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Preface

Over the past decade, there has been an obvious expansion in the exploration and
application of mathematical and computational origami. “Ted Talks,” documentaries
such as “Between the Folds,” and pioneers in computational origami such as Robert
Lang, Erik Demaine, Koryo Miura, and Tomohiro Tachi have shown us that the
principles of folding two-dimensional sheets into three-dimensional forms can lead
to both beautiful art and practical engineering solutions, often simultaneously. The
ability of origami-based designs to be relatively easily fabricated in two dimensions,
to enable deployment of large structures from small initial volumes, and to be
inherently reconfigurable has captured the attention and imagination of engineers
from across the world. As researchers in the nonlinear mechanics of active materials
and smart structures, we have ourselves been intrigued by the theoretical challenges
and implementation potential of folding structures since the topic first came to the
forefront of our national research conversation, where it is expected to remain for
some time.

This book represents our contribution to this growing field. Here we apply the
three pillars of solid mechanics (conservation laws, constitutive modeling, and most
especially kinematics) and combine them with our interest in structural design to
present a full theory for origami structures. As the fundamentals of traditional
origami theory (creased folds, flat foldability, etc.) have been well addressed in prior
works, we focus in particular on the folding of engineering materials, including
those having strain limitations and formed into sheets of finite thickness. We
consider elastic and shape memory materials and develop the mathematical relations
needed to design flat sheets for folding into arbitrary shapes and to model their full
mechanical response as they do so.

The book begins with an overview of recent applications and theoretical devel-
opments of origami. Since a primary contribution of this work is the modeling of
active origami structures having self-folding capabilities, a comprehensive survey
of materials that enable this behavior and of applications that take advantage of it is
presented. Toward the simulation of such applications, Chap. 2 begins the technical
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treatment by reviewing the kinematic modeling of origami structures having creased
folds. This allows for the establishment of a framework and especially notation that
will carry the reader through the remainder of the book.

The design of three-dimensional forms from two-dimensional reference sheets
is first addressed in Chap. 3, where the simplifications of unfolding polyhedra are
employed. Design methods are expanded in applicability in Chap. 4, where the more
general tuck-folding method of Tomohiro Tachi is developed for origami structures
with creased folds. The technical novelty of this body of work is truly initiated in
Chap. 5, where prior constraints associated with creased folds are eliminated, and a
kinematic theory for the strain sensitive (“smooth”) folding of engineering materials
is presented. The unfolding polyhedra method for creating three-dimensional forms
from two-dimensional sheets having smooth folds is presented in Chap. 6, and the
tuck-folding method is likewise expanded to consider smooth folds in Chap. 7.
Afterwards, we present the theory for the structural mechanics of origami sheets
with smooth folds in Chap. 8, which is applicable to structures comprised of
arbitrary materials (e.g., elastic materials, active materials). At the end of Chap. 8,
we integrate the design methods of Chaps. 6 and 7 with the mechanics of active
origami to develop a framework for the design of self-folding structures that morph
toward goal shapes under the application of nonmechanical stimuli (e.g., thermal,
chemical, electromagnetic).

Throughout the book, the reader is provided with clear development examples as
well as problems that assess understanding and challenge further thought. Perhaps
most importantly, the supplemental material includes the full MATLAB® scripts
that represent the implementation of mathematical theories derived in Chaps. 2–7.
The actual scripts used to generate the numeric and graphical results associated
with several examples in these chapters are provided. It is hoped that the curious
and motivated reader will use these tools to further advance the field of origami
engineering and the applications of active origami.

We expect the readership of this book to range from advanced undergraduate stu-
dents to experienced engineers and researchers with interest in origami engineering.
Chapter 1 is recommended for a general reader exclusively interested in learning
new developments and applications of origami engineering. An instructor interested
in developing a short course on modeling and applications of origami may start
with Chaps. 1 and 2, and perhaps extend to the design methods of Chaps. 3 and 4
if time allows. In particular, the problems at the end of Chap. 1 are suggested for
a course where students will get familiarized with concepts of origami and freely
available design and simulation tools for origami. Readers interested in simulating
their own fold patterns or generating origami designs are encouraged to directly
experiment with the codes provided in the Supplemental Materials and read their
associated descriptions in Appendix B, although we suggest the code users to
read the corresponding chapters to obtain higher understanding of the codes. We
recommend reading Chaps. 2–4 to students and engineers exclusively interested
in conventional origami with creased folds and its theory, numerical simulation
approaches, and design methods. Chapters 5 and 8 are recommended for advanced
students and engineers with interest in analyzing origami structures comprised of
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engineering materials. For students, engineers, and researchers with the goal of
advancing the field of computational origami, specially for applications that include
active materials, we recommend them to absorb the material of Chaps. 5–8.

The authors would like to gratefully acknowledge a number of individuals and
entities that have made this unified body of work possible. Our collaborators in
our research on active origami, and most especially Ergun Akleman and Richard
Malak, have contributed much to our thinking and progress. We appreciate the
positive comments of individuals such as Robert Lang and Glaucio Paulino as
they followed our developments over the past years. We would like to express our
sincere gratitude to Robert Lang, Jun Mitani, Ying Liu, Michael Dickey, Samuel
Felton, Tomohiro Tachi, Elliot Hawkes, David Gracias, Larry Howell, Milton Garza,
Beatriz Borges, and others for providing figures used in this book. The proofreading
help from Sameer Jape, Jacob Mingear, Pedro Leal, Patrick Walgren, Hannah
Stroud, William Scholten, Brent Bielefeldt, Gregory Wilson, and Jobin Joy is also
greatly appreciated. This monograph would not have been possible without the
help of undergraduate researchers Cullen Nauck and Trent White, who assisted in
the development of the Supplemental Materials. The joint support of the National
Science Foundation (NSF) and the Air Force Office of Scientific Research (AFOSR)
over the last 5 years with the Origami Design for Integration of Self-assembling
Systems for Engineering Innovation (ODISSEI) program enabled all of the authors’
efforts described herein, in addition to many of the other outside developments
reviewed in Chap. 1.

Origami engineering is an important topic with potentially many new applica-
tions yet to be developed. We hope that our efforts combined with the support of our
families and colleagues have allowed us to produce an important resource for those
looking to make advances in the theory and practice of this exciting field.

College Station, TX, USA Edwin A. Peraza Hernandez
March 2018 Darren J. Hartl

Dimitris C. Lagoudas



Contents

1 Introduction to Active Origami Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Origami Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Active Origami Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Active Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Review of Active Origami Structures . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Origami Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Simulation and Visualization of Origami Structures. . . . . . . . . . . . . . . . . . 30
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Kinematics of Origami Structures with Creased Folds . . . . . . . . . . . . . . . . . . 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3 Fold Pattern Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4 Kinematic Constraints for Origami with Creased Folds . . . . . . . . . . . . . . 69

2.4.1 Developability Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.2 Loop Closure Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5 Folding Map Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5.1 Parameters Required to Derive the Folding Map . . . . . . . . . . . . . 82
2.5.2 Folding Map Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.6 Computational Implementation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.7 Simulation Examples of the Kinematic Model. . . . . . . . . . . . . . . . . . . . . . . . 98
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3 Unfolding Polyhedra Method for the Design of Origami
Structures with Creased Folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.2 Unfolding Polyhedra Method Considering Creased Folds . . . . . . . . . . . 113

3.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



xii Contents

3.2.2 Goal Mesh Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.2.3 Determination of Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2.4 Formulation of the Unfolding Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2.5 Determination of Folding Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.2.6 Limitations of the Unfolding Polyhedra Method . . . . . . . . . . . . . 141

3.3 Examples of the Unfolding Polyhedra Method . . . . . . . . . . . . . . . . . . . . . . . 144
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4 Tuck-Folding Method for the Design of Origami Structures with
Creased Folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.2 Tuck-Folding Method Considering Creased Folds . . . . . . . . . . . . . . . . . . . 159

4.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2.2 Goal Mesh Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.2.3 Edge Module Parameterization and Constraints . . . . . . . . . . . . . . 164
4.2.4 Edge Module Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.2.5 Determination of Design Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.2.6 Determination of Folding Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.2.7 Design Requirements of the Tuck-Folding Method . . . . . . . . . . 181

4.3 Examples of the Tuck-Folding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5 Kinematics of Origami Structures with Smooth Folds . . . . . . . . . . . . . . . . . . 201
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.2 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.3 Shape Formulation of Smooth Folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.3.1 Continuity Conditions for Smooth Folds . . . . . . . . . . . . . . . . . . . . . 213
5.3.2 Fold Parameterization Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.4 Fold Pattern Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.5 Kinematic Constraints for Origami with Smooth Folds . . . . . . . . . . . . . . 225

5.5.1 Developability Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.5.2 Loop Closure Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.6 Folding Map Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
5.6.1 Parameters Required to Derive the Folding Map . . . . . . . . . . . . . 242
5.6.2 Folding Map Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

5.7 Computational Implementation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.8 Simulation Examples of the Kinematic Model. . . . . . . . . . . . . . . . . . . . . . . . 252
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266



Contents xiii

6 Unfolding Polyhedra Method for the Design of Origami
Structures with Smooth Folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
6.2 Unfolding Polyhedra Method Considering Smooth Folds. . . . . . . . . . . . 270

6.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
6.2.2 Face Trimming Step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6.3 Examples of the Unfolding Polyhedra Method . . . . . . . . . . . . . . . . . . . . . . . 278
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

7 Tuck-Folding Method for the Design of Origami Structures with
Smooth Folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.2 Tuck-Folding Method Considering Smooth Folds . . . . . . . . . . . . . . . . . . . . 294

7.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.2.2 Face Trimming Step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
7.2.3 Edge Module Parameterization and Constraints . . . . . . . . . . . . . . 300

7.3 Examples of the Tuck-Folding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.3.1 Design and Fabrication of Shape Memory Polymer

Self-Folding Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

8 Structural Mechanics and Design of Active Origami Structures . . . . . . . 331
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
8.2 Kinematics of Origami Structures with Smooth Folds

of Non-Zero Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
8.3 Structural Mechanics Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

8.3.1 Conservation of Linear and Angular Momentum . . . . . . . . . . . . 339
8.3.2 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
8.3.3 Boundary Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
8.3.4 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

8.4 Structural Mechanics Model Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
8.4.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
8.4.2 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

8.5 Examples of the Implemented Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
8.5.1 Examples of Structures Having One Fold. . . . . . . . . . . . . . . . . . . . . 354
8.5.2 Examples of Structures Having One Fold Intersection . . . . . . . 359
8.5.3 Examples of Structures Having Multiple Fold Intersections . 361
8.5.4 Computational Efficiency Comparison. . . . . . . . . . . . . . . . . . . . . . . . 363

8.6 Unfolding Polyhedra Method for the Design of Self-Folding
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365



xiv Contents

8.7 Tuck-Folding Method for the Design of Self-Folding Structures . . . . 378
8.7.1 Design of a Self-Folding Parabolic Antenna Using

the Tuck-Folding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Appendix A Notation and Useful Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
A.1 Vectors in Three-Dimensional Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
A.2 Vectors of Arbitrary Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
A.3 Matrices of Arbitrary Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
A.4 Block Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
A.5 Systems of Linear Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Appendix B Examples of Implementation Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
B.1 Implementation of the Kinematic Model for Origami with

Creased Folds (Chap. 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
B.2 Implementation of the Unfolding Polyhedra Method for

Origami with Creased Folds (Chap. 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
B.3 Implementation of the Tuck-Folding Method for Origami

with Creased Folds (Chap. 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
B.4 Implementation of the Kinematic Model for Origami with

Smooth Folds (Chap. 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
B.5 Implementation of the Unfolding Polyhedra Method for

Origami with Smooth Folds (Chap. 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
B.6 Implementation of the Tuck-Folding Method for Origami

with Smooth Folds (Chap. 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Appendix C Constitutive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
C.1 Linear Elastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
C.2 Thermoelastic Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
C.3 Piezoelectric Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
C.4 Phase Transforming Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463



List of Symbols

ai i = 1, 2, 3. Shape memory alloy model parameters associated with the
transformation hardening function
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C Fourth-order stiffness tensor
CA Stress influence coefficient of austenite
CEI Edge connectivity matrix
CF Fold connectivity matrix
CI Fold intersection connectivity matrix
CM Stress influence coefficient of martensite

xv



xvi List of Symbols

CM Mesh connectivity matrix
CNI Node connectivity matrix
CP Face connectivity matrix
CP Stiffness matrix for plane stress
C� Trim connectivity matrix
d Vector having components corresponding to the design variables
dj Translation constraint vector associated with the j th interior fold

intersection
d̃
jk
i i = 1, 2. Edge trim lengths associated with the kth edge of the j th

face in the goal mesh
d̂ imn m = 1, 2; n = 1, 2. Edge trim lengths associated with the ith edge

module
D Shape memory alloy model parameter associated with the stress

dependence of the critical thermodynamic force for transformation
ei i = 1, 2, 3. Orthonormal vectors that define the fixed global coordinate

system
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Chapter 1
Introduction to Active Origami
Structures

Abstract Origami, the ancient art of paper folding, has inspired the design and
functionality of engineering structures for decades. The underlying principles of
origami are very general, it takes two-dimensional components that are easy to
manufacture (sheets, plates, etc.) into three-dimensional structures. More recently,
researchers have become interested in the use of active materials that convert
various forms of energy into mechanical work to produce the desired folding
behavior in origami structures. Such structures are termed active origami structures
and are capable of folding and/or unfolding without the application of external
mechanical loads but rather by the stimulus provided by a non-mechanical field
(thermal, chemical, electromagnetic). This is advantageous for many areas including
aerospace systems, underwater robotics, and small scale devices. In this chapter, we
introduce the basic concepts and applications of origami structures in general and
then focus on the description and classification of active origami structures. We
finalize this chapter by reviewing existing design and simulation efforts applicable
to origami structures for engineering applications.

1.1 Origami Structures

Traditionally, the term origami has been primarily associated with the ancient art
of folding paper. Origami has the Japanese roots oru meaning folded, and kami
meaning paper [1, 2]. Its original purpose was not particularly utilitarian, but rather
recreational and artistic [3]. Origami was and remains the art of folding sheets
of paper into decorative and often intriguing shapes, either abstract in form or
representative of realistic objects. Figure 1.1 shows examples of paper origami.
These examples range from those that are relatively simple such as the Miura-
Ori and the three twisted boxes (Fig. 1.1a and b, respectively) to those of high
complexity such as the scorpion and mask (Fig. 1.1c and d, respectively). Currently,
the base materials for origami structures extend far beyond paper and include metals,
polymers, and other complex materials.

In origami, a goal shape is obtained from an initially planar sheet exclusively
through folding. In paper origami, folding is often obtained by creasing the paper

© Springer International Publishing AG, part of Springer Nature 2019
E. A. Peraza Hernandez et al., Active Origami,
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Fig. 1.1 Examples of paper origami: (a) Miura-Ori; (b) Three twisted boxes. Credit: Jun Mitani
(http://mitani.cs.tsukuba.ac.jp/ja/cp_download.html); (c) “Scorpion varileg.” Credit: Robert Lang
(http://www.langorigami.com/composition/scorpion-varileg-opus-379); (d) Mask. © 2010 IEEE.
Reprinted with permission from [4]

http://mitani.cs.tsukuba.ac.jp/ja/cp_download.html
http://www.langorigami.com/composition/scorpion-varileg-opus-379
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Fig. 1.2 Identification of folds (localized bent regions) and faces of a foldable cube and a foldable
pyramid. The folding motion of the cube and the pyramid is driven by shape memory polymer
(SMP) actuation triggered by heating through light absorption. Adapted from [5] with permission
of The Royal Society of Chemistry. Credit: Ying Liu and Michael Dickey

along straight line segments as shown in the examples of Fig. 1.1. For origami
structures having larger thickness than a sheet of paper or comprised of engineering
materials for which direct creasing is not possible or desirable, destructive scoring
and creasing might not be performed, and folding is instead obtained by bending
localized regions as shown in Fig. 1.2.

In any origami structure, we can identify two region types: the folds and the faces.
The faces correspond to the regions bounded by the folds and by the boundary of
the sheet. In Figs. 1.2 and 1.3, we indicate regions corresponding to folds and faces
for different origami structures. The layout of the folds in the planar configuration
of the sheet is termed the fold pattern. The fold patterns for the three twisted boxes,
the scorpion, and the mask are shown in Fig. 1.1b, c, and d, respectively.
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Fig. 1.3 Identification of folds (creases) and faces of a crane. The folding motion of this crane is
driven by SMP actuation. Adapted from [6] with permission of The Royal Society of Chemistry.
Credit: Samuel Felton
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Fig. 1.4 Demonstration of unfolding-based expansion of the Bigelow Expandable Activity Mod-
ule (BEAM). Credit: NASA TV (https://blogs.nasa.gov/spacestation/2016/05/28/beam-expanded-
to-full-size/)

Researchers discovered in the 1970s that an endless number of shapes could
in theory be mathematically attained using conventional origami (initially planar
shape with only folding allowed) [2]. These discoveries enabled new approaches
for manufacturing, assembling, and morphing of devices and structures based on
origami, which is evident from the increasing attention mathematicians, scientists,
and engineers have given to research on origami during the past decades [7–12].

Potential engineering advantages of origami structures include compact stor-
age/deployment capabilities (e.g., airbags [13, 14]), potential for reconfigurabil-
ity [15–22], and reduction of manufacturing complexity [23–28] (reduced part
counts and improved assembly using collapsible/deployable components). More-
over, origami has been utilized across scales through its applications ranging
from the nano- and micro-scales [29–34] to deployable aerospace structures at the
macro-scale [35–38]. For example, Fig. 1.4 shows the origami-inspired Bigelow
Expandable Activity Module (BEAM). As the BEAM is pressurized, the various
creases in the structure unfold until the structure reaches its full volume expanded
configuration. Another space application of origami is the design of deployable solar
arrays for spacecraft. Figure 1.5 shows a computational simulation of an origami-
based deployable solar array [39]. The solar array can be stowed in a compact folded
configuration for launch and then unfolded in space towards its maximum solar
panel area configuration.

https://blogs.nasa.gov/spacestation/2016/05/28/beam-expanded-to-full-size/
https://blogs.nasa.gov/spacestation/2016/05/28/beam-expanded-to-full-size/
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Fig. 1.5 Simulation of an origami-based deployable solar array for spacecraft applications.
Reproduced from [39] with permission of the American Society of Mechanical Engineers (ASME)

Origami has been used to develop foldable aerostructures [40–47]. Figure 1.6
shows an example of a self-deployable origami gliding wing that can be folded in a
compact form for storage [47]. Upon the release of the constraints maintaining the
structure in its compact form, the stored elastic energy in the structure allows for the
unfolding towards its gliding wing form without the need for actuation.

Origami has also inspired the manufacturing and design of robots [48–58]. Two
examples of applications of origami in robotics are shown in Figs. 1.7 and 1.8.
Figure 1.7 shows a robot fabricated using an origami-inspired technique whereby
the structure starts as a planar sheet with embedded electronics and shape memory
polymer (SMP) actuators, and then transforms under the application of heat into
a functional robot via folding driven by SMP actuation [59]. Figure 1.8 shows a
robot having origami wheels with variable size that are manipulated through internal
actuators that drive their foldable outer shape to collapse or expand [49, 60]. By
changing the size of the wheels, the robot can trade speed for the ability to move in
smaller spaces.
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Fig. 1.6 Elastic deployment of an origami gliding wing. Reproduced from [47] with permission
of the American Society of Mechanical Engineers (ASME)

Several biomedical devices are based on origami [61–67]. For example, Fig. 1.9
shows an origami stent fabricated from a shape memory alloy (SMA) foil having
several creases [61]. The deployment of any such stent can be achieved via the shape
memory effect activated by body temperature or by making use of the pseudoelastic
effect exhibited by SMAs [68].

Various shelters and similar architectural deployable structures have been
inspired by origami [69–75]. Figure 1.10 shows a prototype for a deployable
origami structure connecting the entrances of two buildings [75]. Howell and



8 1 Introduction to Active Origami Structures

Fig. 1.7 Self-assembly of a crawling robot through folding via thermally induced SMP actuation.
From [59]. Reprinted with permission of the American Association for the Advancement of
Science (AAAS). Credit: Samuel Felton

coworkers proposed an origami-inspired design for lightweight ballistic barriers
to protect law enforcement [76]. Figure 1.11 illustrates their design. The ballistic
barrier is comprised of twelve layers of Kevlar. The barrier can be compactly stowed
for transportation in a vehicle and rapidly deployed when required. The origami-
inspired bulletproof shield weights only 55 pounds, where most steel-based barriers
in current use weight approximately 100 pounds.

Engineering developments towards the practical fabrication of origami structures
at various scales have been proposed by Huang, Rogers, and coworkers [77–
79]. Their approach to fabricate three-dimensional origami structures consists of
attaching selected regions of a planar origami sheet to a pre-stretched elastomeric
substrate. The substrate undergoes in-plane shrinkage upon release of sheet/sub-
strate assembly, causing controlled compressible buckling of certain regions of
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Fig. 1.8 Robot with variable size origami wheels. The size of the origami wheels can be
manipulated through actuated folding and unfolding, allowing the robot to move in smaller
spaces if needed. Reproduced from [49] with permission of the American Society of Mechanical
Engineers (ASME)

the sheets (the folds) and forming the targeted goal configuration. Figure 1.12
shows various examples of origami structures fabricated via such an approach. The
structures in Fig. 1.12 are made of copper films having thickness of 30µm.

DNA nanotechnology is one of the newest areas where origami principles are
being applied [29]. In DNA origami, a long single thread of DNA, known as
the scaffold, is folded towards an arbitrary shape by short synthetic molecules
(oligonucleotides [30]), known as the staple strands. Each staple strand is designed
to adhere to a distinct location along the scaffold. The staple strands determine the
size and shape of the resulting compact structure. DNA origami has been employed
to study single-molecule chemical reactions and to organize several molecules such
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Fig. 1.9 Expansion of an SMA origami stent. Reprinted from [61], Copyright (2006), with
permission from Elsevier

as proteins, metal nanoparticles, and carbon nanotubes [31]. Detailed reviews on
DNA origami can be found in [30–32, 80].

Other applications of origami structures include: various space structures (e.g.,
solar panels, telescope lenses [81]), micro-mirrors [82], electronic components [83–
88], foldcore-based structures for enhanced mechanical properties and impact
resistance [89–99], crash boxes and other energy absorption systems [100–105],
metamaterials [106–116], microelectromechanical systems (MEMS) [18, 117–125],
and many others [7, 126, 127]. To keep up to date with the newest developments on
active origami structures, we refer the reader to the journals included in the bibli-
ography of this chapter. For more general publications of advancements in origami
theory and applications, the reader is referred to the proceedings of the International
Meetings of Origami Science, Mathematics, and Education (OSME) [128–131] and
the Journal of Mechanisms and Robotics.

As briefly mentioned at the beginning of the chapter, a key observable feature of
practical origami structures is the shape of their folds, which can be of hinge-type
or bending-type as illustrated in Fig. 1.13. Many origami structures such as those
folded from paper utilize hinge-type folds that are idealized as line segments on the
sheet that behave as rotational hinges (i.e., axes of panel rotation) during folding.
In this book, we denote these folds as creased folds. An example of an origami
structure with creased folds is shown in Figs. 1.1 and 1.3. In other cases, origami
structures may have significantly large thickness or be comprised of materials for
which creased folds are not desirable (since creasing may damage the materials
and reduce engineering performance), and folding is obtained by bending localized
regions. Such folds cannot be idealized as line segments in the sheet but rather
as bent regions of non-zero surface area. We denote these folds as smooth folds.
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Fig. 1.10 Prototype of a deployable origami structure connecting the entrances of two build-
ings [75]. Credit: Tomohiro Tachi
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Fig. 1.11 A deployable bulletproof origami shield [76]. Credit: Brigham Young University (BYU)
Photo and Larry Howell

Fig. 1.12 Results of computational and experimental studies of metallic origami structures at
the millimeter scale. The structures are folded via compressive buckling resulting from in-plane
shrinkage of a pre-stretched elastomeric substrate attached at selected regions of the sheets. The
planar precursors, optical images of the goal configurations, and finite element analysis (FEA)
simulations for ten samples are shown. The scale bars denote 4 mm. (a)–(c) Tables. (d) Windmill.
(e) Tent. (f) Altar. (g) Plane. (h) Asparagus pea. (i) Five-pointed star. (j) Soccer ball. Reprinted
from [77], Copyright (2016), with permission from Elsevier
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(Hinge-type)
Creased fold

(Bending-type)
Smooth fold

Zero fold surface area

Non-zero fold surface area

Fig. 1.13 Schematics of a sheet with a single creased fold and a sheet with a single smooth fold

An example of an origami structure with smooth folds is shown in Fig. 1.2. The
distinction between creased folds and smooth folds is critical in the development
of mathematical models and design methods for origami structures addressed in the
subsequent chapters.

1.2 Active Origami Structures

In many applications of origami, the folding motion of the origami structure is
driven by mechanical loads (forces and moments) applied externally. For example,
in recreational or artistic origami where goal shapes are obtained by folding paper,
the mechanical loads required to fold the paper are exerted by the fingers of the
artist. For certain engineering applications of origami, however, it is impractical
to externally apply the mechanical loads necessary to fold a given structure. This
is the case for remote applications (e.g., space structures, underwater robotics,
invasive biomedical devices) or structures at the nano- and micro-scales. In such
circumstances, self-folding capabilities are essential [132]. A self-folding structure
is one that has the capability of folding and/or unfolding without the external
application of targeted mechanical loads [132, 133].

One approach to the development of self-folding structures is to leverage the
use of active materials, which convert various forms of energy into mechanical
work [68], to generate the desired folding behavior [132, 134, 135]. Such structures
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are termed as active origami structures and are capable of folding and/or unfolding
without the application of external mechanical loads but rather by the stimuli of a
non-mechanical field (thermal, chemical, electromagnetic). We have already shown
active origami structures in Figs. 1.2, 1.3, 1.7, and 1.9. In Sect. 1.2.1, we provide
a brief description of the main active materials used in active origami structures.
We then review existing active origami structures classified by their activation field
(thermal, chemical, or electromagnetic) in Sect. 1.2.2.

1.2.1 Active Materials

As previously mentioned, active materials are those that convert various forms
of energy (thermal, chemical, electromagnetic) into mechanical work [68]. This
energy conversion is caused by the generation of inelastic strains and/or changes in
stiffness or other material properties triggered by a non-mechanical stimulus [136].
The mechanical response exhibited by active materials under the stimulus of a
non-mechanical field is typically one or more orders of magnitude larger than the
response resulting from conventional material behavior such as thermal expansion.

Here, we are specifically interested in active materials capable of providing the
mechanical response (i.e., forces/moments, displacements/rotations) necessary to
fold a given origami structure under the application of a non-mechanical field.
Extensive descriptions and mathematical models for various active materials are
beyond the scope of this chapter and we refer the curious reader to other sources for
such content [68, 137–140].

Active materials that provide mechanical response under thermal stimulus
include shape memory alloys (SMAs) and shape memory polymers (SMPs). We
also consider other thermomechanically coupled materials such as polymers that
exhibit relatively large thermal expansion or changes in their stiffness due to
changes in temperature. SMAs are metallic alloys that undergo solid-to-solid
phase transformations induced by temperature and/or stress changes and during
which they can recover seemingly permanent strains (≈5%). SMAs possess the
highest actuation energy density, which is the product of the actuation stress and
the actuation strain, among all active materials [68]. Thus, SMAs can provide
significant thermally induced deformations even if subject to large loads, which
is a characteristic desired for a robust active origami structure (such as the origami
stent shown in Fig. 1.9). SMPs are materials that also have the ability to thermally
recover seemingly permanent large deformations under moderate mechanical loads.
Although both SMPs and SMAs have the ability to recover apparently permanent
deformations, SMPs possess the ability to recover extensions up to ≈100% [141–
144]. Additionally, SMPs are inexpensive and lightweight as compared to SMAs;
however, SMPs typically have stiffness and strength values two to three orders of
magnitude lower than their metal counterparts. Considering these characteristics,
SMPs present a viable solution for applications in origami structures that demand
large deformations at reduced load levels (such as the foldable polyhedra and the
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crane shown in Figs. 1.2 and 1.3 that fold only under their own weight). It is also
noted that unlike SMAs, SMPs can only actuate once unless mechanical loads are
applied to reset their initial configuration.

Active materials that provide mechanical response under chemical stimuli
include polymers that exhibit swelling behavior when exposed to particular liquids
(e.g., hydrogel-based actuators [145, 146]). These materials can change their shape
(e.g., increase or decrease their volume) through absorption or desorption of liquids,
which mimics the hydromorphic movement of plants, for which deformations such
as bending are triggered by changes in the concentration of water in the cells
and tissues [145]. Active materials that exhibit swelling behavior when exposed to
particular liquids are ideal for origami applications in the biomedical field when the
activation solution corresponds to a body fluid. However, force/moment generation
capability is highly limited in these materials.

Examples of active materials that exhibit mechanical response under the appli-
cation of electromagnetic stimulus include dielectric elastomers and magnetoactive
elastomers. Dielectric elastomers are actually composites that are typically classi-
fied as electroactive polymers. They have the configuration of a capacitor, where an
elastomer lamina is placed between two electrodes [147]. When a voltage is applied,
the electrodes are drawn toward each other, the distance between the electrodes
decreases, and the incompressible elastomer expands in the plane of the electrodes.
Magnetoactive elastomers [148] are elastomeric materials containing magnetizable
components embedded during their fabrication process. Active origami structures
that make use of dielectric elastomers and magnetoactive elastomers can be folded
or unfolded at larger frequencies than those that are thermally or chemically
activated [149]. This is because temperature and species concentration typically
cannot be manipulated at higher frequencies, which is possible with electric and
magnetic fields.

1.2.2 Review of Active Origami Structures

Existing examples of active origami structures as classified according to the physical
field inducing their folding motion are described in this section. The reader is
provided with a systematic view of the state of the art in this important and evolving
area, with thermal, chemical, and electromagnetic field-activated origami structures
being presented. Tables 1.1, 1.2, 1.3 summarize the characteristics of the active
origami structures considered. Examples of each type are classified in terms of their
fold concept (creased or smooth; refer to Fig. 1.13), active material, characteristic
sheet thickness, and current or potential applications.
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Table 1.1 Examples of active origami structures folded via thermal stimuli

Fold type Active material
Characteristic
thickness (mm) Application References

Creased SMA 5.0E –1 Multi-purpose morphing
structures

[150, 151]

Creased SMA 5.0E –2 Stent [61, 152, 153]

Creased SMA 1.0E –1 Robotics [154, 155]

Creased SMA 1.0E0 Robotics [49, 60, 156]

Creased SMP 1.0E0 Multi-purpose morphing
structures

[6, 157–159]

Creased SMA 1.0E0 Lifting structure [160]

Creased/Smooth SMA 2.0E0 Flexible mobile devices [161]

Smooth SMP 5.0E –1 Novel fabrication meth-
ods

[162]

Smooth SMA 1.0E0 Multi-purpose morphing
structures

[163–166]

Smooth SMA 5.0E –1 Flexible mobile devices [167]

Smooth SMA 5.0E –1 Decorative paper struc-
tures

[168–170]

Smooth SMA 2.5E –2 Microgripper [171, 172]

Smooth SMP 2.5E –1 Multi-purpose morphing
structures

[5, 173, 174]

Smooth SMA/SMP 1.0E0 Multi-purpose morphing
structures

[175]

Smooth Polymera 1.0E –2 Multi-purpose morphing
structures

[176]

Smooth Polymerb 5.0E –3 Capture/release small
scale devices

[177, 178]

Smooth Polymerb 3.0E –1 Novel fabrication meth-
ods

[179]

Smooth Polymerb 5.0E –2 Folding actuators [180–182]

a Thermally induced changes in stiffness
b Thermal expansion

1.2.2.1 Thermally Activated Origami Structures

Table 1.1 provides a classification of various existing active origami structures that
are thermally activated. The design space for thermally activated origami structures
is large due to the various methods available for localized supply of heat that include
convection, Joule heating, induction heating [210, 211], radiation [212, 213], etc. It
is noted that various heating methods such as Joule heating and induction heating
rely on the transformation of electromagnetic to thermal energy at the system level
prior to the transformation of thermal to mechanical energy provided by the active
material. Although there are several ways to alter the temperature in a structure, the
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Table 1.2 Examples of active origami structures folded via chemical stimuli

Fold concept Active material
Characteristic
thickness (mm) Application References

Smooth Swelling polymer 2.0E –1 Multi-purpose morphing
structures

[183]

Smooth Swelling polymer 5.0E –4 Capture/release small
scale devices

[184–186]

Smooth Swelling polymer 5.0E –4 Microtubes [187–190]

Smooth Swelling polymer 1.0E –1 Multi-purpose morphing
structures

[191]

Smooth Swelling polymer 2.0E –2 Drug release device [192, 193]

Smooth Swelling polymer 5.0E –2 Micro-containers [194]

Smooth Swelling polymer 5.0E –3 Multi-purpose morphing
structures

[195]

Smooth Swelling polymer 5.0E –3 Capture/release small
scale devices

[196]

Smooth Polymer degradation 1.0E –2 Small scale grippers [197, 198]

Table 1.3 Examples of active origami structures folded via electromagnetic stimuli

Fold concept Active material
Characteristic
thickness (mm) Application References

Creased Dielectric elastomer 3.0E –1 Robotics [199]

Creased Electroactive polymer 2.0E –2 Robotics [200, 201]

Creased Magnetoactive elastomer 3.0E0 Multi-purpose
morphing
structures

[202–204]

Creased Magnetoactive elastomer 1.5E0 Bistable mecha-
nisms

[149, 205, 206]

Creased Magnetoactive elastomer 5.0E –1 Multi-purpose
morphing
structures

[207]

Smooth Dielectric elastomer 2.0E0 Flexible mobile
devices

[161]

Smooth Dielectric elastomer 1.0E0 Robotics [50]

Smooth Dielectric elastomer 5.0E –1 Multi-purpose
morphing
structures

[204, 208, 209]

diffusive nature of heat represents a design challenge requiring the consideration
of methods for controlling the spatial distribution of temperature over time, e.g.,
by adding thermal insulators to maintain high temperatures concentrated only in
localized regions of the self-folding structure.

At the macro-scale, thermally activated self-folding structures have been fabri-
cated mostly using SMAs and SMPs. Regarding SMAs, Rus and coworkers [150,
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Fig. 1.14 Examples of active origami structures having SMA-actuated hinges [150]. (a) Simu-
lation and experiment of a self-folding boat. (b) Experimental demonstration of a self-folding
airplane. The numbers in the lower right corner of the pictures indicate the elapsed time
(minutes:seconds). Reprinted from [150] with permission of the Proceedings of the National
Academy of Sciences (PNAS). Credit: Elliot Hawkes

151, 214] developed an active origami structure consisting of a single sheet having
repeated triangular tiles connected by hinges. The pattern of repeated triangular tiles
provides flexibility regarding the various shapes towards which the sheet can fold.
Thin SMA foils shape-set to a folded configuration were used to actuate the hinges.
Such a structure was successful in demonstrations of folding towards different
conventional origami shapes such as a boat and an airplane, shown in Fig. 1.14.
An and Rus provided a design and programming guide for active origami structures
of this kind [215].
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Active origami structures having creased folds that make use of the actuation
of torsional SMA wires have also been developed. An example is the origami
lifting structure shown in Fig. 1.15a [160]. Another kind of SMA-based active
origami structures makes use of the concept of massively foldable laminated
sheets [163, 165, 216–219]. The concept consists of a laminated composite with two
outer layers of SMA separated by a compliant and thermally insulating layer such
as an elastomer. The outer layers of the SMA may consist of thin pre-strained SMA
films [165, 220, 221] or meshes of pre-strained SMA wires [163, 222, 223]. It was
shown through finite element simulations that structures comprised of this laminate
are able to self-fold and form arbitrary three-dimensional structures [164]. An
experimental demonstration of such self-folding structures is shown in Fig. 1.15b.
Laminated composites having both SMA and SMP layers based on this concept
have also been investigated. Such a shape memory composite is capable of locking
in its folded shape upon a heating/cooling cycle [175].

Kuribayashi and coworkers [61, 152] addressed the design, manufacturing, and
characterization of a self-deployable origami stent. The stent is comprised of a
single SMA foil with pre-engineered folds. The deployment of this stent can be
achieved by using the shape memory effect activated at body temperature or by
making use of the pseudoelastic effect [68, 224]. It was demonstrated that the stent
design successfully deploys as expected as shown in Fig. 1.9. Such a prototype is a
valuable addition to the extensive list of existing and potential applications of SMAs
in the biomedical field [225–227].

Active origami structures using SMA actuation have also been used for paper
animation. Qi and coworkers [168, 169] used SMA wire actuators attached to
paper in order to self-fold towards different artistic paper shapes. This study on
SMA-actuated paper animation represents another contribution on the topic of
active materials-based artwork [228, 229]. Active origami structures can also be
potentially applied to other areas such as flexible display devices [230–236]. For
example, Roudaut and coworkers [161] and Gomes and coworkers [167] proposed
new flexible display designs for mobile devices that can alter their shape via fold-
like deformations driven by SMA actuation.

Of course, SMAs are not the only option for thermally activated origami
structures. Shape memory polymers [237] provide higher actuation strains at the
cost of lower stresses. One example of thermally activated self-folding with SMPs
is the work of Demaine and coworkers [6, 157] (see Fig. 1.3), who developed self-
folding hinges comprised of SMP, paper, and resistive circuits.

Light sources have been used to provide heat to thermally activated origami
structures based on the conversion of light to heat [238], where the thermal energy
is subsequently converted to mechanical work by the active material. Liu and
coworkers fabricated active origami structures that employ localized absorption
of light cast over a compositionally homogeneous sheet of SMP. The uniform
externally applied stimulus (i.e., diffuse light) generates a focused folding response
via localized absorptivity [5]. Their approach uses mass-produced materials without
the need for multiple fabrication steps, where the folded regions are defined by the
presence of black ink patterned via a printing process. Examples of such active
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Fig. 1.15 Examples of active origami structures having SMA-actuated folds. (a) Origami lifting
structure having hinge folds actuated via torsional SMA wires. Credit: Leo Wood and Jaime
Rendon Cavazos. (b) Self-folding laminated sheet consisting of two outer layers comprised of
SMA wire meshes separated by an insulating elastomer layer in which very smooth “folding” is
exhibited. Credit: Aaron Powledge, Katherine Frei, and Anchal Goyal

origami structures are shown in Fig. 1.2. The polymer regions located beneath black
inked areas heat faster than the areas elsewhere and eventually their temperature
increases beyond the activation temperature of the SMP. After such a temperature
is exceeded, these localized SMP regions actuate and the structure is folded. The
reference planar configuration can be recovered by increasing the temperature of
the entire sheet above the SMP activation temperature.



1.2 Active Origami Structures 21

There are various examples of thermally activated origami structures at the small
scales. For instance, Lee and coworkers designed a microgripper that uses SMA
actuation to open and close [171, 172]. The outer layers of the microgrippers
are comprised of deposited SMA films, which act as actuators. Applications for
the microgripper include assembling small parts for manufacturing, minimally
invasive tissue sampling, and remote handling of small particles in extreme envi-
ronments [171].

As another example of thermally activated origami structures at the small scales,
Gracias and coworkers fabricated self-folding structures at the micro-scale able to
perform sequential folding through heating of pre-stressed hinges using lasers [176].
Their hinges were comprised of Cr/Au-polymer bilayers. The polymer layer softens
under laser radiation and the bilayer bends due to existing pre-stress generated
during the bilayer fabrication process. Kalaitzidou and coworkers [177, 178]
also developed self-folding polymer-metal bilayer structures. Their self-folding
laminated composites were comprised of a polydimethysiloxane (PDMS [239, 240])
layer and a gold layer. The PDMS layer had a thickness of several micrometers
while the thickness of the gold layer was in the order of nanometers. Upon changes
in temperature, the bilayer folds or unfolds due to dissimilar thermal expansion
of the materials in the two layers. They also fabricated PDMS-silicon carbide
(SiC) bilayers with similar behavior to demonstrate that their approach can be
applied using any two materials with dissimilar thermal expansions. The ability
of the bilayers to capture, transport, and release different solids was demonstrated
indicating their potential application as delivery tubes [178].

1.2.2.2 Chemically Activated Origami Structures

Active origami structures driven by chemical stimulus have also been explored
by multiple researchers. Most of these structures are based on folds comprised of
laminated composites and utilize the degradation or swelling behavior of certain
polymers under the presence of specific substances, sometimes based on their pH
levels [241, 242] (see Fig. 1.16 for an example). Active origami structures driven
by chemical stimuli are classified in Table 1.2. Active origami structures that make
use of polymers exhibiting swelling behavior are able to act solely in liquid media,
which limits their applications. Nevertheless, such materials represent a viable
option in applications where other active materials such as thermally induced or
electromagnetically induced varieties may not be feasible or desirable.

The microtubes fabricated by Kumar and coworkers [187] are examples of active
origami structures folded through chemical stimulus. Kumar and coworkers consid-
ered a three-layer laminated composite comprised of PDMS, polystyrene (PS), and
poly(4-vinylpyridine) (P4 VP). The folding mechanism of the microtubes was based
on the different amount of swelling in their comprising polymer layers. Polystyrene
demonstrates minimal water uptake while P4 VP is less hydrophobic and swells in
acidic aqueous solutions [187]. A P4 VP layer increases its volume upon swelling
and, if fixed to a PS layer, will cause the polymer laminate to fold. Micro- and
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Fig. 1.16 Optical micrographs of an origami cube having hydrogel-actuated folds. Adapted
from [183] with permission of The Royal Society of Chemistry

nano-tubes fabricated through this method are promising for applications including
nano-syringes for intra-cellular surgery and nano-jet printing [243]. In another
work, Shim and coworkers [194] fabricated robust microcarriers using hydrogel
bilayers that exhibit reversible folding behavior. The bilayer composite consisted of
a layer of poly(2-hydroxyethyl methacrylate-co-acrylic acid) (p(HEMA-co-AA)),
and a layer of poly(2-hydroxyethyl methacrylate) (p(HEMA)). Planar structures
comprised of this laminated composite were able to fold towards micro-containers
by swelling of the p(HEMA-co-AA) layer triggered by changes in pH. A similar
approach was adopted by He and coworkers in the fabrication of an oral delivery
device [192]. The primary component of the device consisted of a finger-like
bilayer comprised of pH-sensitive hydrogel based on crosslinked poly(methacrylic
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Fig. 1.17 Optical micrographs of active origami structures having folds actuated through polymer
swelling. Adapted with permission from [195]. Copyright (2005) American Chemical Society

acid) (PMAA), which swells significantly when exposed to body fluids, and a
second non-swelling layer. Guan and coworkers [195] studied the magnitude of
folds achieved by a self-folding bilayer composite as a function of the active
layer composition [195]. Two different micro-scale structures comprised of such
a composite are shown in Fig. 1.17. In such studies, the active swelling layer was
prepared with a mixture of poly(ethylene glycol methacrylate) (PEGMA) and poly-
(ethylene glycol dimethacrylate) (PEGDMA). By controlling the ratio between the
two components of such an active layer, different folding magnitudes were achieved.

A self-folding gripper that opens and closes by the actuation of polymer
hinges was fabricated by Gracias and coworkers [197, 198]. The actuation of the
polymer hinges was triggered by their sensitivity to the presence of enzymes,
where they utilize two different polymers with two mutually exclusive enzyme
sensitivities. The two polymers were placed at hinges in such a way that bending in
opposite directions is activated given the appropriate stimulus. When one polymer
is selectively degraded by its associated enzyme, the gripper closes. When the other
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Fig. 1.18 Schematic of a self-folding microgripper that closes and reopens on exposure to
enzymes. The scale bars represent 200µm. Reproduced with permission from [197]. Copyright
(2010) American Chemical Society. Credit: David Gracias

polymer is degraded through the action of its own distinct enzyme, its respective
hinge bends and the gripper opens. This process is illustrated in Fig. 1.18.

1.2.2.3 Electromagnetically Activated Origami Structures

Examples of active origami structures driven by electromagnetic stimulus are
provided in Table 1.3. Frecker and coworkers [204, 208, 209] developed a bending
actuator that consisted of three layers: an active dielectric elastomer layer, a com-
pliant passive layer, and compliant electrodes. The same group has also developed
self-folding structures based on laminated composites having layers comprised of
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Fig. 1.19 Realization of a box and a square pyramid via self-folding using electroactive polymers.
Reprinted from [244], Copyright (2017), with permission from Elsevier

electroactive polymers as shown in Fig. 1.19 [244]. Self-folding structures with
dielectric elastomers were developed by Roudaut and coworkers for flexible mobile
device displays. Their concept considered bending of a flexible mobile device
through contraction and expansion of a dielectric elastomer actuator connected to
two sides of the device [161].

More complex electrically driven folding motion was demonstrated by Okuzaki
and coworkers, who created a biomorphic robot fabricated by folding a conducting
polymer film [200, 201]. The folding actuation was generated by electrically
induced changes in the stiffness of the polymer film. Okuzaki and coworkers
demonstrated the feasibility of the concept by fabricating different prototypes such
as an origami robot that moves rectilinearly with caterpillar-like motion. Such a
motion was achieved by repeated expansion and contraction of its accordion-like
body via folding/unfolding of electrically sensitive Polypyrrole (PPy [245, 246]).

Magnetoactive elastomers (MAEs [247]) have been investigated as actuators
for self-folding structures by von Lockette and coworkers [202–204, 248]. The
MAEs they considered were fabricated by mixing barium ferrite particles into a
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silicone rubber matrix. Composites consisting of PDMS sheets with MAE patches
were able to achieve locomotion under the application of a time-periodic magnetic
field. Additionally, this team fabricated a cross-shaped PDMS sheet with four MAE
patches on its sides that was shown to fold into a box, where translations and
rotations were induced by a magnetic field. However, it should be noted that in
this particular example, the MAE patches were used only for their ability to be
magnetized and then drawn toward directions dictated by the applied magnetic field
rather than for any intrinsic magneto-mechanical energy conversion. Bowen and
coworkers utilized such a MAE-based self-folding approach to develop bistable
origami mechanisms [149, 205, 206].

This review of active origami structures has demonstrated that the diversity in
geometry, mechanisms, materials, and complexity of designs for such structures is
large. Consequently, design and simulation methods for such structures are needed
for engineers to make new developments in this area. The following sections present
a review of efforts to enable design and simulation of origami structures that can be
applied to both active origami structures and those without self-folding capabilities.

1.3 Origami Design

To realize a useful origami structure, designers must consider several issues beyond
the choice of fold concept and material. The purpose of a design problem is to deter-
mine an engineered solution to fulfill one or more desired functions. For example,
designers might achieve a storage/deployment functionality for satellite solar panels
using an origami structure. Important considerations include determination of the
final folded shape (or shapes, in the case of a reconfigurable structure), identification
of a fold pattern that can achieve the desired shape(s), and scheduling of a folding
sequence that results in the desired shape(s). Designers must achieve all of these
subject to material failure constraints, applied energy and power limits, system-level
failure criteria, and requirements for interfacing the structure with other parts of
the system (e.g., mating points and surfaces). To this end, existing computer-aided
design (CAD) and finite element analysis (FEA) tools can be used directly or be
extended for use in the analysis and design of single folds. However, the challenges
of identifying fold patterns and folding sequences require unique tools and methods.
A review of the prior work on origami design methods in support of these design
activities is provided in this section.

Creating an origami structure having desired characteristics, particularly a
desired shape, is known as origami design [4]. Origami design is a challenge
encountered not only by origami artists but also by designers and engineers
who apply origami toward the solution of various engineering problems. Before
the extensive interest exhibited by the mathematics, science, and engineering
communities, most origami design was performed through trial and error or other
heuristic approaches based on the intuition of an artist or designer [249]. With
the increase in complexity of origami shapes and rising importance of design
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Fig. 1.20 Application of the tree method using TreeMaker (http://www.langorigami.com/article/
treemaker). (a) Tree graph for a scorpion. Each line segment corresponds to a flap; desired flap
lengths are assigned to each. (b) TreeMaker solves the equations corresponding to a packing of
“circles” (that represent leaves of the tree graph) and “rivers” (that represent branches of the graph).
Creases that overlay the circle/river packing are constructed. (c) The layer-ordering problem is
solved, which allows one to create an assignment of mountain (solid black), valley (dashed gray),
and unfolded (light gray) creases. TreeMaker also computes the silhouette of the desired base. (d)
The folded base, which includes all of the desired flaps at their specified lengths, and the finished
“Scorpion varileg,” after additional shaping folds. Credit: Robert Lang

constraints that characterize application development, theoretical and computational
approaches for origami design have become essential for developments in this area
of study [1, 132, 249]. Current methods for origami design generally consider
rigid faces and creased folds [10, 250], and although limited, they provide useful
preliminary options for addressing the design of more general origami structures.

One of the most well-known approaches for origami design is Lang’s tree
method [249, 251–253], which is illustrated in Fig. 1.20. This method has been
implemented in a software package named TreeMaker [254] and generates a pattern
of creased folds on a squared sheet that allows for the folding of the sheet into a
base, a folded shape whose projection to a plane is the tree line graph of the goal
shape. This planar tree line graph may have arbitrary edge lengths and topology.
After the base is folded, it is left to the designer to execute additional folds in order
to closely approximate the goal shape.

http://www.langorigami.com/article/treemaker
http://www.langorigami.com/article/treemaker
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Demaine and coworkers proposed an origami design method for goal shapes
represented as polygons or three-dimensional polyhedral surfaces [1, 255]. The
method is based on folding a sheet into a thin strip and then wrapping the strip
around the goal shape using creased folds. Various algorithms for wrapping the goal
shape were proposed [256], including one that uses any sheet area arbitrarily close
to the goal shape area and another that maximizes the width of the strip subject to
certain constraints.

Fuchi and coworkers [257] proposed an origami design method based on
topology optimization [258]. In their approach, the location of a predefined set of
fold lines is assumed; this given configuration is termed the “ground structure.” The
fold angles are the design variables. A topology optimization method is then used
in an iterative effort to find the optimal set of fold angles that, combined with the
ground structure, provide a targeted folded geometry.

A method for determining the geometry and pattern of creased folds associated
with a planar sheet that can fold towards a goal polyhedral surface is termed
unfolding polyhedra [1, 259–261]. An unfolding is defined as the flattening of a
goal polyhedral surface to a plane such that the surface becomes a planar polygon
having boundary segments that correspond to cuts made on the goal polyhedral
surface [1]. Generally, the unfolding must be a single simply connected polygon
having no overlaps and the cuts must be made on the edges of the goal polyhedral
surface. This method is addressed in detail in Chap. 3 for origami with creased folds
and in Chap. 6 for origami with smooth folds.

At the present time, the computational method for origami design applicable to
the widest range of goal shapes was introduced by Tachi in [4, 262]. Tachi presented
a method for obtaining a pattern of creased folds in a convex planar sheet that
folds into an arbitrary three-dimensional goal shape if represented as a polygonal
mesh [4, 262]. This method has been implemented in a software package named
Origamizer, which is illustrated in Fig. 1.21, and is based on the introduction of
regions having two rigid faces and three creased folds placed between any two faces
of the polygonal mesh connected by an interior edge. The creased folds are used
to tuck-fold such introduced regions to form the three-dimensional polygonal mesh
starting from a planar configuration [262]. This method has been proven successful
on goal polygonal meshes (convex and non-convex) of various complexities in terms
of number of faces and non-regular connectivity. Such a method is denoted in this
book as the tuck-folding method and is addressed in detail in Chap. 4 for origami
with creased folds and in Chap. 7 for origami with smooth folds.

There are a number of works addressing the design of three-dimensional origami
structures considering faces of non-zero thickness but assuming creased folds [75,
264–266]. Zirbel and coworkers [39, 267, 268] addressed the accommodation of
thickness in origami deployable arrays, motivated by the need to fold thick panels
that cannot bend during stowing or deployment (e.g., solar panels comprised of
brittle materials). In their work, they propose a method for the modification of fold
patterns originally intended for zero-thickness origami structures to accommodate
thick faces in the context of a deployable space structure, and they demonstrate
the applicability of their approach using a 1/20th scale prototype of a deployable
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Fig. 1.21 Graphical user interface of Origamizer showing patterns of creased folds generated for
two different goal shapes (left: goal shape, right: planar sheet with fold pattern). The Origamizer
software [4, 263] by Tomohiro Tachi was obtained from http://www.tsg.ne.jp/TT/software/

solar array for space applications. In another work, Ku and Demaine presented an
algorithm that transforms certain flat-foldable fold patterns assuming zero-thickness
faces into fold patterns with similar folded configurations but having non-zero
thickness faces [269, 270].

Although the preceding design methods (and more recent alternatives [10, 271–
277]) allow for the design of fold patterns for goal shapes of various complexities,
all assume only creased folds. Such a simplification may not be appropriate for
structures having non-negligible thickness or those constructed from materials
incapable of the strain magnitudes required for a creased idealization (e.g., metals,
glassy polymers, active materials).

Akleman and coworkers [164] proposed an extension of the previously described
unfolding polyhedra method for the consideration of smooth folds. Their main
contribution was the process for in-surface thickening of the folds, which are

http://www.tsg.ne.jp/TT/software/
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creased line folds in conventional unfolding polyhedra, to smooth folds having
non-zero surface area. An algorithm to subdivide each obtained unfolding into
smaller quadrilaterals and triangles to generate a finite element mesh that allows
for high-fidelity analysis of the folding (or self-folding) process was also presented.
The feasibility of such an origami design method was tested through simulation
of the SMA-driven self-folding behavior of the generated unfoldings towards their
associated polyhedral goal shapes [164]. In Chap. 8, we extend the ideas of [164]
to address the design of active origami structures having self-folding capabilities.
There, we propose extensions for the unfolding polyhedra method (Chap. 6) and the
tuck-folding method (Chap. 7) to consider folds having active material actuators.

1.4 Simulation and Visualization of Origami Structures

Understanding and modeling the kinematics of origami structures is an active
research topic investigated by various researchers exploring the simulation and
visualization of origami structures [250, 278–284]. Kinematic modeling and com-
putational simulation of origami structures [278, 285] permits understanding of
their deformation and the development of additional computational tools for their
design [286–288]. A kinematic model for origami structures must consider [1,
289, 290]: (i) The geometric definition of the sheet reference configuration and the
associated fold pattern, (ii) the description of allowable deformations for the sheet,
and (iii) the mapping between the reference and the current configurations of the
sheet. These aspects of kinematic modeling for origami structures are rigorously
addressed in Chaps. 2 and 5, while a brief literature review is presented in this
section.

Belcastro and Hull [289, 290] presented a model for origami that mathematically
represented creased folding deformations using affine transformations. In their
model, Belcastro and Hull proposed constraints for the fold angles to allow only
valid folded configurations. Tachi developed the Rigid Origami Simulator [278,
291] for the simulation of origami that also considers a set of constraints on the fold
angles analogous to those presented in [289, 290]. Figure 1.22 shows the folding
motion of an origami sheet simulated using the Rigid Origami Simulator. Applying
a similar approach, Tachi also developed Freeform Origami [292] for the simulation
and design of freeform origami structures represented as triangulated meshes [293].
Figure 1.23 shows the folding motion of an origami sheet simulated using Freeform
Origami. Also using a kinematic model based on affine transformations, Ida and
coworkers developed a software for interactive visualization and manipulation of
origami called Eos [279, 294–296].

Alternatively, structural truss representations [297–300] have been used for
kinematic modeling of origami, wherein the faces of the sheet are triangulated, each
fold and boundary edge end-point is represented by a truss joint, and each fold and
boundary edge is represented by a truss member. The configurations for which the
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Fig. 1.22 Simulation of an origami flasher using the Rigid Origami Simulator [278]: (a) Sheet
visualized in the Rigid Origami Simulator graphical user interface; (b) Various configurations
attained by the sheet. The Rigid Origami Simulator software [278] by Tomohiro Tachi was obtained
from http://www.tsg.ne.jp/TT/software/

displacements of the truss joints do not cause elongations of the truss members
represent valid configurations.

Modeling the mechanics of origami structures is important in the engineering
community and is especially applicable to the discussion of active origami in that
it explicitly provides information regarding design and operational constraints. It
accounts for the constitutive behavior of the materials that comprise the folding
structures and the influence of the external environment on the resulting folding
response. Modeling the structural mechanics of origami is needed for the develop-

http://www.tsg.ne.jp/TT/software/
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Fig. 1.23 Simulation of an origami sheet with the Yoshimura fold pattern using Freeform
Origami [293]: (a) Sheet visualized in the Freeform Origami graphical user interface; (b) Various
configurations attained by the sheet; (c) A user-modified Yoshimura pattern and its associated
folded form. The Freeform Origami software [293] by Tomohiro Tachi was obtained from http://
www.tsg.ne.jp/TT/software/

http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/
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ment of origami-based applications ranging from those of structures comprised of
passive materials [103, 110, 301–306] to the more complex structures having active
material actuation, which are reviewed in Sect. 1.2.

Schenk and Guest [297] proposed a model for origami structures with elastic
creased folds based on structural truss representations, where each fold or boundary
edge end-point is represented by a truss joint, and each fold and boundary edge is
represented by a truss member. Their model introduces torsional spring behavior
to represent the creased folds and their resistance to folding deformation. Qiu and
coworkers adopted such a modeling approach for the numerical analysis of origami
carton-type packages [307, 308] and their model was validated against experimental
data.

Existing FEA modeling approaches [309, 310] can be used directly or be
extended for high-fidelity simulation of origami structures. There are various advan-
tages provided by FEA approaches such as the capability of modeling structures
having arbitrary geometry, materials, and boundary conditions. Structural finite ele-
ments developed on the basis of plate and shell theories [311–313] provide an option
for modeling origami structures, which in general have geometries that are well rep-
resented as surfaces. Furthermore, available FEA software packages readily allow
for multi-physical simulation, which is needed when considering active self-folding
structures enabled by couplings between various physical fields. Origami structures
composed of passive materials exhibiting elastic and elasto-plastic behavior have
been previously studied using FEA. Examples include boxes [100, 101, 314] and
beams [304, 306, 315, 316] with pre-engineered fold patterns for energy absorption
in transportation systems, and lightweight foldcore composites for applications in
the aerospace field [303, 317].

Finite element analysis has more recently been applied to self-folding origami
structures comprised of various active materials [318]. For example, the folding
response of SMA/elastomer composite sheets has been explored using both con-
tinuum finite elements [163, 319] and shell structural elements [320]. Ahmed and
coworkers performed multi-physics simulation of origami structures actuated using
dielectric elastomers and MAEs [204]. The aforementioned examples demonstrate
the capabilities of FEA approaches to provide high-fidelity simulation of active
origami structures considering couplings among various physical fields (e.g.,
mechanical-thermal [163, 319] and mechanical-electrical-magnetic [204]).

Although FEA approaches provide significant advantages in terms of fidelity
and generality, they also have drawbacks when applied to the modeling of origami
structures. First, the mathematical insights provided in the classical approaches
of origami (e.g., geometric constructions [282]) are lost in the complexity and
generality of FEA. The kinematic variables associated with FEA models (e.g.,
displacements and/or virtual rotations at nodes in displacement-driven FEA) and
the very high number of degrees of freedom are not generally compatible with
those of conventional origami (e.g., fold angles defined, one per fold). Moreover,
FEA is not as computationally efficient as the alternatives, making it infeasible for
modeling origami structures having high complexity in terms of the number of folds
and/or the length of the folding sequence. In Chap. 8, we present a model for the
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structural mechanics of origami bodies that takes into account kinematic variables
compatible with those of conventional origami such as fold angles and that is also
computationally efficient.

Chapter Summary

This chapter introduced the main concepts and applications of origami structures
with focus on those having active material actuation, denoted here as active origami
structures. In Sect. 1.1, we presented the basic concepts and applications of origami
structures in general. It was observed that the folds in origami structures can be
either creased (hinge-type) or smooth (bending-type) as illustrated in Fig. 1.13. In
Sect. 1.2, we reviewed existing examples of active origami structures classified by
their activation field. Finally, we briefly reviewed current design and simulation
methods for origami structures in Sects. 1.3 and 1.4, respectively. For the remainder
of this book, we present in great detail models and design methods for origami
structures having both creased folds and smooth folds.

Problems

1.1 Refer to the origami flasher shown in Fig. 21 of [277]. Highlight the folds and
the faces in such a figure and determine the number of folds and faces in the origami
flasher.

1.2 Refer to the four active origami structures shown in Fig. 1 of [157]. Highlight
the folds and the faces of each structure shown in such a figure and determine the
number of folds and faces for each structure.

1.3 Refer to the active origami robots shown in Fig. 1 of [48]. Highlight the folds
and the faces of each structure shown in such a figure and determine the number of
folds and faces for each structure.

1.4 Summarize the physical mechanism(s) that allow the following active materials
to convert non-mechanical energy into mechanical work and list five of their
applications: (a) SMAs, (b) SMPs, (c) hydrogel-based actuators, (d) dielectric
elastomers, and (e) magnetoactive elastomers.

1.5 Using the Origamizer software by Tomohiro Tachi (http://www.tsg.ne.jp/TT/
software/), determine the fold pattern that can be used to fold a planar sheet towards
the shapes illustrated in Fig. 1.24

1.6 Using the Freeform Origami software by Tomohiro Tachi (http://www.tsg.ne.
jp/TT/software/), simulate the folding motion of origami sheets having the Miura-
Ori fold pattern and the waterbomb fold pattern (shown in Fig. 1.25). Also use

http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/


1.4 Simulation and Visualization of Origami Structures 35

Fig. 1.24 Goal shapes of a hyperbolic paraboloid and the Stanford bunny [321]. These goal shapes
can be obtained from the sample files of the Origamizer software [4, 263] by Tomohiro Tachi at
http://www.tsg.ne.jp/TT/software/

Freeform Origami to modify these fold patterns and to simulate the folding motion
of the origami sheets with the modified fold patterns.

1.7 Using the Rigid Origami Simulator by Tomohiro Tachi (http://www.tsg.ne.jp/
TT/software/), simulate the folding motion of the origami flasher shown in Fig. 1.22.
Also simulate the folding motion of other fold patterns available in the sample files
of the Rigid Origami Simulator

1.8 Using the TreeMaker software by Robert Lang (http://www.langorigami.com/
article/treemaker), determine the fold patterns for the tree line graphs of two insects
(your choice).

1.9 Refer to the active origami structures presented in [162]. Identify the following:
(a) the active material that drives the folding motion of such structures, (b) the
characteristic thickness of the active origami structures, and (c) the activation field
(e.g., thermal, chemical, electromagnetic) and the methodology used to alter such
an activation field.

1.10 Repeat Problem 1.9 considering the active origami structures presented
in [23].

1.11 Repeat Problem 1.9 considering the active origami structures presented
in [86].

1.12 Repeat Problem 1.9 considering the active origami structure presented in Fig.
1 of [322].

http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/
http://www.langorigami.com/article/treemaker
http://www.langorigami.com/article/treemaker
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Fig. 1.25 Origami sheets having the (a) Miura-Ori fold pattern and the (b) waterbomb fold
pattern. These fold patterns can be obtained from the sample files of the Freeform Origami software
by Tomohiro Tachi at http://www.tsg.ne.jp/TT/software/

1.13 Repeat Problem 1.9 considering the active origami structures presented
in [323].

1.14 Repeat Problem 1.9 considering the active origami structures presented
in [324].

http://www.tsg.ne.jp/TT/software/
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Chapter 2
Kinematics of Origami Structures
with Creased Folds

Abstract Having reviewed the existing and potential engineering applications of
active origami structures in Chap. 1, it is evident that such structures have significant
complexity in their geometry and motion. Therefore, mathematical models for
origami are needed to enable the development of advanced active origami structures.
The following assumptions generally apply to the development of mathematical
models for origami: folds are straight creases (termed as creased folds), and planar
faces bounded by the folds and the sheet boundary are rigid (i.e., these faces do
not stretch or bend). In this chapter, we present a kinematic model for origami
based on such assumptions. We also address the implementation of the model in
a computational environment.

2.1 Introduction

Traditionally, origami is known as the art of folding sheets of paper into decorative
and often intriguing shapes, either abstract in form or representative of realistic
objects (e.g., plants, animals) [1]. As reviewed in Chap. 1, origami is currently
being applied to the development of novel engineering structures comprised of
complex materials. Kinematic modeling of origami structures, which is the study of
their motion without considering their constituent materials or the physical stimuli
causing such a motion, is of high importance as it permits the understanding of the
complex deformation of origami structures and the development of computational
tools for their simulation [2–4]. Kinematic modeling of origami structures is also the
first step towards the full physical modeling of such structures. The reader is referred
to Sect. 1.4 for a review on previous efforts in kinematic modeling and simulation
of origami structures. In this chapter, we present a kinematic model for origami and
we also address the implementation of such a model in a computational framework.
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Fig. 2.1 Schematic of a simple origami airplane: (a) Planar reference configuration of the origami
sheet showing its various elements; (b) An intermediate configuration and the final configuration;
(c) Mountain-valley assignment

Throughout the development of the kinematic model presented in this chapter,
we examine the various elements that allow us to mathematically model the folding
motion of an origami structure such as the origami airplane shown in Fig. 2.1. In
such a figure, the final shape of the airplane is obtained from an initially planar
sheet exclusively through folding.
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The origami airplane in Fig. 2.1 illustrates the assumptions made in the kinematic
model for origami to be developed in this chapter. First, it is noted that the initial
configuration of the sheet shown in Fig. 2.1a, which is termed here as the reference
configuration, is a bounded planar surface that does not have overlaps. Second, it
is observed in Fig. 2.1a, b that the sheet is folded along straight creases, denoted
as creased folds. Third, the sheet regions bounded by the creased folds and the
sheet boundary, which are denoted as the faces, remain rigid during folding as
implicitly indicated in Fig. 2.1a, b (i.e., they do not stretch or bend). Models of
origami making these assumptions have been widely employed for the analysis of
deployable structures and mechanisms [5–26].

Figure 2.1 also illustrates concepts of origami that are extensively used through-
out this chapter. The line segments coincident with the creased folds in the
reference configuration are called fold lines, which are typically defined by their
end points, formally called vertices. The layout of the fold lines is known as the fold
pattern [27]. The fold pattern, along with the history of folding motion (Fig. 2.1b),
determine the final configuration of the sheet. A “mountain-valley” assignment such
as that shown in Fig. 2.1c is a useful schematic that indicates the folding direction
of each creased fold in the sheet. For mountain folds, faces on either side of the fold
line can be thought of as rotating into the page, while for valley folds they can be
thought of as rotating out of it.

The origami model to be presented in this chapter allows us to mathematically
describe the folding motion of origami sheets with creased folds having arbitrary
fold patterns. In Sect. 2.2, we formalize the concepts and assumptions previously
mentioned in this section and illustrated in Fig. 2.1. In Sect. 2.3, we provide the
mathematical description of the fold pattern in origami sheets with creased folds.
Subsequently, we address the fundamental constraints on the fold pattern and
folding motion of origami sheets in Sect. 2.4. The formulation of the mapping that
relates the reference configuration to any other configuration of an origami sheet
is examined in Sect. 2.5. The implementation of the model in a computational
framework is addressed in Sect. 2.6. Simulation results obtained using the imple-
mented model are provided in Sect. 2.7. To help clarify some of the more complex
aspects of the model, step-by-step examples are provided throughout the chapter.
Additionally, we review the mathematical notation, concepts, and formulas used
throughout the development of the kinematic model in Appendix A. Upon the study
of this chapter, the reader will be able to derive the kinematic model for origami
with creased folds presented here and to implement it in a computational framework.
The Supplemental Material associated with this chapter provides the reader with a
number of MATLAB® scripts that represent such an implementation.

2.2 Fundamental Concepts

Here, we address the fundamental concepts of origami with creased folds that are
used in the model presented in this chapter. The data required to define the fold
pattern such as the position of the vertices and their connectivity are assumed given.
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Fig. 2.2 Example of an origami crane: (a) Reference configuration S0, an intermediate configura-
tion Sti (0 < ti < tf ), and final configuration Stf ; (b) Mountain-valley assignment

We address two methods for the design of fold patterns to achieve goal shapes in
Chaps. 3 and 4.

Let us consider the example of an origami crane illustrated in Fig. 2.2a. The sheet
comprising the origami crane is mathematically described as a surface in three-
dimensional space. Such a sheet is a connected surface, which means that any two
points in the sheet can be joined by a path lying entirely in the sheet. The sheet also
has an outer closed boundary and thus it is a bounded surface (Fig. 2.2b). The sheet
is divided into various faces that are joined at straight edges corresponding to the
creased folds.

Figures 2.2a and 2.3a show different configurations of origami sheets during
their folding motion. We consider the folding motion of such origami sheets from
t = 0 to t = ttf where t ∈ [0, tf ] is a time parameter that tracks the history
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Fig. 2.3 Illustration of a sheet having a Miura-Ori fold pattern: (a) Reference configuration S0,
an intermediate configuration Sti (0 < ti < tf ), and final configuration Stf . The configuration of
each face at t = 0, ti , tf is indicated; (b) Mountain-valley assignment

of folding motion. In a given configuration, each point in the sheet is located at
some definite position in three-dimensional space R

3. The current configuration of
a sheet at any t is denoted St . The configurations of the faces comprising St are
denoted P1

t , . . . , PNP
t ⊂ St , where NP is the number of faces in the sheet (i.e.,

St = ⋃NP
i=1 P i

t ). This is illustrated in Fig. 2.3a.
To describe the position of the points in a configuration of the sheet, we introduce

the vectors e1, e2, e3 ∈ R
3 that form the natural basis {e1, e2, e3} of R3 (see Figs. 2.1,

2.2, and 2.3). These vectors are given as follows:

e1 =
⎡

⎣
1
0
0

⎤

⎦ , e2 =
⎡

⎣
0
1
0

⎤

⎦ , e3 =
⎡

⎣
0
0
1

⎤

⎦ . (2.1)

The initial configuration of the sheet at t = 0 is termed as the reference
configuration S0 and is assumed planar. As shown in Figs. 2.2a and 2.3a, the
reference configuration S0 is fully contained in the plane spanned by e1 and
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e2 and has no overlaps. Although certain applications that utilize origami do
not consider an initially planar configuration (e.g., [28–31]), the planar reference
configuration S0 assumed here is in agreement with most conventional origami
modeling approaches [32, 33] and is maintained for the sake of simplicity. The
side of S0 with normal vector e3 is selected as the positive side of the sheet. The
configuration of the sheet at t = tf is termed as the final configuration Stf .

In the kinematic model presented in this chapter, we are interested in configura-
tions having the following properties [32, 33]:

1. The faces have undergone only rigid deformations (i.e., they neither stretch nor
bend),

2. The sheet is not torn (initially joined faces remain joined), and
3. The sheet does not self-intersect.

A configuration that has the previous three properties is said to be a valid
configuration. The examples presented in Figs. 2.1, 2.2, and 2.3 show origami sheets
attaining valid configurations during their folding motion. As indicated in such
figures, the only non-rigid body deformations of an origami sheet are achieved by
rotating adjacent faces relative to one another along their connecting creased fold
such that the sheet is not torn and does not self-intersect during such deformations.
Thus, the configuration of an origami sheet is fully described by the only kinematic
variable associated with a creased fold, which describes the relative rotation between
the two faces that are joined by such a fold and is denoted as fold angle. The fold
angle θ̂i (t) is defined as π radians less the dihedral angle between the positive sides
of the two faces joined by the ith creased fold.

Schematics illustrating the concept of fold angle are provided in Fig. 2.4. We note
that each fold angle is a function of the time parameter t . Specifically, each fold
angle θ̂1(t), . . . , θ̂NF (t), where NF is the number of creased folds in the sheet, is
a continuous function with respect to the time parameter t since the motion of the
sheet must be continuous. For the remainder of this book, the dependence of θ̂i on t
is not shown explicitly to simplify notation.

Upon folding, valley folds attain fold angles greater than 0 while mountain folds
attain fold angles lower than 0 as shown in Fig. 2.4. To prevent self-intersection of
any pair of faces connected by a creased fold, the value of the associated fold angle
must be contained in the interval [−π, π ].

2.3 Fold Pattern Description

In this section, we examine the geometric description of the fold pattern,1 which
is the layout of the creased folds in the reference configuration S0 of an origami
sheet. We consider again the Miura-Ori sheet illustrated in Fig. 2.3 to help the reader

1Also referred to as crease pattern in the more restrictive context of origami with creased folds [27,
32, 33].
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Fig. 2.4 Schematics showing reference and current configurations of valley and mountain creased
folds and their adjacent faces. Refer to Figs. 2.1, 2.2, and 2.3 for mountain-valley assignments of
different origami sheets

visualize the concepts introduced in this section. The reference configuration S0 of
the Miura-Ori sheet is shown in more detail in Fig. 2.5. As previously stated, the
fold lines are the line segments coincident with the creased folds in S0. Each fold
line is defined by its end points, denoted as the vertices (Fig. 2.5a). Each vertex has
an associated position vector denoted vj ∈ span(e1, e2) (Fig. 2.5b).

Example 2.1 Position vectors of the vertices of the Miura-Ori sheet (Fig. 2.5).
Statement: Based on Fig. 2.5, provide the components of the position vectors of each
vertex in the Miura-Ori sheet.
Solution: The position vectors of the vertices v1, . . . , v5 for the Miura-Ori sheet
are given as follows:
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fold pattern would result, but the choice must be consistent throughout the various input parameters
required to define the fold pattern)

v1 =

⎡

⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎦ , v2 =

⎡

⎢
⎢
⎣

0
L
2

0

⎤

⎥
⎥
⎦ , v3 =

⎡

⎢
⎢
⎣

−L
2

− L
2 tan(β)

0

⎤

⎥
⎥
⎦ ,

v4 =

⎡

⎢
⎢
⎣

0

−L
2

0

⎤

⎥
⎥
⎦ , v5 =

⎡

⎢
⎢
⎣

L
2

− L
2 tan(β)

0

⎤

⎥
⎥
⎦ .

(2.2)
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The number of vertices located at the interior of S0 is denotedNI and the number
of vertices located at the boundary of S0 is denoted NB. For the Miura-Ori sheet
in Fig. 2.5, NI = 1 and NB = 4. We enumerate the vertices starting from those
located at the interior of S0 (with corresponding position vectors v1, . . . , vNI )
followed by those located at the boundary S0 (with corresponding position vectors
vNI+1, . . . , vNI+NB ). This convention is observed in the enumeration of the
vertices in Fig. 2.5a.

To identify which vertices are the start points and end points of each fold line
in the fold pattern, we introduce the fold connectivity matrix CF ∈ R

NF×2 with
components CF

ij defined as follows:

CF
i1 = Index of the vertex corresponding to the start point of the ith fold line,

CF
i2 = Index of the vertex corresponding to the end point of the ith fold line,

i = 1, . . . , NF . (2.3)

The choice for the start point and end point of a given fold line can be swapped
and the same fold pattern would result. However, such a choice must be consistent
throughout the various input parameters required to define the fold pattern, which
are presented subsequently in this section.

Example 2.2 Fold connectivity matrix for the Miura-Ori sheet (Fig. 2.5).
Statement: Based on Fig. 2.5, provide the fold connectivity matrix CF for the Miura-
Ori sheet.
Solution: The Miura-Ori sheet has four folds (i.e.,NF = 4); thus, its associated fold
connectivity matrix CF is a 4 × 2 matrix having components given as follows:

CF =

⎡

⎢
⎢
⎣

1 2
1 3
4 1
1 5

⎤

⎥
⎥
⎦ . (2.4)

Refer to Fig. 2.5c for the numbering of the folds.

Let v̂i1, v̂i2 ∈ span(e1, e2), i = 1, . . . , NF , be the position vectors of the
vertices from which each fold line in the sheet emanates and ends, respectively.
These vectors are determined from the fold connectivity matrix CF as follows
(recall the definition of the fold connectivity matrix in (2.3)):

v̂i1 = vC
F
i1 , v̂i2 = vC

F
i2 i = 1, . . . , NF . (2.5)

Let m̂1, . . . , m̂NF ∈ span(e1, e2) be the fold vectors, which are those along the
length of each fold line. These vectors are determined as follows (see Fig. 2.5d):

m̂i = v̂i2 − v̂i1 i = 1, . . . , NF . (2.6)
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Example 2.3 Fold parameters of the Miura-Ori sheet (Fig. 2.5).
Statement: Determine the position vectors of the start points and end points of the
folds lines and the fold vectors of the Miura-Ori sheet.
Solution: Using the position vectors v1, . . . , v5 from (2.2) and the fold connectivity
matrix CF from (2.4), we determine the position vectors of the start points and end
points of folds 1 and 2 of the Miura-Ori sheet via (2.5) as follows:

v̂11 = vC
F
11 = v1 =

⎡

⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎦ start point of fold 1,

v̂12 = vC
F
12 = v2 =

⎡

⎢
⎢
⎣

0
L
2

0

⎤

⎥
⎥
⎦ end point of fold 1,

v̂21 = vC
F
21 = v1 =

⎡

⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎦ start point of fold 2,

v̂22 = vC
F
22 = v3 =

⎡

⎢
⎢
⎣

−L
2

− L
2 tan(β)

0

⎤

⎥
⎥
⎦ end point of fold 2.

