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INTRODUCTION

"Anyone who regards games simply as games and takes work too seriously has grasped little of
either." So wrote the German poet Heinrich Heine a century ago. In today's world the division of
work and play persists. Old prejudice still holds that the playing of games is an activity for children,
not useless perhaps, but certainly not the responsible and serious work of adults.

Heine intuitively foresaw what modern psychology has since asserted. Games are not only
necessary for the development of a child's self-awareness; they are also needed by adults,
especially when their work is repetitive and uncreative. The word "games," as it is used in this book,
is general and covers a variety of quite cornplex activities. However, it is those games based on
mathematical or logical principles that are among the most absorbing and creative. Indeed, the
great mathematicians and scholars of the past often applied their skills to the solution of logical and
mathematical games.

This book is a collection of logical and mathematical games both ancient and modern. It is not
simply a recital of mathematical pastimes and curiosities set down at random; rational criteria have
been used to link the riddles, mathematical problems, puzzles, paradoxes and antinomies.
Sometimes the link is an historical reference, at other times it is a conceptual link. Although
whenever possible we have repeated some elementary rules, the reader needs no special or
complex knowledge. The collection concentrates on some of the simplest and most widely known
logical and mathematical games; past events and the people who produced or studied such games
are mentioned to make the story more accessible.

Games are presented in a certain sequence. Those mathematical concepts that may be beyond the
average reader are stated as clearly as possible. We have omitted complicated games such as
chess and draughts and avoided the use of symbolic languages. Technical terms are used only
when they are absolutely necessary.
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The last two chapters are the most difficult as they include certain abstract philosophical questions
involving new mathematical concepts. However, they are rationally linked to what comes before them
and they indicate that at critical points in the development of mathematics, problems and logical
difficulties were resolved through games that captured the imagination of scholars. Furthermore,
even the most abstract mathematical question, logical paradox or antinomy, becomes clearer if it is
formulated as a game.

It should be mentioned in passing that games are valuable aids in teaching mathematics; a
mathematical device, a riddle or a puzzle, can engage a child's interest more effectively than a
practical application, especially when that application is outside the child's experience.

The penultimate chapter offers those readers who may be unversed in logic and mathematics some.
of the basic concepts and methods on which modern formal logic has been built. The book Is
designed to inform and educate and is enriched by illustrations of games and riddles that introduce
the reader to propositional calculus, the first item of logic with an important place in modern culture.
The last chapter, which seeks to complement the one preceding it, begins with ordinary games
of chance to demonstrate the importance of the concept of mathematical probability to an
understanding of various objective and subjective facts.

Because the last two chapters tend to be abstract and difficult, we have added a list of concrete
problems, examples, and games, along with their solutions, to permit the reader to test his grasp of
the more theoretical. We happen to believe that the solutions to such games and problems, even if
elementary, would be hard to reach without an adequate theoretical foundation. The book concludes
with an extensive bibliography to guide the reader in the search for new games and a deeper insight
into historical and philosophical questions.

8



GAMES WITH NUMBERS

The symbolic language of mathematics Is a kind
of brain-relieving machine on which we easily and often perform symbolic

operations that would otherwise tire us out (Ernst Mach D Reider)

An historical note

From our earliest schooling we have been taught
to operate with whole numbers, fractions, nega-
tive numbers and the like; perhaps only a few of
us, however, have asked ourselves what numbers
are or represent. Numbers developed with man
and have marked his life from the beginning of
civilization. Indeed, the world is based on num-
bers. Numbers began as symbols invented by
man for a variety of uses, perhaps most immedi-
ately for counting the elements in sets of things.
"2" could mean two cows or any other two things:
two donkeys, two rocks. "2 + 3," assuming "3"
meant three donkeys, could represent the sum of
two cows and three donkeys, or it could represent
a different kind of set-two things of one kind and
three of another. Numbers are mental construc-
tions that can indicate material objects without
noting their particular features. They are instru-
ments that enable us to make rapid calculations
and present quantitative expressions in a simple
synthetic way.

In the course of history different peoples have
used different symbols to represent numbers. The
ancient Romans, for example, indicated "two' as

II, "three' as ll; while V, the sign for "five," sym-
bolized the five fingers of one hand, and the sign
X symbolized two hands, one across the other, for
twice five. We have since adopted another set of
symbols of Indo-Arabic origin. Why? At first it
might even seem that these later symbols are
more complicated. Is it not easier to grasp 1, 11, 111,
and V, than 1, 2, 3, and 5? Yet the Arabic notation
has displaced the Roman one, primarily due to
the practices of medieval Italian merchants, and
particularly to the influence of the Pisan mathe-
matician Fibonacci, born in 1179. In fact, the
mathematician's name was Leonardo da Pisa,
however he acquired the nickname Fibonacci be-
cause he was the "son of Bonacci," a well-known
merchant and official in 12th-century Pisa. The
elder Bonacci traded with Arab countries in North
Africa and the East, and was accompanied by his
son on his frequent trips; hence Fibonacci atten-
ded Muslim schools and adopted their algebraic
methods together with the Indo-Arabic system of
numerals. He later recorded his education in
arithmetic, algebra and geometry in his book
Liber Abaci (1202), and demonstrated the sim-
plicity and practicality of the Indo-Arabic system
as opposed to the Roman system.

9



Games with numbers

Greek numerical notation
Roman numerical notation

I1
111
III

V
VI
VII

Vill
VilIX
X
L
C
D

=2
=3
-4
5

-76
7

=8
9

=1 0
=50
=1 00
=500

' = 1
II' =2

3I" =3
As =4
e' = 5
(' =6
,' =7

a' =8
0' =9
I' = 10

x' = 20
A' - 30
,u' =40
v' =50
4' =60
cC =70
t' =80
Y = 90

-' = 100
a' = 200

M = 1000
LX = 60
DC = 600
XL = 40
XC = 90
CD = 400

CM - 900
MM = 2000

II 2000
C = 100,000
1 = 1,000,000

1983 = MCMLXXXIII

and sampi, -, for 900. The system
is decimal, with letters for units,
tens and hundreds

In the West, however, many men of science,
trade and letters opposed the 'new fashion," and
it was a while before it took root. In Florence, for
instance, the Statutes of the Art of Exchange pro-
hibited bankers from using Arabic numerals. On
the whole, people were hostile to the Arabic sys-
tem as it made reading commercial records more
difficult, but in time the new fashion established
itself. The reasons it did are linked to the nature of
mathematics itself, namely simplicity and econ-
omy. A symbolic system of ten signs (0, 1, 2, 3, 4,
5, 6, 7, 8, 9) serves to represent any number,
however large or small, because in the represent-
ation of numbers, the meaning of the numerals
changes according to their position. Thus, in the
number 373, the two numerals 3, though the same
symbol, mean different things: the first indicates
hundreds, the last indicates units, while the 7 indi-
cates tens. There is no other symbolic system so
simple or effective.

The Romans, and before them the Egyptians,
Hebrews and Greeks, used a clumsy numerical
system based only on a principle of addition. The
Roman number XXVIII, for example, means

ten + ten + five + one + one + one. The expres-
sion of numbers by a few symbols that change in
meaning according to position was apparently
used by the Chaldaeans and Babylonians of
Mesopotamia. Later it was developed by the Hin-
dus who transmitted it to the Arabs and they, in
turn, passed it on to mathematicians of medieval
Europe.

The introduction of Indo-Arabic numerals with
positional notation greatly influenced subsequent
developments in mathematics. It simplified math-
ematical concepts and freed them from the en-
cumbrances stemming from representing math-
ematical operations in material terms. The Greeks
and Romans, for example, used complex geo-
metric systems for multiplication; hence the con-
cept of raising a number to a power (as product
of so many equal factors) could not be under-
stood or made simple, especially when dealing
with numbers raised to powers higher than the
third. To illustrate (Fig. 1), if the number three rep-
resents a line three units long, and 3 x 3 = 32 rep-
resents an area, and 3 x 3 x 3 = 33 a volume,
what meaning might be attached to 34=

10
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Games with numbers

Opposite right: The Roman number
system aso decima, used fewer
symbols: I, V, X, L, C, D, M, for
1, 5,10, 50,100, 500,1,000
respective y Multiples of units, tens,
hundreds, thousands are repeated
up to four times (thus 3= 1II,
200= CC) A number to the right of
a bigger one is understood as
added thus LX =60 DCC= 700 A
number to the left of a bigger one
is understood as subtracted, thus
XL 40 A horizontal ine over a
number mu tiplies it by 1,000, for
example C = 100,000 A number
enc osed by H is multiplied by
100,000 thus X = 1,000,000 Th s
system spread throughout the
Roman world and persisted unti it
was replaced in the 13th century
by the Indo-Arabic system

fig. 1

23 =3x3

3 3
3=3x3x3

3

13=3

3

3x3x3x3 or 35 =3x3x3x3x3? Using
Indo-Arabic numerals, we find that they are sim-
ply numbers.

A first curiosity

To be sure, man first used numbers to solve his
practical problems more quickly, but we like to
think he also used them to entertain himself. On
this assumption, we shall begin our book with a
rather popular game that requires only the most
elementary numerical calculations. Take the set of
digits 1, 2, 3, 4, 5, 6, 7, 8, 9. The game is to insert
symbols for mathematical operations between the
numerals so the result will equal 100. We are not
allowed to change the order of the digits.

Here is one possible solution:

1 +2+3+4+5+6+77+(8x9)= 100.

In the last part of the expression we have used
multiplication, but the game is more interesting if
the operations are confined to addition and sub-
traction. Here is a solution:

12+3 -4+5+67+8+9= 100

11

3

3

The reverse game can also be played, with the
digits decreasing in order: 9, 8, 7, 6, 5, 4, 3, 2, 1.
Now reach a sum of 100 using the fewest " +- " and

signs. A possible solution is:

98-76+54+3+21 = 100

If you are familiar with the properties of num-
bers, you can solve the following as well. Find
three positive integers whose sum equals their
product. One solution is:

1 x2x3=1 +2+3=6

Note that 1, 2, 3 are the factors of 6, which is their
sum. We continue the game by finding the num-
ber after 6 equal to the sum of its factors. The
number is 28, as the factors of 28 are 1, 2, 4, 7,14
and:

1 +2+4+7+14=28

Such numbers form a series (after 28 comes
496) called "perfect numbers." It was the rnathe-
matician Euclid, famous for his Elements of geom-
etry and a resident of Alexandria during his most
active years (306-283 B.C.), who first created a



Games with numbers

Archimedes' spiral (below) and
natural spirals (left, a nautilus shell

in sections) can be expressed by
Fibonacci numbers

formula for the structure of perfect numbers,
namely:

N = 2 (2 - 1)
In this formula, the second factor, (2' - 1), must

be a prime number, that is, divisible only by itself
and unity. Thus n must be such that 2 n 1 is
prime. It is easy to see that the latter is not prime
if n is not prime. The reader should try to use this
formula to find the next perfect number after 496.
After that, the calculations become rather lengthy.

Here is a table for the first nine perfect
numbers:

n 2 1 2- 1 Perfect numbers

1 2 2 3 6

2 3 4 7 28

3 5 16 31 496

4 7 64 1 27 8128

5 13 4096 8191 33550336

6 17 65536 131071 8589869056

7 19 262144 524287 137438691328

8 31 1073741824 2147483647 2305843008139952128

9 61 - 26584559915698317446546926159538421 76

We observe that all perfect numbers obtained
by Euclid's formula are even and always end in 6
or 8.

Fibonacci numbers

Among the many arithmetical and algebraic
questions studied by Fibonacci, that of se-
quences deserves special attention, as it was the
basis for his interesting problem of the rabbits.
Suppose we put a pair of adult breeding rabbits
in a cage to produce offspring, and that each
month they produce another pair, which, in turn,
breed after two months. (This is hypothetical, of
course, as rabbits do not reach maturity before
four months.) If all the rabbits survive, how many
will there be at the end of one year? The solution
is indicated in Fig. 2. We start in January with the
initial pair A. In February there will be two pairs, A
and their offspring B. In March A produces C,
which makes three. However, in April, A produces
D, while B, now mature, produces E. In May, it is
more complicated still: A produces F, B produces
G, and C produces H. Continuing in this fashion,

12
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Games with numbers

the number of pairs produced in successive
months is: 1, 2, 3, 5, 8, 13....

The law linking the numbers is easily detected.
From 3 on, each number is the sum of the two

2+3 5+8

1 2 3 5 8 13

1+2 3+ 5

preceding it. Hence we can easily find the
numbers for the later months: July, 8 + 13 = 21;
August, 13 + 21 = 34; September, 21 + 34 = 55;
October, 34 + 55 = 89; November, 55 + 89 =
144; December, 89 + 144 = 233. At the end of the
year there will be 233 pairs. Once the formation
law is found, the sequence can be continued
indefinitely.

Fibonacci did not explore the question of num-
ber sequences more deeply, and it was not until
the 19th century that mathematicians began to
study their formal properties. In particular,
Franqois Edouard Anatole Lucas investigated the
Fibonacci series, where starting with any two in-
tegers the next term is the sum of the two before.
The table shows the first twenty terms of the series
starting 1, 1 and 1, 3.

Fibonacci series have always captured the
imagination of mathematicians and enthusiasts
who have tried endlessly to unearth their hidden
properties and theorems. Recently, such series
have been useful in modern methods of electronic
programming, particularly in data selection, the
recovery of information, and the generation of ran-
dom numbers.

A curious calculating device: the abacus

Man has always tried to do sums with greater
speed. The Babylonians cut permanent signs on
clay tablets to hasten calculations. Subsequently,
the abacus was invented-where and when is not
known, perhaps in ancient Egypt. The abacus
was the first calculating machine and it was an
ingenious instrument. Numbers were represented

2
3
5
8

143
21
34
55
89

144
233
377
610
987

1 597
2 584
4 181
6 765

3
4
7

1 1

18
29
47

76
123
199
322
521
843

1 364
2 207
3571

5778
9 349

15127

as objects (pebbles, fruit stones, and pierced
shells for example) and placed on small sticks
fixed to a support. The word abax, abakos means
a "dust-covered tablet" on which geometrical fig-
ures can be traced or calculations performed,
and it probably came into ancient Greek from the
Hebrew abaq, meaning "dust.' Thus the word
originated in the Near East.

Although the mathematicians of ancient
Greece were familiar with the discoveries of Med-
iterranean peoples, and enhanced them with
original notions of their own, their mathematical
advances had no discernible impact on the struc-
ture or workings of Greek society. Indeed, such
advances were seen as little more than intel-
lectual exercises. We know, too, that new sci-
entific and technical knowledge were seldom
used to achieve greater productivity or freedom
from physical labour; again they were treated sim-
ply as expressions of man's creative ability. This
prejudice impeded the progress of mathematics
in Greece and explains why many of the major
arithmetical and algebraic discoveries came to us

14
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from the Indian and Arab algebraists working be-
tween A.D. 400 and 1200. Their discoveries were
brought to Italy and thence to the West by the
traders in the maritime republics.

Mathematical knowledge spread widely after
the Protestant Reformation and the invention of
paper and the printing press. Indeed, it was Mar-
tin Luther who insisted that the first arithmetic text-
books be printed. Indian algebraists, and later the
Arabs, had demonstrated the advantages of the
new positional number system: calculations could
be simplified much to the relief of those who used
them in trade and commerce. Again, it was
through commerce that the abacus found its way
to the West, and today this simple calculator is still
used in Russia, China and Japan to total bills in
shops and restaurants, and frequently to teach
arithmetic.

Abaci have varied between peoples and peri-
ods. The abacus with beads on small sticks (pp.
18-19) is only one type, probably of Chinese ori-
gin. The Arabs developed others of a different
construction and one still in use consists of a kind

of grid. It is best explained by carrying out a mul-
tiplication, say 3,283 by 215. Draw a rectangle of
as many small squares as the two factors have
figures, in this case 4 x 3, with their diagonals
vertical and horizontal. Divide the unit squares
vertically and extend the traces to a base line
(Fig. 3). We have put the two factors on the
sides-the four-figure number on the longer side
and the three-figure number on the shorter side.
The result is a grid which is now filled with the
products of the figures at the edge. For example,
the one farthest right contains 5 x 3 = 15, the one
farthest left 2 x 3 = 6; the units are in the right
division and the tens in the left division. When the
grid has been filled, we add on the base line,
carrying tens as needed. The result is 705,845,
which can be checked by the ordinary method.

Fig. 4 shows a similar abacus on which 1,176

(continued on page 20)
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What numbers are.
The photographs (left) show three
Munich beer mats, on which waiters
mark each beer ordered by the
customer The bill is then tallied by
simply mu tiplying the price of one
glass times the number of marks on
the mat Such methods are ancient
and date back to the mythical
origins of mathematics

The notion of a mark
corresponding to a unit eventual y
produced the natural, or counting
numbers In order to simplify
counting operations a special set of
symbols was gradualy devised
namely what are known as ciphers,
figures or numerals Natura
numbers were used in barter
(exchanging one artice for another)
and in childrens games where
objects were classif ed, put in
sequence or set out according to
rules of proximity, continuity and
boundary es

From the natural numbers and the
operation of adding, man has
gradually constructed the entire
system of numbers (of pp. 21, 104)
as wel as the other calculating
operations (note that, formally, the
positive integers are ratios of
natural numbers to the natural
number 1, a definition that was not
put forth until the 19th century)

Opposite: A register used by
illiterate Sicilian shepherds By
notching sticks the shepherds
indicated the number of an ma s-
sheep or goats-each owned, the
animals' births, the dairy products
produced and so on This calendar,
valid from September 1st for one
year, was sett ed every August 31st
As the date approached, a literate

man was appointed to inscr be
each stick with certain sgns
indicating its owner's name and the
type of animals he possessed

I�I

heads of beasts each
member owned,

births

males

r�1w dairy products, curd,
cheese, etc

While the number of adult
animals was almost constant for a
year, dairy products and new births
varied from month to month (males
were sold, females were kept), so
the register was updated every
month

Although the people who used
this instrument could nether read
nor write, they cou o count intuitive y
and they correated signs and
objects in a highly complex fashion
Instruments such as this form the
basis of mathematical and logica
thinking.

16
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Addition and subtraction on the
abacus.
This abacus (opposite) is currently
used n Ch na (the who e instrument
appears on the book jacket) Each
vertca column of beads starting on
the right w th the units indicates the
dig ts of numbers in pos tional
notation Each bead under the bar
stands for 1 it 100 and so on
Each bead on the bar stands for 5 of
the items in ts co umn Thus the
number shown here is 173

To add. start from the right
Suppose we need to add 148 and
451 Form the number 148 (A), add
one unit, five tens and four hundreds
producing 599 (B) To subtract we
start on the left and do the reverse
Take 293- 176 Form 293 (C) take
away one hundred, and seven tens-
by removing the 50 and two 10s
(D) to subtract six units borrow a
ten in the un t co umn by taking away
one ten in the column of tens and
adding two f ves in the unit co umn
(E) Now we can take away six units
and the resu t is 11 7 (F)
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Games with numbers

and 6,895 can easily be multiplied. First, write the
product of 1 by 6,895 in the first row (tens in the
top half and units in the bottom half). Put the prod-
uct 1 x 6,895 in the second row, 7 x 6,895 in the
third row, and 6 x 6,895 in the fourth row. Sum
diagonally from the right and carry to the left as
needed. A schema much like this served Pascal
and Leibnitz four centuries later when they con-
ceived the idea of the first calculating machines.

The origins of algebra

The term "algebra" derives from the Arabic a!-
jebr, which the mathematician Al-Khowarizmi
adopted to explain his ideas for solving what we
call equations. Later the term acquired a wider
meaning and today it includes a broad range of
mathematics.

Mohammed ibn Musa Al-Khowarizmi, an Ara-
bian astronomer and mathematician (died
ca.A.D. 850), was active in the 'House of Wis-
dom" in Baghdad, a cultural center established
about A.D. 825 by the Caliph Al-Mamun. Al-
Khowarizmi wrote various books on arithmetic,
geometry and astronomy and was later cele-
brated in the West. His arithmetic used the Indian
system of notation. Although his original Arabic
book on the system, probably based on an Indian
text, is lost, a Latin translation survives as Algo-
rithmi: De numero indorum (about Indian num-
bers). The author explains the Indian numerical
system so clearly that when the system eventually
spread through Europe, it was assumed the
Arabs were its inventors. The Latin title gives us
the modern term "algorithm"-a distortion of the

name Al-Khowarizmi which became Algorithmi-
used today to denote any rule of procedure or
operation in calculations.

Al-Khowarizmi's most important book, AlIebr
wa'1-muqabalah, literally "science of reducing
and comparing," gave us the word ''algebra.'
There are two versions of the text, one Arabic and
the other the Latin Liber algebrae et almucabala
which contains a treatment of linear and quad-
ratic equations.

These works were of major importance in the
history of mathematics. Indeed, al-ebr originally
meant a few mathematical steps and transfor-
mations to simplify and hasten the resolution of
problems.

Let us now turn to what we learned in school
and begin with an equation of the first degree,
5x + 1 = 3(2x -1). An equation is generally an
equality with one or several unknowns. It trans-
lates into numbers a problem whose solution con-
sists of finding those values of x that make the
equality true. In our example, we must find the
value of x that makes the expressions on either
side of the "equal" sign equal.

Al-Khowarizmi's mathematical works contain all
the solving procedures we learned mechanically
in school, for example, reducing terms and trans-
ferring a term to the other side with a change of
sign. Hence, in our case, adding 3 and subtract-
ing 5x on both sides, and then changing sides,
gives us x = 4, which solves the equation. Putting
4 for x in the first equation, 5x + 1 = 3(2x - 1), we
find 21 = 21. Clearly, to solve an equation is to
transform it into other, and simpler equations until
we reach the solution.
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SYSTEM OF NUMBERS

integer

fractional
(eg. 1,1, ...)

23Y

rational

irrational
( eg 2, TT, ...)

2) add 3;

Algebra and its laws have often spawned tricks
and games that seem to smack of magic. In fact,
they are readily explained by algebraic laws.
Imagine that we have asked someone to play this
game:

1) Think of a number;

3) multiply by 2;

4) subtract 4;

5) divide by 2;

6) subtract the original number.

21

positive
(eg.+1, +2, +3, ...)

negative
(eg -1, -2, -3, ...)

real

complex

imaginary
(eg I= i, Y74=2i, ...)

Games with algebra
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Whatever the original number, the result must
always be 1. Surprising? Not if you give the simple
algebraic explanation. The principles are elemen-
tary but deep. Take the present game; the result
does not depend on the original number, which
need not be known. The expression "any num-
ber" can mean two different things in algebra,
either a variable number which can have various
values, or a given number which is undetermined,
namely a constant whose value has not been
fixed. For clarity, variables are shown by the last
letters of the alphabet (x, y, z . . .), and constants
by the first letters (a, b, c . . .). Thus if we write
3 + x, with x integer and variable, we have for
x - -1,3+(-1)= 2forx =Owehave3+0 =3;
forx = 1, 3+1 =4.

A variable in an equality, say x in 6 = 5 + x,
becomes an unknown (a value not at first known),
indicating the value required to verify the equality.
Returning to our game:

1) Take a number, x;

2) add 3, x + 3;

3) multiply by 2, 2(x + 3);

4) subtract 4, 2(x + 3) - 4;

5) divide by 2, (2(x + 3) - 4)/2;

6) subtract the original number x, (2(x + 3) -
4)2 -x. In algebra, this last expression repre-
sents the sequence of verbal moves. Whatever x,
this expression equals 1.

An expression such as (2(x + 3) - 4)/2 - x = 1
is called an identity. The difference between this
and an equation is readily explained. In an iden-
tity the two sides are always equal, whatever the
value of x, while in an equation this is not so.
Returning to our first equation, 5x + 1 = 3(2x - 1),
there is only one value of x for which the two sides
are equal, namely the single solution of that linear
equation, which, as we saw, is x = 4. For any other
value of x, the sides are unequal. For example, if
we put x = 0, we have 1 :& -3 (the sign means
"different from").

By applying such elementary principles of al-
gebra other games can be invented. For example,
the following always results in 5:

1) Take a number, x (say, 6);

2) add its successor, x + (x + 1) (here,
6 + 7 = 13);

3) add 9, 2x + 10 (here, 13 + 9 = 22);

4) divide by 2, (2x + 10)/2 (here, 2212 = 11);

5) subtract the original number, x + 5 -x
(here, 11 - 6 = 5).

5

(A): 2(x + 3) 4 =2 + 2x is an identity; (B): 5x + 1 = 3(2x - 1) is an equation

if we set x = 0 in (A) we obtain 2= 2; in (B) we obtain 1 * -3

if we set x = 1 in (A) we obtain 4= 4; in (B) we obtain 6 * 3

if we set x = 2 in (A) we obtain 6 = 6; in (B) we obtain 11 * 9

if we set x = 3 in (A) we obtain 8 = 8; in (B) we obtain 16 * 15

if we set x = 4 in (A) we obtain 10 = 10; in (B) we obtain 21 = 21

if we set x = 5 in (A) we obtain 12 = 12; in (B) we obtain 26 * 27
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The algebraic expression reduces to 5, whatever
x. The game is a bluff, the trick lying in the intri-
cate instructions which are designed to compli-
cate matters. Actually each step is simple, but we
are not always alert enough to see the main
points. In the present instance, the trick is to take
away the arbitrary original number, that is the sub-
traction x - x. By starting the whole process from
the other end, any number of such games can be
invented. Let us construct one that always results
in 13. For any real number there are infinite identi-
ties. Take 13 = 7 + 6, for example. Since x - x =
0, we can add this to the right-hand side without
upsetting the identity, 13 = 7 + 6 + x - x. This
can now be rewritten as 13 = (2(7 + 6 + x))/2 - x
because multiplying and then dividing an expres-
sion by the same number leaves it unchanged.
Next we can make things more complex by multi-
plying out the bracket: 13 = (14 + 12 + 2x)/2 -x,
which can be recast as 13 = (2(x + 7) +
12)/2 - x. The game then is this:

1) Take a number, x (suppose we take 10);

2) add 7, x +7 (here, 10+7 =17);

3) multiply by 2, 2(x + 7) (here, 2 x 17 = 34);

4) add 12, 2(x + 7) + 12 (here, 34 + 12 =46);

5) divide by 2, (2(x + 7) + 12)/2 (here, 46/2 = 23);

6) take away the original number, (2(x + 7) +
12)/2 - x (here, 23 - 10 = 13).

The rules of algebra are such that it can appear
we are able to read peoples' minds. Try this
exercise:

1) Think of a number, x (suppose we take 6);

2) double the number, 2x (here, 2 x 6 = 12);

3) add 4, 2x + 4 (here, 12 + 4 = 16);
4) divide by 2, (2x + 4)/2 (here, 16/2 = 8);

5) add 13, (2x +-4)/2+ 13 (here, 8 + 13 = 21).
We now ask the player for his answer, namely 21,
and quickly tell him he started with 6. Since the
final algebraic expression reduces to x + 15, we
know that, in this instance, x + 15 = 21, so x = 6.
Algebra, not mind reading.

There are countless variations of this garne, as
the natural numbers that can be subtracted from
x, which is itself a natural number, are endless.
The number subtracted should not be too small,
say at least 20. The first step would be x + 20, an
expression which will now be transformed. For
example:

x +20=x +6+14 =3(x +6)/3+14
(3x + 18)/3 + 14.

The game then consists of these steps:
1) Think of a number, x (say, 8);

2) multiply by 3, 3x (here, 8 x 3 = 24);

3) add 18, 3x + 18 (here, 24 + 18 = 42);
4) divide by 3, (3x + 18)/3 (here, 42/3 =14);

5) add 14, (3x + 18)/3 + 14 (here, 14 + 14 -= 28);
6) subtract 20, (3x + 18)/3+14 -20=x (here,
28 - 20 = 8); which produces the number origi-
nally in mind.

Odds and evens

From our early efforts in arithmetic we learned to
distinguish between odd and even numbers; the
latter are divisible by 2, the former are not.
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Let us examine the algebraic notation of an
even number and its properties. Take any integer
x; 2x then is even. Thus 14 is even, for we can
write it as 2 x 7. If 2x is even, then 2x + 1 is odd.
For example, 15 = (2 x 7) + 1.

This hatches some amusing games. Let a
player take an even number of coins in one hand
and an odd number in the other. Ask him to dou-
ble the number of coins in his left hand and triple
the number in his right, and to reveal the total of
the two numbers. You can then tell him which
hand holds the odd number of coins and which
hand has the even number. If the sum is odd, the
odd number of coins is in the right hand; if the
sum is even, the odd number of coins is in the left
hand. For example: if we have three coins in the
left hand and six in the right then 2 x 3 + 3 x 6 =
24. The sum is even, and the odd number of coins
is in the left hand. What is the trick? We need
algebra to grasp it. As before, we can fol-
low the operations step-by-step. There are two
possibilities:

1) The odd number of coins is in the left hand.

2) The odd number is in the right hand.

Call the number of coins in the left hand L and the
number in the right hand R. Then:

1) Odd number of coins in the left hand,
L = 2x + 1, R = 2y, where x,y are two unknown
integers whose actual value does not matter. The
sum to be considered is 2L +3R =
4x + 2 + 6y = 2(2x + 1 + 3y) which is divisible by
2, and hence even.
2) Even number of coins in the left hand, L = 2x,
R =2y + 1, and2L +-3R =4x +6y +3=2(2x +
3y + 1) + 1, which is odd. This completes the
proof.

The successor of a number

Those algebraic expressions that almost look too
simple at first, can actually suggest a variety of
entertaining mathematical games successive
numbers, for example. These are numbers that
come directly after one another: x + 1 follows x,
x + 2 follows x + 1, and so on.

Take five successive numbers and add them
together:

x + (x + 1) + (x + 2) + (x + 3) +
(x +4) =5(x +2)

This produces the next game.

1) Tell someone to think of a number, x (suppose
it is 252);

2) now ask the player to add to it the next four
numbers, 5(x + 2) (here, 252 + 253 + 254 +
255 + 256 = 1,270);

3) ask for the result and from that you can recover
the original number. All you have to do is divide by
five and subtract 2, for 5(x + 2)/5 - 2 = x (here,
1,270/5 - 2 = 252).

