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Introduction

Founders of electromagnetism 

Michael Faraday came from a poor family; at times his weekly diet 
consisted of no more than a loaf of bread. He was apprenticed to a 
bookbinder and became aware of science by reading books and 
attending public lectures at the Royal Institution. He secured his first 
job in science by taking lecture notes, binding them and presenting 
them to the lecturer, Humphry Davy, who took him on as an assistant. 
But Faraday was endlessly inquisitive and soon explored on his own 
initiative. By the early 1830s, he had discovered electromagnetic 
induction, built the first transformer, established the principle of the 
electric motor and produced the first continuous electrical generator. In 
order to account for his observations, Faraday introduced the concept 
of a field. 

Figure 1 Michael Faraday 
(1791–1867). 

James Clerk Maxwell produced a unified theory of the electromagnetic 
field and used it to show that light is a type of electromagnetic wave. 
This prediction dates from the early 1860s when Maxwell was at 
King’s College, London. Shortly afterwards Maxwell decided to retire 
to his family estate in Galloway in order to concentrate on research, 
unhindered by other duties. He was lured out of retirement in 1871, 
when he became the first professor of experimental physics in the 
Cavendish Laboratory, Cambridge. Given Maxwell’s present status as 
one of the greatest of all physicists, it is astonishing to learn that he was 
the third choice for this job. Incidentally, Clerk Maxwell (without a 
hyphen) is a surname; Maxwell’s father, John Clerk, simply appended 
‘Maxwell’ to his own name in order to smooth a legal transaction. 

Figure 2 James Clerk Maxwell 
(1831–1879). 
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Introduction 

Why study electromagnetism? 

Electromagnetism was slow to get going. About a century after Newton published 
the law of universal gravitation, Coulomb discovered the law of electrostatic 
force, but it took another century before all the laws of electromagnetism were 
established. In retrospect, this slow development of electromagnetism is not 
surprising. Newton provided a mechanical world-view which worked 
marvellously well in the context of gravity, but which struggled to explain the 
more subtle effects of electricity and magnetism. It turned out that a key idea was 
missing — that of a field. Through long experience in the laboratory, Michael 
Faraday convinced himself that magnetic fields form part of the fabric of the 
world, every bit as real as particles. He explained the results of his experiments in 
terms of fields, drawing diagrams to help him visualize them. But the 
mathematics needed to describe fields was a significant hurdle, which Faraday 
was ill-equipped to surmount. 

The full power of Faraday’s field concept was revealed by James Clerk Maxwell, 
who deliberately chose to read Faraday’s Experimental Researches in Electricity 
before applying any mathematics to the subject. In 1864, Maxwell distilled all the 
known properties of electric and magnetic fields into a set of four equations, 
known as Maxwell’s equations. These equations led to one of the greatest 
discoveries in science — the realization that light is an electromagnetic wave. The 
Earth is bathed in light from the Sun. The propagation of this light, the blueness of 
the sky, the sparkling of ocean spray, the colours of rainbows and butterfly wings, 
can all be explained by Maxwell’s equations. It is not every day that a whole 
branch of physics is merged with another, yet this is what Maxwell achieved — 
optics became a branch of electromagnetism. Before long, it became clear that 
electromagnetic waves also exist beyond the narrow band detected by our eyes. 
Radio waves and X-rays are other types of electromagnetic wave, important in 
engineering, medicine and astronomy. No wonder that Maxwell’s publication of 
the laws of electromagnetism has been described as the most significant event of 
the nineteenth century. These laws are the main subject of this book. 

There are many good reasons for studying electromagnetism, and therefore 
Maxwell’s equations, in depth. Your motivation might come from a desire to 
understand fundamental physics, applications in science, applications in 
technology and medicine, or you might be interested in seeing how mathematics 
is used to explain physical effects. Let me say a few words about each of these 
motives. 

1 Fundamental physics Electromagnetism is one of four fundamental forces 
of Nature — the others being gravity, the strong nuclear force and the weak 
nuclear force. Of these forces, electromagnetism is the one that physicists 
understand best. Nuclear forces are complicated and gravity is hard to reconcile 
with quantum mechanics, but physicists are very confident that they know how 
electromagnetism works. Part of the importance of electromagnetism stems from 
the fact that it is a theory of fields. Electromagnetism was the first, and remains 
the most familiar, theory of fields. Most fundamental physics is about fields of 
various kinds, so electromagnetism has provided a sort of template from which 
other, more elaborate, theories have grown. 

Combining electromagnetism with a quantum theory of fields, Richard Feynman 
and others developed quantum electrodynamics. This is the most precisely 
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confirmed physical theory ever devised; measurement and theory agree to at least 
16 significant figures. The success of quantum electrodynamics has inspired the 
search for analogous theories of the other three forces, with the ultimate goal of 
obtaining a theory of everything — a super-unified theory of all four fundamental 
forces. Such ambitions lie beyond the scope of this book, and we will not use 
quantum theory at all, but it is interesting to note that classical electromagnetism 
has nourished all these developments. Electromagnetism has led to other 
profound ideas too. For example, Einstein was unconvinced by the explanations 
of electromagnetic induction found in the textbooks of his day. Special relativity 
was the fruit of this scepticism. Electromagnetism continues to suggest concepts 
that might be useful in other areas of physics. For example, astronomers are 
currently trying to detect a ‘gravimagnetic’ force. This is a modification of gravity 
that might arise when bodies move very rapidly. It can be thought of as a 
gravitational analogue of the magnetic force. 

Applications in science The forces that bind atoms together in molecules 
and solids are electromagnetic in origin. This means that other sciences raise 
questions that require deep understanding of electromagnetism. In biology, for 
example, the membrane of a resting nerve cell has a negatively-charged inner 
surface and a positively-charged outer surface. Nerve impulses consist of 
localized reversals of this polarity, which sweep along the cell at speeds of up to 
100 m s−1 (Figure 3). As you read this page, electromagnetic waves enter your 
eye. Even the transparent outer coating of the eye, the cornea, is a wonder of 
Nature. It is constructed from fibres of collagen, the same material that forms 
tendons, yet it is almost perfectly transparent. To understand the origin of this 
transparency, we need to know how electromagnetic waves propagate through 
media containing fibres, a topic that will be discussed in Book 3 of this series. 
Light focused on the back of the eye stimulates nerve impulses which propagate 
to the visual cortex of the brain, and in a complicated and poorly understood way, 
stimulate other areas of the brain. All of this activity involves electrical signals, 
subject to the laws of electromagnetism. 

Step out of the house and look upwards. With clear skies you should see blue sky 
or stars, depending on the time of day. The blueness of the sky is due to the 
scattering of sunlight in the atmosphere. The stars reveal their presence by 
emitting electromagnetic waves, which propagate across vast distances of almost 
empty space. Of course, the whole subject of astronomy has progressed largely 
thanks to our ability to detect and analyze electromagnetic waves of various 

Introduction


Figure 3 A nerve impulse is a 
reversal of polarity across the 
membrane of a nerve cell. It 
sweeps along the cell, 
accompanied by a blip in the 
voltage difference across the 
membrane and sustained by 
flows of sodium ions (Na+) and  
potassium ions (K+) through 
voltage-sensitive channels in the 
membrane. 
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Introduction 

Figure 5 The experimental 
Japanese MAGLEV train, which 
has reached 360 m.p.h. 

wavelengths. In polar latitudes you may see the aurora; in England you are more 
likely to see a rainbow (Figure 4). All these phenomena are explained by the laws 
of electromagnetism. 

Figure 4 (a) The aurora borealis and (b) a rainbow. 

3 Applications in technology and medicine Modern society relies on a 
mastery of electromagnetic forces, currents, fields and waves. Think, for example, 
of electric lighting and heating, vacuum cleaners, car ignition systems, radar, 
mobile phones, televisions, satellite communication, body scanners, computers 
and the internet. Many sources of power are available to us — coal, gas, nuclear, 
solar, tidal or wind. In each case, there is a technology that produces electricity 
from the power source and distributes it across countries or even continents. It is 
easy to take these things for granted, but most of us would feel terribly deprived if 
electricity, and all its applications, were suddenly taken away from us. We are 
creatures of an electrical and electronic age. 

Progress shows no sign of slackening. For a few years, at least, computers will 
continue to improve, with faster processors, more memory and better data storage. 
It seems likely that electrically-driven vehicles will eventually displace our 
petrol-fuelled cars. Magnetically-levitated trains may become commonplace, 
especially if superconductors can be made to work at room temperature (Figure 5). 
Photonic circuits, similar to electronic circuits, but based on the propagation of 
electromagnetic waves rather than electrons, may be used in household devices. It 
is probably unwise to gaze too closely into the crystal ball, but there are certainly 
more surprises and delights to come, with future generations of inventors and 
designers continuing to exploit fundamental electromagnetic concepts and laws. 

4 Using mathematics Lastly, you may be interested in the mathematics that 
underlies electromagnetism. Maxwell’s equations can be described in various 
mathematical ways. This course uses the language of vector calculus, which  
means that you will use the ideas of divergence, curl and gradient and integrate 
simple functions over volumes and surfaces and along curves. If you are coming 
to the subject from a background in applied mathematics, you may be pleased that 
electromagnetism provides a concrete setting in which to practise these 
mathematical skills. This will be useful if you ever study other subjects, such as 
fluid mechanics, which are also based on vector calculus. 
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How to study this book 

This book is divided into two parts. 

Part I: The physics of electromagnetism introduces Maxwell’s equations in the 
simple context of charges and currents immersed in empty space. 

Part II: The mathematics of electromagnetism consists of a Mathematical 
Toolkit which reviews the areas of mathematics that are needed to interpret and 
understand Maxwell’s equations. It emphasizes the practical business of how to 
use vector calculus. One advantage of separating the mathematics from the 
physics in this way is it gives you some flexibility in studying the material, 
depending on your background and preferences. 

•	 If you are confident in your mathematical preparation, or if you need some 
physical motivation to spark your interest in mathematics, you will prefer to 
begin with Part I. Following this plan, the mathematics will appear as the 
servant of the physics, and the motivation for each mathematical concept 
should be clear. At various points throughout the text you will be advised to 
study selected mathematical topics from Part II, and you are expected to take 
these detours when they appear. Watch out for the � flag, which indicates a 
recommended detour into the Mathematical Toolkit MT). 

•	 If you feel that mathematics is likely to be a major obstacle, or if you are happy 
to study mathematics without strong physical motivation, you may prefer to 
read Part II before starting Part I. In this way, you can concentrate on mastering 
important mathematical techniques before embarking on physical discussions. 

The relative amounts of time you spend on physics and mathematics will depend 
on your background, but a typical split for this book might be 70% physics, 30% 
mathematics. If you plan to read the book in 11 weeks, starting with all the 
mathematics, you will be on schedule if you start the physics chapters at the 
beginning of week 4. If, like me, you prefer to study physics and mathematics 
together, Table 1 suggests a reasonable way of allocating your time. The study 
times given here allow for lengthy detours into MT. You are strongly advised to 
treat these detours as essential parts of your study and be prepared to spend 
sufficient time on them. To make precise mathematical statements, to solve 
problems and to pass exams, you must be familiar with the material in Part II. If 
you treat Part II as an optional appendix, and choose not to read it, you may only 
achieve an uncertain and superficial understanding of electromagnetism. 

Introduction


We will refer to Section 8.X in 
the Mathematical Toolkit as 
MT 8.X. 

Table 1 A study plan. 

Chapter Time/weeks 
1 1.25 
2 2.5 
3 1.5 
4 1.75 
5 1.75 
6 1.25 
7 1.0 
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Figure 1.1 A charged comb 
attracts water running from a 
tap. 

Part I: The physics of electromagnetism


Chapter 1 Electric forces and fields 
Chapter 1 uses vector notation, unit vectors and vector addition. MT 8.1 
discusses these topics. Be prepared to spend 25% of your study time for this 
chapter on this mathematics. 

1.1 Electric charge 
Knowledge of electricity can be traced back to a prehistoric forest. The trees died 
and their resin hardened to form golden-brown pebbles. The material of these 
pebbles is now called amber, but the ancient Greeks called it ‘elektron’. The 
Greeks noticed that amber, rubbed with fur, has the ability to attract dust. This is 
the first recorded observation of an electric force. You can observe a similar effect 
by combing your hair vigorously with a plastic comb. The comb will become 
electrically charged and attract tiny scraps of paper. Under favourable conditions, 
you will see that it deflects a fine jet of water running from a tap (Figure 1.1). 
More usefully, electric forces are used to guide ink particles to appropriate areas 
of paper in printers and photocopiers and to separate fragments of DNA in 
forensic science laboratories. 

To interpret electric forces we need the concept of electric charge. Nowadays, we 
simply treat charge as a physical property that certain elementary particles 
possess. Electrons and protons are both charged. We shall not delve any deeper 
than this because charge is taken to be a primitive concept — one that is so 
fundamental that it cannot be explained in simpler terms. We can, however, 
describe its properties. 

Charge is the property that allows particles to exert and experience 
electromagnetic forces. It comes in two types — positive and negative. For 
example, a proton, one of the particles in the nucleus of an atom, is positively 
charged, while an electron is negatively charged. Charges of the same sign repel 
one another while charges of opposite sign attract one another. Thus, two protons 
repel one another, two electrons repel one another, and an electron is attracted to a 
proton. The attraction between an electron and a proton is strong enough for the 
two particles to stay bound together, forming an atom of hydrogen. Such an atom 
is uncharged and is said to be electrically neutral. 

Electromagnetic forces decrease with increasing separation. There is practically 
no attraction between an electron on the Moon and a proton on the Earth, but there 
is a much stronger attraction between electrons and protons in the same atom. At 
a given separation, it is interesting to ask how the strength of the electromagnetic 
force compares with that of gravity. The answer is that there is simply no contest. 
Electromagnetic forces are much stronger than gravitational forces. In a hydrogen 
atom, the electron is both electromagnetically and gravitationally attracted to the 
proton, but the electromagnetic attraction is 2 × 1039 times greater than the 
gravitational attraction. Electromagnetic forces can also be compared with two 
other forces known to physicists — the strong and weak nuclear forces. At 
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1.1 Electric charge 

extremely short separations, the strong and weak nuclear forces are larger than the 
electromagnetic force, but these forces only act over very short ranges. At 
separations of more than 10−12 metres, the electromagnetic force is much stronger 
than either of the nuclear forces. Atoms and molecules are at least 100 times 
larger than this, so the electromagnetic force is the only force of any significance 
in chemistry and biochemistry. It is the only force needed to explain the melting 
point of ice, the hardness of diamond or the thoughts running through your brain. 

If you are impressed by the vastness of the ratio 2 × 1039, you might wonder why 
gravity is noticeable at all. Paradoxically, the answer lies in the strong attraction 
between opposite charges, which ensures that bulk matter is normally uncharged. 
For example, a positively-charged nucleus tends to pull negatively-charged 
electrons into its vicinity, forming a neutral atom. Large aggregates of matter tend 
to be made up of neutral atoms and so are themselves electrically neutral. That is 
why the motion of planets and stars is governed by gravity; the electromagnetic 
forces cancel out because planets and stars are practically uncharged. 

To observe charge in detail, we need to disturb the usual neutrality of matter. This 
is what happens in a battery for example, or in an electron microscope which 
creates a stream of electrons. Fortunately, the properties of charge turn out to be 
remarkably simple. They can be summarized as follows: 

Charge is a scalar. A scalar quantity is one that is described by a single real 
number together with an appropriate unit of measurement. In the case of charge, 
the sign of the number indicates whether the charge is positive or negative, and its 
magnitude (in a given system of units) tells us how much charge is present. 

Charge is additive. The total charge within a given region is the sum of all the 
charges in that region. The sum is an algebraic one, with due account taken of the 
signs of the charges, so a system of two charges of equal magnitudes and opposite 
signs has a total charge of zero. 

Charge is conserved. The total charge of the Universe remains constant in time. 
Actually, it is possible to make an even stronger statement: charge is conserved 
locally. This means that the total charge in any region of space remains constant, 
unless charged particles flow across the boundary of the region. If a positive 
charge were created at one point in space and a compensating negative charge 
were simultaneously created at a different point, the total charge of the Universe 
would remain constant. However, the local conservation of charge would be 
violated in the regions around both points, so such a process cannot happen. Figure 1.2 A newly created 

Charge conservation goes beyond the idea that every particle carries a fixed electron–positron pair. 

charge. In modern physics, particles can be destroyed or created. It is possible for 
two high-energy particles to collide and annihilate one another, giving rise to 
completely new particles. Figure 1.2 shows tracks made in a bubble chamber 
following the collision of two neutral particles. These particles annihilate one 
another, producing a positively-charged positron and a negatively-charged 
electron. The newly-created particles have charges of equal magnitude but 
opposite sign, so the initial value of the charge (zero) is maintained locally at the 
site of the collision. 

Charge is invariant. The value of a particle’s charge is agreed on by all 
observers. It does not depend on the observer’s choice of coordinate system or 
state of motion. 

13 



Chapter 1 Electric forces and fields 

Table 1.1 Charges of some

elementary particles.


Particle Charge 
electron −e 
muon −e 
tauon −e 
proton +e 
neutron 0 
neutrino 0 
photon 0 
W+ boson +e 
W− boson −e 
up quark +2e/3 
charm quark +2e/3 
top quark +2e/3 
down quark −e/3 
strange quark −e/3 
bottom quark −e/3 

Charge is quantized. Charge comes in discrete lumps. Table 1.1 shows the 
charges of some elementary particles expressed in terms of the charge of a proton, 
which is given the symbol e. The charge on an electron is −e and, so far as we 
know, all isolated particles have charges that are integer multiples of e. Quarks 
have charges that are integer multiples of e/3, but quarks have never been 
observed as isolated particles. They always occur as combinations with total 
charge −e, 0 or +e. For example, a proton consists of three quarks of charges 
2e/3, 2e/3 and −e/3. By the additivity of charge, its total charge is e. 

It is worth emphasizing that all these properties of charge are believed to be 
exactly true. I say this because strange things can happen in modern physics. In 
relativity, for example, mass is not additive, not conserved and not invariant. By 
contrast, charge is believed to be strictly additive, conserved and invariant. It is a 
scalar quantity, and it comes in quantized lumps. So things could hardly be more 
straightforward. Electromagnetism has its intricacies, but charge is not one of 
them. Charge is a simple concept and is always easy to deal with. 

Exercise 1.1 Why does a comb become positively charged when you run it 
through your hair? Is your explanation consistent with the conservation of charge? 
Why does a charged comb attract neutral scraps of paper? Q 

1.2 Electromagnetic forces 
Charged particles exert electromagnetic forces on one another. Before taking a 
closer look at these forces, let’s briefly recall why force is an important concept in 
classical physics. The main reason is Newton’s second law: 

dp
F = 

dt
, 

which describes how a force F influences the momentum p of a particle. In this 
book, of course, we are concerned with electromagnetic forces. 

By a particle, I mean a scrap of matter which, at any instant, can be thought of as 
occupying a single point in space. An electron is usually thought of as a particle, 
for example. However, electrons have a property called spin which produces small 
magnetic effects. I therefore introduce the concept of a point charge. By  
definition, a point charge is a charged particle with absolutely no internal 
structure, internal motion or spin. The concept of a point charge will help us make 
precise definitions and statements without worrying about spin or magnetism. 
This is really a legal nicety, part of the small print. For most purposes, the 
distinction between charged particles and point charges is unimportant. I will 
sometimes use the word ‘charge’ as a shorthand for ‘point charge’. 

One of the surprising things about electromagnetic forces is that they depend on 
the velocities of the particles involved. For example, Figure 1.3 shows three 
different situations involving two negative point charges. In case (a) particle B 
moves uniformly along the dashed line while particle A is at rest. In case (b) both 
particles are held permanently at rest. In case (c) both particles move uniformly at 
the same velocity, perpendicular to their line of separation. These three situations 
are distinguished only by the motion of the particles. Just as you would expect, 
the charges repel one another. But you might be surprised to learn that the 

14 



1.2 Electromagnetic forces 

magnitude of the force on particle A is not the same in these three cases. It is 
greatest in case (a), smaller in case (b) and smaller still in case (c). In terms of 
symbols we can write 

|F(a)| > |F(b)| > |F(c)|,A A A 

where the subscript reminds us that we are discussing the force on particle A and 
the superscript refers to the case under consideration. 

Figure 1.3 The electromagnetic force on particle A due to particle B in three 
different cases. 

Admittedly, the variation in FA is usually tiny. For it to be at all significant, the 
two particles must move at speeds close to that of light. However, it is not 
uncommon for charges to move at such high speeds. The electrons in a heavy 
atom travel at an appreciable fraction of the speed of light, and so do the electrons 
in a powerful electron microscope (Figure 1.4). In an electron microscope the 
reduced repulsion illustrated in Figure 1.3c has a practical consequence — the 
sideways spread of the electron beam is smaller than would be predicted on the 
basis of Figure 1.3b. 

If many particles are involved, the variation in the force may be evident at lower 
speeds. Suppose that two neutral wires, A and B, are placed side-by-side. If there 
are no currents flowing through the wires there is no electromagnetic force 
between them. This is not surprising because the wires are neutral. In more detail, 
some electrons in the wires become detached from their atoms, leaving positive 
ions behind. Each metal wire can be therefore be pictured as a lattice of positive 
ions immersed in a sea of mobile electrons. The electrons in wire A are repelled 
by the electrons in wire B, but are equally attracted towards the ions in wire B. 
The ions in wire A are repelled by the ions in wire B, but are equally attracted 
towards the electrons in wire B. All the repulsions and attractions cancel out, 
leaving no net force between the wires. 

Now, suppose that steady parallel currents flow through the wires. In this case, the 
wires are observed to attract one another (Figure 1.5). This is not an exotic 
curiosity — it is an effect that is easily observed without any special equipment. 
Why does it happen? It is important to realize that an electric current in a wire is 
caused by a steady flow of electrons along the wire, while the positively-charged 

Figure 1.4 The electrons in 
the beam of this electron 
microscope travel at 70% of the 
speed of light. 

Figure 1.5 Two parallel

currents attract one another.
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Figure 1.6 André-Marie 
Ampère (1775–1836) suggested 
that magnets owe their special 
properties to microscopic 
circulating currents. 

ions in the wire remain fixed. You can picture the flow of electrons as being rather 
like the flow of water through a pipe. The motion of the electrons disrupts the 
precise balance between attractive and repulsive forces mentioned above. For 
example, Figure 1.3c suggests that the repulsion between parallel streams of 
moving electrons will be less than had they been at rest. The reduction in 
repulsion is not matched by a compensating reduction in attraction between the 
electrons and the ions so, when all the forces are added together, the net effect is 
that the two current-carrying wires attract one another. One interesting feature of 
this attraction is that the electrons drift along the wire slowly, typically at a few 
tenths of a millimetre per second. This is 12 orders of magnitude smaller than the 
speed of light, so the net force on each electron will be tiny. However, a copper 
wire one millimetre in diameter has around 1021 mobile electrons in each 
centimetre of its length. This scales up the force and produces a noticeable effect. 

1.3 Electric and magnetic forces 
To make further progress we need to introduce force laws. These laws are usually 
phrased in terms of electric forces and magnetic forces, so our first task is to 
distinguish between these two types of electromagnetic force. Naturally enough, 
the electromagnetic force between two stationary point charges is called an 
electric force, but what is a magnetic force? 

No doubt you have observed the effects of magnetic forces acting on ordinary 
magnets — a compass needle aligning in a South-North direction or a 
fridge-magnet sticking to the door of a fridge. At first sight, these magnetic forces 
appear to have nothing to do with the forces between charged particles, but there 
is actually a very deep connection. It turns out that a current-carrying coil behaves 
exactly like a magnet. The coil, too, aligns in a South-North direction and is 
attracted to a fridge door. In the 1820s, Andr´ ere (Figure 1.6) used e-Marie Amp`
this analogy to suggest that ordinary magnets owe their special properties to 
microscopic currents circulating within their volume. From this point of view, the 
essential feature of a magnetic force is that it acts on electric currents. Following 
this insight, we see that the force between parallel currents in neutral wires should 
be classified as a magnetic force. An electric current is just a flow of electric 
charge, so we can also say that magnetic forces act on charges that are in motion. 
This motivates the following definition. 

The distinction between electric and magnetic forces 

The electromagnetic force on a stationary point charge is defined to be an 
electric force. A stationary point charge experiences no magnetic force. 

The electromagnetic force on a moving point charge may have both electric 
and magnetic contributions. The electric force is defined to be the same as 
for a stationary point charge at the same position. The magnetic force is the 
additional electromagnetic force that occurs because the charge is moving, 
rather than at rest. 

This definition effectively splits electromagnetic forces into electric and magnetic 
contributions. The electric force is felt by all point charges, whether they are 
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moving or not. The magnetic force is felt only by a moving point charge. A 
stationary point charge experiences no magnetic force. This is a convention, 
rather than a deep fact about Nature, but it is a very important convention which 
permeates the whole subject. Let’s see how it works in simple cases. 

•	 In Figures 1.3a and b, particle A is stationary so it cannot experience a 
magnetic force. It experiences only an electric force. The electromagnetic 
repulsion is observed to be stronger in Figure 1.3a than in Figure 1.3b. This 
fact is interpreted by saying that particle A experiences a stronger repulsive 
electric force in Figure 1.3a than in Figure 1.3b. 

•	 In Figure 1.3c, particle A is moving so it can experience both electric and 
magnetic forces. The electric force is independent of the motion of particle A, 
and is therefore identical to the enhanced electric repulsion of Figure 1.3a. 
Nevertheless, the electromagnetic repulsion is observed to be weaker in 
Figure 1.3c than in Figure 1.3b. This fact is interpreted by saying that particle

A experiences an attractive magnetic force in Figure 1.3c which more than

compensates for the enhanced electric repulsion.


One other point is worth noting. By definition, a stationary point charge 
experiences no magnetic force. But who should judge whether a charge is 
stationary or not? If you are in a jet plane and I am in an armchair, we are likely to 
disagree about such matters. Albert Einstein (Figure 1.7) was the first to realize 
that different observers are entitled to make their own judgements. If a point 
charge is stationary relative to you, then you must say that it experiences no 
magnetic force in your reference frame. But, if the same charge is moving relative 
to me, I can say that it experiences a magnetic force in my reference frame. We  are  
both right, although we have different viewpoints! The separation of 
electromagnetic forces into electric and magnetic contributions depends on the 
choice of reference frame. Strictly speaking we should specify our choice of 
reference frame at the outset, but this is seldom done. Usually, we focus on 
phenomena observed in a laboratory and implicitly assume that our descriptions 
refer to a reference frame that is stationary in the laboratory. Figure 1.7 Albert Einstein in 

1898, when he was a 19-year old 
Exercise 1.2 Do electric forces depend on the motion of the charges that feel student in Zurich. 
them? 

Exercise 1.3 Do electric forces depend on the motion of the charges that exert 
them? 

Exercise 1.4 A stationary electron can experience a magnetic force if it is near 
a strong magnet. Does this invalidate our classification of electric and magnetic 
forces? Q 

1.4 Coulomb’s law 
For the rest of this chapter we restrict attention to the forces between point 
charges that are at rest. Our previous discussion makes it clear that this is a special 
case, but it is an important one, and a good place to start. Because the charges are 
stationary, they cannot experience magnetic forces. Moreover, the electric forces 
exerted by the charges are not modified by their motion. The electric forces 
between stationary charges are called electrostatic forces and the electrostatic 
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law of force between two stationary point charges is called Coulomb’s law. This  
law can be stated as follows: 

Coulomb’s law 

The electrostatic force between two stationary point charges acts along their 
line of separation; it is repulsive for charges of the same sign and attractive 
for charges of opposite sign. The magnitude of the force is proportional to 
the product of the charges and is inversely proportional to the square of the 
distance between them. 

Because of its dependence on distance, Coulomb’s law is said to be an inverse 
square law of force. Our first task is to express this law in a suitable mathematical 
form. We might, for example, write 

q1q2

Frepulsive = kelec 2 ,


r12 

where q1 and q2 are the values of the two point charges, r12 is the distance 
between them and kelec is a positive constant of proportionality. The quantity on 
the left-hand side is the repulsive force experienced by a given charge in the pair. 
If q1 and q2 have the same sign, the repulsive force is positive, indicating a 
genuine repulsion away from the other charge. If q1 and q2 have opposite signs, 
the repulsive force is negative, which is interpreted as an attraction towards the 
other charge. 

This equation tells no lies, but is almost useless for systems containing more than 
two charges. The trouble is that the direction of the force is not represented by 
symbols in the equation, but by the adjectives ‘repulsive’ or ‘attractive’. But, if 
three charges are not in a straight line, the force experienced by one of them is a 
combination of forces from the other two. These forces act in different directions, 
in a way that the above equation cannot hope to capture. To obtain a satisfactory 
representation of Coulomb’s law it is essential to use vectors, which brings us to 
the first mathematical detour of this book. Remember that I am assuming that you 
have taken such a detour before continuing with the rest of the text. 

Note that I have written r12 with its indices in the same order as those in r1 − r2. 
This is a convenient notation, but it means that the first index marks the 

Figure 1.8 Two stationary destination of the displacement while the second index marks its start. 

� 

q1 and q2 

r1 and r2 

r12 = r1 − r2. 

Read MT 8.1 now if you have not already done so. 

Vectors help us to define directions in space. Suppose that point charges 
are at positions (Figure 1.8). Then the displacement vector of charge 1 
from charge 2 is 

point charges showing the The displacement vector r12 has both magnitude and direction. Its magnitude is 
displacement vector r12 of

charge 1 from charge 2 and the r12 = |r1 − r2|,

corresponding unit vector �
r12. 
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which is the distance between the charges. Its direction is given by the unit vector 

r1 − r2 r12 = ,|r1 − r2|
which is a vector of magnitude 1 (with no units) pointing in the direction shown in 
Figure 1.8. This unit vector is useful because it is aligned with the direction of the 
electrostatic force. It allows us to express Coulomb’s law as a vector equation: 

F12 = kelec 
q1

2 

q2 r12. (1.1) 
r12 

The left-hand side of this equation is the electrostatic force on charge 1 due to 
charge 2. This is represented by the force vector, F12, where the first index 
indicates the particle experiencing the force and the second index indicates the 
particle responsible for the force. In this notation, the force on charge 2 due to 
charge 1 is written as F21. The order of indices matters here because these two 
forces are not the same — they point in opposite directions. 

The right-hand side of Equation 1.1 is the product of the scalar factor 
kelecq1q2/r

2 and the unit vector �r12. The scalar factor ensures that the force is 12 
proportional to the product of the charges and is inversely proportional to the 
square of their separation. The unit vector ensures that the force points in the 
appropriate direction. To see how this works, consider two charges of the same 
sign. Since kelec is positive, the unit vector is multiplied by a positive quantity, 
and the force on charge 1 points in the direction of +�r12, a repulsion directly 
away from charge 2. If the charges have opposite signs the unit vector is 
multiplied by a negative quantity, and the force on charge 1 points in the direction 
of −�r12, an attraction directly towards charge 2. Both predictions are correct. If 
you are ever in doubt about the order of the indices in Coulomb’s law, you should 
go through an analysis like this to check that everything is consistent with the rule 
that like charges repel one another. 

It is conventional to write the proportionality constant kelec as 1/4πε0, where ε0 is 
rather grandly called the permittivity of free space. The reason for including a 
factor 1/4π at this stage is that it leads to simplifications elsewhere in the subject, 
especially in Maxwell’s equations, as you will see later in this book. We therefore 
choose to write Coulomb’s law in the standard form: 

F12 = 
1 

4πε0 

q1q2 

r2 
12 

�r12. (1.2) 

Throughout this course we will use SI units, which means that length will be 
measured in metres (m), mass in kilograms (kg), time in seconds (s), force in 
newtons (N) and charge in coulombs (C). In SI units, the proportionality constant 
in Coulomb’s law has the value 

1 
= 8.99 × 109 N m2 C−2 .

4πε0 

This means that the electrostatic force between two particles, each carrying a 
charge of one coulomb and separated by a distance of one metre, is 
8.99 × 109 N. The large magnitude of this force tells us that one coulomb is a 
very large charge in the context of electrostatics. The charges on everyday objects 
are often measured in microcoulombs (1 µC = 1  × 10−6 C) and the charge on an 
electron is only −1.60 × 10−19 C. 
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There is another way of writing Coulomb’s law which is useful for some 
purposes. Using the definition of the unit vector �r12, we write 

1 q1q2F12 =	 (1.3)
4πε0 |r1 − r2|3 (r1 − r2). 

The extra factor of distance in the denominator (|r1 − r2|3 rather than |r1 − r2|2) 
is compensated by the factor (r1 − r2) in the numerator, so the inverse-square 
nature of Coulomb’s law is preserved, as it must be. The main advantage of 
Equation 1.3 is that it avoids the need to deal with unit vectors, and this can speed 
up some calculations, as you will see. 

Exercise 1.5 Suppose that one gram of pure electrons is separated from 
another gram of pure electrons by 1.5 × 1011 m (the distance between the Earth 
and the Sun). Estimate the magnitude of the electrostatic force between these two 
concentrations of charge. 

Exercise 1.6 Is Equation 1.2 consistent with Newton’s third law which states 
that action and reaction are equal in magnitude and opposite in direction? Q 

1.4.1 Adding electrostatic forces 

So far, we have considered two point charges, labelled 1 and 2. This situation is 
unusual. Normally many charges are present, and each charge exerts an 
electrostatic force on each of the others. Fortunately, the extension to many 
particles is straightforward. The total electrostatic force on a given particle can be 
found from the following principles. 

•	 The total electrostatic force on a charge is the vector sum of the electrostatic 
forces it experiences due to all other charges. 

•	 The electrostatic force on a given charge due to another charge is given by 
Coulomb’s law. This depends only on the two particles under consideration and 
is completely unaffected by the presence of other charges. 

These principles express the law of addition of force in the context of 
electrostatics. They tell us that the total electrostatic force on charge i is given by 
the vector sum 

Fi = Fij , 
j �=i 

where Fij is the electrostatic force on particle i due to particle j and the sum runs 
over all the particles j that exert an appreciable electrostatic force on particle i. Of  
course, there is no term with j = i because particle i cannot exert a force on itself. 
Since each individual electrostatic force obeys Coulomb’s law, we conclude that 

Fi = 
1 

4πε0 

� 

j �=i 

qiqj 

|ri − rj |3 (ri − rj ). (1.4) 

For any given arrangement of charges, the formal summation can be expanded to 
give an explicit formula for the electrostatic force on particle i. However,  this  
formula can only be evaluated if particle i and all the other relevant particles j 
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have known charges and positions. We will assume, for the moment, that this is 
the case. Note that we are dealing with a sum of vectors. In general, different 
force contributions will point in different directions, so adding or subtracting 
force magnitudes will not be good enough. That is why it is essential to express 
Coulomb’s law in vector form. 

Problems based on Coulomb’s law can be tackled in two main ways. If the 
arrangement of charges is two-dimensional and highly symmetric, a method based 
on angles and geometry may be used. 

Essential skill 
Using the vector form of 
Coulomb’s law 

q
d

F12 and F13 

x
y

y

F1 = 
1 

4πε0 

q2 

d2 
◦ + 

1 
4πε0 

q2 

d2 
◦ = 

√ 
3 

4πε0 

q2 

d2 . 

Worked Example 1.1 

Three particles, each of charge , are held stationary at the corners of an 
equilateral triangle with sides of length . Find the magnitude of the 
electrostatic force experienced by one of these particles due to the other two. 

Solution 

Figure 1.9 shows the arrangement of charges and a suitable choice of 
Cartesian axes. 

Figure 1.9 Arrangement of charges for Worked Example 1.1. 

Let’s calculate the total electrostatic force on particle 1. This particle 
experiences forces due to particles 2 and 3. By symmetry, the 

-components of these forces cancel one another. Using Coulomb’s law and 
some trigonometry to find the -components of the forces, we see that the 
total force on particle 1 points along the -axis and has magnitude 

cos 30 cos 30

By symmetry, particles 2 and 3 each experience forces of the same 
magnitude, pointing directly away from the centre of the triangle. 
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Exercise 1.7 Three identical point charges, q, are stationary at the corners of 
an equilateral triangle with length of side d. A point charge Q is placed exactly in 
the centre of the equilateral triangle. What value of Q ensures that all four charges 
experience zero electrostatic force? Q 

If the particles do not all lie in one plane and there is a lack of symmetry, 
calculations based on geometry or trigonometry become cumbersome. 
Fortunately, we can always represent all the vectors in component form, and use 
the rules of vector algebra to combine them according to the recipe given in 
Equation 1.4. The following example illustrates this technique. 

Essential skill 
Using the vector form of 
Coulomb’s law 

q1 µC, q2 µ q3 µ
r1 ex + 8ey + 5ez ) m, r2 ex − 4ey ) 

r3 ex + 4ey + 5ez ) 

r1 − r2 − 4)ex ey − 0)ez ] m ey + 5ez ) m, 

r1 − r3 − 1)ex − 4)ey − 5)ez ] m ex + 4ey ) m, 

r12 = 
� 

(12 m)2 m)2 m, 

r13 = 
� 

(3 m)2 m)2 = 5  m. 

F12 = 
1 

4πε0 

q1q2 

|r1 − r2|3 (r1 − r2) 

= 8.99 × 109 N m2 C−2 × 
9 × 10−5 C × 3 × 10−5 C 

133 m3 × (12ey +5ez ) m 

.133ey +0.055ez ) N, 

F13 = 
1 

4πε0 

q1q3 

|r1 − r3|3 (r1 − r3) 

= 8.99 × 109 N m2 C−2 × 
9 × 10−5 C × 2 × 10−5 C 

53 m3 × (3ex +4ey ) m 

.388ex +0.518ey ) N. 

F1 .39ex + 0.65ey + 0.055ez ) N, 

Worked Example 1.2 

Particles 1, 2 and 3, of charges = 90  = 30  C and  = 20  C, are 
stationary at positions = (4 = (4 m and  

= (1 m. What is the total electrostatic force on particle 1 
due to particles 2 and 3? 

Solution 

The displacement vectors of particle 1 from particles 2 and 3 are 

= [(4  + (8 +  4) + (5  = (12

= [(4  + (8  + (5  = (3

and the corresponding distances are 

+ (5  = 13  

+ (4  

Consequently, 

= (0

= (0

Adding these two contributions together, we conclude that 

= (0

to two significant figures. Calculations like this are always straightforward, 
endangered only by lapses in concentration. 

Exercise 1.8 Particle 1, of charge 90 µC, is stationary at a point with Cartesian 
coordinates (3, 2, −1) m. Particle 2, of charge −30 µC, is stationary at a point 
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with Cartesian coordinates (2, 4, 1) m. What is the electrostatic force on particle 1

due to particle 2?


Exercise 1.9 Two charges, −16q and 3q, where q is positive, are stationary at

points (2a, 0, 0) and (0, a,  0). Find the electrostatic force on a charge q placed at

the origin (0, 0, 0). What is the magnitude of this force and what is its direction

(specified by a unit vector)? Q


1.4.2 Evidence for Coulomb’s law 

Coulomb’s law is believed to be a fundamental law of Nature, but is this belief

well-founded? Instead of simply accepting Coulomb’s law, we had better examine

the evidence. Let us assume that the magnitude of the electrostatic force decreases

as 1/rn, where n is a constant. Various laboratory experiments have measured the

value of n. All have found that n = 2, to within the accuracies ∆n shown in

Table 1.2. The first two measurements pre-date Coulomb’s work, but were

unpublished and forgotten for many years. It is the recent results that are truly

impressive. We can be very confident indeed that electrostatic forces obey an

inverse square law on the everyday scale of these laboratory experiments.


Date Physicist ∆n 
1769 Robison ±0.06 
1773 Cavendish ±0.03 
1785 Coulomb ±0.1 
1873 Maxwell ±10−5 

1936 Plimpton ±10−9 

1970 Bartlett ±10−13 

1971 Williams ±10−16 

As well as testing Coulomb’s law on a laboratory scale, we should also test it at

very short distances and at very large distances. Evidence at short distances comes

from scattering experiments. A famous experiment of this type was carried out by

Rutherford who fired alpha particles at metal foils and observed that a few of them

bounced back in the direction from which they had come. Rutherford guessed that

the atoms in the foil must contain tiny massive nuclei. Assuming that the

positively-charged alpha particles and the positively-charged nuclei repel one

another according to Coulomb’s law, he was able to explain the angular

distribution of scattered alpha particles. This is celebrated as the discovery of the

atomic nucleus, but it also provided evidence that Coulomb’s law works on

sub-atomic length scales. Similar experiments involving electron–electron

scattering confirm that Coulomb’s law is accurate down to length scales of order

10−12 m.


Perhaps the most interesting challenge to Coulomb’s law occurs at large distances.

Here the available evidence is based on quantum field theory, which interprets

electric forces in terms of an exchange of photons between charged particles.

Quantum field theory shows that an inverse square law is just what is expected in

a three-dimensional space, provided that the photon has no mass. The validity of

Coulomb’s law is therefore closely linked to the massless nature of the photon.

Current physical theories assume that photons are massless, but it is fair to ask

what would happen if the photon had a small mass. In this case, it is believed that

Coulomb’s law would be replaced by


F12 =
1 q1

2 

q2 
� 
1 +  

r12 e−r12 /a �

4πε0 r12 a 

r12,


where a = h/(2πmc) has the units of length, h is Planck’s constant, m is the

photon mass and c is the speed of light. For r12 � a, this force is essentially the

same as the Coulomb force, but it becomes significantly smaller than the

Coulomb force when the separation of the particles becomes comparable to, or

greater than, a.


Table 1.2 Testing Coulomb’s 
law in the laboratory. 
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A non-zero mass for a photon would have measurable consequences. For 
example, it would imply that different colours of light travel at different speeds, 
even in a vacuum. These consequences can be searched for in laboratory 
experiments and astronomical observations. Current data show that 
m < 10−54 kg, corresponding to a > 3.5 × 1011 m, which suggests that 
Coulomb’s law remains valid over vast distances, comparable to the diameter of 
the Earth’s orbit around the Sun. 

1.4.3 Limitations of Coulomb’s law 

Coulomb’s law can be used provided that: 

• the charges are at rest; 

• the locations of all the relevant charges are known. 

Let’s examine these requirements in more detail, beginning with the need for the 
charges to be at rest. In fact, motion of the charge that experiences the force is 
unimportant. Remember that any additional force that a charge experiences as a 
result of being in motion, rather than being at rest, is classified as a magnetic 
force. This means that the electric force on a given charge is unaffected by its own 
motion. However, the electric force does depend on the motion of other charges as 
illustrated in Figure 1.3. Coulomb’s law gives the electric force in the special case

where the source charges are permanently at rest.


At first sight, this appears to exclude Coulomb’s law from many interesting

phenomena. However, it is important to keep a sense of proportion. The 
corrections to Coulomb’s law caused by the motion of charges turn out to be of 
order 1 v2/c2, where v is the speed of the charges and c is the speed of light 2 
(3.00 × 108 m s−1). So, even if the charges are moving at 100 km s−1, Coulomb’s 
law is accurate to better than one part in 107. For particles moving much slower 
than this, the accuracy is far greater. It is therefore reasonable to use Coulomb’s 
law beyond its narrow domain of exactness. For all practical purposes, you can 
use Coulomb’s law to calculate the electric forces between non-relativistic 
particles — that is, particles moving much more slowly than light. 

The second restriction seems harmless and self-evident; to use Coulomb’s law we 
need to know the locations of all the interacting charges. In fact, this requirement 
is far more troublesome than the speed restriction. To see why, suppose that two 
positive charges, A and B, are immersed in a conducting medium such as copper 
or silver (Figure 1.10). Electrons are free to flow through the conductor and are 
naturally drawn towards the two positive charges, forming clouds of negative 
charge around them. This phenomenon is called screening. Now charge A is 
repelled by charge B and attracted by the electron cloud around cloud B. The total 
force felt by two positive charges is therefore less than predicted by Equation 1.2. 
This is not because Coulomb’s law is wrong, but because the situation inherently 
involves more than two charges. In principle we can use Equation 1.4 to find the 
total force on a positive charge, but unless we know how the electrons accumulate 
around the positive charges, there is not enough information to use this equation. 
Screening can be highly effective. Each conductor has a characteristic screening 
length, typically of order 10−9 m. If two stationary charges in a conductor are 
separated by a distance that is much larger than the screening length, each 
experiences essentially no net force. 
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Figure 1.10 The screening 
of two positive charges in a 
metal. 

Something similar, if less dramatic, occurs in non-conducting media such as water 
or alcohol. Electrons are not free to migrate in such materials, but the introduction 
of foreign charges causes small displacements of charge, either through 
distortions of electron clouds or re-orientations of molecules. This phenomenon is 
called polarization. These small displacements of charge, varying with the 
positions of molecules, produce a non-uniform charge distribution in the medium 
which leads to additional forces on the foreign charges. The net effect is again a 
reduction in the total force on each foreign charge. The effects of polarization 
need not be small. The net force between two stationary charges, separated by a 
macroscopic distance in pure water, is about 1/80 of the force between the same 
charges in empty space. 

In this book we restrict attention to situations where the effects of screening are 
simple and the effects of polarization are negligible. Polarization can certainly be 
ignored if the charges are surrounded by a vacuum and are far from other 
materials. It is also reasonable to ignore the polarization of air. The force between 
two charges in air is practically the same as in a vacuum, to within 0.05%. In  
general, it is possible to neglect the polarization in gases, but is unreasonable to do 
so in liquids or solids. The next book in this series will explain what to do when 
polarization really matters. 

1.5 Electric fields 
Think of two stationary charges, Q and q, interacting via Coulomb’s law in empty 
space. Charge q seems to be aware of charge Q and it is natural to suppose that 
information about one charge is conveyed to the other, but Coulomb’s law does 
not describe this flow of information at all. It simply asserts that the electric force 
is determined by the two charges and their locations. If Coulomb’s law were true 
for all charges, whether stationary or not, displacing a charge on Earth would have 
a small but instantaneous effect on charges on Mars. This feature is called 
instantaneous action at a distance. Faraday found this feature implausible. He 
believed that the ultimate laws of physics must be local in nature, providing 
relationships between quantities in each small region of space. Searching for a 
deeper level of understanding, he devised the concept of a field. 

We now think of the space around a charge Q as being subtly modified by the 
presence of the charge. We say that Q produces an electric field in its 
surroundings. The electric field does not require the presence of a medium, and 
exists even in empty space. It varies from point to point, and decreases as we 
move away from Q. Now place a second charge q somewhere in the region. We 
assume that q responds to the electric field at its immediate location. Note that the 
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charge q does not need to know anything about the charge Q. It just responds to 
the electric field that it experiences. This electric field happens to be due to the 
charge Q, but that is irrelevant. If any other set of charges produced the same 
electric field at q, the response would be exactly the same. In this description, the 
interaction between charges is split into two steps. First, charge Q produces an 

Charge is the source of electric field in its surrounding space. Then charge q responds locally to the 
electric field. electric field that it encounters. 

These ideas can be made precise. In general, a field is a physical quantity which, 
at each instant, has definite values throughout a region of space. To define the 
value of the electric field at a given point, we place a charge at the point and 
measure the electric force on it. The value of the electric field is the electric force 
per unit charge. In terms of symbols, the electric field E(r) at a point r is defined 
by 

E(r) =  
F 
q 

, (1.5) 

where F is the electric force on a charge q placed at r. This definition applies at 
all points in space, and the electric field is the function of position specified by 
Equation 1.5. Because its values are vectors, the electric field is a vector field. Our  
notation is very concise. In a Cartesian coordinate system it expands to 

E(r) = Ex(x, y, z)ex + Ey (x, y, z)ey + Ez (x, y, z)ez , 

where Ex, Ey and Ez are the Cartesian components of the electric field and x, y 
and z are the Cartesian coordinates of the point. The magnitude E of the electric 
field is called the electric field strength and is given in Cartesian coordinates by 

E = |E| = E2 + E2 + E2 .x y z 

The charge q in Equation 1.5 is sometimes called a test charge because it tests the 
value of the electric field. Measurements of electric fields can be tricky because 
the test charge may distort the charge distribution whose field we wish to measure. 
This difficulty is usually avoided by taking the test charge to be small enough to 
create a negligible disturbance. However, the quantization of charge limits our 
ability to select an arbitrarily small test charge, so some disturbance may be 
unavoidable. This is only a practical difficulty, not a theoretical one. When we 
calculate an electric field from theory (using Coulomb’s law or ultimately 
Maxwell’s equations) we simply imagine that the source charges have fixed 
positions. Such is the power of thought! 

Exercise 1.10 What is the SI unit of electric field? 

Exercise 1.11 An isolated point charge q0 is stationary at a point r0. Show  
that the electric field due to this charge is 

1 q0E(r) =  (1.6)
4πε0 |r − r0|3 (r − r0). 

Describe the nature of this electric field in words. Q 

We can use Coulomb’s law to find the electric field due to any arrangement of 
stationary charges. Suppose that charges q1, q2,  . . . ,  qn are stationary at points 
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r1, r2,  . . . ,  rn. If we introduce a test charge q at point r, not coincident with any 
of the stationary charges, Equation 1.4 shows that the electric force on this test 
charge is 

1 qqjF = 
4πε0 |r − rj |3 (r − rj ). 

j 

Using Equation 1.5 we conclude that 

E(r) =  
1 

4πε0 

� 

j 

qj 

|r − rj |3 (r − rj ), (1.7) 

where the sum is over all the charges q1, q2,  . . . ,  qn. Notice that all traces of the 
test charge, q, have disappeared from Equation 1.7. The electric field is created by 
its sources, the stationary charges q1, q2,  . . . ,  qn, and Equation 1.7 tells us how the 
charges and positions of these sources determine the electric field. The field is 
defined at any point r that is not coincident with one of the source charges; at the 
source charges themselves, it is undefined. 

Notice, too, that Equation 1.7 is a sum of terms similar to the right-hand side of 
Equation 1.6. In other words, the electric field due to an arrangement of charges is 
the vector sum of the electric fields due to the individual charges in the 
arrangement. This is an example of a general principle, valid for all electric fields. 
The principle of superposition states that, when there is more than one source of 
electric field, the total electric field at any point is the vector sum of the electric 
fields contributed by each of the sources. 

You might be tempted to think that Equation 1.7 provides an alternative definition 
for the electric field. Please resist this temptation. Equation 1.7 is based on 
Coulomb’s law, so it applies only in electrostatic situations. By contrast, 
Equation 1.5 defines the electric field under all conditions, whether electrostatic or 
not. It is the definition of the electric field. 

If we know the electric field at a given point r, we can find the force acting on any 
charge q placed at that point: 

F = qE(r). (1.8) 

As stressed earlier, this is a local description. If the electric field is known at the 
position of a charge, the electric force on the charge can be found without further 
enquiry — without knowing what is happening far away. However, we still need 
to use Equation 1.7 to find the electric field. Being based on Coulomb’s law, this 
is certainly not a local description. So our attempt to avoid action at a distance is 
only partially successful. The language of fields seems appropriate, but our 
equations still bear the non-local stamp of Coulomb’s law. Nevertheless we have 
made a start and it is clear what should be done next. We need to find out more 
about the electric field in different situations. If we can understand how the values 
of the field in one region are related to the values in a neighbouring region we can 
hope to obtain a truly local theory. This will be the task of the next chapter. 

Exercise 1.12 How long does it take a proton to accelerate from rest to a speed 
of 1.0 × 107 m s−1 in a constant electric field of magnitude 100 N C−1? Q 
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1.5.1 Arrow maps and field lines 

It is useful to have a way of visualizing electric fields. The electric field at a given 
point can be represented by an arrow whose tail is at the point in question. The 
direction of the arrow is the direction of the electric field, and the length of the 
arrow is proportional to the magnitude of the field. The electric field throughout a 
region of space is then represented by an arrow map, which is a collection of 
arrows displayed at a selection of points in the region. Figure 1.11a is an arrow 
map for the electric field generated by an isolated positive charge, and 
Figure 1.11b is the corresponding arrow map for an isolated negative charge. 

Figure 1.11 Arrow maps for (a) an isolated positive charge and (b) an isolated 
negative charge. The lengths of the arrows decrease with distance according to 
Coulomb’s inverse square law. 

An alternative way of representing fields is often used. We draw continuous lines 
in such a way that the direction of each line is the same as the direction of the 
electric field at each point along its path. These lines are known as electric field 
lines and a collection of field lines is called a field line pattern. Figures 1.12a and 
1.12b show the field line patterns generated by an isolated positive charge and by 
an isolated negative charge. The field lines tend to be closer together in regions 
where the field is strong and further apart in regions where the field in weak, but 
quantitative information about the strength of the field is better represented using 
an arrow map. 

Both arrow maps and field line patterns are restricted to the two dimensions of a 
flat sheet of paper. In reality the field lines of Figure 1.12 occupy 
three-dimensional space, pointing radially outwards like the spines of a spherical 
hedgehog, rather than like the spokes of a wheel. In general, you will need to use 
some imagination to visualize how field line patterns sketched on paper extend 
into three dimensions. 
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Using the law of superposition, we can work out the electric fields produced by 
more complicated arrangements of charge, such as those shown in Figure 1.13. 
The field shown in Figure 1.13b is especially important. A stationary pair of 
oppositely-charged particles, separated by a short distance, is called an electric 
dipole and the field that it produces is called a dipolar electric field. Fields like 
this are produced by simple molecules such as hydrogen chloride, where the 
centre of the distribution of negatively-charged electrons does not coincide with 
the centre of the distribution of positively-charged nuclei. 

Figure 1.12 Electric field line 
patterns for (a) an isolated 
positive charge and (b) an 
isolated negative charge. 

Figure 1.13 Electric field line 
patterns for: (a) a pair of 
positive charges; (b) a pair of 
opposite charges; (c) a uniform 
sheet of positive charge. The 
dashed black lines in (c) have 
been added to aid perspective. 
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Some simple, but important points can be noted about these patterns: 

•	 Electric field lines radiate outwards from positive charges and converge 
inwards towards negative charges. This captures the idea that charges are 
sources of electric field. 

•	 Close enough to any point charge the electric field is similar to that for an 
isolated charge. Other charges have little influence in this region because they 
are much further away. 

•	 Electric field lines cannot cross, except at points where the electric field 
vanishes. If two field lines did cross, the electric field would have two different 
values at the crossing point. This would give two different predictions for the 
acceleration of a charged particle at the crossing point, which is unreasonable. 

•	 A situation of a given symmetry can be described by a pattern of electric field 
lines with the same symmetry. For example, a spherically-symmetric charge 
distribution generates an electric field with a spherically-symmetric pattern of 
electric field lines. 

1.5.2 Symmetry arguments 

When you first see an argument based on symmetry, you might wonder whether it 
is watertight. It might seem like intuition, guesswork or even cheating. I want to 
dispel such doubts. Symmetry arguments can be made completely rigorous. What 
is more, they are very useful in electromagnetism. Vector fields can be 
complicated and it helps enormously if some of this complexity can be removed at 
the outset. 

The basic argument goes as follows. Suppose that an arrangement of charge is 
rotated (for example). Then the field pattern produced by these charges must be 
similarly rotated. This is because the laws of physics do not single out any special 
directions in space, so the orientation of a field pattern is completely determined 
by the orientation of its sources. Now, suppose that the rotated arrangement of 
charge is indistinguishable from the original arrangement. Then the new field 
pattern must be indistinguishable from the original field pattern. This is because a 
definite source must produce a definite field. We are therefore led to the following 
principle: 

Symmetry principle 

Any operation that leaves the sources of an electromagnetic field unchanged 
also leaves the field unchanged. The field inherits the symmetry of its 
sources. 

One important special case is a static, spherically-symmetric distribution of 
charge. A charge distribution has spherical symmetry if it is unchanged by any 
rotation about any axis through its centre. We can use this symmetry to show that 
a spherically-symmetric stationary charge distribution produces a 
spherically-symmetric electric field. This means that: 

•	 at any given point P the field is radial, pointing directly towards, or directly 
away from, the centre of the charge distribution; 
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•	 the magnitude of the field is the same at all points that are the same distance 
from the centre of the charge distribution. 

These properties can be proved by eliminating the alternatives. Suppose, for 
example, that the electric field at the given point P points in some non-radial 
direction, as shown by the solid arrow in Figure 1.14. If we rotate the charge 
distribution about an axis that passes through the centre of the distribution and 
through the point P, the field also rotates, from the solid arrow to the dashed arrow 
in Figure 1.14. However, the charge distribution (being spherically symmetric) is 
unaffected by the rotation, so the electric field cannot change. It follows that the 
proposed non-radial field is impossible: the field must be radial. Similarly, let’s 
consider the electric fields at two points, P and Q, the same distance from the 
centre of the spherical charge distribution. Suppose that these fields have different 
magnitudes, as shown in Figure 1.15a. Then we can rotate the charge distribution 
and the fields about an axis that passes through the centre of the charge 
distribution and a point midway between P and Q. A rotation of 180◦ produces the 
situation shown in Figure 1.15b. Again, the charge distribution is unaffected by 
the rotation, so the electric field cannot change. It follows that the magnitudes of 
the electric fields at P and Q must be the same. 

Figure 1.14 Ruling out the 
possibility of a non-radial 
electric field at P for a 
spherically-symmetric charge 
distribution. 

1.5 Electric fields


Figure 1.15 Ruling out the 
possibility of an electric field 
with different magnitudes at P 
and Q for a spherically 
symmetric charge distribution 
(plan view). Situation (a) is 
before a 180◦ rotation and 
situation (b) is after. 
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We are also interested in cylindrically-symmetric distributions of charge. First,
note that an object is said to have axial symmetry if it is unchanged by any
rotation about a fixed axis (the axis of symmetry). For example, a pencil with a
circular cross-section has axial symmetry (Figure 1.16a). However, a pencil does
not have the full symmetry of a cylinder because its sharpened end is different
from its blunt end. An object is said to have cylindrical symmetry if, in addition
to axial symmetry, it is also unchanged by a 180◦ rotation about any axis that
passes through the midpoint, perpendicular to the axis of symmetry.
Appropriately enough, a cylinder has cylindrical symmetry (Figure 1.16b). Now,

Figure 1.16 (a) Axial
symmetry and (b) cylindrical
symmetry. Some books treat
cylindrical symmetry as a
synonym for axial symmetry.
But in electromagnetism, it is
helpful to distinguish between
these two terms. For example, it
matters that a current along a
cylindrical wire has axial
symmetry, but does not have
cylindrical symmetry.

consider a stationary cylinder which is infinitely-long and uniformly-charged.
This distribution of charge has cylindrical symmetry. It also has translational
symmetry because it is unchanged by any displacement along the long axis of the
cylinder. These symmetries imply that:

• At any point P, not on the central axis of symmetry, the electric field is radial
(pointing directly towards, or directly away from, the axis of symmetry).

• The magnitude of the electric field is the same at all points that are the same
distance from the axis of symmetry.

These properties can be verified using arguments similar to those given for a
sphere. In brief, the charge distribution is unchanged by a 180◦ rotation about an
axis that passes through the given point P and meets the axis of symmetry at right
angles. This implies that the electric field has no component along the axis of
symmetry, and has only a radial component in the plane perpendicular to the axis
of symmetry. The charge distribution is also unchanged by translations along the
axis of symmetry and rotations around the axis of symmetry. This implies that the
magnitude of the electric field does not vary as we move parallel to the cylinder,
or around its axis, provided we stay a fixed distance from the axis.

Until now, we have considered distributions of charge that are stationary, but
Figure 1.17 shows the electric field of a positive charge moving at a high steady
velocity v. This field is not spherically symmetric, which is not surprising
because the direction of motion of the charge singles out one direction in space
from all the others. From the symmetry of the situation, one would expect the
field of a uniformly-moving charge to be axially symmetric. However, the field
shown in Figure 1.17 has more symmetry than this: it is cylindrically symmetric
because it is unchanged by a 180◦ rotation about an axis passing through the
charge, perpendicular to its line of motion. An alternative way of expressing this
is to say that the electric field in Figure 1.17 is unchanged by reversing the
velocity of the charge, which corresponds to reversing the direction of flow of
time. This turns out to be a consequence of time-reversal symmetry — a deep
symmetry which applies throughout electromagnetism. Taking charge to be
invariant, the principle of time-reversal symmetry asserts that all
electromagnetic forces are unchanged by a reversal in the direction of flow of
time. This principle ensures that the electric field in Figure 1.17 is unchanged by
time-reversal because the electric field is the force per unit test charge, and neither
the force nor the test charge changes.

Figure 1.17 An electric
field-arrow map for a positive
charge moving at uniform
velocity v close to the speed of
light.

All these conclusions are general consequences of symmetry, and do not rely on
Coulomb’s law. This is just as well in the last case because Coulomb’s law does
not apply to rapidly-moving charges. I have spelt out the details to show that
symmetry arguments are respectable, but with experience you can be much more
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concise. Provided a question does not explicitly ask for a symmetry argument, 
you may simply use a suitable form for the field and briefly indicate which type of 
symmetry is being assumed (e.g. spherical symmetry or axial + time-reversal 
symmetry). 

Exercise 1.13 Use symmetry to discuss the direction of the electric field near Essential skill 
a stationary uniformly-charged plane sheet. Making symmetry arguments. 

Exercise 1.14 Describe the direction of the electric field on the central axis of 
a short cylinder carrying a uniform positive charge. Sketch a set of arrows 
indicating roughly how you would expect the electric field to vary in direction and 
magnitude along the central axis of the cylinder. Q 

1.5.3 Typical electric field values 

It is worth noting some typical values of electric fields encountered in various 
circumstances (Table 1.3). Some of the fields listed in this table are rapidly 
oscillating and cannot be discussed in the context of electrostatics. Nevertheless, a 
broad feeling for typical values may help you spot gross errors in calculations and 
appreciate the range of fields that are needed for different purposes. 

Table 1.3 Some typical electric fields. 

Context E/ N C−1 

strong TV or radio signal 
inside copper wire of diameter 1 mm, carrying 1 A 
time-averaged field near transmitting mobile phone 
safety guideline at radio frequencies 
30 cm from a hair dryer 
average static field at Earth’s surface 
on an electric blanket 
30 m from a 220 kV power line 
in DNA fingerprinting procedure 
static field at Earth’s surface below a thundercloud 
safety guideline at mains frequency 
just outside a charged photocopier drum 
breakdown field in dry air 
breakdown field in PVC insulating tape 
in a powerful particle accelerator 
in a hydrogen atom 
in the most intensely focused laser beams 
quantum electrodynamic critical field 

0.01 
0.02 
40 
60 
80 
100 
2 × 103 

3 × 103 

5 × 103 

5 × 103 

5 × 104 

1 × 105 

3 × 106 

2 × 107 

3 × 107 

5 × 1011 

6 × 1013 

1.3 × 1018 

Several items in Table 1.3 refer to the electric fields around electrical equipment. 
It is reassuring to note that these fields are generally within safety guidelines. 
When assessing any risk, the frequency of the electric field is an important factor, 
for example, radio-frequency fields are far more hazardous than low-frequency or 
static fields. This explains why the safety of mobile phones has been investigated 
in depth. The issues are complex because mobile phones reduce their signals to 
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the minimum needed to communicate with the network and do not transmit at all 
unless the user is speaking. Also, to increase the number of simultaneous users on 
the network, each phone transmits in brief sub-millisecond bursts interspersed by 
much longer intervals of radio silence. The result is that, while the peak electric 
field may exceed the radio-frequency guideline, the field averaged over 1 s does 
not. 

Table 1.3 also gives values for breakdown fields. Any insulator becomes a 
conductor in a sufficiently high electric field. The minimum field needed to cause 
this transformation is called the breakdown field of the insulator. The breakdown 
field of dry air is about 3 × 106 N C−1, but that of moist air is only about 
1 × 106 N C−1. Air always contains a few electrons and ionized molecules. 
Breakdown of air occurs when the electric field accelerates these charged particles 
rapidly enough, so that their collisions with other molecules produce more 
electrons and ionized molecules. An avalanche of charged particles then cuts a 
conducting path through the air and sparks fly (Figure 1.18). If you have ever felt 
the snap of static electricity, you must have been briefly exposed to an electric 
field of at least a million newtons per coulomb. 

Figure 1.18 Sparks flying Everyone has heard of the Earth’s magnetic field, but the Earth’s electric field is 
between two nails.	 less well known. Nevertheless, the Earth does have an electric field which, on 

average, points vertically downwards and has a magnitude of about 100 N C−1 . 
This field exists because the planet’s surface carries a negative charge of 
−5 × 105 C while the upper atmosphere carries a compensating positive charge. 
The atmosphere is not a perfect insulator so the Earth’s electric field drives a small 
current downwards. This would neutralize the Earth’s negative charge and remove 
the Earth’s electric field within minutes were it not for the effects of lightning 
(Figure 1.19). Below a thundercloud the electric field points vertically upwards 
and is roughly 50 times stronger than normal — even higher in places, enough to 
make your hair stand on end. Lightning conducts currents upwards, from the 
ground to the cloud. Over the entire Earth, around 40 000 thunderstorms per day 
keep our planet negatively charged, maintaining a relatively constant downward 
electric field. 
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Summary of Chapter 1 

Finally, the last row of the table takes us beyond classical electromagnetism, into 
the domain of quantum electrodynamics. In rough terms, quantum 
electrodynamics tells us that electrons (of charge −e) and positrons (of charge e) 
are continuously created and destroyed in a vacuum. These particles have a rather 
shadowy existence — they come and go very rapidly and do not have the masses 
of real electrons and positrons. For this reason, they are called virtual particles. 
To conserve charge, the electrons and positrons appear and disappear in pairs. The 
virtual pairs exert forces on other charges so the vacuum behaves rather like a 
tenuous insulating medium. This leads to a number of barely measurable effects. 
For example, the repulsive forces felt by two closely-spaced electrons deviate very 
slightly from Coulomb’s law at separations below 10−12 m. Such effects are 
ignored throughout this course. However, something much more spectacular is 
predicted to occur in the presence of an enormous electric field. If a static electric 
field exceeds a critical value throughout a region whose linear dimensions are 
much larger than 10−12 m, the electron and positron in a virtual pair should be 
able to gain enough energy from the field to transform into a real electron and a By real electrons, we mean of 
real positron. These charged particles separate rapidly in the field and the course the stable particles found 
insulating nature of the vacuum is predicted to break down at the quantum in atoms. 
electrodynamic critical field, 1.3 × 1018 N C−1 , just as the insulating nature of 
moist air breaks down at 106 N C−1 in a lightning flash. Nobody has observed this 
effect because of the enormity of the required electric field, but recent advances in 
lasers raise hopes for a definitive test. 

Summary of Chapter 1 
Section 1.1 Electric charge is the property that allows particles to exert and 
experience electromagnetic forces. Electric charge is a scalar quantity which is 
additive, quantized, locally conserved and invariant. 

Section 1.2 Electromagnetic forces are velocity-dependent. This is important 
for particles moving at speeds comparable to that of light and is also significant in 
neutral systems containing a large number of slowly-moving particles (e.g. 
current-carrying wires). 

Section 1.3 It is customary to split electromagnetic forces into electric and 
magnetic contributions. A stationary point charge experiences only the electric 
force. A moving charge experiences the same electric force as a stationary charge; 
any additional electromagnetic force that it experiences by virtue of being in 
motion, rather than being at rest, is classified as a magnetic force. 

Section 1.4 Electric forces between stationary charges are called electrostatic 
forces. The electrostatic force between two charges is given by Coulomb’s law: 

1 q1q2
F12 = 4πε0 r12 
r12,
2 

where F12 is the force on particle 1 due to particle 2 and �r12 is a unit vector 
pointing towards particle 1 from particle 2. The electrostatic force due to a 
number of stationary sources is found by vector addition, using Coulomb’s law 
and the law of addition of force. 

Coulomb’s law has been experimentally tested over a wide range of length scales. 
It works well enough for slowly-moving particles and for charges in gaseous 
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media but it is not valid for very rapidly moving particles and its implications can 
be obscured by the effects of screening or polarization in liquid or solid media. 

Section 1.5 The electric field E(r) is a vector field defined throughout a region 
of space. Its spatial variation can be visualized using an arrow map or a field line 
pattern. At any given point the value of the electric field is given by 

F
E(r) =  , 

q 

where F is the force that would be experienced by a charge q placed at the point r. 
Electric fields obey the principle of superposition: the electric field due to a set of 
sources is the vector sum of the individual electric fields due to each source. An 
electric field inherits the symmetry of its sources: any operation that leaves the 
sources unchanged also leaves the electric field unchanged. 

Achievements from Chapter 1 
After studying this chapter you should be able to: 

1.1	 Explain the meaning of the newly defined (emboldened) terms and symbols, 
and use them appropriately. 

1.2	 Distinguish between electric, electrostatic and magnetic forces. 

1.3	 State Coulomb’s law in vector form and use it to find the total electrostatic 
force due to a small number of point charges. 

1.4	 Define the electric field. 

1.5	 State the principle of superposition for electric fields and use it to find the 
total electric field due to a small number of point charges. 

1.6	 Use symmetry principles to deduce some properties of electric fields. 

After studying MT 8.1 you should also be able to: 

1.7	 Use vector notation consistently. 

1.8	 Carry out basic calculations in vector algebra involving components, 
magnitudes, unit vectors, multiplication of vectors by scalars and vector 
addition. 
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Chapter 2 Gauss’s law

Introduction 
This chapter has a simple aim. It takes Coulomb’s law and expresses it in the 
language of vector calculus — that is, in terms of volume integrals, surface 
integrals and partial derivatives. There are many reasons to make this transition. 
Some problems that are difficult to solve using Coulomb’s law become much 
easier when expressed in terms of vector calculus. More importantly, vector 
calculus is the natural language for fields. It allows us to construct a truly local 
theory of electromagnetism, expressed entirely in terms of relationships between 
physical quantities at individual points in space, and avoiding the troublesome 
idea of action at a distance. Finally, there is a marvellous gift from the gods. You 
will remember that Coulomb’s law is an electrostatic result — it only covers 
situations in which the source charges are at rest. Using vector calculus, we will 
derive a consequence of Coulomb’s law, known as Gauss’s law. But we get more 
than we bargain for. Gauss’s law turns out to be true in all situations, whether the 
charges are stationary or not. So vector calculus gives us a way of escaping the 
shackles of electrostatics. This is the path that Maxwell took. Although his 
notation was more cumbersome than ours, he had the basic concepts of vector 
calculus and set out to express all the known laws of electromagnetism (and any 
additional laws that he might discover) in terms of these concepts. 

This chapter uses the mathematical concepts of fields, partial differentiation, 
volume integration, surface integration and divergence, which are covered in 
MT 8.3–8.6. Some of this material may be revision. Even so, you should be 
prepared to spend at least as much time on the mathematics as on the 
physics, doubling your study-time on this chapter. 

2.1 Charge density and electric flux 
Before developing Gauss’s law, it is useful to get some preliminaries out of the � Read MT 8.3–8.5 now. 
way. One of the tasks we need to perform is that of finding the total charge within This will be a lengthy 
a given region. In principle, this is easy. Electric charge resides on particles such detour, but is all essential 
as electrons or protons. For macroscopic purposes, these particles can be treated material. 
as point-like objects, which are either inside or outside the region. According to 
the law of addition of charge, the total charge within a given region is then given 
by 

Q = qi, (2.1) 
i 

where qi is the charge on particle i, and the sum extends over all the particles 
within the region. Although adding charges is a perfectly well-defined task, it is 
not always a very enviable one as huge numbers of particles might be involved. 
For most purposes it is better to treat charge as if it were spread out continuously 
through space, like a fluid. A continuous distribution of charge is characterized by 
a charge density, which is the charge per unit volume. 
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Essential skill 
Exploiting symmetry to evaluate 
volume integrals. 

The charge density ρ(r) at a point r is defined by taking a small volume element 
centred on the point, adding up the charge ∆Q within the volume element, and 
then dividing by the volume ∆V of the element. That is, 

∆Q
ρ(r) =  

∆V
. 

For small volumes, the value of ∆Q/∆V will be almost independent of the shape 
and size of the volume ∆V . However, the volume element must not be too small. 
If we are interested in the charge distribution throughout a battery, for example, 
we would not choose a volume element on the scale of an atomic nucleus. Such a 
volume element would give a large charge density if it contained a nucleus and a 
small charge density if it did not. The charge density would then vary wildly and 
rapidly in space (and also in time, if the nuclei move). Such detail is usually 
unnecessary and unhelpful. We assume that the volume elements are large enough 
to smooth out such variations, but still small enough to characterize the charge 
density in any small part of the system. With an appropriate choice, the charge 
density is a smoothly-varying function, except possibly at material boundaries 
where it may change abruptly. 

Given a smoothly-varying charge density, we can find the total charge within a 
region V by integrating the charge density over the volume. The sum in 
Equation 2.1 can then be replaced by the volume integral 

Q = ρ(r) dV, (2.2) 
V 

where V is the volume of interest. In some cases, integrating a charge density is 
more fundamental than adding point charges. For example, a single electron in an 
atom behaves like a continuous cloud of negative charge. To find the total charge 
within a small region of an atom we therefore rely on Equation 2.2 rather than 
Equation 2.1. 

Worked Example 2.1 

A spherically-symmetric charge distribution has charge density 

ρ(r) = Ar for r ≤ R, 

where r is the distance from the origin and A is a constant. For r >  R  the 
charge density is zero. What is the total charge of this charge distribution? 

Solution 

Because the charge distribution is spherically symmetric, we subdivide it 
into a set of thin spherical shells, rather like the layers of an onion 
(Figure 2.1). The surface area of a sphere of radius r is 4πr2, so a thin 
spherical shell with inner radius r and outer radius r + δr has thickness δr 
and volume 4πr2 δr. The charge density in this shell is Ar, so  the  shell  
contributes a charge 

δQ = Ar × 4πr2 δr = 4πAr 3 δr. 
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Charge density and electric flux 

Figure 2.1 A sphere 
of radius is split into 
thin spherical shells. 