(2.7)

Similarly:

v̂31 = vC
F
31 = v4 =

⎡

⎢
⎢
⎣

0

−L
2

0

⎤

⎥
⎥
⎦ , v̂32 = vC

F
32 = v1 =

⎡

⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎦ ,

v̂41 = vC
F
41 = v1 =

⎡

⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎦ , v̂42 = vC

F
42 = v5 =

⎡

⎢
⎢
⎣

L
2

− L
2 tan(β)

0

⎤

⎥
⎥
⎦ .

(2.8)

The fold vectors m̂1, . . . , m̂4 are determined via (2.6) (refer to Fig. 2.5d):

m̂1 = v̂12 − v̂11 =

⎡

⎢
⎢
⎣

0
L
2

0

⎤

⎥
⎥
⎦ vector along the length of fold line 1,

m̂2 = v̂22 − v̂21 =

⎡

⎢
⎢
⎣

−L
2

− L
2 tan(β)

0

⎤

⎥
⎥
⎦ vector along the length of fold line 2.

(2.9)
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Fig. 2.6 Parameters associated with the interior fold intersection of the Miura-Ori sheet: (a)
Vectors m11, . . . ,m14 along the length of the fold lines incident to the interior fold intersection
and that emanate from the intersection; (b) Face corner angles α11, . . . , α14 around the interior
fold intersection

Similarly:

m̂3 = v̂32 − v̂31 =

⎡

⎢
⎢
⎣

0
L
2

0

⎤

⎥
⎥
⎦ , m̂4 = v̂42 − v̂41 =

⎡

⎢
⎢
⎣

L
2

− L
2 tan(β)

0

⎤

⎥
⎥
⎦ . (2.10)

Let n1, . . . , nNI be the number of fold lines incident to each interior fold
intersection of S0 (corresponding to the interior vertices having position vectors
v1, . . . , vNI ). Also, let mjk ∈ span(e1, e2), j = 1, . . . , NI , k = 1, . . . , nj ,
be the vector along the length of the kth fold line incident to the j th interior fold
intersection that emanates from such an intersection. The vectors m11, . . . ,m14

associated with the interior fold intersection of the Miura-Ori sheet shown in Fig. 2.5
are illustrated in Fig. 2.6a.

For the j th interior fold intersection, the associated vectors mj1, . . . , mjnj are
arranged in counterclockwise order (see Figs. 2.6 and 2.7). The fold intersection
connectivity matrix CI ∈ R

NI×max(nj ) is used for the identification and ordering
of the folds incident to the interior fold intersections and its components CI

jk are
defined as follows:
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Fig. 2.7 Schematic showing faces and folds connected to an interior fold intersection and their
associated geometric parameters. The overall domain S0 has 11 interior vertices and 8 boundary
vertices (NI = 11, NB = 8)

CI
jk = Index of the kth fold line incident to the j th interior fold intersection

(multiplied by −1 if the fold line ends at the interior fold intersection),

j = 1, . . . , NI , k = 1, . . . nj .
(2.11)

The mapping from the fold vectors m̂1, . . . , m̂NF (see (2.6)) to the vectors
mj1, . . . , mjnj , j = 1, . . . , NI , is given as follows:

mjk =

⎧
⎪⎨

⎪⎩

m̂CI
jk ; CI

jk > 0

−m̂|CI
jk |; CI

jk < 0,
j = 1, . . . , NI , k = 1, . . . , nj . (2.12)

Note that mjk has the opposite direction of its associated fold vector m̂|CI
jk | if

CI
jk < 0. This is applied such that the vectors mjk always emanate from the interior

fold intersection (since CI
jk < 0 if the considered fold line ends at the interior fold

intersection, recall the definition of CI in (2.11)).
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Let us define ϕ(y, z) as the angle from a vector z ∈ span(e1, e2) to a vector
y ∈ span(e1, e2) that is determined as follows2:

ϕ(y, z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos−1
(

y · z
‖y‖‖z‖

)

; (e3 × z) · y ≥ 0

2π − cos−1
(

y · z
‖y‖‖z‖

)

; (e3 × z) · y < 0.

(2.13)

To simplify the notation, if only one argument is provided in the function ϕ, it is
implicitly assumed that z = e1 (i.e., ϕ(y) = ϕ(y, e1)).

The face corner angles surrounding each interior fold intersection are denoted as
αj1, . . . , αjnj , j = 1, . . . , NI , and are calculated as follows (see Fig. 2.7):

αjk =
⎧
⎨

⎩

ϕ(mj k+1,mjk); k = 1, . . . , nj − 1

ϕ(mj1,mjk); k = nj .
(2.14)

The face corner angles α11, . . . , α14 surrounding the interior fold intersection of
the Miura-Ori sheet are shown in Fig. 2.6b.

Example 2.4 Fold intersection parameters for the Miura-Ori sheet (Figs. 2.5
and 2.6).
Statement: Provide the fold intersection connectivity matrix CI for the Miura-Ori
sheet shown in Figs. 2.5 and 2.6. Then, determine the vectors m11, . . . , m14 and
the face corner angles α11, . . . , α14.
Solution: The fold intersection connectivity matrix CI for the Miura-Ori sheet is a
1 × 4 matrix with components given as follows:

CI = [
1 2 −3 4

]
. (2.15)

Using the fold vectors m̂1, . . . , m̂4 determined in Example 2.3, the vectors
m11, . . . , m14 are determined via (2.12) as follows (refer to Fig. 2.6a):

2‖ · ‖ denotes the 2-norm, i.e. ‖y‖ = (y · y)
1
2 .



68 2 Kinematics of Origami Structures with Creased Folds

m11 = m̂CI
11 = m̂1 =

⎡

⎢
⎢
⎣

0
L
2

0

⎤

⎥
⎥
⎦ ,

m12 = m̂CI
12 = m̂2 =

⎡

⎢
⎢
⎣

−L
2

− L
2 tan(β)

0

⎤

⎥
⎥
⎦ ,

m13 = −m̂
∣
∣CI

13

∣
∣ = −m̂|−3| = −m̂3 = −

⎡

⎢
⎢
⎣

0
L
2

0

⎤

⎥
⎥
⎦ ,

m14 = m̂CI
14 = m̂4 =

⎡

⎢
⎢
⎣

L
2

− L
2 tan(β)

0

⎤

⎥
⎥
⎦ .

(2.16)

The face corner angles α11, . . . , α14 are determined using (2.14) (refer to
Fig. 2.6b):

α11 = ϕ
(
m12,m11

) = π − β, α12 = ϕ
(
m13,m12

) = β,

α13 = ϕ
(
m14,m13

) = β, α14 = ϕ
(
m11,m14

) = π − β.

(2.17)

We summarize the input and calculated parameters required to define the fold
pattern of an origami sheet with creased folds in Tables 2.1 and 2.2.

Table 2.1 Input parameters
required to define the fold
pattern of an origami sheet
with creased folds

Parameter Definition

Position vectors of the vertices v1, . . . , vNI+NB

Fold connectivity matrix CF (2.3)

Fold intersection connectivity matrix CI (2.11)

Table 2.2 Calculated parameters required to define the fold pattern of an origami sheet with
creased folds

Parameter Equation

Fold line start points v̂11, . . . , v̂NF 1 (2.5)

Fold line end points v̂12, . . . , v̂NF 2 (2.5)

Fold vectors m̂1, . . . , m̂NF (2.6)

Vectors along fold lines incident to interior fold intersections mj1, . . . , mjnj ,
j = 1, . . . , NI

(2.12)

Face corner angles αj1, . . . , αjnj , j = 1, . . . , NI (2.14)
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2.4 Kinematic Constraints for Origami with Creased Folds

In this section, we describe the fundamental kinematic constraints for origami with
creased folds. These are the developability constraint (Sect. 2.4.1) and the loop
closure constraint (Sect. 2.4.2).

2.4.1 Developability Constraint

After the geometry of the fold pattern is defined, constraints on the fold kinematic
variables (corresponding to the fold angles for creased folds) are formulated such
that every current configuration attained by an origami sheet is valid according
to Sect. 2.2.3 In addition to constraints allowing for valid configurations (to be
addressed in Sect. 2.4.2), the condition of developability [34] is also conventionally
imposed in origami.

A developable surface has zero Gaussian curvature everywhere [35]. Developa-
bility allows a surface to be flattened onto a plane without stretching or overlapping.
Since valid configurations of the sheet consist of planar faces joined at straight
creased folds, the only locations where the Gaussian curvature is non-trivially
zero is at the singular points corresponding to the interior fold intersections. The
conventional differential geometry definition of Gaussian curvature as the product
of the two principal curvatures is not applicable at such singular interior fold
intersections [36] and therefore the discrete Gaussian curvature, denoted Kj , is
considered [36–38]. It is given as 2π radians less the sum of the face corner angles
surrounding each interior fold intersection [39]. For any interior fold intersection in
the sheet, the discrete Gaussian curvature must be zero for it to be developable:

Kj = 2π −
nj∑

k=1

αjk = 0 j = 1, . . . , NI , (2.18)

where the face corner angles αjk are calculated using (2.14). In the model presented
in this chapter, the face corner angles αjk are defined in the reference configuration
S0, which is planar and free of face overlaps. Thus, these angles sum to 2π for
each interior fold intersection and the developability constraint (2.18) is satisfied in
S0. No further consideration of this constraint is required because the face corner
angles are constant during the motion of the sheet (since the faces undergo only rigid

3Self-intersection avoidance is an essential restriction in origami as stated in Sect. 2.2. It remains
an open problem to provide rigorous mathematical constraints on fold angles that would allow for
general three-dimensional folded configurations free of self-intersection [27, 33]. This restriction
is thus not considered.
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deformations for valid configurations) and thus they hold their associated values αjk
as defined in S0.

Example 2.5 Developability of the Miura-Ori sheet (Fig. 2.6).
Statement: Verify that the developability constraint is satisfied for the Miura-Ori
sheet shown in Fig. 2.6.
Solution: We substitute the face corner angles α11, . . . , α14 determined in (2.17)
into the developability constraint (2.18):

Kj = 2π −
nj∑

k=1

αjk

= 2π − (α11 + α12 + α13 + α14)

= 2π − (
(π − β)+ β + β + (π − β)

)

= 2π − 2π = 0.

(2.19)

Thus, the developability constraint (2.18) is satisfied for the Miura-Ori sheet.

2.4.2 Loop Closure Constraint

Following the process presented by Belcastro and Hull in [32, 33] to formulate
constraints on the fold angles allowing for valid configurations, the mapping from
the reference to current configurations considering only the faces adjacent to an
interior fold intersection is first derived. This represents a kind of “local” case, in
which only the faces adjacent to a particular interior fold intersection of a more
complex fold pattern are examined [32, 33]. The goal is to determine the constraints
that allow any such set of faces to attain valid configurations.

The fold angle associated with the kth fold incident to the j th interior fold
intersection is denoted θjk , j = 1, . . . , NI , k = 1, . . . , nj . The mapping from
all the fold angles in the sheet (θ̂1, . . . , θ̂NF ; see Sect. 2.2) to the fold angles of
only the folds incident to the j th interior fold intersection (θj1, . . . , θjnj ) is given
as follows:

θjk = θ̂∣∣CI
jk

∣
∣ j = 1, . . . , NI , k = 1, . . . , nj , (2.20)

where components of the fold intersection connectivity matrix CI are defined in
(2.11).

Let γ j (η) : [0, 1] → S0 be an arbitrary simple closed path enclosing the j th
interior fold intersection and crossing each of its incident folds once as illustrated in
Fig. 2.8. The point having position γ j (0) = γ j (1) is defined such that it is located
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Fig. 2.8 Path γ j (η) crossing
the creased folds incident to
the j th interior fold
intersection

e1

e2

vj

γ
j (η

)

e1

e2
e3

X

e1

e2
e3

x

S0 St

Fixed 
face 

Fig. 2.9 Position vector X of a point in the reference configuration S0 and position vector x of the
same point in a current configuration St

at the face adjacent to the creased folds with corresponding vectors mj1 and mjnj .
Also, the path γ j (η) is defined such that it crosses the creased folds with associated
vectors mjk in counterclockwise order (i.e., mj1,mj2, . . . , mjnj ). The following
assumptions are made to simplify the derivation of kinematic constraints for the case
of a single interior fold intersection: (1) the vertex at the fold intersection is assumed
to be located at the origin and (2) the face containing the point with position γ j (0)
is assumed fixed in space (not translating or rotating).

Let X ∈ span(e1, e2) be the position vector of a point in a face in the reference
configuration S0 and let x ∈ R

3 be the position vector of the same point in a current
configuration St . This is illustrated in Fig. 2.9.

To define the mapping between reference and current configurations of the faces
crossed by the path γ j (η) (i.e., the map X �→ x), we must define certain rotation
matrices first. Let R1(φ) ∈ R

3×3 be the transformation matrix associated with a
rotation by φ radians about an axis of rotation aligned to e1:
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R1(φ) =

⎡

⎢
⎢
⎣

1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

⎤

⎥
⎥
⎦ , (2.21)

and R3(φ) ∈ R
3×3 be the transformation matrix associated with a rotation by φ

radians about an axis of rotation aligned to e3:

R3(φ) =

⎡

⎢
⎢
⎣

cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

⎤

⎥
⎥
⎦ . (2.22)

Considering an axis aligned with a vector y ∈ span(e1, e2), the transformation
associated with a rotation by φ about such an axis can be represented as follows [32,
33] (recall the definition of ϕ(·) in (2.13)):

R3(ϕ(y))R1(φ)R−1
3 (ϕ(y)). (2.23)

In this transformation, the axis of rotation aligned with vector y is first aligned to
e1 via the rotation matrix R−1

3 (ϕ(y)). Then, a rotation of φ about e1 is performed via
the rotation matrix R1(φ). Finally, the axis of rotation is aligned back to its original
orientation through the rotation matrix R3(ϕ(y)).

Example 2.6 Matrix associated with a rotation about an axis aligned with y =
[ 1 1 0]	.
Statement: Determine the transformation matrix associated with a rotation of φ
about an axis aligned with y = [ 1 1 0]	.
Solution: We can derive the transformation matrix associated with such a rotation
using (2.23):

R3(ϕ(y))R1(φ)R−1
3 (ϕ(y)) = R3(

π
4 )R1(φ)R−1

3 (π4 ), (2.24)

where R3(
π
4 ) is determined using (2.22):

R3(
π
4 ) =

⎡

⎢
⎢
⎣

21/2

2 − 21/2

2 0

21/2

2
21/2

2 0

0 0 1

⎤

⎥
⎥
⎦ . (2.25)

Substituting (2.25) into (2.24), we determine the explicit form of the transforma-
tion matrix associated with a rotation of φ about an axis aligned with y = [ 1 1 0]	:
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mjk

e1

e2

e1

e2

(a) (b) 

(c) mjk

e1

e2 ϕ( )

θjk

γ j( )

Fig. 2.10 (a) Path γ j (η) crossing the creased folds incident an interior fold intersection. (b)
Vector mjk along the kth fold crossed by γ j (η). (c) Transformation described by (2.27): Rotation
of θjk about an axis of rotation aligned to mjk

R3(
π
4 )R1(φ)R−1

3 (π4 ) =

⎡

⎢
⎢
⎢
⎣

1
2 + 1

2 cos(φ) 1
2 − 1

2 cos(φ) 21/2

2 sin(φ)

1
2 − 1

2 cos(φ) 1
2 + 1

2 cos(φ) − 21/2

2 sin(φ)

− 21/2

2 sin(φ) 21/2

2 sin(φ) cos(φ)

⎤

⎥
⎥
⎥
⎦
.

(2.26)

We can use (2.23) to represent the transformation associated with folding a
creased fold. The transformation representing the deformation associated with the
folding of the kth creased fold crossed by the path γ j (η) can be described as a
rotation of θjk about an axis of rotation aligned to mjk as follows (refer to Fig. 2.10):

R3(ϕ(mjk))R1(θjk)R−1
3 (ϕ(mjk)). (2.27)

The mapping X �→ x is constructed as the composition of such transformations
associated with the folds crossed by the segment of path γ j (η) that connects γ j (0)
to the face containing the point with initial position X:
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Fixed 
face 

e1

e2

P1
0P2

0

P3
0 P4

0

m11

m12

m13

m14β π − β

β

Fig. 2.11 Schematic for Example 2.7 corresponding to a Miura-Ori unit cell

x =
( nγ∏

k=1

R3(ϕ(mjk))R1(θjk)R−1
3 (ϕ(mjk))

)

X, (2.28)

where nγ is the number of folds crossed by the segment of the path γ j (η) connecting
γ j (0) and the face containing the point with position vector X. Note that x is
the position vector of such a point in a current configuration fully determined by
θj1 . . . , θjnj .

Example 2.7 Determining the mapping between reference and current configura-
tions of a Miura-Ori sheet.
Statement: Considering the fold pattern presented in Fig. 2.11 (a unit cell in a
Miura-Ori tessellation), determine the mapping between reference and current
configurations in the form of (2.28) for each face shown in the figure.
Solution: From the schematic in Fig. 2.11, the angles ϕ(m11), ϕ(m12), ϕ(m13),
ϕ(m14) are given as: ϕ(m11) = π−β, ϕ(m12) = π , ϕ(m13) = π+β, ϕ(m14) = 0.
The transformation matrices in the form of (2.27) associated with each of the folds
in Fig. 2.11 can be given as:

Fold between P1
0 and P2

0 : R3(π − β)R1(θ11)R−1
3 (π − β),

Fold between P2
0 and P3

0 : R3(π)R1(θ12)R−1
3 (π),

Fold between P3
0 and P4

0 : R3(π + β)R1(θ13)R−1
3 (π + β),

Fold between P4
0 and P1

0 : R3(0)R1(θ14)R−1
3 (0).

(2.29)

Therefore, the mappings in the form of (2.28) are determined as follows for
X ∈ P2

0 :
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x =
(

1∏

k=1

R3(ϕ(mjk))R1(θjk)R−1
3 (ϕ(mjk))

)

X

= R3(π − β)R1(θ11)R−1
3 (π − β)X,

(2.30)

for X ∈ P3
0 :

x =
(

2∏

k=1

R3(ϕ(mjk))R1(θjk)R−1
3 (ϕ(mjk))

)

X

= R3(π − β)R1(θ11)R−1
3 (π − β)

× R3(π)R1(θ12)R−1
3 (π)X

= R3(π − β)R1(θ11)R3(β)R1(θ12)R−1
3 (π)X,

(2.31)

for X ∈ P4
0 :

x =
(

3∏

k=1

R3(ϕ(mjk))R1(θjk)R−1
3 (ϕ(mjk))

)

X

= R3(π − β)R1(θ11)R−1
3 (π − β)

× R3(π)R1(θ12)R−1
3 (π)

× R3(π + β)R1(θ13)R−1
3 (π + β)X

= R3(π − β)R1(θ11)R3(β)R1(θ12)

× R3(β)R1(θ13)R3(π − β)X,

(2.32)

and for X ∈ P1
0 :

x =
(

4∏

k=1

R3(ϕ(mjk))R1(θjk)R−1
3 (ϕ(mjk))

)

X

= R3(π − β)R1(θ11)R−1
3 (π − β)

× R3(π)R1(θ12)R−1
3 (π)

× R3(π + β)R1(θ13)R−1
3 (π + β)

× R3(0)R1(θ14)R−1
3 (0)X

= R3(π − β)R1(θ11)R3(β)R1(θ12)

× R3(β)R1(θ13)R3(π − β)R1(θ14)X.

(2.33)
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As observed in (2.33), the mapping of the position vector for a point in P1
0 can

be expressed as a function of the fold angles θ11, θ12, θ13, and θ14. However, it is
specified here that points in P1

0 remain fixed upon folding (i.e., x = X for X ∈ P1
0 ).

Therefore, the fold angles θ11, θ12, θ13, and θ14 are not independent from one another
and certain constraints must hold to ensure that points in P1

0 are fixed. It is observed
that x = X for X ∈ P1

0 when the product of the rotation matrices multiplying X
in (2.33) is equal to the identity matrix. Thus, the fold angles θ11, θ12, θ13, and
θ14 for the Miura-Ori unit cell shown in Fig. 2.11 must be subject to the following
constraint:

I3 = R3(π − β)R1(θ11)R3(β)R1(θ12)

× R3(β)R1(θ13)R3(π − β)R1(θ14),
(2.34)

where In denotes the identity matrix in R
n×n. If the constraint in (2.34) does

not hold, the mapping between reference and current configurations would not be
spatially continuous. For instance, the mapping of the points at the edge of P1

0
corresponding to the crease between P1

0 and P4
0 (highlighted in Fig. 2.12a) could

be given as x = X (since it is specified that points in P1
0 are fixed) or through (2.33),

which does not result in x = X if the constraint in (2.34) is not satisfied. In that
case where (2.34) is not satisfied, the sheet will be torn at such an edge in a current
configuration as shown in Fig. 2.12c and thus it would not be a valid configuration
(see Sect. 2.2).

This same approach used to determine the constraints on the fold angles for the
Miura-Ori unit cell in (2.34) is likewise used to determine constraints on the fold
angles for any general interior fold intersection with an arbitrary number of incident
creased folds.

As noted in Example 2.7, to prevent tearing between the faces joined to the
j th interior fold intersection (i.e., to allow the mapping between reference and
current configurations in (2.28) to be spatially continuous), a constraint on the fold
angles θj1 . . . , θjnj must be imposed. Such a constraint is derived by noting that the
mapping between reference and current configurations formulated in (2.28) must
result in x = X for any point in the fixed face (i.e., if we substitute nγ = 0 or
nγ = nj in (2.28), then x = X). This requires the following:

nj∏

k=1

R3(ϕ(mjk))R1(θjk)R
−1
3 (ϕ(mjk)) = I3. (2.35)

We can simplify (2.35) by noting that:

I3 =
nj∏

k=1

R3(ϕ(mjk))R1(θjk)R
−1
3 (ϕ(mjk))

= R3(ϕ(mj1))

⎛

⎝
nj−1∏

k=1

R1(θjk)R3(αjk)

⎞

⎠R1(θjnj )R
−1
3 (ϕ(mjnj )),

(2.36)
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P1

0

P4
0

(b) (c) 

Fixed 
face 
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P4
t

P1
t

P4
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Fig. 2.12 (a) Reference configuration of a Miura-Ori unit cell. (b) Current configuration for which
the constraint in (2.34) is satisfied. (c) Current configuration for which the constraint in (2.34) is
not satisfied and the sheet is torn

where the following equality was used (refer to the definition of αjk provided in
(2.14)):

R3(αjk) =
⎧
⎨

⎩

R−1
3 (ϕ(mjk))R3(ϕ(mj k+1)); k = 1, . . . , nj − 1

R−1
3 (ϕ(mjk))R3(ϕ(mj1)); k = nj .

(2.37)

Multiplying the last expression in (2.36) by R−1
3

(
ϕ(mj1)

)
from the left and by

R3
(
ϕ(mj1)

)
from the right, the following is obtained:

I3 =
⎛

⎝
nj−1∏

k=1

R1(θjk)R3(αjk)

⎞

⎠R1(θjnj )R−1
3 (ϕ(mjnj ))R3(ϕ(mj1))

=
⎛

⎝
nj−1∏

k=1

R1(θjk)R3(αjk)

⎞

⎠R1(θjnj )R3(αjnj )

=
nj∏

k=1

R1(θjk)R3(αjk).

(2.38)
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(a) (b) (c) 

αj2

αj1

αj3
αj1

αj1

αj2

Fig. 2.13 Interior fold intersection having (a) one incident fold, (b) two incident folds, and (c)
three incident folds

We then obtain the final form of the kinematic constraint for origami with creased
folds [9, 27]:

Rj =
nj∏

k=1

R1(θjk)R3(αjk) = I3 j = 1, . . . , NI . (2.39)

In Problem 2.3, the reader is asked to derive the kinematic constraint for the
folds adjacent to an interior fold intersection using a path γ j (η) oriented clockwise
as opposed to the counterclockwise convention adopted in this chapter.

It can be shown that each face in a sheet having multiple interior fold inter-
sections undergoes a rigid deformation and no tearing occurs provided the local
constraint (2.39) is satisfied for each interior fold intersection (see Problems 2.8, 2.9,
and 2.10 for details).

Various trivial cases occur when only one, two, or three creased folds are incident
to an interior fold intersection. These cases are the following:

1. One incident fold (Fig. 2.13a). If the j th interior fold intersection has a single
incident creased fold, satisfaction of the kinematic constraint (2.39) requires:

For nj = 1 : θj1 = 0. (2.40)

2. Two incident folds (Fig. 2.13b). If the j th interior fold intersection has two
incident creased folds, satisfaction of the kinematic constraint (2.39) requires:

For nj = 2 : θj1 = θj2 = 0; αj1 
= π

θj1 = θj2; αj1 = π,
(2.41)
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i.e., the two folds are not collinear and the union of the faces adjacent to the j th
interior fold intersection must remain flat or the two folds are collinear and a
single combined fold results

3. Three incident folds (Fig. 2.13c). If the j th interior fold intersection has three
incident creased folds, satisfaction of the kinematic constraint (2.39) requires:

For nj = 3 :

θj1 = θj2 = θj3 = 0; αj1 
= π, αj2 
= π, αj3 
= π

θj1 = θj2, θj3 = 0; αj1 = π

θj2 = θj3, θj1 = 0; αj2 = π

θj3 = θj1, θj2 = 0; αj3 = π,

(2.42)

i.e., no pair of folds is collinear and the union of the faces adjacent to the j th
interior fold intersection must remain flat or two of the folds are collinear and a
single combined fold results while the third fold remains flat

Thus, for non-trivial folding motion, any interior fold intersection must have at
least four incident creased folds.

Example 2.8 Fold intersection having a single incident fold (Fig. 2.13a).
Statement: Verify that (2.40) must hold for an interior fold intersection having a
single incident fold.
Solution: The matrix Rj in (2.39) associated with an interior fold intersection having
one incident creased fold is Rj = R1(θj1)R3(αj1). The angle αj1 is equal to 2π for
a single fold incident to an interior fold intersection, thus R3(αj1) = R3(2π) = I3.
This requires that R1(θj1) = I3, which for θj1 ∈ [−π, π ] holds true only when
θj1 = 0. Cases for two or three folds, respectively, provided in (2.41) and (2.42) are
verified in a similar manner (see Problem 2.6).

Example 2.9 Folding the corner of a cube [32, 33].
Statement: Figure 2.14 shows the fold pattern and fold angles used to fold the
corner of a cube from a square sheet. The reference and final configurations are
also shown. Verify that the kinematic constraint for origami with creased folds in
(2.39) is satisfied for the fold angles shown.
Solution: The fold angles as enumerated in Fig. 2.14 are given as: θ11 = π/2, θ12 =
π/2, θ13 = π/2, θ14 = −π , and θ15 = π . The face corner angles can be determined
from Fig. 2.14 and are as follows: α11 = π/2, α12 = π/2, α13 = π/4, α14 = π/4,
and α15 = π/2. The matrices R1(θjk)R3(αjk), k = 1, . . . , 5, are then given as
follows:
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S0

θ11 =
π

2

θ12 =
π

2

θ13 =
π

2

θ14 = −π θ15 = π

St, t ∼ tf

π

4

Fig. 2.14 Schematic for Example 2.9. Top: Fold pattern and fold angles for each fold at the final
configuration [32, 33]. Bottom: Reference configuration S0 and configuration St (for visualization
t ∼ tf )

R1(θ11)R3(α11) = R1
(
π
2

)
R3

(
π
2

) =

⎡

⎢
⎢
⎣

1 0 0

0 0 −1

0 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 − 1 0

1 0 0

0 0 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 − 1 0

0 0 − 1

1 0 0

⎤

⎥
⎥
⎦ ,

(2.43)

R1
(
θ12

)
R3

(
α12

) = R1
(
π
2

)
R3

(
π
2

) =

⎡

⎢
⎢
⎣

0 − 1 0

0 0 − 1

1 0 0

⎤

⎥
⎥
⎦ , (2.44)
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R1
(
θ13

)
R3

(
α13

) = R1
(
π
2

)
R3

(
π
4

) =

⎡

⎢
⎢
⎣

2− 1
2 − 2− 1

2 0

0 0 − 1

2− 1
2 2− 1

2 0

⎤

⎥
⎥
⎦ , (2.45)

R1(θ14)R3(α14) = R1(−π)R3
(
π
4

) =

⎡

⎢
⎢
⎣

2− 1
2 − 2− 1

2 0

−2− 1
2 −2− 1

2 0

0 0 − 1

⎤

⎥
⎥
⎦ , (2.46)

R1(θ15)R3(α15) = R1(π)R3
(
π
2

) =

⎡

⎢
⎢
⎣

0 − 1 0

−1 0 0

0 0 − 1

⎤

⎥
⎥
⎦ . (2.47)

Finally, to verify if the fold angles shown in Fig. 2.14 satisfy the constraint (2.39),
the previously calculated matrices are multiplied to check if their product is the
identity matrix:

5∏

k=1

R1(θjk)R3(αjk) =

⎡

⎢
⎢
⎣

0 − 1 0

0 0 − 1

1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 − 1 0

0 0 −1

1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

2− 1
2 − 2− 1

2 0

0 0 − 1

2− 1
2 2− 1

2 0

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

2− 1
2 − 2− 1

2 0

−2− 1
2 −2− 1

2 0

0 0 − 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 − 1 0

−1 0 0

0 0 − 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦ = I3. (2.48)

2.5 Folding Map Formulation

In this section, we provide a method to determine the mapping of the position
vector of any point in the sheet from the reference configuration S0 to a current
configuration St (termed folding map). A local folding map considering only the
faces adjacent to an interior fold intersection was provided in (2.28). Such a
formulation is extended here for the derivation of a folding map considering all the
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faces in the sheet. The method to determine the folding map requires the following
steps:

1. A single arbitrary face in the sheet is assumed fixed in its reference configuration
2. Paths γ̆ j (η) : [0, 1] → S0, j = 1, . . . , NP , connecting the fixed face to any

other face with reference configuration Pj

0 , j = 1, . . . , NP , are assumed (refer
to Fig. 2.15 for examples). The paths γ̆ j (η), j = 1, . . . , NP , may not cross any
fold intersection (i.e., they travel only through faces and creased folds of S0).
Each path γ̌

j
(η) crosses a number of n̆j creased folds

3. The formulation of the transformation associated with folding each of the
creased folds crossed by the paths γ̆ j (η), j = 1, . . . , NP (termed folding
transformation for simplicity) is determined

4. The folding map for any point in each face with reference configuration Pj

0 is
then obtained through the composition of folding transformations of the folds
crossed by the corresponding path γ̆ j (η)

Steps 1 and 2 from the previous list can be readily performed. Sections 2.5.1
and 2.5.2 provide the information required to perform Step 3. Specifically,
Sect. 2.5.1 addresses the determination of the parameters required to define the
folding transformation while Sect. 2.5.2 addresses the formulation of such a
transformation. The formulation of the folding map for Step 4 is also addressed
in Sect. 2.5.2.

2.5.1 Parameters Required to Derive the Folding Map

To derive the folding transformation associated with each fold crossed by a path
γ̆ j (η), j = 1, . . . , NP , certain geometric parameters and kinematic variables
associated with such folds must be determined. Our focus in this section is to provide
equations for all such parameters.

As shown in Fig. 2.16, a path γ̆ j (η) crosses the ith fold in the sheet positively if
it crosses from the face adjacent to the fold in the direction −e3 × m̂i to the face
in the direction e3 × m̂i (where m̂i is fold vector along the length of the ith fold
line, see (2.6)). A path γ̆ l (η) crosses a fold negatively if it crosses such a fold in the
opposite direction as also illustrated in Fig. 2.16.

The face connectivity matrix CP ∈ R
NP×max(n̆j ) with components CP

jk is used

for the identification and ordering of the folds crossed by each path γ̆ j (η):

CP
jk = Index of the kth fold crossed by the path γ̆ j (η)

(multiplied by −1 if the fold is negatively crossed by γ̆ j (η)),

j = 1, . . . , NP , k = 1, . . . , n̆j .

(2.49)
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Fig. 2.15 Two equivalent
paths γ̆ j (η) connecting the
fixed face to Pj

0

Fixed face 

Pj
0

Fixed face 

Pj
0

e1

e2

e1

e2

γ̆j(η)

γ̆j(η)

Let m̆jk ∈ span(e1, e2) be the vector along the length of the kth fold line crossed
by γ̆ j (η) (see Fig. 2.17b). This vector is defined such that the path γ̆ j (η) crosses
it positively (i.e., from the face in the direction −e3 × m̆jk to the face in the
direction e3 ×m̆jk). The mapping from the fold vectors m̂1, . . . , m̂NF to the vectors
m̆j1, . . . , m̆j n̆j , j = 1, . . . , NP , is given as follows:

m̆jk =

⎧
⎪⎨

⎪⎩

m̂CP
jk ; CP

jk > 0

−m̂|CP
jk |; CP

jk < 0,
j = 1, . . . , NP , k = 1, . . . , n̆j . (2.50)
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e1

e2

(crossing positively) 

(crossing negatively) 

(a) 

e1

e2

(b) 

m̂i

e 3
×
m̂

i

‖m̂
i ‖

−e 3
×
m̂
i

‖m̂
i ‖

γ̆j(η)

γ̆l(η)

γ̆j(η)

γ̆l(η)

Fig. 2.16 (a) Two paths crossing the ith fold line in S0. (b) Fold vector m̂i along the length of the
ith fold line in S0. The path γ̆ j (η) crosses the fold positively (i.e., from the side in the direction
−e3 × m̂i to the side in the direction e3 × m̂i ) and the path γ̆ l (η) crosses the fold negatively

Note that m̆jk has the opposite direction of its associated fold vector m̂|CP
jk | if

CP
jk < 0. This is applied such that the vectors m̆jk are always crossed positively by

γ̆ j (η).
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e1

e2

Fixed face 

Pj
0

(a) (b) 

Fixed face 

Pj
0

m̆
jk

(c) 

m̆

ϕ(m̆ )

θ̆

b̆

e1

e2

e1

e2

γ̆j( )

Fig. 2.17 An origami sheet illustrating the parameters that define the folding transformation: (a)
Path γ̆ j (η) crossing creased folds between the fixed face and Pj

0 ; (b) Vector m̆jk along the kth

fold line crossed by γ̆ j (η); (c) Folding transformation consisting of a rotation of θ̆jk about an axis
crossing a point with position vector b̆jk and aligned to m̆jk

Let θ̆j1, . . . , θ̆j n̆j be the fold angles associated with the ordered creased folds

crossed by γ̆ j (η). The mapping from all the fold angles in the sheet (θ̂1, . . . , θ̂NF ,
see Sect. 2.2) to the fold angles of only those crossed by γ̆ j (η) (θ̆j1, . . . , θ̆j n̆j ) is
given as follows:

θ̆jk = θ̂∣∣CP
jk

∣
∣ j = 1, . . . , NP , k = 1, . . . , n̆j . (2.51)

Thus far, the vectors m̆j1, . . . , m̆j n̆j that provide the orientation of the folds
crossed by γ̆ j (η) in S0 and their associated fold angles θ̆j1, . . . , θ̆j n̆j have been
determined. The final parameters that are required in Sect. 2.5.2 to formulate the
folding transformation are the position vectors of points located at the folds. The
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Table 2.3 Input parameters
required to define the folding
map of an origami sheet with
creased folds

Parameter Definition

Fold angles θ̂1, . . . , θ̂NF

Face connectivity matrix CP (2.49)

These parameters are required in addition to
those associated with the fold pattern listed
in Tables 2.1 and 2.2

Table 2.4 Calculated parameters required to define the folding map of an origami sheet with
creased folds

Parameter Equation

Vectors along the fold lines crossed by γ̆ j (η) (m̆j1, . . . , m̆j n̆j , j = 1, . . . , NP ) (2.50)

Fold angles of the folds crossed by γ̆ j (η) (θ̆j1, . . . , θ̆j n̆j , j = 1, . . . , NP ) (2.51)

Position vectors of points on the fold lines crossed by γ̆ j (η) (b̆j1, . . . , b̆j n̆j , j =
1, . . . , NP )

(2.52)

position vectors of such points are denoted b̆j1, . . . , b̆j n̆j ∈ span(e1, e2) (see
Fig. 2.17c). The start points of the fold lines in S0 defined in (2.5) provide an obvious
choice for the points along each fold crossed by γ̆ j (η). The position vectors of such
start points (v̂11, . . . , v̂NF1) are then used to define the vectors b̆j1, . . . , b̆j n̆j as
follows:

b̆jk = v̂
∣
∣CP

jk

∣
∣ 1

j = 1, . . . , NP , k = 1, . . . , n̆j . (2.52)

We summarize the input and calculated parameters required to define the folding
map of an origami sheet with creased folds in Tables 2.3 and 2.4.

2.5.2 Folding Map Formulation

Our goal in this section is to derive the folding transformation associated with each
fold crossed by the paths γ̆ j (η), j = 1, . . . , NP . Such a folding transformation is
illustrated in Fig. 2.17c and corresponds to a rotation of θ̆jk about an axis crossing a
point with position vector b̆jk and aligned to vector m̆jk . The folding map will then
be obtained through the composition of the folding transformations associated with
the folds crossed by the path γ̆ j (η). The folding transformation can be formulated as
a composition of rotation and translation transformations in the following order:

1. The axis of rotation is translated such that it crosses the origin (via a translation
by −b̆jk)

2. The axis of rotation is then aligned with e1 (via a rotation of −ϕ(m̆jk) about e3)



2.5 Folding Map Formulation 87

3. Once the axis of rotation is aligned with e1, a rotation of θ̆jk about e1 is applied
4. The axis of rotation is then aligned to its initial orientation (via a rotation of
ϕ(m̆jk) about e3)

5. The axis of rotation is finally translated to its initial position (via a translation by
b̆jk)

To formulate the previous composition of transformations in matrix form for
notational convenience and computational implementation, homogeneous coordi-
nates are introduced. Such coordinates allow for the formulation of both translation
and rotation transformations in matrix form [32, 33, 40].

Let T(b) ∈ R
4×4 be the matrix in homogeneous coordinates representing the

transformation associated with a translation by vector b ∈ R
3 with components b1,

b2, b3:

T(b) =

⎡

⎢
⎢
⎢
⎣

1 0 0 b1

0 1 0 b2

0 0 1 b3

0 0 0 1

⎤

⎥
⎥
⎥
⎦

=
[

I3 b

0	
3 1

]

, (2.53)

where 0n ∈ R
n is the zero vector. The translation by b of a position vector y ∈ R

3

with components y1, y2, y3 is determined as follows:

T(b)

[
y

1

]

=
[

I3 b

0	
3 1

][
y

1

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 b1

0 1 0 b2

0 0 1 b3

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1

y2

y3

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1 + b1

y2 + b2

y3 + b3

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[

y + b

1

]

.

(2.54)

Let Q1(φ) ∈ R
4×4 be the transformation matrix in homogeneous coordinates

associated with a rotation by φ radians about an axis of rotation aligned to e1:

Q1(φ) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 cos(φ) − sin(φ) 0

0 sin(φ) cos(φ) 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

=
[

R1(φ) 03

0	
3 1

]

, (2.55)

The rotation of a vector y ∈ R
3 by φ radians about an axis of rotation aligned to

e1 is determined as follows:
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Q1(φ)

[
y

1

]

=
[

R1(φ) 03

0	
3 1

][
y

1

]

=
[

R1(φ) y

1

]

. (2.56)

Also, let Q3(φ) ∈ R
4×4 be the transformation matrix in homogeneous coordi-

nates associated with a rotation by φ radians about an axis of rotation aligned to e3:

Q3(φ) =

⎡

⎢
⎢
⎢
⎢
⎣

cos(φ) − sin(φ) 0 0

sin(φ) cos(φ) 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

=
[

R3(φ) 03

0	
3 1

]

. (2.57)

The rotation of a vector y ∈ R
3 by φ radians about an axis of rotation aligned to

e3 is determined in the same manner as that shown in (2.56).
After providing a formulation for both rotation and translation transformations

in matrix form, the folding transformation associated with each fold crossed by
the paths γ̆ j (η) can be expressed as a matrix denoted H̆jk ∈ R

4×4, j =
1, . . . , NP , k = 1, . . . , n̆j (i.e., the folding transformation matrix). Recalling
from the beginning of this section, such a transformation is a composition of the
ordered transformations corresponding to: (1) a translation by −b̆jk , (2) a rotation
by −ϕ(m̆jk) about e3, (3) a rotation by θ̆jk about e1, (4) a rotation by ϕ(m̆jk)

about e3, and (5) a translation by b̆jk . The composition of such transformations
corresponding to the folding transformation matrix is then compactly expressed as
follows:

H̆jk = T
(
b̆jk

)
Q3

(
ϕ
(
m̆jk

))
Q1

(
θ̆jk

)
Q−1

3

(
ϕ(m̆jk

))
T−1

(
b̆jk

)
. (2.58)

Example 2.10 Determining a folding transformation matrix.
Statement: Determine the folding transformation matrix associated with the sixth
fold crossed by the path γ̆ j (η) shown in Fig. 2.18a.
Solution: The parameters required to describe the folding transformation matrix are
illustrated in Fig. 2.18b. We note that m̆j6 = [ L

2
L
2 0]	 (therefore ϕ(m̆j6) = π

4 )

and also that b̆j6 = [ L L
2 0]	.

To determine the folding transformation matrix H̆j6 via the formulation provided
in (2.58), we require the following matrices:

T
(
b̆j6) = T

([ L L
2 0]	) =

⎡

⎢
⎢
⎢
⎣

1 0 0 L

0 1 0 L
2

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦
, (2.59)
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Fig. 2.18 (a) Path γ̆ j (η)

crossing creased folds
between the fixed face and
Pj

0 . The numbering of the

folds crossed by γ̆ j (η) is
labeled. (b) Vector m̆j6 along
the sixth fold line crossed by
γ̆ j (η)
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e1

e2
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1 2 
3 
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6 

γ̆j(η)

Q1
(
θ̆ j6) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 cos
(
θ̆ j6

) − sin
(
θ̆ j6

)
0

0 sin
(
θ̆ j6

)
cos

(
θ̆ j6

)
0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (2.60)

Q3
(
ϕ
(
m̆j6)) = Q3

(
π
4

) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

21/2

2 − 21/2

2 0 0

21/2

2
21/2

2 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.61)
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We then use (2.59)–(2.61) to determine the explicit form for the folding
transformation matrix H̆j6:

H̆j6 = T
(
b̆j6

)
Q3

(
ϕ
(
m̆j6

))
Q1

(
θ̆j6

)
Q−1

3

(
ϕ
(
m̆j6

))
T−1

(
b̆j6

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2 + 1

2 cos
(
θ̆ j6

) 1
2 − 1

2 cos
(
θ̆ j6

) 21/2

2 sin
(
θ̆ j6

) − L
4

(
cos

(
θ̆ j6

) − 1
)

1
2 − 1

2 cos
(
θ̆ j6

) 1
2 + 1

2 cos
(
θ̆ j6

) − 21/2

2 sin
(
θ̆ j6

)
L
4

(
cos

(
θ̆ j6

) − 1
)

− 21/2

2 sin
(
θ̆ j6

) 21/2

2 sin
(
θ̆ j6

)
cos

(
θ̆ j6

) 21/2L
4 sin

(
θ̆ j6

)

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.62)

The folding map used to transform the position vector of any point in the sheet
from the reference configuration S0 to a current configuration St is formulated here
based on the fold transformation matrices H̆jk provided in (2.58).

Let X ∈ span(e1, e2) be the position vector of a point in a face with reference
configuration Pj

0 ⊂ S0 within which the path γ̆ j (η) terminates and x ∈ R
3 be the

position vector of such a point in Pj
t ⊂ St . The mapping X �→ x is determined as

the multiplication of the ordered matrices H̆jk of the n̆j creased folds crossed by the
path γ̆ j (η):

[
x
1

]

=
⎛

⎝
n̆j∏

k=1

H̆jk

⎞

⎠
[

X
1

]

. (2.63)

The reader is asked to show that the folding map provided in (2.63) is indepen-
dent from the chosen path γ̆ j (η) in Problem 2.10.

Example 2.11 Mapping between reference and current configurations for a simple
strip with two folds.
Statement: Consider the origami sheet presented in Fig. 2.19. (a) Determine the
folding map in the form of (2.63) for each face shown in the figure. (b) Determine the
position vector x in a current configuration with fold angles θ̂1 = π

2 and θ̂2 = −π
2

of the point with reference position vector X = [L1 + L2 + L3 0 0]	.
Solution: (a) Face 1 is the fixed face. Therefore, the folding map for points in this
face is trivially given as follows:

x = X X ∈ P1
0 . (2.64)

A path γ̆ 2(η) starting from P1
0 crosses Fold 1 to reach P2

0 . The vector m̆21 along
the length of this fold is given as m̆21 = −Lve2. Thus, ϕ(m̆21) = ϕ(−Lve2) = 3π

2 .
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Fig. 2.19 Schematic for
Example 2.11

Fixed face 
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e2

P1
0 P2

0 P3
0

Fold 1 Fold 2 

L2L1 L3

Lv

The position vector b̆21 of a point in Fold 1 can be given as b̆21 = [ L1 0 0]	.
Therefore, the transformation matrix H̆21 associated with Fold 1 can be expressed
as a rotation by θ̂1 about an axis aligned with −Lve2 and crossing a point with
position vector [ L1 0 0]	. The folding map for points in P2

0 is then given as
follows:

[
x
1

]

= H̆21
[

X
1

]

X ∈ P2
0 , (2.65)

where:

H̆21 = T
([ L1 0 0]	)Q3

( 3π
2

)
Q1

(
θ̂1
)

Q−1
3

( 3π
2

)
T−1

([ L1 0 0]	)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos
(
θ̂1
)

0 − sin
(
θ̂1
)
L1

(
1 − cos

(
θ̂1
))

0 1 0 0

sin
(
θ̂1
)

0 cos
(
θ̂1
) −L1 sin

(
θ̂1
)

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(2.66)

A path γ̆ 3(η) starting from P1
0 crosses Fold 1 and Fold 2 to reach P3

0 . The vectors
m̆31 and m̆32 along the length of these folds are given as m̆31 = m̆32 = −Lve2.
Therefore, ϕ(m̆31) = ϕ(m̆32) = ϕ(−Lve2) = 3π

2 . The position vector b̆31 of a

point in Fold 1 can be given as b̆31 = [ L1 0 0]	 and the position vector b̆32 of a
point in Fold 2 can be given as b̆32 = [L1 + L2 0 0]	. Thus, the transformation
matrix H̆31 associated with Fold 1 can be expressed as a rotation by θ̂1 about an
axis aligned with −Lve2 and crossing a point with position vector [ L1 0 0]	.
Also, the transformation matrix H̆32 associated with Fold 2 can be expressed as a
rotation by θ̂2 about an axis aligned with −Lve2 and crossing a point with position
vector [L1 +L2 0 0]	. The folding map for points in P3

0 is then given as follows
(cf. (2.63)):

[
x
1

]

= H̆31 H̆32
[

X
1

]

X ∈ P3
0 , (2.67)
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where:

H̆31 = T
([ L1 0 0]	)Q3

( 3π
2

)
Q1

(
θ̂1
)

Q−1
3

( 3π
2

)
T−1

([ L1 0 0]	)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos
(
θ̂1
)

0 − sin
(
θ̂1
)
L1

(
1 − cos

(
θ̂1
))

0 1 0 0

sin
(
θ̂1
)

0 cos
(
θ̂1
) −L1 sin

(
θ̂1
)

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(2.68)

H̆32 = T
([L1 + L2 0 0]	)Q3

( 3π
2

)
Q1

(
θ̂2
)

×Q−1
3

( 3π
2

)
T−1

([L1 + L2 0 0]	)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos
(
θ̂2
)

0 − sin
(
θ̂2
)
(L1 + L2)

(
1 − cos

(
θ̂2
))

0 1 0 0

sin
(
θ̂2
)

0 cos
(
θ̂2
) −(L1 + L2) sin

(
θ̂2
)

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(2.69)

(b) The point with position vector X = [L1 + L2 + L3 0 0]	 is located in P3
0 .

Thus, the mapping provided in (2.67) is used to determine its position vector x in a
current configuration with θ̂1 = π

2 and θ̂2 = −π
2 as follows:

[
x
1

]

= H̆31
∣
∣
θ̂1= π

2
H̆32

∣
∣
θ̂2=−π

2

[
X
1

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 −1 L1

0 1 0 0

1 0 0 −L1

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 L1 + L2

0 1 0 0

−1 0 0 L1 + L2

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

L1 + L2 + L3

0

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

L1 + L3

0

L2

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(2.70)
Therefore, x = [L1 + L3 0 L2]	. Figure 2.20 shows the reference

configuration and current configuration with θ̂1 = π
2 and θ̂2 = −π

2 of the sheet
examined in this example and the coordinates of the considered point in both
configurations.



2.6 Computational Implementation of the Model 93

e1
e2

e3

S0 St

e1
e2

e3

L2

L1

L3

L1

L3

L2
P1

0

P2
0

P3
0

P1
t

P2
t

P3
t

Fold 1 
Fold 2 

X =

⎡
⎣

L1 + L2 + L3

0
0

⎤
⎦

x =

⎡
⎣

L1 + L3

0
L2

⎤
⎦

Fig. 2.20 Reference and current configurations of the origami sheet for Example 2.11

2.6 Computational Implementation of the Model

Having introduced the details of the kinematic model for origami structures with
creased folds in Sects. 2.2–2.5, this chapter continues by describing a procedure
to implement the model in a computational environment. The complete set of
MATLAB scripts used for the execution of such a procedure is included in the
Supplemental Materials of this chapter. We describe such MATLAB scripts in
Appendix B.1.

Our goal is to simulate the folding motion of an origami sheet. We start by
providing the fold pattern data listed in Table 2.1. Additionally, we also need to
provide information regarding the desired history of folding motion for the sheet.
For simulation in a numerical environment, the continuous folding motion of the
sheet is partitioned into increments. Thus, the simulation of the folding motion is
performed here by incrementally updating the values of the fold angles using input
guess increments. As such, we need to provide the following data to simulate the
folding motion of an origami sheet: (1) Fold pattern data (Table 2.1) and (2) Guess
increments for the fold angles:

Δθ̂l1, . . . , Δθ̂
l
NF l = 1, . . . , Ninc, (2.71)

where Ninc is the total number of guess increments.

For notational convenience, let us define Δθ̂
l ∈ R

NF as the vector whose
components correspond to the lth set of guess increments for the fold angles:

Δθ̂
l =

[
Δθ̂l1 · · · Δθ̂lNF

]	
l = 1, . . . , Ninc. (2.72)
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Table 2.5 Conventional
assignments for θ̂Li and θ̂Ui

Fold type θ̂Li θ̂Ui

Valley 0 π

Mountain −π 0

Valley or mountain −π π

Table 2.6 Constraints on the fold angles that must be satisfied at every increment (l) in the
simulation of the folding motion

Kinematic constraints (2.39) Rj (θ̂
l
) = I3 j = 1, . . . , NI

Lower and upper bounds of the fold angles θ̂
L ≤ θ̂

l ≤ θ̂
U

Also, let us define θ̂
l ∈ R

NF as the vector whose components correspond to the
values of the fold angles at the lth increment:

θ̂
l =

[
θ̂ l1 · · · θ̂ lNF

]	
l = 1, . . . , Ninc. (2.73)

The fold angles θ̂
l

must satisfy the kinematic constraints provided in (2.39) at
every increment. Additionally, we also impose lower and upper bounds on the fold
angles.4 The lower bound and upper bound values for the ith fold angle are denoted
θ̂Li and θ̂Ui , respectively. Conventional assignments for the lower and upper bounds
of the fold angles are provided in Table 2.5.

We define θ̂
L
, θ̂

U ∈ R
NF as the vectors whose components, respectively,

correspond to θ̂L1 , . . . , θ̂
L
NF and θ̂U1 , . . . , θ̂

U
NF as follows:

θ̂
L =

[
θ̂L1 · · · θ̂LNF

]	
, θ̂

U =
[
θ̂U1 · · · θ̂UNF

]	
. (2.74)

The constraints to be satisfied at each increment are then summarized in
Table 2.6.

In general, the configurations determined by the simple addition of the guess

increments for the fold angles (i.e., those obtained as θ̂
l = ∑l

m=1 Δθ̂
m

) may
not satisfy the constraints listed in Table 2.6. In view of this, we use an iterative
procedure to apply any necessary corrections such that the resulting configurations
approximate the addition of the guess increments and also satisfy the constraints of
Table 2.6.

The components of the vector θ̂
l(k) ∈ R

NF correspond to the values of the fold

angles at the kth iteration of the lth increment. The vector R(θ̂
l(k)
) ∈ R

3NI+2NF

with components Rj (θ̂
l(k)
) is the residual vector from constraints of Table 2.6 (3NI

4It is remarked that the value of each fold angle must be contained in the interval [−π, π ] to prevent
self-intersection of the pairs of faces connected by each fold.
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from the kinematic constraints (2.39) and 2NF from the upper and lower bounds of
each fold angle).

The matrix-type constraint (2.39) provides the following three scalar constraints
that are included in the components of the residual vector [34]5:

R3j−2

(
θ̂
l(k)

)
= 1

2
λR

(
R
j

23

(
θ̂
l(k)

))2
,

R3j−1

(
θ̂
l(k)

)
= 1

2
λR

(
R
j

31

(
θ̂
l(k)

))2
,

R3j

(
θ̂
l(k)

)
= 1

2
λR

(
R
j

12

(
θ̂
l(k)

))2
,

(2.75)

where j = 1, . . . , NI and λR is the scalar weight for residuals from kinematic
constraints (2.39).

The additional components of R(θ̂
l(k)
) required to enforce the lower bounds of

the fold angles consist of penalties defined as follows:

R3NI+2i−1

(
θ̂
l(k)

)
= 1

2
λB max

(
0, −θ̂ l(k)i + θ̂Li

)2
, (2.76)

where i = 1, . . . , NF and λB is the scalar weight for fold angle bound constraints.
Similar penalties are used to enforce the upper bounds of the fold angles and are
defined as follows:

R3NI+2i

(
θ̂
l(k)

)
= 1

2
λB max

(
0, θ̂ l(k)i − θ̂Ui

)2
, (2.77)

where i = 1, . . . , NF .
For each increment, we seek to iteratively correct the fold angles such that

the magnitude of the residual vector R(θ̂
l(k)
) is minimized. At the start of each

increment, we first calculate the projection of the guess increments for the fold

angles Δθ̂
l

onto the null space of the residual vector derivatives of the previous

configuration (with fold angles θ̂
l−1

). This is performed to utilize the information
of the previous configuration and reduce the number of iterations in the subsequent
correction procedure [34]. Refer to Fig. 2.21a for an illustration of this concept.

The resulting projected fold angle increment Δθ̂
l∗

is calculated as follows (refer to
(A.56)):

Δθ̂
l∗ =

⎛

⎝INF −
(
∂R

(
θ̂
l−1)

∂ θ̂

)† (
∂R

(
θ̂
l−1)

∂ θ̂

)⎞

⎠Δθ̂
l
. (2.78)

where (·)† denotes the Moore-Penrose pseudoinverse, see (A.37).

5Since Rj in (2.39) is an orthogonal matrix, only three of its nine components are independent.
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Fig. 2.21 (a) Illustration of
the hypersurface
corresponding to
R = 03NI+2NF . The initial

point R(θ̂
l−1
) is shown. The

projected fold angle

increment Δθ̂
l∗

obtained via
(2.78) is also indicated. (b)
Subsequent corrections

Δθ̂
l(k)

(2.80). Convergence is
achieved after two iterations
in this illustration

Given the fold angles of the previously determined configuration θ̂
l−1

and

the projected fold angle increment Δθ̂
l∗

, a configuration satisfying the kinematic
constraints (2.39) and the fold angles bounds can be found via an iterative correction
procedure. Such a procedure begins at iteration (0) where the first guess of fold
angles is simply the addition of the previous fold angles and the projected fold angle
increment:

θ̂
l(0) = θ̂

l−1 +Δθ̂
l∗
. (2.79)
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If ‖R(θ̂
l(0)
)‖/(3NI + 2NF ) ≥ tol1 (where tol1 is a numerical tolerance),

the fold angles are corrected iteratively as follows (see Fig. 2.21b):

θ̂
l(k+1) = θ̂

l(k) +Δθ̂
l(k)
, (2.80)

where Δθ̂
l(k)

is the correction of fold angles at iteration (k). Following the
generalized Newton’s method [34], the first-order expansion of the residual vector

R(θ̂
l(k)
) is used to determine the correction Δθ̂

l(k)
required to minimize the

components of the residual vector:

R
(
θ̂
l(k) +Δθ̂

l(k)) = R
(
θ̂
l(k)) + ∂R

(
θ̂
l(k))

∂ θ̂
Δθ̂

l(k) � 03NI+2NF .
(2.81)

The following correction of fold angles Δθ̂
l(k)

is obtained from the previous
first-order expansion:

Δθ̂
l(k) = −

⎛

⎝
∂R

(
θ̂
l(k))

∂ θ̂

⎞

⎠

†

R
(
θ̂
l(k))

. (2.82)

The iterative corrector procedure provided in (2.82) and (2.80) is repeated until

‖R(θ̂
l(k+1)

)‖/(3NI + 2NF ) < tol1 or ‖Δθ̂
l(k)‖/NF < tol2, where tol2

is another numerical tolerance. The numerical procedure used to determine valid
configurations at each increment in the folding motion for origami sheets with
creased folds is summarized in Table 2.7.

Table 2.7 Numerical procedure used to determine valid configurations at each increment in the
folding motion for origami sheets with creased folds (lth fold angle increment)

1: Determine the projected fold angle increment Δθ̂
l∗

from the given Δθ̂
l

using (2.78)

2: Calculate guess fold angles θ̂
l(0)

using (2.79)

3: IF ‖R(θ̂
l(0)
)‖/(3NI + 2NF ) < tol1

THEN set θ̂
l = θ̂

l(0)
and EXIT

ELSE CONTINUE

4: Determine correction of fold angles Δθ̂
l(k)

using (2.82)

5: Determine θ̂
l(k+1)

using (2.80)

6: IF ‖R(θ̂
l(k+1)

)‖/(3NI + 2NF ) < tol1 OR ‖Δθ̂
l(k)‖/NF < tol2

THEN set θ̂
l = θ̂

l(k+1)
and EXIT

ELSE set k ← k + 1 and GOTO 4
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e1

e2

e3

π

2
π

2 − π

2

Stf

S0
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Fig. 2.22 Continuous folding motion of an origami sheet with three parallel folds (0 < ti < tf ).
The fold angles at the final configuration Stf are shown in the fold pattern schematic

2.7 Simulation Examples of the Kinematic Model

This section provides representative examples of the implemented model for
kinematic simulation of origami with creased folds presented in Sects. 2.2–2.6.
As mentioned in Sect. 2.6, the procedure for kinematic simulation of origami
with creased folds has been implemented in MATLAB. The associated MATLAB
scripts are provided in the Supplemental Materials of this chapter and described
in Appendix B.1. In MATLAB, we visualize the faces of origami sheets as filled
three-dimensional polygons using the command fill3 [41].

Figures 2.22, 2.23, and 2.24 show examples of origami sheets that do not contain
interior fold intersections. Therefore, the kinematic constraints provided in (2.39)
do not need to be considered for these examples. A sheet with three parallel folds is
shown in Fig. 2.22.

Figure 2.23 shows an “origami helix” whereby an initially planar sheet deforms
in a “twisting” manner, although it is remarked that all the faces in the sheet
are rigid and folding occurs only at the creases. All final configurations in this
example resemble helixes (see Fig. 2.23). The sheets for the origami helix pattern
are parameterized by the length L1 along the direction aligned to e1, the length L2
along the direction aligned to e2, and the number of triangle pairs along the direction
aligned to e1 which is denoted as n.
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Fig. 2.23 Schematics showing the fold pattern, reference configuration S0, an intermediate current
configuration Sti (0 < ti < tf ), and final configuration Stf for origami helixes. (a) L1 = L2,

n = 5; (b) L1 = L2, n = 10; (c) L1 = 3
2L2, n = 10
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Fig. 2.24 Schematics showing the fold pattern, reference configuration S0, an intermediate current
configuration Sti (0 < ti < tf ), and final configuration Stf for origami self-similar waves. The
valley folds shown in the schematic reach a fold angle of π while the mountain folds reach a fold
angle of −π

The fold pattern for the so-called “self-similar wave” [42] is shown in Fig. 2.24.
In this fold pattern, the lengths L1, . . . , Ln (refer to Fig. 2.24) are recursively
determined as follows:

Li+1 = Li
(
1 − tan

(
π
8

))
. (2.83)

Two examples of fold patterns for self-similar waves considering n = 3 and
n = 6 are shown in Fig. 2.24. As its name implies, the final configuration for this
origami fold pattern resembles a sea wave.

A sheet having eight creased folds meeting at one interior fold intersection is
shown in Fig. 2.25. The folds are enumerated in counterclockwise order. Various
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Fig. 2.25 (a) and (b) Configurations of a sheet having a single interior fold intersection obtained
through the guess increments for the fold angles provided in (2.84) and (2.85), respectively. (c)
Fold angles and sum of guess increments for the fold angles vs. increment number for (2.86). The
fold angles obtained from the simulation procedure differ from the simple addition of the guess
increments for the fold angles since corrections are required to satisfy the kinematic constraints of
(2.39). (d) Configurations obtained through the guess increments for the fold angles provided in
(2.86)

guess increments for the fold angles are considered ranging from simple to more
complex. The folded configurations shown in Fig. 2.25a are obtained through the
following guess increments for the fold angles:
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Δθ̂
l = π

40

[
0 0 1 0 0 0 1 0

]	
l = 1, . . . , 20, (2.84)

and the folded configurations shown in Fig. 2.25b are obtained through the following
guess increments for the fold angles:

Δθ̂
l = π

40

[
0 1 0 0 0 1 0 0

]	
l = 1, . . . , 20. (2.85)

The guess increments for the fold angles in (2.84) and (2.85) represent simple
examples where the fold angle correction procedure (refer to Table 2.7) converged

prior to performing an initial correction iteration (i.e., ‖R(θ̂
l(0)
)‖/(3NI + 2NF ) <

tol1 for l = 1, . . . , 20). An example of a more complex folding motion resulting
from guess increments for the fold angles that required iterative corrections is shown
in Fig. 2.25c. For this example, the guess increments for the fold angles are as
follows:

Δθ̂
l = 5π

240

[
1 − 2 − 1 − 2 1 − 2 1 − 2

]	
l = 1, . . . , 20.

(2.86)

As shown in the plot in Fig. 2.25c, the fold angles obtained from the simulation
procedure differ from the simple addition of the guess increments for the fold angles
since corrections were required to satisfy the kinematic constraints of (2.39). It is
observed in the configurations shown in Fig. 2.25d that all the faces comprising the
sheet remain connected throughout the folding motion. Therefore, the simulation
procedure presented in Sect. 2.6 successfully allows for the correction of the fold
angles such that they satisfy the kinematic constraints presented in (2.39).

More complex examples of origami sheets having two interior fold intersections
are shown in Fig. 2.26. Since the two interior fold intersections for these sheets
share a common adjacent fold, their associated kinematic constraint equations are
coupled. For all three sheets, the guess increments for the fold angles are the
same and given by the following expression (refer to the numbering of the folds
in Fig. 2.26):

Δθ̂
l = 2π

150

[
1 −1 1 1 −1 1 −1 −1 −1 1 −1 1 1 −1 1

]	

l = 1, . . . , 50.
(2.87)

The sheets having fold patterns obtained by modifying the interior vertex
coordinates and the boundary vertex coordinates of the baseline fold pattern of
Fig. 2.26a are shown in Fig. 2.26b and c, respectively. It is observed that the three
sheets undergo dissimilar folding motion as observed from their configurations
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Fig. 2.26 Continuous folding motion of origami sheets having two interior fold intersections: (a)
Baseline fold pattern; (b) Fold pattern obtained by modifying the interior vertex coordinates of the
baseline fold pattern; (c) Fold pattern obtained by modifying the boundary vertex coordinates of
the baseline fold pattern

shown due to the differences in their fold patterns. These examples show the
versatility of the model and implementation procedure presented in this chapter to
allow for simulation of sheets having arbitrary fold patterns and boundary shapes.

The final example shown in Fig. 2.27 considers a sheet having five interior fold
intersections. It is observed that the presented model captures well the behavior of
the origami sheet during its full range of motion (fold angles vary from 0 to ±π for
various folds in the sheet).
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e1

e2

e3

Fig. 2.27 Continuous folding motion of an origami square sheet with five interior fold intersec-
tions

Chapter Summary

A general model for the kinematic response of origami structures with creased folds
was presented in this chapter. The fold pattern description (Sect. 2.3), developability
and kinematic constraints (Sect. 2.4), and the mapping from reference to current
configurations (Sect. 2.5) were presented. An implementation procedure for the
model allowing for simulation of the folding motion of origami sheets was outlined
in Sect. 2.6, and implementation examples generated using the code provided in
the Supplemental Material of this chapter were provided in Sect. 2.7. The careful
consideration of kinematic constraints ensures that only valid configurations are
predicted. The presented model and its implementation readily allow for the
simulation of a wide range of fold patterns and folding histories as demonstrated
in the implementation examples provided in this chapter.

Problems

2.1 Consider the reference configuration S0 of the origami airplane shown in
Fig. 2.28. (a) Provide the fold pattern data listed in Table 2.1 for this sheet. (b)
Calculate the fold pattern parameters listed in Table 2.2.

2.2 Considering the fold pattern presented in Fig. 2.29, determine the mapping
between reference and current configurations in the form of (2.28) for each face.

2.3 In Sect. 2.4.2, the kinematic constraints on the fold angles for the folds
incident to an interior fold intersection were derived using a path γ j (η) oriented
counterclockwise. Derive such constraints using the process presented Sect. 2.4 but
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Fig. 2.28 Reference configuration S0 of the origami airplane illustrated in Fig. 2.1: (a) Numbering
of the vertices and dimensions of the sheet; (b) Position vectors of the first and second vertices; (c)
Numbering of the fold lines

Fig. 2.29 Schematic for
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using a path γ j (η) oriented clockwise (i.e., crossing the folds with associated fold
vectors in the following order: mjnj , . . . , mj2,mj1). What would be the folding
transformation matrix in the form of (2.27) associated with such folds? Is the
resulting constraint equivalent to that provided in (2.39)?

2.4 Verify (2.37) using the definition of αjk provided in (2.14).

2.5 Figure 2.30 shows a fold pattern in a square sheet and fold angles at the
final configuration [32, 33]. The reference and final configurations are also shown.
Verify that the kinematic constraint for origami with creased folds in (2.39) is
satisfied for the fold angles shown. Discuss why the final configuration contains self-
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π
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St, t ∼ tf
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4

Fig. 2.30 Schematic for Problem 2.5 of a sheet exhibiting self-intersections. Top: Fold pattern and
fold angles for each fold at the final configuration [32, 33]. Bottom: Reference configuration S0
and configuration St (for visualization t ∼ tf )

intersections even though the constraint in (2.39) is satisfied. Discuss what could be
done to enhance the presented model to account for self-intersection avoidance.

2.6 Verify (2.41) and (2.42) making use of the kinematic constraint provided in
(2.39).

2.7 Consider the fold pattern presented in Fig. 2.31. (a) Determine the folding map
in the form of (2.63) for each face. (b) Determine the position vector x in a current
configuration with fold angles θ̂1 = π

2 and θ̂2 = −π
2 of the point with reference

position vector X = [3L 0 0]	.

2.8 Figure 2.32 shows a fold pattern in a sheet and fold angles at the final
configuration [32, 33]. The reference and final configurations are also shown. Verify
that the kinematic constraint for origami with creased folds in (2.39) is satisfied
for the folds crossed by the paths γ 1(η) and γ 2(η). Determine the result of the
multiplication of transformation matrices in the form of (2.58) of all the ordered
folds crossed by the path γ 12(η). Before calculating it, is it expected to be the
identity matrix? Why or why not?
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Fig. 2.31 Schematic for
Problem 2.7

Fixed face 

e1

e2

L L L

P1
0

P2
0

P3
0

Fold 1 Fold 2 

ββ
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2
π −π

π

2 π

2

−π π

π

2

π

2

(a) (b) 

(c) (d) 

L

L

L

L

Stf

S0

2L

γ1(η)

γ2(η)

γ12(η)

Fig. 2.32 Schematic for Problem 2.8: (a) Fold pattern and fold angles for each fold at the
final configuration [32, 33]; (b) Various paths enclosing interior fold intersections; (c) Reference
configuration S0; (d) Final configuration Stf (for visualization, the magnitudes of the fold angles
at the final configuration are slightly lower than those shown in (a))

2.9 Figure 2.33a shows a region of an origami sheet containing three interior
fold intersections. Their associated paths γ j (η), γ k(η), and γ l (η) are shown.
Assume that the kinematic constraint for origami with creased folds in (2.39) is
satisfied for the folds crossed by the paths γ j (η), γ k(η), and γ l (η). Show that the
multiplication of transformation matrices in the form of (2.58) of all the ordered
folds crossed by the paths γ jk(η), γ j l(η), and γ jkl(η) (shown in Fig. 2.33b, c, and
d, respectively) is the identity matrix. Discuss what are the implications of the results
obtained in this problem on the resulting folding motion of the sheet. Can these
results be generalized to paths in the sheet enclosing any arbitrary number of fold
intersections? How?
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(a) (b) 

(c) (d) 

γj(η)

γk(η)

γl(η) γjk(η)

γjl(η)
γjkl(η)

Fig. 2.33 Schematic for Problem 2.9

2.10 Using the results from Problem 2.9, show that the folding map derived in
Sect. 2.5 is independent from the path γ j (η) chosen to connect the fixed face to a
face Pj

0 .

2.11 Implement the procedure for kinematic simulation of origami sheets with
creased folds presented in this chapter. Then, create the fold patterns and simulate
the folding motion of: (a) A box having four corners with the fold pattern used in
Fig. 2.14; (b) Origami helixes having the parameterization shown in Fig. 2.23 with
parameter values {L1 = L2, n = 2} and {L1 = L2, n = 50}; (c) An origami self-
similar wave having the parameterization shown in Fig. 2.24 and parameter n = 12.
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Chapter 3
Unfolding Polyhedra Method for the
Design of Origami Structures with
Creased Folds

Abstract After addressing the kinematics of origami structures with creased folds
in the previous chapter, here we present a method for their design to achieve
targeted three-dimensional shapes. This chapter addresses the method of unfolding
polyhedra. The goal shape is represented in this method as a three-dimensional
polygonal mesh, termed as the goal mesh. The objective in unfolding polyhedra
is to find the shape and fold pattern of a planar sheet that can be folded towards a
configuration that matches the goal mesh. We examine the theory and computational
implementation aspects of the unfolding polyhedra method and provide various
representative examples.

3.1 Introduction

As reviewed in Chap. 1, the potential engineering advantages of origami structures
include storage/deployment capabilities and reduction in manufacturing complex-
ity [1–6]. Such advantages lie in the use of folding to form complex three-
dimensional shapes from planar sheets and have allowed origami to be utilized
in applications ranging from personal fabrication of customized items [7, 8] to
biomedical instruments [9–11] and deployable aerospace structures [12–14].

The process of creating an origami structure with desired characteristics (i.e.,
a desired shape) is known as origami design [15]. Origami design is perhaps
the fundamental challenge faced by artists and engineers that apply origami in
various fields. Prior to the extensive interest from various research communities
seen in the present day, most origami design was performed through trial and error
or other heuristic approaches based on the intuition of an experienced artist or
designer [16]. With the increase in complexity of origami shapes providing various
engineering utilities, computational methods for origami design have become
essential [2, 16, 17]. Given the kinematic models for origami on which they are
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Fig. 3.1 A self-folding cube developed using the unfolding polyhedra method. Upon heating, the
folding motion towards the cube shape is driven by the actuation of torsional shape memory alloy
(SMA) wires. Credit: Beatriz Borges

based, current methods for origami design generally consider rigid faces and straight
creased folds [17–19]. We provide a review of such methods in Sect. 1.3.

A method for determining the shape and fold pattern of a planar sheet that
can be folded towards a targeted polyhedral surface is known as unfolding poly-
hedra [17, 20–22], as the objective in this method is to determine an “unfolding” of
the polyhedral surface. An unfolding is the flattening of the goal polyhedral surface
towards a planar shape that has boundary segments corresponding to cuts made
on the polyhedral surface. Usually, the unfolding is required to be a single sheet
that does not have any overlaps and the cuts are required to be made exclusively on
edges of the goal polyhedral surface. An unfolding that satisfies these characteristics
is called a net [17]. An example of an active origami structure developed using the
unfolding polyhedra method is shown in Fig. 3.1. It is noted that the sheet in Fig. 3.1
has no overlaps in its planar configuration and was obtained by making cuts solely
on edges of the cube; thus, it is a net.

Unfolding polyhedra is a mathematical problem that has been studied for
centuries and several challenges still remain on the topic [17] (see Sect. 3.2.6). In the
sixteenth century, polyhedra became geometric objects of special interest to painters
as they were developing the rules of perspective. In that century, painter Albrecht
Dürer published “The Painter’s Manual,” which contained the first examples of nets
of polyhedra in the literature [17]. During the twentieth century, the interest on
solving problems in unfolding polyhedra increased in the mathematics and computer
science communities [17]. Even though nets of polyhedra were initially used to
make paper origami [23, 24], unfolding polyhedra has found important industrial
applications. Such applications include sheet metal folding as an efficient process
for manufacturing of three-dimensional objects [25, 26]. In that process, the goal
shape of the three-dimensional object is approximated as a polygonal mesh that
is then unfolded into a net (or multiple nets for practical purposes such as efficient
packing into a rectangle of metal). Afterwards, the nets are cut out of sheets of metal
and folded into the goal shape using a bending machine.
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Fig. 3.2 Optical micrographs of self-folding structures with hydrogel-actuated folds: cube and
tetrahedron. (a) Reference planar configurations determined using the unfolding polyhedra
method. (b) Final goal configurations. Adapted from [28] with permission of The Royal Society of
Chemistry

Unfolding polyhedra has also been employed in the development of active
origami structures due to its relative simplicity compared with other origami design
methods. An and coworkers developed an approach for the synthesis of three-
dimensional surface objects via self-folding of planar sheets activated by uniform
heating [27]. Their approach used the unfolding polyhedra method to determine
the geometry and fold pattern of the planar sheets, which are then folded through
shape memory polymer actuation. Other examples of the use of unfolding polyhedra
in the design of active origami structures are provided in Chap. 1. These examples
include thermally activated (Fig. 1.2), and electromagnetically activated (Fig. 1.19)
self-folding structures. Examples of chemically activated self-folding structures
developed using the unfolding polyhedra method are shown in Fig. 3.2.

There is ongoing research on more general unfoldings comprised of multiple
disconnected regions or having cuts that are not limited to edges of the goal
polyhedral surface [17, 29–32]. In this chapter, however, we study the unfolding
polyhedra method considering unfoldings that have the characteristics of a net.
Section 3.2 presents the problem description and solution approach of the unfolding
polyhedra method. A discussion of the limitations of the unfolding polyhedra
method is provided in Sect. 3.2.6 and examples of the implemented method
considering various goal shapes are provided in Sect. 3.3.

3.2 Unfolding Polyhedra Method Considering Creased Folds

Here we describe the various aspects of the unfolding polyhedra method for
the design of origami structures with creased folds. Section 3.2.1 provides the
design problem definition and the solution approach, the goal mesh is described
in Sect. 3.2.2, the steps of the design method are addressed in Sects. 3.2.3–3.2.5,
and limitations of the method are discussed in Sect. 3.2.6.
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3.2.1 Problem Definition

The unfolding polyhedra method aims to solve the following general problem in
origami design:

• Given: A three-dimensional goal shape represented as a polygonal mesh (termed
as the goal mesh1 M),

• Find: The shape and fold pattern of a planar sheet that can be folded to match M,
and a history of folding motion from the planar configuration of the sheet (S0) to
the goal configuration (S�) that matches M
The steps followed in the unfolding polyhedra method to solve this general

problem in origami design are illustrated in Fig. 3.3 and enumerated as follows:

1. Determination of a spanning tree on the goal mesh M (Fig. 3.3b) [33, 34]. A
spanning tree is a line graph on M that contains a reference point in each face of
M. Such a graph is called a “tree” because it is branched and does not contain
any loops. The spanning tree cannot contain any node of M and cannot cross
any edge of M more than once. The importance of the spanning tree is not its
particular shape, but rather the set of edges of M that it crosses

2. Assignment of every edge that is not crossed by the spanning tree as a boundary
edge (Fig. 3.3c). Since only the edges crossed by spanning tree are not assigned
as boundary edges, the resulting mesh corresponds to a tree of faces (i.e., such a
union of faces does not form any loop) that has the topology of the spanning tree

3. Mapping the tree of faces obtained in Step 2 onto a plane. We denote this
mapping as the unfolding map. It produces a net of the goal mesh, which
corresponds to the reference configuration S0 of an origami sheet as shown in
Fig. 3.3d

4. Determination of a history of folding motion from S0 to the goal configuration
S� that matches M (Fig. 3.3e)

We examine the algorithmic aspects associated with each of the aforementioned
steps in the following sections. The data required to define the goal mesh M is
described in Sect. 3.2.2. The procedure used to determine a spanning tree for any M
is presented in Sect. 3.2.3. The formulation used to map the faces of M towards their
position in S0 (i.e., the unfolding map) is presented in Sect. 3.2.4. The determination
of a history of folding motion from S0 to the goal configuration S� is addressed in
Sect. 3.2.5. We provide a set of MATLAB® scripts that perform the aforementioned
steps in the Supplemental Material of this chapter. These MATLAB scripts are
described in Appendix B.2.

