilation and one transversion (in any order). However, the
matrix M is in the identity component of the normalized Vahlen group, the
four-fold covering group of the Mobius group of the Minkowski space-time. This
can be concluded while M has pseudo-determinant equal to 1 and even diago-
nal. This can also be deduced by factoring M into a product of a transversion,
a translation and a transversion as follows:

M= (%(-e11+e4) (1)) ((1) %(elfe‘l)) (%(—e11+e4) (1)>

Topologically, we can see this by connecting M to the identity matrix by the
following path (here @ grows from 0 to 7/4):

0 e +e
M = Myjs, Mﬁ:e"p{ﬂ(—e1+e4 104)}'

Maks’ counter-example proves that condition (i) has to be modified in the



250 Moébius Transformations and Vahlen Matrices

definition of a Vahlen matrix. ]

Recall that the Lipschitz group I'p 4 consists of products of non-isotropic vec-
tors of RP:9. In the sequel we need the set II, ;, of products of vectors, possibly
isotropic, of R?"9. The set II, 4 is the closure of T’y 4. 7

Definition (Fillmore & Springer 1990). The matrix (Z Z) € Mat(2,Clp 4)
fulfilling the conditions

(i) a,b,c,d €, q
(i) @b, bd, de, ca € RPH
(iii) ad - bé € R\ {0}
is a Vahlen matriz of the Mobius transformation g of R”? given by g(x) =
(ax + b)(ex +d)~ 1. ;

The Vahlen matrices form a group under matrix multiplication, the Vahlen
group. The normalized Vahlen matrices, with pseudo-determinant satisfying
ad — b = +1, form a four-fold, possibly trivial, covering group of the full
Mébius group of RP:9. When both p and ¢ are odd, the normalized Vahlen
group is a non-trivial four-fold covering group of the full Mébius group of R?:9.
When either p or ¢ is even, we may find a non-trivial two-fold covering group
of the full Mébius group of RP:4. It consists of the identity component of the
normalized Vahlen group, that is, normalized Vahlen matrices with even diago-
nal and pseudo-determinant equal to 1, and another component not containing
the (non-trivial) pre-images of the identity:

€12..n 0
+ R .
( 0 —612...n)

The identity component of the normalized Vahlen group is a two-fold (either
p or q is even) or four-fold (both p and ¢ are odd) covering group of the
sense-preserving Mobius group.

Conditions (i), (iii) and ab, bd, de, c@ € RP¢ imply ab, bd, dé, éa € RP9. In
contrast to the Euclidean case, conditions (i), (iii) and ab, bd, dé, éa € RP9 do
not imply ab, bd, de, ca € RP9,

Counter-example (Cnops 1996). Consider the Minkowski space-time R31
and its Clifford algebra Cf3; ~ Mat(4, R) generated by e, e, es, e, satisfying

e? =e2 = el =1, eZ = —1. The Vahlen matrix
o=l ( 1+eyy (e1 + e4)e23>
2 \ (—e1 +eq)exs l—eq

7 The set I, 4 C Clp,q ~ AR®, considered as a subset of the exterior algebra AR™", is
independent of p,q for a fixed n =p+gq.
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satisfies a,b,¢,d € I3, ad — b¢ = 1 and ab, bd, dé, éa = 0 € R>!, but
even then ab, bd, dc, cd ¢ R*!. The mapping gc(x) = (ax + b)(cx + d)~! is
conformal. If the matrix C is multiplied on either side by

D=__1__(1+61234 0 )
V2 0 l—ess/’

then B = CD = DC is such that gp(x) = gc(x) for almost all x € R3:1.
Furthermore, B does satisfy ab, bd, de, ca € R31.

The matrices satisfying a,b,c,d € II31, ad—bé =1 and ab, bd, d, éa € R3!
do not form a group, but only a set which is not closed under multiplication.
This set generates a group which is the Vahlen group with norm 1 multiplied
by the group consisting of the matrices

cos ¢ + e12348in 0
0 cosp —ejpzasing J
All these matrices are pre-images of the identity Mobius transformation. 1

19.5 Indefinite paravectors
Let $II,4, , be the set of products of paravectors in $RI*1P =R @ RP9.

Definition. The matrix (Z b) € Mat(2,CY, 4) fulfilling the conditions

d
(i) a,b,c,d € 8Ty,
(ii) ab, bd, dc, ca € $Rat+LP
(i) ad—bé=1
is a Vahlen matriz with norm 1 of the sense-preserving Mobius transformation
g of $RItLP given by g(z) = (az + b)(cz + d)~L. I

The Vahlen matrices with norm 1 form a two-fold or four-fold covering group
of the sense-preserving Mcbius group of $R9+1:P. Conditions (i), (ii), (iil) imply
ab, bd, dé, éa € $RIF1? [although (i), (iii) and ab, bd, dé, éa € $RIT1? do not
imply @b, bd, de, ca € $RITL.P].

19.6 The derivative of a Mobius transformation

The difference of the Mobius transformations of z,y in $RI*1P is given by

9(z) - 9(v) = (cy +d)" " }(z — y)(cz +d)~".



252 Mébius Transformations and Vahlen Matrices

Letting ¢ approach y we may compute the derivative of a M6bius transforma-
tion. Denoting z = cz + d and using N(z) = zZ € R, we see that in the case
N(z) # 0 the derivative of z — g(z) is the composition of the rotation

z - szz!

and the dilation

1‘—-)Wz)-.

19.7 The Lie algebra of the Vahlen group

If the matrix é g) € Mat(2,C4,) is in the Lie algebra of the Vahlen

group of R®, then Ax + B — xCx — xD € R" for all x € R". It follows
that B,C € R” and A,D € R® A\’R2@ A" R" so that (A); = (D), and
(A)n = £(D),. Actually, for the Lie algebra of the Vahlen group (A),, (D),
vanish and for the Lie algebra of the normalized Vahlen group (A)o = —(D)o.
In fact, matrices in the Lie algebra of the normalized Vahlen group can be
characterized by

(i) A, DeRA\’R"

(ii) B,CeR"

(i) A+ D =0.
The Lie algebra is spanned by the matrices

1
A 0 _ (0 eu
= (T ) =000 %)

Lo 0 0
— 2 —
o=(5 1) == 0)

These matrices represent rotations, translations, dilations and transversions.

19.8 Compactification and the isotropic cone at infinity

The set of Mobius mappings on RP? can be used to compactify RP:9. The
compactification is homeomorphic to
SP x S9
Zy
In particular, the compactification of a Euclidean space R" is the sphere S",
and the compactification of the hyperbolic plane R!! is the torus S* x S1. The
conformal compactification adjoins an isotropic cone at infinity to the quadratic

space.
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Questions

1. Is an element in the identity component of the conformal group necessarily
a product of a rotation, a translation, a dilation and a transversion?

2. The group SU(2,2) is a covering group of the identity component of the
conformal group of R13. Is it a two-fold or a four-fold covering group?

Answers

1. No, as the counter-example of Maks shows.
2. As the identity component of the normalized Vahlen group it is a four-fold
covering group.

Exercises

1. The counter-example M of Maks can be factored into a product of two

w= (L 509

Show that a ‘diversion’ is a product of just one transversion, one dilation,
one translation and one rotation.

2. Show that in the case of a Euclidean space R" the conditions
ab, bd, dé, éa € R™ and ab, bd, dc, cd € R™ are equivalent.

3. Show that the conformal compactification of the Minkowksi space R':3 is
homeomorphic to U(2).

‘diversions’:

Solutions

1. The first factor is a product of just one transversion, one dilation and one
translation as follows:

Sk - D08 G )

One can insert the identity rotation as the last factor.

2. For a € T',,, a =d. If b € R", then we have two cases to consider: either
a is zero, and so ab is a vector, or a is in the Lipschitz group I',,, but then
a(@b)d is a vector and ad € R\ {0}, and so bd is a vector, which implies
ab= (ba)” € R".

3. This follows as a special case from the matrix isomorphism

. SU(n) xU(1)

U = =0
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20
Hypercomplex Analysis

Complex analysis has applications in the theory of heat, fluid dynamics and
electrostatics. Such versatility gives occasion to explore whether function the-
ory of complex variables can be generalized from the plane to higher dimen-
sions. Are there hypercomplex number systems which could provide a higher-
dimensional analog for complex analytic functions?

Function theory can be generalized to higher dimensions in several different
ways, for instance, to quasiconformal mappings, several complex variables or
to hypercomplex analysis. Clearly, these generalizations cannot maintain all
the features of complex analysis.

In the theory of quasiconformal mappings one retains some geometric fea-
tures, related to similar appearance of images, and renounces some algebraic
features, like multiplication of complex numbers. In the theory of quasiconfor-
mal mappings one does not multiply vectors in R".

The starting point of hypercomplex analysis is the introduction of a suitable
multiplication of vectors in R™. In contrast to the theory of several complex
variables, which commute, hypercomplex analysis is a one-variable theory — the
argument being in higher dimensions, where orthogonal vectors anticommute.

20.1 Formulation of complex analysis in C{,
For a complex valued function u+iv = f(z+iy) of the complex variable z +1iy
the Cauchy-Riemann equations are

u v du ov

6z 9y’ By oz

255
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The second equation tells us that the vector (u, —v) is the gradient of a function
¢:R?2 5 R:
_9¢ _ 8¢
u = az y —v = % . (1)
Using the first relation of the Cauchy-Riemann equations we obtain

¢ 8%¢ Ou Ov

6zz+6y2_3—x_3_y=0’

that is, ¢ is a harmonic function, V2¢ = 0. Conversely, if ¢ is harmonic, then
u and v defined by the relation (1) satisfy the Cauchy-Riemann equations.
The Cauchy-Riemann equations can be condensed into a single equation as

follows:
8 .0 .
(6_1' + ’l%) (u + Z’U) = 0

Recall that i = eje; and multiply this equation on the left and on the right
by e1, then use associativity and anticommutativity to get
(e 9 +e 9
19z 2 Oy
As we know, this relation holds if and only if the vector (u,—v) is the gradient
of a harmonic function. It follows that

)(elu —eyv) =0.

(elai +ey— )(elu +ev)=0 (2)

if and only if (u,v) is the gradient of a harmonic function.

There are three possible ways to formulate the Cauchy-Riemann equations
employing the Clifford algebra Cf; (these possibilities will be generalized to
higher dimensions in three different ways).

1) Firstly, we may consider the Cauchy-Riemann equations to be a condition
on vector fields, sending a vector ze; + ye; in R? to a vector ue; +ves in R2,
The above condition (2),

(3) (elai +ers )(ue1 +vey) =0,

gives us Cauchy-Riemann equations up to sign and results in those conformal
maps which reverse the orientation of R?. In higher dimensions this alternative
means the study of those vector fields, that is, mappings from R” to R", which
are gradients of harmonic functions, mappings from R” to R.

2) Secondly, we may reformulate the Cauchy-Riemann equations as a condition
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on the even fields sending a vector ze; + ye; in R? to an even element in
= {u + veiey | u,v € R} >~ C of the Clifford algebra C¢;. The condition

.. 0 d
(43) (e1 92 +ey— 3y )(u +ves) =0

gives us the Cauchy-Riemann equations. This alternative has non-trivial gen-
eralizations in higher dimensions sending the vector space R™ to the even
subalgebra C¢} of the Clifford algebra Cf,.

3) Thirdly, we may focus our attention on spinor fields sending the vector
plane R? to a minimal left ideal of C£;. Before studying this alternative closer,
let us recall that the Clifford algebra Cé; is isomorphic to the matrix algebra of
real 2 x 2-matrices Mat(2,IR). The isomorphism is seen by the correspondences

10
1’:(0 1)
elz(l 0>, ezz(o 1)
0 -1 10
812'1(0 1)
-1 0

In this case one sends a vector ze; + ye; in R? to a spinor
u 0
Uf1+vf2'1(v 0),

fi=a(+e)s ((1, g) and fo= L(es —erz) (‘f 8)

Here fi = f1, so fi is an idempotent, and the spinor space S = Cfyf1 = {afi |
a € Cly} is a left ideal of Cly, for which ay € S for all a € Cf; and ¢ € S.
Since

where

etfi=fi, eifo=—fa
exfi=f2, exfo=hH

one verifies that

(i) (el—3—+ezi)(uf1 +ufa) =0
z Y

is equivalent to ().

To summarize, there are three alternatives for the 2-dimensional target:
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(1) the Euclidean vector space itself R?,
(ii) the even subalgebra C£F of the Clifford algebra Cfs,
(#47) the spinor space S = Cly fi.
In the next section, we will generalize, as a preliminary construction, the first
alternative to higher dimensions.

20.2 Vector fields

The Dirac operator. It is possible to extract a certain kind of square root
of the n-dimensional Laplace-operator

2 o &2
a2 ozt 1oz

and consider instead a first-order differential operator

v2

Ve ter 4t e
‘ela ezaxz e"(?z,.

called the Dirac operator. Since the Dirac operator applied twice equals the
Laplace operator, the elements e;, ey, ..., e, are subject to the relations

el =1, i=12...,n

eje; = —eje;, t<J.
The linear combinations x = ze; + z3e3 + --- + Z,e, can be considered as
vectors building up an n-dimensional vector space R" with quadratic form
x?2 = z2 + 22+ ...+ z22. The above relations generate an associative algebra of
dimension 2", the Clifford algebra C¥,, of R" [or of dimension %2", isomorphic
to an ideal %(l Feyz.n)Cly of CLy).

Operating on a vector field f with V gives

VE=V.-f4+ VAT

where V -f is the divergence of f and V Af is the curl, which in this approach
is bivector valued.

Sourceless and irrotational vector fields. Consider a steady motion of
incompressible fluid in an n-dimensional Euclidean space R™. Represent the
velocity of the flow by the vector field f. The integral

w=/mAf
S

over an orientable hypersurface S, dimS = n — 1, is the stream across S.
We regard dS as a tangent (n — 1)-vector measure, rather than the normal
vector measure; this makes the stream n-vector valued. If a vector field f is
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sourceless, V - f = 0, its stream across S depends in a contractible domain
only on the boundary 85 of S. In particular, no stream emerges through a
closed hypersurface. If n > 2, a sourceless vector field f has a bivector valued
potential v such that f = V4 v. If n > 3, the bivector potential can be
subjected to a supplementary condition V Av = 0, in which case f = Vv.
The circulation of the vector field f around a closed path C' is given by the

line integral
/ dx-f.
c

If a vector field f is irrotational, V Af = 0, the circulation vanishes in a simply
connected domain, and the line integral

u(x):—/:f-dx

1]

is independent of path. The function u is called the scalar potential of f. The
irrotational vector field f is the gradient of its scalar potential u, f = —Vu.

If a vector field f is sourceless and irrotational, that is V-f = 0 and VAf = 0,
its scalar potential is harmonic, VZu = 0. A vector field f is called monogenic,
if Vf = 0. For a monogenic vector field Vf =V - f+ VAf =0, and so it is
sourceless and irrotational. A monogenic vector field has a potential which is a
sum or complex of the scalar and bivector potentials: w = u+v. The complex
of potentials is also monogenic, Vw = 0.

Example. A monogenic vector field f, homogeneous of degree ¢, has a scalar
potential

x-f
u——“_—l, l;é—l,
and a bivector potential
xAf
= fL#—-(n-1).
M £+n-1 #=(n-1)

In the singular case, a monogenic vector field f, homogeneous of degree £ =
—(n — 1), might still have a bivector/complex potential. For instance, the
Cauchy kernel q(x) = x/r", r = |x|, has a complex potential

—logr+if for n=2,
l(l+it ng) for n=3
r 3 -

where 6 is the angle between x and a fixed direction a, and i is the imaginary
unit of the plane x A a, given by i = x Aa/|x Aal. ]
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The plane case. In the plane the stream is a bivector valued line integral.
If the plane vector field is sourceless, its stream across any line in a simply
connected domain depends only on the two end points of the line. Integrating
from a fixed point x¢ to a variable point x the stream becomes a bivector
valued function, called the stream function,

x
¢=/ dx AT,
Xo

which can serve as the bivector potential of f = V¢ [v = ¢].
If f is monogenic, Vf = 0, then there is an even valued function

x x x
w=u+¢=—/ dx-f+/ dxAf=- f dx,

1] Xo Xg
which serves as the complex potential of f. This complex potential is also
monogenic, Vw = 0. (In higher dimensions there is no correspondence for such
line integrals representing complex potentials — unless one is confined to axially
symmetric vector fields.) ]

Even fields. Instead of vector fields, we could instead examine the even fields
R™ = C¢f, x— f(x).

Here we replace the target R™ of dimension n by a wider target C£} of
dimension 32". The even subalgebra C{} is a direct sum of the k-vector
spaces /\k R™ with even k. If we require the even functions to be monogenic,
Vf(x) =0, then we have a system of coupled equations:

VAfkc24+ VI =0, VAfr+Vdfri2=0,

where fi; is the homogeneous part of degree k of f = f(x). These equations
are invariant under the rotation group SO(n).