The total charge is obtained by integrating over all the shells from 
, giving  

πAr πAR

The other concept we need is that of the electric flux over a surface. Flux is 
discussed in MT 8.5.2; here, we just summarize the main ideas. The simplest 
surface to consider is a plane element. We consider a plane element located at r, 
with area ∆S and unit normal �n (Figure 2.2). 

There are two possible unit normals to choose from, so our specification of a 
plane element involves the selection of one of these. The element is taken to be so 
small that the electric field is constant all over it. Then we define 

electric flux over element = En ∆S, 

where En is the normal component of the electric field on the element (that is, the 
n). Writing En = E · �electric field in the direction of the unit normal, � n, we have  

electric flux over element = (E · �n) ∆S = E · ∆S, 

where ∆S = �n ∆S is the oriented area of the plane element — a vector whose 
magnitude is the area of the element and whose direction is that of the unit normal 
of the element. We are generally interested in extended surfaces. To find the 
electric flux over an extended surface, we divide the surface into many tiny 
patches, each of which can be approximated by a plane element. The unit normals 
of neighbouring elements are chosen to be almost parallel (rather than almost 
antiparallel). Then the total flux over the surface is approximated by the sum of 
the fluxes over all the surface elements. In the limit of vanishingly small patches 
this approximation becomes exact and the sum is replaced by a surface integral: 

electric flux over an extended surface S = E · dS. 
S 

Figure 2.2 A plane element.
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Chapter 2 Gauss’s law 

One special case is very important. If the normal component of the electric field is 
constant all over a surface, the electric flux is just the normal component of the 
electric field on the surface times the surface area of the surface. 

This chapter will concentrate on closed surfaces. A closed surface is one that 
forms a complete barrier between its interior and exterior regions. It is 
conventional to take all the unit normals on a closed surface to point outwards into 
the exterior region. This means that the electric flux over a closed surface is an 
outward flux. It is positive for a closed surface containing an isolated positive 
charge and negative for a closed surface containing an isolated negative charge. 

Exercise 2.1 An electric field is constant throughout a region of space which 
contains a cube. Show that the electric flux over the surface of the cube is equal to 
zero. Q 

2.2 The road to Gauss’s law 
Coulomb’s law tells us that the electric field of a stationary charge is radially 
directed, spherically symmetrical and falls off as the inverse square of the distance 
from the charge. We can express this behaviour in a striking geometric way. 

Consider a sphere of radius R, centred on a point charge q that is stationary at the 
origin. No other charges are anywhere near the sphere. We will calculate the 
electric flux produced by q over the surface of the sphere. The sphere is a closed 
surface and we adopt the standard convention of taking its unit normals to point 
outwards into the exterior space. Then, at any point on the surface of the sphere, 
the normal component of the field is q/4πε0R

2, a result which follows from 
Coulomb’s law. 

Because the normal component of the field is constant over the surface of the 
sphere, the required surface integral is obtained by multiplying the normal 
component by the surface area 4πR2 of the sphere. That is, 

q 

sphere 
E · dS =

4πε

q 

0R2 × 4πR2 = 
ε0 

. (2.3) 

This is positive for q >  0 and negative for q <  0, as expected from Figure 2.3. 

Figure 2.3 (a) Positive flux 
due to a positive point charge; 
(b) negative flux due to a 
negative point charge. 
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2.2 The road to Gauss’s law 

Although the electric flux depends on the charge at the centre of the sphere it does 
not depend on the radius of the sphere. It is easy to see why. The electric field 
obeys an inverse square law, decreasing as 1/R2, while the surface area of the 
sphere grows as R2. These two factors cancel out in Equation 2.3, leaving the 
electric flux independent of the radius of the sphere. 

Equation 2.3 is the simplest example of a very powerful result. Gauss’s law states 
that the electric flux over any closed surface S is equal to the total charge enclosed 
by the surface, divided by ε0. Moreover, any charge outside the surface makes no 
contribution to the electric flux over the surface, so 

Q
electric flux over S = E · dS = , (2.4)


S ε0


where Q is the total charge enclosed by S. You have seen that this is true for a 
spherical surface centred on an isolated stationary charge, but Gauss’s law 
impressively extends this result to all closed surfaces and all distributions of Figure 2.4 Carl Friedrich 

charge. Gauss’s law is the major subject of this chapter. I shall now explain why it Gauss discovered Gauss’s law in 

is true.	 1835 but did not publish it, 
probably because he regarded it 

For the sake of intellectual honesty you should follow the derivation 
through, but bear in mind that the final result is much more important than 
the supporting argument. The proof ends on page 45. 

as only one step towards a 
complete theory of 
electromagnetism, which he 
hoped to develop. Gauss’s 
discovery was published 
posthumously in 1867 but by 
this time, it had been 
rediscovered by Lord Kelvin and 
identified as a fundamental law 
of electromagnetism by 
Maxwell. 

Figure 2.5 Projecting a mesh 
from an inner sphere to an outer 
surface S. 

Start of proof 

Suppose that an isolated point charge q is surrounded by an arbitrary closed 
surface S. To begin with, let’s assume that S is convex, which means that it 
bulges outwards like a rugby ball so that, viewed from the outside, there are no 
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Chapter 2 Gauss’s law 

Figure 2.6 A patch ∆S0 on 
an inner sphere is projected onto 
a patch ∆Ssph on an outer 
sphere. Both spheres are centred 
on the charge q. 

hollows. We imagine a small sphere, centred on the charge and contained entirely 
within S. This sphere is covered by a fine mesh which is projected from the 
position of the charge onto the outer surface (Figure 2.5). What is interesting is 
that the flux over any patch on the sphere is equal to the flux over the 
corresponding projected patch on the surface S. 

To see why, let’s initially look at the simplest case, in which the outer surface is a 
sphere. Consider a projected patch ∆Ssph that is part of the surface of a large 
sphere centred on the charge (Figure 2.6). Such a patch is an enlargement of a 
patch ∆S0 on the inner sphere, similar in shape but with each of its linear 
dimensions enlarged by a factor R/R0, where R and R0 are the distances of the 
outer and inner patches from the charge. It follows that the area of the outer patch 
is greater than that of the inner patch by a factor (R/R0)2. The unit normals of 
both patches point radially away from the charge, so the normal component of the 
electric field over each patch is equal to the radial component of the field. Because 
the field obeys an inverse square law, this is smaller over the outer patch by a 
factor (R0/R)2. The two factors, (R/R0)2 and (R0/R)2 cancel out, confirming 
that the electric fluxes over the two patches are the same. 

Now let’s look at the general case, in which the outer surface is not a sphere 
(Figure 2.7a). A patch ∆S0 on the inner sphere is projected onto a patch ∆S of 
the outer surface. This patch is not perpendicular to the radial direction from the 
charge, and it is not an enlargement of ∆S0, but is stretched more in some 
directions than others. To see whether this affects our conclusion, it is helpful to 
imagine a sphere, centred on the charge, whose surface passes through ∆S. We  
then project ∆S0 onto this spherical surface, producing a patch ∆Ssph. The  two  
patches, ∆S and ∆Ssph are both projected from ∆S0 and are both the same 
distance from the charge, but they are inclined at different angles: ∆Ssph is 
perpendicular to the radial direction but ∆S is not. Bear in mind that these 
patches have been drawn large enough to see, but that our analysis will assume 
that they are arbitrarily small. This allows us to approximate each patch by a 
plane element, with negligible variation of electric field over the element, and for 
the dotted projection lines to be effectively parallel in the vicinity of the element. 
These approximations are illustrated in the enlarged view shown in Figure 2.7b. 
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We now compare the electric fluxes over ∆S and ∆Ssph. First note that the 
normal component of the electric field over ∆Ssph is Er , the radial component of 
the electric field due to q, while the normal component of the electric field over 
∆S is 

En = Er cos α, 

where α is the angle between the normals of ∆S and ∆Ssph. Because the surface 
S bulges outwards, α is an acute angle, so En has the same sign as Er but is 
smaller. On the other hand, the area of ∆S is greater than that of ∆Ssph. 
Elementary trigonometry in Figure 2.7b shows that 

∆Ssph∆S = . 
cos α 

The flux over a plane element is the product of the normal component of the field 
times the area of the element so, when we compare the two fluxes, the factors of 

2.2 The road to Gauss’s law


Figure 2.7 (a) A patch ∆S0 

on an inner sphere is projected 
onto a patch ∆S on a 
non-spherical surface. This is 
compared with the patch ∆Ssph, 
obtained by projecting ∆S0 onto 
the surface of a sphere. 
(b) Enlarged view used to show 
that the fluxes over ∆S and 
∆Ssph are the same. 
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Chapter 2 Gauss’s law 

Figure 2.8 Cross-sectional 
view of a general closed surface 
S. Successive projected patches 
have fluxes of alternating sign. 

cos α cancel out. That is, 

flux over ∆S = En ∆S 

∆Ssph= Er cos α 
cos α 

= Er ∆Ssph 

= flux over ∆Ssph. 

Our previous argument showed that the flux over ∆Ssph is the same as that over 
∆S0, so the flux over ∆S must also be the same as that over ∆S0. Because the 
surface S bulges outwards, each of its patches has a partner in S0, and vice versa. 
We therefore conclude that the total flux over S is the same as the total flux over 
S0, and this, we already know, is q/ε0. 

The main part of the proof is now complete, but there are some loose ends to tidy 
up. So far, we have restricted attention to convex closed surfaces but Figure 2.8 
shows a closed surface S of a more complex shape which contains an isolated 
point charge q. We construct a sphere, S0, centred on the charge and entirely 
inside S. The sphere is again covered by arbitrarily small patches which are 
projected onto S. In this case, however, one patch on S0 may project onto several 
patches on S. This requires a modification of our argument. 

Consider all the patches that are produced when a given patch ∆S0 of the inner 
mesh is projected onto S. For reasons described earlier, the magnitude of the flux 
is the same over all these patches. However, we need to think carefully about the 
sign of the flux in each case. In the case of a spherical or rugby-ball shaped 
surface all the patches contribute fluxes of the same sign (positive for q >  0 and 
negative for q <  0), but this is not true for the surface in Figure 2.8. The electric 
field lines can enter or leave this surface, depending on the orientation of a given 
patch. Because the unit normals of a closed surface always point outwards, the 
flux is positive in regions where the field lines leave S and negative in regions 
where they enter it. Consequently, as we step radially outwards from the charge, 
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the fluxes contributed by successive projected patches cancel out in pairs. The 
outward journey away from the charge towards infinity must always involve an 
odd number of crossings of the surface, so ∆S0 projects onto an odd number of 
patches on S. Because of the cancellations, the total flux contributed by all these 
patches reduces to the flux over the last patch in the set. Our argument then goes 
through as before: the flux over this last patch is equal to the flux over ∆S0. So,  
summing over all the patches on S, the total flux over S is equal to the total flux 
over S0, namely q/ε0. 

We should also consider the flux produced by an isolated point charge q outside a 
closed surface, S (Figure 2.9). To do this we again project outwards from the 
charge onto S. Our previous argument goes through almost as before. The only 
important difference is that, as we step radially outwards from the charge towards 
infinity, we cross S an even number of times, so projecting in a given direction 
produces an even number of patches on S. The flux contributions from these 
patches again cancel out in pairs so, summing over all the patches on S, we obtain 
a total flux of zero. Charges outside a closed surface do not contribute to the flux 
over that surface. 

Finally, all the different cases we have considered can be drawn together, using 
the principle of superposition and the law of additivity of charge. Suppose we 
have a number of point charges q1, q2,  . . . ,  qn producing electric fields E1(r), 
E2(r),  . . . ,  En(r). Then the total electric field at any point is given by the vector 
sum E1(r) + E2(r) + . . .  + En(r). It follows that the total electric flux over a 
closed surface is the sum of the individual electric fluxes due to the charges 
q1, q2,  . . . ,  qn. We know that each charge outside the surface makes no 
contribution to the electric flux whereas each charge inside the surface contributes 
a flux equal to the value of the charge divided by ε0. The total flux over the closed 
surface is therefore the sum of all the charges inside the surface, divided by ε0. By  
the additivity of charge, this is just the total enclosed charge, Q, divided by ε0, 
which is the general statement of Gauss’s law, established now for all closed 
surfaces and all stationary distributions of charge. 

Figure 2.9 Cross-sectional 
view of a charge q outside a 
closed surface S. 

This concludes the proof of 
Gauss’s law. 
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Chapter 2 Gauss’s law 

The scope and status of Gauss’s law 

Gauss’s law is a gem, combining simplicity with impressive generality. The proof 
outlined above was based on three physical assumptions — Coulomb’s law, the 
law of addition of charge and the principle of superposition of electric fields. 
These assumptions were combined with some elementary geometry in three 
dimensions and Gauss’s law emerged as a result. 

Taking the geometry, addition of charge and superposition of fields on trust, 
Gauss’s law is sometimes said to provide an alternative expression of Coulomb’s 
law. However, this is a very loose description. In fact, our proof of Gauss’s law 
did not use every aspect of Coulomb’s law. It only assumed that: 

•	 In any given direction, the electric field of a point charge is radial and dies off 
according to an inverse square law. 

•	 The electric flux over the surface of a sphere centred on an isolated point 
charge q is q/ε0. 

These assumptions certainly follow from Coulomb’s law, but they can also be true 
in situations where Coulomb’s law does not apply. For example, the electric field 
of a uniformly-moving charge (shown in Figure 1.17) does not have the spherical 
symmetry required by Coulomb’s law. Even so, it turns out that this field obeys 
both the above assumptions and so does obey Gauss’s law. 

At this point we make a bold leap of faith. We assert that Gauss’s law is true 
under all circumstances — for charges that are moving uniformly or 
non-uniformly, as well as for particles that are at rest. For stationary particles, we 
have shown that Gauss’s law follows from Coulomb’s law, but the final step of 
asserting that Gauss’s law remains valid for moving particles is taken to be a basic 
fact of Nature. No attempt is made to justify this fact using deeper knowledge 
because the universality of Gauss’s law is itself regarded as a fundamental truth. 
Maxwell was the first person to make this leap and to pursue its consequences, 
and Gauss’s law is the first of Maxwell’s four celebrated equations of 
electromagnetism. The ultimate justification of Gauss’s law in all its generality 
comes from experiment — not direct experiments that probe this particular law, 
but from the triumphant predictions of the whole of Maxwell’s theory. 

Gauss’s law is the part of Coulomb’s law that is universally valid — it is true for 
charges in motion, as well as for charges at rest. This generality is made possible 
by the fact that Gauss’s law is less specific than Coulomb’s law; it gives the 
surface integral of the electric field over a closed surface, not the value of the field 
at any point in space. The surface integral turns out to be independent of the 
motion of charges, even though the electric field itself depends on this motion 
(compare Figures 1.12 and 1.17, for example). 

Any information that is left out of Gauss’s law is contained in the rest of 
Maxwell’s equations, which you will meet later in this book. In favourable 
circumstances, however, the missing information can be deduced from the 
symmetry of the situation. For example, suppose we have a point charge q at rest 
at the origin. Because charge is a scalar quantity with no directional character, a 
stationary point charge singles out no special direction in space. This implies that 
the electric field of a stationary point charge is spherically symmetrical, pointing 
away from, or towards, the charge, with a magnitude that depends only on the 
distance from the charge. If we now suppose that the charge is at the centre of a 
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sphere of radius R, the electric flux over the surface of this sphere is Er × 4πR2 , 
where Er is the radial component of the field on the spherical surface. Using 
Gauss’s law we conclude that 

Er × 4πR2 = 
q

,
ε0 

q
so Er = 4πε0R2 , and Er = 4πε

q 

0R2 er 

which is essentially Coulomb’s law, expressed in terms of the electric field. So 
Gauss’s law, supplemented by spherical symmetry, leads to Coulomb’s law. The 
assumption of a spherically-symmetric field is obvious for a stationary charge, but 
not for one that is moving, which explains why Coulomb’s law is restricted to the 
static case. 

Exercise 2.2 An isolated point charge is placed at the centre of a sphere. Is the 
total electric flux over the closed surface of the sphere changed by: (a) moving the 
charge off-centre inside the sphere; (b) moving the charge just outside the sphere; 
(c) splitting the charge into two fragments, both of which remain inside the 
sphere; (d) allowing the charge to oscillate to and fro within the sphere; (e) adding 
an extra charge just inside the sphere; (f) adding an extra charge just outside the 
sphere; (g) increasing the radius of the sphere or (h) deforming the sphere 
slightly? 

Exercise 2.3 If the photon had a non-zero mass, would Gauss’s law be exactly 
true? (Hint: see Section 1.4.2.) Q 

2.3 Putting Gauss’s law to use 
At the risk of repetition, here is a definitive statement of Gauss’s law: 

S Q 
ε0� 

S 
E · dS = 

Q 
ε0 

. (2.5) 

closed. 

� 

S 
E · dS = 

1 
ε0 

� 

V 
ρ(r) dV, (2.6) 

where S V 

. 

Gauss’s law 

The electric flux over any closed surface is equal to the total charge 
enclosed by the surface, divided by . That  is,  

This law is true for all closed surfaces, no matter what their shape, and for 
all distributions of charge, whether they are stationary or not. In particular, 
any charges outside the surface make no contribution to the electric flux over 
the surface. Gauss’s law cannot be extended to open surfaces because the 
concept of the total enclosed charge only makes sense for a surface that is 

The total charge inside the closed surface can be expressed as a volume 
integral of the charge density, so Gauss’s law can also be written as 

is any closed surface and is the region inside this surface. 
Because this statement involves surface and volume integrals, it is called the 
integral version of Gauss’s law
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Chapter 2 Gauss’s law 

As emphasized earlier, knowledge of the electric flux does not usually reveal the 
value of the electric field at individual points in space. To have any chance of 
finding the electric field from Gauss’s law, the situation must be highly 
symmetric. In practice, Gauss’s law is most valuable when the sources of the 
electric field have spherical symmetry, cylindrical symmetry or planar symmetry. 
Ideally, the direction of the electric field should be perpendicular to, or parallel to, 
the chosen closed surface and the magnitude of the electric field should be 
constant over the surface. We are free to choose whichever surface we like, but 
the choice had better be made wisely, with symmetry in mind. A choice of surface 
made for a particular application of Gauss’s law is called a Gaussian surface. 

2.3.1 Spherical symmetry 

Essential skill 
Applying Gauss’s law in cases 
of spherical symmetry. 

Q R, 

E(r) =  Er (r) er , 

where Er (r) r and er 

r

outside 

Q

component, Er (r)

Er (r) × 4πr2 = 
Q 
ε0 

so 

Er (r) =  
Q 

4πε0r2 and E(r) =  
Q 

4πε0r2 er (for r ≥ R). 

any 

Worked Example 2.2 

A static uniform distribution of total charge occupies a sphere of radius 
centred on the origin. Find the electric field at all points (a) outside and (b) 
inside this distribution of charge. 

Solution 

The static uniform charge distribution has spherical symmetry, so the 
electric field must also have spherical symmetry. At each point it is directed 
towards, or away from, the centre of the sphere and has a radial component 
that depends only on the distance from the centre of the sphere. So 

is the radial component at radius is the radial unit 
vector at the point . (Symmetry arguments like this are legitimate, safe and 
invaluable, as explained in Chapter 1.) 

(a) Consider the field the sphere of charge. We exploit the spherical 
symmetry by choosing a spherical Gaussian surface, centred on the origin, 
with radius r > R. This closed surface contains the whole charge 
distribution, and therefore encloses charge . The electric field due to the 
charge distribution is perpendicular to the surface and has a constant normal 

, on this surface. Applying Gauss’s law, we obtain 

Viewed from the outside, the sphere behaves as if all its charge were 
concentrated at its centre. Looking back at the derivation, it is easy to see 
that this result does not rely on a uniform charge density; it is true for 
spherically-symmetric distribution of charge. 

(b) Inside the sphere we choose a spherical Gaussian surface, centred on the 
origin, with r < R. This closed surface does not contain the whole charge 
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Q

Qenc = 
� r 

0 
ρ × 4πs2 ds, 

s 
r

ρ = = 
Q 

4πR3/3 

Qenc = 
Q 

4πR3/3 

� r 

0 
4πs2 ds = Q × 

r3 

R3 . 

Q
j

uniform 

Er (r) × 4πr2 = 
Q 
ε0 

× 
r3 

R3 

so 

Er (r) =  
Qr  

4πε0R3 and E(r) =  
Qr  

4πε0R3 er (for r ≤ R). 

• 

3 1/R2 . 

• 

• r = R. 

Er 

r r. 

, but encloses a charge 

where I have written the variable of integration as to avoid any confusion 
with the upper limit, . The symbol used for a variable of integration has no 
physical significance, so this is a legitimate step. 

In our case the charge density is uniform so 

charge 
volume 

and the enclosed charge is 

This is just the total charge , multiplied by the ratio of the volumes of the 
Gaussian sphere and the whole sphere — ust as you would expect for a 

charge density. Finally, Gauss’s law gives 

The question has now been fully answered, but it is always worth checking 
your answers. Even the most reliable computers have error-detecting codes 
built into their software and you should also develop the routine of checking 
that your answers are reasonable. In the present case, a number of points can 
be confirmed: 

The units are correct. This is obvious outside the sphere, where the answer 
is the electric field of a point charge. It is also true inside the sphere because 
r/R has the same units as 

The electric field is zero at the origin. A non-zero field at the origin would 
be inexplicable, given the spherical symmetry of the charge distribution. 

The interior field becomes equal to the exterior field at 
A discontinuity would imply an infinite charge density at the surface of the 
sphere, which is physically unreasonable. 

Of course, these checks do not guarantee that our answer is right, but they 
certainly help to boost our confidence in it. Figure 2.10 is a graph of 
versus for all 

Figure 2.10 A graph of Er 

versus r for use in Worked 
Example 2.2. 
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Exercise 2.4 A static spherically-symmetric distribution of charge is centred 
on the origin and vanishes outside a sphere of radius R. Inside the sphere, the 
charge density at distance r from the origin is 

ρ(r) =  Ar, 

where A is a constant. Find the electric field at all points (a) outside and (b) inside 
the distribution of charge. 

Exercise 2.5 If the electric field in air becomes too great, the air undergoes 
breakdown, becoming a good conductor and allowing charge to leak away from 
objects. Show that the magnitude of static charge carried by a spherical hailstone 
of radius 3.0 mm cannot exceed one nanocoulomb (1 nC = 10−9 C). You may 
assume that the charge is distributed in a spherically symmetric way in the 
hailstone and that the breakdown field of damp air is 1.0 × 106 N C−1 . 

Exercise 2.6 In fine weather there is a weak electric field pointing vertically 
downwards at the Earth’s surface. A typical value, averaged over the surface of 
the Earth, is 100 N C−1. Estimate the total charge on planet Earth (that is the total 
charge within its solid or liquid surface). You may take the Earth to be a perfect 
sphere of radius 6.6 × 106 m, with a spherically-symmetric charge 
distribution. Q 

Our next application of Gauss’s law forms the basis of a famous experiment. An 
isolated spherical shell of radius R is centred on the origin. The shell is 
constructed from a conducting material such as copper and given a net charge. 
Charge flows easily in the copper so the mutual repulsion of like charges causes 
the charge to spread out over the shell. Very soon, a state of equilibrium is 
reached in which the charge is spread out uniformly and the shell provides a 
static, spherically-symmetric distribution of charge. The spherical cavity inside 
the shell is empty and contains no charge. Under these circumstances we can 
show that there is no electric field inside the cavity. 

We choose a spherical Gaussian surface (of radius r < R) inside the spherical 
cavity, with the same centre as the shell (Figure 2.11). There is no flux over this 
Gaussian surface because there is no charge inside it. We then make use of 
symmetry. By spherical symmetry, the magnitude of the electric field is the same 
at all points on the Gaussian surface. Spherical symmetry also shows that, if there 
is an electric field, it must be radial. No other direction is compatible with the 
spherical symmetry of the charge distribution. This leaves only one way of 
explaining the zero flux — the electric field must be zero at all points on the 
Gaussian surface. This argument works for all spherical Gaussian surfaces with 
0 < r < R. The point at the centre of the cavity is exempt from the argument, but 
spherical symmetry guarantees that the field vanishes here as well. So the electric 
field is predicted to be zero throughout the cavity. In 1773, Henry Cavendish 

Figure 2.11 A uniformly tested this prediction by direct experiment and later physicists, including Maxwell 

charged spherical shell of radius himself, refined the sensitivity of this measurement. The electric field inside a 

R surrounds a spherical hollow spherical conductor has always been below the limits of detection, 
providing good evidence for the validity of Gauss’s law and for the underlying Gaussian surface of radius r. 
inverse square law of electrostatic force. 
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2.3.2 Cylindrical symmetry 

We now turn to situations with cylindrical symmetry. Consider first a long 
cylinder of radius R and length L with a charge Q that is spread out uniformly 
throughout the cylinder. The charge per unit length is λ = Q/L. Close to the axis 
of the cylinder and far from its ends, the electric field is well-approximated by the 
field of an infinitely long cylinder with the same radius and the same charge 
density. The approximation of taking a cylinder to be infinitely long avoids the 
need to discuss end effects — the modifications in the field that occur near the 
ends of the cylinder. We will therefore restrict attention to infinitely-long 
cylinders. In the context of problems in electromagnetism, you may take the 
description of a cylinder as being long as a coded invitation to regard it as being 
infinitely long and hence to ignore the end effects. The electric field around an 
infinitely-long cylinder is cylindrically symmetric around the axis of the cylinder 
and does not vary along the axis of the cylinder. As shown in Figure 2.12, the field 
is perpendicular to the axis of the cylinder. Moreover, the radial component of the 
field depends only on the distance from the axis. We therefore have 

E(r) = Er (r) er , 

where Er (r) is the radial component of the electric field at distance r from the 
axis of the cylinder and er is the unit radial vector at point r. Note that these 
quantities refer to cylindrical coordinates, not spherical coordinates. So r is the 
distance from the central axis; it is not the distance from the origin. And er is a 
unit vector which is perpendicular to the central axis and points directly away 
from it; it does not point away from the origin. There is never any ambiguity 
about whether we are dealing with cylinders or spheres, so the intended meaning 
of our symbols, and of words like radius or radial, will be clear from the context. 

Figure 2.12 The electric field 
E in a plane perpendicular to a 
uniformly-charged infinite 
cylinder. 
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Chapter 2 Gauss’s law

Essential skill
Applying Gauss’s law in cases
of cylindrical symmetry.

Worked Example 2.3
Find the electric field outside a stationary uniformly-charged infinite
cylinder with a charge per unit length of λ.

Solution
This situation is cylindrically symmetric around the axis of the cylinder so
the appropriate choice of Gaussian surface is a cylinder of radius r > R and
length ∆l, with the same axis as the charged cylinder (Figure 2.13). The
Gaussian surface must be closed, so it includes the two end-faces.

Figure 2.13 Gaussian surface for Worked Example 2.3.

The electric field is parallel to the end-faces of the cylinder so they contribute
no flux. The curved surface of the cylinder has area 2πr ∆l. The electric
field is perpendicular to this surface and has a constant normal component
over it, so the flux contributed by the curved surface is Er(r) × 2πr ∆l. The
total charge enclosed by the Gaussian surface is λ ∆l so Gauss’s law gives

Remember that the radius r and
unit radial vector er refer to
quantities measured outwards
from the axis of the cylinder.

Er(r) × 2πr ∆l =
λ ∆l

ε0
.

Hence

Er(r) =
λ

2πε0r
and E(r) =

λ

2πε0r
er. (2.7)

One way of checking this answer is to show that its dimensions (or units) are
correct. This is easily done since λ is a charge per unit length, so the
expressions in Equation 2.7 have the same dimensions as Q/4πε0r

2, which
can be recognized as the electric field of a point charge.

Exercise 2.7 Would Equation 2.7 still be valid if the cylinder were moving at
constant velocity in the direction of its own axis?
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2.3 Putting Gauss’s law to use 

Exercise 2.8 (a) Is the electric field outside a uniformly-charged infinite 
cylinder the same as the field of a uniform infinite line of charge, with the same 
charge per unit length, lying along the central axis of the cylinder? 

(b) Is a similar statement true for the electric field inside a uniformly-charged 
infinite cylinder? Q 

2.3.3 Planar symmetry 

Finally we discuss situations with planar symmetry. Consider a plane of area A 
with a charge Q spread uniformly over its surface. We use the term areal charge 
density to describe the charge per unit area. This areal charge density has the 
constant value σ = Q/A all over the plane. For simplicity, we ignore any 
modifications in the field that occur near the edges of the plane. This is achieved 
by imagining the plane to be infinite in extent, without any edges. 

The electric field of a uniform infinite plane of charge has considerable symmetry. 
It is perpendicular to the plane, does not vary in any direction parallel to the plane 
and is reversed by a reflection in the plane. These symmetry properties allow us to 
write 

E(r) = En en, 

where En depends only on the distance of the point r from the plane and en is a 
unit normal to the plane, conventionally chosen to point away from the plane, 
towards the point r. 

σ. 

∆A

component En 

2En ∆A σ ∆A so 

2En ∆A = 
σ ∆A 

ε0 
, 

and 

E(r) =  
σ 

2ε0 
en, (2.8) 

where en 

r
σ >  0 σ <  0. 

Worked Example 2.4 

Find the electric field near a uniformly-charged infinite insulating plate with 
areal charge density 

Solution 

An appropriate Gaussian surface is shown in Figure 2.14. This is a squat 
cylinder (sometimes called a pillbox) with end-faces of area . The  axis  
of the cylinder is perpendicular to the plate and straddles it symmetrically, so 
half of it is in front of the plate (solid lines) and half is behind (dashed lines). 

The electric field is parallel to the curved surface of the cylinder so this 
surface makes no contribution to the flux. However, the electric field is 
perpendicular to the flat ends of the cylinder and has a constant normal 

over each end-face, so the total flux contributed by the two 
end-faces is . The total charge enclosed by the cylinder is 
Gauss’s law gives 

is a unit vector pointing perpendicularly away from the plate 
towards . This correctly gives a field pointing away from the plate for 

and a field pointing towards the plate for 

Essential skill 
Applying Gauss’s law in cases 
of planar symmetry. 

Figure 2.14 A Gaussian

surface for a plate of charge.
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Chapter 2 Gauss’s law 

Figure 2.15 An isolated

charged conducting plate.


Figure 2.16 A parallel plate

capacitor with plates of area A

carrying charges +Q and −Q.


It is interesting to note that Equation 2.8 does not depend on the distance from the 
plate, even though such a dependence would be consistent with planar symmetry. 
The lack of dependence on distance is a consequence of Gauss’s law or, 
equivalently, the inverse square law of force. It is only exactly true for an infinite 
plate of charge. Nevertheless, for a finite square plate of charge, the field is almost 
independent of distance provided that we keep far from the edges of the plate and 
the distance from the plate is small compared to the plate’s lateral dimensions. 

Next, we consider an isolated charged conducting plate. If the plate is large 
enough in its lateral dimensions, the charge distributes itself almost uniformly in 
the plane of the plate with areal charge density σ. However, the charge is not 
distributed uniformly through the thickness of the plate. Mutual repulsion causes 
charge separation and produces two similar sheets of charge on opposite surfaces 
of the plate. In equilibrium, each of the two charge sheets has the same areal 
charge density, σ/2. This is usually called a surface charge density because it is 
associated with a given surface. Of course, there is a distinction between the 
surface charge density σ/2 and the areal charge density of the plate, σ. The  
electric fields due to the two charge sheets cancel out inside the conducting plate. 
This is not surprising. In equilibrium, there can be no electric field inside a 
conductor. This is because any electric field in a conductor would drive a current, 
and there are no currents in a state of true equilibrium. 

There are two alternative ways of applying Gauss’s law in this situation. First, we 
can use a pillbox that straddles the whole plate. The calculation then repeats that 
given in Worked Example 2.4. Alternatively, we can use the Gaussian surface 
shown in Figure 2.15 — a squat cylinder with end-faces of area ∆A, one of which 
is inside the plate. The flux over this end-face vanishes because there is no electric 
field inside the plate, while the flux over the external end-face is En ∆A. The  
pillbox contains only one of the two surface charge sheets, so it encloses a charge 
σ/2 × ∆A. Thus, Gauss’s law gives 

σ ∆A 
En ∆A =

2ε0 
, 

which rearranges to give the same field as before. 

Finally, let’s consider a case of practical importance — a capacitor. A capacitor 
is a device used to store electrical energy by keeping positive and negative charges 
separated. Capacitors are used in defibrillators that save the lives of heart-attack 
victims and in circuits that tune radios and televisions. The membrane of a nerve 
cell also acts like a capacitor whose properties affect the speed of transmission of 
nerve impulses. To take the simplest possible case, we will consider an empty 
parallel plate capacitor (Figure 2.16). This consists of a pair of parallel 
conducting plates, each of area A, separated by a narrow gap which is empty. The 
plates carry opposite charges, +Q and −Q, and their areal charge densities are 
σ = +Q/A and −σ = −Q/A. We wish to know the electric field inside and just 
outside the capacitor. 

If we keep away from the edges of the plates and are either in the narrow gap 
between the plates, or outside the gap but close to the plates, any edge effects can 
be neglected. This means that the capacitor can be modelled as having infinite 
plates with uniform areal charge densities σ and −σ. In this situation, the electric 
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2.4 The differential version of Gauss’s law 

field can be found using Equation 2.8, together with the principle of 
superposition. The electric field of an infinite plane of charge does not decrease 
with distance. Hence the two infinite planes of charge produce fields of the same 
magnitude. Outside the capacitor, these fields have opposite directions and cancel 
out. So the field outside the capacitor vanishes. In the gap between the plates, the 
fields have the same direction and add together. So the field in the gap is 

σ

E = en,


ε0


where en is a unit normal, pointing from the plate with charge +Q towards the 
plate with charge −Q. The field in the gap is therefore uniform and perpendicular 
to the plates. 

It is instructive to take a fresh look at this problem, deriving the results more 
directly from Gauss’s law. Remember that, in equilibrium, there is no electric 
field inside either plate. Inside plate 1, the field due to charges on the surface of 
plate 1 must cancel the field due to plate 2. To achieve this cancellation, all the 
charge on plate 1 migrates to its inner surface, leaving no charge on its outer 
surface. The same happens on plate 2, so the charge accumulates on the inner Figure 2.17 Charge migrates 
surfaces of the plates, as shown in Figure 2.17. The distribution of charge on each to the inner surfaces of the 
plate is totally unlike that on an isolated charged plate (Figure 2.15) because the capacitor plates. 
two plates in a capacitor are not isolated, but interact strongly with one another. 
To apply Gauss’s law in this situation, we can choose the cylindrical pillbox 
Gaussian surfaces of Figure 2.18. Each of these pillboxes has an end-face inside 
the plate, where the electric field vanishes. The total flux over the surface of each 
pillbox is therefore En ∆A, where En is the normal component of the electric 
field over the external end-face and ∆A is the cross-sectional area of the cylinder. 
Pillbox (a) contains no charge, so Gauss’s law shows that En = 0 outside the 
capacitor. Pillbox (b) contains charge σ ∆A so Gauss’s law gives 

σ 
En = ,


ε0


between the plates, in agreement with results obtained earlier. 

Exercise 2.9 An infinite parallel plate capacitor has uniformly-charged plates. 
Plate 1 has areal charge density σ1 and plate 2 has areal charge density σ2. 
(Normally a capacitor has oppositely-charged plates so σ1 + σ2 = 0, but this need 
not be the case.) What is the electric field in the gap between the plates in 
general? Q 

Figure 2.18 Two Gaussian 
2.4 The differential version of Gauss’s law surfaces for a capacitor plate. 

Gauss’s law, as described so far, involves integrals; the electric flux is a surface 
integral and the total charge enclosed by a surface is often calculated as a volume 
integral. This form of Gauss’s law is called the integral version of Gauss’s law. In 
this section you will see that Gauss’s law can be re-expressed using derivatives 
rather than integrals, giving a differential version of Gauss’s law. 
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Chapter 2 Gauss’s law 

� Read MT 8.6 now if you have not already done so. This is essential 
material, and the following text will assume that you have read it. 

You are familiar with the idea that mass is additive. If we divide an object into 
many parts, the mass of the object is the sum of the masses of its parts. This 
allows us to express the mass of the object as a volume integral of its density (the 
mass per unit volume), taken over the volume of the object. 

Now, following MT 8.6, something very similar can be done for electric flux. 
Recall that the flux of any vector field is additive. In particular, electric flux is 
additive. So, if we divide a volume into many parts, the electric flux over the 
surface of the volume is the sum of the electric fluxes over the surfaces of its 
parts. This allows us to express the electric flux over the surface of a region as the 
volume integral of the electric flux per unit volume, taken over the volume of the 
region. The electric flux per unit volume is called the divergence of the electric 
field and given the symbol div E. This is a scalar field defined at each point in 
space. The electric flux over any closed surface S can therefore be expressed as a 
volume integral of div E. We write 

E · dS = div E dV, (Eqn 8.34) 
S V 

where V is the volume enclosed by S. This is the content of the divergence 
theorem, as applied to the electric field. 

To obtain the differential version of Gauss’s law, we combine the divergence 
theorem with the integral version of Gauss’s law (Equation 2.6) to give 

ρ(r)
div E dV = dV, (2.9) 

V V ε0 

where both integrals extend over the same volume V with boundary S. The  key  
step is then to notice that Equation 2.9 applies to any volume whatsoever. In 
particular, it applies to volumes that are arbitrarily small. Under these 
circumstances, the only way to satisfy Equation 2.9 is to insist that the integrands 
are identical on both sides. We therefore conclude that 

Finally, as you saw in the MT 8.6.3, the divergence of a field can be expressed in 
terms of partial derivatives of the field. In Cartesian coordinates, there is a simple 
and symmetrical expression for the divergence of E. It  is  

∂Ex ∂Ezdiv E = + 
∂Ey + . 

∂x ∂y ∂z 

So we conclude that 

div E = 
ρ(r) 
ε0 

. (2.10) 

∂Ex 

∂x 
+ 

∂Ey 

∂y 
+ 

∂Ez 

∂z 
= 

ρ(r) 
ε0 

. (2.11) 

Equations 2.10 and 2.11 both express the differential version of Gauss’s law. 
Just like the integral version, the differential version of Gauss’s law is a 
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2.4 The differential version of Gauss’s law 

fundamental law of electromagnetism, valid for all charge distributions, whether 
they are stationary or moving. Both versions of Gauss’s law are cornerstones of 
Maxwell’s theory of electromagnetism. 

The differential version of Gauss’s law is a major step forward. It is a local 
description relating the charge density at a given point and time to the divergence 
of the electric field at the same point and time. There is no mention of distant 
charges so the concept of action at a distance is avoided. This is in the true spirit 
of a field theory and is a great advance on Coulomb’s law. However, Gauss’s law 
does not by itself give a complete description of the electromagnetic field. For 
example, we might expect that jiggling a charge in one region will cause 
disturbances in the field that propagate outwards, just as jiggling a stick in water 
causes water waves to spread out over a pond. Such effects are not described by 
Gauss’s law because it does not include derivatives with respect to time. Gauss 
himself thought this was a defect, so he failed to publish his law. However, 
Maxwell guessed (correctly) that there is nothing wrong with Gauss’s law, but 
Gauss’s law is only part of a complete theory of electromagnetism, which 
contains other equations as well. These other equations are contained in the rest of 
Maxwell’s theory, which will be developed in the rest of this book. 

Essential skill 
Applying the differential version 
of Gauss’s law. 

z = −d/2 and z = +d/2
x y

ρ0

z >  0 z <  0

z z

E = Ez (z) ez . 

∂Ex 

∂x 
+ 

∂Ey 

∂y 
+ 

∂Ez 

∂z 
= 

ρ0 

ε0 
, 

∂Ex and ∂Ey 

x y
∂Ez Ez 

on z
dEz 

dz 
= 

ρ0 

ε0 
. 

z 

Ez (z) =  
ρ0 z 
ε0 

+ C, 

where C 

z = 0 Ez (z) = −Ez (−z)
ρ0 z 
ε0 

+ C = − 

� −ρ0 z 
ε0 

+ C 

� 

. 

Worked Example 2.5 
A non-conducting slab lies between , and extends 
to infinity in the - and  -directions. Throughout its volume this slab has a 
uniform charge density, . The slab is isolated from all other influences, 
and the electric field for is the reverse of the field for . Use the 
differential version of Gauss’s law to find the electric field inside the slab. 

Solution 
The planar symmetry means that the electric field of the slab only has a 

-component, and this depends only on . So  

According to Gauss’s law 

inside the slab. The partial derivatives /∂x /∂y are equal to 
zero because the field has no - or  -components. The partial derivative 

/∂z can be written as an ordinary derivative because depends only 
. Hence Gauss’s law becomes 

Integrating both sides with respect to gives 

is an arbitrary constant of integration. 

The charge distribution, and hence the electric field, has a reflection 
symmetry in the plane so that . This implies that 
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Hence C = 0

Ez (z) =  
ρ0 z 
ε0 

. 

∆A z and −z
0 2� 

Ez (z) − Ez (−z) 
� 
∆A = 

ρ0 × 2z ∆A 
ε0 

. 

Ez (z) =  −Ez (−z)

Chapter 2 Gauss’s law 

, and  

It is interesting to check the answer using the integral version of Gauss’s 
law. We choose the cylindrical Gaussian surface shown in Figure 2.19, of 
cross-sectional area and with end-faces located at , where 

< z  < d/ . The integral version of Gauss’s law then gives 

Then, since , we recover our previous result. 

Figure 2.19 A cylindrical 
Gaussian surface. 

It is not always appropriate to work in Cartesian coordinates. If the electric field 
has spherical or cylindrical symmetry, it is much more sensible to use spherical or 
cylindrical coordinates. Expressions for divergence in these coordinate systems 
(too long to remember) are listed inside the back cover of the book, but 
simplifications can often be made. 

If an electric field E(r) =  Er (r) er is radial with respect to the origin, with Er (r) 
depending only on the distance r from the origin, the divergence simplifies to 

1 d
div E = (r 2Er ) in spherical coordinates. (2.12) 

r2 dr 

If an electric field E(r) =  Er (r) er is radial with respect to the z-axis, with Er (r) 
depending only on the distance r from the z-axis, the divergence simplifies to 

1 d
div E = (rEr ) in cylindrical coordinates. (2.13) 

r dr 

Exercise 2.10 Use the differential version of Gauss’s law to find the electric 
field inside a spherical distribution of charge with charge density ρ(r) =  Ar, 
where A is a constant. Q 

The above successes are special cases. Symmetry arguments allowed us to convert 
Equation 2.10 (a partial differential equation in three variables) into an ordinary 
differential equation in one variable. Symmetry was also used to fix the value of 
the constant of integration. However, a lack of symmetry generally blocks any 
such simplifications. This difficulty is related to the existence of divergence-free 
fields — that is, vector fields whose divergence vanishes everywhere. An example 
of such a field is 

G(r) =  Gx(y, z) ex + Gy (x, z) ey + Gz (x, y) ez , 

which obviously satisfies div G = 0, because the partial derivatives ∂Gx/∂x, 
∂Gy /∂y and ∂Gz /∂z all vanish. Suppose that we find a vector field E(r) that 
satisfies Gauss’s law, 

ρ(r)
div E = ,


ε0


for a given charge density. Then 

ρ(r) ρ(r)
div(E + G) = div  E + div  G = + 0  =  ,


ε0 ε0
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Summary of Chapter 2 

so E(r) + G(r) is another vector field that satisfies Gauss’s law for this charge 
density. Which solution is correct? By itself, Gauss’s law cannot tell us. We need 
further information — either supplied by symmetry or by other principles. 
Remember, there are more Maxwell equations to come in later chapters! 

Although it is not always possible to use Gauss’s law to deduce an electric field 
from a known charge density, it is always possible to do the reverse. If we know 
the electric field throughout a region, we can find the charge density in that region. 
According to Equation 2.10, the charge density is found by taking the divergence 
of the electric field and multiplying by ε0. 

Exercise 2.11 Throughout a spherical region centred on the origin, the electric 
field is 

3 3E = A(x ex + y ey − z 3ez ), 

where A is a positive constant. What is the charge density throughout this region? 
Does the region contain only positive charges, only negative charges or a mixture 
of the two? Q 

A software package on the DVD allows you to explore the integral and 
differential versions of Gauss’s law. This package is best studied some time 
after completing this chapter. The DVD also contains a video of a tutorial 
which uses Gauss’s law to solve a typical problem. 

Summary of Chapter 2 
Section 2.1 Charge density is the charge per unit volume. The total charge in a 
region is the volume integral of the charge density over the region. Electric flux is 
the surface integral of the electric field over a given surface. 

Section 2.2 The integral version of Gauss’s law states that the electric flux over 
a closed surface S is equal to the total charge enclosed by the surface, divided by 
ε0. That  is,  

Q 1
E · dS = = ρ(r) dV,


S ε0 ε0 V


where Q is the charge enclosed by S and V is the volume enclosed by S. This  law  
applies to all distributions of charge (whether stationary or moving) and to all 
closed surfaces (no matter what their shape). It is unaffected by the presence of 
charges outside the closed surface. For the special case of stationary charges, 
Gauss’s law can be derived from Coulomb’s law, the principle of superposition 
and the additivity of charge. 

Section 2.3 To apply Gauss’s law, we exploit the symmetry of the charges to 
constrain the possible form of the electric field, and choose a suitable closed 
surface (a Gaussian surface). Ideally, the field has a constant normal component 
over this surface, or over easily identified faces of the surface. In cases of 
spherical, cylindrical or planar symmetry it is possible to deduce the electric field 
from Gauss’s law. 
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Section 2.4 The divergence of the electric field is the electric flux per unit 
volume. This is a scalar field, represented in Cartesian coordinates by 

∂Ex ∂Ezdiv E = + 
∂Ey + . 

∂x ∂y ∂z 

The divergence theorem tells us that the surface integral of a vector field over a 
closed surface S is the volume integral of the divergence of the field over the 
region V inside S. That  is,  

E · dS = div E dV. 
S V 

Using this theorem, together with the integral version of Gauss’s law, we obtain 
the differential version of Gauss’s law: 

ρ(r)
div E = . 

ε0 

This applies to all distributions of charge (whether stationary or moving). In 
highly symmetrical situations it leads to a differential equation which can be 
solved for the electric field. 

Achievements from Chapter 2 
After studying this chapter you should be able to do the following: 

2.1	 Explain the meaning of the newly defined (emboldened) terms and symbols, 
and use them appropriately. 

2.2	 Find the total charge in a volume by integrating a charge density. 

2.3	 State the integral version of Gauss’s law and use it in simple cases involving 
spherical, cylindrical and planar symmetry. 

2.4	 State the differential version of Gauss’s law and explain how it follows from 
the integral version. Use the differential version of Gauss’s law in simple 
cases. 

2.5	 Recognize that Gauss’s law is one of Maxwell’s equations, with universal 
validity. 

After studying MT 8.3 — 8.5 you should also be able to: 

2.6	 Recognize the distinction between closed and open surfaces. 

2.7	 Select and use appropriate coordinate systems for situations with planar, 
cylindrical or spherical symmetry. 

2.8	 Evaluate simple volume and surface integrals. 

2.9	 Use the divergence theorem to link volume integrals and surface integrals. 

2.10	 Express divergence in terms of partial derivatives and evaluate the 
divergence of a vector field. 
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Chapter 3 Magnetic forces and fields

Introduction 
An ancient Greek legend tells of the shepherd Magnes who became stuck fast 
when his hobnail boots were attracted by a magnetized rock. An exaggeration 
perhaps, but magnetic rocks are found in Greece, in a region called Magnesia. 
These rocks contain oxides of iron, and they became magnetized when struck by 
lightning. Although magnetism was observed in many ancient civilizations, little 
practical use was made of it at first. The earliest recorded use of a magnetic 
compass for sea navigation dates from the twelfth century AD. Before long, 
sailors were forbidden to eat garlic or onions in case their breath should interfere 
with the compass needle. On land, the mysterious power of magnets had other 
uses: it was said that ‘a magnet, placed on the pillow of a guilty wife, would make 
her confess her iniquities as she slept’. Gradually, the study of magnets became 
more scientific. In 1600 William Gilbert published a book on magnetism, the first 
work of any kind to be firmly based on the experimental method. However, what 
lay unsuspected for many years was the link between magnetism and electricity. 

The breakthrough came in 1819, when Hans Oersted gave a spectacular 
demonstration (Figure 3.1). He took a wire, aligned along a South–North line, and 
suspended it above a compass needle. When he passed a current through the wire, 
from South to North, the compass needle was deflected. Instead of pointing 
North, it pointed somewhere between North and West. 

Figure 3.1 Oersted’s 
demonstration of the 
connection between 
electricity and magnetism. 

News of Oersted’s observation spread rapidly through Europe. It was soon found 
that two current-carrying wires exert forces on each other (Figure 3.2). The wires 
attract one another if the currents are parallel and repel one another if the currents 
are antiparallel. Moreover current-carrying coils were observed to behave just like 
bar magnets, interacting with one another and aligning with external magnetic 
fields. All these phenomena showed that electricity and magnetism are intimately 
connected. They also gave physicists convenient tools for investigating magnetic 
effects. There is no switch or dial on a permanent magnet that allows you to 

Figure 3.2 Magnetic forces 
between current-carrying wires: 
(a) parallel currents attract one 
another; (b) antiparallel currents 
repel one another. 
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change its strength, but electric currents can be adjusted with ease. Before 
describing the magnetic effects of electric currents, we need to explore the 
concept of electric current in more detail. 

This chapter uses the mathematics of vector products, which are discussed in 
MT 8.2.2. 

3.1 Current and current density 
An electric current is a flow of charge. It usually refers to the one-dimensional 
flow of charge along a thin wire. If we choose a fixed point P on the wire and 
select a sense of progression along the wire as our reference direction, the current 
at P is 

∆Q
I = 

∆t
, 

where ∆Q is the net charge passing P in the reference direction in a small time 
interval ∆t. Strictly speaking, we should consider a vanishingly small time 
interval and allow the ratio to become a derivative: 

dQ
I =

dt
. (3.1) 

Thus, current is the rate of flow of charge in the reference direction. It is a scalar 
quantity which can be positive, negative or zero. The SI unit of current is the 
ampere or amp (A). When a current of 1 A flows along a wire for 1 s, a charge of 
1 C passes any fixed point on the wire. Since a current of 1 amp is not remarkably 
large by everyday standards, this shows that 1 coulomb is a modest charge to be 
transferred by a current although, as you saw in previous chapters, it is a very 
large charge from the viewpoint of electrostatics. A given electric current could be 
carried by positive charges moving with the current or by negative charges 
moving against it. In a typical metal the charge carriers are electrons, which are 
negatively-charged and therefore drift in the opposite direction to the current, but 
this detail does not affect our macroscopic description. 

The above definition of current is fine for the one-dimensional flow of charge 
along a wire, but it does not describe the flow of charge in three-dimensional 
space. To describe the flow of charge in the Earth’s core or in the solar wind we 
need a more general definition that works beyond the narrow conduits provided by 
wires. Consider a surface, possibly curved, but with all its unit normals aligned 
consistently, so that unit normals at neighbouring points are almost parallel. The 
current flowing through this surface is defined to be the rate at which charge 
crosses the surface in the sense defined by the unit normals. So, Equation 3.1 still 
applies, but ∆Q now refers to the charge crossing a given surface rather than the 
charge passing a given point. We can recover our previous idea of the current in a 
wire by taking the surface to be one that (figuratively) cuts the wire in two. 

Note carefully that, because current is defined in terms of charge crossing an 
extended surface, it makes no sense to talk about the current at a single point. 
Current is not a field. However, we can introduce the current density which is a 
vector field denoted by the symbol J(r). At each point in space, the direction of 
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3.1 Current and current density 

the current density is the direction in which charge flows, and the magnitude of 
current density is the magnitude of the current flowing through a tiny plane 
element perpendicular to the current flow, divided by the area of the element. 
Current density therefore has units of current per unit area (Am−2). For a wire 
with a uniform current distribution we have 

I
J = u,

A 

where �u is a unit vector pointing along the wire in the chosen reference direction, 
I is the current in this direction and A is the cross-sectional area of the wire. 

O A wire of diameter 1.0 mm has a uniform current density and carries a current 
of 1.0 A. What is the magnitude of the current density inside the wire? 

P The magnitude of the current density is the magnitude of the current divided 
by the cross-sectional area of the wire: 

J = 
|I|

=
1.0 A 

= 1.3 × 106 A m−2 . 
πR2 π × (5.0 × 10−4 m)2 

If we know the current density throughout a region, we can find the current 
through any surface in the region. Figure 3.3 shows a small plane element of area 
∆S, with unit normal �n. In the vicinity of this plane element, the current density J 
can be split into a sum of two vector contributions: one parallel to the element and 
the other normal to it. The normal contribution Jnormal causes charge to cross the 
plane element but the parallel contribution Jparallel does not. From the definition 
of current density we see that the total rate of flow of charge across the surface is 

dQ 
n ∆S = J · ∆S,= Jnormal ∆S = J · �

dt 
where Jnormal is the component of the current density in the direction of the unit 
normal to the plane element and ∆S is the oriented area of the plane element. An 
extended surface can be approximated by a patchwork of tiny plane elements. The Figure 3.3 Current flow 
charge crossing the whole surface is the sum of the charges crossing all the plane through a plane element. 
elements. In the limit of an infinite number of infinitesimal plane elements we 
conclude that 

I = 
dQ 
dt 

= 
� 

S 
J · dS. (3.2) 

In other words, the current through any surface is the surface integral (or flux) of 
the current density over the surface. 

This chapter will concentrate on steady currents, with current densities that are 
independent of time. In this case it is interesting to consider a closed surface S. 
Under steady-state conditions, the current through this surface must vanish — a 
positive or negative current would lead to a relentless accumulation of charge 
within the surface, which is not sustainable. We therefore have 

J · dS = 0. 
S 

Using the divergence theorem, it follows that 

div J dV = 0, 
V 
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where V is the volume bounded by the closed surface S. Since V can be 
arbitrarily small, the integrand of the volume integral must vanish everywhere. So 

div J = 0  for a steady current density. 

Any current density that is independent of time must be divergence-free. Such a 
current density allows charge to flow in continuous closed loops, thereby avoiding 
any accumulation of charge at any point. 

Exercise 3.1 In a business meeting, a region of my brain contains the current 
density 

J = Ax(y − z)ex + Ay(z − x)ey + Az(x − y)ez , 

where A is a constant. Can this current density remain constant without any 
build-up of charge? Q 

We can also consider currents from a microscopic perspective. In a metal, some 
electrons become detached from their atoms and are able to roam freely 
throughout the metal. These electrons are responsible for electric currents and are 
called conduction electrons. Let’s suppose that there are N conduction electrons 
in a volume V . Then the number density of conduction electrons (the number 
per unit volume) is n = N/V . The electrons collide with vibrating ions and move 
erratically, but they have a small average velocity v along the wire. This average 
velocity is called the drift velocity and its magnitude is the drift speed of the 
electrons. 

Figure 3.4 The charge in 
the shaded volume passes 
point P on the wire in 
time ∆t. 

Referring to Figure 3.4, the electrons passing a fixed point P on the wire, in a time 
interval ∆t, are contained in a volume v ∆t × A, where v is the drift speed and A 
is the cross-sectional area of the wire. The shaded volume contains n vA  ∆t 
conduction electrons, each with charge q = −e, so the magnitude of the charge 
passing a fixed point is 

|∆Q| = nevA ∆t. 

The magnitude of the current is therefore 

|I| = nevA, 

and the magnitude of the current density is 

J = nev. 

Since the current is in the opposite direction to the flow of negatively-charged 
electrons, the current density is 

J = −nev. 
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3.2 The Biot–Savart force law 

More generally, for charge carriers of charge q, 

J = nqv. (3.3) 

Exercise 3.2 A copper wire, 1.0 mm in diameter with a uniform current 
density, carries a current of 1.0 A. What is the drift speed of the conduction 
electrons in this current? The number density of conduction electrons in copper is 

−38.5 × 1028 m . Q 

3.2 The Biot–Savart force law 
We will now explore magnetic forces, focusing in this chapter on the magnetic 
forces between steady (time-independent) currents. These are called 
magnetostatic forces. A simple case is shown in Figure 3.2 — two long straight 
parallel wires each carry a steady current. The wires attract one another when 
their currents are parallel and repel one another when their currents are 
antiparallel. This is the reverse of Coulomb’s law: like charges repel, but like 
currents attract. The attraction between parallel currents is usually small but 
becomes obvious in strong electromagnets, where the coils visibly squeeze 
together. It is observed that the force disappears when the currents are switched The distinction between electric 
off, so it is certainly not an electric force. It is a magnetic force associated with and magnetic forces was 
the motion of the conduction electrons in the wires. explained in Section 1.3. 

Experiments show that the magnetic force per unit length of wire is proportional 
to the product of the two currents and inversely proportional to their separation: 

Fmag ∝ 
I1I2 

. (3.4)
L d 

where Fmag/L is the magnetic force per unit length of either wire, I1 and I2 are 
the currents in the wires and d is the distance between them. This is remarkably 
similar to the electrostatic force between two long parallel rods of charge. Using 
the result of Worked Example 2.3, it is easy to see that the electrostatic force per 
unit length between two charged parallel rods is 

Felec λ1λ2 

L 
=

2πε0d
, (3.5) 

where λ1 and λ2 are the charges per unit length of the rods and d is the distance 
between them. We know, of course, that electrostatic forces are explained by 
Coulomb’s law, which is an inverse square law. This raises an interesting 
question: could magnetostatic forces also obey an inverse square law? The answer 
to this question turns out to be yes, but the magnetostatic force law is slightly 
more complicated than Coulomb’s law. 

To formulate a magnetostatic law of force we need the concept of a current 
element. Current elements are the basic building blocks of magnetostatics, just as 
point charges are the basic building blocks of electrostatics. Suppose that a 
current density J(r) is specified in a region of space. We divide the region into 
many volume elements, each so small that any spatial variation of the current 
density within it can be neglected. For a volume element δV , centred on point r, 
the current element is defined to be J(r) δV , and this quantity has the SI unit 
ampere metre (Am). Usually, we are interested in a steady current flowing along a 
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thin wire (Figure 3.5). In this case, we take the volume element to be a small 
segment of the wire of length δl, cross-sectional area A and volume δV = Aδl. 

Figure 3.5 A current 
element J δV in a wire of 
cross-sectional area A, 
illustrated for I >  0. 

The current density is J = (I/A) � u is a unit vector pointing along the u, where �
wire in the reference direction chosen to measure current flow. Combining these 
expressions, the current element is 

I
J δV = u × Aδl  = I δl  �� u = I δl. 

A 
where δl = δl �u is a directed line element of length δl pointing along the wire in 
the reference direction. Usually, I is positive and δl points in the direction of 
current flow. So, in summary, we have 

current element = J δV = I δl. (3.6) 

In order to concentrate on currents carried by wires, we choose to express current 
elements in terms of I δl, rather than J δV , but this is really only a matter of 
notation. All the equations we derive can be extended to more general situations, 
beyond the guided flow of currents in wires, simply by replacing each I δl by 
J δV . 

Figure 3.6 Two steady 
current elements, I1 δl1 and 
I2 δl2, both in the plane of the 
page. The red arrow shows the 
force on current element 1 due 
to current element 2. 

We can now ask: what is the magnetic force between two steady current elements? 
It is difficult to answer this question by pure experimentation. Steady current 
elements do not exist in isolation, but are always linked together to form complete 
circuits. The best we can do is to look at the forces on various circuits and try to 
infer the underlying law of force between individual current elements. A number 
of physicists looked at this problem in the nineteenth century and a consensus 
emerged, known today as the Biot–Savart force law for current elements. 

66 



3.2 

I1 δl1 and I2 δl2 r1 and r2 

F12 = k
I1 δl1 × (I2 δl2 × �r12) 

r2 
12 

, 

where k �r12 points 
r12 is 

k −7 N A−2 

k = µ0/4π µ0 = 4π × 10−7 N A−2 

4π 

F12 = 
µ0 

4π 
I1 δl1 × (I2 δl2 × �r12) 

r2 
12 

. (3.7) 

The Biot–Savart force law 

The Biot–Savart force law 

Consider two steady current elements, at points 
(Figure 3.6). Then the magnetic force on current element 1 due to current 
element 2 is given by 

mag 

mag is a positive proportionality constant, the unit vector 
in the direction towards current element 1 from current element 2, and 
the distance between the two current elements. 

In SI units, mag = 10 . However it is conventional to write this 
constant as mag , where is called the 
permeability of free space. The insertion of a factor of has the same 
motivation as in Coulomb’s law — to simplify even more important results 
(Maxwell’s equations) that will come later. The Biot–Savart law then takes 
the standard form 

The Biot–Savart force law is an inverse square law because the factor r2 
12 appears 

in the denominator. However, the numerator is more complicated than the 
numerator q1 q2 �r12 in Coulomb’s law. There is a good reason for this. Coulomb’s 
law is simple because charge is a scalar quantity, with no directional properties. 
This means that a pair of charges is symmetrical under any rotation about the line 
that joins them, so the electrostatic force must point along this line. The situation 
in magnetostatics is more complicated. Current elements are vector quantities 
with obvious directional character. The pair of current elements in Figure 3.6 is 
not symmetrical under rotations about the line that joins them, so there is no 
requirement for the magnetostatic force to point along this line. Put another way, 
three vectors play a role in determining the magnetostatic force between two 
current elements: I1 δl1, I2 δl2 and �r12. The magnetostatic force is obtained by 
multiplying these three vectors together. Mathematics offers two ways of 
multiplying vectors — the scalar product and the vector product. The Biot–Savart 
force law uses the vector product to form the vector (I2 δl2 × �r12) and then uses  
the vector product again to form I1 δl1 × (I2 δl2 × �r12). 

Some care is needed in handling the two vector products. The order of the vectors 
and the placement of the brackets in Equation 3.7 matters and should not be 
changed carelessly. To find the direction of a magnetic force you must use the 
right-hand rule twice. For the situation shown in Figure 3.6, one application of the 
right-hand rule shows that (I2 δl2 × �r12) points out of the page, towards you. The 
magnetic force F12 on current element 1 due to current element 2 is perpendicular 
to this vector, so it is in the plane of the page. F12 is also perpendicular to I1 δl1 

and a second application of the right-hand rule shows that this force is in the 
direction marked on the diagram. The Biot–Savart law tells us that current 
elements push one another sideways, with the responding current element feeling 
a force perpendicular to its own direction of current flow. This force acts in the 
plane defined by the other current element and the displacement vector between 
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Chapter 3 Magnetic forces and fields 

the two current elements. 

O Is the magnetic force F12 on current element 1 due to current element 2 in the 
opposite direction to the magnetic force F21 on current element 2 due to 
current element 1? 

P No, because the Biot–Savart force is perpendicular to direction of current flow 
in the responding current element. In the situation shown in Figure 3.7, the 
forces F12 and F21 are both in the plane of the page, but F12 is perpendicular 

Figure 3.7 Biot–Savart forces to I1 δl1, while F21 is perpendicular to I2 δl2. These forces do not point in 
do not obey F12 = −F21. These  opposite directions. 
forces are neither equal in 

This remarkable observation appears to be in conflict with Newton’s third law, 
magnitude nor opposite in 

which states that the forces of action and reaction are equal in magnitude and 
direction. 

opposite in direction. However, there is a loophole. In practice, a current element 
can only carry a steady current if it is part of a complete circuit. To find the total 
magnetic force on one circuit (A) due to another circuit (B), we must integrate the 
Biot–Savart force law over all the current elements in both circuits. When this is 
done, the total force on circuit A due to circuit B turns out to be equal in 
magnitude and opposite in direction to the total force on circuit B due to circuit A, 
so an uneasy truce is struck between magnetic forces and Newton’s third law. I 
describe the resolution of the conflict in these terms because the whole idea of a 
current element being pushed sideways, rather than being attracted or repelled by 
another current element, is against the spirit of Newton’s third law. We will revisit 
this issue at the end of the chapter and show that it is Newton’s third law that has 
to be reassessed. 

Figure 3.8 The force F12 

on current element I1 δl1 due 
to current element I2 δl2. 

To illustrate how the Biot–Savart force law is used in practice, let’s return to the 
case of two parallel currents. Figure 3.8 shows a current element, I1 δl1 in wire 1 
and another current element I2 δl2 in wire 2. The Biot–Savart force law gives the 
force on current element 1 due to current element 2. The magnitude of this force is 

µ0 I1I2 δl1δl2 sin θ 
F12 = 2 ,

4π r12 

where θ is the angle between the direction of I2 δl2 and the direction towards 
current element 1 from current element 2. Using the right-hand rule, it is easy to 
see that the force acts directly towards wire 2. This is true no matter which current 
element is chosen in wire 2. All the current elements in wire 2 pull current 
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element 1 in the same direction, directly towards wire 2. To find the total force F1 

on current element 1, we must add up contributions from all the current elements 
in wire 2. In other words we must integrate along wire 2. This gives 

µ0I1I2 δl1 
� +∞ sin θ


F1 = 2 dl2.
4π −∞ r12 

Choosing to measure l2 from the point labelled l2 = 0  in Figure 3.8, and using 
simple trigonometry, we see that sin θ = d/r12 and r12 = d2 + l2 

2 , so the  
integral can be written as � +∞ sin θ 

� +∞ d 1 
� +∞ 1

dl2 = dl2 = dz,

−∞ r12 −∞ (d2 + l2
2

2)3/2 d −∞ (1 + z2)3/2 

where I have changed the variable of integration from l2 to z = l2/d in the last 
step. The only remaining integral contains no parameters, so it is just a number. 
Using the table of integrals inside the back cover of the book, this integral is equal 
to 2, so � +∞ sin θ 2 

The table of integrals 
inside the back cover of the 
book is a useful resource. 

2 dl2 = . (3.8)

−∞ r12 d


Putting everything together, and noting that the force per unit length on current 
element 1 is the same as the force per unit length on the whole wire, we obtain 

F

L 
= 

F1 

δl1 
= 

µ0I1I2 

2πd 
, (3.9)mag 

where Fmag/L is the attractive magnetic force per unit length of either wire. This 
agrees with the experimental results quoted in Equation 3.4 at the beginning of 
this section. Note that the 1/r2 in the Biot–Savart force law has been 12 
transformed into a 1/d. This is because we have integrated along the length of 
wire 2. Integrating over a length produces a quantity whose units are those of the 
integrand times the units of length. The integrand in Equation 3.8 has the units of 
1/length2 so the final answer must be inversely proportional to a length. The only 
relevant length in this problem is the separation d of the wires, so it not surprising 
that the force between the wires is proportional to 1/d. 

Equation 3.9 provides the basis for the definition of the ampere. Strictly 
speaking, an ampere is not defined as a current of one coulomb per second. It is 
defined as that steady current which, when carried by two parallel wires separated 
by a metre in a vacuum, causes each wire to experience a magnetic force per unit 
length of 2 × 10−7 N m−1. The  coulomb is then defined as the charge transferred 
by a current of one ampere in one second. The niceties of which quantity is 
defined first are not profoundly important, but this happens to be the way SI units 
are set up, motivated by the fact that it is easier to prepare given steady currents 
than given static charges. 

Limitations of the Biot–Savart force law 

The Biot–Savart force law gives the force on one current element due to another 
current element some distance away. If this law were true without restriction, 
switching off a current here would have an instantaneous effect on a current on 
Mars. This raises the uneasy prospect of instantaneous action at a distance. 
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How can a current on Mars respond immediately to changes made to a current on 
Earth? Surely time is needed for information to travel from Earth to Mars, but the 
Biot–Savart force law makes no mention of a time-delay. This problem is resolved 
by recognizing that the Biot–Savart force law is a law of magnetostatics, applying 
only to steady currents. This echoes the status of Coulomb’s law which is a law of 
electrostatics, applying only to stationary charges. 

A second limitation concerns the influence of media. You may recall that the 
electric force between two charges immersed in a medium can be modified by 
screening or polarization in the medium. The magnetic forces between two 
current elements can also be affected by media. For example, an iron rod can 
become magnetized when it is near a current carrying coil (this is the principle of 
the electromagnet). The magnetized rod then exerts magnetic forces on current 
elements in the coil. Fortunately, only a few materials such as iron or nickel 
respond strongly in this way. Throughout this book I assume that the magnetic 
response of media can be neglected. 

Exercise 3.3 Does one current element in a long straight wire exert a magnetic 
force on another current element in the same wire? 

Exercise 3.4 Consider two neutral parallel wires, each 1.0 mm in diameter and 
each carrying a current of 1.0 A. Find an expression for the ratio Fmag/Felec of 
the magnetic force between the wires to the total electric force between the 
conduction electrons in the two wires. Evaluate your answer numerically using 
the result of Exercise 3.2. Q 

3.3 Magnetic fields due to steady currents 

3.3.1 Splitting the Biot–Savart force law 

In the case of electrostatic forces, problems arising from action at a distance 
motivated us to introduce the concept of an electric field. Coulomb’s law was split 
into two parts — one describing the generation of an electric field by one charge, 
and the other describing the response of another charge to this field. Using the 
electric field we were able to formulate Gauss’s law, which applies to all electric 
fields whether electrostatic or not. 

It is natural to ask whether something similar can be achieved for magnetic forces. 
Can we split the Biot–Savart force law into one part describing the generation of a 
magnetic field by one current element, and another part describing the response of 
another current element to this field? This can be achieved by grouping terms in 
the Biot–Savart force law: 

µ0 I2 δl2 × �r12F12 = I1 δl1 × 
4π r12 

. (3.10)2 

The term in brackets on the right-hand side depends on the properties of current 
element 2 and the position of current element 1. It is interpreted as the magnetic 
field produced by current element 2 at the position of current element 1. The 
magnetic force on current element 1 is then obtained by taking the vector product 
of current element 1 with this magnetic field. 
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3.3 Magnetic fields due to steady currents 

It is conventional to use the symbol B for a magnetic field, the bold print 
reminding us that it is a vector field. The contribution of a single current element 
to the magnetic field is then denoted by δB, where the δ reminds us that a circuit 
produces many such contributions and these must be added together to find the 
total magnetic field created by the whole circuit. Equation 3.10 therefore splits 
into two: 

µ0 I2 δl2 × �
F12 = I1 δl1 × δB2, where δB2 = 2 

r12 
.

4π r12 

These equations refer specifically to current elements 1 and 2, but they can be 
expressed in more general terms. Current element 1 could be anywhere, so the 
formula for δB2 really tells us how to find the magnetic field at any point in 
space. Suppose that we wish to know the magnetic field at a point r due to a Figure 3.9 Calculating the 

current element I δl at a point r0 (Figure 3.9). The distance between the current magnetic field at r due to a 

element and the point at which the field is measured is |r − r0| and the unit vector current element I δl at r0. 

pointing towards r from r0 is (r − r0)/|r − r0|. Adapting our previous formula 
for δB2, we obtain a general expression for the magnetic field produced by a 
steady current element: 

δB(r) =  
µ0 

4π 
I δl × (r − r0) 

|r − r0|3 . (3.11) 

This is the Biot–Savart field law for a current element. 

We can also express the equation for the magnetic force on a current element in a 
more general way. The whole point of a field theory is that the current element 
should respond locally to the magnetic field that it encounters, irrespective of how 
the field was generated. We can therefore consider the response of a current 
element I δl to an arbitrary magnetic field B. Removing unwanted subscripts, we 
see that the current element feels a magnetic force 

δF = I δl × B, (3.12) 

where B is the magnetic field at the position of the current element. This is the 
magnetic force law for a current element. The magnetic field could be due to a 
complete circuit, so there is no need to include a δ in its symbol. However, I have 
denoted the force by δF because this is the force on a current element, which is 
only one contribution to the total force on a circuit. The presence of the 
cross-product shows that each current element is pushed sideways, perpendicular 
to its own direction and to the local magnetic field. 

The SI unit of magnetic field is the tesla (abbreviated T). Equation 3.12 shows 
1 T = 1 N A−1 m−1, so that a current element of magnitude one ampere metre 
experiences a force of magnitude one newton when it is perpendicular to a 
magnetic field of one tesla. A tesla is rather a large field by everyday standards: 
the magnitude of the Earth’s magnetic field in London is only 5 × 10−5 T. This is 
the same as the magnetic field one centimetre outside a thin wire carrying a 
current of 2.5 A. 

When applying Equations 3.11 and 3.12 we usually have to add contributions 
from different current elements. The principle of superposition tells us that the 
total magnetic field at any point is the vector sum of the magnetic field 
contributions produced by all the current elements. The law of addition of force 
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tells us that the total magnetic force on a circuit is the vector sum of the magnetic 
forces on its current elements. So vector addition is often a key step in tackling 
problems in magnetostatics. 

Essential skill 
Using the Biot–Savart field law. a xy-plane. 

I 
z-axis. 

xy-plane. 

I δl 
(0, 0, z) d 

I δl 

Worked Example 3.1 

A circular loop of radius is centred at the origin and lies in the 
The loop carries a steady current is the sense shown in Figure 3.10. Find 
the magnetic field at a point P on the positive 

Figure 3.10 A circular current loop 
lying in the 

Solution 

Figure 3.11 Calculating the magnetic field at P: (a) three-dimensional 
view; (b) two-dimensional view. In (b) the cross in a circle indicates that the 
current is flowing into the plane of the paper, away from you. 

Consider the current element shown in Figure 3.11. We concentrate on a 
point P, with coordinates , which is a distance from the current 
element. Using Equation 3.11 and the right-hand rule, the current element 
produces a magnetic field at P which points in the direction shown. Taking 
the magnitude of Equation 3.11 and noting that is perpendicular to the 
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δB = 
µ0 

4π 
× d × ◦ 

d3 = 
µ0 

4π d2 . 

same z
z

B = 
µ0 

4π 
I × 2πa 

d2 × cos θ ez . 

