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INTRODUCTION

“Anyone who regards games simply as games and takes work too seriously has grasped little of
either.” So wrote the German poet Heinrich Heine a century ago. In today’s world the division of
work and play persists. Old prejudice still holds that the playing of games is an activity for children,
not useless perhaps, but certainly not the responsible and serious work of adults.

Heine intuitively foresaw what modern psychology has since asserted. Games are not only
necessary for the development of a child’'s self-awareness, they are also needed by adults,
especially when their work is repetitive and uncreative. The word “games,” as it is used in this book,
is general and covers a variety of quite complex activities. However, it is those games based on
mathematical or logical principles that are among the most absorbing and creative. Indeed, the
great mathematicians and scholars of the past often applied their skills to the solution of logical and
mathematical games.

This book is a collection of logical and mathematical games both ancient and modern. It is not
simply a recital of mathematical pastimes and curiosities set down at random;, rational criteria have
been used to link the riddles, mathematical problems, puzzies, paradoxes and antinomies.
Sometimes the link is an historical reference, at other times it is a conceptual link. Although
whenever possible we have repeated some elementary rules, the reader needs no special or
complex knowledge. The collection concentrates on some of the simplest and most widely known
logical and mathematical games; past events and the people who produced or studied such games
are mentioned to make the story more accessible.

Games are presented in a certain sequence. Those mathematical concepts that may be beyond the
average reader are stated as clearly as possible. We have omitted complicated games such as
chess and draughts and avoided the use of symbolic languages. Technical terms are used only
when they are absolutely necessary.




The last two chapters are the most difficult as they include certain abstract philosophical questions
involving new mathematical concepts. However, they are rationally linked to what comes before them
and they indicate that at critical points in the development of mathematics, problems and logical
difficulties were resolved through games that captured the imagination of scholars. Furthermore,
even the most abstract mathematical question, logical paradox or antinomy, becomes clearer if it is
formulated as a game.

It should be mentioned in passing that games are valuable aids in teaching mathematics; a
mathematical device, a riddle or a puzzle, can engage a child’'s interest more effectively than a
practical application, especially when that application is outside the child’s experience.

The penultimate chapter offers those readers who may be unversed in logic and mathematics some.
of the basic concepts and methods on which modern formal logic has been built. The book is
designed to inform and educate and is enriched by illustrations of games and riddles that introduce
the reader to propositional calculus, the first item of logic with an important place in modern culture.
The last chapter, which seeks to complement the one preceding it, begins with ordinary games

of chance to demonstrate the importance of the concept of mathematical probability to an
understanding of various objective and subjective facts.

Because the last two chapters tend to be abstract and difficult, we have added a list of concrete
problems, examples, and games, along with their solutions, to permit the reader to test his grasp of
the more theoretical. We happen to believe that the solutions to such games and problems, even if
elementary, would be hard to reach without an adequate theoretical foundation. The book concludes
with an extensive bibliography to guide the reader in the search for new games and a deeper insight
into historical and philosophical questions.




GAMES WITH NUMBERS

... The symbolic language of mathematics is ... a kind
of brain-relieving machine on which we easily and often perform symbolic
operations that would otherwise tire us out. (Ernst Mach D Reider)

An historical note

From our earliest schooling we have been taught
to operate with whole numbers, fractions, nega-
tive numbers and the like; perhaps only a few of
us, however, have asked ourselves what numbers
are or represent. Numbers developed with man
and have marked his life from the beginning of
civilization. Indeed, the world is based on num-
bers. Numbers began as symbols invented by
man for a variety of uses, perhaps most immedi-
ately for counting the elements in sets of things.
"2” could mean two cows or any other two things:
two donkeys, two rocks. "2+ 3,” assuming 3"
meant three donkeys, could represent the sum of
two cows and three donkeys, or it could represent
a different kind of set—two things of one kind and
three of another. Numbers are mental construc-
tions that can indicate material objects without
noting their particular features. They are instru-
ments that enable us to make rapid calculations
and present quantitative expressions in a simple
synthetic way.

In the course of history different peoples have
used different symbols to represent numbers. The
ancient Romans, for example, indicated “two” as

I, “three” as Ill; while V, the sign for “five,” sym-
bolized the five fingers of one hand, and the sign
X symbolized two hands, one across the other, for

twice five. We have since adopted another set of

symbols of Indo-Arabic origin. Why? At first it
might even seem that these later symbols are
more complicated. Is it not easier to grasp |, I, lll,
and V, than 1, 2, 3, and 57 Yet the Arabic notation
has displaced the Roman one, primarily due to
the practices of medieval Italian merchants, and
particularly to the influence of the Pisan mathe-
matician Fibonacci, born in 1179. In fact, the
mathematician's name was Leonardo da Pisa,
however he acquired the nickname Fibonacci be-
cause he was the “son of Bonacci,” a well-known
merchant and official in 12th-century Pisa. The
elder Bonacci traded with Arab countries in North
Africa and the East, and was accompanied by his
son on his frequent trips; hence Fibonacci atten-
ded Muslim schools and adopted their algebraic
methods together with the Indo-Arabic system of
numerals. He later recorded his education in
arithmetic, algebra and geometry in his book
Liber Abaci (1202), and demonstrated the sim-
plicity and practicality of the Indo-Arabic system
as opposed to the Roman system.




Greek numerical notation

T =300
v =400
¢ =500
¥ =600
w =700
w’ =800
' =900
,a=1000
1 =8000
,&=60,000
4 =90,000
,0 =100.000
etcetera
=12
uf’ =49
gAa’ =131
we’ =805
Javx’ =1420
J1yea’ =13.101
etcetera
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In the West, however, many men of science,
trade and letters opposed the “new fashion,” and
it was a while before it took root. In Florence, for
instance, the Statutes of the Art of Exchange pro-
hibited bankers from using Arabic numerals. On
the whole, people were hostile to the Arabic sys-
tem as it made reading commercial records more
difficult, but in time the new fashion established
itself. The reasons it did are linked to the nature of
mathematics itself, namely simplicity and econ-
omy. A symbolic system of ten signs (0, 1, 2, 3, 4,
5, 6, 7, 8, 9) serves to represent any number,
however large or small, because in the represent-
ation of numbers, .the meaning of the numerals
changes according to their position. Thus, in the
number 373, the two numerals 3, though the same
symbol, mean different things: the first indicates
hundreds, the last indicates units, while the 7 indi-
cates tens. There is no other symbaolic system so
simple or effective.

The Romans, and before them the Egyptians,
Hebrews and Greeks, used a clumsy numerical
system based only on a principle of addition. The
Roman number XXVIII, for example, means

Games with

numbers
Roman numerical notation
I = M = 1000
=2 LX = 60
=3 DC =600
V=4 XL =40
V=5 XC =90
Vi=6 CD =400
Vil=7 CM =900
Vill =8 MM = 2000
IX=9 T = 2000
X=10 C =100,000
L=50 IX1=1,000,000
C =100 1983 = MCMLXXXIII
D =500

Left: The Greek number system,

consisting of the 24-letter aiphabet
and the three signs: stigma, ¢,
the number 6, koppa, 4, for 90,

and sampi, >, for 900. The system
is decimal, with letters for units,

for tens and hundreds.

ten + ten + five + one + one + one. The expres-
sion of numbers by a few symbols that change in
meaning according to position was apparently
used by the Chaldaeans and Babylonians of
Mesopotamia. Later it was developed by the Hin-
dus who transmitted it to the Arabs and they, in

turn, passed it on to mathematicians of medieval

Europe.