Irreducible fields. Instead of vector fields or even fields, we could examine
functions with values in an irreducible representation of SO(n) or Spin(n). In
the Clifford algebra realm this would mean studying k-vector fields or spinor
fields. Important physical fields fall into this category: the Maxwell equations
are of the form VAF =0, VAdF =J, where F € /\2 R31, and the Dirac field
has as its target the spinor space, a minimal left ideal of C ® Cf3 1. It should
be emphasized though that in modern treatment of the Dirac theory the spinor
space is replaced by the even subalgebra Cfg"l. 1
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20.3 Tangential integration

Here we consider integration over surfaces, that is, smooth manifolds embedded
in a linear space R™. Our surface S is compact, connected, orientable and
contractible. The surface S is k-dimensional if there are k linearly independent
vectors tangent to S at each point x of S. The tangent vectors span a tangent
space Tx.

In a Euclidean space R™ the tangent space Tx generates a tangent algebra
C{(Tx) isomorphic to Cf;. A multivector field on S is a smooth function f :
S — Cly; it is tangential if f(x) € C{(T) for each x € S.

There are exactly two continuous tangential unit k-vector fields on an ori-
entable k-dimensional surface S, each corresponding to one of the two orienta-
tions attached to S. So tangent to each point x of an oriented k-dimensional
surface S there is a unique unit k-vector 7(x) characterizing the orientation
of S at x € 5. The value of the map = at x is called the tangent of S at x.

Consider a multivector field f : S — C¢,, on a k-dimensional surface S C R",
1 < k < n. Define the tangential integral of f over S by

[ as1t= [ rereav,

where dV is the usual scalar measure of the k-dimensional volume element of
S and dS is the k-vector valued tangential measure,

ds = r(x) dV.

So the tangential integral of f(x) is equivalent to the usual (Riemann) integral
of 7(x)f(x) over S.

Since multiplication of multivectors is not commutative, the above equation
is not the most general form for a tangential integral. The appropriate gener-
alization is the following:

/s_q(x) ds f(x) = / g(x)r(x)f(x) dV.

)

Consider an oriented k-dimensional surface S with boundary S of dimen-
sion k— 1. Set at the point x € 85 a tangent T55(x) of the boundary 85 and
a tangent 7s5(x) of the surface S. Then the expression (rs(x))~!7ss(x) is a
vector normal to the boundary 8S. There are two alternatives: the normal vec-
tor points inwards, in which case it is tangent to the surface S, or outwards, in
which case it is opposite to the inward tangent of S. The orientations of S and

3S are compatible, when the vector (rs(x))~175s(x) points outwards. Define
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the normal integral of f over the boundary 4S5 by

ds f(x) = /35(7-_<;(x))"1 ds f(x)

as

where ds is the (k —1)-vector valued tangential measure on the boundary 95,
and 8s is an outward pointing vector normal to 45,

ds = (rs(x))"1ds for x€aS.

The Dirac operator without coordinates. Take a k-dimensional surface
S which is contractible to a point x € S in such a way that the tangent of S
at x remains a fixed k-vector 7. Define a differential operator

Vr f(x) ds f(x),

- d(lsgr-io vol(S) Jas
where d(S) is the diameter of S and vol(S) is the scalar volume of S.

For instance, when r is a 1-vector, the partial derivative 8, in the direction
of 7 could be expressed as 8, = V.

The case when 7 is an oriented volume element is important. The same result
is obtained for +ey3. , and —ejs_,. So it is convenient to drop the subscript
and write V. The differential operator V is called the Dirac operator. Applying
an orthonormal basis {e;,ez,...,e,} of R" the Dirac operator is seen to be

0 0 0
V=e1-aTl+ez-aTz+---+en5x—,

where —(—9— = O,
z

The relation of V. to the Dirac operator V is obtained by computing
V=r"V=rYrLV+7AV)

where
V,=1"YrLV).

20.4 Stokes’ theorem

Consider a compact, contractible and oriented surface S C R™® with boundary
0S and a real differentiable function f : S — Cf,. Stokes’ theorem relates
tangential integrals over S and 8S, with compatible orientations,

/SdSVsz/asdsf,
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where the left hand side becomes, using V, = v~ (7 L V),
/(dSLV)fz dsf.
s as
Here dS and ds are of dimension degree k¥ and k — 1, respectively.

Examples. 1. Consider a 2-dimensional surface S in R3, and a vector field f
on S. Then the scalar part of Stokes’ theorem says

/s(dSLV)-fz/asds-f.

Use a vector measure dA = e],3dS, normal to the surface S, to write the left
hand side as

s

/S(dSLV)-fz/(dAxV)-f,

then use the interchange rule (of dot and cross) to get the usual Stokes’ theorem

/dA-(fo):/ ds-f,
5 as

where ds and dA form a right-hand system.

2. Counsider a 2-dimensional surface S € R®, with bounding line C = 85, and
a circulation of vector field f around C. First, convert the line integral to a
surface integral by Stokes’ theorem,

/Cdx-fz/s(dSLV)-f,

and then compare the homogeneous components of degree 0 to obtain
/(dSLV) -f:/dSL(V/\f).
s s

This shows that in a simply connected domain the circulation vanishes if the
divergence vanishes. 1

By convention V differentiates only quantities to its right, unless otherwise
indicated. Because of non-commutativity of multiplication, it is good to have
a notation indicating differentiation both to the right and to the left, when
desired. Accordingly, we have, for instance, the Leibniz rule,

where the dots indicate where the differentiation is applied. Stokes’ theorem is
now generalized to the form

/359dsf=/sg(dsLV)f.—(_l)k/Sg(deS)f'
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Here dimS =k € {1,2,...,n}. The minus sign on the last term comes from
alb=—(—1)*bLafor acR" and b € A\*R".

20.5 Positive and negative definite metrics

The monogenic homogeneous polynomials play a part in hypercomplex analysis
similar to that of powers of a complex variable in the classical function theory.
In constructing an explicit basis for the function space of monogenic polynomi-
als it is customary to single out a special direction, say e,, in an orthonormal
basis {e;,es,...,en—1,en} of the Euclidean space R”. The unit bivectors

ir=eqer, k=12,...,n-1

generate the even subalgebra Cf}; they anticommute and square up to —1.
Thus, they form an orthonormal basis {ij,is,...,in—1} of a negative definite
quadratic space R%"~! generating a Clifford algebra Cfyn-1 ~ C£}. A closer
contact with the classical function theory is obtained if a vector

X=zIe1+ 22+ ...+ Zn_1€n-1+ Iney
in the Euclidean space R"™ is replaced by a sum of a vector and a scalar, a
paravector,
z= ol + 2l + ...+ 2pqin+y, Y=z,

in R%"-1 @ R [the special direction is the scalar/real part y, also denoted
by zo = z,]. By the above correspondence z < e,x, we have established a
correspondence between the following two mappings:
R"” — CeF, x— f(x),

RORY 1 5 Cly o1, z— f(2);

both are denoted for convenience by f.
In the case of a Euclidean space R”, the Dirac operator is homogeneous,
v 0 + 0 +...+ + 9
=ej—+exs—+...+eq_ enm,

! 61‘1 2 31‘2 n-1 31?,,._1 " 6:::,.

but it is replaced by a differential operator (inhomogeneous in the dimension
degrees)

p=2 il il 4 s
T dzo 10z @ 20zy T 16z, 1’
d .
D = —— 4V, in the paravector space R @ R%"~1.

- 31‘0
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20.6 Cauchy’s integral formula

Consider a region S C R" of dimension n with boundary 8S of dimension
n — 1 and multivector function f:S — Cf,. In this case Stokes’ theorem is of
the form

/ dSVf= ds f.
s as
If a multivector function f is monogenic, Vf = 0, then

ds f =0 or equivalently Osf =0,
as as

which means that the ‘stream’ of a monogenic function across any closed hy-
persurface vanishes. This is Cauchy’s theorem.
In the following we need the Cauchy kernel

X
q(x) = W’

which is both left monogenic, Vq = 0, and right monogenic, Qv =0, at x #0.
Substitute the Cauchy kernel g(x) = q(x — a) and a left monogenic function
f(x), Vf(x) =0, into Stokes’ theorem. On the right hand side the first term
vanishes, and the second term can be evaluated by a limiting process. One
obtains Cauchy’s integral formula

/ a(x — a) ds f(x) = —(=1)"e1,.munf(a),
as

where w,, = 7r"/2/(n/2)! and the sign in —(—1)"eqs.., comes from the choice
of orientation 75 = eqs.. , for S.

Example. In the special case n = 2 the above formula is

/8 . IIT:T? ds f(x) = —eq27f(a),
since according to our convention ejs is compatible with the clockwise orienta-
tion. The classical formula corresponds to both the special cases f : R2 — R?
and f : R? — C£f. [A better matching with the classical case would be ob-
tained by mappings f(z + ye1) = u + ve;, where e = —1, in the Clifford

algebra Cfy 1 ~ C of R%1] |

Cauchy’s integral formula can also be written in the form

/ q(x — a) 8s f(x) = nw,f(a) for f:R*—Cl,
as
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and in the form
/ g(z —a) 8s f(2) = nwpf(a) for f:ROR™™ 1 Cly,_y,
8s

where the Cauchy kernel is

z  z7ef?
1= =T

The paravector z € R®@R®"~! has a norm |z| = v/zZ, and an arbitrary element
u € Cly -1 has a norm given by |u|? = (ui)o.

As in the classical case, we conclude that in a simply connected domain
the values of a left monogenic function are determined by its values on the
boundary.

20.7 Monogenic homogeneous functions

A function f:R™ — Cf, homogeneous of degree £ satisfies
f(x) = Xf(x) for XeR,
which implies Euler’s formula
rg;f(x) = {f(x), where r=|x|.

If a multivector function f(x) is monogenic, V f(x) = 0, then also xV f(x) =
(x-V+xAV)f(x) =0, and so

i)
(o + L)) = 0

where

if(x)—x V—zn:z- r = |x|

rar = —i= za y = ’
and

0 0
L—x/\V—Zeij(z,a —2_751:—1)

If a multivector function f is monogenic, Vf(x) = 0, and homogeneous of
degree £, that is r%f = £f, then Lf = kf, where « = —£. If a multivector

function f : R® — C¥, is harmonic, V2f = 0, and homogeneous of degree £,
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that is rga;f = £f, then Lf = kf, where

k=£+n—2 spinup
Kk=—¢ spin down.

This can be seen by writing the Laplace operator V2 as the square of the Dirac

operator V = x‘l(rgar-_- + L) and factoring it by the relations

r—X—Xro— =X

or or
Lx+xL=(n—1)x

as follows:

V2=x"2(r£+n—2—L)(r%+L).

If a multivector function f(x) is monogenic, Vf(x) = 0, then h(x) = xf(x)
is harmonic, V2h(x) = 0.
If a multivector function f : R® — C{, is monogenic at x # 0, that is

(1-53; + L)f(x) = 0, then f(x~!) satisfies (—1‘56; + L)f(x) = 0, and the

function
x

9(x) = a(x)f(x71), %QZEF’

is monogenic,

(r% + L)g(x) =0.

The plane case. Consider conformal mappings sending x € R? to f(x) € R2.

For sense-preserving conformal mappings (—r— + L)f = 0, and for sense-

or

reversing conformal mappings (r— + L)f = 0. ]

or
Example. Using the vector identity ad (b Ac) = (a-b)c — b(a-¢) we find
that
VA(xAf) =(V-x)f —x(V -f) + (x- V) —x(V -f)

=nf—x(V-f)+r%f—f

for a vector field f: R® — R".
If the vector field f is sourceless, V - f = 0, and homogeneous of degree £,

that is r—a—f = £f, then
or

Vi (xAf) = (£+n—1f,
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which shows that
_ 1
V=1 +n-— lx
is a bivector potential for f.
If the vector field f is irrotational, V Af = 0, and homogeneous of degree ¢,

that is rif = £f, then
or

At L#—(n-1),

V(x-f)=(¢£+ 1)f,

which shows that

is a scalar potential for f. |

20.8 A basis for monogenic homogeneous polynomials

A monogenic function is real analytic, that is, a power series of the compo-
nents of the argument. The homogeneous part of degree 1 of the Taylor series
expansion

of

+Tap—| +...+¢2 of
a 261‘2 a o "—lazﬂ_l

can be written, in virtue of a monogenic f, as follows:

of
. oy

f'(a)z = zl(g—:i

a

of of . of
' — _ . s _ . 4 . _ _ _ .
fla)z = (= yll)azl . + (z2 ylz)azz . + ...+ (Zn-1—¥in 1)3%_1 .
The functions
2] =T — yil, 29 =Ty — yiz, iy Ap-1 = Tp_1— yin_l
are monogenic; note that zx = zx + yere,, k= 1,2,...,n — 1. Write [ =
(I1,12,...,1la-1), and define the symmetrized polynomials

1
pl_(z) = Tl Z Zr(1)2m(2) - - - Zm(l)»
TES)
each term being homogeneous of degree I with respect to 2x, and homogeneous
of degree | =I; + 13 +...+ 1,1 with respect to z. The symmetric polynormials
are monogenic, Dp;(z) = 0; they appear as multipliers of partial derivatives

of |

Ofl,=
L] ozl ozl - - Y i

in the Taylor series expansion of f(a + z).
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Examples. 1. For | = (2,1,0,0,...,0) we have

p(2) = 5(f 22 + nizam + 222f)
2 .
(-"’% -y )-’132 — 2z 2917 — (;,32 _ yg‘)ylz
= (=}

2. The functions ¢(z) = 8;¢(z) are homogeneous of degree —(I + n — 1) and

monogenic when z # 0. ]

— y?)23 + 25123yereq + (23 — L )yesen.

For all z € R®R%""1 we also have pj(z) € R R*"~1,

The monogenic polynomials homogeneous of degree [ span a right module
over the ring Cfyn_1; the polynomials p;j(z) form a basis of this module of
dimension (H";"z). Harmonic polynomials homogeneous of degree ! form a
module over the rotation group SO(n) of R @ R%*~1 namely the irreducible
module of traceless symmetric tensors of degree I, the dimension of this module

being
l+n—-1 l4+n-3 _ l+n—-2 l4+n-3
! -2 )= 0 )T\ a- )

The Laurent series expansion is formulated as follows:

=33 [nte - o+ - e,

=0 |

where
1
b = o~ /as q(z — a) 3s f(z),
1
c = — /aspl_(z— a) s f(z),

when f(z) is monogenic in a region S C R@ R%"~! except at a € S.

Ax1AL VEcToOR FIELDS
Single out a distinguished direction or azis a in R", say
a=e,.
Write y = 2, and x = z,e) + z3€3 + - - - + 16,1 SO that
r=x4ya=z1€; + €3+ -+ Tp_1€n-1+ Tney.

Write z = |x| and let
rAa xa

T rAal =z
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be the unit bivector of the plane determined by a and r. Since V(ra) =
(Vr)a=na and V(ar) = —(n — 2)a, it is evident that the polynomial

w= %[nar+(n—2)ra]=(n—l)a-r+a/\r=(n—1)y—zi

satisfies the equation Vw = 0; such a w is called monogenic. The polynomial
w is a complex of its scalar part u = (n — 1)a-r = (n — 1)y and its bivector
part v = aAr = —zi. The vector field

f=—(n-1)a
is irrotational, that is V Af = 0, with a (scalar) potential u = (n — 1)y,
such that f = —Vu, and also sourceless, that is V - f = 0, with a stream
function ¢ = —z™~! and a bivector potential v = —zi,such that f = V1v and

V Av =0. In fact, f is monogenic, Vf = V-f + VAL = 0, with a complex
potential w = u+ vi = (n — 1)y — zi, which is also monogenic, Vw = 0.

The vector functionq(r) = r/r"”, where r = |r|, is called the Cauchy kernel,
and

@ (r) = Via- )] = —(a—na-rr)

is the field of an n-dimensional dipole. These vector fields can be used to
reproduce the complex potential

w=—q(r)a(r™")
of the vector field f = —(n — 1)a.

Axial monogenic polynomials of degree 2. In the above we just found
that

V(ar) = —(n —2)a

Vra = na.

Next, we differentiate the second powers of r. The product ara = (ar+ra)a—

a’r = 2(a-r)a— a’r is a vector in the plane determined by a and r. So

(ar)? = 2(a -r)ar — a’r?

(ra)? = 2(a-r)ra — a%r?

and (ar)(ra) = a?r?. Since
V(ar)? = -2(n - 2)(a-r)a
V(ar)(ra) = 2a’r
V(ra)? = 2(n+ 2)(a-r)a— 4a’r
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it is evident that the polynomial

pa(r) = §[(n +2)(ar)’ + 2(n - 2)(ar)(ra) + (n - 2)(ra)’]
=2[n(a-r)? —a’r? + 2(a-r)(aAr)]

is monogenic, Vpy(r) = 0. In cylindrical coordinates y, x, the polynomial
n .
p2(r) = 5[(11 —1)y? — 2% - 2yzi)

is a complex potential of the monogenic vector field f = n(x— (n—1)ya) which
has a stream function ¢ = —nyz""!.

