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By way of introduction, we remark at the outset that
this Fourth Paper is occupied chiefly with the foundations
of the wave-theory of light. The subject is presented from
a new point of view, in harmony with the electrodynamic
wave-theory of magnetism, to which I have been led by the
researches on electrodynamic action and universal gravitation
outlined in the preceding papers.

As will be remembered by those familiar with the
historical development of the wave-theory of light, Newiton,
Huyghens and Fuler had not considered the modern theory
of vibrations confined to the plane of the wave-surface, normal
to the direction of propagation. Indeed these great founders
of the physical sciences did not discriminate between the
nature of the molecular oscillations which produce sound and
those which produce light. But about 1817 Dr. Zkomas Young,
in England, and Fresnel and Arago, in France, were led to
assume that in light the molecular motions of the aether are
normal to the direction of the ray, like the lateral vibrations
of a’ stretched cord. This view seemed like a very start-
ling hypothesis, andf" thus for a time it encountered great
opposition.

At a somewhat earlier penod both Poisson and Cawuchy
had been occupied with profound researches in the mathe-
matical theory of wave-motion,
geometers presented a number of brilliant memoirs to the
Paris Academy of Sciences, chiefly between the years 1810
and 1840. When the first of these researches were. presented
to the Academy the venerable Lagrange, who died in 1813,
was still numbered among its most honored members; and
Laplace continued to take a deep interest in the wave-theory
till his death in 1827.

It thus appears that Lagrange died before Young and
Fresnel brought forward the thebry of transverse vibrations
(1817) for explaining the interference and polarization of
light; but ZLaplace lived to witness this development for ten

years; and, with his pupil Poisson, always held to the historical.

views of wave movement handed down by Newton, Huyghens
and Ewler, that at a great distance from the source the
vibrations of the particles of the aether are largely in the
direction of the radius drawn from the center of disturbance,
as in the theory of sound.

From these circumstances, and the new physical ex-
periments of Young, Fresnel and Arago, on polarization and
interference, there arose a celebrated controversy on the wave-
theory of light, which occupies a prominent place in the
Memoirs of the Paris Academy, 1819—~1839. A brief but
lucid review of these papers as they successively appeared
is given by Lloyd in his contemporary Repert on the Pro-
gress and Present State of Physical Optics, made to the
British Association . for the Advancement of Science, 1834,

and each of these eminent:
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and reprinted in Lloyd’s Miscellaneous Papers connected with
Physical Science, London, 1877, pp. 19—-148. It will be
remembered that L/oyd had experimentally confirmed Hamilton's
theoretical prediction of conical refraction, and therefore speaks
with authority.

After the appearance of Poisson’s memoir of 1819, the
French academicians were divided into two groups: the geo-
meters, led by Laplace, loisson, -Lamé, contending that at
great distances from the source of disturbance the vibrations
of the particles are in the direction of the radius, as held
by Newton, Huyghens, Euler, and Lagrange; and the physical
group, led by Fresnel, Arago, and Cawuchy, claiming that in
light the vibrations are transverse to the direction of pro-
pagation, and thus exactly opposite to those recognized in the
theory of sound.

This celebrated philosophical controversy extended over
some twenty years, but never led to any satisfactory con-
clusion. The mathematical genius of Cawucky came to the
rescue of Fresnel's experiments, by showing the possibility
of a medium transmitting transverse waves. Yet neither Cawchy
nor Fresnel showed how such transverse waves could arise;
and after the death of Fossson, in 1839, there was a gradual
acquiescence in the doctrine, without any theoretical expla-
nation of the origin, of the transverse waves in light. Since
1840 there has been no change in the theory, though it
often has appeared far from satisfactory to eminent investi-
gators who -expect unbroken continuity for the whole body
of wave-phenomena in nature.

In his lucid article on Light, Encyclopedia Amencana,
1904, Prof. Chas. S. Hastings, of Yale University, states the
crucial difficulty more recently encountered by the wave-
theory of light as follows:

»This great work of Fresnel was looked upon, as indeed
it well deserves to be, as one of the greatest monuments to
the human understanding — comparable to Newfon's doctrine
of universal gravitation — and it long remained of almost
unquestioned authority. Ultimately, however, one of its fun-
damental postulates, namely, that the vibrations are always
at right angles to the direction of the motion of the light,
began to give rise to difficulties. The fact also that the
theory could not determine specifically whether the direction
of vibration of plane-polarized light is in the plane of polari-
zation or perpendicular .to it was not only a manifest in-
completeness, but it was a constant stimulus to a critical
inspection of its premises. The more these points were studied
the more insoluble the difficulties appeared, until there came
to be a tolerably widespread belief that the theory was not
only incomplete, but that in some way it must be essentially
in error.¢

From the development given below it appears that
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after considerable uncertainty, extending over a full century,
the New Theory of the Aether now makes it possible to
reconcile the difficulties which so perplexed the illustrious
geometers and physicists of the Paris Academy of Sciences.
This greatly simplifies our view of the wave-theory of light,
without introducing any arbitrary hypotheses. And as the
new wave-theory connects the theory of light directly with
the theory of sound, according to the views of Poisson, 18 30,
it must be considered not the least fortunate solution of a
problem which greatly bewildered some of the most illustrious
academicians of Irance. '

1. As the Aether is a Gas, and thus Isotropic
in all Directions for Ordinary Terrestrial Distances,
it is a Fundamental Error in the Wave-Theory of
Light to deny Radial Motion, in Order to hold to
the Doctrine of Vibrations almost wholly transverse
to the Direction of a Ray.

1t is fully realized that the modern wave-theory of light
is so vast a subject that any treatment, even of the foun-
dations merely, necessarily is much more incomplete than
those given in standard treatises!) on light. Yet even a partial
discussion of the foundation principles, provided it unfolds
a new aspect of the theory of light, may be welcome to
investigators who seck the laws of nature.

<Thus I deem it worth while to present the results at
which I arrived. Under no other principles have I been able to
bring the varied phenomena of light into harmony with those
of clectricity, magnetism, and gravitation.

And since Prof. Majorana, of Rome, in the Philoso-
phical Magazine, vol. 39, May, rg20, pp. 488-504, has been
able to confirm experimentally the conclusion respecting
gravitation to which I was led in 1917, (Electrod. Wave-
Theory of Phys. Forc., vol. 1, p. 155) — that the amount
of matter within the heavenly bodies is much greater than
we heretofore have believed, actually making the sun's true
mass three times that accepted by astronomers, — we see
evidence of a coming transformation of doctrine in physical
science, greater than any which has occurred since the age
of Kepler, Galilei, and Newton. The new theory of the lunar
fluctuations, motion of Mercury’s perihelion, and of the. pro-
blems of the aether treated of in AN 5044, 5048, seems to
have triumphed incontestably.

Under the circumstances it will not do to shut our
eyes to new conceptions just because they have not been
handed down by traditions. When so many difficulties have
arisen in the wave-theory of light, which can not be over-
come on the old theory, it seems to be a sign of error in
the assumed  foundations of the theory itself; and the need
for a modification of the theory is therefore urgent, not only
in the hope of winning new truth, but also of attaining har-
mony and simplicity.

If by following the principles of the new theory of the
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aether already unfolded we have been able to confirm the
work of 1917, — as by Majorana’s experiment of 1919, —
and also obtain a much simpler view of magnetism, electro-
dynamic action and universal gravitation, — there is plain
indication that we should attempt to harmonize the wave-
theory of light with- this theory of the aether.

In venturing upon this new line of thought, in accor-
dance with the views of Poisson, 1830, it is of course under-
stood that investigators should welcome suggestions for im-
provements which ‘have not yet been made, owing to diffi-
culties in the old point of view, as handed down by tradition

| from the days of Young, Fresnel, Arago, and Cauchy.

In preﬁaring the third paper we discovered a new method
for determining the absolute density of the aether, and
developed. a process by which we were enabled to calculate
this density at the surfaces of the sun and planets of the
solar system. This new method was found to be applicable
to any stellar or sidereal system, where the force of gravity
is known by observation, and thus may be extended through-
out the immensity of space.

The method has proved to be of great importance in
confirming and definitely establishing the small density of the
aether, in accordance with the views of Newton, Herschel,
Kelvin, and Maxwell. This not only does away with the
strange claim put forward by electronists that the aether
may have an immense density (estimated to be zooo million
times that of lead!), but also definitely establishes the com-
pressibility of the aether when powerful forces act quickly,

"as in the explosions of dynamite, which was successfully

employed by Prof. Francis E. Nipher of St. Louis, to disturb
the quiescence or the medium.

Since the aether therefore is a gas, with properties
which make this medium approximately isotropic for ordinary
distances at the surface of the earth, though aeolotropic in
respect to the heavenly bodies, as distant centres of wave-
agitation, we perceive that the doctrine of the wave-theory
of light, that the vibrations are wholly transverse to the
direction of the ray, rests on a fundamental error, and a
correction is required to take account of the gaseous character
of the aether, and its equal compressibility in all directions.
Thus, contrary to the assumptions of Green, and others, who
get rid of the longitudinal component by arbitrarily making
that component of the velocity infinite; there is a longitudinal
component in light, as in sound; but it is very small, because
it depends on the ratio of the amplitude to the wave-length
AlAd =1075, due to the very slight compressibility of the
aether. The longitudinal component thus becomes .7 ==
(4/A)-9, where g,is the spherical projection factor, about
/4, deduced from Fig.1, Plate 7; so that the longitudinal com-
ponent probably does not exceed 1/4000000%). According
to the very accurate experiments described by Prof. Hastings,
in section § below, Huwyghens' construction for the extra-

!) Among the great standard treatises on light, that by Sir Fokn Herschel, Encyclopedia Metropolitana, 1849, is to be especially
‘commended for-its comprehensiveness, and because it reflects the state of the subject just after the epoch of Young, Fresnel and Arago. Drude's
Theory of Optics, translated by Mann and Millikan, (Longmans, Green & Co., London and New York, 1917) is the best recent treatise with
which I am familiar. Lord Rayleigh’s article Wave-Theory, Encyclopedia Britannica, 9th ed., 1887, presents a masterly survey of the subject,
based on great personal experience, and may be unreservedly recommended.

?) Compare the later calculation in the notes of Sept. 12 in section 4, and in section 8, below, which indicate that this component

is about 1 :(66420-10°)



389

ordinary ,wave surface certainly is accurate to 1:10% which
therefore lends a remarkable-support to the new theory of
transverse waves in l]ght

Finally, it remains to point out that although in our

-new theory of the aether we usually speak of the waves as

resembling the waves on the surface of still water, — which.

convey to the mind the image of particles revolving in cir-
cular or elliptical paths, while the wave form moves on, —
yet, ‘as in the theory of sound, it is allowable, in many
phenomena, to conceive the oscillations of the particles to
. take place in such narrow ellipses as to be practically recti-
linear, in the normal to the wave front, according to Foisson's
theory of 1830. Such approximate rectilinear motion always
is referable to simple harmonic motion, according to the
ordinary theory of uniform motion in the circle of reference.
Thus our theory is not restricted in any way, but is appli-
cable to any possible elliptical oscillation of the particle,
from a circle on the one hand, to a straight-line ellipse on
the other, as in the displacements referred to simple harmonic
motion in the theory of sound.

In the third paper on the new theory of the aether
(AN s5079), near the end of section 8, equations (86) to (88)
and beyond, we have carefully cited the reasoning of Foisson,
who devoted over 25 years to the mathematical theory of
waves, and in his last papers (1819—1839) maintained that
at a great distance from the source of disturbance the motion
of the molecules always is sensibly normal to the wave front,
as in the theory of sound.

Thus Poisson never concurred in the views of Fresnel,
Arago, and Cauchy, which were gradually adopted in the
traditional wave-theory of light. And it must be plainly
pointed out that Fresnel's doctrine of purely transverse waves
was an assumption pure and simple, which offered a needed
explanatlon of the interference of polarized light.

It is a matter of authentic record that at first Fresnel
and Arago hesitated to take such a radical departure as to
postulate transverse waves {cf. Arago’'s Eulogy on Fresnel,
English translation, Boston, 1849, pp. 212—213).

In regard to the reluctance of the early investigators
to admit a lateral vibration in light, it may be pointed out
that Huyghens, Newiton, and Ewler had held to the view of
oscillations chiefly in the line of the rays, though /[iuier's

equations involve no necessary restrictions as to the direc-

tion of vibration, being of the same general form as in the
theory of sound, )
d[de? = —¢-0%[0x* w=asin(2n/A-(Vt—2)]. (1)
But at length, Young began to entertain the idea that
the molecules of the aether might oscillate in parallel direc-
tions transverse to the direction of the ray, though he thought
that longitudinal vibrations might exist also. Fresmel inde-
pendently reached the. idea of transverse vibrations, but like
Young he could not account for it dynamically. _
In his History of the Inductive Sciences, vol. 11, 3¢ ed.,
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1857, pp. 332—333, Dr. Whewell quotes the remarks of Fresnel:
»M. Young, more bold in his conjectures and less confiding
in the views of geometers, published it before me, though
perhaps he thought of it after me.« And from personal in-
formation of the progress of the theory of transverse waves,
Dr. Whewell adds:

»And M. Arage was afterwards wont to relate, (I take
the liberty of stating this from personal knowledge) that
when he and Fresmel had obtained their joint experimental.
results, of the non-interference of oppositely-polarized pencils,
and when Fresnel pointed out that transverse vibrations were
the only possible translation of this fact into the undulatory
theory, he himself protested .that he had not the courage to
publish such a conception; and accordingly, the second part
of the memoir was published in Fresnel's name alone. What
renders this more remarkable is, that it occurred when M.
Arago had in his possession the very letter of Young (Jan.
12, 1817), in which he proposed the- same suggestion.«

From the circumstances here reported it will be seen
that Fresnel and Arago did not feel very secure!) in their
position, under the criticisms of Zaplace, Poisson and their
followers. Accordingly Fresnel and Arage were more than
glad to have the mathematical support of Cawc/y, in favor
of the possibility of transmitting transverse waves, if once
they existed. But that was all that CawcAy’s analysis proved.
It did not indicate how such transverse waves would arise
in nature, nor did Fresne/ and his followers throw any light
on this difficult problem. ‘

Accordingly it appears that the origin of the transverse
vibrations in light has never been explained on a satisfactory
basis; and for that reason it is hoped that the simple theory
in section 4 below may commend itself to geometers and
natural philosophers.

Another difficulty of quite fundamental character in
the wave-theory of light has been before me for many years.
We commonly have offered to us for illustration of transverse
waves the vibrations of a single stretched cord: this looks
obvious and convincing, when we deal only with a single
cord free ‘to vibrate in empty space.

But in the theory of light we should have to imagine
all space, in the sphere V'=4/ym+* »r=o0, »=r, about
the source of light, filled entirely full of such cords, which
would thus mutually crowd each other on every side; so
that no one of them would have the assumed freedom of
the single cord used in our class-room illustrations. The
surface. of the sphere has the area S == 47#?, and for a
spherical shell of thickness dr, the volume is 47w #?d», and
the integral of volume is V== 4njr2dr..

Now by no possibility can the sphere surface S== 477?
be increased. Accordingly no one cord can be moved side-
wise, in transverse vibration, without crowding all the other
cords extending outward from the centre, unless we assume
simultaneous motion of all the cords in the same direction

') In another place, Hist. of the Induct. Sciences, vol. II, p. 350, Dr. Whewell explains the embarrassment of 4rago as follows: M. Arage
would perhaps have at once adopted the conception of transverse vibrations, when it was suggested by his fellow-labourer, Fresnel, if it had
not been that he was a member of the Institute, and had to bear the brunt of the war in the frequent discussions of the undulatory theory,
to which theory Zaplace, and other leading members, were so vehemently opposed, that they would not even listen with toleration to the argu-

ments in its favour.
of Fresnel's papers.«
) ’

I do not know how far influences of this kind might operate in producing the delays which took place in the publication
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for the spherical shell 47#2d». The chances are infinity to
one against this occurring.’ '

These considerations alone show that the old wave- theory
of -light is inadmissible. The same difficulty does not arise
in Poisson’s theory of 1830, ‘which makes the vibrations
normal to the wave front, as in sound, and thus allows vi-
brational increase of space equal to d¥ == 4mr?dr, where
dr is the amplitude of the oscillations. With the new theory
-as to why the waves are mamly transverse, more fully set
forth in section 4, below, it is believed that the last out-
standing difficulty in the wave-theory of light has been re-
moved. But before quitting this subject, we may state the
expansive difficulty pointed out above with somewhat greater
mathematical rigor. If @ be the velocity- potentlal we have
the usual differential expression

(2)

d® = wdx+vdy-+wdz .

Now it is well known that the line integral of the
tangentxal component velocity around any closed curve of a
moving (incompressible) fluid remains constant throughout
all time; so that when d@ is a complete differential, the

circulation jd(D is zero, just as in the obvious case when
the fluid is at rest:
dj.dd) = dj) udx+udy+wdz) =o0. (3)

‘When ‘the fluid is incompressible this integral round
a closed circuit is evanescent, and the momentum, like the
circulation, is zero; but for a compressible fluid, the existence
of a velocity-potential @ does not imply evanescence of the
integral momentum round a closed circuit (cf. Lord Rayleigh,
Theory of Sound, 2°¢ ed., 1896, vol. 2, pp. 8—9).

In the case of the aether, however, the fluid is so
nearly absolutely incompressible that the above theorems
will hold, and we may take d® to be essentially an exact
differential; so that the velocity in any direction is expressed
by the corresponding rate of change of @, and therefore

du/dx-+dv/dy—+dw[dz = 0*@[0x*+ 02D [3y*+02D[0:% . (4)

Let us now consider any closed surface, such as that
of the sphere already spoken of, S = 47t 7%, Then the rate
of flow of the fluid outward, across the element dS, becomes:

dS-dw/dxn. ¢

And when the density is constant, the total loss of
fluid in time d¢ is given by the double integral: .

(8/87) (3fsrwar®) = [ [d@/dn-dSdz (5)
where the integration is to be extended over the entire sur-
face S = 477>

Now when the sphere surface .S is full both at the
beginning and at the end of d¢, the loss of fluid vanishes,

so tha
et (6/08)(Yfsmwar®) = jjd(D/dn-det == o. (6)

The equation of continuity, for an incompressible fluid
deduced from the spacial element dx dyds, under this con-
dition of no loss of fluid across the boundary, is :

020/0x2+ 020y + 02D [0z = o

or briefly Vi = o.
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And as Poisson’s equation of wave motion ig
0:Q/02 = 2?*V20 (8)
we see that V?® == o, excludes the existence of waves, if

.this condition held ngorously for the time ds.

Wherefore we conclude that in traversing the surface
S, the condition in (6) will hold for the wave from the
centre at the beginning and also at the end of the time d¢,
corresponding to the propagation of a wave through all its
phases, over the wave-length A, which represents a complete
oscillation of the fluid.

But for shorter intervals, the equation (6) will not -
hold rigorously; so that temporarily, over an interval less
than the wave frequency, = == 27;tfv == A/ V, there is both
slight compre551b1hty and a flow of the fluid across the boun-
dary S = 47t7*; and, for 0t<T we have:

(0/64) (Hsmwar®) = [[a®/dn-dSdr = xdm (o)

where dm is the total fluid temporarily lost, an infinitesimal
mass positive or negatlve

Accordingly, in the wave motion of the aether, there
is slight compressibility, and a minute temporary radial motion
of the fluid does take place. Hence we cannot have purely
transverse motion, as assumed in the traditional form of the
wave-theory of light due to Fresnel and Cauchy.

During the last half century these problems have been
discussed by many eminent natural philosophers — Lord Kelvin,
Maxwell, Lord Rayleigh, Larmor, Glazebrook, etc., — but
whilst they give up Green's views, they do not reach satis-
factory accord in their views of the aether. A useful sum-
mary of their reasoning is given in Dan:ell’s Principles of
Physics, 3™ edition, 1895, p. 510. Under the circumstances
we have felt that the older views must be entirely abandoned,
and the waves in the aether treated as in Poisson’s Theory
of 1830. There is no experimental evidence of different
velocities for compressional and distortional waves, and no
such assumptions are authorized by the existing state of our
knowledge. ’

2. Maxwell's Electromagnetic Theory of Light
rests on Vibrations wholly transverse to the Direc-
tionof a Ray, and thus in View of the above Con-
siderations the Electromagnetic Theory also must be

-rejected as not based strictly onthe Laws of Nature.

We have just outlined .the geometrical and physical
difficulty encountered by ZFresnel's classical conception of
vibrations wholly transverse to the direction in which light
is propagated; and have shown how waves flat in the equators
of the atoms, under haphazard arrangement of the atomic
planes, would be equivalent to the uniform spherical distri-
bution of the elliptical vibration paths exhibited to the eye
in Fig. 1, Plate 7. This new principle in the wave-theory
of light gives two remarkable results:

1. From any spherical source of light, or luminous mass,
where the number of atoms is large, it would lead to vibrations
so nearly transverse, that the longitudinal component pro-
bably would not exceed the value 1/(4:10%), and thus be
insensible!) to observation in optical experiments.

1) A much smaller value 1/(66420-10%, is reached in section 4 below, Sept. 12, 1920.
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2. Tt makes the molecules oscillate primarily in the

direction of the normal to the wave-front, as held by Auyghens,
Newton, Euler, Lagrange, Laplace and Poisson, prior to the
theory of lateral vibrations of the stretched cord introduced
by Young, Fresnel and Caucky. Thus we have at once a
vindication of the profound wave-theory of ZFoisson, 1830,
without need for recourse to the artificial and dynamically
inadmissible theory of Zresnel, that the vibrations are wholly
transverse. ,

The above citations from Whewell show that Young,
Fresnel and Arage were loth to entertain the theory of purely
lateral vibrations, which they could not account for dynami-
cally, as contrary to the views of geometers since the age
of Newton. Apparently it never occurred to Young and Fresnel
that a theory of prO]CCthl’l for Poisson’s normal elliptical paths,
such as is shown in Fig. 1, Plate 7, multiplied by the small
ratio A4/A, would give mean vibrations almost normal to the
ray; without the strained and unnatural theory of lateral motion
appropriate to a stretched cord.

The theory of lateral vibrations, drawn from the example
of the stretched cord, is approximately correct, as respects
the smallness of the longitudinal component, but it is wholly
lacking in physical basis, as shown above in section 1. More-
over it introduces an unfortunate and unnecessary conflict
between the doctrines of experimental physics and geometry.
The eminent experimenters, Fresnel and Arago, and the great
analyst Cawuchy, were thus arrayed against Laplace, Foisson,
and Lamé; yet apparently it was not possible for these illu-
strious academicians to settle the controversy which thus
arose,” because the premises in their reasoning departed from
the order of nature.

