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New Theory of the Aether.

(Fifth Paper.)

I. Outlines of a New Theory of
Forces bascd on Wave-Action, which is also indi-
cated by Laplace’s Celebrated Criterion that these
IFForces beccome sensible only atInsensible Distances.
Since the renaissance of physical science in the age of

Galileo natural philosophers have labored patiently for the dis-

covery of the great laws of nature; and thus for about three
centuries they have extended their investigations by means of
delicate experiments and the most cxact methods of mathe-
matical analysis. Yet, notwithstanding this brilliant record of
achievement, it remains a somewhat remarkable fact that
molecular forces have not yet .been assigned to any known
physical cause. Accordingly in modern works on physics we

Molecular |

still search in vain for an intelligible explanation of the me- ¢

chanism underlying these forces. The subject therefore has
remained very obscure, and continucs to challenge the in-
genuity of both the geometer and the natural philosopher.

The history of physical science shows that when the !

solution of a great standing problem at length is attained,
it seldom is true that the nrst attack was wholly successful.
Indeed, most of our final solutions of difficult problems result
from successive processes of approximation. And thus it may
be doubted whether the solution of the problem of molecular
torces now in sight 1s quite complete,

But even 1f the new effort only opens the way towards
the final solution, still it may be of the greatest service to
science. For pioncer effort always has to precede the perfect
development of science, just as somewhat rude specimens of
sculpture and architecture preceded the perfect development
of Greek art in the age of Jeinws, Flidias avd Lraxiteles.

Accordingly, having arrived at an efficient physical cause
of molecular forces which seems to be in general operation
throughout nature, we deem it desirable to set forth the results,
because the suggestions which this development may convey
to others arc hkely to prove fruitful.

(i) Zaplace's criterion, that molecular forces become sen-
sible only at insensible distances, scems to point to wave-
action as the underlying physical cause.

In the introduction to his celebrated Theory of Ca-
pillarity, (Mécanique Celeste, Tome 1V, 1806, with supplement
to the theory issued in 1807) Zaplace cxamines the theorics
of his predecessors with characteristic sagacity.

At the very outset of the discussion he alludes to the
refractive power exerted by bodies upon light, and says that
this force is the result of the attraction of their particles, vet
he holds that the law of attraction cannot be determined
because »the only condition required is that it must be in-
sensible at sensible distances.« He then proceeds to deal
with capillary attraction, in which extensive use is made of
this same hypothesis. A\ part of his reasoning is as follows:

By 7. % % See.
{With 2 Plates.)

»A long while ago, I endeavored in vain to determine
the laws of attraction which would represent these phenomena;
but some late researches have rendered it evident that the
whole may be represented by the same laws, which satisfy
the phenomena of refraction; that is, by laws in which the
attraction 1s sensible only at inscnsible distances; and from
this principle we can deduce a complete theory of capillary
attraction. «

»Clairant supposes that the action of a capillary tube
may be sensible upon the infinitely thin column, which passes
through the axis of the tube.  Upon this point T differ wholly
from hin, and think, with //awkshee and other philosophers,
that the capillary attraction is, like the force producing re-
fraction, and all chemical affinitics, sensible only at insensible
distances.  //aieksbee observed that in glass tubes, whether the
glass 15 very thick, or very thin, the water rises to the same
height, if the interior diameters are the same. Hence it follows
that the evlindrical strata of glass, which are at a sensible
distanee from the interior surface, do not aid in raising the
water, thoush in cach one of these strata, taken separately,
the fluid ought to rise above the level. It is not the inter-

| position of the strata, which they include between them, which

prevents their action upon the water; for it is natural to sup-
posc that the capillary attraction, like the force of gravity,
1s transmitted through other bodies; this attraction must there-
fore disappear solely by reason of the distance of the fluid
from these strata; whence 1t follows that the attraction of the

glass upon the water 1s sensible only at insensible distances. «

o

Laplace justly lays stress upon Hawkshee's observation
that in glass tubes, whether very thick or very thin, the water
rises to the same height, if the interior diameters are the same.
This indicated to Zaplace that the interior particles of a thick

tube of glass exerts no sensible action on the adhering fluid.

Though never suspected heretofore this reasoning of

Laplace affords the most conclusive evidence that molecular
forces really are due to wave-action. It will be shown hereafter
that experimental researches by Riicker and others on the
thickness of soaphubbles, at the critical instant of rupture,
make the radius of action of these molecular forces so small
that they correspond to the wave-lengths of the ultra-violet
region of the spectrum, a fact which may be regarded as an
experimental confirmation of the wave-theory of these physical
forces.

It appears that Laplace himself came near to this line
of argument, for in explaining the processes adopted, in the
introduction to the theory of capillary attraction, he says that
it is evident that »the distance at which the action of the
tube ceases to be sensible is imperceptible; so that, if by
means of a very powerful microscope, we should be able to
make it appear equal to a millimetre, it is probable that the
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same magnifying power would give to the diameter of the
tube an apparent length of several meters. The surface of
the tube may therefore be considered as very nearly a plane
surface, for an extent which is equal to that of the sphere
of its sensible activity; the fluid will therefore be elevated :
or depressed near that surface, in almost the same manner
as if it were a plane. Beyond this point the {luid will be
subjected only to the force of gravity and its own action on
its particles; its surface will be very nearly that of a spherical
segment, of which the extreme tangent planes, being those
of the fluid surface at the limits of the sensible sphere of
activity of the tube, will be very nearly, in the different tubes,
equally inclined to their sides; whence it follows that all
segments will be similar. The comparison of these results
gives the true cause of the clevation, or depression, of fluids,
in capillary tubes, in the inverse ratio of their diameters.<

»Therefore the attraction of a capillary tube has no
other influence upon the elevation or depression ot the fluid
which it contains, than that of determining the inclination
of the first tangent planes of the interior fluid surface, situated
very near to the sides of the tube; and 1t is upon this in-
clination that the concavity or convexity ol the surface
depends, as well as the magnitude of its radius.<

{ii) The wave-theory underiies the mathematical analysis
of Fourier and Poisson,') based on the solution of partial
differential equations.

In the Fourth Paper, ncar the end of Section 8, | have
called attention to the great importance attached to houndary
conditions by modern investigators in theoretical physics, and
have also pointed out the prominent part played by partial |
differential equations in the mathematical methods applicable ‘

(at)? = (v+arcosd)’+(y+atsind sinw)? (s +arsind cosm)?

which we have treated in previous papers.

-
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to physical problems. These two independent circumstances
seemed to me an overwhelming argument for the wave-theory
as representing the true order of nature, which we sce exhibited
most simply in the refraction of light.
In the New Theory of the Aether we have dwelt on
the equation of wave motion developed by Zo/sson:
(r)

0207 = @? (0 [0x>+0 [0y + 07 352)
Likewise Zwurier’s Théorie Analytique de la Chaleur,
1821, leads to the similar expression:
B20[0r = o (0200t + 300y + 3 /05?)
(.) :_/. (v“v g s, /)v (.) = / ("\‘) b '3)7
which holds for the propagation of heat, and other wave motions.
FFor constant temperature, €(/C¢ = o, and therefore

Q[0+ 020y 4+ 0%(0:* = o (

5
SO

| (2)
7 == 0 )

For the disturbances in the theory of sound, Zoisson

usually writes for the velocity-potential ¢, thus:
53(1//8f2 = (13 (azqrﬁ"‘a\‘?—f—a'“)(jr’/‘(?‘l"-’—i—831];/,"‘(};:3) ( )
8297/0/2 U!T;"ﬁ; [/ :/‘<~\‘r,y» S), /= o . 4
In the theory of light, the sume differential equation
arises (ef. Drude, 'Theory of Optics, Part I, Chapter 111, § 3)
Ofort = 172 (0200 07518024 0%/052) (<)
e T A T A >
In the theory of waves we have for plane waves along

the w-uxis:

I

R O.

vom= el sinlooe/ L1 x) e (6]
jut inuri-dimensional space, the disturbance spreads in all
directions with the velocity J7= az (af)? = a2+ 2+ 3*

and from any point Z’(x, », 5), the sphere surface becomes:

(7)

In the treatment of Auissor's cquation of wave motion,

02 D[0 == a* (0*/0x? 02 P[0y -8 D [02); D = O (x, 1, 5), 1 = o (8)
we have found (AN 5048) that for three variables
-+
D= O (x,y 2) = (1/8% J‘J'J‘J.J.‘j‘ Q54,8 cosE (v —1) cos (=) cosZ{s—) dE dy dfdA du dy (9)

—0

in which & #, { and 2, g, v extend from —oo 10 ~00,

This may be transformed into
U

0= 0 (x, 3 = (1/87") Ja.ng}:

—“+ OO

[N

2

- —_— o0

By including the factor 1/87% in the arbitrary function, this
for any time ¢

£, ) cosh (E—x) cospe (4 —y) cosw ([ —z) dE dy A8 d dpedw

(1/87c%) JH‘J.,U Q5,0 AAE—)Fp =)+ TV = 4E dydldydy ds

may be written in the well known form of the expression

) In developing the new theory of the aether 1 found /wisson’s Analytical Theory of Wave Motion, (1815-1839) so extraordinarily useful

that I was led to apply to M. Baillawnd, Director of the Obscrvatory of Paris, foi an authentic portrait of this unrivaled physical muathematician.
The portrait proved to be somewhat difficult to obtain, but as it reached me on the day this paper is finished, it seems appropriate to
acknowledge M. Sailland’s kindness, and at the same time do honor to /visson's memory and a service to geometers generally by using the

portrait as a frontispiece to this Fifth Paper.

In his eulo of [wisson, Arago relates that one day the venerable Zagrange remarked to the brilliant young geometer: »I am old,

) > gy , {0 T ¢ b AN ) L young ¢
and during my intervals of sleeplessness I divert myself by making numerical approximations. Keep this one: it may interest you. Ffluvghens
was thirteen years older than Newfon, 1 am thirteen years older than Zaplace; 07 Alembert was thirty two years older than Zaplace, fuplace is thirty

two years older than you.« — which was LZagrange's delicate way of intimating to Zw/isson his destined place in the Pantheon of mathematical fame.
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O = 0 (5,02 ) = ([ ] PN 0w (g g ) gt ddr. (12)
— 0
And finally, in the Fourth Paper, (AN 5085), we have reached Jvisson's double integral:
= Q-+ '
= 27
= (1/47) s ‘ /{x+atcosd, y+atsindsinm, s+ arsind cosm) tsind dé dm
O O
T o2% (13)
+(1/4m) (C/20) f Y// {x-+atcosd, r-+atsinbsinm, s+alsind cos m} tsind dddw .

o 0

‘This expression for the velocity-potential @, will hold rigorouslv for the waves emanating from any mathematical

point /)(‘\‘,j', :) and traversing all space from that centre of disturbance.

But in nature the waves proceed from all atoms

of a mass, and thus we must extend the integral of Zw/sson by taking the triple integral for the volume and density:

) omoa2n Tan
D == \ s s (a/4:1)
O 0O O [
T 2T = o2n

oty o0 §
] [elme]

This is a double quintuple integral, and by referring to the
cquations {g) or (12) above we see that {i4) corresponds to
a single non-nuple integral in the original form of these
equations, because the disturhances must be coneceived to
proceed from cach atom of the mass,

7 2

== 'S‘ gd J:o‘ 7Psind drdddem .

O 00

(13)

Now in the physical universe, such independent gravi-
tational waves must be imagined to procecd from the several
atoms of all bodies whatsocver, just as light waves do from
cach atom of the self-luminous gases of the stars. Accordingly
such integration has to be extended to the waves from all
muasses severally: and as there ts an infinitude of bodies, the
result is an integral infinitely repeated, or an infinite integral,
though the value of the disturbance remains finite at every
point of space.

And not onlyv is there a double infinite or infinite infinite
system of interpenetrating waves, but also the resistances —
with refraction, dispersion and interference — at the boundaries
of all solids and liquid Dbodies. It is these resistances
refractions, dispersions, diffractions, and other wave trans-
formations which give rise to molecular forces. They
usually are very powerful at the surfaces of bodies, and by
their mutual intcractions on contiguous atoms and molecules
cause cohesion, adhesion, capillarity, and chemical affinity,
and other phenomena heretofore utterly bewildering to the
natural philosopher.

Now it is our purpose to outline a preliminary theory
of these forces, in the hope that the light thus shed on a
very obscure problem may induce others to extend these
researches. It is obvious that the preliminary theory must
necessarily remain very incomplete till the phenomena are
carefully studied under a criterion which may operate as an
experimentum crucis. But these verifications can only be
deduced by investigators of great expericnce in the several
branches of physical science.

) s Flvaatcosd, y+otsind sinm, s-+a/sinf cosm} 72 siné dr dd dm 7sind dd dm

(14)

s I v +atcosd, v+atsindsinm, z--alsind cosm} r?sind drdd dwm-fsind dd dem .

2. The Recognized Refraction and Dispersion
of Light in a Drop of Rain shows the Cause of the
Rainbow, and suggests Similar Molecular Iiffects
when the Source of Light is extended by Double
Integration to the Surface of the Iintire Celestial
Sphere.

(1) Outline of the theory of the rainbow, as an in-
troduction to the wave-theory.

et the circle in Fig. 1 represent a section of a spherical
rain-drop.  As water is Hquid and yields to the forces acting
on the surface this hypothesis of sphericity implies that there
are conztantly acting forces at work to maintain this figure;
and we know from the researches of Lord Rayleigh (Proc.
Roy. Soc., May g, 1879, no. 196), on the oscillation-periods
of globules of liquid, that the forces at work are quite powerful,
otherwise the oscillations of the drops of distorted form would
not be so rapid as they are observed to be.

Path of the sun’s rays in the theory
of the rainbow. The large circle
represents the magnified raindrop,
5 the direction of the sun,

Fig. 1.

and
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Asour theory of molecular forces is based upon the action
of waves of various lengths, we must be careful not to assume
that waves other than those of the visible spectrum are absent,
yet in the problem of the rainbow our reasoning of course
relates to the visible spectrum. It is believed that waves shorter
than the visible spectrum give rise to chemical affinity, capil-
larity, etc., while the waves of the infra-red region, having
enormous wave-lengths, generate heat through breaking up into
shorter and shorter wavelengths.

In figure 1 the circle represents a section of a spherical
rain-drop, with parallel rays of sunlight S;.J/, and thus
internally refracted along the path A/, /&y, whence it is reflected
along the path X&;Vy, and then outwardly refracted along
the path &, . The line from the centre O/, makes an
angle of 59° with the: path of the incident light, which, at
this small circle 8 about M as a pole, is less deviated Dby
two refractions and reflection, than is the light incident at
other small circles about A7, It appears that the surface of
the rain-drop is divided into different zones about the pole
M, and the path within depends on the polar angle §, and
also on the wave-length of the light.

It will be found that for rays of the visible spectrum,
the light incident in the narrow zone or surfuce

27
ds = rdérsinﬂfdm = 27 r¥sind dd, 4§ = 9> (16)

) [¢]
operates to form a parallel pencil A, 7% when the rays have
undergone their Tast refraction in leaving the ruindrop. In
another smaller zone, as A7y, nearer the pole, the incident
light forms a divergent pencil N /%, when the originally
parallel rays have departed. The direct illumination of the
hemisphere of the drop turned towards the sun thus yields

successive zones about the pole M

S [ o, 0, 1, \
27T r‘.’j‘ sind dd =27 72 ;jsin& d<9+jisiné d4 + fsiné dé (17)
o o : lo o, (Ji, ‘

To understand the illumination of the sky noted in a
rainbow, we notice that in the case of an emitted parallel
pencil, the only decrease of the light with the distunce depends
on the absorption in the raindrop as a mediwm, which is
small. But with the divergent pencil the case is very dilferent,
because the rays are spread over a greater and greater area
as they recede from their point of intersection; and hence
the illumination rapidly decreases.

Accordingly, in viewing such a raindrop from a distance,
we should receive a considerable amount of vefracted light
in looking along the conical surface 7%V, but very little
when we look along any other conical surface about the
anti-solar point.

After passing through the falling raindrops the light of
the sun thus becomes redistributed in the sky, and a luminous
band appears, corresponding to the rays which emerge as
parallel pencils; but in the other zones there is relatively
increased darkness, owing to the divergence ol rays cor-
responding thereto.

It will be seen from the lower part of the figure
that the angle V; 2 X’ == y is 42°; and hence all raindrops
on the surface of the cone 42° from the anti-solar point will

51
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be in such position that the light entering them will have

-undergone minimum deviation, and send to the observer a

relatively large amount of light, on a darkencd background.
This simple theory briefly outlines the foundation of the
rainbow, but the dispersion of colors 1s still to be explained.

We shail now include the effects of refraction and re-
flection, so as to take account of dispersion. As the sun’s
rays inlude all the wave-lengths of the spectrum, we must
consider the production of color in the rainbow. It is ob-
vious that if the source of light were a point and there were
monochromatic light, the luminous band would be reduced
to a mere line of one color circling about the anti-solar point.
But when light of the whole spectrum is incident upon the
drops, the violet rays are deviated more than the average;
moreover the width of the source of light lets the waves fall
at slightly ditferent angles, and hence\he inner side of the
cone has an angle y of about 40° The rainbow is thus a
conical band, about 2° wide, with the red band about 42°
from the anti-solar point.

In addition to the primary ruinbow thus briefly ex-
plained, there is a secondary rainbow due to light which has
been twice reflected within the drop, as shown in figure 2.

Y

N
z
oA

o

M

Fig. 2. Lxplanation of the primary and secondary rainbow, the latter
by a reversed double reflection within the raindrop.

N
—

[§
(@

General outline of the theory of the rainbow given in
Newton's Optics, 1704,

Iig. 3.

Owing to the reversed nature of the reflection, from
below upward, we perceive that the colors in the secondary
bow should be reversed. Thus whilst the primary bow gives
the red above and the violet below, the secondary bow has
the violet above and the red below. And the angles y of
the cone are about 54° for the violet, and 51° for the red.
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The secondary rainbow is therefore wider than the primary
bow, and fainter, while the colors are exactly reversed.

From the reasoning here outlined, it follows that there
are two zones for producing the rainbows:

1. The Primary Bow,

0,
ds = 27 s? fsiné dd, y == 40°% > == 42° (18)
0,
2. The Secondary Dow,
0‘
4.5 = znz"z'fsiné d4é, 5 = 51°, 3, = 54°  (19)
0

3
where oy, %o, X3, %1 are the angles of the cones from the
anti-solar point.

Now consider what would be the result for greater
changes in wave length than we have considered. Obviously
the width of these luminous zones would be increased, and
they might attain any width appropriate to the range in
wave-length. Thus if the range of wave-length be multiplied
say tenfold, the zone of light might become quite wide.

Finally, we should consider the effect of increasing the
width of the luminous source, as by putting additional suns
to radiating, side by side. Obviously cach sun will generate
its own rainbow, without regard to that due to the other sun;
and thus we should have a superposed, or accumulated in-
tegral effect on the background of the sky. If there he suns
side by side, from @ = o° to m == 360° where m is the
azimuth, the circular string of suns near the horizon, would
fill the heavens with rainbows superposed three or more layers
deep, and the whole lower part of the sky would become very
luminous.  And if the elevation of the ring of suns be in-
creased, from the horizon to the zenith, z == 9o0° 5 == 0o°,
where z is the zenith distance, we should fill the whole
heavens several .times over with the light of rainbows.

These conceptions, drawn from our theory of the rain-
bow, as extended Dby integrating the entire cclestial sphere,
will perhaps prove of value when we come to deal with the
wave theory of molccular forces.

(it) Sir Fodn Zerschels argament that in refraction the |
mechanical forces cxerted must be termed infinite, may be

extended also to dispersion, and the hardness of bodies, as
in section 10 below.

In his celebrated article on Light, Eneyel. Metrop., 1849, - ter, ! )
- phenomcena of light on the ANewfonian doctrine. In the un-

Sect. 561, Sir Fou Jlerschel has caleulated the intensity of
the refractive force in comparison with the force of gravity
at the earth’s surface. Whilst his result is obtained on the
Newtorgn emission theory, and not precisely applicable to
the problem before us, yet this reasoning, as //erschel vemarks,
is well calculated to show the greatness of the power of
molecular forces. This enormous force we now assign to
waves action, and explain by the very high elasticity of the
aether, which is ¢ == 689321600000 times morc elastic than
our air in proportion to its density; and yet this enormously
clastic acther not only has the wave surface refracted, and

thus suddenly bent into a new position, at the boundary of |
solids and liquids, but also suffers an unequal refraction or |

dispersion of the waves according to their length.

5130
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Herschel's analysis of the intensity of the forces producing
refraction is so worthy of careful study that we quote it as
follows: .

»Whatever be the forces by which bodies reflect and
refract light, one thing is certain, that they must be in-
comparably more energetic than the force of gravity.  The
attraction of the earth on a particle near its surface produces
a deflexion of only about 16 feet in a second; and, therefore,
in a molecule moving with the velocity of light, would cause
a curvature, or change of direction, absolutely insensible in
that time. In fact, we must consider first, that the time during
which the whole action of the medium takes place, is only
that within which light traverses the diameter of the sphere
of sensible action of its molecules at the surface. To allow
so much as a thousandth of an inch for this space is beyond
all probability, and this interval is traversed by light in the
1/12672000000000 part of a second. Now, if we supposec
the deviation produced by refraction to be 30° (a case which
frequently happens) and to be produced by a uniform force
acting during a whole second; since this is equivalent to a
linear deflexion of 200000 milesXsin 30°% or of 100000 miles
= 33000000X 106 fect, such a force must exceed gravity on
the earth’'s surface 33000000 times. But, in fact, the whole
effect being produced not in one second, but in the small
fraction of it above mentioned, the intensity of the force
operating it {see Mechanics) must be greater in the ratio of
the square of one second to the squarc of that fraction; seo
that the least improbable supposition we can make gives a
mean force cqual to 496gr126272X10% times that of ter-
restrial gravity. But in addition to this estimate already so
enormous, we have to consider that gravity on the carth's
surface is the resultant attraction of its whole mass, whereas
the forcce deflecting light is that of only those molecules im-
mediately adjoining to it, and within the sphere of the
deflecting forces. Now a sphere of 1/1000 of an inch dia-
meter, and of the mean density of the earth, would exert
at its surface a gravitating force only

(1/1000) X (1 inch/diameter of the earth)

. of ordinary gravity, so that the actual intensity of the force

exerted by the molecules concerned ‘cannot be less than

(1000 earth'’s diameter)/1 inch (= 463352000000)
times the above enormous number, or upwards of 2-r1o't
when compared with the ordinary intensity of the gravitating
power of matter. Such are the energies concerned in the
dulatory hypothesis, numbers not less immense will occur;
nor is there any mode of conceiving the subject which does
not call upon us to admit the exertion of mechanical forces
which may well be termed infinite.«

3. OQutline of New Theory of Surface Tension
and of Capillarity based on Wave-Action.

(i) From the small radius of activity of the molecular
forces observed by Quincke in 1869, namely 5o micro-
millimetres, corresponding to a wave-length of only one half
that of the shortest wave ever measured — it follows that these
forces depend on waves in the invisible chemical spectrum.

In Poggendorff’s Annalen, 137, 1869, Quincke gives
certain results of his observational researches on capillarity



291 51
and -similar phenomena, and is led to the conclusion that
the molecular attraction becomes sensible at a distance of
about 5o micro-millimetres, ore o0.000050 mm, one millionth
of a millimetre 1uw == o.cocoo01 mm.

Reinhold and Riicker have strikingly confirmed Q;z/'/zf/:z's
conclusions by their researches on soap bubbles. They found
that the black film always formed before the stable bubble
breaks, and that it has a -uniform or nearly uniform thickness
of 11 or 12 micro-millimetres, (Proc. Roy. Soc., June 21, 1877;
and Phil. Trans. Roy. Soc., Apr. 19, 1883).

In his well known Address on Capillary Attraction
Lord Kelvin remarks that the abrupt commencement and the
permanent stability of the black film bring to hght a pro-
position of fundamental importance in molecular theory:
namely the tension of the film, which is sensibly constant
when the thickness exceeds soup, diminishes to a minimum,
and begins to increase again when the thickness is diminished
to 1o uw. It is not possible, Lord Aelvzn concludes, to explain
this fact by any 1maginable law of force between the different
portions of the film supposed homogeneous, and we are
forced to the conclusion that it -depends upon molecular
heterogeneousness.