20.9 Axial monogenic polynomials of homogeneous degree

In the following, monogenic polynomials, homogeneous of degree ! in the factors
ar and ra (and then also in r or in y and x), will be introduced. First,

V(ar)' = —(n — 2)a[(ar)'"? + (ar)'~*(ra)+

-+ (ar)(ra)' =2 + (ra) 1], ®)
V(ra)' = (n - 2)a[(ar)' " + (ar)'~*(ra)+
. + (ar)(ra)~2 + (ra)'~1] + 2la(ra)"~1. (4)

To verify these, observe that eife, + - - - + e fe, = —(n — 2)f for any vector f.
Then

Ze,- (ar)’lae;(ar)'~7 = —(n — 2)(ar)’~la(ar) 7
- = —(n — 2)a(ra)’~(ar)'~
= —(n — 2)a(ar)'~4 (ra)/ !

because (ar)’~la is a vector in the plane determined by a and r, as can be
seen by inspection on (ra)’r = r((ar)’ ~'a)r and induction on j. The equation
(3) is now proved. Similarly, observe that ) ., e;ue; = (—1)'(n — 2l)u for
any element u, homogeneous of grade . Then

> _ei(rayies =3 eil((ra)’ + (ar)) + ((ra) — (ar))le:

= 2[(ra) + (ar)}] + 252[(ra)’ — (ar)]
= (n— 2)(ra)’ + 2(ar),
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because (ra)? + (ar)’ is a scalar of grade 0 and (ra)’ — (ar)’ is a bivector of
grade 2. It follows that

D eilrafeia = (n - 2afar)’ + 2a(ra)’,

which multiplied by (ra)'~7~! on the right gives the equation (4) after summing
up the terms j =0,1,---,1—1.

To calculate V(ar)'~4(ra)’ note that (ar)'~I(ra)’ = r¥a?(ar)’~% when I >

2j and (ar)'~7 (ra)/ = r2(~9)(ra)%~1 when I < 2j. Use results (3), (4) and
Ol = Ir'-1 for 1 even
"l (@(+n-1r"t  for Iodd
Then

i

V(ar)'=i(ra)’ =) mj.a(ar)* (ra)*

k=1

where the (I + 1) x [-matrix mjy is

(—(n—2)—(n—2)—(n—2)--- n-2 —-(n-2) —(n-2) \
2 —(n-2-(n-2y-- —(n-2) —(n-2) 0
0 4 —(n-2- —(n—2) 0 0
0 0 6 0 0 0
0 0 (n=2)--{nt+20-3) 0 0
0 (n=2) (n-2)--- (n—=2) (n+2(1-2) 0
\(n=2) (1-2) (n=2)-- (n-2)  (n-2) (n+20-1))/

To get the coefficients p; ; in

)=
= S (o)

j=0

such that Vp;(r) = 0, multiply the rows of m;; by the corresponding coeffi-

cients p; ; and determine p; ; so that the sum of the resulting elements in each

column is zero. To calculate the coefficients p; ; one has useful algorithms such
n—2

1
1
n,j =7( B

1 It is worth noting that the formula (5) for the coefficients p; .7 is valid for all signatures
and not only for positive definite quadratic forms.

as

+1- j) (P1-15 + P1-1,1—5)
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n—2 ; n-4 ;
B2 41— (o5t 4
na= () () ®)

Example. Let n =3 and [ = 2. Then

which gives

V(ar)? = —a(ar) — a(ra) | 6
V(arra) = 2a(ar) 2
V(ra)? = a(ar) + ba(ra) |1

where the right-hand sides of the identities give the matrix

and the right column gives
pa(r) = 5(ar)? + 2(arra) + (ra)?
with coefficients ps o = 5, p2,1 =2 and pa2 = 1. 1

In some cases it is worth knowing the smallest integer coefficients, which in a
few lower-dimensional cases are as follows:

n=3 n=4 n=>5
I\jl0O 1 2 3 4/01234|0 1 2 3 4
1 3 1 21 5 3
2 5 2 1 321 7 6 3
3 3515 9 5 4321 [212115 7
4 63 28 18 12 7(5 4 3 2 1|33 36 30 20 9

20.10 Differential equations in cylindrical coordinates

Consider an axially symmetric vector field f in the cylindrical coordinates y, x.
Write r = x+ya, V = V. +a(d/0y) and f = g+ ha with g = (x/z)g. Then
Oh _ 89  Oh

+ =+ (n-2)=

v‘f=vx.g+3y=a_:c Ay z

x Oh dg ./0h Oy
f=—— —=il——-=).

VAT= 52Ty, ‘(ax ay)
If now f is monogenic, Vf = 0, then there is a complex potential w = u+vi =
u+v such that f = —Vu = VJv, VAv =0. The condition to be monogenic,



274 Hypercomplez Analysis

Vw = 0, means that

0 xa

(Vx+ag,) (w+07)
S xou xOuxa 921,000 x
Tz 0z .1:61::::+ T a6y+ oy z

which decomposed gives an n-dimensional analog of the Cauchy-Riemann equa-
tions

bu_ o _
dz Oy (6)
@+@+(n—2)1}-—0
dz Oy z
The components of f = g + ha are then expressed as
_ O _
I="8z" "oy
Ou Ov v
h——ggj—g;-f-(n—?);.

Of course, u is harmonic,

#? 9 n-29
2y= o+ = 4 —Z— =
vu_<6x2+3y2+ z 61:)" 0

and also v is harmonic,

v v n—-2[(0v v
v2 _V2 Y — 3 — —_— = = =
v=Vi(u) =i {3:1:2 + dy? t (32 z)} 0,

and so

Vi =

2

As an axially symmetric and sourceless vector field f has a stream function

¥ = 2"~ 2v, satisfying
8? ? n-290
(5;5+5y—2‘ Ta_x>¢_0’
such that

oz 8y

The stream function can be expressed by a line integral

% _ " ?h _3_¢ = —z""2g.

P
% — o = / z"~?*(gdy — hdz)

Py
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independent of path in a fixed plane containing the symmetry axis a. Let the
path of integration sweep around the symmetry axis a and form an axially
symmetric hypersurface S. The stream

=/dS/\f
s

across S is ¥ =e12,. n(n — Nwn_1(¥ — 1) where (n — 1)wp_1 is the measure
of the unit sphere S*~2 in the (n — 1)-dimensional space (orthogonal to the
axis a € R").

The n-dimensional Cauchy-Riemann equations (6), by a change of variables
z =rsinf, y = rcos@, become

%;—+%%+(n—2)cot0% =0
%—%%+(n—2)%:0.
If the complex potential w = u + vi is homogeneous of degree [, then
%+(n—2)cot0v+lu =0
ZZ (I+n-2)v.

Differentiation with respect to ¢ and a further change of variable y = cos@
then result in

dzv dv n—2
and
d*u du
(1 )d2 ( —l)p@+l(l+n—2)u—0

The solutions u/r' of this last equation can be expressed as hypergeometric

series or ultraspherical (Gegenbauer) functions

n—11-p  Un-3)! ((n-2/2
7T ) T Geno g )

and v = [\/1 — p?/(l + n — 2)](du/dy). The previously introduced monogenic
polynomials p;(r ), homogeneous of degree [, are now pi(r) = u + vi.

2F1(—l,l +n— 2,




276 Hypercomplex Analysis

In some lower-dimensional cases the scalar part u of p(r) divided by ' is

n | u/rt

2 [ coslf = Ti(cos8) Chebyshev

3 | Pi(cos®) Legendre

4 (%+1)(cos10+cot0sin10)=(l§+1)ﬂ(l.+Tl)0
sin

20.11 Inversion of multipoles in unit sphere

If a function f(r) with values in the Clifford algebra is monogenic, then the
function q(r)f(r~!), obtained by inversion, is also monogenic for r # 0. The
vector field
al
q(r) = B—yIQ(l‘)

is axially symmetric, monogenic and homogeneous of degree —(I4+n—1), and it
describes an axial multipole of order 2'. The previously introduced monogenic
complex polynomials are obtained by inversion in the unit sphere,

A
Clamae).

p(r) =

These axially symmetric monogenic complex polynomials p;(r) should be dis-
tinguished from the monogenic complex polynomials introduced by Haefeli,
who defined symmetrized products of the functions z; = z; + ye;e,, where
i=1,2,...,n-1.

Example. The polynomial %(zlzz2+zlzzz1+zzzlz) = zz(z%—y2)+2zlx2ye1en+
y(z% — (y?/3))eze, is such a monogenic symmetrized product. 1
Haefeli’s monogenic symmetrized products form a basis of the right module
(over the Clifford algebra) which consists of monogenic polynomials.

Example. The axially symmetric monogenic polynomials, homogeneous of
degree 1 and 2, can be expressed in this basis in the forms

n-1 n-1
n
p(r)=— Zz,-e,-e,, and p(r) = =5 . 22
=1 i=1
respectively. ]

Finally, the complex polynomial p;(r) is such that its bivector part deter-
mines the plane spanned by a and r = x + ya. So the function rp;(r) is vector
valued in this same plane. Since the complex function p(r) is monogenic,
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Vpi(r) = 0, the vector function rp;(r) is harmonic, V2rp(r) = 0. This can be

seen from
0 n-2\2 n—2\2
2g2 _ [, 0 -2} _
r'v _<r3r+ 2 ) (L 2 > ’

where rV=r-V+rAV, r(8/0r) =r-V and L = r AV, which has axially
symmetric eigenfunctions Lp;(r) = —Ip;(r) and Lrp(r)] = (I + n— rp(r.)

History and survey of research

Hypercomplex analysis attempts to generalize one-variable complex analysis to
a higher-dimensional one-variable theory using Clifford algebras of Euclidean
spaces. It was first examined by Moisil (in terms of integrals), and rediscovered
in quaternion form by Fueter, who introduced the symmetrized polynomials.
In quaternion analysis the central result was Cauchy’s integral formula in di-
mension 4. The notion of monogenic functions with values in a Clifford algebra
is due to Iftimie and Bosshard. Habetha showed that if an algebra gives rise to
Cauchy’s integral formula, then it is sufficient that it contains a linear subspace
where all non-zero vectors are invertible in the algebra; that is, the algebra 1s
almost a Clifford algebra.

Lounesto & Bergh 1983 initiated a study of axially symmetric functions with
values in a Clifford algebra. The research was later taken over by Sommen.

Presently, there are several schools studying hypercomplex analysis with dif-
ferent emphasis: harmonic analysis (J. Ryan, J. Gilbert), functional analysis
(R. Delanghe, F. Brackx), and function theory (K. Habetha, R. Gilbert).

Exercises

1. Show that Vx =n, Vx? = 2x, Vx3 = (n + 2)x?, Vx*=4x3

2. Show that Vx* = kx*~! for k even, and Vx* = (n + k — 1)x*~! for k
odd.

3. Show that Vcosx = —sinx, Vsinx =cosx+ (n — 1)—1- sin x.
x
1.
4. Show that Vexpx =expx+ (n — 1);smhx,

1 1
Vieog(l +x) = Tr= +(n— 1); arctanx.
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21
Binary Index Sets and Walsh Functions

The present chapter scrutinizes how the sign of the product of two elements
in the basis for the Clifford algebra of dimension 2" can be computed by the
Walsh functions of degree less than 2". In the multiplication formula the basis
elements are labelled by binary n-tuples, which form an abelian group €, which
in turn gives rise to the maximal grading of the Clifford algebra. The group of
binary n-tuples is also employed in the Cayley-Dickson process.

WALSH FUNCTIONS

Consider n-tuples a = ajay...a, of binary digits a; = 0,1. For two such
n-tuples ¢ and b the sum g @ b = ¢ is defined by termwise addition modulo
2, that 1s,

¢ =a; +b; mod 2.

These n-tuples form a group so that the group characters are Walsh functions
wa(b) = (~1) = &0

The Walsh functions have only two values, 1, and they satisfy wg(a @ b) =
wg(a)w (b), as group characters, and wg(b) = wy(a). The Walsh functions
wg, labelled by binary n-tuples k = kik2...ks, can be ordered by integers
k=Y ki2h

21.1 Sequency order
In applications one often uses the sequency order of the Walsh functions,

wg(z) = (—1)Fm1tEima(bamathi)e,

279
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for instance, in special analysis of time series, signal processing, communica-
tions and filtering, Harmuth 1977 and Maqusi 1981. In the sequency order the
index k is often replaced by an integer k=Y ., k;2"~% and the argument z
by a real number on the unit interval z = 2"" "7 | z;2'~! (Fig. 1 and Fig. 2).

1

T T wo
0 .;. 1
l- + w1
——— — o —o——
T——’——— *r ——
t { wWo
-| t w3
- e
T— + *r-—
u t Wy
! ' . s
& [/ —
.I + ’J)s
.| t wy

Figure 1. The first eight Walsh functions wy(z), £=0,1,...,7.

In Figure 1 the first eight Walsh functions are given:

ﬁ}h(z) —_ (_l)kl-"f‘l+(k1+k2)-"-‘2+(k2+k3)1‘3

with k = 4k +2ky + k3 and z = %(zl + 2z3 +4z3). Observe that the number
of zero crossings per unit interval equals k.
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k1 ko k3
[ ] [ ]
L AND XOR
=1
&
I3 &
=1 f
& = 1mod 2
7 e
&
I &

Figure 2. The first eight Walsh functions in hardware, @(z) = (=1)7.

21.2 Gray code
The passage to the sequency order is related to the Gray code g defined by

g(k)r =k, g(k)i=ki-1+kimod2, i=2,...,n.

The formula () = wy(e)(z) reorders the Walsh functions. The Gray code is
a single digit change code, that is, the codes of two consecutive integers differ
only in one bit (Table 1).

Table 1. The Gray code for k < 8.

k k g(k)
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

The Gray code is a group isomorphism among the binary n-tuples, that is,



282 Binary Index Sets and Walsh Functions

g9(a ®b) = g(a) ® g(b). The inverse h of the Gray code is obtained by

h(a)i = Zaj mod 2.
ji=1

BINARY REPRESENTATIONS OF CLIFFORD ALGEBRAS

As a preliminary example, consider the Clifford algebra C£p 2, isomorphic to the
division ring of quaternions H. Relabel the basis elements of Cfy 2 by binary
2-tuples
1 €00
€1,€2 | €10, €01
€2 | en

and verify the multiplication rule
eaep = wa(h(b))eaps-
For an alternative representation reorder the basis elements by the formula
€a = €g(g) OF €g = &p(q)
to get the correspondences
1| e
e1, ez | €11, €p1

ez | €.

This yields the multiplication rule

€2€p = Wa(b)€agp-

21.3 Clifford multiplication

In general, consider the Clifford algebra Cfy,, with n generators ey, ez, ..., e,
such that

e?: -1 for ¢=1,2,...,n,

eje; = —eje; for i#j.

Theorem 1. If a real 2"-dimensional algebra A has the multiplication rule
€ap = Wa(h(b))eqop

between the basis elements labelled by the binary n-tuples, then A is isomor-
phic to the Clifford algebra Cfp .
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Proof. 1t is sufficient to show that A is associative, has a unit element and is
generated by n anticommuting elements with square —1.

The element ey = egoo...00 is the unit, since egeg = wg(h(0))eqg0 = wo(0)e, =
+e, and similarly epeq = +e4. The n basis elements

€100...00, ©010...00, .-, €000...01

generate by definition all of A. Each generator has square —eg; in particular
for the i:th generator eq

a=00...010...00, h(a)=00...011...11
1 ) n 1 ) n

and so wg(h(a)) = —1, from which one concludes that eseq = we(h(a))eqpq =
—eg. In a similar manner one finds that generators anticommute with each
other.

Finally, A is associative, since for three arbitrary basis elements eq,ep, €,
the condition (eqep)e. = eq(epe.) is equivalent to

wa(h(8))waes(h(c)) = wa(h(b ® c))wp(h(c)),

and h being a group isomorphism.

It 1s convenient to assume the correspondences

e; = epp..010.00 for i=1,2,....n
1 i n

between the ordinary and binary representations of the generators of the Clif-
ford algebra Cfy . Then the basis elements of C{y , are labelled by the binary
n-tuples @ = ajas...a, as follows:

es =e'es*...epr, a;=0,1.

Since the Gray code is a group isomorphism among the binary n-tuples, we
can reorder the basis of the Clifford algebra Cl , by

e = €g(a)-
This reordering results in a simple multiplication formula:

Corollary. The product of the basis elements of the Clifford algebra Cfg . is
given by

Proof.
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= Wy(a) (D) €g(amp) = Wa(b)€aop. ]

If you choose the signs in egep, = teqqp 10 some other way, you get other
algebras than Cf ,,. For instance, the Clifford algebra C¢, , over the quadratic
form 3 +...+ 22 —x2,, — ... — 22, has the multiplication formula
P

eqep = (—1)Zw=1 “Prwy(h(b))eapp-
Of course, this might also be written without Walsh functions:
eqep = (—1)Zimrhs 40 (—1)Zi>5 “Piggqy,

a formula essentially obtained by Brauer & Weyl 1935. See also Artin 1957 and
Delanghe & Brackx 1978 for a related definition of the product on the Clifford
algebras (based on sums of multi-indices).

21.4 An iterative process to form Clifford algebras

Clifford algebras can be obtained by a method analogous to the Cayley-Dickson
process. Consider pairs (u,v) of elements u and v in the Clifford algebra C¢, ,.
Define a product for two such pairs,

(u1, v1)(u2,v2) = (uruz £ v192, u1vs + v142),

where u — 4 is the grade involution of C¢, 4. This results in an algebra iso-
morphic to the Clifford algebra

cep+1,q
or

c£}hq+1

according to the + sign. This iterative process could be repeated by noting
that (u,v)" = (4, —9).

For more details on the Clifford algebras see Micali & Revoy 1977 and Por-
teous 1969, 1981.