A shortcut in calculations

The world of numbers is vast and filled with possi-
bilities. With a bit of inquisitiveness one can cre-
ate games simply by devising new steps, or new
ways to work out complicated and lengthy sums.

For one of these games you need two players.
Ask each to write down a four-figure number on a
piece of paper. Suppose the numbers are 1,223
and 1,887. One player (no matter which) is then
asked to work out the product in the usual way.
Meanwhile, you subtract 1,887 from 10,000, and
1 from 1,233, which gives 10,000 - 1,887 =
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8,113, 1,223- 1 = 1,222. The second player is
now asked to multiply these two numbers. Finally
the two players are told to add their results. Before
revealing them, however, you can announce that
the sum is 12,221,887 (indeed, 2,307,801 +
9,914,086 12,221,887).

To clarify this let us examine the various steps
algebraically. Let the two four-figure numbers be
x and y.

1 ) The first player works out xy,

2) the second player works out (10,000
(y-1 ) = Io,OOOy- 10,000 -xy + x;

x)

3) adding the two results yields 10,000y-
10,000 -xy xy+x = 10,000(y - 1) +x.

This final expression explains the trick: multi-
plying by 10,000 adds four zeros to the digits-for
example, 13 x 10,000 =130,000. Thus y - 1
gives the first four figures and x the remaining
four. In our case x = 1,887 and y 1 = 1,222,
producing 12,221,887.

How much money is in your pocket?

Substituting a letter for a number-x, or any other
letter may seem almost elementary, but it was
actually a major step in the development of math-
ematics, as it helped to illuminate the formal fea-
tures of numbers and raised analysis to a more
abstract level. When we see "652," we auto-
matically think of a number. If, however, we see an
algebraic expression, such as 1Ox + 9, it is less
clear that it too is a number.

We know that in algebra x can take any numer-
ical value. If it equals 4, then the number just
mentioned will be 49; if x equals 1, the number is
19, and so on. This gives rise to yet more games

which may seem perplexing at first. In this exam-
ple we see that the values of x appear in the tens
of the answer, as is obvious if we take away the
units. Consider another example.

We tell someone we can guess the amount of
small change in his pocket if he will do the
following:

1 ) Start with the total sum, s (say, 35 cents);

2) multiply by 2, 2s (here, 2 x 35 = 70);
3) add 3, 2s + 3 (here, 70 + 3 = 73);

4) multiply by 5, 5(2s + 3) = IOs + 15 (here,
5 x 73 = 365);

5) subtract 6, 1 Os + 9 (here, 365 - 6 = 359).

We ask for the result, take away the units and are
left with the sum of 35.

Other expressions too can generate this kind of
trick, indeed a host of tricks. For example, use any
number x and proceed as follows:

1) Take a number, x;
2) add 2, x + 2;

3) double, 2x + 4;

4) subtract 2, 2x + 4 - 2 = 2x + 2;

5) divide by two, (2x + 2)/2 = x + 1;

6) subtract the original number, x + 1 -- x = 1.

The fifth step gives the vital clue: To get x we
merely subtract 1.

How to guess a birth date

In the preceding algebraic expressions there was
only one unknown and the trick was built around
it. In the same fashion, we can devise tricks using
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expressions with two unknowns and find two
numbers,

Consider an exercise that allows us to deter-
mine a person's birthday. First assign the num-
bers i to 12 to the months, starting with January.
Let m be the month and d the number of the day
we are seeking. Now put the person through
these steps:

1) Multiply by 5 the number of the month, 5m
(suppose the birthday is 13 June, then
5 x 6 = 30);

2) add 7, 5m + 7 (here, 30 + 7 = 37);

3) multiply by 4, 20m + 28 (here, 4 x 37 = 148);

4) add 13, 20m + 41 (here, 148 + 13 = 161);

5) multiply by 5, 100m + 205 (here, 5 x 161
805);

6) add the number of the day, 1 OOm + 205 + d
(here, 805 + 13 = 818);

7) subtract 205, 100m +d (here, 818-205
613).

Now ask for the number. The hundreds give the
month, namely 6 for June, while the rest, 13, gives
the day. Try a different one. Suppose we are to
guess the date on which the Bastille fell (14 July
1789), marking the outbreak of the French
Revolution.

1) Multiply the month by 5, 5m (here, 5 x 7 = 35);

2) subtract 3, 5m - 3 (here, 35 - 3 = 32);

3) double, 1 Om - 6 (here, 64);

4) multiply by 10, 1 OOm - 60 (here, 640);

in the tens and units, while 100m is found in the
hundreds, preventing the two from overlapping.
Now we simply read off m and d. Of course, d
must remain below 100, which limits the game to
age, shoe size and so forth.

Guessing age and size of shoes

Here is an analogous game with a few confusions
deliberately added. Suppose we are to guess the
size of a person's shoes as well as his age. We
proceed thus:

1) Multiply the number of years (a) by 20, 20a (if
a is 20, we have 20 x 20 = 400);

2) add the number of the present day (d),
20a + d (here, supposing it is the 9th, 400 + 9
409);

3) multiply by 5, 1 00a + 5d (here, 5 x 409 -
2,045);

4) add the shoe size (s), 1 bOa + 5d + s (if s is 1 1,
then 2,045 + 11 = 2,056).

Now we subtract five times the number of the
current day, which is known, leaving 100a +s.
The hundreds give the age and the rest gives the
shoe size (here, 2,056 - 45 = 2,011). The person
is 20 and wears size 11 shoe.

Where is the error?
5) add the day,
640 + 14 = 654).

1OOm - 60 + d (here,

Given this number, we now add 60, leaving
1OOm + d (here, 714). The values of d are found

Behind every mathematical game there lies a
wile. Many such games rely simply on people
being unable to follow the various algebraic
steps. However, we can invent very subtle tricks
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based on the procedure itself. Suppose we wish
to prove that 1 = 2. Take any two numbers x and
y and suppose:

1) X =Y;

2) multiply by y, xy = x2;

3) subtract y2 , xy -y 2 = x2 y 2;

4) factorize, y (x - y) = (x + y) (x - y);

5) divide by (x -y), y =x +y;

6) by 1), x =2x;

7) divide by x, 1 = 2.

Each step seems correct; yet there is an error,
an illogical step. When there is a contradiction in
mathematics, the mistake can be found in the
procedure or in the premises. If a game is irri-
tating to play, it could be that either it is faulty (the
premises are wrong), or the player is not sticking
to the rules (the procedures). In this instance, the
logical error lies in 5) when we divide by (x -y),
which because of 1) is zero. Clearly it makes no
sense to divide by zero. We can now see that the
contradiction was produced by introducing an er-
ror into the procedure.

In the following numerical expressions there
are two mistakes for the reader to detect:

1) 2+1 (-1) 4;

2) 6 + 1/3 2;

3) (3 + 1/5) (3 + 1/8) = 1 0;

4) 18 -(-8)=26;

5) -32 x (27 - 27) 32.

This is the solution. The errors are in 2), where the
result is 18 (dividing by 1/3 is multiplying by 3); and
in 5), where the result is zero (multiplying by zero,
represented here by 27 - 27, is zero).

Positional notation of numbers

This method (cf. p. 10) was used by the ancient
Indians and was spread throughout medieval
Europe by the Arabs. At the time it represented
enormous progress in mathematics. Today we are
so habituated to using Arabic numerals that we
seldom realize the system's advantages. To do so
we need only recall the Roman system which was
long, cumbersome and a ready source of errors.
Arabic figures are less intuitively obvious, but
from the start they have exhibited a peculiar fea-
ture on which mathematical thinking rests: ever-
increasing simplicity and generality. Take a num-
ber in Arabic figures, say 6,245. Here 6 indicates
thousands, 62 hundreds, 624 tens and 6,245
units. We can write it also as 6(1,000) + 2(10 0) +
4(10) + 5(1), or 624(10) + 5(1).

Let us now consider a four-figure number
algebraically, writing the digits as x3, X2, X1, XO. We
can then write the number as x3 (1000) +
X2 (1 00) + x1 (10) + xo (1). The first term indicates
the figure with a positional value of thousands, the
second hundreds, the third tens, and the fourth
units. We can split this into x 3 (999 +- 1) +
x2 (99 + 1) + x1 (9 + 1) + x., or, rearranging,
9(11 1x 3 + 11x 2 + X,) + X3 + X2 + X 1 + X0.

Given that x3 is the number of thousands x2 the
number of hundreds, x, of tens and xO of units,
consider the following set of instructions:

1) Take a four-figure number (say, 3,652);

2) write down the figure of thousands, X3.1

(here, 3);

3) write down the figure of hundreds, x -10+
x2-1 (here, 36);

4) write down the figure of tens, x3-100+

x2- 10 + xi * 1 (here, 365);
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5) add these, x3(111)+x 2 (11)+xi(here, 3+
36 + 365 =404);

6) multiply by 9, 9(111x3 + 11x2 + x1) (here,
9-404 = 3,636);

7) calculate the sum of the digits, X3 + x2 + x1 + x0
(here, 3+6 + 5 + 2 = 16);

8) add to the previous sum, X3 (1,000) +
x2 (100) + x, (10) + x0 (here, 3,636 + 16 = 3,652).

We have just reconstituted the number through a
new sequence of steps.

One rotten apple can spoil the whole
basket

In the section "Where is the error?" we elicited
paradoxical or contradictory results by dividing
by zero in an algebraically unclear manner. Let us
look at zero more closely in its various mathe-
matical and philosophical senses. We know from
school what the reciprocal of a number is. If the
number is 6, its reciprocal is 1/6; if it is 12, it is 112,

and so on. The larger the number, the smaller its
reciprocal and conversely. Thus, in the sequence
1/2, 1/3, 1/4, 1/5, 1/6 ... the terms become ever smaller.
Using this method, one might imagine we could
reach the smallest number in the world. Similarly,
we might ask the meaning of dividing by zero,
namely 1/o. Is this a number at all?

Suppose someone discovered that 1/o = x. Now
in a normal case, say 28/4 = 7, we find 7 x 4 = 28.
Therefore, in the case of /0= x we should find
x * 0 = 1; but x * 0 = 0, otherwise we would have
1 = 0. Thus there is a contradiction; the same
would occur were we to divide by zero any num-
ber different from zero. There is one odd excep-
tion, namely dividing zero by zero; the result can
be any number. For instance, take any number x,
then 0 = 0 *x, and therefore 0/0 = x. It is pointless,
which is why division by zero is not allowed in
mathematics.

All this is simply an intellectual game, rigorous,
to be sure, but still a game. In mathematical
thought the simplest steps can conceal quite pro-
found concepts and principles. One of these prin-
ciples belongs to logic-the science of correct
reasoning-and states that from a contradiction
any assertion can be established. Or, to quote
medieval logicians: 'ex absurdis sequitur quod-
libet"-from the absurd anything follows.

Dividing a number by zero can produce
contradiction, dividing zero by zero can yield any
number. If we cancel by zero in 18 x 0 = 3 x 0, we
get the contradiction 18 = 3. Or, as in the follow-
ing: if x = 1, then x 2 -x =x 2 - 1, x (x -1)=
(x + 1) (x - 1), and cancelling by (x - 1) gives
x = x + 1, 1 = 2; we have divided by x - 1, which
in this case equals zero. It is an error we fre-
quently make in mathematics; even Einstein once
inadvertently did so.
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The symbol 0 (zero) came to the West with the
Indo-Arabic numerals. It is one of the most useful
symbols, but also one of the most ambiguous and
contradictory. Like the other numerals, zero has a
positional meaning. In 432 the 2 does not have the
same meaning it has in 423. This is also true in
430 and 403 where the zero means the absence
of units in one case and the absence of tens in the
other. The concept of zero has been developed
further in mathematics, and to an even greater
extent in philosophy and religious thought. If we
think of zero, we think of nothingness, but what is
that? Roughly we might say that nothingness is
the denial of existence, it is that which is not. Yet,
as we think of nothingness, it must somehow
exist. In short, we have an unfathomable concept
and that creates paradoxes.

Originally the notion of nothingness was extra-
neous to Greek philosophy as the Greeks would
not accept the being of that which does not exist.
Indeed, zero does not enter the Greek and Ro-
man numeral systems. It is probably the philoso-
pher Zeno (336-264 B.C.), a Phoenician from Cy-
prus and founder of Stoicism, who introduced this
non-Greek concept into ancient philosophy.

Ordinary language and mathematical
language

Many of us tend to think of mathematics as simply
a practical tool for accounting and measuring. At

best, we have some smattering of science, and
are familiar with a set of techniques and methods
of mathematical analysis that make our calcula-
tions work. However, we fail to grasp a basic fea-
ture of mathematics, namely its language.

The term "language' suggests everyday lan-
guage which conveys information. However, lan-
guage has other tasks, such as organizing our
cognitive activities to clarify our concepts and to
represent our results. Mathematics, with its ab-
stract symbols, fulfills this function very well. Still,
too often mental habits, learned in school in me-
chanical ways and devoid of mathematical in-
sight, make us see mathematics as containing a
different rationality and as something apart from
everyday language. This is not only absurd but
artificial. It is even more absurd to assume there
are two languages representing opposing ways
of facing reality. It is true that mathematical lan-
guage is particularly appropriate for descriptions
of certain problems and their solutions, but this
does not justify divisions in knowledge.

Number games, especially algebra games,
force us to connect everyday language and math-
ematical language and to translate then back
and forth. This proves there are no genuinely iso-
lated areas, even if everyday language is more
complex and varied and therefore better suited to
recounting subjective and personal situations.
Mathematical symbols and the relations between
them are abstract, synthetic mental constructs
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Too often we th nk of *he ru es of
algebra as simply abstract atd we
forget that matherenat cs began for
very pract ca and concrete reasons
Take the product of two inomr a s
th s s easier to understand f *t s

nked w th the probe em of dir d ng
land
Left A geometric i lustrat on of the
Simp e a gebra c pmob em Ot sqUar rig
(a b) We know troan algebra that
th s as (a - b) - a a b- 2at In
the d agrarn we t rd It s the sma
square at the top eft

(a-b)2= a2+ b2- 2ab

and unlike ordinary language, they are specific
and unambiguous. Translating from mathematical
into everyday language is therefore a particularly
useful exercise, especially at school age. Take
the expression x/3 + 5 = x12 + 6, for example.
This equation and its solution can help us to for-
mulate a problem first in everyday language, and
then synthetically in the language of mathe-
matics. In ordinary language the equation is
translated: A third of a number increased by five
equals half that number increased by six, if that
number is minus six, mathematically, x/3 + 5 = x/

2 + 6, yields x = -6. Similarly, the expression
(x - 2)/4 = (5 - x)/6 can be read as: A quarter of
two less than a number equals one-sixth of the
difference between five and that number.

Let the reader try to translate the expression
AB = AC. If AB and AC are two segments, we say
that the segment AB is congruent with (equal to)
the segment AC. If ABC is a triangle, AB - AC
tells us that the triangle with vertices at A, B, C is
isosceles. If BC is a segment, we can say that A
is the middle point (Figs. 5, 6, 7).
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a+b

(a+b)2 = a'+ b2+ 2ab

In this diagram the connection
between an algebraic express on
and a geometric one is more
immed ate When we multip y (a + b)

with itself we get the squares of
each term plus twice their product
(a +b)2 a2 +b2+2ab
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GAMES WITH GEOMETRICAL
FIGURES

God geometrizes conbr ially (Plato)

Geometry and optical illusions fg 89

In Fig. 8-9, which is longer, AP or CD? In fact AB
neither. They are equal. Now take Fig. 10. CD
looks longer than AB, but again they are equal, as
a ruler will show. These are optical illusions. C
Through our sense organs we perceive vital infor- ;; 0
mation about our surroundings. That data then
travels to the brain where it is processed and sent
to us as sense experience. There are visual, audi- fig 10 A

tory, gustatory, olfactory and tactile sensations, H

depending on the sense involved. However, our
senses can deceive us and give us an incomplete
picture of reality. Moreover, our senses can be
conditioned by previous experiences or habit and
thus create illusory sensations. Look at Fig. 11. C
You probably notice a triangle. None is drawn, but
the more one looks the more one seems to per-
ceive a triangle, even if reason tells us the draw-
ing consists of circular sectors.

LI
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Games with geometrical figures

Below Th s pant by the Dutch artist
Maur ts Come ius Escher I1898
1972). Ascent and Descent was
inspired by the amb gu ty in certa n
geometrica figures The monks in the
outer row seem to ascend endlessly
wh le those n the inner row seem to
descend end ess y ((c Bee drecht
Amsterdam 1982)

Right The steps on which Escher s
optical us on s based In three
d tensions we cannot represent or
bu id a sta rcase that ends where It
beg ns In a two-d mensiona picture
Escher overcame these m nations by
a ter ng certain f curative signa s and
v usual data

Opposite Bridget R leys Cataract 111
1967 London (Brit sh Counci by
perm ss on of Rowan Gal ery ) This
Op Art (Optical Art) painting plays on
opt ca I usion Such phenomena
warn us that our perception of an
mage can be d fferent from ts real ty

which s perhaps what attracts our
attent on
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Games with geometrical figures

Opposite Regular similar geometric
figures converge to the center of the
dome of Sheik Loftollah's mosque at
Isfahan (Iran) This is a typical
example of Arabic art, in which
geometrical themes often occur In
the Arabic world, the abstract
sciences, particularly mathematics
and geometry, were based on
religion In Islam Allah represents life
itself Man, or plants or animals are
only single parts of the universe and
no one of them can represent the
totality Indeed Arabic artists seldom
portrayed people or animals,
choosing instead to create abstract
geometric patterns in which animals
were seen only in stylized forms
Above: Until about the second half of
the 19th century the geometry in use
was basically Euc idean, namely the
intuitive geometry we learn at school
Euclidean geometry was regarded as
an immutable and predetermined
way to grasp phenomena and
experience, witness the philosopher
Immanuel Kant However, in the
second half of the 19th century some
mathematicians and scientists
(Gauss, Lobachevsky, Bolyai)
discovered that other geometries
could be constructed, leading to
non-Euclidean spaces, simply by
denying one or more of Euclid's
basic principles In 1872 the
mathematician Felix Klein at Erlangen
proposed a geometrical research
program to radically change

figurative geometry into a system of
transformations This means there
are many geometries. and together
they form a system in which each
can be constructed from the simplest
to the most general Euclidean
geometry is a metric geometry and
belongs to the group of displace-
ments, it allows only isometric
transformations (displacements
rotations, symmetries) that vary the
position but not the size of angles
and lines If lines are allowed to
change in size, we have the group of
similitudes; if angles too can change,
we have affine geometry, if parallels
change, we have protective
geometry Finally, a figure may be
continuously distorted as long as
connected parts are not severed and
points are not superimposed, this is
the group of homeomorphisms or
topology Each of these geometries is
weaker than its predecessor but
broader as what remains are the
more genera properties of figures
The way the exact sciences
developed at the time (Einstein's
relativity, quantum theory) confirms
that the new ideas on space
constructed for non-Euclidean
geometries were more in accord with
reality than the absolute space of
classical physics.
Right: The perspective of an Arab
portico, a clear example of
projectivity
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fig. 12

[�i

fig 13

ii
Many factors intervene in the processing of

data supplied by the senses; particularly impor-
tant are our perceptual habits. The mechanism
that makes us see a triangle in Fig. 11 is the same
one that makes us see two letters in Fig. 12 but not
in Fig. 13.

Consider a curious experience we have all had
at the movies. In a Western, for instance, as we
watch the pursuit of a coach moving faster and
faster, suddenly the coach's wheel spokes seem
to rotate backwards. Obviously our sensations
are confused; our eyes tell us the coach moves
forward while the wheels suggest that it is going
backward. When the chase ends, the wheels just
as suddenly resume their proper forward rotation.
Our senses have deceived us and we have ex-
perienced an optical illusion. The explanation is
quite simple and is based on the physical prin-
ciples of cinematography. The sensation of move-
ment we perceive in the film is caused by the fact
that the slightly different individual frames that are

projected on the screen at the rate of 20-24 a
second, "persist" for an instant on the eye's retina
in an ordered sequence, hence the sensation of
motion.

Why then do we see the spokes move back-
ward after a certain speed is reached? We can
only give a general indication, as a detailed ac-
count involves the psychology of perception and
principles of optics too complex to outline briefly.
Roughly, this phenomenon occurs because the
time a spoke takes to move from one position to
the next steadily decreases, until it is less than the
appearance of an individual frame on the screen.
As a result, the pictures on our retina merge, giv-
ing the impression of a reversal of rotation. This
can be seen more or less in Fig. 14. The fourth
diagram shows the reversal point. Note that the
distance between the two spokes increases.

In discussing this common optical illusion we
have mentioned some physical principles and
mechanisms of perception. Optical illusions are
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Games with geometrical figures

fig. 16

indeed particularly important in many fields: art,
psychology, mathematics, even philosophy. Phi-
losophers ask to what extent our senses give us
information that correctly reflects the world
around us and what subjective elements distort
our perception of reality. In any event, optical illu-

fig. 15

sins have decisively influenced the psychology
of perception; they are a popular instrument for
studying how the brain organizes and interprets
what the senses convey to it.

Look at the pins with their heads up in Fig. 15.
Now raise the book to eye level, hold it horizontally
and close one eye. The pins seem to be standing
up. Among the illusions studied and analyzed by
Gestalt psychology (the psychology of the per-
ception of shape, adopted by the Germans Max
Wertheimer, Kurt Koffka, Wolfgang Kbhler, Kurt
Levin among others) are those concerning figures
that can be perceived in two equally valid ways.

Fig. 16 shows the new flag adopted by the Ca-
nadian House of Commons in 1965. The middle
panel has a maple leaf on it, but if we concentrate
on the white background surrounding the leaf, we
seem to perceive two angry faces. Such figures
are called "reversible," because their mental rep-
resentation can suddenly switch without any
change in the visual information to the eye.

39
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fig 1 7

A well-known figure of this type is 'Necker's
cube," or transparent cube. In 1832 Louis Albert
Necker, a Swiss geologist, observed the "per-
spective inversion"' and reported that some draw-
ings of transparent rhomboidal crystals present
two different pictures in which front and back are
interchanged.*

In the cube of Fig. 17, one side seems to be in
front, but when you look at the cube steadily the
sense of depth reverses and the side at the back
suddenly appears in front. To convince yourself,
look at the corner A and watch how it jumps from
back to front.

How do we explain this? Reversible figures pro-
duce a set of data that can be given two equally
valid interpretations; the brain accepts one first
and then the other. Another classic example is the
goblet of Edgar Rubin (a Danish psychologist). In
Fig. 18, initially we see two faces, then a goblet.

The inversion of object and background is only
one reason for optical illusions; other elements in
a figure can also produce ambiguity. Take the

'A rhomboid s a paralle ograrr n wh ch the angles are ob ique and adjacent
sides are unequa

40
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fig 20 9 I

U _U
A I

III I

Ui

Uc==

flg ? I

t- picture in Fig. 19. It looks like a duck or a rabbit,
fig. 24 -ipnpnririinn on wA/hpthpr we fnousi first nn the Itsft

side or on the right side. Indeed, the duck-rabbit
was devised by psychologist Joseph Jastrow in
1900 to illustrate ambiguity.

Games with matches

The simplest figure games can be played just
about anywhere. All we need is a box of matches.
Fig. 20 shows a coin inside a chalice formed by
four matches. By moving only two matches, how
can we reconstruct the figure to put the coin on
the outside? Fig. 21 shows the solution; the dotted
lines indicate the initial position. The next figure
illustrates a similar trick. Fig. 22 shows five
squares formed by a certain number of matches.
The problem is to remove one square by chang-
ing the position of only two matches (no open-
sided or incomplete squares are allowed). One
solution appears in Fig. 23.

Next Ionk at the triannkl in Fin. 24. Bv removing
fig. 26 . - - -- - - - -

four matches we always finish with two equilateral
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fig. 29
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15

triangles (Fig. 25). Now try to produce two trian-
gles by taking away only two matches (the figures
must have no open sides). One solution is shown
in Fig. 26.

Lo shu, an ancient Chinese figure

Take a square of nine equal boxes and, using
numbers one through nine, write a number in
each box in such a way that each row and column
adds up to the same sum. This is quite an absorb-
ing and difficult task and will probably be solved
only by trial and error. One attempt, shown in Fig.
27, fails because the totals of the second and
third columns and the diagonals are different from
the totals of the rows and the first column. How-
ever, by interchanging 5 and 7 we reach the ar-
rangement of Fig. 28, which is a solution. A figure
such as this with rows, columns, and diagonals
adding up to the same sum, is known as a "magic
square.' The Chinese were the first to discover
the properties of magic squares which they called
Lo shu. Legend tells us that the figure was re-
vealed to man on the shell of a mysterious tortoise

which crawled out of the river Lo many centuries
before Christ. Historically, Lo shu goes back no
further than the 4th century B.C. The Chinese at-
tributed mystical significance to the mathematical
properties of the magic square and made it a
symbol uniting the first principles that shaped all
things, man, and the universe, and that remain a
part of them eternally. Thus, even numbers came
to symbolize the female-passive or yin and odd
numbers the male-active or yang. At the center on
the two diagonals is the number five, representing
the Earth. Around it are four of the major elements:
metals, symbolized by four and nine; fire, by two
and seven; water, by one and six; and wood, by
three and eight. As Fig. 29 indicates, each ele-
ment contains measures of both yin and yang,
female and male-the opposites in reality.

Magic squares: their history and
mathematical features

A magic square exhibits the integers from 1 to n2
,

without repetition, in such a way that each row (left
to right) and column (top to bottom) and the two
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27 29 2 4 13 36

9 11 20 22 31 18

32 25 7 3 21 23

14 16 34 30 12

28 6 15 17 26

111

1'11

1'11

5 111

19

1 24 33 35 8 10

ill ill ill ill ill illAbove A Ch nese mag c square of
order 6. dating from about A D 1590
Chinese mathematic ans were among
the early students of the numerical
and geometrcal features of such
squares The Lo shu is a third order

magic square (Fig 29) known since
the 4th century B C and accorded
special rel gious signif cance
Right. The same square in Arabic
numerals All the co umns rows and
diagonals add up to 1It

111

111

111

diagonals have the same sum. The number n is
called the order, base, module, or root of the
square.

The square's mathematical properties have
captured the imagination of scientists since the
origins of arithmetic and geometry; many of the
ancient scientists attributed magical and caba-
listic virtues to the square. Magic squares were
known in India, and from there came to the West,
probably through the Arabs. During the Renais-
sance, a period of extensive inquiry, the mathe-
matician Cornelius Agrippa (1486-1535) worked
on magic squares of orders greater than 2. Order
1 is trivial, and it can be proven that there is no
magic square of order 2. (If in doubt, try to con-
struct one.) From this Agrippa deduced that the
ancient Greek philosophy incorporating four ele-
ments (fire, water, air and earth) as first principles
was inadequate.

Agrippa constructed magic squares of orders 3
to 9 inclusive and gave them an astronomical
meaning. They symbolized the seven planets
known at the time (Saturn, Jupiter, Mars, Sun, Ve-
nus, Mercury, Moon). Copies of magic squares

cut in wood or other materials once served as
amulets and to this day are used in some parts of
the East. In the 16th and 17th centuries people
believed a magic square engraved on a small
silver tablet could protect them from the plague.

The aura of magic surrounding these squares
is partly based on the surprising number of com-
binations that can be fashioned with them. Con-
sider the Lo shu, the oldest and simplest of magic
squares. Is there a method for constructing a
magic square? First, we list the eight ways in

9 + 5 + 1
9 + 4+2
8 + 6 + 1
8 + 5 + 2
8 + 4 + 3
7 + 6+2
7 + 5+3

fig 30 6 + 5 + 4

= 15
=15
=15
=15
=15
=15
=15
=15
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Left Leonardo da Vnci s Canone
delle proporzioni de/ corpo umano
Rue for the proportions of the human
figure, according to V truv us Ga ler e
de I Accademia Ven ce
Below Leonardo s sketch for a se f-
mcving vehicle powered by two large
spr ngs and steered by a handle
fixed to a sma rear wheel

Opposite A orecht Durer s
Melencolir aerigravng 15t14) D rng
the Renaissance w th the renewal of
interest n the arts and so ences two

art sts to show partial ar fasc oat on
w th mathematics and geometry were
Leonardo and Durer This picture
reveal s a mag c square of order 4
to symbol ze melancho y then
cons dered an energy zing cond t on
The ast ne of the Square rd cates
she year of compose t on 1514

which the number 15 can be produced from the
first nine natural numbers (Fig. 30). Note that each
number appears only once. Therefore we must
arrange the triplets of equal sum (in Fig. 30, the
first two, for example, share the nine) in such a
way that two of them have one number in com-
mon. This is possible because the square has
eight lines (three rows, three columns, two diago-
nals) that must add up to 15, and these corre-
spond to the eight possibilities of Fig. 30. To fill the
compartments, remember that each number can
occur only once. Take the central compartment: It
must appear in four triplets (one row, one column,
two diagonals). The only such number is 5. Next
consider the corners: Each must contain a num-
ber that appears in three triplets (one row, one
column, one diagonal). Fig. 30 indicates there are
only four such numbers: 8, 6, 4, 2.

We could have reasoned the other way around
and counted how many times a number appeared
in the set of triplets, and then deduced its position
in the square. For example, 9 occurs only twice,
and therefore cannot be at the center or in a cor-

ner. Given the square's symmetry, there can be
two cases-mirror images of each other.

More intricate magic squares

The Renaissance was a period of cultural and
artistic revival throughout 15th and 16th century
Europe and touched all branches of learning. The
development of mathematics and geometry was
remarkable and, indeed, their influence extended
to the figurative and architectonic arts for which
they became a model and reference point. All
these trends came together in the person of
Leonardo da Vinci (1452-1519), scientist, writer,
man of letters, engineer, mathematician and art-
ist. For da Vinci, mathematics and geometry were
closely linked to mans' artistic and cultural en-
deavors. In a no longer extant treatise on painting,
De picture, he wrote: "Do not read me if you are
no mathematician." Actually Plato (428-348 B.C.)
made the connection long before da Vinci and
even saw fit to place this warning over the en-
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fig. 3 1

fig. 32
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1

X2 =4 2x9-18 2X4-8 2x15=30

2 x 7=14 2X5=10 2x3=6 2x15=30

2X6=12 2X1 =2 2x8=16 2x15=30

2x15=30 2x15=30 2x15=30 2x15=30

trance to his school: "Let no one enter who mas-
ters no geometry."