Accordingly, the molecular structure and sustaining
forces depend on distances of these dimensions, as it the
forces are due to waves in the chemical spectrum. This
reasoning is based on well established observational data on
the radius of action of molecular forces; and thus it
also throw hght on the cause of these forces in such phenomena
as capillary attraction. Here is a suggestive summary, in which
the micro-millimetre is the unit

may

1. Wave length of D-line of sodium 500 fe
2. Maximum of chemical action in the solar spectrum 400 »
3. Invisible spectrum begins 300 »
4. Shortest wave-length ever measured 100 »
5. Quincke observes molecular action effective 50 »
6. KRemhold and Riicker rupture soap bubbless at thick-

ness of 10 »

It has long been known that chemical action is con-
fined chiefly to the ultra-violet part of the spectrum. And
now it appears from this table that the molecular forces, if
duc to wave action, arc chiefly developed in the totally in-
visible spectrum, the violet A and K lines of the solar spectrum
corresponding to about goopuuw. -l.ord Aelvin estimates the
radius of action of the molecular forces as less than 250 uu,
and on the wave theory this result is confirmed.

The question arises: How are we to interpret the de-
velopment of these short waves? In any new theory there
is much which still remains obscure, but the following outline
enables us to interpret most if not all of the known phenomena:

1. In Laplace's theory of capillary attraction, based on
the theory of molecular forces sensible only at insensible
distances, he puts £{r) as the unknown function of the forces,
and takes

oo
()= Jriar=o (20)
21
or the action of the forces is insensible beyond a small
limiting distance 7y, which is the lower limit of the integral.

"

30

[}
n

From the above reasoning we may suppose this value ol
7L < 250 .

2. Now Langley found by his explorations of the in-
fra-red spectrum, by means of the bolometer, that the heat
spectrum was about 2o times the length of the visible spectrum
observed by Avwton, which runs from 4 = 759.4pu to
A= 393.38 uu, and terminates quite suddenly at 200.0 uu,
according to Cernu. Thus the heat spectrum, made up of
long waves irregularly distributed over a wide space, is of
enormous extent, ending in the other direction beyond the
red, at say 7340 .

3. Magnetic and gravitational waves are supposed to be
considerably longer than the heat waves, but an instrument
to determine their length is not yet available. ‘Thus the
planetary forces undoubtedly depend on long waves, while
the molecular forces depend on very short waves.

4. It is observed that the longest wave-length of light
yet measured is 2500 uw, and the shortest clectrical oscil-
lation yet measured is some 6ocooo upe. And we know from

electric cwrrent,

the phenomena of waves in water of the scu and other tluids
that long waves may be broken up into shorter ones by
resistance. Accordingly, we conclude that by resistance long
clectric waves generate heat waves; and an additional breaking
up of heat waves gives the still shorter lght waves; while
a still further disintegration of the light waves,
chemical waves of'the invisible spectrum beyond the ultra-violet.

5. This transformation by Dbreaking up
appears to be the order of nature. It is exhibited constantly
in the surface motions of the sca. And by turning on an
which

gives the

ol the waves

was shown in the author's work
of 1917, to be aether waves of a certain type — the dis-
turbance is observed to heat a wire ull it becomes red, by
the resistance opposed to the motion of the longer electric

waves. IMurther operation of the electric current makes the

| resistance wire glow with the brilliancy of the electric spark

or arc, which 1s filled with violet light, Hke that of the sun.
Still higher action of the current causes the vaporization of
the Tuminous film of the electric light, and thus the generation
of chemical waves, us 1n the light of the sun and stars.

6. The waves producing chemical affinity are thus held
to be so short us to be invisible to the human eye. This
whole process therefore contirms the following view:

{a) All short waves in nature come from the breaking
up of longer waves in the aether.

(b} All molecular forces operative in chemical alfinity,
capillarity, cohesion, adhesion, surface tension, etc., are due
to very short waves in the aether, which lie beyond the ultra-
violet, in the region f{rom 10 to 250 .

7. The maximum of the chemical activity in the solar
spectrum, about goo wu, is due to the greater agitation in-
cident to the longer waves, which effect the greatest changes,
while the shorter waves exert the greater forces of a steady
character. '

8. If this conclusion be admissible it confirms Zaplace’s
theory of capillarity, which is mathematically expressed by
the formula:

@ (/) fo(r) dr —o. (20),«
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And it indicates that different substances will exert different forces, according to their resistance or their trans-

mission of the wave-lengths, Ay, Ay, A,
—y

liy Ay < 7yt

r=X,
g () =K [ /0) dr+ ks [ 1) dr+ Ky

=X

7==A,

where Ky, Xy, Ky, Ky, - - Ki—, are coefficients of conductivities,
or resistance for the particular wave-length, the resistance being
the reciprocal of the conductivity.

(ii) Direct proof that boundary pressure due to waves
is the cause of molecular forces.

1. After the foregoing discussion of the general principles
underlying the wave-theory, we now cnter upon certain pro-
cesses of exact calculation. 'The obscrvational data are in-
complete, yvet the processes disclosed will prove very instructive.
In treatises on physics, (cf. Dawicll's Principles of Physics,
37 edition, 1895, p. 142) we find the conclusion that the
Kinetic Fnergy due to a steady flow of waves is

(22)

where o is the density of the medium and v the velocity
of the waves.

9
& == 1/2 ov*

2. Now for simple harmonic motion in a circle of
radius @, which corresponds to a wave-amplitude @, we have:
v = 2malt, v} =an’ [t = 47 a’? {(23)

where » 1/¢ is the wave-frequency.

Using these values in (22) we obtain for the pressure
due to the steady flow of waves:

—

[

(24)

= 00 = 2%a%g v
= yov? == 2’0’91
dynes per square centimetre, or ergs per cubic cm.

3. When the waves are short, » is increased, and thus
the pressure @ is increased, unless the amplitude @ is cor-
respondingly decreased. This raises the question as to whether
retarded waves have greater or less amplitude than the original
unchanged waves. Investigation shows:

{a) The long waves bLreak up into shorter waves, by
a process fully outlined for water waves by Sir George Airy,
Tides and Waves, ¥neyel. Metr., 1845, {¢f. Second Paper on
the New Theory of the Aether, AN 5048, pp. 141—142).

It is shown that the wave front becomes stecp, owing
to resistance, and the crest breaks into two parts, and finally

apyv

& = 21 Iﬂjzn dadg [24 1 +84 B1v*+6 (B> +4 C) 1 +165Cy +10v°] dv . (2

000

6. It is to be remembered that the elasticity & and
density ¢ are both variable in Newton's formula, for the
velocity of a wave in free space:

V= K Vlelo) = K V(ye/ye) (29)
so that the velocity # does not sensibly vary in planetary
space (AN 5o044). What may occur within transparent bodies
is not definitely known, but it is usually assumed that both
the density and elasticity varies. If the presence of corpus-
cular matter did not interfere with the wave propagation, the
Newtontan formula V2= K2¢/o (30)

would give dV = [[(3/(293/’ )] (g de—¢ dg) . (31)

r=x, r =i
fr)are- ek [ (0)ar (21)

forms two separate waves, the rear wave being shorter and
having the smaller amplitude.

{b) The longer of the parts of the broken wave becomes
actually of larger amplitude than the original wave. And
when subdivision again occurs, the same tendency arises —
more waves, and of larger amplitude. This conclusion of
Airy is verified by the tide heights observed at San Irancisco
and at Mare Island — the tides at Mare Island being higher
by the factor 1.26, which is a noticeable increase of amplitude
in traveling 25 miles from the Golden Gate.

(¢) In considering waves transformed by resistance we
have to sum up the pressure due to all lengths, and the
effects of their different amplitudes, which requires an in-
tegration of all the variable elements.

4. If 7 be the index of refraction, the refractive action
at the boundary will be (71"’~1), and the wave pressure
exerted on the boundary of the tluid will be, in dynes per
squarc cm or crgs per cubic cm:

= z2:%a% 91 (n?—1) (23)
Jut it is well known that » and # are rclated, though not in
a very simple way. According to the celebrated rescarches
of Cawchr on the refraction and dispersion of light,
n= A+BL 2+ CL™ = A+B v+ Cy! (26)
where A, 5, C, are coefficients, and 4 is the wave length,
» the corresponding wave frequency. This formula (26) holds
quite accurately for the range of the visible spectrum.

5. Accordingly, for a given wave-amplitude, wave-length,
and aether density, we have

@ 2zt @ o v (n2—1)

2@’ g P (A+ A+ Crt)i—1].

(27)

amplitude «, density o, and wave-frequency »

when waves are resisted by matter and thus
transformed, we must take the triple integral for these three
independent clements, in order to get a rigorous calculation
of the pressure at the boundary of the fluid:

jut as the
arc variable,

8)

But it is evident that the resisting forces, which transform
waves, would also invalidate the use of this differential equation.
In practice we have to rely, for moderately homogeneous
waves, on cquation (27) or on equation (28) when any process
exists by which the triple integral may be, evaluated. The
difficulty of effecting the integration for the action of waves
coming from all directions is increased by the circumstance
that they are so short as to be wholly invisible, and the
frequency » thus indeterminate. Hence the amplitude also
is indeterminate, and the effects must rest mainly on ar-
guments of probability drawn from a true cause recognized
to pervade the physical universe.
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4. Physical
Liquid Drops.

Theory of the Globular Form of

(i) Teastaction leads to minimum deviation and therefore
minimum dispersion in the passing waves, the paths for which
are here illustrated for raindrops in the case of the rainbow.

If the dircction of an incident beam of light passing
through a prism, with section in the form of an equiangular
or isosceles triangle, be such that the path within the prism
be parallel to the base, it is well known that both the deviation
and dispersion will be a minimum, and the external path of
the transmitted light will be as nearly as possible identical
with that of the incident ray. This result is the outcome of
the principle of lcast action, which may be briefly outlined
as follows.

In the
1620, 1s

case of simple refraction the law of Swucllius,

(32)

To find the least action along the actual path, we
remember that this action is for lengths of path /7, /2,4 - - </

A = (?/’1 T A e N A I T /,') . (33)
And the condition for the minimum of this action is

sinz == nsinr

. . / PO
SIN M= 1/7-31n7 .

CA[8s = (0/8s) (g hy+my ly+ vy by -+ - - o l)) == o
== 0,05 ( /1+1//11 by ~+ 1 )sq « Iy -+ -I/ﬂ.;f/,'):o.( )
ds = dr 1/ [(0/85) - (8r/0s) 2+ (85/85)?] 34
== d¢ 1V'[(dx/de)?+ (dy/d )2+ (dz/d4)?]

The action or work is a minimum along the actual path,
and there is no change for a small variation in the path:
or, in Jlanmilton's phrase, the action is stationary.

If 2 be the wave-length, the velocity v == f(x, y, z),
and the time of passage becomes

= .Yl/z/-dx = I (/7 (2, w, 2, 5)] - ds

And for the minimum path our stationary condition is

(35)

X, 1’,,_,,
dr == (5_([ (2, v, 2)] - ds = o,
VSO
The solution shows that the time of passage is defined
by the function
r=F(x05408) (37)
where « and £ are con-
stants of integration.
Wemay obtainabet-
ter geometrical and phy-
sical grasp of these actions
by considering the follow-
ing sketch of the waves
of light,in passing through
the raindrop for the pro-
duction of the rainbow.

1. The wavesare of
velocity /= 3-10'"cm
1in the air, before entering
thespherical drop; thenat
the boundary of the drop,
the velocity V'= V—y,
which for water gives a
decrease of speed in the

AN

Fig. 4. IMustration of the sudden change
of wave-length A and wave-velocity
I at the boundary of a raindrop,
by which inward pressure is exer-
ted at the surface of the fluid, as
the waves are both coming and

going.

areq,
i minimum perimeter.

(36)
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ratio of 4:3. Within the drop, therefore, the waves are
shorter than without, in the same ratio, because the same
number are crowded into a less space s’ = = 3/,5, as shown
in the figure 4.

2. After reflection at the opposite boundary of the
drop, the path returns, and the light cmerges as shown in
the figure. It may be noticed that just as the velocity and
wave-length are decreased on entering the raindrop, in the
ratio of 4:3, so also, on leaving the water, the velocity is
increased at the boundary of the raindrop in the same ratio
3:4. Andjust as the retardation of the waves entering the
drop gives a pressure of the aether against the surface
@ = +z2n?a’or? (#?—1), here indicated by the arrow; so
also, on lca\mq the drop, the sudden acceleration at the
boundary, b} rcactlon gwes an equal backward or negative
pressure @ = — 277%a% 9 »? (#>— 1) . These forces, dependmg
on waves from all ¢ hrectlons, app lied all over the drop, give
rise to surface tension, which is really a central pressure
operating through the stress generated in the aether at the
boundary of the liquid, by the sudden change in the velocity
of the waves. .
(ii) The action of passing waves rounds up small masses
of liquid into spheres or spheroids of minimum oblateness:
Definite gcometrical proof based on-a theorem of Archimedes.

1. The researches of ancient and modern geometers on
isoperimetric problems, more especially those of Zwler and
Lagrange, cierstrass and Schwars, have shown that a circle
has maximwm area for a given perimeter; so that for a fixed
the circle, of all possible geometric figures, has the

Many years ago Weicrstrass placed the Calculus of
Variations on a basis of strict rigor; and following his methods,
Se/uears has dealt extensively with the general problem of
minimal surfaces. Of these surfaces the sphere is the simplest,
and it is casily shown that it has maximum volume for-a
fixed surface; or for a fixed volume has the minimal surface.

2. The globular form of liquid drops of water is
illustrated by the rainbow, where the smallest deviation from
the spherical figure in the water drops would "destroy the
observed arrangement of colors. Mercury, molten metal, molten
glass, suspended globules of oil, and other liquids, have a
similar form; and we are naturally led to inquire why nature
adopts what mathematicians call minimal surfaces for such
masses of liquid.

3. If » be the radius of a sphere, the volume becomes

P = Yy (55)

And for the volume of an oblate spheroid, produced by the
revolution of an ellipse about its minor axis, we have

V==Alyma®b = ‘yma® V(1 —¢?) (39)

where ¢ is the eccentricity of the sections through the shorter

axis 4. For equal volumes, ==}, the surfaces S>.S’, or

the surface of the spheroid S is always larger than that of

the sphere S7, as may be proved by the following analysis.

The differential expression for the length of a curve along

the x-axis is
ds/dx == V/[1+(dy/dx)?+(dz/dx)?) (40}
(41)

and the integral:

— Il/ 1+(d}r/dx)2+(dz/dx)2] da
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T.].]. Sece. New Theory of the Aether.

Fig. o. Tlustration of more extraordinary capillary phenomena. for water
and mercury,

Fig. 13. ustration of the disturbance of the
bl ]
wave-front when rays pass from air
to glass and mercury in contact,

giving rise to the obscrved negative
capillary forces.
o,
Fig. 14. Prof. Schwars’s illustration of the minimal surface Vig. 15, Prof. Se/umars'sillustration of another twisted
LA +1/R, = o, with equal but opposite curvature minimal surface, 1/A,+1 A, = o,

on the two sides.

C. Schaidt, Inhaber Georg Oheim, Kiel,



297

4. And for an oblate spheroid we have
ds (1 +d'a¥at p?) P da

1If the surface be .S we shall have by calculation:
S= QTI'Y.\? ds== 271 ca’/h*- I[}”J (2= 0)/e2+ Y a2 dx (43)
the solution of which is:

S = 277 @+ a’ [(x - e2)/e] loge [(1-+e)/(1—¢)
2rat{i-+Y, (1 *Ari)/wlogp (I +f)/(r -] }
where log. denotes the natural or Neperian logarithm.

5. For a sphere surface we have the much simpler
algebraic expression:

(42)

(44)

o (45)

is for the sphere of the

S = g’ = g a1 —c?)
where the radius » == a (1 —¢%)'7",
equal volume with the spheroid.

6. To apply these formulac to a numerical example,
we take the case of the carth with equatorial radius «
and the oblatencss 1/208.3; which gives for the eccentricity
of the terrestrial meridian

= 1

)

1:208.3 = 1— 1 {1—¢*
; «;:0.0818‘(133 ! (46)
By the second term of the formula for the surface, we find:
Yo (1= ¢?)fe = 6.070567 . (47)
‘Og[(l‘f—(‘)/(!"'/‘)] = 0.0712213 ,
tog {[1+0)/(1 —e)] = 0.1659033 las)
And since 27 == 6.2831852, the sccond term, with
the factors depending on the cccentricity, becomes:
27 fy (1 ) e loga ({140} /{1 )] == 62551140 . (40)

7. On adding the first term, we get for the whole sur-

face of the oblate sphicroid S, and of the equal sphere S'

S = 12.533299
S = rz.};3827o‘ (50)
The difference between the surfaces of the spheroid and sphere:
S-.8" = o.oc0029 . {51)

Accordingly, it thus appears that for small oblateness,
very little difference between the surface of  the
and the surface of a sphere of cqual volume., In
1/208.3, the difference in the

there 1s
spheroid,
case of the carth’s oblateness,
surfaces is only 29 parts in 12538270, or one part in .432000.

8. This cxample proves that the spherical surface is o
minimuwm, because it is the figure to which the oblate spheroid

approaches ncarer and nearer as the oblateness is made
smaller than any assignable quantity.
In the theory of capillarity and similar surfaces, in
three dimensions, the surface has the general form:
-
Q— o P EPRY o 1
S = H ol {ds/da)? -+ {d=/dv)?} dady (52)

Yet for spheroidal drops of liquid of perfect symmetry the
above simpler method of solution is sufficieit, and we shall
not go into more complex surfaces.

g. For from a physical point of view, we must remember
that waves are propagated more rapidly in air than in liquids,
such as water, oil, mercury, ete., as shown by the observed
refractive indices and electric resistances. Thus, in passing
through liquids, the waves encounter sudden resistance at the
boundary, and the velocity in the liquid decreases from v to 2/;
as the waves leave the liquid, the velocity increases from

5130
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Wave energy is thus given up on entering the liquid,
owing to internal retardation. On leaving the liquid, the waves
are no longer retarded, but actually accelerated, and thus
drawing new energy from the unlimited reservoir of the
acther they react, or »kick back« correspondingly.

It has long been recognized that a ray of light follows
the path of least resistance; electric disturbances follow the
same law; and generally throughout nature all physical operations
take place according to the principle of Least Action. There-
fore if an infinite variety of waves from all directions enter
and leave the globule of liquid, the action and reaction of
their passage will be such as to make the total resistance a
minimum. ‘This can happen only when the figure of the
globule is spherical or ellipsoidal, with minimum oblateness.

1o. Up to the present time we know but little of these
waves, yet they appear to correspond to the forces of surface
tension, which are superficial in their character and power.
Chemical affinity is known to depend on very short waves,

as in ~-violet light, which cannot penetrate solids, through
cven t. ‘hinnest layers. Such waves can hardly penetrate
solids a. li, and pass with difficulty through transparent
liquids, and gases. ‘Thus it 1s natural to attribute the forces

of surface tension to waves, chiefly of the ultra-violet spec-
and they may be of even shorter wave-length.
Owing to lack of penctrating power these short waves
come directly from the interior of the globe, yet
could come from the stars in the immensity of space,
of the on all sides, and from the surface
of the carth in the hemisphere below cvery drop of
liquid. ‘The resistance, on entering the liquid, and the reaction
on leaving it, are cqual, according to the theory of light,
(Sir Hersehels article, Light, Kncycl, Metr., 1849, § 561). The
total effect of the waves is as if the drop were pressed in
on all by centrat forces. This is our explanation of
surface tension, and the globular figures noticed in drops
of Tquid,

trum,
could not
thev
the

particjes air,

solid

sides,

1. Now waves coming and going in all directions,
will do least work against the globule when its figure is

FFor a sphere 1s a minimal surface,
of collixion with

spherical, and thus gives
least the moving aetherons. And
when collision occurs for the waves, the spherical figure yields
the shortest averave path for the waves which enter the mass
of liquid. This spherical figure corresponds therefore to the
principle of least action for all the waves of the universe;
but the truth of the principle can be made clearest by an
ilustration.

Archimedes showed, — in a famous theorem which
he desired engraved on his tomb, and which was actually
found there by Cieero when he was consul at Syracuse, 140
years afterwards that the ratio of the volume of an in-
scribed sphere to that of the circumscribed cylinder is as
2 : 3. Thus, i waves enter the cylinder at the end they will
encounter exactly ¥/, as much resistance from the liquid sphere
as from a continuous cylinder of the same liquid.

As the sphere is a minimal surface, and symmetrical
in all dncc'lons, it is sufficient to consider the waves entering
the end of the cylinder from any direction. Let the sphere
be imagined to have an expansible but unelastic surface, and
after expansion let the surface be punctured, to allow exchange

20

chance

12,
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of the fluid. Under these conditions the enclosed and en-
closing incompressible fluid may adapt itself to any alteration
of the spheroidal volume. Then the aitercd surface will be
greater than the original sphere surlace, though the cylinder
would still contain all the liquid. The distorted closed surface
would thus fill more than ?/; of the circumscribed Archimedean
cylinder; and the total resistance to all the waves within the
inner mass of liquid would exceed /5 of the total resistance
due to the liquid cylinder alone,
sphere would be increased by dS, so that if the original

That is, the surfuce of the

sphere surface be S = 47 +? the expanded  surface would

become S = S+d8 = 4 »2+dS; and the original volume
V=" »* would become
Vi= ]"+dl"= 10,5441 (53)

Fromthis application
of the Weierstrass-Schwars
mathematical theory of mi-
nimal surfaces to a fixed
volume of liquid confined
within  the Archimedean
sphere and circumscribed
cylinder, it follows there-
fore that waves passing from
all directions through small
masses of liquid of any
figure whatever, but with
greater resistance than air,
necessarily will give least
action, when the figures of
the iquid masses are sphe ri-
cal. If the liquid globes be
of appreciable size, the ac- . o _
: - . s e Fige s THusiration of a sphere and cirenm-
tion of gravity onthe figures * '% seribed eylinder, with volumos i1
of the Liquid will resist the
tendency to globular form;
for the surfacce tension is
superficial only, while gra-
vity penetrates a mass, and
the result is a correspon-
ding spheroidal figure.

These figures of Hmd- sphere surfice 5 45 0? s mil
drops evidently will be ot offer more than 23 as much
minimum  oblateness, or resistance to the passing waves as
i spheriicy, b g il e i
be determined by the pa-
lance of forces betyeen
gravity on the one hapqg
and surface tension on the
other. By equating the o}-
served compression due to
gravity to the calculated
wave action in the surface
tension, we may be able
to study the power of the wave action in the case of particular
fluids.  This method is somewhat analogous to that used hy
Quincke in his researches on surface tension and needs not
be further discussed at present.

the exact ratio of 2 c30 The il
lustration is here ingoduced  to
prove that it the eylinder be llod
with at tcompressible Hguid, and
the sphere surface  be dilated
into 47,7+ d.8 above or below, at

any partswhere the two geometrical
ligures are not in contact, the con-
tinwous fluid within the distorted

thus yields a rigorogs proot that
of all possible torms, o distorted
drop of liquid may taice, the sphere
offers minimum resistance 1o the
whole body of waves from all
directions: and s nature converts
falling globular drops into perteet

spheres, this physical factisa proof

that waves leessandy traverse the
universe in all dircctions.

|

|
\
f

J
|
I
J
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5. New Theory of Lightning, based on th
Accumulating Stress of the Acther at the Boundar
of Coalescing Raindrops, and the Oscillator
Discharge. '

(i) General remarks on the phenomena of atmospheri
electricity and lightning.

In Gaenror's Physics, transluted by “Athinson, 1 4% ed, 1893
N 995, we find that the treatment of the causes of atmo
spheric clectricity begins with the following suggestive ad
mission that these operations of nature are clouded in im
penctrable darkness:

»Although many hypotheses  have been propoundec
to explain the origin of atnospheric clectricity, it must be
confessed that our knowledge is in an nsutistactory state. «

Many observations are accordingly detiiled, but the
Physical cause at work is so completely hidden rom our
view that no intelligible conclusion can be drawn,

In the wave-theory of molecular forces, we hold that
all such Torces as surfuce tension are boundary effects of
wave-action; and as the boundaries change rapidly, when
the small drops are coalescing o farger ones, there 1s
change of aether stress ot the surface of the drops.  This
is called an electric clhiarge on e raindrops, and as the
process goes on throughout the clond, the derangement of
the clectric equilibriom becomes so pronounced that 4 dis-
charge occurs, which s called Hehming,

For e the condensation of the drops, the capacity tor
the enlarged drop to hold the collecred charge varies only
as the radius 7, whereas the amount ol clectricity accumulating
under the condensation is_ proportional to tie number of
drops colleeted together or the total volume of water,
and thus varies as the cube’ of the radius, which iy 4r
times faster than stable  electrie cquilibrivin will support.

