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Section 1: Counting and geo-
metry problems

The following 25 puzzles deal with
classic riddles about counting and
geometry.



Puzzle 1: Ants on a Triangle

Three ants are positioned on separate
corners of a triangle.

If each ant moves along an edge toward a
randomly chosen corner, what is the chance
that none of the ants collide?

How would the problem generalize if there
were n ants positioned on the vertices of a



regular n-gon, again each moving along an
edge to a random adjacent vertex?
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Answer to Puzzle 1: Ants on a
Triangle

In order that none of the ants collide, they
must all move in the same direction. That is,
all of the ants must move in either clockwise
or counter-clockwise towards a new corner.

This can be seen by inductive reasoning:
whichever orientation ant 1 picks, ant 2 must
pick the same orientation to avoid a colli-
sion, and then ant 3 must do the same thing
as well.



Therefore there are 2 different ways that the
ants can avoid running into each other.

As each ant can travel in to 2 different direc-

tions, there are 23 = 8 total possible ways the
ants can move.

The probability the ants do not collide is 2/8
= 25%.

Extension to general n-gon

An interesting extension is to ask what would
happen to 4 ants on the vertices of a
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quadrilateral? Or more generally, if there are
n ants on an n-gon?

The general problem can be solved by the
same logic.

Again, the ants can only avoid collision if
they all move in the same orientation--either
clockwise or counter-clockwise. So again
there are only 2 safe routes the ants as a
group can take.

The total number of routes the ants can take
is also easy to count. Each ant can choose

between 2 adjacent vertices, so there are 2n

possibilities ways the ants could choose to
travel.

The probability that none of the ants will col-

lide is 2/2n= 1/2n - 1

For example, on an 8-sided octagon, the
probability that none of the ants will collide
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is a mere 1/128 = 0.0078125, which is less
than one percent.

For larger polygons it will be rare that the
ants do not collide, but not impossible.
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Puzzle 2: Three brick
problem

This is a very simple problem that tests a bit
of your creative ability.

How can you measure the diagonal of a brick
without using any formula, if you have three
bricks and a ruler?



Answer to Puzzle 2: Three
brick problem

There is a remarkably easy way to find the
diagonal.

What you need to do is stack two bricks, one
on top of each other, and then place the third
brick next to the bottom brick.

The idea is you create an empty space in
which a fourth brick could be placed. Here is
a diagram to illustrate:



Now you can measure the length of the diag-
onal by measuring the length of the empty
space using a ruler.

No Pythagorean theorem or geometry for-
mulas required!
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Puzzle 3: World's best tortilla
problem

You start out with a round tortilla, as depic-
ted below.

Your job is to divide the tortilla into eight
equal pieces, using only cuts made in a
straight line.



What is the minimum number of cuts you
need to make?

(credit: problem is adapted from The
World’s Best Puzzles)
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Answer to Puzzle 3: World's
best tortilla problem

You only need one cut! The trick to this
problem is you can fold the tortilla three
times in half and then make one cut (fold
along the dotted lines, and then cut along the
dark line in the following diagram.



I came across this problem when I was mak-
ing homemade baked tortilla chips. Most in-
structional cooking videos show people inef-
ficiently making 4 cuts which I found some-
what annoying.
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Puzzle 4: Slicing up a pie

Alice and Bob are preparing for a holiday
party, and each has a pie to slice up into
pieces.

They decide to have a little contest to make
things fun. Each person is allowed to make 3
cuts of the pie with a knife, and whoever



ends up with more pieces is the winner. They
agree stacking is not allowed, but that “cen-
ter” pieces without the crust are permissible.

How many pieces can be made using 3 cuts?
What about 4 cuts, or more generally n cuts?
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Answer to Puzzle 4: Slicing a
pie

When you make one cut, you can create 2
halves. With two cuts, you can slice through
each half again, to make 4 pieces.

The third cut is a bit trickier. What you want
is to cross the previous cuts without going
through the intersection point. Every time
you intersect a previous cut you create an-
other section (piece) of the pie, as in the fol-
lowing diagram.



So with 3 cuts, you can make 7 pieces in all.

We can now generalize. The first cut makes
the pie into 2 pieces. But after that, making
the cut n will add on n new pieces to the pie.
Thus, we know that on cut n the total num-
ber of pieces can be calculated by the
formula:

f(n) = 2 + 2 + 3 + 4 + ... + n = 1 + (1 + 2 + 3 +
...) = 1 +n(n + 1)/2
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This sequence has a special name. The num-
ber of cuts you can make with n cuts is
known as lazy caterer's sequence.
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Puzzle 5: Measuring ball
bearings

This is a classic puzzle about weighing.

You are given a container that contains hun-
dreds of ball bearings, amassing to exactly 24
ounces.

You have a balance but no weights for the
scale.



You want to measure exactly 9 ounces. How
can you do it?
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Answer to Puzzle 5: Measur-
ing ball bearings

If you could count the number of ball bear-
ings, you could get a unit weight for 1 bearing
and proceed by counting. But the ball bear-
ings are too numerous, and you can figure it
out quicker by using several weighings.

Here is one way to do it in five steps.

1. Divide the balls into two equal piles
using the balance (12 ounces on each
side)

2. Remove the ball bearings from the
scale. Divide one of the 12 ounce piles
into two equal piles using the scale (6
ounces on each side)

3. Set aside one of the 6 ounce piles



4. Divide the other 6 ounce pile into two
piles (3 ounces on each side)

5. Combine a 3 ounce pile with a 6
ounce pile to get to 9 ounces
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Puzzle 6: Paying an employee
in gold

You have a solid gold bar, marked into 7
equal divisions as follows:

| – | – | – | – | – | – | – |

You need to pay an employee each day for
one week. He asks to be paid exactly 1 piece
of the gold bar per day.

The problem is you don't trust him enough
to prepay him, and he would prefer not to be
paid late.

If you can only make 2 cuts in the bar, can
you figure out a way to make the cuts so your
worker gets paid exactly one gold piece every
day?



Answer to Puzzle 6: Paying
an employee in gold

You can pay the employee if you cut the
pieces in the correct spots. If the gold bar is
labeled as follows:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Then you want to make the cuts between
pieces 1 and 2, and between pieces 4 and 5.
So now you have pieces:

|1| |2|3| |4|5|6|7|

Now you have a 1-block piece, a 2-block
piece, and a 4-block piece. Here is how you
can pay the employee one piece of gold for
each day during the week:

Day 1: Give him the 1-block piece



Day 2: Trade him the 2-block piece for
the 1-block piece

Day 3: Give him back the 1-block piece

Day 4: Trade him the 4-block piece for
the 1 and 2-block pieces

Day 5: Give him the 1-block piece

Day 6: Trade him the 2-block piece for
the 1-block piece

Day 7: Give him the 1-block piece back

As you can see, the worker will be paid 1
block each day.
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Puzzle 7: Leaving work
quickly

Alice and Bob were ready to leave the office
when their mean boss assigned them more
work.

The boss told them to do the following bor-
ing things before they could go home:

1. Manually copy pages from bound books
2. Audit numbers in a spreadsheet
3. Fax documents to another office

Each task takes 40 minutes to complete, and
only one person can work on a task at a time
(the office only has one copy machine, one
fax machine, and auditing cannot be done
simultaneously).

How quickly can they complete their work
and go home?



Answer to Puzzle 7: Leaving
work quickly

At first thought it seems like the tasks will re-
quire 80 minutes: in the first 40 minutes,
each does one task, and in the last 40
minutes someone finishes the last task.

But let us diagram the chores using
something called a Gantt chart which shows
what is being done in each interval of time:

You will notice in the second 40 minutes that
only one person is working while the other is
doing nothing. This chart should give us an
idea of how to work more efficiently: both

http://en.wikipedia.org/wiki/Gantt_chart


people need to be working simultaneously
the entire time.

So imagine they split up the tasks into 20
minute intervals, and divide the tasks as
follows:

Very curiously by splitting up one of the
tasks (in this case, faxing), they are able to
finish all of the work in 60 minutes!

In fact this really this should not be too big of
a surprise: there are 3 chores that take 40
minutes for a total of 120 minutes. With two
people working it should take no more than
60 minutes.
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This type of problem is based on an old math
puzzle about cooking three hamburgers on
two grills: see details on page 133 and 134 of
this pdf. I never liked this problem as much
because you can’t split up the task of grilling
a burger: if you start cooking something and
let it rest, it will keep cooking even if it is not
on the flame. Nevertheless, the mathematical
principle is useful for other problems.
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Puzzle 8: Science experiment

A chemistry teacher offers his class an exper-
iment for extra credit. To complete the lab,
students are to keep bacteria in a special
chamber for exactly 9 minutes.

The sadistic part is the teacher only gives the
students a 4-minute and a 7-minute hour-
glass with which to measure time. There are
no other time-measuring instruments, as
wristwatches and cell phones are
confiscated.

To complete the lab, the bacteria can be
stored in small intervals of time, but the total
time that it should be in the chamber must
be 9 minutes.

Extra credit will only be awarded to the stu-
dent or students that complete the lab first.



What is the shortest time the experiment can
be completed?

A) 9 minutes
B) 12 minutes
C) 18 minutes
D) 21 minutes
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Answer to Puzzle 8: Science
experiment

The multiple choice of answers is a bit of a
distractor. The experiment can be done in 9
minutes as the hourglasses can be used to
measure this amount of time--see chart
below.
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The practical issue is how quickly students
will realize the solution.
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Puzzle 9: Elevator
malfunctioning

An elevator in my office building of 65 floors
is malfunctioning.

Whenever someone wants to go up, the elev-
ator moves up by 8 floors if it can. If the elev-
ator cannot move up by 8 floors, it stays in
the same spot (if you are on floor 63 and
press up, the elevator stays on floor 63).

And whenever someone wants to go down,
the elevator moves down by 11 floors if it can.
If it cannot, then the elevator stays in the
same spot. (if you press down from floor 9,
the elevator stays on floor 9).

The elevator starts on floor 1. Is it possible to
reach every floor in the building?



How many times would you have to stop to
reach the 60th floor, if you started on floor 1?
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Answer to Puzzle 9: Elevator
malfunctioning

It is possible to reach every floor in the
building.

I used a spreadsheet to illustrate exactly how
this is possible.

On the table below, every floor can be
reached by a combination of moving up by 8
floors and moving down by 11 floors. (For
simplicity, we can imagine the elevator has
an “UP” button and a “DOWN” button).

The horizontal rows show an elevator mov-
ing up by 8 floors at a time, and the vertical
columns are when the elevator moves down
by 11 floors at a time.



You can see that every floor is attainable.

The harder part is to see why this actually
works.

The reason has to do with number theory.
We are essentially looking for integers solu-
tions to the following equation:

8x– 11y = floor number

These types of equations are known as linear
Diophantine equations. For a general equa-
tion, ax+by = c, solutions exist if and only if
c is a multiple of the greatest common di-
visor of a and b.
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In our case, 8 and 11 are relatively prime and
have a greatest common divisor of 1, thus
there are infinitely many solutions to the
equation. The tricky part is verifying that
every floor can be reached without going
above floor 65 or going below floor 1, which
is what the table above demonstrates.

How many times would you have to stop to
reach the 60th floor, if you started on floor 1?

I got the idea for this question when I no-
ticed floor 60 is the farthest away from floor
1 in the table.

I calculated the quickest route to get to floor
60 is to take 24 stops along the way: go
across the first row, then move down in a
step ladder fashion until you reach the bot-
tom row of the table, and then move across
the last row.
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The floor sequence is: 1, 9, 17, 25, 33, 41, 49,
57, 65, 54, 43, 32, 21, 10, 18, 7, 15, 4, 12, 20,
28, 36, 44, 52, and finally 60.

That’s a long way to ride to get to your
floor–that floor better hope someone fixes
the elevator quickly!

(Credit: this puzzle is adapted from here)
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Puzzle 10: Ants and honey

The shortest distance between two points on
a plane is a straight line. But finding the
shortest distance on other surfaces is a more
interesting problem.

Here is a puzzle that is harder than it sounds.

In a rectangular box, with length 30 inches
and height and width 12 inches, an ant is loc-
ated on the middle of one side 1 inch from
the bottom of the box.

There is a drop of honey at the opposite side
of the box, on the middle of one side, 1 inch
from the top.

Here is a picture that illustrates the position
of the ant and the honey.



Let's say the ant is hungry and wants food
quickly.

What is the shortest distance the ant would
need to crawl to get the honey?
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Answer to Puzzle 10: Ants
and honey

If the ant crawls 1 inch down, then 30 inches
across the bottom, then 11 inches up, it will
travel 42 inches. But this is not the shortest
distance.

The solution is found by unfolding the box
and then finding the shortest path between
the ant and the honey.

There are actually 4 ways to "flatten" the box
(shown here). But only one method corres-
ponds to the shortest distance as follows:

http://stochastix.wordpress.com/2007/04/05/the-spider-and-the-fly-solution/


The distance between the points can be
found using the Pythagorean theorem. For a
triangle with legs 32 and 24, the hypotenuse-
-and shortest distance--is 40 inches.
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Puzzle 11: Camel and bananas

This is a classic puzzle that I really enjoy.

You want to transport 3,000 bananas across
1,000 kilometers. You have a camel that can
carry 1,000 bananas at most. However, the
camel must eat 1 banana for each kilometer
that it walks.

What is the largest number of bananas that
can be transported?



Answer to Puzzle 11: Camel
and bananas

The camel cannot carry all the bananas as it
would eat them all in transport. Therefore,
the bananas must be transported in shifts.

With 3,000 bananas, the camel will need to
double back two times to carry the three dif-
ferent heaps of 1,000 bananas.

To carry the initial heap by 1 kilometer, the
camel will need to make 5 trips and eat 5 ba-
nanas as follows:

--Carry 1,000 bananas by 1 kilometer
(eats 1 banana)
--Return 1 kilometer to the beginning
(eats 1 banana)
--Carry the next 1,000 bananas by 1
kilometer (eats 1 banana)



--Return again 1 kilometer to the begin-
ning (eats 1 banana)
--Carry the remaining bananas by 1 kilo-
meter (eats 1 banana)

Notice that after moving 1 kilometer, the
camel has eaten 5 of the bananas.

This process can be repeated and the camel
will slowly transport and eat the bananas at
the rate of 5 bananas per kilometer.

But after 200 kilometers, something import-
ant happens. At this point, the camel will
have eaten 200 x 5 = 1,000 bananas, leaving
just 2,000 remaining.

Because the camel can carry 1,000 bananas
at a time, the camel will only need to double
back once. To carry the remaining heap by 1
kilometer, the camel will only need to eat 3
bananas as follows:
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--Carry 1,000 bananas by 1 kilometer
(eats 1 banana)
--Return 1 kilometer to the beginning
(eats 1 banana)
--Carry the remaining bananas by 1 kilo-
meter (eats 1 banana)

The second leg therefore requires just 3 ba-
nanas per kilometer.

How long will this be necessary? Notice that
after 333 1/3 kilometers, the camel has de-
voured another 1,000 bananas.

At this point, there are just 1,000 bananas
left: the camel can make the remaining jour-
ney without doubling back. This means the
camel can carry all the remaining 1,000 ba-
nanas and complete the trip.

How much of the trip remains? The camel
went 200 kilometers and then 333 1/3
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kilometers, so there are 466 2/3 kilometers
remaining.

Thus, the camel will devour 466 2/3 bananas
to complete the journey, meaning 533 1/3
bananas can survive and be transported.

Here is a visual representation of the
journey:

(credit: graphic inspired by this graphic)
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Puzzle 12: Coin tossing carni-
val game

In one carnival game, you are to toss a coin
on a table top marked with a grid of squares.
You win if the coin lands without touching
any lines–that is, the coin lands entirely in-
side one of the squares, as pictured below.



If the squares measure 1.5 inches per side,
and the coin has a diameter of 1 inch, what is
the chance you will win? Assume you can al-
ways get the coin to land somewhere on the
table.
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Extension: find a formula if the squares
measure S inches per side and the coin
measures D inches in diameter.
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Answer to Puzzle 12: Carni-
val coin tossing game

The correct answer for this game is 1/9.

Let us solve the general case to see why. For
the coin not to intersect any part of the grid,
it must be the case that the circle's center is
located sufficiently far enough away from the
grid lines. These are all winnable points.

We can find the area of the winnable points
and divide that by the total area of a square
from the grid to calculate the probability of
winning.

Here is a diagram that can help.



The winning points are the square with side
S – D. This is found because the circle's cen-
ter must be more than D/2 distance from all
sides of the edge of a gridline. Hence we see
the circle's center must lie in a square with
side S - 2 (D/2) = S – D.

The area of the square for winning points is

(S – D)2. The area of a square for a gridline is

S2
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The probability of winning is the ratio of

these areas, which is [(S-D)/S]2.

For a square of 1.5 inches, and a circle of dia-
meter 1 inch, we find the probability of win-

ning is ((0.5)/1.5)2 = 1/9
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Puzzle 13: Rope around Earth
puzzle

This is a fun problem that first appeared in a
1702 book written by the philosopher Willi-
am Whiston.

This problem is about two really, really long
ropes A and B.

Rope A is long enough that it could wrap
around the Earth’s equator and fit snugly,
like a belt (let’s say 25,000 miles).

Rope B is just a bit longer than rope A. Rope
B could wrap around the Earth equator from
1 foot off the ground.

How much longer is rope B than A?

(assume the earth is a perfect sphere)



Extension: let’s say that rope C can wrap
around an equatorial line for a sphere that’s
as big as the planet Jupiter (about 273,000
miles). Rope D is just a bit longer, and it can
do the same thing from 1 foot off the ground.

How much longer is rope D than C?
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Answer to Puzzle 13: Rope
around Earth puzzle

The surprising part is that both questions
have the same answer!

To see why, suppose that r is the radius of
the Earth. Then, according to the setup, the
larger rope B would have a radius of r + 1.



We can calculate how much longer rope B is
by subtracting the difference of the circum-
ferences of the two circles. The larger rope
has circumference 2 π (r+1) and the smaller
rope has one of 2 π r

2 π (r +1) – 2 π r = 2 π = about 6.28 feet

Therefore, rope B is longer by 6.28 feet.
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But notice the remarkable thing: the answer
does not depend on the radius of the circle!
This means we have solved the problem for
any size sphere (or one might say for every
planet or spherically shaped object).

Hence, for Jupiter, rope D is also longer than
C by about 6.28 feet.
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Puzzle 14: Dividing a rectan-
gular piece of land

A father is splitting up land among his two
sons in estate planning. How can he divide
the land fairly?

One approach is to split the land evenly. But
even this method can get complicated if we
add some realistic assumptions. This puzzle
illustrates why splitting land can be a mind-
boggling exercise.

Suppose your father owns a rectangular
piece of land, but the city has bought a small
rectangular patch of it for its public use.

You and your brother are to split up the land
equally using only a single straight line to di-
vide the area. How can this be done?



Trivia

As a bit of history, this puzzle is sometimes
used as an interview brain teaser or technical
question when testing job seekers on their
problem solving ability.

It is sometimes stated in the following terms:
how can you split in half a rectangular piece
of cake, with a small rectangular piece re-
moved, using a single cut from a knife?
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Answer to Puzzle 14: Dividing
a rectangular piece of land

The elegant mathematical solution requires a
small trick about geometry. The trick is that
any line passing through the center of a rect-
angle bisects its area.

(A line through the center of a rectangle
either creates two equal triangles--if it is a
diagonal--or it creates two equal trapezoids
or rectangles)

The original rectangular plot of land has in-
finitely many lines passing through the cen-
ter that bisect its area. But once you remove
a small rectangular plot, there is only one
line that bisects the area--namely, the line
that passes through the centers of both rect-
angles. This line bisects both the original plot
and the removed rectangular plot, and con-
sequently splits the land evenly.



Another creative way was thought up by one
of the Mind Your Decisions readers. Joe ex-
plained how he solved the puzzle on the spot.

I was asked this question during a recent job
interview. My way of coming up with a solu-
tion was to rephrase the original puzzle by
replacing rectangles with circles - i.e., a circle
within a circle. When looking at the puzzle in
this way, it's more intuitive to see a line con-
necting the two centers being the best an-
swer, and then you can extend the analogy to
the rectangles.
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Now that's definitely what I call out of the
box thinking.
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Puzzle 15: Dividing land
between four sons

This is one of my all-time favorite puzzles.
Give it an honest effort before reading the
answer.

A father dies and wants to divide his land
evenly amongst four sons. The plot of land
has the following unusual shape:



How can you divide the land into four equal
parts, using only straight lines?
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Answer to Puzzle 15: Dividing
land between four sons

I came across this puzzle when it was presen-
ted to gifted math students.

Several of the high school students then were
able to come up with the following solution.

I feel like this is the type of solution one
might come up with–it is symmetric and
somehow “makes sense.”



One of the students had shown a lot of cre-
ativity in his work. He came up with the
above solution, but he also submitted a
second answer that definitely took me by
surprise.

Here's the solution that he came up with:
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It is amazing to see how the shape can be di-
vided into four parts using scaled down ver-
sions of itself! Well done if you came up with
this answer on your own.

I had wondered what it would be like if the
process was repeated: that is, if you continue
to divide the subdivisions into 4 small ver-
sions of itself.
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One reader of Mind Your Decisions, V Paul
Smith took up the challenge and did a manu-
al tessellation. Here is what it looks like. It’s
absolutely beautiful.

(Visit this page for the full-scale version of
the tessellation: http://dl.dropbox.com/u/
3990649/Tesselation 01.jpg)
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Puzzle 16: Moat crossing
problem

A castle is surrounded by a rectangular moat
that measures 20 feet in width: see image
below.



You have two planks of 19 feet each, but no
way to nail them together.

How can you cross the moat if you start from
the outside of the moat and want to reach the
castle?

Extension: what’s the largest rectangular
moat you can cross from the outside with
two planks of length L?
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Answer to Puzzle 16: Moat
crossing problem

The answer to the puzzle

You can cross the moat by arranging one
plank along the corner of the moat, and put-
ting the other on top, as follows:



As you can check, the planks will cover a dis-
tance of 28.5 feet across the diagonal, which
measures just a tad less at 28.3 feet. Thus,
you have just enough plank to cross.

Using geometry, we can figure out the largest
moat that can be traversed with a plank of
length L.

We will solve for the longest width that cor-
responds to the planks in their optimal posi-
tion. The answer is: L/√2 + (L/2)/√2
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Puzzle 17: Mischievous child

At a dinner party, there are two large bowls
filled with juice. One bowl holds exactly 1
gallon of apple juice and another has 1 gallon
of fruit punch.

A mischievous child notices the bowls and
decides to have a little fun. The child fills up
a ladle of apple juice and mixes it into the
bowl with fruit punch. Not content to stop
here, he decides to do the reverse. He fills up
a ladle of the fruit punch/apple juice mixture
and returns it to the apple juice bowl.

The child would proceed further, but his
mother notices what he is doing and makes
him stop. The child apologizes to the hosts,
who decide to shrug off the matter as little
harm was done.



But an interesting question does arise about
the two mixtures of juice.

In the end, the two bowls ended up with
some of the other juice. The question is:
which bowl has more of the other juice? That
is, does the fruit punch bowl have more
apple juice or does the apple juice bowl have
more fruit punch?

Assume the ladle holds a volume of 1 cup and
the juices were mixed thoroughly when the
child transferred the juices.
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Answer to Puzzle 17: Mis-
chievous child

The hard way to solve this problem is doing
the math. You can calculate that both juice
bowls end up with an equal concentration of
the other juice, and thus the transferred
volumes must be equal.

The easier way is to think logically. Notice
that both bowls begin and end up with ex-
actly 1 gallon of liquid. This means that
whatever apple juice ended up in the fruit
punch bowl must have been replaced by the
same volume of fruit punch that went into
the apple juice bowl. Therefore, the two
volumes must be equal!

The problem is known as the wine/water
puzzle. If you'd like a more detailed solution,
I found a nice explanation here: wine/water
problem solution

http://www.donaldsauter.com/wine.htm
http://www.donaldsauter.com/wine.htm


Puzzle 18: Table seating order

A table seat choice can be the difference
between a boring, wasted night and a fun,
profitable one. I can recall two examples
where seat choice made a big difference.