The link between mathematics, geometry and
art also underlies the work of the German painter
Albrecht Durer, a contemporary of da Vinci. In
Durer's noted engraving Melencolia, there is a
magic square, often considered the first example
of one seen in the West. It is constructed so the
rows, columns and diagonals add up to 34
(Fig. 31). Moreover, the four central compart-
ments add up to 34. The second and third com-
partments in the bottom row indicate the date of
composition: 1514. Aside from the intimacy be-
tween the arts and sciences during the Renais-
sance, perhaps another reason for DOrer's inclu-
sion of a magic square in his engraving, is that
fourth-order squares were thought to possess
special therapeutic virtues. Indeed, astrologers of
the period advised wearing them as amulets to
dispel melancholy.

Let us move on to other magic squares. Take
the third-order square of Fig. 29 and multiply its
entries by a constant to produce new entries.
These will again add up to a constant. Indeed,

fig 33
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multiplying by 2 gives a sum of 2 x 15 = 30
(Fig. 32). Similarly, Figs. 33 and 34 are construc-
ted by multiplying by 3 and 4 the entries of the
square in Fig. 29. If we exclude rotations and
reflections, there exists a unique magic square of
the third order. Figs. 35 and 36 are only a single
third-order square with a reflection about the cen-
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16 2 3 13

5 11 10 8

9 7 6 12
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fig. 42
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tral row, while Fig. 37 has been rotated around a
diagonal. With higher orders, the number of
arrangements increases. A fourth-order square
allows 880 different placings of its 16 numbers,
excluding reflections and rotations. This was
first discovered by the mathematician Bernard
Frenicle de Bessy in 1693. Figs. 38, 39 and 40
show some of these solutions, with the sum 34. It
is not yet clear what mathematical law governs the
disposition of numbers in magic squares. The
question remains open, and the known solutions
have only been discovered by trial and error.

How many fifth-order magic squares are there?
Until recently the estimate was about 13,000,000.
In 1973, however, Richard Schroeppel, a pro-
grammer with Information International, deter-
mined the exact number with the aid of a modern
computer (His findings were later published in
Scientific American, vol. 234, no. 1, Jan 1976).
Without counting rotations and reflections, there
are 275,305,224 different solutions.

Diabolic squares

These are even more intriguing than magic
squares, because of their additional properties.
Again consider Durer's square as it is rearranged
in Fig. 39 and repeated in Fig. 41. The sum of the
four central squares is 13 + 8 + 3 + 10 = 34, as is
the sum of the four corners and the vertical as well
as the horizontal off-diagonal squares. Such
magic squares are called "pandiagonal." The
same constant results if we add the set of four
numbers marked in Figs. 42 and 43.

Similarly we can form fifth-order magic squares
with particular properties. In Fig. 44 the sum is
always 65. Considering corner numbers plus the
central one, as well as diagonal numbers (includ-
ing the central one), we always produce the
same sum: 9+13+17+1 +25=65, 7+5+
21 + 19+ 13=65.

A square of order 5 in which any pair of num-
bers opposite the center adds up to n 2

+ 1 (n
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fig 45
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being the order) is called ''associative." Here,
n2 + 1 = 26. Thus, horizontally, 20 is opposed to
6, and 20 + 6 26; diagonally, 17 is opposed to
9 and 17 +9 = 26, 25 is opposed to 1, and
25 + 1 = 26. The Lo shu of Fig. 29 also has this
property and is therefore associative. Indeed,
with n = 3, n2 + 1 = 10, and in the square
7+3=10, 4+6=10, 8+2=10, 9+1 =10. A
fourth-order square may be either associative or
pandiagonal, but never both. The smallest square
that can be both is of the fifth order. If, as usual,
we exclude rotations and reflections, there are
only 16 fifth-order squares with both properties
according to Schroeppel's calculations.

In Medieval times, the Moslems imbued pan-
diagonal squares of order 5 with 1 at the center
with mystic significance, for number 1 is the sa-
cred symbol of Allah, the Supreme Being. The
problem of representing God and the concept of
God occurs in all religions and theologies. The
symbol that best evokes the unity of being is the

number 1. God is one. However, the Moslem con-
ception of God is such that no sign or picture can
adequately represent Him, not even the most ab-
stract and immaterial such as the number 1.
Hence, in some magic squares the ineffable na-
ture of the Supreme Being is suggested by leav-
ing the central square empty.

Magic stars

Similar features are observed in other geometrical
figures such as magic stars. Take twelve counters
numbered from 1 to 12 (Fig. 45) and construct
a star of David from two equilateral triangles
(Fig. 46). Now place the counters on vertices and
intersections so the numbers along each of the six
sides add up to the same sum. As before this can
be achieved by trial and error. In Fig. 47, the sum
is always 26. However, if we add up the six verti-
cesweget3+2+9+11 +4+1 =30.
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Below A Chinese magic circle of
great h stor cal interest executed by
Seki Kowa In the 17th century

fig 48

Let us refine the star by displacements that
make this last sum also equal to 26. Such a prob-
lem must be tackled systematically and demands
a plausible strategy. With the figure consisting of
two equilateral triangles, in order to reach a sum
of 26 at the vertices, we must put the internal
numbers aside for the moment (they form a hexa-
gon shared by the two triangles). A rational pro-
cedure might be to produce the vertex sum of 13
for each triangle, so that 2 x 13 = 26. In Fig. 47,
the inverted triangle gives a vertex sum of
11 + 1 + 3 = 15. We therefore interchange 11 and
10, 3 and 2. The vertex sum becomes
10 + 1 + 2 = 13. For the upright triangle we can no
longer use 1 or 2 (indeed 9 + 4 + 2 = 15), or 8 or
7; they would merely complicate matters. There-
fore we try 6; we interchange 6 and 9, 3 and 2,
and leave 4 untouched. A small rearrangement on
the sides then produces the solution shown in
Fig. 48.
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fig. 49

19 33 20 18 17
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15 29 16 14 13

9 23 10 8 7

fig. 50
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6 20 7 5 4

15 29 16 14 13

9 23 10 8 7
tig. 54

The geometric representation of the
principles of yin and yang (female
and male, according to ancient
Chinese philosophy; see p 42)
Ancient peoples tended to represent
ultimate principles through abstract,
stylized or geometrical figures
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More about squares

There are still more magic squares. Take Fig. 49.
Its square seems to have no formation rule, its
numbers being haphazardly distributed. How-
ever, the square has a property that furnishes
some interesting tricks. Ask a player to perform
the following:

1) Take any number and eliminate all others in the
same row and column. For this we need counters
or other markers to cover the numbers to be re-
moved. Suppose the number chosen is 20 in the
third row and second column. Eliminate 6, 7, 5, 4
and 33, 27, 29, 23, leaving the square of Fig. 50.

2) Repeat the maneuver on Fig. 50, and suppose
14 is chosen. Eliminate 13, 12, 1 1 and 20, 16, 10,
leaving Fig. 51.

3) Repeat as before and suppose 15 is chosen.
Eliminate 14, 13 and 19, 9. leaving Fig. 52.

4) Repeat and suppose 17 is chosen. Eliminate
18 and 7, leaving Fig. 53. Only 8 remains. Adding
this and the four chosen numbers (20 + 14 +
15 + 17 + 8) we get 74. Repeating the whole pro-
cedure with any other numbers, the result will al-
ways be 74. What is the trick?

Consider how the square is constructed. Any
number is the sum of two, one each from a group
of generators that together add up to 74 (Fig. 54):
2 + 16 + 3 + 1 + 0 + 17 + 11 + 4 + 13 + 7 = 74.
The two groups are shown in black along the first
row and column; any number of the square is the
sum of the generators against its row and column.

The trick then is to eliminate all numbers except
one (and only one) in each row and column, and
that is achieved by the procedure stated above.
The final sum then, is simply the sum of the two
groups of generators; a rather simple device in
which the order of the square does not matter, nor
does the sum to be calculated. Any type of num-
bers can be used: negative, positive, fractions or
integers.

An extraordinary surface

There are mathematical and geometric games
that can be resolved only by a proof or through a
concrete example. Take a square with 16-inch
sides for instance, and subdivide it into four as in
Fig. 55. We can then transform it into the rectangle
of Fig. 56. The four parts fit perfectly, yet the two
figures are unequal in area, for 16 x 16 = 256 in2

and 10 x 26 = 260 in2. It appears that we mag-
ically produced 4 in2 out of nothing. Here, too,
there is a trick, as we can see by actually con-
structing the figures. Take a large sheet of graph
paper, large-meshed if possible, and substitute
for each inch a certain number of squares
(Fig. 57). Suppose the square has 8-inch sides,
so there are 8 x 8 = 64 small squares. Cut out the
pieces as required (Fig. 58). The rectangle will be
5 x 13 = 65, leaving us with one too many
squares. If we lay out the pieces as in Fig. 59, it is
at once clear that the sides of the two triangles
and trapezia do not form a diagonal of the rectan-
gle: it is only the diagram that produces this illu-
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sion. Actually there is a gap of an internal paral-
lelogram of area 1.

The bridges of Konigsberg

This large East Prussian town (now called Ka-
liningrad and part of the Soviet Union) lies on the
river Pregel which, in the 18th century, was
crossed by seven bridges linking the various sec-
tions, as shown in Fig. 60. The town is best known
as the birthplace of Immanuel Kant (1 724-1804),
the noted German philosopher. However, mathe-
maticians know Kbnigsberg because its layout is
the basis for an intricate puzzle which, in Kant's
time, eluded even the most famous of them. The
problem is this: Like the inhabitants of other Ger-
man cities, the Kbnigsbergers strolled through
town on Sundays; was it possible to plan such a

walk so that setting out from one's house one
could return to it after crossing each bridge once
and only once? The Swiss mathematician Leon-
hard Euler (1707-1783), born in Basle, studied
the problem and finally answered, no! (His re-
search, originally involving puzzles of this kind,
laid the foundation for a new branch of mathe-
matics, the theory of graphs. An elementary ac-
count of the theory is given in the next section.)
Here is Euler's general rule to determine the solu-
tion to this and similar problems. We count how
many bridges end on each bank or island. If more
than two totals are odd, there is no solution. If the
totals are even-or only two are odd-there is a
solution, namely a path crossing each bridge
once and only once. Consider Fig. 60. On A, there
are three bridgeheads; on B, 3; on C, 5; on D, 3.
More than two totals are odd, hence there is no
solution.
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fig. 61 D

fig. 61b D

Euler's work on graphs appeared in 1736.
Since then it has been usefully applied not only in
mathematics but in other fields as well, In the 1 9th
century, graphs were used in circuitry and in the-
ories of molecular diagrams. Today, aside from
being a method of analysis in pure mathematics,
the theory of graphs is used for the solution of
numerous practical problems, for example in
transportation and programming.

Euler was one of the most productive and orig-
inal mathematicians in the history of science. The
son of a Calvinist pastor, he was barely twenty
when, in 1727, he was invited to join the Academy
of Science in St. Petersburg (today's Leningrad).
He had an encyclopedic mind and though a stu-
dent of physics, astronomy and medicine, Euler
had a particular fondness for mathematical prob-
lems. His output was prodigious. It is said that he
wrote constantly-while waiting for dinner to be

served, even while holding one of his many off-
spring Indeed his desk was always laden with
work awaiting publication. In 1 746 Euler lectured
at the Berlin Academy, but finding the cultural
climate and the appreciation of his work less than
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th s instance the theory of graphs
proves that the prop em of the
bridges can be so ved

favourable, he returned to Russia and the court of
Catherine the Great. Even though Euler eventually
went blind, he pursued his mathematical re-
searches intensely until shortly before his death in
1783. Some time ago, Swiss mathematicians hon-
oured Euler by beginning to collect and publish
all his writings; some fifty volumes have appeared
to date, and the total may well reach two hundred.

The bridges of Paris present a problem similar
to the bridges of Kdnigsberg. Consider the lIe de
la Cite in the Seine (Fig. 61). Here A has 8 bridge-
heads; B, 7; C, 10; D, 7; producing only two odd
totals. Therefore, there must be a solution, 'but
with certain restrictions as we shall see. The solu-
tion is easily found by starting from an area with
an odd total and tracing a path crossing the
greatest number of pairs of bridges leading from
one area to another. A further solution is shown in
Fig. 61 b.

Elementary theory of graphs

When Euler grappled with the problem of Kbnigs-
berg's bridges, he did not consider going there to
solve it. Instead, in the manner of modern sci-
ence, he tried to formulate the problem in a gen-
eral manner by tracing a schema (Fig. 62) in
which banks and islands are shown as points,
and the various bridges between them as lines.
The problem then is: Starting from any of the
points, trace the figure and return to the same
point without retracing any line and without lifting
pen from paper. It is impossible. To solve the
problem formally, consider some auxiliary con-
cepts first. What does a graph amount to? Given
two or more points in a plane, we join them with
arcs or curves or segments to obtain a figure we
call a graph. The points are called vertices or
nodes, and the lines between them (of whatever
shape) are called sides or edges. The number of
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vertices is known as the order of the graph.
Fig. 63 gives some examples. The term "graph,'
will be used here with the particular meaning de-
fined above, and not in its more general sense. In
some graphs, the initial and final vertex of an
edge can be the same. Sides that link a vertex
with itself are referred to as loops (top of Fig. 64).

What is important in a graph is its order, namely
the number of vertices, and the links between
them. In other words, graphs are not differenti-
ated by their shape. Those in Figs. 65-67, for
example, are equivalent, or isomorphic (from the
Greek word meaning "same form") because they
have the same number of vertices and the same
links. Another basic concept is that of the order of
a vertex, which is defined as the number of links
that end at that vertex. Accordingly, there are odd
and even vertices. In Fig. 67, C and D are of order
3, while in Fig. 66, A is of order 2 and B is of order
3. Thus a graph may have only even vertices, or
only odd ones, or some of each, although in the
last instance the number of odd vertices must be
even. Try and draw a graph with an odd number

of odd vertices!
We need one further concept. A graph is called

traversable (in the sense of an Euler path or line)
when each side is traversed only once; vertices,
on the other hand, may be traversed any number
of times. Hence the following rules discovered by
Euler:

1) If a graph has only even vertices, it is tra-
versable from any one vertex back to that vertex.

2) If a graph has only two odd vertices, it is tra-
versable but without returning to the initial vertex.

3) If a graph has more than two odd vertices
(four, six, eight and so on) it is not traversable.

Returning to the problem of Kbnigsberg and its
bridges, there are four odd vertices, therefore the
problem cannot be solved.

A closed trace in which each vertex is passed
only once is called a Hamilton circuit, after the
Irish mathematician William Rowan Hamilton
(1805-1865) who first showed that such circuits
exist. For example, the graph consisting of the
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vertices and edges of the regular dodecahedron
has a Hamilton circuit (Fig. 68). A classic example
is the following: Let the vertices A, B, C, D stand
for four cities (Fig. 69). What are the possible
paths that go through each vertex once and once
only? Starting from A, we have the following Ham-
ilton routes: ABCDA, ABDCA, ACBDA, ACDBA,
ADBCA, ADCBA. Note that 1 and 6, 2 and 4, 3
and 5, are pairs differing only in direction.

Save the goat and the cabbage

This is an old saying, but not everyone knows that
its origins are an ancient puzzle of some twelve
centuries ago. A man wants to transport a wolf, a
goat, and a cabbage across a river in a boat that
barely has room for him and the cabbage, and
certainly for not more than one of the animals.
Moreover, he cannot leave the wolf alone with the
goat, or the goat with the cabbage. How can he
get everything across the river without the wolf

I fig 69 AP,

B\ ID

* ~CY

eating the goat, or the goat devouring the
cabbage?

Graphs are essential for solving those puzzles
in which we must move from one place to another
under certain conditions. Let us represent the var-
ious crossings, denoting the man by t, the wolf by
1, the goat by p, and the cabbage by c. The first
trip might be to take the goat across, since the
wolf will not eat the cabbage. Starting with the
group tlpc, we now have /c left. Next, t returns
alone which creates the group tic. Now t trans-
ports either the wolf or the cabbage. In either
case, he returns with the goat, so the group is now
tpc or t/p respectively. Now he takes the cabbage
if he had already taken the wolf, or the wolf if he
had already taken the cabbage. When the man
returns alone to join p, the group becomes tp.
They finally cross the river and that concludes the
operation.

A synthetic graph for these moves is shown in
Fig. 70. This simple example enables us to visual-
ize a graph as a game. The vertices represent the
various positions (the changes in the original

57

fig 68



Games with geometrical figures

fig. 70
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group), and the lines between them are the moves
allowed.

To clarify the advantages of graphs still further,
try to solve the present problem intuitively by
drawings (Fig. 71). This turns out to be more com-
plicated, so for the next game we will only use
graphs.

The jealous husbands

This is similar to the last problem and just as old
but a bit more complex. Three honeymoon cou-
ples reach a river and find a small boat that will
hold only two people. The dilemma is made worse
by the fact that the husbands are rather jealous.
How can the entire party cross the river without
leaving any bride alone with a man who is not her
husband? As before, let us simplify the problem
and construct a graph. Let the couples be A, B,

C, and men be distinguished from women by the
suffixes, u and d respectively. Thus a, and ad
represent husband and wife of couple A, so that
using a synthetic notation A = (au, ad), B = (bu,
bd), C = (Cu, Cd).

The first vertex will be given by A, B, C, or all
three couples together. The problem is knottier
than the previous one because there are more
combinative alternatives, as can be seen in detail
in Fig. 72. First, two wives cross the river, yielding
three possible groups-ad, bdor bd, Cd, or cd, ad.
From the first vertex there are three sides to show
this. At successive vertices we show the changes
of the original group until everyone has crossed.
Thus, A, bu, C means that on the starting bank we
now have everybody except the wife of couple B.
The vertex marked a~, bu, cu means that on the
starting bank we have all the men, while all the
women are on the opposite bank. The fact that all
the other sides converge here indicates the ne-
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Left 1) Starting posit on with
everyone on the left bank, 2) the man
takes the goat to the right bank, 3)
he returns alone, leaving the goat, 4)
he takes either the wolf or the
cabbage to the right bank, 5) if the
former, he returns with the goat and
leaves the wolf, 6) if the atter, he

returns with the goat and leaves the
cabbage, 7) he leaves the goat on
the left and ferries either the cabbage
or the wo f, (depending on whether 5)
or 6) was the case), to the right bank;
8) he returns to the left bank to fetch
the goat; 9) final position with
everyone on the right bank

cessity of this stage. Indeed, one of the two
women who had crossed first returns (producing
A, bu, C or A, B, cJ) and helps the remaining
woman to embark, leaving the three men (au, bu,
cJ) alone. One woman then disembarks while the
other returns to the three men. We now have a
complete couple (either A, or B, or C) along with
the two other men. The next move is: The two men
embark, leaving the couple. One man disem-
barks on the other bank while the second man
returns with his own wife, producing two couples
(A, B, or B, C, or C, A) at the starting point. The
two men embark leaving their wives. From the
other bank, the third woman, who had been there
with her husband, returns alone, and in two further
crossings brings the other two women across,
thus reuniting the entire party.

Interestingly, even using identical rules, when
the same problem involves four instead of three
couples it is unsolvable. Remember that only the
men are jealous, which means that on neither
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fig. 72

(A, B, C)
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fig. 73

bank can women be left with husbands who are
not their own, even if these husbands have their
wives with them.

To review the individual alternatives and to
show that each is unsolvable would take too long.
Instead, let us use the following shortcut. At each
crossing the number of people transported will
increase. Upon reaching a certain point there
must be five people. There could be:

1) 4 women and 1 man,

2) 3 women and 2 men,

3) 2 women and 3 men, or

4) 1 woman and 4 men.

1) and 2) are ruled out, for at least one of the
women would be without her husband. Nor will 3)
do, for that would leave 2 women and 1 man on
the other bank and hence one woman without her
husband. There remains 4), but to attain a group
of 1 woman and 4 men, those who had just arrived
must have been either 1 man and 1 woman, or 2
men. If the first is so, there must have been 1 man
and 4 women on the starting bank, which leads

back to 1); if the latter is so, the 2 men must have
left 3 women, which leads back to 2). Thus the
puzzle is unsolvable.

A simple change in the initial conditions, how-
ever, makes the problem possible even with four
couples. If we have a boat holding three people
instead of two, then one woman can take the other
women across and return to meet her husband
while the other men join their respective wives.
Now the solution is easy and we leave the reader
to work out the remaining moves.

Interchanging knights

This problem was invented and solved by the Brit-
ish mathematician Henry Ernest Dudeney
(1857-1931) some sixty years ago. A simple
graph lets us visualize the problem and reach the
solution at once. Trial and error would lead to
serious difficulties.

Draw the reduced chessboard of Fig. 73. The
game consists of interchanging the two white
knights with the two black ones. Given the
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fig. 75 W 1 5 fig. 76

knight's move, we can construct the graph of
Fig. 74, where W. and W2 are the two white
knights, and B1 and B2 the two black ones. The
central square is not numbered because it is inac-
cessible to the knights. The graph of Fig. 74 is
clear enough. For example, to shift W2 to square
6, the piece must follow the route 3-4-8-2-6, while
B. reaches 3 by 6-5-1-7-3. Further, to shift W. to
8, the route is 1-7-3-4-8, while B2 traverses
8-2-6-5-1.

In the graph of Fig. 74 the sides intersect at
various points that should not be considered ver-
tices. If a graph can be drawn without such inter-
sections it is called planar. The following is a
graphic solution of the knight interchange by pla-
nar graphs. The only restriction is that we must
isolate the moves of symmetrically opposite
knights (Figs. 75-76). The graphs can be read in
either direction, clockwise or counterclockwise.

A wide range of applications

The theory of graphs, born from giving mathe-
matical forms to puzzles and first used in geome-

try and mathematics, was applied in numerous
areas of science as it was in practical life. Be-
cause of its formal properties, it was swiftly devel-
oped as a way to simplify and visually present
otherwise complicated problems. Since the last
century, it has proven immensely fruitful in repre-
senting problems of electric circuitry.

Fig. 77 shows the graph for combining three
switches with two lamps. The arrows indicate that
the sides are oriented; a graph is directional when
its sides can be traversed only by following ar-
rows. If the sides are not directional we can run
along them in either direction and the figure will
have no arrows. Graphs serve a number of
purposes. Among other things, they are widely
used for road routing, floor plans and economic
programming.

Because graphs are simple and immediate,
they are often used to visualize such complex
situations as relations between people or groups
of people. The stages of a football championship
in which a number of teams play each other might
be an example. Another might be a simple routing
problem: the road between London and Dover. In
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fig. 77
i
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Graphs simplify and clarify situations
and have become essential tools in
many fields
Left: A graphic description of the
factors affecting the world's birthrate
Fertility depends on two factors the

efficiency of birth control and the
desired birthrate These in turn
depend on other factors: per capita
services and industrial product, and
the average life-span.

this case, two vertices would represent the two
cities, and the sides would indicate any two roads
between them. If we take part of a superhighway,
its separate lanes are directional and marked with
one-way arrows. Of course many ordinary roads
are also two-way, and in that sense can be driven
on only one half of the road, but on a super-
highway the division between the two directions is
more apparent. In some cases, the route may
return to the starting point without passing other
vertices, and then it is called a loop. Graphs are
the best method for tackling the complex prob-
lems of routing. Finally, consider the problem of
representing traffic conditions in a large city and
its various individual areas with their two-way and
one-way systems and 'No Turns," 'Do Not Enter,'
and "Detour" signs.

Topology, or the geometry of distortion

The theory of graphs presented briefly here is
only one branch of topology, a recent and partic-
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Georg Friedrich Bernhard Riemann
(1826-1866) introduced topology
under the name of analysis situs
(analysis of position) as a modern
branch of mathematics Other
contributors were A.F. Mobius
(p 73), C Jordan, L. Kronecker,
G. Cantor (p. 102) and H. PoincarO
(who called it combinatory topology)
This branch studies the properties of
curves and surfaces that do not
change under a continuous transfor-
mation Two figures are topologically
equivalent if we can deform one into
the other continuously. Thus a circle
is topologically equivalent to an
ellipse, but not to a straight line or a

circular strip A sphere is equivalent
to any convex surface, but not to a
torus (p. 67), which has a hole.
Topology has been applied to such
famous problems as the Mobius
ring-the one-sided strip (p. 67)-
and the four-colour problem (pp 77-
82) as well as to the theorems of
Euler and Jordan. Today topology is
accepted as an independent subject
and a basic structure of modern
mathematics. These pictures reveal
some topological distortions
Right. horizontal distortion.
Left: vertical distortion,
Above: A cat's face distorted through
a glass of water
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12 A

Opposite Some interest ng
possib lities of one-s ded strips We
usual y think of a surface as hav ng
two sides With a sheet of paper for
instance. we must round an edge to
get from the front to the back The
Mob us strip however, is an example
of a one-sided surface
Right: You can make a Mobius strip
as fo lows 1) Take a strip twist it
once and glue the ends together
Now because the strip has only one
surface and no edge need be
rounded any Po nt can be reached
from any other with a continuous ne
2) Next, cut the str p along ts m d0le
it produces one loop with two

surfaces If you cut this aga n a ong
its m dole you get 3) two linked
cops. each with two s des 4) Take a
Mobius ring ongitudinal y marked
into three by two lines and cut the
ring along the lines It produces two
I nked loops, one a Mobius r ng and
the other a normal ring in 5) there s
a coloured Mobius ring On a
one sided surface we might need up
to s x colours to draw a map (for a
plane map we have the four-colour
theorem of pp 77 82) In 6) we
have a coloured torus a topolog ca
f gure resembling a doughnut, any
map cou d be drawn on ts surface
using seven colours
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fig. 88

Right A ser ot lour topooog ca
objects s'!fh surfaces cf germ~s 0 1.
2. 4 depending on the number of

cotE nee(doc to transform the body
wto one of qenus 0. epu WI Ont to the
cube)

uiariy interesting field of modern mathematics
The word topo ogy means 'study of place or pos
ition. 'What about geometry? It too studies points
lines and figures. True, but topology does not deal
with the objects of traditions geometry. Topo
logical objects can change their size and shape,
be curved, twisted, squashed and generally de-
formed. Sometimes the objects are surfaces that
cannot be constructed, or forms that seem
unimaginabe pieces of paper with only one
side for example. Some people have even
dubbed topology "geometry on a rubber sheet.'
Indeed, topology studies those geometrical fig-
ures that retain their mathematical properties
even when their size and shape change. Hence it
is quite different from traditional geometry which
is basically Euclidean, meaning objects do not
change their size or shape. In topology we begin
with the assumption that geometrica objects are
not rigid and can undergo changes in size and
shape when displaced.

Imagine a fairly elastic rubber sheet on which
an isosceles triangle is drawn with a point marked
at the intersection of its angular bisectors

(Fig. 78). Let the sheet be stretched as seen n
Figs. 79-80. It is not the fixed distances or angles
(which can be altered by distortion) that concern
topology, but rather the relative positions among
points, lines and surfaces. (The positions do not
change, even when the size and shape do.)

Take another elastic sheet and draw a straight
line on it (Fig 81). Under distortion the ime be-
comes a curve (Fig. 82), or a wave (Fig. 83), or a
engthened line (Fig, 84), but it always remains a
connected line that does not intersect itself.

Topology was systematical y developed only in
the last hundred years, although some earlier dis-
coveries, chiefly those of Descartes and Euler,
have since been incorporated in it. For further
understanding of topological properties, consider
some topological transformations of three-
dcmensional objects. Suppose we make a clay
model of a sphere (Fig 85), and transform it first
into a cube and then into a slab. Next, take a ring
(Fig. 86) and notice how it can be transformed
into the handle of a cup. In Fig. 87 the double ring
becomes a two-handed cup. What these three
sequences share is that in each case, the trans-
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formations preserve a property topologists cal
the genus of a surface The genus is given by the
number of holes in a figure that remain constant
throughout the transformations. More techn cally.
we speak of the number of non ntersecting and
c osed, or completely circular, cuts that can be
made on the surface without cutting it in two The
three objects of Figs. 85, 86 and 87 are topoz
log cally different. The topological transforma-
tions occurring in each change the size and
shape of the figure without producing any new
topological feature. However, should we make
cuts or produce new holes or tear a surface we
wou d create new positional features. In a topo-
logicai transformation we must not tear, cut or
make holes in Fig. 88 we have a c csed curve: if
we cut away a p ece, the transformation is not
topological for we form a new figure equivalent to
an infin te number of others, and all represented
by an open line (Fig. 89). In topology, a square is
equa to a triangle and a triangle to a circum-
ference: all three are figures with an inside and an
outside and to pass from one to the other we
must intersect the ine.

Topological labyrinths

The idea of inside and outside eads us to a series
of geometric figures and mathematical problems
as old as man: mazes. A famous maze of antiquity
was the labyrinth of Cnossus on Crete which the
mythica hero Theseus entered to kill the Mino-
taur, a monster with a man's body and a bull s
head The myth tel s us that Theseus found his
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way out of the abyrinth by following the thread he
unwound as he moved through the maze, a ruse
conceived by Ariadne, who was in love with him.
Labyrinths go back to the Neolithic period and the
world's cultural history is replete with renditions of
mazes, to be found in architecture, painting, lit-
erature, even f Im

Broadly defined, mazes are geometric figures
made up of lines which together form a topo-

agical plan Such lines, with one outside open-
ng. lead through a series of convolutions to a
center, from which the outside is regained by re-

. turning the same way. Topoogica mazes, how
ever, are not true abyr nths, but generally closed
lines with an ins de and an outside, not nterlaced

but rather consisting of a set of curves or a series
of cornered contours of varying widths These
mazes are c oser to a circle than to a genuine
labyrinth. Like a c rce, they are closed ines w th
an outside and an inside, and concern prob ems
where it is d fficult to establish. graphically or intu-
itively, whether a point is internal or externa to
them

Wth a closed mne such as that in Fig 90, let us
try to determine whether the points A and B are
internal or external. There is a quick way to decide
this if we know Jordan's theorem. Camil e Jordan
(1838 1922), a French mathematician, studied
these problems and published hNs theorem in
Cours dAna/yse (1882); f one traces a half line
from each point to the outside zone and if the
number of times the half I ne cuts the contours is
even, then the point is external. If the number is
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Mazes are geometr ca figures with seem ngly inextricable passages. which
might exp ain the mystery and fear they have always generated and their

prevalent use in games and puzz es
Above: n nhis example, A must reach B and then C without passing through D

or E
Left: The solution

Topologists make a distinct on between these true mazes. and t gures such as
Jordan curves or mazes (p. 70-71). The latter are equivalent to a deformed
c rc e, with an nside and an outs de: to I nk an internal to air external point
requires crossing the curve at east once In Jordan curves we can trace

several paths but they ways end either nside or outside A true maze has no
nside or outside; all paths drawn nside can reach the outs de without crossing

the figure
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fig. 94

*,

Or
odd. the point is internal.