The introduction of Indo-Arabic numerals with
positional notation greatly influenced subsequent
developments in mathematics. It simplified math-
ematical concepts and freed them from the en-
cumbrances stemming from representing math-
ematical operations in material terms. The Greeks
and Romans, for example, used complex geo-
metric systems for multiplication; hence the con-
cept of raising a number to a power (as product
of so many equal factors) could not be under-
stood or made simple, especially when dealing
with numbers raised to powers higher than the
third. To illustrate (Fig. 1), if the number three rep-
resents a line three units long, and 3 x 3 = 3 rep-
resents an area, and 3x3x3=3% a volume,
what meaning might be attached to 3‘=

10




Games with numbers

Opposite, right: The Roman number
system, also decimal, used fewer
symbols: 1V, X L, C,D,M, for

1.5, 10,50, 100, 500, 1,000
respectively. Multiples of units, tens,
hundreds, thousands are repeated
up to four times (thus 3=1II,

fig. 1

3°-3x3

200 =CC). A number to the right of
a bigger one is understood as
added. thus LX=60, DCC =700. A
number to the left of a bigger one

is understood as subtracted, thus
XL =40. A horizontal line over a
number multiplies it by 1,000, for
example C=100.000. A number

3=3x3x3

enclosed by is multiplied by
100,000; thus [X] = 1,000,000. This
system spread throughout the

Roman world and persisted until it
was replaced in the 13th century
by the Indo-Arabic system.

AN

3

3x3x3x3 or 3=3x3x3x3x3? Using
Indo-Arabic numerals, we find that they are sim-
ply numbers.

A first curiosity

To be sure, man first used numbers to solve his
practical problems more quickly, but we like to
think he also used them to entertain himself. On
this assumption, we shall begin our book with a
rather popular game that requires only the most
elementary numerical calculations. Take the set of
digits 1,2, 3,4, 5, 6, 7, 8, 9. The game is to insert
symbols for mathematical operations between the
numerals so the result will equal 100. We are not
allowed to change the order of the digits.
Here is one possible solution:

14+2+3+4+5+6+7+(8x9)=100.

In the last part of the expression we have used
multiplication, but the game is more interesting if
the operations are confined to addition and sub-
traction. Here is a solution:

12+3-4+5+67+8+9=100

The reverse game can also be played, with the
digits decreasing inorder: 9,8,7,6,5,4, 3,2, 1.
Now reach a sum of 100 using the fewest “+” and
“—"'signs. A possible solution is:

98—-76+54+3+21=100

If you are familiar with the properties of num-
bers, you can solve the following as well. Find
three positive integers whose sum equals their
product. One solution is:

1X2X3=1+2+3=06

Note that 1, 2, 3 are the factors of 6, which is their
sum. We continue the game by finding the num-
ber after 6 equal to the sum of its factors. The
number is 28, as the factorsof 28 are 1,2, 4,7, 14
and:

1+2+4+7+14=28

Such numbers form a series (after 28 comes
496) called "perfect numbers.” It was the mathe-
matician Euclid, famous for his Elements of geom-
etry and a resident of Alexandria during his most
active years (306-283 B.C.), who first created a

11
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formula for the structure of perfect numbers,
namely:
N=2"""2"-1)

In this formula, the second factor, (2" — 1), must
be a prime number, that is, divisible only by itself
and unity. Thus n must be such that 2" -1 is
prime. It is easy to see that the latter is not prime
if nis not prime. The reader should try to use this
formula to find the next perfect number after 496.
After that, the calculations become rather lengthy.

Here is a table for the first nine perfect
numbers:

n 2n- 1 20 1 Perfect numbers
1 2 2 3 6
2 3 4 7 28
3| 5 16 31 496
4 7 64 127 8128
5|13 4096 8191 33550336
6 |17 65536 131071 8589869056
7 119 262144 524287 137438691328,
8 |31 | 1073741824 | 2147483647 2305843008139952128
g |61 - - 2658455991569831744654692615953842176

Archimedes' spiral (befow) and

in sections) can be expressed by
natural spirals (feft, a nautilus shell

Fibonacci numbers

\)
)

We observe that all perfect numbers obtained
by Euclid's formula are even and always end in 6
or 8.

Fibonacci numbers

Among the many arithmetical and algebraic
questions studied by Fibonacci, that of se-
quences deserves special attention, as it was the
basis for his interesting problem of the rabbits.
Suppose we put a pair of adult breeding rabbits
in a cage to produce offspring, and that each
month they produce another pair, which, in turn,
breed after two months. (This is hypothetical, of
course, as rabbits do not reach maturity before
four months.) If all the rabbits survive, how many
will there be at the end of one year? The solution
is indicated in Fig. 2. We start in January with the
initial pair A. In February there will be two pairs, A
and their offspring B. In March A produces C,
which makes three. However, in April, A produces
D, while B, now mature, produces E. In May, it is
more complicated still: A produces F, B produces
G, and C produces H. Continuing in this fashion,

12
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the number of pairs produced in successive
monthsis: 1, 2, 3, 5, 8, 13....

The law linking the numbers is easily detected.
From 3 on, each number is the sum of the two

2+3 5+8

1 2 ;\\\\~5 8
1+2///’ 3+5///l

13

preceding it. Hence we can easily find the
numbers for the later months: July, 8 + 13 = 21;
August, 13 + 21 = 34; September, 21 + 34 = 55;
October, 34 +55=289; November, 55+ 89=
144; December, 89 + 144 = 233. At the end of the
year there will be 233 pairs. Once the formation
law is found, the sequence can be continued
indefinitely.

Fibonacci did not explore the question of num-
ber sequences more deeply, and it was not until
the 19th century that mathematicians began to
study their formal properties. In particular,
Frangois Edouard Anatole LLucas investigated the
Fibonacci series, where starting with any two in-
tegers the next term is the sum of the two before.
The table shows the first twenty terms of the series
starting 1, 1 and 1, 3.

Fibonacci series have always captured the
imagination of mathematicians and enthusiasts
who have tried endlessly to unearth their hidden
properties and theorems. Recently, such series
have been useful in modern methods of electronic
programming, particularly in data selection, the
recovery of information, and the generation of ran-
dom numbers.

A curious calculating device: the abacus

Man has always tried to do sums with greater
speed. The Babylonians cut permanent signs on
clay tablets to hasten calculations. Subsequently,
the abacus was invented—where and when is not
known, perhaps in ancient Egypt. The abacus
was the first calculating machine and it was an
ingenious instrument. Numbers were represented

Games with numbers

1 1

1 3

2 4

3 7

5 11

8 18

13 29
21 47
34 76
55 123
89 199
144 322
233 521
377 843
610 1364
987 2207
1597 3571
2584 5778
4181 9349
6765 15127

as objects (pebbles, fruit stones, and pierced
shells for example) and placed on small sticks
fixed to a support. The word abax, abakos means
a "dust-covered tablet” on which geometrical fig-
ures can be traced or calculations performed,
and it probably came into ancient Greek from the
Hebrew abag, meaning “dust.” Thus the word
originated in the Near East.

Although the mathematicians of ancient
Greece were familiar with the discoveries of Med-
iterranean peoples, and enhanced them with
original notions of their own, their mathematical
advances had no discernible impact on the struc-
ture or workings of Greek society. Indeed, such
advances were seen as little more than intel-
lectual exercises. We know, too, that new sci-
entific and technical knowledge were seldom
used to achieve greater productivity or freedom
from physical labour; again they were treated sim-
ply as expressions of man’s creative ability. This
prejudice impeded the progress of mathematics
in Greece and explains why many of the major
arithmetical and algebraic discoveries came to us

14



















and 6,895 can easily be multiplied. First, write the
product of 1 by 6,895 in the first row (tens in the
top half and units in the bottom half). Put the prod-
uct 1 X 6,895 in the second row, 7 X 6,895 in the
third row, and 6 X 6,895 in the fourth row. Sum
diagonally from the right and carry to the left as
needed. A schema much like this served Pascal
and Leibnitz four centuries later when they con-
ceived the idea of the first calculating machines.

