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PREFACE 
 

 

This book focuses on the theory and applications of quaternions. Chapter 

One collects some old problems on lattice orders and directed partial orders on 

complex numbers and quaternions, and summarizes recent development in 

answering those questions. Chapter Two discusses spin 1 particles with 

anomalous magnetic moments in the external uniform electric field. Chapter 

Three examines techniques of projective operators used to construct solutions 

for a spin 1 particle with anomalous magnetic moment in the external uniform 

magnetic field. Chapter Four analyzes the implementation of a cheap Micro 

AHRS (Attitude and Heading Reference System) using low-cost inertial 

sensors. Chapter Five reviews the basic concepts of quaternion and reduced 

biquaternions algebra. It introduces the 2D Hermite-Gaussian functions (2D-

HGF) as the eigenfunction of discrete quaternion Fourier transform (DQFT) 

and discrete reduced biquaternion Fourier transform (DRBQFT), and the 

eigenvalues of two dimensional Hermite-Gaussian functions for three types of 

DQFT and two types of DRBQFT. Chapter Six investigates a leader-follower 

formation control problem of quadrotors. Chapter Seven considers 

determinantal representations the Drazin and weighted Drazin inverses over 

the quaternion skew field. 

Chapter 1 collects some old problems on lattice orders and directed partial 

orders on complex numbers and quaternions, and summarizes recent 

development in answering those questions. Within the matrix 10-dimensional 

Duffin-Kemmer-Petiau formalism applied to the Shamaly-Capri field, Chapter 

2 studies the behavior of a vector particle with anomalous magnetic moment in 

the presence of an external uniform electric field. The separation of variables 

in the wave equation is performed by using projective operator techniques and 

the theory of DKP-algebras. The whole wave function is decomposed into the 
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sum of three components 0 ,  ,  . It is enough to solve the equation for 

the main component 
0 , the two remaining ones being uniquely determined 

by it. Consequently, the problem reduces to three independent differential 

equations for three functions, which are of the type of one-dimensional Klein-

Fock-Gordon equation in the presence of a uniform electric field modified by 

the non-vanishing anomalous magnetic moment of the particle. The solutions 

are constructed in terms of confluent hypergeometric functions. For assigning 

physical sense for these solutions, one must impose special restrictions on a 

certain parameter related to the anomalous moment of the particle. The neutral 

spin 1 particle is considered as well. In this case, the main manifestation of the 

anomalous magnetic moment consists in the modification of the ordinary plane 

wave solution along the electric field direction. Again, one must impose 

special restrictions on a parameter related to the anomalous moment of the 

particle. 

Chapter 2 - Within the matrix 10-dimensional Duffin-Kemmer-Petiau 

formalism applied to the Shamaly-Capri field, Chapter 3 studies the behavior 

of a vector particle with anomalous magnetic moment in presence of an 

external uniform magnetic field. The separation of variables in the wave 

equation is performed by using projective operator techniques and the theory 

of DKP-algebras. The whole wave function is decomposed into the sum of 

three components $\Psi_0, \Psi_{+}, \Psi_{+}$. It is enough to solve the 

equation for the main component $\Phi_0$, the two remaining ones being 

uniquely determined by it. Consequently, the problem reduces to three 

independent differential equations for three functions, which are of the type of 

one-dimensional Klein--Fock--Gordon equation in the presence of a uniform 

electric field modified by the non-vanishing anomalous magnetic moment of 

the particle. The solutions are constructed in terms of confluent 

hypergeometric functions. For assigning physical sense for these solutions, 

one must impose special restrictions on a certain parameter related to the 

anomalous moment of the particle. The neutral spin 1 particle is considered as 

well. In this case, the main manifestation of the anomalous magnetic moment 

consists in the modification of the ordinary plane wave solution along the 

electric field direction. Again, one must impose special restrictions on a 

parameter related to the anomalous moment of the particle. 

Chapter 3 - The separation of variables in the wave equation is performed 

using projective operator techniques and the theory of DKP-algebras. The 

problem is reduced to a system of 2-nd order differential equations for three 

independent functions, which is solved in terms of confluent hypergeometric 
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functions. Three series of energy levels are found, of which two substantially 

differ from those for spin 1 particles without anomalous magnetic moment. 

For assigning to them physical sense for all the values of the main quantum 

number 0,1,2, ...n  , one must impose special restrictions on a parameter 

related to the anomalous moment. Otherwise, only some part of the energy 

levels corresponds to bound states. The neutral spin 1 particle is considered as 

well. In this case no bound states exist in the system, and the main qualitative 

manifestation of the anomalous magnetic moment consists in the occurrence of 

a space scaling of the arguments of the wave functions, compared to a particle 

without such a moment. Traditionally, the automotive industry has been the 

largest employer of robots, but their control is inline and programmed to 

follow planning trajectories. As shown in Chapter 4, in this case, in the 

department motor’s test of Volkswagen Mexico a semi-autonomous robot is 

developed. To date, some critical technical problems must be solved in a 

number of areas, including in dynamics control. Generally, the attitude 

estimation and the measurement of the angular velocity are a requirements for 

the attitude control. As a result, the computational cost and the complexity of 

the control loop is relatively high. 

Chapter 4 deals with the implementation of a cheap Micro AHRS 

(Attitude and Heading Reference System) using low-cost inertial sensors. In 

Chapter 4, the technique proposed is designed with attitude estimation and the 

prediction movement via the kinematic of a 4GDL robot. With this approach, 

only the measurements of at least two non-collinear directional sensors are 

needed. Since the control laws are highly simple and a model-based observer 

for angular velocity reconstruction is not needed, the proposed new strategy is 

very suitable for embedded implementations. The global convergence of the 

estimation and prediction techniques is proved. Simulation with some 

robustness tests is performed. 

Chapter 5 - The quaternions, reduced biquaternions (RBs) and their 

respective Fourier transformations, i.e., discrete quaternion Fourier transform 

(DQFT) and discrete reduced biquaternion Fourier transform (DRBQFT), are 

very useful for multi-dimensional signal processing and analysis. In Chapter 5, 

the basic concepts of quaternion and RB algebra are reviewed, and the author 

introduce the two dimensional Hermite-Gaussian functions (2D-HGF) as the 

eigenfunction of DQFT/DRBQFT, and the eigenvalues of 2D-HGF for three 

types of DQFT and two types of DRBQFT. After that, the relation between 

2D-HGF and Gauss-Laguerre circular harmonic function (GLCHF) is given. 

From the aforementioned relation and some derivations, the GLCHF can be 

proved as the eigenfunction of DQFT/DRBQFT and its eigenvalues are 



Sandra Griffin x 

summarized. These GLCHFs can be used as the basis to perform color image 

expansion. The expansion coefficients can be used to reconstruct the original 

color image and as a rotation invariant feature. The GLCHFs can also be 

applied to color matching applications. 

Chapter 6 - The unit quaternion system was invented in 1843 by William 

Rowan Hamilton as an extension to the complex number to find an answer to 

the question (how to multiply triplets?). Yet, quaternions are extensively used 

to represent the attitude of a rigid body such as quadrotors, which is able to 

alleviate the singularity problem caused by the Euler angles representation. 

The singularity is in general a point at which a given mathematical object is 

not defined and it outcome of the so called gimbal lock. The singularity is 

occur when the pitch angles rotation is 90   . In Chapter 6, a leader-

follower formation control problem of quadrotors is investigated. The 

quadrotor dynamic model is represented by unit quaternion with the 

consideration of external disturbance. Three different control techniques are 

proposed for both the leader and the follower robots. First, a nonlinear H  

design approach is derived by solving a Hamilton-Jacobi inequality following 

from a result for general nonlinear affine systems. Second, integral 

backstepping (IBS) controllers are also addressed for the leader-follower 

formation control problem. Then, an iterative Linear Quadratic Regulator 

(iLQR) is derived to solve the problem of leader-follower formation. The 

simulation results from all types of controllers are compared and robustness 

performance of the H  controllers, fast convergence and small tracking errors 

of iLQR controllers over the IBS controllers are demonstrated. 

Chapter 7 - A generalized inverse of a given quaternion matrix (similarly, 

as for complex matrices) exists for a larger class of matrices than the invertible 

matrices. It has some of the properties of the usual inverse, and agrees with the 

inverse when a given matrix happens to be invertible. There exist many 

different generalized inverses. The authors consider determinantal 

representations of the Drazin and weighted Drazin inverses over the 

quaternion skew field. Due to the theory of column-row determinants recently 

introduced by the author, the authors derive determinantal representations of 

the Drazin inverse for both Hermitian and arbitrary matrices over the 

quaternion skew field. Using obtained determinantal representations of the 

Drazin inverse we get explicit representation formulas (analogs of Cramer's 

rule) for the Drazin inverse solutions of the quaternionic matrix equations 

AXB = D  and, consequently, AX = D , XB = D  in both cases when A  and 

B  are Hermitian and arbitrary, where A , B  can be noninvertible matrices of 
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appropriate sizes. The author obtain determinantal representations of solutions 

of the differential quaternionic matrix equations, X' + AX = B  and 

X' + XA = B , where A  is noninvertible as well. Also, the authors obtains 

new determinantal representations of the W-weighted Drazin inverse over the 

quaternion skew field. The author give determinantal representations of the W-

weighted Drazin inverse by using previously obtained determinantal 

representations of the Drazin inverse, the Moore-Penrose inverse, and the limit 

representations of the W-weighted Drazin inverse in some special case. Using 

these determinantal representations of the W-weighted Drazin inverse, the 

authors derive explicit formulas for determinantal representations of the W-

weighted Drazin inverse solutions of the quaternionic matrix equations 

WAWX = D , XWAW = D , and 1 1 2 2WAWXW BW = D . 
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Chapter 1

DIRECTED PARTIAL ORDERS

ON QUATERNIONS - A BRIEF SUMMARY

Jingjing Ma∗

Department of Mathematics and Statistics,
University of Houston Clear Lake, Houston, TX, US

Abstract

This paper collects some old problems on lattice orders and directed
partial orders on complex numbers and quaternions, and summarizes re-
cent development in answering those questions.

Keywords: directed partial order, directed algebra, lattice order,ℓ-algebra,
complex number, quaternion

2010 AMS Subject Classification:06F25

1. Introduction

We will introduce some definitions and terminologies in this section. The reader
is referred to [2, 3, 5] for more information on partially ordered rings and lattice-
ordered rings (ℓ-rings).

Let R be a partially ordered ring. The positive cone ofR is defined as
R+ = {r ∈ R | r ≥ 0}. The positive coneR+ is closed under the addition

∗E-mail address: ma@uhcl.edu.



2 Jingjing Ma

and multiplication ofR and satisfiesR+ ∩ −R+ = {0}. Let P be a subset of
a ringS that is closed under the addition and multiplication ofS and satisfies
P ∩ −P = {0}. Define the partial order≤ by for anya, b ∈ S, a ≤ b if
b−a ∈ P . ThenS is a partially ordered ring with respect to the partial order≤.
We often use the positive cone to denote a partial order on a partially ordered
ring. A partial order is calleddirectedif each element is a difference of two
positive elements. A partially ordered ring is called alattice-ordered ring(ℓ-
ring) if the partial order is a lattice order. Clearly a lattice order is directed,
but the converse is not true. LetT be a commutative totally ordered ring with
the identity andA be an algebra overT . If A is a partially ordered ring and
T+A+ ⊆ A+, thenA is called a partially ordered algebra overT . If the partial
order onA is directed, thenA is called adirected algebra, and if the partial order
onA is a lattice order, thenA is called alattice-ordered algebra(ℓ-algebra).

Let D be a totally ordered integral domain, that is,D is a commutative
totally ordered ring with the identity and without nonzero zero divisors. For
x, y ∈ D, x ≪ y denotes thatnx ≤ y for all positive integersn. Let T be
a commutative totally ordered ring with the identity element 1. The complex
numbers overT is defined as

CT = {a+ bi | a, b ∈ T, i2 = −1},

and the quaternions overT is defined as

HT = {a0 + a1i+ a2j + a3k | a0, a1, a2, a3 ∈ T, i2 = j2 = k2 = −1}.

The multiplication ofHT is given as follows,

(a0 + a1i+ a2j + a3k)(b0 + b1i+ b2j + b3k) =

(a0b0 − a1b1 − a2b2 − a3b3) + (a0b1 + a1b0 + a2b3 − a3b2)i+

(a0b2 + a2b0 + a3b1 − a1b3)j + (a0b3 + a3b0 + a1b2 − a2b1)k.

The following questions have been left unanswered for some time now, how-
ever they have greatly motivated research activities in the area.

• Problem 1. (G. Birkhoff and R. Pierce, 1956)Can the field of complex
numbers be made into a lattice-ordered ring?

• Problem 2. (L. Fuchs, 1963)Describe the directed orders of the fields of
complex numbers and quaternions.
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• Problem 3. (G. Birkhoff, 1967) In how many ways can the quaternions
be made into anℓ-ring? anℓ-algebra? a directed algebra?

We will summarize below recent developments in finding lattice orders and
directed partial orders on quaternion algebras. Since this activity is closely re-
lated to and motivated by the same research for complex numbers, results for
complex numbers are also included.

2. Directed Partial Orders onCF

In this section, we present directed partial orders onCF , whereF is a totally or-
dered field. We start with lattice orders first. Lattice-ordered rings (ℓ-rings) were
first systematically studied by G. Birkhoff and R. Pierce in the paper “Lattice-
ordered Rings” published in 1956 [2]. Problem 1 was asked in the paper. De-
spite many efforts made over years, this problem remains unsolved.

In the same paper, the authors proved that the complex fieldC cannot be
made into a lattice-ordered algebra (ℓ-algebra) over the real fieldR. About 40
years later, motivated by the work on lattice orders of matrix algebras over to-
tally ordered fields, the present author further proved that for any totally ordered
subfieldF of R with the usual total order,Mn(CF ) cannot be made into anℓ-
algebra overF for anyn ≥ 1 [6], whereMn(CF ) is then × n matrix algebra
with entries fromCF .

More generally, we have following result.

Theorem 1. [8, Theorem 6] LetD be a totally ordered integral domain. Sup-
pose thatCD is an ℓ-algebra overD. If a + bi ≥ 0 in CD, thena ≥ 0 and
|b| ≪ a in D.

A direct consequence of Theorem 1 is that ifD is an archimedean totally
ordered integral domain, thenCD cannot be anℓ-algebra overD.

A natural question to ask is what happens in the non-archimedean case.

Theorem 2. [8, Theorem 4] Let F be a totally ordered field, archimedean or
non-archimedean.CF cannot be made into anℓ-algebra overF .

Now, let’s consider directed partial orders on the set of complex numbersto
make it into a directed algebra. Since it has been unsuccessful of finding lattice
orders on complex numbers, researchers have tried to find directed partial orders
on it. The first result states that there is no directed partial order onCF whenF
is an archimedean totally ordered field.
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Theorem 3. [10, Corollary 2.2] CF cannot be made into a directed algebra
over an archimedean totally ordered fieldF .

In [14], Y. Yang showed that for some totally ordered fieldQ, CQ admits
directed partial orders to make it into a directed algebra with1 > 0, and hence
i is an element with negative square, that is,i2 = −1 < 0. Then in [13], N.
Schwartz and Y. Yang proved thatC can be made into a directed algebra overR,
and in [12], W. Rump and Y. Yang constructed directed partial orders onK(i),
whereK could be any non-archimedean totally ordered field andi2 = −1.
Their method has usedmultiplicative segmentthat is a convex additive subgroup
of F containing identity element 1.

Motivated by the above work, in [9], L. Wu, Y. Zhang and the present author
have introduced a more general method to produce directed partial orders on
CF . Take an additive semigroupS ⊆ F+ with 0, 1 ∈ S, and takex, y ∈ F+

with 0 < x, y ≤ 1. Define the positive conePx,y(S) as follows.

Px,y(S) = {a+ bi ∈ CH | a ∈ F+,−xa ≤ sb ≤ ya in F for all s ∈ S}.

Then(CF , Px,y) is a partially ordered algebra overF and it is a directed algebra
if there existsz ∈ F+ such thats ≤ z for all s ∈ S [9, Theorem 2.2].

For a non-archimedean totally ordered fieldF , takeS = Z
+ andx = y = 1,

thenP1,1(Z
+) is a directed partial order onCF that makesCF into a directed

algebra overF . We also observe thatP1,1(Z
+) is the largest directed partial

order onCF over a non-archimedean totally ordered field. ThereforeP1,1(Z
+)

is division closedin the sense that for anya, b ∈ CF , if a, ab ∈ P1,1(Z
+), then

b ∈ P1,1(Z
+).

We notice that the partial orders defined above have positive identity ele-
ment, that is,1 ∈ Px,y(S). This begs the question whether we can construct
directed partial orders onCF such that 1 is not positive?

Let S be an additive semigroup ofF+ containing 0, 1. Suppose that there
existsw ∈ F+ such thats ≤ w for all s ∈ S. Define

P (S)> = {a+ bi | a > 0, b > 0 in F, sb ≤ a, ∀s ∈ S} ∪ {0},

P (S)< = {a− bi | a > 0, b > 0 in F, sb ≤ a, ∀s ∈ S} ∪ {0}.

ThusP (S)< is the conjugate ofP (S)>.

Theorem 4. P (S)> andP (S)< are directed partial order onCF with 1 6> 0.
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Proof. Let’s just considerP (S)>. We leave it to the reader to check thatP (S)>
is a partial order onCF . Takew ∈ F+ such thats ≤ w for all s ∈ S. For any
a+ bi ∈ CF ,

1 = (1 + w + i)− (w + i) and(1 + w + i), (w + i) ∈ P (S)>,

so 1 is not positive. We also havei = (w+2i)−(w+i), and(w+2i), (w+i) ∈
P (S)>. ThusP (S)> is a directed partial order.

The relation betweenP1,1(S) andP (S)> is given as follows.

P (S)> = {a+ bi ∈ P1,1 | b > 0} ∪ {0},

and
P (S)> + F+ = {a+ bi ∈ P1,1 | b ≥ 0}.

The research in this direction continues. As a mater of fact, all directed
partial orders with1 > 0 onCF over a non-archidemean totally ordered fieldF

have been described in [10] by using the similar positive cones asPx,y(S).

3. Directed Partial Orders onHF

In this section, we present results on directed partial orders onHF . First we
consider lattice orders. In 1962, McHaffy showed that the division algebra of
real quaternions cannot be anℓ-algebra overR [11]; and much later in 2004,
it was shown thatMn(HF ) cannot be anℓ-algebra over a archimedean totally
ordered fieldF , for anyn× n matrix algebra with entries fromHF [4]. In fact,
the following more general result is true.

Theorem 5. [8, Theorem 6] Suppose thatD is a totally ordered integral do-
main andHD is a partially ordered algebra overD. If a + bi + cj + dk ≥ 0
in HD, thena ≥ 0 and |b| ≪ a, |c| ≪ a, |d| ≪ a in D. In particular, If D is
archimedean, thenHD cannot be anℓ-algebra overD.

How aboutHF over a non-archimedean totally ordered fieldF? It was
proved that for any totally ordered fieldF ,HF cannot be made into anℓ-algebra
overF with 1 > 0 [8, Theorem 7]. Actually, now we can prove thatHF cannot
be anℓ-algebra over any totally ordered fieldF .



6 Jingjing Ma

Theorem 6. For a totally ordered fieldF , HF cannot be anℓ-algebra overF .

Proof. Suppose thatHF is anℓ-algebra overF and we derive a contradiction.
Then we know that1 6> 0. By [5, Corollary 1.3],HF is the finite direct sum of
convex totally ordered subspace ofHF overF . SinceHF cannot be a totally
ordered algebra overF , there are at least two direct summands.

Let’s assume first thatHF = T1 ⊕ T2, whereT1, T2 are totally ordered
subspaces overF . Suppose1 = q1 + q2, whereqi ∈ Ti. Since1 6< 0, one of
q1, q2 must be positive. We may assume thatq2 > 0, and henceq1 < 0. Let
q1 = a0 + a1i+ a2j + a3k. Then

q21 = 2a0q1 − (a20 + a21 + a22 + a23) > 0

⇒ 2a0q1 − (a20 + a21 + a22 + a23)(q1 + q2) > 0

⇒ (2a0 − a20 − a21 − a22 − a23)q1 − (a20 + a21 + a22 + a23)q2 > 0

⇒ (2a0 − a20 − a21 − a22 − a23)q1 > (a20 + a21 + a22 + a23)q2 > 0.

However, since−q1∧q2 = 0, we must havea20+a21+a22+a23 = 0 [5, Theorem
1.13], soa0 = a1 = a2 = a3 = 0. Thusq1 = 0, a contradiction.

Next, we assumeHF = T1 ⊕ T2 ⊕ T3, whereT1, T2, T3 are convex totally
ordered subspaces overF . Then1 = q1+ q2+ q3, whereqi ∈ Ti. Similarly one
of q1, q2, q3 must be positive. Letq3 > 0 andq1 = a0 + a1i+ a2j + a3k. Then

q21 = 2a0q1 − (a20 + a21 + a22 + a23) > 0

⇒ 2a0q1 − (a20 + a21 + a22 + a23)(q1 + q2 + q3) > 0

⇒ (2a0 − a20 − a21 − a22 − a23)q1 − (a20 + a21 + a22 + a23)q2

−(a20 + a21 + a22 + a23)q3 > 0

⇒ (2a0 − a20 − a21 − a22 − a23)q1 − (a20 + a21 + a22 + a23)q2

> (a20 + a21 + a22 + a23)q3 > 0.

Then since|q1| ∧ q3 = |q2| ∧ q3 = 0, we must havea20 + a21 + a22 + a23 = 0, so
a0 = a1 = a2 = a3 = 0 andq1 = 0, a contradiction again.

Similar argument may be made to the case thatHF is a direct sum of four
convex totally ordered subspaces overF . This completes the proof.

Theorem 6 answers the second question in Problem 3.

Now we consider directed partial orders onHF , whereF is a totally or-
dered field. By Theorem 5,HF cannot be a directed algebra overF if F is an
archimedean totally ordered field.
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Motivated from the results obtained by W. Rump, N. Schwartz, and Y. Yang
for complex numbers, we were able to make the real quaternionsH into a di-
rected algebra overR with a non-archemedean total order [6]. In fact, define the
positive coneP onH as follows.

P = {a0 + a1i+ a2j + a3k ∈ H | a0 ≥ 0, |a1| ≪ a0, |a2| ≪ a0, |a3| ≪ a0}

ThenP is a directed partial order onH that makes it into a directed algebra over
R with R ∩ P = R

+ [6, Theorem 1].
In [9], the authors proved a more general method to produce directed partial

orders onHF over a non-archimedean totally ordered fieldF . Take an additive
semigroupS ⊆ F+ with 0, 1 ∈ S, and takex ∈ F with 0 < x ≤ 1. Define the
positive conePx(S) as follows.

Px(S) = {a0 + a1i+ a2j + a3k ∈ HF | a0 ≥ 0, |a1| ≪S xa0, |a2| ≪S xa0, |a3| ≪S xa0},

where|a1| ≪S xa0 means−xa0 ≤ sa1 ≤ xa0 for all s ∈ S. Similarly for
|a2| ≪S xa0 and|a3| ≪S xa0. ThenPx is a partial order onHF to make it into
a partially ordered algebra overF , and if there exists an elementz ∈ F+ such
thats ≤ z for all s ∈ S, thenPx is a directed partial order andHF is a directed
algebra [9, Theorem 3.2].

For instance, for a non-archimedean totally ordered fieldF , takeS = Z
+

andx = 1, thenPx is the positive coneP introduced in the previous paragraph,
andP1(Z

+) is the largest directed partial order onHF .

Directed partial orders onHF in which1 6> 0 may be constructed similarly
to the positive coneP (S)> andP (S)< on CF . However, the last question in
Problem 3 remains unsolved.

The directed partial orders constructed for complex numbers and quater-
nions over non-archimedean totally ordered fields have been generalized to
complex numbers and quaternions over non-archimedean partially ordered
fields that contain a totally ordered subfield [7, Theorems 1 and 2].
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Chapter 2

SPIN 1 PARTICLE WITH ANOMALOUS

MAGNETIC MOMENT IN THE EXTERNAL

UNIFORM ELECTRIC FIELD
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Abstract

Within the matrix 10-dimensional Duffin-Kemmer-Petiau formalism

applied to the Shamaly-Capri field, we study the behavior of a vector

particle with anomalous magnetic moment in the presence of an external

uniform electric field. The separation of variables in the wave equation

is performed by using projective operator techniques and the theory of

DKP-algebras. The whole wave function is decomposed into the sum of

three components Ψ0, Ψ+, Ψ+. It is enough to solve the equation for the
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†E-mail address: voinyuschka@mail.ru.
‡E-mail address: vasiliy-bspu@mail.ru.
§E-mail address: vladimir.balan@upb.ro.
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main component Φ0, the two remaining ones being uniquely determined

by it. Consequently, the problem reduces to three independent differential

equations for three functions, which are of the type of one-dimensional

Klein–Fock–Gordon equation in the presence of a uniform electric field

modified by the non-vanishing anomalous magnetic moment of the parti-

cle. The solutions are constructed in terms of confluent hypergeometric

functions. For assigning physical sense for these solutions, one must im-

pose special restrictions on a certain parameter related to the anomalous

moment of the particle. The neutral spin 1 particle is considered as well.

In this case, the main manifestation of the anomalous magnetic moment

consists in the modification of the ordinary plane wave solution along the

electric field direction. Again, one must impose special restrictions on a

parameter related to the anomalous moment of the particle.

Keywords : Duffin–Kemmer–Petiau algebra, projective operators, spin 1

particle, anomalous magnetic moment, electric field, exact solutions

1. Intoduction

Commonly, we shall use only the simplest wave equations for fundamental par-

ticles of spin 0, 1/2, 1. Meanwhile, it is known that other more complicated

equations can be assigned to particles with such spins, which are based on

the application of extended sets of Lorentz group representations (see [1]-[16]).

Such generalized wave equations allow to describe more complicated objects,

which have – besides mass, spin, and electric charge – other electromagnetic

characteristics, like polarizability or anomalous magnetic moment. These addi-

tional characteristics manifest themselves explicitly in the presence of external

electromagnetic fields.

In particular, within this approach, Petras [3] proposed a 20-component the-

ory for spin 1/2 particle, which – after excluding 16 subsidiary components –

turns to be equivalent to the Dirac particle theory modified by the presence of

Pauli interaction term. In other words, this theory describes a spin 1/2 particle

with anomalous magnetic moment.

A similar equation was proposed by Shamaly–Capri [6, 7] for spin 1 par-

ticles (also see [16, 17]). In the following, we investigate and solve this wave

equation in the presence of the external uniform electric field.

The wave equation for spin 1 particle with anomalous magnetic moment
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[6, 7] may be formulated as
(

βµDµ +
ie

M
λF[µν]PJ[µν] + M

)

Ψ = 0 , (1)

where the 10-dimensional wave function and the DKP-matrices are used1:

Ψ =
(

Ψµ

Ψ[µν]

)

, J[µν] = βµβν − βνβµ .

In tensor form, (1) rewrites as2:

DµΨν − DνΨµ + MΨ[µν] = 0 ,

DνΨ[µν] + 2 ie
M λF[µν]Ψν + MΨµ = 0 .

By using DKP-matrices, we apply the method [20] of generalized Kronecker’s

symbols 3:

βµ = eν,[νµ] + e[νµ],ν, P = eν,ν ,

(eA,B)CD = δACδBD , eA,BeC,DδBCeA,D,

δ[µν],[ρσ] =
1

2
(δµρδνσ − δµσδνρ) ,

and the main relationships in the DKP algebra:

βµβνβρ + βρβνβµ = δµνβρ + δρνβµ , [βλ, Jρσ]]− = δλρβσ − δλσβρ .

We use the following representation for DKP-matrices

β1 =















0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0















, β2 =















0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0

0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0















,

β3 =















0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1

0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0















, β4 =















0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0















.

1Here P stands for a projective operator separating from Ψ its vector component Ψµ; Dµ =
∂µ − ieAµ, abd λ3 denotes an arbitrary real-valued number.

2In a Minkowski space, we use the metric with imaginary unit, since x4 = ict.
3The indexes A(B, C, D, ...) take the values 1, 2, 3, 4, [23], [31], [12], [14], [24], [34].
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The uniform electric field is provided by the relations

(Aµ) = (0, 0, 0,−iEx3), E = const ,

F[µν] = ∂µAν − ∂νAµ, F[34] = −F[43] = −iE .

The non-minimal interaction through the anomalous magnetic moment is given

by the term

± ie

M
λ3λ

∗
3F[µν]PJ[µν] = ±2eE

M
λ3λ

∗
3 PJ[34] .

Correspondingly, the main equation (1) is written as

[

β1
∂

∂x1
+ β2

∂

∂x2
+ β3

∂

∂x3
+ β4

(

∂

∂x4
− eEx3

)

+ Γ0 PJ[34] + M

]

Ψ = 0 , (2)

where Γ0 = 2eE
M λ.

2. Algebraic Transformation of the Wave Equation

Let us introduce the matrix Y = iJ[34] = i(β3β4 − β4β3) , which satisfies the

minimal polynomial equation Y 3 = Y ⇔ Y (Y − 1)(Y + 1) = 0, and allows

us to define the tree projective operators:

P0 = 1 − Y 2 , P+ =
1

2
Y (Y + 1) , P− =

1

2
Y (Y − 1),

and solve the wave function in terms of the three components:

Ψ0 = P0Ψ, Ψ+ = P+Ψ, Ψ− = P−Ψ, Ψ = Ψ0 + Ψ− + Ψ+ .

Acting on (2) by the operator P0, and taking into account the algebraic identities

Y β1,2 = β1,2Y, P0β1,2 = β1,2P0, P0PJ[34] = −iP (1 − Y 2)Y ≡ 0 ,

we get

(β1∂1 + β2∂2 + M) Ψ0 + P0β3 ∂3Ψ + (∂4 − eEx3) P0β4Ψ = 0 . (3)

Let us consider the operator P0β3 (we shall further use the computation

rules within the DKP-algebra):

P0β3 = (1 − Y 2)β3 = (1 + 2β3β3β4β4 − β3β3 − β4β4)β3 =
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= β3 + 2β3β3β4β4β3 − β3 − β4β4β3 =

= 2β3β3(β3 − β3β4β4) − (β3 − β3β4β4) = β3 − β3β4β4 .

Considering the identities

β3(1 − P0) = β3Y
2 = β3[β3β3 + β4β4 − 2β3β3β4β4] =

= β3 + β3β4β4 − 2β3β4β4 = β3 − β3β4β4 ,

the previous can be written in the form

P0β3 = β3(1 − P0) = β3(P+ + P−) . (4)

Similarly, one can obtain the identity

P0β4 = β4(1 − P0) = β4(P+ + P−) . (5)

Taking into account the relations (4)–(5), (3) reduces to the form

(β1∂1 + β2∂2 + M) Ψ0 +

+ [β3 ∂3 + β4(∂4 − eEx3)]Ψ+ + [β3 ∂3 + β4(∂4 − eEx3)]Ψ− = 0 . (6)

Let us consider the operator

β3P+ = β3
1

2
(Y + Y 2) =

= β3
1

2
[i(β3β4 − β4β3) − 2β3β3β4β4 + β3β3 + β4β4].

For β3
3 = β3 and β3β4β3 = 0, it follows

β3P+ =
1

2
(β3 + iβ3β3β4 − β3β4β4) .

As well, for β3
4 = β4 and β4β3β4 = 0, we infer

β4P+ = β4
1

2
[i(β3β4 − β4β3) − 2β3β3β4β4 + β3β3 + β4β4] =

=
1

2
[−iβ4β4β3 − 2β4β3β3β4β4 + β4β3β3 + β4] .
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Further, by using the identities

β4β4β3 = β3 − β3β4β4 , β4β3β3 = β4 − β3β3β4,

we get

β4P+ =
1

2
[−i(β3 − β3β4β4)− 2(β4 −β3β3β4)β4β4 + (β4 − β3β3β4) + β4] =

= − i

2
[β3 − β3β4β4 + iβ3β3β4] .

Hence, we obtain the algebraic relation

β3P+ = iβ4P+ =⇒ (β3 − iβ4)P+ = 0 . (7)

By combining the relations

iβ4P+ =
1

2
[β3 − β3β4β4 + iβ3β3β4], β3P+ =

1

2
(β3 + iβ3β3β4 − β3β4β4) ,

we easily derive

β3P+ =
1

2
(β3 + iβ4)P+ . (8)

As well, by combining (7)–(8), we get

β4P+ = − i

2
(β3 + iβ4)P+ .

In the same manner, we get the following three identities

(β3 + iβ4)P− = 0 , β3P− =
1

2
(β3 − iβ4)P−, β4P− =

i

2
(β3 − iβ4)P− . (9)

We further turn back to (6), which can be written as

(β1∂1 + β2∂2 + M) Ψ0+

+(β3 ∂3 + β4(∂4 − eEx3)]P+Ψ+ + (β3 ∂3 + β4(∂4 − eEx3)]P−Ψ− = 0 .

With the help of above identities, (9) can be rewritten in the form4

(β1∂1 + β2∂2 + M) Ψ0+

4We take into account that P 2
± = P±.
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+
1

2
(β3 + iβ4) [∂3 − i(∂4 − eEx3)]Ψ+ +

1

2
(β3 − iβ4) [∂3 + i(∂4 − eEx3)]Ψ− = 0

or

(β1∂1 + β2∂2 + M) Ψ0 + 1
2(β3 + iβ4) [(∂3 + iEx3) − i∂4] Ψ++

+1
2 (β3 − iβ4) [(∂3 − eEx3) + i∂4] Ψ− = 0 .

Now, let us consider the relation (2)

[

β1
∂

∂x1
+ β2

∂

∂x2
+ β3

∂

∂x3
+ β4(

∂

∂x4
− eEx3) − iΓ0PY + M

]

Ψ = 0 ,

and act on it by the operator 1 − P0 = P+ + P− ; this yields

[

β1
∂

∂x1
+ β2

∂

∂x2
− iΓ0PY + M

]

(Ψ+ + Ψ−) +

+(1 − P0)β3
∂

∂x3
+ (1− P0)β4(

∂

∂x4
− eEx3)Ψ = 0 . (10)

By using the easy-to-check identity

1 − P0 = Y 2 = β3β3 + β4β4 − 2β3β3β4β4 ,

we get

(1− P0)β3 = β3 + (β3 − β3β4β4) − 2β3β3(β3 − β3β4β4) = +β3β4β4 .

Similarly, we derive

β3P0 = β3(1 − Y 2) = β3(1− β3β3 − β4β4 + 2β3β3β4β4) = +β3β4β4 .

By combining the two last relations, we obtain the commutation rule

(1 − P0)β3 = β3P0 .

In the same manner, we derive the following three similar relations

β4 − β3β3β4 = (1−P0)β4, β4 −β3β3β4 = β4P0, (1−P0)β4 = β4P0 ,

which lead to the rewriting of (10) as

[

β1
∂

∂x1 + β2
∂

∂x2 − iΓ0PY + M
]

(Ψ+ + Ψ−) +

+β3
∂

∂x3 Ψ0 + β4(
∂

∂x4 − eEx3)Ψ0 = 0 , (11)
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By acting on (11) by the operator 1
2 (1 + Y ) and with the help of the easy to

check identities

1

2
(1 + Y )P+ =

1

2
(1 + Y )

1

2
Y (1 + Y ) =

1

2
Y (1 + Y ) = P+ ,

1

2
(1 + Y )P− =

1

4
(Y + Y 2)(Y − 1) = 0 ,

we derive
[

β1
∂

∂x1
+ β2

∂

∂x2
− iΓ0PY + M

]

Ψ+ +

+
1

2
(1 + Y )β3

∂

∂x3
Ψ0 +

1

2
(1 + Y )β4(

∂

∂x4
− eEx3)Ψ0 = 0 , (12)

We need three auxiliary relations. From the known formula

βλJ[ρσ] − J[ρσ]βλ = δρσβλ − δλσβρ

it follows

β3Y − Y β3 = +iβ4 =⇒ Y β3 = β3Y − iβ4 ,

β4Y − Y β4 = −iβ3 =⇒ Y β4 = β4Y + iβ4 .

Therefore, (12) can be written as

[

β1
∂

∂x1 + β2
∂

∂x2 − iΓ0PY + M
]

Ψ++

+1
2 (β3 + β3Y − iβ4)

∂
∂x3Ψ0 + 1

2(β4 + β4Y + iβ4)(
∂

∂x4 − eEx3)Ψ0 = 0 ,

From this, taking into account Y P0 ≡ 0, we obtain the more simple form

[

β1
∂

∂x1 + β2
∂

∂x2 − iΓ0PY + M
]

Ψ++

+1
2 (β3 − iβ4)

∂
∂x3Ψ0 + 1

2(β4 + iβ3)(
∂

∂x4 − eEx3)Ψ0 = 0 ,

or
»

β1
∂

∂x1
+ β2

∂

∂x2
− iΓ0PY + M

–

Ψ++
1

2
(β3−iβ4)

»

∂

∂x3
Ψ0 + i

„

∂

∂x4
− eEx3

«–

Ψ 0= 0.

Now, let us take into account an identity

Y P+ = Y
1

2
Y (1 + Y ) =

1

2
(Y 2 + Y 3 = P+ =⇒ Y Ψ+ = Ψ+ .
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Then the previous equation reads
„

β1
∂

∂x1
+ β2

∂

∂x2
− iΓ0P + M

«

Ψ+ +
1

2
(β3 − iβ4)

„

∂

∂x3
− ieEx3 + i

∂

∂x4

«

Ψ0 = 0 .

As well, by acting on (11) by the operator 1
2 (1 − Y ), after similar calculations

we get the equation
„

β1
∂

∂x1
+ β2

∂

∂x2
− iΓ0P + M

«

Ψ− +
1

2
(β3 + iβ4)

„

∂

∂x3
+ ieEx3 − i

∂

∂x4

«

Ψ0 = 0 .

3. The Separation of Variables

We start with the three equations

(β1∂1 + β2∂2 + M)Ψ0+

+ 1√
2
β+[(∂3 + ieEx3)− i∂4]Ψ+ + 1√

2
β−[(∂3 − ieEx3) + i∂4]Ψ− = 0 ,

(β1∂1 + β2∂2 − iΓ0P + M)Ψ+ + 1√
2
β−[(∂3 − ieEx3) + i∂4]Ψ0 = 0 ,

(β1∂1 + β2∂2 + iΓ0P + M)Ψ− + 1√
2
β+[(∂3 + ieEx3) − i∂4]Ψ0 = 0 ,

where

β+ =
1√
2
(β3 + iβ4), β− =

1√
2
(β3 − iβ4) .

We look for solutions of the form:

Ψ0 = eip4x4eip1x1eip2x2f0(x3) ,

Ψ+ = eip4x4eip1x1eip2x2f+(x3) ,

Ψ− = eip4x4eip1x1eip2x2f−(x3) .

So, we have the system of three equations in the variable x3:

(ip1β1 + ip2β2 + M)Ψ0+

+ 1√
2
β+[( d

dx3
+ ieEx3) + p4]Ψ+ + 1√

2
β−[( d

dx3
− ieEx3) − p4]Ψ− = 0 ,

(ip1β1 + ip2β2 − iΓ0P + M)Ψ+ + 1√
2
β−[( d

dx3
− ieEx3) − p4]Ψ0 = 0 ,

(ip1β1 + ip2β2 + iΓ0P + M)Ψ− + 1√
2
β+[( d

dx3
+ ieEx3) + p4]Ψ0 = 0 .
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With the shortening notation

â = 1√
2

(

+ d
dx3

+ ieEx3 + p4

)

, b̂ = 1√
2

(

− d
dx3

+ ieEx3 + p4

)

;

iΓ0 = Γ, p1β1 + p2β2 = p̂ ;

the equations are written as

(ip̂ + M)Ψ0 + β+âΨ+ − β−b̂Ψ− = 0 , (13)

(ip̂− ΓP + M)Ψ+ − β−b̂Ψ0 = 0 , (14)

(ip̂ + ΓP + M)Ψ− + β+âΨ0 = 0 . (15)

By acting (14) by the operator

M − ΓP̄

M − Γ
,

we infer
(

M − ΓP̄

M − Γ
ip̂ +

M − ΓP̄

M − Γ
(M − ΓP )

)

Ψ+ − M − ΓP̄

M − Γ
β−b̂Ψ0 = 0 .

With the help of the identities

M − ΓP̄

M − Γ
(M − ΓP ) =

1

M − Γ
(M2 − MΓP − MΓP̄ ) = M ,

it reads
(

M − ΓP̄

M − Γ
ip̂ + M

)

Ψ+ − M − ΓP̄

M − Γ
β−b̂Ψ0 = 0 .

By using the notations

M − ΓP̄

M − Γ
ip̂ = A,

M − ΓP̄

M − Γ
β− = β′

−,

the previous equation shortens to

(A + M)Ψ+ − β′
−b̂Ψ0 = 0 .

Analogously, by acting on (15) by the operator

M + ΓP̄

M + Γ
,
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we get

(

M + ΓP̄

M + Γ
ip̂ +

M + ΓP̄

M − Γ
(M + ΓP )

)

Ψ− +
M + ΓP̄

M + Γ
β+âΨ0 = 0 .

Taking into account the identities

M + ΓP̄

M + Γ
(M + ΓP ) =

1

M + Γ
(M2 + MΓP + MΓP̄ ) = M ;

we derive

(

M + ΓP̄

M + Γ
ip̂ + M

)

Ψ− +
M + ΓP̄

M + Γ
β+âΨ0 = 0 .

With the notations

M + ΓP̄

M + Γ
ip̂ = C,

M + ΓP̄

M + Γ
β+ = β′

+,

the last equation reads

(C + M)Ψ− + β′
+b̂Ψ0 = 0 .

Let us consider the powers of A

A2 =
1

(M − Γ)2
(iMp̂ − iΓP̄ p̂)(iMp̂− iΓP̄ p̂) =

=
1

(M − Γ)2
[−M2p̂ 2 + MΓp̂P̄ p̂ + MΓP̄ p̂2 − Γ2P̄ p̂P̄ p̂] .

Because

βµ = Pβµ + βµP = P̄βµ + βµP̄ , βµP = Pβµ, P̄βµ = βµP̄ ,

PβµP = P̄βµP̄ = 0, βµβνP = Pβµβν , βµβνP̄ = P̄ βµβν,

P + P̄ = 1, P P̄ = P̄ P = 0,

we get

A2 =
1

(M − Γ)2
(−M2p̂2 + MΓp̂2) = − Mp̂2

M − Γ
.
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We calculate A3:

A3 = − M

(M − Γ)2
(M − ΓP̄ )(ip̂)p̂2 = − Mp2

(M − Γ)

(M − ΓP̄ )

M − Γ
(ip̂) ,

so, the minimal polynomial of A (or the Cayley-Hamilton identity for A) has

the form

A3 +
Mp2

M − Γ
A = 0 .

Similar results are valid for the operator C:

C3 +
Mp2

M + Γ
C = 0 .

The Cayley-Hamilton identity for ip̂) has the form

ip̂ [(ip̂)2 + p2] = 0 .

Thus, the complete set of equations in the variable x3 is of the form

(ip̂ + M) f0 + β+âf+ − β−b̂f− = 0 ,

(A + M)f+ − β′
−b̂f0 = 0 ,

(C + M)f− + β′
+âf0 = 0 .

To proceed with these equations, we introduce the matrices5 with the properties

(ip̂ + M)(ip̂ + M) = p2 + M2,

(A + M)(A + M) = p2 + M2,

(C + M)(C + M) = p2 + M2 . (16)

In fact these formulas determine the inverse matrices up to numerical factors

(p2+M2)−1. Then the system of radial equations can be rewritten alternatively

(ip̂ + M) (p2 + M2)f0 + β+â(p2 + M2)f+ − β−b̂(p2 + M2)f− = 0 ,

(p2 + M2)f+ − (A + M)β′
−b̂f0 = 0 ,

(p2 + M2)f− + (C + M)β′
+âf0 = 0 . (17)

5We take in the account that p2 = p2
1 + p2

2
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The first equation in (17), with the help of the other two ones, transforms
into an equation in the component f0(r):

(ip̂ + M)(p2 + M2)2f0 + β+â(A + M)β′

−
b̂f0 + β−b̂(C + M)β′

+âmf0 = 0 , (18)

while the two remaining ones do not change

(p2 + M2)f+ − (A + M)β′

−b̂f0 = 0 ,

(p2 + M2)f− + (C + M)β′

+âf0 = 0 . (19)

In fact, the equations (19) mean that it suffices to solve (18) with respect to f0; the two

other components f+ and f− can be calculated by means of the equations (19).

To proceed further, we need to know the explicit form of the inverse operators (16).

To solve this task, we first establish the minimal polynomials for the relevant matrices.

Therefore, the needed inverse operators must be quadratic with respect to the rele-

vant matrices. They are given by the formulas:

(M + ip̂) = 1
M

[

(ip̂)2 − M(ip̂) + (p2 + M2)
]

,

(A + M) = p2+M2

M

[

1 − M−Γ
p2+M2−MΓA + M−Γ

M(p2+M2−MΓ)A
2
]

,

(C + M) = p2+M2

M

[

1 − M+Γ
p2+M2+MΓC + M+Γ

M(p2+M2+MΓ)C
2
]

.

Taking into account the explicit form of the inverse operators, we get

(p2 + M2)f0+

+
1

M2

[

(ip̂)2 − M(ip̂) + (p2 + M2)
]

β+ ×

×
[

1 − M − Γ

p2 + M2 − MΓ
A +

M − Γ

M(p2 + M2 − MΓ)
A2

]

β′

−
âb̂f0+

+
1

M2

[

(ip̂)2 − M(ip̂) + (p2 + M2)
]

β− ×

×
[

1 − M + Γ

p2 + M2 + MΓ
C +

M + Γ

M(p2 + M2 + MΓ)
C2

]

β′

+ b̂âf0 = 0 .

Now, by considering the formulas

A =
M − ΓP̄

M − Γ
ip̂ , A2 = − Mp̂2

M − Γ
,

C =
M + ΓP̄

M + Γ
ip̂ , C2 = − Mp̂2

M + Γ
,
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β′

−
=

M − ΓP̄

M − Γ
β− , β′

+ =
M + ΓP̄

M + Γ
β+ ,

we transform the above equation into

(p2 + M
2)f0+

+
1

M2

ˆ

(ip̂)2 − M(ip̂) + (p2 + M
2)

˜

β+ ×

×
»

1− M − ΓP̄

p2 + M2 − MΓ
ip̂ +

(ip̂)2

p2 + M2 − MΓ

–

M − ΓP̄

M − Γ
β− âb̂f0+

+
1

M2

ˆ

(ip̂)2 − M(ip̂) + (p2 + M
2)

˜

β− ×

×
»

1 − M + ΓP̄

p2 + M2 + MΓ
ip̂ +

(ip̂)2

p2 + M2 + MΓ

–

M + ΓP̄

M + Γ
β+ b̂âf0 = 0 .

After some manipulation, this becomes

{ (p2 + M2) + âb̂m
1

M2(p2 + M2 − MΓ)

1

M − Γ
×

×
ˆ

(ip̂)2 − M (ip̂) + (p2 + M2)
˜

β+
ˆ

(p2 + M2 − MΓ) − (M − ΓP̄ ) ip̂ + (ip̂)2
˜

(M − ΓP̄ )β−+

+b̂â
1

M2(p2 + M2 + MΓ)

1

M + Γ
×

×
ˆ

(ip̂)2 − M (ip̂) + (p2 + M2)
˜

β−
ˆ

(p2 + M2 + MΓ) − (M − ΓP̄ ) ip̂ + (ip̂)2
˜

(M + ΓP̄ )β+ } f0 = 0

or

{ (p2 + M2) + âb̂
1

M2(p2 + M2 − MΓ)

1

M − Γ
×

×
ˆ

(ip̂)2 − M (ip̂) + (p2 + M2)
˜

β+
ˆ

(p2 + M2 − MΓ) − ip̂(M − ΓP ) + (ip̂)2
˜

(M − ΓP̄ )β−+

+b̂â
1

M2(p2 + M2 + MΓ)

1

M + Γ
×

×
h

(ip̂)2 − M(ip̂) + (p2 + M2)
i

β
−

h

(p2 + M2 + MΓ) − ip̂(M + ΓP) + (ip̂)2
i

(M + ΓP̄)β+ } f0 = 0 .

Due to the identity

p̂β+p̂ = p̂β−p̂ = 0,

this admits the simpler form:

{ (p2 + M2) + âb̂ 1
M2(p2+M2

−MΓ)
1

M−Γ
× [ (p2 + M2 − MΓ)(ip̂)2β+ − M(p2 + M2 − MΓ)ip̂β++

+(p2 + M2)(p2 + M2 − MΓ)β+ − (p2 + M2)β+ip̂(M − ΓP) + (p2 + M2)β+(ip̂)2] (M − ΓP̄)β
−

+

+b̂â 1
M2(p2+M2+MΓ)

1
M+Γ × ×[ (p2 + M2 + MΓ)(ip̂)2β

−
− M(p2 + M2 + MΓ)ip̂β

−
+

+(p2 + M2)(p2 + M2 + MΓ)β
−

− (p2 + M2)β
−

ip̂(M + ΓP)+

+(p2 + M2)β
−

(ip̂)2 ] (M + ΓP̄)β+ }f0 = 0
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Now we take into account the explicit form of f0, ip̂, and all the involved matrices:

ip̂ = i















0 0 0 0 0 −p3 0 p4 0 0
0 0 0 0 p3 0 0 0 p4 0
0 0 0 0 0 0 0 0 0 p4

0 0 0 0 0 0 0 0 0 −p3

0 p3 0 0 0 0 0 0 0 0
−p3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
p4 0 0 0 0 0 0 0 0 0
0 p4 0 0 0 0 0 0 0 0
0 0 p4 −p3 0 0 0 0 0 0















.

The explicit form of β± is:

β± =
1√
2















. . . . 0 −1 0 ±i 0 0

. . . . 1 0 0 0 ±i 0

. . . . 1 0 0 0 0 ±i

. . . . 1 0 0 0 0 −1
[2mm]0 1 0 0 . . . . . .

−1 0 0 0 . . . . . .
0 0 0 0 . . . . . .
±i 0 0 0 . . . . . .
0 ±i 0 0 . . . . . .
0 0 ±i −1 . . . . . .















.

The explicit form of f[34] and T 2 is:

f[34] =

0

B

B

B

B

B

B

@

0 0 0 0 . . . . . .
0 0 0 0 . . . . . .
0 0 0 1 . . . . . .
0 0 −1 0 . . . . . .

. . . 0 0 0 0 1 0

. . . 0 0 0 −1 0 0

. . . 0 0 0 0 0 0

. . . 0 1 0 0 0 0

. . . −1 0 0 0 0 0

. . . 0 0 0 0 0 0

1

C

C

C

C

C

C

A

, Y = if[34], −Y 2 =

0

B

B

B

B

B

B

@

0 0 0 0 . . . . . .
0 0 0 0 . . . . . .
0 0 −1 0 . . . . . .
0 0 0 −1 . . . . . .

. . . −1 0 0 0 0 0

. . . 0 −1 0 0 0 0

. . . 0 0 0 0 0 0

. . . 0 0 0 −1 0 0

. . . 0 0 0 0 −1 0

. . . 0 0 0 0 0 0

1

C

C

C

C

C

C

A

,

1 − Y 2 =













1 0 0 0 . . . . . .
0 1 0 0 . . . . . .
0 0 0 0 . . . . . .
0 0 0 0 . . . . . .

. . . 0 0 0 0 0 0

. . . 0 0 0 0 0 0

. . . 0 0 1 0 0 0

. . . 0 0 0 0 0 0

. . . 0 0 0 0 0 0

. . . 0 0 0 0 0 1













, f =





















f1

f2

f3

f4

f[23]

f[31]

f[12]

f[14]

f[24]

f[34]





















, F0 =















f1

f2

0
0
0
0

f[12]

0
0

f[34]















.

