
�

�

�

�

�

�

�

�

Games, Puzzles,
and Computation

�

�

�

�

�

�

�

�

Games, Puzzles,
and Computation

Robert A. Hearn
Erik D. Demaine

A K Peters, Ltd.

Wellesley, Massachusetts

�

�

�

�

�

�

�

�

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.
888 Worcester Street, Suite 230
Wellesley, MA 02482
www.akpeters.com

Copyright c© 2009 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Hearn, Robert A.
Games, puzzles, and computation / Robert A. Hearn, Erik D. Demaine.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-56881-322-6 (alk. paper)
1. Problem solving—Mathematical models. 2. Games—Mathematical

models. 3. Logic, Symbolic and mathematical. I. Demaine, Erik D., 1981–
II. Title.

QA63.H35 2009
510–dc22

2009002069

Cover images: See Figures 1.2(a), 10.11(b), and C.12(a).

Printed in India
13 12 11 10 09 10 9 8 7 6 5 4 3 2 1

�

�

�

�

�

�

�

�

Acknowledgments

I would like to thank a few of the very many people who contributed directly
or indirectly to my part in the making of this book: Michael Albert, Cyril
Banderier, Eric Baum, Jake Beal, Elwyn Berlekamp, John Conway, Martin
Demaine, Gary Flake, Aviezri Fraenkel, Greg Frederickson, Ed Fredkin,
Martin Gardner, Shafi Goldwasser, J. P. Grossman, Richard Guy, Charles
Hearn, Lerma Hearn, Michael Hoffmann, Michael Kleber, Tom Knight,
Charles Leiserson, Norm Margolus, Albert Meyer, Marvin Minsky, Chet
Murthy, Richard Nowakowsi, Ed Pegg, Ivars Peterson, Tom Rodgers, Aaron
Seigel, Michael Sipser, Gerald Jay Sussman, John Tromp, Patrick Winston,
David Wolfe, and Warren Wood.

This book arose out of my thesis work at MIT. Thus, it would not
have been possible without Erik Demaine, who first interested me in tack-
ling the complexity of sliding-block puzzles, and through whose mentoring
and collaboration that initial result led to a stream of related results and
eventually this book.

Special thanks are due the staff of A K Peters, most particularly Char-
lotte Henderson, who displayed amazing patience as deadlines slipped and
who offered many valuable suggestions and improvements.

My deepest thanks go to my wife Liz, who is the reason I was at MIT in
the first place. Finally, Liz, I’ve made something of all that fooling around
with games and puzzles!

—R.A.H.

I would like to thank, at a broader level, the people who influenced the
whole body of research. Most people studying the mathematics of games

v

�

�

�

�

�

�

�

�

and puzzles, and the two of us in particular, were heavily influenced by
Martin Gardner. His 25 years of Scientific American articles and dozens of
books showed the world how these fields could be combined. His influence
continues today through the Gathering for Gardner meetings, organized
by Tom Rodgers, giving a meeting place for many enthusiasts of games
and puzzles and of mathematics and computer science. Other key meeting
places have been provided by the combinatorial games community, in par-
ticular Elwyn Berlekamp, Richard Nowakowski, and David Wolfe. For me
this began with the Second Combinatorial Games Theory Workshop and
Conference in 2000, whose proceedings led to the book More Games of No
Chance. Next came the Dagstuhl Seminar on Algorithmic Combinatorial
Game Theory in 2002, which I helped organize, that specifically brought
together people who work on algorithms and people who work on combi-
natorial games. These early meetings played an important role in getting
this research area off the ground.

It has been exciting to go on this particular adventure with Bob Hearn.
We started working together on the complexity of games in 2001 when I
arrived at MIT, and our collaboration has been productive. Bob has been
excitedly pushing the frontiers of the interplay between games, puzzles, and
computation ever since we discovered Nondeterministic Constraint Logic,
and I am happy that the culminated research is now embodied as both his
PhD thesis and this book.

Finally, I would like to thank my father, Martin Demaine, whose pas-
sion for life and learning in general, and for games and puzzles in particu-
lar, ultimately brought me here. We have been sharing and collaborating
throughout my life, all the way to this research, and beyond.

—E.D.D.

�

�

�

�

�

�

�

�

Contents

1 Introduction 1
1.1 What is a Game? . 3
1.2 Computational Complexity Classes 6
1.3 Constraint Logic . 9
1.4 What’s Next? . 11

I Games in General 13

2 The Constraint-Logic Formalism 15
2.1 Constraint Graphs . 16
2.2 Planar Constraint Graphs 19
2.3 Constraint-Graph Conversion Techniques 20

3 Constraint-Logic Games 25
3.1 Zero-Player Games (Simulations) 26
3.2 One-Player Games (Puzzles) 29
3.3 Two-Player Games . 31
3.4 Team Games . 34

4 Zero-Player Games (Simulations) 39
4.1 Bounded Games . 40
4.2 Unbounded Games . 43

vii

�

�

�

�

�

�

�

�

viii Contents

5 One-Player Games (Puzzles) 55
5.1 Bounded Games . 56
5.2 Unbounded Games . 61

6 Two-Player Games 71
6.1 Bounded Games . 72
6.2 Unbounded Games . 76
6.3 No-Repeat Games . 81

7 Team Games 85
7.1 Bounded Games . 86
7.2 Unbounded Games . 89

8 Perspectives on Part I 101
8.1 Hierarchies of Complete Problems 101
8.2 Games, Physics, and Computation 102

II Games in Particular 105

9 One-Player Games (Puzzles) 107
9.1 TipOver . 107
9.2 Hitori . 112
9.3 Sliding-Block Puzzles . 115
9.4 The Warehouseman’s Problem 120
9.5 Sliding-Coin Puzzles . 120
9.6 Plank Puzzles . 122
9.7 Sokoban . 126
9.8 Push-2-F . 129
9.9 Rush Hour . 133
9.10 Triangular Rush Hour . 136
9.11 Hinged Polygon Dissections 137

10 Two-Player Games 141
10.1 Amazons . 141
10.2 Konane . 146
10.3 Cross Purposes . 149

11 Perspectives on Part II 155

12 Conclusions 157
12.1 Contributions . 157
12.2 Future Work . 158

�

�

�

�

�

�

�

�

Contents ix

Appendices 161

A Survey of Games and Their Complexities 163
A.1 Cellular Automata . 164
A.2 Games of Block Manipulation 165
A.3 Games of Tokens on Graphs 170
A.4 Peg-Jumping Games . 174
A.5 Connection Games . 174
A.6 Other Board Games . 175
A.7 Pencil Puzzles . 175
A.8 Formula Games . 180
A.9 Other Games . 182
A.10 Constraint Logic . 186
A.11 Open Problems . 186

B Computational-Complexity Reference 193
B.1 Basic Definitions . 193
B.2 Generalizations of Turing Machines 196
B.3 Relationship of Complexity Classes 199
B.4 List of Complexity Classes Used in this Book 199
B.5 Formula Games . 200

C Deterministic Constraint Logic Activation Sequences 203

D Constraint-Logic Quick Reference 215

Bibliography 217

Index 230

�

�

�

�

�

�

�

�

1

Introduction

This book is about games people play and puzzles people solve, viewed from
the perspective of computer science—in particular computational complex-
ity. Over the years, we have found increasingly deep connections between
games, puzzles, and computation. These connections are interesting to us
from multiple perspectives. As game players and puzzle solvers, we find
underlying mathematical reasons that games and puzzles are challenging,
which perhaps explain why they are so much fun. As computer scientists,
we find that games and puzzles serve as powerful models of computation,
quite different from the usual models of automata and circuits, offering a
new way of thinking about computation.

This book has three main parts, and different parts may be of interest
to different readers.

Part I (Games in General) describes a framework we have developed
for studying the connections between games, puzzles, and computation,
called constraint logic. This framework defines one simple prototypical
game/puzzle that can be interpreted in a variety of settings. We can vary
the number of players: one-player puzzles, two-player games, multiplayer
team games, or, at the other extreme, zero-player automata. We can also
vary how many moves for which the game lasts, or whether the players
can hide information (like cards) from each other. In each such category
of games, we prove that the corresponding form of constraint logic is the
computationally most difficult game in that category, making it a natural
point of reference from the computer-science perspective. This part of the
book is fairly technical, building a mathematical foundation for particular
constraint logics and establishing their computational complexity. Readers

1

�

�

�

�

�

�

�

�

2 1. Introduction

Figure 1.1. Dad’s Puzzle, one of the earliest (c. 1909) and most popular sliding
block puzzles [71]. The solver must slide the nine rectangular pieces within the
4× 5 box to get the large square into the lower-left corner. The shortest solution
takes a whopping 59 moves.

uninterested in the details, however, can simply read the summaries in the
two short opening chapters, 2 and 3.

Part II (Games in Particular) applies the constraint-logic framework
to real games and puzzles that people play. The approach is to take a
real game or puzzle and show that it is computationally as hard as the
corresponding form of constraint logic, making the real game/puzzle also
computationally most difficult in its category. The intuition is that most
“interesting” games are the most difficult in their class, so as a result
we end up with many “equally difficult” games (when held up to the
fairly course grain of computational complexity theory). What is inter-
esting is that many real games and puzzles can be closely modeled within
the constraint-logic framework, making it fairly easy to establish these
complexity results.

Constraint logic started out as a tool for understanding the complexity
of sliding-block puzzles, such as the puzzle shown in Figure 1.1. Our pursuit
was motivated by a problem posed by Martin Gardner [71]: “These puzzles
are very much in want of a theory. Short of trial and error, no one knows
how to determine if a given state is obtainable from another given state. . . .”
The first application of the constraint-logic framework, which we will see
in Section 9.3, shows that these puzzles have no such general theory, in a
computational sense: no efficient procedure can tell whether a given state
is obtainable from another, assuming standard beliefs in computational
complexity. From there, the theory of constraint logic grew to increasing
generality, capturing more and more types of real games and culminating
in this book.

The third main part of this book, Appendix A (Survey of Games and
Their Complexities), serves as a reference guide for readers interested in the

�

�

�

�

�

�

�

�

1.1. What is a Game? 3

computational complexity of particular games, or interested in open prob-
lems about such complexities. While Part II establishes the complexity
of many games, it focuses on applications of the constraint-logic frame-
work, and currently not all game-complexity results fit this framework.
Appendix A surveys all known results, in addition to highlighting many
open problems.

The rest of this introduction gives the reader some basic background
on the two main concepts of this book—games/puzzles and complexity—
followed by a more detailed overview of the constraint-logic framework.

1.1 What is a Game?

The term game means different things to different people in different fields.
Our use intends to capture the kinds of games that people play, includ-
ing board games like Chess, Checkers, and Go; card games like Poker
and Bridge; one-player puzzles like Rush Hour, Peg Solitaire, and Sliding
Blocks; and zero-player automata like John Conway’s Game of Life.

Common to all of these games are four main features: positions, players,
moves, and goals. Every game we consider has finitely many possible po-
sitions : board configurations, card distributions, piece arrangements, etc.
In computer-science terminology, our games have a bounded state, a finite
amount of information that defines the current situation. Some number
of players manipulate the game position by individual moves. The players
take turns in some order; the next player to move can be viewed as part of
the game position. During each turn, the current player has a clear list of
allowable moves (defined by the rules of the game) and picks one of them.
The move transforms the game position into some other game position, in
particular advancing to the next player in whatever order is determined by
the game. Players may not be able to observe certain parts of the game
position, allowing players to have hidden states such as cards in a hand,
but this hidden state should not prevent a player from determining their
allowable moves. Each player has a goal : to reach a game position with a
particular property. The first player to reach their goal wins. We generally
assume optimal play: players try to win as best they can given the available
information. Although we do not directly consider games with randomness
such as dice rolls in this book, we can model such phenomena by supposing
that one player plays randomly instead of following optimal play (as in
[131]).

This informal definition is related to several types of games studied in
a variety of fields. To provide some context for our study of games, we
summarize the related results and differences in these fields.

�

�

�

�

�

�

�

�

4 1. Introduction

Combinatorial Game Theory. One closely aligned study of games is combi-
natorial game theory, as in the two classic books Winning Ways [8] and On
Numbers and Games [27]; see also the more recent introduction Lessons in
Play [3] and the research collections Games of No Chance I–III [128–130].
The bulk of this study considers two-player games of perfect information,
where every player knows the entire state of the game and the moves avail-
able to each player—no hidden cards, random dice rolls, etc. Combina-
torial game theory builds a beautiful theory of such perfect-information
two-player games, revealing a rich mathematical structure. Perhaps most
surprising is the connection to number systems: real numbers are special
cases of Conway’s “surreal numbers,” which in turn are special cases of
games, and basic addition carries over to the general case of games.

Perfect information has the attractive consequence that, in principle, a
player could determine the optimal move to make by simulating the entire
game execution, trying every possible move by each player (assuming the
game is finite). Algorithmic combinatorial game theory aims to understand
when there are better strategies than such brute force, and combinatorial
game theory builds a useful collection of tools for understanding such op-
timal strategies in games. In many if not most interesting games, however,
optimal game play is a difficult computational problem, and proving such
results is our purpose in studying the complexity of games.

Economic Game Theory. A less related study of games is (economic) game
theory, as pioneered by the work of John von Neumann [169] and John
Nash [127]. Here, two or more selfish players participate in an economic
event (game), often framed as a single round in which each player simulta-
neously chooses a strategy (or, often, a probability distribution of strate-
gies), and the score (outcome) for each player is a given function of these
strategies. In this context, there is generally no clear optimum strategy,
either globally or for each player. There is, however, a clear set of optimal
strategies for one player when given the strategies of other players, and if
all players simultaneously follow such a strategy, the strategies are in Nash
equilibrium. Nash [127] proved that all games have such an equilibrium,
with the idea that players’ strategies will eventually converge to one. On
the other hand, theoretical computer scientists [23,34] recently established
that finding a Nash equilibrium is computationally intractable (formally,
PPAD-complete), so players of normal computational power will in general
take a long time to converge to a Nash equilibrium. More generally, eco-
nomic game theory studies a wide variety of different notions of equilibria
and the properties they possess.

The games we consider are both more specialized and more general than
what is traditionally addressed by game theory: more specialized because
we are concerned only with determining the winner of a game, and not

�

�

�

�

�

�

�

�

1.1. What is a Game? 5

with other issues such as maximizing payoff, cooperative strategies, etc.;
more general because game theory is concerned only with the interactions
of two or more players, whereas we will consider games with only one player
(puzzles) and even with no players at all (simulations).

Computational Complexity Theory. Computational complexity theory stud-
ies the general notion of computation, which in its broadest sense can en-
compass all of the games we consider. Indeed, the perspective of this book
is that games serve as powerful models of computational devices. Stan-
dard complexity theory, however, focuses on one kind of computation, the
Turing machine [166]. From our perspective, the standard Turing machine
can be viewed as a zero-player game or automaton, following simple rules
to change the position (state), ending with either a winning (accepting) or
losing (rejecting) state. The two critical resources of such a machine/game
are time—the number of moves that can be made before the game ends—
and space—the amount of information that can be remembered through
the game position (pieces on the game board, etc.). Impressively, with
respect to both of these resources, the Turing machine is essentially equiv-
alent to (or more powerful than) all known physical computational devices,
built and conceived, with the exception of quantum computers, which seem
to offer some additional computational power [149]. Nonetheless, further
insight into the structure of computational problems can be obtained from
more powerful models of computation, and much such insight has already
come from the idea of adding players to form a game.

Adding a single player that can choose which moves to make, aiming to
arrive at a winning position, corresponds to the classic idea of nondetermin-
istic computation [166]. If such a one-player puzzle is time limited—that is,
the player can make only a reasonable (polynomial) number of moves before
the puzzle ends—then we obtain the complexity class NP, immortalized in
the famous P vs. NP problem. Restated in game-theoretic terms, the P
vs. NP problem asks whether an optimal puzzle player can be simulated
efficiently by a zero-player automaton. The complexity community broadly
believes that the answer is “no”: computing the winning strategy to a puz-
zle takes a long (exponential) time in general. This belief is the foundation
for real-life puzzles such as Eternity and Eternity II [35,163]—whose solu-
tion is worth millions in prize money—and is part of the basis for modern
cryptography upon which everyday banking relies. P vs. NP is also one of
the Clay Mathematics Institute’s seven Millennium Prize Problems [105],
whose solution wins $1,000,000.

Adding two players that compete to reach a winning position corre-
sponds to the less famous but also classic idea of alternating computa-
tion [22]. Alternation refers to the opposite roles of the two players: for
the first player to win, there must be some move with the property that

�

�

�

�

�

�

�

�

6 1. Introduction

all moves by the second player have some move for the first player with
the property that all moves by the second player Although more
powerful than nondeterminism, alternation is fairly well-understood: alter-
nation for a reasonable (at least polynomial) amount of time corresponds to
computing within roughly the same (up to polynomial factors) amount of
space [22]. As a result, we will often see computational space requirements
arising in the complexity of games.

Several other models of computation have been introduced, in particu-
lar to capture aspects of games that people play (unlike the models above
that were introduced out of independent interest). Privacy [136,137] adds
the possibility that the players cannot see parts of the game position, as
with hidden cards. Solitaire automata [111] consider the effect of nondeter-
minism and privacy in one-player puzzles when combined with the idea of
an arbitrary (shuffled) initial position. Team games with private informa-
tion [133] lead to the possibility of infinite computation using only finitely
many perceivable resources, a topic we will explore in Chapter 7.

Another direction, studied throughly by complexity theory but not in
this book, is randomness. Examples include games against Nature [131],
interactive proof systems [79], Arthur-Merlin proof systems [5], stochas-
tic automata [55], and probabilistic game automata [24]. See [26] for an
overview of such models.

1.2 Computational Complexity Classes

Our general goal is to analyze the computational complexity of games and
puzzles. More precisely, for each game, we define one or more computa-
tional problems or questions about the game whose answer is a single bit:
“yes” or “no.” Most typically, we ask whether a particular player wins un-
der optimal play from a given game position, i.e., whether the player can
(force a) win. Each such problem belongs to certain complexity classes,
and our goal is to find the most specific class into which a particular prob-
lem fits. We give now an informal description of the complexity classes of
interest to us; for formal definitions, refer to Appendix B.

In general, these complexity classes study how the necessary resources—
time and space—grow in terms of the input size. For problems about games,
the input is the game description—pieces, cards, board, etc.—whose size
we measure as binary bits of information. We can think of an algorithm
(Turing machine) as a zero-player automaton defined by simple determinis-
tic rules that transform the game position from one to the next, eventually
producing an answer. As described above, the time is the number of such
moves before the automaton answers, and the space is the amount of in-
formation stored by the automaton (its size).

�

�

�

�

�

�

�

�

1.2. Computational Complexity Classes 7

Time. We start by characterizing in terms of time. The class P consists
of all problems solvable in polynomial time, that is, all problems solved by
some algorithm in time that is at most linear, quadratic, cubic, or similar
in the input size. If n represents the input size, a general polynomial might
look like 5n4 + 3n2 + 10n− 1. As long as the problem can be solved within
such time, for some polynomial, then the problem is in P. Problems in P
are generally considered easy to solve, because polynomials scale well. A
simple example of a game in P is the game of Nim, where it is easy to
determine which player will win under optimal play.

Similarly, the class EXPTIME consists of all problems solvable in expo-
nential time: 2n, 5n, 2n2

, or in general 2p(n) where p(n) is some polynomial.
This class is much larger, including most two-player games such as Chess,
and it is usually easy to solve a problem in exponential time. Note that
EXPTIME contains easier problems too, in particular, all of P.

Space. On the other hand, we can characterize by space. As mentioned
above, these classes are equivalent to characterizing by time but for al-
ternating (two-player) computation, so they frequently arise in two-player
games. The class PSPACE consists of all problems solvable in polyno-
mial space. This class is the analog of P but measuring space instead of
time. Similarly, EXPSPACE consists of all problems solvable in exponen-
tial space.

We can relate the space classes with the time classes as follows. An
optimal algorithm never uses more space than time. Thus, for example,
every problem in P is also in PSPACE. Also, any (deterministic) algorithm
that uses s space can never use more than exponential-in-s time without
repeating a position, which would cause an infinite loop and never correctly
answer the problem. Thus, for example, every problem in PSPACE is also
in EXPTIME.

Nondeterminism. Next, we consider allowing nondeterminism in the algo-
rithm, i.e., allowing the automaton to be driven by a single player making
choices among possible rules to apply. Here, the answer produced by the al-
gorithm becomes ambiguous, because it depends on what choices the player
makes. To make the answer well defined, we dictate that the overall output
is “yes” whenever the player has some sequence of choices that produces a
“yes” answer. Equivalently, we can think of the player as winning when it
reaches a “yes” answer, and we can define the player to follow an optimal
strategy. In this sense, a nondeterministic algorithm can be thought of
as extremely lucky: whenever it needs to make a decision, it by definition
makes the correct choice.

The class NP consists of all problems that can be solved in polyno-
mial time by such a nondeterministic algorithm. Similarly, we can de-

�

�

�

�

�

�

�

�

8 1. Introduction

fine NPSPACE for the nondeterministic analog of PSPACE, and NEXP-
TIME for EXPTIME. One nice result is that PSPACE and NPSPACE are
identical: nondeterminism does not help when measuring space and not
time [146]. Nondeterministic computation is at least as powerful as regular
deterministic computation, so, for example, every problem in P is also in
NP. On the other hand, nondeterministic computation can be simulated
by trying both choices of each decision in turn, which takes exponentially
more time, but about the same amount of space. Thus, for example, every
problem in NP is also in PSPACE.

To summarize, we can write X ⊆ Y to denote that every problem in X
is also in Y (X is contained in Y) and conclude that

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE.

Each of these classes represents computation at a certain level of abil-
ity: given certain time or space resources, and possibly given superpowers
such as nondeterminism. There are also some problems that cannot be
solved in general by any algorithm in finite time. We call these problems
undecidable, and they effectively represent computation without bounded
resources. Even more surprising is that, in a certain technical sense, most
problems are undecidable, even though it is rare to encounter such prob-
lems in practice. Indeed, we will see that such problems arise from team
games.

Completeness. It is usually easy to show that a game (or more precisely,
a computational problem/question about a game) falls into a particular
complexity class: just exhibit a simple algorithm to do so. But how do
we know when we are done, that we cannot push the game into any lower
complexity class? Computational complexity provides a powerful tool for
side-stepping this issue. For each complexity class X , we call a problem
X-hard if it is about as hard as every problem in X . (Here, we ignore
polynomial factors in the difficulty.) We call a problem X-complete if it
is both X-hard and in X . Thus, for example, NP-complete problems are
among the hardest problems in NP, so they must not be in any strictly
easier complexity class. Whether P = NP is of course a major open prob-
lem, but assuming they are even slightly different, NP-complete problems
are not in P.

In general, for each game problem we consider, our goal is to find a
class X for which the problem is X-complete. We then know we are done,
having eliminated the problem from any strictly smaller complexity class—
whatever those turn out to be, pending solutions to outstanding conjectures
in complexity theory. (All classes we have described are conjectured to be
different, except the already-mentioned property that nondeterminism does

�

�

�

�

�

�

�

�

1.3. Constraint Logic 9

not affect space classes. All we know so far is that P and EXPTIME are
different.)

1.3 Constraint Logic

The central theme of this book is constraint logic. Constraint logic is one
simple generic game that can be easily adapted to all different types of
games: games with zero players, one player, two players, or two teams
of players; with polynomially bounded length or unbounded length; with
and without hidden information. The constraint-logic framework enables a
uniform treatment of computational ability arising from these many game
types. It can be seen as a game-oriented analog of Turing machines from
complexity theory, which have served as a universal model of computation
that can be easily restricted to model any complexity class in the time and
space hierarchies described above. We believe that our alternative approach
to understanding computation has several advantages, particularly when
studying games that people play.

Simplicity through Graphs. Constraint logic is simple, being describable in
a few sentences. The game board is any weighted undirected graph: a
collection of vertices (represented by dots) connected by edges (represented
by line segments or curves), where every vertex and edge is labeled with
a weight of 1 or 2. A board position is an orientation of this graph—
specifying a direction that each edge points—such that the total weight of
edges directed into each vertex is at least that vertex’s desire (weight). A
move is the reversal of an edge orientation that results in a valid board
position. A computation is a sequence of moves. Generally the goal is to
reverse a particular distinguished edge.

This model differs in several ways from traditional logical models of
computation such as circuit or formula satisfiability. Constraint logic is
simple, being modeled directly around graphs. Circuits and formulae can
be represented as graphs with sufficient augmentation (e.g., distinguishing
variables from clauses/gates). But it is difficult to see the actual compu-
tation taking place in such a graph, whereas the dynamics of constraint
logic defines the entire state in the orientation of the graph. We find this
purely combinatorial view, without any explicit logical values, much easier
to work with in many cases.

Completeness. Each type of game has a natural complexity class into which
it falls. What is interesting is that, for each game type that we have studied,
its constraint logic is among the hardest problems in its complexity class.
For example, both one-player unbounded games and two-player bounded

�

�

�

�

�

�

�

�

10 1. Introduction

games are essentially always in PSPACE, and the corresponding versions of
constraint logic are PSPACE-complete. A more surprising result is that, for
team games of imperfect information, constraint logic is undecidable: no
algorithm can play the game perfectly. This game is the first undecidable
game that has a finite number of positions, behaves deterministically, and
has players alternate turns. See Section 7.2 for further discussion about
this result.

Part I proves many such completeness results, forming the foundation
for the theory of constraint logic. This foundation makes constraint logic
a suitable starting point for proving that other games are hard, a topic to
which we now turn.

Applications to Real Games. It is well known that many one-player puz-
zles and two-player games are complete within their natural complexity
class. For example, Peg Solitaire is a bounded-length puzzle and NP-
complete [168]; Sokoban and Rush Hour are unbounded-length puzzles
and PSPACE-complete [33,48,56,85]; Hex and Othello are bounded-length
two-player games and PSPACE-complete [106,140]; and generalized Chess,
Checkers, and Go are unbounded-length two-player games and EXPTIME-
complete [58,143,145]. For many more examples, refer to the survey in Ap-
pendix A. Most of these proofs are complicated and specific to the game
being analyzed, reducing from appropriate forms of formula satisfiability.

Our primary motivation for developing the constraint-logic model of
computation is that it is much closer in flavor to many existing games,
making it easier to prove the complexity of a game by relating to its corre-
sponding type of constraint logic. We have successfully developed such re-
ductions for many different games: bounded-length one-player TipOver and
Hitori (Sections 9.1 and 9.2); unbounded-length one-player Sliding Blocks,
the Warehouseman’s Problem, plank puzzles, Sokoban, Rush Hour, trian-
gular Rush Hour, Push-2-F, Sliding Tokens, and hinged-dissection recon-
figuration (Sections 9.3–9.11); and bounded-length two-player Amazons,
Konane (Hawaiian Checkers), and Cross Purposes (Chapter 10). In the
cases of Sokoban, Rush Hour, and the Warehouseman’s Problem, which
were proved PSPACE-complete previously, our proofs based on constraint
logic are simpler and (except for Rush Hour) establish hardness for more
specific forms of the games. The complexities of many of the other games
were open problems for several years; for example, the complexity of sliding
blocks was posed by Martin Gardner 40 years ago [71].

The constraint-logic framework provides a host of tools for making it
easy to prove the completeness of a game within a particular complexity
class. Such a proof only needs to show how to implement two kinds of
constraint-graph vertices, one representing a kind of and computation and
another representing a kind of or computation. (In fact, even simpler forms

�

�

�

�

�

�

�

�

1.4. What’s Next? 11

(a) AND (b) OR

Figure 1.2. Constraint logic gadgets showing PSPACE-completeness of sliding-
block puzzles.

of these vertices suffice to establish completeness.) The proof also needs to
be able to construct edges that connect two vertices. Furthermore, in most
cases, the constraint-logic framework guarantees that the graph is planar,
so a game-specific proof does not need to worry about edges crossing. In
contrast, crossover gadgets are the most complicated part of most previous
completeness proofs for two-dimensional games; with constraint logic, they
come for free so are unnecessary to build.

As an illustrative example of the power of the constraint-logic frame-
work, Figure 1.2 shows the entire construction required to prove that
sliding-block puzzles are PSPACE-complete. Thus, the solution to this
40-year-old problem becomes an almost-trivial “proof by two pictures.”
Readers interested in many more such reductions (in addition to this one)
are referred to Part II.

Outside of games, others have used the unbounded-length one-player
form of constraint logic to establish the complexity of airport planning [96],
steel slab stacking [109], finding paths between graph colorings [14], and
morphing parallel graph drawings [155].

Recently we discovered an application of zero-player constraint logic to
evolutionary graph theory [45].

1.4 What’s Next?

The next two chapters, 2 and 3, detail constraint logic and describe the
specific games it defines. They provide the necessary background both
for studying and for using constraint logic, so we recommend them to all
readers. The rest of Part I is then for readers interested in the theory
of constraint logic and why the games serve as representative complete
problems in their respective classes. Next, Part II is for readers interested

�

�

�

�

�

�

�

�

12 1. Introduction

in the application of that theory to real games and puzzles that people play.
Finally, Appendix A is for those interested in finding out the complexity
status of their favorite game or puzzle, or for those interested in open
problems.

�

�

�

�

�

�

�

�

I

Games in General

In Part I of this book we develop the constraint-logic model of computation
in its various flavors. These comprise instances in a two-dimensional space
of game categories, shown in Figure I.1. The first dimension ranges across
zero-player games (deterministic simulations), one-player games (puzzles),
two-player games, and team games with private information. The second
dimension is whether the game has (polynomially) bounded length. In all
cases, the games use bounded space; the basic idea is that a game involves
pieces moving around, being placed, or being captured, on a board or other
space of fixed size.

One player
(puzzle)

Two player Team,
imperfect

information

Zero player
(simulation)

PSPACE EXPTIME
(undecidable)

REPSPACEUnbounded

NP PSPACE NEXPTIMEPBounded

Figure I.1. Table of constraint-logic categories and complexities. Each game type
is complete for the indicated class. (After [133].)

Chapter 2 defines the general constraint-logic model of computation.
Chapter 3 defines all the various flavors of constraint logic and describes
their complexities. Chapters 4–7 develop notions of game ranging from
deterministic simulations to team games of private information, and pro-
vide corresponding complexity results for appropriate versions of constraint
logic.

Chapter 8 explores some of the implications of the results in Part I.

�

�

�

�

�

�

�

�

2

The Constraint-Logic
Formalism

The general model of games we will develop is based on the idea of a
constraint graph; by adding rules defining legal moves on such graphs we
get constraint logic. In later chapters the graphs and the rules will be
specialized to produce games with different numbers of players: zero, one,
two, etc. A game played on a constraint graph is a computation of a sort,
and simultaneously serves as a useful problem to reduce to other games to
show their hardness.

In the game complexity literature, the standard problem used to show
games hard is some kind of game played with a Boolean formula. The
Satisfiability problem (SAT), for example, can be interpreted as a puz-
zle: the player must existentially make a series of variable selections, so
that the formula is true. The corresponding model of computation is non-
determinism, and the natural complexity class is NP. Adding alternating
existential and universal quantifiers creates the Quantified Boolean For-
mulas problem (QBF), which has a natural interpretation as a two-player
game [158, 159]. The corresponding model of computation is alternation,
and the natural complexity class is PSPACE. Allowing the players to con-
tinue to switch the variable states indefinitely creates a formula game of
unbounded length, raising the complexity to EXPTIME, and so on. Most
game hardness results (e.g., Instant Insanity [142], Hex [53, 140], General-
ized Geography [147], Chess [58], Checkers [145], Go [114, 143]) are direct
reductions from such formula games or their simple variants, or else even

15

�

�

�

�

�

�

�

�

16 2. The Constraint-Logic Formalism

more explicit reductions directly from the appropriate type of Turing ma-
chine (e.g., Sokoban [33]).

One problem with such reductions is that the geometric constraints
typically found in board games do not naturally correspond to any prop-
erties of the formula games. By contrast, the constraint-logic games we
will present are all (with one exception) games played on planar graphs, so
that there is a natural correspondence with typical board game topology.
Furthermore, the required constraints often correspond very directly to ex-
isting constraints in many actual games. As a result, the various flavors
of constraint logic are often much more amenable to reductions to actual
games than are the underlying formula games. As evidence of this, we
present a large number of new games reductions in Part II. The proto-
typical example is sliding-block puzzles, where the physical constraints of
the blocks—that two blocks cannot occupy the same space at the same
time—are used to implement the appropriate graph constraints.

Constraint logic also seems to have an advantage in conceptual econ-
omy over formula games. Formula games require the concepts of variables
and formulas, but constraint-logic games require the single concept of a
constraint graph. In the reductions we will give from formula games of
various types to equivalent constraint logics, the variables and the formu-
las are represented uniformly as graph elements. This conceptual economy
translates to simpler game reductions; often fewer gadgets must be built
to show a given game hard using constraint logic.

Appendix B reviews Boolean formulas and the Satisfiability and Quan-
tified Boolean Formulas problems; other formula games are defined in the
text as they are needed.

2.1 Constraint Graphs

A constraint graph is an oriented graph, with edge weights ∈ {1, 2}. An
edge is then called red or blue, respectively. The inflow at each vertex
is the sum of the weights on inward-directed edges. Each vertex has a
nonnegative minimum inflow. A legal configuration of a constraint graph
has an inflow of at least the minimum inflow at each vertex; these are
the constraints. A legal move on a constraint graph is the reversal of a
single edge’s orientation, resulting in a legal configuration. Generally, in
any game, the goal will be to reverse a given edge, by executing a sequence
of moves. In multiplayer games, each edge is controlled by an individual
player, and each player has his own goal edge. In deterministic games, a
unique sequence of reversals is forced. For the bounded games, each edge
may only reverse once.

�

�

�

�

�

�

�

�

2.1. Constraint Graphs 17

A B

C

(a) AND vertex. Edge C may be directed
outward if and only if edges A and B are
both directed inward.

A B

C

(b) OR vertex. Edge C may be directed
outward if and only if either edge A or
edge B is directed inward.

Figure 2.1. AND and OR vertices. Red (light gray) edges have weight 1, blue
(dark gray) edges have weight 2, and vertices have a minimum inflow constraint
of 2.

A constraint graph is an abstraction of the general notion of a game
board, but it is also natural to view a game played on a constraint graph as a
computation. Depending on the nature of the game, it can be a specific type
of computation, e.g., a deterministic computation, or a nondeterministic
computation, or an alternating computation. The constraint graph then
accepts the computation just when the game can be won.

AND and OR Vertices. Certain vertex configurations in constraint graphs are
of particular interest. A vertex with minimum inflow constraint 2 and
incident edge weights of 1, 1, and 2 behaves as a logical AND, in the following
sense: the weight-2 (blue) edge may be directed outward if and only if
both weight-1 (red) edges are directed inward. Otherwise, the minimum
inflow constraint of 2 would not be met. We will call such a vertex an
AND vertex.

Similarly, a vertex with incident edge weights of 2, 2, and 2 behaves as
a logical OR: a given edge may be directed outward if and only if at least
one of the other two edges is directed inward. We will call such a vertex
an OR vertex. AND and OR vertices are shown in Figure 2.1. Blue edges
are drawn thicker than red ones as a mnemonic for their increased weight.

Directionality; FANOUT. As implied above, although it is natural to think
of AND and OR vertices as having inputs and outputs, there is nothing
enforcing this interpretation. A sequence of edge reversals could first direct
both red edges into an AND vertex, and then direct its blue edge outward;
in this case, we will sometimes say that its inputs have activated, enabling
its output to activate. But the reverse sequence could equally well occur.
In this case we could view the AND vertex as a splitter, or FANOUT gate:
directing the blue edge inward allows both red edges to be directed outward,
effectively splitting a signal.

�

�

�

�

�

�

�

�

18 2. The Constraint-Logic Formalism

In the case of OR vertices, again, we can speak of an active input en-
abling an output to activate. However, here the choice of input and output
is entirely arbitrary, because OR vertices are symmetric.

Circuit Interpretation. With these AND, OR, and FANOUT vertex interpre-
tations, it is natural to view a constraint graph made with these vertex
types as a kind of digital logic network, or circuit. (See Figure 4.8 for
examples of such graphs.) One can imagine signals flowing through the
graph, as outputs activate when their input conditions are satisfied. This
is the picture that motivates our description of constraint logic as a model
of computation, rather than simply as a set of decision problems. Indeed,
it is natural to expect that a finite assemblage of such logic gadgets could
be used to build a sort of computer.

However, several differences between constraint graphs and ordinary
digital logic circuits are noteworthy. First, digital logic circuits are deter-
ministic. With the exception of zero-player constraint logic, a constraint-
logic computation exhibits some degree of nondeterminism. Second, with
the above AND and OR vertex interpretations, there is nothing to prohibit
“wiring” a vertex’s “output” (e.g., the blue edge of an AND vertex) to an-
other “output,” or an “input” to an “input.” In digital logic circuitry, such
connections would be illegal and meaningless, whereas they are essential in
constraint logic. Finally, although we have AND- and OR-like devices, there
is nothing like an inverter (or NOT gate) in constraint logic; inverters are
essential in ordinary digital logic.

This last point deserves some elaboration. The logic that is manifested
in constraint graphs is a monotone logic. By analogy with ordinary real
functions, a Boolean formula is called monotone if it contains only literals,
ANDs, and ORs, with no negations. The reason is that when a variable
changes from false to true, the value of the formula can never change from
true to false. Likewise, constraint logic is monotone, because inflow is a
monotone function of incident edge orientations. Reversing an edge inci-
dent at a given vertex from in to out can never enable reversal of another
edge at that vertex from in to out—that is what would be required by
a NOT vertex. One of the more surprising results about constraint logic
is that monotone logic is sufficient to produce computation, even in the
deterministic case.

Flake and Baum [56] require the use of inverters in a similar com-
putational context. They define gadgets (“both” and “either”) that are
essentially the same as our AND and OR vertices, but rather than use them
as primitive logical elements, they use their gadgets to construct a kind of
dual-rail logic. With this dual-rail logic, they can represent inverters, at a
higher level of abstraction. We do not need inverters for our reductions, so
we may omit this step.

�

�

�

�

�

�

�

�

2.2. Planar Constraint Graphs 19

AND and OR Subtypes; Basis Vertices. For some of the game categories, there
can be many subtypes of AND and OR vertex, because each edge may have
a distinguishing initial orientation (in the case of bounded games), and a
distinct controlling player (when there is more than one player). These
features break symmetries in generic vertex behavior. For example, in a
bounded game, an AND vertex with the blue edge initially directed out
and the red edges initially directed in can only function as a FANOUT, and
not as a logical AND; once the red edges have reversed out, they can never
reverse in again. Therefore, we call this AND subtype a FANOUT. However,
we do not give a distinct subtype name to vertices where the red edges
start directed out, and the blue edge in; these are still simply AND vertices.
It should always be clear from context whether the initial edge orientation
matters.

It turns out that for all the different kinds of constraint logic, it is suf-
ficient to consider constraint graphs containing only AND and OR vertices.
However, for some kinds of constraint logic it is useful to additionally em-
ploy a few other simple vertex types. One example is the CHOICE vertex,
described below. For every kind of constraint logic, we give the best set of
such “basis vertices” to work with. These are chosen so as to enable the
easiest reductions from constraint logic to other games and puzzles.

If AND and OR vertices are always sufficient, why use other vertex types?
Doesn’t that simply create more gadgets that have to be implemented to
perform a reduction? The answer is that sometimes many AND and OR

subtypes are required if we wish to only use ANDs and ORs. Often we can
require fewer or simpler gadgets by using other vertex types.

2.2 Planar Constraint Graphs

Crossover gadgets are a common requirement in complexity results for
games and puzzles, and can be among the most difficult gadgets to de-
sign. (For example, the crossover gadget used in the proof that Sokoban
is PSPACE-complete [33] is quite intricate.) It turns out that every con-
straint graph has an equivalent planar constraint graph,1 which means that
a reduction from a given game or puzzle to a constraint-logic game need
not address how to cross edges. The specific form of the equivalent planar
graph will vary depending on the type of constraint logic; a different pla-
narity proof is given for each in the following chapters. But most of the
proofs rely on the same underlying construction.

The fundamental crossover gadgets are shown in Figure 2.2(a) and Fig-
ure 2.2(b). In addition to AND and OR vertices, Figure 2.2(a) contains

1Bounded Deterministic Constraint Logic is the sole exception.

�

�

�

�

�

�

�

�

20 2. The Constraint-Logic Formalism

A

B

C D

(a) Crossover (b) Half-crossover

Figure 2.2. Planar crossover gadgets.

red-red-red-red vertices; these need any two edges to be directed inward
to satisfy the inflow constraint of 2. The “half-crossover gadget” in Fig-
ure 2.2(b), which does use only ANDs and ORs, may be substituted in for
each red-red-red-red vertex (using the red-blue conversion described in the
following section).

The relevant property of the crossover gadget is that each of the edges
A and B may face outward if and only if the other faces inward, and each of
the edges C and D may face outward if and only if the other faces inward.

The proofs that specific kinds of constraint logic have planar equiva-
lents use these gadgets, and additionally address issues such as edges being
allowed to reverse only once, edges being controlled by distinct players, and
so on.

2.3 Constraint-Graph Conversion Techniques
Various subgraph equivalences will be useful to us over and over, so we
describe them here. Note that all of these equivalences strictly apply only
under the generic constraint-logic rules; we must additionally observe the
rules of each specific game type when applying them.

CHOICE Vertices. A CHOICE vertex, shown in Figure 2.3(a), is a vertex with
three incident red edges and an inflow constraint of 2. The constraint is
thus that at least two edges must be directed inward. If we view A as in
input edge, then when the input is inactivated, i.e., A points down, then
the outputs B and C are also inactivated, and must also point down. If A
is then directed up, either B or C, but not both, may also be directed up.
In the context of a game, a player would have a choice of which path to
activate.

The subgraph shown in Figure 2.3(b) has the same constraints on its A,
B, and C edges as the CHOICE vertex does. Suppose A points down. Then

�

�

�

�

�

�

�

�

2.3. Constraint-Graph Conversion Techniques 21

A

B C

(a) CHOICE vertex

A

B C

D E

F

(b) Equivalent subgraph

Figure 2.3. CHOICE vertex conversion.

D and E must also point down, which forces B and C to point down. If A
points up, D and E may as well (using vertex A-D-E as a FANOUT). F may
then be directed either left or right, to enable either B or C, but not both,
to point up.

The replacement subgraph still may not be substituted directly for a
CHOICE vertex, however, because its terminal edges are blue, instead of
red. This brings us to the next conversion technique.

Degree-2 Vertices. Viewing constraint graphs as circuits, we might want to
connect the output of an OR, say, to an input of an AND. We cannot do this
directly by joining the loose ends of the two edges, because one edge is blue
and the other is red. However, we can get the desired effect by joining the
edges at a red-blue vertex with an inflow constraint of 1. This allows each
incident edge to point outward just when the other points inward—either
edge is sufficient to satisfy the inflow constraint.

We would like to find a translation from such red-blue vertices to sub-
graphs using only ANDs and ORs. However, there is a problem: in ANDs
and ORs, red edges always come in pairs. The solution is to provide a
conversion from two red-blue vertices to an equivalent subgraph. The con-
version is shown in Figure 2.4. Clearly, the orientations shown for the
edges in the middle satisfy all the constraints except for the left and right
vertices; for these, an inflow of 1 is supplied, and either the red or the blue
edge is necessary and sufficient to satisfy the constraints. Note that the
degree-2 vertices are drawn smaller than the AND/OR vertices, as an aid to
remembering that their inflow constraint is 1 instead of 2.

What if there is a single leftover red-blue vertex that cannot be paired?
This cannot happen in a graph using only ANDs, ORs, and red-blue vertices:
a red edge incident at a red-blue vertex must be one end of a chain of red
edges ending at another red-blue vertex. But it could happen if the graph
uses CHOICE vertices. In that case we will supply the extra red edge (to
turn a red-blue vertex into an AND) from a loose red edge (see below).

�

�

�

�

�

�

�

�

22 2. The Constraint-Logic Formalism

(a) Pair of red-blue vertices (b) Equivalent subgraph

Figure 2.4. Red-blue vertex conversion. Red-blue vertices, which have an inflow
constraint of 1 instead of 2, are drawn smaller than other vertices.

A

(a) Free edge terminator

A

(b) Constrained edge
terminator

A

(c) Free red-edge terminator

Figure 2.5. How to terminate loose edges.

These red-blue conversions are generally not strictly necessary: in most
reductions to actual games, one builds AND- and OR-like gadgets that could
easily be directly connected together anyway. That is, adding red-blue
vertices to the basis set for a particular type of constraint logic generally
does not make game reductions any more difficult. However, it is simpler
and cleaner not to require them.

It will occasionally be useful to use blue-blue and red-red vertices, as
well as red-blue. Again, these vertices have an inflow constraint of 1, which
forces one edge to be directed in. A blue-blue vertex is easily implemented
as an OR vertex with one loose edge that is constrained to always point away
from the vertex (see below). Red-red edges will only occur in zero-player
games. However, in that case special timing considerations also arise, so
we will defer discussion of red-red vertices for now.

Loose Edges. Often only one end of an edge matters; the other need not be
constrained. Properly, every edge in a graph must have a vertex at each
end, but we can use “loose edges” in constraint graphs by assuming there

�

�

�

�

�

�

�

�

2.3. Constraint-Graph Conversion Techniques 23

is a vertex with an inflow constraint of 0 at the unattached end. We do
not draw a vertex dot at all at that end, because the constraint is 0.

To translate such an edge into ANDs and ORs, the subgraph shown in
Figure 2.5(a) suffices. If we assume that edge A is connected to some other
vertex at the top, then the remainder of the figure serves to embed A in an
AND/OR graph while not constraining it.

Similarly, sometimes an edge needs to have a permanently constrained
orientation. The subgraph shown in Figure 2.5(b) forces A to point down;
there is no legal orientation of the other edges that would allow it to point
up.

If the graph is allowed to use CHOICE vertices, we can implement a free
red edge as in Figure 2.5(c). Again, A is unconstrained by this subgraph.

�

�

�

�

�

�

�

�

3

Constraint-Logic Games

In this chapter we describe all the specific kinds of constraint-logic games
in detail. In each case—from bounded zero-player games all the way to
unbounded team games—we show how an appropriate kind of constraint
logic can be viewed as a canonical game for that category. We state,
without proving, the computational power (equivalently, computational-
complexity class) of each game type, and give the simplest set of “basis
vertex” types needed to show that specific games are hard. Armed with
this information the reader may, if he desires, skip ahead to Part II fully
prepared to understand the given reductions. All of the results stated here
are summarized even more concisely in Table D.1.

The remainder of Part I of the book contains the formal proofs that
the different kinds of constraint logic have the stated complexities. Strictly
speaking, the rest of Part I and Part II both consist primarily of hard-
ness reductions. (There is also some background and history on game
complexity in the remainder of Part I.) The difference is that in Part I,
the reductions are from several different kinds of problems of known com-
plexity to constraint-logic games, and in Part II the reductions are from
constraint-logic games to several different kinds of real-world games. But
because the constraint-logic games are on one side or the other of the re-
duction in each case, the two cases have a different flavor. Part I may be
viewed as “theory,” and Part II as “application.”

We’ll begin at the beginning, with zero-player bounded games, the least
interesting of the game types we consider. But the most basic or “pure”
type of constraint logic is actually Nondeterministic Constraint Logic, cor-
responding to unbounded one-player games; all other kinds of constraint

25

�

�

�

�

�

�

�

�

26 3. Constraint-Logic Games

logic are natural specializations or generalizations of this basic problem. It
is formally defined as follows (from Section 3.2.2):

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

Instance: Constraint graph G, edge e in G.
Question: Is there a sequence of moves on G that eventually

reverses e?

This “boxed-problem” format will be used throughout the book to de-
fine formal decision problems. The box contains the problem name, what
we are given (the instance), and what is to be determined (the question).
The decision question is always a yes-or-no question. (Technically, each
decision problem corresponds to a formal language, consisting of the set
of strings representing the instances for which the answer is “yes,” under
some encoding. See Appendix B for details.)