The first was a student-faculty dinner at
Stanford where I had invited a math profess-
or. The etiquette was to accompany a pro-
fessor while getting food and walk to a table.
The natural instinct, therefore, was to sit dir-
ectly next to the invited professor. But this
was a bad choice, as it was difficult to make
eye contact and direct conversation. It also
led to awkward moments where students
spilled food and drinks on their professor.
Lesson learned: always sit across the table!

The second came in a friendly poker game.
After playing a few times, we quickly learned
the importance of seating order, particularly



when betting in no-limit Texas Hold’em. We
have since paid careful attention to rotate
seats for fairness.

The games of course led to a natural ques-
tion: exactly how many different betting or-
ders are possible? (that is, how many ways
can people sit around a table, if only their re-
lative position matters?)
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Answer to Puzzle 18: Table
seating order

There are a handful of ways to determine the
answer. Here are a few that I like.

Method 1: Converting linear permuta-
tions into circular permutations

The case of two people is trivial: there is only
one way.

How many ways can three people sit around
a table? One way is to count permutations.

The easiest type of permutation to count is a
“linear” list. Say the people around the table
are sitting as person A, then person B, and fi-
nally person C. We can represent this order
in a linear list as ABC.



Using this notation, we can count the num-
ber of possible lists. We simply note there
are:

3 possible choices for the first spot (A, B, or
C)
2 choices for the second
1 choice for the last spot

This means there are 3 x 2 x 1 = 6 = 3! ways
to write the list. Specifically the list can be
written as:

ABC
ACB
BAC
BCA
CAB
CBA

But this list is not our answer. At least some
of these permutations represent the same
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seating order on a circular table. We can see
this graphically:

The image above shows that the list orders
ABC and CAB are the same arrangement on
a circular table.

So we ask: what’s the relation between linear
permutations and the circular ones we wish
to count.
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The relationship can be illustrated as
follows:

Evidently, each circular permutation for a
three-person group can be written in 3
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different ways. This makes sense: for each
circular permutation, there are three differ-
ent choices for the first letter of the linear
permutation representation.

Thus, we can convert the number of circular
permutations into linear ones by multiplying
by 3. Or working in reverse, we can convert
the number of linear permutations into cir-
cular ones by dividing by 3.

Combing all of this, we can deduce there are
3! / 3 = 2 ways to seat three people on a
table. (The answers are ABC and ACB)

We can expand this logic to more people. We
first count the number of linear permuta-
tions and then convert to circular ones.

For four people, the number of linear per-
mutations can be counted. There will be 4
choices for the first spot, 3 choices for the
second, 2 choices for the third, and 1 choice
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for the last. Therefore there will be 4 x 3 x 2 x
1 = 4! linear permutations.

We can then convert this into the number of
circular permutations. As there are 4 people
in the group, there will be 4 ways that each
circular permutation can be written as a lin-
ear permutation–any of the four people can
be written first in the list. So now to convert
linear into circular we divide by 4 (again the
number of people in the group).

Thus there will be a total of 4! / 4 = 6 ways to
seat this group.

To generalize even further, we can see a pat-
tern for n people. We can write the linear
permutation in n! ways, but we have to di-
vide by n to convert the linear permutations
into circular ones.

In the end, the formula simplifies as:
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And viola, we have our answer.

Method 2: induction

An alternate way of solving this problem is
mathematical induction.

Listing out a few cases of two, three, and four
suggests the general formula (n– 1)! Now we
can prove it.

Consider a group of n– 1 people who are
about to get seating at a table in a restaurant.
Let’s say at the very last minute one extra
person comes. How many ways can the
group be seated?

By the induction hypothesis, we know there
are (n – 2)! ways for the initial group to sit.
Where can the additional person sit? For any
of these (n – 2)! arrangements, he can
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obviously sit between the first and second
person, or between the second and third, or
so on until the last position of being between
the n – 1 person and the first person.

This is a total of n – 1 spots he can sit for any
of those (n – 2)! arrangements. Therefore,
this group of n people has this many
arrangements:

And like mathemagic, induction proves the
formula.

Method 3: seat-changing permutations

A final way I like to visualize the answer is a
party-game type approach.

Consider for a moment that n people have
sat at a circular table. How many ways can
they switch seats and have at least one
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person sitting with different neighbors on
left and right sides? This is another way of
asking the number of circular permutations,
so the answer to this question will answer
our original question.

Some ways people switch will obviously not
change the seating order. If everyone moves
one seat to the right, then each person has
the same neighbors and so the seating ar-
rangement is the same.

Such rotations do not change the order of
seating.

And this demonstrates a principle: motion is
always relative to a reference point. To count
the number of distinct seat trades, we must
have a fixed reference point. Without loss of
generality, we can choose any one person to
be a reference point.
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With one person firmly seated, every unique
linear ordering of the remaining people
change seats will be a unique circular
permutation.

In other words, we want to know the number
of linear permutations for n - 1 people. The
answer is (n – 1)! and we’ve found the an-
swer again.
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Puzzle 19: Dart game

Alice and Bob play the following game with
their friend Charlie.

Charlie begins the game by secretly picking a
spot on the dartboard. The spot can be any-
where on the board, but once picked it does
not change.

Then Alice and Bob each get to throw one
dart at the board.

At this point, Charlie reveals the position he
initially picked. The winner of the game is
the person whose dart is closest to the spot
Charlie picked.

For example, if Charlie picked the spot
marked with an “x”, and Alice and Bob shot
as follows, then Alice would win the game:



Put yourself in the shoes of Alice or Bob.
What strategy is best for playing this game?
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Answer to Puzzle 19: Dart
game

The best strategy is fairly intuitive: Alice and
Bob should each shoot for the center of the
dartboard.

One way to think about this is probabilistic-
ally. Because Charlie is essentially picking a
random position anywhere on the board, the
best spot to pick would be the average posi-
tion, which is the center of the dartboard.

Another way to think about this is geometric-
ally. Suppose Alice hits the center of the
dartboard and Bob hits somewhere else. We
can ask: what is the set of all points that are
closer to Alice’s dart than to Bob’s?

The answer can be found by remembering a
fact from geometry. The set of all points that
are equidistant from Alice’ and Bob’s darts is



defined by the perpendicular bisector
between the two points (the line that goes
through the midpoint of the two points, is
perpendicular to the line connecting the
points).

The perpendicular bisector separates all the
points that are closer to the different darts.
All the points to one side of the perpendicu-
lar bisector must be closer to Alice’s dart,
and all the points on the other side are closer
to Bob’s.

If Alice hits the center, and Bob hits any-
where else, then the perpendicular bisector
will always be some chord of the circle not
going through the center. Geometrically,
there will be more points closer to Alice’s
dart than to Bob’s dart. Therefore Alice’s
dart "covers more ground" and she will have
a higher chance of winning the game.
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In the following diagram, all points to the left
of the perpendicular bisector are closer to
Alice’s dart, and that covers more than half
the board.

Locational games like this can prove useful
in military settings or business settings when
two competing parties need to position
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themselves closer to an unknown target
(consider two hostile nations, one trying to
capture and another trying to protect a ter-
rorist hiding out in an unknown location).

This dart game is also a two-dimensional
version of Hotelling’s game, in which two hot
dog vendors compete to locate closer to cus-
tomers on a beach. In that game too it is the
best strategy for each vendor to locate cent-
rally. I explained more details in this post
that shows why gas stations locate next to
each other.
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Puzzle 20: Train fly problem

This is another classic math puzzle.

Two trains that are 60 miles apart are
headed towards each other. Each train is
moving at 30 miles per hour.

A speedy fly can travel at 60 miles per hour
leaves from the front of one train and heads
towards the other train. When it gets to the
front of the other train, it instantly turns
back towards the original train. This contin-
ues until the two trains pass each other, at
which point the fly stops.

The question is, how far did the fly travel?



Answer to Puzzle 20: Train
fly problem

The story goes this puzzle was asked to poly-
math John von Neumann at a party. He
quickly gave the right answer and explained
he knew no trick, he just summed up the in-
finite series.

There is a really neat trick to solving this
puzzle that does not involve infinite series.

The shortcut is to think about the problem in
terms of speed and time. The distance the fly
travels can then be obtained by multiplying
those two quantities.

We know the fly travels at 60 miles per hour,
so we have it’s speed. Let’s figure out the
time.



The two trains are 60 miles apart, and they
are traveling towards each other at 30 miles
per hour each, to make for a combined speed
of 60 miles per hour. Therefore, the trains
will meet in 1 hour (both trains will have
traveled 30 miles to the center).

Since the fly was moving for 1 hour at 60
miles per hour, that means the fly must have
traveled 60 miles in all. Note this calculation
ignores the actual flight path of the fly, which
is precisely the trick.

Solving the problem using an infinite series
is much harder: here’s one derivation. I don’t
know anyone who could have done the infin-
ite series using mental math–heck, it’s hard
enough on paper. But von Neumann’s calcu-
lating abilities were so impressive that it was
actually plausible.
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Puzzle 21: Train station
pickup

Mr. Smith, a commuter, is picked up each
day at the train station at exactly 5 o'clock.
One day he arrived at the train station unan-
nounced at 4 o'clock and began to walk
home. Eventually he met the chauffeur driv-
ing to the station to get him. The chauffeur
drove him the rest of the way home, getting
him there 20 minutes earlier than usual.

On another day, Mr. Smith arrived at the
train station unexpectedly at 4:30, and again
began walking home. Again he met the
chauffeur and rode the rest of the way with
him. How much ahead of usual were they
this time?

(Assume constant speeds, and that no time is
lost turning the car around and picking up
Mr. Smith.)



Answer to Puzzle 21: Train
station pickup

The first time I solved the problem I wrote
out several equations and solved for
everything algebraically. When I figured out
the answer, I realized the puzzle can be
solved much easier!

When Mr. Smith arrived at the train station 1
hour early, and started walking home, he was
able to save 20 minutes of commute. This is
due to two reasons: the driver met him closer
to home (by 10 minutes), and the drive home
was shorter (by 10 minutes).

So if Mr. Smith arrives 30 minutes early, or
half of 1 hour, we can deduce he only tra-
verses half the distance as before. Thus, the
time savings are halved: he meets the driver
closer to home by 10/2 = 5 minutes, and he
drive home is shorter by 10/2 = 5 minutes.



Therefore, Mr. Smith arrives home 10
minutes ahead of schedule.

(credit: puzzle from this website)
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Puzzle 22: Random size
confetti

Professor X teaches a probability class. He
assigns a holiday-themed project to his
students.

Each student is to create a 500 rectangular-
shaped confetti pieces, with length and width
to be random numbers between 0 and 1
inches.

Alice goes home and gets started. She inter-
prets the assignment as follows. Alice gener-
ates two random numbers from the uniform
distribution, and then she uses the first num-
ber as the length and the second as the width
of the rectangle.

Bob interprets the assignment differently.
He instead generates one random number
from the uniform distribution, and he uses



that number for both the length and width,
meaning he creates squares of confetti.

Clearly Alice and Bob will cut out different
shapes of confetti. But how will the average
size of the confetti compare?

That is, will the average area of the shapes
that Alice and Bob cut out be the same? If
not, whose confetti will have a larger average
area?
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Answer to Puzzle 22: Ran-
dom confetti

Let X be a random variable with a uniform
distribution.

Bob takes one realization of X, so the area he

cuts out will be distributed as X2, and the

expected area is E(X2)

Alice instead takes two realization of X. The
area she cuts out will be E(X)*E(X), or

E2(X).

The difference between Bob's expected area
and Alice's is:

E(X2) - E2(X) = Var(X) >= 0



The difference between Bob's expected areas
and Alice's is equal to the variance of X,
which is always a non-negative number.
Notice this formula holds for random vari-
ables of other distributions too, like normal
distributions or discrete distributions.

In the case of the uniform distribution from
0 to 1, the variance is 1/12.

So Bob's areas will always be at least as large
or larger than Alice's. So Bob may need a
little bit more paper than Alice when cutting
his confetti.
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Puzzle 23: Hands on a clock

The long hand of a very accurate timepiece
points exactly at a full minute, while the
short hand is exactly two minutes away.
What times of day could it be?



Answer to Puzzle 23: Hands
on a clock

The trick is realizing there are limited times
that the hour hand lands exactly on one of
the minute markings. Since the hour hand
moves from one hour number marking to the
next (5 minute markings) in a span of 60
minutes, that means the hour hand is only
on minute markings every 12 minutes of the
hour, corresponding to the minute times 00,
12, 24, 36, and 48.

From here it is just an exercise in trial an er-
ror to figure out the right times. If the
minute hand is at 00, the hour has to be near
11, 12, or 1 to solve the puzzle. But in these
times the two hands are separated by either
5 or 0 markings.

For the minute hand at 12, the candidate
time would have the hour nearby at the



number 2. But at 2:12, the hour hand has
moved one marking, and the minute hand is
two markings past the number 2. The two
hands are separated by just one minute
marking.

We can proceed to figure out the minute
hand at 24 will work. If the minute hand is at
24, the candidate hour hand would be
nearby at 4. We can check 4:24 exactly
works: the hour hand is 2 markings past the
clock "4", and the minute hand is 4 markings
past the clock "4". So does the next candidate
of 7:36.

Finally, you can check that the minute hand
at 48 does not work.

So the two times are 4:24 and 7:36, either
am or pm.

129/488



Puzzle 24: String cutting
problem

An interviewer gives you a string that meas-
ures 4 meters in length. The string is to be
cut into two pieces. One piece is made into
the shape of a square, and the other into a
circle. (picture of this below)
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Your job is to make the total enclosed area as
large as possible.

The interviewer hands you a piece of paper
and a pencil so you can do the math (you
only get one chance to cut the string so you
want to be sure your first attempt is correct).

1. How should you cut the string to
maximize the area?

If you are able to figure out the answer, the
interviewer has a couple follow-up questions
to test your skills.

2. How should you cut the string if you
want to minimize the enclosed area?

3. Imagine the string is cut randomly.
What is the average value of the en-
closed area? (When you cut the string,
there is one piece to the left of the cut and
another to the right. Suppose the left piece is
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always made into a circle and the right into a
square)
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Answer to Puzzle 24: String
cutting problem

1. How should you cut the string to
maximize the area?

This is something of a trick question. For a
given length, the circle is the shape that en-
closes the largest area. So you want to make
the whole string be the circle. (This is known
as the isoperimetric inequality and it is not a
trivial thing to prove!)

As you must cut it into two pieces, you
should try to cut as close to one end as pos-
sible to make the rectangle small.

2. How should you cut the string if you
want to minimize the enclosed area?

This can be solved using calculus. If you let
one side of the string be called x for the circle

http://en.wikipedia.org/wiki/Isoperimetric_inequality


and the other side be called 4 - x, then you
can find a formula for the area of the two
shapes as follows:

Area =x2/(4 π) + (1 -x/4)2

The first term is the area of the circle, and
the second the square.

The formula is for a parabola.

Using calculus (skipping steps here) we can
find the minimum happens at (4 π)/(4 + π).

3. Imagine the string is cut randomly.
What is the average value of the en-
closed area?

As stated in step 2, the area function is de-
scribed by the equation:

f(x) =x2/(4 π) + (1 -x/4)2
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We can take the average value by calculating
an integral: you integrate the function from
0 to 4 (which gives the area under the curve)
and then you divide by the length of the in-
terval (4) to arrive at the average value:

Average value = 0.25 integral (f(x), x, 0,
4)

Using calculus this is computed as 0.758
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Puzzle 25: One mile South,
one mile East, one mile North

This is a very classic puzzle, a fitting end.

I first read about this in the fun puzzle book
How Would You Move Mount Fuji?

Years ago, Microsoft apparently used to ask
this puzzle as an interview question.

Here is the problem: how many points are
there on the earth where you could travel
one mile south, then one mile east, then one
mile north and end up in the same spot you
started?

http://www.amazon.com/gp/product/0316778494?ie=UTF8&tag=minyoudec-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0316778494


Answer to Puzzle 25: One
mile South, one mile East,
one mile North

This puzzle is much harder than it seems at
first.

The easy but wrong answer

The place that comes to mind is the North
Pole.

This is, in fact, one of the correct spots.

You can trace out the path on a globe. From
the north pole, you can move your finger
south one mile. From there, you will go east
one mile and move along a line of latitude
that is exactly one mile away from the north
pole. You finally travel one mile north, and
you will exactly end up in the north pole.

http://en.wikipedia.org/wiki/Circle_of_latitude


The route you travel will look like a triangle
or a piece of pie, as seen in this rough sketch
I made:
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This is one correct answer. But it is not the
only one.

The harder spots

The other spots on the earth all involve trav-
eling near the South Pole.

The trick to these solutions is that you end
up in the same spot after traveling one mile
east.

How can that be?

One way this is possible is if you are on a line
of latitude so close to the South Pole that the
entire circle of latitude is exactly one mile
around. We will label this circle C(1) for
convenience.

With this circle in mind, it is possible to fig-
ure out a solution.
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Let us begin the journey from a point exactly
one mile north of C(1). Let’s trace out the
path of going one mile south, one mile east,
and one mile north again.

To begin, we travel one mile south to point
on the circle C(1). Then, we travel east along
the circle C(1), and by its construction, we
end up exactly where we began. Now we
travel one mile north, and we reach the start-
ing point of the journey, exactly as we
wanted.

The trip will look something like this rough
sketch I made:
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This demonstrates there is a solution in-
volving a circle near the South Pole.

In fact, the circle C(1) is associated with a
family of solutions. Any point one mile north
of C(1) will be a possible solution. This
means the entire circle of latitude one mile
north of C(1) is a solution. This means there
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are an infinite number of solutions associ-
ated with the circle C(1)!

That alone seems remarkable. But what is
more interesting is that there are even more
solutions.

The circle C(1) was special because we tra-
versed it exactly once, and ended where we
started from, when we went one mile east.

There are other circles with the same prop-
erty. Consider the circle C(1/2), a similarly
defined circle of exactly 1/2 mile in circum-
ference. Notice that traveling one mile east
along this circle will also send us back to the
starting point. The only difference is that we
will have traversed the circle two times!

Thus we can construct solutions using the
circle C(1/2). We start one mile north from
C(1/2) and every point along this line of
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latitude is a solution. There is an infinite
number of solutions associated with the
circle C(1/2).

Naturally, we can extend this process to
more circles. Consider the circle C(1/3), sim-
ilarly defined with exactly 1/3 mile in cir-
cumference. It would be traversed three
times if we travel one mile east along it, and
we would end in the same place we started
from. This circle too will have an infinite set
of solutions–namely the line of latitude one
mile north of it.

To generalize, we can construct an infinite
number of such circles. We know the circles
C(1), C(1/2), C(1/3), C(1/4), … C(1/n), … will
be traversed exactly n times if we travel one
mile east along them. And there are corres-
ponding starting points on the lines of latit-
udes one mile north of each of these respect-
ive circles.
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In summary, there are an infinite number of
circles of latitudes, and each circle of latitude
contains an infinite number of starting
points.

The correct answer, therefore, is one point at
the North Pole, plus two infinite set of points
of circles near the South Pole.

145/488



Section 2: Probability
problems

Life is often said to be a game of chance. The
following 25 puzzles deal with probability.



Puzzle 1: Making a fair coin
toss

Alice and Bob play a game as follows.

Alice spins a coin on a table and waits for it
to land on one side.

If the result is heads, Alice wins $1 from Bob;
if tails, Alice pays $1 to Bob.

While the game sounds fair, Bob suspects the
coin may be biased to land on heads more.
The problem is he cannot prove it.

Being diplomatic, Bob does not accuse Alice
of trickery. Instead, Bob introduces a small
change in the rules to make the game fair to
both players.

What rule could Bob have come up with?



Answer to Puzzle 1: Making a
fair coin toss

Bob worries the coin may be biased to land
on heads more often than tails. The trick Bob
comes up with is a way to turn a biased coin
into having fair tosses.

The technique is referred to as the von Neu-
mann procedure, and it works as follows:

----

Step 1. Spin the coin twice.

Step 2. If the two results are different,
use the first spin (HT becomes “heads”,
and TH becomes “tails”).

Step 3. If the two results are the same
(HH or TT), then discard the trial and
go back to step one.



----

In other words, Bob has redefined the payout
rule to ensure the odds are fair to both
parties.

Why does the von Neumann procedure
works? The procedure takes advantage that
HT and TH are symmetrical outcomes and
will thus have equal probability.

To see this, suppose the outcome heads oc-
curs with probability 0.6 and tails with prob-
ability 0.4. Then we can directly calculate the
probability of the pairs as:

–HT occurs (0.6)(0.4) = 0.24
–TH occurs (0.6)(0.4) = 0.24

These events are equally likely, and hence
both players have an even chance of winning
the game.
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The von Neumann procedure takes advant-
age that each coin flip is an independent
event, and so both mixed pairs of tosses will
have equal chances.

Appendix: spinning vs tossing

Observant readers may have noticed the
game is about coin spinning rather than coin
tossing.

Why the distinction? It’s a small bit of trivia
that coin tossing is not easily biased:

“The law of conservation of angular mo-
mentum tells us that
once the coin is in the air, it spins at a
nearly constant rate
(slowing down very slightly due to air
resistance). At any rate
of spin, it spends half the time with
heads facing up and half the

150/488



time with heads facing down, so when it
lands, the two sides
are equally likely (with minor correc-
tions due to the nonzero
thickness of the edge of the coin)”

via Teacher’s Corner: You Can Load a
Die, But You Can’t Bias a Coin

The theory is only slightly modified in real-
life. In practice, there is still a small bias to-
wards one side of a coin.

I will refer you to this article which summar-
izes the results from an academic paper that
points out coin flipping is almost always
slightly biased.

A few of the results are:

--"If the coin is tossed and caught, it has
about a 51% chance of landing on the
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same face it was launched. (If it starts
out as heads, there’s a 51% chance it will
end as heads)"

--"If the coin is spun, rather than tossed,
it can have a much-larger-than-50%
chance of ending with the heavier side
down. Spun coins can exhibit “huge bi-
as” (some spun coins will fall tails-up
80% of the time)"

--A coin will land on its edge around 1 in
6000 throws, creating a flipistic
singularity.

The lesson is that coin flips are better than
coins being spun.

But a coin flip will still exhibit some bias, so
to be fair, it may be best to use the von Neu-
mann procedure or another choice mechan-
ism (like a computer random number
generator).
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Puzzle 2: iPhone passwords

This is based on a question my friend asked
me.

Presh, real-life question for you: What is
the safest way to lock my iphone?

Let me explain.

A friend unlocked his phone once and I
grabbed it and said "so, 9,6,0, and 1,
huh?" because the bulk of "tap prints"
were on those numbers and, I rightly
presumed, correlated to his password.
He freaked out because were I a thief, I
could unlock his phone pretty easily as
I'd know all four numbers and that they
are only used once each within the four-
digit code. Not terribly safe, is it?

So when setting my password, I opted to
repeat a number (e.g. 1-2-3-1). That way,



someone would look at my phone and
even if they could figure the three num-
bers I use, they would either have to
guess at the fourth number (which
doesn’t exist) or, should they rightly fig-
ure out that I only use three independ-
ent numbers, they would have to try all
possible permutations of those three dif-
ferent numbers within a four-digit code.

Question: is it harder to guess a password
that uses only 3-digits or one that uses a 4
distinct digits?

Would it be harder to guess if one only used
a passcode containing 2-digits?
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Answer to Puzzle 2: iPhone
passwords

We need a way of counting possible pass-
words. The easiest case is when someone
uses 4 unique numbers for the 4-digit
passcode. Each number is used exactly once
in the passcode, and hence the problem re-
duces to counting the number of ways to re-
arrange 4 objects. This is solved by counting
the number of permutations. For a password
using 4 digits, there are exactly 4! = 4 x 3 x 2
x 1 = 24 ways to have this kind of password.

But what happens when you have a password
like 1231? That is, how can you count pass-
words in which one or more numbers are
used multiple times? You have to count the
number of combinations.

The way to solve this is by using an extension
of permutations known as the multinomial

http://en.wikipedia.org/wiki/Permutation#In_combinatorics
http://en.wikipedia.org/wiki/Permutation#In_combinatorics


coefficient. The multinomial coefficient is
calculated as the total number of permuta-
tions divided by terms that account for non-
distinct or repeated elements. If an element
appears k times (i.e. has a multiplicity of k),
then the factor to divide by is k!