Then we obtain

(p2+M2)

0

B

B

B

B

B

B

@

f1
f2
0
0
0
0

f[12]

0
0

f[34]

1

C

C

C

C

C

C

A

+
âb̂

M2(M − Γ)(p2 + M2 − MΓ)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(p2 + M2)(p2 + M2 − MΓ)

0

B

B

B

B

B

B

@

(M−Γ)f1

(M−Γ)f2
0
0
0
0
0
0
0

Mf[34]

1

C

C

C

C

C

C

A

−

−iM (p2 + M2 − MΓ)

0

B

B

B

B

B

@

0
0
0
0
0
0

(M−Γ)(p2f1−p1f2)
0
0
0

1

C

C

C

C

C

A

− (p2 + M2 − MΓ)

0

B

B

B

B

B

@

p2(M−Γ)(p2f1−p1f2)
−p1(M−Γ)(p2f1−p1f2)

0
0
0
0
0
0
0
0

1

C

C

C

C

C

A

+
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+(p2 + M2)M (M − Γ)

0

B

B

B

B

B

B

@

p1f[34]

p1f[34]

0
0
0
0
0
0
0

−(p1f1+p2f2)

1

C

C

C

C

C

C

A

− (p2 + M2)

0

B

B

B

B

B

B

@

p1(M−Γ)(p1f1+p2f2)
p2(M−Γ)(p1f1+p2f2)

0
0
0
0
0
0
0

Mp2f[34]

1

C

C

C

C

C

C

A

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

+

+
b̂â

M2(M + Γ)(p2 + M2 + MΓ)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(p2 + M2)(p2 + M2 + MΓ)

0

B

B

B

B

B

B

@

(M+Γ)f1

(M+Γ)f2
0
0
0
0
0
0
0

Mf[34]

1

C

C

C

C

C

C

A

−

−iM(p2 + M2 + MΓ)

0

B

B

B

B

B

@

0
0
0
0
0
0

(M+Γ)(p2f1−p1f2)
0
0
0

1

C

C

C

C

C

A

− (p2 + M2 + MΓ)

0

B

B

B

B

B

@

p2(M+Γ)(p2f1−p1f2)
−p1(M+Γ)(p2f1−p1f2)

0
0
0
0
0
0
0
0

1

C

C

C

C

C

A

+

+(p2 + M2)M (M + Γ)

0

B

B

B

B

B

B

@

p1f[34]

p1f[34]

0
0
0
0
0
0
0

−(p1f1+p2f2)

1

C

C

C

C

C

C

A

− (p2 + M2)

0

B

B

B

B

B

B

@

p1(M+Γ)(p1f1+p2f2)
p2(M+Γ)(p1f1+p2f2)

0
0
0
0
0
0
0

Mp2f[34]

1

C

C

C

C

C

C

A

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

= 0.

from this there follow four equations for the constituents of f0:

(p2 + M2)f1 +
âb̂

M2(p2 + M2 − MΓ
×

×{(p2 + M2)(p2 + M2 − MΓ)f1 − p2(p
2 + M2 − MΓ)(p2f1 − p1f2)+

+Mp1(p
2 + M2)f[34] − (p2 + M2)p1(p1f1 + p2f2)} +

b̂â

M2(p2 + M2 + MΓ
×

×{(p2 + M2)(p2 + M2 + MΓ)f1 − p2(p
2 + M2 + MΓ)(p2f1 − p1f2)−

−Mp1(p
2 + M2)f[34] − p1(p

2 + M2)(p1f1 + p2f2)} = 0 , (20)

(p2 + M2)f2 +
âb̂

M2(p2 + M2 − MΓ
×

×{(p2 + M2)(p2 + M2 − MΓ)f2 + p1(p
2 + M2 − MΓ)(p2f1 − p1f2)+

+M(p2 + M2)p2f[34] − p2(p
2 + M2)(p1f1 + p2f2)} +

b̂â

M2(p2 + M2 + MΓ
×
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×{(p2 + M2)(p2 + M2 + MΓ)f2 + p1(p
2 + M2 + MΓ)(p2f1 − p1f2)−

−Mp2(p
2 + M2)f[34] − p2(p

2 + M2)(p1f1 + p2f2)} = 0 , (21)

(p2 + M2)f[12] +
âb̂

M
{−i(p2f1 − p1f2)} +

b̂â

M
{−i(p2f1 − p1f2)} = 0 , (22)

f[34] +
âb̂

M (M − Γ)(p2 + M2 − MΓ)
{(p2 +M2 −MΓ)f[34]− (M −Γ)(p1f1 +p2f2))−p2f[34]}+

+
b̂â

M (M + Γ)(p2 + M2 + MΓ)
{(p2 + M2 + MΓ)f[34] + (M + Γ)(p1f1 + p2f2))− p2f[34]} = 0 .

(23)

From (22) we derive

(p2 + M2)f[12] −
i

M
(âb̂ + b̂â)(p2f1 − p1f2) = 0 ,

and from (23) it follows

f[34]+
âb̂

M (p2 + M2 − MΓ)
{Mf[34]−(p1f1+p2f2)}+

b̂â

M (p2 + M2 + MΓ)
{Mf[34]+(p1f1+p2f2)} = 0 .

Then, from (20)–(21), we get

[EQ.I] (p2 + M2)f1 + âb̂
M2(p2+M2−MΓ×

×{(p2 + M2)(p2 + M2 − MΓ)f1 − p2(p
2 + M2 − MΓ)(p2f1 − p1f2)+

+Mp1(p
2 + M2)f[34] − (p2 + M2)p1(p1f1 + p2f2)}+

+ b̂â
M2(p2+M2+MΓ

× {(p2 + M2)(p2 + M2 + MΓ)f1 − p2(p
2 + M2 + MΓ)(p2f1 − p1f2)−

−Mp1(p
2 + M2)f[34] − p1(p

2 + M2)(p1f1 + p2f2)} = 0 ,

[EQ.II] (p2 + M2)f2 + âb̂
M2(p2+M2−MΓ

×
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×{(p2 + M2)(p2 + M2 − MΓ)f2 + p1(p
2 + M2 − MΓ)(p2f1 − p1f2)+

+M (p2 + M2)p2f[34] − p2(p2 + M2)(p1f1 + p2f2)}+

+ b̂â
M2(p2+M2+MΓ

× {(p2 + M2)(p2 + M2 + MΓ)f2 + p1(p2 + M2 + MΓ)(p2f1 − p1f2)−

−Mp2(p
2 + M2)f[34] − p2(p

2 + M2)(p1f1 + p2f2)} = 0 .

By combining these equations as follows:

p1 · [EQ.I] + p2 · [EQ.II], p2 · [EQ.I] − p1 · [EQ.II] ,

we derive

(p1f1 + p2f2) +
âb̂

M2(p2 + M2 − MΓ)
×

×{(p2 + M2 − MΓ)(p1f1 + p2f2) + Mp2f[34] − p2(p1f1 + p2f2)}+

+
b̂â

M2(p2 + M2 + MΓ)
×

×{(p2 + M2 + MΓ)(p1f1 + p2f2)− Mp2f[34] − p2(p1f1 + p2f2)} = 0 ,

(p2 + M2)(p2f1 − p1f2)+

+
âb̂

M2
{(p2 + M2)(p2f1 − p1f2) − p2(p2f1 − p1f2)}+

+
b̂â

M2
{(p2 + M2)(p2f1 − p1f2)− p2(p2f1 − p1f2)} = 0 .

After elementary manipulations, they read

(p1f1 + p2f2) +

+
âb̂

M(p2 + M2 − MΓ)
{(M − Γ)(p1f1 + p2f2) + p2f[34]} +

+
b̂â

M(p2 + M2 + MΓ)
{(M + Γ)(p1f1 + p2f2) − p2f[34]} = 0 , (24)

(p2 + M2)(p2f1 − p1f2) + (âb̂ + b̂â)(p2f1 − p1f2) = 0 . (25)

Let us write down here the remaining two equations (see (22)–(23)) as well:

(p2 + M2)f[12] −
i

M
(âb̂ + b̂â)(p2f1 − p1f2) = 0 . (26)
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f[34] +
âb̂

M(p2 + M2 − MΓ)
{Mf[34] − (p1f1 + p2f2)} +

+
b̂â

M(p2 + M2 + MΓ)
{Mf[34] + (p1f1 + p2f2)} = 0 (27)

From (25)– 26), we easily derive

[(âb̂ + b̂â) + (p2 + M2)](p2f1 − p1f2) = 0 ,

f[12] = 1
iM (p2f1 − p1f2) .

Thus, we need to investigate only the two remaining equations. We introduce

the shortening notation:

F = f[34], G = p1f1 + p2f2 ,

and then the equations get the form

F +
âb̂

M(p2 + M2 − MΓ)
(MF −G)+

b̂â

M(p2 + M2 + MΓ)
(MF +G) = 0|,

(28)

G +
âb̂

M(p2 + M2 − MΓ)
[(M − Γ)G + p2F ] +

+
b̂â

M(p2 + M2 + MΓ)
[(M + Γ)G − p2F ] = 0 . (29)

Let us transform the first equation (28) to the form

F + 1
M (p2+M2−MΓ)(p2+M2+MΓ)

× {(p2 + M2 + MΓ) âb̂ (MF − G))+

+(p2 + M2 − MΓ) b̂â (MF + G)} = 0 ,

which after elementary manipulation yields

F + 1
M [(p2+M2)2−M2Γ2]

×

×{M(p2 + M2) âb̂ F + M2Γ âb̂ F − (p2 + M2) âb̂ G − MΓ â b̂G+

+M(p2 + M2) b̂â MF − M2Γ b̂â F + (p2 + M2) b̂â G − MΓ b̂âG} = 0,
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or,

[EQ.I] F + 1
M [(p2+M2)2−M2Γ2]

× {M(p2 + M2) (âb̂ + b̂â) F + M2Γ (âb̂ − b̂â)F−

−MΓ (â b̂ + b̂â)G − (p2 + M2) (âb̂ − b̂â) G} = 0 .

We further rewrite (29) as

G + 1
M [(p2+M2)2−M2Γ2)

{ (p2 + M2 + MΓ)(M − Γ) âb̂ G + p2(p2 + M2 + MΓ) âb̂ F+

+(M + Γ)(p2 + M2 − MΓ) b̂âG − p2(p2 + M2 − MΓ) b̂â F} = 0 ,

or,

G + 1
M [(p2+M2)2−M2Γ2)

×

×{ (p2 + M2)(M − Γ) âb̂ G + (M2Γ − MΓ2) âb̂G + p2(p2 + M2) âb̂ F + p2MΓ âb̂ F+

+(M + Γ)(p2 + M2) b̂â G − (M2Γ + MΓ2) b̂â G − p2(p2 + M2) b̂â F + p2MΓ b̂â F} = 0 ,

so we infer

[EQ.II] G + 1
M [(p2+M2)2−M2Γ2)

× {M (p2 + M2)(âb̂ + b̂â) G − Γ(p2 + M2)(âb̂ − b̂â)G−

−MΓ2( âb̂ + b̂â)G + ΓM2(âb̂ − b̂â)G + MΓp2 (âb̂ + b̂â)F + p2(p2 + M2) (âb̂ − b̂â) F} = 0 ,

Let us combine the equations [EQ.I] and [EQ.II] as follows:

−Γp2 ·[EQ.I]+(p2+M2)·[EQ.II], (p2+M2−Γ2)·[EQ.I]+Γ··[EQ.II] = ...;

this leads to

[(âb̂ + b̂â) + p2 + M2]G − Γp2F +
p2

M
(âb̂ − b̂â)F = 0 ,

[(âb̂ + b̂â) + p2 + M2]F + ΓG− 1

M
(âb̂− b̂â)G− Γ2F +

Γ

M
(âb̂− b̂â)F = 0 .

Taking into account the explicit form of the operators â, b̂, and by considering

â =
1√
2

(

+
+d

dx3
+ ieEx3 + iε

)

, b̂ =
1√
2

(

− d

dx3
+ ieEx3 + iε

)

,

we get

(âb̂ − b̂â) = ieE.

Then the last equations rewrite in the simpler form

[(âb̂ + b̂â) + p2 + M2]G = p2(Γ − ieE
M )F ,

[(âb̂ + b̂â) + p2 + M2]F = −
(

Γ − ieE
M

)

G + Γ
(

Γ − ieE
M

)

F .



Spin 1 Particle with Anomalous Magnetic Moment ... 31

Let us introduce the notation ieE = E0; then the system is written as

(

Γ − E0
M

)−1
[

(âb̂ + b̂â) + p2 + M2
]

G = p2F ,

(

Γ − E0
M

)−1
[

(âb̂ + b̂â) + p2 + M2
]

F = −G + ΓF .

This sub-system is solved by diagonalizing the mixing matrix. To this aim, let

us introduce the new functions

Φ1 = G− λ1 F , Φ2 = G − λ2 F ,

where

λ1 =
Γ +

√

Γ2 − 4p2

2
, λ2 =

Γ −
√

Γ2 − 4p2

2
.

So we get two independent equations:

[

(âb̂ + b̂â) + p2 + M2] − λ′
1

]

Φ1 = 0 , λ′
1 = λ1

(

Γ − E0
M

)

;

[

(âb̂ + b̂â) + p2 + M2] − λ′
2

]

Φ2 = 0 , λ′
2 = λ2

(

Γ − E0
M

)

.

For the second order operator, we have the explicit for, e.g., x3 = z:

(âb̂ + b̂â) = − d2

dz2
− e2E2z2 − 2eEεz − ε2 .

Thus, we get the equation6:

[

d2

dz2
+ (e2E2z2 + 2eEεz + ε2)− µ2p2 − M2 + λ′

1,2

]

Φ1,2(z) = 0 ,

where µ2 = p2 − M2 + λ′
1,2.

This task coincides with that which arises for the scalar Klein–Fock–Gordon

particle in external uniform electric field modified by an anomalous magnetic

moment.

6We consider both variants.
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4. Restrictions on the Values of Anomalous Magnetic

Moment

On physical grounds, the above parameter µ2 must be positive, for both cases

λ = λ′
1,2:

µ2 = M2 + p2 −
(

Γ − ieE

M

)

Γ ±
√

Γ2 − 4p2

2
> 0 .

We take into account that Γ = iΓ0
7:

µ2 = M2 + p2 +

(

Γ0 −
eE

M

)

Γ0 ±
√

Γ2
0 + 4p2

2
> 0 .

Clearly, the region for Γ0, given by8:

Γ0 −
eE

M
> 0 (eE > 0),

has no physical sense, because it does not contain the vicinity of the point Γ0 =

0. So, in the following we assume that

Γ0 − y < 0, y =
eE

M
> 0 .

Then, the main inequality takes the form

2(M2 + p2)

(y − Γ0)
> Γ0 ±

√

Γ2
0 + 4p2 .

Let us study the variant Γ0 < 0, (−) – lower sign :

2(M2 + p2)

(y − Γ0)
> Γ0 −

√

Γ2
0 + 4p2 ,

which is valid without any additional restrictions.

We first address the variant Γ0 < 0, (+) – upper sign:

2(M2 + p2)

(y − Γ0)
> Γ0 +

√

Γ2
0 + 4p2 .

7In our considerations, Γ0 is real-valued
8For definiteness, we assume that eE > 0
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This yields

2(M2 + p2)

(y − Γ0)
− Γ0 > +

√

Γ2
0 + 4p2 ;

which, after squaring, takes the form

4(M2 + p2)2

(y − Γ0)2
− 2Γ0

2(M2 + p2)

(y − Γ0)
− 4p2 > 0 ,

or

4(M2 + p2)2 − 4Γ0(M
2 + p2)(y − Γ0) − 4p2(y − Γ0)

2 > 0 .

It is convenient to use the variable x:

y − Γ0 = x > 0 ,

which leads to

(M2 + p2)2 − (y − x)x(M2 + p2) − p2x2 > 0 ,

equivalent to

x2 − 2x
(M2 + p2)y

2M2
+

(M2 + p2)2

M2
> 0 .

The roots of this quadratic equations are

x1,2 =
(M2 + p2)

2M2
± (M2 + p2)y

2M2

√

y2 − 4M2,

and the whole parabola lays above the horizontal axes only if the discriminant

is negative, and this yields

y2 − 4M2 < 0 =⇒ eE

M
< 2M .

Thus, we get the essential restriction on the magnitude of the electric field Γ0 <
0.

We further address the variant Γ0 > 0, (−) – lower sign:

2(M2 + p2)

(y − Γ0)
> Γ0 −

√

Γ2
0 + 4p2 ;

which is evidently valid.
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Let us now consider the variant Γ0 > 0, (+) – upper sign:

2(M2 + p2)

(y − Γ0)
− Γ0 >

√

Γ2
0 + 4p2 .

After squaring this inequality, we obtain

4(M2 + p2)2 − 4Γ0(M
2 + p2)(y − Γ0) − 4p2(y − Γ0)

2 > 0 .

Now, we can repeat the previous analysis. With the help of the variable y−Γ0 =

x, we get

(M2 + p2)2 − (y − x)x(M2 + p2) − p2x2 > 0

or

x2 − 2x
(M2 + p2)y

2M2
+

(M2 + p2)2

M2
> 0 ;

the corresponding roots are

x1,2 =
(M2 + p2)

2M2
± (M2 + p2)y

2M2

√

y2 − 4M2.

The whole parabola lays above the horizontal axis only if the discriminant is

negative, which yields

y2 − 4M2 < 0 =⇒ eE

M
< 2M .

Considering the previous assumption 0 < Γ0, we derive 0 < Γ0 < eE
M .

All in all, we conclude that µ2 is positive, if the following double inequality

is valid

Γ0 <
eE

M
< 2M .

5. Solving the Differential Equation

We start with the equation

(

d2

dz2
+ (ε + eEz)2 − µ2

)

Φ(z) = 0 , µ2 = M2 + p2 − λ′
1,2 > 0 . (30)
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We remark that this equation, after its transforming to a new variable x is – from

mathematical point of view – very similar to that arising for the non-relativistic

quantum harmonic oscillator:

x =
ε + eEz

eE
,

(

d2

dx2
− µ2 + (eE)2x2

)

Φ = 0 ,

(

d2

dx2
+ E − kx2

)

f = 0 .

Let us use in (30) a new variable Z

Z = i
(ε + eEz)2

eE
(let it be σ =

µ2

4eE
, eE > 0) .

Then we obtain an equation of the form

(

d2

dZ2
+

1/2

Z

d

dZ
− 1

4
+

iσ

Z

)

Φ(Z) = 0 ,

which has two singular points. The point Z = 0 is regular, and the behavior of

the solutions in its neighborhood may be as follows

Z → 0, Φ(Z) = ZA, A ∈
{

0,
1

2

}

.

The point Z = ∞ is an irregular singularity of rank 2. Indeed, in terms of the

variable y = Z−1, the above equation reads

(

d2

dy2
+

3/2

y

d

dy
− 1

4y4
+

iσ

y3

)

Φ = 0 .

When y → 0, the corresponding asymptotic structure is given by

y → 0, Φ = yCeD/y, Φ′ = CyC−1eD/y − DyC−2eD/y,

Φ′′ = C(C−1)yC−2eD/y−CDyC−3eD/y−D(C−2)yC−3eD/y+D2yC−4eD/y.

Then, the above equation gives

C(C − 1)

y2
− 2CD − 2D

y3
+

D2

y4
+

3

2

C

y2
− 3

2

D

y3
− 1

4y4
+

iσ

y3
= 0 .

We retain only the main terms proportional to y−3 and y−4, and require that

their coefficients vanish:

D2 − 1

4
= 0, −2CD + 2D − 3

2
D + iσ = 0 ,
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whence it follows

D1 = +
1

2
, C1 =

1

4
+ iσ ; D2 = −1

2
, C2 =

1

4
− iσ .

Thus, at infinity, two asymptotics are possible

Z → ∞, Φ = Z−CeDZ =

{

Z−C1eD1Z = Z−1/4−iσe+Z/2

Z−C2eD2Z = Z−1/4+iσe−Z/2,

where9

Z = i
(ε+eEz)2

eE = iZ0, Z0 > 0 , e±Z/2 = e±iZ0/2,

Z−1/4∓iσ =
(

eln iZ0
)−1/4∓iσ

=
(

eln Z0+iπ/2
)−1/4∓iσ

.

We shall further construct a solution in the whole region of Z. We start with

the substitution

Φ(Z) = ZA eBZ f(Z) .

This leads to
„

Z
d2

dZ2
+ (2A +

1

2
+ 2BZ)

d

dZ
+ (B2 − 1

4
) Z +

A (2A− 1)

2Z
+ 2AB +

B

2
+ iσ

«

f(Z) = 0 .

We fix A ∈ {0 , 1/2} , B = −1/2 ; then the equation becomes simpler

(

Z
d2

dZ2
+ (2A + 1/2− Z)

d

dy
− (A + 1/4− iσ)

)

f(Z) = 0 ,

which coincides with the confluent hypergeometric equation with

a = A + 1/4− iσ , c = 2A + 1/2 , f(Z) = ZA e−Z/2 F (a, c; Z).

Without loss of generality, we may take the value A = 0:

A = 0, a = 1/4− iσ , c = +1/2 , Φ(Z) = e−Z/2 f(Z) .

Let us consider two definite independent solutions of the confluent hyper-

geometric equation10:

Y1(Z) = F (a, c; Z) = eZF (c − a, c;−Z)

Y2(Z) = Z1−cF (a − c + 1, 2− c; Z) = Z1−ceZF (1 − a, 2− c;−Z).

9We use the main branch of the logarithmic function.
10Note the equivalent representations for each solution.
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These two lead to the corresponding Φ’s:

Φ1 = e−Z/2F (a, c; Z) = e+Z/2F (c − a, c;−Z) ;

Φ2 = e−Z/2Z1−cF (a − c + 1, 2− c; Z) = Z1−ce+Z/2F (1 − a, 2− c;−Z) .

By taking into account the identities

c =
1

2
, a =

1

4
−iσ, c−a =

1

4
+iσ = a∗, c = c∗ =

1

2
, Z∗ = −Z ,

a − c + 1 =
3

4
− iσ = (1− a)∗, (2− c) = (2− c)∗ =

3

2
,

we conclude that the first solution Φ1(Z) is given by a real-valued function,

whereas the second one, Φ2(Z), has the following property with respect to the

complex conjugation

Φ1(Z) = +[Φ1(Z)]∗, Φ2(Z) = i[Φ2(Z)]∗ .

This behavior of Φ2(Z) can be presented as the property of real-valuedness, if

one uses another normalizing factor

Φ̄2(Z) =
1− i√

2
Φ2(Z) =

(

1 − i√
2

Φ2(Z)

)∗
= (Φ̄2(Z))∗ . (31)

For small values of Z, the solutions behave as follows

Y1(Z) ≈ 1, Y2(Z) ≈
√

Z =
√

iZ0 =
√

i
eE (ε + eEz) ;

Φ1(Z) ≈ 1, Φ2(Z) ≈
√

Z =
√

iZ0 =
√

i
eE (ε + eEz) .

For large values of Z = iZ0, Z0 → +∞, on can employ the known asymptotic

formulas

F (a, c, Z) =

(

Γ(c)

Γ(c − a)
(−Z)−a + ...

)

+

(

Γ(c)

Γ(a)
eZZa−c + ...

)

.

In this way, we derive11

(−Z)−a = (−iZ0)
−1/4+iσ =

“

e
ln Z0−iπ/2

”−1/4+iσ

= e
−(−1/4+iσ)iπ/2

e
(−1/4+iσ) ln Z0 ,

11We use (again) the main branch of the logarithmic function
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Za−c = (iZ0)
−1/4−iσ =

“

eln Z0+iπ/2
”−1/4−iσ

= e+(−1/4−iσ)iπ/2 e(−1/4−iσ) ln Z0 ,

Γ(c)

Γ(c − a)
=

Γ(1/2)

Γ(1/4 + iσ)
,

Γ(c)

Γ(a)
=

Γ(1/2)

Γ(1/4 − iσ)
,

so we get

Y1(Z) = F (a, c, Z) = eiZ0/2×

×
{

Γ(1/2)

Γ(1/4 + iσ)
e−(−1/4+iσ)iπ/2 e(−1/4+iσ) lnZ0e−iZ0/2+

+
Γ(1/2)

Γ(1/4 − iσ)
e+(−1/4−iσ)iπ/2 e(−1/4−iσ) lnZ0e+iZ0/2

}

. (32)

From (32), it follows the asymptotic form for

Φ1(Z) =

{

Γ(1/2)

Γ(1/4 + iσ)
e−(−1/4+iσ)iπ/2 e(−1/4+iσ) lnZ0e−iZ0/2+

+
Γ(1/2)

Γ(1/4 − iσ)
e+(−1/4−iσ)iπ/2 e(−1/4−iσ) lnZ0e+iZ0/2

}

. (33)

As it should be, we notice the sum of the two conjugate terms.

In a similar manner, we study at infinity the function F (a − c + 1, 2− c; Z):

F (a − c + 1,2 − c, Z) =

„

Γ(2 − c)

Γ(1 − a)
(−Z)−a+c−1 + ...

«

+

„

Γ(2 − c)

Γ(a − c + 1)
eZZa−1 + ...

«

.

Taking into account identities

(−Z)−a+c−1 = (−iZ0)−3/4+iσ =
“

eln Z0−iπ/2
”−3/4+iσ

= e−(−3/4+iσ)iπ/2 e(−3/4+iσ) ln Z0 ,

Za−1 = (iZ0)
−3/4−iσ =

“

eln Z0+iπ/2
”−3/4−iσ

= e+(−3/4−iσ)iπ/2 e(−3/4−iσ) ln Z0 ,

Γ(2 − c)

Γ(1 − a)
=

Γ(3/2)

Γ(3/4 + iσ)
,

Γ(2 − c)

Γ(a − c + 1)
=

Γ(3/2)

Γ(3/4 − iσ)
,

we derive the asymptotic formula

F (a − c + 1, 2 − c, Z) = eiZ0/2 ×
n

Γ(3/2)
Γ(3/4+iσ)

e−(−3/4+iσ)iπ/2 e(−3/4+iσ) ln Z0e−iZ0/2+

+ Γ(3/2)
Γ(3/4−iσ)

e+(−3/4−iσ)iπ/2 e(−3/4−iσ) ln Z0e+iZ0/2
o

.
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From this, for the function Φ2(Z) we infer12

Φ2(Z) =
√

ZZ1/2F (a − c + 1, 2− c, Z) = eiπ/4×

×
{

Γ(3/2)

Γ(3/4 + iσ)
e−(−3/4+iσ)iπ/2 e(−1/4+iσ) lnZ0e−iZ0/2+

+
Γ(3/2)

Γ(3/4 − iσ)
e+(−3/4−iσ)iπ/2 e(−1/4−iσ) lnZ0e+iZ0/2

}

. (34)

This results agrees with the previously obtained formula (31).

We can construct linearly independent solutions which do not behave at

infinity as (quasi-)real superpositions of complex-valued functions. To this end,

we should employ another pair of linearly independent solutions

Y5(Z) = Ψ(a, c; Z), Y7(Z) = eZΨ(c − a, c;−Z) .

The two pairs {Y5, Y7} and {Y1, Y2} relate to each other by the Kummer for-
mulas

Y5 =
Γ(1 − c)

Γ(a − c + 1)
Y1 +

Γ(c − 1)

Γ(a)
Y2 , Y7 =

Γ(1 − c)

Γ(1 − a)
Y1 − Γ(c − 1)

Γ(c − a)
eiπc Y2 .

For large Z, (| Z |→ ∞), the following asymptotic formula is valid

Y5 = Ψ(a, c; Z) = Z−a = (iZ0)
−1/4+iσ =

`

eln Z0+iπ/2
´−1/4+iσ

,

Y7(Z) = eZΨ(c − a, c;−Z) = eZ (−iZ0)
a−c = eiZ0(−iZ0)−1/4−iσ = eiZ0

`

eln Z0−iπ/2
´−1/4−iσ

.

These formulas – after passing to the functions Φ(Z) – take the form

Φ5 = e−Z/2Y5 = e−iZ0/2
(

eln Z0+iπ/2
)−1/4+iσ

,

Φ7 = e−Z/2Y7(Z) = e+iZ0/2
(

elnZ0−iπ/2
)−1/4−iσ

.

We see that these functions are conjugate to each other; only these ones enter

the superpositions (33) and (34).

12We recall that
√

Z = e(1/2)(ln Z0+iπ/2) .
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6. Spin 1 Particle with Vanishing Electric Ctge

Let us derive the corresponding result for the case of a neutral particle. Formally,

this can be obtained ny means of the following limiting procedure

e → 0 ,
2E

M
λ → ∞ , Γ = ±2eE

M
λ → 2E

M
Λ ,

where λ is a dimensionless parameter; the new Λ has the electric charge dimen-

sion. We consider below only the main relations:

â = 1√
2

(

+ d
dx3

+ iε
)

, b̂ = 1√
2

(

− d
dx3

+ iε
)

,

(âb̂ + b̂â) = − d2

dz2 − ε2, (âb̂ − b̂â) = 0 ;

f[12] = 1
iM (p2f1 − p1f2) ,

(

d2

dz2 + ε2 − p2 − M2
)

(p2f1 − p1f2) = 0 ;

F = f[34], G = p1f1 + p2f2 ,

Γ−1
[

(âb̂ + b̂â) + p2 + M2
]

G = p2F ,

Γ−1
[

(âb̂ + b̂â) + p2 + M2
]

F = −G + ΓF ;

Φ1 = G− λ1 F , Φ2 = G − λ2 F ,

λ1 = 1
2 (Γ +

√

Γ2 − 4p2) , λ2 = 1
2 (Γ −

√

Γ2 − 4p2) ;
(

d2

dz2 + ε2 − p2 − M2 + Γλ1,2

)

Φ1,2(z) = 0 .

Let us introduce the notation

∆ = ε2 − p2 − M2 > 0 , ∆ + Γλ1,2 = p2
z ,

where

Γλ1,2 =
Γ

2
(Γ ±

p

Γ2 − 4p2) =
iΓ0

2

„

iΓ0 ±
q

−Γ2
0 − 4p2

«

= −Γ0

2

„

Γ0 ±
q

Γ2
0 + 4p2

«

.

The solutions will have the form of plane waves Φ1,2(z) = e±ip3z , only if

p2
z = ∆ − 1

2
Γ0

(

Γ0 ±
√

Γ2
0 + 4p2

)

> 0 .
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Let us study this inequality. It is convenient to consider separately the following

four subcases:

1. upper sign (+), Γ0 > 0;

2. lower sign (−), Γ0 > 0;

3. upper sign (+) Γ0 < 0;

4. lower sign (−) Γ0 < 0.

Consider variant 1:

Γ0 > 0, 2∆ > Γ0

(

Γ0 +
√

Γ2
0 + 4p2

)

, 2∆ − Γ2
0 > Γ0

√

Γ2
0 + 4p2 ;

here we must impose the obvious restriction

Γ2
0 < 2∆ ,

and we further derive

4∆2 − 4∆Γ2
0 + Γ4

0 > Γ2
0(Γ

2
0 + 4p2) =⇒ ∆2 − ∆Γ2

0 > Γ2
0p

2,

that is Γ2
0 < ∆2

∆+p2 . We can readily check the inequality:

2∆ >
∆2

∆ + p2
,

and thus conclude by the restriction

1. 0 < Γ0 <
∆

√

∆ + p2
, Γ0 > 0 . ∆ = ε2 − p2 − M2 > 0 .

Now consider variant 2:

2. Γ0 > 0, 2∆ > Γ0

(

Γ0 −
√

Γ2
0 + 4p2

)

;

evidently, this relationship is always valid.

Then, variant 3:

3. Γ0 < 0, 2∆ > Γ0

(

Γ0 +
√

Γ2
0 + 4p2

)

;

this relationship is always valid.
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Finally, we address variant 4:

4. Γ0 < 0, 2∆ > Γ0

„

Γ0 −
q

Γ2
0 + 4p2

«

= (−Γ0)

„

(−Γ0) +
q

Γ2
0 + 4p2

«

,

where by using the results for the case 1, we obtain

Γ2
0 <

∆2

∆ + p2
, Γ0 < 0 .

By summing, we conclude that the parameter Γ0 must lay within the fol-

lowing bounds:

Γ0 < +
∆

√

∆ + p2
, ∆ = ε2 − p2 − M2 > 0 .

Conclusion

Within the matrix 10-dimensional Duffin-Kemmer-Petiau formalism applied to

the Shamaly-Capri field, we study the behavior of a vector particle with anoma-

lous magnetic moment in the presence of an external uniform electric field. The

separation of variables in the wave equation is performed by using projective

operator techniques and the theory of DKP-algebras. The whole wave function

is decomposed into the sum of three components Ψ0, Ψ+, Ψ+. It is enough to

solve the equation for the main component Φ0, the two remaining ones being

uniquely determined by it. Consequently, the problem reduces to three inde-

pendent differential equations for three functions, which are of the type of one-

dimensional Klein–Fock–Gordon equation in the presence of a uniform electric

field modified by the non-vanishing anomalous magnetic moment of the parti-

cle. The solutions are constructed in terms of confluent hypergeometric func-

tions. For assigning physical sense for these solutions, one must impose special

restrictions on a certain parameter related to the anomalous moment of the par-

ticle. The neutral spin 1 particle is considered as well. In this case, the main

manifestation of the anomalous magnetic moment consists in the modification

of the ordinary plane wave solution along the electric field direction. Again,

one must impose special restrictions on a parameter related to the anomalous

moment of the particle.
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TECHNIQUES OF PROJECTIVE OPERATORS

USED TO CONSTRUCT SOLUTIONS

FOR A SPIN 1 PARTICLE
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THE EXTERNAL UNIFORM MAGNETIC FIELD
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Abstract

Within the matrix 10-dimensional Duffin–Kemmer-Petiau formalism

applied to the Shamaly–Capri field, we study the behavior of a vector
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particle with anomalous magnetic moment in presence of an external uni-

form magnetic field.

The separation of variables in the wave equation is performed us-

ing projective operator techniques and the theory of DKP-algebras. The

problem is reduced to a system of 2-nd order differential equations for

three independent functions, which is solved in terms of confluent hyper-

geometric functions. Three series of energy levels are found, of which

two substantially differ from those for spin 1 particles without anomalous

magnetic moment. For assigning to them physical sense for all the values

of the main quantum number n = 0, 1, 2, ..., one must impose special

restrictions on a parameter related to the anomalous moment. Otherwise,

only some part of the energy levels corresponds to bound states. The

neutral spin 1 particle is considered as well. In this case no bound states

exist in the system, and the main qualitative manifestation of the anoma-

lous magnetic moment consists in the occurrence of a space scaling of the

arguments of the wave functions, compared to a particle without such a

moment.

Keywords Duffin–Kemmer–Petiau algebra, projective operators, spin 1

particle, anomalous magnetic moment, magnetic field, exact solutions,

bound states

1. Introduction

Commonly, we shall use only the simplest wave equations for fundamental par-

ticles of spin 0, 1/2, 1. Meanwhile, it is known that other more complicated

equations can be proposed for particles with such spins, which are based on

the application of extended sets of Lorentz group representations (see [1]-[16]).

Such generalized wave equations allow to describe more complicated objects,

which have besides mass, spin, and electric charge, other electromagnetic char-

acteristics, like polarizability or anomalous magnetic moment. These additional

characteristics manifest themselves explicitly in presence of external electro-

magnetic fields.

In particular, within this approach Petras [3] proposed a 20-component the-

ory for spin 1/2 particle, which-after excluding 16 subsidiary components - turns

to be equivalent to the Dirac particle theory modified by presence of the Pauli

interaction term. In other words, this theory describes a spin 1/2 particle with

anomalous magnetic moment.
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A similar equation was proposed by Shamaly–Capri [6, 7] for spin 1 par-

ticles (also see [16, 17]). In the following, we investigate and solve this wave

equation in presence of the external uniform magnetic field. The generalized

formulas for Landau energy levels are derived, and the corresponding wave

functions are constructed. The new formulas for energies in presence of ex-

ternal magnetic field, in principle, allow to experimentally distinguish such a

particle. The restriction to the case of neutral vector boson (the uncharged spin

1/2 particle with anomalous magnetic moment) is performed in Sec. 2 – Sec. 6.

In Section 7 we give some details of the general theory of the Shamaly–

Capri particle; in particular, we describe some features of this theory extended

to General Relativity.

2. The Separation of Variables

The wave equation for spin 1 particle with anomalous magnetic moment [6, 7]

may be formulated in the form
(

βµDµ +
ie

M
λ3λ

∗
3F[µν]PJ[µν] + M

)

Ψ = 0 , (1)

where the 10-dimensional wave function and the DKP-matrices are used:

Ψ =

∣

∣

∣

∣

Ψµ

Ψ[µν]

∣

∣

∣

∣

, J[µν] = βµβν − βνβµ ,

where P stands for a projective operator separating from Ψ its vector component

Ψµ; Dµ = ∂µ − ieAµ; λ3 denotes an arbitrary complex number (see notation in

Sec. 7). In tensor form, (1) is1:

DµΨν − DνΨµ + MΨ[µν] = 0 ,

DνΨ[µν] ± 2 ie
M

λ3λ
∗
3F[µν]Ψν + MΨµ = 0 .

By using DKP-matrices, we apply the method of generalized Kronecker’s sym-

bols [20] 2:

βµ = eν,[νµ] + e[νµ],ν, P = eν,ν ,

(eA,B)CD = δACδBD , eA,BeC,DδBCeA,D ,

δ[µν],[ρσ] = 1
2 (δµρδνσ − δµσδνρ) ,

1In Minkowski space, the metric with imaginary unit is used, since x4 = ict.
2The indexes A(B, C, D, ...) take the values 1, 2, 3, 4, [23], [31], [12], [14], [24], [34].
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and the main relationships in the DKP algebra read:

βµβνβρ + βρβνβµ = δµνβρ + δρνβµ , [βλ, Jρσ]]− = δλρβσ − δλσβρ ;

We use the following representation for DKP-matrices:

β1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

β2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

β3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1

0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,



Techniques of Projective Operators Used to Construct Solutions ... 51

β4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

A uniform magnetic field is specified by the relations

A1 = −1

2
Bx2, A2 =

1

2
Bx1, A3 = 0, A4 = 0 , ~B = (0, 0, B) ,

F[µν] = ∂µAν − ∂νAµ, F[12 = −F[21] = B , F[13] = 0, ...

The non-minimal interaction through the anomalous magnetic moment is given

by the term

± ie

M
λ3λ

∗
3F[µν]PJ[µν] = ±2

ie

M
λ3λ

∗
3BPJ[12] .

Correspondingly, the main equation (1) is written as

[

β1(∂1 +
ie

2
Bx2) + β2(∂2 −

ie

2
Bx1) + β3∂3 + β4∂4±

±2
ie

M
λ3λ

∗
3BPJ[12] + M

]

Ψ = 0 . (2)

Let us introduce the matrix Y = iJ[12] = i(β1β2 − β2β1); it satisfies the

minimal polynomial equation Y (Y − 1)(Y + 1) = 0, which permits to define

tree projective operators:

P0 +P− +P+ = I, P0 = 1−Y 2, P+ =
1

2
Y (Y +1), P− =

1

2
Y (Y −1)

and resolve the wave function into three components:

Ψ0 = P0Ψ, Ψ+ = P+Ψ, Ψ− = P−Ψ , Ψ = Ψ− + Ψ0 + Ψ+ .
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By transforming (2) to cylindric coordinates

x1 = r cosφ, x2 = r sinφ, tanφ =
x2

x1
,

∂

∂x1
= cos φ

∂

∂r
− sinφ

r

∂

∂φ
,

∂

∂x2
= sinφ

∂

∂r
+

cosφ

r

∂

∂φ
;

we get
»

β1(cosφ
∂

∂r
−

sinφ

r

∂

∂φ
+ iB0r sinφ)+

+β2(sin φ
∂

∂r
+

cos φ

r

∂

∂φ
− iB0r cos φ) + (β3∂3 + β4∂4 + ΓPY + M)

–

Ψ = 0 , (3)

where we use the following shortening notation:

eB

2
= B0 , ±4

B0

M
λ3λ

∗
3 = Γ . (4)

We further act on (3) by P0; by applying the identities

P0β3 = β3P0, P0β4 = β4P0, PY = Y P ,

P0β1 = β1(1−P0) = β1(P+ + P−) , P0β2 = β2(1− P0) = β2(P+ + P−) ,

we get

[β3∂3 + β4∂4 + M ] Ψ0+

+

»

β1(cosφ
∂

∂r
− sin φ

r

∂

∂φ
) + β2(sinφ

∂

∂r
+

cosφ

r

∂

∂φ
) + iB0r sin φβ1 − iB0r cosφβ2

–

Ψ+

+

»

β1(cosφ
∂

∂r
− sinφ

r

∂

∂φ
) + β2(sinφ

∂

∂r
+

cosφ

r

∂

∂φ
) + iB0r sinφβ1 − iB0r cosφβ2

–

Ψ− = 0,

where we took into account the identities:

Y P0 ≡ 0 =⇒ ΓY Ψ0 = Γ(Y P0)Ψ = 0.

By introducing the notation

β+ =
1√
2
(β1 + iβ2) , β− =

1√
2
(β1 − iβ2) ,
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we can transform the previous equation to the form

[β3∂3 + β4∂4 + M ] Ψ0+

+
1√
2

[

e+iφβ−(
∂

∂r
+

i

r

∂

∂φ
+ B0r) + e−iφβ+(

∂

∂r
− i

r

∂

∂φ
− B0r)

]

Ψ++

+
1√
2

[

e+iφβ−(
∂

∂r
+

i

r

∂

∂φ
+ B0r) + e−iφβ+(

∂

∂r
− i

r

∂

∂φ
− B0r)

]

Ψ− = 0 .

By making use of the projective operators

P± =
1

2
[β1β1 − 2β1β1β2β2 ± i(β1β2 − β2β1)],

and the commutation relations for DKP-matrices, we prove the identities

β−P+ = β+P− = 0; so the above equation is written simpler

[β3∂3 + β4∂4 + M ] Ψ0+

+ 1√
2
e−iφβ+( ∂

∂r
− i

r
∂
∂φ

− B0r)Ψ+ + 1√
2
e+iφβ−( ∂

∂r
+ i

r
∂
∂φ

+ B0r)Ψ− = 0 .

(5)

Now, we act on (3) by 1 − P0 = P+ + P−; this gives

(1 − P0)β1

(

cosφ ∂
∂r

− sin φ
r

∂
∂φ

+ iB0r sinφ
)

Ψ+

+(1− P0)β2

(

sinφ ∂
∂r + cosφ

r
∂
∂φ − iB0r cos φ

)

Ψ+

+ (β3∂3 + β4∂4 + ΓPY + M) (Ψ+ + Ψ−) = 0 .

By using the identities (1−P0)β1 = β1P0 and (1−P0)β2 = β2P0, we transform

this equation to

β1(cosφ ∂
∂r

− sin φ
r

∂
∂φ

)Ψ0 + iB0r sin φβ1Ψ0+

+β2(sinφ ∂
∂r

+ cosφ
r

∂
∂φ

)Ψ0 − iB0r cosφβ2Ψ0+

+ (β3∂3 + β4∂4 + ΓPY + M) (Ψ+ + Ψ−) = 0 ,

from which follows that

1√
2

[

e−iφβ+( ∂
∂r − i

r − B0r) + e+iφβ−( ∂
∂r + i

r + B0r)
]

Ψ0+

+ (β3∂3 + β4∂4 + ΓPY + M) (Ψ+ + Ψ−) = 0 .
(6)
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Let us act now on (6) by 1
2 (1 + Y ). Because

1

2
(1+Y )P+ = P+,

1

2
(1+Y )P− = 0, Y β− = β−P0, Y β+ = −β+P0,

the above equation simplifies to

(β3∂3 + β4∂4 + ΓPY + M) Ψ+ +
1√
2
e+iφβ−(

∂

∂r
+

i

r
+ B0r)Ψ0 = 0 . (7)

Similarly, by multiplying (6) by 1
2(1−Y ) and taking into account the identities

1

2
(1−Y )P+ = 0,

1

2
(1−Y )P− = P−, Y β− = β−P0, Y β+ = −β+P0,

we derive

(β3∂3 + β4∂4 + ΓPY + M) Ψ− +
1√
2
e−iφβ+(

∂

∂r
− i

r
− B0r)Ψ0 = 0 . (8)

Now, by considering the relations

Y P+ =
1

2
(Y 3 + Y 2) =

1

2
(1 + Y 2) = P+, Y P− =

1

2
(Y 3 − Y 2) =

1

2
(1 − Y 2) = −P− ,

we transform (5), (7) and (8) to the form

[β3∂3 + β4∂4 + M ] Ψ0+

+
1√
2
e−iφβ+(

∂

∂r
− i

r

∂

∂φ
−B0r)Ψ++

1√
2
e+iφβ−(

∂

∂r
+

i

r

∂

∂φ
+B0r)Ψ− = 0 ,

(β3∂3 + β4∂4 + ΓP + M) Ψ+ +
1√
2
e+iφβ−(

∂

∂r
+

i

r
+ B0r)Ψ0 = 0 ,

(β3∂3 + β4∂4 − ΓP + M)Ψ− +
1√
2
e−iφβ+(

∂

∂r
− i

r
− B0r)Ψ0 = 0 . (9)

To separate the variables, we search for three components of the wave func-

tion in the form

Ψ0 = eip4x4eip3x3eimφf0(r) , Ψ± = eip4x4eip3x3ei(m±1)φf+(r) .

The resulting from (9) radial equations are written in symbolic form as

(ip3β3 + ip4β4 + M) f0+
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+
1√
2
β+(

d

dr
+

m + 1

r
− B0r)f+ +

1√
2
β−(

d

dr
− m − 1

r
+ B0r)f− = 0 ,

(ip3β3 + ip4β4 + ΓP + M) f+ +
1√
2
β−(

d

dr
− m

r
+ B0r)f0 = 0 ,

(ip3β3 + ip4β4 − ΓP + M) f− +
1√
2
β+(

d

dr
+

m

r
− B0r)f0 = 0 . (10)

3. The Radial System

By using the notations

âm =
1√
2
(+

d

dr
+

m − B0r2

r
), b̂m =

1√
2
(− d

dr
+

m − B0r2

r
), ip3β3 + ip4β4 = ip̂ ,

the equations (10) are written shorter

(ip̂ + M) f0 + β+âm+1f+ − β−b̂m−1f− = 0 , (11)

(ip̂ + ΓP + M) f+ − β−b̂mf0 = 0 , (12)

(ip̂− ΓP + M) f− + β+âmf0 = 0 .

We further act on (11) by the operator

1

M + Γ
(M + ΓP̄ ), where P̄ = 1− P .

This yields

[

1

M + Γ
(M + ΓP̄ )ip̂ +

1

M + Γ
(M + ΓP̄ )(M + ΓP )

]

f+−

− 1

M + Γ
(M + ΓP̄ )β−b̂mf0 = 0 .

We note the relation

(M + ΓP̄ )(M + ΓP )

M + Γ
=

M2 + MΓP + MΓP̄ + Γ2P̄P

M + Γ
=

M2 + MΓ

M + Γ
= M ,

which is valid due to the identities P + P̄ = 1, P P̄ = P̄ P = 0 . We introduce

the notations:
M + ΓP̄

M + Γ
ip̂ = A ,

M + ΓP̄

M + Γ
β− = β′

− .
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Then the above equation transforms to

(A + M)f+ − β′
−b̂mf0 = 0 .

Similarly, we act on (12) by the operator

1

M − Γ
(M − ΓP̄ ), P̄ = 1 − P ,

which yields
[

1

M − Γ
(M − ΓP̄ )ip̂ +

1

M − Γ
(M − ΓP̄ )(M − ΓP )

]

f−+

+
1

M − Γ
(M − ΓP̄ )β+âmf0 = 0 .

Considering the identities

(M − ΓP̄ )(M − ΓP )

M − Γ
=

M2 − MΓP − MΓP̄ + Γ2P̄P

M − Γ
=

M2 − MΓ

M − Γ
= M

and the notations

(M − ΓP̄ )

M − Γ
ip̂ = C ,

M − ΓP̄

M − Γ
β+ = β′

+ ,

the above equation becomes

(C + M)f− + β′
+âmf0 = 0 .

Thus, the radial system can be written as

(ip̂ + M) f0 + β+âm+1f+ − β−b̂m−1f− = 0 ,

(A + M)f+ − β′
−b̂mf0 = 0 ,

(C + M)f− + β′
+âmf0 = 0 .

To proceed with these equations, we introduce the matrices3 with the prop-

erties

(ip̂ + M)(ip̂ + M) = p2 + M2,

(A + M)(A + M) = p2 + M2,

(C + M)(C + M) = p2 + M2 . (13)

3We take in the account that p2 = p2
3 + p2

4
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In fact these formulas determine the inverse matrices to within numerical factors

(p2+M2)−1. Then the system of radial equations can be rewritten alternatively

(ip̂ + M)(p2 + M2)f0 + β+âm+1(p
2 + M2)f+ − β−b̂m−1(p

2 + M2)f− = 0 ,

(p2 + M2)f+ − (A + M)β′
−b̂mf0 = 0 ,

(p2 + M2)f− + (C + M)β′
+âmf0 = 0 .

(14)

The first equation in (14), with the help of the other two ones, transforms into

an equation on the component f0(r):

(ip̂ + M)(p2 + M2)f0 +

+β+âm+1(A + M)β′
−b̂mf0 + β−b̂m−1(C + M)β′

+âmf0 = 0 ; (15)

while the two remaining ones do not change

(p2 + M2)f+ − (A + M)β′
−b̂mf0 = 0 ,

(p2 + M2)f− + (C + M)β′
+âmf0 = 0 .

(16)

In fact, the equations (16) mean that it suffices to solve (15) with respect to f0;

the two other components f+ and f− can be calculated by means of equations

(16).

To proceed further, we need to know the explicit form of the inverse opera-

tors (13). To solve this task, we first establish the minimal polynomials for the

relevant matrices. The minimal polynomial for (ip̂) is [3]

ip̂ [(ip̂)2 + p2] = 0 . (17)

We further consider the operator A2:

A2 =
1

(M + Γ)2
(iMp̂ + iΓP̄ p̂)(iMp̂ + iΓP̄ p̂) =

=
1

(M + Γ)2
[−M2p̂ 2 − MΓp̂P̄ p̂ − MΓP̄ p̂2 − Γ2P̄ p̂P̄ p̂] .

Due to the identities

βµ = Pβµ + βµP = P̄βµ + βµP̄ , βµP = Pβµ, P̄βµ = βµP̄ ,
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PβµP = P̄βµP̄ = 0, βµβνP = Pβµβν , βµβνP̄ = P̄ βµβν,

P + P̄ = 1, P P̄ = P̄ P = 0,

we find

A2 =
1

(M + Γ)2
(−M2p̂2 − MΓp̂2) = − Mp̂2

M + Γ
.

Thus, we get the minimal polynomial for A

A3 = − M

(M + Γ)2
(M+ΓP̄ )(ip̂)p̂2=− Mp2

(M + Γ)

(M + ΓP̄ )

M + Γ
(ip̂)=− Mp2

M + Γ
A .

Similarly, we find

C3 = − Mp̂2

M − Γ
C .

Therefore, the needed inverse operators must be quadratic with respect to

the relevant matrices. They are given by the formulas:

(M + ip̂) = 1
M

[

(ip̂)2 − M(ip̂) + (p2 + M2)
]

,

(A + M) = p2+M2

M

[

1 − M+Γ
p2+M2+MΓ

A + M+Γ
M (p2+M2+MΓ)

A2
]

,

(C + M) = p2+M2

M

[

1 − M−Γ
p2+M2−MΓ

C + M−Γ
M (p2+M2−MΓ)

C2
]

.

We need an explicit form for the powers of ip̂:

ip̂ = i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 −p3 0 p4 0 0

0 0 0 0 p3 0 0 0 p4 0
0 0 0 0 0 0 0 0 0 p4

0 0 0 0 0 0 0 0 0 −p3

0 p3 0 0 0 0 0 0 0 0

−p3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

p4 0 0 0 0 0 0 0 0 0
0 p4 0 0 0 0 0 0 0 0

0 0 p4 −p3 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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(ip̂)2 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p2 0 0 0 0 0 0 0 0 0
0 p2 0 0 0 0 0 0 0 0
0 0 p2

4 −p3p4 0 0 0 0 0 0
0 0 −p3p4 p2

3
0 0 0 0 0 0

0 0 0 0 p2

3
0 0 0 p3p4 0

0 0 0 0 0 p2
3 0 −p3p4 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −p3p4 0 p2

4 0 0
0 0 0 0 p3p4 0 0 0 p2

4 0
0 0 0 0 0 0 0 0 0 p2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(ip̂)2 + p2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 p2

3 p3p4 0 0 0 0 0 0
0 0 p3p4 p2

4 0 0 0 0 0 0
0 0 0 0 p2

4
0 0 0 −p3p4 0

0 0 0 0 0 p2

4
0 p3p4 0 0

0 0 0 0 0 0 p2 0 0 0
0 0 0 0 0 p3p4 0 p2

3 0 0
0 0 0 0 −p3p4 0 0 0 p2

3 0
0 0 0 0 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

;

we may prove the validness of the identity

ip̂[(ip̂)2 + p2] =

i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 −p3 0 p4 0 0

0 0 0 0 p3 0 0 0 p4 0
0 0 0 0 0 0 0 0 0 p4

0 0 0 0 0 0 0 0 0 −p3

0 p3 0 0 0 0 0 0 0 0

−p3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

p4 0 0 0 0 0 0 0 0 0
0 p4 0 0 0 0 0 0 0 0
0 0 p4 −p3 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,×
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×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 p2
3 p3p4 0 0 0 0 0 0

0 0 p3p4 p2
4 0 0 0 0 0 0

0 0 0 0 p2
4 0 0 0 −p3p4 0

0 0 0 0 0 p2
4 0 p3p4 0 0

0 0 0 0 0 0 p2 0 0 0

0 0 0 0 0 p3p4 0 p2
3 0 0

0 0 0 0 −p3p4 0 0 0 p2
3 0

0 0 0 0 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≡ 0 .

Let us turn back to equation for f0, rewritten in the form

(p2 + M2)2f0 + + (M + ip̂)β+ âm+1(A + M)β′
− b̂mf0+

+(M + ip̂)β− b̂m−1(C + M)β′
+ âmf0 = 0 .

Taking into account the explicit form for inverse operators, we get

(p2 + M2)f0 + 1
M2

[

(ip̂)2 − M(ip̂) + (p2 + M2)
]

β+ âm+1×

×
[

1 − M+Γ
p2+M2+MΓ

A + M+Γ
M (p2+M2+MΓ)

A2
]

β′
− b̂mf0+

+ 1
M2

[

(ip̂)2 − M(ip̂) + (p2 + M2)
]

β− b̂m−1×

×
[

1 − M−Γ
p2+M2−MΓ

C + M−Γ
M (p2+M2−MΓ)

C2
]

β′
+ âmf0 = 0 .

