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ABSTRACT

We present a review of the essential features of quanternion
algebra and calculus. These are then applied to electromagnetic
theory and some of the interesting features of this application
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Introduction

When James Clerk Maxwell formalized electromagnetics in his celebrated
equations1 he wrote them, among other ways, in terms of Hamilton's quaternions.
However, as is so often the case, he was apparently unaware of the full im-
plication of what he had done. It remained a curiosity unitl the 1930's when

Rudolf Fueter and his students and c:olleagues6'13

developed a calculus

of quaternions much akin to complex variable theory even to the extent of a

four dimensional analog of the Cauchy-Riemann equations. Thereafter, it

has been noticed now and again by various investigators that, with proper

identification of variables, these '"Cauchy-Riemann like'' equations (the

so-called regularity conditions) are in fact nothing but Maxwell's equations

in free space. However, it seems that this fact has never been exploited

to any great extent. It is, of course, not very difficult to find possible

reasons for this; not the least of which is the vast generality and universal

acceptance of the tensor formalism which has all but obliterated the re-

markably ingenious work of Hamilton.14
The purpose of this exposition is primarily to demonstrate techniques

for manipulating quaternions in electromagnetic theory. Quaternion caiculus

is an area somewhat alien to many people and it is not always clear just

what must be done to obtain concrete results. One may, for example, speak

of the abstract properties of vectors and of the beauty of the vector calculus

but when it comes to teaching, sooner or later the 'mitty gritty' manipulation

of components must be presented. Similarly, one may speak in generalities

and formulate equations and thereby demonstrate the elegance and mystique

of these quaternions, 'ut sooner or later, one must understand the details

of manipulating them to obtain answers.




We present here the results of ocur first efforts to make use of the
quaternion formalism in classical electromagnetic theory. We begin by
summarizing for reference the previously existing real quaternion formalism.
In adapting this existing formalism to the equations of electromagnetics,
one must make a generalization from real quaternions to complex quaternions.
Not all of the properties of real quaternions carry over to complex quaternions,
but many do, and it is these which provide the basis for the calculational
techniques described subsequently. We ask then that the reader bear with us
as we first present the theory of real quaternions even though it is complex
quaternions which we will 1atef require. Finally, we present here several
of our results indicating what can be done at this point in the development

of the theory.

Quaternion Algebra

A quaternion is, in essence, a four component ''complex number."
That is it has a real part and three distinct imaginary parts and thus it

may be written



A ~ ~

@=a;+aji; +ai)+agiz=a;+3 1)

A A A

where ays ap a,, az are Teal numbers and il, 12, 13 are unit imaginaries,
i.e., il2 = iz2 = 132 = -1. a is termed the scalar part and @ the vector
part of the quaternion. A quaternion may be multiplied by a scalar and

the product is commutative and distributive; thus,

~ ~

bol = ab0 = boa0 + boa = boa0 + boali1 + boazi2 + b0a313 (2)

where b0 is any scalar (real or camplex). Quaternions are added by

addition of their corresponding components so that

a+hp-= (a0 + bO) + (a1 + bl)i1 + (a2 + bz)i2 + (ag + b3)i3 (3

The algebra of these quaternions can be described by means of the
following relation.

A A A

From this may be derivedtherules for multiplying quaternions. For example,

in multiplying two quaternions we might require the product 1213. We
obtain this by multiplying equation (4) by i1 which yields

A A AN ~

11111213 = -i (5)

A AN A

S 6)
113 = 14



Note that using a similar procedure (multiplying from the right first by

iz and then by iz) one may easily show that 1312 = -i1

monstrates that the algebra of quaternions is a noncommutative one. We

which clearly de-

are now in a position to write down the product of two quaternions.

"N

8 = (ajta i *a,i,*azis) (bytbyi *b,l,thsiy)
= (agby-a;by-a,b,-asb)
* (aobl‘“albo*azbs‘asbzﬁl
+ (a0b2+a2b0+3'3b1-a1b3) ;2
+ (a0b3+a3b0+a1b2-azbl)£3

= aobo-‘i-’6+a0b+b03+3x3 (N

where the dot and cross products indicated are those of ordinary vector
analysis. Note that this again indicates the noncommutativity of the
quaternion product.