1The goal mesh M is a connected, orientable, 2-manifold polygonal mesh.
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Fig. 3.3 Summary of the unfolding polyhedra method: (a) Given goal mesh M; (b) Spanning tree
including all the faces of M; (c) The edges that are not crossed by the spanning tree are assigned as
boundary edges; (d) Determined net corresponding to the reference configuration S0 of an origami
sheet; (e) Continuous folding motion from t = 0 to t = tf such that the final configuration Stf
corresponds to the goal configuration S� that matches M
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3.2.2 Goal Mesh Description

The description of the data required to define a goal mesh M is provided in this
section. This description is used in the subsequent chapters of this book where we
study methods for origami design (Chaps. 4, 6, 7, and 8).

We illustrate two different goal meshes in Figs. 3.4 (cube) and 3.5 (dome).
Following the coordinate system convention of Sect. 2.2, the orthonormal vectors
e1, e2, e3 ∈ R

3 form the basis {e1, e2, e3} that defines the fixed global coordinate
system.

The goal mesh M has a total of NM faces, NE edges, and NN nodes. For the
cube shown in Fig. 3.4, NM = 6, NE = 12, and NN = 8. For the dome shown
in Fig. 3.5, NM = 32, NE = 56, and NN = 25. The position vectors of the
nodes of M are denoted ŷ1, . . . , ŷNN ∈ R

3. The mesh faces of M are denoted
M1, . . . , MNM such that M = ⋃NM

j=1 Mj .

Each mesh face Mj has nMj nodes. For all the faces of the cube shown in

Fig. 3.4, nMj = 4, j = 1, . . . , 6. For all the faces of the dome shown in
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Table 3.1 Input parameters
required to define a goal
mesh M

Parameter Definition

Position vectors of the nodes ŷ1, . . . , ŷNN

Mesh connectivity matrix CM (3.1)

Fig. 3.5, nMj = 3, j = 1, . . . , 32. We introduce the mesh connectivity matrix

CM ∈ R
NM×max(nMj ) to indicate which nodes of M are associated with each of the

faces M1, . . . , MNM . The components of CM are denoted CM
jk and are defined

as follows:

CM
jk = Index of the node at the kth corner (in counterclockwise order) of Mj

j = 1, . . . , NM, k = 1, . . . , nMj .

(3.1)

The input parameters required to define a goal mesh M are listed in Table 3.1.

Example 3.1 Goal mesh data for a cube.
Statement: Consider the node and face labels for the cube shown in Fig. 3.4 and
provide the following data: (a) The components of the position vector of each node;
(b) The components of the mesh connectivity matrix CM.
Solution:

(a) For the cube shown in Fig. 3.4, the position vectors of the nodes ŷ1, . . . , ŷ8 are
given as follows:

ŷ1 =
⎡

⎣
0
0
0

⎤

⎦ , ŷ2 =
⎡

⎣
L

0
0

⎤

⎦ , ŷ3 =
⎡

⎣
L

L

0

⎤

⎦ , ŷ4 =
⎡

⎣
0
L

0

⎤

⎦ ,

ŷ5 =
⎡

⎣
0
0
L

⎤

⎦ , ŷ6 =
⎡

⎣
L

0
L

⎤

⎦ , ŷ7 =
⎡

⎣
L

L

L

⎤

⎦ , ŷ8 =
⎡

⎣
0
L

L

⎤

⎦ .

(3.2)
(b) The mesh connectivity matrix CM is given as follows:

CM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 3 7 6
3 4 8 7
5 6 7 8
4 1 5 8
1 2 6 5
4 3 2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.3)
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Fig. 3.6 (a) Position vectors of the nodes of Mj (ỹj1, ỹj2, and ỹj3). (b) Unit normal vector of
Mj (ñj )

Let ỹj1, . . . , ỹjn
M
j ∈ R

3, j = 1, . . . , NM, be the position vectors of the
nodes of the mesh face Mj (see Fig. 3.6a). We use the mesh connectivity matrix
CM to map the position vectors of all the nodes of M to the position vectors

ỹj1, . . . , ỹjn
M
j , j = 1, . . . , NM, as follows:

ỹjk = ŷC
M
jk j = 1, . . . , NM, k = 1, . . . , nMj . (3.4)

The unit normal vector of Mj is denoted ñj ∈ R
3 and is determined as follows

(see Fig. 3.6b):

ñj = (ỹj2 − ỹj1)× (ỹj3 − ỹj2)

‖(ỹj2 − ỹj1)× (ỹj3 − ỹj2)‖ . (3.5)

Example 3.2 Data for a face in the cube.
Statement: Determine the position vectors of the nodes of M3 in the cube shown in
Fig. 3.4. Also determine the unit normal vector of M3.
Solution: We use (3.4) to determine the position vectors of the nodes of mesh
face M3:

ỹ31 = ŷC
M
31 , ỹ32 = ŷC

M
32 , ỹ33 = ŷC

M
33 , ỹ34 = ŷC

M
34 . (3.6)

Substituting (3.3) into (3.6):

ỹ31 = ŷ5, ỹ32 = ŷ6, ỹ33 = ŷ7, ỹ34 = ŷ8, (3.7)
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Fig. 3.7 Goal mesh of a
tetrahedron and coordinates
of the nodes
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e3

4 e1 e2

e3

M1 
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⎤
⎦

0
0

⎡
⎣

L3

⎤
⎦

⎡
⎣ 0

0

L1

⎡
⎣

0
0
0

⎤
⎦

⎡
⎣

0
L2

⎤
⎦

0

and substituting (3.2) in (3.7):

ỹ31 =
⎡

⎣
0
0
L

⎤

⎦ , ỹ32 =
⎡

⎣
L

0
L

⎤

⎦ , ỹ33 =
⎡

⎣
L

L

L

⎤

⎦ , ỹ34 =
⎡

⎣
0
L

L

⎤

⎦ . (3.8)

We use (3.5) to determine the unit normal vector of face M3 (i.e., ñ3) of the cube
shown in Fig. 3.4 as follows:

ñ3 = (ỹ32 − ỹ31)× (ỹ33 − ỹ32)

‖(ỹ32 − ỹ31)× (ỹ33 − ỹ32)‖

= 1

L2

⎡

⎣
0
0
L2

⎤

⎦ substituting (3.8)

=
⎡

⎣
0
0
1

⎤

⎦ .

(3.9)

Example 3.3 Parameters for the goal mesh of a tetrahedron.
Statement: Consider the goal mesh M of the tetrahedron illustrated in Fig. 3.7. (a)
Determine the position vectors of the nodes ŷi , i = 1, . . . , NN , and the mesh
connectivity matrix CM. Define CM such that the unit normal vectors of the
mesh faces point towards the exterior of the tetrahedron. (b) Determine the vectors

ỹj1, . . . , ỹjn
M
j and unit normal vector ñj of each mesh face.

Solution:

(a) From the schematic in Fig. 3.7, we observe that NN = 4 and NM = 4. The
position vectors of the nodes of M are given as:
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ŷ1 =
⎡

⎣
L1

0
0

⎤

⎦ , ŷ2 =
⎡

⎣
0
L2

0

⎤

⎦ , ŷ3 =
⎡

⎣
0
0
L3

⎤

⎦ , ŷ4 =
⎡

⎣
0
0
0

⎤

⎦ . (3.10)

Enumerating the faces such that M1 is the face in the 2-3 plane, M2 is the
face in the 3-1 plane, M3 is the face in the 1-2 plane, and M4 is the remainder
face, the mesh connectivity matrix CM is given as follows:

CM =

⎡

⎢
⎢
⎣

4 3 2
4 1 3
4 2 1
1 2 3

⎤

⎥
⎥
⎦ . (3.11)

(b) After substituting (3.10) and (3.11) into (3.4), the vectors ỹj1, . . . , ỹj3, j =
1, . . . , 4, are obtained as follows:

Face M1 : ỹ11 =
⎡

⎣
0
0
0

⎤

⎦ , ỹ12 =
⎡

⎣
0
0
L3

⎤

⎦ , ỹ13 =
⎡

⎣
0
L2

0

⎤

⎦ ,

Face M2 : ỹ21 =
⎡

⎣
0
0
0

⎤

⎦ , ỹ22 =
⎡

⎣
L1

0
0

⎤

⎦ , ỹ23 =
⎡

⎣
0
0
L3

⎤

⎦ ,

Face M3 : ỹ31 =
⎡

⎣
0
0
0

⎤

⎦ , ỹ32 =
⎡

⎣
0
L2

0

⎤

⎦ , ỹ33 =
⎡

⎣
L1

0
0

⎤

⎦ ,

Face M4 : ỹ41 =
⎡

⎣
L1

0
0

⎤

⎦ , ỹ42 =
⎡

⎣
0
L2

0

⎤

⎦ , ỹ43 =
⎡

⎣
0
0
L3

⎤

⎦ .

(3.12)

The unit normal vectors ñ1, . . . , ñ4 are determined using (3.5):

Face M1 : ñ1 = (ỹ12 − ỹ11)× (ỹ13 − ỹ12)

‖(ỹ12 − ỹ11)× (ỹ13 − ỹ12)‖ =
⎡

⎣
−1

0
0

⎤

⎦ ,

Face M2 : ñ2 = (ỹ22 − ỹ21)× (ỹ23 − ỹ22)

‖(ỹ22 − ỹ21)× (ỹ23 − ỹ22)‖ =
⎡

⎣
0

−1
0

⎤

⎦ ,
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Face M3 : ñ3 = (ỹ32 − ỹ31)× (ỹ33 − ỹ32)

‖(ỹ32 − ỹ31)× (ỹ33 − ỹ32)‖ =
⎡

⎣
0
0

−1

⎤

⎦ ,

Face M4 : ñ4 = (ỹ42 − ỹ41)× (ỹ43 − ỹ42)

‖(ỹ42 − ỹ41)× (ỹ43 − ỹ42)‖

= 1
(
(L2L3)2 + (L3L1)2 + (L1L2)2

) 1
2

⎡

⎢
⎣

L2L3

L3L1

L1L2

⎤

⎥
⎦ .

(3.13)

The number of interior nodes of M (i.e., those that are not located at the
boundary of the mesh) is denoted NI

N and the number of interior edges is denoted
NI
E . The cube shown in Fig. 3.4 is a closed mesh and therefore all of its nodes and

edges are, respectively, interior nodes and interior edges (i.e., NI
N = NN = 8,

NI
E = NE = 12). Conversely, the dome shown in Fig. 3.4 is not a closed mesh and

thus it has boundary nodes and edges. From Fig. 3.4, we observe that NI
N = 9 and

NI
E = 40 (recall that NN = 25 and NE = 56 for this mesh).
Let ẑi ∈ R

3, i = 1, . . . , NI
E , be a vector along the length of the ith interior edge

of the goal mesh M. To identify which nodes are the start points and end points of
each interior edge in M, we introduce the edge connectivity matrix CEI ∈ R

NI
E×2

with components CEI
ij defined as follows:

C
EI
i1 = Index of the node corresponding to the start point of the ith interior edge,

C
EI
i2 = Index of the node corresponding to the end point of the ith interior edge,

i = 1, . . . , NI
E .

(3.14)

The components of the edge connectivity matrix CEI can be determined from
the given mesh connectivity matrix CM (see Problem 3.3). The mapping from the
position vectors of the nodes of M (ŷ1, . . . , ŷNN ) to the vectors along the length
of the interior edges of M (ẑ1, . . . , ẑN

I
E ) is given as follows:

ẑi = ŷC
EI
i2 − ŷC

EI
i1 i = 1, . . . , NI

E . (3.15)

Each interior node has a total of nNj incident edges. We define zjk ∈ R
3,

j = 1, . . . , NI
N , k = 1, . . . , nNj , as the vector along the edge connecting the

j th interior node to its kth adjacent node. The vectors zj1, . . . , zjn
N
j are arranged
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Fig. 3.8 Geometric
parameters of the faces in the
goal mesh M connected to a
common interior node

zjk

zj k+1

jth interior node

njk

jk

in counterclockwise order (see Fig. 3.8). The node connectivity matrix CNI with
components CNI

jk is used to identify the edges incident to each interior node:

C
NI

jk = Index of the kth interior edge incident to the j th interior node (multiplied

by − 1 if the interior edge, as defined in CEI , ends at the interior node),

j = 1, . . . , NI
N , k = 1, . . . nNj .

(3.16)

The components of CNI can also be determined from the given mesh connectiv-
ity matrix CM (see Problem 3.4).

The mapping from the vectors along the length of the interior edges of M
(ẑ1, . . . , ẑN

I
E ) to the vectors zj1, . . . , zjn

N
j , j = 1, . . . , NI

N , is given as follows:

zjk =

⎧
⎪⎨

⎪⎩

ẑC
NI
jk ; C

NI

jk > 0

−ẑ|CNI
jk |; C

NI

jk < 0,

j = 1, . . . , NI
N , k = 1, . . . , nNj .

(3.17)

Note that zjk has the opposite direction of its associated vector ẑ|CNI
jk | if

C
NI

jk < 0. This is applied such that a vector zjk always emanate from the j th interior

node (since CNI

jk < 0 if the considered edge ends at the interior node, recall the

definition of CNI in (3.16)).
The parameters associated with the faces of M connected to the j th interior

node are the face corner angles φjk and the unit normal vectors njk ∈ R
3, j =
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⎦
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Fig. 3.9 Schematic for Example 3.4. The base of the pyramid is open. (a) Goal mesh M having a
single interior node. The coordinates of the nodes are shown. (b) Vectors z11 and z12

1, . . . , NI
N , k = 1, . . . , nNj . These parameters are determined as follows (see

Fig. 3.8):

φjk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos−1
(

zjk · zj k+1

‖zjk‖ ‖zj k+1‖
)

; k = 1, . . . , nNj − 1

cos−1
(

zjk · zj1

‖zjk‖ ‖zj1‖
)

; k = nNj ,

(3.18)

njk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zjk × zj k+1

‖zjk × zj k+1‖; k = 1, . . . , nNj − 1

zjk × zj1

‖zjk × zj1‖; k = nNj .

(3.19)

Example 3.4 Determining the face corner angles and the unit normal vectors of the
faces connected to an interior node.

Statement: Figure 3.9a illustrates a goal mesh M having a single interior node.
Determine the vectors z11, . . . , z14, the face corner angles φ11, . . . , φ14, and the
unit normal vectors n11, . . . , n14.
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Solution: From the node coordinates provided in Fig. 3.9a, the vectors z11, . . . , z14

are given as follows:

z11 =
⎡

⎢
⎣

L1

L2

−L3

⎤

⎥
⎦ , z12 =

⎡

⎢
⎣

−L1

L2

−L3

⎤

⎥
⎦ , z13 =

⎡

⎢
⎣

−L1

−L2

−L3

⎤

⎥
⎦ , z14 =

⎡

⎢
⎣

L1

−L2

−L3

⎤

⎥
⎦ .

(3.20)

The face corner angles φ11, . . . , φ14 are determined via (3.18):

φ11 = cos−1
(

z11 · z12

‖z11‖ ‖z12‖
)

= cos−1

(
−L2

1 + L2
2 + L2

3

L2
1 + L2

2 + L2
3

)

,

φ12 = cos−1
(

z12 · z13

‖z12‖ ‖z13‖
)

= cos−1

(
L2

1 − L2
2 + L2

3

L2
1 + L2

2 + L2
3

)

,

φ13 = cos−1
(

z13 · z14

‖z13‖ ‖z14‖
)

= cos−1

(
−L2

1 + L2
2 + L2

3

L2
1 + L2

2 + L2
3

)

,

φ14 = cos−1
(

z14 · z11

‖z14‖ ‖z11‖
)

= cos−1

(
L2

1 − L2
2 + L2

3

L2
1 + L2

2 + L2
3

)

.

(3.21)

Finally, the unit normal vectors n11, . . . , n14 are determined using (3.19) as
follows:

n11 = z11 × z12

‖z11 × z12‖ = 1

(L2
2 + L2

3)
1
2

⎡

⎢
⎣

0
L3

L2

⎤

⎥
⎦ ,

n12 = z12 × z13

‖z12 × z13‖ = 1

(L2
1 + L2

3)
1
2

⎡

⎢
⎣

−L3

0
L1

⎤

⎥
⎦ ,

n13 = z13 × z14

‖z13 × z14‖ = 1

(L2
2 + L2

3)
1
2

⎡

⎢
⎣

0
−L3

L2

⎤

⎥
⎦ ,

n14 = z14 × z11

‖z14 × z11‖ = 1

(L2
1 + L2

3)
1
2

⎡

⎢
⎣

L3

0
L1

⎤

⎥
⎦ .

(3.22)
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Table 3.2 Calculated parameters required to define a goal mesh M
Parameter Equation

Position vectors of the nodes of each mesh face ỹj1, . . . , ỹjn
M
j , j = 1, . . . , NM (3.4)

Unit normal vector ñj of each mesh face, j = 1, . . . , NM (3.5)

Edge connectivity matrix CEI (3.14)

Vectors along the length of each interior edge ẑ1, . . . , ẑN
I
E (3.15)

Node connectivity matrix CNI (3.16)

Vectors along the edges connecting the j th interior node to its adjacent nodes

zj1, . . . , zjn
N
j , j = 1, . . . , NI

N

(3.17)

Corner angles of the faces connected to the j th interior node φj1, . . . , φjnNj
, j =

1, . . . , NI
N

(3.18)

Unit normal vectors of the faces connected to the j th interior node nj1, . . . , njn
N
j ,

j = 1, . . . , NI
N

(3.19)

Such parameters are determined from those provided in Table 3.1

The calculated parameters required to define a goal mesh M are summarized in
Table 3.2.

3.2.3 Determination of Spanning Trees

This section describes a procedure to determine a spanning tree for a given goal
mesh M, which is the first step in the implementation of the unfolding polyhedra
method (refer to Sect. 3.2.1). A spanning tree is a line graph on M that contains a
reference point in each face of M. Such a graph is called a “tree” because it does
not have any loops. We illustrate a spanning tree in Fig. 3.3b. The spanning tree does
not cross the nodes of M and does not cross any edge of M more than once. The
significance of the spanning tree is not its particular geometry but is rather the set of
edges of M that it crosses.

The original boundary of a given goal mesh M is denoted ∂MO (Fig. 3.10b).
In general, the goal mesh M with boundary ∂MO is not a tree of faces (i.e., the
faces of M with boundary ∂MO may form loops; see Fig. 3.10b). In the unfolding
polyhedra method, we require the goal mesh to have the topology of a tree of faces
in order to flatten it and form a net (see Fig. 3.3). In view of this, we introduce
additional boundary edges forming the cut boundary ∂MC (Fig. 3.10c) such that
the goal mesh becomes a tree of faces having boundary ∂M = ∂MO ∪ ∂MC and
can be flattened onto a plane to form a net (Fig. 3.10d).

We use a spanning tree to compute the cut boundary ∂MC . Once a spanning
tree is determined for M, the edges that are not crossed by the spanning tree are
assigned as the edges forming the cut boundary ∂MC (see Fig. 3.11). The resulting
mesh having boundary ∂M = ∂MO ∪∂MC corresponds to a tree of faces with the
same topology of the spanning tree.
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M
(a) (b) 

(c) 

MO

MC

(d) 

M

Fig. 3.10 (a) Goal mesh M of a dome. The base of the dome is open. (b) Original boundary of
the given goal mesh ∂MO . Two arbitrary paths are shown on the mesh to indicate loops of faces.
(c) Edges forming the cut boundary ∂MC that is introduced to convert M into a tree of faces. (d)
Resulting mesh corresponding to a tree of faces having boundary ∂M = ∂MO ∪ ∂MC

In general, the spanning tree of a given goal mesh M is not unique as illustrated
in Fig. 3.11. Schlickenrieder proposed several heuristic procedures to determine
spanning trees in polyhedra [21]. Here, we employ the following procedure to
determine a spanning tree for a given goal mesh M:

1. An arbitrary face in M is selected as the reference face (Fig. 3.12a). A point in
this face becomes the start point of the spanning tree

2. The faces sharing an edge with the reference face are then integrated to the
spanning tree (Step 1; see Fig. 3.12b). At Step i + 1, the faces sharing an edge
with those included in the spanning tree at Step i but have not yet been included
to the spanning tree are then integrated to it. The steps continue until all the faces
in M have been incorporated to the spanning tree (Fig. 3.12c–e)
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M

S 0

S 0

S 0

Fig. 3.11 Goal mesh M of a cube and different boundary edges and nets determined from three
different spanning trees
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Edges in  ∂MC

Fig. 3.12 (a)–(e) Schematic of the procedure to determine a spanning tree for a given goal mesh.
The reference face is marked with a circle enclosing a 0. At each step, the neighboring faces that
have not been incorporated to the spanning tree are then integrated to it. The numbers enclosed in
the circles correspond to the step number at which each face is incorporated to the spanning tree.
(f) Introduced boundary edges forming the cut boundary ∂MC corresponding to the edges that are
not crossed by the spanning tree

The spanning tree determined using the described procedure is obviously
dependent on the face selected as the reference face. This leads to different possible
nets for a given goal mesh M. To illustrate this, Fig. 3.13 shows two different nets
for a truncated cube, one determined by selecting a triangle face as the reference
face and another by selecting an octagon face.

A net obtained by mapping a determined tree of faces onto a plane has obviously
the same number of faces of M. Thus, the number of faces of an origami sheet
(NP ; refer to Sect. 2.2) obtained via the unfolding polyhedra method is equal to the
number of faces of the goal mesh (NM). Furthermore, the number of folds in such
an origami sheet (NF ) corresponds to the number of edges in the tree of faces which
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e1

e2
e3

e1

e2

(a) (b) 

M * * 

e1

e2

Fig. 3.13 (a) Goal mesh M of a truncated cube. (b) Two different nets for the truncated cube.
The reference faces for the spanning tree of each net are marked with the symbol ∗. The number of
faces of the goal mesh (NM) is 14 (6 octagons and 8 triangles). As indicated in (3.23), the number
of folds (NF ) for both nets is NM − 1 = 13

is equal toNM−1. This is because one edge is crossed by the spanning tree to reach
each of the NM faces of M, except for the reference face. In summary:

NP = NM, NF = NM − 1. (3.23)

As stated in Sect. 3.2.1, after determining a spanning tree and a cut boundary
∂MC that converts M to a tree of faces, the next step is to map such a tree of faces
onto a plane to form a net. We summarize such a mapping in the following section.

3.2.4 Formulation of the Unfolding Map

As stated in Sect. 3.2.1, after determining a spanning tree and a cut boundary that
converts the goal mesh M to a tree of faces (see Sect. 3.2.3), the next step in the
unfolding polyhedra method is to map the tree of faces onto a plane to form a net.
We denote this mapping as the unfolding map and we summarize it in this section.
We formulate the unfolding map by assuming that the complete net is placed on
the 1-2 plane. The mapping of each mesh face Mj , j = 1, . . . , NM, towards its
position in the net is performed through the following three steps:

1. The face Mj is rotated to align its unit normal vector with e3 (Fig. 3.14b). After
this first step is done, the updated configuration of the mesh face is denoted Mj

(1)

and the position vectors of its nodes are denoted ỹjk(1), k = 1, . . . , nMj
2. The face Mj

(1) is translated to place one of its nodes at the origin and rotated
to align one of its edges with e1 (Fig. 3.14c). The face is fully contained in the
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1-2 plane after this step is done. The updated configuration of the face is denoted
Mj

(2) and the position vectors of its nodes are denoted ỹjk(2), k = 1, . . . , nMj
3. The face Mj

(2) is rotated and translated within the 1-2 plane towards its
corresponding position in the net (Fig. 3.14d). After this final step is done, the
updated configuration of the face is denoted Mj

(3), which corresponds to the
configuration of the face in the net, and the position vectors of its nodes are
denoted ỹjk(3), k = 1, . . . , nMj
To determine the parameters needed to perform these steps, we define the paths

γ̃ 1(η), . . . , γ̃NM(η) : [0, 1] → M that connect the reference face2 to each face
M1, . . . ,MNM in the tree of faces (Fig. 3.15a). Each path γ̃ j (η) crosses a total of
ñj faces from the reference face until reaching Mj , including the reference face and
Mj . For the path γ̃ j (η) illustrated in Fig. 3.15a, ñj = 4. The unit normal vector of

each face in M crossed by γ̃ j (η) is denoted ñjkγ ∈ R
3, k = 1, . . . , ñj .

As shown in Fig. 3.15b, the vector along the edge where γ̃ j (η) enters the kth
face is denoted z̃jkI ∈ R

3, k = 1, . . . , ñj , and the position vector of the start point

of this edge is denoted ỹjkI ∈ R
3. Likewise, the vector along the edge where γ̃ j (η)

exits the kth face is denoted z̃jkO ∈ R
3 and the position vector of the start point of

this edge is denoted ỹjkO ∈ R
3. To define z̃j1

I and ỹj1
I , j = 1, . . . , NM, an arbitrary

edge of the reference face (i.e., the reference edge; see Fig. 3.15c) is selected and
z̃j1

I is the vector along that edge while ỹj1
I is the position vector of the start point of

that edge.
Step 1: Rotating Mj to align its unit normal vector with e3

We perform the first step of the unfolding map through a single rotation that
aligns the unit normal vector of Mj with e3 (see Fig. 3.14b). A rotation of vector
ỹjk by φ radians about an axis aligned with a unit vector b ∈ R

3 can be expressed
as follows [35, 36]:

ỹjk(1) = ỹjk cos(φ)+ (b × ỹjk) sin(φ)+ b(b · ỹjk)(1 − cos(φ)). (3.24)

We use such a formula to define a rotation that aligns the unit normal vector
of Mj with e3. As illustrated in Fig. 3.16, this can be achieved through a rotation
of cos−1(ñj · e3) about an axis aligned with the vector ñj × e3. Accordingly, the
following expressions are substituted in (3.24) to determine the rotation that aligns
the unit normal vector of Mj with e3:

cos(φ) = ñj · e3

‖ñj‖ ‖e3‖ = ñj · e3

(1)(1)
= ñj · e3, (3.25)

2Consult Sect. 3.2.3 for the definition of the reference face.



3.2 Unfolding Polyhedra Method Considering Creased Folds 131

M

S0

(a) (b) 
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e1
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e3

(d) 

ñj
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e3ỹjk
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Step 1 Step 2 

Step 3 

ñj
(1) = e3

ỹjk
(1) Mj

(1)

Mj
(2)
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Fig. 3.14 Steps taken in the mapping of mesh face Mj from its position in the goal mesh M to
its position in the net: (a) Configuration of Mj within M; (b) The face is rotated to align its unit
normal vector with e3; (c) The face is translated to place one of its nodes at the origin and rotated
to align one of its edges with e1; (d) The face is then rotated and translated within the 1-2 plane
towards its corresponding position in the net
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Fig. 3.15 (a) Path γ̃ j (η) connecting the reference face with Mj . (b) Vectors z̃jkI and z̃jkO along

the edges where γ̃ j (η), respectively, enters and exits the kth face that it crosses. (c) Vector z̃j1
I

along the reference edge and vector z̃
j ñj

I along the edge where γ̃ j (η) enters Mj . (d) Face Mj

mapped to its position at the net

sin(φ) = ‖ñj × e3‖
‖ñj‖ ‖e3‖ = ‖ñj × e3‖

(1)(1)
= ‖ñj × e3‖, (3.26)

b = ñj × e3

‖ñj × e3‖ . (3.27)
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Fig. 3.16 Mesh face Mj

with unit normal vector ñj
e3

ñj

co
s−

1 (ñ
j · e 3

)

ñj × e3

‖ñj × e3‖

Mj

The following is obtained by substituting (3.27) into (3.24):

ỹjk(1) = ỹjk cos(φ)+
(

ñj × e3

‖ñj × e3‖ × ỹjk
)

sin(φ)

+ ñj × e3

‖ñj × e3‖
(

ñj × e3

‖ñj × e3‖ · ỹjk
)

(1 − cos(φ)),

(3.28)

which can be further simplified by substitution of (3.26) into (3.28):

ỹjk(1) = ỹjk cos(φ)+ (
ñj × e3

) × ỹjk

+ (
ñj × e3

) ( (
ñj × e3

) · ỹjk
)1 − cos(φ)

sin2(φ)

= ỹjk cos(φ)+ (
ñj × e3

) × ỹjk

+ (
ñj × e3

) ( (
ñj × e3

) · ỹjk
) 1

1 + cos(φ)
.

(3.29)

By substituting (3.25) into (3.29), the following is determined:

ỹjk(1) = ỹjk
(
ñj · e3

) + (
ñj × e3

) × ỹjk + ñj × e3

1 + ñj · e3

( (
ñj × e3

)
· ỹjk

)
.

(3.30)

It is noted that the rotation formula above is not applicable when ñj = −e3. In
that case, a rotation of π radians about an axis aligned to e1 is applied to align the
unit normal vector of Mj with e3. Accordingly, the equation used to transform the
position vectors of the nodes of the mesh faces Mj , j = 1, . . . , NM, to align their
unit normal vector with e3 is then given as follows:
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e1

e2
e3

Mj
ỹj3 =

⎡
⎣

0
0
L

⎤
⎦

ỹj1 =

⎡
⎣

L
0
0

⎤
⎦

ỹj2 =

⎡
⎣

L
L
0

⎤
⎦

Fig. 3.17 Schematic for Example 3.5: Face Mj and the position vectors of its nodes

ỹjk(1) = χ̃ (ỹjk)

where:

χ̃(ỹjk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R1(π) ỹjk; ñj = −e3

ỹjk
(
ñj · e3

) + (
ñj × e3

) × ỹjk

+ ñj × e3

1 + ñj · e3

( (
ñj × e3

)
· ỹjk

)
; ñj 
= −e3,

(3.31)

where R1(π) is the matrix associated with a rotation of π radians about an axis
aligned with e1; refer to (2.21). The unit normal vectors ñj(1), j = 1, . . . , NM, of

the faces Mj
(1) having nodes with position vectors ỹj1

(1) , . . . , ỹ
jnMj
(1) are equal to e3

(see Fig. 3.14b):

ñj(1) = (ỹj2
(1) − ỹj1

(1) )× (ỹj3
(1) − ỹj2

(1) )

‖(ỹj2
(1) − ỹj1

(1) )× (ỹj3
(1) − ỹj2

(1) )‖
= e3. (3.32)

Example 3.5 Rotating a mesh face to align its unit normal vector with e3.

Statement: Consider the mesh face Mj illustrated in Fig. 3.17. (a) Determine the
rotation in the form of (3.31) that is required to align the unit normal vector of
Mj with e3. (b) Determine the position vectors ỹj1

(1) , ỹj2
(1) , and ỹj3

(1) . (c) Verify that
ñj(1) = e3.
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Solution:

(a) To determine the rotation in the form of (3.31), the unit normal vector of Mj

(i.e., ñj ) must be determined first. Using (3.5), ñj is calculated as follows:

ñj = (ỹj2 − ỹj1)× (ỹj3 − ỹj2)

‖(ỹj2 − ỹj1)× (ỹj3 − ỹj2)‖

= 2− 1
2

L2

⎡

⎣
L2

0
L2

⎤

⎦ =
⎡

⎢
⎣

2− 1
2

0

2− 1
2

⎤

⎥
⎦ ,

(3.33)

and therefore:

ñj · e3 = 2− 1
2 , ñj × e3 =

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ . (3.34)

By substituting (3.33) and (3.34) into (3.31), the following transformation is
obtained:

ỹjk(1) = 2− 1
2 ỹjk +

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ × ỹjk + 1

1 + 2− 1
2

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦

⎛

⎜
⎝

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ · ỹjk

⎞

⎟
⎠ .

(3.35)

(b) The position vectors of the nodes of the rotated face (ỹj1
(1) , ỹj2

(1) , and ỹj3
(1) ) are

determined by, respectively, substituting ỹj1, ỹj2, and ỹj3 into (3.35):

ỹj1
(1) = 2− 1

2

⎡

⎣
L

0
0

⎤

⎦ +
⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ ×

⎡

⎣
L

0
0

⎤

⎦

+ 1

1 + 2− 1
2

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦

⎛

⎜
⎝

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ ·

⎡

⎣
L

0
0

⎤

⎦

⎞

⎟
⎠ =

⎡

⎢
⎣

2− 1
2L

0

2− 1
2L

⎤

⎥
⎦ ,

(3.36)

ỹj2
(1) = 2− 1

2

⎡

⎣
L

L

0

⎤

⎦ +
⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ ×

⎡

⎣
L

L

0

⎤

⎦

+ 1

1 + 2− 1
2

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦

⎛

⎜
⎝

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ ·

⎡

⎣
L

L

0

⎤

⎦

⎞

⎟
⎠ =

⎡

⎢
⎣

2− 1
2L

L

2− 1
2L

⎤

⎥
⎦ ,

(3.37)
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ỹj3
(1) = 2− 1

2

⎡

⎣
0
0
L

⎤

⎦ +
⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ ×

⎡

⎣
0
0
L

⎤

⎦

+ 1

1 + 2− 1
2

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦

⎛

⎜
⎝

⎡

⎢
⎣

0

−2− 1
2

0

⎤

⎥
⎦ ·

⎡

⎣
0
0
L

⎤

⎦

⎞

⎟
⎠ =

⎡

⎢
⎣

−2− 1
2L

0

2− 1
2L

⎤

⎥
⎦ .

(3.38)

(c) The unit normal vector of the rotated face (ñj(1)) is calculated using (3.32) in
order to verify if it is aligned with e3:

ñj(1) = (ỹj2
(1) − ỹj1

(1) )× (ỹj3
(1) − ỹj2

(1) )

‖(ỹj2
(1) − ỹj1

(1) )× (ỹj3
(1) − ỹj2

(1) )‖

= 2− 1
2

L2

⎡

⎢
⎣

0
0

2
1
2L2

⎤

⎥
⎦ =

⎡

⎣
0
0
1

⎤

⎦ = e3.

(3.39)

Step 2: Translation of Mj
(1) to place one of its nodes at the origin and rotation to

align one of its edges with e1

After determining the configurations of the faces M1
(1), . . . , MNM

(1) having their
unit normal vectors aligned with e3, these faces are translated to place one of their
nodes at the origin and rotated to align one of their edges with e1 (Fig. 3.14c). These
transformations place the mesh faces fully in the 1-2 plane.

To determine the parameters required to apply these transformations, let the
vectors z̃jkI(1)

, z̃jkO(1)
, ỹjkI(1)

, and ỹjkO(1)
, respectively, correspond to z̃jkI , z̃jkO , ỹjkI , and ỹjkO

after undergoing the rotation transformation (3.31):

z̃jkI(1)
= χ̃ (z̃jkI ), z̃jkO(1)

= χ̃ (z̃jkO ),

ỹjkI(1)
= χ̃ (ỹjkI ), ỹjkO(1)

= χ̃ (ỹjkO ).

(3.40)

The face Mj
(1) is translated such that its node with position vector ỹ

j ñj
I(1)

is placed at

the origin (Fig. 3.18b). This translation is formulated in matrix form as T−1(ỹ
j ñj
I(1)
),

where T(·) is defined in (2.53). Next, the face is rotated such that the edge along

z̃
j ñj
I(1)

is aligned with e1 (Fig. 3.18c). This is accomplished through a rotation of

−ϕ(z̃j ñjI(1)
) about an axis aligned with e3, where ϕ(z̃

j ñj
I(1)
) is the angle between e1 and

z̃
j ñj
I(1)

calculated using (2.13). Such a transformation is formulated via the rotation

matrix Q−1
3 (ϕ(z̃

j ñj
I(1)
)), where Q3(·) is defined in (2.57).
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In summary, the position vectors of the nodes of Mj
(2), which corresponds to the

configuration of face Mj placed on the 1-2 plane and having one node at the origin
and one edge aligned with e1, are determined as follows:

[
ỹjk(2)

1

]

= Q−1
3 (ϕ(z̃

j ñj
I(1)
))T−1(ỹ

j ñj
I(1)
)

[
ỹjk(1)

1

]

, (3.41)

where the vectors ỹjk(1) , j = 1, . . . , NM, k = 1, . . . , nMj , are computed using
(3.31).
Step 3: Rotating and translating Mj

(2) within the 1-2 plane towards its corresponding
position in the net

The transformations required to map a face Mj
(2) with node position vectors ỹjk(2) ,

k = 1, . . . , nMj , towards its configuration in the net Mj
(3) with node position vectors

ỹjk(3) are illustrated in Fig. 3.18d–f.
Referring to Fig. 3.19, a rotation of μ̃jk in the 1-2 plane and a translation by

b̃jk ∈ span(e1, e2) must be applied for each of the ñj − 1 faces crossed by the path
γ̃ j (η) before reaching Mj . The parameters μ̃jk and b̃jk are computed as follows:

μ̃jk = ϕ(−z̃jkO(1)
)− ϕ(z̃jkI(1)

), (3.42)

b̃jk = R3

(
(
∑k−1

l=1 μ̃j l)− ϕ(z̃jkI(1)
)
) (

z̃jkO(1)
+ ỹjkO(1)

− ỹjkI(1)

)
, (3.43)

where R3(·) represents a rotation about the 3-axis and is defined in (2.22).
As shown in Fig. 3.18d–f, the face Mj

(2) is mapped to its corresponding configu-

ration in the net Mj
(3) by applying a rotation of

∑ñj−1
k=1 μ̃jk in the 1-2 plane followed

by a translation of
∑ñj−1

k=1 b̃jk:

[
ỹjk(3)

1

]

= T
(∑ñj−1

l=1 b̃j l
)

Q3

(∑ñj−1
l=1 μ̃j l

)
[

ỹjk(2)

1

]

, (3.44)

where the vectors ỹjk(2) , j = 1, . . . , NM, k = 1, . . . , nMj , are computed using
(3.41).

As previously indicated, the vectors ỹjk(3) , j = 1, . . . , NM, k = 1, . . . , nMj ,
provide the position of the nodes of each face of the goal mesh mapped to its
corresponding position in the net. Once these vectors have been determined, the
data of Table 2.1 required to the define fold pattern of the origami sheet associated
with the net can be readily obtained.
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ñj
(1) = e3

z̃jñj

I(1)
ỹjñj

I(1)
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jñ

j

I(1
)

ϕ(z̃jñj

I(1) )
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Mj
(2)

Mj
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∑ñj
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∑ñj

k=1 b̃
jk

Fig. 3.18 Schematic showing the configurations of a mesh face during the transformations applied
in (3.41) and (3.44): (a) Face Mj

(1) with unit normal vector ñj(1) aligned with e3 (obtained via (3.31));

(b) Face after translation via T−1(ỹ
j ñj

I(1)
) to place its node with position vector ỹ

j ñj

I(1)
at the origin;

(c) Face after rotation via Q−1
3 (ϕ(z̃

j ñj

I(1)
)) to align its edge along z̃

j ñj

I(1)
with e1. The configuration of

the face after this transformation corresponds to Mj
(2); (d) Position of the considered face in the

net shown with the dotted line; (e) Rotation of the face via Q3(
∑ñj−1

k=1 μ̃jk); (f) Translation of the

face via T(
∑ñj−1

k=1 b̃jk) to finally place it at its configuration in the net Mj
(3)
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e1
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z̃jk
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z̃jk
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Fig. 3.19 Parameters μ̃jk and b̃jk used to map a face towards its corresponding position in the net

3.2.5 Determination of Folding Motion

Following the steps of the unfolding polyhedra method listed in Sect. 3.2.1, once
a net has been obtained for a given goal mesh M, the next step is to determine a
history of folding motion from the reference configuration S0 (i.e., the net) towards
the goal configuration S� that matches M. The determination of such a history of
folding motion is addressed in this section.

We utilize the model for origami with creased folds presented in Chap. 2 to
simulate the folding motion of the sheets determined via the unfolding polyhedra
method. As explained in Sect. 2.6, the folding motion is simulated by incrementally
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Θ̂i

Convex edge 

Θ̂i

Concave edge 

n̂i1 n̂i2
n̂i1 n̂i2

Fig. 3.20 Side views of faces in the goal mesh M connected by a convex edge and a concave
edge. The edge dihedral angle Θ̂i and unit normal vectors n̂i1 and n̂i2 of the connected faces are
shown. For convex edges, Θ̂i ≥ π ; for concave edges, Θ̂i < π

updating the values of the fold angles using guess increments and then applying any
required corrections such that every folded configuration is valid. Since an origami
sheet obtained via the unfolding polyhedra method does not contain any interior
fold intersections, the kinematic constraints for origami with creased folds (2.39) do
not apply and are not considered. This represents a practical engineering advantage
of the unfolding polyhedra method.

We define Δθ̂
l ∈ R

NF as the vector whose components correspond to the lth set
of guess increments for the fold angles (see (2.72)):

Δθ̂
l = [Δθ̂l1 · · · Δθ̂lNF ]	 l = 1, . . . , Ninc. (3.45)

where Ninc is the total number of increments. The guess increments for the fold

angles Δθ̂
l
, l = 1, . . . , Ninc, must be determined from the given goal mesh M. For

this purpose, first let θ̂ �1 , . . . , θ̂
�
NF be the fold angles of each creased fold in the goal

configuration S� (i.e., the goal fold angles). To determine θ̂ �i , the dihedral angle Θ̂i

between the two faces in M connected by the edge associated with the ith creased
fold is calculated as follows (see Fig. 3.20):

Θ̂i =
⎧
⎨

⎩

π + cos−1(n̂i1 · n̂i2); for convex edges

π − cos−1(n̂i1 · n̂i2); for concave edges,

i = 1, . . . , NF ,

(3.46)

where n̂i1, n̂i2 ∈ R
3 are the unit normal vectors in M of the two faces connected

by the edge associated with the ith creased fold. The reader is asked in Problem 3.6
to propose an algorithm to determine whether an interior edge of M is convex or
concave.
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After determining the dihedral angles Θ̂1, . . . , Θ̂NF using (3.46), the goal fold
angles θ̂ �1 , . . . , θ̂

�
NF are calculated as follows:

θ̂ �i = π − Θ̂i i = 1, . . . , NF . (3.47)

We define θ̂
� ∈ R

NF as the vector whose components are the goal fold angles:

θ̂
� = [ θ̂ �1 · · · θ̂ �NF ]	. (3.48)

The increments for the fold angles Δθ̂
l
, l = 1, . . . , Ninc, are then simply given

as follows:

Δθ̂
l = θ̂

�

Ninc
l = 1, . . . , Ninc. (3.49)

As previously stated, the kinematic constraints for origami with creased folds
(2.39) are not considered here because origami sheets corresponding to nets do not
contain any interior fold intersections. Thus, the fold angles determined at each

increment θ̂
l ∈ R

NF , l = 1, . . . , Ninc, simply correspond to
∑l

m=1 Δθ̂
m

and hence
the fold angles at the last increment (Ninc) exactly correspond to the goal fold angles:

θ̂
Ninc =

Ninc∑

m=1

Δθ̂
m =

Ninc∑

m=1

θ̂
�

Ninc
= Ninc

θ̂
�

Ninc
= θ̂

�
. (3.50)

3.2.6 Limitations of the Unfolding Polyhedra Method

This section provides a brief discussion of the limitations of the unfolding polyhedra
method. The question of whether it is always possible to determine a valid net (i.e., a
net that does not have any overlaps) for a given goal mesh has been investigated for
centuries [17]. Various counterexamples have been found for non-convex polyhedral
surfaces [22, 37, 38]; however, the question remains open for convex polyhedra [17].

There is evidence supporting the conjecture that every convex goal mesh has
at least one valid (non-overlapping) net [39]. For instance, a convex goal mesh
that does not have a valid net has not yet been found [17]. However, a rigorous
mathematical proof remains elusive. For convex goal meshes, various heuristic
procedures have been proposed for the determination of a spanning tree that allows
for the computation of a valid net. The most complete compilation to date of such
procedures was presented by Schlickenrieder [21].

Examples of non-convex goal meshes that do not have a valid net have already
been reported [22, 37, 38]. Figure 3.21 shows three distinct non-convex goal meshes



142 3 Unfolding Polyhedra Method for the Design of Origami Structures with Creased. . .

(c) 

M

(a) 

M

(b) 

M

e1

e2

e1

e2

e1

e2

Fig. 3.21 Examples of goal meshes for which a valid (i.e., non-overlapping) net cannot be
determined. The left column shows the goal mesh, the center column shows the boundary edges,
and the right column shows the determined invalid nets. (a) and (b) Meshes of saddle surfaces. (c)
A triangulated hat open at the base (after [22])

that do not have a valid net, regardless of the selected spanning tree. Despite such
issues, the unfolding polyhedra method can indeed be applied to determine a valid
net for some non-convex goal meshes (see Fig. 3.22 for examples). However, the
ability of the unfolding polyhedra method to determine a valid net for a non-convex
goal mesh cannot be analytically determined in general. For these cases, one has
to rely only on trial and error approaches whereby one determines many possible
guess nets and checks if at least one of them is valid.

The heuristic procedures examined by Schlickenrieder in [21] for the compu-
tation of a spanning tree are extended for non-convex goal meshes in [29, 40].
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M

S0

M

M

S0

S0

Fig. 3.22 Examples of non-convex goal meshes for which a valid net can be determined. The left
column shows the goal mesh, the center column shows the boundary edges, and the right column
shows the determined valid nets

However, as previously mentioned, the process of generating a net that does not have
overlaps is more involved for non-convex goal meshes. There is ongoing research
on more general unfoldings comprised of multiple disconnected regions or having
cuts that are not limited to the edges of the goal mesh [17, 29–32, 41–46]. These
more advanced variants of the unfolding polyhedra method are beyond the scope of
this chapter and the curious reader is referred to the bibliography provided herein.
In Chap. 4, we address another method for origami design that is applicable to both
convex and non-convex goal meshes.
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3.3 Examples of the Unfolding Polyhedra Method

This section provides representative examples of the unfolding polyhedra method
described in Sect. 3.2. Such a method has been implemented in MATLAB. The
faces of the goal meshes and the nets are visualized as filled three-dimensional
polygons using the MATLAB command fill3. The complete set of MATLAB
scripts used to generate the examples is included in the Supplemental Materials for
this chapter and described in Appendix B.2. We use the MATLAB implementation
of the kinematic model presented in Chap. 2 to simulate the folding motion of the
origami sheets corresponding to the nets.

Figure 3.23 shows goal meshes for the surfaces of the Platonic solids and
their corresponding nets. The Platonic solids are convex polyhedra constructed
by congruent, regular, polygonal faces with the same number of faces meeting
at each node. The regular tetrahedron (Fig. 3.23a) has four congruent equilateral
triangle faces. The cube (Fig. 3.23b) has six congruent square faces. The regular
octahedron (Fig. 3.23c) has eight congruent equilateral triangle faces. The regular
dodecahedron (Fig. 3.23d) has 12 congruent regular pentagon faces and the regular
icosahedron (Fig. 3.23e) has 20 congruent equilateral triangle faces.

Figure 3.24 shows four different nets for a goal mesh of a dome determined by
selecting different mesh faces as the reference face of the spanning tree (refer to
Sect. 3.2.3). A valid net is determined for all cases.

Often, the goal shape for a particular application of origami may not be initially
given as a polygonal mesh but rather as a smooth surface. In those situations, the
designer or engineer must first decide a polygonal mesh discretization of such
a smooth surface prior to the utilization of the unfolding polyhedra method. To
illustrate this, Fig. 3.25 shows different polygonal mesh discretizations for a sphere
goal shape and their corresponding nets determined using the unfolding polyhedra
method.

Finally, Figs. 3.26, 3.27, 3.28, 3.29 show the determined nets and simulated
folding motion associated with goal meshes for a truncated icosahedron, an ellip-
soid, a shelter, and a parabolic disk. As observed from these figures, the unfolding
polyhedra method is able to successfully generate a net that can be folded to match
each of the considered goal meshes.

Chapter Summary

This chapter presented a method known as unfolding polyhedra for the design
of origami structures with creased folds that achieve targeted three-dimensional
shapes. In this method, the goal shape is represented as a three-dimensional
polygonal mesh termed as the goal mesh. The objective in unfolding polyhedra
is to determine a net for the goal mesh, which is a connected, non-overlapping
sheet corresponding to a flattening of the goal mesh onto a plane and has boundary
segments that correspond to cuts made exclusively on edges of the goal mesh.
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M S0

Fig. 3.23 Goal meshes for the surfaces of the Platonic solids, boundary edges generated after
the determination of the spanning tree, and corresponding nets. (a) Tetrahedron. (b) Cube.
(c) Octahedron. (d) Dodecahedron. (e) Icosahedron
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Fig. 3.24 (a) Goal mesh M of a dome. The base of the dome is open. (b) Four different nets
for the goal mesh of a dome shown in (a). The reference faces used to start the generation of the
spanning tree are marked with the symbol ∗

We presented the problem description and solution approach of the unfolding
polyhedra method in Sect. 3.2.1. The data required to define the goal mesh was
described in Sect. 3.2.2. We then addressed the steps towards the design of a net
including the determination of a spanning tree (Sect. 3.2.3), mapping of the faces
in the goal mesh towards their position in the net (Sect. 3.2.4), and simulation
of the folding motion from the planar net configuration to the configuration that
matches the goal mesh (Sect. 3.2.5). A brief discussion of the limitations of the
unfolding polyhedra method was provided in Sect. 3.2.6. Representative examples
of the implemented method considering various goal meshes were provided in
Sect. 3.3.
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(a) (b)

(c) (d)

(e)

Fig. 3.25 (a)–(d) Four different mesh discretizations of a sphere and example associated nets.
The mesh shown in (a) has 6 triangle pairs along the azimuthal direction and 6 triangle pairs
along the inclination direction (i.e., 6 × 6 discretization). (b) 6 × 12 discretization. (c) 12 × 6
discretization. (d) 12 × 12 discretization. (e) Folding motion of the net in (c) associated with the
12 × 6 discretization

Problems

3.1 Consider the goal mesh M of an oblique pyramid illustrated in Fig. 3.30. (a)
Determine the position vectors of the nodes ŷi , i = 1, . . . , NN , and the mesh
connectivity matrix CM. Define CM such that the unit normal vectors of the
mesh faces point towards the exterior of the pyramid. (b) Determine the vectors

ỹj1, . . . , ỹjn
M
j and unit normal vector ñj of each face in M.
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e3
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e2

Fig. 3.26 (a) Goal mesh of a truncated icosahedron. (b) A net of the truncated icosahedron. (c)
Continuous folding motion from S0 to the goal configuration S� that matches M

3.2 Consider the goal mesh M having a single interior node shown in Fig. 3.31a.
Determine the vectors z11, . . . , z14, the face corner angles φ11, . . . , φ14, and the
unit normal vectors n11, . . . , n14.

3.3 Propose an algorithm to determine the components of the edge connectivity
matrix CEI (defined in (3.14)) from the given mesh connectivity matrix CM.

3.4 Propose an algorithm to determine the components of the node connectivity
matrix CNI (defined in (3.16)) from the given mesh connectivity matrix CM.
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M S0
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S0

(a) (b) 

(c) 

Fig. 3.27 (a) Goal mesh M for an ellipsoidal shape comprised of quadrilaterals and triangles.
(b) Net of the goal mesh. (c) Continuous folding motion from S0 to the goal configuration S� that
matches M
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M
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(a) (b) 

(c) 

S0

S�

Fig. 3.28 (a) Goal mesh M for a shelter comprised of quadrilaterals and triangles. (b) Net of the
goal mesh. (c) Continuous folding motion from S0 to the goal configuration S� that matches M

3.5 Propose and implement two procedures to determine a spanning tree different
than the one described in Sect. 3.2.3. Discuss the differences among the procedures
and compare them using representative examples.

3.6 Consider the faces Mj and Ml of a goal mesh having nodes with position

vectors ỹj1, . . . , ỹjn
M
j and ỹl1, . . . , ỹln

M
l , respectively. Suppose that these faces

are connected at one edge such that ỹj1 = ỹl2 and ỹj2 = ỹl1. Propose an algorithm
to determine whether such an edge is convex or concave. Refer to Fig. 3.20 for these
definitions.
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M
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S0

(a) 

(b) 

(c) 

Fig. 3.29 (a) Goal mesh M for a parabolic dish. (b) Net of the goal mesh. (c) Continuous folding
motion from S0 to the goal configuration S� that matches M

3.7 Implement the unfolding polyhedra method in a computational environment
and determine nets for the 13 Archimedean polyhedra.

3.8 Consider the triangle mesh face Mj shown in Fig. 3.32. (a) Determine the
rotation in the form of (3.31) that is required to align the unit normal vector of
Mj with e3. (b) Determine the position vectors ỹj1

(1) , ỹj2
(1) , and ỹj3

(1) of the rotated face
Mj

(1). (c) Verify that ñj(1) = e3.

3.9 Consider the quadrilateral mesh face Mj shown in Fig. 3.33. (a) Determine the
rotation in the form of (3.31) that is required to align the unit normal vector of Mj
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Fig. 3.30 Schematic for
Problem 3.1: Goal mesh of an
oblique pyramid and
coordinates of its nodes
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Fig. 3.31 Schematic for Problem 3.2. The top of the pyramid is open. (a) Goal mesh M having a
single interior node. The coordinates of the nodes are shown. (b) Vectors z11 and z12

with e3. (b) Determine the position vectors ỹj1
(1) , ỹj2

(1) , ỹj3
(1) , and ỹj4

(1) of the rotated face
Mj

(1). (c) Verify that ñj(1) = e3.

3.10 Show that the position vectors ỹjk(3) determined using (3.44) are contained in
span(e1, e2).

3.11 Derive an unfolding map from a goal mesh M to its associated net assuming
that the net is placed in the 2-3 plane.

3.12 Derive an unfolding map from a goal mesh M to its associated net assuming
that the net is placed in an arbitrary plane in R

3.
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Fig. 3.32 Schematic for Problem 3.8: Face Mj and position vectors of its nodes
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Fig. 3.33 Schematic for Problem 3.9: Face Mj and position vectors of its nodes
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Chapter 4
Tuck-Folding Method for the Design of
Origami Structures with Creased Folds

Abstract Following the description of the unfolding polyhedra method for origami
design in the previous chapter, here the focus switches to an origami design method
applicable to a much wider spectrum of three-dimensional goal shapes. This chapter
presents the tuck-folding method to solve the following origami design problem:
given a goal shape represented as a polygonal mesh (termed as the goal mesh),
find the shape and fold pattern of a planar sheet that can be folded to match the
goal mesh, and a history of folding motion from the planar configuration of the
sheet to the configuration that matches the goal mesh. The method generates a sheet
comprised of the faces of the goal mesh in addition to introduced regions having two
rigid faces and three creased folds. The creased folds are used to tuck-fold the added
regions to form the shape of the goal mesh. We also address the implementation of
the tuck-folding method in a computational environment.

4.1 Introduction

As reviewed in Sect. 3.1, origami design is the process of creating an origami
structure having desired characteristics such as a targeted shape [1, 2]. Compu-
tational methods for origami design have become crucial in the development of
origami applications [1, 3–5]. We provide a review of the most well-known methods
for origami design in Sect. 1.3. Chapter 3 addresses the method of unfolding
polyhedra [3, 6] that allows for the determination of the shape and fold pattern
of a planar sheet that can be folded towards a three-dimensional polyhedral goal
surface. A drawback of the unfolding polyhedra method is that it is not guaranteed to
provide a valid (i.e., non-overlapping) sheet design for non-convex goal shapes [3].
There are examples in the literature of non-convex polyhedra for which the method
cannot provide a valid sheet design [7]. We discuss this limitation in Sect. 3.2.6. It
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Fig. 4.1 Screenshots of the graphical user interface of Origamizer showing origami sheet designs
generated for different goal meshes (left: goal mesh, right: planar sheet with fold pattern). The
Origamizer software by Tomohiro Tachi can be obtained from http://www.tsg.ne.jp/TT/software/

also remains an open question as to whether the unfolding polyhedra method can
provide a valid sheet design for any convex goal shape [3].

The currently available computational method for origami design that is appli-
cable to the largest spectrum of goal shapes was introduced by Tachi in [2, 8] and
was more recently addressed by Tachi and Demaine in [9]. The method determines
the shape and fold pattern of a planar sheet that can be folded towards an arbitrary
three-dimensional polygonal mesh [2, 8, 10]. This method has been implemented in
a software package named Origamizer, which is illustrated in Fig. 4.1. In its simplest
form, the method generates an origami sheet comprised of all faces of the goal mesh
to which are added regions not existing in the goal mesh and having two rigid faces
and three creased folds. These added regions are placed between every pair of faces
of the goal mesh originally connected by an interior edge. Creased folds are used to

http://www.tsg.ne.jp/TT/software/
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tuck-fold the added regions to form the shape of the goal mesh from an initial planar
configuration [8]. Thus, throughout the rest of this work, this method for origami
design is referred to as the tuck-folding method. This method is demonstrated to
successfully work on goal polygonal meshes (convex and non-convex) of various
complexities in [2].

In this chapter, we address the tuck-folding method for origami design presented
in [2]. We study this method using notation consistent with the other chapters of
the book and with the aim to extend it to account for smooth folds later in Chap. 7.
In [2], the folding motion of the sheets designed using the tuck-folding method
was not simulated due to the highly complex fold patterns obtained using the full
implementation of the method. In view of this, we simplify the method of [2] in
order to make the simulation of the folding motion of the designed sheets more
straightforward. These simplifications are explained in the following sections. This
chapter is organized as follows: Section 4.2 presents the problem description and
solution approach of the tuck-folding method and examples of the computationally
implemented method considering various goal shapes are provided in Sect. 4.3.

4.2 Tuck-Folding Method Considering Creased Folds

In this section, we describe the various aspects of the tuck-folding method for
the design of origami structures with creased folds. Section 4.2.1 provides the
design problem definition and the solution approach, Sect. 4.2.2 provides the
mathematical description of the goal mesh, the steps in the implementation of
the tuck-folding method are addressed in Sects. 4.2.3–4.2.6, and a discussion on
the design requirements of the tuck-folding method is provided in Sect. 4.2.7.

4.2.1 Problem Definition

The tuck-folding method aims to solve the following problem in origami design:

• Given: A three-dimensional goal shape represented as a polygonal mesh (i.e., the
goal mesh1 M)

• Find: The shape and fold pattern of a planar sheet that can be folded to match M,
and a history of folding motion from the planar configuration of the sheet (S0) to
the goal configuration (S�) that matches M
The steps followed in the tuck-folding method to solve this origami design

problem are listed as follows:

1The goal mesh M is a connected, orientable, 2-manifold polygonal mesh.
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1. If the given goal mesh is not topologically equivalent to a disk [2],2 interior edges
of the mesh are assigned as boundary edges to introduce an additional boundary
∂MC such that the obtained mesh satisfies the aforementioned topological
property. A goal mesh M with boundary ∂M = ∂MC ∪ ∂MO and mesh faces
M1, . . . , MNM ⊂ M (where NM is the total number of faces in M) is then
obtained (the boundary ∂MO consists of the boundary edges of the originally
given mesh)

2. An origami sheet with reference configuration S0 comprised of the mesh faces
M1, . . . , MNM mapped onto a plane and NI

E introduced edge modules (where
NI
E is identically the number of interior edges of M) is then determined as shown

in Fig. 4.2. The edge modules consist of two rigid faces and three creased folds
and are placed between every pair of faces of M connected by an interior edge,
hence their name. Accordingly, S0 has 3NI

E creased folds and 2NI
E + NM rigid

faces:

NF = 3NI
E , NP = 2NI

E +NM, (4.1)

where NF and NP are, respectively, the number of folds and faces of the
designed origami sheet. The challenge in this step is to determine the geometry
of the edge modules such that a valid reference configuration S0 is obtained
(refer to Sect. 2.2) and such a sheet matches M in a known goal configuration
S� (Fig. 4.3)

3. The final step entails the determination of a history of folding motion from
the reference configuration S0 to the goal configuration S�. Figure 4.3 shows
configurations attained by the sheet of Fig. 4.2 during a determined history of
folding motion from S0 to S�
We address the previous three steps in the subsequent sections.
An issue that may affect the applicability of the tuck-folding method described in

this chapter is that the designed origami sheets contain interior holes as illustrated
in Fig. 4.2. This represents a simplification from the implementation of the tuck-
folding method presented in [2]. There, the holes are covered with sheet regions
having specialized fold patterns that can be folded together with the edge modules
to form the shape of the goal mesh; see Fig. 4.1.3 However, it is noted in [2] that
the folding motion of sheets designed using such a full implementation of the tuck-

2Two surfaces are said to be topologically equivalent (or homeomorphic) if there exists a
continuous map between the surfaces and such a map has a continuous inverse [11]. For example,
a hemispherical surface and a circle are topologically equivalent, as we can continuously map
one surface into the other. On the other hand, a closed spherical surface and a circle are not
topologically equivalent, as we need to introduce additional boundaries to the closed spherical
surface in order to continuously map it into a circle.
3Another strategy is to cover the holes using compliant membranes such that the deformation of
these membranes does not significantly affect the folding motion of the designed origami sheet.
Nevertheless, we do not consider such a strategy in this chapter for the sake of simplicity.
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M

S0

e1

e2

e1
e2

e3

Edge module with 2 faces and 3 
creased folds 

Fold 1 

Fold 2 
Fold 3 

∂M

∂M

Goal mesh faces Edge module faces 

Fig. 4.2 Schematic illustrating Step 2 of the tuck-folding method presented in this chapter: Given
a goal mesh M with boundary ∂M, find the reference configuration S0 of an origami sheet that
matches M in a known folded configuration. The reference configuration S0 is comprised of the
faces of M mapped onto a plane and edge modules having two rigid faces and three creased folds
introduced at all the interior edges of M

folding method was not simulated due to the high complexity of the obtained fold
patterns. Here we retain holes in the designed origami sheets in order to make the
simulation of the folding motion more straightforward and to ultimately extend the
tuck-folding method for the consideration of smooth folds in Chap. 7.
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S0

Stf = S

Fig. 4.3 Schematic illustrating Step 3 of the tuck-folding method presented in this chapter:
Folding motion of an origami sheet determined in Step 2 from the reference configuration S0
towards the goal configuration S� that matches the goal mesh M (refer to Fig. 4.2)

It is remarked that the interior fold intersections of the sheets designed using
the present method are not single interior vertices as studied in Chap. 2 but are
rather interior holes. Therefore, the kinematic constraints for origami with creased
folds derived in Sect. 2.4.2 must be extended to account for this type of interior fold
intersections. In Problem 4.1, the reader is asked to use the approach of Sect. 2.4.2
to derive kinematic constraints for origami sheets in which the folds associated with
an interior fold intersection are incident to a hole rather than to a single vertex.

4.2.2 Goal Mesh Description

As mentioned in the previous section, the first step of the tuck-folding method is to
ensure that the considered goal mesh M is topologically equivalent to a disk [2].
The boundary of the originally given mesh is denoted ∂MO . For a given mesh that is
not topologically equivalent to a disk, interior edges of such a mesh are assigned as
boundary edges forming a boundary ∂MC to obtain a goal mesh M with boundary
∂M = ∂MC∪∂MO that meets the stated topological property. This is illustrated in
Fig. 4.4. Given the non-unique nature of assigning boundary edges for ∂MC , such
a process may not only be used to obtain a valid goal mesh M but also to generate
different origami sheet designs for a given mesh. Criteria for determining an optimal
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∂MO
∂M = ∂MO ∪ ∂MC∂MC

S0

∂MO

∂MC

Fig. 4.4 Outer edges of the given polygonal mesh forming the boundary ∂MO , introduced
boundary ∂MC , and boundary of the goal mesh M denoted ∂M = ∂MO ∪ ∂MC . The mapped
boundary edges in the reference configuration of the designed sheet S0 are highlighted

boundary ∂MC is not addressed here but can be found in the literature [2, 12–15].
In Problem 4.2, the reader is asked to investigate and implement two algorithms for
the determination of a boundary ∂MC in an arbitrary 2-manifold surface mesh such
that the mesh becomes topologically equivalent to a disk.

Here, we use the same data employed in Chap. 3 to define the goal mesh M,
which is described in Sect. 3.2.2. As stated therein, the goal mesh M has a total
of NN nodes and NE edges. Also, the number of interior nodes and interior edges
of M are denoted NI

N and NI
E , respectively. Each node of M has an associated

position vector denoted ŷi ∈ R
3, i = 1, . . . , NN . As listed in Table 3.1, the input

data required to define M are the node position vectors ŷ1, . . . , ŷNN and the mesh
connectivity matrix CM defined in (3.1) that indicates the nodes associated with
each mesh face.

Once a goal mesh M topologically equivalent to a disk has been determined in
Step 1, Step 2 of the tuck-folding method entails the design of a planar origami
sheet that can be folded to match M (refer to Sect. 4.2.1). The designed origami
sheet is comprised of the mesh faces M1, . . . , MNM mapped onto a plane andNI

E
introduced edge modules, each consisting of two rigid faces and three creased folds
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(Fig. 4.2). The edge modules are placed between every pair of faces of M connected
by an interior edge. The challenge in this step is to determine the geometry of
the edge modules such that a valid reference configuration S0 is obtained (refer
to Sect. 2.2) and the designed sheet matches M in a known goal configuration
S� (Fig. 4.3). To address this challenge, we study the parameterization of the edge
modules and derive the associated constraints on the design variables in Sect. 4.2.3.
In Sect. 4.2.5, we outline the numerical procedure used to solve for the design
variables that satisfy the derived constraints.

4.2.3 Edge Module Parameterization and Constraints

The steps towards the determination of an origami sheet design and its subsequent
kinematic analysis are illustrated in Fig. 4.5. A simple example of a goal mesh M
with a single interior node is shown in Fig. 4.5a. We proceed by determining the
geometry of the edge modules that are added between every pair of mesh faces
joined by an interior edge4 (Fig. 4.5b). The edge modules are designed such that the
mesh faces M1, . . . , MNM together with these edge modules can be placed as a
connected surface on the plane spanned by e1 and e2. This resulting planar surface
corresponds to the sheet reference configuration S0 (Fig. 4.5b).

As shown in Fig. 4.5c, during folding motion of the origami sheet design, each
edge module is tuck-folded to morph the sheet towards its goal configuration S�.
Note that M ⊂ S� under appropriate rigid transformations. Different views of the
tucked edge modules, which are designed such that they do not intersect in the goal
configuration S�, are shown in Fig. 4.5d.

We parameterize each edge module by a length variable denoted Ŵi and an
angular variable denoted ψ̂i , i = 1, . . . , NI

E . These variables are illustrated in

Fig. 4.6. The length variable Ŵi is the distance between the midpoints of the outer
folds of the edge module (i.e., Fold 1 and Fold 3 in Fig. 4.6) and ψ̂i is the angle
between the outer folds. We now continue to the derivation of constraints on the
edge module variables Ŵi and ψ̂i , i = 1, . . . , NI

E , allowing for a valid reference
configuration S0 and matching of M in a known goal configuration S�.

4A possible extension of the proposed design method could consider the replacement of certain
edge modules by single creased folds and thus allow for simplification of the designed origami
sheets and reduction of the total number of folds. However, here the approach of [2, 8] is taken
where an edge module is applied for each interior edge of M due to its wide applicability to a
range of origami design problems. The aforementioned extension is strongly recommended for
future studies.
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Edge module face 
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Mountain folds 

Initial goal mesh  M 

Fig. 4.5 Steps towards the determination of an origami sheet design and its subsequent kinematic
analysis: (a) Step 1: Example goal mesh M topologically equivalent to disk. (b) Step 2:
Determined sheet geometry and fold pattern associated with the goal mesh shown in (a). (c) Step
3: Folding motion from the reference planar configuration S0 to the goal configuration S�. Note
that M ⊂ S�. (d) Different views of the goal configuration S� showing the non-intersecting tucked
edge modules
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Fig. 4.6 Schematic of the ith
edge module of an origami
sheet design and its
associated length variable Ŵi

and angular variable ψ̂i . The
vector along the length of the
ith interior edge of M is
denoted ẑi ∈ R

3 (refer to
Sect. 3.2.2). Therefore, the
length of such an edge is
determined as ‖ẑi‖

î Ŵi

‖ẑi‖
2

‖ẑi‖
2

‖ẑi‖
2 ‖ẑi‖

2

Fold 1 

Fold 2 

Fold 3 

4.2.3.1 Loop Closure Constraints

The variables Ŵi and ψ̂i , i = 1, . . . , NI
E , must be determined such that the faces

of M and the edge modules associated with each interior node of M form a closed
loop in S0 as shown in Fig. 4.5a, b. As indicated in Figs. 4.2, 4.4, 4.5, there is an
interior hole in S0 for each interior node in M.

Let Wjk and ψjk , j = 1, . . . , NI
N , k = 1, . . . , nNj , be the variables Ŵi and

ψ̂i , respectively, of the edge module associated with the kth interior edge incident
to the j th interior node of M. It is recalled from Sect. 3.2.2 that nNj is the number

of edges incident to the j th interior node of M. The mapping from Ŵi and ψ̂i ,
i = 1, . . . , NI

E , to Wjk and ψjk , j = 1, . . . , NI
N , k = 1, . . . , nNj , is given as

follows:

Wjk = Ŵ|CNI
jk |, ψjk =

⎧
⎪⎨

⎪⎩

ψ̂
C
NI
jk

; C
NI

jk > 0

−ψ̂|CNI
jk |; C

NI

jk < 0,

j = 1, . . . , NI
N , k = 1, . . . , nNj .

(4.2)

where CNI is the node connectivity matrix defined in (3.16).
To derive constraints on Wjk and ψjk , k = 1, . . . , nNj , allowing the faces of M

and the edge modules associated with the j th interior node of M to form a closed

loop in S0, first let bj0, . . . , bjn
N
j ∈ span(e1, e2) be the position vectors of the inner

corners of the edge modules as shown in Fig. 4.7a (numbered in counterclockwise
order).
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e1

e2

(a) (b) 

jk

jk

Wjk

bjk

bj k−1

Fig. 4.7 Mesh faces and edge modules in S0 associated with the j th interior node of M (refer to
Fig. 4.5b): (a) Position vectors of the inner corners of the edge modules; (b) Face corner angles
φjk and edge module variables ψjk and Wjk

The position vectors bj0, . . . , bjn
N
j can be determined recursively as follows

(refer to Fig. 4.8):

bjk = bj k−1 + R3

(
k−1∑

l=1

(
ψjl
2 + φjl + ψj l+1

2

)
)
⎡

⎢
⎢
⎣

0

Wjk − ‖zjk‖ sin
(
ψjk

2

)

0

⎤

⎥
⎥
⎦

=
k∑

l=1

⎛

⎜
⎜
⎝R3

(
l−1∑

m=1

(
ψjm

2 + φjm + ψj m+1
2

)
)
⎡

⎢
⎢
⎣

0

Wjl − ‖zj l‖ sin
(
ψjl
2

)

0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

+ bj0,

(4.3)

where R3(·) ∈ R
3×3 is the matrix representing a rotation about an axis aligned

with e3 and is defined in (2.22). The face corner angles φjk , k = 1, . . . , nNj , are
determined via (3.18).

Consider the mapping of the position vector of a point from the face with corner
angle φj k−1 to the face with corner angle φjk . The transformation associated with
“crossing” the edge module located between these two faces can be decomposed as
the following ordered transformations:

1. Translation by bjk − bj k−1. This translation is formulated in matrix form as
T(bjk − bj k−1), where T(·) is defined in (2.53)

2. Rotation of φjk + ψjk about an axis aligned to e3 and intersecting the
point with position vector bjk . This rotation is formulated in matrix form as
T(bjk)Q3(φjk + ψjk)T−1(bjk), where Q3(·) is defined in (2.57)
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‖zjk‖
2

jk WjkWjk − ‖zjk‖ sin
(

ψjk

2

)

‖zjk‖
2

‖zjk‖
2 ‖zjk‖

2
bjk − bj k−1

Fig. 4.8 Edge module associated with the kth edge of adjacent to the j th interior node of M

The product of the former transformation matrices is given as follows:

T(bjk)Q3(φjk + ψjk)T−1(bjk)T(bjk − bj k−1)

= T(bjk)Q3(φjk + ψjk)T−1(bj k−1). (4.4)

The composition of the transformations provided in (4.4) associated with
crossing the edge modules with variables Wjk , ψjk , k = 1, . . . , nNj , must be the
identity transformation such that these edge modules, along with the mesh faces
with corner angles φjk , k = 1, . . . , nNj , form a closed loop:

I4 =
nNj∏

k=1

T(bjk)Q3(φjk + ψjk)T−1(bj k−1)

= T(bjn
N
j )Q3

⎛

⎜
⎝

nNj∑

k=1

(φjk + ψjk)

⎞

⎟
⎠ T−1(bj0).

(4.5)

The condition (4.5) holds if
∑nNj

k=1(φjk +ψjk) = 2πn with n ∈ Z.5 Specifically,
n must be equal to 1 for the closed strip to be developable [16, 17], yielding the
following constraint:

5The set of the integer numbers is denoted as Z.
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2π =
nNj∑

k=1

φjk +
nNj∑

k=1

ψjk. (4.6)

In addition to (4.6), it is required that bjn
N
j = bj0 for (4.5) to hold. Considering

(4.3), bjn
N
j = bj0 implies the following constraint:

03 =
nNj∑

k=1

⎛

⎜
⎜
⎜
⎝

R3

(
k−1∑

l=1

(
ψjl
2 + φjl + ψj l+1

2

)
)
⎡

⎢
⎢
⎢
⎣

0

Wjk − ‖zjk‖ sin
(
ψjk

2

)

0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠
.

(4.7)

The vector constraint (4.7) provides two scalar constraints because the third
component of such an equation is always equal to 0. Therefore, the loop closure
constraints (4.6) and (4.7) provide a total of 3NI

N equality constraints.

Example 4.1 Formulating the loop closure constraints for the goal mesh of a
pyramid shape.
Statement: Consider the goal mesh M of an open pyramid shown in Fig. 3.9.
Formulate the constraints (4.6) and (4.7) associated with the single interior node
of such a goal mesh.
Solution: The number of edges adjacent to the single interior node of the goal mesh
M shown in Fig. 3.9 is 4 (i.e., nN1 = 4). The face corner angles φ11, . . . , φ14 are
determined in (3.21). Thus, the constraint (4.6) is formulated as follows:

2π =
4∑

k=1

φ1k +
4∑

k=1

ψ1k,

= 2 cos−1

(
L2

1 − L2
2 + L2

3

L2
1 + L2

2 + L2
3

)

+ 2 cos−1

(
−L2

1 + L2
2 + L2

3

L2
1 + L2

2 + L2
3

)

+
4∑

k=1

ψ1k.

(4.8)
The vectors z11, . . . , z14 along the length of the edges incident to the interior

node of M are determined in (3.20). The magnitude of these vectors is given as
follows:

‖z11‖ = ‖z12‖ = ‖z13‖ = ‖z14‖ =
(
L2

1 + L2
2 + L2

3

) 1
2
. (4.9)
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Using such information, the constraint (4.7) is formulated as follows:

03 =
4∑

k=1

⎛

⎜
⎜
⎝R3

(
k−1∑

l=1

(
ψ1l
2 + φ1l + ψ1 l+1

2

)
)
⎡

⎢
⎢
⎣

0

W1k − ‖z1k‖ sin
(
ψ1k

2

)

0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ .

=

⎡

⎢
⎢
⎣

0

W11 − (
L2

1 + L2
2 + L2

3

) 1
2 sin

(
ψ11

2

)

0

⎤

⎥
⎥
⎦

+ R3

(
ψ11

2 + φ11 + ψ12
2

)

⎡

⎢
⎢
⎣

0

W12 − (
L2

1 + L2
2 + L2

3

) 1
2 sin(ψ12

2 )

0

⎤

⎥
⎥
⎦

+ R3

(
2∑

l=1

(
ψ1l
2 + φ1l + ψ1 l+1

2

)
)
⎡

⎢
⎢
⎣

0

W13 − (
L2

1 + L2
2 + L2

3

) 1
2 sin(ψ13

2 )

0

⎤

⎥
⎥
⎦

+ R3

(
3∑

l=1

(
ψ1l
2 + φ1l + ψ1 l+1

2

)
)
⎡

⎢
⎢
⎣

0

W14 − (
L2

1 + L2
2 + L2

3

) 1
2 sin(ψ14

2 )

0

⎤

⎥
⎥
⎦ .

(4.10)
where the expressions for the face corner angles φ11, . . . , φ14 are provided in
(3.21).