If the theory above traced be admissible, it follows
that the claims of geometers since the days of Newfon and
Euler, as put forth by Laplace and Poisson, certainly were
correct, that at a great distance from the source of the
disturbance the molecular oscillations are normal to the wave
_front. On the other hand, the average vibration in light
is nearly normal to the ray, owing to the. effect of the
spherical projection from the variously tilted elliptical paths
at the source of the light, and the smallness of A/i. Ac-
cordingly we are 1mpressed with the necessity of the most
crucial test of the premises underlying our reasonmg in natural
philosophy.

In order to outline this defect clearly, we shall now
_ treat of the difficulty of the electromagnetic theory of Max-
well, which will also show the unwarranted assumptions
underlying the ZFresnel-Cauchy wave-theory.

»If 1 knew,« says Lord Kelvin, (Baltimore Lectures,
1904, p. 9) »what the electromagnetic theory of light is, 1
might be able to think of it in relation to the fundamental
prmc1ples of the wave theory of light. But it seems to me
that it is rather a backward step from an absolutely definite
mechanical motion that is put before us by Fresnzel and his
followers to take up the so-called electromagnetic theory of
light in the way it has been taken up by several writers of
late. In passing, I may say that the one thing about it that
seems intelligible to me, I do not think is admissible. What
I mean is, that there should be an electric displacement
perpendicular to the line of propagation and a magnetic
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disturbance perpendicular to both. It seems to me that when
we have an electromagnetic theory of light, we shall see
electric displacement as in the direction of propagation, and
simple vibrations as described by Fresne/ with "lines of
vibration perpendicular to the line of propagation, for the
motion actually constituting light.« ‘

If Lord Kelvin had such difficulty in understanding
the electromagnetic theory of light, it undoubtedly is very
allowable for the present writer to attempt to put the theory
of light on a simpler basis.

The figure from Maxwell’'s Treatise on Electricity and
Magnetism, vol. II, p. 439, cited below, will put before our
minds the electric and magnetic vibrations, conceived to be
in planes at right angles to each other, and thus calling
forth the above severe criticism by Lord Kelvin, who was
long an associate and friend of Maxwell. It seems to be
certain that Lord Kelvin was very much bewildered by the
unnatural complications of the electro-magnetic theory, and
thus it proved of little or no value to him.

In his Electricité et Optique, 1901, p. 73, Foincaré has
pointed out the difficulties and contradictions he found in
following Maxiwell's processes. »Il ne faut pas attribuer a
cette contradiction trop d'importance. J'ai exposé plus haut
en effect les raisons qui me font penser que Maxwell ne
regardait la théorie du déplacement électrique ou du fluide
inducteur que comme provisoire, et que ce fluide inducteur
auquel il conservait le nom d’'électricité, n'avait pas a ses
yeux plus de réalité objective que les deux fluides de Coulomd. <

The importance of having a perfectly clear under-
standing of Maxweil's electromagnetic theory is so great that
we quote his reasoning in full, It is not very long, and the
deductions will justify it (pag. 438-39-40).

»790. Let us now confine our attention to plane waves,
the fronts of which we shall suppose normal to the axis
of z. All the quantities, the variation of which constitutes
such waves, are functions of z and 7 only, and are indepen-
dent of x and 3. Hence the equations of magnetic induction,
(A),” Art. 591, are reduced to

e = —dG/dz b= dF/dz [r3] (10)
or the magnetic disturbance is in the plane of the wave.
This agrees with what we know of that disturbance which
constitutes light.<

»Putting pa, uf and ,uy for @, 4 and ¢ respectlvely,
the equatlons of electric currents, Art. 607, become

¢ = 0

qpu = —dbj/ds = —d*F/dz?
4tpy = da/dz = —d*G/ds? {14] (x1)
qTpw=o, \

»Hence the electric disturbance is also in the plane
of the wave, and if the magnetic disturbance is confined to
one direction, say that of x, the electric disturbance is con-
fined to the perpendicular direction, or that of y.«

»But we may calculate the electric disturbance in an-
other way, for if £, g, /4 are the components of electric dis-
placement in a non- conducting medium,

u=dfjd¢t v=dg/dt w=di[dt. [15] (12)

»If P, Q, R are the components of the electromotive

intensity,
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f=K[an-P g=K[4n-Q r=K[an-R [16] (13)
and since there is no motion of the medium, equations (B),

Art. 598, become
[17] (14)
u= —K|4mw-d2F/ds

P= —dFldt Q= —dG/ds

Hence

v= —K[qm-d2G/ds w———"—K/‘,{n.d?H/dtz. (18] (15)
Comparing these values with those given in equation [14],

find
we d25/ds? = Kp-d*Fds ol (16)
I I
A2G/ds? = Ku-d*G/dr o = Ku-d?H[df.« ‘0
»The first and second of these equations are the equa-

tions of propagation of a plane wave, and their solution is
of the well known form

F = filz— Vt)+fo s+ V)
G=fi(z—Vt)+f s+ V7).
The solution of the third equation is
H = A+ Bt

where 4 and A are functions of s. /A is therefore either
constant or varies directly with the time. In neither case
can it take part in the propagation of waves.s

R = —dH/ds,

[20] (17)

(2] (x8)

»791. It appears from this that
the directions, both of the magnetic
and the electric disturbances, lie
in the plane of the wave. The
mathematical form of the distur-
bance therefore agrees with that
of the disturbance which consti-
tutes light, being transverse to the
direction of propagation.«

»If we suppose G == o, the
disturbance will correspond to a
plane-polarized ray of light.«

»The magnetic force is in
this case parallel to the axis of y
and equal to 1/u-dZ#/dz, and the
electromotive intensity 1s parallel
to the axis of x and equal to
—dZ/dz. The magnetic force
is therefore in a plane perpen-
dicular to that which contains
the electric intensity.«

\ \‘% \
\\\\\ R

\\.\\
N

Fig. 2 = Maxwell's Fig. 67.

»The values of the magnetic force and of the electro-
motive intensity at a given instant at different points of the
ray are represented in Fig. 67, (cf. Fig. 2), for the case of
a simple harmonic disturbance in one plane. This corresponds
to a ray of plane-polarized light, but whether the plane of
polarization corresponds to the plane of the magnetic distur-
bance, or to the plane of the electric disturbance, remains
to be seen.«

Critical Analysis of Maxwell's Processes.

1. Maxwell conceived the vibrations to be entirely in
the wave-front, normal to the axis of z, and thus wholly
dependent on x and y. This is a pure assumption, in accor-
dance with the orthodox theory, but xndefen51b1e, as is more
fully shown hereafter.
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2. It appears that Maxwell did not regard the.electric
or magnetic vibrations as having any kind of vortical rotation
as the wave form moves on, because he expressly states,
near the close of section 791, that »this corresponds to a
ray of plane-polarized light,« which in the orthodox classical
theory of Fresnel is conceived to be direct linear vibrations,
at right angles to the direction of the ray, as shown in Max-
well's figure.

3. After much investigation, we have reached the con--
clusion that such suppositions are pure hypotheses, not justi-
fied by anything in .nature. For we cannot hold the aether
to be a superfine gas, the aetherons having all the degrees
of freedom appropriate to Foisson’s equation

82(D/8/-’ = a‘-’(62(D/ax2+a2(D/ay2+a‘ZG)/az?) (19)
and fail to admit three component motions depending on
x, y and z _

4. There was a celebrated controversy on this point
between /Foisson and ZFresnel and their followers, in the In-
stitute of France, (1819~1839), but to the end Poisson held
to the conclusion that in genera! the vibrations are not
normal to the direction of the ray. ZAresnel/ himself held
such views, in virtue of the necessity of explaining polari-
zation, interference, etc.; and Cawnc/y’s mathematical researches
seemed to indicate that if vibrations existed normal to the
ray, they could be propagated in the aether.

5. There is no doubt that any kind of vibrations, once
established in the aether, may be propagated in that medium;
but this does not show that the actual vibrations in polarized
light are of this type. Here is a fundamental crror in the
wave-theory of light, which the wave-theory of magnetism
has enabled us to correct.

6. We hold that light must have a longitudinal com-
ponent depending on the ratio of the amplitude to the wave
length, which is small but finite. In the Philosophical Maga-
zine for Sept., 1896, Fitzgerald has a thoughtful and useful
paper on this subject, beginning as follows:

»In most investigations on the propagation of light,
attention has been concentrated on the transverse nature of
the vibration. Longitudinal motions have been relegated to
the case of pressural waves, and investigators have devoted
themselves to separating the two as much as possible. In
Sir George Stokes’s classical paper on Diffraction, and in Lord
Kelvin's Baltimore Lectures, the existence of a longitudinal
component is mentioned; but it is mentioned only to show
that it is very small and that the motion is mostly trans-
verse. Now the longitudinal component is no doubt gene-
rally small, except in the immediate neighbourhood of a
source; but it by no means follows that, as a consequence,
the actual direction of motion is transverse at all points in
a wave. In every complicated wave there are points and
often lines along which the transverse component vanishes,
and at all these places the small longitudinal component
may be, and often is, of great relative importance, so that
thé actual motion is largely in the direction of wave-pro-
pagation at these places.« (cf. Fitsgerald’s Scientific Writings,
1902, p. 418.)

7. The principle of the dependence of the longitudinal

.component in light on the ratio of the amplitude to the
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wave lenght, 4 = A/log, will enable us on the one hand
to reconcile the views of Poisson, on wave propagation,. with
those of Fresnel and Caucky; and on the other hand to
correct a fundamental defect in the wave-theory of light,
which has stood for nearly a century.

8. Thus it will be seen that Maxwell’s figure above
given has handed down the defect of lack of rotation of
the wave elements, whatever be the amplitude, and therefore
does not represent nature. No wonder that Lord Kelvin and
others have failed to understand the electromagnetic theory.
As given by Maxwell it is contrary to the profound and
conscientious researches of Zissom, which were critically
examined by Laplace and Fourier, and not at all authorized
by the researches of Cawchy. With Poincaré, therefore, we
dismiss Maxwell’s electromagnetic theory as ,provisoire’, not
deduced from the laws of nature, but from certain arbitrary
assumptions, and therefore fundamentally defective.

+ 3. The Cauchy-Fresnel Theory of wholly Trans-

verse Vibrations dynamically Inadmissible for a
Gaseous Medium of High Elasticity and practically
Incompressible, whether Isotropic or Aeolotropic.

In his celebrated article on the Wave-Theory, Ency-
clopedia Britannica, 9™ ed., the late Lord Rayleich often
points out the weakness of the wave-theory of light, and
shows that although we may adopt it as a working hypo-
thesis, we are not to trust the theory as a representation of
nature. Thus on pp. 422-445-446, he points out Green's as-
sumption that the longitudinal component has infinite velocity,
in order to get rid of this difficulty; but it is evident that
Lord Rayleigh regarded this procedure as a somewhat violent
hypothesis, scarcely justified by any known phenomenon.
Kayleigh says:

»The idea of transverse vibrations was admitted with
reluctance, even by Young and Fresnel themselves. A perfect
fluid, such as the ethereal medium was then supposed to be,
is essentially incapable of transverse vibrations. But there
seems to be no reason a priori for preferring one kind of
vibration to another; and the phenomena of polarization prove
conclusively that, if luminous vibrations are analogous to those
of a material medium, it is to solids, and not to fluids, that
we must look. An isotropic solid is capable of propagating
two distinct kinds of waves, — the first dependent upon
rigidity, or the force by which shear is resisted, and the
second analogous to waves of sound and dependent upon
compressibility. In the former the vibrations are transverse
to the direction of propagation, that is, they may take place
in any direction parallel to the wave front, and they are
thus suitable representatives of the vibrations of light. In
this theory the luminiferous ether is distinctly assimilated to
an elastic solid, and the velocity of light depends upon the
rigidity and density assigned to the medium.«

»The possxblhty of longitudinal waves, in which the
displacement is perpendicular to the wave- front, is an objection
to the elastic-solid theory of light, for there is nothing known
in optics corresponding thereto. If, however, we suppose
.with Green that the medium is incompressible, the velocity
of longitudinal waves becomes infinite, and the objection is
in great degree obviated.«
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On page 422 Rayleigh had already indicated the imi-
tations of the elastic-solid theory:

»For these and other reasons, especially the awkward-
ness with which it lends itself to the explanation of dis-
persion, the elastic-solid theory, valuable as a piece of purely
dynamical reasoning, and probably not without mathematical
analogy to the truth, can in optics be regarded only as an
illustration. «

In order to set forth this difficulty somewhat more
clearly we shall outline the mathematical theory of plane waves
in homogeneous elastic solids. The new theory of magne-
tism, in relation to light, recently developed, requires for
comparison a definite outline of the theory of plane waves
in a homogeneous elastic solid. It is only in this way that
we can decide whether the waves from a magnet are similar
to those of a solid, or are of a somewhat different nature.

The following very brief outline is founded on Lord
Kelvin's article Elasticity, Ency. Brit. o' ed., p. 824— 5; but
is in accord with the researches of ‘Cauchy, Rankzne Green,
Lord Ravieigh, Love, and many other eminent authorities.

(i) Definitions. Let the rectangular axes 0.X, OV, OZ
be so oriented that OX is perpendicular to the wave front,
and QF, OZ in the plane of the wave front. Then if «,
B, 7 be the displacements of a particle of the solid, whose
undisturbed coordinates are (x, y, z) we have for any time
the disturbed coordinates x+e, y+8, s+y. Accordingly
the displacements «, 8, y are functions of x and #, and this
is the definition of wave motion.

There is therefore a simple longitudinal strain & in the
direction of OX, and two dlffirentlal slips, 5 parallel to
OY, and { parallel to OZ, which are simple distortions,
in the shear of planes of the material one over the other.

The values are

& = de/dx V2-dffdx [ = V2-dy/dx. (z20)

(i) Calculation of the work done to produce strain.

If 1 denote the work per unit volume required to
produce this strain, the stress quadric becomes:

='1/2(AZ:2+B7°+C§ +2Dpl+2ELE+2F8y) (21)
which is an ellipsoidal surface, 4, B, C, D, E, F being
moduluses of elasticity of the sohd

If #, g, » be the three components of the traction
per unit area of the wave front, we shall have the linear
equations connecting the strain and slips with the modu-
luses of elasticity: :

]I——_

p=AE+Fyp+EL
gV, = FE+By+D(
r1Vi, = EE+Dy+CC.
Now let it be further assumed &, 7, fu.lﬁll.linear relations,
with the moduluses of elasticity in the ‘three directions:
ME AE+Fy+E(
My FE+Bp+D§
ML= EE+Dy+Ci§.
The resultmg determinantal cubic gives three real posi-

tive values for A/, which define the ways in which the solid’
may be strained. If we substitute any one of these values

(22)

(23)
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n (23), we may derive the ratios §:7:{; and the compo-
nents of the traction yield
p= M-da/dx ¢= M-dB/dx r = M-dyldx. (24)
The three components of the whole force due to the
tractions of the sides of an infinitesimal parallelopiped dx dy dz
of the solid obviously are:
dp/dx-0x 0y ds dg/dx-dxdydz dr/dx-dxdydz. (25)
Now these component forces are in equilibrium with the
mass ¢ in the same element of space; and hence we have
the resulting equations:
d2e/ds?- g 0x Oy 0z = dp/dx- dx Oy dz
d28/ds- g 0x dy 0z = dg/dx- 0x,0y Oz
d?y/dst- g 0x Oy 0z = dr/dx-J0x dy Jz.
(ili) Equations of motion for waves in an elastic solid.
Without regard to the space of the element, therefore,
the equations of motion are:
dp/dx = o-d’a/ds? dg/dx = o-d*8/d#?

drjdx = g-d%[ds. 21)

Substituting the values of &, 7, { from (20), in (23)

and integrating in respect to x, we get
Aa~+(F+Ey) V2 = Me
Foa+(BR+Dy)Vz2 = MBV'2
Ea+(DB+Cy)Vz= MyV.

The three roots of his determinantal cubic may be called

My, M,, My; and the corresponding values of the ratios

Bla, yle, determined by (28), may be denoted by 4, ¢,

by, 2, b3, 6.

Accordingly the complete solution of (z7), subject to
(28), becomes of the form:

(28)

o = o ta,+og
B=1ltay+boay+byas
Y= qeytaaytigog

o = AtV o)+ Als—v a9

]
ay = folx—+ 2V (My]0)l+ Frlx— 2 V(M]o)]
ay = fylx-+tV (M/0))+ Fylx— 2V (Ms/e)] .
{iv) Three different wave velocities inferred.
In the above equations £, /s, fs, F1, £, £ are arbi-
trary functions. Owing to the form of these expressions it
is therefore inferred that there are three different wave
velocities, namely:

v, = Vo) Ve=Vh/e) V=V (e) (30)
and three different kinds of waves, determined by (28), and
- depending on the aeolotropic character of the solid. The
waves are therefore very complex, but are much simplified
in an isotropic medium. '

Simple case of waves in an isotropic solid.
Let the solid be isotropic, and then the moduluses of

elasticity reduce to the Form:
B=C D=E=F=o (31)
My=A M=M=25. 3

. Accordingly, the above three different kinds of waves
with three different velocities now reduce to just two: Com-
pressional or Longitudinal,
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1. A compressional wave, like that of sound in air,
or other elastic fluid, with the motion normal to the wave
front. This corresponds to the conclusion reached by Foisson
in his celebrated memoir of 1830, and holds for any elastic
medium. .

2. A transverse wave, with the motion parallel to the
wave front. This wave depends on the assumed properties
of an elastic solid, which resists shearing motion, as when
one layer slides over another.

(v) The simplest case of waves in an mcompresmble
solid, aeolotropic or isotropic.

When the solid is incompressible Greez has shown
from equation {21) above, that the modulus of elasticity
A == 00; and hence the displacement along the x-axis va-
nishes, or &« = o, £ = o. Therefore (21) becomes simply

W= By*+ C[*+2Dq¢. (32)
And the first of (23) vanishes, leaving merely:
By+Df = My Dy+C{ = M{. (33)

This restriction of the oscillations to the plane of 7 {,
gives a determinantal quadratic instead of cubic, yielding two
wave velocities and two wave modes. The velocity along
the axis of x'is thereby taken to be infinite and & disappears;
leaving the two velocities: :

: Vo = V(dale) Vs =VI(ie). (34)
And in the case of isotropy, /2 = V3, as in (31), and A
and M; are principal moduluses, each equal to the modulus

of rigidity.
As Lord Kelvin points out, A is a mixed modulus
of compressibility and rigidity — not a principal modulus

generally, because the distortions by differential motions of
planes of particles parallel to the wave front give rise to
tangential stresses orthogonal to them, which do not influence
the wave motion. ’

(vi) Conclusion applicable to the elastic medlum of
the aether gas.

This outline of the theory of plane waves in homo-
geneous elastic solids enables us to form a fair idea of the
possible types of motions of waves in the aether. When the
motion of the aether wave is not through ponderable bodies,
it is free of most restrictions, and follows rectilinear paths:
if through ponderable masses, the action always follows -
Fermat's minimum path, defined by Hamilton's stationary
condition, des = o,

Accordingly we 1earn from the above analysis that
most any kind of motion may be transmitted by the waves
of an elastic solid: and the question to be discussed is
therefore not the type of waves which may be transmitted,
but rather the type of waves which actually exist in nature,
and have therefore to be transmitted by the aetherial medium.

This is mainly an observational question, and the
observations should therefore be extended to the phenomena
of magnetism and gravitation as well as to those of light

| and heat.

1. Since the aether'is a gas, and-therefore compressible,
by extremely powerful quick-acting forces, it follows from
the kinetic theory, that even if the propagation of waves
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by means of vibrations wholly transverse to the direction
of a ray of light be a geometrical possibility, and Cawc/y
showed, and Ay and Herschel confirmed by independent
researches, it is physically inadmissible to assume transverse
displacements, and deny corresponding longitudinal displace-
ments, such as was implied in the theory of Poisson, 1830,
and suggested by ZFitsgerald’s paper on the Longitudinal
Component in Light, 1896. -

2. For such an arbitrary restriction would give the
aether gas anisotropic properties, — symmetrical as respects
the xyp-plane, but unsymmetrical in respect to the z-axis,
along which the light "is propagated, — for no assignable
physical reason, except that the light is propagated along
the z-axis. ’

3. And this unsymmetrical anisotropy would change
its direction in space with the change in the direction of
the ray of light, or the mere rotation of the axis about
the origin of coordinates; and hence we see that the hypo-
thesis is physically inadmissible. Such a physical ‘doctrine
that the property of the aether changes with the direction
of the ray can no more hold a place in natural philosophy
than can an established reductio ad absurdum in geometry.

4. If we view the aether in free space, as homo-
geneous and isotropic, except as rendered heterogeneous and
aeolotropic at great distances, as of the celestial bodies, —
as shown in the first paper on the New Theory of the Aether,
AN 35044, — we cannot admit that its vibratory motion
is different in different directions, and changing with the
direction in which the light is allowed to travel.

5. Therefore if we admit a series of transverse dis-
placements of the aether particles for making waves of the
type imagined by ZFresnel, Cauchy, Siv Fohn Herschel, Airy,
Kelvin and Maxwell, we must admit also corresponding longi-
tudinal displacements of the aether in the direction of wave
propagation — thus giving rise to rotations about mean
positions, or true waves of the type imagined by Poisson.’

6. Instead of the special polarized waves imagined
by Maxwell of the type described in section 2 above, and
implying merely a rectilinear side oscillation of the particles,
like that of a stretched cord, we should therefore imagine
waves of the Foisson type, referable to simple harmonic motion
as illustrated by the modified figure of Azry for :the surface
of still water.

The geometrical conditions are fixed by the equations:

u = acos(zn t/r-f—p) 24 (/B2 (20]0)? = 1
beos (27 ffv+g) iui) :Eug;:i ,/02)

= (35)
w = ccos(zn t/1-+—r)

v

. 7. It is therefore evident that in adopting Capchy's
ideas of vibrations similar to that of a stretched cord, Her-
schel was misled, and he in turn misled 47y and others —
substituting a mere geometrical abstraction, and practically a
physical impossibility, for the valid physical theory of Poisson,
which makes the vibrations of the aether similar to those
of sound, but A/ very small.

8. The result has been a traditional false teaching in
the wave-theory of light, as hinted at by Fitsgeraid in the
memoir »On the Longitudinal Component of Light,« (The
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Scientific Writings of Fitsgerald, p. 418), and by Professor
Chas. S. Hastings, Encyclopedia Americana, 19o4, article
Light,: quoted in section I above, where it is pointed out
that the conviction has grown that the wave-theory is in some
way wrong.

9. It is obvious that waves of the types imagined by
Caucky and ZFresnel could. be transmitted by the perfectly
elastic aether if they existed — as is correctly held by Herschel
and 477y — but the question of fact remains: Do they in
general exist? -

1o. This important question must be answered in the
negative. For in magnetism we recognize, from ZFaraday's
rotation of a beam of polarized light, 1845, the rotations of
the elements of the aether, the atoms having their equators
lying in parallel planes. In common luminous bodies, on the
other hand, no such parallelism in the atomic planes can be
assumed: indeed this parallelism must be emphatically denied.