The origins of algebra

The term “algebra” derives from the Arabic al-
jebr, which the mathematician Al-Khowarizmi
adopted to explain his ideas for solving what we
call equations. Later the term acquired a wider
meaning and today it includes a broad range of
mathematics.

Mohammed ibn Musa Al-Khowarizmi, an Ara-
bian astronomer and mathematician (died
ca.A.D. 850), was active in the "House of Wis-
dom’ in Baghdad, a cultural center established
about A.D. 825 by the Caliph Al-Mamun. Al-
Khowarizmi wrote various books on arithmetic,
geometry and astronomy and was later cele-
brated in the West. His arithmetic used the Indian
system of notation. Although his original Arabic
book on the system, probably based on an Indian
text, is lost, a Latin translation survives as Algo-
rithmi: De numero indorum (about Indian num-
bers). The author explains the Indian numerical
system so clearly that when the system eventually
spread through Europe, it was assumed the
Arabs were its inventors. The Latin title gives us
the modern term “algorithm”—a distortion of the

Games with numbers

name Al-Khowarizmi which became Algorithmi—
used today to denote any rule of procedure or
operation in calculations.

Al-Khowarizmi's most important book, Al-jebr
wa’'l-muqabalah, literally “science of reducing
and comparing,” gave us the word “algebra.”
There are two versions of the text, one Arabic and
the other the Latin Liber algebrae et almucabala
which contains a treatment of linear and quad-
ratic equations.

These works were of major importance in the
history of mathematics. Indeed, al-jebr originally
meant a few mathematical steps and transfor-
mations to simplify and hasten the resolution of
problems.

Let us now turn to what we learned in school
and begin with an equation of the first degree,
5x +1=3(2x —1). An equation is generally an
equality with one or several unknowns. It trans-
lates into numbers a problem whose solution con-
sists of finding those values of x that make the
equality true. In our example, we must find the
value of x that makes the expressions on either
side of the “equal” sign equal.

Al-Khowarizmi's mathematical works contain all
the solving procedures we learned mechanically
in school, for example, reducing terms and trans-
ferring a term to the other side with a change of
sign. Hence, in our case, adding 3 and subtract-
ing 5x on both sides, and then changing sides,
gives us x = 4, which solves the equation. Putting
4 for x in the first equation, 5x +1=3(2x — 1), we
find 21 =21. Clearly, to solve an equation is to
transform it into other, and simpler equations until
we reach the solution.

20
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SYSTEM OF NUMBERS
positive
(eg.+1,+2,+3, ..))
integer
negative
(eg.-1,-2,-3,..)
rational
fractional
(eg. 1,1, ..
2 3 ) real
irrational
(eg.vV2,m, ..} complex
imaginary
(eg.V=T=i, V=4=2i, ..)
Games with algebra 2) add 3:

Algebra and its laws have often spawned tricks
and games that seem to smack of magic. In fact,
they are readily explained by algebraic laws.
Imagine that we have asked someone to play this
game:

1) Think of a number;

3) multiply by 2;
4) subtract 4;

5) divide by 2;

6) subtract the original number.

21




Whatever the original number, the result must
always be 1. Surprising? Not if you give the simple
algebraic explanation. The principles are elemen-
tary but deep. Take the present game; the result
does not depend on the original number, which
need not be known. The expression “any num-
ber’ can mean two different things in algebra,
either a variable number which can have various
values, or a given number which is undetermined,
namely a constant whose value has not been
fixed. For clarity, variables are shown by the last
letters of the alphabet (x, y, z ...), and constants
by the first letters (a, b, ¢ ...). Thus if we write
3+ x, with x integer and variable, we have for
x=-1,3+(-1)=2,forx =0wehave3+0=3;
forx=1,3+1=4

A variable in an equality, say x in 6=5+x,
becomes an unknown (a value not at first known),
indicating the value required to verify the equality.
Returning to our game:

Games with numbers

6) subtract the original number x, (2(x + 3) -
4)/2 —x. In algebra, this last expression repre-
sents the sequence of verbal moves. Whatever x,
this expression equals 1.

An expression such as (2(x +3) —4)/2 —x =1
is called an identity. The difference between this
and an equation is readily explained. In an iden-
tity the two sides are always equal, whatever the
value of x, while in an equation this is not so.
Returning to our first equation, 5x + 1 = 3(2x — 1),
there is only one value of x for which the two sides
are equal, namely the single solution of that linear
equation, which, as we saw, is x = 4. For any other
value of x, the sides are unequal. For example, if
we put x =0, we have 1# —3 (the sign means
“different from”).

By applying such elementary principles of al-
gebra other games can be invented. For example,
the following always results in 5:

1) Take a number, x (say, 6);

. 2) add its successor, x +(x +1) (here,
1) Take a number, x; 6+7=13):
2) add 3, x + 3 3) add 9, 2x + 10 (here, 13 + 9 = 22);
3) multiply by 2, 2(x + 3); 4y divide by 2, (2x + 10)/2 (here, 22/2 = 11);
4) subtract 4, 2(x +3) — 4; 5) subtract the original number, x +5—x =5
5) divide by 2, (2(x + 3) — 4)/2; (here, 11 —6=105).

(A 2(x +3)—4=2+2x is an identity; (B): 5x +1=3@2x —1) is an equation

if we set x =0 in (A) we obtain 2=2; in (B) we obtain 1+ -3
if we set x =1 in (A) we obtain 4=4 in (B) we obtain 6+3
if we setx =2 in (A) we obtain 6=06; in (B) we obtain 11+9
if we set x =3 in (A) we obtain 8=8 ; in (B) we obtain 16+ 15
if we set x =4 in (A) we obtain 10=10; in (B) we obtain 21=21
if wesetx=5 in (A) we obtain 12=12; in (B) we obtain 26 + 27




The algebraic expression reduces to 5, whatever
x. The game is a bluff, the trick lying in the intri-
cate Instructions which are designed to compli-
cate matters. Actually each step is simple, but we
are not always alert enough to see the main
points. In the present instance, the trick is to take
away the arbitrary original number, that is the sub-
traction x — x. By starting the whole process from
the other end, any number of such games can be
invented. Let us construct one that always results
in 13. For any real number there are infinite identi-
ties. Take 13 =7 + 6, for example. Since x —x =
0, we can add this to the right-hand side without
upsetting the identity, 13=7+6+x —x. This
can now be rewritten as 13 =(2(7 + 6 + x))/2 — x
pbecause multiplying and then dividing an expres-
sion by the same number leaves it unchanged.
Next we can make things more complex by multi-
plying out the bracket: 13 = (14 + 12 + 2x)/2 — x,
which can be recast as 13=(2(x +7)+
12)/2 — x. The game then is this:

1) Take a number, x (suppose we take 10):

2) add 7, x +7 (here, 10+ 7 =17);

3) multiply by 2, 2(x +7) (here, 2 x 17 = 34);

4) add 12, 2(x +7)+ 12 (here, 34 + 12 = 46);
5) divideby 2, (2(x + 7) + 12)/2 (here, 46/2 = 23);
6) take away the original number, (2(x +7)+
12)/2 — x (here, 23 —10=13).

The rules of algebra are such that it can appear
we are able to read peoples’ minds. Try this
exercise:

1) Think of a number, x (suppose we take 6);
2) double the number, 2x (here, 2 X 6= 12);
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3) add 4, 2x + 4 (here, 12+ 4=16);
4) divide by 2, (2x + 4)/2 (here, 16/2 = 8);
5) add 13, (2x +4)/2+13 (here, 8 + 13 =21).

We now ask the player for his answer, namely 21,
and quickly tell him he started with 6. Since the
final algebraic expression reduces to x + 15, we
know that, in this instance, x + 15=21,s0 x = 6.
Algebra, not mind reading.