4.2.3.2 Constraints for Valid Edge Module Geometry

In addition to the loop closure constraints provided in (4.6) and (4.7), other
constraints must be imposed to ensure that the geometry of each individual edge
module is valid. The faces of an edge module degenerate to straight line segments
if the angular variable ψ̂i reaches ±π (refer to Fig. 4.6). Therefore, the following
bounds must be imposed for this variable:

− π < ψ̂i < π, (4.11)
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‖ẑi‖
2 ‖ẑi‖
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2‖ẑi‖

2

‖ẑi‖
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Fig. 4.9 Two valid edge module geometries for which the folds at the boundary of the edge

module do not overlap its interior fold: (a) Ŵi > ‖ẑi‖ sin(| ψ̂i2 |); (b) Ŵi = ‖ẑi‖ sin(| ψ̂i2 |)

where i = 1, . . . , NI
E . Furthermore, the folds at the boundary of each edge module

must not overlap with the interior fold. This requirement yields the following
constraint (refer to Fig. 4.9):

Ŵi ≥ ∥
∥ẑi

∥
∥ sin

(∣
∣
∣
ψ̂i
2

∣
∣
∣
)
. (4.12)

where i = 1, . . . , NI
E . The constraints (4.11) and (4.12) provide 3NI

E inequality
constraints.
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Ŵi

2 − ‖ẑi‖
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Fig. 4.10 Edge module trimmed to account for self-intersection avoidance in the goal configura-
tion S�

4.2.3.3 Constraints to Prevent Intersections Among Tuck-Folded Edge
Modules

Intersections between regions of the sheet are not allowed in valid configurations
(see Sect. 2.2) and therefore must be avoided when adjacent edge modules are
tucked in the goal configuration S� (see Fig. 4.11d). For this purpose, certain regions
of the edge modules are trimmed such that each edge module does not intersect
any of its neighboring edge modules in S�. This procedure is called edge module
trimming and is addressed in Sect. 4.2.4. The trim angles τ̂ i1 and τ̂ i2, i = 1, . . . , NI

E ,
are used to determine the trimmed regions of the ith edge module as shown in
Fig. 4.10. If the edge module trimming procedure is not considered and the edge
module geometry is as illustrated in Fig. 4.6, adjacent edge modules intersect at S�
as shown in Fig. 4.11d. On the other hand, if the edge module trimming procedure
is considered and the geometry of the edge modules is as illustrated in Fig. 4.10,
intersections between adjacent edge modules are not present as shown in Fig. 4.11g.

As previously mentioned, the angles τ̂ i1 and τ̂ i2, i = 1, . . . , NI
E , are introduced to

determine the trimmed regions of the ith edge module. These angles are computed
using the procedure described in Sect. 4.2.4. Each edge module must remain
connected after edge module trimming. This requirement is satisfied if the following
inequality holds for each edge module (refer to Fig. 4.10)6:

6The Macaulay brackets are denoted as 〈·〉 and defined as: 〈y〉 =
{
y; y ≥ 0

0; y < 0
.



4.2 Tuck-Folding Method Considering Creased Folds 173

(a) 

(b) 

Edge module trimming 
not considered 

Edge  module trimming 
considered 

(c) 

(d) 

S0

M

(e) 

(f) 

(g) 

S0

S�

S�

S�

S� Intersecting edge 
modules 

Non-intersecting 
edge modules 

Fig. 4.11 Example showing the need for edge module trimming. (a) A simple goal mesh M. (b)
and (e) Determined origami sheet designs. Edge module trimming is not considered for the origami
sheet design shown in (b) while such a procedure is considered in (e). (c)–(d), (f)–(g) Views of
the goal configuration S� for both cases. It is observed in (d) that the tuck-folded edge modules
intersect in S� if the edge module trimming procedure is not considered. The edge modules do not
intersect in S� if such a procedure is considered as shown in (g)
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Ŵi
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Ŵi
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,

(4.13)
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where i = 1, . . . , NI
E . It is noted that if (τ̂ i1 + ψ̂i/2) < 0 or (τ̂ i2 − ψ̂i/2) < 0, these

angles are set to 0 to prevent any increase in area of the edge modules during this
process. The preceding equation provides NI

E additional inequality constraints.

4.2.3.4 Summary of Design Constraints

The proposed design method introduces 2NI
E design variables corresponding to

Ŵi and ψ̂i , i = 1, . . . , NI
E . The loop closure constraints (4.6) and (4.7) provide

3NI
N equality constraints. The constraints (4.11), (4.12), and (4.13) allowing for

valid edge module geometries and self-intersection avoidance in S� provide 4NI
E

inequality constraints. In Sect. 4.2.5, we describe a numerical procedure used to
determine a set of design parameters that satisfies the aforementioned equality and
inequality constraints.

4.2.4 Edge Module Trimming

As stated in Sect. 4.2.3, intersections among regions of the sheet are not allowed in
valid configurations and therefore must be prevented when adjacent edge modules
are tucked in the goal configuration S�. Thus, certain regions of the edge modules
are trimmed such that each edge module does not intersect any of its neighboring
edge modules as shown in Fig. 4.11. The angles τ̂ i1 and τ̂ i2, i = 1, . . . , NI

E , are used
to define the trimmed regions of the ith edge module as shown in Fig. 4.10. The
formulation used to determine these angles is summarized in this section.

Let τjk , j = 1, . . . , NI
N , k = 1, . . . , nNj , be the trim angle associated with the

edge module placed at the kth interior edge adjacent to the j th interior node of M.
The trim angles τ̂ i1 and τ̂ i2, i = 1, . . . , NI

E , are determined from their corresponding
values in the set of angles τjk , j = 1, . . . , NI

N , k = 1, . . . , nNj by inverting the
following map:

τjk =

⎧
⎪⎪⎨

⎪⎪⎩

τ̂
|CNI
jk |

1 ; C
NI

jk > 0

τ̂
|CNI
jk |

2 ; C
NI

jk < 0,

j = 1, . . . , NI
N , k = 1, . . . , nNj ,

(4.14)

where CNI is the node connectivity matrix defined in (3.16).
Configurations of an edge module in the reference configuration S0 and the goal

configuration S� are illustrated in Fig. 4.12a. To determine the trim angle τjk shown
in this figure, we first compute the unit normal vector associated with the kth edge
incident to the j th interior node of M denoted n̄jk ∈ R

3:
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(a) 

(b) 

ψjk

2

ψjk

n̄jk

τjk

n̄jk

zjk

zjk

Flattened edge 
module in  

ψjk

2

Folded edge 
module in  

(untrimmed) 
S�S0

(untrimmed) 

ψjk

2

n̄jk

zjk

τjk

(trimmed) (trimmed) 

ψjk

Flattened edge 
module in  

Folded edge 
module in  S�S0

ωjkl

ωjkl

Fig. 4.12 (a) Configurations of an edge module in the reference configuration S0 (left) and the
goal configuration S� (right). (b) View of the plane spanned by n̄jk and zjk showing the intersection
axis along the vector ωjkl and the trim angle τjk determined via (4.16) and (4.19), respectively

n̄jk = nj k−1 + njk

‖nj k−1 + njk‖ , (4.15)

where the face unit normal vectors njk , j = 1, . . . , NI
N , k = 1, . . . , nNj , are

defined in (3.19). The rigid faces of the tuck-folded edge modules are located in the
plane spanned by zjk and n̄jk as indicated in Fig. 4.12a.

The direction of the intersection axis between any two planes containing adjacent
tucked edge modules is defined by the unit vector ωjkl ∈ R

3, j = 1, . . . , NI
N ,

k = 1, . . . , nNj , l = 1, . . . , nNj , k 
= l (refer to Figs. 4.12b and 4.13):
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n̄jk

zjk

Edge modules in  S�

(untrimmed) 
Edge modules in  S�

(trimmed) 

n̄jk

zjkn̄jl

zjl

n̄jl

zjl

ωjkl ωjkl

Fig. 4.13 Two tuck-folded edge modules in the goal configuration S� (untrimmed and trimmed
forms). The tuck-folded edge modules shown in this figure are not located in the same plane. The
vector ωjkl provides the direction of their intersection axis. As indicated in the figure, we only
need to trim one of the two edge modules to preclude self-intersections between them. The edge
module that is trimmed between each pair of adjacent edge modules is determined via (4.18)

ωjkl =

⎧
⎪⎪⎨

⎪⎪⎩

(n̄jk × zjk)× (n̄j l × zj l)
‖(n̄jk × zjk)× (n̄j l × zj l)‖; (n̄jk × zjk)× (n̄j l × zj l) 
= 0

n̄j l; (n̄jk × zjk)× (n̄j l × zj l) = 0.
(4.16)

As assumed in (4.16), the vector n̄j l is utilized to define ωjkl in the case where
the rigid faces of the kth and the lth tuck-folded edge modules are located in the
same plane.

The angles τjk , j = 1, . . . , NI
N , k = 1, . . . , nNj , are determined through the

following equations:

τ
(1)
jkl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0;
n̄jk · zj l > 0

and
n̄j l · zjk > 0

−π
2

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cos−1

(
zjk

∥
∥zjk

∥
∥

· ωjkl

)

; n̄jk · ωjkl ≥ 0

cos−1

(

− zjk
∥
∥zjk

∥
∥

· ωjkl

)

; n̄jk · ωjkl < 0,

; otherwise

(4.17)

τ
(2)
jkl =

⎧
⎨

⎩

τ
(1)
jkl ; τ

(1)
jkl ≤ τ

(1)
j lk

0; τ
(1)
jkl > τ

(1)
j lk ,

(4.18)
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τjk = max
l∈

{
1, ..., nNj

}
, l 
=k

(
τ
(2)
jkl

)
. (4.19)

From (4.17), it is noted that if n̄jk · zj l > 0 and n̄j l · zjk > 0, the angles τ (1)jkl are
set to 0 as no further trimming is required in such cases. In (4.18), the lower trim
angle required to prevent intersections between each pair of edge modules is selected
while the larger is set to zero. In (4.19), we determine the trim angle τjk for an
edge module required to prevent intersections with all of its adjacent edge modules,
corresponding to the maximum value among τ

(2)
jkl , l = 1, . . . , nNj , l 
= k. In

Problem 4.11, the reader is asked to calculate the trim angles τjk , j = 1, . . . , NI
N ,

k = 1, . . . , nNj , for the goal mesh M illustrated in Fig. 3.9.

4.2.5 Determination of Design Variables

A numerical procedure for the determination of the design variables Ŵi and ψ̂i ,
i = 1, . . . , NI

E , subject to the equality constraints (4.6) and (4.7) and inequality
constraints (4.11)–(4.13) is described in this section. After the values for these
variables are determined, the full geometry of the origami sheet design can be
generated.

Given the input parameters defining the goal mesh M listed in Table 3.1,
we can compute the geometric parameters employed in the constraints derived
in Sect. 4.2.3. Afterwards, the numerical procedure presented in this section is
employed to determine the values of the design variables Ŵi and ψ̂i , i =
1, . . . , NI

E , that satisfy the constraints derived in Sect. 4.2.3.

Let d ∈ R
2NI

E be the vector whose components correspond to the design
variables:

d =
[
Ŵ1 · · · ŴNI

E
ψ̂1 · · · ψ̂NI

E

]	
. (4.20)

The equality constraints (4.6) and (4.7) are set to the form h = 03NI
N

while the

inequality constraints (4.11), (4.12), and (4.13) are set to the form g ≤ 04NI
E

.7 Then,

the problem statement for the determination of Ŵi and ψ̂i , i = 1, . . . , NI
E , can be

expressed as follows:

7For numerical implementation, strict inequality constraints of the form A < 0 in (4.11) and (4.13)
are expressed as non-strict inequalities of the form A+ ε ≤ 0 where ε > 0.
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Find d

That minimizes f (d)

Subject to h(d) = 03NI
N

g(d) ≤ 04NI
E

and application-dependent constraints,

(4.21)

where f (d) is an application-dependent function of the variables Ŵi and ψ̂i , i =
1, . . . , NI

E .

The numerical procedure employed here to determine Ŵi and ψ̂i , i =
1, . . . , NI

E , does not account for any function f (d) (i.e., the procedure only
iteratively corrects an initial guess solution until the constraints h = 03NI

N
and g ≤ 04NI

E
are satisfied). The reader is asked in Problem 4.5 to propose

and implement a procedure to determine the design variables Ŵi and ψ̂i ,
i = 1, . . . , NI

E , by solving the design problem stated in (4.21) where a function
f (d) is considered.

Let R ∈ R
3NI

N +4NI
E be the residual vector from equality and inequality

constraints defined as follows:

R (d) =
⎡

⎣
h (d)

max(04NI
E
, g(d))

⎤

⎦ , (4.22)

where the max(·, ·) operator in the previous equation is applied component-wise.
In the present numerical procedure, an initial guess for the design variables denoted
d(0) is provided as input. Then, the design variables are iteratively corrected until the
derived constraints are satisfied. At iteration (l), if ‖R(d(l))‖/(3NI

N +4NI
E ) ≥ tol

(where tol is a numerical tolerance), the design variables are corrected using the
generalized Newton’s method as follows:

Δd(l) = −
(
∂R(d(l))
∂d

)†

R(d(l)), (4.23)

d(l+1) = d(l) + Δd(l), (4.24)

where (·)† denotes the Moore-Penrose pseudoinverse (refer to (A.37)). Given an
initial guess d(0), the design variables are iteratively corrected as indicated in
(4.23) and (4.24) until ‖R(d(l))‖/(3NI

N + 4NI
E ) < tol. Table 4.1 summarizes the

procedure used to determine a set of design variables that satisfies the constraints of
the tuck-folding method for origami design.
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Table 4.1 Numerical procedure used to compute the values of the design variables that satisfy
the constraints of the tuck-folding method for origami design

1: Set l ← 0 and provide initial guess d(0)

2: Determine ‖R(d(l))‖
3: IF ‖R(d(l))‖/(3NI

N + 4NI
E ) < tol THEN RETURN d(l) and EXIT

ELSE CONTINUE

4: Determine d(l+1) using (4.23) and (4.24)

5: Set l ← l + 1 and GOTO 2

4.2.6 Determination of Folding Motion

Following the steps of the tuck-folding method listed in Sect. 4.2.1, once an origami
sheet design has been obtained for a given goal mesh M, the next step is to
determine a history of folding motion from the computed reference configuration
S0 towards the goal configuration S� that matches M. The determination of such a
history of folding motion is addressed in this section.

We use the model for origami with creased folds presented in Chap. 2 to simulate
the folding motion of the sheets determined via the tuck-folding method. As
explained in Sect. 2.6, the folding motion is simulated by incrementally updating
the values of the fold angles using guess increments and then applying any required
corrections such that every folded configuration is valid as described in Sect. 2.2.

We define Δθ̂
l ∈ R

3NI
E as the vector whose components correspond to the lth set

of guess increments for the fold angles (see (2.72)):

Δθ̂
l =

[
Δθ̂l1 · · · Δθ̂l

3NI
E

]	
l = 1, . . . , Ninc. (4.25)

where Ninc is the total number of increments. The guess increments for the fold

angles Δθ̂
l
, l = 1, . . . , Ninc, must be determined from the given goal mesh M. For

this purpose, first let θ̂ �1 , . . . , θ̂
�

3NI
E

be the fold angles of each creased fold in the goal

configuration S� (i.e., the goal fold angles). To determine the goal fold angles, the
dihedral angle Θ̂i between the two faces in M connected by the edge associated
with the ith edge module is calculated as follows (see Fig. 4.14):

Θ̂i =
⎧
⎨

⎩

π + cos−1(n̂i1 · n̂i2); for convex edges

π − cos−1(n̂i1 · n̂i2); for concave edges,

i = 1, . . . , NI
E .

(4.26)

where n̂i1, n̂i2 ∈ R
3 are the unit normal vectors in M of the two faces connected

by the edge associated with the ith edge module. As shown in Fig. 4.14, the goal
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Θ̂i

Interior edge in 

n̂i1 n̂i2

Θ̂i

Edge module faces 

(a) M

(b) 

(c) 

− Θ̂i

2
π − Θ̂i

2

Fig. 4.14 (a) Side view of the faces of the goal mesh M connected by an interior edge. The
edge dihedral angle Θ̂i and unit normal vectors n̂i1 and n̂i2 of the adjacent faces are shown.
(b) Configuration of such mesh faces and the edge module that connects them in the reference
configuration S0 of the origami sheet design. The goal fold angles of each creased fold are
indicated. (c) Folding motion of the faces shown in (b) towards their goal configuration

fold angle for the interior fold of each edge module is equal to π while those for
the exterior folds are equal to −Θ̂i/2. We define θ̂

� ∈ R
3NI

E as the vector whose
components are the goal fold angles:

θ̂
� =

[
θ̂ �1 · · · θ̂ �

3NI
E

]	
. (4.27)
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The simulation of the folding motion of the determined origami sheet designs
uses a “fold and adjust” approach and is performed in Nfol + Nadj increments (i.e.,
Ninc = Nfol + Nadj). The Nfol guess increments for the fold angles are given as
follows:

Δθ̂
l = θ̂

�

Nfol
l = 1, . . . , Nfol. (4.28)

Since the set of fold angles at each increment is subject to iterative corrections
to ensure that the kinematic constraints derived in Problem 4.1 are met for every
interior fold intersection, the configuration determined at the Nfol increment may
not exactly correspond to S�. Therefore, Nadj adjusting increments are subsequently
applied. These adjusting fold angle increments are calculated as follows:

Δθ̂
l = θ̂

� − θ̂
l−1

l = Nfol + 1, . . . , Nfol +Nadj, (4.29)

where the components of θ̂
l−1

correspond to the values of the fold angles at the
increment l− 1. The simple fold angle increments provided in (4.28) and (4.29) are
effective for the determination of a folding motion from the reference configuration
S0 to the goal configuration S� in all the examples presented in this chapter.
However, it is not guaranteed to work for any arbitrary goal mesh or sheet reference
configuration. For information on more complex motion planning procedures for
origami, the reader is referred to [18–23].

4.2.7 Design Requirements of the Tuck-Folding Method

An expanded discussion of the tuck-folding method for origami design is provided
here. First, let us consider the number of degrees of freedom (Ndof) in the present
origami design problem. Such a number of degrees of freedom is given as follows:

Ndof = 2NI
E − 3NI

N , (4.30)

where 2NI
E is the number of design variables corresponding to Ŵi , ψ̂i , i =

1, . . . , NI
E , and 3NI

N is the number of equality constraints from (4.6) and (4.7).
It is assumed in (4.30) that there are no redundant equality constraints and that
the inequality constraints (4.11)–(4.13) permit solutions to the equality constraints
(4.6) and (4.7). The number of interior edges NI

E can be additively decomposed as
follows:

NI
E = NI0

E +NI1
E +NI2

E , (4.31)
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Fig. 4.15 (a) Edge modules
connected to a face with a
convex face corner angle. (b)
Edge modules connected to a
face with a concave face
corner angle

(a) (b) 

φjk < π
φjk > π

where NIm
E , m = 0, 1, 2, is the number of interior edges connected to m interior

nodes. Also consider the following equality:

n̄NNI
N =

NI
N∑

j=1

nNj = 2NI2
E +NI1

E , (4.32)

where n̄N is the average number of edges incident to each interior node in M.
Substituting (4.31) and (4.32) into (4.30), the following relation between the number
of degrees of freedom and the number of interior edges is obtained:

Ndof =
(

2 − 6

n̄M

)

NI2
E +

(

2 − 3

n̄M

)

NI1
E + 2NI0

E . (4.33)

For example, a structured triangulated mesh with n̄M = 6 has Ndof = NI2
E +

(3/2)NI1
E + 2NI0

E which is always greater than 0 and a structured quadrilateral
mesh with n̄M = 4 has Ndof = (1/2)NI2

E + (5/4)NI1
E + 2NI0

E which is also

always greater than 0. Therefore, the existence of a set of design variables Ŵi , ψ̂i ,
i = 1, . . . , NI

E , that satisfies the design constraints is generally dependent on the
inequality constraints (4.11)–(4.13).

A requirement in the tuck-folding method is that the determined sheet design
must not have any overlapping regions in its reference configuration S0 (see
Sect. 2.2). To prevent overlaps of edge modules in S0 connected to a common
interior node of M, the face corner angles associated with such an interior node
must satisfy the following constraint (refer to Fig. 4.15):

φjk ≤ π j = 1, . . . , NI
N , k = 1, . . . , nNj . (4.34)

If φjk > π , the edge modules connected to such an interior node overlap in S0,
which is not allowed. Figure 4.15 illustrates this requirement.

Assuming that the inequality constraints (4.11)–(4.13) allow for a valid solution
for the design variables Ŵi and ψ̂i , i = 1, . . . , NI

E , such a solution is not unique
because in general Ndof > 0 (refer to (4.33)). One global measure to discriminate
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among various design solutions and drive toward a possible unique solution is
referred to as the surface area efficiency E and is defined as follows:

E = Area(M)

Area(S0)
. (4.35)

The numerical procedure outlined in Sect. 4.2.5 for the determination of a sheet
design does not account for any function to minimize or maximize during the design
process (i.e., it only iteratively corrects an initial guess solution until the presented
constraints are satisfied). However, other methods can be utilized to determine
a sheet design that satisfies the presented constraints while optimizing a given
function (e.g., maximize surface area efficiency E). Such extensions are application-
dependent and are recommended for future studies (see Problem 4.5).

4.3 Examples of the Tuck-Folding Method

In this section, we provide representative examples of the tuck-folding method
described in Sect. 4.2. This method has been implemented in MATLAB®. The faces
of the goal meshes and the edge modules are visualized as filled three-dimensional
polygons using the MATLAB command fill3. The complete set of MATLAB
scripts used to generate the examples is included in the Supplemental Materials for
this chapter and described in Appendix B.3. We use the MATLAB implementation
of the kinematic model presented in Chap. 2 to simulate the folding motion of the
designed origami sheets.

Figure 4.16 shows examples of saddle meshes for which the unfolding polyhedra
method studied in Chap. 3 cannot provide valid (non-overlapping) sheet designs (see
Fig. 3.21a, b). It is shown in Fig. 4.16 that the tuck-folding method presented in this
chapter successfully provides valid sheet designs for the considered saddle meshes.
Similarly, the goal mesh M of a triangulated hat for which the unfolding polyhedra
method cannot determine a valid sheet design as shown in Fig. 3.21c is considered
in Fig. 4.17. It is another example where the tuck-folding method can be used to find
a valid sheet design that cannot be obtained via the unfolding polyhedra method.

The example presented in Fig. 4.18 considers a goal mesh M associated with a
shape of constant positive Gaussian curvature [17, 24]. The reference configuration
S0 of a sheet design determined using the tuck-folding method and the folding
motion towards its corresponding goal configuration S� are shown in such a figure.
A goal mesh associated with a shape of constant negative Gaussian curvature is
considered in Fig. 4.19. It is interesting to contrast the similarities in S0 between
Figs. 4.18 and 4.19 with the clear differences in the associated goal configura-
tions S�.

To illustrate the multiplicity of possible solutions discussed in Sect. 4.2.7, four
determined sheet designs associated with a single goal mesh M are presented in
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M S0

S�S0

(a) (b) 

(c) 

Fig. 4.16 (a) Goal meshes for saddle shapes that cannot be feasibly unfolded using the unfolding
polyhedra method. (b) Valid origami sheet designs determined using the tuck-folding method
(cf. Fig. 3.21a, b). (c) Folding motion from the planar reference configuration S0 to the goal
configuration S� that matches M

Fig. 4.20. These different sheet designs are obtained by considering different initial
guesses for the sheet design variables in the iterative solution procedure described
in Sect. 4.2.5. Values of the surface area efficiency E defined in (4.35) for the
determined sheet designs are also provided.
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M

S0

S�

S0

(a) 

(b) 

(c) 

Fig. 4.17 (a) Goal mesh M for a triangulated hat open at the base that cannot be feasibly unfolded
using the unfolding polyhedra method. (b) Valid origami sheet design determined using the tuck-
folding method (cf. Fig. 3.21c). (c) Folding motion from the planar reference configuration S0 to
the goal configuration S� that matches M

Figure 4.21 shows sheet designs obtained through the tuck-folding method for
two of the Kepler–Poinsot polyhedra [25, 26]: the great dodecahedron and the small
stellated dodecahedron.

The examples in the previous figures consider goal meshes comprised of
triangular faces only. However, the tuck-folding method is applicable to goal meshes
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M

S0

S�

S0

(a) 

(b) 

(c) 

Fig. 4.18 (a) Goal mesh M associated with a shape of constant positive Gaussian curvature. (b)
Determined origami sheet design. (c) Folding motion from the planar reference configuration S0
to the goal configuration S� that matches M

comprised of arbitrary convex polygonal faces. For example, Fig. 4.22 shows results
associated with a goal mesh comprised of quadrilateral faces.

More complex examples are shown in Figs. 4.23, 4.24, 4.25, and 4.26 where goal
meshes associated a parabolic disk shape, the exterior of a car, a dirigible balloon,
and the Stanford bunny are considered, respectively. In all cases, the tuck-folding
method successfully provides feasible origami sheet designs.
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M

S0

S0

(a) 

(b) 

(c) 

S

Fig. 4.19 (a) Goal mesh M associated with a shape of constant negative Gaussian curvature. (b)
Determined origami sheet design. (c) Folding motion from the planar reference configuration S0
to the goal configuration S� that matches M
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M

S0

(a) 

(b) 

E = 0.81 E = 0.70

E = 0.57 E = 0.41

Fig. 4.20 (a) A goal mesh M and (b) reference configurations of four determined sheet designs
with different values of surface area efficiency E
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M

S�S0

S0

(a) (c) 

(d) 

∂M

(b) 

Fig. 4.21 (a) Goal meshes for the great dodecahedron (top) and the small stellated dodecahedron
(bottom). (b) Boundaries of the goal meshes. (c) Associated origami sheet designs. (d) Continuous
folding motion from the planar reference configuration S0 to the goal configuration S� that
matches M
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M
S0

S�

S0

(a) 

(b) 

(c) 

Fig. 4.22 (a) Goal mesh M comprised of quadrilateral faces. (b) Determined sheet design. (c)
Folding motion from the planar reference configuration S0 to the goal configuration S� that
matches M
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M

S0

S�

S0

(a) 

(b) 

(c) 

Fig. 4.23 (a) Goal mesh M for a parabolic shape. (b) Determined sheet design. (c) Folding motion
from the planar reference configuration S0 to the goal configuration S� that matches M
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M

S0

S�

S0

(a) 

(b) 

(c) 

Fig. 4.24 (a) Goal mesh M for the shape of a car exterior. (b) Determined sheet design. (c)
Folding motion from the planar reference configuration S0 to the goal configuration S� that
matches M
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S0

S0
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(b) 

(c) 

S�

M

Fig. 4.25 (a) Goal mesh M of a dirigible balloon. (b) Determined sheet design. (c) Folding
motion from the planar reference configuration S0 to the goal configuration S� that matches M
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S�

S0

(a) (b) 

(c) 

M

S0

Fig. 4.26 (a) Goal mesh M of the Stanford Bunny [27]. (b) Determined sheet design. (c) Folding
motion from the planar reference configuration S0 to the goal configuration S� that matches M
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Chapter Summary

This chapter presented a method for the design of origami sheets that achieve
targeted three-dimensional shapes termed here as the tuck-folding method. It is
applicable to a much larger spectrum of three-dimensional goal shapes than the
unfolding polyhedra method studied in Chap. 3 as illustrated in Figs. 4.16 and 4.17.
In the tuck-folding method, the goal shape is represented as a three-dimensional
polygonal mesh termed as the goal mesh. The method is based on the introduction
of regions having two rigid faces and three creased folds placed between any two
faces of the goal mesh originally connected by an interior edge. The creased folds
are used to tuck-fold these introduced regions to form the shape of the goal mesh
starting from a planar configuration.

Section 4.2.1 summarized the problem description and solution approach of
the tuck-folding method. The data required to define the goal mesh and any
required mesh modifications were described in Sect. 4.2.2. We then addressed the
parameterization of the origami sheet design and the associated constraints on
the design variables in Sect. 4.2.3. A numerical approach to determine the design
variables subject to such constraints was presented in Sect. 4.2.5. The simulation
of the folding motion between the planar reference configuration of the determined
sheet designs and the goal configuration that matches the goal mesh was addressed
in Sect. 4.2.6. An expanded discussion of the tuck-folding method was presented
in Sect. 4.2.7 and representative examples of the implemented method considering
various goal shapes were provided in Sect. 4.3.

Problems

4.1 Using the approach presented in Sect. 2.4.2, derive kinematic constraints for
origami sheets designed using the method presented in this chapter for which the
folds associated with an interior fold intersection are incident to a hole rather than
to a single vertex. Hint: Formulate the transformation associated with folding each
creased fold incident to the hole using the transformation matrix provided in (2.58).

4.2 Investigate and implement two algorithms for the determination of a boundary
∂MC in an arbitrary 2-manifold surface mesh such that the mesh becomes
topologically equivalent to a disk (refer to Sect. 4.2.2).

4.3 Derive the loop closure constraints provided in Sect. 4.2.3 considering vectors

bj1, . . . , bjn
N
j (refer to Fig. 4.7) defined in clockwise order instead of the counter-

clockwise order assumed in Sect. 4.2.3. Are the resulting constraints equivalent to
those provided in (4.6) and (4.7)?

4.4 An alternative formulation of the constraints on the design variables Wi , ψi ,
i = 1, . . . , NI

E , can be obtained by replacing the inequality constraint (4.12) with
the following equality constraint:
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Ŵi = ∥
∥ẑi

∥
∥ sin

(∣
∣
∣
ψ̂i
2

∣
∣
∣
)
. (4.36)

What would be the implications of using the more restrictive constraint (4.36)
instead of (4.12)? How many equality and inequality constraints would this
alternative formulation have?

Implement this alternative formulation in a computational environment and
determine origami sheet designs for two examples from Sect. 4.3 and compare your
results with those of Sect. 4.3.

4.5 Propose and implement a procedure to determine the design variables Ŵi and
ψ̂i , i = 1, . . . , NI

E , by solving the design problem stated in (4.21) where the
function f (D) to be minimized is given as follows:

f (D) = E(D), (4.37)

and the surface area efficiency E is defined in (4.35).

4.6 Following the approach presented in Sect. 3.2.4, formulate the mapping of the
mesh faces from their position in the goal mesh M to their corresponding position
in the reference configuration S0 of an origami sheet designed using the tuck-folding
method.

4.7 Implement the tuck-folding method for origami with creased folds in a
computational environment. Then, determine a sheet design for the goal mesh with
one interior node of positive Gaussian curvature shown in Fig. 4.27. Assume fold
widths of 0.003 for all the smooth folds. The position vectors of the nodes are given
as follows:

[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.000 0.000 0.000
0.060 0.000 − 0.040
0.030 0.052 − 0.040

−0.030 0.052 − 0.040
−0.060 0.000 − 0.040
−0.030 − 0.052 − 0.040

0.030 − 0.052 − 0.040

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.38)

Fig. 4.27 Goal mesh M for
Problem 4.7
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Fig. 4.28 Goal mesh M for
Problem 4.8

and the components of the mesh connectivity matrix CM are given as follows:

CM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3
1 3 4
1 4 5
1 5 6
1 6 7
1 7 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.39)

4.8 Implement the tuck-folding method for origami with creased folds in a
computational environment. Then, determine a sheet design for the goal mesh with
one interior node of negative Gaussian curvature shown in Fig. 4.28. Assume fold
widths of 0.003 for all the smooth folds. The position vectors of the nodes are given
as follows:

[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.000 0.000 0.000
0.060 0.000 0.030
0.030 0.052 − 0.030

−0.030 0.052 0.030
−0.060 0.000 − 0.030
−0.030 − 0.052 0.030

0.030 − 0.052 − 0.030

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.40)

and the components of the mesh connectivity matrix CM are given in (4.39).

4.9 Implement the tuck-folding method in a computational environment and
determine sheet designs for the 13 Archimedean polyhedra. Compare your results
with those of Problem 3.7.

4.10 Implement the tuck-folding method in a computational environment and
determine sheet designs for two different non-convex goal meshes (your choice).
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4.11 Determine the trim angles τjk , j = 1, . . . , NI
N , k = 1, . . . , nNj , for the edge

modules associated with the goal mesh M illustrated in Fig. 3.9.

4.12 Repeat Problem 4.11 considering the goal mesh M illustrated in Fig. 3.31.
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Chapter 5
Kinematics of Origami Structures
with Smooth Folds

Abstract A kinematic model for origami with creased folds was presented in
Chap. 2 and most existing models for origami also assume that folds are straight
creases. However, such previous models are not intended for origami structures
having non-negligible fold thickness or maximum fold curvature constraints based
on material or structural limitations. In this chapter, we develop a model that
captures the kinematic response of sheets having realistic folds of non-zero surface
area and exhibiting higher-order geometric continuity, referred to as smooth folds.
The geometry of smooth folds and the constraints on their associated kinematic
variables are presented. We also address the implementation of the model in a
computational environment and provide various representative examples.

5.1 Introduction

As stated in Chap. 2, the following assumptions underlie most origami models
proposed to date [1, 2]: (1) folds are straight creases (Fig. 5.1a), and (2) planar faces
bounded by the folds and the sheet boundary are rigid (i.e., these faces neither stretch
nor bend). Origami modeling under these assumptions has been studied in the past
and remains an active research subject [2–6] (see Sect. 1.4).

The idealization of origami structures as sheets having creased folds has been
useful in the modeling and design of many deployable structures [2, 4–11] and
mechanisms to date [12–25]. However, this simplification may not be appropriate
for structures having non-negligible fold thickness or that are comprised of materials
incapable of the strain magnitudes needed to generate the high curvatures com-
patible with a creased idealization. For these structures, the folded regions are not
accurately represented as creases but rather as bent sheet regions having higher-
order geometric continuity. These folded regions are referred to as smooth folds
(Fig. 5.1b).
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Creased fold 

Smooth fold 

(a) 

(b) 
Rigid faces 

Rigid faces 

Fold 
width 

Fig. 5.1 (a) A sheet having a creased fold. (b) A sheet having a smooth fold of non-zero surface
area

There have been past efforts to model and render surfaces that exhibit smooth
folding. Bent and creased surfaces have been simulated using collections of
developable surfaces [26–30] to allow for the realistic animation and rendering
of curved folds and combinations of creases and bent regions. Hwang and Yoon
modeled origami-like developable surfaces via bending operations analogous to
wrapping regions of an initially planar surface onto cylindrical and conical sec-
tions [28]. Developable surfaces that represent bent and creased sheets have also
been simulated using collections of planar, cylindrical, conical, and other ruled
surface subdomains [26, 27]. However, none of the aforementioned works [26–30]
has considered constraints on the geometry and deformation of the bent folded
regions that are required to preserve rigid faces as in analogous models that assume
rigid faces and creased folds. In view of this, we provide a fully general model for
the kinematic response of origami structures having smooth folds and rigid faces
in this chapter. Such a model then includes as a special case the deformation of
structures with creased (i.e., zero width) folds.

The model presented in this chapter is particularly useful for the kinematic
analysis of sheets folded via active material actuation, where the achievable
curvature at the folds is limited by the maximum strain magnitude provided by such
materials [31]. Examples of these active origami structures are reviewed in Chap. 1
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Fig. 5.2 Motivation for the current model based on active materials: (a) Photographs of a pyramid
created via thermally activated folding of an SMP sheet. Adapted from [34] with permission of
The Royal Society of Chemistry. Credit: Ying Liu and Michael Dickey; (b) Schematics of the same
pyramid simulated using the kinematic model presented in this chapter

and they include folds driven by liquid-crystal elastomers [32, 33], shape memory
polymers (SMPs) [34] (see Fig. 5.2), shape memory alloys (SMAs) [35–38], dielec-
tric elastomers [39, 40], and others [31, 41–43]. The different assumptions regarding
strain distributions at the fold regions associated with the chosen active materials
require an arbitrary order of geometric continuity at the fold/face junctions. This
aspect is considered in the present chapter.

In Sect. 5.2, we formalize the concepts and assumptions made in the new
kinematic model, especially as related to the model for origami with creased folds
presented in Chap. 2. The chapter continues with the mathematical description of
smooth folds in Sect. 5.3. In Sect. 5.4, we provide the mathematical description of
the fold pattern in origami sheets with smooth folds. Subsequently, we address the
kinematic constraints that restrict the possible fold patterns and folding motions for
origami structures with smooth folds in Sect. 5.5. The formulation that maps the
reference configuration of a sheet to all other possible configurations is examined
in Sect. 5.6. The implementation of the model in a computational framework is
addressed in Sect. 5.7, while Sect. 5.8 presents simulation results of sheets having
different fold patterns that demonstrate the kinematic responses captured by the
model. Upon the study of this chapter, the reader will be able to derive the kinematic
model for origami with smooth folds and to implement it in a computational
framework. The Supplemental Material associated with this chapter provides the
reader with a number of MATLAB® scripts that represent such an implementation.
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5.2 Fundamental Concepts

In this section, we present the fundamental concepts used in the kinematic modeling
of origami structures with smooth folds. The modeling approach for origami
adopted here is primarily based on that presented in Chap. 2. First, the continuum
surface termed as the sheet and the kinematic variables associated with the smooth
folds in the sheet (e.g., the fold angles) are defined. This continuum surface studied
throughout the chapter represents the mid-surface of an origami structure of finite
thickness.

The layout of the folds in the sheet (i.e., the fold pattern) is then determined in
terms of vertices (start points and end points of the line segments coincident with
the centerlines of the smooth folds in a planar reference configuration) and their
connectivity. Here the required fold pattern data (e.g., vertex coordinates and fold
connectivity) are assumed given. We address two methods for designing these fold
patterns to achieve goal shapes in Chaps. 6 and 7. After the geometric parameters
of the fold pattern are defined, mathematical constraints on the fold kinematic
variables required for valid configurations are derived. The continuous motion of
the sheet is represented as a continuous evolution of the fold kinematic variables
such that any attained configuration satisfies the kinematic constraints.

Let us consider origami sheets such as those illustrated in Fig. 5.3, which are
surfaces in three-dimensional space. Further, the sheets are connected surfaces,
which means that any two points in the sheets can be joined by a path fully contained
within them. Each sheet has an outer closed boundary and thus they are also bounded
surfaces. As also shown in Fig. 5.3, the sheets are divided into faces and smooth
folds. The sheet has NP faces and NF smooth folds (NP = 4 and NF = 3 for the
strip in Fig. 5.3; NP = 16 and NF = 19 for the crane in Fig. 5.3).

Figure 5.3 shows different configurations of the two example origami sheets
during their folding motion. We consider the folding motion of such origami sheets
from t = 0 to t = tf where t ∈ [0, tf ] is a time parameter that tracks the history
of folding motion. In a given configuration, each point in the sheet is located at
some definite position in three-dimensional space R

3. The current configuration of
a sheet at any t is denoted St . The geometric configurations of the NP faces and the
NF smooth folds in St are denoted P1

t , . . . , PNP
t and F1

t , . . . , FNF
t , respectively.

Therefore, St =
(⋃NP

i=1 P i
t

)
∪
(⋃NF

i=1 F i
t

)
.

Following the notation of Chap. 2, the orthonormal vectors ei ∈ R
3, i = 1, 2, 3

form the basis {e1, e2, e3} that defines the fixed global coordinate system. The
reference configuration of the sheet is denoted S0 and is defined such that it is
contained in the plane spanned by e1 and e2 with its surface subdomains (the faces
and the smooth folds) not overlapping as illustrated in Fig. 5.3. The configuration
of the NP faces and the NF smooth folds in S0 are denoted P1

0 , . . . , PNP
0 and

F1
0 , . . . , FNF

0 , respectively. The side of S0 with normal vector e3 is selected as the
positive side of the sheet. The configuration of the sheet at t = tf is termed as the
final configuration Stf .
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e1

e2
e3 S0

e1

e2

e1

e2

e1

e2

e3 S0

Valley folds 
Mountain folds 

Stf

Stf

Sti
Sti

Faces 

Smooth folds 

Fig. 5.3 Schematics showing the fold pattern, reference configuration S0, an intermediate current
configuration Sti (0 < ti < tf ), and final configuration Stf for two sheets with smooth folds
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A valid configuration St has the following characteristics:

1. The faces undergo only rigid deformations (i.e., they do not stretch or bend),
2. The sheet is not torn (initially joined surface subdomains of the sheet remain

joined), and
3. The sheet does not self-intersect.

These characteristics of a valid configuration are the same as those of a valid
configuration for a sheet with creased folds presented in Sect. 2.2. However, it is
noted that unlike a sheet with creased folds, the sheets considered here are also
comprised of other surface subdomains besides the faces (the smooth folds), for
which bending and stretching are permitted.

As illustrated in Figs. 5.1, 5.2 and 5.3, the smooth folds are surfaces that locally
bend along a single direction. To capture such a response, we parameterize the
smooth folds F1

t , . . . , FNF
t as ruled surfaces1 of the following form:

F i
t (ζ1, ζ2) = cit (ζ1)+ ζ2hit ,

dcit (ζ1)

dζ1
· hit = 0, (5.1)

where F i
t (ζ1, ζ2) ∈ R

3 is a parameterization of F i
t . Without loss of generality,

the range for the parameters ζ1 and ζ2 are taken as the intervals [−1, 1] and [0, 1],
respectively. To simplify the notation, the dependence of F i

t (ζ1, ζ2), cit (ζ1), and
hit on t is taken as implicit for the remainder of the chapter and they are denoted
F i (ζ1, ζ2), ci (ζ1), and hi , respectively. We illustrate a parametric surface F i (ζ1, ζ2)

in Fig. 5.4.
In (5.1), hi ∈ R

3 provides the direction of the rulings comprising F i
t while

ci (ζ1) ∈ R
3 is the parametric curve that defines the cross-section of F i

t and is
contained in a plane orthogonal to hi .2 The dimension of the folds along their length
direction is given as ‖hi‖. It is assumed that ‖hi‖ is constant for all configurations
and therefore the smooth folds do not exhibit stretch along their length direction (i.e.,
the direction along hi). As a consequence, the only non-rigid deformations allowed
for the smooth folds are continuous bending or stretching of their cross-sections
defined by c1(ζ1), . . . , cNF (ζ1).

In this work, the deformation of the smooth folds is simplified to cylindrical
bending (i.e., the deformation of such surfaces is limited to bending and stretch
along only one direction). Cylindrical bending is an assumption widely employed
in the simplification of the analysis of plate structures that have a high length-
to-width ratio and reduces the two-dimensional plate models to one-dimensional
ones [45–47]. The assumption of cylindrical bending is made here because the

1A ruled surface is formed by the union of straight lines, called the rulings or generators of the
surface [44].
2The tangent vector of the parametric curve ci (ζ1) is given as dci (ζ1)

dζ1
. Therefore, the expression

dci (ζ1)
dζ1

· hi = 0 in (5.1) indicates that ci (ζ1) is contained in a plane orthogonal to hi .
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Fig. 5.4 (a) Smooth fold surface F i
t and its adjacent faces. (b) Parameterization F i (ζ1, ζ2)

describing the shape of F i
t . (c) Boundaries of F i

t

length of the smooth folds along the direction parallel to hi (refer to Fig. 5.4)
is often much larger than their fold width. This allows us to neglect stretch and
bending along the direction parallel to hi . However, there are cases where cylindrical
bending is not an accurate assumption. For example, origami structures having folds
comprised of highly anisotropic materials may also not exhibit cylindrical bending.
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Also, there are material systems used in origami structures that exhibit significant
anticlastic bending (i.e., when they are folded along one direction, a bending
deformation of opposite curvature is exhibited along the perpendicular direction).
Liquid crystal elastomers [32] are examples of such material systems. The present
model can be extended to account for general deformation of the smooth fold
surfaces by generalizing (5.1) and allowing bending and stretch along the direction
perpendicular to the fold width. Nevertheless, the resulting model would require a
higher number of kinematic variables and more complex kinematic relations. Such
a model is beyond the scope of this chapter. Finite element approaches using plate,
shell, or three-dimensional continuum elements can also be employed to model the
deformation of more general cases of folds that do not exhibit cylindrical bending.

A non-rigid deformation of the sheet is achieved by rotating pairs of faces that
are joined to shared smooth folds relative to one another in such a manner that the
sheet only attains valid configurations. The primary kinematic variable associated
with a smooth fold describes the relative rotation between the two faces joined by
the fold and is denoted as the fold angle. Based on the kinematics of creased folds,
(Chap. 2), this fold angle θ̂i (t) is defined as π radians less the dihedral angle between
the positive sides of the two faces joined to the ith smooth fold (see Fig. 5.5). The
dependence of the fold angles on t is left implicit for the remainder of the chapter.

Comparing the crane with smooth folds in Fig. 5.3 against its counterpart with
creased folds in Fig. 2.2, it is noted that the interior fold intersections for origami
with smooth folds are taken to be holes in the sheet rather than single points.3 The
number of interior fold intersections in the sheet is denoted NI (NI = 4 for the
crane in Fig. 5.3; NI = 0 for the strip in Fig. 5.3).

5.3 Shape Formulation of Smooth Folds

This section presents the detailed geometrical description of smooth folds. The
conditions required for various orders of geometric continuity and associated
formulations for the parametric curves c1(ζ1), . . . , cNF (ζ1) that describe the cross-
sectional shape of the smooth folds (see Fig. 5.5) are also provided.

The distance between the two end points of ci (ζ1) with position vectors
ci (−1), ci (1) ∈ R

3 in any configuration is denoted by ŵi :

ŵi = ‖ci (1)− ci (−1)‖. (5.2)

3This is primarily to simplify the mathematical formulation, as the compound curvature of fold
intersections will necessarily be much harder to model than that of the smooth folds F i (ζ1, ζ2),
which have zero Gaussian curvature. Rigorous modeling of these interior fold intersections is left
for future studies.
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ŵ0
i

ζ 1
=

−1

ζ 1
=

1

ζ2 = 1

ζ2 = 0

ci(ζ1)

hi

c i(ζ1)

ci (ζ1)

Fig. 5.5 Schematics showing the reference and folded configurations of a smooth fold and the
concept of fold angle θ̂i

A schematic of the cross-section of a smooth fold showing ŵi is shown in
Fig. 5.6. The fold width ŵ0

i is the value of ŵi at t = 0 (i.e., at the reference
configuration).

The fold-attached orthonormal vectors êi1, êi2, êi3 ∈ R
3, i = 1, . . . , NF , form the

bases {êi1, êi2, êi3} that define the local fold coordinate system of each smooth fold.
The origin of this coordinate system is located at the middle distance between the
end points of ci (ζ1) (i.e., at 1

2

(
ci (−1)+ ci (1)

)
). The vector êi1 is aligned to hi while

êi2 is aligned with ci (1)− ci (−1).
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âi θ̂i
(1 − âi)θ̂i

θ̂i

êi
2

êi
3

(a) 

(b) 

ŵi ŵi

ĉ i(ζ1)
ĉi (−1) ĉ i(1)

Fig. 5.6 Cross-section of a general smooth fold: (a) Origami sheet of non-zero thickness; (b) Mid-
surface of the origami sheet modeled in this chapter. The fold kinematic variables θ̂i , ŵi , and âi
and the fold-attached coordinate system are shown

In general, the face adjacent to a smooth fold at the boundary F i (−1, ζ2) makes
an angle of âi θ̂i with −êi2 in the plane spanned by êi2 and êi3. The face adjacent to a
smooth fold at the boundary F i (1, ζ2) makes an angle of (1 − âi )θ̂i with êi2 in the
same plane. This is shown in Fig. 5.6.

For the remainder of the book, we focus only on folds having symmetric cross-
sections (i.e., those for which âi = 1

2 ). The reader is referred to other sources for
the treatment of more general smooth folds [48]. The cross-section of a symmetric
smooth fold and its associated parameters are illustrated in Fig. 5.7.
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θ̂i

2

θ̂i

êi
2

êi
3 θ̂i

2

ŵi ŵi

ĉ i(ζ1)ĉi (−1) ĉ i(1)

Fig. 5.7 Cross-section of a symmetric smooth fold

Let ĉi (ζ1) be the parametric curve ci (ζ1) expressed in the fold coordinate system
of F i

t :

ĉi (ζ1) = [
êi1 êi2 êi3

]	 [
ci (ζ1)− 1

2

(
ci (−1)+ ci (1)

)]
. (5.3)

If ĉi (ζ1) is at least first-order differentiable for ζ1 ∈ [−1, 1], the total arc-length
of the fold cross-section, denoted as the fold arc-length ŝi , is determined as follows:

ŝi =
∫ 1

−1

∥
∥
∥
∥

dĉi (ζ1)

dζ1

∥
∥
∥
∥ dζ1, (5.4)

and the arc-length coordinate s(ζ1) ∈
[
− ŝi

2 ,
ŝi
2

]
is determined as follows:

s(ζ1) = − ŝi
2

+
∫ ζ1

−1

∥
∥
∥
∥

dĉi (ζ )
dζ

∥
∥
∥
∥ dζ. (5.5)

The tangent direction of the parametric curve ĉi (ζ1) is determined by the unit
tangent vector ti (ζ1) ∈ span(êi2, êi3) and is defined at the points where ĉi (ζ1) is at
least first-order differentiable:

ti (ζ1) = dĉi (ζ1)

dζ1

/∥
∥
∥
∥

dĉi (ζ1)

dζ1

∥
∥
∥
∥ . (5.6)
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The curvature κ̂i (ζ1) is defined at the points where ĉi (ζ1) is at least second-order
differentiable:

κ̂i (ζ1) =
∥
∥
∥
∥
∥

dĉi (ζ1)

dζ1
× d2ĉi (ζ1)

dζ 2
1

∥
∥
∥
∥
∥

/∥
∥
∥
∥

dĉi (ζ1)

dζ1

∥
∥
∥
∥

3

, (5.7)

and the signed curvature κi(ζ1) is given as follows4:

κi(ζ1) = κ̂i (ζ1) sgn

((
dĉi (ζ1)

dζ1
× d2ĉi (ζ1)

dζ 2
1

)

· êi1

)

. (5.8)

Example 5.1 Geometry of a quadratic form for ĉi (ζ1).
Statement: Consider a fold cross-section curve ĉi (ζ1) having the following quadratic
form:

ĉi (ζ1) =
⎡

⎢
⎣

0

b20 + b21ζ1 + b22ζ
2
1

b30 + b31ζ1 + b32ζ
2
1

⎤

⎥
⎦ , (5.9)

where b20, b21, b22, b30, b31, b32 ∈ R. Derive expressions for the unit tangent
vector, curvature, and signed curvature for the curve ĉi (ζ1) provided in (5.9).
Solution: We first proceed by calculating the first- and second-order derivatives of
ĉi (ζ1) with respect to ζ1 and their cross product, which are required to determine
the unit tangent vector, curvature, and signed curvature:

dĉi (ζ1)

dζ1
=

⎡

⎢
⎣

0

b21 + 2b22ζ1

b31 + 2b32ζ1

⎤

⎥
⎦ ,

d2ĉi (ζ1)

dζ 2
1

=
⎡

⎢
⎣

0

2b22

2b32

⎤

⎥
⎦ ,

dĉi (ζ1)

dζ1
× d2ĉi (ζ1)

dζ 2
1

=
⎡

⎢
⎣

2b21b32 − 2b22b31

0

0

⎤

⎥
⎦ .

(5.10)

4The sign function is defined as follows: sgn(y) =

⎧
⎪⎨

⎪⎩

−1; y < 0

1; y > 0

0; y = 0

.
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The unit tangent vector ti (ζ1) is calculated via (5.6):

ti (ζ1) = dĉi (ζ1)

dζ1

/∥
∥
∥
∥

dĉi (ζ1)

dζ1

∥
∥
∥
∥

= 1

((b21 + 2b22ζ1)2 + (b31 + 2b32ζ1)2)
1
2

⎡

⎢
⎣

0

b21 + 2b22ζ1

b31 + 2b32ζ1

⎤

⎥
⎦ .

(5.11)

The curvature κ̂i (ζ1) is calculated via (5.7):

κ̂i (ζ1) =
∥
∥
∥
∥
∥

dĉi (ζ1)

dζ1
× d2ĉi (ζ1)

dζ 2
1

∥
∥
∥
∥
∥

/∥
∥
∥
∥

dĉi (ζ1)

dζ1

∥
∥
∥
∥

3

= |2b21b32 − 2b22b31|
((b21 + 2b22ζ1)2 + (b31 + 2b32ζ1)2)

3
2

,

(5.12)

and the signed curvature κi(ζ1) is calculated via (5.8):

κi(ζ1) = κ̂i (ζ1) sgn

((
dĉi (ζ1)

dζ1
× d2ĉi (ζ1)

dζ 2
1

)

· êi1

)

= |2b21b32 − 2b22b31| sgn(2b21b32 − 2b22b31)

((b21 + 2b22ζ1)2 + (b31 + 2b32ζ1)2)
3
2

= 2b21b32 − 2b22b31

((b21 + 2b22ζ1)2 + (b31 + 2b32ζ1)2)
3
2

.

(5.13)

5.3.1 Continuity Conditions for Smooth Folds

Since the faces of the origami sheets are assumed planar and rigid, the order
of geometry continuity of the sheets is manifested in the order of continuity of
the smooth fold cross-sections ĉ1(ζ1), . . . , ĉNF (ζ1) and the fold/face junctions at
ĉ1(±1), . . . , ĉNF (±1) (refer to Fig. 5.8). Only continuity of position is required
for G0 continuity (Fig. 5.8a). Such a case corresponds to conventional creased
folds. Continuity of position and unit tangent vector is required for G1 continuity
(Fig. 5.8b) [49]. Continuity of position, unit tangent vector, and signed curvature is
required forG2 continuity (Fig. 5.8c). Structures having discontinuities of thickness
and/or materials at the interface between the faces and the smooth folds would
exhibit discontinuities in curvature at such a location and thus would have G1

continuity while those without such discontinuities would have G2 continuity.
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G0

G1

G2

+1 

+1 

0 ζ1

κi(ζ1)

ζ1

ζ1

κi(ζ1)

κi(ζ1)

ĉi (−1) ĉ i(1)

ĉi (−1) ĉ i(1)

Fig. 5.8 Schematics showing folds of various orders of geometric continuity and their associated
signed curvature

The order of geometric continuity of a current configuration St at the interior
of a smooth fold surface F i

t is determined by the order of geometric continuity of
ĉi (ζ1), ζ1 ∈ (−1, 1), while that at the junctions with the planar faces adjacent to
F i
t depends on the particular values of ĉi (±1) and its derivatives. We provide such

conditions for ĉi (±1) and its derivatives required for G0, G1, and G2 continuity in
the subsequent sections.

Conditions for G0 Continuity
For G0 continuity at the junctions F i

t and its adjacent faces (i.e., simply continuity
of position), the following conditions on ĉi (±1) must be met (refer to Fig. 5.7):

ĉi (−1) =

⎡

⎢
⎢
⎣

0

− ŵi
2

0

⎤

⎥
⎥
⎦ = ĉiL0

, ĉi (1) =

⎡

⎢
⎢
⎣

0
ŵi
2

0

⎤

⎥
⎥
⎦ = ĉiR0

. (5.14)
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Conditions for G1 Continuity
To achieve G1 continuity at the junctions of F i

t and its adjacent planar faces, both
continuity of the unit tangent vector ti (ζ1) and G0 continuity at ζ1 = ±1 are
required [49, 50]. Referring to Fig. 5.7, the following values of ti (±1) are required
for G1 continuity:

ti (−1) =

⎡

⎢
⎢
⎢
⎣

0

cos
(
θ̂i
2

)

− sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎦
, ti (1) =

⎡

⎢
⎢
⎢
⎣

0

cos
(
θ̂i
2

)

sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎦
. (5.15)

Using (5.6), we determine that the following conditions on the first derivatives of
ĉi (±1) are required for G1 continuity at the junctions of F i

t with its adjacent planar
faces:

dĉi (ζ1)

dζ1

∣
∣
∣
∣
ζ1=−1

= βi1

⎡

⎢
⎢
⎢
⎣

0

cos
(
θ̂i
2

)

− sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎦

= ĉiL1
,

dĉi (ζ1)

dζ1

∣
∣
∣
∣
ζ1=1

= βi1

⎡

⎢
⎢
⎢
⎣

0

cos
(
θ̂i
2

)

sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎦

= ĉiR1
,

(5.16)

where βi1 ∈ R>0.

Example 5.2 Conditions for G1 continuity of a general (unsymmetrical) fold
Statement: Based on Fig. 5.6, state the conditions on the unit tangent vector ti (ζ1)

and the first derivative of ĉi (ζ1) required for G1 continuity of a general fold for
which âi is not necessarily equal to 1

2 .
Solution: Referring to Fig. 5.6, continuity of the unit tangent vector ti (ζ1) at ζ1 =
±1 requires the following values of ti (±1):

ti (−1) =

⎡

⎢
⎢
⎢
⎣

0

cos
(
âi θ̂i

)

− sin
(
âi θ̂i

)

⎤

⎥
⎥
⎥
⎦
, ti (1) =

⎡

⎢
⎢
⎢
⎣

0

cos
(
(1 − âi )θ̂i

)

sin
(
(1 − âi )θ̂i

)

⎤

⎥
⎥
⎥
⎦
. (5.17)

Thus, the following conditions on the first derivatives of ĉi (±1) are required for
G1 continuity:



216 5 Kinematics of Origami Structures with Smooth Folds

dĉi (ζ1)

dζ1

∣
∣
∣
∣
ζ1=−1

= βLi1

⎡

⎢
⎢
⎢
⎣

0

cos
(
âi θ̂i

)

− sin
(
âi θ̂i

)

⎤

⎥
⎥
⎥
⎦
,

dĉi (ζ1)

dζ1

∣
∣
∣
∣
ζ1=1

= βRi1

⎡

⎢
⎢
⎢
⎣

0

cos
(
(1 − âi )θ̂i

)

sin
(
(1 − âi )θ̂i

)

⎤

⎥
⎥
⎥
⎦
,

(5.18)

where βLi1, β
R
i1 ∈ R>0, cf. (5.16).

Conditions for G2 Continuity
To achieve G2 continuity at the junctions of F i

t and its adjacent planar faces, both
continuity of the signed curvature and G1 continuity at ζ1 = ±1 are required. Thus,
the curvature κ̂i (±1) must be zero since F i

t is connected to planar faces. As such,
the following is required to allow κ̂i (±1) = 0 according to (5.7):

(
dĉi (ζ1)

dζ1
× d2ĉi (ζ1)

dζ 2
1

) ∣
∣
∣
∣
ζ1=−1

= 03,

(
dĉi (ζ1)

dζ1
× d2ĉi (ζ1)

dζ 2
1

) ∣
∣
∣
∣
ζ1=1

= 03,

(5.19)

where 0n is the zero vector in R
n. Considering (5.16) and (5.19), the following

conditions on the second derivatives of ĉi (ζ1) are needed for G2 continuity at the
junctions of F i

t with its adjacent planar faces:

d2ĉi (ζ1)

dζ 2
1

∣
∣
∣
∣
ζ1=−1

= βi2

⎡

⎢
⎢
⎢
⎣

0

cos
(
θ̂i
2

)

− sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎦

= ĉiL2
,

d2ĉi (ζ1)

dζ 2
1

∣
∣
∣
∣
ζ1=1

= βi2

⎡

⎢
⎢
⎢
⎣

0

− cos
(
θ̂i
2

)

− sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎦

= ĉiR2
,

(5.20)

where βi2 ∈ R. Conditions on higher-order derivatives of ĉi (ζ1) required for higher-
order geometric continuity can be provided in a similar manner [49, 50].
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5.3.2 Fold Parameterization Examples

Polynomials of the minimum order required to satisfy the previous continuity
conditions for ĉi (±1) and its derivatives are used to define such a parametric curve.
We use Hermite interpolation polynomials [51] to represent ĉi (ζ1). Alternative
representations (e.g., Bezier curves) are also applicable if they satisfy the continuity
conditions. For smooth folds having G1 continuity, ĉi (ζ1) is expressed as follows:

ĉi (ζ1) = h30(ζ1)ĉiL0
+ h31(ζ1)ĉiR0

+ h32(ζ1)ĉiL1
+ h33(ζ1)ĉiR1

, (5.21)

where ĉiL0
and ĉiR0

are defined in (5.14) and ĉiL1
and ĉiR1

are defined in (5.16). The
cubic Hermite interpolation polynomials h30(ζ1), . . . , h33(ζ1) are given as follows:

h30(ζ1) = 1
4ζ

3
1 − 3

4ζ1 + 1
2 ,

h31(ζ1) = − 1
4ζ

3
1 + 3

4ζ1 + 1
2 ,

h32(ζ1) = 1
4ζ

3
1 − 1

4ζ
2
1 − 1

4ζ1 + 1
4 ,

h33(ζ1) = 1
4ζ

3
1 + 1

4ζ
2
1 − 1

4ζ1 − 1
4 .

(5.22)

For smooth folds having G2 continuity, ĉi (ζ1) is expressed as follows:

ĉi (ζ1) = h50(ζ1)ĉiL0
+ h51(ζ1)ĉiR0

+ h52(ζ1)ĉiL1

+ h53(ζ1)ĉiR1
+ h54(ζ1)ĉiL2

+ h55(ζ1)ĉiR2
,

(5.23)

where ĉiL2
and ĉiR2

are defined in (5.20). The fifth-order Hermite interpolation
polynomials h50(ζ1), . . . , h55(ζ1) are given as follows:

h50(ζ1) = − 3
16ζ

5
1 + 5

8ζ
3
1 − 15

16ζ1 + 1
2 ,

h51(ζ1) = 3
16ζ

5
1 − 5

8ζ
3
1 + 15

16ζ1 + 1
2 ,

h52(ζ1) = − 3
16ζ

5
1 + 1

16ζ
4
1 + 5

8ζ
3
1 − 3

8ζ
2
1 − 7

16ζ1 + 5
16 ,

h53(ζ1) = − 3
16ζ

5
1 − 1

16ζ
4
1 + 5

8ζ
3
1 + 3

8ζ
2
1 − 7

16ζ1 − 5
16 ,

h54(ζ1) = − 1
16ζ

5
1 + 1

16ζ
4
1 + 1

8ζ
3
1 − 1

8ζ
2
1 − 1

16ζ1 + 1
16 ,

h55(ζ1) = 1
16ζ

5
1 + 1

16ζ
4
1 − 1

8ζ
3
1 − 1

8ζ
2
1 + 1

16ζ1 + 1
16 .

(5.24)
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The reader is asked in Problem 5.5 to verify that the parameterization of the curve
ĉi (ζ1) in (5.21) satisfies the conditions for G1 continuity. Likewise, Problem 5.6
asks to verify that the parameterization of the curve ĉi (ζ1) in (5.23) satisfies the
conditions for G2 continuity.

5.4 Fold Pattern Description

In this section, we examine the geometric description of the fold pattern, which is
the layout of the smooth folds in the reference configuration S0 of an origami sheet.
We consider the Miura-Ori sheet previously introduced for origami with creased
folds in Fig. 2.5 to help the reader visualize the concepts introduced in this section.
The reference configuration S0 of the Miura-Ori sheet having smooth folds is shown
in Fig. 5.9.

The centerlines of the smooth folds are defined by their end points, denoted as
vertices (refer to Fig. 5.9a). Each vertex has an associated position vector denoted
vj ∈ span(e1, e2) (see Fig. 5.9b). The number of vertices located at the interior of
S0 is denoted NI and the number of vertices located at the boundary or outside S0
is denoted NB. For the Miura-Ori sheet in Fig. 5.9, NI = 1 and NB = 4.

The vertices are enumerated starting from those located at the interior of S0
(with corresponding position vectors v1, . . . , vNI ) followed by those located at the
boundary or outside S0 (with corresponding position vectors vNI+1, . . . , vNI+NB ).
We illustrate this convention in Fig. 5.9a. The position vectors v1, . . . , v5 for the
Miura-Ori sheet are provided in Example 2.1.

To identify which vertices are the start points and end points of each fold
centerline in the fold pattern, we introduce the fold connectivity matrix CF ∈
R
NF×2 with components CF

ij defined as follows:

CF
i1 = Index of the vertex corresponding to the start point of the ith fold centerline,

CF
i2 = Index of the vertex corresponding to the end point of the ith fold centerline,

i = 1, . . . , NF .
(5.25)

The choice for the start point and end point of a given fold centerline can be
swapped and the same fold pattern would result. However, such a choice must
be consistent throughout the various input parameters required to define the fold
pattern, which are presented subsequently in this section. The fold connectivity
matrix CF for the Miura-Ori sheet shown in Fig. 5.9 is provided in Example 2.2.

Let v̂i1, v̂i2 ∈ span(e1, e2), i = 1, . . . , NF , be the position vectors of the
vertices from which each fold centerline in the sheet emanates and ends, respectively
(see Fig. 5.10). These vectors are determined from the fold connectivity matrix CF
as follows:

v̂i1 = vC
F
i1 , v̂i2 = vC

F
i2 i = 1, . . . , NF . (5.26)
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m̂1

m̂2
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ŵ0
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ŵ0
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ŵ0
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ŵ0
4

Fig. 5.9 Reference configuration S0 of a sheet with smooth folds having the Miura-Ori pattern (its
counterpart with creased folds is shown in Fig. 2.5): (a) Numbering of the vertices and dimensions
of the sheet; (b) Position vectors of the 3rd and 4th vertices; (c) Numbering of the folds. The fold
widths ŵ0

1, . . . ŵ
0
4 are also shown; (d) Fold vectors along the length of each fold centerline (the

choice for the start point and end point of a given fold vector can be swapped and the same fold
pattern would result, but the choice must be consistent throughout the various input parameters
required to define the fold pattern)

Let m̂1, . . . , m̂NF ∈ span(e1, e2) be the fold vectors, which are those along
the length of each fold centerline. These vectors are determined as follows (see
Fig. 5.9d):

m̂i = v̂i2 − v̂i1 i = 1, . . . , NF . (5.27)
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The vectors v̂11, . . . , v̂41, v̂12, . . . , v̂42, and m̂1, . . . , m̂4 for the Miura-Ori sheet
shown in Fig. 5.9 are provided in Example 2.3.

The four corner points of F i
0 having associated position vectors p̂i1, p̂i2, p̂i3, p̂i4

∈ span(e1, e2), i = 1, . . . , NF , are determined as follows:

p̂i1 = v̂i1 − ŵ0
i

2

(

e3 × m̂i

‖m̂i‖
)

+ r̂i1
m̂i

‖m̂i‖ ,

p̂i2 = v̂i2 − ŵ0
i

2

(

e3 × m̂i

‖m̂i‖
)

− r̂i2
m̂i

‖m̂i‖ ,

p̂i3 = v̂i2 + ŵ0
i

2

(

e3 × m̂i

‖m̂i‖
)

− r̂i2
m̂i

‖m̂i‖ ,

p̂i4 = v̂i1 + ŵ0
i

2

(

e3 × m̂i

‖m̂i‖
)

+ r̂i1
m̂i

‖m̂i‖ ,

(5.28)

where r̂i1, r̂i2 ∈ R are the distances between the end points of the fold centerline
and the boundary of the fold as shown in Fig. 5.10.

Fig. 5.10 Geometric parameters defining any F i
0: Coordinates of the end points of the fold

centerline v̂i1 and v̂i2, fold vector m̂i , fold width ŵ0
i , and length parameters r̂i1 and r̂i2
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Fig. 5.11 Schematic for
Example 5.3: Geometric
parameters of F i

0
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ŵ0
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2 ŵ0
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m̂
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p̂i2
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Example 5.3 Determination of fold corner points.
Statement: Consider the reference configuration of a smooth fold shown in Fig. 5.11.
Let ŵ0

i = 1, r̂i1 = 3
5 , r̂i2 = 2

5 , and v̂i1 = [ 0 0 0]	. Determine p̂i2.
Solution: Based on Fig. 5.11, the vectors m̂i and v̂i2 are given as:

m̂i =
⎡

⎣
3
4
0

⎤

⎦ , v̂i2 =
⎡

⎣
3
4
0

⎤

⎦ . (5.29)

Therefore:

m̂i

‖m̂i‖ =

⎡

⎢
⎢
⎣

3
5
4
5

0

⎤

⎥
⎥
⎦ , e3 × m̂i

‖m̂i‖ =

⎡

⎢
⎢
⎣

− 4
5
3
5

0

⎤

⎥
⎥
⎦ . (5.30)

We can then determine p̂i2 via (5.28):
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p̂i2 = v̂i2 − ŵ0
i

2

(

e3 × m̂i

‖m̂i‖
)

− r̂i2
m̂i

‖m̂i‖

=

⎡

⎢
⎢
⎣

3

4

0

⎤

⎥
⎥
⎦ − 1

2

⎡

⎢
⎢
⎣

− 4
5
3
5

0

⎤

⎥
⎥
⎦ − 2

5

⎡

⎢
⎢
⎣

3
5
4
5

0

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

79
25

169
50

0

⎤

⎥
⎥
⎦ .

(5.31)

The reader can similarly determine the position vectors of the other three corners
(p̂i1, p̂i3, and p̂i4) of the fold shown in Fig. 5.11.

Let n1, . . . , nNI be the number of fold centerlines incident to each interior fold
intersection of S0 (corresponding to the holes associated with interior vertices hav-
ing position vectors v1, . . . , vNI ). Also, let mjk ∈ span(e1, e2), j = 1, . . . , NI ,
k = 1, . . . , nj , be the vector along the length of the kth fold centerline incident
to the j th interior fold intersection that emanates from such an intersection. The
vectors m11, . . . ,m14 associated with the interior fold intersection of the Miura-Ori
sheet shown in Fig. 5.9 are illustrated in Fig. 5.12a.

(a) 

m11

m12

m13

m14

(b) 

α11 α14

α12 α13

w0
11

w0
12

w0
13

w0
14

Fold 
intersection 1 

Fig. 5.12 Parameters associated with the interior fold intersection of the Miura-Ori sheet: (a)
Vectors m11, . . . ,m14 along the length of the fold centerlines incident to the interior fold
intersection and that emanate from the intersection; (b) Face corner angles α11, . . . , α14 around
the interior fold intersection and widths w0

11, . . . , w
0
14 of the folds adjacent to the fold intersection
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For the j th interior fold intersection, the associated vectors mj1, . . . , mjnj are
arranged in counterclockwise order (see Figs. 5.12 and 5.13). The fold intersection
connectivity matrix CI ∈ R

NI×max(nj ) is used for the identification and ordering
of the folds adjacent to the interior fold intersections and its components CI

jk are
defined follows:

CI
jk = Index of the kth fold adjacent to the j th interior fold intersection

(multiplied by − 1 if the fold centerline ends at the interior fold
intersection),

j = 1, . . . , NI , k = 1, . . . nj .
(5.32)

The mapping from the fold vectors m̂1, . . . , m̂NF (see (5.27)) to the vectors
mj1, . . . , mjnj , j = 1, . . . , NI , is given as follows:

mjk =

⎧
⎪⎨

⎪⎩

m̂CI
jk ; CI

jk > 0

−m̂|CI
jk |; CI

jk < 0,

j = 1, . . . , NI , k = 1, . . . , nj .

(5.33)

Note that mjk has the opposite direction of its associated fold vector m̂|CI
jk | if

CI
jk < 0. This is applied such that the vectors mjk always emanate from the interior

fold intersection (since CI
jk < 0 if the considered fold centerline ends at the interior

fold intersection).
The face corner angles surrounding each interior fold intersection are denoted as

αj1, . . . , αjnj , j = 1, . . . , NI , and are calculated as follows (see Fig. 5.13)5:

αjk =
{
ϕ(mj k+1,mjk); k = 1, . . . , nj − 1

ϕ(mj1,mjk); k = nj .
(5.34)

The face corner angles α11, . . . , α14 surrounding the interior fold intersection of
the Miura-Ori sheet are illustrated in Fig. 5.12b. The vectors m11, . . . , m14 and the
face corner angles α11, . . . , α14 for the interior fold intersection of the Miura-Ori
sheet are also calculated in Example 2.4.

The fold widths associated with the smooth folds adjacent to the j th interior fold
intersection are denoted w0

j1, . . . , w
0
jnj

, j = 1, . . . , NI . The mapping from the

5Recalling (2.13), ϕ(y, z) is defined as the angle from a vector z ∈ span(e1, e2) to a vector y ∈
span(e1, e2). To simplify the notation, if only one argument is provided in the function ϕ, it is
implicitly assumed that z = e1 (i.e., ϕ(y) = ϕ(y, e1)).
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m j k+1 m
jk

e1

e2

S0

αjk

α j k+
1

Fig. 5.13 Schematic showing faces and smooth folds connected to an interior fold intersection
and their associated geometric parameters. The overall domain S0 has 5 interior vertices and 16
outer vertices (NI = 5, NB = 16)

fold widths of each fold in the sheet (ŵ0
1, . . . , ŵ

0
NF ) to w0

j1, . . . , w
0
jnj

is given as
follows:

w0
jk = ŵ0

|CI
jk |

j = 1, . . . , NI , k = 1, . . . , nj , (5.35)

We summarize the input and calculated parameters required to define the fold
pattern of an origami sheet with smooth folds in Tables 5.1 and 5.2.

Table 5.1 Input parameters required to define the fold pattern of an origami sheet with smooth
folds

Parameter Definition

Position vectors of the vertices v1, . . . , vNI+NB

Fold connectivity matrix CF (5.25)

Fold intersection connectivity matrix CI (5.32)
- – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – -
Fold widths ŵ0

1, . . . , ŵ
0
NF

Fold length parameters r̂11, . . . , r̂NF 1, r̂12, . . . , r̂NF 2

The parameters that are not present in a sheet with creased folds are listed below the dashed line
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Table 5.2 Calculated parameters required to define the fold pattern of an origami sheet with
smooth folds

Parameter Equation

Fold centerline start points v̂11, . . . , v̂NF 1 (5.26)

Fold centerline end points v̂12, . . . , v̂NF 2 (5.26)

Fold vectors m̂1, . . . , m̂NF (5.27)

Vectors along fold centerlines incident to interior fold intersections
mj1, . . . , mjnj , j = 1, . . . , NI

(5.33)

Face corner angles αj1, . . . , αjnj , j = 1, . . . , NI (5.34)
- – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – -
Position vectors of the corner points of each smooth fold p̂i1, p̂i2, p̂i3, p̂i4,
i = 1, . . . , NF

(5.28)

Fold widths of the smooth folds adjacent to interior fold intersections
w0
j1, . . . , w

0
jnj

, j = 1, . . . , NI
(5.35)

The parameters that are not present for a sheet with creased folds are listed below the dashed line

5.5 Kinematic Constraints for Origami with Smooth Folds

In this section, we describe the fundamental kinematic constraints for origami with
smooth folds. These are the developability constraint (Sect. 5.5.1) and the loop
closure constraints (Sect 5.5.2).

5.5.1 Developability Constraint

After the geometry of the fold pattern is defined, constraints on the fold kinematic
variables are formulated such that every current configuration attained by an origami
sheet is valid according to Sect. 5.2.6 In addition to constraints allowing for valid
configurations (to be addressed in Sect. 5.5.2), the condition of developability [52] is
also conventionally imposed in origami. We refer the reader to Sect. 2.4.1 for a brief
discussion on developability. Just as in origami with creased folds, the face corner
angles αj1, . . . , αjnj determined via (5.34) must satisfy the following constraint
for origami with smooth folds:

Kj = 2π −
nj∑

k=1

αjk = 0 j = 1, . . . , NI , (5.36)

cf. (2.18). In the model presented in this chapter, the face corner angles αjk
are defined in the reference configuration S0, which is planar and free of face

6As stated in Sect. 2.4, self-intersection avoidance is not considered in this work.
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overlaps. Therefore, these angles sum to 2π for each interior fold intersection and
the developability constraint (5.36) is satisfied in S0. No further consideration of
this constraint is required because the face corner angles are constant during the
folding motion of the sheet (since the faces undergo only rigid deformations for
valid configurations) and hence they hold their associated values αjk as defined
in S0.

5.5.2 Loop Closure Constraints

In this section, we formulate constraints on the fold kinematic variables allowing
for valid configurations in origami structures with smooth folds. We first derive the
mapping from the reference to current configurations considering only the faces
and folds adjacent to an interior fold intersection following the process presented
in Sect. 2.4.2. This represents a kind of “local” case where only the faces and folds
adjacent to a single interior fold intersection of a more complex fold pattern are
examined. The goal is to determine the constraints that allow any such set of faces
and folds to attain valid configurations.

The kinematic variables describing the deformation of a smooth fold correspond
to (1) The fold angle θ̂i and (2) The distance ŵi between the end points of the cross-
section curve ĉi (ζ1). These variables are illustrated in Fig. 5.7. The variables θjk and
wjk are those associated with the kth smooth fold adjacent to the j th interior fold
intersection and are determined as follows:

θjk = θ̂|CI
jk |, wjk = ŵ|CI

jk | j = 1, . . . , NI , k = 1, . . . , nj , (5.37)

where components of the fold intersection connectivity matrix CI are defined in
(5.32).

Let γ j (η) : [0, 1] → S0 be an arbitrary simple closed path enclosing the j th
interior fold intersection and crossing each of its adjacent smooth folds once as
illustrated in Fig. 5.14. The point having position γ j (0) = γ j (1) is defined such
that it is located in the face adjacent to the smooth folds with corresponding vectors
mj1 and mjnj . Also, the path γ j (η) is defined such that it crosses the folds with
associated vectors mjk in counterclockwise order (i.e., mj1,mj2, . . . , mjnj ). The
position vector of the point where path γ j (η) enters the kth smooth fold is denoted
bjkL ∈ span(e1, e2) and the position vector of the point where γ j (η) exits such a fold

is denoted bjkR ∈ span(e1, e2) as shown in Fig. 5.14a.