Thus the tendeney 1o discharge increases as A2,

It is remarkable that surfuee tenston of a drop does
not increase with the size of the drop, which shows that it
5 a4 Loundary efieer, exactly the same whatever be the radius,
This i very wnusual with the forces of nature, and hplies
@otendeney to a decrease of the contral action in proportion
as the surluce increases, or ay 40 7% Hence if surface tension
be an clectric phenomenon, and the drops be condensing to
larger size, the tendeney to rupture the electric equilibrinm
at the boundary by oscillitory dischurge will increase as kr,
This corresponds with the known development of lightning
when the droplets coalesce into raindrops,

If the clectric tension or wether stress at the boundury
of a drop atains too high o value, it breaks away in the
form of oscillutions, as in the discharge of « leyden jar.
Different drops and different purts of the cloud are under
unequal clectric tension. And as the cloud of moist  air
(flled with drop-Leyden-jars, so to speak) is a conductor
having both capacity and inductance, the dischurge neces-
sarily Js oscillatory in character. A flash of lightning is thus
a series of waves like that shown by photography trom an
oscillograph in our laboratories.

If clectrodynamic forces control the motions of the
planets, as shown in the authors work of 1917, and in
AN 5044, 5048, it follows that all bodies are centres of
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waves propagated from their atoms, Thus every star or planet
is a great centre of waves; and the waves arc in the medium
of the acther, under an elastic power & == 689321600000
times greater than that of our air in proportion to its density.
In the First Paper, AN g5o44, it is shown that the
gravitational potential introduced by [Ww’nrr, 1782,

= [l e e adsdrds (54)
represents the accumulated stress under the corresponding
amplitudes of waves from the mass

*gdac

M = _“j‘_sa gduydrds (55)
thus making the potential have the simple form
IT== Alr. (56)

In the same way all electrical forces depend on wave-
action. In the Third Paper on the new theory of the acther,
(:\L\T 507()\ we have shown that an clectric current is nothing

bhut waves of a certain type about a conducting wire; so
that acther and electricity are dircctly connected in a way
which can scarcely be denicd. Hence as an clectric current

arranged in a certain
from it with the
into dynamie and

is simply ordercd waves in the aether,
way about a wire, and traveling away
velocity of light, it is natural to inquire
static electricity as we sce it in the clouds.

In clectrical investigations covering field
find that steady waves maintained along a wire may operale
as dynamic clectricity. Electrie current, for example, 15 gene-
rated by a dynamo out of the magnetic field of the earth,
which alwarvs exists. Hence as the lightning represents dynamie
electricity, due to discharge under accumulating acther
at the surfaces of raindrops, we should study it 1 connection
wave-theory as a whole,

a wide we

stress

with the
magnetic wave-field.

A valid theory of the lightning, conforining to the wave-
theory of physical forces, is therefore a most urgent desideratum

of science. And until this 1s outlined, in accordance with the
theory of clectric waves and oscillations, the mystery of the
lightning cannot be intelligently attacked.

Now since the aecther has an  clastic power » ==
689321600000 times greater than that of onr air in proportion
to its density, we sce that Jightning is a luminous effect of

wave oscillations in this enormously clastic corpuscular me-
dium, which accounts for the violence of the clectric shock
to material objccts of the world. The acther vibrations resul-
ting from lightning as an electric-wave agitation, naturaliy
produce waves in physical bodies, which are then conveyed
from the scene of the thunderbolt to other parts of the carth by
vibrations in the air, and thus only travel with the speed
of about feet per sccond.

This view that lightning is oscillatory is proved also
by experience in high telephone lines, which so fre-

1100

power

quently have their terminals burnt out by the waves induced |

by lightning. These injuries to the terminals are great sources
of loss to telephone companies, and clectric engineers thus
labor to relieve such inductions in their lines in the hope
of saving their terminals as much as possible

Nothing but a series of electric waves, invisible and
generally unsuspected, yet generated in the acther by the
successive discharges of parts of the cloud in lightning, could

which includes the carth's

o

9

3 02

cause these disastrous inductions, which travel with the speed
of light, gozooo times faster than sound in the air. The
lines so burnt out are interrupted and out of service at the
instant we see the flash, but the shock to the carth is felt
somewhat later, owing to the slow propagation of the earth
wave and the air waves, both of which travel with com-
paratively low speed.

We conclude thercfore that the terrific power shown in
the action of lightning has its source in the strain of the
enormously clastic acther, and its sudden relcase, through a
series of long waves like those of an oscillograph. This
causes the whole acther-field of the earth to oscillate, in a
cerics of waves long cnough to penetrate solid bodies. ‘The
serics of physical oscillations thus set up jar the very earth
violently where the lightning strikes.

(31} The molccular forces operating in raindrops are due
to waves traversing the world, and thus lightning depends on
such accumulating acther stlcsses at the boundary of the drops.
i In many treatises on the atmosphere it is noted that
i clouds are in general clectrified, usually positively, but some-

times negatively, and only differ clectrically from the carth
in their higher or lower potential. The formation of a

positively cicetrificd cloud is by some anthorities attributed
the disengaged from the carth. Our view, however,
is that the waves which rise to molecuiar forces are
alwave traversing the world, but the state of
vapar alove the carth, by condensation of droplets,
vary the resistince to the passing waves, and thus give rise
1o difference of clectric potential between the cloud and earth.

|

} to vapor
! give
the cloud, or

may

It s well knewn that the electrical capacity of a drop
is cqual to the radius; which shows that large drops have
an increasing capacity, but it augments slowly, as the cube
root of the mass. For if w be the mass, we have

=00 7O
f == V0" J (57)

and the capacity =213 onfar] (5%)

After condensation the radius of the llrge drop becomes

L Jin j=oo
P o= i/ P ‘ & ‘/)/, 7 *l/ ret == >ﬁ ri. (59)
i A = =1
Now when billions of such  droplets coalesce, the
capacity of the resulting drop increases as the cube root

of the sum of their masses; but the quantity of the clectric
stress accumulating at the surface of the coalescing drops
added. Hence we have:

“is merely

3 1. Capacity j=00
3
R =Z ’i . (60)
=1
2. Ratio of accumulating total charge to capicity
oS =00
Zm, R =" nZ;, R=kr?, (61)
7==1 =71
where 7 is the radius of the average droplet.
3. Accordingly, for equal drops, under the same charge,

the tendency to rupture the electric equilibrium is equal to
472 or increases as the square of the radius.

20*
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From this discussion it follows that the electric tension
on the surface of the droplets of water increases as the drop-
lets increase in size, in general as the square of the diameter
of the drops. The coalescence of the droplets to form rain-
drops is therefore the one chief condition requisite to the
development of lightning,

In the wave-theory of molecular forces, it is held that
the retardation of the waves entering the drop-, and their
corresponding acceleration on leaving the drops, gives rise
to "aether stress in the boundary of these globules. This
surface stress of the aether at the boundary is the cause
underlying surface tension. When the acther is so stressed
at the boundary, and the droplets are coalescing,  there
usually is a:changing electrical state, and this the cloud
is electrified.

If we consider the infinitely complex acther wave-field
about the earth, which we can form some
from figure 14 of the ‘Third Paper (AN 507¢1, Hlustrating
the earth’s magnetic field, we shall castly that it
Is not possible for droplets to coalesce without changing the
electrical resistance or total tension in the acther due to the
passing waves,

ereive

Before condensation this resistance, in
free wave movements of the aether, is proport!
total space occupied by the droplets of wuter, or 1o be cube
of their radii. Yet the capacity of a drop to hold
charge is proportional to its electrical capacity, or simply 10
the radius. In condensation, therefore, whereby muny droplets
coalesce into a single drop, the wave resistan.cc
proportional to the space filled with water, /7 =
or &% but the capacity for maintaining
only increases simply as A.

modilving the

snd to the

@ hixed

remains
Voot 1,
electric cquilibrium

Thus from the relatively inadequate capacity () of
the growing drop, compuared to the relatively rapid growth
of mass (/&%) there arises a tendency to rupture the electric
equilibrium, proportional to 22, This occurs on every raindrop,
so that the whole cloud becomes wlectrically
the condensation of the droplets; and us the process proceeds
at unequal rates in different parts of the cloud the increusing
electric stress (/A2 finally leads to the development of oscil-
latory discharge or lightning. This happens as soon as the
conductivity of the air permits an oscillatory release of the
increasing electric stress on the surface of some of the ruindrops.

charged, with

For observation shows that dry air is a non-conductor
of electricity, and therefore when the atmosphere is devoid
of moisture, a discharge is difficult, except m the form of
sheet lightning, so often observed in dry weather. Accordingly,
it will not surprise us to note that lightning develops chiefly
during rain, especially if there be an atmospheric commotion,
or storm, for changing rapidly the coalescence of the droplets,
which also may lead to the freezing of some of them into
hail. It is well known that hail usually accompanies most
violent thunderstorms.

(iii) Under condensation of globules with the electric
tension increasing as 4% a cloud or part of a cloud becomes
charged and forms with another part of the cloud, or with
the ecarth below, a condenser, — the intervening air being
the dielectric.
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As a flash of lightning may be several kilometres in
length, it is obvious that the electric stress accumulates on
the cloud as a whole, in respect to the earth below, which
is separated by the dielectric of the atmosphere.  Friction,
condensation of droplets, and similar causes tend to disturb
in the sky.
The battery power of a large cloud in respect to the earth
may correspond to 3sooocco cells, as long ago shown by
Dela Rue and Miller for a lightning flash a mile in length.

This enormous electric power accumulating in the con-
densing droplets makes the clectric tension too high for the
relatively decreasing capacity of the droj and tends to
rupture the eleetrie cquilibrium relative to the eurth below,
This indicates that some very active pi
work; and in view of the electro-dynamic wuve operations
ol nature us a whole, it is difficult to refer lightning 1o any
cause other than waves. ‘This physical cause alone would
make possible this accumulation of aether sticss at the
dury ol the globules of the clouds, because at this boundary
the wave movement changes suddenly, and the result is
clectrie tension released as lightning,

s,

wysical agency is at

boun-

In an address Lefore the Western Society of Engineers
at Chicago, 1920, ir. Chus. /” Steqwmelz, the eminent elec-
trical engineer, lias discussed the older and the newer theorics

te) )
of lightning. e savs thu expericnee proves that not over
1 pereent of the electricud discharzes tke place between the

clouds and the carii the other go percent being between

parts ol the cloud.
that dashes rom one o two miles in
length are progressive in their nacure,

puncturing ot a short space

He concludes
They sttt with the
between groups of drops out of
clectric equilibrinm, 20 or 30 deet apart, and spread until
the potentials are equalized to a value corresponding to the
voltage required to maintain the discharge in the damp air.
The period of the discharge is from o.00001 to o.235 second
for the slower-acting flashes of more uniform potential dis-
tribution.  Stedwmets
that only « swall fraction of

»

concurs in the view above expressed
the lightuing disturbances are
he breaks and

duce to dircct strokes, fre
wives with induced voltages

the vast body of ¢
burnouts being due to electrical
of from scooco

According to the report in the Literary Digest of Nov. 20,
the method of accwmuluting a charge ol 50000000 volts or
value on a cloud was explained as in-
volving an initial charge on small purticles of condensed
moisture, the initial charge being due to the position of the
cloud with respect to the earth. It wus explained that the
carth was surrounded by an electrostatic ticld with a gradient
outward from the surface. Moisture condensing at a distance
of one-half mile from the carth would be in a field at a
potential of 100000 volts to carth and would assume a charge
corresponding to this potentiul. By collecting into larger
particles the charge would be accumulated until values of
50000000 volts or more would be reached when drops of
rain were finally formed. Incqualities of 1 or 2 percent of
this value, between sections of a cloud quite close together,
would suffice to cause .a locul discharge which would result
in a redistribution of potentials and probably in an extended
flush. From the effects of direct strokes it has been estimated

to 1c0¢3s000.

possibly twice this
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that the flow of current may be anywhere from 1000 to
1ooc00 amperes, these estimates being based on the size of

the conductors that have been melted during the discharge |
of a stroke to the ground. The illuminating cffcct of lightning |
]

was used to estimate that the light energy of a flash might
be equivalent to ten horse-power-hours.«

The discharge is a release of clectric tension in the
aether at the surface of the drops, but it has to occur through
the medium of the atmosphere, in which the cloud floats.

As in Geissler-tube  experiments, the velocity is great, but »

less than that of light; and as the electric resistance changes
with the discharge, owing to induction in the clouds and
other masses, the path may appear zigzag, as shown by actual
flashes. Accordingly, although the clectric tension is in a fixed
direction, the direction alters with partial release, induction
and redistribution of clectric tension, so as to give the actual
zigzag paths presented by lightning.

It must be understood, in viewing these discharge
phenomena, that the clectric tension is developed between
the earth and cloud, or
of raindrops in different parts of the cloud. Therefore as the
discharge, in a group of drops, procceds from one part of
the cloud towards the earth, or towards an adjacent part of
the cloud, the local tension is released, and redistributed as
the flash advances; this ¢ives rise to a very sudden rear-
rangement of the clectric stress, and as the resistance along
the path also changes, by the release, the zigzag path naturally
results. In some cases parts of electrified clouds are so si‘m:\tmi,
that two or more discharges join together and we have
forked lightning.

Now in the case of the Teyden jar discharge, we have
scen that it 1s oscillatory, consisting of a series of waves or
surges in the medium, coming with such rapid succession as
to leave no impression on the eye, yet capable of being
photographed by a rapidly rotating mirror called an oscil-
lograph. In like manner, the lightning is an oscillatory
discharge, of the very same kind; and if we could scc the
surging of the medum, we should perceive a very rapid
movement to and fro in this agitation of the acthér along
the path, which thus becomes luminous because of the violent
agitations of the particles of the atmosphere, the length
from the cloud to the carth being so great as to make
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rather between billions of billions .

lightning onc of the most impressive and terrifying of the

phenomena of nature (sce fig. 6, plate 2).

6. Wave-Theory of the Adhesion of a Rain-

.drop to a Window Panec: Outline of the Cause of |

Capillarity and of the Perfcct Sphericity of Soap
Jubbles.

(i) Wave-theory of the adhesion of a raindrop to a
window pane. :

The simplest phenomena often give us the most light
on the invisible causes underlying the operations of nature;
and thus we shall examine somewhat carefully why a rain-
drop adheres so securely to a windowpane. No phenomenon
could be better known than this fact of every day observation.

It is everywhere obscrved, and fortunately we are in a position

to attack the problem presented by this phenomenon, because
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the refractive index of water, and glass, and thus the wave
velocities in the two media, are accurately known.

If, therefore, the adhesion of the water to the glass
be due to wave action, we shall be able to enter upon the
analysis of the forces with some degree of confidence. In
figure 7 we show a cross-section of a windowpane, with a
drop of rain adhering to it. And we remark that in glass,

“water, and air, waves of light would have velocities in the

ratio of 1o, 12, 16: for the refractive indices are inversely
as the velocitics, and the approximate values of these indices are
Alr-water, 7 = 1.33 = '/},
Air-glass, 7 = 1.60 == "/, .

Accordingly, the following figure is very suggestive; for
we see immediatelv the forces generated, in the propagation
of light. It thus becomes
clear that in_  passing
from air to water, waves
of fight are decreased in
velocity by /s or /.

In passing from water to
‘f‘_ Logewaver glass the velocity likewise

‘ 1o e changes from P/5t0 1%/,
: which is '/s. The wave
L w motion thus changes velo-
i L R - city and generates astrain
‘[‘ i in the laver of aether and
bl matter containing the sur-
P ‘ix"‘\ face of the water, and
P ?;;’« ;_iu‘ - likewise at the surface
e i between the glass and

t? ; the water.
‘7 | The tension of the
molecules due to the

. Thustration of the adhesion of a acther stress of the sur-
raindrop to a windowpane, and of face of the water 1s cal-
lh-(* suldden change in the velocity |od surface tension; that
of the waves at the boundary of i
the three media, air, water, glass, 1)0!\\(‘911 the water and
upon which the adhesion depends., gl:lSS 15 called ﬂ(ihCSiOl‘l,

and  makes the water

I'rom the above figure we per-

ceive that Hght waves passing from the air to the raindrop

are delayed at the outer boundary of the drop, and thus the
wave front presses inoon the water, so as to give the surface

tension observed.  On passing on into the glass therc is a

sceond delay of the wave front at the boundary of the glass;

and this acther stress or pressure over the surface between
the water and glass causes the adhesion by which the water
adheres to the glass.

adhere to the windowpane.

"I'he raindrop, however, adheres to itself somewhat more
strongly than to the glass; because if the glass be inclined
and jarred, the water will run down and fall off as a drop,
leaving merely a thin layer of moisturc on the glass. This
recognized and obvious effect will hold for waves passing
from the air to the glass, as shown in the upper half of
the above figure.

But we must consider waves from all directions, and
thus we ask what will happen if the waves move in the
opposite direction, and have already traversed the glass, and
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are leaving it to enter first the water, than the air? In this
case the effect will be as shown by the arrows in the lower
part of figure 7. As the velocity in glass is small, the waves
will speed up on passing from glass to water, and again on
passing from water to air. And in both cases they will react
or »kick back¢, giving an aether stress or adbesion of the
water to the glass, and at the outer boundary a surfuce tension
next to the air. Accordingly, whether the waves come from
the air or from the glass they will give the acther stresses
due to change of velocity, and result in the molecular forces
observed.

The theory here briefly traced enables us to understand
the adhesion of the rain drop to the windowpane. It is beyond
doubt a wave phenomenon, because if the be hitled with
waves moving in all directions, these forces will necessarily
result.  ‘This will hold true for light waves of the visible
spectrum, or for waves of shorter length which are found to
correspond to the radius of action for capillurity, as observed
by Riicker, Reirhold, Kelvin and others.

acether

(i) The case of mercury, which gives w depressed
column in a tube, and apparently is repelled by the glass.
The above explunation of the adhesion of raindrop

to a windowpane outlines briefly the wave-theory of capil-

larity, but a liquid like mercury which does not wet the
glass must be examined. It will be found that the wave-
theory will hold for the case of mercury as well s for that

of water, but it is necessary to assume great resistuice o the
acther waves in the mercury, which is what should hold in
the propagation of these waves through this dense medium,
For in his experiments.at the Physical Laboratory in T'urin,
1919, Professor (. Aajorana found that even the long waves
of gravity are sensibly intercepted by a layer of mercury,
(cf. Philosophical Magazine, May, 1920, pp. 488—50.).

Iig. 8. Tllustration of ordinary capillary phenomena, for water und mercury.

All we need to do to explain the negative
mercury to the glass tube is to take the velocity of propagation
of the waves in the several media approximately as follows:
air 16, water 12, glass 1o, and mercury about half that of
glass, or 5.1) These numbers are approximate only, and in
the case of mercury the value is assumed, yet they are
sufficiently exact for our present purposes. And thus we see
that if mercury offers more resistance to the passage of waves

') On the scale here used the figure for mercury ought to be

adhesion of

|
Jﬁ
|
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than glass, this fluid will be repelled by the glass tube, and
the column of this liquid will be depressed, whereas water
and similar fluids are elevated.

This explanation is not so very different from that put
forth by Zaplace in his theory of capillarity a century ago;
for this great geometer expluined the forces acting on mercury
relative to a glass tube as negative, and by his analysis of
the torces assumed to be sensible only at insensibie distances,
obtained a very satisfactory theory of the depression of mer-
cury in capillary tubes. The present theory based on wave
action i, however, more logical, and hus the advantage of
showing why the forces are negutive, and can act only at
insensible distances. ‘

I mercury will sensibly intereept long  gravitational
waves, as Jlajorarnae shows, still more will it resist and
quench the shorter waves active in capillarity.

The thustration, fig. g, pl. 3, of the increasing depression
ol a mercury column with decreasing diameter of the tube nuy
direet prool off the close similarity of the
clevation of water capillary tubes
with those which depress the corresponding column of mercury.
baoth

with the nu

be regarded ws
forces which produce n

IF'or 1n cases thie phenomena observed become more
ol the column the water

sinking relutively to

extreme —
higher

the level of

rrowing

rising and e sereury lower,

the generad free =urtace,

This effect s well shown in tigure o, ig
modificd from a work on Practicul by Zacd and
Daves, the Machillan Co., New York, =4 Such a
contrast in - elevations of liquid columms would seem totally
inexplicable without a simple and direct theory hike that here
presented. And i we can prove that with the narrowing of
the tubes, wave action may increasingly clevate the hCIght
of water In capillarity, it will automatically establish the same
cause for the depression of the level of mercury, in similar
tubes, which is observed to become more pronounced with
the narrowing of the wibes.

About two centuries ago iU was observed by Hawbshee
that 1t two vertical windowpanes be accurately set at a small
angle of mutuad Inclination in a of the water
of a rectangular hyperbola, showing
that In such capillarity the lifting force varies inversely as
the diameter or weight of the column to be lifted. I have
recently made some observations on the form of the curve
of depression for mercury, and confirmed the same law of
the rectangulur hyperbola referred to its asymptotes. Whercfore
it seems impogsible to doubt the wave-theory of these capillary
phenomena, the cause of which long remuined enigmatical
and even bewildering to nutural philosophers.

pilate 3, shightly
Phivsics,

1917, .

basin water,

hine rises in the form

In Atkinson-CGeanot's Physics, p. 1003, it is shown that
the conductivity of mercury for electrical waves is low, 1.6,
while for silver it is as high as 100.00, and for copper 9g.9.
Likewise, {p. 707), we learn that gluss offers more electrical
resistance than air and other dry gases, while water is a
conductor offering much less resistance than cither air or glass.

Accordingly, it waves of acther, inclined to the level
surface are to pass through water, in contact with glass on
one side and air on the other, it will follow that the level

not larger than 1, if we judge by the electric resistance of mercury.

(S
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of the water should be raised in contact with the glass and
be lowered on the side towards the air, in accordance with
observation. We shall go into this at greater length in dealing
with capillarity, and at present only dwell on it long enough
to point out the verification of the wave-theory,

(i1} The perfect sphericity of soap bubbles explained
by least action to passing waves, which makes the two

concentric sphere surfaces also minimal. surfaces.

Just as the oAredimedes-11vicrsirass-Schiars theorv of
minimal surfaces, under wave action, will explain the molecular
forces which give spherical or spheroidal forms to small
masses of liquid; so also will it explain the molecular action
of films in such phenomena as soap bubbles.

For a soap bubbic is made up of two concentric sphere
surfaces — the outer surface and the inner surtace. The

pressure of the cushion of air within the bubble prevents it
from collapsing; and the waves traversing the outer surface
act in the same way as in the case of a sohid drop of liquid,
and thus round up the mass from without, 1

On the inner surface there 1s an analogous wave pressure
directed towards the liquid and thus acting in an outward
direction. This i1s not from the contined air, which j5 a

discontinuous cushion, but from the infinitely fine network of ‘
passing waves. ‘The resistance to the waves through the entire
bubble, with the double Lquid wall, is least when the path
in the water is the shortest; that 1s, when the waves go as
near the centre of the hoilow sphere as possible, as may be
shown by mathematical analysis. Butit may be scen immediately
from the geometrical indications of the aceompanving figure.
Just as the filim of
witer 1s pressed together
into a thin laver, by the
imward  passage of the
waves from the outside,

so wlso will the thickness ‘

of the bubble as a whole | Puametes Lenst Thil m,ﬂj‘_\

be compressed by inside ‘ \ o | /‘

wave pressure everywhere // /
N /

directed towards the out- P

stde. For as the waves
near the tangent to the
inner boundary ot the

fluid they react acainst
o . N I
Fig. 10. Magnified cross section of a soap

;r
|
|
|

the adjacentliquid, owing
to the greater resistance
along these  adjacent
paths.

By this reaction on
the tnner walls the hquid
is pressed to itseil from both sides, and the layer between
the outer and inner surfaces made as thin as possible. As
the waves keep the confined layer of liguid symmetrically
compressed on Dboth sides, rupture of the soap bubble is not
very easy. In time it comes about, however, owing to the
water trickling down under its own gravity, and thus rounding
up into a liquid sphere or spheroid formed right on the
lower side of the soap bubble, as it becomes unsymmetrical.

(iv} Direct proof of wave pressure at the boundary
of a drop.

bubble, showing minimum thick-
ness of liquid film at the centre,

and least resistance o waves pas-

sing in that dircetion, which ex-
plains the central contraction and
symmetrical form of a soap bubble.
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The celebrated argument made by Jaxwell, Treatise
on Electricity and Magnetism, 1870, §§ 792—793, and the
well known expertments of Aickols and Hwll and Lehederw,
1901, shows that acther waves do exert pressure against any
surface on which they impinge. Yet in order to have an
objective proof of this important theorem drawn directly from
nature, by observations which we can easily verify, it is ad-
visable to go into this reasoning somewhat more carefuily.
We therefore consider the form and action of a series of
steady waves in the sca.

1. It is well known that when the waves of the sea
approach the shore, where the water is shallow, the motion
of the base of the wave is retarded, while the top of it
tends to move on as before. The result is the formation
of breakers: the base of the wave is so held back that the
top becomes steep, and finally curls over till the wave breaks
in a whirling rush ot foan.