Now, by considering the formulas

A = M+ΓP̄
M+Γ ip̂ , A2 = − Mp̂2

M+Γ ,

C = M−ΓP̄
M−Γ ip̂ , C2 = − Mp̂2

M−Γ ,

β′
− = M+ΓP̄

M+Γ β− , β′
+ = M−ΓP̄

M−Γ β+ ,

we transform the above equation into following one

(p2 + M2)f0 + 1
M2

[

(ip̂)2 − M(ip̂) + (p2 + M2)
]

β+ ×

×
[

1 − M+ΓP̄
p2+M2+MΓ

ip̂ + (ip̂)2

p2+M2+MΓ

]

M+ΓP̄
M+Γ β− âm+1b̂mf0+

+ 1
M2

[

(ip̂)2 − M(ip̂) + (p2 + M2)
]

β−×

×
[

1 − M−ΓP̄
p2+M2−MΓ

ip̂ + (ip̂)2

p2+M2−MΓ

]

M−ΓP̄
M−Γ β+ b̂m−1âmf0 = 0 .
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After some manipulation with the use of identity p̂β+p̂ = p̂β−p̂ = 0, this

equation can be presented differently

{ (p2 + M2) + âm+1 b̂m
1

M2(p2+M2+MΓ)
1

M+Γ×

×[ (p2 + M2 + MΓ)(ip̂)2β+ − M(p2 + M2 + MΓ)ip̂β++

+(p2 + M2)(p2 + M2 + MΓ)β+ − (p2 + M2)β+ip̂(M + ΓP )+

+(p2 + M2)β+(ip̂)2] (M + ΓP̄ )β− + b̂m−1âm
1

M2(p2+M2−MΓ)
1

M−Γ×

×[ (p2 + M2 − MΓ)(ip̂)2β− − M(p2 + M2 − MΓ)ip̂β−+

+(p2 + M2)(p2 + M2 − MΓ)β− − (p2 + M2)β−ip̂(M − ΓP )+

+(p2 + M2)β−(ip̂)2] (M − ΓP̄ )β+ }f0 = 0.

Now we take into account the explicit form of f0, ip̂, and matrices β+, β−, P̄ .

Then we obtain

(p2 + M2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
0

f3

f4

0

0
f12

0
0

f34

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ âm+1b̂m
1

M2(p2 + M2 + MΓ)

1

M + Γ
×

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(p2 + M2)(p2 + M2 + MΓ)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0

(M + Γ)f3

(M + Γ)f4

0
0

Mf12

0
0
0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

− iM(M + Γ)(p2 + M2 + MΓ)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0
0
0
0
0
0
0
0

(p4f3 − p3f4)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

−
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−(M + Γ)(p2 + M2 + MΓ)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0

p4(p4f3 − p3f4)
−p3(p4f3 − p3f4)

0
0
0
0
0
0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

− (p2 + M2)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0

p3(M + Γ)(p3f3 + p4f4)
p4(M + Γ)(p3f3 + p4f4)

0
0

p2Mf12

0
0
0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

+

+M (M + Γ)(p2 + M2)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0

p3f12

p4f12

0
0

−(p3f3 + p4f4)
0
0
0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

+ b̂m−1âm
1

M2(p2 + M2 − MΓ)

1

M − Γ
×

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(p2 + M2)(p2 + M2 − MΓ)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0

(M − Γ)f3

(M − Γ)f4

0
0

Mf12

0
0
0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

− iM(M − Γ)(p2 + M2 − MΓ)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0
0
0
0
0
0
0
0

(p4f3 − p3f4)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

−

−(M − Γ)(p2 + M2 − MΓ)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0

p4(p4f3 − p3f4)
−p3(p4f3 − p3f4)

0
0
0
0
0
0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

− (p2 + M2)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0

p3(M − Γ)(p3f3 + p4f4)
p4(M − Γ)(p3f3 + p4f4)

0
0

p2Mf12

0
0
0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

−

−M(M − Γ)(p2 + M2)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0
0

p3f12

p4f12

0
0

−(p3f3 + p4f4)
0
0
0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

= 0 .
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From these relations we derive four equations:

(p2 + M2)f3 + âm+1 b̂m

1

M2(p2 + M2 + MΓ)

1

M + Γ
×

{(p2 + M2)(p2 + M2 + MΓ)(M + Γ)f3−
−p4(M + Γ)(p2 + M2 + MΓ)(p4f3 − p3f4)−

−p3(p
2 + M2)(M + Γ)(p3f3 + p4f4) + p3M(M + Γ)(p2 + M2)f12}+

+b̂m−1âm
1

M2(p2 + M2 − MΓ)

1

M − Γ
×

{ (p2 + M2)(p2 + M2 − MΓ)(M − Γ)f3−
−p4(M − Γ)(p2 + M2 − MΓ)(p4f3 − p3f4)−

−p3(p
2 + M2)(M − Γ)(p3f3 + p4f4) − p3M(M − Γ)(p2 + M2)f12} = 0 ,

(18)

(p2 + M2)f4 + âm+1 b̂m
1

M2(p2 + M2 + MΓ)

1

M + Γ
×

{ (p2 + M2)(p2 + M2 + MΓ)(M + Γ)f4+

+p3(M + Γ)(p2 + M2 + MΓ)(p4f3 − p3f4)−
−p4(p

2 + M2)(M + Γ)(p3f3 + p4f4) + p4M(M + Γ)(p2 + M2)f12}+

+b̂m−1âm
1

M2(p2 + M2 − MΓ)

1

M − Γ
×

{(p2 + M2)(p2 + M2 − MΓ)(M − Γ)f4+

+p3(M − Γ)(p2 + M2 − MΓ)(p4f3 − p3f4)−
−p4(p

2 + M2)(M − Γ)(p3f3 + p4f4)−
−p4M(M − Γ)(p2 + M2)f12} = 0 ,

(19)

(p2 + M2)f12 + âm+1b̂m
1

M2(p2 + M2 + MΓ)

1

M + Γ
×
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{M(p2 + M2)(p2 + M2 + MΓ)f12 − M(p2 + M2)p2f12−
−M(M + Γ)(p2 + M2)(p3f3 + p4f4)}+

+b̂m−1âm
1

M2(p2 + M2 − MΓ)

1

M − Γ
×

{M(p2 + M2)(p2 + M2 − MΓ)f12 − M(p2 + M2)p2f12+

+M(M − Γ)(p2 + M2)(p4f3 + p3f4)} = 0 ,

(20)

(p2 + M2)f34+

+âm+1 b̂m

1

M2(p2 + M2 + MΓ)

1

M + Γ
{−iM(p2 + M2 + MΓ)(M + Γ)(p4f3 − p3f4)}+

+b̂m−1âm

1

M2(p2 + M2 − MΓ)

1

M − Γ
{−iM(p2+M2−MΓ)(M−Γ)(p4f3−p3f4)} = 0 ,

(p2 + M2)f34 −
i

M
(âm+1b̂m + b̂m−1âm)(p4f3 − p3f4) = 0 . (21)

The equations (18) and (19) may be simplified to

(p2 + M2)f3 +
âm+1b̂m

M2
{(p2 + M2)f3 − p4(p4f3 − p3f4)−

− (p2 + M2)

p2 + M2 + MΓ
p3(p3f3 + p4f4) +

M(p2 + M2)

p2 + M2 + MΓ
p3f12}+

+
b̂m−1âm

M2
{ (p2 + M2)f3 − p4(p4f3 − p3f4)−

− (p2 + M2)

p2 + M2 − MΓ
p3(p3f3 + p4f4) −

M(p2 + M2)

p2 + M2 − MΓ
p3f12} = 0 ,

(p2 + M2)f4 +
âm+1 b̂m

M2
{ (p2 + M2)f4 + p3(p4f3 − p3f4)−

− (p2 + M2)

p2 + M2 + MΓ
p4(p3f3 + p4f4) +

M(p2 + M2)

p2 + M2 + MΓ
p4f12}+

+
b̂m−1âm

M2
{(p2 + M2)f4 + p3(p4f3 − p3f4)−
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− (p2 + M2)

p2 + M2 − MΓ
p4(p3f3 + p4f4) −

M(p2 + M2)

p2 + M2 − MΓ
p4f12} = 0 .

By multiplying the first equation by p4, and the second one by −p3, and then

summing the two results, we find

(p2 + M2)(p4f3 − p3f4)+

+
âm+1 b̂m

M2
[(p2 + M2)(p4f3 − p3f4) − p2(p4f3 − p3f4)]+

+
b̂m−1âm

M2
[(p2 + M2)(p4f3 − p3f4) − p2(p4f3 − p3f4)] = 0

or
[

âm+1 b̂m + b̂m−1âm + p2 + M2
]

(p4f3 − p3f4) = 0 .

By taking into consideration (21):

(âm+1b̂m + b̂m−1âm)(p4f3 − p3f4) = −iM(p2 + M2)f34 .

we obtain

f34 = − i

M
(p4f3 − p3f4)

We further consider (20), which simplifies to te form

(p2 + M2)f12 + âm+1 b̂m
(p2 + M2)

M(p2 + M2 + MΓ)
{Mf12 − (p3f3 + p4f4)}+

+b̂m−1âm
(p2 + M2)

M(p2 + M2 − MΓ)
{Mf12 + (p3f3 + p4f4)} = 0 ,

or

f12 +
âm+1b̂m

M (p2+M2+MΓ){Mf12 − (p3f3 + p4f4)}+

+
b̂m−1âm

M (p2+M2−MΓ)
{Mf12 + (p3f3 + p4f4)} = 0 ,

whence after elementary transformation we get

[

(âm+1b̂m + b̂m−1âm) +
(p2+M2)2−M2Γ2

p2+M2 + 2MΓB0
p2+M2

]

f12+

+
[

Γ
p2+M2 (âm+1b̂m + b̂m−1âm) + 2B0

M

]

(p3f3 + p4f4) = 0 ;
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where the following identity is used:

âm+1 b̂m − b̂m−1âm = −2B0 .

Now, we turn again to (18) and (19):

(p2 + M2)f3 +
âm+1b̂m

M2
{(p2 + M2)f3 − p4(p4f3 − p3f4)−

− (p2 + M2)

p2 + M2 + MΓ
p3(p3f3 + p4f4) +

M(p2 + M2)

p2 + M2 + MΓ
p3f12}+

+
b̂m−1âm

M2
{ (p2 + M2)f3 − p4(p4f3 − p3f4)−

− (p2 + M2)

p2 + M2 − MΓ
p3(p3f3 + p4f4) −

M(p2 + M2)

p2 + M2 − MΓ
p3f12} = 0 ,

(p2 + M2)f4 +
âm+1 b̂m

M2
{ (p2 + M2)f4 + p3(p4f3 − p3f4)−

− (p2 + M2)

p2 + M2 + MΓ
p4(p3f3 + p4f4) +

M(p2 + M2)

p2 + M2 + MΓ
p4f12}+

+
b̂m−1âm

M2
{(p2 + M2)f4 + p3(p4f3 − p3f4)−

− (p2 + M2)

p2 + M2 − MΓ
p4(p3f3 + p4f4) −

M(p2 + M2)

p2 + M2 − MΓ
p4f12} = 0 ,

By multiplying the first relation by p3, and the second one by p4, and summing

the results, we find

(p3f3 + p4f4) + âm+1b̂m
1

M(p2 +2 +MΓ)
[(M + Γ)(p3f3 + p4f4) + p2f12]+

+b̂m−1âm
1

M(p2 + M2 − MΓ)
[(M − Γ)(p3f3 + p4f4)]− p2f12] = 0 .

Thus, we have found two equations for (p3f3 + p4f4) and f12:

h

(âm+1b̂m + b̂m−1âm) +
(p2+M2)2−M2Γ2

p2+M2 + 2MΓB0

p2+M2

i

f12+

+
h

Γ
p2+M2 (âm+1 b̂m + b̂m−1âm) + 2B0

M

i

(p3f3 + p4f4) = 0 ;

{(p2 + M2)2 − M2Γ2}(p3f3 + p4f4) + (p2 + M2 − Γ2)(âm+1b̂m + b̂m−1âm)(p3f3 + p4f4)−

− 2B0Γp2

M
(p3f3 + p4f4) − p2

h

Γ(âm+1 b̂m + b̂m−1âm) + 2B0(p2+M2)
M

i

f12 = 0.
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These equations may be reduced to such a form, that the 2-nd order operator

(âm+1b̂m + b̂m−1âm) acts on a single function:

`

2B0

M
− Γ

´

(p3f3 + p4f4) +
h

âm+1 b̂m + b̂m−1âm + p2 + M2 − Γ2 − 2B0Γ
M

i

f12 = 0 ,

h

âm+1 b̂m + b̂m−1âm + p2 + M2
i

(p3f3 + p4f4) +
“

p2Γ − 2B0p2

M

”

f12 = 0 .

Thus, the final form of the equations for the four functions f3, f4, f12, f34

has the following relatively simple structure:

f34 = − i

M
(p4f3 − p3f4) , (22)

[

âm+1b̂m + b̂m−1âm + p2 + M2
]

(p4f3 − p3f4) = 0 , (23)

[

âm+1 b̂m + b̂m−1âm + p2 + M2
]

(p3f3 + p4f4) = −p2(Γ − 2B0

M
)f12 , (24)

[

âm+1 b̂m + b̂m−1âm + p2 + M2
]

f12 =

= Γ
(

Γ − 2B0
M

)

f12 +
(

Γ − 2B0
M

)

(p3f3 + p4f4) .
(25)

The analysis of (22) and (23) can be now clearly done. The second sub-

system (24)–(25) is solved through diagonalizing the mixing matrix.

To this aim, let us introduce the new functions

Φ1 = (p3f3 + p4f4) + λ1f12 , Φ2 = (p3f3 + p4f4) + λ2f12 , (26)

where λ1, λ2 stand for the roots of the equation λ2 − λΓ + p2 = 0:

λ1 =
1

2

(

Γ +
√

Γ2 − 4p2
)

, λ2 =
1

2

(

Γ −
√

Γ2 − 4p2
)

.

So we get two separate equations:

(

âm+1b̂m + b̂m−1âm + p2 + M2 + λ′
1,2

)

Φ1,2 = 0 ,

where λ′
1 = ( 2B0

M − Γ)λ1, and λ′
2 = ( 2B0

M − Γ)λ2.
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4. The Energy Spectra

We note that, explicitly, the radial equations read

(

d2

dr2
+

1

r

d

dr
+ ε2 − M2 − p2

3 − λ′
1,2 −

(m − B0r
2)2

r2

)

Φ1,2 = 0 .

In the variable x = |B0|r2, the equation for Φ1 takes the form

»

4|B0|

„

x
d2

dx2
+

d

dx

«

−
|B0|(m − xB0/|B0|)

2

x
+ ε2 − M2 − p2

3 − λ′
1

–

Φ1 = 0 .

First, let be B0 = −|B0|; then we have

[

x
d2

dx2
+

d

dx
− (m + x)2

4x
+

ε2 − M2 − p2
3 − λ′

1

4|B0|

]

Φ1 = 0 .

With the substitution Φ1 = xAe−CxΦ̄1, A = |m|/2, c = 1
2 , we get

»

x
d2

dx2
+ (|m| + 1 − x)

d

dx
−

„

|m| + m + 1

2
−

ε2 − M2 − p2
3 − λ′

1

4|B0|

«–

Φ̄1 = 0 .

This is a confluent hypergeometric equation; to get polynomial solutions we

must impose the restriction

|m|+ m + 1

2
− ε2 − M2 − p2

3 − λ′
1

4|B0|
= −n ;

whence it follows that

ε2 − M2 − p2
3 − λ′

1 = 2|B0|(m + |m|+ 1 + 2n) .

Hence, the energy spectra are

Φ1,, ε21 − M2 − p2
3 = 2|B0|(m + |m|+ 1 + 2n) + λ′

1,2 .

By using the simplifying notations

2|B0|(m+ |m|+ 1+ 2n) = N , −p2 = ε2 − p2
3 = E > 0 ,

2B0

M
−Γ = x ,

λ′
1 =

x

2
(Γ +

√

Γ2 + 4E), λ′
2 =

x

2
(Γ −

√

Γ2 + 4E).
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the formulas for energy levels read

Φ1, B0 = −|B0|, E − M2 = N + x
2 (Γ +

√
Γ2 + 4E) ,

Φ2, B0 = −|B0|, E − M2 = N + x
2 (Γ −

√
Γ2 + 4E) .

We solve these equations for E:

2E − 2M2 − 2N − xΓ = ±x
√

Γ2 + 4E =⇒

z ≡ 2N + 2M2 + xΓ, E2 − E(z + x2) +
z2 − x2Γ2

4
= 0 ;

and the roots are

E1 =
z + x2

2
+

1

2

√

(z + x2)2 − (z2 − x2Γ2),

E2 =
z + x2

2
− 1

2

√

(z + x2)2 − (z2 − x2Γ2). (27)

To have both E1 and E2 real-valued and positive (such that these refer to phys-

ical energy levels), we require

z2 − x2Γ2 > 0, z + x2 > 0, (z + x2)2 − (z2 − x2Γ2) > 0 .

We consider the first inequality

z2−x2Γ2 = (z−xΓ)(z+xΓ) > 0 =⇒ (2N+2M2)(2N+2M2+2xΓ) > 0 ;

this holds true if we impose the following restriction4:

xΓ > 0 ⇐⇒
(

2|B0|
M

+ Γ

)

Γ < 0 ⇐⇒ −2|B0|
M

< Γ < 0 . (28)

The second inequality

z + x2 = (2N + 2M2) + xΓ + x2 > 0;

is valid due to (28). The third inequality 2zx2 + x4 + x2Γ2 > 0 is valid due to

z = 2N + 2M2 + xΓ, xΓ > 0.

4We remind that B0 = −|B0| < 0.
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Thus, we get one simple restriction on the parameter Γ:

B0 = −|B0|, −2|B0|
M

< Γ < 0 , (29)

which ensures that both spectra are physical (real and positive) for all the values

of quantum numbers. In the case under consideration, B0 = −|B0| < 0, from

(4) it follows

Γ = ±4
−|B0|

M
λ3λ

∗
3 ;

therefore we have the only case when the upper sign is related to Γ < 0.

Similar results can be obtained for the case of the opposed orientation of the

magnetic field, B0 = +|B0|:

Φ1,2, ε21 − M2 − p2
3 = 2|B0|(−m + |m| + 1 + 2n) + λ′

1,2 .

With the similar notation

2|B0|(−m+|m|+1+2n) = N , −p2 = ε2−p2
3 = E > 0 ,

2B0

M
−Γ = x ,

λ′
1 =

x

2
(Γ +

√

Γ2 + 4E), λ′
2 =

x

2
(Γ −

√

Γ2 + 4E),

we formally derive the same formulas for energies:

E1 =
z + x2

2
+

1

2

√

(z + x2)2 − (z2 − x2Γ2) ,

E2 =
z + x2

2
− 1

2

√

(z + x2)2 − (z2 − x2Γ2).

In order to have energy values positive and real-valued, we must impose the

following restrictions

z + x2 > 0, z2 − x2Γ2 > 0, (z + x2)2 − (z2 − x2Γ2) > 0 .

From the inequality

z2−x2Γ2 = (z−xΓ)(z+xΓ) > 0 =⇒ (2N+2M2)(2N+2M2+2xΓ) > 0

we get the main restriction5:

xΓ > 0 ⇐⇒ (−2|B0|
M

+ Γ)Γ > 0 ⇐⇒ Γ < 0 .

5We remind that B0 = +|B0| < 0.
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We note that the possibility of positive values Γ > 0, Γ > 2|B0|/M is ignored,

because in this case the admissible region for Γ does not contain the close to

zero values. The two remaining inequalities are valid as well:

z + x2 = (2N + 2M2) + xΓ + x2 > 0;

2zx2 + x4 + x2Γ2 > 0 (z = 2N + 2M2 + xΓ, xΓ > 0) .

5. Conclusion to Sections 2–4

Let us summarize the main results of the Sections 2–4. Three series of the

energy levels are found; two of them substantially differ from those for spin 1

particles without anomalous magnetic moment.

The formula (27) and its restriction (29) provide us with two series for en-

ergy levels6 in both cases B0 = −|B0|, and B0 = +|B0|:

E1 = z+x2

2 + 1
2

√

(z + x2)2 − (z2 − x2Γ2),

E2 = z+x2

2 − 1
2

√

(z + x2)2 − (z2 − x2Γ2).

To assign to the energies E1 and E2 a physical sense for all the values of the

main quantum number n = 0, 1, 2, ..., one must impose special restrictions –

which are explicitly formulated – on the values of the anomalous magnetic mo-

ment. Without these restrictions, only some part of the energy levels correspond

to bound states.

The third series of the energy levels (see (23)) has the form:

B0 = −|B0| : E3 = ε2 − M2 − p2
3 = 2|B0|( m + |m|+ 1 + 2n) ,

B0 = +|B0| : E3 = ε2 − M2 − p2
3 = 2|B0|(−m + |m|+ 1 + 2n) ;

in these states the anomalous magnetic moment does not manifest itself at all.

6We remember the formal change m =⇒ −m, when inverting the orientation of the magnetic

field
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6. Neutral Spin 1 Particles with Anomalous Magnetic

Moment

The case of a neutral vector boson exhibits a particular interest; now the radial

system for f3, f4, f12, f34 becomes simpler:

f34 = − i

M
(p4f3 − p3f4) , (30)

[

âm+1b̂m + b̂m−1âm + p2 + M2
]

(p4f3 − p3f4) = 0 , (31)
[

âm+1b̂m + b̂m−1âm + p2 + M2
]

(p3f3 + p4f4) = −p2Γf12 , (32)
[

âm+1b̂m + b̂m−1âm + p2 + M2
]

f12 = Γ2f12 + Γ(p3f3 + p4f4) . (33)

Solving (30) and (31) is a trivial task. The system (31)–(33) can be solved

trough the diagonalization of the mixing matrix. Let us introduce the notation

∆ =
1

Γ

[

âm+1b̂m + b̂m−1âm + p2 + M2
]

, (p3f3+p4f4) = Φ1, f12 = Φ2 ;

then (32)–(33) reads in matrix form as follows

∆

˛

˛

˛

˛

Φ1

Φ2

˛

˛

˛

˛

=

˛

˛

˛

˛

0 −p2

1 Γ

˛

˛

˛

˛

˛

˛

˛

˛

Φ1

Φ2

˛

˛

˛

˛

=⇒ ∆ S

˛

˛

˛

˛

Φ1

Φ2

˛

˛

˛

˛

= S

˛

˛

˛

˛

0 −p2

1 Γ

˛

˛

˛

˛

S−1S

˛

˛

˛

˛

Φ1

Φ2

˛

˛

˛

˛

Requiring

S

∣

∣

∣

∣

0 −p2

1 Γ

∣

∣

∣

∣

S−1 =

∣

∣

∣

∣

λ1 0
0 λ2

∣

∣

∣

∣

, S =

∣

∣

∣

∣

s11 s12

s21 s22

∣

∣

∣

∣

;

we derive
∣

∣

∣

∣

s11 s12

s21 s22

∣

∣

∣

∣

∣

∣

∣

∣

0 −p2

1 Γ

∣

∣

∣

∣

=

∣

∣

∣

∣

λ1 0
0 λ2

∣

∣

∣

∣

∣

∣

∣

∣

s11 s12

s21 s22

∣

∣

∣

∣

,

which is equivalent to two sub-systems:
∣

∣

∣

∣

−λ1 1
−p2 (Γ − λ1)

∣

∣

∣

∣

∣

∣

∣

∣

s11

s12

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

−λ2 1
−p2 (Γ − λ2)

∣

∣

∣

∣

∣

∣

∣

∣

s21

s22

∣

∣

∣

∣

= 0

We use solutions of the form

λ1 = 1
2 (Γ +

√

Γ2 − 4p2), s11 = 1, s12 = λ1 ;

λ2 = 1
2 (Γ −

√

Γ2 − 4p2) , s21 = 1, s22 = λ2 .
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Thus, for the functions Φ1 and Φ2, we get the separated equations

(

âm+1b̂m + b̂m−1âm + p2 + M2 − Γλ1,2

)

Φ1,2 = 0 .

In explicit form, these read

ε2 − M2 − p2
3 + Γλ1,2 ≡ D ,

(

d2

dr2
+

1

r

d

dr
+ D − m2

r2

)

Φ1,2 = 0 .

Let us search for solutions of the form Φ = rAeBrf(r); for f(r), we derive

d2f

dr2
+

(

2A + 1

r
+ 2B

)

df

dr
+

(

A2 − m2

r2
+

2AB + B

r
+ B2 + D

)

f = 0 .

By imposing the following restrictions on A, B:

A2 − m2 ≡ 0 =⇒ A = ± | m | ; B2 = −D =⇒ B = ±i
√

D ,

the above equation simplifies to

r
d2f

dr2
+ (2A + 1 + 2Br)

df

dr
+ (2AB + B) f = 0.

If we take the positive case A = + | m |, then the solutions are vanishing near

the point r = 0. Moreover, from physical considerations, we must require the

parameter D be positive, in order to agree with the correspondence principle:

Γ = 0 =⇒ D → D0 = ε2 − M2 − p2
3 > 0 .

Without loss of generality, assume that B = +i
√

D. In the new variable, the

above equation will read as a confluent hypergonetric equation

2Br = −x, x
d2f

dx2
+ (2A + 1 − x)

df

dx
−

(

A +
1

2

)

f = 0

that is

F ′′ + (c − x)F ′ − aF = 0, a = A + 1/2, c = 2A + 1 = 2a,

where

x = −2Br = −2i
√

M2 − p2
3 + Γλ1,2 .
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Thus, for a neutral particle, no bound states exist, and the qualitative manifes-

tation of the anomalous magnetic moment is mainly revealed by appearing of

space scaling of the arguments of the wave functions, in comparison with the

case of particles without the magnetic moment. Formally, we have two sorts of

states depending on the sign of Γ:

λ1,2, x = −2Br = −2i

√

M2 − p2
3 + Γ

1

2
(Γ ±

√

Γ2 − 4p2) ,

There exists a third type of states in which the parameter Γ does not manifest

itself in any way (see (31)):

(

d2

dr2
+

1

r

d

dr
+ ε2 − M2 − p2

3 −
m2

r2

)

(p4f3 − p3f4) = 0 ;

for these states, the solutions depend on the ordinary (non-modified) argument

x:

x = −2Br = −2i
√

M2 − p2
3 .

7. Shamaly–Capri Theory and General Relativity

First, let us show that in Minkowski space, the Shamaly–Capri 20-component

model for the spin 1 particle in absence of external electromagnetic field is re-

duced to ordinary DKP 10-component theory. We start with a free particle wave

equation

( i Γa∂a − m) Ψ(x) = 0 , (34)

where the 20-component wave function includes the tensors Φ, Φa, Φ[ab], Φ(ab),

and transforms by the following representation of the Lorentz group SO(3, 1)

T = (0, 0)⊕ (1/2, 1/2)⊕ (0, 1)⊕ (1, 0)⊕ (1, 1)

and Γa are 20 × 20-matrices

Γa = −i ( λ1 e4,a − λ∗
1 ea,4 +

+λ2 gkn en,[ka] − λ∗
2 gkn e[ka],n − λ3 gkn en,(ka) − λ∗

3 gkn e(ka),n ; (35)
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(∗) stands for complex conjugation, (gab) = diag(+1,−1,−1,−1). In (35)

numerical parameters λi are arbitrary obeying to the following set of restrictions

(see [18]):

λ1λ
∗
1 −

3

2
λ3λ

∗
3 = 0 , λ2λ

∗
2 − λ3λ

∗
3 = 1 . (36)

We determine the explicit form of the matrices Γa by using basic elements of

the relevant matrix algebra eA,B:

(e A,B) D
C = δ A

C gB,D, eA,BeC,D = gB,C eA,D ,

A, B, ... = 0, a, [ab], (ab) ,

where δB
A is the generalized Kronecker symbol. The symbols with upper in-

dexes gA,B are derived from δ A
B with the help of the Minkowski metric tensor.

We use the following Kronecker symbols:

δ
[ab]

[cd] = δa
c δb

d − δa
d δb

c , g[ab],[cd] = gac gbd − gad gbc ;

δ
(ab)

(cd) = δa
c δb

d + δa
d δb

c −
1

2
gab gcd , g(ab),(cd) = gac gbd+gad gbc− 1

2
gab gcd ;

and also the generators Jab for the Lorentz group representation

Jab = (ea,b − eb,a) + gkn(e[ak],[bn] − e[bk],[an]) + gkn(e(ak),(bn) − e(bk),(an)) .

Let us transform now (34) to its tensor form with respect to Φ, Φa, Φ[ab], Φ(ab):

λ1 ∂aΦa = m Φ ,

−λ∗
1 ∂bΦ + λ2 ∂aΦ[ba] − λ3 ∂aΦ(ba) = m Φb ,

λ∗
2 ( ∂bΦa − ∂aΦb ) = m Φ[ba] ,

−λ∗
3 ( ∂bΦa + ∂aΦb − 1

2
gab ∂cΦc ) = m Φ(ab) . (37)

From the first and fourth equations in (37), by considering the relations (36), we

obtain

−λ∗
1 ∂bΦ − λ3 ∂aΦ(ba) =

1

m
λ3λ

∗
3 ∂a(∂aΦb − ∂bΦa)

or

−λ∗
1 ∂bΦ − λ3 ∂aΦ(ba) =

λ3λ
∗
3

λ∗
2

∂aΦ[ab] .
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Then (see (37) and (36)) we get

1

λ∗
2

∂aΦ[ba] = m Φb .

Defining now

Ψa = λ∗
2Φa , Ψ[ab] = Φ[ab] , (38)

we obtain the ordinary Proca tensor equations

∂bΨ[ab] = mΨa , ∂aΨb − ∂bΨa = mΨ[ab] . (39)

The last equation can be represented in DKP matrix form

( i βa∂a − m)Ψ = 0 , Ψ =

∣

∣

∣

∣

Ψa

Ψ[ab]

∣

∣

∣

∣

, βa = −igbc(e
c,[ba] − e[ba],c) . (40)

So, the equations (34) and (40) are equivalent from physical standpoint, because

their solutions must be unambiguously mutually related.

The generalization of (34) to the case of arbitrary curved space-time with

the metric gαβ(x) and any relevant eµ

(a)
(x), may be performed in accordance

with the tetrad method of Tetrode–Weyl–Fock–Ivanenko [19]. Such an equation

has the form

[ iΓµ(∂µ + Bµ) − m ] Ψ = 0 , (41)

or

( iΓa∂(a) +
i

2
ΓaJcdγcda − m ) Ψ = 0 . (42)

We use the notation

Γµ = Γaeµ

(a)
, Bµ =

1

2
Jabeν

(a)∇µe(b)ν ,

∂(a) = eµ

(a)
∂µ , γabc = −(∇βe(a)α)eα

(b)e
β

(c)
;

here ∇µ represents the covariant derivative, while γabc stand for the Ricci rota-

tion coefficients.

Let us show that any two equations of the type (41)

[ iΓµ(∂µ + Bµ)− m ] Ψ = 0 , [ iΓ
′µ(∂µ + B′

µ) − m ] Ψ′ = 0 , (43)
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referring to the respective tetrads related by a local Lorentz transformation

e
′µ

(a)
(x) = L b

a (x)e µ

(b)
(x), are mutually translated to each other by means of

local transformation of the form Ψ′(x) = S(x)Ψ(x):

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ′

Φ′
a

Φ′
[ab]

Φ′
(ab)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 L c

a 0 0

0 0 L c
a L d

b 0
0 0 0 L c

a L d
b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ

Φc

Φ[cd]

Φ(cd)

∣

∣

∣

∣

∣

∣

∣

∣

, (44)

if and only if the following two relations are valid

SΓµS−1 = Γ
′µ , SBµS−1 + S∂µS−1 = B′

µ . (45)

The first one can be rewritten as

SΓae µ

(a)
S−1 = Γbe

′ µ

(b)
=⇒ SΓaS−1 = ΓbL a

b ,

which is a known relation, which ensures the Lorentz invariance of the wave

equation (34) in Special Relativity. To prove (45), in its form

SBαS−1 =
1

2
SJabS−1e β

(a)

(

∇αe(b)β

)

we express the tetrad e(a)α in terms of primed tetrad. This leads to

SBαS−1 =
1

2
(SJabS−1) (L−1) k

a [ (∂α(L−1) l
b gkl + (L−1) l

b e
′β
(k)∇αe′(l)β ] .

By using the explicit form of S (see (44)) and of Jab, we prove

SJabS−1 = JmnL a
mL b

n .

Then we obtain

SBαS−1 =
1

2
JmnL b

n ∂α(Lmb) + B′
α.

We can infer the conclusion provided that

SBµS−1 =
1

2
JmnL b

n ∂µ(Lmb) .
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But the last relationship can by proved by using the known pseudo-orthogonality

condition for Lorentz transformations and the explicit form of S and Jab. Thus,

(43) are mutually related to each other by a local transformation of the type (44).

The general covariant matrix wave equation (42) may be translated to the

tetrad tensor form

λ1 (∂(a) + γba
b) Φa = m Φ ,

−λ∗
1 ∂(r)Φ + λ2 ( ∂(a)Φ[ra] + γ bc

r Φ[bc] + γbc
cΦ[br] ) −

−λ3 ( ∂(a)Φ(ra) + γ dc
r Φ(dc) + γdc

cΦ(dr) ) = m Φr ,

λ∗
2 ( ∂(r)Φs − ∂(s)Φr + γd

rsΦd − γd
srΦd ) = m Φ[rs] ,

−λ∗
3 [ ( ∂(r)Φs + ∂(s)Φr + γ d

r sΦd + γ d
s rΦd) −

− 1

2
grs ( ∂(a)Φa + γad

aΦd ) ] = m Φ(rs) . (46)

Let us eliminate the components, and obtain the equation for the main compo-

nents Φa and Φ[cd]. To this end, from the first and the fourth equation in (46) we

express Φ and Φ(ad) and substitute the results into the second one. Due to the

conditions (36) and the third equation in (46), we get

−λ∗
1 ∂(r)Φ − λ3 [ ∂(a)Φ(ra) + γ da

r Φ(da) + γad
aΦ(dr)] =

= −λ3λ
∗
3

λ∗
2

[ ∂(a)Φ[ra] + γ bc
r Φ[bc] + γbc

cΦ[br] ]−

− 2λ3λ
∗
3

m
[ γb ,(a)

ar Φb + γba
b,(r)Φa −

− γab
r ∂(a)Φb − γ ab

r ∂(a)Φb + γ ab
r γd

baΦd − γab
bγ

c
arΦc ] .

Hence, we obtain

1

λ∗
2

( ∂(a)Φ[ra] + γ bc
r Φ[bc] + γbc

c Φ[br] ) −

− 2λ3λ
∗
3

m
[ γb ,(a)

ar Φb + γba
b,(r) Φa − γab

r ∂(a)Φb − γ ab
r ∂(a)Φb +

+ γ ab
r γd

ba Φd − γab
b γc

ar Φc ] = mΦr . (47)
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It remains to translate the equations (46) and (47) to the variables Ψa and Ψab

according to (38). In the end, we derive the tetrad generalized Proca system:

∂(a)Ψ[ra] + γ bc
r Ψ[bc] + γbc

c Ψ[br] −
− 2λ3λ

∗
3m

−1 [ γb ,(a)
ar Ψb + γba

b,(r) Ψa − γab
r ∂(a)Ψb − γ ab

r ∂(a)Ψb +

+ γ ab
r γd

ba Ψd − γab
b γc

ar Ψc ] = m Ψr , (48)

∂(a)Ψb − ∂(b)Ψa + γd
ab Ψd − γd

ba Ψd = m Ψ[ab] . (49)

In (48), the term proportional to
2λ3λ∗

3
m determines an additional interaction term

for a a generalized vector particle with the gravitational field.

If we take into account the tetrad form of the Riemann and Ricci tensors

through the Ricci rotation coefficients (48) can be written as:

Rabcd = −γabc,(d) + γabd,(c) + γakcγ
k
bd + γabnγn

cd − γakdγ
k
bc − γabnγn

dc ,

R b
r = Rab

ra = − γab
r,(a) + γab

a,(r) + γrnaγ
ban − γa

kaγ
kb
r .

We finally get

∂aΨ[ra]+γ bc
r Ψ[bc]+γbc

cΨ[br] −−
2λ3λ

∗
3

m
[ Rb

rΨb−γab
r ∂(a)Ψb−γ ab

r ∂(a)Ψb ]−mΨr = 0 .

Like in (39), the system (48)-(49) can be represented in matrix DKP form:

{ iβa∂(a) +
i

2
βaJcd

(0)γcda−
λ3λ

∗
3

m
[ (γa

bk−γa
kb) (eb,k−ek,b)∂(a) +Rbk (eb,k+ek,b) ]−m}Ψ = 0 .

It can be readily proved that the tetrad system (46) can be translated to the

generally covariant tensor form7:

λ1 DαΦα = m Φ ,

−λ∗
1 DβΦ + λ2 DαΦ[βα] − λ3 DαΦ(αβ) = m Φβ ,

λ∗
2 (DαΦβ − DβΦα) = m Φ[αβ] ,

−λ∗
3 [ DαΦβ + DβΦα − 1

2
gαβ∇ρΦρ ] = m Φ(αβ) . (50)

The relations between the tetrad and the tensor components are:

Φα = e(a)
α Φa , Φ[αβ] = e(a)

α e
(b)
β Φ[ab] , Φ(αβ) = e(a)

α e
(b)
β Φ(ab) .

7We consider the notation ∇α described by the equality Dα = ∇α − ieAa(x).
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As for (46), the system (50) can be reduced to the minimal form

1
λ∗

2
Dα Φ[βα] +

2λ3λ
∗
3

m [Dα, Dβ]− Φα = m Φβ ,

λ∗
2 (DαΦβ − DβΦα) = m Φ[αβ] .

or, alternatively, to

DαΨ[βα] +
2λ3λ

∗
3

m
[Dα, Dβ]− Ψα = m Ψβ , (51)

DαΨβ − DβΨα = m Ψ[αβ] .

Taking into account that

[Dα, Dβ]− Ψα = (−ieFαβ + Rαβ)Ψα ,

we conclude that the parameter
λ3λ∗

3
m in (51) determines both the anomalous

magnetic moment of the spin 1 particle and the additional interaction term with

non-Euclidean space-time background through the Ricci tensor Rαβ.

Conclusion

By applying the matrix 10-dimensional Duffin–Kemmer-Petiau formalism to

the Shamaly–Capri field, the behavior of a vector particle with anomalous mag-

netic moment is studied in the presence of external uniform magnetic field. The

separation of variables in the wave equation is performed by using projective

operator techniques and the DKP-algebra theory. The problem is reduced to

a system of 2-nd order differential equations for three independent functions,

which are solved in terms of confluent hypergeometric functions. Three series

of the energy levels are found; two of them substantially differ from those for

spin 1 particle without anomalous magnetic moment. To assign to them physical

sense for all the values of the main quantum number n = 0, 1, 2, ... one must

impose special restrictions on a parameter related to the anomalous moment.

Otherwise, the energy levels corresponds only partially of to bound states. The

neutral spin 1 particle is considered as well. In this case no bound states exist

in the system, and the main qualitative manifestation of the anomalous mag-

netic moment consists in the occurrence of space scaling of the arguments of

the wave functions, in comparison with a particle which has no such moment.

Some features of theory of the Shamaly–Capri particle within General Relativ-

ity are given.
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Abstract 

Traditionally, the automotive industry has been the largest employer of 

robots, but their control is inline and programmed to follow planning trajectories. 

In this case, in the department motor’s test of Volkswagen Mexico a semi-

autonomous robot is developed. To date, some critical technical problems must 

be solved in a number of areas, including in dynamics control. Generally, the 

attitude estimation and the measurement of the angular velocity are a 
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requirements for the attitude control. As a result, the computational cost and the 

complexity of the control loop is relatively hight. This chapter deals with the 

implementation of a cheap Micro AHRS (Attitude and Heading Reference 

System) using low-cost inertial sensors. In the present chapter, the technique 

proposed is designed with attitude estimation and the prediction movement via 

the kinematic of a 4GDL robot. With this approach, only the measurements of at 

least two non-collinear directional sensors are needed. Since the control laws are 

highly simple and a model-based observer for angular velocity reconstruction is 

not needed, the proposed new strategy is very suitable for embedded 

implementations. The global convergence of the estimation and prediction 

techniques is proved. Simulation with some robustness tests is performed. 

 

Keywords: estimation, quaternion, prediction of the movement, robot, attitude, 

AHRS 

1. Introduction 

Robots have considerable potential for application in Volkswagen plants. Looking 

at the four major sectors of a vehicle assembly operation, as follow: 

 

1. PRESS. As a VW has installed high-speed pressed with integral part 

handling. 

2. BODY. They are seeking for robots that provide speed, accuracy, more 

payload capacity and are being easy to integrate. 

3. PAINTING. In this area they want to find robots that have the abilities to 

do such things as see and felt. 

 

In the motor test area, the assemblies of all of the instrumentation and wiring 

systems, and the test per se, autonomous robotic and telerobotic systems have 

been suggested. Industrial Robot has been considered for the different test. 

To date, some critical technical problem must be solved in a number of areas, 

including in dynamics and control. A prerequisite is state estimation where the 

states typically are position, velocity and orientation. State estimation is especially 

important where attitude control is needed. With attitude we refer to the robot’s 

orientation relative to the gravity vector, usually described by pitch and roll 

movements. Attitude estimation is usually performed by combining measurements 

from three kinds of sensors: rate gyros, inclinometers and accelerometers. 
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Figure 1. Robot and telerobotic systems. 

The attitude (orientation) of a rigid body can be parameterized by several 

methods: for instance, Euler’s angles, Cardan angles and unit quaternion. The unit 

quaternion is a four parameter representation with one constraint. Therefore, it 

yields the lowest dimensionality possible for a globally non-singular 

representation of the attitude. 

Several approaches have been applied to the attitude estimation problem. 

These estimators fall into three main families. The first one deals with a constraint 

least-square minimization problem proposed firstly by Wahba [1, 2], for finding 

the rotation matrix. 

The second approach is within the framework of the EKF (Extended Kalman 

filter) [3]. Its major feature concerns the ability to fuse signals acquired from 

different sensor types. An excellent survey of these methods is given in Ref. [4]. 

The third approach issues from nonlinear theory, and non linear observers are 

applied to the attitude determination problem [5, 6, 7, 8, 9]. In this approach, the 

convergence of the error to zero is proved in a Lyapunov sense. 

In this chapter, an attitude estimator using quaternion representation is 

studied. Two approaches are jointly used, namely a constraint least-square 

minimization technique and a prediction technique. Thus, no assumptions of the 

weakness (or not) of the accelerations are done. Therefore, the main advantage of 

the approach presented in this chapter compared to others approaches, is that the 

estimated attitude remains valid even in the presence of high accelerations over 

long time periods. 

The chapter is organized as follows. First the algebra in a quaternion-based 

formulation of the orientation of rigid body is given. After, the problem statement 

and the kinematic model is formulated. Then attitude’s estimation and prediction 

via quaternion is presented. Finally, some simulation results are given. 
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2. Mathematical Background 

As mentioned in the introduction, the attitude of a rigid body can be represented 

by a unit quaternion, consisting of a unit vector 𝑒 known as the Euler axis, and a 

rotation angle β about this axis. The quaternion 𝑞is then defined as follows: 

 

 𝑞 = (
𝑐𝑜𝑠

𝛽

2

𝑒𝑠𝑖𝑛
𝛽

2

) = (
𝑞0

�⃗� )  ∈  ℍ (1) 

 

where 

 

 ℍ =  
{𝑞 ǀ 𝑞0

2 + �⃗�𝑇�⃗� = 1 

𝑞 = [𝑞0�⃗�𝑇]𝑇, 𝑞0 ∈  ℝ, �⃗�  ∈  ℝ3}
 (2) 

 

�⃗� = [𝑞1𝑞2 𝑞3]𝑇 and 𝑞0 are known as the vector and scalar partis of the quaternion 

recpectively. In attitude control aplications, the unit quaternion represents the 

rotation from an inertial coordinate system 𝑁(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) located at some point in 

the space (for instance, the earth NED frame), to the body coordinate system 

𝐵(𝑥𝑏, 𝑦𝑏 , 𝑧𝑏) located on the center of mass of a rigid body. 

If 𝑟 is a vector expressed in 𝑁, then its coordinates in 𝑩 are expressed by: 

 

 𝑏 = �̅� ⊗ 𝑟 ⊗ 𝑞 (3) 

 

where 𝑏 = [0 �⃗⃗�𝑇]
𝑇
 and 𝑟 = [0 𝑟𝑇]𝑇 are the quaternions associated to vectors �⃗⃗� 

and 𝑟 respectively. ⊗  denotes the quaternion multiplication and �̅� is the 

conjugate quaternion multiplication of q, defined as: 

 

 �̅� = [𝑞0−�⃗�𝑇]𝑇 (4) 

 

The rotation matrix C(q) corresponding to the attitude quaternion q, is 

computed as: 

 

 𝐶(𝑞) = (𝑞0
2 − �⃗�𝑇�⃗�)𝐼3 + 2(�⃗��⃗�𝑇 − 𝑞0[�⃗�𝑥]) (5) 

 

where 𝐼3 is the identity matrix and [𝜉𝑥]is a skew symmetric tensor associated with 

the axis vector 𝜉: 
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 [𝜉𝑥] =  (

𝜉1

𝜉2

𝜉3

)

𝑥

=  (

0 −𝜉3 𝜉2

𝜉3 0 −𝜉1

−𝜉2 𝜉1 0
) (6) 

 

Thus, the coordinate of vector 𝑟 expressed in the B frame is given by: 

 

 �⃗⃗� = 𝐶(𝑞)𝑟 (7) 

 

The quaternion attitude error used to quantify the mismatch between two 

attitudes 𝑞1 and 𝑞2 is computed by: 

 

 𝑞𝑒 =  𝑞1  ⊗ �̅�2 (8) 

 

The reason that quaternions found applications in computer graphics, 

computer vision, robotics, navigation, molecular dynamics, flight dynamics, and 

orbital mechanics, is their two distinct geometric interpretations. 

A. They can represent rotations in 3 and 4 space (and are called Rotation 

quaternions in this case). 

B. They can represent an orientation (rotation relative to a reference position) 

in 3D space, they are called orientation quaternions or attitude quaternions. 

Algorithmically they require a less number of operations to implement rotations 

(when compared with the multiplying a vector with a rotation matrix that involves 

Euler angles). Any rotation of a 4D vector can be represented by the product of 

two Quaternions with that vector. Two excellent references describing these 

details from an application perspective are: 

Note 

Each of the algebras of complex numbers, Quaternions, Octonions, Sedenions, 

etc. (or 2n-ons) are generalizations algebras of the previous in the list and they 

contain all the previous ones as sub-algebras, while all are special cases of 

Cayley-Dixon Algerbas or Hyperlinear Algebras as some are calling them. 

Although Quaternions are attributed to Hamilton (1843) it was C.F. Gauss 

who first discovered them earlier (1819) but published his work in 1900. Also, in 

1864 J.C. Maxwell in his first paper (before the book) on Electromagnetism 

(James Clerk Maxwell, “A Dynamical Theory of the Electromagnetic Field” 

(Royal Society Transactions, Vol. CLV, 1865, p 459) formulated 
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Electromagnetism in terms of 20 quaternion equations that also appeared in the 

1873 edition of “A Treatise on Electricity and Magnetism” aka The BOOK. 

3. Problem Statement 

Good models of industrial robots are necessary in a variety of applications, such 

as mechanical design, performance simulation, control, diagnosis, supervision and 

offline programming. This motivates the need for good modelling tools. In the 

first part of this book the foreword kinematic modelling of serial industrial robots 

is studied, the focus is on modelling the foreword kinematics. The main interest is 

the principal structure, and issues regarding efficiently implementation have not 

been considered. The work is based on homogeneous transformations using the 

Denavit-Hartenberg (D-H) representation, which gives coordinate frames adapted 

to the robot structure and a quaternion approach in the attitude estimation 

modelling is presented. 

Attitude is a term used to describe the orientation of a vehicle in three-

dimensional space. The attitude of the articulated arm can be described using 

several different parameters (e.g., quaternions, Euler angles, direction cosine 

matrices, etc.) that have been described in some detail in earlier chapters of this 

book. Robotic attitude determination systems provide a means for measuring or 

estimating these parameters that describe the end effector and the robot’s 

orientation. The outputs of these systems are used for vehicle guidance, 

navigation, and in this case, control and attitude determination. The focus of this 

chapter is attitude determination systems for small robots, which, for the purposes 

here, are defined to be robot with a total mass between 150 kg and 300 kg and fit 

in a volume envelope roughly 50 cm × 50 cm × 60 cm in dimension. Designing 

attitude determination systems for these small articulated robots represents a 

challenging and specialized task; sensors and their processing must also be made 

to fit within the limited size, weight, and mass specifications while still 

performing to high accuracies for many applications. This chapter highlights these 

challenges (particularly for a robot like showed in Figure 3) and discusses current 

and future developments aimed at addressing them. 

In the case of the attitude estimation, one seeks to estimate the attitude and 

accelerations of a rigid body. From now on, it is assumed that the system (AHRS) 

is equipped with a triaxis accelerometer, three magnetometery and three rate gyros 

mounted orthogonally. 

In this chapter, we describe the body’s kinematic of the model. In order to 

estimate the arm’s robot position with respect to an inertial frame, a module 
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containing three rate gyros, three accelerometer and three magnetometery 

assembled in tri-axis, are positioned in the extreme of the arm’s robot. Thus, the 

attitude for the articulation is estimated. The combination of this information 

jointly to a knowledge a priori of the robot makes possible to obtain information 

on the end effector respect to the base. 

3.1. Inertial Sensors 

Inertial sensors describe a pair of measurement devices used to determine a subset 

of the kinematic state of the body to which they are attached. The sensors are 

accelerometers, magmetometers and gyrometers. Accelerometers measure specific 

force—the algebraic sum of linear acceleration and gravitational acceleration 

normalized by mass. The name “accelerometer” is somewhat of a misnomer, as 

the sensor actually measures force rather than acceleration. However, by proper 

data scaling, a measurement of acceleration can be produced. A triad of 

accelerometers arranged orthogonally will measure the specific force vector of a 

vehicle. Gyrometers (or gyros for short) measures angular rate or integrated rate. 

Integrated rate is sometimes called “incremental angle” or simply “delta theta” 

∆𝜃. Lower cost (and quality) gyros tend to be rate gyros measuring rate, while 

higher end sensors are rate-integrating sensors whose output is ∆𝜃 Similarly, a 

triad of gyros will provide a measurement of the angular velocity vector. 

Normally, a triad of accelerometers and gyros are packaged together to form what 

is called an inertial measurement unit (IMU/AHRS). 

3.2. IMU/AHRS Kinematic Equations 

As opposed to the limited acceleration data from accelerometers, magnetometers 

and gyros can provide continuous useful information for attitude determination. 

The output of the triad of rate gyros is a measurement of the angular velocity 

𝜔𝑏/𝑖
𝑏 . If rate-integrating gyros are used, then the output will be ∆𝜃𝑏/𝑖

𝑏 . The 

subscript b/i indicates that these sensors measure the angular rate of the body 

frame relative to the inertial frame. The superscript indicates that this 

measurement is expressed in ℱ𝑏 Without a loss of generality, the discussion 

below will focus on the use of rate gyros and, thus, 𝑤 = 𝜔𝑏/𝑖
𝑏  as the basic 

measurement processed. This is motivated, in part, by the fact that rate gyros are 

more typical in robotics applications. 
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The equation describing the relation between the quaternion and the body’s 

kinematic is given in introducing the angular variation �⃗⃗⃗� =  [𝑤𝑥𝑤𝑦𝑤𝑧]
𝑇
 from 

this, it follows. 

 

 �̇� =  
1

2
Ω(�⃗⃗⃗�)𝑞(𝑡) =  

1

2
Ξ(𝑞)�⃗⃗⃗�(𝑡) (9) 

 

where Ω(�⃗⃗⃗�) y Ξ(𝑞) are defined as: 

 

 Ω(�⃗⃗⃗�) =  [
−[�⃗⃗⃗�𝑥] … �⃗⃗⃗�

… … … 
−�⃗⃗⃗�𝑇 … 0 

] (10) 

 

 Ξ(𝑞) =  [
𝑞0𝐼3𝑥3 + [�⃗�𝑥]

… .
−�⃗�𝑇

] (11) 

 

The matrix [�⃗⃗⃗�𝑥] and [�⃗�𝑥]are obtained by the cross product issue of 𝑑 × �⃗⃗� =

 [𝑑 ×]𝑏 with [𝑑 ×] ∈ ℝ3𝑥3: 

 

 [𝑑  ×] =  [

0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0
] (12) 

 

The quaternion must be: 

 

 𝑞𝑇𝑞 =  �⃗�𝑇�⃗� + 𝑞0
2 = 1 (13) 

 

In the other hand, the matrix Ξ(𝑞) has the relation: 

 

 Ξ𝑇(𝑞)Ξ(𝑞) =  𝑞𝑇𝑞𝐼3𝑥3 (14) 

 

 Ξ(𝑞)Ξ𝑇(𝑞) =  𝑞𝑇𝑞𝐼4𝑥4 − 𝑞𝑇𝑞 

 

 Ξ𝑇(𝑞)(𝑞) =  03𝑥1 

 

Generally Ξ𝑇(𝑞)𝜆 =  −Ξ𝑇(𝜆)𝑞, for any 𝜆 ∈  ℍ. 