11. And as we cannot have luminous bodies, with the
atomic planes all parallel, as in magnetism; so also we can
not imagine these atoms so tilted as to send rays to us only
from their combined poles. Hence the wave-theory of light
as heretofore taught is physically inadmissible.

12. We must hold that the waves of light in general
are flat in the planes of the equators of the atoms, and

" these planes tilted at all possible angles, as explained below

in Section 4. If the axis of z be in the plane of the equator
of the vibrating atom, the oscillation will be of the plane
wave type commonly shown. If the axis of z lies in the
northern hemisphere of the atom, the approaching waves, as
we look at them, will seem to rotate left handed, in the form
of a left handed helix. If the z-axis lies in the southern
hemisphere of the atom, the waves received will seem to
rotate right handed, like the coils of a right handed helix.

4. Geometrical Reasons why the Vibrations
of Ordinary Light are mainly Transverse.

If we contemplate the hemisphere presented to our
view by a luminous spherical source of light, such as the
sun, it is evident that the waves propagated towards the
observer will cover a surface of area

(36)
And in orthogonal projection this area will be reduced by
one half, and become merely the area of a single great circle’
of the sphere (37)

The sphere surface seen by us in projection is enor-
mously fore-shortened and contracted in area at the border,
while at the centre no decrease in apparent area takes place.
If therefore the atoms emit waves which are flat in the
planes of their equators, and a haphazard arrangement of
the atomic planes holds true, as should occur in a non-
magnetic sphere, it follows that the beam of light emitted
by the sun should have its vibrations so largely peripheral
that, with A/A very small, it will present practically the
appearance of transverse vibrations, — as long taught in the
wave-theory of light.

In order to examine into this subject somewhat more
critically we may proceed as follows. Let Fig. 3, Plate 7,
represent an orthogonal projection of the sun's hemisphere,

27

A= 212,

A = nr?,



403

with the centre at O, and the coordinate axes OX and OY
as shown in the diagram. Then, if we subdivide the quadrant
of the circle into 20 parts, corresponding at the centre to
an angular distance of 4%5 between the small circles about
that point O as a pole, we may plat a curve along the radius
OX which will represent a section of the visible surface of
the hemisphere, as if the area were not decreased by the
orthogonal projection. The equal distances along the radius
OX will represent equal values of the sine of the polar
distance, §, or equal values of the cosine of the latitude
reckoned from the base of the hemisphere here represented
by the lower circle.

The curve may be drawn from a table of natural sines
or cosines by taking y proportional to this function, so that
the change will make a curve of the kind indicated in the
Fig. 3, Plate 7, which is repeated on both sides of O, in order
to show to the eye the enormous condensation of surface
near the circumference of the projected hemisphere. In fact
the double curve on both sides of O is a semicircle, drawn
about Y as a centre, and thus exceedingly simple.

The coordinates of the curve, to four places of decimals,
and the surface integral / for the component of Foisson's
radial wave motion in line of sight, equation (38), are:

' Xi ¥
Angle b | g 8; | = 1--cosb; !

o° 0.0000 0.0000 0.00308

4.5 0.0785 0.0031 ‘ 0.00915§

9.0 o0.1564 0.0123 0.01502
13.5 0.2334 0.0277 0.020352
18.0 0.3090 0.0489 0.02551
22.5 - 0.3826 0.0762 0.02985
27.0 . 0.4540 0.1090 0.03342
31.5 0.5224 0.1474 0.03634
36.0 0.5878 0.1910 0.03814
40.5 0.6494 0.2397 0.03916

. 45.0 0.7071 0.2929 0.03906
49.5 0.7603 0.3506 0.03824
54.0 0.80g0 0.4122 0.03625
58.5 0.8526 0.4776 0.03350
63.0 0.8910 0.5§460 ,0.02978
67.5 0.9238 0.6174 0.02761
72.0 0.9511 0.6g10 0.02050
76.5 0.9723 0.7666 0.0I501
81.0 0.9877 0.8436 0.00914
85.5 0.9969 0.9215 i= 20 ©0.003I0
90.0 1.0000 1.0000 = 0.50238

i=1
7 = (sin@;—sinB;—) sin'/5(8;+6i—y) fm == 0.025119
: = 1/,,, nearly.
In= 1y A == AL In. (38)

From these considerations it is evident that if we
imagine the atoms in the sphere to have their equatorial
planes directed radially, which will be the average position
in a large mass, under haphazard atomic arrangement, the
effect will be to give us an enormous preponderance of
transverse vibrations near the periphery of our luminous
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globe, or in a ray of ordinary light from a globe like the
sun or a star. This reasoning applies to any luminous body
or flame, such as that from a Bunsen-burner in our la-
boratories, which have haphazard arrangement of the atomic
planes, all atoms vibrating so rapidly that from any single
atom several hundred waves of the same type will reach the
eye of the observer before the translatory motions of the
luminous atoms will produce appreciable change.

In his Undulatory Theory of Optics, 1866, pp. 155156,
Airy says:

»Common light consists of successive series of ellip-
tical vibrations (including in this term plane and circular
vibrations), all the vibrations of each series being similar to
each other, but the vibrations of one series having no rela-
tion to those of another. The number of vibrations in each
series must amount to at least several hundreds; but the
series must. be so short that several hundred series enter the
eye in every second of time.«

This criterion of Azry obviously is fulfilled by the light
from any luminous source, since even in a very small mass
the atoms are numbered by the trillion, and no change in
their average orientation occurs with the lapse of time, though
individual atoms in their mutual interactions will slowly shift
their individual equatorial planes to new positions, as the
millions of millions of vibrations are emitted.

The centre of the yellow light of the spectrum has a
frequency of 517 500000000000 vibrations per second; and
thus with such an enormous flow of waves, they might be
subdivided into ten thousand million successive series and
still leave a flood of 51750 groups of waves beating upon
the eye in a second. Accordingly, Azry's criterion is per-
fectly consistent with the motions of the individual atoms,
in mutual collisions at the rate of say 10000000000 per
second (cf. AN 5044, p. 66), which is about the average for
terrestrial gases under laboratory conditions.

Returning now to our figure for illustrating the enor-
mous preponderance of transverse rays in a beam of ordinary
light, we easily find by calculation that 62 percent of the
light comes from the zone § = go° to 8 = 51°45'27", near
the periphery of the orthogonally projected sphere surface.
We may even extend this zone inward to 6 = 44° 25’ 30"
and still not approach the centre of the circle more than
o.30 of the radius; yet this outer zone to #' includes 71.4
percent of the luminous sphere surface. Thus we see from
the corresponding small circles drawn in the figure about
the pole O, why in ordinary light it may be described as
practically transverse — since a great preponderance of the
light from the atoms acts as if the vibratory motion were
in the plane of the wave surface.

+The great hollowing out of the curve of light near
the centre of the figure, from which alone indications of a -
longitudinal component could be expected to come, and the
smallness of the factor 4/2, shows why there is such a feeble
indication of this longitudinal component in our actual ex-
periments. It is not surprising therefore that in his Undu-
latory Theory of Optics, 1866, p. 91, Sir George Airy says:

»The reader who has possessed himself fully of this
hypothesis, will see at once the connection between all the
experiments given above.¢
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»For the general explanation of these experiments, and
for the accurate investigation of most of the phenomena to
be hereafter described, it is indifferent whether we suppose
the vibrations constituting polarized light to take place parallel
to the plane of polarization, or perpendicular to it. There
are reasons, however, connected with the most profound in-
vestigations into the nature of crystalline separation and into
the nature of ‘reflection from glass, etc., and confirming each
other in a remarkable degree, that incline us to choose the
latter: and thus:« ‘

»When we say that light is po]arized in a particular
plane, we mean that the vibration of every particle is _per-
pendicular to that plane.«

»Thus, in the undulation constituting the ordinary ray
of Iceland spar, the vibration of every particle is perpen-
dicular to the principal plane of the crystal: in that con-
stituting the extraordinary ray, the vibration of every particle
is parallel to the principal plane. When light falls upon
unsilvered glass at the polarizing angle, the reflected wave
is formed entirely by vibrations perpendicular to the plane
of incidence: the transmitted wave is formed by some’ vibra-
tions perpendicular to the plane of incidence, with an excess
of vibrations parallel to the plane of incidence.«

»The reader will perceive that it is absolutely necessary
to suppose, either that there are no vibrations in, the direc-
tion of the wave's motion, or that they make no impression
on the eye. For if there were such, there ought in the ex-
periment of (98) to be visible fringes of interferences: of
such however there is not the smallest trace.«

If we examine the figure, we find from the integral
in the plane xy, that the total light emitted is given by the
expression

X
L= [ydx (39)
o
To derive a corresponding expression for the Poisson waves

emitted radially from the sphere surface, we put
(40)

dx == cos6d8.

And we integrate for 6 between the limits o and /,7,
and, for the surface generated by revolving the axis of «x,
we use @ between the limits o and 2;r. Thus we have as
the surface integral of the hemisphere

1,m 2
-—*5 f(r—cosﬂ)cosﬂd()dw = (41)
o o

To find the light in a beam we calculate the reduction
of area by orthogonal projection.

If now we integrate for the light distributed over a
more limited surface S == (4, w), we shall find the value
of the integral so trifling, that till 8 == 44° 25’ 30", x == 0.7,
only 28.6 percent of the light will be included in the cen-
tral canopy. Moreover the average factor for the part of
the Zoisson- radial wave motion in the line of sight is only
Y4, and the ratio A4/A = 1079, makmg B

4= afto = 1ls (42)

Accordmcrly one would expect experlmenters to reach

x == sinf y = 1—cos§

27T .

') The calculations made Sept. 12, 1920, as given in the note to section 8, below, make A/A == 1:
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the very conclusion announced by 47y, in the above passage,
that there is not the smallest trace of visible fringes of inter-
ference due to the longitudinal component, which of course
has to come from the light near the centre of the canopy.
Airy personally repeated the experiments which he described
and reduced to mathematical expression: so that his con-
clusions have been widely accepted by natural philosophers.

It is by virtue of Asry's careful experimentation and
analysis of the wave-theory of light, following the indepen-
dent and profound analysis of Sir Fokn Herschel, in the great
treatise on Light, Encycl. Metropol.,, 1849, that we adopt
Airy's presentation of the subject as authoritative. Our con-
clusions therefore are as follows:

1. About 71.4 percent of the sphere surface is in-
cluded within the elevation of 45° 34’ 30" from the base of
the hemisphere. This part of the sphere is a zone so near
the circumference as to appear to the observer to be essen-
tially peripheral. Hence the origin of the belief, in view of
the smallness of the ratio 4/4, that the vibrations are actually
transverse, and the integral for the longitudinal component
insensible to the experimenter.

2. Light vibrations coming from this periphery would
and by proper optical
appliances could be polarized into right handed, left handed,
circularly polarized or elliptically polarized light, as seen in
that transmitted through crystals,

3. As only 28.6 percent of the sphere surface remains
in the larger zone, near the pole, and a considerable part
of the vibrations on that polar surface could be resolved
likewise into circularly or elliptically polarized light, we see
that in ordinary light, the average vibration is described as
made up of elliptical vibrations (A4#7y, Undulatory Theory
of Optics, 1866, p. 156). -

4. In discussing experiments leading up to ZLloyd's
observations on conical refraction, Airy notes, in regard to
polarization of light, that »if common light be incident,
(which not improbably consists of successive series of waves
polarized in every conceivable plane) rays will be formed
directed to every point of the [Newton's]ring, each ray having
the polarization proper to its point of the ring; and a conical
sheet of light will be formed within the crystal« (Undula-
tory Theory of Optics, p. 106). Again, summarizing the
description’ of ordinary polarization, 47y draws three con-
clusions: (1) »If from common light we produce, by any
known contrivance, light that is polarized in one plane,
there is always produced at the same time light more or
less polarized in the plane perpendicular to the former»
(p- 89).

5. On this first conclusion 477y comments as follows:
»The first leads at once to the presumption that polarization
is not a modification or change of common light, but a
resolution of it into two parts equally related to planes at
right angles to each other; and that the exhibition of a beam
of polarized light requires the action of some peculiar forces
(either those employed in producing ordinary reflection and
refraction or those which produce crystalline double refrac-

1660508000, which would make

A = 1:(66420-10% — a value hopelessly beyond the range of observation. — \ote added, Sept. 12, 1920.

27%
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tion} which will enable the eye to perceive one of these
parts without mixture of the other. This presumption is
strongly supported by the phenomena of partially polarized
light.. If light falls upon a plate of glass inclined to the
ray, the transmitted light, as we have seen, is partially po-
larized. If now a second plate of glass be placed in the
path of the transmitted light, inclined at the same angle as
the former plate, but with its plane of reflection at right
angles to that of the former plate, the light which emerges
from it has lost every trace of polarization; whether it be
examined only with the analyzing plate B, or by the inter-
position of a plate of crystal in the manner to be explained
hereafter (145). ‘This seems explicable only on the suppo-
sition that the effect of the first plate of glass was to
diminish that part of the lght which has respect to one
plane (without totally removing it), and that the effect of
the second plate is to diminish in the same proportion that
part of the light which has respect to the other plane; and
therefore that, after emergence from the second plate, the
two portions of light have the same proportion as before.
On considering this presumption in conjunction with the
second and third conclusion, we easily arrive at this simple
hypothesis explaining the whole«: ’

»Common light consists of undulations in which the
vibrations of each particle are in the plane perpendicular
to the direction of the wave's motion. The polarization of
light is the resolution of the vibrations of each particle into
two, one parallel to a given plane passing through the direc-
tion of the wave’s motion, and the other perpendicular to
that plane; which (from causes that we shall not allude to
at present), become in certain cases the origin of waves that
travel in different directions. When we are able to separate
one of these from the other, we- say that the light of each
is polarized. When the resolved vibration parallel to the
plane is preserved unaltered, and that perpendicular to the
plane is diminished in a given ratio (or vice versa), and not
separated from it, we say that the light is partially pola-
rized.«

6. In view of the considerations here deduced by Airy,
we see why the spherical distribution of waves from atoms
in every conceivable plane will give rays directed to every
point of the circumterence of the end of a beam of light;
just as in Airy’s discussion of the polarization in Newton's-

rings, it is held that the waves »are polarized in every con- |

ceivable plane«, and »rays will be formed directed to every

M= ll’fjx/r- cosedsds’ = —y x’jj(r/r)(dx/ds -da’/ds’'+dy/ds- dy'/ds’+dz/ds- dz’/ds’) ds ds’

cose == cosa cos ' +cos 8 cos ' +cosy cosy’ = cos(/, I')
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point of the ring, each ray having -the polarization proper
to its point of the ring.«

7. To view this reasoning graphically, imagine a series
of planes drawn through the centre of the sphere and fixed
at equal intervals normal to a meridian of the circumference
having its pole in the observer’s eye. Then imagine the
whole set of fixed planes rotated about the pole through
the observer's eye, and stopped at successive intervals of
the circumference equal to those between the fixed planes.
The equatorial portions of the hemisphere will thereby be
divided into rectangular compartments with areas equal to
»?cosl dd dw, were @ is the angle about the pole, and 4 is
the latitude. 'To get compartments of equal areas in higher
latitudes, the revolving system must stop at intervals equal
to dw/cosA = (2m/n)secA. From these considerations we
perceive that in higher latitudes the number of rectangular
compartments decreases rapidly; and if the number of flat
wavelets of light are proportional to the rectangular areas
on the sphere, the wave disturbance in light will be almost
wholly peripheral, or transverse.

8. Small as is the amount of light depending on the
vibrations in or near the line of vision, our sphere shows
that the central great circles distributed in haphazard fashion,
do not lie in the line of vision, but pass around it on all
sides; and hence we perceive that the disturbance necessa-
rily is rotational in character, and nearly transverse to the
direction of propagation.

9. From considerations based on polarization, — ten-
ding to show that in the ordinary ray of Iceland spar the
vibration of every particle is perpendicular to the principal
plane of the crystal, while in that constituting the extra-
ordinary ray, the vibration of every particle is parallel to
the principal plane — the polarized light in both cases being
already systematically resolved by the action of the crystal
— Azry concludes in article 1o1 of his Undulatory Theory
of Optics, that there is not the smallest trace of visible fringes
of interferences.

ro. If the considerations on the spherical distribution
of the planes of the flat wavelets above deduced be valid,
Airy's results could be true, .and yet give us an unlimited
number of component flat wavelets not originally normal
to the direction of the wave propagation, but inclined to it
by the angle ¢, as in the electrodynamic formula of Zranz
Newmann, 1845%:

(43)
(44)

and yielding the general formula for electrodynamic action in universal gravitation, or Ampére’s theory of elementary

electric currents about the atoms:

0 = Ij.f.f.fjll' cos(Z, ]’)’[(x — x4+ (y—y) 4+ (z—2)Y " de dy dz da’ dy’ ds’ .

Thus the difficulties of reconciling the wave-theory
of light with the electrodynamic theory disappear. The
resolved waves in polarized light are largely normal to the
direction of propagation, but their original component flat
wavelets were not, being in atomic planes inclined at all
angles.

(45)

5. Other Fundamental Objections to Fresnel's
Theory that Light Waves are purely L.inear Trans-
verse Motions.

(i) Certain circumstances favorable to the old wave-
theory of light permitted it to progress but did not establish
it on a permanent basis.
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r. In his memoir of 1830 Prisson showed that in
elastic media waves propagated from a centre are essentially
like sound waves, and at great distances the molecules move
mainly in the diréction of the normal to the wave front.
But Poisson died in 1839, while CawucZy lived on till 1857;
and moreover the deceptive argument drawn from the vibra-
- tions of an elastic cord misled Herschel and Airy, who failed
to perceive that the underlying premise implies anisotropy
in the medium.

2. As Poisson never concurred in the theory of vibra-
tions normal to the direction of the ray, Fresnel and Arago
sought comfort in the analytical results of Cawcky. And
because such waves are theoretically possible when once they
are generated, it was inferred that light has such motion as
is observed in the vibrating cord.

3. Cawchy's analysis seems to have proved that if waves
normal to the direction of propagation be started, they could
be propagated by such transverse motion; yet he did not
explain how they would arise, or would be started normal
to the direction of propagation. Nor did his associates see
the anachronism implied in a medium with anisotropic pro-
perties along x, », z, —z being in the direction of the ray,
whatever that may be.

4. After a visit fr8m Arago, 1816, Young began to
form a theory of waves with motions normal to the direction
of propagation. They were held to be similar to undulations
carried along a stretched cord, as stated in a letter April 29,
1818, (cf. Whittaker's History of the Aether, p. 122). This
example of the vibrating cord gave a physical analogy which
was afterwards adopted by Fresnel, Herschel, Airy and others,
but it was really an anachronism; for it implied a »stringy«¢
condition in the aether, in any direction the wave might
travel, but not in other directions. The z-component of the
vibration along the_ray vanished, which made { = o, and
therefore s = V/(£2-+72%) becomes confined wholly to  the
wave surface.

5. As we have seen above, Green took the velocity of
the longitudinal component of the waves to be infinite; which
left the finite motion wholly in the wave surface. In the
case of a gaseous aether of course there is no authority for
this procedure; and thus it simply begged the question, by
offering an arbitrary hypothesis.

6. Hamilton's prediction of conical refraction (conf.
Whittaker's History of the Aether, p. 13r) only showed
Fresnel's ideas of the theory to be correct in general, but
was not an accurate test in all details. The theory above
outlined will explain conical refraction equally well. Accor-
dingly in the absence of definite objections, the old wave:
theory triumphed by default, at least temporarily; yet the
assumptions made to get rid of the longitudinal component
never were satisfactory, and could not be justified, because
based on an arbitrary hypothesis.

7. The physical inadmissibility of Green’s postulate
that the longitudinal component has infinite velocity (Green’s
Collected Papers, p. 246) is easily shown by the following
considerations:

a) In his work on Sound, Chap. V, Zyndall shows that
when the bow of a violin is given 4 stroke along the violin
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string a shrill sound arises, owing to the rapidity of the wave
along the string, — giving high pitch to the sound. Owing
to its higher elasticity, waves travel say ten times more rapidly
along the string than through the air.

b) Now it is easy to see that this is analogous to
Green’s unauthorized procedure, which amounts to assuming
a »stringy¢ condition of the aether in any direction in which
light is sent. And the chance that the assumed longitudinal
component would not manifest itself in some way is very
slight, since the aether, with excessively small density, is
naturally taken to be a gas, and the velocity of the aetheron
7 == 471000 kms.

8. Again, in his work on Sound, (p. 73), Zyndall shows
that a sharpness of shock, or rapidity of vibration, is neces-
sary for producing sonorous waves in air. »It is still more
necessary in hydrogen, because the greater mobility of this
light gas tends to prevent the formation of condensations
and rarefactions. «

Therefore the aether should present enormous difficulties
in the generation of waves therein, and such is observed
to be a fact. By way of experiment Prof. NVipker alone has
generated disturbances in the aether; and to produce them
he had to use dynamite, which gives intense forces quickly
exerted. Observation thus verifies the high velocity of the
aetheron, and will not permit us to assume different velocities
of the aether wave in different directions.

(ii) Purely transverse vibrations in light would imply
only transverse undulations in magnetism and electrodynamic
action, which is contrary to observation. '

The theory of transverse waves was first admitted some-
what reluctantly by Yowung and Fresnel in the early part of
the 1gth century, (1802-1829). But under the celebrated
expe'riments on diffraction, double refraction, polarization and
interference conducted by ZFresnel and Arago, the theory
became a new means of discovery. This apparent experi-
mental triumph of the undulatory theory aroused such interest
that a long series of brilliant mathematical researches were
entered upon by the eminent natural philosophers then resi-
dent at Paris — Nawvier, Poisson, Cauchy and Lamé.

It is true that these mathematicians were by no means
agreed among themselves as to the details, yet their work was
mathematically so impressive that it created great interest in
other countries, more especially in England, and was adopted
by Airy, Hamilton and Herschel, and subsequently by Green,
Thomson (Lord Kelvin), Stokes, Maxwell, and Rayleigh. In this
way the undulatory theory as now taught came into wide use;
and yet it was always suspected to be somewhat defective,
and we shall now point out some additional reasons why the
traditional view can not be valid.

1. The theory of purely transverse waves in light is
directly inconsistent with the rotations actually known in
magnetism, and with the electrodynamic action of a current
on a magnetic needle, in such phenomena as Oersted’s ex-
periment of 1819.

2. For if the motion of the aether is linear and trans-
verse in light, it would be logical to conclude that it must
be of the same type in the waves by which electrodynamic
action is propagated across space. Indeed, experiment proves
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that both actions have the same velocity, and take place in
the same medium. And we have no grounds for assummg
a difference of wave type.

* 3. Yet we know by actual observation that in Oersted’s
experiment of 1819 the magnetic needle not only is directed
in a definite way, depending on the direction of the current,
but also attracted to the conductor by the action of electro-
dynamic waves propagated from the wire, as first pointed
out by the present writer in 1914.