Jordan's theorem is a springboard for some
amusing games. Take a closed mne as n Fig. 91,
and ask someone to choose a point not on the
line, Carefully observing whether the point is inter-
nal or external, we can show the person that we
can pick another point in the maze and then join
t to his w th a line that does not cut the maze. We
need only count an odd or even number of inter-
sections according to whether the intersections
on the ine from his point to the outside were odd
or even and then draw the joining Ilne. In Fig 91
A and B are both external so there is a solution. In
Fg. 92. however one point is external and the
other internal, hence no line can be drawn without
intersecting the maze.

The Mabius ring

Among the founders of topology was the German
mathematician and astronomer Augustus Fer-
dinand Mdbius (1790-1863) who discovered a
strange topological figure which was subse-
quent y named after him. In a posthumous article

he described the figure as a "strip without a sec-
ond side."

Ordinar ly we expect a surface to have two
sides. A sheet of paper, for instance, has a front
and a back, as does any other plane surface.
However, Mdbius managed to construct a one-
sided strip, we cannot distinguish front from back,
or an upper side from a lower side. To i lustrate
this visually, take a rectangu ar strip (Fig. 93) and
glue the ends together to form a ring. It wil have
an inner and an outer side. If, at a given point, we
begin to paint the outside green we wi I soon find
that the entire outside is green. Similarly, we can
paint the inside red. In a Mdbius ring the result
would be quite different as the two colours would
overlap. Let us construct such a ring. We start with
the same kind of strip but, before closing it into a
ring, we give one of the ends a hal-turn. We pro-
duce the ring of Fig. 94. If we now start colouring
a side, as before we find there is nothing ieft
unpainted. An insect can walk along the strip and
reach any point without crossing the edges.

Such properties are called invariant. They
concern the single side and single edge of the
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Mbbius ring. They too suggest some entertaining
tricks. Take two rectangular paper strips: equal in
length and width, and have someone mark a point
A on one side and B on the other join the ends to
make an ordinary ring of two sides. It would be
impossible now to draw a line joining the points A
and B without perforating the paper or crossing
the edges. However, if the same points are
marked on the second strip and this is glued into
a Mobius ring, the points can then be joined.

Another surprising feature is that it we cut the
Mdbius strip lengthwise, we obtain a single
twisted ring of two sides (Fig. 95), while an ordi-
nary ring would divide into two separate rings.
The explanation, though simple, is not immedi-
ately obvious, as we are not used to visualizing
twisted rings. A Mobius ring has a single edge
because ;ts contour is a single closed curve; the
cut mere y adds a side. Unless one is familiar with
these odd figures, it is hard to foresee the results.
It we cut the twisted ring Lengthwise a second
time, there is a new surprise. We obtain two dis-
tinct but interlaced rings, and neither is single
faced (Fig. 96).
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This last result might suggest that a Mobius
strip must be cut twice to obtain two distinct and
interlaced rings. Not so: this can be achieved with
a single cut Divide the or ginal strip of paper
lengthwise nto three equal parts (Fig. 97) and
shape it into a Mdb us ring. Now a single cut start-
ing on one line and running a ong both lines will
produce two interlaced rings. one of which is a
Mobius ring, This is a fascinating game and fu I of
surprises if the Mdbius ring is cut at varying dis-
tances from the edge.

Topological surfaces like the Mobius strip, orig-
inally just a mathematical curiosity became in-
creasingly important in both theory and practice.
The formal features of such figures. for example,
have served as models in physical research on
subatomic partic es Recently an American indus-
trialist used the theory to design a conveyor belt
that is subject to wear on both sides rather than
just one side. Such a belt will have twice the life of
an ordinary one.

These examples illustrate the value of mathe-
matical research. However abstract such re-
search might seem, we shou d not question its

Games with geometrical figures

rig. 97
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usefulness: even if at present it s of no direct
practical use, in t me it may contr bute to the for-
ma'ion of new concepts which can be extended
to other branches of mathematics and used by
engineers to solve practical prob ems.

Games with topological knots

We a I know how to tie a knot in a piece of string;
you bend and loop the ends and Pu I them tight.
IF a knot is loose it can slip along a ength of rope.
Take the knots in Fig. 98 and consider there
properties. They are opposed but cannot be un
done. These are ntuitive examples of topologies
knots of which a satisfactory theory has yet to be
constructed

Many magicians tricks are based on the prop-
erties of knots, or rather fa se knots. One s Wus-
trated n Fig. 99. The starting point is given at the
top; one end is then passed through as shown by
the arrows at the bottom. If we now pil the ends
the knot disappears Let the reader try for himself.
Although the subject of knots immed ately recalls
sailors' tasks or the out-door activities of boy
scouts knots provide an ample field of research
for mathematicians. A simple knotted rope with
the ends joined so the knot cannot undo itself is a
good physical rnodet for the concept of a mathe-
matical knot Part of topology s concerned with
the theory of knots and examines the features of

fig. 98

fig. 100

a:
b

C
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fig. 101

these geometrc objects How is a knot formally
def ned? In topo ogy a knot s a one dimens ona
curve start ng and ending at the same point, and
drawn n space w thouIt intersecting itself. The ele-
ments of F g. 100 are ali knots. inc uding the circle
whnch is a degenerate or trivial knot.

The theory of knots attempts to classify and
analyze the mathematical features of such
curves. Although we cannot examine its concepts
and problems in depth we can present a few
intuit ve notons. For examp e. the knots b and c
differ on y by the shape of their loops, while d and
e differ only in size, hence b and c should be
considered equivalent as we I as d and e. Defin-
ng the precise concept of equivalence is the fun-
damental problem of the theory

Today, many mathematicians are studying
ways of applying topolog cal knots to various s tu
at ons and prob ems.

The four-colour theorem

A familiar mathematical probem. wth which
mathematicians, amateurs and students have

wrestled [or many decades, is the tour colour
problem. It was first formulated n 1852 by Francis
Guthrie in a etter to his brother Frederick. a stu-
dent of the noted mathematclan Augustus de
Morgan.

n drawing a geographical map with numerous
states it s customary to indicate adjacent count
tr es with different colours. How many co ours are
needed to cope w th any map? Over the years t
has been found that however complex the map,
four colours suffice, less will not serve in a I cases
Take Fig 101 and try with three colours. It cannot
be done. four are needed.

In the part cular case of Fig. 1 02 three colours
are actually enough. However, the fact that four
were deemed sufficient for any map, pane or
spher cal. led mathematicians to state the to low-
mng theorem For any subdivision of the plane into
regions that do not overlap, we can always show
these regions with four different co/ours in such a
way that no two contiguous regions are the same
co/our. Regions are contiguous if they have a
common boundary not reducible to a point Thus
the horizontal and vertical squares on a chess-
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Rignt: The component parts ot a
Rubik s cube ano some of Is
post orIs 1) Start ng pos tion w th
each face un form n colour 2) Cross
design produced by the sequence oi
moves outlined on pp 89 90
3) Random arrangement 4) The
skeleton of the cube with ts six laces
on six arms converg ng on a core.
5) Edge cubes, wih two colours
6) Corner cubes. with three colours
Rubik's cube (named after ts
inventor Erno Rubik. ar Hungar an
arch teot) s of such w de renown that
it occas oned a wor d champ onsh p,
held n Hungary in 1982

board are contiguous, diagonal ones are not (they
touch only in a point).

Many 19th century mathematicians tried to
solve this problem, but without success. In 1879,
Alfred Bray Kempe, a London solicitor and mem-
ber of the London Mathematical Society, pub-
lished an essay in which he presented a proof of
the four-colour theorem. Even though his proof
was subsequently found to be defective, it was by
developing Kempe's ideas that 97 years later a
correct proof was given. The solution came in
1976, and relied heavily on the use of high-speed
electronic processors. In the interim period, how-
ever, and particularly in the 1930s and 1950s,
important discoveries were occurring in mathe-
matical logic regarding the concept of proof. For
example it was found that there are some the-

orems that can be stated fairly briefly, but their
proofs are so lengthy it would take years to write
them out completely. (Detailed examples are be-
yond our scope here, but the interested reader
will find appropriate references in the bibliog-
raphy.) With the advent of utra-high-speed pro-
cessors, problems connected with the four-colour
theorem became solvable, and proof was given in
June 1976 by Kenneth AppeS and Wolfgang
Haken, mathematicians at the University- of Illi-
nois, after using 1200 hours of computer time. In
principle other mathematical prob ems can also
be solved, but it would demand a computer as big
as the universe working at least as long as the
world is old (see Larry J. Stockmeyer and Ashok
K. Chandra, "Intrinsically Difficult Problems,' Sci-
entific American, vol. 240, no. 5, May 1979).
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2

Left A select on of games developed
s rice !he ir product on of Rubik s
cube
1 ) The fam ar Rubik's cube 2) a
cube with numbers nisteao of
colours. 3) tried lower of Babe . 4) a
sphere w tI detachable and turnab a
parts mode ed on Rue k s cube 5)
Rub k's mag c snake. 6) a cube winh
sp it co Our scheme
Above right The tower of 3abe At
first s ght this game with sore 10'
comb nat ons seems unre ated to
Rub k s cube t is about 3 5 inches
high and has six columns each
contain nog s x marc es n the colours
b ue, grey, red. brown, yellow, green

The marbles can mrove horizonta y or
lert caly The co umn is divicieo into
sections wh cn can be easily turneo
about the vertical ax s, while the
vert ca movement s maee poss be
by two open ngs n the base wh ch
can swa low a marble and thus lower
the entire set above it The game s
to restore the or g na pes tion after
scrambling the marb es
Rifht Some of the constructions
possible with the magic snake More
than 2000 figures can be formed n
nhis new game trorn the cube s

inventor. among Then animals. birds
an0 unusual geometrical patterns
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Opposite /efl The successive f gures Center A random one is drawn With
illustrate a fam iar topo ogical on y two colours. can we stil
probe em d fferen! ate between the reg ors2

top. A reet linear pattern a th Bottom The so utaon Invert the
adjacent regions difteoentialec by cc ours above the line
only two colours

Topo ogists and various amateurs amuse them-
selves with problems analogous to the one in-
voved in the four-colour theorem. It may seem
surprising but they have succeeded in proving
similar theorems for more complicated surfaces,
such as the Mobius strip or the torus (surface of
a solid ring, Fig. 103).

Paradoxically, the analysis of simpler geomet
ric surfaces is harder than that of more compii-
cated surfaces. It has been proven that on a
Mdbius strip the map problem requires six col-
ours (Fig. 104), whie a torus requires seven co-
ours. Starting from the four-colour theorem we
can construct a very simple game for two people.
Take at least five pencils of different colours and
a sheet of paper. The first player traces a circle on
the paper as in Fig. 105a. The second player col-
ours the circle and traces a second adjacent cir-
cle (b). The first player shades the second circle
with a different colour and then traces a third cir-
cle (c), and so on. The players continue, with the
proviso that adjacent circles be of different col-
ours and no more than four colours be used. The
loser is the player forced to use a fifth colour be-
cause of his opponent's cunning in tracing adja-
cent circles.
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2 10113 7 1 2 3 4

11 14 1 4 5 6 7 8
12 6 8 9 10 11 12

[ 9.06 9 15 3 5 fig 1 13 14 15
figw....... .M0. fig... I..... .0n...s..v.

Rubik's cube

The inventor of this magic cube is the Hungarian
Erno Rubik, who describes the object as 'an ad-
mirable example of the rigorous beauty and the
great wealth of the laws of nature; it is a surprising
example of the admirable capacity of the human
mind to demonstrate the scientific rigour (of the
laws of nature) and to master them ... it is an ex-
ample that shows the unity of the true and the
beautifu which for me are one and the same."
(See Andre Warusfel, R6ussir le Rubik's Cube,
DenoO, Paris 1981.)

This puzzle first appeared in England in 1978
and has since captured the imagination of mathe-
maticians and puzzle enthusiasts around the
world. Miniature cubes, blossoming as pendants,
as tiepins and on key rings, are now all too familiar
objects. Youngsters everywhere can be seen ma-
nipulating the multicoloured cubes to attain a cer-
tain combination. Indeed it is so popular that not
only have millions of cubes been sold and numer-

ous books and articles on its properties written,
but in 1982 a Rubik's Cube world championship
was held in Budapest, Hungary. There are even
those who insist that "'cubology' is a new science,
in its early stages, to be sure, but destined for a
grand future.

The Rubik cube consists of 26 small muiti-
coloured cubes which together form a cube of
33 = 3 x 3 x 3. The game consists of returning the
coloured cubes, after they are mixed up, to their
initial position so that only one colour is on each
side of the cube.

A close relative

This is an appropriate moment to recall the Fifteen
Puzzle, invented in the United States by Samue
Jones Loyd in 1870, as it is the two dimensiona
forebear of the Rubik cube. It consists of a square
4 x 4 with 15 movable numbered square markers
(Fig. 106). It has about 21 million million arrange-
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ments. Rubik's cube has over two mil ion times
more, namely 43,252,003,274,489,856,000; at
the rate of one trial a second, it wou d take
1,360,000,000,000 years to check them al. A
man's ifetime would be too short to even review
them; indeed the vast number of possibilities in
these games is their al ure. The Fifteen Puzzle,
although not as widespread as Rubik's cube, is
nevertheless interesting and a study of it helps us
to understand the cube.

On the 4 x 4 chessboard are 15 counters num-
bered 1 to 15. They occupy all but one square
which is empty. The game is to start from a
random position (Fig. 106) and restore order
(Fig. 107) through a series of moves consisting
of horizontal or vertical displacements into the
empty square.

Here we confine ourselves to one stage of the
game, and to the top two rows only. Suppose we
have reached the position of Fig. 108. The next
move will be to push the 4 into the gap and then
the 3 up into the new gap, leading to Fig. 110.

Short history

The idea of the magic cube was developed inde-
pendently in both Hungary and Japan. Ernd
Rubik, an architect born in 1944 in Budapest
where he now teaches planning and construction,
was the first to present a study on the cube, which
he did in the mid-1970s. In 1975 he patented the
simple and ingenious mechanism that enables
the small cubes to be rotated. On y about a year
later a Japanese engineer, Terutoshi Ishige, dis-
covered a similar idea and obtained a Japanese
patent. In Hungary, where some two million cubes
have been sold, it was used as a teaching aid in
schools before being adopted as a game. Cer-
tainly the concentration required for even the sim-
plest solutions is a worthy exercise in mental dis-
cipline. From the outset small competitions were
held, a tweve-year-old Hungarian boy seems to
have reached the correct position in a record time
of twelve seconds.
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fig 1 15

Kj .t

A rather simple mechanism

There is in fact a puzzle within the puzzle. Try to
imagine the mechanism that makes the various
rotations possible and then draw it. One is in-
clined to think of elastic materials, wires with spe-
cific properties, or perhaps a block held together
by a magnet. However, the solution is far less
complicated and purely mechanical. We wi I try to
describe it even though an initial understanding
really requires handling the cube. Three types of
small cubes are used to form a Rubik's cube
which has 8 cubes at the corners, 12 cubes along
the edges, and 6 central cubes (Fig. 111). The
central ones have a single face (Fig. 112), those
along the edges have two faces (Fig. 113), while
those at the corners have three faces (Fig. 114).
Fig. 115 helps us to grasp the play of recesses
that allows the faces to turn.

What makes the cube a unique puzzle are the
games of restoring order. The order, or regular
arrangement required, can take various forms. In
general we start with the colours on the cubes

mixed up and then try to reach certain regular
patterns by making a series of moves. It is partic-
ularly difficult to return to the cube's original con-
dition where each face is of uniform colour. As no
one has yet succeeded in doing it merely by trial
and error, we must proceed rationally by using
the branch of mathematics, group theory, that
deals with the various arrangements of the cube,
and by creating a kind of science complete with
symbols and rules.

By far the simplest way to restore the cube's
initial state is to dismantle it first. Give the cube's
top layer an eighth of a turn and insert a lever (the
handle of a spoon, a thin key, or some such ob-
ject) between the top face and the black triangle
exposed (Fig. 116). Lift, as shown by the arrow,
and the little cube along the edge will leave its
socket, revealing part of the internal mechanism
(Fig. 117). A corner cube can now be removed by
turning it inward; the two cubes immediately un-
der it-one edge and one corner-will then slide
off easily leading to Fig. 118. If the operator
places the extracted cubes with their coloured
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parts facing him, he will make subsequent reas-
sembly easier. Next, extract the entire top layer by
disengaging the pieces on the side from which a
corner and edge cube have been removed. This
leads to Fig. 1 1 9.

Once the top layer is off, the other cubes will
readily peel off and should be dislodged from top
to bottom (Fig. 120). The bottom layer comes off
almost by itself (Fig. 121). In the end only the

skeleton remains with its six fixed facets of differ-
ent colours-not at all cubic in shape-attached
to the three orthogonal axes converging toward a
pivot of six arms placed at the center (Fig. 122).
The three axes can turn only on themselves. Un-
like these six facets, the other pieces are proper
cubes, each with a kind of rounded foot pointed
to the center of the magic cube and with recesses
toward the inside. It is now simple to grasp the
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fig. 129 fig 130

fig, 132

rotatory mechanism, which depends on the
cubes supporting each other by their feet without
being mutually attached. Thus the edge cubes
hold the feel of the corner cubes; these in turn
support the feet of the edge cubes. The key-
stones are the central cubes. We can now reas-
semble the cube. First, we choose a colour. Sup-
pose we start with orange for the bottom face. We
then take the edge cubes orange-white, orange-
green, orange-yellow, and orange-blue. Some-
times a slight push or twist is needed to secure
them. The four corners can now be put in from
above to produce the position of Fig. 123. The
middle ayer is constructed by putting the edges
on the corners just introduced-yellow-blue,
green-yellow, green-white, and white-blue thus
completing the layer on top of the orange bottom
(Fig. 124).

Four edges and four corners are now left to
reassemble. To insert an edge cube on an incom-
plete face we repeat the dismantling move in re-
verse. We might begin with the white-red edge
cube. We give the green face, now two-thirds re-
stored, an eighth of a turn to make room for the

edge cube (Fig. 125). We then complete the fig-
ure by inserting the white-green-red and red-
white-blue corners. Next we give the yellow face
an eighth of a turn to let us slip in the red-green
edge and the red-yellow-green corner. Turning
the blue face by an eighth, we introduce the
red-yellow edge and the red-yellow-blue corner
(Fig. 126). Finally, by turning the red face by an
eighth and s ightly pressing the red-blue edge
into position, we restore the cube to its initial state
(Fig. 127).

A first solution

We will now illustrate a simple sequence that
transforms the initial state into a cross-pattern
(Fig. 128), but first let us define our terms and
symbols. Fig. 129 represents a counterclockwise
quarter turn (900) of the top layer. The circular dot
in the center is the point of reference for the series
of moves. A quarter turn of the side faces (right or
left) is shown by an arrow as in Fig. 130. The move
in Fig. 131 means a counterclockwise quarter turn
of the front face, and the dotted arrow of Fig. 132
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fig. 137

4

5 7 8

9 1 1o

means the same for the back face. A rotation of
the central layer is indicated as in Fig. 133. Finally,
a half turn (1800) is shown by doubling the arrow
as in Figs. 134 136.

The operation that must be executed has

fig. 133 fig 134

fig. 135 fig. 136

0

I lI11 12

twelve moves. It begins with any face, which then
remains the reference frame for all subsequent
moves (Fig. 137). The result is the same if the
sequence is performed in the reverse order-
from 12 to 1. This is a first introduction and decep-
tively simple. If you experiment with moves, you
might often feel anxious and bewildered. It is
wise, therefore, to learn the movements of the 26
cubes and how to dismantle and reassemble the
entire cube swiftly and smoothly. Then you can try
simple problems, but do so with the help of a
good instruction book. A wide range of literature
is now available to guide the reader in his juggling
with the more than 43 x 101" arrangements.

Finally, to really understand the cube, you must
go beyond the established moves and consider
the- mathematical theories that explain its great
variety of solutions.
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PARADOXES AND
ANTINOMIES

The inte ei' No other prQLbern has removed mai. s inr; more deeply (Dav id H lbert)

The role of paradoxes in the development
of mathematical thought

In earlier chapters we dealt with games and math-
ematical questions that were clearly paradoxical,
namely problems or results that contradicted the
evidence or belied ordinary intuition and were
therefore somewhat surprising. One cause of
paradoxes in number games is the division by
zero (cf. p. 28). It is a meaningless operation and,
if used, can lead to any conclusion: 1 = 2, for
example. With figures, we saw the odd result from
rearranging areas (pp. 51-52) where something
seemed to spring from nothing; the error was in
the incorrect geometrical assumptions we made.

The history of mathematical and geometric
thought is replete with logical difficulties called
paradoxes and antinomies. The word paradox
comes from the Greek and means "beyond be-

lief." It refers to assertions that contradict com-
mon sense or elementary principles of logic; an-
tinomy, also Greek, is a legal term and means
"against the law," though it is now a philosophic
term for a logical contradiction between two
equally valid assertions. Human thought tends to
resolve such difficulties. Here it can be assumed
the two terms mean almost the same.

Historically, paradoxes and antinomies have re-
vealed countless hidden logical difficulties. Math-
ematicians and logicians have often had to re-
clarify problems and reestablish theories, at times
producing a genuine renaissance not only in the
field of mathematics but in ali the sciences.

Here we shall look at a few paradoxes of an-
cient Greek mathematics and logic and one mod-
ern antinomy, discovered by Bertrand Russell in
1902, concerning some basic concepts of set
theory.
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Left: Pythagoras theorem as It
appears n Ishaq bn Honan s
9th-century translat on of Eucd d a
Elements.
ig/hti A visual representation of

Pythagoras' theorem We quickly see

that the square erected on the
hypotenuse ot a r ght triangle s
equal to the sum of the squares on
the other two s des. The small
squares direct y link the i gure with
fhe nuriarca expression and thus

confirm It

Pythagoras and Pythagoreanism

An early and famous mathematical paradox was
revealed by the Pythagoreans, the founders of
Greek mathematics. To put the paradox into con-
text we must look briefly at Pythagoras and the
doctrines of his followers.

Pythagoras is noted for the theorem bearing his
name. In fact, the theorem was known centuries
earlier to the Babylonians under Hammurabi and
also to the ancient Egyptians. Pythagoras was
born in the mid-6th century B.C. on the island of
Samos, off the west coast of Asia Minor; about
530 B.C. he journeyed to Croton in Magna
Graecia (Southern Italy) to escape the tyrant Poly-
crates and his autocratic government. At Croton,
Pythagoras founded a religious society whose
members, chosen for their morality and intel-
lectual dedication, were bound by strict rules and
pledged to observe sacred silence and accept
the founder's doctrine, as well as follow certain
practical rules aimed at ascetic perfection and
preparation for the beyond. The doctrine of me-

tempsychosis (the transmigration of souls) is
Pythagorean; it states that the sou does not die
with the body but enters other human or animal
organisms. This produces a certain form of jus-
tice, as the merits and flaws acquired in earthly
life reveal themselves with reincarnation. While a
meritorious soul migrates into another human
form, one without merit lives in the guise of some
unpleasant animal.

Discoveries made in Pythagoras' school, and
the nature of the studies were kept secret, indi-
cating the Pythagoreans were a sect. Indeed, eg-
end tells of the disasters befalling those who
dared reveal the society's insights.

The basic proposition of Pythagorean doctrine
is that number is the essence of reality. Numbers
are not only the inner principle of all things, but
the very stuff of which they are made, namely the
material points-infinitely small but not size-
less-comprising all bodies and elements. Num-
bers are classed as odd or even but any given
number can be obtained as a composition of both
odd and even. From this the Pythagoreans con-
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2 2 25 +122= 132

eluded that the odd and the even are the universal
elements of numbers, and therefore of all things in
the world. Moreover, they identified the odd with
the finite, and the even with the infinite, as the odd
sets a limit to division by two, while the even does
not; the theory asserted that everything consists
of finite and infinite. Similarly, they identified the
odd with perfection and the even with imperfec-
tion. A later commentator explained it this way:
The odd is perfect because it has a center of
symmetry; among odd numbers, the most perfect
is the triad which has a beginning, middle, and
end. Even numbers, on the other hand, are imper-
fect because they can be divided into two equal
parts, hence they lack proper structure.

Everything is comprised of opposite e ements.
The basic opposites which explain both objective
and subjective reality, are contained in the sacred
number ten:

1) finite and infinite,

2) odd and even,

3) single and plural,

4) right and left,

5) male and female,

6) rest and motion,

7) straight and curved,

8) light and dark,

9) good and bad,

10) square and oblong.

According to Philolaus, a 5th-century Pythag-
orean: "The decad is the foundation of all
things... principle of divine, celestial and human
life at once ... without it everything is indeter-
minate, dark and closed... .' Indeed, 10 contains
an equal number of odd and even; it has the unit
and the first even number, the first odd number
and the first square, thus making it the basis of all
numbers, It is not surprising then that the mystic
symbol of the Pythagoreans was the tetractys,
representing 10 as the sum of the first four
numbers.

If there are opposites, there must be a link to
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unite them. This is harmony, defined as 'unity of
the manifold and concord of the discordant.'"
Thus, everything is number and harmony. Every
number is a definite conjunction, a harmony of
odd and even.

Geometrical representation of numbers

In later developments the Pythagoreans ex-
tended the theory of numbers to geometry, stat-
ing that geometric figures and relations between
them are determined by numbers. Their triangular
numbers suggest close bonds between arith-
metic and geometry (Fig. 138), as do their square
numbers (Fig. 139). Although these represent-
ations are much older than Pythagoras, and can
be seen on pieces of Neolithic pottery, still, it was
the Pythagoreans who illuminated their arithmetic
features. The use of the abacus, which predated
Pythagoras, is also linked to the geometric repre-
sentation of numbers (cf. pp. 14-20). The forma-
tion of squares as the sum of successive odd
numbers is probably derived from the abacus.
Moreover this explains the importance of the

@9 *ee.16

gnomon (cf. the black lines in Fig 140) as a gen-
erator of squares. 'Gnomon"' is Greek for ''indi-
cator" or "(carpenter's) ruler."

Numbers were thought to be so powerful that a
cult actually developed around them. The discov-
ery that music cou d be stated in terms of numer-
ical relations helped to create a mystical attach-
ment to mathematics. The Pythagoreans saw
music as purifying the soul, and those who chose
to live by Pythagorean principles were given as-
cetic preparation through music.

A tragic Pythagorean paradox: The odd
equals the even

The Pythagorean system, although elegant, had
genuine inelegancies. The Pythagoreans held
that numbers could be interpreted as sets of
points (which they pictured as pebbles), each
with its proper position. Geometrical figures could
then be regarded as finite sets of points, placed
like so many grains one alongside the other. This
is why the ratio of lengths could be expressed by
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integers, the only numbers recognized by the Py-
thagoreans. For example consider two engths, A
and B. If they have a submultip e C, so that C is
contained in A an integer number a of times and
also contained in B an integer number b of times,
the ratio AIB of the lengths is expressible as a/b.

Since the Pythagoreans believed geometric fig-
ures consisted of finite sets of points, they could
not think of incommensurable lengths. They held
that any two lengths must have a common sub-
multiple, the monadd' or unit point of which all
lengths are made up. When incommensurable
lengths were discovered, it caused astonishment
and upheaval in the school: lengths that cou d not
be compared in terms of integers? It is ironic that
the very theorem bearing the founder's name was
the one to shake the foundations of 'universal
mathematics" and undermine the concept of a
segment as a finite set of points and hence ex-
pressible by numbers.

Consider the square ABCD (Fig. 141) and take
the side AB as consisting of a whole number, m,
of points and the diagonal as consisting of n
points. By Pythagoras' theorem, 2m2 - n', or, re-

C D

moving common factors in m and n, 2r2=s2 ,
where r and s are relative y prime (without com-
mon factor). Now if 2r -= 2, then s' must be even
making rK odd, so that s is even and if we write
s = 2t, and substitute this for s we have 2r = 4t2,
or simplifying it, 2t2 r2. By the same argument,
K2 must be even, which is absurd because we
have just seen that it has to be odd. Hence the
diagonal is not commensurable with the side of
the square. This contradiction overturned Pythag-
orean mathematics and its claims to universal
explanation. Here was the first example of a prob-
lem that cou d not be solved by numbers: it con-
tained two rea things, the diagonal and the side,
the ratio of which could not be stated numerical y.
Since these two rea things belonged to the very
figures that were thought identical with numbers,
the schoo itself was in ruins.

The sacred halo encircling numbers faded. Ac-
cording to tradition, the revelation of incommen-
surability by Hippasus of Metapontum was re-
garded as a crime. The schoo authorities, bent
on maintaining the secret, asked Zeus, father of
the gods, to punish the sacrilege of Hippasus.
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fig. 143
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Zeus honoured the request and Hippasus was
shipwrecked and drowned.