 

 𝐴(𝑞) =  (𝑞0
2 − �⃗�𝑇�⃗�)𝐼3𝑥3 + 2�⃗��⃗�𝑇 − 2𝑞0[�⃗� ×] (15) 
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That is denoted like the orientation matrix 3-D of dimension 3x3. 

4. Robot Configuration 

The robot links form a kinematic chain. When the kinematic chain is open, every 

link is connected to every other link by one and only one chain. If, on the other 

hand, a sequence of the links forms one or more loops, the robot contains closed 

kinematic chains. In Figure 2 example of configurations of robots is showed. 

 

 

 

 

IRB2400 has closed 

kinematic chains 

IRB340 FlexPicker has 

closed kinematic chains 

IRB6600 has an open 

kinematic structure 

Figure 2. Robot configurations found among the ABB robots. 

The robot has a closed kinematic chain due to the so-called parallelogram-

linkage structure, represented by a mechanical coupling between motor, placed on 

the foot of the robot, and the actual link 3. It can also be seen from the figure 

(from the ABB internet web site) that has an open kinematic-chain structure. 

Robots having an open kinematic chain can be divided into the following types, 

based on geometry. The Cartesian robot has three prismatic joints and the links 

are mutually orthogonal, which gives that each degree of mobility corresponds to 

a degree of freedom in the Cartesian space. Changing the first prismatic joint to a 

revolute joint gives a cylindrical geometry, where each degree of mobility 

corresponds to a degree of freedom in cylindrical coordinates. Replacing the first 

two prismatic joints by revolute joints gives a spherical robot, where the degrees 

of freedom are in spherical coordinates, similar to the cases above. SCARA stands 
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for selective compliance assembly robot arm, and a SCARA robot has a 

mechanical structure with high stiffness to vertical load and compliance to 

horizontal load. The anthropomorphic robot has three revolute joints, and has 

similarities to a human arm. The workspace is approximately a portion of a sphere 

and the robot structure can be seen in many industrial applications. The types are 

explained in more detail in Sciavicco and Siciliano (2000) and Spong et al. 

(2006), among others. The work in this thesis is limited to serial robots, that is, 

robots with an open kinematic structure, and the class of parallel robots that can 

be rewritten to this structure using a bilinear transformation. Especially serial 

robots having only revolute joints, so-called anthropomorphic robots, are studied. 

 

 

Figure 3. Virtual robot. 

In this chapter we obtain the attitude from the robot show in Figure 3 with an 

open kinematic structure. 

Using coordinate frames attached to each joint, shown in Figure 3, the 

position and orientation of the robot tool can be defined in the Cartesian 

coordinates Ci, with respect to the base frame R0 of the robot by successive 

coordinate transformations. This results in the relation. 

𝐼𝜀𝑛, 𝑛 = 1: 3, Distance between the center of rotation and the center of attitude 

sensor module. 

𝐼𝑛, 𝑛 = 1: 3, Distance between the position of the attitude sensor module and 

the end of the segment in consideration. 

𝐶𝑛, 𝑛 = 1: 3, is the attitude sensor module. 

The point 0 is supposed to be fixe. 
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Table 1. Coordinate systems 

link 𝜽𝒊 𝒅𝒊 𝒂𝒊 𝜶𝒊 

1 𝜃1 0 𝑎1 
−𝜋

2
 

2 𝜃2 𝑙1 0 0 

3 𝜃3 𝑙2 0 
𝜋

2
 

Table 2. Quaternion-based model 

Quaternion 𝒗𝒆𝒄𝒕𝒐𝒓 

𝑄 = [cos
𝜃1

2
0 0 sin

𝜃1

2
] 𝑉1 

𝑅 = [cos
𝜃2

2
sin

𝜃2

2
0 0] 𝑉2 

𝑅 = [cos
𝜃3

2
sin

𝜃3

2
0 0] 𝑉3 

 

The angular velocity �⃗⃗⃗�𝐶𝐼 is obtained by finite differences from equation (9) at 

the instants k and k-1 (k estimation instant). 

 

 �⃗⃗⃗�𝐶𝐼 = 2Ξ𝑇(𝑞𝐶𝐼)𝑞𝐶𝐼 (16) 

 

According to the robot, the model for foreword kinematics based on the 

convention Denavit-Hartenberg is defined for each one of the coordinate systems 

in Table 1. 

This model can be compared with the quaternion-based model, which is 

Simplified in Table 2, so it is possible to observe that the quaternion-based model 

is significantly more compact, which reduces the number of operations 

significantly. 

4.1. Modeling Sensors 

1) Rate Gyros: The angular velocity  1 2 3

T
   is measured by the rate gyros, 

which are supposed to be orthogonally mounted. The output signal of a rate gyro 

is influenced by various factors, such as bias drift and noise. In the absence of 

rotation, the output signal can be modeled as the sum of a white Gaussian noise 

and of a slowly varying function. Since an integration step is required in order to 

obtain the current attitude quaternion (9), even the smallest variation of the rate 
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gyro measurement will produce a wrong estimation of the attitude. The bias is 

denoted by  , belonging to space 3R . The rate gyro measurements are modeled 

by (Brown y Hwang, 1997): 

 

 
G G       (17) 

 

 
1T       (18) 

 

where G  and are   supposed by Gaussian white noises and 3T I  is a 

diagonal matrix of time constants. In this case, the constant   which has been set 

to 100 s. The bias vector   will be estimated online, using the observer presented 

in the following section. 

2) Accelerometers: Since the 3-axis accelerometer is fixed to the body, the 

measurements are expressed in the body frame B. Thus, the accelerometer output 

can be written as: 

 

  ( )A Ab C q a g     (19) 

 

where  0 0
T

g g  and 
3a R  are the gravity vector and the inertial 

accelerations of the body respectively. Both are expressed in frame N. g = 9:81 

m/sec2 denotes the gravitational constant and 
3

A R   is the vector of noises that 

are supposed to be white Gaussian. 

3) Magnetometers: The magnetic field vector 
Mh  is expressed in the N frame it is 

supposed to be  0
T

M Mx Mzh h h . Since the measurements take place in the 

body frame B, they are given by: 

 

 ( )M M Mb C q h    (20) 

 

where 3

M R   denotes the perturbing magnetic field. This perturbation vector is 

supposed to be modeled by Gaussian white noises. 
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5. Non Linear Attitude Observer 

The attitude nonlinear observer that includes the bias and the error update is given 

by: 

 

 
1

1 ˆˆ ˆ( )
2

Gq q K      
 

 (21) 

 

 1

2
ˆ ˆT K     . (22) 

 

where T has been defined in (18) and Ki; i = 1; 2 are positive constant parameters 

q̂
 is the prediction of the attitude at time t. It this obtained via the integration of 

the kinematics equation (14) using the measured angular velocity G , the bias 

estimate ̂ and eq 
which is the vector part of the quaternion error qe. 

Remember that qe measures the discrepancy between 
q̂

and the pseudo measured 

attitude qps (17). In this chapter, qps is obtained thanks to an appropriate treatment 

of the accelerometer and magnetometer measurements and it will be explained in 

the next section. 

Combining (17), (18), (21) and (22) the error model is expressed as: 

 

 0
01

2 2

T

e

e

e

q
q

q



   

  
              

 (23) 

 

 
1

2T K      (24) 

 

where 
1K     and ˆ    . The system (22)-(23) admits two equilibrium 

points (
0 1eq  , 0eq  , 0  ) and (

0 1eq   , 0eq  , 0  ). This is due to fact 

that quaternions q and -q represent the same attitude. From (1), one obtains: 

 

 
0 1 0eq     

 

  0 1 2 2eq generally n       
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that is, there is only one equilibrium point in the physical 3D space. 

We can observe that the global asymptotically convergence of the error to 

zero ( 0 1eq  , 0eq  , 0  ) and consequently the convergence of q̂ to the real q is 

given by: 

 

 ˆ0G psq q     (25) 

 

where q is the “true” attitude quaternion of the rigid body. Thus, the convergence 

is guaranteed if and only if: 

 

 
0

ˆ1, 0, 0e eq q         (26) 

 

Theorem 1. Consider the equilibrium states of the system (21)-(22) and let 
G  be 

the measured angular velocity. Then, the equilibrium point (
0 1eq  , 0eq  , 0  ) is 

globally asymptotically stable. 

 

Proof. Consider the candidate Lyapunov function V which is positive definite, 

radially unbounded and which belongs to the class C2: 

 

   2

2 0

1
1

2

T T

e e eV K q q q       (27) 

 

The derivative of (27), together with (23) and (24), is given by (28): 

 

  

 

2 0

1

2 2

1

2 1 2

2 T

e

T T

e

T T T T

e

V K q

K q T K

K K q T K

 

   

     





  

    

    

 (28) 

 

Since eq   and 
T T

e eq q  , it comes that: 

 

 1

2 1 0T T

e eV K K q q T      (29) 
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6. Computation of the Attitude’s Estimation  

and Prediction 

The attitude estimator uses quaternion representation. Two approaches are jointly 

used, namely an estimation with a constraint least-square minimization technique 

and a prediction of the estate at the instant k. The prediction is performed in order 

to produce an estimate of the accelerations and the attitude quaternion. 

Actually, this latter problem is divided in three steps. First, the body 

accelerations are estimated from the previously computed quaternion. Then, the 

influence of the body accelerations is predicted from the accelerometer 

measurements together with the magnetometer measurements, a measure estate is 

estimated via an optimization technique. In this way, the quaternion that is 

obtained by the estimation with a constraint least-square is insensitive to the body 

accelerations. Thus, no assumptions of the weakness (or not) of the accelerations 

are done, and no switching procedure from one model to another one is necessary. 

Therefore, the main advantage of the approach presented in this chapter compared 

to others approaches, is that the estimated attitude remains valid even in the 

presence of high accelerations over long time periods. 

In this chapter, a critter that takes in account the evolution of the attitude state 

via determination of 𝑥 = [𝑞𝑜, 𝑞1, 𝑞2, 𝑞3, 𝑎𝑥 , 𝑎𝑦]𝑇 in the function 𝑓(𝑥) is proposed. 

The mínimum error is chosen, but it takes in account the prediction of the state �̂� 

and the coefficients of weight for the state 𝜇 and the measures estimated 

(MesEstimated = MS) at the instant k. 

 

 𝑓(𝑥) =  
1

2
[𝜇 (∑ (𝑀𝑒𝑠𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑣𝑚𝑒𝑠(𝑗))

2𝑛
𝑗=1 ) + ‖�̂� − 𝑥‖2

2] (30) 

 

with 𝑞𝑇𝑞 − 1 = 0. 

The process of Estimation and Prediction needs the determination of his 

gradient; this one is obtained by equation (24) 

 

 𝐻𝑞 =  [
𝜕

𝜕𝑞
(

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥
)] 

 𝐻𝑞 =  [
𝜕2𝑓

𝜕𝑞2

𝜕𝑞

𝜕𝑥
]

𝑇

 (31) 

 

Similarly, the gradient of the state for the case of acceleration is obtained. 

Finally, the total Gradient is obtained by the fusion between the calculation 

show for the quaternion case and the gradient omitted for the acceleration case. 
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 𝐹(𝑥) =  [
𝐻𝑞

𝜕𝑔𝑎

𝜕𝑥

𝜕𝑔𝑞

𝜕𝑎

𝐻𝑎

] (32) 

 

For the prediction’s process of �̂�, several tehcnique have been validated, for 

purpose of simplicity, the prediction via spline is chosen. Cubic spline is a spline 

constructed of piecewise third-order polynomials which pass through a set of n 

control points. 

Suppose we are n+1 data points (�̂�𝑘, 𝑀𝑆𝑘) such that. 

𝑎 =  𝑥0 <. . < 𝑥𝑛, Then the coefficients of the vector 𝜇 exists cubic 

polynomials with coefficients 𝜇𝑖,𝑗0 ≤ 𝑖 ≤ 3 such that the following hold. 

 

 𝜇(�̂�) =  𝜇𝑗(�̂�) =  ∑ [�̂� − 𝑥𝑗]
𝑖
 ∀�̂�  ∈  [�̂� − 𝑥𝑗+1] 0 ≤  𝑘 ≤ 𝑛 − 13

𝑗=0  

 

 𝜇(𝑥𝑗) =  𝑦𝑘  0 ≤ 𝑘 ≤ 𝑛 − 1 

 

 𝜇𝑗(𝑥𝑗+1) =  𝜇𝑗+1(𝜇𝑗+1) 0 ≤ 𝑘 ≤ 𝑛 − 2 

 

 𝜇𝑗
′ (𝑥𝑗+1) =  𝜇𝑗+1

′ (𝑥𝑗+1) 0 ≤ 𝑘 ≤ 𝑛 − 2 

 

 𝜇𝑗
′′(𝑥𝑗+1) =  𝜇𝑗+1

′′ (𝑥𝑗+1) 0 ≤ 𝑘 ≤ 𝑛 − 2 

 

So we see that the cubic spline not only interpolates the data (�̂�𝑘 , 𝑀𝑆𝑘) but 

matches the first and second derivatives at the knots. Notice, from the above 

definition, one is free to specify constrains on the endpoints. The end point 

constrain 𝜇′′(𝑎) = 0 𝜇′′(𝑏) =  0 is chosen. 

7. Results 

In this section, some simulation and results of the articulated arm (Figure 4) are 

represented in order to show the performance of the proposed control laws via 

quaternion. A rigid body with low momentum of inertia is taken as the 

experimental system. In fact, the low momentum of inertia makes the system 

vulnerable to high angular accelerations which prove the importance to apply the 

control. 
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Figure 4. Robot for the experiment. 

 

Figure 5. Estimation and prediction of the quaternion for the end effector. 
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The proposed technique is compared to the existing methods (namely, the 

MEKF (multiplicative extended Kalman filter) [10], (Control Force) [7] and the 

AEKF (additive Kalman filter) [11]. 

Initial conditions are set to extreme error values in order to assess the 

effectiveness of attitude estimation. These results are depicted in Figures 5 and 6. 

 

 

Figure 6. Estimation and prediction of the acceleration of the end effector. 

The proposed method performances are similar to those of the Extended 

Kalman Filter (Multiplicative and Additive). However, for example errors the 

convergence rate for our estimation-prediction is higher (As can be appreciated in 

Figure 7, the estimation has been made in a PC with 2GB in RAM, Intel®, Core™ 

Duo CPU T6400 @2.00Ghz 2.00GhZ). 

7.1. Experimental Results 

A Commercial Micro AHRS (Attitude and Heading Reference System) [12,13] is 

used to acquire the data instead of the MEMS sensor presented in section III 

((Robot showed in virtual reality Figure 3) and prototype in Figure 3. This AHRS 
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also provides the Euler angles. The methodology of estimation and prediction are 

implemented in real-time using the LabView environment. 

 

 

Figure 7. Estimation time Profile Summary. 

Remember that the attitude estimate is computed using a unit quaternion 

formulation. For comparison purpose, the estimate quaternion is converted into 

the rotation matrix. As can be shown, after large angular velocity change over a 

long period, the AHRS has a low convergence rate (approx. 1 min, Figure 8) 

compared to the one archived with our proposed methodology, onother advantage 

is that the problem of the “gimbal lock” is avoided (Figure 9 and Figure 10). 
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Figure 8. Experimental data. 

On the other hand, this system doesn’t provide the acceleration of the body so 

for validation we have done slowly movement and abrupt movement to appreciate 

the effect of the acceleration in our method. 

Conclusion 

The first key to keep in mind from this chapter is that hybrid methodogyes of 

attitude estimation via queternion, constitutes a viable alternative for improving 

the overall performance and robustness of embedded attitude estimation systems 

dealing with faulty sensor measurements. 

By modeling the sensor fusion problem via queternion within the hybrid 

systems framework, we are able to exploit the redundancy of information 

emerging from the different sensors in order to perform real-time diagnosis of 

their modes of operation, therefore allowing the attitude estimation system to 

compensate for both methodogies and unmodeled faulty behavior. 

 



 

 

Figure 9. Attitude measured from the first articulation. 



 

 

Figure 10. Attitude measured from the end effect. 
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This chapter presents a new strategy for attitude estimation of possibly non-

symmetric rigid bodies. Two globally methods of calculation of the body’s 

attitude are proposed, namely one methodology fussing data information with a 

three-axis accelerometer, three magnetometer and three rate gyros mounted 

orthogonally jointly, with prediction of the movement via cubic splines are 

studied and simulated. Furthermore, the attitude estimation is independent of the 

body’s inertia. The numerical simulations have shown the effectiveness of the 

proposed methodologies and their robustness with respect to sensors noise and far 

initial points. Moreover, their simplicity makes them suitable for embedded 

implementation. This control estimation is tested in real application, consisting in 

a set of ABB 6 Degrees of Freedom robot mounted in the laboratory’s Motor. 

This later is located in the laboratory: “Departamento de Pruebas de Motores” 

Volkswagen México. 
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Abstract 

The quaternions, reduced biquaternions (RBs) and their respective Fourier 

transformations, i.e., discrete quaternion Fourier transform (DQFT) and discrete 

reduced biquaternion Fourier transform (DRBQFT), are very useful for multi-

dimensional signal processing and analysis. In this paper, the basic concepts of 

quaternion and RB algebra are reviewed, and we introduce the two dimensional 

Hermite-Gaussian functions (2D-HGF) as the eigenfunction of DQFT/DRBQFT, 

and the eigenvalues of 2D-HGF for three types of DQFT and two types of 

DRBQFT. After that, the relation between 2D-HGF and Gauss-Laguerre circular 

harmonic function (GLCHF) is given. From the aforementioned relation and 

some derivations, the GLCHF can be proved as the eigenfunction of 
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DQFT/DRBQFT and its eigenvalues are summarized. These GLCHFs can be 

used as the basis to perform color image expansion. The expansion coefficients 

can be used to reconstruct the original color image and as a rotation invariant 

feature. The GLCHFs can also be applied to color matching applications. 

1. Introduction 

Properties of eigenvalues and eigenfunctions for Fourier transform and its variants 

are widely surveyed in the literatures. In 1982, Dickinson and Steiglitz [1] 

proposed a matrix which commutes with discrete Fourier transform (DFT) matrix 

and used this commuting matrix to compute orthonormal eigenfunctions for DFT. 

In the same year as [1], Grunbaum [2] discussed the Hermite function as 

eigenfunction of DFT. Later in 2006, Pei et al. [3] proposed a nearly tridiagonal 

commuting matrix to obtain orthonormal eigenfunctions for DFT with smaller 

error than [1]. In 2008, Santhanam et al. [4] inspired by the ideas from quantum 

mechanics in finite dimensions and presented an approach which computes 

commuting matrix whose eigenvalue spectrum is closely approximated to that of 

the Hermite-Gaussian differential operator. Recently in 2010, Pei et al. [5] derived 

the eigenvalues of discrete 2D-HGF for two-side DQFT [6] and two-side 

DRBQFT [7]. 

The quaternions have been applied to many research fields such as computer 

science, mathematics, signal processing and image processing, since Hamilton 

introduced the concept in 1843 [8]. The fundamental theorems are well developed, 

and mathematical operations like Fourier transform, wavelet transform, convolution 

of this four-dimensional, non-commutative algebra have been constructed maturely 

[9-16]. The usefulness and effectiveness of quaternions in dealing with multi-

dimensional computations are demonstrated, especially those involving operations 

of computer graphics and image processing, like three-dimensional rotations and 

many other geometrical transformations. However, there are many other interesting 

variants of quaternions like the biquaternions [17], the reduced biquaternions (RBs) 

[18], and the quad-quaternions [19], which are very useful and possess special 

properties and abilities that quaternions don’t have. 

These variants have also found several applications. Among these variants, in 

particular, we concentrate on discussing the quaternion, RBs and derive the 

eigenvalues and eigenfunctions for their DQFT/DRBFT. The multiplication rule of 

quaternions is non-commutative, on the other hand, the multiplication rule of RBs is 

commutative. The commutative property is one of the advantages of RBs over 

quaternions. Due to the commutativity of multiplications, many operations, such as 

Fourier transform, correlation, convolution, singular value decomposition (SVD), of 

http://www.nciku.com.tw/search/en/detail/doubtless/23647
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RB algebra are much simpler and more convenient to the users than the ones of 

quaternion algebra. In [7], the efficient implementation of DRBQFT, convolution, 

correlation, phase-only correlation and RB linear-time-invariant and symmetric 

multichannel complex system are developed and they are much simpler than the 

existing implementation of quaternions. The commutative property is important and 

useful because the commutative DRBQFT is much simpler than non-commutative 

DQFT. In [20], the SVD of RB matrices are introduced. Compared with the 

quaternion matrix SVD, the complexity of the RB matrix SVD is reduced to a small 

factor of one-fourth. From the above discoveries, we can tackle with many 

arithmetic problems more efficiently in signal and image processing by using RBs. 

The RBs also have their limitations. The algebra of RBs is not a division algebra, 

and their geometric meaning is unfamiliar to most engineers. However, these 

problems have almost no influence on signal and image processing applications. We 

will briefly summarize the comparison of quaternions and RBs in the following 

section. In this work, we derive the eigenvalues of 2D-HGF for three types of 

DQFT and two types of DRBQFT, i.e., right-side, left-side and two-side for DQFT 

and type1, type2 for DRBQFT. By applying the relation between 2D-HGF and 

GLCHF mentioned in [21], we extended the conventional GLCHF in quaternion 

and RB spaces. We found that the GLCHF is the eigenfunction of left-side and 

right-side DQFT (type 1 and type2 DRBQFT), and the modified GLCHF is 

eigenfunction of two-side DQFT (type 1 and type2 DRBQFT). Over all, the major 

contribution of this paper are: 

 

1) Three types of DQFT (right-side, left-side, and two-side) and two types 

of DRBQFT (type1 and type2) are introduced. 

2) 2D Hermite-Gaussian and Gauss-Laguerre circular harmonic 

eigenfunctions and eigenvalues are derived for the above quaternion and 

reduced biquaternion Fourier transforms. 

3) Discrete 2D Gauss-Laguerre circular harmonic eigenfunctions can be 

efficiently computed using the linear combination coefficients and 2D 

discrete Hermite-Gaussian eigenfunctions. Both 2D eigenfunctions forms 

a complete and orthonormal basis in the 2D plane. 

4) DQFT and DRBQFT can be efficiently implemented using the 

conventional 2D FFT. 

5) Discrete 2D Gaussian-Laguerre circular harmonic functions are suitable 

for circular pattern analysis and expansions of the color images. 

6) Color image expansion, reconstruction, rotation invariant features, and 

color shape matching are proposed and demonstrated using GLCHFs for 

color image processing applications. 
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This paper is organized as follows. In section 2, the background knowledge 

and the fundamentals of the quaternions, RBs, 2D-HGF and GLCHF are briefly 

reviewed. Three types of DQFT and two types of DRBQFT are introduced and the 

eigenvalue derivation of 2D-HGF, GLCHF, and modified GLCHF for these 

transformations are discussed in section 3.In section 4, we demonstrate the spatial 

and spectral domain results of GLCHF and modified GLCHF to justify our 

proposition of eigenvalues and derivations in section 2. The GLCHFs are also 

used to perform color image expansion and color matching. Two reconstruction 

methods are proposed for different purpose and apply these methods to 

reconstruct color image. We also found that the expansion coefficients can also be 

used as a rotation invariant feature. Section 5 concludes this work. 

2. Preliminaries 

2.1. Quaternions 

The quaternions can be viewed as a four-dimensional vector space defined over 

real numbers. The quaternions are also generalizations of complex numbers. A 

quaternion consists of four components, i.e., one real part and three imaginary 

parts. A quaternion is often represented as the following form: 

 

 r i j kq q q i q j q k     (1) 

 

where rq , iq , jq , kq  are all real numbers, and the elements {1, i , j , k } form 

the basis of the quaternion vector space. The {1, i , j , k } obeys following 

multiplication rules: 

 

 
2 2 2 1i j k    , ij ji k   , jk kj i   , ki ik j    (2) 

 

The conjugate of a quaternion is defined as: 

 

 
*

r i j kq q q i q j q k     (3) 
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The norm of a quaternion can be written as: 

 

 
* 2 2 2 2 1/2( )r i j kq qq q q q q      (4) 

Table 1. Complexity of quaternions, RBs, RBs 1e - 2e form  

in multiplication 

 

2.2. Reduced Biquaternions 

The idea of reduced biquaternions (RBs) was suggested by Schtte and Wenzel [18] 

in 1990. Other similar ideas can be found in the articles about bicomplex algebra 

[22-24]. They [18] proposed to apply the RBs to the implementation of digital filter, 

and demonstrated that fourth order real filter can be realized by means of a first 

order RB filter. The RBs are another types of four-dimensional hypercomplex 

numbers, and are also represented as the form of (1), but {1, i , j , k } obeys 

different multiplication rules from those of (2). The rules are given by: 

 

 
2 2 21, 1,  ,  , i k j ij ji k jk kj i ki ik j            (5) 

 

As (5) shows, the major difference between RBs and quaternions is the 

multiplication rules. If we define the norm of the RBs as
2 2 2 2 1/2( )r i j kq q q q q    , then 1 2 1 2q q q q , where 1q  and 2q are two 

arbitrary RB, and if we define the conjugate of the RBs as 

*

r i j kq q q i q j q k    , then 
*qq  is still a RB. There are three different 

definitions of conjugate for the RBs in [2, 3], but the product of a RB and one of 

these three conjugates are still not real, therefore, we define the modulus and 

conjugate of RB as follows: 
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 2 2 2 2 2 2 1/44 (( ) 4( ) ) 0r i j k r j i kq q q q q q q q q         (6) 

 

where is the determinant of the matrix representation of the RBs (
qM ). 

 

qM  can be written as 
r i j k

i r k j

j k r i

k j i r

q q q q

q q q q

q q q q

q q q q

  
 
 
  
 
  

, and 
r i j k

i r k j

q

j k r i

k j i r

q q q q

q q q q
M

q q q q

q q q q



 

 
 

=

2 2 2 2 2 2( ) 4( ) 0r i j k r j i kq q q q q q q q       . If 0  , then the inverse of 
qM  and 

q  (RB) do not exist. The matrix representation is useful to analyze many 

concepts of RBs like its inverse, addition, multiplication and norm, etc. We define 

4q   because 1 2 1 2q q q q  is satisfied and 
2 2 1/2( )r iq q q   if 

0j kq q   (compatible to complex numbers). The only property different from 

that of complex numbers is the Schwartz triangle inequality, i.e.,

1 2 1 2q q q q    is not satisfied for some special cases. For example, two RB 

numbers (1 ) / 2j  and (1 ) / 2j  have zero norm, but the sum of them are 

equal to one. The conjugate of the RBs can be represented as: 

 

 
2* 1 /q q q q     (7) 

 

The matrix representation of 
*q is 

1( )qM  , therefore, we can also write 

down 
*q  as: 

 * 1
{ }

r k j i k j i r j i r k

k r i j r i j k i j k r

j i r k i r k j r k j i

q q q q q q q q q q q q

q q q q i q q q j q q q k q q q

q q q q q q q q q q q q


         
 (8) 

 

The reason for choosing 
* 1q q    is that 

*qq  is a real number, 

2*qq q and 
* * *

1 2 1 2( )q q q q .If 0  , then the inverse of q  (RB) and q  do 

not exist. 
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Table 2. Comparison of quaternions and RBs 

 

2.3. 1e - 2e  Form of RBs, Complexity Analysis and Comparison  

of Quaternion and RB 

In [25], Davenport had found that there exists two special nonzero numbers 1e  

and 2e  in 4HCA  such that 1 2 0e e  ,
1

1 1 1...n ne e e   , and 
1

2 2 2...n ne e e  

. Therefore, 1e and 2e are both idempotent elements and divisors of zero. For 

complex numbers and quaternions, the idempotent elements are only 0 and 1, and 

the divisor of zero is only the number 0. For RBs, 
1 (1 ) / 2e j  ,

2 (1 ) / 2e j  . 

Any RB can be represented by the linear combination of 1e and 2e : 

 

 1 2( ) ( )r i j k a b a b a bq q q i q q i j q q j q e q e          (9) 

 

where ,a b a b a b a bq q q q q q     . We name (9) the 1e - 2e form of RBs. This 

form is the irreducible representation for RBs. The complexity of many operations 
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about RBs, such as multiplication and Fourier transform, can be reduced by the 

use of 1e  and 2e , and the analysis about RBs become easier. For example, the 

multiplication of two RBs 1q and 2q can be computed by following equation: 

 

 1 2 2 1 1 1 2 2 1 1 1 2 2 2( )( ) ( )( )a b a b a b a bq q q q q q q q e q q q q e        (10) 

 

We only need two instead of four complex multiplications to calculate the 

multiplication of two RBs. 

However, the real addition operations are increased from 12 to 16. The 

complexity of multiplication for quaternions, RBs, and 1e - 2e form of RBs is 

summarized in Table 1. The comparison of quaternions and RBs is shown in 

Table 2 for readers to understand their main differences. 

2.4. 2D Hermite-Gaussian Function and Gauss-Laguerre Circular 

Harmonic Function 

The 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) form the complete orthonormal set in 𝐿2 space. We can 

define it as the following 1D separable form: 

 

 2

2

( , ) ( ) ( )

1
( ) ( )

2 !

ab a b

m

a a
a

H m n H m H n

H m e h m
a 






 (11) 

 

where a=0,1,2,… and ℎ𝑎(𝑚) are a-th order Hermite polynomials [26]. (m,n) is 

spatial location in Cartesian coordinate. The GLCHFs can be linearly combinated 

by using 2D-HGFs, that is: 

 

 ( )

, , ,

0

( , ) ( , )
s

s

s t t t g s g g

g

L m n H m n 



   (12) 

 

where s ≥ 0. For t ≥ s − t, and: 

 

 
min( , )

( )

,

max(0, )

( )! !
( 1)

2 ( )! !

g m t
s g k

t g s
k g t

s t ts g g
j

s t k t g ks t t



 

    
     

       
  (13) 
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(13) are the coefficients of linear combination which can be written in a 

matrix form (see the complex numbers in Figure 1) and the readers may refer to 

[21] for detailed discussion about 2D-HGF and GLCHF. The relation between 

2D-HGFs and GLCHFs is illustrated in Figure 1. For example, GLCHF L1 

(i.e.,𝐿50) can be written as a linear combination form using fifth order 2D-HGFs 

as follows: 

 

 50 50 50 50 41 32

23 14 05

L1=L =Re{L }+i Im{L }= 0.1768 H -0.3953i H -0.5590 H

+ 0.5590i H +0.3953 H -0.1768i H

   

  
 (14) 

3. Eigenfunctions and Eigenvalues of DQFT and DRBQFT 

3.1. The Definitions of DQFT and the Derivation of Their 

Eigenvalues 

We define three types of DQFT used to derive their eigenvalues as follows (only 

foreword transforms are given): 

Left-side DQFT (denote as L-DQFT): 

 

 
1 1 2 ( )

0 0

1
( , ) ( , )

a

um vnM N

M N
QL

m n

F u v e f m n
MN

   

 

   (15) 

 

Right-side DQFT (denote as R-DQFT): 

 

 
1 1 2 ( )

0 0

1
( , ) ( , )

a

um vnM N

M N
QR

m n

F u v f m n e
MN

   

 

   (16) 

 

Two-side DQFT (denote as T-DQFT): 

 

 
1 1 22

0 0

1
( , ) ( , )

ba

vnumM N

NM
QT

m n

F u v e f m n e
MN

  

 

   (17) 

 

where {𝜇𝑎 , 𝜇𝑏} are unit pure quaternions (real=0 and norm=1). 
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Figure 1. Fifth order 2D-HGFs in top row can be transformed to the corresponding 

GLCHFs in rightmost columns (L1 to L6, as shown in real and imaginary parts) by using 

linear combination with the coefficients in matrix form. 

3.1.1. Eigenvalue Derivation of 2D-HGF 𝑯𝒂𝒃(𝒎, 𝒏) for Left-Side QFT 

For 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) and the transformation axis 𝜇 is unit pure quaternion: 
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    (18) 

 

The eigenvalue of 1D-HGF for DFT is well-known and its (−𝜇)𝑎, where a is 

the order of HGF and 𝜇 is transform axis of DFT. Therefore, from the derivation 

of (18), we know that the eigenvalue of 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) for left-side QFT is 

(−𝜇)𝑎+𝑏. 
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3.1.2. Eigenvalue Derivation of GLCHF𝑳𝒂𝒃(𝒎, 𝒏) for Left-Side QFT 

Take GLCHF 𝐿30 for example: 

 

 𝐿30(𝑚, 𝑛) = 𝐴 ∗ 𝐻30(𝑚, 𝑛) + 𝐵 ∗ 𝐻21(𝑚, 𝑛) + 𝐶 ∗ 𝐻12(𝑚, 𝑛) + 

 +𝐷 ∗ 𝐻03(𝑚, 𝑛) = 𝑅 + 𝜇 ∗ 𝐼,  

 

where the transformation axis 𝜇 are unit pure quaternion, (A,B,C,D) are the 

coefficients of linear combination obtained from (13), the original imaginary axis 

i in (13) is now extended to unit pure quaternion  𝜇, R is real part, I is imaginary 

part (R and I are also linear combination of 2D-HGFs). Therefore, 
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 (19) 

 

From (19), we know that the eigenvalue of GLCHF𝐿𝑎𝑏(𝑚, 𝑛) for left-side 

QFTis (−𝜇)𝑎+𝑏. 

3.1.3. Eigenvalue Derivation of 2D-HGF 𝑯𝒂𝒃(𝒎, 𝒏) for Right-Side QFT 

For 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) and the transformation axis 𝜇 is unit pure quaternion: 
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    (20) 

 

From (20), we know that the eigenvalue of 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) for right-side 

QFT is (−𝜇)𝑎+𝑏. 
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3.1.4. Eigenvalue Derivation of GLCHF𝑳𝒂𝒃(𝒎, 𝒏) for Right-Side QFT 
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 (21) 

 

From (21), we can see that the eigenvalue of GLCHF𝐿𝑎𝑏(𝑚, 𝑛) for right-side 

QFTis (−𝜇)𝑎+𝑏. 

3.1.5. Eigenvalue Derivation of 2D-HGF 𝑯𝒂𝒃(𝒎, 𝒏) for Two-Side QFT 

For 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) and two transformation axes 𝜇1 and 𝜇2 are unit pure 

quaternions: 
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    (22) 

 

From (22), we realize that the eigenvalue of 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) for two-side 

QFT is (−𝜇1)𝑎(−𝜇2)𝑏. 

3.1.6. Eigenvalue Derivation of Modified GLCHFs 𝑳𝒂𝒃(𝒎, 𝒏) ∙ (𝝁𝟏 + 𝝁𝟐) 

and (𝝁𝟏 + 𝝁𝟐) ∙ 𝑳𝒂𝒃(𝒎, 𝒏) for Two-Side QFT 

For two-side QFT we have to change the form of original GLCHF 𝐿𝑎𝑏(𝑚, 𝑛) in 

order to obtain eigenvalues. The modified GLCHFs are defined as 𝐿𝑎𝑏(𝑚, 𝑛) ∙

(𝜇1 + 𝜇2) and (𝜇1 + 𝜇2) ∙ 𝐿𝑎𝑏(𝑚, 𝑛). 𝐿𝑎𝑏(𝑚, 𝑛) can be written as 𝑅 + 𝜇1𝐼 or 𝑅 +

𝜇2𝐼, where 𝜇1and 𝜇2 are unit pure quaternions and they are also transformation 

axes, 𝑅 and 𝐼 are linear combinations of 2D-HGFs. We denote modified GLCHF 

of first kind as MGLCHF I, and GLCHF of second kind as MGLCHF II. Before 

we proceed to find the eigenvalues of modified GLCHFs for two-side QFT, a 
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simple theorem is introduced first and it may be helpful for us to derive the 

eigenvalues. 

 

Theorem 1. For any unit pure quaternions uand v, we have: 

 

  (−u)𝑛(u + v) = (u + v)(−v)𝑛 (23) 

 

Proof. When n = 0, (23) is obviously true. Assume n = k, we have: 

 

  (−u)𝑘(u + v) = (u + v)(−v)𝑘 (24) 

 

Then, (−u)𝑘+1(u + v) = (−u)𝑘(−u)(u + v) = (−u)𝑘(1 − uv) = (−u)𝑘 ∙

(−uv + 1) = (−u)𝑘(u + v)(−v) =  (u + v)(−v)𝑘 (−v)  = (u + v)(−v)𝑘+1(by 

(24)), where u2 = v2 = −1. Therefore, according to the mathematical induction, 

the proof is completed. In what follows, we derive the eigenvalues of MGLCHFs 

for two-side QFT: 

For MGLCHF of first kind, 𝐿𝑎𝑏(𝑚, 𝑛) ∙ (𝜇1 + 𝜇2): 

 

2 21 1

2 21 1

1

1 1 1 12 22 2

1 2 1 1 2

0 0 0 0

1 1 1 12 22 2

1 2

0 0 0 0

2

0

1 1
( , )( ) ( )( )

1 1

1

vn vnum umM N M N

N NM M
ab

m n m n

vn vnum umM N M N

N NM M

m n m n

umN

M

n

e L m n e e R I e
MN MN

e R e e R e
MN MN

e
MN

  

  



    

 

     

   

     

   

 



   

     



 

 

2 21
1 1 1 12 22

1 1 1 2

0 0 0

*

1 1 2 1 2 2 1 1 2 1 1 1 2 2

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

vn vnumM M N

N NM

m m n

a b a b a b a b

I e e I e
MN

R R I I

 

   

             

   

  

    

           

 

 

 

1 1 2 1 1 1 2 1 2 2 1 1 2 2

1 1 1 2 1 2 2

1 1 1 2 2 1 1 2 2 2

1 1 2 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ( ) ( ) ( ) ( ) )

( )( ) ( )( ) ( )( )( ) ( )

( ( ) ( ) ( )( ) ( 1))

(

a b a b a b a b

a b a b

a b a b

a a

R I R I

R I

R I R I

Thm

R

             

      

         

     

           

      

         

    

 1 1 2 2

1 2 2

)( )( )

( , )( )( )

a b

a b

ab

I

L m n

   

  





  

  

 (25) 

 

For MGLCHF of second kind, (𝜇1 + 𝜇2) ∙ 𝐿𝑎𝑏(𝑚, 𝑛): 
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 (26) 

 

From (25), we know that the eigenvalue of MGLCHF of first kind, 

𝐿𝑎𝑏(𝑚, 𝑛) ∙ (𝜇1 + 𝜇2) for two-side QFT is (−𝜇2)𝑎+𝑏. On the other hand, from 

(26), we can see that the eigenvalue of MGLCHF of second kind, (𝜇1 + 𝜇2) ∙

𝐿𝑎𝑏(𝑚, 𝑛) for two-side QFT is (−𝜇1)𝑎+𝑏. 

3.2. The Definitions of DRBQFT and the Derivation of Their 

Eigenvalues 

We define two types of DRBQFT used to derive their eigenvalues as follows 

(only foreword transforms are given): 

DRBFT of type 1 (denote as DRBFT I, two imaginary unit axis,𝑢1
2 = 𝑢2

2 =

−1): 

 1 2
1 1 2 ( )

1

0 0

1
( , ) ( , )

pm snM N u u
M N

RB

m n

F p s f m n e
MN

   

 

   (27) 

 

DRBFT of type 2 (denote as DRBFT II, one imaginary unit axis,𝑢1
2 = −1): 
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3.2.1. Eigenvalue Derivation of 2D-HGF 𝑯𝒂𝒃(𝒎, 𝒏)for DRBQFT of Type 1 

For 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) and two imaginary unit axes, u1
2 = u2

2 = −1: 
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 (29) 

 

From (29), we see that the eigenvalue of 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) for DRBQFT of 

type 1 is (−𝑢1)𝑎(−𝑢2)𝑏. 

3.2.2. Eigenvalue Derivation of 2D-HGF 𝑯𝒂𝒃(𝒎, 𝒏)for DRBQFT of Type 2 

For 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) andone imaginary unit axis, u1
2 = −1: 

 

 

1

11

1 1 2 ( )

0 0

1 1 22

0 0

1 1 1 1

1
( , )

1 1
( ) ( )

( )( ) ( )( ) ( , )( ) ( ) ( , )

pm snM N u
M N

ab

m n

snpmM N uu
NM

a b

m n

a b a b a b

a b ab ab

H m n e
MN

H m e H n e
M N

H m u H n u H m n u u H m n





   

 

  

 

 



      



   (30) 

 

From (30), we see that the eigenvalue of 2D-HGF 𝐻𝑎𝑏(𝑚, 𝑛) for DRBQFT of 

type 1 is (−𝑢1)𝑎+𝑏. 

3.2.3. Eigenvalue Derivation of GLCHF𝑳𝒂𝒃(𝒎, 𝒏) for DRBQFT of Type 1 
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where 𝑢 ∈ {𝑖, 𝑗, 𝑘}. 
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 (31) 

 

Thus, eigenvalue of GLCHF𝐿𝑎𝑏(𝑚, 𝑛) for RBQFT of type 1 is (u1
2 = u2

2 = −1): 

 

 1 2( ) ( )a bu u  . 

3.2.4. Eigenvalue Derivation of GLCHF𝑳𝒂𝒃(𝒎, 𝒏) for DRBQFT of Type 2 
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 (32) 

 

Thus, eigenvalue of GLCHF𝐿𝑎𝑏(𝑚, 𝑛) for DRBQFT of type 2 is (𝑢1
2 = −1): 

 

 1( )a bu  . 

 

As mentioned in sec. 2.3, the complexity of DRBQFT implementation can be 

reduced by using 1e - 2e form of RB. Take DRBQFT of type 1 for example, we 

demonstrate the procedure as follows: 
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Assume: 
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 (33) 

Table 3. Summarization of eigenvalues of 2D-HGF, GLCHF,  

and MGLCHF I&II for three types of DQFT and two types of DRBQFT. 

({𝝁, 𝝁𝟏, 𝝁𝟐} ∈ unit purequaternions. {𝒖, 𝒖𝟏, 𝒖𝟐, 𝒖𝟑} ∈ RBs and 𝒖𝟐 = 𝒖𝟏
𝟐 =

𝒖𝟐
𝟐 = 𝒖𝟑

𝟐 = −𝟏, {a,b} are orders of functions) 
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where 
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 (36) 

 

Therefore, we can use conventional 2D DFT to implement complex 

DRBQFT. 

3.2.5. Eigenvalue Derivation of MGLCHF𝑳𝒂𝒃(𝒎, 𝒏) ∙ (𝒖𝟏 + 𝒖𝟑) for  

Two-Side DRBQFT 

Because the commutative multiplication rule in RB algebra, 𝐿𝑎𝑏(𝑚, 𝑛) ∙ (𝑢1 +

𝑢3)=(𝑢1 + 𝑢3) ∙ 𝐿𝑎𝑏(𝑚, 𝑛). Therefore, the two MGLCHFs are equivalent. 

 

Eigenvalue derivation of MGLCHF𝐿𝑎𝑏(𝑚, 𝑛) ∙ (𝑢1 + 𝑢3) for DRBQFT of type 1: 

First, we can obtain the following result: 
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Then, 
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Table 4. Summarization of parameters and methods for generating  

results in Figures 4-13 

 
 

 

Figure 2. Input 2D-HGFs {𝐻30, 𝐻21, 𝐻12, 𝐻03}, size:121x121 pixels. 
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Figure 3. Input GLCHF 𝐿30, size:121x121 pixels. 

Thus, eigenvalue of modified GLCHF 𝐿𝑎𝑏(𝑚, 𝑛) ∙ (𝑢1 + 𝑢3) for DRBQFT of 

type 1 is 

 

 1 3( ) ( )a bu u  . 

 

Eigenvalue derivation of MGLCHF𝐿𝑎𝑏(𝑚, 𝑛) ∙ (𝑢1 + 𝑢3) for DRBQFT of type 2: 
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 (39) 

 

where 

 

 
2 2 2

2 1 3 1 3( , 1, 1)u u u u u u        

 

Thus, eigenvalue of modified GLCHF 𝐿𝑎𝑏(𝑚, 𝑛) ∙ (𝑢1 + 𝑢3) for DRBQFT of 

type 2 is 
( )a bu 

. Before we leave this section, the above results are briefly 

summarized in Table 3. 
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4. Experimental Results 

4.1. Verification of Derived Eigenvalue 

First, we use Matlab, QTFM toolbox [27] developed by Sangwine et al. and our 

reduced biquaternion toolbox to perform DQFT and DRBQFT for 2D-HGF, 

GLCHF, MGLCHF I and MGLCHF II. The transformed spectrums of functions 

mentioned above and the ratio of spectrum to original function multiplied by 

derived eigenvalue, i.e., 1, will be demonstrated to verify the results summarized 

in Table 3. For QFT, we verify all cases in Table 3. Because of the page limit, we 

only verify 2D-HGF for DRBQFT II, and MGLCHF I&II for DRBQFT I. The 

parameters and methods used in these experiments are summarized in Table 4 and 

the experimental results are shown in Figure 4~13. 

 

Case 1 to 3. 2D-HGF/L-DQFT, 2D-HGF/R-DQFT, 2D-HGF/T-DQFT 

We can see from Figure 4 to 6 that the transformed spectrum L-DQFT(𝐻30) is 

equivalent to original function multiplied by derived eigenvalue (−𝜇)3+0 ∗ 𝐻30, 

R-DQFT(𝐻21) is equivalent to 𝐻21 ∗ (−𝜇)2+1, and T-DQFT(𝐻12) is equivalent to 

𝐻12 ∗ (− 𝜇1)1(− 𝜇2)2. 

 

Case 4 to 7. GLCHF/L-DQFT, GLCHF/R-DQFT, MGLCHF I/T-DQFT, 

MGLCHF II/T-DQFT 

It can be seen from Figure 7 to 10 that L-DQFT(𝐿30) is equivalent to 

(−𝜇)3+0 ∗ 𝐿30, R-DQFT(𝐿30) is equivalent to 𝐿30 ∗ (−𝜇)3+0, T-DQFT(𝐿30(𝜇1 +

𝜇2)) is equivalent to 𝐿30(𝜇1 + 𝜇2) ∗ (− 𝜇2)3+0. T-DQFT((𝜇1 + 𝜇2)𝐿30) is 

equivalent to (− 𝜇1)3+0 ∗ 𝐿30(𝜇1 + 𝜇2). 

 

Case 8 to 9. 2D-HGF/DRBQFT II, MGLCHF I&II/DRBQFT I 

As depicted by Figure 11 and 12, DRBQFT I (𝐻03) is equivalent to 𝐻03 ∗

(− 𝑢1)0+3, DRBQFT I (𝐿30(𝑢1 + 𝑢3)) is equivalent to 𝐿30 ∗

(− 𝑢1)3(− 𝑢3)0.Besides, Figure 13 demonstrate that ratio of spectrum to function 

multiplied by eigenvalue is equal to one (only middle part is shown). The phase 

errors shown in the border of Figure 4(b) to 12 (b) are due to finite-length effect 

of DQFT and DRBQFT and limited computational precision of Matlab. 
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(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.) 

 
(c) Original*eigenvalue (Phase) (d) DQFT (Phase) 

Figure 4. (−𝜇)3+0 ∗ 𝐻30andL-DQFT(𝐻30). 

 
(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.) 

 
(c) Original*eigenvalue (Phase) (d) DQFT (Phase) 

Figure 5. 𝐻21 ∗ (−𝜇)2+1andR-DQFT(𝐻21). 
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(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.) 

 
(c) Original*eigenvalue (Phase) (d) DQFT (Phase) 

Figure 6. 𝐻12 ∗ (− 𝜇1)1(− 𝜇2)2 and T-DQFT(𝐻12). 

 
(a) Original*eigenvalue (Mag.)(b) DQFT (Mag.) 

 
(c) Original*eigenvalue (Phase)(d) DQFT (Phase) 

 

Figure 7. (−𝜇)3+0 ∗ 𝐿30 andL-DQFT(𝐿30). 
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(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.) 

 
(c) Original*eigenvalue (Phase) (d) DQFT (Phase) 

Figure 8. 𝐿30 ∗ (−𝜇)3+0 and R-DQFT(𝐿30). 

 
(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.) 

 
(c) Original*eigenvalue (Phase) (d) DQFT (Phase) 

Figure 9. 𝐿30 (𝜇1 + 𝜇2) ∗ (− 𝜇2)3+0 and T-DQFT(𝐿30(𝜇1 + 𝜇2)). 

4.2. Color Image Expansion and Partial Reconstruction Using 

GLCHFs 

From the above experiments and discussions, we know that GLCHFs are the 

eigenfunctions of DQFT and DRBQFT. Therefore, GLCHFs possess some useful 
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properties, such as shape invariance under DQFT and DRBQFT. We can 

represent GLCHFs as a 2D quaternion or 2D RB functions and use them as basis 

to expand quaternion encoded color images 𝐼𝑄(𝑚, 𝑛), or RB encoded color images 

𝐼𝑅𝐵  (𝑚, 𝑛), i.e., 
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 (40) 

 

where 𝑅(m, n) is the red color channel, 𝐺(m, n) is the green color channel, and 

𝐵(m, n) is the blue color channel of the color image, respectively. {𝑖, 𝑗, 𝑘} is the 

quaternion basis introduced in (2) and {𝑖′, 𝑗′, 𝑘′} is the RB basis mentioned in 

(5). ℎ𝑠−𝑡,𝑡
𝑄

 is the Gauss-Laguerre circular harmonic (GL-CH) expansion 

coefficient of order (s-t,t) for quaternion encoded color image and 𝐿𝑠−𝑡,𝑡
𝑄

(m,n) is 

quaternion encoded 2D GLCHF basis of order (s-t,t). On the other hand,  ℎ𝑠−𝑡,𝑡
𝑅𝐵  is 

the GL-CH expansion coefficient of order (s-t,t) for RB encoded color image and 

𝐿𝑠−𝑡,𝑡
𝑅𝐵 (m,n) is RB encoded 2D GLCHF basis of order (s-t,t). For convenience, the 

representation of order (s-t,t) is replaced with (a,b). From (40), we see that 

quaternion/RB encoded color images can be expanded by using infinite number of 

expansion coefficients and GLCHFs. However, only some of the expansion 

coefficients and GLCHFs is useful and meaningful for image reconstruction task, 

only part of these coefficients and GLCHFs are retained and applied to partially 

reconstruct the original color image. As illustrated in Figure14, the square 

represents the domain of expansion coefficients  ℎ𝑎,𝑏
𝑄  𝑜𝑟  ℎ𝑎,𝑏

𝑅𝐵 , and the shaded area 

is the coefficients that will be used. Two parameters K and L can be determined to 

do sifting of coefficients in the domain and define the shape of shaded area. In 

what follows, we perform several experiments to test the efficiency of partial 

reconstruction. The test color images are N by N pixels, where N is set to 64. Two 

methods are proposed to sift expansion coefficients of interests as follows: 

 

Method 1. 

For a fixed K, we increase L from zero to a predefined number (the increment 

step d can be verified). The sum of order (a+b) satisfy the following constraint, 

 

 (a + b) =L≤2N+2 (41) 
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and the absolute difference |𝑎 − 𝑏| satisfy another constraint, 

 

 |𝑎 − 𝑏| ≤ 𝑁 <K (42) 

 

From Figure 15, the partially reconstructed color images by using the sifted 

expansion coefficients  ℎ𝑎,𝑏
𝑄

 𝑜𝑟  ℎ𝑎,𝑏
𝑅𝐵  with method 1reveal the details of image 

circularly and gradually. We cannot recognize the content of original image well 

when the order (a + b = L) is low, but when the order (a + b = L) is high, e.g., L 

= 100 ~ 130, we only use finite, small number of coefficients and GL-CH basis to 

approximate original images. It can be seen that the approximated images are 

visually pleasing with high fidelity. 

 

Method 2. 

For a fixed L, increasing K from zero to a predefined number (41) and (42) 

are also satisfied. From Figure 16, the partially reconstructed color images by 

using the sifted expansion coefficients  ℎ𝑎,𝑏
𝑄  𝑜𝑟  ℎ𝑎,𝑏

𝑅𝐵  with method 2 approximate 

the support of the original image. We can recognize the content and support size 

of original image even when the order (K) is low. As for K is high, the 

approximations are slightly inferior to those of L is high, especially in the border 

of the reconstructed images. This is because the main purpose of method 2 is to 

obtain the support and roughly sketch of original images. 

 

 
(a) Original*eigenvalue (Mag.) (b) DQFT (Mag.) 

 
(c) Original*eigenvalue (Phase) (d) DQFT (Phase) 

Figure 10. (− 𝜇1)3+0 ∗ (𝜇1 + 𝜇2)𝐿30 and T-DQFT((𝜇1 + 𝜇2)𝐿30). 
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(a) Original*eigenvalue (Mag.) (b) DRBQFT (Mag.) 

 
(c) Original*eigenvalue (Phase) (d) DRBQFT (Phase) 

Figure 11. 𝐻03 ∗ (− 𝑢1)0+3 and DRBQFT II (𝐻03). 

 
(a) Original*eigenvalue (Mag.) (b) DRBQFT (Mag.) 