The conjugate of a quaternion is defined in analogy withcomplex

variable theory; that is,
* = -
a* =a, -7 (8)
and the squared magnitude or norm of a quaternion follows naturally as
2, 2,2, 2

IIIZ = ag* = a)"+a, +a,"+a, (9)

and is obviously positive @nd zero only if & = 0). Thus we can conclude

that



a, = L (st+a*)

E:

%(a-a%)

(sb)* = b*a* (10)

The inverse of .a quaternion is defined to be such that

aa =1 (11)
Thus,
a*aal = g* or
al- !l‘*—lz (12)

Hence, every nonzero quaternion has a unique inverse and we note that
@) ! -plat (13)

The quaternions, then, form a division algebra which is noncommuta-
tive but for which all the other properties of the algebra of real numbers
and complex numbers hold. It has been shown that there is only one other
division algebra, that of octonions (eight component numbers) but that
algebra is both noncommuitative and nonassociative. (This is not a bad as
it sounds; the vector product for example is neither commtative nor
associative.) Were we to allow the components of the quaternions to be com-
plex numbers we would no longer retain the division algebra. That is there
exist non-zero complex quaternions which have no inverse because their

norms are zero (c.f., there exist matrices which have no inverses because




their determinants are zero).

Quaternion Calculus

At this point we introduce the concept of a function of a quaternion
variable X, i.e. uw(X). One might now proceed as in complex variable
theory and require that the change in u for a given change in X be inde-
pendent of the direction of the change in X; in other words one might try
to invent a unique derivative. However, if this is done the requirements
on w are so stringent that only a few functions (such as constants) can
satisfy them. We proceed, instead, in analogy with Morera's theorem of
complex variable theory. That is, we call a function '"'regular' in a four-

volume V if

fﬁ”“=° (14)

for every closed hypersurface H in Vf. Note that this is not the same as

requiring that
%@®“=0 (15)

for every closed H in V because the algebra is not commutative. Thus,
u's satisfying (14) are termed "'right regular'" and w's satisfying (15)
are termed "left regular.”

There is, in this calculus an analog of the Gauss theorem of vector

calculus’and introducing the differential operator I = -5-%— - V= a_i_ -
A A~ A 0 0
~ D S TR i . _d -
i, —axl - i, Ta-—xz - i _3x3 and its conjugate I * = 5% + V, we may write
this analog as
y@a = [ 1reuay 16)

v

tdq is the outwardly directed element of the three-surface H bounding the
four volume V,



One may readily demonstrate this equality by means of the Gauss theorem as

follows. First we write the elemental three-surface element dq in detail as

30 .
dq= )} £, dh
k=0 KK

where dh is the '"3-area" of the element and the quaternion in parenthesis is
a unit quaternion in the direction of the outward normal to the closed three
surface H. Now, making use of (7) we form (dq)w and integrate it over H as

required on the left side of (16).
§é§Q)“ - {H(Eouo - Ejuy - Ejuy T Egug)dn
* 21 §§€o“1 *Egu, * Bpug Eguy)dh
+ 52 §é50u2 + gzu6 + gsul - gluz)dh
v ig }H(Eous *Egu, * Eguy - Eyupddh

Applying the conventional four dimensional Gauss theorem to each of the above

integrals we obtain;

§ auo au1 auz au3
(dq)u = I - - - dv
H v axo 3x1 axz ax3
~ [ 3u auo Ju Ju
+ i + + - dv
1JV ax Bxl sz 3x3
~ f Ou Buo Ju Ju
+ 1 + - dv
2 Jy 9% axz ax3 9X,
~ Ju au du Ju
+ 3 0 2
3 Jy ax X X sz dv
= I II*udv
Vv




where dv is the scalar element of four dimensional volume in the region V.