Unthinkable numbers

The Pythagoreans introduced the concept of the
commensurable and applied it to the relation be-
tween figures. Less accurately we might speak of
the measurab e, that which can be expressed by
numbers. This intuition incorporates the notion
that reality can be described through the natural
numbers. It must be remembered that for the
Pythagoreans, mathematics was not merely a lan-
guage but represented the very core of things;
the mathematical description of an object was its
essence. The scope of this intuition is hard to
grasp, but we may reflect that the scientific and
technical revolution was possible only because
the most powerful branches of mathematics were
applied to the external world. This occurred in the
17th century when Galileo Galilei (1564 1642)
clearly saw that mathematics and geometry were
the most effective and appropriate ways to grasp
nature: 'Philosophy," he wrote, "(meaning the

natural sciences) is written in this greatest book
constanty open before our eyes (I speak of the
universe), but we cannot understand it unless we
first learn to understand the language and to
know the characters in which it is written. It is
written in the language of mathematics and the
characters are triangles, circ es and other geo-
metric figures ... without them we vainly roam
through a dark maze...."

Describing objective reality with numbers rests
on the basic concept of measurement or com-
mensurability. For a segment, or anything, to be
represented by numbers, we must assume it con-
tains elements that can somehow be made to cor-
respond to numbers. Hence the idea of the seg-
ment as composed of a finite set of points, such
as grains. The granular notion of the straight line
is based on this principle: Given a straight line,
the finite number n of points in it can be taken to
represent the line itself. The same is true for two
segments; we can express the relation of their
lengths with natural numbers. If the segments are
equa (Fig. 142), then the two numbers are 1 and
1, for the two segments contain the same number
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of points; the ratio s 1/1. If the first segment con-
tains the second segment twice or three t mes,
the relation is expressed by the pairs (2, 1) and
(3, 1), indicating that the f rst segment is twice or
three times the length of the second. If the op-
posite is true, then the order of the numbers s
reversed and the pairs are (1, 2) and (1, 3) In
symbols, a/b = 2/11 a/b - 3/1, b/a = 1/2; b/a =
1/3. Until now we have considered segments, one
of which was a multiple of the other. If th s is not
so, we halve one of them unt I we find a part ex
actly contained in the other. Take Fig 143: The
ratios are formed by (3, 2) and (4, 5) respective y.
in the first case half of b is contained three times
in a (or a third part of a twice in b). This should
always be valid d: we merely divide one segment
into equa parts ong enough to find a part, how-
ever small that is contained exactly in the other.
On this rests commensurability, the ability to find
two integers to express the ratio. Measuring phys-
ical quantities follows the same procedure. If we
say that a rectangular chart has a base of 175
inches we compare two segments, namely the
one corresponding to the unit and the one corre
spending to the side of the chart. The former
(1 inch) is contained 175 times in the other. We
use this kind of reasoning daily but t conceals an
entire phi osophy of numbers and their role. What
separates the Pythagorean concept from modern
mathematics is the Pythagorean notion that num-
bers are rea objects. There is a snare in this
reasoning which the Pythagoreans themselves
discovered. Indeed mutually incommensurable
quantties whose ratio cannot be stated in inte
gers do exist, An example is the side and the
diagonal of a square. If we draw a square of side
1, the theorem of Pythagoras tel s us that the dlag-
onal is X, which we know to be irrational (the
Latin root of the word meant unthinkable), namely,
not expressible as a quotient of two integers
(Fig. 144).

The Pythagoreans he d that "there is no part of
the side contained exactly in the diagonal.' We
recall from school that to express V/2 we must
use numbers that represent it by excess or by
defect: by excess 2, 1.5, 1.42..., oy defect 1,

Pig 144

1

1

1.4, 1.41 . ..the former decreasing and the latter
rising toward ½. If we reach a contradiction in
the solution of a mathematical problem (in spite of
the correct procedure), then one of the starting
premises is false. In this case, the error was to
assume that a segment is a finite set of points. It
is at th s juncture that we first meet the concept of
the infinite

Zeno of Elea

The discovery of incommensurables presented
Greek thinkers with new concepts of the Infinite
and the infinitely small or infinitesimal; witness the
philosopher Anaxagoras who journeyed from
Asia Minor to the Athens of Pericles after 450
B.C.: 'As regards the sma I, there is always a
smaller, and likewise for any large there is a
larger.,' Such is the classical definition of infinity.
These concepts were not developed any further
by Greek mathematicians, but they formed the
basis from which modern mathematics has
grown.

Playing on the ambiguity of concepts such as
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Z fig. 146
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finite and infinite, Zeno of Elea (ca. 495 435 B.C )
introduced some paradoxes. The philosopher
Parmenides, of whom Zeno was a faithful disciple,
also lived and worked in Elea, in the region of
Lucania. Constructing a doctrine opposed to the
Pythagorean view of reality and phenomena,
Parmenides stated that being, or rather the being
of things, is one and indivisible. Among his
followers, it was Zeno who ingeniously defended
his master's doctrines against the Athenian
philosophers.

Zeno's paradoxes

Roughly, a paradox involves a succession ot
steps in reasoning that contradict common sense
and are therefore amazing or amusing. Zeno's

B E

paradoxes, however, apart from being amusingly
presented, revea ed serious difficulties (''aporiai"'
as they were then called) in Greek mathematics.
The English philosopher-mathematician Bertrand
Russell (1872-1970) commented on this in The
Principles of Mathematics: 'In this capricious
world, nothing is more capricious than post
humous fame. One of the most notable victims of
posterity's lack of judgment is the Eleatic Zeno.
Having invented four arguments, all immeasur-
ably subtle and profound, the grossness of sub-
sequent philosophers pronounced him to be a
mere ingenious juggler, and his arguments to be
one and all sophisms. After two thousand years of
continual refutation, these sophisms were
reinstated, and made the foundation of a mathe-
matical renaissance .. fit.Aristotle reports Zeno's
paradoxes as: the dichotomy, Achilles and the
tortoise, the arrow, and the stadium.

The paradox of dichotomy or bisection

D C We can formulate this as follows: Motion is impos-
sible, for before reaching the goal one must reach
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fr, 148

A, 1A2 A3 A4

the halfway mark, and before that the quarter
mark, and before that the eighth mark, and so on
indefinitely. In Fig. 145, A is a moving point, it can
never move from B to C, for it must first arrive at
D, and before that at E, and so on. Suppose a
runner must cover, in a finite time, the distance BC
infinitely divided. This is clearly absurd, for no one
can cover infinitely many elements in a finite time.
Thus motion is impossible, even if our common
sense tells us this is not so.

Swift-footed Achilles and the tortoise

The second paradox is the most famous. In a race
between Achilles and a tortoise, Achilles will
never catch up with the tortoise if the tortoise's
starting point is ahead of Achilies' starting point.
When Achilles reaches the tortoise's starting
point, the animal wi I have gained a new starting
point, a simple duplication of the initial situation.
And so it goes, indefinitely. Although the distance
between Achilles and the tortoise becomes ever
smaller, it will never reduce to zero. Concretely, if
Achilles (A) and the tortoise (T) move along a

straight track at uniform speeds, with T moving at
one-tenth the speed of A, give T an initial start of
s. When A has covered the distance s, T has
gone (1/1O)s; by the time A covers this distance,
T will have gone (1I100)s; while A covers this, T
advances by (1/1,000)s and so on continualy.
Therefore, says Zeno, "the slower runner must
always be a little ahead.' Thus A will never reach
T, always remaining slightly behind however
small the gap (Fig. 146).

The paradox of the arrow

The third argument states that the arrow always
occupies a definite space and, as such, is station-
ary at any given moment. To move, it would have
to be within and outside of its space at the same
time. However, a sum of states does not give us
motion and therefore motion is impossible.

The paradox of the stadium

The fourth paradox is the most difficult to state.
This is a simplified version. Let A, A2, A3, A4 be
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stationary bodies of equal dimensions. Let B1, B,
Be, B4 be of the same dimensions but moving to
the right so that each B passes one A in the least
time nterval exist ng. Similarly, let C1, C2 , Cxl C4

be identical to the As and Bs but moving to the
left at the same speed the Bs are moving to the
right. At a given moment, aet the situation be as it
is in Fig. 147 One instant later the position of Fig.
148 is reached. The Cs and Bs have moved in the
same instant and now occupy the same position,
but in this t me apse C1 has passed two of the Bs.
Hence there is an even sma ler nstant, namely
the instant it takes C, to pass one of the Bs: and
so it continues

Theoretical significance and solution of
Zeno's paradoxes

Certainly Zeno was not opposed to the concept of
motion. Rather his paradoxes were aimed at the
Pythagoreans who saw space and time as con-
sisting of points and instants respectively. How-
ever, space and time are also continuous. The
paradoxes merely make the concepts of finite and
infinite, and indivisible and infinite y divisible as
they were set forth in Pythagorean philosophy
look ridicu ous. In this sense Zeno's method antic-
ipated the maieutic or dialectic method of
Socrates who refuted his opponents by starting
with their own premises and reducing them to
absurdities. That these paradoxes were clearly
aimed at Pythagoreanism is confirmed by ther
link to the concept of incommensurable quantities
(p. 96), and to the attempts, (which proved unsuc-

B

cessful), to eliminate such quantities by subdi-
viding the unit indefinite y. The puzzling question
of incommensurability led Aristotle to observe 'It
seems indeed amazing that there should be
something of which we cannot find the measure,
however small it might be."

Zeno's paradoxes are based on precisely such
logical dffculties: Indefinitely dividing a length
never allows us to eliminate the res due as every
division recreates the same problem in an infinite
regress of the same logical difficulty, even though
the quantity invoved becomes increasingly small.
Zeno's paradoxes, especa ly the dichotomy, and
Achilles and the tortoise, are fully clarified by the
modern theory of limits and its concepts of con-
vergence and divergence of a sequence, which
state that a convergent sequence has a finite limit,
while a divergent sequence does not (it 'tends to
infinity"). There is an error at the root of Zeno's
arguments which was e ucidated only as mathe-
matics developed, namely that an unlimited num-

-ber of finite quantities adds up to infinity. In fact,
if success ve terms become ever smaller, the imit
of their sum can be finite. Take the dichotomy and
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suppose the whole track is of length 1. The suc-
cessive stages are then in sum: 1/2 -X 1/4 + 1/8 t

1/16 - 1/32 + . . . and this infinite sum adds up
precise y to A, the whole track,

Zero's subtle arguments had a positive influ
ence on future mathematicians. They were forced
to stop using vague concepts fu I of logical traps
such as finite and infinite. ndivisible and inf nite y
dvisible: instead they nad to develop clearer con-
cepts and to adopt more rigorous methods,

The part equals the whole

Bertrand Russell. quite rightly believed Zeno's
arguments were immensely subt e and profound
particularly the well-known Achi les and the tor
toise. The persistent gap created by the tortoise's
advantageous starting point a ways repeats the
problem, Here Zeno mocks the vain attempt to
overcome incommensurab lity of two unequal
quantities by reducing one to ever-decreasing
fractions of the other. Experience and common
sense may tell us that Achilles will catch up with
the tortoise, but to assume this is not to deny the

logical traps and paradoxical conclusions. Sup-
pose, as the evidence teaches, Achilles reaches
the tortoise at B when it has covered a stretch c
(Fig. 149). Here we need a basic mathematical
concept, to wit the intuitive concept of a set which
we formaly define beow (p 102). We all know
more or less what this is. Let 0 be the set of points
Achilles passes in reaching the tortoise's starting
point and coverng c, and let C be the set of
points the tortoise passes in covering c. Then
Achilles has covered b + c while the tortoise has
covered c. At any instant t, to any point in C there
corresponds one and only one point in D. Hence
c has as many points as b + c which seems to
contradict intuition; we imagine that the longer
stretch has more points which is the same error
the Pythagoreans made in assuming points have
a small but finite size.

Mathematics forces us to abandon the intuiton
of physical things a 'po nt` .s not a 'thing'-that
tells us the whole is greater than any of its parts.
Galileo too reached this conclusion and offered
an original demonstration of it: In simplified terms,
take two segments AB and CD, with AB the
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longer. We might think of the respective distances
run by Achil es and the tortoise. Connect A with C
and B with D and extend them unti they meet at
a point E (Fig. 150). Take a point x on CD and oet
the extension of Ex cut AB at point y; similarly take
z on AB and let Az cut CD at k . Proceeding in this
fashion, every point in CD corresponds to one
and only one point in AB and conversely: the part
has as many points as the whore. Gali eo trans-
ferred this conclusion to a comparison of natural
numbers with their squares: there are as many
natura numbers as there are squares, although
the latter are included in the former (Fig. 151).
Similarly the natura numbers, n correspond to
their inverses, 1/n. As n becomes increasingly
large though never infinite so 1/n becomes in-
creasingly small, although it never reduces to
zero; indeed, zero Is the limit to which the series
of inverses tends. This "one-one' correspon
dence points out that there are as many inverses
between 0 and 1 as there are natural numbers.
Thus, even if intuition balks at the notion that a
part has as many elements as its whole, the argu-
ments are sound.

Sets: an antinomic concept
Finding an unambiguous definition for a concept
has always been a fundamental problem. The ba-
sic concept of the new theory of sets was a source
of difficulty for mathematicians and ogicians in
the late 19th century. We have used the concept
above without defining it strictly; we must now do
so in order to reso ve the conundrum about part
and whole.

What is a set? We use the concept daily, as
have mathematicians and logicians from time im-
memorial. However, mathematics constantly wid-
ens its generalizations, and that requires strict
definitions of the principles on which the devel-
opment rests. From the start, the concept of set
was fraught with logical traps and ambiguities.
Even the ancients felt it; witness the sophism of
the heap with which the sophists of 5th-century
Athens amused themselves: "A grain is not a
heap, neither are two, three, four, five grains, and

so on.... Yet the heap is made up of grains." This
plays with the fact that 'heap'' and "more' are
imprecise concepts semantic ly linked with the
concept "set.' Mathematicians avoided the task
of defining the concept "set' until Georg Cantor
(1845-1918), in articles published from 1895 to
1897, attempted a general definition acceptable
to al: By a 'set' we are to understand any col
election into a whole M of definite and separate
objects m of our intuition or our thought, These
objects are called the 'elements' of M. In signs we
express this as. M -Im}.

At first, this appears to be an unexceptionable
and transparent definition. However, there re-
mains an ambiguity in concepts such as "collec-
tion," so the vexing problem of defining the con
cept "set" in a logically correct manner persists.

Many mathematicians refuse to deal with the
obstacle and prefer to look upon set as simply a
primitive concept with which the mind operates.
However, by rejecting Cantor's definition in an at-
tempt to avoid possible antinomies, they manage
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to create contradictions among the principles and
the laws of thought.

About 1900, Gottlob Frege, using Cantor's re-
sults, had presented in his forthcoming book,
what he thought to be a systematic account of
mathematics. However, just prior to publication
Frege received a letter from Bertrand Russell re-
ducing the author's construction to ruins. "To a
writer in science,' Frege admitted, "hardly any-
thing is more unpleasant than having one of the
fundamental elements of his construction shaken
after the work is finished. That is the position in
which I have been put by a etter from Mr. Ber-
trand Russell." The letter contained a famous an-
tinomy now known as Russell's paradox. Let us
first consider its popular version

A postman and barber in trouble

In an imaginary vilage, there are two strange
rules: The only postman employed by the town
council must deliver the mai to those who do not

call for It at the Post Office: the only loca barber
must shave those, and only those, who do not
shave themselves. One day the barber said to the
postman: ''I am in a muddle and I don t know how
to get out of it. The council says I am to shave only
those who do not shave themselves. What about
me? It I shave myself, I belong to the self-shavers
and therefore I am not allowed to shave mysef. If
I do not shave myself, I am one of the others, and
therefore I must shave myself. What am I to do?"
The postman replied: 'I am in a similar fix. ! must
deliver the mai only to those who do not call for
their mail. What about letters addressed to me? If
I get them at the Post Office, I am one of those
who call for them and therefore I cannot deliver
them to myself. If I do not cali for them, I belong
to the other lot and therefore I must deliver them.
May I, or may I not, take my own letters?"

The reasoning moves in a vicious circle of con-
tradiction and no logical escape seems to be pos-
sible: if yes, then no; if no, then yes. Let us look at
Russell's abstract case.
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Russell's paradox

Using Cantor's definition of set (p. 102), we can
frame the concept of a set consisting of all those
sets that do not contain themselves as members.
For example, the set of men is not a man, and the
set ot trees is not a tree. Therefore, some sets lack
the features of each of their elements. Take a lin-
guistic example. The word "monosyllabric' is not
itself monosyllabic as it has five syllables How-
ever, the word "po ysyllabic," a so of five sy la-
b es, is polysyllabic. Similarly, there are sets con-
taining themselves as members. For example, the
set of abstract concepts is itself an abstract con-
cept; or another example, "the set of all objects
which can be described in thirteen English
words," which itself can be described in thirteen
English words. Sets not containing themselves as
members are called 'normal," while those cons

The system of numbers (cl p 21)
Hstonricaiiy numbers did noa evolve in
a log ca order Man began by using
natural numbers (N) Next came a set
consisting of positive and negative
integers and zero denoted by 7 We
then move to positive and negative
fractions, which with Z, form the set
of rational numbers 0 Irrat onals are
those numbers incommensuraeoe
with rational and together they form
the set of real numbers R By
introducing 1- we produce
imaginary numbers and fina y
cornplex numbers, which have a rea
and an imag nary part These are
denoted by C

training themselves as members are "non-
normal."

Consider rnow the set N consisting of all normal
sets. We can ask whether the set N is itself normal
or not. If N is normal then it belongs to the set N
of all normal sets: but that means that N contains
itself as a member, hence tnat it s non-normal; a
contradict on! If, on the other hand, N is non-
normal, it does contain itself as a member, and
therefore belongs to N But that means it is nor-
mal, and again we are faced with a contradiction.
Such paradoxes are key in the history of mathe-
matics, and in the early decades of the 20th
century they shook the foundations on which
mathematicians tried to buiid the entire logical
and symbolic apparatus of mathematics. Later
developments in this field testify to the fruitfulness
of the crisis.
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A GREAT GAME:
MATHEMATICAL LOGIC
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A special chessboard

Consider the game of chess. It invo ves a board,
two sets of pieces, and rules governing the
moves; each move leads to a new position and
eventual y to the end, with one player the winner
and the other the loser ( f not, the game is a draw).

Logic, the science of correct reasoning, can be
compared to an immense chessboard The ru es
are those of deduct on and the pieces a set of
premises given as true. The moves are those al-
lowed by the rules and each move leads to a new
proposition. For the game to yield any result, the
ru es must be precise and strictly observed Each
move takes us toward the desired conclus on.

What is a logical argument?

Consider the following arguments

1) It I had wings ike a seagu I I cou d fly, Since
I have no wings. I cannot fly.

However, I cou d take an airplane, hence, the
argument is unsound.

2) If there is no electric current the train stops.
The current is on, so the train will not stop

This will not do either as the train can stop for
reasons other than lack of current-when reach-
ing a station, for exampe, or because of an ob-
struction on the track.

2A) If there is no electric current the train stops.
The current has fai ed, therefore the train stops.

This time the argument ho ds. Electric current is
necessary to run the train. If the current fails the
train stops, although it might stop for other rea-
sons as well,

3) If it snows it is cold. It snows therefore it is
co dc.
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3A) If it snows it is cold. It s not snowing, there-
fore it is not cold

The first of these propos tions is val d Snow fali-
ng necessitates a temperature at freezing point

or below, therefore it is cold. The second argu-
ment is inva id; it can be cold without snow falling.

Hence 2A) and 3) are valid (we shall give a
formal logical def n tion of this below); logic en-
ab es us to state principles in a reasoned manner

4) All Helen's friends are my friends. Al my
friends are boring, therefore ail Helens friends
are boring.

4A) None of Helen's friends is my friend. None
of her friends is boring, therefore none of my
friends is boring

The first is valid, the second is not
All these arguments start from propositions that

can be true or false. They are cal ed prem ses.
From these we deduce a final proposition or
conclusion:

If there is no current, the train stops.
The electric current s on. Premises

The train coes not stop. Conclusion

Wh le in 2A), 3) and 4) the conc usion logica ly
follows from the premises, in 1), 2), 3A) and 4A) it
does not.

Logic is an old science. The first person to
study it systematic ly was the Greek philosopher
Aristotle (384-322 B.C.). In his Prior Analytics he
gave us the groundwork on which ogic has
rested for some two thousand years. Toward the
mid-lth century with the general revival of sci-
ence and technology that accompanied the In
dusirial Revolution, attempts were made to join
traditional logic with the methods and develop-
ments of modern mathematics From this there
emerged mathematical logic, a fieid which has
rapidly progressed ever since

Logic and ordinary language

Everyday language is vague and precise. It
must describe a host of objective and subjective
situations and in daing so, several terms can be
applied to a single concept, and several elements
can represent a single mental operat on. Take the
following:

1) Snow is white.

2) John, fetch the mi k.

3) The square of the hypotenuse of a right trian-
gle is equal to the sum of the squares of the other
two sides.

The first states a fact, as does the third. Of each
we can ask if it is true or false, and we can then
frame an answer based on the evidence of the
senses and the principles of geometry respec-
tively. The second ls an order and the question of
'true or false' is not applicable as there is no
statement about object ve reality.

Mathematical logic does not deal with al the
propositions that can be formulated in ordinary
language but only the ones that can be judged
true or false, This includes the propositions that
make up science and, more generally, all the d s-
ciplines that present systemat c knowledge of ob-
jective or subjective reality. Whch of the fo low ng
concern mathematical logic?

1) Did you go to the doctor?

2) A water molecule consists of two atoms of hy-
drogen and one of oxygen.

3) Gotohel!

4) Aeschylus wrote 'Seven aga nst Thebes.'

5) Did Euripides write 'Alcestls'?

6) E = mc'.

Of these, 2), 4) and 6) are assert ons and in-
volve logic; 1) and 5) are quest ons and 3) is a
command, hence, 1), 5) and 3) cannot be consid-
ered true or false.
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Mathematical logc requires precise and r g-
orous reasoning. Above al I must simplify and
without amb guilty define the concepts it uses
Notice, for instance, the ambiguity of the term
"a ways" in the to lowing.

1 ) It always rains when I want to go to the moun-
tains.

2) Whatever number you write down you can al-
ways write down a larger number

In 1), the word "always' is more descriptive of an
emotiona predicament. while n 2) it descr bes a
logical feature of natural numbers. In logic 'al-
ways" is used in the atter sense.

An ingenious idea of Leibniz

A means of overcoming the vagueness of spoken
anguage was suggested by the noted German
philosopher and mathematician Gottfried Wilhe m
von Leibniz (1646 1716) He held that, "spoken
Languages, though general y useful for discursive
thought, are neverthe ess subject to count ess
ambigu ties of meaning and cannot offer the ad-
vantages of a calculus which reside particu ar y in
the ability to discover errors of deduct on deriving
from the structure of words . . .This wonderfu ad-
vantage has until now been offered only by the
symbo s of arithmetic and algebra, where de-
duction consists simply in us ng symbols. and an
error of ca culation is the same as an error of
thought.':

Although in the history of ideas Leibniz is re-
membered primarily as a philosopher and as the
inventor of the Infinitesimal calcu us, his work also
contributed to a decisive moment in the devel-
opment of logic. Leibniz set out to construct a
universal tool the Characteostica universabs. to
serve as an artificial scientific anguage with sym
bols to represent a variety of given meanings "'bi-
univoca ly." "Blunivocally' means that each sym-
bol corresponds to one and only one meaning
and conversely. Hence, through a set of symbols.

we might arrive at a faithful expression of individ-
ual ideas. Leibniz te Is us that th s insight came to
him at age twenty 'One might nvent an alphabet
of human thoughts . . and by combining ts letters
and analyzing the words so formed one could
discover and examine everything,'' To understand
Leibniz's enthusiasm we must consider the his-
torical setting. Geometry was being revised and
systematized particu ar y by Ren6 Descartes
(1596-1650) who algebraized geometry From
this a technique called "analytic geometry"
evolved. Using the same model Leioniz tried to
mathematicize human thought and thereby to ex-
tend to philosophy a method for obtain ng all the
sciences through a combinatory art, much as
Descartes and others had done in ar thmetic and
geometry through algebra and anaysis Leioniz
longed for a symbolic language which with its
rules of deduction would let us ana yze any form
of reasoning with the same certainty we have in
arithmetic and algebra In short, the new mathe-
maticized logic wou d perm t one to proceed se-
curely in arguments. 'If a controversy arises '
Leibniz wrote. 'the discussion between two
philosophers need be no more heated than that
between two caculators. They only have to take
up their quil s, sit down before their abacuses and
say: Let us calculate!' Thus a problem in phi os-
ophy becomes one in mathematics and s han-
dled in a prescribed fashion. Leibn z never com-
pleted such a Characteristica universalis. indeed,
he left no systemat c account of lt. merely traces
and fragments Nor was such a vehicle acKeved
by the next generation of mathemat cians. al
though Augustus De Morgan (1805-1871) made
important contributions It was only with George
Booe (p. 113), working 160 years after Lebniz,
that the idea finally took concrete shape. When it
did, mathematical logic did not prove to be the
powerful tool for discovery and examination that
Leibniz had so confidently predicted. Stil, it
showed that at least some human thought could
be mathematicizecd, and on th s basis matne-
matical logic was founded and developed.

107



A great game: mathematical logic

Logic: the science of correct reasoning

Again, consider the following:

1A) If I had wings Ilke a seagull I could fly. I do not
fly. Therefore I do not have wings like a seagull.

2B) If the electric current is off tne tra n stops. Tne
train does not stop. Therefore the current is not
off.

Intuitively we feel these are correct and later we
shall formally prove that they are. In the chapter
on games with numbers, we saw that by replacing
numbers with letters the mathematical argument
could be e evated to a more abstract and general
level. The same is true in ogic if propositions are
represented by letters.

if A represents 'Today is Sunday,' and B II
sharl go to the stadium,' the compound proposi-
tion "If today 's Sunday, then I shall go to the
stadium" is: "If A, then B''. The "'If .. then. ." is
a logical connective usually represented by an
arrow: ->. Thus we have A->B, an operation
called ''implication." It means that if A is true then
B is true: A implies B.

To indicate the opposite of a proposition we put
the negation sign I in front of it. For example: 1A
or non-A, means "Today is not Sunday.'

Next take the argument: If today is Sunday, then
I sha I go to the stadium. Today is Sunday. There-
fore I shall go to the stadium. In symbols A-- B, A,
..B. (As in mathematics, the three dots mean
"therefore.")

Going back to some of the examples above, if
P = I have wings, C = I can fly, R - The current is
off, S = The train stops, the arguments are stated
as they appear in Fig. 153. What does it mean to
reason correct y? Does it depend on the content
of propositions, or on their formal arrangement? In
logic we distinguish between the correctness of
propositions and the validity of an argument, A
schema of argument is valid if it moves from true
premises to true conclusions without exception.
Should true premises lead to even one false con-
clusion however, the schema is invalid.

Opposite Hmow t take off a ves'
without lak ng oi one s lacke: Tti s
exerc se actually makes an amus ng
pa0'j 'lCk lopolicvoal V ite
tha' -he vest was never iunier the
acke:

fig 153
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Mathematica ogic simpifies and formalizes
scientific language, which is why log c is good
preparation for systematic study Scientif c the-
ories let us forecast future events concerning the
phenomena being studied. If the predictors
prove accurate. the theory s confirmed; if they do
not, the theory must be modified or discarded
Hence the mportance of the rules and principles
underlying the predictions. Mathematical og c,
as the science of correct reasoning. has objective
rules for reaching unquestionab e conclusions.
For examp e, if we know what forces act on a body
at a given p ace and time and the velocity at
which the body is moving, wth a few mathe-
matical terms and theorems and by applying
ogic to mechan cs. we can predict the body's

further motion,

Logical variables

We recall that a number can be represented by a
etter-called a var able-if its value can take dif

ferent numerical va ues. So too in logic. A propo
sitron can be expressed by any letter which in this
case is called a logical variable Thus A, B,
C. . are logical var ables that can be true or false
by convention, they assume the value 1 if true
and 0 if fa se This representation facilitates econ-
omy and simplicity, and therefore generality
W thout such symbols, reasoning wou d become
very cumbersome,

Formal properties-irrespective of content or
meaning are the logical features that abstract

schemata of reasoning share. The same is so n
algebraic formulae, such as n (x i y ) (x y
x y', where x and y stand for any number.

Complex propositions can be constructed from
sirnp e ones through logica connectives inking
two or more propositions, or operating on them
We have already met negation of a logical vari-
able (7A) and imp ication (A- B) which is read cLf
A, then B.' It A= 1 that is ' if A is true, then
1A = 0, or non-A s fa se '

A though we have given only the simplest and
most elementary examples of arguments, logic
can examine long and complex arguments In-
deed, a whole set of premises can be strung to-
gether. as in the fol owing:

If John takes a cat home, he wil neglect his
homework If he does not do his homework. he will
get bad marks at schoo . If he gets bad marks at
school, he wil not move up. If he does not move
up, he wil not have a vacation. Ccnc usion: If
John takes a cat home he will not have a
vacation.

This is Ilustrated in symbols in Fig. 154, wth
G = John takes a cat home, H = John w 1i neglect
his homework. I - John wi I get bad marks at
school. L - John w I move up, M - John wi I have
a vacation

The logical steps of this argument can move
smoothly from one imp cation to the next be-
cause the operation of implicat on enjoys the so-
cal ed transitive property (From A- B and
B- C, we can conclude that A- C.)

Consider a simi ar argument in algebra, where
we often draw conclusions that on y mathematical
ogic makes explicit. Here the propositions are

fig. 154 G - H
H w I
I I- IL

IL I- ]M

G -'-AM
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a getbraic express ons. while the compound
propose tions to be proven are known as theorems.
Given 2x + 9 13, show that x - 2 Let D stand
for 2x - 9 13 Efor 2x - 4. F for x - 2 Now,
algebra cal y: it 2x + 9 13 then 2x A 4 if
2x - 4 then x = 2, therefore f 2x 9 - 13. then
x - 2: and logica ly: DU-E, EL-F, .;.D -. F. The
concls on is true on y if a I the premises are true:
a sing e fa se premise will render the concls on
false.