 
(c) Original*eigenvalue (Phase) (d) DRBQFT (Phase) 

Figure 12. 𝐿30(𝑢1 + 𝑢3) ∗ (− 𝑢1)3(− 𝑢3)0 and DRBQFT I (𝐿30(𝑢1 + 𝑢3)). 
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4.3. Expansion Coefficients  𝒉𝒂,𝒃
𝑸

 and 𝒉𝒂,𝒃
𝑹𝑩 as Rotation Invariant 

Features 

Eq. (40) is the image expansion by using GLCHFs, it can be represented as a 

matrix form: 

 Q Q Q

RB RB RB

I L h

I L h





 (43) 

 

where 𝐼𝑄 is a quaternion matrix and 𝐼𝑅𝐵 is a RB matrix formed by original color 

image. 𝐿𝑄 is quaternion encoded GLCHF basis matrix and 𝐿𝑅𝐵 is RB encoded 

GLCHF basis matrix. ℎ𝑄 is quaternion encoded coefficient matrix and ℎ𝑅𝐵 is RB 

encoded coefficient matrix. We multiply inverse matrix of 𝐿𝑄 or 𝐿𝑅𝐵 to the left-

side of 𝐼𝑄 or 𝐼𝑅𝐵 in order to obtain expansion coefficients. That is: 

 

 
1

1

Q Q Q

RB RB RB

L I h

L I h









 (44) 

 

 

Figure 13. Eigenvalue verification of Figure 4~12. The transformed spectrums of functions 

and the ratio of spectrum to original function multiplied by derived eigenvalue is 1. 

Eq. (44) is Laguerre Gauss transform (LGT) of quaternion/RB encoded color 

images. ℎ𝑎,𝑏
𝑄

 and  ℎ𝑎,𝑏
𝑅𝐵  are LGT coefficients. Figure 17 and Table 5 demonstrate 

that  ℎ𝑎,𝑏
𝑄

 possess rotation invariant property, because the mean squared errors 
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of ℎ𝑄
𝑂 (LGT coefficients of original color image) and ℎ𝑄

𝑅 (LGT coefficients of 

rotated color image) are very small under different rotation angles 

(the experiment of ℎ𝑎,𝑏
𝑅𝐵  is not shown here due to page limit). 

 

 

Figure 14. The illustration of partial GL-CH coefficients used to reconstruct color image. 

Table 5. Mean squared error of 𝒉𝑸
𝑶 and 𝒉𝑸

𝑹 under different rotation angles 

Ang. 15 30 45 60 75 90 105 120 135 150 165 180 

MSE 0.0077 0.0062 0.0058 0.0061 0.0068 
9.43e-

32 
0.0077 0.0062 0.0058 0.0061 0.0068 

7.46e-

32 

 

 
a 

Figure 15. Continued on next page. 
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b 

Figure 15. (a) Partially reconstructed quaternion encoded color image (Lena) by using  ℎ𝑎,𝑏
𝑄

 

((a,b) satisfies (41) and (42)) and 𝐿𝑎,𝑏
𝑄

(m,n) with method 1. (b) Partially reconstructed RB 

encoded color image (Baboon) by using  ℎ𝑎,𝑏
𝑅𝐵  and 𝐿𝑎,𝑏

𝑅𝐵 (m,n) with method 1. d is the 

increment for L=a+b=0~130,K=65>N. 

 
a 

Figure 16. Continued on next page. 
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b 

Figure 16. (a) Partially reconstructed quaternion encoded color image (Lena) by using  ℎ𝑎,𝑏
𝑄

 

((a,b) satisfies (41) and (42)) and 𝐿𝑎,𝑏
𝑄

(m,n) with method 2. (b) Partially reconstructed RB 

encoded color image (Peppers) by using  ℎ𝑎,𝑏
𝑅𝐵  and 𝐿𝑎,𝑏 

𝑅𝐵 (m,n) with method 2. |𝑎 −

𝑏| <K=0~23, L=2N+2=130. 

4.4. Color Shape Matching by Using GLCHFs 

In section 4.2, we proposed a method for color image decomposition. In this 

section, we further use the decomposition and quaternions/RBs algebra and 

propose novel color shape matching algorithm for jersey. We briefly summarize 

our color shape matching algorithms as follows and demonstrate some 

experimental results to verify our method by using GLCHFs and RBs. The test 

input images are depicted as follows (Figures 18-21). 
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Figure 17. (a)(c)(e)(g)(i)(k)(m)(o)(q)(s)(u)(w) Original Lena color images with zero 

padding and their rotated versions with different angles. (b)(d)(f)(h)(j)(l)(n)(p)(r)(t)(v)(x) 

Left: LGT coefficients ℎ𝑄
𝑂of original Lena color images with zero padding. Middle: LGT 

coefficients ℎ𝑄
𝑅of rotated Lena color images with different angles. Right: The difference 

between ℎ𝑄
𝑂and ℎ𝑄

𝑅, i.e., |ℎ𝑄
𝑅 − ℎ𝑄

𝑂|. The white pixels in these figures are coefficients and 

differences with significant values. 
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Figure 18. Input image 1 for color matching. 

 

Figure 19. Input image 2 for color matching. 

 

Figure 20. Input image 3 for color matching. 
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Figure 21. Input image 4 for color matching. 

 

Figure 22. Color patches that can be used to do color shape matching (Clipped From jersey 

in Figure 18-21). 

4.4.1. Color Shape Matching Algorithm by Using GLCHFs and RBs  

for Jersey 

1. Find the patches of colors so that we can do color shape matching by 

using them: 

 

2. Use GLCHFs to approximate these patches and use those GLCHFs with 

circular shape (the fourth row, fourth column one, marked by black 

square) to perform the color matching task of human, below are examples 

of decomposition of patches: 

3. Transform the interested color image 
( , )s sf m n

 and GLCHFs 

approximated color patch ( , )s sh m n  into I-H-S color space by: 
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 (45) 
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We can use RB polar form to represent the color image and patch as follows: 
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 (46) 

 

4. Calculate the energy of color patch: 

 

 

1 1 1 1
2 2

0 0 0 0

( ( , ) ) ( , )
s s s s

M N M N

h s s h s s
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E h m n A m n
   

   

    (47) 

 

and normalize the color patch ( , )s sh m n  by 
hE : 

 

 ( , ) ( , ) /n s s s s hh m n h m n E  (48) 
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After normalizing by hE , if input image matches the color patch, then the 

correlation values at the matching positions are nearly equal to 1 (1 + 0i + 0j + 0k). 

 

5. Compute the RB Fourier transform of ( , )s sh m n  and ( , )s sf m n : 

 

 
( , ) ( ( , ))

( , ) ( ( , ))

s s

n n s s

F p s DRBFT f m n and

H p s DRBFT h m n




 (49) 

 

 
a 

 
b 

Figure 23. Decomposition of color patches by using GLCHFs and RBs, we use the one 

marked by black square to perform color shape matching (the one with circular shape). 
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6. Compute the RB correlation and phase-only correlation: 
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 (50) 

 

The definition of the RB correlation is: 
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 (51) 

 

Correlation can be viewed as a special case of convolution 

 

 ( , ) ( , ) ( , )* ( , )s s RB s s s s RB s sf m n h m n f m n h m n     (52) 

 

so we just use the algorithms of convolution to implement correlation. 

 

 ( , ) ( ( , ) ( , ))s s cg m n IDRBFT F p s H p s  (53) 

 

where ( , )F p s  and ( , )cH p s
 are the RB Fourier transform of ( , )s sf m n  and 

( , )s sh m n  , respectively. (The subscript c- means conjugation and spatial reverse). 

The RB phase-only correlation can be defined as: 
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 (54) 

 

Using the result of the phase-only correlation we can find the positions of 

human object that have similar shape as color patch. Because the shape of human 

is nearly circular or ellipsoidal, therefore we can use GLCHFs circularly 
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approximated color patch to do correlation and thus find out the locations of 

human or children in our test target images. 

 

7. From the phase-only correlation result, we have found the candidate 

positions of matched objects. 

 

Then, to determine if the average of brightness, chromaticity, hue, or 

saturation of these objects are the same as the one of the color patch, we define 

three parameters and their requirements as follows: 
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 (55) 

 

where (r,i,j,k) are real part (r),i imaginary part (i), j imaginary part (j), and k 

imaginary part (k) respectively. 
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Figure 24. Color shape matching results of two test input images. (marked by red square) 

(a)-(e) color patches. (f)-(j) results of different color matching. (k)-(o) are original input 

color images. As can be seen from these results, the location of human can be found and 

we can separate human with different color clothes by performing the whole color shape 

matching task. 
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a b 

 
c d 

Figure 25. Color shape matching results. (marked by red square)(a) the matching result by using 

white color patch. (b) the matching result by using black patch (c)-(d) original test color image. 

 
a b 

 
c d 

Figure 26. Color matching results. (marked by red square)(a) the matching result by using blue 

color patch. (b) the matching result by using white patch (c)-(d) original test color image. 
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8. Finally, we can find the location of human object and match the colors or 

their clothes by eq.(55). 

 

Bellow (see Figure 32-34) are results of the color matching by applying above 

methods. We can see that the locations of human can be found and after 

thresholding, we can successfully accomplish the color matching mask of their 

clothes by using patches with different colors 

Conclusion 

In this work, we derive the eigenvalues of 2D-HGFs and GLCHFs for DQFT and 

DRBQFT. The experimental results verify our derivations. Two partial 

reconstruction methods of color image are proposed based on GLCHFs and the 

reconstructed results demonstrate the efficacy and usefulness of our methods. We 

also show that the expansion coefficients can be used as a rotation invariant 

feature and also propose a novel method to perform color shape matching of 

human jersey effectively. 
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Chapter 6

THE QUATERNIONS WITH AN APPLICATION

OF QUADROTORS TEAM FORMATION
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College of Computer Science and Information Technology,
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School of Computer Science and Electronic Engineering,
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Abstract

The unit quaternion system was invented in 1843 by William Rowan
Hamilton as an extension to the complex number to find an answer to
the question (how to multiply triplets?). Yet, quaternions are extensively
used to represent the attitude of a rigid body such as quadrotors, which is
able to alleviate the singularity problem caused by the Euler angles rep-
resentation. The singularity is in general a point at which a given mathe-
matical object is not defined and it outcome of the so called gimbal lock.
The singularity is occur when the pitch angles rotation isθ = ±90o.
In this chapter, a leader-follower formation control problem of quadro-
tors is investigated. The quadrotor dynamic model is represented by unit
quaternion with the consideration of external disturbance. Three differ-
ent control techniques are proposed for both the leader and the follower
robots. First, a nonlinearH∞ design approach is derived by solving a
Hamilton-Jacobi inequality following from a result for general nonlinear
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affine systems. Second, integral backstepping (IBS) controllers are also
addressed for the leader-follower formation control problem. Then, an
iterative Linear Quadratic Regulator (iLQR) is derived to solve the prob-
lem of leader-follower formation. The simulation results from all types
of controllers are compared and robustness performance of theH∞ con-
trollers, fast convergence and small tracking errors of iLQR controllers
over the IBS controllers are demonstrated.

Keywords: Quaternion, Quadrotor UAVs, Leader-follower formation control

1. Introduction

In the last decade, the focus on control single unit quadrotors has expanded
to controlling a team of quadrotors for these to be able to achieve their tasks
in variable weather and complicated environments. Team formation flight also
provides advantages over the use of an individual quadrotor in both civil and
military applications, such as inspection of an inaccessible area, disaster man-
agement, and search and rescue in risky circumstances, etc. Most of these
applications demand more than one quadrotor to accomplish the desired ob-
jective [1, 2]. The leader-follower approach is one of the main approaches of
formation control design.

Distributed and decentralised control techniques were used in the literature
to solve the leader-follower control problem. The distributed control technique
assumes that not all followers receive the leader’s information and there is a kind
of cooperation among them [3–14], while the decentralised control technique
proposes that all followers are able to receive the leader’s information [15–24].
Different controllers have been implemented with both distributed and decen-
tralised control techniques.

1.1. Distributed Control Technique

A robust LQR controller was proposed for individual quadrotors and team
formation as well in [6]. The controller was designed for a linearised sys-
tem around the hovering point. The simulation results indicated the ability of
the controller to overcome the changes in communication topology among the
robots with no dynamic effects. A NNs controller was presented in [3] for ad-
dressing the leader-follower problem. These two studies used Lyapunov theory
to analyse the controller stability.
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A BS controller was discussed in [8] based on graph theory to maintain
the distance among the robots and in [5] with balanced graph and strong con-
nection among the robots. The quadrotors’ dynamic systems were linearised
around the hovering point and a good performance was obtained in normal cir-
cumstances. A distributed cohesive motion control scheme was presented in [9]
for 3D motion to maintain the distance among robots. This technique was devel-
oped to become a decentralised technique and significant attempts to deal with
decentralised control techniques have been made. Three time scale controllers
based on the sliding mode controller were proposed in [4] for dealing with the
quadrotor formation problem. The controllers were used for the path tracking,
attitude tracking and velocity in order to keep the formation and maintain the
distance among the robots with the presence of external disturbance affecting
the leader robot only. The simulation results proved the effectiveness of the
proposed scheme.

A nonlinear control theory was presented to ensure the stability of quadro-
tors team formation in [7]. The wireless communication among the team was
obtained via medium access control protocols. Experimental tests verified the
proposed algorithm with time delay consideration. In [10] the problem of the
leader-follower consensus of a swarm of rigid body space crafts system was
analysed based on quaternion representation using a distributed control tech-
nique. They assumed that the communication between two neighbouring fol-
lowers is bidirectional and that all followers can receive the leader information.
Stability analysis was obtained via Lyapunov theory and the simulation results
proved the attitude and angular velocity tracking stability. In [11] a MPC tech-
nique with integrated trajectory planning was analysed with a planning horizon
for both team formation and obstacle avoidance. The method showed good sim-
ulation results. A distributed coordinated control scheme was proposed by [12]
to solve the problem of time-delay in leader-follower team formation commu-
nication of quadrotors and the simulation results under sufficient conditions
demonstrated the validity of the presented control technique. Xiwang et al. [13]
proposed a consensus-based approach for the time varying formation control
problem. The simulation and the practical test of five quadrotors demonstrated
the validation of the proposed control approach. A vision-based servoing dis-
tributed control approach was presented in [14], where the quadrotors equipped
cameras to track a moving target which provided the position information to be
used for controllers.
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1.2. Decentralised Control Technique

Abdessameud and Tayebi [15] proposed a procedure which depends on a quater-
nion representation and is split up into translational and rotational control design
under the upper bounded translational control input. Analysis of the closed-loop
system stability was achieved using Lyapunov theory. The proposed strategy
took 8 seconds to catch the desired formation shape. A hybrid supervisory
control based on a polar partitioning approach was suggested in [16] for the
team formation problem and for collision avoidance as well. The combination
of discrete quadrotors dynamic system and the supervisor was achieved using
the parallel composition and the simulation results displayed that this method
allows the supervisors to achieve a free collision in normal environments. A
MPC technique was proposed in [21], where its hierarchical control effective-
ness was compared with the potential field technique. The stability of the feed-
back controller based on fluid dynamic models in [17] was obtained based on
smoothed-particle hydrodynamic. The simulation results of the above methods
validated the proposed approaches.

Authors in [18] proposed the trajectory planners and feedback controllers
for following the planned trajectory. Next they proposed a nonlinear decen-
tralised controller for an aggressive formation problem in the micro quadrotors
team in [19]. Communication failures and network time delays impact on team
formation efficiency were considered. Local information of neighbour robots in
the team was used for individual trajectory planning. Preserving the required
form was based on the status estimation of neighbour robots. Then the authors
presented two approaches to overcome the problem of concurrent assignment
and planning of trajectories (CAPT) for the quadrotors team, a decentralised
D-CAPT and centralised C-CAPT in [20]. The decentralised D-CAPT and cen-
tralised C-CAPT results were compared in simulation and practice and the ex-
perimental results demonstrated a good performance in indoor application.

In [25] a human user for teleoperation with a haptic device was proposed
for the quadrotor team formation control problem with the cooperation of a BS
controller. The simulation results revealed the ability of the human user to tele-
operate in order to perform the formation. A triangle formation control of three
quadrotors using optimal control techniques via the Pontryagin maximum prin-
ciple was presented in [26] and the simulation results showed the effectiveness
of using team formation rather than using an individual quadrotor in terms of
fuel consumption. In [27] a consensus problem of swarm systems was discussed
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to obtain the time-varying formation based on double-integrator system mod-
elling. The experimental results of the three quadrotors in formation verified
the effectiveness of the proposed approach in dynamic-free conditions.

A new developed framework gathering with a nonlinear MPC technique was
presented in [28] to solve the problem of coalition formation. The simulation
results showed a zero steady state error in free disturbance and dynamic circum-
stances. Koksal et al. [22] presented an adaptive formation scheme for quadro-
tors leader-follower formation. They proposed a distributed control scheme for
the kinematic part, an adaptive LQ controller for pitch and roll angles, pro-
portional control for yaw angle and a PID controller for altitude. Several sce-
narios were implemented in simulation and experiment to validate the algo-
rithm. In [23] a combination of LQR and SM controllers were proposed for a
2D quadrotors leader-follower formation, where the LQR controller was used
for position control while two SM controllers were used for the attitude and
for maintaining the distance between the robots. The simulation results demon-
strated the successfulness of combining the two control techniques. A BS con-
trol approach with nonlinear controllers was introduced for handling the team
formation problem in [24] and the simulation results proved the effectiveness of
the proposed controllers.

The results in most of the previous papers on leader-follower formation
control of multi-quadrotor system did not consider the effect of external dis-
turbances, such as payload changes (or mass changes), wind disturbance, in-
accurate model parameters, etc., which often affected the quadrotors’ control
performance. Therefore, a quadrotor controller must be robust enough in order
to reject the effect of disturbances and cover the change in model parameter
uncertainties and external disturbances. Robust state feedback controllers are
very demanding when dealing with the quadrotor control problem. TheH∞

control approach was able to attenuate the disturbance energy by measuring the
ratio between the energy of cost vector and the energy of disturbance signal
vector [29].

The rest of this chapter is organized as follows: Section 2 presents the
quadrotor dynamical model derivation based on quaternion representation. Sec-
tion 3 introduces the leader-follower formation control problem with one leader
and one follower in a distributed way. Section 4 provides a review onH∞

optimal control approach. The main result of this approach is given as well,
including the details of the designed state feedback controller for the formation
problem. In section 5, presents the integral backstepping concept and the forma-
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tion controllers with its stability analysis. In section 6, presents the derivation
of iLQR controller for the leader and the follower. Section 7 shows the per-
formance of the presented controllers while the conclusions of this study are
indicated in section 8.

2. Mathematical Model

To control the motion and rotation of the quadrotor UAV, the mathematical dy-
namic model should be achieved. The quadrotor UAV system has a nonlinear
dynamic system and complicated structure; therefore, it is difficult to represent
its motion and rotation in a simple model. The dynamic model of the quadrotor
UAV depends on some assumptions [30]:

• The structure of the quadrotor is rigid and symmetrical;

• The propellers are rigid;

• The centre of mass and body fixed frame are coincides;

• Thrust and drugs are proportional to the square of the propellers; and

• The difference of gravity by altitude or the spin of the earth is minor.

According to these assumptions, the mathematical model can be derived to
perform the quadrotor UAV fuselage dynamics in space, where it will be easy to
add to it the effects of aerodynamic forces generated by the rotation of the pro-
pellers. The coordinate reference system of the quadrotor includes two frames
of reference, the inertial (earth fixed) frame mentionedI(xI , yI , zI) and the
rigid (body fixed) frame mentionedB(xB, yB, zB). Several techniques can be
used to perform the rigid body rotation in space such as Euler angles, Quater-
nions and Tait-Bryan angles [8]. The method used to describe the position and
orientation of the quadrotor is the quaternion method. It is a hyper complex
number of 4-tuple(q0, q1, q2, q3) ∈ R

4 which can be written in many ways as
Q = q0 + q1i+ q2j + q3k andQ = [q0,q

T ]T [31] [32] [33].
The north east down (NED) coordinate system is used to parametrise the

dynamic model of the quadrotor with an angle of one-axis rotationα around the
Euler axis of unit vectork ∈ R

3 which has a direct physical connection and can
be written as:

Q =

[

cos α
2

k sin α
2

]

(1)
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wherek = q
‖q‖

and α = 2arccos q0. Moreover, as any complex number the
norm, complex conjugate and inverse of the quaternion can be defined as:

‖Q‖ =
√

q2
0
+ q2

1
+ q2

2
+ q2

3
(2)

Q̄ =









q0
−q1
−q2
−q3









(3)

Q−1 =
Q̄

‖Q‖
. (4)

The unit quaternion can be used to represent the coordinate transforma-
tion between the inertial frameI and the body frameB by defining the mul-
tiplication and the inverse quaternion. The multiplication of two quaternions
Q = [q0,q

T ]T andQ′ = [q′0,q
′T ]T is defined as:

Q⊗Q′ =

[

q0 −qT

q q0I + S(q)

] [

q′0
q′

]

=

[

q0q
′

0 − qTq′

q′0q+ q0q
′ + S(q)q′

]

.

The inverse unit quaternion is defined asQ−1 = [q0,−qT ]T for Q = [q0,q
T ]T .

A vectorxI ∈ R
3 in the inertial frame can be expressed as a vectorxB ∈ R

3 in
the body frame viaxB = RTxI . Using x̄ = [0, xT ]T , the transformation from
the inertial frame to the body frame is expressed asx̄B = Q−1 ⊗ x̄I ⊗Q.

And if the norm of the quaternion is equal to one‖Q‖ = 1, it means that
the inverse is the same as the conjugate, which is the case used to represent the
coordinate transformation between the inertial frameI and the body frameB
by defining the multiplication and the inverse quaternion. The multiplication of
two quaternionsQ = [q0,q

T ]T andQ′ = [q′0,q
′T ]T is defined as:

Q⊗Q′ =

[

q0 −qT

q q0I + S(q)

] [

q′0
q′

]

=

[

q0q
′

0 − qTq′

q′0q+ q0q
′ + S(q)q′

]

(5)
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whereS : R4 → R
3×3 is the skew-symmetric cross product matrix, andQS :

R
4 → R

4×4 is the quaternion skew-symmetric cross matrix and they are defined
as:

S(x) =





0 −x3 x2
x3 0 −x1
−x2 x1 0



 (6)

QS(Q) =









q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0









(7)

Q̄S(Q) =









q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0









. (8)

The derivative of the quaternionQ is linked with the quadrotor angular velocity
as follows:

Q̇′

ω(Q,ω
′) =

1

2

[

0
ω′

]

⊗Q =
1

2
Q̄S(Q)

[

0
ω′

]

(9)

Q̇ω(Q,ω) =
1

2
Q⊗

[

0
ω

]

=
1

2
QS(Q)

[

0
ω

]

. (10)

However, as mentioned above, the quaternion is a unit vector which is utilised
as a rotation operator. Then the rotation from the fixed frame to the body frame
requires a rotational matrix which is the same as in the Euler angles method but
it does not contain trigonometric functions can be evaluated by rotating a vector
from the fixed frame to the body frame as follows:

[

0
k′

]

= Q⊗

[

0
k

]

⊗Q−1 = Q⊗

[

0
k

]

⊗ Q̄

= Q̄S(Q)
T
QS(Q)

[

0
k

]

=

[

1 0T

0 Rq

] [

0
k

]

(11)
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wherek ∈ R
3 is a vector to be rotated from the fixed frame to the body frame

and

Rq =





q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23



 ;

(12)
that isk′ = Rqk andk = RTq k

′.
Computing the quaternion parameters from Euler angles or computing the

Euler angles from the quaternion parameters can be presented using the rela-
tionships [34]:

Q =











cos(ϕ
2
) cos( θ

2
) cos(ψ

2
) + sin(ϕ

2
) sin( θ

2
) sin(ψ

2
)

sin(ϕ
2
) cos( θ

2
) cos(ψ

2
)− cos(ϕ

2
) sin( θ

2
) sin(ψ

2
)

cos(ϕ
2
) sin( θ

2
) cos(ψ

2
) + sin(ϕ

2
) cos( θ

2
) sin(ψ

2
)

cos(ϕ
2
) cos( θ

2
) sin(ψ

2
)− sin(ϕ

2
) sin( θ

2
) cos(ψ

2
)











(13)





ϕ

θ

ψ



 =





arctan 2(2(q0q1 + q2q3), q
2
0 − q21 − q22 + q23)

arcsin(2(q0q2 − q1q3))
arctan 2(2(q0q3 + q1q2), q

2
0 + q21 − q22 − q23)



 . (14)

2.1. Quaternion Kinematics

The kinematic equations of the movements of a unit quaternionQ(t) can be
driven by rotating the quadrotor with its angular velocity vectorω in the three
directions to make a slight change in the movement of the quadrotor∆t and the
change will be as follows [35]:

Q(t+∆t) =









cos(∆α
2
)I + sin(∆α

2
)









0 n3 −n2 n1
−n3 0 n1 n2
n2 −n1 0 n3
−n1 −n2 −n3 0

















Q(t)

(15)
where∆α = ω∆t. Then if ∆t is considered small, these expressions hold,
cos(∆α

2
) ∼= 1, sin(α

2
) ∼= 1

2
ω∆t. According to these assumptions, Equation (15)

can be written as:

Q(t+∆t) =
[

1 + 1

2
S(ω)∆t

]

Q(t). (16)
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Thus the kinematic quaternion movement is

Q̇ = lim
∆t→0

Q(t+∆t)−Q(t)

∆t
=

1

2
S(ω)Q (17)

where

SS(ω) =









0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0









. (18)

Then the time derivative of the quaternion kinematics can be written in the
following two forms:

Q̇ =
1

2
Q⊗

[

0
ω

]

=
1

2

[

0
ω

]

⊗Q. (19)

2.2. Quadrotor Kinematics and Dynamics

The quaternion formula of the dynamics of a solid shape under the effect of
external forces applied to the centre mass which is distinct in the body fixed
frame can be separated into translational and rotational motions and it can be
defined as:

2.2.1. For Translational Motion

m
dv

dtI
= f. (20)

Applying the Coriolis equation to (20) we have

m
dv

dtI
= m(

dv

dtI
+ ω

B/I × v) = f. (21)

Applying Equation (21) in body coordinates withvB = (u, υ, w)T andωB

B/I
=

(ωx, ωy, ωz)
T it will be:

m





u̇

υ̇

ẇ



 = m(0 +





ωx
ωy
ωz



×





u

υ

w



) =





fx
fy
fz



 (22)
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or




u̇

υ̇

ẇ



 =





ωzυ − ωyw

ωxw − ωzu

ωyu− ωxυ



+
1

m





fx
fy
fz

.



 (23)

2.2.2. For Rotational Motion

From Newtons second law
dhB

dtI
= m. (24)

Applying the equation of Coriolis to Equation (24) we get

dh

dtI
=

dh

dtB
+ ω

B/I × h = m. (25)

From the body coordinate we havehB = JωB

B/I
, then Equation (25) can be

resolved in the body coordinate frame. The equations of motion of the quadrotor
UAVs depend on the two frames which can be written as in [36].





Jx 0 0
0 Jy 0
0 0 Jz









ω̇x
ω̇y
ω̇z



 = 0+





ωx
ωy
ωz



×





Jx 0 0
0 Jy 0
0 0 Jz









ωx
ωy
ωz



 =





τϕ
τθ
τψ





(26)
or





ω̇x
ω̇y
ω̇z



 =







1

Jx
0 0

0 1

Jy
0

0 0 1

Jz






(





ωyωz(Jy − Jz)
ωxωz(Jx − Jz)
ωxωy(Jx − Jy)



+





τϕ
τθ
τψ



). (27)

or




ω̇x
ω̇y
ω̇z



 =







ωyωz(Jy−Jz)

Jx
ωxωz(Jx−Jz)

Jy
ωxωy(Jx−Jy)

Jz






+







τϕ
Jx
τθ
Jy
τψ
Jz






. (28)

Therelationship between position and velocities is given by

d

dt





x

y

z



 = RTθ





u

υ

w



 . (29)
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The total force applied to the quadrotor is given byf = f1 + f2 + f3 + f4 and
thetorque applied on the UAVs body which is created by the propellersτ and is
equal to the difference between each pair of opposite propellers is





τϕ
τθ
τψ



 =





l(f4 − f2)
l(f1 − f3)

f2 + f4 − f1 − f3



 . (30)

hence, the effect of gravity can be written as:

fg = Rq





0
0

−mg



 =





−2mg(q1q3 + q0q2)
−2mg(q2q3 − q0q1)

−mg(q20 − q21 − q22 + q23)



 . (31)

Then the translational equations can be written as:




u̇

υ̇

ẇ



 =





ωzυ − ωyw

ωxw − ωzu

ωyu− ωxυ



+





−2mg(q1q3 + q0q2)
−2mg(q2q3 − q0q1)

−mg(q20 − q21 − q22 + q23)



+
1

m





0
0
f





(32)




ẍ

ÿ

z̈



 =





0
0
−g



+





2(q1q3 + q0q2)
2(q2q3 − q0q1)

q20 − q21 − q22 + q23





f

m
. (33)

In the rotational motion part, two differential equations hold: the quaternion and
the angular velocity differential equation. The quaternion rate equation can be
rewritten as:









q̇0
q̇1
q̇2
q̇3









=
1

2









q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

















0
ωx
ωy
ωz









. (34)

Then the full model for the quadrotor kinematics and dynamics can be sum-
marised as follows:





ẍ

ÿ

z̈



 =





0
0
−g



+





2(q1q3 + q0q2)
2(q2q3 − q0q1)

q20 − q21 − q22 + q23





f

m
(35)
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q̇0
q̇1
q̇2
q̇3









=
1

2









q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

















0
ωx
ωy
ωz









(36)





ω̇x
ω̇y
ω̇z



 =







ωyωz(Jy−Jz)

Jx
ωxωz(Jx−Jz)

Jy
ωxωy(Jx−Jy)

Jz






+







τq1
Jxτq2
Jy
τq3
Jz






. (37)

The full mathematical model is


















































































ẍ = 2(q1q3 + q0q2)
f
m

ÿ = 2(q2q3 − q0q1)
f
m

z̈ = −g + (q20 − q21 − q22 + q23)
f
m

q̇0 =
1

2
(−q1ωx − q2ωy − q3ωz)

q̇1 =
1

2
(q0ωx − q3ωy + q2ωz)

q̇2 =
1

2
(q3ωx + q0ωy − q1ωz)

q̇3 =
1

2
(−q2ωx + q1ωy + q0ωz)

ω̇x = ωyωz
Jy−Jz
Jx

− Jr
Jx
ωyΩ+ l

Jx
τq1

ω̇y = ωzωx
Jy−Jz
Jx

+ Jr
Jx
ωxΩ+ l

Jx
τq2

ω̇z = ωxωy
Jy−Jz
Jx

+ l
Jx
τq3

. (38)

3. Leader-Follower Formation Problem for Quadrotors

3.1. Quadrotor Model

To describe the orientation of a quadrotor, the quaternion representation is used,
which is able to alleviate the singularity problem caused by the Euler angles
representation . The full dynamic model of a quadrotor can be written as:























ṗi = vi

v̇i = −ge+ fi
mi
Rie

[

q̇i0
q̇i

]

= 1

2

[

−qTi ωi
(qi0I + S(qi))ωi

]

Jiω̇i = −S(ωi)Jiωi −G(ωi) + τi

(39)
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wherei isL for the leader andF for the follower,mi is the quadrotor mass,
ωi = [ωix, ωiy, ωiz]

T is the angular velocity in the body frame,Ji is the3 × 3
diagonal matrix representing three inertial moments in the body frame,G(ωi)
represents the gyroscopic effect,τi is the torque vector applied on the quadrotor,
the unit quaternion[qi0, qi1, qi2, qi3]T = [qi0,q

T
i ]
T whereqi = [qi1, qi2, qi3]

T is
the vector part andqi0 is the scalar part of the quaternion,vi = [vix, viy, viz]

T

is the linear velocity,pi = [xi, yi, zi]
T is the position vector, the vectore =

[0, 0, 1]T , andI is the3× 3 unit matrix. The rotation matrixRi is related to the
unit quaternion through the Rodrigues formula:

Ri = (qi0
2 − qTi qi)I + 2qiq

T
i + 2qi0S(qi)

andS is the skew-symmetric cross product matrix:

S(qi) =





0 −qi3 qi2
qi3 0 −qi1
−qi2 qi1 0





3.2. Leader-Follower Formation Control Problem

One leader and one follower are considered in the leader-follower formation
control problem to be solved in this work. The leader control problem is formu-
lated as a trajectory tracking problem, and the follower control problem is also
formulated as a tracking problem, but with a different tracking target.

The follower will keep its yaw angle (qF0, qF3) as the same as the leader
when it maintains the formation pattern. It will moves to a desired position
pFd, which is determined by a desired distanced, a desired incidence angleρ,
and a desired bearing angleσ. A new frameF ′ is defined by the translation of
the leader frameL to the frame with the desired follower positionpFd as the
origin. As shown in figure 1, the desired incidence angle is measured between
the desired distanced andx − y plane in the new frameF ′, and the desired
bearing angle is measured betweenx axis and the projection ofd in x− y plane
in the new frameF ′. The desired positionpFd is

pFd = pL −RTLd





cos ρ cosσ
cos ρ sinσ

sin ρ





wherepL is the leader position.
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Now, the formation control problem for the follower is to satisfy the follow-
ing conditions:







limt→∞(pFd − pF ) = 0
limt→∞(qL0 − qF0) = 0
limt→∞(qL3 − qF3) = 0

(40)

The leader just tracks a desired trajectory represented by (pLd, qL0d, qL3d).
So, the formation control problem for the leader is to satisfy the following con-
ditions:







limt→∞(pLd − pL) = 0
limt→∞(qL0d − qL0) = 0
limt→∞(qL3d − qL3) = 0

(41)

In summary, the leader-follower formation control problem to be solved in
this work is a distributed control scheme, i.e. the leader and the follower have
their own individual controllers without the need for a centralised unit. Assume
both the leader and the follower are able to obtain their own pose information
and the follower is able to obtain the leader’s pose information via wireless
communication. The design goal of the controllers is to find the state feedback
control law for the thrust and torque inputs for both the leader and the follower.
The leader-follower formation control problem is solved if both the conditions
(40) and (41) are satisfied.

The communication among the agents is assumed to be available. The po-
sitionpL, quaternion componentsqL0 andqL3 of the leaderL and its first and
second derivativeṡqL0, q̈L0, q̇L3 andq̈L3 are assumed available and measurable.
The linear velocity of the leaderL and its derivativevL and v̇L are assumed
bounded and available for the follower.

4. Formation H∞ Controllers

The controller design for the leader and the follower is based onH∞ suboptimal
control. The followerH∞ controller is designed by following the introduction
of an error state model, and the introduction of aH∞ control theorem for general
affine systems. Then the leaderH∞ controller is briefly presented later.
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Figure 1. Body frames in formation.

4.1. Follower State Error Model

The control strategy for the follower is to track the desired positionpFd. The
tracking errors for the follower according to the nonlinear dynamic system (39)
can be written as:

p̃F = pFd − pF

ṽF = vFd − vF
[

q̃F0

q̃F

]

=

[

qF0d − qF0

qFd − qF

]

ω̃F = ωFd − ωF

wherevFd = ṗFd is the desired linear velocity,[qF0d,qFd]
T = [qL0, 0, 0, qL3]

T

is the desired quaternion, and[ωFd] = [0, 0, 0]T is the desired angular velocity.
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Then equation (39) can be rewritten in an error form as:


























˙̃pF = ṽF
˙̃vF = v̇Fd + ge− fF

mF
RFe

[

˙̃qF0

˙̃qF

]

= 1

2

[

q̃TF ω̃F
− (q̃F0I + S(q̃F )) ω̃F

]

˙̃ωF = J−1

F S(ω̃F )JF ω̃F + J−1

F G(ω̃F )− J−1

F τF

(42)

Consider the external disturbancesdF = [dTvF ,d
T
ωF

]T applied to the nonlin-
ear system (42), wheredvF = [dvFx , dvFy , dvFz ]

T , dωF = [dωFx , dωFy , dωFz ]
T

are the disturbance vectors applied top̃F and ω̃F , respectively. Those distur-
bances are used here to model the changes of mass and moment, and the wind
disturbances.

Let

xF =













p̃F
q̃F0

q̃F
ṽF
ω̃F













uF =

[

v̇Fd + ge− fF
mF

RFe

G(ω̃F )− τF

]

The nonlinear dynamic system (42) with the disturbance vectordF can be writ-
ten into an affine nonlinear form:

ẋF = f(xF ) + g(xF )uF + k(xF )dF (43)

where

f(xF ) =













ṽF
1

2
q̃TF ω̃F

−1

2
(q̃F0I + S(q̃F )) ω̃F

03×1

J−1

F S(ω̃F )JF ω̃F













g(xF ) = k(xF ) =













03×3 03×3

01×3 01×3

03×3 03×3

I 03×3

03×3 J−1

F
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4.2. H∞ Suboptimal Control Approach

In this section, a brief overview onH∞ suboptimal control approach is summa-
rized for systems of the form:

{

ẋ = f(x) + g(x)u+ k(x)d
y = h(x)

(44)

wherex ∈ R
n is a state vector,u ∈ R

m is an input vector,y ∈ R
p is an output

vector, andd ∈ R
q is a disturbance vector. Detailed information onH∞ control

approach can be found in [29].
We assume the existence of an equilibriumx∗, i.e. f(x∗) = 0, and we also

assumeh(x∗) = 0. Given a smooth state feedback controller:
{

u = l(x)
l(x∗) = 0

(45)

TheH∞ suboptimal control problem considers theL2-gain from the disturbance
d to the vector ofz = [yT ,uT ]T . This problem is defined below.

Problem 1. Let γ be a fixed nonnegative constant. The closed loop system
consisting of the nonlinear system (44) and the state feedback controller(45) is
said to haveL2-gain less than or equal toγ fromd to z if

∫ T

0

‖z(t)‖2dt ≤ γ2
∫ T

0

‖d(t)‖2dt+K(x(0)) (46)

for all T ≥ 0 and all d ∈ L2(0, T ) with initial condition x(0), where0 ≤
K(x) <∞ andK(x∗) = 0.

For the nonlinear system (44) andγ > 0, define the Hamiltonian
Hγ(x, V (x)) as below:

Hγ(x, V (x)) =
∂V (x)

∂x
f(x) +

1

2

∂V (x)

∂x

[

1

γ2
k(x)kT (x)− g(x)gT (x)

]

∂TV (x)

∂x

+
1

2
hT (x)h(x) (47)

Theorem 1. [29] If there exists a smooth solutionV ≥ 0 to the Hamilton-
Jacobi inequality:

Hγ(x, V (x)) ≤ 0; V (x∗) = 0 (48)
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then the closed-loop system for the state feedback controller:

u = −gT (x)
∂TV (x)

∂x
(49)

hasL2-gain less than or equal toγ, andK(x) = 2V (x).

The nonlinear system (44) is called zero-state observable if for any trajec-
tory x(t) such thaty(t) = 0,u(t) = 0,d(t) = 0 impliesx(t) = x∗.

Proposition 1. [29] If the nonlinear system(44) is zero-state observable and
there exists a proper solutionV ≥ 0 to the Hamilton-Jacobi inequality, then
V (x) > 0 for x(t) 6= x∗ and the closed loop system(44), (49) with d = 0 is
globally asymptotically stable.

4.3. FollowerH∞ Controller

TheH∞ suboptimal control approach will be used to design the follower con-
troller in this section. The following form of energy functionV is suggested for
the dynamic model (43):

V (xF ) =
1

2

[

p̃TF q̃TF ṽTF ω̃TF
]









CFpI 03×3 KFp 03×3

03×3 03×3 03×3 JFKFq

KFp 03×3 KFv 03×3

03×3 JFKFq 03×3 JFKFω

















p̃F

q̃F

ṽF

ω̃F









+ 2CFq(1− q̃F0) (50)

where diagonal matricesKFp > 0,KFq > 0,KFv > 0,KFω > 0 are the
proportional and derivative gains for translational and rotational parts.CFp >

0, CFq > 0 are constants. We have:

∂V (xF )

∂xF
= [CFpp̃F +KFpṽF −2CFq JFKFqω̃F

KFpp̃F +KFvṽF JFKFqq̃F + JFKFωω̃F ]

Accordingly the controller is

uF = −gT (xF )
∂TV (xF )

∂xF

= −

[

KFpp̃F +KFvṽF
KFqq̃F +KFωω̃F

]

(51)
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The following weighting matrices are chosen with diagonal matricesWF1 > 0,
WF2 > 0,WF3 > 0 andWF4 > 0.

h(xF ) = [
√
WF1p̃

T
F

√
WF2q̃

T
F

√
WF3ṽ

T
F

√
WF4ω̃

T
F ]
T

whichsatisfiesh(x∗F ) = 0, where the equilibrium pointx∗F = [01×3, 1, 01×3,

01×3, 01×3]
T . And we know

V (x∗F ) = 0 (52)

Now the team formation problem of the quadrotors under the disturbancedF is
defined below.

Problem 2. Given the equilibrium pointx∗F , find the parametersKFp, KFq,
KFv, KFω, CFp, CFq in order to enable the closed-loop system(43) with the
above controlleruF (51) to haveL2-gain less than or equal toγF .

Next we want to show our main result in the following theorem.

Theorem 2. If the following conditions are satisfied, the closed-loop system
(43) with the above controlleruF (51) hasL2-gain less than or equal toγF .
And the closed loop system(43), (51) with dF = 0 is asymptotically locally
stable for the equilibrium pointx∗F .

CFpCFq ≥ 0

CFpKFv ≥ K2

Fp

CFpCFqKFvKFω ≥ CFpJFK
2

FqKFv − JFK
2

FqK
2

Fp + CFqK
2

FpKFω

CFp = KFpKFv

(

1−
1

γ2F

)

CFq = KFqKFω

(

1

γ2F
− 1

)

‖KFp‖
2 ≥

γ2F ‖WF1‖

γ2F − 1
(53)

‖KFq‖
2 ≥

γ2F ‖WF2‖

γ2F − 1
(54)

‖KFv‖
2 ≥

γ2F (‖WF3‖+ 2‖KFp‖)

γ2F − 1
(55)

‖KFω‖
2 ≥

γ2F (‖WF4‖ −
√
3‖JF ‖‖KFq‖)

γ2F − 1
(56)

‖WF1‖ > 0; ‖WF2‖ > 0; ‖WF3‖ > 0; ‖WF4‖ > 0
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Proof. With the given conditions, we need to show (1)V (xF ) ≥ 0 and (2) the
HamiltonianHγF (xF , V (xF )) ≤ 0. Then the first part of the theorem can be
proved by using Theorem 1.

(1) Since

2(1− q̃F0) = (1− q̃F0)
2 + q̃TF q̃F

≥ q̃TF q̃F

then

V (xF ) ≥
1

2

[

p̃TF q̃TF ṽTF ω̃TF
]









CFpI 03×3 KFp 03×3

03×3 CFqI 03×3 JFKFq

KFp 03×3 KFv 03×3

03×3 JFKFq 03×3 JFKFω

















p̃F

q̃F

ṽF

ω̃F









Thus the condition forV (xF ) ≥ 0 are

CFpCFq ≥ 0

CFpKFv ≥ K2
Fp

CFpCFqKFvKFω ≥ CFpJFK
2
FqKFv − JFK

2
FqK

2
Fp + CFqK

2
FpKFω

(2)

HγF
(xF , V (xF )) = p̃T

FCFpṽF − q̃T
FCFqω̃F + ṽT

FKFpṽF −
1

2
ω̃T
FJFKFq(q̃F0I

+ S(q̃F ))ω̃F + q̃T
FKFqS(ω̃F )JF ω̃F + ω̃T

FKFωS(ω̃F )JF ω̃F

+
1

2

(

1

γ2F
− 1

)

‖KFpp̃F +KFvṽF ‖
2 +

1

2

(

1

γ2F
− 1

)

‖KFqq̃F

+KFωω̃F ‖
2 +

1

2
‖WF1‖‖p̃F ‖

2 +
1

2
‖WF2‖‖q̃F ‖

2

+
1

2
‖WF3‖‖ṽF ‖

2 +
1

2
‖WF4‖‖ω̃F ‖

2

By choosing

CFp = KFpKFv

(

1−
1

γ2F

)

CFq = KFqKFω

(

1

γ2F
− 1

)
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then

HγF (xF , V (xF )) = ṽTFKFpṽF + q̃TFKFqS(ω̃F )JF ω̃F −
1

2
ω̃TFJFKFq(q̃F0I

+ S(q̃F ))ω̃F + ω̃TFKFωS(ω̃F )JF ω̃F +
1

2

(

1

γ2F
− 1

)

(‖KFp‖
2‖p̃F ‖

2 + ‖KFv‖
2‖ṽF ‖

2) +
1

2

(

1

γ2F
− 1

)

(‖KFq‖
2‖q̃F ‖

2 + ‖KFω‖
2‖ω̃F ‖

2) +
1

2
‖WF1‖‖p̃F ‖

2

+
1

2
‖WF2‖‖q̃F ‖

2 +
1

2
‖WF3‖‖ṽF ‖

2 +
1

2
‖WF4‖‖ω̃F ‖

2

By using‖S(ω̃F ))‖ = ‖ω̃F ‖, |ṽF TKFpṽF | ≤ ‖KFp‖‖ṽF ‖
2, ‖(q̃F0I +

S(q̃F ))‖
≤

√
3, |ω̃TFJFKFq(q̃F0I + S(q̃F ))ω̃F | ≤ ‖KFq‖‖JF ‖‖ω̃F ‖

2‖(q̃F0I +
S(q̃F ))‖,

q̃TFKFqS(ω̃F )JF ω̃F = 0 andω̃TFKFωS(ω̃F )JF ω̃F = 0 we have

HγF
(xF , V (xF )) ≤

−
√
3

2
‖KFq‖‖JF ‖‖ω̃F ‖

2 + ‖KFp‖‖ṽF ‖
2 +

1

2

(

1

γ2

F

− 1

)

(‖KFp‖
2‖p̃F ‖

2 + ‖KFv‖
2‖ṽF ‖

2) +
1

2

(

1

γ2

F

− 1

)

(‖KFq‖
2‖q̃F ‖

2

+ ‖KFω‖
2‖ω̃F ‖

2) +
1

2
‖WF1‖‖p̃F ‖

2 +
1

2
‖WF2‖‖q̃F ‖

2

+
1

2
‖WF3‖‖ṽF ‖

2 +
1

2
‖WF4‖‖ω̃F ‖

2

Thus, the conditions forHγF (xF , V (xF )) ≤ 0 are

1

2

(

1

γ2F
− 1

)

‖KFp‖
2 +

1

2
‖WF1‖ ≤ 0

1

2

(

1

γ2F
− 1

)

‖KFq‖
2 +

1

2
‖WF2‖ ≤ 0

‖KFp‖+
1

2

(

1

γ2F
− 1

)

‖KFv‖
2 +

1

2
‖WF3‖ ≤ 0

−
√
3

2
‖JF ‖‖KFq‖+

1

2

(

1

γ2F
− 1

)

‖KFω‖
2 +

1

2
‖WF4‖ ≤ 0
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i.e.

‖KFp‖
2 ≥

γ2F ‖WF1‖

γ2F − 1

‖KFq‖
2 ≥

γ2F ‖WF2‖

γ2F − 1

‖KFv‖
2 ≥

γ2F (‖WF3‖+ 2‖KFp‖)

γ2F − 1

‖KFω‖
2 ≥

γ2F (‖WF4‖ −
√
3‖JF ‖‖KFp‖)

γ2F − 1

It is trivial to show that the nonlinear system (43) is zero-state observable
for the equilibrium pointx∗F . Further due to the fact thatV (xF ) ≥ 0 and it
is a proper function (i.e. for eachβ > 0 the set{xF : 0 ≤ V (xF ) ≤ β}
is compact), the closed-loop system (43), (51) withdF = 0 is asymptotically
locally stable for the equilibrium pointx∗F according to Proposition 1. This
proves the second part of the theorem.

Remark 1. It should be noted that the proof of Theorem 2,limt→∞ p̃F = 0,
limt→∞ q̃F = 0, limt→∞ ṽF = 0 andlimt→∞ ω̃F = 0, meets the conditions of
(40).

Finally fromuF , we can have

uF =

[

v̇Fd + ge− fF
mF

RFe

G(ω̃F )− τF

]

= −

[

KFpp̃F +KFvṽF
KFqq̃F +KFωω̃F

]

Then the total force and the torque vector applied to the follower,fF andτF
are obtained,

fF =(kFz z̃F + kFvz ṽFz + v̇Lz − d(R31 cos ρ cosσ +R32 cos ρ sinσ +R33 sin ρ)

+ g)
mF

q2F0
− q2F1

− q2F2
+ q2F3

τF =KFqq̃F +KFωω̃F +G(ω̃F )
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where

R̈TL =





R11 R12 R13

R21 R22 R23

R31 R32 R33





4.4. LeaderH∞ Controller

The control strategy for the leader is to track a desired trajectory
(pLd, qL0d, qL3d). The tracking errors for the leader according to the nonlin-
ear dynamic system (39) can be written as:

p̃L = pLd − pL

ṽL = vLd − vL
[

q̃L0
q̃L

]

=

[

qL0d − qL0
qLd − qL

]

ω̃L = ωLd − ωL

whereqL0d,qLd,vLd, ωLd are assumed to be constant for the desired tracking
trajectory. Then equation (39) can be rewritten in an error form as:



























˙̃pL = ṽL
˙̃vL = ge− fL

mL
RLe

[

˙̃qL0
˙̃qL

]

= 1

2

[

q̃TLω̃L
− (q̃L0I + S(q̃L)) ω̃L

]

˙̃ωL = J−1

L S(ω̃L)JLω̃L + J−1

L G(ω̃L)− J−1

L τL

(57)

Let

xL =













p̃L
q̃L0
q̃L
ṽL
ω̃L













uL =

[

ge− fL
mL

RLe

G(ω̃L)− τL

]
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The nonlinear dynamic system (57) with the disturbance vectordL can be
written into an affine nonlinear form:

ẋL = f(xL) + g(xL)uL + k(xL)dL (58)

where

f(xL) =













ṽL
1

2
q̃TLω̃L

−1

2
(q̃L0I + S(q̃L)) ω̃L

03×1

J−1

L S(ω̃L)JLω̃L













g(xL) = k(xL) =













03×3 03×3

01×3 01×3

03×3 03×3

I 03×3

03×3 J−1

L













TheH∞ suboptimal control approach is used to design the leader controller.
By defining an energy function, the leader controller is obtained as below by
following a similar procedure for stability analysis.

{

fL = (kLz z̃L + kLvz ṽLz + g) mL
q2
L0

−q2
L1

−q2
L2

+q2
L3

τL = KLqq̃L +KLωω̃L +G(ω̃L)

where p̃L = [x̃L, ỹL, z̃L]
T is the position tracking error vector and̃vL =

[ṽLx, ṽLy, ṽLz]
T is the linear velocity error vector. The diagonal matri-

cesKLp = diag(kLx, kLy, kLz), KLv = diag(kLvx , kLvy , kLvz), KLq =
diag[kLq1 , kLq2 , kLq3 ], KLω = diag (kLωx , kLωy , kLωz) are selected to satisfy
the stability conditions, which have been presented in [37] [38].

5. Integral Backstepping Follower Formation Control

Integral backstepping control is one of popular control approaches for both indi-
vidual and multiple quadrotors. In this section, it will be applied for the leader-
follower formation problem. The leader and the follower desired quaternions
are assumed to beqL1d = qL2d = 0 andqF1d = qL1 andqF2d = qL2. An IBS
controller for the follower is developed first. The IBS controller for the leader is
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from our previous work [39] and its main result is just presented in this section.
They will be used in the simulation later for evaluating the robustness ofH∞

controllers.

5.1. Follower Integral Backstepping Controller

The IBS controller for the follower is to track the leader and maintain a desired
distance between them with desired incidence and bearing angles. We start with
the follower’s translational part, which can be rewritten from the dynamic model
(39) as:

p̈F = f(pF ) + g(pF )fF (59)

wherefF is the total thrust control input and

f(pF ) =
[

0 0 −g
]T

g(pF ) =





uFx/mF

uFy/mF

(qF0
2 − qF1

2 − qF2
2 + qF3

2)/mF





with
{

uFx = 2 (qF1qF3 + qF0qF2)
uFy = 2 (qF2qF3 − qF0qF1)

Then the position tracking error between the leader and the follower can be
calculated as

p̃F = pFd − pF = pL −RTLd





cos ρ cosσ
cos ρ sinσ

sin ρ



− pF (60)

and its derivative

˙̃pF = ṗFd − ṗF = ṗFd − vF (61)

wherevF is a virtual control, and its desirable value can be described as:

vdF = ṗFd + bF p̃F + kF p̄F (62)
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wherebF andkF aretwo positive matrices,̄pF =
∫

p̃Fdt is the integral of the
follower position error and added to minimize the steady-state error.

Now, consider the linear velocity error between the leader and the follower
as:

ṽF = vdF − ṗF (63)

By substituting (62) into (63) we obtain:

ṽF = ṗFd + bF p̃F + kF p̄F − ṗF (64)

and its time derivative

˙̃vF = p̈Fd + bF ˙̃pF + kF p̃F − p̈F (65)

Then from (62) and (63) we can rewrite (61) in terms of linear velocity error as:

˙̃pF = ṽF − bF p̃F − kF p̄F (66)

By substituting (59) and (66) into (65), the time derivative of linear velocity
error can be rewritten as:

˙̃vF =p̈Fd + bF ṽF − b2F
˙̃pF − bFkF p̄F + kF p̃F − f(pF )− g(pF )fF (67)

The desirable time derivative of the linear velocity error is supposed to be:

˙̃vF = −cF ṽF − p̃F (68)

wherecF is a positive diagonal matrix. Now, the total thrustfF , the longitudinal
uFx and lateraluFy motion control can be found by subtracting (67) from (68)
as follows:

fF =(g + v̇Lz + (1− b
2

Fz + kFz)z̃F + (bFz + cFz)ṽFz − bFzkFz z̄F − d(R31 cos ρ cosσ

+R32 cos ρ sinσ +R33 sin ρ))
mF

(qF0
2 − qF1

2 − qF2
2 + qF3

2) (69)

uFx =(v̇Lx + (1− b
2

Fx + kFx)x̃F + (bFx + cFx)ṽFx − bFxkFxx̄F − d(R11 cos ρ cosσ

+R12 cos ρ sinσ +R13 sin ρ))
mF

fF
(70)

uFy =(v̇Ly + (1− b
2

Fy + kFy)ỹF + (bFy + cFy)ṽFy − bFykFy ȳF − d(R21 cos ρ cosσ

+R22 cos ρ sinσ +R23 sin ρ))
mF

fF
(71)
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For the attitude stability, a nonlinear controller from [39] is used.