The selection of the vectors bjkL ,bjkR , k = 1, . . . , nj , is not unique and depends
on the particular choice of the arbitrary path γ j (η) (see Fig. 5.14a). The corner
points of the smooth folds defined in (5.28) provide a simple choice for the points
where γ j (η) crosses each fold adjacent to the j th interior fold intersection. Thus,
they are used here to define bjkL ,bjkR , k = 1, . . . , nj :
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Fig. 5.14 (a) Path γ j (η)

crossing the faces and the
smooth folds adjacent to the
j th interior fold intersection.
(b) Vectors wjk and ljk

having start points and end
points corresponding to the
points where the path γ j (η),
respectively, crosses the folds
and the faces jth interior fold 

intersection 

γ j(η)bjk
L

bjk
R

bj k+1
R

bj k+1
L

(a)

ljk

lj k+1

γ j(η)

(b)
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e1

e2
e3

X

x

S0 St

e1

e2
e3

Fixed 
face 

Fig. 5.15 Position vector X of a point in the reference configuration S0 and position vector x of
the same point in a current configuration St

bjkL =
⎧
⎨

⎩

p̂C
I
jk1; CI

jk > 0

p̂|CI
jk |4; CI

jk < 0
, bjkR =

⎧
⎨

⎩

p̂C
I
jk4; CI

jk > 0

p̂|CI
jk |1; CI

jk < 0

j = 1, . . . , NI , k = 1, . . . , nj .

(5.38)

Note in (5.38) that we account for whether the interior vertex vj in the j th interior
fold intersection is the start point (case CI

jk > 0) or the end point (case CI
jk < 0) of

the centerline of the adjacent smooth fold (see (5.32) and Fig. 5.10).
The following assumptions are made to simplify the derivation of kinematic

constraints for the case of a single interior fold intersection: (1) the vertex at the
fold intersection is assumed to be located at the origin and (2) the face containing
the point with position γ j (0) is assumed fixed in space (not translating or rotating).
The position vector of a point in a face in the reference configuration S0 is denoted
X ∈ span(e1, e2) and the position vector of the same point in a current configuration
St is denoted x ∈ R

3 as illustrated in Fig. 5.15.
To define the mapping between reference and current configurations of the faces

crossed by the path γ j (η) (i.e., the map X �→ x), we must recall the definitions of
certain transformation matrices examined in Sect. 2.5.2. The matrix T(b) ∈ R

4×4

represents the transformation associated with a translation by vector b ∈ R
3 in

homogeneous coordinates (see (2.53)). Also, Q1(φ) ∈ R
4×4 and Q3(φ) ∈ R

4×4,
respectively, represent the transformations associated with rotations about axes
aligned with e1 and e3 (see (2.55) and (2.57)). We summarize the definitions of
these transformation matrices as follows:
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T(b) =

⎡

⎢
⎢
⎢
⎣

1 0 0 b1

0 1 0 b2

0 0 1 b3

0 0 0 1

⎤

⎥
⎥
⎥
⎦

=
[

I3 b

0	
3 1

]

,

Q1(φ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 cos(φ) − sin(φ) 0

0 sin(φ) cos(φ) 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[

R1(φ) 03

0	
3 1

]

,

Q3(φ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos(φ) − sin(φ) 0 0

sin(φ) cos(φ) 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[

R3(φ) 03

0	
3 1

]

,

(5.39)

where R1(φ) is defined in (2.21), R3(φ) is defined in (2.22), and In is the identity
matrix in R

n×n. Considering an axis that crosses a point with position vector
b ∈ span(e1, e2) and is aligned to a vector y ∈ span(e1, e2), the transformation
associated with a rotation by φ about such an axis can be represented as follows
[53, 54]:

T(b)Q3(ϕ(y))Q1(φ)Q−1
3 (ϕ(y))T−1(b). (5.40)

In this previous transformation, the axis of rotation is translated to the origin
via the translation matrix T−1(b). The axis of rotation is then aligned to e1 via the
rotation matrix Q−1

3 (ϕ(y)). Then, a rotation of φ about e1 is performed via Q1(φ).
Finally, the axis of rotation is aligned back to its original orientation via Q3(ϕ(y))
and translated to its original position via T(b).

We use (5.40) to provide a matrix formulation for the transformations associated
with the folds adjacent to an interior fold intersection. We illustrate the steps of such
a transformation in Fig. 5.16 and they are enumerated as follows:

1. Rotation by
θjk
2 about an axis aligned to mjk and crossing a point with position

vector bjkR . We represent this transformation via (5.40) as follows:

T
(

bjkR
)

Q3(ϕ(mjk))Q1

(
θjk
2

)
Q−1

3 (ϕ(mjk))T−1
(

bjkR
)
. (5.41)

2. Translation of magnitude −
(
w0
jk − wjk

)
in the direction of e3 × mjk

‖mjk‖ . This

transformation is represented as follows:

T−1
((
w0
jk − wjk

) (
e3 × mjk

‖mjk‖
))
. (5.42)
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Fig. 5.16 Illustration of the transformation associated with folding the kth smooth fold crossed by

γ j (η). (a) Reference configuration of the fold. (b) Rotation by
θjk
2 about an axis aligned to mjk

and crossing a point with position vector bjkR . (c) Translation of magnitude −(w0
jk − wjk) in the

direction of e3 × mjk

‖mjk‖ . (d) Rotation by
θjk
2 about an axis aligned to mjk and crossing a point with

position vector bjkL . (e) Resulting configuration of the smooth fold and its adjacent faces

3. Rotation by
θjk
2 about an axis aligned to mjk and crossing a point with position

vector bjkL . We represent this transformation via (5.40) as follows:

T
(

bjkL
)

Q3(ϕ(mjk))Q1

(
θjk
2

)
Q−1

3 (ϕ(mjk))T−1
(

bjkL
)
. (5.43)
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Fig. 5.17 Schematic for Example 5.4. The components of the shown vectors are given as follows:

mjk = [ 0 − 1 0]	, bjkL = [ 0 0 0]	, bjkR =
[
w0
jk 0 0

]	

We multiply the transformation matrices of (5.41)–(5.43) to determine the matrix
Hjk representing the transformation associated with folding the kth smooth fold
adjacent to the j th interior fold intersection:

Hjk = T
(

bjkL
)

Q3(ϕ(mjk))Q1

(
θjk
2

)
Q−1

3 (ϕ(mjk))T−1
(

bjkL
)

× T−1
((
w0
jk − wjk

) (
e3 × mjk

‖mjk‖
))

× T
(

bjkR
)

Q3(ϕ(mjk))Q1

(
θjk
2

)
Q−1

3 (ϕ(mjk))T−1
(

bjkR
)
.

(5.44)

Example 5.4 Determination of a matrix Hjk .
Statement: Determine the transformation matrix Hjk associated with the smooth
fold shown in Fig. 5.17.
Solution: With the information given in Fig. 5.17, we calculate the following
matrices from (5.41)–(5.43):

T
(

bjkR
)

Q3(ϕ(mjk))Q1

(
θjk
2

)
Q−1

3 (ϕ(mjk))T−1
(

bjkR
)

= T([ 0 0 0]	)Q3

(
3π
2

)
Q1

(
θjk
2

)
Q−1

3

(
3π
2

)
T−1([ 0 0 0]	)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos
(
θjk
2

)
0 − sin

(
θjk
2

)
0

0 1 0 0

sin
(
θjk
2

)
0 cos

(
θjk
2

)
0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(5.45)
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T−1
((
w0
jk − wjk

) (
e3 × mjk

‖mjk‖
))

= T−1
((
w0
jk − wjk

)
[ 1 0 0]	

)

=

⎡

⎢
⎢
⎢
⎣

1 0 0 − w0
jk + wjk

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦
,

(5.46)

T
(

bjkL
)

Q3(ϕ(mjk))Q1

(
θjk
2

)
Q−1

3 (ϕ(mjk))T−1
(

bjkL
)

= T
([

w0
jk 0 0

]	)
Q3

(
3π
2

)
Q1

(
θjk
2

)
Q−1

3

(
3π
2

)
T−1

([
w0
jk 0 0

]	)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos
(
θjk
2

)
0 − sin

(
θjk
2

)
− w0

jk cos
(
θjk
2

)
+ w0

jk

0 1 0 0

sin
(
θjk
2

)
0 cos

(
θjk
2

)
−w0

jk sin
(
θjk
2

)

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(5.47)
We then substitute (5.45)–(5.47) into (5.44) to determine Hjk:

Hjk = T
(

bjkL
)

Q3(ϕ(mjk))Q1

(
θjk
2

)
Q−1

3 (ϕ(mjk))T−1
(

bjkL
)

× T−1
((
w0
jk − wjk

) (
e3 × mjk

‖mjk‖
))

× T
(

bjkR
)

Q3(ϕ(mjk))Q1

(
θjk
2

)
Q−1

3 (ϕ(mjk))T−1
(

bjkR
)

= T([ 0 0 0]	)Q3

(
3π
2

)
Q1

(
θjk
2

)
Q−1

3

(
3π
2

)
T−1([ 0 0 0]	)

× T−1
((
w0
jk − wjk

)
[ 1 0 0]	

)

× T
([

w0
jk 0 0

]	)
Q3

(
3π
2

)
Q1

(
θjk
2

)
Q−1

3

(
3π
2

)
T−1

([
w0
jk 0 0

]	)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos(θjk) 0 − sin(θjk) wjk cos
(
θjk
2

)
− w0

jk cos(θjk)

0 1 0 0

sin(θjk) 0 cos(θjk) wjk sin
(
θjk
2

)
− w0

jk sin(θjk)

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(5.48)

As in Sect. 2.4.2, the mapping X �→ x is constructed as the composition of the
transformations Hjk associated with the folds crossed by the segment of path γ j (η)

that connects γ j (0) to the face containing the point with initial position X:
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[
x
1

]

=
( nγ∏

k=1

Hjk

)[
X
1

]

. (5.49)

where nγ is the number of folds crossed by the segment of the path γ j (η) connecting
γ j (0) and the face containing the point with position vector X. Note that x is
the position vector of such a point in a current configuration fully determined by
θj1 . . . , θjnj and wj1 . . . , wjnj .

As noted in the discussion of Example 2.7 for origami with creased folds, the
mapping between reference and current configurations must be spatially continuous
to prevent tearing between the faces/folds adjacent to the j th interior fold inter-
section. For origami with smooth folds, this is achieved if the mapping between
reference and current configurations formulated in (5.49) yields x = X for any point
in the fixed face (i.e., if we substitute nγ = 0 or nγ = nj in (5.49), then x = X).
This requires the following:

nj∏

k=1

Hjk = I4. (5.50)

We now proceed to derive constraints on the fold kinematic variables θj1, . . . ,

θjnj and wj1, . . . , wjnj by analyzing (5.50). Using the block matrix expressions
for the rotation and translation matrices given in (5.39), the transformation matrices
Hjk ∈ R

4×4 provided in (5.44) can be partitioned into the four blocks [Hjk]11 block ∈
R

3×3, [Hjk]12 block ∈ R
3×1, [Hjk]21 block ∈ R

1×3, and [Hjk]22 block ∈ R
1×1 as

follows7:

Hjk =
[ [Hjk]11 block [Hjk]12 block

[Hjk]21 block [Hjk]22 block

]

, (5.51)

where:
[
Hjk

]

11 block
= R3(ϕ(mjk))R1(θjk)R−1

3 (ϕ(mjk)), (5.52)

[
Hjk

]
12 block = bjkL + R3(ϕ(mjk))R1

(
θjk
2

)
R−1

3 (ϕ(mjk))wjk

−R3(ϕ(mjk))R1(θjk)R−1
3 (ϕ(mjk))bjkR ,

(5.53)

7Consult Sect. A.4 for a review on block partitioned matrices.
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[
Hjk

]

21 block
= 0	

3 , (5.54)

[
Hjk

]

22 block
= 1, (5.55)

and the vector wjk introduced in (5.53) is defined as follows:

wjk = bjkR − bjkL −
(
w0
jk − wjk

)(

e3 × mjk

‖mjk‖
)

. (5.56)

The vectors wjk for the schematic in Fig. 5.14a are shown in Fig. 5.14b.
Utilizing (5.52)–(5.55), the matrix equation (5.50) is partitioned into four blocks.

The 11 block is given as:

I3 =
nj∏

j=1

R3(ϕ(mjk))R1(θjk)R
−1
3 (ϕ(mjk)),

= R3(ϕ(mj1))

( nj−1∏

k=1

R1(θjk)R3(αjk)

)

R1(θjnj )R
−1
3 (ϕ(mjnj )),

(5.57)

where the following equality was used (refer to (5.34)):

R3(αjk) =
⎧
⎨

⎩

R−1
3 (ϕ(mjk))R3(ϕ(mj k+1)); k = 1, . . . , nj − 1

R−1
3 (ϕ(mjk))R3(ϕ(mj1)); k = nj .

(5.58)

The following is obtained by multiplying the last expression in (5.57) by
R−1

3

(
ϕ(mj1)

)
from the left and by R3

(
ϕ(mj1)

)
from the right:

I3 =
( nj−1∏

k=1

R1(θjk)R3(αjk)

)

R1(θjnj )R−1
3 (ϕ(mjnj ))R3(ϕ(mj1)),

=
( nj−1∏

k=1

R1(θjk)R3(αjk)

)

R1(θjnj )R3(αjnj ),

=
nj∏

k=1

R1(θjk)R3(αjk).

(5.59)
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The 12 block of (5.50) is given as:

03 =
nj∑

k=1

(( k−1∏

l=1

R3(ϕ(mj l))R1(θjl)R−1
3 (ϕ(mj l))

)

×
(

bjkL + R3(ϕ(mjk))R1

(
θjk
2

)
R−1

3 (ϕ(mjk))wjk

− R3(ϕ(mjk))R1(θjk)R−1
3 (ϕ(mjk))bjkR

))

.

(5.60)

We define the following vectors to simplify the previous expression:

ljk =
⎧
⎨

⎩

bj k+1
L − bjkR ; k = 1, . . . , nj − 1

bj1
L − bjkR ; k = nj .

(5.61)

w̃jk = R−1
3 (ϕ(mjk))wjk, (5.62)

l̃jk = R−1
3 (ϕ(mjk))ljk. (5.63)

Substituting the last expression of (5.59) and (5.61)–(5.63) into (5.60), the
following is obtained:

03 =
nj∑

k=1

((
k−1∏

l=1

R3(ϕ(mj l))R1(θjl)R−1
3 (ϕ(mj l))

)

×
(

R3(ϕ(mjk))R1

(
θjk
2

)
w̃jk + R3(ϕ(mjk))R1(θjk)l̃jk

) )

.

(5.64)
We leave to the reader the execution of the intermediate steps in the derivation of

the previous expression. Finally, the following is obtained by multiplying both sides
of (5.64) by R−1

3 (ϕ(mj1)) and simplifying using (5.58):

03 =
nj∑

k=1

((
k−1∏

l=1

R1(θjl)R3(αjl)

)(

R1

(
θjk
2

)
w̃jk + R1

(
θjk

)
l̃jk

))

. (5.65)

The 21 and the 22 blocks of the left-hand side of (5.50) are equal to 0	
3

and 1, respectively. We have obtained in (5.59) and (5.65) the kinematic constraints
allowing for valid configurations in origami with smooth folds. These are the
rotation constraint:
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Rj =
nj∏

k=1

R1(θjk)R3(αjk) = I3, (5.66)

and the translation constraint:

dj =
nj∑

k=1

((
k−1∏

l=1

R1(θjl)R3(αjl)

)(

R1

(
θjk
2

)
w̃jk + R1

(
θjk

)
l̃jk

))

= 03,

(5.67)

where j = 1, . . . , NI . It can be shown that each face in a sheet having multiple
interior fold intersections undergoes a rigid deformation and no tearing occurs
provided the local constraints (5.66) and (5.67) are satisfied for each interior fold
intersection (refer to Problems 5.14, 5.15, and 5.16).

As stated at the beginning of this section, the kinematic variables describing the
deformation of a smooth fold correspond to the fold angle θ̂i and the distance ŵi
between the end points of the cross-section curve ĉi (ζ1). These variables appear
in the kinematic constraints (5.66) and (5.67) (ŵi appears implicitly in (5.67)
because w̃jk is a function of wjk; refer to (5.56) and (5.62)). For simplicity in the
implementation of the proposed model, assumptions on the curvature field of ĉi (ζ1)

are made such that the overall deformation of a smooth fold becomes a function of
the fold angle θ̂i and the arc-length ŝi (i.e., ŵi = ŵi(θ̂i , ŝi ) for each fold). Such
a process involves non-dimensionalization of the parametric curve ĉi (ζ1) and is
outlined in the following section for the cases of smooth folds exhibiting G1 and
G2 continuity. We also provide a set of MATLAB scripts to perform such a process
in the Supplemental Material of this chapter.

Determination of Kinematic Variables for Smooth Folds
Here, we describe the process used to numerically determine the kinematic variables
describing the shape of a smooth fold such that its deformation is solely defined by
its fold angle θ̂i and fold arc-length ŝi . A set of MATLAB scripts to execute such a
process is provided in the Supplemental Material of this chapter.

The distances between the end points of the fold cross-sections denoted ŵi ,
i = 1, . . . , NF (see Fig. 5.7), which are required to evaluate the kinematic
constraints of Sect. 5.5.2, are determined from the fold angles θ̂i and fold arc-lengths
ŝi by deriving relations ŵi = ŵi(θ̂i , ŝi ). These relations are obtained by making
assumptions on the form of the curvature field in the cross-section of the smooth
folds.

Smooth folds having G1 and G2 continuous junctions with their adjacent faces
are considered. The formulations of the curve ĉi (ζ1) describing the cross-section
of these smooth folds are provided in (5.21) and (5.23), respectively. In addition to
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ŵi(θ̂i , ŝi ), we also determine the relations βi1(θ̂i , ŝi ), i = 1, . . . , NF . Even though
the variables βi1 do not appear in the constraints of Sect. 5.5.2, these variables are
required to fully define the shape of smooth folds exhibiting G1 continuity (refer
to (5.16)). The relations βi2(θ̂i , ŝi ), i = 1, . . . , NF , are further required to fully
define the shape of smooth folds exhibiting G2 continuity (refer to (5.20)).

The process used to determine the relations for the kinematic variables
ŵi(θ̂i , ŝi ), βi1(θ̂i , ŝi ), and βi2(θ̂i , ŝi ), i = 1, . . . , NF , involves the following
steps:

1. The parametric curve ĉi (ζ1) is non-dimensionalized to first determine relations
independently from the arc-length ŝi

2. Curvature fields that satisfy the required order of geometric continuity (G1 or
G2) are assumed and non-dimensionalized

3. We numerically solve for the values of the non-dimensional forms of ŵi , βi1, and
βi2 that satisfy the assumed curvature fields for various folded states. After this
step is finished, we have a list of values for the non-dimensional forms of ŵi , βi1,
and βi2 as functions of fold angle θ̂i

4. We derive relations for the non-dimensional forms of ŵi , βi1, and βi2 as functions
of θ̂i by interpolating among the list of values for such kinematic variables
determined in Step 3, and

5. The relations ŵi(θ̂i , ŝi ), βi1(θ̂i , ŝi ) and βi2(θ̂i , ŝi ), i = 1, . . . , NF , are then
readily obtained through the equations used for non-dimensionalization

Step 1: Non-dimensionalization of the Fold Cross-section Curve First, we non-
dimensionalize the parametric curve ĉi (ζ1) as follows:

c̄i (ζ1) = ĉi (ζ1)

ŝi
. (5.68)

Applying this non-dimensionalization to the formulations of ĉi (ζ1) presented in
(5.21) and (5.23), the following is obtained:

c̄i (ζ1) = h30(ζ1)c̄iL0
+ h31(ζ1)c̄iR0

+ h32(ζ1)c̄iL1
+ h33(ζ1)c̄iR1

, (5.69)

c̄i (ζ1) = h50(ζ1)c̄iL0
+ h51(ζ1)c̄iR0

+ h52(ζ1)c̄iL1

+ h53(ζ1)c̄iR1
+ h54(ζ1)c̄iL2

+ h55(ζ1)c̄iR2
,

(5.70)

where:

c̄iL0
= ĉiL0

ŝi
=

⎡

⎢
⎢
⎣

0

− 1
2
ŵi
ŝi

0

⎤

⎥
⎥
⎦ , c̄iR0

= ĉiR0

ŝi
=

⎡

⎢
⎢
⎣

0

1
2
ŵi
ŝi

0

⎤

⎥
⎥
⎦ , (5.71)
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c̄iL1
= ĉiL1

ŝi
= βi1

ŝi

⎡

⎢
⎢
⎢
⎢
⎣

0

cos
(
θ̂i
2

)

− sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎥
⎦
, c̄iR1

= ĉiR1

ŝi
= βi1

ŝi

⎡

⎢
⎢
⎢
⎢
⎣

0

cos
(
θ̂i
2

)

sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎥
⎦
, (5.72)

c̄iL2
= ĉiL2

ŝi
= βi2

ŝi

⎡

⎢
⎢
⎢
⎢
⎣

0

cos
(
θ̂i
2

)

− sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎥
⎦
, c̄iR2

= ĉiR2

ŝi
= βi2

ŝi

⎡

⎢
⎢
⎢
⎢
⎣

0

− cos
(
θ̂i
2

)

− sin
(
θ̂i
2

)

⎤

⎥
⎥
⎥
⎥
⎦
.

(5.73)

Equations (5.71)–(5.73) show that the non-dimensional fold cross-section c̄i (ζ1)

is a function of the non-dimensional variables θ̂i , ŵi/ŝi , βi1/ŝi , and βi2/ŝi .
The non-dimensional arc-length of c̄i (ζ1), denoted s̄i , is given as follows:

s̄i =
∫ 1

−1

∥
∥
∥
∥

dc̄i (ζ1)

dζ1

∥
∥
∥
∥ dζ1

= 1

ŝi

∫ 1

−1

∥
∥
∥
∥

dĉi (ζ1)

dζ1

∥
∥
∥
∥ dζ1

= ŝi

ŝi

= 1,

(5.74)

and the non-dimensional curvature of c̄i (ζ1), denoted ¯̂κi(ζ1), is given as follows:

¯̂κi(ζ1) = ŝi κ̂i (ζ1) =

∥
∥
∥
∥
∥

dc̄i (ζ1)

dζ1
× d2c̄i (ζ1)

dζ 2
1

∥
∥
∥
∥
∥

∥
∥
∥
∥

dc̄i (ζ1)

dζ1

∥
∥
∥
∥

3 . (5.75)

The non-dimensional signed curvature of c̄i (ζ1), denoted κ̄i (ζ1), is given as:

κ̄i (ζ1) = ŝiκi(ζ1)

= ¯̂κi(ζ1) sgn

((
dc̄i (ζ1)

dζ1
× d2c̄i (ζ1)

dζ 2
1

)

· êi1

)

.

(5.76)
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Step 2: Assumptions on Curvature Fields The next step is to make assumptions
on the curvature field of the fold cross-sections. For smooth folds exhibiting G1

continuity, a uniform goal signed curvature field κGi (ζ1) is assumed:

κGi (ζ1) = κ∗, (5.77)

where κ∗ is a constant. For smooth folds exhibiting G2 continuity, a parabolic form
for the goal signed curvature field κGi (ζ1) is assumed:

κGi (ζ1) = κ∗
(

1 − 4
s(ζ1)

2

ŝ2
i

)

, (5.78)

where s(ζ1) is the arc-length coordinate defined in (5.5). Note that κGi (ζ1) = 0 at

s(ζ1) = ± ŝi
2 in (5.78) to satisfy G2 continuity.

The non-dimensional form of the goal signed curvature field in (5.77), denoted
κ̄Gi (ζ1), is the following:

κ̄Gi (ζ1) = ŝiκ
G
i (ζ1)

= κ̄∗,
(5.79)

while the non-dimensional form of the goal signed curvature field in (5.78) is the
following:

κ̄Gi (ζ1) = ŝiκ
G
i (ζ1)

= κ̄∗ (1 − 4s̄(ζ1)
2
)
,

(5.80)

where:

κ̄∗ = ŝiκ
∗, (5.81)

s̄(ζ1) = s(ζ1)

ŝi
= − 1

2
+

∫ ζ1

−1

∥
∥
∥
∥

dc̄i (ζ )
dζ

∥
∥
∥
∥ dζ. (5.82)

Plots of the non-dimensional fold cross-section curve c̄i (ζ1) for different values
of κ̄∗ are shown in Fig. 5.18.

Step 3–5: Numerically Solve for the Fold Cross-section Kinematic Variables Once
the assumptions on the curvature field are made, the non-dimensional variables θ̂i ,
ŵi/ŝi , βi1/ŝi (and βi2/ŝi if smooth folds with G2 continuity are considered) are
numerically determined to satisfy such assumptions for various folded states. For
a given value of κ̄∗, the error in the non-dimensional arc-length s̄i (which must be
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Fig. 5.18 Plots of the non-dimensional fold cross-section curve c̄i (ζ1) for different values of κ̄∗:
(a) Folds having G1 continuity (curvature field (5.79)); (b) Folds having G2 continuity (curvature
field (5.80))

equal to 1, cf. (5.74)) and the error between the actual and goal curvature fields (κ̄i
and κ̄Gi , respectively) is minimized as follows:

Find θ̂i ∈ [0, π ], ŵi

ŝi
∈ (0, 1], βi1

ŝi
∈ (0, n], βi2

ŝi
∈ [0, n],

That minimize f

(

θ̂i ,
ŵi

ŝi
,
βi1

ŝi
,
βi2

ŝi

)

,

(5.83)
where:

f

(

θ̂i ,
ŵi

ŝi
,
βi1

ŝi
,
βi2

ŝi

)

= (1 − s̄i )
2 +

∫ 1
−1

(
κ̄Gi (ζ1)− κ̄i (ζ1)

)2
dζ1

∫ 1
−1

(
κ̄Gi (ζ1)

)2
dζi

, (5.84)
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and the upper bound n for βi1/ŝi and βi2/ŝi is selected as 10, which is far from the
actual values obtained for these parameters and thus it resulted in an inactive bound
for the minimization problem (5.83).

The minimization problem (5.83) is repeated for different values of κ̄∗ to obtain
a list values of θ̂i , ŵi/ŝi , βi1/ŝi , and βi2/ŝi for various folded states (see Fig. 5.18).8

We derive relations for the non-dimensional kinematic variables ŵi/ŝi , βi1/ŝi , and
βi2/ŝi as functions of fold angle θ̂i by interpolating among the obtained list of
values. The relations ŵi(θ̂i , ŝi ), βi1(θ̂i , ŝi ) and βi2(θ̂i , ŝi ), i = 1, . . . , NF , can then
be readily obtained.

5.6 Folding Map Formulation

In this section, we provide a method to determine the mapping of the position
vector of any point in the sheet from the reference configuration S0 to a current
configuration St (termed folding map). We follow the method outlined in Sect. 2.5
for origami with creased folds. A local folding map considering only the faces
adjacent to an interior fold intersection was provided in (5.44). Such a formulation
is extended here for the derivation of a folding map considering all the faces in the
sheet. The method to determine the folding map requires the following steps:

1. A single arbitrary face in the sheet is assumed fixed in its reference configuration
2. Paths γ̆ j (η) : [0, 1] → S0, j = 1, . . . , NP , connecting the fixed face to any

other face with reference configuration Pj

0 , j = 1, . . . , NP , are assumed (refer
to Fig. 5.19 for examples). The paths γ̆ j (η), j = 1, . . . , NP , may not cross any
fold intersection (i.e., they travel only through faces and smooth folds of S0).
Each path γ̌

j
(η) crosses a number of n̆j smooth folds

3. The formulation of the transformation associated with folding each of the
smooth folds crossed by the paths γ̆ j (η), j = 1, . . . , NP (termed folding
transformation for simplicity) is determined

4. The folding map for any point in each face with reference configuration Pj

0 is
then obtained through the composition of folding transformations of the folds
crossed by the corresponding path γ̆ j (η)

Steps 1 and 2 from the previous list can be readily performed. Sections 5.6.1
and 5.6.2 provide the information required to perform Step 3. Specifically,
Sect. 5.6.1 addresses the determination of the parameters required to define the
folding transformation while Sect. 5.6.2 addresses the formulation of such a
transformation. The formulation of the folding map for Step 4 is also addressed
in Sect. 5.6.2.

8In our implementation, we solve the minimization problem (5.83) for each value of κ̄∗ using the
gradient-based optimization algorithm in MATLAB fmincon [55].
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Fig. 5.19 Two equivalent paths γ̆ j (η) connecting the fixed face to Pj

0

5.6.1 Parameters Required to Derive the Folding Map

To derive the folding transformation associated with each fold crossed by a path
γ̆ j (η), j = 1, . . . , NP , certain geometric parameters and kinematic variables
associated with such folds must be determined. Our focus in this section is to provide
equations for all such parameters. As shown in Fig. 5.20, a path γ̆ j (η) crosses the
ith fold in the sheet positively if it crosses from the face adjacent to the fold in the
direction −e3 × m̂i to the face in the direction e3 × m̂i (where m̂i is fold vector
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Fig. 5.20 (a) Two paths crossing the ith fold in S0. (b) Fold vector m̂i along the length of the ith
fold centerline in S0. The path γ̆ j (η) crosses the fold positively (i.e., from the side in the direction
−e3 × m̂i to the side in the direction e3 × m̂i ) and the path γ̆ l (η) crosses the fold negatively
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along the length of the ith fold centerline; see (5.27)). The path γ̆ j (η) crosses a fold
negatively if it crosses such a fold in the opposite direction. The face connectivity
matrix CP ∈ R

NP×max(n̆j ) with components CP
jk is used for the identification and

ordering of the folds crossed by each path γ̆ j (η):

CP
jk = Index of the kth fold crossed by the path γ̆ j (η)

(multiplied by − 1 if the fold is negatively crossed by γ̆ j (η)),

j = 1, . . . , NP , k = 1, . . . , n̆j .

(5.85)

Let m̆jk ∈ span(e1, e2) be the vector along the centerline of the kth fold crossed
by γ̆ j (η) (see Fig. 5.21b). This vector is defined such that the path γ̆ j (η) crosses
it positively (i.e., from the face in the direction −e3 × m̆jk to the face in the
direction e3 ×m̆jk). The mapping from the fold vectors m̂1, . . . , m̂NF to the vectors
m̆j1, . . . , m̆j n̆j , j = 1, . . . , NP , is given as follows:

m̆jk =

⎧
⎪⎨

⎪⎩

m̂CP
jk ; CP

jk > 0

−m̂|CP
jk |; CP

jk < 0,

j = 1, . . . , NP , k = 1, . . . , n̆j .

(5.86)

Note that m̆jk has the opposite direction of its associated fold vector m̂|CP
jk | if

CP
jk < 0. This is applied such that the vectors m̆jk are always crossed positively by

γ̆ j (η).
The position vector of the point where path γ̆ j (η) enters the kth smooth fold is

denoted b̆jkL ∈ span(e1, e2) and the position vector of the point where γ̆ j (η) exits

such a fold is denoted b̆jkR ∈ span(e1, e2) as illustrated in Fig. 5.21b. The selection

of the vectors b̆jkL , b̆jkR , k = 1, . . . , n̆j , is not unique and depends on the particular
choice of the arbitrary path γ̆ j (η). The corner points of the smooth folds defined in
(5.28) provide a simple choice for the points where γ̆ j (η) crosses each fold. Thus,
they are used to define b̆jkL , b̆jkR , k = 1, . . . , n̆j :

b̆jkL =
⎧
⎨

⎩

p̂C
P
jk1; CP

jk > 0

p̂|CP
jk |4; CP

jk < 0
, b̆jkR =

⎧
⎨

⎩

p̂C
P
jk4; CP

jk > 0

p̂|CP
jk |1; CP

jk < 0

j = 1, . . . , NP , k = 1, . . . , n̆j ,

(5.87)

cf. (5.38). Let θ̆j1, . . . , θ̆j n̆j and w̆j1, . . . , w̆j n̆j be the kinematic variables

associated with the ordered smooth folds crossed by γ̆ j (η). The mapping from
all the kinematic variables in the sheet (θ̂1, . . . , θ̂NF and ŵ1, . . . , ŵNF ) to the
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Fig. 5.21 An origami sheet
illustrating parameters that
define the folding
transformation: (a) Path
γ̆ j (η); (b) Vector m̆jk along
the centerline of the kth fold
crossed by γ̆ j (η) and position
vectors b̆jkL and b̆jkR of the
points where γ̆ j (η),
respectively, enters and exits
the fold

(a) 

(b) 

m̆
jk

γ̆ j
(η)

γ̆ j
(η)

b̆jk
R

b̆jk
L

variables of only those crossed by γ̆ j (η) (θ̆j1, . . . , θ̆j n̆j and w̆j1, . . . , w̆j n̆j ) is
given as follows:

θ̆jk = θ̂|CP
jk |, w̆jk = ŵ|CP

jk | j = 1, . . . , NP , k = 1, . . . , n̆j . (5.88)

The fold widths of the smooth folds crossed by γ̆ j (η) are denoted w̆0
j1, . . . , w̆

0
j n̆j

and are determined from the widths of all the folds in the sheet (ŵ0
1, . . . , ŵ

0
NF ) as

follows:
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Table 5.3 Input parameters required to define the folding map of an origami sheet with smooth
folds

Parameter Definition

Fold angles θ̂1, . . . , θ̂NF
Face connectivity matrix CP (5.85)
- – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Fold widths ŵ0

1, . . . , ŵ
0
NF

Cross-section distance variables ŵ1, . . . , ŵNF (5.2)

These parameters are required in addition to those associated with the fold pattern listed in
Tables 5.1 and 5.2. The parameters that are not present in a sheet with creased folds are listed
below the dashed line

Table 5.4 Calculated parameters required to define the folding map of an origami sheet with
smooth folds

Parameter Equation

Vectors along the centerlines of the folds crossed by γ̆ j (η)

(m̆j1, . . . , m̆j n̆j , j = 1, . . . , NP )
(5.86)

Fold angles of the folds crossed by γ̆ j (η) (θ̆j1, . . . , θ̆j n̆j ,
j = 1, . . . , NP )

(5.88)

- – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Fold widths of the folds crossed by γ̆ j (η) (w̆0

j1, . . . , w̆
0
j n̆j

,

j = 1, . . . , NP )

(5.89)

Cross-section distance variables of the folds crossed by γ̆ j (η)

(w̆j1, . . . , w̆j n̆j , j = 1, . . . , NP )
(5.88)

Position vectors of the points where γ̆ j (η) enters and exits the smooth

folds (b̆j1
L , . . . , b̆

j n̆j
L and b̆j1

R , . . . , b̆
j n̆j
R , respectively; j = 1, . . . , NP )

(5.87)

The parameters that are not present in a sheet with creased folds are listed below the dashed line

w̆0
jk = ŵ0

|CP
jk |

j = 1, . . . , NP , k = 1, . . . , n̆j . (5.89)

We summarize the input and calculated parameters required to define the folding
map of an origami sheet with smooth folds in Tables 5.3 and 5.4.

5.6.2 Folding Map Formulation

In this section, we provide an expression for the folding transformation associated
with each smooth fold crossed by the paths γ̆ j (η), j = 1, . . . , NP . We use (5.40)
to provide a matrix formulation for such transformations. The folding map will then
be obtained through the composition of the folding transformations associated with
the folds crossed by the path γ̆ j (η). The steps of the folding transformation are
analogous to those illustrated in Fig. 5.16 and are ordered as follows:

1. Rotation by
θ̆jk
2 about an axis aligned to m̆jk and crossing a point with position

vector b̆jkR . We represent this transformation via (5.40) as follows:



5.6 Folding Map Formulation 247

T
(

b̆jkR
)

Q3(ϕ(m̆jk))Q1

(
θ̆jk
2

)

Q−1
3 (ϕ(m̆jk))T−1

(
b̆jkR

)
. (5.90)

2. Translation of magnitude −
(
w̆0
jk − w̆jk

)
in the direction of e3 × m̆jk

‖m̆jk‖ . This

transformation is represented as follows:

T−1
((
w̆0
jk − w̆jk

) (
e3 × m̆jk

‖m̆jk‖
))
. (5.91)

3. Rotation by
θ̆jk
2 about an axis aligned to m̆jk and crossing a point with position

vector b̆jkL . We represent this transformation via (5.40) as follows:

T
(

b̆jkL
)

Q3(ϕ(m̆jk))Q1

(
θ̆jk
2

)

Q−1
3 (ϕ(m̆jk))T−1

(
b̆jkL

)
. (5.92)

We multiply the transformation matrices of (5.90)–(5.92) to determine the
folding transformation matrix H̆jk associated with folding the kth smooth fold
crossed by the path γ̆ j (η):

H̆jk = T
(

b̆jkL
)

Q3(ϕ(m̆jk))Q1

(
θ̆jk
2

)

Q−1
3 (ϕ(m̆jk))T−1

(
b̆jkL

)

× T−1
((
w̆0
jk − w̆jk

) (
e3 × m̆jk

‖m̆jk‖
))

× T
(

b̆jkR
)

Q3(ϕ(m̆jk))Q1

(
θ̆jk
2

)

Q−1
3 (ϕ(m̆jk))T−1

(
b̆jkR

)
.

(5.93)

The folding map used to transform the position vector of any point in the faces
of the sheet from the reference configuration S0 to a current configuration St is
formulated here based on the fold transformation matrices H̆jk provided in (5.93).

Let X ∈ span(e1, e2) be the position vector of a point in a face with reference
configuration Pj

0 ⊂ S0 within which the path γ̆ j (η) terminates and x ∈ R
3 be the

position vector of such a point in Pj
t ⊂ St . The mapping X �→ x is determined as

the multiplication of the ordered matrices H̆jk of the n̆j smooth folds crossed by the
path γ̆ j (η):

[
x
1

]

=
( n̆j∏

k=1

H̆jk

)[
X
1

]

. (5.94)
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The reader is asked to show that the folding map provided in (5.94) is indepen-
dent from the chosen path γ̆ j (η) in Problem 5.16.

5.7 Computational Implementation of the Model

Having introduced the details of the kinematic model for origami structures with
smooth folds in Sects. 5.2–5.6, we continue by describing a procedure to implement
the model in a computational environment. The complete set of MATLAB scripts
used for the execution of such a procedure is included in the Supplemental Materials
of this chapter. We describe such MATLAB scripts in Appendix B.4.

Our goal is to simulate the folding motion of an origami sheet. We start by
providing the fold pattern data listed in Table 5.1. Additionally, we also have to
provide information regarding the desired history of folding motion for the sheet.
As stated in Sect. 5.5.2, the kinematic variables ŵi , i = 1, . . . , NF (see Fig. 5.7),
are determined from the fold angles θ̂i and fold arc-lengths ŝi , i = 1, . . . , NF ,
by establishing relations ŵi(θ̂i , ŝi ) following certain assumptions on the curvature
field of the smooth folds. For kinematic simulation, we further assume that the
deformation exhibited by the smooth folds is inextensible:

ŝi = ŵ0
i for t ∈ [0, tf ] i = 1, . . . , NF , (5.95)

and hence the fold angles θ̂1, . . . , θ̂NF are the only kinematic variables considered
during simulation.

For simulation in a numerical environment, the continuous folding motion of the
sheet is partitioned into increments. Thus, the simulation of the folding motion is
performed here by incrementally updating the values of the fold angles using input
guess increments. As such, we need to provide the following data to simulate the
folding motion of an origami sheet: (1) Fold pattern data (Table 5.1), and (2) Guess
increments for the fold angles:

Δθ̂l1, . . . , Δθ̂
l
NF l = 1, . . . , Ninc, (5.96)

where Ninc is the total number of guess increments.

We define Δθ̂
l ∈ R

NF as the vector whose components correspond to the lth set
of guess increments for the fold angles:

Δθ̂
l =

[
Δθ̂l1 · · · Δθ̂lNF

]	
l = 1, . . . , Ninc. (5.97)

Also, define θ̂
l ∈ R

NF as the vector whose components correspond to the values
of the fold angles at the lth increment:

θ̂
l =

[
θ̂ l1 · · · θ̂ lNF

]	
l = 1, . . . , Ninc. (5.98)



5.7 Computational Implementation of the Model 249

The fold angles θ̂
l

must satisfy the kinematic constraints provided in (5.66) and
(5.67) at every increment. Additionally, we also impose lower and upper bounds on
the fold angles as in origami with creased folds (see Sect. 2.6). The lower bound
and upper bound values for the ith fold angle are denoted θ̂Li and θ̂Ui , respectively.
Conventional assignments for the lower and upper bounds of the fold angles are

provided in Table 2.5. We define θ̂
L
, θ̂

U ∈ R
NF as the vectors whose components,

respectively, correspond to θ̂L1 , . . . , θ̂
L
NF and θ̂U1 , . . . , θ̂

U
NF as follows:

θ̂
L =

[
θ̂L1 · · · θ̂LNF

]	
, θ̂

U =
[
θ̂U1 · · · θ̂UNF

]	
. (5.99)

The constraints to be satisfied at each increment are then summarized in
Table 5.5.

In general, the configurations determined by the simple addition of the guess

increments for the fold angles (i.e., those obtained as θ̂
l = ∑l

m=1 Δθ̂
m

) may
not satisfy the constraints listed in Table 5.5. In view of this, we use an iterative
procedure to apply any necessary corrections such that the resulting configurations
approximate the addition of the guess increments and also satisfy the constraints of
Table 5.5.

The components of the vector θ̂
l(k) ∈ R

NF correspond to the values of the fold

angles at the kth iteration of the lth increment. The vector R(θ̂
l(k)
) ∈ R

6NI+2NF

with components Rj (θ̂
l(k)
) is the residual vector from constraints of Table 5.5 (3NI

from the rotational constraints (5.66), 3NI from the translational constraints (5.67),
and 2NF from the upper and lower bounds of each fold angle).

The matrix-type constraint (5.66) provides the following three scalar constraints
that are included in the components of the residual vector9:

Table 5.5 Constraints on the fold angles that must be satisfied at every increment (l) in the
simulation of the folding motion

Rotational constraints (5.66) Rj (θ̂
l
) = I3 j = 1, . . . , NI

Translational constraints (5.67) dj (θ̂
l
) = 03 j = 1, . . . , NI

Lower and upper bounds of the fold angles θ̂
L ≤ θ̂

l ≤ θ̂
U

9Since Rj in (5.66) is an orthogonal matrix, only three of its nine components are independent.
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R6j−5(θ̂
l(k)
) = 1

2
λR

(
R
j

23(θ̂
l(k)
)
)2
,

R6j−4(θ̂
l(k)
) = 1

2
λR

(
R
j

31(θ̂
l(k)
)
)2
,

R6j−3(θ̂
l(k)
) = 1

2
λR

(
R
j

12(θ̂
l(k)
)
)2
,

(5.100)

where j = 1, . . . , NI and λR is the scalar weight for residuals from kinematic
constraints (5.66). This constant weight is an algorithmic parameter included in
the residual vector to ensure that its components are scaled to a similar order

of magnitude (i.e., the components of Rj (θ̂
l(k)
) are dimensionless while those of

dj (θ̂
l(k)
) have units of length). The three components of the vector dj (θ̂

l(k)
), j = 1,

. . . , NI , which must be zero for the constraint in (5.67) to be satisfied, provide the
following components to the residual vector:

R6j−2(θ̂
l(k)
) = 1

2
λd

(
d
j

1

(
θ̂
l(k)

))2
,

R6j−1(θ̂
l(k)
) = 1

2
λd

(
d
j

2

(
θ̂
l(k)

))2
,

R6j (θ̂
l(k)
) = 1

2
λd

(
d
j

3

(
θ̂
l(k)

))2
,

(5.101)

where j = 1, . . . , NI and λd is the weight for residuals from (5.67).

The additional components of R(θ̂
l(k)
) required to enforce the lower bounds of

the fold angles consist of penalties defined as follows:

R6NI+2i−1(θ̂
l(k)
) = 1

2
λB max

(
0, −θ̂ l(k)i + θ̂Li

)2
, (5.102)

where i = 1, . . . , NF and λB is the scalar weight for fold angle bound constraints.
Similar penalties are used to enforce the upper bounds of the fold angles and are
defined as follows:

R6NI+2i (θ̂
l(k)
) = 1

2
λB max

(
0, θ̂ l(k)i − θ̂Ui

)2
, (5.103)

where i = 1, . . . , NF .
For each increment, we seek to iteratively correct the fold angles such that

the magnitude of the residual vector R(θ̂
l(k)
) is minimized. At the start of each

increment, we first calculate the projection of the guess increments for the fold

angles Δθ̂
l

onto the null space of the residual vector derivatives of the previous
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configuration (with fold angles θ̂
l−1

). This is performed to utilize the information
of the previous configuration and reduce the number of iterations in the subsequent
correction procedure [52]. Refer to Fig. 2.21a for an illustration of this concept.

The resulting projected fold angle increment Δθ̂
l∗

is calculated as follows (refer to
(A.56)):

Δθ̂
l∗ =

(

INF −
(
∂R(θ̂

l−1
)

∂ θ̂

)† (
∂R(θ̂

l−1
)

∂ θ̂

))

Δθ̂
l
. (5.104)

where (·)† denotes the Moore-Penrose pseudoinverse; see (A.37).

Given the fold angles of the previously determined configuration θ̂
l−1

and

the projected fold angle increment Δθ̂
l∗

, a configuration satisfying the kinematic
constraints (5.66) and (5.67) and the fold angles bounds can be found via an iterative
correction procedure. Such a procedure begins at iteration (0) where the first guess
of fold angles is the addition of the previous fold angles and the projected fold angle
increment:

θ̂
l(0) = θ̂

l−1 +Δθ̂
l∗
. (5.105)

If ‖R(θ̂
l(0)
)‖/(6NI + 2NF ) ≥ tol1 (where tol1 is a numerical tolerance),

the fold angles are corrected iteratively as follows (see Fig. 2.21b):

θ̂
l(k+1) = θ̂

l(k) +Δθ̂
l(k)
, (5.106)

where Δθ̂
l(k)

is the correction of fold angles at iteration (k). Following the
generalized Newton’s method [52], the first-order expansion of the residual vector

R(θ̂
l(k)
) is used to determine the correction Δθ̂

l(k)
required to minimize the

components of the residual vector:

R(θ̂
l(k) +Δθ̂

l(k)
) = R(θ̂

l(k)
)+ ∂R(θ̂

l(k)
)

∂ θ̂
Δθ̂

l(k) � 06NI+2NF .
(5.107)

The following correction of fold angles Δθ̂
l(k)

is obtained from the previous
first-order expansion:

Δθ̂
l(k) = −

(
∂R(θ̂

l(k)
)

∂ θ̂

)†

R(θ̂
l(k)
). (5.108)

The iterative corrector procedure provided in (5.108) and (5.106) is repeated until

‖R(θ̂
l(k+1)

)‖/(6NI + 2NF ) < tol1 or ‖Δθ̂
l(k)‖/NF < tol2, where tol2
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Table 5.6 Numerical procedure used to determine valid configurations at each increment in the
folding motion for origami sheets with smooth folds (lth fold angle increment)

1 Determine the projected fold angle increment Δθ̂
l∗

from the given Δθ̂
l

using (5.104)

2 Calculate guess fold angles θ̂
l(0)

using (5.105)

3 IF ‖R(θ̂
l(0)
)‖/(6NI + 2NF ) < tol1

THEN set θ̂
l = θ̂

l(0)
and EXIT

ELSE CONTINUE

4 Determine correction of fold angles Δθ̂
l(k)

using (5.108)

5 Determine θ̂
l(k+1)

using (5.106)

6 IF ‖R(θ̂
l(k+1)

)‖/(6NI + 2NF ) < tol1 OR ‖Δθ̂
l(k)‖/NF < tol2

THEN set θ̂
l = θ̂

l(k+1)
and EXIT

ELSE set k ← k + 1 and GOTO 4

is another numerical tolerance. We summarize the numerical procedure used to
determine valid configurations at each increment in the folding motion for origami
sheets with smooth folds in Table 5.6.

5.8 Simulation Examples of the Kinematic Model

Here we provide representative examples of the implemented model for kinematic
simulation of origami with smooth folds presented in Sects. 5.2–5.7. As stated in
Sect. 5.7, the procedure for kinematic simulation of origami with smooth folds has
been implemented in MATLAB. The associated MATLAB scripts are provided in
the Supplemental Materials of this chapter and described in Appendix B.4. In MAT-
LAB, we visualize the faces of origami sheets via filled three-dimensional polygons
using the command fill3 [56] and the smooth folds via three-dimensional surface
plots using the command surf [57].

Smooth folds having G2 continuous junctions with their adjacent faces are
assumed for all the examples presented in this section. The formulation of the
parametric curve ĉi (ζ1) that defines the cross-sectional shape of such smooth folds
is provided in (5.23).

Figures 5.22, 5.23, and 5.24 illustrate examples of origami sheets that do not
contain interior fold intersections. Therefore, the kinematic constraints provided in
(5.66) and (5.67) do not need to be considered in these examples. The fold pattern
for the so-called “self-similar wave” [58] addressed for origami with creased folds
in Fig. 2.24 is shown for origami with smooth folds in Fig. 5.22. In this fold pattern,
the lengths L1, . . . , Ln (refer to Fig. 5.22) are recursively determined via (2.83).
Two examples of fold patterns for self-similar waves considering n = 2 and n = 3
are shown in Fig. 5.22.
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Fig. 5.22 Schematics showing the fold pattern, reference configuration S0, an intermediate current
configuration Sti (0 < ti < tf ), and final configuration Stf for origami self-similar waves. The
valley folds shown in the schematic reach a fold angle of π while the mountain folds reach a fold
angle of −π

In Fig. 5.23, we show examples of origami “fans” where the fold pattern is
parameterized by the radius R, the sector angle Γ , and number of sections n.
Origami fans with smooth folds are shown in Fig. 5.23a and b and an origami fan
with creased folds is shown in Fig. 5.23c. Note that all the faces in the fan occupy
the same location when the fold angles reach ±π for creased folds while they are
stacked at a non-zero distance from one another when considering smooth folds.

Figure 5.24 shows an origami fan illustrating the analogy between origami with
smooth folds addressed herein and origami with creased folds and thick panels [59].
Note that both methods can address origami of finite thickness (because we study
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Fig. 5.23 Schematics showing the fold pattern, reference configuration S0, an intermediate current
configuration Sti (0 < ti < tf ), and final configuration Stf for origami fans. The valley folds
shown in the schematic reach a fold angle of π while the mountain folds reach a fold angle of −π .
Values of R = 0.5 m and Γ = 3π/4 are used in all the examples. (a) and (b) Fans with smooth
folds. (c) Fan with creased folds

the mid-surface of an origami structure of finite thickness in the present model).
Nonetheless, it is noted that the model for origami with smooth folds presented
here also accounts for folds having non-negligible thickness or maximum curvature
constraints based on material or structural limitations.

In Fig. 5.25, we show examples of origami “umbrellas.” The radius of the
umbrellas is denotedR and the number of sections is given as 2n. Origami umbrellas
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Location of creases 

Thick panels 

Fig. 5.24 Similarities between origami with smooth folds presented in this chapter and origami of
thick panels [59]

with smooth folds are shown in Fig. 5.25a and b and an origami umbrella with
creased folds is shown in Fig. 5.25c.

Figures 5.26 and 5.27 show examples of origami sheets where all the faces in
the sheets are parallel in the final configuration Stf (i.e., flat foldable patterns).
Specifically, Fig. 5.26 shows a sheet with a single interior fold intersection and four
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Fig. 5.25 Schematics showing the fold pattern, reference configuration S0, an intermediate current
configuration Sti (0 < ti < tf ), and final configuration Stf for origami “umbrellas.” A value of
R = 0.5 m is used in all the examples. (a) and (b) Umbrellas with smooth folds. (c) Umbrella with
creased folds
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Fig. 5.26 Schematics showing the fold pattern, reference configuration S0, an intermediate current
configuration Sti (0 < ti < tf ), and final configuration Stf of an origami sheet with four folds
adjacent to a single interior fold intersection: (a) Sheet with creased folds; (b) Sheet with smooth
folds

folds that have different fold widths while Fig. 5.27 shows a diamond fold pattern
where all the fold widths in the sheet are equal.

A sheet having eight smooth folds meeting at one interior fold intersection
is shown in Fig. 5.28a. The folds are enumerated in counterclockwise order.
Two different sets of guess increments for the fold angles are considered. The
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L1
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Fig. 5.27 Schematics showing the fold pattern, reference configuration S0, an intermediate current
configuration Sti (0 < ti < tf ), and final configuration Stf for sheets with the diamond fold
pattern. Values of L1 = 1.9 m and L2 = 0.5 m are used in all the examples. (a) Sheet with creased
folds (i.e., zero fold width). (b) Sheet with smooth folds having a width of 0.045 m. (c) Sheet with
smooth folds having a width of 0.09 m
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Fig. 5.28 (a) Reference configuration of a sheet having a single interior fold intersection. (b)
Configurations of the sheet obtained via the guess increments for the fold angles provided in
(5.109). (c) Fold angles vs. increment number and configurations obtained through the guess
increments for the fold angles provided in (5.110)

folded configurations shown in Fig. 5.28b are obtained through the following guess
increments for the fold angles:

Δθ̂
l = π

50

[
1 0 0 0 1 0 0 0

]	
l = 1, . . . , 50. (5.109)

The previous guess increments for the fold angles represent a simple example
where the fold angle correction procedure (refer to Table 5.6) converged prior to

performing an initial corrective iteration (i.e., ‖R(θ̂
l(0)
)‖/(6NI + 2NF ) < tol1

for l = 1, . . . , 50). Alternatively, an example of a more complex folding motion
resulting from guess increments for the fold angles that required iterative corrections
is shown in Fig. 5.28c. For this example, the guess increments for the fold angles are
as follows:

Δθ̂
l = π

50

[
1 − 1 1 − 1 1 − 1 1 − 1

]	
l = 1, . . . , 50.

(5.110)
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Fig. 5.29 Graphs showing the vertex coordinates and fold centerlines for the sheets shown in
Fig. 5.30

As shown in the fold angle vs. increment plot in Fig. 5.28c, the fold angles
obtained from the simulation procedure differ from the simple addition of the guess
fold angle increments. As observable in the configurations shown in Fig. 5.28c, all
the surface subdomains comprising the sheet remain joined throughout the folding
motion.

More complex examples of origami sheets having two interior fold intersections
are shown in Fig. 5.30. The graphs of Fig. 5.29 show the vertices and fold centerlines
associated with such sheets. Since the two interior fold intersections for these sheets
share a common adjacent fold, their associated constraints (5.66) and (5.67) are
coupled. For all the three sheets, the guess increments for the fold angles are as
follows (see Fig. 5.29 for the numbering of the folds):

Δθ̂
l = π

120

[
1 −1 1 1 −1 1 −1 −1 −1 1 −1 1 1 −1 1

]	

l = 1, . . . , 100. (5.111)
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Reference configuration   Increment 50 Increment 100 

(a) 

(b) 

(c) 

S0

Fig. 5.30 Configurations for origami sheets with vertex coordinates and fold centerlines defined
in Fig. 5.29: (a) Sheet with the baseline fold pattern; (b) Sheet with a fold pattern generated by
modifying the interior vertex coordinates of the baseline fold pattern; (c) Sheet with a fold pattern
generated by modifying the boundary vertex coordinates of the baseline fold pattern

The sheet having the baseline fold pattern shown in Fig. 5.30a exhibits a symmet-
ric behavior, which is expected from the symmetry of the fold pattern and the guess
increments for the fold angles. Sheets having fold patterns obtained by modifying
the coordinates of the interior vertices and the coordinates of the boundary vertices
of the baseline fold pattern are, respectively, shown in Fig. 5.30b and c. It is observed
that both sheets undergo dissimilar fold angle histories compared to the sheet having
the baseline fold pattern as observed from both the folded configurations in Fig. 5.30
and the fold angle vs. increment number plots in Fig. 5.31. These examples show the
versatility of the present model in allowing for simulation of sheets having arbitrary
fold patterns and boundary shapes.
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Fig. 5.31 Evolution of fold angles with increment number for the sheets shown in Fig. 5.30

The present model is also applicable for the simulation of sheets having arbitrary
topology. To illustrate this, sheets having four and five interior fold intersections
are shown in Figs. 5.32 and 5.33, respectively. Various configurations are shown for
these examples. As observed from these schematics, the present model captures well
the behavior of the folded sheets during their full range of motion (fold angles vary
from 0 to ±π for various folds in these sheets).

Chapter Summary

A model for the kinematic response of origami structures with smooth folds
having non-zero sheet surface area and arbitrary order of geometric continuity
was presented in this chapter. The geometrical description of smooth folds was
presented in Sect. 5.3. The fold pattern description (Sect. 5.4), the constraints
on the sheet deformation for origami with smooth folds analogous to those for
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e1

e2
e3

Fig. 5.32 Demonstration of constrained folding motion associated with an origami sheet having
four interior fold intersections

e1

e2

e3

Fig. 5.33 Demonstration of constrained folding motion associated with an origami sheet having
five interior fold intersections

origami with creased folds (Sect. 5.5), and the mapping from reference to current
configurations (Sect. 5.6) were also presented. The numerical implementation of
the model allowing for simulation of the motion of sheets with arbitrary fold
patterns was described in Sect. 5.7 and representative implementation examples
were provided in Sect. 5.8.

The proposed model successfully allows for the mathematical representation
of origami with folds that have non-zero sheet surface area and arbitrary order
of geometric continuity (in terms of fold shape geometry, constraints on the fold
kinematic variables, and mapping from reference to current configurations). The
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conventional origami with creased folds of G0 continuity addressed in Chap. 2
represents a special case of this more general model and can be captured as well.
Furthermore, the arbitrary order of geometric continuity in the sheet considered in
this chapter allows for the physical modeling of origami structures having significant
thickness using plate or shell representations, which is the focus of Chap. 8.

Problems

5.1 The reference configuration of the smooth folds is simplified in this chapter
to a rectangular shape. However, the model presented here can be extended for
the consideration of folds having trapezoidal reference configurations. Propose a
formulation for the parametric surface F i (ζ1, ζ2) analogous to that of (5.1) for
smooth folds having a trapezoidal reference configurations.

5.2 Based on Fig. 5.6, state the conditions on the second derivative of ĉi (ζ1)

required for G2 continuity of a general fold for which âi is not necessarily equal
to 1

2 .

5.3 Derive expressions for the unit tangent vector ti (ζ1), curvature κ̂i (ζ1), and
signed curvature κi(ζ1) for the parameterization of the curve ĉi (ζ1) provided in
(5.21).

5.4 Repeat Problem 5.3 considering the parameterization of the curve ĉi (ζ1)

provided in (5.23).

5.5 Show that the parameterization of the curve ĉi (ζ1) in (5.21) satisfies the
conditions for G1 continuity presented in Sect. 5.3.1.

5.6 Show that the parameterization of the curve ĉi (ζ1) in (5.23) satisfies the
conditions for G2 continuity presented in Sect. 5.3.1.

5.7 Propose a constraint on the parameters r̂i1 and r̂i2 (see (5.28)) that ensures that
the length of the smooth folds along the direction of the fold vector is positive.

5.8 Determine the position vectors p̂i1, p̂i3, and p̂i4 of the corners of the fold shown
in Fig. 5.11.

5.9 In Sect. 5.5.2, the constraints on the kinematic variables for the folds adjacent to
an interior fold intersection were derived using a path γ j (η) oriented counterclock-
wise. Derive such constraints using the process presented Sect. 5.5.2 but using a path
γ j (η) oriented clockwise (i.e., crossing the folds with associated fold vectors in the
following order: mjnj , . . . , mj2,mj1). Are the resulting constraints equivalent to
those provided in (5.66) and (5.67)?

5.10 Derive the mapping (5.44) considering general smooth folds for which âi is
not necessarily equal to 1

2 .
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Fig. 5.34 Schematic for
Problem 5.12

Fixed 
face 

e1

e2

P1
0P2

0

P3
0

P4
0

P5
0

P6
0

β

π− 2β

ββ

β

Fig. 5.35 Schematic for
Problem 5.13
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5.11 Using the results from Problem 5.10, derive the kinematic constraints (5.66)
and (5.67) considering general smooth folds for which âi is not necessarily equal
to 1

2 .

5.12 Considering the fold pattern presented in Fig. 5.34, determine the mapping
between reference and current configurations in the form of (5.49) for each face.
Denote the width of each fold as w∗ and the distance between the interior vertex
and all the fold boundaries as r∗.

5.13 Consider the fold pattern presented in Fig. 5.35. (a) Determine the folding
map in the form of (5.94) for each face. Denote the width of each fold as w∗ and
the distance between the fold centerline end points and the fold boundaries as r∗.
(b) Determine the position vector x in a current configuration with θ̂1 = π/2, θ̂2 =
−π/2, and ŵ1 = ŵ2 = w∗/2 of the point with reference position vector X =
[3L 0 0]	.

5.14 Repeat Problem 2.8 considering a sheet having smooth folds.

5.15 Repeat Problem 2.9 considering a sheet having smooth folds.

5.16 Repeat Problem 2.10 considering a sheet having smooth folds.

5.17 Implement the algorithm for kinematic simulation of origami sheets with
smooth folds presented in this chapter. Then, create the fold patterns and simulate
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the folding motion of: (a) An origami self-similar wave having the parameterization
shown in Fig. 5.22 and parameter n = 12; (b) Origami fans having the parameteri-
zation shown in Fig. 5.23 and parameters Γ = π , R = 0.5 m, and n = 5, 10, 20; (c)
Origami umbrellas having the parameterization shown in Fig. 5.25 and parameters
R = 0.5 m, n = 8, and three distinct values for the all the fold widths in the sheet.
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Chapter 6
Unfolding Polyhedra Method for the
Design of Origami Structures
with Smooth Folds

Abstract In this chapter, we address the method of unfolding polyhedra for origami
structures with smooth folds. We develop this method based on the theory of
unfolding polyhedra for origami with creased folds studied in Chap. 3. Accordingly,
the goal shape is represented as a three-dimensional goal mesh. The objective is
to determine the geometry of a planar sheet with smooth folds that can be folded
towards a configuration that approximates the goal mesh. We also examine the
computational implementation aspects of unfolding polyhedra for origami with
smooth folds and provide representative examples.

6.1 Introduction

Origami structures posses several characteristics that are advantageous in deploy-
able systems and morphing structures. These characteristics include storage/de-
ployment capabilities [1–3], reconfigurability, and reduction in manufacturing
complexity [4–18]. As stated in Sect. 3.1, the key challenge in the development
of origami applications is origami design, which is the process of creating an
origami structure with targeted properties such as a desired shape. Current methods
for origami design generally assume that the folds in the origami structures are
creases [19–21], such as in the unfolding polyhedra method considered in Chap. 3
and throughout the literature [19, 22–34].

The assumption of creased folds is not suitable for the design of origami
structures having non-negligible fold thickness or that are comprised of materials
incapable of the strain magnitudes required to generate the high curvatures com-
patible with a creased idealization. For these structures, the folded regions are not
accurately represented as creases but rather as bent sheet regions having higher-
order geometric continuity, which we call smooth folds. In view of this, we develop
the unfolding polyhedra method for origami with smooth folds in this chapter. This
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method is developed based on the theory of unfolding polyhedra for origami with
creased folds studied in Chap. 3.

The unfolding polyhedra method for origami with smooth folds presented in this
chapter is particularly useful in the design of active origami structures, where the
achievable curvature at the active material-based folds is limited by the maximum
strain magnitude provided by such materials [11, 35–40]. For example, active
origami structures with smooth folds designed via the unfolding polyhedra method
are shown in Figs. 6.1 [41] and 6.2 [42]. This chapter is organized as follows:
Sect. 6.2 presents the problem description and solution approach of the unfolding
polyhedra method considering smooth folds, and examples of the implemented
method considering several goal shapes are provided in Sect. 6.3.

6.2 Unfolding Polyhedra Method Considering Smooth Folds

Here we describe the various aspects of the unfolding polyhedra method for the
design of origami structures with smooth folds. Section 6.2.1 provides the design
problem definition and the solution approach, and Sect. 6.2.2 describes the face
trimming step.

6.2.1 Problem Definition

The unfolding polyhedra method for origami with smooth folds aims to solve the
following problem in origami design:

• Given: A three-dimensional goal shape represented as a polygonal mesh (termed
as the goal mesh M),

• Find: The geometry of a planar sheet with smooth folds that can be folded to
approximate M, and a history of folding motion from the planar configuration
of the sheet (S0) to the goal configuration (S�) that matches M
As explained in Chap. 3, the planar sheet obtained using the unfolding polyhedra

method corresponds to an unfolding of the goal mesh M, which is the flattening of
M onto a plane and has boundary segments associated with cuts made on M. As in
conventional approaches for unfolding polyhedra [19, 24], we require the unfolding
to be a single sheet that does not have any overlaps and the cuts are required to
be made exclusively on edges of the goal mesh. An unfolding that satisfies these
characteristics is called a net [19]. In the examples of active origami structures
shown in Figs. 6.1 and 6.2, we note that the sheets do not have overlaps and were
obtained by making cuts solely on edges of the goal shapes; therefore, they are nets.

The steps followed in the unfolding polyhedra method for origami with smooth
folds to determine a net for a given goal mesh M are illustrated in Fig. 6.3 and listed
as follows:
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Fig. 6.1 Motivation for the current design method based on active origami structures. The images
show active origami structures realized using the unfolding polyhedra method [41]. Self-folding
occurs after the sheets are released from the silicon substrate on which they are fabricated and then
heated above the melting point of the material at the folds, where face rotation is subsequently
driven by the minimization of surface tension at the liquid fold hinges. Adapted from [41] with
permission of the Proceedings of the National Academy of Sciences (PNAS)

1. Determination of a spanning tree on the goal mesh M (Fig. 6.3b). A spanning
tree is a line graph on M that contains a reference point in each face of M. The
spanning tree cannot contain any node of M and cannot cross any edge of M
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Fig. 6.2 Photographs of a
square prism created via
thermally activated folding of
a shape memory polymer
sheet. Note that the folds are
not creases. Adapted
from [42] with permission of
The Royal Society of
Chemistry

more than once. The importance of the spanning tree is not its particular shape,
but is rather the set of edges of M that it crosses

2. Assignment of every edge that is not crossed by the spanning tree as a boundary
edge (Fig. 6.3c). Since only the edges crossed by spanning tree are not assigned
as boundary edges, the resulting mesh corresponds to a tree of faces that has the
same topology of the spanning tree

3. The faces of M are adjusted (i.e., “trimmed”) at the locations where the smooth
folds will be introduced. These locations correspond to the edges of M that
are not assigned as boundary edges in Step 2. This step is referred to as face
trimming. The resulting trimmed mesh is denoted M� as shown in Fig. 6.3d

4. Mapping the trimmed faces obtained in Step 3 onto a plane. This step produces
a net for the goal mesh, which corresponds to the reference configuration S0 of
an origami sheet with smooth folds as shown in Fig. 6.3e. This sheet contains the
faces of M� and the introduced smooth folds

5. Determination of a history of folding motion from S0 to the goal configuration
S� that matches M (Fig. 6.3f)

Here, we utilize the same data employed in Chap. 3 to define the goal mesh M,
which is described in detail in Sect. 3.2.2. Likewise, the procedure employed to
determine a spanning tree for M in Chap. 3 is also utilized here. Such a procedure
is presented in Sect. 3.2.3. The face trimming step that is introduced in the unfolding
polyhedra method for origami with smooth folds is addressed in Sect. 6.2.2. The
procedure to determine a history of folding motion from S0 to the goal configuration
S� follows the one outlined in Sect. 3.2.5 for unfolding polyhedra with creased folds.
We provide a set of MATLAB® scripts that perform the aforementioned steps in
the Supplemental Material of this chapter. These MATLAB scripts are described in
Appendix B.5.

The number of folds NF in a sheet designed using the unfolding polyhedra
method is equal to NM − 1 as determined in (3.23), where NM is the number
of mesh faces of M. For the goal mesh M shown in Fig. 6.3, NM = 6 and hence
NF = NM − 1 = 5. In this chapter, the fold widths ŵ0

i , i = 1, . . . , NF , of the
introduced smooth folds are assumed given1 (see Fig. 6.3f). In practice, the fold
widths are determined such that the smooth folds having a specified thickness and

1Consult Sect. 5.3 for a detailed description of the geometry of smooth folds.
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Fig. 6.3 Summary of the unfolding polyhedra method for origami with smooth folds: (a) Given
goal mesh M; (b) Spanning tree including all the faces of M; (c) The edges that are not crossed
by the spanning tree are assigned as boundary edges; (d) Trimmed mesh M� computed in order
to accommodate smooth folds; (e) Determined net corresponding to the reference configuration
S0 of an origami sheet. This sheet contains the faces of M� and the introduced smooth folds; (f)
Continuous folding motion from t = 0 to t = tf such that the final configuration Stf corresponds
to the goal configuration S� that approximates M
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comprised of a specified material are able to achieve their required fold angles in
the goal configuration S�. Such a physically based determination of the fold widths
is a topic of Chap. 8.

6.2.2 Face Trimming Step

As stated in Sect. 6.2.1, once a spanning tree has been determined for a given goal
mesh M and a cut boundary has been obtained based on that spanning tree, we
proceed with the face trimming step. In this chapter, we use the procedure described
in Sect. 3.2.3 to determine the spanning tree. As illustrated in Fig. 6.3d, the face
trimming step is performed to remove regions of the mesh faces at the locations
where the smooth folds will be placed in the designed origami sheet. It is remarked
that the smooth folds are placed at each edge of the goal mesh M that is not assigned
as a boundary edge based on the spanning tree.

Figure 6.4a shows the side view of two faces in M sharing a common edge
that is not assigned as boundary edge. Figure 6.4b shows the side view of the
associated faces connected by the introduced smooth fold in the goal configuration
S� of the designed origami sheet. It is observed in this figure that due to the bending
deformation of the smooth fold (as opposed to creasing), the two faces connected
by the smooth fold do not share a common edge in S�. To account for this, the
faces of the goal mesh M are recomputed to generate the trimmed mesh M� (see
Fig. 6.3d). As shown in Fig. 6.4b, the regions removed at the faces compensate for
the space occupied by the introduced smooth fold and have associated trim lengths
l̂i , i = 1, . . . , NF .

To determine the trim length l̂i , we first compute the dihedral angle Θ̂i between
the two faces in M connected by the edge associated with the ith smooth fold (see
Fig. 6.4):

Θ̂i =
⎧
⎨

⎩

π + cos−1(n̂i1 · n̂i2); for convex edges

π − cos−1(n̂i1 · n̂i2); for concave edges,

i = 1, . . . , NF ,

(6.1)

where n̂i1, n̂i2 ∈ R
3 are the unit normal vectors in M of the two faces connected by

the edge associated with the ith smooth fold. We define ŵ�i as the distance between
the end points of the cross-section of the ith smooth fold in S�, as shown in Fig. 6.4b.
The reader is referred to Sect. 5.3 for a description of the geometry of smooth folds.
Using the schematic shown in Fig. 6.4c, the trim length l̂i is determined as follows:

l̂i = ŵ�i

2
csc

(
Θ̂i
2

)
. (6.2)
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Θ̂i

(a) 

(c) 

2π − Θ̂i

n̂i1 n̂i2

l̂il̂i

ŵ�
i

Θ̂i

n̂i1 n̂i2

l̂il̂i

Fold 

ŵ�
i

(b) 

Fig. 6.4 (a) Side view of two faces in the goal mesh M sharing a common edge that is not
assigned as boundary edge based on the spanning tree. (b) Side view of the introduced smooth fold
and its adjacent trimmed faces at the goal configuration S�. The geometric parameters defining the
trim length l̂i are shown. (c) Schematic used to derive (6.2)

Employing the notation of Sect. 3.2.2, the NM mesh faces of M are denoted
M1, . . . , MNM and the position vectors of the nodes of Mj are denoted

ỹj1, . . . , ỹjn
M
j ∈ R

3, where nM
j is the number of nodes of Mj . Here we denote

the NM trimmed faces of M� as M1
�, . . . , MNM

� and the position vectors of the

nodes of Mj
� as ỹj1

� , . . . , ỹ
jnMj
� ∈ R

3. We now proceed to derive an expression for

ỹj1
� , . . . , ỹ

jnMj
� as functions of the node position vectors of the original mesh faces

ỹj1, . . . , ỹjn
M
j and the trim lengths l̂1, . . . , l̂NF computed using (6.2).

Figure 6.5a shows a schematic of the boundary of a mesh face Mj (denoted
∂Mj ) and the boundary of its associated trimmed face Mj

� (denoted ∂Mj
� ).

The trimmed lengths associated with each edge of Mj are denoted l̃jk , j =
1, . . . , NM, k = 1, . . . , nM

j , as shown in Fig. 6.5a. To determine l̃jk from

the trimmed lengths l̂i calculated in (6.2), the trim connectivity matrix C� with
components C�jk is introduced:
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Fig. 6.5 (a) Boundary of a
mesh face Mj (denoted
∂Mj ) and its associated
trimmed face Mj

� (denoted

∂Mj
� ). (b) Edge trim lengths

d̃
jk

1 and d̃jk2

Mj
	

∂Mj
	 ∂Mj

ỹj k+1

ỹj k+1
	

ỹjk
	

ỹjk

l̃jk

l̃ j
k
+

1

l̃ j
k
−1

φ̃j k+1φ̃jk

(a)

Mj
	

d̃jk
1 d̃jk

2

l̃jk

l̃ j
k
+

1

l̃ j
k
−1

φ̃j k+1φ̃jk

(b)

C
�
jk = Index of the edge in M corresponding to the kthedge (in

counterclockwise order) of Mj

j = 1, . . . , NM, k = 1, . . . , nM
j .

(6.3)

The components of C� can be determined from the given goal mesh data listed
in Table 3.1 (see Problem 6.3).

The mapping from l̂1, . . . , l̂NF computed using (6.2) to the trim lengths of the
edges of each mesh face Mj (l̃j1, . . . , l̃jnMj

) is given as follows:

l̃jk = l̂
C
�
jk

j = 1, . . . , NM, k = 1, . . . , nM
j . (6.4)

The position vectors of the nodes of the trimmed face Mj
� are then determined

as follows (refer to Fig. 6.5a):
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ỹjk� = ỹjk + l̃j k−1 csc(φ̃jk)
ỹj k+1 − ỹjk

‖ỹj k+1 − ỹjk‖ + l̃jk csc(φ̃jk)
ỹj k−1 − ỹjk

‖ỹj k−1 − ỹjk‖ ,

(6.5)

where j = 1, . . . , NM, k = 1, . . . , nM
j . The interior corner angles of Mj

denoted φ̃jk are calculated as follows:

φ̃jk = cos−1
(
(ỹj k−1 − ỹjk) · (ỹj k+1 − ỹjk)
‖ỹj k−1 − ỹjk‖ ‖ỹj k+1 − ỹjk‖

)

. (6.6)

Once the node position vectors ỹjk� , j = 1, . . . , NM, k = 1, . . . , nM
j , have

been computed using (6.5), we can fully generate the trimmed mesh M�.

The edge trim lengths d̃jk1 and d̃jk2 , j = 1, . . . , NM, k = 1, . . . , nM
j , quantify

the reduction in length of the edges of Mj due to face trimming and are determined
as follows (refer to Fig. 6.5b):

d̃
jk

1 = l̃j k−1 csc(φ̃jk)+ l̃jk cot(φ̃jk),

d̃
jk

2 = l̃j k+1 csc(φ̃j k+1)+ l̃jk cot(φ̃j k+1).

(6.7)

As indicated in Fig. 6.5b, the reduction in length of the kth edge of Mj is equal
to d̃jk1 + d̃

jk

2 .
As illustrated in Fig. 6.6, as the width of the smooth folds is increased, the size

of the trimmed regions also increases. In general, the face trimming step should not
reduce the length of any edge in the goal mesh faces to zero. This requirement yields
the following inequality:

‖ỹj k+1 − ỹjk‖ > d̃
jk

1 + d̃
jk

2 j = 1, . . . , NM, k = 1, . . . , nM
j , (6.8)

where ‖ỹj k+1 − ỹjk‖ is the original length of the kth edge of Mj . From (6.4)
and (6.7), it is noted that d̃jk1 and d̃

jk

2 are functions of the trim lengths l̂i , i =
1, . . . , NF . Likewise, it is noted from (6.2) that the trim lengths l̂i , i = 1, . . . , NF ,
are functions of the cross-section distances ŵ�i , i = 1, . . . , NF , which are
proportional to the fold widths ŵ0

i , i = 1, . . . , NF .2 Therefore, the inequality (6.8)
is an implicit constraint on the fold widths of the introduced smooth folds.

2Consult Sect. 5.5.2 for details on the determination of the kinematic variables ŵi for the cross-
section of smooth folds.
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M

M	

S0

Increasing fold width 

Fig. 6.6 Nets of a cube having different fold widths. The leftmost case corresponds to a net with
creased (i.e., zero fold width) folds for which the face trimming step is not required

6.3 Examples of the Unfolding Polyhedra Method

This section provides representative examples of the unfolding polyhedra method
for origami with smooth folds described in Sect. 6.2. We implemented such a
method in MATLAB. The faces of the goal meshes, trimmed meshes, and nets
are visualized as filled three-dimensional polygons using the MATLAB command
fill3 and the smooth folds are visualized as three-dimensional surfaces using
the command surf. The complete set of MATLAB scripts used to generate the
examples is included in the Supplemental Materials for this chapter and described in
Appendix B.5. The MATLAB implementation of the kinematic model for origami
with smooth folds presented in Chap. 5 is used to simulate the folding motion of
the origami sheets corresponding to the nets. As stated in Sect. 6.2.1, the procedure
used to determine a history of folding motion from S0 to the goal configuration S�
follows the one outlined in Sect. 3.2.5.