Analogously, one may show that

§ udq = J ull*dv (17)
H \') '
Thus, a function u is right regular if

ull * = 0 (18)

and left regular if

1
(]

II *u 19)

These regularity conditions may also be written in terms of the familiar

vector differential operations. For right regularity,

au e
0 = U -~ _
-—ax() - Vu + _axo + Vu, - Vxr =0 (20)
and for left regularity,
au b
0 - oﬁ + .__au T =
—axo ' axo + Vu0'+ Vxu = 0 (21)

That the regularity conditions are analogous to the Cauchy-Riemann
equations may be made even more obvious by writing them out in detail as

follows. For right regularity,

au0 aul auz au3

axo axl sz 8x3

Bul . Buo . auz 3u3 .
ox 5X 39X, oX,
0 1 3 2

Buz Buo E)u3 aul

+ + - =
on axz axl ax3



and for left regularity,

au3 auo . aul auz
axo 3x3 sz Bxl
Buo Bul ] Buz 3u3
axo axl sz 8x3
Bul Buo . 8u3 Buz
axo axl axz ax3
Buz Buo . Bul Bu3 )
axo axz 3x3 Bxl
8u3 auo auz aul

on

8x3

axl

axz

0 (22)
0
0
0
=0 (23)

Note now that if in either (22) or (23) one sets any two of Ups Uy, and

u; equal to zero and asserts that u, and the remaining component of u

are independent of the components of x corresponding to the zero components

of w, one obtains the Cauchy-Riemann equations. For example, if we set up

and u, equal to zero and assert that u, and u; are independent of Xq and

X55 both (22) and (23) reduce to

[o¥]
(=]

u

Q
o

X

Q
W

u

(o3
o

X

au

=_3
ax3

10

(24)



Maxwell's Equations

If one now attempts to apply the above formalism to the variables
of electromagnetics, one soon discovers a fundamental discrepancy between
the laws governing the électromagnetic interaction and those governing the
behavior of functions of a quaternion variable. This is due to the fact that,
while Xy Xy X5, x3 are essentially alike in the world of real quaternioms,
the time variable is a fundamentally different sort of object than the
three spatial variables in the world of four dimensional electrodynamics.
We remedy this difficulty in the same way that Minkowski did in his approach
to special relativity theory. That is, we introduce an imaginary variable,
i t, where t is real, and substitute it for one of our four real variables,
X in the theory of real quaternions. This makes the replaced variable
fundamentally different from the others in just the proper way, but it makes
our quaternions complex. These complex quaternions then have in reality
eight components but, because the components are paired into four complex
components, these objects are not the nonassociative octonions. Rather,
they are a special subcatagory of the octonions which retains the associative
property. They no longer form a division algebra, however.

We shall find it convenient to work in units where the speed of light
in vacuum, c, is unity; that is, we measure in time in meters (1 second =

3 x 108 meters).

11




Now, if u is left regular, then w = IIu is also left regular be-

cause I*w = I*Iw =1 (I*) = 0. Let us make the substitution Xy =

i t where i = /-1 and write out this equation in detaillt

13 13 -
G- NG+ Vu=0 (25)
or
fyy = 13 _
O™ =0 where [J= x == - V.

Now, introducing i t makes u a complex quaternion (no division algebra)

and we may write
u=¢+iA (26)

where ¢ and A are real quaternions and (25) becomes

2 3% o
(v - ;{2—) (¢+iA) = 0 27)

Thus if u = ¢ + iA is left regular then it satisfies the three dimensional
wave equation. Writing out this left regularity requirement in detail we

obtain,

Q@A) = G2+ v9) + i(A - 2
A
= g - 79)

+ (.g.%+ V¢0 + Vx$)

3

+ i('V'K - ft—o-)
+ i(VAy + VA - 3) = 0 (28)

t++Alternatively, one may' introduce the Minkowski metric at the 01111s:set by modifying
the quaternion algebra asserting that iliZiS = +i while i = +1.