3.1 Zero-Player Games (Simulations)

We may think of deterministic, or zero-player, games as simulations: each
move is determined from the preceding configuration. Examples that are
often thought of as games include cellular automata, such as Conway’s
Game of Life [72]. The natural decision question for such games is whether
a particular condition is ever satisfied in any configuration. For example,
in the Game of Life, the question could be whether a particular cell is ever
alive.

Constraint Logic. The constraint-logic formalism does not restrict the set of
moves available on a constraint graph to a unique next move from any given
position. To consider a deterministic version, we must further constrain the
legal moves. Rather than propose a rule that selects a unique next edge
to reverse from each position, we apply determinism independently at each
vertex, so that multiple edge reversals may occur on each deterministic
“turn.”

The basic idea is that each vertex should allow “signals” to “flow”
through it if possible. So if both red edges reverse inward at an AND

vertex, then on the next move the blue edge will reverse outward. For the
bounded version, this idea is all we need. For the unbounded version, the
rule is modified to allow inputs that cannot flow through to “bounce” back.
(They cannot do so in the bounded version, because each edge can only
reverse once.)

�

�

�

�

�

�

�

�

3.1. Zero-Player Games (Simulations) 27

(a) AND (b) FANOUT (c) OR

Figure 3.1. Basis vertices for Bounded DCL.

3.1.1 Bounded Games

A bounded zero-player game is essentially a simulation that can only run
for a linear time. It may seem a stretch to call such simulations “games,”
but they do fit naturally into the overall framework sketched in Figure I.1.
Bounded Deterministic Constraint Logic is included here merely for com-
pleteness. Conceivably there could be some solitaire games where the player
has no actual choice, and the game is of bounded length, but such games
would not seem to be very interesting.

To formally define Bounded Deterministic Constraint Logic, we first
define a constraint-graph successor operation. We define a vertex v as
firing relative to an edge set R if its incident edges that are in R satisfy
its minimum inflow, and F (G,R) as the set of vertices in G that are firing
relative to R. Then, if we begin with graph G0 and edge set R0,

Ri+1 = {e | e points to v in Gi, v ∈ F (Gi, R0 ∪ . . . ∪Ri),
and e /∈ R0 ∪ . . . ∪Ri},

Gi+1 = Gi with edges in Ri+1 reversed.

This process effectively propagates signals through a graph until they
can no longer propagate.

BOUNDED DETERMINISTIC CONSTRAINT LOGIC (BOUNDED DCL)

Instance: Constraint graph G0; edge set R0; edge e in G0.
Question: Is there an i such that e is reversed in Gi?

Bounded DCL is P-complete. It remains P-complete when the graph
G uses only the vertex types shown in Figure 3.1. However, unlike all
the other constraint logics, Bounded DCL evidently does not remain P-
complete when G is required to be planar. The proofs are given in Chap-
ter 4.

�

�

�

�

�

�

�

�

28 3. Constraint-Logic Games

3.1.2 Unbounded Games

Unbounded zero-player games are simulations that have no a priori bound
on how long they may run. Cellular automata, such as Conway’s Game of
Life, are a good example.

Deterministic Constraint Logic (DCL) is the form of constraint logic
that corresponds to these kinds of simulation. The definition is similar to
the bounded case, removing the restriction that each edge may reverse at
most once. However, this raises a problem: when an edge reverses into a
vertex, the rule would have it reverse out again on the next step, as well
as whatever other edges it enabled to reverse. This would lead to illegal
configurations.

Therefore, we add the restriction that an edge that just reversed may
not reverse again on the next step, unless on that step there are no other
reversals away from the vertex to which the edge points. Again, we define
a vertex v as firing relative to an edge set R if its incident edges that are in
R satisfy its minimum inflow, and F (G,R) as the set of vertices in G that
are firing relative to R. Then, if we begin with graph G0 and edge set R0,

Ri+1 = {e | e points to v in Gi, and either e ∈ Ri or v ∈ F (Gi, Ri)
but not both},

Gi+1 = Gi with edges in Ri+1 reversed.

The effect of this rule is that signals will flow through constraint graphs
as desired, but when a signal reaches a vertex that it cannot “activate,” or
“flow through,” it will instead “bounce.” (See Figure C.1 in Appendix C
for an example.)

This seems to be the most natural form of constraint logic that is un-
bounded and deterministic. It has the additional nice property that it is
reversible. That is, if we start computing with Gi−1 and Ri, instead of G0

and R0, we eventually get back to G0.

DETERMINISTIC CONSTRAINT LOGIC (DCL)

Instance: Constraint graph G0; edge set R0; edge e in G0.
Question: Is there an i such that e is reversed in Gi?

DCL is PSPACE-complete. It remains PSPACE-complete when the
graph G is required to be a planar graph that uses only the vertex types
shown in Figure 3.2. The proofs are given in Chapter 4.

�

�

�

�

�

�

�

�

3.2. One-Player Games (Puzzles) 29

(a) AND (b) OR

Figure 3.2. Basis vertices for DCL.

3.2 One-Player Games (Puzzles)

A one-player game is a puzzle: one player makes a series of moves, trying
to accomplish some goal. For example, in a sliding-block puzzle, the goal
could be to get a particular block to a particular location. We use the
terms “puzzle” and “one-player game” interchangeably. For puzzles, the
generic forced-win decision question—“does playerX have a forced win?”—
becomes “is this puzzle solvable?”

Constraint Logic. The one-player version of constraint logic is called Non-
deterministic Constraint Logic (NCL). The rules are simply that on a turn
the player may reverse any edge resulting in a legal configuration, and the
decision question is whether a given edge may ever be reversed. For the
bounded version, we allow each edge to reverse at most once.

Due to the simplicity of NCL, and the abundance of puzzles with re-
versible moves, it is often straightforward to find reductions showing various
puzzles PSPACE-hard. This is the largest class of reductions presented in
Part II.

3.2.1 Bounded Games

Bounded one-player games are puzzles in which there is a polynomial bound
(typically linear) on the number of moves that can be made. Usually there
is some resource that is used up. For example, in a game of Sudoku, the
grid eventually fills up with numbers, and then either the puzzle is solved
or it is not. In Peg Solitaire, each jump removes one peg, until eventually
no more jumps can be made.

Bounded Nondeterministic Constraint Logic (Bounded NCL) abstracts
the essence of a bounded puzzle. Bounded NCL is formally defined as
follows:

�

�

�

�

�

�

�

�

30 3. Constraint-Logic Games

(a) CHOICE (b) AND (c) FANOUT (d) OR

Figure 3.3. Basis vertices for Bounded NCL.

BOUNDED NONDETERMINISTIC CONSTRAINT LOGIC
(BOUNDED NCL)

Instance: Constraint graph G, edge e in G.
Question: Is there a sequence of moves on G that eventually

reverses e, such that each edge is reversed at most once?

Bounded NCL is NP-complete. It remains NP-complete when the graph
G is required to be a planar graph that uses only the vertex types shown
in Figure 3.3. It will also turn out to be useful to reduce from graphs that
have the property that only a single edge can initially reverse. Again, we
can assume this property in puzzle reductions; all these proofs are given in
Chapter 5.

3.2.2 Unbounded Games

Unbounded one-player games are puzzles in which there is no restriction on
the number of moves that can be made. Typically the moves are reversible.
For example, in a sliding-block puzzle, the pieces may be slid around in the
box indefinitely, and a block once slid can always be immediately slid back
to its previous position.

Nondeterministic Constraint Logic (NCL) is the form of constraint logic
that corresponds to this type of puzzle. It is formally defined as follows:

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

Instance: Constraint graph G, edge e in G.
Question: Is there a sequence of moves on G that eventually

reverses e?

�

�

�

�

�

�

�

�

3.3. Two-Player Games 31

(a) AND (b) OR

Figure 3.4. Basis vertices for NCL.

NCL is PSPACE-complete. It remains PSPACE-complete when the
graph G is required to be a planar graph that uses only the vertex types
shown in Figure 3.4 (basic AND and OR). The proofs are given in Chapter 5.

Protected-OR Graphs. We call an OR vertex protected if there are two of its
edges that, due to global constraints, can never simultaneously be directed
inward. Intuitively, graphs with only protected ORs are easier to reduce
to another problem domain, since the corresponding OR gadgets need not
function correctly in all the cases that a true OR must. We will show that
we can assume only protected ORs in puzzle reductions.

Configuration-to-Configuration Problem. Occasionally it will be desirable to
reduce NCL to a problem in which the goal is to achieve some particular
total state, rather than an isolated partial state. For example, in many
sliding-block puzzles the goal is to move a particular piece to a particular
place, but in others it is to reach some given complete configuration. (One
version of such a problem is the Warehouseman’s Problem (Section 9.4)).

For attacking such problems, we show that an additional variant of
NCL is hard: the goal is to achieve a given total graph state, rather than
an individual edge reversal.

3.3 Two-Player Games

With two-player games, we are finally in territory familiar to classical game
theory and combinatorial game theory. Two-player, perfect-information
games are also the richest source of existing hardness results for games. In
a two-player game, players alternate making moves, each trying to achieve
some particular objective. The standard decision question is “does player
X have a forced win from this position?”

�

�

�

�

�

�

�

�

32 3. Constraint-Logic Games

Constraint Logic. The two-player version of constraint logic, Two-Player
Constraint Logic (2CL), is defined as might be expected. To create differ-
ent moves for the two players, Black and White, we label each constraint
graph edge as either Black or White. (This is independent of the red/blue
coloration, which is simply a shorthand for edge weight.) Black (White) is
allowed to reverse only Black (White) edges on his move. Each player has
a target edge that he is trying to reverse.

3.3.1 Bounded Games

Bounded two-player games are games in which there is a polynomial bound
(typically linear) on the number of moves that can be made. As with
bounded puzzles, usually there is some resource that is used up. In Hex,
for example, each move fills a space on the board, and when all the spaces
are full, the game must be over. Similarly, in Amazons, on each move
an amazon must remove one of the spaces from the board. In Konane,
each move removes at least one stone. There are many other examples
of bounded two-player games. When the resource is exhausted, the game
cannot continue.

Bounded Two-Player Constraint Logic is the natural form of constraint
logic that corresponds to this type of game. It is formally defined as fol-
lows:1

BOUNDED TWO-PLAYER CONSTRAINT LOGIC (BOUNDED 2CL)

Instance: Constraint graph G, partition of the edges of G into
sets B and W , and edges eB ∈ B, eW ∈W .

Question: Does White have a forced win in the following game?
Players White and Black alternately make moves on G.
White (Black) may only reverse edges in W (B). Each edge
may be reversed at most once. White (Black) wins (and the
game ends) if he ever reverses eW (eB).

One remark about this definition is in order. In the field of combinato-
rial game theory, it is normal to define the loser as the first player unable to
move. Games are thus about maximizing one’s number of available moves.
This definition would work perfectly well for 2CL, rather than using target
edges to determine the winner; the hardness reduction would not be sub-
stantially altered, and the definition would seem to be a bit more concise.

1We can assume without loss of generality that the game ends with no winner if a
player is unable to move.

�

�

�

�

�

�

�

�

3.3. Two-Player Games 33

(a) CHOICE (b) AND (c) FANOUT

(d) OR (e) VARIABLE

Figure 3.5. Basis vertices for Bounded 2CL.

However, the definition above is more consistent with the other varieties of
constraint logic. Always, the goal is to reverse a given edge.

Bounded 2CL is PSPACE-complete. It remains PSPACE-complete
when the graph G is required to be a planar graph that uses only the
vertex types shown in Figure 3.5. The proofs are given in Chapter 6.

3.3.2 Unbounded Games

Unbounded two-player games are games in which there is no restriction on
the number of moves that can be made. Typically (but not always) the
moves are reversible. Examples include the classic games Chess, Checkers,
and Go.

Two-Player Constraint Logic (2CL) is the form of constraint logic that
corresponds to this type of game. It is formally defined as follows:

TWO-PLAYER CONSTRAINT LOGIC (2CL)

Instance: Constraint graph G, partition of the edges of G into
sets B and W , and edges eB ∈ B, eW ∈W .

Question: Does White have a forced win in the following game?
Players White and Black alternately make moves on G.
White (Black) may only reverse edges in W (B). White
(Black) wins if he ever reverses eW (eB).

�

�

�

�

�

�

�

�

34 3. Constraint-Logic Games

(a) White AND (b) White OR (c) Black AND

(d) Multiplayer AND 1 (e) Multiplayer AND 2 (f) Black-White

Figure 3.6. Basis vertices for 2CL.

The 2CL problem is EXPTIME-complete. It remains EXPTIME-
complete when the graph G is required to be a planar graph that uses
only the vertex types shown in Figure 3.6. (Note that color symmetries
in a target problem could mean that the Black AND gadget would be a
color-swapped version of the White one, so there could be only five gadgets
to build for a reduction.) The proofs are given in Chapter 6.

3.4 Team Games

It turns out that adding players beyond two to a game does not increase
the complexity of the standard decision question, “does player X have a
forced win?” We might as well assume that all the other players team up
to beat X , in which case we effectively have a two-player game again. If
we generalize the notion of the decision question somewhat, we do obtain
new kinds of games. In a team game, there are still two “sides,” but each
side can have multiple players, and the decision question is whether team
X has a forced win. A team wins if any of its players wins.

Team games with perfect information are still just two-player games in
disguise, however, because again all the players on a team can cooperate
and play as if they were a single player. However, when there is hidden
information, then team games turn out to be different from two-player

�

�

�

�

�

�

�

�

3.4. Team Games 35

games. (We could think of a team in this case as a player with a peculiar
kind of mental limitation—on alternate turns he forgets some aspects of his
situation, and remembers others.) Therefore, we will only consider team
games of imperfect information, and we will sometimes simply refer to them
simply as “team games.”

Constraint Logic. The natural team, private-information version of con-
straint logic assigns to each player a set of edges he can control, and a
set of edges whose orientation he can see. As always, each player has a
target edge he must reverse to win. To enable a simpler reduction to the
unbounded form of team constraint logic, we allow each player to reverse
up to some given constant k edges on his turn, rather than just one, and
leave the case of k = 1 as an open problem.

3.4.1 Bounded Games

Bounded team games of imperfect information include card games such as
Bridge. Here we can consider one hand to be a game, with the goal being
either to make the bid, or, if on defense, to set the other team. The hand
is of a bounded size, so the game must end in a bounded number of moves.
Focusing on a given hand also removes the random element from the game,
making it potentially suitable for study within the present framework.

We define the corresponding type of constraint logic, Bounded Team
Private Constraint Logic (Bounded TPCL), as follows:

BOUNDED TEAM PRIVATE CONSTRAINT LOGIC (BOUNDED TPCL)

Instance: Constraint graph G; integer N ; for i ∈ {1 . . .N}: sets
Ei ⊂ Vi ⊂ G, edges ei ∈ Ei; partition of {1 . . .N} into
nonempty sets W and B.

Question: Does White have a forced win in the following game?
Players 1 . . .N take turns in that order. Player i only sees
the orientation of the edges in Vi, and moves by reversing
an edge in Ei that has not previously reversed; a move must
be known legal based on Vi. White (Black) wins if Player
i ∈ W (B) ever reverses edge ei.

Bounded TPCL is NEXPTIME-complete. It remains NEXPTIME-
complete when the graph G is required to be planar and use only AND

and OR vertices. (Note that in this case there are many different subtypes
of AND and OR vertices.) The proof is given in Chapter 7.

�

�

�

�

�

�

�

�

36 3. Constraint-Logic Games

3.4.2 Unbounded Games

In general, team games of private information are undecidable. This result
was claimed by Peterson and Reif in 1979 [133]. However, there are a few
problems with the proof, which we address in Section 7.2. Strangely, the
result also seems to be not very well known. Part of the problem may be
that the authors seem to consider the result of secondary importance to
the other results in [133]. From our perspective, however, the fact that
there are undecidable space-bounded games is fundamental to the view-
point that games are an interesting model of computation. It both shows
that games are as powerful as general Turing machines, and highlights the
essential difference from the Turing-machine foundation of theoretical com-
puter science, namely that a game computation is a manipulation of finite
resources. Thus, this seems to be a result of some significance.

It might seem that the concept of an unbounded-length team game of
private information is getting rather far from the intuitive notion of game.
However, individually each of these attributes is common in games. There
is at least one actual game that fits this category, called Rengo Kriegspiel.
This is a team, blindfold version of Go. (See Appendix A for details.)
One of the authors has personally played this game on a few occasions,
and it is intriguing to think that it’s possible he has played the hardest
game in the world, which cannot even in principle be played perfectly by
any algorithm.

Team Private Constraint Logic is defined in the box that follows. Note
the addition of the parameter k relative to the bounded case. This is,
admittedly, an extra generalization to make a reduction easier; nonetheless,
it is a reasonable generalization, and all other constraint-logic games in this
book are naturally restricted versions of this game.

TEAM PRIVATE CONSTRAINT LOGIC (TPCL)

Instance: Constraint graph G; integer N ; for i ∈ {1 . . .N}:
sets Ei ⊂ Vi ⊂ G, edges ei ∈ Ei; partition of 1 . . .N into
nonempty sets W and B; integer k.

Question: Does White have a forced win in the following game?
Players 1 . . .N take turns in that order. Player i only sees
the orientation of the edges in Vi, and moves by reversing
up to k edges in Ei; a move must be known legal based on
Vi. White (Black) wins if Player i ∈ W (B) ever reverses
edge ei.

TPCL is undecidable. It remains undecidable when the graph G is
required to be planar and use only AND and OR vertices. (Note that in this

�

�

�

�

�

�

�

�

3.4. Team Games 37

case there are many different subtypes of AND and OR vertices.) The proof
is given in Chapter 7.

�

�

�

�

�

�

�

�

4

Zero-Player Games
(Simulations)

In this chapter we present the definitions and complexity proofs for Deter-
ministic Constraint Logic, both the bounded and unbounded varieties. We
also briefly discuss some potential real-world applications of Deterministic
Constraint Logic for building reversible computers.

Complexity Background. We may think of deterministic, or zero-player,
games as simulations: each move is determined from the preceding con-
figuration. Examples that are often thought of as games include cellular
automata, such as Conway’s Game of Life [72]. The natural decision ques-
tion for such games is whether a particular condition is ever satisfied in
any configuration. For example, in the Game of Life, the question could
be whether a particular cell is ever alive.

More generally, the class of zero-player games corresponds naturally to
ordinary computers, or deterministic space-bounded Turing machines—the
kinds of computation tools we have available in the real world, at least until
quantum computers develop further.

PSPACE is the class of problems that can be solved by a deterministic
space-bounded Turing machine. Unsurprisingly, Life is PSPACE-complete.
Actually, Life has been shown to be “computation universal” [8,141,170] on
an infinite grid; that is, it can simulate an arbitrary Turing machine. That
means that there are decision questions about a Life game (e.g., “will this
cell ever be born”) that are undecidable. On a finite grid, the corresponding
property is PSPACE-completeness. (This result is not mentioned explicitly
in the cited works, but it does follow directly, at least from [141].)

39

�

�

�

�

�

�

�

�

40 4. Zero-Player Games (Simulations)

For bounded games, the corresponding model of computation is the de-
terministic time-bounded Turing machine, and the appropriate complexity
class is P.

Constraint Logic. The constraint-logic formalism does not restrict the set of
moves available on a constraint graph to a unique next move from any given
position. To consider a deterministic version, we must further constrain the
legal moves. Rather than propose a rule that selects a unique next edge
to reverse from each position, we apply determinism independently at each
vertex, so that multiple edge reversals may occur on each deterministic
“turn.”

The basic idea is that each vertex should allow “signals” to “flow”
through it if possible. So if both red edges reverse inward at an AND

vertex, then on the next move the blue edge will reverse outward. For the
bounded version, this idea is all we need. For the unbounded version, the
rule is modified to allow inputs that cannot flow through to “bounce” back.
(They cannot do so in the bounded version, because each edge can only
reverse once.)

4.1 Bounded Games

A bounded zero-player game is essentially a simulation that can only run
for a linear time. It may seem a stretch to call such simulations “games,”
but they do fit naturally into the overall framework sketched in Figure I.1.
Bounded Deterministic Constraint Logic is included here merely for com-
pleteness. Conceivably there could be some solitaire games where the player
has no actual choice, and the game is of bounded length, but such games
would not seem to be very interesting.

Deciding such games can clearly be done in polynomial time—just run
the simulation and check the result. In general, such games can also be
P-hard.

To formally define Bounded Deterministic Constraint Logic, we first
define a constraint-graph successor operation. We define a vertex v as
firing relative to an edge set R if its incident edges that are in R satisfy
its minimum inflow, and F (G,R) as the set of vertices in G that are firing
relative to R. Then, if we begin with graph G0 and edge set R0,

Ri+1 = {e | e points to v in Gi, v ∈ F (Gi, R0 ∪ . . . ∪Ri),
and e /∈ R0 ∪ . . . ∪Ri},

Gi+1 = Gi with edges in Ri+1 reversed.

�

�

�

�

�

�

�

�

4.1. Bounded Games 41

This process effectively propagates signals through a graph until they
can no longer propagate.

BOUNDED DETERMINISTIC CONSTRAINT LOGIC (BOUNDED DCL)

Instance: Constraint graph G0; edge set R0; edge e in G0.
Question: Is there an i such that e is reversed in Gi?

4.1.1 P-completeness

This style of computation is captured by the notion of Boolean circuits , and
more specifically, monotone Boolean circuits. A monotone Boolean circuit
is a directed acyclic graph where the nodes are gates (AND or OR) or inputs,
and the connections and edge orientations are as expected for the gate
types. The input nodes are either true or false. The gates are allowed to
have multiple outputs (= outward directed edges); that is, there is fanout.
One gate is the output gate. Each gate computes the appropriate Boolean
function of its input. The value of the circuit, for a given assignment
of Boolean input values, is the value computed by the output gate. An
ordinary (non-monotone) Boolean circuit is also allowed NOT gates; these
turn out not to add any computational power.

Essentially, then, a monotone Boolean circuit is just a representation
of a monotone Boolean formula, that potentially allows some space savings
by reusing subexpressions via fanout. The problem of determining the
value of a monotone Boolean circuit, called Monotone Circuit Value, is P-
complete [77]. We show that Bounded DCL is P-complete by a reduction
from Monotone Circuit Value.

Theorem 4.1. Bounded DCL is P-complete.

Proof: Given a Boolean circuit C, we construct a corresponding Bounded
DCL problem, such that the edge e in the DCL problem is reversed just
when the circuit value is true. This process is straightforward: for every
gate in C we create a corresponding vertex, either an AND or an OR. When
a gate has more than one output, we use AND vertices in the FANOUT

configuration. The difference here between AND and FANOUT is merely in
the initial edge orientation. For inputs, we use free edges: true inputs are
directed into their gates and are included in R0; false inputs are directed
away from their gates.

Then, the Bounded DCL dynamics exactly mirror the operation of the
Boolean circuit, and e will eventually reverse if and only if the circuit value
is true. This shows that Bounded DCL is P-hard. Clearly it is also in
P: we may compute Gi+1 from Gi in linear time (keeping track of which

�

�

�

�

�

�

�

�

42 4. Zero-Player Games (Simulations)

(a) AND (b) FANOUT (c) OR

Figure 4.1. Basis vertices for Bounded DCL.

edges have already reversed), and after a linear time no more edges can
ever reverse. �

4.1.2 Restricted Problem

For all of the other kinds of constraint-logic games, it turns out that re-
stricting the constraint graphs to planar configurations does not change
their computational power. However, planar Bounded DCL seems to be
weaker than unrestricted Bounded DCL. The reason is that, while Mono-
tone Circuit Value is P-complete, the planar monotone circuit value prob-
lem has been shown to lie in NC3 [174], and it is believed that NC3 � P.
Planarity is a useful property to have in constraint logic, because it greatly
simplifies reductions to other games. (In this case, however, there are no
obvious games one would be interested in showing P-complete anyway, or
if there are they have escaped our notice.)

However, we can strengthen Theorem 4.1 to apply to graphs using a
restricted set of vertices. Then, for reductions from Bounded DCL to other
games, it would be sufficient to build this restricted set of gadgets.

Theorem 4.2. Bounded DCL is P-complete, even for graphs using only the
vertex types shown in Figure 4.1.

Proof: The reduction from Monotone Circuit Value uses only the vertices
shown in Figure 4.1, plus red-blue vertices (to join OR outputs to AND

inputs, or FANOUT outputs to OR inputs), and free edges for the inputs.
We use the conversion techniques in Section 2.3 to convert these to AND

and OR vertices.1 �

1Some of the required edge orientations do not correspond to the initial orientations
of the basis vertices in Figure 4.1. They do, however, correspond to legal states of
the basis vertices; we assume that some of the edges have “already reversed,” and are
included in R0. Reductions from Bounded DCL are unaffected by this subtlety.

�

�

�

�

�

�

�

�

4.2. Unbounded Games 43

4.2 Unbounded Games
Unbounded zero-player games are simulations that have no a priori bound
on how long they may run. Cellular automata, such as Conway’s Game of
Life, are a good example.

Such games can always be decided in polynomial space—PSPACE—by
simply running the simulation long enough so that its state must begin to
loop. Since there are only finitely many states, and each step is determin-
istic, this must happen eventually. The time required is exponential in the
space used to represent a configuration, but the space required to store a
counter is only polynomial.

Deterministic Constraint Logic (DCL) is the form of constraint logic
that corresponds to these kinds of simulation. The definition is similar to
the bounded case, removing the restriction that each edge may reverse at
most once. However, this raises a problem: when an edge reverses into a
vertex, the rule would have it reverse out again on the next step, as well
as whatever other edges it enabled to reverse. This would lead to illegal
configurations.

Therefore, we add the restriction that an edge that just reversed may
not reverse again on the next step, unless on that step there are no other
reversals away from the vertex to which that edge points. Again, we define
a vertex v as firing relative to an edge set R if its incident edges that are in
R satisfy its minimum inflow, and F (G,R) as the set of vertices in G that
are firing relative to R. Then, if we begin with graph G0 and edge set R0,

Ri+1 = {e | e points to v in Gi, and either e ∈ Ri or v ∈ F (Gi, Ri)
but not both},

Gi+1 = Gi with edges in Ri+1 reversed.

The effect of this rule is that signals will flow through constraint graphs
as desired, but when a signal reaches a vertex that it cannot “activate,” or
“flow through,” it will instead “bounce.” (See Figure C.1 in Appendix C for
an example.) In DCL figures, edges that have just reversed are highlighted;
they are a relevant part of the state.

This seems to be the most natural form of constraint logic that is un-
bounded and deterministic. It has the additional nice property that it is
reversible. That is, if we start computing with Gi−1 and Ri, instead of G0

and R0, we eventually get back to G0.

DETERMINISTIC CONSTRAINT LOGIC (DCL)

Instance: Constraint graph G0; edge set R0; edge e in G0.
Question: Is there an i such that e is reversed in Gi?

�

�

�

�

�

�

�

�

44 4. Zero-Player Games (Simulations)

satisfied

satisfied
in

try out

satisfied
out

try in

CNF logic

Figure 4.2. Schematic of reduction from QBF.

4.2.1 PSPACE-completeness

We show that DCL is PSPACE-complete via a reduction from Quantified
Boolean Formulas (QBF; see Section B.5.3). Given an instance of QBF
(a quantified Boolean formula F in CNF), we construct a corresponding
constraint graph G such that iteration of the above deterministic rule will
eventually reverse a target edge e if and only if F is true. The reduction is
shown schematically in Figure 4.2.

This reduction is not intended as a suggestion for how to actually per-
form computations with such circuits, were they to be physically realized.
This is because that reduction entails an exponential slowdown from the
computation performed on the corresponding space-bounded Turing ma-
chine. Instead, we later show how a practical reversible computer could
be built using either dual-rail logic or Fredkin gates made with DCL com-
ponents. Those constructions require the addition of a few (nonreversible,
entropy-generating) elements that do not strictly fit within the DCL model,
however, so they are not sufficient for showing PSPACE-completeness.

The QBF reduction is rather elaborate, and many details are relegated
to Appendix C. While this chapter is logically the first to deal with spe-
cific forms of constraint logic, the corresponding reduction in Chapter 5 is
similar but more straightforward, and we suggest that the reader skip this
reduction until after reading that one.

Reduction. One way to determine the truth of a quantified Boolean formula
is as follows: Consider the initial quantifier in the formula. Assign its
variable first to false and then to true, and for each assignment, recursively
ask whether the remaining formula is true under that assignment. For
an existential quantifier, return true if either assignment succeeds; for a
universal quantifier, return true only if both assignments succeed. For the

�

�

�

�

�

�

�

�

4.2. Unbounded Games 45

base case, all variables are assigned, and we only need to test whether the
CNF formula is true under the current assignment.

The constructed constraint graph G operates in a similar fashion. Ini-
tially, the try in edge reverses into the left quantifier gadget, activating it.
When a quantifier gadget is activated, it tries both possible truth values
for the corresponding variable. For each, it sends the appropriate truth
value into the CNF logic circuitry. The CNF circuitry then sends a signal
back to the quantifier gadget, having stored the value. The quantifier then
activates the next quantifier’s try in edge.

Eventually the last quantifier will set an assignment. Then, if the for-
mula is satisfied by this total assignment, the last quantifier’s satisfied in
edge will activate. When a quantifier receives a satisfied in signal, if it is an
existential quantifier, then it simply passes it back to the previous quan-
tifier: the assignment has succeeded. For a universal quantifier, when the
first assignment succeeds, an internal memory bit is set. When the second
assignment succeeds, if the memory bit is set, then the quantifier activates
the previous quantifier’s satisfied in input.

The leftmost satisfied out edge will eventually reverse if and only if the
formula is true.

Timing. Since multiple signals can be bouncing around simultaneously in a
DCL graph, and signals must arrive “in phase” to activate an AND vertex,
timing issues are critical when designing DCL gadgets. To simplify analysis,
all gadget inputs and outputs will be assumed to occur at times 0 mod 4.
By this we mean that after an input has arrived, the first propagating edge
reversal inside the gadget will be at time 1 mod 4, and the last edge reversal
inside the gadget before the signal propagates out will be at time 0 mod 4.

Timing issues cause us to use blue-blue and red-red vertices in our
reduction; these vertex types are not needed for other kinds of constraint
logic. Essentially, these vertices are simply wires allowing a signal to flow
from one edge to the other; we need these delay wires to create the correct
signal phases. (Later we show that we can translate the constructions into
ANDs and ORs.)

Quantifier Gadgets. The existential- and universal-quantifier gadgets are
shown in Figure 4.3. Their properties will be stated here; the simplest
proof that they operate as described is simply a series of snapshots of
states, each of which clearly follows from the previous by application of the
deterministic rule. These snapshots are given in Appendix C. (All circuits
were designed and tested with a DCL circuit simulator.) Note that edges
that might appear to be extraneous serve to synchronize output phases, as
described above. Each quantifier’s try out edge is connected via a blue-blue
vertex to the next quantifier’s try in edge (except for the last quantifier,

�

�

�

�

�

�

�

�

46 4. Zero-Player Games (Simulations)

satisfied out satisfied in

try in try out

A B C D

xx

(a) Existential-quantifier gadget

x

satisfied out satisfied in

try in

try out

x

M

(b) Universal-quantifier gadget

Figure 4.3. DCL quantifier gadgets.

described later); similarly for satisfied in and satisfied out. The x and x
edges likewise connect to the CNF logic circuitry, described later.

An existential quantifier assigns its variable to be first false, and then
true. If either assignment succeeds, the quantifier activates its satisfied out
edge. The simplest switching circuit that performs this task also assigns
its variable to false again one more time, but this does not alter the result.

The gadget is activated when its try in edge reverses inward (at some
time 1 mod 4). The internal red edges cause the signal to propagate to
edge A three steps later. The signal then proceeds into CNF logic circuitry,
described later, and returns via edge B. It then propagates to try out three
steps later. Now, it is possible that satisfied in will later reverse inward;
if so, satisfied out then reverses three steps later. Then, later, satisfied out
may reverse inward, and satisfied in will then reverse outward three steps
later. Here the sense of input and output is being reversed—the performed
operation is being “undone.”

Regardless of whether satisfied in was activated, later try out will reverse
back inward, continuing to unwind the computation. Then B will reverse
again three steps later, and eventually A will reverse inward. Then, the
switching circuit composed of the red edges will send the signal to C three
steps later, effectively setting the variable to be true. Then, the same
sequence as before happens, except that edges C and D are used instead of
A and B. Finally, the switching circuit tries A and B again, and then at last
try in is directed back outward. The switching operates based on stored
internal state in the red edges; see Appendix C for details.

The universal-quantifier gadget is similar, but more complicated. It
uses the same switching circuit to assign its variable first to false and then
to true, and then to false once more. However, if the false assignment
succeeds—that is, if satisfied in is directed inward when the variable is

�

�

�

�

�

�

�

�

4.2. Unbounded Games 47

set to false—then instead of propagating the signal back to the previous
quantifier, the success is remembered by reversing some internal edges so
that edge M is set to reversing every step. Then, if satisfied in is later
directed in while M is in this state, and the variable is set to true, these
conditions cause satisfied out to direct outward. Finally, in this case setting
the variable to false again is useful; this causes M and the other internal
edges to be restored to their original state, erasing the memory of the
success when setting the variable false. Then, again, try in is directed back
outward; the gadget has cleaned up and deactivated, waiting for the next
assignment of the leftward variables.

CNF Logic. We already have AND and OR vertices, so it might seem that we
could simply feed the variable outputs from the quantifiers into a network
of these that corresponds to the Boolean formula, and its output would
activate only when the formula was satisfied by that assignment. However,
the variable signals would all have to arrive simultaneously for that ap-
proach to work. Furthermore, ANDs that had only one active input would
bounce that signal back, potentially confusing the timing in the gadget
that sent the signal.

Rather than try to solve all such timing issues globally, we follow a strat-
egy of keeping a single path of activation, that threads its way through the
entire graph. Each gadget need merely follow the phase timing constraints
described above.

We build abstract logic gates, AND′, OR′, and FANOUT′, that operate
differently from their single-vertex counterparts. These gates receive in-
puts, remember them, and acknowledge receipt by sending a return signal.
If appropriate, they also send an output signal, in a similar paired fashion,
prior to sending the return signal. Later, the input signals are turned off
in the reverse order that they were turned on, by sending a signal back
along the original return signal line; the gadgets then complete the de-
activation by sending the signal back along the original input activation
line.

This description will be made clearer by seeing some examples. As with
the quantifier gadgets, correct operation of the CNF gadgets is demon-
strated in the snapshots in Appendix C. These gadgets are connected
together to correspond to the structure of the CNF formula: variable
outputs feed OR′ inputs; OR′ outputs feed other OR′ inputs or AND′ in-
puts; AND′ outputs feed other AND′ inputs, except for the final formula
output, which is combined with the final quantifier output as described
later.

The AND′ gadget is shown in Figure 4.4(a). We assume that, if both
inputs will arrive and the gate will activate, input 1 will arrive first; later

�

�

�

�

�

�

�

�

48 4. Zero-Player Games (Simulations)

we justify this assumption. Suppose a signal arrives at input 1, on edge A.
Then, as in the universal-quantifier gadget, edge M will be set bouncing
to remember that this input has been asserted. If input 2 later activates,
along edge C, then the same switching circuit as used in the quantifiers will
send a signal so that it will arrive in phase with M, and activate the output
on edge E. Later, when acknowledgment of this signal is received on edge
F, the return signal is propagated back to the second input via D.

Suppose, instead, that a signal arrives at C when one has not first
arrived at A. By assumption, the variable feeding into A is then false, so
the AND′ should not activate. In this case the internal switch gadget sends
a signal toward E, but because M is not in the right state it bounces back,
and is then switched to the exit at D. Thus, the gate has acknowledged the
second input, without activating the output. The reverse process occurs
when D is redirected in.

The OR′ gadget, shown in Figure 4.4(b), is significantly more compli-
cated. This is because the gate must robustly handle the case where one
input arrives and activates the output, and later the other input arrives.
The gate needs to know that it has already been activated, and simply
reply to the second activation gracefully. (Note the highlighted edges in
Figure 4.4(b); these are edges that have just reversed, and thus would be
in the input edge set R0.)

If an input arrives on edge A, the left switch gadget directs it up to the
central OR vertex O, and then on to the output edge E. When the return
signal arrives via F, the upper switch gadget S tries first one side and then
the other. The edge left bouncing at M is in phase with this signal, which
then propagates to B. The corresponding edge N is not bouncing, so when
the signal from S arrives there it bounces back. Switch S has extra edges
relative to the other switches; these create the proper signal phases. The
entire process reverses when the signal is returned through B, first turning
off the output, then returning via A. Since the gate is symmetric, a single
input arriving at C first also behaves just as described, sending its return
signal along D.

Suppose an input arrives at C after one has arrived at A and left at B,
that is, when the gate is “on.” Then when the signal reaches the OR vertex
O it will propagate on toward M, and not toward E (because the path to
E is already directed outward). But M will be directed away at this point,
and the signal will bounce back, finally exiting at D with the right phase.
Again, when the signal returns via D the reverse process sends it back to
C. All of these sequences are shown explicitly in Appendix C.

The FANOUT′ gadget, shown in Figure 4.5(a), is straightforward. An
input arriving on edge A is sent to outputs 1 and 2 in turn; then the
return signal is sent back on edge B. The reverse sequence inactivates the
gadget.

�

�

�

�

�

�

�

�

4.2. Unbounded Games 49

input 1 input 2

output

M

A B C D

E F

(a) AND′ gadget

input 1 input 2

output

AB C D

E F

S

O

M N

(b) OR′ gadget

Figure 4.4. DCL AND′ and OR′ gadgets.

A B

C D E F

input

output 1 output 2

(a) FANOUT′ gadget

formula return

try in

satisfied out

formula in

M

(b) CNF output gadget

Figure 4.5. Additional CNF gadgets.

�

�

�

�

�

�

�

�

50 4. Zero-Player Games (Simulations)

Remaining Connections. To start the computation, we attach a free edge
terminator, as shown in Figure 2.5(a), to the leftmost quantifier’s try in
edge, and set that edge to reversing from G0 to G1. Similarly, we attach
another free edge terminator to the leftmost quantifier’s satisfied out edge;
this is the target edge e that will reverse just when the QBF formula is
true.

Finally, we must have a way to connect the rightmost quantifier and
CNF outputs together, and feed the result into the rightmost quantifier’s
satisfied in input. This is done with the graph shown in Figure 4.5(b). The
rightmost quantifier’s try out edge connects to the try in edge here, and
its satisfied in edge connects to the satisfied out edge here. The output of
the CNF formula’s final AND′ gadget connects to formula in, and its return
output edge connects to formula return.

If the formula is ever satisfied by the currently activated variable as-
signment from all the quantifiers, then a signal will arrive at formula in and
exit at formula return, leaving edge M bouncing every step. Then, when the
last quantifier activates its try out, the signal arriving at try in will be in
phase with M, propagating the signal on to the last quantifier’s satisfied in
input, where it will be processed as described above. If the formula is not
satisfied, M will still be pointing up, and the try in signal will just bounce
back into the last quantifier.

AND′ Ordering. As mentioned above, we assume that input 1 of an AND′ will
always activate, if at all, before input 2. However, in a general quantified
CNF formula, it is not the case that the clauses need be satisfied in any
predetermined order, if the variables are assigned in the order quantified.
To solve this problem, we modify the circuit described above as follows. We
protect input 2 of every AND′ a1 in the original circuit with an additional
AND′ a2, so that the original input 2 signal now connects to a2’s input 1,
and a2’s output connects to a1’s input 2.

Then, the rightmost quantifier’s try out edge, instead of connecting di-
rectly to the merge gadget shown in Figure 4.5(b), first threads through
every newly introduced AND′ input 2 pathway, and then from there con-
nects to the merge gadget. (We make sure that the introduced pathways
are the right lengths to satisfy the timing rule.) Thus, as the variable values
are set, when an AND′ would have its second input arrive before the first
in the original circuit, in the modified circuit the second input’s activation
is deferred until its first input has had a chance to arrive. This way, we
can ensure that the inputs arrive in the right order, by threading the path
from the final try out appropriately.

Theorem 4.3. DCL is PSPACE-complete.

�

�

�

�

�

�

�

�

4.2. Unbounded Games 51

(a) AND (b) OR

Figure 4.6. Basis vertices for DCL.

Proof: Given a quantified Boolean formula F , we construct DCL graph
G0 and edge set R0 as described above. The individual gadgets’ correct
operation is explicitly shown in Appendix C. The leftmost quantifier’s
satisfied out edge will eventually reverse if and only if F is true. This shows
that DCL is PSPACE-hard.

DCL is also clearly in PSPACE: a simple, constant-space deterministic
algorithm executes each deterministic step of the graph, and detects when
the target edge reverses. �

4.2.2 Restricted Problem

For reductions from DCL to other simulations, we need to strengthen The-
orem 4.3 to apply to planar graphs that use a restricted set of vertex types.
(We do not present any DCL reductions in this book; however, an applica-
tion of DCL to evolutionary graph theory is currently in preparation.)

Theorem 4.4. DCL is PSPACE-complete, even for planar graphs using only
the vertex types shown in Figure 4.6.

Proof: First, we convert the constructed graph G in the above reduction to
an equivalent graph G′ that uses only ANDs and ORs, as follows. Replace
every edge with a sequence of four new edges: each blue edge is replaced
by a chain of four blue edges; each red edge is replaced with a chain of
four edges colored red, blue, blue, and red. However, wherever there is a
red-red vertex in G, use a blue edge at those endpoints of the new chains,
rather than red. That is, red-red becomes a chain red, blue, blue, blue,
blue, blue, blue, red. The new graph has blue-blue and red-blue vertices,
but no red-red vertices. For the blue-blue vertices, use the technique of
Section 2.3: attach a constrained loose blue edge. This edge will perma-
nently point away from the vertex, and thus the behavior will be identical
to that at an actual blue-blue vertex. For the red-blue vertices, again use

�

�

�

�

�

�

�

�

52 4. Zero-Player Games (Simulations)

A B

C

D

Figure 4.7. DCL crossover gadget.

the subgraph given in Section 2.3. Here, we must be careful with timing.
The two red edges that provide the extra inputs to the red-blue vertices
(see Figure 2.4) will “bounce” each turn, as long as the blue edge is directed
inward. However, we can easily arrange for the phase of the bounce to be
such that whenever a signal arrives on the incoming red edge, the extra
edge will also point into the vertex. This is because such reversals must
always occur on a global odd time step.

Next we must make the graph planar. The gadget shown in Figure 4.7
(which is equivalent to the normal “half-crossover” gadget (Figure 2.2(b)),
with appropriate initial orientations and phases) shows how to cross signals
in DCL. (The gadget must be padded with extra edges to satisfy the timing
constraints.) As shown in Appendix C, a signal arriving at edge A will exit
via B, and likewise for C and D. The sequence A to B, C to D also works,
as do reverses of all these sequences. However, one sequence that does not
work as desired is the following: C to D, A to B. After a C to D traversal, a
signal arriving at A exits at C instead of B.

This limitation will not matter for our application, however; all cross-
ings in the above construction are of the form that one edge will always be
activated first, and the second, if activated, will deactivate before the first.
This may be verified for the crossings within the gadgets by examining the
activation sequences in Appendix C. For the other crossings, within the
CNF logic, the global pattern of activation ensures that a pathway is never
deactivated until any pathways it has activated are first deactivated.

To see that a particular crossover input always arrives first when two
eventually arrive within the CNF logic, note that there are two types of such
crossings: variable outputs crossing on their way to OR′ inputs, and extra
crossings created by the AND′-ordering pathway discussed above. (The OR′

outputs do not need to cross on their way to the AND′ inputs, because in

�

�

�

�

�

�

�

�

4.2. Unbounded Games 53

CNF this part of the network is just a tree.) In the first case, whenever
both crossover inputs are active, the one from the earlier variable in the
quantification sequence clearly must have arrived first. In the second case,
the crossover input from the AND′-ordering pathway must always arrive
after the input from the path it is crossing.

Everywhere edges cross in the original construction, we replace that
crossing pair by a crossover gadget, suitably padded with extra edges to
satisfy the timing requirements. We can easily ensure that it takes time 1
mod 4 to traverse a crossover in either direction; this guarantees that the
gadget timing will be insensitive to the replacement. �

4.2.3 Efficient Reversible Computation

Ordinary computers are not reversible. As a result, the information losses
that are constantly occurring in an ordinary computer result in an increase
in entropy, manifested as heat. This is known as Landauer’s Principle:
every bit of lost information results in a dissipation of kT ln 2 joules of
energy [112] (where k is Boltzmann’s constant). Thus, as computers per-
form more operations per second, they require more power, and dissipate
more heat. This seems obvious. However, it is theoretically possible to
build a reversible computer, in which all of the atomic steps, except for
recording desired output, are reversible [6], and dissipate arbitrarily little
heat. Reversible computing is an active area of research (see, e.g., [61]),
with many engineering challenges, and potential for dramatic increases in
effective computing power over conventional computers.

Deterministic Constraint Logic represents a new style of reversible com-
putation, which could potentially have practical application. It could be
that the DCL deterministic edge-reversal rule is possible to implement ef-
fectively on a microscopic, perhaps molecular, level; certainly, the basic
mechanism of switching edges between two states is suggestive of a simple
physical system with two energy states.

As mentioned earlier, the construction showing DCL PSPACE-complete
is not useful from a practical standpoint, because it involves an exponential
slowdown in the reduction from Turing machine to QBF formula to DCL
process. However, it is possible to build conventional kinds of reversible
computing elements from DCL components. Figure 4.8(a) shows a Fredkin
gate [63]. This gate has the property that a signal arriving on edge A, B, or
C will be propagated to D, E, or F, respectively, but A and B in combination
will activate D and F, and A and C in combination will activate D and E.
Effectively, it is a “controlled switch” gate. It is also possible to directly
implement a reversible dual-rail logic, as shown in Figure 4.8(b). Real
computers built from such DCL gadgets would still require some localized
nonreversible components, as would any usable reversible computer, which

�

�

�

�

�

�

�

�

54 4. Zero-Player Games (Simulations)

AB C

DE F

(a) Fredkin gate

x y

y

yx

x x ∧ y x ∨ y

(b) Dual-rail logic

Figure 4.8. DCL reversible computation gadgets.

is why these gadgets were not the basis for the PSPACE-completeness
proof.

�

�

�

�

�

�

�

�

5

One-Player Games
(Puzzles)

In this chapter we present the definitions and complexity proofs for Nonde-
terministic Constraint Logic, both the bounded and unbounded varieties.

Complexity Background. A one-player game is a puzzle: one player makes a
series of moves, trying to accomplish some goal. For example, in a sliding-
block puzzle, the goal could be to get a particular block to a particular
location. We use the terms “puzzle” and “one-player game” interchange-
ably. For puzzles, the generic forced-win decision question—“does player
X have a forced win?”—becomes “is this puzzle solvable?”

There are many existing complexity results for puzzles. Often puzzles
are NP-complete; Sudoku [175] and Peg Solitaire [168] are popular exam-
ples. Unbounded games, such as Rush Hour [56] and Sokoban [33], can be
PSPACE-complete.

A puzzle is a natural model of nondeterministic computation: for each
move, there is a choice. If the choices are all correct, then the puzzle is
solved (if it is solvable). This is how nondeterministic Turing machines
compute as well: they “guess” the next transition, “trying” to find an
accepting computation history.

Constraint Logic. The one-player version of constraint logic is called Nonde-
terministic Constraint Logic (NCL). The rules are simply that on his turn,
the player may reverse any edge resulting in a legal configuration, and the
decision question is whether a given edge may ever be reversed. For the
bounded version, we allow each edge to reverse at most once.

55

�

�

�

�

�

�

�

�

56 5. One-Player Games (Puzzles)

The unbounded version of NCL was inspired by Flake and Baum’s
“Generalized Rush Hour Logic” (GRL) [56], and in fact GRL incorpo-
rates gadgets with the same properties as our AND and OR vertices. GRL
also requires a crossover gadget, however, which NCL does not—in the ap-
proach we take for showing PSPACE-completeness, it is possible to cross
signals using merely AND and OR vertices. GRL uses a different notion
of signal (dual-rail logic), for which this approach is not possible. The
inherent flavor of GRL is also quite different from that of NCL; at a
conceptual level, GRL requires inverters, and so is not monotone. How-
ever, formally it is the case that NCL is merely GRL reformulated as
a graph problem, without a crossover gadget, and Flake and Baum de-
serve the credit for the original PSPACE-completeness proof. We take a
different, simpler approach for showing PSPACE-completeness, reducing
from QBF. Flake and Baum explicitly build a space-bounded, reversible
computer.