Using cos θ = a/d and d = 
√ 

a2 + z2 

B = 
µ0 

2 
Ia2 

(a2 + z2)3/2 
ez . (3.13) 

Magnetic fields due to steady currents 

unit vector from the current element to the point P, the current element 
produces a magnetic field at P of magnitude 

I δl  sin 90 I δl  

Other current elements in the loop produce magnetic fields at P with the 
-component, but with different components in the plane of the loop. 

Forming the vector sum of these contributions, the -components reinforce 
one another, but the components in the plane of the loop cancel out. The 
total magnetic field is therefore 

we conclude that 

Exercise 3.5 A circular loop of radius a carries a steady current of magnitude 
I . What is the magnitude of the field at the centre O of the loop? 

Exercise 3.6 A square loop PQRS carries a steady current as shown in 
Figure 3.12. Sides PQ and RS are horizontal, and sides QR and SP are inclined at 
an angle to the vertical. A constant uniform magnetic field acts in a horizontal 
direction, perpendicular to sides PQ and RS. Describe the directions of the forces 
on each side of the loop. How should the loop be oriented to achieve stable 
rotational equilibrium? Q 

3.3.2 Visualizing magnetic fields 

Magnetic fields can be visualized using arrow maps or field line patterns. Arrows 
are used to represent the magnitude and direction of the magnetic field at a given 
point, and an arrow map is a collection of arrows at a selection of points. A 
magnetic field line is a continuous directed line which, at each point along its 
path, points in the direction of the magnetic field. A field line pattern is a 
collection of field lines, showing how the direction of the magnetic field varies 
throughout a region. 

First, consider the magnetic field produced by a single current element. The 
magnetic field (given by Equation 3.11) is perpendicular to both the current 
element and to the unit vector from the current vector to the field point. So, if you 
imagine the current element as being above the page, pointing perpendicularly 
down onto the page, the magnetic field lines in the plane of the page are 
concentric circles, as shown in Figure 3.13. The field lines circulate in the sense 
shown because the vector product in Equation 3.11 must be evaluated using the 
right-hand rule. A convenient way of deducing the direction of the field lines is to 
point the thumb of your right hand along the direction of the current element; the 
curled fingers of your right hand then indicate the sense of circulation of the 

Figure 3.12 A square current

loop in a uniform magnetic field.


Figure 3.13 Magnetic field

lines due to a current element.
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magnetic field lines. This variant of the right-hand rule is called the right-hand 
grip rule. 

Figure 3.14 Arrow maps for 
the magnetic field of a long 
straight wire for: (a) a current 
flowing away from you and (b) a 
current flowing towards you. 

The current in a long straight wire is a series of parallel current elements placed 
end to end. All the current elements have circular magnetic field lines around the 
axis of the wire. So, using the principle of superposition, the magnetic field lines 
of a long straight current-carrying wire must be circles centred on the wire and 
perpendicular to its axis. If the wire is infinitely long, the magnetic field does not 
vary as we move parallel to the wire. Figure 3.14 shows arrow maps of the 
magnetic field in any plane perpendicular to the wire, adopting the standard 
convention of using a cross in a circle for a current flowing directly away from 
you and a dot in a circle for a current flowing directly towards you. The arrows in 
these maps have lengths that are inversely proportional to the distance from the 
wire. To see why, compare Equations 3.9 and 3.12. If two parallel wires, a 
distance r apart, carry identical currents I , the magnetic force on a length δl of 
one wire has magnitude 

µ0I
2 

Fmag = 2πr 
δl = |I| δlB, 

so the magnetic field at distance r from the other wire has magnitude 

|I|
B(r) =  

µ

2
0

πr 
, (3.14) 

which is inversely proportional to the distance from the wire. 

Exercise 3.7 A long wire carrying a steady current is placed in a uniform 
magnetic field parallel to its own length. What is the shape of the magnetic field 
lines close to the wire? Q 

Next consider a circular loop of wire, with a steady current flowing round it. The 
steady current might be maintained by a tiny battery built into the loop, but we 
will ignore such practical details here. Our main concern is the magnetic field 
created by the circulating current. Figure 3.15a shows the pattern of magnetic 
field lines in a plane that is perpendicular to the loop and passes through its centre. 
On a small enough scale, the wire appears almost straight so it is not surprising 
that, very close to the wire, the field lines are almost circular. Further from the 
wire, the field lines are not circular, but they still form closed loops. 
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This pattern of magnetic field lines is remarkably similar to the pattern of electric 
field lines produced by an electric dipole, shown in Figure 3.15b. There is one 
significant difference: the electric field lines always flow from the positive charge 
to the negative charge, so they reverse their general sense of circulation in the 
region between the charges, while the magnetic field lines form completely closed 
loops. Nevertheless, far from the current loop, the magnetic field lines look just 
like the electric field lines far from an electric dipole. The correspondence turns 
out to be precise: far from their respective sources, the field line patterns are 
exactly similar and the field magnitudes are proportional to one another. For this 
reason, a steady current round a circular loop is called a magnetic dipole, and  the  
magnetic field that it produces is said to be dipolar. 

Our previous examples — current elements and long straight wires — are really 
theoretical abstractions. In order for a steady current to flow in a current element, 
the current element must be part of a complete circuit. A straight wire, too, must 
have its ends joined together by other wires (which may be far enough away to 
have negligible magnetic influence near the straight wire). So the simplest 
stand-alone source of magnetic field is a magnetic dipole. Magnetic fields that are 
dipolar, or approximately dipolar, are found everywhere. The Earth’s magnetic 
field is approximately dipolar, and so are those of the Sun and Jupiter. Electrons, 
protons and neutrons also produce dipolar magnetic fields — even when they are 
stationary. In classical physics this is understood by supposing that these particles 
contain internal current loops. In the case of a neutron, positive and negative 
charges (quarks) circulate in different ways, so a magnetic field is generated even 
though the neutron carries no net charge. When discussing the quantum world of 
atomic particles it is unwise to take classical pictures too literally but the notion of 
circulating currents persists in our language — we say that electrons, protons and 
neutrons have spin. 

Before quantifying the field of a magnetic dipole, we will introduce some 
terminology. For a loop of area ∆S carrying a current I , the  magnetic dipole 
moment is defined to be a vector quantity of magnitude |I| ∆S, whose direction 
is perpendicular to the loop in a sense determined by the right-hand grip rule of 
Figure 3.16. So, 

m = |I| ∆S, (3.15) 

where the oriented area ∆S of the current loop is a vector of magnitude ∆S 

Figure 3.15 (a) Magnetic 
field lines in a plane 
perpendicular to, and passing 
through the centre of, a circular 
current loop shown in cross 
section. (b) Electric field lines in 
the plane of an electric dipole. 

Figure 3.16 The right-hand 
grip rule for a magnetic dipole 
moment: with the fingers of 
your right hand curled in the 
direction of current flow, your 
outstretched right thumb points 
in the direction of the magnetic 
moment. 
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pointing in the direction given by the right-hand grip rule. 

Now, we can relate the magnetic field of a current loop to its magnetic dipole 
moment. According to Worked Example 3.1, the magnetic field on the axis 
perpendicular to the current loop of radius a has magnitude 

µ0 |I|a2 |I|a2 

B = for z � a.
32 (a2 + z2)3/2 

� 
µ0 

2 z

Using the fact that the area of the loop is ∆S = πa2 and noting the direction of 
the field lines in Figure 3.15a, we see that at points on the axis perpendicular to 
the current loop, the dipole produces a magnetic field 

B = 
µ0 m 

for r � a, (3.16)
32π r

where r is the distance from the loop. In other directions, the field has other 
values (which will not be calculated here). For example, in the plane that contains 
the current loop, 

m
B = − 

µ0 for r � a, (3.17)
34π r

where r is the distance from the loop. The general rule is that the field of a 
magnetic dipole decreases as the inverse cube of distance, which is faster than the 
inverse square decrease of the field of a current element. This can be understood 
by realizing that a current loop is made up of pairs of oppositely directed current 
elements at opposite ends of a diameter. At points far from the current loop, the 
magnetic field contributions of each pair almost cancel out, but not quite because 
the current elements have different positions; this leaves a residual 1/r3 field. 

Our repeated use of right-hand rules to find the directions of magnetic fields may 
lead to the impression that the laws of magnetism have an in-built tendency 
towards right-handedness. This is not true. By convention, the right-hand rule is 
used to find the direction of a magnetic field and the direction of a magnetic force. 
However, two successive applications of this rule are needed to relate a current to 
a measurable effect — a force. This is because the Biot–Savart force law contains 
two vector products — or, equivalently, the vector product in the Biot–Savart field 
law (Equation 3.11) must be combined with the vector product in the magnetic 
force law (Equation 3.12) to calculate a magnetic force. The key point is that all 
traces of the right-hand rule are lost when it is used twice. Two successive 
applications of a left-hand rule would give the same result as two successive 
applications of a right-hand rule, so the right-hand rule is a convention,  not a law  
of physics. Nevertheless, it is a convention you must use in order to communicate 
effectively with other people. If you use a left-hand rule to calculate magnetic 
fields and forces, your magnetic field will point in the opposite direction to 
everyone else’s, which is confusing enough to count as a mistake. 

Similar remarks apply to time-reversal. If we could reverse the direction of time, 
the directions of currents would reverse, and so would the directions of magnetic 
fields (compare Figures 3.14a and b). Does the fact that a magnetic field points in 
a certain direction imply that the laws of magnetism select an arrow of time, 
distinguishing the future from the past? No, it does not. If we reverse the direction 
of time, the current responding to the magnetic field also reverses, so the magnetic 
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force between two current elements remains unchanged. Thus magnetic forces are 
invariant under time-reversal, just like electric forces. This is just what is expected 
from the general principle of time-reversal symmetry. 

Exercise 3.8 Two magnetic dipoles are aligned along the same axis and point 
in the same direction. Do these dipoles attract or repel one another? Explain your 
answer using magnetic field lines. 

Exercise 3.9 The dipolar magnetic field of the Sun has magnitude 
3.0 × 10−10 T at the radius of the Earth’s orbit (1.5 × 1011 m). What is the 
magnitude of the Sun’s dipolar field at the radius of Jupiter’s orbit 
(8.2 × 1011 m)? Q 

3.3.3 Typical magnetic field values 

Table 3.1 shows some typical values for magnetic fields encountered in various 
circumstances. I will briefly comment on some of the entries. 

Table 3.1 Some typical values of magnetic fields. 

Context B/ T


lowest measurable 
magnetic signal from human brain 
strong TV or radio signal 
galactic field 
time-averaged field near transmitting mobile phone 
recommended radio frequency safety limit 
Earth’s magnetic field in London 
recommended static safety limit 
in a sunspot 
near an exceptionally strong permanent magnet 
in an MRI body scanner 
on proton due to electron in a hydrogen atom 
near a strong superconducting magnet 
instantly lethal static field 
at the surface of a typical neutron star 
at the surface of a magnetar 
at the surface of an atomic nucleus 

10−15 

10−13 

3 × 10−11 

5 × 10−10 

10−7 

2 × 10−7 

5 × 10−5 

4 × 10−2 

0.2 
1 
1.5 
6 
25 
105 

108 

1011 

1012 

Nerve cells carry electric currents and therefore create magnetic fields. The 
magnetic field of a single brain cell is below the limit of detection, but some parts 
of the brain contain parallel bundles of cells that fire simultaneously. These 
bundles produce magnetic fields that can be detected by an array of sensors just 
outside the head (Figure 3.17). Working backwards, scientists attempt to deduce 
the current density in the brain that is responsible for the measured magnetic field. 
This non-invasive technique, called magnetoencephalography, (MEG) is able to 
track brain activity millisecond by millisecond. 
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Figure 3.17 A map  of  
the magnetic field 
produced at the scalp by a 
typical current source in a 
human brain. The fields 
shown are tiny: 
1 fT = 1  × 10−15 T. 

The table also includes a value for the Earth’s magnetic field. In fact, this field 
varies over the Earth’s surface, from 2.4 × 10−5 T in the South Atlantic to 
6.6 × 10−5 T near the magnetic poles. Close to the Earth, it is dipolar with a 
magnetic dipole moment of 8 × 1022 A m2, but beyond five Earth radii it is 
distorted by the solar wind, a stream of charged particles emanating from the Sun. 
The Earth’s field deflects these harmful particles, and protects us from them. The 
main contribution to the dipolar field comes from electric currents in the Earth’s 
outer core — a region of swirling liquid iron occupying a spherical shell with 
radii between 1200 km and 3500 km. The power required to keep these currents 
flowing, in spite of electrical resistance, is about 3 × 1011 W. The currents are not 
entirely stable: the two magnetic poles wander (independently) by as much as 
several kilometres a year and the magnitude of the field is declining by 6% per 
century. The geological record shows that the field has actually reversed hundreds 
of times and that another reversal is statistically overdue. In about 1010 years the 
outer core will solidify and the currents and magnetism will disappear. This will 
not trouble our descendants, however, as the Sun will have run out of fuel by then. 

The Sun also has a dipolar magnetic field, with a dipole moment roughly 100 
times greater than the Earth’s. In addition there are sunspots — regions of much 
higher magnetic field on the Sun’s surface. Sunspots are cooler and darker than 
the surrounding solar surface because their high magnetic fields inhibit hot gases 
from rising to the surface. All this magnetic activity goes through a fairly regular 
cycle. Every eleven years the Sun’s dipolar field reverses direction and sunspot 
activity reaches a maximum. This cycle appears to be correlated with the Sun’s 
variable energy output. An extended period of low sunspot activity in the late 
1600s was accompanied by unusually cold temperatures throughout northern 
Europe marked, for example, by the Thames freezing from bank to bank. 

Finally, the strongest large-scale magnetic fields are produced by special types of 
neutron star, called magnetars. These are strange, unfriendly worlds. Hydrogen 
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atoms are distorted into cigar shapes, 200 times longer than they are wide and the 
speed of light depends on its state of polarization relative to the magnetic field. A 
sudden adjustment of the magnetic field inside a magnetar can release an immense 
burst of energy, equivalent to 10 000 times the Sun’s annual output, but 
compressed into 0.2 seconds. These bursts take gamma-ray counters in satellites 
off-scale and also temporarily affect the Earth’s ionosphere. 

3.4 The Lorentz force law 
Our expression for the magnetic force on a steady current element (Equation 3.12) 
can be broadened into a fundamental law which provides a general definition of a 
magnetic field, valid under all circumstances (not just for magnetostatics). 

In microscopic terms, a current is due to a drift of charge carriers. Suppose, for 
simplicity that the charge carriers have number density n, and that each has the 
same charge, q, and  the  same velocity v. Then the current density is J = nqv and 
a current element can be expressed as 

I δl = J δV = (nqv) δV. 

The current element contains nδV charge carriers. If the magnetic force on each 
charge carrier is Fmag , the magnetic force on the whole current element is 
(nδV )Fmag . So Equation 3.12 can be written in the form 

(n δV  )Fmag = (nqv) δV × B, 

and we conclude that each charge carrier experiences a magnetic force 

Fmag = qv × B. (3.18) 

This is the magnetic force law for a point charge. The law can be traced back to 
the Biot–Savart force law which is a magnetostatic equation, valid only for the 
fields created by steady currents, but these origins are irrelevant. The responding 
particle does not need not know what caused the field. It just responds to its local 
environment. We therefore assume that Equation 3.18 is valid beyond 
magnetostatics. It applies to all charged particles, in all circumstances. For 
example, it applies in an electron microscope, where electrons travel in a vacuum 
and are focused by magnetic fields. It applies in mass spectrometers, where the 
curvature of particle tracks is used as an analytical tool. It also applies in the 
Earth’s atmosphere, where electrons spiral in the Earth’s magnetic field and 
produce the beautiful displays of coloured lights we call the aurora. 

The universal validity of Equation 3.18 gives it a special significance. It allows us 
to turn the argument around to supply a general definition of the magnetic field: 

If you can find a function B(r) which, when substituted in Equation 3.18, 
gives the measured magnetic force on any moving point charge, then this 
function is the magnetic field. The magnitude of the magnetic field is called 
the magnetic field strength. 

The definition is a good one because it is completely general. It quantifies the 
magnetic field in circumstances where magnetostatic equations (such as 
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Equation 3.11) are invalid. Of course, Equation 3.18 already has much physics 
built into it. For example, it presupposes that the magnetic force is proportional to 
the particle’s charge and speed and perpendicular to its velocity. These are 
verifiable facts. So Equation 3.18 has a mixed status — it is partly a definition and 
partly a law of physics. 

It is worth comparing the definitions of electric and magnetic fields. Both are 
defined in terms of the forces experienced by electric charges. The electric field E 
is defined in such a way that the electric force on a point charge is 

Felec = qE.	 (3.19) 

A simple rearrangement gives an explicit formula for the electric field:

E = Felec/q. Does a similar formula exist for the magnetic field? No, it does not.

This is because the magnetic force vanishes when v is parallel or antiparallel to

B. This means that a particle travelling in the z-direction is blind to the 
z-component of the magnetic field, so measuring the force on this particle will not 
reveal anything about Bz . At least two measurements, on charged particles 
moving in different directions, are needed to tie down all components of the 
magnetic field. This minor detail should not obscure the fact that Equation 3.18, 
together with measurements on more than one particle, provides a fundamental 
and unambiguous definition of the magnetic field at any point in space. 

Exercise 3.10 When a particle of charge q moves through the point P its 
velocity is vz ez and it experiences a magnetic force Fxex + Fy ey . What can be 
said about the magnetic field at the point P? Q 

In general, charged particles move through regions where there are both electric 
and magnetic fields. In such cases, we must add the electric and magnetic forces. 
Combining Equations 3.19 and 3.18, the total electromagnetic force acting on a 
point charge is 

F = Felec + Fmag = q (E + v × B) .	 (3.20) 

This is the Lorentz force law. It was discovered independently by Oliver 
Heaviside and Hendrik Lorentz, a quarter of a century after Maxwell had written 
down all the other major equations of electromagnetism. The Lorentz force law 
incorporates three features of electric and magnetic forces that were outlined in 
Chapter 1: 

•	 A stationary point charge experiences no magnetic force. 

•	 A moving point charge experiences the same electric force, qE, as a stationary 
point charge. 

•	 Any additional electromagnetic force that a point charge experiences because it 
is moving is a magnetic force, qv × B. 

Another feature, also mentioned in Chapter 1, is worth emphasizing again. The 
velocity v in Equation 3.20 is measured with respect to the reference frame of the 
observer. Different observers will assign different velocities to the same motion. 
For example, a charge may be stationary relative to you, but moving relative to 
me. In order for our descriptions to be consistent, it follows that the electric and 
magnetic fields must depend on the choice of reference frame. This happens 
naturally enough because two observers moving relative to one another will 
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disagree about the state of motion of the charges that produce the fields. However, 
the moral is that we should stick to one reference frame throughout any particular 
analysis. Usually this is a reference frame fixed in the laboratory. 

The Lorentz force law tells us how to calculate electric and magnetic forces from 
electric and magnetic fields. 

•	 When the magnetic field vanishes, the electromagnetic force reduces to 
F = qE, the  electric part of the Lorentz force law. 

•	 When the electric field vanishes, the electromagnetic force reduces to 
F = qv × B, the  magnetic part of the Lorentz force law. 

In general, both electric and magnetic fields are present and the full version 
F = q(E + v × B) must be used. We will now show some examples of the 
Lorentz force law in action. 

1.0 × 10−3 

q v
B

F = |q|vB ◦ = |q|
m v 

r

|q|vB = 
mv2 

r 
, 

and 

v = 
|q|Br 

m 
. 

ω = 
v 
r 

= 
|q|B 
m 

. 

1.0 × 10−3 T, 

ω = 
1.60 × 10−19 C × 10−3 T 

9.11 × 10−31 kg 
= 1.8 × 108s−1 , 

−1 s−2 and −1 

ω ×108 −1 

Worked Example 3.2 
An electron performs uniform circular motion in a plane perpendicular to a 
constant uniform magnetic field of magnitude T. There is no 
electric field. Calculate the angular frequency of this circular motion 
assuming that the usual Newtonian equations of circular motion apply. 

Solution 

A charge of magnitude and speed , moving perpendicular to a magnetic 
field of magnitude , experiences a magnetic force of magnitude 

sin 90 vB. 

Suppose that the particle has mass and speed and that it moves in a  
circular orbit of radius . The magnetic force must be equal to the centripetal 
force that keeps the particle in uniform circular motion so 

The angular frequency of the particle’s circular motion is then 

For an electron in a magnetic field of magnitude 

where the units have been combined using the unit conversions 
1T  =  1  kg  A 1A  =  1  Cs , listed inside the front cover of the 
book. The angular frequency could also be expressed as 1.8 rad s
since radians are dimensionless and are implicit in the definition of angular 
frequency. 

Note that the angular frequency does not depend on the speed of the electron 
or its radius of orbit; faster electrons move in larger orbits and have the same 
angular frequency as slower electrons moving in smaller orbits.	

Essential skill 
Using the Lorentz force law. 

The table of unit 
conversions inside the 
front cover of the book is a 
useful resource. 
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Circular motion in a uniform magnetic field is called cyclotron motion and the 
angular frequency at which it occurs is called the cyclotron frequency. The most 
general motion of a charged particle in a uniform magnetic field is helical, with a 
steady motion along the field superimposed on a uniform circular motion 
perpendicular to the field. One turn of the helix is completed in the cyclotron 
period, 2π/ω. 

Cyclotron motion is used to trap charged particles in a vacuum. Of course, their 
motion is only confined perpendicular to the magnetic field; motion along the 
field is unhindered. In a device known as a Penning trap, an electric field is used 
to produce confinement in the third dimension. A strong magnetic field pointing 
in the z-direction is accompanied by a weak electric field with a z-component that 
changes sign at z = 0. The electric force draws appropriately charged particles 
back towards z = 0, so trapping is achieved in three dimensions. Penning traps 
are highly efficient and have been used to store particles for months and transport 
them across continents. One application, important in fundamental physics, is to 
compare the properties of matter and antimatter. Comparisons of cyclotron 
frequencies in the Penning trap of Figure 3.18 have shown that protons and 
antiprotons have charge-to-mass ratios that differ in magnitude by less than one 
part in 1010. Similar measurements have been carried out on molecular ions. This 
forms the basis of a high-precision form of mass spectroscopy which is on the 
verge of being able to weigh chemical bonds — that is, find chemical bond 
energies by measuring ionic masses and using Einstein’s famous equation, 
E = mc2 . 

Another application of the Lorentz force law follows from the obvious fact that 
opposite charges, +q and −q, moving with the same velocity in the same 
magnetic field, feel opposite magnetic forces. Seawater contains both positive and 
negative ions. As these charged particles are carried by tidal flows through the 
Earth’s magnetic field, they are deflected in opposite directions and separated. 
The separation of charge builds up a voltage which drives electric currents 

Figure 3.18 A Penning trap through surrounding regions of seawater or conducting sediments in the seafloor. 

used to compare properties of These large-scale currents themselves produce magnetic fields which can be 

protons and antiprotons. detected by sensitive instruments in satellites. The results are truly impressive (see 
Figure 3.19). 

By contrast, opposite charges, +q and −q, moving with opposite velocities +v 
and −v in the same magnetic field, feel identical magnetic forces. This is the 
basis of the Hall effect, illustrated in Figure 3.20. A given electric current might 
consist of positive charges flowing in the direction of the current or of negative 
charges flowing in the opposite direction. If a magnetic field is applied 
perpendicular to the current, the magnetic force deflects the charge carriers in a 
direction perpendicular to their motion and to the magnetic field. They 
accumulate on the sides of the conductor, producing an electric field across it. A 
steady state is soon established in which the electric force due to the electric field 
exactly balances the magnetic force due to the magnetic field. According to the 
Lorentz force law, the two signs of charge carrier are deflected in the same 
direction, but this means that the corresponding electric fields point in opposite 
directions. So, by observing the direction of the electric field across the conductor 
in a magnetic field, we can deduce the sign of its dominant charge carriers. In 
most metals the charge carriers are (negatively-charged) electrons but the current 
may be carried by positive holes in some semiconductors. 
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Figure 3.20 The deflection of charge carriers in the Hall effect: (a) when the 
current is carried by positive charge carriers and (b) when the same current is 
carried by negative charge carriers. 

The Hall effect gives us a way of measuring magnetic fields. A fixed current is 
passed through a semiconductor chip and the voltage across the chip is recorded 
and converted into a magnetic field reading. This idea is also exploited in various 
devices that detect motion. When a moving part temporarily blocks an applied 
magnetic field, the voltage fluctuation in a Hall effect chip gives an indication of 
the motion. Electronic ignition systems in cars and some computer keyboards 
work in this way. 

Exercise 3.11 An electron moves at speed v through a region where there is a 
uniform electric field in the x-direction and a uniform magnetic field in the 
y-direction. What is the ratio of the field magnitudes if the electron travels 
undeflected in the z-direction? 

Figure 3.19 A map  of  the  
residual magnetic signal 
produced by the electric currents 
associated with tidal flows, 
detected by the CHAMP 
satellite at an altitude of 430 km. 
The residual signal is extracted 
from a much larger background 
by a process of averaging and 
filtering to obtain a contribution 
in phase with the twice-daily 
rhythm of the ocean tides. 
Although this produces some 
artifacts, the overall pattern is 
remarkably close to theoretical 
predictions. For example, the 
Gulf Stream is clearly visible. 
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Figure 3.22 Magnetic forces 
FAB and FBA between two 
uniformly-moving charges. 

Exercise 3.12 A conductor with a rectangular cross-section of area 2.0 mm
carries a steady current of 1.5 A. With a magnetic field of magnitude 3.0 × 10−2 T 
perpendicular to one pair of its faces, the Hall effect produces a constant electric 
field of magnitude 3.0 N C−1 perpendicular to the other pair of faces. 

(a) With the build-up of charge as shown in Figure 3.21, what is the sign of the 
charges carrying the current? 

(b) Assuming that the current carriers each have a charge of magnitude e, what is  
their number density? Q 

Figure 3.21 The 
separation of charge in a Hall 
effect measurement. 

3.5 Afterword on Newton’s third law 
You saw earlier that the Biot–Savart force law challenges Newton’s third law. 
This challenge was defended by noting that the Biot–Savart force law assumes 
steady currents, and these can only be maintained in complete circuits. The 
magnetic forces between complete circuits do obey Newton’s third law. However, 
it is less easy to deflect the challenge posed by the Lorentz force law. 

Figure 3.22 shows two identical positive point charges in uniform motion. Just 
like a current element, a uniformly-moving charge produces a magnetic field with 
circular field lines centred on the line of motion of the charge, directed in a sense 
determined by the right-hand grip rule. At the position of charge A, the magnetic 
field due to charge B points out of the page, towards you. At the position of 
charge B, the magnetic field due to charge A points into the page, away from you. 
So, using the Lorentz force law to determine the magnetic forces on the charges, 
we obtain forces FAB and FBA pointing in the directions shown in Figure 3.22. 
These forces do not obey Newton’s third law. The electric forces act along the line 
of separation of the charges, so they do not rescue the situation. Newton’s third 
law cannot survive the fact that the magnetic force on a charged particle is neither 
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an attraction nor a repulsion, but is a sideways kick, perpendicular to the particle’s 
velocity. 

How should this be interpreted? The main point is that we should not seek to 
defend Newton’s third law at all costs. In mechanics, where instantaneous action 
at a distance is assumed, Newton’s third law is a key assumption behind two of 
the most cherished laws of physics — the law of conservation of momentum and 
the law of conservation of angular momentum. However, electromagnetism takes 
us beyond action at a distance by introducing electric and magnetic fields. It turns 
out that these fields have momenta and angular momenta of their own. Adding the 
momenta and angular momenta of the fields to those of the particles, the laws of 
conservation of momentum and angular momentum remain valid, even though 
Newton’s third law is violated. Modern physicists are content to sacrifice 
Newton’s third law, knowing that the conservation laws are left intact. 

Summary of Chapter 3 
Section 3.1 The current I through a surface is a scalar quantity describing the 
rate at which charge Q crosses the surface: I = dQ/dt. This is the surface 
integral of the current density over the surface. The current density J(r) is a 
vector field pointing in the direction of current flow. Its magnitude is the 
magnitude of the current flowing through a tiny plane element perpendicular to 
the current flow, divided by the area of the element. In microscopic terms, current 
density is given by J = nqv, where n is the number density of charge carriers, q 
is their charge and v is their drift velocity. To avoid an unlimited accumulation of 
charge, a current density that is independent of time must be divergence-free: 
div J = 0. 

Section 3.2 The current element associated with a volume element δV is J δV , 
where J is the current density at the position of the volume element. For a current 
in a wire, the current element is I δl, where δl is a directed line element pointing 
along the wire in the reference direction for current flow. 

The magnetic force between two steady current elements is given by the 
Biot–Savart force law: 

r12)F12 = 
µ0 I1 δl1 × (I2

2 

δl2 × �
.

4π r12 

This law applies only to steady currents and its use in this book assumes that the 
magnetic response of materials can be neglected. 

Section 3.3 The Biot–Savart law can be split into separate equations describing 
the production of a magnetic field by a current element and the response of a 
current element to a magnetic field: 

δB(r) =  
µ0 I δl × (r − r0)

4π |r − r0|3 ,


δF = I δl × B. 

Section 3.4 The Lorentz force law states that the total electromagnetic force 
acting on a point charge q is 

F = q (E + v × B) , 
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where E and B are the electric and magnetic fields at the position of the charge. 
This law underpins many phenomena and devices, including the Hall effect, 
Penning traps and cyclotrons. 

Achievements from Chapter 3 
After studying this chapter you should be able to do the following: 

3.1	 Explain the meaning of the newly defined (emboldened) terms and symbols, 
and use them appropriately. 

3.2	 Define current and current density. Relate the current density to the charge, 
number density and drift velocity of the charge carriers. 

3.3	 Recognize that steady currents are divergence-free. 

3.4	 State the Biot–Savart force law and use it to calculate magnetic forces in 
simple cases. 

3.5	 State the Biot–Savart field law and use it to calculate magnetic fields in 
simple cases. 

3.6	 Calculate the magnetic force on a current element in a given magnetic field. 

3.7	 Sketch the magnetic field lines for a long straight wire and a magnetic 
dipole. 

3.8	 State and use the Lorentz force law. Recognize that this law provides a 
fundamental definition of the electric and magnetic fields. 

After studying MT 8.2.2 you should also be able to: 

3.9	 Evaluate vector products and manipulate simple vector equations involving 
vector products. 
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Chapter 4 Amp`
ere’s law 
Introduction 
Chapter 2 introduced Gauss’s law for electric fields, expressing it in two different 
forms, one involving integrals and the other involving partial derivatives. The 
integral version of Gauss’s law relates the flux of the electric field over a closed 
surface to the total charge enclosed by the surface. In highly symmetric situations, 
this version of Gauss’s law provides an efficient way of calculating electric fields, 
and is much easier to use than Coulomb’s law. The differential version of Gauss’s 
law relates the divergence of the electric field to the charge density. This version 
of Gauss’s law captures the spirit of a local field theory; the divergence of the 
electric field tells us something about the spatial rate of change of the electric field 
at a given place and time, and this is determined by the charge density at the same 
place and time. There is no mention of action at a distance. 

This chapter explores whether anything similar can be achieved for magnetic 
fields. It begins by investigating the flux of the magnetic field over a closed 
surface. Here, there is a significant difference between electric and magnetic 
fields. Electric field lines start on positive charges and end on negative charges, 
but magnetic field lines form closed loops. You will see in Section 4.1 that the 
flux of the magnetic field vanishes over any closed surface and the divergence of 
the magnetic field vanishes everywhere. This result is called the no-monopole 
law. It is the magnetic analogue of Gauss’s law and is one of Maxwell’s four laws 
of electromagnetism. 

The no-monopole law expresses a basic truth about magnetic fields, but it does not 
make a connection between magnetic fields and their sources — electric currents. 
This omission is made good by Ampère’s law, which will be discussed in 
Sections 4.2 and 4.3. In order to state Ampère’s law we need some additional 
mathematical concepts — the line integral of a vector field along a curve and the 
curl of a vector field. For steady currents, you will see that the line integral of the 
magnetic field around a closed loop is related to the current flowing through the 
loop, and the curl of the magnetic field at a given place and time is determined by 
the current density at the same place and time. In highly symmetric situations, 
Ampère’s law provides an efficient way of calculating magnetic fields, and is 
easier to use than the Biot–Savart law. 

This chapter uses the mathematics of line integrals and curls, which are 
covered in MT 8.7 and 8.8. You should extend your study time on the 
chapter by about 50% to review this mathematics. 

4.1 The no-monopole law 
Let’s recall the concept of electric flux, which is the surface integral of the electric 
field: 

electric flux over S = E · dS. 
S 
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A simple example is provided by an isolated point charge, stationary at the centre
of a sphere. If the charge is positive, all the electric field lines are directed
outwards, giving a positive electric flux over the surface of the sphere. If the
charge is negative, all the electric field lines are directed inwards, giving a
negative electric flux over the surface of the sphere.

In a similar way, we define the magnetic flux to be the surface integral of the
magnetic field. That is,

magnetic flux over S =
�

S
B · dS.

The chosen surface S can be open or closed. In this chapter we are interested
mainly in closed surfaces.

Magnetic fields are quite unlike electric fields because magnetic field lines form
closed loops (see Figures 3.13–3.15). Another way of expressing this is to say that
magnetic monopoles do not exist. We can imagine a world in which positive and
negative magnetic monopoles are the magnetic analogues of positive and negative
charges. A positive magnetic monopole would be a starting point for magnetic
field lines, and all the magnetic field lines in its immediate vicinity would diverge
away from it. A negative magnetic monopole would be an ending point for
magnetic field lines, and all the magnetic field lines in its immediate vicinity
would converge towards it. However, no magnetic monopole has ever been
detected. Recent experiments show that a superconductor contains less than one
monopole per 1029 nucleons, and that any magnetic monopoles in cosmic rays
pass through a detector at a rate of less than one monopole per square metre per
1000 years. These are upper limits set by experimental uncertainties, so the
observations are consistent with the absence of monopoles. Classical
electromagnetism assumes that magnetic monopoles do not exist.

You might wonder whether the poles of a north and south bar magnet are a pair of
positive and negative magnetic monopoles. They are not. Outside a bar magnet,
the magnetic field lines emerge from the north pole, loop around, and then
disappear into the south pole, but this is not the complete picture. Inside the
magnet, the magnetic field lines flow from the south pole to the north pole, joining
up smoothly with the field lines from outside the magnet to form closed loops
(Figure 4.1). The north and south poles are rather vague regions near the ends of
the magnet, but the same number of field lines enter and leave each of these
regions, so they are not magnetic monopoles. Classical electromagnetism
recognizes the north and south poles of a bar magnet, but denies the existence of
magnetic monopoles.Figure 4.1 The magnetic

field lines of a bar magnet form
closed loops.

Now consider the magnetic flux over a closed surface, S. The closed-loop nature
of magnetic field lines implies that there are patches of negative magnetic flux
(where magnetic field lines enter the surface and point inwards) and patches of
positive magnetic flux (where magnetic field lines leave the surface and point
outwards). There must at least be partial cancellation between these two types of
contribution. We will argue shortly that the cancellation is exact, so the magnetic
flux over any closed surface S is equal to zero:�

S
B · dS = 0. (4.1)
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4.1 The no-monopole law 

Equation 4.1 would be false if magnetic field lines were not continuous or if 
magnetic monopoles existed. If a magnetic monopole could be placed inside a 
closed surface, the magnetic flux over the surface would have the sign of the 
monopole, and would not vanish. We therefore call Equation 4.1 the 
no-monopole law. In fact, this is the integral version of the no-monopole law. 
Using the divergence theorem (Equation 8.34), we obtain 

div B dV = 0, 
V 

where V is the volume inside S. This equation is true for all volumes, no matter 
how small, so the integrand must vanish everywhere. Hence, 

div B = 0. (4.2) 

This is the differential version of the no-monopole law. It tells us that all magnetic 
fields are divergence-free. In Cartesian coordinates for example, 

∂Bx ∂By ∂Bz+ + = 0. 
∂x ∂y ∂z 

Justifying the no-monopole law for a steady current 

The no-monopole law can be justified for the magnetic field due to any steady 
current by using the Biot–Savart law (Equation 3.11). Consider a single steady 
current element I δl. For simplicity, we choose our coordinate system so that the 
current element is at the origin and is aligned with the z-axis (Figure 4.2). Then at 
any point r, the magnetic field B produced by the current element is 

µ0 I δl × r
B = 

34π r
. 

In spherical coordinates, this can be expressed as 

µ0 I δl  sin θ eφB = .
24π r

Let’s evaluate the divergence of this magnetic field. The formula for divergence in 
spherical coordinates is given inside the back cover of the book. Using this, we Figure 4.2 A current element 
obtain I δl at the origin, aligned with 

1 ∂ µ0 I δl  sin θ the z-axis.
div B = 

r sin θ ∂φ 4π r2 , (4.3) 

which is equal to zero because the term in brackets does not depend on φ. The  
only possible exception is at the origin, where the current element sits; the 
magnetic field tends to infinity as we approach r = 0  and Equation 4.3 gives 0/0 
at this point, which is not well-defined. You might think that this is an 
uninteresting mathematical detail, but care is needed. In electrostatics, for 
example, the electric field of a point charge has div E = 0  everywhere, except at 
the point occupied by the charge. Yet this single point is hugely influential 
because it acts as a source of electric field lines, leading to a non-zero electric flux 
over any closed surface surrounding the charge. 

To rule out such a possibility for magnetic fields, we calculate the magnetic flux 
over a sphere centred on the current element. At any point on the surface of the 
sphere, B points in the eφ-direction, while the unit normal to the sphere points in 

89 



� 

� � 

`Chapter 4 Amp ere’s law 

Figure 4.3 (a) A surface S 
that contains a current element. 
(b) The volume inside S is 
decomposed into a sphere V1 

and a remainder V2. The surface 
of V1 is  shown in blue and  
surface of V2 is shown in red. 

the er -direction. These vectors are orthogonal, so the magnetic flux over the 
surface of the sphere is 

B · dS = 0. (4.4) 
sphere 

The integral version of the no-monopole law can now be derived. First, consider a 
closed surface S that does not contain the current element. In this case, div B = 0  
throughout the volume V inside S and the divergence theorem gives 

B · dS = div B dV = 0. (4.5) 
S V 

Next, consider a closed surface S that contains the current element (Figure 4.3). 
In this case, we split the volume inside S into two pieces — a sphere V1 centred 
on the current element and the remainder V2, which has a spherical hole taken out 
of it. The surfaces of these two pieces are shown in blue and red in Figure 4.3b. 
Equation 4.4 shows that the magnetic flux over the blue surface of the sphere V1 is 
equal to zero. Equation 4.5 shows that the magnetic flux over the red surface of 
the remainder V2 is equal to zero. Using the additivity of flux, we conclude that 
the magnetic flux over S is also equal to zero. 

We have used a special coordinate system to establish this result, but the fact that 
the magnetic flux vanishes over any closed surface really cannot depend on our 
choice of coordinate system. It is true for all coordinate systems and for all 
current elements, no matter what their orientation or location. The magnetic field 
produced by any steady current can be regarded as the sum of the magnetic fields 
produced by many steady current elements, so the integral version of the 
no-monopole law is valid for any steady current. The differential version follows 
from the divergence theorem, assuming that the magnetic field varies smoothly. 
(This assumption is reasonable, provided that the magnetic field is produced by a 
smoothly varying current density.) 
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Status and scope of the no-monopole law 

Our justification of the no-monopole law is based on the Biot–Savart law, which 
assumes steady currents. However, we now make a bold leap of faith and assert 
that the no-monopole law is valid for all magnetic fields, whether magnetostatic or 
not. This echoes our earlier treatment of Gauss’s law, which took Coulomb’s law 
of electrostatics as its starting point, and then assumed that Gauss’s law is valid 
for all electric fields, whether electrostatic or not. There is no logical flaw in 
making extensions of this kind. In fact any new law of physics, which expands the 
predictive power of the subject, must go beyond the certainties of proof. Instead 
of mathematical proof, science has the discipline of experimental tests. The 
no-monopole law was first suggested by Lord Kelvin in 1849, only a few years 
before Maxwell started to think about electromagnetism, and Maxwell 
incorporated it into his theory. The no-monopole law, in either of its forms, counts 
as one of Maxwell’s four laws of electromagnetism, and the most compelling 
evidence for it comes from the successful predictions of the whole of Maxwell’s 
theory. 

Clearly, there is a strong analogy between the no-monopole law and Gauss’s law, 
as both involve the divergence of electromagnetic fields. However, these equations 
are used in very different ways. Gauss’s law provides a link between electric 
fields and their sources. It helps us to predict the electric field produced by a given 
charge distribution, or to find the charge distribution that is consistent with a given 
electric field. But the no-monopole law makes no mention of the sources of 
magnetic fields (electric currents), so it cannot be used in this way. Instead, it 
provides a constraint that any magnetic field must satisfy. We can think of many 
vector fields, F(x, y, z), but most cannot be magnetic fields. The only vector fields 
that are suitable candidates for magnetic fields are those with zero divergence. 

Exercise 4.1 If C is a constant with suitable units, which of the following 
vector fields could be a magnetic field? 

(a) V1 = Cy2ex 

(b) V2 = C(x2ex + y2ey − z2ez ) 

(c) V3 = C(xzex + yzey − z2ez ) 

Exercise 4.2 Within a given region, a magnetic field points in the z-direction. 
Show that this magnetic field cannot depend on z. Q 

4.2 Ampère’s law 
The no-monopole law implies that magnetic field lines form continuous closed 
loops, with no start-points or end-points, but it does not allow us to predict the 
magnetic field created by a particular arrangement of currents. This is because it 
specifies the magnetic flux over a closed surface, a quantity which vanishes 
whether currents are present or not. In order to predict magnetic fields, it is more 
profitable to quantify the amount by which the magnetic field circulates around a 
closed loop. This involves the mathematical concepts of line integrals and 
circulation, which are discussed in the Mathematical Toolkit. With appropriate 
definitions, you will see that the circulation of a magnetic field around a wire is 
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proportional to the steady current in the wire. This is an example of Ampère’s law 
which, in cases of high symmetry, provides a much easier way of calculating 
magnetic fields than the cumbersome Biot–Savart law. Ampère’s law is the 
subject of the rest of this chapter. 

� Read MT 8.7 now. This is essential material. 

To establish Ampère’s law, let’s begin by considering the magnetic field around a 
long straight wire that carries a steady current I along the z-axis. We will 
calculate the circulation of the magnetic field round a circular path C which is 
centred on the wire and lies in a plane perpendicular to it (Figure 4.4). The 
circular path C has radius R and is traversed in the sense indicated so, when I is 
positive, the magnetic field lines circulate around the wire in the same sense as the 
path C. 

By definition, the circulation of the magnetic field around C is given by the line 
integral 

circulation of magnetic field = B · dl. 
C 

Figure 4.4 A circular path C 
of radius R around a current Using Equation 3.14, the component of the magnetic field in the direction of 

carrying wire. progression around C is Bφ = µ0I/2πR. This remains constant all round the 
path, so the line integral is simply the product of Bφ and the circumference of the 
circle: 

B · dl = 
µ0I × 2πR = µ0I.  (4.6)
2πRC 

The circulation is positive for I >  0, when the magnetic field lines circulate in the 
same sense as C, and negative for I <  0, when the magnetic field lines circulate 
in the opposite sense. Although the circulation depends on the current in the wire, 
it does not depend on the radius of the circular path. It is easy to see why. The 
magnetic field decreases as 1/R as we move away from the wire, while the 
circumference of the circle is proportional to R. These two factors cancel out in 
Equation 4.6, leaving the circulation of the magnetic field independent of the 
radius of the circle. 

In fact, a much more general result can be established, valid 
for any closed path. We can replace the circle by an arbitrary 
path C which laps the wire once in the same sense as the 
magnetic field lines (Figure 4.5). 

Working in cylindrical coordinates, a small displacement along 
this path is represented as 

δl = δr er + r δφ  eφ + δz ez . (4.7) 

The magnetic field around the wire is given by 

µ0IB = 
Figure 4.5 A non-circular path C around a 2πr 

eφ. 

current-carrying wire. 
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Taking the scalar product of the magnetic field B with the displacement δl, and  
remembering that the unit vectors er , eφ and ez are mutually orthogonal gives Remember: � � eφ · er = eφ · ez = 0. 

µ0IB · δl =
2πr 

eφ · (r δφ  eφ) =  
µ0I 

δφ. 
2π 

As we make one lap of the wire, φ increases from 0 to 2π, so the circulation of the 
magnetic field around the wire is � � 2π µ0I µ0IB · dl = dφ = × 2π = µ0I,

2π 2πC 0 

which is exactly the same as before, but established now for any closed path that 
laps the wire once in the sense shown in Figure 4.5. If the path wrapped round the 
wire in the opposite sense, the circulation of the magnetic field would be −µ0I . 

We can also consider a closed path that does not wrap around the wire 
(Figure 4.6). The calculation of the line integral follows the same steps as before. 
But now, when we go once round the path, the angle φ first increases, then 
decreases, and finally returns to its initial value as the lap is completed. So the 
circulation of the magnetic field around a closed path that does not wrap around 
the wire is equal to zero: 

B · dl = 0. 
C 

Figure 4.6 A closed path C that does not Figure 4.7 Many straight current-carrying 
wrap around a current-carrying wire. wires and a closed path, C. 

Finally, consider many straight wires, inclined at various angles and carrying 
various steady currents (Figure 4.7). A closed path C, of arbitrary shape and 
orientation, is placed in this forest of wires. Using the above results, together with 
the principle of superposition, we see that the circulation of the magnetic field 
around C is given by µ0Itot, where Itot is the total current carried by all the wires 
that thread the closed path. That is, 

B · dl = µ0Itot. (4.8) 
C 
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To calculate the total current, with the appropriate sign, the following sign 
convention must be used: 

Sign convention (the right-hand grip rule) 

With the fingers of your right hand wrapped in the sense of positive 
progression round the closed path C, the outstretched thumb of your right 
hand indicates the direction of positive current flow. Currents that are more 
aligned with this direction than with the opposite direction are taken to be 
positive. 

In Figure 4.7, for example, I1 and I3 are positive, while I2 is negative, so in 
this case, 

Itot = I1 − I2 + I3. 

Currents I4 and I5 do not contribute to Itot because they do not pass through 
the closed path C. 

The circulation of the magnetic field around the closed loop in Figure 4.7 is 
determined by the total current carried by wires that pass through the loop. The 
precise positions of the wires, their inclinations, and the precise shape and 
orientation of the closed loop are all irrelevant. This is a remarkable fact. It has 
been established above for the magnetic fields produced by steady currents in long 
straight wires. But it turns out to be true more generally. Bending the wires or 
allowing the currents to flow freely, unconstrained by wires, makes absolutely no 
difference, provided the currents are steady and we interpret Itot as the total 
current threading the loop — that is, the total current crossing a surface bounded 
by the loop. This is the content of Ampère’s law: 

Ampère’s law 

Consider the magnetic field produced by a steady current distribution. The 
circulation of the magnetic field around a closed path C is given by 

B · dl = µ0I,  (4.9) 
C 

where µ0 is the permeability of free space and I is the total current flowing 
through an open surface S that has C as its perimeter. The direction of 
positive current through S and the direction of positive circulation around C 
are linked by the right-hand grip rule. 

The total current through S is the surface integral of the current density over 
S, so we also have 

B · dl = µ0 J · dS, (4.10) 
C S 

where S is any open surface and C is its perimeter. 

Many books give the impression that Ampère discovered the law that bears his 
name and that Maxwell inherited it. This is not tenable because the concept of a 
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magnetic field did not exist in Ampère’s day. In fact, Maxwell discovered the law 
and named it in recognition of Ampère’s work on magnetic forces (summarized 
today by the Biot–Savart law). Like Gauss’s law, Ampère’s law can be expressed 
in terms of integrals or partial derivatives. Equations 4.9 and 4.10 express the 
integral version of Ampère’s law. The differential version of Ampère’s law will 
be discussed at the end of the chapter. 

Starting from the Biot–Savart law, it is possible to prove Ampère’s law for any 
steady current distribution. The proof is lengthy and will not be presented in this 
course. Instead, we have given a partial proof, valid for steady currents in long 
straight wires. The fact that Ampère’s law applies to any steady current 
distribution must be taken on trust. However, it is prudent to make a spot check 
for one case that goes beyond current flow in straight wires. 

Figure 4.8 A circular 
current loop threaded by a 
square path PQRS. 

Figure 4.8 shows a circular current loop of radius a carrying a steady current, I . 
We will calculate the circulation of the magnetic field around a large square 
PQRS, where PQ is part of the axis of symmetry perpendicular to the loop. We 
consider the limiting case where PQ is infinitely long, allowing the contributions 
from the other sides of the square path to be neglected. Then, using Equation 3.13 
for the on-axis magnetic field due to the current loop, we obtain � � ∞ � ∞ µ0I a2 µ0I 1

B · dl = dz = dξ,
3/2 

C 2 −∞ (a2 + z2)3/2 2 −∞ (1 + ξ2)

where I have changed the variable of integration to ξ = z/a in the last step. The 
remaining integral appeared in Section 3.2, where its value was quoted as 2. We 
therefore conclude that 

µ0IB · dl = × 2 = µ0I,
2C 

where I is the current passing through the square area PQRS, in agreement with 
Ampère’s law. 
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Figure 4.9 Two open surfaces 
S1 and S2 with the same 
perimeter C. The vectors �n1 and 
n2 are unit normals to S1 andS2. 

Limitations of Ampère’s law 

Ampère’s law is a consequence of the Biot–Savart law, and it has exactly the same 
domain of validity. It is a law of magnetostatics, valid for all steady current 
distributions, but it does not apply to time-varying currents. With Gauss’s law and 
the no-monopole law we were lucky — results derived using electrostatics and 
magnetostatics turned out to be true for arbitrary electric and magnetic fields. Our 
luck runs out with Ampère’s law, which cannot be extended in a similar way. 

To see why, consider a charged particle that passes through an open surface S. By  
definition, current is the rate of flow of charge through a surface. So, before and 
after the particle reaches the surface, there is no current through S. Only while the 
particle is actually moving through the surface is there a brief current through S. 
If Ampère’s law could be applied in this situation, the circulation of the magnetic 
field around the distant perimeter of S would be zero, except for a sudden blip 
when the particle passes through the surface. This is not what is observed; as you 
might expect, the magnetic field, and its circulation, vary smoothly and gradually 
in time. The discrepancy is easily resolved — a single charged particle does not 
provide a steady current, so Ampère’s law does not apply in this case. 

The restriction to steady currents removes an apparent ambiguity in Ampère’s 
law. To find the magnetic circulation around a closed path C, we need to know the 
current flowing through an open surface S that has C as its perimeter. However, 
many open surfaces have C as their perimeter, and Ampère’s law does not tell us 
which one to use. In some cases, there is a natural choice. If the closed path is 
planar, it is natural to choose S to be the planar area enclosed by the path. But if 
the closed path twists and wiggles, there is no simple choice for S. Fortunately, if 
the currents are steady, the precise choice makes no difference. To see why, 
consider two surfaces, S1 and S2, both oriented in the same sense and both 
sharing the same perimeter, C (Figure 4.9). 

If the current through S1 were different from the current through S2, there would 
be a build-up of charge in the region between these two surfaces. This cannot be 
tolerated in a steady-state situation, because the charge would build up 
relentlessly and without limit, leading to an inevitable change in the currents. Any 
steady current through S1 must therefore be equal to the steady current through 
S2, making the precise choice of surface irrelevant. Of course, this argument 
relies on steady currents. If the currents are not steady, charge may build up 
temporarily, and different currents may pass through S1 and S2. Any attempt to 
apply Ampère’s law in this situation would lead to an ambiguous prediction for 
the magnetic circulation around C. This ambiguity is avoided by restricting 
Ampère’s law to steady current flows. 

The applications of Ampère’s law described in the next section assume that all the 
currents are known. When materials such as iron are present there may be hidden 
currents associated with the magnetization of the materials, as well as the obvious 
currents that flow through wires. These hidden currents may not be known, 
leading to complications similar to those arising from screening and polarization. 
As usual, in this book, we ignore these effects, an approximation that is 
well-justified for most media, including air and copper. 
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Exercise 4.3 The integral version of Gauss’s law states that the flux of the 
electric field, taken over any closed surface, is proportional to the total charge 
inside the volume bounded by the closed surface. Write an analogous sentence for 
Ampère’s law, replacing the words in italics. Q 

4.3 Putting Ampère’s law to use 

4.3.1 Cylinders and tubes 

To illustrate the use of Ampère’s law, we will now apply it to a simple case — the 
magnetic field produced by a steady current in an infinitely-long cylindrical 
conductor of radius a. This reverses the argument that led to Ampère’s law. Now 
we will take Ampère’s law as a basic fact, and show how it is used to derive a 
magnetic field. 

The first step is to restrict the possible form of the magnetic field. We know from 
the Biot–Savart law that the magnetic field produced by a current element is 
perpendicular to the current element. Since all the current elements point along 
the axis of the cylinder, the magnetic field must be perpendicular to this axis. The 
current distribution is unchanged by rotations around the axis of the cylinder and 
by translations along the length of the cylinder — it has axial and translational 
symmetry. Any magnetic field must inherit the symmetry of its source, so the 
magnetic field around the cylinder must also have axial and translational 
symmetry. 

A vector field pointing radially outwards from the cylinder could have these 
symmetries, but such a field would have a non-zero flux over a closed surface 
surrounding the cylinder, and would therefore violate the no-monopole law. It 
cannot be a magnetic field. We exclude such fields from consideration by 
requiring that the field lines form closed loops. We then argue that the closed 
loops must be circles centred on the axis of the cylinder. For, consider the 
alternative: if the magnetic field lines were not circles, or were not centred on the 
axis of the cylinder, the axial symmetry of the situation would not be respected. 
Moreover, axial and translational symmetry require the magnetic field strength to 
depend only on the distance r from the axis of the cylinder. In a cylindrical 
coordinate system, with the z-axis along the axis of the cylinder, in the direction 
of current flow, we conclude that the magnetic field takes the form 

B = Bφ(r) eφ. (4.11) 

The next step is to apply Ampère’s law. To do this we need a closed path C 
bounding an open surface S. Exploiting the symmetry of the situation, we choose 
C to be a circle of radius r > a centred on, and perpendicular to, the axis of the 
cylinder (Figure 4.10). The corresponding open surface S is the disk that has C as 
its perimeter. The unit normal to the disk is taken to be in the direction of 
increasing z. The right-hand grip rule then shows that the sense of positive 
progression around C is in the direction of eφ. 
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Figure 4.10 Applying 
Ampère’s law outside an 
infinitely-long cylinder: 
(a) perspective view and 
(b) plan view. 

Essential skill 
Applying Ampère’s law 

The answer requires no more 
detail than this because the 
question did not explicitly ask 
for a symmetry argument. 

It follows that the line integral of the magnetic field around C is 

B · dl = Bφ(r) × 2πr. 
C 

The current flowing through the surface S is just the current I carried by the 
conductor, so Ampère’s law gives 

Bφ(r) × 2πr = µ0I.  

Solving for Bφ(r), and using Equation 4.11, we conclude that 

B(r) =  
µ0I 

eφ. (4.12)
2πr 

We have not mentioned the thickness of the cylindrical conductor. It could be a 
thin wire, with each segment of the wire constituting a single current element. In 
this case, Equation 4.12 is equivalent to Equation 3.14, which was derived earlier 
using the Biot–Savart law. However, the cylinder could also be fat, with segments 
that cannot be treated as single current elements. This would invalidate the 
argument that led to Equation 3.14, but does not affect the present argument. 
Equation 4.12 still applies outside a fat cylinder, provided that the current flow is 
axially symmetric along the cylinder. In other words, the magnetic field outside a 
fat cylinder is just as if all the current were flowing along the central axis. This is 
a new result, which would be hard to derive using the Biot–Savart law, but which 
emerges naturally from symmetry and Ampère’s law. 

Worked Example 4.1 

A long straight cylindrical conductor of radius a carries a uniform steady 
current density. The total current flowing along the conductor is I . Find  the  
magnetic field at all points inside the conductor. 

Solution 

The description of the cylindrical conductor as being long can be read as an 
invitation to approximate the field as being due to the current in an 
infinitely-long cylinder. Using cylindrical coordinates with the z-axis along 
the axis of the cylinder in the direction of current flow, and exploiting the 
axial and translational symmetry of the situation, the magnetic field takes the 
form 

B = Bφ(r) eφ. (Eqn 4.11) 
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Hence 

B(r) =  
µ0Ir  
2πa2 eφ 

Comment

µ0I/2πa 
r = a

Putting Amp ere’s law to use 

Figure 4.11 Applying Ampère’s law inside an infinitely-long cylinder of 
: (a) perspective view and (b) plan view. 

To find the field inside the conductor we choose a closed circular path 
r <  a, centred on the axis of the cylinder and perpendicular to it 

(Figure 4.11). The corresponding open surface is the disk which has 
its perimeter. The unit normal to the disk is taken to be in the direction of 

and the sense of positive progression around is in the 
direction of . The magnetic field is parallel to and has a constant 
magnitude on this path. It follows that the line integral around 

πr. 

The current density throughout the conductor is I/πa , so the total 
current passing through the disc 

Not surprisingly (given that the current density is uniform) this is equal to 
the total current, , times the fraction of the cross-sectional area of the 
conductor that is covered by the disc 

Finally, Ampere’s law (Equation 4.10) gives 

inside the cylinder. 

: There is no magnetic field on the axis of the cylinder. The 
magnetic field strength rises linearly as we move radially outwards and 
reaches its maximum value, on the surface of the cylinder. 
Reassuringly, this is the same as Equation 4.12, evaluated at , so the  
magnetic field has no discontinuity at the surface of the cylinder. 
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Exercise 4.4 An infinitely-long cylindrical conducting tube of inner radius a 
carries a steady uniform current. Show that the magnetic field vanishes in the 
cylindrical space inside the tube. Q 

4.3.2 The reflection of electric and magnetic fields 

The key to exploiting Ampère’s law is to use symmetry to propose a suitable form 
for the magnetic field. However, the symmetry argument that led to Equation 4.11 
is open to criticism. We claimed that the magnetic field lines must be circles 
centred on the axis of the cylindrical conductor because anything else would be 
inconsistent with the given axial symmetry. This seems obvious but falls short of 
a cast-iron proof. Indeed, arguments of this type might be called ‘proof by bluff’ 
because they rely on our failure to think of suitable alternatives. In more 
complicated cases, they can leave us with the nagging doubt that we might have 
overlooked something. This section takes a closer look at symmetry arguments 
for electromagnetic fields. It will show that these arguments can be put on a 
secure basis, leaving no room for doubt. 

It is interesting to compare electric and magnetic fields. Figure 4.12a shows the 
electric field E produced by a uniform charge distribution in an infinitely-long 
cylinder while Figure 4.12b shows the magnetic field B produced by a uniform 
current distribution in an infinitely-long cylinder. These two field patterns are 
completely different, although both situations have axial symmetry around the 
cylinder and translational symmetry along it. This section will explain this 
striking difference between electric and magnetic fields. 

Figure 4.12 (a) The electric field E due to a uniform distribution of positive 
charge on a cylinder. (b) The magnetic field due to a uniform distribution of 
current along a cylinder. 
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Our starting point is the following principle: 

Symmetry principle 

Any operation that leaves the source of an electromagnetic field unchanged 
also leaves the field unchanged. 

This principle was introduced in Chapter 1, but will now be used in a more 
systematic way. The idea is to find a symmetry operation, such as a rotation or a 
reflection, that leaves the source of an electromagnetic field unchanged. We then 
express the field in a suitable coordinate system and apply the symmetry operation 
to it. The symmetry principle tells us that the new field is indistinguishable from 
the original field. So if, at a given point, one or more components of the field are 
reversed by the symmetry operation, these components must be equal to zero. 
Only those components that are unchanged by the operation survive. 

To be explicit, suppose that the field at a given point is expressed as 

F = F1e1 + F2e2 + F3e3, 

where e1, e2 and e3 are orthogonal unit vectors, and that a symmetry operation 
converts the field at the same point to 

F′ = F1e1 − F2e2 − F3e3. 

If the source of the field is left unchanged by the symmetry operation, the 
symmetry principle requires that 

F1e1 + F2e2 + F3e3 = F1e1 − F2e2 − F3e3, 

which simplifies to 

2F2e2 + 2F3e3 = 0, 

showing that the reversed components of the field, F2 and F3, are both equal to 
zero, as we claimed. This symmetry argument will be applied repeatedly, mainly 
in cases where the symmetry operation is a reflection. We therefore need to know 
how electric and magnetic fields behave under reflections. 

In order to establish the rules for reflecting fields, it is helpful to consider a case 
where the electric field is changed by reflection. For example, Figure 4.13a shows 
a dipolar electric field produced by a pair of opposite charges, and Figure 4.13b 
shows the result of reflecting this arrangement in a plane P midway between the 
charges. Both the charges and the electric field pattern are reflected. In more 
detail, point A in Figure 4.13a is reflected to point A′ in Figure 4.13b. Comparing 
the electric field at A with the reflected electric field at A′, we see that the 
component of the field perpendicular to the plane P is reversed, while components 
parallel to the plane are the same. 
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Figure 4.13 Reflecting the 
electric field of a dipole in a 
plane P. 

Figure 4.14 Attempting to 
reflect the magnetic field B of a 
current loop in a plane P. 

Now let’s turn to magnetic fields. Figure 4.14a shows the magnetic field B 
produced by a current loop. Suppose we reflect this field in the plane that contains 
the current loop. This reflection leaves the current loop unchanged, but what does 
it do to the magnetic field? Figure 4.14b shows the mirror image of the magnetic 
field lines in Figure 4.14a. In the highly symmetric situation of Figure 4.14, the 
overall effect is to leave the current I unchanged and to reverse the field lines. 
This is a serious problem. If the current is unchanged, the magnetic field should 
remain unchanged as well — a definite current must surely produce a definite 
magnetic field! 

The resolution of this paradox is found in the hands sketched in the diagram.

Figure 4.14b is the exact mirror image of Figure 4.14a, so the right hand in

Figure 4.14a becomes a left hand in Figure 4.14b. This implies that the magnetic

field in Figure 4.14b is defined using a left-hand rule rather than a right-hand rule.

Of course, we are totally committed to defining magnetic fields using a right-hand
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rule, so the true reflected magnetic field is the reverse of that shown in 
Figure 4.14b. Reversing the magnetic field at each point in Figure 4.14b gives the 
same field as in Figure 4.14a, so the paradox is resolved. 

For simplicity, we restrict attention to points in the plane of reflection. These 
points remain fixed under the reflection, so the original field and the reflected field 
both refer to the same point. The behaviour of electric and magnetic fields can 
then be summarized as follows: 

Reflection rules for electric and magnetic fields 

If an electric field is reflected in a plane, the reflected electric field at any 
point in the plane is obtained by reversing the component of the field 
perpendicular to the plane, leaving components parallel to the plane 
unchanged. 

If a magnetic field is reflected in a plane, the reflected magnetic field at any 
point in the plane is obtained by reversing components of the field parallel 
to the plane, leaving the component perpendicular to the plane unchanged. 

The reflection rule for magnetic fields may seem strange, but it is a direct 
consequence of the fact that magnetic fields are represented by vector products, 
and so have a right-hand rule built into their definition. Diagrams of magnetic 
field lines do not reveal this handedness, but it is present nonetheless. Taking the 
simple mirror image leads to magnetic fields described according to a left-handed 
convention, and an extra reversal is needed to retain the standard right-handed 
convention. This extra reversal means that the reflection rule for magnetic fields is See also Exercise 8.9 for an 
the exact opposite of the reflection rule for electric fields. Electric fields behave example of the reflection of a 
more simply under reflection because they are defined without vector products vector product. 
and without a right-hand rule. 

The symmetry principle and the reflection rules for electric and magnetic fields 
are the ingredients for the symmetry arguments in this section. As an example of 
the method, consider the electric field produced by a uniformly-charged cylinder 
of infinite length. We are now ready to provide a rigorous justification of the 
radial electric field pattern in Figure 4.12a. 

Prompted by the symmetry of the situation, and without loss of generality, we 
choose a cylindrical coordinate system with the z-axis along the axis of the 
cylinder. In this coordinate system any electric field can be expressed as 

E(r) = Er (r, φ, z) er + Eφ(r, φ, z) eφ + Ez (r, φ, z) ez . 

The charge distribution has axial symmetry around the z-axis and translational 
symmetry along the z-axis, so the components of the electric field cannot depend 
on φ or z. This leads to the simpler expression 

E(r) = Er (r) er + Eφ(r) eφ + Ez (r) ez . 

Now, suppose we are interested in the electric field at a point P, a distance r from 
the axis of the cylinder. We consider a reflection in a plane that passes through P 
and is perpendicular to the axis of the cylinder, i.e. to the z-axis (Figure 4.15a). 
This reflection leaves the charge distribution unchanged and reverses the 
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z-component of the electric field at P. The symmetry principle then requires that 
Ez (r) = 0. We can also consider a different reflection in a plane that passes 
through P and contains the axis of the cylinder (Figure 4.15b). This reflection 
leaves the charge distribution unchanged and reverses the φ-component of the 
electric field at P. The symmetry principle then guarantees that Eφ(r) = 0. 

Figure 4.15 Two planes of 
reflection used to investigate the 
electric field E of an infinitely 
long cylinder carrying a uniform 
positive charge. 

Combining these results, we see that only the radial component of the electric 
field survives. Hence, 

E(r) = Er (r) er , 

as expected. 

With care, this argument can be adapted to deduce the form of the magnetic field 
at a point P, a distance r from the axis of a cylindrical conductor of infinite length. 
Again, we use a cylindrical coordinate system with the z-axis along the axis of the 
cylinder. The axial and translational symmetries of the situation then allow us to 
express the magnetic field as 

B(r) = Br (r) er + Bφ(r) eφ + Bz (r) ez . 

In this case, it is simplest to consider the reflection in a plane that passes through 
P and contains the axis of the cylinder, i.e. a plane like that shown in Figure 4.15b. 
This reflection does not change the current distribution. The r- and  z-components 
of the magnetic field at P are parallel to the plane of reflection, so the reflection 
rule for magnetic fields tells us that these components are both reversed. Because 
the current distribution is unchanged, the symmetry principle requires that both 
these components are equal to zero, so we are left with 

B(r) = Bφ(r) eφ, 

as claimed earlier in Equation 4.11. This proof follows directly from symmetry, 
without using the Biot–Savart or no-monopole laws. In this sense, it is simpler 
than our previous intuitive argument, which used both these facts. 

You might wonder what can be learnt from the reflection which passes through P 
and is perpendicular to the axis of the cylinder. Using the reflection rule for 
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magnetic fields, this reflection reverses the r- and  φ-components of the magnetic 
field, which are parallel to the plane of reflection. Unfortunately, it also reverses 
the direction of the current, and this prevents us from using the symmetry 
principle directly. However, there is a remedy for this. If the reflection is followed 
by the operation of time-reversal, the current is reversed again, returning to its 
original direction. So the combined operation of reflection + time-reversal leaves 
the current unchanged. As explained in Chapter 3, time-reversal reverses the 
magnetic field. The net effect of the combined operation is therefore to leave the 
r- and  φ-components of the magnetic field unchanged and to reverse the 
z-component. The symmetry principle then tells us that Bz = 0. This is not new 
information, but is clearly consistent with the conclusions reached earlier. 

Figure 4.16 Two planes of 
reflection for a spherically 
symmetric current. The red 
arrows show the current density. 

er and eθ 

eφ 

er and eφ eθ 

Essential skill 
Using symmetry principles for 
magnetic fields 

Worked Example 4.2 

A current distribution is spherically symmetric, flowing away from the 
origin. Figure 4.16a shows a plane that contains the unit vectors at 
P, and is perpendicular to the unit vector at P. Figure 4.16b shows a plane 
that contains the unit vectors at P, and is perpendicular to the 
unit vector at P. Both these planes pass through the origin O. By considering 
reflections in both these planes, deduce the form of the magnetic field 
produced by this current distribution. 
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Solution 

According to the reflection rule for magnetic fields, a reflection in the plane 
sketched in Figure 4.16a reverses Br and Bθ at P. A reflection in the plane 
sketched in Figure 4.16b reverses Br and Bφ at P. Both these reflections 
leave the spherically-symmetric current distribution unchanged, so the 
symmetry principle can be used. This tells us that the reversed components, 
Br , Bθ and Bφ, are all equal to zero at P. This argument applies at any point 
P, so we conclude that a spherically-symmetric current distribution produces 
no magnetic field anywhere. 

A current distribution that produces no magnetic field is said to be a 
magnetically-silent source. The existence of such sources can be troublesome. 
Suppose, for example, that we measure the magnetic field outside a brain and are 
able to show that a certain current distribution inside the brain could produce this 
magnetic field. We cannot be certain that this current distribution accurately 
describes current flows in the brain because any magnetically-silent current 
distribution could be added to it without affecting the detected magnetic field. The 
task of deducing general current flows in a brain from measurements of magnetic 
fields suffers from non-uniqueness. Working around this problem is a subject of 
active research, and involves making appropriate use of physiological constraints. 

Exercise 4.5 An infinite sheet in the xy-plane carries a constant uniform 
current density in the y-direction. By considering a reflection in a plane 
perpendicular to the x-axis, express the magnetic field near this current sheet in 
the simplest possible terms. Q 

4.3.3 Solenoids and toroidal solenoids 

A solenoid is a conducting helical coil whose densely-packed turns are wrapped 
uniformly around the surface of a cylinder. Solenoids are used to provide strong 
magnetic fields in the region inside the coil. The patient in a magnetic resonance 
imaging body-scanner, for example, is surrounded by a set of solenoids, which 
produce a magnetic field of about 1.5 T (Figure 4.17). 

We will use Ampère’s law to find the magnetic field inside and outside a long 
solenoid carrying a steady current I . For simplicity, the solenoid is taken to be 
infinitely long. We also assume that the pitch of the helical coil is much smaller 
than its diameter, so that each turn of the solenoid is practically equivalent to a 
circular loop. The magnetic field produced by the solenoid is then equivalent to 
the magnetic field produced by a continuous stack of current loops. We restrict 
attention to solenoids in empty space, with no magnetic materials or other 

Figure 4.17 A magnetic currents nearby, so the only relevant magnetic field is that produced by the current 
resonance imaging (MRI) in the solenoid. 
body-scanner. 

The first step, as always, is to use symmetry to restrict the form of the magnetic 
field. The symmetry of the situation suggests use of cylindrical coordinates with 
the z-axis along the central axis of the solenoid. Axial symmetry around the z-axis 
and translational symmetry along the z-axis ensure that the components of the 
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magnetic field do not depend on φ or z, so the magnetic field can be expressed as 

B(r) = Br (r) er + Bφ(r) eφ + Bz (r) ez . 

Now consider a reflection in a plane perpendicular to the axis of the solenoid 
(Figure 4.18). Because we are treating the solenoid as a continuous stack of 
current loops, this reflection does not change the current distribution. However, 
the reflection rule for magnetic fields shows that Br and Bφ (the components of 
the magnetic field parallel to the plane of reflection) are both reversed by the 
reflection. The symmetry principle then tells us that Br and Bφ are both equal to 
zero, leaving 

B(r) = Bz (r) ez . (4.13) 

Now we can use Ampère’s law to find the function Bz (r). First, we use the 
rectangular path PQRS in Figure 4.19a. Side QR is at radial coordinate r1, side  
SP is at radial coordinate r2, and both these sides have length l. Because Br = 0, Figure 4.18 The effect of a 
the line integral of the magnetic field around this rectangle is Bz (r1)l − Bz (r2)l. reflection on a solenoid. The 
Since no current crosses the interior of the rectangle, Ampère’s law gives turn at S is the mirror image of 

Bz (r1)l − Bz (r2)l = 0, so Bz (r1) = Bz (r2), the turn at R. 

which shows that Bz is constant outside the solenoid. We can assume that the 
magnetic field vanishes infinitely far away from the solenoid, so the constant 
value of Bz outside the solenoid must be zero. 

Figure 4.19 Three paths used to apply Ampère’s law to a solenoid. 

107 



`Chapter 4 Amp ere’s law 

This may seem strange but, remember, we are considering the limiting case of an 
infinitely-long solenoid. In many respects, this behaves like an infinitely-long bar 
magnet, and it is reasonable to expect that the field around such a magnet would 
be zero because the north and south poles are infinitely far away. 

Similarly, applying Ampère’s law to the rectangular path PQRS in Figure 4.19b 
shows that the magnetic field is constant inside the solenoid. The constant value 
of the magnetic field inside the solenoid can be found by applying Ampère’s law 
to the rectangular path PQRS in Figure 4.19c. The interior of this loop is a 
rectangular surface. The turns of the solenoid enclosed by the loop carry current 
up through this surface. Although the current flows in the opposite direction on 
the far side of each turn, these downward currents flow outside the surface, and do 
not contribute to the current through it. The total current flowing though PQRS is 
therefore given by the current in each turn times the number of turns crossing the 
surface. That is, 

Itot = nlI, 

where n is the number of turns per unit length and I is the current in each turn, 
which is the current carried by the solenoid. Because the magnetic field vanishes 
outside the solenoid, the line integral of B around PQRS only has a contribution 
from QR, and so is equal to Bz l, where Bz is the z-component of the magnetic 
field inside the solenoid. Ampère’s law therefore gives 

Bz l = µ0nlI, 

so 

B = µ0nI ez inside the solenoid. (4.14) 

This formula shows that a large magnetic field can be produced by wrapping 
many turns per unit length and by using a high current. 