12




The four terms in parentheses represent respectively the real scalar,
the real vector, the imaginary scalar, and the imaginary vector parts
of the expression. In order for the expression to be zero each of these
four quantities must individually be zero. We can satisfy this re-

quirement by defining

TR g -
E T vq)o Vx¢ (29)
= _ -~ a$ _
B=VxA = b VAO (30)
and requiring that
8¢0 R
3T +V-A=0 (31)
and
BAO -
T Voo = 0 (32)

Thus ¢O and A are the familiar scalar and vector potential satisfying
the Lorentz gauge condition (31) while ¥ and A0 are the corresponding
vector and scalar antipotentials satisfying the Lorentz gauge condition
(32). We see, then, that the left regularity of u = é+iA is equivalent to
Maxwell's equations because all components of ¢ and A satisfy the wave
equation (27) and the Lorentz gauge conditions (31) and (32).

The above result can be obtained more directly by introducing the

so-called field quaternion

F= %(O*™-um*) = - up* =E + iB (33)
Now,
O*F= - 50%0* = 0 (34)

13



and,

O*EB) = (7B + G + WD)

+ i(-V-B) + i(VxB - g—f_?) =0 (35)
which implies,
v.E=0 VB =0
W - - B wd - & (36)

which are, of course, Maxwell's equations in vacuum. Note that if u
were both left and right (fully) regular, R would be identically zero,
i.e. no fields can be obtained from a fully regular quaternion potential.
Note also that it is easy to see from the left regularity of B (Equation
34) that

OC*F =J%F = 0 (37)

which implies that,

O%=0 ad O%=0 (38)

That is, both E and B satisfy the vector wave equation.

We comment at this point that if by any means whatever we find a left
regular complex quaternion u = ¢+iA it will be a valid potential for P.
However, it is not obvious that the substitution of -i X for t will make
u real. Thus, it may be that in order to cover all possible potentials we
must allow @ to be complex before substituting i t for Xg- This certainly
makes the theory more flexible but perhaps it makes it too flexible (not

to mention the demise of the division algebra). That is, on the basis of

14




simplicity, one might argue as follows. Were it a fact that all physical
potentials can be derived fromreal quaternions, then in static problems

(t and X absent) A would be identically zero. This would preclude the ex-
istence of a magnetic field in the absence of time dependence and hence
would preclude the existence of magnetic poles. What we are saying is

that if a magnetic pole were to be discovered, we would immediately know
that we must allow u to be complex before the substitution of i t for Xq-
There is no way to argue against the existence of magnetic poles on the
basis of Maxwell's equations but the simplest quaternion formalism con-
sistent with Maxwell's equations appears to preclude the existence of such

poles.

A Simple Example

We have seen that electromagnetic fields satisfying Maxwell's equations
can be derived from quaternion potentials. These potentials are rather
alien to our usual way of thinking. Thus it may be well to present an

example of a quaternion potential for a familiar field. The potential,

(39)

yields the field of a point charge q. Its scalar part is the familiar

Coulomb scalar potential while its vector part is the corresponding

~

vector antipotential. 1, is a quaternion unit vector in the ¢ direction in

¢

a spherical coordinate system and 6 is the polar angle in that system.

15



Potentials for More Complicated Static Fields

Since regular quaternion functions represent electromagnetic fields,
we are now faced with the task of generating such functions. Two examples
of quaternion potentials somewhat more substantial than the above example

have been set down by Alan R.ose16 in a calculation of fluid flow around a hard

sphere. They are

16



U= -Xx; - 51+ i, (40)
and, R
X, +X,1,-X,1
e 2
Gy +35435)

The first, (40), yields a uniform 13 directed electric field while the
second, (41), yields the field of an i3 directed electrostatic dipole.

Note first that thesepotentials are time independent so the Xy > it

substitution has no relevance here. Note also that in each case the 23
component is zero. This selects a preferred direction in space for

these potentials which might just as well have been that of El or ;2 or any
other direction. However, we could not have set the scalar component equal
to zero for then regularity would require that both the divergence and curl
of the vector part be zero yielding no fields.