4. Now the electrodynamic waves discovered in 1914
can not be wholly transverse, as held by Aresnel and his
followers 1n the wave-theory of light; for in that case there
could be no actual attraction on the needle. On the con-
trary, Maxwel/l held (Treatise on Electricity and Magnetism,
3%ed., § 793) that such transverse waves exert a slight re-
pulsion, and on the premise employed it is difficult to refute
his conclusion.

5. In order to exert the observed attraction, the electro-
dynamic waves must have rotations somewhat like those ob-
served in water waves; and the needle must so orient itself
that the elementary Ampére-currents of electricity about the
atoms coincide in direction with those in the electrodynamic
waves propagated from the wire.

6. The observed attraction of the magnetic needle to
the wire therefore is inconsistent with Freswel's doctrine of
purely transverse waves, as taught in the theory of light and
adopted by Maxwell in his electromagnetic theory. Now
magnets themselves have circulation of currents about their
atoms, as first shown by Ampére’'s experiments with currents
in 1822; and these .currents about the atoms give rise to
the rotations about the Faraday-lines of force, thus forming
the waves propagated outward from magnets. It is only in
this way that we can imagine how magnets presenting un-
like poles attract; and, when like poles are presented repel,
by a mechanism at last disclosed to our vision,

7. Therefore the magnetic needle is attracted to a
conducting wire by the electrodynamic waves propagated
outwardly from it; and magnets’ themselves also attract by
'sending out waves defined by the well known rotations about
the Faraday-lines of force. Accordingly it follows that all
such waves must necessarily involve rotations in the aether
to make up the waves; and the waves incontestably are not
wholly transverse, but only transverse in somewhat the same
way that water waves are transverse.

8. The Fresnel theory of purely transverse light waves
thus again is definitely disproved, and we may reconcile the
varied mathematical researches of Foisson, Cauckhy, and Lawmé.
It should be noticed, however, that Cawc/y's reasoning had
no physical basis, to control the legitimacy of the hypotheses
underlying it, except the artificial analogy with the vibrating
cord. Poisson and Lamé on the other hand never were fully
convinced that the motion in light is wholly transverse. The
theory outlined in section 4 above probably had never oc-
curred to them.

9. Accordingly there are real weaknesses in the tra-
ditional wave-theory of light; and the difficulties noticed by
the earlier investigators have never been satisfactorily over-
come. The objections here pointed out appear to be new,
.and absolutely fatal to the theory of wholly transverse waves
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as held by ZFresnel. He was essentially a specialist in light,
rather than a mathematician -and all around natural philo-
sopher, like Foisson, who never did believe that in nature

the aetherial vibrations could be as Fresne/ imagined. The

temporary scepticism of the illustrious Poisson is now verified
from a new point of view, after the lapse of nearly a century.

1o. It is remarkable that such a palpable perversion
as the theory of wholly transverse vibrations gained currency
in science through the misdirected reasoning of the followers
of Cauey. 'They scem to have been misled by beautiful
general formulae, valid enough as applied to wave motion
In crystalline media, but utterly deceptive as applied to the
simple case of the aether itself, viewed in free space as a
uniform isotropic medium, which furnishes the general basis
for the undulatory theory of light This outcome is the more
remarkable and unfortunate, since Foisson was a greater and
more sagacious physical philosopher than Cawciy, who was
chiefly a pure mathematician.

(iii) Difficulties in the wave theory of light as outlined
by Prof. Chas. S. Hastings.

In a letter to the present writer, dated Aug. 17, 1916,
Prof. Hastings speaks as follows:

»That light vibrations necessarily are transverse only
is proved in many ways — perhaps most obviously by the
fact that complete polarization is possible.&

»1f light waves fall normally on a refracting surface,
any free element of volume in the first medium is sustained
in permanent transverse vibrations of definite period, but if
it is attached to an element of the second medium as at
the interface, the second medium having either a greater
density or a greater rigidity, it will not (although necessarily
retaining the same period) move so far from its position of
equilibrium. Just at this region, therefore, so far as the first
medium is concerned, we must add a system of waves of
opposite phase and of an amplitude easily calculable from
the ratio of light velocities in the two media. — this con-
stitutes the reflected light.« .

»Now consider the refracted light. The element of
volume just below the interface has the same period and
amplitude as the attached element above; it is.therefore a
portion of a system of waves propagated in the same direc-
tion as the incident waves but with a velocity determined
very simply by the density and rigidity.«

»It is when we con-
sider oblique incidences
that we get into diffi-
culties. Fresne! assumed
that the same condition

£ - held in these cases also,

N but, as you ¢an readily

N see from the diagram,

N there could exist a stable

N state of vibrations at the -

Fig. 4. Professor flasting’s diagram of the  gyrface only when there
path of light at the interface. is a system of compres-
sional waves also proceeding from the interface in a direction
and of an intensity easily calculable if.the ratio of volume-
elasticity to rigidity is known. Now no such system of
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longitudinal waves exists under any c1rcumstances, because
the energy carried by the reflected and refracted wave systems
taken together always equals the energy carried to the re-
fracting surface by the incident wave system. (This, by the
way, is the direct answer to your principal question. I might
stop here but the fixed habit of an old teacher leads me
to add: —) In order to get rid of the obvious difficulty
Fresnel assumed that the volume-elasticity of the ether, both
free and associated with matter, is infinitely great, in which
case the velocity of the longitudinal wave system would be
infinite and it would carry no energy with it. Aside from
the fact that absolute incompressibility is difficult to conceive
there are other serious difficulties in the theory connected
with the phenomena of double refraction.«

»Stokes is said to have invented an elastic-solid theory,
which, however, carried with it as a necessary consequence
the proof that Huyghens' construction of the extraordinary
wave surface in Iceland spar is slightly erroneous, say in the
fourth decimal. Fitzgerald attempted to test this by accurate

T 21
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measurements {the first made since Huyghens!) but failed in
attaining adequate precision. - Finally 1 demonstrated (Amer.
Jour. Sci. somewhere) that Huyghens' construction is certainly
accurate to 1+107%.¢

»More recently Kelvin, who was especially desirous of
getting a defensible elastic-solid theory of light, proposéed a
zero volume-elasticity, or a collapsible ether. This gives
zero velocity for compressional waves and hence no energy
is carried away from the interface. Ke/vin apparently left
his readers to imagine an outer boundary condition which
would prevent the ether-universe from collapsing.«<

6. Outline of the General Theory of the Waves
from any Body, whether due to Light, Magnetism,
Electrodynamic Action or Universal Gravitation.

(i) Results of Prisson's analysis for wave motion.

As we have seen, in the third paper, Foisson reduces
(Memoir of 1830, p. 5356) the sextuple integral for the pro-
pagation of waves to the double integral:

O = (1/471)'5.5)F(x+atcosﬂ, y=+atsindsinw, z-+atsind cosw)?sind dé dw

oo T am

(46)

+(1/47) d/dtjlj‘[lx—i—atcosﬂ _y—i—-atsmt951nw z+atsind cosw)?sind dd dew .

Now the equation

lx+my+nz=o (a47)
represents a plane through the origin. And
lx+my+nz—(at+s) = o (48)

represents a plane with perpendicular p = {a#+s5) from the
-origin.

If plane waves proceed from the equator of an atom;
the radius of the spherical wave surface about the atom will

2w

increase with af; and the disturbance, in the plane of the
flat wave, in the equator of the atom,, will travel away with
the velocity af, and remain parallel to the original in all
parallel planes. Thus lx+my-+nz—(at+s)==o represents
the disturbance in the equatorial plane of the flat waves from
any atom, propagated in every direction parallel thereto.

Our integration should include the disturbances along
these planes in which the waves are flat. Accordingly, for
the waves from any atom we have

O = (1/471:).5. lfF{l(x+at cosd)+m(y+atsind sinw)+n(z+atsind cosw) —(az+s)} tsind dd dw

oo T 27

(49)

+(1/4n)(d/dt)j. IH {#(x+ at cos8)+m(y+atsin 8 sin w)+n(z+atsind cosw) — (at+s)} #sind dd dw .

oo

And if we integrate this expression for the waves from all the atoms of a body, we shall have

r T2 T 27
.¢p=j'

o] (el )
2 man

j
if

lY(o’/47r J)J‘F {{{x—+at cos8)+m(y—+atsind sinw)+n(s+atsind cosw) — (az+5)} #2sind dr dd dw-#sinéd dd dw
b .

(50)

+ j' (of 472) d/dtj‘j)H (x+at cos8)+m(y—+atsind sxnw)+7z(z+at51n€cosw) (ez+5)} #?sind drdf dw - 2sind dd de .

(el o) oo

This equation may be simplified somewhat by a transformation employed by /%isson in his Memoir of 1819, p. 127.

In this we put: la = p cost’

ma == psind’sinw’

(51)

na=psind cosw’

and then the second terms under the integral signs become of the form

#{cosd’ cosd—+cos(w —w’) siné’sind} = #cosyy

and therefore T 2T T 2w

-

e

27 T 2T

ot Oty

(o 3e]

I(d/ur)j j‘F{lx—km_y—kﬂz-—- (az+s)+2#cosyp) »?sind dr dd dw - #sind dd dw
o] oo

n
jf(o’/ut d/dtjjl] lx—+my—+nz—(at-+s)+tcosip) r?sind dr dd dw - #sind dd dw .
oo

d? = sind dd de (52)

(53),
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(ii) Simplified expressions for all the elements of a spherical surface with motion making any angle with the radius.
Accordingly, when we have equations of the type found in Prisson’s expression {Memoir of 1819, p. 127):

T 27T

P = j'j.f(gcosu+/z sinz siny—+£ sinx cosv)sinz du dv

oo .

we may put & == pcosa’

and thus obtain: T 2m

P = J“ff{p[cosu’ cosz—+cos(v—v/) sina’ sinu]} sinu du dv

oo
By using the simplifying formulae:

cosy == cosu’ cosu—+cos(v—2")sin«’ sinu

this reduces to m 2%

P=.fjlf(pcosljj)dw.

Ak = psina’ sinv’

(54)
(s5)

(56}

& = psina’ cosv’

(57}

dw = sinzdudv

(s8)

»Thus this quantity 2 represents the sum of all the elements of the spherical surface, multiplied each by a given function
of the cosine of the angle comprised between its radius and a radius determined in position.«
A wave flat in the equator of the atom is defined by

Ix+my—+nz—(at+s) = o,
The coordinates for the spherical propagation of the wave are

x-+at cosd

Hence T am

y—+atsindsinw

(48)

z+atsind cosw . (59)

O = (1/47r)f jF{l(x-f-at cos 8)-+m(y—+atsind sin w)-+n{z+at sind cos w) — (at-+s)} #sind df dw

00 T 2T

(60}

+(1/4’7r)(d/dt)'f ffl {{(x+at cosd)+m(y~+at sind sinw)+n(z+atsind cos w) — (at+s)} #sind dd dw .

[o e ]

These solutions are general for wave motion in light,
magnetism or similar natural phenomema; and thus it remains
to examine certain expressions in Gauwss' Theory of Terrestrial
Magnetism, to ascertain if these phenomena are consistent
with the wave-theory. But before entering upon magnetic
phenomena, we summarize the hypotheses underlying Poisson’s
analysis as briefly as possible.

(o) (iii) The equations for waves propagated spherically in
an’ elastic medium.

Consider a system of waves propagated spherically,
from any point, whose coordinates are «, y, z, . Then the

T 27

°o T 2T

And the equation of wave motion is:
LB = o (8200047 +07D 0,2+ 02D 0s?)
Thé fundamental equations
du/dt==a%ds/dx dv/dt=1a?ds/dy dw[dt=a%ds/ds (65)
ds/d¢ = dufdx+dvfdy+dw/ds s=(1/a?)d@[ds '°5
lead to the components of the velocity of any molecule
u=dQ/dx+ U v=dO/dy+V w= dD/dz+ W (66‘)

‘where U, V, W are arbitrary functions of x, y, z, in accor-
dance with the conditions laid down by Zagrange in the
Mécanique Analytique.

(64)

coordinates of the disturbed molecules at any time #, will be
found in a sphere surface: (@) = (x— )2+ (y—y')2+ (3 —2')?
x=—x' = rcosd == atcosd
y—y = rsindsinw = aefsindsinw (61)
2—2 == rsindcosw = atsind cosw ..
Accordingly at the time ¢ the coordinates of the
disturbed molecules will be:

(62)

And Poisson's solution yields the integral over the sphere

x~+atcosd  y—+atsindsinw  z4+afsind cosw .

surface (az, 4, w):

- o= (I/47I)IJ.F{x+afCOSt9, y+atsindsinw, z+afsind cosw} #sind dd dw

(63)

+(x/47r)(d/dt)jjl]{x—!—atcosé, yatsindsinw, z+atsinf cosw} ¢sind dd dow .
(e Jye} '

(iv) Gauss’ theorem that the sum total of positive and
negative magnetic fluid in any magnet is zero confirms the
wave-theory of magnetism.

In his Aligemeine Theorie des Erdmagnetismus, 1838,
p. 21, Gauss has shown that the sum total of positive and
negative fluid in the entire earth is zero, so that

Jau=o. (67)
The expression for the potential, due to the magnetic mass p, is
ve=—{1/p-du (68)

where the integral to be extended over the whole magnet,
and ¢ denotes the distance of the element of magnetic mass
du from the point acted on («/, ¥, #').
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In rectangular coordinates we have:
¢ = V{a—aP+(y—y)+(s=2)

and, in the 'spherical coordinates used by Gauss,

(69)

0=V {r2+r,2— 277y [cosucosiuy~+sinusinuy cos(A—24,)]} (70)
# -and. %, being polar distances, » and 7, being radii of the

earth, 1o a fixed longitude, and 1 a variable longitude, to
be used in extending the integration throughout the mass.

~ Thus
V= —‘J.I/Q‘d(b = —j,jjl(a/g) dx dyds
= —IIJ(O'/Q) dr-7du-rsinzdi. (71)

Accordingly when we extend Gauss’ theorem to the

entire terrestrial globe we have the expression for the potential:
27 T

V= — jdl 'fsin % duj(ro/g) ridr.
. [o] (o]

o

(72)

This will give the potential at any point (79, %y, A9), which
may be outside the earth, as in the moon or sun.

(v): Extension of this theorem to the electrodynamic
action between two spheres, as the earth and sun,

Imagine electric currents to circulate around the atoms
of two globes: it is required to consider the resulting electro-
dynamic action. We have the sextuple integral

P.—_—'J'Ijjljj(r/g)z'z"cos(z',z")(idxd_ydzo"dx’dy’dz’. (73)
The two masses may be called M and , the latter being
the sun. '

1. The coordinates of the sun (7o, %, A) may be
taken as fixed, while the integration is being extended over
the earth.

2. In the same way the coordinates of the earth as
seen from the centre of the sun may be regarded as fixed
while the integration is being extended over the sun’s mass.

3. The two masses as respects each other are thus
reduced to weighted points of mass 47 and m. The action

3085

418

of the sun on the earth’s atoms is equivalent to the action
of the earth on the sun’s atoms:

27 k114 r
P= mj.dljsinu duj(a/g) r2dr (74)
. (o] o o
27 T r
= Mj]dlj.sinu duj(d/g) r2dr. (75)
o] o) o

And both of these expressions are zero, in accordance with
(67) and (71); for if in the case of the earth’s magnetism

involving /1g;5™ part of the atoms, jd,w=o, which means
jj.j(l/g) odxdydziz cos(s,#) = o; so also. in the case of
electrodynamic action depending on all the atoms, it follows

that Id,u/g = III(I/Q) i7 cos(s, ) odxdydz = o (76)
if the integration is rigorously restricted to the limits speci-
fied in (74) and (75). :

Now it happens that the actions between two globes
M and m are not restricted to their centres as seen from
each other; but the globes subtend measurable angles z2m,
2w’, and the atoms are correspondingly dispersed. When the
mass is concentrated at the centre, suppose it restricted to
a minute measurable area of unit size; then the actual ex-
panded bodies will be larger than this minute area 'in pro-
portions of » and %' times. If the action on unit mass in
the minute area be one unit, the action of all the mass in
M will'be v o times that powerful; and that of all the mass
in m will be »'¢’. Hence the necessity of integration over
every area however small and however minute the density.

{(vi} The wave action positive as in the observed case
of gravitation.

If the concentration of the action of the distant body
in the centres M and m be indicated by integration with
rigidly fixed limits, 277 in the case of 4, and 7 in the case
of #, — which restricts the mutual action to a single minute -
area — we may write two integrals for the whole action:
one with no spacial distribution, and the other variable
throughout the solid angles zm, 20’:

P = [[[§§fle)is cosli,?) o dx dydz o dw’ dyds’

2T F20TT 7

= Ij‘jjjf(l/g) 17 cos(s, ') a7? dr dA sinu du o’ 74? dro dAg sinu, dug =0
[e 2o} o .

The latter expression A4 is positive, because all the factors
depending on the cosine, 77 cos(s, 7)) are positive — the total
angles of integration being in excess of a whole or semi-
circumference by the amounts 2w, 2@’. This last expression
(77) explains why gravitation always appears as a positive
force, though the electrodynamic action on a point vanishes,
— because also it emits no waves. Both bodies fill measurable
space, and the angular overlap is 2w, 2@’ when the action
of all the atoms in both bodies is considered.

7. Why Reflected Light is Polarized in a
Plane at Right Angles to the Plane of Incidence
and Reflection: Confirmation of ZFresnel's Views.

7
—+—j j. j I I j(r/g)ii’cos(i, )ortdrddsinadu o ry?dry ddysine dey == 4.
o 0 0 0O o o©o .

(77)

(i) Mechanical analogies are convincing.

1. We have found the aether to be enormously elastic,
so that when any pencil of the medium is filled with a beam
of light, which consists of waves tilted at all angles and
flowing on in almost infinitely rapid succession, the pencil
may be viewed as maintaining its figure by the elasticity of
the medium and the rapid succession of the waves. If the
pencil of light strikes a solid or liquid surface, the speed of
the wave motion is suddenly checked, and reaction on the
equilibrium of the pencil .at the boundary takes place: so
that the vibrations in certain directions are altered by the
contact with the solid or liquid surface.

28
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2. To judge by a tangible and familiar experiment, as
to what may happen to a pencil of light, we may compare
it to the stream of water flowing from the nozzle of a garden
hose. The cross-section of the stream of water is assumed
to be circular, and we recognize that the forces which keep
it so, are chiefly the forward motion and surface tension,
— the attraction of the water for itself. In the case of the
pencil of light, the equilibrating forces depend on the elastic
power within the aether, and thus are different; but the effect
. produced is very similar, for any slender cylinder filled with
a flow of waves.

3. Now we know by daily observation, that when a
round stream of water is thrown by a hose against a solid
wall, the cross-section of the stream ceases to be circular,
and becomes highly flattened, so that the new cross-section
of the stream becomes an ellipse, having its longer axis nor-
mal to the plane of incidence and reflection. The flattening
of the reflected stream of water is easily seen by the most
careless of observers: and thus analogy leads us to expect
a similar flattening of the vibrations in a beam of reflected
light. Tt is true that the flattened stream of water is not
vibrating like the aether, yet the reflected stream is flattened,
and tends to retain that figure, with elliptical cross-section.

4. It has been proved by flash-light photography that
when liquid drops are forming and falling, the detached
spherules oscillate about a mean figure, — being alternately
prolate, then spherical, and finally oblate. In the case of
drops therefore the particles of the fluid oscillate about a
mean position, under the influence of surface tension. The
figure of the drop is drawn out of shape at the instant of
detachment, and in falling the action of surface tension
restores the normal figure, and carries it beyond, so that the
globules oscillate about their mean form, which is spherical.

5. Now in the same way, when a pencil of light is
" reflected from a solid or liquid surface, the act of reflection
brings’ into play, for an infinitesimal time d7, certain forces
which tend to flatten the beam, as reflected, in a plane normal
to the plane of incidence and reflection. Considerthg merely
the relative motion of the beam in respect to the solid or
liquid, we may regard the circular pencil as struck by the
solid or liquid in the act of reflection. Owing to its elasticity,
each element of the pencil rebounds like a rubber ball —
flattened. in the plane normal to that of polarization, as we
see in the actual behavior of rubber balls in collision." Since
each element of the pencil is elastic, there is incessant re-
covery from the flattening effect — so that the pencil con-
tinues to vibrate, but by relative crowding of the vibrating
aetherons it has Jost its circularity of cross-section, and
become elliptical, owing to the restricted freedom imposed
in the process of reflection.

6. In Fig. 6, Plate 8, we may imagine equal amplitudes
of vibration, in all directions from the centre of the incident
beam as shown above; but after reflection the resistance thus
encountered forces the circle into the ellipse, as shown. The
mutual crowding towards the centre, owing to restricted free-
dom at the instant of reflection, -forces the pencil as a whole
out at the sides, and thus it takes on a very elliptical form
for the cross-section. In spite of a notable flattening of the
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pencil of light the aether particles describe ellipses — not
straight lines, as often stated, in the theory of polarization.

7. It -has been shown by the recent researches of
Heiberg that Archimedes used mechanical means of proving
his theorems, at least in the first instance, and then made
them rigorous by improving the geometrical demonstration.
Accordingly, in dealing with polarization, we are justified
in adopting similar methods. And the only question is one
of devising a valid model which affords a true analogy, To
this end we rely upon the evidence of experiments, in phe-
nomena easily understood and admitting of but one inter-
pretation.

8. The model of a - reflected stream of water above
outlined certainly is mechanically valid. And it may be con-
firmed and extended by considering the instantaneous forced
form of a series of rubber balls, in such close succession
as to be united into a solid tube, like the stream of water,
yvet not actually touching prior to reflection. At reflection
each ball would be flattened by the resistance of the reflector,
so that the vibrations of the aether in the pencil take the
same form, as observed in polarized light.

9. When liquid drops are formed, in the breaking of
a jet, flash-light photography shows them in rapid vibration,
owing to surface tension. They form, and vibrate up and
down, under gravity; but the waves of the aether pencil
would vibrate normal to the plane of polarization, when they
are reflected. The vibrations in a plane at right angles to
the plane of polarization thus necessarily results from the
reflection of waves in an ‘elastic medium.

1o. Accordingly, on the basis of actual experience,
in well defined phenomena, it is impossible to imagine any
kind of vibrations in reflected light other than that at right
angles to the plane of polarization.

If we adopted the Maccullagh- Neumann theory of vibra-
tions, in the plane of polarization, we should have to expect
mechanically a similar effect when a circular stream of water
is reflected by a smooth solid wall. No such effect is ob-
served. And as reflection is equivalent to a blow against
the round moving stream, renewed at every instant, at infini-
tesimal intervals d#, we see clearly that the distortion of the
vibrations should take place, with the longer axis of the
new elliptical motion at right angles to the plane of polari-
zation, No other result is mechanically possible.