George Boole and the origins of
propositional calculus

The formal system built from logical var aoles-
which assume the value I f true, 0 if fa se-and
connectives representing logical operations, is
known as Boo e s a gebra after tme Engl sh math
ematic an George Boone (I1815 1864). Boo e was
self taught and acquired a vast store of knowl-
edge, including mastery of Greek Lat n, French,
German and Ita iap. In 1 847 he publ shed a small
volume. The Mawetical Analysis ut Logic the
aim of wnich was to nvestigate the fundamental
laws of the mental operate ens involved n reason-
ing, to express them in the symbolic language of
a calcu us and on this to construct ru es for a
science of logic In An1 fnvestigatioO on the Laws
of Thought or w/flct ane founded the Mathemrati-
cal Theories of Logic and Probabilities (1854), he
gave a logica nterpretat on lo his algebraic sys-
tem, showing that it could be adapted to bi-
valent propositions ones that can only assume
two values, 1 f true and 0 if false. The idea was
developed by his successors

Before Boole the ro e of ogrc in science was
unc ear as were the connections between ph los-
ophy logic and mathematics However, Boole
perceived ogic as a branch of mathematics
rather than philosophy, and he had a marked in
f uence on the course of logic. If philosophy is the
sc ence of the existence of things and the search
for what is then logic must be classified with
mathematics, as mathemat cs, and particularly
algebra, rests on a set of symbo s that can be
operated on: logc too can be studied through an
independent symbolic ca culus. Moreover, Boo e
grasped the I mitations of traditional logic which
was then st I subject to Aristotelian and medieval
ru es and schemata, indeed. he demonstrated
how these could be overcome with new and rg-
orous methods and with an algebraic calcu us
analogous to the one used in mathematics His
concepts especially those concerning the close
ties between log c and mathematics. form the
basis for much that formal logic has s nce
discovered.

The logical calculus

What began as a project with Leibn z, became
concrete with Boore. Let us now fo low Boo e's
steps and clarfy some of his ideas which thus far
we have used on y imp icit y. Boooe had a very
clear picture of a ogical ca culus and ts pecu iar
features. In any reasoning, mathematics or geo-
metrica. physical or philosophical we start with
premises from which we reach a conclus on. Log-
icaf analysis translates the premises into symbols
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and then, using the rules of logic, deduces the
more important conc usions imp ied. Wth this
model of analysis we can then assess the validity
of the conclusions. Hence, interest shifts from
content to formal procedure.

Logic is not primari y concerned w th whether
premises are true, credible or reliab e, but rather
with what can be validly inferred from them In
short, it studies the argument, not the meaning of
the premises. This is the "formal' character of a
logical calculus; its symbols are not interpreted,
because to do so would be to give them a mean
ing, and from that we could not abstract the for-
mal structure or basic schema of reasoning In
The Mathematical Analysis of Logic, Boole writes:
'They who are acquainted with the present state
of the theory of Symo ical Agebra, are aware
that the validity of the processes of analysis does
not depend upon the interpretation of the symbols
which are employed, but sole y on the laws of their
combination. Every system of interpretation which
does not affect the truth of the re at on supposed,
is equal y admissible, and it is thus that the same
process may, under one scheme of interpretation,
represent the solution of a question on the proper-
ties of numbers, under another, that of a geomet-
rica problem, and under a third, that of a problem
of dynamics or optics." Thus Boole arrived at a
pure y formal calculus, which need not refer to
quantities, numbers or geometric magnitudes,
because it is based on symbols and rules obeyed
by operations without any specified meaning. The
formal, or mathematical, logic founded by Boole
was later developed by Bertrand Russell (1872-
1970), Giuseppe Peano (1858 1932), and Fried-
rich Gottlob Frege (1848-1925). The calculus
based on bivalent propositions is called proposi-
tional calculus.

We can give a graphic interpretation of proposi
tional calculus with Euler-Venn diagrams, which

are set-theoretica notations for logical operations
and relations and are now commonly used to
teach mathematics from primary school on. We
discussed Euler and his contributions earlier
(pp. 54 55). The English logician John Venn
(1834-1923), was ordained at 25 but resgned
his ministry in 1883 to concentrate on logic which
he taught at Cambridge. His two major works are
The Logic of Chance (1866) and Symbolic Logic
(1881). His diagrams for syllogistic inference are
called Euler-Venn diagrams, having been derived
from a similar device used by Euler but perfected
by Venn.

Negation

This is the simpest logical operation. Given a
proposition negation changes the truth-value of
it, Thus, if M Today is Saturday, then JM =
Today is not Saturday In Venn diagrams, the two
values a logical variable can have are seen in
Fig. 155. The circle represents all Saturdays
(days for which M s true) while M (days for which
M is false or, equivalently, EM true) is represented
by the area outside the circle.

Whenever we have a property defining a set, we
must first fix the scope of our consideration, or the
universe of discourse: roughly, everything that is
under consideration in a given discussion. The
universa set U then consists of all the cements
of the corresponding universe of discourse, In our
example, the universal set contains al the days in
the year, represented by the whole diagram For
a mathematician, the universal set consists of all
numbers; for a botanist, a I terrestrial plants. The
complement, M', is then defined as the set of
elements not belonging to M', that is U - M
(Fig. 155b).
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Explanation of symbols

It is advisab e to use different symbo s for differ-
ent things. Since we have used capital letters for
propositional variables, we will add an apostro-
phe when we wish to indicate the corresponding
set. For example, if M = Today is Saturday, then
M' is the set of all Saturdays.

Conjunction and the empty set

Given two logical variables M and N, their con-
junction is indicated by the connective A, as
M A N. Thus if N Today t is co d, then
MAN = Today is Saturday and it is cold. In a
Venn diagram the conjunction is represented by

the intersection of the two sets, as illustrated in
Fig. 156. M' is the set of Saturdays and N' the set
of cold days. Then M' r N' is the set that makes
MAN true, namely all cold Saturdays.

The negation of M A N is f(M A N) and reads: It
is not true that today is Saturday and it is cold

Now try to show the following compound prop-
ositions graphically: John is staying in Australia
and at the same time in England. Let E = John is
staying in England, F - John is staying in Austra-
ia. Since you cannot be in two places at one time,

the intersection of E' and F' is the empty set, 0,
whicn contains no elements and is a subset of all
other sets (Fig. 157). An example from mathema-
tics would be the set of numbers that are both
positive and negative; of course, no number is.

I ID

fig. 155

M =O 1M=1
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tiq 156 ho. 157

The empty set

The concept of the empty set leads us to the
set-theoretica principle of extensiona ity. Sup-
pose two sets are different. There must then be at
least one object belonging to one set out not to
the other; if two sets have the same elements they
are the same set. Therefore, an empty set, which
has no elements, is unique. We must not confuse
the empty set (0) with the number of its elements
(0). Like zero, the empty set is inked with
nothingness-by definition that which does not
exist-but nothingness is a concept and hence,
we attribute an existence to it. In mathematics and

phi osophy as well as in everyday life, such con-
cepts have proven eminent y usefu .

In set theory, it is the empty set that comes
closest to nothingness Much like zero for num-
bers, the empty set at least has the sort of being
we ascribe to other sets, even if it is the only set
without elements and a subset of all others, and
thus somewhat different.

What does the empty set denote? In Fig. 156,
M' denotes the set of all Saturdays. But what does
the empty set denote in Fig. 157? It simply "de-
notes' without referring to anything. As with zero,
our reasoning becomes entangled and once
again we are moving in the direction of paradox.
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fig 158

A first paradoxical consequence is that the set
of dogs able to read this book is identical with the
set of square circles, and each in turn is identical
with the set of people living in Eng and and Aus-
tralia at the same time. To resolve the dilemma, we
could say 0 denotes the set of those elements
that obey some contradictory assertion, or that
whatever we assert about the elements of 0 will
be true, since no element exists to falsify our
assertion.

Disjunction

Given two logical variables, M and N their dis-
junctson is symbo ized by the connective V as

MVN, which ;n ordinary language reads: Today
is Saturday or it is co d. In set theory, the Venn
diagram for disjunction gives the union of the two
sets (Fig. 158). The union of M' and N', M' U N'
is the set of all days that are Saturday or coid, thus
making M V N true.

Such an operation is akin to addition in aritm
metic. In logic it is called nonrexclusive disjunc-
tion. Sometimes ordinary language uses 'or" in
the exclusive sense, meaning one or the other but
not both, Latin was more precise, with its use of
'vel y .ve" for "one or the other, or both ', and
'aut.. aut' for "either one or the other, but not
both. "
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160

Ct'a Q'

Graphically, the exclusive "or' is shown n
Fig. 159. The symbol for this type of union is U,
and M' U N' is the set of all days that are Saturday
or cold, except cold Saturdays. In propositional
calculus, the corresponding symbol for disjunc-
tion is V, and M V N is the compound proposi-
tion: Today is Saturday or it is cold, but not both.

There is yet another type of "or" in mathe-
matical logic, namely incompatibility, which is dis-
cussed a bit later (p. 122),

Implication

As we saw earlier, implication is symbolized by an
arrow between two logical variab es. It corre-
sponds to the ''if .. , then . ." formation in every-
day language and is seen graphically in Fig. 160.

Let C' be the set of all horses and C' the set of
all quadrupeds. The diagram immediately indi-
cates that C' is contained in C' which aiso con-
tains other sets (giraffes, elephants, and so on).
Using the set-theoretical symbol for inclusion, we

write C' C Q' In propositional terms this says, 'All
horses are quadrupeds."; in implicational terms it
says, "If this animal is a horse, then it is a
quadruped.'"

In set theory, inclusion is considered distinct
from proper inclusion. C' is properly included in
0' if all the members of the first are members of
the second, but at least one of the second does
not belong to the first. Failing this, we can say that
C' is a subset of 0', or is included in Q', or
C' CQ'. II two sets are identical because they
have the same elements, we write A' = B'. Two
sets containing the same number of elements are
called equipotent, of the same 'power."

Membership of an element in a set is symbo-
ized by C. This concept is different from being a
subset which is written C. The set of horses is a
subset, not a member, of the set of quadrupeds.
Any horse is a member of the set of all horses, but
a horse is not a subset of all quadrupeds (at-
though the set containing only that horse is).
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3) L is true and MN are false:

4)

5)

6)
7)

Venn diagrams can be used for a variety of
games. Take the following riddle: Len, Mark and
Nick often dine together, but we do not know who
has brandy after dinner. However, we are told
that.

A) If Len orders a brandy so wil Mark:

B) Mark or Nick will sometimes order a brandy,
but they wil never order brandies at the same
time;

C) Len or Nick will sometimes order a brandy,
either one or both of them:

D) If Nick orders a brandy, so will Len.

Let L = Len drinks the brandy, M - Mark drinks
the brandy, N = Nick drinks the brandy.

Eight possibilities emerge (Fig, 161):

1) L,M,N are all false;

2) L,MN are all true;

LKM are true and N false;

L,N are false and M true:

L,N are true and M fa se;

MN are true and L false,

8) L,M are false and N true.

In light of the given information, we can now
shade those areas in Fig. 161 in which our prem-
ises are false.

A) Colour the area where we have L, fM
(Fig. 162):

B) colour the areas TM, TN and MN (Fig. 163);

C) colour the area for -L, TN (Fig. 164);

D) colour the area for N, TL (Fig. 165).

Superimposing the four shaded figures we pro-
duce Fig. 166, which represents L, M, AN. There-
fore, Len and Mark drank a brandy while Nick did
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not. A simpler solution appears at the end of the
next section.

The multiplication tables of propositional
calculus: truth-tables

Turn back to Fig. 156 and the corresponding
propositional expression MAN. This proposition
is true on cold Saturdays. Consider all possible
truth-value combinations of M and N separate y
(Fig. 167), and then consider the conjunction
MAN (Fig. 168). If M,N are both true, MAN is
true. If M is false and N true, or M true and N false,
or both false, then MAN is false. This is sum-
marized in the truth-table of Fig. 168. The outer
columns give all the possible combinations of 0
and 1 for the propositions M and N, while the
central column gives the corresponding values
for the conjunction M A N.
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A

1

0

fig 1 69

0 1

1 0

M A N

1 1 1

0 0 1

0 0

0 0

M V N

1 1 1

0 1 1

1 1 0

0
fig 1 70

0 0

M V N

1 0 1

0 1 1
1 1 0

0
fig 17f

0 0

Truth-tables are precise statements of the
meaning of propositional connect ves Which of
the following are true, and which false?
A) John has a car and the Moon is rectangular.

B) The Hudson is a river and Manhattan is an
island.

C) In spring allergies occur and seagu Is nest in
winter.

Only B) is true; in A) and C) at least one of the
conjuncts is false, hence the truth-table shows the
conjunction is false. One might assert that John's
having a car has nothing to do with the shape of
the Moon. True, but logic is not concerned with
the content of propositions, only with their truth-
values. We shall deal with this later in connection
with implication.

The truth-tab~e for negation is shown in
Fig. 169. For other connectives or combinations

of connectives, truth-tables must be worked out
step-by-step. Take the connective "or," called
disjunction, which generates compound proposi-
tions. If I say, 'Today is Saturday or it is cold," I
could mean that each disjunct excludes the other,
or I could mean that at least one disjunct is true,
(and therefore possibly both). The latter is non-
exclusive disjunction (Fig. 158); the former, is ex-
clusive disjunction (Fig. 159). The corresponding
truth-tables are in Figs. 170 and 171: Non-
exclusive disjunction is true if at least one disjunct
is true, and false only if both disjuncts are false.
Exclusive disjunction, on the other hand, is true
only when one disjunct alone is true; otherwise it
is false.

To which type of disjunction do the following
belong?
A) In September a boy or girl will be born.
B) The Moon is a satellite or a planet.
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M - N

1 1 1

0 1 1

1 0 0

fig l74

fig 173

1 0

I P V a

01 1

10 1 1
01 0 0
10 1 0

C) If you eat out or go to the movies too often, you
wili be broke.
The first two are c early exclusive, while the third
is non-exclusive: if you do both you will be even
more broke.

Now consider the proposition, "At table a well-
bred person either eats or talks.'" Here, a person
who both ate and talked would be considered
ill-bred, but one who neither ate nor talked would
not necessarily be thought ill-bred. Therefore, this
"or" excludes the fact that the compound is true

A / B

1 0 1

1 1 0

0 1 1

LZa

only if both components are true, This is the "or"
of incompatibility, symbolized by /. Its truth-table
is shown in Fig. 172. Next, look at the truth-tables
in Fig. 173. We see that the columns under the
main connective are identical, which means the
two compound propositions are logically identi-
cal. Moreover, it shows in what sense the argu-
ments on p. 105 are wrong. Let us first examine
the truth-table for implication, Fig. 1 74. Impli-
cation is false only if the antecedent is true and
the consequent false; it is true in all other cases.
This is not easy to grasp, especial y when we
consider the cases where the implication is true,
but it must be remembered that logic differs from
ordinary language with its many shades of mean-
ing so dependent upon context, tone of voice,
relationship between the speakers, and so on.

Take a concrete example. If S = Today is Satur-
day and K = I am going to the movies, then S-o K
means, "If today is Saturday, then I am going to
the movies." The table of Fig. 175 te Is us that if
today is Saturday, then I am going to the movies,
whi e if it is not Saturday, I may or may not go, We
say that S is a sufficient condition for K, but not a
necessary one. Of course, component proposi-
tions of an implication need not be Linked at all.
For example, look at,"If today is Saturday, then
dogs are quadrupeds," in which the components
are completely unconnected. In this instance, the
meaning of the implication is clearly given by the
truth-table. The compound proposition simply
means that if S ("Today is Saturday.") is true, then
we also get the additional true information 0
("Dogs are quadrupeds."). If both S and 0 are
true, so too is S- Q, whi e if S is true and Q false,
then S -Q is false. What do we say about impli-
cation when S is false and 0 true, or when both S
and Q are false? Knowing that in propositional

0
fig. 172

1 0

P - Q

1 1 1

0 1 1

1 0 0

0 1 0
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Nq

calculus! a proposition is either true or false but
never both ( aw of excluded midd e), we must be
able to state whether an implication with a false
antecedent is true or fa se, Now if S is false, it
does not matter if Q is true or false, so in these two
cases we can state S-Q to be true. In these
terms, then, imp ication is equivalent to non-
exciusive disjunction, therefore it is wise not to
limit the truth-table of implication on y to cases
where the antecedent is true. As we mentioned
earlier, medieval logicians used to say, 'ex ab-

surdis sequitur quodlibet" (from the absurd any-
th ng follows). Thus, if an antecedent is false
anything can be derived: if S is false, any other
proposition Q can follow, and therefore 10 as
well, which makes S- 0 true. For example, both
of the following are true: I''f Napo eon was Ger-
man, the Moon is a satellite; "If Napoleon was
German, the Moon is not a satellite." What offends
common sense is that from a false antecedent we
can derive a conclusion and the validity of that
conclusion aoes not matter, In logic it is inap-
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S - K

1 1 1

1 0 0

0 0 1

0 1 0
fig, 176_

p - Q _

S -- K

1 1 1

1 0 0

0 0 1

0 1 0
fig. 177

1 P r 1 Q

111s

(S -. ) A (K - S)

1 1 1 1 1 1

1 '000 1

0 1 1 0 1 0 0

P "I 0 1 0 ' I

.3 . QA -. 1 Q- -I F

1 1 1

0 1 1

1 0 0

fg 0fi.178
1 0

0 1
1 0

0 1
1 0

0 1

01

1 0

1 0

propriate to demand that false antecedents be
excluded, Not on y would it cause pointless com-
plications but there is nothing contradictory in ac-
cepting implications with false antecedents as
true. Remember, absence of contradiction is all
that matters in logic.

A major difficulty in understanding the truth-
table of implication is that in everyday language
the connective 'if . . , then . .." is used onny when
the antecedent is true. When I say, "If today is
Saturday I am going to the movies," I imply that if
it is not Saturday, I will not go to the movies; that
is, S is also a necessary condition for K. In logic
and mathematics, we must make c ear and strict
distinctions between the meanings of operations.
When S is both necessary and sufficient for K we
have equivalence, expressed by 'if and only if"
(often abbreviated as 'iff"). The corresponding
symbol is =-, or A, also known as biconditional
(each component implies the other). This often
occurs, especially in mathematical deductions; it

1 1 1

0 1 1

1 0 0

0
fig. 178b

1 0

0 1

0 1

1 0

1 0

0 1

1 0

0 1

1 0

indicates the necessary and sufficient conditions
for a given mathematical relation to exist. Its truth-
table is shown in Fig. 176: equivalence holds only
if both components are true or both are false.

In everyday language we often use such ex-
pressions as: ''I shall go to the show if, and only if,
I have a ticket." Or we might say: ''If I have a ticket,
then, and only then, can I go to the show"; this
compound proposition is true when both
components are true.

Earlier we discussed logically identical propo-
sitions. We saw that P- Q and 2PVQ are og-
ically identical and can be formally expressed as
(P Q)-(7PVQ) (Fig. 173). Similarly, the propo-
sition S*-*K is logically identical to the compound
proposition (S-*K)A(K--*S) as shown by the
truth-tables of Fig. 177. Truth-tables serve to verify
the validity of the conclusion of a form of argu-
ment. We enter premises and conclusion in an
appropriate truth-table and make certain that
whenever the premises are true, the conclusion is
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L - M
M v N

L V N

N--- L
fig 1779

L -M

1 1 1

0 1 1

1 0 0

0 1 0

M V N

1 0 1

0 1 1

1 1 0

0 0 0

L V N

1 1 1

0 1 1

1 1 0

0 0 0

N -I L

1 1 1

0 1 1

1 0 0

0 1 0

also. A single line of true premises with a fase
conclusion indicates the form is invalid.

The argument P-Q, TP,:.7Q of p. 105 (illus-
trated earlier in Fig. 153), is examined in Fig. 178.
In the second mine, the two premises are true but
the conclusion is false, therefore the argument is
invalid. However, the argument P-*a0 Q20, tiP is
valid, for the only time that both premises are true
(line 4), the conclusion also proves true. All the
other arguments can be tested in a similar
fashion.

Another solution to the problem of the
brandy drinkers

Truth-tables can be used to solve a variety of puz-
zles. Let us return to the brandy drinkers' puzzle
and check the solution reached with Venn dia-
grams (pp. 119-120), with truth-tables. The four
premises, which must be accepted as true, are

shown in Fig. 1 79, and their corresponding truth-
tables in Fig. 180. Assuming L is true, we then see
that line 1 in the first truth-table indicates M is true,
and that line 3 of the second truth-table indicates
N is false, which is compatible with line 3 of the
third truth-table and also line 2 of the fourth truth-
table. Thus L, M, lN is a solution. Next, assuming
M is true, we see that line 3 of the second table
shows N is false, and line 3 of the third table
shows L is true, which is compatible with line 2 of
the fourth table and line 1 of the first table. Again,
L,M,7N is a solution. Finally, assuming N is true,
we find that line 2 of the second table shows M is
false and line 4 of the first table shows L is false,
which is compatible with line 2 of the third table,
but contradicts line 3 of the fourth table. Hence, N
must be false, or TN true, which again yields the
solution L,M,7N.

Of course, it is not obvious that such a problem
has a solution at all; we have demonstrated only
that the present example has one. However, if the
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Set theory is the basis of 20th
century mathematics, and ts
concepts, such as those of relation
and function. Occur in a branOnes of
the science. The method is indeed a
sound one for leaching. even f this s
not un versa y recognized Although
the concept is rmp ipit everywhere in
mathemnat ca developments, I was
not considered basic unt, the
late t9th century Alter numerous
attempts to find a logical y satistac
tory and non-circular detinit on of the
concepts set and element of a
set, these notions were assumed to
be pr mitive, or undefinable Georg
Cantor s classical theory of sets (of
p. 102) he d that to define a set it

premises of a problem are themselves incompat-
ible, there is no solution. An even easier way to
solve the puzzle is to construct an eight-line table
for L,M,N and the four hypotheses. The on y line
on which all four hypotheses emerge as true is the
line for which we have L,MJN. We invite the
reader to create this table.

Who is the liar?

Truth-tables can frequently help us solve prob-
lems which seem quite difficu t at first. It is im-

was enough to describe ts elernrts
or to refer to a or tenion or a rule by
which ao recognize the e erenl The
na ve set theory stated that each

prope'ty had a correspond no set
cons st ny of prec sely 'hose
elements verifying the property
Hence rhe name naive Th s
principle of uin nitoo atns'rdcliori en
to ant riornieF and was a er
abanuu30eC The quest on erns na
unreso ven for a set may be any
to aect on of objects, even if
unrelated. wh (on ame s mply put

together Two oiter a to' recogn z ng
the e ernents are shown here
U indicates the set of squares and R
the set of red Objects namrely shape
and co our respect vely

portant, therefore, to translate the problem into
propositional form so a truth-table can be drawn.
Take this example

A boy and a girl, whose names we do not know,
are sitting next to each other. One of them has fair
hair, and the other dark hair. The dark-haired one
says, 'I am a girl." The fair-haired one says, 'I am
a boy.' We are toid one of them is lying. Which
one? Let N = I am a boy, and B = I am a girl. Since
one of the speakers lies, they cannot both speak
the truth at the same time. Hence the premise: 'It
is false that N and B are true together,' or, in
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Opposite 1 h-e itersecl on and tin on
of sets shown by the Li Ock d agrams
of Zo tan P D ertes matlhernat c an
and psycho og st at Austral a's
Urnivers ty of Adela oie
70p The rtersection of IHe set G of
ye ow objects and the set T of

n arqgular objects ihat s G 2 f Ii
Th s case. the an'y oblect at once
ye ow and T, angualr is The object 'n
hoTlf c rc es
Below The onion of A Ih se: of red
oeb ats and C this s R J G whose
elements are ye ow or red

symbols, 7(N A B). The corresponding truth-table
is shown in Fg. 181. We see from it that case a)
must be excluded. Cases b) and c), where only
one of them is lying and the other one is tel ing the
truth, cannot actually occur because if we accept
that one is ying, then the other, who is stating the

1 ( N A B)

01 1 1

opposite, cannot be telling the truth either. The
true case can only be the one where both lie,
namely d). Therefore the dark-haired one must be
the boy and the fair-haired one the girl

How to argue by diagram

So far we have used truth-tables to check whether
arguments are valid. The same can be done with
simple diagrams which present the situations vi-
sually. Consider the follow ng: All cats are felines.
Let G' = the set of cats, F' = the set of felines; the

l, 1 1 0 1
i110 0 01

i.! I 10 ° 0
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tig .

Venn diagrams then are a valid set-theoretical in-
terpretation of the relation between cats and fe-
lines as stated in the above proposition. Fig. 182
shows this graphically. The same relation could
also have been expressed by, "Some felines are
cats," which states that the set of cats is included
in the set of felines.

In logic, propositions such as "al A are B" are
called universal affirmatives. and Fig, 182 shows
how the universes of cats and felines are related.
A universal proposition can be negative, as is:
"No penguins are felines," Let P' = the set of pen-
guins and F' =the set of felines; Fig. 183 then
shows that these two sets exclude one another,
Notice that this proposition is also true: "No fe-

lines are penguins," (universal negative proposi-
tions are "symmetrical"). Next take the proposi-
tion: 'Some politicians are intelligent," with R' -
the set of politicians and I' = the set of intelligent
people. This produces the three cases of
Figs. 184, 185, 186. Only Fig. 184 represents tne
proposition under consideration. Fig. 185 repre-
sents: "All intel igent people are politicians,"
while Fig. 186 represents: 'All politicians are
intelligent.'"

In Fig. 184, an assertion is made about only
some elements of a set (only some politicians are
intelligent); its corresponding proposition also
concerns only some politicians. Such proposi-
tions are known as particular affirmative. The
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fig. 185 fig. 186

fig 188 fig 1
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fmg 191

proposition: 'Some politicians are not intelligent,"
on the other hand, is cal ed a particular negative.
Consider a mathematical example 'Some even
numbers are not divisible by 5." Let N' - the set
of even numbers and O' = the set of even num-
bers divisible by 5, or more formally, N' {2n1},
O' = {1 On} where n is any integer. In Fig. 187 we
see the Venn diagram. In Fig. 188 we find the true
statement: "All even numbers divisible by 5 are
even," while Fig. 189 is wrong because it states:
"Even numbers divisible by 5 are not even.`'

The four forms of propositions interpreted here
in terms of sets are the Aristotelian forms, named
for Aristotle who first listed them. According to
Aristotle, these propositions are used in scientific
discourse to create the complex forms of reason-
ing he called syllogisms. For example: 'All men
are mortal, all Greeks are men, therefore all
Greeks are mortal.' This carn be shown, as it is in
Fig. 190, with M' - the set of mortals, U' - the set
of men, N' - the set of Greeks. Indeed, this is how

we have interpreted implication. A syllogism,
then, can be seen as an implication, provided we
can recover the appropriate form from the expres-
sions just considered.

A sy logism has three parts (depicted in a dia-
gram as sets). the major premise ('All men are
mortal"), the minor premise ('Al Greeks are
men"'), and the conc usion ("All Greeks are mor-
ta"''). Each set is involved twice.

This is the simplest form of sy logism. There are
other, more complicated forms whose validity is
harder to determine. Again, we use Venn dia-
grams. Consider the fol owing: "A I students of
King's College are in higher education, some
people in higher education are terrorists, there-
fore some students of King's College are terror-
ists. " Let M' = the set of students at King's Co-
lege, S' - the set of students in higher education,
T' =the set of terrorists. The first premise is
represented by Fig. 191, while the second,
being a particular affirmative, is compatible with
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fig. 193

Figs. 192. 193 194. The sets S',M',T' can be ar-
ranged in eight ways (Figs 195 202). These dia-
grams show that an element of T' (a terrorist) is
not always a member of M' (a student of King's
College). Indeed, this is obvious from the very first
figure. Hence, the sy logism is inval d. The con-
clusion does not follow from the premises.

Now consider this argument; "Al children have
two legs, all chickens have two legs, therefore ail
chickens are children." Let B' = the set of chil
dren, G' = the set of bipeds, P' = the set of
chickens Fig. 203 represents the f rst premise.
However, we know that the only possible
representation of how the sets of children and
chickens are related is given by Fig. 204; the two
exclude each other (they have no common mem-
ber), therefore the three sets are related as shown
in Fig. 205 No member of G' is both child and
chicken. Again the syl ogism's conclusion is
inva id.

Let us now represent the following in diagrams:

A) "Al rational numbers are rea numbers."

B) 'All integers are ratrona.

C) "Al irrationals are real."

D) "No integer is irrational.'
The results are shown in Fig. 206 (cf. p. 136).

Finally, consider: "No man is an aquatic animal,
some aquatic animals are mammals, therefore
some mamma s are not human." Let U' - the set
of men, A' - the set of aquatic animals, M' = the
set of mamma s. The first premise is represented
by Fig. 207 and the second is compatible with
Figs. 208 -210. We know that not al aquatic ani-
mals are mamma s, nor are ail mammals aquatic
(Figs. 209, 210), nevertheless, we present these
possibi cities to see if our conclusion, that some
mammals are not human, can be contradicted.
The possible arrangements of the three sets are
shown in Figs. 211 217 We see there is always
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fig 197

fig. 199 fig. 200

fig. 202
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fig 203 fig 204

fig. 0:5

some element of M' not belonging to U', so the
syllogism is valid.

A practical application: logic circuits

Recenty, the propositional caculus has been
used to develop modern electronic processors.
Here, we shall give an intuitive account of the
general principles invoved in this genuine tech-
nological revolution.

Consider the e ectric crcuit of Fig. 21 8, consis-
ting of a battery p, a switch i, and a lamp 1. If the
switch is closed, current flows and the lamp is it;
if the swithw is onen nn current flows and the
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fir, 'I7 fi½ )OYlQ
11L. I'll-

i U,

* I 208 fig 2i0

lamp remains un it. Thus, in the circuit, current
can either flow or hot. The circuit, then, can be in
two states, like a variable in propositional calculus
(that is, 1 or 0). This can be illustrated as it is in
Fig. 219, where A is a kind of proposition ("The
switch is closed"), true when the switch rs closed
and false when the switch is open. A circuit that
joins two points through the switch is a commuta-
tion circuit. With these simple examples we can
now translate Boolean algebra and propositional
calculus into electric circuits that perform the
same logica tasks.
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The principle is this: If for a valid argument we
need only apply certain rules to premises, and if
a I re actions between premises are summarized in
a few tables, then an electronic calculator can
make these deductions, that is it can calculate.
Take the previous circuit and insert two switches
A and B, as in Fig. 220. The lamp wi I be it only
when both A and B are closed. If the amp when
lit corresponds to the value 1, or true, and when
unlit corresponds to the value 0, or false, then the
circuit represents the operation of conjunction of
A and B, Fig. 221.