Consider Equation (40). This potential is a linear form in X1 X, and

Xz having no i3 component. If we define a quaternion g = ié?'where

- 72

N N A . _ ° A . 1
r=1ix+ 1yy + iz, that is, g = -z + lyx - iy, then we may write B( )

as

gD - %, + %;* (42)
which is a linear form in 2 and z*. We may now extend this scheme by
postulating the following quadratic form in z and z*.

8D = Ag% + Bagr + Ca#? (43)

Note that z commutes with 2* so that a term in z*2 is unnecessary. The

17



coefficients A, B, and C may now be determined to make 8(2) left regular.
Of course B(z) can always be multipled by an overall scalar constant
without destroying the regularity so we arbitrarily choose to normalize
8(2) so that when x; = 0, x, = 0, and x5 = 1, |B(2)|2 = 1 just as do

|8(l)|2 and [B(-l) [2. When all this is done we obtain,

8(2) - 227 & Juzr 4 g#? (44)
or, N 2+x 2
B = x 2 -2 vk - xpxi ) (45)

The above procedure may be continued indefinitely to yield all B(n) 's
for positive integral n. We now note two interesting properties of the
B(n) 's. First, they all commute with each.other and second,
4 g _ pga-1) (46)
3

Equation (46) may be used to generate ﬁ(-z) from equations (41) and 8(_3)
from 6(‘2), etc. Upon doing this we find that the resulting 8™ s are ail
left regular andmutually commuting. Using (46) we also find that 8(0) =1,

The 8's derived above are all quaternion potentials for three di-
mensional static fields. Their scalar parts being real, are just the ordinary

electrostatic scalar potential. Writing these scalar parts in spherical

coordinates we find,

¢(§n) = (-l)nrnPn(cos )
¢52) = rZPZ(cos 8)
¢81) =—rP1(cos )

18
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O
(=]
—

n

Po(cos 8)

¢g-1) - %zPl(cos 9)

S
o
i

%Pz (cos 6) (47)
T

5™ = (-1)™ 2P, (cos ©)
T

r~ea | -

th

where Pz(cos 8) is the £~ order Legendre polynomial and 6 is the polar

angle with the polar axis in the i direction. These are quite obviously the
solutions of Laplace's equation in three dimensions as one might have
expected. Note that the potential B(-l) corresponding to the dipole field

represents a simple pole singularity in three dimensions (See Appendix A.)

19



A More General Method of Generating Potentials

Rudolf Fueter developed a more general method of obtaining left
regular functions. By means of this method it will be possible to obtain
a familiar time dependent solution of Maxwell's equations. Following

Fueter7 we proceed as follows.

Consider regular quaternion functlons which depend on X1s XZ’ and

2,.2 T 2 2
Xz only through r = x%+x2+x3 and r = ?-where T = x1 1t Xz 5 * x3 3

We term such functions regular spherical functions*. We now appeal to a
theorem due to Fueter which may be stated as follows.

Let w=u + iv = w(z) be an analytic function of the complex
variable z = x + i y where u and v are each real fimctions of
x and y. Make the substitutions x»X,, y-r, and i»r so that
2ox) * T = X and wV = U(x ,r) + rV(>°< ,r) = V(x). If we form
-¥ = %AV where A is the Laplacian in Qour dimensions, then v is
fully regular and each component of V satisfies the four dimen-
sional biharmonic equation AAf =

By means of this theorem then one can generate a fully regular quaternion
function ¥ from any analytic function w of a complex variable z.

A simpler formula for ¥ may be obtained in the following way.

32 .
AV-(—2-+V)V 2U2+r32V2+v2u+v2(i~V) (28)
oxX ax
0 0
but
2. 3%y . 2 aU
VU=_8—2-+?3_T (49)
Tr

*Note that a regular spherical function must be fully regular since a
function dependent only on r can have no curl and Equations (20) and
(21) are identical in that case.