(ii) Analysis of light vibrations.
Let the three components of the revolving light vector be:

(w]a)’+(v/6)2+(w]c)?

5 = l/(u2+v2+/1/2) .

u == acos(zm tlt+a)
bcos(2m tfe+8B)
ccos{2m tfr+y) »
The fourth of these equations indicates that the path
described by the end of the light vector is an ellipse; and
the fifth equation gives the displacement relatively to the
equilibrium position of the aether particle at any time.

By altering the angles through Yy —4, we are enabled
to use sines in the place of cosines:
sin(270 /¢ +p) == ufa==sin(27#[v) cos p+cos(z2 7 /) sinp
sin(27#/z+g)==v/b==sin(zm/z)cosg-+cos(z7¢/t)sing (79)
sin(z7 8/v~+7)=w/c==sin(2m #/t) cos» +cos(27 ¢]¥)sinr .

=71

(78)

7 =

w



421

The quantities #, v, w, represent the rectangular coor-

dinates of the end of the revolving light vector; and the
" equation for the path, quite independently of the time, may

be obtained by. eliminating # from equation (79), by the
following process. If we multiply the expanded form of these
equations by sin(g—7), sin(r—p), and sin(p—¢) respectively,
and add them, the right hand members will be found to
“vanish, and we get:
(#/a) sin (g —7)+(v/b) sin (r—p) + (/) sin(p—¢) = o (80)

This linear equation connects #, v, 2, which are the
rectangular coordinates of the end of the light vector; and
hence we see that the path described by it lies in a plane
passing through the origin. The path of the vibration there-
fore is a plane curve.

To get the path as projected on the coordinate planes,
we use two of the equations (79). Thus from the first two
of these equations we obtain:
sin(27t #/r)(cosp sing — cosg sinp) = (v/a)sing — (v/8)sinp (81)
cos(zn//r)(cospsinq——cosqsin/))=~(u/a)cosg+(v/b)cosp. !

If we square and add these two expressions, we get

sin®(p—g) = w?/a’+v2[62— 2 (u]a)(v]}) cos(p—g). (82)
And we see that this equation is that of an ellipse whose
principle axes coincide with the coordinate axes when
p—¢ == Yy, so that only the first terms of the right mem-
ber remain, and the left member is unity:

1 = «%a+2/0?, (83)
This represents elliptically polarized light, in which @ and &
may have any ratio.

If we put w =10, a=14, p—g= 4'/ym, we have the
conditions for circularly polarized light:

u=asin(zmsr) v=acos(2m¢/r) (right handed)
# = asin(zntfr) v == —acos(274/z) (left handed). . (84)
When the vibration ellipse reduces to a straight
line, or in practice approximately so, » = o, p—g=o,
orp—¢ ==m, we have by taking the square root of (82):
ulatvlb = o. (85)

In wave motion, the intensity of the action, or the energy
of the disturbance, is proportional to the square of the
amplitude. Hence we add, for the geometrical sum, the
squares of the component amplitudes 4, 5, C, and thus obtain.
¥ = A+ B2+ (2. (86)
We shall now apply this composition theorem to po-
larized light. It is well known that such light is free from
interference, when polarized in planes mutually inclined at
right angles, but always gives an intensity equal to the sum
of the intensities of the separate rays.
(iii) Analysis of the composition of polarized light
compared with the evidence of observations.
Let us superpose upon the ray defined by equations
(79) and traveling along the z-axis, a ray of equal intensity,
but polarized at right angles to it. If the components of

this new ray be #/, ¢/, ', and the phase difference be d;
then we shall have
# == Bsin(2mtfr+g+0) /' =—4 sin(27 ¢/v—+ p+0) (87) ‘

@' == Csin (27 t/v+r+0)
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Except for the phase difference d, these components
become identical with those in (79), by rotating the coor-
dinate system through go° about the z-axis. Accordingly,
we have by taking the sums of the components, thus geo-
metrically compounded:

utu = A% = A*+ B*+2.4 B cos(d+¢—p)
v+v' = B = 4+ B*— 24 Bcos(d+p—g)
w+w = C'? = 2C?(1+cosd). :

By simple addition we have from (86) the following
geometrical composition of the components of the light vectors:

(88)

¥ = At B (80)
which is equivalent to
F = 2F+2C%cosd— 44 Bsindsin(g—p). (90)

But it is found by experiment that we have sensibly
F’ = 2%, or the intensity of the compound ray is equal to
the sum of the intensities of the separate rays, and inde-
pendent of the phase difference d. Hence it follows that
the second and third ferms in (9o) are so small as to be
insensible to observation. Therefore we conclude that within
the limits of observation:
p—g=o. (91)

That is, in polarized light the radius vector is sensibly
perpendicular to the direction of propagation of the ray,
and the motion therefore sensibly transverse. Also from
equations (82) or (85) it follows that the particles vibrate
sensibly in a straight line.

From this analysis, it follows that rays which have
suffered double refraction or reflection at the polarizing angle
are plane-polarized, and thus consist of vibrations which are
sensibly transverse. We use the term sensibly transverse,
instead of absolutely transverse, in order to reconcile other
facts of observation with mathematical theory.

It is shown by experimental research that when plane
polarized light is reflected from metals, the effect is to
convert it into elliptical polarization, — the degree of the
ellipticity depending on the direction of the incident ray,
and on its plane of polarization, as well as on the nature
of ‘the reflecting metal (cf. Ganor's Physics, 14'™ ed., 1893,
§ 672, p. 656).

When the plane-polarized light is reflected from silver,
the resulting polarization is almost circular — probably be-
cause silver is so perfect a conductor of electric or aether
wave motion, that the normal tendency to elliptical motion
is largely restored. But if the plane-polarized light be re-
flected from galena, a lead ore of low electric conductivity,
the resulting polarization remains almost plane.

Now since elliptically polarized light never vanishes,
when examined in a Nicol prism, though at alternate posi-
tions it becomes fainter, such elliptical motion in light must
be considered the general type of vibration of the aether
particle. If therefore plane-polarized light, by reflection from
metallic surfaces, is rendered decidedly more elliptical in its
motion, it would seem to follow that in plane-polarized light
the motion is never strictly rectilinear; on the contrary such
light always has in its motion a slight elliptical element,
which permits of notable restoration, by reflection from silver
and other high conducting metals.

== o
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It is for these reasons that, in our discussion of the
above equations, (82) to (91), we admit the plane-polarized
vibrations to be only sensibly transverse, not rigorously trans-
verse, in rectilinear paths.

This conclusion from the combination of expenmental
research with mathematical analysis fully sustains our view
that there necessarily is a longitudinal component in light.
Any other view than that here set forth is contradicted by
well established facts of observation, which appear to admit
of but one interpretation.

8. The Undulatory Explanatlon of the Phe-
nomenon of Interference in Polarized Light con-
forms to Foisson's Theory of the Elliptical Vibrations
of the Aether Particles mainly in the Direction
of the Normal to the Wave Surface.

{i) Explanation of interference when the particles de-
scribe ellipses.

We have shown in section I and 4 above that the
traditional theory of the transverse vibrations in light is not
strictly rigorous, but requires rational revision, to take account
of the geometrical conditions specified by Fvisson, and the
related electrodynamic waves from each atom, which underlies
. the theory of magnetism. Thus it is advisable to reexamine
the bearing of these results on the theory of interference of
polarized light.

1. The ordinary explanation of interference handed
down from the days of Young and Fresnel is based upon an
assumed analogy with the side vibrations of an elastic cord.
This theory allows disturbances given the cord to travel along
it, while the particles of the cord have only a transverse
motion. But we have seen that -this explanation begs the
question, in that it practically assumes a »stringy« condition
of the aether, whereas Foisson's theory of elliptical vibrations,
with their major axes in the direction of the normal to wave
surface, gives an almost identical result, without physical
premises involving the anisotropy of the medium, or geo-
metrical postulates of purely lateral motion which cannot be
admitted.

2. Accordingly, the analogy of the waves conveyed
along a twisted cord seemed so plausible to those who did
not study the problem deeply, that it came into general use,
and still holds its place today. Yet a more mischievious
doctrine seldom has been introduced into science, because
although plausible, it is dynamically and geometrically un-
sound in principle.

For why is the aether, in the traditional form of the
wave-theory, assumed to be capable of a transverse motion
of appreciable dimensions, but incapable of an equally large
longitudinal motion? The chief reason for this hypothesis
— for it is merely a convenient hypothesis — is the problem
of explaining interference, and polarization. It is known
from modern research that diffraction only requires that the
length of the waves shall be small compared to the dimen-
sion of the aperture.

3. Fig. 8, Plate g9, shows how a split beam of plane-
polanzed light may produce interference fringes when they
differ in phase by 1/,1.

For reasons of simplicity in construction the oscillations
of the particles in the figure are taken to be circular, yet
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similar reasoning will hold true for elliptical paths of any
kind, and hence the-results here shown are true for every
kind of vibrations in polarized light. ‘

It will be noticed that the rays consist of plane waves
with amplitude 4 and wave length 1, and the ratio A4/A is
comparatively small, but here drawn on a scale large enough
to enable us to see the rotation of the elements of the wave
at every point. The waves are imagined to be flat in the
plane of the paper, and hence they have a longitudinal
component depending on the amplitude A4.

4. The adjacent diagram of light.and dark bands shows
the interference effects, and is seen to have strips of darkness
and of light, where the motions of the split rays are such as
to destroy the rotation, or augment it by the superposition
of the separate effects, If, for example, the wave travel along
the x-axis, the displacement of the particle parallel to the
y-axis is g, and § parallel to the x-axis:

7 = asin (2mxfdi+a) = dy
dx
V(92+ &) = @, in circular miotion.

Now a detailed treatment of the leading phenomena
of interference is beyond the scope of this paper; yet we
may sketch briefly the wave-theory of this subject, in order
to show that in spite of the defect above pointed out in the
form of the wave-theory of light handed down by  Young,
Frresnel, Arago, and Cauchy, this defect does not invalidate
the explanation of interference.

(ii) Theory of the light and dark bands.

An adequatc treatment of diffraction phenomena would
require a mathematical discussion of Fresnel’s integrals ( Drude’s
Theory of Optics, pp. 188—196), which have the form:

£ = acos(emafi+a) = (92)

=

v v
g =jcos Yymv?do 7 =jsin Vvt de, (93)
o o

These functions may be thought of as the rectangular

coordinates of a point in the light plane &. Accordingly,
from (93) we have at once:

dE = dv cosYyme? dy = dvsin!/ymo? (94)

ds =1V (d&*+dy?) = dv. {95)

And when the spacial length s is measured from the
origin, we have (96)

The functions &, g ‘are illustrated by the following fig. 9
(Drude's Theory of Optics, p. 192), which has been calculated
by the method originally due to Cornu (Jour. de Phys., 3, 1874).

[] Fig. 9.

Diagram of the double spiral
of Fresnel’s integrals, for the dif-
»  fraction of light. The curve coils
about the two asymptotic points
Fand F'. where v == +00, and
”/ v = —00, The maxima and mi-
i =TT g nima of intensity lie approxima-
© " Y"  tely at the intersections of the

line FF" with the spiral curve.
If the free intensity be 1, the
maximaare ¥, =1.34,7,=1.20,
F;=1.16; the minima ¥, =o0.78,
Fo=0.84, 73=0.87 (cf. Fresnel
Oevres Complétes, 1, p. 322).

S =v.

<
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. It is shown by Cornu’s method that for the asymptotic
points # and #’ we have

(e o] oo

& =Icos 1, v? dy qF =5)sin ynmotdo. {97)
o] o]

These integrals may be evaluated by putting x, y as

the rectangular coordinates of a point Z, x2+y? = 72, where
# is the distance .from the origin. If, therefore, we put:

o [o o]
je_x.z dx =M j.e_)'ldy =M {(98)
o o
~we get for their product the double integral:
o0 5o
2 2
§ [ axdpi= a2, (99)
0o o

Accordingly dxdy may be looked upon as a geome-
trical surface element in the xy plane; and the problem is
to evaluate Fresnels integrals for the diffraction. It is shown
that the asymptotic point # has the coordinates

(oo

oo
33 =§cos Ypm?do =1, gF =J)sin1/2m/2du =1/, (100)
o : ) o .
with corresponding integrals for the point #”, whose coordi-
nates are negative.
In the more general problem of diffraction we have
the two integrals:

¢ =feosfx,Ndo 5 =fsin[/(x ) do

Here the function .

S(x,3) = (w/2)(1]o1+1/00) [* cos® p+3*]  (r02)

and ¢ is a small opening of any form in a screen of infinite
extent, while the radii vectores

o1 = V(m®+y°+27)

(101)

Qo = V(224902 +2%) (103)
¢ ==angle of z-axis with g, cos(ngo)=— cos(ng;)=cosgp. 3
Near a straight edge!) these functions C and S become.
x' -+ o0
C=j. Idx dy cos {(rr/2)(1/o1+ 1/go) [x2cos?p 2]}
—00 — 0
ool (104)
S =5‘ jdx dysin {(n/l)(1/91+ 1/00) [x%cosp+37]} .
—00 —o0
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(iii) Application of the theory to the formation of
diffraction patterns. i

It is found in the application of the above functions,
that the equations give the central fringe intensely .white,
with adjacent blackest area, near the centre of the pattern;
here the double integral totally vanishes, but on either side
of the -centre there remains some illumination. When a space
has been traversed along the x-axis equal to a certain length, -
the light reappears as it should do by the above equations
depending on sine and cosine, with corresponding periodi-
cities. The sharpness of the boundary is an essential con-.
dition of a well defined diffraction pattern; and without the
fulfillment of this geometrical condition, a satisfactory ex-
hibition of the theory can hardly be realized.

‘In practical experience therefore the values of the
double integrals often are somewhat approximate, — the
formulae being rigorously true in the centre of the dark and
light bands, when the screen effect is mathematically sharp,
but at other places only partly true, — and thus we have
interference bands, shading away gradually and attaining
maxima at intervals, where the contrast reaches a maximum,
as shown in the diagram. .

In general the researches of experienced physical in-
vestigators have shown that the theory of transverse waves
accounts for the diffraction pattern with great accuracy. In
section § above Prof. Hastings states that he found Huyghens'
construction accurate to 1: 10% which is a remarkable degree
of precision, and equally valid as applied to diffraction phe-
nomena. .

Now in our slight correction of the foundations of the
wave theory of light, given in sections I and 4, we found
that an accuracy of r1:{4-10% might be attained before
any sensible outstanding phenomena would be likely to arise 3.
And as this is below the limits of our perception in modern
experiments, we may dismiss the question as beyond the
limits of detection in the present state of physical science.

But to show that a real longitudinal component should
exist in light waves, though it is excessively small, we may
recall an actual measurement of the smallness of the longi-
tudinal component in a well determined experiment with
sound. The late Lord ZRayleigh observed the musical note
/¥ due to a pipe of an organ which could be heard at a
distance of 820 metres; and found by measurement that the

1Y One of the great historical difficulties in the wave-theory of light was the problem of explaining with geometrical rigor the pro-

pagation in straight lines, since on - /fuyghens' principle each particle of the aether in the wave front becomes a centre of disturbance. The
above integrals, as worked out by modern geometers, have their limits so fixed as to include.the whole region of disturbance, yielding appro-:
priate fringes due to interference, but otherwise giving rectilinear propagation. i

The celebrated geometer Poisson, as we learn from the careful note appended to his posthumous memoir of 1839, pp. 151152, was
much occupied with the problem of the rectilinear propagation of light during his last illness: .

»Quand le mal moins avancé lui permettait encore de causer science avec ses amis, il a dit qu’il avait trouvé comment il pouvait se
faire, qu'un ébranlement ne se propageit dans un milieu élastique que suivant une scule direction; le mouvement propagé suivant les directions
latérales étant insensible aussitét que I'angle de ces directions avec celle de la propagation était appréciable. Il arrivait ainsi & la propagation
de la lumiére en ligne droite. Plus tard, cédant au mal, et se décidant enfin i interrompre l'impression de son mémoire: c¢'était pourtant,
a-t-il dit, la partie originale, ¢'était décisif pour la lumiére; et cherchant avec peine le mot pour exprimer son idée, il a répété plusieurs fois:.
C'était un filet de lumitre. Puissent ces paroles, religicusement conservées par les amis de M. Zoisson, les derniéres paroles de science qui
soient sorties de sa bouche, mettre les savants sur la trace de pensée, et inspirer un achévement de son oceuvre digne du commencement.«

It is unfortunate that Poisson’s memoirs have become very scarce, and thus little known to modern readers. It has long been recog-
nized that there is great need for the reprinting of Poisson’s Collected Works. But for my good fortune in obtaining a set of Poisson’s celebrated
memoirs on waves, formerly belonging to the library of Sir Jokn Herschel, the results brought out in this paper would not have been possible.

%) In the note dated Sept. 12, below, it is shown that the longitudinal component is A =(d4/\)p = 1-:(66420" 10%, very much smaller
than first estimated. . : . : ) ‘ |
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amplitude of the oscillation in these waves could not be greater
than o0.06 of a millimetre.

Now in case of /I there are 2784 vibrations per second,
and the length of the wave, under a velocity of 332000 mm
per second, is therefore 120 mm. If the amplitude be
0.06 mm, as found by Lord Rayleigh, it follows that the wave
length is 2000 times the amplitude. As a concrete example
of the molecular oscillations which produce musical sound,
this result is quite remarkable.

In the case of light we can determine the wave length
very accurately, but we cannot measure the amplitude of the
aether waves by any direct process!). Yet if the length of
typical musical waves be some 2000 times their amplitude,
it will follow, from the nature of the similar cause involved,
that for so elastic a medium as the aether the waves should
also be enormously longer than their amplitudes — much
greater than 100 times, as assumed by Aeclvin, Maxwell,
and ZLarmor. This value of A/A == 107 % is a relatively small
amplitude, but it gives a longitudinal component 2o times
larger than that noted in the sound wave above cited.

Accordingly there is reason to believe that in the case
of so highly elastic a medium as the aether the amplitude
A is less than 1:100000" of the wave-length, or at least
1000 times smaller than Kelvin, Maxwell, and Larmor as-
sumed. This would make the ratio in the case of the very
elastic aether fifty times ‘smaller than was observed by Lord
Rayleigh for typical musical sound in our air. Such a value
as 1:10° certainly is not too large, but it may be that the
ratio should be considerably smaller yet. ]

The following figure 11 illustrates the interference
phenomena observed when light passes through a glass wedge,
with the sides mutually inclined at a small angle.

This too represents interference, much like that of
polarized light shown in the preceding discussion, but it
exhibits the phenomena more in detail; and the phenomena
exhibited are consistent with rotating elements in the waves
like those in the first diagram. The wedge of glass explains
why the waves interfere in bands at right angles to the

7 = s (u/m) | § {1(dg/as)2+
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(dp/dd)?+(dL/dA)?) dx dy dz.
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height of the wedge. In the first diagram the direction of
the height of the wedge, for separating the phase of the
wave by !/,A, would have to be imagined horizontal, and
the light returned along a path parallel to its emission.

CA
‘ \\”\J\/\ SO interforonce
_b\(\/n\/\\/ reenforcoment
. \C\f\//‘\/\// interference
d\\/\’/ \/ﬂ\ reenforcement
sy g\/\/\\/\ interference

re-enforcoment

interferonce

reenforcement

Figr1. Familiar illustration of interference and reenforce-
ment, when the light of a candle falls upon a glass
wedge (Millikan and Gale). This gives bright and
dark bands, parallel to the edge of the wedge,
exactly as in the case of Newton-rings about the
centre, in the case of a lens.

(iv) Integral expressions for the kinetic and potential
energy of the medium when filled with waves.

Let &, 5, { be the rectangular coordinates of a particle
at the time #, then the differentials d§, dy, d{ will denote
the component velocities of a particle in the medium which
is propagating the waves. The particle is oscillating periodi-
cally about a mean position, at any time 7, and thus has
both a velocity of which the components are dE, dy, dg,
and a distortion from its mean position, or displacement.
It is well known that in wave motion half the energy is
kinetic, half potential: therefore the kinetic energy due to
the component velocities of the particles becomes:

(105}

For the potential energy due to the distortion of the elements of the medium we have:

{106}

W= (I/4ﬂK)Isz[(d§/dy—-dl//dz)2+(d§/dz—dC/dx)2+(drl//dx—dif/d_y)"’] dxdydz.
In these equations the component velocities of the wave disturbances are d&/ds, dﬂ/dz‘, d'g/dt, and the distortions of the
form of the elements d, = d{/dy—dy/dz, d, = d§/dz—d{/dx, 03 = dy/dx—dE/dy give the displacements of the elements.
of the medium along the coordinate axes.
The total energy in the medium at any point is the sum of these two energies: 7+ W == 0, or

.Q=(1/471)(”15'{1/2M[(d§/d/)2+(d1//d/)?+(d§/d/)?]+ 1/K- [(dg/dy—dq/dz)‘-’—'—(dE/dz—dC/dx)2+(dﬂ/dx—d_Z/dyF]}dxdydz (10.7)'

which illustrates the agitation of a medium filled with waves.

!) Since writing the above paragraph, it has occurred to me that we may calculate the theoretical ratio of the amplitude to the wave-
length of the aether by the following process. We have proved that the aether is & == 689321600000 times more elastic than air in proportion
to its density. And it is this elasticity which gives the aether waves their enormous velocity; and, as compared to air, the amplitude should
be smaller in proportion to the square root of this number. For when a wave in the aether begins to be generated it speeds away so rapidly,
under the enormous elasticity, that the amplitude is small in the same proportion that the velocity » is great. Now from the above value we
find that Ve = 830254; and as the ratio in air furnished by Lord Aayleigh’s experiments is 1:2000, we have for the aether the relative ratio:
1/830254 - 1/2000 = 1/1660508000, or 830254 times smaller than the ratio of the amplitude to the wave-length in the musical sound investi-
gated of Lord Raylejgh. The true ratio thus appear to be 16605 times smaller than that indicated above, and should be 4/A=1:(16605-10%:
= 1:(1.660508+10"), which makes A = (4/A)p = 1:(66420-10%). — Note added Sep. 12, 1920.
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The wave-theory- indicated by all the phenomena of
nature. ) )

In concluding this discussion we draw attention to the
indications of nature from the widest survey of physical
phenomena:

1. In the whole domain of mathematical physics, modern
investigations lay great stress on boundary problems. Now
boundary conditions naturally would have great importance
if natural forces are due to the action of waves; because
at the boundary of solid or liquid bodies the velocity of
propagation is changed very suddenly by the resistance, and
the tendency to refraction and dispersion.

2. In his celebrated article on light, Encycl. Metrop.,
18409, section 561, Sir Foin Herschel shows that the forces
producing refraction are such as »may be termed infinitec,
It is now recognized that these powerful actions appear in
dispersion and diffraction, as well as in refraction, and give
rise to the molecular forces, which in a future paper will
be referred to wave motions, thus confirming the great im-
portance of the wave-theory for all the phenomena of nature.