SOoME CLIFFORD-LIKE ALGEBRAS

All the above algebras are special cases of the following. Let A be a real linear
space of dimension 2". Label a basis for A by binary n-tuples a to get the
basis elements e,. Then define a multiplication between the basis elements e,
and extend it to all of A by linearity. The definition is of the form

€q€p = ieaﬂ)b
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for a certain choice of signs. Then the algebra A is a direct sum of the 1-
dimensional subspaces U,, spanned by e,, satisfying

UaUp C Uggp.-

In other words A is an algebra graded by the abelian group of binary n-tuples
Q. This grading is maximal (Kwasniewski 1985), and these algebras will be
called Clifford-like algebras. Next we shall study some Clifford-like algebras.

21.5 Cayley-Dickson process

Consider a generalized quaternion ring Q with i2 = v, 52 = 72 and k2 = 79,
where 7v;, 72 = 1. The conjugation-involution u — ul of Q is given by

it =—i, jl=—j5 kl=—k.

Introduce a multiplication in the 8-dimensional real linear space @ x @ by the
formula

(ul, ’Ul) o (Uz, ’Ug) = (u1u2 + ‘)’31):{"01, vouq + vlué‘)
where 43 = #1. Inducing an anti-involution (u,v)l = (uf,—v) of @ x @ =
CD(v1,%2,7s) makes it possible to repeat this Cayley-Dickson process to get

an algebra CD(y1,%2,...,%s), where 4; = 1. In fact, the Cayley-Dickson
process could be started with R to give CD(y1) and @ = CD(v1,72).

Example. CD(-1) ~ C, CD(-1,-1) ~ H, and CD(-1,-1,-1) ~ O, the
real 8-dimensional alternative division algebra of octonions (Porteous 1969,
1981). 1

The algebras CD(y1,42,--.,%n) obtained by the Cayley-Dickson process are
simple flexible algebras of dimension 2" (Schafer 1954). Every element of such
an algebra satisfies a quadratic equation with real coefficients.

21.6 Binary representation of the Cayley-Dickson process

The algebras formed by the Cayley-Dickson process are Clifford-like algebras.
For instance, choose a basis of CD(y;) =R x R,

90:(1,0), € :(0)1),
and introduce the multiplication rule

b
€q€p = 'Yfl lege)b_ (2 =m,b= bl)-
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The involution is given by
el =(1,0)=ey, el =(0,-1)=-e;

or in a condensed form el = (—1)%e,.

Theorem 2. A Clifford-like algebra A, dim A = 2", with multiplication rule

eqsep = f(a,bd)eqsqn
£(a,8) = (—1) T (S +5:0)+5.@00)bun+ 5. Baian) y [T, 4ot

where Sj(a) is the maximum of a; for 1 < j <4, is isomorphic to the Cayley-
Dickson algebra CD(¥1, ¥2, - .., ¥a). The anti-involution is

ei = (—1)5"(ﬂ)eg.

Proof. The first case of the mathematical induction is proved in the example
above.

Assume that the statement holds up to the n:th step, and apply the Cayley-
Dickson process. If the new basis elements are denoted by

e _ | (ea,0), any1=0
a1a2..0n0n41 (0,eq), any1=1

OF €ga,,, = €a,a;...anans, 10T short, then

ea0€po = (€q, 0)(ep, 0) = (eqep, 0) = f(a, b)(eapp, 0) = f(a, b)esqpo
€41€40 = (0’ eﬂ)(eh’ 0) = (0’ egeﬁ) = (_I)Su(h)f(g, -I-’-)eg@!ll

eqoep1 = (g, 0)(0,ep) = (0, epeq) = f(b, a)eaqn

ea1€p1 = (0,a)(0,€p) = (Yn+16f€a,0) = Y 41(—1)%"®@ f(b, a)eaoso-

These four equations can be condensed into one equation

e.‘lan-{-l egbn-l-l
— n bn
= f(ga é)l bnia f(k’ Q)bnﬂ X 7Z+tl + (_l)aM—1 S"(g)eg_@b_(au+1@bu+1)’

where

£(b,0) = f(a,B)(~1) (@S 0+ 5n(a0b),

which is a consequence of (ezep)” = efel. Thus we have proved the desired
multiplication rule in the case n + 1. The induced anti-involution is also of the
assumed type:

€40 = (eé,O) = ("1)5"(5)9&0

eé‘l = (0,—eq) = —e,41

[
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or in a condensed form

ﬁ_*am = (—1) MaX (Sa(@antrdg,, .
The algebra CD(y1, ¥2, - .. ,n) is generated by an n-dimensional vector space,

whose elements

Z1€100...00 + £2€010...00 + - - - + Trn€000...01

have squares (v1z2 +722%+...4+7,22)eg. In contrast to the Clifford algebras,
different orderings of the parameters v; in CD(y1, 72, ...,Yn) may result in
non-isomorphic algebras in the case where n > 3.

Another construction relating Clifford algebras and Cayley-Dickson algebras
is found in Wene 1984.

For more details of the algebraic extensions of the group of binary n-tuples
2 see Hagmark 1980.
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22

Chevalley’s Construction and Characteristic 2

Consider an n-dimensional linear space V' over a field F, charF # 2, and the
symmetric bilinear form

<x,y> = 5[Q(x+¥) - Q) - Q)

associated with the quadratic form @). Later in this chapter we will discuss the
case charF = 2. As before, we denote the exterior algebra of V by AV and
the Clifford algebra of @, with x? = @(x), by C£(Q) or Cf, , when V = RP:?

and
Q(x):xf+z§+...+z}2,—zz+l—...—zf,_l_q, n=p-+q.

We shall construct a natural linear isomorphism AV — C¢(Q), review how
Riesz goes backwards and derives A V from C¢(Q) and compare Riesz’s method
to an alternative construction due to Chevalley but known to some theoretical
physicists in the disguise of the Kahler-Atiyah isomorphism.

22.1 Construction of the linear isomorphism AV — C{(Q)

Here we start from the exterior algebra A V. Recall that a k-vector a € NV
has the grade involute & = (—1)*a and the reverse & = (—1)2*(*~Da. The
symmetric bilinear form associated with @ on V can be extended to simple
k-vectors in A* V by way of

<X{AXa AL AXE, YL AY2 AL AYED> =det<x;, >,

where
<X, ¥Y1> <X1,y2> - <X1,¥i>
<X2,¥1> <X2,¥2> - <X2,¥k>
det<x;,y;> = . . . . )
<Xk,)’1> <xk,}’2> <xk,yk>

288
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and further by linearity to all of /\k V and by orthogonality to all of A V.

Example. Let Q(zie; + z2e3) = az? 4 bz2. Then <x,y> = az1y; + bzayo
and xAy = (z1y2—z2y1)e1 Aep. The identity (az?+4bz2)(ay? +by?) = (az1y1 +
bzay2)? + ab(z1y2 — z231)% can be written as Q(x)Q(y) = <x,y>2+Q(xAYy),
where Q(x Ay) = ab(z1y2 — zay1)?. 1
In the case of a non-degenerate @ on V we can introduce the dual of the

exterior product called the left contraction ulv of v € AV by u € AV
through the requirement

<udv,w>=<v,tAw> forall we/\V.

Examples. 1. Let x,y € V,w € F. Then <xdy,v> = <y, xAw> =
<y,xw> = <y,x>w and since <xJy,w> = <xdy,1>w we have the rule
xdy=<x,y>.

2. Let x,y,z, w€ V. Then <xJd(yAz),w>=<yAz,xAw>

| <y, x> <y,w>
T <z, x> <z, W>

= (xdy)<z,w> — (x12z)<y,w> = <(xJy)z — (xdz)y,w> and so we have
the rule x4 (y Az) = (xJdy)z — (xJz)y.

3. Let xeV, x;€Vand w=w AWaA...AWg_1 € /\k_lV. Then
<xd (X3 AX2 AL AXE), WD = <X AX2 AL AKX, XAWL AW AL AWK 1>

<X1,X> <X1,W1> <X3,W2> - <X1,Wgp_1>
<X2,X> <X2,W1> <X2,W32> -+ <X3,Wk_1>
<Xp, X>  <Xp,W1> <X, W3> -0 <Xp,Wg_1>

k
= Z(—l)"‘1<x,x,-><x1 Ao N AX AKX I AL A X, wD>
i=1
and so
XJ(Xl/\le\ .../\xk)
k
= Z(—-l)i—1<x,Xi>X1 Axo A AKX AKX AL A X
i=1

4. xd(uAv)=xd((ms AugA...Aw) A (Vi AV AL AV;j))

i
=) (xdw) (-1 e Awp AL AW Al AL AW A
k=1
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.

+(-1)f Z(vak( D YuAVIAVEA . AVEC AV AL LAY

=(xdu)Av+(-1)'un(x]v).

5. <(uAv)dw,z>=<w,(uAv) " A2z> =<w,TATAz> =<vdw, A 2z>
=<ud(vdw),z> and so (uAv)Jw=ud (vIw). ]

In the case of a non-degenerate () we have verified the following properties of
the contraction:

(a) xldy= <x,y> for xyecV
(b) xd(uAv) =(xJu)Av+aA(xdv)
() (uAv)dw=ud(vdw) for wuv,weAV

(see Helmstetter 1982). These properties also determine the contractionuniquely
for an arbitrary, not necessarily non-degenerate Q. The identity (c) introduces
a scalar multiplication on A V making it a left module over A V. The identity
(b) means that contraction by x € V operates like a derivation. Evidently,
xJaE/\k—lV for ae/\kV.

Introduce the Clifford product of x € V and u € AV by
xu=xAu+xdu

and extend this product by linearity and associativity to all of AV, which
then becomes, as an associative algebra, isomorphic to C¢(Q). For instance, the
product of a simple bivector x Ay € /\2 V and an arbitrary element u € AV
is given by
(xAY)u=xAyAu+xA(ydu)—yA(xdu)+xd(yLu)
where we have first expanded (x Ay)u = (xy — xd y)u, then used
x(yu) =xAyAu+xA(ydu) +xd(yAu)+xd(ydu)

and the derivation rule x4 (yAu) = (xdy)Au—y A (xJu).
Ezercises 1,2,...,10

Remark. Some authors use, instead of the left and right contractions, a
more symmetric dot product in C¢(Q), defined by the Clifford product for
homogeneous elements as (char # 2)

i J
a-b=(aby;_;, ae \V,be AV,
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and extended by linearity to all of C£(Q). The relation between the dot product
and the contractions,

u-v=udvt+ulv—-<uv>,

shows that the dot product cannot be expected to have properties, which can
be easily proved (using the more fundamental contractions). Some authors try
to make the dot product look like derivation, and define exceptionally A-u = 0,
u-A =0 for A € F. This only makes things worse, because for this dot product
the relation to the contractions is still more complicated:

u-v=udv+ulv—<u, > — (u)ov — u(v)o + (u)o(v)o. ]

22.2 Chevalley’s identification of C{(Q) C End(A V)

Chevalley 1954 pp. 38-42 tried to include the characteristic 2 by embedding
the Clifford algebra C¢(Q) into the endomorphism algebra End(A V) of the
exterior algebra A V. He introduced a linear operator L) = ¢x € End(A V)
such that

ox(u) =xAu+xJdu for x€V, uE/\V.

From the derivation rule xJ(xAu) = (xdx)Au—xA(xJu) and xAxAu =0,
xJ(xJu) = 0 we can conclude the identity (¢x)? = @(x). Chevalley’s inclusion
map V — End(AV), x = ¢x is then a Clifford map and can be extended
to an algebra homomorphism % : C4(Q) — End(A V), whose image evaluated
at 1 € AV yields the map ¢ : End(A V) = AV. The composite linear map
6 = ¢ o ¢ is the right inverse of the natural map AV — C£(Q) and

AV =@ S Ed(AV) S AV

is the identity mapping on A V. The faithful representation ¢ sends C4(Q)
onto an isomorphic subalgebra of End(A V).

Chevalley’s identification also works well with a contraction defined by an
arbitrary — not necessarily symmetric — bilinear form B such that B(x,x) =

Q(x) and

(a) xly = B(x,y) for x,yeV

(b) xd(uAv)=(xJu)Av+aA(xIv)

(c) (uAv)dw=ud(vdw) for wu,v,weAV
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(see Helmstetter 1982). As before, x lae A*7'V for ac A*V and

xJ(xll\xz/\.../\xk)

E z 1BXX,)X1/\X2/\ /\x,-._ll\x,-+1/\.../\xk,

and the faithful representation 1 sends the Clifford algebra C¢(Q) onto an
isomorphic subalgebra of End(A V), which, however, as a subspace depends
on B.

Remark. Chevalley introduced his identification C¢(Q) C End(A V) in or-
der to be able to include the exceptional case of characteristic 2. In char-
acteristic # 2 the theory of quadratic forms is the same as the theory of
symmetric bilinear forms and Chevalley’s identification gives the Clifford alge-
bra of the symmetric bilinear form <x,y> = 1(B(x,y) + B(y,x)) satisfying
Xy +yx = 2<x,y>. ]

For arbitrary @ but charlF # 2 there is the natural choice of the unique sym-
metric bilinear form B such that B(x,x) = Q(x) giving rise to the canon-
ical/privileged linear isomorphism C£(Q) — A V. The case charF = 2 is
quite different. In general, there are no symmetric bilinear forms such that
B(x,x) = Q(x) and when there is such a symmetric bilinear form, it is not
unique since any alternating ! bilinear form is also symmetric and could be
added to the symmetric bilinear form without changing Q. Hence the contrac-
tion is not unique if charIF # 2, and there is an ambiguity in ¢.

In characteristic 2 the theory of quadratic forms is not the same as the theory
of symmetric bilinear forms.

Example. Let dimpV = 2, B(x,y) = az1y1 + bz1y2 + cz2y1 + dz2ys and
Q(x) = B(x,x). The contraction x 1y = B(x,y) gives the Clifford product
xv =xAv+xdv of x €V, v € A V. We will determine the matrix of v — uv,

u = up + ure; +uses +u12:a1 A ey with respect to the basis {1, e;, es, e; Aez}

for A V. The matrix of e; is obtained by the following computation:
ei1l=e1ANl=¢ (first column = 0100)
ejep=e;de; =a (second column = a000)
ejes—e; Aex+e;dey=ejAex+b  (third column = 5001)

ei(etAez) =e;d(e1Nex) = (e1de;) Aes — (e1 lez) Aey = aez — be;.

1 Recall that antisymmetric means B(x,y) = —B(y,x) and alternating B(x,x) = 0; alter-
nating is always antisymmetric, though in characteristic 2 antisymmetric is not necessarily
alternating.
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The matrix of e1 A ey is obtained by
(erhez)l =e1Aep
(e1Aez)er =(e1Aez)Le; =e; Aezler) —exA(e1 Ley) =cep —aep
(e1 A ez)ex = (ereg — ey dez)er = eje? — (e1 d ex)ey = dey — bey
(e1 Aez)(e1 Aez) = (erea —er dez)(er Aer)
=ei(eaA(e1Nez)+exd(e1 Aez)) — (e1der)(er Aep)
= ej(ce; — dey) — b(e; Aez) = —ad + be+ (—b + c)(e1 Aez).

So we have the following matrix representations:

0 a b O (0 c d 0
e — 1 0 0 b o = 0 0 0 —d
'~ loo0oo0 al’ 2711 0 0 ¢ |’
001 0 \0 -1 0 0
0 0 0 —ad+be
0 ¢ d 0
afe =1y a5 0 |
1 0 0 —b+c }
or in general
up auy +cuz buy+duz  —(ad — bc)uqy
y = | W uotcur duiz —(buy + dug)
- Uy —auiy ug — buq2 auy + cuz
u12 —Uuz 3 ug + (—b + ¢)uiz

Evidently, the commutation relations eje; +ese; =b+c and e? =a, e =d
are satisfied, and we have the following multiplication table:

L e ey ey \Ney

e a egAey+b —bey + aes
€ —ejAey+c d —de; + cesy
e ANey ce; — aey de; —be; —ad+be+(—b+cleiNer

In characteristic # 2 we find
1
3(

and more generally for x = z1e) + z2e2, y = y1€1 + y2€2

eje; —ege;) = ey Aex + (b —-¢)

1 1
§(Xy —yx) = (2192 — T2t1)es Nez + §(b —co)(z1y2 — 2211)
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=xAy+A(x,y)

with an alternating scalar valued form A(x,y) = 3(B(x,y)—B(y, x)). For non-
zero A(x,y) the quotient x Ay/A(x,y) is independent of x,y € V. Note that
the matrix of (xy — yx) is traceless. The symmetric bilinear form associated

with Q(x) is

1 1
x-y = 5(B(x,y) + B(y,x)) = az1y1 + 70+ c)(z1yz + z211) + dzays

2
and we have xy + yx = 2x -y for x,y € V C C{Q). Orthogonal vec-
tors x L y anticommute, xy = —yx and (xy)? = —x%y?, even though
Xy = x Ay + A(x,y). [In this special case A(x,y) = B(x,y) # 0 while
x -y = 0 implies B(y,x) = —B(x,y).] ]

It is convenient to regard A V as the subalgebra of End(/A V) with the canon-
ical choice of the symmetric B = 0. We may also regard C£(Q) as a subalgebra
of End(/ V) obtained with some B such that B(x,x) = @(x) and choose the
symmetric B in char # 2.