2. Now thiz delay of the movement of the base causes
the wave to exert a pressure against the shore which resists
its advance.  Aceordingly we may thus verify Iaxwell's con-
clusion that waves excrt pressure against resisting objects.
We sce also the effects of such resistance in the wearing
awayv of the sea shore when exposed to the dashing inrush
of the waves. Sand and soft carth are carried bodily along
with the waves, and even solid rock is slowly worn away
by the incessant beating of the waves.

5. In order to make an experimentum crucis directly
apphicable o the problem now in hand, we shall imagine
an island table-fand in the open sea covered by the water
to a depth comparable to the length of the waves which
pass over it Under these circumstances the waves will be
retarded as they enter upon the submerged table-land; and
in advancing across 1t thev will be shorter and steeper as
shown in figurc 11. ‘This is similar to the vertical surging
of the surface, in a stream, which thus shows where rocks
are in the bed; for the resistance of underlying movement
manifests itself in altcrations of the surface, so that the fluid
is thrown into surface irregularities.

4. Accordingly, we perceive that as the resisted waves
advance over the submerged table-land, which is not taken
to be near enouch to the surface to form breakers, they are
shorter and steeper than the original waves as they come
in from the deeper sca.

Now what will happen when the resisted waves at
length depart from the table-land, and again enter the deep
sea on the opposite side?

Iirst, it is evident that the waves will take on greater
speed in the deeper water; they will therefore become longer
in the freely vicldmg decp sea, just as they become shortened
by resistance as they ran over the shallow water.

Fig. 11. Ilustration of the pressure exerted by sea-waves
against a submerged island plateau.

N
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Second, as the longer waves, moving more freely into
the deep sea, have the elements of their rotations accelerated,
this more rapid whirl of the water will exert a backward
pressure against the submerged table-land. Accordingly there
is not only a pressure against the resisting land on approaching
it, but also on leaving it.

5. We may easily satisfy ourselves of the correctness
of this conclusion by the following independent experiment,
Suppose an athlete standing on a spring board, and imagine
the whole foundation carried along at a uniform rate, as if
moving at a fixed speed on a ruilroad track. If the athlete
wishes to accelerate his speed temporarily he will have to
jump forward, by the exertion of his muscles, which will be
sustained by the elastic rebound of the springboard. In other
words, to give the athlete a greater veloeity, forward, he must
kick back against the foundation on which he is transported
along. This is analogous to sea waves speeding up on leaving
the submerged table-land: action and reaction are cqual and
opposite, and this general law is applicable 1o all nature.

6. Now consider the waves of light entering the raindrop
and leaving it by the paths shown in the forcgoing figure 4.
Then, we know from Maxwell's reasoning, and these practical
experiments, that there is an inward  pressure against the
surtace of the water at the point of cntrance, and a cor-
responding reaction against the surface at the point of emer-
gence, because there is a sudden change of wave veloeity
at both points. This is the physical basis of our theory of
surface tension.

a

7. 1f waves fill the world having all directions and
wave lengths, it will follow that at the bounduary of liquid
drops, there is a sudden transition: the waves enter from all
directions, but they also leave, in all directions, along various
paths. And in ‘every direction within the drop the speed is
less than the original speed. "There is thus a surface reaction
towards the centre, owing to the decrease of action at the
boundary, but coming and going,

7. The Fundamental Facts of Observation ap-
pear to furnish Criteria for a Wave-Theory of
Capillarity.

(i) Detailed examination of the distortion of the wayve-
front and reaction of the waves in air, water, glass,

1. Consider waves traversing the universe, in all POs-
sible directions, und of any required length. Wihat wil happen
when the waves pass from air to water and glass respectively
Take the refractive index of water atzr == 133, und of glass
at about 1.60; then it is evident that the velocity of waves
of light or chemical activity will be swiftest in alr, next
swiltest in water, and slowest in glass. The relative velocities
in the media air, water, glass are as 16, 12, 10 respectively,

2. Cuase 1, waves passing [rom air to water and glass.

Let figure 12 represent a section of plate gluss partly
surrounded by water: the ray will traverse the successive
media, air-water-glass, and the wave surface will suffer  dis-
tortion as shown in the figure. As the ray spreads out,
under the effects of refraction, and the velocity is decreased
both in the water and in the glass, the wave front will take
the convex form shown by the heavy line.

e of the w

Hlustration of (e disturt

Fig, 12, (e

ront when TANS puss Irom wir o water

and glass in CONLACE, gIVIng Tise (o e

observed capillary torces,
3. This change of the wave front rom u plane surfice
o a convex surface will occur right at the surface of the
waler and glass. The ray » will spread In two directions,
and its progress is most resisted by the glass and less resisted
by the water at its contuct with the glass. The water is thuid,

while the glass is solid; and thus if the wave front is to
remam: continuous, the fluid must so adopt itsell to the glass
45 1o secure continuity  —- that s the level of the water

must rise around the gluss,

4. Havwcdl showed (Treatise
netism, 1850, § 793} that all
& surface on which they fall,
against the iquid surfuce, it will

on Electricity and Mag-
WHVCS eNert pressure against
it there pressure
thereby be carried up around
- Thus it is easy to sce why waves

Hence be
the glass which is solid
make the Liquid fil
the phenomenon of capillarity,

m rise around the gluss, as observed in
The argument  and
lustration will apply to all cases where the wives descend.
For if they emerge on the opposite side of the glass, the
reaction of the waves will carry the water up on that side
also, as shown by the heavy line on the right.

5. case in which the waves
ascend, as shewn by the arrows in the lower part of figure 12,
of a cross-section of the wave front,

This figure shows what will heppen in Wb cases of
ascending waves, propuagated more rapidly in air, less rapidly
in water, and least rapidly in glass, On the right the reaction
of the emerging wave front will force the level of the water
up about the glass, by the reversed wave pressure p,

above

Let us now consider the

(ii) Detailed study of the distortion of the wave front
when the waves are propagated in air, glass, mercury,
I. In the first instance suppose before that the

as
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waves descend from above, then the cross-section of the |

wave front is shown by figure 13, plate 3.

than in air and glass, then the refractions and reactionary
pressures to the wave surface as it advances will be of the
type here picturcd: the waves escaping from the mercury
and specding on more rapidly in the glass than in the
mercury will by the rebound, —p, press the fluid back from
the glass, on the left. On the right, the increased resistance
to the waves due to the mercury, as the waves lcave the
glass and travel more slowly in the liquid mercury, will
push that liquid away with a positive pressure -+ 4.

(1) The result is a forcing of the fluid downward, by
rebound, on the left; and forcing of it forward by cqual
direct pressure on the right. In both cascs therefore the
mercury is pressed away from the glass. The mercury therefore
scems to attract itself more than it does the glass: which 1s
the usual explanation of the negative capillarity of mercury.
But we must also consider why the tube of mereury is below
the normal level of the liquid, and hence we proceed to
view the action of ascending waves.

By ot [ v de B U p (s prg?) ] fiB (g (1o p2?) S} = a7 ccosm

where ¢ denotes the aircumference of the tube, and the angle

i

: part of figure 13, plate 3.
(a} TIf the resistance to the waves in mercury be greater |

i decided downward pressure.
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2. Wavies from below would act as shown in the central
In all cases the level of the mercury
is depressed.

(a) On the left, the speeding up of waves leaving the

mercury for the air and glass, gives a reaction with negative
pressure, — 2, and the mercury is forced back, or lowered
around the glass, as if the fluid were repelled by the glass.

(b) On the right, the increased resistance due to the
mercury, when the waves emerge from the glass into the air
or mercury gives a direct action or positive pressure, forcing
the mercury away, the reaction at the corner giving the most
Thus the level of the fluid is
fowered, whether the waves descend or ascend; and, as the
waves come {from every direction, the apparent repulsion of
the mercury from the glass is symmetrical, as found by
obscrvation.

3. ‘the change of level in the case of a column of
mercury depressed inoa tube is due to the above causes
also. T'or when the mercury is acted upon powerfully on
all sides, the action conforms to Laplace's integral (Mécanique
Cdleste, Liv. N, supplement z)

(62)

@)

is a constant found by obscrvation.

To explain this formula, we remark that if #=/{v,1,2) be the cquation of the spherical surface of radius of cur-

vature /- touching the capillary surface at any point,

Ay = [(Cor; Ox)7 = (Cor V)2 (00 /C7T "2 (63)

The z-axis 18 vertical, and Co/Co==1; Cu Cx = --p, iulr= —y (64)
Crfls == [ 1+, Cx) == {0 €117 T2 == e pPee g?) e (63)

Crfon = (1= (CafCa)? 4 (Cor /O] i Cnitr = — (14 p 4% "2p (66)

8 /by == (1= (BufOrn)2 o+ (ErfCy)?] T Cufty = — (P g?) g (67)

Accordingly, if ¢ Dbe
o the density of the fluid,
the force of capillarity, we
on the above integral:

the acceleration due to gravity,
and
get Laplace's equation, founded

(68)

After deriving the above double integral and this for-
mula Laplace remarks: »Thus the mass of the fluid elevated
above the level by the capillary action is proportional to the
circumference of the scetion of the inner surface of the tube.«
That is, the lifting force is proportional to the extent of
the glass surface acting on the fluid, — which again very

oo lT=1,77ccosT .

I" the volume elevated by

L.et us now recur to the theory of the rainbow, and
note the shortening of the waves within the drop shown in
the foregoing figure 4. As the velocity of the aether waves
is changed suddenly at the boundary, both on entering and

! emerging from the drop, the pressure exerted at the boun-

- dary 1s obvious.

strongly points to wave-action, exerting sensible influence

only at inscnsible distances. ‘The tube of glass is solid and
cannot be raised, and the reaction simply sinks the central

column of mercury as if repelied by the glass. Hence the |

marginal depression of the fluid is also accompanied by a
lowering of the central column below that in the exterior
basin of mercury.

4. Trom these sketches of the wave fronts taken by
liquids of various power of resistance, under wave action
from all directions, we perceive that the fundamental facts
of capillarity established by observation agree qualitatively
with -the wave-theory. A better concordance probably could
not be expected, and it is difficult to imagine such conformity
in theory without a true physical cause underlying the observed
laws of nature.

(i11) Method of calculating the kinetic pressure when
waves are resisted.

A mass of water m, in which waves are advancing
with the velocity », has the corresponding kinetic energy
Yymwv? == /. After a certain amount of resistance, suppose
the velocity of the waves becomes vy, then the kinetic energy
becomes less, as »y < v, and we have:

Foy =y ® (69)
Therefore the loss of energy due to retardation of
velocity of wave motion becomes:
E—F = m(vt—uv?). {70)
Accordingly, since a decrease of depth delays the
propagation of sea waves, and constantly reduces the velocity,
we infer that so long as the waves of the sea beat upon the
shallow shore, there is decrease of energy in the waves. Part
of the energy is lost by the dashing of the water against the
shore. But any action which delays the speed of the water
is equivalent to holding it back; and when the rush of the
water is hold back it exerts a steady pressurc against the

the

| resisting shore.
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If the shore were made by an artificial platform of
boards, under water, the inrush of the waves would tend to
sweep the platform away; and observation shows that on the
sea shore vast banks of sand, and loose gravel are hurled
inland by the whirling of the inrushing waves against the
resisting sea beach. These phenomena are well known, and
are familiar to all observers of nature.

Let us now consider what will happen when aether
waves 1n the form of Hight, heat, electric current, etc., fall
upon a medium in which the velocity is less than in air.
As the aether waves travel less rapidly in the luid than in
air, there must be an arrest or stopping of the velocity of
the wave motion at the surface of the denser medium. Here
we have a definite physical boundary, where the velocity
changes suddenly. In any two media, the velocitics are
directly as the refractive indices: thus i air-water 7 = s
and we know by fvwcanlt's experinient of 1853, that the
velocity in air is to that in water about as 4 to 3.

But the energy of the wave motion is s the squares
of the velocities; and hence for airswater 7 = Y/, we have
= 1% and wt~1 = . Accordingly, when the aether
waves pass {rom air to water, they are so retarded at the
boundary as to suddenly surrender I of their kinetic
energy to the molecules constituting the boundary of the
liquid. This loss of energy at the boundary

R Yom (v —02) = o (71)
is incessant,

Along with the loss of energy as the ray enters the
drop, there is refraction, dispersion, ctc., such as we see in
the rainbow. In his celebrated article Light, Encycl, Metr.,
S 561, Sit Foku Herschel dwells on the fact that the forces
producing refraction or dispersion are of practically infinite
intensity. For the light not only is retarded in its forward
motion, but also turned out of its rectilmear course, and the
waves have increasing dispersion with decreasing wave-length.

Moreover, since on leaving the liquid drop for the air
again, the velocity of the waves increase from about 3 to 4,
this increases the energy in the acther waves in the ratio of
(4/5)% so that the waves outside, in virtue of speeding away
with an energy measured by #° have #*—1 more energy
than those within the drop. Hence the receding waves react
on the boundary of the liquid drop with an energy amounting
to ’/y of that they have in free space.

Taking the refractive index as the most certain of
physical data, we have: glass, » = 1.608; water, 1.336;
air, 1.000.

Thus the wave disturbances travel 1.608 times faster
in air than in glass; and 1.336 faster in water than in air.
The progress in water, however, is also faster than in glass

o
by the differences:
Air-Glass 0.608 = y—y
Air-Water 0.336 = » (72)

Water-Glass c.272 »

Accordingly, from these data on the refractive indices,
and the easily verified phenomena presented by sea waves, we sce
clearly that the inward pressure of the aether waves at the
boundaries of liquids and solids cannot be denied. 'This

pressure is easily shown to be in dynes per sq. cm.:

|
|
|
|
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Yo o? = 2767 a? g p? (5
where ¢ is the density of the medium,
@ the amplitude of the waves,

When the waves are resisted at the boundary of a sol;
or liquid body, the refractive action #%—1 enters as a factc
and the loss of energy must be introduced. Thus on enterin
and on emerging from such boundaries the energy of th
wave motion becomes

v the frequenc

£0= 270" a% g v* (n?-- 1) " (74
as already found in section 2,

8. Geometrical Criteria forthe Typesof Minima
Surfaces possible in Nature, and their
Significance under the Wave-Theory,

Physica

i) The geometrical criteria for minimal surfaces recog
nized by Schwars.

In his Gesammeite Mathematische Abhandiungen, vol. 1
1890, Berlin, pp. 325-329, Prof. /7. .1, Scdeears, the eminen
geometer of the University of Berlin, has condensed  the
results of his extensive researches on minimal surfaces. |
5 not practicable to develop his results in any detail here
but we renrark that the final Cquations resemble those o
Lapluce Tor the surfuce of the fluid clevated in capillary
tubes; and that the criteria were begun by Zuler and have
been fmproved by later geometers — Laplace, (auss, Roberts,
Ricmann, Felles, Heierstrass, Scir:.

Let &, 9, 2 denote the recianguiar coordinates of
point of the minimal surface, The coordinate s may be
considered as a function of the two other coordinates X, 7,
as in the capillary formula of Laplace above explained.
Moreover for symmetry and simplicity we put:

/7 == 0;/2\, g == 8‘:/8_1"

any

r o= a"s/wf.\‘f, s = 0%/0x 5;1', = 5'-’5/"8»13-' . (75)
/[’ = (1 +/>2~+~(/2)"'1“'2A (5“/7 Ny (76)
LR 1 R = (e pte ) el +y7) r+

—apy s (e
—p L= {1 = pe gt

(p—
- —

= —»{//)‘_]'(I—F/‘)gﬂ—(/:)l" (78)
dS = (142442 da dy (79)
S = ff( L2402 da dy (80)

In this double integral the integration for the surface
Is to be extended to all its elements. Under these suppositions
we have the differential equation for the minimal surface:
(05/0x+-0y/0y) dx dy == D R+ 1 R) AS— 2ds (81)

of which the integral becomes:
28 = J‘J./)( VR 41 2,) A8+ } (4 dv+Edy)

e

(82)

The double integral is to be extended over the entire

. surface considered, and the single integral over all elements

of the boundary taken in the sense indicated by the derivation
of the formula.

Schawars remarks that if we apply the tormula thus given
by Fellettin 1853, (Sur la surface dont la courbure estconstante,
Liouville’s Journal de Math. pur. et appl, Tome 18.163~167)
to minimal surfaces, the theorem indicated i equation (82)
will hold true. Yet another proof may be derived by the
following process.



317

5130

318

We take the normals as drawn from every point of the surface, and lay off thereon on the same side of the surface

the length /.

But there is another expression for this volume as

= ok S ah [ 2 (1 Ry 1 ) AS o2 [ (2| R R) AS 1 o2 ff 1Ry 1Ry

In this equation X, ¥, Z denote the cosines of the
angles which the normals to the surface make with the
directions of the coordinate axcs, and the quantity

D= Xx+Yyp+Zs. (85)

The double integrals are to be extended over all elements
of the surface, while the single integrals are to be extended
over all elements of the boundary line.

By comparison of the cocfficients of the terms in (83) .

and (S4) multiplied by /4 and /47 respectively, we find the
cquations:

Ny 7
‘ Xy sl
dadrds!

2.8 =— ff/’(l//\’l + 1/ R,) S+ (86)

o/

o 7S AR
//()—4—~)>d%———2// R U
oS NE Ry /“/“ dVd Yy dz

It 1/R A+ 1/R == o, is the condition that the
curvatures on the opposite sides are cqual and opposite,
equation (86) gives Sehwars's criterion for the area of a
minimal surface (p. 178). In less rigorous form this criterion
was first indicated by fler, but [l eierstrass and Schiwars have
greatly improved the demonstration. Morcover Sedwars has
discovered from theory a new surface
experiment, as shown below.

which

afterwards verified by

Minimal Surfaces of special physical interest.
1. 'The sphere,

At 2 (88)
2. The spheroid,

—— I.

(80)
3. The spherical soap bubble, a film of liquid hounded

5/t (1 =)

.\""/rz"’—f‘ (yl'('

by two concentric spheres:
AP+ 5% = 7 outer surlace,
w252 = % inner surface. (90)
4. Surfaces with equal but opposite curvature at
every pomt, R 1R = o, {(g1)

{see figure 14, 15 on plate 3.)

5. Surfaces stretched from fixed {rames,
under gravity (see figure 16).

6. Schiwars's theoretically predicted surface afterwards
experimentally verified.

The accompanying figure 17, from J/Foincaré’'s Capil-
larité, Paris, 1895, p. 66, exhibits to the eye the form of
one of Prof. Scwarz's helicoidal surfaces, which he was able
to realize experimentally.

[et the volume thus arising be denoted by 7, and we have
7= S+ a2 [ (1) Ry 1) Ry) dS—+1u2 (1] RyR,) A

(87) |

and Dbending '

(83)
follows:
Jas+ ok [(1/ R, Ry) 45+
X vzl "X vz (84)
1 . by1/ g2 4
-+ /9// IR o /,;/1' x y
. ldvdyds! . dXd Yd/\
;\_/4/\
?
e —
-2
‘ :
I'ig. 16, Tlustration of a cylindrical V7
soap Olm - drawn out by 3
separating two wire frames E ° F
towhich the ilmisattached.

Fig. 17. Zoincaré’s  figure
of the helicoidal
minimal  surface,

. first  theorctically

i predicted by Prof.

| Schwarz, andafter-

! wards verified hy
cxperiment.

M. Schwars a pu réaliser expérimentalement cette

surface” d’¢quilibre. ¢

»Pource Ta, il tend un il suivant 'axe A4/ d'un cylindre
de verre au moven de deux fils metalliques CD et £/ s’appuyant
sur bases du eylindre. Ces deux fils étant paralleles, il
forme une lame plane s'appuyant sur les trois fils 45, CD, KX,
Iin tournant €70, la lame se déforme et engendre une surface
LCD7 passant par A/ et coupant normalement la surface
Cette surface est un helicoide.«

les

Cdu cylindre.
quelques précautions on peut obtenir ainsi une
surface & plusieurs spires. Si on supprime le fil vertical A7,
“ I'hélicoide n'en reste pas moins une surface d’¢quilibre, mais
alors 1'équilibre n'est plus stable et il est impossible d'obtenir
. expérimentalement une surface a plusieurs spires. M. Schwarz
I a méme constaté que si, apres avoir formé une telle surface
a laide du fil central, on coupe ce fil, la lame hélicoidale
disparait et se transforme en deux lames planes fermant les
bases du cylindre de verre.« :

»Avee

(i1) The types of minimal surfaces which would result
from waves coming from all directions.

These minimal surfaces obviously would be classed
as follows:

1. Sphere surfaces, around liquid drops of any and
every description, in accordance with observation, for all
| natural liquids known in nature, or produced artificially from

21*
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solids by the application of high temperatures. The perfect
sphericity of figure for the globules implies that the waves
come and go in every direction, that the pressure of the
entering and the reaction of the departing waves on the
average is exactly central.

2. Hollow spherical globules, such as soap bubbles,
which have the liquid enclosed between two concentric sphere
surfaces. These fluid films are perfectly symmetrical about
the centre and tend to become thinner by the external and
internal wave pressure at the boundaries. The compression
of the liquid layer on the two surfaces of the bubble increases
the elastic power of the aether and matter enclosed between
the concentric surfaces of fluid, and thereby gives the filn
a certain tensile strength, as observed in soup bubbles.

3. The next most natural class of minimal surfaces
would be those which fulfill the condition 1/#,+1//#, = o,
as first given by Michael Roberts (Liouville's Journal de Math.
pur. et app., 11.300~312). Reberts' paper bore the title: Sur
les surfaces dont les rayons de courbure sont dgaux, mais
dirigés en sens opposés. At the time of his investigation no
one had the slightest idea why the curvature had to be equal
but opposite at every point.

4. Now, under the wave-theory, we see that if waves
come from every direction, and therefore also depart in every
direction, after traversing the layer of fluid, in the minimal
surface, it would be necessary for the curvature to be exactly
equal and opposite at every point, — otherwise an unsvin-
metrical tendency in the liquid film would resu't, from the
direct pressure of the entering and the reaction of the de-
parting waves,

5. This type of minimal surfaces is actualiy observed,
and as the mathematical criteria are rigorously fuliilled, the
question arises whether any other cuuse except wave action
could fulfill these geometrical laws of minimal surfaces. \We
may hold that no cause other than wave action could conforn
to these rigorous criteria, because of the infinite order of
accuracy involved in the theory and found by observation
to be fulfilled by liquid fllms in actual practice.

6. Thus we conclude that under wave action the only
two chief types of surfaces which could result are:

(a) Solid spheres or drops of liquid, with the modi-
fication (b).

(b) Bubbles, symmetrical about a centre, or other double
sheeted films symmetrical about an axis, on which the surface
15 extended. Symmetry is a fundamental condition of stability,
as when a sheet of soap suds is stretched on a plane ring,
symmetrical on the two sides.

(c) Minimal surfaces fulilling the geometrical criterion
of equaland opposite curvature utevery point, 1/ &, +1/R, =o.

7. A profound argument could be drawn from the theory
of probability to the following effect:

{a) The rigorous conformity of the complicated surfaces
which would theoretically result from wave action with the
surfaces fulfiled by liquids in actual nature, cannot possibly
be due to mere coincidence.

(b) In view of the extreme rigor of these geometrical
criteria, as applied to actual liquids, the chances against any
theory of mere accidental coincidence is more than infinity
to one,

2
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8. For the disposition of the molecules in the required
films involves the arrangement of an infinite number of these
molecules in perfect order, in three dimensions, and thus the
observed coincidence of the liquid films with the geometrical
minimal surfaces, becomes at least an infinity of the third
order (207} to one, that the observed coincidence rests on a true
physical cause, which therefore can be nothing but wave-action,

9. 'T'ne fuct mentioned by fvincard (Capillarite, p. 66,
1893) that Sckwars concluded from geometrical considerations
what form a certain helicoidal type of surface should take,
and on the basis of this geometrical prediction it was shown
by experiment to really exist, is a very remarkable example
of the laws of geometry being used to [uifiil the process of
physical discovery. It is only established laws, tounded on
the true order of nature, which may thus be used to ;_;uidc
the explorer of the physical universe.

ro. ‘T'here are many examples ot theoretical discovery
handed down in the history of science.  In all the celebrated
cases they rest on the muathematical application of true laws
of nature.  Laeplace, who used this method to discover the
cause of the great inequality in the mean motion of Jupiter
and Saturn, 1785, regarded the confirmation of mathematical
theory by observation as the sublimest of triumphs.  Stoilar
views have Deen held by the successors of the illustrious
author of the Mdcanique Céleste, as in the theoretical dis-
covery of Neptune by Adams and Zeocrsier, 1846, and of
external conical retraction by Sic [T A Zamiiton, 1533,

(it The concluded  cause of the minimal surfaces
observed in nuture.