There are countless variations of this game, as
the natural numbers that can be subtracted from
x, which is itself a natural number, are endless.
The number subtracted should not be too small,
say at least 20. The first step would be x + 20, an
expression which will now be transformed. For
example:

X +20=x+6+14=3(x +6)/3+14=
(3x +18)/3 + 14.
The game then consists of these steps:

1) Think of a number, x (say, 8);

2) multiply by 3, 3x (here, 8 X 3 = 24);

3) add 18, 3x + 18 (here, 24 + 18 = 42);

4) divide by 3, (3x + 18)/3 (here, 42/3 = 14);

5) add 14, (3x + 18)/3 + 14 (here, 14 + 14 =28);

6) subtract 20, (3x +18)/3 + 14 — 20 = x (here,
28 — 20 = 8); which produces the number origi-
nally in mind.

Odds and evens

From our early efforts in arithmetic we learned to
distinguish between odd and even numbers; the
latter are divisible by 2, the former are not.
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Let us examine the algebraic notation of an
even number and its properties. Take any integer
x; 2x then is even. Thus 14 is even, for we can
write it as 2 X 7. If 2x is even, then 2x + 1 is odd.
For example, 15=(2 %X 7) + 1.

This hatches some amusing games. Let a
player take an even number of coins in one hand
and an odd number in the other. Ask him to dou-
ble the number of coins in his left hand and triple
the number in his right, and to reveal the total of
the two numbers. You can then tell him which
hand holds the odd number of coins and which
hand has the even number. If the sum is odd, the
odd number of coins is in the right hand; if the
sum is even, the odd number of coins is in the left
hand. For example: if we have three coins in the
left hand and six in the rightthen 2 x 3+ 3 X 6 =
24. The sum is even, and the odd number of coins
is in the left hand. What is the trick? We need
algebra to grasp it. As before, we can fol-
low the operations step-by-step. There are two
possibilities:

1) The odd number of coins is in the left hand.
2) The odd number is in the right hand.

Call the number of coins in the left hand L and the
number in the right hand R. Then:

1) Odd number of coins in the left hand,
L=2x +1, R =2y, where x,y are two unknown
integers whose actual value does not matter. The
sum to be considered is 2L +3R=
4x + 2+ 6y = 2(2x + 1 + 3y ) whichis divisible by
2, and hence even.

2) Even number of coins in the left hand, L = 2x,
R=2y +1,and2L +3R =4x + 6y +3=2(2x +
3y +1)+ 1, which is odd. This completes the
proof.
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The successor of a number

Those algebraic expressions that almost look too
simple at first, can actually suggest a variety of
entertaining mathematical games—successive
numbers, for example. These are numbers that
come directly after one another: x + 1 follows x,
x + 2 follows x + 1, and so on.

Take five successive numbers and add them
together:

X+(x+1)+(x+2)+(x +3)+
(x +4)=5(x +2)

This produces the next game.

1) Tell someone to think of a number, x (suppose
it is 252);

2) now ask the player to add to it the next four
numbers, 5(x +2) (here, 252+ 253 + 254 +
255 + 256 = 1,270);

3) ask for the result and from that you can recover
the original number. All you have to do is divide by
five and subtract 2, for 5(x +2)/5 -2 = x (here,
1,270/5 — 2 = 252).

A shortcut in calculations

The world of numbers is vast and filled with possi-
bilities. With a bit of inquisitiveness one can cre-
ate games simply by devising new steps, or new
ways to work out complicated and lengthy sums.

For one of these games you need two players.
Ask each to write down a four-figure number on a
piece of paper. Suppose the numbers are 1,223
and 1,887. One player (no matter which) is then
asked to work out the product in the usual way.
Meanwhile, you subtract 1,887 from 10,000, and
1 from 1,233, which gives 10,000 — 1,887 =
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8,113, 1,223 - 1=1222 The second player is
now asked to multiply these two numbers. Finally
the two players are told to add their results. Before
revealing them, however, you can announce that
the sum is 12,221,887 (indeed, 2,307,801 +
9,914,086 = 12,221 ,887).

To clarify this let us examine the various steps
algebraically. Let the two four-figure numbers be
x and y.

1) The first player works out xy;,

2) the second player works out (10,000 — x)
(y —1)=10,000y — 10,000 — xy + X,

3) adding the two results vyields 10,000y —
10,000 — xy +xy +x =10,000(y — 1) + x.

This final expression explains the trick: multi-
plying by 10,000 adds four zeros to the digits—for
example, 13 x 10,000 =130,000. Thus y —1
gives the first four figures and x the remaining
four. In our case x =1,887 and y —1=1,222,
producing 12,221,887,

How much money is in your pocket?

Substituting a letter for a number—x, or any other
letter—may seem almost elementary, but it was
actually a major step in the development of math-
ematics, as it helped to illuminate the formal fea-
tures of numbers and raised analysis to a more
abstract level. When we see "652,” we auto-
matically think of a number. If, however, we see an
algebraic expression, such as 10x + 9, it is less
clear that it too is a number. ‘

We know that in algebra x can take any numer-
ical value. If it equals 4, then the number just
mentioned will be 49; if x equals 1, the number is
19, and so on. This gives rise to yet more games
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which may seem perplexing at first. In this exam-
ple we see that the values of x appear in the tens
of the answer, as is obvious if we take away the
units. Consider another example.

We tell someone we can guess the amount of
small change in his pocket if he will do the
following:

1) Start with the total sum, s (say, 35 cents);

2) multiply by 2, 2s (here, 2 x 35 = 70);

3) add 3, 2s + 3 (here, 70+ 3=73),
)

4) multiply by 5, 5(2s +3)=10s + 15 (here,
5 x 73 = 365);

5) subtract 6, 10s + 9 (here, 365 — 6 = 359).

We ask for the result, take away the units and are
left with the sum of 35.

Other expressions too can generate this kind of
trick, indeed a host of tricks. For example, use any
number x and proceed as follows:

1) Take a number, x;

2) add 2, x + 2;

3) double, 2x + 4;

4) subtract 2, 2x +4 -2 =2x + 2;

5) divide by two, (2x +2)/2=x + 1;

6) subtract the original number, x +1—-x =1,

)
)
)
)

The fifth step gives the vital clue: To get x we
merely subtract 1.

How to guess a birth date

In the preceding algebraic expressions there was
only one unknown and the trick was built around
it. In the same fashion, we can devise tricks using
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expressions with two unknowns and find two
numbers.

Consider an exercise that allows us to deter-
mine a person’'s birthday. First assign the num-
bers 1 to 12 to the months, starting with January.
Let m be the month and d the number of the day
we are seeking. Now put the person through
these steps:

1) Multiply by 5 the number of the month, 5m

(suppose the birthday is 13 June, then
5X%X6=230),
2) add 7, 5m + 7 (here, 30+ 7 = 37);

)
3) multiply by 4, 20m + 28 (here, 4 x 37 = 148);
4) add 13, 20m + 41 (here, 148 + 13 = 161);

5) multiply by 5, 100m + 205 (here, 5x 161 =
805);

6) add the number of the day, 100m + 205 + d
(here, 805 + 13 = 818);

7) subtract 205, 100m + d (here, 818 —205=
613).

Now ask for the number. The hundreds give the
month, namely 6 for June, while the rest, 13, gives
the day. Try a different one. Suppose we are to
guess the date on which the Bastille fell (14 July
1789), marking the outbreak of the French
Revolution.

1) Multiply the month by 5, 5m (here, 5 X 7 = 35);
2) subtract 3, 5m — 3 (here, 35 — 3= 32);

3) double, 10m — 6 (here, 64);

4) multiply by 10, 100m — 60 (here, 640);

5) add  the 100m — 60 + d
640 + 14 = 654).