τF = KFqq̃F +KFωω̃F +G(ω̃F )

The attitude stability for the follower was demonstrated in [39] . Next, we show
the stability of follower’s translational part.

5.2. Stability Analysis for Follower

The following candidate Lyapunov function is chosen for the stability analysis
of follower’s translational part with the integral backstepping controller:

V =
1

2
(p̃TF p̃F + ṽTF ṽF + kF p̄

T
F p̄F ) (72)

and its time derivative

V̇ = p̃TF
˙̃pF + ṽTF

˙̃vF + kF p̄
T
F
˙̄pF (73)

By substituting ˙̄pF = p̃F , and equations (66) and (68) into (73), equation (73)
becomes:

V̇ = −bF p̃
T
F p̃F − cF ṽ

T
F ṽF ≤ 0 (74)

Finally, (74) is less than zero providedbF andcF are positive diagonal ma-
trices, i.e.V̇ < 0, ∀(p̃F , ṽF ) 6= 0 andV̇ (0) = 0. It can be concluded from the
positive definition ofV and applying LaSalle theorem that a global asymptotic
stability is guaranteed. This leads to the conclude thatlimt→∞ p̃F = 0 and
limt→∞ ṽF = 0, which meets the position condition of (40).

5.3. Leader Integral Backstepping Controller

The leader is to track a desired trajectorypLd. Its integral backstepping con-
troller was developed in [39]. The result is that the total force and horizontal
position control lawsfL, uLx anduLy can be written as

fL = (z̈Ld + g + (1− bLz
2 + kLz)z̃L + (bLz + cLz)ṽLz − bLzkLz z̄L)

mL

q2L0 − q2L1 − q2L2 + q2L3
(75)



The Quaternions with an Application of Quadrotors Team Formation 181

uLx = (ẍLd + (1− bLx
2 + kLx)x̃L + (bLx + cLx)ṽLx − bLxkLxx̄L)

mL

fL
(76)

uLy = (ÿLd + (1− bLy
2 + kLy)ỹL + (bLy + cLy)ṽLy − bLykLyȳL)

mL

fL
(77)

where the linear velocity tracking errorsṽLx, ṽLy andṽLz are defined as:






ṽLx = bLxx̃L + ẋLd + kLxx̄L − ẋL
ṽLy = bLyỹL + ẏLd + kLyȳL − ẏL
ṽLz = bLz z̃L + żLd + kLz z̄L − żL

And the torque vector applied to the leader quadrotorτL ∈ R
3 is designed

as

τL = KLqq̃L +KLωω̃L +G(ω̃L)

6. Formation iLQR Controllers

The controller design for the leader and the follower is based on iLQR optimal
control algorithm. The follower iLQR controller is designed by following the
introduction of an error state model. Then the leader iLQR controller is briefly
presented later.

6.1. iLQR Optimal Control Approach

iLQR is one of the optimal control strategies that is formulated to obtain the
control signals that minimises a performance criterion to satisfy the physical
model constraints. The iLQR strategy is utilised based on LQR technique to
design the full state quadrotor’s controller. Linearising the nonlinear dynamic
model (39), we obtain

xik+1 = f(xik,uik) (78)

with a quadratic cost function of the form

Ji =
1

2
(xiN − x∗

i )
TQiN (xiN − xi

∗) +
1

2

N−1
∑

k=0

(xTikQixik

+ uTikRiuik) (79)
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wherexi = [xi, ẋi, yi, ẏi, zi, żi, qi0, qi1, qi2, qi3, ωix, ωiy, ωiz]
T and the quadro-

tor is controlled by its altitude forcefi and attitude torque vectorτi. The control
vector can be defined asui = [fi, τiq1 , τiq2 , τiq3 ]

T . We will not use the notation
i in the coming equations for simplicity.

The proposed strategy starts with initial control signalsk = 0, and the lin-
earised nonlinear system around the control signaluk and statexk, then solves
the LQR problem. Then these steps are repeated (iterated) until a good perfor-
mance is achieved. Let the deviations fromuk andxk beδuk andδxk respec-
tively. The linearisation model is

δxk+1 = Akδxk +Bkδuk (80)

Where the matricesAk = Jxf(xk,uk) andBk = Juf(xk,uk) are denoted
by the Jacobians. These are evaluated alongxk anduk respectively. Based on
the linear model (80), the cost function (79) can be written as:

J =
1

2
(xN + δxN − x∗)TQN (xN + δxN − x∗)

+
1

2

N−1
∑

k=0

((xk + δx)TQ(xk + δx)

+ (uk + δu)TR(uk + δu)). (81)

Adding a constraint to the cost function (81), the value function is

V =
1

2
(xN + δxN − x∗)TQN (xN + δxN − x∗)

+
1

2

N−1
∑

k=0

((xk + δx)TQ(xk + δx) + (uk + δu)T

R(uk + δu) + δλTk+1(Akδxk +Bkδuk − δxk+1)). (82)

The following Hamiltonian function is a first step to proceed towards the optimal
control

Hk =(xk + δxk)
TQ(xk + δxk) + (uk + δuk)

TR(uk + δuk)

+ δλTk+1(Akδxk +Bkδuk) (83)
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and its derivatives with respect toδxk, δuk and δxN are


























∂Hk

∂(δxk)
= δλk

∂Hk

∂(δuk)
= 0

∂Hk

∂(δxN )
= δλN ,

which leads to the following conditions:

δλk = ATk δλk+1 +Q(δxk + xk) (84)

0 = R(uk + δuk) +BT
k δλk+1 (85)

δλN = Qf (xN + δxN − x∗). (86)

Based on the boundary condition (86),δλk is assumed to be

δλk = Skδxk + νk (87)

for some unknown sequencesSk andνk. The boundary conditions forSk and
νk are

{

SN = QN

νN = QN (xN − x∗)
(88)

and from the boundary condition (85),δuk is obtained as:

δuk = −R−1BT
k δλk+1 − uk. (89)

By solving equations (80), (85) and (87), we obtain

δuk = −Kδxk −Kννk+1 −Kuuk (90)

where
K = (BT

k Sk+1Bk +R)−1BT
k Sk+1Ak (91)

Kν = (BT
k Sk+1Bk +R)−1BT

k (92)

Ku = (BT
k Sk+1Bk +R)−1R. (93)

Backward recursion equations are used to solve the entire sequencesSk andνk
as:

Sk = ATk Sk+1(Ak −BkK) +Q (94)
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νk = (Ak −BkK)T νk+1 −KTRuk +Qxk (95)

where the gainsK andKu are built on the Riccati equation while the gainKν

is reliant on auxiliary sequence (95).
The entire sequences ofSk andνk can be solved by the backward recursion

(94) and (95) respectively, with the final state weighting matrix boundary con-
dition SN stated in the cost function (81). The control law 90 includes three
terms. The gains of the first and the third terms depend on the solution of Ric-
cati equation, while the second term gain depends on the auxiliary sequenceνk.
In the first term,δxk represents the error between the actual quadrotor state and
the desired state, and in the third term,uk represents the nominal control ac-
tion. Once the modified LQR problem is solved, an improved nominal control
sequence can be obtained:u∗

k = uk + δuk, whereuk is the nominal control
andu∗

k is the improved control. Then the total control laws are concluded as
follows:







































δuik = −Kiδxik −Kiννik+1 −Kiuuik
Ki = (BT

ikSik+1Bik +Ri)
−1BT

ikSik+1Aik
Kiν = (BT

ikSik+1Bik +Ri)
−1BT

ik

Kiu = (BT
ikSik+1Bik +Ri)

−1Ri

Sik = ATikSik+1(Aik −BikKi) +Qi

νik = (Aik −BikKi)
T νik+1 −KT

i Riuik +Qixik
u∗

ik = uik + δuik

(96)

6.2. Leader and Follower iLQR Controllers

By following the leader-follower formation control problem described in Sub-
section 3.2, the leader control law set is



























δfLk = −KLzδzLk −KLzννzLk+1
−KfLfLk

δτLqk = −KLqδqLk −KLqννqLk+1
−KτqLτLqk

fLk =
mLg

q2
L0k

−q2
L1k

−q2
L2k

+q2
L3k

f∗Lk = fLk + δfLk
τ∗Lqk = τLqk + δτLqk

where

δzLk =

[

zLkd − zLk
vLzkd − vLzk

]
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δqLk =

[

qLkd − qLk
ωLkd − ωLk

]

and the follower control law set is


































δfFk = −KFzδzFk −KFzννzFk+1
−KfF fFk

δτFqk = −KFqδqFk −KFqννqFk+1
−KτqF τFqk

fFk = (g + v̇Lz − d(R31 cos ρ cosσ +R32 cos ρ sinσ
+R33 sin ρ))

mF
q2
F0k

−q2
F1k

−q2
F2k

+q2
F3k

f∗Fk = fFk + δfFk
τ∗Fqk = τFqk + δτFqk

where

δzFk =

[

zFkd − zFk
vFzkd − vFzk

]

δqFk =

[

qLk − qFk
ωFkd − ωFk

]

7. Simulations

The proposedH∞, IBS and iLQR controllers were tested in a MATLAB simu-
lator of two quadrotors, one leader and one follower. The quadrotor parameters
used in the simulation are described in Table 1. Same path was presented in
the simulation to show the performance of using the proposed three controllers.
The desired path to be tracked by the leader was

{

xLd = 2 cos(tπ/80) ; yLd = 2 sin(tπ/80)
zLd = 1 + 0.1t ; qL3d = 0

with the initial conditions pL = [2, 0, 0]T metres and[qL0,qTL]
T =

[−1, 0, 0, 0]T . The follower tried to maintain the desired distance with the leader
d = 2 metres, the desired incidence angleρ = 0 and the desired bearing an-
gle σ = −π/12. The initial condition of the follower waspF = [0.1, 0.5, 0]T

metres and[qF0,q
T
F ]
T = [−1, 0, 0, 0]T .

7.1. H∞ Controller

To test the robustness of the proposedH∞ controller, the model parameter un-
certainties (mass and inertia) were increased and decreased by±20% and a
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Table 1. Quadrotor Parameters

Symbol Definition Value Units
Jx Roll Inertia 4.4× 10−3 kg.m2

Jy Pitch Inertia 4.4× 10−3 kg.m2

Jz Yaw Inertia 8.8× 10−3 kg.m2

m Mass 0.5 kg

g Gravity 9.81 m/s2

l Arm Length 0.17 m

Jr Rotor Inertia 4.4× 10−5 kg.m2

Figure 2. One Loop Control Block Diagram.

force disturbance of 2N was added in different operation times to the positions
for 0.25 seconds duration, while the disturbance added to the attitude was of the
form

d1 =0.01 + 0.01 sin(0.024πt) + 0.05 sin(1.32πt). (97)

The constantγ was chosen to beγL = γF = 1.05 and the weight-
ing matrices were chosen to beWL1z = 1150, WF1z = 1575, WL2 =
WF2 = diag(0.0235, 0.0235, 0.0009), WL3z = 10, WF3z = 675, and
WL4 = WF4 = diag(0.0043, 0.0043, 0.00156). Under these parameters,
the feedback control matrices were obtained to bekLz = 111, kLvz = 50,
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kFz = 130, kFvz = 100, KLq = KFq = diag(0.5, 0.5, 0.095) andKLω =
KFω = diag(0.07, 0.07, 0.025).
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Figure 3. Leader-Follower Formation in First Path underH∞ Controller Based
on Quaternion Representation.

The obtained results are shown in Figures 3 - 6 with the conditions (1) no
disturbance, (2) force disturbancedviz = −2Nm at10 ≤ t ≥ 10.25 seconds,
dvix = 2Nm at 20 ≤ t ≥ 20.25 seconds,dviy = 2Nm at 30 ≤ t ≥ 30.25
seconds and the attitude part for the leader and the follower is disturbed using
(97), (3)+20% model parameter uncertainty, and (4)−20% model parameter
uncertainty. The above conditions were applied for the leader and the follower
at the same time.

Figure 3 shows the formation trajectories of two quadrotors obtained using
theH∞ controllers when they tracked the desired path. From this figure we can
see that theH∞ controllers produced good formation performances with small
acceptable errors, fast rejection of the external disturbances, and quick recovery
of the model parameter uncertainties. The quaternions of the leader and the
follower are shown in Figures 4 and 5 with small oscillations. The distances
between the leader and the follower for are shown in Figure 6. Again, less
oscillation in disturbance rejection was observed from the result.

Figure 7 shows the performance of the two quadrotors when only the leader
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was affected by force disturbancedvLz = −4Nm during 10 ≤ t ≥ 10.25
seconds,dvLx = 4Nm during20 ≤ t ≥ 20.25 seconds,dvLy = 4Nm during
30 ≤ t ≥ 30.25 seconds, and the leader attitude part is disturbed using (97).

It is clear that the follower tracked the leader and maintained the distance
with very small errors in all circumstances.

7.2. IBS Controller

The IBS controllers were tested in simulation to track a desired path
by the leader and maintain the desired distance, desired incidence angle
and desired bearing angle between them for the follower. The parame-
ters chosen werebL = diag(180, 0.34, 0.34), cL = diag(0.7, 0.02, 0.02),
kL = diag(0.0516, 0.0081, 0.0081) , bF = diag(12, 0.7, 0.7), cF =
diag(1.4, 0.02, 0.02) andkF = diag(0.01, 0.001, 0.001).

Figure 8 shows the formation trajectories of two quadrotors obtained by
using the IBS controller. From this figure we can see that the IBS controller
performed with high error, large oscillation in disturbance rejection and model
parameter uncertainty recovery.

The quaternions of the leader and the follower are shown in Figures 9 and
10, respectively. High oscillation is observed in these two figures. The dis-
tances between the leader and the follower are shown in Figure 11. Again, high
oscillation can be observed from the result of this figure.

Figure 12 shows the performance using the IBS controller when only the
leader was affected by force disturbancedvLz = −4Nm during10 ≤ t ≥ 10.25
seconds,dvLx = 4Nm during20 ≤ t ≥ 20.25 seconds,dvLy = 4Nm during
30 ≤ t ≥ 30.25 seconds, and the attitude part is disturbance using (97).

It is clear that the follower tracked the leader and maintained the distance
with high error and oscillation in all circumstances.

7.3. iLQR Controller

To validate the iLQR control strategy, it was tested in the simulation of two
quadrotors in the leader-follower formation problem. The desired path was also
used to test the LQR control for comparison purposes.

Figure 13 shows the response of the leader while tracking the predefined
path and the follower maintaining the desired distance, the bearing angle and
the incidence angle. The quaternion components responses of the leader and
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Figure 9. Leader Quaternions in First Path under IBS Controller Based on
Quaternion Representation.
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Figure 10. Follower Quaternions in First Path under IBS Controller Based on
Quaternion Representation.
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Figure 14. Leader Quaternions in First Path under iLQR and LQR Controllers.
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Figure 15. Follower Quaternions in First Path under iLQR and LQR Controllers.

the follower in tracking the desired path are shown in Figures 14 and 15, re-
spectively. Figure 16 shows the distances between the leader and the follower.
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The error in using the iLQR controller was smaller than that in using LQR.
However, when the iLQR controller ran for five iterations, the response was
slightly improved.

In conclusion, it is obvious that the proposed iLQR controller maintained
the distance between the leader and the follower faster than LQR controller.

Conclusion

This chapter has presented the performance of applying theH∞, IBS and iLQR
controllers to the leader-follower formation control problem of quadrotors when
its dynamic model was derived based on unit quaternion. TheH∞ controller
was developed to reject the external disturbances and recover the model param-
eter uncertainties change. Then, its stability and robustness were analysed and
a set of corresponding conditions were given.

The IBS controller was developed based on BS control theory with adding
an integral action to minimise the steady state error which appeared when the BS
controller was used for leader-follower formation problem. The main drawback
of the IBS controller is that its stability is guaranteed but the performance is not,
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and it has three coupling parameters to be tuned compared with a guaranteed
stability and performance of theH∞ controller. Another noteworthy drawback
of the IBS controller that was noticed in the current study is the considerable
overshoot in its response due to the effect of the integral parameter and high
oscillations when external disturbances were applied to the system dynamics in
leader-follower formation.

The iLQR controller is essentially based on the LQR controller with an iter-
ation technique. It has a set of gains equal to the number of operating samples
by linearising the system in each sample of operation.

The controllers were tested in the MATLAB simulater. The simulation re-
sults show that the proposedH∞ controller achieved excellent performance
compared with those of IBS controller.

The proposed iLQR controller was based on finding a linearised system at
each time step of the operation, while the LQR controller was based on obtain-
ing a linearised system at the operating point (hovering point). The solutions
of the two controllers establish the potential of the proposed iLQR law by im-
proving the tracking accuracy and the speed of catching the desired path and
maintaining the distances between the leader and the follower compared with
the LQR controller. The iLQR controller performed better than the LQR con-
troller, especially in quaternion components performance.

As a result, the proposedH∞ controller indeed produced better control per-
formance than the IBS controller in all circumstances, and the iLQR controller
perform faster than LQR controller with less errors.
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Abstract

A generalized inverse of a given quaternion matrix (similarly, as for

complex matrices) exists for a larger class of matrices than the invertible

matrices. It has some of the properties of the usual inverse, and agrees

with the inverse when a given matrix happens to be invertible. There
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exist many different generalized inverses. In this chapter, we consider

determinantal representations of the Drazin and weighted Drazin inverses

over the quaternion skew field.

Due to the theory of column-row determinants recently introduced by

the author, we derive determinantal representations of the Drazin inverse

for both Hermitian and arbitrary matrices over the quaternion skew field.

Using obtained determinantal representations of the Drazin inverse we get

explicit representation formulas (analogs of Cramer’s rule) for the Drazin

inverse solutions of the quaternionic matrix equations AXB = D and,

consequently, AX = D, XB = D in both cases when A and B are

Hermitian and arbitrary, where A, B can be noninvertible matrices of

appropriate sizes. We obtain determinantal representations of solutions

of the differential quaternionic matrix equations, X
′ + AX = B and

X
′ + XA = B, where A is noninvertible as well.

Also, we obtain new determinantal representations of the W-weighted

Drazin inverse over the quaternion skew field. We give determinantal

representations of the W-weighted Drazin inverse by using previously

obtained determinantal representations of the Drazin inverse, the Moore-

Penrose inverse, and the limit representations of the W-weighted Drazin

inverse in some special case. Using these determinantal representations

of the W-weighted Drazin inverse, we derive explicit formulas for deter-

minantal representations of the W-weighted Drazin inverse solutions of

the quaternionic matrix equations WAWX = D, XWAW = D, and

W1AW1XW2BW2 = D.

1. Introduction

Let R and C be the real and complex number fields, respectively. Throughout

the paper, we denote the set of all m × n matrices over the quaternion algebra

H = {a0 + a1i + a2j + a3k | i2 = j2 = k2 = −1, a0, a1, a2, a3 ∈ R}

by Hm×n , and by Hm×n
r the set of all m × n matrices over H with a rank r.

Let M (n, H) be the ring of n × n quaternion matrices and I be the identity

matrix with the appropriate size. For A ∈ H
n×m, we denote by A∗, rankA the

conjugate transpose (Hermitian adjoint) matrix and the rank of A. The matrix

A = (aij) ∈ H
n×n is Hermitian if A∗ = A.

The definitions of the generalized inverse matrices can be extended to

quaternion matrices as follows.
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Definition 1.1. The Moore-Penrose inverse of A ∈ H
m×n, denoted by A†, is

the unique matrix X ∈ Hn×m satisfying the following equations,

AXA = A; (1.1)

XAX = X; (1.2)

(AX)∗ = AX; (1.3)

(XA)∗ = XA. (1.4)

Definition 1.2. For A ∈ Hn×n with k = Ind A the smallest positive number

such that rankAk+1 = rankAk, the Drazin inverse of A is defined to be the

unique matrix X that satisfying (1..2) and the following equations,

AX = XA; (1.5)

Ak+1X = Ak. (1.6)

It is denoted by X = AD. In particular, when IndA = 1, then the matrix X is

called the group inverse and is denoted by X = Ag.

If IndA = 0, then A is invertible, and AD ≡ A† = A−1.

Cline and Greville [1] extended the Drazin inverse of a square matrix to

a rectangular matrix, which can be generalized to the quaternion algebra as

follows.

Definition 1.3. For A ∈ Hm×n and W ∈ Hn×m , the W-weighted Drazin

inverse of A with respect to W is the unique solution to equations,

(AW)k+1XW = (AW)k; (1.7)

XWAWX = X; (1.8)

AWX = XWA, (1.9)

where k = max{Ind(AW), Ind(WA)}. It is denoted by X = Ad,W.

The problem of determinantal representation of generalized inverse matri-

ces only recently begun to be decided through the theory of column-row de-

terminants introduced in [2, 3]. The theory of row and column determinants

develops the classical approach to a definition of a determinant as an alternat-

ing sum of products of elements of a quadratic matrix but with a predetermined
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order of factors in each summand of a determinant. A determinant of a ma-

trix with noncommutative elements is often called the noncommutative deter-

minant. Unlike other known noncommutative determinants such as determi-

nants of Dieudonné [4], Study [5], Moore [6,7], Chen [8], quasideterminants of

Gelfand-Retakh [9], the double determinant built on the theory of the column-

row determinants has properties similar to the usual determinant, in particular,

it can be expand along arbitrary rows and columns. This property is neces-

sary for determinantal representations of the inverse and generalized inverse

matrices. Determinantal representations of the Moore-Penrose inverse, the min-

imum norm least squares solutions of some quaternion matrix equations over

the quaternion skew-field have been obtained in [10, 11]. Determinantal repre-

sentations of an outer inverse A
(2)
T,S has introduced in [12,13] using column-row

determinants as well. Recall that an outer inverse of a matrix A over complex

field with prescribed range space T and null space S is a solution of (1..2) with

restrictions,

R(X) = T, N (X) = S.

Within the framework of the theory of column-row determinants Song [14] also

has gave a determinantal representation of the W-weighted Drazin inverse over

the quaternion skew-field using its characterization by an outer inverse A
(2)
T,S .

But, in obtaining of this determinantal representation, auxiliary matrices that

different from A or its powers are needed. In this chapter, we shall obtain

new determinantal representations of the Drazin inverse and the W-weighted

Drazin inverse of A ∈ H
m×n with respect to W ∈ H

n×m by using only

their entries. These determinantal representations of the Drazin and W-weighted

Drazin inverse will be used for explicit determinantal representation formulas of

the Drazin and W-weighted Drazin inverse solutions of some quaternion matrix

equations.

The chapter is organized as follows. We start with some basic concepts and

results from the theory of row-column determinants and the theory of quater-

nion matrices in Section 2. In Section 3, we give the determinantal representa-

tions of the Drazin inverse of a Hermitian quaternion matrix in Subsection 3.1

and an arbitrary quaternion matrix in Subsection 3.2. In Section 4, we obtain

explicit representation formulas for the Drazin inverse solutions of quaternion

matrix equations AXB = D and, consequently, AX = D, and XB = D.

In Subsection 4.1, we consider the case when A, B are Hermitian, and they

are arbitrary in Subsection 4.1. In Section 4.3, we show numerical examples to
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illustrate the main results. In Section 5, we apply the obtained determinantal

representations of the Drazin inverse to solutions of differential matrix equa-

tions. In Subsection 5.1, we give a background for quaternion-valued differ-

ential equations. In Subsection 5.2, determinantal representations of solutions

of the differential matrix equations, X′ + AX = B and X′ + XA = B are

derived, where A ∈ Hn×n is noninvertible. It is demonstrated in an exam-

ple in Subsection 5.3. In Section 6, we obtain determinantal representations of

the W-weighted Drazin inverse by using introduced above determinantal repre-

sentations of the Drazin inverse in Subsection 6.1, the Moore-Penrose inverse

in Subsection 6.2, and the limit representations of the W-weighted Drazin in-

verse in some special case in Subsection 6.3. In Subsection 6.4, we show a

numerical example to illustrate the main result. By using determinantal repre-

sentations of the W-weighted Drazin inverse obtained in the previous section,

we get explicit formulas for determinantal representations of the W-weighted

Drazin inverse solutions (analogs of Cramer’s rule) of some quaternion ma-

trix equations in Section 7. In Subsection 7.1, we consider the background of

the problem of Cramer’s rule for the W-weighted Drazin inverse solution. In

Subsection 7.2, we obtain explicit representation formulas of the W-weighted

Drazin inverse solutions (analogs of Cramer’s rule) of the quaternion matrix

equations WAWX = D, XWAW = D, and W1AW1XW2BW2 = D. In

Subsection 7.3, we give numerical examples to illustrate the main result.

Facts set forth in Sections 3 and 4 were partly published in [15], in Section

6 were published in [16] and in Section 7 were partly published in [17].

2. Preliminaries. Elements of the Theory of the Column

and Row Determinants

Suppose Sn is the symmetric group on the set In = {1, . . . , n}. Through the

chapter, we denote i = 1, . . . , n by i = 1, n.

Definition 2.1. The i-th row determinant of A = (aij) ∈ M (n, H) is defined
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for all i = 1, n by putting

rdetiA =
∑

σ∈Sn

(−1)n−r (ai ik1
aik1

ik1+1
. . .aik1+l1

i) . . . (aikr ikr+1
. . .aikr+lr ikr

),

σ = (i ik1ik1+1 . . . ik1+l1) (ik2 ik2+1 . . . ik2+l2) . . . (ikrikr+1 . . . ikr+lr ) ,

with conditions ik2 < ik3 < . . . < ikr and ikt < ikt+s for t = 2, r and s = 1, lt.

Definition 2.2. The j-th column determinant of A = (aij) ∈ M (n, H) is de-

fined for all j = 1, n by putting

cdetj A =
∑

τ∈Sn

(−1)n−r (ajkr jkr+lr
. . .ajkr+1ikr

) . . . (aj jk1+l1
. . .ajk1+1jk1

ajk1
j),

τ = (jkr+lr . . . jkr+1jkr) . . . (jk2+l2 . . . jk2+1jk2) (jk1+l1 . . . jk1+1jk1j) ,

with conditions, jk2 < jk3 < . . . < jkr and jkt < jkt+s for t = 2, r and

s = 1, lt.

Suppose Ai j denotes the submatrix of A obtained by deleting both the i-th

row and the j-th column. Let a.j be the j-th column and ai. be the i-th row of

A. Suppose A.j (b) denotes the matrix obtained from A by replacing its j-th

column with the column-vector b, and Ai. (b) denotes the matrix obtained from

A by replacing its i-th row with the row-vector b.

We note some properties of column and row determinants of a quaternion

matrix A = (aij), where i ∈ In, j ∈ Jn and In = Jn = {1, . . . , n}. These

properties completely have been proved in [2,3].

Proposition 2.1. If b ∈ H, then rdetiAi. (b · ai.) = b · rdetiA for all i = 1, n.

Proposition 2.2. If b ∈ H, then cdetj A.j (a.j · b) = cdetj A·b for all j = 1, n.

Proposition 2.3. If for A ∈ M (n, H) there exists t ∈ In such that atj = bj +cj

for all j = 1, n, then

rdeti A = rdeti At . (b) + rdeti At . (c) ,

cdeti A = cdeti At . (b) + cdeti At . (c) ,

where b = (b1, . . . , bn) ∈ H1×n, c = (c1, . . . , cn) ∈ H1×n, i = 1, n.
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Proposition 2.4. If for A ∈ M (n, H) there exists t ∈ Jn such that ai t = bi+ci

for all i = 1, n, then

rdetj A = rdetj A . t (b) + rdetj A . t (c) ,

cdetj A = cdetj A . t (b) + cdetjA . t (c) ,

where b = (b1, . . . , bn)T ∈ Hn×1, c = (c1, . . . , cn)T ∈ Hn×1, j = 1, n.

Proposition 2.5. If A∗ is the Hermitian adjoint matrix of A ∈ M (n, H), then

rdeti A
∗ = cdeti A for all i = 1, n.

The following lemmas enable us to expand rdeti A by cofactors along the

i-th row and cdetjA along the j-th column respectively for all i, j = 1, n.

Lemma 2.3. Let Ri j be the ij-th right cofactor of A ∈ M (n, H), that is,

rdeti A =
n∑

j=1
ai j · Ri j for all i = 1, n. Then

Ri j =





−rdetk Aii
. j (a.i) , i 6= j, k =

{
j, if i > j;

j − 1, if i < j;
rdetk Aii, i = j, k = min {In \ i},

(2.1)

where Ai i
. j (a. i) is obtained from A by replacing the j-th column with the i-th

column, and then by deleting both the i-th row and column.

Lemma 2.4. Let Li j be the ij-th left cofactor of A ∈ M (n, H), that is,

cdetj A =
n∑

i=1
Li j · ai j for all j = 1, n. Then

Li j =





−cdetk A
jj
i . (aj.) , i 6= j, k =

{
i, if j > i;

i − 1, if j < i;
cdetk Aii, i = j, k = min{Jn \ j},

(2.2)

where A
jj
i . (aj .) is obtained from A by replacing the i-th row with the j-th row,

and then by deleting both the j-th row and column.

The following theorem has a key value in the theory of column-row deter-

minants.

Theorem 2.5. If A ∈ M (n, H) is Hermitian, then rdet1A = · · · = rdetnA =
cdet1A = · · · = cdetnA ∈ R.
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Remark 2.6. Since all column and row determinants of a Hermitian matrix

over H are equal, we can define the determinant of Hermitian A ∈ M (n, H) by

putting for all i = 1, n,

det A := rdeti A = cdeti A.

Properties of the determinant of a Hermitian matrix is completely explored

in [3] by its row and column determinants. They can be summarized by the

following theorems.

Theorem 2.7. If the i-th row of a Hermitian matrix A ∈ M (n, H) is replaced

with a left linear combination of its other rows, i.e. ai. = c1ai1. + . . . + ckaik .,

where cl ∈ H for all l = 1, k and i, il ∈ In, then

rdeti Ai . (c1ai1. + . . . + ckaik .) = cdeti Ai . (c1ai1. + . . . + ckaik.) = 0.

Theorem 2.8. If the j-th column of a Hermitian matrix A ∈ M (n, H) is

replaced with a right linear combination of its other columns, i.e. a.j =
a.j1c1 + . . . + a.jk

ck, where cl ∈ H for all l = 1, k and j, jl ∈ Jn, then

cdetj A.j (a.j1c1 + . . . + a.jk
ck) = rdetj A.j (a.j1c1 + . . . + a.jk

ck) = 0.

The following theorem on determinantal representations of an inverse ma-

trix of Hermitian follows directly from these properties.

Theorem 2.9. If A ∈ M (n, H) is Hermitian, and det A 6= 0, then there exists

a unique right inverse matrix (RA)−1 and a unique left inverse matrix (LA)−1

of A, where (RA)−1 = (LA)−1 =: A−1, and they possess the following

determinantal representations, respectively,

(RA)−1 =
1

det A




R11 R21 · · · Rn1

R12 R22 · · · Rn2

· · · · · · · · · · · ·
R1n R2n · · · Rnn


 , (2.3)

(LA)−1 =
1

det A




L11 L21 · · · Ln1

L12 L22 · · · Ln2

· · · · · · · · · · · ·
L1n L2n · · · Lnn


 , (2.4)

where Rij , Lij are the right (2.1) and left (2.2) ij-th cofactors of A for all

i, j = 1, n.
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Remark 2.10. If det A = 0, we say that a Hermitian quaternion matrix A ∈
M (n, H) is singular because, in this case, A is noninvertible.

Since principal submatrices of a Hermitian matrix are Hermitian, the prin-

cipal minor can be defined as the determinant of its principal submatrix by anal-

ogy to the commutative case. In [3], we have introduced the rank by principle

minors that is the maximal order of a nonzero principal minor of a Hermitian

matrix. The following theorem determines a relationship between it and the col-

umn rank of a matrix defining as ceiling amount of right-linearly independent

columns, and the row rank defining as ceiling amount of left-linearly indepen-

dent rows.

Theorem 2.11. If A ∈ M (n, H) is Hermitian, then its rank by principal minors

are equal to its column and row ranks.

Due to the non-commutativity of quaternions, there are two types of eigen-

values. A quaternion λ is said to be a right eigenvalue of A ∈ M (n, H) if

A · x = x · λ, and λ is a left eigenvalue if A · x = λ · x for some nonzero

quaternion column-vector x ∈ H
n.

The theory on the left eigenvalues of quaternion matrices has been investi-

gated, in particular, in [18,19,20]. The theory on the right eigenvalues of quater-

nion matrices is more developed. In particular, we note [21,23,24,25,26,27].

Proposition 2.6. [25] Let A ∈ M (n, H) be Hermitian. Then A has exactly n

real right eigenvalues.

Right and left eigenvalues are in general unrelated [27] but it is not for Her-

mitian matrices. Suppose A ∈ M (n, H) is Hermitian and λ ∈ R is its right

eigenvalue, then A · x = x · λ = λ · x. This means that all right eigenvalues

of a Hermitian matrix are its left eigenvalues as well. For real left eigenvalues,

λ ∈ R, the matrix λI−A is Hermitian.

Definition 2.12. If λ ∈ R, then for a Hermitian matrix A the polynomial

pA (λ) = det (λI− A) is said to be the characteristic polynomial of A.

The roots of the characteristic polynomial of a Hermitian matrix are its real

left eigenvalues which are its right eigenvalues as well. We can prove the fol-

lowing theorem by analogy to the commutative case (see, e.g. [28]).

Theorem 2.13. If A ∈ M (n, H) is Hermitian, then pA (λ) = λn − d1λ
n−1 +

d2λ
n−2− . . .+(−1)n

dn, where dk is the sum of principle minors of A of order

k, 1 ≤ k < n, and dn = det A.
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3. Determinantal Representations of the Drazin Inverse

As one of the important types of generalized inverses of matrices, the Drazin

inverses and their applications have well been examined in the literature (see,

e.g., [29, 30, 31, 32, 33, 34]). In [35], Stanimirovic̀ and Djordjević have intro-

duced a determinantal representation of the Drazin inverse of a complex matrix

based on its full-rank representation. In [36], we obtain determinantal represen-

tations of the Drazin inverse of a complex matrix used its limit representation. It

allowed to obtain the analogs of Cramer’s rule for the Drazin inverse solutions

of some matrix equations. In this chapter we extend studies conducted in [36]

from the complex field to the quaternion skew field.

3 1. Analogues of the Classical Adjoint Matrix for the Drazin

Inverse of a Hermitian Matrix

For Hermitian matrices, we apply the method which consists of the theorem

on the limit representation of the Drazin inverse, lemmas on rank of matrices

and on characteristic polynomial. This method at first has been used in [36],

afterwards in [37, 38]. By analogy to [39] the following theorem on the limit

representation of the quaternion Drazin inverse can be proved.

Theorem 3.1. If A ∈ Hn×n with IndA = k, then

AD = lim
λ→0

(
λIn + Ak+1

)−1
Ak = lim

λ→0
Ak
(
λIn + Ak+1

)−1
,

where λ ∈ R+, and R+ is a set of the real positive numbers.

Denote by a
(m)
.j and a

(m)
i. the j-th column and the i-th row of Am, respec-

tively.

Lemma 3.2. If A ∈ M (n, H) with IndA = k, then

rank
(
Ak+1

)
. i

(
a

(k)
.j

)
≤ rank

(
Ak+1

)
. (3.1)

.
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Proof. The matrix Ak+1
i .

(
a

(k)
j .

)
can be represented as follows

Ak+1
i .

(
a

(k)
j .

)
=




n∑
s=1

a1sa
(k)
s1 . . .

n∑
s=1

a1sa
(k)
sn

. . . . . . . . .

a
(k)
j1 . . . a

(k)
j n

. . . . . . . . .
n∑

s=1
ansa

(k)
s1 . . .

n∑
s=1

ansa
(k)
sn




Let Pl i (−al j) ∈ Hn×n, (l 6= i), be a matrix with −al j in the (l, i)-entry,

1 in all diagonal entries, and 0 in others. This is a matrix of an elementary

transformation. It follows that

Ã := Ak+1
i .

(
a

(k)
j .

)
·
∏

l 6=i

Pl i (−al j)=




∑
s 6=j

a1sa
(k)
s1 . . .

∑
s 6=j

a1sa
(k)
sn

. . . . . . . . .

a
(k)
j1 . . . a

(k)
j n

. . . . . . . . .∑
s 6=j

ansa
(k)
s1 . . .

∑
s 6=j

ansa
(k)
sn




i−th

The above obtained matrix Ã has the following factorization.

Ã =




a11 . . . 0 . . . a1n

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

an1 . . . 0 . . . ann







a
(k)
11 a

(k)
12 . . . a

(k)
1n

a
(k)
21 a

(k)
22 . . . a

(k)
2n

. . . . . . . . . . . .

a
(k)
n1 a

(k)
n2 . . . a

(k)
nn




Denote the first matrix by

Ã1 :=




a11 . . . 0 . . . a1n

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0
. . . . . . . . . . . . . . .

an1 . . . 0 . . . ann




j−th

i − th.

The matrix Ã1 is obtained from A by replacing all entries of the i-th row and

the j-th column with zeroes except for 1 in the (i, j)-entry. Since elementary
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transformations of a matrix do not change its rank, then rankAk+1
i .

(
a

(k)
j .

)
≤

min
{

rankAk, rank Ã
}

. By rank Ã1 ≥ rankAk, the proof is completed.

The next lemma is proved similarly.

Lemma 3.3. If A ∈ M (n, H) with IndA = k, then rank
(
Ak+1

)
i .

(
a

(k)
j .

)
≤

rank
(
Ak+1

)
.

We shall use the following notations. Let α := {α1, . . . , αk} ⊆
{1, . . . , m} and β := {β1, . . . , βk} ⊆ {1, . . . , n} be subsets of the order

1 ≤ k ≤ min{m, n}. By Aα
β denote the submatrix of A determined

by rows indexed by α and columns indexed by β. Then Aα
α denotes the

principal submatrix determined by the rows and columns indexed by α. If

A ∈ M (n, H) is Hermitian, then by |Aα
α| denote the corresponding prin-

cipal minor of det A. For 1 ≤ k ≤ n, the collection of strictly increas-

ing sequences of k integers chosen from {1, . . . , n} is denoted by Lk,n :=

{α : α = (α1, . . . , αk) , 1 ≤ α1 ≤ . . . ≤ αk ≤ n}. For fixed i ∈ α and j ∈ β,

let Ir,m{i} := {α : α ∈ Lr,m, i ∈ α}, Jr, n{j} := {β : β ∈ Lr,n, j ∈ β}.

Analogues of the characteristic polynomial are considered in the following

two lemmas.

Lemma 3.4. If A ∈ M (n, H) is Hermitian with IndA = k and λ ∈ R, then

cdeti

(
λI + Ak+1

)
. i

(
a

(k)
.j

)
= c

(ij)
1 λn−1 + c

(ij)
2 λn−2 + . . . + c(ij)

n , (3.2)

where c
(ij)
n = cdeti

(
Ak+1

)
. i

(
a

(k)
. j

)
and

c(ij)
s =

∑

β∈Js, n{i}

cdeti

((
Ak+1

)
. i

(
ak

. j

))
β
β

for all s = 1, n− 1, i, j = 1, n.

Proof. Denote by b. i the i-th column of Ak+1 =: (bij)n×n. Consider the

Hermitian matrix
(
λI + Ak+1

)
. i

(b. i) ∈ Hn×n . It differs from
(
λI + Ak+1

)

in an entry bii. Taking into account Theorem 2.13, we obtain

det
(
λI + Ak+1

)
. i

(b. i) = d1λ
n−1 + d2λ

n−2 + . . . + dn, (3.3)
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where ds =
∑

β∈Js, n{i}

|
(
Ak+1

)β
β
| is the sum of all principal minors of order

s that contain the i-th column for all s = 1, n− 1 and dn = det
(
Ak+1

)
.

Consequently, we have b. i =




∑
l

a
(k)
1l ali

∑
l

a
(k)
2l ali

...∑
l

a
(k)
nl ali




=
∑
l

a
(k)
. l ali, where a

(k)
. l is

the l-th column of Ak for all l = 1, n. Due to Theorem 2.5, Lemma 2.4 and

Proposition 2.2, we obtain on the one hand

det
(
λI + Ak+1

)
. i

(b. i) = cdeti

(
λI + Ak+1

)
. i

(b. i) =

∑

l

cdeti

(
λI + Ak+1

)
. l

(
a

(k)
. l al i

)
=

∑

l

cdeti

(
λI + Ak+1

)
. i

(
a

(k)
. l

)
· ali. (3.4)

On the other hand having changed the order of summation, for all s = 1, n− 1

we have

ds =
∑

β∈Js, n{i}

det
(
Ak+1

)
β
β =

∑

β∈Js, n{i}

cdeti

(
Ak+1

)
β
β =

∑

β∈Js,n{i}

∑

l

cdeti

((
Ak+1

)
. i

(
a

(k)
. l al i

))
β
β =

∑

l

∑

β∈Js, n{i}

cdeti

((
Ak+1

)

. i

(
a

(k)
. l

))
β
β · al i. (3.5)

By substituting (3.4) and (3.5) in (3.3), and equating factors at al i when l = j,

we obtain (3.2).

The following lemma can be proved similarly.

Lemma 3.5. If A ∈ M (n, H) is Hermitian with IndA = k and λ ∈ R, then

rdetj(λI + Ak+1)j . (a
(k)
i. ) = r

(ij)
1 λn−1 + r

(ij)
2 λn−2 + . . . + r(ij)

n ,
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where r
(ij)
n = rdetj(A

k+1)j . (a
(k)
i. ) and r

(ij)
s =

∑
α∈Is,n{j}

rdetj

(
(Ak+1)j . (a

(k)
i. )
)

α
α for all s = 1, n − 1 and i, j = 1, n.

Theorem 3.6. If A ∈ M (n, H) is Hermitian with IndA = k and rankAk+1 =

rankAk = r, then the Drazin inverse AD =
(
aD

ij

)
∈ H

n×n possess the

following determinantal representations:

aD
ij =

∑
β∈Jr, n{i}

cdeti

((
Ak+1

)
. i

(
ak

.j

))
β
β

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣
, (3.6)

or

aD
ij =

∑
α∈Ir,n{j}

rdetj

(
(Ak+1)j . (a

(k)
i. )
)

α
α

∑
α∈Ir, n

|(Ak+1) α
α|

. (3.7)

Proof. At first we prove (3.6). By Theorem 3.1, AD =

lim
λ→0

(
λIn + Ak+1

)−1
Ak. The matrix

(
λI + Ak+1

)
∈ Hn×n is a full-

rank Hermitian matrix. Taking into account Theorem 2.9, it has an inverse

which can be represented as a left inverse,

(
λI + Ak+1

)−1
=

1

det (λI + Ak+1)




L11 L21 . . . Ln1

L12 L22 . . . Ln2

. . . . . . . . . . . .

L1n L2n . . . Lnn


 ,

where Lij is a left ij-th cofactor of a matrix λI + Ak+1. Then, we have

(
λI + Ak+1

)−1
Ak =

=
1

det (λI + Ak+1)




n∑
s=1

Ls1a
(k)
s1

n∑
s=1

Ls1a
(k)
s2 . . .

n∑
s=1

Ls1a
(k)
sn

n∑
s=1

Ls2a
(k)
s1

n∑
s=1

Ls2a
(k)
s2 . . .

n∑
s=1

Ls2a
(k)
sn

. . . . . . . . . . . .
n∑

s=1
Lsna

(k)
s1

n∑
s=1

Lsna
(k)
s2 . . .

n∑
s=1

Lsna
(k)
sn




.
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By using the definition of a left cofactor, we obtain

AD = lim
λ→0




cdet1(λI+A
k+1)

.1

“

a
(k)
.1

”

det(λI+Ak+1)
. . .

cdet1(λI+A
k+1)

.1

“

a
(k)
.n

”

det(λI+Ak+1)
. . . . . . . . .

cdetn(λI+A
k+1)

.n

“

a
(k)
.1

”

det(λI+Ak+1)
. . .

cdetn(λI+A
k+1)

.n

“

a
(k)
.n

”

det(λI+Ak+1)




.

(3.8)

By Theorem 2.13, we have

det
(
λI + Am+1

)
= λn + d1λ

n−1 + d2λ
n−2 + . . . + dn,

where ds =
∑

β∈Js, n

∣∣∣
(
Ak+1

) β
β

∣∣∣ is a sum of principal minors of Ak+1 of order s

for all s = 1, n− 1 and dn = detAk+1.

Since rankAk+1 = rankAk = r, then dn = dn−1 = . . . = dr+1 = 0. It

follows that det
(
λI + Ak+1

)
= λn + d1λ

n−1 + d2λ
n−2 + . . . + drλ

n−r.

Using (3.2), we have

cdeti

(
λI + Ak+1

)
.i

(
a

(k)
.j

)
= c

(ij)
1 λn−1 + c

(ij)
2 λn−2 + . . . + c(ij)

n

for all i, j = 1, n, where c
(ij)
s =

∑
β∈Js,n{i}

cdeti

(
(Ak+1). i

(
a

(k)
.j

))
β
β for all

s = 1, n− 1 and c
(ij)
n = cdeti

(
Ak+1

)
.i

(
a

(k)
.j

)
. We shall prove that c

(ij)
k = 0,

when k ≥ r + 1 for all i, j = 1, n.

Since by Lemma 3.2,
(
Ak+1

)
. i

(
a

(k)
.j

)
≤ r, then the matrix

(
Ak+1

)
. i

(
a

(k)
.j

)
has no more r right-linearly independent columns. Consider

(
(Ak+1) . i

(
a

(k)
.j

))
β
β , when β ∈ Js,n{i}. This is a principal submatrix of

(
Ak+1

)
. i

(
a

(k)
.j

)
of order s ≥ r + 1. Deleting both its i-th row and column, we

obtain a principal submatrix of order s − 1 of Ak+1. We denote it by M. The

following cases are possible.

• Let s = r + 1 and det M 6= 0. In this case all columns of M are right-

linearly independent. The addition of all of them on one coordinate to

columns of
((

Ak+1
)
. i

(
a

(k)
.j

))
β
β keeps their right-linear independence.
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Hence, they are basis in the matrix
((

Ak+1
)

. i

(
a

(k)
.j

))
β
β , and the i-th

column is the right linear combination of its basis columns. From this by

Theorem 2.8, we get cdeti

((
Ak+1

)
. i

(
a

(k)
.j

))
β
β = 0, when β ∈ Js,n{i}

and s = r + 1.

• If s = r + 1 and det M = 0, then p, (p < s), columns are basis in M

and in
((

Ak+1
)
. i

(
a

(k)
.j

))
β
β. So, by Theorems 2.11 and 2.8 we obtain

cdeti

((
Ak+1

)
. i

(
a

(k)
.j

))
β
β = 0 as well.

• If s > r + 1, then from Theorem 2.11 it follows that detM =
0 and p, (p < r), columns are basis in the both matrices M

and
((

Ak+1
)

. i

(
a

(k)
.j

))
β
β . Therefor, by Theorem 2.8, we have

cdeti

((
Ak+1

)
. i

(
a

(k)
.j

))
β
β = 0.

Thus, in all cases, cdeti

((
Ak+1

)
. i

(
a

(k)
.j

))
β
β = 0, when β ∈ Js,n{i} and

r + 1 ≤ s < n. From here, if r + 1 ≤ s < n, then

c(ij)
s =

∑

β∈Js,n{i}

cdeti

((
Ak+1

)

. i

(
a

(k)
.j

))
β
β = 0,

and c
(ij)
n = cdeti

(
Ak+1

)
. i

(
a

(k)
.j

)
= 0 for all i, j = 1, n.

Hence, cdeti

(
λI + Ak+1

)
. i

(
a

(k)
. j

)
= c

(ij)
1 λn−1 + c

(ij)
2 λn−2 + . . . +

c
(ij)
r λn−r for all i, j = 1, n. By substituting these values in the matrix from

(3.8), we obtain

AD = lim
λ→0




c
(11)
1 λn−1+...+c

(11)
r λn−r

λn+d1λn−1+...+drλn−r . . .
c
(1n)
1 λn−1+...+c

(1n)
r λn−r

λn+d1λn−1+...+drλn−r

. . . . . . . . .

c
(n1)
1 λn−1+...+c

(n1)
r λn−r

λn+d1λn−1+...+drλn−r . . .
c
(nn)
1 λn−1+...+c

(nn)
r λn−r

λn+d1λn−1+...+drλn−r


 =




c
(11)
r

dr
. . . c

(1n)
r

dr

. . . . . . . . .

c
(n1)
r

dr
. . . c

(nn)
r

dr


 ,
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where c
(ij)
r =

∑
β∈Jr, n{i}

cdeti

((
Ak+1

)
. i

(
a

(k)
.j

))
β
β and dr =

∑
β∈Jr, n

∣∣∣
(
Ak+1

) β
β

∣∣∣.

Thus, we obtained the determinantal representation of AD by (3.6).

The determinantal representation of AD by (3.7) can be proved similarly.

In the following corollaries we introduce determinantal representations of

the group inverse Ag and the projection matrices ADA and AAD, respectively.

Corollary 3.1. If IndA = 1 and rankA2 = rankA = r ≤ n for a Hermi-

tian matrix A ∈ H
n×n, then the group inverse Ag =

(
a

g
ij

)
n×n

possess the

following determinantal representations:

a
g
ij =

∑
β∈Jr, n{i}

cdeti

((
A2
)

. i
(a.j)

) β
β

∑
β∈Jr, n

∣∣∣(A2) β
β

∣∣∣
,

or

a
g
ij =

∑
α∈Ir,n{j}

rdetj

(
(A2)j . (ai. )

)
α
α

∑
α∈Ir, n

|(A2) α
α|

.

Proof. The proof follows immediately from Theorem 3.6 in view of k = 1.

Corollary 3.2. If IndA = k and rankAk+1 = rankAk = r ≤ n for a

Hermitian matrix A ∈ H
n×n , then

ADA =




∑
β∈Jr, n{i}

cdeti

((
Ak+1

)
. i

(
a

(k+1)
.j

))
β
β

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣




n×n

, (3.9)

and

AAD =




∑
α∈Ir,n{j}

rdetj

(
(Ak+1)j . (a

(k+1)
i. )

)
α
α

∑
α∈Ir, n

|(Ak+1) α
α|




n×n

. (3.10)
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Proof. At first we prove (3.9). Let ADA = (vij)n×n. Using (3.6) for all

i, j = 1, n, we have

vi j =
X

s

P
β∈Jr, n{i}

cdeti

“`
Ak+1

´
. i

“
a

(k)
.j

””
β

β

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

· as j =

P
β∈Jr, n{i}

P
s

cdeti

“`
Ak+1

´
. i

“
a

(k)
.j · as j

””
β
β

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

=

P
β∈Jr, n{i}

cdeti

“`
Ak+1

´
. i

“
a

(k+1)
.j

””
β
β

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

.

By analogy can be proved (3.10), using the determinantal representation of the

Drazin inverse by (3.7).

3 2. Determinantal Representations of the Drazin Inverse for an

Arbitrary Matrix

For an arbitrary matrix A ∈ M (n, H) with IndA = k and rankAk+1 =
rankAk = r, we can not apply the method proposed for Hermitian matrices

primarily because the lemma on the characteristic polynomial for an arbitrary

quaternion matrix is not possible in general. We shall use a basic equality on the

Drazin inverse and determinantal representations of the Moore-Penrose inverse

by the following proposition and theorem, respectively.

Proposition 3.1. [30] If Ind(A) = k, then

AD = Ak(A2k+1)+Ak.

Theorem 3.7. [10] If A ∈ H
m×n
r , then the Moore-Penrose inverse A+ =(

a+
ij

)
∈ Hn×m possess the following determinantal representations:

a+
ij =

∑
β∈Jr, n{i}

cdeti

(
(A∗A) . i

(
a∗.j

))
β
β

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
, (3.11)

or

a+
ij =

∑
α∈Ir,m{j}

rdetj ((AA∗)j . (a
∗
i. ))

α
α

∑
α∈Ir, m

|(AA∗) α
α|

, (3.12)

.
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for all i = 1, n, j = 1, m.

Therefore, an entry of the Drazin inverse of A ∈ M (n, H) is

aD
ij =

n∑

s=1

n∑

t=1

a
(k)
it

(
a

(2k+1)
ts

)+
a

(k)
sj (3.13)

for all i, j = 1, n. Denote by â.s the s-th column of (A2k+1)∗Ak =: Â =

(âij) ∈ Hn×n for all s = 1, n. It follows from
∑
s

(
a

(2k+1)
. s

)∗
a

(k)
sj = â. j and

(3.11) that

n∑

s=1

(
a

(2k+1)
ts

)+
a

(k)
sj =

n∑

s=1

∑
β∈Jr, n{t}

cdett

(((
A2k+1

)∗ (
A2k+1

))
. t

(
a

(2k+1)
.s

)∗)
β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣
· a

(k)
sj =

∑
β∈Jr, n{t}

cdett

((
A2k+1

)∗ (
A2k+1

)
. t

(â. j)
)

β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣
.