A variant of the solenoid is the toroidal solenoid. This  is  a  
conducting coil whose densely-packed turns are wrapped 
uniformly around the surface of a torus (the shape of an 
American donut or a bicycle tyre). Toroidal solenoids, or their 
equivalent, are used in machines that explore the possibility of 
producing electrical power by controlled nuclear fusion. The 
long-term aim is to provide an almost inexhaustible source of 
power which does relatively little harm to the environment. 

To find the magnetic field inside a toroidal solenoid, it is 
convenient to use the cylindrical coordinate system shown in 
Figure 4.20, where the z-axis is perpendicular to the plane of 
the torus. This differs from the cylindrical coordinate system 
used to discuss a straight solenoid; now it is eφ that points 
along the circular central axis inside the solenoid. 

As usual, we begin with a symmetry argument. At any point P, we consider a 
reflection in a plane that passes through P and is perpendicular to the eφ unit 
vector (Figure 4.20). Ignoring the detailed geometry of the helical windings, this 
reflection leaves the current distribution unchanged. However, the reflection rule 
for magnetic fields tells us that Br and Bz are both reversed by the reflection. The 
symmetry principle then tells us that Br and Bz are both equal to zero. Moreover, 

Figure 4.20 Cylindrical 
coordinates (r, φ, z) for a 
toroidal solenoid. 
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since the toroid is unchanged by rotations around the z-axis, the magnetic field is 
independent of φ, so we conclude that 

B = Bφ(r, z) eφ. 

This conclusion is quite intuitive. When a straight solenoid is bent round to form a 
torus, its magnetic field lines form circular loops, along which the magnetic field 
has a constant magnitude. 

ere’s law to calculate the magnetic field strength inside Essential skill Exercise 4.6 Use Amp`
a toroidal solenoid. The solenoid has N turns and carries a steady current I . Q Applying Ampère’s law 

4.3.4 A hidden consequence of Ampère’s law 

You now know enough about electromagnetism to prove something truly 
wonderful. Consider two identical uniformly-charged rods. The rods are parallel, 
a distance d apart, and are treated as being infinitely long. They each move with 
constant speed v along their own axes. An observer stationary in the laboratory 
measures the charge per unit length on each rod as λ >  0. Because the rods are 
moving, this observer sees each rod as providing a current I = λv. The moving 
charged rods feel a repulsive electric force and an attractive magnetic force. We 
can quantify these forces using Gauss’s law and Amp`

This section is optional 
reading, but is a bonus, too 
good to miss! 

ere’s law. 

Gauss’s law shows that a uniformly-charged rod produces an electric field of 
magnitude 

λ 
E(r) =  

2πε0r
, (Eqn 2.7) 

and the answer to Exercise 2.7 verified that this remains true for a rod moving 
parallel to its own length. 

Ampère’s law shows that a moving charged rod produces a magnetic field of 
magnitude 

µ0λv 
B(r) =  

µ0I 
= . (Eqn 4.12) 

2πr 2πr 

These fields produce electric and magnetic forces. The total repulsive force per 
unit length on one of the rods is 

F λ2 � 
2
� 

= λE(d) − λvB(d) =  1 − ε0µ0v .

L 2πε0d


Now let’s analyze the same situation from the viewpoint of an observer moving 
with the rods. The rods are stationary with respect to this observer, so he finds no 
magnetic force. He only finds an electric force, which is repulsive because the 
rods carry identical charges. It is impossible for one observer to see a repulsion 
while the other sees an attraction. For, if this happened, the observers would 
disagree about whether the rods collide or not, which must surely be an objective 
fact — we could arrange for collision of the rods to trigger an explosion, for 
example! Therefore the observer stationary in the laboratory also sees a repulsion. 
Referring back to the above expression for F/L, it follows that 

1 8 −1v <  √ = 3.00 × 10 m s .

ε0µ0
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Figure 4.21 A plane element 
used to define the z-component 
of curl B at point P. 

The curl theorem is also called 
Stokes’s theorem. 

This is a remarkable discovery. The laws of electromagnetism dictate that the rods 
cannot move faster than a certain fixed speed, 3.00 × 108 m s−1 which is 
numerically equal to the speed of light in a vacuum. This would not have 
surprised Einstein, whose special theory of relativity makes precisely this 
prediction, but it is fascinating to note that the equations of electromagnetism, as 
established by Maxwell, anticipate this conclusion. 

4.4 The differential version of Ampère’s law 
You have seen that Gauss’s law and the no-monopole law have integral and 
differential versions. The same is true for Ampère’s law, which so far has only 
been presented in its integral form. This section will derive and use the 
differential version of Ampère’s law. 

� Read MT 8.8 now. This is essential material. 

The most important mathematical idea introduced in MT 8.8 is the curl of a 
vector field. The curl of a vector field B describes the circulation per unit area of 
B in any given plane around any given point. For example, the z-component of 
curl B at a point P is the circulation per unit area of B around a tiny plane 
element at P whose unit normal points in the z-direction (Figure 4.21). Strictly 
speaking, we must consider the limiting case where the plane element is 
infinitesimal and the circulation per unit area approaches a limiting value. Similar 
definitions apply to the x- and  y-components of the curl, so curl B is a vector 
field, with three independent components defined at each point in space. 

The circulation of B around the perimeter of a plane element is curl B · ∆S, 
where ∆S is the oriented area of the plane element. Using the additivity of 
circulation, the circulation of B around any closed path C is given by: 

B · dl = curl B · dS, (4.15) 
C S 

where S is an open surface whose perimeter is C. This is the content of the 
curl theorem. 

To derive the differential version of Ampère’s law we combine the curl theorem 
with the integral version of Ampère’s law (Equation 4.10) to obtain 

curl B · dS = µ0J · dS, (4.16) 
S S 

where both integrals extend over the same surface S. This equation applies to any 
open surface. In particular, it applies to surfaces that are arbitrarily small and 
oriented in arbitrary directions. Under these circumstances, the only way to 
satisfy Equation 4.16 is to insist that the integrands are identical on both sides. 
We therefore conclude that 

curl B = µ0J. (4.17) 
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This is the differential version of Ampère’s law. Just like the integral version 
this equation applies only to steady currents. 

Finally, as you saw in MT 8.8, the curl of a vector field can be expressed in terms 
of partial derivatives of the field. In Cartesian coordinates, 

curl B =


ex ey ez 

∂ ∂ ∂ 
∂x ∂y ∂z 
Bx By Bz 

. (4.18) 

So the three components of Equation 4.17 can be expanded to give 

∂Bz ∂By− = µ0Jx
∂y ∂z


∂Bx ∂Bz
− = µ0Jy
∂z ∂x


∂By ∂Bx
− = µ0Jz . 
∂x ∂y 

The differential version of Ampère’s law relates a set of partial derivatives of the 
magnetic field at a given point to the current density at the same point. There is no 
mention of action at a distance. 

Exercise 4.7 The differential version of Gauss’s law states that, at each point 
in space, the divergence of the electric field is proportional to the charge density. 
Write an analogous sentence for Ampère’s law, replacing the words in italics. 

Exercise 4.8 Show that the divergence of curl B always vanishes. What does 
this imply about the current density? 

Exercise 4.9 The magnetic field is uniform throughout a region. Prove that the 
current density is zero throughout this region. 

Exercise 4.10 Throughout a region of space where there are no currents, the 
magnetic field takes the form B = Bx(z) ex. Show that Bx(z) is a constant. Q 

A software package on the DVD allows you to explore the integral version 
of the no-monopole law and the integral and differential versions of 
Ampère’s law. This package is best studied some time after completing this 
chapter. The DVD also contains a video of a tutorial which uses Ampère’s 
law to solve a typical problem and discusses the reflection of magnetic fields 
in a plane. 
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`Chapter 4 Amp ere’s law 

Summary of Chapter 4 
Section 4.1 The no-monopole law states that the magnetic flux over any closed 
surface is equal to zero. Using the divergence theorem, it follows that the 
magnetic field is divergence-free: 

B · dS = 0  and div B = 0. 
S 

These equations imply that magnetic field lines have neither starting points nor 
ending points, but form closed loops. No magnetic monopole has been reliably 
detected. 

Section 4.2 The magnetic circulation around a closed path is the line integral of 
the magnetic field around the path. The integral version of Ampère’s law states 
that the magnetic circulation around a closed path C is equal to the total current 
flowing through any open surface S that is bounded by C, multiplied by µ0, the  
permeability of free space: 

B · dl = µ0I = µ0 J · dS. 
C S 

The sense of positive progression around C and the orientation of S are linked by 
the right-hand grip rule. Ampère’s law applies to all steady current distributions. 
It does not apply to time-varying currents. 

Section 4.3 To apply Ampère’s law we use the symmetry of the sources to 
constrain the form of the magnetic field and choose a suitable closed path. Ideally, 
the field points in the direction of the closed path and has a constant magnitude 
around the path, or around individual sections of the path. 

Any operation that leaves the source of an electromagnetic field unchanged also 
leaves the field unchanged. At any point in a plane of reflection, the reflected 
electric field is obtained by reversing the component of the field perpendicular to 
the plane, leaving the components parallel to the plane unchanged. The reflected 
magnetic field is obtained by reversing the components of the field parallel to the 
plane, leaving the component perpendicular to the plane unchanged. 

Section 4.4 The curl of the magnetic field is a vector field whose components 
are the magnetic circulation per unit area. In Cartesian coordinates, 

∂Bz ∂Bx ∂Bz ∂By ∂Bxcurl B = − 
∂By ex + − ey + − ez . 

∂y ∂z ∂z ∂x ∂x ∂y 

The curl theorem tells us that the line integral of a vector field around a closed 
path C is the surface integral of the curl of the field over any surface S that is 
bounded by C. So,  

B · dl = curl B · dS. 
C S 

Using this theorem, together with the integral version of Ampère’s law, we obtain 
the differential version of Ampère’s law: 

curl B = µ0J. 

This law applies only to steady current distributions. 
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Achievements from Chapter 4 

Achievements from Chapter 4 
After studying this chapter you should be able to: 

4.1	 Explain the meaning of the newly defined (emboldened) terms and symbols, 
and use them appropriately. 

4.2	 State the integral and differential versions of the no-monopole law and use 
them to determine whether a given vector field is eligible to be a magnetic 
field. 

4.3	 State the integral version of Ampère’s law and use it in simple cases. 

4.4	 Use symmetry arguments to deduce the form of electric and magnetic fields 
produced by highly-symmetric distributions of charge and current. 

4.5	 State the differential version of Ampère’s law and explain how it follows 
from the integral version. Use the differential version of Ampère’s law in 
simple cases. 

After studying MT 8.7 and 8.8 you should also be able to: 

4.6	 Use a right-hand grip rule to relate the orientation of an open surface to the 
sense of progression around its perimeter. 

4.7	 Evaluate simple line integrals. 

4.8	 Use the curl theorem to link line integrals and surface integrals. 

4.9	 Express curl in terms of partial derivatives and evaluate the curl of a vector 
field. 
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Chapter 5 Electrostatic potential

Introduction 
You have seen that magnetostatic fields obey both the no-monopole law and 
Ampère’s law. The no-monopole law states that the magnetic flux over any closed 
surface S is equal to zero. This implies that magnetic fields have zero divergence: 

B · dS = 0  and div B = 0. 
S 

Ampère’s law states that the circulation of a magnetostatic field around a closed 
loop C is proportional to the current I through the area bounded by the loop. 
This implies that the curl of a magnetostatic field is proportional to the current 
density J: 

B · dl = µ0I and curl B = µ0J. 
C 

Compare this with the situation for electrostatic fields. Any electric field must 
obey Gauss’s law, which states that the electric flux over a closed surface S is 
proportional to the total charge Q enclosed by the surface. This implies that div E 
is proportional to the charge density ρ: 

Q ρ
E · dS = and div E = . 

S ε0 ε0 

But, so far, we have said nothing about circulation of an electric field around a 
closed loop or the value of the curl of the electric field at any point. This lack of 
knowledge can be summarized as follows: 

E · dl =? and curl E = ? 
C 

The next two chapters will make good this omission and 
replace the above question marks by something more useful. It 
is helpful to examine two contrasting situations. 

First, consider a test charge q that moves very slowly around 
an arbitrary closed loop, C, in the vicinity of an arrangement 
of charges that are fixed in position (Figure 5.1). At each point, 
the test charge feels an electrostatic force Felec = qE, where E 
is the total electrostatic field at the position of the test charge. 
In order to guide the test charge around the loop, we must 
apply an external force Fext. Because the test charge moves 
very slowly, the external force is just sufficient to balance the 
electrostatic force, so Fext = −Felec = −qE. The work done 
by this external force when the charge completes one lap of the 
closed loop C is 

W = Fext · dl = −q E · dl. 
Figure 5.1 Moving a test C C 

charge q in an electrostatic field. 
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We can argue that this must be equal to zero. For, if W were negative, the agency 
supplying the external force would have work done on it, which could be used to 
drive an engine. After completing one lap, the test charge has returned to its initial 
position and none of the other charges has moved (they are held fixed), so we 
could repeat this process indefinitely and extract an unlimited amount of energy. 
This is clearly impossible. 

On the other hand, if W were positive, the external agency would do work on the 
test charge, involving an expenditure of energy. The law of conservation of energy 
demands that this energy should not be lost. However, after a complete lap, all the 
charges are back in their original positions and the test charge is still moving 
slowly, so it is difficult to see where the energy has gone. The only possibility 
would be for the energy to be converted into another form — perhaps the 
slowly-moving charge could radiate energy as it moves. We will assume that this 
does not happen. It then follows that W is neither positive nor negative, but is 
equal to zero. Consequently, 

E · dl = 0  (5.1) 
C 

for any closed loop C and any electrostatic field E. An electric field that obeys 
this condition is said to be a conservative electric field. 

Now consider a different situation. An electric power source continuously drives a 
current around a circuit containing a light bulb (Figure 5.2). As the current flows, 
energy is dissipated as heat and light, and this energy must be continuously 
supplied by the power source. Electrostatic fields are unable to satisfy this 
demand for energy. When a charge q moves once around a closed loop, the work 
done by an electrostatic field E is the line integral of qE around the loop, which is 
equal to zero according to Equation 5.1. So an electrostatic field is unable to 
maintain a continuous current, even an exceedingly small one. However, in 
Chapter 6 you will meet non-conservative electric fields which have 

E · dl �= 0  (5.2) 
C 

for at least one closed loop, C. A  non-conservative electric field can do work on a 
charge that moves around a closed loop, and can therefore provide the energy 
needed to keep a current flowing. The distinction between conservative and 
non-conservative electric fields therefore marks an important boundary in the 
subject. In this chapter, we concentrate on electrostatic fields, which are 
conservative and cannot drive currents around circuits. The following chapter will 
discuss non-electrostatic, non-conservative electric fields, which can drive 
currents around circuits. 

We begin by reviewing the mathematical properties of conservative vector fields. 
We then use the conservative nature of the electrostatic field to show why 
electrostatic fields are excluded from the interior of an empty conducting cage. 
The important concept of electrostatic potential is introduced and applied to 
electric dipoles and conductors. The chapter ends by discussing capacitors and 
capacitance, leading to the idea that electrostatic energy is stored in the electric 
field. 

Figure 5.2 A current I driven 
around a stationary circuit by a 
power source. 

50%. 

This chapter uses the 
mathematical properties of 
conservative fields, which 
are discussed in MT 8.9. 
Study of this mathematics 
is essential, and is likely to 
increase your study-time 
on this chapter by around 
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Chapter 5 Electrostatic potential 

5.1 Electrostatic fields are conservative 
Energy arguments suggest that electrostatic fields are conservative. However, 
these arguments are based on physical assumptions, which may be open to doubt. 
We will therefore proceed more carefully and show rigorously that the 
conservative nature of electrostatic fields follows directly from Coulomb’s law 
and the principle of superposition. 

Suppose that a point charge q is stationary at the origin. According to Coulomb’s 
law, the electric field produced by this charge has the form 

E = Er (r) er , where Er (r) =  
4πε

q 

0r2 , (5.3) 

and er is a radial unit vector pointing away from the origin. We wish to find the 
line integral of this electric field around a closed loop C. A small displacement 
around the loop can be expressed in spherical coordinates as 

δl = δr er + r δθ  eθ + r sin θ eφ, 

Remember, so 
er · eθ = er · eφ = 0. 

E · δl = Er (r) δr. 

Suppose that the closed loop C starts and ends at a point r1 with radial coordinate 
r1. Then the circulation of the electric field around C is 

r1 

E · dl = Er (r) dr = 0. 
C r1 

This circulation vanishes because the integrand depends only on r, and  there  is no  
net change in r when we travel around a closed loop. 

A minor difficulty is encountered if the loop passes through the origin. The 
magnitude of the electric field tends to infinity as we approach the point charge, 
making it impossible to define the circulation of the electric field in this case. In 
practice, this is not a problem. It only arises because we are dealing with the 
idealization of a point charge. If we think of a real charged particle, such as an 
electron, as being a tiny spherically symmetric distribution of charge, the electric 
field remains finite everywhere, and vanishes at the centre of the charge 
distribution. Our proof then extends over the whole of space, without any 
exceptions. 

We have considered the electrostatic field due to a point charge that is stationary 
at the origin. However, the value of the circulation cannot depend on the choice of 
origin. It follows that the circulation vanishes for the electric field due to any 
stationary charge, whether at the origin or not. Finally, the principle of 
superposition allows us to extend this result to the electric field created by any 
number of stationary charges. If the fields due to the individual charges are 
E1, E2,  . . . ,  En, the total field is 

E = E1 + E2 + . . .  + En. 

Each of the individual fields has zero circulation, so the circulation of the total 
field is 

E · dl = E1 · dl + E2 · dl + . . .  + En · dl = 0, 
C C C C 
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5.1 Electrostatic fields are conservative 

in agreement with our earlier energy argument. By definition, any vector field that 
has zero circulation around any closed loop, is conservative. We therefore 
conclude that: 

All electrostatic fields (that is, electric fields produced by stationary 
arrangements of charge) are conservative. 

This exact result relies on the spherical symmetry of Coulomb’s law and cannot 
be extended to moving charges. You may recall from Chapter 1 that the electric 
field of a uniformly-moving charge is cylindrically symmetric around the line of 
motion of the charge, and is not spherically symmetric. Figure 5.3 is an arrow 
map of the electric field produced by a charge that is moving uniformly at a speed 
close to that of light. We will consider the circulation of this electric field around 
the loop ABCD. The line integral along AB has a greater magnitude than the line 
integral along CD because the electric field is stronger along AB than along CD. 
The line integrals around the circular arcs BC and DA are equal to zero because 
the electric field is perpendicular to the displacements along these paths. Adding 
together the contributions from AB, BC, CD and DA, we see that E has a 
non-zero circulation around the loop ABCD. So the electric field in Figure 5.3 is 
certainly not conservative. It is important to keep a sense of proportion here. 
Slowly moving charges produce electric fields with negligible circulations and 
such fields can be reasonably approximated as being conservative. However, the 
principle remains that this is an approximation, acceptable only for particles that 
move slowly compared to light. 

Figure 5.3 The electric field E due to a positive charge moving with a uniform 
velocity, v, close to the speed of light. 

� Read MT 8.9 now. This is a lengthy detour, but is essential material. 
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Chapter 5 Electrostatic potential 

As explained in the Section 8.9 of the Mathematical Toolkit, conservative fields 
have special properties, which are not shared by all vector fields. For convenience, 
these properties are summarized below: 

If F 

F 

F 

f(r) =  − 
� r 

r0 

F · dl + f0, 

where r0 f 
f0

F: � r2 

r1 

F · dl = −(f(r2) − f(r1)). 

F f : 

F = − grad f. 

(5) F curl F = 0). 

Properties of conservative fields 

is a conservative vector field, it follows that: 

(1) The circulation of around any closed loop is equal to zero. 

(2) Any line integral of depends on its start- and end-points, but does not 
depend on the path taken between these points. 

(3) It is possible to define a scalar field 

is an arbitrarily chosen reference point at which the value of 
is set equal to . This scalar field can be used to find the value of any 
line integral of 

(4) The vector field is equal to minus the gradient of the scalar field 

is irrotational (i.e. 

The last of these properties tells us that all electrostatic fields are irrotational 
(i.e have zero curl). This is something that can be checked directly. For example, 
consider the electrostatic field due to a point charge q stationary at the origin. The 
curl of this field is most conveniently calculated in a spherical coordinate system. 
Selecting the appropriate formula from the list inside the back cover of the book, 
and using Equation 5.3, we obtain 

er r eθ r sin θ eφ 

∂ ∂ ∂

∂r ∂θ ∂φ


Er (r) 0 0 

, where Er = 
q


4πε0r
.


1
curl E = 

2 sin θr


This is equal to zero everywhere, except possibly at the origin (where r = 0) or  
along the z-axis (where sin θ = 0). The difficulty along the z-axis is an artefact of 
our choice of coordinate system. If we choose the z-axis to point in some other 
direction, we immediately see that curl E = 0 along the original z-axis. However, 
the difficulty at the origin cannot be removed because the electrostatic field is 
undefined at the point occupied by the charge. We can therefore say that the 
electrostatic field of a stationary point charge is irrotational everywhere (except 
possibly at the single point occupied by the charge). 

2 
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5.1 Electrostatic fields are conservative 

O	 Does the irrotational nature of the field allow us to deduce that it is

conservative everywhere (except possibly at the point occupied by the

charge)?


P	 Yes, because the whole of space, with a single point removed, is

simply-connected (see MT 8.9.5). Any vector field that is irrotational

in a simply-connected region is also conservative in that region.


The fact that an electrostatic field must be irrotational provides a useful check, 
known as the curl test for electrostatic fields. Given a vector field, we take the 
curl of the field and check that it is equal to zero everywhere (except possibly at 
points where the curl is undefined). Fields that pass this test could be electrostatic 
fields. Fields that fail the test certainly cannot be electrostatic fields, though they 
might be electric fields produced by some source other than a static arrangement 
of charge. 

If C 

F1 = C(yzex + xzey + xyez ) 

F2 = ex 

curl F1 = 

��������� 
ex ey ez 

∂ 
∂x 

∂ 
∂y 

∂ 
∂z 

��������� 
= C 

� 
(x − x)ex + (y − y)ey + (z − z)ez 

� 
= 0, 

curl F2 = 

��������� 
ex ey ez 

∂ 
∂x 

∂ 
∂y 

∂ 
∂z 

0 0 

��������� = Cxey �= 0. 

F1 F1 

F2 F2 

Worked Example 5.1 

is a constant with suitable units, which of the following vector fields 
could be an electrostatic field? 

Cxz

Solution 

Taking the curl of each vector field gives 

Cyz  Cxz  Cxy  

Cxz  

The curl of is equal to zero everywhere, so could be an electrostatic 
field; the curl of is not equal to zero everywhere, so could not be an 
electrostatic field.	

Essential skill 
Checking whether a given vector 
field could be an electrostatic 
field. 

Exercise 5.1 Does the vector field 

A 2)1/2F = 
3 (xex + yey + zez ) , where r = (x 2 + y 2 + z , 

r

pass the curl test for an electrostatic field?	 Q 
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Chapter 5 Electrostatic potential 

5.1.1 Shielding in a cavity 

The conservative nature of electrostatic fields can be used to establish an 
interesting and useful result. In Chapter 2, Gauss’s law was used to show that 
there is no electric field inside a spherical conducting shell. We will now go 
further and show that a similar result applies to all conducting shells, no matter 
what their shape. Consider a conducting shell that completely surrounds an empty 
cavity. There might be charges outside the shell, or the shell itself might carry a 
net charge. Nevertheless, in equilibrium, we will show that the electric field inside 
the cavity vanishes. There is no electric field inside a closed empty biscuit tin. 

We exploit the fact that the walls of the cavity are conducting. In equilibrium, 
there is no electric field inside a conductor. This is because any electric field 
inside a conductor causes free charges to flow, and charge flow is not a state of 
equilibrium. However, charges accumulate in different parts of the conductor. A 
state of equilibrium is reached when the applied electric field is exactly cancelled 
by the electric field due to the displaced charges. The rearrangement of charge 
occurs very rapidly — within microseconds for a conductor 10 cm across — so it 
is generally safe to assume that equilibrium has been reached and the electric field 
inside the conductor is equal to zero. Since there is no electric field inside the 
conducting walls, electric field lines cannot cross from the outside of the shell to 
the inside. If there is an electric field inside the cavity, there are three logical 
possibilities, illustrated in Figure 5.4a–c. 

Figure 5.4 Proposed electric (a) The electric field lines start at points within the cavity and end on the cavity 
field lines inside a cavity. wall (or vice versa). 

(b) The electric field lines form closed loops entirely within the cavity. 

(c) The electric field lines start and end on the cavity wall. 

Possibility (a) can be rejected because it is not consistent with Gauss’s law. In the 
case shown in Figure 5.4a, the electric flux would be non-zero over the spherical 
Gaussian surface indicated, even though there is no charge within this surface. 
This is not possible for an inverse square law of force. 

Possibility (b) can be rejected because it implies that the field is not conservative. 
In the case shown in Figure 5.4b, the circulation of E around a closed loop that 
follows the field line would be non-zero. This is not possible because electrostatic 
fields are conservative. 
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Possibility (c) can also be rejected. Suppose that we calculate the circulation of 
the electric field around the closed loop C in Figure 5.4c. This loop travels along 
a field line inside the cavity and returns inside the conducting shell. The part of 
the loop that lies within the conducting shell makes no contribution because the 
electrostatic field vanishes there, so the part of the loop that lies within the cavity 
must also contribute nothing. This can only happen if the electric field vanishes 
inside the cavity. 

Note that the situation is different if the cavity contains a charge. Possibility (a) 
outlined above is then true. Figure 5.5 shows what happens in this case. An 
electric field does exist in the cavity and the inner surface of the cavity wall 
carries a net charge, opposite to that of the charge in the cavity. This ensures that 
Gauss’s law, applied to the Gaussian surface in Figure 5.5, gives zero electrostatic 
field inside the conductor, as required for equilibrium. If the conducting shell is 
neutral and electrically isolated, the charge on its outer surface must be opposite 
to the charge on its inner surface, and is therefore equal to the charge in the cavity. 
This charge produces an electric field outside the conducting shell. So there is a 
lack of symmetry here. The cavity is shielded from charges in the outside world, 
but the outside world is not shielded from charges in the cavity. 

Figure 5.5 A cavity containing a charge. 

Shielding has many practical applications. A conducting shell can be used to 
protect sensitive electrical equipment from external electrical disturbances. For 
example, the logic boards in a computer are surrounded by a metal box. In 
principle, a complete conducting shell is needed and protection is limited to 
electrostatic fields. In practice, considerable protection is provided by a 
conducting cage (known as a Faraday cage), especially if the mesh size is fine 
enough. Moreover, time-varying electric fields are also strongly suppressed in the 
cavity, unless they vary extremely rapidly. The volunteer inside the Faraday cage 
shown in Figure 5.6 is quite safe and passengers in cars and planes are 
well-protected against lightning strikes. 

Figure 5.6 A trusting 
volunteer sits inside a Faraday 
cage, surrounded by powerful 
electrical discharges. 
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Chapter 5 Electrostatic potential 

5.2 The electrostatic potential 

5.2.1 Introducing the electrostatic potential 

Because the electrostatic field is conservative, we can introduce a related scalar 
field. This field is called the electrostatic potential field (or electrostatic 
potential) and is denoted by the symbol V . We  define  

r 

V (r) = − E · dl + V0, (5.4) 
r0 

where E is an electrostatic field, r0 is an arbitrarily chosen reference point and V0 

is the value of the electrostatic potential at this point. It does not matter which path 
is used to evaluate the line integral because the line integrals of a conservative 
field are path-independent. So, once r0 and V0 have been fixed, Equation 5.4 gives 
a definite value for the electrostatic potential at r. When it is clear that we are 
dealing with electrostatic problems (rather than, say, gravitational ones) we will 
just talk about the potential field or the value of the potential at a point. 

Very often, the constant V0 is set equal to zero, and the reference point is placed at 
infinity, but these choices are only made for convenience; they have no real 
physical significance. Given an electrostatic potential field, we can always add the 
same constant at every point without making any difference to the physical 
situation being described. This simply corresponds to changing the value of V0 or 
shifting the reference point. However, if we consider the difference in values of 
the potential between two different points, we see that 

r2 

V (r2) − V (r1) = − E · dl, (5.5) 
r1 

which does not depend on r0 or V0. Naturally enough, we call this the potential 
difference between the points r1 and r2. 

To interpret the electrostatic potential in physical terms, and to understand the 
reason for the minus sign in Equation 5.4, we return to the concept of the work 
done by a force. Suppose that a test charge q is in an electrostatic field, E, 
produced by an arrangement of fixed charges. The test charge experiences an 
electrostatic force 

Felec = qE(r) 

which, if left unopposed, would cause it to accelerate. We will not let this happen. 
To prevent the acceleration, an external force, Fext, is applied which exactly 
cancels out the electrostatic force: 

Fext = −Felec = −qE(r). 

Now, suppose the external force is changed very slightly, so that the test charge 
can be guided from point r1 to point r2 along a chosen path C. The force is only 
changed infinitesimally, so the particle travels with negligible speed. This means 
that the journey will take a long time, but that is of no concern to us — time 
comes cheap in the imagination. The work done by the external force is then � � r2 

� r2 

Fext · dl = − Felec · dl = −q E · dl. 
C r1 r1 
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What becomes of this work? It cannot be converted into kinetic energy because 
the test charge travels with negligible speed and the other charges are fixed in 
position. We say that it is converted into electrostatic potential energy, in  other  
words, potential energy associated with electrostatic forces. We therefore write 

r2 

U2 − U1 = −q E · dl, 
r1 

where U1 and U2 are the electrostatic potential energies of the test charge at its 
initial and final positions, r1 and r2. Comparing with Equation 5.5, we see that 
the change in potential energy is proportional to the potential difference: 

U2 − U1 = q (V (r2) − V (r1)) . 

Any arrangement of fixed charges has a potential energy of its own, acquired 
when it is assembled. This is not of interest here. Instead, we are focusing on the 
additional potential energy that develops when a test charge q is brought to a 
given point with all other conditions kept the same. This is what we mean by the 
electrostatic potential energy of the test charge. It is natural to take the 
electrostatic potential energy of the test charge to be zero at the same point where 
the electrostatic potential is equal to zero. Then the electrostatic potential energy 
of a test charge q is 

U = qV (r), (5.6) 

and we can then state that: 

The electrostatic potential V (r) is the electrostatic potential energy per unit 
charge of a test charge that is brought to the point r. 

In retrospect, the minus sign in Equation 5.4 was chosen to allow this simple 
interpretation. 

Take care to distinguish between electrostatic potential and electrostatic potential 
energy, and avoid using the word potential as a shorthand for potential energy. 
These concepts are not the same and they don’t even have the same units. The SI 
unit of electrostatic potential energy is the joule (J), while electrostatic potential is 
measured in joules per coulomb, a unit invariably known as the volt (V) . 1 V = 1 J C−1 . 

V (r) q

E = 
q 

4πε0r2 er . 

V (r) = − 
� r 

r0 

E · dl = − 
q 

4πε0 

� r 

r0 

1 
r2 er · dl, 

Worked Example 5.2 

Calculate the electrostatic potential field due to a point charge , taking 
the zero of potential to be at infinity. 

Solution 

Choose spherical coordinates with the point charge at the origin. The charge 
produces an electrostatic field 

The electrostatic potential is given by the line integral 

Essential skill 
Calculating the electrostatic 
potential for a given 
conservative electric field. 
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r0 

r

er · δl =
where δr 

V (r) = − 
q 

4πε0 

� r 

∞ 

1 
r2 dr. 

s: 

V (r) = − 
q 

4πε0 

� r 

∞ 

1 
s2 ds. 

V (r) = − 
q 

4πε0 

� 

− 
1 
s 

�s=r 

s=∞ 
= 

q 
4πε0r 

. (5.7) 

r 

Note
If q r decreases, 

q

Chapter 5 Electrostatic potential 

which is taken along a straight-line radial path from a point at infinity to 
the point . We  have  

δr, 

is a small change in radial coordinate. Therefore the line integral 
reduces to 

However, this is rather clumsily expressed because the variable of 
integration is the same as the upper limit of integration. It is therefore better 
to re-write the line integral using the dummy variable 

Finally, we evaluate the integral to obtain 

Although this calculation has considered a point charge at the origin, the 
final answer is independent of the choice of coordinate system, or the 
location of the charge, provided we interpret as the distance from the point 
charge. This is because the scalar product that appears in the line integral 
defining potential is itself independent of the choice of coordinate system. 

: It is always worth checking the final sign in calculations of this type. 
is positive, our answer shows that the potential increases as 

which implies that the electrostatic potential energy of a positive charge 
increases when it is brought closer to . This agrees with experience, so we 
can be confident that the final sign is correct. 

Exercise 5.2 An infinite line of charge, with uniform charge per unit length 
λ >  0, lies along the z-axis. In cylindrical coordinates, the electrostatic field due 
to this line of charge is 

λ
E = 

2πε0r 
er . 

Find the electrostatic potential due to the line of charge, taking the zero of 
potential to be zero at r = r0. By how much does the electrostatic potential energy 
of a charge q change when its distance from the line of charge is halved? Q 

5.2.2 The conservation of energy 

Another way of understanding the role of potential is to ask what happens if we 
place a charged particle in an electrostatic field and allow it to move freely under 
the sole influence of the field. We must be slightly guarded here, as motion takes 
us beyond the strict confines of electrostatics. It turns out that an accelerating 
charge emits electromagnetic radiation, and therefore loses some of its energy. 
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5.2 The electrostatic potential 

However, the radiated energy is usually a very small fraction of the energy of the 
particle and the energy loss is generally neglected. That is what we will do here. 

We will calculate the change in the kinetic energy of a particle of mass m and 
charge q in an electrostatic field. It is helpful to use a result derived in the vectors 
section of the Mathematical Toolkit. Exercise 8.10 shows that 

d � 
1 

�
2mv = F · v,2dt 

where F is the total force acting on the particle. Integrating both sides from an 
initial time t1 (where the particle has position r1 and speed v1) to a final time t2 

(where the particle has position r2 and speed v2) gives  

r2t2 t2 dl1 2 2 mv2 − 1 mv = F · v dt = F · dt = F · dl,2 2 1 dtt1 t1 r1 

so the change in kinetic energy is the work done by the force. This is a 
well-known result in mechanics, called the work–energy theorem. Assuming  
that the only force acting on the particle is the electrostatic force qE, and using 
Equation 5.5, we then have 

r2 
1 2 2 mv2 − 1 mv1 = q E · dl = −q (V (r2) − V (r1)) ,2 2 

r1 

which can be rearranged to give 

1 
2 mv 2 

2 + qV (r2) =  1 
2 mv 2 

1 + qV (r1). (5.8) 

This equation expresses the conservation of energy for a charged particle in an 
electrostatic field. The right-hand side is the total energy at the start of the 
particle’s trajectory and the left-hand side is the total energy at the end of the 
trajectory. These two quantities are equal, showing us that the total energy is 
conserved, and confirming our interpretation of qV (r) as the electrostatic 
potential energy of the particle. 

Exercise 5.3 An alpha particle of charge 3.20 × 10−19 C makes a head-on 
collision with a gold nucleus of charge 1.26 × 10−17 C. Initially, the alpha 
particle is far from the nucleus and has kinetic energy 1.23 × 10−13 J. Assuming 
that the nucleus remains stationary throughout, and treating it as a point charge, 
find the distance of closest approach of the alpha particle. Q 

5.2.3 Recovering the electrostatic field 

At any given point, the potential field V (r) specifies a scalar (one number) while 
the electrostatic field E(r) specifies a vector (three numbers). You might therefore 
suppose that the potential field contains less information than the electrostatic 
field, but this is not true. Using the general properties of conservative fields listed 
on page 118, we can write 

E = − grad V, (5.9) 

so E(r) is completely determined by V (r). This alchemy relies on the 
conservative nature of the electrostatic field, which justifies the use of 
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Chapter 5 Electrostatic potential 

Figure 5.7 Equipotential 
surfaces (in cross-section) and 
electrostatic field lines for a 
stationary point charge. 

Equation 5.9. This equation also shows that the SI unit of electric field can be 
expressed as volts per metre (V m−1). This is equivalent to, and much more 
commonly used, than newtons per coulomb which we have used so far. 

Now suppose we introduce a particle of charge q into an electrostatic field. 
Multiplying both sides of Equation 5.9 by q gives 

qE = −q grad V, 

which can be rewritten as 

Felec = − grad U. (5.10) 

where Felec = qE is the electrostatic force acting on the particle and U = qV is 
the electrostatic potential energy of the particle. The reason for the minus sign in 
Equation 5.10 is easily understood. The electrostatic force points in the direction 
of steepest decrease of electrostatic potential energy. However, the gradient of U 
points in the direction of steepest increase of U . The minus sign on the right-hand 
side reverses this, ensuring that the force points downhill in the potential energy 
landscape, as expected. 

The relationship between electrostatic fields and electrostatic potentials can be 
represented pictorially. We define an equipotential surface to be a surface on 
which the electrostatic potential remains constant. Using a property of gradients 
established in MT 8.9.4, it follows that grad V at any given point is perpendicular 
to the equipotential surface through the point. The electrostatic field points along 
the same line (but in the opposite direction) to grad V so we conclude that: 

The electrostatic field at any point is perpendicular to the equipotential 
surface through the point. 

There is a good physical reason for this. If the electrostatic field were not 
perpendicular to the equipotential surface, it would have a component in the plane 
of the equipotential surface. This would mean that work would be done 
transporting a charge over the equipotential surface. But this would disqualify the 
surface from being equipotential. So the electrostatic field must be perpendicular 
to the equipotential surface everywhere. A simple example is shown in Figure 5.7. 
Using Equation 5.7, it is easy to see that the equipotential surfaces of a point 
charge are spheres centred on the charge. The electrostatic field lines are radial; as 
expected, they are perpendicular to the equipotential surfaces. 

Exercise 5.4 What is the electric field corresponding to the potential field 
V (x, y, z) =  Axy, where A is a constant? Is this field conservative? 

Exercise 5.5 Are electrons attracted towards regions of higher potential or 
regions of lower potential? 

Exercise 5.6 Is it possible for an electrostatic field line to cross the same 
equipotential surface more than once? Q 

5.3 Adding electrostatic potentials 
Electric fields obey a principle of superposition. In a system of many charges, the 
total electric field E is the vector sum of the electric fields due to the individual 
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5.3 Adding electrostatic potentials


charges: 

E = E1 + E2 + . . .  + En. (5.11) 

The total electrostatic potential is given by a line integral of the total electric field, 
which can be split into a sum 

r r r r 

E · dl = E1 · dl + E2 · dl + . . .  + En · dl. 
r0 r0 r0 r0 

It follows that the total potential is the sum of the potentials due to the individual 
charges: 

V = V1 + V2 + . . .  + Vn. (5.12) 

This is the principle of superposition for electrostatic potential. 

Note that Equation 5.12 is an algebraic sum, which is simpler than the vector sum 
in Equation 5.11. This suggests a possible strategy for calculating the total 
electrostatic field: 

1. Find the total potential V by adding the contributions of the individual charges. 

2. Find the total electrostatic field E by taking minus the gradient of the total 
potential V. 

The strategy is a good one if the effort saved in the first step outweighs that spent 
in the second step, which is often the case. 

The electrostatic field of an electric dipole 

We can illustrate how the method works by determining the 
electrostatic field of an electric dipole — that  is,  a pair  of  
oppositely charged particles. Let’s assume that the dipole is 
centred at the origin O with its charges on the z-axis; charge 
+q at z = d/2 and charge −q at z = −d/2 as shown in 
Figure 5.8. 

Using Equation 5.7 and the principle of superposition we can 
immediately write down an expression for the total 
electrostatic potential: 

V (r) =  
q 1 − 

1 
. (5.13)

4πε0 r1 r2 

Here, r1 and r2 are the distances from the charges +q and −q 
to the point r at which the potential field is measured, and the 
zero of potential is taken to be at infinity. 

Using the cosine rule in Figure 5.8, it can be shown that 

r1 = r 2 + 1 d2 − rd cos θ 
�1/2 Figure 5.8 An electric dipole. 

4 

r2 = r 2 + 1 d2 + rd cos θ 
�1/2 

.4 

Substituting these expressions in Equation 5.13 then gives an exact expression for 
the potential of the dipole, expressed in spherical coordinates. There is no 
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Chapter 5 Electrostatic potential 

φ-dependence because the charge distribution of the dipole is axially symmetric 
around the z-axis. Figure 5.9 shows a cross-section through the equipotential 
surfaces of this potential field, together with the electrostatic field lines, which 
always cross the equipotentials at right angles. 

Figure 5.9 Equipotential surfaces (black) and Figure 5.10 Approximating the potential of 
electrostatic field lines (orange) for an electric an electric dipole. The red and blue dots show 
dipole. the positions of the +q and −q charges. 

Very often, the distance from the dipole to the point at which the field is measured 
is much greater than the separation of the charges in the dipole (r � d). A useful 
approximation can then be made. We can use trigonometry in Figure 5.10 to 
justify the approximations 

r1 � r − (d/2) cos θ, and r2 � r + (d/2) cos θ, 

and then express the potential as 

V (r) =  
q r2 − r1 

4πε0 r1r2 

q d cos θ � for r � d.
24πε0 r

Although it is an approximation, the right-hand side of this equation is usually 
called the dipole potential. It is sometimes expressed in terms of the electric 
dipole moment of the electric dipole. This is a vector quantity, p, defined by  

p = qd, (5.14) 

where q is the charge at the positive end of the dipole and d is the displacement 
vector from the negative charge to the positive charge. Written in terms of the 
dipole moment, the dipole potential becomes 

1 p · �r 
V (r) =  for r � d. (5.15) 

24πε0 r
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5.3 Adding electrostatic potentials 

The total electrostatic field is minus the gradient of the potential. Using the 
formula for gradient in spherical coordinates listed inside the back cover of the 
book, we obtain 

∂V 1 2p cos θ p = qd is the magnitude of the Er = − 
∂r 

� 
4πε0 r3 , 

dipole moment. 

1 ∂V 1 p sin θ

Eθ = − 

r ∂θ 
� 

4πε0 r3 ,


Eφ = 0, 

so that 

E � 
p 

3 (2 cos θ er + sin  θ eθ ) , (5.16)
4πε0r

where the approximations are valid for r � d. Note that the dipole potential falls 
off as 1/r2, and the corresponding electric field falls off as 1/r3. These  are  
steeper than the 1/r decrease in potential and the 1/r2 decrease in electric field of 
a point charge. This is because the effects due to the positive and negative charges 
almost cancel, and the cancellation becomes more exact as we move away from 
the dipole. 

Electric dipoles are important in many branches of science and technology. A 
neutral molecule behaves like a tiny dipole if the distribution of negative electrons 
is offset from the distribution of positive nuclei. This produces an electric field 
which, far from the molecule, is similar to that of an electric dipole. For example, 
the dipole moment of a water molecule is 6.2 × 10−30 C m, which may seem tiny, 
but this is because coulombs and metres are enormous on an atomic scale. Thanks 
to their dipole moments, water molecules interact strongly with electric fields. If 
they are exposed to an oscillating electric field, they can be made to tumble back 
and forth in a rocking motion. This happens at gigahertz frequencies in a 
microwave oven. The rocking of water molecules in your food is soon dissipated 
as heat, warming your meal. 

Some liquid crystals are composed of long molecules with electric dipole 
moments aligned with their axes. When exposed to an electric field, these 
molecules line up with the field, which can alter the transparency of the liquid 
crystal. This forms the basis for many display screens, from cheap pocket 
calculators to more expensive computer screens (Figure 5.11). Electric dipole 
moments are also important in the theory of atomic transitions. The electric dipole 
moment of an atom is zero in the ground state, but may be non-zero in certain 
excited states. The brightest spectral lines generally correspond to transitions in 
which the electric dipole moment of an atom changes. 

Finally, it is interesting to ask whether elementary particles, such as electrons, 
muons and neutrons have electric dipole moments. So far, none has been detected. Figure 5.11 Part of the liquid 
The standard model of particle physics predicts that the electric dipole moment of crystal display of a laptop 
an electron is less than 10−55 C m, which is too small to be measured. However (×100). Each triplet of green, 
several rival theories predict larger values in the range from 10−43 C m  to  blue and red is 1 pixel. By 
10−49 C m. These theories might help us to understand why the Universe seems to varying the amount of light 
contain much more matter than antimatter, so very sensitive experiments are being passing through each coloured 
carried out. The current limits of detection are around 3 × 10−46 C m,  in  the  area, 16 million shades can be 
middle of the decisive range. produced. 
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Essential skill 
Calculating an electrostatic 
potential and using it to derive 
an electric field. 

R Q 
xy

(0, 0, z) z >  0

Let σ = 2 

δV 
r δr 2 2√ 

r2 + z2 

δV = 
1 

4πε0 

2√ 
r2 + z2 

, 

V = 
σ 

2ε0 

� R 

0 

r √ 
r2 + z2 

dr = 
σ 

2ε0 

�� 
r2 + z2 

�r=R 

r=0 

= 
σ 

2ε0 

�� 
R2 + z2 − z 

� 
. 

x y V x or y
z

Ez = − 
∂V 
∂z 

= − 
σ 

2ε0 

� 
z √ 

R2 + z2 
− 1 

� 

= 
σ 

2ε0 

� 

1 − 
1 � 

1 + ( )2 

� 

. 

Worked Example 5.3 

A uniformly charged disk of radius and total charge is centred on the 
origin and lies in the -plane. Find the electrostatic potential of this disk at 
a point P with Cartesian coordinates , where . Hence find the 
electrostatic field at P. 

Solution 

Q/πR be the surface charge density of the disk. Consider the 
contribution to the potential at P from the ring shown in Figure 5.12. 
This ring has radius , thickness , area  πr δr and charge πσr δr. All  
parts of this ring are the same distance, from the point P, so 

πσr δr 

where we have used Equation 5.7, and therefore implicitly placed the zero of 
potential at infinity. 

Figure 5.12 Calculating the electrostatic potential due to a charged disk. 

Integrating over the entire disk, the potential at P is 

The electrostatic field is found by taking the gradient of the potential. There 
are no - or  -components because does not depend on , but  the  

-component is 

R/z

This expression can be checked in two limiting cases. 
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R � z, 

Ez � 
σ 

2ε0 
, 

σ. 

R � z

(1 − ( )2)−1/2 = 1 − 1 
2 ( )2

Ez � 
σ 

2ε0 
× 

R2 

2z2 = 
Q 

4πε0z2 , 

Q 

(i) For 

which is the electric field of an infinite plane of surface charge density 

(ii) For , the binomial theorem gives 
R/z R/z , so  

which is the electric field due a point charge at the origin. 

The only problem with calculations of this type is that they run into difficulties 
when we consider charge distributions that are infinite in extent. In such cases, the 
electric field does not tend to zero at infinity, so the zero of potential cannot be 
placed at infinity. It is therefore inappropriate to take the potential to be a sum of 
contributions that are inversely proportional to distance and vanish at infinity. For 
infinite charge distributions we must calculate the potential from first principles, 
using line integrals. 

Exercise 5.7 A line of charge extends along the z-axis from z = −L to z = L 
and has a uniform charge per unit length λ. Calculate the electrostatic potential 
due to this charge distribution at points along the x-axis. Does your answer make 
sense in the limit as L → ∞. (You may need to use a standard integral listed 
inside the back cover of the book.) Q 

5.4 Potential on conductors and capacitors 
In equilibrium, we know that electrostatic fields vanish inside conductors . It 
follows from Equation 5.9 that the gradient of the electrostatic potential also 
vanishes inside conductors. That is, 

∂V ∂V ∂V 
= = = 0. 

∂x ∂y ∂z 

We therefore conclude that: 

In an electrostatic situation, the electrostatic potential is uniform throughout 
any conductor. 

This important result allows us to talk about the potential of a conductor. This is a 
very succinct way of describing the electrical state of a conductor — useful even 
if we do not know exactly where the charges are located on the conductor’s 
surface. To illustrate this concept, let’s consider an isolated metal sphere of radius 
R, carrying a charge Q. What is the potential of this sphere? 

To answer this question, we use the fact that the charge spreads out in a 
spherically symmetric way. You know from Gauss’s law that the electric field 

According to the binomial 
theorem, 
(1 + x)n = 1 + nx + . . .  
where n is any real number. 
In this case n = −1/2. 

The word uniform means 
constant in space. 
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outside any spherically symmetric distribution of charge is the same as if all the 
charge were concentrated at the centre of the sphere. So the electric field outside 
the metal sphere is 

Q
E = er for r ≥ R. (5.17) 

24πε0r

The electrostatic potential is found by carrying out a line integral of the electric 
field. Provided we remain outside the sphere, this line integral is exactly the same 
as for the electric field of a point charge, so we have 

V (r) =  
Q 

for r ≥ R. (5.18) 
4πε0r 

Figure 5.13 A closed  The potential at the surface of the sphere is therefore 

Gaussian surface just inside the Q 
(5.19)surface of a sphere. V = .

4πε0R 

This remains constant throughout the conducting sphere and is what we mean 
when we talk about the potential of the sphere. If an extra charge q is brought in 
from infinity to the sphere, the work done by external forces is q × V . 

To complete the picture, we can also ask where the charge on the sphere is 
concentrated. The answer is that it is all on the surface of the sphere. This is 
easily established from Gauss’s law. Figure 5.13 shows a closed Gaussian surface, 
just inside the sphere. We know that the electrostatic field is equal to zero inside 
any conductor, so the electric flux over this surface is zero. Gauss’s law then tells 
us that there is no net charge within the closed surface. The excess charge 
migrates to the surface of the sphere, where it spreads uniformly, producing a 
spherically symmetric charge distribution. 

Figure 5.14 shows the electrostatic potential, electrostatic field and the charge 
density of a charged metal sphere. At the sphere’s surface, the potential has a 
change in slope, the electrostatic field jumps sharply and the charge density has a 
spike. These relationships can be understood by remembering that the gradient of 
the potential is proportional to the electrostatic field and the divergence of the 
field is proportional to the charge density. 

At the surface of the sphere, the electrostatic field is radial, and 

V 
Er (R) =  

Q 
= .

4πε0R2 R 

So, if the potential V is kept fixed, the electric field at the surface of the sphere is 
inversely proportional to the radius of the sphere. This implies that a moderate 
voltage, applied to a very small sphere, produces an enormous electric field. The 
same principle applies to all sharply-pointed metal objects. A voltage applied to a 
sharply-pointed metal tip can create an electric field that is large enough to suck 
electrons out of the metal. This effect is used to produce highly monoenergetic 
electron beams in some specialized electron microscopes. 

Exercise 5.8 Two widely-separated isolated spheres have radii R1 and R2, 
Figure 5.14 (a) The with R1 < R2. Initially, each sphere carries the same positive charge Q. The  two  
potential, (b) the field and (c) the spheres are then connected by a metal wire. Find the final charges on the spheres 
charge density of a charged when equilibrium has been reached. Which sphere has the greater surface electric 
metal sphere. field? Q 
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5.4 Potential on conductors and capacitors 

5.4.1 Capacitance 

According to Equation 5.19, the charge on a metal sphere is proportional to its 
potential. In general, we define the capacitance C of an isolated conductor to be 
the charge Q stored on the conductor, divided by the potential V of the conductor, 
with the zero of potential at infinity. That is, 

C = 
Q 
V 

. (5.20) 

For example, Equation 5.19 shows that an isolated metal sphere of radius R has 
capacitance 

C = 4πε0R. (5.21) 

The SI unit of capacitance is the farad ( F), which is equal to one coulomb per 1 F = 1  C V−1 

volt, but a capacitance of one farad is enormous by everyday standards. It is the 
capacitance of an isolated conducting sphere of radius 9 × 109 m — more than ten 
times the radius of the Sun! Capacitances of nanofarad (10−9 F) or picofarad 
(10−12 F) are much more common. 

Conducting spheres are not generally used to store charge. A small charged sphere 
produces a strong electric field in its vicinity, which is undesirable for many 
purposes, so it is much more common to store charge in a capacitor. A capacitor 
is a pair of oppositely-charged plates separated by a small gap containing either a 
vacuum or an insulating medium. The plates may be parallel planes, concentric 
cylindrical shells or concentric spherical shells, for example. The capacitance of 
a capacitor is again defined by C = Q/V , but  Q is now the charge on the positive 
plate and V is the potential of the positive plate relative to the negative plate (that 
is, the magnitude of the potential difference between the two plates). 

To take a simple case, we consider a vacuum parallel plate capacitor (Figure 5.15). 
This consists of a pair of parallel conducting plates carrying charges +Q and −Q. 
The plates each have area A and they are separated by a narrow gap d, which  is  
empty (that is, filled by a vacuum). If the plates are large enough, and the gap is 
small enough, we can ignore any edge effects. Then, according to Section 2.3.3, 
the field E in the gap is uniform, perpendicular to the plates, and has magnitude 

Q
E = . 

ε0A 

The potential of the positive plate relative to the negative plate is found by using Figure 5.15 A cross-section 
Equation 5.5, and integrating along a path parallel to the z-axis: of a vacuum parallel plate � d 

capacitor. 

V = − (−E) dz, 
0 

where the initial sign is part of the definition of potential and −E appears in the 
integrand because the electric field points from the positive plate to the negative 
plate, in the negative z-direction. Completing the integral, we obtain 

Qd
V = Ed = . (5.22)

ε0A 
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So a vacuum parallel plate capacitor has capacitance


C = 
ε0A 
d 

. (5.23) 

The capacitance becomes large when the gap d is very small. This is crucial in our 
everyday lives. Nerve cells are surrounded by membranes with a thickness of 
order 6 nm. Such a membrane acquires opposite charges on its inner and outer 
surfaces and can be modelled as a parallel plate capacitor. The smallness of the 
gap (and, to a lesser extent, the composition of the membrane) ensures that the 
membrane has a very high capacitance per unit area. From the definition of 
capacitance, this means that a small change to the potential difference across the 
membrane involves the redistribution of a relatively large amount of charge. This 
redistribution takes time, and limits the speed of nervous impulses. Where 
high-speed connections are essential, nerve cells are surrounded by a so-called 
myelin sheath which increases the thickness of membrane over long segments of 
the nerve cell, thereby decreasing the capacitance and increasing the speed of 

Figure 5.16 High-speed transmission of nervous impulses (Figure 5.16). 
nerve cells, surrounded by It takes energy to charge a capacitor. Suppose that, at a certain moment, the 
myelin sheaths. positive and negative plates carry charges q and −q and the potential difference 

between them is V . Imagine transferring an extra charge δq from the negative 
plate to the positive plate. The energy needed to accomplish this is 

δU = δq V, 

so the total energy needed to store Q on the positive plate (and −Q on the 
negative plate) is � Q � Q 

U = V dq = 
q 

dq.
C0 0 

Evaluating the integral, we obtain 

U = 
1 
2 

Q2 

C 
= 

1 
2 

CV  2 . (5.24) 

Exercise 5.9 The vertical electric field between the ground and the base of a 
storm cloud has magnitude 5000 V m−1. The base of the storm cloud is horizontal 
at a height of 1.0 km and the area of the cloud base is 20.0 km2. Treating the 
storm cloud and ground as a giant parallel plate capacitor, estimate the electrical 
energy stored in the system. 

Exercise 5.10 The plates of a vacuum parallel plate capacitor initially have 
charges Q and −Q and potentials V/2 and −V/2. Discuss what happens to the 
potential difference between the plates and the electric field strength in the gap if 
the plates are brought closer together (a) with the plates connected to a battery and 
(b) with the plates disconnected from the battery. Q 
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5.4.2 Energy in fields 

You have seen that energy is stored by a capacitor, but we have said nothing about 
the mechanism of energy storage. We will now make a bold assumption. Let us 
suppose that the energy stored by the capacitor is directly associated with the 
electric field in and around the capacitor. We will assume that it makes sense to 
assign an energy density u at each point in space, and that this energy density is a 
function of the electric field strength. Then the energy stored by the capacitor can 
be represented as the energy density integrated over all space. 

To identify the energy density, let’s return to a vacuum parallel plate capacitor. 
For simplicity, we suppose that the plates are effectively infinite so that edge 
effects can be neglected. Combining Equations 5.22, 5.23 and 5.24, the stored 
energy can be then written as 

U =
1 
CV  2 =

1 × 
ε0A × (Ed)2 =

1 
ε0E

2 × (Ad)
2 2 d 2 

where E is the magnitude of the electric field in the gap between the plates, and 
Ad is the volume of the gap. There is no electric field outside the capacitor, so our 
idea of representing the stored energy as an integral of the energy density over all 
space can be fulfilled if we identify the energy density as 

u = 
1 
2 
ε0E

2 , (5.25) 

where E is the magnitude of the field. This equation was derived for a specific 
case, but is actually true for all electric fields in empty space. 

To check that our formula for the energy density of an electric field makes sense, 
we now consider a situation in which the electric field varies in space. Consider a 
conducting sphere of radius R carrying a charge Q. We know that there is no 
electric field inside the conducting sphere and that the electric field outside the 
sphere is just as if the total charge Q were concentrated at the centre of the sphere. 
Integrating the energy density of the electric field over all space will give us an 
expression for the total energy U of the electric field due to the sphere. We obtain � ∞ � ∞ � �21 Q

U = u × 4πr2 dr = ε0 2 4πr2 dr
2 4πε0rR R 

which reduces to 

Q2 � ∞ 1 Q2 

U = 
8πε0 r2 dr =

8πε0R
. 

R 

We can compare this with the electrostatic potential energy of the sphere 
calculated in the usual way. This is found by adding up the work done when 
elements of charge are transferred from infinity to the sphere. This is equivalent to 
using Equation 5.24, with the capacitance of the sphere given by Equation 5.21. 
So we have 

Q2 Q2 Q2


U = = =

2C 2 × 4πε0R 8πε0R

, 

as before. 
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It is always possible to think of the energy of a collection of charges as being 
stored in the electric field. The total electrostatic potential energy of the charges is 
equal to the energy density of the electric field integrated over all space. This is 
generally not the most efficient way of calculating an electrostatic potential 
energy, but it does shed important new light on the significance of electric fields. 

When we first introduced electric fields in Chapter 1 they had an auxiliary role. It 
is certainly possible to use Coulomb’s law and the principle of superposition 
without introducing the notion of an electric field. However, Gauss’s law is 
expressed directly in terms of electric fields. The fact that Gauss’s law applies 
more widely than Coulomb’s law — to moving charges as well as to stationary 
charges — makes electric fields practically indispensable. Now we see that an 
electric field is no mere mathematical convenience. At each point in space, and at 
each instant in time, the electric field is directly associated with a real physical 
property, the energy density. We are therefore led to regard electric fields as being 
part of the fabric of the world, every bit as real as electrons, chairs or tables. 

Summary of Chapter 5 
Section 5.1 An electrostatic field has zero circulation around any closed loop 
and is therefore conservative. Conservative fields are always irrotational (i.e. have 
zero curl) so checking whether the curl of a vector field is equal to zero provides 
one way of determining whether the field could be an electrostatic field. The 
conservative nature of electrostatic fields (together with Gauss’s law) ensures that 
there are no electrostatic fields inside an empty conducting cavity. 

Section 5.2 The electrostatic potential at a point r is defined by 
r 

V (r) =  − E · dl + V0, 
r0 

where E is the electrostatic field, r0 is an arbitrarily chosen reference point and V0 

is the value of the electrostatic potential at the reference point. V (r) is the 
electrostatic potential energy per unit charge. The change in electrostatic potential 
energy when a test charge q is displaced from r1 to r2 is q(V (r2) − V (r1)). 

Any line integral of an electrostatic field can be represented as minus the 
difference in values of the potential between the end-point and start-point of the 
path. The electrostatic field corresponding to a given potential is minus the 
gradient of the potential. 

Section 5.3 Electrostatic potentials obey the principle of superposition. In a 
system of many charges, the total electrostatic potential is the algebraic sum of the 
electrostatic potentials due to the individual charges. This can be used to find the 
total electrostatic potential of a collection of charges; the total electrostatic field 
can then be found by taking minus the gradient of the potential. This method only 
works for finite distributions of charge. 

An electric dipole is a pair of oppositely-charged particles. The dipole potential is 
an approximation to the electrostatic potential of this arrangement when the 
distance from the dipole is much greater than the separation of the charges. The 
dipole potential and the corresponding electrostatic field can be found using the 
principle of superposition. 

136 



Achievements from Chapter 5 

Section 5.4 In equilibrium, the electrostatic potential is uniform throughout any 
conductor. The capacitance of an isolated conductor is the ratio Q/V , where Q is 
the charge on the conductor and V is the potential of the conductor relative to a 
zero of potential at infinity. The capacitance of a capacitor is the ratio Q/V , 
where Q is the charge on the positive plate of the capacitor and V is the potential 
difference between the positive and negative plates. 

The total electrostatic energy stored by a capacitor is 

1 
U = CV  2 .

2 

This can be interpreted in terms of the energy stored in the electrostatic field. The 
energy density of an electric field is 1 ε0E

2, where E is the electric field strength. 2 
Integrating the energy density over all space gives the total electrostatic energy. 

Achievements from Chapter 5 
After studying this chapter you should be able to: 

5.1	 Explain the meaning of the newly defined (emboldened) terms and symbols, 
and use them appropriately. 

5.2	 Remember that any electrostatic field is conservative and deduce simple 
consequences of this fact. 

5.3	 Define the electrostatic potential and recognize that it is a scalar field. 

5.4	 Use gradients and line integrals to relate electrostatic fields to electrostatic 
potentials. 

5.5	 Describe the relationship between electric field lines and equipotential 
surfaces. 

5.6	 Solve simple problems involving electrostatic potential and electrostatic 
potential energy. 

5.7	 Define electric dipole, dipole moment and dipole potential. 

5.8	 Define capacitance and use it in simple problems. 

5.9	 Recall that electric fields have a characteristic energy density. 

After studying MT 8.9 you should also be able to: 

5.10	 Recall the properties of a conservative vector field and determine whether a 
given vector field is conservative or not. 

5.11	 Evaluate gradients of scalar fields. 
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Chapter 6 Electromagnetic induction
Introduction
In the mid 1820s, Michael Faraday wondered whether one electric current could
induce another. In one experiment, he placed two wires side-by-side, separated
only by a piece of paper. He wondered if a steady current in one wire could
persuade a current to flow in its neighbour, but no such current could be detected.

Several years passed before Faraday returned to this question. Then, in 1831, he
wound two insulated circuits, 1 and 2, around an iron ring (Figure 6.1). Whilst
switching on the current in circuit 1, he noticed a momentary blip of current in
circuit 2. As soon as the current in circuit 1 had stabilized, the current in circuit 2
dropped to zero. But, whilst switching off the current in circuit 1, he noticed a
second blip of current in circuit 2, this time in the opposite direction (Figure 6.2).

Figure 6.1 Two insulated
circuits wound on an iron ring,
used in Michael Faraday’s
investigations of
electromagnetic induction.

Figure 6.2 When the current in circuit 1 is switched on and off, blips of current
are observed in circuit 2.

Faraday assumed that these blips were associated with changes in the magnetic
field in the vicinity of circuit 2. He checked this idea by moving a bar magnet near
a stationary wire loop (Figure 6.3). When the bar magnet was introduced into the
loop, and when it was retracted again, a current flowed around the loop. The
current was small if the magnet moved slowly, but larger if the magnet moved
more rapidly. So Faraday realized that a changing magnetic field can induce a
electric current. This phenomenon is called electromagnetic induction. It is the
main subject of this chapter.Figure 6.3 Moving a bar

magnet near a stationary wire
loop drives a current around the
loop.

Electromagnetic induction has become of immense technological importance. It
underpins the operation of all the large generators that produce electricity in power
stations. This is true whether the initial source of energy is in the chemical bonds
of coal, gas or petrol, the binding energies of atomic nuclei, the gravitational
potential energy of water in a reservoir, or the kinetic energy of winds and tides
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(Figure 6.4). Electromagnetic induction is also used in the transformers that 
convert the voltages generated in power stations up to the very high values used in 
the national grid, and back down again to the voltages used in our homes. On a 
smaller scale, electromagnetic induction is used in microphones, radio aerials, 
induction hobs, metal detectors, electric guitars and brain research (Figure 6.5). 

This chapter begins by introducing some concepts needed to describe the flow of a 
current in a circuit. It then describes Faraday’s law of electromagnetic induction 
for a stationary circuit. Finally, it considers the phenomenon of electromagnetic 
induction in moving circuits. The comparison between stationary and moving 
circuits was of great historical importance, as it spurred Albert Einstein to create 
the special theory of relativity. 

Figure 6.4 Six generators in 
an Icelandic hydroelectric power 
station. Each generator produces 
45 MW of electrical power. 

Figure 6.5 (a) A metal detector used by a researcher looking for meteorites; 
(b) an electric guitar; (c) a transcranial magnetic stimulator used to induce 
currents in the brain. 
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Chapter 6 Electromagnetic induction 

6.1 Current flow in circuits 

6.1.1 Non-conservative electric fields 

Electromagnetic induction arises when a magnet moves near a stationary wire 
loop. It also arises when a circuit moves, or distorts, in a static magnetic field. For 
example, if a bar magnet is at rest, and a wire loop is moved towards the magnet, a 
current is induced in the loop. Changing the orientation or shape of the loop also 
induces a current. To structure our discussion, it is helpful to distinguish between 
stationary and moving circuits. To begin with, we restrict attention to circuits that 
remain at rest in the presence of changing magnetic fields. The extension to 
moving circuits will be made in the last section of the chapter. 

On the face of it, Faraday’s experiments show that a changing magnetic field 
generates an electric current in a stationary circuit. However, this fact must be 
understood within a wider framework. We know that an electric current consists 
of a stream of charged particles, so we need to understand what drives these 
charged particles around the circuit. Although initially observed as a transient 
phenomenon, the induced current lasts as long as the magnetic field is changing. 
We must ask what forces keep the current flowing, in spite of the dissipative 
effects of resistance. 

There are four basic forces in physics — the strong and weak nuclear forces, the 
gravitational force and the electromagnetic force. It seems clear that only the 
electromagnetic force need be considered here. The electromagnetic force on a 
charge q is given by the Lorentz force law: 

F = q(E + v × B). 

This contains both electric and magnetic contributions, but we can show that the 
magnetic force cannot initiate a current in a stationary circuit. For, if there is no 
current to start with, the average value of qv is zero, so the average value of the 
magnetic force qv × B is also equal to zero. Moreover, a magnetic force cannot 
sustain a current in a stationary circuit: it pushes charges sideways, perpendicular 
to their direction of motion, but it does not push them forwards in the direction of 
current flow. 

This can also be understood in terms of energy. When a current flows round an 
ordinary circuit, energy is dissipated, and an input of energy is required to 
maintain the current. Suppose that a small quantity of charge q is transferred 
around a stationary circuit C. This transfer of charge need not involve a single 
particle making a lap of the circuit, but is generally accomplished by small 
displacements of charge all around the circuit, with the amount of charge passing 
any fixed point being equal to q. The work done by the Lorentz force during this 
transfer of charge is 

W = F · dl = q E · dl + q (v × B) · dl. 
C C C 

The last integral above is equal to zero because, along each small segment of C, 
the line element δl is parallel to the drift velocity v of the charge carriers, and is 
therefore perpendicular to the vector product v × B. So we conclude that 

W = q E · dl. 
C 
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This shows that the work needed to maintain the current is supplied by an electric 
field. To compensate for dissipative effects, this work must be positive. So the 
electric field has a non-zero circulation around the circuit — it is 
non-conservative. More generally, we are led to the following idea: 

Any magnetic field that changes in time must be accompanied by a 
non-conservative electric field. 

The present chapter therefore requires us to consider non-conservative electric 
fields. It complements Chapter 5, which dealt with the conservative electric fields 
of electrostatics. It is important to realize that the special properties of 
conservative fields all stand or fall together. A conservative electric field E(r) has 
zero circulation around any closed loop, and its line integrals are independent of 
path. This allows us to define an electrostatic potential field V (r). 

By contrast, non-conservative fields do not have any of these properties. In 
general, they have non-zero circulations and path-dependent line integrals. This 
makes it impossible to define a potential for a non-conservative field. Our first 
task is therefore to develop terminology that is appropriate for non-conservative 
electric fields. 

Exercise 6.1 A conducting rectangular circuit ABCD is partially inserted 
between the plates of a parallel plate capacitor, as shown in Figure 6.6. Does the 
electrostatic field between the capacitor plates drive a steady current around the 
circuit? Q Figure 6.6 For Exercise 6.1. 

6.1.2 Voltage drop and emf 

Let’s begin with something familiar. For a conservative electric field, E, the  
potential difference between r1 and r2 is 

r2 

V (r2) − V (r1) = − E · dl. 
r1 

For our purposes, it is useful to express this in a different form. Changing signs on 
both sides of the equation, we obtain 

r2 

V (r1) − V (r2) =  E · dl. 
r1 

The left-hand side of this equation is positive when the potential at r1 is greater 
than the potential at r2. For this reason, we shall call it the potential drop from r1 

to r2. For a path that goes once around a closed loop, the start-point is identical to 
the end-point, so the potential drop around any closed loop is equal to zero. 

Such terminology is unsuitable for electromagnetic induction. Non-conservative 
electric fields do not have potentials, so it is misleading (and wrong) to talk about 
potential differences in this context. However, we can make a more general 
definition: 

141 



Chapter 6 Electromagnetic induction 

The C 

Vdrop = 
� 

C 
E · dl, (6.1) 

where E δl 

voltage drop along a fixed path is defined to be 

is the electric field at an element along the path. Naturally 
enough, the SI unit of voltage drop is the volt. 

The important feature of a voltage drop is that it refers to a specific path, C. The  
voltage drop may be different along different paths joining the same start- and 
end-points. For example, Figure 6.7 shows a non-conservative electric field which 
has constant magnitude around a circle. Clearly, the voltage drop from A to B 
along the blue curve is small and negative, while the voltage drop from A to B 
along the red curve is large and positive. It would therefore be meaningless to talk 
about the voltage drop from A to B without specifying the path followed. This is 
in sharp contrast to a potential drop, which depends only on the start- and 
end-points of the path. It is also worth noting that the path C is fixed in space. 
This restriction is appropriate for the moment because we are considering currents 
in stationary circuits. At the end of the chapter, we shall consider circuits that are 

Figure 6.7 The voltage drop in motion, and revisit the concept of voltage drop under these more general 
from A to B depends on whether conditions. 
the red path or the blue path is 
followed. The second concept we need is that of an emf (pronounced ee-em-eff). We know 

that a continuous input of energy is needed to maintain a steady current in an 
ordinary circuit. This energy can be supplied by a variety of means, including 
dynamos, batteries, fuel cells, solar cells, thermocouples and piezoelectric 
devices. Suppose that the agencies responsible for maintaining the current in a 
given circuit convert energy δW into electrical form in a time δt. This does not 
include any energy that is dissipated, but is the energy required to overcome the 
effects of dissipation throughout the circuit. During the time δt, a steady current I 
flows in the circuit and the amount of charge transferred around the circuit is 
δq = I δt. The  emf in the circuit is then defined to be 

δW 
Vemf = . (6.2)

δq 

This is the energy input per unit charge transferred around the circuit. Since 
power is the rate of expenditure of energy, we also have 

Vemf = 
1 
I 

δW 
δt 

= 
P 
I 

, (6.3) 

where P is the power that is converted into electrical form. We therefore see that 
the emf in a circuit is the power supplied per unit current. In steady-state 
conditions it is also equal to the power dissipated per unit current. Like current, 
emf has a sign. The emf is positive if it drives currents in the sense chosen for 
positive progression around a circuit, and it is negative if it drives currents in the 
opposite sense. The total emf in a circuit is the algebraic sum of all the emfs 
driving current around the circuit. 

The term emf is an abbreviation for electromotive force. This is an unfortunate 
name because an emf is clearly not a force at all, in the scientific sense of the 
term. The unit of emf is the volt (1 V = 1 J C−1), whereas the unit of force is the 
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newton (1 N = 1 J m−1). Also, an emf is defined around a closed loop, whereas a 
force is defined for a given particle at a given position and time. Some texts avoid 
this infelicity by using the term electromotance instead of emf. We will continue 
to talk about emf, but avoid the misleading phrase electromotive force. 

Induced emf 

This chapter focuses on situations where an emf is produced by electromagnetic 
induction. Figure 6.8 shows a typical example — a magnet moves along the axis 
of a stationary wire ring, and the changing magnetic field induces a current to flow 
around the ring. You have already seen that the induced current is driven by a 
non-conservative electric field E. The axial symmetry of the situation suggests 
that the electric field lines form circular loops, as shown in the diagram. This is 
unlike any electric field pattern you have seen previously in this book. The field 
lines do not start or end on charges, but form closed loops. There is no conflict 
with Gauss’s law because the divergence of this electric field turns out to be equal 
to zero. 

Figure 6.8 The electric 
field produced by a changing 
magnetic field drives a current 
around a stationary wire ring. 

Now, a charge q experiences an electric force qE, so the work done in transferring 
the charge around the closed path C in the ring is 

W = qE · dl. 
C 

The emf around C is the work done per unit charge: 

Vemf = E · dl, 
C 

which is just the circulation of the electric field around C. Since this emf is 
associated with electromagnetic induction, it is called the induced emf. 
Comparing with Equation 6.1, we see that the induced emf is equal to the voltage 
drop around the complete closed path, C. This is equal to zero in static situations, 
which involve only conservative electric fields, but it is non-zero in the 
time-dependent situation of Figure 6.8. 
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The emf of a battery 

A battery is a familiar source of emf. Although this book is not concerned with 
the physics of batteries, we give a very brief discussion here for the sake of 
comparison with electromagnetic induction. 