Figure 6.7 shows the goal meshes for the surfaces of the Platonic solids, the
computed trimmed meshes, and the corresponding nets having smooth folds. Their
counterparts with creased folds are shown in Fig. 3.23. The Platonic solids are
convex polyhedra constructed by congruent, regular, polygonal faces with the same
number of faces meeting at each node. These include the regular tetrahedron
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M

S0

(a) (b) 

M

S0

(c) 

M

S0

(d) 

M
S0

(e) 

S0

M	M	

M	 M	

M

M	

Fig. 6.7 Goal meshes for the surfaces of the Platonic solids (M), trimmed meshes (M�),
and associated nets having smooth folds (S0). (a) Tetrahedron. (b) Cube. (c) Octahedron. (d)
Dodecahedron. (e) Icosahedron
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(a) 

(b) 

(c) 

M S0
M	

M S0M	

Fig. 6.8 (a)–(b) Two different mesh discretizations of a sphere and their associated nets having
smooth folds. The mesh shown in (a) has 6 triangle pairs along the azimuthal direction and 6
triangle pairs along the inclination direction (i.e., 6 × 6 discretization). (b) 12 × 12 discretization.
(c) Folding motion of the net in (a) associated with the 6 × 6 discretization
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M S0

S�

S0

(a) (c) 

(c) 

e1

e2
e3

e1

e2

M	

(b) 

Fig. 6.9 (a) Goal mesh corresponding to a truncated icosahedron. (b) Trimmed mesh. (c) Net of
the truncated icosahedron. (d) Continuous folding motion from S0 to the goal configuration S� that
approximates M

(Fig. 6.7a), the cube (Fig. 6.7b), the regular octahedron (Fig. 6.7c), the regular
dodecahedron (Fig. 6.7d), and the regular icosahedron (Fig. 6.7e).

Figure 6.8 shows two polygonal mesh discretizations for a sphere goal shape
and their corresponding nets with smooth folds determined using the unfolding
polyhedra method presented in this chapter. The trimmed meshes associated with
each goal mesh are also shown.
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M S0

S�

S0

(a) (c) 

(d) 

M	

(b) 

Fig. 6.10 (a) Goal mesh M for an ellipsoidal shape comprised of quadrilaterals and triangles.
(b) Trimmed mesh. (c) Net of the goal mesh. (d) Continuous folding motion from S0 to the goal
configuration S� that approximates M

Finally, Figs. 6.9, 6.10, 6.11, 6.12 show the determined nets with smooth folds
and simulated folding motion associated with goal meshes for a truncated icosahe-
dron, an ellipsoid, a shelter, and a parabolic disk. The trimmed meshes associated
with each goal mesh are also shown. As observed from these figures, the unfolding
polyhedra method presented in this chapter is able to successfully generate a net
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M

S0

(a) (c) 

(d) 

S0

S�

M	

(b) 

Fig. 6.11 (a) Goal mesh M for a shelter comprised of quadrilaterals and triangles. (b) Trimmed
mesh. (c) Net of the goal mesh. (d) Continuous folding motion from S0 to the goal configuration
S� that approximates M

with smooth folds that can be folded to approximate each of the considered goal
meshes. Their counterparts with creased folds are shown in Figs. 3.26, 3.27, 3.28,
3.29.
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M

S0

S�

S0

(a) (c) 

(d) 

(b) 

M	

Fig. 6.12 (a) Goal mesh M for a parabolic dish. (b) Trimmed mesh M�. (c) Net of the goal mesh.
(d) Continuous folding motion from S0 to the goal configuration S� that approximates M

Chapter Summary

In this chapter, we presented a method known as unfolding polyhedra for the design
of origami structures with smooth folds that achieve targeted three-dimensional
shapes. We develop this method based on the theory of unfolding polyhedra for
origami with creased folds studied in Chap. 3. As such, the goal shape is represented
in this method as a three-dimensional polygonal mesh termed as the goal mesh. The
objective in unfolding polyhedra is to determine a net for the goal mesh, which is
a connected, non-overlapping sheet corresponding to a flattening of the goal mesh
onto a plane and has a boundary associated with cuts made exclusively on edges
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of the goal mesh. The faces of the goal mesh are adjusted (i.e., “trimmed”) at the
locations where the smooth folds are placed in order to compensate for the space
occupied by such folds. Thus, the net contains the trimmed faces of the goal mesh
and the introduced smooth folds.

We presented the problem description and solution approach of the unfolding
polyhedra method in Sect. 6.2.1. The face trimming step that is introduced in
unfolding polyhedra for origami with smooth folds was addressed in Sect. 6.2.2.
Representative examples of the implemented method considering various goal
meshes were provided in Sect. 6.3. The limitations of the unfolding polyhedra
method considering creased folds discussed in Sect. 3.2.6 are also applicable to the
more general unfolding polyhedra method presented in this chapter.

The proposed method for origami design successfully allows for the realization
of nets with folds having non-zero surface area and arbitrary order of geometric
continuity. The conventional nets with creased folds studied in Chap. 3 represent
a special case for this more general design method and can be obtained as well.
In Chap. 8, we provide a framework for the design of active origami structures
that morph towards arbitrary shapes under non-mechanical stimuli (e.g., thermal,
chemical, electromagnetic) based on the unfolding polyhedra method presented in
this chapter.

Problems

6.1 Derive (6.2) using the schematic shown in Fig. 6.4c.

6.2 Create a schematic such as that provided in Fig. 6.4 considering a concave edge
(i.e., an edge having dihedral angle Θ̂i < π ). Then, show that (6.2) is also applicable
for concave edges.

6.3 Propose an algorithm to determine the components of the trim connectivity
matrix C�, which is defined in (6.3), from the given goal mesh data listed in
Table 3.1.

6.4 Derive (6.5) using the schematic shown in Fig. 6.5a.

6.5 Derive (6.7) using the schematic shown in Fig. 6.5b.

6.6 Since the resulting goal configuration S� in unfolding polyhedra for origami
with smooth folds contains the trimmed mesh M� as a subset instead of the given
goal mesh M (see Fig. 6.3), the approximation error between S� and M must be
quantified. Propose parameter(s) that can be used to quantify such an error.

6.7 Following the approach presented in Sect. 3.2.4, formulate the mapping of the
trimmed faces from their position in the trimmed mesh M� to their corresponding
position in the reference configuration S0 of an origami sheet designed using the
unfolding polyhedra method.
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Fig. 6.13 Goal mesh M for
Problem 6.8

6.8 Implement the unfolding polyhedra method for origami with smooth folds in
a computational environment. Consider the mesh of a triangular prism shown in
Fig. 6.13. The position vectors of the nodes in such a mesh are given as follows:

[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1
1 0 1
0 1 1
0 0 0
1 0 0
0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.9)

and the components of the mesh connectivity matrix CM are given as follows:

CM =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 0
6 5 4 0
4 5 2 1
6 4 1 3
5 6 3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (6.10)

Using the procedure to determine a spanning tree outlined in Sect. 3.2.3, find
three different sheet designs for this mesh by correspondingly selecting faces 1, 3,
and 5 as the reference face for the spanning tree. Assume fold widths of 0.1 for all
the smooth folds.

6.9 Consider the mesh shown in Fig. 6.14. The position vectors of the nodes in such
a mesh are given as follows:
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Fig. 6.14 Goal mesh M for
Problem 6.9

[
ŷ1 · · · ŷ12

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1
1 1 1
0 1 1
0 0 1
2 0 0
2 1 0
1 2 0
0 2 0

−1 1 0
−1 0 0

0 − 1 0
1 − 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.11)

and the components of the mesh connectivity matrix CM are given as follows:

CM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4 0 0 0 0
1 5 6 2 0 0 0 0
2 6 7 0 0 0 0 0
3 2 7 8 0 0 0 0
3 8 9 0 0 0 0 0
4 3 9 10 0 0 0 0
4 10 11 0 0 0 0 0
1 4 11 12 0 0 0 0
1 12 5 0 0 0 0 0

12 11 10 9 8 7 6 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.12)

Using the procedure to determine a spanning tree outlined in Sect. 3.2.3, find
three different sheet designs for this mesh by correspondingly selecting a triangular
face, a quadrilateral face, and the octagonal face as the reference face for the
spanning tree. Assume fold widths of 0.1 for all the smooth folds.
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Fig. 6.15 Goal mesh M of an octahedron for Problem 6.10

6.10 Consider the mesh of an octahedron shown in Fig. 6.15. The position vectors
of the nodes in such a mesh are given as follows:

[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
− 1 0 0

0 1 0
0 − 1 0
0 0 0.5
0 0 − 0.5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.13)

and the components of the mesh connectivity matrix CM are given as follows:

CM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 3 5
1 5 4
2 4 5
2 5 3
4 2 6
6 2 3
6 3 1
1 4 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.14)

Determine four different sheet designs for this mesh by correspondingly selecting
fold widths of 0.1, 0.2, 0.3, and 0.4 for all the smooth folds.

6.11 Consider the mesh of an icosahedron shown in Fig. 6.16. The position vectors
of the nodes in such a mesh are given as follows:



6.3 Examples of the Unfolding Polyhedra Method 289

Fig. 6.16 Goal mesh M of
an icosahedron for
Problem 6.11

[
ŷ1 · · · ŷ12

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1.5 1.618
0 1.5 − 1.618
0 −1.5 1.618
0 −1.5 − 1.618
1 2.4271 0
1 − 2.4271 0

−1 2.4271 0
−1 − 2.4271 0

1.618 0 1
1.618 0 −1

− 1.618 0 1
− 1.618 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.15)

and the components of the mesh connectivity matrix CM are given as follows:
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CM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 3 9
5 1 9
7 1 5

11 1 7
11 3 1
5 9 10
9 3 6
8 3 11

12 8 11
12 11 7
10 9 6
2 5 10
2 7 5
2 12 7
4 8 12
6 3 8
4 6 8
4 10 6
2 4 12
2 10 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.16)

Determine four different sheet designs for this mesh by correspondingly selecting
fold widths of 0.1, 0.2, 0.3, and 0.4 for all the smooth folds.

6.12 Implement the unfolding polyhedra method for origami with smooth folds in a
computational environment and determine nets for the 13 Archimedean polyhedra.
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Chapter 7
Tuck-Folding Method for the Design
of Origami Structures with Smooth Folds

Abstract Having addressed the unfolding polyhedra method for the design of
origami structures with smooth folds in the previous chapter, here we consider
a design method applicable to a much larger spectrum of three-dimensional goal
shapes. This chapter presents the tuck-folding method for origami with smooth folds
based on the same method presented in Chap. 4 for origami with creased folds. The
present method generates a sheet comprised of the faces of the goal mesh in addition
to introduced regions having two rigid faces and three smooth folds. The smooth
folds are used to tuck-fold the added regions to form the shape of the goal mesh.
Representative examples considering goal shapes having different geometries are
provided.

7.1 Introduction

As reviewed in Sects. 1.3 and 6.1, current methods for origami design are generally
limited to the idealization of the folds as creases of zeroth-order geometric
continuity. Such an idealization is not proper for origami structures having non-
negligible fold thickness or with maximum curvature at the folds restricted by
material limitations [1–3] (e.g., active origami structures). For such structures, the
folds are not properly represented as creases but instead as bent regions of higher-
order geometric continuity (i.e., smooth folds; refer to Sect. 5.2).

This chapter presents a novel method for origami design having its inspiration
from the tuck-folding method presented by Tachi in [4, 5] and revisited in Chap. 4
but considering smooth folds as opposed to creased folds. The outline of this
chapter is as follows: Sect. 7.2 presents the problem description and solution
approach of the tuck-folding method for origami with smooth folds, examples of the
computationally implemented method considering various goal shapes are provided
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in Sect. 7.3, and a study on the design and fabrication of shape memory polymer
(SMP) self-folding sheets using the tuck-folding method is presented in Sect. 7.3.1.

7.2 Tuck-Folding Method Considering Smooth Folds

In this section, we describe the various aspects of the tuck-folding method for
the design of origami structures with smooth folds. Section 7.2.1 provides the
design problem definition and the solution approach, Sect. 7.2.2 describes the
face trimming step, and the edge module parameterization and associated design
constraints are addressed in Sect. 7.2.3.

7.2.1 Problem Definition

The tuck-folding method for origami with smooth folds aims to solve the following
origami design problem:

• Given: A three-dimensional goal shape represented as a polygonal mesh (i.e., the
goal mesh1 M)

• Find: The shape and fold pattern of a planar sheet with smooth folds that can be
folded to match M, and a history of folding motion from the planar configuration
of the sheet (S0) to the goal configuration (S�) that matches M
The steps followed in the tuck-folding method for origami with smooth folds to

solve this design problem are listed as follows [6]:

1. If the given goal mesh is not topologically equivalent to a disk [4],2 interior edges
of the mesh are assigned as boundary edges to introduce an additional boundary
∂MC such that the obtained mesh satisfies the aforementioned topological
property. A goal mesh M with boundary ∂M = ∂MC ∪ ∂MO and mesh faces
M1, . . . , MNM ⊂ M (where NM is the total number of faces in M) is then
obtained (the boundary ∂MO consists of the boundary edges of the originally
given mesh). We illustrate these concepts in Fig. 4.4

2. The faces of M are adjusted (i.e., “trimmed”) at the locations where the edge
modules will be introduced in Step 3. These locations correspond to the edges of
M that are not assigned as boundary edges in Step 1. This step is referred to as
face trimming. The resulting trimmed mesh is denoted M� as shown in Fig. 7.1

and its trimmed faces are denoted M1
�, . . . , MNM

� ⊂ M�

1The goal mesh M is a connected, orientable, 2-manifold polygonal mesh.
2Consult Sects. 4.2.1 and 4.2.2 for a discussion on the topology required for the goal mesh M to
allow for the application of the tuck-folding method.
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Fig. 7.1 Schematic illustrating Steps 2 and 3 of the tuck-folding method for origami with smooth
folds presented in this chapter: Given a goal mesh M with boundary ∂M, compute the trimmed
mesh M� and then find the reference configuration S0 of an origami sheet that approximates M
in a known folded configuration. The reference configuration S0 is comprised of the faces of M�

mapped onto a plane and edge modules having two rigid faces and three smooth folds introduced
at all the interior edges of M
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Fig. 7.2 Schematic illustrating Step 4 of the tuck-folding method for origami with smooth folds:
Folding motion of an origami sheet determined in Step 3 from the reference configuration S0
towards the goal configuration S� that approximates the goal mesh M (note that M� ⊂ S�; refer
to Fig. 7.1)

3. An origami sheet with reference configuration S0 comprised of the trimmed faces
M1

�, . . . , MNM
� mapped onto a plane and NI

E introduced edge modules (where

NI
E is identically the number of interior edges of M) is then determined as shown

in Fig. 7.1. The edge modules consist of two rigid faces and three smooth folds
and are placed between every pair of faces of M connected by an interior edge,
hence their name. Accordingly, S0 has 3NI

E smooth folds and 2NI
E + NM rigid

faces:

NF = 3NI
E , NP = 2NI

E +NM, (7.1)

where NF and NP are, respectively, the number of folds and faces of the
designed origami sheet. The challenge in this step is to determine the geometry of
the edge modules such that a valid reference configuration S0 is obtained (refer
to Sect. 5.2) and such a sheet approximates M in a known goal configuration S�
(Fig. 7.2)

4. The final step entails the determination of a history of folding motion from
the reference configuration S0 to the goal configuration S�. During folding
motion, each edge module is tuck-folded to form the shape of the goal mesh M.
Figure 7.2 shows configurations attained by the sheet of Fig. 7.1 during a
determined history of folding motion from S0 to S�
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Table 7.1 Values for the fold width and the kinematic variables of the smooth folds in the goal
configuration S�

Fold width Fold angle at S� Distance between cross-section end points at S�
Fold 1 ŵE0

i −Θ̂i/2 ŵE�
i

Fold 2 ŵI0
i π ŵI�

i

Fold 3 ŵE0
i −Θ̂i/2 ŵE�

i

Refer to Fig. 7.4a for the numbering of the folds

To define the goal mesh M, we employ the same data used in the tuck-folding
method for origami with creased folds. Such data used to define the goal mesh and
any required mesh modifications are described in Sect. 4.2.2.

7.2.2 Face Trimming Step

As stated in Sect. 7.2.1, once a goal mesh M topologically equivalent to a disk has
been determined, we proceed to the face trimming step. As illustrated in Fig. 7.1, the
face trimming step is performed to remove regions of the mesh faces at the locations
where the edge modules will be placed in the designed origami sheet (Fig. 7.3b). It is
remarked that the edge modules are placed at each interior edge of the goal mesh
M. The regions removed at the mesh faces compensate for the space occupied by
the tuck-folded edge modules in the goal configuration S� (Fig. 7.3d).

A side view of a tuck-folded edge module is shown in Fig. 7.4. It is assumed that
each edge module is tuck-folded in a symmetric manner and therefore the exterior
folds for each edge module (Folds 1 and 3 in Fig. 7.4a) have the same values for their
kinematic variables at S�. Such kinematic variables are provided in Table 7.1. The
interior fold (Fold 2 in Fig. 7.4a) has a fold angle of π radians when the edge module
is tuck-folded at S�. It is observed in Fig. 7.4a that due to the bending deformation
of the smooth folds (as opposed to creasing), a gap results between two mesh faces
connected by the edge module in the goal configuration S�. To account for this gap,
the faces of the goal mesh are recomputed to generate the trimmed mesh as shown
in Fig. 7.1. The removed regions compensate for the gaps and have associated trim
lengths l̂i , i = 1, . . . , NI

E , as shown in Fig. 7.4a. To define these removed regions,

first the dihedral angle Θ̂i , i = 1, . . . , NI
E , between the two faces connected by the

ith interior edge is calculated as follows (see Fig. 7.4a):

Θ̂i =
⎧
⎨

⎩

π + cos−1(n̂i1 · n̂i2); for convex edges

π − cos−1(n̂i1 · n̂i2); for concave edges,

i = 1, . . . , NI
E ,

(7.2)
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(d) 

(e) 
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module 
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	M	
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Fig. 7.3 (a) Example goal mesh M having one interior node; (b) Trimmed mesh M�; (c)
Determined sheet geometry and fold pattern associated with the goal mesh shown in (a); (d)
Folding motion from the reference planar configuration S0 to the goal configuration S�. Note that
M� ⊂ S� under appropriate rigid transformations; (e) View of the non-intersecting tuck-folded
edge modules in the goal configuration S�

where n̂i1 and n̂i2 are the unit normal vectors of the faces in M connected by the
ith interior edge as shown in Fig. 7.4a.

Let ŵI�
i be the distance between the end points of the cross-section of the interior

fold in the ith edge module at S� (refer to Table 7.1). Also, let wE�
i be the distance
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Fig. 7.4 (a) Side view of a
tuck-folded edge module and
its adjacent mesh faces in the
goal configuration S�. The
geometric parameters
defining the trim length l̂i are
shown. (b) Schematic used to
derive (7.3)

Fold 2 

Θ̂i

ŵI�
i

ŵE�
i sin

(
Θ̂i

4

)
ŵE�

i sin
(

Θ̂i

4

)

l̂il̂i

ŵI�
i

l̂i l̂i

ŵE�
i sin

(
Θ̂i

4

)
ŵE�

i sin
(

Θ̂i

4

)

(a) 

(b) 

2π − Θ̂i

n̂i1 n̂i2

between the cross-section end points of the exterior folds. Using the schematic
shown in Fig. 7.4b, we calculate the trim lengths l̂i as follows:

l̂i =
(
ŵI�
i

2
+ ŵE�

i sin
(
Θ̂i
4

)
)

csc
(
Θ̂i
2

)
i = 1, . . . , NI

E . (7.3)

Employing the notation of Sect. 6.2.2, the position vectors of the nodes of the

trimmed faces Mj
� are denoted as ỹj1

� , . . . , ỹ
jnMj
� ∈ R

3, j = 1, . . . , NM. The

expressions for ỹj1
� , . . . , ỹ

jnMj
� as functions of the node position vectors of the
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original mesh faces ỹj1, . . . , ỹjn
M
j and the trim lengths l̂1, . . . , l̂NI

E
are provided

in (6.5).
Once a goal mesh M topologically equivalent to a disk has been determined in

Step 1 and the associated trimmed mesh M� has been computed in Step 2, Step 3
of the tuck-folding method for origami with smooth folds addresses the design of a
planar sheet that can be folded to approximate M (refer to Sect. 7.2.1). The designed
origami sheet is comprised of the trimmed faces M1

�, . . . , MNM
� mapped onto a

plane and NI
E introduced edge modules, each consisting of two rigid faces and three

smooth folds (Fig. 7.3c). The edge modules are placed between every pair of faces
of M connected by an interior edge. The challenge in this step is to determine
the geometry of the edge modules such that a valid reference configuration S0 is
obtained (refer to Sect. 5.2) and the designed sheet approximates M in a known
goal configuration S� (Fig. 7.3d–e). To address this challenge, we first study the
parameterization of the edge modules and derive the associated constraints on the
design variables. We then use the numerical procedure outlined in Sect. 4.2.5 to
solve for the design variables that satisfy the derived constraints.

7.2.3 Edge Module Parameterization and Constraints

In this chapter, the fold widths of the smooth folds in each edge module are assumed
given.3 In practice, the fold widths are determined such that the smooth folds having
a specified thickness and comprised of a specified material are able to achieve
their required fold angles in the goal configuration S� (refer to Table 7.1). Such
a physically-based determination of the fold widths is a topic of Chap. 8.

Following the approach of Chap. 4, we parameterize each edge module by a
length variable denoted Ŵi and an angular variable denoted ψ̂i , i = 1, . . . , NI

E .
These variables are schematically shown in Fig. 7.5a. The modified edge module of
Fig. 7.5a accounting for the change in edge lengths due to face trimming (refer to
Sect. 7.2.2) is shown in Fig. 7.5b. The edge module trim lengths d̂ inm, n = 1, 2, m =
1, 2, shown therein correspond to the edge trim lengths d̃jkm , m = 1, 2 (see (6.7)), of
the two faces connected to the ith interior edge.

7.2.3.1 Loop Closure Constraints

The variables Ŵi and ψ̂i , i = 1, . . . , NI
E , must be determined such that the faces

of M and the edge modules associated with each interior node of M form a closed
loop in S0 (Fig. 7.3c). Let Wjk and ψjk , j = 1, . . . , NI

N , k = 1, . . . , nN
j , be

the variables Ŵi and ψ̂i , respectively, of the edge module associated with the kth

3Refer to Sect. 5.3 for a detailed description of the geometry of smooth folds.
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Fig. 7.5 (a) Edge module and associated geometric parameters; (b) Modified edge module
accounting for the change in edge lengths due to face trimming; (c) Edge module trimmed
accounting for self-intersection avoidance at the goal configuration S�
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interior edge incident to the j th interior node of M. It is recalled that nN
j is the

number of edges incident to the j th interior node of M. The mapping from Ŵi and
ψ̂i , i = 1, . . . , NI

E , to Wjk and ψjk , j = 1, . . . , NI
N , k = 1, . . . , nN

j , is given as
follows:

Wjk = Ŵ|CNI
jk |, ψjk =

⎧
⎪⎨

⎪⎩

ψ̂
C
NI
jk

; C
NI

jk > 0

−ψ̂|CNI
jk |; C

NI

jk < 0,

j = 1, . . . , NI
N , k = 1, . . . , nN

j .

(7.4)

where CNI is the node connectivity matrix defined in (3.16). Also, let djk11 and djk21
be the edge module trim lengths d̂ inm of the kth edge module associated with the j th

interior node of M. The mapping from d̂ inm, n = 1, 2, m = 1, 2, to djk11 and djk21 ,
j = 1, . . . , NI

N , k = 1, . . . , nN
j , is given as follows:

d
jk

11 =

⎧
⎪⎪⎨

⎪⎪⎩

d̂
C
NI
jk

11 ; C
NI

jk > 0

d̂
|CNI
jk |

22 ; C
NI

jk < 0,

d
jk

21 =

⎧
⎪⎪⎨

⎪⎪⎩

d̂
C
NI
jk

21 ; C
NI

jk > 0

d̂
|CNI
jk |

12 ; C
NI

jk < 0,

j = 1, . . . , NI
N , k = 1, . . . , nN

j .

(7.5)

To derive constraints onWjk and ψjk , k = 1, . . . , nN
j , allowing the faces of M�

and the edge modules associated with the j th interior node of M to form a closed

loop in S0, first let bj0, . . . , bjn
N
j ∈ span(e1, e2) be the position vectors of the inner

corners of the edge modules as shown in Fig. 7.6a (numbered in counterclockwise

order). The vectors bj0, . . . , bjn
N
j can be determined recursively as follows:

bjk = bj k−1 + R3

(
k−1∑

l=1

(
ψjl
2 + φjl + ψj l+1

2

)
)

×

⎡

⎢
⎢
⎢
⎣

(d
jk

21 − d
jk

11 ) cos
(
ψjk

2

)

Wjk + (d
jk

11 + d
jk

21 − ‖zjk‖) sin
(
ψjk

2

)

0

⎤

⎥
⎥
⎥
⎦
,
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Fig. 7.6 Trimmed faces and edge modules in S0 associated with the j th interior node of M: (a)
Position vectors of the inner corners of the edge modules; (b) Face corner angles φjk and edge
module variables ψjk and Wjk

=
k∑

l=1

⎛

⎜
⎜
⎜
⎜
⎝

R3

(
l−1∑

m=1

(
ψjm

2 + φjm + ψj m+1
2

)
)

×

⎡

⎢
⎢
⎢
⎣

(d
jl

21 − d
jl

11) cos
(
ψjl
2

)

Wjl + (d
jl

11 + d
jl

21 − ‖zj l‖) sin
(
ψjl
2

)

0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

+ bj0, (7.6)

where R3(·) ∈ R
3×3 is the matrix representing a rotation about an axis aligned

with e3 and is defined in (2.22). The face corner angles φjk , k = 1, . . . , nN
j , are

determined via (3.18).
Consider the mapping of the position vector of a point from the face with corner

angle φj k−1 to the face with corner angle φjk . The transformation associated with
“crossing” the edge module located between these two faces can be decomposed as
the following ordered transformations:

1. Translation by bjk − bj k−1. This translation is formulated in matrix form as
T(bjk − bj k−1), where T(·) is defined in (2.53)

2. Rotation of φjk + ψjk about an axis aligned to e3 and intersecting the
point with position vector bjk . This rotation is formulated in matrix form as
T(bjk)Q3(φjk + ψjk)T−1(bjk), where Q3(·) is defined in (2.57)

The product of the former transformation matrices is given as follows:

T(bjk)Q3(φjk + ψjk)T−1(bjk)T(bjk − bj k−1)

= T(bjk)Q3(φjk + ψjk)T−1(bj k−1). (7.7)
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The composition of the transformations provided in (7.7) associated with
crossing the edge modules with variables Wjk , ψjk , k = 1, . . . , nN

j , must be the
identity transformation such that these edge modules, along with the trimmed faces
with corner angles φjk , k = 1, . . . , nN

j , form a closed loop:

I4 =
nNj∏

k=1

T(bjk)Q3(φjk + ψjk)T−1(bj k−1)

= T(bjn
N
j )Q3

⎛

⎜
⎝

nNj∑

k=1

(φjk + ψjk)

⎞

⎟
⎠ T−1(bj0).

(7.8)

The condition (7.8) holds if
∑nNj

k=1(φjk +ψjk) = 2πn with n ∈ Z.4 Specifically,
n must be equal to 1 for the closed strip to be developable [7, 8]:

2π =
nNj∑

k=1

φjk +
nNj∑

k=1

ψjk, (7.9)

In addition to (7.9), it is required that bjn
N
j = bj0 for (7.8) to hold.

Considering (7.6), bjn
N
j = bj0 implies the following constraint:

03 =
nNj∑

k=1

⎛

⎜
⎜
⎝R3

(
k−1∑

l=1

(
ψjl
2 + φjl + ψj l+1

2

)
)

×

⎡

⎢
⎢
⎢
⎣

(d
jk

21 − d
jk

11 ) cos
(
ψjk

2

)

Wjk + (d
jk

11 + d
jk

21 − ‖zjk‖) sin
(
ψjk

2

)

0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠
,

(7.10)

cf. (4.7). The vector constraint (7.10) provides two scalar constraints because the
third component of such an equation is always equal to 0. Therefore, the loop closure
constraints (7.9) and (7.10) provide a total of 3NI

N equality constraints.

4The set of the integer numbers is denoted as Z.
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7.2.3.2 Constraints for Valid Edge Module Geometry

In addition to the loop closure constraints provided in (7.9)–(7.10), other constraints
must be imposed to ensure that the geometry of each individual edge module is
valid. The interior fold (having fold width ŵI0

i ; see Fig. 7.5a) and the faces of an edge
module degenerate to straight line segments if ψ̂i reaches ±π (refer to Fig. 7.5a).
Therefore, the following bounds must be imposed for this variable:

− π < ψ̂i < π, (7.11)

where i = 1, . . . , NI
E . Furthermore, the exterior folds (each having fold width

ŵE0
i ; see Fig. 7.5a) of an edge module must not overlap with the interior fold. This

requirement yields the following constraint (refer to Fig. 7.5a, b):

Ŵi ≥ ŵI0
i + 2ŵE0

i cos
(
ψ̂i
2

)
+ ∥

∥ẑi
∥
∥ sin

(∣
∣
∣
ψ̂i
2

∣
∣
∣
)

−

⎧
⎪⎨

⎪⎩

(d̂i11 + d̂ i21) sin
(
ψ̂i
2

)
; ψ̂i ≥ 0

(d̂i12 + d̂ i22) sin
(
− ψ̂i

2

)
; ψ̂i < 0

.

(7.12)

where i = 1, . . . , NI
E ; cf. (4.12). Equation (7.12) and the upper and lower bounds

of ψ̂i in (7.11) provide 3NI
E inequality constraints.

7.2.3.3 Constraints to Prevent Intersections Among Tuck-Folded
Edge Modules

Intersections between regions of the sheet are not allowed in valid configurations
(see Sect. 5.2) and hence must be avoided when adjacent edge modules are tuck-
folded in the goal configuration S� (see Fig. 7.3e). For this purpose, certain regions
of the edge modules are trimmed as shown in Fig. 7.5c such that each edge module
does not intersect any of its neighboring edge modules in S�. This procedure is
called edge module trimming.

Figure 7.7 shows the importance of edge module trimming. If the edge module
trimming procedure is not considered and the edge module geometry is as given in
Fig. 7.5b, adjacent edge modules intersect at the goal configuration S� as observed
in Fig. 7.7d. However, if the edge module trimming procedure is considered and the
geometry of the edge modules is as illustrated in Fig. 7.5c, no intersections among
adjacent edge modules occur as shown in Fig. 7.7g. The trim angles τ̂ i1 and τ̂ i2, i =
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(a) 

(b) 

Edge module trimming not considered 

Edge  module trimming considered 

(c) 
(d) 

M

(e) (f) 

(g) 

S0

S0

Intersecting edge modules 

Non-intersecting edge 
modules 

Fig. 7.7 Example showing the need for edge module trimming. (a) A simple goal mesh M. (b)
and (e) Determined sheet designs S0. Edge module trimming is not considered for the sheet design
shown in (b) while such a procedure is considered for the design in (e). (c)–(d), (f)–(g) Exterior
and interior views of the goal configuration S� for both cases. It is observed in (d) that if the
edge module trimming procedure described in Sect. 4.2.4 is not considered, the tuck-folded edge
modules intersect at S�. If such a procedure is considered, adjacent edge modules do not intersect
in S� as shown in (g)
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1, . . . , NI
E , are introduced to define the trimmed regions of the ith edge module

as shown in Fig. 7.5c. The procedure used to compute these angles is presented in
Sect. 4.2.4.

Each edge module must remain connected after edge module trimming. This
requirement is satisfied if the following inequality holds for each edge module (refer
to Fig. 7.5c)5:

∥
∥ẑi

∥
∥ cos

(
ψ̂i
2

)
>

(
Ŵi

2 − ‖ẑi‖
2 sin

(
ψ̂i
2

))
tan

(〈
τ̂ i1 + ψ̂i

2

〉)

+
(
Ŵi

2 + ‖ẑi‖
2 sin

(
ψ̂i
2

))
tan

(〈
τ̂ i2 − ψ̂i

2

〉)

+
(

max(d̂i11, d̂
i
21)+ max(d̂i12, d̂

i
22)

)
cos

(
ψ̂i
2

)
.

(7.13)

where i = 1, . . . , NI
E ; cf. (4.13). The preceding equation provides NI

E additional

inequality constraints. It is noted that if (τ̂ i1 + ψ̂i/2) < 0 or (τ̂ i2 − ψ̂i/2) < 0, these
angles are set to 0 to prevent any increase in area of the edge modules during this
procedure.

7.2.3.4 Summary of Design Constraints

The proposed design method introduces 2NI
E design variables corresponding to Ŵi

and ψ̂i , i = 1, . . . , NI
E . The loop closure constraints (7.9) and (7.10) provide

3NI
N equality constraints. The constraints (7.11)–(7.13) allowing for valid edge

module geometries and self-intersection avoidance in S� provide 4NI
E inequality

constraints. We utilize the numerical procedure outlined in Sect. 4.2.5 to solve for
the design variables that satisfy the derived constraints. Furthermore, the determi-
nation of a history of folding motion from the computed reference configuration
of the origami sheet S0 towards the goal configuration S� that approximates M is
performed as described in Sect. 4.2.6.

7.3 Examples of the Tuck-Folding Method

In this section, we provide representative examples of the tuck-folding method for
origami with smooth folds described in Sect. 7.2. We implemented this method in
MATLAB®. The faces of the goal meshes and the edge modules are visualized

5The Macaulay brackets are denoted as 〈·〉 and defined as: 〈y〉 =
{
y; y ≥ 0

0; y < 0
.
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Reference configuration      of 
determined sheet design 

Goal configuration    
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Fig. 7.8 Goal mesh M and associated trimmed mesh M�, sheet design S0, and folded goal
configuration S� obtained using the tuck-folding method for origami with smooth folds. A physical
prototype of this sheet design was fabricated using a polyjet additive manufacturing approach and
is shown in Fig. 7.9

as filled three-dimensional polygons using the MATLAB command fill3 while
the smooth folds are visualized as three-dimensional surfaces using the MATLAB
command surf. The complete set of MATLAB scripts used to generate the
examples is included in the Supplemental Materials for this chapter and described
in Appendix B.6. We use the MATLAB implementation of the kinematic model for
origami with smooth folds presented in Chap. 5 to simulate the folding motion of
the designed origami sheets.

The first example considers a goal mesh M with one interior vertex and is
illustrated in Fig. 7.8. The associated trimmed mesh M�, determined sheet design
S0, and folded goal configuration S� computed using the tuck-folding method for
origami with smooth folds are also shown in Fig. 7.8. We provide an experimental
demonstration of the present design method for qualitative comparisons between a
simulated structure and its associated prototype. Photos of the fabricated prototype
are shown in Fig. 7.9. The prototype was fabricated using a polyjet additive
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Fig. 7.9 Comparison between computational and experimental models in the reference planar
configuration (left) and the goal configuration (right). Credit: Cullen Nauck

manufacturing approach. The faces of the prototype (white regions) are comprised
of VeroWhite material with Young’s modulus of approximately 1.5 GPa (1500 MPa)
and the smooth folds (black regions) are comprised of TangoBlack material with
Young’s modulus of approximately 0.34 MPa. The large discrepancy between the
values of the Young’s modulus of the faces and the smooth folds ensures that
our assumptions of rigid faces and flexible smooth folds are applicable for the
prototype. A comparison between the computational and the experimental models
in the reference planar configuration S0 and the goal configuration S� is provided
in Fig. 7.9. The prototype is manually folded and the edge modules are held in their
tuck-folded configuration using clips.

A sheet design obtained using the tuck-folding method and the corresponding
goal configuration S� for a goal mesh M of constant positive Gaussian curvature
[8, 9] are shown in Fig. 7.10. A goal mesh associated with a shape of constant
negative Gaussian curvature is considered in Fig. 7.11. It is interesting to contrast
the similarities in S0 between Figs. 7.10 and 7.11 with the clear differences in the
associated goal configurations S�.

Variations of the goal mesh shown in Fig. 7.10 and their corresponding sheet
designs are shown in Fig. 7.12. It is verified that each sheet in Fig. 7.12 can be
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M

S0

S�

M	

Fig. 7.10 Goal mesh M representing a shape of constant positive Gaussian curvature and its
associated trimmed mesh M�, determined sheet design S0, and folding motion towards the goal
configuration S�

folded towards their goal configuration S� that approximates M, although the goal
configurations are not shown here for the sake of brevity.

To illustrate the multiplicity of possible design solutions, three sheet designs
associated with a single goal mesh are shown in Fig. 7.13. These different design
solutions are obtained by considering different initial guesses for the sheet design
variables Ŵi and ψ̂i , i = 1, . . . , NI

E , in the iterative solution procedure described in
Sect. 4.2.5. Values of surface area efficiency E, defined in (4.35), for the determined
sheet designs are also indicated in Fig. 7.13.

A more complex example of a torus goal shape is presented in Fig. 7.14. Two
different discretizations of the goal shape are provided in Fig. 7.14a. The design
method successfully generates sheet designs for both discretizations as shown in
Fig. 7.14b–c. Figures 7.15 and 7.16 show the successful design and simulation
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M

S0

S�

M	

Fig. 7.11 Goal mesh M representing a shape of constant negative Gaussian curvature and its
associated trimmed mesh M�, determined sheet design S0, and folding motion towards the goal
configuration S�

results for goal meshes associated with a sinusoidal tessellation and an autonomous
underwater vehicle, respectively.

The proposed design method is not limited to triangulated meshes as the only
condition on the shape of the faces in M is that they must be convex (refer to (4.34)
and its associated discussion). Figure 7.17 shows an example of a sheet design
and folding motion associated with a goal mesh comprised of quadrilaterals while
Fig. 7.18 shows results for a goal mesh comprised of octagons and triangles.
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M S0

Fig. 7.12 Different goal meshes and their corresponding sheet designs determined using the tuck-
folding method for origami with smooth folds
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M S�, E = 0.56

S0, E = 0.71
S0, E = 0.56

S0, E = 0.41

Fig. 7.13 A goal mesh and three sheet designs with different values of surface area efficiency E.
The goal configuration S� associated with the sheet design with E = 0.56 is also shown
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5 5 discretization 10 10 discretization 

(a) 

(b) 

(c) 

M M

S0

S0

M	 M	

10 10 discretization 

5 5 discretization 

Fig. 7.14 (a) Two mesh discretizations of a torus. (b) Sheet design for the 5 × 5 discretization. (c)
Sheet design for the 10 × 10 discretization
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(a) 

(c) 

(d) 

M

S0

S�

M	
(b) 

Fig. 7.15 (a) Goal mesh M of a sinusoidal tessellation. (b) Trimmed mesh M�. (c) Determined
sheet design S0. (d) Folding motion towards the goal configuration S�
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S�

M(a) 

M	(b) 

S0(c) 

(d) 

Fig. 7.16 (a) Goal mesh M of the upper surface of an autonomous underwater vehicle [10].
Credit: Doe Young Hur. (b) Trimmed mesh M�. (c) Determined sheet design S0. (d) Folding
motion towards the goal configuration S�
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S�

M(a) 

M	(b) 

S0(c) 

(d) 

Fig. 7.17 (a) Goal mesh M comprised of quadrilaterals. (b) Trimmed mesh M�. (c) Determined
sheet design S0. (d) Folding motion towards the goal configuration S�



318 7 Tuck-Folding Method for the Design of Origami Structures with Smooth Folds

S�

M(a) 

M	(b) 

S0(c) 

(d) 

Fig. 7.18 (a) Goal mesh M comprised of octagons and triangles. (b) Trimmed mesh M�. (c)
Determined sheet design S0. (d) Folding motion towards the goal configuration S�
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7.3.1 Design and Fabrication of Shape Memory Polymer
Self-Folding Sheets

In this section, we apply the tuck-folding method derived in this chapter to the
design and fabrication of SMP-based self-folding sheets.6 The goal is to synthesize
SMP-based self-folding sheets that morph towards arbitrary three-dimensional goal
shapes starting from a planar configuration.

7.3.1.1 Fabrication of Shape Memory Polymer Active Folds

Our method for the fabrication of SMP-based self-folding sheets is inspired by the
techniques developed in [11]. The shape memory composite comprising the sheets
consists of three layers: An SMP layer in the middle bonded to stiff passive layers
on its top and bottom sides. We use flexible polystyrene plastic sheets, commercially
known as Shrinky Dinks, for the SMP layer and paperboard for the passive layers.
These layers are bonded together with a silicone-based adhesive. A schematic of the
cross-section of the laminated folds is shown in Fig. 7.19, where ŵ0

i is the width of
the folds, tpaper is the thickness of the paperboard layers, tSMP is the thickness of the
SMP layers, δ is the length between the SMP layer and the axis of rotation during
folding, and θ̂ �i is the goal fold angle. The paperboard layer in the folding direction
is removed for each fold as illustrated in Fig. 7.19. Such a laminate configuration
is obtained from [11]. In all the results shown in this section, tpaper = 0.508 mm,
tSMP = 0.5 mm, and δ = 0.2 mm.

Unlike the examples presented in Sect. 7.3, the width ŵ0
i of each fold in the sheets

considered here is not arbitrary. We geometrically determine an expression for the
fold width ŵ0

i as a function of the fold angle θ̂ �i achievable by the SMP smooth folds
illustrated in Fig. 7.19. Such an expression is given as follows (refer to Fig. 7.19c):

ŵ0
i = 2(tpaper + tSMP + δ) tan

(
θ̂ �i
2

)

. (7.14)

Figure 7.20 shows a comparison between the results obtained using (7.14) and
experimental tests for single folds.

We experimentally determined that the laminate layup for the smooth folds
shown in Fig. 7.19 does not achieve fold angles of 180◦ (π radians), which are
necessary in the tuck-folding method addressed in this chapter (refer to Fig. 7.4).
For those special cases, (7.14) is not applicable. To achieve fold angles of 180◦, we
fabricated smooth folds for which one of the paperboard layers of the composite
had a 6 mm gap width and the opposite paperboard layer had five evenly separated

6The authors would like to gratefully acknowledge Milton Garza for performing the experimental
work presented in this section.
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tpaper
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Fig. 7.19 Cross-section of an SMP-based active fold. The laminated composite consists of an
SMP middle layer and two paperboard outer layers. (a) Reference configuration. When the SMP
layer is thermally actuated, it shrinks and causes the laminate to fold in the direction of the side
with a gap about the axis P . (b) Folding continues until the two sides of the layer with a gap come
into contact, resulting in a goal fold angle θ̂ �i . (c) Schematic used to derive (7.14)
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Fig. 7.20 Goal fold angle θ̂ �i vs. fold width ŵ0
i for the considered SMP-based active folds. Results

from experimental tests are compared with those obtained via (7.14). Error bars indicate the
standard deviation of fold angles at each fold width tested



7.3 Examples of the Tuck-Folding Method 321

Fig. 7.21 Additional cuts in the bottom paperboard layer made in order to achieve fold angles of
180◦. Left: Reference configuration. Right: Final configuration with fold angle of 180◦

cuts within the range of the gap as illustrated in Fig. 7.21. This fold design allows
for lower bending stiffness in the composite, ultimately allowing the composite to
achieve 180◦ fold angles.

The composite sheets were fabricated using a laser cutting machine with their
dimensions according to their computational design obtained via the tuck-folding
method. To prevent the SMP layer from actuating during fabrication, low power and
speed settings are used in the laser cutting machine.

7.3.1.2 Self-Folding Behavior of Shape Memory Polymer Sheets

Figures 7.22 and 7.23 show origami sheet designs obtained via the tuck-folding
method for a saddle goal shape and a pyramid goal shape, respectively. A fabricated
SMP-based composite sheet associated with the saddle goal shape of Fig. 7.22 is
shown in Fig. 7.24a. The three layers of the composite are individually shown
in Fig. 7.25. The fabricated composite sheet was inserted into a thermal cham-
ber for uniform heating from room temperature up to a temperature of 130 ◦C
(403 K), which allowed the SMP to actuate and the sheet to fold towards its goal
configuration shown in Fig. 7.24b. A fabricated composite sheet associated with
the pyramid goal shape of Fig. 7.23 is shown in Fig. 7.26a and its corresponding
final configuration after thermally-driven actuation is shown in Fig. 7.26b. For both
examples, the tuck-folding method for origami with smooth folds successfully
generated the geometry of the SMP sheet designs such that they achieve the goal
configurations that approximate their goal meshes.
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Fig. 7.22 Origami sheet design of an SMP self-folding structure for a goal mesh with one
interior node of negative Gaussian curvature: (a) Goal mesh; (b) Trimmed mesh; (c) Determined
sheet design; (d) Configurations attained by the structure during its folding history (kinematic
simulation)
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Fig. 7.23 Origami sheet design of an SMP self-folding structure for a goal mesh with one
interior node of positive Gaussian curvature: (a) Goal mesh; (b) Trimmed mesh; (c) Determined
sheet design; (d) Configurations attained by the structure during its folding history (kinematic
simulation)
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Fig. 7.24 (a) Top and bottom views of the self-folding sheet for the saddle goal shape (Fig. 7.22).
The white regions in the top view correspond to the valley folds while the white regions in the
bottom view correspond to the mountain folds. (b) Views of the self-folding sheet in the goal
configuration

Fig. 7.25 Individual layers of the SMP self-folding sheet for a goal mesh having one interior node
of negative Gaussian curvature
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Fig. 7.26 (a) Top and bottom views of the self-folding sheet for the pyramid goal shape
(Fig. 7.23). The white regions in the top view correspond to the valley folds while the white regions
in the bottom view correspond to the mountain folds. (b) Views of the self-folding sheet in the goal
configuration

Chapter Summary

A method for the design of origami structures with smooth folds was presented
in this chapter. The method is based on the known idea of using folds to create
flaps that are tuck-folded to morph an initially planar sheet into an arbitrary three-
dimensional goal shape represented as a polygonal mesh [4, 5]. The method solves
the origami design problem of determining the shape of a planar sheet including a
pattern of smooth folds that allows for the approximation of the goal mesh through
such a tuck-based folding. The present design method successfully provides fold
patterns that can be realized with various engineering materials (e.g., metals, glassy
polymers, active materials) due to the consideration of arbitrary order of continuity
Gn in the smooth folds, as opposed to G0 creased folds considered in most origami
design methods from the literature.

For origami design problems in which the goal shape is not given as a poly-
hedral surface but rather as a smooth surface, the process of determining a mesh
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discretization for such a surface before the utilization of the method presented in
this chapter must be addressed. Multiple algorithms for obtaining polygonal mesh
discretizations of smooth surfaces are available in the literature [12, 13]. We include
an example in Chap. 8 where the problem of determining an optimal mesh for a
given application is addressed for a self-folding parabolic antenna.

Section 7.2.1 summarized the problem description and solution approach of the
tuck-folding method for origami with smooth folds. The face trimming step that is
introduced in the tuck-folding method for origami with smooth folds was addressed
in Sect. 7.2.2 We then studied the parameterization of the origami sheet design and
the associated constraints on the design variables. Representative examples of the
implemented method considering several goal shapes were provided in Sect. 7.3.
Lastly, in Sect. 7.3.1, we presented an example where we applied the tuck-folding
method to the design and fabrication of SMP self-folding sheets that morph towards
arbitrary three-dimensional goal shapes starting from planar configurations.

Problems

7.1 Derive (7.3) using the schematic provided in Fig. 7.4b.

7.2 Draw a schematic such as that provided in Fig. 7.4 considering a concave edge
(i.e., an edge having dihedral angle Θ̂i < π ). Then, show that (7.3) is also applicable
for concave edges.

7.3 Derive the loop closure constraints provided in Sect. 7.2.3 considering vectors

bj1, . . . , bjn
N
j (refer to Fig. 7.6a) defined in clockwise order instead of the coun-

terclockwise order assumed in Sect. 7.2.3. Are the resulting constraints equivalent
to those provided in (7.9) and (7.10)?

7.4 An alternative formulation of the constraints on the design variables Wi , ψi ,
i = 1, . . . , NI

E , can be obtained by replacing the inequality constraint (7.12) with
the following equality constraint:

Ŵi = ŵI0
i + 2ŵE0

i cos
(
ψ̂i
2

)
+ ∥

∥ẑi
∥
∥ sin

(∣
∣
∣
ψ̂i
2

∣
∣
∣
)

−

⎧
⎪⎨

⎪⎩

(d̂i11 + d̂ i21) sin
(
ψ̂i
2

)
; ψ̂i ≥ 0

(d̂i12 + d̂ i22) sin
(
− ψ̂i

2

)
; ψ̂i < 0

.

(7.15)

What would be the implications of using the more restrictive constraint (7.15)
instead of (7.12)? How many equality and inequality constraints would this
alternative formulation have?
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Implement this alternative formulation in a computational environment and
determine origami sheet designs for two examples from Sect. 7.3 and compare your
results with those of Sect. 7.3.

7.5 Propose and implement a procedure to determine the design variables Ŵi and
ψ̂i , i = 1, . . . , NI

E , by solving the design problem stated in (4.21) where the
function f (D) to be minimized is given as follows:

f (D) = E(D), (7.16)

and the surface area efficiency E is defined in (4.35).

7.6 Since the resulting goal configuration S� in the tuck-folding method for origami
with smooth folds contains the trimmed mesh M� as a subset instead of the given
goal mesh M (see Figs. 7.1 and 7.2), the approximation error between S� and M
must be quantified. Propose parameter(s) that can be used to quantify such an error.

7.7 Following the approach presented in Sect. 3.2.4, formulate the mapping of the
trimmed faces from their position in the trimmed mesh M� to their corresponding
position in the reference configuration S0 of an origami sheet designed using the
tuck-folding method.

7.8 Implement the tuck-folding method for origami with smooth folds in a
computational environment. Then, determine a sheet design for the goal mesh with
two interior nodes of positive Gaussian curvature shown in Fig. 7.27. Assume fold
widths of 0.002 for all the smooth folds. The position vectors of the nodes are given
as follows:
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Fig. 7.27 Goal mesh M for Problem 7.8
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[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.09 0 0
0 0.06 0

0.06 0.06 0.025
0.12 0.06 0.025
0.18 0.06 0
0.09 0.12 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.17)

and the components of the mesh connectivity matrix CM are given as follows:

CM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 3 2
1 4 3
1 5 4
2 3 6
3 4 6
4 5 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.18)

7.9 Repeat Problem 7.8 considering the goal mesh with two interior nodes of
negative Gaussian curvature shown in Fig. 7.28. The position vectors of the nodes
are given as follows:

[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.09 0 0
0 0.06 0.06

0.06 0.06 0.03
0.12 0.06 0.03
0.18 0.06 0.06
0.09 0.12 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.19)

and the components of the mesh connectivity matrix CM are given in (7.18).

7.10 Repeat Problem 7.8 considering the goal mesh with one interior node of
negative Gaussian curvature (node 3) and one of positive Gaussian curvature (node
4) shown in Fig. 7.29. The position vectors of the nodes are given as follows:

[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.09 0 0
0 0.06 0.05

0.06 0.06 0.025
0.12 0.06 0.025
0.18 0.06 0
0.09 0.12 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.20)

and the components of the mesh connectivity matrix CM are given in (7.18).
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Fig. 7.28 Goal mesh M for
Problem 7.9
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Fig. 7.29 Goal mesh M for Problem 7.10

7.11 Implement the tuck-folding method for origami with smooth folds in a
computational environment and determine sheet designs for the 13 Archimedean
polyhedra. Compare your results with those of Problem 6.12.
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Chapter 8
Structural Mechanics and Design
of Active Origami Structures

Abstract A model for the mechanics of active origami structures with smooth folds
is presented in this chapter. The model entails the integration of the surface kine-
matics model for origami with smooth folds developed in Chap. 5 and existing plate
theories to obtain a structural representation for folds of non-zero thickness. The
implementation of the model in a computational environment is also addressed. We
provide examples including origami structures comprised of both elastic materials
and active materials. Afterwards, the unfolding polyhedra and tuck-folding methods
studied in Chaps. 6 and 7 are extended to develop frameworks for the design
of active origami structures. The extensions account for the folding deformation
achievable by smooth folds of specified thickness and constituent materials, which
is not considered in the purely kinematic formulations of Chaps. 6 and 7.

8.1 Introduction

As reviewed in Chap. 1, origami has the potential to impact numerous fields in
engineering by providing new approaches to the fabrication and morphing of various
structures and devices. Modeling the mechanics of origami structures is of special
interest in the engineering community [1–3]. It allows for the analysis and design of
origami structures taking into account the constitutive behavior of their comprising
materials and the influence of the external environment on the resulting folding
response.

Most available models for the mechanics of origami structures are limited to
the idealization of folds as creases of G0 continuity, which is not proper for
origami structures having non-negligible fold thickness or with maximum curvature
at the folds restricted by material limitations (e.g., active origami structures) [4–
6]. Structural analysis of origami bodies having creased folds requires further
idealizations of the mechanical response such as the representation of the folds as
torsional springs [1, 2, 7]. On the other hand, although finite element analysis (FEA)
allows for high-fidelity physical simulation of origami structures having arbitrary
thickness [8–18], the mathematical insights provided in the classical approaches
of origami (e.g., geometric constructions [19]) are lost in the generality of FEA.

© Springer International Publishing AG, part of Springer Nature 2019
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Moreover, the kinematic variables associated with FEA models such as node
displacements are generally not compatible with those of conventional origami such
as fold angles. In view of this, a novel model for the mechanics of origami structures
with smooth fold domains of non-zero thickness is developed in this chapter. The
presented structural model is developed on the basis of the kinematic model for
origami structures with smooth folds described in Chap. 5. The arbitrary order of
geometric continuity (Gn) of the smooth fold surfaces described in Chap. 5 allows
for a proper structural analysis of smooth fold domains having non-zero thickness
using plate or shell representations (in contrast to torsional spring representations
used for creased folds [1, 2, 7]). Furthermore, the present model considers kinematic
variables (e.g., fold angles) and constraints analogous to those of conventional
origami with creased folds. The present model is derived independently from
the behavior of the materials comprising the origami structures; therefore, it is
applicable to origami structures having regions comprised of passive materials
(e.g., elastic) and those having regions comprised of active materials. Thus, the
present model is useful for the analysis of active origami structures such as those
reviewed in Chap. 1. To finalize the chapter, we extend the unfolding polyhedra and
tuck-folding methods addressed in Chaps. 6 and 7 to develop frameworks for the
design of active origami structures. The new extensions account for the folding
deformation achievable by smooth folds of specified thickness and constituent
materials, which is not considered in the purely kinematic formulations of Chaps. 6
and 7.

The outline of this chapter is as follows: Sect. 8.2 presents the kinematic model
for origami structures with smooth folds of non-zero thickness used herein. It
involves the integration of the surface kinematics model for origami with smooth
folds developed in Chap. 5 and existing plate theories to obtain a structural
representation for folds of non-zero thickness. The development of the model for
the mechanics of origami structures with smooth folds is presented in Sects. 8.3
and 8.4. Section 8.5 provides results of the implemented method and its associated
numerical validation against FEA. In Sect. 8.6, we extend the method of unfolding
polyhedra from Chap. 6 for the design of active self-folding structures. Likewise, an
extension of the tuck-folding method from Chap. 7 is considered in Sect. 8.7.

8.2 Kinematics of Origami Structures with Smooth Folds
of Non-Zero Thickness

The kinematic model used to represent origami structures with smooth folds of non-
zero thickness is presented here. Employing the notation of Chap. 5, the orthonormal
vectors e1, e2, and e3 with e3 = e1 × e2 form the basis {e1, e2, e3} that defines the
fixed global coordinate system. The studied origami structure is a three-dimensional,
connected, 3-manifold continuum body with boundary. It is divided intoNF smooth
fold domains andNP face domains. The origami structure has surface-like geometry
and an associated mid-surface which is a three-dimensional, orientable, connected
surface with boundary.
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Fig. 8.1 Plate structural
representation of an origami
structure of non-zero
thickness (reference
configuration shown). The
full volumetric reference
configuration of an origami
structure of non-zero
thickness denoted as S0
(thickness not displayed to
scale) and its mid-surface S0
are shown

The reference configuration of the origami structure is denoted as S0 and has a
planar mid-surface denoted as S0 ⊂ S0, which is defined such that it is contained
in the plane spanned by e1 and e2 (refer to Fig. 8.1). The reference configuration
of the ith smooth fold domain is denoted as Fi0 ⊂ S0 and has an associated mid-
surface denoted as F i

0 ⊂ S0, i = 1, . . . , NF . Also, the reference configuration

of the j th face domain is denoted as P
j

0 ⊂ S0 and has an associated mid-surface

denoted as Pj

0 ⊂ S0, j = 1, . . . , NP . Therefore, S0 = ⋃NF
i=1 F

i
0 ∪ ⋃NP

j=1 P
j

0 and

S0 = ⋃NF
i=1 F i

0 ∪ ⋃NP
j=1 Pj

0 .
A current configuration of the origami structure is denoted as St and has a mid-

surface denoted as St ⊂ St , where t is a time parameter that tracks the history
of deformation from the reference configuration (t = 0) to a current configuration
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(t > 0). The configurations of the smooth fold domains and the face domains in
St are, respectively, denoted as Fit ,P

j
t ⊂ St , i = 1, . . . , NF , j = 1, . . . , NP .

Their respective mid-surfaces are denoted as F i
t ,Pj

t ⊂ St , i = 1, . . . , NF , j =
1, . . . , NP . Therefore, St = ⋃NF

i=1 F
i
t ∪ ⋃NP

j=1 P
j
t and St = ⋃NF

i=1 F i
t ∪ ⋃NP

j=1 Pj
t .

The deformation of the mid-surface of the origami structure is represented using
the surface kinematics model provided in Chap. 5. In this section, we present the
plate kinematics used to model a non-zero thickness origami structure having a mid-
surface described using the model presented in Chap. 5. As previously stated, the
origami structure is divided into NF smooth fold domains and NP face domains.
Since the face domains are assumed rigid (refer to Sect. 5.2), the only domains that
may undergo non-rigid deformations are the smooth folds and hence the focus of
this section is on these smooth fold domains.

A schematic of the plate structural representation for the smooth fold domains
of non-zero thickness is provided in Fig. 8.2. In the reference configuration, the ith
smooth fold domain in the structure has mid-surface F i

0 and thickness hi . In a current
configuration, the ith smooth fold domain has mid-surface F i

t and thickness hi (i.e.,
the thickness is assumed constant during deformation). The smooth fold domains
are assumed to have a parameterization Fi (s1, s2, s3) ∈ R

3 of the following form:

Fi (s1, s2, s3) = ci (s2)+ s1hi + s3

(
hi × dci (s2)

ds2

)

= F i (s1, s2)+ s3

(
hi × dci (s2)

ds2

)
,

(8.1)

where F i (s1, s2) ∈ R
3 is a parameterization of the fold mid-surface F i

t , s1 and
s2 are the mid-surface coordinates, and s3 ∈ [−hi

2 ,
hi
2 ] is the coordinate through

the thickness of the ith smooth fold domain. Note that (8.1) is a clear extension
of (5.1) and accounts for the thickness of the smooth fold domain. We also note that
the arc-length coordinates s1 and s2 are utilized in (8.1) instead of the normalized
coordinates ζ1 and ζ2 used in (5.1) for convenience in the derivation of the model
presented in this chapter.

Here, only folds comprised of materials that exhibit relatively small strains (∼5%
or less) are considered. Therefore, the second-order linearized strain tensor ε is
used as the measure for non-rigid deformation [20]. The tensorial components of
any field quantity for each smooth fold domain are expressed in their associated
local coordinate system with basis {êi1, êi2, êi3} at the reference configuration with
origin at s1 = s2 = s3 = 0 (refer to Fig. 8.2b, c). Making use of the classical
plate theory [21], the only considered components of ε are assumed to linearly vary
through the thickness of each smooth fold domain as follows:

⎡

⎢
⎣

ε11

ε22

ε12

⎤

⎥
⎦ =

⎡

⎢
⎣

ε110

ε220

ε120

⎤

⎥
⎦ − s3

⎡

⎢
⎣

κ11

κ22

κ12

⎤

⎥
⎦ , (8.2)
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Fig. 8.2 Plate structural representation of an origami structure of non-zero thickness (reference
configuration shown): (a) Mid-surface of the structure corresponding to S0; (b) Smooth fold
surface F i

0 corresponding to the mid-surface of the ith smooth fold domain; (c) Continuum smooth
fold domain Fi0 having thickness hi and mid-surface F i

0
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Fig. 8.3 Reference and current configurations of a smooth fold surface (F i
0 and F i

t , respectively)

where εmn0 are the in-plane strains at the mid-surface, and κmn are the signed
curvatures of the mid-surface. Thus, the strain field of the entire smooth fold domain
of non-zero thickness depends only on the deformation of its mid-surface.

Reference and current configurations of the smooth fold surface (F i
0 and F i

t ,
respectively) associated with the ith smooth fold domain are shown in Fig. 8.3. It
is stated in Chap. 5 that the length L̂i = ‖hi‖ of the fold along the direction of
hi is constant upon deformation and hence it is assumed that the strain along the 1-

direction is 0. It is also noted that dci (s2)
ds2

·hi = 0 holds at any configuration (cf. (5.1))
and therefore the shear strain along the 12-plane is also assumed 0 everywhere in
the smooth fold domain. In summary:

ε11 = ε110 = κ11 = 0, ε22 = ε220 − s3 κ22,

ε12 = ε120 = κ12 = 0.
(8.3)

To simplify the notation, ε22, ε220 , and κ22 are denoted as ε, ε0, and κ ,
respectively. As remarked in Chap. 5, the deformation of the smooth folds is
limited to cylindrical bending (i.e., the deformation of such surfaces is limited to
bending and stretch along only one direction). Cylindrical bending is an assumption
widely employed in the simplification of the analysis of plate structures that have
a high length-to-width ratio and reduces the two-dimensional plate models to one-
dimensional ones [22–24]. We assume cylindrical bending because the length of
the smooth folds along the direction parallel to hi (refer to Fig. 8.3) is often much
larger than their fold width. This allows us to neglect stretch and bending along
the direction parallel to hi . As mentioned in Chap. 5, there are material systems
such as liquid crystal elastomers [25] and anisotropic materials that do not exhibit
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cylindrical bending in general. The present model could be extended to account for
general deformation of the smooth fold surfaces by modifying (8.1) and allowing
stretch and bending along the direction perpendicular to the fold width. However,
such a model would require a higher number of kinematic variables and more
complex kinematic relations, which are beyond the scope of this chapter. Finite
element approaches using plate, shell, or three-dimensional continuum elements can
also be employed to model the deformation of more general cases of folds that do
not exhibit cylindrical bending. In Sect. 8.5, simulation results of the present model
are compared against finite element models that do not assume cylindrical bending
for several boundary value problems.

Following the approach presented in Chap. 5 to determine the shape of the
smooth fold cross-section curve ci (s2), by making assumptions on the form of the
extensibility field ε0 and curvature field κ for each smooth fold, the shape of each
smooth fold domain is fully determined by its fold angle θ̂i and its fold arc-length
ŝi (defined in (5.4)). Therefore:

ε(θ̂i , ŝi ) = ε0(θ̂i , ŝi )− s3 κ(θ̂i , ŝi ). (8.4)

Thus, the strain components of every smooth fold domain expressed in their
associated coordinate system with basis {êi1, êi2, êi3} are given as follows:

⎡

⎢
⎣

ε11

ε22

ε12

⎤

⎥
⎦ =

⎡

⎢
⎣

0

ε(θ̂i , ŝi )

0

⎤

⎥
⎦ =

⎡

⎢
⎣

0

ε0(θ̂i , ŝi )− s3 κ(θ̂i , ŝi )

0

⎤

⎥
⎦ . (8.5)

The derivatives of the strain ε(θ̂i , ŝi ) with respect to θ̂i and ŝi are then given as
follows:

∂ε(θ̂i , ŝi )

∂θ̂i
= ∂ε0(θ̂i , ŝi )

∂θ̂i
− s3

∂κ(θ̂i , ŝi )

∂θ̂i
, (8.6)

∂ε(θ̂i , ŝi )

∂ŝi
= ∂ε0(θ̂i , ŝi )

∂ŝi
− s3

∂κ(θ̂i , ŝi )

∂ŝi
. (8.7)

The mid-surface strain ε0(θ̂i , ŝi ) and signed curvature κ(θ̂i , ŝi ) must satisfy the
continuity conditions of the order of geometry continuity assumed for the smooth
folds (refer to Sect. 5.3). Additionally, the following kinematic relations hold for
any ε0(θ̂i , ŝi ) and κ(θ̂i , ŝi ) regardless of the order of geometry continuity:

ŝi − ŵ0
i =

∫ ŵ0
i

2

− ŵ0
i

2

ε0 ds2, θ̂i =
∫ ŵ0

i

2

− ŵ0
i

2

κ ds2. (8.8)

where ŵ0
i is the fold width of the ith smooth fold, illustrated in Fig. 8.2.
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The continuity conditions for smooth folds exhibiting G1 and G2 continuity
are provided in Sect. 5.3. For smooth folds exhibiting G1 continuity, ε0(θ̂i , ŝi ) and
κ(θ̂i , ŝi ) are assumed uniform throughout the fold. For smooth folds exhibiting G2

continuity, ε0(θ̂i , ŝi ) and κ(θ̂i , ŝi ) are assumed to have a quadratic form with respect
to s2. Such a quadratic form allows for the satisfaction of the conditions for G2

continuity (i.e., zero curvature at the ends of the curve ci (s2)). Making use of the
relations provided in (8.8), the following expressions for ε0(θ̂i , ŝi ) and κ(θ̂i , ŝi ) are
obtained for smooth folds exhibiting G1 continuity:

ε0(θ̂i , ŝi ) = ŝi − ŵ0
i

ŵ0
i

,

κ(θ̂i , ŝi ) = θ̂i

ŵ0
i

,

(8.9)

and the following expressions for ε0(θ̂i , ŝi ) and κ(θ̂i , ŝi ) are obtained for smooth
folds exhibiting G2 continuity:

ε0(θ̂i , ŝi ) = 3

2

(ŝi − ŵ0
i )((ŵ

0
i )

2 − 4(s2)2)

(ŵ0
i )

3
,

κ(θ̂i , ŝi ) = 3

2

θ̂i ((ŵ
0
i )

2 − 4(s2)2)

(ŵ0
i )

3
.

(8.10)

It is remarked that ŝi = ŵ0
i in the reference configuration S0.

Example 8.1 Mid-surface strain and signed curvature fields for smooth folds with
G1 continuity.
Statement: Show that the mid-surface strain and signed curvature fields for smooth
folds with G1 continuity provided in (8.9) satisfy the relations stated in (8.8).
Solution: We first substitute the expression for mid-surface strain ε0(θ̂i , ŝi )

from (8.9) into (8.8):

∫ ŵ0
i

2

− ŵ0
i

2

ε0 ds2 =
∫ ŵ0

i

2

− ŵ0
i

2

ŝi − ŵ0
i

ŵ0
i

ds2 substituting (8.9)

= ŝi − ŵ0
i

ŵ0
i

s2

∣
∣
∣
∣
∣

s2=
ŵ0
i

2

s2=− ŵ0
i

2

= ŝi − ŵ0
i

ŵ0
i

(
ŵ0
i

2
−

(

− ŵ
0
i

2

))

= ŝi − ŵ0
i .

(8.11)
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Therefore, the expression for mid-surface strain ε0(θ̂i , ŝi ) from (8.9) satisfies
the relations stated in (8.8). We then substitute the expression for signed curvature
κ(θ̂i , ŝi ) from (8.9) into (8.8):

∫ ŵ0
i

2

− ŵ0
i

2

κ ds2 =
∫ ŵ0

i

2

− ŵ0
i

2

θ̂i

ŵ0
i

ds2 substituting (8.9)

= θ̂i

ŵ0
i

s2

∣
∣
∣
∣
∣

s2=
ŵ0
i

2

s2=− ŵ0
i

2

= θ̂i

ŵ0
i

(
ŵ0
i

2
−

(

− ŵ
0
i

2

))

= θ̂i .

(8.12)

Hence, the expression for signed curvature κ(θ̂i , ŝi ) from (8.9) also satisfies the
relations stated in (8.8).

It is also straightforward to show that the mid-surface strain and signed curvature
fields in (8.10) satisfy the relations provided in (8.8); refer to Problem 8.1.

8.3 Structural Mechanics Modeling Approach

In this section, the governing field equations used to determine the mechanical
response of origami structures with smooth fold domains are presented. Such field
equations arise from the law of conservation of linear momentum and the law of
conservation of angular momentum [20, 26]. This section is intended as a review
of such conservation laws. For detailed information on these topics, we refer the
reader to other sources [20, 26–28]. Since linearized strains are assumed here, no
specific distinction between reference and current configurations is considered in
this section to simplify the notation.

8.3.1 Conservation of Linear and Angular Momentum

To model the mechanical response of origami structures with smooth fold domains,
the law of conservation of linear momentum and the law of conservation of angular
momentum must be considered.

The law of conservation of linear momentum states that the time rate of change
of linear momentum of a continuum body is equal to the sum of the surface and body
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forces applied to it [29]. The integral form of conservation of linear momentum is
given as follows [29]:

D

Dt

(∫

Ω

ρu̇ dv

)

=
∫

Ω

b dv +
∫

∂Ω

t da, (8.13)

where Ω is the region occupied by the material body, ∂Ω is the boundary of Ω ,
D
Dt

denotes the material time derivative, ρ is the mass density of a material point,
u is the displacement vector of a material point, b is the body force vector, and
t is the surface traction vector. The velocity of a material point is denoted as u̇
where (˙) represents the first-order material time derivative. The pointwise form of
the conservation of linear momentum is given as follows:

∇ · σ + b = ρü, (8.14)

where σ is the second-order Cauchy stress tensor and ∇ · σ denotes the divergence
of σ [27]. The acceleration is denoted as ü where (¨) represents the second-order
material time derivative.

The law of conservation of angular momentum states that the time rate of change
of angular momentum of a continuum body is equal to the sum of the moments
applied by surface and body forces in addition to body couples [29]. If there are no
body couples, as in all the examples considered in this chapter, the integral form of
the conservation of angular momentum is given as follows:

D

Dt

(∫

Ω

X × ρu̇ dv

)

=
∫

Ω

X × b dv +
∫

∂Ω

X × t da, (8.15)

where X is the position vector of a material point. The pointwise form of the
conservation of angular momentum states that the second-order Cauchy stress tensor
is symmetric:

σ = σ	. (8.16)

Only governing equations arising from conservation of linear and angular
momentum are taken into account in the model presented in this chapter. Even
though structures comprised of materials exhibiting thermomechanical coupling
(e.g., shape memory alloys (SMAs)) are considered herein, the introduced field vari-
ables such as the absolute temperature T are taken as given and thus conservation
of energy is not considered within the governing equations.



8.3 Structural Mechanics Modeling Approach 341

8.3.2 Constitutive Equations

In both conservation of linear momentum (8.14) and conservation of angular
momentum (8.16), the constitutive response of the material is manifested in the
formulation for the stress tensor σ , which is a function of the deformation of the
material and other physical fields. For linear elastic materials, the stress tensor σ is
simply determined via Hooke’s law:

σ = Cε, (8.17)

where C is the constant fourth-order stiffness tensor. For these materials, the stress
tensor σ is only a function of the strain tensor ε. For active materials, inelastic
strains triggered by thermal, chemical, or electromagnetic stimuli are present. We
denote the second-order tensor of actuation strains as εA. The stress tensor σ for an
active material is determined as follows:

σ = C(ε − εA). (8.18)

The following expression relates the tensor of actuation strains εA to different
physical fields and applies to a large spectrum of commonly used active materi-
als [29–33]1:

εA = α(T − T0)+ dPE + dMH +
n∑

i=1

ei (ci − ci0)+ εMS, (8.19)

where α is the second-order tensor of thermoelastic expansion coefficients, T0 is
the reference absolute temperature, dP is the third-order tensor of piezoelectric
coefficients, E is the electric field vector, dM is the third-order tensor of piezomag-
netic coefficients, H is the magnetic field vector, ei is the second-order tensor of
expansion due to concentration of the ith chemical species, ci is the concentration
of the ith chemical species, ci0 is the reference concentration of the ith chemical
species, and εMS is the second-order tensor of strains caused by changes in the
material micro- and/or nano-structure. This last contribution (εMS) may be altered
due to phase transformation [34–36], variant reorientation [37, 38], change in the
crosslinked structure in certain polymers [39–42], etc. Such strains are coupled in
certain extent to field variables such as σ , T , H , and E depending on the considered
material.

1This additive decomposition of strain is valid only in the case of linearized strains. The work
presented in this chapter considers such a case.
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8.3.3 Boundary Value Problem

In the structural analysis problems addressed in this chapter, the objective is to
determine the deformation of origami structures with smooth folds subject to certain
boundary conditions. First, let the boundary of Ω be partitioned into the boundaries
∂Ωu and ∂Ωσ such that:

∂Ωu ∪ ∂Ωσ = ∂Ω, ∂Ωu ∩ ∂Ωσ = ∅, (8.20)

where ∂Ωu is the boundary of the region occupied by the material body where
displacement boundary conditions are applied, ∂Ωσ is the boundary of the region
occupied by the material body where traction boundary conditions are applied, and
∅ denotes an empty set.

The boundary value problem statement applicable to all the problems considered
in this work is given as follows:

Find

Subject to

u X ∈ Ω, t ≥ 0

∇ · σ + b = ρü, X ∈ Ω, t ≥ 0

u = ũ, X ∈ ∂Ωu, t ≥ 0

σn = t̃, X ∈ ∂Ωσ , t ≥ 0

Ξ = Ξ̃ , X ∈ Ω, t ≥ 0,

(8.21)

where ũ is the vector field of applied boundary displacements, t̃ is the vector field
of applied boundary tractions, n is the unit normal vector of the boundary, Ξ
represents other physical fields in the material body (e.g., the absolute temperature
field), and Ξ̃ represents other physical field variables imposed in the material body
(e.g., the applied absolute temperature field).

The governing field equation of the boundary value problem in (8.21) arises from
conservation of linear momentum (cf. (8.14)). The other conditions stated in (8.21)
correspond to the boundary conditions of the problem. These boundary conditions
appear in the form of applied boundary displacements ũ, applied boundary tractions
t̃, and applied field variables Ξ̃ . Although not stated explicitly in (8.21), it is
assumed beforehand that the second-order Cauchy stress tensor σ is symmetric to
satisfy conservation of angular momentum (8.16).

8.3.4 Variational Formulation

Variational approaches are powerful tools for the development of exact or approxi-
mate solutions to problems in structural mechanics of continuum bodies [26, 27]
(e.g., FEA). Here, we employ a variational approach to determine approximate
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solutions for boundary value problems of the form presented in Sect. 8.3.3. Hamil-
ton’s principle is considered for the modeling of dynamic deformation of continuum
bodies [27]:

∫ t2

t1

(δG+ δWI − δWE) dt = 0, (8.22)

where δG is the virtual work done by the inertial forces given a virtual displacement,
δWI is the virtual work of all internal forces given a virtual displacement, δWE is the
virtual work of all external forces given a virtual displacement, and t1 and t2 are two
distinct arbitrary times. The formulations of δG, δWI , and δWE are, respectively,
given as follows2:

δG =
∫

Ω

ρü · δu dv, (8.23)

δWI =
∫

Ω

σ : δε dv, (8.24)

δWE =
∫

Ω

b · δu dv +
∫

∂Ωσ

t · δu da, (8.25)

where δu is the virtual displacement which is null on the boundary ∂Ωu where
displacements are applied through boundary conditions (i.e., δu(X, t) = 03, X ∈
∂Ωu, t ∈ [t1, t2]) as well at times t1 and t2 (i.e., δu(X, t1) = δu(X, t2) = 03, X ∈
Ω), and δε is the virtual strain due to the virtual displacement:

δε = 1

2

(
∇(δu)+ ∇(δu)	

)
, (8.26)

where ∇(δu) denotes the gradient of δu.

8.4 Structural Mechanics Model Formulation

8.4.1 Model Development

The structural modeling approach described in the previous section is used here to
develop a model for the mechanics of origami structures with smooth fold domains
comprised of arbitrary materials.

2 (· : ·) denotes the inner product of two second-order tensors. If such tensors are expressed in an
orthonormal coordinate system, their inner product is given as Y : Z = ∑3

i=1
∑3

j=1 YijZij .
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The plate kinematics addressed in Sect. 8.2 lead to a displacement field defined
by the deformation of the mid-surface of the origami structure. The deformation of
such a mid-surface is represented using the surface kinematics model presented in
Chap. 5. The configuration of such a mid-surface is fully defined by the fold angles
and fold arc-lengths of every smooth fold in the sheet. Therefore, the displacement
field of an origami structure with smooth fold domains is a function of θ̂i and ŝi ,
i = 1, . . . , NF .