So, the Drazin inverse AD possess the following determinantal representation,

aD
ij =

n∑
t=1

a
(k)
it

∑
β∈Jr, n{t}

cdett

((
A2k+1

)∗ (
A2k+1

)
. t

(â. j)
)

β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣
, (3.14)

for all i, j = 1, n.

Denote by ǎt. the t-th row of Ak(A2k+1)∗ =: Ǎ = (ǎij) ∈ Hn×n for all

t = 1, n. It follows from a
(k)
it

∑
t

(
a

(2k+1)
t .

)∗
= ǎi . and (3.11) that
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nX

t=1

a
(k)
it

“
a
(2k+1)
ts

”+

=

nX

t=1

a
(k)
it ·

P
α∈Ir, n{s}

rdets

““
A2k+1

`
A2k+1

´∗”
.s

“
a

(2k+1)
.t

”∗”
α
α

P
α∈Ir, n

|(A2k+1 (A2k+1)∗) α
α|

=

P
α∈Ir, n{s}

rdets

““
A2k+1

`
A2k+1

´∗”
.s

(ǎi .)
”

α
α

P
α∈Ir, n

|(A2k+1 (A2k+1)∗) α
α|

Therefore, the Drazin inverse AD possess the following determinantal repre-

sentation,

aD
ij =

n∑
s=1

(
∑

α∈Ir, n{s}

rdets

((
A2k+1

(
A2k+1

)∗)

.s
(ǎi .)

)
α
α

)
a

(k)
sj

∑
α∈Ir, n

∣∣(A2k+1 (A2k+1)
∗) α

α

∣∣ , (3.15)

for all i, j = 1, n. Thus, we have proved the following theorem.

Theorem 3.8. If A ∈ M (n, H) with IndA = k and rankAk+1 = rankAk =

r, then the Drazin inverse AD possess the determinantal representations (3.14)

and (3.15).

Using obtained determinantal representations (3.14) and (3.15), we have the

following corollaries. Their proofs are similarly to the proofs of Corollaries ??

and ??, respectively.

Corollary 3.3. If A ∈ M (n, H) with IndA = 1 and rankA2 = rankA2 = r,

then the group inverse Ag =
(
a

g
ij

)
n×n

possess the following determinantal

representations

a
g
ij =

n∑
t=1

ait

∑
β∈Jr, n{t}

cdett

((
A3
)∗ (

A3
)
. t

(â. j)
) β

β

∑
β∈Jr, n

∣∣∣(A3)∗ (A3)
β
β

∣∣∣
,

a
g
ij =

n∑
s=1

(
∑

α∈Ir, n{s}

rdets

((
A3
(
A3
)∗)

.s
(ǎi .)

)
α
α

)
asj

∑
α∈Ir, n

∣∣(A3 (A3)∗
)

α
α

∣∣ ,
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for all i, j = 1, n.

Corollary 3.4. If A ∈ M (n, H) with IndA = k and rankAk+1 = rankAk =
r, then

ADA =




n∑
s=1

(
∑

α∈Ir, n{s}

rdets

((
A2k+1

(
A2k+1

)∗)
.s

(ǎi .)
)

α
α

)
a

(k+1)
sj

∑
α∈Ir, n

∣∣(A2k+1 (A2k+1)
∗) α

α

∣∣




,

and

AAD =




n∑
t=1

a
(k+1)
it

∑
β∈Jr, n{t}

cdett

((
A2k+1

)∗ (
A2k+1

)
. t

(â. j)
)

β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣


 ,

where Ak(A2k+1)∗ = Ǎ = (ǎij) and (A2k+1)∗Ak = Â = (âij).

4. Cramer’s Rule of the Drazin Inverse Solutions of

Some Matrix Equations

One of the main applications of the determinantal representation of an inverse

matrix by the classical adjoint matrix is the Cramer rule. In this section we shall

show that the obtained determinantal representations give the exact analogues

of Cramer’s rule for the Drazin inverse solutions of some matrix equations.

For an arbitrary matrix over the quaternion skew field, A ∈ H
m×n , we

denote by

• Rr(A) = {y ∈ H
m : y = Ax, x ∈ H

n}, the column right space of A,

• Nr(A) = {y ∈ H
n : Ax = 0}, the right null space of A,

• Rl(A) = {y ∈ H
n : y = xA, x ∈ H

m}, the column left space of A,

• Nr(A) = {y ∈ Hm : xA = 0}, the left null space of A.
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Consider a matrix equation

AXB = D, (4.1)

where A ∈ Hn×n , B ∈ Hm×m, D ∈ Hn×m are given, and X ∈ Hn×m is

unknown. Let IndA = k1 and IndB = k2.

It’s well known (see, e.g., [12]) that the equation (4.1) with restrictions

Rr(X) ⊂ Rr(A
k1), Nr(X) ⊃ Nr(B

k2),

Rl(X) ⊂ Rl(A
k1), Nl(X) ⊃ Nl(B

k2),

has a unique solution X = ADDBD.

4 1. The Case of Hermitian Matrices

Denote Ak1DBk2 =: D̃ = (d̃ij) ∈ Hn×m.

Theorem 4.1. If A, B are Hermitian, rankAk1+1 = rankAk1 = r1 ≤ n for

A ∈ Hn×n, and rankBk2+1 = rankBk2 = r2 ≤ m for B ∈ Hm×m, then, for

the Drazin inverse solution X = ADDBD = (xij) ∈ Hn×m of (4.1), we have

xij =

∑
β∈Jr1, n{i}

cdeti

((
Ak1+1

)
. i

(
d B

. j

))β

β

∑
β∈Jr1,n

∣∣∣(Ak1+1)
β
β

∣∣∣
∑

α∈Ir2,m

∣∣(Bk2+1)
α
α

∣∣
, (4.2)

or

xij =

∑
α∈Ir2,m{j}

rdetj

((
Bk2+1

)
j .

(
d A

i .

))
α
α

∑
β∈Jr1,n

∣∣∣(Ak1+1)
β
β

∣∣∣
∑

α∈Ir2,m

∣∣(Bk2+1)
α
α

∣∣
, (4.3)

where

dB

. j =




∑

α∈Ir2,m{j}

rdetj

((
Bk2+1

)
j.

(
d̃l.

))α

α


 ∈ H

n×1, l = 1, n, (4.4)

dA

i . =




∑

β∈Jr1,n{i}

cdeti

((
Ak1+1

)
.i

(
d̃.t

))β

β


 ∈ H

1×m, t = 1, m, (4.5)

are the column vector and the row vector, respectively. d̃i. and d̃.j are the i-th

row and the j-th column of D̃ for all i = 1, n, j = 1, m.

.
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Proof. An entry of the Drazin inverse solution X = ADDBD = (xij) ∈
Hn×m is

xij =
m∑

s=1

(
n∑

t=1

aD
it dts

)
bD
sj (4.6)

for all i = 1, n, j = 1, m, where by Theorem 3.6

aD
it =

∑
β∈Jr1, n{i}

cdeti

((
Ak1+1

)
. i

(
a

(k1)
.t

))
β
β

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
, (4.7)

bD
sj =

∑
α∈Ir2,m{j}

rdetj

(
(Bk2+1)j . (b

(k2)
s. )

)
α
α

∑
α∈Ir2,m

|(Bk2+1) α
α|

. (4.8)

Denote by d̂.s the s-th column of Ak1D =: D̂ = (d̂ij) ∈ Hn×m for all

s = 1, m. It follows from
∑
t

a
(k1)
. t dts = d̂. s that

nX

t=1

a
D
itdts =

nX

t=1

P
β∈Jr1 , n{i}

cdeti

“`
Ak1+1

´
. i

“
a

(k1 )
.t

””
β

β

P
β∈Jr1 , n

˛̨
˛(Ak1+1) β

β

˛̨
˛

· dts =

P
β∈Jr1 , n{i}

nP
t=1

cdeti

“`
Ak1+1

´
. i

“
a

(k1)
.t

””
β

β · dts

P
β∈Jr1, n

˛̨
˛(Ak1+1) β

β

˛̨
˛

=

P
β∈Jr1, n{i}

cdeti

“`
A k1+1́

. i

“
ˆd. s

””
β

β

P
β∈J r1, n

˛̨
˛(Ak1+1) β

β

˛̨
˛

Suppose es. and e. s are respectively the unit row-vector and the unit column-
vector whose components are 0, except the s-th components, which are 1. Sub-
stituting (4.7) and (4.8) in (4.6), we obtain

xij =

mX

s=1

P
β∈Jr1 , n{i}

cdeti

“`
Ak1+1

´
. i

“
d̂. s

””
β

β

P
β∈Jr1 , n

˛̨
˛(Ak1+1) β

β

˛̨
˛

P
α∈Ir2,m{j}

rdetj

“
(Bk2+1)j . (b

(k2)
s. )

”
α
α

P
α∈Ir2,m

|(Bk2+1) α
α|

.

Since

d̂. s =

n∑

t=1

e. td̂ts, b(k2)
s. =

m∑

l=1

b
(k2)
sl el.,

m∑

s=1

d̂tsb
(k2)
sl = d̃tl,
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then we have
xij =

mP
s=1

mP
l=1

nP
t=1

P
β∈Jr1 , n{i}

cdeti

``
Ak1+1

´
. i

(e. t)
´

β
β d̂tsb

(k2)
sl

P
α∈Ir2,m{j}

rdetj

`
(Bk2+1)j . (el.)

´
α
α

P
β∈Jr1 , n

˛̨
˛(Ak1+1) β

β

˛̨
˛
P

α∈Ir2,m

|(Bk2+1) α
α|

=

n∑
t=1

m∑
l=1

∑
β∈Jr1, n{i}

cdeti

((
Ak1+1

)
. i

(e. l)
) β

β d̃tl

∑
α∈Ir2,m{j}

rdetj

(
(Bk2+1)j . (et.)

)
α
α

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

.

(4.9)
Denote by

d
A

il :=

X

β∈Jr1, n{i}

cdeti

““
A

k1+1
”

. i

“
d̃. l

””β

β

=
nX

t=1

X

β∈Jr1, n{i}

cdeti

““
A

k1+1
”

. i
(e. t)

”β

β

edtl

the l-th component of a row-vector dA
i . = (dA

i1, ..., d
A
im) for all l = 1, m. Sub-

stituting it in (4.9), we have

xij =

m∑
l=1

dA
it

∑
α∈Ir2,m{j}

rdetj

(
(Bk2+1)j . (el.)

)α
α

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

∣∣(Bk2+1)
α
α

∣∣
.

Since
m∑

l=1

dA

il el. = dA
i . , then it follows (4.3).

If we denote by

d
B

tj :=

mX

l=1

edtl

X

α∈Ir2,m{j}

rdetj

“
(Bk2+1)j .(el.)

”α

α
=

X

α∈Ir2,m{j}

rdetj

“
(Bk2+1)j . (edt.)

”α

α
,

the t-th component of a column-vector dB
. j = (dB

1j, ..., d
B
nj)

T for all t = 1, n

and substitute it in (4.9), we obtain

xij =

n∑
t=1

∑
β∈Jr1,n{i}

cdeti

((
Ak1+1

)
. i

(e. t)
)β
β

dB
tj

∑
β∈Jr1, n

∣∣∣(Ak1+1)
β
β

∣∣∣
∑

α∈Ir2,m

∣∣(Bk2+1)
α
α

∣∣
.
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Since
n∑

t=1
e.td

B
tj = dB

.j , then it follows (4.2).

Consider a matrix equation

AX = D, (4.10)

where A ∈ H
n×n, D ∈ H

n×m are given, A is Hermitian, and X ∈ H
n×m is

unknown. Let IndA = k. We denote AkD =: D̂ = (d̂ij) ∈ Hn×m . Putting

B = I in (4.1) we evidently obtain the following corollary.

Corollary 4.1. If rankAk+1 = rankAk = r ≤ n for Hermitian A ∈ H
n×n ,

then for the Drazin inverse solution X = ADD = (xij) of (4.10), we have

xij =

∑
β∈Jr, n{i}

cdeti

((
Ak+1

)
. i

(
d̂.j

))
β
β

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣
, (4.11)

where d̂.j is the j-th column of D̂ for j = 1, m.

Consider a matrix equation

XB = D, (4.12)

where B ∈ H
m×m, D ∈ H

n×m are given, B is Hermitian and X ∈ H
n×m is

unknown. Let IndB = k and denote DBk =: Ď = (ďij) ∈ Hn×m . Putting

A = I in (4.1) we evidently obtain the following corollary.

Corollary 4.2. If rankBk+1 = rankBk = r ≤ n for Hermitian B ∈ Hn×n ,

then for the Drazin inverse solution X = DBD =: (xij) of (4.12), we have for

i = 1, n, j = 1, m

xij =

∑
α∈Ir,m{j}

rdetj

((
Bk+1

)
j .

(
ďi .

))
α
α

∑
α∈Ir, m

|(Bk+1) α
α|

. (4.13)

where ďi. is the i-th row of Ď for i = 1, n.
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4 2. The Case of Arbitrary Matrices

Using the determinantal representations (3.14) for arbitrary A ∈ H
n×n and

(3.15) for arbitrary B ∈ Hm×m, we obtain the following theorem and corollar-

ies by analogy to Theorem 4.1, Corollaries 4.1 and 4.2, respectively.

Denote (A2k1+1)∗Ak1DBk2(B2k2+1)∗ =: D̃ = (d̃ij) ∈ Hn×m .

Theorem 4.2. If rankAk1+1 = rankAk1 = r1 ≤ n for ∀A ∈ Hn×n , and

rankBk2+1 = rankBk2 = r2 ≤ m for ∀B ∈ H
m×m, then for the Drazin

inverse solution X = ADDBD = (xij) ∈ Hn×m of (4.1), we have

xij =

n∑
t=1

a
(k1)
it

∑
β∈Jr1, n{t}

cdett

((
A2k1+1

)∗ (
A2k1+1

)
. t

(
d B

. j

))
β
β

∑
β∈Jr1, n

∣∣∣(A2k1+1)
∗
(A2k1+1) β

β

∣∣∣
∑

α∈Ir2, m

∣∣(B2k2+1 (B2k2+1)
∗) α

α

∣∣

(4.14)

or

xij =

m∑
s=1

(
∑

α∈Ir2, m{s}

rdets

((
B2k2+1

(
B2k2+1

)∗)
.s

(
d A

i .

))
α
α

)
a

(k2)
sj

∑
β∈Jr1, n

∣∣∣(A2k1+1)
∗
(A2k1+1) β

β

∣∣∣
∑

α∈Ir2, m

∣∣(B2k2+1 (B2k2+1)
∗) α

α

∣∣
,

(4.15)
where

d
B

. j =

0
@

mX

s=1

0
@

X

α∈Ir2, m{s}

rdets

““
B

2k2+1
“
B

2k2+1
”∗”

.s

“
edq.

””
α
α

1
A a

(k2)
sj

1
A ∈ H

n×1
,

(4.16)

and

dA

i . =




n∑

t=1

a
(k1)
it

∑

β∈Jr1, n{t}

cdett

((
A2k1+1

)∗(
A2k1+1

)
. t

(
d̃.p

))
β
β


∈ H

1×m,

(4.17)

and d̃p., d̃.q are the p-th row and the q-th column of D̃, respectively, for all

q = 1, n, p = 1, m.

Corollary 4.3. If rankAk+1 = rankAk = r ≤ n for A ∈ H
n×n , then, for the

.
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Drazin inverse solution X = ADD = (xij) of (4.10), we have

xij =

n∑
t=1

a
(k)
it

∑
β∈Jr, n{t}

cdett

((
A2k+1

)∗ (
A2k+1

)
. t

(
d̂ . j

))
β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣
, (4.18)

where d̂.j is the j-th column of D̂ = (A2k1+1)∗Ak1D for all j = 1, m, i = 1, n.

Corollary 4.4. If rankBk+1 = rankBk = r ≤ m for B ∈ H
m×m , then, for

the Drazin inverse solution X = DBD =: (xij) of (4.12), we have

xij =

m∑
s=1

(
∑

α∈Ir, m{s}

rdets

((
B2k+1

(
B2k+1

)∗)
.s

(
ď i .

))
α
α

)
a

(k)
sj

∑
α∈Ir, m

∣∣(B2k+1 (B2k+1)
∗) α

α

∣∣ , (4.19)

where ďi. is the i-th row of Ď = DBk2(B2k2+1)∗ for all i = 1, n, j = 1, m.

4 3. Examples

In this section, we give examples to illustrate our results.

1. Let us consider the matrix equation

AXB = D, (4.20)

where

A =




1 k −i

−k 2 j

i −j 1


 , B =

(
1 i

−i 1

)
, D =




1 i

k 1
1 j


 .

Since A2 =




3 4k −3i

−4k 6 4j

3i −4j 3


, detA = det A2 = 0, and

det

(
1 k

−k 2

)
= 1, det

(
3 4k

−4k 6

)
= 2, then, by Theorem 2.11, Ind A = 1

and r1 = rankA = 2. Similarly, since B2 =

(
2 2i

−2i 2

)
, then Ind B = 1

and r2 = rankB = 1.

.
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Because A and B are Hermitian, we shall find the Drazin inverse solution

Xd = (xd
ij) of (4.20) by the equations (4.2)-(4.4). We have

∑
α∈I1, 2

∣∣(B2
)

α
α

∣∣ =

2 + 2 = 4,

∑

β∈J2,3

∣∣∣
(
A2
) β

β

∣∣∣ = det

(
3 4k

−4k 6

)
+det

(
3 −3i

3i 3

)
+det

(
6 4j

−4j 3

)
= 4.

Since

D̃ = ADB =




1− i 1 + i

−i + j 1 − k

1 + i −1 + i


 ,

then by (4.4)

dB

. j =




∑

α∈I1,2{j}

rdetj

((
B2
)
1.

(
d̃l.

))α

α


 ∈ H

n×1, l = 1, 2, 3; j = 1, 2.

Thus, we have

dB

.1 =




1 − i

−i + j

1 + i


 , dB

.2 =




1 + i

1 − k

−1 + i


 .

So

(
A2
)

. 1

(
d B

. 1

)
=




1 − i 4k −3i

−i + j 6 4j

1 + i −4j 3


 ,

and finally we obtain

xd
11 =

∑
β∈J2, 3{1}

cdet
((

A2
)

. 1

(
d B

. 1

)) β
β

∑
β∈J2,3

∣∣∣(A2)β
β

∣∣∣
∑

α∈I1,2

|(B2)αα|
=

1

16

(
cdet1

(
1 − i 4k

−i + j 6

)
+ cdet1

(
1− i −3i

1 + i 3

))
=

3 − i + 2j

8
.
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Similarly,

xd
12 =

1

16

(
cdet1

(
1 + i 4k

1− k 6

)
+ cdet1

(
1 + i −3i

1 + i 3

))
=

1 + 3i − 2k

8
,

xd
21 =

1

16

(
cdet2

(
3 1 − i

−4k −i + j

)
+ cdet1

(
−i + j 4j

1 + i 3

))
=

−3i − j + 4k

8
,

xd
22 =

1

16

(
cdet2

(
3 1 + i

−4k 1 − k

)
+ cdet1

(
1 − k 4j

−1 + i 3

))
=

3 + 4j + k

8
,

xd
31 =

1

16

(
cdet2

(
3 1 − i

3i 1 + i

)
+ cdet2

(
6 −i + j

−4j 1 + i

))
=

1 + 3i + 2k

8
,

xd
32 =

1

16

(
cdet2

(
3 1 + i

3i −1 + i

)
+ cdet2

(
6 1− k

−4j −1 + i

))
=

−3 + i + 2j

8
.

So,

Xd =
1

8




3 − i + 2j 1 + 3i − 2k

−3i − j + 4k 3 + 4j + k

1 + 3i + 2k −3 + i + 2j




is the Drazin inverse solution of (4.20).

2. Let us consider the matrix equation

AX = D, (4.21)

where

A =




i j k

1 −k j

1 0 i


 , D =




1 i

k 1
1 j


 .

Since A2 =



−1 + j + k −i + k −1
i + j − k −1 + j i

2i j −1 + k


, A∗A =




3 −2k i + 2j

2k 2 −2i

−i + 2j 2i 3


,

(A2)∗A2 =




10 2 + 2j − 6k 2 + 2i + 4j + 2k

2 − 2j + 6k 5 −3i + j + 2k

2 − 2i − 4j − 2k 3 − j − 2k 4


 ,
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det A∗A = det(A2)∗A2 = 0, det

(
3 −2k

2k 2

)
= 2,

det

(
10 2 + 2j − 6k

2 − 2j + 6k 5

)
= 6,

then, by Theorem 2.11, Ind A = 1 and r = rankA = 2. We shall find the

Drazin inverse solution Xd = (xd
ij) of (4.21) by (4.18). Since

(A3)∗A3 =




23 2 + 3i + 5j − 17k 8 + 4i + 15j + 2k

2 − 3i − 5j + 17k 15 3 − 13i + 2j + 5k

8 − 4i − 15j − 2k 3 + 13i− 2j − 5k 15


 ,

then

∑

β∈J2,3

∣∣∣
(
(A3)∗A3

) β
β

∣∣∣ = det

(
23 2 + 3i + 5j − 17k

2− 3i− 5j + 17k 15

)

+ det

(
15 3− 13i + 2j + 5k

3 + 13i− 2j − 5k 15

)

+ det

(
23 8 + 4i + 15j + 2k

8 − 4i− 15j − 2k 15

)
= 72.

Further,

D̂ = (A3)∗AD =

0
@
−11− 9i − 6j + 2k 9 − 6i − j

−5 + 5i − 4j − 10k −1− 2i − 7j + 6k

−10− 4i + 7j − 3k 3− 4i − 7j − 4k

1
A ,

and

`
(A3)∗A3´

.1

“
d̂ . 1

”
=

0
@
−11 − 9i − 6j + 2k 2 + 3i + 5j − 17k 8 + 4i + 15j + 2k

−5 + 5i − 4j − 10k 15 3 − 13i + 2j + 5k

−10 − 4i + 7j − 3k 3 + 13i − 2j − 5k 15

1
A .
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Therefore, finally we obtain

xd
11 =

3∑
t=1

a1t

∑
β∈J2,3{t}

cdett

((
A3
)∗

A3). t

(
d̂ . 1

))
β
β

∑
β∈J2,3

∣∣∣((A3)∗A3) β
β

∣∣∣
=

i

76

(
cdet1

(
1 2 + 3i + 5j − 17k

k 5

)
+ cdet1

(
1 8 + 4i + 15j + 2k

1 15

))
+

j

76

(
cdet2

(
23 1

2− 3i− 5j + 17k k

)
+ cdet1

(
k 3 − 13i + 2j + 5k

1 15

))
+

k

76

(
cdet2

(
23 1

8 − 4i− 15j − 2k 1

)
+ cdet2

(
15 k

3 + 13i− 2j − 5k 1

))
=

1

76
(7− 17i + 5j − 3k)

Similarly,

x
d
12 =

i

76
(13 + 29i − 13j + 13k) +

j

76
(37 + 3i + 14j + 18k) −

k

76
(7 + 21i − 42j + 10k) =

1

76
(−33 − 11i + 3j − 23k),

x
d
21 =

1

76
(−5 − 9i − 12j − 4k) +

k

76
(−5 + 18i − 5j + 8k) +

j

76
(25 + 6i + 28j − k) =

1

76
(−49− 13i + 29j − 15k),

x
d
22 =

1

76
(13 + 29i − 13j + 13k) +

k

76
(37 + 3i + 14j + 18k) −

j

76
(7 + 21i − 42j + 10k) =

1

76
(−47 + 5i − 17j + 71k),

x
d
31 =

1

76
(−5 − 9i − 12j − 4k) +

0

76
(−5 + 18i − 5j + 8k) +

i

76
(25 + 6i + 28j − k) =

1

76
(−11 + 16i − 11j + 24k),

x
d
32 =

1

76
(13 + 29i − 13j + 13k) +

0

76
(37 + 3i + 14j + 18k) −

i

76
(7 + 21i − 42j + 10k) =

1

76
(34 + 22i − 3j + 55k).

Thus,we have the Drazin inverse solution of (4.21),

Xd =
1

76




7 − 17i + 5j − 3k −33 − 11i + 3j − 23k

−49 − 13i + 29j − 15k −47 + 5i − 17j + 71k

−11 + 16i− 11j + 24k 34 + 22i − 3j + 55k


 .
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5. Applications of the Determinantal Representations

of the Drazin Inverse to Some Differential Matrix

Equations

In [40], applications of the Drazin inverse to linear systems of differential equa-

tions with singular constant coefficients have been done. In [41], we recently

have obtained determinantal representations of solutions of some singular dif-

ferential complex-valued matrix equations. In this chapter we extend studies

conducted in [41] from the complex field to the quaternion skew field.

5 1. Background for Quaternion-valued Differential Equations

(QDE)

Consider a quaternion-valued function of real variable, f : R → H, (t ∈ R

is a real variable), such that f(t) = f0(t) + f1(t)i + f2(t)j + f3(t)k. The

first derivative of a quaternionic function f(t) with respect to the real variable t

denote by,

f ′(t) :=
df(t)

dt
=

df0(t)

dt
+

df1(t)

dt
i +

df2(t)

dt
j +

df3(t)

dt
k.

It is easy to prove the following proposition on properties of the derivative

of quaternionic functions.

Proposition 5.1. If q : R → H and r : R → H are differentiable, then (q ±
r)(t), qr(t) and, for any integer n ≥ 1, qn are differentiable, and

(q± r)′(t) = q′(t) ± r′(t), (5.1)

(qr)′(t) = q′(t)r(t) + q(t)r′(t), (5.2)

[qn(t)]′ =

n−1∑

j=0

qj(t)q′(t)qn−j(t). (5.3)

If fi(t) for all l = 0, 3 is integrable on [a, b] ⊂ R, the f(t) is integrable and

∫ b

a

f(t)dt =

∫ b

a

f0(t)dt +

∫ b

a

f1(t)dt i +

∫ b

a

f2(t)dt j +

∫ b

a

f3(t)dtk.

.
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Consider a matrix valued function A(t) = (aij(t)) ∈ H
n×n ⊗ R, where aij(t)

are quaternion-valued functions with the real variable t for all i, j = 1, n. Then

dA(t)

dt
=

(
daij(t)

dt

)

n×n

,

∫ b

a

A(t)dt =

(∫ b

a

aij(t)dt

)

n×n

.

We need the exponential of q ∈ H that can be defined by putting,

exp q =

∝∑

n=0

qn

n!
. (5.4)

From the definition of a quaternionic exponential (5.4), we evidently have the

following properties.

Proposition 5.2. If q, r ∈ H are such that qr = rq, then exp (q + r) =
(exp q)(exp r).

Proposition 5.3. If q : R → H is differentiable and q′(t)q(t) = q(t)q′(t),

then

[expq(t)]′ = [expq(t)]q′(t).

In [42], the linear quaternion differential equations,

q′(t) = a(t)q(t), (5.5)

and

q′(t) = q(t)a(t), (5.6)

with the initial condition q(t0) = q0 have been considered and the following

proposition has been derived.

Proposition 5.4. Let q(t) = Φl(t)q0 and q(t) = q0Φr(t) be solutions of (5.5)

and (5.6), respectively. If

a(t)

∫ t

t0

a(τ)dτ =

∫ t

t0

a(τ)dτ a(t), (5.7)

then

Φl(t) = Φr(t) = exp

(∫ t

t0

a(τ)dt

)
.
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If a is constant, then, evidently,
∫ t

t0
a(τ)dt = a (t − t0), and Φl(t) =

Φr(t) = exp(a (t − t0)).

The similar result has been obtained in [43] as well. In [43], the following

nonhomogeneous differential equation corresponding to (5.5) has been consid-

ered,

q′(t) = a(t)q(t) + f(t), (5.8)

where f : [0, T ] → H and a : [0, T ] → H. It has been shown, if condition (5.7)
is satisfied, then the solutions of (5.8) are given by

q(t) = exp

„Z t

0

a(τ)dτ

«„
q(0) +

Z t

0

exp

„Z s

0

(−a(τ)) dτ

«
f(s)ds

«
, (t ∈ [0, T ]).

(5.9)

In the special case when a is constant and q(0) = 1, then the solutions of (5.8)

are given by

q(t) = exp (at)

(∫ t

0

exp (−as) f(s)ds

)
, (t ∈ [0, T ]). (5.10)

5 2. Determinantal Representations of Solutions of Some Singular

Differential Quaternion-Matrix Equations

Consider the matrix differential equation

X′ + AX = B, (5.11)

where A ∈ H
n×n, B ∈ H

n×n are given, X ∈ H
n×n is unknown. By (5.10) the

general solution of (5.11) is found to be

X(t) = exp (−At)

(∫
exp (At) dt

)
B.

If A is invertible, then

∫
exp (At) dt = A−1 exp (At) + G, (5.12)

where G is an arbitrary n × n quaternionic matrix.

Since A−1 exp (A) = exp (A)A−1, then the general solution of (5.11) is

X(t) = {A−1 + exp (−At)G}B. If A is noninvertible, then due to [30] the

following theorem can be expended to quaternion matrices.

.
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Theorem 5.1. If A ∈ H
n×n has index k, then

Z
exp (At) dt = A

D exp (At) + (I−AA
D)t

»
I +

A

2
t +

A2

3!
t
2 + ... +

Ak−1

k!
t
k−1

–
+ G.

(5.13)

Proof. Differentiate the right-hand side of (5.13), and use the series expansion

for exp (At).

Using (5.13) and the series expansion for exp (−At), we get an explicit
form for a general solution of (5.11),

X(t) =


A

D + (I− AA
D)t

„
I−

A

2
t +

A2

3!
t
2 − ...(−1)k−1Ak−1

k!
t
k−1

«
+ G

ff
B.

If we put G = 0, then the following partial solution of (5.11) is obtained,

X(t) = A
D
B+(B−A

D
AB)t−

1

2
(AB−A

D
A

2
B)t2+...

(−1)k−1

k!
(Ak−1

B−A
D
A

k
B)tk

.

(5.14)

Theorem 5.2. If A ∈ Hn×n has index k and rankAk+1 = rankAk = r ≤ n,

then the partial solution (5.14), X(t) = (xij), possess the following determi-

nantal representation,
1. when A ∈ Hn×n is Hermitian,

xij =

P
β∈Jr, n{i}

cdeti

“
A

k+1
. i

“
bb(k)

.j

””
β
β

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

+

0
BB@bij −

P
β∈Jr, n{i}

cdeti

“
A

k+1
. i

“
bb(k+1)

.j

””
β
β

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

1
CCAt−

−
1

2

0
BB@bb

(1)
ij −

P
β∈Jr, n{i}

cdeti

“
Ak+1

. i

“
bb(k+2)

.j

””
β
β

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

1
CCA t

2 + ...

(−1)k

k!

0
BB@bb

(k−1)
ij −

P
β∈Jr, n{i}

cdeti

“
A

k+1
. i

“
bb(2k)

.j

””
β

β

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

1
CCA t

k
(5.15)

where AlB =: B̂(l) = (̂b
(l)
ij ) ∈ H

n×n for all l = k, 2k;
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2. when A is arbitrary,

xij =

n∑
s=1

a
(k)
it

∑
β∈Jr, n{s}

cdets

((
A2k+1

)∗ (
A2k+1

)
. s

(
d̂

(0)
.j

))
β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣

+


bij −

n∑
s=1

a
(k)
is

∑
β∈Jr, n{s}

cdets

((
A2k+1

)∗ (
A2k+1

)
. s

(
d̂

(1)
.j

))
β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣


 t

−
1

2


b̂

(1)
ij −

n∑
t=1

a
(k)
it

∑
β∈Jr, n{s}

cdets

((
A2k+1

)∗ (
A2k+1

)
. s

(
d̂

(2)
.j

))
β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣


 t2+...

(−1)k

k!


b̂

(k−1)
ij −

n∑
s=1

a
(k)
is

∑
β∈Jr, n{s}

cdets

((
A2k+1

)∗ (
A2k+1

)
. s

(
d̂

(k)
.j

))
β
β

∑
β∈Jr, n

∣∣∣(A2k+1)
∗
(A2k+1) β

β

∣∣∣


tk

(5.16)

where (A2k+1)∗Ak+lB = ÂAlB =: D̂(l) = (d̂
(l)
ij ) ∈ H

n×n for all l = 1, k

and for all i, j = 1, n.

Proof. 1. Using the determinantal representation of AD by (3.6), we obtain the

following determinantal representation of the matrix ADAmB := (yij),

yij =

nX

s=1

a
D
is

nX

t=1

a
(m)
st btj =

X

β∈Jr,n{i}

nP
s=1

cdeti

“
Ak+1

. i

“
a.s

(k)
””β

β
·

nP
t=1

a
(m)
st btj

P
β∈Jr,n

˛̨
˛(Ak+1)β

β

˛̨
˛

=

X

β∈Jr,n{i}

nP
t=1

cdeti

“
Ak+1

. i

“
a.t

(k+m)
””β

β
· btj

P
β∈Jr,n

˛̨
˛(Ak+1)β

β

˛̨
˛

=

P
β∈Jr, n{i}

cdeti

“
Ak+1

. i

“
bb(k+m)

.j

””
β

β

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

for all i, j = 1, n and m = 1, k. From this and the determinantal representation

of the Drazin inverse solution (4.11), it follows (5.15).
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2. The proof of (5.16) is similar to the proof of (5.15) by using the determi-

nantal representation of AD by (3.14).

Consider the matrix differential equation

X′ + XA = B (5.17)

where A ∈ Hn×n , B ∈ Hn×n are given, X ∈ Hn×n is unknown. The general

solution of (5.17) is found to be

X(t) = B exp (−At)

(∫
exp (At) dt

)
.

If A is invertible, then by (5.12) the general solution of (5.17) is X(t) =

B{A−1 + exp (−At)G}. If A is noninvertible, then an explicit form for a

general solution of (5.17) is

X(t) =

B

{
AD + (I −AAD)t

(
I −

A

2
t +

A2

3!
t2 + ...(−1)k−1A

k−1

k!
tk−1

)
+ G

}
.

If we put G = 0, then we obtain the following partial solution of (5.17),

X(t) = BA
D+(B−BAA

D)t−
1

2
(BA−BA

2
A

D)t2+...
(−1)k−1

k!
(BA

k−1−BA
k
A

D)tk
.

(5.18)

Theorem 5.3. If A ∈ H
n×n has index k and rankAk+1 = rankAk = r ≤ n,

then the partial solution (5.18), X(t) = (xij), possess the following determi-

nantal representation,
1. when A ∈ H

n×n is Hermitian,

xij =

P
α∈Ir,n{j}

rdetj

“
A

k+1
j .

“
b̌

(k)
. i

””
α
α

P
α∈Ir,n

|(Ak+1) α
α|

+

0
BB@bij −

P
α∈Ir,n{j}

rdetj

“
A

k+1
j .

“
b̌

(k+1)
i .

””
α
α

P
α∈Ir,n

|(Ak+1) α
α|

1
CCAt

−
1

2

0
BB@b̌

(1)
ij −

P
α∈Ir,n{j}

rdetj

“
Ak+1

j .

“
b̌

(k+2)
i .

””
α
α

P
α∈Ir,n

|(Ak+1) α
α|

1
CCA t

2 + ...

(−1)k

k!

0
BB@b̌

(k−1)
ij −

P
α∈Ir,n{j}

rdetj

“
Ak+1

j .

“
b̌

(2k)
i .

””
α
α

P
α∈Ir,n

|(Ak+1) α
α|

1
CCA t

k
,
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where BAl =: B̌(l) = (b̌
(l)
ij ) ∈ Hn×n for all l = k, 2k;

2. when A ∈ H
n×n is arbitrary,

xij =

nP
s=1

 
P

α∈Ir, n{s}

rdets

““
A2k+1

`
A2k+1

´∗”
.s

(ď(0))
”

α
α

!
a
(k)
sj

P
α∈Ir, n

|(A2k+1 (A2k+1)∗) α
α|

+

0
BBBB@

bij −

nP
s=1

 
P

α∈Ir, n{s}

rdets

““
A2k+1

`
A2k+1

´∗”
.s

(ď(1))
”

α
α

!
a
(k)
sj

P
α∈Ir, n

|(A2k+1 (A2k+1)∗) α
α|

1
CCCCA

t

−
1

2

0
BBBB@

b̌
(1)
ij −

nP
s=1

 
P

α∈Ir, n{s}

rdets

““
A2k+1

`
A2k+1

´∗”
.s

(ď(2))
”

α
α

!
a
(k)
sj

P
α∈Ir, n

|(A2k+1 (A2k+1)∗) α
α|

1
CCCCA

t
2 + ...

(−1)k

k!

0
BBBB@

b̌
(k−1)
ij −

nP
s=1

 
P

α∈Ir, n{s}

rdets

““
A2k+1

`
A2k+1

´∗”
.s

(ď(k))
”

α
α

!
a
(k)
sj

P
α∈Ir, n

|(A2k+1 (A2k+1)∗) α
α|

1
CCCCA

t
k
,

where BAk+l(A2k+1)∗ = BAlǍ =: Ď(l) = (ď
(l)
ij ) ∈ H

n×n for all l = 1, k

and for all i, j = 1, n.

Proof. The proof is similar to the proof of Theorem 5.2 by using the determi-

nantal representation of the Drazin inverse (3.6) and (3.14), respectively.

5 3. An Example

Let us consider the matrix equation

X′ + AX = B, (5.19)

where

A =




1 k −i

−k 2 j

i −j 1


 , B =




i j k

1 −k j

1 0 i


 .

.
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Since A2 =




3 4k −3i

−4k 6 4j

3i −4j 3


, detA = det A2 = 0, and

det

(
1 k

−k 2

)
= 1, det

(
3 4k

−4k 6

)
= 2, then, by Theorem 2.11, Ind A = 1

and r1 = rankA = 2. Since A is Hermitian and Ind A = 1, then we shall find

the solutions (xij) ∈ H
3×3 by (5.15),

xij =

∑
β∈J2,3{i}

cdeti

(
A2

. i

(
b̂

(1)
.j

))
β
β

∑
β∈J2, 3

∣∣∣(A2) β
β

∣∣∣
+


bij −

∑
β∈J2,3{i}

cdeti

(
A2

. i

(
b̂

(2)
.j

))
β
β

∑
β∈J2,3

∣∣∣(A2) β
β

∣∣∣


 t

for all i, j = 1, 2, 3. We have,
∑

β∈J2,3

∣∣∣
(
A2
) β

β

∣∣∣ = 4,

B̂(1) = AB =




k 1 + j 1 − i + k

2 i− 2k 1 + 2j − k

−j i + k 1 + i− j


 ,

B̂(2) = A2B =




4k 4 + 3j 3− 4i + 3k

6 4i− 6k 4 + 6j − 4k

−4j 4i + 3k 4 + 3i− 3j


 .

Therefore,

x11 =
1

4

„
cdet1

„
k 4k

2 6

«
+ cdet1

„
k −3i

−j 3

««
+

„
i −

1

4

»
cdet1

„
4k 4k

6 6

«
+

cdet1

„
4k −3i

−4j 3

«–«
t =

1

4
(−2k) +

„
i −

1

4
[0]

«
t = −0.5k + (i)t;

x12 =
1

4

„
cdet1

„
1 + j 4k

i − 2k 6

«
+ cdet1

„
1 + j −3i

i + k 3

««
+

„
j −

1

4

»
cdet1

„
4 + 3j 4k

4i − 6k 6

«
+

cdet1

„
4 + 3j −3i

4i + 3k 3

«–«
t =

1

4
(−2 + 2j) +

„
j −

1

4
[2j]

«
t = −0.5 + 0.5j + (0.5j) t;

x13 =
1

4

„
cdet1

„
1 − i + k 4k

1 + 2j − k 6

«
+ cdet1

„
1− i + k −3i

1 + ij 3

««
+

„
k −

1

4

»
cdet1

„
3 − 4i + 3j 4k

4 + 6j − 4k 6

«
+ cdet1

„
3 − 4i + 4k −3i

4 + 3i − 3j 3

«–«
t =

1

4
(2 + 2i + 2k) +

„
k −

1

4
[2 + 11k]

«
t = 0.5 + 0.5i + 0.5k + (−0.5− 4.5k) t;
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x21 =
1

4

„
cdet2

„
3 k

−4k 2

«
+ cdet1

„
2 4j

−j 3

««
+

„
1 −

1

4

»
cdet2

„
3 4k

−4k 6

«
+

cdet1

„
6 4j

−4j 3

«–«
t =

1

4
(4) +

„
1 −

1

4
[−4k]

«
t = 1 + (1 + k)t;

x22 =
1

4

„
cdet2

„
3 1 + j

−4k i − 2k

«
+ cdet1

„
i − 2k 4j

i + k 3

««
+

„
−k −

1

4

»
cdet2

„
3 4 + 3j

−4k 4i − 6k

«
+ cdet1

„
4i − 6k 4j

4i + 3k 3

«–«
t =

1

4
(−2i − 4k) +

„
−k −

1

4
[−4k]

«
t = −0.5i − k;

x23 =
1

4

„
cdet2

„
3 1 − i + k

−4k 1 + 2j − k

«
+ cdet1

„
1 + 2j − k 4j

1 + i − j 3

««
+

„
j −

1

4

»
cdet2

„
3 3− 4i + 3k

−4k 4 + 6j − 4k

«
+ cdet1

„
4 + 6j − 4k 4j

4 + 3i − 3j 3

«–«
t =

1

4
(−2 + 4j + 2k) +

„
j −

1

4
[4j]

«
t = −0.5 + j + 0.5k;

x31 =
1

4

„
cdet2

„
3 k

3i −j

«
+ cdet2

„
6 2

−4j −j

««
+

„
1 −

1

4

»
cdet2

„
3 4k

3i −4j

«
+

cdet2

„
6 6

−4j −4j

«–«
t =

1

4
(2j) +

„
i −

1

4
[0]

«
t = 0.5j + t;

x32 =
1

4

„
cdet2

„
3 1 + j

3i i + k

«
+ cdet2

„
6 i − 2k

−4j i + k

««
+

„
0 −

1

4

»
cdet2

„
3 4 + 3j

3i 4i + 3k

«
+ cdet2

„
6 4i − 6k

−4j 4i + 3k

«–«
t =

1

4
(−2i + 2k) +

„
−

1

4
[2k]

«
t = −0.5i + 0.5k + (−0.5k)t;

x33 =
1

4

„
cdet2

„
3 1 − i + k

3i 1 + i − j

«
+ cdet2

„
6 1 + 2j − k

−4j 1 + i − j

««
+

„
i −

1

4

»
cdet2

„
3 3− 4i + 3jk

3i 4 + 3i − 3j

«
+ cdet2

„
6 4 + 6j − 4k

−4j 4 + 3i − 3j

«–«
t =

1

4
(−2 + 2i − 2j) +

„
i −

1

4
[2i − 2j]

«
t = −0.5 + 0.5i − 0.5j + (0.5i − 0.5j)t.
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6. Determinantal Representations of the W-Weighted

Drazin Inverse for an Arbitrary Matrix

The properties of the complex W-weighted Drazin inverse can be found in [1,44,

45, 46, 47, 48]. These properties can be generalized to H. In particular, if A ∈
H

m×n with respect to W ∈ H
n×m and k = max{Ind(AW), Ind(WA)},

then

Ad,W = A
(
(WA)D)

)2
=
(
(AW)D)

)2
A, (6.1)

Ad,WW = (WA)D, WAd,W = (AW)D. (6.2)

Determinantal representations W-weighted Drazin inverse of complex matrices

have been received by a full-rank factorization in [37] and by a limit represen-

tation in [49].

Through the theory of column-row determinants, a determinantal represen-

tation W-weighted Drazin inverse over the quaternion skew-field for the first

time has been obtained in [14] by the following theorem.

Theorem 6.1. Let A ∈ H
m×n, W ∈ H

n×m with k =
max{Ind(AW), Ind(WA)} and and rank(AW)k = s. Suppose that

B ∈ H
n×(n−s)
n−s and C∗ ∈ H

m×(m−s)
m−s are of full-ranks and

Rr(B) = Nr

(
(WA)k

)
, Nr(C) = Rr

(
(AW)k

)
,

Rl(C) = Nl

(
(AW)k

)
, Nl(B) = Rl

(
(WA)k

)
.

Denote

M =

[
WAW B

C 0

]
.

Then the W-weighted Drazin inverse Ad,W = (a)ij ∈ Hn×m has the following

determinantal representations:

aij =

∑m+n−s
k=1 Lkim

∗
kj

det M∗M
, i = 1, m, j = 1, n, (6.3)

or

aij =

∑m+n−s
k=1 m∗

ikRjk

det MM∗
, i = 1, m, j = 1, n, (6.4)

where Lij are the left (ij)-th cofactor of M∗M and Rij are the right (ij)-th

cofactor of MM∗, respectively, for all i, j = 1, m + n − s.
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As can be seen, the auxiliary matrices B and C have been used in the de-

terminantal representations (6.3) and (6.4). In this chapter we escape it. We

shall derive determinantal representations of the W-weighted Drazin inverse of

an arbitrary matrix A ∈ Hm×n with respect to W ∈ Hn×m by using the de-

terminantal representations of the Drazin inverse, of the Moore-Penrose inverse,

and the limit representation of the W-weighted Drazin inverse in some particular

case.

6 1. Determinantal Representations of the W-Weighted Drazin

Inverse by using Determinantal Representations of the

Drazin Inverse

Let A ∈ Hm×n and W ∈ Hn×m. Denote WA =: U = (uij) ∈ Hn×n and

AW =: V = (vij) ∈ H
m×m. Due to Theorem 3.6 for an arbitrary element of

the Drazin inverse UD, we have the following determinantal representations,

u
D,1
ij =

n∑
t=1

u
(k)
it

∑
β∈Jr, n{t}

cdett

((
U2k+1

)∗ (
U2k+1

)
. t

(û. j)
)

β
β

∑
β∈Jr, n

∣∣∣(U2k+1)
∗
(U2k+1) β

β

∣∣∣
(6.5)

or

u
D,2
ij =

n∑
s=1

(
∑

α∈Ir, n{s}

rdets

((
U2k+1

(
U2k+1

)∗)
.s

(ǔi .)
)

α
α

)
u

(k)
sj

∑
α∈Ir, n

∣∣(U2k+1 (U2k+1)
∗) α

α

∣∣ (6.6)

where û.j is the j-th column of (U2k+1)∗Uk =: Û = (ûij) ∈ H
n×n , and ǔi.

is the i-th row of Uk(U2k+1)∗ =: Ǔ = (ǔij) ∈ Hn×n for all i, j = 1, n, and

r = rankUk+1 = rankUk .

Then, by (6.1), we can obtain the following determinantal representations

of Ad,W = (ad,W
ij ) ∈ H

m×n ,

a
d,W
ij =

n∑

q=1

aiq(u
D
qj)

(2) (6.7)

where

(uD
qj)

(2) =

n∑

p=1

uD,l
qp u

D,f
pj (6.8)

.
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for all l, f = 1, 2. u
D,1
ij and u

D,2
ij are represented by (6.5) and (6.6), respectively.

Similarly, using V = (vij) ∈ H
m×m, we have the following determinantal

representations of Ad,W,

a
d,W
ij =

m∑

q=1

(vD
iq )(2)aqj. (6.9)

The first factor is one of the four possible equations

(vD
iq)

(2) =
m∑

p=1

v
D,l
ip vD,f

pq (6.10)

for all l, f = 1, 2. An element of the Drazin inverse VD can be represented by

v
D,1
ij =

m∑
t=1

v
(k)
it

∑
β∈Jr, m{t}

cdett

((
V2k+1

)∗ (
V2k+1

)
. t

(v̂. j)
)

β
β

∑
β∈Jr, m

∣∣∣(V2k+1)
∗
(V2k+1) β

β

∣∣∣
(6.11)

or

v
D,2
ij =

m∑
s=1

(
∑

α∈Ir, m{s}

rdets

((
V2k+1

(
V2k+1

)∗)
.s

(v̌i .)
)

α
α

)
v

(k)
sj

∑
α∈Ir, m

∣∣(V2k+1 (V2k+1)
∗) α

α

∣∣ , (6.12)

where v̂.s is the s-th column of (V2k+1)∗Vk =: V̂ = (v̂ij) ∈ Hm×m, and v̌t.

is the t-th row of Vk(V2k+1)∗ =: V̌ = (v̌ij) ∈ H
m×m for all s, t = 1, m, and

r = rankVk+1 = rankVk.

6 2. Determinantal Representations of the W-Weighted Drazin

Inverse by using Determinantal Representations of the Moore-

Penrose Inverse

Consider the general algebraic structures (GAS) of the matrices A ∈ Hm×n ,

W ∈ H
n×m , A+ ∈ H

n×m, W+ ∈ H
m×n and Ad,W ∈ H

m×n with k =
max{Ind(AW), Ind(WA)} (e.g., [44,45,46,47]).

.
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Let exist L ∈ H
m×m and Q ∈ H

n×n such that

A = L

[
A11 0

0 A22

]
Q−1, W = Q

[
W11 0

0 W22

]
L−1.

Then

A+ = Q

[
A−1

11 0

0 0

]
L−1, W+ = L

[
W−1

11 0

0 0

]
Q−1,

Ad,W = L

[
(W11A11W11)

−1 0

0 0

]
Q−1,

where L, Q, A11, W11 are invertible matrices, and A22W22, W22A22 are

nilpotent matrices. Due to [47], the following theorem can be expanded to H.

Theorem 6.2. Let A ∈ Hm×n and W ∈ Hn×m such that A22W22 and

W22A22 be nilpotent matrices of index k in GAS form. Then the weighted

Drazin inverse of A with respect to W can be written as matrix expression

involving the Moore-Penrose inverse,

Ad,W =

{
(AW)k

[
(AW)2k+1

]+
(AW)k

}
W+, (6.13)

where k = max{Ind(AW), Ind(WA)}.

Similarly, the following theorem can be obtained.

Theorem 6.3. Let A ∈ H
m×n and W ∈ H

n×m such that A22W22 and

W22A22 be nilpotent matrices of index k in GAS form. Then the W-weighted

Drazin inverse of A with respect to W can be written as the following matrix

expression,

Ad,W = W+

{
(WA)k

[
(WA)2k+1

]+
(WA)k

}
, (6.14)

where k = max{Ind(AW), Ind(WA)}.

Proof. Since W22A22 is a nilpotent matrix of index k, then due to GAS of

A, W and their generalized inverses, we have the following Jordan canonical

forms,

WA = Q

[
W11A11 0

0 W22A22

]
Q−1, (WA)k = Q

[
(W11A11)

k 0

0 0

]
Q−1,
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[
(WA)2k+1

]+
= Q

[
(W11A11)

−2k−1 0

0 0

]
Q−1.

Simple computing of W+
{
(WA)k

[
(WA)2k+1

]+
(WA)k

}
proves the theo-

rem,

W+

{
(WA)k

[
(WA)2k+1

]+
(WA)k

}
=

L

[
W−1

11 0

0 0

][
(W11A11)

k 0

0 0

][
(W11A11)

−2k−1 0

0 0

] [
(W11A11)

k 0

0 0

]
Q−1 =

L

[
W−1

11 (W11A11)
k(W11A11)

−2k−1(W11A11)
k 0

0 0

]
Q−1 =

L

[
W−1

11 (W11A11)
−1 0

0 0

]
Q−1 =

L

[
(W11A11W11)

−1 0

0 0

]
Q−1 = Ad,W.

Using (6.13), an entry a
d,W
ij of the W-weighted Drazin inverse Ad,W can be

obtained as follows

a
d,W
ij =

m∑

s=1

m∑

t=1

m∑

l=1

v
(k)
is

(
v

(2k+1)
st

)+
v

(k)
tl w+

lj (6.15)

for all i = 1, m, j = 1, n.

Denote by w̌t. the t-th row of VkW∗ =: W̌ = (w̌ij) ∈ Hm×n for all

t = 1, m. It follows from
∑
l

v
(k)
tl w∗

l . = w̌t . and (3.12) that

mX

l=1

v
(k)
tl w

+
lj =

mX

l=1

v
(k)
tl ·

P
α∈Ir1, n{j}

rdetj (WW∗)j. (w
∗
l.)

α
α

P
α∈Ir1, n

|(WW∗) α
α|

=

P
α∈Ir1, n{j}

rdetj

“
(WW∗)j . (w̌t.)

”
α
α

P
α∈Ir1, n

|(WW∗) α
α|

, (6.16)
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where r1 = rankW. Similarly, denote by v̌i. the t-th row of Vk(V2k+1)∗ =:

V̌ = (v̌ij) ∈ H
m×m for all t = 1, m. It follows from

∑
s

v
(k)
is

(
v

(2k+1)
s .

)∗
= v̌i .

and (3.12) that

mX

s=1

v
(k)
is

“
v
(2k+1)
st

”+

=

mX

s=1

v
(k)
is ·

P
α∈Ir, m{t}

rdett

““
V2k+1

`
V2k+1

´∗”
t.

“
v

(2k+1)
s.

”∗”
α
α

P
α∈Ir, m

|(V2k+1 (V2k+1)∗) α
α|

=

P
α∈Ir, m{t}

rdett

““
V2k+1

`
V2k+1

´∗”
t.

(v̌i .)
”

α
α

P
α∈Ir, m

|(V2k+1 (V2k+1)∗) α
α|

, (6.17)

where r = rankWk+1 = rankWk. Using (6.16) and (6.17) in (6.15), we
obtain the following determinantal representation of Ad,W ,

a
d,W
ij =

mP
t=1

P
α∈Ir, m{t}

rdett

““
V2k+1

`
V2k+1

´∗”
t.