What is the corresponding circuit for non-
exclusive disjunction? Using the truth-table in
Fig. 222, we discover that only one switch need
be closed for the current to pass and the lamp to
be lit. A circuit satisfy ng this property is seen in
Fig. 223.

Next, let us try to find the commutation circuit
for implication, with the truth-table in Fig. 224,
which, incidentally, reminds us that (A- B)<-*
(lAV B). Hence, we only need to represent dis-
junction (Fig 225). Now 1A is true exactly when A
is false. If A represents "the switch is open,' then
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f bg 223
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i A V B

01 1 1

10 1 1

01 0 0

riq 224 1 0 1 0

fho 225

Q I

the lamp will be it when 1A s true, that is, when
the switch is c osed

Here we have replaced implication by dis-
junction, which is simpler for us. It can be shown
that conjunction, disjunction and negation suffice
to represent all other logical operations.

Let us look at an interesting puzze conceived
by a Hungarian mathematician. We must con-
struct an electric circuit for a three-bed sleeper
compartment in such a way that the light stays on
only when at least two of the occupants (a major-
ity) want it on, and that an occupant who wants

fig 226
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fig. Pv >KQ 22
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the light on has only to push a button. The circuit
must therefore be planned so the light remains on
in case at least two occupants have pushed the r
buttons. Let the occupants be K,J,H, and the let-
ters signify their respective ight buttons. Now we

be connected to one another in such fashion that
it an occupant presses his button ali the switches
with that letter will close, while a I switches bear-
ing a negation sign before that letter will open.
Conversely, if an occupant does not press the

(K A J A H) v (K A J A H) v (K A 7J A H) v ( K A J A]HH)

can construct a truth table for the conjunction of
K, J and H and consider those cases in which at
least two of the variables are true.

Thus, we have the formula shown here in sym-
bois, and it reads: The lamp wil be lit if KJ,H
press their buttons, or if J and H do so but K does
not, or if K and H do so but J does not, or if K and
J do so but H does not. The circuit is shown in
Fig. 227. The switches with the same letter must

button the switches with that letter remain open,
wh le those with the negation sign before that et-
ter remain closed.

Now let us examine a problem of an opposite
type. Given the circuit of Fig. 228, what rs its for-
mula in terms of proposition calculus? We ob-
serve that the lamp wil; be lit if at least one of the
pairs S and T, or U and V, is closed. Thus we have
(SAT)V(UAV).
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A great game: mathematical logic

fig Ž28
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V.

F
F
F
F
F
F
F
F
V
V

V.

F
F
F
F
v
V
V
V
F
F

V.

F
F
V
V
F
IF
V
V
F
F

V.

F
V
F
V
F
V
F
V
F
V

code LED"

a b c d e f

V V V V V V
F V V F F F
V V F V V F
V V V V F F
F V V F F V
V F V V F V
V F V V V V
V V V F F F
V V V V V V
V V V V F V
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GAMES WITH PROBABILITY
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The reality of chance and uncertainty

Mathematical logic app ies to those propositions
that are either true or false, and to situations and
objects about which we can determine whether
they have a certa n property, or lack it. Fa sehoocd
or lack is represented by 0 and truth or presence
by 1. In dealing with paradoxes and antinomies
we saw that the set of unitary fractions (with nu-
merator 1) between zero and 1 is .n a one-one
correspondence with the set of natural numbers
(Fig. 152). 0 and 1 are the limiting terms of the set.
In much the same fashion mathematical logic-
the methods and procedures of which have
proven highly useful-deals with those I nguistic
cases of the absolutely true (1 ) and the absolute y
false (0) With mathematica. logic, the truth or
falsehood of compound propositions created
from simple ones by ogical connect ves, can be

deduced automatically, making it possib e to in-
struct a machine to work faster, and often more
accurately, than the human mind. However, there
are a myriad situations between true and false
where mathematics logic does not apply. We do
not live in a world of unconditional choices, but
rather one which, more often than not, demands
that our choices be made with caution and deib-
eration. Although we are surrounded by risk and
chance, our psychological makeup is such that
we tend to flee uncertainty and are more com-
fortable dealing with reality in terms of absolutes.

Yet, is it not more prudent-and more
realistic-to avoid absolute certainty, to accept
change, to assess everything for and against to
analyze our approach, and to present our bel efs
as probabilities rather than as truths or false-
hoods? After all, are not risk and uncertainty more
a part of the human condition than certainty?

143



Games with probability

Cards, dice, games of chance and bets:
historical origins of the calculus of
probability

The mathematical theory of probability began
with the attempts of ate I 7th-century thinkers to
work out the possibilities of winning or los ng at
games of chance, cards, dice and spinning
coins.

Ga ileo Gali ei (1564 -1642), and G ro amo Car-
dano (1501- 1576) were the first to treat certain
problems of dice in terms of probability. Later
Blaise Pascal (1623-1662), the French philos
opher and mathematician, offered a systematc
account of several problems in games of chance,
Pascal and Pierre Fermat (1601 1665) are con-
sidered the founders of the mathematical proba-
bility theory. Although their correspondence in
1654 Indicates that between them they estab
wished the theory's basic principles, they arrived
at their conclusions independently; their pro-
posed solutions for certain problems differ only in
marginal details.

In recent years, probability theory has become
an essentai tool in our understanding of rea ity,
and it is used in almost every branch of science
as well as inr daily life. ft has been argued that al
knowledge is in some measure undetermined
and uncertain and therefore merely probable,
and that both objective and subjective reality can
be discussed only in terms of probability. The
fol owing assertions suggest the wide range of
situations in which probability plays a part:

A) This child has been too exposed to the cold
and will probably catch the flu.

B) The sky rs overcast; it will probably rain.

C) John is a compulsive smoker and runs the risk
of developing lung cancer.

D) With unemployment and social and economic
inequities increasing, the crime rate is Irkely to
rise.

E) This car is parked where it shouldn't be and
the owner wil probably be fined.

Before presenting some probabilitybased
games and puzzes, we should consider a few
basic concepts.

Chance phenomena

If we throw a coin in the air we know it wil fa 1. but
we do not know if heads or tails will be up it we
throw a true die it too wi I certain y fall, but what
the face will show is uncertain. Such throws are
typica chance events. In general terms, a chance
phenomenon is an event that can be presented
as a set of alternatives The alternatives for the
die, for example, are the faces numbered 1 to 6.
Another chance event is the number of accidents
that will occur on a particular highway next week.
Or, consider a machine that makes light bulbs.
We know that a certain proportion of bulbs pro-
duced by that machine wi I be defective, hence
every bulb made is a chance event as it cou d be
defective. In this case, two possibilities exist, even
if one of them (the production of a defective bulb)
happens less frequently than the other. In short,
chance events are at work in our daily ives as well
as in the disciplines of science.

Which of the following are chance events?
A) The life span of a particular person.

B) A body of a gravity less than water floating in
water.
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C) Picking a card from a pack.

D) Expansion of a metal when heated.

E) In genetics the prediction of the frequency of
a particu ar bodily feature found under specified
conditions.

F) Calculating a cily's load of telephone calls at a
given time

In fact, A), C), E) and F) are events of
probability.

A clarification

The reader may reca I that we described mathe
matical logic as dealing with those propositions
that could only be dec ared true or fa se and had
no third possibility. Probability theory is somewhat
different It does not operate as the term might
imply, on chance events that can produce various
results, but, rather, on the propositions that
describe those chance events S nce these prop-
ositions involve uncertain outcomes, they are ana-
lyzed In terms of probability Whioe we seek truth-
values in mathematical logic, in probability theory
we seek probability-values. Of course, proposi-
tions concerning chance phenomena are them-
selves uncertain. Probability theory is a modern
mathematics tool for analyzing propositions
whose truth or falsehood is uncertain, or is certain
only after the event. Consider this example: 'In
the next poker game I shall get a roya flush."'
Whether this is true or false can be decided only
after the event; before the event we can merely
say it has a certain probability.

Consider some further propositions about
chance events: "The next throw of the die wil be
a six," (which has only a certain degree of proba-

bility): 'The patient in bed fifteen will be in the
hospital at most for one week," and so on.

For completeness, and for reasons wh oh will
become clear iater, we inc ude those propositions
already known to be true, or false; that is the
limiting cases. The proposition, ''The next throw of
the die will produce a number not greater than
30 '' is necessarily true since the faces of a die are
numbered 1 to 6. Such an event is called certain,
and its probability value is 1. Denoting the proba-
bility by p and the above proposition by A, we
have p(A) - 1 or the probability of A is 1, which
means absolute certainty. The proposition, 'The
first number called in this B ngo game wi I be
1i00,' is necessari y false because the numbers
that can be called are I to 99. Denoting the prop-
osition by B we have p(B) - 0, meaning the
probability that B will occur is zero. Such an event
5s called impossib e.

Hence, from information we have we can log-
icalby deduce that some events are certain, and
some impossible. When neither of these imiting
cases can be deduced the event is cabled possi
ble, and is subject to probability assessments in
the strictest sense. Probability theory, then, is a
mathematical method for drawing acceptable
conclusions concerning poss ble events.

Consider, finally, the following two arguments
A) John is eighteen-years-old and yesterday he
sprained his left ankle, therefore he will not run
100 meters in eleven seconds tomorrow.

B) A I tigers are felines and all feaines are mam-
mals, therefore all tigers are mammals.

In B), the conclusion is implicit in the premises
and has merely been made explicit by the argu-
ment; in A), the conclusion does not fol ow from
the premises. No premise states that an eighteen-
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year-old with a sprained ankle cannot run 100
meters in e even seconds. The conc usion te Is us
something that cannot be formally concluded
from the premises Of course, it is extremely likely
that John wi I not be able to run 100 meters in
eleven seconds with a sprained ankle, but it canm
not be stated with absolute certainty A margin of
uncertainty remains, whi e none does in the sec
ond argument We must therefore draw a dis-
tinction between those arguments in which the
conclusion follows necessarily from the premises,
and those in which it does not and, hence, can
only be evaluated in terms of probability.

Probability theory, as the mathematical disci-
pline that he ps to check the arguments involving
risk and uncertainty is, in this sense, a genuine
ogic. Therefore, we can say that log c, the sci-
ence that checks the links between premises and
conc usions, has two branches: deductive logic
(including mathematical or formal logic) and in-
ductive logic (probability).

Sample space

Consider the throw of a coin, which can only fa I
heads or tails. Let us denote the set of outcomes
by S - {h, t}. If we throw a die, one of the faces
numbered 1 to 6 wil come up: we denote the set
of outcomes by S = {1, 2, 3. 4, 5, 6}. The set con-
taining all possible outcomes of a chance event is
cal ed the samp e space, while a particular out-
come is the sample or sample point. An event is
simply a set of outcomes or rather, a subset of
the samp e space

If we have a bowl containing six balls, one each
of red (r), brown (b), violet (v), green (g), amber
(a), navy-blue (n), we can represent the sample
space by the set S = {r, b, v, g, a, n I For clarity we
shall confine ourselves to cases in which all out-
comes can be expressed in finite space and time.
There are mathematics methods for analyzing
quite complicated events, which is clear if we ex-
amine slightly more complex cases.

Suppose our bowl contains two whrte and four
red balls, the white ones being marked 5 and 6,
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fig. 23?

(h,h)

(h,t)

(th)

(tt)

I)
t

and the red balls from 1 to 4. The sample space
for the chance event of extracting a ball is
S =l1.2 3,4,5, 6. Two events are possible in this
situation we extract a red bal or extract a white
ball If we call these two events E and F re-
spectively, we can represent them as subsets of
the sample space by writing E = 11, 2, 3, 4],
F = 5, 6F. The sample space and the events can
be represented by an Eu er diagram In Fig. 229.
the rectangle is a sample space and the el ipses
are the events E, F. In the present examp e. the

empty set would correspond to an orange ball
being extracted, or one marked 7, 8 and so on, all
of which are impossible, so that p(0) - C, or,
translated into words: The probabi ity of an impos-
sible event is zero,

Consider another example: tossing two corns
together. Let us write down the sample space,
and the events of at least one coin fal ing tails up,
and of both coins fal ing heads up Thus
S(=t (h, h)F (h, t). (tToh) (ter sampl(het) (t, ),
(t, t)t, F = j(h, h)j. To determine sample spaces, it
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is often useful to draw tree diagrams that yield a
picture of the elements of all events. The tree dia-
gram for the present example is shown in
Fig. 230, whi e Fig. 231 represents the case of
three coins thrown in succession.

The measure of probability

Now, go back to the throw of a coin, where the
sample space is S = Jh, t}. If there is no reason to
believe heads will appear more often than tails,
the outcome h, or "heads", will occur with proba-
bility 1 in 2, 112 or 0.5. We write p (h) = 1/2. In gen-
eral, we consider all the ways in which heads can
come up and then div de by the number of e en
ments in the sample space. This is intuitively obvi-
ous; the mathematical formulation makes the re-
sult general and allows us to analyze complex
events. For a die the probability of the event, E. of
throwing a six, is simply p(E) - (number of ways
for E to occur)/(number of e events in the sample
space) - ½lt.

Suppose we have a bowl containing four ba Is,
one black (b), one red (r), one white (w), and one
amber (a). What is the probability that the next
ball extracted will be red? The sample space is
S ={brw,a} so that p(r)= 4. Al probability
values lie between 0 and 1. Thus we can write

zcp < 1; in words: The measure of probabilityp
is a number greater than or equal to zero and less
than or equal to one. If p - 1, the event is certain;
if p = 0, the event is impossible. An example of a
certain event is the sample space itself. In the
case of throwing a coin we have p(S) =p{h, t4=
p (h) + p (t) = 1/- + 1/2 1. Here, the disjunction in
"heads or tails" is translated by the sum of the
probabi cities (cf. p. 117).

Horse races

Let AB,C be three horses in a race. One bettor
c aims that A s winning chances are twice B s,
and B's are twice C's If this is true, what are the
various probabilities of winning? Let p(A), p(B),
p(C) be the respective probabilities for the
horses, then p (A) + p (B) + p (C) = 1, since the
sample space is a certain event. Moreover, we
are told that p(B) - 2p(C), p (A) - 2p(B). Thus
p (A) 4p (C) and (4 + 2 + 1 )p (C) 1. Therefore
p (C ) = /,, p (B3) = 47,, p (A) }=4//.,

The reader may have noticed that we made a
tacit jump in logic, for it is not at a I clear what is
meant by saying that one contestant is twice as
likely to win as another. In the case of drawing a
balI from a bowl it is obvious what the sample
space is: there are many different balls any one of
which might be drawn. However, there are not, in
this sense, severa ways in which a race can be
run. Of course, any one of the entries cou d win,
but what does it mean to say one entry is more apt
to win than another? What are the "different ways"
to run the race, that correspond to the different
ways to extract a white ball, say from a bowl
containing six white and four black balls? The two
concepts of probability seem logically 'incom
mensurab e." What we do is this. We imagine a
who e set of races, of which ony one, in fact, will
occur. If we now say that contestant A is tw ce as
likely to win as contestant B, we mean that in the
bong run, A will win two out of every three races in
the set, while B wi I win the remaining race. Notice
the logical difference between the bowl contain-
ng bal s and the race. In the former we can go on

drawing bal s but in the latter the event is finished
once the race is run. However, by imag ning the
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one race extended into a set of races, we can
compare w ns in a single race to draws from a
bowl Hav ng grasped this point, the methods of
calculation developed here can now be used.

The concept of function

We have used this concept imp icitly: we must
now define it explicitly. Take a common example
Every car has a registration, and for each car
there is one, and only one, corresponding regis-
tration, and conversely. Hence, there is a one-one
correspondence between the set of cars and the
set of registrations, as shown in Fig. 232. An oper-
ation pairing each element of one set with one
and only one element of another set if cal ed a
function. Each element in the left-hand column of
Fig. 232 constitutes the 'argument" of the func-
tion, while the right-hand cotmun lists the "va ues"
of the function (note the technical sense of the
word 'argument" as it is used here). In general we
indicate functions by lower case letters fg,h ....
For example, given any proposition A, the function
relating A to its truth-values is f(A) ( j0, 1}

When we discussed the truth-value function in
proposition calculus, we specified that these
values were attached to propositions concerning
mathematical logic. Now we attribute a probabil
ity measure to a chance phenomenon, We do not
actually assign the value to the phenomenon itself
but rather to the proposition describing it, As the
truth-value function operates on propositions, so
the probability measure is a function that assigns
a number between 0 and 1 to propositions relat-
ing to chance phenomena. Using p for the proba-
bility function, this is expressed by p (.. . ) e [O, 1),

fig P2Y
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where the right-hand side indicates any number
in the interval from 0 to 1.

The algebra of events and probability
games

By combining probability theory and set theory
we can clarify the analysis of complex problems
If events are sets, then any assertion about events
can be translated into the language of sets, and
conversely. Given a sample space S we can
use set-theoreticai operations to describe events
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in this space and to work out their probability
measures.

The complementary event and its
probability measure

For each event E there is an event E, called its
complement, which contains all outcomes in S
but not in E.

Consider the chance phenomenon of throwing
a coin, with S = {h, t} The event of throwing heads
is E = {h, and the complement E {t}. Since
p(E)- 112 we read ly find p(E) 1/2. Using Venn
diagrams we can il ustrate the complement E as
the area of S outside of E, as in Fig. 233.

In the present example the event and its com-
plement have the same probability, however this
is exceptional. Take the throw of a die and con-
sider the event of six appearing. We have seen
that p (6) = 1/. The general formula for the proba-
bilities of an event and its complement is p(E) -
p(S)- p(E), as E contains al the elements of S
outside E. Since p(S)= 1, we now have p(E) -
1 -A½ = 5½6. The complement of the sample space
S is obvious y the imposs ble event 0, and its
probabi ity is 0. Thus S = 0, and p (S) = 0

The probability of the union of two events

We have done this operation implicitly when re-
ferring to the probability of a certain event, such
as the sample space, More generally, the union of
the events E,F is E Lj F, with the event comprising

all outcomes belonging to at east one of the two
events. Thus E U F occurs when E or F or both
occur. Again take the throw of a die. The sample
space is S =1 2, 3,4 5 61. Let G sgnify the
event of the throw being even H of the throw
being odd, and I of the throw being prime. Thus
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C -42,4 6 H =41, 3 5}, =42,3,5%. The event
of the union of G and H is thus G LH -
{1,2 3,4, 5 61 which is S, while H UI/
41,2 3,5[, and G U I42,3 4,5 61. AI this is
shown in Fig. 234.

What is the probability of the union of G with H,

fA; .34W

source of our difficu ty was in the fact that
H - 11,3 51 and / -2 3,5) have common ele-
ments: previously we had counted p (3) and p (5)
twice

The probability of the intersection of two
events

The common elements of two sets are known as
their intersection which is indicated by n (cf.
Fig. 156). In the present case, H fl I = 3, 51. This
is shown diagrammatical y an Fig. 235.
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that isp(G U H)? Since the union is equal to S we
have p (G U H) = p(S) = 1. This can be obtained
less directly as follows We know that p (G u H) -

p (G) + p (H). Now using our definition on p. 148,
p (G) = %,/ = 1/ and p (H)i = -AV = 1/2. Adding we ar-
riveatp(G) p(H)- /2 + 12- 1 ThatG uH = S
is, of course, peculiar to this example.

As we saw, H U I4211,2 3. 5V Let us there-
fore try. as before p (H U L) = p (H) + p (l). Since
p(/) - 'j- 1/2 we would again have p(H U!) -

. + 11 - 1, which 5 the probability of the entire
sample space. Yet H U I and S oo not coincide,
since H J / ={ 2 3,51 and S - 1 ,2,3.4,5,6}, so
their probaoil ties must be different. Obviously we
have made a m stake. namely to suppose that
p(H U L) = p (H) + p(i). Going back to our defini-
tion of probabi ity, p (H U /) - (number of ways for
H J / to occur)/(number of elements in S). Now
H U I can occur in four ways, because it has four
elements, while S has six. Therefore p(H UI) =
4/(j - A whire p (S) - 1. Thus p (H J /) s p (S). The

G
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To evaluate p(H n /), we divide the number of
ways H n / can occur by the number of elements
in the sample space. Thus pu(H n/) =2/6= 1/¼.

Now we can correct our mistake in calculating
pu(H U 1). When we add p(H) top(f), we countthe
probability of the events {3} and {5} twice. We
must therefore subtract the probability of the
event {3, 5} which is exactly the intersection of
the two sets. Thus quite genera ly, p(H U 1) -
p (H) + p (/) - p (H 1 /), which in the present case
yields p(H U I) - I/P + 112 - 1/3 - 3. The reason
why we reached the correct answer when writing
p (G U H) - p (G) + p (H) Is precise y because
we have p (G n H) = p (0) - 0: The intersection of
G and H in this instance has no members and is
therefore the empty set (Fig. 236).

Note an important property of the empty set.
Given an event E and its complement E, their
intersection consists of the impossible event,
hence, F n U = 0. The two can never occur to-
gether. Such events are called disjoint or mutually

exclusive. Thus the two events 'He is tall: and
"He is short' cannot hold true for one person, Two
compatib e events that do not exclude each other
would be, 'He is tall' and 'He is thin.

The probability of a choice

What we have learned so far he ps us solve
problems and puzzles in probability with greater
clarity and logic,

Take a class of ten boys and twenty g rls Half
the boys and half the girls have dark eyes. What
is the probability that choosing one of them at
random wi I yield a boy or a dark-eyed youngster?
Let A signify the choice being a boy, and B the
choice having dark eyes. The probability re-
quired is p(A U B), which we know is equal to
p (A) + p (B) p (A n B). The sample space S =
{a,, a2,.... a29, a3,}. Then p (A) = -O/o = 1/3. p(B) is
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somewhat more complicated. Half the youngsters
of each sex are dark-eyed, namely five boys and
ten girls. Therefore p(B) = 1'Ac /;*. There re-
mains p (A n B). Now the elements of A n B are
dark-eyed boys, of whom there are five, hence
p(A n B) = V3 = 1/6. Now, we can finally calculate
p (A U B) = 1/3 + t42-l'F = 4/e½ -.

Drawing a card from a pack

The familiar deck ot 52 playing cards is a source
of a variety of games based on probability. Con-
sider the probability of drawing an ace or a king,
in a single draw. To determine this we would do
well to formalize the problem, and ir that way
reduce it to its essentials
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Let A be the event of drawing an ace, and K of
drawing a king. Now we must find p(A UK),
which is equal to p(A)+p(K) -p(A SK). The
last term is obviously zero, for A n K = 0- No sin-
gle draw can be an ace and a king. As for p(A)
and p(K): Since there are four aces and four
kings in the pack, each of these terms is452 = - V/

Therefore p (A U K) = 2/-3.
Let H be the event of drawing a heart. What is

the probability of drawing an ace or a heart?
We havep(A UH) -p(A) +p(H) -p(A n H). As
seen before, p(A) - 1/13. Moreover, p(H) - -

114, and p(A fl H) - 1A,3, since there is only one
ace of hearts in the pack. Therefore p(A U H) -

/, 3 + 4 -1/52 = 6/52 = 4/1 - .

Joint throw of coin and die

In this instance, the sample space is given by
S = {(h, 1), (h, 2), (h, 3), (h, 4) (h, 5), (h, 6), (t, 1),
(t, 2), (t, 3), (t, 4), (t, 5), (t, 6)}. It has twelve ele-
ments. Each of the two ways in which the coin can
fall is linked with the six possible falls of the die.
This can be usefully represented, as it is in
Fig. 237. Consider the compound event H: The
coin falls heads up wh le the die shows an odd
number. Th s is a subset of S and can occur
in three ways: H = {(h, 1), (h, 3), (h, 5)}1, so that
p (H) - 3/32 = 1/4, indicating that an arbitrary sam-
ple space can be a compound event. Indeed, the
event "heads and three" is the intersection of
''heads' for the coin and "three" for the die, and
so too for all the elements of this sample space.

,. - ..f -....g.... -ig ........=
M fig 237

h- (ha) (h,2) (h,3) (h,4) (h,5) (h,6)

- (tl) (t,2) (t,3) (t,4) (t,5) ( r) S

I b = 1 - ,
I I I I I I -.

1 2 3 4 5 6

Dependent events

Suppose we have a bowl containing five balls,
three white and two black. Let N1 signify the first
draw being b ack, and N2 the second draw being
black. Once the balls are drawn they are not put
back in the bowl. What then is the probability that
the second draw will be black if the first one is
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also? Here we need the concept of condition
probability, which is an extension, or refinement
of previous concepts.

Given the two events N. and N2, the conditional
probability of N, given N. (the probability that N2
will occur when N, has already occurred) is writ-
ten as p(N2 /N,) and shown diagrammatically in
Fig. 238.

bg 238
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Such situations occur in various fields Sup-
pose we must decide the fo lowing A box con-
tains 100 fragile crystal glasses of which 10 are
defective. The first glass drawn is defective. How
likely is it that the second glass will also be
defective?

Let us go back to tne bowl holding the ba Is.
The sample space S is given by the five balls, and
we want to evaluate p(N2/N,). As N, has already
occurred. the sample space is reduced to one
black and three white ba Is, or a total of four ba Is,
therefore p (N2/N) = 1/4. This value depends on N1

having occurred. If the first draw had been white,
both black balls would remain in the bowl and the
probabi ity of N2 would be % = ½2. This is not a
different kind of probability, but rather a different
kind of situation. In general, all probabilities are
conditioned by certain assumptions about appro-
priate relations between the elements of the sam-
ple space. External events are never as simple as
our account might suggest; even the simplest
occurrence is interlocked in complex ways with
other events or conditions, be they given or
presupposed.

Thus, when we say the probability of throwing a
six with a die is 1/6, we should really say p(6/true
die) = 1/6, or, in words. The probability of throwing
a six, assuming the die to be unbiased, or "true",
is 1/6. Now the reader can solve the problem of the
crystal glasses.*

'The prctab ily if the second draw bernq deiect-ve S A
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Independent events

Events are called independent if the occurrence
of one does not affect the probabi ity that the sec-
ond will occur in turn. Note that f the occurrence
of the two events A and B is independent, then
p(B/A) p(B); the fact that A has taken place
does not bear on the probabilty that B wlM take
place. Similarly p (A/B) - p (A).

We can now define independent events for-
mally. Since genera ly p (B/A) - p (A n B)lp (A),
we have p(B) =p(A B)lp(A), or p(A nB)-
p (A)p (B). In words Two events A and B are inde-
pendent if the probabi ity of their Joint occurrence
is equal to the product of the probabilities of each
one. These notions are readily applied to actual
cases.

Now back to the joint throw of coin and die.
Each element was the intersection of two events.
The probability of each was 5A,, as there were 12
elements in all For example, p(h, 1 ) = 1/2: this is
the intersection of first, a coin being thrown and
next, a die being thrown. The probabi ity then of
throwing heads and a I are, respectively
p(h) - 1/2and p (I) = 1A. Now p (h)p (1 ) = -T/e rA -

1/2 = p (h, 1 ) - p (h n 1), hence the events are
independent.

The same is true in the example seen earlier of
a jotnt throw of a coin and a die. If D is the event

Probab ityO ca'czlus or g nated with
garties t chance a ce. cars ano
bets S.,ch games vee ecurdned as
ear y as 2000 yeas gc even ir the
Greo;-Rornan wnr d there were
proressiona ga noers P obab ty s
qreraH Y understood as a trequencv
the rrniffbeC I ot t anes an event E
ocx.is ' rn possc b e cases If each
occurred uei s indeperroent of the
otte 1r trey a&e eqL. proba ie. anri
pCt) / I tho rat a ot occurrences
to tota Coases TPearet ca ly a true
co n (rghoT coul d ta heads down
every time it iTs th'owai. but actual ly t
w I f t heads up roLJghiy hait the
tirme The raeio of heads to the rate
number ot throws is rhe reoadive
trequericy' ot heads This k no of

precab ity, some mes (a. ed
statistical because trequency s a
statistical concept s wide y uscar
and particularly ifr gares of chance
n ah ch observations can he

repeated under very s milar
c rcunstances Th s *s not the oil y
Ifterpre/ar 00 tcIhe mathemariCae

concept of probab *ty A' east one
other known as subjectt ve,
rmeasurOS the degree of confidence a
person places ir an event occorr na
q ven his opin ons and inforrnat on

of throwing an odd number, then p(h nD) -
p(h,D) -p(H) - ,/4 as on p, 154. Now p(h) = 1X2

and p(D) = 1, since half the numbers on the die
are odd. Thus p(h)p(D)=1/ŽT/2 - , /4 yielding
p(He nD=p(h)p(D) and revealing that hand D
are independent.
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mle thir of iC die cali r e rilerplpri
i e li :it i *qLuetnc biSuctpre we

anle inte'ESle n F'he 'I9rci oI d
tatj 11ber ess Jhanl lour I alre le
h'Cia,S - I iwrt t)er P-s 'lanr Oi'd

ryppexir - r [ ir t vIT iP S iv r Vlivu
aequenrcy is r :or O 4 f Wve, rlKe a]
comrl)UtidCv eveit oi throw ng PAD
d ce. there rer 36 cascs rie ti it we
want a thIuh vwhrise tnlva is -even
llic ii are '.IH poss t r h ilies t 6). (2 5
¢3 1l (4 31 (5 23 (6. 1 darCe btie
proeLab lily olli ever i s r'- : i11
receari yearl the prohahil ty theory
his: wOw 11 itlCiortalnce Tl a most
eveO y aea ci Onr ves Such garrie'.
of charsie as too: obi poI s anti
l)lor 'c r have macne mos' ot us Uware
of the notion of prrobabil pV

Maiy ni loday s problems trai. c
denSily ato coinFtol tOI exarmple-are
attacked by conplinq prnbah ty wi-i
She IerDy ai graplS The resills oi
rmociecal research are expressed ri
renis Ct i'rtobal biti dl it In P1ie 3
piiysiciiV cel'a n aws expressac tby
pre,31hii ly lunctt onE are prov oirin
r. eater re search au cielines

What is the probability that George and
Bob speak the truth?