Due to the simplicity of NCL, and the abundance of puzzles with re-
versible moves, it is often straightforward to find reductions showing various
puzzles PSPACE-hard. This is the largest class of reductions presented in
Part II.

5.1 Bounded Games

Bounded one-player games are puzzles in which there is a polynomial bound
(typically linear) on the number of moves that can be made. Usually there
is some resource that is used up. For example, in a game of Sudoku, the
grid eventually fills up with numbers, and then either the puzzle is solved
or it is not. In Peg Solitaire, each jump removes one peg, until eventually
no more jumps can be made.

The nondeterminism of these games, plus the polynomial bound, means
that they are in NP—a nondeterministically guessed solution can be checked
for validity in polynomial time.

Bounded Nondeterministic Constraint Logic (Bounded NCL) is for-
mally defined as follows:

BOUNDED NONDETERMINISTIC CONSTRAINT LOGIC (BOUNDED
NCL)

Instance: Constraint graph G, edge e in G.
Question: Is there a sequence of moves on G that eventually

reverses e, such that each edge is reversed at most once?

�

�

�

�

�

�

�

�

5.1. Bounded Games 57

A Bounded NCL graph abstracts the essence of a bounded puzzle; it also
serves as a concise model of polynomial-time-bounded nondeterministic
computation.

Bounded NCL reverts essentially to Satisfiability (SAT), which is NP-
complete. However, the standard constraint-logic crossover gadget still
works, which makes reductions from Bounded NCL to bounded puzzles
much more straightforward than direct reductions from SAT. Planar SAT
is also NP-complete [115], but that result is not generally useful for puzzle
reductions. For Planar SAT, the graph corresponding to the formula is
a planar bipartite graph, with vertex nodes and clause nodes, plus a loop
connecting the vertex nodes. The clause nodes are not connected, however.
In contrast, a Bounded NCL graph corresponding to a Boolean formula
feeds all the AND outputs into one final AND; reversing that final AND’s
output edge is possible just when the formula is satisfiable. Typically, this
is a critical structure for puzzle reductions, because the victory condition
is usually a local property (such as moving a black to a particular place)
rather than a distributed property of the entire configuration. Thus, puzzle
reductions typically require the construction of a crossover gadget, even
though Planar SAT is NP-complete, and the planarity result for NCL is
thus stronger in a sense than that for SAT.

5.1.1 NP-completeness

We reduce 3SAT (Section B.5.2) to Bounded NCL to show NP-hardness.
Given an instance of 3SAT (a Boolean formula F in 3CNF), we construct
a constraint graph G with an edge e that can be eventually reversed just
when F is satisfiable.

Constructing G is straightforward. For each variable in F we have
one CHOICE (red-red-red) vertex; for each OR in F we have an OR vertex;
for each AND in F we have an AND vertex. At each CHOICE, one output
corresponds to the asserted form of the corresponding variable; the other
corresponds to the negated form. The CHOICE outputs are connected to the
OR inputs, using FANOUTs as needed. The outputs of the ORs are connected
to the inputs of the ANDs. Finally, there will be one AND whose output
corresponds to the truth of F . A sample graph representing a formula is
shown in Figure 5.1.

Theorem 5.1. Bounded NCL is NP-complete.

Proof: Given an instance of 3SAT (a Boolean formula F in 3CNF), we
construct graph G as described above.

It is clear that if F is satisfiable, the CHOICE vertex edges may be
reversed in correspondence with a satisfying assignment, such that the
output edge may eventually be reversed. Similarly, if the output edge

�

�

�

�

�

�

�

�

58 5. One-Player Games (Puzzles)

x y zw
w

x y
z

(w ∨ x ∨ y) (w ∨ x ∨ z)

(w ∨ x ∨ y) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z)

(x ∨ y ∨ z)

Figure 5.1. A constraint graph corresponding to the formula (w∨x∨y)∧ (w∨x∨z)
∧(x ∨ y ∨ z). Edges corresponding to literals, clauses, and the entire formula are
labeled.

may be reversed, then a satisfying assignment may be read directly off the
CHOICE vertex outputs.

Bounded NCL is also clearly in NP. Since each edge can reverse at most
once, there can only be polynomially many moves in any valid solution;
therefore, we can guess a solution and verify it in polynomial time. �

5.1.2 Restricted Problem

For reductions from Bounded NCL to other games, we need to strengthen
Theorem 5.1 to apply to planar graphs that use a restricted set of vertex
types. As mentioned above, the result that Planar SAT is NP-complete
is not useful to us for either constraint graphs or actual games. But it is
possible to build a crossover gadget within NCL.

Theorem 5.2. Bounded NCL is NP-complete, even for planar graphs using
only the vertex types shown in Figure 5.2.

�

�

�

�

�

�

�

�

5.1. Bounded Games 59

(a) CHOICE (b) AND (c) FANOUT (d) OR

Figure 5.2. Basis vertices for Bounded NCL.

Figure 5.3. A half-crossover gadget that uses CHOICE vertices. Compare to
Figure 2.2(b).

Proof: In addition to the vertices shown in Figure 5.2, the reduction above
uses only red-blue vertices and loose edges. We use the standard conversion
techniques of Section 2.3 to eliminate these.

For planarity, the standard crossover gadget shown in Section 2.2 (on
page 20) is sufficient. Rather than give an explicit proof of correctness here
and then a more general proof for the unbounded case below, we merely
point out that the proof for the unbounded case, of Lemma 5.10, also ap-
plies to the bounded case; in the described sequences, no edge need ever
reverse more than once. There is one subtlety: the required initial edge ori-
entations of the half-crossover gadget produce an AND-vertex subtype that
does not appear in Figure 5.2. However, the half-crossover can actually be
simplified by using CHOICE vertices, as shown in Figure 5.3. Here we have
simply used the CHOICE-vertex substitution from Section 2.3. This version
of the half-crossover (when we further translate the red-blue vertices) does
only use the permitted vertices. �

�

�

�

�

�

�

�

�

60 5. One-Player Games (Puzzles)

5.1.3 Variant Problems

It will turn out to be useful to reduce from graphs that have the property
that only a single edge can initially reverse. For this, we will have to
explicitly add loose edges and red-blue vertices to the gadget set to reduce
from. (As explained in Section 2.3, this generally costs nothing in actual
game reductions.) Then, we simply take a single loose edge and split it
enough times to reach all the free CHOICE inputs in the reduction.

Theorem 5.3. Theorem 5.2 remains true when the input graph additionally
uses red-blue vertices, and a single loose edge, which is the only edge that
may initially reverse.

Proof: As above. �

A related problem is Constraint Graph Satisfiability:

CONSTRAINT GRAPH SATISFIABILITY

Instance: Planar constraint graph G using only AND and OR

vertices.
Question: Does G have a configuration that satisfies all the con-

straints?

Properly, this problem is not a constraint-logic game, because the moves
(assignments of edge orientations) are not reversals from one legal config-
uration to another. But it is similar in spirit and can prove useful for
reductions.

Theorem 5.4. Constraint Graph Satisfiability is NP-complete.

Proof: We use essentially the same reduction as in Theorem 5.1; we change
the graph slightly by adding a constrained edge terminator (Section 2.3)
to the output edge. Then, if the formula is satisfiable, there is clearly a
legal graph configuration, because there is a sequence of moves directing
the output edge outward. If the formula is not satisfiable, then there is no
legal graph configuration: the constrained edge terminator ensures that the
output edge is directed outward from its final AND, which is only possible
if the CHOICE outputs encode a satisfying assignment.

The standard conversion techniques of Section 2.3 make the graph pla-
nar, and convert the CHOICE vertices in the reduction to (unoriented) ANDs
and ORs. Again, the problem is clearly in NP: we can check consistency in
polynomial time. �

Note that for Constraint Graph Satisfiability, unlike proper Bounded
NCL, only two types of vertices are needed.

�

�

�

�

�

�

�

�

5.2. Unbounded Games 61

satisfied

satisfied in

try out

satisfied out

try in

CNF logic

Figure 5.4. Schematic of the reduction from Quantified Boolean Formulas to
NCL.

5.2 Unbounded Games

Unbounded one-player games are puzzles in which there is no restriction on
the number of moves that can be made. Typically the moves are reversible.
For example, in a sliding-block puzzle, the pieces may be slid around in the
box indefinitely, and a block once slid can always be immediately slid back
to its previous position.

Since there is no polynomial bound on the number of moves required
to solve the puzzle, it is no longer possible to verify a proposed solution in
polynomial time—the solution could have exponentially many moves. In-
deed, unbounded puzzles are often PSPACE-complete. It is clear that such
puzzles can be solved in nondeterministic polynomial space (NPSPACE),
by nondeterministically guessing a satisfying sequence of moves; the only
state required is the current configuration and the current move. But Sav-
itch’s Theorem [146] says that PSPACE = NPSPACE, so these puzzles can
also be solved using deterministic polynomial space.

Nondeterministic Constraint Logic (NCL) is formally defined as follows:

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

Instance: Constraint graph G0, edge e in G.
Question: Is there a sequence of moves on G that eventually

reverses e?

5.2.1 PSPACE-completeness

We show that NCL is PSPACE-hard by giving a reduction from Quantified
Boolean Formulas (QBF; see Section B.5.3). First we give an overview of
the reduction and the necessary gadgets; then we analyze the gadgets’

�

�

�

�

�

�

�

�

62 5. One-Player Games (Puzzles)

properties. The reduction is illustrated schematically in Figure 5.4. We
translate a given quantified Boolean formula F in CNF into a constraint
graph, so that a particular edge in the graph may be reversed if and only if
F is true. The reduction is similar to the one for Deterministic Constraint
Logic, in Chapter 4, but a bit simpler.

One way to determine the truth of a quantified Boolean formula is as fol-
lows: Consider the initial quantifier in the formula. Assign its variable first
to false and then to true, and for each assignment, recursively ask whether
the remaining formula is true under that assignment. For an existential
quantifier, return true if either assignment succeeds; for a universal quan-
tifier, return true only if both assignments succeed. For the base case, all
variables are assigned, and we only need to test whether the CNF formula
is true under the current assignment.

This is essentially the approach used in the reduction. We define quan-
tifier gadgets, which are connected together into a string, one per quantifier
in the formula, as in Figure 5.5(a). The rightmost edges of one quantifier
are identified with the leftmost edges of the next. (This is different from
the corresponding reduction in Chapter 4, where the edges are distinct and
join at a blue-blue vertex.) Each quantifier gadget outputs a pair of edges
corresponding to a variable assignment. These edges feed into the CNF
network, which corresponds to the unquantified formula. The output from
the CNF network connects to the rightmost quantifier gadget; the output
of the overall graph is the satisfied out edge from the leftmost quantifier
gadget.

Quantifier Gadgets. When a quantifier gadget is activated, all quantifier
gadgets to its left have fixed particular variable assignments, and only this
quantifier gadget and those to the right are free to change their variable
assignments. The activated quantifier gadget can declare itself satisfied if
and only if the Boolean formula read from here to the right is true given
the variable assignments on the left.

A quantifier gadget is activated by directing its try in edge inward. Its
try out edge is enabled to be directed outward only if try in is directed
inward, and its variable state is locked. A quantifier gadget may nondeter-
ministically “choose” a variable assignment, and recursively “try” the rest
of the formula under that assignment and those that are locked by quanti-
fiers to its left. The variable assignment is represented by two output edges
(x and x), only one of which may be directed outward. For satisfied out to
be directed outward, indicating that the formula from this quantifier on is
currently satisfied, satisfied in must be directed inward.

We construct both existential- and universal-quantifier gadgets, de-
scribed below, satisfying the above requirements.

�

�

�

�

�

�

�

�

5.2. Unbounded Games 63

(a) Quantifier gadget connections

(b) Part of a CNF formula graph

Figure 5.5. QBF wiring.

Lemma 5.5. A quantifier gadget’s satisfied in edge may not be directed inward
unless its try out edge is directed outward.

Proof: By induction. The condition is explicitly satisfied in the construc-
tion for the rightmost quantifier gadget, and each quantifier gadget re-
quires try in to be directed inward before try out is directed outward, and
requires satisfied in to be directed inward before satisfied out is directed
outward. �

CNF Formula. In order to evaluate the formula for a particular variable
assignment, we construct an AND/OR subgraph corresponding to the un-
quantified part of the formula, fed inputs from the variable gadgets, and
feeding into the satisfied in edge of the rightmost quantifier gadget, as in
Figure 5.4. The satisfied in edge of the rightmost quantifier gadget is fur-
ther protected by an AND vertex, so it may be directed inward only if try
out is directed outward and the formula is currently satisfied.

Because the formula is in conjunctive normal form, and we have edges
representing both literal forms of each variable (true and false), we do not
need an inverter for this construction. Part of such a graph is shown in
Figure 5.5(b). (Also see Figure 5.1.)

�

�

�

�

�

�

�

�

64 5. One-Player Games (Puzzles)

A

B
C

L

(a) Locked, A active

A

B
C

L

(b) Unlocked, A active

A

B
C

L

(c) Unlocked, B active

A

B
C

L

(d) Locked, B active

Figure 5.6. Latch gadget, transitioning from state A to state B.

Lemma 5.6. The satisfied out edge of a CNF subgraph may be directed out-
ward if and only if its corresponding formula is satisfied by the variable
assignments on its input edge orientations.

Proof: Definition of AND and OR vertices, and the CNF construction de-
scribed. �

Latch Gadget. Internally, the quantifier gadgets use latch gadgets, shown
in Figure 5.6. This subgraph effectively stores a bit of information, whose
state can be locked or unlocked. With edge L directed left, one of the other
two OR edges must be directed inward, preventing its output red edge from
pointing out. The orientation of edge C is fixed in this state. When L is
directed inward, the other OR edges may be directed outward, and the red
edges are free to reverse. Then when the latch is locked again, by directing
L left, the state has been switched.

Existential Quantifier. An existential-quantifier gadget (Figure 5.7(a)) uses
a latch subgraph to represent its variable, and beyond this latch has the
minimum structure needed to meet the definition of a quantifier gadget.
If the formula is true under some assignment of an existentially quantified
variable, then its quantifier gadget may lock the latch in the corresponding
state, enabling try out to activate, and recursively receive the satisfied in sig-
nal. Receiving the satisfied in signal simultaneously passes on the satisfied
out signal to the quantifier on the left.

Here we exploit the nondeterminism in the model to choose the correct
variable assignment.

Universal Quantifier. A universal-quantifier gadget is more complicated (Fig-
ure 5.7(b)). It may only direct satisfied out leftward if the formula is true

�

�

�

�

�

�

�

�

5.2. Unbounded Games 65

xx

try in

satisfied out satisfied in

try out

(a) Existential quantifier

x x

try in

satisfied out satisfied in

try out

A

B

C
D

E F

L

(b) Universal quantifier

Figure 5.7. Quantifier gadgets.

under both variable assignments. Again we use a latch for the variable
state; this time we split the variable outputs, so they can be used inter-
nally. In addition, we use a latch internally, as a memory bit to record that
one variable assignment has been successfully tried. With this bit set, if
the other assignment is then successfully tried, satisfied out is allowed to
point out.

Lemma 5.7. A universal-quantifier gadget may direct its satisfied out edge
outward if and only if at one time its satisfied in edge is directed inward
while its variable state is locked in the false (x) assignment, and at a later
time the satisfied in edge is directed inward while its variable state is locked
in the true (x) assignment, with try in directed inward throughout.

�

�

�

�

�

�

�

�

66 5. One-Player Games (Puzzles)

Proof: First we argue that, with try in directed outward, edge E must point
right. The try out edge must be directed inward in this case, so by Lemma
5.5, satisfied in must be directed outward. As a consequence, F and thus L
must point right. On the other hand, C must point up and thus D must
point left. Therefore, E is forced to point right in order to satisfy its OR

vertex.
Suppose that try in is directed inward, the variable is locked in the

false state (edge A points right), and satisfied in is directed inward. These
conditions allow the internal latch to be unlocked, by directing edge L left.
With the latch unlocked, edge E is free to point left. The latch may then
lock again, leaving E pointing left (because C may now point down, allowing
D to point right). Now, the entire edge reversal sequence that occurred
between directing try out outward and unlocking the internal latch may be
reversed. After try out has deactivated, the variable may be unlocked, and
change state. Then, suppose that satisfied in activates with the variable
locked in the true state (edge B points right). This condition, along with
edge E pointing left, is both necessary and sufficient to direct satisfied out
outward. �

The behavior of both types of quantifiers is captured with the following
property:

Lemma 5.8. A quantifier gadget may direct its satisfied out edge out if and
only if its try in edge is directed in, and the formula read from the corre-
sponding quantifier to the right is true given the variable assignments that
are fixed by the quantifier gadgets to the left.

Proof: By induction. By Lemmas 5.5 and 5.7, if a quantifier gadget’s sat-
isfied in edge is directed inward and the above condition is inductively
assumed, then its satisfied out edge may be directed outward only if the
condition is true for this quantifier gadget as well. For the rightmost quan-
tifier gadget, the precondition is explicitly satisfied by Lemma 5.6 and the
construction in Figure 5.4. �

Theorem 5.9. NCL is PSPACE-complete.

Proof: The graph is easily seen to have a legal configuration with the quan-
tifier try in edges all directed leftward; this is the input graph G. The left-
most quantifier’s try in edge may freely be directed rightward to activate
the quantifier. By Lemma 5.8, the satisfied out edge of the leftmost quan-
tifier gadget may be directed leftward if and only if F is true. Therefore,
deciding whether that edge may reverse also decides the QBF problem, so
NCL is PSPACE-hard.

NCL is in PSPACE because the state of the constraint graph can be
described in a linear number of bits, specifying the direction of each edge,

�

�

�

�

�

�

�

�

5.2. Unbounded Games 67

A

B

C DE

F

G

H

I

J

K

L

M

(a) Crossover

A

B

C D

E

F

G

H
I

J

K

L

(b) Half-crossover

Figure 5.8. Planar crossover gadgets.

and the list of possible moves from any state can be computed in polynomial
time. Thus we can nondeterministically traverse the state space, at each
step nondeterministically choosing a move to make, and maintaining the
current state but not the previously visited states. Savitch’s Theorem
[146] says that this NPSPACE algorithm can be converted into a PSPACE
algorithm. �

5.2.2 Restricted Problem

For reductions from NCL to other games, we need to strengthen Theo-
rem 5.9 to apply to planar graphs that use a restricted set of vertex types.
We begin by showing how to cross edges. This is the basic constraint-logic
crossover proof, of which all the others are simple variants.

Figure 5.8(a) (which is the same as Figure 2.2(a)) illustrates the re-
duction. In addition to AND and OR vertices, this subgraph contains
red-red-red-red vertices; these need any two edges to be directed inward
to satisfy the inflow constraint of 2.

Lemma 5.10. In a crossover subgraph, each of the edges A and B may face
outward if and only if the other faces inward, and each of the edges C and
D may face outward if and only if the other faces inward.

Proof: We show that edge B can face down if and only if A does, and D can
face right if and only if C does. Then by symmetry, the reverse relationships
also hold.

Suppose A faces up, and assume without loss of generality that E faces
left. Then so do F, G, and H. Because H and F face left, I faces up. Because
G and I face up, K faces right, so B must face up. Next, suppose D faces
right, and assume without loss of generality that I faces down. Then J and
F must face right, and therefore so must E. An identical argument shows
that if E faces right, then so does C.

�

�

�

�

�

�

�

�

68 5. One-Player Games (Puzzles)

Suppose A faces down. Then H may face right, I may face down, and
K may face left (because E and D may not face away from each other).
Symmetrically, M may face right; therefore B may face down. Next, suppose
D faces left, and assume without loss of generality that B faces up. Then J
and L may face left, and K may face right. Therefore G and I may face up.
Because I and J may face up, F may face left; therefore, E may face left. An
identical argument shows that C may also face left. �

Next, we show how to represent the degree-4 vertices in Figure 5.8(a)
with equivalent subgraphs using only ANDs and ORs. The necessary sub-
graph is shown in Figure 5.8(b). (This is the same subgraph as Deter-
ministic Constraint Logic crossover gadget (Figure 4.7), but the different
rules mean that a more complex crossover is necessary for NCL.) Note that
red-blue vertices are necessary when substituting this subgraph into the
previous one; the terminal edges in Figure 5.8(b) are blue, but it replaces
red-red-red-red vertices. We must be careful to keep the graph planar when
performing the red-blue reduction shown in Figure 2.4. But this is easy;
we pair up edges A and D, and edges B and C.

Lemma 5.11. In a half-crossover gadget, at least two of the edges A, B, C,
and D must face inward; any two may face outward.

Proof: Suppose that three edges face outward. Without loss of generality,
assume that they include A and C. Then E and F must face left. This forces
H to face left and I and J to face up; then D must face left and K must face
right. But then B must face up, contradicting the assumption.

Next we must show that any two edges may face outward. We already
showed how to face A and C outward. A and B may face outward if C and
D face inward: we may face G and L down, F and K right, I and J up, and H
and E left, satisfying all vertex constraints. Also, C and D may face outward
if A and B face inward; the obvious orientations satisfy all the constraints.
By symmetry, all of the other cases are also possible. �

The crossover subgraph has blue free edges; what if we need to cross
red edges, or a red and a blue edge? For crossing red edges, we may attach
red-blue conversion subgraphs to the crossover subgraph in two pairs, as
we did for the half-crossover. We may avoid having to cross a red edge
and a blue edge, as follows: replace one of the blue edges with a blue-
red-blue edge sequence, using a dual red-blue conversion subgraph. Then
the original blue edge may be effectively crossed by crossing two red edges
instead.

Theorem 5.12. NCL is PSPACE-complete, even for planar graphs using
only the vertex types shown in Figure 5.9.

�

�

�

�

�

�

�

�

5.2. Unbounded Games 69

(a) AND (b) OR

Figure 5.9. Basis vertices for NCL.

A B

C

D
E

F

G

H

I

Figure 5.10. OR vertex made with protected-OR vertices.

Proof: Lemmas 5.10 and 5.11 show planarity. Any crossing edge pairs may
be replaced by the above constructions; a crossing edge may be reversed if
and only if a corresponding crossover edge (e.g., A or C) may be reversed.
We must also specify configurations in the replacement graph corresponding
to source configurations, but this is easy: pick any legal configuration of
the crossover subgraphs with matching crossover edges.

To show that AND and OR vertices are sufficient, we simply note that
the standard conversion techniques of Section 2.3 suffice to remove the
red-blue vertices and the free edges try in and satisfied out in Figure 5.4.�

5.2.3 Protected-OR Graphs

So far we have shown that NCL is PSPACE-complete for planar constraint
graphs using only AND and OR vertices. It is useful to make the conditions
required for PSPACE-completeness still weaker; this will make the puzzle
reductions in Chapter 9 simpler.

We call an OR vertex protected if there are two of its edges that, due
to global constraints, cannot simultaneously be directed inward. Intu-
itively, graphs with only protected ORs are easier to reduce to another
problem domain, since the corresponding OR gadgets need not function
correctly in all the cases that a true OR must. We can simulate an OR

vertex with a subgraph all of whose OR vertices are protected, as shown in
Figure 5.10.

�

�

�

�

�

�

�

�

70 5. One-Player Games (Puzzles)

Lemma 5.13. Edges A, B, and C in Figure 5.10 satisfy the same constraints
as an OR vertex; all ORs in this subgraph are protected.

Proof: Suppose that edges A and B are directed outward. Then D and F
must be directed away from E. Assume without loss of generality that E
points left. Then so must G; this forces H right and C down, as required.
Then, by pointing A, D, and E right, we can direct G right, H left, and C
up. Symmetrically, we can direct A and C out, and B in.

The two OR vertices shown in the subgraph are protected: edges I and
D cannot both be directed inward, due to the red edge they both touch;
similarly, G and F cannot both be directed inward. The red-blue conversion
subgraph (Figure 2.4) we need for the two red-blue vertices also contains
an OR vertex, but this is also protected. �

Theorem 5.14. Theorem 5.12 remains valid even when all of the OR vertices
in the input graph are protected.

Proof: Lemma 5.13. Any OR vertex may be replaced by the above construc-
tion; an OR edge may be reversed if and only if a corresponding subgraph
edge (A, B, or C) may be reversed. We must also specify configurations
in the replacement graph corresponding to source configurations: pick any
legal configuration of the subgraphs with matching edges. �

5.2.4 Configuration-to-Configuration Problem

Occasionally it will be desirable to reduce NCL to a problem in which
the goal is to achieve some particular total state, rather than an isolated
partial state. For example, in many sliding-block puzzles the goal is to
move a particular piece to a particular place, but in others it is to reach
some given complete configuration. One version of such a problem is the
Warehouseman’s Problem (Section 9.4).

For such problems, we show that an additional variant of NCL is hard.

Theorem 5.15. Theorem 5.14 remains valid when the decision question is
whether there is a sequence of moves on G that reaches a new state G′,
rather than reverses an edge e.

Proof: Instead of terminating satisfied out in Figure 5.4 with a free-edge
terminator, attach a latch gadget (Figure 5.6), with free-edge terminators
on its loose red edges. Then, it is possible to reach the initial state modified
so that only the latch state is reversed just when it is possible to reverse
satisfied out: first reverse satisfied out (by solving the QBF problem), un-
locking the latch; then reverse the latch state; then undo all the moves that
reversed satisfied out. �

�

�

�

�

�

�

�

�

6

Two-Player Games

In this chapter we present the definitions and complexity proofs for Two-
Player Constraint Logic, both the bounded and unbounded varieties.

Complexity Background. With two-player games, we are finally in territory
familiar to classical game theory and combinatorial game theory. Two-
player, perfect-information games are also the richest source of existing
hardness results for games. In a two-player game, players alternate mak-
ing moves, each trying to achieve some particular objective. The stan-
dard decision question is “does player X have a forced win from this
position?”

The earliest hardness results for two-player games were PSPACE-
completeness results for bounded games, beginning with Generalized Hex
[53], and continuing with several two-player versions of known NP-complete
problems [147]. Later, when the notion of alternating computation was
developed [22], there were tools to show unbounded two-player games
EXPTIME-complete. Chess [58], Go [143], and Checkers [145] then fell
in quick succession to these techniques (though all three reductions are
very complicated).

The connection between two-player games and computation is quite
manifest. Just as adding the concept of nondeterminism to deterministic
computation creates a new useful model of computation, adding an “extra
degree” of nondeterminism leads to the concept of alternating nondetermin-
ism, or alternation [22], discussed in Appendix B. Indeed, up to this point
it is clear that adding an extra degree of nondeterminism is like adding an

71

�

�

�

�

�

�

�

�

72 6. Two-Player Games

extra player in a game, and seems to raise the computational complexity of
the game, or the computational power of the model of computation. Unfor-
tunately this process does not generalize in the obvious way: simply adding
extra players beyond two does not alter the situation in any fundamental
way, from a computational-complexity standpoint. But later we will find
other ways to add computational power to games.

Alternation raises the complexity of bounded games from the one-
player complexity of NP-complete to PSPACE-complete, and of unbounded
games from the one-player complexity of PSPACE-complete to EXPTIME-
complete [157]. (These correspondences are clearer when expressed in terms
of alternating complexity classes: AP = PSPACE; APSPACE = EXP-
TIME.) Since it is not known whether P = NP or even PSPACE, with
two-player games we finally reach games that are provably intractable: P
�= EXPTIME [83]. In each case there is a natural game played on a Boolean
formula that is complete for the appropriate class. For bounded games the
game is equivalent to the Quantified Boolean Formulas problem: the “ex-
istential” and “universal” players take turns choosing assignments of suc-
cessive variables. The unbounded games are similar, except that variable
assignments can be changed back and forth multiple times.

Constraint Logic. For the two-player version of constraint logic—Two-Player
Constraint Logic (2CL)—we create different moves for the two players,
Black and White, by labeling each constraint graph edge as either Black
or White. (This is independent of the red/blue coloration, which is simply
a shorthand for edge weight.) Black (White) is allowed to reverse only
Black (White) edges. As before, a move must reverse exactly one edge and
result in a valid configuration. Each player has a target edge he is trying
to reverse.

6.1 Bounded Games

Bounded two-player games are games in which there is a polynomial bound
(typically linear) on the number of moves that can be made. As with
bounded puzzles, usually there is some resource that is used up. In Hex,
for example, each move fills a space on the board, and when all the spaces
are full, the game must be over. Similarly, in Amazons, on each move an
amazon must remove one of the spaces from the board. In Konane, each
move removes at least one stone. There are many other bounded two-player
games. In these games, when the resource is exhausted, the game cannot
continue.

Deciding such games can be no harder than PSPACE, because a Turing
machine using space polynomial in the board size can perform a depth-first

�

�

�

�

�

�

�

�

6.1. Bounded Games 73

search of the entire game tree, determining the winner. In general these
games are also PSPACE-hard. The canonical PSPACE-completegame is
simply Quantified Boolean Formulas (QBF). The question “does there exist
an x, such that for all y, there exists a z, such that . . . formula F is true” is
equivalent to the question of whether the first player can win the following
formula game: “Players take turns assigning truth values to a sequence of
variables. When they are finished, player one wins if formula F is true;
otherwise, player two wins.”

Bounded Two-Player Constraint Logic is the natural form of constraint
logic that corresponds to this type of game. It is formally defined as follows:

BOUNDED TWO-PLAYER CONSTRAINT LOGIC (BOUNDED 2CL)

Instance: Constraint graph G, partition of the edges of G into
sets B and W , and edges eB ∈ B, eW ∈W .

Question: Does White have a forced win in the following game?
Players White and Black alternately make moves on G.
White (Black) may only reverse edges in W (B). Each edge
may be reversed at most once. White (Black) wins (and the
game ends) if he ever reverses eW (eB).

6.1.1 PSPACE-completeness

Many variants of the basic QBF problem are also PSPACE-complete [147].
It will be most convenient to reduce one of these variants to Bounded 2CL
to show PSPACE-hardness, rather than reducing directly from the standard
form of QBF:

Gpos(POS CNF)

Instance: Monotone CNF formula A (that is, a CNF formula in
which there are no negated variables).

Question: Does Player I have a forced win in the following game?
Players I and II alternate choosing some variable of A that
has not yet been chosen. The game ends after all variables
of A have been chosen. Player I wins if and only if A is true
when all variables chosen by Player I are set to true and all
variables chosen by II are set to false.

The reduction from Gpos(POS CNF) to Bounded 2CL is similar to the
reduction from SAT to Bounded NCL in Section 5.1. There, the single

�

�

�

�

�

�

�

�

74 6. Two-Player Games

x y zw

(w ∨ x ∨ y)

(w ∨ x ∨ y) ∧ (w ∨ z) ∧ (x ∨ z)

(w ∨ z)

(x ∨ z)

White win

Black win

Figure 6.1. A constraint graph corresponding to the Gpos(POS CNF) formula
game (w ∨ x ∨ y) ∧ (w ∨ z) ∧ (x ∨ z). Edges corresponding to variables, clauses,
and the entire formula are labeled.

player is allowed to choose a variable assignment via a set of CHOICE ver-
tices. All we need do to adapt this reduction is replace the CHOICE vertices
with VARIABLE vertices, such that if White plays first in a variable vertex
the variable is true, and if Black plays first the variable is false. Then,
we attach White’s variable vertex outputs to the CNF formula inputs as
before; Black’s variable outputs are unused. The CNF formula consists
entirely of White edges. Black is given enough extra edges to ensure that
he will not run out of moves before White. White’s target edge is the
formula output, and Black’s is an arbitrary edge that is arranged to never
be reversible. A sample game graph corresponding to a formula game is
shown in Figure 6.1; compare to Figure 5.1. (The extra Black edges are not
shown.) Note that the edges are shown filled with the color that controls
them.

The game breaks down into two phases. In the first phase, players
alternate playing in variable vertices, until all have been played in. Then,

�

�

�

�

�

�

�

�

6.1. Bounded Games 75

(a) CHOICE (b) AND (c) FANOUT (d) OR (e) VARIABLE

Figure 6.2. Basis vertices for Bounded 2CL.

White will win if he has chosen a set of variables satisfying the formula.
Since the formula is monotone, it is exactly the variables assigned to be
true, that is, the ones White chose, that determine whether the formula is
satisfied. Black’s play is irrelevant after this.

Theorem 6.1. Bounded 2CL is PSPACE-complete.

Proof: Reduction from Gpos(POS CNF), as described above. If Player I
can win the formula game, then White can win the corresponding Bounded
2CL game, by playing the formula game on the edges, and then reversing
the necessary remaining edges to reach the target edge. If Player I cannot
win the formula game, then White cannot play so as to make a set of
variables true that will satisfy the formula, and thus he cannot reverse the
target edge. Neither player can benefit from playing outside the variable
vertices until all variables have been selected, because this can only allow
the opponent to select an extra variable.

This shows that Bounded 2CL is PSPACE-hard. It is also clearly in
PSPACE: since the game can only last as many moves as there are edges,
a simple depth-first traversal of the game tree suffices to determine the
winner from any position. �

6.1.2 Restricted Problem

For reductions from Bounded 2CL to other games, we need to strengthen
Theorem 6.1 to apply to planar graphs that use a restricted set of vertex
types. Indeed, the above reduction is almost trivial, and the true benefit
of using Bounded 2CL for game reductions, rather than simply using one
of the many QBF variants, is that when reducing from Bounded 2CL one
does not have to build a crossover gadget. The bounded two-player games
addressed in Part II have relatively straightforward reductions for this rea-
son. The complexity of Amazons remained open for several years, despite
some effort by the game complexity community.

�

�

�

�

�

�

�

�

76 6. Two-Player Games

Theorem 6.2. Bounded 2CL is PSPACE-complete, even for planar graphs
using only the vertex types shown in Figure 6.2.

Proof: For planarity, the crossover gadget presented in Section 5.2.2 is
again sufficient. Note that no Black edges ever cross; therefore, all crossovers
are monochrome, and essentially one-player crossovers.

For the vertex types, apart from VARIABLE vertices, the reduction in
Section 6.1.1 uses the same types of vertex as that in Section 5.1.1, and
the same vertex substitutions work. (Note that while the CHOICE vertex
does not occur directly in the present reduction, it does occur inside the
crossover gadget, as described in Section 5.1.1.) �

6.2 Unbounded Games

Unbounded two-player games are games in which there is no restriction on
the number of moves that can be made. Typically (but not always) the
moves are reversible. Examples include the classic games Chess, Checkers,
and Go. Some moves in each of these games are not reversible: pawn
movement, castling, capturing, and promoting, in Chess; normal piece
movement, capturing, and kinging in Checkers; and, actually, every move
in Go. Go is an interesting case, because at first sight it appears to be
a bounded game: every move places a stone, and when the board is full
the game is over. However, capturing removes stones from the board, and
reopens the spaces they occupied. Each of these games is EXPTIME-
complete [58, 143,145].1

Indeed, there are “proofs” that Go is PSPACE-complete, including one
by Papadimitriou [132, pages 462–469]. Papadimitriou does not make the
mistake of thinking that Go is a bounded game, however; instead, he con-
siders a modified version that is bounded. In fact, Go’s peculiarities, com-
bined with the extreme simplicity of the rules, make it worthy of extra
study from a complexity standpoint.

The removal of a polynomial bound on the length of the game means
that it is no longer possible to perform a complete search of the game tree
using polynomial space, so the PSPACE upper bound no longer applies. In
general, two-player games of perfect information are EXPTIME-complete
[157].

Two-Player Constraint Logic (2CL) is the form of constraint logic that
corresponds to this type of game. It is formally defined as follows:

1For Go, the result is only for Japanese rules. See Section 6.3.

�

�

�

�

�

�

�

�

6.2. Unbounded Games 77

TWO-PLAYER CONSTRAINT LOGIC (2CL)

Instance: AND/OR constraint graph G, partition of the edges of
G into sets B and W , and edges eB ∈ B, eW ∈W .

Question: Does White have a forced win in the following game?
Players White and Black alternately make moves on G.
White (Black) may only reverse edges in W (B). White
(Black) wins if he ever reverses eW (eB).

6.2.1 EXPTIME-completeness

To show that 2CL is EXPTIME-hard, we reduce from one of the several
Boolean formula games that were shown to be EXPTIME-complete by
Stockmeyer and Chandra [157]:

G6

Instance: CNF Boolean formula F in variables X ∪ Y , (X ∪ Y)
assignment α.

Question: Does Player I have a forced win in the following game?
Players I and II take turns. Player I (II) moves by changing
at most one variable in X (Y); passing is allowed. Player I
wins if F ever becomes true.

Note that there is no provision for Player II to ever win; the most he can
hope to accomplish is a draw, by preventing Player I from ever winning.
But this will not matter to us, because the relevant decision question for
2CL is simply whether White can force a win.

Reduction. The essential elements of the reduction from G6 to 2CL are
shown in Figure 6.3. This figure shows a White variable gadget and asso-
ciated circuitry; a Black variable gadget is identical except that the edge
marked variable is then black instead of white. The left side of the gadget is
omitted; it is the same as the right side. The state of the variable depends
on whether the variable edge is directed left or right, enabling White to
reverse either the false or the true edge (and thus lock the variable edge
into place).

The basic idea of the reduction is the same as for Bounded 2CL: the
players should play a formula game on the variables, and then if White can
win the formula game, he can then reverse a sequence of edges leading into
the formula, ending in his target edge. In this case, however, the reduction
is not so straightforward, because the variables are not fixed once chosen;

�

�

�

�

�

�

�

�

78 6. Two-Player Games

variable

slow win

formula

fast win

slower win

...

...

truefalse

A

B

C

D
F

G

Figure 6.3. Reduction from G6 to 2CL.

there is no natural mechanism in 2CL for transitioning from the variable-
selection phase to the formula-satisfying phase. That is what the rest of
the circuitry is for. (Also note that unlike the bounded case, the formula
need not be monotone.)

White has the option, whenever he wishes, of locking any variable in its
current state, without having to give up a turn, as follows. First, he moves
on some true or false edge. This threatens to reach an edge F in four more
moves, enabling White to reach a fast win pathway leading quickly to his
target edge. Black’s only way to prevent F from reversing is to first reverse
D. But this would just enable White to immediately reverse G, reaching
the target edge even sooner. First, Black must reverse A, then B, then C,
and finally D; otherwise, White will be able to reverse one of the blue edges
leading to the fast win. This sequence takes four moves. Therefore, Black
must respond to White’s true or false move with the corresponding A move,
and then it is White’s turn again.

The lengths of the pathways slow win, slower win, and fast win are
detailed below in the proof. The pathways labeled formula feed into the
formula vertices, culminating in White’s target edge. It will be necessary
to ensure that regardless of how the formula is satisfied, it always requires
exactly the same number of edge reversals beginning with the formula input
edges. The first step to achieving this is to note that the formula may be
in CNF. Thus, every clause must have one variable satisfied, so it seems
we are well on our way. However, there is a problem. Generally, a variable
must pass through an arbitrary number of FANOUTs on its way into the
clauses. This means that if it takes x reversals from a given variable gadget

�

�

�

�

�

�

�

�

6.2. Unbounded Games 79

...

...

x

x+ 5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Figure 6.4. Path-length-equalizer gadget.

to a usage of that variable in a clause, it will take less than 2x reversals to
reach two uses of the variable, and we cannot know in advance how many
variables will be reused in different clauses. The solution to this problem is
to use a path-length-equalizer gadget, shown in Figure 6.4. This gadget has
the property that if it takes x reversals from some arbitrary starting point
before entering the gadget, then it takes x + 6 reversals to reverse either
of the topmost output edges, or 2x+ 12 reversals to reverse both of them.
By using a chain of n such gadgets whenever a variable is used n times in
the formula, we can ensure that it always takes the same number of moves
to activate any variable instance in a clause, and thus that it always takes
the same number of moves to activate the formula output.

Theorem 6.3. 2CL is EXPTIME-complete.

Proof: Given an instance of G6, we construct a corresponding constraint
graph as described above.

Suppose White can win the formula game. Then, also suppose White
plays to mimic the formula game, by reversing the corresponding variable
edges up until reversing the last one that lets him win the formula game.
Then Black must also play to mimic the formula game: his only other
option is to reverse one of the edges A to D, but any of these lead to a
White win.

Now, then, assume it is White’s turn, and either he has already won the
formula game, or he will win it with one more variable move. He proceeds to
lock all the variables except possibly for the one remaining that he needs

�

�

�

�

�

�

�

�

80 6. Two-Player Games

to change, one by one. As described above, Black has no choice but to
respond to each such move. Finally, White changes the remaining variable,
if needed. Then, on succeeding turns, he proceeds to activate the needed
pathways through the formula and on to the target edge. With all the
variables locked, Black cannot interfere. Instead, Black can try to activate
one of the slow win pathways enabled during variable locking. However,
the path lengths are arranged such that it will take Black one move longer
to win on such a pathway than it will take White to win by satisfying the
formula.

Suppose instead that White cannot win the formula game. He can ac-
complish nothing by playing on variables forever; eventually, he must lock
one. Black must reply to each lock. If White locks all the variables, then
Black will win, because he can follow a slow win pathway to victory, but
White cannot reach his target edge at the end of the formula, and Black’s
slow win pathway is faster than White’s slower win pathway. However,
White may try to cheat by locking all the Black variables, and then con-
tinuing to change his own variables. But in this case Black can still win,
because if White takes the time to change more than one variable after
locking any variable, Black’s slow win pathway will be faster than White’s
formula activation.

Thus, White can win the 2CL game if and only if he can win the corre-
sponding G6 game, and 2CL is EXPTIME-hard. Also, 2CL is easily seen to
be in EXPTIME: the complete game tree has exponentially many positions,
and thus can be searched in exponential time, labeling each position as a
win, loss, or draw depending on the labels of its children. (A draw is pos-
sible when optimal play loops.) Therefore, 2CL is EXPTIME-complete. �

6.2.2 Restricted Problem

For reductions from 2CL to other games, we need to strengthen Theo-
rem 6.3 to apply to planar graphs that use a restricted set of vertex types.
In principle, this should enable much simpler reductions to actual games
than the existing reductions from Boolean formula games. The existing
Chess, Checkers, and Go hardness results are all quite complicated; we
had hoped to re-derive some of them more simply using 2CL. We have not
done so yet, however. Enforcing the necessary constraints in a two-player
game gadget is much more difficult than in a one-player game.

The needed basis vertices are shown in Figure 6.5. Black’s slow win
pathway is implemented with alternating red and blue edges, joined with
red-blue conversion gadgets; the OR vertices in these gadgets may be White.
(Note that color symmetries in a target problem could mean that the Black
AND gadget would be a color-swapped version of the White one, so there
could be only five gadgets to build for a reduction.)

�

�

�

�

�

�

�

�

6.3. No-Repeat Games 81

(a) White AND (b) White OR (c) Black AND

(d) Multiplayer AND 1 (e) Multiplayer AND 2 (f) Black-White

Figure 6.5. Basis vertices for 2CL.

Theorem 6.4. 2CL is EXPTIME-complete, even for planar graphs using
only the vertex types shown in Figure 6.5.

Proof: For planarity, the crossover gadget presented in Section 5.2.2 is
again sufficient. Note that no Black edges ever cross; therefore, all crossovers
are monochrome, and essentially one-player crossovers. It is possible that
introduction of crossover gadgets can change some path lengths from vari-
ables through the formula; however, it is easy to pad all the variable path-
ways to correct for this, because it takes a fixed number of reversals to
traverse a crossover gadget in each direction.

For the vertex types, again the standard conversion techniques of Sec-
tion 2.3 are sufficient to remove the red-blue vertices and loose edges used
in the reduction. All other vertex types used in the reduction appear in
Figure 6.5. �

6.3 No-Repeat Games

One interesting result deserves to be mentioned here. If the condition that
no previous position may ever be recreated is added to two-player games,
then the general complexity rises from EXPTIME-complete to EXPSPACE-
complete [144]. The intuition is that it requires an exponential amount of
space even to determine the legal moves from a position, because the game
history leading up to a position could be exponentially long.

�

�

�

�

�

�

�

�

82 6. Two-Player Games

In fact, some of the EXPTIME-complete formula games in [157] auto-
matically become EXPSPACE-complete when this modification is made,
and as a result, no-repeat versions of Chess and Checkers are EXPSPACE-
complete. However, the result does not apply to the game G6, which
was used to show 2CL EXPTIME-complete; nor does it apply to Go,
which was shown EXPTIME-hard by a reduction from G6. Go is actu-
ally played with this rule in many places; in Go it is called the superko
rule. The complexity of Go with superko is an interesting problem that
is still unresolved. Surprisingly, both the lower and the upper bounds of
Robson’s EXPTIME-completeness proof [143] break when the superko rule
is added. Superko is not used in Japan; it is used in the US, China, and
other places.

It is arguably a bit unnatural in a game for the set of legal moves to
not be determinable from the current position. Of course, if the position
is defined to include the game history then this is not a problem, but then
the position grows over time, which is also against the spirit of generalized
combinatorial games.

There is a tantalizing connection here to a kind of imperfect informa-
tion, which is also connected to the idea of an additional player. A useful
perspective is that in a two-person game, there is an “existential” player and
a “universal” player. No-repeat games are almost like two-person games
with an extra, “super-universal” player added. This player can remem-
ber, secretly, one game position. Then, if that position is ever recreated,
whoever recreated it loses. In principle, this approach seems capable of
resolving the above problems. All ordinary moves are legal, whether they
are repeating or not, but in actual play repeating moves are losing because
the super-universal player can nondeterministically guess in advance which
position will be repeated. However, this idea seems difficult to formalize
usefully; in particular, it is not clear how to formulate an appropriate de-
cision question so that the super-universal player does not effectively team
up with the universal player and against the existential one. But this seems
an interesting path for further exploration.

Notwithstanding the above concerns, a no-repeat version of Two-Player
Constraint Logic ought to be EXPSPACE-complete. A reduction from
game G3 from [157], for example, would do the trick, but we do not yet
have one.

A Tempting Generalization. It is tempting to think of no-repeat games as
fitting neatly into an ordered sequence: bounded, unbounded, no-repeat.
(Indeed, this chapter is organized according to this conception.) For two-
player games, the corresponding complexities are PSPACE-complete,
EXPTIME-complete, EXPSPACE-complete, forming a natural sequence.
Does this idea generalize to other numbers of players? Unfortunately not,

�

�

�

�

�

�

�

�

6.3. No-Repeat Games 83

at least for zero- and one-player games: if a one-player game can be solved
at all, then clearly it can be solved without repeating any positions, and a
similar observation applies to zero-player games.

�

�

�

�

�

�

�

�

7

Team Games

In this chapter we present the definitions and complexity proofs for Team
Private Constraint Logic, both the bounded and unbounded varieties.

Complexity Background. It turns out that adding players beyond two to a
game does not increase the complexity of the standard decision question,
“does player X have a forced win?” We might as well assume that all
the other players team up to beat X , in which case we effectively have a
two-player game again. If we generalize the notion of the decision question
somewhat, we do obtain new kinds of games. In a team game, there are
still two “sides,” but each side can have multiple players, and the decision
question is whether team X has a forced win. A team wins if any of its
players wins.

Team games with perfect information are still just two-player games in
disguise, however, because again all the players on a team can cooperate
and play as if they were a single player. However, when there is hidden
information, then team games turn out to be different from two-player
games.1 (We could think of a team in this case as a player with a peculiar
kind of mental limitation—on alternate turns he forgets some aspects of his

1Adding imperfect information to a two-player, unbounded game does create a new
kind of game, intermediate in complexity between two-player perfect-information games
and team games with imperfect information [136]; such games can be 2EXPTIME-
complete (complete in doubly-exponential time) to decide. “Blindfold” and “hierarchi-
cal” games are introduced in [136], [133], and [134]. These games correspond to yet more
complexity classes. These types of games have yet to be studied from a constraint-logic
perspective.