Given this number, we now add 60, leaving
100m + d (here, 714). The values of d are found

day, (here,
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in the tens and units, while 100m is found in the
hundreds, preventing the two from overlapping.
Now we simply read off m and d. Of course, d
must remain below 100, which limits the game to
age, shoe size and so forth.

Guessing age and size of shoes

Here is an analogous game with a few confusions
deliberately added. Suppose we are to guess the
size of a person’s shoes as well as his age. We
proceed thus:

1) Multiply the number of years (a) by 20, 20a (if
a is 20, we have 20 x 20 = 400);

2) add the number of the present day (d),
20a + d (here, supposing it is the 9th, 400 + 9 =
409);

3) multiply by 5, 100a +5d (here, 5Xx409=
2,045),

4) addthe shoe size (s), 100a + 5d + s (ifsis 11,
then 2,045 + 11 = 2,056).

Now we subtract five times the number of the
current day, which is known, leaving 100a +s.
The hundreds give the age and the rest gives the
shoe size (here, 2,056 —45=2,011). The person
is 20 and wears size 11 shoe.

Where is the error?

Behind every mathematical game there lies a
wile. Many such games rely simply on people
being unable to follow the various algebraic
steps. However, we can invent very subtle tricks
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based on the procedure itself. Suppose we wish
to prove that 1 =2. Take any two numbers x and
y and suppose:

1

) x
2) mu|t|p|y by y, xy =x°
3) subtract y?, xy —y2=x2—y?
4) factorize, y (x —y)=(x +y)(x —y);
5) divide by (x —y), y =x +y;
6) by 1), x =2x;
7) divide by x, 1 =2.

Each step seems correct; yet there is an error,
an illogical step. When there is a contradiction in
mathematics, the mistake can be found in the
procedure or in the premises. If a game is irri-
tating to play, it could be that either it is faulty (the
premises are wrong), or the player is not sticking
to the rules (the procedures). In this instance, the
logical error lies in 5) when we divide by (x — ),
which because of 1) is zero. Clearly it makes no
sense to divide by zero. We can now see that the
contradiction was produced by introducing an er-
ror into the procedure.

In the following numerical expressions there
are two mistakes for the reader to detect:

1) 2+1-(-1)=4;
2) 6+ 15=2;

3) (3+ ) (3 + &) = 10;
4) 18 — (—8) = 26;

5) —32 x (27 — 27) = —32.

This is the solution. The errors are in 2), where the
result is 18 (dividing by ¥4 is multiplying by 3); and
in 5), where the result is zero (multiplying by zero,
represented here by 27 — 27, is zero).
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Positional notation of numbers

This method (cf. p. 10) was used by the ancient
Indians and was spread throughout medieval
Europe by the Arabs. At the time it represented
enormous progress in mathematics. Today we are
sO habituated to using Arabic numerals that we
seldom realize the system’s advantages. To do so
we need only recall the Roman system which was
long, cumbersome and a ready source of errors.
Arabic figures are less intuitively obvious, but
from the start they have exhibited a peculiar fea-
ture on which mathematical thinking rests: ever-
increasing simplicity and generality. Take a num-
ber in Arabic figures, say 6,245. Here 6 indicates
thousands, 62 hundreds, 624 tens and 6,245
units. We can write it also as 6(1,000) + 2(100) +
4(10) + 5(1), or 624(10) + 5(1).

Let us now consider a four-figure number
algebraically, writing the digits as xs, X5, X;, Xo. We
can then -write the number as x,;(1000)+
X, (100) + x, (10) + X, (1). The first term inclicates
the figure with a positional value of thousands, the
second hundreds, the third tens, and the fourth
units. We can split this into x3(999 +1) +
X, (99 +1)+x,(9+1)+x, or, rearranging,
9Q(111xs+ 11X, + X4 ) + X3 + X0 + X4 + X0

Given that x5 is the number of thousands, x., the
number of hundreds, x, of tens and x, of units,
consider the following set of instructions:

1) Take a four-figure number (say, 3,652);

2) write down the figure of thousands, x;-1
(here, 3);
3) write down the figure of hundreds, x,-10 +

x5+ 1 (here, 36);

4) write down the figure of tens, x;-100+
X5+ 10 + x,+1 (here, 365);
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5) add these, x3(111)+x,(11)+ x, (here, 3+
36 + 365 =404);

6) multiply by 9, 9(111x;+ 11x,+ x,)
9-404 = 3,636);

7) calculate the sum of the digits, x5 + X, + X5 + X,
(here, 3+6+5+2=16);

8) add to the previous sum, x5 (1,000)+
X2(100) + x, (10) + x, (here, 3,636 + 16 = 3,652).

We have just reconstituted the number through a
new sequence of steps.

(here,

One rotten apple can spoil the whole
basket

In the section “Where is the error?” we elicited
paradoxical or contradictory results by dividing
by zero in an algebraically unclear manner. Let us
look at zero more closely in its various mathe-
matical and philosophical senses. We know from
school what the reciprocal of a number is. If the
number is 6, its reciprocal is Ve, if it is 12, it is Ve,
and so on. The larger the number, the smaller its
reciprocal and conversely. Thus, in the sequence
Yo, Va, Va, V5, V6. .. the terms become ever smaller.
Using this method, one might imagine we could
reach the smallest number in the world. Similarly,
we might ask the meaning of dividing by zero,
namely %. Is this a number at all?
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Suppose someone discovered that ¥ = x. Now
in a normal case, say 264 =7, we find 7 X 4 = 28.
Therefore, in the case of %% =x we should find
x+-0=1; but x-0=0, otherwise we would have

=0. Thus there is a contradiction; the same
would occur were we to divide by zero any num-
ber different from zero. There is one odd excep-
tion, namely dividing zero by zero; the result can
be any number. For instance, take any number x,
then 0 = 0-x, and therefore 0/0 = x. It is pointless,
which is why division by zero is not allowed in
mathematics.

All this is simply an intellectual game, rigorous,
to be sure, but still a game. In mathematical
thought the simplest steps can conceal quite pro-
found concepts and principles. One of these prin-
ciples belongs to logic—the science of correct
reasoning—and states that from a contradiction
any assertion can be established. Or, to quote
medieval logicians: “ex absurdis sequitur quod-
libet"—from the absurd anything follows.

Dividing a number by zero can produce
contradiction, dividing zero by zero can yield any
number. If we cancel by zeroin 18 x 0 =3 X 0, we
get the contradiction 18 =3. Or, as in the follow-
ing: if x=1, then x*-x=x*—1, x(x—1)=
(x +1)(x — 1), and cancelling by (x —1) gives
x =x +1,1=2; we have divided by x — 1, which
in this case equals zero. It is an error we fre-
quently make in mathematics; even Einstein once
inadvertently did so.
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The symbol O (zero) came to the West with the
Indo-Arabic numerals. It is one of the most useful
symbols, but also one of the most ambiguous and
contradictory. Like the other numerals, zero has a
positional meaning. In 432 the 2 does not have the
same meaning it has in 423. This is also true in
430 and 403 where the zero means the absence
of units in one case and the absence of tens in the
other. The concept of zero has been developed
further in mathematics, and to an even greater
extent in philosophy and religious thought. If we
think of zero, we think of nothingness, but what is
that? Roughly we might say that nothingness is
the denial of existence, it is that which is not. Yet,
as we think of nothingness, it must somehow
exist. In short, we have an unfathomable concept
and that creates paradoxes.

Originally the notion of nothingness was extra-
neous to Greek philosophy as the Greeks would
not accept the being of that which does not exist.
Indeed, zero does not enter the Greek and Ro-
man numeral systems. It is probably the philoso-
pher Zeno (336-264 B.C.), a Phoenician from Cy-
prus and founder of Stoicism, who introduced this
non-Greek concept into ancient philosophy.