20



2
2 _ 23 2
O R I e 2 (49)
T T
2 2 :
2V oV 220 . 3% _ . . .
Now + = 0 and + = (0 by analyticity of the generating
wl o ol ol
functign w(z). Thus
_ 203U, 42V _2
AV—?—r+r?—r- ?—fV (50)
190,18V vV, _1, e 5
‘/zAV=}-—r-+r?ﬁ-7=i_-¥+r3rr ()
The Cauchy-Riemann equations require that
U _ 3V
T axo
so that we have,
_ loav d Vy _ V. _
LAV = ~?—x-6+?'5}-('f) I (52)
Thus,
v-1d (53)
and of course,
vy _19% , o2 54

axo

(since V is harmonic in X and r) implying that v is left regular and since
it is also spherical it is fully regular. Evidently Equation (54) also

holds for U(xo,r) and we thus have another fully regular function

us I | (55)

21



We term the functions uw and ¥ twin functions as they are obtained from
the same analytic function w(z).

Now, given any regular spherical function

u = cb(xo,r) +r tIJ(XO,rJ (56)

we can always find a U(xo,r) and a V(xo,r) such that

13U _ 3V, _
T ¢ w =V (57)
U _ oV v _ dU
x; or N T (58)
by means of
U= Jr ¢ dr + f(xo) (59)
V= rjw dr + r g(xo) (60)

where f(xo) and g(xo) are determined to within additive constants by
(58). Thus we can always find an analytic function of a complex variable
which will generate w. What we have found then is that every regular

spherical quaternion function @ has a scalar potential [r—l One can also

show that u has a quaternic potential w . (See Appendix B.)
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Examples of Regular Spherical Functions

We now present a few simple examples of regular functions generated

from analytic functions of a complex variable

Example 1: w(z) =a in z = %-2n(x2+y2) +1a 'can_l %

X
- a 0 S | 42 2 _ 1
UEF gzt Taly ity - eyl
x0+r T Xor
X
0 -1~
V= ——m+rT a[———z——z— - t —
Xg*T r(x0+r ) ;Z )
Example 2: w(z) = %-= a —-1
X“+y
- - g'rz'xg v la Xy (2 s 1
T (r2+x2)2 r2+x2 r2+x2 rz(r2+x2)
0 0 0 0
2a(x0-rr)
v:
(>c02+r2)2
Example 3: w(z) = az = ax + iay
. ax
u=%+r._0 v=20
T
Example 4: w(z) = a + ib
ar b
u = v =
) )

Note that these and all regular spherical functions are fully regular

and hence cannot generate fields.

23



The Time Harmonic Electric Dipole Field

The above formalism will now be used to derive a quaternion potential
for the fields of an oscillating electric dipole. We begin with the

analytic function

w(z) = iZ'COSth (61)

Then,
u-= %;-cos kr sinh kxo + af[%;-sin kr + Eizsz cos krjcosh kxo (62)
v = & sin kr cosh ke, + af[- jz cos kr + ?k-:? sin kr]sinh kx,  (63)

Making the substitution xo*i t we obtain,

u+%%-cosh kr sin wt + fa[%;-sin kr + Eiigz-cos kr]cos wt (64)

v»%;-sin kr cos wt + aif[i%-cos kr + Eii;z-Sin kr]sin wt (65)
We now form w = -u + iv

v = & sin(kr-ut) - Fafgz sin(kr-ut) + (—ki—)[ cos (kr-wt) ] (66)

~

Let e be a unit constant vector, a constant quaternion with zero scalar
part. Multiplying w on the right by e will not destroy its left regular-
ity but will destroy its right regularity by imparting to it a curl and

enabling it to yield fields.