, 3. Now quite aside from the physical considerations
of particular phenomena, we have general mathematical
methods for treating partial differential equations, invented
by fourier, Poisson, Caucky and other geometers about a
<entury ago. Thus in our time practically all the equations
of mathematical physics turn on the treatment of partial
differential equations, as in sound, heat, light, electrodynamic
action, magnetism, etc. And these general mathematical
methods, so largely devised by Fowrier and Foisson, point to
waves in the aether as the underlying cause of physical forces.

4. Accordingly, the importance of boundary conditions,
in problems of the transmission of energy through matter
undergoing sudden transition of property, by virtue of fixed
domains of discontinuity, and thus requiring the methods of
partial differential equations for their exact treatment, seemed
to be so remarkable an argument for the wave-theory that
1t should engage the attention of geometers and natural
philosophers who aim at extending the researches of Fourier
and Poisson.

9. Theory of the Propagation of Wave Energy,
under Poisson’s Equation 0°M/02 =22 V2@, in a Conti-
nuous Elastic Solid, with an Analysis which shows
Waves traveling in Different Directions.

In the New Theory of the Aether (AN 5044, 5048)
we have calculated the mean molecular velocity of the aetheron
to be 7 = 1/,m V== 471239 kms per second, and shown
that the aether obeys certain laws of density and rigidity
not heretofore suspected. The length of the mean free path
is about 573000 kms, and in free space less than one .col-
lision per second occurs between the free aetherons, under
normal motion. Owing to the decrease of density and rigi-
dity towards large bodies like the sun and earth, all our old
analogies with the traditional elastic solid have to be care-
fully revised, and adapted to the new theory with extreme
caution.

After very careful consideration of these problems, in
the light of the data contained in the first, second, third
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papers on the New Theory of the Aether, I believe we may
safely conclude that, notwithstanding the very extraordinary
physical properties of the aether, in a certain sense it behaves
as an elastic solid for quick acting forces: namely, that the
aether will faithfully transmit any kind of vibration com-
municated to it, whether it involve dilatation of volume or
mere change of form of any element dxdyds.

Unless we grant this extraordinary power of trans-
mission of wave motion, we can scarcely reconcile the
new theory, including the extreme velocity of the aetheron
7= 1ym V == 471239 kms per second, with the known
extreme elasticity of the aether, which is ¢ == 689321600000
times greater than that of air in proportion to its density.
It is evident that the aether is so different from air, in
respect to the high velocity of the aetheron, and the enor-
mous elasticity of the medium, that no movement of any
kind can occur in it without the most perfect response to
whatever waves arise.

In this sense I regard the acther as an infinite aeolo-
tropic elastic solid; but I do not assume that all the physical
restrictions of the ordinary elastic solid, which we can sub-
jegt to experiment in our laboratories, necessarily hold for
the aether. Some of these physical restrictions, which we
ascribe to molecular forces in solids, may be and probably
are missing in the aether, — owing to the absence of the
complex molecular structure known in solids, and to the
enormously greater rapidity of the motion of the aetherons.

Our conclusions therefore are as follows:

1. Any movement whatever given to the aether will
be faithfully transmitted, — owing to the extremely high
velocities of the aetherons, which gives the medium both
extremely great elasticity and high rigidity, — yet the medium
is not like ordinary solids, in that it has an extraordinarily
small density.

2. The aether, therefore, has most of the wave trans-
mitting properties of an elastic solid — will transmit any
kind of wave; yet always with one velocity only, a uniform
velocity ¥ = 3-10'° cins, which is somewhat different from
what is attributed to ordinary elastic solids, with two different
velocities, of the following kind, namely:

(C) A compressional wave in an extended mass,
say of steel, depending on both the compressibility Z and
the rigidity »:

V.= 1/(&+*%/3m) = 655000 cms per second

12 (108)

7 == 0.95°10 k= 1.84 102,
(T} A purely transverse distortional wave (with-

out change of volume) expressed by the simpler formula:
Vi == V(n|o) = 348000 cms per second (ro9)

in the case of an extended mass of steel, o = density == 7.83.
Thus for steel the former value is nearly twice the
latter, which renders the theory doubtful, in view of the
non-separation of the earthquake waves of these two classes.
3. In certain respects the aether is more like a gas

than a solid, and up to this time it is probable that ex-
periment has not fully established the two velocities theoreti-
cally predicted for an elastic solid by Poisson, Cawchy and
other mathematicians. In his Tides and Kindred Phenomena
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of the Solar System, 1899, pp. 261~2, Sir George Darwin
"remarks in regard to earthquake phenomena: .

»The vibrations which are transmitted through the
earth are of two kinds. The first sort of wave is one in
which the matter through which it passes is alternately com-
pressed and dilated; it may be described as a wave of
compression. In the second sort the shape of each minute
portion of the solid is distorted, but the volume remains
unchanged, and it may be called a wave of distortion. These
two vibrations travel at different speeds, and the compressional
wave outpaces the distortional one. Now the first sign of a
distant earthquake is that the instrumental record shows a
succession of minute tremors. These are supposed to be due
to waves of compression, and they are succeeded by a much
more strongly marked disturbance, which, however, lasts only
a short time. This second phase in the instrumental record
is supposed to be due to the wave of distortion.«

»If the natures of these two disturbances are correctly
ascribed to their respective sources, it is certain that the
matter through which the vibrations have passed was solid.
For, although a compressional wave might be transmitted
without much loss of intensity, from a solid to a liquid and
back again to a solid, as would have to be the case if the
interior of the earth i1s molten, yet this cannot be true of
the distortional wave. It'has been supposed that vibrations
due to earthquakes pass in a straight line through the earth;
if then this could be proved, we should know with certainty
that the earth is solid, at least far down towards its center.«

This reasoning implies that this eminent natural philo-
sopher was in doubt as to the validity of the two-velocity
theory, in practice, with actual masses like the earth.

In studying earthquake seismographic records and dis-
cussions I find the disturbance to rise very gradually and
die down equally gradually. Thus I have not been able to
verify the assumption of two distinct types of waves: we
merely find that at a great distance from the source of
disturbance the earthquake waves are spread out like a
spectrum. This spreading out might be due to varying
. resistance to waves of one type, but of different length,
as in optics.

On purely physical grounds it seems difficult to imagine
the distortional wave being actually separated from the com-
pressional wave. That actual nature would effect this ideal
separation seems very doubtful. And so far it is not sup-
ported by earthquake phenomena admitting of verification
by observation on the propagation of waves through our globe.

/=00 m=00 =00
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5. Accordingly, it appears that the actual propagation
of waves in solids deserves further study. Our premises so
frequently are false that the actual facts, in regard to solids
both homogeneous and heterogeneous, deserve more statistical
inquiry, in cases where a definite decision may be attained.
In his article on Light, Encycl. Brit.,, 9'"ed., § 19, P- 446,
the late Lord Rayleig/ says that in such bodies as jelly the
velocity of the longitudinal vibrations is a large multiple of
the velocity of the corresponding transverse vibrations. No
doubt there is some assumed evidence for such a statement,
besides the calculations above given, but as no authorities
for conclusive experiments of this type are known to me,
I think a result’ of such delicacy should be received with
great caution.

6. A few cases, however, even if true, are not enough
to establish general conclusions; and in view of the difficulty
of conceiving how the two classes of waves can be actually
separated in nature — one set of waves inevitably tending
to run into the other — the only safe course is to appeal
to a variety of experiments, under conditions which may lead
to an experimentum crucis.

Notwithstanding this uncertainty as to the true order
of nature -— the theory being not certainly verified by
experiment, — it seems best to examine briefly the chief
mathematical conditions imposed by the propagation of waves
in an elastic solid. In an elastic solid, the equation of Poisson

02D[0s2 = 22\ (r10)
1s satisfied by the dilatation and three components of rotation
as follows: = Oee/Ox—+08/0y—+ 2y /05 (111)

w, = 3 (0y/0y—05/08)  wy = */s(8er/0s—x/Oy)
oy = 1,(28/0x —0y/2c) (112)
o, 8, y being the displacements at any point p (v, y, ).

In the elastic solid solutions, the components of rotation

®;, Wy, wy are connected by the well known relation:

0w, [0x+ 0w, [0y +0ws /02 = o (113)
and only two of the three sets of solutions are independent.
Combining these with the solution for d, we have, in all,
three sets of independent solutions.

Take a rectangular volume of the elastic substance
x=o0,x=a, y=o, y=48, z=o0, 2=y, Then at
any time £ ==o0, @ == @,; and by ZFourier's theorem the
value of @y for any point within « 8 y may be expressed
by the following triple summations, which include all positive
integral values of /, m, n from o to oo:

@, —-2 Z ZA""" cos{lrrx/a) cos(mmy/B) cos(nmsfy)

/=0 m=0 n=o0
/=00 m=00 p=00

(r14)

+2 N\ ZB,,,,,. sin ( ln:x/a ) cos(mmy/B) cos(nmsfy)+---

/=0

(cf. Lord Rayleigh, Theory of Sound, 2°¢ ed.,

”t—O n=0

1896, p. 70).

The full set of eight coefficients, for all possible arrangements of sines and cosines, are given by the integral

expressions:

Aimn = (S/aﬂy).f.fj](bo cos (lnx/a)‘cos(m ny/B) cos(nmsly)-dx dy ds
Bimn = (8/aﬂy)fff®0 sin((/7rx/e) cos(mmy/B) cos(nmszly)- dx dy dz

(115)
(116}
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(S/aﬂy)fjjd)o cos(/wx/a)sin(mmy/B) cgs(mrz/y) ~dxdydz (
(8/aBy) YJIJ;(DO sin (¢ x/e) sin(mmy/B) cos(nmaly) dx dy dz (
(S/aﬁy)jj)jmo cos{{mmxfe) cos(mmy/B) sin(nmzly) - dxdyds {
Fimn == (S/aﬂy)jj'fa))sm ({rx/e)cos(mmy/B) sin{nms/y)-dx dy dz (
(8/(;,6'7)5)575(1)0 cos(lrex/e) sin(mry/B) sin(nrwzly)- dx dy ds {

(

8/aBy IIY(DO sin(/rwx/e) sin{mmy/B)sinlnmz/y)-dedyds.
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As @ is a scalar quantity, we may suppose the rate of increase at any time #== o, to be denoted by 9(,/¢s,
which may be expanded in series similar to that in (114), but with accented coefficients, 4'tmn, B'tmn, C'imn, etc.

Knowing the initial values of @ and 6®/0¢, we may at once write down the complete solution of {1 10), which is

easily seen to be: /2= 00 =00 31— 0O

__.2 2 ZCOS ({rx/et) cos(mmy/B) cos(nm

/=0 m=0 n=0

/=00 m=00 p=o00

2/7) (Aimn cOspt+ A'ima sin pt)
(r23)

+2 2 S’sm ({rrx/a) cos(mmy/B) cos(nmzly) (Bimn oS pt—+ Blimn sinpt) +

/=0 m=0 n==0

In order to satisfy (110) we must have:

P = a® (2 w4+ m?/ B2 +n[y?). (1 24)

We may now combine terms which have the same values of

/,m, n in (123), and thus we find that @ can be expressed
as a sum of terms of the form:

D = ﬁA’cos tdlnxfetmmy] B nms/y —€) (rzg)
b2 J

where the summation is to be extended to all values of =+/,
+m, &7, and the constants A and ¢ are of course different
for each set of values.

Put in this form, it is clear, as Feans remarks (Dynamical
Theory of Gases, 2" ed., p. 383, 1916), that the solution
represents sets of plane waves traveling in different directions.
But from (r24) it follows that all the waves are propagated
with the same velocity @, as in the luminiferous aether.

If the elastic solid has continuous character, its par-
ticles have dynamically all the degrees of freedom appro-
priate to the aether, which is an absolute continuum, the
finest molecular or atomic structure in the universe. A me-
dium so constituted has the capacity to transmit waves from
any direction. And in case the medium is the ultimate
medium underlying the physical universe, no energy can be
lost in the movement of the waves, which move incessantly
from one body to another, and in free space travel with the
velocity of light.

When the velocity of the waves is retarded, energy is
expended, and pressure’ developed by the retardation of the
wave front. Forces of a more intricate kind arise when refrac-
tion, dispersion, diffraction, etc., develop, as in the encounter
with particles or bodies in which the velocity is suddenly
changed, and the wave-field redistributed, so that the density
and local internal pressure of the aether is altered. But we
can only treat of this topic when we come to deal with
molecular forces, which heretofore have defied explanation,
‘owing to lack of a kinetic theory of the aether and the un-
developed state of the wave-theory.

Usually it is assumed that in an elastic solid both
compressional and distortional waves co-exist, though pro-

@
pagated with different speeds. The two equations of Frisson

thus become:

a = V(k+4/3ﬂ) az(D/al“’ == dlv‘lq)
for the compressional wave; (126)
a, = V(n/o) D2D[0r? = a, 72D re

for the distortional wave. .

With most solids the latter velocity @, is considerably
smaller than @, the velocity of the compressional wave. In
the numerical example of steel above cited, @, is nearly twice
as large as @, but it still is uncertain to what extent a real
separation of the two kinds of .waves takes place. In other
words, the two kinds of waves are distinct and should be
separated, in theory; but it is quite uncertain whether this
occurs in actual practice, owing to the limitations of freedom
of movement in such material bodies as we find in nature.
There is only one velocity of waves in the aether.

In the case of earthquake waves, there is no evidence
of separation of the two kinds of waves, — all the seis-
mographic records being explicable by the unequal velocities
incident to mere wave-length, and thus having different speeds
of propagation.

It is true that the earth's crust is a very complex
structure, and the movement incident to an earthquake in-
volves release of strain, and thus consists of a series of ad-
justments of the quasi-solid lava beneath faulted and mutually
crowding blocks of granite some 20 miles thick. Perhaps
‘we could not expect distinct separation in such a mass of
tremors, partly direct and partly reflected, by the faulted
blocks of the crust.

Yet if the two classes of waves actually separated in
practice, we ought to perceive two distinct shocks from earth
waves incident to explosions, as of powder magazines, masses
of T.N.T., and other high explosives, which are powerful
enough to be felt at a great distance, but do not involve
complex direct and reflex actions in the crust, as in the lava
adjustments due to earthquakes.

So far as I have been able to ascertain there is no
well established record of double waves from such explosions

29
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above ground; and thus the experimental evidence would seem
to point to a merging of the two classes of waves into one.

In the case of the aether it is certain that only one
class of waves is observed, which in free space travel with
uniform velocity, as in the case of sound in gases. Accor-
dingly the aether certainly behaves as a gas, yet its elasticity
is so great that waves of any kind may be transmitted, as
~in an elastic solid, but apparently the velocity is uniform,
whether the waves involve a rigidity, with sliding of one layer
over another, or compression, as in gases.

10. Geometrical Theory of the Transmission
of Light and other Physical Forces along Fermat's
dr = 551/1/-(1:: o.

(i) The problem of refraction in the minimum path.

Minimum Path,

For any path in space, with’radius of curvature g, and
curvature 1:9, we have for the length of the curved path s
and the curvature:

s=o9y 1/o = dy/ds . (r27)
whete y is the angle between the osculating tangent planes,
and ds is the elemert of the curve, and ¢ the radius of
curvature, for the osculating circle passing through three
consecutive points.
The curvature for any path is

1/o = V'[(d%x/ds*)?+(d%y/ds?)?+(d2s/ds2)?) (r28)
And the direction cosines of the radius of curvature
1= 0d%/ds? y, == od¥%/ds® yy = pd%/ds®. (129)

Now in refraction, the path must be consistent with
the principle of least time, and also conform to the principle
of least action. The principle of least time was recognized
by the Greek geometers at Alexandria, about 300 B.C., in
the constructions of Kuklid, (cf. Electrod. Wave-Theory of
Phys. Forc., vol. 1, 1917, pp. 63-66), but the principle of
the minimum path, in simple refraction, was discovered by
Fermat (1601-1665), who found the actual path to conform
to the law: (130)

where the second member is made up of the sum of two
terms, each a product of the length of path, / by the velo-
city in that path, ».

In gradual refraction, such as that of light in the
atmosphere, the direction of the ray changes at every point,
chiefly because of the varying density. And thus 1f z be the
time of passage, we have the integral

T —II/U'dS.

T = ll Ul+[2 Vy

(131)

And Fermat's condition of the minimum path becomes:-

(51=5J‘I/u-ds=o (132)

To brmg out the geometrical conditions of the theory
of the minimum path we have to develop the subject some-
what as outlined in the author's work of 1g17.

By the method of the Calculus of Variations, equation

(131) yields o7 == jr/y-dds—jl/?/?‘dS(sU (r33)

If 2 be the wave-length, it is obvious that the velocity
would be defined by the functional relation

v _f()'i X, ), "') (1.34)

the form of the function f depending on the arrangement
of the parts of the medium.
Making use of this value of » in (133) we obtain

or = 'f(l/z/) (dx ddx+dy ddy—+ds dds)/ds
— [(1/v?) ds (dv/d2- 02+ dv/ds-0x+dv/dy-y+du/dz-02) (135)
or 0 = [(1/v)(dx/ds dx+dy/ds-dy~+dz/ds-02)]
— (515‘(1/2/2) dv/dA-ds — d‘xj(l/v?) dv/dx-ds

—6_;{(1/11‘*’) dv/dy-ds — dzj(r/u?) dv/dsds.  (136)
The last three integrals of (135), under Hamilton's
stationary condition, vanish, because the fixed terminal points
make Jx, dy, dz each equal to zero. The rest of the ex-
pression depends on the terminal points of the path, and on
the wave-length only.
These conditions therefore lead to four equations
0z/0x = (1/v)dx/ds  de/dy = (1/v) dy/ds
0t/0z = (1/v) dz/ds  0¢/0h = ——j(r/u'—’) do/d2-ds .
Now the tangent to the curved path ds is defined by
the three differential direction cosines, fulfilling the condition
(dx/ds)?*+(dy/ds)?+(dz/ds)2 = 1. {138)
And therefore if we square and add the first three equations
of (137) we shall obtain
' (07/0x)2+(0z/dy)?
(ii) Geometrical
characteristic function.
In 1823, when only cighteen years of age, Hamilton
obtained insight into his method, and graduaily introduced
the consideration of a characteristic function 4 defined by

the following differential equation for a single particle of
unit mass,

04 == [dwx/ds- Ox—+dy/ds- Oy ~+ds/dz- 03)
—(day/de+ Oy +dyo/d2- dlo+d7o/d/ dz0)+10H (140)

where A is the constant of the total energy A = T+,
If the moving particle be entirely free,

(137)

+(80/05)2 = /02, (139)

conditions fulfilled by  Hamilton's

the seven

variables in the right member of (r40) are independent of

one another;-and thus the characteristic function A4 fulfills
the following remarkable differential equations:

04/0x = dx/d¢ 04/0xy = —duy/dr
04[Oy = dy/ds 0d4[0yy = —dy/dr
0.4/05 = ds/ds 04/8sy = —ds,/ds (r41)
0AJ0H = ¢.
Therefore we have at once
(04/0x)2+(04/8y)2+(0.4/05)? =
== (dv/d#?+(dy/ds)?+(ds/ds)? == »® = 2(/7— ) (142)
(0.4/025)+(0.4/2y, )+ +(0.4/0z,)* =
== (dao/de)*+(dyo/d)* -+ (dso/d?)* = 0? = 2(H— ;) (143)

Now it is obvious that if physical forces be due to
wave-action, these forces also will conform to the remarkable
geometrical properties of Hamilton’s characteristic function,

and his analysis will be applicable alike to the propagation’

of light, electrodynamic action and universal ‘gravitation.
Since the characteristic function 4 satisfies the partial
differential equation:

'
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(04/02)*+(04/0y)*+ (04/02)* = v* = 2(H~ V) (144)
it follows that the partial differential coefficients with respect
to the coordinates represent the components of the velocity
in a motion possible under the forces whose potential is V.
And as V is the potential energy of the system, this result
is very remarkable; for it assimilates the propagation of
wave disturbances, such as light, and electrodynamic action,
to the action of universal gravitation, which also fulfills the
same condition.

By partial differentiation of (144) with respect to the
co-ordinates we have
0.A4/0x-0%4/0x2+04[0y 02402 Cy+084/07-02.4/0x0z =
= —0V/[0x = X = d%x/ds?* = (d/ds) (dx/d?)
6A/6x-8?A/8xby+8A/8y-B?A/ay?+bA/8g-8?A/ay6z o
= —0Vf)y = ¥ ==d%/ds = (d/ds)(dy/d)
0A[Cx-024/0x05+0.4/0y-024/0y 05+ 0.4/05- 024052 =
= —0V[0s = Z == d%/ds* = (d/d7) (dz/ds).
Also, differentiating in respect to #, we have
dx/dz-024/0x2+dy/ds- 024 /0x Oy —+dz/ds-024/0x 05 =

(14‘5)

== (d/dz) (0.4/0x)
m/df o /1/5x3y—+—d1'/dt 024[0y*+dz/ds-02.4/0y 0; =
(d/ar) (0.4/2y) (r46)
d;\f/dt-a{—'[/&v%—i—d}/dt 024/0y 0z+dz/ds- 024052 =
== (d/ds} (C4/02) .
On comparing equations (145) and (146), we find that
dx/dt == 04[0x  dy/dt == 04[Oy  ds/dt = 0.4/Cz (147)

satisfy simultaneously the two sets of equations.

If now we take «, 8 to be constants which may com-
bine with A to give the complete integral of (144), it follows
that the corresponding path and the time of its description
-are given by the equations: .

0400 == oy 0408 = B, 0A/OH = t+¢ (148)
where @, 8, ¢ are three additional arbitrary constants.

By complete differentiation of (148) with respect to #
through the three coordinates x, y, 2, we have at once:

024/0x0c - dx/ds +024/0y Oec - dy/ds—+

+0%4/070¢ - dz/d? = o
azA/axaﬂ'dx/dt+52A/5y3,8-dy/dt+

+024/0;08-ds/dt =
624/0x0 A - dx/d2+024/0y0H - dy/ds—+

+024/0z0/7-ds/dt = o,

Similar differentiation in respect to' «, 8, 4, respec-
tively, gives:

02400 0+ 0.A/0x+024/0cx By -0.4/0y+

' —+-82A/aa aZ'aA/az = o
024/08 0x-04[0x+0%4/08 0y-0.4/0y+-
+62A/a,85z°6,4/3z =0
024/0H 0x-0A[0x—+ 0240 H Dy-0.4/0y~+-
"+ 024[0H0z-04/07 = 1.

On comparing these two sets of equations, we find
dx/dt = 04/0x  dy/d? = 04/0y ds/d¢ = 04/0z.. (151)
And as the first members of these equations represent the
components of the velocity of the moving particle, it follows

(149)

(150)

5085

438

that the second members also represent the same thing. Ac-
cordingly the proposition stated after equation (144) above
is established, and obviously applies equally to light, electro-
dynamic action and gravitation.