The following example shows that for @ = 0 and B = 0, Chevalley’s process
results in the original multiplication of the exterior algebra AV, but that for
@ = 0 and alternating B # 0, the process gives an isomorphic but different
exterior multiplication on A V.

Example. Take a special case of the previous example, the Clifford algebra
with @ = 0 and B(x,y) = b(z1y2 — z2¢1). Send the matrix of the exterior
product (with the symmetric bilinear form = 0) to a matrix of the isomorphic
Clifford product (determined by the alternating bilinear form = B):

U 0 0 0 U —bu2 bu1 —b2u12

Uy U 0 0 ,B u1 Up — b’U12 0 —bu1
..._)

Ug 0 w O Ug 0 ug — buqa —buy

U1z —Uz Y1 U U2 —uy uy ug — 2bui2

In this case

B(x)B(y) = B(x Ay + B(x,y)).

In particular, B(e1)B(ez) = Bler A ez +b), Ble2)B(e1) = —PB(er Aez +b)
and fB(e1 A ez + b)B(ei) = 0, B(e;)B(e1 Aez+ b) = 0. We have already met
this situation in the chapter on the Definitions of the Clifford Algebra in the
section on the Uniqueness and the definition by generators and relations except
that here the exterior algebra and the Clifford algebra (determined by the
alternating B) are regarded as different subspaces of End(A V) [although they
are isomorphic subalgebras of End(A V)]. 1
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The above example shows that those who do not accept the existence of k-
vectors in a Clifford algebra C£(Q) over F, charF # 2, should also exclude
fixed subspaces \*V C A V.

In general, consider two copies of C£(Q) in End(A V) so that Q(x) equals
Bi(x,x) = Bs(x,x), which determine 8 (x)Ai(y) = A(x Ay + Bi(x,y))
and B(x)Ba2(y) = B2(x Ay + Ba(x,y)). A transition between the two copies
is given by an alternating bilinear form B(x,y) = Bi(x,y) — Ba2(x,y) and
Bx)B(Y) = Blxy + B(x,¥)).

In characteristic # 2 this means that the symmetric bilinear form such that
<x,X> = @Q(x) gives rise to the natural choice xy = x Ay + <x,y> among
the Clifford products xy + B(x,y) with an alternating B. In other words, the
Clifford product xy has a distinguished decomposition into the sum x Ay +
<x,y> where <x,y> = 1(xy +yx) is a scalar and x Ay = 3(xy—yx) isa
bivector [this decomposition is unique among all the possible decompositions
with antisymmetric part x Ay = %(xy — yx) equaling a new kind of bivector
x Ay =xAy+ B(x,y) where xAy € /\ V and xAy € /\ZV]. [Similarly,
a completely antisymmetric product of three vectors equals a new kind of 3-
vector X Ay Az=xAyAz+xB(y,z) +yB(z,x) + zB(x,y).]

Example. Let F = {0,1}, dimy V =2 and Q(z1e1+z2e3) = z1z3. There are
only two bilinear forms B; such that B;(x,x) = Q(x), namely B, (x,y) = z1y2
and Bj(X,y) = z2y1, and neither is symmetric. The difference A = B; — By,
A(x,¥) = z1y2 — z2y1 (= T1y2 +Z21) is alternating (and thereby symmetric).
Therefore, there are two representations of C£(Q) in End(AV):

( Up 0 U1 0
Uu Uo 0 —U1
for Bi: u =
U 0 Up — U12 0
U1z —Uu2 u Up — U12
( Ug U9 0 0
u; ug+uz 0 0
for Bg: u =
Uy 0 U uy
\UIZ ) Uy uo + Uiz

These representations have the following multiplication tables with respect to
the basis {1, e, e2, €; Aey} for AV:

B | e e erAey
e 0 l14+e Aes —e;
es —ej ANey 0 0

e;Aey 0 —ey —ej Aey
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B, e e ejA\eq
e 0 e Aey 0
e l—e; Aeg 0 €

e; Aes e 0 eiNex

In this case there are only two linear isomorphisms AV — C£(Q) which are
identity mappings when restricted to F & V' and which preserve parity (send
even elements to even elements and odd to odd). It is easy to verify that
the above multiplication tables actually describe the only representations of
C¢(Q) in AV. In this case there are no canonical linear isomorphisms
AV = CL(Q), in other words, neither of the above multiplication tables can be
preferred over the other. In particular, /\2 V cannot be canonically embedded
in C¢(Q), and there are no bivectors in characteristic 2. ]

The need for a simplification of Chevalley’s presentation is obvious. For in-
stance, van der Waerden 1966 said that ‘the ideas underlying Chevalley’s proof
(p-40) are not easy to discern’ and gave another proof, equivalent but easier
to follow. [Also Crumeyrolle 1990 p.xi claims that ‘Chevalley’s book proved
too abstract for most physicists’ and in a Bull. AMS review Lam 1989 p. 122
admits that ‘Chevalley’s book on spinors is ... not the easiest book to read.’]
It might be helpful to get acquainted with a simpler and more direct method
of relating AV and C4(Q) due to M. Riesz 1958/1993 pp. 61-67. Riesz in-
troduced a second product in C¢(Q) making it isomorphic with A V' without
resorting to the usual completely antisymmetric Clifford product of vectors and
constructed a privileged linear isomorphism C£(Q) — A V.

22.3 Riesz’s introduction of an exterior product in C/(Q)

In the following we review a construction of M. Riesz 1958/1993 pp. 61-67. Start
from the Clifford algebra C¢(Q) over F, charF # 2. The isometry x — —x of
V when extended to an automorphism of C£(Q) is called the grade involution
u — 4. Define the ezterior product of x € V and u € C4(Q) by

1 R 1 .
x/\u=§(xu+ux), uAX = 5(ux+Xu)

and extend it by linearity to all of C¢(@), which then becomes isomorphic to
A V. The exterior products of two vectors x Ay = %(xy — yx) are simple
bivectors and they span /\2 V. The exterior product of a vector and a bivector,
x AB = (xB + Bx), is a 3-vector in A’ V. The subspace of k-vectors is
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constructed recursively by

k k-1
_1 k-1
x/\a_i(xa+(—1) ax)e/\V for aE/\V.

We may deduce associativity of the exterior product as follows. First, the
definition implies for x, y,z €V

1
xA(yAz) = Z(xyz — XZY + y2ZX — ZyX)

1
(xAy)Az= Z(xyz — YXZ + ZXy — ZyX).
Then xA (y Az) = (x Ay) Az since
Xyz — zyX = Xyz — zyX + (zy + yz)x — x(yz + 2y) = yzx — Xzy.

This last result implies
1
XAyAz= g(xyz + yzx + ZXy — ZyX — X2y — yXz)

when charF # 2,3 (note the resemblance with antisymmetric tensors). [Simi-
larly, we may conclude that xyz +2zyx = x{yz +2zy) — (xz + 2x)y + z(xy + yx)
is a vector in V.] Riesz’s construction shows that bivectors exist in all char-
acteristics # 2.

Introduce the contraction of u € C£(Q) by x € V' so that
1
xdu= E(xu— ﬂx)
and show that this contraction is a derivation of C£(Q) since

xd (uwv) = §(xuv — uvx) = —;—(xuv — 40x)

= %(xuv — Gxv + dxv — 40x) = (xd u)v + 4(x J v).

Thus one and the same contraction is indeed a derivation for both the exterior
product and the Clifford product. [Kahler 1962 p. 435 (4.4) and p. 456 (10.3)

was aware of the equations

xd(uAv) = (xJu)Av+aA(xdv) and

xd (uv) = (xdu)v + d(xdv).]
Provided with the scalar multiplication (u Av) 4w = uJ (vdw), the exterior
algebra AV and the Clifford algebra C£(Q) are linearly isomorphic as left

A\ V-modules.
Ezercises 11,12,...,20
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Exercises

Show that

L xA(ydu)—yA(xdu)=xd(yAu)—yd(xAu) for x,y € V.

2. xAyA(zdu)—xAzA(ydu)+yAzA(x]u)
=xd(yAzAu)—yd(xAzAu)+zd(xXAyAu).

. xA(yd(zdu)—yA(xd(zdu)) +zA(xd (ydu))
=xAy)d(zAu)— (xAZ)I(yAu)+ (YyAz)d (xAu)
=xd(yd(zAu)) —xd(zd(yAu))+yd(zd(xAu)).

4. (xAyAz)u=xAyA(zdu)—xAzA(ydu)+yAzA(xJdu)
XA (yd(zdu)) -y A(xd(zdu)) +2 A (xd(y du))
txAyAzAu+xd(yd(zdu)).

5. albe N 'V forae \'V, be NNV (charF # 2).

In the next five exercises we have a non-degenerate (). Define the right con-
traction uL v by <ul v,w> = <u,wA 9> for all we€ AV (we say that u is
contracted by the contractor v). Show that

6. udv=vglug—vgLur+mLuyg+viLuy=vlu—2uLuy
(vo = even(v), u1 = odd(u)).

7. ubv=wvodug+voduyy —vndug+viduyy =vdu—2v; dug
(v1 = odd(v), ug = even(u)).

Show that (when char F # 2)

8. alb=(-1)-"bLaforac A\'V, be N V.

9. ae/\kV, a#0, xeV, xla=0&x=adb for some bE/\k'HV.

10. be A*V issimple & (alb)Ab=10forallae A\*~' V.

11. x and x Ay anticommute for vectors x,y € V.

12. x and x- B anticommute for a bivector B € /\2 V.

13. (xAy)? = (xdy)? — x?y? (Lagrange’s identity).

4. (xAyAz)du=(xAy)d(zdu)=x1(yd(z1u)).

15. (xyz —zyx)? € F, x Ay Az = 1(xyz — zyx).

16. anb=(-1)ibaaforac A’V and be A V.

17. uAv=vg Aup+ v Aur +v1 Aug— v1 Ay = v A u— 2vu; A uy where
u,v € AV, uo = even(u), vo = even(v), u; = odd(u), v, = odd(v).

18. Bu=BAu+ i(Bu—uB)+Blu for Be \*V.
[Hint: (xAy)Au+ (xAy)du=xA(yAu)+xd(ydu)]

19. Q(u) = (uude, <u,v> = (@2 dv)y (= the scalar part of @ v).

In the last exercise we have a non-degenerate Q:

20. @ on V extends to a meutral or anisotropic @ on C¢(Q).
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Octonions and Triality

Complex numbers and quaternions form special cases of lower-dimensional Clif-
ford algebras, their even subalgebras and their ideals

C~Clyy ~Ctf ~Ctf,,
H~ Cfo’z ~ Cf; ~ CZE)I-,S >~ %(l + 8123)Cf0’3.

In this chapter, we explore another generalization of C and H, a non-associative
real algebra, the Cayley algebra of octonions, @. Like complex numbers and
quaternions, octonions form a real division algebra, of the highest possible
dimension, 8. As an extreme case, @ makes its presence felt in classifications,
for instance, in conjunction with exceptional cases of simple Lie algebras.

Like C and H, O has a geometric interpretation. The automorphism group
of H is SO(3), the rotation group of R in H = R @ R3. The automorphism
group of @ = RO R7 is not all of SO(7), but only a subgroup, the exceptional
Lie group G;3. The subgroup G fixes a 3-vector, in /\3 R7, whose choice
determines the product rule of O.

The Cayley algebra @ is a tool to handle an esoteric phenomenon in di-
mension 8, namely triality, an automorphism of the universal covering group
Spin(8) of the rotation group SO(8) of the Euclidean space R®. In general, all
automorphisms of SO(n) are either inner or similarities by orthogonal matrices
in O(n), and all automorphisms of Spin(n) are restrictions of linear transfor-
mations Cf, — Cf,, and project down to automorphisms of SO(n). The only
exception is the triality automorphism of Spin(8), which cannot be linear while
it permutes cyclically the three non-identity elements —1, eq2,. 8, —€12..8 in the
center of Spin(8).

We shall see that triality is a restriction of a polynomial mapping Cls — Clg,
of degree 2. We will learn how to compose trialities, when they correspond to
different octonion products. We shall explore triality in terms of classical linear
algebra by observing how eigenplanes of rotations transform under triality.

300
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23.1 Division algebras

An algebra A over R is a linear (that is a vector) space A over R together with
a bilinear map Ax A — A, (a,b) — ab, the algebra product. Bilinearity means
distributivity (a+b)c = ac+bc, a(b+c) = ab+ ac and (Aa)b = a(Ab) = A(ab)
for all a,b,c € A and XA € R. An algebra is without zero-divisors if ab = 0
implies ¢ = 0 or & = 0. In a division algebra D the equations ax = b and
ya = b have unique solutions z,y for all non-zero a € D. A division algebra is
without zero-divisors, and conversely, every finite-dimensional algebra without
zero-divisors is a division algebra. If a division algebra is associative, then it
has unity 1 and each non-zero element has a unique inverse (on both sides).

An algebra with a unity is said to admit inverses if each non-zero element
admits an inverse (not necessarily unique). An algebra is alternative if a(ab) =
a?b and (ab)b = ab?, and flexible if a(ba) = (ab)a. An alternative algebra is
flexible. An alternative division algebra has unity and admits inverses, which
are unique. The only alternative division algebras over R are R, C, H and O.

An algebra A with a positive-definite quadratic form N: A — R, is said to
preserve norm, or admit composition, if for all a,b € A, N(ab) = N(a)N(b).
The dimension of a norm-preserving division algebra D over R is 1, 2, 4 or 8;
if furthermore D has unity, then it is R, C, H or O.

Examples. 1. Define in C a new product aob by aob = ab. Then C becomes
a non-commutative and non-alternative division algebra over R, without unity.
2. Consider a 3-dimensional algebra over R with basis {1, 4, j} such that 1 is
the unity and i? = j2 = —1 but ij = ji = 0. The algebra is commutative and
flexible, but non-alternative. It admits inverses, but inverses of the elements of
1z +Jy
A € R. It has zero-divisors, by definition, and cannot be a division algebra,
although all non-zero elements are invertible.

3. Consider a 3-dimensional algebra over Q with basis {1,1,42}, unity 1 and
multiplication table

the form zi + yj are not unique, (zi+ yj)~! = A(yi — zj) — where

The algebra is commutative and flexible, but non-alternative. Each non-zero
element has a unique inverse. Multiplication by z + iy + 12z has determinant
z3 4+ 3y3 — 1823, which has no non-zero rational roots (Euler 1862). Thus, the
algebra is a division algebra, 3D over Q. 1
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23.2 The Cayley—Dickson doubling process

Complex numbers can be considered as pairs of real numbers with component-
wise addition and with the product

(1, W (22, ¥2) = (122 — Y1Y2, 1Y + N122).

Quaternions can be defined as pairs of complex numbers, but this time the
product involves complex conjugation

(21, w1)(22, w3) = (2122 — Wy Wa, 2y W2 + W1 Z2).
Octonions can be defined as pairs of quaternions, but this time order of multi-
plication matters

(p1; 41) © (P2, ©2) = (P1P2 — G201, ©2P1 + 01D2)-

This doubling process, of Cayley-Dickson, can be repeated, but the next al-
gebras are not division algebras, although they still are simple and flexible
(Schafer 1954). Every element in such a Cayley-Dickson algebra satisfies a
quadratic equation with real coefficients.

Example. The quaternion ¢ = w+iz+jy+kz satisfies the quadratic equation
¢* —2wq + |g|* = 0. |

The Cayley-Dickson doubling process

C=RoR:
H=C&Cj
O=HeoH{
provides a new imaginary unit ¢, ¢2 = —1, which anticommutes with i, j, k.

The basis {1,7,4,k} of H is complemented to a basis {1,1%,j,k,¢,i¢, j¢, k£}
of O = H@ HE. Thus, O is spanned by 1 € R and the 7 imaginary units
i,j,k, €, i€, j¢, kL, each with square —1, so that @ = R®R’. Among subsets of
3 imaginary units, there are 7 triplets, which associate and span the imaginary
part of a quaternionic subalgebra. The remaining 28 triplets anti-associate.

The multiplication table of the unit octonions can
be summarized by the Fano plane, the smallest pro-
Jective plane, consisting of 7 points and 7 lines, with
orientations. The 7 oriented lines correspond to the
7 quaternionic/associative triplets.
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23.3 Multiplication table of O

Denote the product of a,b € Q@ by aob. Let 1,e1,es,...,e7 be a basis of Q.
Define the product in terms of the basis by

ejoe;=—1, and ejoe; =—ejoe; for i#j,

and by the table

€ 0€y =€, €320€4=¢€;, €40€ = ey,
€y0€e3 =€5, €e3zoes =e3 €50€y =e3,

eroe; —e3, e oezg=ey, ezoer =e;.
The table can be condensed into the form
€;0€i4+1 = ej43

where the indices are permuted cyclically and translated modulo 7.