Ordinary language and mathematical
language

Many of us tend to think of mathematics as simply
a practical tool for accounting and measuring. At
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pest, we have some smattering of science, and
are familiar with a set of technigues and methods
of mathematical analysis that make our calcula-
tions work. However, we fail to grasp a basic fea-
ture of mathematics, namely its language.

The term “language” suggests everyday lan-
guage which conveys information. However, lan-
guage has other tasks, such as organizing our
cognitive activities to clarify our concepts and to
represent our results. Mathematics, with its ab-
stract symbols, fulfills this function very well. Still,
too often mental habits, learned in school in me-
chanical ways and devoid of mathematical in-
sight, make us see mathematics as containing a
different rationality and as something apart from
everyday language. This is not only absurd but
artificial. It is even more absurd to assume there
are two languages representing opposing ways
of facing reality. It is true that mathematical lan-
guage is particularly appropriate for descriptions
of certain problems and their solutions, but this
does not justify divisions in knowledge.

Number games, especially algebra games,
force us to connect everyday language and math-
ematical language and to translate them back
and forth. This proves there are no genuinely iso-
lated areas, even if everyday language is more
complex and varied and therefore better suited to
recounting subjective and personal situations.
Mathematical symbols and the relations between
them are abstract, synthetic mental constructs
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fig. 31
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6|18
trance to his school: “Let no one enter who mas-
ters no geometry.” fig. 36 fig. 37
The link between mathematics, geometry and
art also underlies the work of the German painter 6|1 8 2 716
Albrecht Durer, a contemporary of da Vinci. In
Durer's noted engraving Melencolia, there is a
magic square, often considered the first example 715 3 9 511

of one seen in the West. It is constructed so the
rows, columns and diagonals add up to 34
(Fig. 31). Moreover, the four central compart-
ments add up to 34. The second and third com-
partments in the bottom row indicate the date of
composition: 1514. Aside from the intimacy be-
tween the arts and sciences during the Renais-
sance, perhaps another reason for Durer's inclu-
sion of a magic square in his engraving, is that
fourth-order squares were thought to possess
special therapeutic virtues. Indeed, astrologers of
the period advised wearing them as amulets to
dispel melancholy.

Let us move on to other magic squares. Take
the third-order square of Fig. 29 and multiply its
entries by a constant to produce new entries.
These will again add up to a constant. Indeed,

multiplying by 2 gives a sum of 2x 15=230
(Fig. 32). Similarly, Figs. 33 and 34 are construc-
ted by multiplying by 3 and 4 the entries of the
square in Fig. 29. If we exclude rotations and
reflections, there exists a unique magic square of
the third order. Figs. 35 and 36 are only a single
third-order square with a reflection about the cen-
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tral row, while Fig. 37 has been rotated around a
diagonal. With higher orders, the number of
arrangements increases. A fourth-order square
allows 880 different placings of its 16 numbers,
excluding reflections and rotations. This was
first discovered by the mathematician Bernard
Frénicle de Bessy in 1693. Figs. 38, 39 and 40
show some of these solutions, with the sum 34. It
is not yet clear what mathematical law governs the
disposition of numbers in magic squares. The
question remains open, and the known solutions
have only been discovered by trial and error.

How many fifth-order magic squares are there?
Until recently the estimate was about 13,000,000.
In 1973, however, Richard Schroeppel, a pro-
grammer with Information International, deter-
mined the exact number with the aid of a modern
computer (His findings were later published in
Scientific American, vol. 234, no. 1, Jan 1976).
Without counting rotations and reflections, there
are 275,305,224 different solutions.

Diabolic squares

These are even more intriguing than magic
squares, because of their additional properties.
Again consider Durer’s square as it is rearranged
in Fig. 39 and repeated in Fig. 41. The sum of the
four central squares is 13+ 8+ 3+ 10=34, as s
the sum of the four corners and the vertical as well
as the horizontal off-diagonal squares. Such
magic squares are called "pandiagonal.” The
same constant results if we add the set of four
numbers marked in Figs. 42 and 43.

Similarly we can form fifth-order magic squares
with particular properties. In Fig. 44 the sum is
always 65. Considering corner numbers plus the
central one, as well as diagonal numbers (includ-
ing the central one), we always produce the
same sum: 9+13+17+1+25=65, 7+5+
21 +19+13=065.

A square of order 5 in which any pair of num-
bers opposite the center adds up to n®+1 (n
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being the order) is called “associative.” Here,
n?+1=26. Thus, horizontally, 20 is opposed to
6, and 20 + 6 = 26; diagonally, 17 is opposed to
9 and 17+9=26, 25 is opposed to 1, and
25+ 1 =26. The Lo shu of Fig. 29 also has this
property and is therefore associative. Indeed,
with n =3, n*+1=10, and in the square
7+3=10,4+6=10,8+2=10,9+1=10. A
fourth-order square may be either associative or
pandiagonal, but never both. The smallest square
that can be both is of the fifth order. If, as usual,
we exclude rotations and reflections, there are
only 16 fifth-order squares with both properties
according to Schroeppel’s calculations.

In Medieval times, the Moslems imbued pan-
diagonal squares of order 5 with 1 at the center
with mystic significance, for number 1 is the sa-
cred symbol of Allah, the Supreme Being. The
problem of representing God and the concept of
God occurs in all religions and theologies. The
symbol that best evokes the unity of being is the

number 1. God is one. However, the Moslem con-
ception of God is such that no sign or picture can
adequately represent Him, not even the most ab-
stract and immaterial such as the number 1.
Hence, in some magic squares the ineffable na-
ture of the Supreme Being is suggested by leav-
ing the central square empty.

Magic stars

Similar features are observed in other geometrical
figures such as magic stars. Take twelve counters
numbered from 1 to 12 (Fig. 45) and construct
a star of David from two equilateral triangles
(Fig. 46). Now place the counters on vertices and
intersections so the numbers along each of the six
sides add up to the same sum. As before this can
be achieved by trial and error. In Fig. 47, the sum
is always 26. However, if we add up the six verti-
cesweget3+2+9+11+4+1=30
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Below: A Chinese magic circle of
great historical interest, executed by
Seki Kowa in the 17th century

fig. 48

Let us refine the star by displacements that
make this last sum also equal to 26. Such a prob-
lem must be tackled systematically and demands
a plausible strategy. With the figure consisting of
two equilateral triangles, in order to reach a sum
of 26 at the vertices, we must put the internal
numbers aside for the moment (they form a hexa-
gon shared by the two triangles). A rational pro-
cedure might be to produce the vertex sum of 13
for each triangle, so that 2 x 13 =26. In Fig. 47,
the inverted triangle gives a vertex sum of
11+ 1+ 3 =15. We therefore interchange 11 and
10, 3 and 2. The vertex sum becomes
10+ 1 + 2 = 13. For the upright triangle we can no
longer use 1 or 2 (indeed 9 +4 +2=15), or 8 or
7; they would merely complicate matters. There-
fore we try 6; we interchange 6 and 9, 3 and 2,
and leave 4 untouched. A small rearrangement on
the sides then produces the solution shown in
Fig. 48.
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The geometric representation of the
principles of yin and yang (female
and male, according to ancient
Chinese philosophy; see p. 42)
Ancient peoples tended to represent
ultimate principles through abstract,
stylized or geometrical figures
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More about squares

There are still more magic squares. Take Fig. 49.
Its square seems to have no formation rule, its
numbers being haphazardly distributed. How-
ever, the square has a property that furnishes
some interesting tricks. Ask a player to perform
the following:

1) Take any number and eliminate all others in the
same row and column. For this we need counters
or other markers to cover the numbers to be re-
moved. Suppose the number chosen is 20 in the
third row and second column. Eliminate 6, 7, 5, 4
and 33, 27, 29, 23, leaving the square of Fig. 50.

2) Repeat the maneuver on Fig. 50, and suppose
14 is chosen. Eliminate 13, 12, 11 and 20, 16, 10,
leaving Fig. 51.