Figure 6.9 shows a battery which drives a steady current through a resistor. In the 
circuit outside the battery, the charged plates drive a current from the positive 
terminal to the negative terminal, just as you would expect. But something more 
mysterious happens inside the battery, where the current flows from the negative 
plate to the positive plate. This internal current flow cannot be explained by an 

Figure 6.9 A battery drives a	 electrostatic field. 
current through a passive circuit.	 The inner workings of a battery are complicated. The crucial region is the 

interface between the battery plates and the surrounding conducting liquid, where 
atoms, electrons and ions combine and dissociate in various ways. These 
dynamical processes have chemical descriptions, but they are ultimately quantum 
mechanical in nature. This leads to a mismatch in language. Quantum mechanical 
descriptions generally involve energy levels and the way they are occupied, while 
classical electromagnetism deals with forces and fields. This gap is bridged by 
representing the quantum mechanical effects by an effective force that acts on 
charge carriers at the interface between the battery plates and the surrounding 
liquid. This force is short-range and non-conservative. It is proportional to the 
charge of the charge carriers and drives them forwards, overcoming the 
electrostatic force inside the battery and maintaining the anticlockwise direction 
of current flow in Figure 6.9. 

Suppose that a charge q experiences an electrostatic force Festat due to the charged 
battery plates and an effective force Feff due to quantum mechanical processes at 
the surfaces of the plates. The emf supplied by the battery in the circuit C is then 

1 1 
Vemf = Festat · dl + Feff · dl. 

q C q C 

The first integral on the right-hand side involves the electrostatic field Festat/q. 
Any electrostatic field has zero circulation around a closed loop, so this integral is 
equal to zero, and the emf reduces to 

1 
Vemf = Feff · dl. 

q C 

The emf in the circuit is due to quantum mechanical processes occurring on the 
battery plates. But, no matter what may be happening inside the battery, we can 
define an electrostatic potential outside the battery and discuss the potential 
differences across resistors, capacitors and other passive circuit components. This 
is legitimate because the electric field is conservative in the region outside the 
battery. From the perspective of the external circuit, the battery behaves like a 
black box which delivers a certain potential difference across its terminals. This is 
very different from the induced emf considered earlier. In Figure 6.8 a 
non-conservative electric field exists all around the circuit, making it impossible 
to define a potential difference. In the context of electromagnetic induction, we 
must always use the more general concept of a voltage drop along a given path. 
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6.1.3 Ohm’s law 

When a conducting loop is connected to a source of emf, an electric field exists 
inside its conducting wires. Mobile electrons in the wires are initially accelerated 
by the field, but their progress is impeded by collisions with impurities and with 
vibrating positive ions. Extremely rapidly, the current settles down, with the same 
value all around the circuit. You might wonder why this should happen — 
especially in the case of a battery, where the non-conservative forces driving the 
current are confined to the battery. 

In fact, the current is non-uniform when it is first switched on, but a non-uniform 
current creates accumulations of charge around the circuit, which produce 
electrostatic fields. This is a self-regulating situation. The system soon settles 
down to a steady state, with a uniform flow of current and a static but non-uniform 
distribution of charge. This steady state is achieved so rapidly that we can usually 
ignore the initial transient stage. Even AC currents are normally taken to be 
uniform, though time-dependent, all around a conducting circuit. 

In order to predict the electric current flowing in a circuit, we shall use Ohm’s 
law. This law states that the voltage drop Vdrop across a conductor is proportional 
to the current I flowing through the conductor, both quantities taken in the same 
direction. In terms of symbols, 

Vdrop = IR,  (6.4) 

where the proportionality factor R is the resistance of the conductor. The SI unit 
of resistance is the ohm (Ω). A conductor has a resistance of 1Ω  if it carries a 1Ω  =  1 V A−1 

current of 1 A when the voltage drop across its ends is 1 V. 

Ohm’s law is well known, and is probably familiar to you from earlier studies. 
Nevertheless, it is worth noting that Ohm’s law is not a fundamental law of 
electromagnetism, in the same league as Gauss’s law. For one thing, it is not 
always true. Transistors, for example, show a highly non-linear relationship 
between voltage drop and current, and this non-linearity is an essential part of 
their function. However, it is an experimental fact that Ohm’s law accurately 
describes the behaviour of most conductors, provided that they are maintained at 
fixed temperature, and it is normal practice to assume that Ohm’s law is valid 
unless there is a definite reason for doing otherwise. 

Unfortunately, the voltage drops across individual parts of a circuit may be 
unknown at the outset because they depend on the electrostatic fields that develop 
during the establishment of a uniform current. This difficulty can be overcome by 
using Ohm’s law around a complete circuit. In this case, Ohm’s law takes the form 

Vemf = IRcircuit, (6.5) 

where Vemf is the emf around the circuit and Rcircuit is a proportionality constant 
that represents the total resistance of the circuit. If Vemf and Rcircuit are known, we 
can use Equation 6.5 to find the current in the circuit, and then use Equation 6.4 to 
find the voltage drops across individual parts of the circuit. 

Ohm’s law can be used to assess the dangers of electric shock. Suppose that a 
current passes across the chest from one hand to another. Above 1 mA, an These values are appropriate for 
unpleasant tingling sensation is experienced. At 10–20 mA, fingers involuntarily mains frequency AC. 
clamp around a conductor, making it impossible to let go. A current of 
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100–200 mA is sufficient to cause the heart to switch from its steady rhythm to
useless random twitching. Normal heartbeat does not return spontaneously, but
can be reactivated with suitable medical equipment. The resistance of the body
depends on many factors, but is usually dominated by the resistance of the skin.
Typical values range from (3Ω m2)/(area of contact) for dry unbroken skin to
(0.05Ω m2)/(area of contact) for moist thin skin.

Exercise 6.2 An unwary handyman grasps a live mains cable at 240 V and
receives an electric shock. Assuming a contact area 0.50 cm2, will he survive?

Exercise 6.3 A battery of internal resistance r drives a current I around a
resistive circuit. Is the potential difference across the terminals of the battery
equal to its emf?

Exercise 6.4 A car battery with an emf of 12 V and an internal resistance of
r = 0.06Ω is connected to a resistive circuit of resistance R = 0.1Ω. How much
power is expended by the battery? Q

6.2 Induction in a stationary circuit

6.2.1 Faraday’s law

Electromagnetic induction is found in circuits that are stationary and in circuits
that are in motion. Because the physics is rather different in these two cases, this
section will continue to explore electromagnetic induction in stationary circuits in
the presence of magnetic fields that vary in time.

Michael Faraday investigated the factors that influence the induced current, and
reached some understanding of the basic physics involved. But Faraday described
his findings pictorially, in terms of magnetic field lines, rather than equations.
Maxwell set himself the task of translating Faraday’s ideas into standard
mathematical form. Eventually, in 1855, he succeeded. The basic law of
electromagnetic induction is known today as Faraday’s law. In modern notation,
expressed in terms of electric and magnetic fields, this law can be stated as
follows:

Faraday’s law

Suppose that C is a closed loop that is fixed in space, and that S is any open
surface with C as its perimeter. The sense of positive progression around C
and the unit normals to S are linked by the usual right-hand grip rule
(illustrated in Figure 6.10). Then Faraday’s law states that�

C
E · dl = − d

dt

�
S
B · dS. (6.6)

In other words, the induced emf around a closed loop C is equal to the rate
of decrease of magnetic flux over an open surface that has C as its perimeter.

Figure 6.10 The right-hand
grip rule. With the fingers of the
right hand curled in the sense of
positive progression around C,
the outstretched thumb points in
the direction of the unit normal�n to the surface S.

It is essential for S to be an open surface. Closed surfaces do not have perimeters,
and the magnetic flux over any closed surface is equal to zero (by the

146



� � � 

6.2 Induction in a stationary circuit 

no-monopole law). Notice, however, that any open surface with perimeter C can 
be used to calculate the rate of decrease of the magnetic flux. To see why this 
introduces no ambiguity, consider the two surfaces S1 and S2 shown in 
Figure 6.11. Both these surfaces are bounded by C and oriented according to the 
right-hand grip rule. The purple volume between S1 and S2 is bounded by a 
closed surface S whose unit normals all point outwards, into the exterior space. 
So, while one part of S coincides with S1, the remainder of S coincides with the 
reverse of S2 (that is, the surface obtained by reversing all the unit normals in S2). 
Reversing the unit normals reverses the sign of the surface integral, so the 
magnetic flux over S is 

B · dS = B · dS − B · dS. 
S S1 S2 

The no-monopole law requires the left-hand side of this equation to be equal to Figure 6.11 Two open 

zero, so the magnetic fluxes over S1 and S2 are identical. This shows that it does surfaces S1 and S2 bounded by 

not matter which open surface with perimeter C is chosen. If the closed path C is the same closed loop C and 

a circle, it is natural to choose the disc bounded by this circle — any other choice oriented according to the 

would be perverse. But if C has a more complicated non-planar shape, it is right-hand grip rule. 

reassuring to know that the precise choice of S is not critical, provided only that it 
is bounded by C and oriented according to the right-hand grip rule. 

Exercise 6.5 A circular loop of radius 10 cm and resistance 4.0 × 10−2 Ω is 
placed in an increasing uniform magnetic field B = Kt2ez , where 
K = 2.4 T s−2. The coil has its unit normal inclined at 30◦ to the z-axis. What is 
the magnitude of the current induced in this loop at time t = 0.5 s? Q 

In many applications, the closed path C contains a coil. The 
open surface S then includes a region which looks something 
like a screw (Figure 6.12). This surface is a continuous sheet 
but has many folds, one for each turn of the coil. We are often 
interested in a situation where the turns are wound tightly 
together, and each fold of the surface can be approximated by 
a disc perpendicular to the axis of the coil. The rest of the open 
surface can usually be ignored. Then, if a uniform magnetic 
field is directed along the axis of the coil, the magnitude of the 
magnetic flux over the surface S is NBA, where N is the 
number of turns of the coil, A is the cross-sectional area of 
each turn, and B is the magnitude of the magnetic field. Notice 
that the rate of change of magnetic flux, and hence the induced 
emf, is enhanced by a factor of N compared to a single loop. 
That is why coils, rather than single loops, are found in 
microphones, radio aerials and electric guitars. 

Faraday’s law is very general. It does not matter what causes the change in Figure 6.12 Part of an open 

magnetic flux — it could be the motion of a magnet or a fluctuating current in a surface bounded by a coil 

neighbouring circuit. And Faraday’s law applies whether a conducting path is (shown in red). 

present or not. If the magnetic flux varies over an open surface S, the electric field 
has a circulation around the perimeter of S. If a conducting wire loop is placed 
around this perimeter, a current will flow through it. The current is a consequence 
of the non-conservative electric field, but this field exists whether the wire loop is 
present or not. It exists even in empty space. 
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Essential skill 
Using Faraday’s law to find an 
induced electric field. 

R z-axis. 
B = Ktez , 

where K 

z

E = Eφ(r) eφ. 

j
φ or z 

z

C 
S C, 

z

� 

C 
E · dl = Eφ × 2πr 

= − 
d 
dt 

� 

S 
B · dS = − 

d 
dt 

� 
Kt × πr2

� 
= − 2 . 

So 

Eφ(r) = − 1 
2 Kr and E = − 1 

2 Kr eφ for 

C S
with 

Eφ × 2πr = − 
d 
dt 

� 
Kt × πR2

� 
= − 2 . 

Hence 

Eφ(r) = − 
KR2 

2r 
and E = − 

KR2 

2r 
eφ for 

Worked Example 6.1 

An infinitely long cylindrical solenoid of radius is aligned with the 
The magnetic field inside the solenoid is uniform and varies as 

is a constant. There is no magnetic field outside the infinite 
solenoid. Find the induced electric field inside and outside the solenoid. 

Solution 

The situation has axial symmetry around the axis of the solenoid and 
translational symmetry along this axis. It is therefore sensible to use 
cylindrical coordinates with the -axis along the axis of the solenoid, and to 
assume that the electric field takes the form 

(The question does not require any ustification of this assumption, but, for 
completeness, we note that: (1) any dependence on is ruled out by 
axial and translational symmetry; (2) any -component of the electric field is 
ruled out by reflection symmetry in a plane perpendicular to the axis of the 
solenoid; and (3) any radial component of the electric field is ruled out by 
Gauss’s law, given the absence of a charge density.) 

Inside the solenoid, we choose a circular path of radius r <  R  as shown in 
Figure 6.13a. The corresponding open surface is a disc , bounded by 
with its unit normal pointing in the positive -direction. Faraday’s law then 
gives 

Kπr 

r <  R.  

Outside the solenoid, we choose a similar circular path and disc , but  
r >  R  (Figure 6.13b). The field is restricted to the region inside the 

solenoid, so applying Faraday’s law in this case gives 

KπR

r >  R.  
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Induction in a stationary circuit 

Figure 6.13 The choice of closed loop and open surface used to 
apply Faraday’s law (a) inside and (b) outside a solenoid. The upper half of 
the diagram shows perspective views, while the lower half shows plan 
views. The coils of the solenoid are omitted, for clarity. 

In the above example, a non-conservative electric field exists in empty space, both 
inside and outside the infinite solenoid. It is interesting to note that an electric 
field is found outside the solenoid even though there is no magnetic field there. 
This follows directly from Faraday’s law, because the magnetic flux over the disc 
S in Figure 6.13b includes a time-dependent contribution from the region inside 
the solenoid. The presence of a non-conservative electric field outside the 
solenoid is readily confirmed by encircling a long solenoid by a conducting loop, 
as shown in Figure 6.14a. The electric field drives a current around the loop, and 
the current is observed to persist so long as the magnetic field inside the solenoid 
is changing. By contrast, a loop like that shown in Figure 6.14b carries practically 
no current. This is because the magnetic flux over the surface bounded by this 
loop is equal to zero outside an isolated infinite solenoid, and is practically 
constant outside a long solenoid in the static magnetic field of the Earth. 

149 



Chapter 6 Electromagnetic induction 

Figure 6.14 Conducting loops placed (a) around and (b) outside a long 
solenoid carrying a varying current. 

It is instructive to consider the voltage drops in a conducting loop wrapped around 
a solenoid. Figure 6.15 is a cross-sectional view of a solenoid, encircled by a 
conducting loop that contains two resistors, of resistances R1 and R2. Suppose 
that the magnetic field inside the solenoid is changing at a constant rate, inducing 
a steady emf Vemf around the conducting loop. If the magnetic field is increasing 
in the direction out of the page towards you, the emf drives a steady current in the 
clockwise sense indicated. 

Now a simple application of Ohm’s law shows that the induced current is 

Vemf
I = . 

R1 + R2 

Further applications of Ohm’s law then show that the voltage drop across 
resistor 1 is 

R1 

Figure 6.15 Cross-sectional V1 = Vemf in the direction from X to Y,
R1 + R2 

view of an infinite solenoid 
and the voltage drop across resistor 2 is 

surrounded by a conducting 
loop. R2

V2 = Vemf in the direction from Y to X. 
R1 + R2 

Voltages are generally measured with a voltmeter — a device of high resistance 
which draws negligible current and gives a reading equal to the voltage drop 
across its terminals. It is therefore interesting to ask what a voltmeter reads when 
placed in the positions shown in Figures 6.16a and b. 

•	 In Figure 6.16a, the red loop XYPQ has no magnetic flux through it. Faraday’s 
law requires there to be no emf around this loop, so the voltmeter records a 
voltage drop of V1, from Q to P. 

•	 In Figure 6.16b, the red loop XYMN has no magnetic flux through it, and no 
emf around it. In this case, the voltmeter records a voltage drop of V2, from M 
to N. 
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Figure 6.16 Two positions 
for a voltmeter used to measure 
voltage drops around a solenoid. 

It may seem strange that the reading on the voltmeter should depend on its 
location, but this is a consequence of the non-conservative nature of the electric 
field and the path-dependence of its line integrals. You will not be able to describe 
such phenomena if you cling to the notion of a potential difference between X 
and Y. The more general concept of a voltage drop along a specified path is 
essential. 

6.2.2 The sign in Faraday’s law 

Figure 6.17 The effect of the 
minus sign in Faraday’s law. 

The negative sign in Faraday’s law tells us the direction of the electric field. Let’s 
consider a definite case. Figure 6.17a shows a horizontal circular loop in an 
external magnetic field that points upwards and is increasing. We choose the open 
surface S to be the disc bounded by the circular loop, and take the positive 
orientation of this disc to be upwards. Using the right-hand grip rule, the positive 
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sense of circulation around the loop is then anticlockwise as seen from above. The 
magnetic flux over S is positive and is increasing, so the minus sign on the 
right-hand side of Equation 6.6 tells us that the circulation of E is negative. With 
our conventions, this means that the electric field circulates clockwise as seen 
from above, driving the induced current in the same direction. As shown in 
Figure 6.17b, this current produces a magnetic field that points downwards inside 
the loop. So the magnetic field due to the induced current tends to counteract the 
increase in flux over S. 

O	 Consider the same situation as that shown in Figure 6.17, but with a magnetic 
field that is decreasing. What is the direction of the induced current in this 
case? Does the magnetic field due to the induced current tend to counteract 
the decrease in flux over S? 

P	 An argument similar to that given above shows that the right-hand side of 
Equation 6.6 is positive. This causes the electric field, and the current, to 
circulate anticlockwise as seen from above. This current produces a magnetic 
field that points upwards inside the loop, which tends to counteract the 
decrease in flux over S. 

Notice how this works: the magnetic field produced by the induced current 
opposes the change in the magnetic field responsible for the current. This general 
feature of electromagnetic induction is called Lenz’s law. 

Lenz’s law 

The induced current flows in such a way that its magnetic flux opposes the 
change in the magnetic flux that produced it. 

Figure 6.18 An example of 
Lenz’s law.	 Lenz’s law is part of Faraday’s law, guaranteed by the minus sign on the 

right-hand side of Equation 6.6. One way of understanding its significance is to 
suppose that the increasing magnetic field in Figure 6.17 is produced by moving a 
bar magnet. Magnetic field lines emerge from the north pole end of the magnet, so 
we can achieve an increasing vertical field by moving the magnet towards the 
loop, led by its north pole (Figure 6.18). According to Lenz’s law, the induced 
current produces a magnetic field which acts downwards on the magnet. This 
causes the magnet to be repelled from the loop, so work is done, and energy is 
used, in moving the magnet towards the loop. This makes good sense. It means 
that energy reserves must be expended to create electric power. The energy may 
come from a variety of sources, but nothing comes for free. 

Exercise 6.6 Figure 6.19 shows two conducting loops. The lower loop carries 
a current I in the direction indicated. Use Lenz’s law to find the direction of the 
induced current in the upper loop when (a) I is increasing and (b) I is 

Figure 6.19 Two conducting decreasing. Q 
loops. 

6.2.3 Electromagnetic induction in action 

Electromagnetic induction is applied in many different ways, and provides fertile 
ground for inventors. Mainly for interest, this section briefly mentions a few of 
the applications that have been developed. 
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Power conversion

The motion of a magnet relative to a coil, driven by some external source of
power, generates an emf. This basic fact underpins the working of the alternator
of a car, which is an electric generator driven by the car engine. The alternating
output is converted to a unidirectional current, and this is used to drive the
electrical system of the car and to keep the battery charged.

On a much smaller scale, the vibrations of sound cause tiny relative displacements
of magnets and coils, generating tiny currents that can be amplified and modified
in various ways. This idea is used in moving-coil microphones, electric guitars
and some of the seismometers that measure earthquakes.

Transformers

A transformer is a device that converts low voltages into high voltages, or vice
versa. For example, the 400 V output of a power station can be transformed to the
400 kV used in the UK national grid. The ignition system of a petrol engine
contains a transformer that produces 1500 V across a small air gap in the spark
plugs. This creates the spark that ignites the petrol–air mixture.

In a typical transformer, primary and secondary coils are wound on an iron core
(Figure 6.20). For reasons that will be explained in Book 2, the magnetic field is
guided by the iron core and confined to it. So, at any given instant, the magnetic
flux has the same value over all cross-sections of the core. The output voltage is
then determined by the input voltage and the ratio of the numbers of turns in the
primary and secondary coils. Figure 6.20 A transformer,

with primary and secondary
coils wound on an iron core.Exercise 6.7 When an alternating voltage V1 is applied across the primary coil

of a transformer, the changing magnetic flux induces an alternating voltage V2

across the secondary coil. Show that V2/V1 = N2/N1, where N1 and N2 are the
numbers of turns in the primary and secondary coils. Q

Magnetic storms

One or two days after a solar storm, the Earth experiences a sudden influx of
charged particles. Most of these particles are deflected by the Earth’s magnetic
field, but small fluctuations are produced in the magnetic field at the Earth’s
surface. These fluctuations are called magnetic storms. They are widespread and
sudden, and can induce damaging surges in the vast circuits that distribute
electricity across countries and continents. The most severe incident in recent
times occurred in March 1989, when 6 million people in Quebec lost electrical
power for more than 9 hours.

Exercise 6.8 Suppose that the vertical component of the Earth’s magnetic
field changes by 1.0% in 10 seconds. What emf is induced in a circular
conducting loop of radius 600 km in a region where the vertical component of the
magnetic field is normally 5.0 × 10−5 T? Q

Residual current devices

Many lives have been saved by residual current devices. In a typical example,
the leads bringing current to and from an electrical appliance pass through an iron

153



Chapter 6 Electromagnetic induction

ring which has a sensing coil wound around it (Figure 6.21). In normal operation,
the current through one lead is exactly opposite to the current through the other
lead, so little magnetic flux passes through the sensing coil. But if something
catastrophic occurs, a significant amount of current may flow to Earth (possibly
via your body). In this case, the currents in the two leads no longer cancel, and a
much larger magnetic flux passes through the sensing coil. At the moment of
failure, the magnetic flux changes rapidly and a detectable current is induced in
the sensing coil. This is used to trigger a mechanism that cuts off the current to
the appliance.

Figure 6.21 A residual
current device.

Probing structures

Electromagnetic induction is also used to detect metal objects below ground level.
In a metal detector, an alternating current of frequency between 3 kHz and
30 kHz is sent through a transmitting coil. This produces an oscillating magnetic
field which penetrates below ground level and induces currents in conducting
objects. These currents themselves produce oscillating magnetic fields, which are
detected by the currents they induce in a separate receiver coil. The receiver coil
is designed in such a way that it picks up very little magnetic flux directly from
the transmitting coil. Its current is amplified and converted into an audible tone.

Although it sounds drastic, similar methods have been applied to the human body.
In transcranial magnetic stimulation an alternating magnetic field is used toA metal detector and a

transcranial magnetic stimulator
were illustrated in the
Introduction to this chapter.

induce currents in the brain. Rather alarmingly, a magnetic field of 0.5 T is
applied for less than a millisecond, producing a current pulse of a few kiloamps.
The experience is not pleasant but is believed to cause no lasting harm. It is hoped
that this technique will provide useful information about brain function.

6.3 The differential version of Faraday’s law
The version of Faraday’s law you have seen so far, namely�

C
E · dl = − d

dt

�
S
B · dS, (Eqn 6.6)

is the integral version of Faraday’s law. Like other laws in electromagnetism, it
can be converted to an equivalent differential form. In order to achieve this, we
recall that the open surface S used in Faraday’s law is fixed in space. So the only
possible reason for a change in the magnetic flux over S is a change in the
magnetic field. This means that the rate of change of magnetic flux on the
right-hand side of Equation 6.6 can be written as

d
dt

�
S
B · dS =

�
S

∂B
∂t

· dS.

The use of ordinary differentiation outside the integral and partial differentiation
inside the integral may seem odd, but is correct. Ordinary differentiation is
appropriate outside the integral because the magnetic flux

�
S B · dS is a function

of time only. By contrast, the magnetic field inside the integral may depend on
spatial coordinates as well as on time, so partial differentiation with respect to
time is appropriate inside the integral.
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6.3 The differential version of Faraday’s law 

We can also use the curl theorem to express the left-hand side of Equation 6.6 as 

E · dl = curl E · dS, 
C S 

where S is any open surface which has C as perimeter. We choose this surface to 
be the same as that used to calculate the magnetic flux on the right-hand side of 
Equation 6.6. Combining these results, we can rewrite Faraday’s law as 

∂B
curl E + · dS = 0. 

∂tS 

This equation is true for any open surface, irrespective of its position, orientation 
or size. Because it is true even for the tiniest scrap of surface, the integrand must 
vanish everywhere. We conclude that 

curl E = − 
∂B 
∂t 

. (6.7) 

This is the differential version of Faraday’s law. Although fixed loops and 
surfaces were used in its derivation, all traces of these have been left behind. 
Equation 6.7 is valid for all magnetic and electric fields at all places and times. 

R z
B = Ktez K 

E = Eφ(r)eφ 

curl E = 
1 
r 

��������� 
er reφ ez 

∂ 
∂r 

∂ 
∂φ 

∂ 
∂z 

0 rEφ(r) 0 

��������� = 
1 
r 

d 
dr 

(rEφ)ez . 

∂B = Kez 

d 
dr 

(rEφ) =  −

Eφ = −1 
2Kr + 

A 
r 

, 

Worked Example 6.2 

Consider again the situation described in Worked Example 6.1. An infinitely 
long cylindrical solenoid of radius is aligned with the -axis. The uniform 
magnetic field inside the solenoid varies as , where is a 
constant, and there is no magnetic field outside the solenoid. Use the 
differential version of Faraday’s law to find the form of the induced electric 
field inside and outside the solenoid. Do your answers agree with Worked 
Example 6.1? 

Solution 

As in Worked Example 6.1, we use axial and translational symmetry to 
assert that the induced electric field takes the form 

in cylindrical coordinates. Using a formula listed inside the back cover of 
the book, we obtain 

Inside the solenoid, /∂t , and the differential version of Faraday’s 
law gives 

Kr. 

Integrating both sides, we obtain 

Essential skill 
Using the differential version of 
Faraday’s law. 
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See also Worked Example 8.29.


where A 

r 

∂B = 0
curl E = 0

d 
dr 

(rEφ) = 0. 

Eφ = 
C 
r 

, 

where C 
R 

of C Eφ at r = R

−1 
2KR = 

C 
R 

, so C = −1 
2KR2 . 

curl E 

1/r. 

is an arbitrary constant of integration. This constant can be set 
equal to zero, because it would be unreasonable for the electric field to 
diverge as tends to zero. 

Outside the solenoid, /∂t , so the differential version of Faraday’s 
law becomes , which gives 

Integrating both sides, we obtain 

is another arbitrary constant of integration. The electric field must 
be continuous at the radius of the solenoid, so we can determine the value 

by equating the two expressions for . This  gives  

Both inside and outside the solenoid, these answers agree with those 
obtained in Worked Example 6.1. 

It is worth noting that vanishes outside the solenoid even though the 
electric field lines are circular there. This shows that you should not judge 
whether a field is irrotational solely on the basis of its field lines. Zero curl is 
consistent with circular field lines provided that the magnitude of the field 
decreases as 

Exercise 6.9 The electric field in a given region takes the form 
E = A cos(ky − ωt) ez , where A, k and ω are constants. What can be said about 
the magnetic field in this region? Q 

The significance of Faraday’s law 

Faraday’s law, in either its integral version (Equation 6.6) or its differential 
version (Equation 6.7), is one of Maxwell’s four laws of electromagnetism. It is a 
cornerstone of the whole subject of electromagnetism. It also introduces new 
aspects, unlike those discussed in previous chapters. Three points are worth 
emphasizing. 

1. In Chapters 1–5 of this book, electric and magnetic fields were discussed 
independently. Now, Faraday’s law links these two fields together. It is 
sometimes loosely said that a changing magnetic field causes a 
non-conservative electric field, but I will use more neutral language. Cause 
generally precedes effect, whereas Equation 6.7 shows that the time derivative 
of B and the curl of E coexist at the same time and place. It is therefore better 
to say that non-conservative electric fields and time-dependent magnetic fields 
go hand-in-hand. Where there is a non-conservative electric field there must be 
a time-dependent magnetic field, and where there is a time-dependent magnetic 
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field there must be a non-conservative electric field. They are two sides of the 
same coin. 

2. Electromagnetic fields were originally introduced as ancillary concepts — 
useful tools that simplify the calculation of electric or magnetic forces. But 
Faraday’s law suggests that the electromagnetic field has a dynamics of its own. By ‘dynamics’, I mean an 
The rate of change of the magnetic field at a given place and time is related to underlying theory that explains 
the curl of the electric field at the same place and time. By any standards, this how the field changes with time. 
is a major discovery, as Maxwell knew when he called his most important 
paper A dynamical theory of the electromagnetic field. 

3. Faraday’s law tells us when an electric field can be treated as being 
electrostatic. If a magnetic field is constant throughout a given region, 
Faraday’s law tells us that E is irrotational there (curl E = 0). If the region is 
simply-connected, it follows that E is conservative, and this allows us to define 
an electrostatic potential, and to deduce the electric field by electrostatic 
methods. 

However, care is needed if the magnetic field is constant in a region that is not 
simply-connected (MT 8.9.5). In this case, Faraday’s law still ensures that 
curl E = 0, but we can no longer guarantee that E is conservative. For 
example, Worked Examples 6.1 and 6.2 described a situation where the 
magnetic field changes inside an infinitely long solenoid, but remains constant 
outside it. In this situation, the electric field is irrotational outside the solenoid, 
but the circular pattern of field lines shows that this field has a non-zero 
circulation, and so is not conservative. 

6.4 Induction in a moving circuit 
So far, you have seen that a current is induced in a stationary circuit when the 
magnetic flux through the circuit is changing. For example, a current is induced in 
a stationary coil when a magnet moves towards it. Now we shall consider what 
happens when a circuit moves in a static magnetic field. Instead of moving a 
magnet towards a stationary coil, we will move a coil towards a stationary 
magnet. Not surprisingly, a current is also induced in this case. While this may 
seem natural, it raises an interesting question. 

O If the magnet is at rest, the magnetic field is time-independent. The 
differential version of Faraday’s law then shows that the electric field is 
irrotational everywhere, and hence conservative. But we know that a 
conservative electric field cannot drive a current around a circuit, so why does 
a current flow in this case? 

P The current must be driven by magnetic forces. When a conductor moves 
through a magnetic field, mobile charges in the conductor experience 
magnetic forces, and these forces drive the charges along the conductor. 

To see how this works, consider the square conducting loop PQRS in Figure 6.22. 
This loop moves with velocity v to the right in a static magnetic field B that 
points into the page. For simplicity, let us suppose that any current in the loop is 
carried by positive charges, q, that are initially at rest relative to the loop, but are 
free to move within it. This simplifies the true situation, where negatively-charged 
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electrons have zero average velocity relative to the loop, but does not affect any 
predictions of macroscopic current flow. 

Figure 6.22 A square conducting loop PQRS Figure 6.23 A current is generated when a 
moving with velocity v in a static magnetic square conducting loop moves perpendicular to a 
field B that points into the page. The red arrows non-uniform static magnetic field. 
indicate the magnetic forces acting on positive 
charge carriers in different parts of the loop. 

The mobile charge carriers move along with the loop, and so have velocity v in 
the magnetic field B. They each experience a magnetic force qv × B. Using the 
right-hand rule, the charge carriers experience magnetic forces in the directions 
shown by the red arrows in Figure 6.22. In sides QR and PS, they are pushed 
towards one side of the conductor but have no tendency to flow around the loop. 
In sides RS and QP, the magnetic forces push the charge carriers along the 
conductors. This can generate a current. 

If the magnetic field is uniform, the tendency of the charge carriers in side RS to 
set up an anticlockwise current is exactly compensated by the tendency of the 
charge carriers in side QP to set up a clockwise current, so no current flows around 
the loop. But if the magnetic field is non-uniform, the cancellation is no longer 
exact and a current will flow around the loop. This is illustrated in Figure 6.23 for 
a case where the magnetic field is stronger at the leading edge of the loop (RS) 
than at the trailing edge (QP), leading to an anticlockwise current around the loop. 

The current is driven by magnetic forces, although electrostatic forces may also 
arise in the process of establishing a uniform flow of charge all around the circuit. 
In the most general case, where the circuit moves and the magnetic field depends 
on time, the current is also driven by a non-conservative electric field. However, it 
is safe to say that in all cases, the induced current is driven by electromagnetic 
forces. 

Now, suppose that a charge q is transferred once around a conducting circuit C 
that is moving in a magnetic field. You need not picture this in terms of a single 
particle making one lap of the circuit, but can think of a current I flowing for a 
short time interval δt, with the charge q = I δt  flowing through each part in the 
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circuit. The work done on the transferred charge is then 

W = q (E + v × B) · dl, 
C 

where v is the velocity of an element δl of the circuit. The corresponding emf is 
the work done per unit charge, so we define the induced emf to be 

Vemf = 
� 

C 
(E + v × B) · dl. (6.8) 

A real circuit may contain additional sources of emf, such as batteries or 
thermocouples, but these are ignored in the present discussion. 

The voltage drop across part of a moving circuit is defined in a similar way. 
Suppose that C1 is a path that moves along with a circuit. At any given instant, 
this path has a definite shape but each point along the path has a velocity as well 
as a position. We then define the voltage drop along C1 to be 

Vdrop = 
� 

C1 

(E + v × B) · dl. (6.9) 

This definition of voltage drop allows us to extend Ohm’s law to moving circuits. 
If part of a moving circuit has resistance R, the voltage drop across this part of the 
circuit, taken along a path that moves along with it, obeys 

Vdrop = IR.  

The voltage drop around the whole circuit is equal to the induced emf, so the 
current in the circuit is given by I = Vemf/Rcircuit, where Rcircuit is the total 
resistance. 

l 

v = vex to 
B = −Bez 

into 

R. 

Essential skill 
Finding the current induced in a 
moving circuit. 

Worked Example 6.3 

Figure 6.24 shows two horizontal conducting rails. The rails are a distance 
apart, and are joined at their left-hand ends by a fixed conductor MN. A 
conducting bar PQ is perpendicular to the rails and completes the circuit 
MNPQ. The bar PQ slides over the rails, moving with velocity 
the right. A uniform magnetic field points vertically downwards 
throughout the whole region ( the page in Figure 6.24). Find the 
magnitude and direction of the current induced in the circuit MNPQ, 
assuming that this circuit has a constant resistance 

Figure 6.24 For Worked Example 6.3. 
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Solution 

The induced emf arises from magnetic forces in the moving bar PQ. To 
maintain a uniform current flow, there may also be an electrostatic field, but 
this does not contribute to the emf, because it is conservative and so has zero 
circulation around the circuit. At all points along the moving bar, 

There is no contribution from the stationary parts of the circuit, so, 
integrating around the circuit in the sense MNPQ, we obtain 

Bvl. 

Taking the positive sense of circulation to be MNPQ, the current is 

Bvl 

Not surprisingly, this increases with , and decreases with 

The current that we have just calculated persists in spite of the dissipative effects 
of resistance. Clearly, energy is needed to achieve this, so we should ask where 
this energy comes from. The answer is based on the fact that energy is needed to 
keep the bar moving. 

We know that a current element I δl experiences a magnetic force 

δF = I δl × B. (Eqn 3.12) 

The bar PQ contains many such current elements. Using the right-hand rule, we 
see that a magnetic force F = −BIlex acts on the bar, pulling it to the left. To 
keep the bar moving at a steady velocity, a balancing external force Fext = BIlex 

must be applied to the bar, pushing it to the right. This force is supplied by some 
external agency — by you, if you are pushing the bar. In time δt, the bar moves a 
distance v δt  in the x-direction, and the work done by the external force is 

δW = BIl × v δt.  

The power expended is therefore 

dW 
Pext = = BIlv. (6.10)

dt 

We already know that Vemf = Bvl, so we conclude that 

Pext = IVemf, 

which is the power in the circuit. The energy books balance exactly. The 
mechanical energy spent by the agency that keeps the bar moving provides the 
energy needed to maintain a steady current in the circuit. Anticipating this result, 
and recalling that emf is the power supplied per unit current, Equation 6.10 
provides us with an alternative way of calculating the emf. Dividing both sides of 
Equation 6.10 by the current I , we obtain Vemf = Pext /I = Bvl, in agreement 
with Worked Example 6.3. 
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A further check 

The two different ways of calculating the emf are equivalent. 
To understand why, it may help to consider Figure 6.25. This 
shows a positive charge q moving with drift velocity vd along 
the bar PQ, while the bar moves to the right with velocity v. 
The resultant velocity of the charge is vtot = vd + v. 

The charge q experiences a magnetic force 

Fmag = q(vtot × B) = q(vd × B) + q(v × B). 

The first term in the final expression represents a force 
pointing to the left. This is exactly cancelled by an external 
force Fext = −q(vd × B), which must be applied to keep the 
bar moving steadily. 

The total force experienced by the charge is therefore 

Ftot = Fmag + Fext = q(v × B), 

which points along the bar PQ. The magnetic force Fmag is perpendicular to vtot,

and cannot do any work. But the total force Ftot acts in a different direction and,

in time δt, does work δW = Ftot · vtot δt on the charge. It is helpful to note that

the three right-angles marked in Figure 6.25 imply that Ftot · v = 0,

Fmag · vtot = 0 and Fext · vd = 0. Using these scalar products, it is easy to see that


Ftot · vtot = Ftot · (vd + v) = Ftot · vd = q(v × B) · vd


= (Fmag + Fext) · vtot = Fext · vtot = Fext · (vd + v) = Fext · v.


Multiplying throughout by δt, the first line gives the work done by the force 
q(v × B) when the charge makes a displacement δl = vd δt along the bar, while 
the second line gives the work done by the external force Fext when the charge 
makes a sideways displacement v δt in the direction of the bar’s motion. The 
equality of these two lines confirms that our two ways of calculating the emf are 
equivalent. 

6.4.1 Faraday’s law extended to moving circuits 

The integral version of Faraday’s law, as stated in Section 6.2, was confined to 
stationary circuits. This section will show that it can be extended to moving 
circuits as well. 

Let’s return to Worked Example 6.3. In this case, the magnetic flux through the 
rectangular loop MNPQ certainly changes with time. This is not because the 
magnetic field is time-dependent, but because the rectangular loop is expanding. 
It is easy to calculate the rate of change of magnetic flux through the loop. We 
choose the positive sense of circulation around the loop to be MNPQ, and take the 
open surface S to be the rectangle bounded by MNPQ, with its unit normal 
pointing out of the page, towards you. The magnetic flux through S is then −Blx, 
where l and x are the lengths of sides PQ and NP. The rate of change of magnetic 
flux is therefore 

d d
B · dS = (−Blx) = −Blv, 

dt S dt

Figure 6.25 A charge carrier 
q has drift velocity vd along a 
bar PQ which is moving with 
velocity v. A magnetic field B 
points into the page, away from 
you. 
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Chapter 6 Electromagnetic induction 

where v is the speed of the conducting bar PQ. We recognize this as minus the 
emf calculated in Worked Example 6.3. So, in this example at least, 

d 
Vemf = − B · dS,

dt S 

which is just like an induced emf predicted from Faraday’s law, except that the 
emf is now defined by Equation 6.8, and the changing magnetic flux arises from 
the motion of a circuit. 

This is no coincidence, but turns out to be completely general. Suppose that we 
know how a vector field F varies in space and time and how the shape of a surface 
S changes with time. Then we clearly have enough information to determine how 
the flux of F over S varies with time, and therefore to find the rate of change of 
this flux. This is a purely mathematical problem, and it has a purely mathematical 
solution. The rate of change of the flux of any vector field F over a surface S 
turns out to be 

d ∂F
F · dS = + v div F − curl(v × F) · dS, (6.11)

dt S ∂tS 

where v is the velocity at a given point on S. 

The proof of this formula would be a lengthy and unnecessary diversion. We shall 
simply treat it as a mathematical fact, valid for all smoothly-varying vector fields 
and surfaces. The scientific interest comes when we set F = B, a magnetic field. 
In this case the no-monopole law ensures that div B = 0, and the differential 
version of Faraday’s law ensures that ∂B/∂t = − curl E, so Equation 6.11 
becomes 

d 
B · dS = − curl (E + v × B) · dS.

dt S S 

Finally, using the curl theorem and interchanging left- and right-hand sides, we 
conclude that 

d
(E + v × B) · dl = − B · dS, (6.12)

dt SC 

where C is the perimeter of S. Using the generalized definition of the induced 
emf in a moving circuit (Equation 6.8), we see that 

d 
Vemf = − B · dS,

dt S 

which is very similar to Faraday’s law (Equation 6.6). There are two significant 
differences. For a moving circuit, the emf is defined to be the line integral of 
E + v × B around the circuit, and the rate of decrease of magnetic flux includes 
contributions from the motion of the circuit. For these reasons, Equation 6.12 is 
called the generalized Faraday law. It is not counted as one of Maxwell’s 
equations, but the above argument shows that it follows directly from the 
differential versions of two of Maxwell’s equations — the no-monopole law and 
Faraday’s law — which are valid for all electromagnetic fields. It is also worth 
noting that the generalized Faraday law contains the expression (E + v × B), 
even though its derivation made no use of the Lorentz force law. It is wonderful to 
see how these different aspects of electromagnetism fit together in a natural way. 

The generalized Faraday law is useful in interpreting the behaviour of very highly 
conducting fluids, such as plasmas. A small closed loop in such a fluid will have a 
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very low resistance. Various physical processes prevent the current from being too 
large, so Ohm’s law, Vemf = IR, shows that the induced emf around the loop must 
be very small. Equation 6.12 then shows that the magnetic flux through the loop is 
almost constant. As the fluid churns and swirls, the imaginary closed loop 
changes shape, but the magnetic flux through the loop remains practically 
unchanged. This fact, known as flux freezing, is a key tool in understanding the 
dynamics of magnetic fields in stars such as the Sun. 

6.4.2 Einstein’s radical solution 

This chapter has discussed two apparently different types of electromagnetic 
induction. Induction by a time-varying magnetic field in a stationary circuit is 
driven by non-conservative electric forces, while induction by a static magnetic 
field in a moving circuit is driven by magnetic forces. 

When Einstein was a student, it was thought that all motion should be described 
relative to an ‘ether’. For a circuit that is stationary relative to the ether, it was 
believed that the correct description of induction would involve non-conservative 
electric forces rather than magnetic forces. However, we have just seen that the 
two types of electromagnetic induction are united by the generalized Faraday law, 
making it impossible to tell the difference between them. This troubled Einstein. 
He thought it unreasonable for a theory to require detail in its descriptions, and at 
the same time deny experimenters any hope of gaining access to that detail. This 
was a major spur which led Einstein to his special theory of relativity. 

Einstein’s solution was radical. He abandoned the idea of a special reference 
frame defined by the ether, and assumed that the laws of physics, including 
Maxwell’s laws of electromagnetism, are valid in all inertial frames of An inertial frame of reference is 
reference. This means that different inertial observers are free to use their own one in which Newton’s first law 
descriptions. One observer might describe induction in a circuit as being due to holds true; free particles do not 
non-conservative electric forces, while another might describe it as being due to accelerate. 
magnetic forces. Both descriptions are correct, but different observers have 
different representations of the electromagnetic field — a non-conservative 
electric field might exist in one reference frame and be absent in another. We have 
met this general feature of electromagnetism before (e.g. in Section 3.4). It is not 
hard to accept, because it is clear that a charge that is stationary in one reference 
frame (where it produces an electrostatic field) will be moving in another 
reference frame (where it produces both electric and magnetic fields). 

A software package on the DVD allows you to explore the integral and 
differential versions of Faraday’s law. This package is best studied some 
time after completing this chapter. 

Summary of Chapter 6 
Section 6.1 Steady currents in stationary circuits are driven by non-conservative 
electric fields. The voltage drop along a stationary path C is the line integral of 
the electric field along C. The emf in a circuit is the work done per unit charge 
transferred around the circuit. Most current flows obey Ohm’s law, V = IR, 
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where V is the voltage drop across a conductor of resistance R carrying a

current I . 

Section 6.2 The integral version of Faraday’s law states that � �
d


E · dl = − B · dS,
dt SC 

that is, the induced emf around a stationary closed loop C is the rate of decrease 
of the magnetic flux over an open surface S bounded by C. The positive sense of 
progression around C and the orientation of S are linked by the right-hand grip 
rule. The minus sign in Faraday’s law is consistent with Lenz’s law, which states 
that an induced current flows in such a way that its magnetic flux opposes the 
change in the magnetic flux that produced it. 

Section 6.3 The differential version of Faraday’s law states that 

∂B
curl E = − ,

∂t 

where E is the electric field at a given place and time, and B is the magnetic field 
at the same place and time. If a magnetic field is independent of time in a 
simply-connected region, the electric field is conservative there. 

Section 6.4 The voltage drop along a moving path C is the line integral of 
E + v × B along the path. This voltage drop appears in Ohm’s law for the 
moving circuit: Vdrop = IR. The induced emf around a moving circuit is the line 
integral of E + v × B around the circuit. The generalized Faraday law states that 
the emf around a moving circuit is equal to the rate of decrease of magnetic flux 
through the circuit. 

Achievements from Chapter 6 
After studying this chapter you should be able to: 

6.1	 Explain the meanings of the newly defined (emboldened) terms and 
symbols, and use them appropriately. 

6.2	 Define the terms voltage drop and emf for stationary paths and loops. 

6.3	 State and apply Ohm’s law. 

6.4	 State and apply the integral form of Faraday’s law for stationary circuits. 

6.5	 State and apply the differential form of Faraday’s law, and show how it 
follows from the integral form. 

6.6	 Appreciate how the concepts of induced emf and voltage drop are extended 
to paths and circuits that are moving. State and apply the generalized 
Faraday law. 

6.7	 Give examples of electromagnetic induction and its applications. 
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Introduction 
This chapter presents Maxwell’s greatest triumph — the prediction that 
electromagnetic waves can propagate vast distances through empty space and the 
realization that light is itself an electromagnetic wave. Visible light has a very 
narrow range of wavelengths, but this tells us more about the sensitivity of our 
eyes than about the nature of electromagnetic radiation. A few years after 
Maxwell’s death other types of electromagnetic radiation, including radio waves, 
X-rays and gamma rays, were discovered. Compared to light, radio waves have 
very long wavelengths, while X-rays and gamma rays have very short 
wavelengths. Different parts of the electromagnetic spectrum are used in different 
ways (Figure 7.1). Radio waves are used for broadcast radio and television, 
satellite communications and mobile phones. Gamma rays are used to treat cancer 
and X-rays are used in medical diagnosis. Yet all these waves have the same 
underlying description in terms of electric and magnetic fields. 

Figure 7.1 (a) An X-ray image of a hand; (b) an infrared image of Hurricane 
Rita (2005) and (c) a radio image of the Sun taken at a wavelength of 2.8 cm. In 
(b) and (c) emission ranges from low (blue) to high (red). 

Maxwell was in a position to predict the existence of electromagnetic waves 
because, by the mid-1860s, he had developed a comprehensive theory of 
electromagnetism. Much of this theory has been discussed in previous chapters. 
In particular, you have met three of Maxwell’s four equations: Gauss’s law, the  
no-monopole law and Faraday’s law. These laws can be expressed in terms of 
volume, surface and line integrals or in terms of partial derivatives. Previous 
chapters emphasized the integral versions of Maxwell’s equations, but we will 
now make more use of the differential versions. 
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O Write down the differential versions of Gauss’s law, the no-monopole law and 
Faraday’s law. Are these laws true under all circumstances? 

P The three laws are: 

div E = 
ρ 
ε0 

(Gauss’s law), 

div B = 0  (the no-monopole law), 

curl E = − 
∂B 
∂t 

(Faraday’s law), 

where E and B are the electric and magnetic fields, ρ is the charge density 
and ε0 is the permittivity of free space. All three laws have general validity: 
they apply to time-varying situations as well as static or steady-state ones. 

In Chapter 4, we also discussed Ampère’s law, the differential version of which is 

curl B = µ0J, 

where J is the current density and µ0 is the permeability of free space. However, 
Ampère’s law has a different status: it requires steady currents and is not valid for 
currents that vary in time. This means that Ampère’s law is not general enough to 
count as one of Maxwell’s four laws of electromagnetism. 

Fortunately, Ampère’s law can be rescued. Maxwell realized that an extra term, 
ε0µ0∂E/∂t, can be added to the right-hand side of Ampère’s law. This term 
makes no difference in static situations, but it extends the validity of the law to 
general, time-varying situations. The extended equation is called the 
Ampère–Maxwell law and takes the form 

∂E
curl B = µ0J + ε0µ0 . 

∂t 

Our first task is to justify this law. To achieve this, we will make use of a basic 
principle of electromagnetism — the conservation of charge. You met this 
principle at the very beginning of this book, but we have not unlocked its full 
power yet. Section 7.1 will show that the law of conservation of charge leads to a 
relationship between current density and charge density known as the equation of 
continuity. This relationship will be used in Section 7.2 to help justify the 
Ampère–Maxwell law. Then, with all four of Maxwell’s equations in place, we 
will be in a position to demonstrate that electromagnetic waves are a direct 
consequence of the laws of electromagnetism. 

7.1 The equation of continuity 
The conservation of charge is a basic tenet of electromagnetism. It can be simply 
expressed by the equation 

dQtot = 0,
dt 

where Qtot is the total charge in the Universe. However, such an equation does not 
really help us very much, because we are not usually concerned with anything as 
grand as the whole Universe. Moreover, it leaves out some important physics. 
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The most interesting aspect of the law of conservation of charge is that it applies 
locally as well as globally. If an electron were miraculously created here, and a 
proton were simultaneously, and equally miraculously, created on Mars, the total 
charge of the Universe would remain constant. But these two miracles would both 
violate the law of conservation of charge because they do not conserve charge 
locally, either here or on Mars. Electric charge is conserved in every region of 
space. We can therefore make a more powerful statement: 

The law of conservation of charge 

Any variation in the total charge within a closed surface must be due to 
charges that flow across the surface. 

To express this law in mathematical terms, consider a volume V bounded by the 
closed surface S (Figure 7.2). Electric current is defined to be the rate of flow of 
charge across a surface so the law of conservation of charge tells us that 

dQ
I = − 

dt
, (7.1) 

where I is instantaneous current flowing outwards through S into the exterior 
space and Q is the instantaneous charge in the enclosed volume V . The minus 
sign arises because a current flowing outwards across the surface produces a loss 
of charge within the surface. 

Figure 7.2 The current flowing across the closed surface S tells us the rate of 
loss of charge in the volume V enclosed by S. 

Now we can express the current I as a surface integral of the current density J: 

I = J · dS. 
S 

Using the divergence theorem, we can also write this as 

I = div J dV. (7.2) 
V 

We can express the charge Q as a volume integral of the charge density ρ: 

Q = ρ dV. 
V 
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The rate of change of Q within this volume is therefore 
dQ d ∂ρ 

= ρ dV = dV. (7.3)
dt dt V ∂tV 

Note the use of ordinary differentiation outside the integral and partial 
differentiation inside the integral. Ordinary differentiation is appropriate outside 
the integral because Q(t) is a function of time only. By contrast, the charge 
density depends on spatial coordinates as well as on time. These spatial 
coordinates remain fixed, so partial differentiation with respect to time is 
appropriate inside the integral. 

Combining Equations 7.1, 7.2 and 7.3, we conclude that 

∂ρ 
+ div  J dV = 0. 

∂tV 

The fact that this volume integral vanishes for all volumes (no matter how small) 
implies that the integrand must be equal to zero everywhere, so we have 

∂ρ 
∂t 

J = 0. (7.4)+ div  

This is called the equation of continuity. It applies at each point in space and 
each instant in time and is a direct expression of the local law of conservation of 
charge. It is a fundamental fact about electromagnetism which applies in all 
situations and in all frames of reference. 

The case of magnetostatics (discussed in Chapter 3), where all the currents are 
steady, is of special importance. In this case, we can argue that ∂ρ/∂t must be 
equal to zero. For, if ∂ρ/∂t were positive at any particular point, it would remain 
positive there forever, since all the currents are steady. This would lead to an 
unphysical boundless build-up of charge. A similar argument rules out a negative 
value of ∂ρ/∂t. Therefore realistic steady currents are characterized by 

∂ρ 
= div  J = 0. 

∂t 
However, this is a very special situation. If the currents are not steady, we would 
expect concentrations of charge to build up in different regions, and then ebb 
away. In general, ρ varies in time, and div J �= 0. 

Exercise 7.1 A one-dimensional rod is aligned with the z-axis. At any point 
along the rod, the current density is given by 

J(z, t) =  A sin(kz − ωt) ez , 

where k, ω and A are constants. What can be said about the charge density along 
the rod? You may assume that the time-average of charge density is zero at each 
point along the rod. Q 

7.2 The Ampère–Maxwell law 

7.2.1 Limitations of Ampère’s law 

In order to analyse the limitations of Ampère’s law, and suggest ways of 
overcoming them, we need to use some properties of divergence. For ease of 
reference, these properties are given below: 
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F) = 0. (7.5) 

k 

kF) =  k div F. (7.6) 

div 

� 
∂F 
∂t 

� 

= 
∂ 
∂t 

(div F) . (7.7) 

7.2 The Amp ere–Maxwell law 

Some properties of divergence 

1. The divergence of any curl is equal to zero: 

div(curl 

2. A constant can be taken outside a divergence: 

div(

3. A time derivative can be taken outside a divergence: 

You can take these properties on trust if you wish, but it is easy enough to prove 
them by expanding both sides in Cartesian coordinates. 

O Prove Equation 7.5. 

P Expanding the left-hand side of Equation 7.5 gives 

∂ ∂Fz ∂Fy ∂ ∂Fx ∂Fz ∂ ∂Fy ∂Fx− + − + − 
∂x ∂y ∂z ∂y ∂z ∂x ∂z ∂x ∂y 

∂2Fz ∂2Fy ∂2Fx ∂2Fz ∂2Fy ∂2Fx = − + − + − 
∂x∂y ∂x∂z ∂y∂z ∂y∂x ∂z∂x ∂z∂y 

∂2Fz ∂2Fz ∂2Fx ∂2Fx ∂2Fy ∂2Fy= − + − + − ,
∂x∂y ∂y∂x ∂y∂z ∂z∂y ∂z∂x ∂x∂z 

which vanishes because mixed partial derivatives do not depend on the order 
of partial differentiation. 

Now let’s examine the differential version of Ampère’s law, which states that 

curl B = µ0J. (Eqn 4.17) 

The limitations of this law are revealed by taking the divergence of both sides. 
This gives 

div(curl B) = div(µ0J). 

The divergence of any curl is equal to zero so, using Equation 7.6 and the 
equation of continuity, we have 

∂ρ
0 =  µ0 div J = −µ0 . 

∂t 

We therefore see that Ampère’s law requires the charge density to remain 
constant. Put another way: 

Ampère’s law fails when the charge density changes in time. 
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7.2.2 Generalizing Ampère’s law 

We need to generalize Ampère’s law beyond the confines of static charge 
densities. Let’s try adding an extra (and at this stage unknown) vector field, K to 
the right-hand side of the differential form of Ampère’s law. The modified 
equation then reads 

curl B = µ0J + K. 

What can be said about the term K? Taking the divergence of both sides of the 
modified equation, and using the fact that the divergence of any curl is equal to 
zero, we obtain 

0 =  div(µ0J + K) =  µ0 div J + div  K. 

So, using the equation of continuity (Equation 7.4), we have 

∂ρ
div K = −µ0 div J = µ0 . 

∂t 
Now Gauss’s law tells us that 

ρ = ε0 div E, 

so, using Equation 7.7 to interchange the order of the time and space derivatives, 

∂ρ 
∂t 

= ε0 
∂ 
∂t 

(div E) =  ε0 div 
∂E 
∂t 

. 

We conclude that 

div K = ε0µ0 div 

� 
∂E 
∂t 

� 

. (7.8) 

The simplest solution to this equation is 

∂E
K = ε0µ0 ,

∂t 
but there are other solutions as well. In fact, the most general solution is 

∂E
K = ε0µ0 + curl  X, (7.9)

∂t 
where X is any smooth vector field. You can easily verify that this satisfies 
Equation 7.8, because taking the divergence of both sides gives 

∂E
div K = ε0µ0 div + div(curl X),

∂t 

and the last term vanishes, being the divergence of a curl. 

This is as far as mathematical analysis can take us. It is not too surprising that we 
still have a choice to make. You should not expect to derive a fundamental law of 
physics from other laws. As a general rule, however, it is sensible to adopt the 
simplest law that is consistent with all the known facts. That is what Maxwell did, 
and we shall follow his lead. We assume that curl X = 0 in Equation 7.9, and 
replace Ampère’s law by 

curl B = µ0J + ε0µ0 
∂E 
∂t 

. (7.10) 

This equation is called the Ampère–Maxwell law and the additional term, 
ε0µ0∂E/∂t, is called the Maxwell term. Some authors refer to the Maxwell term 
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as µ0 times the displacement current density. We will not use this terminology in 
this book, but an optional appendix (best read after this section) describes the 
curious logic behind it. The Ampère–Maxwell law is the last of Maxwell’s four 
equations of electromagnetism. It is believed to be true in all situations, both static 
and dynamic. 

The above argument for the Ampère–Maxwell law is driven by theory. If we 
believe the law of conservation of charge (as we do), our mathematical analysis 
shows that Ampère’s law must be modified for time-dependent situations. The 
simplest modification, consistent with Gauss’s law and the equation of continuity, 
is then given by the Ampère–Maxwell law. Physics walks forward on the two legs 
of theory and experiment. Sometimes experiment strides ahead and reveals new 
facts which cry out for theoretical interpretation. The Ampère–Maxwell law is an 
early example of the opposite process — a law that emerged from a theoretical 
argument, and cried out for experimental confirmation. 

In Maxwell’s day, there was no direct experimental evidence requiring a 
modification to Ampère’s law. The Maxwell term ε0µ0∂E/∂t is usually very 
small in comparison with the term associated with the current density, µ0J. For  
example, if a mains-frequency current is uniformly distributed throughout a 
copper wire, the Maxwell term in the wire is only about 5 × 10−17 as large as µ0J . 
On this basis, it is tempting to dismiss the Maxwell term as a practical irrelevance, 
but this would be a serious error of judgement. Although small, the Maxwell term 
can exist in empty space, where no real currents exist, and there it plays a vital 
role in sustaining the propagation of electromagnetic waves, as you will soon see. 
Ultimately, the existence of these waves provides the best evidence for the whole 
of Maxwell’s theory, including the Maxwell term and the Ampère–Maxwell law. 

Exercise 7.2 Equation 7.10 is the differential version of the Ampère–Maxwell 
law. Show that the corresponding integral version is 

∂E
B · dl = µ0J + ε0µ0 · dS (7.11)

∂tC S 

where C is a closed loop and S is any open surface that has C as its perimeter. 
The sense of positive progression around C and the orientation of S are related by 
the right-hand grip rule. Q 

7.2.3 The Ampère–Maxwell law in action 

To give some further insight into the Ampère–Maxwell law, we will now consider 
two situations where it plays a significant role. 

An expanding sphere of charge 

First consider an expanding spherically-symmetric ball of positive charge. This is 
not an implausible state of affairs. If the charges in the distribution are not held in 
place, their mutual repulsion leads to a spherically-symmetric expansion and a 
spherically-symmetric outward flow of current. You may recall from Chapter 4 
that any spherically-symmetric distribution of current is magnetically silent — 
that is, it produces no magnetic field. This is true both outside and inside the 
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current distribution. We will now show that this rather surprising result is fully 
consistent with the Ampère–Maxwell law. 

Using a spherical coordinate system with its origin at the centre of the charge 
distribution, we consider a point P with radial coordinate r (Figure 7.3). Because 
the charge distribution is spherically-symmetric, the electric field at P is 

QinE = 
24πε0r
er , 

where Qin is the total charge inside a sphere of radius r (the dashed sphere in 
Figure 7.3). The outward current through the surface of the dashed sphere is equal 
to the rate of decrease of charge inside it, so we have 

Figure 7.3 An expanding � 
sphere of charge. 

dQin = − J · dS = −Jr (r) × 4πr2 ,
dt S 

where S is the surface of the dashed sphere and J = Jr (r) er is the current density 
on the surface of this sphere. It follows that the Maxwell term at point P on S is 

∂E 1 dQin −Jr (r) × 4πr2 

er = −µ0J.ε0µ0 
∂t 

= ε0µ0 4πε0r2 dt 
er = µ0 4πr2 

Combining this equation with the Ampère–Maxwell law (Equation 7.10), we 
finally obtain 

∂E
curl B = µ0J + ε0µ0 = µ0J − µ0J = 0,

∂t 
which is consistent with B = 0. Note that the Maxwell term is essential for this 

ere’s law would wrongly imply that curl B �cancellation. Amp` = 0 at points where 
J �= 0. 

(Incidentally, div B is also equal to zero, by virtue of the no-monopole law. 
Although we shall not prove it, the fact that both curl B and div B vanish 
everywhere, and the natural assumption that B tends to zero at infinity, turns out 
to be sufficient to guarantee that B = 0 everywhere.) 

A capacitor with time-varying charges on its plates 

Figure 7.4 shows a parallel plate capacitor with circular plates, which is being 
charged by steady currents flowing along straight wires. We know that there is a 
circular pattern of magnetic field lines around the wires, but what happens inside 
the capacitor, between the plates? 

Figure 7.4 Charging the 
plates of a capacitor. 

172 



� � 

`7.2 The Amp ere–Maxwell law 

The situation illustrated in Figure 7.4 is difficult to analyse quantitatively. Charge 
spreads out over the plates from the points of contact with the wires so, at any 
given moment, the plates are unevenly charged and radial currents flow over their 
surfaces. We will avoid such complications by imagining that the charge is 
conveyed by a uniform steady current density that is perpendicular to the full area 
of the plates. One way of approaching this ideal would be to replace the 
arrangement of Figure 7.4 by thick cylinders separated by a narrow gap, as in 
Figure 7.5. The gap between the cylinders is tiny compared to their diameters, so 
the system behaves like an infinite parallel plate capacitor, with the end-faces of 
the cylinders serving as the capacitor plates. 

Figure 7.5 A parallel plate capacitor formed from thick cylinders. 

Between the plates, there is no charge flow so the current density J is equal to 
zero. However, the Maxwell term is non-zero there because the increasing charge 
on the plates produces a steadily increasing electric field between the plates. 
Taking the gap between the plates to be tiny (so that we can ignore edge effects), 
the electric field between the plates is uniform and has the instantaneous value 

Q(t)
E = ez , (7.12) See Chapter 5, Section 2.3.3. 

ε0A 

where Q(t) is the instantaneous charge on the positive plate, A is the area of a 
plate and ez is a unit vector pointing from the positive plate to the negative plate. 
The Maxwell term in the gap is 

∂E µ0 dQ
ε0µ0 = 

∂t A dt 
ez , 

so the differential version of the Ampère–Maxwell law in the gap is 

µ0 dQ
curl B = 

A dt 
ez . (7.13) 

The corresponding integral equation is 

µ0 dQ
B · dl = ez · dS, (7.14)

A dt SC 

where S is an open surface and C is its perimeter. 

Exploiting the axial symmetry of the situation, we use cylindrical coordinates 
with the z-axis along the line of symmetry. We also assume that the magnetic field 
has the form 

B = Bφ(r, z) eφ. 

This form of the magnetic field can be justified by a reflection-symmetry 
argument similar to that given for an infinitely-long cylindrical conductor in 
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Chapter 4. For the moment, we have allowed for a possible dependence of Bφ 

on z. This is a wise precaution because the present situation does not have 
translational symmetry, but you will soon see that it is not necessary. 

To apply the Ampère–Maxwell law, we choose the circular path C shown in 
Figure 7.6, together with the disc S that has C as its boundary. Equation 7.14 then 
gives 

µ0 dQ
Bφ(r, z) × 2πr = × πr2 . 

A dt 
So 

Bφ(r, z) =  
µ0r dQ 
2A dt 

and the magnetic field between capacitor plates is 

µ0r dQ
B =

2A dt 
eφ. (7.15) 

This is independent of z, and is also independent of time because we are assuming 
that the capacitor is being charged at a constant rate by a steady current. 

Figure 7.6 A circular path C and a disc S used to find the magnetic field inside 
a capacitor that is being charged. 

I should perhaps point out that I am not claiming that the Maxwell term causes 
the magnetic field inside the capacitor. It would be silly to neglect the currents 
that bring charge to the capacitor plates. These currents do not flow inside the 
capacitor, but there is nothing to prevent them from producing a magnetic field 
inside the capacitor. Indeed, if the gap between the plates is small, the magnetic 
field inside the capacitor due to external currents must overwhelm anything else. 
This may lead you to wonder why the above calculation, based on the Maxwell 
term, is valid. The logic is as follows. First, the time-varying charges on the 
capacitor plates produce a time-varying electric field between the plates. Then the 
Ampère–Maxwell law provides a relationship between the time-varying electric 
field and the circulation of the magnetic field. This relationship must be satisfied 
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by all electric and magnetic fields, and it allows us to deduce the magnetic field 
from the known electric field irrespective of what the causes of these fields might 
be. 

It is also instructive to calculate the magnetic field inside the capacitor by an 
alternative route. Instead of choosing S to be a disc, we can take it to be the open 
cylinder shown in Figure 7.7, with its end-cap outside the capacitor. The unit 
normal to the end-cap is chosen to point along the positive z-axis, in accordance 
with the usual right-hand grip rule. 

Figure 7.7 A circular path C and an open cylinder S used to find the magnetic 
field inside the capacitor. The open cylinder has an end-cap on right, but no 
end-cap on the left. 

Outside the infinite parallel plate capacitor, there is no time-dependent electric 
field, so there is no Maxwell term. However, there is the steady uniform current 
density that brings charge to the capacitor plates. This current density obviously 
obeys 

dQ
Jz A = .

dt 
Now, both the Maxwell term inside the capacitor and the current density outside 
the capacitor are perpendicular to the capacitor plates (remember, we have 
carefully avoided any radial flow of current). So, if we apply the integral version 
of the Ampère–Maxwell law (Equation 7.11) to the surface in Figure 7.7, the 
curved sides of the cylinder contribute nothing, and we are left with an integral 
over the end-cap. The Ampère–Maxwell law then gives 

Bφ(r) × 2πr = µ0Jz × πr2 = 
µ0 dQ × πr2 ,
A dt 

exactly as before. This shows why the Maxwell term is needed. Without it, these 
two methods of calculating the magnetic field inside the capacitor would give 
different answers, leading to a contradiction. Very similar calculations show that 
the magnetic field outside the capacitor is given by exactly the same expression, so 
there is no difference between the magnetic field inside and outside the capacitor. 
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Finally, it is interesting to note that the predictions of the Ampère–Maxwell law 
can be put to a direct experimental test. In 1973, Carver and Rajhel carried out a 
demonstration using the apparatus sketched in Figure 7.8. An oscillating voltage 
was applied across the circular plates of a large parallel plate capacitor, producing 
an oscillating electric field inside the capacitor. From the above argument, we 
would expect this to be accompanied by an oscillating Bφ field. The toroidal coil 
in Figure 7.8 was designed to detect this. The oscillating magnetic flux through 
the toroidal coil induced an oscillating voltage, which was easily detected on an 
oscilloscope. 

Figure 7.8 A direct test of the Ampère–Maxwell law. 
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7.3 Maxwell’s equations 
We have reached a major milestone. All four of Maxwell’s equations are now in 
place. This is an appropriate place to review their meaning and significance. We 
concentrate here on the differential versions, which are as follows: 

div E = 
ρ 
ε0 

div B = 0  

curl E = − 
∂B 
∂t 

curl B = µ0J + ε0µ0 
∂E 
∂t 

. 

O Name the above equations. 

P In the order presented, the equations are called: Gauss’s law, the no-monopole 
law, Faraday’s law and the Ampère–Maxwell law. These equations are listed 
inside the front cover of the book, but it would be a real advantage to 
remember them. This may come naturally, after sufficient use. 

Maxwell’s equations are of great generality. They apply to all charge and current 
densities, whether static or time-dependent. Together, they describe the dynamical 
behaviour of the electromagnetic field. Each of Maxwell’s equations is a local 
equation, relating field quantities at each point in space and at each instant in time, 
so all trace of instantaneous action at a distance has been eliminated. The 
revolutionary nature of this description was recognized by Einstein, who wrote: 

‘The formulation of [Maxwell’s] equations is the most important event in 
physics since Newton’s time, not only because of their wealth of content, but 
also because they form a pattern for a new type of law ... Maxwell’s 
equations are laws representing the structure of the field ... All space is the 
scene of these laws and not, as for mechanical laws, only points in which 
matter or charges are present.’ 

Maxwell’s equations are partial differential equations. They link the spatial and 
temporal rates of change of electric and magnetic fields, and they show how these 
rates of change are related to the sources of the fields — charge and current 
densities. The spatial rates of change of the fields are neatly bundled up as div E, 
div B, curl E and curl B — divergences and curls. This, in itself, is an immense 
simplification. Each field has three components, which can be partially 
differentiated with respect to three coordinates, so there are 18 first-order spatial 
partial derivatives of the electric and magnetic fields. The divergences and curls 
collect these partial derivatives together, focusing attention on only eight 
quantities of interest (a scalar for each divergence and three components for each 
curl). Moreover, divergences and curls have clear physical interpretations, telling 
us how the fields spread out and circulate at each point. 

Where do the electric and magnetic fields come from? The modern answer is that 
they come from the terms in Maxwell’s equations that describe matter — the  

177 



Chapter 7 Maxwell’s triumph 

charge and current densities, ρ and J. To be explicit about this, we can re-order 
and rearrange Maxwell’s equations so that the two source terms appear on the 
right-hand sides of the first two equations: 

ρ
div E = 

ε0


∂E

curl B − ε0µ0 = µ0J 

∂t 

div B = 0  

∂B
curl E + = 0. 

∂t 

In regions where there are no charges or currents, all four equations have zero on 
the right-hand sides. They then tell us the conditions that electric fields and 
magnetic fields must satisfy in empty space. These conditions describe the 
internal structure and dynamics of the electromagnetic field. We will discuss this 
dynamics in the next section, and you will see that it allows the propagation of 
wave-like disturbances — electromagnetic waves. 

In regions where there are charges and currents, the first two equations have an 
additional role. They tell us how the electromagnetic field is coupled to matter, 
and the left-hand sides of these equations describe the response of the 
electromagnetic field to the local charge and current densities. The last two 
equations do not have this role, so Maxwell’s equations are asymmetrical. The 
absence of source terms in the last two equations arises because magnetic 
monopoles, and monopole currents, are assumed to be non-existent. 

When Maxwell introduced his equations, he expected them to apply in a special 
frame of reference — the frame of the stationary ether. This is not the modern 
view. We now believe equations apply in all inertial frames of reference — that  
is, all frames in which free particles move uniformly, with no acceleration. 
Maxwell’s equations are also unaffected by time-reversal and by reflections in 
space. 

Only one caveat need be mentioned. Maxwell’s equations do not apply in 
non-inertial frames. In a rotating frame of reference, for example, the electric flux 
over a closed surface can be non-zero even though the surface encloses no net 
charge — a clear violation of Gauss’s law. This should not alarm you. Most laws 
of physics, including the laws of conservation of energy and momentum, are 
restricted to inertial frames of reference, and Maxwell’s equations are no 
exception. The use of inertial frames is implicitly assumed throughout this course. 

Exercise 7.3 Show that Maxwell’s equations are unchanged by the operation 
of time-reversal, which changes t → −t, J → −J and B → −B, but leaves ρ and 
E unchanged. 

Exercise 7.4 Show that the equation of continuity is contained within the 
Ampère–Maxwell law and Gauss’s law. Q 
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7.4 Let there be light! 

7.4.1 Electromagnetic waves 

This section gives a brief introduction to light and electromagnetic waves. 
You will have the opportunity to revisit this material in the last book of the 
course. 

The idea that light is an electromagnetic wave had occurred to Faraday while 
Maxwell was still a schoolboy, but Maxwell was the first person to possess a 
complete set of equations describing the dynamical behaviour of electric and 
magnetic fields. Believing that Faraday was correct, Maxwell set out to show that 
his equations have wave-like solutions that propagate through empty space at the 
speed of light. 

Electric and magnetic fields are produced by charges and currents, but these fields 
also extend into surrounding regions of empty space. For example, charges and 
currents in the Sun produce electromagnetic fields which travel across almost 
empty space before reaching sunbathers on a beach on Earth. The detailed 
relationship between the fields and their sources will not be discussed here. 
Instead, we take the existence of time-varying electric and magnetic fields for 
granted, and concentrate on their propagation through space. In empty space, the 
charge and current densities are equal to zero, so Maxwell’s equations become 

div E = 0  (7.16) 

div B = 0  (7.17) 

∂B
curl E = − (7.18)

∂t


∂E

curl B = ε0µ0 . (7.19)

∂t 

Our aim is to show that these equations have wave-like solutions which describe 
oscillating electric and magnetic fields that propagate through space. These 
wave-like solutions are called electromagnetic waves. 

Starting points 

We begin by making some simplifying assumptions about the electric field. This is 
legitimate because we are not looking for the most general solution to Maxwell’s 
equations, but only for special solutions that exhibit wave-like behaviour. We will 
ultimately check that our solutions for the fields satisfy all of Maxwell’s 
equations, and hence obtain retrospective support for our initial assumptions. 

If you drop a pebble in a pond, waves spread out in all directions on the surface. 
Many electromagnetic waves spread out radially like this, but we will consider a 
disturbance that propagates in a fixed direction, like the parallel beam from a 
searchlight. We will take the direction of propagation to be the z-axis. For 
simplicity, we assume that the electric field depends only on z and t, and does not 
depend on x or y at all. At any given instant, the surfaces on which the electric 
field has a constant value are planes perpendicular to the z-axis. These planes are 
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infinite in extent, corresponding to an infinitely wide beam. Disturbances of this 
type are called plane waves. We will also assume that the electric field oscillates 
along a fixed direction. Disturbances of this type are called linearly polarized 
waves. 