A simple example from Wikipedia’s entry
can illustrate. Let’s say we want to figure out
the number of distinct ways to rearrange the
letters in the word MISSISSIPPI. There are
11 letters but some of the letters are re-
peated. There are 1 Ms, 4 Is, 4 Ss, and 2 Ps.
The number of distinct rearrangements of
the letters is the number of permutations
(11!) divided by the factors for the elements
accounting for their multiplicity (1! x 4! x 4!
x 2!). The multinomial coefficient is thus 11 !
/ (1! x 4! x 4! x 2!) = 34,650.

Am I helping myself by using three numbers
in a four-digit code?
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There are 4! = 24 possible ways a password
can be formed from four distinct and known
numbers. Will using just three numbers in-
crease the number of possibilities?

The surprising answer is that yes, it does. It
seems counter-intuitive at first so let’s go
through an example.

Suppose you see an iPhone where the “tap
prints” are on the numbers 1, 2, and 3. How
many possibilities are there for the four-digit
password to unlock the phone?

There’s a simple observation needed to go
on. In order that three numbers are all used
in a four-digit password, it must be the case
that some digit is used twice. Perhaps the
number 1 appears twice, or the number 2, or
the number 3.

Suppose the number 1 is used twice. How
many passwords are possible? We can use
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the multinomial coefficient to figure it out.
We know the total number of permutations
is 4! and we must divide by 2! to account for
the number 1 being used twice. Thus, there
are 4! / 2! = 24 / 2 = 12 different passwords.
We can list these out:

1123
1132
1213
1312
1231
1321
2113
2131
2311
3112
3121
3211

But we are not done yet. We must similarly
count for the cases in which the number 2 is
used twice, or the number 3 is used twice. By
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symmetry it should be evident that each of
those cases yields an additional 12
passwords.

To summarize, there are 12 passwords when
a given number is repeated, and there are
three possible numbers that could be re-
peated. In all, there are thus 12 x 3 = 36
passwords.

Notice there were just 24 passwords when
using four distinct numbers.

This trick of using three numbers does in fact
increase the set of possible passwords. While
each case of three digits only gives 12 pass-
words, the gain to this method is that the
other person doesn’t know which number is
repeated. And so they have to consider all
possibilities which becomes 36 possible
passwords.
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Would it be even safer if I only mixed two in-
dependent numbers?

If three is better than four, then is two better
than three?

Unfortunately it is not.

There is just not enough variety when using
two numbers. The gain in ambiguity of mul-
tiplicity is simply not enough to counteract
the lack of passwords.

With two distinct numbers, there are only 14
possible passwords. This is found since the
two numbers either have multiplicities as (1,
3), or (2, 2) or (3, 1). We can add up the mul-
tinomial coefficients to get 4! / (1! x 3!) + 4! /
(2! x 2!) + 4! / (3! x 1!) = 4 + 6 + 4 = 14.

We can also list them out:

1112

160/488



1121
1211
2111
1222
2122
2212
2221
1122
1221
2211
1212
2121
2112

In conclusion, using two numbers ends up
reducing the possible number of passwords.

Additional ways to help

If that weren’t enough, my friend actually
brainstormed a couple of other ways to im-
prove the password.
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Actually now I can think of all kinds of
brilliant maneuvers… like using three
digits but tapping a phantom fourth
number once the code is entered…. so
there are four “tap prints” but only three
which are relevant!

Or, by the same measure, you could use
four independent numbers and then tap
a fifth time to have 5 options for four
spaces.

I think these are interesting possibilities too,
but they hit me as a little less practical since
you’d have to diligently tap those extra num-
bers to make the smudge marks.

I’ll leave it to you to figure out how many
passwords those methods will yield.
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Perhaps an equally valuable suggestion is to
simply clean the touch-screen intermittently
to erase the finger print marks and leave no
clue.
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Puzzle 3: Lady Tasting Tea

The problem is based on an incident at a
1920s tea party in Cambridge. The story goes
one lady claimed the ability to distinguish
between tea made by pouring tea to milk or
by adding milk to the tea.

Everyone questioned the claim, but one per-
son decided test it out. He created an experi-
ment with 8 tea cups, consisting of 4 cups of
each preparation.

The lady was remarkably able to identify all
8 cups, raising the issue of whether she just
got lucky.

What are the odds that the lady identified all
8 cups by chance?

The problem is known as the Lady Tasting
Tea, and it brought about the more modern

http://en.wikipedia.org/wiki/Lady_tasting_tea
http://en.wikipedia.org/wiki/Lady_tasting_tea


analysis of testing random experimental
data.
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Answer to Puzzle 3: Lady
Tasting Tea

This is a classic question of combinations.
We know there are 8 items, of which 4 will
be one type, and 4 the other.

Therefore there are "8 choose 4" or 70 differ-
ent combinations that are possible. (See the
iPhone password puzzle for an explanation
of counting possibilities with repeated
elements)

The probability of identifying all of the cups
by chance is a mere 1/70 (around 1.4 per-
cent). We can conclude the lady likely had a
refined palette.



Puzzle 4: Decision by
committee

Imagine you face a very difficult decision and
there is a low probability of making the right
choice. (p < 0.5)

What would you rather do: ask a single per-
son to decide or instead send it to a three-
person group where the majority choice
wins? Assume the three-person committee
people are independently voting, with each
having the same chance of determining the
correct decision.



Answer to Puzzle 4: Decision
by committee

The situation can be modeled using probab-
ility. We can say that each person has an in-
dependent probability p of making the right
choice. Since the problem is difficult, we will
say p < 0.5. (Imagine each person is equally
likely to choose among three or more pos-
sible alternatives).

What’s the success of the individual versus
the group?

The individual is easy: the probability of
making the right decision is p.

The three-person group is a little harder. The
group will find the right answer whenever
two or more of the people vote for the right
option. Since each person can vote “right” or
“wrong,” there are 8 possible ways to vote:



RRR
RRW
RWR
RWW
WRR
WRW
WWR
WWW

The first, second, third, and fifth items listed
are the 4 ways the group can come to the
right decision. Adding the probabilities for
these events gives the chance the group will
come to the correct decision.

When all three are right, RRR, that is p3.

When two are right, say RRW, that is p2(1-p)
and there are three such events like this.

The probability that a majority find the right
decision is the sum of these events, which is

p3+3p2(1-p) = 3p2 – 2p3
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Since p < 0.5, we can see this final expres-
sion is less than p. In the following chart, the
dotted line shows the probability the com-
mittee comes to the right decision is less
than the probability an individual finds the
right decision.
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The moral: committees may not be the best
for making tough choices!

That’s not to say committees are useless.
They will of course exist to diffuse risk and
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for the purpose of brainstorming (which may
increase the odds of success over an indi-
vidual). But this does show committees are
ill-suited for the type of hard problem they
are meant to address.
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Puzzle 5: Sums on dice

With two dice, you can roll a 10 in two differ-
ent ways: you can either roll 5 and 5, or you
can roll 6 and 4. Similarly, you can roll a sum
of 5 in two different ways: as the rolls and 1
and 4, or as 2 and 3.

But the two events "roll a 10" and "roll a 5"
will not occur with equal frequency. Why
not?

(credit: Luck, Logic, and White Lies)

http://www.amazon.com/gp/product/1568812108?ie=UTF8&tag=minyoudec-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=1568812108


Answer to Puzzle 5: Sums on
dice

The trick is all about the wording of the
puzzle which creates a mystery where there
is none.

The sum 10 can be obtained in three ways by
dice roll: namely (5,5), (4,6), and (6,4); the
sum 5 in four ways: (1,4), (4,1), (2,3) and
(3,2).

So the sum 10 is obtained with probability
3/36 versus the sum 5 with probability 4/36.

Pictorially:



The puzzle demonstrates that it’s always im-
portant to consider the events in probability.
Sly wording, like this puzzle’s ways describ-
ing sums rather than pairs of rolls, can easily
confuse.
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Puzzle 6: St. Petersburg
paradox

You are offered an unusual gamble.

A fair coin is tossed until the first heads ap-
pears, which ends the game. The payoff to
you depends on the number of tosses. The
payoff starts at 2 dollars and doubles on each
successive toss.

That means you get 2 dollars if the first toss
is a head, 4 dollars if the first toss is a tails
and the second is a heads, 8 dollars if the
first two tosses are tails and the third is a
head, and so on. In other words, you get paid

2k where k is the number of tosses for the
first heads.



The question to you is how much should you
be willing to pay to play this game? In other
words, what is a fair price for this game?
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Answer to Puzzle 6: St.
Petersburg paradox

The typical way to answer this question is to
compute the expectation (or the “average”)
of the payouts. This is done by multiplying
the various payouts by their probability of
occurrence and adding it up. To say it anoth-
er way, the payouts are weighted by their
likelihood.

The respective probabilities are easy to com-
pute. The chance the first toss is a heads is
1/2, the chance the first toss is a tails and the
second is a heads is 1/2 x 1/2, and the third
toss being the first heads is 1/2 x 1/2 x 1/2,
so the pattern is clear that the game ending

on the k toss is (1/2)k

So with probability 1/2 you win 2 dollars,
with probability 1/4 you win 4 dollars, with



probability 1/8 you win 8 dollars and thus
the expectation is:

The surprising result is the expectation is in-
finity. This means this game–if played ex-
actly as described–offers an infinite payout.
With an astronomical payout, a rational
player should logically be willing to pay an
astronomical amount to play this game, like
paying a million dollars, a trillion dollars,
and so on until infinity.

The fair price of infinity is paradoxical be-
cause the game does not seem like it is worth
much at first. Few would be willing to pay
more than 10 dollars to play this game, let
alone 100 dollars or 1,000 dollars.
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But expectation theory seemingly says that
any amount of money is justifiable. Banks
should be willing to offer loans so people
could play this game; venture capital firms
should offer more money than they do to
start-ups; individuals should be willing to
mortgage their house, take a cash advance on
their credit card, and take a payday loan.

What’s going on here? Why is the expecta-
tion theory fair price so different from com-
mon sense?

It turns out there are a variety of
explanations.

Resolution 1: Payouts should be
realistic

Imagine you are playing this game with a
friend. You hit a lucky streak. The first nine
tosses have been tails and you’re still going.
If the tenth toss is a heads, then you get
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1,204 dollars as a payout. If it’s a tails, you
have a chance to win 2,408 dollars, and even
more.

At this point your friend realizes he’s made a
mistake. He thought he’d cash out with your
10 dollar entry fee, but he now sees he can-
not afford to risk any more.

He pleads with you to stop. He’ll gladly pay
you the 512 dollars you’ve earned–so long as
you keep this whole bet a secret from his
wife. What would you do in this situation?

Most of us would take the cash and show
some mercy here. There is no joy in winning
if it means crippling a friend financially. And
this concocted scenario leads to one of the
unrealistic assumptions of the St. Petersburg
paradox.

In the hypothetical coin game, you’re sup-
posed to believe the other side can pay out
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infinitely large sums of money. It doesn’t
happen often, but if you get to 20 coin tosses,
you fully expect to be paid 1,048,576 dollars.

This is unrealistic if you’re playing with a
friend or even a really, really rich friend. It
might be possible with a casino, but even a
casino may have a limited bankroll.

The truth is that payouts cannot be infinite.
If such a game were to exist in our reality,
there must be a maximum, finite payout.

This means the expectation is not an infinite
sum but rather a finite sum of several terms.
Depending on the size of the bankroll, the St
Petersburg gamble has a finite payout.

I will spare you the details, but here are a few
examples of the expectation when using a
maximum payout using numbers from a
Wikipedia table for illustration):
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(small note: these calculations are based on
payouts of 1, 2, 4, etc so it's slightly different
than the game I set up of 2, 4, 8, etc.)

As you can see, expectation theory now im-
plies the fair price of the game is something
like 25 dollars or less. With a more realistic
model of the game, the expectation result
matches common sense.
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This should settle matters for anyone con-
cerned with reality and practice, but there
are people who don’t accept this explanation.
Such philosophers think an infinite payout is
possible and so the paradox still exists.

So for these people, I will offer the following
alternate resolutions that don’t rely on limit-
ing the bankroll.

Resolution 2: diminishing marginal
utility

A quantity like 1,000 dollars has meaning to
most people. If you were to ask a friend for
such a loan, they would ask how you can pay
it back, what you would use it for, and so on.

But there are times when 1,000 dollars
seems to lose its value. I like to think about
the show Deal or No Deal where contestants
play a multi-stage lottery to win 1,000,000
dollars. At various points in the game the
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contestants can either keep pursuing the big
prizes or they can accept smaller consolation
prizes. As the prospect of a big prize in-
creases, the contestants start to care less and
less about smaller prizes like 1,000 dollars.

This is an example of the famous concept of
diminishing marginal utility–the idea that at
larger levels of consumption, incremental
units are worth less. The concept is applic-
able for wealth decisions because at some
point incremental earnings mean less to a
person.

What this means for the St. Petersburg Para-
dox is that the payouts should be altered.
The payouts should not be measured in dol-
lars but rather as the utility that wealth will
provide.

One way to model this is to use a logarithm
function. Instead of saying the payout for the
first toss is 2 dollars, we will say it is log(2)
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units of utility, and accordingly for the other
payouts.

Using a log utility function, the St Petersburg
game now has a finite payout. Here is my
hand-written derivation:
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This is a small payout but the actual quantity
does not matter: it is just that the payout is
less than infinity, showing again, that there
is no real paradox here.
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Puzzle 7: Odds of a comeback
victory

Consider two teams A and B that are com-
pletely evenly matched. Given that a team is
behind in score at halftime, what is the prob-
ability that the team will overcome the deficit
and win the game?

Assume there are no ties, and the result of
the first half does not affect how players per-
form in the second half (that is, the first and
second half are taken to be independent
events).

(credit: problem based on page 11, “Probabil-
ity: the language of randomness,” by Jeffry S.
Simonoff)

http://people.stern.nyu.edu/jsimonof/classes/1305/pdf/prob.pdf
http://people.stern.nyu.edu/jsimonof/classes/1305/pdf/prob.pdf


Answer to Puzzle 7: Odds of a
comeback victory

Because the teams are evenly matched, you
might mistakenly think the answer is 50 per-
cent. But that is the probability the team
would win overall. If a team is down at half-
time, the chances of winning will be less. So
let us try to calculate the odds.

We have to think about how a team could
have a comeback victory if it is down at
halftime.

Let us first write down the possible outcomes
of the game, broken down by halves. Since
the two teams are evenly matched, there are
four different possibilities for who is leading
during each half (ignore the case of a tie):

(first half, second half):
AA



AB
BA
BB

Because the teams are evenly matched, these
events are all equally likely so each occurs
with probability 1/4 = 25 percent

In two of the cases, one team scores more
points in both halfs of the game, and there is
no come from behind victory: AA and BB.
This means 50 percent of the games the team
that lags behind at half ends up losing the
game.

The other two possibilities are times when a
team could have a comeback victory. In these
cases, one team leads at the half, but gets
outscored by the other in the second half: AB
and BA. In order for a team to get a
comeback victory, it must overcome the defi-
cit from the first half. How often does that
happen?
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The answer can be calculated by the follow-
ing logic: since the two teams are evenly
matched, it is equally likely that the team will
score enough points to overcome the deficit
or that it will not score enough points. (For
instance, the event of falling behind 6 points
in one half happens with the same probabil-
ity of gaining 6 points in a half). Therefore,
in the event AB, it will be equally likely that
B scores enough to eventually win, or that it
would not score enough and it loses.

Therefore, B ends up winning in half of the
cases, or 12.5 percent of the time (take 1/2 of
25 percent). The same logic applies for the
event BA: there is a 12.5 percent chance that
team A ends up winning.

Putting this all together, we have:

Probability(team having comeback vic-
tory) = P(AB)*Pr(B wins) + Pr(BA)*Pr(A
wins) = 12.5 + 12.5 = 25 percent
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So under these assumptions, a team will
have a 1 in 4 chance of making a comeback
victory.

Now you may point out this is not realistic as
the model does not take into account quality
of teams and things like home field advant-
age. Nor does it take into account psycho-
logy: a recent study shows that teams with a
slight deficit at halftime end up winning
more often than teams with a slight edge at
halftime. Here is the remarkable study based
on 18,000 professional basketball games and
45,000 college games.

However, even though the assumptions are a
bit off, the overall league statistics seem to
mirror the probability model.

In the National Football League, a small
sample of games in 2005 showed this trend:
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"Joe Gibbs is not telling his troops they
have a 23 percent chance of winning. Of
the 88 games observed, 68 of the teams
that went in at halftime with the lead
went back to the locker room at the end
of the game with the lead and the win.
That's right 77 percent of the time if a
team had a lead at halftime, it won the
game. [And thus 23 percent of the time,
the team facing a deficit came back for a
victory]"

I found the same pattern was shown to hap-
pen in the National Basketball League
(though granted this is 20 year old data; I'd
love to see whether the pattern holds true for
more recent seasons):

"Professor Hal Stern of the University of
California at Irvine examined 493 Na-
tional Basketball Association games
from January to April 1992, and found
that in 74.8% of the games, the team
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that was ahead at halftime ultimately
won the game [and thus the losing team
at halftime came back with probability
25.2 percent]"

This is either a pure coincidence or there is
something to be said about the simple prob-
ability model. It's fascinating to me either
way.
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Puzzle 8: Free throw game

Alice and Bob agree to settle a dispute by
shooting free throws.

The game is simple: they take turns shoot-
ing, and the first one to make a shot wins.

Alice makes a shot with probability 0.4 while
Bob makes his shots with 0.6.

To compensate for the skill difference, Alice
gets to shoot first.

Is this a fair game?

Extension: if Alice makes a shot with prob-
ability p and Bob with probability q, for what
values of p and q would the game be fair?
Solve if q = 1 – p



Answer to Puzzle 8: Free
throw game

There are many methods to solving the prob-
abilities of winning. The one I like is a tech-
nique of backwards induction.

The free throw game seems hard to figure
out because a round could end with no one
making a shot, and then the game would
continue. Solving for the winning probability
seems like you'd need to use an infinite
series.

But that's not the case. The trick is seeing
that each round is really an independent
sub-game. The fact that the previous round
ended without a winner does not affect the
winner of the current round or any future
round. This means we can safely ignore out-
comes without winners.



The probability of winning depends only on
the features of a single round.

This simplifies the problem to a more tract-
able one. So now, assume that one of the
players did win in a round, and then calcu-
late the relative winning percentages.

We can use a little trick to visualize the prob-
lem. Because Alice makes a shot with prob-
ability 0.4, and Bob with 0.6, we can imagine
the two are not shooting free throws but in-
stead rolling a 5 sided die.

Let's say that Alice makes her shot for rolling
the numbers 1 and 2, and Bob makes his shot
for the other three numbers 3, 4, and 5.

So Alice wins if she rolls one of her winning
numbers. If she does not, then Bob gets a
chance to roll and he wins the game for
rolling his numbers. All other combinations
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of the rolls means they both miss their shots,
so the round is a draw and they go again.

Here is a diagram illustrating the outcomes
of a round, illustrating the events for which
Alice will win:

To calculate the winning percentage, we can
simply count out the number of ways that
Alice wins. In the grid, there are 10 squares
that she wins, and only 9 that Bob wins.
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Therefore, Alice wins with probability 10/19
= 53 percent and Bob only with 9/19 = 47
percent.

Although Bob is a better shooter, Alice has a
slight edge in the game because she gets to
shoot first.

Answer to extension: generalizing the
probabilities

The numbers we used made it convenient to
convert the game into rolling a 5-sided die.

But we can generalize the process.

Notice that Alice won on 0.4 percent of the
squares, which is the same as her shooting
percentage.

The percentage of squares for when either
person won the game was 0.76, which is
equal to the chances Alice makes her shot
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(0.4) or she misses her shot (1 - 0.4) and Bob
makes his (0.6). The sum of this is 0.4 + (1 -
0.4) * 0.6.

Thus the probability Alice wins a game is:
(SP for shooting percentage)

(Alice's SP) / (Alice's SP + (1 - Alice's SP) *
Bob's SP)

If we say that Alice's SP is p and Bob's is q,
then this becomes:
p / (p + (1 - p) * q)

The game is fair if this term equals 0.5. Skip-
ping some of the algebra, this simplifies to:
(p - q) -pq = 0

We can plot out all values for which this
equation is true, remembering that p and q
are probabilities so they are between 0 and 1.
The dotted line corresponds to setting the
condition q = 1 - p
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If we give the additional restriction that q = 1
- p, then we can uniquely solve that p is
about 0.382, which is plotted above.
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So Alice at 0.4 shooting percentage is just a
tad higher than the fair shooting percentage
of 0.382.
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Puzzle 9: Video roulette

Bob loves the TV show Law & Order. Each
day he picks an episode at random and
watches it. Given there are 456 episodes of
the show, how many days will it take Bob to
watch the entire series on average?

Extension: Figure out a formula for a show
that has n episodes.

http://en.wikipedia.org/wiki/List_of_Law_%26_Order_episodes
http://en.wikipedia.org/wiki/List_of_Law_%26_Order_episodes


Answer to Puzzle 9: Video
roulette

Consider smaller cases to get an idea.

If a series has just 1 episode, it will take 1 day
to watch the entire series.

What about 2 episodes? On the first day, Bob
will watch one of the episodes. How long will
it take him to watch the remaining episode
on average?

We can solve for the number of days N as a
sum of two conditional events. If he picks the
episode he has not seen (with probability
0.5), then the conditional expectation is 1
day. If he instead picks the episode he has
seen, then he essentially loses a day, and he
is back to the starting point–so the expecta-
tion is N + 1.



In other words,

N = 1 * Pr(picks episode he has not seen) +
(N + 1) * Pr(picks episode he has seen)

N = 1 * 0.5 + (N + 1) * 0.5 = 0.5 N + 1

N = 2

Note that it takes Bob 2 days on average to
watch the unique episode that he picks with
probability 1/2.

Thus, it takes Bob an average of 3 days (1 day
for the first episode, 2 days for the second) to
watch a series with two episodes.

Solution

We can think about the problem in terms of
rolling a die. Each day Bob picks a new epis-
ode randomly is essentially like Bob rolling a
die where each face represents an episode
number.
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The question is: how many times on average
must a 6-sided die be rolled until all sides
appear at least once?

The first roll can be any of the faces. On the
second roll, there are 5 remaining unique
faces out of 6. Using the logic above, we can
conclude it will take an average of 1 / (5/6) =
6/5 rolls until one sees a different face.

We continue the logic to calculate the num-
ber of rolls until a new face. As there are 4
remaining out of 6, this will take 6/4 rolls on
average. Continuing the logic, we can con-
clude the total number of rolls it will take on
average to reveal every face at least once is:

1 + 6/5 + 6/4 + 6/3 + 6/2 + 6/1 = 147/10 =
14.7

In other words, for a series with 6 episodes,
it will take Bob about 15 days to watch every
episode.
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For a series with n episodes, the similar
series is:

For n = 456, this sum is roughly 3,056.

For very large n, the series sum is roughly n*
ln(n)–though this approximation for 456
yields 2792 so it is a very rough
approximation.
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Puzzle 10: How often does it
rain?

In Mathland, the weather is described either
as sunny or rainy, nothing in between.

On a sunny day, there is an equal chance it
will rain on the following day or be sunny.
On a rainy day, however, there is a 70 per-
cent chance it will rain on the following day
versus a 30 percent chance it will be sunny.

How often does it rain in Mathland, on
average?
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Answer to Puzzle 10: How of-
ten does it rain?

Here are a couple of ways I solved this
problem.

Method 1: Let R denote the average propor-
tion of rainy days and S of sunny days. Using
the law of total probability, we know that:

R = E(rains tomorrow | sunny today) *
Pr(sunny today) + E(rains tomorrow | rainy
today) * Pr(rainy today)

We can know use a clever trick. On average,
the probability it is sunny or rainy on a par-
ticular day is S and R, respectively. And we
also know a day is either sunny or rainy, so S
= (1-R). Hence we get the following:

R = E(rains tomorrow | sunny today) * (1-S)
+ E(rains tomorrow | rainy today) * R



We can simplify this because we know the
rules of weather. The first conditional ex-
pectation is 50 percent and the second is 70
percent.