In the surface kinematics model presented in Chap. 5, it is assumed that one face
of the sheet is fixed in space (see Sect. 5.6). The reference configuration of such a
fixed face is denoted as P∗

0 . Therefore, the only displacement boundary condition
considered here is that the displacement vector is equal to the zero vector at every
point in the fixed face:

u = 03, X ∈ P∗
0 , t ≥ 0. (8.27)

The virtual displacement and the virtual strain, encountered in the formulation
of the Hamilton’s principle (refer to (8.23)–(8.25)), are related to virtual changes in
fold angles and fold arc-lengths as follows:

δu = ∂u

∂ θ̂
· δθ̂ + ∂u

∂ ŝ
· δŝ, δε = ∂ε

∂ θ̂
· δθ̂ + ∂ε

∂ ŝ
· δŝ. (8.28)

Since the configuration of an origami structure is defined by the fold angles and
fold arc-lengths of each smooth fold, the kinematic constraints (5.66) and (5.67)
allowing for valid configurations in origami sheets with smooth folds must be con-
sidered. The Hamilton’s principle as stated in (8.22) does not take into consideration
any kinematic constraints. This kind of constraints are conventionally included
through the method of Lagrange multipliers or penalty methods [26, 27]. A penalty
method is employed here. Accordingly, let L be a penalty function associated with
the kinematic constraints (5.66) and (5.67):

L(θ̂ , ŝ) = λR

NI∑

i=1

((
Ri23(θ̂)

)2 +
(
Ri31(θ̂)

)2 +
(
Ri12(θ̂)

)2
)

+λd
NI∑

i=1

((
di1(θ̂ , ŝ)

)2 +
(
di2(θ̂ , ŝ)

)2 +
(
di3(θ̂ , ŝ)

)2
)

,

(8.29)

where λR ∈ R>0 is the penalty scalar for rotation constraints and λd ∈ R>0 is
the penalty scalar for translation constraints. The modified Hamilton’s principle
allowing for the consideration of kinematic constraints is then given as follows:

∫ t2

t1

(δG+ δWI − δWE + δL) dt = 0, (8.30)
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cf. (8.22). By substituting (8.28) into the expression for δWI in (8.24), the following
is obtained:

δWI =
∫

S
σ : δε dv =

∫

S
σ :

(
∂ε

∂ θ̂
· δθ̂ + ∂ε

∂ ŝ
· δŝ

)

dv, (8.31)

where S is the region occupied by the origami structure. The expression for δWI

provided in (8.31) can be decomposed into the contributions of each smooth fold
domain in the origami body3:

δWI =
NF∑

i=1

∫

Fi
σ

(
∂ε

∂θ̂i
δθ̂i + ∂ε

∂ŝi
δŝi

)

dv, (8.32)

where σ = σ22 in the fold coordinate system of the ith smooth fold domain and
Fi is the region occupied by the ith smooth fold domain. By performing integration
over the thickness in the expression presented in (8.32), the following is obtained:

δWI =
NF∑

i=1

∫

Fi

((

N
∂ε0

∂θ̂i
−M

∂κ

∂θ̂i

)

δθ̂i +
(

N
∂ε0

∂ŝi
−M

∂κ

∂ŝi

)

δŝi

)

da, (8.33)

where N and M are, respectively, the axial force and moment resultants given as
follows [21]:

N =
∫ hi

2

−hi
2

σ ds3, M =
∫ hi

2

−hi
2

s3σ ds3. (8.34)

By substituting (8.28) into the expression for δWE in (8.25), the following is
obtained:

δWE =
∫

S
b · δu dv +

∫

∂S
t · δu da

=
∫

S
b ·

(
∂u

∂ θ̂
· δθ̂ + ∂u

∂ ŝ
· δŝ

)

dv +
∫

∂S
t ·

(
∂u

∂ θ̂
· δθ̂ + ∂u

∂ ŝ
· δŝ

)

da

=
∫

S
b ·

NF∑

i=1

(
∂u

∂θ̂i
δθ̂i + ∂u

∂ŝi
δŝi

)

dv +
∫

∂S
t ·

NF∑

i=1

(
∂u

∂θ̂i
δθ̂i + ∂u

∂ŝi
δŝi

)

da,

(8.35)

3Integration over the volume of the smooth fold domain is given as
∫
Fi (·) dv =

∫
F i

∫ hi
2

−hi
2

(·) ds3 da = ∫
ŵ0
i

2

− ŵ0
i

2

∫ L̂i
0

∫ hi
2

−hi
2

(·) ds3 ds2 ds1.
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where ∂S is the boundary of S. The displacement vector u is a function of fold
angles and fold arc-lengths that is determined using the mapping between reference
and current configurations for origami with smooth folds provided in Sect. 5.6.

The virtual increment in the penalty function L defined in (8.29) can be expressed
as follows:

δL = ∂L

∂ θ̂
· δθ̂ + ∂L

∂ ŝ
· δŝ

=
NF∑

i=1

(
∂L

∂θ̂i
δθ̂i + ∂L

∂ŝi
δŝi

)

.

(8.36)

For the case of quasi-static deformation assumed in the examples considered in
this work, Hamilton’s principle reduces to the principle of virtual work [27]. The
principle of virtual work states that a continuum body is in mechanical equilibrium
(i.e., the boundary conditions and the field equation without the inertial terms
in (8.21) are satisfied) if and only if the virtual work of all forces, internal and
external, acting on the body is zero given a virtual displacement [27]:

δW = δWI − δWE = 0, (8.37)

where δW represents the virtual work of all internal and external forces given
a virtual displacement and δWI and δWE are, respectively, provided in (8.24)
and (8.25). The modified principle of virtual work allowing for the consideration
of kinematic constraints is then given as follows:

δWI − δWE + δL = 0. (8.38)

It is noted that the principle of virtual work in (8.38) does not consider
any assumptions on the constitutive behavior of the material(s) comprising the
continuum body. Therefore, it is applicable to any continuum body having arbitrary
constitutive behavior [27] so long as strains are small enough such that the linearized
strain tensor can be utilized to properly model the deformation.

The following is obtained by substituting the expressions for δWI , δWE , and δL
provided in (8.33), (8.35), and (8.36), respectively, into (8.38):
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0 = δWI − δWE + δL

=
NF∑

i=1

∫

Fi

((

N
∂ε0

∂θ̂i
−M

∂κ

∂θ̂i

)

δθ̂i +
(

N
∂ε0

∂ŝi
−M

∂κ

∂ŝi

)

δŝi

)

da

−
∫

S
b ·

NF∑

i=1

(
∂u

∂θ̂i
δθ̂i + ∂u

∂ŝi
δŝi

)

dv −
∫

∂S
t ·

NF∑

i=1

(
∂u

∂θ̂i
δθ̂i + ∂u

∂ŝi
δŝi

)

da

+
NF∑

i=1

(
∂L

∂θ̂i
δθ̂i + ∂L

∂ŝi
δŝi

)

.

(8.39)
Constitutive models for the materials comprising the smooth fold domains in the

examples presented in this chapter are provided in Appendix C. These include linear
elastic, thermoelastic, and SMA materials.

8.4.2 Numerical Implementation

To determine a configuration satisfying conservation of linear and angular momen-
tum and kinematic constraints (5.66) and (5.67), the coefficients multiplying each
virtual increment in fold angle δθ̂i and in fold arc-length δŝi in (8.39) must be set to
0. In a numerical framework such as the one to be developed here, these coefficients
are placed as components of residual vectors and iteratively minimized in magnitude
using Newton’s method [43].

Let Rθ ∈ R
NF be the residual vector whose components Rθ

i are the coefficients
of each virtual increment in fold angle δθ̂i in (8.39):

Rθ
i =

∫

Fi

(

N
∂ε0

∂θ̂i
−M

∂κ

∂θ̂i

)

da −
∫

S
b · ∂u

∂θ̂i
dv −

∫

∂S
t · ∂u

∂θ̂i
da + ∂L

∂θ̂i
. (8.40)

Likewise, let Rs ∈ R
NF be the residual vector whose components Rs

i are the
coefficients of each virtual increment in fold arc-length δŝi in (8.39):

Rs
i =

∫

Fi

(

N
∂ε0

∂ŝi
−M

∂κ

∂ŝi

)

da −
∫

S
b · ∂u
∂ŝi

dv −
∫

∂S
t · ∂u
∂ŝi

da + ∂L

∂ŝi
. (8.41)

The loads applied to the origami structures with smooth fold domains are evolved
in various loading increments. For each load increment, the configuration that
satisfies (8.39) must be determined. The present implementation iteratively solves
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Table 8.1 Numerical procedure followed at the lth loading increment to determine the response
of origami structures with smooth fold domains of non-zero thickness

1: Determine the components of the residual vectors Rθ (θ̂
l(1)
, ŝl(1)) and Rs (θ̂

l(1)
, ŝl(1))

2: IF (‖Rθ (θ̂
l(1)
, ŝl(1))‖ < tol1 AND ‖Rs (θ̂

l(1)
, ŝl(1))‖ < tol2)

THEN set θ̂
l = θ̂

l(1)
, ŝl = ŝl(1) and EXIT

ELSE CONTINUE

3: Determine corrections Δθ̂
l(k)

and Δŝl(k) using (8.42)

4: Update θ̂
l(k+1)

and ŝl(k+1) using (8.44)

5: IF (‖Rθ (θ̂
l(k+1)

, ŝl(k+1))‖ < tol1 AND ‖Rs (θ̂
l(k+1)

, ŝl(k+1))‖ < tol2)

OR (‖Δθ̂
l(k)‖ < tol3 AND ‖Δŝl(k)‖ < tol4)

THEN set θ̂
l = θ̂

l(k+1)
, ŝl = ŝl(k+1) and EXIT

ELSE set k ← k + 1 and GOTO 3

for increments in fold angles and fold arc-lengths that minimize the magnitudes
of the components of the vectors Rθ and Rs , which must tend to zero (or
sufficiently close to zero by introducing a numerical tolerance) for a configuration
to satisfy (8.39). Using Newton’s method, the fold angles and fold arc-lengths at the
lth loading increment are corrected iteratively as follows:

⎡

⎢
⎣

Δθ̂
l(k)

Δŝl(k)

⎤

⎥
⎦ = −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂Rθ (θ̂
l(k)
, ŝl(k))

∂ θ̂

∂Rθ (θ̂
l(k)
, ŝl(k))

∂ ŝ

∂Rs(θ̂
l(k)
, ŝl(k))

∂ θ̂

∂Rs(θ̂
l(k)
, ŝl(k))

∂ ŝ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−1
⎡

⎢
⎣

Rθ (θ̂
l(k)
, ŝl(k))

Rs(θ̂
l(k)
, ŝl(k))

⎤

⎥
⎦ ,

(8.42)

θ̂
l(k+1) = θ̂

l(k) + Δθ̂
l(k)
, (8.43)

ŝl(k+1) = ŝl(k) + Δŝl(k), (8.44)

where the superscripts inside parenthesis correspond to the correction iter-
ation number. The correction iterations in (8.42)–(8.44) are repeated until

‖Rθ (θ̂
l(k+1)

, ŝl(k+1))‖ < tol1 and ‖Rs(θ̂
l(k+1)

, ŝl(k+1))‖ < tol2, or

alternatively until ‖Δθ̂
l(k)‖ < tol3 and ‖Δŝl(k)‖ < tol4 (where tol1, tol2,

tol3, and tol4 are numerical tolerances). Table 8.1 summarizes the numerical
procedure followed to simulate origami structures of non-zero thickness.

The components of the tangent matrices ∂Rθ

∂ θ̂
, ∂Rθ

∂ ŝ , ∂Rs

∂ θ̂
, and ∂Rs

∂ ŝ must be
calculated to determine the corrective increments in fold angles and fold arc-lengths
as given in (8.42). These components are given as follows (see Problem 8.2):
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∂Rθ
i

∂θ̂i
=

∫

Fi

(
∂N

∂θ̂i

∂ε0

∂θ̂i
+N

∂2ε0

∂θ̂2
i

− ∂M

∂θ̂i

∂κ

∂θ̂i
−M

∂2κ

∂θ̂2
i

)

da

−
∫

S

(
∂b

∂θ̂i
· ∂u

∂θ̂i
+ b · ∂

2u

∂θ̂2
i

)

dv

−
∫

∂S

(
∂t

∂θ̂i
· ∂u

∂θ̂i
+ t · ∂

2u

∂θ̂2
i

)

da + ∂2L

∂θ̂2
i

,

(8.45)

∂Rθ
i

∂ŝi
=

∫

Fi

(
∂N

∂ŝi

∂ε0

∂θ̂i
+N

∂2ε0

∂θ̂i∂ŝi
− ∂M

∂ŝi

∂κ

∂θ̂i
−M

∂2κ

∂θ̂i∂ŝi

)

da

−
∫

S

(
∂b
∂ŝi

· ∂u

∂θ̂i
+ b · ∂2u

∂θ̂i∂ŝi

)

dv

−
∫

∂S

(
∂t
∂ŝi

· ∂u

∂θ̂i
+ t · ∂2u

∂θ̂i∂ŝi

)

da + ∂2L

∂θ̂i∂ŝi
,

(8.46)

∂Rθ
i

∂θ̂j

∣
∣
∣
∣
j 
=i

= −
∫

S

(
∂b

∂θ̂j
· ∂u

∂θ̂i
+ b · ∂2u

∂θ̂i∂θ̂j

)

dv

−
∫

∂S

(
∂t

∂θ̂j
· ∂u

∂θ̂i
+ t · ∂2u

∂θ̂i∂θ̂j

)

da + ∂2L

∂θ̂i∂θ̂j
,

(8.47)

∂Rθ
i

∂ŝj

∣
∣
∣
∣
j 
=i

= −
∫

S

(
∂b
∂ŝj

· ∂u

∂θ̂i
+ b · ∂2u

∂θ̂i∂ŝj

)

dv

−
∫

∂S

(
∂t
∂ŝj

· ∂u

∂θ̂i
+ t · ∂2u

∂θ̂i∂ŝj

)

da + ∂2L

∂θ̂i∂ŝj
,

(8.48)

∂Rs
i

∂ŝi
=

∫

Fi

(
∂N

∂ŝi

∂ε0

∂ŝi
+N

∂2ε0

∂ŝ2
i

− ∂M

∂ŝi

∂κ

∂ŝi
−M

∂2κ

∂ŝ2
i

)

da

−
∫

S

(
∂b
∂ŝi

· ∂u
∂ŝi

+ b · ∂
2u

∂ŝ2
i

)

dv

−
∫

∂S

(
∂t
∂ŝi

· ∂u
∂ŝi

+ t · ∂
2u

∂ŝ2
i

)

da + ∂2L

∂ŝ2
i

,

(8.49)
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∂Rs
i

∂θ̂i
=

∫

Fi

(
∂N

∂θ̂i

∂ε0

∂ŝi
+N

∂2ε0

∂θ̂i∂ŝi
− ∂M

∂θ̂i

∂κ

∂ŝi
−M

∂2κ

∂θ̂i∂ŝi

)

da

−
∫

S

(
∂b

∂θ̂i
· ∂u
∂ŝi

+ b · ∂2u

∂θ̂i∂ŝi

)

dv

−
∫

∂S

(
∂t

∂θ̂i
· ∂u
∂ŝi

+ t · ∂2u

∂θ̂i∂ŝi

)

da + ∂2L

∂θ̂i∂ŝi
,

(8.50)

∂Rs
i

∂ŝj

∣
∣
∣
∣
j 
=i

= −
∫

S

(
∂b
∂ŝj

· ∂u
∂ŝi

+ b · ∂2u
∂ŝi∂ŝj

)

dv

−
∫

∂S

(
∂t
∂ŝj

· ∂u
∂ŝi

+ t · ∂2u
∂ŝi∂ŝj

)

da + ∂2L

∂ŝi∂ŝj
,

(8.51)

∂Rs
i

∂θ̂j

∣
∣
∣
∣
j 
=i

= −
∫

S

(
∂b

∂θ̂j
· ∂u
∂ŝi

+ b · ∂2u

∂ŝi∂θ̂j

)

dv

−
∫

∂S

(
∂t

∂θ̂j
· ∂u
∂ŝi

+ t · ∂2u

∂ŝi∂θ̂j

)

da + ∂2L

∂ŝi∂θ̂j
,

(8.52)

where the derivatives of the axial force and moment resultants with respect to fold
angle and fold arc-length are given as follows:

∂N

∂θ̂i
= ∂

∂θ̂i

∫ hi
2

−hi
2

σ ds3

=
∫ hi

2

−hi
2

∂σ

∂θ̂i
ds3

=
∫ hi

2

−hi
2

∂σ

∂ε

∂ε

∂θ̂i
ds3

=
∫ hi

2

−hi
2

∂σ

∂ε

(
∂ε0

∂θ̂i
− s3

∂κ

∂θ̂i

)

ds3,

(8.53)

Similarly:

∂N

∂ŝi
=

∫ hi
2

−hi
2

∂σ

∂ε

(
∂ε0

∂ŝi
− s3

∂κ

∂ŝi

)

ds3, (8.54)
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3 êi

1

F i

0
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Fig. 8.4 Schematic of a smooth fold surface showing the location of in-surface integration points
and integration points through the thickness of each layer
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s3
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∂M

∂ŝi
=

∫ hi
2

−hi
2

∂σ

∂ε

(

s3
∂ε0

∂ŝi
− (s3)

2 ∂κ

∂ŝi

)

ds3. (8.56)

The evaluation of the integrals over the smooth fold surfaces and over the
thickness of the smooth fold domains in the previous equations is performed through
numerical integration. Figure 8.4 shows the location of integration points used
for in-surface integration and also the location of integration points through the
thickness of each layer. Integration points at only one location along the 1-direction
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(i.e., that aligned with êi1) are needed as strain is assumed uniform throughout
this direction. A Gauss-Legendre quadrature rule is used for integration along the
2-direction [44, 45]. The number of integration points needed in the 2-direction
is dictated by assumed in-plane strain and curvature fields in the fold domain
(refer to Sect. 8.2). Integration through the thickness of the smooth fold domains
is performed layerwise as shown in Fig. 8.4. For each individual layer, a Gauss-
Lobatto quadrature rule is used for integration because it considers integration points
at the ends of the integration domain (i.e., the top and bottom of each layer), which
often are the locations of maximum stress.

8.4.2.1 Quadrature Rules for Numerical Integration

Here we provide the quadrature rules used in the implementation of the model for
the mechanics of origami structures presented in this chapter. Previously, we stated
that Gauss-Legendre and Gauss-Lobatto quadrature rules are employed. To provide
a general formulation for these quadrature rules, let us consider a function f (x) that
we want to integrate in the interval [a, b]:

∫ b

a

f (x) dx. (8.57)

The function f (x)may or may not have a closed form antiderivative F(x)where:

dF(x)

dx
= f (x). (8.58)

In the case where f (x) has a closed-form antiderivative, we evaluate the
integral (8.57) as follows:

∫ b

a

f (x) dx = F(b)− F(a). (8.59)

In general, the function f (x) that we want to integrate may not have a closed-
form antiderivative or it may be very difficult to determine. This is the case in
many of the examples presented in this chapter. In such cases, we utilize numerical
integration to evaluate (8.57). Here we employ two different quadrature rules to
perform numerical integration. A quadrature rule is an approximation of the integral
of a function that is stated as a weighted sum of the function values at specified
points contained in the domain of integration.

To formulate the employed Gauss-Legendre and Gauss-Lobatto quadrature rules,
we first perform a variable substitution from x ∈ [a, b] to η ∈ [−1, 1]:

∫ b

a

f (x) dx = b − a

2

∫ 1

−1
f

(
b − a

2
η + a + b

2

)

dη. (8.60)
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Table 8.2 Location of
integration points and weights
for the Gauss-Legendre
quadrature rule

Number of integration points Position ηi Weight ωi
1 0 2

2 −( 1
3 )

1
2 1

( 1
3 )

1
2 1

Table 8.3 Location of
integration points and weights
for the Gauss-Lobatto
quadrature rule

Number of integration points Position ηi Weight ωi
3 −1 1

3

0 4
3

1 1
3

4 −1 1
6

−( 1
5 )

1
2 5

6

( 1
5 )

1
2 5

6

1 1
6

5 −1 1
10

−( 3
7 )

1
2 49

90

0 32
45

( 3
7 )

1
2 49

90

1 1
10

Note that integration points at the bounds of the integration
domain (η = ±1) are always included

Both quadrature rules can then be expressed as follows:

b − a

2

∫ 1

−1
f

(
b − a

2
η + a + b

2

)

dη ≈ b − a

2

n∑

i=1

ωif

(
b − a

2
ηi + a + b

2

)

,

(8.61)

where n is the number of integration points, η1, . . . , ηn are the locations of the
integration points within the integration domain, and ω1, . . . , ωn are the weights
for each integration point.

The location of the integration points and the weights for the Gauss-Legendre
quadrature rule are provided in Table 8.2. The reader is referred to other sources
for the derivation of the location of the integration points and the weights [44, 45].
The Gauss-Legendre quadrature rule provides exact results for functions f (x) given
as polynomials of degree 2n − 1. We only require 1 or 2 integration points for the
integrals evaluated using the Gauss-Legendre quadrature rule in this chapter.

The location of the integration points and the weights for the Gauss-Lobatto
quadrature rule are provided in Table 8.3. The Gauss-Lobatto quadrature rule
always includes integration points at the bounds of the integration domain (i.e., at
η = ±1) and provides exact results for functions f (x) given as polynomials of
degree 2n− 3. We use 3, 4, or 5 integration points for the integrals evaluated using
the Gauss-Lobatto quadrature rule in this chapter.
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8.5 Examples of the Implemented Model

In this section, implementation results of the model derived in Sect. 8.4 are pre-
sented. The numerical procedure used for the simulation of the response of origami
structures with smooth fold domains presented in Sect. 8.4.2 was implemented in
MATLAB®. Different patterns of smooth folds are analyzed using the proposed
model. For visualization purposes, only the mid-surface of the structures are
plotted in all examples. The smooth fold surfaces F i

t are visualized using the
MATLAB three-dimensional surface plot function surf while the face surfaces
P i
t are visualized as filled three-dimensional polygons using fill3. Smooth folds

exhibiting G1 continuity are considered in all the examples shown in this section.
Finite element analysis is used for numerical validation of the proposed model. In

this work, FEA is performed using Abaqus finite element software. Static analysis
steps considering large rotations (i.e., the NLGEOM option in Abaqus is active,
see [46, 47]) are used. Abaqus S4 elements (4-node doubly curved general-purpose
shells, finite membrane strains) are used to discretize the structures in all FEA
examples shown in this section. To capture rigid behavior of the faces as assumed
in the model derived in Sect. 8.4, rigid body constraints in Abaqus are imposed on
finite elements located at the face regions.

Implementation examples considering smooth fold domains comprised of elastic
and SMA materials are explored herein. Constitutive equations for such materials
are provided in Appendix C. Material parameters for such materials are provided
in Tables 8.4, 8.5, and 8.6. Consult Appendix C for the definition of the material
parameters. It is remarked that the present structural model is applicable to smooth
folds comprised of other passive or active materials provided strains are small
enough to justify a linearized strain tensor.

8.5.1 Examples of Structures Having One Fold

The first example considers a structure having one linear elastic fold domain of
0.5 mm thickness and subject to a point load. The applied force vector is parallel

Table 8.4 Parameters for the
aluminum material (linear
elastic behavior assumed)

Parameter Value

E 70.0 GPa

ν 0.3

Table 8.5 Parameters for the elastomer material (NinjaFlex®) based on those provided in [48]
(linear elastic behavior assumed)

Parameter Value

E 15.2 MPa

ν 0.4
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Table 8.6 Parameters for the
SMA material based on those
provided in [46]

Parameter Value

EA 48.0 GPa

EM 42.9 GPa

νA 0.3

νM 0.3

α 0.0 K−1

Ms 332.2 K

Mf 302.2 K

As 337.2 K

Af 362.2 K

CA 9.5 MPa/K

CM 9.0 MPa/K

Hmin 4.4%

Hsat 4.4%

ni , i = 1, 2, 3, 4 1.0

Fixed 
face 

e1

e2

e3

f1 =

⎡
⎣

0
0

40

⎤
⎦N

Fig. 8.5 Boundary value problem considering a structure having one smooth fold domain of
thickness hi = 0.5 mm. The material parameters of the elastic smooth fold domain are provided in
Table 8.4

to the normal direction of the structure; therefore, it induces folding deformation.
The boundary value problem is shown in Fig. 8.5 and the material parameters for
the linear elastic smooth fold domain are provided in Table 8.4. Results from this
example are shown in Fig. 8.6. A plot of the magnitude of the displacement vector
at one of the points of maximum displacement vs. the magnitude of the applied
point force vector is presented in Fig. 8.6b. Good agreement is observed between
the smooth folds model developed here and FEA for the entire loading history.

The second example considers a boundary value problem with the same planar
geometry as that shown in Fig. 8.5 but includes an SMA wires/elastomer composite
layer in addition to elastic layers at the smooth fold domain. The boundary value
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Fig. 8.6 Results associated with the boundary value problem of Fig. 8.5: (a) Configurations
attained by the structure during the applied loading history (reference, intermediate, and final); (b)
Magnitude of the displacement vector at one of the points of maximum displacement vs. magnitude
of the applied point force vector
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Fixed face 

Fold laminate layup (each layer has 0.3 mm thickness) 

Temperature uniformly increased from 
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Fig. 8.7 Boundary value problem considering a structure having one smooth fold domain
comprised of a three-layer laminate. The material parameters of the SMA, the elastomer, and
aluminum are provided in Tables 8.6, 8.5, and 8.4, respectively

problem of this second example is shown in Fig. 8.7. The laminate comprising the
smooth fold domain has three layers. The lower layer corresponds to a composite
of aluminum wires embedded in an elastomer matrix with aluminum wire volume
fraction vf = 0.01. The upper layer corresponds to a composite of SMA wires
embedded in an elastomer matrix with SMA wire volume fraction vf = 0.05. The
material parameters of the SMA wires, elastomer, and aluminum are provided in
Tables 8.6, 8.5, and 8.4, respectively. We use the same volume fractions and material
parameters for all the other examples considering SMA composites in this section.

Initially at a temperature of 300 K, the SMA is in a fully pre-strained martensitic
phase. By increasing the temperature from 300 to 400 K, the SMA undergoes
phase transformation from martensite to austenite and its transformation strain is
recovered (because As = 337.2 K, refer to Table 8.6). Since the SMA wires/elas-
tomer composite layer is placed off-center relative to the laminate mid-surface, the
recovery of transformation strain induces folding deformation of the fold domain.
The results for this problem are shown in Fig. 8.8. The contour plot in the simulation
example of Fig. 8.8 denotes martensite volume fraction, which ranges from 1 (full
martensite at low temperature) to 0 (full austenite at high temperature). It is observed
from the plots of displacement vector magnitude at one of the points of maximum
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Fig. 8.8 Results associated with the boundary value problem of Fig. 8.7: (a) Configurations
attained by the structure during the applied thermal history (reference, intermediate, and final).
The martensite volume fraction contour plot of the SMA material is shown; (b) Magnitude of
the maximum displacement vector vs. applied absolute temperature; (c) Transformation strain
magnitude of the SMA material at the mid-point of the SMA wires/elastomer composite layer
vs. applied absolute temperature
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Fig. 8.9 Boundary value problem considering a structure having one fold intersection. The elastic
smooth fold domains have thickness hi = 0.5 mm. The material parameters of the elastic smooth
fold domain are provided in Table 8.4

displacement vs. applied absolute temperature in Fig. 8.8b that the results obtained
using the present model and those obtained from FEA are in good agreement. Also,
there is good agreement between the present model and FEA regarding evolution
of transformation strain magnitude at the mid-point of the SMA wires/elastomer
composite layer as shown in Fig. 8.8c.

8.5.2 Examples of Structures Having One Fold Intersection

A more complex example considers a structure having four elastic fold domains
meeting at a single fold intersection. The boundary value problem associated with
this example is shown in Fig. 8.9. Two point loads are applied to the structure as
shown in Fig. 8.9. Unlike the two previous examples shown in Figs. 8.5 and 8.7, the
kinematic constraints (5.66) and (5.67) must be considered since a fold intersection
is present in the structure. The results for this example are shown in Fig. 8.10. It is
observed that the results between the smooth folds model and FEA are also in good
agreement for this example of a structure having a fold intersection.

An example of a structure with one fold intersection that morphs via SMA actu-
ation is shown in Fig. 8.11. It is noted that the location of the SMA wires/elastomer
composite layer (top or bottom) determines the intended direction of the resulting
fold (valley or mountain, respectively). Upon increasing the temperature from 300
to 400 K, the SMA material in the smooth fold domains actuate and induce folding
of the structure as shown in Fig. 8.12. The deformed configuration plots in Fig. 8.12a
show that there is good agreement between the smooth folds model and FEA also
for this example. Good agreement is also observed in the plot of displacement vector
magnitude at the point of maximum displacement vs. applied absolute temperature
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Fig. 8.10 Results associated with the boundary value problem of Fig. 8.9: (a) Configurations
attained by the structure during the applied loading history (reference, intermediate, and final);
(b) Magnitude of the maximum displacement vs. magnitude of applied point force vector

in Fig. 8.12b. The plot of transformation strain magnitude at the mid-point of the
SMA wires/elastomer composite layer in the smooth fold exhibiting the largest fold
angle vs. applied absolute temperature in Fig. 8.12c also shows good agreement
between the models.
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Fig. 8.11 Boundary value problem considering a structure having one fold intersection and
smooth fold domains comprised of a three-layer laminate. The laminate layup for each individual
smooth fold domain are shown. The material parameters of the SMA, the elastomer, and aluminum
are provided in Tables 8.6, 8.5, and 8.4, respectively

8.5.3 Examples of Structures Having Multiple Fold
Intersections

Figure 8.13 shows the boundary value problem of a structure having multiple fold
intersections. The smooth fold domains in this example are all linear elastic having
material parameters provided in Table 8.4. The central face is fixed and four point
loads are applied. The direction and maximum magnitude of the four point loads
are equal. The results for this example are shown in Fig. 8.14. Figure 8.14a shows
configurations attained by the structure during the applied loading history (reference
and final) for both the smooth folds model and FEA. Figure 8.14b shows a plot
of displacement vector magnitude at one of the points of maximum displacement
vs. magnitude of applied point force vector. It is observed from the results in
Fig. 8.14a, b that there is good agreement between FEA and the smooth folds model
for this more complex example.

The last example considers the planar geometry shown in Fig. 8.13 but includes
smooth folds comprised of laminates having an SMA wires/elastomer composite
layer. The boundary value problem for this example is shown in Fig. 8.15. The
central face of the origami structure is fixed and the temperature at four folds is
increased from 300 to 400 K to induce folding deformation in the structure. The
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Fig. 8.12 Results associated with the boundary value problem of Fig. 8.11: (a) Configurations
attained by the structure during the applied thermal history (reference and final). The martensite
volume fraction contour plot of the SMA material is shown; (b) Magnitude of the maximum
displacement vs. applied absolute temperature; (c) Transformation strain magnitude of the SMA
material at the mid-point of the SMA wires/elastomer composite layer vs. applied absolute
temperature
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Fig. 8.13 Boundary value problem considering a structure having multiple fold intersections. The
elastic smooth fold domains have thickness hi = 0.5 mm. The material parameters of the elastic
smooth fold domain are provided in Table 8.4

results for this example are presented in Fig. 8.16. Just as in the previous examples,
the deformation determined using the proposed model is in good agreement with
that determined using FEA.

8.5.4 Computational Efficiency Comparison

The computational efficiency of the proposed model for origami structures with
smooth fold domains as compared to FEA is also explored. Tables 8.7 and 8.8,
respectively, provide the number of kinematic variables of each boundary value
problem considering SMA behavior shown in Figs. 8.7, 8.11, and 8.15. The
kinematic variables in the present model for origami with smooth folds correspond
to the fold angles and fold arc-lengths of each smooth fold in the structure (i.e.,
a total of 2NF kinematic variables). The kinematic variables in the FEA models
correspond to the displacements and rotations at all the nodes in the shell elements.
It is observed in Table 8.7 that the present model for origami with smooth folds
significantly reduces the number of kinematic variables required to determine the
configuration of the considered structures. Table 8.8 shows the wall-clock time in
seconds required for the simulation of each boundary value problem considering
SMA behavior. All the simulations presented in this chapter (using the smooth
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Fig. 8.14 Results associated with the boundary value problem of Fig. 8.13: (a) Configurations
attained by the structure during the applied loading history (reference and final); (b) Magnitude of
the maximum displacement vs. magnitude of applied point force vector

folds model and FEA) were performed on the same computer. The wall-clock time
required for analysis using the proposed model is significantly lower than that
required using FEA for all the problems. It is noted that no particular efforts to
improve the computational efficiency of the implemented model were considered;
therefore, the wall-clock time for the simulations performed using the present model
can be further reduced if such efforts are considered in future work.
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Fig. 8.15 Boundary value problem considering a structure having multiple fold intersections and
smooth fold domains comprised of a three-layer laminate. The folds at which the temperature
is uniformly increased are highlighted. The material parameters of the SMA, the elastomer, and
aluminum are provided in Tables 8.6, 8.5, and 8.4, respectively

8.6 Unfolding Polyhedra Method for the Design
of Self-Folding Structures

In this section, the unfolding polyhedra method for the design of origami structures
with smooth folds presented in Chap. 6 is extended beyond an initial kinematics-
based approach to consider the design of self-folding structures morphed through
active material actuation.

In the present design method, the laminate layups (i.e., thickness and constituent
material for each layer in the laminate) for each smooth fold domain are given.
These can be determined prior to the implementation of the present method
by optimizing layer thicknesses and other design variables allowing for higher
curvatures at the smooth folds under material failure constraints. Such efforts are
not discussed herein but are addressed throughout the literature [15, 16, 49, 50]. The
design problem statement considered here is the following:

• Given: A goal three-dimensional shape represented as a polygonal mesh (the goal
mesh M) and laminate layups for the smooth fold domains in the structure,

• Find: The geometry of the mid-surface configuration S0 of a planar origami
structure (Fig. 8.17) that morphs towards a configuration that approximates M
via active material-driven folding (Fig. 8.18).
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Fig. 8.16 Results associated with the boundary value problem of Fig. 8.15: (a) Configurations
attained by the structure during the applied thermal history (reference and final). The martensite
volume fraction contour plot of the SMA material is shown; (b) Magnitude of the maximum
displacement vs. applied absolute temperature; (c) Transformation strain magnitude of the SMA
material at the mid-point of the SMA wires/elastomer composite layer vs. applied absolute
temperature

The unfolding polyhedra method for origami with smooth folds presented in
Chap. 6 is used to solve the former origami design problem. However, such a method
must be extended to account for the folding deformation feasibly achievable by
smooth folds of specified thickness and constituent materials. The critical extension
in the current framework is the consideration of the fold widths as design variables
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Table 8.7 Number of model kinematic variables required for each example considering SMA
behavior

Number of kinematic variables

Example FEA Smooth folds model Ratio

Single fold example (Fig. 8.7) 4182 2 2091:1

Single fold intersection example (Fig. 8.11) 39648 8 4956:1

Multiple fold intersections example (Fig. 8.15) 97008 24 4042:1

Table 8.8 Simulation wall-clock time in seconds required for each example considering SMA
behavior

Wall-clock time (seconds)

Example FEA Smooth folds model Ratio

Single fold example (Fig. 8.7) 60 3.6 16.7:1

Single fold intersection example (Fig. 8.11) 2418 82 29.5:1

Multiple fold intersections example (Fig. 8.15) 6215 475 13.1:1

because they dictate the fold angle achieved by the active smooth folds under
imposition of an activation field. To clarify, Fig. 8.19 shows simulation results
of a structure having a single smooth fold with the laminate layup shown in
Fig. 8.7. It is observed that by increasing the fold width ŵ0

i , a higher fold angle
magnitude can be achieved when the shape memory alloy (SMA) material is fully
transformed from pre-strained martensite into austenite. Therefore, the fold widths
are considered as design variables in this method. This represents an improvement
over the kinematics-based method addressed in Chap. 6 where the fold widths were
assumed given.

The vector ŵ
0 ∈ R

NF , where NF is the total number of folds in the designed
structure (NF = 5 in Fig. 8.17), is constructed by collecting the fold widths ŵ0

i ,
i = 1, . . . , NF , as follows:

ŵ
0 = [ŵ0

1 · · · ŵ0
NF ]	. (8.62)

The optimization problem associated with this design framework is stated as
follows:

Find ŵ
0

That minimizes ‖θ̂ tf − θ̂
�‖

Subject to ŵ
0
L ≤ ŵ

0 ≤ ŵ
0
U

Material failure constraints

Problem-dependent constraints,

(8.63)

where θ̂
tf ∈ R

NF is the vector whose components correspond to the fold angles
at the final configuration attained by the active origami structure (e.g., the fold
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Fig. 8.17 Schematic of the
unfolding polyhedra method
for the design of active
origami structures: Given a
goal mesh M (cube), find the
mid-surface reference
configuration S0 of an
origami structure that
approximates M in a folded
configuration. S0 is
comprised of the faces of M
mapped to the plane spanned
by e1 and e2 and introduced
smooth folds at each interior
edge. The goal fold angles for
each fold (θ̂ �1 , . . . , θ̂

�
5 ) are

indicated. Note that all the
fold widths are equal because
all the goal fold angles are
equal and no externally
applied loads are considered
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angles of an SMA-based origami structure at full transformation from pre-strained
martensite into austenite of the SMA material in its folds). The vector θ̂

� ∈ R
NF

has components corresponding to the fold angles of the goal configuration S� (see
Fig. 8.18). The components of the vectors ŵ

0
L, ŵ

0
U ∈ R

NF correspond to the lower
and upper bounds, respectively, for the fold width of each smooth fold.

A flowchart showing the steps for the optimization and design evaluation
processes in the unfolding polyhedra method for the design of self-folding structures
is provided in Fig. 8.20. The optimization problem (8.63) is solved here using the
gradient-based constrained optimization algorithm fmincon in MATLAB [51].
Each design evaluation is performed using the structural mechanics model presented
previously in this chapter. The laminate layup shown in Fig. 8.19 is assumed in all
the examples. The material parameters of the aluminum, the elastomer, and the SMA
of such a laminate layup are provided in Tables 8.4, 8.5, and 8.6, respectively. The
orientation of the laminate layup (i.e., whether the SMA wires/elastomer composite
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S�

S0

Martensite volume fraction 

0 0.2 0.4 0.6 0.8 1

Fig. 8.18 Self-folding of a designed SMA-based origami structure (refer to Fig. 8.17) from the
planar reference configuration to the configuration that approximates its associated goal mesh. The
temperature is increased uniformly in the structure and all folds are simultaneously active
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Fold laminate layup (each layer has 0.3 mm thickness) 

Martensite volume fraction 

0 0.2 0.4 0.6 0.8 1

ŵ0
i

Elastomer 
SMA wires/elastomer composite 

Aluminum wires/elastomer composite 

Fig. 8.19 Simulation results of an origami structure having a single smooth fold. The laminate
layup is also shown. By increasing the fold width ŵ0

i , a higher fold angle magnitude can be
achieved when the SMA material is fully transformed from martensite into austenite

layer is located on the top or the bottom of the laminate) is dictated by the sign
of the goal fold angle. We do not consider externally applied mechanical loads in
the presented examples. The temperature is increased from 300 to 400 K in all the
examples, leading to phase transformation in the SMA wires of the laminate shown
in Fig. 8.19.

A result obtained using the implemented unfolding polyhedra method for the
design of self-folding structures is shown in Fig. 8.21. Unlike the cube shown in
Fig. 8.17, not all the goal fold angles in the structure are equal as indicated in
the figure; therefore, distinct fold widths are required for the smooth folds in the
designed sheet. The simulated folding motion for this example is shown in Fig. 8.22.

More complex examples of design of self-folding structures using the unfolding
polyhedra method are shown in Figs. 8.23, 8.24, 8.25, and 8.26, where goal
meshes associated with a regular octahedron, a non-regular octahedron, a regular
icosahedron, and an ellipsoid are presented, respectively.
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START OPTIMIZATION 

END OPTIMIZATION 

OUTPUT: Optimal sheet design 

OPTIMIZATION PROCESS 

DESIGN EVALUATION PROCESS 

START DESIGN 
EVALUATION 

INPUT:  wi0ŵ0

Determine sheet design 
using the unfolding 

polyhedra method (Ch. 6) 

Simulate self-folding of 
sheet design using 

structural mechanics model 
(Ch. 8) 

OUTPUTS: 

Material failure constraints 
Problem-dependent constraints 

‖θ̂
tf − θ̂

�‖

END DESIGN 
EVALUATION 

Fig. 8.20 Flowchart showing the steps of the optimization and design evaluation processes in the
unfolding polyhedra method for the design of self-folding structures
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Fig. 8.21 Implementation
example of the unfolding
polyhedra method for the
design of active origami
structures: Given a goal mesh
M (parallelepiped), find the
mid-surface reference
configuration S0 of an
origami structure that
approximates M in a folded
configuration. The goal fold
angles for each fold
(θ̂ �1 , . . . , θ̂

�
5 ) are indicated.

Note that larger fold widths
are required to achieve higher
fold angles
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Fig. 8.22 Self-folding of a
designed SMA-based origami
structure (refer to Fig. 8.21)
from the planar reference
configuration to the
configuration that
approximates its associated
goal mesh. The temperature is
increased uniformly in the
structure and all folds are
simultaneously active
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S0

Martensite volume fraction 

0 0.2 0.4 0.6 0.8 1
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S�

M(a) S0(b) 

(c) Martensite volume fraction 

0 0.2 0.4 0.6 0.8 1

Fig. 8.23 Results of the implemented unfolding polyhedra method for active origami structures
associated with a goal mesh of a regular octahedron: (a) Goal mesh; (b) Determined sheet design
with optimal fold widths. All the fold widths are equal because all the folds have associated goal
fold angles of π − cos−1(− 1

3 ) radians (approximately 70.53◦); (c) Configurations attained by the
self-folding structure during its folding history
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(c) Martensite volume fraction 
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Fig. 8.24 Results of the implemented unfolding polyhedra method for active origami structures
associated with a goal mesh of an octahedron: (a) Goal mesh generated by randomly perturbing
the coordinates of every node of the regular octahedron (Fig. 8.23a); (b) Determined sheet design
with optimal fold widths; (c) Configurations attained by the self-folding structure during its folding
history
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S�

M(a) S0(b) 

(c) Martensite volume fraction 
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Fig. 8.25 Results of the implemented unfolding polyhedra method for active origami structures
associated with a goal mesh of a regular icosahedron: (a) Goal mesh; (b) Determined sheet design
with optimal fold widths. All the fold widths are equal because all the folds have associated goal

fold angles of π − cos−1(− 51/2

3 ) radians (approximately 41.81◦); (c) Configurations attained by
the self-folding structure during its folding history
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Fig. 8.26 Results of the implemented unfolding polyhedra method for active origami structures
associated with a goal mesh of an ellipsoidal shape: (a) Goal mesh; (b) Determined sheet design
with optimal fold widths; (c) Configurations attained by the self-folding structure during its folding
history
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8.7 Tuck-Folding Method for the Design of Self-Folding
Structures

In this section, the tuck-folding method for the design of origami structures with
smooth folds presented in Chap. 7 (based on kinematics only) is extended to
consider the design of self-folding structures morphed through active material
actuation. As in Sect. 8.6, the laminate layups for each smooth fold domain are
assumed given. The design problem statement considered here is the following:

• Given: A goal three-dimensional shape represented as a polygonal mesh (termed
as the goal mesh M) and laminate layups for the smooth fold domains in the
structure,

• Find: The geometry of the mid-surface configuration S0 of a planar origami
structure (Fig. 8.27) that morphs towards a configuration approximating M via
active material-driven folding (Fig. 8.28).

The tuck-folding method for origami with smooth folds presented in Chap. 7
is used to solve the aforementioned origami design problem. As in Sect. 8.6, we
extend the tuck-folding method from Chap. 7 to consider the fold widths as design
variables because they dictate the fold angle achieved by the active smooth fold
domains under imposition of an activation field (see Fig. 8.19).

The geometry of each edge module in a sheet designed using the tuck-folding
method (refer to Sect. 7.2.1) is defined by five variables corresponding to the length
variable Ŵi , the angular variable ψ̂i , and the width of the three smooth folds in the
edge module ŵ0

3i−2, ŵ0
3i−1, and ŵ0

3i , i = 1, . . . , NI
E (refer to Fig. 7.5a), where NI

E
is the number of interior edges of the goal mesh M. The vectors Ŵ , ψ̂ ∈ R

NI
E

are constructed by collecting the design variables Ŵi and ψ̂i , i = 1, . . . , NI
E ,

respectively, as follows:

Ŵ = [Ŵ1 · · · ŴNI
E
]	, ψ̂ = [ψ̂1 · · · ψ̂NI

E
]	, (8.64)

and the vector ŵ
0 ∈ R

3NI
E is constructed by collecting the design variables ŵ0

i ,
i = 1, . . . , 3NI

E , as follows:

ŵ
0 = [ŵ0

1 · · · ŵ0
3NI

E
]	. (8.65)

The constraints for these design variables allowing for a valid mid-surface
reference configuration S0 are derived in Sect. 7.2.3 [52]. These constraints can be
grouped into a vector equation of equality constraints h = 0 and a vector equation
of inequality constraints g ≤ 0 (refer to Sect. 4.2.5). The optimization problem
associated with this design framework is then stated as follows:
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Fig. 8.27 Schematic of the tuck-folding design method for active origami structures: Given a goal
mesh M, find the mid-surface reference configuration S0 of an origami structure that approximates
M in a folded configuration. S0 is comprised of the faces of M mapped to the plane spanned by
e1 and e2 and introduced edge modules having three smooth folds and two rigid faces
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Fig. 8.28 Self-folding of a
designed SMA-based origami
structure (refer to Fig. 8.27)
from the planar reference
configuration to the
configuration that
approximates its associated
goal mesh. The temperature is
increased uniformly in the
structure and all folds are
simultaneously active
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Find Ŵ , ψ̂, ŵ
0

That minimizes ‖θ̂ tf − θ̂
�‖

Subject to h = 0

g ≤ 0

ŵ
0
L ≤ ŵ

0 ≤ ŵ
0
U

Material failure constraints

Problem-dependent constraints.

(8.66)

A flowchart showing the steps for the optimization and design evaluation
processes in the tuck-folding method for the design of active origami structures
is provided in Fig. 8.29. The optimization problem (8.66) is solved here using
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Fig. 8.29 Flowchart showing the steps of the optimization and design evaluation processes in the
tuck-folding method for the design of self-folding structures
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the gradient-based constrained optimization algorithm fmincon in MATLAB.
Each design evaluation is executed using the structural mechanics model derived
previously in this chapter. The laminate layup shown in Fig. 8.19 is adopted for
all the examples presented in this section. No externally applied mechanical loads
are considered. In all the examples, the temperature is increased from 300 to
400 K, leading to phase transformation in the SMA wires of the laminate shown
in Fig. 8.19.

Figure 8.27 shows the goal mesh M and determined sheet design S0 associated
with a goal shape of positive Gaussian curvature. Configurations attained by the
designed structure during its folding history from S0 to S� are shown in Fig. 8.28.
Figure 8.30 shows the same results as those in Figs. 8.27 and 8.28 but considering
a goal mesh associated with a shape of negative Gaussian curvature. Both examples
show that the tuck-folding method successfully provides the geometry of the refer-
ence configuration S0 of a single planar sheet that morphs towards a configuration
that approximates M via active material-driven simultaneous folding. Examples of
goal meshes having not only triangulated faces are shown in Figs. 8.31, 8.32, and
8.33. A more complex example of a goal mesh associated with the shape of a sphere
is shown Fig. 8.34. Although only examples of SMA actuation are provided in this
section, the present design method is applicable to structures having smooth fold
domains comprised of other active materials so long as strains are small enough
such that the linearized strain tensor can be utilized.
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Fig. 8.30 Results of the implemented tuck-folding design method for active origami structures
considering a goal mesh associated with a shape of negative Gaussian curvature: (a) Goal mesh;
(b) Determined sheet design with optimal fold widths; (c) Configurations attained by the structure
during its folding history
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Fig. 8.31 Results of the implemented tuck-folding design method for active origami structures
associated with a goal mesh comprised of quadrilateral faces: (a) Goal mesh; (b) Determined sheet
design with optimal fold widths; (c) Configurations attained by the structure during its folding
history
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Fig. 8.32 Results of the implemented tuck-folding design method for active origami structures
associated with a goal mesh comprised of quadrilateral faces: (a) Goal mesh; (b) Determined sheet
design with optimal fold widths; (c) Configurations attained by the structure during its folding
history
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Fig. 8.33 Results of the implemented tuck-folding design method for active origami structures
associated with the goal mesh of a truncated cube: (a) Goal mesh; (b) Determined sheet design
with optimal fold widths; (c) Configurations attained by the structure during its folding history
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Fig. 8.34 Results of the implemented tuck-folding design method for active origami structures
associated with the goal mesh of a sphere: (a) Goal mesh; (b) Determined sheet design with optimal
fold widths; (c) Configurations attained by the structure during its folding history
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8.7.1 Design of a Self-Folding Parabolic Antenna Using
the Tuck-Folding Method

Origami structures have found various existing and potential implementations in
antenna applications [53]. Tentzeris and coworkers analyzed and designed an
origami spring antenna [54]. Such an antenna had a variable height that dictated
its operating frequency. Tentzeris and coworkers also studied the performance
of a helical antenna that can be folded and unfolded to operate at different
resonant frequencies [55–59]. In addition to those designs, they have also explored
an origami accordion antenna that can change its operating frequency based on
its height [60, 61]. Fuchi and coworkers explored a frequency-selective origami
sheet having a Miura-Ori fold pattern that can be tuned by changing its folded
configuration [62–64]. Dickey and coworkers reported a study on microstrip origami
antennas that can be self-reconfigured via SMP actuation [65]. Nogi and coworkers
also investigated foldable antennas at the micro-scale [66]. Toshiyuki and coworkers
developed a folding parabolic antenna with flat facets that can be stored in a compact
configuration [67]. More recent studies consider several distinct fold patterns for
origami antennas including the Kresling pattern [68], “bow-tie” pattern [69], and
others [70].

As discussed in Chaps. 2 and 5, two main assumptions are generally made in
models and design methods for origami [71, 72]: that folds are rectilinear creases
of zeroth-order geometric continuity (creased folds), and that planar facets in the
sheet are rigid. Often, creases may not be desirable in antenna surfaces. Considering
the mechanical response of an antenna, sharp creased folds would induce stress
concentrations and hence adversely affect the structural integrity of the antenna.
Furthermore, sharp creases may affect the stability of the antenna radiation patterns
(consult [73] for a comparison between sharp and round corners in antennas). To
overcome these limitations imposed by the assumption of creased folds, models and
design approaches for origami with smooth folds have been developed and presented
in Chaps. 5–7 and the present chapter.

In this section, the tuck-folding method for the design of active origami structures
developed in Sect. 8.7 is applied to a morphing antenna problem. A parabolic dish
antenna is considered for this study. Parabolic shapes are employed in high-gain
antennas and have several applications such as in communications and radio tele-
scopes (e.g., high-speed data communication for satellites [74, 75]). The objective
is to design a planar sheet with smooth folds that can self-fold via SMA actuation
towards the goal parabolic shape. As in several realizations of parabolic antennas
in the literature [76], the smooth parabolic shape of the antenna is discretized
as a faceted structure. Such a realization is required in the present study for the
application of the tuck-folding method presented in this section.



8.7 Tuck-Folding Method for the Design of Self-Folding Structures 389

Fig. 8.35 (a) Parabolic shape
and (b) its associated
parabolic section and
geometric parameters
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8.7.1.1 Antenna Design Problem

The objective is to design a planar sheet with a pattern of smooth folds that can self-
fold through SMA actuation towards the goal parabolic form. The origami modeling
and design approaches employed here are not limited to parabolic goal shapes or
to SMA actuation and can be applied to other goal shapes and origami structures
comprised of other active materials [48, 77] (refer to the other examples shown in
Sect. 8.7). Let us first define the goal shape and its associated discretization into a
faceted structure. The center point of the parabolic surface is assumed to be located
at the origin of a Cartesian coordinate system. The position vector of a point on the
parabolic surface is denoted q ∈ R

3 and is given as follows:

q(r, ϕ) =

⎡

⎢
⎢
⎣

r cos(ϕ)

r sin(ϕ)

r2

4p

⎤

⎥
⎥
⎦ 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π, (8.67)

where r is the coordinate on the radial direction, ϕ is the coordinate on the azimuthal
direction, R is the radius of the parabolic surface, and p is the focal height. A
schematic of a parabolic shape is provided in Fig. 8.35.
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Fig. 8.36 Steps in the origami design and analysis approach employed for the self-folding
antenna. A mesh discretization M of the parabolic goal shape G is first determined. The faces of
M are trimmed to accommodate the smooth folds resulting in the trimmed mesh M�. An origami
sheet design S0 is then determined. The active material actuation-driven folding of the planar sheet
towards the goal configuration S� that approximates the goal shape is then simulated using the
model presented previously in this chapter
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To determine a non-dimensional set of coordinates for the parabolic shape that
will be useful in the mesh parameterization, the coordinates r and ϕ are substituted
by the normalized coordinates η1 = r/R and η2 = ϕ/(2π). The expression for the
position vector q is then given as follows:

q(η1, η2) =

⎡

⎢
⎢
⎣

η1R cos(2πη2)

η1R sin(2πη2)

η2
1R

2

4p

⎤

⎥
⎥
⎦ 0 ≤ η1 ≤ 1, 0 ≤ η2 ≤ 1. (8.68)

The steps in the tuck-folding design method used to determine a sheet design
for the parabolic antenna are illustrated in Fig. 8.36. Given a parabolic goal shape
G with position vector q as defined in (8.68), a mesh discretization M of G is
first determined. The mesh M is then trimmed to accommodate for smooth folds
(consult Sect. 7.2.2 for details on the face trimming step). The resulting set of
trimmed faces is denoted M�. Afterwards, a planar sheet with a pattern of smooth
folds denoted as S0 is then determined employing the tuck-folding method. The
active material actuation-driven folding of the planar sheet towards the configuration
that approximates the parabolic shape (S�) is then simulated using the structural
mechanics model presented previously in this chapter. The folding motion of
the determined designs from S0 to S� is achieved through uniform changes in
temperature in the structure without requiring externally applied forces or moments.

An analysis of the electromagnetic properties of the studied structural configu-
ration S� is not performed in this study and is recommended for future work. The
resulting antenna performance of S� is rather taken into account by tailoring certain
geometric properties of such a configuration to achieve an expected improved
performance. Since the goal shape G is discretized as a polygonal mesh M,
the reflective characteristics of the resulting origami design may not be as those
obtained from a smooth parabolic shape. Thus, the following error in the normal
vector orientation between the ideal parabolic shape G and its discretization M is
introduced [53]:

ENormal =

∫ 1

0

∫ 1

0
J cos−1 (nG · nM

)
dη1dη2

∫ 1

0

∫ 1

0
J dη1dη2

, (8.69)
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where nM ∈ R
3 is the unit normal vector of goal mesh M,4 nG ∈ R

3 is the unit
normal vector of the parabolic goal shape G given as follows5,6:

nG = 1
(
η2

1R
2 + 4p2

)1/2

⎡

⎢
⎢
⎣

−η1R cos(2πη2)

−η1R sin(2πη2)

2p

⎤

⎥
⎥
⎦ , (8.70)

and J is the surface element of integration given as follows:

J = 2πR2η1

(

1 + η2
1R

2

4p2

)1/2

. (8.71)

Since the goal mesh M is trimmed to accommodate smooth folds resulting in the
set of trimmed mesh faces M�, the effective surface area of the resulting morphing
antenna is lower than its untrimmed form. Therefore, the following error introduced
by the mesh trimming process is considered:

ETrim = 1 − Area(M�)

Area(M)
. (8.72)

The potential effects that the increase in the value of ETrim would have in the
performance of a parabolic antenna include decrease of the reflective surface area
and larger deviations in the radiation patterns from an ideal parabolic antenna.

The designed origami antenna increases its performance by minimizing the
values ofENormal andETrim (defined in (8.69) and (8.72), respectively). We remark
that both of these outputs are dependent on the mesh discretization M. To simplify
the meshing problem, a structured triangulated mesh is used to discretize G. The
mapping of such a structured mesh is illustrated in Fig. 8.37. The two discrete
parameters that define mesh refinement areN1 andN2 and, respectively, correspond
to the number of triangle pairs in the mesh on the η1 direction (radial direction) and
the η2 direction (azimuthal direction). For the length distribution assumed for the
triangle pairs of the mesh in the direction aligned with η1, the following conditions
must be met:

4For each face of the goal mesh M, the position vectors of its nodes are denoted ỹj1, ỹj2, ỹj3 ∈ R
3

and its unit normal vector is calculated via (3.5).
5The reader can readily verify the normalization coefficient in (8.70) since
(
(−η1R cos(2πη2))

2 + (−η1R sin(2πη2))
2 + (2p)2

)1/2 = (
η2

1R
2(cos2(2πη2)+ sin2(2πη2))+

4p2
)1/2 = (

η2
1R

2 + 4p2
)1/2

.
6The unit normal vector nG of the parabolic surface is determined as nG =

(
∂q
∂η1

× ∂q
∂η2

)
‖ ∂q
∂η1

×
∂q
∂η2

‖−1.
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Fig. 8.37 Mapping of a
structured mesh for a
parabolic shape
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l1N1

= B, (8.73)

where B is the mesh size bias ratio. The first condition in (8.73) arises because the
range of η1 is the interval [0, 1] and therefore its subdivisions l11, . . . , l1N1 must
add to 1. The second condition allows for size biasing in the distribution of the
triangle pairs of the mesh in the direction aligned with η1. A linear function for
l11, . . . , l1N1 is assumed here for simplicity. Such a linear function is obtained by
considering the conditions of (8.73):

l1i = −2(B − 1)i + 2(N1B − 1)

N1(N1 − 1)(B + 1)
, i = 1, . . . , N1. (8.74)

Considering (8.74), a value of B = 1 results in a uniform mesh distribution along
η1. A uniform mesh distribution is assumed for the triangle pairs in the direction
aligned with η2 (azimuthal direction of the parabolic shape). For the meshing along
this direction, the following conditions must be met (see Fig. 8.37):

N2∑

i=1

l2i = 1, l21 = · · · = l2i = · · · = l2N2, (8.75)
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which simply yields the following values for l21, . . . , l2N2 :

l2i = 1

N2
, i = 1, . . . , N2. (8.76)

The design problem considered in this section entails the determination of the
mesh parameters N1, N2, and B that minimize ENormal and ETrim, i.e.,

Find: N1, N2, B

That minimizes: f = [
ENormal(N1, N2, B), ETrim(N1, N2, B)

]
.

(8.77)

A full factorial design of experiments (DOE) [78] is used to explore the design
space and to construct a Pareto frontier of the designs in the ENormal −ETrim space.

8.7.1.2 Results of the Antenna Design Exploration Study

A full factorial DOE is used to explore the design space and to determine a Pareto
frontier of designs in the ENormal − ETrim space (defined in (8.69) and (8.72),
respectively). For the example considered here, values of R = 2 m and p = 1 m
are assumed (see Fig. 8.35). The upper bounds for the levels of N1 and N2 in the
DOE correspond to those for which the design framework outlined in Sect. 8.7 is
able to provide a resulting origami sheet design (i.e., when the faces of the goal
mesh are large enough such that SMA-based smooth folds can be accommodated
in the sheet design S0). The levels for the variable N1 are {2, 3, 4, 5, 6}, the levels
for the variable N2 are {3, 4, 5, 6, 7, 8, 9, 10, 11}, and the levels for the variable
B are {0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00}. Thus, a total of 315 designs are
analyzed. The locations of all the analyzed designs in theENormal−ETrim space are
shown in Fig. 8.38a. From these results, a Pareto frontier is constructed and shown
in Fig. 8.38b. Meshes with lower values of N1 and N2 have fewer faces and such
faces have larger size; therefore, the face trimming process applied for each interior
edge does not significantly decrease the total area of M. Thus, for such designs, the
value of ETrim is lower. However, since such discretizations are coarse, the error
in the normal orientation ENormal is higher. Conversely, meshes with high values
of N1 and N2 have more faces and such faces are of smaller size. Since such mesh
discretizations are finer, the error in the face orientationENormal is lower. The trade-
off between the two performance outputs ENormal and ETrim is clearly observed in
Fig. 8.38b.

Figure 8.39 presents results of three designs located in the Pareto frontier of
Fig. 8.38. It shows the goal meshes M, the trimmed mesh M�, and obtained sheet
designs S0. The design of N1 = 2, N2 = 4, and B = 0.50 has the lowest value
of ETrim of all the analyzed designs. The design of N1 = 6, N2 = 11, B = 1.00
has the lowest value of normal orientation error ENormal of all the analyzed designs.
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Fig. 8.38 DOE results: (a)
ENormal vs. ETrim for all
designs. The filled dots
indicate designs in the Pareto
front; (b) ENormal vs.
ETrim for the designs in the
Pareto front. The value of the
design variables for the sheets
presented in Fig. 8.39 is
shown
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Finally, Fig. 8.40 shows the SMA actuation-driven folding for the design ofN1 = 2,
N2 = 9, and B = 0.75. It is observed that the origami design framework of Sect. 8.7
successfully generates a sheet design that allows for self-folding driven by uniform
temperature increase in the structure.

An analysis of the electromagnetic properties of the determined active antennas
was not performed in this study and is suggested for future work. The resulting
antenna performance was instead taken into account in this study by tailoring
geometric properties of the goal mesh for an expected improved performance.
Another aspect to be addressed in future work is the comparison of the trade-
offs between the use of creased folds (that may affect the stability of the antenna
radiation patterns) and the use of smooth folds (that results in a decrease of
the antenna functional area due to the required face trimming, but allows the
introduction of active materials for self-folding capabilities). To eliminate the
disadvantages introduced by face trimming, an extension of the design method
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Fig. 8.39 Results of three designs located in the Pareto front shown in Fig. 8.38. The goal meshes
M, the trimmed mesh M�, and determined origami sheet designs S0 are shown
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S0
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Martensite volume fraction 

0 0.2 0.4 0.6 0.8 1

Fig. 8.40 Self-folding motion of the design having mesh parameters N1 = 2, N2 = 9, B =
0.75 (see Fig. 8.39) from the planar configuration to the parabolic configuration driven by SMA
actuation

presented in Sect. 8.7 consists of overlaying the untrimmed goal mesh faces to the
determined sheet design S0. Such an extension is illustrated in Fig. 8.41 for a simple
goal mesh having one interior vertex and in Fig. 8.42 for a parabolic dish goal mesh.
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S�

Fig. 8.41 Implementation example of the tuck-folding method considering overlaying of
untrimmed faces onto the determined sheet design: (a) Goal mesh M having one interior vertex;
(b) Trimmed mesh M�; (c) Determined origami sheet designs S0 with and without overlaid
untrimmed faces; (d) Folding motion of the origami sheet designs. The sheet with overlaid
untrimmed faces does not have gaps or holes in the goal configuration S�
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Fig. 8.42 Implementation example of the tuck-folding method considering overlaying of
untrimmed faces onto the determined sheet design: (a) Goal mesh M of a parabolic dish; (b)
Trimmed mesh M�; (c) Determined origami sheet designs S0 with and without overlaid untrimmed
faces; (d) Folding motion of the origami sheet designs. The sheet with overlaid untrimmed faces
does not have gaps or holes in the goal configuration S�
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Chapter Summary

In this chapter, we developed a model for the structural mechanics of origami
continuum bodies having smooth fold domains of non-zero thickness. Such a struc-
tural model integrates the surface kinematics model for origami with smooth folds
presented in Chap. 5 and existing plate theories to obtain a structural representation
for folds of non-zero thickness. In the structural model, the kinematic variables
that fully describe the configuration of the origami structure with smooth fold
domains are the fold angles and fold arc-lengths of each fold in the structure. The
governing field equations were presented and a variational approach including the
consideration of kinematic constraints was used to develop the structural model.

The present model does not make any assumptions on the material response of
the origami structures; therefore, it is applicable to a large spectrum of origami
structures (ranging from those having elastic folds to those having active material
actuation). The numerical implementation of the model was described and vari-
ous implementation examples were presented. The results determined using the
present model were numerically validated against higher-fidelity FEA and good
agreement is observed for all the examples. Furthermore, the present model requires
significantly fewer kinematic variables to describe the configuration of an origami
structure as compared to FEA and hence is significantly more computationally
efficient. In the structural mechanics model presented here, classical plate theory
assumptions were adopted for each smooth fold domain. For future work, higher-
order plate theories or layerwise theories may be considered to improve the current
model.

Finally, we integrated the design methods of Chaps. 6 and 7 with the mechanics
of active origami structures presented herein to develop frameworks for the design of
self-folding structures that morph towards targeted shapes under the application of a
non-mechanical stimulus (e.g., thermal, chemical, electromagnetic). It is hoped that
the curious and motivated reader will use these frameworks to further advance the
field of origami engineering and the applications of active origami. In Sect. 8.6, we
extended the method of unfolding polyhedra from Chap. 6 for the design of active
self-folding structures. The tuck-folding method from Chap. 7 was also extended for
the design of active self-folding structures in Sect. 8.7. We finalized the chapter by
presenting a study on the analysis and design of an active self-folding antenna in
Sect. 8.7.1.

Problems

8.1 Show that the mid-surface strain and signed curvature fields for smooth folds
with G2 continuity provided in (8.10) satisfy the relations stated in (8.8).

8.2 Verify the formulation for the components of the tangent matrices provided
in (8.45)–(8.52).
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Fig. 8.43 Geometry of the origami sheets for Problems 8.4–8.9. Axes units are in meters

8.3 Verify the derivatives of the axial force and moment resultants with respect to
fold angle and fold arc-length provided in (8.53)–(8.56).

8.4 Simulate the origami sheet of the boundary value problem shown in Fig. 8.5
considering smooth folds comprised of linear elastic materials having the following
material parameters: (a) Young’s modulus E = 150 GPa, Poisson’s ratio ν = 0.3;
(b) E = 200 GPa, ν = 0.3. Compare the results of (a) and (b) with those shown in
Fig. 8.6. The geometry of the sheet is shown in detail in Fig. 8.43a.

8.5 Repeat Problem 8.4 considering the origami sheet of the boundary value
problem shown in Fig. 8.9. The geometry of the sheet is shown in detail in
Fig. 8.43b.

8.6 Repeat Problem 8.4 considering the origami sheet of the boundary value
problem shown in Fig. 8.13. The geometry of the sheet is shown in detail in
Fig. 8.43c.

8.7 Simulate the origami sheet of the boundary value problem shown in Fig. 8.7 but
replace the SMA/elastomer composite layer with a thermoelastic material having
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the following material parameters: (a) Young’s modulus E = 1 GPa, Poisson’s ratio
ν = 0.3, thermoelastic expansion coefficient α = 0.0005 K−1; (b) E = 1 GPa,
ν = 0.3, α = 0.005 K−1. Compare the results of (a) and (b) with those shown in
Fig. 8.8. Refer to (C.4) for the formulation of a constitutive model for thermoelastic
materials. The geometry of the sheet is shown in detail in Fig. 8.43a.

8.8 Repeat Problem 8.7 considering the origami sheet of the boundary value
problem shown in Fig. 8.11. The geometry of the sheet is shown in detail in
Fig. 8.43b.

8.9 Repeat Problem 8.7 considering the origami sheet of the boundary value
problem shown in Fig. 8.15. The geometry of the sheet is shown in detail in
Fig. 8.43c.

8.10 Simulate the response of the piezoelectric-based self-folding strips shown
in Fig. 8.44. The laminate layup of the piezoelectric-based folds is shown in
Fig. 8.44d. Assume that the aluminum layer has a linear elastic response with
material parameters from Table 8.4. The response of the piezoelectric layers can
be modeled using (C.6). For the piezoelectric layers, assume the following material
parameters: E1 = E2 = 60 GPa, ν12 = 0.3, G12 = 23 GPa, d113 = 0, and
d223 = 741E –12 m/V. For all the folds, assume that the electric potential is initially
zero everywhere. Then, increase the electric potential at the top face of the top
piezoelectric layer to 1000 V (leading to a decrease of the electric field component
Ê3 from 0 to −1000/0.002 V/m in the top layer) and simultaneously increase the
voltage at the bottom face of the bottom piezoelectric layer to 1000 V (leading to an
increase of the electric field component Ê3 from 0 to 1000/0.002 V/m in the bottom
layer). Report the final position of point A (labeled in Fig. 8.44) for cases a, b, and c.

8.11 Implement the unfolding polyhedra method for the design of active origami
structures in a computational environment and determine sheet designs for the 13
Archimedean polyhedra.

8.12 Implement the tuck-folding method for the design of active origami structures
in a computational environment. Then, determine a sheet design for the goal mesh
with one interior node of positive Gaussian curvature shown in Fig. 8.45. Assume
that all the folds are comprised of the laminated composite shown in Fig 8.7. The
position vectors of the nodes are given as follows (units in meters):

[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.00
0.60 0.00 0.40
0.30 0.52 0.40

− 0.30 0.52 0.40
− 0.60 0.00 0.40
− 0.30 − 0.52 0.40

0.30 − 0.52 0.40

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8.78)
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Fig. 8.44 Piezoelectric-based self-folding strips with (a) one fold, (b) two folds, and (c) three-
folds. The laminate layup of the piezoelectric-based folds is shown in (d)
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Fig. 8.45 Goal mesh M for
Problem 8.12 (units in
meters)

and the components of the mesh connectivity matrix CM are given as follows:

CM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3
1 3 4
1 4 5
1 5 6
1 6 7
1 7 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.79)

8.13 Implement the tuck-folding method for the design of active origami structures
in a computational environment. Then, determine a sheet design for the goal mesh
with one interior node of negative Gaussian curvature shown in Fig. 8.46. Assume
that all the folds are comprised of the laminated composite shown in Fig. 8.7. The
position vectors of the nodes are given as follows:

[
ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

]	 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.00
0.80 0.00 − 0.18
0.40 0.69 0.18

− 0.40 0.69 − 0.18
− 0.80 0.00 0.18
− 0.40 − 0.69 − 0.18

0.40 − 0.69 0.18

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8.80)

and the components of the mesh connectivity matrix CM are given in (8.79).

8.14 Implement the tuck-folding method for the design of active origami struc-
tures in a computational environment and determine sheet designs for the 13
Archimedean polyhedra. Compare your results with those of Problem 8.11.

8.15 Implement the tuck-folding method for the design of active origami structures
in a computational environment and determine sheet designs for two different non-
convex goal meshes (your choice).

8.16 Implement the extension of the design method of Sect. 8.7 consisting of
overlaying the untrimmed goal mesh faces to the determined sheet design S0 as
illustrated in Figs. 8.41 and 8.42.

8.17 Repeat the case study of the active origami antenna employing a different
mesh parameterization than the one used in Sect. 8.7.1.
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Fig. 8.46 Goal mesh M for Problem 8.13 (units in meters)
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Appendix A
Notation and Useful Formulas

This appendix serves as a guide to and review of the notation, mathematical
concepts, and formulas used in the development of the models and design methods
presented in this book. It is assumed that the reader has previously completed an
introductory linear algebra course and is familiar with the properties of operators
such as dot product, cross product, determinant, etc. For the sake of brevity, we do
not provide derivations of any particular formula reviewed in this appendix. Such
derivations can be found in other sources [1–3].

A.1 Vectors in Three-Dimensional Space

First, let us review mathematical concepts and formulas concerning vectors in the
three-dimensional space of real numbers (R3). The vectors e1, e2, e3 ∈ R

3 form the
basis {e1, e2, e3} that defines the Cartesian coordinate system of R3. These vectors
are defined as follows:

e1 =
⎡

⎣
1
0
0

⎤

⎦ , e2 =
⎡

⎣
0
1
0

⎤

⎦ , e3 =
⎡

⎣
0
0
1

⎤

⎦ . (A.1)

The axes aligned with e1, e2, and e3 are respectively denoted as the 1-axis, the
2-axis, and the 3-axis as indicated in Fig. A.1. The components of a vector y ∈
R

3 in the coordinate system defined by {e1, e2, e3} are denoted y1, y2, and y3 (see
Fig. A.1):
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1-axis 

2-axis 

3-axis 

e1 e2

e3
y

y1e1

y2e2

y3e3

Fig. A.1 Vector y ∈ R
3 in the coordinate system defined by e1, e2, and e3

y = y1e1 + y2e2 + y3e3

= y1

⎡

⎣
1
0
0

⎤

⎦ + y2

⎡

⎣
0
1
0

⎤

⎦ + y3

⎡

⎣
0
0
1

⎤

⎦ =
⎡

⎣
y1

y2

y3

⎤

⎦ .
(A.2)

The dot product of two vectors y ∈ R
3 and z ∈ R

3 is denoted y · z ∈ R and is
determined as follows:

y · z =
⎡

⎣
y1

y2

y3

⎤

⎦ ·
⎡

⎣
z1

z2

z3

⎤

⎦ = y1z1 + y2z2 + y3z3. (A.3)

The magnitude of a vector y ∈ R
3 is denoted ‖y‖ ∈ R and is determined as

follows:

‖y‖ = (y · y)
1
2 =

(
y2

1 + y2
2 + y2

3

) 1
2
. (A.4)

A vector y ∈ R
3 is said to be a unit vector if its magnitude is 1 (i.e., if ‖y‖ = 1).
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Example A.1
Statement: Consider the vectors y ∈ R

3 and z ∈ R
3 having components given as

follows:

y =
⎡

⎣
1
2
2

⎤

⎦ , z =
⎡

⎣
2

−2
3

⎤

⎦ . (A.5)

Determine (a) the dot product y · z and (b) the magnitude of y and z.
Solution:

(a) The dot product y · z is determined using (A.3):

y · z = y1z1 + y2z2 + y3z3 = (1)(2)+ (2)(−2)+ (2)(3) = 4. (A.6)

(b) The magnitude of y is determined using (A.4):

‖y‖ = (
y2

1 + y2
2 + y2

3

) 1
2 = (

12 + 22 + 22
) 1

2 = 3, (A.7)

and the magnitude of z is also determined using (A.4):

‖z‖ = (
z2

1 + z2
2 + z2

3

) 1
2 = (

22 + (−2)2 + 32
) 1

2 = 17
1
2 . (A.8)

The angle between two vectors y ∈ R
3 and z ∈ R

3 is denoted φ ∈ [0, π ] and can
be determined implicitly using the following formula:

cos(φ) = y · z
‖y‖ ‖z‖ . (A.9)

The angle φ is illustrated in Fig. A.2. The vectors y and z are said to be
orthogonal if their dot product is 0 (i.e., if y · z = 0). Geometrically, this means
that the vectors y and z are perpendicular as illustrated in Fig. A.2b (i.e., they meet
at an angle of φ = π/2, c.f. (A.9)).

The cross product of two vectors y ∈ R
3 and z ∈ R

3 is denoted y × z ∈ R
3,

which is a vector orthogonal to y and z that has components given as follows:

y × z =
⎡

⎢
⎣

y1

y2

y3

⎤

⎥
⎦ ×

⎡

⎢
⎣

z1

z2

z3

⎤

⎥
⎦ =

⎡

⎢
⎣

y2z3 − y3z2

y3z1 − y1z3

y1z2 − y2z1

⎤

⎥
⎦ . (A.10)

The reader can verify that y × z is orthogonal to y and z (i.e., (y × z) · y = 0 and
(y × z) · z = 0).
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(a) (b) 

y

zz

y

y

z

φ <
π

2

φ >
π

2
φ =

π

2

Fig. A.2 (a) Vectors y and z and angle φ between them. (b) Special case where the vectors y and
z are orthogonal

Example A.2
Statement: Consider the vectors y ∈ R

3 and z ∈ R
3 having components given as

follows:

y =
⎡

⎢
⎣

−1
0

3
1
2

⎤

⎥
⎦ , z =

⎡

⎣
4
0
0

⎤

⎦ . (A.11)

Determine (a) the angle between y and z and (b) the cross product y × z.
Solution:

(a) The angle φ between y and z is determined using (A.9):

cos(φ) = y · z
‖y‖ ‖z‖ = −4

(2)(4)
= −1

2
, (A.12)

and thus:

φ = cos−1
(

−1

2

)

= 2π

3
. (A.13)

(b) The cross product y × z is determined using (A.10):

y × z =
⎡

⎢
⎣

y2z3 − y3z2

y3z1 − y1z3

y1z2 − y2z1

⎤

⎥
⎦ =

⎡

⎢
⎣

(0)(0)− (3
1
2 )(0)

(3
1
2 )(4)− (−1)(0)

(−1)(0)− (0)(4)

⎤

⎥
⎦ =

⎡

⎢
⎣

0

4(3
1
2 )

0

⎤

⎥
⎦ .

(A.14)

The span of vectors z1, . . . , zM ∈ R
3 is denoted span(z1, . . . , zM) ⊆ R

3 and
is the set of all linear combinations of such vectors:
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e1

e2

(a) (b) 

y y

z span(z)e3

e1

e2

e3 projz(y)

Fig. A.3 Illustration of the orthogonal vector projection of a vector y ∈ R
3 onto span(z). (a) A

vector y and span(z). (b) Orthogonal vector projection projz(y) ∈ R
3 of y onto span(z)

span(z1, . . . , zM) =
{∑M

i=1 aiz
i
∣
∣
∣ a1, . . . , aM ∈ R

}
. (A.15)

The span of a single vector z ∈ R
3 can be visualized as a straight line in three-

dimensional space that intersects the origin and is aligned with z (see Fig. A.3a). The
orthogonal vector projection of a vector y ∈ R

3 onto span(z) is denoted projz(y) ∈
R

3 and can be determined using the following formula (see Fig. A.3b):

projz(y) = y · z
‖z‖

z
‖z‖ = y · z

z · z
z. (A.16)

The span of two orthogonal vectors z1 ∈ R
3 and z2 ∈ R

3 (z1 · z2 = 0) can be
visualized as a plane in three-dimensional space that intersects the origin and has a
normal vector z1 × z2. The orthogonal vector projection of a vector y ∈ R

3 onto
span(z1, z2) is denoted projz1, z2(y) ∈ R

3 and can be determined as follows:

projz1, z2(y) = y · z1

‖z1‖
z1

‖z1‖ + y · z2

‖z2‖
z2

‖z2‖

= y · z1

z1 · z1 z1 + y · z2

z2 · z2 z2.