(v̌i .)
”

α
α

P
α∈Ir1, n{j}

rdetj

“
(WW∗)j . (w̌t.)

”
α
α

P
α∈Ir, m

|(V2k+1 (V2k+1)∗) α
α|

P
α∈Ir1, n

|(WW∗) α
α|

(6.18)

Thus, we have proved the following theorem.

Theorem 6.4. Let A ∈ H
m×n and W ∈ H

n×m
r1

with k =
max{Ind(AW), Ind(WA)} and r = rank(AW)k+1 = rank(AW)k. Then

the W-weighted Drazin inverse of A with respect to W possesses the deter-

minantal representation (6.18), where V = AW, V̌ = Vk(V2k+1)∗, and

W̌ = VkW∗.

Similarly we have the following theorem.

Theorem 6.5. Let A ∈ Hm×n and W ∈ Hn×m
r1

with k =

max{Ind(AW), Ind(WA)} and r = rank(WA)k+1 = rank(WA)k. Then
the W-weighted Drazin inverse of A with respect to W possesses the following
determinantal representation,

a
d,W
ij =

nP
t=1

P
β∈Jr1, m{i}

cdeti

`
(W∗W)

.i
(ŵ.t)

´
β

β

P
β∈Jr, n{t}

cdett

““`
U2k+1

´∗
U2k+1

”
.t

(û.j)
”

β

β

P
β∈Jr1, m

˛̨
˛(W∗W) β

β

˛̨
˛
P

β∈Jr, n

˛̨
˛((U2k+1)∗ U2k+1) β

β

˛̨
˛

(6.19)
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where U = WA, Û = (U2k+1)∗Uk, and Ŵ = W∗Uk .

Proof. Using (6.14), an entry a
d,W
ij of the W-weighted Drazin inverse Ad,W

can be obtained as follows

a
d,W
ij =

n∑

s=1

n∑

t=1

n∑

l=1

w+
isu

(k)
st

(
u

(2k+1)
tl

)+
u

(k)
lj (6.20)

for all i = 1, m, j = 1, n. Denote by ŵ.t the t-th column of W∗Uk =: Ŵ =

(ŵij) ∈ Hm×n for all t = 1, n. It follows from
∑
t

w∗
.su

(k)
st = ŵ.t and (3.11)

that

n∑

s=1

w+
isu

(k)
st =

n∑

s=1

∑
β∈Jr1, m{i}

cdeti (W
∗W).i (w

∗
.s)

β
β

∑
β∈Jr1, m

∣∣∣(W∗W) β
β

∣∣∣
· u

(k)
st =

∑
β∈Jr1, m{i}

cdeti ((W∗W).i (ŵ.t))
β
β

∑
β∈Jr1, m

∣∣∣(W∗W) β
β

∣∣∣
, (6.21)

where r1 = rankW. Similarly, denote by û.j the j-th column of

(U2k+1)∗Uk =: Û = (ûij) ∈ Hn×n for all j = 1, n. It follows from
∑
l

(
u

(2k+1)
.l

)∗
u

(k)
lj = û.j and (3.11) that

n∑

l=1

(
u

(2k+1)
tl

)+
u

(k)
lj =

n∑

l=1

∑
β∈Jr, n{t}

cdett

(((
U2k+1

)∗
U2k+1

)

.t

(
u

(2k+1)
.l

)∗)
β
β

∑
β∈Jr, n

∣∣∣
(
(U2k+1)

∗
U2k+1

) β
β

∣∣∣
· u

(k)
lj =

∑
β∈Jr, n{t}

cdett

(((
U2k+1

)∗
U2k+1

)
.t

(û.j)
)

β
β

∑
β∈Jr, n

∣∣∣
(
(U2k+1)

∗
U2k+1

) β
β

∣∣∣
, (6.22)

where r = rank(AW)k+1 = rank(AW)k. Using the equations (6.22) and

(6.21) in (6.20), we obtain (6.19).
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6 3. Determinantal Representations of the W-Weighted Drazin

Inverse in Some Special Case

In this subsection we consider the determinantal representation of the W-

weighted Drazin inverse of A ∈ H
m×n with respect to W ∈ H

n×m in a special

case, when AW = V = (vij) ∈ H
m×m and WA = U = (uij) ∈ H

n×n are

Hermitian. Then, for the determinantal representations of their Drazin inverse

we can use (3.6) and (3.7).

For Hermitian matrix, we apply the method, which consists of the theorem

on the limit representation of the Drazin inverse, lemmas on rank of matrices

and on characteristic polynomial. By analogy to the complex case [39] we have

the following limit representations of the W-weighted Drazin inverse,

Ad,W = lim
λ→0

(
λIm + (AW)k+2

)−1
(AW)kA (6.23)

and

Ad,W = lim
λ→0

A(WA)k
(
λIn + (WA)k+2

)−1
(6.24)

where λ ∈ R+, and R+ is a set of the real positive numbers.

Denote by v
(k)
.j and v

(k)
i. the j-th column and the i-th row of Vk, respec-

tively. Denote by V̄k := (AW)kA ∈ H
m×n and W̄ = WAW ∈ H

n×m .

Lemma 6.6. If AW = V = (vij) ∈ H
m×m with IndV = k, then

rank
(
Vk+2

)
. i

(
v̄

(k)
.j

)
≤ rank

(
Vk+2

)
. (6.25)

Proof. We have Vk+2 = V̄kW̄. Let Pi s (−w̄j s) ∈ Hm×m, (s 6= i), be a

matrix with −w̄j s in the (i, s)-entry, 1 in all diagonal entries, and 0 in others.
The matrix Pi s (−w̄j s), (s 6= i), is a matrix of an elementary transformation.
It follows that

“
V

k+2
”

. i

“
v̄

(k)
. j

”
·
Y

s 6=i

Pi s (−w̄j s) =

0
BBB@

P
s 6=j

v̄
(k)
1s w̄s1 . . . v̄

(k)
1j . . .

P
s 6=j

v̄
(k)
1s w̄sm

. . . . . . . . . . . . . . .P
s 6=j

v̄
(k)
msw̄s1 . . . v̄

(k)
mj . . .

P
s 6=j

v̄
(k)
msw̄sm

1
CCCA

i−th

.

.
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We have the next factorization of the obtained matrix.




∑
s6=j

v̄
(k)
1s w̄s1 . . . v̄

(k)
1j . . .

∑
s6=j

v̄
(k)
1s w̄sm

. . . . . . . . . . . . . . .∑
s6=j

v̄
(k)
msw̄s1 . . . v̄

(k)
mj . . .

∑
s6=j

v̄
(k)
msw̄sm




i−th

=

=




v̄
(k)
11 v̄

(k)
12 . . . v̄

(k)
1n

v̄
(k)
21 v̄

(k)
22 . . . v̄

(k)
2n

. . . . . . . . . . . .

v̄
(k)
m1 v̄

(k)
m2 . . . v̄

(k)
mn







w̄11 . . . 0 . . . w̄1m

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

w̄n1 . . . 0 . . . w̄nm




i−th

j − th.

Denote W̃ :=




w̄11 . . . 0 . . . w̄1m

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

w̄n1 . . . 0 . . . w̄nm




i−th

j − th. The matrix W̃ is

obtained from W̄ = WAW by replacing all entries of the j-th row and

the ith column with zeroes except for 1 in the (i, j)-entry. Since elementary

transformations of a matrix do not change a rank, then rankVk+2
. i

(
v̄

(k)
.j

)
≤

min
{

rank V̄k, rankW̃
}

. It is obvious that

rank V̄k = rank (AW)kA ≥ rank (AW)k+2,

rankW̃ ≥ rank WAW ≥ rank (AW)k+2.

From this the inequality (3.1) follows immediately.

The next lemma is proved similarly.

Lemma 6.7. If WA = U = (uij) ∈ Hn×n with IndU = k, then

rank
(
Uk+2

)
i .

(
ū

(k)
j .

)
≤ rank

(
Uk+2

)
,

where Ūk := A(WA)k ∈ H
m×n .
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Analogues of the characteristic polynomial are considered in the following

two lemmas.

Lemma 6.8. If AW = V = (vij) ∈ H
m×m is Hermitian with IndV = k and

λ ∈ R, then

cdeti

(
λIm + Vk+2

)
. i

(
v̄

(k)
.j

)
= c

(ij)
1 λn−1 + c

(ij)
2 λn−2 + . . . + c(ij)

n , (6.26)

where c
(ij)
n = cdeti

(
Vk+2

)
. i

(
v̄

(k)
.j

)
and

c(ij)
s =

∑

β∈Js, n{i}

cdeti

((
Vk+2

)

. i

(
v̄

(k)
.j

))
β
β

for all s = 1, n− 1, i, j = 1, n.

Proof. Consider the Hermitian matrix
(
tI + Vk+2

)
. i

(v
(k+2)
. i ) ∈ Hn×n. Taking

into account Theorem 2.13, we obtain

det
(
λI + Vk+2

)
. i

(
v

(k+2)
. i

)
= d1λ

n−1 + d2λ
n−2 + . . . + dn, (6.27)

where ds =
∑

β∈Js,n{i}

|
(
Vk+2

)β
β
| is the sum of all principal minors of order

s that contain the i-th column for all s = 1, n− 1 and dn = det
(
Vk+2

)
.

Consequently, we have v
(k+2)
. i =




∑
l

v̄
(k)
1l w̄li

∑
l

v̄
(k)
2l w̄li

...∑
l

v̄
(k)
nl w̄li




=
∑
l

v̄
(k)
. l w̄li, where v̄

(k)
. l is

the l-th column of V̄k = (AW)kA and WAW = W̄ = (w̄li) for all l = 1, n.

By Theorem 2.5, we obtain on the one hand

det
(
λI + Vk+2

)
. i

(
v

(k+2)
. i

)
= cdeti

(
λI + Vk+2

)
. i

(
v

(k+2)
. i

)
=

=
∑

l

cdeti

(
λI + Vk+2

)
. l

(
v̄

(k)
. l w̄li

)
=
∑

l

cdeti

(
λI + Vk+2

)
. i

(
v̄

(k)
. l

)
· w̄li

(6.28)



Drazin and W-Weighted Drazin Inverses Over the Quaternion ... 251

On the other hand, having changed the order of summation, for all s = 1, n− 1
we have

ds =
∑

β∈Js, n{i}

det
(
Vk+2

)
β
β =

∑

β∈Js,n{i}

cdeti

(
Vk+2

)
β
β =

∑

β∈Js,n{i}

∑

l

cdeti

((
Vk+2

)
. i

(
v̄

(k)
. l w̄l i

))
β
β =

∑

l

∑

β∈Js, n{i}

cdeti

((
Vk+2

)
. i

(
v̄

(k)
. l

))
β
β · w̄l i. (6.29)

By substituting (6.28) and (6.29) in (6.27), and equating factors at w̄l i when

l = j, we obtain (6.26).

By analogy can be proved the following lemma.

Lemma 6.9. If WA = U = (uij) ∈ Hn×n is Hermitian with IndU = k and

λ ∈ R, then

rdetj(λI + Uk+2)j . (ū
(k)
i. ) = r

(ij)
1 λn−1 + r

(ij)
2 λn−2 + . . . + r(ij)

n ,

where r
(ij)
s =

∑
α∈Is,n{j}

rdetj

(
(Uk+2)j . (ū

(k)
i. )
)

α
α and r

(ij)
n =

rdetj(U
k+2)j . (ū

(k)
i. ) for all s = 1, n − 1 and i, j = 1, n.

Theorem 6.10. If A ∈ H
m×n , W ∈ H

n×m, and AW ∈ H
m×m is Hermitian

with k = max{Ind(AW), Ind(WA)} and rank(AW)k+1 = rank(AW)k =

r, then the W-weighted Drazin inverse Ad,W =
(
a

d,W
ij

)
∈ H

m×n with respect

to W possess the following determinantal representations:

a
d,W
ij =

∑
β∈Jr, m{i}

cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∑
β∈Jr, m

∣∣∣(AW)k+2 β
β

∣∣∣
, (6.30)

where v̄
(k)
.j is the j-th column of V̄k = (AW)kA for all j = 1, m.

Proof. The matrix
(
λIm + (AW)k+2

)−1
∈ Hm×m is a full-rank Hermitian

matrix. Taking into account Theorem 2.9 it has an inverse, which we represent

as a left inverse matrix
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“
λIm + (AW)k+2

”−1

=
1

det (λIm + (AW)k+2)

0
BB@

L11 L21 . . . Lm1

L12 L22 . . . Lm2

. . . . . . . . . . . .

L1m L2m . . . Lmm

1
CCA ,

where Lij is a left ij-th cofactor of a matrix λIm + (AW)k+2. Then we have

(
λIm + (AW)k+2

)−1
(AW)kA =

= 1
det(λIm+(AW)k+2)




m∑
s=1

Ls1v̄
(k)
s1

m∑
s=1

Ls1v̄
(k)
s2 . . .

m∑
s=1

Ls1v̄
(k)
sn

m∑
s=1

Ls2v̄
(k)
s1

m∑
s=1

Ls2v̄
(k)
s2 . . .

m∑
s=1

Ls2v̄
(k)
sn

. . . . . . . . . . . .
m∑

s=1
Lsmv̄

(k)
s1

m∑
s=1

Lsmv̄
(k)
s2 . . .

m∑
s=1

Lsmv̄
(k)
sn




.

By (6.23) and using the definition of a left cofactor, we obtain

Ad,W = lim
α→0

0
BBB@

cdet1(λIm+(AW)k+2)
.1

“

v̄
(k)
.1

”

det(λIm+(AW)k+2)
. . .

cdet1(λIm+(AW)k+2)
.1

“

v̄
(k)
.n

”

det(λIm+(AW)k+2)
. . . . . . . . .

cdetn(λIm+(AW)k+2)
.n

“

v̄
(k)
.1

”

det(λIm+(AW)k+2)
. . .

cdetn(λIm+(AW)k+2)
.m

“

v̄
(k)
.n

”

det(λIm+(AW)k+2)

1
CCCA .

(6.31)

By Theorem 2.13, we have

det
(
λIm + (AW)k+2

)
= λm + d1λ

m−1 + d2λ
m−2 + . . . + dm,

where ds =
∑

β∈Js, m

∣∣∣
(
λIm + (AW)k+2

) β
β

∣∣∣ is a sum of principal minors of

(AW)k+2 of order s for all s = 1, m− 1 and dm = det(AW)k+2.

Since rank(AW)k+2 = rank(AW)k+1 = rank(AW)k = r, then dm =

dm−1 = . . . = dr+1 = 0. It follows that det
(
λIm + (AW)k+2

)
= λm +

d1λ
m−1 + d2λ

m−2 + . . . + drλ
m−r.

Using (6.26) we have

cdeti

(
λIm + (AW)k+2

)
. i

(
v̄

(k)
.j

)
= c

(ij)
1 λm−1 + c

(ij)
2 λm−2 + . . . + c(ij)

m

for i = 1, m and j = 1, n, where c
(ij)
s =

∑
β∈Js, m{i}

cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

for all s = 1, m− 1 and c
(ij)
m = cdeti(AW)k+2

.i

(
v̄

(k)
.j

)
.
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We shall prove that c
(ij)
k = 0, when k ≥ r + 1 for i = 1, m and j = 1, n.

Since by Lemma 3.2
(
(AW)k+2

. i

(
v̄

(k)
.j

))
≤ r, then the matrix

(
(AW)k+2

. i

(
v̄

(k)
.j

))
has no more r right-linearly independent columns.

Consider
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β , when β ∈ Js,m{i}. It is a principal sub-

matrix of
(
(AW)k+2

. i

(
v̄

(k)
.j

))
of order s ≥ r + 1. Deleting both its i-th row

and column, we obtain a principal submatrix of order s − 1 of (AW)k+2. We

denote it by M. The following cases are possible.

• Let s = r + 1 and det M 6= 0. In this case all columns of M are right-

linearly independent. The addition of all of them on one coordinate to

columns of
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β keeps their right-linear independence.

Hence, they are basis in a matrix
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β , and the i-th

column is the right linear combination of its basis columns. From this

by Theorem 2.8, we get cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β = 0, when β ∈

Js,n{i} and s = r + 1.

• If s = r + 1 and detM = 0, than p, (p < s), columns are ba-

sis in M and in
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β . Therefore, by Theorem 2.8,

cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β = 0 as well.

• If s > r+1, then det M = 0 and p, (p < r), columns are basis in the both

matrices M and
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β. Therefore, by Theorem 2.8, we

also have cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β = 0.

Thus, in all cases we have cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β = 0, when β ∈ Js,m{i}

and r + 1 ≤ s < m. From here if r + 1 ≤ s < m, then

c(ij)
s =

∑

β∈Js, m{i}

cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β = 0,

and c
(ij)
m = cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
= 0 for all i, j = 1, n.

Hence, cdeti

(
λI + (AW)k+2

)
. i

(
v̄

(k)
. j

)
= c

(ij)
1 λm−1 + c

(ij)
2 λm−2 + . . .+

c
(ij)
r λm−r for i = 1, m and j = 1, n. By substituting these values in the matrix

from (6.31), we obtain
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Ad,W = lim
λ→0




c
(11)
1 λm−1+...+c

(11)
r λm−r

λm+d1λm−1+...+drλm−r . . .
c
(1n)
1 λm−1+...+c

(1n)
r λm−r

λm+d1λm−1+...+drλm−r

. . . . . . . . .

c
(m1)
1 λm−1+...+c

(m1)
r λm−r

λm+d1λm−1+...+drλm−r . . .
c
(mn)
1 λm−1+...+c

(mn)
r λm−r

λm+d1λm−1+...+drλm−r


=




c
(11)
r

dr
. . . c

(1n)
r

dr

. . . . . . . . .

c
(m1)
r

dr
. . . c

(mn)
r

dr


 .

Here c
(ij)
r =

∑
β∈Jr, m{i}

cdeti

(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β and dr =

∑
β∈Jr, m

∣∣∣(AW)k+2 β
β

∣∣∣. Thus, we have the determinantal representation of

Ad,W by (6.30).

The following theorem can be proved similarly.

Theorem 6.11. If A ∈ H
m×n , W ∈ H

n×m , and WA ∈ H
n×n is Hermitian

with k = max{Ind(AW), Ind(WA)} and rank(WA)k+1 = rank(WA)k =

r, then the W-weighted Drazin inverse Ad,W =
(
a

d,W
ij

)
∈ Hm×n with respect

to W possess the following determinantal representations:

a
d,W
ij =

∑
α∈Ir,n{j}

rdetj

(
(WA)k+2

j . (ū
(k)
i. )
)

α
α

∑
α∈Ir, n

∣∣∣(WA)k+2 α
α

∣∣∣
. (6.32)

where ū
(k)
i. is the i-th row of Ūk = A(WA)k for all i = 1, n.

6 4. An Example

Let us consider the matrices

A =




0 i 0

k 1 i

1 0 0

1 −k −j


 , W =




k 0 i 0
−j k 0 1

0 1 0 −k


 .

.
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Then

V := AW =




−k −j 0 i

−1 − j i + k j 1 + j

k 0 i 0
−i + k 1 − j i i − k


 , U := WA =




i j 0
0 k 0

0 0 0


 ,

and rankW = 3, rankV = 3, rankV3 = rankV2 = 2, rankU2 =
rankU = 2. Therefore, Ind V = 2, Ind U = 1, and k =

max{Ind(AW), Ind(WA)} = 2.
It’s evident that obtaining the W-weighted Drazin inverse of A with respect

to W by using the matrix U by (6.19) is more convenient. We have

U
2 =

0
@
−1 i + k 0
0 −1
0 0 0

1
A , U

5 =

0
@

i 2 + 3j 0
0 k

0 0 0

1
A , (U5)∗ =

0
@

−i 0 0
2 − 3j −k

0 0 0

1
A ,

`
U

5´∗
U

5 =

0
@

1 −2i − 3k 0
2i + 3k 14

0 0 0

1
A , Û = (U5)∗U2 =

0
@

i 1 + j 0
−2 + 3j −i + 6k

0 0 0

1
A ,

W
∗ =

0
BB@

−k j 0
0 −k 1
−i 0 0
0 1 k

1
CCA ,W

∗
W =

0
BB@

2 i −j j

−i 2 0 −2k

j 0 1 0
−j 2k 0 2

1
CCA ,

Ŵ = W
∗
U

2 =

0
BB@

−k 1 − 2j 0
0 i + k 0
i 1 + j 0
0 −1 0

1
CCA .

By (6.19),

a
d,W
11 =

3∑
t=1

∑
β∈I3, 4{1}

cdet1 ((W∗W).1 (ŵ.t))
β
β

∑
β∈J2,3{t}

cdett

(((
U5
)∗

U5
)
.t

(û.1)
) β

β

∑
β∈J3,4

∣∣∣(W∗W) β
β

∣∣∣
∑

β∈J2,3

∣∣∣
(
(U5)∗ U5

) β
β

∣∣∣
,

where
X

β∈I3, 4{1}

cdet1
`
(W∗

W)
.1 (ŵ.1)

´
β

β =

cdet1

0
@

k i −j

0 2 0
i 0 1

1
A+ cdet1

0
@

k i j

0 2 −2k

0 2k 1

1
A+ cdet1

0
@

k −j j

i 1 0
0 0 2

1
A = 0,
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X

β∈I3, 4{1}

cdet1
`
(W∗

W)
.1 (ŵ.2)

´
β

β = −2j,
X

β∈I3, 4{1}

cdet1
`
(W∗

W)
.1 (ŵ.3)

´
β

β = 0,

X

β∈J3, 4

˛̨
˛(W∗

W) β

β

˛̨
˛ = 2,

and

X

β∈J2, 3{1}

cdet1
““`

U
5´∗

U
5
”

.1
(û.1)

”
β
β =

cdet1

„
i −2i − 3k

−2 + 3j 14

«
+ cdet1

„
i 0
0 0

«
= i,

X

β∈J2, 3{2}

cdet2
““`

U
5´∗

U
5
”

.2
(û.1)

”
β
β = 0,

X

β∈J2, 3{3}

cdet3
““`

U
5´∗

U
5
”

.3
(û.1)

”
β
β = 0,

X

β∈J2, 3

˛̨
˛
“`

U
5´∗

U
5
”

β
β

˛̨
˛ = 1.

Therefore,

a
d,W
11 =

(0 · i) + (−2j · 0) + (0 · 0)

2 · 1
= 0.

Continuing in the same way, we finally get,

Ad,W =




0 −i 0

0 0 0
−1 5i− 2k 0

0 0 0


 . (6.33)

By (3.11), we obtain

`
U

5
´+

=

0
@
−i −3 + 2j 0
0 −k

0 0 0

1
A , (AW)D = U

D = U
2
`
U

5
´+

U
2 =

0
@
−i −5 0
0 −k

0 0 0

1
A .

We can verify (6.33) by (6.2). Indeed,

Ad,WW =

0
BB@

0 −i 0
0 0 0
−1 5i − 2k 0
0 0 0

1
CCA

0
@

k 0 i 0
−j k 0 1
0 1 0 −k

1
A =

0
@
−i −5 0
0 −k

0 0 0

1
A = (AW)D

.

We also obtain the W-weighted Drazin inverse of A with respect to W by (6.7),
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then we have

Ad,W = A
(
(WA)D)

)2
=




0 −i 0

−k 6 + 5i 0
−1 5i + 5k 0

−1 5i + 6k 0


 , (6.34)

The W-weighted Drazin inverse in (6.34) different from (6.33). It can be ex-

plained that the Jordan normal form of WA is unique only up to the order of

the Jordan blocks. We get their complete equality, if Ad,W from (6.34) be left-

multiply by the nonsingular matrix P which is the product of multiplication of

the following elementary matrices,

P = P2,4(−k) · P4,3(−1) · P3,4(−6) · P4,1(−j) =




1 0 0 0
0 1 0 −k

0 0 7 −6
−j 0 −1 1


 .

7. Cramer’s Rule for the W-weighted Drazin Inverse

Solution

7 1. Background of the Problem

In [46], Wei has established Cramer’s rule for solving of a general restricted

equation

WAWx = b, x ∈ R
[
(AW)k1

]
, (7.1)

where A ∈ C
m×n, W ∈ C

n×m with Ind (AW) = k1, Ind (WA) = k2 and

rank (AW)k1 = r1, rank (WA)k2 = r2. He proofed if b ∈ R
[
(W)k2A

]
and

r1 = r2, then (7.1) has a unique solution, x = Ad,Wb, which can be presented

by the following Cramer rule,

xj = det

(
WAW(j −→ b) U1

V1(j −→ 0) 0

)/
det

(
WAW U1

V1 0

)
, (7.2)

where U1 ∈ C
n×n−r2
n−r2

, V∗
1 ∈ C

m×m−r1
m−r1

are matrices whose columns form

bases for N ((WA)k2) and N ((AW)k1), respectively.

Recently, within the framework of the theory of column-row determinants

Song [14] has considered a characterization of the W-weighted Drazin inverse

.
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over the quaternion skew and presented Cramer’s rule of the restricted matrix

equation,

W1AW1XW2BW2 = D, (7.3)

Rr(X) ⊂ Rr

(
(AW1)

k1
)

Nr(X) ⊃ Nr

(
(W2B)k2

)
,

Rl(X) ⊂ Rl

(
(BW2)

k2
)
, Nl(X) ⊃ Nl

(
(W1A)k1

)
,

(7.4)

where A ∈ H
m×n , W1 ∈ H

n×m , B ∈ H
p×q , W2 ∈ H

q×p,

and D ∈ Hn×p with k1 = max {Ind(AW1), Ind (W1A)}, k2 =

max {Ind(BW2), Ind (W2B)}, and rank (AW1)
k1 = s1, rank (BW2)

k2 =
s2. He proved that if

Rr(D) ∈ Rr

(
(W1A)k1, (W2B)k2

)
, Rl(D) ∈ Rl

(
(AW1)

k1 , (BW2)
k2

)

and there exist auxiliary matrices of full column rank, L1 ∈ H
n×n−s1
n−s1

, M∗
1 ∈

H
m×m−s1
m−s1

, L2 ∈ H
q×q−s2
q−s2

, M∗
2 ∈ H

p×p−s2
p−s2

with additional terms of their ranges

and null spaces, then the restricted matrix equation (7.3) has a unique solution,

X = Ad,W1DBd,W2.

Using auxiliary matrices, L1, M1, L2, M2, Song presented its Cramer’s rule

by analogy to (7.2). In this chapter we avoid such approach and obtain explicit

formulas for determinantal representations of the W-weighted Drazin inverse

solutions of matrix equations by using only given matrices.

7 2. Cramer’s Rules for the W-weighted Drazin Inverse Solutions

of Some Matrix Equations

Consider the matrix equation (7.3) with the constraints (7.4). Denote ADB =:

D̃ =
(
d̃lf

)
∈ H

m×q , and V̄DŪ =: D̄ =
(
d̄lf

)
∈ H

m×q , where V̄ :=

(AW1)
k1A, Ū := B(W2B)k2 .

Theorem 7.1. Suppose D ∈ H
n×p , A ∈ H

m×n, W1 ∈ H
n×m
r1

with

k1 = max {Ind(AW1), Ind (W1A)}, and B ∈ H
p×q , W2 ∈ H

q×p
r2

with k2 = max {Ind(BW2), Ind (W2B)}, where rank (AW1)
k1 = s1,

rank (BW2)
k2 = s2. If Rr(D) ∈ Rr

(
(W1A)k1, (W2B)k2

)
, Rl(D) ∈

Rl

(
(AW1)

k1 , (BW2)
k2
)
, then the restricted matrix equation (7.3) has a

unique solution,

X = Ad,W1DBd,W2, (7.5)

.
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which possess the following determinantal representations for all i = 1, m,

j = 1, q.

i)

xij =

m∑

l=1

q∑

f=1

(vD
il )

(2)d̃lf (uD
fj)

(2), (7.6)

where (vD
il ) = VD is the Drazin inverse of V = AW1 and (vD

il )
(2) can be

obtained by (6.10), and (uD
fj) = UD is the Drazin inverse of U = W2B and

(uD
qj)

(2) can be obtained by (6.8).

ii) If AW1 ∈ H
m×m and W2B ∈ H

q×q are Hermitian, then

xij =

∑
β∈Js1, m{i}

cdeti

(
(AW1)

k1+2
. i

(
dB

. j

))
β
β

∑
β∈Js1, m

∣∣∣(AW1)
k1+2 β

β

∣∣∣
∑

α∈Is2, q

∣∣∣(W2B)k2+2 α
α

∣∣∣
, (7.7)

or

xij =

∑
α∈Is2,q{j}

rdetj

(
(W2B)k2+2

j . (dA
i .)
)

α
α

∑
β∈Js1, m

∣∣∣(AW1)
k1+2 β

β

∣∣∣
∑

α∈Is2, q

∣∣∣(W2B)k2+2 α
α

∣∣∣
, (7.8)

where

dB

. j =




∑

α∈Is2,q{j}

rdetj

(
(W2B)k2+2

j . (d̄t.)
)α

α


 ∈ H

n×1, t = 1, n (7.9)

dA

i . =




∑

β∈Js1, m{i}

cdeti

(
(AW1)

k1+2
. i

(
d̄. l

)) β
β


 ∈ H

1×q, l = 1, q (7.10)

are the column vector and the row vector, respectively. d̄i. and d̄.j are the i-th

row and the j-th column of D̄ for all i = 1, n, j = 1, p.

Proof. The existence and uniqueness of the solution (7.5) can be proved similar

as in ( [14], Theorem 5.2).

To derive Cramer’s rule (7.6) we use (6.1). Then, we obtain

X =
(
(AW1)

D)
)2

ADB
(
(W2B)D)

)2
. (7.11)
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Denote ADB =: D̃ =
(
d̃lf

)
∈ Hm×q , V := AW1, and U := W2B. The

equation (7.11) can be written component-wise as follows

xij =

pX

s=1

nX

t=1

(ad,W1
it )dts(b

d,W2
sj ) =

pX

s=1

nX

t=1

 
mX

l=1

(vD
il )

(2)
alt

!
dts

0
@

qX

f=1

bsf (uD
fj)

(2)

1
A

By changing the order of summation, from here it follows (7.6).

ii) If A ∈ H
m×n
r1

, B ∈ H
p×q
r2 and AW1 ∈ H

m×m and W2B ∈ H
q×q are

Hermitian, then by Theorems 6.10 and 6.11 the W-weighted Drazin inverses

Ad,W1 =
(
a

d,W1
ij

)
∈ Hm×n and Bd,W2 =

(
b
d,W2
ij

)
∈ Hq×p posses the follow-

ing determinantal representations respectively,

a
d,W1
ij =

∑
β∈Js1, m{i}

cdeti

(
(AW1)

k1+2
. i (v̄.j)

)
β
β

∑
β∈Jr, m

∣∣∣(AW1)
k1+2 β

β

∣∣∣
, (7.12)

where v̄.j is the j-th column of V̄ = (AW1)
k1A for all j = 1, m, and

b
d,W2
ij =

∑
α∈Is2,q{j}

rdetj

(
(W2B)k2+2

j . (ūi. )
)

α
α

∑
α∈Is2, q

∣∣∣(W2B)k2+2 α
α

∣∣∣
, (7.13)

where ūi. is the i-th row of Ū = B(W2B)k2 for all i = 1, p. By component-

wise writing (7.5) we obtain,

xij =

p∑

s=1

(
n∑

t=1

a
d,W1
it dts

)
· bd,W2

sj (7.14)

Denote by d̂.s the s-th column of V̄D = (AW1)
k1AD =: D̂ = (d̂ij) ∈ H

m×p
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for all s = 1, p. It follows from
∑
t

v̄. tdts = d̂. s that

nX

t=1

a
d,W1
it dts =

nX

t=1

P
β∈Js1 , m{i}

cdeti

“
(AW1)

k1+2
. i

(v̄.t)
”

β
β

P
β∈Js1, m

˛̨
˛(AW1)

k1+2 β
β

˛̨
˛

· dts =

P
β∈Js1, m{i}

nP
t=1

cdeti

“
(AW1)

k1+2
. i (v̄.t)

”
β
β · dts

P
β∈Js1, m

˛̨
˛(AW1)

k1+2 β
β

˛̨
˛

=

P
β∈Js1, m{i}

cdeti

“
(AW1)

k1+2
. i

“
d̂. s

””
β
β

P
β∈Js1 , m

˛̨
˛(AW1)

k1+2 β
β

˛̨
˛

(7.15)

Suppose es. and e. s are respectively the unit row-vector and the unit column-
vector whose components are 0, except the s-th components, which are 1. Sub-
stituting (7.15) and (7.13) in (7.14), we obtain

xij =

pX

s=1

P
β∈Js1 , m{i}

cdeti

“
(AW1)

k1+2
. i

“
d̂. s

””
β
β

P
β∈Js1, m

˛̨
˛(AW1)

k1+2 β
β

˛̨
˛

P
α∈Is2,q{j}

rdetj

“
(W2B)k2+2

j . (ūs. )
”

α
α

P
α∈Is2, q

˛̨
˛(W2B)k2+2 α

α

˛̨
˛

.

Since

d̂. s =

n∑

t=1

e. td̂ts, ūs. =

q∑

l=1

ūslel.,

p∑

s=1

d̂tsūsl = d̄tl, (7.16)

then we have

xij =
pP

s=1

nP
t=1

qP
l=1

P
β∈Js1 , m{i}

cdeti

“
(AW1)

k1+2
. i (e. t)

”
β
β d̂tsūsl

P
α∈Is2,q{j}

rdetj

“
(W2B)k2+2

j . (el.)
”

α
α

P
β∈Js1 , m

˛̨
˛(AW1)

k1+2 β
β

˛̨
˛
P

α∈Is2, q

˛̨
˛(W2B)k2+2 α

α

˛̨
˛

=

nP
t=1

qP
l=1

P
β∈Js1, m{i}

cdeti

“
(AW1)

k1+2
. i

(e. t)
”

β
β d̄tl

P
α∈Is2,q{j}

rdetj

“
(W2B)k2+2

j . (el.)
”

α
α

P
β∈Js1 , m

˛̨
˛(AW1)

k1+2 β

β

˛̨
˛
P

α∈Is2, q

˛̨
˛(W2B)k2+2 α

α

˛̨
˛

.

(7.17)
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Denote by

d
A

il :=
X

β∈Js1, m{i}

cdeti

“
(AW1)

k1+2
. i

`
d̄. l

´”
β

β =

nX

t=1

X

β∈Js1, m{i}

cdeti

“
(AW1)

k1+2
. i

(e. t)
”

β

β d̄tl

the l-th component of a row-vector dA

i . = (dA

i1, ..., d
A

iq) for all l = 1, q. Substi-

tuting it in (7.17), we have

xij =

q∑
l=1

dA

il

∑
α∈Is2,q{j}

rdetj

(
(W2B)k2+2

j . (el.)
)

α
α

∑
β∈Js1, m

∣∣∣(AW1)
k1+2 β

β

∣∣∣
∑

α∈Is2, q

∣∣∣(W2B)k2+2 α
α

∣∣∣
.

Since
q∑

l=1

dA

il el. = dA
i . , then it follows (7.8).

If we denote by

d
B

tj :=

qX

l=1

d̄tl

X

α∈Is2,q{j}

rdetj

“
(W2B)k2+2

j . (el.)
”α

α
=

X

α∈Is2,q{j}

rdetj

“
(W2B)k2+2

j . (d̄t.)
”α

α

the t-th component of a column-vector dB
. j = (dB

1j, ..., d
B
nj)

T for all t = 1, n

and substituting it in (7.17), we obtain

xij =

n∑
t=1

∑
β∈Js1, m{i}

cdeti

(
(AW1)

k1+2
. i (e. t)

)
β
β dB

tj

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗)αα|
.

Since
n∑

t=1
e.td

B
tj = dB

. j , then it follows (7.7).

Remark 7.2. To establish the Cramer rule of (7.3) we shall not use the de-

terminantal representations (6.30) and (6.30) for (7.5) because corresponding

determinantal representations of it’s solution will be too cumbersome. But they

are suitable in the following corollaries.
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Remark 7.3. In the complex case, i.e. A ∈ C
m×n, W1 ∈ C

n×m
r1

, W2 ∈ C
q×p
r2 ,

and D ∈ Cn×p, we can substitute usual determinants for all corresponding row

and column determinants in (7.6), (7.7) and (7.7).

Because in the case ii), the conditions AW1 ∈ Hm×m and W2B ∈ Hq×q

be Hermitian are not necessary, then we have,

xij =

∑
β∈Js1, m{i}

∣∣∣(AW1)
k1+2
. i

(
dB

. j

)
β
β

∣∣∣

∑
β∈Js1, m

∣∣∣(AW1)
k1+2 β

β

∣∣∣
∑

α∈Is2, q

∣∣∣(W2B)k2+2 α
α

∣∣∣
,

or

xij =

∑
α∈Is2,q{j}

∣∣∣(W2B)k2+2
j . (dA

i .)
α
α

∣∣∣

∑
β∈Js1, m

∣∣∣(AW1)
k1+2 β

β

∣∣∣
∑

α∈Is2, q

∣∣∣(W2B)k2+2 α
α

∣∣∣
,

where

dB

. j =




∑

α∈Is2,q{j}

∣∣∣(W2B)k2+2
j . (d̄t.)

α

α

∣∣∣


 ∈ C

n×1, t = 1, n

dA

i . =




∑

β∈Js1, m{i}

∣∣∣(AW1)
k1+2
. i

(
d̄. l

)β
β

∣∣∣


 ∈ C

1×q, l = 1, q

are the column vector and the row vector, respectively. d̄i. and d̄.j are the i-th

row and the j-th column of D̄ for all i = 1, n, j = 1, p. These determinantal

representations are most applicable for the complex case.

Corollary 7.1. Suppose the following restricted matrix equation is given,

WAWX = D, (7.18)

Rr(X) ⊂ Rr

(
(AW)k

)
, Nl(X) ⊃ Nl

(
(WA)k

)
, (7.19)

where A ∈ H
m×n, W ∈ H

n×m
r1

with k = max {Ind(AW), Ind (WA)}, and

D ∈ Hn×p . If Rr(D) ⊂ Rr

(
(AW)k

)
and Nl(D) ⊃ Nl

(
(WA)k

)
, then the

restricted matrix equation (7.18-7.19) has a unique solution,

X = Ad,WD, (7.20)



264 Ivan Kyrchei

which possess the following determinantal representations for all i = 1, m,

j = 1, p,
i)

xij =
nP

t=1

P
β∈Jr1, m{i}

cdeti

`
(W∗W)

.t
(ŵ.t)

´
β
β

P
β∈Jr, n{t}

cdett

““`
U2k+1

´∗
U2k+1

”
.t

(d̂.j)
”

β
β

P
β∈Jr1 , m

˛̨
˛(W∗W) β

β

˛̨
˛
P

β∈Jr, n

˛̨
˛((U2k+1)∗ U2k+1) β

β

˛̨
˛

(7.21)

where U = WA, d̂.j is the j-th column of D̂ = ÛD = (U2k+1)∗UkD,

Ŵ = W∗Uk, and r = rank(WA)k+1 = rank(WA)k.

ii)

xij =

m∑

q=1

(vD
iq)

(2)rqj, (7.22)

where (vD
iq)

(2) can be obtained by (6.10) and AD = R = (rqj) ∈ Hm×p.

iii) If AW ∈ Hm×m is Hermitian, then

xij =

P
β∈Jr, m{i}

cdeti

“
(AW)k+2

. i
(f.j)

”
β

β

P
β∈Jr, m

˛̨
˛(AW)k+2 β

β

˛̨
˛

, (7.23)

where f.j is the j-th column of F = V̄D = (AW)kAD.

Proof. To derive a Cramer’s rule (7.21), we use the determinantal representation
(6.19) for Ad,W . Then

xij =

pX

s=1

a
d,W
is dsj =

pX

s=1

2
6664

nP
t=1

P
β∈Jr1, m{i}

cdeti(W
∗W).t (ŵ.t)

β

β

P
β∈Jr, n{t}

cdett

“`
U 2k+1́ ∗

U 2k+1
”

.t
(û.s)

β

β

P
β∈Jr1, m

˛̨
˛(W∗W) β

β

˛̨
˛
P

β∈Jr, n

˛̨
˛((U2k+1)∗ U2k+1) β

β

˛̨
˛

3
7775dsj

(7.24)

Denote D̂ = ÛD = (U2k+1)∗UkD, where D̂ =
(
d̂sj

)
∈ H

n×p . Since

p∑

s=1

û.sdsj = d̂.j,
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where d̂.j is the j-th column of D̂, then (7.21) follows from (7.24).

Cramer’s rules (7.22) and (7.23) immediately follow from Theorem 7.1 by

putting W1 = W, W2B = I.

Remark 7.4. In the complex case, i.e. A ∈ C
m×n, W ∈ C

n×m
r1

, and D ∈
C

n×p, we substitute usual determinants for all corresponding row and column

determinants in (7.21), (7.22), and (7.23).

Note that in the case iii), the condition AW ∈ C
m×m be Hermitian is not

necessary, then in the complex case (7.23) will have the form

xij =

∑
β∈Jr, m{i}

∣∣∣
(
(AW)k+2

. i (f.j)
)

β
β

∣∣∣

∑
β∈Jr, m

∣∣∣(AW)k+2 β
β

∣∣∣
,

where f.j is the j-th column of F = V̄D = (AW)kAD.

Corollary 7.2. Suppose the following restricted matrix equation is given,

XWBW = D, (7.25)

Rl(X) ⊂ Rl

(
(BW)k

)
, Nr(X) ⊃ Nr

(
(BA)k

)
, (7.26)

where B ∈ H
p×q , W ∈ H

q×p
r1 with k = max {Ind(AW), Ind (WB)}, and

D ∈ Hn×p. If Rl(D) ⊂ Rl

(
(BW)k

)
and Nr(D) ⊃ Nr

(
(WB)k

)
, then the

restricted matrix equation (7.25-7.26) has a unique solution,

X = DBd,W , (7.27)

which possess the following determinantal representations for i = 1, n, j =
1, q,

i)

xij =
pP

l=1

P
α∈Ir, p{l}

rdetl

““
V2k+1

`
V2k+1

´∗”
l.

(ďi .)
”

α
α

P
α∈Ir1,q{j}

rdetj

“
(WW∗)j . (w̌l.)

”
α
α

P
α∈Ir, m

|(V2k+1 (V2k+1)∗) α
α|

P
α∈Ir1, n

|(WW∗) α
α|

(7.28)
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where V = BW, ďi. is the i-th row of Ď = DV̌ = DVk(V2k+1)∗, w̌l. is the

l-th row of W̌ = VkW∗, and r = rank(BW)k+1 = rank(BW)k.

ii)

xij =

q∑

t=1

lit(u
D
tj)

(2), (7.29)

where (uD
tj)

(2) can be obtained by (6.8) and DB = L = (lit) ∈ Hn×q .

iii) If WB ∈ H
q×q is Hermitian, then

xij =

∑
α∈Ir,q{j}

rdetj

(
(WB)k+2

j . (gi. )
)

α
α

∑
α∈Ir, q

∣∣∣(WB)k+2 α
α

∣∣∣
. (7.30)

where gi. is the i-th row of G = DB(WB)k for all i = 1, n.

Proof. The proof is similar to the proof of Corollary 7.1 in the point i), and

follows from Theorem 7.1 by putting W2 = W, AW1 = I.

Remark 7.5. In the complex case, i.e. B ∈ Cp×q, W ∈ C
q×p
r1 , and D ∈ Cn×p,

we substitute usual determinants for all corresponding row and column deter-

minants in (7.28), (7.29), and (7.30). Herein the condition WB ∈ Cn×n be

Hermitian is not necessary, then in the complex case (7.30) can be represented

as follows,

xij =

∑
α∈Ir,q{j}

∣∣∣
(
(WB)k+2

j . (gi. )
)

α
α

∣∣∣

∑
α∈Ir, q

∣∣∣(WB)k+2 α
α

∣∣∣
.

where gi. is the i-th row of G = DB(WB)k for all i = 1, n.

7 3. Examples

1. Let us consider the matrix equation

WAWX = D (7.31)

.
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with the restricted conditions (7.19), where W and A are the same as in Exam-

ple 64., and

D =




k i

i −j

1 −i


 .

Therefore, the matrices V = AW, U = WA,
(
U5
)∗

U5, W∗, W∗W, Ŵ =
W∗U2 are the same that in Example 64. as well, and

D̂ = (U5)∗U2D =




i − j − k −j

1 + 3i + 6j − 2k 4i− 2k

0 0


 .

So, by (7.21)

x11 =

3P
t=1

P
β∈I3, 4{1}

cdet1
`
(W∗W)

.1 (ŵ.t)
´

β
β

P
β∈J2, 3{t}

cdett

“``
U5
´∗

U5
´

.t
(d̂.1)

”
β
β

P
β∈J3, 4

˛̨
˛(W∗W) β

β

˛̨
˛
P

β∈J2, 3

˛̨
˛((U5)∗ U5) β

β

˛̨
˛

,

where

∑

β∈I3,4{1}

cdet1 ((W∗W).1 (ŵ.1))
β
β =

cdet1




k i −j

0 2 0
i 0 1


+ cdet1




k i j

0 2 −2k

0 2k 1


+ cdet1




k −j j

i 1 0
0 0 2


 = 0,

∑

β∈I3,4{1}

cdet1 ((W∗W).1 (ŵ.2))
β
β = −2j,

∑

β∈I3,4{1}

cdet1 ((W∗W).1 (ŵ.3))
β
β = 0,

∑

β∈J3,4

∣∣∣(W∗W) β
β

∣∣∣ = 2,

and

∑

β∈J2,3{1}

cdet1

(((
U5
)∗

U5
)

.1
(d̂.1)

)
β
β =

cdet1

(
i − j − k −2i − 3k

1 + 3i + 6j − 2k 14

)
+cdet1

(
i − j − k 0

0 0

)
= −2i−j−k,
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∑

β∈J2,3{2}

cdet2

(((
U5
)∗

U5
)

.2
(d̂.1)

)
β
β = j,

∑

β∈J2,3{3}

cdet3

(((
U5
)∗

U5
)

.3
(d̂.1)

)
β
β = 0,

∑

β∈J2,3

∣∣∣
((

U5
)∗

U5
)

β
β

∣∣∣ = 1.

Therefore,

x11 =
0 · (−2i − j − k) + (−2j) · j + 0 · 0

2 · 1
= 1,

x12 =
0 · (−2 + 2j) + (−2j) · i + 0 · 0

2 · 1
= k,

x21 =
2j · (−2i− j − k) + (10i− 4k) · j + 0 · 0

2 · 1
= 1 + i + 7k,

x22 =
2j · (−2 + 2j) + (10i− 4k) · i + 0 · 0

2 · 1
= −7 − 4j,

x31 =
10i · (−2i− j − k) + j · j + 0 · 0

2 · 1
= 9.5 + 5j − 5k,

x32 =
10i · (−2 + 2j) + j · i + 0 · 0

2 · 1
= −10i + 9.5k,

We finally get,

X =




1 k

1 + i + 7k −7 − 4j

9.5 + 5j − 5k −10i + 9.5k


 .

2. Let now we consider the matrix equation

W1AW1XW2BW2 = D, (7.32)

with the constraints (7.4), where

A =




k 0 i 0
−j k 0 1

0 1 0 −k


 , W1 =




k −j 0
0 k 1

i 0 0
0 1 −k


 , W2 =




k −i

j 0

0 1


 ,
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B =

(
k j 0

j 0 1

)
, D =




i −1
k 0

0 j

−1 0


 .

Since the following matrices are Hermitian

V = AW1 =



−2 i 0

−i −1 0
0 0 0


 , U = W2B =




0 −i −i

i −1 0
i 0 −1


 ,

then we can find the W-weighted Drazin inverse solution of (7.32) by its deter-

minantal representation (7.7). We have

k1 = max {Ind(AW1), Ind (W1A)} = 1,

k2 = max {Ind(BW2), Ind (W2B)} = 1,

and s1 = rank (AW1) = 2, s2 = rank (W2B) = 2. Since

(AW1)
3 =



−13 8i 0
−8i −5 0

0 0 0


 , (W2B)3 =




0 −3i −3i

3i −3 0

3i 0 3


 ,

then ∑

β∈J2,3

∣∣∣(AW1)
3 β

β

∣∣∣ = 1,
∑

α∈I2,3

∣∣∣(W2B)3 α
α

∣∣∣ = −27.

Therefore,

D̄ = AW1ADBW2B =




2i + j −7 + k −5 + 2k

−1 + k −5i− j −4i − 2j

0 0 0


 .

By (7.9), we can get

dB

.1 =




36i− 9j

−27 − 9k

0


 , dB

.2 =




−27
−18i

0


 , dB

.3 =




9 − 9k

9i + 3j

0


 .

Since

(AW1)
3
.1

(
dB

. 1

)
=




36i− 9j 8i 0

−27 − 9k −5 0
0 0 4


 ,
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then finally we obtain

x11 =

∑
β∈J2,3{1}

cdet1

(
(AW1)

3
. 1

(
dB

. 1

)) β
β

∑
β∈J2, 3

∣∣∣(AW1)
3 β

β

∣∣∣
∑

α∈I2,3

∣∣∣(W2B)3 α
α

∣∣∣
=

36i − 27j

−27
=

−4i + 3j

3
,

Similarly,

x12 =

cdet1

„
−27 8i

−18i −5

«

−27
=

1

3
, x13 =

cdet1

„
9 − 9k 8i

9i − 3j −5

«

−27
=

−9− 7k

9
,

x21 =

cdet2

„
−13 36i − 9j

−8i −27− 9k

«

−27
=

−7− 5k

3
, x22 =

cdet2

„
−13 −27
−8i −18i

«

−27
=

−2i

3
,

x23 =

cdet2

„
−13 −9− 9k

−8i 9i + 3j

«

−27
=

15i − 11j

9
, x31 = x32 = x33 = 0.

So, the W-weighted Drazin inverse solution of (7.32) are

X =
1

9



−12i + 9j 3 −9 − 7k

−21− 15k −6i 15i− 11j

0 0 0


 .

Conclusion

In this chapter, we have obtained determinantal representations of the Drazin

and W-weighted Drazin inverses over the quaternion skew field. We have de-

rived determinantal representations of the Drazin inverse for both Hermitian and

arbitrary matrices over the quaternion skew field by the theory of column-row

determinants recently introduced by the author. Using obtained determinantal

representations of the Drazin inverse we have get explicit representation formu-

las (analogs of Cramer’s rule) for the Drazin inverse solutions of the quater-

nionic matrix equations AXB = D and, consequently, AX = D, XB = D

in both cases when A and B are Hermitian and arbitrary. We also have obtain

determinantal representations of solutions of the differential quaternion-matrix

equations, X′ + AX = B and X′ + XA = B, where A is noninvertible.

Also, we have obtained new determinantal representations of the W-

weighted Drazin inverse over the quaternion skew field. We have gave de-
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terminantal representations of the W-weighted Drazin inverse by using previ-

ously obtained determinantal representations of the Drazin inverse, the Moore-

Penrose inverse, and the limit representations of the W-weighted Drazin in-

verse in some special case. Using these determinantal representations of the

W-weighted Drazin inverse, explicit formulas for determinantal representations

of the W-weighted Drazin inverse solutions of the quaternionic matrix equa-

tions WAWX = D, XWAW = D, and W1AW1XW2BW2 = D have

been obtained.
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[35] P. S. Stanimirović, D. S. Djordjević, Full-rank and determinantal represen-

tation of the Drazin inverse. Linear Algebra Appl. 2000, 311, 131–151.

[36] I. Kyrchei, Analogs of the adjoint matrix for generalized inverses and cor-

responding Cramer rules. Linear Multilinear A. 2008, 56, 453–469.



274 Ivan Kyrchei

[37] X. Liu, G. Zhu, G. Zhou, Y. Yu, An analog of the adjugate matrix for the

Outer Inverse A
(2)
T,S. Math Probl Eng. 2012, Article ID 591256, 14 pages.

[38] I. Kyrchei, Cramer’s rule for generalized inverse solutions. In: Ivan

I.Kyrchei (Ed.): Advances in Linear Algebra Research; New York: Nova

Sci. Publ., 2015, pp. 79–132.

[39] C. D. Meyer Jr., Limits and the index of a square matrix. SIAM J Appl

Math. 1974, 26, 506–515.

[40] S. L. Campbell, C. D. Meyer Jr, N. J. Rose, Applications of the Drazin

inverse to linear systems of differential equations with singular constant

coefficients. SIAM J Appl Math. 1976, 31, 411–425.

[41] I. Kyrchei, Explicit formulas for determinantal representations of the

Drazin inverse solutions of some matrix and differential matrix equations.

Appl Math Comput. 2013, 219, 7632–7644.

[42] S. Gupta, Linear quaternion equations with application to spacecraft atti-

tude propagation. IEEE Aerospace conference proceedings 1998, 1, 69–

76.

[43] J. Campos, J. Mawhin, Periodic solutions of quaternionic-values ordinary

differential equations. Annali di Matematica 2006, 185, S109–S127.

[44] Y. Wei, Integral representation of the W-weighted Drazin inverse. Appl

Math Comput. 2003, 144, 3–10.

[45] Y. Wei, C.-W. Woo, T. Lei, A note on the perturbation of the W- weighted

Drazin inverse. Appl Math Comput. 2004, 149, 423–430.

[46] Y. Wei, A characterization for the W-weighted Drazin inverse and a

Cramer rule for the W-weighted Drazin inverse solution. Appl Math Com-

put. 2002, 125, 303–310.
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