R = 0.5(1-R) + 0.7(R)

This can be solved to find out R = 0.625.

Method 2: The weather can be modeled as
a regular or ergodic Markov chain. This is far
beyond the scope of this puzzle book, so see
section 11.3 of this pdf for a reference on
long-run averages.

From that reference it is shown that for a
regular transition matrix A, there is a unique
row vector w called the probability vector
such that wA = w. This is the probability of
being in those states.

Let us set up the transition matrix:
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A =
[0.7 0.5]
[0.3 0.5]

If w = (R S), and we set wA = w, we get the
equations:

0.7 R + 0.5 S = R
0.3 R + 0.5 S = S

These equations can be solved to find R =
0.625, just as before.
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Puzzle 11: Ping pong
probability

Suppose A and B are equally strong ping
pong players. Is it more likely that A will beat
B in 3 out of 4 games, or in 5 out of 8 games?

(credit: problem in this math book)

http://books.google.com/books?id=aVLLYiu8hs0C&lpg=PA24&dq=two%20ping%20pong%20players%203%20out%20of%204&pg=PP1#v=onepage&q&f=false


Answer to Puzzle 11: Ping
pong probability

It is more likely that A will beat B in 3 out of
4 games than in 5 games out of 8. It's a
simple application of binomial probability
distributions.

The equation for A winning exactly r games

out of n is "n choose r" times 0.5n

We can calculate the chance of A beating B in
exactly 3 games out of 4 is 25% and the odds
of A winning exactly 5 games out of 8 equals
7/32 or roughly 21.8%.

Why is this the case? The counter-intuitive
part is the wording of the question. If we in-
stead consider A to win at least 3 out of 4
games, or at least 5 out of 8 games we have a
different situation.



In that case, we find that the probability of
winning 3 or more games out of 4 increases
to 31.25%. All we need to do is add the prob-
ability of winning exactly 3 games out of 4,
which equals 25%, to the probability of win-
ning all 4 games, which is (.5)^4= .0625, or
6.25%.

The probability of winning 5 or more games
out of 8 is equal to (7/32)+ .1094
+.0312+.0039 = .3632, or 36.32%.

So in this problem it's important that we
want to know A is winning exactly a certain
number of games, rather than winning at
least some number of games.
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Puzzle 12: How long to
heaven?

A person dies and arrives at the gates to
heaven. There are three identical doors: one
of them leads to heaven, another leads to a
1-day stay in limbo, and then back to the
gate, and the other leads to a 2-day stay in
limbo, and then back to the gate.

Every time the person is back at the gate, the
three doors are reshuffled. How long, on the
average, will it take the person to reach
heaven?



Answer to Puzzle 12: How
long to heaven?

Let N denote the average number of days it
takes to get to heaven.

The trick to solve for N is to rewrite the aver-
age using symmetry of the game.

N is equal to the average number of days re-
gardless of which door you enter first. This
splits up into three cases:

Case 1: One-third of the time you go directly
to heaven, and that’s 0 days.

Case 2: One-third of the time you pick the
door that adds 1 day. In this case, you end up
in heaven in N + 1 days.



Case 3: The remaining one-third you pick the
door that adds 2 days. In this case, you end
up in heaven in N + 2 days.

These observations lead to the following
equation and answer:

N = 1/3 * 0 + 1/3 * (N + 1) + 1/3 * (N + 2)

N = 1/3 * N + 1/3 + 1/3 * N + 2/3

N = 2/3 * N + 1

1/3 * N = 1

N = 3

218/488



Puzzle 13: Odds of a bad
password

This is a problem that I was asked by a
reader.

The problem is as follows: A system has 100
accounts, two of which have bad passwords
(let’s call these bad accounts). If someone
could only test 20 accounts, what are the
chances that one will net a bad account?

Extensions:

1. What is the probability of netting both bad
accounts in the sample of 20? What about
exactly one bad account?

2. What is the probability of netting a bad ac-
count if you have k bad accounts, there are N
total accounts, and you can sample n ac-
counts at one time?



3. Go back to the problem with 100 accounts,
and 2 bad accounts. Suppose you can vary
how many accounts you can sample. If you
want a 50 percent chance of netting a bad ac-
count, what’s the minimum sample size
needed?
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Answer to Puzzle 13: Odds of
a bad password

The answer can be found using the hyper-
geometric distributrion.

The same problem can be restated as fol-
lows: if you are drawing 20 balls from an urn
of 98 white balls and 2 black balls, what are
the chances of drawing a black ball?

The way I calculated this is to find the
chance of drawing only white balls and find-
ing the complement event. Thus the chance
is:

1 - (2 choose 0)(98 choose 20)/(100
choose 20) = 36 percent.

1. What is the probability of netting
both bad accounts in the sample of 20?
What about exactly one bad account?

http://en.wikipedia.org/wiki/Hypergeometric_distribution
http://en.wikipedia.org/wiki/Hypergeometric_distribution


Two bad accounts is:

(2 choose 2)(98 choose 18)/(100 choose
20) = 19/495 or about 4 percent

One bad account is:

(2 choose 1)(98 choose 19)/(100 choose
20) = 32/99 or about 32 percent

2. What is the probability of netting a
bad account if you have k bad ac-
counts, there are N total accounts, and
you can sample n accounts at one
time?

You find the chance of getting no bad ac-
counts and then find the complement.

This is:

1 - (k choose 0)([N - k] choose n)/(N
choose n)
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3. Go back to the problem with 100 ac-
counts, and 2 bad accounts. Suppose
you can vary how many accounts you
can sample. If you want a 50 percent
chance of netting a bad account,
what’s the minimum sample size
needed?

I used a numerical method to vary the
sample size and found out the answer is 30.

It's interesting that you only need to sample
about a third of the population to have a bet-
ter than even chance of finding both bad
accounts!
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Puzzle 14: Russian roulette

Can probability theory save your life? Per-
haps not in usual circumstances, but it sure
would help if you found yourself playing a
game of Russian roulette.

Let’s play a game of Russian roulette. The
rules are this: I have a gun that has six empty
chambers. Now watch me as I put a single
bullet in the gun. I close the cylinder and
spin it. I point the gun to your head and,
click, it turns out to be empty.

Now I’m going to pull the trigger one more
time and see if you are really lucky. Which
would you prefer, that I spin the cylinder
first, or that I just pull the trigger?

(credit: I’m not sure of the original source of
this puzzle, but the wording is similar to a



problem in William Poundstone’s book How
Would You Move Mount Fuji?
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Answer to Puzzle 14: Russian
roulette

The problem can be solved by calculating the
probability of survival for the choices.

First, consider the odds of survival if the cyl-
inder is spun. The cylinder is equally likely to
stop at any of the six chambers. One of the
chambers contains the bullet and is unsafe.
The other five chambers are empty and you
would survive. Consequently, the probability
of survival is 5/6, or about 83 percent.

Next, consider the odds if the cylinder is not
spun. As the trigger was already pulled, there
are five possible chambers remaining. Addi-
tionally, one of these chambers contains the
bullet. That leaves four empty or safe cham-
bers out of five. Thus the probability of sur-
vival is 4/5, or 80 percent.



Comparing the two options it is evident that
you are slightly better off if the cylinder is
spun.
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Puzzle 15: Cards in the dark

You are given pack of cards has 52 cards in a
completely dark room. Inside the deck there
are 42 cards facing down, 10 cards facing up.

Your task is to reorganize the deck into two
piles so that each pile contains an equal
number of cards that face up. Remember,
you are in the darkness and can’t see.

How can you do it?



Answer to Puzzle 15: Cards in
the Dark

Take any ten cards from the original deck.
Create a new deck by flipping over each card
one by one. The two decks will contain the
same number of cards facing up.

Why is that?

Verifying this is a relatively simple counting
exercise. Suppose, for example, the 10 cards
you took consisted of three face up cards and
seven face down cards. Since every face
down card gets flipped in the new deck, the
new deck will therefore consist of 7 face up
cards. This exactly matches the original deck
which has 7 remaining face up cards (since
three face up cards were removed for the
new deck).



The idea is this: removing a card and flipping
it is a matching action. When you remove a
face down card in the original deck, the num-
ber of face up cards is unaffected, which is
matched by the new deck getting a face up
card. When you remove a face up card, the
number of face up cards is subtracted by one,
which is matched by the new deck getting a
face down card. By repeating the matching
action ten times (the number of cards facing
up in the original deck), you guarantee that
both the new deck and the old deck will have
the same number of face up cards.

The general proof goes something like this.
Of the 10 cards you remove, suppose the
number of face up cards removed is x. That
leaves the original deck with 10 –x face up
cards. Correspondingly the new deck con-
tains those x cards with a face down orienta-
tion. Thus the remaining 10 – x are face up
cards and the two decks match.
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(You can extend the problem too. If the ori-
ginal deck had 15 face up cards, then you cre-
ate a new deck by choosing 15 cards and flip-
ping them over. The proof is analogous.)

This puzzle generated a lot of comments on-
line, incidentally. My favorite comment:
"The existentialist’s solution: throw all the
cards in the trash and make two piles of
zero."
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Puzzle 16: Birthday line
probability

During a probability course, the professor
announces a chance for the students to get
extra credit.

First, the students are to form a single-file
line, without knowing the rules of the game.

Then, the professor announces the rule. The
person who gets the extra credit is the first
person to have a matching birthday of
someone in front of them in the line.

The poor first person has no chance of win-
ning. But which person in line has the best
chance of winning? What is that probability?

Assume birthdays are distributed uniformly
across the year, and the students formed the



line randomly because they did not know the
rules.

(credit: adapted from website braingle)
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Answer to Puzzle 16: Birth-
day line probability

The answer is the 20th person in line has the
best chance of winning at 3.23%.

The puzzle can be solved analytically, and
the algebra is written over at braingle.

But this is in fact a perfect problem to use a
numerical method. Here is how I solved the
problem.

Clearly the first person in line has 0 percent
chance of winning. The second person in line
wins if he matches the first person, which
happens with probability 1/365. Let’s denote
the probability the second person wins as
p(2).

What about the third person? He can only
win if two things happen. One, the first two

http://www.braingle.com/brainteasers/8707/birthday-line.html


people cannot have matching birthdays. This
probability is (1 – p(2)). Two, he has to
match one of the two previous birthdays.
Since the first two did not match, there are 2
possible birthdays the third person could
have.

Putting this together, we have

p(3) = (1 – p(2)) * 2/365

We can generalize this formula. The probab-
ility the fourth person wins is the probability
the first three people did not win times the
probability he matches any of 3 birthdays. So

the probability the nth person wins is equal
to:

p(n) = (1 – p(2) – … – p(n-1)) * (n – 1)/365

This recurrence relation is easily pro-
grammed into a spreadsheet. Have one
column that lists the position of the person
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n, another that has the formula (n – 1)/365,
and a final column for the cumulative sum of
winning probabilities for the n– 1 people
ahead in line.

Here is an illustration of the probability
distribution:
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The peak probability happens at position 20,
with value 3.23 percent. Nearby positions
like 19 and 21 are almost the same probabil-
ity, so in this case it does help if you are close
to the correct answer.
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Puzzle 17: Dealing to the first
ace in poker

In Texas Holdem poker, sitting in the dealer
position is a strategic advantage. The dealer
position generally acts last in betting and is
not forced to post blinds.

For a game in progress, the dealer position
rotates around the table after each hand. But
at the start of the game, the dealer position is
simply assigned to one player.

So who gets to be dealer initially?

In poker tournaments, the dealer position is
chosen by a random process so everything is
fair.

In home games, people do not always use
random number generators. One of the com-
mon methods is dealing to the first ace. It



works like this: the host deals a card to each
player, face up, and continues to deal until
someone receives an ace. This player gets to
start the game as dealer.

The question is: does dealing to the first ace
give everyone an equal chance to be dealer?
Is this a fair system?

239/488



Answer to Puzzle 17: Dealing
to the first ace in poker

Dealing to the first ace is not a fair system.
The distribution of the first ace appearing on

the kth card is not completely random.

To solve the problem, it is helpful to solve a
related question: what is the probability that
the first time an ace is dealt from the deck is

the 1st, or 2nd, or 3rd, or the kth card?

Once this distribution is known, it will then
be possible to calculate the odds a person
will get the dealer by summing up the pos-
sible “winning” positions. But more on that
later. For now, let’s calculate the probability
distribution of the first ace being dealt in po-
sition k.

To begin, note that a standard deck has 52
total cards of which 4 are aces.



What are the odds an ace will be the 1st; card
dealt? The probability is readily calculated as
the number of aces divided by the total cards
which is 4/52.

So far easy enough. Continuing, what are the

odds an ace will first be dealt as the 2nd card
from the deck? This happens only if the fol-
lowing two events occur:

(i) the first card dealt was not an ace (48/52)
AND
(ii) the second card dealt is an ace (4/51)

I have written the probabilities at the end of
each condition. The probability for (i) is the
number of non-ace cards divided by the
number of total cards, or 48/52. The probab-
ility for (ii) is similarly calculated but just
slightly more complicated. The numerator is
the number of aces which is obviously 4. The
denominator is the number of cards still left
in the deck. As one card was dealt for event
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(i), there are 51 cards remaining. And hence
the probability for (ii) becomes 4/51.

Therefore, the probability for the first ace be-

ing dealt as the 2nd card from the deck is the
product of these two events, which is (48 x 4)
/ (52 x 51).

We can continue the exercise to calculate the

first ace appearing on the 3rd card. This only
happens when three events occur:

(i) the first card dealt was not an ace (48/52)
AND
(ii) the second card dealt was not an ace (47/
51) AND
(iii) the third card dealt is an ace (4/50)

The probabilities for each event are calcu-
lated in the same fashion as above: the only
tricky part is remembering to decrement the
numerators and denominators to account for
the cards already dealt out.
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Putting these together, the probability for

the 3rd card being the first ace is (48 x 47 x 4)
/ (52 x 51 x 50).

By now it is evident the probability calcula-
tion has a pattern. We can thus generalize
the logic to calculate the first ace appearing

on the kth card.

The specifics for this to happen are the fol-
lowing events:

(i) the first card dealt was not an ace (48/52)
AND
(ii) the second card dealt was not an ace (47/
51) AND
…

(k) the kth card dealt is an ace [4/(52-k + 1)]

This calculation is straight-forward and
again the only tricky part is the diminishing
numerators and denominators.
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Multiplying these event probabilities togeth-
er yields the chance as [48 x 47 x ... (48 -k +
2) x 4] / [52 x 51 x 50 x (52 – k + 1)], for 1 > k
> 49

There is a restriction on k because the pro-
cess can theoretically continue until there
are just 4 cards left in the deck, all of which
are all aces. And then the next card must be
an ace.

I went ahead and calculated the probability
for each k and I thought a graph would be in-
structive. Here is what the distribution looks
like:
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The distribution is very gently falling be-
cause it is less and less likely it will take so
many turns for the first ace to appear.

Solving the original problem
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Now that we have the complete distribution,
we can solve for the probability a particular
player is assigned the dealer.

To see how this works, consider a poker
game with just two players. Let’s say the first
person dealt a card face up is “player 1″ and
the other person is “player 2.”

When will player 1 be dealer? Player 1 is
dealer if the first ace is dealt to him and not
player 2. Which cards are potentially dealt to
player 1? Player 1 gets the first card, then one
card goes to player 2, but then he gets the
third card, and so on. In other words, player
1 is the dealer precisely if the first ace ap-
pears in the odd-numbers positions 1, 3, 5,
…, 47. And correspondingly, player 2 is the
dealer if the first ace appears in any of the
even-numbered positions 2, 4, 6, …, 48.

Using a spreadsheet it is easy enough to sum
up those entries to find the probabilities. It
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turns out that player 1 gets to be dealer al-
most 52 percent of the time versus 48 per-
cent for player 2. This might seem like a
small edge, but realize this is worse of a bias
than most casino games! Player 1 has a great
advantage in this system.

The entire distribution

Similar calculations can be performed if the
game starts with a different number of play-
ers. For illustration, I extended the calcula-
tions for games of 3 players up to 9 players (a
full ring game).

The probability is again calculated based on
the distribution of the first ace. In a 3-han-
ded game, for example, the first person dealt
is the dealer if the first ace appears on the
turns 1, 4, 7, etc.; the second on turns 2, 5, 8,
etc.; and the third on turns 3, 6, 9, etc. (This
calculation was automated as I used a handy
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spreadsheet array formula to sum up the
probabilities based on the turn modulo).

Here are the results.

The first table is about the probability the
first player receiving a card gets the ace.
Notice there is a definite edge over the fair
odds of anywhere from 2 to 4 percent.

The advantage becomes exceeding large in
games with 7, 8, and 9 players where the first
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person receiving a card has almost double
the chance of getting to be dealer initially
compared to the last player.
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Puzzle 18: Dice brain teaser

You and I play a game where we take turns
rolling a die. I win if I roll a 4. You win if you
roll a 5.

If I go first, what’s the probability that I win?

Here are some clarifying notes about the
game:

–If I don’t get a 4, and you don’t get a 5, we
keep rolling until one of us does get a win-
ning number.



–The order of play matters. If I roll a 4, I win
and the game ends. You roll only if I fail to
get a 4.

–Someone will ultimately win the game
(there is no draw). This means the probabil-
ity I win is the same as the probability that
you lose.
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Answer to Puzzle 18: Dice
brain teaser

This dice problem is mentally tricky because
many rounds end without a winner. It would
seem necessary to keep track of an infinite
series to arrive at an answer.

But that’s not the case. The trick is seeing
that each round is really an independent
sub-game. The fact that the previous round
ended without a winner does not affect the
winner of the current round or any future
round. This means we can safely ignore out-
comes without winners.

Method 1: conditional probability

The probability of winning depends only on
the features of a single round.



This simplifies the problem to a more tract-
able one. So now, assume that one of the
players did win in a round, and then calcu-
late the relative winning percentages.

In other words, calculate the probability the
first player wins given the round definitely
produced a winner.

To do that, we look at the distribution of out-
comes. In any given round, the first player
can roll six outcomes, as can the second play-
er. How many of those thirty-six outcomes
produce a winner, and how many are from
the first player?

This diagram illustrates the answer:
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There are exactly 11 outcomes where some-
body wins, of which 6 belong to the first
player. Therefore, the first player wins with a
6/11 chance, or about 54.5 percent of the
time.
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The first-mover advantage is caused by the
fact the first player wins even if both were to
roll winning numbers.

But there are a couple of other ways to think
about the problem too. The next method is
especially interesting.

Method 2: Symmetric Thinking

This method is about using a mental trick. I
particularly find it satisfying, though I can
honestly say I would not have come up with
this on my own.

Here is the solution from a comment by Mja
at Reasonable Deviations:

Let p denote the probability that “I” (the first
player) win. Since all games ultimately pro-
duce a winner, the second player wins with
the complementary probability 1 - p.
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Let’s figure out the chance that I win. On my
roll, I have a 1/6 chance of winning the
game. What happens in the 5/6 of cases
when I don’t win?

If I don’t win, the second player gets a
chance to roll. Now, it’s the other person that
gets to roll first and I have to wait.

This means if I do not win on my first roll,
the game is the same but I take on the role of
the player that rolls second.

Hence, if I do not win on my first roll, my
winning chances become 1 – p.

Algebraically, this can be written as:

p = Pr(win 1st roll) + Pr(not win 1st roll)

Pr(win | not win on 1st roll)

p = Pr(roll 4) + Pr(not roll 4)Pr(second
person rolling wins)
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p = 1/6 + 5/6 (1 –p)

p = 1 - 5p/ 6

11p / 6 = 1

p = 6/11, or about a 54.5 percent chance

I can’t think of immediate applications be-
sides puzzles, but the symmetry is beautiful.
This is one of those solutions seeking
problems.

Method 4: Infinite Series

This is the conventional solution method for
math classes. It works, but I certainly find
the other methods to be more interesting.

To start, we draw an infinite the game tree il-
lustrating the outcomes for each round of the
game:
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The first player’s winning percentage is the
sum of all branches that lead to a win. These
are all the odd-numbered branches in this
diagram.

The first branch is reached with probability
1/6, the third branch is reached with probab-
ility 1/6 times 5/6 squared, and each
subsequent odd-branch has an extra factor of
5/6 squared.
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The task is solving the following infinite
series:

Using the formula for geometric series, the
solution is:

So we again arrive at 6/11, or about 54.5 per-
cent, just as before.
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Puzzle 19: Secret Santa math

Suppose N people put their names into a hat,
then they all draw a name. The draw is suc-
cessful if no one draws his or her own name.
How likely is that?

The puzzle was perhaps inspired by Secret
Santa, a gift exchange in which everyone
draws a name to give a gift to. The assign-
ment is legal if no one draws his own name
(gifting to oneself is not much fun). The
puzzle is alternately stated as: how likely is it
that a Secret Santa draw is a permissible
assignment?



Answer to Puzzle 19: Secret
Santa math

Let’s try to figure out a pattern from analyz-
ing a few small cases.

A bit of notation can help. We can arbitrarily
label the people with numbers 1, 2, …, n. Fur-
ther, we can think about a draw as a per-
mutation of these numbers.

I’ll use the following shorthand (which is
standard permutation notation). If there are
three people, for example, then the notation
312 means “the first person drew name 3, the
second person drew name 1, and the third
person drew name 2.”

Let us consider the case of n = 3. The pos-
sible number of draws is the number of per-
mutations of three items, or 3! = 6. How
many of these draws are permissible–that is

http://en.wikipedia.org/wiki/Permutation#Notation


no one chooses his own name? We can dir-
ectly list these out:

231
312

You can verify these are the only two de-
rangements. Thus, we can conclude for n = 3
that the probability is

Probability(3) = 2 / 3! = 2 / 6 = 1/3 =
.33333….

From this case we have figured out a solution
method. We need to find the number of per-
missible solutions and divide it by the num-
ber of total draws (which will be equal to n!)

So what happens with four people? How dif-
ferent is the probability then?

The total number of draws is 4! = 24. The
number of permissible draws can be figured
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out by direct counting, and we find there are
9 of them:

2143, 2341, 2413,
3142, 3412, 3421,
4123, 4312, 4321

So this time the calculation is:

Probability(4) = 9 / 4! = 9 / 24 = 1/3 = .375

It’s interesting the probability did not change
by very much from the case of n = 3.

It would be unwise to proceed in higher and
higher cases by direct counting. We already
have a formula for the total number of cases
in the denominator (n!). What we need is a
formula for the number of permissible cases
in the numerator.

The general solution
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How many ways can a set of objects be re-
arranged such that no object remains in its
initial position?

There is a special name for this kind of per-
mutation. It is known as a derangement.
Also, because of its relation to permutations,
there is a special notation for derangements.
A derangement of n objects is abbreviated as
!n with the exclamation point appearing be-
fore the symbol.

Counting the number of derangements can
be done in a couple of ways, beyond this
book's scope, and their detailed proofs are
here.

I will mention that the method I prefer uses
the inclusion-exclusion principle. The idea is
to count the total number of permutations
(n!) and then subtract out any permutation
that fixes one or more points. The tricky part
is to make sure you don’t double count,
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which is where the inclusion-exclusion for-
mula comes in. The formula specifies how to
add and subtract various subsets (like fixing
one point, two points, three points, etc) so
that the resulting figure does not double
count.

Using the inclusion-exclusion formula, the
formula for the number of derangements is:

!n = Total permutations – permutations
fixing 1 point + permutations fixing 2
points …. +/- permutations fixing n
points

which can be simplified as

The interesting part is the summation term.
This is familiar as the partial sum for the
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Taylor series expansion of 1/e – quite an in-
teresting development!

Thus, the number of derangements is well-
approximated by !n =n! / e (the exact for-
mula is !n = floor(n! / e + 1/2) since you
need to round up for even numbers and
round down for odd numbers).

So we can now solve the puzzle as n ap-
proaches infinity. The probability is:

Probability(n) = !n /n! ~ (n! / e) / (n!) = 1/e
= 0.3679

It’s again remarkable that e appears in a
probability problem, and the answer is
roughly 37 percent which is reasonably high.
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Puzzle 20: Coin flipping game

Let’s play a coin flipping game. You get to
flip a coin, and I’ll pay you depending on the
result.