85

�

�

�

�

�

�

�

�

86 7. Team Games

situation, and remembers others.) Therefore, we will only consider team
games of imperfect information, and we will sometimes simply refer to them
as “team games.”

Such games, as with two-player imperfect-information games, were first
studied from a complexity standpoint by Peterson and Reif [133]. The
general result is that bounded team games are NEXPTIME-complete, and
unbounded games are undecidable. However, there are a few technical
problems with the original undecidability result; in fact, the game claimed
undecidable in [133], called TEAM-PEEK, is actually decidable. In Sec-
tion 7.2 we show how to fix these problems, confirming that indeed team
games of imperfect information are undecidable.

The fact that there are undecidable games using bounded space—when
actually played, finite physical resources—at first seems counterintuitive
and bizarre. There are only finitely many configurations in such a game.
Eventually, the position must repeat. Yet, somehow the state of the game
must effectively encode the contents of an unboundedly long Turing-machine
tape! How can this be? These issues are discussed in Chapter 8.

Constraint Logic. The natural team, private-information version of con-
straint logic assigns to each player a set of edges he can control, and a
set of edges whose orientation he can see. As always, each player has a
target edge he must reverse to win. To enable a simpler reduction to the
unbounded form of this game, we allow each player to reverse up to some
given constant k edges on his turn, rather than just one, and leave the case
of k = 1 as an open problem.

7.1 Bounded Games

Bounded team games of imperfect information include card games such as
Bridge. Here we can consider one hand to be a game, with the goal being
either to make the bid, or, if on defense, to set the other team. Focusing
on a given hand also removes the random element from the game, making
it potentially suitable for study within the present framework.

Bounded team games of private information are NEXPTIME-complete
in general, by a reduction from Dependency Quantifier Boolean Formulas
(DQBF) [133].

Bounded Team Private Constraint Logic (Bounded TPCL) starts from
a configuration known to all players; the private information arises as a
result of some moves not being visible to all players. (These attributes do
not apply to Bridge directly, but some sort of reduction may be possible.)

�

�

�

�

�

�

�

�

7.1. Bounded Games 87

BOUNDED TEAM PRIVATE CONSTRAINT LOGIC (BOUNDED TPCL)

Instance:

Constraint graph G; integer N ; for i ∈ {1 . . .N}: sets Ei ⊂
Vi ⊂ G, edges ei ∈ Ei; partition of {1 . . .N} into nonempty
sets W and B.

Question: Does White have a forced win in the following game?
Players 1 . . .N take turns in that order. Player i only sees
the orientation of the edges in Vi, and moves by reversing
an edge in Ei thathas not previously reversed; a move must
be known legal based on Vi. White (Black) wins if Player
i ∈ W (B) ever reverses edge ei.

7.1.1 NEXPTIME-completeness

We show that Bounded TPCL is NEXPTIME-complete by a reduction
from Dependency Quantifier Boolean Formulas (DQBF), a generalization
of QBF introduced by Peterson and Reif [133]. We state here a game
version of DQBF, shown NEXPTIME-complete in [133]:

DEPENDENCY QUANTIFIER BOOLEAN FORMULA GAME (DQBF-
GAME)

Instance: CNF Boolean formula F in variables Xi ∪ Yi for i ∈
{1, 2}.

Question: Does White have a win in the following game? Player
B (Black) chooses an assignment to X1 ∪ X2, then Player
W1 (White) chooses an assignment to Y1, then Player W2

(White) chooses an assignment to Y2. Player Wi only sees
the assignments to Xi and Yi. White (Black) wins if F is
true (false) under the chosen variable assignments.

Theorem 7.1. Bounded TPCL is NEXPTIME-complete.

Proof: The reduction from DQBF-Game is shown in Figure 7.1. For con-
venience we let the White players be numbered 1 and 2, and the Black
player 3. The game breaks down into two phases. In the first, Black
chooses his variable assignments. In the second, the White players choose
theirs, and try to satisfy the formula to reach their target edge. If they
cannot, Black has time to reach his own target edge. We arrange it so that
initially Black’s only moves are to choose variable assignments. The White

�

�

�

�

�

�

�

�

88 7. Team Games

…

…
…

…

… …

(a) Overall layout

chosen

unlock

formula

true false

(b) Variable gadget

Figure 7.1. Reduction from DQBF-GAME to Bounded TPCL.

players each have a pool of extra edges so that they can kill time while
waiting for Black to choose variables.

The variable-selection gadget is shown in Figure 7.1(b). This represents
a Black variable; the White variables are identical apart from edge colors.
Each Black variable gadget represents a variable in Xi (i = 1 or 2); the
edges in the gadget are then in Vi (visible to the corresponding White
player), and the White edges in the gadget are in Ei (reversible by that
player). Each White variable gadget represents a variable in Yi; all of
its edges are seen and controlled only by player i, except that the output
formula edges are visible to both White players, as are the Black-variable
formula edges. The formula AND/OR network, culminating in the White
target edge, is seen and controlled by both White players.

Once a variable selection has been made, true or false, the chosen output
edge for that variable may be activated. All the chosen edges for a given
player are fed into a series of AND vertices, with a single output edge (all-
chosen) that can be reversed just when all the player’s variable selections
have been made. For Black, this edge leads to a chain of edge reversals
culminating in his target edge. For the White players, the two all-chosen
edges feed into an AND. This AND output then splits by a series of FANOUTs
to feed all of the unlock edges, allowing the variable selections to feed into
the formula.

Suppose White can win the formula game. Then, Black must eventually
select values in all his corresponding variable gadgets; each White player
can then select his variable values based on the Black edges that are visible

�

�

�

�

�

�

�

�

7.2. Unbounded Games 89

to him. When all White values have been chosen, privately from each other,
they may then be unlocked (along with the Black variables) and fed into
the formula, allowing White to win. If Black wins the formula game, then
no variable selection by White will let them reverse their target edge, and
Black will eventually reverse his target edge and win.

This shows NEXPTIME-hardness; we must still show that Bounded
TPCL is in NEXPTIME. To do that, we show that we can verify, in expo-
nential time, a nondeterministically guessed winning White strategy. The
strategy will be a mapping from visible game histories to moves, for each
White player. A visible game history is just a history where all moves of
edges not visible to the player in question are simply recorded as “hidden.”
The number of possible histories is exponential in the graph size, therefore
the strategy will be of exponential length as well.

To verify the strategy, we evaluate the complete game tree to test
whether White always wins: for each Black move, consider all legal possibil-
ities; for each White move, consider only the move that the corresponding
strategy dictates. The game tree is also of exponential size, and thus it can
be searched in exponential time. �

7.1.2 Restricted Problem

As usual, we strengthen Theorem 7.1 to apply to planar graphs that use a
restricted set of vertex types.

Theorem 7.2. Bounded TPCL is NEXPTIME-complete, even for planar
graphs that use only AND and OR vertices.

Proof: All crossings in the reduction involve only edges controlled by a
single player or by both White players; we can replace these with crossover
gadgets from Section 5.2.2 without changing the game. As usual, we can
eliminate red-blue edges and loose edges with the techniques of Section 2.3.
All remaining vertices are ANDs and ORs. (However, note that several
different AND- and OR-subtypes are used in the reduction, which we do not
enumerate.) �

7.2 Unbounded Games

In general, team games of private information are undecidable. This result
was claimed by Peterson and Reif in 1979 [133]. However, as mentioned
above, there are a few problems with the proof, which we address in Sec-
tion 7.2. Strangely, the result also seems to be not very well known. Part
of the problem may be that the authors seem to consider the result of sec-

�

�

�

�

�

�

�

�

90 7. Team Games

ondary importance to the other results in [133]. Indeed, immediately after
showing their particular game undecidable, the authors remark

In order to eliminate, by restriction, the over-generality of MPAk-
TMs, we considered several interesting variants. [133, page 355]

The rest of the paper then considers those variants. From our perspec-
tive, however, the fact that there are undecidable space-bounded games
is fundamental to the viewpoint that games are an interesting model of
computation. It both shows that games are as powerful as general Turing
machines, and highlights the essential difference from the Turing-machine
foundation of theoretical computer science, namely that a game computa-
tion is a manipulation of finite resources. Thus, this seems to be a result
of some significance.

Recall the discussion of Rengo Kriegspiel in Section 3.4.2. (See Ap-
pendix A for details.) The important difference from other undecidable
problems, such as the Post Correspondence Problem (PCP), is that Rengo
Kriegspiel is a game with bounded space; there are a fixed number of po-
sitions in any given game. Thus, the game can actually be played; PCP,
though a puzzle of a sort, cannot be played in the real world without un-
bounded resources. This theme will be developed further in Chapter 8.

Team Private Constraint Logic is defined as follows. Note the addition
of the parameter k relative to the bounded case. This is, admittedly, an
extra generalization to make a reduction easier; nonetheless, it is a rea-
sonable generalization, and all other constraint-logic games are naturally
restricted versions of this game.

TEAM PRIVATE CONSTRAINT LOGIC (TPCL)

Instance: Constraint graph G; integer N ; for i ∈ {1 . . .N}:
sets Ei ⊂ Vi ⊂ G, edges ei ∈ Ei; partition of 1 . . .N into
nonempty sets W and B; integer k.

Question: Does White have a forced win in the following game?
Players 1 . . .N take turns in that order. Player i only sees
the orientation of the edges in Vi, and moves by reversing
up to k edges in Ei; a move must be known legal based on
Vi. White (Black) wins if Player i ∈ W (B) ever reverses
edge ei.

Before showing this game undecidable, we discuss the earlier results of
Peterson and Reif [133].

TEAM-PEEK. A particular space-bounded game with alternating turns,
TEAM-PEEK, is undecidable [133]. (TEAM-PEEK is a team version of

�

�

�

�

�

�

�

�

7.2. Unbounded Games 91

Stockmeyer and Chandra’s EXPTIME-complete game PEEK [157].) There
are two problems with this claim. First, there is a simple mistake in the
definition, making the undecidability claim false. To see this, consider the
following formal statement of TEAM-PEEK, which is equivalent to the
more physical version described in [133]:

TEAM-PEEK

Instance: DNF Boolean formula F in variables S, integer N ; for
i ∈ {1 . . .N}: sets Xi ⊂ Vi ⊂ S; partition of 1 . . .N into
nonempty sets W and B; S assignment α.

Question: Does White have a forced win in the following game?
Players 1 . . .N take turns in that order. Player i only knows
the truth assignment to the variables in Vi, and moves by-
changing the truth assignment of any subset of the variables
Xi. White (Black) wins if F is ever true after a move by
Player i ∈W (B).

We show that TEAM-PEEK is decidable when White has two or more
players and Black has one player (contrary to [133, Theorem 5]). What-
ever the turn order, the White players will wind up playing in sequence.
Now it is easy to tell whether White can win before Black’s first move,
so assume that they cannot. Then, either White can win immediately
regardless of Black’s move, which is also easy to determine, or they can-
not. Suppose they cannot. Then, they cannot have a forced win at all,
because whatever moves they make in sequence on any pair of turns,
there is always some move Black could have just made that prevented
a win.

The basic problem with the game definition is that allowing a player to
change any or all of his variables in a single turn, instead of at most one
variable as in PEEK, prevents threats and thus forcing moves. Thus, the
standard machinery of building Turing-machine-acceptance reductions to
formula games breaks down.

Round-Robin Play. The second problem has to do with the order in which
players move. TEAM-PEEK’s definition follows the natural form of game
play in which players take turns in round robin. However, the problem
developed in [133, page 355] for a reduction to TEAM-PEEK does not
have this property:

Given a TM M . . . [t]he game . . . will be based on having each
of the ∃-players find a sequence of configurations of M which
on an input that leads to acceptance. Hence, each ∃-player will

�

�

�

�

�

�

�

�

92 7. Team Games

give to the ∀-player on request the next character of its sequence
of configurations (secretly from the other). Each ∃-player does
this secretly from the other ∃-player. The configuration will
[be] in the form: #C0#C1# . . .#Cm#, where C0 is the ini-
tial configuration of M on the input, and Cm is an accepting
configuration of M .

The ∀-player will choose to verify the sequences in one of the
following ways: . . .

The ∀-player verifies the sequences by ensuring that the initial config-
urations match the input, that the final sequences are accepting, and that
the transitions are valid. The existential team wins if a player generates
a valid accepting history; the universal player wins if it detects an invalid
history. The key is that the validity of the transitions can be checked
with only a fixed amount of memory, by running one of the players ahead
to the next # symbol, and stepping through both histories symbol by
symbol.

It is implicit in the definition of the game that the universal player
chooses, on each of his turns, which existential player is to play next, and
the other existential player cannot know how many turns have elapsed be-
fore he gets to play again. For suppose instead that play does go round
robin. Then we must assume that on the universal player’s turn, he an-
nounces which existential player is to make a computation-history move
this turn; the other one effectively passes on his turn. But then each ex-
istential player knows exactly where in the computation history the other
one is, and whichever player is behind knows he cannot be checked for va-
lidity, and is at liberty to generate a bogus computation history. It is the
very information about how many turns the other existential player has
had that must be kept private for the game to work properly.

Reif has confirmed in a personal communication regarding round-robin
play in TEAM-PEEK [138] that “it looks like therefore the players do
not play round robin.”2 Indeed, the general definition of the game states,
“Players need not take turns in a round-robin fashion. The rules will dictate
whose turn is next . . . A player may not know how many turns were taken by
other players between its turns” [133, p. 349–350]. These notions deviate
from (and hence exclude) the intuitive notion of a game, where players
take turns in order and are aware of what happens between their turns.
Therefore, we work to strengthen the approach to apply to this natural
form of game.

2Both the mistake in definition described above and the turn-order problem also
apply to all of the TEAM-PEEK variants defined in [134].

�

�

�

�

�

�

�

�

7.2. Unbounded Games 93

7.2.1 Undecidability.

To solve the above problems, we introduce a somewhat more elaborate
computation game, in which the players take successive turns, and which
we show to be undecidable. We reduce this game to a formula game, and
the formula game to TPCL.

The new computation game will be similar to the above computation
game, but each existential player will be required to produce successive
symbols from two identical, independent computation histories, A and B;
on each turn, the universal player will select which history each player
should produce a symbol from, privately from the other player. Then,
for any game history experienced by each existential player, it is always
possible that his symbols are being checked for validity against the other
player’s, because one of the other existential player’s histories could always
be retarded by one configuration (or the history could be checked against
the input). The fact that the other player has produced the same number
of symbols as the current player does not give him any useful information,
because he does not know the relative advancement of the other player’s
two histories.

This game is formalized as follows:

TEAM COMPUTATION GAME

Instance: Finite set of ∃-options O, Turing machine S with fixed
tape length k, and with tape symbols Γ ⊃ (O ∪ {A, B}).

Question: Does the existential team have a forced win in the
following game? Players ∀ (universal), ∃1, and ∃2 (existen-
tial) take turns in that order, beginning with ∀. S’s tape is
initially set empty. On ∃i’s turn, he makes a move from O.
On ∀’s turn, he takes the following steps:

1. If not the first turn, record ∃1’s and ∃2’s moves in partic-
ular reserved cells of S’s tape.

2. Simulate S using its current tape state as input, either
until it terminates, or for k steps. If S accepts, ∀ wins the
game. If S rejects, ∀ loses the game. Otherwise, leave the
current contents of the tape as the next turn’s input.

3. Make a move (x, y) ∈ {A, B}×{A, B}, and record this move
in particular reserved cells of S’s tape.

The state of S’s tape is always private to ∀. Also, ∃1 sees
only the value of x, and ∃2 sees only the value of y. The

�

�

�

�

�

�

�

�

94 7. Team Games

existential players also do not see each other’s moves. The
existential team wins if either existential player wins.

Theorem 7.3. Team Computation Game is undecidable.

Proof: We reduce from acceptance of a Turing machine on an empty input,
which is undecidable. Given a TM M , we construct TM S as above so that
when it is run, it verifies that the moves from the existential players form
valid computation histories, with each successive character following in the
selected history, A or B. It needs no nondeterminism to do this; all the
necessary nondeterminism by ∀ is in the moves (x, y). The ∃-options O are
the tape alphabet of M ∪ #.

S maintains several state variables on its tape that are reused the next
time it is run. First, it detects when both existential players are simul-
taneously beginning new configurations (by making move #), for each of
the four history pairs {A, B}×{A, B}. Using this information, it maintains
state that keeps track of when the configurations match. Configurations
partially match for a history pair when either both are beginning new con-
figurations, or both partially matched on the previous time step, and both
histories just produced the same symbol. Configurations exactly match
when they partially matched on the previous time step and both histories
just began new configurations (with #).

S also keeps track of whether one existential player has had one of its
histories advanced exactly one configuration relative to one of the other
player’s histories.3 It does this by remembering that two configurations
exactly matched, and since then only one history of the pair has advanced,
until finally it produced a #. If one history in a history pair is advanced
exactly one configuration, then this state continues as long as each history
in the pair is advanced on the same turn. In this state, the histories may
be checked against each other, to verify proper head motion, change of
state, etc., by only remembering (on preserved tape cells) a finite number
of characters from each history. S is designed to reject whenever this check
fails, or whenever two histories exactly match and nonmatching characters
are generated, and to accept when one computation history completes a
configuration that is accepting for M . All of these computations may be
performed in a constant number of steps; we use this number for k.

For any game history of A/B requests seen by ∃1 (∃2), there is always
some possible history of requests seen by ∃2 (∃1) such that either ∃1 (∃2)
is on the first configuration (which must be empty), or ∃2 (∃1) may have

3The number of steps into the history does not have to be exactly one configuration
ahead; because M is deterministic, if the configurations exactly matched then one can
be used to check the other’s successor.

�

�

�

�

�

�

�

�

7.2. Unbounded Games 95

one of its histories exactly one configuration behind the currently requested
history. Therefore, correct histories must always be generated to avoid los-
ing.4 Also, if correct accepting histories are generated, then the existential
team will win, and thus the existential team can guarantee a win if and
only if M accepts the empty string. �

Next we define a team game played on Boolean formulas, and reduce
Team Computation Game to this formula game. Traditionally one defines
a formula game in a form for which it is easy to prove a hardness result,
then reduces to another formula game with a cleaner definition and nicer
properties. In this case, however, our formula game will only serve as an
intermediate step on the way to a constraint-logic game, so no effort is
made to define the simplest possible team formula game. On the contrary,
the structure of the game is chosen so as to enable the simplest possible
reduction to a constraint-logic game.

The reduction from Team Computation Game works by creating for-
mulas that simulate the steps of Turing machine S.

TEAM FORMULA GAME

Instance: Sets of Boolean variables X , X ′, Y1, Y2; Boolean vari-
ables h1, h2 ∈ X ; and Boolean formulas F (X,X ′, Y1, Y2),
F ′(X,X ′), and G(X), where F implies F ′.

Question: Does White have a forced win in the following game?
The six steps taken on each turn repeat in the following
order:

1. B sets variables X to any values. If F and G are then
true, Black wins.

2. If F is false, White wins. Otherwise, W1 does nothing.

3. W2 does nothing.

4. B sets variables X ′ to any values.

4Note that this fact depends on the nondeterminism of ∀ on each move. If instead
∀ followed a strategy of always advancing the same history pair, until it nondetermin-
istically decided to check one against the other by switching histories on one side, the
existential players could again gain information enabling them to cheat. This is a fur-
ther difference from the original computation game from [133], where such a strategy is
used; the key here is that ∀ is always able to detect when the histories happen to be
nondeterministically aligned, and does not have to arrange for them to be aligned in
advance by some strategy that the existential players could potentially take advantage
of.

�

�

�

�

�

�

�

�

96 7. Team Games

5. If F ′ is false, White wins. W1 sets variables Y1 to any
values.

6. W2 sets variables Y2 to any values.

B sees the state of all the variables; Wi only sees the state
of variables Yi and hi.

Theorem 7.4. Team Formula Game is undecidable.

Proof: Given an instance of Team Computation Game, we create the nec-
essary variables and formulas as follows.

F will verify that B has effectively run TM S for k steps, by setting X
to correspond to a valid nonrejecting computation history for it. (This can
be done straightforwardly with O(k2) variables; see, for example, [28].) F
also verifies that the values of Yi are equal to particular variables in X , and
that a set of “input” variables I ⊂ X are equal to corresponding variables
X ′. X ′ thus represents the output of the previous run of S.

G is true when the copies of the Yi in X represent an illegal white move
(see below), or when X corresponds to an accepting computation history
for S.

F ′ is true when the values X ′ equal those of a set of “output” variables
O ⊂ X . These include variables representing the output of the run of S, and
also h1, h2. We can assume without loss of generality here that S always
changes its tape on a run. (We can easily create additional tape cells and
states in S to ensure this if necessary, without affecting the simulation.) As
a result, F implies F ′, as required; the values of X ′ cannot simultaneously
equal those of the input and the output variables in X .

The ∀ player’s move (x, y) ∈ {A, B}×{A, B} is represented by the as-
signments to history-selecting variables h1 and h2; false represents A and
true B. The ∃-options O correspond to the Yi; each element of O has one
variable in Yi, so that Wi must move by setting one of the Yi to true and
the rest to false.

Then, it is clear that the rules of Team Formula Game force the players
effectively to play the given Team Computation Game. �

TPCL Reduction. Finally, we are ready to complete the undecidability re-
duction for TPCL. The overall reduction from Team Formula Game is
shown in Figure 7.2. Before proving its correctness, we first examine the
subcomponents represented by boxes in the figure.

�

�

�

�

�

�

�

�

7.2. Unbounded Games 97

… …

Figure 7.2. Reduction from Team Formula Game to TPCL. White edges and
multiplayer edges are labeled with their controlling player(s); all other edges are
black. Thick gray lines represent bundles of black edges.

The F , F ′, and G boxes represent AND/OR subgraphs that implement
the corresponding Boolean functions, as in earlier chapters. Their inputs
come from outputs of the variable-set boxes. All these edges are black.

The boxes X and X ′ represent the corresponding variable sets. The
incoming edge at the bottom of each box unlocks their values, by a series of
latch gadgets (as in Section 5.2.1), shown in Figure 7.3(a). When the input
edge is directed upward, the variable assignment may be freely changed;
when it is directed down, the assignment is fixed.

The boxes Y1 and Y2 represent the white variables. An individual white
variable for Player Wi is shown in Figure 7.3(b). B may activate the

�

�

�

�

�

�

�

�

98 7. Team Games

x1 x2 xn−1 xn−1 xnx2x1 xn

. . . ��
�

(a) Latches locking black variables

yi↪j yi↪j

Wi B↪WiB↪Wi

unlock

B↪W1

(b) White variable

Figure 7.3. Additional gadgets for TPCL reduction.

appropriate top output edge at any time; however, doing so also enables
the bottom output edge controlled jointly by B and W1. If B wants to
prevent W1 from directing this edge down, he must direct unlock right; but
then the black output edges are forced down, allowing Wi to freely change
the central variable edge. The unlock edges are left loose (shorthand for
using a free edge terminator); the bottom edges are ORed together to form
the single output edge for each box in Figure 7.2 (still jointly controlled
by B and W1). Note that for variables controlled by W2, W1 can know
whether the variable is unlocked without knowing what its assignment is.

We will also consider some properties of the “switch” edge S before
delving into the proof. This edge is what forces the alternation of the two
types of B-W1-W2 move sequences in Team Formula Game. When S points
left, B is free to direct the connecting edges so as to unlock variables X .
But if B leaves edge A pointing left at the end of his turn, then W1 can
immediately win, starting with edge C. (We skip label B to avoid confusion
with the B player label.) Similarly, if S points right, B can unlock the
variables in X ′, but if he leaves edge D pointing right, then W1 can win
beginning with edge E. Later we will see that W2 must reverse S each turn,
forcing distinct actions from B for each direction.

Theorem 7.5. TPCL is undecidable, even with N = 3 players.

Proof: Given an instance of Team Formula Game, we construct a TPCL
graph as described above. B sees the states of all edges; Wi sees only
the states of the edges he controls, those immediately adjacent (so that

�

�

�

�

�

�

�

�

7.2. Unbounded Games 99

he knows what moves are legal), and the edge in X corresponding to vari-
able hi.

We will consider each step of Team Formula Game in turn, showing that
each step must be mirrored in the TPCL game. Suppose that initially, S
points left. Here are the six steps:

1. B may set variables X to any values by unlocking their controlling
latches, beginning with edge H. He may also direct the edges corre-
sponding to the current values of X , Y1, Y2, and X ′ into formula
networks F , F ′, and G, but he may not change the values of X ′,
because their latches must be locked if S points left. If these moves
enable him to satisfy formulas F and G, then he wins. Otherwise, if
F is true, he may direct edge I upward. He must finish by redirecting
A right, thus locking the X variables; otherwise, W1 could then win
as described above. Also, B may leave the states of Y1 and Y2 locked.

B does not have time both to follow the above steps and to direct
edge K upward within k moves; the pathway from H through “. . . ”
to K has k − 3 edges.

Also, if F is true then M must point down at the end of B’s turn,
because F and F ′ cannot simultaneously be true.

2. If F is false, then I must point down. This will enable W1 to win, be-
ginning with edge J (because S still points left). Also, if H still points
up, W1 may direct it down, unlocking S; as above, A must point right.
Otherwise W1 has nothing useful to do. He may direct the bottom
edges of the Y1 variables downward, but nothing is accomplished by
this, because S points left.

3. On this step W2 has nothing useful to do but direct S right, which he
must do. Otherwise...

4. If S still points left, then B can win, by activating the long series of
edges leading to K; I already points up, so unlike in step 1, he has
time for this.

Otherwise, B can now set variables X ′ to any values, by unlocking
their latches, beginning with edge L. If G was not true in step 1, then
it cannot be true now, because X has not changed, so B cannot win
that way. If F ′ is true, then he may direct edge M upward. Also, at
this point B should unlock Y1 and Y2, by directing his output edges
back in and activating the unlock edges in the white variable gadgets.
This forces I down, because F depends on the Yi.

As in step 1, B cannot win by activating edge O, because he does
not have time both to follow the above steps and to reach O within k

�

�

�

�

�

�

�

�

100 7. Team Games

moves. (Note that M must point down at the beginning of this turn;
see step 1.)

5. If any variable of Y1 or Y2 is still locked, W1 can win by activating the
pathway through N. Also, if F ′ is false then M must point down; this
lets W1 win. (In both cases, note that S points right.) Otherwise,
W1 may now set Y1 to any values.

6. W2 may now set Y2 to any values. Also, W2 must now direct S
left again. If he does not, then on B’s next turn he can win by
activating O.

Thus, all players are both enabled and required to mimic the given
Team Formula Game at each step, and so the White team can win the
TPCL game if and only if it can win the Team Formula Game. �

7.2.2 Restricted Problem

As usual, we strengthen Theorem 7.5 to apply to planar graphs that use a
restricted set of vertex types.

Theorem 7.6. TPCL is undecidable, even for planar graphs that use only
AND and OR vertices.

Proof: All crossings in the reduction involve only edges controlled by a
single player; we can replace these with crossover gadgets from Section 5.2.2
without changing the game. As usual, we can eliminate red-blue edges and
loose edges with the techniques of Section 2.3. All remaining vertices are
ANDs and ORs. (However, note that several different AND- and OR-subtypes
are used in the reduction, which we do not enumerate.) �

�

�

�

�

�

�

�

�

8

Perspectives on Part I

In this chapter we step back and take a broader perspective on the results in
the preceding chapters. We may view the family of constraint-logic games,
taken as a whole, as a hierarchy of complete problems; this idea is developed
in Section 8.1. We return to the overall theme of games as computation, this
time from a more philosophical and speculative perspective, in Section 8.2.
There we address the apparently nonsensical result from Chapter 7 that
play in a game of fixed physical size can emulate a Turing machine with an
infinite tape.

8.1 Hierarchies of Complete Problems
In 1976, Galil [70] proposed the notion of a hierarchy of complete problems
and gave several examples. The concept is based on the observation that
there are many problems known complete for the classes

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE,

but at the time, there were no examples in the literature of quintuples
of complete problems, one for each class, such that each problem was a
restricted version of the next. Galil presents several such hierarchies, from
domains of graph theory, automata theory, theorem proving, and games.1

1These games are all zero-player games, or simulations, in our sense of “game.” They
are loosely based on Conway’s Game of Life.

101

�

�

�

�

�

�

�

�

102 8. Perspectives on Part I

Galil’s definition of a hierarchy of complete problems is specific to those
particular complexity classes. However, it seems reasonable to apply the
same concept more broadly. In the current case, the family of constraint-
logic games forms what could be considered to be a two-dimensional hi-
erarchy of complete problems. The complexities of the games, ranging
from zero-player to team games horizontally and bounded vs. unbounded
vertically, stand in the following relation (see Figure I.1):

PSPACE ⊆ PSPACE ⊆ EXPTIME ⊆ RE

⊆ ⊆ ⊆ ⊆

P ⊆ NP ⊆ PSPACE ⊆ NEXPTIME

Furthermore, in each case a constraint-logic game is a restricted ver-
sion of the game to its right or top. Starting with Team Private Constraint
Logic, restricting the number of players to be two, the set of private edges
to be empty, k (number of moves per turn) to 1, and requiring that the
players control disjoint sets of edges yields Two-Player Constraint Logic.
Restricting further so that one player has no edges to control2 yields Non-
deterministic Constraint Logic. Restricting further so that the sequence of
moves is forced gives Deterministic Constraint Logic. (Technically this last
step is not a proper restriction, but we can suppose that there is a general
move-order constraint in the other games that is taken to allow any order
by default.)

Similarly, adding the restriction that each edge may reverse at most
once turns each of those games into their bounded counterparts. Finally,
requiring that the graph be planar changes the complexity from P-complete
to NC3-easy in the case of Bounded Deterministic Constraint Logic.

8.2 Games, Physics, and Computation
In Section 7.2, on team games with private information, we showed that
there are space-bounded games that are undecidable. At first, this fact
seems counterintuitive and bizarre. There are only finitely many positions
in the game, and yet somehow the state of the game must effectively encode
an arbitrarily long Turing machine tape. How can this be? Eventually the
state would have to repeat.

The short answer is that yes, the position must eventually repeat, but
some of the players will not know when it is repeating. The entire history
of the game is relevant to correct play, and of course the history grows
with each move. So in a sense, the infinite tape has merely been shoved

2Technically each player must have a target edge, but it is easy to construct instances
where one player effectively can do nothing, and the question is whether the other player
can win. These are effectively Nondeterministic Constraint Logic games.

�

�

�

�

�

�

�

�

8.2. Games, Physics, and Computation 103

under the rug. However, the important point is that the infinite space has
been taken out of the definition of the problem. Perhaps these games can
only be played perfectly by players with infinite memories; perhaps not.
That question depends on the nature of the players; perhaps they have
access to some nonalgorithmic means of generating moves. In any case, the
composition and capabilities of the players are not part of the definition of
the problem—of the finite computing machine that is a game. A player is
simply a black box which is fed game state and generates moves.

Compare the situation to the notion of a nondeterministic Turing ma-
chine. The conventional view is that a nondeterministic Turing machine
is allowed to “guess” the right choice at each step of the computation.
There is no question or issue of how the guess is made. Yet, one speaks
of nondeterministic computations being “performed” by the machine. It
is allowed access to a nonalgorithmic resource to perform its computation.
Nondeterministic computers may or may not be “magical” relative to or-
dinary Turing machines; it is unknown whether P = NP. However, one
kind of magic they definitely cannot perform is to turn finite space into
infinite space. But a team-game “computer,” on the other hand, can per-
form this kind of magic, using only a slight generalization of the notion of
nondeterminism.

Whether these games can be played perfectly in the real world—and
thus, whether we can actually perform arbitrary computations with finite
physical resources—is a question of physics, not of computer science. And
it is not immediately obvious that the answer must be no.

Others have explored various possibilities for squeezing unusual kinds
of computation out of physical reality. There have been many proposals for
how to solve NP-complete problems in polynomial time; Aaronson [1] offers
a good survey. One such idea, which works if one subscribes to Everett’s
relative-state interpretation of quantum mechanics [54] (popularly called
“many worlds”), is as follows. Say you want to solve an instance of SAT,
which is NP-complete. You need to find a variable assignment that satisfies
a Boolean formula with n variables. Then you can proceed as follows: guess
a random variable assignment, and if it does not happen to satisfy the
formula, kill yourself. Now, in the only realities you survive to experience
you will have “solved” the problem in polynomial time.3 Aaronson has
termed this approach “anthropic computing.”

3To avoid the problem with what happens when there is no satisfying assignment,
Aaronson proposes you instead kill yourself with probability 1−2−2n if you do not guess
a satisfying assignment. Then if you survive without having guessed an assignment,
it is almost certain that there is no satisfying assignment. This step is not strictly
necessary, however. There would always be some reality in which you somehow avoided
killing yourself; perhaps your suicide machine of choice failed to operate in some highly
improbable way. Of course, for the technique to work at all, such a failure must be very
improbable.

�

�

�

�

�

�

�

�

104 8. Perspectives on Part I

Apart from the possibly metaphysical question of whether there would
indeed always be a “you” that survived this “computation,” there is the
annoying practical problem that those around you would almost certainly
experience your death, instead of your successful efficient computation.
There is a way around this problem, however. Suppose that, instead of
killing yourself, you destroy the entire universe. Then, effectively, the en-
tire universe is cooperating in your computation, and nobody will ever
experience you failing and killing yourself. A related idea was explored
in the science-fiction story “Doomsday Device” by John Gribbin [81]. In
that story a powerful particle accelerator seemingly fails to operate, for no
good reason. Then a physicist realizes that if it were to work, it would
effectively destroy the entire universe, by initiating a transition from a cos-
mological false-vacuum state to a lower-energy vacuum state. In fact, the
accelerator has worked; the only realities the characters experience involve
highly unlikely equipment failures. (Whether such a false-vacuum collapse
is actually possible is an interesting question [162].) We can imagine incor-
porating such a particle accelerator in a computing machine. We would like
to propose the term “doomsday computation” for any kind of computation
in which the existence of the universe might depend on the output of the
computation. Clearly, doomsday computation is a special case of anthropic
computation.

However, neither approach seems to offer the ability to perform arbitrary
computations. Other approaches considered in [1] might do better: “time-
travel computing,” which works by sending bits along closed timelike curves
(CTCs), can solve PSPACE-complete problems in polynomial time.

Perhaps there is some way to generalize some such “weird physics” kind
of computation to enable perfect game play. The basic idea of anthropic
computation seems appropriate: filter out the realities in which you lose,
post-selecting worlds in which you win. But directly applied, as in the SAT
example above, this only works for bounded one-player puzzles. Computing
with CTCs gets you to PSPACE, which is suggestive of solving a two-player,
bounded-length game, or a one-player, unbounded-length puzzle. Perhaps
just one step more is all that is needed to create a perfect team-game player,
and thus a physically finite, but computationally universal, computer.

�

�

�

�

�

�

�

�

II

Games in Particular

Part II applies the results of Part I to particular games and puzzles, to
prove them hard. The simplicity of many of the reductions strengthens the
view that constraint logic is a general game model of computation. Each
reduction may be viewed as the construction of a kind of computer, using
the physics provided by the game components at hand. Especially useful
is the fact that the hardness results for constraint logic hold even when the
graphs are planar. Traditionally some sort of crossover gadget has often
been required for game and puzzle hardness proofs, and these are often
among the most difficult gadgets to design.

For all of these results, it must be borne in mind that it is the gen-
eralized version of a game that is shown hard. For example, Amazons is
typically played on a 10 × 10 board. But it is meaningless to discuss the
complexity of a problem for a fixed input size; it is Amazons played on
an n× n board that is shown PSPACE-complete. The “P” in “PSPACE”
must be polynomial in something.

We give new hardness results for ten games: TipOver, Hitori, sliding-
block puzzles, sliding-coin puzzles, plank puzzles, Push-2-F, hinged polygon
dissections, Amazons, Konane, and Cross Purposes. Among these, sliding-
block puzzles, Amazons, and Konane had been well-known open problems
receiving study for some time.

We strengthen the existing hardness results for two games, the Ware-
houseman’s Problem and Sokoban, and we give a simpler hardness proof
than the extant one for Rush Hour, and show that a triangular version of
Rush Hour is also hard.

�

�

�

�

�

�

�

�

9

One-Player Games
(Puzzles)

In this chapter we present several new results for one-player games.

9.1 TipOver

TipOver is a puzzle in which the goal is to navigate a layout of vertical
crates, tipping some over to reach others, so as to eventually reach a target
crate. Crates can only tip into empty space, and you cannot jump over
empty space to reach other crates. The challenge is to tip the crates in the
right directions and the right order.

TipOver originated as an online puzzle created by James Stephens,
called the “The Kung Fu Packing Crate Maze” [156]. Now it also exists in
physical form (shown in Figure 9.1), produced by ThinkFun, the makers
of Rush Hour and other puzzles. Like Rush Hour, TipOver comes with
a board and a set of pieces, and 40 challenge cards, each with a different
puzzle layout.

The standard TipOver puzzles are laid out on a 6 × 6 grid, but the
puzzle naturally generalizes to n × n layouts. This is a bounded-move
puzzle—each crate can only tip over once. Therefore, it is a candidate for
a Bounded NCL reduction. We give a reduction showing that TipOver is
NP-complete. (See also [90].)

107

�

�

�

�

�

�

�

�

108 9. One-Player Games (Puzzles)

Figure 9.1. TipOver puzzle. (Courtesy of ThinkFun, Inc.)

Rules. In its starting configuration, a TipOver puzzle has several vertical
crates of various heights (1 × 1 × h) arranged on a grid, with a “tipper”—
representing a person navigating the layout—standing on a particular start-
ing crate. There is a unique red crate, 1× 1× 1, elsewhere on the grid; the
goal is to move the tipper to this target red crate.

The tipper can tip over any vertical crate that it is standing on, in any
of the four compass directions, provided that there is enough empty space
within the grid for that crate to fall unobstructed and lie flat. The tipper
is nimble enough to land safely on the newly fallen crate. The tipper can
also walk, or climb, along the tops of any crates that are directly adjacent,
even when they have different heights. However, the tipper is not allowed
to jump empty space to reach another crate. It cannot even jump to a
diagonally neighboring crate; the crates must be touching.

A sample puzzle and its solution are shown in Figure 9.2. The first
layout is the initial configuration, with the tipper’s location marked with a
red square outline, and the height of each vertical crate indicated. In each
successive step, one more crate has been tipped over.

9.1.1 NP-completeness

We reduce Bounded NCL (Section 5.1) to TipOver to show NP-hardness.
Given an instance of Bounded NCL, we construct a TipOver puzzle that
can be solved just when the target edge can be reversed. We need to build
AND, OR, FANOUT, and CHOICE gadgets, as in Section 5.1.2, and show how
to wire them together. We also need to build a single loose edge, as in
Section 5.1.3, but this just corresponds to the tipper’s starting point.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10581-12&iName=master.img-033.jpg&w=213&h=160

�

�

�

�

�

�

�

�

9.1. TipOver 109

33333333333333 33333333333333 33333333333333 33333333333333 33333333333333

Success!!

Figure 9.2. A sample TipOver puzzle and its solution.
(Courtesy of ThinkFun, Inc.)

All of our gadgets will be built with initially vertical, height-two crates.
The mapping from constraint-graph properties to TipOver properties is
that an edge can be reversed just when a corresponding TipOver region is
reachable by the tipper.

One-Way Gadget. We will need an auxiliary gadget that can only be tra-
versed by the tipper in one direction initially. The gadget, and the sequence
of steps in a left-right traversal, are shown in Figure 9.3. Once it has been
so traversed, a one-way gadget can be used as an ordinary wire. But if it
is first approached from the right, there is no way to bridge the gap and
reach the left side.

We will attach one-way gadgets to the inputs and outputs of each of
the following gadgets.

OR/FANOUT Gadget. A simple intersection, protected with one-way gadgets,
serves as an OR, shown in Figure 9.4(a).

Lemma 9.1. The construction in Figure 9.4(a) satisfies the same constraints
as a Bounded NCL OR vertex, with A and B corresponding to the input
edges, and C corresponding to the output edge.

Proof: The tipper can clearly reach C if and only if it can reach either A or
B. Since the output is protected with a one-way gadget, the tipper cannot
reach C by any other means. �

�

�

�

�

�

�

�

�

110 9. One-Player Games (Puzzles)

Figure 9.3. A wire that must be initially traversed from left to right. All crates
are height two.

C

B

A

(a) OR gadget. If the tipper can reach
either A or B, then it can reach C.

F CE

B

D

A

G

(b) AND gadget. If the tipper can
reach both A and B, then it can
reach C.

Figure 9.4. TipOver AND and OR gadgets.

Clearly, changing the direction of the one-way gadget protecting input
A turns it input an output, and turns an OR gadget into a FANOUT gadget
with the input at B.

AND Gadget. AND is a bit more complicated. The construction is shown
in Figure 9.4(b). This time the tipper must be able to exit to the right
only if it can independently enter from the left and from the bottom. This
means that, at a minimum, it will have to enter from one side, tip some
crates, retrace its path, and enter from the other side. Actually, the needed
sequence will be a bit longer than that.

Lemma 9.2. The construction in Figure 9.4(b) satisfies the same constraints
as a Bounded NCL AND vertex, with A and B corresponding to the input
edges, and C corresponding to the output edge.

Proof: We need to show that the tipper can reach C if and only if it can
first reach A and B. First, note that F is the only crate that can possibly
be tipped so as to reach C; no other crate will do. If the tipper is only
able to enter from A, and not from B, it can never reach C. The only thing
that can be accomplished is to tip crate F down, so as to reach B from the
wrong direction. But this does not accomplish anything, because once F
has been tipped down it can never be tipped right, and C can never be
reached. Suppose, instead, the tipper can enter from B, but not from A.
Then again, it can reach A from the wrong direction, by tipping crate D

�

�

�

�

�

�

�

�

9.1. TipOver 111

D

F E C

B

A

G
E D

C

B

A

G

F F

E
D

C

B

A

G

Figure 9.5. How to use the AND gadget.

CB D

A

Figure 9.6. TipOver CHOICE gadget. If the tipper can reach A, then it can reach
B or C, but not both.

right and crate G up. But again, nothing is accomplished by this, because
now crate E cannot be gotten out of the way without stranding the tipper.

Now suppose the tipper can reach both A and B. Then the following
sequence (shown in Figure 9.5) lets it reach C. First the tipper enters from
B, and tips crate D right. Then it retraces its steps along the bottom input,
and enters this time from A. Now it tips crate E down, connecting back to
B. From here it can again exit via the bottom, return to A, and finally tip
crate F right, reaching C. The right side winds up connected to the bottom
input, so that the tipper can still return to its starting point as needed
from later in the puzzle. �

CHOICE Gadget. Finally, we need a CHOICE gadget. This is shown in Fig-
ure 9.6.

Lemma 9.3. The construction in Figure 9.6 satisfies the same constraints
as a Bounded NCL CHOICE vertex, with A corresponding to the input edge,
and B and C corresponding to the output edges.

Proof: Because of the built-in one-way gadgets, the only way the tipper
can exit the gadget is by irreversibly tipping D either left or right. It may
then reconnect to A by using the appropriate one-way pathway, but it can
never reach the other side. �

�

�

�

�

�

�

�

�

112 9. One-Player Games (Puzzles)

Figure 9.7. TipOver puzzle for a simple constraint graph.

Theorem 9.4. TipOver is NP-complete.

Proof: Reduction from Bounded NCL. Given a planar constraint graph
made of AND, OR, FANOUT, CHOICE, and red-blue vertices, and with a sin-
gle edge that may initially reverse, we construct a corresponding TipOver
puzzle, as described above. The wiring connecting the gadgets together is
simply a chain of vertical, height-2 crates. The tipper starts on some gad-
get input corresponding to the location of the single loose edge, and can
reach the target crate just when the target edge in the constraint graph
may be reversed. Therefore, TipOver is NP-hard.

TipOver is clearly in NP: there are only a linear number of crates that
may tip over, and therefore a potential solution may be verified in polyno-
mial time. �

9.2 Hitori

The puzzle Hitori was popularized by Japanese publisher Nikoli, along
with its more-famous sibling Sudoku, and several other “pencil-and-paper”
puzzles—many of which have been shown NP-complete (see Appendix A).

�

�

�

�

�

�

�

�

9.2. Hitori 113

1

1

1

1

1

1

2

2

2

2

2

3

3

3

4

4

(a) Puzzle

1

1

1

1

1

1

2

2

2

2

2

3

3

3

4

4

(b) Solution

Figure 9.8. A simple Hitori puzzle and its solution.

a

b

b

c c d d

a

…

…

(a) Wire, turn

a

b

bc

c

a

…

…

…

(b) AND

a e b b

c

c

d

d

d

a

…

……

(c) OR, parity

Figure 9.9. Hitori gadgets.

In Hitori, we are given a rectangular grid with each square labeled with
an integer, and the goal is to paint a subset of the squares so that (1) no row
or column has a repeated unpainted label (similar to Sudoku), (2) painted
squares are never (horizontally or vertically) adjacent, and (3) the un-
painted squares are all connected (via horizontal and vertical connections).
A simple Hitori puzzle and its solution are shown in Figure 9.8.

Hitori is a bounded one-player game, so we should expect that it could
be NP-complete. We give a reduction from Constraint Graph Satisfiability
(Section 5.1.3) showing NP-completeness.

9.2.1 NP-completeness

Given a planar constraint graph made of ANDs and ORs, we construct a
Hitori puzzle that can be solved just when the constraint graph has a legal
configuration. We need to build AND and OR gadgets, and show how to
wire them together into a planar graph. The various gadgets we shall need
are shown in Figure 9.9.

�

�

�

�

�

�

�

�

114 9. One-Player Games (Puzzles)

Wiring. We represent edge orientation with wires, or strings of adjacent
squares, consisting of integers x1, x1, x2, x2, ..., xn−1, xn−1, xn, xn, where
the xi are distinct. If the first x1 is unpainted, then the next must be
painted (by rule 1 above), forcing the first x2 to be unpainted (by rule 2),
etc.; thus the last xn must be painted. If the first x1 is painted, the last
xn may be painted or unpainted (as far as this wire’s constraints are con-
cerned). The reason is that we could (for example) have the second x1 and
the first x2 both unpainted without violating the rules.

Wires may be turned, as in Figure 9.9(a): if the bottom a is unpainted,
then the right d must be painted. Here a, b, etc. are distinct integers.
We assume that the unlabeled squares all contain distinct integers not
otherwise used in the gadgets.

AND Vertex. In Figure 9.9(b), suppose that the lower a (or b) is unpainted.
Then the other a (or b) must be painted (rule 1), forcing the lower c to be
unpainted (rule 2), and the upper c to be painted. But if both the lower a
and the lower b are painted, then the upper ones must be unpainted, allow-
ing the lower c to be painted and the upper c to be unpainted. Similarly,
if the upper c is unpainted, then the lower a and b must be painted. But if
the upper c is painted, then the lower a and b may be painted or unpainted.

These are the same constraints that an AND vertex has: a painted
“input” square (lower a or b) corresponds to an inward-directed red edge; an
unpainted “output” square (upper c) corresponds to an outward-directed
blue edge.

OR Vertex/Parity Gadget. In Figure 9.9(c), first, consider the ds. At most one
can be unpainted, but no two adjacent may be painted. Therefore, both
the lower and the upper one must be painted, and e must be unpainted.

Suppose that both the left a and the right b are unpainted. Then
the right a and the left b must be painted. As an unpainted square, e
must be connected to the other unpainted squares (rule 3); the lower c
is the only way out. Therefore, the lower c is unpainted, and the upper
one painted. But if either the left a or the right b is painted, then the
other a or b will be unpainted, allowing another way out for e. Then,
the lower c may be painted, and the upper c unpainted. These are the
same constraints an OR vertex has, again with an unpainted “port” square
(left a, right b, top c) corresponding to an outward-directed edge, and a
painted port square corresponding to an inward-directed edge.

This gadget can also serve to alter the positional parity in wiring, so
that the various gadgets can be connected arbitrarily, by using only one
input, and blocking the other one (for example, by adding another b to the
right of the right one).

Theorem 9.5. Hitori is NP-complete.

�

�

�

�

�

�

�

�

9.3. Sliding-Block Puzzles 115

Figure 9.10. Dad’s Puzzle.