(A.17)

Figure A.4 illustrates the orthogonal vector projection of a vector y ∈ R
3 onto

span(e1, e2) that can be determined by substituting z1 = e1 and z2 = e2 in (A.17).

Example A.3
Statement: Consider the vectors y ∈ R

3, z1 ∈ R
3, and z2 ∈ R

3 having components
given as follows:
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y

e3

e1

e2

span(e1, e2)

proje1, e2
(y)

y

e3

e1
e2

(a) (b)

Fig. A.4 Illustration of the orthogonal vector projection of a vector y ∈ R
3 onto span(e1, e2).

(a) Vector y and span(e1, e2). (b) Orthogonal vector projection proje1, e2
(y) ∈ R

3 of y onto
span(e1, e2)

y =
⎡

⎣
1

−1
1

⎤

⎦ , z1 =
⎡

⎣
−1

2
2

⎤

⎦ , z2 =
⎡

⎢
⎣

0

−2
1
2

2
1
2

⎤

⎥
⎦ . (A.18)

Determine (a) the orthogonal vector projection of y onto span(z1) and (b) the
orthogonal vector projection of y onto span(z1, z2).
Solution:

(a) The orthogonal vector projection of y onto span(z1) denoted projz1(y) is
determined using (A.16):

projz1(y) = y · z1

z1 · z1 z1 = −1

9

⎡

⎣
−1

2
2

⎤

⎦ . (A.19)

(b) The orthogonal vector projection of y onto span(z1, z2) denoted projz1, z2(y) is
determined using (A.17):

projz1, z2(y) = y · z1

z1 · z1
z1 + y · z2

z2 · z2
z2

= −1

9

⎡

⎣
−1

2
2

⎤

⎦ + 2
3
2

4

⎡

⎢
⎣

0

−2
1
2

2
1
2

⎤

⎥
⎦

= −1

9

⎡

⎣
−1

2
2

⎤

⎦ +
⎡

⎣
0

−1
1

⎤

⎦ = 1

9

⎡

⎣
1

−11
7

⎤

⎦ .

(A.20)
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A.2 Vectors of Arbitrary Dimensions

Let us now review mathematical concepts and formulas concerning vectors in the
space R

N (where N is an arbitrary positive integer) that are extensively used in the
various chapters of this book. A vector y ∈ R

N having components y1, . . . , yN can
be expressed as follows:

y =

⎡

⎢
⎢
⎣

y1
...

yN

⎤

⎥
⎥
⎦ . (A.21)

The zero vector is denoted 0N ∈ R
N and all of its components are zeros:

0N =

⎡

⎢
⎢
⎣

0
...

0

⎤

⎥
⎥
⎦ . (A.22)

The formulations for the dot product and magnitude of vectors in R
3 provided

in (A.3) and (A.4) can be generalized for any two vectors y ∈ R
N and z ∈ R

N :

y · z = y1z1 + y2z2 + · · · + yNzN =
N∑

i=1

yizi, (A.23)

‖y‖ = (y · y)
1
2

= (
y2

1 + y2
2 + · · · + y2

N

) 1
2 =

(
N∑

i=1

y2
i

) 1
2

.

(A.24)

The concept of orthogonal vector projection introduced for three-dimensional
vectors in Sect. A.1 can also be generalized for vectors in R

N . Let V be a subspace of
R
N and let projV (y) ∈ R

N be the orthogonal vector projection of a vector y ∈ R
N

onto V . The vector y can be decomposed as follows:

y = projV (y) + (
y − projV (y)

)
. (A.25)

The orthogonal vector projection projV (y) satisfies the following criteria:

projV (y) ∈ V, (A.26)

(
y − projV (y)

) · z = 0 z ∈ V, (A.27)
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e1

e2

e1

e2

(a) (b) 

y y

V projV(y)

y − projV(y)

Fig. A.5 Illustration of the orthogonal vector projection of a vector y ∈ R
2 onto a subspace

V ⊂ R
2. (a) Vector y and subspace V . (b) Orthogonal vector projection projV (y) ∈ R

2 of y onto V

i.e., projV (y) is contained in V and (y − projV (y)) is orthogonal to any vector
z ∈ V . The concept of orthogonal vector projection is illustrated in Fig. A.5 for a
vector y ∈ R

2.
If the subspace V ⊆ R

N is represented as the span of pairwise orthogonal vectors
z1, . . . , zM (i.e., if V = span(z1, . . . , zM) where M ≤ N ), projV (y) can be
determined using the following formula:

projV (y) = projz1, ..., zM (y) =
M∑

i=1

y · zi

‖zi‖
zi

‖zi‖ =
M∑

i=1

y · zi

zi · zi
zi , (A.28)

cf. (A.16) and (A.17).

A.3 Matrices of Arbitrary Dimensions

A matrix Y ∈ R
M×N with components Yij , i = 1, . . . , M , j = 1, . . . , N , can be

expressed as follows:

Y =

⎡

⎢
⎢
⎣

Y11 · · · Y1N
...

. . .
...

YM1 · · · YMN

⎤

⎥
⎥
⎦ . (A.29)

A matrix Y ∈ R
M×N is said to be a square matrix if M = N (i.e., Y ∈ R

M×M ).
The determinant of a square matrix Y ∈ R

M×M is denoted det(Y) ∈ R.
The transpose of a matrix Y ∈ R

M×N is denoted Y	 ∈ R
N×M and has

components given as follows:

[
Y	]

j i
= Yij i = 1, . . . , M, j = 1, . . . , N, (A.30)
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therefore it can be expressed as follows:

Y	 =

⎡

⎢
⎢
⎣

Y11 · · · YM1
...

. . .
...

Y1N · · · YMN

⎤

⎥
⎥
⎦ . (A.31)

A matrix Y is said to be symmetric if Y = Y	.
The matrix multiplication of a matrix Y ∈ R

M×N and a matrix Z ∈ R
N×P is

denoted Y Z ∈ R
M×P and has components given as follows:

[Y Z]ik =
N∑

j=1

YijZjk i = 1, . . . , M, k = 1, . . . , P . (A.32)

The identity matrix is a square matrix denoted IM ∈ R
M×M and its components

are defined as follows:

[IM ]ij =
{

1; i = j

0; i 
= j
i = 1, . . . , M, j = 1, . . . , M, (A.33)

therefore it can be expressed as follows:

IM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A.34)

For any matrix Y ∈ R
M×N , we have that:

IM Y = Y IN = Y. (A.35)

The inverse of a square matrix Y ∈ R
M×M is denoted Y−1 ∈ R

M×M and satisfies
the following criteria:

Y Y−1 = Y−1 Y = IM. (A.36)

A square matrix Y ∈ R
M×M has an inverse if and only if det(Y) 
= 0.

The Moore-Penrose pseudoinverse of a matrix Y ∈ R
M×N is denoted Y† ∈

R
N×M and satisfies the following four criteria:
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Y Y† Y = Y,

Y† Y Y† = Y†,

(Y† Y)	 = Y† Y, Y† Y is symmetric,

(Y Y†)	 = Y Y†, Y Y† is symmetric.

(A.37)

The description of methods for the calculation of the pseudoinverse of a matrix
Y is beyond the scope of this appendix. For such information, the reader is referred
to [2, 4].

The multiplication of a matrix Y ∈ R
M×N and a vector z ∈ R

N having
components z1, . . . , zN is denoted Y z ∈ R

M and has components given as follows:

[Y z]i =
N∑

j=1

Yij zj i = 1, . . . , M. (A.38)

Two important vector subspaces associated with a matrix Y ∈ R
M×N are its

range and null space. The range of a matrix Y ∈ R
M×N is denoted Ran(Y) ⊆ R

M

and is defined as follows:

Ran(Y) = {b ∈ R
M | there exists z ∈ R

N such that b = Y z}. (A.39)

The null space of a matrix Y ∈ R
M×N is denoted Nul(Y) ⊆ R

N and is defined
as follows:

Nul(Y) = {z ∈ R
N | Y z = 0M}. (A.40)

A.4 Block Matrices

A matrix Y ∈ R
M×N can be expressed as an R× S block partitioned matrix, called

block matrix for simplicity, as follows:

Y =

⎡

⎢
⎢
⎣

Y 11 · · · Y 1S

...
. . .

...

YR1 · · · YRS

⎤

⎥
⎥
⎦ ∈ R

M×N,

where: Y ij ∈ R
Mi×Nj , i = 1, . . . , R, j = 1, . . . , S,

∑R
i=1 Mi = M,

∑S
j=1 Nj = N.

(A.41)



A.4 Block Matrices 421

The ij block component of the block matrix Y in (A.41) is denoted as follows:

[Y]ij block = Y ij . (A.42)

Let us consider two block matrices Y ∈ R
M×N and Z ∈ R

N×P . The matrix Y
is partitioned as an R × S block matrix as provided in (A.41) and the matrix Z is
partitioned as an S × U block matrix where [Z]jk block = Zjk ∈ R

Nj×Pk (where
j = 1, . . . , S, k = 1, . . . , U , and

∑S
j=1 Nj = N ,

∑U
k=1 Pk = P ). The block

components of the matrix multiplication of Y and Z are given as follows:

[Y Z]ik block =
S∑

j=1

Y ijZjk ∈ R
Mi×Pk i = 1, . . . , R, k = 1, . . . , U.

(A.43)

Example A.4
Statement: Consider the following matrices Y ∈ R

4×4 and Z ∈ R
4×4 partitioned as

2 × 2 block matrices:

Y =
[

A b

c	 d

]

, Z =
[

E f

g	 h

]

, (A.44)

where A ∈ R
3×3, E ∈ R

3×3, b ∈ R
3×1, c ∈ R

3×1, f ∈ R
3×1, g ∈ R

3×1, d ∈ R
1×1,

and h ∈ R
1×1. Determine Y Z.

Solution: Using (A.43), we determine the block components of Y Z:

[Y Z]11 block = A E + b g	 ∈ R
3×3,

[Y Z]12 block = A f + bh ∈ R
3×1,

[Y Z]21 block = c	 E + d g	 ∈ R
1×3,

[Y Z]22 block = c	 f + d h ∈ R
1×1.

(A.45)

Thus, Y Z is given as follows:

Y Z =
⎡

⎣
A E + b g	 A f + bh

c	E + d g	 c	f + d h

⎤

⎦ . (A.46)
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A.5 Systems of Linear Equations

In the computational implementation of the models and design methods presented in
this book, we often encounter the problem of solving simultaneous linear algebraic
equations of the following form:

A11 y1 + A12 y2 + · · · + A1N yN = b1

A21 y1 + A22 y2 + · · · + A2N yN = b2

...

AM1 y1 + AM2 y2 + · · · + AMN yN = bM,

(A.47)

where the scalars Aij and bi are given and the scalars yj are sought (i = 1, . . . , M ,
j = 1, . . . , N). Thus, (A.47) is a system of M linear equations in N unknowns.
The system of linear equations (A.47) can be formulated as follows:

A y = b, (A.48)

where:

A =

⎡

⎢
⎢
⎣

A11 · · · A1N
...

. . .
...

AM1 · · · AMN

⎤

⎥
⎥
⎦ ∈ R

M×N, y =

⎡

⎢
⎢
⎣

y1
...

yN

⎤

⎥
⎥
⎦ ∈ R

N,

b =

⎡

⎢
⎢
⎣

b1
...

bM

⎤

⎥
⎥
⎦ ∈ R

M.

(A.49)

If the number of linear equations in the system (A.48) is equal to the number of
unknowns (i.e., if M = N in (A.47)) and such equations are independent (i.e., if
det(A) 
= 0), we determine the inverse of A and solve for y as follows:

A y = b

A−1 A y = A−1 b multiplying by A−1 from the left

IN y = A−1 b

y = A−1 b.

(A.50)
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In many cases encountered in the computational implementation of the models
and design methods presented in this book, the number of independent equations in
the system (A.48) is not equal to the number of unknownsN . In such cases, we seek
a vector y that minimizes the residual error that is defined as follows:

‖A y − b‖. (A.51)

The set of all the vectors that minimize the residual error (A.51) is denoted Q ⊆
R
N and is defined as follows:

Q =
{

y ∈ R
N

∣
∣
∣ ‖A y − b‖ = min

z∈RN
‖A z − b‖

}
. (A.52)

The set Q is always non-empty but may contain more than one vector y. To
determine a unique vector that minimizes the residual error (A.51), we calculate
the vector y ∈ Q that has the lowest magnitude, which is named the minimum
norm solution of the system (A.48). Thus, the minimum norm solution of the
system (A.48) is the unique vector y ∈ Q such that ‖y‖ = min z∈Q ‖z‖. It is a
known result in linear algebra that the minimum norm solution of the system (A.48)
can be determined as follows [2, 4]:

y = A† b, (A.53)

where A† ∈ R
N×M is the Moore-Penrose pseudoinverse of A (refer to (A.37)).

Another application of the pseudoinverse that is utilized in this book is its use
in the determination of the orthogonal vector projection of a vector y ∈ R

N onto
the null space of a matrix A ∈ R

M×N , which is denoted Nul(A) and is defined
in (A.40). Let y∗ ∈ R

N be the orthogonal vector projection of y ∈ R
N onto Nul(A)

(refer to (A.25)–(A.27)). The vector y∗ must satisfy the following two criteria:

y∗ ∈ Nul(A) thus: A y∗ = 0M, (A.54)

(
y − y∗) · z = 0 z ∈ Nul(A), (A.55)

cf. (A.26) and (A.27). The concept of orthogonal vector projection onto Nul(A) is
illustrated in Fig. A.6 for a vector y ∈ R

2 and a matrix A ∈ R
M×2.

Given a vector y ∈ R
N and a matrix A ∈ R

M×N , the orthogonal vector
projection y∗ ∈ R

N of y onto Nul(A) can be determined using the following
formula [4]:

y∗ = y − A† A y

= (
IN − A† A

)
y.

(A.56)
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e1

e2

e1

e2

(a) (b) 

y y −A† Ay

Nul(A)
* 

Fig. A.6 Illustration of the orthogonal vector projection of a vector y ∈ R
2 onto the null space of

a matrix A ∈ R
M×2. (a) Vector y and Nul(A) ⊂ R

2. (b) Orthogonal vector projection y∗ ∈ R
2 of

y onto Nul(A)

Problems

A.1 Consider the vectors y1 ∈ R
3, y2 ∈ R

3, and y3 ∈ R
3 having components given

as follows:

y1 =
⎡

⎣
1
2
2

⎤

⎦ , y2 =
⎡

⎢
⎣

1
−1

−2
1
2

⎤

⎥
⎦ , y3 =

⎡

⎣
2
2
0

⎤

⎦ . (A.57)

Determine (a) the dot product of y1 and y2, (b) the dot product of y2 and y3, (c)
the dot product of y3 and y1, (d) the magnitude of y1, y2, and y3, and (e) which
pair(s) of vectors are orthogonal.

A.2 Repeat Problem A.1 considering the vectors y1 ∈ R
3, y2 ∈ R

3, and y3 ∈ R
3

having components given as follows:

y1 =
⎡

⎣
1
2
1

⎤

⎦ , y2 =
⎡

⎣
0

−4
3

⎤

⎦ , y3 =
⎡

⎣
3
1

−5

⎤

⎦ . (A.58)

A.3 Consider the vectors y1 ∈ R
3, y2 ∈ R

3, and y3 ∈ R
3 having components given

as follows:

y1 =
⎡

⎣
1
2
2

⎤

⎦ , y2 =
⎡

⎣
1

−1
1

⎤

⎦ , y3 =
⎡

⎣
4
4
0

⎤

⎦ . (A.59)

Determine (a) the angle between y1 and y2, (b) the angle between y2 and y3, (c)
the angle between y3 and y1, (d) the cross product y1 × y2, (e) the cross product
y2 × y3, and (f) the cross product y3 × y1.



A.5 Systems of Linear Equations 425

A.4 Consider the vectors y1 ∈ R
3, y2 ∈ R

3, and y3 ∈ R
3 defined in (A.59).

Determine (a) the orthogonal vector projection of y1 onto span(y2), (b) the
orthogonal vector projection of y1 onto span(y3), and (c) the orthogonal vector
projection of y1 onto span(y2, y3).

A.5 Consider the matrices Y ∈ R
3×3 and Z ∈ R

3×3 having components given as
follows:

Y =
⎡

⎣
1 0 0
2 1 0

−1 0 1

⎤

⎦ , Z =
⎡

⎣
2 0 0
4 −1 3
3 5 2

⎤

⎦ . (A.60)

Determine (a) Y Z, (b) Z Y, (c) Y	Z, (d) Y Z	, and (e) Y	Z	.

A.6 Consider the matrices A ∈ R
2×3, B ∈ R

3×2 having components given as
follows:

A =
[

1 −1 4
4 2 3

]

, B =
⎡

⎣
1 4

−1 2
4 7

⎤

⎦ . (A.61)

In MATLAB®, the pseudoinverse of matrix A can be calculated using the
command pinv as follows:

1 A = [1 -1 4;
2 4 2 3]; % Defining matrix A
3 pseudoinverse_of_A = pinv(A); % Calculating the pseudoinverse of A

Determine the pseudoinverse of matrices A and B provided in (A.61) using
MATLAB.

A.7 Consider the vector y ∈ R
3 having components given as follows:

y =
⎡

⎣
1
1
1

⎤

⎦ . (A.62)

Using MATLAB, determine the orthogonal vector projection of y onto the null
space of the matrix A defined in (A.61).



Appendix B
Examples of Implementation Codes

In this appendix, we briefly describe the inputs and outputs of the MATLAB®

scripts that represent the implementations of the models and design methods for
origami presented in the chapters of this book. The full set of MATLAB scripts
can be obtained from the Supplemental Material associated with each chapter.1 It
is hoped that the curious and engaged reader will experiment with these codes and
will consider the evolution of new fold patterns into new three-dimensional forms,
further advancing the theory and applicability of active origami.

B.1 Implementation of the Kinematic Model for Origami
with Creased Folds (Chap. 2)

The MATLAB scripts associated with the kinematic model for origami with creased
folds as presented in Chap. 2 are described here. To simulate the folding motion of
an origami sheet using such a model, the user opens and executes in MATLAB the
corresponding .m file with name starting with Input. As an example, consider the
code presented in this section, which is an input MATLAB script used to simulate
the folding motion of the origami sheet shown in Fig. 2.25 (the script is named
Input_Square1Intersection.m in the Supplemental Material). Note that
comments within the script serve to guide the user, though a complete contextual
treatment of every program variable is beyond the scope of this appendix.

In the following code, we initialize the MATLAB environment in line 20 by
clearing all the previously defined variables and functions from memory, closing
all the open figures, and clearing the command window. In line 36, we select
the increments for which the configurations are plotted for visualization. The

1The scripts provided in the Supplemental Material were developed and tested in MATLAB
versions R2015a–R2017a. Compatibility with previous and subsequent versions is not guaranteed.

© Springer International Publishing AG, part of Springer Nature 2019
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parameters required to define the fold pattern are provided in lines 43–97. In lines
101–144 and 166–183, we provide the algorithmic parameters required to simulate
the folding motion. In lines 148–160, we provide the increments for the fold angles.
In line 190, we call the function Origami_Solver.m that manages all the other
functions required to simulate the motion of an origami sheet. Such functions
include:

1. Fold_Pattern_Data.m: Determines the data associated with the fold pat-
tern

2. Reference_Plots.m: Generates plots associated with the reference config-
uration and the fold pattern (Fig. B.1a, b)

3. Kinematic_Simulation.m: Executes the procedure for kinematic simula-
tion presented in Sect. 2.6

4. Rotation_Constraint.m: Evaluates the kinematic constraint (2.39)
5. Face_Mapping.m: Determines the mapping between reference and current

configurations for the faces using the formulation presented in Sect. 2.5
6. Fold_Angle_Plots.m: Generates plots of fold angle values vs. increment

number (Fig. B.1c)
7. Folded_Configurations.m: Generates plots of configurations for the

requested increments (Fig. B.1d–f)

The main numeric output variables include:

1. O.FoldAngles: Array of fold angle values for each increment
2. O.exitFlag: Indicates the reason for stopping the iterative correction proce-

dure at each increment (1: Tolerance in residual achieved; 2: Tolerance in change
in fold angles achieved; 3: Maximum number of iterations reached)

3. O.ResidualNorm: Magnitude of the residual vector for each increment

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Supplemental Material
3 %
4 % ACTIVE ORIGAMI
5 % MODELING, DESIGN, AND APPLICATIONS
6 %
7 % Edwin A. Peraza Hernandez, Darren J. Hartl, Dimitris C. Lagoudas
8 %
9 % Springer

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %
12 % Code for Kinematic Simulation of Origami with Creased Folds
13 % Code authors: Cullen Nauck, Edwin A. Peraza Hernandez
14 % 03-2017
15 %
16 % Refer to Appendix B of the book for further information about the codes
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % Initializing environment
20 clear all; close all; clc
21

22 % Main structures
23 % I: Structure with general inputs
24 % PD: Structure with geometric pattern data
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25 % O: Structure with general outputs
26 % KI: Structure with kinematic simulation inputs
27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 % User inputs for fold pattern
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31

32 % I.PlotFoldAngles: Fold angles to plot vs. increment number
33 I.PlotFoldAngles = [1; 2; 3; 4; 5; 6; 7; 8];
34

35 % I.PlotConfigurations: Increment number of configurations to be plotted
36 I.PlotConfigurations = [0; 25; 50];
37

38 % I.ReferencePoints: Reference point coordinates (in reference
39 % configuration). These reference points are used as vertices or
40 % additional corners for the rigid faces
41 % NOTE: Reference points will be labeled (1,2,3,etc.) corresponding to
42 % their row index in this array
43 I.ReferencePoints = [
44 -20 -20
45 0 -20
46 20 -20
47 -20 0
48 0 0
49 20 0
50 -20 20
51 0 20
52 20 20];
53

54 % I.FoldVectorPoints: Indices of reference points that correspond to
55 % start/end vertices of each fold vector
56 % NOTE: Vector will run in a positive direction from the first point
57 % (start) to the second point (end)
58 % NOTE: Vectors will be labeled (1,2,3,etc.) corresponding to their row
59 % index in this array
60 I.FoldVectorPoints = [
61 5 1
62 5 2
63 5 3
64 5 4
65 5 6
66 5 7
67 5 8
68 5 9
69 ];
70

71 %Num_Folds: Number of fold inputs
72 Num_Folds=size(I.FoldVectorPoints,1);
73

74 % I.IntersectionFoldIndices: Matrix with fold indices associated with each
75 % interior fold intersection (in counterclockwise order)
76 % NOTE: Positive sign if fold vector points away from intersection;
77 % Negative sign if fold vector points towards intersection
78 I.IntersectionFoldIndices = [
79 1 2 3 5 8 7 6 4];
80

81 % I.FaceBoundary: Indices of folds and reference points defining the
82 % boundary of each face (ccw order)
83 % NOTE: Signed depending on if fold vector points CCW (positive) around
84 % face or Clockwise (negative) around face
85 % NOTE: If individual reference points are used to define corners of a face
86 % at the boundary, the points should be referred as # of folds +
87 % reference point index #)
88 I.FaceBoundary = [
89 4 -1
90 1 -2
91 2 -3
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92 3 -5
93 5 -8
94 8 -7
95 7 -6
96 6 -4
97 ];
98

99 % I.FixedFace: Index of face selected to be fixed throughout simulation
100 % (one required)
101 I.FixedFace = 7;
102

103 % I.FoldAngleUpperBound: Highest allowable fold angle for each fold
104 I.FoldAngleUpperBound = [
105 pi; pi; pi; pi; pi; ...
106 pi; pi; pi ];
107

108 % I.FoldAngleLowerBound: Lowest allowable fold angle for each fold
109 I.FoldAngleLowerBound = [
110 -pi; -pi; -pi; -pi; -pi; ...
111 -pi; -pi; -pi];
112

113 % I.FoldAngleInitialValue: Initial value for each fold
114 I.FoldAngleInitialValue = [
115 0; 0; 0; 0; 0; ...
116 0; 0; 0];
117

118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
119 % User inputs for kinematic simulation
120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
121

122 % KI.WeightRotationConstraint: Weight for residuals from rotation
123 % constraints
124 KI.WeightRotationConstraint = 1;
125

126 % KI.WeightFoldAngleBounds: Weight for residuals from fold angle bound
127 % constraints
128 KI.WeightFoldAngleBounds = 1e-5;
129

130 % KI.ToleranceResidual: Tolerance for norm of residual vector
131 KI.ToleranceResidual = 1e-8;
132

133 % KI.ToleranceFoldAngle: Tolerance for correction of fold angles
134 KI.ToleranceFoldAngle = 1e-8;
135

136 % KI.MaxIterations: Maximum number of iterations allowed for each increment
137 KI.MaxIterations = 15;
138

139 % KI.MaxFoldAngleCorrection: Maximum correction allowed for individual fold
140 % angles in each iteration
141 KI.MaxFoldAngleCorrection = 5*pi/180;
142

143 % Num_Increments: Number of increments
144 NumIncrements = 50;
145

146 % KI.FoldAngleChangePerIncrement: Initialize matrix that contains each fold
147 % angle change for every increment
148 KI.FoldAngleChangePerIncrement = zeros( size(I.FoldVectorPoints,1), ...

NumIncrements);
149

150 % ReferenceFoldAngle: Reference angle for filling fold angle change per
151 % increment matrix
152 ReferenceFoldAngle = 90*pi/180;
153

154 % Fold angle change per increment matrix components
155 for i = 1:NumIncrements
156 KI.FoldAngleChangePerIncrement(1:end,i) = ...
157 ReferenceFoldAngle/NumIncrements*[
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158 -1; 2; -1; 2; 2;
159 -1; 2; -1];
160 end
161

162 % KI.IncrementCorrection: Input to determine one of two methods for
163 % calculating initial fold angle increment. One uses the previous
164 % Jacobian (corrected; Select 1) and the other one does not (not
165 % corrected; Select 2)
166 KI.IncrementCorrection = 1;
167

168 % KI.DisplayIncrementInfo: Input to allow for the display of iteration
169 % information for each increment (1 to display, 0 to suppress)
170 KI.DisplayIncrementInfo = 1;
171

172 % KI.FinDiffStep: Finite difference step in fold angles for calculation of
173 % derivatives
174 KI.FinDiffStep = 2*pi/180;
175

176 % User input for initial camera angle for folded configuration plots
177 % I.InitialCameraHorizontalRotation: Horizontal rotation about the 3-axis
178 % from negative 2-axis (degrees)
179 I.InitialCameraHorizontalRotation=135;
180

181 % I.InitialCameraVerticalElevation: Vertical elevation of viewpoint
182 % (degrees)
183 I.InitialCameraVerticalElevation=30;
184

185 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
186 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
187 % Call main script for simulation
188 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
189 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
190 [PD,O] = Origami_Solver(I,KI);

B.2 Implementation of the Unfolding Polyhedra Method for
Origami with Creased Folds (Chap. 3)

Here, we describe the MATLAB scripts that represent the implementation of the
unfolding polyhedra method for origami with creased folds presented in Chap. 3.
The full set of MATLAB scripts can be obtained from the Supplemental Material
associated with that chapter.

To determine a net for a given goal mesh, the user opens and executes in
MATLAB the corresponding .m file with name starting with Input. As an
example, the code presented in this section is an input MATLAB script (named
Input_Unfolding_Cube.m in the Supplemental Material) used to determine a
net for a cube (Fig. 3.23b).

In the following code, we initialize the MATLAB environment in line 20 by
clearing all the previously defined variables and functions from memory, closing
all the open figures, and clearing the command window. In line 34, we provide
the index of the face that corresponds to the reference face. In lines 37–45, we
provide the coordinates of the nodes of the goal mesh. In lines 48–54, we provide
connectivity information and indicate which nodes are associated with each face
of the goal mesh. In line 61, we call the function Polyhedra_Solver.m that
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Fig. B.1 Screenshots of the output plots generated by the MATLAB scripts for the kinematic
model of origami with creased folds presented in Chap. 2. (a) Location of the vertices and the
fold lines. (b) Reference configuration. (c) Fold angles vs. increment number. (d)–(f) Plots of
configurations for the requested increments
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manages all the other functions required to determine a net for the given goal mesh.
Such functions include:

1. Goal_Mesh_Data.m: Determines the geometric parameters associated with
the goal mesh and the spanning tree

2. Initial_Plots.m: Generates plots associated with the goal mesh and the
spanning tree (Fig. B.2a, b)

3. Configuration_Mapping.m: Maps each face of the goal mesh towards its
corresponding position in the net using the formulation presented in Sect. 3.2.4

4. Reference_Configuration_Plot.m: Generates a plot of the net
(Fig. B.2c)

5. Simulation_Input.m: Generates the data required to simulate the folding
motion of the determined net back toward the three-dimensional goal mesh using
the kinematic model developed in Chap. 2

The main numerical output from such files is the MATLAB variable IN (saved
in line 64 of the following code), which is a structure containing the data required
to simulate the folding motion of the determined net using the kinematic model
presented in Chap. 2.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Supplemental Material
3 %
4 % ACTIVE ORIGAMI
5 % MODELING, DESIGN, AND APPLICATIONS
6 %
7 % Edwin A. Peraza Hernandez, Darren J. Hartl, Dimitris C. Lagoudas
8 %
9 % Springer

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %
12 % Code for Unfolding Polyhedra of Origami with Creased Folds
13 % Code authors: Cullen Nauck, Edwin A. Peraza Hernandez
14 % 04-2017
15 %
16 % Refer to Appendix B of the book for further information about the codes
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % Initializing environment
20 clear all; close all; clc
21

22 % Main Structures
23 % I: Structure with general inputs
24 % MD: Structure with goal mesh data
25 % MO: Structure with mapping outputs
26 % IN: Structure with outputs corresponding to Kinematic Origami simulation
27 % required inputs
28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 % User inputs for goal mesh geometry
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32

33 % I.ReferenceFace: Index of reference face for geometry
34 I.ReferenceFace = 1;
35

36 % I.NodeCoordinates: Coordinates of each node in goal mesh
37 I.NodeCoordinates = [...
38 1 1 1 % Coordinates of node 1
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39 1 1 -1 % Coordinates of node 2
40 1 -1 1 % Coordinates of node 3
41 1 -1 -1
42 -1 1 1
43 -1 1 -1
44 -1 -1 1
45 -1 -1 -1];
46

47 % I.FaceNodeIndices: Indices of nodes defining each face (ccw order)
48 I.FaceNodeIndices = [...
49 2 1 3 4 % Node indices for face 1
50 4 3 7 8 % Node indices for face 2
51 8 7 5 6 % Node indices for face 3
52 6 5 1 2
53 5 7 3 1
54 2 4 8 6];
55

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 % Call main script for unfolding
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61 [I,MD, MO, IN] = Polyhedra_Solver(I);
62

63 % Save structure IN for use in kinematic origami simulation code
64 save('IN','IN')

After executing an input script, such as the one previously shown, and deter-
mining a net for a given goal mesh, the user can execute the MATLAB script
Kinematic_Simulation_Input.m. The script loads the MATLAB variable
IN saved by the input script in order to simulate the folding motion of the
determined net. The user can specify the algorithmic parameters required to
simulate the folding motion in the script Kinematic_Simulation_Input.m
just as in the script described in Sect. B.1. After the execution of the script
Kinematic_Simulation_Input.m, an arbitrary number of configurations of
the determined net from the planar reference configuration to the configuration that
matches the goal mesh are obtained as shown in Fig. B.3.

B.3 Implementation of the Tuck-Folding Method for
Origami with Creased Folds (Chap. 4)

Here, we describe the MATLAB scripts representing the implementation of the tuck-
folding method for origami with creased folds presented in Chap. 4. The full set of
MATLAB scripts can be obtained from the Supplemental Material associated with
that chapter.

To determine an origami sheet design for a given goal mesh using
the tuck-folding method, the user opens and executes in MATLAB the
corresponding .m file with name starting with Input. For example, the code
presented in this section is an input MATLAB script used to determine an
origami sheet design for the pyramid shown in Fig. 4.5 (the script is named
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Fig. B.2 Screenshots of the output plots generated by the MATLAB scripts for the unfolding
polyhedra method presented in Chap. 3

Input_Origami_Single_Vertex_5_Edges.m in the Supplemental
Material).

In the following code, we initialize the MATLAB environment in line 20 by
clearing all the previously defined variables and functions from memory, closing all
the open figures, and clearing the command window. In lines 35–42, we provide
the coordinates of the nodes of the goal mesh. We define connectivity and indicate
which nodes are associated with each face of the goal mesh in lines 45–51. In
line 53, we indicate the pairs of nodes defining the edges of the goal mesh that
are assigned as boundary edges by the user (i.e., if these are not evident from the
goal mesh, as in the case of closed shapes). In line 58, we provide the initial guess
for the length variable of the edge modules (Ŵi , refer to Fig. 4.6a). In line 62, we
provide the initial guess for the angular variable of the edge modules (ψ̂i , refer
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Fig. B.3 Screenshots of the output plots generated by the script
Kinematic_Simulation_Input.m that simulates the folding motion of a net using
the kinematic model presented in Chap. 2

to Fig. 4.6a). In lines 65–96, we provide the algorithmic parameters required in
the numerical implementation of the tuck-folding method. In line 103, we call the
function Tuck_Fold_Solver.m that manages all the other functions required to
determine a sheet design for the given goal mesh. Such functions include:

1. Goal_Mesh_Data.m: Determines the geometric parameters associated with
the goal mesh

2. Initial_Plots.m: Generates plots associated with the goal mesh
(Fig. B.4a, b)

3. Design_Parameter_Data.m: Determines the values of the edge module
variables using the procedure outlined in Sect. 4.2.5

4. Angle_Equality.m: Evaluates the constraint (4.6)
5. Length_Equality.m: Evaluates the constraint (4.7)
6. Angle_Inequality.m: Evaluates the constraint (4.11)
7. Length_Inequality.m: Evaluates the constraints (4.12) and (4.13)
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8. Configuration_Mapping.m: Maps each face of the goal mesh towards
its corresponding position in the sheet design

9. Reference_Configuration_Plot.m: Generates a plot of the origami
sheet design (Fig. B.4c)

10. Simulation_Input.m: Generates the data required to simulate the folding
motion of the determined sheet design back toward the goal mesh using the
kinematic model presented in Chap. 2

The main output from such files is the MATLAB variable IN (saved in line 106 of
the following code), which is a structure containing the data required to simulate the
folding motion of the determined sheet design using the kinematic model developed
in Chap. 2.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Supplemental Material
3 %
4 % ACTIVE ORIGAMI
5 % MODELING, DESIGN, AND APPLICATIONS
6 %
7 % Edwin A. Peraza Hernandez, Darren J. Hartl, Dimitris C. Lagoudas
8 %
9 % Springer

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %
12 % Code for Tuck-Folding Method of Origami with Creased Folds
13 % Code authors: Edwin A. Peraza Hernandez, Cullen Nauck
14 % 05-2017
15 %
16 % Refer to Appendix B of the book for further information about the codes
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % Initializing environment
20 clear all; close all; clc
21

22 % Main Structures
23 % I: Structure with general inputs
24 % MD: Structure with goal mesh data
25 % O: Structure with outputs from solving for design parameters
26 % MO: Structure with mapping outputs
27 % IN: Structure with outputs corresponding to Kinematic Origami simulation
28 % required inputs
29

30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 % User inputs for goal mesh geometry
32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33

34 % I.NodeCoordinates: Coordinates of each node in goal mesh
35 I.NodeCoordinates = [ ...
36 10 10 9 % Coordinates of node 1
37 17 10 2 % Coordinates of node 2
38 0 -2 0 % Coordinates of node 3
39 20 0 0
40 0 20 0
41 20 20 0
42 ];
43

44 % I.FaceNodeIndices: Indices of nodes defining each face (ccw order)
45 I.FaceNodeIndices = [ ...
46 1 3 4 % Node indices for face 1
47 4 2 1 % Node indices for face 2
48 1 2 6 % Node indices for face 3
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49 1 6 5
50 3 1 5
51 ];
52

53 % I.ExtraBoundaryEdges: Extra boundary edges defined by user
54 I.ExtraBoundaryEdges = [];
55

56 % I.WInitialGuess: Initial guess for distance between the two midpoints of
57 % the outer folds of each edge module
58 I.WInitialGuess = 6;
59

60 % I.OuterFoldAngleGuess: Initial guess for angle between outer folds of
61 % each edge module
62 I.OuterFoldAngleGuess = 0;
63

64 % I.ExtraAngleShrinkage: Extra trim angle shrinkage
65 I.ExtraAngleShrinkage = 0*pi/180;
66

67 % I.ExtraAngleBoundary: Extra trim angle boundary
68 I.ExtraAngleBoundary = 0*pi/180;
69

70 % I.AllowTrimMaterial: 1: allow trim to add more material, otherwise: ...
disallow

71 I.AllowTrimMaterial = 0;
72

73 % I.ReferenceFace: Index of reference face
74 I.ReferenceFace = 3;
75

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77 % User algorithmic inputs
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79

80 % I.MaxIterations: Maximum number of iterations
81 I.MaxIterations = 400;
82

83 % I.ToleranceResidual: Tolerance for norm of residual vector
84 I.ToleranceResidual = 1e-5;
85 % I.ToleranceChangeVariables: Tolerance in change of variables
86 I.ToleranceChangeVariables = 0;
87

88 % I.AngleBoundaryShift: Boundary shift to convert strict angle ...
inequalities to relaxed inequalities

89 I.AngleBoundaryShift = 10*pi/180;
90 % I.LengthBoundaryShift: Boundary shift to convert strict length ...

inequalities to relaxed inequalities
91 I.LengthBoundaryShift = 0*1;
92

93 % I.AngleFinDiffStep: Finite difference step for angles
94 I.AngleFinDiffStep = 1*pi/180;
95 % I.LengthFinDiffStep: Finite difference step for lengths
96 I.LengthFinDiffStep = 1e-2;
97

98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
99 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

100 % Call main module for simulation
101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
103 [I,MD,O, MO, IN] = Tuck_Fold_Solver(I);
104

105 % Save structure IN for use in kinematic origami simulation code
106 save('IN','IN')
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Fig. B.4 Screenshots of the output plots generated by the MATLAB scripts for the tuck-folding
method presented in Chap. 4

After executing an input script, such as the one previously shown, and determin-
ing a sheet design for a given goal mesh, the user can execute the MATLAB script
Kinematic_Simulation_Input.m. The script loads the MATLAB variable
IN saved by the input script in order to simulate the folding motion of the deter-
mined sheet design. The user can specify the algorithmic parameters required to
simulate the folding motion in the script Kinematic_Simulation_Input.m
just as in the script described in Sect. B.1. After the execution of the script
Kinematic_Simulation_Input.m, an arbitrary number of configurations of
the sheet design from the planar reference configuration to the configuration that
matches the goal mesh are obtained as shown in Fig. B.5.
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Fig. B.5 Screenshots of the output plots generated by the script
Kinematic_Simulation_Input.m that simulates the folding motion of a determined
origami sheet design using the kinematic model presented in Chap. 2

B.4 Implementation of the Kinematic Model for Origami
with Smooth Folds (Chap. 5)

The MATLAB scripts associated with the kinematic model for origami with smooth
folds as presented in Chap. 5 are described here. To simulate the folding motion of
an origami sheet using such a model, the user opens and executes in MATLAB the
corresponding .m file with name starting with Input. As an example, consider the
code presented in this section, which is an input MATLAB script used to simulate
the folding motion of the origami sheet shown in Fig. 5.28 (the script is named
Input_Rectangle1Intersection.m in the Supplemental Material).

In the following code, we initialize the MATLAB environment in line 20 by
clearing all the previously defined variables and functions from memory, closing
all the open figures, and clearing the command window. In line 36, we select
the increments for which the configurations are plotted for visualization. The
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parameters required to define the fold pattern are provided in lines 43–114, with the
fold widths defined in lines 75 and 76. In lines 118–165 and 191–208, we provide the
algorithmic parameters required to simulate the folding motion. In lines 169–181,
we provide the increments for the fold angles. The order of geometric continuity of
the smooth folds is provided in line 185 (1: first-order; 2: second-order). In line 215,
we call the function Origami_Solver.m that manages all the other functions
required to simulate the motion of an origami sheet. Such functions include:

1. Fold_Pattern_Data.m: Determines the data associated with the fold
pattern

2. Reference_Plots.m: Generates plots associated with the reference con-
figuration and the fold pattern (Fig. B.6a, b)

3. Kinematic_Simulation.m: Executes the procedure for kinematic simu-
lation presented in Sect. 5.7

4. Fold_Width_Straight.m: Determines the variable ŵi
5. Beta_1.m: Determines the variable β̂i1
6. Beta_2.m: Determines the variable β̂i2
7. Rotation_Constraint.m: Evaluates the kinematic constraint (5.66)
8. Translation_Constraint.m: Evaluates the kinematic constraint (5.67)
9. Face_Mapping.m: Determines the mapping between reference and current

configurations for the faces using the formulation presented in Sect. 5.6
10. Fold_Angle_Plots.m: Generates plots of fold angle values vs. increment

number (Fig. B.6c)
11. Folded_Configurations.m: Generates plots of configurations for the

requested increments (Fig. B.6d–f)

The main numeric output variables include:

1. O.FoldAngles: Array of fold angle values for each increment
2. O.exitFlag: Indicates the reason for stopping the iterative correction proce-

dure at each increment (1: Tolerance in residual achieved; 2: Tolerance in change
in fold angles achieved; 3: Maximum number of iterations reached)

3. O.ResidualNorm: Magnitude of the residual vector for each increment

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Supplemental Material
3 %
4 % ACTIVE ORIGAMI
5 % MODELING, DESIGN, AND APPLICATIONS
6 %
7 % Edwin A. Peraza Hernandez, Darren J. Hartl, Dimitris C. Lagoudas
8 %
9 % Springer

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %
12 % Code for Kinematic Simulation of Origami with Smooth Folds
13 % Code authors: Cullen Nauck, Edwin A. Peraza Hernandez
14 % 03-2017
15 %
16 % Refer to Appendix B of the book for further information about the codes
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17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % Initializing environment
20 clear all; close all; clc
21

22 % Main structures
23 % I: Structure with general inputs
24 % PD: Structure with geometric pattern data
25 % O: Structure with general outputs
26 % KI: Structure with kinematic simulation inputs
27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 % User inputs for fold pattern
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31

32 % I.PlotFoldAngles: Fold angles to plot vs. increment number
33 I.PlotFoldAngles = [1; 2; 3];
34

35 % I.PlotConfigurations: Increment number of configurations to be plotted
36 I.PlotConfigurations = [0; 10; 20];
37

38 % I.ReferencePoints: Reference point coordinates (in reference
39 % configuration). These reference points are used as vertices or
40 % additional corners for the rigid faces
41 % NOTE: Reference points will be labeled (1,2,3,etc.) corresponding to
42 % their row index in this array
43 I.ReferencePoints = [
44 -30 -20
45 0 -20
46 30 -20
47 -30 0
48 0 0;
49 30 0
50 -30 20
51 0 20
52 30 20];
53

54 % FoldVectorPointsI: Indices of reference points that correspond to
55 % start/end points of each fold vector
56 % NOTE: Vector will run in a positive direction from the first point
57 % (start) to the second point (end)
58 % NOTE: Vectors will be labeled (1,2,3,etc.) corresponding to their row
59 % index in this array
60 I.FoldVectorPoints = [
61 5 6
62 5 9
63 5 8
64 5 7
65 5 4;
66 5 1
67 5 2
68 5 3
69 ];
70

71 % Num_Folds: Number of fold inputs
72 Num_Folds=size(I.FoldVectorPoints,1);
73

74 % I.FoldWidth: Width of each fold in simulation
75 I.FoldWidth = [3; 3; 3; 3; 3; ...
76 3; 3; 3];
77

78 % I.r_parameters: Length parameters associated with each fold
79 % (perpendicular distance between vertex and fold boundary, 1st column
80 % r1, 2nd column r2)
81 I.r_parameters = ...
82 [6 4
83 6 6



B.4 Implementation of the Kinematic Model for Origami with Smooth Folds 443

84 6 2.4
85 6 6
86 6 4
87 6 6
88 6 2.4
89 6 6];
90

91 % I.IntersectionFoldIndices: Matrix with fold indices associated with each
92 % interior fold intersection (in counterclockwise order)
93 % NOTE: Positive sign if fold vector points away from intersection;
94 % Negative sign if fold vector points towards intersection
95 I.IntersectionFoldIndices = [
96 1 2 3 4 5 6 7 8];
97

98 % I.FaceBoundary: Indices of folds and reference points defining the
99 % boundary of each face (ccw order)

100 % NOTE: Signed depending on if fold vector points CCW (positive) around
101 % face or Clockwise (negative) around face
102 % NOTE: If individual reference points are used to define corners of a face
103 % at the boundary, the points should be referred as # of folds +
104 % reference point index #)
105 I.FaceBoundary = [
106 1 -2
107 2 -3
108 3 -4
109 4 -5
110 5 -6
111 6 -7
112 7 -8
113 8 -1
114 ];
115

116 % I.FixedFace: Index of face selected to be fixed throughout simulation
117 % (one required)
118 I.FixedFace = 1;
119

120 % I.FoldAngleUpperBound: Highest allowable fold angle for each fold
121 I.FoldAngleUpperBound = [
122 pi; pi; pi; pi; pi; ...
123 pi; pi; pi ];
124

125 % I.FoldAngleLowerBound: Lowest allowable fold angle for each fold
126 I.FoldAngleLowerBound = [
127 -pi; -pi; -pi; -pi; -pi; ...
128 -pi; -pi; -pi];
129

130 % I.FoldAngleInitialValue: Initial value for each fold
131 I.FoldAngleInitialValue = [
132 0; 0; 0; 0; 0; ...
133 0; 0; 0];
134

135 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
136 % User inputs for kinematic simulation
137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
138

139 % KI.WeightRotationConstraint: Weight for residuals from rotation
140 % constraints
141 KI.WeightRotationConstraint = 1;
142

143 % KI.WeightTranslationConstraint: Weight for residuals from translation
144 % constraints
145 KI.WeightTranslationConstraint = 1e-3;
146

147 % KI.WeightFoldAngleBounds: Weight for residuals from fold angle bound
148 % constraints
149 KI.WeightFoldAngleBounds = 1e-5;
150



444 Appendix B Examples of Implementation Codes

151 % KI.ToleranceResidual: Tolerance for norm of residual vector
152 KI.ToleranceResidual = 1e-11;
153

154 % KI.ToleranceFoldAngle: Tolerance for correction of fold angles
155 KI.ToleranceFoldAngle = 1e-8;
156

157 % KI.MaxIterations: Maximum number of iterations allowed for each increment
158 KI.MaxIterations = 15;
159

160 % KI.MaxFoldAngleCorrection: Maximum correction allowed for individual fold
161 % angles in each iteration
162 KI.MaxFoldAngleCorrection = 5*pi/180;
163

164 % Num_Increments: Number of increments
165 NumIncrements = 20;
166

167 % KI.FoldAngleChangePerIncrement: Initialize matrix that contains each fold
168 % angle change for every increment
169 KI.FoldAngleChangePerIncrement = zeros( size(I.FoldVectorPoints,1), ...

NumIncrements);
170

171 % ReferenceFoldAngle: Reference angle for filling fold angle change per
172 % increment matrix
173 ReferenceFoldAngle = 150*pi/180;
174

175 % Fold angle change per increment matrix components
176 for i = 1:NumIncrements
177 KI.FoldAngleChangePerIncrement(1:end,i) = ...
178 ReferenceFoldAngle/NumIncrements*[
179 1; -1; 1; -1; 1;
180 -1; 1; -1];
181 end
182

183 % KI.Continuity: Input to determine order of continuity. Input 1 for G^1
184 % continuity and input 2 for G^2 continuity
185 KI.Continuity = 2;
186

187 % KI.IncrementCorrection: Input to determine one of two methods for
188 % calculating initial fold angle increment. One uses the previous
189 % Jacobian (corrected; Select 1) and the other one does not (not
190 % corrected; Select 2)
191 KI.IncrementCorrection = 1;
192

193 % KI.DisplayIncrementInfo: Input to allow for the display of iteration
194 % information for each increment (1 to display, 0 to suppress)
195 KI.DisplayIncrementInfo = 1;
196

197 % KI.FinDiffStep: Finite difference step in fold angles for calculation of
198 % derivatives
199 KI.FinDiffStep = 2*pi/180;
200

201 % User input for initial camera angle for folded configuration plots
202 % I.InitialCameraHorizontalRotation: Horizontal rotation about the 3-axis
203 % from negative 2-axis (degrees)
204 I.InitialCameraHorizontalRotation=135;
205

206 % I.InitialCameraVerticalElevation: Vertical elevation of viewpoint
207 % (degrees)
208 I.InitialCameraVerticalElevation=30;
209

210 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
211 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
212 % Call main module for simulation
213 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
215 [PD,O] = Origami_Solver(I,KI);



B.4 Implementation of the Kinematic Model for Origami with Smooth Folds 445

Fig. B.6 Screenshots of the output plots generated by the MATLAB scripts for the kinematic
model of origami with smooth folds presented in Chap. 5. (a) Location of the vertices and the fold
centerlines. (b) Reference configuration. (c) Fold angles vs. increment number. (d)–(f) Plots of
configurations for the requested increments
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B.5 Implementation of the Unfolding Polyhedra Method for
Origami with Smooth Folds (Chap. 6)

The MATLAB scripts that represent the implementation of the unfolding polyhedra
method for origami with smooth folds presented in Chap. 6 are described here.
The full set of MATLAB scripts can be obtained from the Supplemental Material
associated with that chapter.

To determine a net having smooth folds for a given goal mesh, the user opens and
executes in MATLAB the corresponding .m file with name starting with Input.
As an example, the code presented in this section is an input MATLAB script
(named Input_Unfolding_Octahedron.m in the Supplemental Material)
used to determine a net for an octahedron (Fig. 6.7c).

In the following code, we initialize the MATLAB environment in line 20 by
clearing all the previously defined variables and functions from memory, closing all
the open figures, and clearing the command window. We provide the fold widths in
line 34. The order of geometric continuity of the smooth folds is provided in line
37 (1: first-order; 2: second-order). In line 40, we provide the index of the face that
corresponds to the reference face. In lines 43–49, we provide the coordinates of the
nodes of the goal mesh. In lines 52–60, we provide connectivity information and
indicate which nodes are associated with each face of the goal mesh. In line 67,
we call the function Polyhedra_Solver.m that manages all the other functions
required to determine a net for the given goal mesh. Such functions include:

1. Goal_Mesh_Data.m: Determines the geometric parameters associated with
the goal mesh and the spanning tree

2. Fold_Width_Straight.m: Determines the variable ŵi
3. Initial_Plots.m: Generates plots associated with the goal mesh and the

spanning tree (Fig. B.7a–c)
4. Configuration_Mapping.m: Maps each face of the goal mesh towards its

corresponding position in the net
5. Reference_Configuration_Plot.m: Generates a plot of the net

(Fig. B.7d)
6. Simulation_Input.m: Generates the data required to simulate the folding

motion of the determined net back toward the three-dimensional goal mesh using
the kinematic model developed in Chap. 5

The main numerical output from such files is the MATLAB variable IN (saved
in line 70 of the following code), which is a structure containing the data required
to simulate the folding motion of the determined net using the kinematic model
presented in Chap. 5.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Supplemental Material
3 %
4 % ACTIVE ORIGAMI
5 % MODELING, DESIGN, AND APPLICATIONS
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6 %
7 % Edwin A. Peraza Hernandez, Darren J. Hartl, Dimitris C. Lagoudas
8 %
9 % Springer

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %
12 % Code for Unfolding Polyhedra of Origami with Smooth Folds
13 % Code authors: Edwin A. Peraza Hernandez, Trent White
14 % 06-2017
15 %
16 % Refer to Appendix B of the book for further information about the codes
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % Initializing environment
20 clear all; close all; clc
21

22 % Main Structures
23 % I: Structure with general inputs
24 % MD: Structure with goal mesh data
25 % MO: Structure with mapping outputs
26 % IN: Structure with outputs corresponding to Kinematic Origami simulation
27 % required inputs
28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 % User inputs for goal mesh geometry
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32

33 % I.FoldWidthInput: Fold width
34 I.FoldWidthInput = 0.2;
35

36 % I.Continuity: Order of geometric continuity of the folds
37 I.Continuity = 2;
38

39 % I.ReferenceFace: Index of reference face for geometry
40 I.ReferenceFace = 1;
41

42 % I.NodeCoordinates: Coordinates of each node in goal mesh
43 I.NodeCoordinates = [...
44 1 0 0 % Coordinates of node 1
45 -1 0 0 % Coordinates of node 2
46 0 1 0 % Coordinates of node 3
47 0 -1 0
48 0 0 1
49 0 0 -1];
50

51 % I.FaceNodeIndices: Indices of nodes defining each face (ccw order)
52 I.FaceNodeIndices = [...
53 1 3 5 % Node indices for face 1
54 1 5 4 % Node indices for face 2
55 2 4 5 % Node indices for face 3
56 2 5 3
57 4 2 6
58 6 2 3
59 6 3 1
60 1 4 6];
61

62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 % Call main module for simulation
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67 [I,MD,MO,IN] = Polyhedra_Solver(I);
68

69 % Save structure IN for use in kinematic origami simulation code
70 save('IN','IN')
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Fig. B.7 Screenshots of the output plots generated by the MATLAB scripts for the unfolding
polyhedra method for origami with smooth folds presented in Chap. 6

After executing an input script, such as the one previously shown, and determin-
ing a net with smooth folds for a given goal mesh, the user can execute the MATLAB
script Kinematic_Simulation_Input.m. The script loads the MATLAB
variable IN saved by the input script in order to simulate the folding motion of
the determined net. The user can specify the algorithmic parameters required to
simulate the folding motion in the script Kinematic_Simulation_Input.m
just as in the script described in Sect. B.4. After the execution of the script
Kinematic_Simulation_Input.m, an arbitrary number of configurations of
the determined net from the planar reference configuration to the configuration that
approximates the goal mesh are obtained as shown in Fig. B.8.
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Fig. B.8 Screenshots of the output plots generated by the script
Kinematic_Simulation_Input.m that simulates the folding motion of a net having
smooth folds using the kinematic model presented in Chap. 5

B.6 Implementation of the Tuck-Folding Method for
Origami with Smooth Folds (Chap. 7)

Here, we describe the MATLAB scripts representing the implementation of the tuck-
folding method for origami with smooth folds presented in Chap. 7. The full set of
MATLAB scripts can be obtained from the Supplemental Material associated with
that chapter.

To determine an origami sheet design having smooth folds for a given goal
mesh using the tuck-folding method, the user opens and executes in MATLAB
the corresponding .m file with name starting with Input. For example, the
code presented in this section is an input MATLAB script used to determine
an origami sheet design for the pyramid shown in Fig. 7.3 (the script is named
Input_Origami_Single_Vertex_5_Edges.m in the Supplemental Mate-
rial).
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In the following code, we initialize the MATLAB environment in line 20 by
clearing all the previously defined variables and functions from memory, closing all
the open figures, and clearing the command window. In lines 34–41, we provide
the coordinates of the nodes of the goal mesh. We define connectivity and indicate
which nodes are associated with each face of the goal mesh in lines 44–49. In
line 52, we indicate the pairs of nodes defining the edges of the goal mesh that
are assigned as boundary edges by the user (i.e., if these are not evident from the
goal mesh, as in the case of closed shapes). In line 56, we provide the initial guess
for the length variable of the edge modules (Ŵi , refer to Fig. 7.5a). In line 60, we
provide the initial guess for the angular variable of the edge modules (ψ̂i , refer to
Fig. 7.5a). In lines 63 and 64, we provide the fold widths of the smooth folds in the
edge modules. In lines 67–103, we provide the algorithmic parameters required in
the numerical implementation of the tuck-folding method. In line 110, we call the
function Tuck_Fold_Solver.m that manages all the other functions required to
determine a sheet design for the given goal mesh. Such functions include:

1. Goal_Mesh_Data.m: Determines the geometric parameters associated with
the goal mesh

2. Fold_Width_Straight.m: Determines the variable ŵi
3. Initial_Plots.m: Generates plots associated with the goal mesh

(Fig. B.9a–c)
4. Design_Parameter_Data.m: Determines the values of the edge module

variables using the procedure outlined in Sect. 4.2.5
5. Angle_Equality.m: Evaluates the constraint (7.9)
6. Length_Equality.m: Evaluates the constraint (7.10)
7. Angle_Inequality.m: Evaluates the constraints (7.11)
8. Length_Inequality.m: Evaluates the constraints (7.12) and (7.13)
9. Configuration_Mapping.m: Maps each face of the goal mesh towards

its corresponding position in the sheet design
10. Reference_Configuration_Plot.m: Generates a plot of the origami

sheet design (Fig. B.9d)
11. Simulation_Input.m: Generates the data required to simulate the folding

motion of the determined sheet design back toward the goal mesh using the
kinematic model presented in Chap. 5

The main output from such files is the MATLAB variable IN (saved in line 113 of
the following code), which is a structure containing the data required to simulate the
folding motion of the determined sheet design using the kinematic model developed
in Chap. 5.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Supplemental Material
3 %
4 % ACTIVE ORIGAMI
5 % MODELING, DESIGN, AND APPLICATIONS
6 %
7 % Edwin A. Peraza Hernandez, Darren J. Hartl, Dimitris C. Lagoudas
8 %
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9 % Springer
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %
12 % Code for Tuck-Folding Method of Origami with Smooth Folds
13 % Code authors: Edwin A. Peraza Hernandez, Trent White
14 % 06-2017
15 %
16 % Refer to Appendix B of the book for further information about the codes
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % Initializing environment
20 clear all; close all; clc
21

22 % Main Structures
23 % I: Structure with general inputs
24 % O: Structure with outputs from solving for design parameters
25 % MO: Structure with mapping outputs
26 % IN: Structure with outputs corresponding to Kinematic Origami simulation
27 % required inputs
28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 % User inputs for goal mesh geometry
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32

33 % I.NodeCoordinates: Coordinates of each node in goal mesh
34 I.NodeCoordinates = [...
35 10 10 9 % Coordinates of node 1
36 17 10 2 % Coordinates of node 2
37 0 -2 0 % Coordinates of node 3
38 20 0 0
39 0 20 0
40 20 20 0
41 ];
42

43 % I.FaceNodeIndices: Indices of nodes defining each face (ccw order)
44 I.FaceNodeIndices = [ 1 3 4 % Node indices for face 1
45 4 2 1 % Node indices for face 2
46 1 2 6 % Node indices for face 3
47 1 6 5
48 3 1 5
49 ];
50

51 % I.BoundaryEdges: Extra boundary edges defined by user
52 I.BoundaryEdges = [];
53

54 % I.WInitialGuess: Initial guess for distance between the two midpoints of
55 % the outer folds of each edge module
56 I.WInitialGuess = 6;
57

58 % I.OuterFoldAngleGuess: Initial guess for angle between outer folds of
59 % each edge module
60 I.OuterFoldAngleGuess = 0;
61

62 % Fold widths
63 I.InnerFoldWidthInput = 1.0;
64 I.ExternalFoldWidthInput = 1.0;
65

66 % I.ExtraAngleShrinkage: Extra trim angle shrinkage
67 I.ExtraAngleShrinkage = 0*pi/180;
68

69 % I.ExtraAngleBoundary: Extra trim angle boundary
70 I.ExtraAngleBoundary = 0*pi/180;
71

72 % I.Continuity: Order of geometric continuity for the folds
73 I.Continuity = 2;
74
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75 % I.AllowTrimMaterial: 1: allow trim to add more material, otherwise: ...
disallow

76 I.AllowTrimMaterial = 0;
77

78 % I.ReferenceFace: Index of reference face
79 I.ReferenceFace = 3;
80

81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
82 % User algorithmic inputs
83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
84

85 % I.MaxIterations: Maximum number of iterations
86 I.MaxIterations = 400;
87

88 % I.ToleranceResidual: Tolerance for norm of residual vector
89 I.ToleranceResidual = 1e-5;
90

91 % I.ToleranceChangeVariables: Tolerance in change of variables
92 I.ToleranceChangeVariables = 0;
93

94 % I.AngleBoundaryShift: Boundary shift to convert strict angle ...
inequalities to relaxed inequalities

95 I.AngleBoundaryShift = 10*pi/180;
96

97 % I.LengthBoundaryShift: Boundary shift to convert strict length ...
inequalities to relaxed inequalities

98 I.LengthBoundaryShift = I.InnerFoldWidthInput*1;
99

100 % I.AngleFinDiffStep: Finite difference step for angles
101 I.AngleFinDiffStep = 1*pi/180;
102 % I.LengthFinDiffStep: Finite difference step for lengths
103 I.LengthFinDiffStep = 1e-2;
104

105 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 % Call main module for simulation
108 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
109 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110 [I, O, MO, IN] = Tuck_Fold_Solver(I);
111

112 % Save structure IN for use in kinematic origami simulation code
113 save('IN','IN')

After executing an input script, such as the one previously shown, and
determining a sheet design with smooth folds for a given goal mesh, the user
can execute the MATLAB script Kinematic_Simulation_Input.m. The
script loads the MATLAB variable IN saved by the input script in order to
simulate the folding motion of the sheet design. The user can specify the
algorithmic parameters required to simulate the folding motion in the script
Kinematic_Simulation_Input.m just as in the script described in Sect. B.4.
After the execution of the script Kinematic_Simulation_Input.m, an
arbitrary number of configurations of the sheet design from the planar reference
configuration to the configuration that approximates the goal mesh are obtained as
shown in Fig. B.10.
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Fig. B.9 Screenshots of the output plots generated by the MATLAB scripts for the tuck-folding
method for origami with smooth folds presented in Chap. 7
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Fig. B.10 Screenshots of the output plots generated by the script
Kinematic_Simulation_Input.m that simulates the folding motion of a determined
origami sheet design using the kinematic model presented in Chap. 5



Appendix C
Constitutive Models

In this appendix, we summarize the constitutive models for the materials considered
in the examples of Chap. 8. As noted in Sect. 8.3.2, the constitutive response of a
material is manifested in the equation of conservation of linear momentum (8.14)
in the formulation for the second-order Cauchy stress tensor σ , which is a
function of the material deformation and other physical fields. Here we provide
such a formulation for the stress tensor σ considering: linear elastic materials,
thermoelastic materials, piezoelectric materials, and phase transforming materials.
It is assumed that the reader is familiar with introductory continuum mechanics and
tensor algebra [5–8].

C.1 Linear Elastic Materials

For a linear elastic material, the stress tensor σ is related to the second-order
linearized strain tensor ε via Hooke’s law [9]:

σ = Cε, (C.1)

where C is the constant fourth-order stiffness tensor.
For the plane stress assumptions of classical plate theory, which is employed in

Chap. 8, the stress-strain relation (C.1) is simplified as follows [10]:

⎡

⎢
⎣

σ11

σ22

σ12

⎤

⎥
⎦ = E

1 − ν2

⎡

⎢
⎣

1 ν 0

ν 1 0

0 0 1 − ν

⎤

⎥
⎦

⎡

⎢
⎣

ε11

ε22

ε12

⎤

⎥
⎦ , (C.2)

where E and ν are, respectively, the Young’s modulus and Poisson’s ratio of the
linear elastic material, which is assumed isotropic.
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C.2 Thermoelastic Materials

For a thermoelastic material, the stress tensor σ is related to the strain tensor ε and
the absolute temperature T as follows:

σ = C (ε − α(T − T0)) , (C.3)

where α is the constant second-order tensor of thermoelastic coefficients and T0 is
the reference absolute temperature. For plane stress, and assuming that the material
is isotropic, (C.3) is simplified as follows:

⎡
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⎣
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⎝
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⎦ −

⎡

⎢
⎣

α

α

0

⎤

⎥
⎦ (T − T0)

⎞

⎟
⎠ , (C.4)

where α is the coefficient of thermal expansion.

C.3 Piezoelectric Materials

Piezoelectric materials exhibit coupling between mechanical and electric fields [11,
12]. This coupling allows piezoelectric materials to function as sensors (by gener-
ating electric signals under the application of stress) and actuators (by generating
actuation strains under the application of an electric field due to the piezoelectric
effect). Here, we are particularly interested in the use of piezoelectric materials as
actuators for active origami structures. For these materials, the stress tensor σ is
related to the strain tensor ε and the electric field vector E as follows [13]:

σ = C
(
ε − dPE

)
, (C.5)

where dP is the third-order tensor of piezoelectric coefficients.
Assuming an orthotropic piezoelectric material poled in the 3-direction, (C.5) is

written in plane stress form as follows:
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(C.6)
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where E1, E2, ν12, ν21, and G12 are material parameters that define the orthotropic
stiffness matrix in plane stress, Ê1, Ê2, and Ê3 are the components of the electric
field vector E, and d113 and d223 are piezoelectric coefficients. The parameters E1,
E2, ν12, and ν21 satisfy the following relation:

ν12

E1
= ν21

E2
. (C.7)

C.4 Phase Transforming Materials

In phase transforming materials, actuation strains are generated by changes in
the material microstructure. These changes in the microstructure are dependent on
different physical fields such as stress, temperature, electric field, magnetic field,
etc. depending on the particular phase transforming material. Examples of phase
transforming materials include shape memory alloys (SMAs) and shape memory
polymers (SMPs). The phase transformation process in both SMAs and SMPs
is dependent on stress and temperature. The model presented in this section is
intended for SMAs; however, we note that analogous mathematical formulations
can be used to model other phase transforming materials. Shape memory alloys
are active materials that undergo solid-to-solid martensitic phase transformations
induced by temperature and/or stress stimuli during which they can generate or
recover seemingly permanent strains [14]. Such martensitic phase transformations
occur between a martensite phase (stable at low temperatures) and an austenite
phase (stable at high temperatures). Actuation strains in an SMA are obtained in
the form of transformation strains, which are generated when the SMA transforms
from austenite to martensite (forward transformation) and recovered when the SMA
transforms from martensite to austenite (reverse transformation). The magnitude of
such transformation strains typically ranges between 1% and 5% [14].

Shape memory alloys have various applications in different fields such as
aerospace [15–17], robotics [18, 19], and others [20]. Shape memory alloys exhibit
the highest actuation energy density of all conventionally used active materials [14].
Therefore, SMAs can provide a significant amount of strain under large stresses, a
characteristic of high utility in active origami structures.

A phase diagram associated with SMAs is illustrated in Fig. C.1. The experimen-
tally determined transformation temperatures at zero stress are denoted martensite
start temperatureMs , martensite finish temperatureMf , austenite start temperature
As , and austenite finish temperature Af . The stress influence coefficients CA and
CM are the slopes of the boundaries where transformation starts and ends as
indicated in Fig. C.1.

An actuation cycle for an SMA is shown schematically in Fig. C.2. The ther-
momechanical loading path in the phase diagram (cooling and heating at constant
stress in this example) is shown in Fig. C.2a while the corresponding SMA response
in the strain-temperature space is shown in Fig. C.2b. The point 0 denotes the
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Fig. C.1 Schematic of the
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Fig. C.2 Schematic of an
actuation cycle for an SMA at
constant stress: (a)
Thermomechanical loading
path in the phase diagram
(cooling and heating at
constant stress); (b) SMA
response in the
strain-temperature space
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initial state of the material (100% austenite). During cooling, the SMA exhibits a
thermoelastic response until it reaches state 1 (at the martensite start boundary in the
phase diagram). After the SMA reaches state 1, forward transformation occurs and
transformation strains are generated until the SMA reaches state 2 (at the martensite
finish boundary). During heating, after the SMA reaches state 3 (at the austenite start
boundary), reverse transformation occurs and transformation strains are recovered
until the SMA reaches state 4 (at the austenite finish boundary).

After briefly reviewing the main actuation characteristics of SMAs, we now
describe the model that allows us to simulate such an actuation response. The
detailed description of the constitutive model for monolithic SMAs presented here
is provided in [21] and we only summarize the main equations used. The model
has been previously applied to the analysis of a large spectrum of active structures
having SMA components [22, 23]. The internal state variables associated with the
inelastic transformation process of SMAs are the martensite volume fraction ξ and
the second-order transformation strain tensor εt . The martensite volume fraction
ξ ranges from 0 (SMA in 100% austenite phase) to 1 (SMA in 100% martensite
phase). The stress tensor σ is given as follows (cf. (8.18)):

σ = C(ξ)
(
ε − α(T − T0)− εt

)
, (C.8)

The fourth-order stiffness tensor C(ξ) is determined as follows:

C(ξ) =
(
SA + ξ(SM − SA)

)−1 =
(
SA + ξΔS

)−1
. (C.9)

where SA is the fourth-order compliance tensor of austenite and SM is the fourth-
order compliance tensor of martensite, both assumed isotropic and therefore being
defined by Young’s moduli EA and EM and Poisson’s ratios νA and νM . The
following relation between the rates of εt and ξ is assumed [21]:

ε̇t = Λt ξ̇ , Λt =
{

Λt
fwd; ξ̇ > 0

Λt
rev; ξ̇ < 0.

(C.10)

In the above relation, Λt is the second-order transformation direction tensor and
its expressions for forward and reverse transformation are given as follows:

Λt
fwd = 3

2
H cur σ

′

σ̄
, Λt

rev = εt−r

ξ r
, (C.11)

where H cur is the transformation strain magnitude for full transformation, σ ′ is the
second-order deviatoric stress tensor, σ̄ is the von Mises stress, εt−r is the second-
order transformation strain tensor at the cessation of forward transformation, and ξ r

is the martensite volume fraction at the cessation of forward transformation. The
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deviatoric stress tensor σ ′ is given as σ ′ = σ − 1
3 tr(σ )1, where 1 is second-

order identity tensor and tr(·) is the trace operator. The von Mises stress σ̄ is

given as σ̄ =
(

3
2‖σ ′‖2

) 1
2
, where ‖ · ‖2 denotes the inner product of the enclosed

tensor. It is noted in (C.11) that the direction of the transformation strains generated
during forward transformation Λt

fwd corresponds to that of the deviatoric stress σ ′.
Therefore, the transformation strains generated by an SMA are isochoric (i.e., they
preserve volume). The transformation strain magnitude for full transformation H cur

is given as follows [21]:

H cur(σ̄ ) =
{

Hmin; σ̄ ≤ σ̄crit

Hmin + (Hsat −Hmin)(1 − e−k(σ̄−σ̄crit)); σ̄ > σ̄crit,
(C.12)

whereHmin is the magnitude of the observable two-way shape memory effect strain,
Hsat is the magnitude of the maximum transformation strain attained by the SMA,
and σ̄crit denotes the critical von Mises stress below which H cur = Hmin. The
parameter k dictates the rate at which H cur exponentially evolves from Hmin to Hsat
as the von Mises stress σ̄ increases.

Certain constraints on the evolution of martensite volume fraction ξ must
be defined to capture the response of the SMA shown in the phase diagram
(Fig. C.1) [21]. To this end, we introduce the transformation function Φt . The
constraints on the evolution of ξ are then given as follows:

Φt ≤ 0, ξ̇Φt = 0, 0 ≤ ξ ≤ 1. (C.13)

The previous constraints are known as the Kuhn-Tucker conditions [21]. The
following branched form of Φt is used:

Φt =
⎧
⎨

⎩

Φt
fwd; 0 ≤ ξ < 1, ξ̇ ≥ 0

Φt
rev; 0 < ξ ≤ 1, ξ̇ ≤ 0,

(C.14)

where the transformation functions for forward and reverse transformation (Φt
fwd

and Φt
rev, respectively) are given as follows:

Φt
fwd = (1 −D)σ : Λt

fwd + 1
2σ : ΔSσ + ρΔs0T − ρΔu0

−
(

1
2a1(1 + ξn1 − (1 − ξ)n2)+ a3

)
− Y t0,

(C.15)

Φt
rev = −(1 +D)σ : Λt

rev − 1
2σ : ΔSσ − ρΔs0T + ρΔu0

+
(

1
2a2(1 + ξn3 − (1 − ξ)n4)− a3

)
− Y t0 .

(C.16)
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The parameters ρΔs0, ρΔu0, a1, a2, a3, D, and Y t0 are calibrated from the
experimentally determined transformation temperatures at zero stress (Ms , Mf , As ,
and Af , see Fig. C.1), the stress influence coefficients (CA and CM , see Fig. C.1),
and parameters defining H cur (see (C.12)) as follows:

a1 = ρΔs0(Mf −Ms), (C.17)

a2 = ρΔs0(As − Af ), (C.18)

a3 = −a1

4

(

1 + 1

n1 + 1
− 1

n2 + 1

)

+ a2

4

(

1 + 1

n3 + 1
− 1

n4 + 1

)

, (C.19)

ρΔu0 = ρΔs0

2

(
Ms + Af

)
, (C.20)

Y t0 = ρΔs0

2
(Ms − Af )− a3, (C.21)
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−2
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CMCA

) [
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D =
(
CM − CA

) [
H cur(σ )+ σ∂σH

cur(σ )+ σ
(

1
EM

− 1
EA

)]

(
CM + CA

)
[H cur (σ )+ σ∂σH cur(σ )]

∣
∣
∣
∣
σ=σ ∗

, (C.23)

where the smooth hardening parameters ni ∈ (0, 1], i = 1, . . . , 4, determine the
level of smoothness in the transitions between transformation and thermoelastic
loading domains. The calibration stress for the stress influence coefficients CM and
CA is denoted σ ∗.

For the plane stress, (C.8) is simplified and only the following stress components
are considered:
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σ11
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σ12
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⎦ = CP (ξ)

⎡
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ε11 − α(T − T0)− εt11
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⎥
⎦ , (C.24)

where CP (ξ) ∈ R
3×3 is the stiffness matrix determined via (C.9) and simplified for

plane stress.
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A
active materials, 13, 14, 332, 341
active origami structures, 14, 15, 331, 332
actuation strains, 341

C
chemically activated origami structures, 17, 21
classical plate theory, 334
configuration, 59
conservation of angular momentum, 340
conservation of linear momentum, 339
constitutive model, 341, 455
continuity conditions, 213
crease pattern, 60
creased folds, 10, 55, 57, 58
current configuration, 59, 204
cylindrical bending, 206, 336

D
developability, 69, 225
developability constraint, 69, 225
dielectric elastomers, 15
dihedral angle, 140, 179

E
edge module, 160, 163, 296
edge module trimming, 172, 305
electromagnetically activated origami

structures, 17, 24

F
face connectivity matrix, 82, 244
face corner angles, 67, 122
face trimming, 272, 274, 294, 297
faces, 57, 59, 204
final configuration, 60, 204
finite element analysis, 33, 354
fold angle, 60, 208, 344
fold arc-length, 211, 344
fold centerlines, 218
fold connectivity matrix, 63, 218
fold coordinate system, 209
fold cross-section curve, 208, 237
fold interpolation polynomials, 217
fold intersection, 65, 222
fold intersection connectivity matrix, 65
fold lines, 57, 61
fold parameterization, 217
fold pattern, 57, 60, 218
fold vector, 63, 219
fold width, 209, 337, 366, 378
folding map, 81, 90, 241, 247
folding transformation matrix, 88, 247
Freeform Origami, 30

G
Gaussian curvature, 69
geometric continuity, 213
goal configuration, 114, 160
goal fold angles, 140, 179
goal mesh, 114, 116, 159, 270, 294
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H
Hamilton’s principle, 343, 344
Hooke’s law, 341, 455
hydrogel, 15

I
interior fold intersection, 65, 222

K
Kepler-Poinsot polyhedra, 185
kinematic constraints, 78, 226
kinematics, 30, 55, 201

L
linear elastic material, 341, 455
loop closure constraint, 70, 226

M
magnetoactive elastomers, 15
MATLAB scripts, 427
mesh connectivity matrix, 117
mesh faces, 116
mid-surface, 204, 254, 332
Miura-Ori, 1, 61, 218
mountain folds, 57, 60
mountain-valley assignment, 57

N
net, 112, 114, 270

O
optimization, 367, 378
origami airplane, 56
origami crane, 4, 58, 205
origami design, 26, 111, 269
origami fan, 253
origami helix, 98
origami umbrella, 254
origami with creased folds, 57
origami with smooth folds, 204
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penalty function, 344
phase transforming materials, 457

piezoelectric materials, 456
Platonic solids, 144, 278
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principle of virtual work, 346
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reference configuration, 57, 59, 204
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Rigid Origami Simulator, 30
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self-folding, 13, 319, 332
self-similar wave, 100, 252
shape memory alloy, 14, 457
shape memory polymer, 14, 319
smooth fold domain, 332
smooth folds, 10, 201, 206, 332
spanning tree, 114, 125, 271
stress tensor, 340
surface area efficiency, 183

T
thermally activated origami structures, 16
thermoelastic material, 456
thick panels, 253
thickness, 28, 204, 254, 334
translation constraint, 236, 344
TreeMaker, 27
tuck-folding method, 28, 159, 293, 378

U
unfolding, 28, 112, 270
unfolding map, 114, 129
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V
valid configuration, 60, 206
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