Here are the rules:

–you first flip a coin and we record the
outcome (H or T)

–you keep flipping until the first out-
come is repeated, ending the game

–you get paid $1 for each time you
flipped the opposite outcome

–for instance, if you flip H first, and the
sequence of tosses ends up as HTTTH,
you will get paid $3 for the three T‘s that
appeared. If you flip HH, by contrast,
then you will get $0



–analogous payout rules apply if you flip
T first: if you flip TT you get $0, but if
you flip THHHHT you will get $4

(an equivalent way of saying this is if you
make a total of n tosses, you get paid n – 2
dollars because you don’t get paid for the
first or final flips)

I am going to offer you a chance to play this
game for 75 cents. But there is one catch: I
admit I may have biased the coin, so heads
appears with probability p which may or may
not be 1/2. (though it is not a two sided coin,
because at p = 0 or p = 1, you obviously lose
the game every time)

Should you be willing to play this game?
Why or why not?

(credit: the puzzle is a problem from one of
my college math books, Apostol Calculus
Volume II)

268/488

http://www.amazon.com/Calculus-Vol-Multi-Variable-Applications-Differential/dp/0471000078
http://www.amazon.com/Calculus-Vol-Multi-Variable-Applications-Differential/dp/0471000078


Answer to Puzzle 20: Coin
flipping game

It turns out I was being charitable, and you
should definitely play the game. As derived
below, the expected value of the game is $1.
The remarkable part is this is true regardless
of the value of the chance of getting a heads
p!

Let’s calculate the expected value of the
game.

To begin, let’s write out a table of possible
outcomes to the game, split up by whether
the first toss is an H or a T



The expected value will be the sum of all of
these individual outcomes.

We can conveniently break the game down
into two contingencies, each of which is an
infinite sum:
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This is going to be a tricky infinite series to
evaluate. We will need to use a neat trick.
Note that for 0 < x < 1

We now substitute using x = 1 – p and x = p
(from the two infinite series above) to find
the value of the game.

The game has an expected value of 1, which
is what we intended to prove.
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Puzzle 21: Flip until heads

In mathland, one day the king asks all his
subjects to perform an experiment.

He wants them to find a regular coin and re-
cord the result of its flips, under the follow-
ing condition.

Each person is to flip the coin until the
result is a heads.

So one person might record a result of H
if he flips heads right away, but another
person might record the result TTH if a
heads came on the third toss.

All of the million subjects are to send
the record of their tosses to the king for
analysis.

A royal counter will tally up the number of
heads and tails from all the records. What do



you expect the proportion of heads to tails to
be?
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Answer to Puzzle 21: Flip un-
til heads

It is tempting to think there will be more
tails than heads, as each person is flipping
until a heads is seen. But remember that half
of the people flip heads right away, which
will change the outcome.

An expected value calculation will show the
proportion of heads to tails is even at 50/50
for each.

Here is the calculation:

1/2 get a heads and stop: 0 tails
1/4 get a heads, then a tails: n/4 tails
1/8 get a heads, then a tails: 2n/8 tails
1/16 get a heads, then a tails: 3n/16 tails
1/32 get a heads, then a tails: 4n/32 tails
…
Total: n heads and the number of tails is



Therefore, we expect the same number of
heads and tails in the population, so the pro-
portion is 50/50.

(solution from here: boys and girls problem)

This question was once used as a Google in-
terview puzzle, phrased in terms of families
having a child until they had a boy and ask-
ing for the proportion of boys and girls in the
population. I preferred to avoid the genetics
of gender determination and so I used a coin
flip.

The reason the question seems counter-intu-
itive is because the proportion of tails (or
girls) in ONE family is equal to log(2) or
about 31 percent. In fact, I did an experiment
of my own to confirm this.
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I ran 2,000 trials in a spreadsheet of having
a child until the first boy, and I did two cal-
culations. The first calculation is equal to the
ratio of the total number of girls to the total
number of children across all experiments.
This is roughly 50 percent we calculated
above.

For the second calculation I did the follow-
ing. For each trial, I divided the number of
girls by the total number of children. I then
took the average across all the trials of this
ratio. The calculation is to the average of the
proportion of girls for each trial. This comes
in at around 31 percent (it is precisely
log(2)).
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As you can see, the proportion of girls expec-
ted in a specific family is a biased estimator
of the proportion of girls in the total
population.

The issue is that the average of the propor-
tion for each family is not equal to the aver-
age proportion across all families.

It’s very important to know what is being
asked for in probability questions!
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Puzzle 22: Broken sticks
puzzle

A warehouse contains thousands of sticks,
each 1 meter long. One day a bored worker
breaks each of the sticks in two, with each of
the breaks happening at a random position
along each stick. (random here means “uni-
form distribution”)

There are three questions:

(1) What is the average length of the
shorter pieces?

(2) What is the average length of the
longer pieces?

(3) What is the average ratio of the
length of the shorter piece to the longer
piece?



I will give a hint that questions (1) and (2)
are easier to solve. It is much harder to solve
(3) as it requires calculus.
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Answer to Puzzle 22: Broken
sticks puzzle

The first two questions can either be solved
by considering symmetry, or they can be
solved using calculus.

One might think the third question follows
as a simple division from questions 1 and 2.
This is not true! The average ratio is NOT the
ratio of the averages! I’ll explain why below.

Answer to (1)

By definition, the smaller piece will be less
than half the length (0.5 meters).

The smaller sticks, therefore, will range in
length from almost 0 m up to a maximum of
0.5 meters, with each length equally
possible.



Thus, the average length will be about 0.25
meters, or about a quarter of the stick.

A more rigorous way of solving this, though
less intuitive, is to set up an expectation and
solve.

Suppose the stick is broken at point x, mean-
ing the two pieces will be of length x and 1 –
x.

We can denote the shorter piece by the for-
mula min(x, 1 –x).

Now we can solve for the average value by
setting up an integral that ranges from 0 to 1.
You will find this equals 0.25.

Answer to (2)

If the average of the smaller piece is 0.25,
then it would only make sense the average of
the larger piece is 0.75.
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Answer to (3)

This is the most interesting piece of the
puzzle.

If the smaller pieces average 0.25 meters,
and the larger pieces average 0.75 meters,
then wouldn’t the ratio of the lengths be the
division? That is, shouldn’t the answer be 1/3
= 0.25 / 0.75 ?

The surprising result is no! The average ratio
is not equal to the ratio of the averages.

This can be demonstrated by direct
calculation.

If the stick is broken at point x, then the ratio
of the shorter to the longer piece will depend
on the value of x. When x is between 0 and
0.5, then the ratio is x / (1 – x). When x is
between 0.5 and 1, the ratio will be the recip-
rocal (1 - x) / x.
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When these two pieces are integrated, here is
the result:

The average ratio is not 1/3, but it is rather a
bit higher at 0.386 (or more exactly 2 log(2)
– 1, where we are using the natural log).

This itself is a rather surprising result:
Euler’s constant e comes out of nowhere!

It is seemingly paradoxical that the average
ratio (shorter / longer) is not the ratio of the
average of shorter to longer pieces.

The answer lies in the distribution of the ra-
tio. Notice the chart for the ratio bows to-
ward the center, or in other words, the peak
at 0.5 seems a little "fat" in the following
graph:
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The ratio of the shorter to longer piece is
slightly skewed toward the value of 0.5, and
that is why the average is slightly higher at
0.386 instead of 0.333.
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Puzzle 23: Finding true love

Here is a statistical model of dating.

In this statistics game, you search for your
true love with sequential dates. Your only
goal is to find the best person willing to date
you–any thing less is a failure.

Here are some ground rules:

1. You only date one person at a time.

2. A relationship either ends with you
“rejecting” or “selecting” the other
person.

3. If you “reject” someone, the person is
gone forever. Sorry, old flames cannot
be rekindled.

4. You plan on dating some fixed num-
ber of people (N) during your lifetime.



5. As you date people, you can only tell
relative rank and not true rank. This
means you can tell the second person
was better than the first person, but you
cannot judge whether the second person
is your true love. After all, there are
people you have not dated yet.

How does the game play out?

You can start thinking about the solution by
wondering what your strategies are. Ul-
timately, you have to weigh two opposing
factors.

–If you pick someone too early, you are mak-
ing a decision without checking out your op-
tions. Sure, you might get lucky, but it’s a big
risk.

–If you wait too long, you leave yourself with
only a few candidates to pick from. Again,
this is a risky strategy.
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The game boils down to selecting an optimal
stopping time between playing the field and
holding out too long. What does the math
say?
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Answer to Puzzle 23: Finding
true love

The basic advice: Reject a certain number of
people, no matter how good they are, and
then pick the next person better than all the
previous ones.

The idea is to lock yourself in to search and
then grab a good catch when it comes along.
The natural question is how many people
should you reject? It turns out to be propor-
tional to how many people you want to date,
so let’s investigate this issue.

To make this concrete, let’s look at an ex-
ample for someone that wants to date three
people.

Example with Three Potential
Relationships



A naive approach is to select the first rela-
tionship. What are the odds the first person
is the best?

It is equally likely for the first person to be
the best, the second best, or the worst. This
means by pure luck you have a 1/3 chance of
finding true love if you always pick the first
person. You also have a 1/3 chance if you al-
ways pick the last person, or always pick the
second.

Can you do better than pure luck?

Yes, you can.

Consider the following strategy: get to
know–but always reject–the first person.
Then, select the next person judged to be
better than the first person.
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How often does this strategy find the best
overall person? It turns out it wins 50 per-
cent of the time!

For the specifics, there are 6 possible dating
orders, and the strategy wins in three cases.

(The notation 3 1 2 means you dated the
worst person first, then the best, and then
the second best. I marked the person that the
strategy would pick in bold and indicated a
win if the strategy picked the best candidate
overall.)

1 2 3 Lose

1 3 2 Lose

2 1 3 Win

2 3 1 Win

3 1 2 Win
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3 2 1 Lose

You increase your odds by learning informa-
tion from the first person. Notice that in two
of the cases that you win you do not actually
date all three people.

As you can see, it is important to date people
to learn information, but you do not want to
get stuck with fewer options.

So do your odds increase if you date more
people? Like 5, or 10, or 100? Does the
strategy change?

The answer is both interesting and
surprising.

The Best Strategy for the General Case

From the example, you can infer the best
strategy is to reject some number of people
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(k) and then select the next person judged
better than the first k people.

When you go through the math, the odds do
not change as you date more people. Al-
though you might think meeting more
people helps you, there is also a lot of noise
since it is actually harder to determine which
one is the best overall. So here is the
conclusion.

The advice: Reject the first 37 percent of the
people you want to date and then pick the
next person better anyone before. Surpris-
ingly, you’ll end up with your true love 37
percent of the time.

The advice is unchanged whether you plan to
date 5, 10, 50, 100, or even 1,000 people.
Here is a table displaying specific numbers:
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Now I was simplifying matters just a bit be-
cause “rejecting 37 percent” is an approxima-
tion. There is some math that goes into the
exact answer.

To be precise, the exact answer is to find first
value of k such that
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The problem is also known as the "Secretary
problem."

The full proof is fascinating, though some-
what technical. I encourage avid math read-
ers to check it out:

How to Find a Spouse A Problem in Discrete
Mathematics With an Assist From Calculus
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Puzzle 24: Shoestring
problem

This is a question one of my blog readers got
in an interview. It's a very hard probability
puzzle to figure out on the spot.

You have a box with 30 shoe laces (or
strings) in it. You can only see the ends of the
strings sticking out, so you see 60 string ends
total. Now you start tying them together un-
til all ends are tied to another.

How many ways can you tie the shoe laces
together?

What is the expected number of loops?

For instance there could be at least 1 big loop
consisting of all the 30 strings but at most 30
individual loops when each end is tied to the
end of the same string.

http://mindyourdecisions.com/blog/
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Answer to Puzzle 24: Shoes-
tring problem

With math problems and interview brain
teasers, there are often problem solving tech-
niques that can help you get to the right
answer.

My first thought was that working out the
answer for 30 shoelaces would be hard. I
would instead tackle smaller cases like con-
sidering 2 or 3 shoelaces and seeing if there
is a pattern.

How many ways can you tie 2 shoelaces
together?

I drew a figure like this and I counted the
number of ways.



I noticed the leftmost shoelace end could
connect to at most 3 spots: it could tie to the
end of its own shoelace, or it could tie to one
of the other two ends on the other shoelace.

After that, there would be just two ends re-
maining, making just 1 way to connect the
loops.

This means there are exactly 3 x 1 = 3 ways
to connect the ends when there are 2
shoelaces.
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What about 3 shoelaces?

I tackled this case by drawing out the follow-
ing diagram.

For the leftmost end, there are 5 different
shoelace ends that it could connect to: either
it could connect to the other end of its own
shoelace, or it could connect to the four ends
of the other shoelaces.

Once that end is tied, we have to consider
how many ways the remaining 4 shoe lace
ends could be tied. But in fact we have solved
this problem already! This is exactly the
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number of ways 2 shoelaces could be tied to-
gether, which we found was 3 x 1 = 3.

Thus, the total number of ways for 3
shoelaces is 5 x 3 = 15.

Part 1: How many ways can you tie the
shoe laces together?

We can deduce a general pattern from these
cases. If there are n shoelaces, then there are
2n shoelace ends.

The first shoelace end can be connect to any
of the other (2n – 1) ends.

Tying one end to another removes 2 ends.
Thus, the next shoelace end can be connec-
ted to any of the remaining (2n – 3) shoelace
ends, the one after that to the remaining (2n
– 5) ends, and so on.
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The general formula for n shoelaces is they
can be tied together in:

Ways to tie n shoelaces = 1 x 3 x 5 … x
(2n – 1)

In other words, we have a product of the odd
numbers up to (2n – 1). For 30 shoelaces this
will be a very big number:

29,215,606,371,473,169,285,018,060,091,249,259,296,875

Part 2: How many expected loops will
you get?

I spent a long time trying to figure this part
out. One of the comments from this puzzle
showed an amazingly elegant solution.

What about this: You have 60 ends and you
start tying laces, two at a time. Each time you
tie a knot, you either make a loop or you
don't, and you take 2 ends out of the pool.
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For each iteration, you take one end (e1) and
then tie it to another end (e2). That other
end is either the other end of e1 or it isn't,
and you just extend the length of e1. The
chance e2 is tied to the other end of e1 is
1/(n-1) where n is the number of ends in the
current pool.

The expected number of loops made after the
first iteration is then 1/59. For the next itera-
tion, it's 1/57, and so on until you get to 1/1.

So the total number of expected loops is
sum(1/59+1/57+...+1/1)=2.682.

Or in general, the expected number of loops
is (1/1 + 1/3 + 1/5 + ... 1/(2n-1)). Quite an el-
egant solution!
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Puzzle 25: Christmas trinkets

Assume you are running a business that sells
a seasonal Christmas trinket. You can buy
the trinket at $3 and sell it for $4. You can
only buy the trinket once a year and cannot
replenish till next year.

From experience, you have some idea about
how much product will sell. Every year, the
demand for the trinket from your shop will
be of an equal probability between 0 and 100
(that is, there is a 1/101 chance that 0 units
will sell, a 1/101 chance that 1 unit will sell,
…, and a 1/101 chance that 100 units will
sell).

You have a choice to buy between 0 and 100
units of the product. After the holiday season
is over, no one wants the trinkets, and you’ll
have to discard any unused products at your
loss.



How many Christmas trinkets should you
buy?

Clarification note for the probability: if you
buy too few trinkets, then you simply sell
out. Let’s say you buy 10 trinkets, but that
year the demand happened to be for 100
trinkets. In that case, you sell out of your 10
trinkets, and you missed out on the chance
to profit on high demand.

(credit: this puzzle came from a question
asked on Math Reddit)
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Answer to Puzzle 25: Christ-
mas trinkets

I will break the answer down into a some
manageable steps.

Step 1: figuring out the probability
distribution

The key to the problem is figuring out the
probability distribution if you buy n units.

If you buy all 100 units, then you safely know
that you have 1/101 probability of selling
each unit. But what if you buy fewer units,
like say 50 or 30 units? You have to derive
the probability distribution from the theoret-
ical demand.

For all units less than n, the probability that
you sell that many units is simply 1/101. But
for your last unit, you have to include the



instances when people demand more than n
units. To do that, you want to add in the
probabilities like follows:

I will put the distribution in text as well for
reference.
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If you buy n units, then the probability you
will sell units is given by:

–1/101 chance sell 0 units
–1/101 chance sell 1 unit
–1/101 chance sell 2 units
…
–(101-n)/101 chance sell all n units

The reason the last probability is higher is
this: if the demand for units is higher than n,
then you only get to sell n units. So you have
to lump the probability of selling n or more
units into one term.

Step 2: writing the expected profit

The expected profit will be given by the ex-
pected revenue (number sold times $4) sub-
tracted by the cost (this part is easy: you
spent $3 * n for the units, whether they sell
or not).
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So the expected profit is given by:

Profit = (selling price)(expected sales) –
(cost)(units bought)
Profit = 4(expected sales) – 3n
Profit = 4[1/101 (0 + 1 + 2 + ... + n -1) +
(101-n)n/101]- 3n
…
(lots of algebra)
…

Profit = 1/202 (198 n – 4n2)

Now that you have the expected profit, the
rest of the problem should be
straightforward.

Step 3: maximizing profits

The amount you want to buy is the number
of units that maximizes profits.

To maximize profits, we take the derivative
of the profit equation and set it equal to zero.
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Then we verify the amount we solved for is a
maximum.

So we get:

derivative of profit = 198/202 – 8n /
202 = 0

n = 24.74

Since we cannot buy fractional amounts, we
need to check whether 24 or 25 is the right
answer. You can find that 25 gives the max-
imum of $12.13 of expected profit.

In the end of the day, you ultimately want to
hedge your bet and not buy too much of the
supply. You buy a decent amount so you can
meet demand, but if you buy too much you’ll
end up taking a hit on the loss.

The extension of the problem
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When I solved the problem, I was curious if
it meant anything that the optimal answer
was buying 25 percent of the available
supply.

I noticed that 25 percent was related to the
margin: you make $1 profit on a $4 product,
so that’s a 25 percent margin.

This turns out to be exactly the case. Here’s
the general case.

Let’s suppose you can sell a product for P,
you buy it for C, and the available supply is S.
Additionally, the demand for the product is
given by:

–1/(S+1) chance sell 0 units
–1/(S+1) chance sell 1 unit
–1/(S+1) chance sell 2 units
…
–(S-n+1)/(S+1) chance sell S units

310/488



We can proceed as above to find out the ex-
pected profit of buying n units with these
conditions.

I will spare you the algebra and just cut to
the answer. The optimal number of units to
buy is:

optimal number = S(1 –C/P) – 0.5 + (1
– C/P)

Now we have the answer, let’s interpret it.

The first thing we can do is ignore the addit-
ive term 0.5 + (1 – C/P). Both of these are
fractions, so the term will be between 0 and
1. Ultimately this will only affect the optimal
answer by 1 unit, so for the sake of estimat-
ing, let’s ignore this term.

So what we end up with is this:

optimal number estimate = S (1 – C/P)
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The answer can be interpreted as follows:
you should buy a percentage of supply equal
to the term (1 – C/P).

And what is that term (1 – C/P)? This is pre-
cisely the margin of the product: it’s the
amount of profit you make as a percentage of
the price of the product.

In other words, the percentage amount of
supply you should buy is equal to the margin
of the product. That’s quite a big simplifica-
tion considering all the optimization math
you see above.

Another implication of the model is this:
you’ll rarely want to buy all of the available
supply, unless your margin is off the wall.
Like if you could buy something at $1 and
sell it for $100, then you’re at a point where
it could make sense to buy all the supply.

I love it when math works out so nicely.
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Section 3: Strategy and game
theory problems

Can you outthink your opponent?

The following 20 puzzles deal with strategy
and game theory.



Puzzle 1: Bar coaster game

Here is how the game works:

–Someone goes first and places a coast-
er anywhere on the table

–The other person goes by placing a
coaster anywhere else that’s open on the
table

–The game continues with each player
moving in turn to place a coaster on the
table

–The winner of the game is the person
who puts down the last coaster, i.e.,
there is no more open space on the table

To make it interesting, you can play with a
rule that the loser has to buy the next round.



It’s a simple game, so what’s the best way to
play? Is it better to go first or second? Is
there a winning strategy?

I don’t think it matters if the table is round
or rectangular, nor does it matter if the
coaster is round or a square.
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Answer to Puzzle 1: Bar
coaster game

There is a winning strategy for the first play-
er in a 2-person contest. Here is what to do:

Your first move is to place a coaster in the
center of the table. Now, wherever your op-
ponent places the coaster, you place yours
symmetrically on the other side of the table.
If they place a coaster in the southwest
corner, you place yours in the analogous spot
in the northeast corner. (If you imagine the
center of the table as the origin, this is math-
ematically a reflection about the origin).

This strategy means you can always match
your opponent's move. The game ends when
your opponent runs out of open sports,
which equivalently means you have placed
the last coaster.



Puzzle 2: Bob is trapped

A villian has captured Bob and Alice. He
could kill the dynamic duo, but he decides to
have some fun while they are hostage. So he
tells them they will play a game, with their
lives on the line. Here is the game: Bob and
Alice will be held captive in two separate fa-
cilities, under constant surveillance. Every
day, each will flip a coin. Each person must
then guess the result of the other person’s
coin (Bob has to guess Alice’s toss and vice
versa).

As long as one of them guesses correctly,
they will both get to live for another day. But
if ever both should guess wrong, then the vil-
lian will end things once and for all.

The villian smiles and then instructs the
guards to proceed. Just as Bob and Alice are



being taken away, Bob whispers something
to Alice.

How long can Bob and Alice survive this
game, on average? What must they do?

(credit: This is a puzzle adapted from Max
Schireson’s blog.)
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Answer to Puzzle 2: Bob is
trapped

Bob, super-genius that he is, devised a
strategy that could allow them to survive in-
definitely. The trick is the two will not be try-
ing to guess correctly individually, but they
will work as a team in their guesses.

Bob told Alice the following: every day, Alice
will guess the same outcome as his flip, and
Bob will guess the opposite outcome as his
flip. Since the two flips will either show the
same face, or the opposite face, at least one
of them must be right!

To see this explicitly, here are the possible
outcomes:

(Bob’s flip, Alice’s flip)



(H, H) –> same outcomes, Alice guesses
correctly
(T, T) –> same outcomes, Alice guesses
correctly
(T, H) –> opposite outcomes, Bob
guesses correctly
(H, T) –> opposite outcome, Bob
guesses correctly

Bob and Alice will keep on winning, which
will no doubt provide them with enough time
to devise an escape plan.
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Puzzle 3: Winning at chess

Alice is a great chess player, and she occa-
sionally taunts Bob, who barely knows the
rules.

One day Bob got fed up and challenged Alice
to a contest. Bob challenged Alice to play two
games simultaneously, and he declared he
would either win one of the games, or he
would draw both of the games–in no case
would he lose both games.

Bob only asked they follow a couple of
ground rules. First, Bob would play black on
one board and white on the other. Second, to
avoid one game progressing faster than the
other, they would alternate playing moves
between the two boards. Bob said Alice could
have the first move too.



Alice was sure she could win, and she got
things going by playing her white move first.

In the end, Bob was able to draw in both
games in spite of his poor skill level. How
was Bob able to match wits with Alice?
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Answer to Puzzle 3: Winning
at chess

Alice fell right into Bob's trap, as she ex-
citedly made the first move. On board 1,
Alice opened with her move for white. So on
board 2, Bob copied that move for his turn as
white. Then on board 2, Alice made her reply
in black. And accordingly, on board 1, Bob
copied that move for his turn as black.

You can see what Bob's strategy was: he just
kept copying Alice's moves for the rest of the
games. Alice quickly realized that Bob was
copying her moves, and that she was essen-
tially playing against herself. If she won on
one board, then Bob would surely win on the
other. There was no way Bob could lose in
both games. So Alice gave up and quickly
moved both games into drawing positions.



Note: I suppose this strategy of copying
moves could also be used for other board
games of pure skill with sequential moves
like connect 4, Go, checkers, etc.