If e; 0o e; = *ei, then e;, e;, e; generate a subalgebra isomorphic to H.
The sign in e; o e; = *e; can be memorized by rotating the triangle in the
following picture by an integral multiple of 27/7 :

€3
€1
€3
€7
€4
€¢
es
Example. The product e; o es = —es corresponds to a triangle obtained by
rotating the picture by 27 /7. ]

In the Clifford algebra €€y 7 of R®7, octonions can be identified with paravec-
tors, @ = R ® R%7, and the octonion product may be expressed in terms of
the Clifford product as

aob={(ab(l—v))o,,

where v = ej24 + @235 + €346 + €457 + €561 + €672 + €713 € /\3]R°’7- In Céy 7,
the octonion product can be also written as

aob={(ab(l +w)(l —e12.7))o,1 for a,beR ®R%7
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whfre L(1 + w)i(1 - er2..7) is an idempotent, w = ve;; , € A*R®7 and
€157 = €12..7

In the Clifford algebra Cfs of R®, we represent octonions by vectors, O = RS,
As the identity of octonions we choose the unit vector eg in R®. The octonion
product is then expressed in terms of the Clifford product as

aob = (aegb(l + w)(l —e12.5))1 for a,beR®

where 3(1+w)3(1—ei2..8) is an idempotent, w = ve; ; € A'R®, ef; ;=

— 38
—ej2..7 and v = ej24 + €235 + €346 + €457 + €561 + €672 + €713 € A" R®.

23.4 The octonion product and the cross product in R
A product of two vectors is linear in both factors. A vector-valued product of
two vectors is called a cross product, if the vector is orthogonal to the two
factors and has length equal to the area of the parallelogram formed by the
two vectors. A cross product of two vectors exists only in 3D and 7D.

The cross product of two vectors in R” can be constructed in terms of an
orthonormal basis e, ez,...,e7 by antisymmetry, e; x e; = —e; x e;, and

€ Xez =€, €ezXe=¢€;, €4 Xe =ey,
€z X €3 =¢€5, €3 Xe;=ez, €;Xe;=e;,

e7 Xe3 =e3, €] Xe3=e¢e7, e3XxXer=e;.
The above table can be condensed into the form
€; X €41 = €43

where the indices are permuted cyclically and translated modulo 7.
This cross product of vectors in R7 satisfies the usual properties, that is,

(axb)-a=0, (axb)-b=0  orthogonality
|]a x b|? = |a|?|b|? — (a - b)? Pythagorean theorem

where the second rule can also be written as Ja x b| = |a||b|sin <(a, b). Unlike
the 3-dimensional cross product, the 7-dimensional cross product does not
satisfy the Jacobi identity, (a x b) x ¢+ (b x ¢} x a+ (c x a) x b # 0, and
so it does not form a Lie algebra. However, the 7-dimensional cross product
satisfies the Malcev identity, a generalization of Jacobi, see Ebbinghaus et al.
1991 p. 279.

In R3, the direction of a x b is unique, up to two alternatives for the ori-
entation, but in R” the direction of a x b depends on a 3-vector defining the
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cross product; to wit,
axb=—(aAb)dv [#-—(aADb)v]

depends on v = €124 + €335 + €346 + €457 + €561 + €672 + €713 € AR, In
the 3-dimensional space a X b = ¢ x d implies that a,b,c,d are in the same
plane, but for the cross product a x b in R7 there are also other planes than
the linear span of a and b giving the same direction as a x b.

The 3-dimensional cross product is invariant under all rotations of SO(3),
while the 7-dimensional cross product is not invariant under all of SO(7), but
only under the exceptional Lie group G2, a subgroup of SO(7). When we let
a and b run through all of R7, the image set of the simple bivectors aAb is a
manifold of dimension 2-7—-3 = 11 > 7 in A’R7, dim(A*R7) = 17(7-1) = 21,
while the image set of a x b is just R?. So the mapping

aAb—saxb=-(aAb)dv

is not a one-to-one correspondence, but only a method of associating a vector
to a bivector.

The 3-dimensional cross product is the vector part of the quaternion product
of two pure quaternions, that is,

axb=Im(ab) for a,beR>CH.

In terms of the Clifford algebra Cf3 ~ Mat(2,C) of the Euclidean space R3
the cross product could also be expressed as

axb= —(abe123)1 for a,be R3 C Cis.
In terms of the Clifford algebra Cfy 3 ~ HxH of the negative definite quadratic
space R%3 the cross product can be expressed not only as
axb= —(abe123)1 for a,be RO:3 C C[o’a

but also as !

axb=(ab(l —ej3))1 for a,beR" CClgs.

Similarly, the 7-dimensional cross product is the vector part of the octonion
product of two pure octonions, that is, a x b = (a0 b);. The octonion algebra
O is a norm-preserving algebra with unity 1, whence the vector part R? in
O =R ®R7 is an algebra with cross product, that is, ax b = %(a ob—boa)
for a,b € R” ¢ O =R @ R7. The octonion product in turn is given by

aob=af+aob+af—a-b+axb

1 This expression is also valid for a,b € R® C Cf3, but the element 1 — €123 does not pick
up an ideal of C¢3. Recall that C¢3 is simple, that is, it has no proper two-sided ideals.
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for a=a+a and b=LF+b in RGR". If we replace the Euclidean space R
by the negative definite quadratic space R%7, then not only

gob=af+ab+af+a-b+axb
for a,b e R®R%7, but also
aob={(ab(l-v))o1

3
where v = €124 + €235 + €346 + €457 + €561 + €s72 + €713 € A" RO,

23.5 Definition of triality

Let n > 3. All automorphisms of SO(n) are of the form U — SUS~! where
S € O(n). All automorphisms of Spin(n), n # 8, are of the form u — sus™!
where s € Pin(n). The group Spin(8) has exceptional automorphisms, which
permute the non-identity elements —1, ej3. s, —e12. s in the center of Spin(8) :

-1 —en.s

N p(ters. s) =—1I.

—€12..8

Such an automorphism of Spin(8), of order 3, is said to be a triality automor-
phism, denoted by trial(u) for u € Spin(8).

Regard Spin(8) as a subset of Cls. In Cls, triality sends the lines through
1,—ej2.8 and —1,e;5 g, which are parallel, to the lines through 1,—1 and
€17..8, —€12..8, which intersect each other. Thus, a triality automorphism of
Spin(8) cannot be a restriction of a linear mapping Clg — Cls.

A non-linear automorphism of Spin(8) might also interchange —1 with ei-
ther of +e;3._s. Such an automorphism of Spin(8), of order 2, is said to be a
swap automorphism, denoted by swap(u) for u € Spin(8).

On the Lie algebra level, triality acts on the space of bivectors /\2 R8, of
dimension 28. Triality stabilizes point-wise the Lie algebra Gs of G2, which is
the automorphism group of @. The dimension of G is 14. In the orthogonal
complement G3 of G, triality is an isoclinic rotation, turning each bivector
by the angle 120°. A swap stabilizes point-wise not only G5 but also a 7-
dimensional subspace of G5, and reflects the rest of the Lie algebra so(8) ~ D,
that is, another 7-dimensional subspace of G&. For a bivector F € A?R®, we
denote triality by Trial(F) and swap by Swap(F).

On the level of representation spaces, triality could be viewed as permuting
the vector space R® and the two even spinor spaces, that is, the minimal
left ideals Cfg' %(1 + w)%(l + e13..g), which are sitting in the two-sided ideals
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Cef 1 (1+eys. 8) ~ Mat(8,R) of C£5 ~2Mat(8,IR). This means a 120° rotation
of the Coxeter-Dynkin diagram of the Lie algebra D, :
/7 p CEf, f=3(1+w)i(l+en.s)
RS
citf, f=41+w)i(1- e s)

Rather than permuting the representation spaces, triality permutes elements
of Spin(8), or their actions on the vector space and the two spinor spaces.

Because of its relation to octonions, it is convenient to view triality in terms
of the Clifford algebra Co 7 ~2Mat(8, R), the paravector space $R® = RGR"7,
having an octonion product, the spin group

$pin(8) ={ueCly7z|uu=1; forallz € $R® also uzi~! € $R?},

the minimal left ideals Cfo7%(1 + w)3(1 F e12..7) of Clo,7 ~*Mat(8,R), and
the primitive idempotents

=11 +w)i(l-em.7), f= F(1+w)i(1+ ez 7).
For u € $pin(8), define two linear transformations Uy, U, of $R® by
Ui(z) = 16uzfloy, Usa(z) = 16(uzf)o’1.

The action of u on the left ideal Cf0’7%(1 + w) of Cfy 7 results in the matrix
representation 2 3

$pin(8) > u ~ (({)1 [;) ) where Ui, U, € $0(8).
2

For U € SO(8), * define the companion U by
U(z) =U(&) forall ze $RE.

2 Choose the bases (elf,egf, .,erf, f) for Clo 7f and (elf,egf, .,erf, f) for Cp, 75,
where f = (1 + w) (1 —ej2..7) and f (1 + w) (1 + e12...7). Then the matrices
of U; and U2 are the same as in the basis (el,ez, ,er,1) of $R8. Denotmg fi=eif,
i=1,2,...,7, and fs = f, (U1)i; = 16{fiuf,)o, and denoting g; = e, f, i =1,2,...,7,
and g = f’ (U2)|J = 16(9-"91)0 .. . .

3 If we had chosen the bases (f1, fa,..., f7, f) for Cé 7 f and (f1, f2,..., fr, f) for Clo 7 f,
where f; = e;f and f; = —e;f for i = 1,2,...,7, then we would have obtained the
following matrix representation

«=(% 2,
-\o U}’

where Uy (z) = 16(uz f)o,1 as before but U, (z) = 16(4iz f)o,1. This representation is used
by Porteous 1995.
4 Or, for U € Mat(8,R).
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5

The companion % of u € $pin(8) is just its main involution, & = 4, ® and

corresponds to the matrix
g~ Uz 0
—_— 0 01 .

For a paravector a € $R®, define the linear transformation A of $R® by 6
A(z) = 16{az f)o,1, thatis, A(z)=aoz,

making $R® the Cayley algebra Q. Since AT(z) = 16{azf)o1, we have the
correspondence

0 AT

Computing the matrix product

oo (U 0ON[A 0N\ [(U7" 0
Ula) = uat ‘(0 v.)\o A7)\ o o)

we find the correspondence U(a) ~ UyAU;*. Denote Uy = U, and let Up(a)
operate on z € $R8, to get

Uo(a) oz = (V1 AU; ) (=) = Ur(ao Uy *(2)).

The ordered triple (Ug, U1, Us) in SO(8) is called a triality triplet with respect
to the octonion product of Q.

If (Uo, U1,Us) is a triality triplet, then also (Ui, Us, Up), (Usz,Uo,U1) and
(Uz, U1, Uo) are a triality triplets. This results in

a~~ (A 0 > , abbreviated as a ~ A.

Us(zoy) =Ui(z)oUs(y) forall z,ycO= $RS,

referred to as Cartan’s principle of triality. Conversely, for a fixed Uy € $0(8),
the identity Us(z o y) = Ui(z) o Ua(y) has two solutions Uy, U, in $0O(8),
resulting in the triality triplet (U, Ui, Us) and its opposite (Uo, —Ui,—Us).

5 Recall that for z € $R® = R@R"7, U(z) = uzrd~?!, and so U(z) = adu—'.
6 The matrix of A can be computed as A;; = 16(f;af;)o. The paravector a = ag +a1€1 +
--«+4 a7e7 has the matrix

ap —a4 —ay a2 —ae as a3 a)

a4 ag —a5 =aj as —a7 ae a2

a7 as ag —ag —az a4 —a1 as

A= —a2 aj ag ao —a7 —ag as a4
ae —as a2 a7 ag —a; =—a4 as

—as a7 —a4 ag a1 ao —az ag

—az —ag a] —as aq a2 ao a7

—-a; =—a =—az3 =—-a4 —as —ag =—a7 GaQ
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Thus, Uy corresponds to two triality triplets (Up, U1, Us) and (Up, U1, —Us),
while —Uy, corresponds to (—Up, —U1,Uz) and (—Up, Uy, —U3).

The rotations Uy,U; € $0(8) are represented by +u;,tus € $pin(8). We
choose the signs so that

o (Ui 0 an (U2 0 a (U0 0
°=\0 U/’ TTT\0 U) tT\o U /)’

where up = @ and Uy = U. Using the notion of triality triplets,
ug ~ (Uo, U1, U3), wy =~ (Uy,Us,Up), w2~ (Uz, Uy, Ut).

The rotation U in $O(8) corresponds to ug ~ (Up, U1, Us2) and its opposite
—ug =~ (Uo, —=U1, —Us) in $pin(8), and the opposite rotation —Uy corresponds
to ejg. 7up =~ (—Uo,—Ul,Uz) and —ejg._7Up ~ (—Ug,Ul,—Uz). Triality is
defined as the mapping

trial : $pin(8) — $pin(8), ui ~ <l(])° ; ) Uy ~ <[{)1 [;) > '
2 0

Triality is an automorphism of $pin(8); it is of order 3 and permutes the non-
identity elements —1, ez, 7, —e12. 7 in the center of $pin(8).

Example. Take a unit paravector a € $R® = R®R%?, |a] = 1. The action
g — aza~! is a simple rotation of $R8. 7 Thus, a € $pin(8). Denote ap = &,
a1 = trial(ap) and a; = trial(a1) so that 16{ai1zf)o,1 = agzaz‘l, 16(&2zf)0,1 =
ayza;’. Then

1 1

aocx=aiza;  and ZToa=axTd,

represent isoclinic rotations of $R8. Left and right multiplications by a € S7 C
O are positive and negative isoclinic rotations of $R® = Q. ® The Moufang
identity
ao(zoy)oa=(aoz)o(yoa)
results in a special case of Cartan’s principle of triality °
ao(z o y)agt = (arzay?) o (azyaz').

In this special case, ag,a;,as commute, az = d; (= dl_l) and agaia; = 1

implying a = ajay = aldfl = azdgl. 1

7 Note that aozoa=azd, a=4"" and aoroa~! = szs~! where s = ala;1 € $pin(7).

8 Any four mutually orthogonal invariant planes of an isoclinic rotation of $R® induce the
same orientation on $R%.

9 To prove Cartan’s principle of triality, in the general case, iterate the Moufang identity,
like boao(zoy)oaob = (bo(aoz))o((yoa)ob). Observe the nesting bo (a0z) = sz§~1,
where s = trial(b)trial(d) = trial(ba).

1
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Triality sends a simple rotation to a positive isoclinic rotation and a positive
isoclinic rotation to a negative isoclinic rotation. The isoclinic rotations can
be represented by octonion multiplication having neutral axis in the rotation
plane of the simple rotation:

positive isoclinic rotation
simple rotation {

negative isoclinic rotation

23.6 Spin(7)

Let uo € Spin(7) C Cls, and u; = trial(ug), ug = trial(u;). Then uy = 4y,
that is, trial(trial(ue)) = egtrial(ug)eg’. '°® Thus, w@;' = 1 and wyu;! =
ulegul'leg ! € R ® R7eg, being a product of two vectors, represents a simple

rotation. 1! 12 Since Uy = Uy, Uy = U,
o U, 0
2=N0 W)

(U 0N (U 0
0 — 0 01) 1= 0 Ul)

Comparing matrix entries of ulugluz, we find ulugluz € Spin(7) and so
U1U5 U, € SO(7).

Let the rotation angles of Uy € SO(7) be ag, Bo, Yo so that ag > By > 79 > 0.
Then the rotation angles of Uy € SO(8) are

o) = 2(00 + fo + Y0)

b= 2(010 + 6o — o)

Y1 = $(a0 — Bo + Yo)

81 = (a0 — Bo — o)
Since eigenvalues change in Uy — Uy, triality cannot be a similarity, U; #
SUpS—1. Represent the rotation planes of Up € SO(7) C SO(8) by unit bivec-
tors Ag, Bo, Co, and choose the orientation of Dy = ueg, u € R?, |u| =1 so
that Ag ABgA Co ADy = e, g. The rotation planes of U; can be expressed

as unit bivectors 13

A= %’I‘rial(Ao +Bo+Co — Do)
B; = %Tl‘lal(Ao +Bo—Co + Do)
Ci = %Tl'lal(Ao —Bo+GCo + Do)
D1 = %Tmal(Ao - Bo —_ Co - Do)

10 Note that trial(trial(u)) # egtrlal(ul Yez !, tna.lgtrlal(ug)) # estrial(uz)es-l.

11 In Cfp7, uz = 4;, and so u1u2 _l but uju; ERGBR°7
12 Recall that for « E Spin(8), u~! = 4, and for u € $pin(8), v~ = u.
13 Trial : A2R3 - A%2R® sends negative isoclinic bivectors to simple bivectors.
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The rotation angles and planes of U, are
ay=ay, f2=p1, 2=m, .62 = -6
A,=A,;, B,=B;, C; =C;, D; = -D;.
The rotation planes of Uy, Uy, Us induce the same orientation on R®, that is,
AgAByACoADg=A; AB]AC;AD; =A3AB; AC; AD,.
For ug € Spin(7), u;,us € Spin(8), so that

up = exp(3(aoAo + foBo + 7%Co))
u; = exp(3(a1A; + fiB1 + 11C1 + 6:D4))
ug = exp(%(alAz + 1Bz + 1 Cy — 61 D3)).