3) Repeat as before and suppose 15 is chosen.
Eliminate 14, 13 and 19, 9, leaving Fig. 52.

4) Repeat and suppose 17 is chosen. Eliminate
18 and 7, leaving Fig. 53. Only 8 remains. Adding
this and the four chosen numbers (20 + 14 +
15+ 17 + 8) we get 74. Repeating the whole pro-
cedure with any other numbers, the result will al-
ways be 74. What is the trick?

Consider how the square is constructed. Any
number is the sum of two, one each from a group
of generators that together add up to 74 (Fig. 54):
2+16+3+1+0+17+11+4+13+7 =74
The two groups are shown in black along the first
row and column; any number of the square is the
sum of the generators against its row and column.

Games with geometrical figures

The trick then is to eliminate all numbers except
one (and only one) in each row and column, and
that is achieved by the procedure stated above.
The final sum then, is simply the sum of the two
groups of generators; a rather simple device in
which the order of the square does not matter, nor
does the sum to be calculated. Any type of num-
bers can be used: negative, positive, fractions or
integers.

An extraordinary surface

There are mathematical and geometric games
that can be resolved only by a proof or through a
concrete example. Take a square with 16-inch
sides for instance, and subdivide it into four as in
Fig. 55. We can then transform it into the rectangle
of Fig. 56. The four parts fit perfectly, yet the two
figures are unequal in area, for 16 X 16 = 256 in°
and 10 x 26 =260 in®. It appears that we mag-
ically produced 4 in® out of nothing. Here, too,
there is a trick, as we can see by actually con-
structing the figures. Take a large sheet of graph
paper, large-meshed if possible, and substitute
for each inch a certain number of squares
(Fig. 57). Suppose the square has 8-inch sides,
so there are 8 x 8 = 64 small squares. Cut out the
pieces as required (Fig. 58). The rectangle will be
5x13=065, leaving us with one too many
squares. If we lay out the pieces as in Fig. 59, it is
at once clear that the sides of the two triangles
and trapezia do not form a diagonal of the rectan-
gle: it is only the diagram that produces this illu-
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sion. Actually there is a gap of an internal paral-
lelogram of area 1.

The bridges of Kénigsberg

This large East Prussian town (now called Ka-
liningrad and part of the Soviet Union) lies on the
river Pregel which, in the 18th century, was
crossed by seven bridges linking the various sec-
tions, as shown in Fig. 60. The town is best known
as the birthplace of Immanuel Kant (1724-1804),
the noted German philosopher. However, mathe-
maticians know Konigsberg because its layout is
the basis for an intricate puzzle which, in Kant's
time, eluded even the most famous of them. The
problem is this: Like the inhabitants of other Ger-
man cities, the Konigsbergers strolled through
town on Sundays; was it possible to plan such a

walk so that setting out from one’s house one
could return to it after crossing each bridge once
and only once? The Swiss mathematician Leon-
hard Euler (1707-1783), born in Basle, studied
the problem and finally answered, no! (His re-
search, originally involving puzzles of this kind,
laid the foundation for a new branch of mathe-
matics, the theory of graphs. An elementary ac-
count of the theory is given in the next section.)
Here is Euler’s general rule to determine the solu-
tion to this and similar problems. We count how
many bridges end on each bank or island. If more
than two totals are odd, there is no solution. If the
totals are even-—or only two are odd-—there is a
solution, namely a path crossing each bridge
once and only once. Consider Fig. 60. On A, there
are three bridgeheads; on B, 3; on C, 5; on D, 3.
More than two totals are odd, hence there is no
solution.
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fig 62

Opposite right. A 17th-century print
of Paris showing the Seine and the lle
de la Cité. A problem similar to that
of Konigsberg can be posed. but. in

proves that the problem of the
bridges can be solved

favourable, he returned to Russia and the court of
Catherine the Great. Even though Euler eventually
went blind, he pursued his mathematical re-
searches intensely until shortly before his death in
1783. Some time ago, Swiss mathematicians hon-
oured Euler by beginning to collect and publish
all his writings; some fifty volumes have appeared
to date, and the total may well reach two hundred.

The bridges of Paris present a probiem similar
to the bridges of Konigsberg. Consider the lle de
la Cité in the Seine (Fig. 61). Here A has 8 bridge-
heads; B, 7, C, 10; D, 7; producing only two odd
totals. Therefore, there must be a solution,” but
with certain restrictions as we shall see. The solu-
tion is easily found by starting from an area with
an odd total and tracing a path crossing the
greatest number of pairs of bridges leading from
one area to another. A further solution is shown in
Fig. 61b.

Games with geometrical figures

this instance. the theory of graphs

Elementary theory of graphs

When Euler grappled with the problem of Kdnigs-
berg's bridges, he did not consider going there to
solve it. Instead, in the manner of modern sci-
ence, he tried to formulate the problem in a gen-
eral manner by tracing a schema (Fig. 62) in
which banks and islands are shown as points,
and the various bridges between them as lines.
The problem then is: Starting from any of the
points, trace the figure and return to the same
point without retracing any line and without lifting
pen from paper. It is impossible. To solve the
problem formally, consider some auxiliary con-
cepts first. What does a graph amount to? Given
two or more points in a plane, we join them with
arcs or curves or segments to obtain a figure we
call a graph. The points are called vertices or
nodes, and the lines between them (of whatever
shape) are called sides or edges. The number of
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vertices is known as the order of the graph.
Fig. 63 gives some examples. The term “graph,”
will be used here with the particular meaning de-
fined above, and not in its more general sense. In
some graphs, the initial and final vertex of an
edge can be the same. Sides that link a vertex
with itself are referred to as loops (top of Fig. 64).

What is important in a graph is its order, namely
the number of vertices, and the links between
them. In other words, graphs are not differenti-
ated by their shape. Those in Figs. 65-67, for
example, are equivalent, or isomorphic (from the
Greek word meaning “same form”) because they
have the same number of vertices and the same
links. Another basic concept is that of the order of
a vertex, which is defined as the number of links
that end at that vertex. Accordingly, there are odd
and even vertices. In Fig. 67, C and D are of order
3, while in Fig. 66, A is of order 2 and B is of order
3. Thus a graph may have only even vertices, or
only odd ones, or some of each, although in the
last instance the number of odd vertices must be
even. Try and draw a graph with an odd number

of odd vertices!

We need one further concept. A graph is called
traversable (in the sense of an Euler path or line)
when each side is traversed only once; vertices,
on the other hand, may be traversed any number
of times. Hence the following rules discovered by
Euler:

1) If a graph has only even vertices, it is tra-
versable from any one vertex back to that vertex.

2) If a graph has only two odd vertices, it is tra-
versable but without returning to the initial vertex.

3) If a graph has more than two odd vertices
(four, six, eight and so on) it is not traversable.

Returning to the problem of Konigsberg and its
bridges, there are four odd vertices, therefore the
problem cannot be solved.

A closed trace in which each vertex is passed
only once is called a Hamilton circuit, after the
Irish mathematician William Rowan Hamilton
(1805-1865) who first showed that such circuits
exist. For example, the graph consisting of the
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vertices and edges of the regular dodecahedron
has a Hamilton circuit (Fig. 68). A classic example
is the following: Let the vertices A, B, C, D stand
for four cities (Fig. 69). What are the possible
paths that go through each vertex once and once
only? Starting from A, we have the following Ham-
ilton routes: ABCDA, ABDCA, ACBDA, ACDBA,
ADBCA, ADCBA. Note that 1 and 6, 2 and 4, 3
and 5, are pairs differing only in direction.