From the aibove discussion of the minimal surfaces tound
in nature we conclude that the observed surfuces all fulfill
rigorous and very remurkable mathematical criteria. They
present cither the minimal closed surface for a given volume,
as in the globules of ruin, dew, quicksitver, and other fuids
which confront us on all sides: or an unclosed surface of
double but opposite curvature faliilling the geometrical con-
dition /R, +1/R, = o,

It is easy to show that if the miniinal surface be closed,
— like that of a globule of dew, with a single spherical
surface, or the soap bubble, with two concentric spherical
surfuces, — the action of waves from all directions will
generate actions and reactions at the boundaries which will
physically round up the figure of the fluid, and render the
surfuces true minimal surfaces.

Of all the possible forms which mass of fluid may take,
the sphere has minimal surface for given volume, or maximum
volume for given surface. It is not by accident that in all
liquid drops nature presents us with a never-fatling recurrence
of this beautiful and wonderful symmetry of figure.  Accor-
dingly we naturally conclude that the observed law can rest
on no cause other than wave-action.

For the chances are infinity to one that an infinite
multitude of drops of one fluid would not attain this figure
except by the steady action of a true physical cause. And
as the same law holds for an unlimited series of natural
liquids the chances that a true cause is at work are again
indefinitely increased. . Finally, as the globular form for liquid
drops is observed to hold for every solid rock, metal, and
other solid compound of the crust of the globe, when rendered
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molten, by an infinite series of changing temperatures, and
pressures, we sce another independent infinite probability that
the assumption of the globular figure depends on a true
physical cause, which can be nothing but wave-action.

Accordingly the compound probability of all these
several events, everywhere recurring constantly, is not less
than the maximum infinity of the third order, equivalent to
all the points in space to one, namely:

DO OO
== f S‘ r dadrds = o0,

O 0 0

We therefore dismiss the subject, and consider the cause of
the globular figure proved incontestably by the most varied
phenomena of nature. |

(02)

When we come to the minimal surfaces of cqual but
opposite curvature, 1, R, 41/ R, == o, we sce that the problem
1s phvsically less simple, vet the cause involved is of the
same general type, because the surface is kept taught by
stretching, just like the rubber laver of a toy balloon. As
the surface tends incessantly to contract, it follows that it
must be acted upon by forces tending to make its extent a
minimum, in the case of globules of liquid under the
surface tension due to

as
wave-action,

Thus as the tension, in the surfaces fulfilling the geo-
metrical condition 1/ +1/R, similar to that in
liquid globules, it follows that in this case also the cffcet
is due to wave-action,

= o, Is

Moreover, the waves come equally from all directions,
and thus the opposite curvatures of the surfaces necessarily
are equal.  Any lack of perfect symmetry, in the distribution
of the wave-action from the opposite directions would render |
the surfaces unsymmetrical; so that they would not fulfill the ;
required Jonler-11cicrstrass-Scluears geometrical condition. The |
fact that Schwars could predict a theoretical form of minimal
surface, which was subsequently verified by experiment renders
these laws capable of use in discovery. i

The wave-theory of physical forces thus approaches the
degree of aceuracy characteristic of the theory of gravitation,
in the celebrated case of the planct Neptune, discovered by
Adans and Leverricr, 18465 or the dependability of the wave-
theory of light, which cnabled Siv [T A, ZJamilton to predict |
the external conical refraction, observed by Zlovd for crystals |
of arragonite, 1833. ‘

After careful consideration of these recondite researches
of Schwars on minimal surfaces, which we have now applied
to the wave-actions incessantly going on in nature, we arc of -
the opinion that few more useful results have been obtained
since the foundation of modern mathematico-physical science; |
and thus in view of their usefulness these rescarches on minimal |
surfaces deserve to rank with the most celebrated discoverics |
in astronomy and natural philosophy.

1
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9. Historical Survey of the Researches
Geometers on the Cause of Capillarity.

(i) References to the older scientific literature of capil-
larity, 1500—1804, A. 1.

The literature of this subject is so extensive that a
brief descriptive summary alone will enable the reader to
appreciate the successive steps in our progress.

In an extensive examination of the history of the subject,
quoted by AMaxwell, Pogeendorf held that Leonardo da Vinei
(r452-15719) must be considered the discoverer of capillary
phenomena.,  But the scientific observations on capillarity
practically have all been made since the age of Newson, and
begin with /awkshee.

t. /laiwksbee, Physico-mechanical Experiments, London,
1700, pp. 139-169: also Phil. Trans.,, R. Soc., 1709-13.

{a) Zlawikshee aseribed capillarity to an attraction bet-
ween water and the glass tubes or plate; and observed that
the effect is the same whether the tubes be thick or thin,
and thus held that only those particles of glass which are
very near the surfice have any sensible influence on the
phenomenon. This early observation of Hawhsbee thus laid
the foundation of the celebrated hypothesis afterwards developed
by Zaplace that molecular forces are sensible only at insensille
distances.

(h) Dr. in the Phil. "T'rans., 1718, no. 335, p. 739,
and 1719, no. 363, p. 1083, extended the observations on
capillarity, and discovered the law that the height to which
the same liqud, such as water, rises in tubes is inversely
proportional to their radin. This is easily verified by the
curve taken hy the surface of water between two vertical
panes of glass, set mutually inclined at a small angle, which
is a rectangular hyperbola referred to its asymptotes, as shown
on the left of the foregoing figure 9.

~
Firin,

(¢) We may calculate the capillary elevation by Furin's
method as follows. Let 7 denote the radius of the tube, o
the density of the hquid, « the angle of contact reckoned
from the downward vertical, 7' the tension of the surface
film, and /4 the mean height to which the fluid is clevated.

Then the vertical component of the whole tension round
the cdge of the film obviously balances the weight of the
liquid column, and we have the equation

amrthog == 2mr Tcosx . (g3)

This gives for the mean hecight 4 and surface tension 7

h == 2T coselrog . {94)

7 = lrogl2cose . {g5)

In the case of water the density o = 1, while the

angle « = 0% cose = 1, and by observing 4, and 7 we
may caleulate 7" directly.

In the 5™ edition of the Properties of Matter, 1907,

p. 265, Professors 7@/t and [rddie give the following table ')

It will be noticed that in Quincke's table the surface tension 7' is quite large for mercury : 540 in air, 418 in water. Thus in air

mercury has a surface tension which is nearly 7 times that of water. Considering the high reflecting power of mercury and its great resistance
to an clectric current, which is simply ordered wave motion, such a result was to be expected, and in fact strikingly confirms the wave-theory.

Thix result also conforms to Vajorana’s celebrated experiments at Turin, as communicated to the Acc. dei Lincei, Rome, 1919, in
which it is shown that gravitational waves are sensibly intercepted by a layer of mercury placed symmetrically about a weight in one arm of
a delicate balance. The present results for molecular forees, as well as Majerana’s cxperiments of 1919, thus confirm the writer's discovery of
1916, that the fluctuations of the moon's mean motion are due to the interposition of the solid body of the earth in the path of the sun's
gravitative action, near the time of lunar eclipses. (cf. Elect. Wave-Theory of Phys. Fore., vol. 1, 1917 {Continuation sec p. 323.)
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of 7" from observations by Professor Quincke:

Air Water  Mercury
Water 81 — 418
Mercury 540 418 —
Alcohol 25.5 - 399
The unit here employed is one dyne per (linear)
centimetre. More elaborate tables of Quincte’s data will be

found in Maxwell’s celebrated article Capillary Action, Scient.
Pap., vol. 2. p. §89. ’

2. Clairault, Théorie de la Tigure de la Terre, Paris, 1743.

{(a) Clairanlt was the first to attempt to reduce capil-
larity to the laws of the equilibrium of fluids, by an exact
analysis of the forces concurring to elevate the liquid in a
glass tube. He explained the elevation as the result of two
forces, one due to the attraction of the meniscus of the liquid,
and the other due to the direct attraction of the wbe itself
on the molecules of the liquid.

(L) But Clairawlt erred in regarding the attraction of

the tube as the principle force — imagining its power to
extend as far as the central axis — which is contrary to

the carcflul researches of Zaplace, who subsequently showed,
(1806—1807), that molecular forces are to be sharply distin-
guished from long range forces, such as gravity and magnetism,
because observations prove that these molecular forces are
sensible only at insensible distances.

Laplace's theory thus becomes a strong argument for
the wave-theory,
the molecular forces, but as the undulatory theory of light
was rejected by Laplace, he naturally did not suspect that
waves could underlie the action of molecular forces.

(¢) Owing to these defective hypotheses, Cleirauwlt failed
to demonstrate from his theory that the ascent of the liquid
should be inversely proportional to the diameter of the tube
— as noted by observers since the ume of Fwrin, 1718.
And although Clasrawlt arrived at a number of hypotheses,
which would account for the observed clevation of the fluid,

because of the minute range of action of

none were based on molecular forces scnsible only at in- |

sensible distances, and thus it subsequently required all the
mathematical ingenuity of Laplace to deduce trom Clarrawlt's
theory an explanation of the elevation in tubes.

(d) Clairawlt, however, showed that if the attraction
of the matter of the tube differs only by its intensity or
coefficient, from that of the flutd on itself, then the fluid
will rise above the surrounding level when the action of the
tube exceeds half that of the fluid on itsell — a remarkable
theorem afterwards more fully developed by Laplece in his
theory of capillary action.

3. Segner, Comment. Soc. Reg. Gotting. I, 1751, p. 301.

(a) Kight years after the publication of Clairawil’'s
Theory of the Figure of the Earth, 1743, contuining the
outline of his theory of capillarity above described, there
appeared in the commentaries of the Royal Socicty of
Géttingen an important work by Segner, who introduced the

N
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useful and suggestive conception of the” surface tension of
liguids. He ascribed this surface tension to attractive forces,
the sphere of whose action is taken to be so small as heretofore
not to be perceived by the senses.

(b) Segner thus laid the foundation of the theory of

surface tension, produced by attractive forces sensible only
at insensible distances, as in the theory of Laplace; and
he used this new theory of surfuce tension to calculate the
curvature of a meridional section of a drop of liquid, but
did not investigate the curvature in a plane at right angles
to the meridian. It is probable that Scener regarded the tense
membrane of the surface of the liduid as stretched equally
in all directions, unless the contrary was shown by the cur-
vature of the surface observed.
(¢) Segwer's theory found confirmation in observations
of ZLeidenfrost of Duisburg, 1756, on the contraction of soup
bubbles, in which it was shown that the air in the bubble
is expelled by the contraction of the membrane of the soap
bubble. In the Meam. de Acad. d. Sc., 1787, p. 5006, MHonge
adapts the view that the adherence of the particles of fluid
m capitlarity have intluence only at the surface itself and in
the direction of the surface which thus tollows Segwer’s theory
of surface tension. Alosge appiicd.the theory of surface tension
to cxplain the apparent attractions and repulsions between
bodies floating on a Hquid.

4. Yewng's theory of capillarity, 15¢y, founded on the
action of surface tension hike that of Segwer, 17351,

In his essay on the Cohesion of Iluids, (Phit. Trans,
18035, . 65) Dr. Zhomas Yowng developed a theory of cupil-
larity as Segwer had done half a century before, founded on
the principle of surface tension. He observed the constancy
of the angle of contact of the lLiquid suwrfuce with the solid,
and showed how the constancy of the angle and the tension
of the surface enable the tluid to exhibit capillary phenomena.
Whilst the theory of Yourze involves both cohesion und surface
tension for explaining capiilarity, it avoids as far as possible
the use of mathematical symbols, yet 1t is held by davwell
to be essentially correct.

(i1) T'iec more recent researches on capillarity by Zaplace,
Loisson, Gauss, Quincke, Maxwell, Kelvin.

5. Laplace, Memoir on capillary attraction, Supplement
to the tenth book of the Mécanique Céleste, 1806, and
Supplement to the theory of capillary attraction, 1807.

The theory of Laplace 1s so well known, and so much
used by all students of the subject that we shall not here go
into it in detail, except to note certain difficulties to which
attention should be called. In his Capiliarité, Paris, 18gs,
p. 1=3, Loincard condenses Laplece's theory into a few leading
formulae, by taking the attraction to have the general form

A= mw'y(r) = 0)jcr (96)
where m and w/’ the masses ot the molecules, » their
distance apurt, and 7 () an unknown function of the distance.

are

The wave-theory therefore is strikingly confirmed both by a large body of well established terrestrial phenomeny, and by the discovery

of the cause of the fluctuations of the moon’s mean motion.

After mathematical researches extending over more than 4o years, Newcomd, in 1yoy, pronounced these Junar tluctuations o be the
most enigmatical phenomena presented by the celestial motions; so that the discovery of the cause underlying these perplexing perturbations
in the moon’s mean longitude is a notable triumph in celestial mechanics,

\ 2
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Laplace's celebrated hypothesis that the capillary forces |

are sensible only at insensible distances, leads to the formula
for zero forces at all distances greater than »r:
o3
o) = (rldr=o0 (07)
-
where » is the radius of molecular activity, shown by ex-
periment of Quanrcke, 1869, to be r<sgopup, somillionths of
a millimetre.
In conscquence of the first hypothesis in equation (96)
the molecular forces admit of a potential

=

I 22 " (r)

rEEO

(98)

with the components for unit mass at &, 1, 5 under the action
of the mass m:

N =20 1'/’8.?, V=20 V//aj, J2=10]Cs. (Qg)

If the whole of the attracting molecules form a volume,

the expression of the potential becomes, for the density g:

I Yﬁ o (r)dvdyds.
Owing to the high incompressibility of liquids, Zaplace
adopts in effect the hypothesis that the density o is constant.
In his Nouvcelle Théorie de PAction Capillaire, 1831, /orsson
rejects Laplace's hypothesis; likewise /Joincaré remarks that
Laplace’s assumption s illegitimate, because it 1s probable
that the density 1s not the same at a distance less than the
radius of molecular activity from the surface as at a distance
greater than this radius.
But whatever be the exactitude of Zaplace’s hypothesis,
it leads to the expression for the potential

V=gy jj:f p (#) dady ds

1 in the liquid considered

V= 'S;'rj) g (7)) dvdrds.

The only other point in this theory to which we shall
call special attention relates to Zaplace's A, (Mdée. Cél., Liv. X,
Suppl. & la Thdéorie de PAction Capillaire), which implies that
in cvery hguid there is a great internal pressure. Near the
end of this supplement Zaplace derives the formulae for this

(100)

(ro1)

And if ¢

(102)

internal pressure, wt ey = AT (103)

s = Klg={(r"—1) I"ag (104)
where 7 == velocity of light, »°—1 = 7/, the refractive
action, and ¢ == acceleration of gravity, s == length of the
column of water of equal pressure, in units of the sun’s distance.
This gives s == 12000, approximately, or a column of water

over roooo times longer than the distance from the carth to
the sun. Zaplace himself adds that »une aussi prodigieuse valeur
ne peut pas &tre admise avec vraisemblance«, so that he
apparently did not regard the value of A" == ¢s as probable.
Accordingly it will not surprise us to find modern physicists
rejecting it. In his Properties of Matter, 1399, p. 244, 7@t says:

»In some statical theories of molecular action, especially
that of Laplace, one of the most striking deductions. is that
there must be a very great internal pressure in every liquid
mass: — a pressure wholly independent of the form and size

t internal pressure for water is not valid.

R
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of the bounding surface. This is usually known as ,Laplace's
Laplacc’'s own estimate of its value in water is given
(with the caution ,Une aussi prodigicuse valeur ne peut pas
itre admise avec vraisemblance’) as the weight of the water
which would fill a tube of unit section whose length is
Toooo times the distance of the earth from the sun: i. e.
something like 10! tons weight per square inch. This was
based on the corpuscular theory of light, the numerical data
being the refractive index of water and the speed of light.«

It would be easy to show from practical experience, —
as in human diving, and from the survival of fresh water and
marine life, in such delicate animals as fish, which have
bladders filled with air, etc.,, — that the view of an enormous
If these views were
truc we could not dive without having our lungs crushed,
and the bladders of the fish could not operate as they ac-
tually do; for the fish not merely survive, but are not injured
when taken from the water a short time.

Laplace’s final expression for the pressure in the interior

of a fluid has the form
p=N+150 (R 1R . (rosz)

Here A" is the assumed constant pressure, in that theory
very large, which however does not influence observed capil-
lary phenomena, /7 is another constant on which all capil-
larity phenomena depend, and A2, and A, are the radii of
curvature of any two normal sections of the surface at right
angles to cach other.

If in the above formula we put 1/® +1/R = o in
the second term of the right member, as in minimal surfaces,
we sce that within such films the pressure p would be equal
to A" only, which shows the connection between such films
as soap bubbles, with double surface tension, and capillarity.

6. Gauwss, Principia generalia theoriae figurae fluidorum

Dstatu acquilibrii, 1830, (Werke, V. p. 29).

(Fanss forms the force-function for the potentials of all
the pairs of particles in their mutual action. With the sign
reversed he thus obtains the potential energy of the system.
(Faunss treats the problem of the forces urging the fluid with
his usual licidity, in three parts: the first depending on
gravity; the sccond, on the mutual attraction between the
particles of the fluid; and the third, on the action between
the particles of the fluid and the particles of the solid or
fluid in contact with it

Ganss makes this aggregate expression a minimum:
0 = f.g('fz 1s—+—1/gu_r’§’ ds ds’ g {ds-ds")
4o C [ [ dsds @ (dsds).

In this formula ¢ == the force of gravity, z = elevation
above the base plane //, ¢ == density, taken as uniform in
the spaces s and s, C = density of the solid, or fluid of
different kind; and the spaces s and s are filled by the
mobile flud, and .S by the solid or fluid of different kind.
With this explanation of Gaowss’ fundamental equation, made
up of three terms, it only remains to add that the potential
so constituted is a minimum, and therefore for such a level
surface, the sum of the space differentials vanishes:

00 = (£0/0x) dr+(80/Cy) dy+(002/02) ds = o .

106)

(107)
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In deriving more general conditions for the free surface
than Zaplace had done, Gauwss thus improved the theory. At
the close of his paper he recommends the method of Segwer
and Gay-Lussac, which Quincke has since extensively applied,
by measuring the dimensions of large drops of mercury on a
horizontal plane, and those of large bubbles of air or other
gases, in transparent liquids resting against the under side of
a horizontal plate of a substance wetted by the liquid.

7. Poisson's Nouvelle théorie de l'action capillaire, Paris,
1831, pp. 1—300.

Loisson’s new theory of capillary action is developed
with such geometrical elegance, that it must always occupy
a prominent place in any survey of the subject. But it is
justly remarked that although Foissor adopts processes different
from those employed by Laplace, yet in general the conclusions
are identical, except in respect to uniformity of the internal
density of the liquid, explained in equations {1co) and {101}
above. At the close of paragraph g above we have indicated
reasons for adopting Laplace’s view that g may be tuken em
under the integral signs in equation {1co). Gawss procedure
accords with this view also, as we see by his principal cquation
for £ above.

Loissor’s criticisim that Laplace's theory malkes the con-

stant pressure A very large, whereas it must be in fact very |

small, 1s undoubtedly valid, from considerations already pointed
out in treating of Laplace’s theory. Thus Zwissen reached
results 1 general accord with those of Zaplace, Lut did not
confirm the great constant pressure A”in liquids, and added
the clam of a rapid variation of density neur the surinee,
which does not admit of experimental deternnination.

The theory developed in tht present puper, that the
wave stress undergoes sudden change at the surface ol Higuids
appears to reconcile these several ditficulties; tor winlst 1t
assigns to this surfuce tension the globular form ot drops,
and the elasticity of the film of soap Lubbles, it does not
give a great internal pressure for liquids, but only the some-
what feeble surface stress noticed in osciilating drops and
elastic films.

In dealing with the Seener- Youny contribution to the
theory of capillarity, 17511804, we noted the fuct that they
successfully explained capillarity by surface tension, and thus
it is appropriate for us to draw attention to the rather {ecble
intensity of the surface tension of various liquids, as dcter-
mined by Quwincke, and given briefly in the ubove table.

For water in air, the surface tension, 7'== 81, by the
formula (g5)

Here @ is the angle of contact reckoned from the
downward vertical. For water in contact with glass, cosc==1,
and 7'is found from the radius of the tube », and observed
height of column /4. For mercury in air the value of Z'==3x4o0,
but in this case &« =128°52’, so that the cosine is negative
and the column depressed.

The dyne is the force producing an acceleration of
one centimetre per second in a gram mass, and in view of
the feebleness of these forces of surface tension, we see why
we cannot explain capillarity by such a feeble force, and at the
same time admit the enormous constant fluid pressure found
by ZLaplace's theory.

,1!‘,‘ N '
7"= lrog/2cosex .

Fsubject
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8. Maxwell's article on capillary action, Encycl, Brit.
o ed., 1875.

In concluding this section it only remains to point
out the last great contribution to the whole theory of capil-
larity, in recent times, the article on capillary action by Alaxwell,
Encyc. Brit, ¢'" ed., reprinted in Maxwell’s Scientific Papers,
vol. 1, pp. 541—591. Though written about half a century
ago, it is still the most extensive und accurate survey of the
yet available. On page 589 he gives a table of
Quincke's experimental results much more eluborate than that
quoted above.

The more recent contributions by Lord A%/edn, 1ord
Kavleigh, and other investigators, have added to the extensive
literature already cited; but Quincke's researches will long
remain the chiel source of experimental data,

10. New

(1} Refraction

Theory of Cohesion and Adhesion.

and dispersion of waves at the surtace

produee

of solids, muy hardness.

Up to this point we have teated with special attention
the cunse underlying surface tension und capillarity, because
we have felt that if these causes could be delmitely assigned,
it would not be very difficult to pass over to the related
cause of cohesion and adhesion.

In fact adhesion is directly related to capillarity, for
when liquids rise in tbes the duid always wets the tube,
so as to adhere to i, and it the column wpward by the
force of surfuce tension. And when the Bouid does not rise,
tules,

but s depressed o the axoIn the cuse ol wereury,

there 1s 1o adhicslon, DUt rathier repulsion, or as is commonly
said, G grewter sitraction of the Hguid for itselt than for the
solid. "I'nus the moiecular forces in adhesion are the same
as inocapillarity; and cohesion is similar to the attraction
of liquid particles for one another, except that the cohesive
torce depends greatly on temperature, and thus becomes
much more powertul in xolids.

1d

Two centuries ago, in the 3% edition of the Optics,

1721, p. 305, Newien discussed the myvstery of the molecular

)

forces as foillows:

»And how such very hard particles (in solids) which
are only laid together and touch only in a few points, can
stick together, and that so firmly as they do, without the
assistance of something which causes them to be attracted
or pressed towards one another, 1s very difticult to conceive. «

Accordingly, it appears that Aew/son wus very much
baffled in his efforts to conceive of the
cohesion and adhesion, more especially in solids. The difticulty
in liquids was no doubt ahnost equally greut, but our treat-
ment of it is already outlined, und we shall theretore deal
chiefly with cohesion and adhesion as exhibited by solids.

cause which underlies

In the wave-thcory we hold that no refraction of the
wave front can occur without the expenditure of energy,
drawn from the gencral reservoir of the acther; therefore as
waves move more slowly in solids than in free space, there
necessarily is wave energy exerted against the solid owing
to derangement of the wave front at the boundaries of such
Masses.

Moreover, the refraction of waves usually 1s associated
with dispersion, or separation of waves, owing to the unequal
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refraction. Both of these changes in the wave field involve | powers of diamond; hence the extraordinary radiance of the

work done at the boundaries of solid bodies, and the result
is wave stresses and reactions which give rise to cohesion ')
and adhesion,

The full development of this theory of cohesion and
adhesion involves the complicated problem of wave trans-
formation and sceparation in a medium 689321600000 times
more eclastic than air in proportion to its density. This
problem 1s new in science, and as it has not yet been
treated exhaustively, we first outline the physical considerations
which must be borne in mind.

1. When a ray of light enters a drop of water, with
refractive index z == '/,, the so-called refractive action is
#*— 1 =="/,. The wave velocity is diminished or accelerated
at the boundary by Yy; and 7/, of the cnergy is excrted
against the surface layer of the drop. This slowing down
of the wave speed or its acceleration thus cxerts a pressure
against the boundary of the drop: for long ago . axweil
recognized, (Treatise on Electricityand Magnetism, 88 78 1-7093)
that partial stopping of wave motion leads to the excrtion of
pressure on the surface obstructing the progress of the waves.
If waves leave the drop for free space, there is corresponding
rcaction of the free acther at the boundary, and thus a similar
development of central pressure.

2. Morcover, it is evident that in proportion as these
are sudden and violent at the
so that the refractive action #*—1 Is

wave actions and reactions
boundary of a body,
large, in the same proportion the related dispersive action
also 1s large.  Accordingly, as diamond has the greatest of
known refractive mdices, # == 2.49, and is so powerful n

the dispersion of colors as to vield the unapproached lustre

which gives the great vadue to this crystal, it ought theoreti-

cally to he the hardest of hodies, and is so found by ex-
periment.
In his »Six lLectures on light«, second cdition, New

York, 1886, p. 20, 7hvndall lucidly explains total reflection,

the limiting angle for which In water is 48°30"; for flint-

glass 38417 for diamond 23°417; thus rapidly diminishing
with increase of the refractive index.