24



u; =13 g a[%;-sin(kr—wt)] + a(;-g)[%;-sin(kr-wt) + E-l;Z cos (kr-wt)]
kr
SRS 1
- a(rxe) [= sin(kr-wt) + cos (kr-wt)
kT W W 0S w ]
= ¢+ iA e7)

Thus, selecting a spherical coordinate system with its polar axis in

the direction of e, we obtain

9= [% sin(kr-wt) + _az_ cos (kr-wt)]cos 6
(kr)
+ 1 [A sin(kr-wt) + —3— cos(kr-wt)]sin 6 (68)
s (kr)?
A= i [ sin(a-ot)]cos 6 - ig[i- sin(r-ut)lsin 6 (o)

Finally, we obtain the fields by means of (29) and (30),

- -~ 1 . 1 -
E=Vx¢ = 2a k cos 6] sin(kr-wt) + — cos (kr-wt) ]Ji
(k)2 (kr) r

+ a k sin 6[(—1:‘?- sin(kr-wt) - (11(}— - (—k—i-)-g)cos (kr-wt)]ze (70)

T =9k =aksin e[ﬁ sin(kr-ut) - = cqs(kr—wt)]'i\q) (71)

These are easily recognized as the electric dipole fields as antici-

pated. (The dipole moment p is proportional to the constant a.)

Concluding Remarks

We have seen that the quaternion formalism enables one to obtain

in an essentially algebraic way some of the most fundamental results of

25



electromagnetic theory. One might hope that, being so analogous to com-
plex variable theory, this formalism would provide four dimensional
analogs of conformal mapping, residue theory, analytic continuation,

and so on. However, it is well known among mathematicians that a full
analytic theory in the complex variable sense is not possible for quaternions.
In particular, conformal mapping in more than two dimensions cannot be
done. (In our case, this is because a regular function of a regular
function is not necessarily regular.) Certain of the complex variable
results, however do have analogs in four dimensions. For example,

Fueter has provided analogs of Cauchy's theorem, Morera's theorem, and
power series expansions. Moreover, the possibility of a four dimensional
theory of analytic continuation has not been ruled out. Future appli-
cation of allof these aspects of the quaternion calculus to electromag-
netics might prove quite interesting from both the theoretical (elegance)
and the practical (calculational techniques) points of view.

In a more general sense, Edmonds has pointed out that quaternions

may provide the basis for future fundamental breakthroughs in several areas

of theoretical physics.17
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Appendix A - Singularities

The fundamental singularity in complex variable theory is the simple
pole; e.g., %-where w is a complex variable. We have shown above that the
simple pole singularity in three dimensions is 8(-1) which may be written
;%ET-where z is -xs-x2£1+xliz. If a procedure similar to the one used to
generate the B's is applied to the full four component quaternion q rather
than the three component quaternion g, one finds that the simple pole
singularity is ——l—z. The corresponding singularity in one dimension is
lgl-where X is g geal variable. Thus we generate a sequence of simple
pole type singularities each corresponding to a space of a certain di-
mensionality. If we take v to be the variable of corresponding dimension-
ality, i.e., real, complex, three component quaternion, four component
quaternion for one, two, three, and four dimensions respectively, we obtain

the sequence,
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Appendix B - Quaternic Potentials

Consider a left regular function u and define

u=%0u

Now,

D* =%0*0u=%1I*a=0
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that is @ is also left regular. Similarly, if w had been right regular,
then 8 would have been right regular. If u had been fully regular then
a would have been fully regular. Thus if w is a regular spherical function
then @ is also. We term u the quaternic potential for w.. In the case
of regular spherical functions it can easily be shown that if u is
generated from an analytic function w(z) then u is generated from g;.
Now, since analytic functions of a complex variable possess integrals
(potentials) and derivatives of all orders, we have that regular spherical
functions of a quaternion variable possess potentials and derivatives of
all orders.

Recall that we have shown previously that every regular spherical
function possesses a scalar potential and just above we found that it
possesses a quaternic potential. These two potentials are related. From

(20) and (21) we find that a fully regular function must satisfy,

au —
_0 = V.ﬁ and 9.1_1_ = - Vu
on axo 0

Now, by definition,

Substitution shows that this may be written,

.

11u=1(a—u‘l-\7u)+1/(v~ﬁ+a—“-)=lnu=ﬁ
0~ *'x (1 X,

o

Thus, the scalar potential for ¥ is just the scalar part of the quater-

nic potential.
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