23.7 The exceptional Lie algebra G,
A rotation U € SO(7) such that

Uxoy)=U(x)oU(y) forall x,ye€O

is an automorphism of the Cayley algebra Q. The automorphisms form a group
G4 with Lie algebra G, C /\2 R®, dimG, = 14. A bivector U € G, acts on the
octonion product as a derivation

UL (xoy)=(ULx)oy+x0(ULy) forall x,y € O=RS

The double cover of G2 C SO(7) in Spin(7) consists of two components, G,
and —Ggy. The groups Gz and Gy = p(Gz) are isomorphic, Gy ~ Go. !4

A rotation Uy € G2 C SO(7) has only one preimage in Gz C Spin(7), say
ug, p(ug) = Up. Since trial(ug) = up, u1 = trial(ug) equals ug, and Uy = p(u;)
equals Uy. The rotation angles g, 8,%0 of Uy, such that ag > Bo > 40 > 0,
satisfy the identities

oy = %(ao +Bo+v)=
B = (a0 + Bo — Y0) :ﬂo
‘Y1 = 2(a0 — Bo +70) =70
=1 eo—Po—1)=0
each of which implies
a0 = fo + 7o-

14 Note that —I ¢ G2 because —I ¢ SO(7) and —1 ¢ G2 because triality stabilizes point-
wise G2 but sends —1 to fe;j2.. 5.
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This can also be expressed by saying that the signed rotation angles «, 3, of
U € G; satisfy

a+pf+v=0.

Represent the rotation planes of U by unit bivectors A,B,C and choose
orientations so that u = exp(3(¢A + BB + 4C)), when U = p(u). Then
A 1w = B + C. Conversely, for an arbitrary rotation U € SO(7) to be in G,
it is sufficient that

Adlw=B+C and a+fF++vy=0.

In order to construct a bivector U € G, pick up a unit bivector A € A’R7,
A? = —1, decompose the bivector AJw into a sum of two simple unit bivectors
B+ C (this decomposition is not unique}, choose o, 8,¥ € R so that a+ 8+ =
0, and write U = oA + B + 4C.

For u € G3, trial(u) = u, and for U € G, Trial(U) = U, in other words,
triality stabilizes point-wise G4 and G,. Multiplication by u € G, stabilizes
the idempotent %(1+ w), uj(l +w) = L(1+ w)u = }(1 + w), while a
bivector U € G, annihilates (1+w), U(1+w) = }(1+w)U =0, and thus
U3(7 - w) = §(7— w)U = U. Conversely, a rotation U € SO(7) is in G if
it fixes the 3-vector

V = €124 + €235 + €346 + €457 + €561 + €672 + €713

. -1
for which w = vel, ; = ej123s — €1257 — €1345 + €1467 + €2347 — €2456 — €3567-
. 3 . 2
A bivector F € A°R8, dim(\°R®) = 28, can be decomposed as

F=G+H where G€G, and H:%WJ(W/\F)EGQ'.

Under triality, F goes to Trial(F) = G + Trial(H), Trial(H) € Gy, where the
angle between H and Trial(H) is 120°. In particular, triality is an isoclinic
rotation when restricted to giL, dim(gj) = 14.

A bivector F € A’ R” can be decomposed as F = G + H, where G € G5,

2 2
He gy N AR, dim(G;ynAR)=7.

For a vector a € R7, vLa € G+ NA?R". The mapping a — vLa is one-to-one,
since a = 3vL(vLa). The element u = exp(vLa) € Spin(7) induces a rotation
of R7, which has a as its axis and is isoclinic in a* = {x € R” | x-a=0}. A
miracle happens when |a] = 27/3. Then the rotation angles of U = p(u) are
4m/3, which is the same as 47/3—27 = —27/3 in the opposite sense of rotation.
For the signed rotation angles we can choose a = 4x/3, f =y = —2n/3 which
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satisfy « + 8+ v = 0. Since also A 1w = B + C, it follows that u € Gs.
Therefore, u = exp(v L a), where a € R? and |a] = 27/3, belongs to

2
exp(G2) Nexp(Gy N /\]R7) ~ 5% where exp(Gz) = G,.

Note that @ + 8+ v = 0 in G, while @ = § = v in exp(G+ N A’R7). An
element u € G3 Nexp(G N A’R7) can be also constructed by choosing a unit
bivector A € A’R7, A? = —1, decomposing A 1w = B + C, constructing
bivectors

2

2 2

-g’i(zA-B—C)zc.egz and %(—A—B—C):HEQQLO/\R"’
and exponentiating

—_,G__H__ _1
u=e =e =—5+---

The elements u are extreme elements in G in the sense that (u)o = —5, while
for all other g € G2, (g)o > ——é—.

The elements u = exp(v L a), where a € R%? and |a] = 27/3, satisfy

u3 = 1, and they are the only non-identity solutions of 42 = 1 in G,. The
octonion a = e°® (= ¢®) satisfies a®®* = 1 and a° "t oz oa = uzu~?! for all
z € $R® = R @ R%". Conversely, the only unit octonions a € S7 C O = $R®
satisfying

a®"to(zoy)oa=(a""tozoa)o(a® oyoa) foral zye IR

are solutions of a°3 = +1.

23.8 Components of the automorphism group of Spin(8)

In general, the only exterior automorphisms of Spin(n), n # 8, are of type
u — sus~!, where s € Pin(n)\Spin(n). Thus, Aut(Spin(n))/Int(Spin(n)) ~
Zs, when n # 8. However, in the case n = 8, the following sequence is exact

1 — Int(Spin(8)) — Aut(Spin(8)) — Ss,

that is, Aut(Spin(8))/Int(Spin(8)) ~ S3, a non-commutative group of order
6.

For u € Spin(8), denote swap,(u) = egtrial(u)eg ' = trial(trial(esuez'))
and swap,(u) = egtrial(trial(u))eg® = trial(eguez ). Then trial, swap,, swap,
generate S3 :

trial o trial o trial = swap, o swap; = swap, o swap, = identity
swap, o swap, = trial and swap, o swap; = trial o trial.
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The automorphism group of Spin(8) contains 6 components, represented by
the identity, trial, trial o trial, swap,, swap, and the companion. !* In the
component of trial, all automorphisms of order 3 are trialities for some octonion
product.

23.9 Triality is quadratic
Triality of u € Spin(8) C Cfg is a restriction a polynomial mapping Cfs — Cfs,
of degree 2,
trial(u) = trialy (u)trialy(u)
triall(u) = %(1 + 612__.8)[(U(1 + W)(l - el2...8)>0,6 A eg]egl
+3(1—e12.8)
trialy(u) = (W — 3)[(u(1+ e12..8)) Aegleg ' (w — 3)~ L.
The first factor is affine linear and the second factor is linear. To verify that
trial is a triality, it is sufficient to show that it is an automorphism of order 3
sending —1 to e s.
In the Lie algebra level, the triality automorphism of a bivector F € \?R®
is
Trial(F) = eg(F — %F(l +w)(1+ e12..8))2€5 "
= %eg(F —Fliw— (F A w)_lelz,,,g)egl.
The triality automorphism of a para-bivector F € R%” & A?R%7 is
Trial(F) = (F — $F(1+ w)(1 - e12..7))},
= %(F —(F)pdw+ (FAw)deis 7)".
For u € $pin(8), triality is
trial(u) = trial; (u)trialy (u)
trialy (u) = (1 — e12..7){(u(l + W)(1 + e12..7))o,s

+i(1+ei.7)
trialy(u) = (w — 3) even(u(l — e1a.. 7))(w — 3)~L.

23.10 Triality in terms of eigenvalues and invariant planes

Triality can also be viewed classically, without Clifford algebras, by inspection
of changes in eigenvalues and invariant planes of rotations. Consider Uy €
SO(8) and a triality triplet (Up, Uy, Us). Let the rotation angles ag, B0, Yo, do

15 The subgroup of linear automorphisms contains 2 components, represented by the identity
and the companion, u — esues'l.
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of Uy be such that ag > By > v > g > 0. Represent the rotation planes of
Up by the unit bivectors Ay, Bg, Cq, Dg. Then the rotation angles of U; and
Uy are
a; = L(ao+ o+ 7 — ) az = (a0 + Bo + Y0 + 4)
Br = £(c0 + Bo — Yo + 6) and B2 = (0 + Bo — Yo — 6)
1 = (o — Bo + Y0 + 6) v2 = 3(a0 — Bo + 10 — 4)
81 = (o — Bo — 0 — 9) b2 = 3(—ao + fo + 70 — 6)
and the rotation planes are
A; = 1Trial(Ag + By + Co — Do)
B; = 1Trial(Ag + Bo — Co + Do)
C1 = 1Trial(Ag — Bo + Co + Do)
D; = }Trial(Aq — By — Co — Dy)
and
A3 = $Trial(Trial(Ag + Bo + Co + Dy))
= %Trial(Trial(Ao + By — Co — Dyg))
Cy = %Trial(Trial(Ao —Bo+ Co — Dy))
Dy = %Trial(Trial(—Ao + Bg + Co — Dy)).

L
|

23.11 Trialities with respect to different octonion products
An arbitrary 4-vector w € A*R8, for which 1(1+w) is an idempotent in C£7,
is called a calibration. !¢ A direction n € R®, |n] =1, fixed by the calibration,
wn = nw, is called the neutral axis of the calibration. A calibration together
with its neutral axis can be used to introduce an octonion product on R® and
a triality of Spin(8).

Let wi,ws be calibrations, with neutral axes n;,n, € R8. Denote the octo-
nion products by

X Ow,n, ¥ = (xn1y(l + wi)(1 - e12..8))1,

X Ow,n, ¥ = (xmay(1+ wa)(1 — e 8)h
and the trialities by trialw, n,(u), trialy,n,(u). Denote the opposite of the
composition of the trialities by trialw,, n,,(u) so that

tria’lwxz,nu (trialwm,nlz (u)) = tl'ialwl 231 (tria‘lwz,nz (u)) ‘

Then
wiz = 5(W1 +w2) + %(—Wl + wp)eia. s
= %(1 —e12.8)W1 + %(l + ey3..8) W3

16 Note that w satisfies w2 = 7+ 6w.
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and

M
nj; = — for anon-zero y =x— %le L (wi2L x), where x¢€R8.

|y

23.12 Factorization of u € Spin(8)
Take u € Spin(8) \ Spin(7). Denote s = (u A eg)ez’, and uy = | | Then

u7 € Spin(7), and u = uguy = usuf, where ug,uy € R ® R7eg. 17 These
factorizations are unique, up to a sign (—1 is a square root of 1 in Spin(7)) :
u = ugu7 = (—us)(—ur) = urug = (—ur)(—us).
The following factorizations are unique, up to a cube root of 1 in Gy :
u7 = hogo = h1g1 = haga = gohy = g1h] = g2h),
where
h3 = ustrial(us) ™ lustrial(trial(uz))~?,
h3 = trial(u7)~luztrial(trial(uz))~tuz,
and
b= hog, hy = hog?, B} =g'hp, hy =g hp,
g = exp —vL]—“T g =exp —vL]—?T
hy = (Ho AHoAHp)erz 7, hy = (Hy AH{ AHp)ers. 7,
ho =eHo, Rl =eHo
In this factorization, go, 91,92 € G2 and ho, hy, ha, h), by, by € exp(GENAZRT)

and g,g' € Ga Nexp(GL N AR7) ~ S°. These factorizations are unique, up
to a factor g,g' € Gy, g3 =g =1.18

Appendix: Comparison of formalisms in R® and R @ R%7

We use the 3-vector
V = €124 + €235 1+ €346 + €457 + €561 + €672 + €713
in A°R® or A>R%7, and the 4-vector w = ve;;! , in A*R® or A*R7,
W = €1236 — €1257 — €1345 1+ €1467 + €2347 1+ €2456 — €3467.

Note that 8;21_..7 = —ejy. 7 in Clg while e_l—21..,7 =ejy 7 in Clo,'/.

17 Note that ug = \/u(esueg'l)"l and ) = 4/ (esueg ')~ 1lu.

18 Recall that -1 € Go.
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We use the octonion product

xoy = (xegy(l + w)(1 — e12..8))1 for vectors x,y € R8,
zoy=(zy(l + w)(1 —eiz2.7)),1 for paravectors z,y € R RO

Note that in Cf 7, also z oy = (zy(1 — v))o,1.

The bivector F = A + B € A°R®, with B € A’R7 and A = aeg, a € R,
corresponds to the para-bivector F = a—B € R%7@ A\’ R%7, with a = Ae; ' €
R%7. Let u = uy + u_es € Spin(8), where uy € CfE. Then u € Spin(8)
corresponds to

(uy +u) = (uy +u_)"! € $pin(8).
The companion % of u is

4 =egueg'  for u in Spin(8) or CfF (or Clg),

¢
il

i for u in $pin(8) or Cly 7.

For wo, u; = trial(ug), up = trial(u,), Cartan’s principle of triality says
do(xoy)iy! = (mxuyl) o (uayu;!)  in Spin(8),
o (z o y)ug? = (w127 ) o (uayii; ) in $pin(8).

In the Lie algebra level, Freudenthal’s principle of triality says !°

(xoy)dFo = (xIFi)oy +xo0(ydFs) in AR,
((z o y)d Fodo,1 = (z_lpl)o,l oy+zo(yd Fg)o,l in R @ /\2 RO.7,

The non-identity central elements of the Lie groups are permuted as follows

trial(—l) = €e12..8, trial(elgmg) = —€12..8 in Spin(8),
trial(—l) = —e12...7, trial(—elg,,j) =e12..7 n $pzn(8)
Exercises
Show that

1. For UeG,, Udw=-U, Uw=-U, UJU=—|U]%, [UAU|=|U]%.

2. For Ug € A’ R8, U; = Trial(Up), U; = Trial(Uy), Ug + Uy + Uy € Gy,
9Uy - U; — Uz € G2

3. In Cly7, (1 +w)(1—e12.7) =(1—ei124)(1 — e235)(1 — eass)(l — eas7),
(1T+w)(1l-ei2.7)=(1-v)(1--ea. 7).

4. w2=7 +16w'; o

. wh — §(7ﬂ -+1+ §(7ﬂ —1)w, neven,

s(M+1)—144(™ + 1)w, nodd.

19 Note that x| F corresponds to (z 4 F)g ;.
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6. For z € R, f(zw) = f(—z)%(7— w) + f(7z)(1 + w). Hint: the minimal
polynomial of w, z2 =7 + 6z, hasroots z = —1, z =7.

7. For GEGy, §(1+w)G3(1+w)=0, §(T-w)G§(7T-w)=G,
e® = L(7T-w)eSi(7T-w)+ L(1+w).

8. vi=—7—6w in Clg, v2 =7+ 6w in Cly .

9. For ve A’R7, e™ = —1. Hint: v*+50v2+49 =0, and
z* 4+ 5022 4 49 = 0 has roots i, +7i.

10. For v € A®R%7, cos(mv) = —1, sin(rv) = 0. Hint: v* —50v2 +49 =0,
and z* — 5022 4 49 = 0 has roots +7, +1.

11. For FEA’RS, F=G+H, GeGp, HEG) : H= lwI(WAF),

12. For He Gy, H=lwL (wLH).

13. For ug € $pin(8), uy = trial(ug), ug = trial(u,) : uoﬁl"luz € $pin(7).
Hint: a = ug'ip € ROR®7 and so a = tg,l(\a)trial(a)"1

14. For the opposite product xey =y ox of x,y € O = RS,
do(x @ y)ﬁa1 = (ugxuz ') e (ulyufl).

15. uo(x oy)ug! = (@axay!) o (wyyat).

16. (fto:l?(l + W)(l - 812___7)>0,1 = ulzﬁ;l,
<ﬂ01‘(1 + W)(l + ej2.. 7))0 1= ’llz:l?ﬁgl.

17. <U0(L‘y(1 + W)(l — e12.. 7))0 1= ul(z o y)’ai— s
(Gozy(1+w)(1 + 12 7))o1 = ua(y 0 2)d 7

18. For B € A*R® N Spin(8), (rial(B ))o = . For C € A*R® N Spin(8),
(trial(C))o = 0. For D € A°R®n Spm(8) (trial(D))o = —3.

19. For C € A*R8N Spin(8), trial(C) € A\* RS,

20. For u € Spin(8), inducing a simple rotation U = p(u) :
(trial(u ))3e12 8> 0 and (trial(trial(u)))selzl,.s < 0.

21. (Ga)o > -} (trlal(Spm( Mo > -3

22. Gan exp(g2 NAZR7) is homeomorphlc but not isometric to S¢.

23. diam(G;) = £, diam(trial(Spin(7))) = /3.

24. Triality does not extend to an automorphism of Pin(8).

25. [J(w-3))2=1

Determine

26. The matrix of 2(w — 3) in the basis (f1, f2,..., fs) of Cet f, where
fi=eiesf, i=1,2,...,8 and f= (1 +w)3(1+ei2.s).

Solutions

1 -1

13. uglao = a7 upi;luy so 1= uoﬂfluz(u;'izlﬂgl) = uoﬁfluz(ﬁouflﬂg)

which implies uoﬂl‘luz = ﬂoul"lﬁz = (uoﬁfluz).

24. Triality sends —1 € Cen(Pin(8)) to e;z s ¢ Cen(Pin(8)).
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26.
/(-1 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0
0 0 -1 0 0 0 0 0
. 0 0 0 -1 0 0 0 0
16(fix(w — 3)fi)o = 0 0 0 0 -1 0 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 0 -10
\o 0 0 0 0o o o 1/
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A History of Clifford Algebras

Clifford’s geometric algebras were created by William K. Clifford in 1878/1882,
when he introduced a new multiplication rule into Grassmann’s exterior al-
gebra AR", by means of an orthonormal basis (e1,es,...,e,) of R™. Clif-
ford also classified his algebras into four classes according to the signs in
(e1€2...€,)2 = 1 and (erez...e,)e; = tei(erer...e,). In the special case
of n = 3, Clifford’s construction embodied Hamilton’s quaternions, as bivec-
tors ¢ = ezes, j = eze;, k = ejes. Clifford algebras were independently redis-
covered by Lipschitz 1880/1886, who also presented their first application to
geometry, while exploring rotations of R®, in terms of Spin(n), a normalized
subgroup of the Lipschitz group I'}.