»Thus all the Light incident from two complete quadrants,
or 180°% in the casc of diamond, is condensed into an angular
space of 47°z2" {twicc 23°41') by refraction. Coupled with
its great refraction are the great dispersive and great reflective

gk i B npe—em

Y Iyy

e = 1) m(a/i) o (8) y(d) y(2) (0 c™) T (w)-dla7) dB dd dz d(o =) dem .

gem, both as regards white light and prismatic light.«

Tyndall's remark that all the light incident from two
complete quadrants, or 180°% 1n the case of the diamond,
i1s condensed by refraction to an angular space of 47°22/,
47°37/180° = 1/3.8, contains the germ of the secret of the
most powerful molecular forces, such as those which produce
hardness.  Ior just as the rays in a plane angle are thus
condensed, so the rays from the solid angle of a whole hemi-
sphere are condensed into 1/3.8 of their original distribution;
so that on any area the concentration of energy increases as
the square of 3.8 and becomes 14.44 times greater. As the
dispersion is in about the same proportion, the combined effect
of refraction and dispersion is magnified some 200 times. %)
Considering the tendency to rupture the aether by this sudden
discontinuity at the boundary of the diamond, it is not remar-
kable that the actions and rcactions of the more powerful
invisible waves give the cohesion underlying the hardness
of diamond. It 1= evident that the hardness of diamond and
other crystals, the great tenacity of steel and other wires,
depend on wave-action and -reaction at the surface; and
therefore the strength of such a solid depends on some such
combination the following:

1. Refractive action, {#*—1), which depends on the
density of the solid, o, and the changing wave-length 7 and
thus on some unknown function,  {a/7);

2. ‘I'he violence of the incessant bending of the wave-
front, for waves coming from all directions, rp(ﬂ);

3. I'ne wvinlence of the incessant dispersion of these
incident

4. I'he combination of systematic stresses due to the
crystalline arrangement of the atomic planes with the effects
of the two latter violent tendencies, thus leading almost to
the distuption of the medium, y (2);

as

waves, tod);

5. 'The enormous power of reflection with very slight
absorption of energy, at the surface, 8 (g-e~%);

6. The great central pressure due to the integration
ot the steady action of the sheath of partially disrupted

waves alwavs enveloping the solid, @ (m).

Accordingly if the condition be imposed that the
normal clastic power of the aether 1s not greater than unity,
which 15 ¢ = 689321600000 times that of our air in pro-
portion to its density, then we shall have (cf. Zodhunter's
Integral Calculus, cdition 1910, § 277, p. 262):

(ro8)

Y In bis »Acther of Space, 1909¢, p. 109, Kir O/iver Lodge treats of cohesion in a very simi! r way to that here adopted:
»Why the whole of a rod should follow, when one end is pulled, is a matter requiring explanation; and the only explanation that
can be given involves, in some form or other, a continuous medium connecting the discrete and separated particles or atoms of matter.«

»When a steel spring is bent or distorted, what is it that is really strained:
the connecting links that are strained — the connecting medium — the acther.
Contact does not exist between the atoms of matter as we know them; it is doubtful

stresses exist in the acther. Matter can only be moved.

Not the atoms — the atoms are only displaced; it is

Distortion of a spring is really distortion of the acther. All

if a piece of matter cver touches another picee, any more than a comct touches the sun when it appears to rebound from it; but the atoms are
connected, as the comet and the sun are connected, by a continuous plenum without break or discontinuity of any kind. Matter acts on

matter only through the acther.«

" Should the other variable elements indicated below increase in about the same proportion as the two well known elements here

calculated, the result would be an increase of stress of the order of Soco000 times the value otherwise effective.

And as there are sudden

discontinuities in the physical state of hodies, as in passing from fluid to solid, owing no doubt to closencss of contact of the molecules of the
solid, — assumed to be less than the wave-lengths to which the forces arc due — the whole wave-action in the acther seems ample to account

for the hardness of the diamond.

22
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But although the nature of the wave function producing
solidity and rigidity is thus recognized, yet we cannot at
present evaluate the resulting sextuple integral, because the
part contributed by <ach variable is ill defined.

(ii) The assigned cause of the hardness in diamond
suggests a similar origin of tenacity.

The theory of the hardness of diamond herc outlined
will also explain tenacity, or the great breaking strength of
such substances as steel!), which attains maximum power
in pianoforte wire.

1. It is a remarkable fact of observation, drawn from
experience from the early ages of history, that tenacity is
increased through drawing and rolling, by which the metal
is given a smoother and more compressed surfuce.  For
example, we make strong wire ropes by first drawing the
metal into fine wire, each strand Dbeing given a compact
and compressed surface large compuared to the cyiindrical
content of the solid wire, and then twisting the wire into
a rope, which thus becomes not only strong, but also ilexible.

2. ‘I'he fact that in fine wire there is rapid increase
of surface compared to the cylindrical content, when the wire
is small, shows that the large amount of smooth surfuce is
the essential element of strength, and points to waves in the
aether as giving the force of cohesion. ‘The relation of surface

to volume in a circular cylinder of length /4 and radius 7 |

is easily found, thus:

Volume of cylinder "= rrh o)
Curved surface of cylinder S 27000 treo,
Ratio of SV = 2mrficr? = zlr = . (110)

Accordingly, as » diminishes the ratio j rupidly in-
creases, according to the curve for a’ rectangular hyperbola
referred to its asymptotes.

3. On account of the finite dimensions of the molecules
of the wire, and the finite but greater length of the light
waves, it is of course not possible to decrease the radius of
the wire below a certain limit, without the metal losing the
power of cohesion and breaking. Along with this property,
by which a finite radius is required for strength in a metal,
goes also the closely related problems of malleability and
ductility.

(a) Gold is the most malleable of metals, gold leaf
having been reduced to a thickness of 1/300000" of
inch, or 1/11800 of a millimetre.

(b} Platinum is the most ductile of metals. By coating
a platinum wire o.or inch in diameter with silver till the
thickness of the whole was o.2z inch, Dr. I['w/laston drew the
cylinder out into a wire as fine as possible, and by boiling
with dilute nitric acid, he removed the silver couting and
obtained the platinum wire alone with a diameter of ap-
proximately 1/10000 mm nearly the same thickness as the
thin gold leaf described in (a) above.

4. The metallic coating used to draw the platinum wire
into such fineness was of silver, which is the wmost perfect
of all electrical conductors, and thus the wave-action was

an
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Fig. 18, Curve of the ratio of the surface to volume, in

a drawn cylindeical wire of radius 7. As it is an
observed fuct that the strength of a given mass
of metal is inercased by drawing it into wire,
this curve shows that tenacity depends on the
relative inerease of surface compared to volume,
and therefore on wave-action at the surface of the
wire, Increascoftenacity, with v+ 57 equa 110,
begins to fail as short wave-lengths amd mole-

culur duncn<tons are approached.

no doubt very pertectly cquiiibrated atall tmes ia Dr M allaston s
ductility expeniment. As the goid leat was in snmlar sheets
while being haunnered the conditons also were favorable
tor nalicability, without disruption
holding the gold leat together.

Notwithstanding these favorable conditions 1t 1s a little
remarkable that gold and platinum, with their very high
atomic weights, should prove among the most continuously
yiclding of metals. This gradual yielding of metals 1s directly
opposed to hardness, which leads to rupture.

Gilass threads drawn by Dr. Sors have been reduced
to a diameter of about 1 : 10c000 of an inch, or three times
that of the diamecter of the minimum platinum wire above
mentioned, with strength however approaching that of steel
wire, which shows that surface wave-action probably has
increased the strength greatly.

5. It 1s noticed in modern metallurgy that the pure
metals generally are softer than their alloys. Both hardening
and increase of strength may be eftected, however, by the
admixture of a small percentage of certain other metals.
Nickel and vanadium used in the manulacture of hard
steel: and such compounds as phosphor bronze, and aluminium
bronze, have greatly increased tenacity. We may explain all
these cffects by the wave-theory, the molecular forces being
augmented not merely at the boundary, but throughout the
mass. ‘T'his same reasoning applies also to the internal strength
and strdcture of crystals, such as diamond, quartz and other
substances.

are

1) Steel is a mechanical mixture of a very fine matrix of carbon in iron, and as diamond is cristallized pure carbon, it would secm
that the great strength of steel, over iron, must depend in some way on such wave-transformations as refraction, dispersion, cte., to which the
non-conducting carbon contributes at the boundary of the wire. It surely is not accidental that the strength of steel depends on the same
element, carbon, which in crystallized form gives diamond its unparalleled hardness.

-
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of the molecular forces
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6. 'The metals increase in hardness somewhat in the
following order: lead, tin, aluminium, gold, silver, platinum,
zinc, copper, iron, steel. These results may be explained by
the assumption of molecular properties varying from metal
to metal, but on the whole depending on the grip of the
waves about the atoms and molecules, under their state of
condensation, and electrical conductivity or non-conductivity.
Lead, for example, is loosely held together, and yields casily
to powerful forces.
viscous fluid, or solid for quick acting forces, while the lead
is an easily yielding solid.

In the same way hardness is measured by the fol-
Jowing scale.

1. Tale 6. Feldspar
2. Rock Salt 7. Quartz

3. Calc Spar §. Topaz

4. Pluorspar 9. Corundum
5. Apatite 10. Diamond.

(it1)  Aewron's problem of cohesion may be solved by
noticing that waves which have difficuity in passing through

It somewhat resembles pitch, which is a |

between two compact masses will naturally take the path of

Least Action around them, and thus force them togcther.

1. So long as two bodies are not near together the
waves from the atoms of cach mass, as weil as from the rest
of the universe, will easily pass between and around the two
Fach mass will have its own wave ficld, and they
But when the two bodics are

IMASSCS,

will not sensibly interfere.

brought very ncar together, cach obstructs the waves from.|
ks ) o r

the other, and the wave fields become entangled. When they
are brought very near, so as to form a smooth contact, the
whole wave action is so much less, when they are pressed
tightly together, that naturc adopts this method for Icast
Action, and forces them as solidly together as possible. ‘T'his
gives us a general idea of the cause of cohesion, which so
much puzzled Newsonr that he had extreme difficulty in con-
celving the cause at work.

2. In order to make the contact effective and powertul,
it must be very close indeed, so that the molecules are not
whole wave-lengths apart. The fact that observation shows
that the contact must be close, appears to point directly to
the wave-theory. What explanation other than the wave-thecory
is possible? 'The problem is like the hypothesis underlying
Laplace's theory of capillarity, that the molecular forces become
sensible only at insensible distances, which as we have shown,
can point to nothing but wave-action.

3. The measurements of Rdcker show that the ultra-
violet waves are of the required order of magnitude, and we
know that their working at small distances, in a medium
689321600000 times more clastic than air in proportion to
its density, should produce very great power of attraction,
since the path of Teast Action usually is around the outside
of solid masses, and thus they are forced together by reaction
of the whole wave field.

This gives us a very tangible conception of the practical
working of the wave-theory when applied to molecular forces.
We may verify the conclusion here drawn by observations
on the dashing of water waves upon two floats anchored so
close together that the waves do not pass freely between
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them. The result is a full pressure of the waves without, not
perfectly balanced by the diminished pressure within, so that
the floats are drawn together as if by an attractive force.

4. Now it is very remarkable that nature should be
filled with such a multitude of minimal surfaces: raindrops,
drops of dew, globules of mercury, iodine, or any chemical
liquid which does not adhere to the supporting surface. All
melted metals, such as leaden shot, take the same figure,
and so also of molten rock of any and every description.
Accordingly, globules of liquid, with minimal surfaces, actually
arc universal in nature. What 1Is the cause of this universal
tendency to minimal surfaces? It must be related to the
coalescence of contiguous small drops into Jarger ones, as
in the phenomena of rain, accompanied by lightning.

5. It has long been held, first by Maupertuss, Euler
and ZLagranee, and subsequently by Hamilton, Facob:, Kelvin,
Ieimholtz; Tait, Loincaré, Larmor, and many other eminent
mathematicians, that nature always follows the principle of
l.cast Action. JFermaf's principle was of earliest date, and
gave the first indication of the more general theorem of
Least Action devised by Jlawupertuis and confirmed by Lwler
and JLagrange, It is known that the forces governing the
mechanical operations of material systems obey the principle
of Least Action, and correspond to the wave-theory of physical
forces. Can it be possible that the figures of glohules of fluid
masses and elastic surfaces would exhibit minimal surfaces,
without also depending on waves which are resisted in their
progress at the border, and thus transform the liquid into
minimal surfaces?

6. In this wave-theory, we find a direct and simple
explanation of adhesion, cohesion, capillarity, surface tension,
chemical affinity and even of explosive forces. The waves
cannot but offer different resistance in their penetrating power
when different substances are in contact; and morcover they
are refracted uncqually in passing through liquid, whence
we mav expiain at onece adhesion and capillarity.  Cohesion
is somewhat different: the particles ot solid bodies offer least
resistance when the particies are closest together.

7. I the particles are separated appreciably some of
the waves pass between them, and on the whole the two
separate bodies offer greater resistance to passing waves than
would be offered by one mass made by a solid union of the
two particles firmly together. This offers a simple theory of
the great difficulty discussed by Newforr in 1721, Surface
tension has alrcady been explained in describing the ray of
light entering a drop of water; but we may have to include
waves both longer and shorter than those of light, to com-
plete the gencral theory. Experiment shows that chemical
affinity is greatly promoted by ultra-violet light, and this
confirms the wave-theory of physical forces. Thus, it only
remains to say a word about cxplosive forces, which are
related to chemical affinity, and of which no suitable theory
has been put forth heretofore.

8. It appears to me that in the molecules of explosive
bodies therc is a certain resistance to the passing waves, as
the atoms are then arranged; but if the atoms mutually are
so readjusted as to come closer together suddenly, and re-
arranged into a molecule of maximum symmetry and conden-

22*
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sation of its parts, there will suddenly be much less resistance
to the passing waves. The great energy of the waves always
passing through the aether, is thus released or set free by
the readjustment of the atoms in the molecule; and this
suddenly available energy is so powerful, in view of the
aether’s enormous elastic power, — which is 689321600000
times that of our air in proportion to its density, and thus
much more powerful than our air in any readjustment of the
wave field, — that when the release occurs by a sudden
readjustment, a violent oscillation of the molecular structure
results, — in which disruption and new combination of the
oscillating atoms takes place.

9.
from the elastic power of the acther. This power shown
to exist by the enormous observed speed of the propagation
of light and electricity, 300000 km per sccond. We
deny the observed fact of such a velocity for waves in the
aether. Accordingly, theenormouselastic power,68¢ 3z 1600000
times greater than that of air in proportion to its density,
necessarily follows. And if the universe be illed with waves,

15

of various lengths, from the short waves, most eifective in
chemical affinity, to the longer wuves of light, heat, and

radio-telegraphy, it naturally will follow
in the power of resistance of bodies incident

that sudden change
the
arrangement of the atoms into a new and more compuact,
less resisting molecular structure, would
of encrgy hitherto latent.

1o re-

generate vast stores

1o. 'This is best tllustrated by the new theory of the
cause of lightning, a phenomenon which has been cqually
mysterious and bewildering to natural philosophers. Here is
what occurs in lightning:

(2) First, water exists in the atmosphere 1n the form
of invisible vapor. Towering temperature, usually with currents
of colder air, produces a cloud, which is visible, hecause the
light does not pass through it. At first the cloud is made up
of very minute particles of water — microscopic in size —
but if the cooling and tendency to precipitation continucs,
the particles of water grow in size, and decrease in number.

(b) When the separate water globules coalesce, into
fewer but larger globules, their resistance to passing waves
is decreased. And if the region of the earth and atmosphere
previously was in electrodynamic equilibrium — the aether
waves of this region departmg at the same rate that they
arrive, so as to give rise to no accumulating acther strain —

3.
O =0 (x 2=
A= (§—a)d+

T 2T
D =

[elNe) T 27

+(1/47t) (8/02) J f I (x~+at cosb, y~+atsiné sinw, s+ atsind cosw) ¢ sind dé duw .

o 0

5. These integrals

This new theory derives the store of explosive energy ‘

cannot

’
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it will experience with the condensation of drops an ac-
cumulating stress on the surface of the globules. The waves
will flow from the earth and celestial spaces at the old rate,
but the resistance to their passage at the surfaces of the
enlarged drops is decreased with the condensation of the
drops. A positive state of the rain cloud results, and aug-
ments rapidly as the rain drops grow.

(c) The result is accumulation of such a strain in the
clectric medium, or the aether, that lightning develops for
restoring the electric equilibrium.

If so terrific a power as lightning can result from the
changing electric stress or resistance of the enlarging drops
to the waves traversing the universe, it naturally will be easy
to imagine that explosive forces and similar atomic powers
of incredible magnitude may have their seat in the elastic
power of the aether, and the changes in the equilibrium of
this medium.

IT. Geometrical Conditions tulfill
finite System ot Wy

ed by an In-
¢s coming from all Directions

and passing through o Lijuid Sphere under Least
Action.
(11 Geometrical conditions of minunum action,
1o We constder w sphere of fluid, whose surface is
) o Lo R S ) : \
[ 2 e e U e D e T e Lrrrj

The part of w right line intercepted between any two puinits

P, A ) in the sphiere surface, Is equal 1o
the length of the chord:
2= VI P () e () (112)

Now waves passing through the fluid sphere, alter re-
fraction and dispersion at the boundury, follow some of the

systems of chords from every point of the surfuce in every
possible direction; so that the paths of minimum action
within the surface are along the infinite system of chords
drawn from every point of the surface, and therefore doubly
infinite in nuuber.

2. Por 1t we suppose waves to originate within the
sphere, 1t 33 clear that they will e propagated spherically,
along these chords, and no deviation from rectilinear motion
will occur tll the wave front reaches the boundary of the

liquid sphere. Refraction and dispersion will tuke place at
the boundary when the wave is going outward, exactly the
reverse of what occurs in coming inward; so that from one
i of these motions the other can be caluxl.ucd.

In AN 5048, p. 165-6, it is shown that the wave function £ ) (x, p, 3, 7) has the velocity potential () :

(1/82%) ijjjjaf 8,11/(—1)_(3 (5, 0t
(=) p+({—2) v
4. And PFoisson has reduced this sextuple integral to the double

?)d&dy df di du dr

(113)

integral:

(1/47) IIF(A‘—PM cosd, y+arsind sinw, s+ azsiné cosw) £sin 4 dd dw

(114)

are rigorous for the wave disturbances from any point, so long as the movement remains within
the liquid sphere, and they will hold true right up to the boundary. In the

fourth paper, section 6, (AN 5083) we have

extended the integration so as to include the waves from every atom within the boundary of the sphere (#, 4, w).
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6. As the wave disturbances emerging from all atoms
will yield a perfect reverse image of those coming in from |
all directions, it suffices to find the geometrical condition ;
under which the velocity potential yields minimum action. '
This condition obviously is attained when the mass of fluid Q
is perfectly spherical; for it may be shown that any departure
from perfect sphericity yields a resulting action by all the
waves greater than the minimum. 1If the total wave action
be given by

0 = 'S”rf D or’sind drdddm (r16)

then it will follow that for a sphere only is the action a !
minimum: |

1

00 = 00 /0x-dv+00/Cr-dp+00/Cc-ds = o . (117)

We may reach a similar conclusion also from the wave- -
theory of gravitation, by noting that the force of gravity is
due to waves receding from the centre of mass. The effect
of the accumulating aether stress is the central force, which
gives a body like our sun a sensibly spherical figure. 'This
conclusion from the wave-thcory is confirmed by observation,
which shows that the heavenly bodies would be perfectly spheri-
cal except for rotations about their axes. The oblateness of the
sun 1s found to be wholly insensible, and the oblatenesscs
of the different plancts correspond severally to their respective
rotatory motions.

Accordingly, in the case of immense masses the receding
gravitational waves generate the central acther stresses which
produce globular figures of the sun and planets; whilst in |
the case of small liquid drops the globular figures are main- |
tained by the minimum action of the passing waves.

(ii) Geometrical criteria for the theory of minimal
surfaces as applied to liquid masses and films.

In our previous discussion we found that in general
a minimal surface is a surface of double curvature, such that
the fundamental condition fulfilled is that

1//\’1—1—1//\’._7:0]+g;,:o {o1)
where ¢ and ¢, are the radi \
of the curvature of the two prin- \

the surface. The radii of cur-
vature are cqual but of opposite
sign, as shown in such figures
as those of a saddle, a mountain
pass, the surface of a glove bet-
ween thumb and forefinger, etc. \

The two principal sec- Fig. 19. Sketch of the radii of
tions lie in different planes, but :llllrrf‘:\ct:m fora minimal
may be projected as shown in pl;p_}:I';ﬁ/\,lJﬂ//\.ﬂ:O.
figure 19.

The theory of minimal surfaces involves the treatment
of functions of three quantities Z(x, 3, 3) which may be

X7r2sind drdddmzsinéddddw.  (113)

determined as functions of two independent variables # and v,
of the general type:

/l
w = j]’(x,;, xy, 1, day /ds, dy,/de) ds (1 18)
/Y)
where da/d?z = xy, dy/dt = y,, are equations of condition,

each involving two variables, as x and .
For the minimal surfaces, then, we have not a single
but a double integral of the form:

0 = fg‘ 7, v, 5, 81 Co, Cy/Cu, 8s/Cw, Ox/Cu, a)f/az/, 0z/00) x

o Xdwde . (r19)
(cf. Dr. /lancock’s lectures on the Calculus of Variations,
Cincinnati, 1904, p. 209.)

In the problem of molecular forces now before us we
are concerned chiefly with the sphere, which for a given
volume has the minimal surface. The problem of the sphere
is therefore one in maxima and minima, corresponding to that
of the circle, originally due to Zenodorus, (150 B. C.), who
sought the plane figure with minimum perimeter. A treatment
of it will be found in Dr. Hancock's 1ectures on Maxima and
Alinima, p. g2. In the same work, p. 73, there is a solution
of the problem: To determine the greatest and smallest cur-
vature at a regular point of a surface Z(x,y, 3) = o.

‘T'hat the sphere is a minimal surface is fairly obvious
without anv elaborate mathematical treatment. In the more
general surface of double curvature, the fundamental condition
010, == o will always hold true. For in the case of twisted
surfaces it is obvious that the curvature must be opposite on

. the two sides: and every point of the surface must be about

a centre of curvature Iving in the principal planes.

Now tmagine a physical surface, like a film of liquid,
to depart from the minimal surface; then obviously our
condition would be ¢;+¢0, == «, so that g = —g,~c.
And thercfore the curvature in different planes would not
be the same on opposite sides at the same point. "The result
of this condition would be that the film could not be of
equal thickness or equal tension in different directions at
any point. This obviously would not be a minimal surface;
for it could be stretched and somewhat thinned out at the
point, without altering the curvature on one side.

In fact the mathematical condition

0= —ota (x20)
would imply a swelling in the physical surface, or a sheet
of unequal thickness. If this inequality existed, it would
gradually augment, under wave action, and the lump of liquid
would tend to increase to a drop. But this would disrupt
the liquid surface.

Hence the condition of physical stability is
01702 = o
and a liquid sheet fulfilling this condition is stable so long
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as the tendency to a drop does not develop under gravitational
action on the fluid. '

A drop is a load, and may be slightly unsymmetrical,
so that it leads to instability; the more it is augmented the
more unstable it becomes till the liquid film is disrupted.
For in passing the waves tend to make the drop round by
everywhere decreasing its surface, and thus they operate to
disrupt the film, by drawing in the liquid on all sides. These
inferences are easily verified by actual experiments with soap
bubbles and other films of soap water containing enough
glycerine to make the surfaces elastic.

Now in view of the above reasoning we sce why a
liquid surface of soap water may stretch and hold taut,
a minimal surface, even when it 1s a surface of double cur-
vature. [t may take the form of a saddle, and yet be perfectly
stable, because on the two sides of the film ¢, +g, == o,
enables the passing waves from all directions to traverse the
liquid film with minimum resistance. If, however,
the integral for the action of the passing waves from all
directions is not a minimum; and the principle of least action
i1s violated.

as

0 o=,

Accordingly we conclude:

1. That minimal surfaces correspond to the principle
of least action for all passing waves.

2. Any departure from minimal surfuces renders the
wave action greater than the least possible, and therctore is
not mathematically admissible, nor will it occur in physical
nature.

3. ‘Therefore drops of liquid always take a form as
nearly globular as possible; and liquid films follow the
mathematical law of minimal surfaces so as to make the
physical action of the passing waves a minimum.

4. The instant a liquid film departs mathematically
from the minimal form ¢, -+, == o, as by the partial develop-
ment of a drop, the inequality rapidly
surface is disrupted.