There are, of course, some problems involving
probabilities that cannot be resolved by intuition
alone.

George and Bob are in the habit of telling fibs.
George tells the truth three times out of four and
Bob four times out of five When they both say the
same thing, what is the probability that the state-
ment is true? If G is the event of George making
an assertion, which we know may be true or fa se,
G = {T,,, Fj; the T, stands for George's assertion
being true, the F6 for false. Similarly we write B -
{T, F61. Further, we are given p(T) = 3/4, p(Tt,) -
4/5, making p(F,) 1/4, p(F1,) t /. These events
are not equa ly probabe, but nevertheless they
are independent. The sample space for G and B
making some assertion is S = {(Tg, T (Tg, F,),

(F11, T5), (F0, F-j)}. Also p (Ty T) ) = p (T0 r T.) -

p (T)p(T) - 3/4-4/5 = 3/. Similarly p(Ty, F,,) =120,
pl(F, T) =1/5, p(Fg,Ft ) ½n/. Clearly, p(S') -

3/5 + Y20 + 
1
/5 + i/n = 1/.

Now let C be the event of George and Bob
making the same statement; that is, C is the sub-
set {(T., Tj), (F9, F6 )}. Both speak the truth or both
lie.

This event can occur in two ways, so that
p (C) = p (Tg, T) + p (F, F ) = 3/5 + 1120 = 13/20 iS the
probability that both make the same statement.
Finally, we must determine the probability that
when George and Bob make the same statement
they are speaking the truth. This is clearly a con-
ditional probability. By applying the general for-
mula to this case, p((T9,Ttr)/C)=p((TgTb)
n C)/p(C) = (probability of both speaking the
truth and making the same statement)/(13/2o) -

(1½o22)/(13/20) = 121-A
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Probability and empirical science

The concepts of dependent and independent
events give us a mathematical model by which we
can analyze the relations between a variety of
events. Hence we can decide whether such re-
lations exist, and if so, to what extent However,
we must be certain to distinguish between statisti-
cal independence, which is what we have been
examining and the independence between phys-
ical phenomena. When we say the occurrence of
event A affects or changes the probabi ity of event
B, we do not mean A is the cause of B in the
physical or material sense. The kind of depen-
dence or independence discussed here is only
statistical; it helps us to describe and mathe-
maticize certain relations between facts. The
interpretation of those relations, however, is a task
for the researcher and constitutes a conceptual
leap based on many factors not the least of which
is the scientific theory guiding the investigation.
Why, for instance, are doctors joking for carcino-
genic agents in tobacco? Because there is an
incontrovertible statistical link between smoking
and lung cancer making a physical link between
them also probable. In short, probability ts a
unique too for ana yzing and guid ng research in
all scientific disciplines.

Probability and statistics

In large measure, scientific knowledge pro-
gresses because of the concrete applications of
probability. A doctor wishing to check the effec-
tiveness of a particular drug, carries out a series
of experiments; similarly an agronomist. wishing
to determine whether a particular fertilizer wili
improve the yield of a crop given certain con-
stants-amount of sunlight, type of soil, irriga-
tion performs tests on the field. The use of
objective techniques to test the results ot scien-
tific experiments allows scientists to draw conclu-
sions and move from the specific to the more
general

The agronomist, for instance, might extend his

conclusions to al plants of the same species as
those he examined, whi e the doctor mlght use h s
conclusions to help a patents suffer ng from a
disease similar to the one affecting the test
patients

This course from the specific to the general
follows several steps. An indiv dua case is exam-
ined, and a limited number of observations are
made on the basis of which conclus ons about al
such cases are drawn Some thinkers, past and
present, deny the procedure's legitimacy and re-
ject any general conclusion drawn from a particu-
ar observation. And, of course, it is true that such
conclusions do involve a degree of uncertainty.

It is at this point that probability is usefu, for the
uncertainty can be measured by a probabi ity-
value. Hence the probability approach is impor-
tant to our knowledge of reality as most of the
assertions we make about reality are only proba-
bly true, that is true within certain limits which can
be specified by probability-values. Statistics
gives us the logical and mathemat cal techniques
to make inferences and then measure their de-
gree of uncertainty.

Sample and population

In statistics, the term 'popu ation' is a technical
one and refers to the range of occurrence of the
characteristic oeing examined. If we are seeking
a relation between the height and weight of
18-year-old students in a given city, the popula-
tion consists of a I students in that city. If we need
to know the efficiency of a certain fertilizer, the
population consists of a I comparable fertilizers.
Then too, a population could be an infinite num-
ber of throws of a coin from which we want to
determine the number of times heaos appear.

Although, general y, the aim of experimental re-
search is to acquire knowledge about an entire
population, the size of the population frequently
makes it impossible to oo so. In that event we
confine the examination to a sample. Conclusions
drawn from samples and applied to populations
are called statistical inferences. In some measure
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these inferences are uncerta n, and for the
degree of uncertainty to be measurable in terms
of probabil ty, the sample must be chosen at
random

Guess the vintage

Suppose a wine connoisseur claims he can not
on y distingu sh between the qua ity of various
w nes but also between their years of production.
Let us find out if his information Fs reliable or
mere y accidental. Blindfo ding the expert, we
present him with several wines from different
years Either he is simply a braggart and wi I give
the right answer by chance, or he has a sensitive
palate and can make the correct distinctions. In
the case of the former his answers wi I be random
and just as apt to be right as wrong. If G is the
event of a correct answer, and H the event of a
wrong one, the sample space is S = {G. He and
p(G) - p(H) - 1/ If the first answer is correct, the
expert s given a second test: the sample space
is now S - {(G, G) (Gr H), (H, G). (H, H)f If the
answers were (G. C) we try him again with the

new sampe space of S =(G.G,G), (G.G,H),
(G, H, G), (G H, H), (H, G. G) (H, G, H), (H, H. G),
(H. H. H)} Shou d the answer be correct a third
time, the probability of it being chance s one-
eighth The more the degree of uncertainty de-
clbes the more confident we are that the expert
s indeed an expert, even if a margin of uncer-
tainty does remain

Cleary one correct answer is not convince ng,
as the chance of being right is one out of two.
However, the more successive answers are cor-
rect the less likely it is that it is due to chance.
Statistical inference reveals the limitations within
which our assertions about the world are correct.

Conclusion

The concepts we have outlined are the basis of
the modern mathematical theory of probability.
Linked to these concepts is the theory of static
tics, essential to researchers in empirical science
and widely applied in our oaily ives. For further
study, see bibliography (p. 179)
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APPENDIX: GAMES WITH
LOGIC AND PROBABILITY

Note

New mathematical concepts can appear abstract
and theoretical and the reader might well con-
sider the fina two chapters out of tune with the
book's title. However, the basic concepts of math-
ematics, logic and probability shou d be more
familiar, which is why we presented an elemen-
tary account of propositrona calcu us and several
introductory concepts of probability theory. In
doing so we deliberately refrained from pre-
senting a number of games and concentrated
instead on explanations of the concepts; solving

even elementary problems and games with logic
and probability would be far more difficult were
we to trust intuition alone. Therefore, we offer the
fo lowing appendix of games, problems and exer-
cises as compensation for the theoretical topics
covered in the ast chapters, and we assume that
while working the problems the reader will under-
stand the reason for our theoretical explanations.
Although the problems become increasingly
complex, they do not require information that has
not been covered. We begin with logic and move
on to probability.
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Appendix: games with logic and probability

Games with logic 1.2-Express in proportional form those state-
ments in 1.1 that can be so formulated in propos
tional logic.

1.1 -Can the fol owing be formu ared in propos-
tional logic? Why?

a) Charles ano John are ath eres.

b) There is probably liie on Mars

c) If the water is clear, then George can see the
riverbed.

d) John thought Mary had been de ayed by en-
gine trouble.

e) The fire was caused by a shortcircu t or by
combustion.

f) Mary and John are married.

g) If there are more cats than dogs, then there
are more horses than dogs and fewer snakes than
cats.

h) Dick and Tom ike drinking.

Solution.

a) Yes, because this can be interpreted as the
conjunction of two propositions: "Charles is an
athlete and John is an athlete."

b) No. This concerns probability and is neither
true nor false.

c) Yes. This is an implication.

d) No, because there is no point in asking
whether "John thought X" is true or false.

e) Yes. This is a disjunction.

f) No. This expresses a relation, and it cannot be
interpreted as a conjunction since the proposi-
tion, "Mary and John are married" is not equiv-
alent to, "Mary is married and John is married."

g) Yes. This is an implication.

h) Yes. This is a conjunction.

Solution

a) C A J, with C = Charles is an athlete, J John
is an athlete.

c) L-* F. with L = the water is clear, F = George
can see the riverbed.

e) A V B, with A = the fire was caused by a short-
circuit, B - the fire was caused by combustion.

g) S-o (H A G), with S = there are more cats than
dogs, H = there are more horses than dogs,
G = there are fewer snakes than cats.

h) D1 A D, with D, = Dick likes drinking, D. -
Tom likes drinking.

1.3 -Determine the truth-values of the compound
propositions a, b, c, given the truth-values of the
following premises.
W = "Galileo was born before Newton,' true:
J = "Newton was born in the 17th century ' true,
K ' "Newton was born before Fermat," fa se&
L =-'Leibniz was a compatriot of Galileo," false.

a) If Galileo was born before Newton then New-
ton was born before Fermat

b) If Leibniz was a compatriot of Galileo or New
ton was born before Fermat, then Newton was
born in the 1 7th century.

c) If Leibniz was not a compatriot of Galileo, then
Newton was born before Fermat or he was not
born in the 17th century.

Solution.
a =W-K b =(LVK)-J: c

truth-vaiues 10 0 000 7 7

Thus a is fa/se, b is true, c is false.

T1L- (KVTJ)
100 0 007

1AD4Q
- - .
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1.4-If P. 0 are true and R fase, what are the
truth-values of:

a) 1P;

b) 7(P A),

c) 1(PVC)

d) P V (O AR);

e) R -((Q CAR)V(P VCQ)),

f) R-(P AR)?

Solution.
a) 7P: b)nl(P/\ R) c} l(P V 0). d) PV (Q R)

01 1 1 00 0 111 1 I 0 0

1.6- Prove the validity of the following argument: If
we do not increase the number of jobs in cur soci-
ety, crime will rise. Crime is not rising in our society
Therefore the number of jobs is increasing.

Let W =the number of jobs is increasing.
D = crime ls rising.

Solution.

Premises
W\/ D 1 D
1 1 1 0 1
1 1 0 1 0
01 1 D i
0 0 0 10

Conclusion
W
1
1
0
0

e) R --- ((O A R) V (PV 0)) f) R-(P \R)
0 1 1 0 0 1 W 1 1 0 1 1 00

1.5- Determine whether the follow ng inference is
logically va id or not (cf. p. 124 125): The train is
defective or the current is off. The current is not
off, Therefore the tra n s defective

Solution.
Let D - the train is defective, E - the current is off,
and construct the following truth table:

Premises
DV E 1 E
1 1 1 0 1
0 1 1 0 1
7 1 0 1 0
0 0 0 1 0

Conclusion
D
1
0
1
0

D
1
0
1
0

Premises
V E 1 E
I 1 0 1
1 1 0 1
1 0 1 0
o 0 1 0

Conclusion
L

0 1
1 0
0 1
1 o

1.7 - Determine whether the fol ow ng argument is
agical y val d: Johnl dld not receive our note or he
has made other arrangements. John drd receive
our note Therefore he has not made other
arrangements.

Let P = John did not receive our note, R J John
has made other arrangements.

Solution.

Premises
P V R 1P
1 1 1 0 1
0 1 1 1 0
1 1 0 0D1
0 0 0 1 0

Conclusion
R

0 1
0 1
1 0
1 0

The argument is invalid.

1.8-Show that the fol owing argument is vaiid: If
the budget is not cut, prices wil remain stable if,
and only i, taxes are raised. Taxes wiil be raised
only if the budget is not cut. If prices remain stable,
taxes will not be raised. Therefore taxes will not be
raised.

Let B - the budget is cut, P - prices will remain
stable, P = taxes will go up.
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In the only case where both premises are true (line
3), the conclusion is also true, hence the argument
is valid. Note that with the conclusion ID, the argu-
ment is invalid because the truth-table has a line of
true premises with a false conclusion:
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Premises
B -(P 4R) R -1 B
1 1 1 1 1 1 0 0 1
0 1 1 1 1 1 1 1 0
1 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 1 0
1 1 1 0 0 0 1 0 1
O 0 10 0 0 1O 1 0
1 1 0 1 0 0 1 0 1
o 7 O 1 0 O 1 0

P1
1 0
1 0
0 1
0 1
1 1
1 I
0 1
07

2
0
0
0
0
1
~1
1

Conclusion
R 1 R
1 0 1
1 0 1
1 0 1
1 0 1
0 1 0
0 1 0
0 1 0
o To

d) Some men are five feet tall, and all these are
jockeys.

Solution.

a) G = {cats}, S = {wild animals

b) U = {birds }, E = {vest wearers }

The argument is valid because in all three cases in
which all the premises are true (lines 5, 7, 8), the
conclusion is also true.

1.9-Test the fo lowing argument for va idity: If, in
a chemical experiment, an orange m xture is
formed, sodium or potassium is present. If there is
no sodium there is iron. If there is iron and an
orange mixture is formed there is no potassium.
Therefore sodium is present.

Let A = an orange mixture is formed S =
sodium is present, P = potassium is present,
F = iron is present.

Solution.
As before, we could draw a complete truth-table
with four variables, listing a/l sixteen possibilities.
The table would then prove the argument invalid
since there are cases in which all the premises
are true but the conclusion is false. It is enough,
however, to show that at least one such case oc
curs (take A and S as faWse, P and F as true):

A, (S V P)
0 1 0 1 1

1 S- F
1 0 1 1

UC)

(F AA), - P S
1 0 0 1 0 1 0

1.10-Represent the following statements with
Venn diagrams:

a) Some cats are wild.

b) No bird wears a vest.

c) Some dogs are white.
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2
0

0
1
0
1
0
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c) C - dogs f, B - (white things >

d) U - imen f, M = [things five feet tall/. F -
(jockeys

1.11 - Use Venn diagrams to test the validity of the
following argument: It al pupils are insane and all
crim nals are insane then all pupi s are criminals

Use the following sets A - pupilss, B =
(insane peop et, C - {criminals>.

QLU Jlui J

Without reviewing all the possible combinations,
the following diagram proves the argument is
invalid.

1.12-John and Mary live in a large apartment with
a iong corridor, the light can be switched on only
at one end of the corridor. What electric circuit wi I
let them control the light from either end of
the hall, and what is its algebraic expression (cf.
pp. 135 141)?

Solution.
The switches can be on or off (with the lever up or
down respectively). We need the kind of circuit
that ensures the light is on when both switches
are up and also when both switches are down.
Given the various truth-tables, this clearly leads to
the biconditional. Indeed ARAB is equivalent to
(A -B) A (B -A). (cf. p. 124 ).

S T

-I iT

iS I l r

I wit

Games with probability

2.1 -Two coins are tossed at the same time with
equal probability that each will fall on one side or
the other, What is the probabi ity of:

a) two heads,

b) one heads and one tails?

Solution.
The sample space is S = {(h, h), (h, t), (t, h), (t, t)}
hence

a) p(h, h) = 1-4, and
b) p((h, t), (t, h))= 14+ 714= ¼2.

2.2-Three coins are tossed at the same time.
What is the probability of the event A = at least
one heads, and B = all heads or all tails?
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Solution.
The sample space is S = {(t. t. t), (, t. h), (t. h, t),
(h, t t, t h h, t) (h. t, h). (t. h. h), (h. n. h, . We
might also wrnte this as 10, 1, 2, 3 , refernng to the
number of heads. Thus p(0) = 'A p( U) p(2) -
At p(3) =.

Then A ={1. 2. 3} so that p(A) = p(1 ) p(2) +
p(3) rt ', ¶i '7. A and B =0 3), so that
p (B) p (O ) + p (3) = %.' t :.

2.3- In a defective coin where heads are twice as
probable as ta Is. what is the probab lity p (h) and
p (t)?

Solution.
We are given p(h) = 2 p(t). Now S - jh. t, and
p(S) p(h) + p(t) = 1, thus 3p(t) - 1. p(t) - 'A,
p(n) - t

2.4-Colin, Mark and Nick take part n a race.
Colin and Mark are equal y apt to win, and each
is twice as apt to win as Nick. What is the proba-
bility that either Mark or Nick will win?

Solution.
Let C = Colin wins M = Mark wins. N = Nick wins.
We have p(C) - p(M) - 2p(N) and we require
p(M U N) - p(M) + p(N). Now p(S) = 2p(N) +
2p(N) + p(N) =5p(N) 1. Hence p(N)-= A.
Therefore p(C) = p(M) =7, and p(M U N) - '7.

2.5-Wkthout ooking we draw a bal from a bowl
conta ning 1 5 bal s numbered 1 to 15 If each is
ust as apt to be drawn as the others. what is the
probab lity that the number on the bal is.

a) divisible by three

b) even

c) odd,

d) a perfect square?

Solution.
The sample space is S -1, 2, 3. . 13. 14, 15
Divisibility by three is the event A = {3. 6. 9. 12.
15[ . an even draw B = 12, 4, 6 10, 12, 14 . an
odddrawC =l, 3, 5 7 9 11. 13, 15, a perfect
square draw D 11, 4. 9) Then:

a) p(A) = =.

b) p(B) - A

c) p(C) = 7/.

d) p(D) 7 ...,- !.

2.6-Given a box with 6 red, 4 whte and 5 blue
ba Is, one bal is drawn without joking. What s
the probabi ity that it will be:

a) red,

b) wh te,

c) b ue,

168



Appendix: games with logic and probability

d) not red

e) red or white?

Solution
The sanupie space is S - 16 r. 4w 5 bO Let R - a
red draw. W - a white draw. B - a flue draw

a) p(R) -

b) p(W) = .

c) p(B) =

d) p(R)- I p(R)= I -1 ; -

e) p(R u W) - p(R) + p(W) / ' ',., 4 al
ternatively.
p(R U W) - p(B) I - p(B) - 1 - V.- A.

The formula used for the union is the same as the
one for mutually exclusive events (cf. p. 151)

2.7-A bowl contains 200 bals numbered 1 to
200, a I equal Iy apt to be drawn. What is the
probabi ity of drawing a ba I with a mark divisible
by 6 or 99

Solution
The sample space is S -1, 2 . 199, 200 Be
tween 1 and 200 tnere are [u:I7} numbers di-
visible tby 6. the square bracket indicating the
biggest integer ifi the quotferit Thus f/I= 33.
Similarly [f") - 22. Now every third integer di-
visible by 6 is also divisible by 9. so we must

subtract , i 11 Hence the probability is '7; i-

2.8-If John has three chances out of ten of win-
ning a certain game, how likely is he to ose?

Solution.
The losses are complementary to tne gains,
hence the likelihood of his losing is I - / '7. -

2.9-A true die is thrown What is the proba lity of
throwing Q: a 41I ess than 4, F? an even number:
T: an odd number?

Solution.
The sample space is S 41 2, 3. 4, 5, 6} anrd
p(Qt =p(4)= VA: p(l)= p(1) + p(2) + p(3) ==

p(Rf ) p(2) + p(4) + p(6) : p(T) p- )+
p(3) + p(5) V.
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2.10-Tom and Jack each throw a die. If Tomrs
throw is the higher, he gives Jack a token and
converse y; f the throws are equal, no token is
exchanged, What is the probability that Tom w 11
receive a token?

So/ut/on.
The probability that Tom receives a token, p(T), is
the probability that Jack's throw is higher. The
sample space consists of 6 x 6 = 36 different
pairs of throws, as seen in the figure below. Tom
will receive a token whenever the second number
in a pair is greater than the first, as shown in the
shaded triangle. Thus p(T) = i'A6 = 5/712

1

3

5

7

2

4

6

8

Aoove Some Conibinal onrs ii poker
1. royal Ijlsh 2 fo.jr aces 3. full
louse, 4. t ush. 5. fraight 6. ['res of
a k rid 7 two pa r. 8, one pair of
each comb nation we can calculate
the statistical probabi ty Ire at ve
frequency) An exper enced p ayer
does not simply trust chance but
makes probaebi y assessments
Below: A tab e w th thie comb nat Ons
and the chances of he ng dealt them
at the beginning of draw poker,
which is p ayed with all 52 caroe of
the pack

1 2 3 4 5 6

2.11 - Under the same conditions as those above,
what is the probability that:

a) the sum of the throws equals 8;

b) the sum equals 7 or 11?

Hand

Hoya Elush

Straight Flush

Four of a Kind

Ful House

Flush

Straight

Three of a Kind

Two Pairs

One Pair

Possible
Nurmbe

e Probability of
r Receiving it

4 1 n 649,740

36 1 n 72193

624 1 in 4,165

3,744

5,148

10,200

54.912

123,552

1,098.240

1 in 694

1 in 505

1 in 255

1 in 47

1 in 21

1 in 2.5
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Soire card games rea y be ong to
Chaper 2 on games w 16 I gures Th a
s one of the's Take aces. k ngs
queens and jacks (1 ) and arrange
thelo so one of each appears n each
row ann cO imn (2), or each coilnr ri
ear h row and colirri (3) oi booh (4)

WE]EW WEEEA
EHEWE ZEW

3 ZL*+]WW 4

'f4a

JI K
.4 W A

K4JO ~

4,' ~t

Solution.
Let D - the soum is 8, 0= the sum is 7, E = the
sum is 11. These events are shown by the three
shaded areas in the diagram below.

Now D = 1(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}, so
that p(D) =VO3. Similarly, p(Q) = 6/3t ½, and
p(E) = 2/36 - '/,B. Finally p(Q U E) p(Q) + p(E) -

T6 + 1/, = 4- 8 = L g

(1,6) (2,6) (3, 6) (4.6) (5,6) (6, 6)

(1,5) (2, 5) (3. 5) (4, 5) (5, 5) (6, 5)

(1, 4) (2, 4) (3,4) (4,4) (5, 4) (6, 4)

(1. 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3)

(1,2) (2, 2) (3, 2) (4. 2) (5, 2) (6, 2)

(1,1) (2, 1) (3 1) (4, 1) (5,1 ) (6, 1)

1 2 3 4 5 6
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2.12-Given a bowl with 6 white and 4 red balls, 2
balls are withdrawn consecutively and are not re-
placed. If the first bal is red, what is the proba
bility that the second ball will also be red?

Solution.
After the first draw, 6 white and 3 red bails remain,
therefore the required probability is -/l2/.

2.13-Two cards are drawn from a standard
52-card deck. What is the probability that both
cards wil be aces given that:

a) the first card is returned to the deck

b) it is not returned to the deck?

Solution.
The sample space consists of 52 cards. Let
A,-ace on first draw, A2,ace on second draw.

a) If the first card is put back, the sample space
is the same for both draws and the two events
are independent. Thus p(ArnA2) - p(A,)p(A) =
(41/52)2

b) If the first card is not put back, the second
sample space consists of 51 cards with only 3
aces. Hence p(A/OA,) =4/52 - 3/5X = /221. Note that
p(A2/A1) - ¾, an application of the rule
p(A2/A,) = p(A, nA2)/ p(A1 ) for dependent events.

2.14-Three consecutive draws are made from a
bowl with 6 red. 4 white and 5 blue ba Is. What is
the probab lity that the balls drawn will be In the
order of red, white, and blue? Take the cases:

a) with rep acement,

b) without replacement

Solution.
The sample space is S = {6r, 4w, 5 ba. Let R = red
on first draw. W = white on second draw, B = blue
on third draw. We want to evaluate p(R A W n B).

a) With replacement, the sample space re-
mains constant, so we have p(R n W n B) -
p(R)p(W)p(B) = -Ir5 ' 47/s * 5/i5 = 2Xj % 4/s5 * 1A = 8/22.,.

b) Without replacement, the sample space
changes to J5 r, 4w. 5ba for W and to (5r, 3w, 5 b}
for B, making the probability 6/15 -4/14.- Vj 4/V1,

namely, p(R n W r B) -p(R)p(W/R)p(B/(W n R)).

2.15-A defective die gives equal probability to
even throws, each of which s twice as likely as an
odd throw. What is the probabllity that a throw is:

a) even,

b) prime,

c) odd,

d) odd and prime?
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Solution
Let E : even throw}, P = {prime throw}, D = {odd
throw [ 0 = fodd prime throw 2. We know that
p(E)= 2p(D). Now S=EUD={/ 2, 3, 4, 5, 6}
and p(S) - p(E) + p(D) =3p(D) = /, so p(D) = V,
and p(E) - /. Therefore each odd number has a
probabifity p( D) 3 3 -/, and each even number
p(E) 3 = ¼. Next, P = 12 3. 5} so p(P) =p(2) +
p(3) + p(5) = -IX and 0 = 13, 5 so p(Q) = -/,.

2.16-In a school 25 percent of the pupils failed
mathematics, 15 percent failed chemistry and 10
percent failed both. Select a pupil at random.

a) If he has failed chemistry what is the proba-
bility that he has also failed mathematics?

b) If he has failed mathematcs, what is the
chance he has failed chemistry too?

c) How likely is it that he has failed at least one?

Solution.

Let M = failed in math }, C = Ifailed in chemistry f,
M A C (failed in both f. We know p(M) - 0.25,
p(C) - 0. 15, p(M n C) = 0. 10.

a) p(M/C) = p(M n C)/p(C) - ) %<, ,

b) similarly p(C/M) = 0 0/=2. 2/5

c) Using the formula on p. 152, p(M U C)-
p(M) + p(C) -p(M n C) = 0. 30.

2.17-A coin is thrown three consecutive times.
Consider these events. A - heads on the first
throw, B = heads on the second throw, C = tails
on the last two throws. Calculatejp (A), p (B), p (C)
and determine if the events are independent in
pairs.

Solution.
The sample space is S - {(hhh), (hht), (hth), (htt),
(thh), (tht), (tth). (ttt)}

A = ((hhh), (hht), (hth), (htt)f and p(A) - 4/H - V

B = 1(hhh), (hht), (thh), (tht)l and p(B) = 4/ = Fi-

C - {(htt), (ttt)} and p(C) = -/ = 114

Now A n B = {(hhh), (hht)} and p(A n 3) = -/ -
V, = p(A) p(B).

Similarly, A n C = {(htt)} and p(A n C) - VR -
p(A)p(C).
Finally, B n C = 0 and p(B n C) - 0 # p(B)p(C).
Hence A, B and A, C are independent events, but
not BC.

2.18-Cons der the throw of a true die, and these
events:A -{1,2,3.41,B - 4,5,6},C-{2,4,6}1
Are these independent in pairs?

Solution.
A n B = -4} and p(A n B) = -¼. Now p(A) = -/G -
2/, p(B) -¾ 1-, so p(A)p(B) - 2/13 * V2 - 13 and A.

Ito
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Appendix: games with logic and probability

B are not independent. A n C = 42,4 } and
p(A n C) = ¼/6= i/i, p(C) 1/2 so p(A)p(C) = El and
A, C are independent.

B n C = -4, 6} and p(B n C) = 2 = V/ , while
p(B)p(C) '2/Ž /2= ½ 14 and B, C are not inOdepen
dent.

2.19 -Two people, A and B, practice archery. The
probabilities of their h tt ng tne target are
p (A) = 1/4 and p (B) = 2/,. When they shoot at the
same time, what is the probability of one of them
hitting the target?

Solution.
As the two events are independent, we have
p(A n B) ~ p(A)p(B). The required probability is
then p(A U B) -p(A) + p(B) p(A n B) p(A) +
p(B)- p(A)p(B) - 0.25 + 040 - 0.25 x 0.40 -
0.25 +0.40 0.10 -0.55 - 74/2

2.20-A box contains 8 ba Is marked I to 8. Con-
sider tne following draws: A - 41 ! 2, 3, 4}, 6 42,
4, 6, 8}, C - {3, 6}. Are they mutually indepen-
dent?

Solution.
p(A) =/ -1/s, p(B) = I, p(C) = ½ - V4
A f B = {2,4 } and p(A n B) A14= p(A)p(B), so A,
B are independent.
A n C = 43 h and p(A n C) = =p(A)p(C) so AS C
are independent.
B r C = {6i and p(B n C) = X p(B)p(C) so B, C
are independent,
However, the three events are not an independent
triplet, forAnBC =0. p(AnBnC)-0, while
p(A)p(B)p(C)= -Vr,.

2.21 - In an airp ane, the probability of a defect in
the automatic landing gear is 10 '. So, too, is the
probability of a defect in the fuel supply mech-
anism. If these two are statistically independent,
what is the probabi ity of at least one of them
occurring?

Solution.
Calf the defects A and B. We need p(A U B) -
p(A) + p(B) p(A)p(B) = 2 x 10 ' - 10 id

which is roughly equal to 2 x 10 ', since 10 14

can be neglected.
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LIST OF MAIN SYMBOLS USED

J Un versa set

O empty set

A. 3 C proposit oral variab es

negat on

A' set corresponding to proposition A

A' complementary set to A', correspond ng to -'A

implication (between proposit ons)

'therefore'

c proper inclusion (between sets)

rInclusion (between sets)

mutual implication (between propos tions), or
equiva ence

equality between sets (corresponding to equiv-
alence)

A conjunction of props tions

n intersection of sets (corresponding to conjurict or
of propositions)

V disjunction of propos tions

U union of sets corresponding to conjunct on of
propositions

v exclusive disjunction

Ai exclusive union of sets. corresponding to exclu-
sive disjunct on between proposit ors

/ ncompat oil ty of proposit ons

/ "belongs to. of e ement to set

(0 1 the set of truth-values for categorical propos tions

less than or eqga to (between numbers)

greater than or equal to (between numbers)

X different from (between numbers)

S sample space set
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