(iii) The physical interpretation of Hamiltor's analysis
points to wave-action,

We have now to consider the physical interpretation

of Hamilton's analysis, and we note first that the celebrated
function 4 was invented by Hamilton for the treatment of

light. Yet if all physical forces depend on waves due to
vibrations in atoms, — with equatorlal planes lying hap-
hazard, or mutually inclined at various angles, — it will

apply a]so to magnetism, gravitation, and all kinds of electro-
dynamic action, Hamiltor's characteristic function A4 is there-
fore above all a wave-function, equally appllcable to all the
forces of the universe.

To interpret the above analysis, for the path of light,
through a physical medium like the luminiferous aether, we
resume the equation

(0¢/0x)*+(de/dy)?+ (de/d5)2 = 1/0?. (152)
And we see that if we can obtain a complete integral of
this equation, containing therefore two arbitrary constants
«, B, in the form

v="F(x,y 21 « 8) (153)
then the derived equations
Crf0e == 01 (x, 3, 5, 4, &, B))0a = o’
(154)

Cr[e8 = 0F (x, 3, 5,2, «, B)/0B = g
will represent two series of surfaces, whose intersections give
the path of the light in the medium. . ‘

As o' and 8’ are also arbitrary constants, the four
constants ¢, 8, «’, 8’ 'are necessary and sufficient for the
purpose of making the two intersecting surfaces each pass
through any two given points py(xy, 3o, %) and plx, 3, 2).

These Hamiltonian considerations, on simple refraction
in non-homogeneous media, show, as was originally found
by Zermat, that the actual path is that of least time,
as well as that of least action.

Now in the case of light the physical cause of such
action is known to be waves in the highly elastic aether,
and propagated with unequal velocities, in different media,
according to density, effective elasticity, and wave- length.
Increase of density, due to the presence of ponderable matter,
hinders the progress of the wave of given length, while in-
crease of elasticity under thinning out of the matter accelerates
it. And in general decreasing the wave-length increases the
retardation in velocity.

. Equiactional surfaces, orthogonal to the path of light,
are so distributed that the distances between them, for geo-
metrical reasons, are always inversely as the ve]ocity in the
corresponding path.

Now [it is clearly shown in the third paper on the
New Theory of the Aether (AN 5079), that electrodynamic
action is conveyed by waves, traveling in free aether with
the velocity of light, and therefore these waves will follow
the same general laws as the waves of light. Such a physical
cause necessarily takes the path of least time and of least
action, which is also that of least resistance to the distur-

29
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bances of the medium. And as the motions of the planets
conform to these principles, the question may properly be
asked whether any other cause than electrodynamic wave-
action could be imagined to produce the attractions of the
heavenly bodies.

This question has been dealt with at some length in
the second papeg (AN 5048), and from the additional dis-
cussion included in section 12 below it would seem to follow
incontestably that no cause other than wave-action could
explain the phenomena of universal gravitation.

1I. The New Wave-Theory of Light accounts
for all Known Optical Phenomena — Refraction,
Dispersion, Anomalous Dispersion, Diffraction,
Interference, and the Aberration of Light from the
Fixed Stars.

(i) The problem of refraction. ,

It now remains to survey briefly the leading optical
phenomena, to see if the new wave-theory of light will

explain the observed phenomena as well or better than the |

old wave-theory, which assumes vibrations entirely normal
to the direction of the ray, as in the motion of a stretched
cord, but does not assume vibrations flat in the planes of
the equators of the atoms.

And, first, the phenomenon of simple refraction presents

no difficulty. For the bending of the light always is due |

to the unequal resistance offered to the two sides of the
wave front,
back in
rapidly,
towards

its advance and the other thercfore propagated more
and thus turning the direction of the ray of light
the denser medium. This reasoning holds for re-
fraction in water, a prism of glass, or such a slightly hetero-
geneous medium as the earth’s atmosphere, where the air
is nearly homogeneous for small distances, yet in the larger
problems of the globe arranged in concentric layers, with
increased density and refractive power towards the earth’s
surface. )

On the old wave-theory of light this explanation has
always been considered satisfactory; and on the new wave-
theory it is equally valid, because we consider a beam of
light to be made up of an infinite number of independent
waves from the separate vibrating atoms. And as each wave
is transmitted independently of the rest by the superfine

medium of the aether, — just as on a telephone or tele-
graph wire large numbers of independent messages may be
sent at the same instant — it follows that in transmitting

the infinitely complex waves of common light, each atomic
wave will be refracted exactly as if the others did not exist,
and the integral effect after traversing a distance ds will be
that all the waves will be refracted in the same- direction,
owing to the greater resistance on the same side of their
common wave front.

Accordingly, the explanation of refraction remains un-
changed, while that for dispersion is improved, as shown
below.

(i) The phenomena of dispersion, including anomalous
dispersion.

In ordinary refraction, as we have seen, all the rays
depending on the waves emitted by the individual atoms,
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are bent in the same direction; and thus it is evident that
if waves be of unequal length, they will encounter unequal
resistance, —— the shorter waves, owing to their more rapid
oscillation, being relatively more resisted than the longer
ones. The result of this unequal resistance is that the waves
are dispersed, as in the spectrum, the longer waves being
least refracted, while the shorter waves, in normal dispersion,
suffer maximum refraction, thereby producing the spectrum
effect of dispersion, as in a grating.

Now however, many separate waves enter a refracting
medium, the refractive action on each vibration occurs as
if the other vibrations did not exist: thus we have not merely
refraction but also dispersion. In fact dispersion, depending
on difference of wave length, seems to imply that the sepa-
rate atoms, or same atoms, are emitting not only their own
distinct waves, but in most cases each atom gives quite a
variety of these waves, as we see by comparing the table
of wave-lengths for the different elements, as sodium, calcium,
hydrogen, iron, titanium, etc.

The observed phenomenon of dispersion is therefore
favorable to the new wave-theory; for we realize from the
known phenomena of the spectral lines that each atom has
its own several periods of vibration; and thus dispersion,
or unequal refraction depending on wave length, ought to
occur.

As for anomalous dispersion the problem is more

: complex, because the substances giving this phenomenon ex-
the one which is more resisted heing held |

hibit extremely variable effects. But as each atom of a given
substance emits its own characteristic waves, there is no reason
why the effect of a given refractive medium should atfect
atoms of the different substances in the same way. The
proportion of energy absorbed changes with each substance,
and the resistance to each color is a function of the wave-
length, but not the same for all wave-lengths, owing to the
variable molecular reaction on the passing light waves.

Accordingly just as refraction depends on the wave-
length, for homogeneous waves of one color, so also anomalous
dispersion must depend on different resistances for different
colors or wave-lengths, — due either to the absorptive effects
of the substance, by which different wave lengths are un-
equally affected, with the thinning out of particular wave-
lengths, or to the increased resistance of the substance to certain
waves, thus causing them to crowd over into an adjacent
part of the spectrum.

In the well known case of fuchsine, with the abnormal
deviation of the violet rays, by which this color is less deviated
than the longer red rays, we may suppose the fuchsine to
have an inherent attraction for the violet rays great enough
to offset its shorter wave length as compared to the red.

- Kundf's careful observations on anomalous dispersion
showed that it was common in bodies having surface color
— or a different shade by reflected light from that given
by transmitted light. Now since in reflection we perceive
the colors which are not absorbed, it follows that bodies
presenting surface color, different from that shown by light
transmitted through them, must absorb the colors which they
do not transmit. And therefore in transmission the spectrum
is deficient, — certain waves being absorbed or taken up by
the vibrating molecules, — so as to make possible the ob-
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served deviation of the remaining waves from their arrange-
ment in the normal spectrum shown by a grating. -

It would appear from these considerations that ‘the
phenomenon of anomalous dispersion is highly favorable to
the wave-theory. Unless all molecules emitted and absorbed
waves appropriate to their own molecular structure, according
to Airchhof’s law, it does not seem possible to account for
the actual results of observation. The theory that each mole-
cule or atom vibrates in its own period, so as to absorb cer-
tain waves in transmission, but reflect others from the surface
of a body so constituted, seems to harmonize all known facts
in a simple way. :

(iii) The problem of diffraction, interference, stellar
aberration. '

The phenomenon of diffraction consists in the bending

by which light is spread around and gathered into fringes
which become distinct. The wave-theory accounts for the
phenomenon, under the hypothesis that the waves are very
short, which is fully verified by actual measurements. In
fact for a given width of slit, different colored light gives
an appreciable change in the position of the fringes, depending
on the length of the waves in the light used: which obviously
confirms the wave-theory, not only as herctofore taught, but
also as now modified to take account of waves flat in the
planes of the equators of the atoms. The theory of the waves
from the individual atoms therefore does not add to the
difficulty of the problem of diffraction in any way.

In the matter of interference, the conclusion is similar,
as we have already found in section 8 above. This is natural,
since the waves from each atom are by hypothesis independent
of those from the other atoms; and whatever the positions
of the equators, each wave is transmitted by the aether in-
dependently of the waves from the other atoms. Inter-
ference thus takes place in the modified theory just as in
the older theory, except for the detailed changes already
described. . .

In AN 5048, p. 183, we have given a new and simple
explanation of the problem of stellar aberration. It is so
very direct and simple as to be remarkable. In view of the
difficulty felt since Bradley's discovery in 1727, which has
been increased rather than decreased by the investigations
of the last half century, it is surprising that this simple
analysis of the problem of stellar aberration has not been
developed before. It presents no difficulty from the old or
the new point of view of the wave-theory, but rests wholly on
the motion of the earth relatively to the independent motion
of the rays of the star, in the moving wave-field carried along
with the earth in its orbital motion about the sun.

All that we need consider is the independent motion
of the rays of light relatively to the moving earth. We there-
fore give the parallel rays of light a common backward motion
exactly equal and opposite to the forward motion of the earth
in its orbit. The diagonal of the parallelogram gives the
true motion of light relatively to the moving earth; and by
drawing this diagonal of the parallelogram we have a direct
and perfectly satisfactory explanation of the stellar aber-
ration.
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{iv) Stokes' investigation of 1845 harmonizes with the
new theory of stellar aberration.

In the Phil. Mag., 1845, 27.9, Sir Gabriel Stokes at-
tempted to examine the theory of aberration so as to find
out what distribution of velocity may be imparted to the
aether about the earth, without changing the path of the
rays of light in space. As the new kinetic theory of the
aether (AN 5044) was not yet developed, Stokes was unwilling
to accept the view that the earth could pass freely through
the aether whithout setting it in motion; and he tried to find
the conditions which would leave the observed aberration
unchanged.

If ¢ be the velocity of light in the stagnant aether, in
a direction whose direction-cosines relative to axes fixed in
space are /, m, n, and the components of the supposed

! velocity of the aether at any point are », v, w; then prior
of the waves through small apertures and at sharp corners, : y vp S P

to the development of the new kinetic theory, with = l/zrrV,
the velocity of the ray in space at the point in question
would be (155)

Zermat’s minimum path and AHamilton’s principle of
stationary time, as applied by Stokes, would lead to the geo-
metrical condition

or = 6jd3/(t+/n+mu+nw) = o0. {156)

To quantities of the first order in («, », w)/c, this is

V= ¢+lu+mv+nw.

" equivalent to

0r = d'jds/c—«(sj(x/ﬁ)-(z/ da+v dy—+wds) . (157)

"If the medium fulfills hydrodynamically irrotational
conditions, without whirling motion of the parts en mass,
so that d = x dv+vdy+wds = o is a perfect differential,
the second integral will depend on the values of «, », w
at the terminal points, and thus will be independent of the
motion in the aether about the earth. When this hydrodynamical
condition is satisfied, the path of the ray of light, between two
points whose velocities ave given, is determined wholly by the
values of these velocities and does not depend on the motion
of the aether between these points in the path.of the light.

If the terminal points be x,, 3y, %, and x;, 1, 3,
— and the intervening medium be filled with a uniform
stream of aether flowing with a uniform velocity whose com-
ponents are #, v, w, then we shall have

= O

Xy Yy 5y RISt

dr= le/f' ds— 65‘1/5‘-’- (edv+vdy+wds)=o {158)
o o o Xy Vo By
Xy )i 5y
= 65(33—6[1/(' {ae{oey — o)+ o( 3y —r0) + 2051 —20)}] . {159)
Ko Yo %o

But by hypothesis the second term of the right member
of this last equation is zero, and therefore we have
RPAR
dr = 65 ds = o,
%o Yo %o :
Accordingly the path s obviously is a straight line, in
the free aether, from (%, 39, 20) to (v, ¥, ), which are the
terminal points of the path. Siokes found that the differenti-
ally irrotational condition would be fulfilled if the aether
behaves like a perfect fluid for the slow motion of material
bodies through it.

(160)
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Now in our new theory of the aether (AN 5044, 5048)
we have shown that the aether particles fulfill the law of
mean velocity 7 == 1,z ) == 471239 kms/sec.

Accordingly, the earth’s motion is only 1: 15708 part
of the mean velocity of the particles. And since the velocity
of the &arth is very small and nearly uniform, owing to the
circularity of the orbit, it follows that our planet experiences
no secular resistance from the aether.

Moreover, the earth carries its aether wave-field with

it, all arranged in perfect kinetic equilibrium, with law of
density and wave amplitude '
A= ilr (161)
extending away from it indefinitely. Thus a ray of light from
a fixed star enters the earth’s aether wave-field as if this
medium were absolutely stagnant. And under the relative
motion of the rays of light and the moving earth, the stellar
aberration discovered by ZBradley, 1727, really takes place,
just as in the emission theory of light.

For the ray of light from the star pursues a strajight
line in the earth’s wave-field, and the identical component
of the earth’s motion forward, but directed backward, may
‘be transferred to the moving rays of light before they reach
our globe. Thus, relatively to the moving earth, the rays of
light really come from the direction in which the stars appear,
and ds is a straight line, ‘

This explanation of stellar aberration is therefore geo-
metrically rigorous and perfectly satisfactory. And since in
the new wave-theory of light, no change is made in a ray
of light as respects velocity and direction, but only as regards

g = yr

the internal tilting of the planes of the vibrations from the !

individual atoms, we perceive that the explanation of aber-
ration leaves nothing to be desired.

Accordingly it follows that in respect to aberration
not the smallest difficulty is encountered in the confirmation
- of the new wave-theory of light. Such entire agreement, in
such diversified optical phenomena, can have no other mea-
ning than that the new wave-theory of light accords with
the order of nature. '

Other phenomena examined under the new wave-
theory of light.

In addition to the above general phenomena there are
many special phenomena which might be used to investigate
the nature of light. With this object in view I have looked
into a variety of observed data to ascertain if any contra-
diction of the new wave-theory could be established, or even
rendered probable. No such result could be brought out,
though I have gone over the principal phenomena in optics
and electro-optics.

1. Polarization in crystals, which presents complex and
intricate interference phenomena, and would be likely to
offer a contradiction if any existed in nature.

2. Brewster's law, n = tg g, where n is the index of
refraction, and ¢ the angle of polarization by reflection. The
partial failure of this law discovered by Famin and others,
when ¢ differs from 55°35’ 30”, seems to point to the new
theory rather than the old. It appears that the outstanding
residuary phenomena, not in conformity with this law, but
yvielding maximum polarizing effect when 7 = tgp, is not
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easily explained on the old conceptions of waves wholly
transverse to the direction of propagation.

3. The external conical refraction mathematically pre-
dicted by Sir W. R. Hamilton about 1832, and soon after-
wards experimentally verified by Zloyd for aragonite was
found to be definite and decisive. Yet in examining the
cusp-ray refraction Ligyd found that the »boundaries were
no longer rectilinear, but swelled out in the form of an oval
curve¢« — showing a very gradual diffusion, due to appre-
ciable scattering of light (cf. Zloyd’s Miscellaneous Papers
Connected with Physical Science, London, 1877, p. 14,
figures i and k).

4. Nearly all the very exact measurements on polarized
light by Lord Rayleigh, Drude, Famin, and others bring out
residuary phenomena which show a sensible departure from
the classic undulatory theory (cf. Glazebrook, Physical Optics,
London, 1914, pp. 3535-387). -

5. In the domain of electro-optics, the Ke77 phenomenon
directly points to the wave-theory, including the rotation of
the plane of polarization by magnetism; and all this is even
more consistent with the new wave-theory than with the old.
If the poles of an electro-magnet are polished, and plane
polarized light is reflected therefrom, it is found that when
no current passes the plane of polarization is not rotated.
If then the current flows in one direction, there is a cor-
responding rotation of the plane of polarization; and the
moment the current flows in the opposite direction, and thus

| changes the pole to opposite polarity, the plane of polari-

zation is rotated in the opposite direction. This is very
definite proof of the wave-theory, both for optics and mag-
netism, for the Kerr and Zeeman phenomena.

6. The production of elliptically polarized light by
letting a polarized beam fall upon a transparent insulator,
such as glass, liquids or gases, under strong electric stress,
— the region being filled by electric waves rotating in definite
direction, as in a magnetic field — was first discovered by
Kerr, and confirmed by Becquerel, Kundt, Rintgen, Quinche,
Lippich, Du Bois, and others. When the medium is connected
with the poles of an electric machine, the waves constituting
the discharge make it possible to produce double refraction,
as in a crystal, and in Zeeman's phenomena, where the spec-
tral lines are doubled. All these phenomena are found to
harmonize with the new wave-theory, quite as well as or
better than with the classic theory of Fresnel.

12. The Wave-Theory of Gravitation towards
a Single Body extended to the Case of Waves from
Two Equal Bodies by means of the Geometrical
Theory of Confocal Conics, in Conformity with the
Observed Motions of Planets and Comets under the
Newtonian Law,

(i) Why the aether remains heterogeneous and presses
towards a single body like the sun.

1. In our theory of the emission of light and heat
waves from the sun, (AN 5o044), we have shown that under
the spherical expansion of the wave surface in free space,
the amplitude of the waves follows the law

A=kr (162)
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and the force towards the centre due to the receding waves
is therefore as the square of the amplitude:

= A? — /é?/r?
which has the form of the law of gravitation observed in
nature. o

which certainly radiate from the sun with tremendous
energy, thus necessarily operates to make the aether
heterogeneous, according to the law ¢ = »r. There is no
doubt of this law holding for light and heat waves; and if
gravitational and magnetic waves exist, they too will follow
this same law. It appears that ,Magnetic Storms’ and ,Mag-
netic Tides’ are referable only to waves, as shown in my
work on Physical Forces, 1917; and aside from the con-
nection of electrodynamics with gravitation previously shown
to exist, it is fair to ask the broad question :

What is the probability that the force f = 4% — At

would give an appropriate wave amplitude 4 = %/, unless
gravitational waves also exist? No such coincidence could
occur by mere chance! In fact the chances against such a
coincidence occurring for all the atoms of a body in the
potential

P [ Sl 204 (=) = 201 adadyds (164)
is at least infinity of the third order (o03) to 1.

Moreover, since electrodynamic action certainly is due
to waves, and these exert a mechanical action like magnetism
and gravitation, what is the chance that there is a sudden
break in the continuity of natural forces at the boundary
which is assumed to divide electrical action from universal
gravitation? Evidently the ‘probability is zero. For we find
by experiments on all the forces of nature that the doctrines
of the correlation of forces and the conservation of energy
are valid. Thus it is impossible to separate gravitation from
the other forces of nature, whose electrical character is so
well established.

3. The aether is thus thinned out by wave agitation,
towards all single masses; and as the aetherons have a velo.
city of 471239 kms per second, we perceive that the elas-
ticity, & == 689321600000 times greater than that of our
air in proportion to its density, would secure an instant
homogéneity of the aether everywhere but for the incessant
action of the receding waves. Accordingly the world is filled
with waves, constantly received and constantly emitted from
all atoms. The waves are in some way due to the motions
of the aetherons, which collide with and are reflected by the
reactions of the atoms.

4. Thus on the one hand, the receding waves would
give by reaction the central pressure of gravitation; and
on the other, the resulting heterogeneity of such an elastic
kinetic medium also implies the same central pressure. Owing
to the enormously rapid motions of the actherons they tend
powerfully to become equally distributed, and thus make the
medium homogeneous, but as they are reflected violently
from the atoms, — the collisions and reflections keeping up
the waves incessantly — the medium remains heterogeneous,
with the energy of the central inrush of the aetherons just
balancing the loss of energy by the waves receding away.
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5. In Drude’s Theory of Optics, 1917, pp. 179-180,

(English translation by Mann and Millikan), a very remar-

(163) | kable theorem is drawn from the rigorous formulation of

Huyghens' principle, as follows:
»When the origin lies within the surface S,

2. The mere existence of waves, as of light and heat, | 47 5 Zf{a[d‘(f-"/ V)[7)/0r - cos(n 7)

—(x/1)8s(e=+/V)fon}asS. [35] (165)

»This equation may be interpreted in the following

way: The light disturbance s, at any point /7 (which has

been taken as origin) may be looked upon as the super-

position of disturbances which are propagated with a velocity

V toward 7 from the surface elements d.S of any closed

surface which includes the point £y, For, since the elements

of the surface integral [35] are functions of the argument

t—r[V, any given phase of the elementary disturbance will
exist at [y, #/V seconds after it has existed at dS.«

6. It thus appears
that disturbances emana-
ting from £, towards d.§
in a conical solid angle
dw, may be ascribed to
disturbances from the
element dS of the same
conical solid angle dw),
from any closed surface
about /4. Just as the
integral of the outflowing
waves gives 47rs,, equa-
tion (165), so also the in-
tegral of the energy of
theinflowing disturbances
are equal, and oppositely
directed, which proves
the proposition.

Fig. 12. Diagram of the disturbance 5y
reflected from the surface .5
about the point 2,, and thus
maintained in perpetuity.

7. The integral of the vibrations in the separate sources
of the inflowing disturbances d.S has to be taken over the
whole closed surface, and thus the calculation is complicated,
involving a surface integral at the interval d# over the solid
angle @ == 477 about the point £. And in order to main-
tain the action the integral has to be renewed at infinitely
short intervals, dz, corresponding to surface thickness

dr
dr, dV = 4x 7""fdr. (166)
o
But as these renewed integrals have the same value
for the interval d#, we may take d/” constant,
dr
dV = 4n r‘-’fdr = (167)
[o]
owing to the uniformity of the propagation of light,

Accordingly, if the aetherons were once heterogeneous,
in spacial distribution, they would always rush inward, and
perhaps generate waves even if they did not already exist.
But once existing, and emitted as light, heat or other like
radiation, the heterogeneous density of the actherons will
always exist. Hence the wave-field about a body like the
sun depends on the kinetic exchange of the rapidly moving
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aetherons, under the steady outflow of waves, and is there-
fore eternal like matter itself,

8. This explains rigorously the central pressure of
gravitation. If waves exist, the density thereby becomes
0 = y7; and since the waves of light and heat fulfill this
law, the waves of magnetism and of gravitation also necessa-
rily conform to it.