Proof: Given a planar AND/OR constraint graph, we construct a Hitori
puzzle by connecting together AND and OR vertex gadgets with wires, ad-
justing positional parity as needed. If the graph has a legal configuration,
then every wire can be painted so as to satisfy all the Hitori constraints, as
described. Similarly, if the Hitori puzzle can be solved, then a legal graph
configuration can be read off the wires.

Hitori is clearly in NP: a potential solution may be verified in polynomial
time. �

9.3 Sliding-Block Puzzles

Sliding-block puzzles have long fascinated aficionados of recreational math-
ematics. From the infamous 15 Puzzle [152] associated with Sam Loyd to
the latest whimsical variants such as Rush Hour, these puzzles seem to offer
a maximum of complexity for a minimum of space.

In the usual kind of sliding-block puzzle, one is given a box containing
a set of rectangular pieces, and the goal is to slide the blocks around so
that a particular piece winds up in a particular place. A popular example
is Dad’s Puzzle, shown in Figure 9.10; it takes 59 moves to slide the large
square to the bottom left.

Effectively, the complexity of determining whether a given sliding-block
puzzle is solvable was an open problem for nearly 40 years. Martin Gardner
devoted his February, 1964 Mathematical Games column to sliding-block
puzzles. This is what he had to say [71, p. 65]:

These puzzles are very much in want of a theory. Short of
trial and error, no one knows how to determine if a given state
is obtainable from another given state, and if it is obtainable,
no one knows how to find the minimum chain of moves for
achieving the desired state.

�

�

�

�

�

�

�

�

116 9. One-Player Games (Puzzles)

. . .

. .
.

Figure 9.11. Sliding Blocks layout.

The computational complexity of sliding-block puzzles was considered
explicitly by Spirakis and Yap in 1983 [154]; they showed that determining
whether there is a solution to a given puzzle is NP-hard, and conjectured
that it is PSPACE-complete. However, the form of the problem they con-
sidered was somewhat different from that framed here. In their version,
the goal is to reach a given total configuration, rather than just moving
a given piece to a given place, and there was no restriction on the sizes
of blocks allowed. This problem was shown PSPACE-complete shortly af-
terwards, by Hopcroft, Schwartz, and Sharir [103], and renamed the The
Warehouseman’s Problem. (The Warehouseman’s Problem is discussed in
Section 9.4.)

This left the appropriate form of the decision question for most ac-
tual sliding-block puzzles open until we showed it PSPACE-complete in
2002 [84], based on the earlier result that the related puzzle Rush Hour is
PSPACE-complete [56].

The Sliding Blocks problem is defined as follows: given a configuration
of rectangles (blocks) of constant sizes in a rectangular two-dimensional
box, can the blocks be translated and rotated, without intersection among
the objects, so as to move a particular block?

9.3.1 PSPACE-completeness

We give a reduction from planar Nondeterministic Constraint Logic (NCL)
showing that Sliding Blocks is PSPACE-hard even when all the blocks are
1×2 rectangles (dominoes). (Somewhat simpler constructions are possible
if larger blocks are allowed; see Figure 1.2.) In contrast, there is a simple
polynomial-time algorithm for 1 × 1 blocks; thus, the results are in some
sense tight.

�

�

�

�

�

�

�

�

9.3. Sliding-Block Puzzles 117

A

B

F

C

D

E

(a) AND

A

B

C

D

E

F
G

H

(b) Protected OR

Figure 9.12. Sliding Blocks vertex gadgets.

Sliding Blocks Layout. We fill the box with a regular grid of gate gadgets,
within a “cell wall” construction as shown in Figure 9.11. The internal
construction of the gates is such that none of the cell-wall blocks may
move, thus providing overall integrity to the configuration.

AND and OR Vertices. We construct NCL AND and protected-OR (Section 5.2.3)
vertex gadgets out of dominoes, in Figures 9.12(a) and 9.12(b). Each fig-
ure provides the bulk of an inductive proof of its own correctness, in the
form of annotations. A dot indicates a square that is always occupied; the
arrows indicate the possible positions a block can be in. For example, in
Figure 9.12(b), block D may occupy its initial position, the position one
unit to the right, or the position one unit down (but not, as we will see,
the position one unit down and one unit right).

For each vertex gadget, if we inductively assume for each block that its
surrounding annotations are correct, its own correctness will then follow,
except for a few cases noted below. The annotations were generated by a
computer search of all reachable configurations, but are easy to verify by
inspection.

In each diagram, we assume that the cell-wall blocks (dark gray) may
not move outward; we then need to show they may not move inward. The
yellow (“trigger”) blocks are the ones whose motion serves to satisfy the
vertex constraints; the medium-gray blocks are fillers. Some of them may
move, but none may move in such a way as to disrupt the vertices’ correct
operation.

�

�

�

�

�

�

�

�

118 9. One-Player Games (Puzzles)

The short lines outside the vertex ports indicate constraints due to
adjoining vertices; none of the “port” blocks may move entirely out of
its vertex. For it to do so, the adjoining vertex would have to permit a
port block to move entirely inside the vertex, but in each diagram the
annotations show this is not possible. Note that the port blocks are shared
between adjoining vertices, as are the cell-wall blocks. For example, if we
were to place a protected OR above an AND, its bottom port block would
be the same as the AND’s top port block.

A protruding port block corresponds to an inward-directed edge; a re-
tracted block corresponds to an outward-directed edge. Signals propagate
by moving “holes” forward. Sliding a block out of a vertex gadget thus
corresponds to directing an edge in to a graph vertex.

Lemma 9.6. The construction in Figure 9.12(a) satisfies the same constraints
as an NCL AND vertex, with A and B corresponding to the AND red edges,
and C to the blue edge.

Proof: We need to show that block C may move down if and only if block
A first moves left and block B first moves down.

First, observe that this motion is possible. The trigger blocks may each
shift one unit in an appropriate direction, so as to free block C.

The annotations in this case serve as a complete proof of their own
correctness, with one exception. Block D appears as though it might be
able to slide upward, because block E may slide left, yet D has no upward
arrow. However, for E to slide left, F must first slide down, but this requires
that D first be slid down. So when E slides left, D is not in a position to fill
the space it vacates.

Given the annotations’ correctness, it is easy to see that it is not possible
for C to move down unless A moves left and B moves down. �

Lemma 9.7. The construction in Figure 9.12(b) satisfies the same constraints
as an NCL protected-OR vertex, with A and B corresponding to the protected
edges.

Proof: We need to show that block C may move down if and only if block
A first moves right, or block B first moves down.

First, observe that these motions are possible. If A moves right, D may
move right, releasing the blocks above it. If B moves down, the entire
central column may also move down.

The annotations again provide the bulk of the proof of their own cor-
rectness. In this case there are three exceptions. Block E looks as if it might
be able to move down, because D may move down and F may move right.
However, D may only move down if B moves down, and F may only move
right if A moves right. Because this is a protected OR, we are guaranteed

�

�

�

�

�

�

�

�

9.3. Sliding-Block Puzzles 119

(a) 2 × 2
filler

(b) 2 × 3
filler

(c) 5 × 5 straight (d) 5 × 5 turn

P

(e) 5 × 5 protected
OR

Figure 9.13. Sliding Blocks wiring.

that this cannot happen: the vertex will be used only in graphs such that
at most one of A and B can slide out at a time. Likewise, G could move
right if D were moved right while H were moved down, but again those
possibilities are mutually exclusive. Finally, D could move both down and
right one unit, but again this would require A and B to both slide out.

Given the annotations’ correctness, it is easy to see that it is not possible
for C to move down unless A moves right or B moves down. �

Graphs. Now that we have AND and protected-OR gates made out of sliding-
blocks configurations, we must next connect them together into arbitrary
planar graphs. First, note that the box wall constrains the facing port
blocks of the vertices adjacent to it to be retracted (see Figure 9.11). This
does not present a problem, however, as we will show. The unused ports
of both the AND and protected-OR vertices are unconstrained; they may
be slid in or out with no effect on the vertices. Figures 9.13(a) and 9.13(b)
show how to make (2 × 2)-vertex and (2 × 3)-vertex “filler” blocks out of
ANDs. (We use conventional “and” and “or” icons to denote the vertex
gadgets.) Because none of the ANDs need ever activate, all the exterior
ports of these blocks are unconstrained. (The unused ports are drawn as
semicircles.)

We may use these filler blocks to build (5×5)-vertex blocks correspond-
ing to “straight” and “turn” wiring elements (Figures 9.13(c) and 9.13(d)).
Because the filler blocks may supply the missing inputs to the ANDs, the
“output” of one of these blocks may activate (slide in) if and only if the
“input” is active (slid out). Also, we may “wrap” the AND and protected-
OR vertices in 5 × 5 “shells,” as shown for protected OR in Figure 9.13(e).
(Note that “left turn” is the same as “right turn”; switching the roles of
input and output results in the same constraints.)

We use these 5 × 5 blocks to fill the layout; we may line the edges of
the layout with unconstrained ports. The straight and turn blocks provide
the necessary flexibility to construct any planar graph, by letting us extend
the vertex edges around the layout as needed.

�

�

�

�

�

�

�

�

120 9. One-Player Games (Puzzles)

Theorem 9.8. Sliding Blocks is PSPACE-complete, even for 1 × 2 blocks.

Proof: Reduction from NCL. Given a planar constraint graph made of AND

and protected-OR vertices, we construct a corresponding sliding-block puz-
zle, as described above. A port block of a particular vertex gadget may
move if and only if the corresponding NCL graph edge may be reversed.

Sliding Blocks is in PSPACE: a simple nondeterministic algorithm tra-
verses the state space, as in Theorem 5.9. �

9.4 The Warehouseman’s Problem
As mentioned in Section 9.3, the Warehouseman’s Problem is a particular
formulation of a kind of sliding-block problem in which the blocks are
not required to have a fixed size, and the goal is to put each block at a
specified final position. Hopcroft, Schwartz, and Sharir [103] showed the
Warehouseman’s Problem PSPACE-hard in 1984.

Their construction critically requires that some blocks have dimensions
that are proportional to the box dimensions. Using Nondeterministic Con-
straint Logic, we can strengthen (and greatly simplify) the result: it is
PSPACE-complete to achieve a specified total configuration, even when
the blocks are all 1 × 2.

9.4.1 PSPACE-completeness

Theorem 9.9. The Warehouseman’s Problem is PSPACE-hard, even for
1 × 2 blocks.

Proof: As in Section 9.3, but using Theorem 5.15, which shows that deter-
mining whether a given total configuration may be reached from a given
AND/OR graph is PSPACE-hard. The graph initial and desired configura-
tions correspond to two block configurations; the second is reachable from
the first if and only if the NCL problem has a solution. �

If we restrict the block motions to unit translations (as appropriate
when viewing the problem as a generalized combinatorial game), then the
problem is also in PSPACE, as in Theorem 5.9.

9.5 Sliding-Coin Puzzles
Sliding-block puzzles have an obvious complexity about them, so it is no
surprise that they are PSPACE-complete. What is more surprising is that
there are PSPACE-complete sliding-coin puzzles. For sliding-block puzzles,

�

�

�

�

�

�

�

�

9.5. Sliding-Coin Puzzles 121

if the blocks are all 1× 1, as in the 15 Puzzle, the puzzles become easy—it
is the fact that one block can be dependent on the positions of two other
blocks for the ability to move in a particular direction that makes it possible
to build complex puzzles and gadgets. In a typical sliding-coin puzzle, a
coin is like a 1 × 1 block; it only needs one other coin to move out of the
way for it to be able to move and take its place. Indeed, many forms of
sliding-coin puzzle have been shown to be efficiently solvable [39].

But it turns out that adding a simple constraint to the motion of the
coins leads to a very natural problem that is PSPACE-complete.

The Sliding Tokens problem is defined as follows. It is played on an
undirected graph with tokens placed on some of the vertices. A legal con-
figuration of the graph is a token placement such that no adjacent vertices
both have tokens. (That is, the tokens form an independent set of ver-
tices.) A move is made by sliding a token from one vertex to an adjacent
one, along an edge, such that the resulting configuration is legal. Given an
initial configuration, is is possible to move a given token?

Note that this problem is essentially a dynamic, puzzle version of the
Independent Set problem, which is NP-complete [74]. Similarly, the nat-
ural two-player-game version of Independent Set, called Kayles, is also
PSPACE-complete [74]. Just as many NP-complete problems become
PSPACE-complete when turned into two-player games [147], it is also nat-
ural to expect that they become PSPACE-complete when turned into dy-
namic puzzles.

Finally, from a more computational perspective, sliding-token graphs
also superficially resemble Petri nets.

9.5.1 PSPACE-completeness

We give a reduction from Nondeterministic Constraint Logic showing that
this problem is PSPACE-complete. By Theorem 5.12, we must show how
to construct planar graphs made from AND and OR vertices.

AND and OR Vertices. We construct NCL AND and OR vertex gadgets out of
sliding-token subgraphs, in Figures 9.14(a) and 9.14(b). The edges that
cross the dotted-line gadget borders are “port” edges. A token on an outer
port-edge vertex represents an inward-directed NCL edge, and vice-versa.
Given an AND/OR graph and configuration, we construct a corresponding
sliding-token graph, by joining together AND and OR vertex gadgets at
their shared port edges, placing the port tokens appropriately.

Theorem 9.10. Sliding Tokens is PSPACE-complete.

Proof: First, observe that no port token may ever leave its port edge.
Choosing a particular port edge A, if we inductively assume that this condi-

�

�

�

�

�

�

�

�

122 9. One-Player Games (Puzzles)

(a) AND (b) OR

Figure 9.14. Sliding Tokens vertex gadgets.

tion holds for all other port edges, then there is never a legal move outside
A for its token; another port token would have to leave its own edge first.

The AND gadget clearly satisfies the same constraints as an NCL AND

vertex; the upper token can slide in just when both lower tokens are slid
out. Likewise, the upper token in the OR gadget can slide in when either
lower token is slid out; the internal token can then slide to one side or the
other to make room. It thus satisfies the same constraints as an NCL AND

vertex.
Sliding Tokens is in PSPACE: a simple nondeterministic algorithm tra-

verses the state space, as in Theorem 5.9. �

9.6 Plank Puzzles

A plank puzzle is a puzzle in which the goal is to cross a crocodile-infested
swamp, using only wooden planks supported by tree stumps.

Plank puzzles were invented by UK maze enthusiast Andrea Gilbert.
Like TipOver, they originated as a popular online puzzle applet [75]; now
there is also a physical version, sold by ThinkFun as River Crossing. Like
Rush Hour and TipOver, the puzzle comes with a set of challenge cards,
each with a different layout. Also like Rush Hour, and unlike TipOver,
plank puzzles are unbounded games; there is no resource that is used up as
the game is played. (By contrast, in TipOver, the number of vertical crates
must decrease by one each turn.) We give a reduction from Nondetermin-
istic Constraint Logic showing that plank puzzles are PSPACE-complete.
(See also [87].)

�

�

�

�

�

�

�

�

9.6. Plank Puzzles 123

Figure 9.15. A plank puzzle.

Rules. The game board is an n×n grid, with stumps at some intersections,
and planks arranged between some pairs of stumps, along the grid lines.
The goal is to go from one given stump to another. You can pick up
planks, and put them down between other stumps separated by exactly
the plank length. You are not allowed to cross planks over each other, or
over intervening stumps, and you can carry only one plank at a time.

A sample plank puzzle is shown in Figure 9.15. The solution begins
as follows: walk across the length-1 plank; pick it up; lay it down to the
south; walk across it; pick it up again; lay it down to the east; walk across
it again; pick it up again; walk across the length-2 plank; lay the length-1
plank down to the east;

9.6.1 PSPACE-completeness

We give a reduction from Nondeterministic Constraint Logic. We need
AND and OR vertices, and a way to wire them together to create a plank
puzzle corresponding to any given planar graph.

The constraint-graph edge orientations are represented by the positions
of “port planks” at each vertex interface; moving a port plank into a vertex
gadget enables it to operate appropriately, and prevents it from being used
in the paired vertex gadget.

AND vertex. The plank-puzzle AND vertex is shown in Figure 9.16(a). The
length-2 planks serve as the input and output ports. (Of course, the gate
may be operated in any direction.) Both of its input port planks (A and B)
are present, and thus activated; this enables you to move its output port
plank (C) outside the gate. Suppose you are standing at the left end of
plank A. First walk across this plank, pick it up, and lay it down in front of
you, to reach plank D. With D you can reach plank B. With B and D, you
can reach C, and escape the gate. At the end of this operation A and B are
trapped inside the vertex, inaccessible to the adjoining vertex gadgets.

The operation is fully reversible, since the legal moves in plank puzzles
are reversible.

�

�

�

�

�

�

�

�

124 9. One-Player Games (Puzzles)

C

D

output

input

input

B

A

(a) AND

C

A

B

input

input

output

(b) OR

Figure 9.16. Plank-puzzle AND and OR vertices.

End

CD
E

1
2

A

B

Start

Figure 9.17. A plank puzzle made from an AND/OR graph.

�

�

�

�

�

�

�

�

9.6. Plank Puzzles 125

Figure 9.18. The equivalent constraint graph for Figure 9.17.

OR vertex. The OR vertex is shown in Figure 9.16(b). In this case, starting
at either A or B will let you move the output plank C outside the vertex,
by way of internal length-1 plank(s), trapping the starting plank inside the
vertex.

Constraint Graphs. To complete the construction, we must have a way to
wire these gates together into large puzzle circuits. Once you have activated
an AND gate, you’re stuck standing on its output plank—now what?

Figure 9.17 shows a puzzle made from six gates. For reference, the
equivalent constraint graph is shown in Figure 9.18. The gates are arranged
on a staggered grid, in order to make matching inputs and outputs line
up. The port planks are shared between adjoining gates. Notice that two
length-3 planks have been added to the puzzle. These are the key to moving
around between the gates. If you are standing on one of these planks, you
can walk along the edges of the gates, by repeatedly laying the plank in
front of you, walking across it, then picking it up. This will let you get to
any port of any of the gates. By using both the length-3 planks, you can
alternately place one in front of the other, until you reach the next port
you want to exit from. Then you can leave one length-3 plank there, and
use the remaining one to reach the desired port entrance.

However, you cannot get inside any of the gates using just a length-3
plank, because there are no interior stumps exactly three grid units from a
border stump.

To create arbitrary planar constraint graphs, we can use the same tech-
niques used in Section 9.3 to build large “straight” and “turn” blocks out
of 5 × 5 blocks of vertex gadgets.

Theorem 9.11. Plank puzzles are PSPACE-complete.

Proof: Reduction from NCL, by the construction described. A given stump
may be reached if and only if the corresponding NCL graph edge may be
reversed.

�

�

�

�

�

�

�

�

126 9. One-Player Games (Puzzles)

Plank puzzles are in PSPACE: a simple nondeterministic algorithm tra-
verses the state space, as in Theorem 5.9. �

9.7 Sokoban

In the pushing-blocks puzzle Sokoban, one is given a configuration of 1× 1
blocks, and a set of target positions. One of the blocks is distinguished
as the pusher. A move consists of moving the pusher a single unit either
vertically or horizontally; if a block occupies the pusher’s destination, then
that block is pushed into the adjoining space, providing it is empty. Oth-
erwise, the move is prohibited. Some blocks are barriers, which may not
be pushed. The goal is to make a sequence of moves such that there is a
(non-pusher) block in each target position.

By showing how to construct a Sokoban position corresponding to a
space-bounded Turing machine, Culberson [33] proved that Sokoban is
PSPACE-complete. Using Nondeterministic Constraint Logic, we give an
alternate proof. Our result applies even if there are no barriers allowed in
the Sokoban position, thus strengthening Culberson’s result.

9.7.1 PSPACE-completeness

Unrecoverable Configurations. The idea of an unrecoverable configuration
is central to Culberson’s proof, and it will be central to our proof as well.
We construct our Sokoban instance so that if the puzzle is solvable, then
the original configuration may be restored from any solved state by revers-
ing all the pushes. Then any push that may not be reversed leads to an
unrecoverable configuration. For example, in the partial configuration in
Figure 9.19(a), if block A is pushed left, it will be irretrievably stuck next
to block D; there is no way to position the pusher so as to move it again.
We may speak of such a move as being prohibited, or impossible, in the
sense that no solution to the puzzle can include such a move, even though
it is technically legal.

AND and OR Vertices. We construct NCL AND and OR vertex gadgets out
of partial Sokoban positions, in Figure 9.19. (The pusher is not shown.)
The gray blocks in the figures, though unmovable, are not barriers; they
are simply blocks that cannot be moved by the pusher because of their
configuration. The yellow “trigger” blocks are the ones whose motion serves
to satisfy the vertex constraints. In each vertex, blocks A and B represent
outward-directed edges; block C represents an inward-directed edge. A and
C switch state by moving left one unit; B switches state by moving up one
unit. We assume that the pusher may freely move to any empty space

�

�

�

�

�

�

�

�

9.7. Sokoban 127

.

. .
.

A CD

B

E

(a) AND

A CD

B

E

.

. .
.

(b) OR

A B C D E H I J F

G
. . .

. .
.

(c) Utility gadgets

Figure 9.19. Sokoban gadgets.

surrounding a vertex. We also assume that block D in Figure 9.19(a) may
not reversibly move left more than one unit. Later, we show how to arrange
both of these conditions.

Lemma 9.12. The construction in Figure 9.19(a) satisfies the same con-
straints as an NCL AND vertex, with A and B corresponding to the AND red
edges, and C to the blue edge.

Proof: We need to show that C may move left if and only if A first moves
left, and B first moves up. For this to happen, D must first move left, and E
must first move up; otherwise pushing A or B would lead to an unrecoverable
configuration. Having first pushed D and E out of the way, we may then
push A left, B up, and C left. However, if we push C left without first pushing
A left and B up, then we will be left in an unrecoverable configuration; there
will be no way to get the pusher into the empty space left of C to push it
right again. (Here we use the fact that D can only move left one unit.) �

Lemma 9.13. The construction in Figure 9.19(b) satisfies the same con-
straints as an NCL OR vertex.

Proof: We need to show that C may move left if and only if A first moves
left, or B first moves up.

As before, D or E must first move out of the way to allow A or B to
move. Then, if A moves left, C may be pushed left; the gap opened up by
moving A lets the pusher get back in to restore C later. Similarly for B.

�

�

�

�

�

�

�

�

128 9. One-Player Games (Puzzles)

However, if we push C left without first pushing A left or B up, then, as
in Lemma 9.12, we will be left in an unrecoverable configuration. �

Graphs. We have shown how to make AND and OR vertices, but we must
still show how to connect them up into arbitrary planar graphs. The re-
maining gadgets we shall need are illustrated in Figure 9.19(c).

The basic idea is to connect the vertices together with alternating se-
quences of blocks placed against a double-thick wall, as in the left of Fig-
ure 9.19(c). Observe that for block A to move right, first D must move
right, then C, then B, then finally A, otherwise two blocks will wind up
stuck together. Then, to move block D left again, the reverse sequence
must occur. Such movement sequences serve to propagate activation from
one vertex to the next.

We may switch the “parity” of such strings, by interposing an appropri-
ate group of six blocks: E must move right for D to, then D must move back
left for E to. We may turn corners: for F to move right, G must first move
down. Finally, we may “flip” a string over, to match a required orientation
at the next vertex, or to allow a turn in a desired direction: for H to move
right, I must move right at least two spaces; this requires that J first move
right.

We satisfy the requirement that block D in Figure 9.19(a) may not
reversibly move left more than one unit by protecting the corresponding
edge of every AND with a turn; observe that in Figure 9.19(c), block F may
not reversibly move right more than one unit. The flip gadget solves our
one remaining problem: how to position the pusher freely wherever it is
needed. Observe that it is always possible for the pusher to cross a string
through a flip gadget. (After moving J right, we may actually move I three
spaces right.) If we simply place at least one flip along each wire, then the
pusher can get to any side of any vertex.

Theorem 9.14. Sokoban is PSPACE-complete, even if no barriers are al-
lowed.

Proof: Reduction from Nondeterministic Constraint Logic. Given a pla-
nar AND/OR graph, we build a Sokoban puzzle as described above, cor-
responding to the initial graph configuration. We place a target at every
position that would be occupied by a block in the Sokoban configuration
corresponding to the target graph configuration. Since NCL is inherently
reversible, and our construction emulates NCL, then the solution configura-
tion must also be reversible, as required for the unrecoverable configuration
constraints.

Sokoban is in PSPACE: a simple nondeterministic algorithm traverses
the state space, as in Theorem 5.9. �

�

�

�

�

�

�

�

�

9.8. Push-2-F 129

Figure 9.20. Example of pushing blocks.

9.8 Push-2-F

Push-2-F is a kind of block-pushing puzzle similar to the classic Sokoban
(Section 9.7). The puzzle consists of unit square blocks on an integer lattice;
some of the blocks are movable. (The “F” denotes that some blocks are
fixed, and immovable.) A mobile “pusher” block may move horizontally
and vertically in order to reach a specified goal position, and may push
up to two blocks at once, as shown in Figure 9.20. More generally, in
Push-k-F, the pusher may push up to k blocks. Unlike Sokoban, the goal
is merely to get the pusher to a target location. This simpler goal makes
constructing gadgets more difficult; in Sokoban, requiring multiple blocks
to have target locations effectively prevents moves that could otherwise
break the gadgets.

Here we present all of the gadgets needed to show that Push-k-F is
PSPACE-complete for k ≥ 2 (joint work with Michael Hoffmann), and
state their properties. Some of the proofs that the gadgets satisfy the
stated properties are rather detailed; we omit them here and refer the
reader to [40] for details.

9.8.1 PSPACE-completeness

We reduce Nondeterministic Constraint Logic to Push-2-F to show PSPACE-
completeness.

Basic Gadgets. In Figure 9.21 we show the basic Push-2-F gadgets. Red
squares represent fixed blocks, and blue squares movable blocks.

The diode can be traversed arbitrarily often from I to O, but never
from O to I.

The join can be traversed from both I1 and I2 to O arbitrarily often,
but never from I1 to I2 or vice versa. Also, the pusher can always go from
O to the most recently entered input (I1 or I2).

The one-time-passage gadget (shown semi-symbolically, with embedded
diodes) allows the pusher to pass once from I to O and back to I (passage);
after such a traversal, it must be reset during a U → U (unlock) traversal
before another passage.

�

�

�

�

�

�

�

�

130 9. One-Player Games (Puzzles)

I O

Symbol

I O

(a) Diode

I1

O

Symbol

I2

I1

I2
O

(b) Join

I

O

U

I

Symbol

O

U

(c) One-time passage

U

L I

L O

I

O

I

O

U

I

O
U

Symbol

O
U I

LI LO

(d) Lock

Figure 9.21. Basic Push-2-F gadgets. The one-time passage and lock gadgets are
shown semi-symbolically; triangles denote embedded diodes, and labeled circles
denote embedded one-time passage gadgets.

The lock gadget (shown semi-symbolically, with embedded diodes and
one-time passage gadgets) can only be traversed via the following three
“atomic” traversals: LI → LO (lock), I → O (passage), and U → U
(unlock). Furthermore, any LI → LO and I → O traversals must be
separated by a U → U traversal. This lock gadget is extremely complicated;
a much simpler lock (which also does not require the one-time-passage
gadget) is possible if the pusher is allowed to push three blocks instead of
just two (Push-3-F). See [40] for details.

�

�

�

�

�

�

�

�

9.8. Push-2-F 131

I1 I2

O1O2 O
I

U

U I
O

I U
O

O
I

U

I U
O

U I
O

L1 L2

L3 L4

L5 L6

I1

I2

O2

O1

Symbol

(a) Basic crossover (b) Bidirectional crossover

Figure 9.22. Crossing gadgets.

Crossing Gadgets. From here on we represent gadgets schematically, in
terms of previously defined gadgets, with “wires” representing corridors
bounded by fixed blocks.

The crossover gadget shown in Figure 9.22(a) is made of six locks. It
can be traversed from I1 to O1 and from I2 to O2 arbitrarily often; no
other traversals are possible. The reader may wonder why a crossover
gadget is necessary: don’t we get crossovers for free with Nondeterministic
Constraint Logic? The problem here is that we must cross signals even to
build the constraint-logic gadgets themselves.

Using four crossovers, we can make a bidirectional crossover, shown in
Figure 9.22(b).

AND and OR Vertices. We build the NCL vertex gadgets out of buffered locks.
A buffered lock (Figure 9.23(a)) has the same properties as a lock, except
that it may be unlocked during an I → O traversal, it may be unlocked by
a U → E traversal, and the arrangement of terminals is different.

Each vertex gadget (Figures 9.23(b) and 9.23(c)) is made of three
buffered locks, plus associated circuitry to enforce the necessary constraints.
Each buffered lock acts as half of an edge: locked corresponds to “directed
outward,” and unlocked corresponds to “directed inward.” The unattached
buffered-lock terminals (E, some I’s) are open to free space, which can
reach any other such terminal, via appropriately placed crossing gadgets.

�

�

�

�

�

�

�

�

132 9. One-Player Games (Puzzles)

IU
O I

LI

E

U LO

O

I
LI
E
U LO

O

Symbol

(a) Buffered lock

BL3

BL2 BL1I
LI
E
U LO

O
I

LI
E
U LO

O

E
LO
I
O LI

U

(b) AND

BL3

BL2 BL1

E
LO
I
O LI

U

I
LI
E
U LO

O
I

LI
E
U LO

O

(c) OR

Figure 9.23. NCL vertex gadgets.

In each vertex, we assume that the lock states initially satisfy the ver-
tex constraints. Then any possible pusher traversal maintains those con-
straints.

Lemma 9.15. The gadget shown in Figure 9.23(b) satisfies the same con-
straints as an NCL AND vertex.

Proof: To lock BL3, both BL1 and BL2 must be unlocked: the pusher
may then traverse I(BL1) → LO(BL3), passing through BL2. To lock
either BL1 or BL2, BL3 must be unlocked: the pusher may then traverse
either I(BL3) → LO(BL1) or I(BL3) → LO(BL2). �

Lemma 9.16. The gadget shown in Figure 9.23(c) satisfies the same con-
straints as an NCL OR vertex.

Proof: Any buffered lock may be locked if and only if any other lock
is unlocked. For example, if BL1 is unlocked, the pusher may traverse
I(BL1) → LO(BL3); the other cases are symmetric. The join gadgets
ensure that only the appropriate paths may be taken. �

Constraint Graphs. Vertices are connected together into arbitrary NCL con-
straint graphs by connecting the buffered locks in pairs, matching LO ter-
minals to U terminals. Then any buffered lock can be unlocked precisely
when its connecting buffered lock is locked. This property represents that a
half-edge can be directed inwards precisely when the other half is directed
outwards.

For example, suppose that BL1 and BL2 in an And vertex are un-
locked. Then the pusher may traverse I(BL1) → LO(BL3), and continue
on to traverse U → E in the adjoining buffered lock.

�

�

�

�

�

�

�

�

9.9. Rush Hour 133

Theorem 9.17. Push-k-F is PSPACE-complete for k ≥ 2.

Proof: Reduction from NCL, by the construction described. A given NCL
constraint graph may be represented as a Push-k-F configuration. The
target edge in the NCL graph may be eventually reversed if and only if the
pusher may reach the unlock terminal of a corresponding buffered lock.

Push-k-F is in PSPACE: a simple nondeterministic algorithm traverses
the state space, as in Theorem 5.9. �

9.9 Rush Hour
In the puzzle Rush Hour, one is given a sliding-block configuration with
the additional restriction that each block is constrained to move only hor-
izontally or vertically on a grid. The goal is to move a particular block to
a particular location at the edge of the grid. In the commercial version of
the puzzle, the grid is 6 × 6, the blocks are all 1 × 2 or 1 × 3 (“cars” and
“trucks”), and each block constraint direction is the same as its lengthwise
orientation.

By showing how to build a kind of reversible computer from Rush Hour
gadgets that work like constraint-logic AND and OR vertices, as well as a
crossover gadget, Flake and Baum [56] showed that the generalized problem
is PSPACE-complete. (Their construction was the basis for the develop-
ment of constraint logic.) Tromp [164, 165] strengthened their result by
showing that Rush Hour is PSPACE-complete even if the blocks are all
1 × 2.

Here we give a simpler construction showing that Rush Hour is PSPACE-
complete, again using the traditional 1×2 and 1×3 blocks that must slide
lengthwise. We only need an AND and a protected OR (Section 5.2.3), which
turns out to be easier to build than OR; because of the generic crossover
construction (Section 5.2.2), we don’t need a crossover gadget. (We also
don’t need the miscellaneous wiring gadgets used in [56].)

9.9.1 PSPACE-completeness

Rush Hour Layout. We tile the grid with our vertex gadgets, as shown in
Figure 9.24(a). One block (T) is the target, which must be moved to the
bottom left corner; it is released when a particular port block slides into a
vertex.

Dark-gray blocks represent the “cell walls,” which unlike in our sliding-
blocks construction are not shared. They are arranged so that they may
not move at all. Yellow blocks are “trigger” blocks, whose motion serves
to satisfy the vertex constraints. Medium-gray blocks are fillers; some of
them may move, but they do not disrupt the vertices’ operation.

�

�

�

�

�

�

�

�

134 9. One-Player Games (Puzzles)

. .
.

T

(a) Layout

A

B

C

D E
F

(b) AND (c) Protected OR

Figure 9.24. Rush Hour layout and vertex gadgets.

As in the sliding-blocks construction (Section 9.3), edges are directed
inward by sliding blocks out of the vertex gadgets; edges are directed out-
ward by sliding blocks in. The layout ensures that no port block may ever
slide out into an adjacent vertex; this helps keep the cell walls fixed.

Lemma 9.18. The construction in Figure 9.24(b) satisfies the same con-
straints as an NCL AND vertex, with A and B corresponding to the AND red
edges, and C to the blue edge.

Proof: We need to show that C may move down if and only if A first moves
left and B first moves down.

�

�

�

�

�

�

�

�

9.9. Rush Hour 135

Moving A left and B down allows D and E to slide down, freeing F, which
releases C. The filler blocks on the right ensure that F may only move left;
thus, the inputs are required to move to release the output. �

Lemma 9.19. The construction in Figure 9.24(c) satisfies the same con-
straints as an NCL protected-OR vertex, with A and B corresponding to the
protected edges.

Proof: We need to show that C may move down if either A first moves left
or B first moves right.

If either A or B slides out, this allows D to slide out of the way of C,
as required. Note that we are using the protected-OR property: if A were
to move right, E down, D right, C down, and B left, we could not then
slide A left, even though the OR property should allow this; E would keep
A blocked. But in a protected OR we are guaranteed that A and B will not
simultaneously be slid out. �

Graphs. We may use the same constructions here that we used for sliding-
blocks layouts: 5× 5 blocks of Rush Hour vertex gadgets serve to build all
the wiring necessary to construct arbitrary planar graphs (Figure 9.13).

In the special case of arranging for the target block to reach its des-
tination, this will not quite suffice; however, we may direct the relevant
signal to the bottom left of the grid, and then remove the bottom two rows
of vertices from the bottommost 5 × 5 blocks; these can have no effect on
the graph. The resulting configuration, shown in Figure 9.24(a), allows the
target block to be released properly.

Theorem 9.20. Rush Hour is PSPACE-complete.

Proof: Reduction from NCL. Given a planar constraint graph made of AND

and protected-OR vertices, we construct a corresponding Rush Hour puzzle,
as described above. The output port block of a particular vertex may move
if and only if the corresponding NCL graph edge may be reversed. We
direct this signal to the lower left of the grid, where it may release the
target block.

Rush Hour is in PSPACE: a simple nondeterministic algorithm traverses
the state space, as in Theorem 5.9. �

9.9.2 Generalized Problem Bounds

We may consider the more general Constrained Sliding Blocks problem,
where blocks need not be 1×2 or 1×3, and may have a constraint direction
independent of their dimension. In this context, the existing Rush Hour
results do not yet provide a tight bound; the complexity of the problem for
1 × 1 blocks has not been addressed.

�

�

�

�

�

�

�

�

136 9. One-Player Games (Puzzles)

A B

C

(a) AND vertex (b) Connector

A B

C

(c) OR vertex

Figure 9.25. Triagonal Slide-Out gadgets.

Deciding whether a block may move at all is in P: e.g., we may do
a breadth-first search for a movable block that would ultimately enable
the target block to move, beginning with the blocks obstructing the target
block. Since no block need ever move more than once to free a dependent
block, it is safe to terminate the search at already-visited blocks.

Therefore, a straightforward application of constraint logic cannot show
this problem hard; however, the complexity of moving a given block to a
given position is not obvious.

Tromp and Cilibrasi provide some empirical indications that minimum-
length solutions for 1 × 1 Rush Hour may grow exponentially with puzzle
size [164].

9.10 Triangular Rush Hour

Rush Hour has also inspired a triangular variant, called Triagonal Slide-
Out, playable as an online applet [80]. The rules are the same as for Rush
Hour (Section 9.9), except that the game is played on a triangular, rather
than square, grid. Forty puzzles are available on the website.

Nondeterministic Constraint Logic gadgets showing Triagonal Slide-Out
PSPACE-hard are shown in Figures 9.25 and 9.26. A and B cars represent
inactive (outward-directed) input edges; C represents an inactive (inward-
directed) output edge. We omit the proof of correctness.

One interesting feature of this triangular variant is that while it seems
very difficult to build gadgets showing 1 × 1 Rush Hour hard, it might be
much easier to show Triagonal Slide-Out with unit triangular cars hard,
because for a unit triangular car to slide one unit, two triangular spaces
must be empty: the one it is moving into, and the intervening space with
the opposite parity.

�

�

�

�

�

�

�

�

9.11. Hinged Polygon Dissections 137

Figure 9.26. How the gadgets are connected together.

9.11 Hinged Polygon Dissections

Properly speaking, this section is not about a game as defined in Sec-
tion 1.1, because there is no concept of a discrete move: the problems
are geometrical and continuous. Nonetheless, it is a further application of
Nondeterministic Constraint Logic, and it demonstrates how continuous
problems can sometimes be treated as if they were discrete.

We will simply define the problems and state the results here; we refer
the reader to [86] (joint work with Greg Frederickson) for the detailed
reductions.

A hinged dissection of a polygon is a dissection with a set of hinges
connecting the pieces, so that they may kinematically reach a variety of
configurations in the plane. Hinged polygon dissections have been a staple
of recreational mathematics for at least the last century. One well known
dissection is shown in Figure 9.27; this is Dudeney’s [49] hinged dissection
of a triangle to a square. There is an entire book [62] dedicated to hinged
dissections.

The most basic problem is, given two configurations of a hinged polygon
dissection, is it kinematically possible to go from one to the other? This
problem and others are formalized as follows.

Terminology. We define a piece as an instance of a polygon. A dissection
is a set of pieces. A configuration is an embedding of a dissection in the
plane, such that only the boundaries of pieces may overlap. The shape of a

�

�

�

�

�

�

�

�

138 9. One-Player Games (Puzzles)

Figure 9.27. Dudeney’s hinged triangle-to-square dissection.

configuration is the set of points, including the boundaries of pieces, that
it occupies.

A hinge point of a piece is a given point on the boundary of the piece.
A hinge for a set of pieces is a set of hinge points, one for each piece in the
set. Given a dissection and a set of hinges, two pieces are hinge-connected
if either they share a hinge or there is another piece in the set to which
both are hinge-connected. A hinging of a dissection is a set of hinges such
that all pieces in the dissection are hinge-connected.

A hinged configuration of a dissection and a hinging is a configuration
that, for each hinge, collocates all hinge points of that hinge. A kine-
matic solution of a dissection, a hinging, and two hinged configurations is
a continuous path from one configuration to the other through the space
of hinged configurations. A hinged dissection of two polygons is a dissec-
tion and a hinging such that there are hinged configurations of the same
shape as the polygons and there is a kinematic solution for the dissection,
hinging, and hinged configurations. A hinged dissection of more than two
polygons is similarly defined.

Decision questions. All of the hardness results are for problems of the form
“is there a kinematic solution to...”; the difference is what we are given
in each case. We are always given a dissection. We may or may not be
given a hinging. We may be given two configurations, one configuration
and one shape, or two shapes. The shapes may or may not be required to
be convex. The pieces may or may not be required to be convex. We will
always require that the configurations form polygonal shapes.

For each question, all of the information we are not given will form the
desired answer. For example, if we are given a dissection, a hinging, and
two shapes, the question is whether there exist satisfying configurations A
and B forming the shapes, and a kinematic solution S from A to B.

The brief statement of our results is that if we are given a hinging, then
all such questions are PSPACE-hard; if we are not given a hinging, but
are given two configurations, then determining whether there is a hinging
admitting a kinematic solution is PSPACE-hard.

�

�

�

�

�

�

�

�

9.11. Hinged Polygon Dissections 139

(a) AND (b) OR

(c) Hinged slider

Figure 9.28. NCL vertex gadgets for hinged dissections.

Gadgets. The Nondeterministic Constraint Logic gadgets required are shown
in Figure 9.28. Essentially, these gadgets serve to turn a sliding-block puz-
zle into a hinged dissection: to go from one hinged configuration to another,
one must effectively solve a sliding-block puzzle, thus an NCL problem.
(See [86] for details.) Several other intricate gadgets are needed when the
shapes are required to be convex.

�

�

�

�

�

�

�

�

10

Two-Player Games

In this chapter we present three new results for two-player games: Ama-
zons, Konane, and Cross Purposes. Amazons is a relatively new game,
about 20 years old, but it has received a considerable amount of study.
Konane is a very old game, hundreds of years old at least; it has received
some study, but not as much as Amazons. Cross Purposes is a brand new
game.

10.1 Amazons

Amazons was invented by Walter Zamkauskas in 1988. Both human and
computer opponents are available for Internet play, and there have been
several tournaments, both for humans and for computers.

Amazons has several properties that make it interesting for theoretical
study. Like Go, its endgames naturally separate into independent sub-
games; these have been studied using combinatorial game theory [10, 153].
Amazons has a very large number of moves available from a typical posi-
tion, even more than in Go. This makes straightforward search algorithms
impractical for computer play. As a result, computer programs need to
incorporate more high-level knowledge of Amazons strategy [116,126].

Playing an Amazons endgame optimally is NP-complete, as shown by
Buro [20], leaving the complexity of the general game open.1 We show

1Furtak, Kiyomi, Uno, and Buro independently showed Amazons to be PSPACE-
complete at the same time as Hearn’s result [69]. Curiously, [69] already contains two

141

�

�

�

�

�

�

�

�

142 10. Two-Player Games

Figure 10.1. Amazons start position and typical endgame position.

that generalized Amazons is PSPACE-complete [88, 92], by a reduction
from Bounded Two-Player Constraint Logic (2CL).

Amazons Rules. Amazons is normally played on a 10 × 10 board. The
standard starting position, and a typical endgame position, are shown in
Figure 10.1. Each player has four amazons, which are immortal chess
queens. White plays first, and play alternates. On each turn a player must
first move an amazon, like a chess queen, and then fire an arrow from that
amazon. The arrow also moves like a chess queen. The square that the
arrow lands on is burned off the board; no amazon or arrow may move
onto or across a burned square. There is no capturing. The first player
who cannot move loses.

Amazons is a game of mobility and control, like Chess, and of territory,
like Go. The strategy involves constraining the mobility of the opponent’s
amazons, and attempting to secure large isolated areas for one’s own ama-
zons. In the endgame shown in Figure 10.1, Black has access to 23 spaces,
and with proper play can make 23 moves; White can also make 23 moves.
Thus from this position, the player to move will lose.

different PSPACE-completeness proofs: one reduces from Hex, and the other from Gen-
eralized Geography. The paper is the result of the collaboration of two groups that
had also solved the problem independently then discovered each other. Thus, after
remaining an open problem for many years, the complexity of Amazons was solved
independently and virtually simultaneously by three different groups, using three com-
pletely different approaches, each of which leverages different aspects of the game to
construct gadgets.

�

�

�

�

�

�

�

�

10.1. Amazons 143

A

C

D

E

B

(a) Wire, parity,
flow limiter

A

B

C

D

(b) Turn, one way

Figure 10.2. Amazons wiring gadgets.

10.1.1 PSPACE-completeness

We reduce from Bounded 2CL, in Section 6.1.2. This requires construction
of planar graphs made with AND, OR, FANOUT, CHOICE, and VARIABLE

gadgets.

Basic Wiring. Signals propagate along wires, which will be necessary to con-
nect the vertex gadets. Figure 10.2(a) shows the construction of a wire.
Suppose that amazon A is able to move down one square and shoot down.
This enables amazon B to likewise move down one and shoot down; C may
now do the same. This is the basic method of signal propagation. When an
amazon moves backward (in the direction of input, away from the direction
of output) and shoots backward, we will say that it has retreated.

Figure 10.2(a) illustrates two additional useful features. After C re-
treats, D may retreat, freeing up E. The result is that the position of
the wire has been shifted by one in the horizontal direction. Also, no
matter how much space is freed up feeding into the wire, D and E may
still only retreat one square, because D is forced to shoot into the space
vacated by C.

Figure 10.2(b) shows how to turn corners. Suppose A, then B may
retreat. Then C may retreat, shooting up and left; D may then retreat. This
gadget also has another useful property: signals may only flow through it
in one direction. Suppose D has moved and shot right. C may then move
down and right, and shoot right. B may then move up and right, but it can

�

�

�

�

�

�

�

�

144 10. Two-Player Games

A

B

(a) VARIABLE

C

D

B

A

(b) AND

C

D

B

A

(c) OR, CHOICE

Figure 10.3. Amazons logic gadgets.

only shoot into the square it just vacated. Thus, A is not able to move up
and shoot up.

By combining the horizontal parity shifting in Figure 10.2(a) with turns,
we may direct a signal anywhere we wish. Using the unidirectional and
flow-limiting properties of these gadgets, we can ensure that signals may
never back up into outputs, and that inputs may never retreat more than
a single space.

VARIABLE, AND, OR, CHOICE. The VARIABLE gadget is shown in Figure 10.3(a).
If White moves first in a variable, he can move A down, and shoot down,
allowing B to retreat later. If Black moves first, he can move up and shoot
up, preventing B from ever retreating.

The AND and OR gadgets are shown in Figures 10.3(b) and 10.3(c).
In each, A and B are the inputs, and D is the output. Note that, be-
cause the inputs are protected with flow limiters (Figure 10.2(a)), no input
may retreat more than one square; otherwise the AND might incorrectly
activate.

In an AND gadget, no amazon may usefully move until at least one input
retreats. If B retreats, then a space is opened up, but C is unable to retreat
there; similarly if just A retreats. But if both inputs retreat, then C may
move down and left, and shoot down and right, allowing D to retreat.

Similarly, in an OR gadget, amazon D may retreat if and only if either
A or B first retreats.

The existing OR gadget also suffices as a CHOICE gadget, if we reinter-
pret the bottom input as an output: if B retreats, then either C or A, but
not both, may retreat.

FANOUT. Implementing a FANOUT in Amazons is a bit trickier. The gadget
shown in Figure 10.4 accomplishes this. A is the input; G and H are the

�

�

�

�

�

�

�

�

10.1. Amazons 145

A

B

C

D

E F

G

H

Figure 10.4. Amazons FANOUT gadget.

outputs. First, observe that until A retreats, there are no useful moves to
be made. C, D, and F may not move without shooting back into the square
they left. A, B, and E may move one unit and shoot two, but nothing is
accomplished by this. But if A retreats, then the following sequence is
enabled: B down and right, shoot down; C down and left two, shoot down
and left; D up and left, shoot down and right three; E down two, shoot
down and left; F down and left, shoot left. This frees up space for G and H
to retreat, as required.

Winning. We will have an AND gadget whose output may be activated only
if the white target edge in the 2CL game can be reversed; we need to arrange
for White to win if he can activate this AND. We feed this output signal
into a victory gadget, shown in Figure 10.5. There are two large rooms
available. The sizes are equal, and such that if White can claim both of
them, he will win, but if he can claim only one of them, then Black will
win; we give Black an additional room with a single Amazon in it with
enough moves to ensure this property.

If B moves before A has retreated, then it must shoot so as to block
access to one room or the other; it may then enter and claim the accessible
room. If A first retreats, then B may move up and left, and shoot down
and right two, leaving the way clear to enter and claim the left room, then
back out and enter and claim the right room.