With these assumptions, the electric field takes the form 

E = f(z, t) u, (7.20) 

where f(z, t) is some (as yet unspecified) function of z and t and 
u = ux ex + uy ey + uz ez is a fixed unit vector. This electric field, and any 
associated magnetic field, must satisfy all four of Maxwell’s equations in empty 
space. We will now show that this can be achieved provided that certain 
conditions are met. So our confirmation that electromagnetic waves can exist will 
also predict some of their properties. 

Getting agreement with Gauss’s law 

Substituting the assumed form of the electric field (Equation 7.20) into the 
empty-space version of Gauss’s law (Equation 7.16) gives 

∂f ∂f ∂f
div E = ux + uy + uz = 0. 

∂x ∂y ∂z 

The first two partial derivatives are equal to zero because f does not depend on x 
or y. So we obtain 

∂f 
uz = 0. 

∂z 

We are interested in disturbances that propagate in the z-direction, so can ignore 
the possibility that ∂f/∂z = 0  everywhere. It follows that uz = 0. This means 
that u is a unit vector perpendicular to the z-direction. With no loss in generality, 
we can choose u to be equal to ex. It is then appropriate to replace f by Ex, and  
write Equation 7.20 in the form 

E = Ex(z, t) ex. (7.21) 

A wave of this type, in which the variable of interest oscillates perpendicular to 
the direction of propagation, is said to be transverse. 

Getting agreement with Faraday’s law 

Substituting Equation 7.21 into Faraday’s law gives 

curl E = 

ex ey ez 

∂ ∂ ∂

∂x ∂y ∂z 
Ex 0 0 

∂Ex ∂B 
= ey = − . (7.22)

∂z ∂t 

This shows that a propagating electric wave is automatically accompanied by a 
transverse magnetic wave. The magnetic field oscillates in the y-direction, which 
is perpendicular to the direction of propagation and to the electric field. 
Expressing the magnetic field as 

B = By (z, t) ey , (7.23) 
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Equation 7.22 requires that 

∂By ∂Ex = − . (7.24)
∂t ∂z 

This condition makes good sense. Faraday’s law links the rate of change of the 
magnetic field to the spatial variation of the electric field. The consequences of 
this condition will be explored at the end of our analysis, after agreement with the 
remaining two Maxwell equations has been checked. 

Getting agreement with the no-monopole law 

Substituting Equation 7.23 into the no-monopole law gives immediate agreement 
because 

∂
div B = By (z, t) =  0. (7.25)

∂y 

The no-monopole law is analogous to Gauss’s law in empty space, and it leads to 
a similar conclusion: the magnetic wave must be transverse. This has already been 
established using Faraday’s law, so no further conditions are added at this stage. 

Getting agreement with the Ampère–Maxwell law 

Finally, our electric and magnetic fields must satisfy the Ampère–Maxwell law in 
empty space. Using Equations 7.21 and 7.23, we obtain 

curl B =


ex ey ez 

∂ ∂ ∂

∂x ∂y ∂z 
0 By 0 

= −

∂By ∂Ex 

∂z 
ex = ε0µ0 

∂t 
ex, 

which requires that 

∂Ex ∂By
ε0µ0 = − . (7.26)

∂t ∂z 

This condition is analogous to that obtained using Faraday’s law. The 
Ampère–Maxwell law links the rate of change of the electric field to the spatial 
variation of the magnetic field. 

Pulling it all together 

The electric and magnetic fields given by Equations 7.21 and 7.23 can satisfy all 
four of Maxwell’s equations in empty space. Gauss’s law and the no-monopole 
law are immediately satisfied because the fields are transverse. Faraday’s law and 
the Ampère–Maxwell law will also be satisfied if we can find electric and 
magnetic fields that obey Equations 7.24 and 7.26. 

We are looking for wave-like solutions, so it is sensible to try 

z t 
Ex(z, t) =  E0 sin 2π − 

λ T 
(7.27)


which is a typical expression for a monochromatic plane wave propagating in the 
z-direction. In this equation, E0 is the maximum value of the electric field: this is 
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the amplitude of the wave. At any fixed time, λ is the distance between 
successive wave crests: this is the wavelength of the wave. At any fixed position, 
T is the time between successive wave crests: this is the period of the wave. 
Because there is only one wavelength associated with the wave, it is said to be 
monochromatic. Figure 7.9 shows the progression of the wave at times t = 0, 
T/4, T/2, 3T/4 and T . The sinusoidal shape travels undistorted in the positive 
z-direction at the constant speed c = λ/T . 

Equation 7.27 is more commonly written in the form 

Ex(z, t) =  E0 sin(kz − ωt), (7.28) 

where k = 2π/λ is the wavenumber of the wave and ω = 2π/T is the angular 
frequency (not to be confused with the frequency f = 1/T ). The speed of the 
wave is then given by 

λ ω 
c = = fλ  = . 

T k 

Substituting this expression for the electric field into Equation 7.24 (a 
consequence of Faraday’s law) we obtain 

∂By ∂Ex = − = −kE0 cos(kz − ωt). 
∂t ∂z 

This equation can be integrated to give 

k 
By = E0 sin(kz − ωt) +  K(x, y, z),

ω 
where K(x, y, z) is any time-independent function. Time-independent fields such 
as K can always exist, but they obviously play no part in the propagation of 
electromagnetic waves. It is therefore sensible to set K = 0. Remembering that 
the speed  of  the wave is given  by  c = ω/k, we can write 

By = B0 sin(kz − ωt), where B0 = 
E0 . (7.29) 
c 

Figure 7.10 shows how the electric and magnetic fields are related to one another. 
The electric and magnetic waves have similar shapes and are exactly in phase with 
one another. At all times E = cB, and both waves travel through empty space at 

Figure 7.9 A monochromatic the speed c.

plane wave propagating in the

z-direction.


Figure 7.10 An electromagnetic wave travelling in the z-direction.
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Finally, we impose the condition given in Equation 7.26 (a consequence of the 
Ampère–Maxwell law). Rearranging this equation and inserting our expressions 
for the electric and magnetic fields (Equations 7.28 and 7.29), we obtain 

∂By0 =  ε0µ0 
∂Ex + = −ωε0µ0E0 cos(kz − ωt) +  kB0 cos(kz − ωt)
∂t ∂z 

= (kB0 − ωε0µ0E0) cos(kz − ωt) 

= kB0(1 − ε0µ0c 2) cos(kz − ωt), 

where we  have used  ω = ck and E0 = cB0 in the final line. 

We therefore conclude that, in empty space, electromagnetic waves propagate at 
the fixed speed 

c = 
1 √ 
ε0µ0 

. (7.30) 

Now for the moment of truth. The constants ε0 and µ0 can be found by measuring 
electrostatic and magnetostatic forces. In fact, the proportionality constant in 
Coulomb’s law is 

1 
kelec = = 8.988 × 109 N m2 C−2 ,

4πε0 

and the proportionality constant in the Biot–Savart law is 

kmag = 
µ0 = 10−7 N A−2 .
4π 

The speed of electromagnetic waves in empty space is the square root of the ratio 
of these proportionality constants: 

c = √ 
1

= 
kelec = 3.00 × 108 m s−1 .


ε0µ0 kmag


To a fanfare of trumpets, we note that this is numerically the same as the 
measured speed of light in a vacuum. In 1865, Maxwell wrote: 

‘This velocity is so nearly that of light that it seems we have strong reason to 
conclude that light itself (including radiant heat, and other radiations if any) 
is an electromagnetic disturbance in the form of waves propagated through 
the electromagnetic field according to electromagnetic laws.’ 

Maxwell’s ‘strong reason’ was irresistible — it is now fully accepted that light is 
an electromagnetic wave, with frequencies in the narrow band that our eyes can 
detect. Optics has become a branch of electromagnetism. 

Maxwell also hinted that other electromagnetic waves, with frequencies beyond 
the visible range, might exist, but he suggested no mechanism for producing these 
waves. The problem was not just to generate the waves, but also to detect them 
and measure their properties. In 1887, Heinrich Hertz embarked on a magnificent 
series of experiments which succeeded in doing all of this (Figure 7.11). Feeding 
an oscillating current into a circuit containing two metal spheres, he created an 
oscillating electric dipole. This generated electromagnetic waves with 
wavelengths more than 107 times greater than the wavelength of visible light. The 
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electric field of these waves was detected by the spark it produced across a narrow 
gap in a conducting metal loop. Using this primitive equipment, Hertz measured 
the speed of the waves and confirmed that it agreed with the known speed of light. 
He showed that the waves are transverse rather than longitudinal, and he observed 
refraction, reflection and focusing of the waves. Everything was similar to visible 
light, but on a much larger length-scale and a much more leisurely time-scale. 

Hertz’s work had a dual effect. It provided vital confirmation of Maxwell’s theory, 
and it also led to rapid technological developments. In 1895 a radio signal was 
transmitted a distance of one mile; by 1900, the range had increased to 200 miles, 
and in 1901 a signal crossed the Atlantic. The first broadcasting radio station 
opened in Pittsburgh in 1920. The rest, as they say, is history. Society has been 
totally transformed by broadcast radio and television, satellite communication, 
mobile phones and wireless internet connection. 

Today, the known electromagnetic spectrum extends over at least 20 orders of 
magnitude, from gamma rays to very low-frequency radio waves. There is no 
reason to believe that it does not stretch further, but there are practical difficulties 

Figure 7.11 Heinrich Hertz in producing significant amounts of electromagnetic radiation at the extremes of 

(1857–1894). frequency. Figure 7.12 shows the entire spectrum, with named regions 
characterized by their wavelength and frequency. The visible part of the spectrum 
occupies only a tiny fraction of the whole — from 4 × 1014 Hz for red light to 
8 × 1014 Hz for violet light. 

Exercise 7.5 An electromagnetic wave is incident on a filter which absorbs all 
the electric field. Describe the magnetic field beyond the filter. 

Exercise 7.6 How many cycles of orange light pass a given point in 
1.0 × 10−14 s? (Orange light has a wavelength 600 nm.) 

Exercise 7.7 A moving charged particle travels at speed v in the same 
direction as an electromagnetic wave. What is the ratio of the magnitudes of the 
electric and magnetic forces exerted on the particle by the electromagnetic wave? 
Under what conditions do these two force magnitudes become comparable? Q 

Figure 7.12 (See following page) The electromagnetic spectrum and its 
applications in various areas of medicine, technology and astronomy. The 
spectrum is displayed on logarithmic wavelength and frequency scales. Various 
parts of the spectrum are given the following abbreviations: extra long wave 
(ELW), long wave (LW), medium wave (MW), short wave (SW), very high 
frequency (VHF), ultra high frequency (UHF), terahertz (THz), infrared (IR) and 
ultraviolet (UV). The region indicated by the Sun symbol accounts for 99% of the 
Sun’s output. The grey regions are significantly absorbed or reflected by the 
Earth’s atmosphere, and so are of limited use to astronomers. The left-hand side 
of the diagram shows some typical lengths for comparisons with the wavelength 
scale. The right-hand side of the diagram shows how different wavelengths are 
used in applications. In some cases, a range of wavelengths is involved and a 
typical value is indicated. 
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The energy flux is per unit area, 
and is a scalar field defined at 
each point in space. It has a 
different character from electric 
or magnetic fluxes which are not 
per unit area and are defined 
over specified surfaces. 

7.4.2 The energy of electromagnetic waves 

You saw in Chapter 5 that the energy density of an electric field E is 

1

uelec =
 ε0E

2 .
2 

Although we will not prove it in this book, a very similar result applies to 
magnetic fields. The energy density of a magnetic field B is 

1 
umag = B2 .


2µ0


It follows that an electromagnetic wave has a certain energy density, and as the 
wave travels through space, this energy is transported with it. Energy transport is 
clearly an important feature of electromagnetic waves, and explains how we can 
benefit from the energy generated in the Sun, 1.5 × 108 km away. 

Let’s compare the energy densities in the electric and magnetic waves in an 
electromagnetic wave. If E and B are the magnitudes of the electric and magnetic 
fields at a given point, we have 

uelec = 
ε0µ0E

2 

= 
E2 

. 
umag B2 c2B2 

However, we know from Equations 7.28 and 7.29 that E = cB at any point in an 
electromagnetic wave. So the electric and magnetic waves have equal energy 
densities. 

In a small time interval ∆t, the amount of energy transported across an area ∆S, 
perpendicular to the direction of propagation of the wave, is given by the energy 
in the shaded volume in Figure 7.13. Allowing for the equal energy densities of 
the electric and magnetic waves, this is 

∆U = (uelec + umag) × ∆S × c ∆t = ε0cE
2 ∆S ∆t. 

Figure 7.13 The 
electromagnetic energy in the 
shaded volume has crossed 
the area ∆S in time ∆t. 

The rate of transfer of energy per unit area perpendicular to the direction of 
propagation of the wave is called the energy flux, so  we  have  

∆U
energy flux = = ε0cE

2 .
∆S ∆t 

The energy flux varies rapidly as peaks and troughs of the electromagnetic wave 
pass through the given area. Generally, we wish to know the average energy flux 
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over one period of the wave. For a monochromatic, plane electromagnetic wave 
travelling in the z-direction, the electric field is proportional to E0 cos(kz − ωt), 
so we need to average cos2(kz − ωt) over one period. Using the identity 
cos2 θ = (1  +  cos  2θ)/2, we have  

1 
� T	 1 1 

� T 

cos2(kz − ωt) dt = + cos(2kz − 2ωt) dt . 
T 0	 2 2T 0 

Because T = 2π/ω, the integral on the right-hand side is the integral of a cosine 
over a whole number of periods, and so is equal to zero. We therefore conclude 
that 

= 
1 
2 
ε0cE

2 
0 = 

1 
2 

� 
ε0 

µ0 
E2 

0 . (7.31) 

amplitude 0.01 V m−1 

signal? Q 

judgement: 

average energy flux 

Exercise 7.8 At a receiver, a strong radio signal has an electric field of 
. What is the average energy flux associated with this 

This is a suitable point at which to end this book. All of Maxwell’s equations have 
been introduced, and you have seen that these equations permit electromagnetic 
waves to travel through empty space. Electric and magnetic fields are not just 
mathematical abstractions, but are real enough to transport energy from distant 
sources. You are bathed in various hues of light from the objects you see around 
you. Radio waves from radio and TV stations and a vast number of transmitting 
mobile phones are passing through you. In addition, there is a cosmic microwave 
background from the first minutes of the Universe and gamma rays from the most 
distant stars. No wonder Richard Feynman felt able to make the following 

‘From a long view of the history of mankind — seen from, say, ten thousand 
years from now — there can be little doubt that the most significant event of 
the 19th century will be judged as Maxwell’s discovery of the laws of 
electrodynamics.’	 Figure 7.14 Maxwell, at the 

height of his powers in the 
mid-1860s.

Appendix 7.1: A note on displacement current density 

The Ampère–Maxwell law, 

∂E
curl B = µ0J + ε0µ0 ,	 (Eqn 7.10) 

∂t 

is sometimes expressed in the form 

This appendix is optional 
reading. It is included for 
the sake of comparison 
with other texts. 

curl B = µ0 (J + Jd) ,	 (7.32) 

where Jd = ε0∂E/∂t is called the displacement current density. The Maxwell 
term is then equal to µ0Jd. Setting aside the adjective ‘displacement’ for the 
moment, this terminology appears to be reasonable because Equation 7.32 shows 
that Jd has the same units as the current density J. Regrouping and renaming 
terms in this way cannot affect our predictions, but it does affect the language we 
use to describe electromagnetism, and has provoked heated discussions between 
physicists. 
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The origins of the dispute go back to Maxwell himself, who did not know that 
charge is a property of particles, but thought of it as a distortion or displacement 
in the ether. With this background, Maxwell saw no reason to place the 
displacement current density on a different footing to the ordinary current density, 
and regarded both as contributing to a total current density (J + Jd). Although 
this interpretation arose from a murky understanding of the nature of charge and 
current, it is still in fairly common use today. 

This book gives a different description, which can be traced back to Lorentz. 
About twenty years after Maxwell’s death, Lorentz promoted the modern view 
that charge is carried by particles, and that currents are just flows of charged 
particles. Lorentz insisted that charge and current densities are only sources of 
electric and magnetic fields. The term ε0µ0∂E/∂t in the Ampère–Maxwell law is 
therefore regarded as part of the response of the electromagnetic field, not as one 
of its sources. This is why I have called it the ‘Maxwell term’ — a neutral 
expression which carries no implication that we are dealing with any kind of 
current density. 

Although we cannot go into the details here, Lorentz solved Maxwell’s equations 
to show that the values of the electric and magnetic fields at a given point and time 
(not just their divergences and curls) can be related to the charge and current 
densities throughout space. Because it takes time for information to travel from 
distant sources to the point at which the fields are measured, we need to know the 
charges and currents at times before the instant when the fields are measured. This 
delay emerges naturally from Lorentz’s solutions to Maxwell’s equations. An 
analogy can be drawn with throwing a stone into a pond. If you want to know 
about the ripples reaching the sides of the pond, you need to know about the 
motion of the stone at an earlier time, when it struck the water. 

Things are very different in the description that treats the displacement current 
density as a source term. In this description, the spirit of Ampère’s law is retained, 
while the definition of the total current density is modified. The Biot–Savart law is 
equivalent to Ampère’s law, so this means that the Biot–Savart law can be 
extended to time-dependent situations provided that we use the total current 
density (J + Jd) to define current elements. However, when we do this, it is 
essential to use the present values of J and Jd — the values at the precise instant 
when the field is measured. No delays are involved. That is why I cannot take this 
description literally. Since the advent of relativity, it is much more natural to use 
Lorentz’s description, which has all the expected delays built into it. 

Having said all this, it is important to remember that we are only talking about 
semantics. If you hear that there is a debate about the existence of the 
displacement current, this will almost certainly be about the interpretation of the 
Ampère–Maxwell law, rather than about its validity. An analogy can be drawn 
with the concept of centrifugal force in mechanics. Modern textbooks describe 
this as the fictitious outward force you feel when you are swung in a circle, and 
tend to use the inward centripetal force instead. Taking a leaf from mechanics, the 
displacement current density might be called a fictitious current density, though I 
have never seen this done. No doubt, tradition and respect for Maxwell are 
inhibiting factors. 
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Summary of Chapter 7 

A software package on the DVD allows you to explore the differential 
version of the Ampère–Maxwell law. This package is best studied after 
completing this chapter. 

Summary of Chapter 7 
Section 7.1 The law of conservation of charge applies locally at each point and 
time, so any variation of the total charge within a closed surface must be due to 
charges that flow across the surface of the region. This principle leads to the 
equation of continuity: 

∂ρ 
+ div  J = 0,

∂t 

where ρ is the charge density and J is the current density at any given point and 
time. In magnetostatic situations, ∂ρ/∂t = div  J = 0. 

Section 7.2 Ampère’s law, curl B = µ0J, is a law of magnetostatics. It applies 
when ∂ρ/∂t = div  J = 0. The appropriate generalization, valid for 
time-dependent charge and current densities, is the Ampère–Maxwell law: 

∂E
curl B = µ0J + ε0µ0 . 

∂t 

The extra term, ε0µ0∂E/∂t, on the right-hand side is called the Maxwell term. 

Section 7.3 Maxwell’s four equations 

div E = 

div B = 0  

ρ 
ε0 

∂B
curl E = − 

∂t 

∂E
curl B = µ0J + ε0µ0 

∂t 

describe the dynamical behaviour of electromagnetic fields. They are the same in 
all inertial frames of reference and are unaffected by time-reversal. They are not 
valid in rotating frames of reference. 

Section 7.4 An electromagnetic wave is an oscillating disturbance of electric 
and magnetic fields that propagates in accordance with Maxwell’s equations. We 
concentrate on linearly polarized monochromatic plane waves. In empty space, 
the electric and magnetic waves are in phase with one another, with B = E/c. 
They are mutually perpendicular and transverse to the direction of propagation. In 
empty space, electromagnetic waves travel at speed √ −1c = 1/ ε0µ0 = 3.00 × 108 m s . 

Electromagnetic waves with frequencies in the visible range, 4 × 1014 Hz to 
8 × 1014 Hz, all called light, but the known electromagnetic spectrum also 
embraces radio waves, microwaves, infrared, ultraviolet, X-rays and gamma rays. 
Electromagnetic waves transport energy. The amount of energy carried by the 
magnetic wave is the same as that carried by the electric wave. The energy flux is 
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the total energy transported per unit area per unit time across a plane area 
perpendicular to the direction of propagation of the electromagnetic wave. 
Averaging over a complete cycle, 

1 ε0 
E0

2 ,average energy flux = 
2 µ0 

where E0 is the amplitude of the electric wave. 

Achievements from Chapter 7 
After studying this chapter you should be able to: 

7.1	 Explain the meaning of the newly defined (emboldened) terms and symbols, 
and use them appropriately. 

7.2	 State the equation of continuity and use it in simple problems. 

7.3	 State the conditions under which Ampère’s law is true and explain why it 
does not apply more generally. 

7.4	 State the Ampère–Maxwell law and explain why it has a greater domain of 
validity than Ampère’s law. 

7.5	 State and name the differential versions of Maxwell’s four laws of 
electromagnetism. 

7.6	 Recall the properties of linearly polarized plane monochromatic 
electromagnetic waves in empty space, including their transverse nature, 
speed and energy flux. 
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Part II: The mathematics of electromagnetism


Chapter 8 Mathematical Toolkit

Introduction 
This toolkit describes the mathematics you need to know to study this book, and 
covers most of the mathematics needed in the whole course. The main topics 
covered are vector algebra and vector calculus. It is worth noting that vector 
notation did not become widespread until well into the twentieth century. 
Maxwell had his own vector notation (based on a Gothic alphabet) but, for his 
readers’ benefit, wrote out all the components and partial derivatives in full. 
Modern notation mercifully protects us from such complexity. 

8.1 Basic vector algebra 

8.1.1 Scalars and vectors 

Most physical quantities can be represented by scalars or vectors. The distinction 
between these two types of mathematical object is fundamental. 

A scalar quantity is fully described by a single number, together with an 
appropriate unit of measurement. For example, mass, electric charge, temperature 
and energy are all scalar quantities. We talk of a mass of 4.7 kg or an electric kg is the symbol for kilogram 
charge of −3.6 C. Some scalars, such as mass, turn out to be non-negative but and C is the symbol for 
others, such as charge, can be positive, zero or negative. The magnitude of a coulomb. 
scalar quantity is the size of the quantity ignoring any possible negative sign. By 
definition, a magnitude is always non-negative. If Q is a scalar, we denote its 
magnitude by |Q|. For example, an electric charge of Q = −3.6 C has  a  
magnitude of |Q| = 3.6 C. 

Section 8.1 is best read 
before or during your study 
of Chapter 1. 

A vector quantity is characterized by both a magnitude and a direction in space. 
For example, force is a vector because, when you push something, you push it in a 
definite direction. Pushing upwards is not the same thing as pushing sideways. 
Velocity is also a vector, telling us the speed of a body and its direction of motion. 
Throughout this course, vectors will be indicated by being printed in bold font 
(e.g. F). In longhand, the same task is accomplished by underlining with straight 

or For curly lines (e.g. F ∼). The magnitude of the vector a can always be written 
as |a|. More commonly, though, it is written simply as a. The absence of bold 
print (and of underlining) is sufficient to show that a is not a vector. This raises 
the stakes somewhat. It becomes absolutely essential for you to underline vectors 
in your handwritten work and to use a bold font for vectors in any word-processed 
documents. Care is needed, but the discipline turns out to be useful. After a while, 
you will develop an instinct for the correct grammar. For example, it would be 
meaningless to equate a vector to a scalar, so an equation that begins E = . . .  
must surely require some emboldening (or underlining) on the right-hand side. 
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8.1.2 The geometric picture of vectors 

It is easy to picture a vector in geometric terms. Think of an arrow. The length of 
the arrow represents the magnitude of the vector and the direction of the arrow 
represents the direction of the vector. Under exceptional circumstances, a vector 
can have zero magnitude. In this case, the arrow shrinks to a point, and no special 
direction is singled out; the vector is then called the zero vector, 0. If two vectors, 
a and b, have the same magnitude and the same direction we say that these 
vectors are equal to one another and write 

a = b. 

Strictly speaking, this equality does not imply that the arrows representing a and 
b are identical. The arrows must have the same length and they must point in the 
same direction, but they could be parallel to one another, with different starting 
points. The geometric picture of a vector and the notion of vector equality 
suggests various ways of combining vectors and scalars. 

Multiplying a vector by a scalar 

We often need to multiply a vector by a scalar. In Newtonian mechanics, for 
example, momentum is defined as p = mv, where m is mass (a scalar) and v is 
velocity (a vector). Figure 8.1 shows how the act of multiplying a vector by a 
scalar is interpreted. This is also called the scaling of a vector by a scalar. 

Figure 8.1 Multiplying a vector by a scalar. 

Given any vector a and any scalar λ, the product λa is a new vector with 
magnitude |λ|a, pointing either parallel or antiparallel to a. If  λ is positive, λa 
points in the same direction as a; if  λ is negative, λa points in the opposite 
direction. Three special cases may be mentioned: 

•	 0 a has zero magnitude and is the zero vector, 0. 

•	 The vector −a has the same magnitude as a, but points in the opposite 
direction. 
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•	 (1/a) a is a vector of magnitude 1 (with no units) pointing in the same 
direction as a. This vector is called the unit vector of a and is given the special 
symbol � a, and  a (pronounced a-hat). Taking the equation (1/a) a = �

multiplying both sides by a, we obtain


a = a �a,	 (8.1) 

which neatly splits a vector into a product of two terms: a gives the magnitude 
of the vector and �a gives the direction of the vector. The units are contained in 
the magnitude, not the unit vector. Any unit vector is dimensionless and has 
magnitude 1; not 1 metre, 1 newton or 1 of anything else. 

Adding and subtracting vectors 

We often need to add vectors, or subtract them from one another. For example, a 
single particle may simultaneously feel two different forces, F1 and F2. How  
does the particle respond? It responds just as if a single force, F1 + F2, had been 
applied to it. Here, F1 + F2 is the vector sum of the individual forces. 

The geometric rule for adding two vectors is shown in Figure 8.2. Arrows 
representing the vectors are drawn with the head of the first arrow, a, coincident 
with the tail of the second arrow, b. The arrow joining the tail of a to the head of 
b then represents the vector sum a + b. This is called the triangle rule. Any  
number of vectors can be added together by repeated applications of this rule. 

Vector subtraction is defined using scaling and vector addition. The vector a − b 
is interpreted as the sum of a and −b. We can then manipulate vector equations 
using the rules of ordinary algebra. For example, if a = b + λc, it follows that 
c = (a − b)/λ. 

One use of vector subtraction is in describing the displacement of one point from 
another. Figure 8.3 shows two vectors r1 and r2 whose arrows start at the origin O 
and end at points 1 and 2. These vectors are called the position vectors of points 
1 and 2. The figure also shows r12, which is the displacement vector of point 1 
from point 2. Using the triangle rule, we see that 

r1 = r2 + r12, 

so r12 = r1 − r2.	 (8.2) 

Our notation is convenient because the indices 1 and 2 are in the same order on 
both sides of Equation 8.2. However, you will always have to remember that the 
displacement is to point 1 from point 2 — so the left-hand index labels the 
end-point and the right-hand index labels the start-point. 

Exercise 8.1 Rearrange the vector equation 6a − 4b + 2c = 0, to express c in 
terms of a and b. Q 

Figure 8.2 The triangle rule 
for vector addition. 

Figure 8.3 The vector r12 is 
the displacement of point 1 from 
point 2. 
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8.1.3 Vector components 

An arrow gives a vivid image of a vector, but does not provide an efficient tool for 
calculations. It would be bad enough if we had to use the triangle rule on a sheet 
of paper, but vectors point in three-dimensional space, so we might be forced to 
build a three-dimensional sculpture with wires or rods. No thanks! Fortunately, 
there is a better way. Think of the instructions on a treasure map: from the large 
tree, walk 30 feet North, walk 20 feet East and dig 6 feet down. Any displacement 
can be specified by giving displacements along three standard directions, and 
something similar can be done for all vectors. 

First, we create a Cartesian coordinate system, a set of three mutually 
perpendicular axes pointing outwards from an origin (Figure 8.4). The axes are 
called the x-axis, the y-axis and the z-axis. The unit vectors pointing in the 
directions of these axes are called Cartesian unit vectors and are given the 

Figure 8.4 A Cartesian symbols ex, ey and ez . Since these are unit vectors, they have no units. 
coordinate system with its It is conventional to choose a right-handed coordinate system and Figure 8.5 
associated unit vectors. shows how to do this, using the right-hand rule. Point the fingers of your right 
Cartesian unit vectors are hand in the direction of the x-axis (Figure 8.5a), and bend them (rotating your 
sometimes denoted by i, j and k. wrist if necessary) in the direction of the y-axis (Figure 8.5b). If the outstretched 
However, these symbols have thumb of your right hand points along the z-axis, your coordinate system is 
other meanings in right-handed; otherwise it is left-handed. To begin with, the handedness of the 
electromagnetism. To avoid coordinate system is of minor importance, but it will become significant later on. 
confusion we use ex, ey and ez The signs in some equations involving magnetic fields depend on the handedness 
from the outset. of the coordinate system so a definite choice must be made. We shall implicitly 

take all our coordinate systems to be right-handed. 

Figure 8.5 Testing the handedness of a coordinate system. 

Now, the crucial idea is that any vector can be split into a sum of other vectors, 
each aligned with a coordinate axis — that is, either parallel to the axis or 
antiparallel to the axis. Figure 8.6 shows an example of such a decomposition. 
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Figure 8.6 Splitting the vector a into a sum of Figure 8.7 Finding the x-component of a

three vectors, each aligned with a coordinate vector.

axis.


The vector along the x-axis can be written as axex, where ax is a scalar. The

vector along the y-axis can be written as ay ey and the vector along the z-axis can

be written as az ez . It follows that any vector can be expressed in the form


a = axex + ay ey + az ez . (8.3) 

The scalar quantities ax, ay and az are the Cartesian components of the vector 
(usually just called components). They have the same units as the vector, and 
may be positive, negative or zero. 

If a vector has a known magnitude and a known direction, we can use 
trigonometry to find its components. From Figure 8.7 we see that 

ax = a cos θx, 

where a is the magnitude of the vector and θx is the angle between the direction of 
the vector and the x-axis. Similar formulae, with the appropriate angles, give the 
y- and  z-components. 

Conversely, if we know the components ax, ay and az , we can use them to find 
the magnitude and direction of the vector a. Using Pythagoras’s theorem twice in 
Figure 8.8 (overleaf), the magnitude of the vector is 

2 
x + a
2 

y + a
2 
z .
 (8.4)
a = a


The direction of the vector can be specified by giving the components of its unit 
vector, � a isa = a/a. For example, the x-component of the unit vector �

ax ax = cos  θx = � , (8.5) 
a 2 

x + a
2 
y + a
2 

za


with similar results for the y- and  z-components.
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Figure 8.8 Finding the 
magnitude of a vector using 
Pythagoras’s theorem. 

The vector operations introduced earlier all have simple interpretations in terms of 
components. To multiply a vector by a scalar, λ, we multiply each of its 
components by λ: 

λa = (λax)ex + (λay )ey + (λaz )ez . 

To add or subtract two vectors, we add or subtract their components: 

a + b = (ax + bx)ex + (ay + by )ey + (az + bz )ez , 

a − b = (ax − bx)ex + (ay − by )ey + (az − bz )ez . 

In general, any vector equation can be expressed in terms of components. For 
example, the equation a = b implies that 

axex + ay ey + az ez = bxex + by ey + bz ez . 

We can equate corresponding components on both sides to obtain ax = bx, 
ay = by and az = bz . So, one vector equation splits into three scalar equations for 
the components. Vector equations have the great advantage of brevity, but 
numerical calculations are usually carried out using the components. 

Finally, let’s see how some special vectors are represented in component notation: 

• The zero vector has three zero components: 

0 = 0ex + 0ey + 0ez . 

It is different from the number 0, and is distinguished from 0 by using bold 
print or underlining. The zero vector could appear in an equation such as 

a − a = 0. 

It would not be correct to write this equation with the number 0 on the 
right-hand side. To do so would be to equate a vector to a scalar — something 
which makes no sense. The zero vector keeps everything in order, ensuring that 
both sides are vector quantities. 
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• The position vector of a point P in a coordinate system with origin O is 

r = xex + yey + zez , 

where x, y and z are the Cartesian coordinates of the point in the given 
coordinate system. The magnitude of the position vector, 

2r = x2 + y2 + z , 

is the distance of the point from the origin. 

•	 The displacement vector of point 1, with position vector 

r1 = x1ex + y1ey + z1ez 
Figure 8.9 For Exercise 8.2. 

from point 2, with position vector 

r2 = x2ex + y2ey + z2ez 

is 

r12 = r1 − r2 = (x1 − x2)ex + (y1 − y2)ey + (z1 − z2)ez . 

The magnitude of the displacement vector, 

2r12 =	 (x1 − x2)2 + (y1 − y2)2 + (z1 − z2) , 

is the distance between points 1 and 2. 

Exercise 8.2 The vector a in Figure 8.9 lies in the xy-plane. Find the 
components of this vector. 

Exercise 8.3 The position vectors of two points A and B are 
rA = (4ex − 3ey ) m and  rB = (ex + ey ) m, where the non-italic symbol m 
stands for metre. Find the displacement vector of A from B, the distance between 
A and B and the unit vector pointing from B towards A. Q 

8.2	 Products of vectors 
There are two ways of forming the product of two vectors, a and b. The first 
method produces a scalar quantity, a · b. This is called the scalar product, or  the  
dot product, of the vectors. The second method produces a vector quantity, a × b. 
This is called the vector product, or  the  cross product, of the vectors. In both cases 
the unit of the product is the product of the units of a and b. 

Section 8.2 is best read 
before or during your study 
of Chapter 3. If you have 
not met scalar products 
before, you should read 
Section 8.2.1 before 
studying Chapter 2. 

8.2.1 Scalar products 

Scalar products occur throughout physics. For example, if a constant force F is 
applied to a particle while it moves through a displacement s, the scalar product 
F · s is the work done by the force. This is the energy transferred to the particle. 

The scalar product of two vectors a and b is a scalar quantity defined by Figure 8.10 Choosing the 

θ useda · b = ab cos θ, (8.6) 
angle for the scalar product of 
two vectors. The angle 

where a and b are the magnitudes of the vectors and θ is the smaller of the two for the scalar product is always 

angles between their directions, which lies in the range 0 ≤ θ ≤ π (Figure 8.10). the smaller of the two angles 
between a and b. 
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An equivalent definition can be given in terms of Cartesian components: 

a · b = axbx + ay by + az bz . (8.7) 

You are free to use either definition, according to convenience. The value of the 
scalar product does not depend on the method of evaluation, or on the choice of 
coordinate system. 

The magnitude of any vector a can be expressed in terms of a scalar product: � √ |a| = a = a
2 
x + a
2 

y + a
2 
z = a · a.


The components of a vector can also be expressed as scalar products. For example 

ax = a cos θx = ex · a, 

where ex is the unit vector in the x-direction.


More generally, if � u · a is called the component
u is any unit vector, the quantity �
of a in the direction of �u. The geometric significance of this quantity is illustrated 
in Figure 8.11. Scalar products can also be used to find the angle between two 
vectors. From Equation 8.6, we have 

a · b 
cos θ = . 

ab 

This provides a useful test. If a and b are non-zero vectors, and you want to know 
whether they are orthogonal (that is, perpendicular to one another), try taking 
their scalar product. The vectors are orthogonal if, and only if, a · b = 0. 

The simplest scalar products are those between Cartesian unit vectors. These 
vectors have unit magnitude so 

ex · ex = ey · ey = ez · ez = 1, (8.8) 

and they are mutually orthogonal so 

ex · ey = ey · ez = ez · ex = 0. (8.9) 

More generally, the scalar product has nearly all the properties you would expect 
of a product. For example, if a = b, and  c is any vector, you can take the scalar 
product on both sides to form a valid scalar equation c · a = c · b. Moreover, 

a · b = b · a, 

a · (b + c) = a · b + a · c 

and 

a · (λb) = λ(a · b). 

Scalar products can be evaluated using these properties to multiply out brackets, 
and using Equations 8.8 and 8.9 for the scalar products between unit vectors. The 
only restriction is that the scalar product cannot be extended to three vectors. It 
makes no sense to write (a · b) · c. This is because a · b is a scalar quantity, and 
so cannot participate in a scalar product with a third vector, c. However,  it  is  
perfectly reasonable to write (a · b)c, which is the vector c scaled by the factor 
a · b. 

Figure 8.11 The component 
of a in the direction of the unit 
vector �u. 
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Exercise 8.4 Evaluate the scalar product of a = ex − ey + ez and 
b = −ex − 3ey . 

Exercise 8.5 Two vectors satisfy a · b = −ab. What is the angle between 
them? 

Exercise 8.6 Show that, if a and b have the same magnitude and are neither 
parallel nor antiparallel, then a + b is orthogonal to a − b. Q 

8.2.2 Vector products 

The a and b 

a × b = ab sin θ �n, (8.10) 

Section 8.2.2 is best read 
before or during your study 
of Chapter 3. 

Vector products often arise in physics when rotational motion is involved. For 
example, torque and angular momentum are both defined as vector products. 

vector product of any two vectors is a vector quantity defined by 

where a and b are the magnitudes of the vectors and θ is the smaller angle 
between their directions, which means that 0 ≤ θ ≤ π and sin θ ≥ 0. The unit 
vector �n is normal to the plane of a and b in a sense determined by the right-hand The word ‘normal’ is used as a 
rule (Figure 8.12). synonym for ‘perpendicular’. 

Figure 8.12 Using the right-hand rule to find the direction of 
the vector product a × b. First point the fingers of your right 
hand in the direction of a, then bend them in the direction of b. 
The outstretched thumb of your right hand points in the direction 
of a × b, which has the same direction as the unit vector �n. 

An equivalent definition can be given in terms of Cartesian components in a

right-handed coordinate system:


a × b = (ay bz − az by )ex + (az bx − axbz )ey + (axby − ay bx)ez . (8.11) 

The fact that we need a right-handed coordinate system is related to the fact that a 
right-hand rule was used to find the direction of the unit vector �n in 
Equation 8.10. Neither of these conventions need trouble us provided we stick to 
them. We will always use right-hand rules (rather than left-hand rules) and we 
have already made a firm decision to use only right-handed coordinate systems. 

It is worth noting the strong pattern in Equation 8.11. The x-component of a × b 
is the difference of two terms. The first term is the y-component of a times the 
z-component of b (notice the natural order x → y → z); the second term takes 
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these two components in the opposite order. The y- and  z-components of the 
vector product follow similar patterns, based on cyclic permutations of the 
original order. This pattern can also be represented by a determinant: 

a × b =


ex ey ez 

ax ay az 

bx by bz 

,
 (8.12) 

which can be expanded out to give 

a × b = 
ay az 

by bz 
ex − ey +


ax ay 

bx by 
ez , 

ax az 

bx bz 

and Equation 8.11 is recovered when we expand the three 2 × 2 determinants. 

Vector products can be used to define perpendicular directions in space. If two 
vectors a and b point in different directions, their vector product a × b is 
perpendicular to the plane that contains both a and b. Vector products can also be 
used to test whether two vectors are aligned with one another (that is, either 
parallel or antiparallel). If a and b are non-zero vectors and a × b = 0, then  a 
and b are either parallel or antiparallel to each other. A trivial case arises when 
a = b, since a × a = 0 for any vector a, and  a is always parallel to itself. 

The simplest vector products are those between the Cartesian unit vectors of a 
right-handed coordinate system. We have 

ex × ex = ey × ey = ez × ez = 0, (8.13) 

and 

ex × ey = ez , ey × ez = ex , ez × ex = ey . (8.14) 

These results can be memorized by writing down: 

,e e→ →y z 
| 

ex 
|←−−−−−−−− 

and noting that vector products of neighbouring unit vectors taken in the indicated 
sense of circulation give the remaining unit vector with a plus sign (e.g. 
ey × ez = ex), while vector products taken in the opposite sense produce a minus 
sign (e.g. ez × ey = − ex). 

More generally, the vector product has many of the properties you would expect 
of a product. For example, 

a × (b + c) = a × b + a × c 

and 

a × (λb) = (λa) × b = λ(a × b). 

However, there are some unusual properties which need special care. Firstly, the 
This can also be seen by using order of the vectors in a vector product is crucial. As Equation 8.11 shows, 
the right-hand rule. 

a × b = − b × a. 
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Secondly, if you take the vector product of a vector product, you must be careful 
to show how the terms are grouped. In general, 

a × (b × c) �= (a × b) × c. 

For example, 

ex × (ey × ey ) = ex × 0 = 0, 

while 

(ex × ey ) × ey = ez × ey = −ex. 

Vector products can be evaluated by multiplying out brackets, and using 
Equations 8.13 and 8.14 for the vector products between Cartesian unit vectors. 

Exercise 8.7 Evaluate the vector product of a = 2ex + 3ey and 
b = 3ex + 2ey . 

Exercise 8.8 If vector a is directed horizontally to the north and vector b is 
directed vertically upwards, what are the directions of a × b and b × a? 

Exercise 8.9 When two vectors a and b are reflected in the xy-plane, their 
z-components are reversed and their x- and  y- components are left unchanged. 
What happens to the components of the vector c = a × b when it is reflected in 
the xy-plane? Q 

8.2.3 Vector division? 

Don’t do it! To see why, recall how division works for numbers. The equation 
4a = 12 can be divided by 4 to give a = 3. There is no dispute about the result of 
this division because 3 is the only number that, when multiplied by 4, gives 12. 
By contrast, the equation 4ex · a = 12 does not uniquely determine a. One  
possibility is that a = 3ex, but any combination of ey or ez could be added to 3ex 

without changing the value of the scalar product. Dividing by 4ex is therefore 
highly ambiguous. Mathematics, with its clear-cut = signs, cannot tolerate 
ambiguity, so division by a vector is illegal. Never write down anything like 1/a 
because it is has no meaning. 

8.2.4 Differentiating vectors and their products 

If a vector a(t) depends on time, then one or more of its components depends on 
time, so we can write 

a(t) = ax(t)ex + ay (t)ey + az (t)ez . 

The unit vectors ex, ey and ez are constant vectors, so the derivative of the vector 
is 

da dax day daz 

dt 
= ex + ey + dt 

ez .dt dt 

To differentiate a vector with respect to a single variable, we just differentiate its 
components. 

201 



Chapter 8 Mathematical Toolkit 

Sometimes we need to differentiate the product of two vectors. The usual rules for 
differentiating products apply: 

d db da
(a · b) = a · + · b,

dt dt dt 

d db da
(a × b) = a × + × b,

dt dt dt 
though in the vector product case, we must be careful to preserve the ordering of 
the vectors throughout. 

Exercise 8.10 A particle of mass m has velocity v and kinetic energy
 12mv
2 .


Section 8.3 is best read 
before or during your study 
of Chapter 2. 

Use Newton’s second law to show that the rate of change of the particle’s kinetic 
energy is equal to F · v, where F is the force on the particle. Hence show that, if F 
is always perpendicular to v, the particle’s kinetic energy remains constant. Q 

8.2.5 Vector identities 

A vector identity is a relationship between vectors that is always valid. For 
example, if a, b and c are any vectors, it is always true that 

a × (b × c) = (a · c)b − (a · b)c (8.15) 

and that 

a · (b × c) = (a × b) · c. (8.16) 

To establish a vector identity it is usually a good idea to expand everything in 
terms of components and then compare both sides. For example, in the case of 
Equation 8.16, expanding the left-hand side gives 

a · (b × c) = ax(by cz − bz cy ) + ay (bz cx − bxcz ) + az (bxcy − by cx), 

while expanding the right-hand side gives 

(a × b) · c = (ay bz − az by )cx + (az bx − axbz )cy + (axby − ay bx)cz . 

Collecting together terms in ax, ay and az , it is easy to see that these two 
expressions are equal, so Equation 8.16 has been explicitly confirmed. However, 
proving vector identities is not a central theme of this course. A short list of vector 
identities is given inside the back cover of the book. On the rare occasions that 
you will need to use one, I recommend that you simply look the identity up, and 
take it on trust. 

8.3 Fields and coordinate systems 

8.3.1 Scalar and vector fields 

A field is a physical quantity which, at a given instant, has definite values 
throughout a region of space. The region may be the whole of space or a 
continuous set of points within it. It should not be a discrete set of isolated points. 
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As an example, consider the temperature in a room. The temperature may vary 
across the room — perhaps it is high near a stove and low near a window. 
Nevertheless, at a given instant, each point in the room has its own temperature, 
and we can talk of the temperature field in the room. Each point can be labelled 
by a position vector r or by a set of Cartesian coordinates, x, y and z, so  the  
temperature field can be represented by a function of the form T (r) or T (x, y, z). 
A time-varying temperature field is represented by T (r, t) or T (x, y, z, t), where t 
is the time. Sometimes it is appropriate to consider a two-dimensional region. For 
example, the temperature on the floor of the room might be represented by a 
function of the form T (x, y). 

It is important to distinguish between fields and their values. The temperature 
field over the whole of Britain is a function of position but, at any given place, a 
thermometer will read a single value. Maintaining this distinction is sometimes 
clouded by the fact that the symbol T (x, y, z) can stand for the value of the 
temperature at a particular point (x, y, z) or for the function that gives the 
temperature at a general point (x, y, z) — that is, the temperature field. 

Incidentally, you may have heard the words ‘field’ or ‘force-field’ used in science 
fiction films, where they generally mean something like ‘a region of influence’. I 
hope you can see that the scientific meaning of a field is rather different. ‘Region 
of influence’ fails to convey the idea that a field is a function defined at all points 
in a region. And ‘influence’ is not always the relevant issue. We might be 
interested in a temperature field or a density field for reasons that have nothing to 
do with force. 

All the fields you will meet in this course can be classified as being either scalar 
fields or vector fields. 

•	 A scalar field is a field with scalar values throughout a region of space. Each 
point in the region has a particular scalar value of the field quantity. 

•	 A vector field is a field with vector values throughout a region of space. Each 
point in the region has a particular magnitude and a direction of the field 
quantity. 

The temperature field described above is a scalar field because temperature is a 
scalar quantity. An example of a vector field is provided by the wind velocity in 
the atmosphere. This is a field because wind velocity is defined at each point in the 
atmosphere. It is a vector field because wind velocity is a vector with a magnitude 
(the wind speed) and a direction (the wind direction). We represent the wind 
velocity field by a function of the form v(x, y, z, t), where the bold font explicitly 
shows the vector nature of the field. In electromagnetism, electric and magnetic 
fields are vector fields, but the electrostatic potential field is a scalar field. 

Not every physical quantity can be described by a field. For example, we cannot 
sensibly define a mass field. A particle can have a mass but we cannot associate a 
mass with all the points in a material. The problem is that any region contains an 
infinite number of points so, if each point had a mass, the region would have an 
infinite mass, which is clearly unacceptable. We can, however, talk about the 
density at each point. Density is mass per unit volume, so the density at a given 
point is found by taking the ratio of mass to volume for a tiny volume centred on 
the point. Density is a scalar quantity defined at each point throughout a region, so 
there is no problem in defining a density field. Similar arguments apply to any 
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quantity that is proportional to the size of the system. For example, we cannot 
define a charge field or an energy field, but we can define charge density and 
energy density fields. Both are scalar fields. 

Visualizing fields 

Various representations are available to help us visualize how a field varies in 
space. All of these representations are described in Part I, in the context of electric 
fields (Chapter 1), magnetic fields (Chapter 3) and electrostatic potential fields 
(Chapter 5). 

For vector fields, we can use arrow maps or field line patterns. An arrow map 
(Figure 8.13) displays arrows at a selection of points, with the length and direction 
of the arrow at a given point indicating the magnitude and direction of the vector 
field at the point. Alternatively, we can show a set of field lines (Figure 8.14). A 
field line is a continuous line that points in the direction of the field at each point 
along its path. A field line pattern tells us about the direction of the vector field, 
but does not automatically give quantitative information about the magnitude of 
the field. 

For scalar fields, we simply draw lines (in two dimensions) or surfaces (in three 
dimensions) on which the field has a constant value (Figure 8.15). These are 
called contour lines (in 2D) or contour surfaces (in 3D), but more specific 
names are given in different circumstances (e.g. isobars for pressure, isotherms 
for temperature and equipotentials for electrostatic fields). 

Figure 8.13 An arrow map Figure 8.14 A field line Figure 8.15 Contour lines 
for a wind velocity field. May pattern for a wind velocity field. (isotherms) for a temperature 
the largest arrows stay far from field. 
your roof! 

Exercise 8.11 Classify the following as scalar or vector fields: the velocity of 
water in a river, the wind speed on Mars, the energy density around the Sun and 
the concentration of salt in the Atlantic Ocean. Q 
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8.3.2 Spherical and cylindrical coordinates 

So far, we have concentrated on Cartesian coordinates, x, y and z. However,  fields  Animations of spherical 

are often described in other coordinate systems. If a field has spherical symmetry and cylindrical coordinate 

about a given point, it is sensible to use spherical coordinates centred on that systems are included on 

point. If a system has cylindrical symmetry about a given axis, it is sensible to use the DVD. 

cylindrical coordinates centred on the axis. You will need to use spherical and 
cylindrical coordinates throughout your studies of electromagnetism. 

Spherical coordinates 

Figure 8.16 shows how the spherical coordinates (r, θ, φ) of a point P are 
defined: 

•	 The radial coordinate r is the distance from the origin O to the point. 

•	 The polar coordinate θ is the smaller of the angles between the positive z-axis θ = 0  when P lies on the 
and the line OP. positive z-axis. 

•	 The azimuthal coordinate φ is the angle between the positive x-axis and the 
projection of OP in the xy-plane. The sense of increasing φ is determined by a 
right-hand grip rule. With the thumb of the right hand pointing along the φ = 0  when the projection of P 
positive z-axis, the curled fingers of the right hand indicate the direction in in the xy-plane coincides with 
which φ increases. the positive x-axis. 

Figure 8.16 The spherical 
coordinates (r, θ, φ) of  
a point P. 

Using trigonometry in Figure 8.16, we see that a point P with spherical 
coordinates (r, θ, φ) has Cartesian coordinates 

x = r sin θ cos φ 

y = r sin θ sin φ (8.17) 

z = r cos θ. 
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The inverse transformations are 

2)1/2 r = (x 2 + y 2 + z

z


cos θ = 
(x2 + y2 + z2)1/2


y

tan φ = . 

x 

We must restrict spherical coordinates to lie in the ranges: 

0 ≤ r <  ∞, 0 ≤ θ ≤ π and 0 ≤ φ <  2π, 

where we follow the usual convention of measuring angles in radians. These 
ranges allow spherical coordinates to cover the whole of space. Every point can 
be represented by a set of spherical coordinates. The given ranges also ensure that 
most points have only one set of spherical coordinates. The exceptions are points 
on the z-axis of Figure 8.16. Any value of φ can be chosen at these points and any 
values of θ and φ can be chosen at the origin. 

As an example, Figure 8.17 shows how spherical coordinates can be used to 
locate places on Earth. The origin is at the centre of the Earth, the z-axis passes 
through the North Pole and the x-axis passes through a point in the Atlantic 
Ocean where the Equator meets the line of zero longitude (the Greenwich 
meridian). In this coordinate system, the spherical coordinates of Moscow are 
r = 6400 km, θ = 0.60 rad = 34◦ and φ = 0.66 rad = 38◦. The polar and 
azimuthal coordinates are closely related to latitude and longitude, but with some 
differences. Latitude is measured north and south of the Equator, while θ varies 
from 0 at the North Pole to π at the South Pole. So, for example, the latitude of 
Moscow is (90◦ − 34◦) N  =  56◦ N. Longitude is measured east and west of the 
Greenwich meridian, with a jump at the international date line, while φ increases 
continuously from 0 to 2π as we lap the world once, travelling in an easterly 
direction. 

To describe a scalar field f in spherical coordinates we express it as a function of 
r, θ and φ: 

f = f(r, θ, φ). 

To describe a vector field F in spherical coordinates we need suitable unit vectors. 
At any given point, we introduce the spherical unit vectors shown in Figure 8.18. 
Each unit vector points in a direction where one spherical coordinate changes and 
the other two remain fixed: 

•	 er is in the direction of increasing r and constant θ and φ. This is the outward 
radial direction, pointing directly away from the origin. 

•	 eθ is in the direction of increasing θ and constant r and φ. 

•	 eφ is in the direction of increasing φ and constant r and θ. 

In terms of our geographical example, if you stand at a given point on the Earth’s 
surface, er points vertically upwards, eθ points southwards and eφ points 
eastwards. There are certain troublesome points. It is not possible to choose a 
unique outward radial direction at the origin, so the radial unit vector er is 
undefined there, as are eθ and eφ. Standing at the South Pole, there is no direction 
southwards, so the polar unit vector eθ is undefined there. And the azimuthal unit 
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vector eφ is not defined at either pole. These exceptions do not matter: our 
definitions work arbitrarily close to these points, and that is all we really need. 

Figure 8.17 Spherical 
coordinates of Moscow using a 
spherical coordinate system with 
its origin at the centre of the 
Earth, its z-axis passing through 
the North Pole, and its x-axis 
passing through the Greenwich 
meridian (longitude 0◦). 

Figure 8.18 Spherical unit 
vectors at a point P. 

207 



� 

Chapter 8 Mathematical Toolkit 

It is essential to realize that the directions of the spherical unit vectors vary from 
point to point. The notion of pointing radially outwards, for example, depends on 
where we are. The radial unit vector at the North Pole points in the opposite 
direction to the radial unit vector at the South Pole. More generally, every point r 
has its own set of unit vectors, er (r), eθ (r) and eφ(r). In this respect spherical 
unit vectors are unlike Cartesian unit vectors, which remain the same everywhere 
once we have chosen our axes. 

At any given point r, the triplet of vectors (er (r), eθ (r), eφ(r)) forms an 
orthogonal right-handed system. For example, 

� Vector products are 
discussed in Section 8.2.2. er (r) · eθ (r) = 0  and er (r) × eθ (r) =  eφ(r). 

The value of a vector field at r can therefore can be expanded in terms of these 
unit vectors: 

F(r) =  Fr (r) er (r) +  Fθ (r) eθ (r) +  Fφ(r) eφ(r). (8.18) 

In practice, such explicit notation is usually simplified to 

F = Fr er + Fθ eθ + Fφ eφ, 

but you should always remember that Fr , Fθ , Fφ, er , eθ and eφ are all functions 
of position, and must all be evaluated at the same point. 

Spherical coordinates can also be used to describe small displacements and small 
volume elements. Consider a small displacement δl from a point P with spherical 
coordinates (r, θ, φ) to a neighbouring point with coordinates 
(r + δr, θ + δθ, φ + δφ). This displacement is assumed to be so small that we can 
neglect any change in direction of the spherical unit vectors between the 

By second-order terms, we start-point and end-point and neglect terms that are second-order (or higher) in δr, 
mean (δr)2 , (δθ)2, etc. δθ and δφ. As shown in Figure 8.19a, the displacement can be split into separate 

displacements in the directions of er , eθ and eφ. 

The radial displacement is simply δr er . The displacement in the direction of eθ is 
along an arc of the blue circle in Figure 8.19b. This circle has radius r and angular 
coordinate θ, so the displacement is r δθ  eθ . The displacement in the direction of 
eφ is along an arc of the red circle in Figure 8.19b. This circle has radius r sin θ 
and angular coordinate φ, so the displacement is r sin θ δφ  eφ. Adding these three 
displacements together gives the displacement vector δl between the two 
neighbouring points (r, θ, φ) and (r + δr, θ + δθ, φ + δφ): 

δl = δr er + eθ + r sin eφ. (8.19)r δθ  θ δφ  

I have used the symbol δl for the displacement vector (rather than δr) to avoid  any  
confusion between the change in radial coordinate δr and the length of the 
displacement, 

δl = (δr)2 + r2(δθ)2 + r2 sin2 θ(δφ)2 , 

Note that the displacement δl does not just depend on the changes in coordinates, 
δr, δθ and δφ — it also depends on the coordinates r and θ themselves. 
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Figure 8.19 (a) The displacement from (r, θ, φ) to (r + δr, θ + δθ, φ + δφ) can 
be split into separate displacements in the directions of er , eθ and eφ. (b)  The  
displacement in the eθ direction is along an arc of the blue circle and the 

The coordinate q could be r, θ,
displacement in the eφ direction is along an arc of the red circle. 

or φ in the case of spherical 

It is useful to introduce the notation of scale factors. For any coordinate q and its coordinates, or x, y, or  z in 

associated unit vector eq , we consider a small change δq, while keeping the other Cartesian coordinates. 

coordinates fixed. Then the scale factor hq is defined as the factor by which δq eq 

must be multiplied to give the resulting displacement. 

Comparing with Equation 8.19, we see that the scale factors 
for spherical coordinates are 

hr = 1, hθ = r and hφ = r sin θ, 

in terms of which the displacement takes the symmetrical form 

δl = hr δr er + hθ δθ eθ + hφ δφ eφ. (8.20) 

Finally, because the spherical unit vectors are orthogonal, the 
small volume element shown in Figure 8.20 is very nearly a 
cube and so has volume 

δV = (hr δr) × (hθ δθ) × (hφ δφ). 

Therefore the volume element in spherical coordinates is 

δV = (δr)×( )×(r sin ) =  r 2 sin (8.21)r δθ θ δφ θ δr  δθ δφ.  

Figure 8.20 A small volume element in 
spherical coordinates. 
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Cylindrical coordinates 

Figure 8.21 shows how the cylindrical coordinates (r, φ, z) of a point P are 
defined: 

•	 The radial coordinate r is the perpendicular distance from the z-axis to the 
point. 

•	 The azimuthal coordinate φ is the azimuthal angle, that is, the angle between 
the positive x-axis and the projection of OP in the xy-plane. The sense of 

φ = 0  when the projection of P increasing φ is determined by a right-hand grip rule. With the thumb of the 
in the xy-plane coincides with right hand pointing along the positive z-axis, the curled fingers of the right 
the positive x-axis. hand indicate the direction in which φ increases. 

•	 The axial coordinate z is identical to the Cartesian z-coordinate. 

Note that r in cylindrical coordinates is not the same as  r in spherical coordinates. 
It is therefore important always to say which coordinate system is being used in a 
given situation. 

Figure 8.21 The 
cylindrical coordinates 
(r, φ, z) of a point P. 

Using trigonometry in Figure 8.21, we see that the cylindrical coordinates (r, φ, z) 
of a point P are related to the Cartesian coordinates (x, y, z) of the same point by 

x = r cos φ 

y = r sin φ (8.22) 

z = z. 

The inverse transformations are: 

2)1/2 r = (x 2 + y

y


tan φ = 
x


z = z.
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The angle φ is measured in radians and the three coordinates are restricted to lie in 
the ranges: 

0 ≤ r <  ∞, 0 ≤ φ <  2π and −∞ < z  <  ∞. 

These coordinates extend over the whole of space and most points have only one 
set of cylindrical coordinates. The only exceptions are points on the z-axis of 
Figure 8.21 (that is, points with r = 0). Any value of φ can be chosen at these 
points. 

To describe a scalar field f in cylindrical coordinates we express it as a function 
of r, φ and z: 

f = f(r, φ, z). 

To describe a vector field F in cylindrical coordinates we use the cylindrical unit 
vectors shown in Figure 8.22. Each unit vector points in a direction in which one 
cylindrical coordinate changes while the other two remain fixed. 

•	 er is in the direction of increasing r and constant φ and z. This is in the 
outward radial direction, perpendicular to the z-axis. 

•	 eφ is in the direction of increasing φ and constant r and z. 

•	 ez is in the direction of increasing z and constant r and φ. 

Figure 8.22 Cylindrical unit 
vectors at a point P. 

Although ez maintains a constant direction, the other two unit vectors are 
functions of position. At any given point r, the triplet of vectors (er (r), eφ(r), ez ) 
forms an orthogonal right-handed system with, for example, 

er (r) · eφ(r) = 0  and er (r) × eφ(r) = ez . 
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The value of a vector field at r can therefore be expanded in terms of these unit 
vectors: 

F(r) = Fr (r) er (r) + Fφ(r) eφ(r) + Fz (r) ez , (8.23) 

but this is usually abbreviated to 

F = Fr er + Fφ eφ + Fz ez , 

with the position-dependence of er and eφ left implicit. 

In cylindrical coordinates, a small displacement is given by 

δl = δr er + r δφ  eφ + δz ez . (8.24) 

The scale factors are therefore 

hr = 1, hφ = r and hz = 1, 

and a small volume element about the point (r, φ, z) is 

δV = hr hφhz δr δφ δz = r δr δφ  δz.  (8.25) 

Exercise 8.12 The scalar field V (x, y, z) = A/(x2 + y2 + z2), where A is a 
constant, is expressed in Cartesian coordinates. Re-express this scalar field in 
(a) spherical and (b) cylindrical coordinates. 

Exercise 8.13 The vector field F(r) = (A/r2) er , where A is a constant, is 
expressed in spherical coordinates. Find expressions for er and r2 in Cartesian 
coordinates and hence express the vector field F in Cartesian coordinates. Q 

8.4 Partial differentiation

Section 8.4 is best read 8.4.1 First partial derivatives

before or during your study 
of Chapter 2. Any field is a function of position. In three-dimensional space, positions are 

specified by three coordinates, so fields are generally functions of three variables 
— four if time is included. We often need to know how rapidly a field is changing 
in a given direction. For example, we might want to know how rapidly a scalar 
field changes in the radial direction or how rapidly the x-component of a vector 
field varies in the y-direction. To deal with questions like this we must broaden 
the concept of differentiation to cope with functions of more than one variable. 

You will be familiar with ordinary differentiation. Given a function f(x) of the 
variable x, we can find its derivative df/dx. The derivative is the rate of change 
of f with respect to x. The value of the derivative at a given point is equal to the 
gradient of a graph of f against x at that point. The derivative is positive at a 
given point if f increases with x at that point. It is negative if f decreases with x 
at the point. Any calculus textbook will tell you how to calculate derivatives. 
There are rules for differentiating sums, products, quotients and functions of other 
functions, as well as specific rules dealing with standard functions. 

We are interested in functions of more than one variable, and would like to extend 
the concept of differentiation to these functions. However, care is needed. For 
example, consider a function f(x, y) of two independent variables, x and y. If  x 
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changes by ∆x and y changes by ∆y, the change in f will depend on both ∆x 
and ∆y. This is illustrated in the contour map shown in Figure 8.23. It follows 
that the rate of change of f with respect to x is ill-defined — unless we say what 
happens to y while x changes. The simplest possible choice is to insist that y 
remains constant. This leads to the concept of partial differentiation. 

Figure 8.23 Contour map of f(x, y) with contours ranging from f = 20 to  
f = 100. Starting from a point (x, y) and changing x by a given amount ∆x, the  
change in f depends on the change in y. The contour lines show that the change 
in f is greater when ∆x is accompanied by ∆y2 than by ∆y1. 

The partial derivative of f(x, y) with respect to x is the rate of change of f with 
respect to x when y is held constant. It is denoted by (∂f/∂x)y , where the curly 
dees show that this is a partial derivative and the subscript y reminds us that y is 
held constant. The subscript is usually unnecessary. If we know that f(x, y) is a 
function of x and y, the fact that we are taking the partial derivative with respect 
to x automatically implies that the other variable, y, is held constant. It is 
therefore sufficient to write 

∂f 
∂x 

for the partial derivative of f with respect to x, when  y is held constant. The 
partial derivative of f with respect to y, when  x is held constant, is denoted by 
∂f/∂y. These ideas are easily extended to functions of many variables. Given a 
function f(x1, x2, ..., xn), the partial derivative of f with respect to xi is written 
as ∂f/∂xi. This is the rate of change of f with respect to xi with all the other 
variables held constant. 

To calculate a partial derivative with respect to x we just use the ordinary rules of 
differentiation, but remember to treat every variable, except x, as a constant. For 
example, if 

2 4f(x, y, z, t) =  x y 2 sin(ωt) +  z , 

∂f 
= 2xy 2 sin(ωt). 

∂x 

∂f/∂x is pronounced as ‘partial 
dee f by dee x’. 
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In calculating this partial derivative, the factor x2 is differentiated to give 2x, 
whereas the factor y2 sin(ωt) is treated as a multiplicative constant which survives 
the differentiation unchanged and the term z4 is treated as an additive constant 
whose derivative is zero. Using a similar argument we obtain 

∂f 2= x y 2ω cos(ωt). 
∂t 

Exercise 8.14 If f(x, y) =  e2x cos(3y), find  ∂f/∂x and ∂f/∂y. Q 

8.4.2 Estimating small changes 

Given a function f(x) of one variable, the derivative df/dx allows us to estimate 
the small change in f that accompanies a small change in x. If  x changes by δx, 
the function f changes by 

df 
δf = f(x + δx) − f(x) =  δx. 

dx 

Strictly speaking, this is an approximation, but it becomes exact in the limit as δx 
tends to zero and can be made as accurate as we like by taking δx to be small 
enough. 

We can extend this result to functions of many variables. Suppose we have a 
function f(x, y, z) of variables x, y and z. If we hold y and z constant and allow 
x to change by a small amount δx, the change in f is 

∂f 
δf = f(x + δx, y, z) − f(x, y, z) =  δx. 

∂x 

As with the case of one variable, this is an approximation which becomes exactly 
true in the limit as δx tends to zero. More generally, x, y and z may all change. If 
we make arbitrary small changes δx, δy and δz to x, y and z, the function f 
changes by 

δf = 
∂f 
∂x 

δx + 
∂f 
∂y 

δy + 
∂f 
∂z 

δz. (8.26) 

This equation is known as the chain rule of partial differentiation. It is exact in 
the limit as δx, δy and δz tend to zero, and can be made as accurate as we like by 
taking δx, δy and δz to be small enough. 

8.4.3 Higher partial derivatives 

A function of a single variable can be differentiated once, twice or many times to 
produce higher-order derivatives. Something very similar can be done with partial 
derivatives. For example, if f(x, y) is a function of x and y, we can form the 
partial derivatives ∂f/∂x and ∂f/∂y. These first-order partial derivatives are 
themselves functions of x and y, so we can partially differentiate again with 
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respect to x or y to obtain four second-order partial derivatives: 

∂2f ∂ ∂f 
= 

∂x2 ∂x ∂x
, 

∂2f ∂ ∂f 
= 

∂y2 ∂y ∂y
, 

∂2f ∂ ∂f 
= ,

∂y∂x ∂y ∂x 

∂2f ∂ ∂f 
= . 

∂x∂y ∂x ∂y 

For example, if f(x, y) =  x2 sin y, the first-order partial derivatives are 

∂f 
= 2x sin y,

∂x 

∂f 2= x cos y.
∂y 

Partially differentiating again, the second-order partial derivatives are 

∂2f ∂ 
= (2x sin y) = 2  sin  y,

∂x2 ∂x 

∂2f ∂ � 
2 �


= x cos y = −x 2 sin y,

∂y2 ∂y 

∂2f ∂ 
= (2x sin y) = 2x cos y,

∂y∂x ∂y 

∂2f ∂ � 
2 � 

= x cos y = 2x cos y.
∂x∂y ∂x 

The last two partial derivatives are called mixed partial derivatives because they 
contain a mixture of partial differentiation with respect to x and partial 
differentiation with respect to y. In one case we differentiate first with respect to x 
(holding y constant) and then with respect to y (holding x constant); in the other 
case this order of differentiation is reversed. The two partial differentiations occur 
one after the other, so there is no problem in holding a variable constant during 
the first differentiation and then allowing it to vary during the second. Notice that 
the two mixed partial derivatives are equal to one another. This turns out to be a 
general property, true for all ‘well-behaved’smooth functions. It certainly applies 
to all the functions you will meet in this course. So you can safely assume that 
mixed partial derivatives do not depend on the order of partial differentiation. 

Exercise 8.15 If f(x, t) = sin(k(x − ct)), where k and c are constants, show 
that 

∂2f 1 ∂2f 
= . 

c2 ∂t2 Q∂x2 
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8.5 Volume and surface integrals 
Section 8.5 is essential 
reading for Chapter 2. 

This section shows how to integrate a scalar field over a volume and a vector field 
over a surface. These two ideas are connected. You will see later that the surface 
integral of a vector field is equal to the volume integral of a related scalar field. 

8.5.1 Volume integrals 

Reminder of ordinary integration 

You should be familiar with definite integrals of the form 
xmax 

I = f (x) dx. (8.27) 
xmin 

Such an integral is a kind of sum, suitable for functions of continuous variables, 
but it is not a sum of function values of the integrand. The integral is not related to 
a sum of the form 

f (xi). 
i 

Instead, you should imagine dividing the range between xmin and xmax into many 
small steps, with the length of the ith step being equal to ∆xi. The integral is the 
limiting value of the sum 

f (xi) ∆xi 

i 

when the steps have become infinite in number and infinitesimal in length (i → ∞  
and ∆xi → 0). 

Figure 8.24 A rod lying along the x-axis containing a mass element λ ∆x. 

To take a more physical case, imagine a long thin rod stretched out along the 
x-axis between xmin and xmax (Figure 8.24). The rod has a non-uniform mass per 
unit length. This non-uniformity is described by a function λ(x), which is the 
mass per unit length of a segment at position x. In other words, the mass of the 
small element between x and x + ∆x is λ(x) ∆x. The total mass of the rod is 
approximated by 

M � λ(xi)∆xi,

i


where the label i runs over all the segments of the rod. Taking the limiting case of 
an infinite number of infinitesimal segments avoids any need to apologize for 
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making approximations, and the total mass of the rod becomes 
xmax 

M = λ(x) dx. 
xmin 

The integrand λ(x) is a mass per unit length. This is integrated along the length of 
the rod to obtain the total mass. 

Extension to volume integrals 

The integral discussed above involved a function that varies along the x-axis, and 
the integration was performed over a definite range of the x-axis. A volume 
integral generalizes this idea to three dimensions; we deal with functions that 
vary in three-dimensional space, and the integration is performed over a definite 
region of three-dimensional space, such as a cube or a sphere. Nevertheless, the 
basic idea of integration remains the same. 

Suppose we have a function f (r) which varies with position r in three-
dimensional space. We want to integrate this function over a three-dimensional 
volume, V . This is achieved by dividing V into many small volume elements. 
Suppose that the volume element containing the point ri has volume ∆Vi. Then  
we can form the sum 

f (ri) ∆Vi,

i


where the label i runs over all the volume elements ∆Vi in the volume V . Taking  
the limit of an infinite number of infinitesimal volume elements gives the required 
volume integral, which we write as 

I = f (r) dV. (8.28) 
V 

The subscript V on the integral sign indicates that the integral is taken over the 
volume V . This notation is less explicit than the use of limits in Equation 8.27 but 
it does serve to remind us that, when Equation 8.28 is approximated by a sum, all 
the volume elements must belong to V . 

Let me be honest. If the volume V is an irregular blob, the volume integral will be 
impossibly hard. Fortunately, we only need to consider simple cases, where both 
the volume V and the function f have high degrees of symmetry. The key to 
calculating volume integrals in these cases is to make full use of the symmetry. 
There are two main approaches, one informal and the other more formal. The 
informal method splits the volume of integration into carefully chosen volume 
elements. If possible, each volume element is labelled by a single variable and the 
integrand is taken to be constant throughout the element. The whole integral is 
then found by integrating over the variable that labels the volume elements. The 
following example illustrates how this works. 
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f (r) = A/r A r 
I = 

� 
V f (r) dV , 

where V R

Because f (r) r 

∆r. 

r ∆r
4πr2 ∆r

∆V = 4πr2 ∆r. 

f 

A 
r 
× 4πr2 ∆r = 4 ∆r. 

sphere, r = 0 r = R

I = 
� R 

0 
4 dr = 4πA 

� 
r2 

2 

�R 

0 
= 2 2 . 
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Worked Example 8.1 

A scalar field takes the form , where is a constant and is the 
distance from the origin. Calculate the volume integral 

is a sphere of radius , centred on the origin. 

Solution 

depends only on the distance from the origin, it is sensible to 
divide the volume of the sphere into a set of nested spherical shells, each 
centred on the origin (Figure 8.25). 

Figure 8.25 Cross-sectional view of nested spherical shells, 
each of thickness 

We concentrate on one of these shells of radius and thickness . The  
volume of this shell is its surface area, , times its thickness, , so  

If the shell is thin enough, we can neglect any variation of in the shell. The 
contribution to the integral from this shell is therefore 

πAr 

The integral over the whole sphere is found by adding contributions from all 
the spherical shells. Taking the limiting case of infinitely many shells of 
infinitesimal thickness, and integrating outwards from the centre of the 

, to its surface, , we obtain 

πAr πAR
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Exercise 8.16 A scalar field takes the form f(r) =  Ar, where A is a constant 
and r� is the distance from the z-axis. Calculate the volume integral 
I = f(r) dV , where V is a cylinder of radius R and length L, centred on the V 
z-axis. Q 

The remainder of Section 8.5.1 is optional reading. 

Informal methods like these can cope with all the volume integrals you will meet 
in this book. However, to provide a flexible toolkit we will now show how volume 
integrals over spheres or cylinders can be approached more formally, using the 
spherical and cylindrical coordinate systems introduced in Section 8.3.2. 