(iii) Examination of the wave-lengths appropriate to
the several forces.

From the theory of physical forces resulting from the

augments, and the

new theory of the aether it follows that waves ol different

lengths give rise to different physical effects. In a general
way we know that the chemical forces correspond to the
ultra-violet region of the spectrum; there also probably will
be found the waves producing surface tension, capiltlarity,

cohesion, adhesion, etc. Next in order of increasing wave
length comes light, then heat, with the infra-red rays in-

vestigated by Langley, twenty times longer than the space
covered by the visual rays known to Newfon.

In an earlier section above, we have found the general
expression for the potential of the molecular forces:

=i =i i=i
V= Emitp >//1.J.f dr+>mlff 121)
=1

the second integral of whlch becomes zero when the distance
» exceeds the radius of activity of the molecular forces
at work.

Accordingly, we could make a table of wave lengths
with their corresponding forces somewhat as follows:

5130 : 340
=L
W a 7/8 R -
vi= >wi\fr)dr l<r I’/0r == Molecular forces:
;=1 A, Chemical athnity, Surface tension, Capillarity,
Cohesion, Tenacity, Adhesion.
l—[ ) )
B > Ay ey .
—+ > g J . 017/0) = Light and heat,
Pra /A ( <<A3> / =
=1
<ok Py
R L >l o fagnetism, Gravi-
+>// j >.'> CIC;':’ R
P <ty : {tation, ctc.
[=1 2,
=i A L. ]
B B AN Flectrodynami
—i—\>///,i// d» < ) 01/0,: ce “
i . <Ay lstlOn L{122)
=1
This table gives us an nspiring view of an immense

subject,
cffective

and may enable us to understand the types of waves

in the various operations of nature. The first region

of wave length here outlined, 4, to 24, is undoubtediy the
region of very short range molecular forces. It could bLe
further :L;l/dn'i(icd in the order indicated on the right:
N S hemical  affinity
/ : K g > Cly ¢ “ niy,
o Sl ~Explosive forces.
=1
== . .
s e . . . .
—+ > ’”IJ/ ( ,“> ¢ = Coheston, Tenacity,
- 5 </.K;'
=1 «
I—*I . -
Lt PN .
-+ ‘> /II,J / o) 0170y = Adhesion
<y
1' I
=/ L) R N [ i
Y . I Y N Capillarity, Surface
-+—>//u5/(1‘)dr ’) 07y w= proanty,
PR EYRY ’ | tension {123)
FRE :
In wgeneral scheme of this kind, it s obvious that

it the forces pomted out be due to waves siilar in type
but of ditterent the corresponding actions in many
phenomena will somewhat overiap, umore  or
merged together. "Thus chemical affinity is a waximum in
the ultraviolet spectrum, which is very slightly visible as
light. And in the same way the infra-red spectrum investigated
by Langley is of such immense extent that in all probability
the magnetic and gravitational waves will overlap at least
part of this region. But these questions must be left to the
future, in the hope that greater experience will enable us to
tlluminate problems which still IFor the
present, suifice it to say that magnetic and gravitational waves

lengthy,

and  be less

remain quite obscure.

must be long, otherwise they would be lacking in power of
penetration; so that the sun's action on the moon would be
almost wholly cut off at the time of lunar eclipses, which is
contrary to observation in the lunar fluctuations.

(iv) New theory of acoustic attraction und repulsion:
Confirmation of the wave-theory of gravitation.

In the New Theory of the Aether, AN 5044, 5048,
50709, 5085, we have treated of the waves between two bodies
and shown that in the process of mutual interpenctration by
the independent waves from each centre the medium is thinned

out most in the straight line joining the bodies. As the kinetic
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exchange tends to keep the aether of uniform den-
sity, the tension is thus a maximum in this line,
while the.increase of stress or pressure is a maximum
Leyond the two masses. This could be otherwise
expressed by saying that under the wave-action some
of the actherons are worked out from between the
bodies, and transterred beyond them, as will be readily
understood from the double wave ficld shown in
Fig. 8, AN 5048, p. 163.

In order to illuminate this subject still further

Sound wayes
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‘Actionon Ballesa

by well established physical data from. known gases,
we now ') treat very briefly of acoustic attraction
and repulsion, which has been experimentally in-
vestigated, but not correctly explained by the fol-
lowing authorities.

1. The Philosophical Magazine, for April,
18771, p. 283, where Profll. Challis cites the experiment
of Clement and considers hydrodynamical conditions.

2. The Philosophical Magazine for June, 18771,
with expertments on acoustic attraction and repulsion
by Guver, Schellback, Guithrie, and Sie 1170 Thomson
(Lord Aelvin).

These expertiments, as understood by physicists,
have led to the conclusion that the vibrations of an
clastic medium attract bodies which arc specifically
heavier than itsell and repel those which are speci-
fically lighter. (cf. Ganes's Physics. 14" English edition,
by £ Atlinsorn, 1893, p. 274). In proof of this view it is
pointed out that a balloon of goldbeater’s skin filled with
carbonic acid gas is attracted towards the opening of a
while a

g, 20.

resonance box, Dbearing a vibrating tuning fork;
similar balloon filled with hydrogen gas and tied down by a
string is repclled. Ixperimenters have found that this result
always follows, even when the hydrogen balloon ismadle heavier
than air by loading it with wax, or other substances.

This last remark leads me to see in these experiments, not
a law based on the relative specific densities of the hodies, but one
based on their ratt of conductivity of the sound vibrations,

In studying the phenomena of attraction and repulsion,
due to electrodynamic action, we are placed at great disad-
vantage by the enormous speed of such action, which conceals
from our view the nature of the process involved. It is
therefore well to consider the slower processes which may
be more accessible to investigation by laboratory experiments,
chiefly in sound.

It s well known that as hydrogen has the greatest
molecular velocity of any of the gases, 1t conducts sound
vibrations more rapidly than any other gas. The following
data are taken from the table in Widlner's Txperimental-
Physik, Leipzig, 1882, Vol. I, p. 8o4.

Gas Density Velocity of Sound in
Air 1 1
Oxygen 1.1056 0.9524
Hydrogen 0.06926 3.8123
Carbonic oxide 0.9678 1.0158
Carbon dioxide 1.52Q0 0.7812
Ammonia 0.59767 1.2534

'} This explanation, based on the wave-theory, with the following plates for balloons of carbon dioxide and hydrogen, was developed

sf Carben Dioxide

\&

IHnstration of the progress of the wave-front when sound waves advance
through the air with velocity 1, and through a balloon containing carbon
dioxtde, with veloeity 0.78. Any phase of the sound wave thus reaches
the rear of the halloon by going around through the air quicker than
directly throngh the <0, of the balloon, and the reaction on the rear

coof the Dalloon impels it towards the source of the

clastic memh

sound, which cspiains the observed acoustic attraction.,

P Meputsion

) A
I

S.und Waves

(St Jl

Fig. 21. Hlustration of the enormously rapid advance of the sound
wave-front in a balloon filled with hydrogen, V' = 3.81. The
internal advance of the sound wave is so rapid that the wave
front reverses itself before the centre of the balloon is reached,
and the elastic reaction against the surrounding air thus repels
the balloon from the source of the sound. This accounts for
the observed phenomenon of acoustic repulsion.

in the year 1916, but publication has been deferred till the present time.

Ea
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It appears from the numbers here given that in the
very light gas hydrogen sound has 3.81 times the velocity
that it has in air; while ammonia, a gas with relative den-
sity of 0.60, has a velocity of 1.25 times that in atmosphere.
The facts thus support the view that a balloon filled with
ammonia would also be noticeably repeiled by the sound
waves emitted from a resonance box bearing a vibrating
tuning fork.

If this phenomenon of repulsion were due to the smaller
average density, it would not persist after the balloon was
loaded with wax, or other material, as has been
observation in the case of hydrogen. It therefore
due not to the relative lightness of the hody floating in the
air, but to the great velocity of the sound vibratiens in the
hydrogen, the waves of which are conducted through the body

must be

of the balloon more rapidly than through the air about 1
It is obvious that the rapid advance of the sound waves

found by .

through the better conducting hydrogen gives o reaction aganst

the surrounding air before this enveloping gas Is agituted by

the waves coming through the atmosphere alone; the ctfect
of this advance agitation through the hydrogen is an clustic

reaction of the hydrogen balloon against the greater part of

its as yet undisturbed envelope. It thus rebounds against the
inert air, and is repelled from the resonance box, as found
by observution.

In the light of this explanation, which is the only one
admissible, we readily see also by the above table why u
balloon filled with carbon dioxide should be attracted to the
resonance box. For the density of carbon dioxide 1s 1.529,
and its conductivity of sound only .73 that of air. 'l'he
sound waves on entering such a balloon will be appreciably
outrun by those in the surrounding atmosphere; thus the
outside air will give an advance elastic reaction against the
enclosed sluggish balloon of carbon dioxide.

Viewed kinetically it is obvious that some of the lighter
and more rapidly moving molecules of the air, under sound
agitation, are thus transferred beyond the heavy mass ot C0.;
and as the air between the balloon und the sounding box 13
thus somewhat thinned out, the increase of external pressure
and internal tension incident to this kinetic transfer of some
of the air particles to the space beyond the balloon, causes
it to be attracted to the sounding box.

[ find on examination that all the other phenomena of

acoustic attraction and repulsion, which are reported by the
eminent experimenters above named, can be satisfactorily
explained in the same way; $0 that it is natural to infer
that we have here a remarkable general law of nature. As
the experiments are definite and decisive, it would scew that
there is no escape from this conclusion, and the resulting
law must therefore be taken as fundamental.

These well established experiments on acoustic attraction
and repulsion, in the air, which we can experiment with in
our laboratories, confirms our theory of gravitational attraction
through the aether, with particles moving 1.57 times faster
than light. For in the fourth paper, (AN 5085), we have
shown from the confirmation of Puoisson's researches,
intimate is the connection between the theories of light
and sound, as correctly held by that illustrious geometer
a century ago.

how
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The aether is of decreasing density in the direction of
4 central mass such as the sun, and when a body like the

earth is also introduced, with decreasing density towards its
centre, — thus giving two independent decreases ol density

incident to the waves from each centre — it follows that
the actual density between the bodies is less than if the
other body were absent. There is also increase of stress or
pressure beyond the bodies. The result is the incessant pulling
in the right line between the masses — which we call planetary
forces. We could view either body as operating by its wave-
action to agitate and expel some of the actherons from the
region between the masses, and increase them beyond so
that the density is a minimum along the line sun-carth.
(2. General Considerations on the
Theory in Relation to Llanck’'s Quantum
with an extension of Flewck's views, 1913,

Wave-
Theory,

(i) Tendency to geometrical forms explained by the
wave-theory.

The plausibility ot the wave-theory appears (rom the
fact that if we take a solid and heat 1, we get a glowing
mass with predominant waves of heat, — Jeaving the action
of the shorter waves of the molecular forces weakened, but
still targely intact. 1 we stll further increase the heat, the
solid fuses into a liquid — the increasing agitation of the
long heat waves have so far overcome the shorter waves
underlying moleculur forces that the molecules become released
and the fluid is thus free to flow about. Sull higher tem-
perature will vaporize the liquid and convert it into a gas
with particles flying about with high velocities.

’

Now when we consider such transitions of the stute
of matter through various temperatures and crucial states,
with predominant acther waves of various lengths, what ex-
planation of the discontinuity in physical conditions is so
plausible as that afforded by the wave-theory T Rising temperature
liquities and vaporizes ail Lodies: decreasing temperature and
incrensing pressure has enabicd the experimenter to liquify
and solidify ail bodies, including the most permanent gases,
The wave-theory is directly
involved in all temperature problems, and we have shown

such ws oxveen, hydrogen, hehum,

how molecular forees depending on short waves develop and
become effective when the long heat waves are withdrawn.
Is not such a general indication in nature significant of the
underlying cause?

It huas long been recognized that the ruindrops are
spherical, but far too little attention has been directed to

the question of this exact sphericity of figure, — how it
arises and how it is maintained. Molecular forces indeed

are the assigned cause of the sphericity, but as nothing is
known as to the laws of these forces, or how they act, the
current assumptions are admissible only in default of a better
explanation. Under the circumstances it becomes advisable
to inquire into the degree of sphericity of figure actually
maintained, with a view of throwing light on the cause of
molecular forces.

1. It is generally agreed that the colors ol the rain-
bow are well separated, except for the overlup of images,
due to the finite dimensions of the sun, which renders the
spectrum impure. So far as one can see, therefore, the drops
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of rain are exceedingly spherical; and no departure from
perfect sphericity can be inferred from the observed colors
of the rainbow, or from the conical form of that splendid
arch of light.

2. Nor is there any evidence indicating noticeable
oscillation of figure in the drops which produce the rainbow.
Oscillations of figure would render the refraction and reflection
irregular and variable; so that the angle of the cone of the
rainbow from the anti-solar point would be variable. [t is
triee that the rapidity of the oscillation would render the
phenomenon difficult of detection; yet if a great number of
drops, enough of them to constitute a considerable fraction
of the whole, were incessantly in oscillation, it scems certain
that the separation of colors along the conical outline would
be blurred, and the rainbow appear as an overlapping hazy
arch of light, devoid of distinct colors.

3. Now this hazy arch is not obscrved in the sky when

5130

natural rain is falling. We cannot say that this absence of

a noticeably hazy border to the rainbow praves that no drops
depart from the truc spherical figure; but only that such
departure from very perfect sphericity, if they exist, are ex-
ceedingly few or of excessively short duration for any indi-
vidual drop, and thus the corresponding oscillations of figure
exert no scnsible diffusion of coloration, in comparison with
" the integral effect of the light from all the spherical drops.
In the Proc. Roy. Soc., Mav 5, 1870, no. 106, the late
Lord Ravileigh has devised a means of determining the time
of vibration of a dew drop. T.ord A¥v/ein found the formula
for the period of vibration to be
(124)
where « is the radius of the spherc of water measured in
centimetres. lor a radius '/, g0 the period is 1/, sccond;
and hence the table:

; 3y
7 = 1/(a"® sccond

’ L
em s second.
1/
T B »
2.54 1 » h
3 2 »
6 16 »
30 3.
1407 13200 »

Accordingly, when the drop is one inch in diameter, 2.54 cm,
a whole second is required for the vibration. [t is only for
small drops that the vibration is rapid, and the forces powerful.

Before the time of /Yase the (Greek geometers had
noticed the spherical figures of the sun and moon, and in-
ferred a like spherical figure for the carth, from the circular
section of the earth’s shadow at the time of lunar eclipses.
As the orbits of the planets also appeared to be essemjally
circular, and the Greck natural philosophers noted thettendency
of drops of dew, oil, and other liquids to assume the spherical
form, which was then held to be a perfect figure, it is now
possible to understand /7a70's doctrine that the deity always
geometrizes, — o Aenc el yempfroee.

Apparently this conclusion was not an idle remark, but
represented a genuine philosophical inductien from-the ob-
served order of nature, which we are only beginning to
interpret after the lapse of some two thousand three hundred

|
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years. To the modern natural philosophers it will appear
as wonderful as it did to the Grecks that nature approximates
these very beautiful geomctrical figures. Thus the cause of
such observed phenomena should engage the attention of the
leading geometers of our own age.

In view of the foregoing discussion, it appears that the
physical cause of the rainbow is a two-fold one.

1. The exact sphericity of the raindrops, the spherical
figures of which are maintained by passing waves shorter
than those of light. The cause of these minimal spherical
surfaces 1 now assigned for the first time and shown to
accord with the [Teierstrass-Schwarz mathematical theory of
minimal surfacces.

2. The dispersion of the light is due to the spherical
figures of the drops with the refraction of the incident light
following the law of Sucllivs, as Descartes found by actual
calculation, 1637. 'The true theory was originally discovered
by Zheodorick, about 131t A.D., but his explanation was
not published till 1814. Meanwhile it was independently
discovered by Awutosniusde Dominis, Archbishop of Spalato, about
1501. Acwton first developed the complete theory of spectral
colors through the decomposition and recomposition of white
light, in a scries of experiments begun in 1666, and fuily
published in his Treatise on Optics, 1704.

In view of this development, it is well to dweil on the
real physieal significance of the rainbow. We should remem? ¢r
that the very existence of this great natural phenomenen
muplics an oinfnite variety of waves. Otherwise this splendid
bow of coler would never span the heavens. Just as the
colors in the sky are a perpetual reminder that some goo

i trillion waves enter the eve cvery sceond, so also do they

tacitly imply not merely waves from the region of the visible
spectrum,  but also invisible waves from the region of the
ultra-violet.

It would be in the highest degree improbable that
waves come only {rom the visible spectrum; for the longer
heat waves alwavs accompany the sun's light, and are known
to come Irom the red and infra-red regions of the spectrum;
and as chemical processes alwavs are going on in nature,
and are known to depend on the shorter violet and ultra-
violet waves, it follows from the chemical processes of the
world alone, that ultra-violet rays also (il the sky, though
quite invisible on the blue border of the rainbow.

Accordingly, when we behold the glorious arch of the
rainbow, we are at the same time reminded of quadrillions
of waves too short to be visible, yet entering the cye every
sccond. Thev too (il every part of the sky and traverse
every drop ot rain just as the waves of the visible spectrum
enter the correspondingly small pupil of the eye, to the number
of about half a quadrillion. Under these circumstances, it
is strange that we have not sooncr recognized how the waves
give the raindrops such mathematically perfect sphericity,
and by the resulting dispersion add to the beauty of the world.

(ii) General outline of anck’s Quantum Theory, with
inference suggested by the wave-theory.

From the wave-theory thus briefly outlined it follows
that all the phenomena of the physical universe should depend
on the mutual interaction of waves and the corresponding

23
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forces of nature. 'This relationship is shown in the theory
of the correlation of forces, and the doctrine of the conser-
vation of energy, which have become fundamental in modern
science. But there are some difficulties to be overcome, and
heretofore a method of attacking them has not been developed,
even by the most eminent authorities. It seems likely that
most of the supposed difficulties of the wave-theory will
disappear the moment we attribute the forces of nature to
wave action; for then we may use the forces of nature to

study the waves by which the forces are produced, and also :

investigate the forces observed with a view of inferring the
type of waves from which they might arise.

Accordingly, after this sketch of the wave-theory, we
have now to consider the views announced by Professor
Planck. In his address as Rector of the University of Berlin,
Oct. 15; 1913, reported in the Revue Scienuiique, DParis,
Feb. 14, 1914, Planck gives a summary of his chicl con-
clusions, to the effect that neither motion nor physical torce
Is strictly continuous in character, but cach them
up of small jumps or sudden alterations in value, This quantum
theory probably is not identical with the wave-theory, yet
it has enough elements in common to be worthy of careful

ol nade

examination, on the probability that the two theories may
be reconciled by future developments.

Llanck's theory 1s described very briefly in the follo-
wing uaccount:

»Suppose a4 mass ol water in which violent winds have
produced a train of very high waves. Alter the
ceased, the waves still maintain themseives and o trom one
‘shore to another. Then takes place a characteristic change.
The energy of motion of the longer and lurger waves gradually
changes, especially when they meet the shore or other solid
objects, into that of shorter and smaller waves, until finally
the waves become so small as to be quite invisible. This is
the well-known change of visible motion into heat, of mass
movement into molecular movement.«

»But this process does not go on indelinitely; it finds
a natural limit in the size of the atoms. The Lurger the atoms
are, the sooner comes the end of this subdivision of the
total energy of movement.« v

»Now suppose a shmilar process with undulations of
light and heat; suppose that the rays emitted by u powerfully
incandescent body are concentrated into a closed cavity by
mirrors and there continually reflected to and fro.

wind huas

Iere also

will take place a progressive transformation of the radiant !
energy into shorter and shorter waves. According to classic

theory we should expect that the whole energy of the radiation
should finally be confined to the ultra-violet part of the spectrum. «

»Now, not the slightest trace of any such phenomenon
can be discovered in nature. The transformation reaches,
sooner or later, a perfectly clear and well-determined limit,
and after this the state of the radiation is stable in all respects. «

»To make this fact agree with.the classic theory the
most diverse attempts have been made; but it has been shown
that the contradiction penetrates too deeply into the roots
of the theory to leave them intact. So the only thing to do
is to overhaul the foundations of the theory.«

»In the case of the water-waves the subdivision of their
energy of motion came to an end because the atoms retained

' 4
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the energy in a certain way, because each atom represents
a_ determinate quantity of matter, which can move only as
a whole. Also in the light and heat radiation, although it
Is quite immaterial in its nature, there must be certain pro-
cesses in action that retain the energy in determinate quantities
and retain them the more powerfully as the waves are shorter
and the vibrations more rapid. ¢

This outline of enck’s theory assures us that the trans-
formation of encrgy waves into shorter and shorter wave-
tength would lead one to expect »that the whole energy of
the radiation would finally be confined to the ultra-violet part
of the spectrum. Now, not the slightest trace of any such
phenomenon can be discovered in nature. The transformatiornr
reaches, sooner or later, a perfectly clear and well defined
fhmit, and atfter this the state of the radiation is stable in
all respects. s

[t shouid bLe pointed out that molecular forces furnish
evidence ot such shorter and shorter waves, at least up to
And it is found from
the observed thickness of soap bubbles, just before their
rupture, that this length corresponds to the wave-length of
the ultra-violet spectrum and beyond.  Accordingly, it seems
to me that Fawck not drawn all the admissible con-
clusions.  For if we concede that moleculuar forces be due to
waves, the evidence 1s that shorter and shorter waves really

a certain it hitherto quite unknown.

has

exist, at lewst to atomic and perbinps clectronic dimensions.

Nature therefore presents oo us a hook  of mvsteries

which is not vet opencd. Lut securely scaded, as with seven
sealss As we have to explun cobesion, adhesion, hardness,
tenacity, ete, we cannot vet truthfully say what is the limit

of the shortness of the waves, unless this is finally set by

. the dimensions of the atoms and electrons.

In the last paragraph of the above quotation Flanck
describes the smallness of the masses as fixing limits to the
shortness of waves, because such small musses can only move
as w whole.  He does not show how these elementary quanta
of matter vibruting as w whole are represented, but the in-
ference ds that no source Is able 1o give out energy till the
energy has reachied o cortain value, by natural sympathy of
the vibruting system or othierwise, as in feln/olls’s resonators,
with which the atoms have many properties in common.

(il)  Discontinuities in the quantum-theory naturally
accounted tor Ly the wave-theory.

[t is chiefly Ly the differences of wave-leagths in the
integruls for the moleculur forces that we explain the ditferent
forces of nature. The bolometer-researches of Zanglev on the
solar spectrum, showed that thc'\\'u\'c-lcngths are quite irre-
gularly distributed over the infra-red region. It therefore the
operations of heating, at difterent temperatures 4, and £, should
bring into prominence the pik played by waves of lengths
between Z4; and Z,, it might be possible to account for the
discontinuities noted by Zlasick.

For as changing resistance breaks up electrical waves
from longer to shorter wave-length, and at the sume time
heat waves appear from this disintegration, it is very probuble
that in summing up the effects of waves over u great range
of wave-lengths many speciul phenomena would appear suddenly
at certain temperatures. ‘This probable connection between
the quantum-theory and the wave-theory scems to make in-
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telligible a great body of phenomena involving sudden tran-
sition, which heretofore have been quite obscure to the natural
philosopher. It is necessary to have some mental picture of
the cause of the apparent discontinuity, and at present this
can only be supplied by the wave-theory.

Professor Janck describes the apparently discontinuous
and explosive character of certain natural phenomena as follows:

»In any casc the hypothesis of quanta has led to the
idea that there are in nature changes that are not continuous,
hut explosive. [ nced only remind you that this represen-
tation is made acceptable by the discovery and close study
of radioactive phenomena.
far enabled us to obtain results in better accord with existing
measturements of radiation than those of all preceding theories. «

The hypothesis of quanta has so

»But there s something further. 1f it is a point in
favor of a new hypothesis that it is verified even in regions
to which it was not expected to apply, at the outset, the
hypothesis of quanta may surcly claim an advantage. [ desire
to call attention here only to a single striking circumstance.
Since we have succeeded in liquifving air, hyvdrogen and
helium, an abundant and new field of experimentation has
opened to research in the domain of the lower temperatures,
and already a whole series of new and extremely surprising
results have come to light.«

»To heat a picce of copper from - 2350 to — 240",
same quantity of
heat is required as to heat it from o to 17, but about thirty
times It started initial temperature still
lower, we should find that the corresponding quantity of heat
was still smaller, without assignable limit. This 1s directly
contrary not only to all customary statements, but also to
the requirements of the classic theory, for although we learned
more than a century ago to distinguish strictly between tem-
perature and quantity ol heat, we have nevertheless heen led
to the that
exactly proportional, they vary at least in some parallel way.«

that is, by one degree centigrade, not the

less, we with an

conclusion cven if these magnitudes are not

»The hypothesis of quanta has completely cleared up
this difficulty, and moreover has furnished another resuit of
high importance, namely, that the forces which provoke heat-
vibrations in a solid are precisely the same as those that
produce clastic vibiratiens,  We may thus now calculate from
the elastic properties of a monatomic hody its heat energy
at different temperatures a service that the classic theory
has never been able to perform.«

The researches heretofore made are too incomplete for
us to affirm that these phenomena of quanta can all be
explained by the wave-theory; yet the indications of a hitherto
unsuspected connection are so plain that the cause underlying
the observed phenomena will necessarily become an object
of attention in future investigations. Heretofore the phenomena
of quanta have appeared as deep mysteries.