Theorem 10.1. Amazons is PSPACE-complete.

�

�

�

�

�

�

�

�

146 10. Two-Player Games

A

B

roomroom

Figure 10.5. Amazons victory gadget.

Proof: Reduction from Bounded 2CL. Given a planar constraint graph
made of AND, OR, FANOUT, CHOICE, and VARIABLE vertices, we construct
a corresponding Amazons position, as described above. The reduction
may be done in polynomial time: if there are k variables and l clauses,
then there need be no more than (kl)2 crossover gadgets to connect each
variable to each clause it occurs in; all other aspects of the reduction are
equally obviously polynomial.

As described, White can win the Amazons game if and only if he can
win the corresponding 2CL game, so Amazons is PSPACE-hard. Since
the game must end after a polynomial number of moves, it is possible to
perform a search of all possible move sequences using polynomial space,
thus determining the winner. Therefore, Amazons is also in PSPACE, and
thus PSPACE-complete. �

10.2 Konane

Konane is an ancient Hawaiian game, with a long history. Captain Cook
documented the game in 1778, noting that at the time it was played on a
14×17 board. Other sizes were also used, ranging from 8×8 to 13×20. The
game was usually played with pieces of basalt and coral, on stone boards
with indentations to hold the pieces. King Kamehameha the Great was
said to be an expert player; the game was also popular among all classes
of Hawaiians.

More recently, Konane has been the subject of combinatorial game-
theoretic analysis [21, 52]. Like Amazons, its endgames break into inde-
pendent games whose values may be computed and summed. However, as
of this writing, even 1 × n Konane has not been completely solved, so it
is no surprise that complicated positions can arise. We show the general
problem to be PSPACE-complete.

�

�

�

�

�

�

�

�

10.2. Konane 147

Konane Rules. Konane is played on a rectangular board, which is initially
filled with black and white stones in a checkerboard pattern. To begin the
game, two adjacent stones in the middle of the board or in a corner are
removed. Then, the players take turns making moves. Moves are made
as in peg solitaire—indeed, Konane may be thought of as a kind of two-
player peg solitaire. A player moves a stone of his color by jumping it over
a horizontally or vertically adjacent stone of the opposite color, into an
empty space. Stones so jumped are captured, and removed from play. A
stone may make multiple successive jumps in a single move, as long as they
are in a straight line; no turns are allowed within a single move. The first
player unable to move wins.

10.2.1 PSPACE-completeness

The Konane reduction is similar to the Amazons reduction; the Konane
gadgets are somewhat simpler. As before, the reduction is from Bounded
Two-Player Constraint Logic (2CL). We need to build AND, OR, FANOUT,
CHOICE, and VARIABLE gadgets.

Also as in the Amazons reduction, if White can win the constraint-logic
game then he can reach a large supply of extra moves, enabling him to win.
Black is supplied with enough extra moves of his own to win otherwise.

Basic Wiring. Wiring is needed to connect the vertex gadgets together. A
Konane wire is simply a string of alternating black stones and empty spaces.
By capturing the black stones, a white stone traverses the wire. Note that in
the Amazons reduction, signals propagate by Amazons moving backward;
in Konane, signals propagate by stones moving forward, capturing opposing
stones.

Turns are enabled by adjoining wires as shown in Figure 10.6(a); at the
end of one wire, the white stone comes to rest at the beginning of another,
protected from capture by being interposed between two black stones. If
the white stone tried to traverse the turn in the other direction, it would
not be so protected, and Black could capture it. Thus, as in the Amazons
reduction, the turn is also a one-way device, and we assume that gadget
entrances and exits are protected by turns to ensure that signals can only
flow in the proper directions.

Conditional Gadget. A single gadget serves the purpose of AND, FANOUT,
and positional parity adjustment. It has two input/output pathways, with
the property that the second one may only be used if the first one has
already been used. This conditional gadget is shown in Figure 10.6(b); the
individual uses are outlined below.

Observe that a white stone arriving at input 1 may only leave via out-
put 1, and likewise for input 2 and output 2. However, if White attempts

�

�

�

�

�

�

�

�

148 10. Two-Player Games

. . .

. . .

(a) Wire, turn

input 2

input 1

output 1

output 2

. . .
. . .

. . .
. . .

(b) Conditional

Figure 10.6. Konane wiring gadgets.

to use pathway 2 before pathway 1 has been used, Black can capture him
in the middle of the turn. But if pathway 1 has been used, the stone Black
needs to make this capture is no longer there, and pathway 2 opens up.

FANOUT, Parity. If we place a white stone within the wire feeding input 2 of
a conditional gadget, then both outputs may activate if input 1 activates.
This splits the signal arriving at input 1.

If we don’t use output 1, then this FANOUT configuration also serves to
propagate a signal from input 1 to output 2, with altered positional parity.
This enables us to match signal parities as needed at the gadget inputs and
outputs.

VARIABLE, AND, OR, CHOICE. The VARIABLE gadget consists of a white stone at
the end of a wire, as in Figure 10.7(a). If White moves first in a variable,
he can traverse the wire, landing safely at an adjoining turn. If Black
moves first, he can capture the white stone and prevent White from ever
traversing the wire.

The AND gadget is a conditional gadget with output 1 unused. By the
properties of the conditional gadget, a white stone may exit output 2 only
if white stones have arrived at both inputs. The OR gadget is shown in
Figure 10.7(b). The inputs are on the bottom and left; the output is on
the top. Clearly, a white stone arriving via either input may leave via the
output.

As was the case with Amazons, the OR gadget also suffices to implement
CHOICE, if we relabel the bottom input as an output: a white stone arriving
along the left input may exit via either the top or the bottom.

�

�

�

�

�

�

�

�

10.3. Cross Purposes 149

. . .

(a) VARIABLE

. .
 .

. .
 .

. . .

(b) OR, CHOICE

Figure 10.7. Konane VARIABLE, OR, and CHOICE gadgets.

Winning. We will have an AND gadget whose output may be activated just
when White can win the given constraint-logic game. We feed this signal
into a long series of turns, providing White with enough extra moves to
win if he can reach them. Black is provided with his own series of turns,
made of white wires, with a single black stone protected at the end of one
of them, enabling Black to win if White cannot activate the final AND.

Theorem 10.2. Konane is PSPACE-complete.

Proof: Reduction from Bounded 2CL. Given a planar constraint graph
made of AND, OR, FANOUT, CHOICE, and VARIABLE vertices, we construct
a corresponding Konane position, as described above. As in the Amazons
construction, the reduction is clearly polynomial. Also as in Amazons,
White may reach his supply of extra moves just when he can win the
constraint-logic game.

Therefore, a player may win the Konane game if and only if he may
win the corresponding constraint-logic game, and Konane is PSPACE-hard.
As before, Konane is clearly also in PSPACE, and therefore PSPACE-
complete. �

10.3 Cross Purposes
Cross Purposes was invented by Michael Albert, and named by Richard
Guy, at the Games at Dalhousie III workshop, in 2004. It was introduced
to the authors by Michael Albert at the 2005 BIRS Combinatorial Game
Theory Workshop. Cross Purposes is a kind of two-player version of the
popular puzzle TipOver, which is NP-complete (Section 9.1; [90]). From

�

�

�

�

�

�

�

�

150 10. Two-Player Games

Figure 10.8. An initial Cross Purposes configuration, and two moves.

the perspective of combinatorial game theory [8, 27], in which game po-
sitions have values that are a generalization of numbers, Cross Purposes
is fascinating because its positions can easily represent many interesting
combinatorial game values.

Cross Purposes Rules. Cross Purposes is played on the intersections of a Go
board, with black and white stones. In the initial configuration, there are
some black stones already on the board. A move consists of replacing a
black stone with a pair of white stones, placed in a row either directly
above, below, to the left, or to the right of the black stone; the spaces so
occupied must be vacant for the move to be made. See Figure 10.8. The
idea is that a stack of crates, represented by a black stone, has been tipped
over to lie flat. Using this idea, we describe a move as tipping a black stone
in a given direction.

The players are called Vertical and Horizontal. Vertical moves first, and
play alternates. Vertical may only move vertically, up or down; Horizontal
may only move horizontally, left or right. All the black stones are available
to each player to be tipped, subject to the availability of empty space. The
first player unable to move loses.

We give a reduction from planar Bounded Two-Player Constraint Logic
showing that Cross Purposes is PSPACE-complete.

10.3.1 PSPACE-completeness

The Cross Purposes construction largely follows those used for Amazons
and Konane. To reduce from Bounded Two-Player Constraint Logic, we
need AND, OR, FANOUT, CHOICE, and VARIABLE gadgets, and a way to
wire them together into arbitrary graphs.

One new challenge in constructing the gadgets is that each player may
only directly move either horizontally or vertically, but not both. Yet, for
formula-game gadgets to work, one player must be able to direct signals
two dimensionally. We solve this problem by restricting the moves of Hor-
izontal so that, after the variable selection phase, his possible moves are
constrained so as to force him to cooperate in Vertical’s signal propaga-

�

�

�

�

�

�

�

�

10.3. Cross Purposes 151

. . .

. . .

A B

C

(a) Wire

. . .

. . .

(b) Wire, after three
moves

. . .

(c) Turn, free input

Figure 10.9. Cross Purposes wiring.

tion. (We assume that the number of variables is even, so that it will be
Vertical’s move after the variable selection phase.) An additional challenge
is that a single move can only empty a single square, enabling at most one
more move to be made, so it is not obviously possible to split a signal.
Again, we use the interaction of the two players to solve this problem.

We do not need a supply of extra moves at the end, as used for Ama-
zons and Konane; instead, if Vertical can win the formula game, and cor-
respondingly activate the final AND gadget, then Horizontal will have no
move available, and lose. Otherwise, Vertical will run out of moves first,
and lose.

Basic Wiring. We need wiring gadgets to connect the vertex gadgets to-
gether into arbitrary graphs. Signals flow diagonally, within surrounding
corridors of white stones. A wire is shown in Figure 10.9(a). Suppose
that Vertical tips stone A down, and suppose that Horizontal has no other
moves available on the board. Then his only move is to tip B left. This
then enables Vertical to tip C down. The result of this sequence is shown
in Figure 10.9(b).

The turn gadget is shown in Figure 10.9(c); its operation is self-evident.
Also shown in Figure 10.9(c) is a free input for Vertical: he may begin to
activate this wire at any time. We will need free inputs in a couple of later
gadgets.

Conditional Gadget. As with Konane (Section 10.2), a single conditional
gadget, shown in Figure 10.10, serves the role of FANOUT, parity adjust-
ment, and AND. A signal arriving along input 1 may only leave via output 1,
and likewise for input 2 and output 2; these pathways are ordinary turns

�

�

�

�

�

�

�

�

152 10. Two-Player Games

. . .

.

. . .

A B

C

D

input 2 input 1

output 1output 2

Figure 10.10. Cross Purposes conditional gadget.

embedded in the larger gadget. However, if Vertical attempts to use path-
way 2 before pathway 1 has been used, then after he tips stone A down,
Horizontal can tip stone B left, and Vertical will then have no local move.
But if pathway 1 has already been used, stone B is blocked from this move
by the white stones left behind by tipping C down, and Horizontal has no
choice but to tip stone D right, allowing Vertical to continue propagating
the signal along pathway 2.

FANOUT, Parity, AND. As with Konane, if we give Vertical a free input to the
wire feeding input 2 of a conditional gadget, then both outputs may activate
if input 1 activates. This splits the signal arriving at input 1.

If we don’t use output 1, then this FANOUT configuration also serves to
propagate a signal from input 1 to output 2, with altered positional parity.
This enables us to match signal parities as needed at the gadget inputs
and outputs. We must be careful with not using outputs, since we need
to ensure that Vertical has no free moves anywhere in the construction;
unlike in the constructions for Amazons and Konane, in Cross Purposes,
there is no extra pool of moves at the end, and every available move within
the layout counts. However, blocking an output is easy to arrange; we just
terminate the wire so that Horizontal has the last move in it. Then Vertical
gains nothing by using that output.

The AND gadget is a conditional gadget with output 1 unused. By the
properties of the conditional gadget, output 2 may activate only if both
inputs have activated.

�

�

�

�

�

�

�

�

10.3. Cross Purposes 153

. . .

(a) VARIABLE

.

. . .

A B

(b) OR

. . .

. . .

. . .

A B

(c) CHOICE

Figure 10.11. Cross Purposes VARIABLE, OR, and CHOICE gadgets.

VARIABLE, OR, CHOICE. The VARIABLE gadget is shown in Figure 10.11(a). If
Vertical moves first in a variable, he can begin to propagate a signal along
the output wire. If Horizontal moves first, he will tip the bottom stone to
block Vertical from activating the signal.

The OR gadget is shown in Figure 10.11(b). The inputs are on the
bottom; the output is on the top. Whether Vertical activates the left or
the right input, Horizontal will be forced to tip stone A either left or right,
allowing Vertical to activate the output. Here we must again be careful
with available moves. Suppose Vertical has activated the left input, and
the output, of an OR. Now what happens if he later activates the right
input? After he tips stone B down, Horizontal will have no move; he will
already have tipped stone A left. This would give Vertical the last move
even if he were unable to activate the final AND gadget; therefore, we must
prevent this from happening. We will show how to do so after describing
the CHOICE gadget.

As with Amazons and Konane, the existing OR gadget suffices to imple-
ment CHOICE, if we reinterpret it. This time the gadget must be rotated.
The rotated version is shown in Figure 10.11(c). The input is on the left,
and the outputs are on the right. When Vertical activates the input, and
tips stone A down, Horizontal must tip stone B left. Vertical may then
choose to propagate the signal to either the top or the bottom output;
either choice blocks the other.

Protecting the OR Inputs. As mentioned above, we must ensure that only
one input of an OR is ever able to activate, to prevent giving Vertical
extra moves. We do so with the graph shown in Figure 10.12. Vertical is
given a free input to a CHOICE gadget, whose output combines with one
of the two OR input signals in an AND gadget. Since only one CHOICE

�

�

�

�

�

�

�

�

154 10. Two-Player Games

input 1

input 2

output

Figure 10.12. Protected OR.

output can activate, only one AND output, and thus one OR input, can
activate. Inspection of the relevant gadgets shows that Vertical has no
extra moves in this construction; for every move he can make, Horizontal
has a response. (This construction is analogous to the protected OR used
in Nondeterministic Constraint Logic (Section 5.2.3).)

Winning. We will have an AND gadget whose output may be activated only
if the White player can win the corresponding constraint-logic game. We
terminate its output wire with Vertical having the final move. If he can
reach this output, Horizontal will have no moves left, and lose. If he cannot,
then since Horizontal has a move in reply to every Vertical move within all
of the gadgets, Vertical will eventually run out of moves, and lose.

Theorem 10.3. Cross Purposes is PSPACE-complete.

Proof: Reduction from Bounded 2CL. Given a planar constraint graph
made of AND, OR, FANOUT, CHOICE, and VARIABLE vertices, we construct
a corresponding Cross Purposes position, as described above. The reduc-
tion is clearly polynomial. Vertical may activate a particular AND output,
and thus gain the last move, just when he can win the constraint-logic
game.

Therefore, Cross Purposes is PSPACE-hard. As with Amazons and
Konane, Cross Purposes is clearly also in PSPACE, and therefore PSPACE-
complete. �

�

�

�

�

�

�

�

�

11

Perspectives on Part II

In Part II we have shown very many games and puzzles hard. Some of the
proofs were difficult, especially as the proof technique was being developed,
but some were very easy, once the proof technique was in place. For exam-
ple, it took about half an hour to show Konane PSPACE-complete. Yet,
in spite of a fair amount of study by combinatorial game theorists, and an
important cultural history, no prior complexity results about Konane were
known.

It is this kind of result that demonstrates the utility of constraint logic.
A very large part of the work of reductions has already been done, and
often one can simply select the kind of constraint logic appropriate for the
problem at hand, and the gadgets will almost make themselves.

Most individual game complexity results are not particularly important.
There are no game results in this book that are surprising, except for the
undecidable version of constraint logic, and that is an abstract game. But
taken as a whole, they demonstrate that the essential nature of games is
captured effectively by the notion of constraint logic. Furthermore, they
lend credence to the idea that an interesting game is almost always as hard
as it “can” be: a bounded two-player game (without any trivial simplifying
structure) ought to be PSPACE-complete, for example. Every additional
result adds weight to this hypothesis.

155

�

�

�

�

�

�

�

�

12

Conclusions

In this section we summarize the contributions made by this book, and
sketch some directions for future research.

12.1 Contributions
We have made four important contributions.

First, we have demonstrated a simple, uniform game framework, con-
straint logic, which concisely captures the concept of generalized combi-
natorial game. A constraint-logic game consists simply of a sequence of
edge reversals in a directed graph, subject to simple constraints. There are
natural versions of constraint logic for zero-, one-, two-player, and team
games, both in bounded- and unbounded-length versions.

Second, we have demonstrated that each of these kinds of constraint-
logic game corresponds to a distinct complexity class, or equivalently, to a
distinct kind of resource-bounded computation, ranging from P-complete
bounded, zero-player games, through PSPACE-complete unbounded puz-
zles, and up to undecidable (RE-complete) team games. This correspon-
dence is proven by means of eight distinct reductions from Boolean formula
games complete for the appropriate class to the corresponding constraint-
logic game. For the undecidable team games, we also demonstrated that
the existing Boolean formula game in the literature was in fact decidable,
and independently derived a formula game that is actually undecidable.

Third, we have shown that the constraint-logic game framework makes
hardness proofs for actual games and puzzles significantly easier. We have
provided very many new proofs, mostly for problems that were either known

157

�

�

�

�

�

�

�

�

158 12. Conclusions

to be open or previously unaddressed. In a few cases we rederived much
simpler hardness proofs than the ones in the literature for games already
known to be hard, thus explicitly demonstrating how much more concise
and compact reductions from constraint logic can be, compared to conven-
tional techniques (such as reducing directly from Satisfiability, Quantified
Boolean Formulas, etc.). One key feature of constraint-logic games that of-
ten makes such reductions straightforward is that the hardness results for
constraint logic apply even when the graphs are planar, across the spectrum
of constraint-logic games (with the single exception of bounded, zero-player
constraint logic). This means that there is no need to build “crossover”
gadgets—often the most difficult component—in the actual game and puz-
zle reductions.

Finally, we have made more manifest the deep connection between the
notions of game and of computation. Games are a natural generalization
of conventional, deterministic computation. But a key difference from or-
dinary computation is that in a (generalized combinatorial) game, one is
always dealing with a finite spatial resource. Any generalized combinato-
rial game can actually be played, physically, in the real world. But Turing
machines, by contrast, are only idealized computers. We can never build a
real Turing machine, because we cannot make an infinite tape.

The linchpin in this argument for games as computation is the unde-
cidability result for team games with private information. Perfect play in
such games is in direct correspondence with arbitrary computation on a
Turing machine with an infinite tape. Yet, there are only a finite number
of positions in the game. Thus, games represent a fundamentally distinct
kind of computation.

12.2 Future Work

One direction for future work is obviously to apply the results here to ad-
ditional games and puzzles, to show them hard. We list some candidates in
Section A.11. Some of those games may yield to an application of constraint
logic; others may not.

It is the ones that will not that are ultimately more interesting, such
as 1 × 1 Rush Hour, and Subway Shuffle, which seem to lie right on the
border between easy and hard problems. By attempting to hit them with
the hammer of constraint logic, and observing how they fail to break, more
can be learned about the mathematical nature of games.

We can also consider expanding our notion of a game. A very large
unexplored space, from a constraint-logic perspective, is games involving
random elements. A good starting point for developing constraint logic in
this direction would be the probabilistic game automata of [26]. We could

�

�

�

�

�

�

�

�

12.2. Future Work 159

also consider games involving quantum information; research in this field is
still at an early stage. On the upper end of the complexity/computability
scale, now that we have reached undecidable games, is there anywhere left
to go? We think so. For one thing, there are higher degrees of undecidabil-
ity. Our undecidable games are RE-complete, corresponding to the power
of a Turing machine with an infinite tape. What if we play a game on an
infinite board? Could such a game perhaps correspond to a hypercomputa-
tion [30], a “computation” beyond the capacity of Turing machines?

But there is still interesting space to explore in the relatively more
pedestrian classes of PSPACE, EXPTIME, EXPSPACE, etc. In particular,
it is a bit unsatisfying that one needs to add the concepts of teams and of
private information to move beyond ordinary two-player games. Isn’t there
some way to just add another kind of player? In general, an extra player
represents an extra source of nondeterminism, and computational power.
The notion of private information is merely another way of introducing
an extra source of nondeterminism. In fact, one can explicitly add private
information to a one-player game as well; it then becomes, effectively, a two-
player game, because we might as well assume an adversary is choosing
the private information. But what is the right way to look at private
information in a two or more player game that makes it look like another
player?

Similarly, the notion of disallowing repetitions in a game is using a kind
of private information: the relevant history of the game is not present in
the current configuration. Is there a way to translate that kind of hidden
information, or nondeterminism, into another kind of player? It is questions
such as these that continue to fascinate us.

�

�

�

�

�

�

�

�

Appendices

�

�

�

�

�

�

�

�

A

Survey of Games and
Their Complexities

This appendix attempts to serve as a concise reference to known complexity
results for games and puzzles; it is modeled on Appendix A of Garey and
Johnson’s classic guide to NP-completeness [74]. For more background on
the listed games and puzzles, see [36]. In general, we don’t include games
that are solvable in polynomial time, unless they are members of a family
with hard variants.

Parts I and II of this book are organized by game type (number of
players, bounded or unbounded), because the reduction techniques differ
based on game type. Here, instead, we group games by family, to em-
phasize the similarities and differences between games in a family and to
point out unexplored variants. In some cases one family can have games of
different types. (For example, Section A.2.3, Block-Tipping and -Rolling
Games, contains one-player bounded and unbounded puzzles and a two-
player game.) However, our taxonomy is imperfect, as any such taxonomy
must be; inevitably there will be games that can be naturally viewed as
belonging to different families. (For example, the 15 Puzzle is clearly a
sliding-block puzzle (Section A.2.1), but it could also be viewed as a game
of sliding tokens on graphs (Section A.3.1), where the graph happens to be
a square lattice.)

For most games that have concise definitions, we try to give formal
problem statements. For others, or for games that exist in several different
varieties, we will sometimes refer the reader to other sources for formal
definitions.

163

�

�

�

�

�

�

�

�

164 A. Survey of Games and Their Complexities

One note on terminology: throughout, we use horizontal and vertical
to refer to directions in the plane (usually thought of as a table surface,
or a computer screen), parallel to the x- and y-axes. Occasionally we need
to refer to directions out of the plane, in the z-direction: for example, we
could have blocks standing on end. To avoid confusion, in such cases we
are careful never to use the word vertical.

Some two-player games are described as either impartial or partizan.
In impartial games the two players have identical moves available from any
position; in partizan games the available moves are generally different.

A.1 Cellular Automata
A cellular automaton consists of a discrete set of cells, each of which can be
in a finite number of states, and an update rule specifying the new states
of all the cells as a function of the current states. Generally, the cells are
arranged in a regular grid, and the update rule is applied independently at
each cell as a function of a small set of nearby cells.

The most natural decision question to ask about a cellular automa-
ton is: if the update rule is repeatedly applied from a given initial state,
will a specified cell ever enter a specified state? There are many exam-
ples of “Turing universal” cellular automata for which this question is
undecidable on an infinite grid; see, e.g., [173]. When restricted to a fi-
nite grid, the corresponding property is PSPACE-completeness (however,
PSPACE-completeness may not hold if the computation is not encoded
in a space-efficient manner). Cellular automata are generally not studied
from this perspective; however, one cellular automaton for which PSPACE-
completeness does hold is Conway’s famous Game of Life:

LIFE

Instance: Rectangular grid of cells that are each alive or dead.
Question: Will a given cell ever become alive, given the following

update rule? On each step, a cell that is alive will remain
alive if it has either two or three neighbors (horizontally,
vertically, or diagionally) that are alive, otherwise it will
die. A cell that is dead will become alive if it has exactly
three neighbors that are alive.

Complexity: PSPACE-complete [141]. (Also see [8, 170].) (PSPACE-
completeness is not mentioned explicitly in the cited works, but it does
follow directly, at least from [141].)

�

�

�

�

�

�

�

�

A.2. Games of Block Manipulation 165

Puzzle Block Size Constraints Goal Complexity

Warehouseman’s
Problem

arbitrary configuration PSPACE-complete

Sliding Blocks fixed location PSPACE-complete
Rush Hour fixed H/V location PSPACE-complete
1×1 Rush Hour 1 × 1 H/V location ?
15 Puzzle 1 × 1 configuration polynomial
Lunar Lockout 1 × 1 slippery location NP-hard
Atomix 1 × 1 slippery, some

immovable
partial
configuration

PSPACE-complete

Table A.1. Summary of sliding-block puzzles.

A.2 Games of Block Manipulation
A large variety of games and puzzles are often framed as manipulations of
rectangular blocks moving somehow in a grid or box. We divide these into
sliding-block puzzles , block-pushing puzzles , and block-tipping and -rolling
games .

A.2.1 Sliding-Block Puzzles

In a sliding-block puzzle, (usually) rectangular blocks are placed in a (usu-
ally) rectangular two-dimensional box; moves are made by sliding the
blocks inside the box without overlapping. In the problem statements be-
low, we assume unless otherwise stated that the blocks are rectangles of
integral edge sizes and are placed on a grid, and that a move is an integral
horizontal or vertical slide of a block. (Generally, these restrictions do not
matter for the reductions.) Also, all blocks are distinct (labeled), though
this does not always matter.

These puzzles can be characterized on a number of dimensions. Broadly,
these are block size, movement constraints, and goal condition. We sum-
marize the characteristics of the puzzles we consider in Table A.1: “H/V”
means that some blocks may only slide horizontally and others vertically.
“Slippery” means that when a block slides it must slide as far as it can in
that direction. The goal is either to achieve a target total configuration
or to move a particular block to a particular location. For many of the
“location” results it is also hard to move the target block at all.

All games that we are aware of in this category are one-player un-
bounded games. One can imagine mutliplayer or bounded variants as well;
these remain unexplored from a complexity standpoint. Additionally, some
feature combinations suggest themselves as unexplored variants: specifi-
cally, (1 × 1, H/V, configuration) and (fixed, slippery, location) could be
easier to show PSPACE-complete than 1×1 Rush Hour and Lunar Lockout,
respectively.

�

�

�

�

�

�

�

�

166 A. Survey of Games and Their Complexities

WAREHOUSEMAN’S PROBLEM

Instance: Sliding-block puzzle.
Question: Is there a sequence of moves that eventually reaches

a target configuration?

Complexity: PSPACE-complete [103]; earlier shown NP-hard [154]. The
reduction requires blocks of arbitrary size. [85, Section 9.4] shows that the
problem remains PSPACE-complete if the blocks are all 1 × 2.

SLIDING BLOCKS

Instance: Sliding-block puzzle with fixed-size blocks.
Question: Is there a sequence of moves that eventually moves a

given block to a given location?

Complexity: PSPACE-complete, even when the blocks are all 1×2 and the
goal is to move a given block at all [85, Section 9.3].

RUSH HOUR

Instance: Sliding-block puzzle with blocks of size 1 × 2 or
1 × 3. Horizontal blocks may only move horizontally; ver-
tical blocks may only move vertically.

Question: Is there a sequence of moves that eventually moves a
given block to a given location?

Complexity: PSPACE-complete, even when the goal is to move a given
block at all [56, Section 9.9]. Also remains PSPACE-complete when the
blocks are all 1 × 2 [164, 165]. If the blocks are 1 × 1 but still partitioned
into horizontally and vertically constrained blocks, then the problem seems
quite interesting; the complexity is open (but moving a given block at all is
in P) [85,164]. A triangular variant, Triagonal Slide-Out, is also PSPACE-
complete (Section 9.9).

15 PUZZLE

Instance: Sliding-block puzzle with 1 × 1 blocks.
Question: Is there a sequence of moves that eventually reaches

a target configuration?

�

�

�

�

�

�

�

�

A.2. Games of Block Manipulation 167

Complexity: Polynomial [160]. Finding a solution using the minimum num-
ber of moves is NP-complete [135].

LUNAR LOCKOUT

Instance: Sliding-block puzzle with 1 × 1 blocks. Blocks must
slide until they hit another block. (Sliding a block into the
box edge is not allowed.)

Question: Is there a sequence of moves that eventually moves a
given block to a given location?

Complexity: NP-hard [97]. Like 1× 1 Rush Hour, it is an interesting open
problem whether Lunar Lockout is PSPACE-complete. A variant allowing
nonmovable blocks is PSPACE-complete [82].

ATOMIX

Instance: Sliding-block puzzle with 1 × 1 blocks; some blocks
are immovable (walls). Movable blocks (atoms) are labeled
with a type. Blocks must slide until they hit another block.

Question: Is there a sequence of moves that eventually assembles
a given pattern of atom types (a molecule)?

Complexity: PSPACE-complete [100].

A.2.2 Block-Pushing Puzzles

These puzzles are similar to the sliding-block puzzles of Section A.2.1, but
here there is a distinguished block, often called the robot, which is the
only block that can be moved directly. The robot can, however, push
other blocks. As with sliding-block puzzles, we generally assume that the
blocks are all placed on a grid, and that they only move in integral units.
Furthermore, the blocks are all generally 1 × 1.

The puzzles vary based on what happens when the robot attempts to
move into a block. First, the robot may push up to some number k of
blocks, with an empty space at the far end; a move is blocked if there are
more than k blocks in a row. Fixed (immovable) blocks may or may not
be allowed. When a block is pushed, the “physics” may dictate different
results: in the basic version, the robot and the pushed blocks all move
one unit in the appropriate direction. In the PushPush variants, the robot

�

�

�

�

�

�

�

�

168 A. Survey of Games and Their Complexities

Puzzle Blocks Fixed Motion Revisit Goal Complexity

Sokoban 1 yes push yes configuration PSPACE-complete
[33,85, Section 9.7]

Push-k k no push yes location NP-hard [37]
Push-2-F 2 yes push yes location PSPACE-complete [40]
Push-k-X k no push no location NP-complete [37]
PushPush-k k no slide yes location PSPACE-complete [42]
PushPush-k-X k no slide no location NP-complete [37]
Push-* ∞ no push yes location NP-hard [98]
Push-*-F ∞ yes push yes location PSPACE-complete [15,40]
Push-∗-X ∞ no push no location NP-complete [37,98]
PushPush-∗ ∞ no slide yes location NP-hard [42,98]
PushPush-∗-X ∞ no slide no location NP-complete [37,98]
Push-1-G 1 no gravity yes location NP-hard [67]

Table A.2. Summary of block-pushing puzzles.

moves one unit, but the pushed blocks slide until they hit another block.
One version also considers gravity acting on blocks after a push. The goal
of the puzzle is either to reach a specified configuration or to move the
robot to a given location. Finally, there are variants where the robot is
not allowed to revisit its own path. These puzzles are largely defined by
this set of properties, listed in Table A.2; we refer the reader to the given
references for details.

The study of this type of puzzle was initiated by Wilfong [171], who
proved that deciding whether the robot can reach a desired target is NP-
hard when the robot can push and pull L-shaped blocks (not listed in
table). When the final position of the blocks matters, the problem becomes
PSPACE-complete.

A.2.3 Block-Tipping and -Rolling Games

In these games the three-dimensional nature of the blocks becomes evident:
instead of being slid or pushed, as in Sections A.2.1 and A.2.2, the blocks
must be moved around the board by tipping them along an edge. Here
we assume that the blocks are cuboids with integral edge lengths k,m, n,
and that they occupy grid-aligned positions on the board. For a move to
be legal, there must be vacant space within the grid to accommodate the

Game Players Length Goal Complexity

TipOver 1 bounded see problem NP-complete
Rolling Block Maze 1 unbounded location PSPACE-complete
Cross Purposes 2 bounded last move PSPACE-complete

Table A.3. Summary of block-tipping and -rolling games.

�

�

�

�

�

�

�

�

A.2. Games of Block Manipulation 169

block face tipping into the grid. We list three such games in Table A.3
and define them below. A rolling-cube puzzle that has a more complicated
definition, requiring face labels to match some grid labels, is shown to be
NP-complete in [19].

TIPOVER

Instance: Set of 1×1×n blocks initially placed standing on end
in a square grid, tipper atop one of the blocks, target block.

Question: Can the tipper reach the target block? Moves are
made by tipping over the block the tipper is standing on, or
by moving the tipper to any block touching the block it is
standing on. Once a block has tipped over it may no longer
move.

Complexity: PSPACE-complete, even if the blocks are all 1 × 1 × 2 [90,
Section 9.1].

ROLLING BLOCK MAZE

Instance: Set of blocks in a square grid, target block, target
placement for this block.

Question: Is there a sequence of moves that places the target
block in its target placement?

Complexity: PSPACE-complete, even if the blocks are all 1 × 1 × 2 or
1× 1× 3 [18]. The question of the complexity with only 1× 1× 2 blocks is
open. Note that in “traditional” rolling-block mazes there is a single block
that may roll; such mazes are solvable in linear time. (In [18], there are
also forbidden squares, but these may be replaced by vertical 1× 3 blocks.
If forbidden squares are used, all the blocks may be 1 × 1 × 2.)

CROSS PURPOSES

Instance: Set of 1 × 1 × 2 blocks in a square grid.
Question: Can Player H win the following game? H and V take

turns tipping blocks that are standing on a 1×1 face. H can
only tip blocks horizonally; V can only tip blocks vertically.
The last player to move wins.

�

�

�

�

�

�

�

�

170 A. Survey of Games and Their Complexities

Complexity: PSPACE-complete [92, Section 10.3]. The problem as formu-
lated in Section 10.3 is played with Go stones on a Go board, but here we
emphasize the similarity to other block-rolling games. (Also, TipOver was
an inspiration for the game design.)

A.3 Games of Tokens on Graphs

A large number of games involve the placement of tokens on the vertices
of a graph and/or the movement of tokens along graph edges.

A.3.1 Moving Tokens

In these games tokens move from vertex to vertex along the edges of
a (generally) directed graph. The games vary based on matching re-
quirements: there can be a distinct set of edges each type of token is
allowed to move on (token-edge), a distinct type of token each player
may move (player-token), or a distinct set of edges each player may move
tokens on (player-edge). The games also vary by what happens when
a destination vertex is already occupied: either or both tokens may be
removed, or the move may be blocked. Finally, the games vary based
on the goal: last move, capturing a token, or moving a particular to-
ken to a specified target. There are also games that are similar, but
have additional constraints on adjacency of tokens; these are addressed in
Section A.3.2.

We summarize several pursuit games in Table A.4. Many of the games
have separate results for general digraphs, where the games are unbounded,
and for directed acyclic graphs (dags), where the games are bounded. Many
of these games are fully defined by the characteristics we have listed; we
omit formal problem statements. See the cited references for details. We
do add the following notes:

• For Capture, a player may move a token to an occupied vertex only if
it contains an opponent’s token, in which case that token is captured
(removed), as in Hit .

• In Pursuit , or Cops and Robbers , one player (the robber) has a single
token; the other player (the cops) has multiple tokens and moves all
his tokens on each turn. The cops win if a cop token ever moves to a
vertex occupied by the robber.

• Subway Shuffle empirically seems hard, but does not seem amenable
to a reduction from either NCL or any other standard problem.

�

�

�

�

�

�

�

�

A.3. Games of Tokens on Graphs 171

Game Players Matching A → B Goal Complexity

Annihilation 2 token-edge A, B removed last move PSPACE-hard [57]
. . . on a dag PSPACE-complete [57]

Remove 2 token-edge A removed last move NP-hard [59]
. . . on a dag NP-hard [59]

Hit 2 token-edge B removed last move PSPACE-hard [57]
. . . on a dag PSPACE-complete [57]

Capture 2 player-token see text last move EXPTIME-complete [78]
. . . on a dag PSPACE-complete [78]

Contrajunctive 2 player-edge A, B removed last move NP-hard [59]
. . . on a dag NP-hard [59]

Node Blocking 2 player-token move blocked last move EXPTIME-complete [78]
. . . on a dag PSPACE-complete [46]

Edge Blocking 2 player-edge move blocked last move PSPACE-hard [57]
. . . on a dag PSPACE-complete [57]

Pursuit 2 player-token see text capture EXPTIME-complete [78]
. . . on a dag PSPACE-complete [78]

Subway Shuffle 1 token-edge move blocked target ? [89,91]

Table A.4. Summary of pursuit games. “A → B” denotes token A moving to a
vertex occupied by token B.

• Target , previously shown EXPTIME-complete [157] (not listed in
table), is a weaker form of Node Blocking in which players can ad-
ditionally win by moving one of their tokens to a vertex that is one
of their targets. Target is PSPACE-complete for dags even when the
graph is bipartite and only one player has targets [78]. There is also
a semi-partizan variant of Target (see reference).

A.3.2 Games with Adjacency Constraints

In these games tokens are placed or moved on a graph with restrictions on
when two tokens may be adjacent. These restrictions make many otherwise
easy problems hard. The prototypical problem in this family is Independent
Set , which can be viewed as a bounded one-player game. The other games
are natural variants of Independent Set. We summarize several games with
adjacency constraints in Table A.5.

Game Players Prohibited Goal Complexity
Adjacency

Independent Set 1 any place n NP-complete
Sliding Tokens 1 any move target PSPACE-complete
Node Kayles 2 any last move PSPACE-complete
Partizan Node Kayles 2 any last move PSPACE-complete
Snort 2 different colors last move PSPACE-complete
Col 2 same colors last move ?

Table A.5. Summary of graph games with adjacency constraints.

�

�

�

�

�

�

�

�

172 A. Survey of Games and Their Complexities

INDEPENDENT SET

Instance: Graph G; integer n.
Question: Can n tokens be placed on the vertices of G such that

those vertices form an independent set (they do not share
an edge)?

Complexity: NP-complete [74].

SLIDING TOKENS

Instance: Graph with tokens on some vertices, forming an inde-
pendent set.

Question: Is there a sequence of moves that eventually moves
a given token? A move consists of sliding a token along an
edge to an adjacent vertex, again forming an independent
set.

Complexity: PSPACE-complete [85, Section 9.5].

NODE KAYLES

Instance: Graph G.
Question: Can Player 1 win the following game? Players 1 and

2 alternately place tokens on vertices of G, such that all
the vertices with tokens form an independent set. The first
player unable to move loses.

Complexity: PSPACE-complete [147]. Partizan Node Kayles is identical
except that G is partitioned into V1 and V2; Player i may only play on
vertices from Vi. It is also PSPACE-complete [147].

SNORT

Instance: Graph G.
Question: Can Player 1 win the following game? Players 1 and 2

alternately place tokens on vertices in G, such that no token
is ever adjacent to a token played by the other player. The
first player unable to move loses.

�

�

�

�

�

�

�

�

A.3. Games of Tokens on Graphs 173

Complexity: PSPACE-complete [147].

COL

Instance: Graph G.
Question: Can Player 1 win the following game? Players 1 and

2 alternately place tokens on vertices in G, such that each
player’s selected vertices form an independent set. The first
player unable to move loses.

Complexity: Open [8]. This game is in a sense the opposite of Snort.

A.3.3 Generalized Geography

In (Generalized) Geography, two players alternately move a single token,
and then erase part of the graph. The goal is to move last.

DIRECTED/UNDIRECTED EDGE/VERTEX GEOGRAPHY

Instance: (Directed, undirected) graph, token placed on an ini-
tial vertex.

Question: Can Player 1 win the following game? Players 1 and
2 take turns, where a turn consists of moving the token to
an adjacent vertex, and then removing either the edge tra-
versed (Edge Geography) or the vertex moved from (Vertex
Geography) from the graph. The first player unable to move
loses.

Complexity: See Table A.6.

Edges Element Removed Complexity

directed edge PSPACE-complete [147]
directed vertex PSPACE-complete [114]
undirected edge PSPACE-complete [60]
undirected vertex polynomial [60]

Table A.6. Summary of Geography variants.

�

�

�

�

�

�

�

�

174 A. Survey of Games and Their Complexities

Game Players Remove Comments Goal Complexity

Peg Solitaire 1 yes one peg NP-complete [168]
Peg Duotaire 2 yes impartial last move ? [124]
HotSpot 1 no see text location ?
Konane 2 yes partizan last move PSPACE-complete

[91,92, Section 10.2]

Table A.7. Summary of peg-jumping games.

A.4 Peg-Jumping Games

Peg-jumping games are games played with pegs or other tokens on a grid,
where a move consists of “jumping” a peg over adjacent pegs into an empty
space. Depending on the game, moves may also cause the peg(s) jumped
over to be removed from the board. These games can have one or two
players and can be impartial or partizan. Table A.7 summarizes the rules
for each game; we refer the reader to the listed references for full definitions.
In HotSpot , tokens may be small or large. Two large tokens may not be
adjacent. Empirically this seems to add complexity to the game, but the
status is open. In Peg Duotaire and Konane, players may make multiple
jumps in one turn. In Konane, such jumps must be in a straight line.
Konane also has pieces of two different colors, and players can only move
pieces of their color.

A.5 Connection Games

In connection games, players try to complete a path between two vertices
by sequentially choosing a set of vertices or edges from a graph (often a
grid with the sides connected to the target vertices). All the games we
consider here are two-player partizan games. In Table A.8 we list general
characteristics and complexities of these games, and refer the reader to the

Game Choose Comments Complexity

Hex vertices diamond section of
triangular graph

PSPACE-complete [140]

Shannon Switching
Game on Edges

edges polynomial [17]

Shannon Switching
Game on Edges

edges directed graph PSPACE-complete [53]

Twixt vertices edges are knight’s moves
on a square grid graph

?, related problem
NP-complete [119]

Table A.8. Connection games.

�

�

�

�

�

�

�

�

A.6. Other Board Games 175

Game Complexity

Othello (Reversi) PSPACE-complete [106]
Checkers EXPTIME-complete [145]
Chess EXPTIME-complete [58]
Shogi EXPTIME-complete [2,177]
Go EXPTIME-complete [143]
Amazons PSPACE-complete [69,92, Section 10.1]
Gomoku (Gobang) PSPACE-complete [139]
Mastermind NP-complete [161]
Phutball (Philosopher’s Football) PSPACE-hard [47]

Table A.9. Summary of classic board games.

listed references for full definitions. (Note that Hex is a special case of the
Shannon Switching Game on Vertices , earlier shown PSPACE-complete
[53].)

A.6 Other Board Games

For these classic board games, we merely state the complexities in Table A.9
and refer the reader to the indicated references or to [36] for their full
definitions.

For Go, the result applies only to Japanese rules. In particular if the
superko rule is used, the lower bound drops to PSPACE [114], and the upper
bound rises to EXPSPACE. Some other decision questions about restricted
Go positions are NP-complete [32] or PSPACE-complete [31, 172].

For Mastermind , one natural decision question is NP-complete; others
remain open.

For Phutball , even determining whether there is a one-move win is NP-
complete [38].

A.7 Pencil Puzzles

These puzzles, largely popularized by Japanese publisher Nikoli, involve
filling in a grid in some manner (with numbers, lines, shading, etc.) to sat-
isfy given local and global properties. The most well known of these puzzles
is Sudoku. In general, these puzzles all tend to be NP-complete. (They
cannot be any harder, because they are all bounded one-player games.)
Some are also ASP-complete [175], which implies NP-completeness as well
as NP-completeness of finding another solution when given one or more

�

�

�

�

�

�

�

�

176 A. Survey of Games and Their Complexities

other solutions to the same problem. (“ASP” stands for “Another Solution
Problem.”)

In all of these problems, adjacent means horizontally or vertically ad-
jacent, and connected means connected via horizontal and vertical connec-
tions.

SUDOKU

Instance: n2×n2 grid, divided into n×n subgrids, with numbers
in some cells.

Question: Can the empty cells be filled in with the numbers
1 . . . n2 such that each row, each column, and each subgrid
contains all of 1 . . . n2?

Complexity: NP-complete, ASP-complete [175,176].

KAKURO (CROSS SUM)

Instance: A polyomino (a rectangular grid where only some
squares may be used), and an integer for each maximal con-
tiguous (horizontal or vertical) strip of squares.

Question: Can each square be filled with a digit between 1 and
9 such that each strip has the specified sum and has no
repeated digit?

Complexity: NP-complete, ASP-complete [175].

LIGHT UP (AKARI)

Instance: Rectangular grid in which squares are either rooms or
walls and some walls have a specified integer between 0 and
4.

Question: Can lights be placed in a subset of the rooms such
that each numbered wall has exactly the specified number
of adjacent lights, every room is horizontally or vertically
visible from a light, and no two lights are horizontally or
vertically visible from each other?

Complexity: NP-complete, ASP-complete [121,122].

�

�

�

�

�

�

�

�

A.7. Pencil Puzzles 177

SLITHERLINK (FENCES)

Instance: Rectangular grid with labels between 0 and 4 in some
cells.

Question: Is there a simple cycle on the edges of the cells such
that each labeled cell is surrounded by the specified number
of edges?

Complexity: NP-complete, ASP-complete [175,176].

NONOGRAM (PAINT BY NUMBERS)

Instance: A rectangular grid with a sequence of integers on each
row and column.

Question: Can a subset of the squares in the grid be filled such
that in each row and column, the maximal contiguous runs
of filled squares have lengths that match the specified se-
quence?

Complexity: NP-complete, ASP-complete [167].

FILLOMINO

Instance: A rectangular grid with some squares filled with pos-
itive integers.

Question: Can the remaining squares be filled with posi-
tive integers such that every maximal connected region of
equally numbered squares consists of exactly that number
of squares?

Complexity: NP-complete, ASP-complete [176].

LITS

Instance: A rectangle divided into polyomino pieces.
Question: Can a tetromino (connected subset of four squares) be

placed in each polyomino such that the union of tetrominoes
is connected, yet induces no 2 × 2 square, and no touching
tetrominoes have the same shape?

�

�

�

�

�

�

�

�

178 A. Survey of Games and Their Complexities

Complexity: NP-complete, ASP-complete [122].

MASYU (PEARL PUZZLE)

Instance: Rectangular grid with some cells containing white or
black pearls.

Question: Is there a simple path through the squares that visits
every pearl, turns 90◦ at every black pearl, does not turn im-
mediately before or after black pearls, goes straight through
every white pearl, and turns 90◦ immediately before or after
every white pearl?

Complexity: NP-complete [66].

HITORI

Instance: Rectangular grid with each square labeled with an
integer.

Question: Is it possible to paint some squares such that ev-
ery row and every column has no repeated unpainted label,
painted squares are never adjacent, and unpainted squares
are connected?

Complexity: NP-complete [94, Section 9.2].

NURIKABE

Instance: Rectangular grid with some squares labeled with pos-
itive integers.

Question: Is there a connected set of unlabeled squares that
induces no 2×2 square, and whose removal results in exactly
one region per labeled square, whose size equals that label?

Complexity: NP-complete [102,120].

TENTAI SHOW (SPIRAL GALAXIES)

Instance: A rectangular grid with dots at some vertices, edge
midpoints, and face centroids.

�

�

�

�

�

�

�

�

A.7. Pencil Puzzles 179

Question: Can the rectangle be divided into exactly one poly-
omino piece per dot, that is two-fold rotationally symmetric
around the dot?

Complexity: NP-complete [68].

BAG (CORRAL PUZZLE)

Instance: A rectangular grid with some squares labeled with
positive integers.

Question: Is there a simple cycle on the grid that encloses all
labels such that the number of squares horizontally and ver-
tically visible from each labeled square equals the label?

Complexity: NP-complete [65].

HIROIMONO (GOISHI HIROI)

Instance: A rectangular grid with stones at some of the vertices.
Question: Is there a path that visits all stones, removing each

as it as visited, and turns only at the stones, optionally
changing direction by ±90◦?

Complexity: NP-complete [4].

HEYAWAKE

Instance: A rectangular grid subdivided into rectangular rooms,
some of which are labeled with a positive integer.

Question: Is it possible to paint some squares such that the
number of painted squares in each labeled room equals the
label, painted squares are never adjacent, unpainted squares
are connected, and contiguous (horizontal or vertical) strips
of unpainted squares intersect at most two rooms?