To integrate a scalar field over a sphere (or part of a sphere, such as a hemisphere), 
we use a spherical coordinate system with its origin at the centre of the sphere. In 
this coordinate system, the volume element is given by 

δV = r 2 sin θ δr δθ  δφ.  (Eqn 8.21) 

We need to select the limits that specify the volume of integration. A sphere of 
radius R has coordinates in the range 0 ≤ r ≤ R, 0 ≤ θ ≤ π and 0 ≤ φ <  2π, so  
the volume integral can be written as Note that, with dr placed � � φ=2π � θ=π � r=R innermost, the limits for r are 

f(r) dV = f(r, θ, φ) r 2 sin θ dr dθ dφ. placed on the innermost integral 
sphere φ=0 θ=0 r=0 sign — and so on, working 

In particular, if f depends only on r, the integral becomes outwards. � � φ=2π � θ=π � r=R


f(r) dV = f(r) r 2 sin θ dr dθ dφ

sphere φ=0 θ=0 r=0
� R � π � 2π


= f(r) r 2 dr sin θ dθ dφ

0 0 0
� R 

= f(r) r 2 dr × 2 × 2π 
0 � R 

= 4π f(r) r 2 dr.

0


For example, if f = A/r, � � RA 
dV = 4π Ar dr = 2πAR2 ,


sphere r 0


which agrees with Worked Example 8.1. However, the present method also works 
for functions that depend on the angular spherical coordinates. For example, if 
f(r, θ, φ) = cos2 θ sin2 φ/r2, we have  � � R � π � 2π 

f(r, θ, φ) dV = dr cos2 θ sin θ dθ sin2 φ dφ

sphere 0 0 0
� �π cos3 θ 2πR 

= R × − 
3 0 

× π =
3 

. 
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Do not spend time working out lengthy integrals from first principles. The 
inside back cover of the book contains a list of standard integrals. Any 
integral needed in this book will either be elementary or will be in this list. 
At most, you may need to change the variable of integration or insert 
appropriate limits of integration. 

A similar method can be used to evaluate volume integrals over cylinders (or parts 
of cylinders), but in this case we use cylindrical coordinates and the volume 
element is 

δV = r δr δφ  δz.  (Eqn 8.25) 

A cylinder of radius R and length L has coordinates in the range 0 ≤ r ≤ R, 
0 ≤ φ <  2π and −L/2 ≤ z ≤ L/2, so the volume integral can be written as � � z=+L/2 � φ=2π � r=R 

f(r) dV = f(r, φ, z) r dr dφ dz. 
cylinder z=−L/2 φ=0 r=0 

If you need to integrate a function over all space, you can either use spherical 
coordinates (letting the upper limit of the r-coordinate tend to infinity) or use 
cylindrical coordinates (letting the upper limits of the r- and  z-coordinates tend to 
infinity). However, you would be well-advised to choose the coordinate system in 
which the function takes the simplest possible form. 

Exercise 8.17 Calculate the volume integral over all space of the function 
f(r) = exp(−r3), where r is the distance from the origin. You may use the 
standard integral r2 exp(−r3) dr = − exp(−r3)/3. Q 

8.5.2 Surface integrals 

Surface integrals are used throughout science and technology. For example, in 
fluid mechanics they are used to calculate the amount of fluid flowing into a given 
region. They are also used to calculate the rate of heat loss through the walls, roof 
and floor of a house. 

Area as a vector 

You probably think of area as a scalar quantity — a certain number of square 
metres. This is good enough for areas drawn on a sheet of paper. More generally, 
though, we need to consider planes that are oriented in three-dimensional space. 
The simplest way to describe the orientation of a plane is to specify a unit vector 
n that is perpendicular to the plane (Figure 8.26). There are actually two such 
vectors, pointing in opposite directions, but this is not a problem — we just pick 
one of them and specify our selection clearly. The chosen unit vector is then 
called the unit normal of the plane. 

For any given plane element, we can multiply the area ∆S of the element by its 
unit normal �n to obtain the vector 

∆S = ∆S �Figure 8.26 The unit normal n.


n of a plane. This vector is called the oriented area of the plane element. It is perpendicular to

the plane element and its magnitude is the area of the plane element. 
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Flux over a plane element 

Flux is a property of a vector field. Suppose a vector field F is defined throughout 
a region of space. We place a small plane element somewhere in this region 
(Figure 8.27). The plane element is small enough for the field to be taken as 
constant all over its surface. Then the flux of the vector field over the element is 
defined to be the normal component of the field (the component in the direction of 
the unit normal �n) times the area of the plane element: 

flux over element = Fn ∆S.	 (8.29) 

However, the normal component of the field is given by the scalar product 

Fn = F · �n = F cos θ, 

where F is the magnitude of the vector field and θ is the angle between F and �
So vector field over a small plane 

n. Figure 8.27 The flux of a 

n) ∆S = F · (�	 n ∆S.flux over element = (F · � n ∆S) =  F · ∆S. (8.30) surface element ∆S = �
Hence, an alternative way of defining the flux is to say that it is the scalar product � Scalar products are 
of the vector field (at the position of the element) and the oriented area of the discussed in Section 8.2.1. 
element. 

The name flux comes from the Latin for flow. This is not 
accidental because the flow of water provides useful insights 
into the meaning of flux. The velocity of water throughout a 
region of space can be described by a velocity vector field 
v(r). The flux of this vector field over a small plane element, 
∆S, is  

flux of velocity = v · ∆S. 

This quantity has a simple interpretation. It is the rate of flow 
of water through the plane surface, measured in terms of 
volume per unit time. To see why, note from Figure 8.28 that 
the water that passes through the brown plane element ∆S in 
time ∆t is contained in the oblique parallelepiped. 

This oblique parallelepiped has the same volume as the oblong 
brick, namely 

∆V = area of base × height = ∆S × (v ∆t cos θ), 

where θ is the angle between the direction of flow of the water 
and the unit normal �n to the plane element of area ∆S. So  

∆V = (v ∆S cos θ) ∆t = (v · ∆S) ∆t, 

and 

dV 
= v · ∆S = flux of velocity.

dt	 Figure 8.28 The volume of water that passes 
the red plane element of area ∆S on the left in 

This flux is positive if the direction of flow makes an acute time ∆t is contained in the oblique 
angle with the unit normal, and is negative if the flow is in the parallelepiped, which has the same volume as the 
opposite sense. For a given flow of water, the flux is greatest oblong brick with length v ∆t cos θ.
when the plane element is normal to the flow (�n parallel to v 
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and θ = 0◦). The flux is zero when the plane element is parallel to the flow (�n 
perpendicular to v and θ = 90◦). Our general definition of flux is a mathematical 
abstraction of this concept which can be used for electric and magnetic fields, 
where nothing actually flows. 

Flux over an extended surface 

The definition of flux can be extended to larger surfaces, even if they are curved. 
To achieve this, we imagine covering the surface with many small patches 
(Figure 8.29). The patches are small enough for each to be treated as a plane 
element, and they are oriented consistently so that the unit normals of 
neighbouring patches are almost parallel, rather than almost antiparallel. 

The flux over each patch can be found from Equation 8.30. To find the total flux 

Figure 8.29 Covering an over the whole surface we just add up the contributions of all the patches. We can 

extended surface with many avoid any inaccuracies by taking the limit of an infinite number of infinitesimal 

small patches. patches, so that the surface is fitted exactly. The resulting quantity is called the 
surface integral of the vector field over the surface. We write 

flux over surface S = F · dS, (8.31) 
S 

where the right-hand side is our notation for the surface integral and the subscript 
S on the integral sign shows that the integral is taken over a given surface S. 

Many of the surface integrals you will meet in electromagnetism will be over 
closed surfaces. A closed surface is one that separates space into two 
disconnected regions, one inside the surface and one outside. It is impossible to 
travel between these regions without crossing the surface. An open surface is one 
that fails to achieve this separation. The surface of an intact egg is an example of a 
closed surface; part of the eggshell after the egg has been cracked open is an open 
surface. For any closed surface it is conventional to choose the unit normals to 
point outwards (Figure 8.30). The flux of a vector field over a closed surface is 

Figure 8.30 The unit normals therefore the flux outwards into the exterior space. 

of a closed surface always point So much for definitions. What about practical calculations? First, the bad news; 
outwards. most surface integrals are very difficult, especially if the surface is 

irregularly-shaped or the vector field varies in a complicated way. Fortunately, we 
only need to consider simple cases. The surface will usually be that of a sphere or 
cylinder and the vector field will usually have a constant normal component on 
the surface, or on parts of the surface. With these advantages the surface integral 
can be found by multiplying the normal component of the field by an easily 
determined surface area. 

Worked Example 8.2 

The vector field F has the form F = (A/r5) er , where A is a constant and 
er is a unit vector pointing radially outwards from the origin. Calculate the 
flux of this vector field over a sphere of radius R, centred on the origin. 

Solution 

At all points on the surface of the sphere, the vector field points outwards, 
perpendicular to the surface. The normal component of the field has the 
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A/R5 

4πR2 of 

flux = 
A 
R5 × 4πR2 = 

4πA 
R3 . 

The divergence of a vector field 

constant value all over the spherical surface, so the flux is simply 
found by multiplying this normal component by the surface area 
the sphere: 

Exercise 8.18 The vector field F has the form F = (A/r) er , where A is a 
constant and er is a unit vector pointing radially outwards from the z-axis in 
cylindrical coordinates. Calculate the flux of this vector field over the closed 
surface of a cylinder of radius R and length L, centred on the z-axis. Q 

8.6 The divergence of a vector field 
Given any vector field F, we can define a scalar field called the divergence of F. 
This section defines divergence and shows that a surface integral of F is related to 
a volume integral of the divergence of F. The development hinges on a special 
property of flux — its additivity. 

Section 8.6 is essential 
reading for Chapter 2. 

8.6.1 The additivity of flux 

Suppose that a volume V is split into many small volume elements. The principle 
of additivity of flux states that the flux of a vector field over the surface of the 
whole volume is the sum of the fluxes over the surfaces of all the volume 
elements. That is, 

F · dS = F · dS, (8.32) 
S i Si 

where F is the vector field, S is the surface of the volume V and Si is the surface 
of the ith volume element in V . 

To establish this fact, consider two neighbouring volume 
elements ∆V1 and ∆V2 with surfaces S1 and S2 (Figure 8.31). 
The surfaces S1 and S2 contain a common boundary wall 
separating the two volume elements. At any point on this 
boundary wall, the unit normal �n1 of S1 points in the opposite 
direction to the unit normal �n2 of S2. This is because the unit 
normals of a closed surface point outwards. It follows that the 
flux contributed by the boundary wall section of S1 is equal in 
magnitude and opposite in direction to the flux contributed by 
the boundary wall section of S2. When we add up the fluxes 
over the surfaces of all the volume elements, the contributions 
from shared boundary walls all cancel out. The only surviving 
contributions come from the external surfaces, which together Figure 8.31 Cross-sectional view of two 
form the surface of the whole volume. neighbouring volume elements ∆V1 and ∆V2 

with surfaces S1 and S2 shown in red and blue. 
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8.6.2 The divergence theorem 

If the vector field F varies smoothly, and a small volume element is split into two 
similar pieces, the flux of F over the surface of each piece will be practically the 
same. The additivity of flux then requires the flux over the surface of each piece to 
be half the flux over the surface of the whole element. So, halving the volume 
halves the flux. More generally, the flux over the surface of any small volume 
element is proportional to the volume of the element. This suggests that the 
flux-to-volume ratio is a significant quantity. 

The divergence of a vector field F at a given point ri is defined by surrounding 
the point by a tiny volume element ∆Vi, finding the flux of F over the surface of 
this volume element, and dividing by the volume ∆Vi of the element. It is denoted 

div F is also written as ∇ · F, as  by div F or if we wish to indicate the point of interest, by div F(ri). So  
discussed in Section 8.10. 1 

� 
div F(ri) =  F · dS, (8.33)

∆Vi Si 

where Si is the surface enclosing the tiny volume element ∆Vi at ri. 

Strictly speaking, divergence is defined in the limit where the volume element 
surrounding the point has become infinitesimally small. In this limit, the flux is 
exactly proportional to the volume of the element, and the flux-to-volume ratio 
tends to a definite value. The divergence of a vector field is the flux of the field 
per unit volume. Flux is a scalar quantity, so divergence is a scalar field. 

Intuitively, divergence is a measure of the amount by which the field spreads 
outwards per unit volume. In the context of electrostatics, the electric field spreads 
outwards from positive charges and converges inwards towards negative charges. 
The divergence of the electric field is therefore positive at points where there is a 
positive charge density and negative at points where there is a negative charge 
density. It is zero where there is no charge. A second example relates to fluid flow. 
Suppose we treat the population of Manchester as a sort of fluid. This is like an 
ordinary fluid, but instead of molecules there are individual people. The velocity 
of this ‘fluid’ at any point is taken to be the average velocity of all the people in a 
small volume around the point. We assume that this varies smoothly over large 
length scales. Then the divergence of the velocity field is negative at places where 
people are gathering and positive at places where people are dispersing. At a 
football ground, the divergence is negative half an hour before the game begins 
and positive half an hour after it has ended. 

Now let’s return to Equation 8.32. This expresses the flux over a closed surface S 
as a sum of terms. Each term in the sum is the flux over the surface Si of a volume 
element within the surface. Our aim is to replace this sum by a volume integral. 
This is achieved by combining Equations 8.32 and 8.33 to obtain 

F · dS = div F(ri) ∆Vi. 
S i 

Taking the limit of an infinite number of infinitesimal volume elements, 

F · dS = div F dV, (8.34) 
S V 

where F is a vector field and div F is its divergence, S is a closed surface and V 
is the volume inside this surface. This result is called the divergence theorem. It  
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tells us that the surface integral of a vector field over a closed surface is equal to 
the volume integral of the divergence of the field over the interior of the surface. 
The divergence theorem is a central pillar of vector calculus, of major importance 
in electromagnetism. 

The divergence theorem was discovered independently by several people: 
Lagrange in 1764, Gauss in 1813, Green in 1828 and Ostrogradsky in 1831. The 
first two did not publish the theorem, but kept it in their personal papers. Green 
was an amateur mathematician with no connections to the academic world and 
only managed to publish it in an obscure pamphlet. It wasn’t until 1831 that the 
theorem became well-known, just in time for the newly-developing science of 
electromagnetism. It is often called Gauss’s theorem, but this risks confusion with 
Gauss’s law; the two results are quite different — Equation 8.34 is a general 
theorem in mathematics while the Gauss’s law is a law in physics specifically 
related to electromagnetism. 

8.6.3 Divergence as a derivative 

You might wonder whether anything has been gained. Our definition of 
divergence involves a surface integral, so it is not clear that the right-hand side of 
Equation 8.34 is any simpler than the left-hand side. We can work on this though. 
Divergence involves surface integration over an infinitesimal element, and this 
leads to considerable simplification. In order to exploit this, we will take our 
volume element to be a cube aligned with the x-, y- and  z-axes, with sides of 
length ∆L (Figure 8.33). We are interested in the flux of a vector field F over the 
surface of this cube. 

Figure 8.32 Carl Friedrich 
Gauss (1777–1855). 

� This section uses 
partial differentiation, 
which is discussed in 
Section 8.4. 

Figure 8.33 A small cubic volume element threaded by the vector field F. 

The cube has six faces, and we must calculate the outward flux over each face, 
and then add them together. We start by considering the two shaded faces in 
Figure 8.33, which are perpendicular to the x-axis. The field on the left-hand face 
is F(x, y, z) and that on the right-hand face is F(x + ∆L, y, z). To calculate the 
flux contribution of both faces, we need the component of the field perpendicular 
to the faces, that is the x-component. The flux contribution of both faces is then 
found by integrating −Fx(x, y, z) over the left-hand face and integrating 
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+Fx(x + ∆L, y, z) over the right-hand face. The minus and plus signs occur 
because the outward normal of the left-hand face points in the negative 
x-direction, while the outward normal of the right-hand face points in the positive 
x-direction. In more physical terms they correspond to the fact that a field 
pointing along the positive x-axis has an inward flux on the left-hand face and an 
outward flux on the right-hand face. Because of this difference in sign, there 
would be no  net  flux if  Fx(x + ∆L, y, z) were equal to Fx(x, y, z). To  get  a  
non-zero flux, the field must vary as we move across the cube. To first order in 

A partial derivative appears ∆L, we have  
because x varies while y and z 

Fx(x + ∆L, y, z) − Fx(x, y, z) =  
∂Fx ∆L,remain constant. ∂x 

so the net contribution of the pair of faces is obtained by integrating 
(∂Fx/∂x) ∆L over the right-hand face. In the limiting case of a tiny cube we can 
assume that (∂Fx/∂x) ∆L remains constant over the face, so the flux contribution 
from the pair of faces is 

∂Fx ∆L × (∆L)2 = 
∂Fx ∆V,

∂x ∂x 

where ∆V = (∆L)3 is the volume of the cube. A similar calculation can be 
performed for pairs of faces perpendicular to the y- and  z-axes. Adding all these 
contributions together, we obtain the following expression for the total flux over 
the surface of the cube: 

∂Fx ∂Fy ∂Fzflux = + + ∆V. 
∂x ∂y ∂z 

Recalling that the divergence is the flux per unit volume, we conclude that 

div F = 
∂Fx 

∂x 
+ 

∂Fy 

∂y 
+ 

∂Fz 

∂z 
. (8.35) 

This formula gives us an explicit way of calculating a divergence in Cartesian 
coordinates. It also makes it easy to remember where the divergence goes in 
Equation 8.34. Because div F is a spatial derivative, its units are those of F 
divided by length. So, to get the same units on both sides of Equation 8.34, the 
divergence of F must belong in the volume integral, rather than in the surface 
integral. 

F = x2ex + y2ey + z2ez 

div F (1, 2, 3) m? 

div F = 
∂(x2) 
∂x 

+ 
∂(y2) 
∂y 

+ 
∂(z2) 
∂z 

= 2x + 2y + 2z. 

(1, 2, 3) m, 

div F = 2  × 1 m + 2  × 2 m + 2  × 3 m m. 

Worked Example 8.3 

Find the divergence of the vector field . What is the 
value of at the point 

Solution 

Using Equation 8.35 for the divergence, 

At the point 

= 12  
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Exercise 8.19 Find the divergence of the vector field 
F = (a · r)ex + (b · r)ey + (c · r)ez , where a, b and c are constant vectors. 

Exercise 8.20 Use the divergence theorem to show that the surface integral of 
a constant vector field is zero over any closed surface. Q 

8.6.4 Divergence in other coordinate systems 

The definition of divergence as flux per unit volume is not restricted to any � Spherical and 
particular coordinate system, but the argument leading to Equation 8.35 used a cylindrical coordinate 
cube with sides aligned in the x-, y- and  z-direction, and this led to a formula systems are discussed in 
involving derivatives with respect to Cartesian coordinates x, y and z. This  Section 8.3.2. 
restriction can be removed by considering volume elements in other coordinate 
systems. I shall just quote the general result here, which applies to any 
orthogonal coordinate system — that is, one in which the three unit vectors, 
associated with the three coordinates, are mutually orthogonal. In an orthogonal 
coordinate system with coordinates q1, q2 and q3 and scale factors h1, h2 and h3, 
the divergence of F turns out to be 

1 ∂ ∂ ∂
div F = (h2h3F1) +  (h1h3F2) +  (h1h2F3) , (8.36)

h1h2h3 ∂q1 ∂q2 ∂q3 

where F1, F2 and F3 are the components of F along the unit vectors e1, e2 and e3 

that correspond to the coordinates q1, q2 and q3. 

Three special cases are important for us. In Cartesian coordinates, the scale 
factors are all equal to 1, so we recover Equation 8.35. In spherical coordinates 

q1 = r, q2 = θ, q3 = φ, h1 = 1, h2 = r and h3 = r sin θ, 

so the divergence becomes 

div F = 
1 
r2 

∂ 
� 
r2 Fr 

� 

∂r 
+ 

1 
r sin θ 

∂ (sin θ Fθ ) 
∂θ 

+ 
1 

r sin θ 
∂Fφ 

∂φ 
. (8.37) 

In cylindrical coordinates 

q1 = r, q2 = φ, q3 = z, h1 = 1, h2 = r and h3 = 1, 

and the divergence becomes 

div F = 
1 
r 

∂ 
∂r 

(r Fr ) +  
1 
r 

∂Fφ 

∂φ 
+ 

∂Fz 

∂z 
. (8.38) 

Equations of this type are collected together inside the back cover of this book. 
You are not expected to prove or remember them, but you should know of their 
existence. You will need to recognize when to use them, and be prepared to look 
them up and apply them when it is necessary to do so. 

Worked Example 8.4 

Consider the vector field F = Ar, where A is a constant. Find the 
divergence of this vector field using (a) spherical coordinates and (b) 
Cartesian coordinates. 
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(a) 

F = Ar = (Ar)er , 

so Fr = Ar and Fθ = Fφ = 0. 

F is 

div F = 
1 
r2 

∂(r2 × Ar) 
∂r 

= 
1 
r2 

∂(Ar3) 
∂r 

= 
3Ar2 

r2 = 3A. 

(b) 

F = A(xex + yey + zez ), 

div F = 
∂(Ax) 

∂x 
+ 

∂(Ay) 
∂y 

+ 
∂(Az) 

∂z 
= 3A, 
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Solution 

In spherical coordinates, 

Therefore the divergence of the vector field 

In Cartesian coordinates, the vector field takes the form 

so the divergence is 

as before. 

Section 8.7 is essential 
reading for Chapter 4. 

Exercise 8.21 Use the divergence theorem to calculate the flux of the vector 
field F = Ar over the surface of an arbitrary region of volume V . Check your 
answer by direct calculation of the flux over the surface of a sphere of radius R, 
centred on the origin. 

Exercise 8.22 A vector field E is spherically symmetric and takes the form 
E = f (r) er in spherical coordinates. If div E = 0  at all points except the origin, 

2show that f (r) is inversely proportional to r . 

Exercise 8.23 A vector field E is cylindrically symmetric and takes the form 
E = f (r) er in cylindrical coordinates. If div E = 0  at all points not on the 
z-axis, show that f (r) is inversely proportional to r, the distance from the 
z-axis. Q 

8.7 Line integrals 
Line integrals arise in many areas of physics. Perhaps the most familiar example 
is that of work in mechanics. Think of a particle that experiences a constant force 
F while undergoing a displacement δl. The work done by this force is given by 
the scalar product 

δW = F · δl. (8.39) 

More generally, the particle may experience a force that varies with position, and 
the particle may move along a curve. In this case, the total work done can be 
approximated by dividing the curve into many short segments. The force remains 
almost constant over a short segment, so the work done within a segment is still 
given by Equation 8.39. The total work done along the curve is then approximated 
by adding contributions from all the segments. This approximation becomes exact 
in the limit of taking an infinite number of infinitesimal segments. When this limit 
is taken, the total work is said to be the line integral of the force along the curve. 
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The concept of a line integral can be extended to any vector field, F(r), and  any  
directed curve, C. A directed curve is a path with an associated sense of 
progression, leading from a start-point to an end-point. The path could be a 
straight line, an intricate curve or a closed loop with identical start- and 
end-points. The directed curve is approximated by many directed line elements, 
each described by a displacement vector δli, pointing in the sense of progression 
along the curve (Figure 8.34). For each line element, we take the scalar product 
Fi · δli, where Fi is the value of the field at the position of the line element. We 
then add together contributions from all the line elements. The line integral is the 
limiting value of this sum when the line elements become infinitesimal and the 
curve is fitted exactly. This gives a scalar quantity whose units are those of the Figure 8.34 Approximating a 
vector field times length. directed curve C by a set of 
The line integral of F along a given directed curve C is denoted by directed line elements such as � δli.


F · dl.

C 

The line integral of F around a closed loop C is written as 

F · dl, 
C 

with a circle in the middle of the integral sign. This line integral is called the 
circulation of F around C. 

All the line integrals you need to evaluate in this book are quite straightforward. 
The following worked example is a typical case. 

F(r) = kreφ

z
F along C1

radius R z
eφ. 

A 
F whose 

z

C1

z

Worked Example 8.5 

A vector field is expressed in cylindrical coordinates as . The  
field lines of this vector field are concentric circles around the -axis, as 
shown in Figure 8.35. Calculate the line integral of , a circle of 

centred on the origin and perpendicular to the -axis, circulating in 
the same sense as 

Figure 8.35 
vector field 
field lines are 
concentric circles 
around the -axis is to 
be integrated round a 
circular path . The  

-axis points out of the 
page, towards you. 
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C1 R
magnitude kR 

kR kR times 
2πR � 

C1 

F · dl = 2 2 . 

C1 is 

( ) δl = eφ

F = kReφ

F · δl = (kReφ) · ( eφ) = kR2 

� 

C1 

F · dl = 
� 2π 

0 
kR2 dφ = 2 2 , 
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Solution 

The circle has radius . At each point on this circle, the vector field has 
and points in the same direction as the path taken round the 

circle. If the circle is divided into many segments, each segment contributes 
times the length of the segment. So the line integral is given by 

the circumference of the circle. That is, 

πkR

This argument can be presented in a more formal way. Suppose that 
split into many small directed line elements. A directed line element with 
cylindrical coordinates R, φ, z can be expressed as R δφ  . At  the  
position of this line element, the vector field has the value , so the  
contribution of the line element to the line integral is 

R δφ  δφ. 

Integrating over all the directed line elements then gives 

πkR

as before. 

When defining a line integral we must specify a vector field and a directed curve. 
The direction along the curve matters. If C1 is a directed curve from A to B and 
C2 is the same curve but taken from B to A, we have 

F · dl = − F · dl. 
C1 C2 

The precise curve also matters. It is not sufficient to say that a line integral starts 
at point A and ends at point B. In general, we need to know the path chosen to 
join these points because different paths starting at A and ending at B have 
different line integrals. The following example illustrates this fact. 

C1 C2

F = xey 

δl = δxex + δyey F = xey 

F · δl =

Worked Example 8.6 

Figure 8.36 shows a red path, , and  a blue path,  . Calculate the line 
integral of the vector field along each of these paths. 

Solution 

A small directed line element along either of the paths can be written as 
. Taking the scalar product with the vector field 

gives 

xδy. 
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C1 and 
C2

( ). 

x δy = 0

y x = x are 
C1 and C2 C1 x = a� 

C1 

F · dl = 
� b 

0 
a dy = ab. 

Along C2 x = 0� 

C2 

F · dl = 
� b 

0 
0 dy = 0. 

The curl of a vector field 

Figure 8.36 Two 
different paths, 

, each starting at the 
origin and ending at 
a, b

The elements of each path that run parallel to the -axis have , and  
therefore make no contribution. The elements of each path that run parallel 
to the -axis have constant, but different constant values of 
experienced along . Along we have , so  

we have , so  

Although line integrals generally depend on the choice of path, there are 
exceptions. Some special vector fields have the wonderful property that all their 
line integrals depend only on the start-point and end-point of the path used. Such 
line integrals will be discussed later, in Section 8.9. 

Exercise 8.24 For the vector field described in Worked Example 8.5, calculate 
the line integral around C2, a circle of radius R centred on the origin and lying in 
the xz-plane. 

Exercise 8.25 For the vector field described in Worked Example 8.6, calculate 
the line integral along C3, a straight-line path starting at (0, 0) and ending at 
(a, b). Q 

8.8 The curl of a vector field 
Given any vector field F, we can define a new vector field called the curl of F. 
This section defines curl and shows that a line integral of F around a closed loop 
is related to a surface integral of the curl of F. We begin by introducing a 
convention for the sense of progression around the perimeter of an open surface. 

Section 8.8 is essential 
reading for Chapter 4. 
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8.8.1 A convention for perimeters of open surfaces 

You know that each plane element has a unit normal �n, that is, a unit vector 
pointing perpendicular to the element. Of course, there are two directions 
perpendicular to the plane element, opposite to one another. In order to specify 
the plane element we must choose one of these directions as the unit normal. Now 
consider the perimeter of the plane element. This is a closed loop which can be 
traversed in two senses (clockwise or anticlockwise). We adopt a convention 
which links the choice of unit normal to the positive sense of progression around 
the perimeter. The convention uses the right-hand grip rule shown in 
Figure 8.37 — with the thumb of your right hand pointing in the direction of the 
unit normal of a plane element, the curled fingers of your right hand indicate the 

Figure 8.37 The right-hand positive sense of progression around the perimeter of the element. 
grip rule determines the sense of An extended open surface also has a perimeter. The open surface can be covered 
progression around the by a patchwork of tiny plane elements. In this case, the unit normals of the plane 
perimeter of a plane element. elements are chosen to point in consistent directions, so that neighbouring patches 

have unit normals that are nearly parallel, rather than nearly antiparallel. This 
defines a consistent sense of progression around the perimeter of each patch, and 
hence around the perimeter of the whole surface. The sense of progression 
becomes important when we consider a line integral around the perimeter of an 
open surface. The line integral is always taken in the sense of positive 
progression, determined by the right-hand grip rule. Some of Maxwell’s equations 
implicitly assume that this has been done. 

Exercise 8.26 An open surface lies in the plane of the paper, with its unit 
normal pointing out of the plane of the paper towards you. Is the positive sense of 
progression around the perimeter of this element clockwise or anticlockwise, from 
your viewpoint? Q 

8.8.2 The additivity of circulation 

Now, suppose that an open surface is divided into many surface elements which 
are oriented consistently, so that their perimeters are all traversed in the same 
sense. The principle of additivity of circulation states that the circulation of a 
vector field around the perimeter of the whole surface is the sum of its circulations 
around the perimeters of all the surface elements. That is, 

F · dl = F · dl, (8.40) 
C i Ci 

where F is the vector field, C is the perimeter of the whole surface and Ci is the 
perimeter of the ith surface element. 

To establish this fact, consider two neighbouring surface elements ∆S1 and ∆S2 

with perimeters C1 and C2 (Figure 8.38). These perimeters have a common 
section, AB, which forms a boundary between the two surface elements. Our 
convention requires both perimeters to be traversed in the same sense, taken to be 
anticlockwise in the diagram. This means that AB is traversed in one sense (from 
A to B) for  C1 and in the opposite sense (from B to A) for C2. When we calculate 
the sum of the line integrals of a vector field around the perimeters of all the 
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surface elements, the contribution from AB in C1 cancels the contribution from 
BA in C2. More generally, the contributions from all common boundaries 
between surface elements cancel out, leaving only contributions from curves that 
form the perimeter of the whole surface. 

Figure 8.38 Two neighbouring surface Figure 8.39 The additivity of circulation 
elements ∆S1 and ∆S2 with perimeters C1 and applies to open surfaces of any shape, not just 
C2 shown in red  and blue.  planar ones. 

We need not even assume that all the surface elements lie in the same plane. For 
example, Figure 8.39 shows a bell-shaped surface divided into many surface 
elements. The above argument continues to work in this case, so the circulation 
around the opening of the bell is the sum of the circulations around the perimeters 
of all the patches on the surface of the bell. 

8.8.3 The curl theorem 

If the vector field F varies smoothly, and a small surface element is split into two 
similar pieces, the circulation of F around the perimeter of each piece will be 
practically the same. The additivity of circulation then requires that the circulation 
around the perimeter of each piece is half the circulation around the perimeter of 
the whole element. So, halving the area halves the circulation. More generally, the 
circulation around the perimeter of any small surface element is proportional to 
the area of the element. This suggests that the circulation-to-area ratio is a 
significant quantity. 

The situation is similar to that encountered for divergence, but with one 
significant difference. The surface element can be oriented in many different 
ways, each giving a different circulation. So we get different values of the 
circulation per unit area for plane elements oriented in different directions. We are 
therefore led to consider a vector quantity, called the curl of F and denoted by 
curl F. At any given point, the component of curl F in the direction of the unit curl F is also written as ∇ × F, 

ni is the circulation per unit area for a small plane element centred on the as discussed in Section 8.10. vector �
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point, with unit normal �ni. In terms of symbols, the component of curl F in the 
direction of the unit vector �ni is 

1
(curl F) · �ni = F · dl, (8.41)

∆Si Ci 

where the line integral is taken round the perimeter Ci of a small plane element 
which has area ∆Si and unit normal �ni and is situated at the point where the curl 
is evaluated. The direction of �ni and the positive sense of circulation around Ci 

are linked by the right-hand grip rule, as always. 

Strictly speaking, curl is defined in the limit where the plane element has become 
infinitesimally small. In this limit, the circulation is exactly proportional to the 
area of the element, and the circulation per unit area tends to a definite value. The 
component of the curl of a vector field in the direction of a unit vector is the 
circulation of the field per unit area perpendicular to the unit vector. Three 
independent components of curl F can be defined at each point in space, so curl is 
a vector field. 

Intuitively, curl is a measure of the local swirling tendency of a vector field per 
unit area. The z-component of the curl, for example, is a measure of the local 
swirling tendency per unit area in the xy-plane. For example, imagine a leaf 
floating on the surface of a river. In addition to moving downstream, the leaf will, 
in general, rotate about a vertical axis. If the water velocity is described by the 
vector field v, the vertical component of curl v at the position of the leaf is 
proportional to the rate of rotation of the leaf. In a domestic setting, water going 
down the plughole of a bath tends to form vortices, within which the water 
velocity has a non-zero curl. 

Now let’s return to the additivity of circulation. Suppose we have an open surface 
S with perimeter C, then Equation 8.40 gives the circulation around C as a sum 
of terms. Each term is the circulation around the perimeter of a small surface 
element. Our aim is to replace this sum by a surface integral over S. This  is  
achieved by combining Equations 8.40 and 8.41 to obtain 

F · dl = (curl F) · �ni ∆Si 
C i 

Recalling that �ni ∆Si = ∆Si is the oriented area of the surface element and 
taking the limiting case of an infinite number of infinitesimal surface elements, we 
conclude that 

F · dl = curl F · dS, (8.42) 
C S 

where C is a closed loop and S is any open surface that has C as its perimeter. 
This result is called the curl theorem. It tells us that the line integral of a vector 
field around a closed loop is equal to the surface integral of the curl of the field 
over any surface bounded by the loop. 

The curl theorem is just as important as the divergence theorem, and plays a 
central role in electromagnetism. It is often called Stokes’s theorem, though the 
connection with Stokes is a bit shaky. The theorem was actually discovered in 

Figure 8.40 Sir George 1850 by William Thompson (Lord Kelvin) who told his friend, George Stokes 
Gabriel Stokes (1819–1903). (Figure 8.40), about it in a postscript to a letter. Stokes set it as a demanding 
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problem in an examination, which was taken by a young student, J. Clerk 
Maxwell. Perhaps exams have their uses, after all! 

8.8.4 Curl as a derivative 

You have seen that the divergence of a vector field can be expressed as a 
combination of partial derivatives; in Cartesian coordinates, 

∂F ∂F ∂F
div F = + + . (Eqn 8.35) 

∂x ∂y ∂z 

This formula is useful because it allows us to find the divergence of any given 
vector field. We will now show that curl F can also be expressed in terms of 
partial derivatives. 

Let’s concentrate on the z-component of curl F. To find this, we take the line 
integral of F around a tiny square element with unit normal ez (Figure 8.41). This 
square element has sides of length ∆L which are aligned with the x- and  y-axes. 
To conform with the right-hand grip rule, the perimeter of the square is traversed 
in an anticlockwise sense, as indicated in the diagram. 

Figure 8.41 A square 
plane element used to obtain 
an expression for the 
z-component of curl F. 

Consider first the contribution to the line integral from the pair of sides parallel to 
the y-axis. Along these sides we must integrate Fy over y. On the left-hand path, 
Fy (x, y, z) is integrated from y + ∆L to y. This is equivalent to integrating 
−Fy (x, y, z) from y to y + ∆L. On the right-hand path Fy (x + ∆L, y, z) is 
integrated from y to y + ∆L. So the total contribution from the two paths is 
obtained by integrating 

Fy (x + ∆L, y, z) − Fy (x, y, z) 

from y to y + ∆y. This would vanish if Fy (x + ∆L, y, z) were equal to 
Fy (x, y, z). To get a non-zero contribution to the circulation, the field must vary 
as we move across the square. To first order in ∆L, we  have  

Fy (x + ∆L, y, z) − Fy (x, y, z) =  
∂Fy ∆L. 
∂x 
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In the limiting case of an infinitesimal square we can assume that (∂Fy /∂x) ∆L 
remains constant along a side of the square, so the net contribution from the pair 
of sides parallel to the y-axis is 

y+∆L ∂Fy ∂Fy∆L dy = 
∂Fy (∆L)2 = ∆S,

∂x ∂x ∂xy 

where ∆S is the area of the square. A similar calculation can be performed for the 
pair of sides parallel to the x-axis, and produces a contribution (−∂Fx/∂y) ∆S. 
Adding both sets of contribution gives the circulation round the square: 

∂Fy ∂Fxcirculation = − ∆S. 
∂x ∂y 

Recalling that the z-component of the curl is the circulation per unit area, we 
conclude that 

∂Fx(curl F)z = 
∂Fy − . (8.43)
∂x ∂y 

The x- and  y-components of the curl can be worked out in a similar way, leading 
to the final result: 

curl F = 

� 
∂Fz 

∂y 
− 

∂Fy 

∂z 

� 

ex + 

� 
∂Fx 

∂z 
− 

∂Fz 

∂x 

� 

ey + 

� 
∂Fy 

∂x 
− 

∂Fx 

∂y 

� 

ez . (8.44) 

There is a strong pattern in this formula, reminiscent of a vector product. The 
terms in the second and third parentheses can be obtained from the first term by 
cyclically permuting the x, y, z labels (i.e. by making the substitutions x → y, 
y → z, z → x). This pattern can be represented succinctly as a determinant: 

curl F = 

��������� 
ex ey ez 

∂ 
∂x 

∂ 
∂y 

∂ 
∂z 

Fx Fy Fz 

��������� . (8.45) 

V = −ωyex + ωxey 

ω around 
the z-axis. 

curl V = 

��������� 
ex ey ez 

∂ 
∂x 

∂ 
∂y 

∂ 
∂z 

−ωy ωx 0 

��������� = 

� 
∂ 
∂x

(ωx) − 
∂ 
∂y 

(−ωy) 
� 

ez = 2ωez . 

Worked Example 8.7 

Find the curl of the vector field , which describes the 
velocity at points on a solid disk rotating at constant angular speed 

Solution 

Using Equation 8.45 for the curl, 

So the curl is constant over the disk and points along the axis of rotation. 

Exercise 8.27 Find the curl of the vector field V = kxey , where k is a 
constant. 
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Exercise 8.28 Verify explicitly that the curl theorem is true for the vector field 
V = kxey , integrated around a square ABCD in the xy-plane, where A = (0, 0), 
B = (L, 0), C = (L, L) and D = (0, L). Q 

8.8.5 Curl in other coordinate systems 

It is also possible to express curl in other coordinate systems. In any coordinate 
system with coordinates q1, q2 and q3, mutually orthogonal unit vectors e1, e2 and 
e3 and scale factors h1, h2 and h3, the curl turns out to be 

curl F =

1


h1h2h3 

h1e1 h2e2 h3e3 

∂ ∂ ∂

∂q1 ∂q2 ∂q3 

h1F1 h2F2 h3F3 

. 

The scale factors given earlier mean that, in spherical coordinates,


curl F = 
1 

r2 sin θ 

��������� 
er r eθ r sin θ eφ 

∂ 
∂r 

∂ 
∂θ 

∂ 
∂φ 

Fr rFθ r sin θFφ 

��������� , (8.46) 

and in cylindrical coordinates, 

curl F = 
1 
r 

��������� 
er r eφ ez 

∂ 
∂r 

∂ 
∂φ 

∂ 
∂z 

Fr rFφ Fz 

��������� . (8.47) 

I encourage you to treat these equations as tools of the trade. You will not need 
them very often, and you should not try to memorize them, since you can look 
them up when you need to use them. 

F F = f(r) er in 

z-axis. 

curl F = 
1 

r2 sin θ 

��������� 
er r eθ r sin θ eφ 

∂ 
∂r 

∂ 
∂θ 

∂ 
∂φ 

f(r) 0 0 

��������� . 
f(r) θ or φ and 

r2 sin θ �= 0  z-axis. 

Worked Example 8.8 

A vector field is spherically symmetric and takes the form 
spherical coordinates. Show that the curl of this field vanishes at all points 
that are not on the 

Solution 

Using Equation 8.46 gives 

This is equal to zero because does not depend on 
away from the 
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Section 8.9 is essential 
reading for Chapter 5. 

This definition of a conservative 
field is distinct from the idea of 
energy conservation. For 
example, a magnetic field is 
non-conservative, but a charged 
particle moving in a magnetic 
field does not dissipate energy. 

This calculation is relevant to 
the electric field of a spherically 
symmetric charge distribution 
centred on the origin. 

Exercise 8.29 A vector field B is cylindrically symmetric and takes the form 
B = f(r) eφ in cylindrical coordinates. If curl B = 0 at all points not on the 
z-axis, show that f(r) is inversely proportional to r, the distance from the 
z-axis. Q 

8.9 Conservative vector fields 

8.9.1 Zero circulation and path-independence 

The circulation of a vector field around a closed loop is not equal to zero in 
general. For example, the work done moving a particle around a closed loop C is 
given by the line integral C F · dl, where F is the force acting on the particle. If 
the force has to overcome friction or air resistance the total work done is 
non-zero, even though the particle returns to its initial position. A second example 
is provided by a magnetic field. Magnetic field lines form closed loops and the 
line integral of the magnetic field around such a loop is clearly non-zero. 
However, this section considers a special type of vector field which does have zero 
circulation. 

Definition of a conservative field 

A vector field is said to be conservative in a given region if its circulation

around any closed loop in the region is equal to zero. If the region is left

unspecified, the field is taken to be conservative in the whole of space.


E = f(r) er 

f(r) > 0

C

δl = δr er + eθ + r sin eφ, 

so 

E · δl = (f(r) er ) · (δr er + eθ + r sin eφ) =  f(r) 

F along C is � 

C 
E · dl = 

� r2 

r1 

f(r) dr, 

where r1 and r2 

C is 
r1 = r2

E 

Worked Example 8.9 

A vector field takes the form in spherical coordinates, where 
. Is this field conservative? 

Solution 

Consider an arbitrary path . In spherical coordinates, an element of this 
path is 

r δθ  θ δφ  (Eqn 8.19) 

r δθ  θ δφ  δr. 

The line integral of 

are the radial coordinates of the start- and end-points of the 
path. We are interested in the case where a closed loop. In this case, 
the start-point and end-point are identical so , and the integral 
vanishes. This is true for any closed path, so is conservative throughout its 
region of definition. 
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Exercise 8.30 A vector field takes the form B = f (r) eφ in cylindrical 
coordinates, where f (r) > 0. Is this field conservative? Q 

Conservative fields have several important properties that follow from their 
definition. First, we can show that the line integral of a conservative vector field 
does not depend on the precise path that joins the start-point to the end-point. 

Figure 8.42 (a) Two paths 
from A to B. (b) Similar paths 
to (a), but with the right-hand 
path reversed. 

For example, consider the line integral of a vector field F along the two paths 
from A to B shown in Figure 8.42a. Let LAB and RAB be the line integrals of F 
along the left-hand and right-hand paths respectively. Also, let RBA be the line 
integral of F along the reverse right-hand path, from B to A, as shown in 
Figure 8.42b. Reversing the direction of the path reverses the sign of all the 
displacements in the line integral, so RAB = −RBA. Consequently, 

LAB − RAB = LAB + RBA. 

The expression on the right-hand side is the line integral of F around a closed 
loop, from A to B and back to A again. By definition, this is equal to zero for a 
conservative vector field so we conclude that LAB = RAB. This argument applies 
to any path from A to B that lies entirely within the region where F is 
conservative, so we can make the following statement: 

If a vector field F is conservative within a given region, any line integral of 
F within this region depends only on the start-point and end-point of the 
path, and not on its detailed shape. 

The fact that the line integral of a conservative field depends only on the start- and 
end-points of the path is reflected in our notation. A typical line integral is written 
as F · dl, supplemented by a detailed description of the path C. This  is  C 
necessary because different paths usually produce different answers. But the line � Bintegral of a conservative field can be written simply as A F · dl, where A and B 
are the start- and end-points of the path. No additional information about the path 
is needed in this case. 

If you are asked to calculate the line integral of a vector field F along a 
complicated path, it is worth considering whether the field is conservative. If so, 
you are entitled to replace the complicated path by a simpler path joining the same 
start- and end-points. This trick is illustrated by the following worked example. 
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F = (x2 + y2)ex + 2xyey 

F xy
(−R, 0, 0) (R, 0, 0) (0 0). 

F 
x
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−R 
(x 2 x = 

� 
x3 

3 

�R 

−R 
= 

2 
3
R3 . 
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Worked Example 8.10 

The vector field is conservative. Calculate the 
line integral of along a semicircular path in the -plane, with start-point 

, end-point and mid-point , R,  

Solution 

We are told that is a conservative field, so we can replace the semicircular 
path by a straight-line path along the -axis. Along this path the line integral 

+ 0) d

: To use this trick you must be sure that the field is conservative. The 
wording of this question supplies the necessary assurance. More generally, 
Section 8.9.5 will show how to test whether a given vector field is 
conservative. 

Figure 8.43 A path C used to 
define the scalar potential field 
at a point r in a region R. 

8.9.2 The scalar potential field 

The fact that a conservative field has path-independent line integrals allows us to 
introduce a new scalar field as follows. Suppose that the vector field F is 
conservative in a region R (Figure 8.43). Within this region we choose a fixed 
reference point r0 and a path leading from r0 to a point r. Then we define 

f (r) =  − 
� r 

r0 

F · dl + f0, (8.48) 

where f0 is a constant. Because F is conservative, the line integral does not 
depend on the path and Equation 8.48 specifies a unique scalar at each point r in 
R: it defines a scalar field known as the scalar potential. The minus sign in 
Equation 8.48 is a matter of convention. It is omitted in some branches of physics, 
such as fluid mechanics, but is always included in electromagnetism and 
mechanics. At the reference point itself, 

r0 

f (r0) =  − F · dl + f0 = f0, 
r0 

so f0 is the value of the scalar potential at the reference point. Usually, this is set 
equal to zero, giving 

r 

f (r) =  − F · dl. 
r0 

In many cases, the scalar potential is set equal to zero at points infinitely far away 
from the origin. We then say that the zero of the scalar potential is at infinity. 

Equation 8.48 shows that a line integral from the reference point to another point 
in R can be expressed in terms of the scalar potential. This property can be 
extended slightly. Using the fact that 

r2 r2 r1 

F · dl = F · dl − F · dl, 
r1 r0 r0 
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we can express any line integral in R as a difference of scalar potential values: 
r2 

F · dl = − (f(r2) − f(r1)) (8.49) 
r1 

In electromagnetism, F might be the electrostatic force acting on a particle. The 
left-hand side is then interpreted as the work done by the electrostatic force, 
which is minus the work done by the balancing external force, which must be 
applied to move the particle from r1 to r2. The right-hand side is minus the 
corresponding change in electrostatic potential energy. 

Exercise 8.31 A vector field is represented in spherical coordinates as 
F = (A/r2) er , where A is a positive constant. Taking the zero of potential to be 
at infinity, find the scalar potential field corresponding to F. Q 

8.9.3 The gradient of a scalar field 

The scalar potential f is defined in terms of a line integral of a conservative vector 
field F. This process can be reversed. We can also represent F as a combination 
of partial derivatives of f . 

To see how this works, consider two neighbouring points, (x, y, z) and 
(x + δx, y, z) separated by a tiny displacement δx in the x-direction. In this case, 
Equation 8.49 gives 

f(x + δx, y, z) − f(x, y, z) � −Fx δx. 

Dividing by δx and taking the limit as δx tends to 0, gives 

∂f 
= −Fx,

∂x 
where I have used partial derivative notation because the displacement is one in 
which x varies while y and z are held constant. Similar results apply to 
displacements in the y- and  z-directions, so we conclude that 

∂f ∂f ∂f
F = Fxex + Fy ey + Fz ez = − ex + ey + ez . 

∂x ∂y ∂z 

The right-hand side of this equation is usually written in more compact form. For 
any scalar field f(x, y, z), we  define  the  gradient of  the field to be  

grad φ ∇φgrad f = 
∂f 
∂x 

ex + 
∂f 
∂y 

ey + 
∂f 
∂z 

ez . (8.50) is also written as , as  
discussed in Section 8.10. 

Using this notation, we can make the following statement: 

F R
field f 

F = − grad f (8.51) 

throughout R. 

If a vector field is conservative in a region , we can always find a scalar 
such that 

This is a good point to summarize what has been established so far.
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F R

F R 

F R 

F R 

F 
field. 

Properties of a conservative vector field 

If a vector field is conservative in a region , we now know that: 

C1 The circulation of around any closed loop in is equal to zero. 

C2 The line integral of along any path in depends only on the 
start-point and end-point of the path. 

C3 The line integral of along any path in can be expressed as minus the 
difference between the values of a scalar field at the end-point and 
start-point of the path. 

C4 The vector field can be represented as minus the gradient of a scalar 

Property C1 provided us with a definition of a conservative vector field. We then 
followed a linear argument, showing that C1 implies C2, C2 implies C3 and C3 
implies C4. This chain of implications is indicated by the solid arrows in 
Figure 8.44. The arrows only flow in one direction, so we cannot yet claim that 
C1, C2, C3 and C4 are equivalent statements. For example, we have shown that 
C4 is true for conservative fields, but we have not yet ruled out the possibility that 
C4 might be true for other fields, which are not conservative. This gap will now 
be remedied. We will show that: 

Figure 8.44 Properties of 

F 

F = − grad f 

R F R. 

conservative vector fields. 
If a vector field can be represented as 

throughout a region , then  is conservative in 

In other words, we will close the logical circle by establishing the dashed arrow in 
Figure 8.44. To do this, we use the gradient representation to write 

F · dl = − (grad f) · dl, 
C C 

where C is any closed loop in R. Taking the scalar product of grad f and a tiny 
displacement δl = δx ex + δy ey + δz ez gives 

∂f ∂f ∂f
(grad f) · δl = ex + ey + ez · (δx ex + δy ey + δz ez )

∂x ∂y ∂z 

∂f ∂f ∂f 
= δx + δy + δz 

∂x ∂y ∂z 

= δf, (8.52) 

where the last step follows from the chain rule of partial differentiation 
(Equation 8.26). The circulation around C can then be expressed as 

F · dl = − df, 
C C 
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which is equal to 0 because f returns to its initial value when we travel once 
around the loop. Hence the circulation vanishes and F is conservative. 

Now, the chain of implications in Figure 8.44 is closed. It is possible to start with 
any one of the properties and work our way around the chain to prove all the 
others. This means that all four properties stand or fall together. If one is true, 
they are all true and the vector field is conservative; if one is false, they are all 
false and the vector field is non-conservative. 

Exercise 8.32 Use the formula F = − grad f to find a scalar potential for the 
vector field F = (x2 + y2) ex + 2xy ey . Q 

8.9.4 More about the gradient 

We will now explore the meaning of the gradient in more detail. The gradient of a 
scalar field f is a vector field whose Cartesian components are given by 
Equation 8.50. These components give the rates of change of f in the x-, y- and  
z-directions. In general, the component of grad f in any direction is the rate of 
change of f in that direction. 

The vector nature of grad f is not apparent in our notation (nothing is underlined 
or printed in bold type), but you should remember that the values of grad f have 
both magnitude and direction. To interpret the magnitude and direction of grad f , 
it is helpful to revisit Equation 8.52, which we write in the form 

δf = (grad f) · δr, (8.53) 

where δf = f(r + δr) − f(r) is the change in f between two neighbouring 
points and grad f is the gradient of f at the point r. 

The scalar field f has surfaces on which the value of the field remains constant. If 
the displacement δr is tangential to such a surface, δf = 0  so 

(grad f) · δr = 0. 

The vanishing scalar product implies that grad f is perpendicular to δr. This  is  
true for every displacement parallel to the surface of constant f , so the direction 
of grad f at any point is perpendicular to the surface of constant f at that point. 
This is illustrated in Figure 8.45. 

Figure 8.45 The gradient 
of f at any point is 
perpendicular to the surface 
of constant f at that point. 
(Two-dimensional 
representation.) 

By contrast, if δr is parallel to grad f , the right-hand side of Equation 8.53 
reaches its maximum possible value, | grad f | × |δr|. This shows that grad f is in 
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the direction of steepest increase of f and the magnitude of grad f is the rate of 
increase of f in this direction. 

We are interested in gradients in the context of the formula F = − grad f , which  
relates a conservative vector field to a scalar potential field. The minus sign in this 
formula means that, at any given point, the direction of F is the direction of 
steepest decrease of f and the magnitude of F is the rate of decrease of f in this 
direction. In the case of gravity near to the Earth’s surface, the surfaces of 
constant gravitational potential are horizontal sheets. The gravitational potential 
decreases most rapidly in the direction that points vertically downwards; this is 
the direction of the corresponding vector field, the gravitational acceleration. 

Finally, we consider the line integrals of a gradient field. We know that grad f is a 
conservative vector field, so any line integral of grad f depends only on its start-
and end-points. Using Equation 8.52 we have � r2 

r1 

(grad f) · dl = 
� r2 

r1 

df = f(r2) − f(r1), (8.54) 

so the line integral of grad f along a particular path is simply the difference 
between the values of f at the start-point and end-point of the path. This result is 
called the gradient theorem. 

Exercise 8.33 Find the gradient of the scalar field f = xyz at the point 
P = (1, 1, 0). In what direction away from P does the field f increase most 
rapidly? Q 

Gradient in other coordinate systems 

The gradient of a scalar field can also be expressed in other coordinate systems. In 
any coordinate system with coordinates q1, q2 and q3, mutually orthogonal unit 
vectors e1, e2 and e3 and scale factors h1, h2 and h3, the gradient turns out to be 

1 ∂f 1 ∂f 1 ∂f
grad f = e1 + e2 + e3. 

h1 ∂q1 h2 ∂q2 h3 ∂q3 

The scale factors given in Section 8.3.2 mean that, in spherical coordinates, 

grad f = 
∂f 
∂r 

er + 
1 
r 

∂f 
∂θ 

eθ + 
1 

r sin θ 
∂f 
∂φ 

eφ, (8.55) 

and in cylindrical coordinates 

grad f = 
∂f 
∂r 

er + 
1 
r 

∂f 
∂φ 

eφ + 
∂f 
∂z 

ez . (8.56) 

As usual, my advice is that you should regard these equations as a resource. You 
are not expected to prove or remember them, but you should know of their 
existence. You will need to know when to use them, and be prepared to look them 
up and apply them when necessary. 

Exercise 8.34 A scalar potential field takes the form f(r) =  K/r6 where r is 
the distance from the origin. Find the corresponding vector field F and evaluate 
the line integral of F along a path from point A (with r = a) to point B (with 
r = b). Q 
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8.9 Conservative vector fields 

8.9.5 Irrotational vector fields 

Conservative vector fields have a final important property, which has a different 
status from the properties C1 to C4 mentioned earlier. You have seen that any 
conservative vector field can be written in the form 

F = − grad f, 

where f is the scalar potential. Taking the curl of both sides of this equation in 
Cartesian coordinates gives 

curl F = −curl(grad f) =  −


ex ey ex 

∂ ∂ ∂ 
= 0,
∂x ∂y ∂z


∂f ∂f ∂f

∂x ∂y ∂z


where the last step is established by expanding the determinant and using the fact 
that mixed partial derivatives do not depend on the order of partial differentiation. 
For example, 

∂ ∂f ∂ ∂f
(curl F)x = − − = 0. 

∂y ∂z ∂z ∂y 

A vector field whose curl vanishes is said to be irrotational,  so we have the  
following result: 

FIf a vector field is conservative in a given region, it is also irrotational in 
that region. 

The converse is true under special circumstances. For example, if F is irrotational 
throughout the whole of space, it is also conservative. To see why, let C be any 
closed loop. Then the curl theorem tells us that 

F · dl = curl F · dS, 
C S 

where S is an open surface whose boundary is C (Figure 8.46). The irrotational 
nature of F means that curl F = 0, so the surface integral on the right-hand side 
is equal to zero. It follows that the circulation of F around C is equal to zero. This 
applies to any closed loop, so F is conservative. 

This argument can be extended to other regions. For example, suppose that F is 
irrotational throughout a region R that consists of the whole of space except for 
some isolated holes. Then, given any closed loop C in R, we can still find an open 
surface that has C as its perimeter and avoids all the holes. The surface will have 
undulations where it avoids the holes, but this does not prevent us from using the 
curl theorem, so the argument goes through just as before. 

However, there are some regions where it is impossible to find a surface that 
avoids all the holes. For example, suppose that F is irrotational throughout a 
region R which consists of the whole of space except for the entire z-axis. 
Figure 8.47 shows a closed loop C1 that encircles the z-axis. In this case it is 

Figure 8.46 Using the curl 
theorem around a closed loop C, 
which is the only boundary of an 
open surface S. 
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impossible to find an open surface in R with C1 as its only boundary — another 
boundary such as C2 is inevitably present. The curl theorem continues to apply in 
this situation, provided both C1 and C2 are taken into account: 

F · dl + F · dl = curl F · dS. 
C1 C2 S 

If F is irrotational throughout the region, the right-hand side is again equal to 
zero. It follows that the two circulations on the left-hand side cancel. However, 
we cannot deduce that either of these circulations is equal to zero, so we cannot 
establish that F is conservative. The essential difference between a space with 
isolated holes and a space with the z-axis removed can be characterized more 
precisely. 

A 
z

S C1 

simply-connected region is one in which any closed loop can be 
continuously distorted and shrunk to a point without leaving the region. 

Figure 8.47 Using the curl 
theorem in a region that 
excludes the -axis. The open 
surface is bounded by both 
and C2 

For example the whole of space is simply-connected and so is a solid sphere. A 
thick spherical shell is also simply-connected because we can shrink any closed 
loop within the shell down to a point. For the same reason, a typical Swiss cheese 
(with isolated bubbles in it) is simply-connected. However, three-dimensional 
space with the z-axis removed, or with a torus-shaped tunnel removed, is not 
simply-connected. 

If you picture a closed loop C, leaving a visible trail behind as it collapses down 
to a point, this trail defines an open surface whose only boundary is C. Such open 
surfaces provide the conditions needed to establish that an irrotational field is 
conservative. We therefore reach the following conclusion: 

simply-connectedIf a vector field is irrotational in a region, it is also 
conservative in that region. 

The requirement for simple-connectedness has real consequences. For example, 
consider a vector field B given in cylindrical coordinates by 

A
B = eφ for r �= 0. 

r 

This is the form of the magnetic field outside an infinitely-long straight wire of 
negligible thickness. Using Equation 8.47 for the curl of a vector field in 
cylindrical coordinates, we obtain 

curl B = 
1 
r 

��������� 
er r eφ ez 

∂ 
∂r 

∂ 
∂φ 

∂ 
∂z 

0 r(A/r) 0 

��������� , 
which is equal to zero for r �= 0. The vector field B is therefore irrotational in the 
whole of space excluding the z-axis. Nevertheless, B is not conservative. Its field 
lines are circles and the circulation B around any of these circles is non-zero (as 
you saw in Exercise 8.30). 
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In order to confirm that a given vector field is conservative we can take the curl of 
the field and verify that this vanishes throughout a region. This is called the curl 
test. However this test only works in a simply-connected region. In 
electromagnetism, the space outside a set of isolated point charges is 
simply-connected, but the space outside an electrical circuit is not 
simply-connected. The curl test is therefore appropriate for the electrostatic fields 
produced by point charges, but is inappropriate for magnetostatic fields. 
Magnetostatic fields are irrotational outside current flows, but they are not 
conservative. 

Exercise 8.35 The following vector fields are defined throughout the whole of 
space. Which are conservative? 

F = (x 2 + y 2) ex + 2xy ey , 

G = (x 2 − y 2) ex + 2xy ey , 

H = grad(x 2 + xy + z 2).	
Q 

8.9.6 Integrating fields — a summary 

In a spirit of review, it is worth noting that a common thread binds together the 
divergence theorem (Equation 8.34), the curl theorem (Equation 8.42) and the 
gradient theorem (Equation 8.54). Each equation relates the derivative of a field, 
integrated over a finite region, to a contribution of the field coming from the 
boundary of the region. This is illustrated in Figure 8.48. 

•	 In the divergence theorem, the region is a three-dimensional volume, the 
derivative of the field is a divergence, and the boundary of the volume is a 
two-dimensional closed surface. 

•	 In the curl theorem, the region is a two-dimensional surface, the derivative of 
the field is a curl, and the boundary of the surface is a one-dimensional closed 
loop. 

•	 In the gradient theorem, the region is a one-dimensional directed curve, the 
derivative of the field is a gradient, and the boundary of the curve is just two 
points — its start-point and its end-point. 

Figure 8.48 The divergence, 
curl and gradient theorems. 
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These three great theorems can be thought of as 3-dimensional, 2-dimensional 
and 1-dimensional generalizations of the fundamental theorem of calculus, which 
states that � b df 

dx = f(b) − f(a),
dxa 

and so relates the integral of the derivative of a function to the behaviour of the 
function at the limits of the interval of integration. 

8.10 Further topics in vector calculus 
Section 8.10 is not needed 
for the physics chapters of 
this book, but is included 
for completeness. 

8.10.1 Del notation 

An alternative notation based on the symbol ∇ (pronounced del) is often used in 
vector calculus. Before describing this notation, it is worth remarking that the 
operation of partial differentiation can be described in terms of the object ∂/∂x. 
The idea is that ∂/∂x operates on a function f(x, y, z) and converts it to another 
function, the partial derivative ∂f/∂x. We say that ∂/∂x is an operator. 

In this spirit, we introduce the del operator 

∇ = 
∂ 
∂x 

ex + 
∂ 
∂y 

ey + 
∂ 
∂z 

ez , (8.57) 

The del operator has three Cartesian components, ∂/∂x, ∂/∂y and ∂/∂z, 
associated with the x, y and z-directions, and is therefore a vector operator. That 
is why ∇ is printed in bold type, and why you must underline it in your written 
work. The partial differentiations do not act on the Cartesian unit vectors ex, ey 

and ez (which are constant vectors) but they do act on any function placed to the 
right of the del operator. 

When the del operator acts on a scalar field f(x, y, z) it gives 

∂f ∂f ∂f ∇f = ex + ey + ez = grad f. 
∂x ∂y ∂z 

For any vector field 

F = Fx ex + Fy ey + Fz ez , 

we can form two types of product with ∇. 

Taking the scalar product gives 

∂ ∂ ∂ ∇ · F = ex + ey + ez · (Fx ex + Fy ey + Fz ez )
∂x ∂y ∂z


∂Fx ∂Fy ∂Fz
= + + 
∂x ∂y ∂z


= div  F.
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Taking the vector product gives


∂ ∂ ∂ ∇ × F = ex + ey + ez × (Fx ex + Fy ey + Fz ez )
∂x ∂y ∂z 

= 

ex ey ez 

∂ ∂ ∂ 
∂x ∂y ∂z 
Fx Fy Fz 

= curl  F. 

So the gradient, divergence and curl operations, which are central to vector 
calculus, are all represented simply and compactly in terms of the del operator ∇. 

The del notation has other advantages. It makes the formulae for grad, div and 
curl in Cartesian coordinates easy to remember. It also reminds us that ∇f and 
∇ × F are vector fields and that ∇ · F is a scalar field. It can even can help us 
avoid errors. For example, the equation ρ = ∇V looks wrong because the 
non-bold print on the left indicates a scalar field while the bold print on the right 
indicates a vector field. A scalar can never be equal to a vector, so this equation 
makes no sense, either grammatically or physically. By contrast, the equation 
E = −∇V makes perfect sense, and is one you will meet in electromagnetism. 

The identification of ∇f , ∇ · F and ∇ × F as gradient, divergence and curl was 
carried out in Cartesian coordinates. It is also possible to define the del operators 
in other coordinate systems, but it is not very useful to do so. The difficulty is that 
the unit vectors in a non-Cartesian coordinate system generally vary from point to 
point. So, for example, when using the expression for del in a spherical coordinate 
system to calculate the divergence of a vector field, it is necessary to differentiate 
the unit vectors er , eθ and eφ with respect to r, θ and φ. This is an unwelcome 
chore, and it is generally much easier to use Equation 8.37 directly. In spite of this 
practical difficulty, ∇f , ∇ · F and ∇ × F are taken as synonyms for grad f , 
div F and curl F, no matter what coordinate system is being used. 

8.10.2 Vector calculus identities 

A vector calculus identity is a formula that involves grads, divs or curls and is 
valid for all fields. For example, 

div(curl F) = 0  i.e. ∇ · (∇ × F) = 0  for any vector field F, (8.58) 

and 

curl(grad f) =  0 i.e. ∇ × (∇f) =  0 for any scalar field f . (8.59) 

There are many other vector calculus identities, some of which are listed inside 
the back cover of this book. For example, the third book of this course will use the 
identity I pronounce this as: 

curl(curl F) = grad(div  F) −∇2F, (8.60) 
curl of curl F equals 
grad of div F minus 

that is del squared F. 

∇ × (∇ × F) =  ∇(∇ · F) −∇2F. 
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Of course, you are under no 
obligation to prove or memorize 
identities. You can always look 
them up on the inside back cover 
of the book and treat them as 
standard tools ready for use. 

where the operator ∇2 is defined to be 

∂2 ∂2 ∂2 

∇2 = (∇ · ∇) =  + + (8.61)
∂x2 ∂y2 ∂z2 

in Cartesian coordinates and is called the Laplacian operator. 

To establish these identities we can work in Cartesian coordinates. This may seem 
restrictive, but it is not. Div, curl and grad have definitions that are independent of 
coordinate system, so if we succeed in proving a vector identity in one coordinate 
system, it must be true in all others. To prove Equation 8.58, for example, we 
write 

∂Fy ∂ ∂Fx ∂Fz ∂ ∂Fy ∂Fx∇·(∇×F) =  
∂ ∂Fz − + − + − . 
∂x ∂y ∂z ∂y ∂z ∂x ∂z ∂x ∂y 

If you multiply out the brackets and use the fact that the order of differentiation in 
mixed partial derivatives does not matter, you will see that the terms on the 
right-hand side cancel out in pairs, leaving zero as required. 

8.10.3 The Laplacian operator 

The previous section introduced the Laplacian operator, ∇2, expressed in 
Cartesian coordinates. For any scalar field f(x, y, z), 

∂2f ∂2f ∂2f ∇2f = + + 
∂x2 ∂y2 ∂z2 , 

For any vector field F(x, y, z), 

∂2F ∂2F ∂2F ∇2F = + + 
∂x2 ∂y2 ∂z2 , 

which has x-component 

∂2Fx ∂2Fx
(∇2F)x = ∇2Fx = 
∂2Fx + + .

∂x2 ∂y2 ∂z2 

The Laplacian can also be represented in other coordinate systems, but care is 
needed as different formulae apply to scalar and vector fields. For a scalar field f , 

∇2f = ∇ · (∇f) = div grad f. 

In spherical coordinates, Equations 8.37 and 8.55 give 

∇2f = 
1 
r2 

∂ 
∂r 

� 

r 2 ∂f 
∂r 

� 

+ 
1 

r2 sin θ 
∂ 
∂θ 

� 

sin θ 
∂f 
∂θ 

� 

+ 
1 

r2 sin2 θ 

∂2f 
∂φ2 . (8.62) 

In cylindrical coordinates, Equations 8.38 and 8.56 give


∇2f = 
1 
r 

∂ 
∂r 

� 

r 
∂f 
∂r 

� 

+ 
1 
r2 

∂2f 
∂φ2 + 

∂2f 
∂z2 . (8.63) 

These formulae do not apply to a vector field F. Instead, we rearrange 
Equation 8.60 to obtain 

∇2F = grad(div F) − curl(curl F), 

and then use the appropriate expressions for grad, div and curl in the required 
coordinate system. This leads to very lengthy formulae for ∇2F, which will not 
be required in this course. 

250 



�

Solutions to exercises


Solutions to exercises

Ex 1.1 When you run a comb through your hair you 
may succeed in removing some of the comb’s electrons, 
leaving it with a net positive charge. Because 
electromagnetic forces are so strong, you need only 
remove a few electrons, too few to make a significant 
difference to the comb’s mass. The lost electrons are 
transferred to your hair, so there is no conflict with the 
conservation of charge. When brought close to a scrap 
of paper, the comb attracts negatively-charged electrons 
in the paper and repels positively-charged ions. The 
electrons move slightly towards the comb and the ions 
move slightly further away. This slight charge 
displacement explains the attraction. Electric forces 
decrease with increasing distance, so the attraction of 
the electrons overcomes the repulsion of the ions, and 
the overall force on the scrap of paper is attractive, 
towards the comb. 

Ex 1.2 No. This follows immediately from the 
definition that distinguishes electric and magnetic 
forces. 

Ex 1.3 Yes. Particle A experiences different 
electromagnetic forces in the two cases shown in 
Figures 1.3a and 1.3b. This particle is stationary, so it 
experiences no magnetic force. It therefore experiences 
different electric forces in the two cases and this must 
be due to the motion of particle B. 

Ex 1.4 No, because an electron is not a point charge. 
Because of its spin, a stationary electron behaves like a 
miniature magnet, and can experience a magnetic force 
even when it is stationary. In most practical situations 
this force is negligible, but our classification of electric 
and magnetic forces avoids this possible complication 
by referring only to point charges. 

Ex 1.5 According to the back cover, the 
charge-to-mass ratio of an electron is 

−e 1.60 × 10−19 C 
= − = −1.76 × 1011 C kg−1 . 

m 9.11 × 10−31 kg 

So one gram of electrons has charge 
q = −1.76 × 1011 C kg−1 × 10−3 kg = −1.76 × 108 C 
and Coulomb’s law gives an electrostatic force of 

magnitude 
21 q

F = 
24πε0 r

= 8.99 × 109 N m2 C−2 × 
(−1.76 × 108 C)2 

(1.5 × 1011 m)2 

= 1.2 × 104 N. 

This is greater than the weight of one tonne of matter at 
the Earth’s surface, in spite of the enormous separation 
of the charges! Of course, it would not be easy to gather 
one gram of electrons together in a small region — the 
repulsive forces would be enormous. 

Ex 1.6 Yes. To see this, exchange the indices 1 and 2 
throughout Equation 1.2, to obtain 

1 q2q1
F21 = 4πε0 r21 
r21.
2 

Since r21 = r12 and � = −�r21 r12, we conclude that 
F21 = −F12. These forces are equal in magnitude and 
opposite in direction, in agreement with Newton’s third 
law. 

Ex 1.7 Figure S1.1 shows the arrangement of charges 
and a suitable choice of coordinate system. 

Figure S1.1 Arrangement of charges for 
Exercise 1.7. 
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The x-component of the force on the central charge Q 
vanishes by symmetry. The distance separating a corner √ 
of the triangle from its centre is (d/2)/ cos 30◦ = d/ 3 
so the y-component of the force on Q is 

√ 
1 �( 3)2q Q� 

(2 cos 60◦) ey − ey = 0.
4πε0 d2 

where ey is the Cartesian unit vector in the y-direction. 
So the force on the central charge Q vanishes no matter 
what value is chosen for Q. 

Now consider the force on a charge q at the corner of 
the triangle. Worked Example 1.1 showed that each 
corner charge experiences a force of magnitude √ 

3 q2/4πε0d
2 due to the charges in the other two 

corners. This force points away from the centre of the 
triangle. The electrostatic force due to Q must balance 
this. Adding forces in the direction away from the 
centre of the triangle, we require that 

√ 
3 q2 3 qQ

+ = 0.
4πε0 d2 4πε0 d2 

√ 
So Q = −q/ 3 =  −0.58 q. This argument works for 
all the charges at the corners of the triangle, ensuring 
that they all experience zero electrostatic force. 

Ex 1.8 First, we find the displacement vector and 
distance between the particles. From the given 
Cartesian coordinates, 

r1 − r2 = [(3  − 2)ex + (2  − 4)ey + (−1 − 1)ez ] m 

= (ex − 2ey − 2ez ) m, 

therefore 

|r1 − r2| = 12 + (−2)2 + (−2)2 m = 3  m. 

Then Coulomb’s law (Equation 1.3) gives 

F12 = 8.99 × 109 × 9 × 10−5 

× (−3) × 10−5 × 
ex − 2ey − 2ez N

33 

= (−0.90ex + 1.8ey + 1.8ez ) N, 

to two significant figures. 

Ex 1.9 All the charges lie in the xy-plane as shown in 
Figure S1.2, so we can ignore the z-coordinates. 

252 

Figure S1.2 The arrangement of charges in 
Exercise 1.9. 

The electrostatic force on the charge q at the origin is 

1 −16q × q 1 3q × q
F = (−ex) +  

2 (−ey )4πε0 (2a)2 4πε0 a
21 q

= 
2 (4ex − 3ey ).4πε0 a

This force has magnitude 
22 � 5 q|F| = 1 q

42 + (−3)2 = 
24πε0 a2 4πε0 a

and is in the direction of the unit vector 
F 1

F = |F| = 
5

(4ex − 3ey ) = (0.8ex − 0.6ey ). 

Ex 1.10 The SI unit of force is the newton (N) and the 
SI unit of charge is the coulomb (C). It follows that the 
SI unit of electric field is newtons per coulomb (N C−1). 

Comment : Electric fields are also expressed in volts 
per metre (V m−1). This is just an alternative way of 
representing newtons per coulomb, as you will see 
when the volt is defined in Chapter 5. 

Ex 1.11 Place a test charge q at any point r �= r0. 
This test charge experiences an electric force 

1 q q0F = 
4πε0 |r − r0|3 (r − r0) 

due to the charge q0. The electric field at r is found by 
dividing this force by the value of the test charge, so 

F 1 q0E(r) =  = 
q 4πε0 |r − r0|3 (r − r0). 