(iv) Conclusion to the fifth paper on the new theory
of the acther. '

I'rom the foregoing comprehensive but necessarily in-
complete survey of an extensive subject, it appears that the
wave-theory of molecular forces is overwhelmingly indicated
by the minimal surfaces pervading nature. The tendency to
perfect sphericity of figure is so remarkable a phenomenon
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that it can not fail to become an object of research among
philosophers, as to why these physical laws exist.

It appears that Aa/e saw in the nearly circular orbits
of the planets, and in the spherical figures of the sun and
moon and all fiuid globules the geomectrizing of the Deity
— o Heog (el yemnETQEL.

st Newton, Clairant, and Laplace showed that the
thecory of universal gravitation fully accounts for the figures
of the heavenly bodics. And recently it has been recognized,
from the writer's Researches in#Cosmogony 1908-710, that
roundness of the orbits of the planets and
satellites, which had so profoundly impressed both Nzwson
and Laplace, is duc to the sccular action of the nebular
resisting medium formerly pervading the solar system.

Thus, to complete the solution of the problem of the
Greek philosophers, it remained to account for the perfect
sphericity of figure of liquid drops. This production ot;pcrfcct
liquid spheres in nature we have now explained by the wave-
theory, which vields minimal surfaces with very remarkable
ceomettical propertics. The proof deduced from the Ay c/imedean
section 4, that spherical drops of liquid are
true mirimal surfaces, for the whole of the waves traversing
the universe in every direction, doubtless will be of more
than ordinary interest to geometers and natural philosophers.
I am not aware of any previous use of this beautiful theorem,
in physical investigations, since the davs of frdimedes.

theorem, g, 3,

In this paper no considerable outhine of the wave-theory
of chemical affinity, and of explesive forees has been attemypied.
That is reserved for a sixth paper, in which I hope to deal
also with the living ferces. These vital processes long have
been considered electrical in character, and yet beyond the
reach of research so long as molecular forces could not be
definitely referred to wave-action. The problems of crystallo-
graphy iikewise are many and promising, and I have left
the wave-theory of the hardness of diamond incomplete, vet
sufticiently outlined to be suggestive to others.

It only remains to add that Alaxweil, Doltzmann, and
other eminent natural philosophers, have taken the molecular
‘orces to vary inversely as the fourth or fifth power of the
distance /(r) == K/r', or f(r) = A7 which will be found
to accord well with the wave-theory. According to Laplace’s
hypothesis these forces are sensible only at insensible dis-
tances, and thus manifest themselves chiefly in the immediate
proximity of physical matter, where the refractions, dispersions,
diffractions, interferences, ctc. appear separately or conjointly
and in unknown intensity.

If, on the average, about two or three of these in-
fluences be at work near physical bodies, — the intensity
of each being as the inverse square of the distance », — the

compeund effect of their joint action would be approximately

g () = Al () = K[ or g (r) = K"[r". " (125)

This conclusion accords well with observations, but as

the distances at which phenomena are noted are nearly in-

sensible, we must not expect great observational accuracy,

nor attach much importance to the theoretical agreement
with the wave-theory.

After outlining this new theory of molecular forces, it

only remains to call attention to certain definite steps in the

23*



351

theory of the rainbow, the study of which, under the un- | this great

dulatory theory of light, has now enabled s to assign the
cause of molecular forces.

1. About the year 1311 A.D. the first analysis of the
colors of the rainbow, with correct explanation of the refractions
producing the primary and secondary bows, was made by
Theodorich (cf. Ventwri, Commentarii sopra la storia e le
teorie dell’ottica, Bologna, 1814), who was a contemporary
of Dante, and thus flourished in the darkest period of the
Middle Ages. But Zheodorick's researches were not published
until 1814, — after a delay of g03 years! — so that they
first became known early in the 19" century.

2. Meanwhile about the year 135971, the cclebrated
Awntonius de Dominis, Archbishop of Spalato, independently
discovered and experimentally demonstrated the origin of the
colors of the rainbow. In his Treatise on Optics, 1704,
p. 126, Newton says:

»This bow never appeuars but it rains in the
sunshine, and may be made artificially by spouting up water
which may break aloft, and scatter into drops, and fall down,
like rain. For the sun shining upon these drops certainly
causes the bow to appear to a spectator standing in a duc
position to the rain and sun. Hence it is now agreed upon
that this bow is made by refraction of the sun's light in
drops of falling raipn. "I'his was understood by some of the
ancients, and of lute more fully discovered and explained
by the famous ustonius de Domins, Archiishop ol spalato, in
his book De Radiis Visus et Lucis, published by his friend
Dartolus at Venice, in the vear 1011, and written whout
twenty years before. For he teaches there how the interior
bow is made in round drops of ruin by two refractions of
the sun's light, and one reflexion between them, and the
exterior by two refractions and two sorts ol reilexions bet-
ween them in each drop of water, and proves his explications
by experiments made with a phial [ull of water, and with
globes of glass filled with water, and placed in the sun to
make the colours of the two bows appear in them. s

where

3. It s well known that Vewrer's experiments on
colors, with the decomposition and recomposition ol white
light by means of prisms, were begun in 1666, but not
published in full until 1704, when the celebruted Preatise
on Optics appeared.,
material change in the theory of the colors of the rainbow.

Since Newton's day there has been no

4. Having had occasion to examine the theory of
the rainbow with much attention in the year tg16, 1 was
led to conceive that the waves entering and leaving  the
drops ‘would exert a pressure towards the centre, and thus
to form a new theory of molecular forces depending on
wave-action. At length, after several yeurs of rescarch, [ have
been able to outline a proof that heretofore we have recog-
nized only a small part of the wave secrets of nature.

5. Accordingly, it appears that the study of the rain-
bow hus finally led to the cause of molecular forces, including
the phenomenon of lightning, which so long proved terrifying
to mankind, and utterly bewildering even to the most learned
natural philosophers. The rainbow itself is beautiful, but its
wave origin was suggestive of deeper secrets of nature. In
fact, if our new theory of molecular forces be admissible,

|
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arch of light so splendidly spanning the heavens
during rains and thunderstorms now becomes nothing less
than a triumphal arch of discovery. By the study of the
illumination of this glorious arch we are enabled to penetrate
the much deeper mystery of atmospheric electricity and of
the lightning, ‘which in all ages has spread fear and terror
in those who rejoiced to behold the splendor of the rainbow.
6. Accordingly, if mankind should hereafter be able
to view the rainbow, and the lightning so frequently associated
with it, in calm reassurance that both phenomena depend
on the all-pervading acther and represent the same wave-order
in nature, it ought to afford some consolation to philosophers
to realize that their researches, beginning with 7heoderich's
pioncer effort in the age of Dante, subsequently extended by
Antonius de Domines, Descartes and Newton in the 16%, gt
and 18" centuries, have fimally brought to light an even
greater secret of the universe.  Under the circumstances u
torch-bearer of the Greeks, who had brought down the
lightning, us the most dazzling flash of the aether of the
skies, doubtless would have excluimed with Aeschvius:
Neeptyzoti vweny 3¢ By o0 QRN
Woyne 2o ceicr. 1 ididunio: IESERIS
Hior e Booiniy ey Nzl e NS
Prom. Vinct. 109.
»1 brought to earth the spark of heaveniv fre,
Concealed at first, and smull, hut spreading
Among the sons of men, and burning on,
Teacher of art and use, and fount of power.-

soon

Very grateful acknowledgements are due to Mr. 117 5.
ranie tor taciiitating the completion of this paper.

Staritghton Loutre, Montgomery City, Missouri, 1920 Dec, 1 o.
o o ) )I ) )
7. FF See.

I Postseript. Since fimshing the above paper it has
oceurred to e that the nuture of the wave-action in main-
taining the osciilitions ot w giobuie of Higuid might be examined
somewhat more criticadly. Whaen o drop is disturbed from
the spherical form its figure oscillates from o prolate to an
oblate ellipsoid, or vice versa. Thus it may be worth while
to consider these extreme spheroidal forms of the globule

1. The Prolate Spheroid. "I'he equation of the meridionul
secton s ()

(3)

()

@y p == g
1= (6% a?) (- -x?)

The differential clement of the volume is

which gives

do == 5 (6% a?) («? - v?) dv
which by integration gives:
(9)
= 1 (0**) (@ w— P+ (¢)

[t we calculate the volume from the plane passing

o= g (6*/a?) s (@ =) do

through the centre, we have for v == o, v = o, and there-
fore also ¢ == o. Hence between the limits 4 == o, ¥ = g,

we hav : ;
e e Yy == 2/im b2 a (0
v="10ba. s

As 7 d* is the area of the circle described on the
conjugate axis, and 2« is the transverse axis, and the volume
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wave-action on oscillating drop of

Hauid, alternately prolate and oblate, the cireum-

Fig. 22, Theory of

scribing eyvlinder having axis oblique, and being
somewhat variable in form and dimensions, which
however for the sake of shmplicity is not re-
presented i the hgure.
of the circumseribed cvlinder therefore 27rb%a, it follows that
the volume of the prolate cilipsoid is to that of the circum-
scribed cylinder as 2 :3, which is a remarkable extension
of the celebrated thecorem of ilustrated above
in Fig. 5.

AAreliimedes

2. The Obiate Spheroid. In this case we have obviously

dor = a7 dy . ('1j

And on substituting for ~7 its value from the equation of
the ellipse, namely:

X7 = (0¥ (67 —1?) (#)

we get in like manner:

o= ) § () dv = (@) e ) e ()

And between the proper limits, this expression for # becomes:

vo="ra%b (=)

which is another remarkable extension of the celebrated
theorem of Arclimedes illustrated in Fig. g above.

If we compart the volumes of the two spheroids here

considered, we find:
()

[t thus appears that the volumes of the two spheroids
are as their greater and lesser axes respectively. Accordingly,

ObL. Spheroid : Prolate Spheroid == a: 4.

the volumes of the cylinders orthogonally circumscribed about
And the Archimedean

them would also be in the ratio of @ : 4.
theorem on the ratio of the volumes of the spheroids to the
orthogonally circumscribed cylinders in each case is 2.

3. Now when we consider a drop of water or other
liquid oscillating about its mean figure, which is spherical, we

') Written about 3 years, but not heretofore published.
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perceive that there is not only an alteration of figure, from
a prolate spheroid to a sphere, and from a sphere to an
oblate spheroid, or vice versa, but also that an alteration of
volume would be expected to occur except for the incom-
pressibility of the fluid under the slight force of surface tension.
The incompressibility of liquids, however, imposes the condition:

thrath = Ym e = Yy #? (re)
Va? ) = V{a 0) ()

This requires that for an oscillating globule the axes
@ and 4 in the two spheroidal forms must take successively
appropriate values, yet when the form of the spheroid has
alternated, the axes are not identical in the two cases, and
should be written as in equation (3).

4. Il we consider the resistance to the waves, due to
the fluids in the prolate and oblate spheroids, when the axis
of the circumscribing cylinders coincides with the major axis
of the prolate and the minor axis of the oblate spheroid, it
is evident from the above equations that the Arckimedean
theorem will hold rigorously true for these two orthogonally

Obl. Spher. == Prol. Spher. = Sphere

or =

coincident axial positions, just as in the case of the sphere

treated n Fig, 5 above. In these cases the resistance to the
waves due to the fluid spheroids is exactly ?/; of that due
to the whnle cvlinder of fluid.,

R the axes of the fluid spheroids are oblique
or incined at anv angle to the axis of the circumscribed
cvlinder, this the ratio *, for the resistance of
the passing waves will not hold. In the oblique position of
the axes the section of the cylinder is not circular, but really
clliptical.  And even if the circumscribing cylinder be ellip-
tical, the wave resistance due to the enclosed obliquely tilted
spheroids will he less than %/, of that due to the whole cylinder.

(a) The wave pressure at the two ends of the spheroids,
parallel to the polar axes, is relatively greater than from the
various oblique dircctions.

(b} Whilst the axes of the spheroids remain fixed in
position the sides of the figure are thus forced in or out,
as the case may be, tiil the motion is checked by inertia
balancing momentum, as the globule maintains its vibration;
and this oscillation, heretofore attributed to unknown molecular
forces, 1s really due to the unequal wave pressure accumu-
lating at the boundary of the fluid in the different directions.

(¢) The above figure will convey some impressions of
this oscillation in a typical case, but the enclosing cylinder
must be conceived as somewhat variable in figure and di-
mensions. These additional considerations show that the wave-
theory may be adapted to the behavior of drops in oscillation
as well as to those which have settled down to the figure of
equilibrium, which when free from external forces, is that
of a sphere.

when

theorem of

1921 leb. 19. 7. % F. See.

2. Postscript.

Theory of the Flow of Waves in Right Lines through
any Conical Space w, and of the Change of the Double
Integral of the Waves over any Closed Surface .5, when Re-
fraction occurs within the Enclosed Spacel).

¥
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-
In the theory of the brightness of the stellar universe,
under an equal distribution of the stars as conceived by
Herschel, W. Struve shows that for a small solid angle w,
the number of stars dy included in the cone thus defined
between the distances » and »—+d» is given by the expression
dy = bwridr (1)

in which 4 1s a constant.

As the total light is determined by the accumulated
effect of the stars at their several distances, the whole amount
of light received from such a cone will be found by inte-
grating this expression between the limits o and >¢:

P

S fr2) dy =

v
/=1

/wj (1/7%)

:/:mj.dr:/('m-\:\) (3)

In practice this expression is [inite and less than the
and thus either the universe 1s |

brightness of the sun’s disc,
finite, or an absorption of
i1s considered probable.

hght by cosmical dust in space
Let 4 be the flow of light in straight lines, from a
luminous point, under constant wave velocity; then if » be
the distance of the luyminous point, the intensity, or quantity
of light which passes through unit of surfuce perpendiculur
to the ray in unit of time, will be proportional to the il-
luniination of steady intensity defined by
[ =1},r (3

If the surface illuminated be

to the ray, we have for the intensity of the illumination of

such a ‘tilted area:  p ( = % 1 cosd . (4)

In the article Light, Encycl. Brit, o't ed., Zwit points
out that these two intensities are exactly similar to the fol-
lowing expressions: Equation (3) is the expression for the
gravitational force exerted by a particle of mass Z on a unit
of matter at distance »; and (4) for the resolved component
of this force on a given direction. This is an additionul
indication that gravitation and light are Doth duc to waves,

the cquation:

inclined ut an angiec Jd

Accordingly, if there be any number of separate sources

of light, we may ecmploy, for calculation of the ettect, an
expression exactly analogous to that of the gravitational or |
electric potential, namely: ’
Q=
=1
_Ij.f x +(y—y)+(z—5) Podadrds.  (s)

And the dlfferential of this expression with respect to »

==/

i St
Zfﬂ'[(x*x’ (v—y) (6)

will give the total radiation due to any number of separate
sources of light, when the waves are propagated in right
lines, in cones composing spheres, separately homogeneous
in wave distribution, about the several centres of radiation.

Moreover, if # be the external normal at any point of

+(z—2) 7 odvdyds

-
)

| the angle 4, is represented by the double

v under investigation (v, v, 5),
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a closed surface, we may, as in the fundamental proposition

of potentials, take the double integral over the surface:
[{de/dras = —4m i,

where 2, 1s the sum of the values of the
several sources lying within the surface.

(7)

light 2; from the

As every source external to the closed surface sends
in light which goes out again, and thus leaves the wave-
distribution in the cones of space unchanged, while the light
from the intcnml source goes wholly out, we perceive that
the amount of light lost through the surfuce per second for
cach unit source is 471, the total area of the unit sphere
surrounding the source. Hence we verify the above formula
(7), that for all the internal sources the integral is the sum
of the several sources of radiation Z;, and thus ecqual to — 471 .

Now
from the objects of the
It is easily seen that the light received from a uniformly
illuminated plane surface, when the normal is inclined at
integral:

light waves conical

streams
material universe i every direction.

consider flowing 1n

A = jj (1/7%) cosd ds .

[t may be shown that for a closed surface,
no inside source of light, this integral vanishes,
original wave distribution in the cones of space 15 unchanged.
And tor

(8)
which has
because the

all shells of cqual unitorm brightness whose edges

fe on the same cone its value 1s constant.
This theoren:, toat when propagated in right hnes, the
expression for the Lt opassing through the closed surface

vanishes for all external sources, is of the highest significance:
it affords an experimentum crucis as to the flow of light
from all sources in spherical cones in which the light distri-
bution remains homogeneous — free from refracting or
dispersing disturbances and any other kind of
this integral a finite
general

Jya

molecular

How gives

value different from zero. lence in

we have

Ay = \ s (1 coxddsS = — gty

(9)
T'o apply the above theorems to capillarity and other
sullices to enclose the fluid at the point
with a spherical surface of con-
so that the waves from external sources are
efraction, dispersion, etc., within the sphere

forces, 1t

venient radius,
redistnibuted by
surface.

(1) We nay neglect the collective
originating from the particles within the enclosing

actions of the waves
spherical

surface: such aggregate action yiclds the expression
jj dQ/dn-dS = — 40y . (10)
As the enclosed matter, by hypothesis, is not a chief source

of radiation, we know that Z, is small, and of the order of
intensity seen in gravitative forces, which are always very feeble.

(b) Thus we are left to consider the effects of the
waves passing through the sphere surface enclosed about
the fluid and solid at the point (x, ¥, 2). These are
refracted, dispersed, and unequally resisted by the matter in
the paths of the cones which make up the surfuce 47 of the
unit sphere. 1{ no refraction, dispersion or resistance occurred,.
the integral of these passing waves would be zero:

Waves
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j’j(l/r?) cosddS = o, (r1)

But under the refractions, dispersions, retardations, etc.,
actually occurring along the paths of certain cones, the integral
does not vanish, but always reduces to a finite quantity:

ff (1/r%) cosd dS = 4 (12)

This failure of the integral over the closed surface to vanish,
implies that the acthereal medium is stressed by the refractions,
dispersions, etc., along the paths of certain concs, thus de-
veloping forces, which may become quite large in certain cases.

It is upon this integral (12) that the molecular forces

o)

depend: and as the integral for the cffects of the redistributed
waves over the closed surface is not zero, the wave-principle
of Least Action always makes the integral for the sum total
of the action of the waves along all their actual paths a
minimum. Thus the residue o in {rz) is made as small
as possible.

Accordingly there are physical limitations imposed by |
nature upon the geometrical conditions underlying (im/sx's‘
theorems that in the theory of the potential:
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1. For an internal point
f{ae/an-as = —4m1,
2. TFor an external point
S)S)(r/rg) cosddS = o.
1. These celebrated theorems (Allgemeine Lehrsitze,

§ 22, Gauss's Werke, Bd. V, p. 224) are based upon rectilinear
actions in nature which follow the law of the inverse squares,
as specifically pointed out by Gawss in his introductory
remarks, §§ 1, 2, )

2. If, therefore, there be in nature forces due to waves, —
which suffer refraction or dispersion when the wave path is
through heterogeneous matter, as when a fluid is in contact
with a solid or of such shape as to cause refraction or dis-
persion, - these theorems of Gawss cease to hold rigorously true.

3. It 1s upon such principles that the fluctuations of
the moon depend.  And in a different way, the stress arising
from wave action gives rise to molecular and atomic forces

(ef. section 77 above).

1921 July 4.

7. F F Sec.

Photographische Oppositionshelligkeit des Neptun 1920. Von A" Sciiitte.

In den Jahren 1g920-21 machte ich auf Anrcgung von
Herrn Urof. [177ens und in Fortsetzung von dessen cigenen,
bisher nicht verétfentlichten Beobachtungen extrafokale Aut-
nahmen der 4 helleren Jupitertrabanten, zwecks Frmittelung
ihrer photographischen Helligkeitsschwankungen.

Da im Februar und Mirz 1920 Jupiter und Neptun zur
Zeit der Opposition sehr nahe ancinander vorbeigingen, so
befindet sich auf mehreren Platten auch der Neptun, womit
hier unbeabsichtigt die Gelegenheit gegeben war, seine photo-
graphische Helligkeit zu messen, Da die Untersuchungen iiber
die Jupitermonde noch nicht abgeschlossen sind, sei hier —
eine spitere ausfiihrlichere Veroffentlichung vorbehaltend --
das Frgebnis der Ausmessung, sowcit s den Neptun betrifft,

mitgeteilt.

Der 8-z6lige Refraktor diente als Richtfernrobr, wihrend
die Aufnahmen selbst mit einem der Sternwarte von den Zeifd-
Werken zur Verfiigung gestellten g4-zolligen photographischen
Objcktiv von ctwa 1.9om Brennweite ausgefithrt wurden. Die
Platten (0X 12 em} befanden sich 12~13 mm extrafokal und
zeigen kleine Sternscheibchen von ca. 0.6 mm Durchmesser;
dieselben sind in der Mitte homogen geschwiirzt und haben nur
am Rande cinen mehr oder weniger dunklen schmalen Ring.

Als Vergleichsterne wurde die in der Nihe des Jupiter

Datumm. Z. Gr. Pl te 73 Cu 3

1920 Mirz 10.468 406 24™ 24™  oM18 o2z

»  22.390 49 24 24 0.12 ©O.1%

»  24.467 5o 10,24 2.4 0.30 0.40

»  25.33T g1 10,16 16 0.09 0.09

» 25.474 54 10,24 24 0.35 ©0.40

April17.336 59 10,16 - 10 0.28 o0.18
Spalte 1 gibt die m. Z. Gr. der Beobachtung, d. h. die 4;

Mitte der Expositionszeit; Spalte 2 gibt die Nr. der Platte; |
Spalte 3, 4 7 und 73 die zur Ausmessung benutzten Ex-
positionszeiten von Praesepe und Neptun; Spalte 5, 6 ¢« und |

Publikation der Kuffnerschen Sternwarte, Bd. V p. Cg99.

A
) oA [Filkens, Photographisch-photometrische Untersuchungen.

)
J

stchende Pracsepe im Krebs gewihlt, fiic welche die Schwars-
schildsehen photographischen Gréflen angenommen wurden '),
Die photocraphische Extinktion ist gleich der

.

2.5-fachen vi-
suelien Die Schwirzung jedes Scheibehens wurde
=g mal unabivingig veneinander geschiitzt und dann gemittelt.
Nach dermy Nedwarascaiidsehen Schwirzungsgesetz fiir gieiche
Expositionszeiten folgt 7):

g

gosetst,

Om == g-(y—s)+ea—cy

wobei o == Skalenwert der benutzten Skala, nach der Methode
der kleinsten Quadrate aus den Praesepesternen bestimmt;
o == Schwiirzungsmittel der Vergleichsterne; ¢, = photogra-

© phische Extinktion der Vergleichsterne; cg = photographische

Ioxtinktion des Jupiter und Neptun; s = Schwiirzungsziffer des
Neptun, korrigiert wegen Lage auf der Platte und Skala, und
dm dic an das Mittel /7, der photographischen Helligkeit
der Vergicichsterne (von Extinktion befreit) anzubringende
Grofiendifferenz des Neptun ist. In unserem Ialle, wo 10
der hellsten Pracsepesterne benutzt wurden, ist My == 7Mr14.
Die Entwickelung der Platten geschah mit Rodinal 5
acht Minuten lang bel Zimmertemperatur.

I

Die Daten 6 brauchbarer Platten {Agfa-Isolar-Dlatten

der Emulsion 2672) enthiilt folgende Tabelle:

Sk. s a K o dm Am mp

52 2.2 3.1 8.1 oM244 +1Mpo oMol 8o

52 1.7 3.6 7.3 o0.251 +1.383 +o.05 8.57

52 o8 37 6.3 o0.265 —+1.36 +o.05 8.55

52 2.2 37 7.1 0261 —+1.28 +o0.04 8.46

52 2.4 3.8 84 0258 +1.44 +o0.04 8.62

58 08 3.3 53 02606 -+1.30 ooz 846

g die zugehdrigen photographischen Extinktionen; Spalte 7

die Nr. der zur Ausmessung benutzten Skalenplatte; Spalte 8
die Schwiirzungsziffer s des Neptun (korrigiert); Spalte 9 Ab-
stand & des Neptun von der Plattenmitte in cm; Spalte 10, 11

AN 4124-5 p. 335.