Complexity: NP-complete [99].

�

�

�

�

�

�

�

�

180 A. Survey of Games and Their Complexities

MORPION SOLITAIRE

Instance: A configuration of points drawn at the intersections of
a square grid, integer n.

Question: Is it possible to make n moves? A move consists of
placing a new point at a grid intersection, and then drawing
a horizontal, vertical, or diagonal line segment connecting k
consecutive points that include the new one. Segments with
the same direction may not overlap (disjoint model), or may
overlap only at a common endpoint (touching model).

Complexity: NP-complete for either model, for k > 4 [43]. There are ap-
proximation results for k = 4.

Finally, we mention the pencil game Battleships or Battleship Solitaire,
in which several ships must be placed into a partially filled grid, with
specified numbers of ship segments occupying each row and column. This
problem is NP-complete [148]; see the reference for the formal definition.

A.8 Formula Games

There is quite a large number of complexity results for problems stated
in terms of Boolean formulas, many of which can be interpreted as games.
Here we restrict our attention to canonical formula games for different game
categories, and we refer the reader to the cited references or to [74] or [147]
for more variants. For basic definitions related to Boolean formulas, see
Section B.5.1.

SATISFIABILITY (SAT)

Instance: Boolean formula φ.
Question: Is there an assignment to the variables of φ such that

φ is true?

Complexity: NP-complete [28], even if φ is in 3CNF (3SAT). Satisfiability
can be seen as a bounded one-player game where the moves are to assign
variables and the goal is to satisfy the formula.

�

�

�

�

�

�

�

�

A.8. Formula Games 181

QUANTIFIED BOOLEAN FORMULAS (QBF)

Instance: Quantified Boolean formula φ.
Question: Is φ true?

Complexity: PSPACE-complete [158], even if φ is in 3CNF. QBF can be
seen as a bounded two-player game where the moves are to alternately
assign variables, with one player trying to make φ true and the other false.

G6

Instance: CNF Boolean formula F in variables X ∪ Y , variable
assignment α.

Question: Does Player I have a forced win in the following game?
Players I and II take turns. Player I (II) moves by changing
at most one variable in X (Y); passing is allowed. Player I
wins if F ever becomes true.

Complexity: EXPTIME-complete [157]. Related games G1 through G5 are
also EXPTIME-complete. These are all unbounded two-player games.

G′
1

Instance: 4CNF Boolean formula F in variables X ∪ Y ∪ {t},
variable assignment α.

Question: Does Player I have a forced win in the following game?
Players I and II take turns. Player I moves by setting t to
true and setting the variables in X to any values; Player II
moves by setting t to false and setting the variables in Y to
any values. A player loses if F is false after his move, or if
the variable assignment after his move has the same value
as after some earlier move.

Complexity: EXPSPACE-complete [144]. This is a “no-repeat” version of
Stockmeyer and Chandra’s game G1 mentioned above. The corresponding
no-repeat versions of G2 and G3 are also EXPSPACE-complete. A further
rule modification, adding two special variables, results in game G∗

1, which
is 2EXPTIME-complete.

�

�

�

�

�

�

�

�

182 A. Survey of Games and Their Complexities

A.9 Other Games
In this section we list various games that don’t fit neatly into any other
category. As the definitions are often not simple, for most games we don’t
provide formal problem statements, and we refer the reader to the cited
references for details.

HACKENBUSH

Instance: Graph with each edge colored either red, blue, or
green, and with some vertices marked as rooted.

Question: Can Red win the following game? Players Red and
Blue take turns removing an edge of an appropriate color
(either their own color or green), which also causes all edges
not connected to a rooted vertex to be removed. The first
player unable to move loses.

Complexity: NP-hard, even for graphs with no green edges [8, pp. 189–227].

STRINGS-AND-COINS

Instance: Graph with loop edges allowed.
Question: Can Player 1 win the following game? Players 1 and

2 take turns removing an edge from the graph (“cutting
a string”). If a move leaves a vertex (a “coin”) with no
edges attached, the player takes another turn. The winner
is the player who isolates the most vertices (“collects the
most coins”).

Complexity: NP-hard [8, pp. 577–578]. (In [8], strings may be connected
to the ground; we model this here with loop edges.) The popular game
Dots-and-Boxes [8, 9] is isomorphic to Strings-and-Coins with appropriate
restrictions placed on the graph. Eppstein [50] observes that the Strings-
and-Coins reduction should also apply to Dots-and-Boxes.

INSTANT INSANITY

Instance: n cubes, with each face colored one of n colors.
Question: Is it possible to stack the cubes so that each color

appears exactly once on each of the four sides of the stack?

�

�

�

�

�

�

�

�

A.9. Other Games 183

Complexity: NP-complete [142]. A two-player version is PSPACE-complete.

ALTERNATING MAXIMUM WEIGHTED MATCHING

Instance: Weighted graph G, integer bound B.
Question: Does Player 1 have a forced win in the following

game? Players 1 and 2 alternate choosing a new edge from
G, such that no edge can share an endpoint with any already
chosen edge. If the sum of the weights of chosen edges ever
exceeds B, Player 1 wins.

Complexity: PSPACE-complete [74, p. 256].

CROSSWORD PUZZLE CONSTRUCTION

Instance: List of words, rectangular grid with squares marked
as either obstacles or blank.

Question: Can a subset of the words be placed into horizontally
or vertically maximal blank strips so that crossing words
have matching letters?

Complexity: NP-complete [74, p. 258], even when the grid has no obstacles
so every row and column must form a word.

Tetris. In the popular computer game Tetris , tetrominoes fall from above
and may be rotated and shifted as they fall. When they contact other
pieces they stop falling, and any completely filled rows disappear, bringing
any rows above down one level. If the sequence of pieces is given, it is
NP-complete to determine whether it is possible to keep the stack below a
finite height [16]. Other problems are NP-complete to approximate.

Dyson Telescope Game. The Dyson Telescope Game is an online puzzle pro-
duced by the Dyson corporation, based on their telescoping vacuum clean-
ers. The goal is to maneuver a ball on a square grid from a starting position
to a goal position by extending and retracting telescopes on the grid, thus
pushing or pulling the ball. The basic problem is PSPACE-complete; re-
stricted versions (which are nonetheless interesting) are polynomial [44].

Mahjong Solitaire. Mahjong Solitaire or Shanghai is a computer game played
with Mahjong tiles stacked in a pattern that hides some tiles. Each move

�

�

�

�

�

�

�

�

184 A. Survey of Games and Their Complexities

removes a pair of matching tiles that are completely exposed. The goal
is to remove all tiles. If all the tile positions are known, the problem is
NP-complete [50]. An approximation problem is PSPACE-hard when the
positions are unknown but uniformly distributed [25].

Plank Puzzle. A Plank Puzzle is a one-player unbounded game in which the
moves are to walk across wooden planks, with the ability to pick up and
carry one plank at a time and deposit it in another location where it will
fit. The goal is to reach a particular location. Plank Puzzles are defined
and shown PSPACE-complete in [87, Section 9.6].

Cryptarithms. Cryptarithms are puzzles such as SEND + MORE =
MONEY, where the goal is to find an assignment of digits to letters that
satisfies the equation. A generalization of this problem to bases other than
decimal is NP-complete [51].

Minesweeper. Minesweeper is a well-known imperfect-information computer
game with the goal of discovering the locations of a set of mines without
setting one off. A move consists of uncovering a square. If that square
contains a mine, the player loses; otherwise the number of mines in the 8
adjacent squares is placed in that square. Testing consistency of currently
exposed squares is NP-complete [107]. From the point of view of this book,
the “natural” decision question is whether the player has a forced win from
a given position. This problem is coNP-hard; if the position is assumed
consistent, then it is coNP-complete [91, 93].

Minesweeper can be seen as an “anti-puzzle.” An ordinary puzzle, or
one-player game, can be thought of as a degenerate two-player game, where
one player’s moves are forced: the player makes a move, something deter-
ministic happens, then the player moves again, etc. In Minesweeper, it
turns out that the order of the player’s moves, so long as they are known
safe based on the revealed state, is irrelevant: the question is whether the
computer can place further mines from a given partial position so as to
prevent a forced win. So, from a certain point of view, the player’s moves
are forced, and the game’s moves are free, just the opposite of a normal
puzzle.

Clickomania. Clickomania or Same Game is a computer puzzle consisting
of a rectangular grid of colored square blocks. Adjacent blocks of the
same color are considered part of the same group. A move selects a group
containing at least two blocks and removes them; blocks then fall to fill
any holes, and columns slide to remove any empty columns. The goal is to
remove all the blocks. Deciding whether this is possible is NP-complete [11].
The case of only two colors remains open; a natural two-player variant is
also open.

�

�

�

�

�

�

�

�

A.9. Other Games 185

Vexed. Vexed or Cubic is a computer puzzle consisting of a rectangular grid
with fixed blocks and movable colored blocks (all unit squares). A move
consists of sliding a colored block left or right one unit, after which the
block falls according to gravity. If the block is adjacent to any other blocks
of the same color in its final position, then all such blocks disappear (as
if clicking the group in Clickomania). The goal is to eliminate all colored
blocks. Deciding whether this is possible is NP-complete [64].1

KPlumber. KPlumber is a computer puzzle consisting of a rectangular grid
of square tiles, where each side of each tile is marked either “open” or
“closed.” A move consists of rotating a tile by 90◦ in place. The goal is
to rotate the tiles so that every two neighboring tiles share matching sides,
either both open or both closed. Deciding whether this is possible is NP-
complete [110], even with specific tile sets: tiles with exactly zero or two
open sides, or tiles with exactly two or three open sides.

Wriggle puzzles. Wriggle puzzles are a kind of sliding-piece puzzle, where
the sliding pieces are flexible worms (wrigglers). A puzzle consists of a box
with some internal barriers and some number of wrigglers; the goal is to
slide the wrigglers backwards and forwards so that a particular wriggler
can reach a certain location within the box. Wriggle puzzles were invented
by Andrea Gilbert [76]. These puzzles are PSPACE-complete [118].

Klondike. Klondike or Solitaire is the classic solitaire card game. In the
perfect information version of this game, we suppose the player knows all
of the normally hidden cards. This game is NP-complete (when generalized
to n cards per suit), even with just three suits [117]. Additional results
in [117] are that Klondike with one black suit and one red suit is NL-hard,
Klondike with any fixed number of black suits and no red suits is in NL,
and Klondike with one suit is in AC0, among other results.

FreeCell. FreeCell is another common solitaire card game. We will not
attempt to describe the rules here. FreeCell is NP-complete (again, when
generalized to n cards per suit), for any fixed positive number of free cells
[95].

Jigsaw puzzles. Jigsaw puzzles can be formalized in a variety of ways, with
different edge matching rules, different boundary conditions, and different
constraints on numbers of available pieces. Many versions are NP-complete
[74, p. 257] [35]. Infinite generalizations are undecidable [7, 35].

1David Eppstein [50] points out that [64] establishes only NP-hardness, while the
problem is not obviously in NP. Friedman and Hearn together showed (in personal
communication) that the problem is in NP as well.

�

�

�

�

�

�

�

�

186 A. Survey of Games and Their Complexities

Packing puzzles. In a packing puzzle, the goal is to fit all of a given set
of shapes (often polyominoes) into a target shape without overlap. Many
varieties of this basic type of puzzle are NP-complete [12, 35, 113,125].

Reflections. In Reflections , we are given a rectangular grid with one square
containing a laser, some squares containing light bulbs, some squares marked
one-way in an axis-parallel direction, and the remaining squares marked ei-
ther empty or wall. We are also given a number of diagonal mirrors and
T-splitters that we can place into empty squares. The light then travels
from the laser through the grid, following appropriate rules when meet-
ing each board element. The goal is to place the mirrors and splitters
so that each light bulb gets hit an odd number of times. This puzzle is
NP-complete [108].

Reflexion. In Reflexion [101], we are given a rectangular grid in which
squares are either walls, mirrors, or diamonds. One square is the starting
position for a ball; another is the target position. We release the ball in one
of the four axis-parallel directions, and we may flip mirrors between their
two diagonal orientations while the ball moves. The ball reflects at mirrors
and stops at walls; at diamonds, it turns around and erases the diamond.
The goal is to reach the target position. In this basic form, Reflexion is
polynomial; simple variations are NP-complete or PSPACE-complete [100].

Lemmings. Lemmings is a computer puzzle in which characters called lem-
mings start at one or more initial locations and behave according to de-
terministic rules. The player can modify this basic behavior by applying a
skill to a lemming. The goal is for a specified number of lemmings to reach
a specified target position; the exact rules are too complicated to detail
here. These puzzles are NP-complete, even with just one lemming [29].

A.10 Constraint Logic
For a concise reference to the various constraint-logic problems, see Ap-
pendix D.

A.11 Open Problems
In this section we highlight some games whose complexity is unknown or
that have some interesting aspect that is open. Many of them were al-
ready described in preceding sections. Many of these are likely targets for
constraint-logic reductions; some of them have not yielded to attempts to
apply constraint logic.

�

�

�

�

�

�

�

�

A.11. Open Problems 187

Phutball. Phutball was not described in any detail in Section A.6, so we
describe it here. Phutball [8] is played on a Go board, with one black
stone, the ball, initially placed on the center of the board. On his turn, a
player may either place a white stone or make a series of jumps. A jump
is made by jumping the ball over a contiguous line of stones, horizontally,
vertically, or diagonally, into an empty space. The white stones jumped are
removed before the next jump. A player may make as many jumps as he
wishes on a single turn. The game is won by jumping the ball onto or over
the goal line. Left’s goal line is the right edge of the board, and Right’s is
the left edge of the board.

This game has the unusual property that it is NP-complete merely
to determine whether there is a single-move win [38]! The complexity
of determining the winner from an arbitrary position was recently shown
to be PSPACE-hard [47]. As an unbounded two-player game of perfect
information, it could be as hard as EXPTIME-complete. But, as with
Lunar Lockout, the nature of the game makes it extremely difficult to
construct any sort of stable gadget.

Dots-and-Boxes. Dots-and-Boxes (Section A.9) is NP-hard [8, pp. 577–578],
but as a two-player bounded game, by all rights it should be PSPACE-
complete. Probably it will be easier to show a generalized version, Strings-
and-Coins (Section A.9), PSPACE-complete, but no reduction method
presents itself.

Hackenbush. Hackenbush (Section A.9) is NP-hard [8, pp. 189–227], but
as a bounded two-player game, it ought to be PSPACE-complete.

Col. Col (Section A.3.2) appears not to have been studied from a complex-
ity perspective, though a related game, Snort, is PSPACE-complete [147].
It could potentially yield to a straightforward reduction.

Domineering. Domineering (Crosscram) [8] is played on a rectangular grid.
Two players take turns placing dominoes on the grid, covering two unoccu-
pied squares; one player can only place dominoes aligned horizontally, and
the other only vertically. The first player unable to move loses. This very
natural game has a geometric structure that suggests a simple constraint-
logic reduction, and we and others have attempted to show it hard. How-
ever, there are as yet no complexity results (though there are many inter-
esting positive results—efficient algorithms for special cases—in [8]).

All of the games so far in this section are introduced or discussed in
Winning Ways , the definitive work (along with On Numbers and Games)
in combinatorial game theory [8]. Winning Ways is filled with many other

�

�

�

�

�

�

�

�

188 A. Survey of Games and Their Complexities

games, too numerous to list here, that have yet to be studied from a com-
plexity perspective.

Another large source of games waiting to be tackled is Nikoli’s pen-
cil puzzles. Many of these have been shown NP-complete (Section A.7).
Pencil puzzles for which we know of no complexity results include Hashi-
wokakero (Bridges), Kuromasu (“Where is Black Cells”), Number Link ,
Ripple Effect , Shikaku, and Yajilin (Arrow Ring). Others are listed on
Nikoli’s Japanese website.

Lunar Lockout. Lunar Lockout (Section A.2.1) is an unbounded puzzle and
so is potentially PSPACE-complete. It is known to be NP-hard [97]. The
fact that the blocks are 1× 1 makes it very difficult to build gadgets, as is
also the case with 1 × 1 Rush Hour, below. However, there is some hope
for a reduction from Nondeterministic Constraint Logic to Lunar Lockout;
the challenges with 1 × 1 Rush Hour appear to be more severe. Adding
immovable blocks to Lunar Lockout does enable a PSPACE-completeness
proof [82].

1 × 1 Rush Hour. 1 × 1 Rush Hour (Section A.2.1) empirically seems hard:
the minimum solution length seems to grow exponentially with the puzzle
size [164]. However, there seems to be little hope for a reduction from Non-
deterministic Constraint Logic or indeed for any reduction at all where car
movements represent propagating signals. The reason is that it is always
easy to determine whether a given car can move at all. This problem seems
to straddle the line between easy and hard problems, and as a result is very
tantalizing.

Subway Shuffle. Subway Shuffle (Section A.3.1) is a generalization of 1× 1
Rush Hour. The goal is to move a given token to a given vertex in a graph,
where the tokens and edges are colored, and a move is to slide a token
from one vertex to an adjacent unoccupied vertex, along an edge of the
same color as the token. The game 1 × 1 Rush Hour is Subway Shuffle
restricted to grid graphs with two token colors, with all horizontal edges
one color, and all vertical edges the other. The extra flexibility in Subway
Shuffle puzzles should make it easier to build hardness gadgets. Therefore,
it is even more frustrating and tantalizing that no hardness proof has been
found. Subway Shuffle suffers from the same problem as 1 × 1 Rush Hour:
it is easy to determine whether a token can move.

Push-1. Push-1 (Section A.2.2) is NP-hard; is it PSPACE-complete? Inter-
mediate steps to showing this would be to show PSPACE-completeness for
Push-1-F or Push-2; Push-2-F is PSPACE-complete (Section 9.8). Other
block-pushing puzzles with unresolved complexity include Push-*, Push-
Push-*, and Push-1-G (Section A.2.2).

�

�

�

�

�

�

�

�

A.11. Open Problems 189

Retrograde Chess. The Retrograde Chess problem is as follows: given two
generalized chess positions (configurations of chess pieces on an n×n board,
with one king per player), is it possible to play from one configuration to the
other if the players cooperate? This problem is known to be NP-hard [13];
is it PSPACE-complete? This problem seems to almost, but not quite,
yield to a Nondeterministic Constraint Logic reduction.

Peg Duotaire and HotSpot. Peg Duotaire and HotSpot (Section A.4) are two
natural peg-jumping games that also appear not to have been studied from
a complexity perspective.

Dominono. Dominono [73, Chapter 26] is a relative of Tic-Tac-Toe, played
on a square grid. Two players, X and O, take turns placing their mark in
empty squares. The first player to form a domino—two adjacent squares
filled with his mark—loses. This game could be PSPACE-complete, but it
appears to be unstudied from a complexity perspective.

Clobber. Clobber is played on a rectangular grid, initially filled in a checker-
board pattern with black and white stones. Players Black and White take
turns; on his turn, a player moves one of his stones onto an adjacent stone of
the opposite color, “clobbering” it (removing both stones from the board).
The first player unable to move loses. A solitaire version of Clobber is
NP-complete [41]; the complexity of the two-player game is open.

Twixt. Twixt (Section A.5, [50]) could potentially be PSPACE-complete; a
related problem (Uncrossed Knights Paths) is NP-complete [119].

Chinese Checkers. Chinese Checkers stands out as a popular board game
with unaddressed complexity. As an unbounded two-player game it is po-
tentially EXPTIME-complete.

Go. Go (Section A.6) with Japanese rules has been “solved,” from a com-
plexity standpoint, for 25 years: it is EXPTIME-complete [143]. It is
rather remarkable, therefore, that the complexity of Go with the addition
of the superko rule, as used, for example, in China and in the USA, is still
unresolved.

Robson, and others who have studied the problem (notably John Tromp),
are of the opinion that Go with superko is probably in EXPTIME. However,
as an unbounded, no-repeat, two-player game, it “ought” to be EXPSPACE-
complete (Section 6.3). But this may be a case where there is effectively
some special structure in the game that makes it easier. The EXPTIME-
hardness reduction builds variable gadgets out of sets of kos (basic repeating
patterns). If all dynamic states are to be encoded in kos, then the problem

�

�

�

�

�

�

�

�

190 A. Survey of Games and Their Complexities

is in fact in EXPTIME, because it is an instance of Undirected Vertex Ge-
ography (Section A.3.3), which is polynomial in the input size. The input
size is exponential in this case; it is the space of possible board configura-
tions. But it may be possible to build gadgets that are not merely sets of
kos. It is very difficult to do so; Go is “almost” in PSPACE, because in
normal play moves are not reversible, and it is only through capture that
there is the possibility of the repeating patterns necessary for a harder
complexity.

Bridge. A hand of Bridge is a bounded team game with private information.
Therefore, determining the winner could potentially be as hard as NEXP-
TIME (Section 7.1). A reduction from Bounded Team Private Constraint
Logic would appear to be difficult, for two reasons. First, in Bounded
TPCL, the private information resides in the moves selected; the initial
state is known. But, in Bridge the private information resides in the initial
disposition of the cards. Second, there is no natural geometric structure to
exploit in Bridge, as there is in a typical board game. Still, it is conceivable
there could be some reduction.

Stratego. Stratego is an unbounded two-player game with private informa-
tion. There is not at present a corresponding kind of constraint logic, how-
ever such games are in general 2EXPTIME-complete (complete in doubly
exponential time) [136].

Rengo Kriegspiel. Rengo Kriegspiel is a kind of team, blindfold Go. Four
players sit facing away from each other, two Black, two White. A referee
sees the actual game board in the center. The players take turns attempt-
ing to make moves. Only the referee sees the attempted moves. The referee
announces when a move is illegal, or when the team’s own stone is already
on the intersection, and when captures are made. (He also removes cap-
tured stones from all players’ boards.) Players gradually gain knowledge
of the position as the game progresses and the board fills up.

This is an unbounded team game with private information and there-
fore could potentially be undecidable (Section 7.2).2 It would appear to be
extremely difficult to engineer a reduction from Team Private Constraint
Logic to Rengo Kriegspiel, showing undecidability, but perhaps it is possi-
ble. A necessary first step would probably be to strengthen the undecidabil-
ity result for Team Private Constraint Logic (Section 7.2) to apply for the
k = 1 case (allowing a single edge to be reversed per turn). Next, it seems
likely that constructing any constraint-logic gadgets in Rengo Kriegspiel

2Technically, Rengo Kriegspiel as played in the USA should be assumed to use a
superko rule by default. This prevents the global pattern from ever repeating, and thus
bounds the length of the game, making it decidable. However, we can consider the game
without superko.

�

�

�

�

�

�

�

�

A.11. Open Problems 191

would be at least as hard as constructing them in Go, so perhaps we should
expect to see an EXPSPACE-completeness result for Go with superko be-
fore we see a reduction for Rengo Kriegspiel.

Nevertheless, Rengo Kriegspiel stands out as a game that humans ac-
tually play that is not obviously decidable; we are not aware of any other
such game.

�

�

�

�

�

�

�

�

B

Computational-
Complexity
Reference

This appendix serves as a refresher on computability and complexity, and
as a “cheat sheet” for the complexity classes used in this book. For more
thorough references see, for example, [123], [151], [132], or [104].

The fundamental model of computation used in computer science is the
Turing machine. We begin with a definition of Turing machines. Note that
there are generally irrelevant differences in the precise forms that different
authors use for defining Turing machines.

B.1 Basic Definitions
Turing Machines. Informally, a Turing machine is a deterministic computing
device that has a finite number of states, and a one-way infinite tape in
which each tape cell contains a symbol from a finite alphabet. The machine
has a scanning head that is positioned over some tape cell. On a time step,
the machine writes a new symbol in the currently scanned cell, moves the
head left or right, and enters a new state, all as a function of the current
state and the current symbol scanned. If the transition function is ever
undefined, the machine halts, and either accepts or rejects the computation,
based on whether it halted in the special accepting state.

193

�

�

�

�

�

�

�

�

194 B. Computational-Complexity Reference

Formally, a Turing machine is a 6-tuple (Q,Γ, δ, q0, b, qaccept) where

• Q is a finite set of states,

• Γ is a finite set of tape symbols,

• δ : Q × Γ → Q × Γ × {L,R}, a partial function, is the transition
function,

• q0 ∈ Q is the initial state,

• b ∈ Γ is the blank symbol, and

• qaccept ∈ Q is the accepting state.

A configuration is a string in (Q ∪ Γ)∗ containing exactly one symbol
from Q. A configuration represents the contents of the tape, the current
state, and the current head position at a particular time; the symbol to
the right of the state symbol in the string is the symbol currently scanned
by the head. The rest of the tape is empty (filled with blank symbols);
configurations identical except for trailing blanks are considered equivalent.

The next-state relation relates configurations separated by one step
of the Turing machine. When the head motion, state change, and symbol
change following the previous head position from a to b correspond to the
transition specified in δ, then a b. The transitive and reflexive closure of
 is ∗.

A Turing machine halts on input w ∈ Γ∗ in configuration x if q0w ∗ x
and ¬∃y x y. It accepts input w if it halts in configuration x for some x
that contains qaccept; it rejects w if it halts but does not accept.

A Turing machine M computes function fM if M halts on input w in
configuration qacceptx, where x = fM (w), for all w.

Languages. A (formal) language is a set of strings over some alphabet. The
language {w | M accepts w} that a Turing machine M accepts is denoted
L(M). If some Turing machine accepts a language L, then L is Turing
recognizable (also called recursively enumerable (RE)). RE is the class of
all Turing-recognizable languages.

A language corresponds to a decision problem—given a string w, is w
in the language?

Decidability. If a Turing machine M halts for every input, then it decides
its language L(M), and is called a decider . If some Turing machine decides
a language L, then L is decidable (also called recursive); otherwise, L is
undecidable. R is the class of all decidable languages. Note that a Turing
machine M that computes a function fM must be a decider.

�

�

�

�

�

�

�

�

B.1. Basic Definitions 195

One example of an undecidable language is the formal language corre-
sponding to the decision problem, “Given a Turing machine M and input
w, does M halt on input w?” This is called the halting problem. A string
in the actual language would consist of encodings of M and w according
to some rule.

Complexity. A Turing machine uses time t on input w if it halts on input
w in t steps: w c1 . . . ct. The time complexity of a Turing machine
M that is a decider is a function t(n) = the maximum number of steps M
uses on any input of length n.

The time complexity class TIME(t(n)) is the class of languages decided
by some Turing machine with time complexity in O(t(n)).

Space complexity is defined similarly. A Turing machine uses space s
on input w if it halts on input w using configurations with maximum length
s (not counting trailing blanks). The space complexity of a Turing machine
M that is a decider is a function f(n) = the maximum space M uses on
any input of length n.

The space complexity class SPACE(f(n)) is the class of languages de-
cided by some Turing machine with space complexity in O(f(n)).

We are now ready to define some commonly used complexity classes:

P =
⋃
k

TIME(nk),

PSPACE =
⋃
k

SPACE(nk),

EXPTIME =
⋃
k

TIME(2nk

)

are the classes of languages decidable in, respectively, polynomial time,
polynomial space, and exponential time. Another important class, NP,
will have to wait for Section B.2 for definition.

Reducibility. A language L is polynomial-time reducible to language L′ if
there is a Turing machine M with polynomial time complexity such that
w ∈ L ⇐⇒ fM (w) ∈ L′. That is, membership of a string in L may be
tested by computing a polynomial-time function of the string and testing
the result in L′.

Completeness. A language L is hard for a complexity class X (abbreviated
X-hard) if every language L′ ∈ X is polynomial-time reducible to L. A
language L is complete for a complexity class X (abbreviated X-complete)
if L ∈ X and L is X-hard.

Intuitively, the languages that are X-complete are the “hardest” lan-
guages in X to decide. For example, if every language in PSPACE can be

�

�

�

�

�

�

�

�

196 B. Computational-Complexity Reference

reduced to a language L in polynomial time, then L must be at least as
hard as any other language in PSPACE to decide, because one can always
translate such a problem in to a membership test for L. The notion of
polynomial-time reducibility is used, because a function that can be com-
puted in polynomial time is considered a “reasonable” function.1

Note that if a language L is X-hard and L is polynomial-time reducible
to language L′, then L′ is also X-hard. This fact is the basis for most
hardness proofs.

B.2 Generalizations of Turing Machines

The basic one-tape, deterministic Turing machine, as defined above, can
be enhanced in various ways. For example, one could imagine a Turing
machine with multiple read-write tapes, instead of just one. Are such ma-
chines more powerful than the basic machine? In this case, any multitape
Turing machine M has an equivalent single-tape machine M ′ that accepts
the same language, with at most a quadratic slowdown. Relative to the
above complexity classes, they are the same.

Nondeterminism. One kind of enhancement that seems to increase the power
is nondeterminism. A nondeterministic Turing machine is defined similarly
to a deterministic one, except that the transition function δ is allowed to
be multivalued:

δ : Q× Γ → 2Q×Γ×{L,R}.

That is, a nondeterministic transition function specifies an arbitrary set of
possible transitions. The above definition of acceptance still works, but the
meaning has changed: a nondeterministic Turing machine accepts input w
if there is any accepting computation history q0w ∗ x. Thus, a nondeter-
ministic computer is allowed to nondeterministically “guess” the sequence
of transitions needed to accept its input. If there is no such sequence, then
it rejects.

Whether nondeterminism actually increases the power of Turing ma-
chines is a very important unresolved question [150].

Nondeterministic Complexity. By analogy with the above definitions, we
can define time- and space- complexity classes for nondeterministic Turing
machines.

1However, this definition is only appropriate for classes harder than P, because any
language in P is polynomial-time reducible to any other language in P. To define P-
completeness appropriately, we need the notion of log-space reducibility, which we will
not define. See, e.g., [151] for details.

�

�

�

�

�

�

�

�

B.2. Generalizations of Turing Machines 197

The nondeterministic time complexity class NTIME(t(n)) is the class
of languages decided by some nondeterministic Turing machine with time
complexity in O(t(n)). The nondeterministic space complexity class
NSPACE(f(n)) is the class of languages decided by some nondeterministic
Turing machine with space complexity in O(f(n)).

We may now define some additional complexity classes:

NP =
⋃
k

NTIME(nk),

NPSPACE =
⋃
k

NSPACE(nk)

are the classes of languages decidable in, respectively, nondeterministic
polynomial time and nondeterministic polynomial space.

The relationship between P and NP is unknown. Clearly P ⊆ NP,
but is NP strictly larger? That is, are there problems that can be solved
efficiently—in polynomial time—using a nondeterministic computer, but
that cannot be solved efficiently using a deterministic computer? We can-
not actually build nondeterministic computers, so the question may seem
academic, but many important problems are known to be NP-complete [74],
so if P �= NP, then there is no efficient deterministic algorithm for solving
them.

However, it is known that PSPACE = NPSPACE [146]. More generally,
NSPACE(f(n)) ⊆ SPACE(f2(n)). Nondeterminism thus does not increase
the power of space-bounded computation beyond at most a quadratic sav-
ings.

In relation to the concept of games and puzzles, a nondeterministic com-
putation is similar to a puzzle: if the right moves to solve the “computation
puzzle” may be found, then the computation nondeterministically accepts.
We cannot build an actual nondeterministic computer, but we can build
and solve puzzles. A perfect puzzle solver is performing a nondeterministic
computation.

Alternation. Chandra, Kozen, and Stockmeyer [22] have extended the con-
cept of nondeterminism to that of alternation. Essentially, the idea is to
add the notion of universal, as well as existential, quantification. A nonde-
terministic Turing machine accepts existentially: it accepts if there exists
an accepting computation history. In an alternating Turing machine, the
states are divided into existential states and universal states. A machine
accepts starting from a configuration in an existential state if any transi-
tion from the transition function leads to acceptance; it accepts starting
from a configuration in a universal state if all possible transitions lead to
acceptance.

�

�

�

�

�

�

�

�

198 B. Computational-Complexity Reference

Alternating time- and space-complexity classes ATIME(t(n)) and
ASPACE(f(n)) are defined as above, and AP and APSPACE are defined
analogously to P and PSPACE (or NP and NPSPACE). It turns out that
AP = PSPACE, and APSPACE = EXPTIME. Thus, alternating time is
as powerful as deterministic space, and alternating space is as powerful as
exponential deterministic time.

But what does alternation mean, intuitively? The best way to think
of an alternating computation is as a two-player game. One player, the
existential one, is trying to win the game (accept the computation) by
choosing a winning move (transition); the other player, the universal one,
is trying to win (reject the computation) by finding a move (transition)
from which the existential player cannot win. And in fact, the concept of
alternation, and the results mentioned above, have been very useful in the
field of game complexity.

Again, we cannot build an alternating computer, but we can play ac-
tual two-player games; a perfect game player is performing an alternating
computation.

Multiplayer Alternation. Building on the notion of alternation, Peterson and
Reif [133] introduced multiplayer alternation. It turns out that simply
adding new computational “players,” continuing the idea that an extra
degree of nondeterminism adds computational power, is not sufficient here.
Instead, a multiplayer computation is like a team game, with multiple
players on a team, and with the additional notion of private information.
The game analogy is that in some games, not all information is public to all
players. (Many card games, for example, have this property.) The concept
is added to Turing machines by having multiple read-write tapes, with the
transition function from some states not allowed to depend on the contents
of some tapes. Multiplayer alternation is explored in Chapters 7 and 8.

Multiplayer alternating machines turn out to be extremely powerful—
so powerful, in fact, that MPA-PSPACE, the class of languages decidable
in multiplayer alternating polynomial space, is all the decidable languages
[133].

This is a remarkable fact. A multiplayer alternating Turing machine
can do in a bounded amount of space what a deterministic Turing ma-
chine can do with an infinite tape. Again, we cannot build actual multi-
player alternating computers. But if we lived in a world containing per-
fect game players, we could do arbitrary computations with finite physical
resources.

�

�

�

�

�

�

�

�

B.3. Relationship of Complexity Classes 199

B.3 Relationship of Complexity Classes
The containment relationships of the classes mentioned above are as follows:

P ⊆ NP ⊆ PSPACE = NPSPACE = AP ⊆ EXPTIME = APSPACE � R � RE

All of the containments are believed to be strict, but beyond the above
relations, the only strict containment known among those classes is P �

EXPTIME. P ?= NP is the most famous unknown relation, but it is not
even known whether P = PSPACE.

B.4 List of Complexity Classes Used in this Book
The following classes are listed in order of increasing containment; that is,
L ⊆ NL ⊆ NC3 . . . , with the exception that the relationship between NP
and coNP is unknown. (However, either NP = coNP, or neither contains
the other.)

L = SPACE(logn).

NL = NSPACE(logn).

NC3 see, e.g., [151] for definition.

P =
⋃

k TIME(nk) = languages decidable in polynomial time.

NP =
⋃

k NTIME(nk) = languages decidable in nondeterministic polyno-
mial time.

coNP = {L | L ∈ NP} = languages whose complements are decidable in
nondeterministic polynomial time. (w ∈ L ⇐⇒ w �∈ L.)

PSPACE =
⋃

k SPACE(nk) = languages decidable in polynomial space.

NPSPACE =
⋃

k NSPACE(nk) = languages decidable in nondeterministic
polynomial space = PSPACE.

AP =
⋃

k ATIME(nk) = languages decidable in alternating polynomial
time = PSPACE.

EXPTIME =
⋃

k TIME(2nk

) = languages decidable in exponential time.

APSPACE =
⋃

k ASPACE(nk) = languages decidable in alternating polyno-
mial space = EXPTIME.

NEXPTIME =
⋃

k NTIME(2nk

) = languages decidable in nondeterministic
exponential time.

�

�

�

�

�

�

�

�

200 B. Computational-Complexity Reference

EXPSPACE =
⋃

k SPACE(2nk

) = languages decidable in exponential space.

NEXPSPACE =
⋃

k NSPACE(2nk

) = languages decidable in nondeterminis-
tic exponential space = EXPSPACE.

2EXPTIME =
⋃

k TIME(22nk

) = languages decidable in doubly exponential
time.

R = decidable languages.

RE = Turing-recognizable languages.

B.5 Formula Games
A game played on a Boolean formula is often the canonical complete prob-
lem for a complexity class. Boolean Satisfiability (SAT), the first problem
shown to be NP-complete [28], can be viewed as a puzzle in which the moves
are to choose variable assignments. Quantified Boolean Formulas (QBF),
which is PSPACE-complete, essentially turns this puzzle into a two-player
game, where the players alternate choosing variable assignments. There
are formula games for EXPTIME and EXPSPACE, and other classes, as
well.

Here we define Boolean formulas and discuss the basic formula games
SAT and QBF. Other formula games are defined in the text as they are
needed, and many are listed in Section A.8.

B.5.1 Boolean Formulas

A Boolean variable is a variable that can have the value true or false. A
Boolean operation is one of AND (∧), OR (∨), or NOT (¬). A Boolean
formula is either a Boolean variable, or one of the expressions (φ ∧ ψ),
(φ ∨ ψ), and ¬φ, where φ and ψ are Boolean formulas.

Expression (φ∧ψ) is true if φ and ψ are both true, and false otherwise;
(φ ∨ ψ) is true if either φ or ψ is true, and false otherwise; ¬φ is true if φ
is false, and false otherwise.

A literal is a variable x or its negation ¬x, abbreviated x.
A monotone formula is a formula that does not contain ¬. Monotone

formulas have the property that if the value of any contained variable is
changed from false to true, the value of the formula can never change from
true to false.

A (disjunctive) clause is either a literal or (φ ∨ ψ), where φ and ψ are
disjunctive clauses; a conjunctive clause is either a literal or (φ∧ψ), where
φ and ψ are conjunctive clauses.

�

�

�

�

�

�

�

�

B.5. Formula Games 201

A Boolean formula F is in conjunctive normal form (CNF) if it is either
a clause or (φ ∧ ψ), where φ and ψ are in CNF; F is in disjunctive normal
form (DNF) if it is either a conjunctive clause or (φ ∨ ψ), where φ and ψ
are in DNF. F is in kCNF (kDNF) if it is in CNF (DNF) and each of its
clauses contains at most k literals.

A quantified variable is either ∀x or ∃x, for variable x.
A quantified Boolean formula is either a Boolean formula, or a quantified

Boolean formula preceded by a quantified variable.
Expression ∀xφ is true if φ is true both when x is assigned to false and

when it is assigned to true, and ∃x φ is true if φ is true when x is assigned
either to false or to true.

B.5.2 Satisfiability (SAT)

The Boolean formula satisfiability problem is NP-complete and is almost
invariably the problem of choice to which to reduce another problem to
show that it is NP-hard. It is defined as follows:

SATISFIABILITY (SAT)

Instance: Boolean formula φ.
Question: Is there an assignment to the variables of φ such that

φ is true?

Equivalently, SAT could be defined as the question of whether a given
quantified Boolean formula that uses only existential quantifiers is true.
The process of choosing a satisfying variable assignment can be viewed as
solving a kind of puzzle.

In 3SAT, φ is in 3CNF; 3SAT is also NP-complete.

B.5.3 Quantified Boolean Formulas (QBF)

Quantified Boolean Formulas is PSPACE-complete and is almost invariably
the problem of choice to which to reduce another problem to show that it
is PSPACE-hard. It is defined as follows:

QUANTIFIED BOOLEAN FORMULAS (QBF)

Instance: Quantified Boolean formula φ.
Question: Is φ true?

The truth of a quantified Boolean formula corresponds to the winner of
a two-person game. This is easiest to see in the case where the quantifiers

�

�

�

�

�

�

�

�

202 B. Computational-Complexity Reference

strictly alternate between ∃ and ∀, as in ∃x ∀y ∃z . . . φ. Then, we may say
that the ∃ player can win the formula game if he can choose a value for x
such that for any value the ∀ player chooses for y, the ∃ player can choose
a value for z, such that . . .φ is true.

This correspondence may also be understood in terms of the previously
mentioned result that AP = PSPACE: a two-player game of polynomially
bounded length is an alternating computation that can be carried out in
polynomial time.

QBF remains PSPACE-complete if φ is in 3CNF.

�

�

�

�

�

�

�

�

C

Deterministic Constraint
Logic Activation

Sequences

In this appendix, we present the explicit activation sequences for several
DCL gadgets described in Section 4.2. Refer to that section for complete
descriptions of the gadgets’ intended behaviors, and of the deterministic
rule used. As mentioned there, all of the gadgets used are designed on the
assumption that signals will only arrive at their inputs at some time 0 mod
4 (so that the first internal edge reversal occurs at time 1 mod 4), and also
that signals will activate output edges only at times 0 mod 4. This makes
it possible to know what the internal state of the gadgets is when inputs
arrive, because any persistent activity in a gadget will repeat every two or
four steps.

Switch Gadget. This gadget is used internally in many of the other gadgets.
In Figure C.1, we show all the steps in its activation sequence. When input
arrives at A, an output signal is sent first to B, then, when that signal has
returned to the switch, on to C, then to B again, and finally back to A.
In some cases the extra activation of B is useful; in the other cases, it is
redundant but not harmful.

Existential Quantifier. This gadget uses a switch to “try” both possible vari-
able assignments. The connected CNF circuitry follows a protocol by which
a variable state can be asserted by activating one pathway; a return path-
way will then activate back to the quantifier. When the quantifier is done

203

�

�

�

�

�

�

�

�

204 C. Deterministic Constraint Logic Activation Sequences

A

C

B

(a) t = 0

A

C

B

(b) t = 1

A

C

B

(c) t = 2

A

C

B

(d) t = 3

A

C

B

(e) t = 4

A

C

B

(f) t = 5+
4k

A

C

B

(g) t =
6 + 4k

A

C

B

(h) t =
7 + 4k

A

C

B

(i) t = 8 +
4k

A

C

B

(j) t = 9+
4l

A

C

B

(k) t =
10 + 4l

A

C

B

(l)
t = 11+4l

A

C

B

(m) t =
12 + 4l

A

C

B

(n) t =
13 + 4m

A

C

B

(o) t =
14 + 4m

A

C

B

(p) t =
15 + 4m

A

C

B

(q) t =
16 + 4m

Figure C.1. Switch gadget steps. 0 ≤ k ≤ l ≤ m.

using that assignment, it can de-assert it by following the return path-
way backward; activation will then proceed back into the gadget along the
original assertion output edge.

In Figure C.2 we show the activation sequence. Only every fourth time
step is shown; in between these steps the internal switch is operating as
above. Possible activation of the satisfied in/satisfied out pathway is not
shown, but when it occurs it clearly preserves the necessary timing.

�

�

�

�

�

�

�

�

C. Deterministic Constraint Logic Activation Sequences 205

try in

satisfied out satisfied in

try out

xx

B C DA

(a) try in about to activate

try in

satisfied out satisfied in

try out

xx

B C DA

(b) x activated

try in

satisfied out satisfied in

try out

xx

B C DA

(c) try out activated with x
false

try in

satisfied out satisfied in

try out

xx

B C DA

(d) x deactivated

try in

satisfied out satisfied in

try out

xx

B C DA

(e) x activated

try in

satisfied out satisfied in

try out

xx

B C DA

(f) try out activated with x
true

try in

satisfied out satisfied in

try out

xx

B C DA

(g) x deactivated

try in

satisfied out satisfied in

try out

xx

B C DA

(h) x activated again

try in

satisfied out satisfied in

try out

xx

B C DA

(i) try out activated with x
false

try in

satisfied out satisfied in

try out

xx

B C DA

(j) x deactivated

try in

satisfied out satisfied in

try out

xx

B C DA

(k) try in deactivated

Figure C.2. Existential-quantifier steps. Every fourth step is shown. Between
steps (b) and (c), (d) and (e), (e) and (f), (g) and (h), (h) and (i), and (j) and
(k), a signal is propagated into and out of the connecting CNF circuitry. Between
steps (c) and (d), (f) and (g), and (i) and (j), a signal is propagated through to
the quantifier to the right, and possibly through satisfied in/satisfied out and back.
All inputs are guaranteed to arrive at times 0 mod 4.

�

�

�

�

�

�

�

�

206 C. Deterministic Constraint Logic Activation Sequences

xx

try in

satisfied out satisfied in

try out

M

(a) try in about to activate

xx

try in

satisfied out satisfied in

try out

M

(b) x activated

xx

try in

satisfied out satisfied in

try out

M

(c) try out activated with x false

xx

try in

satisfied out satisfied in

try out

M

(d) satisfied in activated with x false

xx

try in

satisfied out satisfied in

try out

M

(e) Internal latch M activated

xx

try in

satisfied out satisfied in

try out

M

(f) satisfied in deactivated

Figure C.3. Universal-quantifier steps, part one. Every fourth step is shown.

Universal Quantifier. The universal quantifier is similar to the existential
quantifier; it also uses a switch to try both variable assignments. However,
if the assignment to x = false succeeds, the gadget sets an internal latch
to remember this fact. Then, if x = true also succeeds, the latch enables
satisfied out to be directed out. Finally, the switch tries x = false again;
this resets the latch. This sequence is shown in Figures C.3 and C.4. Again,
only every fourth time step is shown. Only the “forward” operation of the
gadget is shown; deactivation follows an inverse sequence.

If the assignment to x = false fails, and x = true succeeds, then the
unset latch state causes the x = true success to simply bounce back. This
sequence is shown in Figure C.5.

�

�

�

�

�

�

�

�

C. Deterministic Constraint Logic Activation Sequences 207

xx

try in

satisfied out satisfied in

try out

M

(a) x deactivated

xx

try in

satisfied out satisfied in

try out

M

(b) Switch trying second branch

xx

try in

satisfied out satisfied in

try out

M

(c) x activated

xx

try in

satisfied out satisfied in

try out

M

(d) try out activated with x true

xx

try in

satisfied out satisfied in

try out

M

(e) satisfied in activated with x true and
latch M set

xx

try in

satisfied out satisfied in

try out

M

(f) satisfied out activated

Figure C.4. Universal-quantifier steps, part two (continuation of part one).

xx

try in

satisfied out satisfied in

try out

M

(a) satisfied in activated with x true and
latch M not set

xx

try in

satisfied out satisfied in

try out

M

(b) satisfied in deactivated

Figure C.5. Universal-quantifier steps, part three. These two steps replace the
last two in Figure C.4, in the case where the x false assignment did not succeed
and set latch M .

�

�

�

�

�

�

�

�

208 C. Deterministic Constraint Logic Activation Sequences

input 1 input 2

output

M

A B C D

E F

(a) input 1 about to acti-
vate

input 1 input 2

output

M

A B C D

E F

(b) input 1 return path ac-
tivated; latch M set

input 1 input 2

output

M

A B C D

E F

(c) input 2 activated

input 1 input 2

output

M

A B C D

E F

(d) output activated

input 1 input 2

output

M

A B C D

E F

(e) input 2 return path acti-
vated

Figure C.6. AND′ steps, in the case when both inputs activate in sequence. Every
fourth step is shown.

input 1 input 2

output

M

A B C D

E F

(a) input 2 activated

input 1 input 2

output

M

A B C D

E F

(b) Without latch M set,
signal bounces without ac-
tivating output

input 1 input 2

output

M

A B C D

E F

(c) input 2 return path acti-
vated

Figure C.7. AND′ steps, in the case when input 2 activates without input 1 first
activating. Every fourth step is shown.

�

�

�

�

�

�

�

�

C. Deterministic Constraint Logic Activation Sequences 209

input 1 input 2

output

AB C D

E F

S

O

M N

(a) input 1 about to ac-
tivate

input 1 input 2

output

AB C D

E F

S

O

M N

(b) signal propagating

input 1 input 2

output

AB C D

E F

S

O

M N

(c) internal OR acti-
vated

input 1 input 2

output

AB C D

E F

S

O

M N

(d) output activated

input 1 input 2

output

AB C D

E F

S

O

M N

(e) output return path
activated

input 1 input 2

output

AB C D

E F

S

O

M N

(f) switch successfully
tries left side

Figure C.8. OR′ steps, part one. Every fourth step is shown. If input 2 is activated
instead, the sequence will be slightly different; the switch will first try the left
side, and then the right.

AND′. The AND′ gadget must respond to two different circumstances: first,
input 1 arrives, and then input 2 later arrives (or not); and second, input 2
arrives when input 1 has not arrived. The first case is shown in Figure C.6,
the second in Figure C.7. In each case only every fourth time step is shown,
and the reverse, deactivating, sequences are not shown.