One of the comments from a reader named
Paul indicated this is sort of attack can hap-
pen in the real world:

In computer security this is a well-
known situation and has even been giv-
en a (gender biased) name: man-in-the-
middle attack. It can be very difficult to
protect against. In this chess situation,
Alice would have to follow a piece of ad-
vice Presh likes to give: change the
game!
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Puzzle 4: Math dodgeball

Let’s analyze a math game called dodgeball
that’s a sort of twist on tic-tac-toe.

Here is how the game works. It’s a two player
game with the following set-up.

Player 1 gets a 6×6 grid of squares as follows:



Player 2 gets a 6×1 grid of squares:
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Here are the rules:

1. Player 1 begins the game by filling out
the entire first ROW of his 6×6 grid,
marking each square with either an X or
an O.

2. Player 2 then goes by marking the just
first SQUARE in his 6×1 grid, with
either an X or an O.

3. On each subsequent turn, player 1 fills
out the entire next row of his 6×6 grid
with any combination of X’s and O’s. In
turn, player 2 marks the next square of
his 6×1 grid.
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4. The game ends on the sixth round
when both players have filled out their
grids.

At this point, notice player 2′s grid has six
squares filled with X’s and O’s. Player 1 has
six such rows in his grid.

The winner is decided as follows: if player 2′s
grid exactly matches one of the six rows in
player 1′s grid, then player 1 wins. Otherwise,
player 2 wins the game.

If you were given the choice, would you
rather be player 1 or player 2? What is your
strategy to win the game? Is the strategy
foolproof meaning it will guarantee a
victory?
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Answer to Puzzle 4: Math
dodgeball

It turns out player 2 can always win the game
because he goes second and has an
advantage.

This is not a hard game, but I will explain
how it is interesting mathematically.

How can player 2 guarantee he is making a
sequence that is not the same as any of play-
er 1′s rows?

Player 2 does the following: on turn n, he

looks at what player 1 writes in for the nth

square of the current row. Then player 2
marks exactly the opposite. For example, if
player 1 begins the game by writing X in the
first square, then player 2 should write O for
the first square, and vice versa.



Here is an example for the 6×6 grid. After
player 1 writes out a row, player 2 looks at
the appropriate square and marks in the op-
posite. Here is what the two grids look like
when the game is complete.
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We can readily see that player 2′s row does
not match any of the rows in player 1′s grid.

The reason is that player 2′s sequence differs

from row n on the nth spot, and hence the se-
quence must be different from any of the
rows that player 1 created.

The same argument can be used to show
player 2 can win for a row of any size. It even
works for an infinite size grid! So even when
player 1 writes an infinite number of se-
quences, player 2 can still make a unique
sequence.
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Puzzle 5: Determinant game

Alan and Barbara play a game in which they
alternately write real numbers into an ini-
tially blank 1000 x 1000 matrix.

Alan plays first by writing a real number in
any spot. Then Barbara writes a number in
any spot, and they move in turn. The game
ends when all the entries in the matrix are
full.

Alan wins if the determinant of the final mat-
rix is nonzero; Barbara wins if it is zero. Who
has the winning strategy?

(credit: This problem appeared in the 2008
Putnam exam)

http://amc.maa.org/a-activities/a7-problems/putnamindex.shtml
http://amc.maa.org/a-activities/a7-problems/putnamindex.shtml


Answer to Puzzle 5:
Determinant game

The answer is that Barbara will be able to
win the game. Here is one way to see this,
courtesy of the Putnam exam solutions.

The trick is to realize that the determinant of
a matrix will be zero if any two rows are
identically the same. Barbara can always
force this to happen. How is that?

One way is for Barbara to make the first and
second rows identical. If Alan writes a num-
ber in the first row, then Barbara writes the
same number directly below it in the second
row. If Alan writes a number in the second
row, then Barbara rights the same number
directly above it in the first row.



If Alan writes in any other row, then Barbara
also writes a number anywhere else but rows
1 and 2.

The final matrix will have rows 1 and 2 be the
same, and so Barbara will win the game.

It turns out Alan is facing a very biased
game--best if he realizes this and chooses not
to play.
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Puzzle 6: Average salary

Three friends want to know their average
salary for negotiating purposes. How can
they do it without disclosing their own salar-
ies to each other?



Answer to Puzzle 6: Average
salary

The friends can calculate the average
through a clever encoding process. The idea
is that each person encodes their salary by
adding a random number to it. These en-
coded salaries can be added together and
then the random numbers can be subtracted.
The resulting figure is the sum of the three
salaries from which the average can be
obtained.

Since additions and subtractions are easy to
decode, however, the tricky part is imple-
menting a solution where no person obtains
knowledge of the other two party’s random
numbers, for that would reveal enough in-
formation to obtain individual salaries. To
do that, one can sequence the additions and
subtractions carefully.



Another method is more direct and works
like a secret ballot, mentioned as a comment
by Rajesh on my blog.

Let a pencil be a substitute for $10,000 (or
some reasonable amount of money). Each
person translates their salary into number of
pencils, so someone making $90,000 would
need 9 pencils. Then let each person drop
their respective number of pencils into a
sealed box. Once the three people are done,
they can count the total number of pencils
and find the average.

338/488

http://mindyourdecisions.com/blog/


Puzzle 7: Pirate game

Three pirates (A, B, and C) arrive from a luc-
rative voyage with 100 pieces of gold. They
will split up the money according to an an-
cient code dependent on their leadership
rules. The pirates are organized with a strict
leadership structure–pirate A is stronger
than pirate B who is stronger than pirate C.

The voting process is a series of proposals
with a lethal twist. Here are the rules:

1. The strongest pirate offers a split of
the gold. An example would be: “0 to
me, 10 to B, and 90 to C.”

2. All of the pirates, including the pro-
poser, vote on whether to accept the
split. The proposer holds the casting
vote in the case of a tie.



3. If the pirates agree to the split, it
happens.

4. Otherwise, the pirate who proposed
the plan gets thrown overboard from the
ship and perishes.

5. The next strongest pirate takes over
and then offers a split of the money. The
process is repeated until a proposal is
accepted.

Pirates care first and foremost about living,
then about getting gold. How does the game
play out?
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Answer to Puzzle 7: Pirate
game

At first glance it appears that the strongest
pirate will have to give most of the loot. But a
closer analysis demonstrates the opposite
result–the leader holds quite a bit of power.

The game can be solved by thinking ahead
and reasoning backwards. All pirates will do
this because they are a very smart bunch, a
trait necessary for surviving on the high seas.

Looking ahead, let’s consider what would
happen if pirate A is thrown overboard.
What will happen between pirates B and C?
It turns out that pirate B turns into a dictat-
or. Pirate B can vote “yes”? to any offer that
he proposes, and even if pirate C declines,
the situation is a tie and pirate B holds the
casting vote. In this situation, pirate C has no
voting power at all. Pirate B will take full



advantage of his power and give himself all
100 pieces in the split, leaving pirate C with
nothing.

But will pirate A ever get thrown overboard?
Pirate A will clearly vote on his own propos-
al, so his entire goal reduces to buying a
single vote to gain the majority.

Which pirate is easiest to buy off? Pirate C is
a likely candidate because he ends up with
nothing if pirate A dies. This means pirate C
has a vested interest in keeping pirate A
alive. If pirate A gives him any reasonable of-
fer–in theoretical sense, even a single gold
coin–pirate C would accept the plan.

And that’s what will happen. Pirate A will of-
fer 1 gold coin to pirate C, nothing to pirate
B, and take 99 coins for himself. The plan
will be accepted by pirates A and C, and it
will pass. Amazingly, pirate A ends up with
tremendous power despite having two
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opponents. Luckily, the opponents dislike
each other and one can be bought off.

The game illustrates the spoils can go to the
strongest pirate or the one that gets to act
first, if the remaining members have con-
flicting interests. The leader has the means
to buy off weak members.
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Puzzle 8: Race to 1 million

Alice and Bob start with the number 1. Alice
multiplies 1 by any whole number from 2 to
9. Bob then multiplies the result by any
whole number from 2 to 9, and the game
continues with each person moving in turn.

The winner is the first person to reach 1 mil-
lion or more.

Who will win this game? What is the
strategy?



Answer to Puzzle 8: Race to 1
million

My first attempt to solve this game demon-
strated a common mistake in solving this
type of puzzle. My initial attempt was to sim-
ulate the game and look for a pattern in how
Bob might be able to force a certain product.
This is not wrong necessarily, but it is a lot
harder to see the pattern.

I then realized the game should be solved in
reverse using backwards induction. The
thought process is like this.

Let’s imagine that we win the game, and that
we are the player that sends the total beyond
1 million. The question is this: if we were
able to bring the total above 1 million, what
possible move could have gotten us there?
That is, what number did we use to multiply



the previous total by, and what previous
totals would have allowed us to win?

Clearly one possibility is 500,000. If we were
presented with that number, we could mul-
tiply it by 2 and get to 1 million. In fact, if we
were presented with any total 500,000 or
higher, then we could win by multiplying by
2. This shows that if we receive a number
500,000 or higher, then we can win the
game. We can thus say that any number
500,000 or higher is a winnable number.

We can then ask, what other numbers are
winnable numbers? In the game, we are al-
lowed to pick any whole number from 2 to 9.
Since the highest number we can pick is 9,
we will use this to find the lowest number
that will let us win. We can calculate that
111,112 times 9 is just over 1 million.

Therefore, any number from 111,112 to
999,999 is a winnable number.
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Repeat the logic to solve the game

Now comes the interesting part. We know
that if we begin a turn with any of those win-
nable numbers, WE win the game. The ques-
tion is: what numbers came before that?
What numbers, for which our opponent be-
gins a turn, would force them to bring the
total to a winnable number for us?

One example readily comes to mind: 111,111.
If our opponent started with this number,
the only options are to multiply it by a num-
ber from 2 to 9. The lowest total that will res-
ult is 222,222 and the highest total is
999,999. Regardless of what the opponent
does, the resulting number is a winnable
number for us. We can say therefore that
111,111 is a losable number.

What other numbers are losable numbers?
We are looking for a range of numbers that
will force someone to produce a result in a
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winnable number range. As each player has
to multiply by a minimum of 2, we can find
the lower range. We can calculate that 55,556
is half of 111,112.

Therefore, any number from 55,556 to
111,111 is a losable number.

Generalizing the process

We can continue reasoning. If we know the
numbers 55,556 to 111,111 are losing num-
bers, what number range would allow a play-
er to bring an opponent into the losable
number range? These numbers would there-
fore also be winnable numbers.

As we reasoned above, to calculate winnable
numbers we divide the lower bound by 9,
and to calculate losable numbers we divide
the lower bound by 2. (We need to round up
after any division since the game will only
have integers)
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We find the following ranges are winnable
and losable:

111,112 to 999,999 –> winnable
55,556 to 111,111 –> losable
6,173 to 55,555 –> winnable
3,087 to 6,172 –> losable
343 to 3,086 –> winnable
172 to 342 –> losable
20 to 171 –> winnable
10 to 19 –> losable
2 to 9 –> winnable
1 –> losable

Solution: Alice should always lose

Alice begins the game with 1 which we
reasoned above was a losable number. When
she presents any of the numbers 2 to 9 to
Bob, he can force the total into the losing
range of 10 to 18. Whatever Alice does, Bob
can continue to control the resulting total so
that he will win.
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That’s not to say that Bob will win definitely
win the game. With sloppy play, Bob can
make a mistake and let Alice win.

For instance, suppose Alice starts with 9. If
Bob multiplies that total by 9 to get to 72,
then he has given Alice a winnable number
which would allow her to control the game.
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Puzzle 9: Shoot your mate

You are undercover and about to make a
breakthrough with a mob boss. But your
partner, not knowing your mission, tries to
save you and gets captured.

The boss suspects you might be working with
the authorities. He asks you to prove your al-
legiance. He gives you a gun and requests
you shoot your partner. If you don’t fire, you
will surely be caught.

Do you do it? Why or why not? Use game
theory reasoning to figure it out.



Answer to Puzzle 9: Shoot
your mate

Let’s think about the problem strategically.
The boss either trusts you, or he does not,
and he has either handed you a loaded gun
or not.

Imagine for a second the boss has in fact
handed you a loaded gun. That would only
be reasonable if he truly trusted you. Right?
After all, if he handed you a loaded gun but
thought you were a spy, then he would have
to be worried you could fire the gun at him.

It only makes sense to give a loaded gun to
someone you deeply trust. But in that case,
there is no reason to test the person’s loyalty!

The very fact you are being tested means the
boss does not trust you. And in that case, the



only sensible thing for the boss is to hand
you an unloaded gun.

We can write out a matrix that shows hand-
ing you a loaded gun is a weakly dominant
strategy. It is simply safer to do, whether he
trusts you or not.

Therefore, if you are asked to shoot your
mate, you can be reasonably sure the gun is
not loaded. You should shoot at your partner
to keep your cover and pray the boss was not
crazy enough to hand you a loaded gun (of
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course, a villain as sadistic as the Joker
might do this).

Examples in the show 24 (mild
spoilers)

Jack Bauer is a game theorist. There are a
couple of memorable instances of this trope
that I want to mention here. (There are
plenty of other examples in tv, movies, and
literature at tvtrope.org)

Example from Season 4

In Season 4, a Muslim terrorist Dina defects
to the American side to protect her son. She
helps Jack Bauer to find the terrorist leader
Marwan, who then questions her trust.

Marwan offers Dina a gun and tells her to
shoot Jack to prove her loyalty. Dina gets
nervous, because if she kills Jack then she
would risk the federal protection on her son.
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Dina shoots at Marwan only to find the gun
is not loaded. Her deception is revealed and
Marwan orders her to be shot.

Example from Season 3

Another instance happens in Season 3 when
Jack was in deep cover with the Salazar
brothers. Jack’s partner, Chase, does not
realize this and he makes a heroic effort to
rescue Jack.

Unfortunately Chase is apprehended and it
raises doubts whether Jack is secretly work-
ing with authorities. Ramon Salazar hands
Jack a gun and tells him to shoot Chase to
prove he is trustworthy. Jack takes fire, and
it turns out the gun was not loaded so Chase
survives. Jack keeps his cover and eventually
saves the day as usual.

Chase later finds out Jack was undercover,
and he is deeply angry that Jack took aim.
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Jack reveals his game theoretic thinking all
along, in Season 3, episode 13.

Chase: You put a gun to my head, and
you pulled the trigger.

Jack: I made a judgment call that Ra-
mon Salazar would not give me a loaded
weapon–that he was testing me.

Chase: And what if it is was loaded?
Then what?

Jack: Then I’d have finished my
mission.

It is not an easy thing to shoot at your mate,
but it is a judgment call that fits in line with
strategic thinking.
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Puzzle 10: When to fire in a
duel

What’s the right time to shoot in a duel?

A simple dueling game

Consider a duel between two players A and
B, in which each person has one bullet.

A and B start the duel at a distance t = 1 from
each other. They approach each other at the
same speed, and each has to decide when to
shoot.

As they get closer to each other, their accur-
acy increases. At distance t, the player A has
a probability a(t) of killing his opponent, and
for player B it is b(t). Assume both players
are aware of the other’s skill.



In this duel, missing your shot is very costly.
If a player shoots and misses, then the other
player keeps approaching until he gets to
point blank range and shoots with complete
accuracy.

What is the optimal strategy of this game?
That is, at what point should each player
shoot?
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Answer to Puzzle 10: When to
fire in a duel

We will separately solve for the best time for
each player to shoot.

When player A should fire

The tricky part to the game is balancing
when to shoot. If you fire too early, then your
opponent kills you for sure. If you wait too
long, then you can also get beaten if your op-
ponent is a good shot.

We can think about when player A should
fire by listing out the chance of surviving in
the different possibilities of firing at point t.

If player A fires first: Player A will sur-
vive only if he hits, which happens with
probability a(t)



If player A waits to fire: Player A sur-
vives only if player B misses, which hap-
pens with probability 1 – b(t)

Now we can reason out player A's strategy.
Player A will want to fire first if his probabil-
ity of hitting is greater than player B's prob-
ability of missing:

a(t) ≥ 1 – b(t)

But he must also be careful not to fire too
early. He should always wait if his probabil-
ity of hitting is smaller than player B’s prob-
ability of missing:

a(t) ≤ 1 – b(t)

Putting those two equations together, we can
see that Player A should shoot at the time
when he is at distance t* where

a(t*) = 1 – b(t*)
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Or alternately written,

a(t*) + b(t*) = 1

Solution: when player B should fire

We can do the same exercise for player B.
Notice the same conditions are true:

If player B fires first: Player B will sur-
vive only if he hits, which happens with
probability b(t)

If player B waits to fire: Player B sur-
vives only if player A misses, which hap-
pens with probability 1 – a(t)

Now we can reason out player B's strategy.
Player B will fire first, if his chance of hitting
is better than his opponent’s probability of
missing:

b(t) ≥ 1 – a(t)
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But he must also be sure not to fire too soon.
He needs to wait so long as his chance of hit-
ting is smaller than his opponent’s probabil-
ity of missing:

b(t) ≤ 1 – a(t)

Putting those two equations together, we can
see that Player B should shoot at the time
when he is distance t* where

b(t*) = 1 – a(t*)

Or alternately written,

a(t*) + b(t*) = 1

Solution: they fire at the same time!

From the equations, you’ll notice that both
players find their optimal firing times satisfy
the same equation. That is, they both choose
to fire at the same time! There is one specific
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time and distance which is optimal for both
players.

This would not be surprising if the two play-
ers had the same accuracy level. But we
solved this game using the assumption their
accuracy levels were different.

So why do they end up shooting at the same
time?

We can reason why this must be the case. If
one person chose to fire earlier than another,
say 5 seconds earlier, then he would be bet-
ter off waiting. His opponent is not shooting
for another 5 seconds, so he might as well
wait a few more seconds to get closer and in-
crease his accuracy.

As the equations show above, the right time
to shoot is just when your chance of hitting
equals your opponents chance of missing.
And since one person’s failure is another
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person’s success, this means both players
choose the same time when they are a dis-
tance such that their accuracy functions sum
to a probability of 1.
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Puzzle 11: Cannibal game
theory

A traveler gets lost on a deserted island and
finds himself surrounded by a group of n
cannibals.

Each cannibal wants to eat the traveler but,
as each knows, there is a risk. A cannibal that
attacks and eats the traveler would become
tired and defenseless. After he eats, he would
become an easy target for another cannibal
(who would also become tired and defense-
less after eating).

The cannibals are all hungry, but they cannot
trust each other to cooperate. The cannibals
happen to be well versed in game theory, so
they will think before making a move.

Does the nearest cannibal, or any cannibal in
the group, devour the lost traveler?



Answer to Puzzle 11: Canni-
bal game theory

I find the problem interesting because the
solution uses two types of induction: the
strategy depends on backwards induction,
and the proof is based on mathematical
induction.

The short answer is the traveler's fate de-
pends on the parity of the group. If there is
an odd number of cannibals, the traveler will
be eaten, but if there is an even number, the
traveler will survive.

To prove this, we will consider small groups
and use mathematical induction to explain
the solution for larger groups.

Case n = 1: this is an obvious case. If there
is one cannibal, the traveler will be eaten. It
doesn't matter that the cannibal will get tired



because there are no other cannibals around
as a threat.

Case n = 2: this is a more interesting case.
Each cannibal wishes to each the traveler,
but each knows he cannot. If either cannibal
eats the traveler, then he will become de-
fenseless and the other one will eat him. So
each cannibal uses backwards induction to
realize that the only strategy is to not eat the
traveler. The hapless traveler finds a bit of
luck, therefore, and actually survives.

Case n = 3: this is where the problem gets
interesting. The best strategy is for the
closest cannibal to make a move and eat the
traveler. The cannibal will be defenseless
after eating, but ultimately he will be safe.
Why is that? The reasoning is due to induc-
tion: once the cannibal eats the traveler, the
resulting situation has 2 unfed cannibals and
the 1 defenseless cannibal. But as we just
showed above, when there are 2 unfed
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cannibals, neither will make a move for fear
of being eaten by the other! Thus the first
cannibal to make a move will be safe as the
remaining 2 cannibals block each other.

We can prove the higher cases using math-
ematical induction. If the number n is odd,
then the closest cannibal can safely eat the
traveler because the remaining number of
unfed cannibals is even (and by induction,
with an even number of unfed cannibals no
one makes a move). If the number n is even,
then no cannibal will eat the traveler, for if
he did, the remaining number of cannibals
would be odd, meaning he will get eaten by
the induction hypothesis.

I should point out this problem highlights
one of the problems with game theory and
backwards induction.

If a group had 20 cannibals, the traveler
would be safe. But if the group had 19, the
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traveler would die. That's all fine in theory,
but that's a HUGE difference in outcomes for
a detail like group size.

What if some of the cannibals counted
wrong, or if as the action took place another
cannibal appeared to throw off the rational
outcome?

So unfortunately there are games that have
mathematical elegance but shed light on how
seemingly minor details can have profound
effects on the game theory prediction.
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Puzzle 12: Dollar auction
game

A teacher holds up a dollar bill to a class and
announces the money is up for sale.

Bidding starts at 5 cents and bids will in-
crease by five cent increments.

There are two rules to when the game ends.

1. The auction ends when no one bids
higher. The highest bidder pays the
price of his bid and gets the dollar as a
prize.

2. The second highest bidder is also
forced to pay his losing bid (5 cents less
than the winning bid) but gets nothing
in return.



How will this game play out? What is your
best strategy?
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Answer to Puzzle 12: Dollar
auction game

Like many economic students, I learned
about this game first-hand. My teacher de-
scribed the game as a chance for us poor stu-
dents to make a small profit, if we were
smart enough. Little did we know how much
he was tricking us.

The bidding began at 5 cents and a hand shot
up to claim the bid. Would anyone pay 10
cents? Another hand shot up.

What about 15 cents? Again, another hand
shot up. Bidding at this stage seemed harm-
less because it’s an obvious deal to buy a dol-
lar for any amount less.

The twist became clear about when the high
bid was 75 cents. Many students started to
think about how the second rule–the one



requiring the loser to pay–would affect
incentives.

What might the second highest bidder think
at this stage? He was offering 70 cents but
being outbid. There were two choices he
could make:

--do nothing and lose 70 cents if the
auction ended

--bid up to 80 cents, and if the auction
ended, win the dollar, and profit 20
cents

It’s also possible a third person comes and
takes the top spot, but that’s not an action
one can necessarily depend upon. So ignor-
ing this option, the better choice is to bid 80
cents rather than do nothing.

But this action has an effect on the person
bidding 75 cent, who is now the second
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highest bidder. This person will now make a
similar calculation. He can either stand pat
and stand to lose 75 cents if the auction ends,
or he can raise the bid to 85 cents and have a
chance of profiting 15 cents. Again, bidding
higher makes sense. Thinking more gener-
ally, it always make sense for the second
highest bidder to increase the bid.

Such strategy is why the game unraveled
pretty quickly. Soon cash-strapped students
were bidding more than one dollar and fight-
ing over who would lose less money.

It is the incentives that dictate this weird
outcome. Consider an example when the
highest bid is $1.50. Since the high bid is
above the prize of $1, it is clear no new bid-
der will enter. Hence, the second bidder
faces the two choices of doing nothing and
losing $1.45, or raising the bid to $1.55 to
lose only 55 cents if the auction ends.
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In this case, it makes just as much sense to
limit loss as it does to seek profit. The second
highest bidder will raise the bid. In turn, the
other bidder will perform a similar calcula-
tion and again raise the top bid. This bidding
war can theoretically continue indefinitely.
In practical situations, it ends when someone
chooses to fold.

In my class, the game ended around $2 when
one player decided to end the madness. But
talk to economics professors and you’ll hear
that it is not unusual for the game to end at
anywhere from $5 to $10. It’s especially juicy
if the two bidders dislike each other in social
circles, and that adds its own element of en-
tertainment. As a side note, the game can be
played in other bid increments too, like 1
cent or 10 cents.

I think the game offers two insights. First, it
is best to avoid such games from the outset.
And second, if you find yourself in one, cut
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your losses early. It is better to lose at 2 cents
than at 2 dollars.

Can the auction be gamed?

At this point you might be asking if the prob-
lem is competition. Could cooperation lead
to a good outcome? In theory, yes. It is pos-
sible to cut a deal with others to avoid the
bidding war. Imagine a class of 9 students
who wanted to embarrass a professor. One
person could bid a single penny, everyone
could agree not to bid higher, ending the
game, and the profit of 99 cents could be
shared as 11 cents per person.