Save the goat and the cabbage

This is an old saying, but not everyone knows that
its origins are an ancient puzzie of some twelve
centuries ago. A man wants to transport a wolf, a
goat, and a cabbage across a river in a boat that
barely has room for him and the cabbage, and
certainly for not more than one of the animals.
Moreover, he cannot leave the wolf alone with the
goat, or the goat with the cabbage. How can he
get everything across the river without the wolf

fig. 69

eating the goat, or the goat devouring the
cabbage?

Graphs are essential for solving those puzzles
in which we must move from one place to another
under certain conditions. Let us represent the var-
ious crossings, denoting the man by ¢, the wolf by
/, the goat by p, and the cabbage by c. The first
trip might be to take the goat across, since the
wolf will not eat the cabbage. Starting with the
group tipc, we now have /c left. Next, t returns
alone which creates the group t/c. Now t trans-
ports either the wolf or the cabbage. In either
case, he returns with the goat, so the group is now
tpc or tip respectively. Now he takes the cabbage
if he had already taken the wolf, or the wolf if he
had already taken the cabbage. When the man
returns alone to join p, the group becomes tp.
They finally cross the river and that concludes the
operation.

A synthetic graph for these moves is shown in
Fig. 70. This simple example enables us to visual-
ize a graph as a game. The vertices represent the
various positions (the changes in the original
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group), and the lines between them are the moves
allowed.

To clarify the advantages of graphs still further,
try to solve the present problem intuitively by
drawings (Fig. 71). This turns out to be more com-
plicated, so for the next game we will only use
graphs.

The jealous husbands

This is similar to the last problem and just as old
but a bit more complex. Three honeymoon cou-
ples reach a river and find a small boat that will
hold only two people. The dilemma is made worse
by the fact that the husbands are rather jealous.
How can the entire party cross the river without
leaving any bride alone with a man who is not her
husband? As before, let us simplify the problem
and construct a graph. Let the couples be A, B,

C, and men be distinguished from women by the
suffixes, u and d respectively. Thus a, and a,
represent husband and wife of couple A, so that
using a synthetic notation A =(a,, as), B = (b,,
bgs), C =(c,, Cy).

The first vertex will be given by A, B, C, or all
three couples together. The problem is knottier
than the previous one because there are more
combinative alternatives, as can be seen in detail
in Fig. 72. First, two wives cross the river, yielding
three possible groups—agy, by or by, Cy, OF Cy, @g.
From the first vertex there are three sides to show
this. At successive vertices we show the changes
of the original group until everyone has crossed.
Thus, A, b,, C means that on the starting bank we
now have everybody except the wife of couple B.
The vertex marked a,, b,, ¢, means that on the
starting bank we have all the men, while all the
women are on the opposite bank. The fact that all
the other sides converge here indicates the ne-
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fig.71
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Left: 1) Starting position with returns with the goat and leaves the
everyone on the left bank; 2) the man cabbage; 7) he leaves the goat on
takes the goat to the right bank; 3) the feft and ferries either the cabbage
he returns alone, leaving the goat; 4) or the wolf, (depending on whether 5)
he takes either the wolf or the or 6) was the case), to the right bank;
cabbage to the right bank; 5) if the 8) he returns to the left bank to fetch
former, he returns with the goat and  the goat; 9) final position with

leaves the wolf; 6) if the latter, he everyone on the right bank

cessity of this stage. Indeed, one of the two
women who had crossed first returns (producing
A, b, Cor A, B, ¢,) and helps the remaining
woman to embark, leaving the three men (a,, b,,
c,) alone. One woman then disembarks while the
other returns to the three men. We now have a
complete couple (either A, or B, or C) along with
the two other men. The next move is: The two men
embark, leaving the couple. One man disem-
barks on the other bank while the second man
returns with his own wife, producing two couples
(A, B,or B, C,or C, A) at the starting point. The
two men embark leaving their wives. From the
other bank, the third woman, who had been there
with her husband, returns alone, and in two further
crossings brings the other two women across,
thus reuniting the entire party.

Imterestingly, even using identical rules, when
the same problem involves four instead of three
couples it is unsolvable. Remember that only the
men are jealous, which means that on neither
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fig. 72
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bank can women be left with husbands who are
not their own, even if these husbands have their
wives with them.

To review the individual alternatives and to
show that each is unsolvable would take too long.
Instead, let us use the following shortcut. At each
crossing the number of people transported will
increase. Upon reaching a certain point there
must be five people. There could be:

D)
2)
3)
)
)

4 women and 1 man,
3 women and 2 men,
2 women and 3 men, or
4

1) and 2) are ruled out, for at least one of the
women would be without her husband. Nor will 3)
do, for that would leave 2 women and 1 man on
the other bank and hence one woman without her
husband. There remains 4), but to attain a group
of 1 woman and 4 men, those who had just arrived
must have been either 1 man and 1 woman, or 2
men. If the first is so, there must have been 1 man
and 4 women on the starting bank, which leads

1 woman and 4 men.

back to 1); if the fatter is so, the 2 men must have
left 3 women, which leads back to 2). Thus the
puzzle is unsolvable.

A simple change in the initial conditions, how-
evel, makes the problem possible even with four
couples. If we have a boat holding three people
instead of two, then one woman can take the other
women across and return to meet her husband
while the other men join their respective wives.
Now the solution is easy and we leave the reader
to work out the remaining moves.

Interchanging knights

This problem was invented and solved by the Brit-
ish mathematician Henry Ernest Dudeney
(1857-1931) some sixty years ago. A simple
graph lets us visualize the problem and reach the
solution at once. Trial and error would lead to
serious difficulties.

Draw the reduced chessboard of Fig. 73. The
game consists of interchanging the two white
knights with the two black ones. Given the
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fig. 75

fig. 76

knight's move, we can construct the graph of
Fig. 74, where W, and W, are the two white
knights, and B, and B, the two black ones. The
central square is not numbered because it is inac-
cessible to the knights. The graph of Fig. 74 is
clear enough. For example, to shift W, to square
6, the piece must foilow the route 3-4-8-2-6, while
B, reaches 3 by 6-5-1-7-3. Further, to shift W, to
8, the route is 1-7-3-4-8, while B, traverses
8-2-6-5-1. ‘
In the graph of Fig. 74 the sides intersect at
various points that should not be considered ver-
tices. If a graph can be drawn without such inter-
sections it is called planar. The following is a
graphic solution of the knight interchange by pla-
nar graphs. The only restriction is that we must
isolate the moves of symmetrically opposite
knights (Figs. 75-76). The graphs can be read in
either direction, clockwise or counterclockwise.

A wide range of applications

The theory of graphs, born from giving mathe-
matical forms to puzzles and first used in geome-

try and mathematics, was applied in numerous
areas of science as it was in practical life. Be-
cause of its formal properties, it was swiftly devel-
oped as a way to simplify and visually present
otherwise complicated problems. Since the last
century, it has proven immensely fruitful in repre-
senting problems of electric circuitry.

Fig. 77 shows the graph for combining three
switches with two lamps. The arrows indicate that
the sides are oriented; a graph is directional when
its sides can be traversed only by following ar-
rows. If the sides are not directional we can run
along them in either direction and the figure will
have no arrows. Graphs serve a number of
purposes. Among other things, they are widely
used for road routing, floor plans and economic
programming.

Because graphs are simple and immediate,
they are often used to visualize such complex
situations as relations between people or groups
of people. The stages of a football championship
in which a number of teams play each other might
be an example. Another might be a simple routing
problem: the road between London and Dover. In

62


































































































































































































































































































































































	CONTENTS
	INTRODUCTION
	GAMES WITH NUMBERS
	GAMES WITH GEOMETRICALFIGURES
	PARADOXES ANDANTINOMIES
	A GREAT GAME: MATHEMATICAL LOGIC
	GAMES WITH PROBABILITY
	APPENDIX: GAMES WITHLOGIC AND PROBABILITY
	LIST OF MAIN SYMBOLS USED
	BIBLIOGRAPHY
	INDEX