OR′. The OR′ is complicated for two reasons. First, it must activate when
either input activates, but whichever has activated, if the other input then

�

�

�

�

�

�

�

�

210 C. Deterministic Constraint Logic Activation Sequences

input 1 input 2

output

AB C D

E F

S

O

M N

(a) input 1 return path ac-
tivated

input 1 input 2

output

AB C D

E F

S

O

M N

(b) input 1 return path
deactivated

input 1 input 2

output

AB C D

E F

S

O

M N

(c) switch entered

input 1 input 2

output

AB C D

E F

S

O

M N

(d) switch tries right side

input 1 input 2

output

AB C D

E F

S

O

M N

(e) back into switch

input 1 input 2

output

AB C D

E F

S

O

M N

(f) output return path de-
activated

Figure C.9. OR′ steps, part two. Every fourth step is shown. If input 2 is activated
instead, the sequence will be slightly different; the switch will send the return
signal out earlier.

arrives, it must simply bounce back cleanly (because the output is already
activated). Second, the internal switch required is more complicated than
the basic switch. The basic switch may be described as following the se-
quence ABCBA; the switch used in the OR′ would correspondingly follow the
sequence ABC.

�

�

�

�

�

�

�

�

C. Deterministic Constraint Logic Activation Sequences 211

input 1 input 2

output

AB C D

E F

S

O

M N

(a) input 2 activated

input 1 input 2

output

AB C D

E F

S

O

M N

(b) signal propagating

input 1 input 2

output

AB C D

E F

S

O

M N

(c) signal bounces

input 1 input 2

output

AB C D

E F

S

O

M N

(d) input switch redirects
signal

input 1 input 2

output

AB C D

E F

S

O

M N

(e) input 2 return path ac-
tivated

Figure C.10. OR′ steps, part three. Every fourth step is shown; input 2 arrives
when the gate is already activated, and is cleanly propagated on to its return
path. Deactivation follows the reverse sequence.

Two sequences are shown. First, in Figures C.8 and C.9, an activation
sequence beginning with input 1 is shown. Part of the deactivating sequence
is shown as well, because it is not the reverse of the forward sequence
(due to the modified switch). The activation sequence beginning with in-
put 2 is similar, but the “extra search step” taken by the internal switch

�

�

�

�

�

�

�

�

212 C. Deterministic Constraint Logic Activation Sequences

A B

C

D

(a) t = 0, signal about to
arrive at A

A B

C

D

(b) t = 1

A B

C

D

(c) t = 2

A B

C

D

(d) t = 3

A B

C

D

(e) t = 4

A B

C

D

(f) t = 5

A B

C

D

(g) t = 6

A B

C

D

(h) t = 9 + 4k, signal about
to arrive at C

A B

C

D

(i) t = 10 + 4k

Figure C.11. Crossover gadget steps, part one. The padding edges required to
enter and exit at times 0 mod 4 are omitted; as a result, there is a gap between
steps (g) and (h).

occurs during the forward rather than the reverse activation sequence in
this case.

Second, Figure C.10 shows the activation sequence when the OR′ is
already active, and the other input arrives. (In this case the operation is
symmetric with respect to the two inputs.) The second input is propagated
directly to its return path.

FANOUT′, CNF Output Gadget. The correct operation of these gadgets (shown
in Figure 4.5) is obvious.

Crossover Gadget. The steps involved in crossover activation are shown in
Figures C.11 and C.12. The reverse sequence deactivates the crossover.

�

�

�

�

�

�

�

�

C. Deterministic Constraint Logic Activation Sequences 213

A B

C

D

(a) t = 11 + 4k

A B

C

D

(b) t = 12 + 4k

A B

C

D

(c) t = 13 + 4k

A B

C

D

(d) t = 14 + 4k

Figure C.12. Crossover gadget steps, part two (continuation of part one).

The sequence shown has a C-D traversal following an A-B traversal. C-D
can also occur in isolation (but not followed by A-B); note that after the
A-B traversal (and at the same time mod 4), the gadget is in a vertically
symmetric state to the original one.

�

�

�

�

�

�

�

�

D

Constraint-Logic Quick
Reference

Table D.1 provides a concise reference to all of the complexity results for
different varieties of constraint logic. This table is the starting point when
trying to show that a new problem is hard: one can quickly identify the set
of gadgets that must be built for a reduction and identify what variants of
the appropriate constraint logic are also hard.

In the table, each kind of constraint logic is complete for the indicated
class, for planar constraint graphs, except as noted. Generally, there is a
simple set of “basis vertex” types that may be used for reductions. The
basis vertices listed in the table are a sufficient set to implement such
reductions. Not all of these are AND or OR vertices; the normal definitions
of constraint logic (Section 2.1) apply. Degree-3 vertices have an inflow
constraint of 2; degree-2 vertices have an inflow constraint of 1.

As remarked in Section 2.1 (page 19), for all the different kinds of con-
straint logic, it is sufficient to consider constraint graphs containing only
AND and OR vertices. However, using only ANDs and ORs for game reduc-
tions could mean implementing a large number of vertex subtypes. For
example, for Bounded Two-Player constraint logic (Bounded 2CL), there
are 42 functionally distinct types of AND (red-red-blue) and OR (blue-blue-
blue) vertex, depending on the initial orientation and controlling player
assigned to each edge. Reducing Bounded 2CL for general AND and OR

graphs to a given problem would mean building gadgets for each of these.
Instead, it is sufficient to implement the listed basis vertices.

215

�

�

�

�

�

�

�

�

216 D. Constraint-Logic Quick Reference

Constraint Logic
Complete
for Class

Basis Vertices Comments

Zero Player,
Bounded
(Bounded DCL,
Section 4.1)

P
Result does not hold
for planar graphs.

Zero Player,
Unbounded
(DCL,
Section 4.2)

PSPACE

One Player,
Bounded
(Bounded NCL,
Section 5.1)

NP

Constraint Graph
Satisfiability is
also NP-complete
(Section 5.1.3).

One Player,
Unbounded
(NCL,
Section 5.2)

PSPACE

Remains PSPACE-
complete when all
ORs are protected
(Section 5.2.3).
Configuration-
to-configuration
problem is also
PSPACE-complete
(Section 5.2.4).

Two Player,
Bounded
(Bounded 2CL,
Section 6.1)

PSPACE

Two Player,
Unbounded
(2CL,
Section 6.2)

EXPTIME

Team, Private,
Bounded
(Bounded TPCL,
Section 7.1)

NEXPTIME see Section 7.1

Team, Private,
Unbounded
(TPCL,
Section 7.2)

RE see Section 7.2
k edges may be re-
versed in one turn.

Table D.1. Constraint-Logic Quick Reference.

�

�

�

�

�

�

�

�

Bibliography

[1] Scott Aaronson. “NP-complete Problems and Physical Reality.” SIGACT
News 36:1 (2005), 30–52.

[2] Hiroyuki Adachi, Hiroyuki Kamekawa, and Shigeki Iwata. “Shogi on n × n
Board Is Complete in Exponential Time (in Japanese).” Transactions of the
IEICE J70-D:10 (1987), 1843–1852.

[3] Michael H. Albert, Richard J. Nowakowski, and David Wolfe. Lessons in
Play: An Introduction to Combinatorial Game Theory. Wellesley, MA: A K
Peters, Ltd., 2007.

[4] Daniel Andersson. “HIROIMONO Is NP-Complete.” In Fun with Algo-
rithms: 4th International Conference, FUN 2007, Castiglioncello, Italy,
June 3–5, 2007, Proceedings, Lecture Notes in Computer Science 4475,
pp. 30–39. Berlin: Springer, 2007.

[5] László Babai. “Trading Group Theory for Randomness.” In Proceedings of
the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 421–
429. New York: ACM Press, 1985.

[6] Charles H. Bennett. “Logical Reversibility of Computation.” IBM J. Res.
& Dev. 17 (1973), 525–532.

[7] Robert Berger. “The Undecidability of the Domino Problem.” Memoirs of
the American Mathematical Society 66 (1966), 1–72.

[8] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways
for Your Mathematical Plays, four volumes, Second edition. Wellesley, MA:
A K Peters, Ltd., 2001–2004.

[9] Elwyn Berlekamp. The Dots and Boxes Game: Sophisticated Child’s Play.
Wellesley, MA: A K Peters, Ltd., 2000.

217

�

�

�

�

�

�

�

�

218 Bibliography

[10] Elwyn R. Berlekamp. “Sums of N ×2 Amazons.” In Game Theory, Optimal
Stopping, Probability and Statistics, Lecture Notes – Monograph Series 35,
edited by F. Thomas Bruss and Lucien Le Cam, pp. 1–34. Beachwood, OH:
Institute of Mathematical Statistics, 2000.

[11] Therese C. Biedl, Erik D. Demaine, Martin L. Demaine, Rudolf Fleischer,
Lars Jacobsen, and J. Ian Munro. “The Complexity of Clickomania.” In
More Games of No Chance, edited by R. J. Nowakowski, pp. 389–404. Cam-
bridge, UK: Cambridge University Press, 2002.

[12] Therese Biedl. “The Complexity of Domino Tiling.” In Proceedings of the
17th Canadian Conference on Computational Geometry, pp. 187–190, 2005.
Available at http://www.cccg.ca/proceedings/2005/6.pdf.

[13] Hans Bodlaender. “Re: Is Retrograde Chess NP-hard?” Usenet posting to
rec.games.abstract, 2001.

[14] Paul S. Bonsma and Luis Cereceda. “Finding Paths between Graph Colour-
ings: PSPACE-Completeness and Superpolynomial Distances.” In Mathe-
matical Foundations of Computer Science 2007: 32nd International Sym-
posium, MFCS 2007 Ceský Krumlov, Czech Republic, August 26-31, 2007,
Proceedings, Lecture Notes in Computer Science 4708, pp. 738–749. Berlin:
Springer, 2007.

[15] David Bremner, Joseph O’Rourke, and Thomas Shermer. “Motion Planning
amidst Movable Square Blocks is PSPACE-complete.” Manuscript, 1994.

[16] Ron Breukelaar, Erik D. Demaine, Susan Hohenberger, Hendrik Jan Hooge-
boom, Walter A. Kosters, and David Liben-Nowell. “Tetris Is Hard, Even
to Approximate.” International Journal of Computational Geometry and
Applications 14:1–2 (2004), 41–68.

[17] John Bruno and Louis Weinberg. “A Constructive Graph-Theoretic Solution
of the Shannon Switching Game.” IEEE Transactions on Circuit Theory
CT-17 1 (1970), 74–81.

[18] Kevin Buchin and Maike Buchin. “Rolling Block Mazes Are PSPACE-
complete.” Manuscript, 2007.

[19] Kevin Buchin, Maike Buchin, Erik D. Demaine, Martin L. Demaine, Dania
El-Khechen, Sándor Fekete, Christian Knauer, André Schulz, and Perouz
Taslakian. “On Rolling Cube Puzzles.” In Proceedings of the 19th Canadian
Conference on Computational Geometry, pp. 141–144, 2007. Available at
http://cccg.ca/proceedings/2007/05b5full.pdf.

[20] Michael Buro. “Simple Amazons Endgames and Their Connection to Hamil-
ton Circuits in Cubic Subgrid Graphs.” In Computers and Games: Sec-
ond International Conference, CG 2000 Hamamatsu, Japan, October 26–
28, 2000 Revised Papers, Lecture Notes in Computer Science 2063, edited
by Tony Marsland and Ian Frank, pp. 250–260. Berlin: Springer, 2000.

[21] Alice Chan and Alice Tsai. “1×n Konane: A Summary of Results.” In More
Games of No Chance, edited by R. J. Nowakowski, pp. 331–339. Cambridge,
UK: Cambridge Universtiy Press, 2002.

�

�

�

�

�

�

�

�

Bibliography 219

[22] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. “Alternation.”
Journal of the ACM 28:1 (1981), 114–133.

[23] Xi Chen and Xiaotie Deng. “Settling the Complexity of Two-Player Nash
Equilibria.” In Proceedings of the 47th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 261–272. Los Alamitos, CA: IEEE Press,
2006.

[24] Anne Condon and Richard E. Ladner. “Probabilistic Game Automata.”
Journal of Computer and System Sciences 36:3 (1988), 452–489.

[25] Anne Condon, Joan Feigenbaum, and Carsten Lund Peter Shor. “Random
Debaters and the Hardness of Approximating Stochastic Functions.” SIAM
Journal on Computing 26:2 (1997), 369–400.

[26] Anne Condon. “Computational Models of Games.” Ph.D. thesis, Univer-
sity of Washington, 1988. Published by MIT Press in 1989 as an ACM
Distinguished Dissertation.

[27] John Horton Conway. On Numbers and Games, Second edition. Natick,
MA: A K Peters, Ltd., 2000.

[28] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures.” In
Proceedings of the Third IEEE Symposium on the Foundations of Computer
Science, pp. 151–158. Los Alamitos, CA: IEEE Computer Society, 1971.

[29] Graham Cormode. “The Hardness of the Lemmings Game, or Oh No, More
NP-completeness Proofs.” In Fun with Algorithms: 4th International Con-
ference, FUN 2007, Castiglioncello, Italy, June 3–5, 2007, Proceedings, Lec-
ture Notes in Computer Science 4475, pp. 65–76. Berlin: Springer, 2004.

[30] Paolo Cotogno. “Hypercomputation and the Physical Church-Turing The-
sis.” Brit. J. Philosophy of Science 54 (2003), 181–223.

[31] Marcel Crâsmaru and John Tromp. “Ladders Are PSPACE-Complete.” In
Computers and Games: Second International Conference, CG 2000 Hama-
matsu, Japan, October 26–28, 2000, Revised Papers, Lecture Notes in Com-
puter Science 2063, pp. 241–249. Berlin: Springer, 2000.

[32] Marcel Crâsmaru. “On the Complexity of Tsume-Go.” In Computers and
Games: First International Conference, CG’98 Tsukuba, Japan, November
11–12, 1998, Proceedings, Lecture Notes in Computer Science 1558, pp. 222–
231. Berlin: Springer-Verlag, 1999.

[33] J. C. Culberson. “Sokoban is PSPACE-complete.” In Proceedings Interna-
tional Conference on Fun with Algorithms (FUN98), pp. 65–76. Waterloo,
Ontario, Canada: Carleton Scientific, 1998.

[34] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou.
“The Complexity of Computing a Nash Equilibrium.” In Proceedings of the
38th Annual ACM Symposium on Theory of Computing, pp. 71–78. New
York: ACM Press, 2006.

[35] Erik D. Demaine and Martin L. Demaine. “Jigsaw Puzzles, Edge Match-
ing, and Polyomino Packing: Connections and Complexity.” Graphs and
Combinatorics 23 (Supplement) (2007), 195–208.

�

�

�

�

�

�

�

�

220 Bibliography

[36] Erik D. Demaine and Robert A. Hearn. “Playing Games with Algorithms:
Algorithmic Combinatorial Game Theory.” In Games of No Chance 3, edited
by R. J. Nowakowski, 2008. To appear.

[37] Erik D. Demaine and Michael Hoffmann. “Pushing Blocks Is NP-Complete
for Noncrossing Solution Paths.” In Proceedings of the 13th Canadian Con-
ference on Computational Geometry, pp. 65–68. Waterloo, Canada, 2001.
Available at http://compgeo.math.uwaterloo.ca/∼cccg01/proceedings/long/
eddemaine-24711.ps.

[38] Erik D. Demaine, Martin L. Demaine, and David Eppstein. “Phutball
Endgames Are NP-hard.” In More Games of No Chance, edited by R. J.
Nowakowski, pp. 351–360. Cambridge, UK: Cambridge University Press,
2002.

[39] Erik D. Demaine, Martin L. Demaine, and Helena A. Verrill. “Coin-Moving
Puzzles.” In More Games of No Chance, edited by R. J. Nowakowski,
pp. 405–431. Cambridge, UK: Cambridge University Press, 2002.

[40] Erik D. Demaine, Robert A. Hearn, and Michael Hoffmann. “Push-2-F
Is PSPACE-Complete.” In Proceedings of the 14th Canadian Conference
on Computational Geometry (CCCG 2002), edited by Stephen Wismath,
pp. 31–35. Lethbridge, Alberta, Canada, 2002. Available at http://www.
dartmouth.edu/∼rah/push-2f.pdf.

[41] Erik D. Demaine, Martin L. Demaine, and Rudolf Fleischer. “Solitaire Clob-
ber.” Theoretical Computer Science 313:3 (2004), 325–338.

[42] Erik D. Demaine, Michael Hoffmann, and Markus Holzer. “PushPush-k Is
PSPACE-Complete.” In Proceedings of the 3rd International Conference on
FUN with Algorithms, pp. 159–170. Pisa, Italy: Università di Pisa, 2004.

[43] Erik D. Demaine, Martin L. Demaine, Arthur Langerman, and Stefan
Langerman. “Morpion Solitaire.” Theory of Computing Systems 39:3 (2006),
439–453.

[44] Erik D. Demaine, Martin L. Demaine, Rudolf Fleischer, Robert A. Hearn,
and Timo von Oertzen. “The Complexity of Dyson Telescopes.” In Games
of No Chance 3, edited by R. J. Nowakowski, 2008. To appear.

[45] Erik D. Demaine, Robert A. Hearn, and Erez Lieberman. “Evolving Popu-
lations and Their Computational Ability.” Manuscript in preparation, 2008.

[46] Dariusz Dereniowski. “The Complexity of Node Blocking for Dags.”
Manuscript, 2008. Available at http://arxiv.org/abs/0802.3513.

[47] Dariusz Dereniowski. “Phutball Is PSPACE-hard.” arXiv:0804.1777, 2008.
Available at http://arXiv.org/abs/0804.1777.

[48] Dorit Dor and Uri Zwick. “SOKOBAN and Other Motion Pplanning Prob-
lems.” Computational Geometry: Theory and Applications 13:4 (1999), 215–
228.

[49] Henry Ernest Dudeney. The Canterbury Puzzles and Other Curious Prob-
lems. London: W. Heinemann, 1907.

http://www.
http://www.dartmouth.edu/~rah/push-2f.pdf.
http://www.dartmouth.edu/~rah/push-2f.pdf.
http://compgeo.math.uwaterloo.ca/%E2%88%BCcccg01/proceedings/long/eddemaine-24711.ps.
http://compgeo.math.uwaterloo.ca/%E2%88%BCcccg01/proceedings/long/eddemaine-24711.ps.

�

�

�

�

�

�

�

�

Bibliography 221

[50] David Eppstein. “Computational Complexity of Games and Puzzles.” Avail-
able at http://www.ics.uci.edu/∼eppstein/cgt/hard.html, 2007.

[51] David Eppstein. “On the NP-Completeness of Cryptarithms.” SIGACT
News 18:3 (1987), 38–40.

[52] Michael D. Ernst. “Playing Konane Mathematically: A Combinatorial
Game-Theoretic Analysis.” UMAP Journal 16:2 (1995), 95–121.

[53] Shimon Even and Robert E. Tarjan. “A Combinatorial Problem which Is
Complete in Polynomial Space.” Journal of the ACM 23:4 (1976), 710–719.

[54] Hugh Everett. “Relative State Formulation of Quantum Mechanics.” Rev.
Mod. Phys. 29 (1957), 454–462.

[55] U. Feige and A. Shamir. “Multi-oracle Interactive Protocols with Space
Bounded Verifiers.” In Proceedings of the Fourth Annual Structure in Com-
plexity Theory Conference, pp. 158–164. Los Alamitos, CA: IEEE Press,
1989.

[56] Gary William Flake and Eric B. Baum. “Rush Hour is PSPACE-complete,
or ‘Why You Should Generously Tip Parking Lot Attendants’.” Theoretical
Computer Science 270:1–2 (2002), 895–911.

[57] Aviezri S. Fraenkel and Elisheva Goldschmidt. “PSPACE-Hardness of Some
Combinatorial Games.” Journal of Combinatorial Theory, Series A 46
(1987), 21–38.

[58] Aviezri S. Fraenkel and David Lichtenstein. “Computing a Perfect Strategy
for n×n Chess Requires Time Exponential in n.” Journal of Combinatorial
Theory, Series A 31 (1981), 199–214.

[59] A. S. Fraenkel and Y. Yesha. “Complexity of Problems in Games, Graphs
and Algebraic Equations.” Discrete Applied Mathematics 1 (1979), 15–30.

[60] Aviezri S. Fraenkel, Edward R. Scheinerman, and Daniel Ullman. “Undi-
rected Edge Geography.” Theoretical Computer Science 112:2 (1993), 371–
381.

[61] Michael P. Frank. “Approaching the Physical Limits of Computing.” In
Proceedings of the 35th IEEE International Symposium on Multiple-Valued
Logic (ISMVL 2005), pp. 168–185. Los Alamitos, CA: IEEE Computer So-
ciety, 2005.

[62] Greg N. Frederickson. Hinged Dissections: Swinging and Twisting. Cam-
bridge, UK: Cambridge University Press, 2002.

[63] E. Fredkin and T. Toffoli. “Conservative Logic.” International Journal of
Theoretical Physics 21 (1982), 219–253.

[64] Erich Friedman. “Cubic Is NP-complete.” Paper presented at the 34th
Annual Florida MAA Section Meeting, Ft. Myers, FL, March 2–3, 2001.

[65] Erich Friedman. “Corral Puzzles Are NP-complete.” Unpublished
manuscript, 2002. Available at http://www.stetson.edu/∼efriedma/papers/
corral/corral.html.

http://www.stetson.edu/%E2%88%BCefriedma/papers/
http://www.stetson.edu/~efriedma/papers/corral/corral.html.
http://www.stetson.edu/~efriedma/papers/corral/corral.html.
http://www.ics.uci.edu/%E2%88%BCeppstein/cgt/hard.html,%202007

�

�

�

�

�

�

�

�

222 Bibliography

[66] Erich Friedman. “Pearl Puzzles Are NP-complete.” Unpublished
manuscript, 2002. Available at http://www.stetson.edu/∼efriedma/papers/
pearl/pearl.html.

[67] Erich Friedman. “Pushing Blocks in Gravity Is NP-hard.” Unpublished
manuscript, 2002. Available at http://www.stetson.edu/∼efriedma/papers/
gravity/gravity.html.

[68] Erich Friedman. “Spiral Galaxies Puzzles Are NP-complete.” Unpublished
manuscript, 2002. Available at http://www.stetson.edu/∼efriedma/papers/
spiral/spiral.html.

[69] Timothy Furtak, Masashi Kiyomi, Takeaki Uno, and Michael Buro. “Gen-
eralized Amazons Is PSPACE-Complete.” In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, pp. 132–137. Den-
ver, CO: Professional Book Center, 2005.

[70] Zvi Galil. “Hierarchies of Complete Problems.” Acta Informatica 6:1 (1976),
77–88.

[71] Martin Gardner. “The Hypnotic Fascination of Sliding-Block Puzzles.” Sci-
entific American 210 (1964), 122–130. Also Chapter 7 of Martin Gard-
ner’s Sixth Book of Mathematical Diversions, University of Chicago Press,
Chicago, 1984.

[72] Martin Gardner. “Mathematical Games: The Fantastic Combinations of
John Conway’s New Solitaire Game ‘Life’.” Scientific American 223:4
(1970), 120–123.

[73] Martin Gardner. A Gardner’s Workout: Training the Mind and Entertaining
the Spirit. Natick, MA: A K Peters, Ltd., 2001.

[74] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: W. H. Freeman &
Co., 1979.

[75] Andrea Gilbert. “Plank Puzzles.” Available at http://www.clickmazes.com/
planks/ixplanks.htm, 2000.

[76] Andrea Gilbert. “Wriggle Puzzles.” Available at http://www.clickmazes.
com/tjwrig/ixjwrig.htm, 2007.

[77] L. M. Goldschlager. “The Monotone and Planar Circuit Value Problems Are
log Space Complete for P.” SIGACT News 9:2 (1977), 25–29.

[78] Arthur S. Goldstein and Edward M. Reingold. “The Complexity of Pursuit
on a Graph.” Theoretical Computer Science 143 (1995), 93–112.

[79] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Com-
plexity of Interactive Proof Systems.” SIAM Journal on Computing 18:1
(1989), 186–208.

[80] Markus Götz. “Triagonal Slide-Out.” Available at http://www.
markus-goetz.de/puzzle/java/0021/crh.html, 2005.

[81] John Gribbin. “Doomsday Device.” Analog Science Fiction/Science Fact
105:2 (1985), 120–125.

http://www.stetson.edu/~efriedma/papers/pearl/pearl.html
http://www.stetson.edu/~efriedma/papers/pearl/pearl.html
http://www.stetson.edu/~efriedma/papers/gravity/gravity.html
http://www.stetson.edu/~efriedma/papers/gravity/gravity.html
http://www.stetson.edu/~efriedma/papers/spiral/spiral.html
http://www.stetson.edu/~efriedma/papers/spiral/spiral.html
http://www.clickmazes.com/planks/ixplanks.htm, 2000
http://www.clickmazes.com/planks/ixplanks.htm, 2000
http://www.cliclmazes.com/tjwrig/ixjwrig.htm, 2007
http://www.clickmazes.com/tjwrig/ixjwrig.htm, 2007
http://www.markus-goetz.de/puzzle/java/0021/crh.html, 2005
http://www.markus-goetz.de/puzzle/java/0021/crh.html, 2005

�

�

�

�

�

�

�

�

Bibliography 223

[82] Jeffrey R. Hartline and Ran Libeskind-Hadas. “The Computational Com-
plexity of Motion Planning.” SIAM Review 45 (2003), 543–557.

[83] Juris Hartmanis and Richard E. Stearns. “On the Computational Complex-
ity of Algorithms.” Transactions of the American Mathematics Society 117
(1965), 285–306.

[84] Robert A. Hearn and Erik D. Demaine. “The Nondeterministic Con-
straint Logic Model of Computation: Reductions and Applications.” In
Automata, Languages and Programming: 29th International Colloquium,
ICALP 2002, Malaga, Spain, July 8–13, 2002, Proceedings, Lecture Notes
in Computer Science 2380, edited by Peter Widmayer, Francisco Triguero
Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz, and
Ricardo Conejo, pp. 401–413. Berlin: Springer, 2002.

[85] Robert A. Hearn and Erik D. Demaine. “PSPACE-Completeness of Sliding-
Block Puzzles and Other Problems through the Nondeterministic Constraint
Logic Model of Computation.” Theoretical Computer Science, “Game The-
ory Meets Theoretical Computer Science” Special Issue, 343:1–2 (2005), 72–
96.

[86] Robert Hearn, Erik Demaine, and Greg Frederickson. “Hinged Dissection
of Polygons Is Hard.” In Procedings of the 15th Canadian Conference on
Computational Geometry, pp. 98–102, 2003. Available at http://www.cccg.
ca/proceedings/2003/45.pdf.

[87] Robert A. Hearn. “The Complexity of Sliding Block Puzzles and Plank
Puzzles.” In Tribute to a Mathemagician, edited by Barry Cipra, Erik De-
maine, Martin Demaine, and Tom Rodgers, pp. 173–183. Wellesley, MA:
A K Peters, Ltd., 2004.

[88] Robert A. Hearn. “Amazons Is PSPACE-complete.” Manuscript, 2005.
Available at http://www.arXiv.org/abs/cs.CC/0008025.

[89] Robert A. Hearn. “The Subway Shuffle Puzzle.” Manuscript, 2005. Available
at http://www.subwayshuffle.com.

[90] Robert Hearn. “TipOver Is NP-Complete.” Mathematical Intelligencer 28:3
(2006), 10–14.

[91] Robert A. Hearn. “Games, Puzzles, and Computation.” Ph.D. the-
sis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2006. Available at
http://www.swiss.ai.mit.edu/∼bob/hearn-thesis-final.pdf.

[92] Robert A. Hearn. “Amazons, Konane, and Cross Purposes Are PSPACE-
complete.” In Games of No Chance 3, edited by R. J. Nowakowski, 2008.
To appear.

[93] Robert A. Hearn. “The Complexity of Minesweeper Revisited.” Manuscript
in preparation, 2008.

[94] Robert A. Hearn. “Hitori Is NP-complete.” Manuscript in preparation,
2008.

http://www.arXiv.org/abs/cs.CC/0008025
http://www.cccg.ca/proceedings/2003/45.pdf
http://www.cccg./ca/proceedings/2003/45.pdf

�

�

�

�

�

�

�

�

224 Bibliography

[95] Malte Helmert. “Complexity Results for Standard Benchmark Domains in
Planning.” Artificial Intelligence 143:2 (2003), 219–262.

[96] Malte Helmert. “New Complexity Results for Classical Planning Bench-
marks.” In Proceedings of the Sixtenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2006), pp. 52–61. Menlo Park, CA:
AAAI Press, 2006.

[97] Martin Hock. “Exploring the Complexity of the UFO Puzzle.” Undergrad-
uate thesis, Carnegie Mellon University, 2001. Available at http://www.cs.
cmu.edu/afs/cs/user/mjs/ftp/thesis-02/hock.ps.

[98] Michael Hoffmann. “Push-* Is NP-hard.” In Proceedings of the 12th Cana-
dian Conference on Computational Geometry, pp. 205–210, 2000. Available
at http://www.cs.unb.ca/conf/cccg/eProceedings/13.ps.gz.

[99] Markus Holzer and Oliver Ruepp. “The Troubles of Interior Design—A
Complexity Analysis of the Game Heyawake.” In Fun with Algorithms: 4th
International Conference, FUN 2007, Castiglioncello, Italy, June 3–5, 2007,
Proceedings, Lecture Notes in Computer Science 4475, pp. 198–212. Berlin:
Springer, 2007.

[100] Markus Holzer and Stefan Schwoon. “Assembling Molecules in ATOMIX
Is Hard.” Theoretical Computer Science 313:3 (2004), 447–462.

[101] Markus Holzer and Stefan Schwoon. “Reflections on Reflexion—
Computational Complexity Considerations on a Puzzle Game.” In Proceed-
ings of the 3rd International Conference on FUN with Algorithms, pp. 90–
105. Pisa, Italy: Università di Pisa, 2004.

[102] Markus Holzer, Andreas Klein, and Martin Kutrib. “On the NP-
completeness of the Nurikabe Pencil Puzzle and Variants Thereof.” In
Proceedings of the 3rd International Conference on FUN with Algorithms,
pp. 77–89. Pisa, Italy: Università di Pisa, 2004.

[103] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. “On the Complexity of
Motion Planning for Multiple Independent Objects: PSPACE-Hardness of
the ‘Warehouseman’s Problem’.” International Journal of Robotics Research
3:4 (1984), 76–88.

[104] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation, Second edition. Reading,
MA: Addison Wesley, 2000.

[105] Clay Mathematics Institute. “Millennium Problems.” Available at http://
www.claymath.org/millennium/, 2000.

[106] Shigeki Iwata and Takumi Kasai. “The Othello Game on an n × n Board
Is PSPACE-complete.” Theoretical Computer Science 123 (1994), 329–340.

[107] Richard Kaye. “Minesweeper Is NP-Complete.” Mathematical Intelligencer
22:2 (2000), 9–15.

[108] David Kempe. “On the Complexity of the Reflections Game.” Unpub-
lished manuscript, 2003. Available at http://www-rcf.usc.edu/∼dkempe/
publications/reflections.pdf.

http://www.cs/ cmu.edu/afs/cs/user/mjs/ftp/thesis-02/hock.ps
http://www.cs/ cmu.edu/afs/cs/user/mjs/ftp/thesis-02/hock.ps
http://www.claymath.org/millennium/, 2000.
http://www.claymath.org/millennium/, 2000.
http://www-rcf.usc.edu/%E2%88%BCdkempe%00%00http://www-rcf.usc.edu/~dkempe/publications/reflections.pdf
http://www-rcf.usc.edu/~dkempe/publications/reflections.pdf
http://www-rcf.usc.edu/~dkempe/publications/reflections.pdf
http://www-rcf.usc.edu/~dkempe/publications/reflections.pdf
http://www-rcf.usc.edu/~dkempe/publications/reflections.pdf
http://www-rcf.usc.edu/~dkempe/publications/reflections.pdf

�

�

�

�

�

�

�

�

Bibliography 225

[109] F. G. König, M. E. Lübbecke, R. H. Möhring, G. Schäfer, and
I. Spenke. “Solutions to Real-World Instances of PSPACE-Complete Stack-
ing.” Technical Report 2007/4, Institut für Mathematik, Technische Uni-
verstät Berlin, 2007. Available at http://www.math.tu-berlin.de/∼luebbeck/
papers/stacking.pdf.

[110] Daniel Král, Vladan Majerech, Jǐŕı Sgall, Tomáš Tichý, and Gerhard Woeg-
inger. “It Is Tough to be a Plumber.” Theoretical Computer Science 313:3
(2004), 473–484.

[111] Richard E. Ladner and Jeffrey K. Norman. “Solitaire Automata.” Journal
of Computer and System Sciences 30:1 (1985), 116–129.

[112] R. Landauer. “Irreversibility and Heat Generation in the Computing Pro-
cess.” IBM J. Res. & Dev. 5 (1961), 183.

[113] K. Li and K. H. Cheng. “Complexity of Resource Allocation and Job
Scheduling Problems on Partitionable Mesh Connected Systems.” In Pro-
ceedings of the 1st Annual IEEE Symposium on Parallel and Distributed
Processing, pp. 358–365. Los Alamitos, CA: IEEE Computer Society, 1989.

[114] David Lichtenstein and Michael Sipser. “GO Is Polynomial-Space Hard.”
Journal of the Association for Computing Machinery 27:2 (1980), 393–401.

[115] David Lichtenstein. “Planar Formulae and Their Uses.” SIAM J. Comput.
11:2 (1982), 329–343.

[116] Jens Lieberum. “An Evaluation Function for the Game of Amazons.” The-
oretical Computer Science, “Advances in Computer Games” Special Issue,
349:2 (2005), 230–244.

[117] Luc Longpré and Pierre McKenzie. “The Complexity of Solitaire.” In
Mathematical Foundations of Computer Science 2007: 32nd International
Symposium, MFCS 2007 Ceský Krumlov, Czech Republic, August 26–31,
2007, Proceedings, Lecture Notes in Computer Science 4708, pp. 182–193.
Berlin: Springer, 2007.

[118] Oriel Maxime. “Wriggler Puzzles Are PSPACE-complete.” Manuscript,
2007.

[119] D. Mazzoni and K. Watkins. “Uncrossed Knight Paths Is NP-complete.”
Manuscript, 2007. Available at http://www.math.uni-bielefeld.de/∼sillke/
PROBLEMS/Twixt Proof Draft.

[120] Brandon McPhail. “The Complexity of Puzzles.” Undergraduate thesis,
Reed College, Portland, Oregon, 2003. Available at http://www.cs.umass.
edu/∼mcphailb/papers/2003thesis.pdf.

[121] Brandon McPhail. “Light Up Is NP-Complete.” Unpublished
manuscript, 2005. Availavle at http://www.cs.umass.edu/∼mcphailb/
papers/2005lightup.pdf.

[122] Brandon McPhail. “Metapuzzles: Reducing SAT to Your Favorite Puzzle.”
CS Theory talk, 2007. Available at http://www.cs.umass.edu/∼mcphailb/
papers/2007metapuzzles.pdf.

http://www.math.tu-berlin.de/~luebbeck/papers/stacking.pdf.
http://www.math.tu-berlin.de/~luebbeck/papers/stacking.pdf.
http://www.math.tu-berlin.de/~luebbeck/papers/stacking.pdf.
http://www.math.uni-bielefeld.de/~sillke/PROBLEMS/Twixt_ Proof_ Draft.
http://www.math.uni-bielefeld.de/~sillke/PROBLEMS/Twixt_ Proof_ Draft.
http://www.cs.umass/edu/~mcphailb/papers/2003thesis.pdf
http://www.cs.umass/edu/~mcphailb/papers/2003thesis.pdf
http://www.cs.umass.edu/~mcphailb/papers/2005lightup.pdf
http://www.cs.umass.edu/~mcphailb/papers/2005lightup.pdf
http://www.cs.umass.edu/~mcphailb/papers/2007metapuzzles.pdf
http://www.cs.umass.edu/~mcphailb/papers/2007metapuzzles.pdf

�

�

�

�

�

�

�

�

226 Bibliography

[123] Marvin Minsky. Computation: Finite and Infinite Machines. Englewoods
Cliffs, NJ: Prentice Hall, 1967.

[124] Cristopher Moore and David Eppstein. “One-Dimensional Peg Solitaire,
and Duotaire.” In More Games of No Chance, edited by R. J. Nowakowski,
pp. 341–350. Cambridge, UK: Cambridge University Press, 2002.

[125] Cristopher Moore and John Michael Robson. “Hard Tiling Problems with
Simple Tiles.” Discrete and Computational Geometry 26:4 (2001), 573–590.

[126] Martin Müller and Theodore Tegos. “Experiments in Computer Amazons.”
In More Games of No Chance, edited by R. J. Nowakowski, pp. 243–257.
Cambridge, UK: Cambridge University Press, 2002.

[127] John Nash. “Non-cooperative Games.” Annals of Mathematics, Second
Series 54 (1951), 286–295.

[128] Richard J. Nowakowski, editor. Games of No Chance. Cambridge, UK:
Cambridge University Press, 1996.

[129] Richard J. Nowakowski, editor. More Games of No Chance. Cambridge,
UK: Cambridge University Press, 2002.

[130] Richard J. Nowakowski, editor. Games of No Chance 3. To appear, 2008.

[131] Christos H. Papadimitriou. “Games Against Nature.” Journal of Computer
and System Sciences 31:2 (1985), 288–301.

[132] Christos H. Papadimitriou. Computational Complexity. Reading, MA:
Addison Wesley, 1993.

[133] Gary L. Peterson and John H. Reif. “Multiple-Person Alternation.” In
Proceedings of the 20th Annual Symposium on Foundations of Computer
Science, pp. 348–363. Los Alamitos, CA: IEEE Press, 1979.

[134] Gary Peterson, John Reif, and Salman Azhar. “Lower Bounds for Multi-
player Non-cooperative Games of Incomplete Information.” Computers and
Mathematics with Applications 41 (2001), 957–992.

[135] Daniel Ratner and Manfred Warmuth. “The (n2 − 1)-Puzzle and Related
Relocation Problems.” Journal of Symbolic Computation 10 (1990), 111–
137.

[136] John H. Reif. “Universal Games of Incomplete Information.” In Proceedings
of the Eleventh Annual ACM Symposium on Theory of Computing, pp. 288–
308. New York: ACM Press, 1979.

[137] John H. Reif. “The Complexity of Two-Player Games of Incomplete Infor-
mation.” Journal of Computer and System Sciences 29:2 (1984), 274–301.

[138] John Reif. Personal communication, 2006.

[139] Stefan Reisch. “Gobang ist PSPACE-vollständig.” Acta Informatica 13
(1980), 59–66.

[140] Stefan Reisch. “Hex ist PSPACE-vollständig.” Acta Informatica 15 (1981),
167–191.

�

�

�

�

�

�

�

�

Bibliography 227

[141] Paul Rendell. “Turing Universality of the Game of Life.” In Collision-Based
Computing, edited by Andrew Adamatzky, pp. 513–539. London: Springer-
Verlag, 2002.

[142] Edward Robertson and Ian Munro. “NP-completeness, Puzzles and
Games.” Utilitas Mathematica 13 (1978), 99–116.

[143] J. M. Robson. “The Complexity of Go.” In Proceedings of the IFIP 9th
World Computer Congress on Information Processing, pp. 413–417. Ams-
terdam: North-Holland, 1983.

[144] J. M. Robson. “Combinatorial Games with Exponential Space Complete
Decision Problems.” In Mathematical Foundations of Computer Science
1984: 11th Symposium, Praha, Czechoslovakia, September 3–7, 1984, Pro-
ceedings, Lecture Notes in Computer Science 176, pp. 498–506. London:
Springer-Verlag, 1984.

[145] J. M. Robson. “N by N Checkers Is EXPTIME Complete.” SIAM Journal
on Computing 13:2 (1984), 252–267.

[146] Walter J. Savitch. “Relationships between Nondeterministic and Deter-
ministic Tape Complexities.” Journal of Computer and System Sciences 4:2
(1970), 177–192.

[147] Thomas J. Schaefer. “On the Complexity of Some Two-Person Perfect-
Information Games.” Journal of Computer and System Sciences 16 (1978),
185–225.

[148] Merlijn Sevenster. “Battleships as a Decision Problem.” ICGA Journal
27:3 (2004), 142–147.

[149] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer.” SIAM Journal on Comput-
ing 26:5 (1997), 1484–1509.

[150] Michael Sipser. “The History and Status of the P versus NP Question.”
In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 603–618. New York: ACM Press, 1992.

[151] Michael Sipser. Introduction to the Theory of Computation, Second edition.
Florence, KY: Course Technology, 2005.

[152] Jerry Slocum and Dic Sonneveld. The 15 Puzzle. Beverly Hills, CA: Slocum
Puzzle Foundation, 2006.

[153] Raymond Georg Snatzke. “New Results of Exhaustive Search in the Game
Amazons.” Theoretical Computer Science 313:3 (2004), 499–509.

[154] Paul Spirakis and Chee Yap. “On the Combinatorial Complexity of Mo-
tion Coordination.” Report 76, Computer Science Department, New York
University, 1983.

[155] Michael John Spriggs. “Morphing Parallel Graph Drawings.” PhD disser-
tation, University of Waterloo, 2007. Available at http://uwspace.uwaterloo.
ca/handle/10012/3083.

�

�

�

�

�

�

�

�

228 Bibliography

[156] James W. Stephens. “The Kung Fu Packing Crate Maze.” Available at
http://www.puzzlebeast.com/crate/index.html, 2003.

[157] Larry J. Stockmeyer and Ashok K. Chandra. “Provably Difficult Combi-
natorial Games.” SIAM Journal on Computing 8:2 (1979), 151–174.

[158] L. J. Stockmeyer and A. R. Meyer. “Word Problems Requiring Exponen-
tial Time: Preliminary Report.” In Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, pp. 1–9. New York: ACM Press, 1973.

[159] L. J. Stockmeyer. “The Polynomial-Time Hierarchy.” Theoretical Computer
Science 3:1 (1976), 1–22.

[160] W. E. Story. “Note on the ‘15’ Puzzle.” American Mathematical Monthly
2 (1879), 399–404.

[161] Jeff Stuckman and Guo qiang Zhang. “Mastermind Is NP-Complete.” IN-
FOCOMP J. Comput. Sci 5 (2006), 25–28.

[162] Max Tegmark and Nick Bostrom. “Is a Doomsday Catastrophe Likely?”
Nature 438 (2005), 754.

[163] TOMY. “Eternity II.” Available at http://uk.eternityii.com/, 2007.

[164] John Tromp and Rudy Cilibrasi. “Limits of Rush Hour Logic Complex-
ity.” arXiv:cs.CC/0502068, 2005. Available at http://arXiv.org/abs/cs.CC/
0502068.

[165] John Tromp. “On Size 2 Rush Hour Logic.” Manuscript, 2000. Available
at http://turing.wins.uva.nl/∼peter/teaching/tromprh.ps.

[166] A. M. Turing. “On Computable Numbers, with an Application to the
Entscheidungsproblem.” Proceedings of the London Mathematical Society 2
42 (1937), 230–65. Correction in volume 43.

[167] Nobuhisa Ueda and Tadaaki Nagao. “NP-completeness Results for NONO-
GRAM via Parsimonious Reductions.” Technical Report TR96-0008, De-
partment of Computer Science, Tokyo Institute of Technology, Tokyo, Japan,
1996.

[168] Ryuhei Uehara and Shigeki Iwata. “Generalized Hi-Q Is NP-complete.”
Transactions of the IEICE E73 (1990), 270–273.

[169] John von Neumann and Oskar Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton, NJ: Princeton University Press, 1944.

[170] Robert T. Wainwright. “Life Is Universal!” In Proceedings of the 7th
Conference on Winter Simulation, 2, 2, pp. 449–459. New York: ACM Press,
1974.

[171] Gordon Wilfong. “Motion Planning in the Presence of Movable Obstacles.”
Annals of Mathematics and Artificial Intelligence 3:1 (1991), 131–150.

[172] David Wolfe. “Go Endgames Are PSPACE-hard.” In More Games of
No Chance, edited by R. J. Nowakowski, pp. 125–136. Cambridge, UK:
Cambridge University Press, 2002.

[173] Stephen Wolfram. Cellular Automata and Complexity: Collected Papers.
New York: Perseus Press, 1994.

http://www.puzzlebeast.com/crate/index.html, 2003
http://arXiv.org/abs/cs.CC/0502068.
http://arXiv.org/abs/cs.CC/0502068.

�

�

�

�

�

�

�

�

Bibliography 229

[174] Honghua Yang. “An NC Algorithm for the General Planar Monotone Cir-
cuit Value Problem.” In Proceedings of the Third IEEE Symposium on Paral-
lel and Distributed Processing, pp. 196–203. Los Alamitos, CA: IEEE Press,
1991.

[175] Takayuki Yato and Takahiro Seta. “Complexity and Completeness of Find-
ing Another Solution and Its Application to Puzzles.” IEICE Transactions
on Fundamentals of Electronics, Communications, and Computer Sciences
E86-A:5 (2003), 1052–1060.

[176] Takayuki Yato. “Complexity and Completeness of Finding Another Solu-
tion and Its Application to Puzzles.” Master’s thesis, University of Tokyo,
Tokyo, Japan, 2003.

[177] Masaya Yokota, Tatsuie Tsukiji, Tomohiro Kitagawa, Gembu Morohashi,
and Shigeki Iwata. “Exptime-completeness of Generalized Tsume-Shogi (in
Japanese).” Transactions of the IEICE J84-D-I:3 (2001), 239–246.

	Contents
	1. Introduction
	1.1 What is a Game?
	1.2 Computational Complexity Classes
	1.3 Constraint Logic
	1.4 What's Next?

	I. Games in General
	2. The Constraint-Logic Formalism
	2.1 ConstraintGraphs
	2.2 Planar ConstraintGraphs
	2.3 Constraint-Graph Conversion Techniques

	3. Constraint-Logic Games
	3.1 Zero-Player Games (Simulations)
	3.2 One-Player Games (Puzzles)
	3.3 Two-Player Games
	3.4 Team Games

	4. Zero-Player Games (Simulations)
	4.1 Bounded Games
	4.2 Unbounded Games

	5. One-Player Games (Puzzles)
	5.1 Bounded Games
	5.2 Unbounded Games

	6. Two-Player Games
	6.1 Bounded Games
	6.2 Unbounded Games
	6.3 No-Repeat Games

	7. Team Games
	7.1 Bounded Games
	7.2 Unbounded Games

	8. Perspectives on Part I
	8.1 Hierarchies of Complete Problems
	8.2 Games, Physics, and Computation

	II: Games in Particular
	9. One-Player Games (Puzzles)
	9.1 TipOver
	9.2 Hitori
	9.3 Sliding-Block Puzzles
	9.4 The Warehouseman's Problem
	9.5 Sliding-Coin Puzzles
	9.6 Plank Puzzles
	9.7 Sokoban
	9.8 Push-2-F
	9.9 Rush Hour
	9.10 Triangular Rush Hour
	9.11 Hinged Polygon Dissections

	10. Two-Player Games
	10.1 Amazons
	10.2 Konane
	10.3 Cross Purposes

	11. Perspectives on Part II
	12. Conclusions
	12.1 Contributions
	12.2 Future Work

	Appendices
	A. Survey of Games and Their Complexities
	A.1 Cellular Automata
	A.2 Games of Block Manipulation
	A.3 Games of Tokens on Graphs
	A.4 Peg-Jumping Games
	A.5 Connection Games
	A.6 Other Board Games
	A.7 Pencil Puzzles
	A.8 Formula Games
	A.9 Other Games
	A.10 Constraint Logic
	A.11 Open Problems

	B. Computational-Complexity Reference
	B.1 Basic Definitions
	B.2 Generalizations of Turing Machines
	B.3 Relationship of Complexity Classes
	B.4 List of Complexity Classes Used in this Book
	B.5 Formula Games

	C. Deterministic Constraint Logic Activation Sequences
	D. Constraint-Logic Quick Reference
	Bibliography