Solutions to exercises 

This equation provides a formula for the electric field at 
all points except at the position occupied by the source 
charge q0 (where the electric field is undefined). The 
field has a magnitude that is proportional to the charge 
q0 and inversely proportional to the square of the 
distance from the charge. It points radially outwards 
from the source charge if q0 is positive and points 
radially inwards towards the source charge if q0 is 
negative. 

Ex 1.12 The proton is accelerated by a constant force 
of magnitude F = qE. This causes the proton to 
undergo an acceleration of magnitude a = qE/m. 
Because this acceleration is constant, the final speed of 
the proton is v = at, where t is the time spent in the 
field. Thus, 

v mv 
t = = 

a qE 
−11.67 × 10−27 kg × 1.0 × 107 m s

= 
1.6 × 10−19 C × 100 N C−1


= 1.0 × 10−3 s,


where the final units of seconds are obtained using the 
conversion 

1 N = 1  kg m s−2 . 

A useful table of unit conversions appears inside the 
front cover of the book. 

Comment : It is reasonable to use Newtonian 
mechanics in this question because any relativistic 
corrections are of order 1 v2/c2 < 10−3 .2 

Ex 1.13 The field lines were sketched in Figure 1.13c. 
Our task here is to use symmetry principles to justify 
this pattern. Consider the electric field at any point near 
the sheet. If the sheet is rotated about its normal, any 
component of the electric field in the plane of the sheet 
must also rotate. However, the charge distribution is 
unaffected by such a rotation, so the electric field cannot 
change. We conclude that the electric field cannot have 
a component in the plane of the sheet, and is therefore 
perpendicular to the sheet. (Figure 1.13c shows that the 
field points away from a positively-charged sheet but 
this fact cannot be deduced from symmetry.) 

An alternative argument uses some aspects of 
Coulomb’s law. Consider a ring of charge in the plane 
centred on a point directly below the point P at which 
the field is measured (Figure S1.3). The ring is divided 
into similar segments which are grouped in pairs at 
opposite ends of a diameter, for example A and B. 

Using Coulomb’s law, it is easy to see that the electric 
field due to a pair has no component in the plane of the 
sheet; contributions from the two segments cancel out. 
Each ring is made up of pairs of segments and the 
whole plane can be thought of as a collection of rings, 
so the electric field of the whole sheet must be 
perpendicular to the sheet. 

Figure S1.3 Splitting a plane into rings and a ring 
into segments. 

Ex 1.14 The charge distribution is unchanged by 
rotations around the central axis of the cylinder. At 
points on the central axis, these rotations would change 
the radial component of the electric field. The electric 
field on the central axis is therefore directed along the 
axis. The charge distribution is also unchanged by a 
rotation of 180◦ perpendicular to the axis of symmetry, 
passing through the mid-point of the cylinder. This 
implies that the electric field pattern has a similar 
symmetry, and has a magnitude that depends only on 
the distance from the mid-point. These features are 
shown in Figure S1.4 (overleaf). 

The electric field vanishes at the mid-point because 
contributions from each half of the cylinder exactly 
cancel those from the opposite half. At points on the 
axis near the mid-point, there is still some cancellation 
but this is no longer exact. The electric field therefore 
grows in magnitude as we move along the axis away 
from the mid-point. The maximum field is expected to 
occur just beyond the ends of the cylinder because 
cancellation from different parts of the cylinder only 
ceases once we step outside the cylinder. Eventually, far 

253 



� 

� 

Solutions to exercises 

enough from the ends of the cylinder, the inverse-square


Figure S1.4 Arrow map along the axis of a 
uniformly-charged cylinder. 

nature of Coulomb’s law becomes the most important 
factor and the electric field decreases. 

Ex 2.1 The surface of the cube consists of three pairs 
of opposite faces. Consider one pair, A and B. The 
electric field is constant, so has the same value on these 
faces. However, a cube is a closed surface so the 
outward unit normal of A points in the opposite 
direction to the outward unit normal of B. Therefore, 
the normal component of the electric field on A is 
minus the normal component of the electric field on B. 
Flux contributions cancel out for all pairs of opposite 
faces, so the flux over the whole cube vanishes. 

Ex 2.2 In cases (a), (c), (d), (f), (g) and (h), the total 
electric flux is unchanged because the total charge 
within the closed surface is unchanged. In cases (b) and 
(e), the total electric flux changes because the total 
charge within the closed surface changes. 

Ex 2.3 No, if the photon had a non-zero mass, the 
electric field of a point charge would be expected to 
decay exponentially at large distances (Chapter 1, 
p. 23). Such a deviation from an inverse square law 
would undermine our proof of Gauss’s law. 

To show explicitly that Gauss’s law would fail in this 
case, consider a charge outside an enormous closed 
surface that contains no charges. With the electric field 
decaying exponentially, the electric flux on the distant 
side of the surface (far away from the charge) is 
negligible, while the electric flux on the near side of the 
surface (close to the charge) is still sizeable. Hence the 
total flux over the closed surface is non-zero even 
though it contains no charge. I hasten to add that this 
failure of Gauss’s law is purely hypothetical — no 
photon mass has ever been detected. 

Ex 2.4 The charge distribution is spherically 
symmetrical, so we proceed exactly as in Worked 

Example 2.2. We again argue that the electric field is 
spherically symmetrical and hence choose spherical 
Gaussian surfaces centred on the origin. 

(a) Outside the spherical distribution of charge we 
choose a spherical Gaussian surface with radius r >  R. 
This closed surface contains the whole charge Q of the 
sphere, which can be calculated as in Worked 
Example 2.1: � R 

Q = ρ(r) × 4πr2 dr 
0 � R 

= Ar × 4πr2 dr 
0 � R 

= 4πA r 3 dr

0


= πAR4 . 

Calculation of the field exactly repeats part (a) of 
Worked Example 2.2, leading to 

AR4 

E(r) =  
Q 

2 er = 4ε0 r
er ,24πε0 r

where er is the radial unit vector at the point r. 

(b) Inside the spherical distribution of charge we choose 
a spherical Gaussian surface with r <  R. This closed 
surface contains only part of the total charge. The 
enclosed charge is 

r 

Qenc = ρ(s) × 4πs2 ds
�0

r 

= As  × 4πs2 ds 
0 

r 

= 4πA s 3 ds

0


= πA r 4 . 

The electric field is perpendicular to the Gaussian 
surface and has a constant normal component, Er (r), 
on this surface so Gauss’s law gives 

Er (r) × 4πr2 = 
Qenc = 

πA r4 

,

ε0 ε0


so 
Ar2 Ar2 

Er (r) =  
4ε0 

and E(r) =  
4ε0 

er . 

These answers can (and should!) be checked as in 
Worked Example 2.2. 

Ex 2.5 The electric field strength increases as we 
approach the hailstone. In the air around the hailstone, 
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the field reaches its greatest magnitude on the surface of 
the hailstone; this is where breakdown will start. 
Suppose that the hailstone has radius R and total charge 
Q and that the radial component of its electric field is 
Er . Then, choosing a spherical Gaussian surface at the 
surface of the hailstone and applying Gauss’s law we 
obtain 

Er (R) × 4πR2 = 
Q

.

ε0


The magnitude of the electric field at the surface of the 
hailstone is |Er (R)|. Equating this to the breakdown 
field, Eb, we obtain 

|Q|

4πε0R2 = Eb,


so 

|Q| = 4πε0R
2 × Eb


−2
= 4π × 8.85 × 10−12 C2 N−1 m

× (3.0 × 10−3 m)2 × 1.0 × 106 N C−1 

= 1.0 × 10−9 C. 

Any charge greater than this would produce an electric 
field at the surface of the hailstone above Eb, resulting 
in charge leakage, which will continue until the field at 
the surface of the hailstone dips below Eb. In  this  
context, a nanocoulomb is a very large charge! 

Ex 2.6 Choose a spherical Gaussian surface at the 
Earth’s surface. Applying Gauss’s law over this surface 
we obtain 

Er (R) × 4πR2 = 
Q

,

ε0


where Er (R) is the radial component of the field at the 
Earth’s surface, R is the radius and Q is the total charge 
of planet Earth. Thus, 

Q = 4πε0R
2 × Er (R)


−2
= 4π × 8.85 × 10−12 C2 N−1 m

× (6.6 × 106 m)2 × (−100 N C−1) 

= −4.8 × 105 C. 

Because the electric field points down towards the 
Earth, the radial component of the electric field is 
negative and Gauss’s law gives a negative charge on 
planet Earth. 

Ex 2.7 Yes. Gauss’s law applies whether the charges 
are stationary or not. The argument leading to 

Equation 2.7 can therefore be repeated without 
modification, provided that λ is interpreted as the charge 
per unit length of the moving cylinder. This remark 
turns out to be significant because of special relativistic 
effects. Although the charge on the cylinder is invariant, 
the moving cylinder undergoes length contraction. It 
follows that the charge per unit length, λ, is greater for a 
moving cylinder than for a stationary cylinder! 

In applying Gauss’s law, we assume that the electric 
field around the moving infinite cylinder has cylindrical 
symmetry. To completely answer the question, we 
should justify this assumption. Clearly, the symmetry of 
the situation demands that the field is unchanged by 
rotations around the axis of the cylinder and by 
translations along the axis of the cylinder. However, it is 
not obvious that the field must be perpendicular to the 
axis of the cylinder; at first sight, the field lines might 
slope at some angle that depends on the speed of the 
cylinder. In fact, this does not happen. Section 1.5.2 
explained that the electric field of a uniformly-moving 
charge is unchanged by a reflection in the plane that 
contains the charge and is perpendicular to its line of 
motion. The field of a uniformly-moving cylinder is the 
sum of such fields, so it must have this reflection 
symmetry at all points along the axis. This forces the 
field to be perpendicular to the axis of the cylinder. The 
derivation of Equation 2.7 from Gauss’s law then 
proceeds as before. 

Ex 2.8 (a) Yes. The expression in Equation 2.7 does 
not depend on the radius of the cylinder, so it would 
remain valid if the cylinder were compressed radially to 
a uniform line of charge along the central axis. 

(b) No. Inside the cylinder we use a cylindrical 
Gaussian surface of radius r <  R  and length ∆l. The  
enclosed charge is smaller than λ ∆l so the electric field 
is smaller than that given by Equation 2.7. 

Ex 2.9 The simplest way of tackling this problem is 
to use Equation 2.8 and the principle of superposition. 
In the gap between the plates, the total field is 

σ1 σ2E = en + (−en),
2ε0 2ε0 

where en points into the gap away from plate 1 and 
(−en) points into the gap away from plate 2. 
Consequently, 

σ1 − σ2E = 
2ε0 

en. 

As expected, there is no field in the gap if σ1 = σ2, and  
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we recover the usual expression for the field in an 
infinite parallel plate capacitor if σ1 = −σ2. 

Figure S2.1 Capacitor plates with general charge 
densities (drawn for the case σ2 < 0 < σ1). 

It is more challenging to derive this result directly from 
Gauss’s law, but it can be done. To ensure that there is 
no electric field inside either plate, the inner and outer 
surfaces of the plates must have the surface charge 
densities shown in Figure S2.1. (Check that this 
distribution of charge produces the required vanishing 
fields inside the plates, if you wish.) Then, using 
Gauss’s law over the surface of a pillbox that straddles 
the inner surface of one of the plates, we recover our 
previous answer. 

Ex 2.10 The spherical distribution of charge produces 
a spherically-symmetric electric field of the form 
E(r) = Er (r) er so we use spherical coordinates. 
Applying Gauss’s law and using Equation 2.12 gives 

1 d 
(r 2Er ) =  

Ar
, 

r2 dr ε0 

so 

d Ar3 

(r 2Er ) =  .
dr ε0 

Integrating both sides with respect to r, 

Ar4 

r 2Er = + C,
4ε0 
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where C is an arbitrary constant of integration. Thus, 

Ar2 C 
Er = + .

24ε0 r

The field must remain finite at the origin (indeed it 
vanishes there by symmetry) so C = 0 and 

Ar2 

Er = 4ε0 
, 

which reassuringly agrees with the answer to 
Exercise 2.4. 

Ex 2.11 Taking the divergence of the electric field, 

∂
div E = 

∂ 
(Ax3) +  

∂ 
(Ay3) +  (−Az3)

∂x ∂y ∂z 

= 3Ax2 + 3Ay2 − 3Az2 

= 3A(x 2 + y 2 − z 2). 

So Gauss’s law gives 

ρ = ε0 div E = 3Aε0(x 2 + y 2 − z 2). 

This charge density is positive at points in the z = 0  
plane and negative at points on the z-axis (where 
x2 + y2 = 0). The region must therefore contain both 
positive and negative charges. 

Comment : The charge density we have calculated is 
that required to provide consistency with Gauss’s law 
within the region. Other charges could exist outside the 
region, and may be partially responsible for the field. 

Ex 3.1 The divergence of the current density is 

∂
div J = Ax(y − z)

∂x 

∂ ∂ 
+ Ay(z − x) +  Az(x − y)

∂y ∂z 

= A(y − z) + A(z − x) + A(x − y) 
= 0, 

so this current can persist without any accumulation of 
charge, and it might continue until someone wakes me 
up! 

Ex 3.2 The magnitude of the current density is 
1.0 A/(π × (5.0 × 10−4 m)2) = 1.3 × 106 A m−2. This  
current is carried by electrons of charge −e so 
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Equation 3.3 gives 
J 

v = 
ne 

1.3 × 106 A m−2 

= 
8.5 × 1028 m−3 × 1.60 × 10−19 C 

−1= 9.6 × 10−5 m s . 

Comment : This is well below snail’s pace. An 
individual electron takes about an hour to travel one 
foot along the wire. Fortunately, we don’t have to wait 
this long to get a light bulb to shine; electrical energy 
travels much more rapidly than the drift speed of 
individual electrons. 

Ex 3.3 No. The unit vector �r12 is parallel to the 
current element I2 δl2 so the vector product 
I2 δl2 × �r12 vanishes. 

Ex 3.4 Using Equations 3.5 and 3.9 we obtain 

Fmag µ0I
2/2πd I2 

= 
Felec λ2/2πε0d 

= ε0µ0 
λ2 , 

where I is the current and λ is the charge of the 
conduction electrons per unit length of wire. Suppose 
that the wire has cross-sectional area A and that its 
conduction electrons, each of charge −e, have number 
density n and drift speed v. Then  |I| = nevA and 
|λ| = neA so I2/λ2 = v2 and 

Fmag = ε0µ0v 2 .

Felec


Using the results of Exercise 3.2 we conclude that 
Fmag = 8.85 × 10−12 × 4π × 10−7 × (9.6 × 10−5)2 

Felec 

= 1.0 × 10−25 . 

Note: Felec is enormous compared to Fmag , but  is  
exactly balanced by attractive forces between the 
conduction electrons and the positive ions, so the much 
smaller magnetic force Fmag is detectable. 

Ex 3.5 Substituting z = 0  in Equation 3.13, and 
taking the magnitude of both sides gives 

µ0 |I|
B = .

2a 
Alternatively, working from first principles, a current 
element I δl produces a magnetic field at O of 
magnitude 

µ0 |I| δl × a × sin 90◦ µ0 |I| δl 
δB = = 

4π a3 4π a2 , 

in a direction perpendicular to the loop. All current 
elements in the loop produce identical magnetic field 
contributions, pointing in the same direction. The 
magnitude of the total magnetic field is obtained by 
integrating δl round the circumference of the loop. 
Since 

dl = 2πa, 
loop 

this gives 

µ0 |I| × 2πa µ0 |I|
B = = 

4π a2 2a
, 

as before. 

Ex 3.6 Using Equation 3.12 and applying the 
right-hand rule, the magnetic force on side PQ acts 
vertically downwards and the magnetic force on side 
RS acts vertically upwards. The magnetic forces on QR 
and SP act horizontally and outwards, away from the 
centre of the loop. The forces on QR and SP cancel out, 
but the forces on PQ and RS create a torque on the loop, 
causing it to rotate about a horizontal axis perpendicular 
to B. Equilibrium is achieved when the loop lies in a 
vertical plane; then all the magnetic forces act in the 
plane of the loop and cancel out. 

Ex 3.7 The magnetic field lines are helices, wrapped 
around the wire. 

It is interesting to note that, as the uniform magnetic 
field parallel to the wire increases, the pitch of the helix 
increases, moving successive turns of the helix further 
apart. This example shows that it is impossible, in 
general, to gauge the strength of a magnetic field by 
counting the number of times its magnetic field lines 
cross a given plane. The general rule of thumb — that 
magnetic field lines are closer together where the 
magnetic field is stronger — is not infallible. 

Ex 3.8 They attract one another. For example, 
Figure S3.1 shows the two magnetic dipoles (loop 1 and 
loop 2) aligned with the z-axis, together with the 
magnetic field of loop 2. This magnetic field points 
upwards along the z-axis and has an outward radial 
component just off the z-axis as the field lines bend 
round to form closed loops. Using the right-hand rule, 
this magnetic field causes the loop 1 to feel a magnetic 
force with a negative z-component. The red arrows in 
the diagram show contributions to the force from two 
current elements in loop 1. Adding the magnetic forces 
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on all current elements in loop 1, the force components 
perpendicular to the z-axis cancel out while the 
negative z-components reinforce one another. The 
upper dipole (loop 1) is therefore attracted to the lower 
dipole (loop 2). 

Figure S3.1 The magnetic field due to current loop 2 
produces a downward magnetic force on current loop 1. 

Ex 3.9 Let rE and rJ be the radii of orbit of the Earth 
and Jupiter, and let BE and BJ be the magnitudes of the 
Sun’s dipolar magnetic field at these radii. A dipolar 
field decreases as 1/r3 so BJ/BE = (rE/rJ)3 . 
Rearranging this equation, 

Equating this to Fxex + Fy ey , we conclude that 

By = −Fx/qvz and Bx = Fy /qvz . 

No information is available about Bz . As expected, the 
magnetic force determines the components of the 
magnetic field perpendicular to the particle’s motion, 
but it tells us nothing about the component of the 
magnetic field parallel to the particle’s motion. 

Ex 3.11 The Lorentz force on the electron must 
vanish so E + v × B = 0. Taking  the  x-component of 
this equation gives 

Ex +(vy Bz − vz By ) =  E − vB = 0, so E/B = v. 

Ex 3.12 (a) If the current carriers were positively 
charged, the magnetic field would deflect them onto the 
face z = d in Figure 3.21 which is not what is observed. 
So the charge-carriers are negatively-charged and flow 
in the opposite direction to the current. The magnetic 
force still deflects them towards the face z = d, but  the  
electric field now points from right to left, as required. 

(b) Under steady-state conditions the charge carriers 
experience no net force and the electric and magnetic 
forces cancel out. So qE = qvB and v = E/B. The  
current is related to the drift speed v of the carriers by 
|I| = nevA, so the number density of the carriers is 

n = 
|I|
evA 

= 
|I|B 
eAE 

1.5 A × 3.0 × 10−2 T 
= 

=


�3 1.60 × 10−19 C × 2.0 × 10−6 m2 × 3.0 N C−1 
rE

BJ × BE −3rJ = 4.7 × 1022 m .�31.5 × 3.0 × 10−10 T Ex 4.1 Taking the divergence of each vector field = 
8.2 gives 

= 1.8 × 10−12 T. (a) div V1 = 0, 

Ex 3.10 Substituting the given velocity into the (b) div V2 = C(2x + 2y − 2z), 

magnetic force law gives (c) div V3 = C(z + z − 2z) =  0. 

Fmag = qv × B The divergence of V1 and the divergence of V3 vanish 
everywhere, so V1 and V3 could be magnetic fields. 
The divergence of V2 does not vanish everywhere, so 
V2 could not be a magnetic field. 

ex ey ez 

0 0
 vz = q 

Bx By Bz 
Ex 4.2 The magnetic field takes the form B = Bz ez 

so the differential version of the no-monopole law gives 
= q (−vz By ex + vz Bxey ) . ∂Bzdiv B = = 0. 

∂z 
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Hence Bz is independent of z and B does not depend 
on z, in either direction or magnitude. (It could depend 
on x or y.) 

Ex 4.3 The integral version of Ampère’s law states 
that the circulation of the magnetic field, taken around 
any closed path, is proportional to the total current 
through any open surface bounded by the closed path. 

Ex 4.4 The symmetry of the situation suggests use of 
cylindrical coordinates, with the z-axis along the central 
axis of the tube. Using axial and translational 
symmetry, the magnetic field takes the form 

B(r) = Bφ(r) eφ. 

Consider the circular path C shown in Figure S4.1, 
which is centred on and perpendicular to the axis of the 
tube and has radius r <  a. The line integral of the 
magnetic field around this circle is Bφ(r) × 2πr. The  
circle is the perimeter of a disk lying entirely in the 
central hole of the tube. No current flows through this 
disk, so Ampère’s law gives 

Bφ(r) × 2πr = 0. 

For r �= 0 we obtain Bφ(r) = 0. This shows that the 
magnetic field is zero everywhere inside the hole, with 
the possible exception of the central axis itself. In fact, 
the magnetic field vanishes here as well because we can 
safely assume that it is a smoothly varying function 
with no sudden discontinuities. 

Figure S4.1 Applying Ampère’s law in a cylindrical 
conducting tube. 

Comment : This result relies on axial symmetry. The 
magnetic field need not be zero inside a hole of square 

cross-section or inside a cylindrical hole that is 
off-centre, although its circulation around a closed path 
within the hole would be zero. 

Ex 4.5 The planar symmetry prompts use of Cartesian 
coordinates (Figure S4.2). Translational symmetry in 
the x- and  y-directions ensures that the components of 
the magnetic field do not depend on x or y, so  

B(r) = Bx(z) ex + By (z) ey + Bz (z) ez . 

Figure S4.2 A sheet in the xy-plane carrying current 
in the y-direction. 

Consider a reflection of the current sheet in a plane 
perpendicular to the x-axis. This reflection does not 
change the current distribution. Using the reflection rule 
for magnetic fields, the reflection reverses the y- and  
z-components of the magnetic field, which are parallel 
to the plane of reflection, so the symmetry principle 
tells us that the y- and  z-components are both equal to 
zero. We conclude that 

B(r) = Bx(z) ex. 

Comment : This is a complete answer to the question, 
and is as far as symmetry arguments can take us. 
However, you will see in Exercise 4.10 that Bx(z) does 
not depend on the distance from the infinite sheet of 
current. 

Ex 4.6 Choose the circular loop C of radius r shown 
in Figure S4.3, lying inside the toroidal solenoid. The 
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circulation of the magnetic field around the loop is 

B · dl = B × 2πr. 

Figure S4.3 Applying Ampère’s law to a toroidal 
solenoid. 

The interior of the loop C is a circular disc. The total 
current flowing through this disc is 

Itot = N × I.  

Finally, Ampère’s law gives 

B × 2πr = µ0N × I,  

so 

µ0NI  
B = within the toroidal solenoid. 

2πr 

This is similar to the magnetic field strength inside a 
long straight solenoid, but with the number of turns per 
unit length, n, being replaced by N/2πr. The field is 
greatest at the inner radius and smallest at the outer 
radius of the toroidal solenoid. 

Ex 4.7 The differential version of Ampère’s law states 
that, at each point in space, the curl of the magnetic 
field is proportional to the current density. 

Ex 4.8 Working in Cartesian coordinates, the 

divergence of curl B is 

∂Bydiv(curl B) =  
∂ ∂Bz − 
∂x ∂y ∂z 

∂ ∂Bx ∂Bz+ − 
∂y ∂z ∂x 

∂ ∂By ∂Bx+ − . 
∂z ∂x ∂y 

Regrouping terms on the right-hand side gives 

∂2Bz ∂2Bz ∂2Bx ∂2Bx− + − 
∂x∂y ∂y∂x ∂y∂z ∂z∂y 

∂2By ∂2By+ − ,
∂z∂x ∂x∂z 

which vanishes because mixed partial derivatives do not 
depend on the order of partial differentiation. Taking 
the divergence of both sides of Equation 4.17 then gives 

1

div J = div(curl B) = 0.


µ0 

So the current density is divergence-free. This is 
characteristic of a steady current density, as explained 
in Section 3.1. 

Ex 4.9 The spatial derivatives of the components of a 
uniform magnetic field vanish so curl B = 0, and hence 
J = curl  B/µ0 = 0, throughout the region. 

Ex 4.10 Because there are no currents, the differential 
version of Ampère’s law gives curl B = 0. Taking  the  
y-component of this equation, 

∂Bx ∂Bz− = 0. 
∂z ∂x 

Using the fact that Bz = 0, we see that Bx(z) is a 
constant. 

Comment : This result is relevant to the situation 
described in Exercise 4.5. 

Ex 5.1 Working in Cartesian coordinates, we have 

∂ 1 ∂ 2)−3/2= (x 2 + y 2 + z 
∂x r3 ∂x

3 
= − 

2
(x 2 + y 2 + z 2)−5/2 × 2x 

3x 
= − 

5 , r
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with similar results for ∂/∂y and ∂/∂z. So,  charge, the change in its electrostatic potential energy is


ex ey ez ∆U = qV (d/2) − qV (d)
� 2r0∂ ∂ ∂ 
∂x ∂y ∂z 

Ax/r3 Ay/r3 Az/r3 

qλ r0curl F = ln − ln= 
2πε0 d d 

qλ 
ln 2.3A = 

(yz − zy)ex + (zx − xz)ey 2πε0 = − 
5r

Comment : It is not possible to place the zero of 
+ (xy − yx)ez . potential at infinity in this exercise because the potential 

increases without limit as r increases. This unusual This is equal to zero everywhere (except possibly at

situation arises because the charge distribution is 
infinite in extent. However, it is not a problem, as it is 
perfectly acceptable to choose the potential to be zero at 
r = r0, a finite distance from the line of charge. 

Ex 5.3 Far from the nucleus, the electrostatic 
potential energy of the alpha particle is negligible. The 
total energy of the alpha particle is therefore equal to its 
initial kinetic energy Ukin = 1.23 × 10−13 J. 

At the point of closest approach in a head-on collision, 
the alpha particle comes instantaneously to rest. At this 
point, the total energy of the alpha particle is equal to its 
electrostatic potential energy. Let the alpha particle 
have charge q and the gold nucleus have charge Q. The  

r = 0  where the curl is undefined). The vector field F 
therefore passes the curl test for electrostatic fields. 

Comment : Alternatively, you could spot that 

A A
F = × r = × er ,3 2r r

where er is the radial unit vector in spherical 
coordinates. This field has the same form as that of a 
point charge. We can therefore use our previous 
analysis in spherical coordinates (p.118) to show that 
curl F = 0 for r �= 0. 

Ex 5.2 The electrostatic potential at a point r is given 
by 

r electrostatic potential of the nucleus is 
V (r) =  − E · dl, 

r0 

where r and r0 have radial cylindrical coordinates r and 
r0. The electric field is given by E = λ/(2πε0r) er , 
where er is the unit radial vector in cylindrical 
coordinates. For an arbitrary small displacement δl, we  
have 

λ λ
E · δl = er · δl = 2πε0r 

δr, 
2πε0r 

where δr is the change in radial cylindrical coordinate. 
It follows that the potential is independent of φ and z, 
and we will write it as V (r). Hence, 

V (r) =  
Q 

4πε0r
, 

so, at the distance of closest approach, rmin, the  
electrostatic potential energy of the alpha particle is 

qV (rmin) =  
qQ 

.

4πε0rmin


Setting this equal to the initial kinetic energy Ukin and 
solving for rmin gives 

qQ 
rmin = 

4πε0Ukin 

3.20 × 10−19 C × 1.26 × 10−17 C 

V (r) =  − 
r λ 

ds, 
=

4π × 8.85 × 10−12 C2 N−1 m−2 × 1.23 × 10−13 J 
2πε0sr0 =2.95 × 10−13 m. 

where I have changed the variable of integration to s in 
order to avoid confusion with the upper limit of Ex 5.4 The electric field is given by 
integration, r. Evaluating the integral gives E = − grad V


λ r λ r0
V (r) =  − ln s ln ∂(Axy) ∂(Axy) ∂(Axy)=
 .

2πε0 r0 2πε0 + +r = ex ey ez
∂x ∂y ∂z


If a charge q is initially at distance d from the line of 
charge, and moves to a distance d/2 from the line of = Ayex + Axey . 
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Any vector field that can be expressed as the gradient of 
a scalar function is conservative. 

Ex 5.5 The charge on an electron is −e, where e is 
positive, so the electrostatic force on an electron is 
F = −(−e) grad V = e grad V . Thus F is positive in 
the direction of grad V , which is the direction of 
steepest increase of V . Therefore electrons are attracted 
towards regions of higher potential. Since U = (−e)V , 
this corresponds to regions in which their electrostatic 
potential energy is lower. 

Ex 5.6 No. If an electrostatic field line were to cross 
an equipotential surface at A and again at B, the work 
done transporting a test charge q from A to B along the 
field line would be non-zero. This is impossible since A 
and B are on the same equipotential and therefore have 
the same electrostatic potential. 

Ex 5.7 The situation is illustrated in Figure S5.1. 

Figure S5.1 Calculating the potential of a finite line 
of charge (−L ≤ z ≤ L). 

The line element at position z and of length δz has√ 
charge λ δz  and is a distance z2 + x2 from the point P 

on the x-axis. This element contributes a potential 

1 λ δz  
δV = √ . 

24πε0 z2 + x

Integrating over the linear charge distribution gives � Lλ 1 
V = √ dz 

24πε0 −L z2 + x �z=L

= ln( z2 + x2 + z)


λ 
4πε0 z=−L � √ 

L2 + x2 + L�λ 
= ln √ ,

4πε0 L2 + x2 − L 

where the integration was carried out using a standard 
integral listed inside the back cover. 

This answer diverges as L → ∞, and so makes no sense 
in this limit. (To obtain an expression for the 
electrostatic potential of an infinite line of charge, we 
must carry out the direct evaluation of a line integral. 
This has already been done in Exercise 5.2.) 

Ex 5.8 In equilibrium, the two spheres are at the same 
potential so using Equation 5.18, the final charges on 
the spheres obey 

Q1 Q2 = .

R1 R2


Also, the conservation of charge gives 

Q1 + Q2 = 2Q. 

Solving for Q1 and Q2 we obtain 

2R1 2R2
Q1 = Q and Q2 = Q.

R1 + R2 R1 + R2 

The larger sphere has a greater charge. Nevertheless, the 
smaller sphere has a greater surface electric field. (The 
spheres are widely separated, so the surface electric 
field on each sphere is proportional to charge/radius2.) 

Ex 5.9 The potential difference between the ground 
and the base of the cloud is 

V = Ed = 5000 V m−1 ×1.0 ×103 m = 5.0 ×106 V. 

The capacitance of the ground–cloud system is 

ε0A 
C = 

d 

8.85 × 10−12 C2 N−1 m−2 × 20.0 × 106 m
= 

1.0 × 103 m 

= 1.77 × 10−7 F. 

2 
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The total energy stored in the system is therefore 

1 
U = CV  2 

2 

1 
= × 1.77 × 10−7 F × (5.0 × 106 V)2 

2


= 2.2 × 106 J,


where the units have been combined using 
1 F = 1  C V−1 and 1 J = 1  C V.  

Ex 5.10 (a) If the plates are left connected to the 
battery their potential difference is fixed by the 
potentials of the battery terminals and so remains equal 
to V . The electric field strength in the gap is given by 
E = V/d  which increases as the gap is reduced. (This 
means that the charge Q on the plates increases.) 

(b) If the plates are disconnected from the battery, their 
charges remain fixed. The electric field strength in the 
gap is given by E = Q/Aε0, where A is the area of 
each plate, and this remains fixed. The potential 
difference between the plates is given by V = Ed, so  
this decreases as the gap narrows. 

Comment : The second case reminds us that the 
potential of an electrically isolated conductor is not 
fixed, but depends on position. In principle, it is safe for 
a spaceship from Earth to visit a distant planet that has a 
much higher potential than on Earth because the 

leading to a probably fatal current of 

240/1000 A = 0.24 A. 

Comment : Needless to say, you should never take 
risks with mains electricity. Many factors can influence 
the outcome, including your general state of health. 

Ex 6.3 Let the resistance of the external part of the 
circuit be R, and let the internal resistance of the battery 
be r. Then the potential difference across the battery 
terminals is V = IR, and the emf of the battery is 
Vemf = I(R + r). Real batteries always have some 
internal resistance, so V = Vemf − Ir  is always less 
than Vemf. The potential difference across the terminals 
of a battery approaches its emf as the current I drawn 
from the battery tends to zero. 

Ex 6.4 The current drawn from the battery is 

I/(R + r) = 12  V/(0.16 Ω) = 75 A. 

So the power expended by the battery is 

P = IVemf = 75  A × 12 V = 900 W. 

Ex 6.5 We choose the surface S to be the disc whose 
perimeter is the circular loop with its unit normal 
inclined at 30◦ to the z-axis. The magnetic flux over 
this disc is 

B · dS = Kt2 ez · dS 
potential of the spacecraft will have adjusted to be the S S √ 
same as the potential of the planet just in time for 3 
landing! = Kt2 × A cos 30◦ = AKt2 ,

2 

Ex 6.1 No. Any electrostatic field is conservative and where A is the area of the disc. Faraday’s law then gives 

cannot drive a steady current around a circuit. Note that 
we cannot assume that the electric field is zero outside 

� √
 √d 3 
Vemf = − AKt2 = − 3AKt. 

the capacitor plates, even in principle. The electrostatic 
field outside the capacitor must be such that the line 

dt 2 

The magnitude of the induced current is then found 
integral of E around ABCD is equal to zero. from Ohm’s law:


Vemf 

R

Ex 6.2 Unusually in this book, the answer is ‘maybe’. |I| = 
With good luck, the handyman’s resistance to current 
flow will be of order


√ 
3AKt 

= 
(3 Ω m2)/(0.5 × 10−4 m2) = 6.0 × 104 Ω, 

and the current flowing through his heart will be 

240/6.0 × 104 A = 4.0 mA 

— painful, but not fatal. With bad luck, his resistance 
will be 

(0.05 Ω m2)/(0.5 × 10−4 m2) = 1000  Ω, 

R√ 
3 × π(0.10 m)2 × 2.4 T s−2 × 0.5 s 

= 
4.0 × 10−2 Ω


= 1.6 A


(using 1 T = 1  V s m−2 = 1  A Ω s m−2).


Comment : The induced current is time-dependent, so

it produces a time-dependent magnetic flux through the
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loop. In principle, this changing magnetic flux should 
be taken into account when calculating the induced emf 
and current. In the present case, however, the rate of 
change of magnetic flux due to the induced current 
turns out to be much smaller than the rate of change of 
magnetic flux due to the externally applied magnetic 
field (by a factor of order 10−5). We are therefore 
justified in ignoring this effect in this exercise. 

Ex 6.6 For definiteness, we take the open surface S 
associated with the upper loop to be a disc bounded by 
the upper loop, with its unit normal pointing in the 
positive z-direction. Then, using the right-hand grip 
rule, the lower loop produces a positive magnetic flux 
over S. 

Figure S6.1 The direction of the induced current 
in the upper loop depends on whether the current 
in the lower loop is increasing or decreasing. 

(a) If I is increasing, the magnetic flux over S is 
increasing. Lenz’s law requires the induced current to 
produce a compensating negative flux over S. Using the 
right-hand grip rule again, the induced current must 
flow in the direction shown in Figure S6.1a. 

(b) If I is decreasing, the magnetic flux over S is 
decreasing. Lenz’s law requires the induced current to 
produce a compensating positive flux over S. Using the 
right-hand grip rule again, the induced current must 
flow in the direction shown in Figure S6.1b. 

Ex 6.7 Let Φ(t) be the magnetic flux over a 
cross-section of the core. This is the magnetic flux 
through any single turn in the primary or secondary 
coils. The total magnetic flux through the primary coil 
is N1Φ(t), while the total magnetic flux through the 
secondary coil is N2Φ(t). Using Faraday’s law, the 
voltage drops across the primary and secondary coils 
are 

dΦ dΦ 
V1 = −N1 dt 

and V2 = −N2 dt
, 

which immediately gives the required result: 
V2/V1 = N2/N1. 

Ex 6.8 Let’s assume that the magnetic field changes at 
a constant rate. Then Faraday’s law gives an induced 
emf of magnitude 

0.01 × 5.0 × 10−5 T × π(6 × 105 m)2 

Vemf = 
10 s 

= 57  kV 

(using 1 T = 1  V s m−2). 

Ex 6.9 Taking the curl of the electric field, we obtain 

curl E =


ex ey ez 

∂ ∂ ∂ 
∂x ∂y ∂z 
0 0 Ez 

∂Ez = ex = −Ak sin(ky − ωt) ex. 
∂y 

So Faraday’s law gives 

∂Bx = +Ak sin(ky − ωt),
∂t 

∂By = 0  and 
∂Bz = 0. 

∂t ∂t 
Integrating these equations with respect to time, we 
conclude that 

Ak
B = cos(ky − ωt) +  B0,

ω 
where B0 is any time-independent magnetic field. 

Ex 7.1 The current density only has a z-component, 
so the equation of continuity becomes 

∂ρ ∂Jz = − div J = − = −kA cos(kz − ωt). 
∂t ∂z 
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Integrating with respect to time, the charge density is 

k 
ρ(z, t) =  A sin(kz − ωt) +  C(z),

ω 
where C(z) is an arbitrary function. In general, it is 
necessary to allow for such a function, which describes 
a fixed charge density distributed along the rod. 
However, C(z) is the time-average of the charge 
density at position z, which is equal to zero according 
to information given in the question. Hence, 

k k 
ρ(z, t) =  A sin(kz − ωt) =  Jz (z, t). 

ω ω 

Ex 7.2 Taking the surface integral of both sides of 
Equation 7.10 over an open surface S gives 

∂E
curl B · dS = µ0J + ε0µ0 · dS. 

∂tS S 

Using the curl theorem on the left-hand side we obtain 

∂E
B · dl = µ0J + ε0µ0 · dS,

∂tC S 

where the sense of positive progression around C and 
the orientation of S are related by the right-hand grip 
rule. This is the required integral version of the 
Ampère–Maxwell law. 

Ex 7.3 Applying the transformation rules for 
time-reversal given in the question does not affect 
Gauss’s law. The remaining Maxwell equations 
transform as follows: 

div (−B) = 0, 

∂(−B)
curl E = − and 

∂(−t) 
∂(E)

curl (−B) =  µ0(−J) +  ε0µ0 
∂(−t) 

. 

In each case, the transformed equation can be 
rearranged to recover the original Maxwell equation, so 
Maxwell’s equations are unchanged by time-reversal. 

Ex 7.4 Taking the divergence of the 
Ampère–Maxwell law (Equation 7.10) gives 

∂E
div(curl B) =  µ0 div J + ε0µ0 div . 

∂t 

The left-hand side is equal to zero (from Equation 7.5). 
Interchanging the divergence and time derivative on the 
right-hand side and cancelling the factor µ0, then gives  

∂
div J + (ε0 div E) =  0. 

∂t 

Using Gauss’s law, div E = ρ/ε0, we finally obtain 

∂ρ
div J + = 0,

∂t 

which is the equation of continuity. Maxwell wrote 
down the equation of continuity alongside his other 
equations, but it is not counted as one of his four laws 
of electromagnetism because it is a consequence of two 
of the other laws. 

Ex 7.5 The electric wave does not exist beyond the 
filter, so its curl is equal to zero there. There can be no 
curl due to electrostatic fields either because 
electrostatic fields have zero curl. Faraday’s law, 
curl E = −∂B/∂t, therefore shows that the magnetic 
field must be independent of time beyond the filter. 
There is no magnetic wave beyond the filter. 

Ex 7.6 In time ∆t, a wave crest moves a distance 
∆z = c ∆t. If  n cycles of the wave pass the given point 
in this time, nλ = c ∆t so 

c ∆t (3 × 108 m s−1) × (1.0 × 10−14 s) 
n = = = 5. 

λ 600 × 10−9 m 

Ex 7.7 The magnitude of the electric force is qE. 
Because the magnetic wave is transverse, perpendicular 
to the velocity of the particle, the magnitude of the 
magnetic force is qvB. In an electromagnetic wave, 
E = cB, so the ratio of the force magnitudes is 

Fmag = 
qvB v 

= . 
Felec qE c 

The magnetic force is much smaller than the electric 
force for non-relativistic particles, but the two forces 
become comparable for a charged particle that travels 
close to the speed of light. 

Ex 7.8 The average energy flux is 

1 ε0 
E2 1 8.85 × 10−12 C2 m−2 N−1 

= 
2 µ0

0 2 4π × 10−7 N A−2 

× (0.01 V m−1)2 

= 1.3 × 10−7 W m−2 , 

using the unit conversions 1 C = 1 A s, 1 A V = 1 W and 
1 N m  s−1 = 1  W.  

Comment : The small value of this energy flux shows 
that amplification is an essential function of any radio 
receiver. 
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Ex 8.1 Subtracting 6a − 4b from each side gives 

2c = −(6a − 4b) so c = 2b − 3a. 

Ex 8.2 Taking components in the x- and  y-directions: 

1 ax = a cos 60◦ = 2 a, 
√ 

3 ay = a cos 30◦ = a.2 

The z-component is zero because the vector lies in the 
xy-plane. 

Ex 8.3 The displacement vector of A from B is 

rAB = (4ex − 3ey ) m − (ex + ey ) m


= (3ex − 4ey ) m.


The distance between A and B is 

rAB = (3)2 + (−4)2 m = 5  m. 

The unit vector pointing from B towards A is 

rAB rAB = 
rAB 

(3ex − 4ey ) m 
= 

5 m

= 0.6ex − 0.8ey ,


with no units.


Ex 8.4 The scalar product is


a · b = (ex − ey + ez ) · (−ex − 3ey + 0ez ) 
= (1  ×−1) + (−1 ×−3) + (1 × 0) = 2. 

Ex 8.5 From Equation 8.6 we have 

a · b = ab cos θ. 

In order for this to be equal to −ab, we must  have  
cos θ = −1, so  θ = π radians = 180◦. The vectors 
point in opposite directions, that is they are antiparallel. 

Ex 8.6 To test for orthogonality, we evaluate the 
scalar product: 

(a + b) · (a − b) =  a · a − a · b + b · a − b · b 

= a 2 − b2 . 

This is identically equal to zero because a and b have 
the same magnitude. Since a and b are neither parallel 
nor antiparallel, neither a + b nor a − b is equal to the 
zero vector. So the vanishing scalar product shows that 
a + b and a − b are orthogonal. 

266 

Ex 8.7 The vector product is 

a × b = (2ex + 3ey ) × (3ex + 2ey )


= (2  × 2)ex × ey + (3  × 3)ey × ex


= 4ez − 9ez


= −5ez .


Note that we have not included terms in (ex × ex) or 
(ey × ey ) because these vector products are equal to 
zero. 

Ex 8.8 For a × b, point the your right hand 
horizontally to the north in such a way that its fingers 
can bend vertically upwards. Your outstretched right 
thumb then points horizontally to the east; this is the 
direction of a × b. 

For b × a, point your right hand vertically upwards in 
such a way that its fingers can bend horizontally to the 
north. Your outstretched right thumb then points 
horizontally to the west; this is the direction of b × a. 

As expected, a × b and b × a point in opposite 
directions. 

Ex 8.9 Before reflection, the vector c = a × b has 
components 

cx = (ay bz − az by ), 
cy = (az bx − axbz ), 
cz = (axby − ay bx). 

The reflection converts 

(ax, ay , az ) → (ax, ay ,−az ) 

and 

(bx, by , bz ) → (bx, by ,−bz ) 

Substituting these changes into the above expressions 
gives 

cx → −cx, cy → −cy , cz → cz . 

So the vector product c = a × b behaves rather 
strangely under reflections — its components parallel to 
the plane of reflection are reversed, and its component 
perpendicular to the plane of reflection is unchanged. 
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Solutions to exercises 

Ex 8.10 The rate of change of the kinetic energy is 

d � 
1 

� d2mv = 1 m (v · v)2dt 2 dt 
dv dv 

= 1 m v · + · v2 dt dt 

dv 
= m · v.

dt 

Alternatively, the same result can be established using 
components: 

d � 
1 

� d � �
2 mv 2 = 1 m v 2 + v 2 + v2 2 x y zdt �dt 

dvx dvy dvz = m vx + vy + vzdt dt dt 

dv 
= m · v.

dt 

Newton’s second law, F = mdv/dt, then shows that 
the rate of change of the kinetic energy is F · v. If  F is 
always perpendicular to v, the scalar product F · v = 0  
and the kinetic energy remains constant. 

Ex 8.11 Velocity is a vector quantity, so the velocity 
of water in a river is a vector field. Speed, energy 
density and concentration are all scalar quantities so the 
remaining fields are all scalar fields. 

Ex 8.12 (a) We could use Equations 8.17 to make 
replacements for x, y and z in the scalar field, and then 
simplify the result. However, it is much simpler to note 
that the square of the radial spherical coordinate is 
r = x2 + y2 + z2. Substituting the right-hand side of 
this equation into the scalar field immediately gives 
V (r) =  A/r2 . 

(b) The radial coordinate in cylindrical coordinates has 
a different meaning from that in spherical coordinates. 
In cylindrical coordinates, r2 = x2 + y2. Substituting 
the right-hand side of this equation into the scalar field 
gives V (r, z) =  A/(r2 + z2). The transformation to 
cylindrical coordinates is complete because z is already 
one of the cylindrical coordinates. 

Comment : The same symbol V is used in V (r), 
V (r, z) and V (x, y, z). This is natural because V 
represents the same field in each case. From a 
mathematical point of view, however, V (r), V (r, z) and 
V (x, y, z) are different functions with different 
arguments. Avoid writing down an expression like 
V (2 m, 30◦), without describing the meaning of the 
arguments, or at least the coordinate system being used. 

Ex 8.13 At any point P, the radial unit vector er in 
spherical coordinates is in the direction of the position 
vector r. Expressing this position vector in Cartesian 
coordinates, 

r = xex + yey + zez , 

where (x, y, z) are the Cartesian coordinates of P. The 
corresponding unit vector is 

r xex + yey + zez er = 
2r x2 + y2 + z

Since r2 = x2 + y2 + z2, the vector field F(r) takes the 
form 

F(x, y, z) =  
A 

2 × 
xex + yey + zez 

x2 + y2 + z x2 + y2 + z

A(xex + yey + zez )= .
(x2 + y2 + z2)3/2 

Ex 8.14 

∂f d 
= (e2x) cos(3y) =  2e2x cos(3y)

∂x dx 

and 

∂f 2x d 
= e (cos(3y)) = −3e2x sin(3y). 

∂y dy 

Ex 8.15 Taking the first partial derivatives, 

∂f 
= k cos(k(x − ct)), and 

∂x


∂f

= −kc cos(k(x − ct)). 

∂t 

The second partial derivatives are then 

∂2f

= −k2 sin(k(x − ct)), and


∂x2 

∂2f

= −k2 c 2 sin(k(x − ct)).


∂t2 

So 

∂2f 1 ∂2f 
= as required. 

c2 ∂t2∂x2 

2 
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Solutions to exercises 

Ex 8.16 We divide the volume of the cylinder into a 
set of nested tubes, each centred on the z-axis 
(Figure S8.1). 

Figure S8.1 A cylinder can be subdivided into a set 
of nested tubes each of thickness ∆r. 

We concentrate on one of these tubes of radius r, length 
L, and thickness ∆r. The  volume  ∆V of this tube is its 
surface area, 2πrL, times its thickness ∆r. That  is,  

∆V = 2πrL ∆r. 

If the tube is thin enough, we can neglect any variation 
of f in the tube. The contribution to the integral from 
this tube is therefore 

Ar × 2πrL ∆r = 2πAr 2L ∆r. 

Taking the limiting case of infinitely many tubes, each 
of infinitesimal thickness, and integrating outwards 
from the centre of the cylinder, r = 0, to its surface, 
r = R, we obtain � R � �R3 

I = 2πAr 2L dr = 2πAL 
r

= 2 πALR3 .33 00 

Ex 8.17 The function f(r) = exp(−r3) is spherically 
symmetric about the origin, so we carry out the volume 

integral in spherical coordinates. 

I = exp(−r 3) dV 
all space � ∞ 

= exp(−r 3) 4πr2 dr

0
 � ∞ 

= 4π r 2 exp(−r 3) dr.

0


Using the standard integral given in the question, we 
obtain 

exp(−r3) 
�∞ 

= 4I = 4π − π.33 0 

Ex 8.18 At all points on the curved surface of the 
cylinder, the vector field F points outwards, is 
perpendicular to the surface, and has magnitude A/R. 
The vector field F is parallel to the planar end-faces of 
the cylinder, so has no flux over these faces. The flux 
over the whole closed cylinder is therefore 

A
flux = × 2πRL = 2πAL. 

R 

Ex 8.19 Using Equation 8.35 for the divergence, 

∂ ∂ ∂
div F = (a · r) +  (b · r) +  (c · r). 

∂x ∂y ∂z 

Since a · r = axx + ay y + az z, 

∂ ∂
(a · r) =  (axx + ay y + az z) =  ax,

∂x ∂x

with similar results for the other two partial derivatives 
in the divergence, and so 

div F = ax + by + cz . 

Ex 8.20 If the vector field F is a constant vector, its 
divergence is zero. For any closed surface S, enclosing 
a volume V , the divergence theorem then gives 

F · dS = 0 dV = 0. 
S V 
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Solutions to exercises 

Ex 8.21 Using the divergence theorem, Ex 8.24 Referring to Figure 8.35 we see that the

xz-plane is perpendicular to the plane of the page while


F · dS = div F dV,

S V


where S is the surface of the region and V is its volume. 
Worked Example 8.4 showed that div F = 3A, so  

the vector field F is in the plane of the page. The vector 
field F is therefore perpendicular to the circle C2, 
which lies in the xz-plane. For each directed line 
segment δl in C2, the scalar product F · δl vanishes, so 

F · dS = 3A dV = 3AV. F · dl = 0. 
S V C2 

In the special case of a sphere of radius R the flux can 
be calculated directly as a surface integral using the Ex 8.25 Taking the scalar product of the vector field 

argument of Worked Example 8.2. We find F = xey with a small directed line element 
δl = δxex + δyey gives F · δl = x δy. Along the given 
curve C3 we have δy/δx = b/a soflux = F · dS = AR × 4πR2 = 4πAR3 . 

S 
b

F · δl = x δx.  
aSince the volume of the sphere is V = 4πR3/3, this  

agrees with our previous, more general, answer. 
The line integral is therefore


2 �aEx 8.22 Evaluating div E in spherical coordinates a b b abx
F · dl = x dx =gives = .

2 2C3 0 a a 0 
1 ∂ r2 f(r)

div E = . 
r2 ∂r Ex 8.26 Anticlockwise (see Figure 8.37). 

(Because of spherical symmetry, terms involving partial Ex 8.27 Using Equation 8.45 for the curl, 
derivatives of θ and φ all vanish.) 

Setting this divergence equal to zero at any point with

r �= 0  gives ex ey ez 

∂ ∂ ∂

∂x ∂y ∂z

0 kx 0


d 
(r 2f(r)) = 0, curl V = 

dr 

so r2f(r) =  constant, and f(r) is proportional to 1/r2 . 

Comment : This result is relevant to the electric field 
of an isolated point charge at the origin. 

Ex 8.23 Evaluating div E in cylindrical coordinates 
gives 

1 ∂
div E = (rf(r)) . 

r ∂r 

(Because of cylindrical symmetry, terms involving 
partial derivatives of φ and z all vanish.) 

Setting this divergence equal to zero at any point with 
r �= 0  gives


d

(rf(r)) = 0,

dr 

so rf(r) =  constant, and f(r) is proportional to 1/r. 

Comment : This result is relevant to the electric field 
of an infinite uniform line of charge along the z-axis. 

∂ 
= (kx) ez

∂x

= kez . 

Comment : The curl is non-zero, even though the 
vector field V points in a constant direction. If V were 
the velocity field of a fluid, small objects placed in the 
fluid would tend to rotate in response to different flow 
rates along opposite edges parallel to the y-axis, so a 
non-zero curl is reasonable. 
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Solutions to exercises 

Ex 8.28 First we calculate the circulation of V 
around the square ABCD shown in Figure S8.2. 
Because the vector field points along the y-axis, only 
the sides parallel to the y-axis contribute to the 
circulation. Side BC contributes kL × L but side DA 
contributes nothing (because V vanishes for x = 0). So 
the total circulation around the square is kL2 . 

Figure S8.2 A square path used in Exercise 8.28. 
The z-axis points out of the page, towards you. 

According to the curl theorem, this circulation should 

Setting this equal to the zero vector at any point with 
r �= 0  gives


d

(rf(r)) = 0,

dr 

so rf(r) =  constant, and f(r) is proportional to 1/r. 

Comment : This result is relevant to the magnetic field 
produced by a uniform current flowing along the z-axis. 

Ex 8.30 B is not conservative. This can be seen by 
taking the line integral of B around a circle of radius R, 
centred on the z-axis and in a plane perpendicular to the 
z-axis. The circle is traversed in the direction of the unit 
vector eφ. The vector field B is parallel to this path and 
has a constant magnitude f(R) along it, so the line 
integral of B around the circular path is 
f(R) × 2πR �= 0. The existence of a closed loop with a 
non-zero circulation shows that the vector field B is not 
conservative. 

Comment : This calculation is relevant to the 
magnetic field produced by a steady current flowing in 
an infinite wire centred on the z-axis. 

Ex 8.31 The vector field F is conservative, as shown 
in Worked Example 8.9. To find the corresponding 
scalar potential field f , we take minus the line integral 
of F along any path leading from a reference point at 
infinity to a point r. The simplest choice is a radial path 
with line element δl = δr er . Then Equation 8.48 gives 

rr A A Abe equal to the integral of curl V over the surface of the f(r) =  − ds = − − = ,
square. Exercise 8.27 showed that curl V = kez . ∞ 

2s s r∞ 
Because the square ABCD is traversed anticlockwise, where the variable of integration has been changed from 
the right-hand rule requires us to take the unit normal of r to s to avoid confusion with the upper limit of

the square to be ez (rather than −ez ). The appropriate integration.

surface integral is therefore


Comment : Care is needed with minus signs in

y=L x=L 

calculations of this type. One minus sign arises from (kez ) · ez dx dy = kL2 , 
our definition of the scalar potential and a second y=0 x=0 

as before. appears when we integrate A/s2. The  lower limit of 
integration is ∞, which may seem strange, but is correct 

Ex 8.29 Evaluating curl B in cylindrical coordinates because the lower limit refers to the reference point, 
gives which is taken to be at infinity.


er r eφ ez 

∂ ∂ ∂

∂r ∂φ ∂z


Ex 8.32 Using
1

curl B = ∂f ∂f ∂f
F = − grad f = − ex + ey + ezr ,

∂x ∂y ∂z
0 rf(r) 0 

we have 

∂f ∂f ∂f1 ∂ = −(x 2 + y 2), = −2xy = 0.and(rf(r)) ez .= ∂x ∂y ∂zr ∂r 
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Solutions to exercises 

These equations can be solved by taking	 Ex 8.35 The whole of space is simply-connected, so 
we can use the curl test. 3x


x

grad f = yz ex + xz ey + xy ez .


= 0  ex + 0  ey + (2y − 2y) ez
At the point P = (1, 1, 0), grad f = ez . At this point, f 
increases most rapidly in the z-direction. = 0 

Ex 8.34 The symmetry of the situation prompts the and 

2 + C, where C is any constant. f = − − xy ex ey ez3 
∂ ∂ ∂ 

Ex 8.33 Taking partial derivatives of f and forming curl F = 
∂x ∂y ∂z 

the gradient we have 2 + y2 2xy 0 

use of spherical coordinates. Using Equation 8.55, the 
corresponding vector field is ex ey ez 

∂ ∂ ∂

∂x ∂y ∂z


x2 − y2 2xy 0 

6K	 curl G =∂ K
F = − grad f = − er = er .7∂r r6 r

The line integral of F need not be evaluated explicitly

because it is related to a difference in the values of f .
 = 0  ex + 0  ey + (2y + 2y) ez 
Using Equation 8.49, we have � B	 �= 0,

K K
F · dl = − (f(b) − f(a)) = 

6 − . 
so F is conservative and G is not conservative. The b6 

A	 a
gradient of any scalar field is conservative, so H is 
conservative. 
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Items that appear in the Glossary have page numbers in bold type. Ordinary

index items have page numbers in Roman type. 

addition of force, 20, 71 
additivity of charge, 13, 14, 37, 45 
additivity of circulation, 110, 232, 234 
additivity of flux, 56, 90, 223 
alternator, 153 
amber, 12 
Ampère’s law, 87, 91–95, 94, 188 

differential version, 111

examples of use, 97–100, 106–109, 111

integral version, 95

limitations, 96, 166, 168–169, 172


Amp` e-Marie 16, 94–95 ere, Andr´
Ampère-Maxwell law, 166, 170 

and electromagnetic waves, 181 
differential version, 171 
examples of use, 171–176 
integral version, 171 

ampere 62, 69 
amplitude 182 
angular frequency, 81, 182 
areal charge density, 53, 54  
arrow maps, 204 

for electric fields, 28, 117 
for magnetic fields, 74 

aurora, 10, 79 
axial coordinate, 210 
axial symmetry, 32, 97, 100, 103, 148, 155, 173 
azimuthal coordinate, 205, 210 

bar magnet, 61, 88, 138 
battery, 144, 146 
binomial theorem, 131 
Biot-Savart field law, 71, 188 

examples of use, 72, 89, 95 
Biot-Savart force law, 66, 84  

examples of use 68–69 
limitations, 69–70 

body-scanner, 77, 106 
breakdown field, 33, 34, 50  

capacitance, 133–134 
of capacitor, 133 
of isolated conducting sphere, 133, 135 
of isolated conductor, 133 
of parallel plate capacitor, 134 

capacitor, 54–55, 133–134 
and Ampère-Maxwell law, 172–176 

Cartesian components, 26, 195 
Cartesian coordinate system, 194 
Cartesian coordinates, 26, 58, 197, 203, 249 
Cartesian unit vectors, 194, 198, 200, 208 
chain rule of partial differentiation, 214, 242 
CHAMP satellite, 83 
charge, see electric charge 
charge density, 38, 57, 59, 168 
checking answers, 49, 58, 124, 130–131 
circulation of a vector field, 119, 229 

additivity of, 110, 232

of an electric field, 116–117, 141

of a magnetic field, 92–94, 174


Clerk Maxwell, James, see Maxwell 
closed loop, 229, 246 
closed surface, 40, 222 
coil, 16, 61, 65, 106, 108, 153–154, 176 
components of a vector, 195, 198 
computer keyboards, 83 
conduction electrons, 64–65 
conductors, 

electric field inside, 54, 131 
electrostatic potential of, 131 

conservation of angular momentum, 85 
conservation of charge, 13, 167 
conservation of energy, 124–125 
conservation of momentum, 85 
conservative electric field, 115, 116–126, 141, 144, 157 
conservative vector field, 117–118, 238–247 
contour lines 204, 213 
contour map, 213 
contour surfaces, 204 
convex surface, 41 
cornea, 9 
cosine rule, 127 
coulomb, 19, 62, 69 
Coulomb, Charles de, 8, 23 
Coulomb’s law, 17–25, 18, 46–47, 116 

and instantaneous action at a distance, 25, 27

evidence for, 23–24

examples of use, 21–22

limitations, 24–25, 32, 33


cross product, see vector product 
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curl of a vector field, 110, 231–238, 233 
in Cartesian coordinates, 111, 119, 236 
in cylindrical coordinates, 237, 246 
in del notation, 249 
in orthogonal coordinates, 237 
in spherical coordinates, 118, 237 

curl test, 119, 247 
curl theorem, 110, 155, 233–235, 234, 245–247 
current density, 62–66, 94, 111, 167–168, 171, 188 
current element, 65–68, 71, 89–90, 188 
current flow in a circuit 115, 140–141, 145, 158 
cyclotron frequency, 82 
cyclotron motion, 82 
cyclotron period, 82 
cylindrical coordinates, 210–212 

displacement vector, 212

scale factors, 212

unit vectors, 211

volume element, 212


cylindrical symmetry, 32, 51–52 
cylindrical unit vectors, 211 

defibrillator, 54 
del operator, 248–249 
determinant, 200, 236–237 
differential version 

of Ampère-Maxwell law, 171

of Ampère’s law, 111

of Faraday’s law, 155

of no-monopole law, 89

of Gauss’s law, 56


differentiation 
ordinary, 212 
partial, 154, 168, 213 

dipolar electric field, 29, 127–129 
dipolar magnetic field, 75–78 
dipole moment 

electric, 128–129 
magnetic, 75, 78  

dipole potential, 128 
directed curve, 229 
displacement current density, 171, 187 
displacement vector, 18, 193, 197 
divergence of a vector field, 56, 169, 224–228 

in Cartesian coordinates, 226

in cylindrical coordinates, 58, 227

in del notation, 248

in orthogonal coordinates, 227

in spherical coordinates, 58, 227


divergence theorem, 56 63, 89, 167, 224, 247 

divergence-free fields, 58, 64, 89 
dot product, see scalar product 
drift speed, 64–65 
drift velocity, 64 
dummy variable, 124 

Earth’s electric field, 34, 50, 134 
Earth’s magnetic field, 71, 78, 153 

magnetic dipole moment, 78 
magnetic poles, 78 

Einstein, Albert, 9, 17, 82, 110, 163, 177 
electric charge, 12–14, 188 

additive nature, 13, 14, 37, 45 
as a scalar, 13, 46, 67 
as the source of electric field, 25–26 
conservation, 13, 167 
invariance, 13, 32 
negative, 12 
of elementary particles, 14 
positive, 12 
quantization, 14, 26 

electric current, 15–16, 62–65 
electric dipole, 29, 127–129 
electric dipole moment, 128–129 

of elementary particles, 129 
electric field, 25–35, 26, 136 

circulation of, 116–117, 141, 147, 152 
conservative, 115–121, 141 
energy density, 135–136, 186 
flux of, 39, 47  
inside conducting shell, 50, 120–121 
inside conductor in equilibrium, 54–54, 120, 131 
non-conservative, 115, 117, 141, 149–151 
of Earth, 34, 50, 134 
of uniformly-charged cylinder, 52–53 
of uniformly-charged plane, 53–54 
of uniformly-charged sphere, 48–49 
of uniformly-moving charge, 32, 117 
safety guidelines, 33 
typical values, 33 

electric field lines, 28–30, 126 
electric field strength, 26 
electric flux, 39, 47  
electric force, 16–17, 27 
electric guitar, 139, 147, 153 
electric shock, 145–146 
electromagnet, 70 
electromagnetic force, 12–13 

velocity dependence, 14–16 
electromagnetic induction, 138–163 
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electromagnetic radiation, 124, 165

electromagnetic spectrum, 184–185

electromagnetic wave, 8, 179–187

electromotance, 143

electromotive force, 142

electron microscope, 15, 79, 132

electron-positron pair, 13, 35

electronic ignition system, 83, 153

electrostatic field, 27, 116–121, 125–126, 127–129

electrostatic field line, 28–30, 120, 126, 128

electrostatic force, 17–25, 126

electrostatic potential, 122–134


of a conducting sphere, 132

of a conductor, 131

of an electric dipole, 127–129


electrostatic potential energy, 123, 125–126 
of conducting sphere, 135


electrostatic potential field, 122

electrostatics, 17, 157

elementary particles, 14, 75, 129

emf, 142, 160


induced, 143, 146, 159

of a battery, 144


energy density,

in an electromagnetic wave, 186

of an electric field, 135, 186

of a magnetic field, 186


energy flux, 186–187

equation of continuity, 166–168, 178

equipotential surface, 126, 128

ether, 163, 178, 188


farad, 133

Faraday cage, 121

Faraday’s law, 146, 156–157


differential version, 154–156, 155

generalized, 162

integral version, 146–154

sign, 151–152


Faraday, Michael, 7–8, 25, 138, 146, 179

field, 8, 26, 202–204

field line, 204


electric, 28

magnetic 73


field line pattern, 204

electric, 28–30

magnetic 73–75


flux freezing, 163

flux of a vector field, 221–222


additivity, 56, 223


of current density, 63

of electric field, 39, 47

of magnetic field, 88–90, 146–147, 152


frequency, 33, 82, 182

fundamental forces, 8

fundamental theorem of calculus, 248


Gauss’s law, 41–47 
differential version, 56–57 
examples of use, 47–55, 57–59, 120–121 
integral version, 41–47 

Gauss’s theorem, 225

Gauss, Carl Friedrich, 41, 57, 225

Gaussian surface, 48


cylindrical, 52-53

pillbox, 53–55

spherical, 48–50


generalized Faraday law, 162

Gilbert, William, 61

gradient of a scalar field, 125–126, 131, 241–244


in Cartesian coordinates, 241

in cylindrical coordinates, 244

in del notation, 248

in orthogonal coordinates, 244

in spherical coordinates, 244


gradient theorem, 244, 247

gravimagnetic force, 9

gravitational force, 12–13

Gulf stream, 83


Hall effect, 82–84

Heaviside, Oliver, 80

Hertz, Heinrich, 183–184

hydroelectric power station, 139


induced current, 140, 150, 152

induced emf, 143, 146, 159

induction


in a moving circuit, 157–163 
in a stationary circuit, 146–154


inertial frame of reference, 163, 178

instantaneous action at a distance, 25, 27, 57, 69, 85,


177

integral version


of Amp`
ere-Maxwell law, 171

of Ampère’s law, 95

of Faraday’s law 154

of no-monopole law, 89

of Gauss’s law, 47


integration, 
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ordinary, 216–217

line, 228–231, 229

surface, 220–223, 222

volume, 217–220


internal resistance, 146

inverse square law, 18, 25, 67

irrotational vector field, 118–119, 157, 245–247


Kelvin, Lord, 41, 91, 234

kinetic energy, 123, 125, 202


Laplacian operator, 250

latitude, 206

Lenz’s law, 151–152

lightning, 34, 121

line integral, 228–231, 229

linearly polarized wave, 180

liquid crystal, 129

longitude, 206

Lorentz force law, 80–81, 162


examples of use, 81–84

Lorentz, Henrick, 80, 188


magnetar, 78–79

magnetic compass, 61

magnetic dipole, 75–76

magnetic dipole moment, 75, 78 

magnetic field, 70, 79


circulation of, 92–94

due to tidal flow, 83

energy density, 186

flux of, 88–89, 146–147, 152

of a current loop, 72–76

of Earth, 78

of a long solenoid, 106–108

of a long straight wire, 74

of a toroidal solenoid, 108–109

of cylinders and tubes, 97–100

safety guidelines, 77

typical values, 77


magnetic field lines, 73–75

magnetic field strength, 79

magnetic flux, 88


through a coil, 147

magnetic force, 16, 65–68, 71, 79, 158

magnetic force law, 71, 79

magnetic monopole, 88, 178

magnetic pole, 78, 88

magnetic storm, 153

magnetically-levitated train, 10


magnetically silent source, 106, 171–172

magnetization, 96

magnetoencephalography, 77

magnetostatic field, 114, 247

magnetostatic force, 65–70

magnetostatics, 70, 96, 168

magnitude,


of a scalar, 191

of a vector, 191, 198


mass spectrometer, 79

mass spectroscopy, 92

Maxwell term, 170–175, 187–188

Maxwell’s equations, 8, 46, 91, 156, 165–166, 177–178

Maxwell, James Clerk, 7, 8, 46, 94–95, 146, 157, 166,


183, 188

MEG see magnetoencephalography,

metal detector, 139, 154

microphone, 153

microwave oven, 129

mixed partial derivatives, 215

mobile phone, 33–34

monochromatic wave, 182

moving circuit, 157–163

myelin sheath, 134


nerve cell, 9, 54, 134

nerve impulse, 9

Newton’s first law, 163

Newton’s second law, 14, 202

Newton’s third law, 20, 68, 85–86

no-monopole law, 89


differential version, 89–90

examples of use, 91

integral version, 87–90

status, 88, 91


non-conservative field, 141

electric, 115, 117, 140–142, 149, 156

magnetic, 238, 246–247


non-conservative force, 144

normal, 199

nuclear fusion, 108

number density, 64–65, 84


Oersted, Hans, 61

ohm, 145

Ohm’s law, 145–146, 150, 159

open surface, 222

operator, 248

oriented area, 39, 220

orthogonal, 198
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orthogonal coordinate system, 227 
outer core, 78 

parallel plate capacitor, 54–55, 133–134, 172–176 
partial derivative, 213 

first, 213–214 
higher, 214–215 
inside an integral, 154, 168 
mixed, 215 

partial differential equation, 177 
partial differentiation, 212–215 
particle, 14 
Penning trap, 82 
perimeter, 94, 146, 171, 232 
period, 82, 182 
permeability of free space, 67 
permittivity of free space, 19 
photon, 23, 47 
photonic circuit, 10 
planar symmetry, 53–5 
plane wave, 180 
point charge, 14 
polar coordinate, 205 
polarization, 25 
position vector, 193, 197 
potential, see electrostatic potential 
potential difference, 122–123, 133–134, 141 
potential drop, 141 
power conversion, 153 
primary coil, 153 
principle of superposition, 27, 45, 71, 116, 127 
Pythagoras’s theorem, 195 

quantum electrodynamic critical field, 35 
quantum electrodynamics, 8, 35 
quantum field theory, 23 
quantum mechanics, 144 

radial coordinate, 205, 210 
radio wave, 184 
reference frame, 

inertial, 163, 178 
rotating, 178 

reflection rules, 101–106, 103 
residual current device, 153 
resistance, 145 
right-hand grip rule, 74, 75, 94, 146, 175, 205, 232 
right-hand rule, 67, 76, 102, 194, 199 
right-handed coordinate system, 194 
rotating frame of reference, 178 

safety guidelines, 33, 77 
scalar field, 56, 118, 122, 203–204 
scalar potential, 240–244 
scalar product, 197–199 
scalar quantity, 13, 191 
scale factors, 209 

in Cartesian coordinates, 227

in cylindrical coordinates, 212

in spherical coordinates, 209


scaling, 192, 196 
screening, 24 
screening length, 24 
secondary coil, 153 
seismometer, 153 
shielding in a cavity, 50, 120–121 
simply-connected region, 157, 246 
solar storm, 153 
solar wind, 78 
solenoid, 106–109, 148–151, 155–156 
source terms, 178, 188 
special relativity, 110, 163, 188 
spectral lines, 129 
speed of electromagnetic waves, 183 
speed of light, 110, 183 
spherical coordinates, 205–209 

displacement vector, 208

scale factors, 209

unit vectors, 206

volume element, 209


spherical symmetry, 30–31, 48–50 
spherical unit vectors, 206 
spin, 14, 75 
Stokes’s theorem, 234 
Stokes, George, 234 
strong nuclear force, 12 
sunspots, 78 
surface charge density, 54 
surface integral, 220–223, 222 
symmetry, 

axial, 32, 97, 100, 103, 148, 155, 173

cylindrical, 32, 51–52

spherical, 30–31, 48–50

translational, 32, 97, 103, 148, 155


symmetry principle, 30, 101 

tesla, 71 
test charge, 26, 114, 123 
time-reversal symmetry, 32, 76–77, 178 
toroidal solenoid, 108–109, 176 
total current density, 188 
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transcranial magnetic stimulation, 139, 154 
transformer, 139, 153 
transistor, 145 
translational symmetry, 32, 97, 148, 155 
transverse wave, 180, 184 
triangle rule, 193 

unit normal, 220, 222 
unit vector, 19, 193, 195 
unit vectors, 

Cartesian, 198, 200

cylindrical, 211

spherical, 206


vector, 
addition, 193, 196 
components, 198 
differentiation, 201 
division, 201 
multiplication by a scalar, 196 
subtraction, 193, 196 

vector calculus identity, 249 
vector field, 203 

conservative, 245–246 
irrotational, 245–246 
non-conservative, 

vector identity, 202 
vector product, 67, 103, 197, 199, 200 
vector quantity, 191 
vector sum, 193 
virtual pair, 35 
virtual particle, 35 
volt, 123, 142 
voltage drop, 141, 142, 151, 159 
voltmeter, 150 
volume element, 217 

in cylindrical coordinates, 212 
in spherical coordinates, 209 

volume integral, 217 

wave, 
monochromatic, 182 
plane, 180 
transverse, 180, 184 

wavelength, 182 
wavenumber, 182 
weak nuclear force, 12 
work, 114, 122, 125, 126, 140, 228, 238 
work-energy theorem, 125 

zero of potential, 240 
zero vector, 192, 196 
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Theorems

r2 

Gradient theorem: grad f · dl = f (r2) − f (r1) 
r1 

Divergence theorem: div F dV = F · dS 
V S 

Curl theorem: curl F · dS = F · dl 
S C 

Vector and vector calculus identities 

a × (b × c) = (a · c)b − (a · b)c


a · (b × c) = (a × b) · c


div(f F) =  f div F + F · grad f


div (grad f ) =  ∇2f


div(curl F) = 0 


curl (grad f ) =  0


curl(curl F) = grad(div F) −∇2F


div(F × G) = (curl  F) · G − F · (curl G)


Various integrals 

1 
� 2π � 2π 

x e−ax dx = − 
2 (1 + ax) e−ax sin2 θ dθ = cos2 θ dθ = π 

a 0 0 

1 1 
� 2π 12 x e−ax dx = − 

3 (2 + 2ax + a 2 x 2) e−ax 〈sin2 θ〉 ≡  sin2 θ dθ = 
a 2π 0 2 

1 1 
� 2π 1

dx = ln((a 2 + x 2)1/2 + x) 〈cos2 θ〉 ≡  cos2 θ dθ = 
(a2 + x2)1/2 2π 0 2 

1 x cosn+1(θ)
dx = √ cosn θ sin θ dθ = −

(a2 + x2)3/2 a2 a2 + x2 n + 1  � ∞ 1 
� 2π 

dx = 2  cos θ sin θ dθ = 0  
−∞ (1 + x2)3/2

0 