The moon’s fluctuations show that gravitational waves
really exist, and are long enough to traverse the earth’s mass,
just as similar gravitational waves traverse the bodies of
Jupiter, Saturn, etc. It also follows that the aether is ex-
cessively fine grained,.otherwise these refractive phenomena
would not be distinctly realized, so as to become sensible
to observation in the effects they produce on the moon’s
motion.

9. The above mathematical theorem, relative to the

inward propagation of the disturbances from a closed con-

centric surface S, with velocity 7, equal to the velocity of
the waves traveling outward from the centre 7, will be ful-
filled by the energy flow conveyed through the aether by
the individual aetherons from any spherical surface .S == 4772
It is not necessary that the disturbances s, from the elements
of the enclosing surface d.S be waves; they may be stresses
due to the energy of the individual aetherons produced by
the heterogeneity incident to the receding waves, and thus
converging to the centre whence the waves come.

Accordingly, the above integral (1635) rigorously fulfills
the geometrical condition for a heterogeneous aether: it is
kept to the law of density ¢ == »# by the receding waves,
and the aetherons always pressing inward, by virtue of
‘this very heterogeneity, and the enorious elasticity ¢ ==
689321600000 times greater than that of our air in pro-
portion to its density.

(i) Physical illustration of the effects of waves from |

the two foci of an ellipsoid, corresponding to a double star
with equal components.

The accompanying wave plate Tig. 13 (Guillemin, Ies
Phénoménes de la Physique, 1869, p. 182) represents a faint
system of confocal conics due to waves receding from two
equal centres, such as a double star of equal components:

(a) The confocal hyperbolas represent the redcting
pressures at the ellipsoidal boundary, if reflection were to
take place there, or the inwardly directed stresses fulfilling
the above equation for 47ts,, under Huyghens' principle for
this more complex system of two bodies, instead of the one
central mass already considered.

(b) Each wave from any centre as it reaches the hy-
pothetical ellipsoidal boundary is met there by a wave from
the other centre; and in reflection the reaction from the
assumed bounding surface is in the direction of the hyper-
bolas, as shown in the figure. The reflection is perpendicular
to the surface of the bounding ellipsoid; and, whether re-
flected or not, the stresses are along the -hyperbolas shown.

(c) If one of the bodies be nearly insensible in mass,
it is obvious that the other will emit practically all the waves,
and the reaction or reflection would be central, as in the
case of a spherical body like the sun. When there is a single
centre of waves, a comet may be made to move about it in
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a conic section, by giving it an initial velocity equivalent
to the integrated effect of the two bodies from infinity, (the
smaller being now removed from the simplified problem).
Accordingly if the influence from the other focus be cut off,
at the instant of starting, yet its integrated effect be included
in the initial velocity, we have the motion in conic sections
for a single body as laid down by Newton. There are in-
finite systems of hyperbolas, parabolas, ellipses, which may
be described, depending on the initial conditions, as more
fully set forth below. :

Fig. 13. The upper figure is a diagram of the waves pro-
pagated from two equal fock. As reflected from
the enclosing ellipsoidal surface, they produce
the confocal hyperbolas normal thereto. The
entire system of confocal conics is.made more

. distinet in the lower figure,

(d) These novel considerations throw a new light on
dynamical problems, and bring the laws of celestial mecha-
nics into harmony with the wave-theory. They are therefore
of deepest interest in the theories of the motions of bodies.
Every possible motion in a system of two bodies is ac-
counted for, by the effects of perfectly simple waves, and
the resulting stresses in the aether, towards central masses.
Celestial mechanics thus acquires a hydrodynamical basis,



449

the aether being always subjected to stresses, owing to the
waves receding from the stars and other bodies of the phy-
sical universe.

A very remarkable comparison may now be made be-
tween the waves from two foci reflected from an enclosing
ellipsoidal surface, and that above given for waves reflected
from a spherical surface enclosing a single centre.

r. We have seen that if the waves emanating from a
single centre be reflected from the enclosing spherical sur-
face S= 4n+%, we have the equation (165).

2. From this equation it follows that if we imagine a
wave -field established, in kinetic equilibrium, about a radi-
ating star, and suddenly enclose that star by a perfectly
reflecting surface, S = 4m+? the energy near the centre will
flow outward, till reflected at the enclosing boundary, while
that near the boundary will as steadily flow inward, to
restore the energy lost by the central spherical shells,

47rj)r2 dr.
: .
3. And as the velocity of propagation V is constant,
we have r+dr R—aR
am\ridr = 4njr2dr. - (168)
r . R

Accordingly, the loss of wave energy from the centre and its
- perfect restoration goes on without ceasing, and the motion
of the waves thus confined is eternal.

4. Now in the same way, let us imagine waves ema-
nating from two equal foci, as in the case of a double star
with equal components, and suppose both foci suddenly
enclosed by a perfectly reflecting, confocal, concentric, e]llp
soidal surface:

w*f(@*+2A) /(02 + D)+ Y (P +2) = 1. (169)

Then the waves from either focus will return to the
other in an interval of time df, corresponding to the distance
2a, traveled before and after reflection, in any plane section
of the ellipsoidal surface; and thus the wave-field about either
focus will be perpetual. And just as the wave-field reflected
for restoration is perpetual, so also the inward stress, from
the aether outside the surface, is equal to the radiant energy
constant'y reflected, and thus also eternal. This is the foun-
dation of celestial dynamics, resulting from the new theory
of the aether.

5. The inwardly directed system of confocal hyper-
bolas indicate the direction of the wave stresses sustained by
the ellipsoidal reflecting surface. And since if we remove
the surface, the waves will proceed into infinite space, we
recogmze that a wave- ﬁeld about the two radiating foci must
inward stress of the

exerts
tocal

ny pemo as.

6. This geomertrica. descrmpuon conveys 0 cur minds
a very clear dvnamical liustration of the behavior of the
aether about a system of two equal stars. The inward stress
1s no longer directed to each centre separately, but the total
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effects for the two centres are combined as shown by the
system of confocal hyperbolas The system of confocal conics
shown in the accompanying illustrations is thus of the highest
dynamical interest.

(ili} The wave-theory rigorously extended to a system
of two bodies, by means of the geometrical theory of con-
focal conics.

We have just investigated the physical theory of waves
propagated from the two foci of an ellipsoid, and shown
that very remarkable phenomena may thus arise. As the
theory thus outlined may have great dynamical importance,
it is necessary to examine the problem somewhat more criti-
cally from the point of view of geometrical rigor,

Perhaps it is not immediately obvious what all the
physical phenomena would be in a wave-field about two equal
stars. Yet there obviously is ample assurance that should
the wave-theory triumph for a pair of equal binary stars, it
would necessarily hold for triple and quadruple stars, and
sidereal systems of higher order such as we find in the
globular clusters. These splendid sidereal systems are so
crowded with stars in their inner spherical shells as to attain
a perfect blaze of starlight towards the centre, and thus the
glory of globular clusters, like M.13 in Hercules, w Cen-
tauri, and 47 Toucani, is unrivaled by any other objects in
the starry heavens.

Accordingly we recall briefly the geometry of confocal
conics, in the hope of illuminating the wave-fields in sidereal
systems of high order, so-much studied by the elder Herschcl.

The equation of a system of confocal conics in the

ay-plane is (@ +2)+ (82 +1) = 1. (170)
And for the more general system of confocal conics, in tri-
dimensional space, the corresponding equation is

&*(@®+A)+ (82 + 1)+ (2 +2) = 1 (169)
From the forms of these equations, we perceive that, what
applies to the plane of xy, will apply also to the system of
confocal conoids in xys. Thus for the sake of simplicity we
shall consider the system of confocal conics chiefly in the
plane xy, as sufficiently general for the requirements of our
present problem in tri-dimensional space.

If 4 is positive in the equation, the resulting curve
is an ellipse; but if J is negative the curve becomes an
hyperbola. The transition from the ellipse to the hyperbola
is explained as follows.

From the form of (170) we perceive that the principal
axes of the curve will increase as 1 increases, and their ratio
will tend more and more to equality as A increases. Accor-
dingly a circle of infinite radius, (@ == 6 = o), gives the
limiting form of the elliptical confocals.

On the other hand, when A is negative, the principal
axes will decrease as A increases; and the ratio

= (0*+2)/(a*+1) (171)
will also decrease as A4 increases. The ellipse thus becomes
flatter and flatter, until 4 is equal to — 4% when the minor
axis vanishes, 4°+4 = o; and the major axis is equal to
the distance between the foci. The curve thus narrows down
to the line-ellipse joining the foci, which is a limiting form
of one of the confocals.
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the aether being always subjected to stresses, owing to the
waves receding from the stars and other bodies of the phy-
sical universe.

A very remarkable comparison may now be made be-
tween the waves from two foci reflected from an enclosing
ellipsoidal surface, and that above given for waves reflected
from a spherical surface enclosing a single centre.

1. We have seen that if the waves emanating from a
single centre be reflected from the enclosing spherical sur-
face S = 4n7%, we have the equation (16%).

2. From this equation it follows that if we imagine a
wave -field established, in kinetic equilibrium, about a radi-
ating star, and suddenly enclose that star by a perfectly
reflecting surface, S = 4777, the energy near the centre will
flow outward, till reflected at the enclosing boundary, while
that near the boundary will as steadily flow inward, to
restore the energy lost by the central spherlcal shells,

47rj1 2dr
3. And as the velocuy of propagation V is constant,
we have rdr R—AR
4nfr2dr == ‘;rrlfr2 dr. - (168)
R

Accordingly, the loss of wave energy from the centre and its
- perfect restoration goes on without ceasing, and the motion
of the waves thus confined is eternal.

4. Now in the same way, let us imagine waves ema-
nating from two equal foci, as in the case of a double star
with equal components, and suppose both foci suddenly
enclosed by a perfectly reflecting, confocal, concentric, e]hp
soidal surface:

(@ +2) 492/ (62+ D)+ 22/(2+D) = 1. (169)

Then the waves from either focus will return to the
other in an interval of time d/ corresponding to the distance
2a, traveled before and after reflection, in any plane section
of the ellipsoidal surface; and thus the wave-field about either
focus will be perpetual. And just as the wave-field reflected
for restoration is perpetual, so also the inward stress, from
the aether outside the surface, is equal to the radiant energy
constantiy reflected, and thus also eternal. This is the foun-
dation of celestial dynamics, resulting from the new theory
of the aether.

5. The inwardly directed system of confocal hyper-
bolas indicate the direction of the wave stresses sustained by
the ellipsoidal reflecting surface. And since if we remove
the surface, the waves will proceed into infinite space, we
recognize that a wave-field about the two radiating foci must
have its equilibrium sustained by the inward stress of the
external aether, which is therefore at every point normal to
the enclosing ellipsoidal surface. The external aether thus
exerts its stress along the tangents to the systems of con-
focal hyperbolas. .

6. This geometrical description conveys to our minds
a very clear dynamical illustration of the behavior of the
aether about a system of two equal stars. The inward stress
is no longer directed to each centre separately, but the total
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effects for the two centres are combined as shown by the
system of confocal hyperbolas The system of confocal conics
shown in the accompanying illustrations is thus of the highest
dynamical interest.

(iii) The wave-theory rigorously extended to a system
of two bodies, by means of the geometrical theory of con-
focal conics.

We have just investigated the physical theory of waves
propagated from the two foci of an ellipsoid, and shown
that very remarkable phenomena may thus arise. As the
theory thus outlined may have great dynamical importance,
it is necessary to examine the problem somewhat more criti-
cally from the point of view of geometrical rigor.

Perhaps it is not immediately obvious what all the
physical phenomena would be in a wave-field about two equal
stars. Yet there obviously is ample assurance that should
the wave-theory triumph for a pair of equal binary stars, it
would necessarily hold for triple and quadruple stars, and
sidereal systems of higher order such as we find in the
globular clusters. These splendid sidereal systems are so
crowded with stars in their inner spherical shells as to attain
a perfect blaze of starlight towards the centre, and thus the
glory of globular clusters, like M.13 in Heréules, @ Cen-
tauri, and 47 Toucani, is unrivaled by any other objects in
the starry heavens.

Accordingly we recall briefly the geometry of confocal
conics, in the hope of illuminating the wave-fields in sidereal
systems of high order, so-much studied by the elder Herschcl.

The equation of a system of confocal conics in the
wrplane is (gt )24 2) = (170)
And for the more general system of confocal conics, in tri-
dimensional space, the corresponding equation is :

&*f(@*+2) 452+ 1)+2*(*+2) = (169)
From the forms of these equations, we perceive that, what
applies to the plane of xy, will apply also to the system of
confocal conoids in xyz. Thus for the sake of simplicity we
shall consider the system of confocal conics chiefly in the
plane xy, as sufficiently general for the requirements of our
present problem in tri-dimensional space.

If A is positive in the equation, the resulting curve
is an ellipse; but if 2 is negative the curve becomes an
hyperbola. The transition from the ellipse to the hyperbola
is explained as follows.

From the form of (170) we perceive that the principal
axes of the curve will increase as 4 increases, and their ratio
will tend more and more to equality as 2 increases. Accor-
dingly a circle of infinite radius, (¢ = & = o), gives the
limiting form of the elliptical confocals.

On the other hand, when 4 is negative, the principal
axes will decrease as A increases; and the ratio

o = (62+1)/(a?+12) (171)
will also decrease as A increases. The ellipse thus becomes
flatter and flatter, until 4 is equal to — 4% when the minor
axis vanishes, 4+ = o; and the major axis is equal to
the distance between the foci. The curve thus narrows down
to the line-ellipse joining the foci, which is a limiting form
of one of the confocals.
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If the process continue till 4*+1 == —z, a small ne-
gative quantity, the transverse axis of the hyperbola is very
nearly equal to the distance between the foci; and the com-
plement of the line joining the foci is a limiting form of the
hyperbola. This limiting form of the hyperbola is the narrow
hyperbola shown in the figure at the right and left respec-
tively, When $°—+1 == —q is a larger negative quantity, the
hyperbola spreads its branches more widely and the vertex
becomes more distant from the foci on the horizontal axis,
as shown in the central part of the figure.  As 4 becomes
greater and greater, the .angle between the asymptotes of the
hyperbola increases, and in the. limit both branches coincide
with the axis of y.

Accordingly, we perceive that by making 4 approach
— 52, we narrow up the confocal ellipses into a straight line
joining the foci. And when the change continues still further,
b*+1 = —q, a very small negative quantity, the curve passes
from the straight line joining the* foci into another straight
line running from either focus to infinity, which give the
line-hyperbola, corresponding to the internal line-ellipse. The
point describing ‘the linc-eilipse thus ceases to move between
the foci, and returns to the other focus through infinity,
when the limiting elliptical confocal passes into the limiting
hyperbolic confocal. When A is negative and numerically
greater than &% the-curve is imaginary.

T.et us now return to the above figures, and imagine
two equal wave centres, as from a double star of equal com-
ponents, like y Virginis; then obviously we have two equal
wave-fields, one about each focus, with the double system
of confocal hyperbolas, as shown in the above figure. The

" entire solid angle about the centre of the confocal ellipses
L1 2 = ym.

But we may split the system of confocal hyperbolas
into two equal parts, on either side of the median plane,
each equal to 1/, = 27:.

It will be evident on reflection that all the hyperbolas
about the lower focus will curve about the right star f, just
as in the case of comets revolving about our sun: and all
about the upper focus will curve about the left star /”." And
these infinite systems of hyperbolas will include curves of all
possible eccentricity, with a perihelion distance less than a,
half the distance between the two foci.

The waves propagated from two equal stars by ge-
nerating a doubly infinite system of confocal conics — the
ellipses cutting the corresponding hyperbolas at right angles
— fix the paths of infinite varieties of comets about either
focus, as will be more fully discussed below.

{iv) Geometrical properties of confocal, conics.
_ (a) Two conics of a confocal system pass through any
given point — one an cllipse, the other an hyperbola. After

the above outline this is almost obvious, without further
discussion, for if the equation of the original conmic be

sa+yior =1 (172)
the equation of the confocal conic is
2 (a?+2)+y2(62+2) = 1.
‘And it is obvious that this curve will pass through
the given point (x'y’), if '
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(a2 2)+y2 (02 +2) = 1. (173)

To find the solution for this condition, we remember

that 4% = a?—a?¢?, and put '+ =g = at—atel+1,
and thus obtain from (173)

52 ,// ’f‘_}//z(’l]"-{'—ﬂ? (,‘.’) '—/l/'(?]’*—d? 6’2) — 0 ( )
“ s o9 92y 99 g 174
or g (& yt—atet) —at eyt = o. 4
This is a quadratic with two roots, both real, but of opposite
signs, and thus there are two conics, 4*+1 == —+y’ being .
the ellipse, and #*+4 = —4y’ being the corresponding
hyperbola. o

(b) One conic of a confocal system and only one will
touch a given straight line.

From the equations

lx+my—1 =0 & (@ +A)+p*/(p2+1) = 1 (175)
we find for tangency:
(@AY +(62+L)m* = 1 (176)

which is linear in 4, and yields one value of 4, correspon-
ding to one confocal conic, and only one, bounding the
given straight line. This might be tangent to the ellipse,
or to the hyperbola, but not to both at the same point, be-
cause the hyperbolas always are at right angles to the ellipses
at their intersections. .
By subtraction we have from the two equations
K2 at+y0r =1 e+ Ay + 2/ (62+2) =1
@t (@ D))+ 02 (62 + 1)) = o.
And as the condition of tangency is
@A)y lted) = 1 {178)
we see that (178) shows the rectangularity of the curves at
their intersections.

(r77)

xa'fat+y [0t =1

(v) Application of the theory of confocal conics to
the motions of. comets, as under the wave-theory of physical
forces.’ ' ‘

Referring to the figure given above for the waves from
two equal stars, we notice that the boundary there represented
is one of the confocal ellipses; others of greater oblateness
are shown ncarer the centre of the figure, but the approxi-
mations to the line-ellipses very near the centre are omitted,
for reasons of clearness. '

It will be found that the spherical” waves propagated
from these two centres give the confocal ellipses, and also
the confocal hyperbolas, as ciearly outlined in this figure.
The independent circles about the two foci are at distances
aty, aty, aty, ...ak.

At the boundary the waves from the two foci are re-
flected, with reaction in the direction of the perpendicular
to the surface. Hence we see that the normals at these points
of reflection give the confocal hyperbolas. Accordingly, if
waves were traveling with uniform velocity from' both foci,
and reflected at the confocal elliptical boundary, there would
thereby result stresses in the aecther directed along the con-
focal hyperbolas at the intersections of these two systems.
This result of the intersecting system of confocals is very
remarkable, since it will hold for every point of infinite
space, and thus for ellipses and hyperbolas of every ‘possible
form, mutually intersecting at right angles, as shown in the
figure.
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It was established by the researches of Prof. Strimgren,

of the Royal Observatory, Copenhagen, about 1910~11, that
all the comets heretofore observed describe ellipses about
“the sun in one focus. It had previously been supposed that
the orbits of certain comcts were hyperbolic, yet greater
refinement of research proved the elliptical character of
all these orbits; so that they return to our sun, and thus
are relics of our primordial solar nebula, as set forth in
my Researches on the Evolution of the Stellar Systems,
vol. II, 1g1o0.

If the comets had greater than the parabolic velocity
of movement relatively to our sun, » >4V (1 4m)- V'(2/7), the
paths would be hyperbolas; such orbits, however, are not
yet of record. It is obvious that we can now interpret the
physical significance of the system of confocal conics, in
conformity with ‘the observed laws of celestial mechanics,
and the ‘indications of the Wave-Theory of Physical Forces.

For example, if a comet with zero velocity were to
cross the boundary to enter the ficld about the two foci, in
the above wave-figure, the instantancous stresses to the foci,
on the line of the reflected waves, would cause the comet
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to pursue the indicated hyperbola, passing through the point |

{(x, ). Under slightly modified conditions this reasoning

!) Im Tagebuch steht € (= ASY 24) fur §, was offenbar eine Verwechslung ist.
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might be greatly extended, but we shall not enter upon:
it here.

In conclusion, it only remains.to add that in the fifth
and sixth papers 1 hope to throw some light on the obscure
physical cause underlying molecular and atomic forces. The
calculation of the wave-stresses at the boundary of a liquid
globule, such as a rain drop or a drop of dew, will lead
us to the cause of surface tension, constantly acting for the
generation of iminimal surfaces throughout nature.

It is not by chance that all liquid drops take the
spherical form! The geometer may discover therein a great
secret of the physical universe! A

If so, this advance will illuminate also the difficult .
problem of capillarity, which has already engaged the at-
tention of so many eminent geometers. Whence we hope
to attack the subject of cohesion and adhesion, and even
of explosive forces, which heretofore have appeared even
more bewildering.

Mre. W. .S, Zrankic has laid me under lasting obliga-
tions by facilitating the completion of this fourth paper.
And Mrs. See’s sympathetic interest in these researches has
lent a support which often proved so invaluable as to he
beyond all praise. :

Starlight on Loutre, Montgomery City, Mo., 1920 Sept. 6. 7. ¥ F See.
Der Verénderliche RS Virginis 142205. Von M. Esch, S.J.
Diesen Verinderlichen habe ich nur in den Jahren | ASV 1A BD Gr. Autoritiit
1900, 1902, 1918 und 1919 hiufiger beobachtet. Meine ! b Ir rito
Vergleichsterne waren: ’ ¢ 13 m 11.z24  HA gy
ASV  HA BD Gr.  Autoritit m.o 16 # 11.92  HA g7
c b +5°2889 6"Sz HA 57 d 22 g 1283 HA 57
B b +6°2878  7.28 HA 74 g 21 12.8
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V) c “+5°2880 8.13 HA 57 die Nummer im Atlas Stellarum Variabilium VI 5174, die
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¥4 8 ¢ +5°2883 ‘1o.13 HA 357 die BD-Grifle. Meine sidmtlichen Beobachtungen folgen hier:
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24T+ . 241+ - - L 241e-0-
5132.4 a15v46 1.3 9m73 | §5232.4 voldt 13"1 ‘l 5801.7 B6—7v1~2% L2—3 € 8706 .
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5166.5: b1ovz2g, voy L3 11.04- | 57358 Br11vza 8.34 | 5843.4 @ >>v >/ neblig 9.5
51734 L2v6mC ir41 | 5754.8 @owv C unbestindig 7.76 | 58524 a@a10v1-24 L2 9.86
- 51805 y2-3vs5m L3 C 11.3. 5758.7 B o v unbestindig 7.76 | 5868.4 b5vio{ L2 10.46
5185.4 Lswzm L3 11.73 | 57738 Bovw 7.76 | 5895.4 { >z, { o v Wolken 1.3
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5220.4 2o d unsicher i 12.8 5793.7 8 5 v 2 ¥ dunstig 802 | 7297.4 m3z—gv10 12.6

30*