Spinor representations of the orthogonal Lie algebras, By = so(2n + 1) and
Dy = s0(2n), were observed by E. Cartan in 1913, but without using the term
“spinor”. Two-valued spinor representations of the rotation groups SO(n)
were re-constructed recursively by Brauer & Weyl in 1935, but without using
the term “Clifford algebra”.

In the Schrodinger equation, Pauli 1927 replaced n? = # - %, where 7@ =
—ihV — eA, by

R=F T+TNR,
where the exterior part does not vanish: (7 A @)y = —keB. Pauli explained
interaction of a spinning electron with a magnetic field B by means of a spinor-
valued wave function 1 : R3 x R = C2. Thus, besides tensors, nature required
new kinds of objects: spinors, whose construction calls for Clifford algebras.

Clifford algebras are not only necessary but also offer advantages: their mul-
tivector structure enables controlling of subspaces without losing information
about their orientations. Physicists are familiar with this advantage in the
special case of 1-dimensional oriented subspaces, which they manipulate by
vectors, not by projection operators, which forget orientations.

320
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23.13 Algebras of Hamilton, Grassmann and Clifford

The first step towards a Clifford algebra was taken by Hamilton in 1843 (first
published 1844), when he studied products of sums of squares and invented his
quaternions while searching for multiplicative compositions of triplets in R3.
The present formulation of vector algebra was extracted from the quaternion
product of triplets/vectors xy = —x-y+xxy by Gibbs 1881-84 (first published
1901). Hamilton regarded quaternions as quotients of vectors and wrote a
rotation in the form y = ax using a unit quaternion ¢ € H|, |a| = 1. In such a
rotation, the axis a had to be perpendicular to the vector x (which turned in
the plane orthogonal to a). Cayley 1845 published the formula for rotations

y=axa"}, a= cos(g-) + z-sin(%),

about an arbitrary axis a € R3 by angle o = |a| (Cayley ascribed the discov-
ery to Hamilton). Cayley thus came into contact with half-angles and spin
representation of rotations in R3. However, in 1840 Olinde Rodrigues had
already recognized the relevancy of half-angles in his study on the compo-
sition of rotations in R3. Cayley 1855 also discovered the quaternionic rep-
resentation ¢ — agb of rotations in R*, equivalent to the decomposition
Spin(4) ~ Spin(3) x Spin(3).

The quaternion algebra H is isomorphic to the even Clifford algebras Cf} ~
C[aL,3 as well as to the proper ideals C[o’3%(l + e23) of Cly,3. Hamilton also
considered complex quaternions C® Hl, isomorphic to the Clifford algebra Cés
on R3. Note the algebra isomorphisms Cf3 ~ Mat(2,C) and Cfo 3 ~ H@ H.

Bivectors were introduced by H. Grassmann, when he created his exterior
algebras in 1844. The exterior product of two vectors, the bivector a A b, was
interpreted geometrically as the parallelogram with a and b as edges, and two
such exterior products were equal if their parallelograms lay in parallel planes
and had the same area with the same sense of rotation (from a to b). Thus the

exterior product of two vectors was anticommutative, aAb = —b A a. Using
a basis (e1, ey, ..., e,) for R" the exterior algebra AR™ had a basis

1

€1, €3, ...,€n

e; Aey, e Aes,...,e1Ae,,eaAes, ...,eq_1Ae,

etNesA...Ae,

and was thereby of dimension 2%.
W.K. Clifford studied compounds (tensor products) of two quaternion alge-
bras, where quaternions of one algebra commuted with the quaternions of the
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other algebra, and applied exterior algebra to grade these tensor products of
quaternion algebras. Clifford coined his geometric algebra in 1876 (first pub-
lished in 1878). Clifford’s geometric algebra was generated by n orthogonal
unit vectors ey, ey, ..., e, which anticommuted eje; = —eje; (like Grass-
mann) and satisfied all e = —1 (like Hamilton) [or then all €2 = 1 as in
Clifford’s paper 1882]. The number of independent products eje; = e; A ej,
i < j, of degree 2 was in(n — 1) = (3). Clifford summed up the numbers of
independent products of various degrees 0, 1, 2, ..., n and thereby determined
the dimension of his geometric algebra to be

n
2

Clifford distinguished four classes of these geometric algebras characterized by
the signs of (e1ez...e,)e; = tej(ejer...e,) and (ejez...e,)? = 1. He also
introduced two algebras of lower dimension 2"~!, namely, the subalgebra of
even elements and, for odd n, a reduced (non-universal) algebra obtained by
putting ejes...e, = 1 [instead of letting ejez...e, —e1 Aes A...Ae, be

1+n+( >+...+1:2".

of degree n with (ejes...e,)? = 1].

23.14 Rudolf Lipschitz

Clifford’s geometric algebra was reinvented in 1880, just two years after its
first publication, by Rudolf Lipschitz, who later acknowledged Clifford’s prior
discovery in his book, see R. Lipschitz: Untersuchungen uber die Summen von
Quadraten, 1886. In his study on sums of squares, Lipschitz considered a repre-
sentation of rotations by complex numbers and quaternions and generalized this
to higher dimensional rotations in R™. Lipschitz thus gave the first geometric
application of Clifford algebras in 1880. He expressed a rotation

y=I+A)(I-4)""%x, xeR",

(written here in modern notation with an antisymmetric matrix A) in the form
y—-Ay =x+Axoras y+y-4B =x+BLx where B € /\2]R" is the bivector
determined by Ax = BLx (= —xJB). Lipschitz rewrote (/—A)y = (I+ A)x
using an even Clifford number a € Clg" . in the form ya = ax, thus representing
the rotation as

y= axa™!, ae€ I‘(f’".
[Lipschitz wrote ya; = az where ¢ = xe;?, y = ye;'', a1 = ejae;’!.] In mod-

ern terms (introduced by Chevalley), Lipschitz used the exterior exponential

1 1
a=eMB, eAB=1+B+§BAB+gB"3+---,
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of the bivector B so that the normalized element a/|a| was in the spin group
Spin(n).

23.15 Theodor Vahlen

Vahlen 1897 found an explicit expression for the multiplication rule of two basis
elements in Cly

(eT*es?.. .eg")(e‘f‘eg2 .. .eg") = (—1)2"21‘ a"'ﬁ"e‘l"”L""‘ef‘_,""“'qJ2 ...eZnthn

where the exponents are 0 or 1 (added here modulo 2, although for Vahlen 1+1
= 2, so that summation was over i > j). Vahlen’s formula has frequently been
reinvented afterwards: for positive metrics by Brauer & Weyl 1935, for arbitrary
metrics by Deheuvels 1981 p. 294, disguised with index sets as in Chevalley 1946
p- 62, Artin 1957 p. 186 and Brackx & Delanghe & Sommen 1982 p. 2, or hidden
among permutations as in Kahler 1960/62 and Delanghe & Sommen & Sou&ek
1992, pp. 58-59.

Although Brauer & Weyl 1935 reinvented (in the case of the Clifford alge-
bra Cf,) the above explicit multiplication formula of Vahlen, they did not
observe the connection to the Walsh functions (discovered in the meantime by
Walsh 1923). The connection to the Walsh functions was observed by Hag-
mark & Lounesto 1986.

In 1902, Vahlen initiated the study of Mobius transformations of vectors in
R" (or paravectors in R & R") by 2 x 2-matrices with entries in Cfy . This
study was re-initiated by Ahlfors in the 1980°s.

23.16 Elie Cartan

Besides detecting spinors in 1913 (and pure spinors in 1938), Cartan made two
other contributions to Clifford algebras: their periodicity of 8 and the triality
of Spin(8).

Cartan 1908 p. 464, identified the Clifford algebras Cf, 4 as matrix algebras
with entries in R, C, H, R®R, HOH and found a periodicity of 8. To decipher
Cartan’s notation:

h

+1 S,  Mat(m,R)
+2 IS, Mat(m,C)
+3 QS, Mat(m,H)
0 2S5, 2Mat(m,R)
4 2Q, *Mat(m,H)
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where h =1 — p+ ¢ (mod 8). Clifford’s original notion of 4 classes was thus
refined to 8 classes (and generalized from C¢, and Cfy , to Clpq). *°

Cartan’s periodicity of 8 for real Clifford algebras, with an involution, was
extended by C.T.C Wall 1968 and Porteous 1969 (rediscovered by Harvey 1990).
Wall considered real graded Clifford algebras, with an anti-involution, and
found a 2-way periodicity of type (8 x 8)/2, like the movements of a bishop on
a chessboard. Porteous used the anti-involution to induce a scalar product for
spinors, and classified the scalar products of spinors into 32 classes, according
to the signature types (p, ¢) of real quadratic spaces RP4.

In 1925, Cartan came into contact with the triality automorphism of Spin(8).
Lounesto 1997 (in the first edition of this book) showed that triality is a re-
striction of a polynomial mapping Cls — Clg, of degree 2.

23.17 Ernst Witt

Witt 1937 started the modern algebraic theory of quadratic forms. He iden-
tified Clifford algebras of non-degenerate quadratic forms over arbitrary fields
of characteristic # 2. The Witt ring W (F), of a field F, consists of similarity
classes of non-singular quadratic forms over F (similar quadratic forms have
isometric anisotropic parts). In characteristic # 2, the structure of Clifford
algebras of certain quadratic forms was studied by Lee 1945/48 (e = 1),
Chevalley 1946 (e? = —1), and Kawada & Iwahori 1950 (e = £1). These
authors did not benefit the Witt ring (although they already had it at their
disposal), and so they did not consider all the isometry classes of anisotropic
quadratic forms.

Example. The Witt ring W(Fs) of the finite field F5 = {0,1,2,3,4} of
characteristic 5 contains four isometry classes 0, (1), (s), (1,s) where s =2 or
s = 3. Chevalley 1946, Lee and Kawada & Iwahori did not notice that none of
the quadratic forms z? + 22, 2% — 23, —z? — 22 on the plane F? is isometric
with z2 + s22 ~ (1,s) (but in fact they are all neutral, and thereby in the
same isometry class as 0). A simpler example is the line F5 where the Clifford
algebra of 222 ~ (2) is the quadratic extension F5(v/2) whereas the Clifford

algebras of both +z% ~ (&1) split F5 x Fs. ]

20 Cartan’s periodicity of 8 for Clifford algebras, from 1908, is often attributed to Bott, who
was born in 1923 and proved his periodicity of homotopy groups of rotation groups in
1959.
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23.18 Claude Chevalley

Chevalley 1954 constructed Clifford algebras as subalgebras of the endomor-
phism algebra of the exterior algebra, C£(Q) C End(A V), by means of a not
necessarily symmetric bilinear form B on V such that Q(x) = B(x,x). By
this construction, Chevalley managed to include the exceptional case of char-
acteristic 2, and thus amended the work of Witt.

Chevalley 1954 went on further and gave the most general definition, as a
factor algebra of the tensor algebra, C¢(Q) = ®V/Iq, valid also when ground
fields are replaced by commutative rings. From the pedagogical point of view,
this approach is forbidding, while it refers to the infinite-dimensional tensor
algebra ®V.

Chevalley 1954 introduced exterior exponentials of bivectors and used them
to scrutinize the Lipschitz group, unfairly naming it a ‘Clifford group’. Thus,
there were two exponentials such that

AB

2
¢B € Spin(n) and I—;—BI € Spin(n) for Be /\R".

23.19 Marcel Riesz

Marcel Riesz 1958, pp. 61-67, reconstructed Grassmann’s exterior algebra from
the Clifford algebra, in any characteristic # 2, by

xAu= %(xu + (—1)*ux),

where x € V and u € /\k V. Riesz’ contribution enhanced Chevalley’s result
of 1946, which related exterior products of vectors to antisymmetrized Clifford
products of vectors (Chevalley’s result was valid only in characteristic 0).

Clifford algebras admit a parity grading or even-odd grading with even
and odd parts, C£(Q) = C£*(Q)®CL(Q). Riesz’s construction of 1958 showed
that there also exists a dimension grading

2 n
ct@ =keveAve..e\V

in all characteristics # 2 (because there is a privileged linear isomorphism
between a Clifford algebra and the exterior algebra). Thus, bivectors exist in
all characteristics # 2.
M. Riesz 1947 expressed the Maxwell stress tensor as Ty, = —3 (e, Fe, F)o.
The first one to consider spinors as elements in a minimal left ideal of a
Clifford algebra was M. Riesz 1947 (although the special case of pure spinors
had been considered earlier by Cartan 1938).
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23.20 Atiyah & Bott & Shapiro

In 1964, Atiyah & Bott & Shapiro reconsidered spinor spaces as modules over a
Clifford algebra, instead of regarding them as minimal left ideals in the Clifford
algebra. This permitted differentiation of spinor valued functions on manifolds,
not just on flat spaces.

They re-identified the definite real Clifford algebras C¢, and Cfyn as matrix
algebras with entries in R, C, H, R® R, HH @ H (identified by Cartan in
1908). They rediscovered the periodicity of 8 (found by Cartan in 1908) with
respect to the graded tensor product (used earlier by Chevalley in 1955). They
emphasized the importance of the Z;-graded structure (the even-odd parity
in Clifford’s works) and used it to simplify Chevalley’s approach to Lipschitz
groups (the role of parity grading and/or grade involution in reflections was
not observed by Chevalley).

Atiyah & Bott & Shapiro’s paper of 1964 is known for its dirty joke: they at-
tributed the introduction of Pin(n) to Serre from France, where pronunciation
of ‘pin group’ in English sounds the same as ‘pine groupe’ in French: pine [pin]
is a slang expression for male genitals.

E. Kahler 1960/62 introduced a second product for Cartan’s exterior differ-
ential forms making Grassmann’s exterior algebra isomorphic with a Clifford
algebra. This re-interpretation of Chevalley’s definition of the Clifford algebra
(extending xu = xJ u + x A u) was renamed as Kdhler-Atiyah algebra by
W. Graf 1978 (Graf’s Kahler-Atiyah algebra was again reinvented and applied
to the Kahler-Dirac equation by Salingaros & Wene 1985).

23.21 The Maxwell Equations

In the special case of a homogeneous and isotropic medium, Maxwell equations
can be condensed into a single equation. This has been done by means of com-
plex vectors (Silberstein 1907), complex quaternions (Silberstein 1912/1914),
spinors (Laporte & Uhlenbeck 1931) and in terms of Clifford algebras. Ju-
vet & Schidlof 1932, Mercier 1935 and Riesz 1958 condensed the Maxwell equa-
tions into a single equation by bivectors in the Clifford algebra Cf; 3 of R1:3.
In the Clifford algebra Cf3; ~ Mat(4,R), the single Maxwell equation

OF =17,

where 0 = V —egdy and F = Eey — Bejaz € /\2 R31 could be decomposed
into two parts

d1F =3, OAF=0.
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Similarly, 0A = —F could be decomposed into two parts, 8AA = —F and the
Lorenz gauge/condition J - A = 0 discovered by the Danish physicist Ludwig
Lorenz and not by the Dutch physicist H. A. Lorentz. 2! Marcel Riesz 1947
expressed the Maxwell stress tensor as

1
Ty = — §(e,,Fe,,F)o

and Hestenes 1966, p.31, introduced the vectors T, = —%Fe,,F for which
Ty = T, e, = e, T, and the mapping Tx = —2FxF where (Tx)* = T¥,z".
[Juvet & Schidlof 1932, p. 141, gave

1
T;w = Fp)‘FAu + ZgquaﬁFap

but did not observe that T'x = —%FxF.] Note that Ty = %(E2+B2)eg+Ex B.

23.22 Spinors in ideals, as operators and recovered

Juvet 1930 and Sauter 1930 replaced column spinors by square matrices in
which only the first column was non-zero — thus spinor spaces became minimal
left ideals in a matrix algebra. Marcel Riesz 1947 was the first one to consider
spinors as elements in a minimal left ideal of a Clifford algebra (although the
special case of pure spinors had been considered earlier by Cartan 1938).

Giirsey 1956/58 rewrote the Dirac equation with 2 x 2 quaternion matrices
in Mat(2,H) (see also Gsponer & Hurni 1993). Kustaanheimo 1964 presented
the spinor regularization of the Kepler motion, the K S-transformation, which
emphasized the operator aspect of spinors. This led David Hestenes 1966-74 to
a reformulation of the Dirac theory, where the role of spinors [in columns C*
or in minimal left ideals of the complex Clifford algebra C® C¢y,3 ~ Mat(4, C)]
was taken over by operators in the even subalgebra C£1+'3 of the real Clifford
algebra Cf; 3 ~ Mat(2, H).

Spinors were reconstructed from their bilinear covariants by Y. Takahashi
1983 and J. Crawford 1985, in the case of the electron. Lounesto 1993 general-
ized the reconstruction of spinors to the null case of the neutron, and predicted
existence of a new particle residing in between electrons and neutrons.
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