The solution is promising but the problem is
getting everyone to cooperate. Every person
has incentive to deviate. Imagine one person
who wants to show up the leader. If he bet 2
cents, he has a chance of getting 98 cents for
himself rather than settling for the meager
split of 11 cents.
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Nothing holds players to their words, and
when strangers are involved, there is really
no guarantee or time to plan in advance. This
is why a large lecture hall or sizeable dinner
party provide suitable locations to play this
game.

I’ve been talking about the game very negat-
ively so far, but there is always another side
to the story. Although buyers fare poorly, the
auctioneer makes out like a bandit. It’s a
trick that makes even rational buyers over-
spend vast amounts. It’s no wonder that eco-
nomics professors love to hold this auction.
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Puzzle 13: Bottle imp paradox

A stranger catches your attention one day.
He offers you an interesting proposition.

He wants to sell you a bottle that contains a
genie that will grant you any wish you want.

There is only one catch: you must sell the
bottle at a loss within one year, or you'll be
condemned to misery in Hell for the afterlife.

The stranger asks you what you would like to
do.

–Do you buy the bottle?

–What price do you pay?

–What is the lowest price one should buy the
bottle for?



Answer to Puzzle 13: Bottle
imp paradox

You first consider the price. On the one
hand, you do not want to pay too high a
price. You worry about shelling out cash
which you cannot recover until you sell. On
the other hand, you do not want to pay too
low a price, or else you risk not finding an-
other buyer.

What price is sensible? Let’s start from the
beginning and work our way up. Suppose
you offer to pay only one cent. This turns out
to be a very bad price. The reason is there is
no lower denomination and hence it will be
impossible to find another buyer. You will be
stuck with the bottle. Buying the bottle at
one cent is equivalent to buying your own
eternal damnation. So clearly this is a bad
price.



But what about two cents? At first, this
seems okay. If you buy at two cents, then you
could theoretically sell for one cent. The
problem is that you will be hard pressed to
find a buyer. The reason is the person who
buys from you is buying at one cent. And as
argued just above, it is stupid to buy the
bottle at one cent. Therefore, no one would
want to buy the bottle at two cents.

Indeed, this logic can be extended. No one
should want to buy at three cents, or four
cents, and so on. Inductively one can reason
there is no “safe”? price to buy the bottle.
Thus, the bottle should never be bought be-
cause it will be hard or impossible to find a
buyer.

But in practice, this conclusion feels wrong.
You would expect a buyer at a high enough
price. If you buy the bottle for $100, for ex-
ample, you can likely find someone who will
want to buy at $99.99. And they will feel
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safe, reasoning that they can find someone
willing to pay $99.98, and so on.

The bottle imp paradox is that inductive
reasoning and practical reasoning come to
contradictory conclusions. Is the bottle never
to be bought, or is there some high enough
price range?

How can we resolve this paradox? I’ll present
two reasonable resolutions.

Resolution 1: the sinner saves the day

The paradox could be readily resolved with
the existence of an atheist buyer. There could
be someone who buys the bottle without ex-
pecting to sell it. This may be someone who
does not believe in a supernatural afterlife
with damnation.

Or alternately, it could be a buyer who is a
sinner that cannot be saved. Since his life is
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already destined for damnation, having the
bottle does not add an additional penalty.

The latter situation is more or less the resol-
ution offered in Stevenson’s story The Bottle
Imp, on which this puzzle is based.

Resolution 2: foreign currencies

Another trick is that are currencies with
money worth less than one penny. In Steven-
son’s story, the protagonist travels to Tahiti
in search of a coin worth one-fifth of an
American penny.

Introducing foreign currencies also allows
for the bottle to be sold indefinitely. The
reason is that currencies fluctuate in values
on the foreign exchange market. One could
buy the bottle for a low price in one cur-
rency, and sell it when the currency appreci-
ates. The bottle could be sold back and forth
in accordance with the swings of the market.
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Of course, now we are back to the situation
of betting on the market and the madness of
men, which is not all that comforting.
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Puzzle 14: Guess the number

On a game show, two people are assigned
whole, positive numbers. Secretly each is
told his number and that the two numbers
are consecutive. The point of the game is to
guess the other number.

Here are the rules of the game:

–The two sit in a room which has a clock
that strikes every minute on the minute

–The players cannot communicate in
any way

–The two wait in the room until
someone knows the other person’s num-
ber. At that point, the person waits until
the next strike of the clock and can an-
nounce the numbers



–The game continues indefinitely until
someone makes a guess

–The contestants win $1 million if cor-
rect, and nothing if they are wrong

Can they win this game? If so, how?

(Credit: I came across a highly amusing
puzzle in Impossible?: Surprising Solutions
to Counterintuitive Conundrums)
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Answer to Puzzle 14: Guess
the number

At first it seems like the contestants can do
no better than chance. If a contestant has the
number 20, for instance, there is no way to
tell if the other person has 19 or 21.

The naive strategy is to wait a bit and then
take a guess at the other number, yielding a
50 percent chance of success.

But can they do better?

The solution

The answer lies in the subtle rule about an-
nouncing the number once the clock strikes.
It turns out that two players who reason cor-
rectly can win every single time, if they think
inductively.



To see why this is so, think about a case
where the players can win for sure. If one of
the players gets the number 1, then he can be
sure the other player has the number 2.
There is no other possibility because the two
assigned numbers are consecutive and posit-
ive. Therefore, this player will immediately
deduce the answer and announce the num-
bers during the first strike of the clock.

Now consider when the players are assigned
the numbers 2 and 3. The player with 2 can
reason as follows. "I know my partner can
either have 1 or 3. But if he has 1, then he
should know it and will announce it at the
first strike of the clock. So if the clock strikes
once and nothing happens, I can be sure that
I have the lower number. Therefore our
numbers must be 2 and 3." So what will hap-
pen is this player will announce the numbers
at the second strike of the clock.
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This reasoning can naturally be extended by
induction. The general statement is the play-
er with the number k will realize the other
has k + 1 and can announce this information

at the kth strike of the clock.

They can win every time!

Final thought: the connection with
common knowledge

The puzzle illustrates the game theory
concept of common knowledge which is dis-
tinguished from the weaker concept of mutu-
al knowledge.

Roughly speaking, an event is mutual know-
ledge if all players know it. Common know-
ledge also requires that all players know the
event, all players know that all players know
it, and so on ad infinitum.
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Here is how the two concepts work in the
game. When a player has the number 20, it is
mutual knowledge that neither player has
the number 1, or 2, or so on up to 18. But
that deduction is not good enough to solve
the game.

And that is where the clock provides a help-
ing hand. When the clock strikes once, and
no one answers, the fact that neither player
has 1 transforms from mutual knowledge in-
to common knowledge. This alone is trivial
given the numbers are consecutive, but as
shown above, this stronger set of knowledge
can build up on consequent strikes of the
clock. Each time the clock strikes the set of
excluded numbers is included as common
knowledge and eventually the players can
win.

389/488



Puzzle 15: Guess 2/3 of the
average

A teacher announces a game to the class.
Here are the rules.

1. Everyone secretly submits a whole
number from 0 to 20.

2. All entries will be collected, and the
guesses will be averaged together.

3. The winning number will be chosen
as two-thirds of the average, rounded to
the closest number. For instance, if the
average of all entries was 3, then the
winning number would be chosen as 2.
Or if the average was 4, the winning
number would be 3 (rounded from
2.6666…).



4. Entries closest to the winning number
get a prize of meeting with the professor
over a $5 smoothie. (In the academic
version of the game, multiple winners
split the prize, but this teacher is being
generous).

What guess would you make? What if every-
one were rational?
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Answer to Puzzle 15: Guess
2/3 of the average

The game is called a "p-beauty contest." The
"p" refers to the proportion the average is
multiplied by–in this case, p is two-thirds. If
you’re wondering, the game has the same fla-
vor for any value of p less than 1. Why is it
called a beauty contest? It’s because the
game is the numbers-analog to a beauty con-
test developed by John Maynard Keynes.

Here is the beauty contest that Keynes
pondered. Imagine that a newspaper runs a
contest to determine the prettiest face in
town. Readers can vote for the prettiest face,
and the face with the most votes will be the
winner. Readers voting for the prettiest face
will be entered in a raffle for a big prize.

How does the game play out? Keynes wanted
to point out the group dynamics. The naive



strategy would be to pick the face you found
to be the most attractive. A better would be
to picking the face that you think other
people will find attractive.

The number "beauty contest" has the same
kind of logic. You don’t pick a number you
like. You pick a number that’s closest to two-
thirds of the average of everyone else. The
twist of both games is that your guess affects
the average outcome. And each person is try-
ing to outsmart everyone else.

My experience with the game

The puzzle is based on my own experience in
a game theory course.

Given the subtlety of the game, my professor
was banking on paying out to only a few win-
ners. Although it was mathematically pos-
sible for each of us to win, and he was taking
that risk. In fact, he knew that if we were all
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rational, we would all win. He would have to
pay out a $5 smoothie to 50 students–that is,
he made a $250 gamble playing this game.

Why was he so confident? Let’s explore the
solution to the game and see why it’s hard to
be rational.

Numbers You Shouldn’t Pick

Even though it’s not possible to know what
other people are guessing, this game has a
solution. If everyone acts rationally, there
are only two possible winning numbers. It
takes some crafty thinking, but it is really
based on two principles I think you will
accept.

Principle 1: Don’t Play Stupid
Strategies (Eliminate Dominated
Strategies)
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The first principle is that players should
avoid writing down numbers that could nev-
er win. That sounds logical enough, but it’s
not always the case. We all can agree that
writing a number that could never win is just
a dumb, stupid strategy. You are picking an
option that’s inferior to something else, and
hence is known as a dominated strategy.

Are there any dominated strategies in the
beauty contest?

To start answering that question, we need to
figure out which numbers will never win. A
natural question is what is the highest win-
ning number? You would never want to pick
a number larger than that, unless you want
to lose.

You know that the highest number anyone
can pick is the number 20. If every single
person picked 20, then the average would be
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20. The winning number would be two-
thirds of 20, which is 13 when rounded.

Should you ever find yourself submitting 20?

The answer is no–there is always a better
choice, say the number 19. The only time 20
wins is precisely when everyone else picks it
and everyone shares the prize. In that case,
you would be better off writing 19 to win the
prize unshared. Plus, by writing 19, you can
possibly win in other cases, like when every-
one picks 19. You are always better off writ-
ing 19 than 20. The guess of 20 is domin-
ated–it’s dumb.

You should never choose 20. And your ra-
tional opponents should be thinking the
same way. So here’s the big result: you can
reason that no player should ever choose 20.
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Principle 2: Trim the Game, and Apply
Principle 1 Again (Iterate the Elimina-
tion Process)

By principle 1, no player will ever choose 20.
Therefore, you can essentially remove 20 as
a choice. The game trims to a smaller beauty
contest in which everyone is picking a num-
ber between 0 and 19. The smaller game has
survived one round of principle 1.

Now, repeat! Ask yourself: in the reduced
game, are there any dominated strategies?

Now 19 takes the role of 20 from the last
analysis. Since 19 is the highest possible av-
erage, it will never be a good idea to guess it.
Applying principle 1, you can reason that 18
is always a better choice than 19. Thus, 19 is
dominated and should be eliminated as a
choice for every player.
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The game is now trimmed to picking num-
bers from 0 to 18. This is the result of two it-
erations of principle 1.

There’s no reason to stop now. You can iter-
ate principle 1 to successively eliminate
choices of 18, 17, 16, and so on. The only
numbers remaining will be 0 and 1. (This re-
quires 19 iterations of principle 1.)

There is a name for this thought process. It’s
aptly named, but a mouthful: iterated elim-
ination of dominated strategies (IEDS). The
idea is to eliminate bad moves, trim the
game, and iterate the process to find the sur-
viving moves.

These remaining strategies are considered to
be rationalizable moves, that is, moves that
can possibly win.

The Equilibria
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The only reasonable choices are to pick the
numbers 0 and 1. Is either a better choice?
This is unfortunately where IEDS cannot
give insight.

It’s possible to have 0 as a winning num-
ber–imagine all players picked 0. (The win-
ning number will be 0).

It is also possible to have 1 as a winning
number–imagine all players picked 1. (The
winning number is 2/3, which rounds to 1.)

The answer will depend on what people
think others will be guessing. Both equilibri-
ums–all 0 and all 1–are achievable.

Back to the Classroom

None of us in the class had this deep under-
standing of IEDS. We were just learning
game theory–it was actually our third
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lecture. My professor was pretty sure our
guesses would be all over the place.

But Stanford kids can be crafty. One student
used some sharp thinking and realized that
coordination would help; he asked if we
could talk to each other. The professor, still
feeling we were novices, confidently replied
with a smile, “Sure. Go ahead.” We only had
10 seconds to write down our answers
anyway.

Before the professor could change his mind,
the student quickly shouted to all of us, “If
we all write down 0, we all win.”

It was remarkable. He figured out the equi-
librium and told us what to do! He couldn’t
be tricking us because the math was clear: if
we all picked 0, we would all have winning
numbers.
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My professor’s face seemed to drop. That’s
$250 on the line. (He never let future years
talk before their bids).

How Smart Are Stanford Kids?

The professor was relieved after he tallied
the votes. He told us that admirably most of
us wrote down the number 0 (I was among
those who did). But there were larger an-
swers too, ranging from 1 to 10.

Someone actually wrote down 10! And this
was after being told the answer.

After all was said and done, the winning
number turned out to be 2, and the prize was
awarded to three students. Thanks to our ir-
rationality, my professor only paid out $15.

It was even better. My professor grilled the
students who wrote down larger numbers.
They all squirmed, as he was physically
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intimidating, and explained reasons like “it
was my lucky number” or “I don’t know. I
wasn’t really thinking.”

The Practical Lesson

What is going on? This is a group of smart
students that was told the answer to the
game.

The example illustrates a flaw of IEDS. It can
get you reasonable answers if you think play-
ers are reasoning out further and further in
nested logic. We don’t have infinite rational-
ity, only bounded rationality.

The practical answer to what you should
write depends on the book answer plus your
subjective beliefs about what other people
do. It’s the combination of book smarts plus
social smarts that matters.
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The people who wrote down the winning
numbers told the class they suspected some
people would deviate for irrational reasons.
And they were rewarded for not confusing
theory and practice.
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Puzzle 16: Number elimina-
tion game

Bored at the airport, Alice and Bob decide to
play the following mathematical game.

Alice writes the numbers 1, 2, . . . , N on a
piece of paper.

Bob goes first, and he picks two numbers x
and y from the list. Bob crosses out these
numbers from the sequence, and he includes
a new number equal to their positive differ-
ence (in other words, he puts |x – y| on the
list).

Alice takes her turn and does the exact same
thing with the remaining numbers on the
list.

Bob and Alice continue to play, in turn, until
there is only one number left.



Alice wins if the final number is odd, and
Bob if even.

1. What strategy should Alice and Bob
have for the game?

2. Is there a winning strategy?
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Answer to Puzzle 16: Number
elimination game

Let’s work through an example to see how
the game might play out.

Suppose Alice just writes the numbers 1, 2,
and 3 in the initial list.

Bob can choose any two numbers, which
means he can make any of the following
three moves:

–if he chooses (1, 2) the resulting list is
1, 3

–if he chooses (1, 3) the resulting list is
2, 2

–if he chooses (2, 3) the resulting list is
1, 1



Alice will simply have to pick the two num-
bers that are remaining, and the results will
be as follows:

–if the list was 1, 3 the resulting number
is 2 (which is even so Bob wins)

–if the list was 2, 2 the resulting number
is 0 (which is even so Bob wins)

–if the list was 1, 1 the resulting number
is 0 (again an even number, so Bob
wins)

This worked example shows Alice will lose
the game regardless of how she or Bob
choose to play.

But why is that? And are there games that
Alice can win?

The trick to solving the game
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The trick is to notice what is happening on
each turn of the game.

In the version with the numbers 1, 2, 3
worked out above, we can notice something
interesting about the sum of the numbers in
the list.

The original sum of all the numbers is 6, an
even number.

When Bob moves, the resulting sums can
either be 4–if he picks (1, 2) or (1, 3)–or the
sum can be 2–if he picks (2, 3). In either
case, the sum of the numbers is even.

And after Alice moves, we showed the result-
ing number must be even as well, which is
why she loses.

This suggests a pattern: the final number, as
well as every intermediate sum, will have the
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same parity (the property of being odd or
even) as the sum of the original list.

If true, that means Alice wins if the original
list has an odd sum, and Bob wins if the ori-
ginal list has an even sum.

But how can we prove this is true?

Proof that parity is unchanged /
invariant

Suppose the original sum of the numbers is
labeled S.

On Bob’s turn, he removes two numbers x >
y from the list, and he writes another num-
ber (x – y).

This means Bob’s action reduces the original
sum S by the following:

x + y – (x – y) = 2y
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The thing to notice is that 2y is an even num-
ber, which means the parity of the sum is un-
changed by a move in the game. In other
words:

–If the original sum S was even, then each
turn it is reduced by an even number. As an
even minus an even is also an even number,
this means every intermediate sum will be an
even number. Hence, the final number must
be even as well.

–If the original sum S was odd, then each
turn it is reduced by an even number. As an
odd minus an even is an odd number, this
means every intermediate sum will be an odd
number. Hence, the final number must be
odd as well.

Answering the original questions

1. What strategy should Alice and Bob
have for the game?
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This is something of a trick question.

Alice and Bob have no particular strategy for
play: the game is decided by the parity of the
sum of the initial list.

Note that if the initial list is 1, 2, 3, . . ., N,
then its sum is N(N+1)/2. The parity of this
number decides who wins the game.

2. Is there a winning strategy?

Again this is a trick question as the moves
are irrelevant to the outcome.

Arguably, the winning strategy is to influence
the choice of the initial list, and hope the
other person doesn’t notice.
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Puzzle 17: Hat puzzle

There are three players in this game. Each
player has either a blue or red hat placed on
their head, determined randomly.

Each player can see the colors on the other
two player's hats, but not the color of their
own hat.

Each person in the group must simultan-
eously write the color of their own hat on a
piece of paper, or they can write "pass". The
group loses if someone writes a wrong guess,
or if they all write "pass."

No communication is allowed, except for an
initial strategy session.

What strategy should the group use, and
what is their chance of success?



Answer to Puzzle 17: Hat
puzzle

The Basic Strategy (50 percent winning)

The rules heavily penalize incorrect guesses.
A single incorrect guess makes the group
lose–even if the other two players guess cor-
rectly. A single incorrect guess is the apple
that spoils the bunch.

So it’s important the rules allow for players
to pass. If a player doesn’t have a good guess,
it would be a good idea to pass.



A basic strategy would be to minimize the
risk of bad guesses. Force two players to pass
in every game and make one person the offi-
cial guesser. The group wins exactly when
this person guesses correctly.

How often will the group succeed? Since the
hat color is chosen by a coin flip, there is a
50 percent chance of guessing the correct
color.
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But can the team do better than random
chance?

The trick is figuring out the players do have a
way of coordinating as a group. Doing this,
they can make winning an amazing 75 per-
cent chance. Let’s investigate why.

One Optimal Strategy (75 percent
winning)

Motivating question: does observing the oth-
er two hat colors tell you anything about
your own hat color? In other words, if you
see two red hats, does that make your hat
more likely to be blue?

The answer is no, and that’s a potential road-
block. Regardless of what you see, your hat
color is determined by a coin flip. Fair coins
are never “due” for a particular out-
come–each toss is independent.
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But don’t get caught up in probability–the
fact is that seeing the other hat colors does
convey information. The problem is the fig-
uring out how to transmit that information
to the other players.

To get around that, players need to coordin-
ate guesses based on what they see. If pos-
sible, they still want to minimize bad guesses
by having two people pass and one person
guess. What’s needed now is a group
strategy.

How can they do that? It starts by taking a
step back and considering the possible distri-
butions of hat outcomes. With three players
and two hat colors, there are a total of eight
equally likely outcomes:

RRR, RRB, RBR, RBB, BBB, BRR, BRB,
BBR
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Is there anything special about the
distribution?

One feature is that most outcomes–six of
them–include at least one hat of both colors.
Only two extreme outcomes don’t–the ones
with all red hats or all blue hats.

We can analyze further. Among outcomes
with both hat colors, there logically has to be
two hats of one color (the “majority” color)
and one hat of another color (the “minority”
color).
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Here’s the kicker: by looking at the other
hats, players can identify whether they are
wearing a majority color or a minority color.
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For instance, if a player sees both a red and
blue hat, then the player must be wearing the
majority color (which could be red or blue).

If a player sees two blue or two red hats, then
the player must be wearing the minority col-
or, which will be the opposite color of what
the player sees.

Now the idea is to get the player with the
minority hat color to guess and force the oth-
er people to pass.

So here is the strategy:

if you see both a red and a blue hat, then
“pass”

if you see two red hats, then guess “blue”

if you see two blue hats, then guess “red”

This strategy wins in all six cases with at
least one hat of each color. It only loses in
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the two cases of all-red or all-blue, in which
all players guess incorrectly.

Here is how players would guess:
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All told, the group wins in six of eight pos-
sible outcomes–a whopping 75 percent
chance.

Extension: The host can learn

If you’re playing rock-paper-scissors against
a computer that mixes randomly, you could
win 1/3 of the time simply by picking one
strategy, say rock. But if the computer could
learn and analyze your pattern, it might re-
spond by countering with paper and start
winning a lot. To maintain your 1/3 winning
chance, you need to randomize your choices
among rock, paper, and scissors.

In the hat game, the players have a 75 per-
cent chance of winning, but the strategy has
a pattern. It loses every time the hat colors
are all the same. A responsive host, like the
computer in rock-paper-scissors, would see
the pattern and respond by assigning hats to
be the all one color more frequently. To keep
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the host honest, the players need to
randomize.

Is there some a way the players can win,
without creating a pattern of outcomes in
which they all lose?

Amazingly, yes there is! Even more surpris-
ing, the winning percentage stays at 75
percent.

The Random Optimal Strategy (75 per-
cent winning)

The random strategy is a refinement on the
static one given above. The key to the above
strategy is that players essentially bet against
the outcome being all-red or all-blue. Know-
ing that, it was possible to coordinate
guesses so only one person guessed and gave
a correct answer.
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There’s nothing special about picking all-red
or all-blue.

The players can randomly pick any color
combination and its “opposite” configuration
(red-blue-red and blue-red-blue are oppos-
ites) as outcomes to bet against. The remain-
ing six outcomes can be coded based on the
hat colors that each player sees.

Why would this work, and why does it have
to be “opposite” combinations?

The eight outcomes of the hat game can be
visualized as vertices of a cube. Adjacent ver-
tices differ by changing only a single “co-
ordinate,” that is, the color of one player’s
hat.
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The graphical interpretation is as follows:
can the players identify which vertex they be-
long to? The information they are given is
the other two hat colors they see–that is,
they are effectively placed at midway points
along the adjacent edges.

Each player can see the coordinates of the
other two players, but is unsure about the
own coordinate–that is, the player is unsure
which of the two possible endpoints the
group belongs to.
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We want a situation where exactly two play-
ers will not be able to tell the vertex (they
will “pass”) and the remaining player will
know the location (and guess correctly).

Such a unique coding occurs when players
bet against a random vertex and the “oppos-
ite” one–a limitation that gives maximal loc-
ation information.
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In any of these cases, players only lose if in
fact the outcome is one of the two they bet
against, meaning they have a 75 percent
chance of winning.

The 75 percent chance of winning applies to
every time the game is played but the losing
outcomes are randomized. Hence, the host
won’t be able to exploit any particular color
combination.

Appendix: The coding for betting against
red-blue-red and blue-red-blue outcomes
(others can be found similarly)

Strategies:

Player 1:
If see blue-red, then pick red.
If see red-blue, then pick blue.
Else pass.

Player 2:
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If see red-red, then pick blue.
If see blue-blue, then pick red.
Else pass.

Player 3:
If see red-blue, then pick red.
If see blue-red, then pick blue
Else pass.
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Puzzle 18: Polynomial guess-
ing game

Alice and Bob decide to play a math game.
Alice secretly writes down any polynomial
p(x) of one variable that she wants. The poly-
nomial can be of any degree, but to limit the
scope somewhat, the polynomial can only
have nonnegative integer coefficients.

Thus, Alice can pick polynomials like 2x2 + 1

or 3x100 + 2x2, but she cannot pick polynomi-

als with negative coefficients like -x2 + x, or

non-integer coefficients such as 0.5x2.

Bob has to guess the polynomial. He gets to
ask two questions of Alice. First, he gets to
pick any number a and ask Alice for the
value of p(a). Then, he gets to pick another
number b and ask for the value of p(b).



Bob wins if he can guess the polynomial; oth-
erwise Alice wins.

After playing the game for several rounds,
Bob announces that he has a winning
strategy. Can you figure out what it is?

(Credit: the puzzle was originally submitted
as “A Perplexing Polynomial Puzzle” in Col-
lege Mathematics Journal, March 2005, p.
100.)
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Answer to Puzzle 18: Polyno-
mial guessing game

Before I explain the answer, let's see the
strategy in action.

Alice picks a polynomial, and then Bob asks
for the value of p(1). Let's say that Alice
replied p(1) = 4.

Bob then asks for the value of p(5). Alice
replies the answer is 36.

Bob thinks for a moment, and then an-

nounces polynomial must be x2 + 2x + 1. And
he's right!

How did Bob do this?

Rather than explain the answer right away, I
want to do one more example.



Alice comes up with another polynomial and
Bob again picks the number 1. Alice replies
that p(1) = 9.

Bob then picks the number 10, and he learns
that p(10) = 432.

Suddenly Bob exclaims the answer must be

4x2 + 3x + 2, and he's right again!

This example is the secret to the whole
puzzle. The interesting part is that Bob's
second question led to the answer 432, and
the polynomial had coefficients of 4,3, and 2
for its descending powers.

Why did this happen?

The short answer is this. What Bob is doing
is: he is first learning the value to p(1), and
then he asks for the value of p(1)+1. It turns
out every time that the digits of this answer,
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p(p(1)+1) in the numerical base of p(1)+1 are
precisely the coefficients of the polynomial.

Why is that? Let's think critically about what
is happening in each step.

The polynomial p(x) can be written as p(x) =

an xn + an-1 xn - 1 + ... + a0

When Bob asks for the value of p(1), he will
end up with the sum of the coefficients be-
cause p(1) = an + an-1 + ... + a0

Now comes the neat trick. When Bob asks
for the value of p(p+1), he ends up with the
following term:

p(p+1) = an (p+1)n + an-1 (p+1)n - 1 + ... + a0

Notice anything interesting about this
series?
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The trick is this: each coefficient is uniquely
attached to a different power of p + 1. By
construction, each coefficient is smaller than
the attached term p + 1. Therefore, the series
is a unique representation of the number p(p
+ 1) in the number base p + 1!

That is, if we write p(p+1) in the number
base p + 1 we get the number:

an an-1 ... a0 (base p + 1)

This representation is not possible if you
have negative or non-integer coefficients,
and hence the restriction.

(Notice we could equivalently use any num-
ber larger than p + 1, or simply any number
larger than the maximum coefficient. But p +
1 is the smallest value guaranteed to work)

In the example above, when we found p(10)
was 432, we could view the number in base
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10 as the coefficients of the polynomial. In
other words, we could deduce the polynomi-
al must have been of degree 2, and the coeffi-
cients of the polynomial were 4, 3 and 2 in
descending order.

In the other example when p(5) was 36, we
needed to do a little more work. We needed
to take the number 36 in base 5. This turns

out to be 121: 1*52 + 2*51 +1*50. Thus we
could deduce the polynomial had coefficients
1, 2, and 1.

So to summarize, Bob's winning strategy is
this:

1. Ask for the value of p(1)
2. Ask for the value of p(p(1)+1)
3. Convert the value into base p(1)+1
4. The digits of the number are the coeffi-
cients of the polynomial in descending order
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It's quite a remarkable and ingenious
strategy.
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Puzzle 19: Chances of meeting
a friend

On a Friday night, two friends agree to meet
up in a bar between midnight and 1 am. Each
forgets the exact time they are supposed to
meet, so each shows up at a random time.

Suppose that after arriving randomly, each
waits 10 minutes for the other person before
leaving. What is the chance the two will meet
at the bar?

Game theory extension

If both friends are rational, and they want to
maximize the chance of meeting the other,
what strategy should each pursue? If they
play optimally, what is the chance they will
meet each other? (Assume each person is
aware the other will wait 10 minutes before
leaving.)



Answer to Puzzle 19: Chances
of meeting a friend

I will present a few solutions to the problem.

Solution part 1: geometric probability

I feel this is the most elegant way to solve the
problem.

If we let x denote the time one person arrives
at the bar, and y the other, we can use the
notation (x, y) to denote the time in minutes,
after midnight, that each person arrives at
the bar.

The trick now is that we can model the situ-
ation geometrically in the Cartesian plane.
The x-axis can be labeled from the time 0
minutes until 60 minutes, as can the y-axis.



Now any coordinate in the 60×60 square
represents a time that the pair arrives at the
bar. The coordinate (0,9) means one person
shows up at midnight, the second at 12:09,
and clearly they will meet because the times
are within 10 minutes of each other. The co-
ordinate (1, 51), on the other hand, corres-
ponds to one showing up at 12:01 and the
other at 12:51, a time the two will not meet.

What is the set of coordinates for which the
two will meet?

The notation affords a very simple way to de-
scribe the event. We want the two coordin-
ates to be within 10 minutes of each other.
We either want the x-coordinate to be 10
units smaller than y, or 10 units bigger than
y. The succinct way of writing that is we
want all coordinates such that |x –y| ≤ 10.
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We will draw the lines y = x – 10 and y = x +
10 and shade the area in between these two
lines to denote the event.

The resulting figure is as follows:
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The probability of meeting is precisely the
ratio of the shaded area to the total square.

This is fairly easy to calculate. The big square
is 60×60 = 3,600 in area. Rather than find-
ing the shaded area, let us calculate the un-
shaded area and subtract. The unshaded
area consists of two isosceles right triangles
with sides of 50. This means each triangle
has an area of (0.5) x (50×50) = 1,250 and
the total unshaded area is double that,
2,500.

The shaded area is found by subtracting the
unshaded area from the total : 1,100 = 3,600
– 2,500.

Thus we conclude the chance the friends will
meet is 1,100 / 3,600 =11/36, or about 30.6
percent.

Having nearly a one in three chance to meet
is actually not that bad!
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I find the geometric solution to be the most
elegant, but it should not surprise you there
are other ways to solve this puzzle.

Later in the article I will explain two other
solution methods.

For now, I want to highlight another inter-
esting fact. The math shows that even two
mindless friends have a rather good chance
of meeting up with each other.

In the game theory extension, I asked how
likely it would be if the friends were com-
pletely rational and reasoned carefully. The
surprising thing is the friends, if they reason
carefully, are guaranteed to meet!

Here is why.

Game theory solution
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I credit my aunt for offering a strategic an-
swer to this mathematical problem, inspiring
this extension.

In the real world, people don’t show up ran-
domly. They will use some heuristics and
reason out a strategy to increase the chances
of meeting their friend.

I’ve asked this puzzle to many people, and
their reactions are quite interesting. The first
thing that people notice is that it’s a bad idea
to show up too early or too late. Why is that?

You probably figured this logic out when
solving the puzzle. If you show up right at
midnight, you will only win if your friend
ends up showing up after you. If you show up
somewhere in the middle, you win if your
friend shows up 10 minutes or less after you
AND if your friend had happened to show up
10 minutes or less before you.
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Similarly, you can reason it’s a bad idea to
show up at 1 am or near the end, in which
case you win only if your friend showed up
before you.

So which times are not good strategies? Let’s
be specific and list the out.

Dominated strategies

One time that is very stupid to show up is
right at midnight. You will only win if your
friend shows up during the first ten
minutes–we can denote this as the interval
[0, 10] for shorthand.

Rather than showing up right at midnight,
you would do better to show up at 12:01. In
this case you still win if your friend shows up
at midnight, as he will be waiting for you.
But you will also win if he shows up any time
before 12:11. In short, that means you win if
he shows up during the first 11 minutes of
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the night–corresponding to the interval
[0,11].

Notice that by picking 12:01 instead of 12:00
exactly, you’ve increased your chances of
meeting without sacrificing anything–you
get an extra minute of time you will meet.

This argument shows that 12:00 is not a
good strategy–it performs worse than 12:01
REGARDLESS of when the other person
shows up.

We casually say arriving at 12:00 is a stupid
idea. In game theory jargon, such a stupid
strategy is dubbed as a dominated strategy.

(Note: it is vital that each person is aware the
other person will wait 10 minutes before
leaving–the rules of the game should be
common knowledge)

Elimination of dominated strategies
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Obviously dominated strategies should never
be played. They perform worse than some
other strategy, and hence they can be re-
moved from consideration.

The above logic showed that 12:00 was dom-
inated by 12:01. We can similarly show that
12:01 is dominated by 12:02, and in fact we
can ultimately prove that showing up any
time before 12:10 is a bad idea.

By exactly symmetric reasoning, we can
prove that showing up any time after 12:50 is
a dominated strategy. You are better off
coming just a bit earlier to increase your
odds of meeting up.

So that leaves us with the 40 minute interval
from 12:10 to 12:50 in which both players
could arrive.

If we assume the players show up randomly
in this interval, then we can use a geometric
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argument as in Solution 1 above to find the
probability of meeting jumps up to 7/16 =
43.75 percent.

But can the players do even better?

In fact they can! Here is why.

ITERATED elimination of dominated
strategies

Surely the friends have reasoned this far,
they are not going to stop thinking now.

We can continue to apply the same logic as
before to try to trim the scope of good
strategies. I mentioned this idea in the
"guess 2/3 the average" puzzle.

But I will go through the reasoning again for
the sake of completeness.

Remember we argued that 12:00 was a bad
time to show up because it was the earliest
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possible time. So we concluded it was never a
good idea to show up before 12:10.

That means in this reduced game that 12:10
is now the earliest time either friend would
ever show up. Both friends should realize
this, and we can repeat or iterate the logic
again! The logical process is known as the
mouthful iterated elimination of dominated
strategies.

Basically 12:10 in this reduced game is very
similar to 12:00 in the original game. Since
no person shows up before this time, you
only win if a friend shows up after you. It
would make more sense to choose 12:11 to
increase your chances of meeting your
friend.

You are probably getting the idea, so I’ll skip
a few steps and get to the end result.
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In the reduced game, we can prove that
showing up any time before 12:20 is a bad
idea. Similarly, we can prove that showing
up any time after 12:40 is a bad idea.

By iterating the process of removing bad
strategies, we have derived a smaller strategy
space and come up with a sharper prediction
of play.

The solution: iterate one more time

Notice we are down to a 20 minute interval
of time from 12:20 until 12:40. There’s no
reason to stop here–let’s iterate the decision
process one more time to see if we can get
any better.

In this reduced game, the earliest time one of
the players will show up is 12:20. Again, we
can demonstrate it’s a bad idea to show up
too close to the starting point of the interval.
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Using the same logic as before, we can see it
is best to show up only at 12:30 or later.

Using similar logic, the latest time a friend
will show up is 12:40. You can see what’s
coming here: we can reason that it’s never a
good idea to show up at 12:30 or later.

Putting these two facts together, we end up
with a remarkable conclusion: 12:30 is the
unique arrival time (i.e. Nash equilibrium)
that the friends will show up!

This solution is absolutely marvelous to me,
and it even has a few other interesting
properties:

–this is an efficient time, as wait time is
ZERO

–showing up at the middle is an obvious
point (known in game theory as a focal
or Schelling point)

449/488



–the friends are GUARANTEED to meet
up: probability of meeting is 100 percent

So two friends who are reasonable enough to
think can figure out how to meet for sure
without relying at all on cell phones. You can
see why the world of game theory is so se-
ductively attractive to thinking people.

I feel the fact that people cannot arrive at
similar success in the real world says
something about the human condition.

But anyway, let me get to some other math-
ematical solutions to the non-game theory
version. I find these are also very satisfying.

(Extra credit: The logic is not only for 10
minutes. This would also apply for 1 minute.
In fact, you can show that if each person
waits for any time t > 0, then the unique
equilibrium strategy is arrive at 12:30, lead-
ing to the outcome both people meet)
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Method 2: Conditional probability

My uncle came upon this analytic solution.
For narration sake, I will give a less than
formal explanation–I am sure you can fill in
the details.

Let’s consider the game from one friend’s
perspective. We know the other player can
show up at any time on the interval (remem-
ber in the non-game theory version any time
is possible).

How likely are we to meet the other player?
We can split up the cases in terms of condi-
tional probability.

Case 1: If the other person shows up in
the first 10 minutes (10/60 = 1/6 of the
time), the average time of showing up is
12:05. We will meet if I show up any
time from 12:00 to 12:15. This interval is
15 minutes out of 60, or 1/4 of the time.
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Case 2: Similarly, if the other person
shows up in the last 10 minutes (10/60
= 1/6 of the time), the average time of
showing up is 12:55. We will meet if I
show up any time from 12:45 to 1:00.
This interval is 15 minutes out of 60, or
1/4 of the time.

Case 3: Finally, if the person shows up
in the middle 40 minutes (40/60 = 2/3
of the time), the average time of show-
ing up is 12:30. We will meet if I show
up any time from 12:20 until 12:40. This
interval is 20 minutes out of 60, or 1/3
of the time.

These three cases cover the various condi-
tional events. We can thus compute the
probability of meeting as:

Pr(meeting) = Pr(Case 1) * Pr(meeting
in Case 1) + Pr(Case 2) * Pr(meeting in
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Case 2) + Pr(Case 3) * Pr(meeting in
Case 3)

Pr(meeting) = (1/6)(1/4) + (2/3)(1/3) +
(1/6)(1/4) = 11/36

Again, we arrive at the same solution of 11/
36.

Method 3: Combinatorics

This is a solution I came upon when I was
considering the practical implications of the
geometric solution above.

I loved how elegant the geometric solution
was, but the fact that time had to be continu-
ous was something odd to me. I mean it is
possible to show up at 12:33 and 1.14159
seconds, but who keeps track of time that ac-
curately? And would you really be able to
leave exactly 10 minutes later at 12:43 with
1.14159 seconds?
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No, in the real world we are going to do some
rounding, probably to the level of minutes.

So I set up a combinatorial problem as fol-
lows. Suppose each player can pick one of
the minutes to arrive randomly from 0, 1, 2,
…, 60, and each person waits 10 minutes for
the other person. What is the chance they
will meet then?

This is a discrete version of the continuous
geometric problem, so let’s solve it.

Solution to discrete problem in minutes

We can proceed simply by counting the num-
ber of pairs (x, y) such that |x – y| ≤ 10 as in
the continuous case.

For simplicity, let’s consider the perspective
of the person showing up first and count the
number of integers the other person can
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arrive after. This will count half the cases,
and we can double the result to count all
cases.

–If the first person picks 0, then the per-
son arriving second can pick times 0, 1,
2, …, 10–there are 11 times correspond-
ing to 0

–If one person picks 1, then the person
arriving second can pick times 1, 2, …,
11–there are 11 times corresponding to 1

–If the first person picks anything from
2 to 50, there will be 11 possible times
for the person arriving second

–If the first person picks 51, the person
arriving second can pick 51, 52, … 60, or
10 cases
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–If the first person picks 52, the person
arriving second can pick 52, 53, …, 60,
or 9 cases

–This pattern will continue so we have
53 having 8 cases, 54 having 7 cases and
so on.

To summarize, for the person arriving first,
there are this many ways for the person ar-
riving second to choose:

–For the numbers 0 to 50, there will be
11 cases

–For the numbers 51 to 60, there will be
10, 9, 8, 7, …. 1 cases, respectively

We need to double this to find the total num-
ber of winning pairs. Thus we have:

Number of times friends meet = 2[ (50)(11) +
10 + 9 + 8 + ... + 1] = 2(616) = 1,232
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This has to be divided by the total number of
pairs. As each person can pick among 61
numbers, the total number of pairs is 61 x 61
= 3,721.

Thus the probability the friends meet in the
discrete case is 33.1 percent = 1,232 / 3721.

This is actually pretty close to the continuous
case. Could there be a relation between the
two problems?

Solution to discrete problem in arbitrary
interval

I got to thinking, what would happen if we
instead split up the interval into finer points,
like into seconds or so on?

I did the calculation for seconds, and I will
spare you the details, but it ends up at
roughly 30.6 percent. This is very, very close
to the answer of the continuous model.
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What would happen if the interval was di-
vided into N pieces? And what would happen
if we let N go to infinity?

If the interval was divided up as 0, 1, 2, … ,
N, then we need to remember that 10
minutes corresponds to 1/6 of the total time,
which means it will translate into (1/6) N in-
tervals (for simplicity, let N be a multiple of
6).

Using the same logic as in the discrete case
of minutes, we can count the number of ways
the person arriving second could meet the
person arriving first. It is:

–For the numbers 0 to (5/6)N, there
will be (1 + (1/6)N) integers of times for
the person arriving second so they meet

–For the numbers (5/6)N + 1 to N, there
will be (1/6)N, (1/6)N – 1, …. 1 times,
respectively
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Again, we need to double this number to ac-
count for the symmetric case. This means we
have in all:

We need to divide this by the total number of

cases which is (N+1)2 = N2+ 2N + 1. So the
limiting case is:

When we take the limit as N goes to infinity
this is 11/36, just as in the continuous case!

For some people it will just seem “obvious”
that the discrete problem converges in limit
to the continuous problem.
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But anyone who has studied financial models
knows that discrete versions are not the
same and may not converge to the same as
continuous models.

So this is an interesting result, and it’s amaz-
ing how many different ways this puzzle can
be solved.
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Puzzle 20: Finding the right
number of bidders

Alice wants to auction off a rare collector’s
item. She knows the item is worth some-
where between $500 and $1,000, but she
has had trouble finding interested buyers.

A company offers to find interested parti-
cipants at the rate of $10 per bidder. (So
they’ll find one bidder for $10, and ten bid-
ders for $100)

How many bidders should Alice tell the com-
pany to find?

A couple of points:

–Assume the bidders have valuations
randomly drawn from the uniform dis-
tribution on [500,1000]



–Suppose Alice holds an eBay style auc-
tion and she will sell the item for a price
equal to the second highest valuation of
the bidders*

(*this is a standard result in auction the-
ory, though technically it’s for one bid
above the second highest valuation. An
example: if bidders had valuations of
$500, $600, and $700, the person who
values the item at $700 would win the
auction. The price he would pay in an
eBay style auction with dollar bid incre-
ments is $601–just enough to outbid the
person with the second highest
valuation)

The puzzle is about two conflicting forces:
Alice wants more bidders to bring her higher
bids, but she faces a tradeoff in the cost of
acquiring bidders.
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Can you figure out the optimal number of
bidders?
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Answer to Puzzle 20: Finding
the right number of bidders

Alice wants to maximize her expected auc-
tion profits. The equation for profits for n
bidders is something like this:

Profit(n)= E(revenue n) – Cost(n)

The cost part is easy to figure out. Alice pays
$10 per bidder, so her cost is 10n.

The harder part is figuring out the expected
revenue for n bidders. What we want to
know is the following. If we take n draws
from a uniform distribution, what is the ex-
pected value of the second-highest draw?

This question is actually part of a larger topic
in probability called order statistics. One can
explicitly solve for the expected value of any
distribution.



I will not go through the math here. But I
will mention the order statistics for the uni-
form distribution are easy to visualize. What
happens is that if you take n draws from the
uniform distribution, the expected value of
the n draws can be visualized as n points be-
ing evenly spaced on the interval.

Here is a picture to illustrate what I mean:
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So the n points separate themselves along
the interval. So you divide the interval into n
+ 1 segments, and the points will be at the
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fractions 1/(n + 1) along the way for the min-
imum, then 2/(n + 1) along the way for the
second lowest point, etc., until the maximum
draw which has an expected value of n/(n +
1).

By this logic, the second highest draw is ex-
pected to be at (n – 1)/(n + 1) along the way
from 500 to 1000. This means the second
highest valuation is expected to be:

500 + 500 * (n – 1)/(n + 1)

This is our formula for expected revenue. So
we can substitute this expression back into
the formula for profits:

Profit(n)= E(revenue n) – Cost(n)
Profit(n) = 500 + 500 * (n – 1)/(n + 1) –
10n
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Now we need to solve for the profit maximiz-
ing point. I will skip the calculus and get to
the point.

The profit maximizing point happens at n =
9 bidders, and Alice can expect $810 of
profit.

The lesson is that more bidders is not always
optimal: you capture much of the expected
revenue from the first few bidders, and then
the returns are diminishing (unless some
bidder is a big outlier and you can extract
money from him).

Extension: suppose Alice earned the
highest valuation

As an extension, let’s imagine that Alice
somehow was able to extract the highest bid-
der to pay his entire valuation. This is not an
assumption used in theory, but let’s say it
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happens because of some irrational bidding
war.

In that case, Alice would expect to earn
slightly more revenue (the term (n – 1)/(n +
1) becomes n/(n+1)), meaning her profit
function is:

Profit(n) = 500 + 500 * n/(n + 1) – 10n

How will that change the number of bidders?

We can solve for the profit maximizing point
and find that n = 6.

So Alice will only need to acquire 6 bidders,
but she will earn nearly $870. This is 3 fewer
bidders than above and she gets about $60
more.

This is, of course, exactly what we would ex-
pect: if Alice can extract more money from
the bidders–the highest valuation instead of
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the second–she does not need as many bid-
ders and in this case she can earn more
profits.

This is common sense, but it’s useful to
check the theory matches intuition.
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More puzzles!

If you liked these puzzles, you will definitely
like to read my blog Mind Your Decisions
where I post a new math puzzle every
Monday.

http://mindyourdecisions.com/blog/
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Puzzle 21: Flip until heads
Answer to Puzzle 21: Flip until heads
Puzzle 22: Broken sticks puzzle
Answer to Puzzle 22: Broken sticks puzzle
Puzzle 23: Finding true love
Answer to Puzzle 23: Finding true love
Puzzle 24: Shoestring problem
Answer to Puzzle 24: Shoestring problem
Puzzle 25: Christmas trinkets
Answer to Puzzle 25: Christmas trinkets
Section 3: Strategy and game theory

problems
Puzzle 1: Bar coaster game
Answer to Puzzle 1: Bar coaster game
Puzzle 2: Bob is trapped
Answer to Puzzle 2: Bob is trapped
Puzzle 3: Winning at chess
Answer to Puzzle 3: Winning at chess
Puzzle 4: Math dodgeball
Answer to Puzzle 4: Math dodgeball
Puzzle 5: Determinant game
Answer to Puzzle 5: Determinant game
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Puzzle 6: Average salary
Answer to Puzzle 6: Average salary
Puzzle 7: Pirate game
Answer to Puzzle 7: Pirate game
Puzzle 8: Race to 1 million
Answer to Puzzle 8: Race to 1 million
Puzzle 9: Shoot your mate
Answer to Puzzle 9: Shoot your mate
Puzzle 10: When to fire in a duel
Answer to Puzzle 10: When to fire in a duel
Puzzle 11: Cannibal game theory
Answer to Puzzle 11: Cannibal game theory
Puzzle 12: Dollar auction game
Answer to Puzzle 12: Dollar auction game
Puzzle 13: Bottle imp paradox
Answer to Puzzle 13: Bottle imp paradox
Puzzle 14: Guess the number
Answer to Puzzle 14: Guess the number
Puzzle 15: Guess 2/3 of the average
Answer to Puzzle 15: Guess 2/3 of the

average
Puzzle 16: Number elimination game
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Answer to Puzzle 16: Number elimination
game

Puzzle 17: Hat puzzle
Answer to Puzzle 17: Hat puzzle
Puzzle 18: Polynomial guessing game
Answer to Puzzle 18: Polynomial guessing

game
Puzzle 19: Chances of meeting a friend
Answer to Puzzle 19: Chances of meeting a

friend
Puzzle 20: Finding the right number of

bidders
Answer to Puzzle 20: Finding the right num-

ber of bidders
More puzzles!
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